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Abstract

In light of the broader vision for digitalization and smart-X vertical industries (e.g., smart
city, healthcare, manufacturing), an unprecedented increase of data-hungry and compute-
intensive applications takes place, imposing stringent communication and computing re-
quirements on the network. As a means of extending connectivity, increasing spectral and
energy efficiency, and reducing latency, several prominent technologies and architectural
paradigms emerge as key enablers of the Next Generation (NextG) 5G wireless networks.
In this context, the simplistic adoption of existing solutions to traditional resource manage-
ment problems is inefficient in exploring and exploiting the network’s capabilities. On the
contrary, several degrees of freedom should be concurrently determined about the nature
and type of the resources to be allocated while accounting for the multifaceted competition
between different stakeholders.

In this thesis, we tackle the problem of efficient resource allocation in heterogeneous
and multi-tier wireless communication and mobile computing networks in a holistic, though
distributed, manner. In the direction of self-organizing networks, where each network entity
makes autonomous decisions regarding its resource utilization and allocation, we develop
novel frameworks that capture the interdependencies between different network entities’
behaviors, interactions, and decisions by accounting for their different and/or conflicting
objectives and the existence of incompleteness of information between them. To provide
such a real-life spirit in modeling the resource management problems, we resort to Game
Theory and Contract Theory, which result in low-complexity methodologies and algorithms
for solving the formulated problems.

First, multi-variable resource allocation problems are studied in heterogeneous and multi-
tier wireless communication networks. Targeting to address the problem of incomplete/par-
tial Channel State Information (CSI) from the Base Stations’ (BSs’) behalf, as well as the
user-BS conflict regarding the users’ uplink transmission power investment, a synergistic
approach based on the principles of Contract Theory is initially introduced. The BSs de-
sign a menu of contracts based on their statistical knowledge about the users’ CSI, which
comprise indicative power levels along with a corresponding reward, such that the designed
power levels enable the decoding of the users’ transmitted signals at the BSs’ receivers via
the combination of Non-Orthogonal Multiple Access (NOMA) and Successive Interference
Cancellation (SIC). The users autonomously select the one contract out of the menu that
best fits their experienced channel conditions while employing a Reinforcement Learning
(RL) algorithm to distributively determine the most beneficial BS association.

Taking one step further to the underlying network architecture and employed technolo-
gies, we aim to concurrently account for and properly configure the resources across the
wireless access and backhaul network parts of an Unmanned Aerial Vehicle (UAV)-assisted
and Reconfigurable Intelligent Surface (RIS)-aided communication network. By capitaliz-
ing on the structural hierarchy between the UAV-mounted BS and the users, a Stackelberg
game is formulated to distributively deal with a highly combinatorial resource management
problem. The UAV, acting as leader, determines the RIS’s phase shifts such that the sum
users’ signal strength is maximized in the uplink and, in a second phase, jointly calculates
the bandwidth and uplink transmission power allocation in the backhaul link to the core
network. In the third phase, the users, acting as the followers, optimize their uplink trans-
mission powers to the UAV in a distributed manner. The second and third phases are
iteratively repeated to conclude with the game’s Stackelberg equilibrium point, at which the
end-to-end energy efficiency is maximized.



Respecting the need for converged radio and computing resource allocation frameworks
within the context of NextG 5G networks, a multi-tier mobile computing topology is consid-
ered, and the joint problem of computation task offloading and uplink transmission/offloading
power allocation is studied. In contrast to the existing literature, where single-tier comput-
ing networks are modeled, consisting of an edge, a fog, or a cloud service layer, concurrently
utilizing a wide range of computing capabilities and options is pursued. Given the users’ self-
ish behavior towards offloading to the edge due to the latter’s proximity, an incentivization
mechanism based on Contract Theory is designed to motivate them to allow a percentage
of their initially offloaded tasks to the edge to be further forwarded and processed at the
fog. Having determined this percentage, the ultimate users’ computation task offloading
and uplink transmission power to edge are jointly derived in a distributed manner by play-
ing a game among them. By utilizing multiple computing service layers, an energy-efficient
solution is derived while extending the edge service layer’s computing capacity.

Finally, aiming to further study the distribution of computation tasks horizontally, i.e.,
within the same computing tier, while considering multiple servers, a multi-server Multi-
Access Edge Computing (MEC) network is modeled. The users leverage the different
available Radio Access Networks (RANs) nearby to offload their compute-intensive and
latency-critical applications to multiple MEC servers simultaneously. To address the crit-
ical interference management problem under the resulting multi-user multi-server network
topology while being motivated by the advancements in the non-orthogonal multiple access
techniques, the application of Rate-Splitting Multiple Access (RSMA) is scrutinized. In
this context, the minimization of the sum of the users’ maximum experienced delay among
the different MEC servers is pursued by jointly optimizing their computation task offload-
ing ratios, rate, uplink transmission power, and computing resource allocation across the
offloading MEC servers. The formulated joint optimization problem is analytically solved
using conventional optimization techniques based on the Karush-Kuhn-Tucker (KKT) con-
ditions. This complements the ultimate purpose of this thesis to provide a holistic approach
and view to the converged wireless communication and mobile computing networks.

The considered resource management problems are thoroughly evaluated via modeling
and simulation. The proposed frameworks’ pure operational characteristics and the designed
algorithms’ convergence behavior are examined under different scenarios and values, while
comparative results against other benchmarking and state-of-the-art solutions are provided
to demonstrate the proposed frameworks’ effectiveness and efficiency.

Keywords: Resource Allocation, Incentive Mechanisms, Non-Orthogonal Multiple Access,
Rate-Splitting Multiple Access, Reconfigurable Intelligent Surface, Multi-access Edge Com-
puting, Multi-variable Optimization, Distributed Optimization, Game Theory, Contract
Theory



Iepiinyn

Y76 TO TPLOWO, TOV EVPUTEPOV OPAUOTOG YLOL PNPLOTOLOT] KOL UETOOYNUATIONO TWV KAOETWV
Broumyovidv (m.x. €Evmveg mOLELS, EEVTTVO OVOTNUA VYELOG, EEVTVOL £PYO0TAOLO), ONUELDVETOL
LLOL GLVEV TEPOTYOUUEVOL OOENOT TWV EQOPUOYDV UE EVIATIKES OTTALTIOELS WG TTPOG TOV GYKO TWV
dedoueévarv Tov SLayELPLLOVTOL KoL TV aVOYKOLO VITOAOYLOTLKY] LOYY YLOL TNV £TEEEPYAOLO QV-
TOV. AUTO €)EL MG ATOTEAEOUA TNV ETLBOAT] CVOTNPMV ATOLTOEWV TTOV 0POPOVY TO 0LOVPUOTO
SLKTLO ETLKOLVMVIOV KOL VTTOLOYLOU®V. G HECO ETEKTUONG THG GUVOECLUOTNTOG, AOENONG TG
POOUOTIKNG KOL EVEPYELOKNG OTOS00NG KOL UELWONG TOU AavOdvovTog ypdvou, wo Tintdpa
TEYVOAOYLOV KO OPYLTEKTOVIKDV TOPADELYUATOV AVOSELKVIOVTOL WG BOOLKG HEGOL EVEPYOTOL-
NoNG Kol eVOUVAU®ONG TV 0oVPUOTOV SIKTVWV 5G eTOUEVG YEVLAG. Z& aUTO TO TTAALOLO, 1|
amtAOIKT) VI0BETNON VPLOTAUEVOY AMDOEWV OF TOPASOOLAK( TPOPBAUATO KATAVOUNG TOPWV €l
VOIL OVOLTTOTELEOUATLKT) YLOL TNV EEEPEVVNON KaL TNV EKUETAMAEVOT) TWV SUVATOTHTMY TOU SIKTVOU.
Avtifeta, apketol Baduot ehevbeplog TPEMEL Vo KaOoPLLoVIoL TAUTOXPOVO. OYETIKG UE TN QYo
KO TO £180G TWV TTOPWV TTOV KATUVEUOVTOL 0TO SIKTVO, AAUBAVOVTOG TAUTOYPOVO VITOYLV TOV TT0-
MTAEUPO AVTAYWVIOUO HETAED TOV SLOPOPETIKADY EVOLAPEPOUEVOV UEPMV (TT.). CUVOPOUNTEG,
TAPOYOL).

e vt ™ SLaTpLfi]), AVTLUETOIULLOVUE TO TPOPANUC TG ATOTELECUOTIKNG KATUVOUNG TTO-
POV OF ETEPOYEVI] KO TTOAVETLITES O ALGVPUATA SIKTUOL ETLKOLVWVLMDV KL KIVHTMV VITOAOYLOUMV
ne Evay oMoTkO, aAMG Katavepnuévo, tpomo. TIpog TV Katediuvon TwV GUTO-0pYOVOUEVOV
diktiov, 6rTov KGOe StKTuaky ovToTNTe AAUBAVEL GUTOVOUESG ATTOQACELS OYETIKG UE TN PO
KOL TNV KATAVOUT TWV TOPWV TNG, AVOTTTOOOOVUE VEQ TTAALOLC, TC, OTTOL0, AVTLKOTOTTPLLOVY TLG
OAMNAEEAPTNOELG UETAED TWV CUUTEPLPOPMV, TMV OAANAETULOPACEMV KOL TWV ATOPACEWMV TWV
SLOPOPETIKMV SLAKTVOK®DY OVIOTHTMY, AARBAVOVTAG VITOYLY Tovg SLapopeTikolg 1/KaL avTL-
KPOVOUEVOUG GTOYOVG TOUGS, KaOmG Ko TNV VITapEn eMMong TAnpopopnong ueta&l toug. Ipo-
KELWEVOU VAL TTPOOSODEL Lo, TETOLOL PEAMOTLKT YPELG GT1) LOVTENOTTONOT) TV FTPOPANUATOV KATO-
voung Topwv, Katagevyoupe ot Oewpla Hawyviwv (Game Theory) ko ot Ocmpio Zvuforaimv
(Contract Theory), oL 0Toieg [e TN OELPE TOUG 08N YUV 0t HeBodohoYLES Kal Al yOPLBIOUG YoUNATG
TOAVTTAOKOTITOG YLOL TNV ETUAVOT] TOV GVTLOTOLWY TPOPANUATOV.

ApPYIKQ, LELETOVTOL TPOPANUATE KUTAVOUNG TTOPMY TTOMATADY UETABANTMOV 08 ETEPOYEV
KO TTOAVETUTES O, AOVPUATO SIKTUC ETLKOLV@OVIDYV. Mg 0TOY0 TV AVTIUETMITLON TOU FTPOPANUa-
T0G NG EMMTOVG/UEPLKNG TTANPOPOPNONG TOV OTUOUDY BAONG OYETIKA (g TNV KOTAOTAOT KO-
vailo¥ (Channel State Information - CSI), kaOdhg ko TG avTiQaong UETAED TOV XPNOTOV KoL
TV 0TaOUOV BAONG OYETLKG UE TO ETTLTESO LOYVOG UETADOOTG OTN CEVEN avOdOV, ELOGYETAL UL
OUVEPYOTLKT] TTPOOEYYLOT UETAED TV 8100 OUTMV UEPDY, 1) OTTOL0L BACLTETOL OTIG apyEG TNG Ot-
wplag Zvuporaimv. Ou otaduol BAong oxedLalovy £va GUVOAO GUIBOLALMY TTOU GITOTEAOVVTOL
amd evdelKTIKG emtimteda LoyVog Yo T CeVEN avodou ATl Ue WO VTLOTOLYY GVTOUOLBT] TTPOG
TOUG YPNOTEG, KAVOVTOG PN 0T] TG OTATLOTIKTG TOUG YVAMOTG OYETUKA UE TNV KATAOTOON TOV Kai-
vaALol Twv ypnotmv. Ta emimeda 1oy00g TV GUUBORALMY ETAEYOVTOL L€ TETOLO TPOTO MOTE VO
EMTPETOVY THV OTTOKOOLKOTON01 TWV UETASIOOUEVMV ONUATOV TOV YPNOTMV 0ITO TOUG SEKTEG
TV 0ToOUOVY BAONG, KAVOVTAG XPNON TV TEYVIKOV ut) 0pOoymvikig ToMaTing TpooBaong
(Non-Orthogonal Multiple Access - NOMA) kot Stadoytkng akvpwmong mapeuBordv (Successive
Interference Cancellation - SIC). Ot xpN0TEG EMAEYOUV AUTOVOUX £VOL GUUBOAALO aTTO TO GVVOLO
TV GUUBORALOV, TO 0TTOL0 TALPLALEL KAADTEPE OTLG GUVONKEG KOvailol Tovg. EmimAéov tov ma-
POTTAV®, CVATTTUOOETOL EVOG OAYOPLONOG evmxvum']g naonong (Reinforcement Learning RL)
TPOKELUEVOU K(OE xpn(m]g va npooétop@a CLUTOVOLLO, KOUL KOTTOVEUTUEVEL TV TTEPLOCOTEPO OPE-
AU VL0 GUTOV OVOYETLON TOV e EVav Ao Tovg SLadEatovg otadupoig Baong.



Hnyawovwg Eva BUa TOPoTEP OO0V CLPOPA TNV VITOKELLEVT] OPYLTEKTOVLKT SLKTUOU KoL
TG xpnmuonowvusvag tsxvokong, 0TOYEVOVUE VO CUVUTTOAOYLOOUILE KO VO, KOATAVELULOUUE BEN-
TLOTA, TOUG TOPOUG OTOL TUNULOTOL G.OVPUATNG TTPOGaoNS (access network) Ko omoB0TevEng (back-
haul network) evog Suktiov vropoduevou amd éva un exavdpwuevo evagpto oxnue. (Unmanned
Aerial Vehicle - UAV) ko wo avadiapopgooiun Evmvn empavera (Reconfigurable Intelligent
Surface - RIS). AEL0mtotdvTag T SOLLKY LEPAPYLOL TOU SIKTUOU, SLAUOPPMVETOL EVa. TTalyvio Stack-
elberg ueta€0 tov otaduol Baong ov @epel To UAV Kat Twv YeNoTdY YL THY KOTOVEUUEVT
gmilvon Tov akorovbov cuvduaoTikol Tpofinuatog kKatavoung mopwv. To UAV, evepydvrag
wg NYEMS, kabopilel Tig uetatomioelg @aong Tov RIS €101 MOTE 1 LOYVG TOU ONUOTOG TOU OU-
vOAOU TV YpNoTdv ot LevEN avddou va ueywotomoteitar. Emtiong, to UAV, oe deltepn @don,
VITOLOYLZEL TNV OTTO KOLVOU Katavour) E0povg Lmvig ouyvoTiTmy KoL toybog ot LeVEn avodou
ToV 0TLEBOLEVKTLKOU SLKTVOV TTPOG TO SIKTUO Koplov (core network). Ze tpitn paom, oL xphoTeg,
EVEPYMVTOG WG AKOLOUOOL, BEATLOTOTOLOUV TV TPOCWITLKT TOUG LoYV 0T LeVEN avddov Tou Si-
Ktvou mpodoBaong mpog to UAV, emiong pe Kataveunuevo tpomo. H deltepn ko tpity gaon
emavalopBavovIoL €mg 6tov Bpedel To oNuElD LoOPPOTTLAG Tov TToLyviov Stackelberg, oto omolo
ETITUYYAVETAL 1) UEYLOTOTTOLON TG EVEPYELUKTS ATOS001G TOU SLKTVOV TTPOGRAoNG Kol 07tLo00-
TevEng ammd Gkpo og aKpo.

TeBOUEVOL TNV AVAYKY VLol 0TTO KOLVOU Py aviopoUs KOTOVOUNG TOPmV 08 AoUPUOTO SIKTUOL
EMKOLVOVLOV KoL SIKTUO, KIVITOV VITOLOYLOUMDVY, EEETATETOL ULO TOAVETLTEST] TOTTOMOYLC. KLVN-
TOV VITOMOYLOUDY KOl UELETATAL TO GTTO KOLVOU TPOBANUC TG EKPOPTMONG EPYOOLDY VITOLO-
YLOHOU KO KOTOVOUNG LOYV0G UETAS00S/EKpOpTmONG. Ze avtifeon we TV vrapyovod Bifito-
YPOPLOL, OTTOV LOVTEAOTTOLOVVTAL SLKTUOL VITOLOYLOWMYV EVOG ETLITESOV, dSNAOOT aToTEAOVUEV ELTE
amd £vo. emtimedo vITohoyLoTIKNG Gkpng (edge), oulyAng (fog) 1 vépoug (cloud), emidumKeToL TOL-
TOYPOVA 1 XPTOT) EVOG EVPEOG PAOOTOG VITOAOYLOTLKDY SUVATOTNTOV KoL ETAOYMV. Aedouévng
NG EYWLOTIKYG CUWITEPLPOPAG TWV XPNOTMV TPOG THV EKPOPTMOT 0TIV AKPT] TOU SIKTOHOU AOY®W
™G EYYUTNTAG TOV TEAEUTOLOV, 0YeSALETAL £Vag WY ovIoudg KIVITPmV Tov Booiletor oty Os-
WPLo ZUUBOACLMVY YL VO, TTOPOAKLVI|OEL TOVG YPNOTEG VA ETLTPEYPOUV £VOL TOGOOTO TMWV AP KDV
EKQPOPTOUEVMV EPYAOLDY TOUG 0TO EMLTEDO TG AKPNG Va TTPowHNO0UV TEPAULTEP® KAl VO ETE-
Eepyaotouv 010 eminedo g oulyAing. ‘Exoviog kabopiloel outd 10 T0000TO, TO TEAKO T0C00TO
EKPOPTMONG VITOLOYLOTIKDV EPYAOLOV TWV YPNOTMV GTHV GKpPY Tov dtkTHov, Kabmg KaL TO el
7edo 1oy bog ot LedEN avOdou Katd TNV eKPOPTWOY, VITOAOYLLOVTOL UE KATAVEUNUEVO TPOTO,
SLALOPPDVOVTOG EVA 1] CUVEPYOTLKO TTaLYVIO HETAED TwV XPNOTMV. Mg 1) Xp101 TOMATADY
EMTES WV VITOMOYLOWMV, TIPOKVITTEL LG EVEPYELOKG ATTOSOTLKT) AVOT], EVED ETEKTELVETOL 1] VITOLO-
YLOTLKT] LKAVOTITO TOV ETTLTESOV VTOAOYLOUMY GKPNG.

Téhog, ue OTOXO TV TEPAUTEP®M UEAETY TNG KUTAVOUNG TV EPYOOLMV VTOAOYLOUOD 0pLZo-
VLo, OMAAST EVTOG TOV B0V ETITESOV VTTOAOYLOUDY BEMPHOVTOG TOMATAOVG SLOKOWOTEG, PO-
VIEAOTTOLELTOL £VOL SLKTVO VITOLOYLOTIKDV CUOTNUATMOY OTNV GKp1 Tov dtkTdov (Multi-access Edge
Computing - MEC) toAhasthmv Stakouotmv. Ot xpnoteg agomoolv To SLopopeTikd Stadeoiuo
diktua padrompdopaong (Radio Access Networks - RAN) yia va. €K(QOPTMOOOVY TIG VITOAOYLOTLKG,
OTTOLTNTUKEG KOL POVIKG KPLOWEG EQOUPUOYEG TOVG 0¢ Tolhamholg Siakowotég MEC tavto-
xpova. Tia Ty avIeTdhion Tov KpLowou TPoBANUaTos SLoyELPLoNG TOPeUBordv VIO TV TPO-
KOTTOVOO, TOTTOLOYLOL SLKTVOU TTOMATAMV SLOKOULOTMV TOANATADY XPNOTMOV, KAOMG KoL VITOKL-
voupevoL amtd TIG EEEMEELG OTLG TEXVIKES 1] 0pBOYWVIKNG TOAOTANG TPOoPaong, eEetaleton 1
EQPAPUOYT TNG TEXVIKNG TOMaTTANG TpdoPaong draipeong pvOuov (Rate-Splitting Multiple Access
- RSMA). Trtd autd 10 TAALOL0, ETLSLDKETAL 1] ELAYLOTOTOON TOU AOPOIOUATOS TG UEYLOTNG
LETPOVUEVNG KABUOTEPTONG ATTO TNV TAEVPA TWV YXPNOTOV UETAED TWV SLUPOPETIKMOV SLOKOLIL-
ot®v MEC péom g amd Kowvol BEATLOTOTOMNONG TV TOCOOTOV EKPOPTWONG VITOLOYLOTLKDV
£PYOOLMV, TOU PUBUOT KoL TNG LOYVOG UETAS00NG/EKPOPTWONG 0T LeVEN avodou amtd Tovg ypn-
0TeG, KaOMG KOl TNG KATAVOUNG VITOAOYLOTIKOV TOPWV amtd Toug Sudpopoug drakouotég MEC
TPOG TOVG YPNOTES. TO TAPATAV® ATTO KOLvoy TTPOANUO. BEATLOTOTOLNONG ETAVETOL GVOAMVUTIKA,
YPNOLWOTOLDVTOG KAOOOLKEG ueBOd0vg BeltioTomoinong mov faocilovral otig ovvOmnkeg Karush-



Kuhn-Tucker (KKT). H pelétn Ko emiduon tov TpofANUeTtog cutol CUUTANPGOVEL TOV GITOTEPO
0KOTO TNG TaPoVoaG SLOTPLPNG VA TAPACYEL ILC. OMOTIKY] TPOCEYYLON Ko Aoy wg TPog TNV
KOTOvoun mopwy 08 OUYKALVOVTA G.OVPROTO SIKTUO ETLKOLVOVLMV KOL KIVITOV VITTOAOYLOUMY.

Ta eEeTalopeva TPOPANUOTO SLOEPLONG TOPWV AELOAOYOUVTAL OVOAVTIKG HECK UOVTIENO-
TTOINONG KL TPOGOUOLMONG. T AELTOVPYLKA YUPOKTIPLOTIKG TWV TTPOTELVOUEVOY TAALOLWV KaL-
TAVOUNG TTOPWV KOl 1] CUUITEPLPOPE aVyKALoNG TV oxedLalouevmv alyopibuwv eEetdfovio
KOTO oIt0 SLOQOPETLKG GEVAPLOL KOL TUIEG, EVMD TUPEXOVTAL CUYKPLTIKO OITTOTELECUOTO EVOIVTL
GAA®V MOOEDV QIO TV VTTAPYOVOa TPOCPATY PBAOYPOPLO Yo, Vo, KaTadely Oel 1) 0ToTeEleoua-
TLIKOTNTO KO 0TOSOTIKOTN T TOUG,.

AéEeig Kiedua: Karavoun Mopwv, Myaviopoi Kuviitpov, Mn OpBoywvikn odhosin Tpod-
opaon, ITorhasin [Tpdafaon Awaipeong PuBuov, Avadiopoppaotueg EEvmveg Emgpaveleg, Yo-
Aoyrotikd Zvotnuoto Akpng, [olvuetafint) Behtiotomoinon, Kataveunuévn Behtiotomoinon,
Oczwpla Moryviwv, Osmpla Zvupolainv
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Structure

The thesis is structured as follows.

In Chapter 1, a general introduction to the topics that concern this thesis is provided,
along with a description of the environment that motivated this research. Also, the contri-
butions made therein by this thesis are presented.

In Chapter 2, the basic mathematical background that is deemed necessary to under-
stand the solution methodologies used for the problems under investigation is set. Additional
information is provided in the main part of the thesis whenever it is needed.

The following chapters constitute the main chapters of the thesis. Each chapter deals
with a different problem that we consider worth investigating and aim to tackle. First,
a general setting specific to the corresponding problem and the related work around the
topic is provided. Then, the considered system model, problem formulation, and proposed
solution framework are presented, while an in-depth evaluation of the proposed framework
concludes each chapter.

In Chapter 3, the joint problem of user-to-base-station association and uplink trans-
mission power control is considered and solved in a heterogeneous Non-Orthogonal Multiple
Access (NOMA) wireless network. In particular, the case of incomplete/partial Channel
State Information (CSI) at the base stations is considered, and a contract-theoretic solu-
tion is proposed to solve the power control problem. Also, a Reinforcement Learning (RL)
algorithm is introduced to allow the users to self-associate with the available base stations.

In Chapter 4, the joint resource allocation in the fronthaul and backhaul parts of a net-
work is considered while accounting for the existence of Reconfigurable Intelligent Surfaces
(RISs) that further promote the propagation environment’s reconfigurability. Specifically,
the joint problem of RIS elements’ phase-shift configuration, bandwidth splitting between
the fronthaul and backhaul, and uplink power control in both the fronthaul and the backhaul
networks is formulated and distributively solved by the adoption of Game Theory.

In Chapter 5, a contract-theoretic incentivization mechanism is designed to prevent the
overexploitation of the network edge due to the users’ selfish behavior by motivating them
to allow part of their offloaded computation tasks to be further forwarded and processed at
the fog based on their delay (in)sensitivity level. The outcome of this stage is then utilized
to solve the joint task offloading and uplink power control problem from the users to the
edge, promoting the efficient use of the whole spectrum of the computing continuum.

In Chapter 6, a multi-server Multi-Access Edge Computing (MEC) network is studied
where the users are allowed to concurrently offload different parts of their computation tasks
to the available servers in a non-orthogonal manner via the adoption of the Rate-Splitting
Multiple Access (RSMA) technique. Subsequently, the joint problem of optimizing the
users’ computation task assignment ratios, rates, uplink transmission powers, and computing
resource allocation across the different MEC servers is formulated and solved.

Finally, in Chapter 7, the problems addressed in this thesis are summarized, giving
the reader a comprehensive overview of the most important conclusions drawn. Then, rec-
ommendations for future work and ideas for problems worth exploring in the future are
presented as an extension of this thesis.
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Chapter 1

Introduction

Next Generation (NextG) 5G wireless communication networks are facing an unprecedented
increase in mobile data traffic and the number of subscribed users and devices. Quantita-
tively speaking, based on the recent statistics published by the International Telecommuni-
cation Union (ITU), the global mobile data traffic is expected to increase to 607 Exabytes
(EBs) per month by 2025 and 5016 EBs by 2030 [[]. As per each subscriber, the amount of
data traffic is estimated to grow to 607 EBs per month by 2025 and 5016 EBs by 2030. These
numbers refer to the 70% of the global population that is expected to have subscribed to
mobile services and use mobile Internet by that point, without accounting for the connected
applications and devices within the context of the Internet of Everything (IoE) [2]. This
huge data traffic demand is steered by the broader vision for digitalization and smart-X
vertical industries (e.g., smart city, healthcare, manufacturing, transportation, education)
and is consequently accompanied by stringent requirements for heterogeneous service pro-
visioning support, full coverage, and ultra high-bandwidth wireless communications with
ultra-high reliability and ultra-low latency [B, 4].

To provide extended coverage and ameliorate their spectral and energy efficiency, NextG
wireless networks are equipped with novel technologies that range from the underlying physi-
cal layer to the overlying architecture of the network infrastructure. NextG wireless networks
are founded upon heterogeneity - an architectural paradigm initially introduced by Long-
Term Evolution (LTE) - in the sense that low-power Base Stations (BSs), such as femto,
pico, or micro BSs coexist within the macrocells and contribute to increasing network ca-
pacity while providing the required Quality of Service (QoS) to the users [B, 6]. The latter
paradigm is not limited to terrestrial communications but accounts also for airborne (non-
terrestrial) platforms, such as Unmanned Aerial Vehicles (UAVs), High Altitude Platform
Stations (HAPSs), and satellites that provide connectivity to the users [, 8]. A_high-level
overview of the NextG 5G wireless network’s architecture is presented in Figure @g

Nevertheless, cell densification is yet insufficient by itself to address the coverage and
spectral efficiency problem when moving to higher frequency bands, such as Millimeter Wave
(mmWave) [9] or Terahertz (THz) [10], as intended in the NextG wireless networks. On the
one hand, shorter-range communications reduce the degrees of freedom offered by the physi-
cal wireless channel due to the reduced number of scattering objects in the environment. On
the other hand, high frequencies are characterized by high signal attenuation, affecting the
communication reliability between the transmitter and the receiver. A reasonable solution
for enriching the multi-path propagation environment based on the general advancements
in active antenna design is passive beamforming, practically realized by Reconfigurable In-
telligent Surfaces (RISs) [11]. Complementary to the aforementioned technologies, other in-
terventions to the physical layer in the context of NextG networks regard the development
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Figure 1.1: Overview of NextG 5G wireless communication and mobile computing networks.

of advanced and robust modulation and multiple access techniques, aiming to efficiently
manage the interference sensed at the receivers and the signal decoding complexity.

The ubiquitous connectivity enabled by the NextG 5G wireless communication networks
is, thus, progressively shaping the frontier of an ambient intelligence era. Striving to reap the
benefits of the surrounding intelligence has provoked the increase of ever-more computation-
ally intensive user applications. To facilitate the computationally and battery-constrained
user devices to meet the application’s response time and their energy consumption require-
ments, the concept of computation offloading of resource-intensive tasks to remote servers
has become extremely popular [12, 13]. In particular, the NextG networks are envisioned
to become a computer that would combine ubiquitous communication and computation, as
a whole, among other functions such as storage, sensing, and control, to support disrup-
tive user applications. Especially among the different computing capabilities and options
existing within the computing continuum, i.e., fog [14] and cloud [15, 1G] computing, the
Multi-Access Edge Computing (MEC) [17] that is implemented within the Radio Access Net-
work (RAN) (see Figure [L.1)), has revolutionized the successful completion of low-latency
and high-intensity applications, giving birth to the use-case scenario of Ultra Reliable Low
Latency Communications (URLLC) [L§].

NextG wireless communication and computing networks constitute competitive environ-
ments where the users evolve in a physical, digital, or virtual space with others, sharing
the same resources, and numerous stakeholders with conflicting objectives should coordi-
nate with each other. Although significant achievements have been made in the direction of
studying such interconnected systems, there remain challenges to be addressed regarding the
realistic conceptualization and modeling of the deep interdependencies among the behaviors,
interactions, and decisions of the network entities, including but not limited to users, Mo-
bile Network Operators (MNOs), Internet Service Providers (ISPs), cloud service providers.
Concrete theoretical frameworks that provide a real-life spirit and more pragmatic approach
to the resource management process and deal with the challenges of distributed decision-
making, conflicting goals, and partial information availability should be implemented and
span across the user plane, the radio access and edge network to the core network and the
cloud. This form of ambient intelligence is considered a key enabler in making NextG 5G
networks more intelligent and achieving dynamic network management and optimization.
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1.1 New Air Interface

1.1.1 New Multiple Access Techniques

Within this congested and demanding wireless communications environment, the problem
of efficiently, wisely, and sparingly using the system and users’ available resources and capa-
bilities becomes even more challenging and urgent. From the wireless network’s perspective,
this need is reflected in efficiently utilizing the available spectrum resources. From the users’
side, they have to intelligently manage their mobile devices’ power investment for perform-
ing different communication and computing tasks. Indeed, the multiple access technique
that is used to multiplex the different transmissions that take place either in the downlink
or the uplink is critical for the network’s spectral and energy efficiency.

Previous deployments of wireless networks, e.g., 1G, 2G, 3G, exclusively relied on Or-
thogonal Multiple Access (OMA) techniques [19], according to which the available Resource
Blocks (RBs) within each cell are divided orthogonally either in the time, frequency, or code
domains and appropriately allocated such that the interference among adjacent RBs is sup-
pressed. Although OMA techniques allow for simple signal detection at the receiver, they
are significantly restrictive in the number of concurrent transmissions that can be accom-
modated due to the finite number of available RBs [20], and, thus, result in poor spectrum
utilization. Besides, potential channel impairments along with the random nature of the
wireless propagation environment cannot guarantee the success of data transmission even
under orthogonally allocated spectrum resources. Therefore, the design and development of
advanced and robust multiple access techniques has been constantly explored over the past
years, giving rise to the introduction of Non-Orthogonal Multiple Access (NOMA) [21].

Non-Orthogonal Multiple Access (NOMA)

NOMA is a key enabling technique to efficiently exploit the available radio resources and
serve multiple users simultaneously over the same time-frequency RB by multiplexing them
in the power domain [22] or by spreading code in the code domain [23]. For example, in
the downlink power-domain NOMA [24], the transmit signals at the BS are superposed
and transmitted to multiple users using different power levels. The users of relatively high
channel gain decode the interfering signals before decoding the signal intended for them by
employing the Successive Interference Cancellation (SIC) technique, whereas the users of
low channel gain treat the interference as noise. In the uplink power-domain NOMA [24],
the decoding of the superposed signal received by the BS starts from the high channel gain
user since its signal is more likely the strongest one. The high-channel gain users experience
interference from all other users in the system, whereas the low-channel gain users enjoy an
interference-free transmission. Given that the users are distinguished based on the quality
of their wireless link and the corresponding power investment to the transmission that is,
in turn, implied by their QoS requirement, NOMA provides an effective method to achieve
fairness between the different users. However, the achievements of NOMA in terms of
spectral, energy efficiency, and fairness come with the cost of increased signal decoding
complexity at the receivers in contrast to the traditional OMA techniques.

Rate-Splitting Multiple Access (RSMA)

RSMA belongs to the broader category of non-orthogonal transmissions and is practically
seen as the successor of NOMA, providing a more general and powerful transmission frame-
work than its predecessor [25, 26]. Following this technique, user messages are split into
common and private parts at the transmitter, such that part of the interference is decoded
at the receiver while the remaining is treated as noise. In this way, RSMA enables softly
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bridging and, therefore, reconciling the two extreme interference management strategies of
treating interference as noise (as suggested by Space Division Multiple Access (SDMA) and
MIMO implementations) and fully decoding interference, as suggested by NOMA. For ex-
ample, in downlink RSMA [27], the message transmitted by the BS to multiple users is split
into a common message and a private message. The common message is intended for and de-
coded by all the involved users in the transmission, whereas the private message is intended
for each user separately. As a result, when decoding the private message, the interference
stemming from the other users’ private messages is treated as noise. In this way, a good
balance between efficient spectrum usage, interference management, and signal processing
complexity can be achieved, ameliorating the wireless network’s performance.

1.1.2 Reconfigurable Intelligent Surfaces (RISs)

Aiming to deal with the problem of coverage extension, as presented earlier in Section m, the
technology of RISs has emerged as another key enabler of NextG 5G wireless networks. The
introduction of RISs as a way to manipulate the wireless propagation environment consti-
tutes a preliminary step towards the broader vision of Software-Defined Networking (SDN),
according to which networks can be controlled remotely through the use of programmable
software [28]. Besides, the design of RISs satisfies the essential requirement for flexible,
feasible, and cost-effective solutions in terms of deployment, maintenance, and control, and
hence, several research works can be found in the literature that study different aspects of
their design, deployment and optimization under the additional terms of Intelligent Reflect-
ing Surfaces (IRSs) [29] and Large Intelligent Surfaces (LISs) [3(]. Practically, an RIS is
a software-controlled metasurface of low thickness and shape of a two-dimensional planar
array consisting of a massive number of low-cost passive reflecting elements. Each individual
reflecting element can independently reflect the incident signals towards a desired destina-
tion that is determined by digitally controlling their adjustable amplitude and phase shifts
via a smart controller. The cumulative goal behind controlling the reflecting elements may
regard the spectral efficiency maximization [31], the power consumption minimization [32],
or the URLL service provisioning [33]. Meanwhile, RISs may be deployed anywhere by coat-
ing ground surfaces [B4] or even airborne platforms [B5] and can assist applications beyond
pure communications, such as positioning, navigation, and timing [36, B87], or computation
offloading [3§].

1.2 New Architecture

So far, all legacy and existing wireless networks have been designed to substantially ac-
commodate bit-oriented communications, in contrast to the task-oriented nature of NextG
wireless communications. NextG networks should support direct human-to-machine and
machine-to-machine interactions via text, speech, and image, as well as augmented and
virtual reality to align with the digitalization and smart-X vertical industries. The lat-
ter requirement calls for the convergence of communication and computing, resulting in a
profound shift in the overall network architecture.

Several computing paradigms have been proposed over the past years by the research
community that form the so-called computing continuum, whose ultimate purpose is to ad-
dress the issues of high-bandwidth, geographically dispersed, ultra-low latency, and privacy-
sensitive applications. The most popular paradigms, though, are the Mobile Cloud Com-
puting (MCC) [15, [L6] , Mobile Fog Computing (MFC) [14] , and the Mobile/Multi-Access
Edge Computing (MEC) [17]. The common denominator among these paradigms is the
deployment of cloud computing-like capabilities at the network edge in the form of data
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centers, while they are distinguished from an architectural point of view concerning the lo-
cation where their computing power is placed. In particular, in the edge computing model,
the computational power and intelligence are implemented exactly at the network edge (e.g.,
local edge), while in the fog computing case, this functionality may be offered at different
locations between the network edge and the core network connecting to the cloud, thus, ex-
ploiting the power of the whole digital continuum (e.g., main edge servers). It is, therefore,
possible to create a hierarchical multi-tiered architecture, interconnected by the wireless
network infrastructure, which allows for the individual data centers’ cooperation with each
other. Any customer — from third-party service providers to end users and the infrastructure
providers themselves — can make use of this computing continuum and offload their com-
putation tasks for remote execution, by leveraging the existing underlying wireless network
infrastructure.

1.2.1 Multi-access Edge Computing (MEC)

In particular, MEC has been introduced for bringing cloud services and resources closer to
the end user, where the term ”closer” implies its direct implementation within the RAN.
Precisely, indicative deployment locations considered by the MEC ISG include but are not
limited to the LTE/5G BSs (eNodeBs/gNodeBs), 3G Radio Network Controllers (RNC), and
multi-Radio Access Technology (3G/LTE/WLAN) cell aggregation sites [39], integrating,
also, other networking and storage resources in the form of a MEC platform. Consequently,
owing to the dense deployment of the MEC servers and their proximity to the users, MEC
provides a promising solution to the problems of scalability, mobility support, security, and
privacy, apart from supporting vast communications and remote computation executions,
for which was initially destined. The NextG mobile computing networks should be able to
serve billions of moving devices, and hence, the dynamic and seamless management of their
number and movement is needed to maintain a high QoS. Additionally, MEC follows the
general principles of distributed architectural designs, similar to the architectural shift of
pure wireless communication networks, enhancing the overall network’s security and privacy
by alleviating single points of failure.

It is remarkable, though, noting that regardless of the MEC’s appealing and prevailing
features compared to other computing paradigms, it is crucial to be accounted for and
utilized as a complement to the cloud computing model and not as a replacement for the
latter. MEC constitutes another common pool of resources that should be efficiently, wisely,
and sparingly used to unleash its benefits, similar to the shared spectrum resources within
the context of pure wireless communications, as analyzed in Section . Otherwise, its
overexploitation will gradually lead to its performance degradation.

1.3 Realizing Intelligence

The unparalleled growth in data traffic and burden in computation tasks is leading to the
radio and computing resources becoming a critical bottleneck in the NextG 5G wireless
communication and mobile computing networks. One sort of intelligence in the context of
NextG networks lies in their ability to perform dynamic resource management and opti-
mization. Given their distributed nature, this sort of intelligence should span across the
user plane, the radio access and edge computing network part, to the core network and the
cloud, in the sense that each network entity should be able to make autonomous decisions
regarding its personal resource utilization. Meanwhile, from an economic and market per-
spective, NextG networks comprise a competitive environment, where multiple stakeholders,
e.g., MNOs, ISPs, and cloud service providers cooperate or even compete in the provisioning
of similar services by pursuing their personal goals. The latter goals may be different and/or
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interdependent, such as the network’s energy or spectral efficiency maximization, interfer-
ence mitigation, delay minimization, or the profit increase just to name a few of them. At
the same time, the multidimensionality of the resource management problem concerning the
type and nature of the resources to be managed and the QoS requirements of each user to
be served, motivate the need for common scientific tools and methodologies, and approaches
that precisely and realistically capture the behavior of the network under investigation.

The ultimate goal, however, in realizing intelligence should be the delivery of holistic
solutions to the converged radio and computing resource management problems. The MEC
paradigm relies heavily on the air interface that practically facilitates computation task
offloading when considering mobile implementations. This implies that the performance of
mobile computing is interwoven with the quality of wireless communication, and thus, the
corresponding resource management problems should be studied jointly.

1.3.1 Game-theoretic Modeling

A well-established method in the literature to formulate and solve distributed resource man-
agement problems is Game Theory [40]. In its most commonly used setting, the resource
management problem is formulated as a non-cooperative game among the players, where
each player is considered a greedy individual who independently seeks to maximize his/her
perceived utility. However, cooperative game formulations exist where the individual players
pursue a common goal from the personal or the network’s perspective. The players partici-
pating in the game can map to any network entity or stakeholder of the network, competing
in sharing a common pool of resources that can range from radio and computing resources to
the number of subscribed users when referring to the competition between MNOs or ISPs.

The main benefits of the distributed resource management framework in general that
especially apply in the context of game-theoretic modeling are (i) the ability of the users to
decide autonomously and cognitively the most beneficial mode of operation; (ii) the allevi-
ation of the burden of a single point of failure that characterizes the centralized solutions;
(iv) the decrease in the computation complexity of the solutions, which is shared among
multiple autonomous entities; (v) the improvement of the security and privacy levels as
the decision-making process is shared among different devices, which exchange a limited
amount of information; (vi) the support of the smooth operation of the overall system when
providers and users with heterogeneous economic incentives are involved.

1.3.2 Contract-theoretic Modeling

Nevertheless, it is common knowledge that game theoretic models assume the rationality
of the participating players in the game, which is impractical or even impossible as the
size of the network grows. A novel framework from the field of economics that has been
scrutinized over the past years is Contract Theory (CT) [41]. Contract Theory (CT), lying
in the area of Labor Economics, provides the mathematical foundations to create mutually
agreeable contracts or arrangements between economic players, i.e., principal /employer(s)
and agents/employees, under the presence of incomplete information (often referred to as
asymmetric information). The incompleteness of information refers to the unknown by
the principal agents’ private characteristics that under typical circumstances steer the con-
tract formulation. Under this concept, the principal creates contract bundles based on the
statistical knowledge of the potential agents’ private information, i.e., the agents’ types, to
motivate them to provide back their effort and hence, reveal their actual type. Consequently,
Contract Theory can provide more realistic modeling of the different network entities’ and
stakeholders’ interdependent behaviors, interactions, and decisions, without assuming com-
plete knowledge between them and while trying to reconcile their potentially conflicting
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goals. A characteristic example of such a case from the network’s side constitutes its effort
to increase the network’s capacity and efficient utilization of the spectrum resources, aided
by technologies such as Device-to-Device (D2D) communications, Cognitive Radio (CR), or
small cells. Towards satisfying their utility, the users will more likely avoid cooperating with
other neighboring devices and thus, share/consume their resources, i.e., battery capacity,
computing power, and available spectrum. Additionally, they will more likely circumvent
the communication with a low-power small cell BS, minimizing the risk of being exposed
to higher interference due to the small BS’s reduced spectrum resources compared to a
macrocell. Generally, any macro/small BS, MNO, or ISP can play the role of the principal
that is in charge of designing the contract bundles intended for the prospective agents, such
as end-user devices or other BSs [42, 43, #4]. Under this concept, a wide variety of opti-
mization problems can be formulated and solved, rethinking the overall traditional resource
management approaches in the fields of wireless communications and mobile computing.

1.4 Challenges and Motivation

Following the discussion so far, it is clear that the NextG wireless networks exhibit multiple
degrees of freedom in terms of controlling the radio and computing environment to achieve
the required QoS from the users’ and/or the network’s perspective. However, this increased
level of flexibility brings new challenges that must be carefully considered. This thesis
attempts to encompass novel approaches that provide a real-life and pragmatic spirit in
modeling resource management problems. Subsequently, holistic solutions are derived by
concurrently accounting for multiple types of resources related to wireless communications
and mobile computing. The main pillars upon which this thesis has been constructed are
summarized as follows:

¢ Resource management & optimization: Resource allocation has been critical
since previous generations of wireless networks and becomes even more imperative as
the complexity of the network increases in the number of users and applications, the
stringency of QoS requirements, the deployed technologies, and the type of resources.
Simply adopting already proposed solutions on traditional resource management prob-
lems, such as the typical downlink /uplink sum-rate maximization problem, is infeasible
due to the incompatibility with the NextG 5G network’s key enabling technologies,
i.e., new multiple access techniques, Reconfigurable Intelligent Surfaces (RISs), Multi-
access Edge Computing (MEC). Besides, the intelligence behind the proposed resource
management solutions must evolve to cope with the complexity of the underlying net-
working environment. Therefore, resource management and optimization constitute
the main drive behind this thesis.

e Distributed decision-making: The distributed nature of the NextG 5G network
not only promotes but also imposes the formulation of resource management problems
in a distributed manner. Such solutions allow for the modeling of the heterogeneity in
the behavior and the subjectivity in the perception of the QoS by the network entities
while providing flexible and scalable alternatives as the complexity of the network
grows. The existence of central entities that accumulate the underlying network’s
knowledge is unrealistic in most modern application scenarios. Thus, scientific frame-
works that allow for the different entities’ autonomous decision-making lead to more
viable solutions.

¢ Contradictory objectives: From an economic and market perspective, NextG 5G
networks comprise a competitive environment, where multiple users and other stake-
holders involved in communication and mobile computing service provisioning should
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coordinate. It is, therefore, crucial to concurrently model their economic and tech-
nological interplay and account for their different and potentially conflicting goals to
render more realistic solutions to the ultimate resource management and optimization
problem. In this context, effective frameworks from the field of economics can be uti-
lized to reconcile their goals and conclude mutually agreeable arrangements between
them.

¢ Incompleteness of information: Apart from being highly heterogeneous, the emerg-
ing NextG 5G network constitutes a highly dynamic environment (i.e., stochastic or
time-varying), which is an additional factor that imposes practical restrictions on the
level of knowledge that a network entity can have about the actions of the rest of the
competing entities. Hence, the applicability and accuracy of traditional distributed
decision-making approaches founded on the individual player’s, i.e., corresponding net-
work entity’s, rationality suffer from the incomplete and partial available information
that each player possesses. Solutions restricted to each player’s information about
their own decisions and/or incomplete and uncertain information about the surround-
ing environment are significantly important.

¢ Holistic solutions: NextG 5G networks provide several degrees of freedom concern-
ing the nature and type of resources to be managed, ranging from radio (e.g., spectrum,
transmission powers, data rates, RISs’ phase shifts, and amplitudes) to computing
(e.g., computing frequency and power) resources. Unilaterally tackling resource man-
agement problems does not allow for exploiting the full potential and prospect of the
underlying wireless communication and computing network. To reveal the network’s
limits, a more holistic treatment of resource allocation problems is required by adding
more degrees of freedom and resorting to more scalable and generic problem design
models. The added value of holistic solutions is multifold and not restricted only to
the networking and computing field but can also provide insights for tackling similar
combinatorial optimization problems in other disciplines.

1.5 Contributions

This thesis aims to tackle the aforementioned challenges that arise in the emerging NextG
5G wireless communication and mobile computing networks by proposing realistic solutions
to several use-case scenarios. The main focus is placed on the decision-making process of
the different network entities, where individual user devices and remote servers need to act
autonomously and make choices regarding their resource utilization and investment inside
their operating environment. The key contributions of this thesis can be summarized as
follows:

1. Multi-dimensional system modeling: NextG 5G wireless networks have evolved
into a complex system of numerous interconnections between users and different types
of providers (e.g., infrastructure, service) due to the former’s active enrollment in sev-
eral wireless communication and mobile computing services. A major novelty of this
thesis lies in the fact that the different network entities can determine multiple degrees
of freedom during the resource allocation process. To achieve this, various network
layers, architectures, and diverse services are considered, shifting, in this way, the
modeling of the underlying system beyond traditional "flat” topologies. In the follow-
ing, several resources to be allocated are concurrently considered at each application
scenario and resource management problem, steadily progressing from pure wireless
communication environments to converged communication and mobile computing set-
tings.
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2. Resource allocation and incentive mechanism design in NOMA wireless
networks: Initially, the focus is placed on pure wireless communication network
topologies — that are highly heterogeneous, though — and the application of novel
Non-Orthogonal Multiple Access (NOMA) techniques is examined therein. In con-
trast to the large body of literature that assumes the complete Channel State Infor-
mation (CSI) knowledge from the heterogeneous BSs’ behalf, this thesis deals with
the problem of statistical CSI. Particularly, the joint problem of user scheduling to
the different available BSs and uplink transmission power control in NOMA-based
heterogeneous wireless communication networks is formulated and solved under the
incompleteness of CSI from the BSs’ behalf by adopting the Contract Theory frame-
work as a major enabler. Besides, the contract-theoretic modeling allows for the users’
autonomous decision-making regarding the power level invested in their uplink trans-
mission while resulting in mutually beneficial agreements with the BSs that possess
partial/incomplete CSI. The overall framework is complemented by a Reinforcement
Learning (RL)-based user-to-BS association mechanism that further promotes the
users’ self-adaptation and scheduling.

3. Resource allocation in RIS-assisted NOMA wireless networks: Apart from
horizontally modeling the multi-dimensionality and heterogeneity of NextG networks
by considering different types of cells within the wireless access network part, the
problem of wireless backhaul connectivity of the cells to the core network is also studied
in this thesis. This problem particularly applies to UAV-assisted communications,
where the UAVs rely upon wireless backhaul links to connect to the core network,
and calls for dynamic spectrum management frameworks. As a means of enhancing
the spectrum utilization and energy efficiency across the fronthaul and backhaul of a
UAV-assisted communications network, we scrutinize the prospect of Reconfigurable
Intelligent Surfaces (RISs) for the first time in the literature. In this context, the joint
optimization problem of a) the RIS elements’ phase shifts, b) the bandwidth splitting
among the fronthaul and backhaul network parts, ¢) the users’ uplink transmission
power to the UAV, and d) the UAV’s uplink transmission power to the macro BS/core
network, is formulated as a Stackelberg game and solved in a distributed manner by the
different network entities. Consequently, a flavor of reconfigurability and adaptability
is added to the end-to-end wireless propagation environment spanning from the access
to the core.

4. Resource allocation and incentive mechanism design in multi-tier comput-
ing networks: Respecting the need for converged wireless communication and mobile
computing solutions, a multi-tier mobile computing network is subsequently modeled
and studied. The considered network is hierarchically organized into an edge service
layer and a fog service layer to facilitate the computing demands of the computation-
ally and battery-constrained user devices. The fundamental novelty of this work lies in
the fact that the whole range of computing capabilities and options (i.e., edge and fog
layers) is appropriately utilized according to the user applications’ level of delay toler-
ance to prevent the potential degradation of the edge service layer’s performance due
to overexploitation. The latter goal is achieved by properly designing an incentiviza-
tion mechanism following the principles of Contract Theory (CT), based on which the
users are motivated to allow a percentage of their initially offloaded tasks to the edge
to be further forwarded and processed at the fog. Given the latter percentage, the
joint computation task offloading to the edge and uplink transmission power control
problem of the users is tackled, such that the energy overhead stemming from both
wireless transmission/offloading and task processing is minimized at both the user de-
vice and the edge service layer. The joint optimization problem is formulated as a
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Stackelberg and solved in a distributed manner by the different network entities.

5. Resource allocation in RSMA multi-server multi-access edge computing
networks: Aiming to further distribute the users’ offloaded computation tasks hor-
izontally (i.e., within the same computing tier) to multiple servers, a multi-server
Multi-Access Edge Computing (MEC) network is then considered. Motivated by the
distributed deployment of MEC servers within the RAN and the advancements in next-
generation non-orthogonal multiple access techniques, we scrutinize the application of
Rate-Splitting Multiple Access (RSMA) to enable the users’ concurrent computation
task offloading to the multiple MEC servers. In this context, a holistic solution to the
joint task offloading, and radio and computing resource allocation problem is pursued
such that the sum of users’ maximum experienced delay among the different MEC
servers is minimized. For the calculation of the latter, the delay stemming from both
the wireless transmission/offloading and computation task processing at the different
MEC servers is again taken into account. The formulated min-max-sum problem is
analyzed and equivalently transformed to more easily conclude a tractable solution us-
ing conventional optimization techniques based on the Karush-Kuhn-Tucker (KKT)
conditions.

6. Evaluation of proposed frameworks with numerical results via modeling
and simulation: Extensive numerical results are presented that are obtained via
appropriate modeling and simulation of the networking environment and the examined
problem to demonstrate the effectiveness and efficiency of the proposed frameworks
and resulting solutions.

In the following, Chapter E introduces some preliminary notions and concepts about
the adopted scientific methodologies by this thesis. Then, each chapter focuses on one
of the aforementioned settings and use-case scenarios, presenting the related work in this
respective field and introducing the developed solutions along with a numerical evaluation
of their effectiveness and efficiency.

24



Chapter 2

Background

In this chapter, we elaborate on the main scientific frameworks adopted in the following to
tackle the emerging resource management problems, while specific information that applies
to the respective application case will be provided in the main part of the thesis.

2.1 Game Theory

Game Theory is the theoretic study of strategic decision-making among rational decision-
makers [40]. The foundations of a full-fledged theory were laid by the work of John von Neu-
mann and Oskar Morgenstern in the book "Theory of Games and Economic Behavior” [45],
while it was further enriched and formalized by John Nash with his work on non-cooperative
games and the introduction of Nash Equilibrium (NE) [46]. Nash proved that every finite
n-player non-zero-sum non-cooperative game admits an NE in mixed strategies, constitut-
ing a more widely applicable criterion to a variety of games compared to the one proposed
by von Neumann and Morgenstern. Although Game Theory was initially developed as a
theoretical tool related to social and economic disciplines [47], its applications span across
many sciences, including but not limited to evolutionary biology [48], computer science,
security [49], international politics, sociology [48], business, and wireless networks [50].

In Game Theory, a game is considered as the interaction between different rational
stakeholders, namely players, each of which has a set of strategies on how to play or behave in
the game. The strategies are characterized as either pure, meaning that only one strategy is
selected at all times, or mixed when multiple strategies are considered based on a probability
distribution. The combined behavior of the players results in a certain payoff for each player,
which practically represents the corresponding player’s level of satisfaction in terms of gains
or losses based on its decision. The function that gives the value of the payoff is named as
payoff or utility function.

Among the different forms of games in Game Theory, the most common representation
of a game is the so-called "game in normal/strategic form”, which is defined as the tuple:

G ={N,Aien,Uien} (2.1)

where N is the set of players, A; is the strategy set of each player i, and U; is the utility /payoff
function of player .

The NE of a game that involves two or more players is a solution concept, at which
no player has any incentive to unilaterally change his/her strategy, meaning he/she cannot
achieve higher utility /payoff, whether the rest of the players keep their strategies unchanged.
The best response is the strategy that yields the most favorable immediate outcome for
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a player, i.e., the one strategy that maximizes his/her payoff, taking the other players’
strategies as given. As a result, the NE can be expressed as the set of strategies, such that
each player is playing the best response to the other players’ strategies.

A simple example widely used to explain the concept of a game and its equilibrium
strategy is the so-called ”"Prisoner’s Dilemma”. The game regards the hypothetical scenario
of two suspects who are arrested for a crime. The police do not possess enough information
to convict either of them and, for this reason, decide to offer them the following deal:

o If one testifies for the prosecution against the other and the other remains silent, the
betrayer goes free and the accomplice receives the full 10-year sentence.

e If both choose to stay silent, the police can sentence both prisoners to only 6 months
for a minor charge.

o If both choose to betray the other, they will each receive 5 years of sentence.

The prisoners have no information about the decisions of each other and have to au-
tonomously decide on whether to betray the other or remain silent.

Table él visualizes the payoff of the prisoners, where the first and second numbers within
a cell correspond to the payoff of the first and second prisoner, respectively, depending on
the specific system state. A higher payoff value represents a higher gain earned by the
respective prisoner, and, thus, a full 10-year sentence is assumed to result in a payoff equal
to 0. A 5-year sentence yields a payoff of 1, while a 6-month sentence results in a payoff of
3. The situation of leaving without any charges concludes with a payoff equal to 5.

Table 2.1: Prisoner’s Dilemma.

Prisoner B silent | Prisoner B betrays
Prisoner A silent 3,3 0,5
Prisoner A betrays 5,0 1,1

Considering both prisoners’ benefits, the most favorable outcome for them would be to
stay silent and cumulative achieve a payoff of 6. Nevertheless, based on the definition of NE,
each of the players would try to deviate from this state and betray to achieve a payoff of 5.
As a result, the pure NE of the Prisoner’s Dilemma game is that both players betray each
other and get a payoff equal to 1. Indeed, none of the prisoners would try to unilaterally
deviate from this decision since its payoff would decrease to 0. The state (1,1) constitutes
the set of strategies that each player plays the best response to the other player’s strategy.
Apparently, the NE is not always the optimal solution for the play, even though it provides
the only stable state of the system.

Another popular game is the "Matching Penny” game. In this game, two players, i.e.,
A and B, have to choose either heads or tails on a coin toss. Player A wins a dollar from
player B if their choices match and loses a dollar to player B if they don’t. The players’
payoffs can be visualized as shown in Table R.2.

Table 2.2: Matching Penny.

Player B heads | Player B tails
Player A heads 1,-1 -1,1
Player A tails —-1,1 1,-1
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The Matching Penny game does not admit a pure NE since playing consistently a strat-
egy, would allow the other player to choose a strategy that maximizes his/her payoff at
the first player’s expense. The particular game has a unique mixed NE, implying that each
player has to choose each action with a probability of one-half. In this way, player A is
indifferent among all the actions that he/she selects, i.e., heads, tails, or any randomization
between the two, given that player B chooses each action with one-half probability, and vice
versa. As a result, both players should choose their actions with a probability of one-half to
state at the NE point.

2.1.1 Game Theory Taxonomies

Depending on the way that the players’ interactions are captured and modeled, the games
can be categorized into the following classes:

e Zero-sum and Non-zero-sum games: In a zero-sum game, the benefit of one player
yields at an equivalent loss to the other player, maintaining the sum of the players’
utilities equal to zero (or a constant). The games for which this property does not
hold are called non-zero-sum games.

e Static and Dynamic games: In a static game, the players have certain knowledge
(information assumptions, behavior assumptions) that remains stable throughout the
game, whereas, in a dynamic game, the players can utilize information from previous
decisions or observations that can steer current and future decisions and actions.

¢« Non-Stochastic and Stochastic games: A stochastic game is played in stages,
and at each stage, the game transits to a state that evolves according to a certain
probabilistic/stochastic rule. This property does not hold for non-stochastic games.

¢ Non-Cooperative and Cooperative games: In a cooperative game, the players
form alliances to achieve a common goal and compete against other coalitions or indi-
vidual players. In a non-cooperative game, each player acts selfishly towards maximiz-
ing its utility /payoff, competing in this way with the others that may have conflicting
goals.

¢ Complete information and Incomplete information games: In a complete in-
formation game, the available information among the players is common knowledge,
meaning that every player knows that the available information is also known by any
other player in the game. The opposite holds for incomplete information games (i.e.,
Bayesian games), where the players have only incomplete/partial information about
the game.

¢ Perfect information and Imperfect information games: In a perfect informa-
tion game, the players have full knowledge of the history of the game, in contrast
to the imperfect information games where the players miss information regarding the
decisions made at previous iterations of the game.

2.2 Contract Theory

Contract theory has been a highly successful and active research area in economics, fi-
nance, management, and corporate law for decades. Contract theory allows for studying the
interaction between the employer(s) and employee(s) by introducing cooperation between
them [41]. The performance of employees tends to be better when they work harder, and the
probability of bad performance will be lower if employees place more dedication or focus on
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the work. In contrast, if an employee’s compensation is independent of their performance,
the employee will be less likely to put effort into the work. At the same time, there exists
some private information on the employees’ behalf unknown to the employer, who makes
the decision on the adequate level of compensation that motivates good work. The design
of appropriate incentive mechanisms, which take at the same time into account such an
asymmetry/incompleteness of information between the two parties, plays an important role
in addressing the problem of incentives.

Contract Theory was first introduced around the 1960s, while its significance was very
recently recognized when Jean Tirole was awarded a Nobel prize in Economic Sciences 2014
"for his analysis of market power and regulation” [51]. Two years later, a Nobel prize in
Economic Sciences 2016 was awarded to Oliver Hart and Bengt Holmstrém “for their con-
tributions to contract theory” [62]. In general, Contract Theory has been widely applied in
different disciplines, such as industrial economics and public economics, banking, agricul-
ture [b3], and telecommunications [b4]. In the following, we adopt the general terminology
of "principal” and ”agents” to capture any relationship between the contracting parties.

In contract theory, the solution obtained is a menu of contracts intended for the agents,
aiming to maximize the principal’s utility /payoff. In most cases, the problem is formulated
as maximizing an objective function that represents the principal’s payoff, subject to the
incentive compatibility constraint that each agent’s expected payoff is maximized when
participating in the contract and the individual rationality constraint that each agent’s payoff
under this contract is larger than or equal to its reservation payoff when not participating
at all.

2.2.1 Adverse Selection Problem

One of the most common incompleteness-of-information problems that arise between a prin-
cipal and an agent is the so-called ”Adverse Selection” problem, under which the agent’s
desired performance/effort by the principal and the principal’s reward back to the agent are
agreed upon. Specifically, the principal is unaware of the prospective agent’s capabilities,
i.e., the agent’s private information, and tries to elicit this private information via its con-
tract offer. Following the revelation principle, the principal can offer multiple employment
contracts destined to different-capability agents, and each agent selects the appropriate con-
tract offer for its type, i.e., the one that maximizes its utility. As such, the agent indirectly
reveals its actual type to the principal.

Let us consider that there are N different agent types, denoted as 6;,i € {1,--- ,N}
that bear different private information. Although there exists incompleteness of information
between the principal and the agents, the principal has statistical knowledge regarding the
existence/occurrence of different agent types. Hence, we define as \; the probability of facing
the agent type 6;, such that Zf\il Ai = 1. The contract bundle designed and offered by the
principal to each agent i is denoted as {p;,r;}, where p; corresponds to the agent’s effort
wanted by the principal and r; is the principal’s reward provided back to the agent.

The principal’s expected utility function is formulated as its expected profit from the
agents’ efforts minus their provided rewards, i.e., Uy, = Zij\;l[)\i “(p; —C-7;)], where C € R
is the principal’s unit cost of its provided reward to each agent. Similarly, the agent’s ¢
personal utility function is defined as U; = 6; - e(r;) — p;, where the first term expresses the
agent’s evaluation of its received reward minus its provided effort. Specifically, the agent’s
evaluation function of reward e(r;) is usually assumed to be strictly increasing and concave
with respect to the agent’s i received reward (i.e., e(0) = 0, €’(r;) > 0, €’(r;) < 0) and is
commonly modeled as /7; or log(1 + r;), in order to capture the indifference of the agent
regarding its utility as its effort increases.

Following the adverse selection problem formulation, the principal’s utility function U,
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is maximized subject to the agents’ satisfaction of their personal utilities U;, Vi € {1,..., N},
expressed by the Individual Rationality (IR) and Incentive Compatibility (IC) constraints,
as described below.

Definition 2.1. (Individual Rationality (IR)) A contract bundle {p;,r;} satisfies the
individual rationality constraint if each agent receives a non-negative utility, i.e.,

97;'6(7"7;)—])1'ZO,ViE{l,...,N}. (22)

Definition 2.2. (Incentive Compatibility (IC)) Each agent must select the contract
bundle {p;,r;} that is designed specifically for their own type 0;, i.e.,

0; - e(r;) —pi > 0;-e(r)) —pi, Vi,i' € {1,...,N}, i #4. (2.3)

The IR constraint ensures the participation of each agent in the contract agreement by
marginally satisfying the agent’s utility function, while the IC constraint guarantees that
each agent can only receive the highest utility when selecting the contract bundle designed
for its type. Therefore, the optimization problem to be solved can be written as

N
max U, = ANi(pi—C-r; 2.4a
{Pi,”}we{l ..... N} P ;[ ( )] ( )
s.t. 0;-e(r;)) —p; >0,Vie{l,... N}, (2.4b)
0; -e(ri) —pi > 0;-e(ri) —pir, Vi,i' € {1,...,N},i#1i. (2.4c)

A fundamental application of the adverse selection optimization problem to perform
transmission power control and computation offloading in wireless communication and mo-
bile computing networks can be found in [55, p6]. It should be noted that the adverse
selection problem model presented in the current section corresponds to the discrete agent
type case and can also be generalized to the continuous agent type case to fit into more
realistic scenarios. A corresponding extension to the transmission power control problem in
wireless networks considering continuous agent types is presented in [57].

2.2.2 Moral Hazard Problem

In the adverse selection problem formulation, the notions of agent effort and agent perfor-
mance were interchangeably used, assuming that a specific amount of effort yields a propor-
tional performance. However, in several realistic scenarios, the agent’s effort is costly, and its
ultimate performance observed by the principal differs from the effort that has been exerted.
To model such problems, where the agent’s effort is hidden, and only the final performance
is observable by the principal, the moral hazard problem formulation is adopted.

According to the basic moral hazard model, the agent’s performance ¢ is defined as a
noisy signal of its actual provided effort a, such as ¢ = a + &4, where g4 ~ N (1, 02). Given
that the principal is unaware of the agent’s effort, the principal has to strategically reward
the agent based on a double compensation scheme that includes a fixed ¢ and a variable
s reward. The fixed amount of reward is intended to incentivize the agent to provide its
best effort and, hence, is offered while "signing” the contract. On the contrary, the variable
reward is offered as long as the principal observes the agent’s ultimate performance and its
purpose is to compensate the agent’s incurred cost of providing its best effort. Thus, the
total reward provided to the agent is defined as r =t +s-q.

The agent is assumed to have Constant Absolute Risk-Averse (CARA) preferences, mean-
ing that the agent’s attitude toward risk is constant as its reward increases. Based on this
modeling, the agent’s utility is formulated as U, = —e~""=%(®)] where n > 0 is the agent’s
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coefficient of absolute risk aversion (n = —U, (IL/ /U, ;), the higher the value of which corresponds
to less incentives for the agent to exert an effort. Also, the term v (a) corresponds to the
agent’s cost function of providing its effort, while a common form of function chosen is the
quadratic, such as ¥(a) = %caQ, in order to capture the agent’s sensitivity in the exerted
effort. The principal’s utility function is modeled as the evaluation of the agent’s ultimate
performance minus its total offered compensation, i.e., Uy, =g¢—7=(1—5)-a—t.

Considering the problem description above, the contract bundle designed and offered by
the principal to the agent is denoted as {a,r}, where a corresponds to the agent’s actual
effort and r is the principal’s total provided reward. Similarly to the adverse selection model,
the principal’s utility Up, is maximized subject to the agent’s satisfaction of its utility U,.
Thus, the optimization problem to be solved can be written as follows

max U, =(1—-s)-a—t (2.5a)

a,t,s

s.t. E[_e_n[r_w(a)]] Z Umina (25b)
a € argmax E[—e =¥ (a)]], (2.5¢)

where Ui, is the minimum acceptable utility for the agent to “sign” the contractual agree-
ment. In accordance with the adverse selection model, the principal has to reassure the
agent’s marginal participation in the contract by satisfying its utility function, as imposed
by the first constraint of the optimization problem, i.e., the IR constraint. The second con-
straint maps to the IC constraint and guarantees that the agent can maximize its utility
when selecting the right amount of effort. A fundamental application of the moral hazard
optimization problem in computing networks can be found in [56], while the case where the
problems of adverse selection and moral hazard are jointly considered under a collaborative
mobile edge computing networks framework is presented in [5§].

2.2.3 Contract Theory Taxonomies

Based on their inherent properties, the different contractual agreements can be categorized
into the following major classes of contracts:

o Static or Repeated contracts: A static contract represents the one-shot trading
between the different parties and is usually realized by offering a take-it-or-leave-it
contract to the agent, to which the agent has to respond whether he/she accepts it or
rejects it. As a result, every signing of a contract does bear information about previous
trading histories. Repeated contracts, on the other hand, regard the renegotiation of
long-term contractual agreements, such as long-term employment contracts.

o Bilateral or Multilateral contracts: A bilateral contract refers to the typical one-
to-one contract between a single principal and a single agent, whereas the case when
multiple agents are concurrently involved in the contractual agreement is known as a
multilateral contract.

¢ One-dimensional or Multi-dimensional contracts. Under a one-dimensional
contract, only one personal characteristic of the agent is regarded as its private in-
formation, and only one task of the agent is accounted as its provided effort to the
principal. Consequently, only one type of reward is offered back to the agent by the
principal. The opposite holds for the multi-dimensional contract.

¢ Complete or Incomplete contracts. In a complete contract, the legal consequences
of every possible state of the environment are specified when ”signing” the contract,
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whereas the opposite holds for incomplete contracting cases where it is impossible to
describe beforehand future uncertainties.
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Chapter 3

Resource Allocation and

Incentive Mechanism Design in
NOMA Wireless Networks

3.1 General Setting

Despite the plethora of research works that have adopted and exploited the application of
NOMA in heterogeneous wireless networks, there are still important challenges to be ad-
dressed, pertinent to its realization. Given the intrinsic interference caused by different
users transmitting over the same resources, advanced interference management techniques
are crucial to guarantee the performance gain of NOMA. The latter, in turn, heavily de-
pends on the coupled problems of user scheduling and power control, stressing the need for
joint resource optimization schemes. However, one of the key challenges faced by the exist-
ing resource allocation approaches, directly affecting their effectiveness and applicability, is
the lack of perfect knowledge of the Channel State Information (CSI) at the Base Station
(BS). Owing to the inherent uncertainty introduced by the rapidly varying channels and the
increased backhaul signaling overhead induced by the deluge of user devices, perfect CSI
is practically difficult to achieve. Nevertheless, when considering the situation where only
statistical CSI is available at the BS, the private information of the user device regarding
its experienced channel gain could be utilized to steer the resource allocation procedure.
In that sense, the problem of resource allocation under statistical CSI can be modeled and
treated as an incomplete information problem.

In this chapter, a synergistic approach between the BSs and their serving user devices
is introduced to accommodate the incompleteness of CSI on the BSs’ behalf and treat the
timely resource allocation problem of joint user association and power allocation in NOMA-
based wireless networks from the users’ perspective. Such a user-centric resource allocation
mechanism aims to additionally ameliorate users’ satisfaction and facilitate temporal net-
work deployments, such as Networked Flying Platforms (NFPs), against a continuously
evolving heterogeneous environment. Our work targets to provide a consolidated framework
to deal with the research gaps related to the distributed (i.e., user-centric) decision-making,
the incompleteness of information, the contradictory objectives between the users and the
BSs, and the delivery of holistic solutions in terms of the joint user scheduling and uplink
power control in heterogeneous NOMA-based wireless communication networks. To this end,
in the following, the theoretical frameworks of Contract Theory (CT) and Reinforcement
Learning (RL) are adopted to properly capture and model the relationships between the

33



“actors” involved in this resource allocation process and the operation of the latter process
as such.

3.2 Related Work

Driven by the fundamental concept of NOMA to multiplex users in the power domain,
several research works have been devoted, so far, to the essential problem of power control
in NOMA-operated networks. Early work by the authors in [p9] introduced a fixed power
allocation strategy that was further extended in [60] to account for the distinct channel state
of each multiplexed user. Towards overcoming the drawbacks of fixed power allocations,
dynamically adjusted power allocation schemes were designed in [61], 2] for two-user and
multiple-user NOMA systems, respectively. Based on this groundwork, more recent efforts
targeted addressing various joint resource allocation problems in NOMA-based networks,
such as joint rate and power control [63], joint spectrum and power control [64], or even
power splitting in dual-connectivity-enabled networks [65].

Nonetheless, when employing NOMA in a multi-cell network scenario, the interdepen-
dence between user-to-cell association and power allocation should be taken into account.
Centralized solutions that iteratively optimize user association and power allocation have
been presented in [66, 67], based on game theory (e.g., coalition formation and matching
games) and advanced optimization techniques. Considering that such centralized approaches
usually fail to apply in more complex systems, significant attention has also been drawn to
the design of distributed solutions. A semi-distributed approach towards user association,
transmission mode selection, and power allocation has been developed in [68]. Moreover, a
cluster formation and power-bandwidth allocation algorithm executed exclusively by each
cell is proposed in [69]. Despite their distributed structure and reduced computational com-
plexity, both works in [68, 69] optimize the subsequent problems under investigation at
different stages and independently of each other, instead of jointly addressing them. More
importantly, though, all aforementioned works [66, 67, B8, 69] presume perfect CSI at the
BSs during the resource allocation procedure, which significantly limits their exploitability
and applicability.

Meanwhile, the issue of imperfect/partial CSI has received considerable attention to se-
cure the performance gain of NOMA in practical implementations. Based on the long-term
statistics of channel realizations, stochastic methods that model either the CSI or the chan-
nel estimation error have been extensively used in the literature to evaluate the performance
of NOMA and to design effective resource allocation schemes. Primary efforts focused on
identifying the impact of partial CSI on different performance metrics, such as the outage
probability and the average sum rate 0], or the user fairness [62]. Power allocation strate-
gies under statistical CSI have also been derived by the works in [[71, 72], while more combi-
natorial resource allocation frameworks for networks operating under Multi-Carrier NOMA
(MC-NOMA) have been proposed in [73, [74]. All the aforementioned resource allocation
works (i.e., [71, /2, 73, [74]) formulate centralized optimization problems using probabilistic
constraints on some outage event. Following a series of observations and appropriate sim-
plifications, the constraints are subsequently reduced, and the corresponding problems are
transformed into non-probabilistic ones.

An alternative formal method to mathematically formulate resource allocation problems
under statistical CSI, that promotes users’ involvement in the allocation procedure, has been
recently introduced in the literature of wireless networks, based on the framework of Con-
tract Theory (CT). Contract theory is a field of economics that provides the mathematical
foundations to create mutually agreeable contracts or arrangements between economic play-
ers in the presence of complete or incomplete information (often referred to as asymmetric
information) [41]. Under this concept, a principal/employer creates contract bundles based
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on agents’/employees’ private information, i.e., type, to motivate them to provide back their
effort and, hence, reveal their actual type. In wireless communications, contract theory has
been already used to provide mutual agreements between network/service providers and
user devices. Exemplified works in [42, [75] have applied contract theory in Device-to-Device
(D2D) and cognitive communications, respectively, to incentivize users’ participation and
contribution towards enhancing the network’s capacity.

Consequently, contract theory constitutes a particularly prominent way to design re-
source allocation schemes that consider imperfect/partial CSI, under a user-centric flavor.
Preliminary contract-based solutions of relevant resource allocation schemes have been dis-
cussed in [[76, [77, 78]. Both [76] and [7§] model the problem of relay node selection in wireless
networks, while each research work employs a different multiple access technique, namely
NOMA and Orthogonal Frequency Division Multiple Access (OFDMA), respectively. In
these settings, the CSI of the prospective relay nodes is regarded as their private informa-
tion and only the probability distribution of their types, i.e., channel gains, is known at
the BS. Embracing the idea of probabilistic CSI at the BS, the authors in [[77] confront the
joint user association, and spectrum and power allocation problem from a contract-theoretic
perspective, while aiming at mitigating the resulting interference in OFDMA networks.
Nevertheless, the OFDMA-based specific formulation assumed in [[77] renders this approach
inapplicable in NOMA-operated networks, while its centralized nature restricts its applica-
bility in terms of network scalability.

3.3 Contributions & Outline

To the best of our knowledge, our work is the first one in the literature that aims at exactly
filling the aforementioned research gaps, by removing the corresponding assumptions of per-
fect CSI knowledge and treating the emerging challenges associated with resource allocation
in NOMA-operated heterogeneous networks. In particular, we propose a novel framework
that jointly tackles the user-to-BS association and uplink power allocation in heterogeneous
wireless networks. The problem is formulated and solved under an incomplete CSI scenario,
by introducing formal methods based on Reinforcement Learning (RL) and Contract Theory
(CT). The main contributions of this work can be summarized as follows.

1. An RL mechanism is introduced to enable the distributed and autonomous user-to-BS
association. Each user selects a BS to be associated with, aiming at optimizing its
provided feedback from the communications environment that captures the network-
related and social characteristics of the respective association. With the term social
characteristics, we refer to the long-term BSs’ reputation formulated by the users’
expressed subjective opinion regarding the service that they enjoy, when associated
with them. To truthfully elicit the users’ subjective opinion, the novel use of the
Bayesian Truth Serum mechanism is proposed, further allowing the expression of BSs’
reputations as a Bayesian belief.

2. A contract-theoretic power allocation mechanism is proposed between each BS and
its associated /communicating users, accounting for the imperfect CSI on the former’s
behalf. The users are distinguished into different types depending on their experienced
channel conditions and different contract bundles are designed by the BSs tailored
to them. The contract bundles comprise the requested effort by the BS from its
communicating users, which is mapped to their uplink transmission power, and a
corresponding reward. The overall uplink power allocation is iteratively optimized
and determined, while the RL-based user-to-BS association procedure is realized.

3. Detailed numerical results, obtained via modeling and simulation, are presented to
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demonstrate the proper operation and effectiveness of the proposed framework. Par-
ticularly, the inherent characteristics of the contract-theoretic power allocation mech-
anism are studied, under the cases of complete and incomplete CSI, while the oper-
ation of the RL-based user-to-BS association mechanism is illustrated in terms of its
convergence to beneficial association points. A comparative numerical evaluation of
the proposed approach against other user-to-BS association mechanisms is performed,
showing the benefits of the overall proposed framework in terms of the achieved data
rate and fairness among the users within the heterogeneous wireless network.
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Figure 3.1: Heterogeneous wireless network topology.

3.4 System Model

We consider the uplink communication of a heterogeneous wireless network consisting of |C|
BSs and let us denote the corresponding set by C' = {1,...,|C|}. Each BS in the network,
depending on its physical characteristics, features, and capabilities, can be of different types.
Indicative examples of such different types of BSs are macro BSs, small BSs (i.e., micro,
pico, or femto), or NFPs, as illustrated in Fig,. @ Let U = {1,...,|U|} denote the set of
users to be served by the network. Subsequently, a set U, of cardinality |U.| represents the
users associated with a BS ¢ at any given time. As a means of efficiently managing com-
plexity and interference mitigation, we assume that the total available system bandwidth B
is sub-divided into |C| different orthogonal frequency chunks, where accordingly bandwidth
B, has been allocated to each BS ¢, such that B = Zle B.. Moreover, we presume that
the allocated frequency chunks (i.e., channels) are exposed to frequency-flat block fading,
meaning that they can be considered constant over their bandwidth, but can vary indepen-
dently with each other. Following NOMA principles, multi-user spectrum sharing within
the assigned bandwidth of a specific BS is achieved through power-domain multiplexing,
capitalizing on the exploitation of channel gain difference among users. As a result, the
users associated with a BS ¢ transmit their signals on the entire BS’s available bandwidth
B¢, and distinguish themselves according to their transmission power level, while the SIC
technique is applied at the receiver side to have the signals properly decoded.

Let us define as p¢, the uplink transmission power of user u communicating with BS ¢
and G¢, the channel power gain of their wireless link. It is, also, noted that within the scope
of this work and analysis, all the BSs are considered to be equipped with a single antenna.
Based on the principle of SIC and without loss of generality, the channel gains observed by
a BS c are sorted in ascending order as G§ < --- < GE < -+ < GlﬁUc\ and the signal of the
highest channel gain user is decoded first. When a signal is decoded, it is subtracted from
the superposition signal before further decoding takes place. Hence, the interference sensed
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by a user u associated with BS ¢ can be expressed as:
u—1
IE =" G pt + Io, (3.1)
u' =1
where Ij is the power of zero-mean Additive White Gaussian Noise (AWGN). Adopting
Shannon’s capacity formula, the achievable data rate of user w pertinent to BS c is

RS = B, log, (1+7%) [bwsl, (3:2)
where ¢ corresponds to the Signal-to-Interference-plus-Noise Ratio (SINR) given by
GC pC
o= 3.3
Y= (3.3)

3.4.1 Contract Bundle

Given a user-to-BS association, each BS incentivizes its serving users to transmit with an
appropriately selected power level that enables the decoding of their signal, by offering them
a contract bundle of {effort, reward}. The contract bundle {pS,r(} designed by a BS ¢ for a
user u € U, consists of the user’s effort, i.e., transmission power p¢, and its offered reward by
the BS ¢, denoted by r¢. The offered reward is considered proportional to the user’s sensed
interference I¢, defined as rS = p- IS, where p € RT is a reward factor. It is noted that the
user’s sensed interference IS is determined by applying the SIC technique at the receiver,
i.e., BS, as described earlier in Section , and it is computed and determined following
Eq. (E]) The physical meaning and interpretation of the reward is that the BS provides
a greater reward to users who experience more interference, i.e., the higher channel gain
users, since it expects greater transmission power to decode their signals. At the same time,
the BS discourages the lower channel gain users from transmitting with high power levels
that prevent the proper decoding of higher channel gain users’ signals. Such a design allows
for maintaining the distinctness among the received signals at the corresponding BS for the
latter’s receiver to properly perform the SIC technique. Apparently, the overall contract-
theoretic power control mechanism provides appropriate incentives to the users to adapt
their transmission power levels towards enabling their transmitted signals to be decoded
by the receiver without burdening the overall communication environment with excessive
interference. This process is further detailed later in Section .

3.4.2 User Type

Each user associated with a BS is characterized by a type that captures its private infor-
mation related to its established channel quality. We define the type of a user u € U,
[Ue

1/2

'u.:ll Gi) / ,t& € (0,1], where G¢ corresponds
to its channel gain. The proposed novel formulation of the user’s type captures the user’s
relative quality of its channel gain within the examined wireless communication environment
with respect to the rest of the users. It is noted that the introduced user type is unique
for each user within the system and acts as its personal identity and characteristic. In the
following analysis, we consider a fully heterogeneous networking environment in terms of
users’ channel gain characteristics and their corresponding types. Specifically, each user is
characterized by a unique type and thus, there are |U.| types of users associated with a BS c.
The user types follow the order of the users’ channel gains, i.e., t{ <--- <t <--- < tICUC\V
meaning that a user experiencing better channel conditions is of higher type. Naturally, a
higher type implies that the user invests greater effort (i.e., transmission power) and thus,
is rewarded more by the BS.

communicating with BS ¢ as t§, = (Gﬁ/z
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3.4.3 User’s and BS’s Utility

We define the user’s utility function US that depicts its perceived satisfaction from the
reward 7 provided by the BS ¢, as well as its cost to provide its effort to the BS, i.e.,
transmission power pS, as follows:

Us(py) =ty - e(ryy) — py- (3-4)

The first term expresses the user’s satisfaction depending on its type ¢ and its evaluation
function of reward e(r). The evaluation function is strictly increasing and concave with
respect to the user’s received reward (i.e., e(0) = 0,¢’(r) > 0,¢e”(r) < 0). For demonstra-
tion purposes and without loss of generality, in the following, we consider e(r() = /rS. The
physical meaning of the user’s utility function captures the user’s "profit” by transmitting
its data to the BX within a fully heterogeneous NOMA-based communications environment.
Similarly, a BS ¢ experiences a utility U} = pS — C - r¢ by each user’s u provided effort,
while accounting for its cost to provide the reward to the user, with C € R representing its
unit cost. For simplicity in the presentation and without loss of generality, we consider that
all the BSs experience the same unit cost C. However, the rest of the analysis would hold even
if each BS was characterized by a personalized unit cost C., as the latter is a constant value.
Also, it is noted that the BSs should sophisticatedly evaluate their unit cost C to guarantee
that the users’ available battery is sufficient to participate in the personalized contract
bundles. In the typical and realistic scenario that the BS is unaware of the user’s type, the
BS c estimates the probability AJ that the user w is of type ¢S, with ZEU:C_LL A = 1. Therefore,
for a number of |U.| users communicating with BS ¢, its utility function is represented as
follows:
[U.|
U= [Xo- i —C-r5)] - (3.5)

u=1

The physical meaning of the BS’s utility function captures the probabilistic ”profit” that
the BS will experience by incentivizing the users to adapt their transmission power levels to
avoid creating excessive interference in the overall system while enabling the BS to decode
their received signals.

3.5 Contract-theoretic Power Allocation

In the following, the proposed contract-theoretic power allocation mechanism, under both
complete and incomplete CSI scenarios is presented, based on the already defined contract
bundles, user types, and user and BS utilities. The power allocation is formulated as a
fully distributed optimization problem executed by each BS of the system independently.
The objective of this distributed optimization problem is to maximize the respective BS’s
utility function subject to its corresponding users’ constraints, which in turn ensure their
acceptance of the contract. As stated before, the contract designed by a BS ¢ for a user
u € U, consists of the user’s transmission power (i.e., user’s effort), and its corresponding
offered reward by the BS c¢. Accordingly, a set of contract bundles between the BS and
its serving users is the outcome that we seek from this procedure. A thorough analysis of
how to derive optimal contract bundles, meeting the optimization objectives defined under
complete and incomplete information scenarios, is pursued in the subsequent sections. It is
noted here that in the following subsections, we assume that the users have already been
associated with a specific BS. However, later on, in Section B.6, we provide a fully distributed
user-to-BS association procedure and framework.
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3.5.1 Optimal Contract under Complete Information

In this section, the complete information scenario is considered and analyzed, in the sense
that the BS knows a priori the type of its serving users. This ideal case serves as a baseline
to verify the effectiveness of the resource allocation performed under the incomplete CSI
scenario. Indeed, since the BS is assumed to be completely aware of the users’ types and
corresponding channel characteristics, it can fully exploit their effort and maximize its utility,
while guaranteeing that the users accept its offered contract. In other words, the BS has
to ensure that the users experience a non-negative utility, i.e., the optimal contract bundles
satisfy the individual rationality condition, as defined formally below.

Definition 3.1. (Individual Rationality (IR)) A contract bundle {pS,rS} satisfies the
individual rationality constraint if each user receives a mon-negative utility, i.e.,

ts -e(re) —pt >0, Ve e C, Vu € U,. (3.6)

u

Therefore, the problem of determining the optimal contracts for a BS ¢ under the com-
plete information of the users’ types, can be written as follows:

max Ul=p,—C-r, VeeC (3.7a)
{peritvueu.
st to -e(ry) —ph, >0, Vu € Ue. (3.7b)

In the contract design under complete CSI, the BS will target to maximize its utility, by
providing the minimum acceptable utility to its serving users. In this case, it will decrease
re until ¢S - e(rS) — pS = 0, meaning that the constraint of Eq. (B.7h) can be considered as
equality, Accordingly, solving the equality of Eq. (B.7h) with respect to r¢ and substituting
in Eq. (), we get U% = pS — C - (pS/tS)2. Thus, a closed-form solution can be derived
for the optimization problem of Eq. (| .7a)-@ by solving the following equation:

U
ops,

=0,Vece C,VueU,. (3.8)

Consequently, under the assumption of complete CSI availability at a BS, it can be easily
found that the optimal contract bundles between each BS ¢ and its serving users are given

c\2 c
by {p5, o} = {48, (507}

3.5.2 Feasible Contract under Incomplete Information

In this section, we elaborate on the necessary and sufficient conditions to determine a feasible
contract under the realistic scenario of incomplete CSI. The purpose of this analysis is to
derive optimal contracts subsequently in Section B

In a scenario of incomplete CSI, the BS has to ensure that the users are provided not only
with a non-negative utility but also with the maximum utility when selecting the contract
designed for their type. The former refers to the Individual Rationality (IR) condition given
by Eq. (B.6]), while the latter corresponds to the Incentive Compatibility (IC) condition
defined formally below.

Definition 3.2. (Incentive Compatibility (IC)) Each user must select the contract
bundle {pS, <} that is designed specifically for their own type tS, i.c.,

S e(r) —pl >t -e(rl)) — pis, Ve € C, Yu,u' € Ue, u #u'. (3.9)

Hence, it can be easily inferred that when a contract satisfies the IR and IC constraints,
the users have adequate incentives to truthfully reveal their private type, by choosing the
contract bundle designed for them. Apart from ensuring incentive compatibility, several
additional conditions should hold to render a contract feasible.
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Proposition 3.1. For any feasible contract {p,r¢}, the following must hold true: rS >
re, =5 > 15, and rs =8, = t& =t5,, Vu,u’ € Uy u # .

u’

Proof. Initially, we prove the sufficiency of the proposition, i.e., t{ > t{, = r{, > r¢,, by
using the IC constraint in Eq. (@) Based on the IC constraint in Eq. (B.9), we have

ty e(ry) —py >ty - e(ry) — P, (3.10)
coee(re)) —ph, > to, - e(re) —ps. (3.11)

Adding appropriately the corresponding terms of the inequalities of Eq. () and Eq. (),
we obtain

toe(re)+t e(re) >ts -e(re,) +to, - e(rs). (3.12)
By performing simple factorization, inequality Eq. (| ) is recasted into the following one:

(tn = to) - [e(ry) —e(ri))] > 0. (3.13)

Given that ¢ > t¢, _and e(r{) is a strictly increasing function with respect to r¢, it is
concluded from Eq. () that r$, > r¢,.

Thereafter, we prove the necessity of the proposition, i.e., r{ > rS, =t > t°,. Since
re > rS, and e(rg) is strictly increasing with ¢, it holds that e(rS) —e(rS,) > 0. Hence, from
Eq. (@) we obtain that ¢S > t¢,. As aresult, it has been proven that rf, > r{, <= t{ > t7,.

Following a similar procedure and argumentation, it can be easily proven that r{ =
re, <=t = t7,, which completes the proof. O

The rationale behind Proposition @ is that a higher type t user, which represents a
user of better channel conditions will receive a greater reward from the associated BS ¢ to
be incentivized to establish a connection and transmit its data.

Proposition 3.2. (Monotonicity) A user of higher type, i.e., t§ < -+ <t < -+ < tICUCI’
will receive a greater reward from the BS c, ie., r{ < --- <718 < -0 < T\CUCI’ as it will
contribute a greater effort, i.e., p§ < --- <pl < -+ < plclUcl‘

Proof. Given our assumption that user types follow an ascending order t§ < --- <tf < .-+ <
t‘CUC‘, the first part of this proposition readily stems from Proposition @ Subsequently, we
prove that for any feasible contract {pS,r¢}, the following holds true: p§ > p¢, <= r& >
re,, Yu,u' € Ue, u # u'.

First, we prove that if p¢, > p¢, then r$ > r¢,. According to the IC constraint in Eq. (@)7
we have t5, - e(r) — p > t5 - e(ry) — pSy & 5 - (e(rs) —e(rsy)) = pS, — pS,. Since pS > ps,
and given that e(r$) is a strictly increasing function of r¢, it holds that r$ > r¢,. Similarly,
in order to prove that if & > r¢, then pS > pS,, we follow the IC constraint in Eq. (B.9), and
we have t¢, - e(rs,) —pS, > 1S, - e(rs) — p& < pS — pS > 5, - (e(r) — e(rS,)). Since r§ > re,
and e(rg) is a strictly increasing function with respect to r¢, we conclude that p¢ > pt,.

This completes the proof of the monotonicity condition. O

Proposition 3.3. A user of higher type, i.e., t§ <--- <t < .-+ < tIC‘UCI’ will receive higher
utility to be incentivized by the BS ¢, i.e., Uf <--- <Uy <--- <Ug .

Proof. We examine two users u, v’ € U, u # v’ of types t§ > t¢,. Based on the IC condition
in Eq. (@), we have

toe(re) —ps > t8 -e(re) —po, >t5, -e(rs,)) —pi. (3.14)
Then, it holds that Uy > Uy, when &y > ¢3, and thus, for ff < --- <t < --- <t we
conclude that Uy <--- <UZ <--- <Upg,- O
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Based on the above-analyzed conditions that guarantee the feasibility of a contract under
an incomplete information scenario, the optimization problem executed by each BS ¢ can,
then, be formulated. The objective of each BS is to maximize its utility to be able to collect
and properly decode the users’ transmitted signals (as dictated by the received SINR). At
the same time, all associated users’ constraints should be satisfied for the users to be willing
to be served by the specific BS. Therefore, the following distributed optimization problem,
which captures both the BS’s and corresponding users’ requirements, is formulated at each
BS as follows:

[Ue|
Pl: max U.= Z (XS - (p, —C-rS)], Vee (3.15a)
{psrivueu. byt
s.t. to-e(rs) —pS >0, Yu € U, (3.15b)
tSe(re) —pl >t -e(rs)) — ps, Yu,u' € Ue,u # o/, (3.15¢)
0<7rf < - <rg <+ <7y, (3.15d)

where Eq. (|3.15H), (B.lf)d), (B15d) represent the aforementioned IR, IC, and monotonicity
constraints, respectively. Because problem P1 is non-convex, the procedure described in
Section B.5.3 below, is carried out to reduce its constraints and obtain a tractable solution
effectively.

3.5.3 Optimal Contract under Incomplete Information

In the following, the explanation and detailed analysis of the IR and IC constraints reduction
is pursued, for a contract under incomplete information.

Step 1: IR Constraints Reduction
By considering the assumption about the user types ordering, i.e., t§ < -+ <t <+ <
tfy,| and the IC condition in Eq. (B.9), we can write t5 - e(rg) — p§, = t7, - e%,) —pS, >
)

tS - e(r§) — p§. Also, given that t¢ > t§ and based on the IR condition in Eq. (B.G), we have
to - e(ry) —ply =ty - e(r]) —pi > 17 - e(rf) —pi 2 0. (3.16)

As a result, we deduce that if the IR constraint of the lowest user type ¢ is ensured (i.e.,

$-e(r§) —p§ > 0), all other IR constraints for the users with higher types will automatically
be satisfied. Towards increasing BS’s utility, the latter IR constraint can be considered
alternatively as equality, i.e., t§ - e(r{) — p§ = 0. Hence, the |U.| IR inequality constraints
defined in problem P1, are reduced to one IR equality constraint.

Step 2: IC Constraints Reduction

To accommodate the IC constraint reduction process, additional terminology is used
about the IC constraints defined between different user types. In particular, the IC con-
straints between user types u and v/, v’ € {1,...,u— 1} are termed as Downward IC (DIC)
constraints. Specifically, the DIC constraint between adjacent user types u and u — 1 is
referred to as the local DIC constraint. Similarly, the IC constraints between user types
wand v, v € {u+1,...,|U.|} are called Upward IC (UIC) constraints, while the UIC
constraint between adjacent user types u and u + 1 pertains to the local UIC constraint.
Next, we will consecutively analyze how to reduce both the DIC and the UIC constraints to
conclude a convex optimization problem.

Proposition 3.4. All the DIC constraints can be represented by the local DIC constraints.

Proof. We consider three adjacent user types, such that ¢ ; < t7 < t,;. Then, the
following two local DIC constraints can be derived:

tz+1 '6(7“Z+1) - pfwl > tle ce(ry) = Pas (3.17)
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to-e(ry) —po 2ty - e(ry_1) = Pl (3.18)

o e/
Based on Proposition @, we have r& > r¢, <= t¢ > t%,. Also, for r& > ré_; <=e(r) >

e(rg_1) e e(ry) —e(r;_y) > 0. For t5_ ; > t&, the second inequality becomes

to g le(ry) —e(rs_1)] >t - [e(rs) —e(ri_y)]
>Po B33 e _pe | (3.19)

From inequality Eq. () and with the use of Eq. () we have
tugr - €(Tuy1) = Pugr = Loy - e(ry) — by
ZEQ- () tZ_H . 6(7“
> ...

>ty g1 - e(ri) — pi. (3.20)

Therefore, if the DIC constraint between user types u + 1 and w holds, then it, also, holds
for user types u + 1 and v — 1. This property can be recursively extended downward from
user types u — 1 to 1, as dictated by Eq. (@)

If the local DIC constraints hold, then all the DIC constraints are automatically satisfied.
In other words, all the DIC constraints can be equivalently captured by

to-e(ry) —po 2ty - e(ry_1) = Pl (3.21)

O

5—1) - p2—1

Proposition 3.5. All the UIC constraints can be represented by the local DIC constraints.

Proof. An identical procedure with Proposition @ is followed, and the local UIC constraints
between three adjacent user types, such as &5 | <tj, <tg,, are written as:

tu—1 - e(ru_1) —Pu_1 > ty_1 -e(ry) — P, (3.22)

to - e(ry) —po > by - e(rug1) = Py (3.23)

Based on Proposition @, we have r{ > r{, < t{ > t¢,. For t{, > tf_,, the second
inequality becomes

P —ri =" B2 i fere, ) - er)]
>t6_y - [e(rS ) —e(rd)] (3.24)
From inequality Eq. () and with the use of Eq. () we have
tuoy - e(ri_1) = Pu—1 =ty - e(ryy) — pj,
>Fa B2d) e o
> ...

>ty e(rfy,) — Plu,|- (3.25)

c c
Tu+1) - pqul

Thus, if the UIC constraint between user types u — 1 and u holds, then it, also, holds for
user types u — 1 and u + 1. Similarly, this property can be extended upward from user type
u+ 1 to |Ug|, as dictated by Eq. (@)

Therefore, we have proved that if the local UIC constraints hold, then all UIC constraints
are automatically satisfied and can be captured by

to - e(ry) —pi >ty - e(rig1) = Puya- (3.26)
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To complete the proof, it is remarkable to observe that the local DIC constraint defined
in Eq. (@)), can easily imply the following local UIC constraint:

tu—1 - e(ru_1) —pu—1 = ty_q - e(ry) — po- (3.27)
In this respect, inequality Eq. () can be equivalently represented by Eq. ), and thus,
all UIC constraints are reduced to the local DIC constraint implied by Eq. () The latter
constraint, i.e., Eq. (), is considered as equality to each BS to achieve the maximum

benefit from its serving users’ effort. Hence, the |U.| - (JU.| — 1) IC inequality constraints
defined in problem P1, are reduced to |U.| — 1 equality constraints, accordingly. O

Based on the reduced IR and IC constraints, the optimization problem P1 can be rewrit-
ten as follows:

[Ue|
P2: max U.= Z Xo - (p, —C-15)],VeeC (3.28a)
(r&,pS)vueu. by
s.t. 5 -e(r]) —p{ =0, Vu € U,, (3.28b)
to-e(re) —ps =t -e(re_q) —pi_q, Vu € Ug, (3.28c¢)
0<rf <. <ry <. <rjy, (3.28d)

It is noted that the resulting optimization problem P2 is an equivalent transformation of
the original problem P1, thus resulting in the same outcome, i.e., the optimal contracts
established among the users and the BSs. We can easily prove that P2 is a convex pro-
gramming problem by checking the Hessian matrix. Thus, P2 can be solved by applying
the Karush—-Kuhn—Tucker (KKT) conditions. Accordingly, the optimal users’ uplink trans-
mission power vector p; = [pf", ..., pfjj || and BS’s rewards vector ry = [r{*,...,7fj ], can
be determined.

The contract design and optimization are handled by each BS of the heterogeneous
network independently, and the detailed process is summarized as part of the Algorithm B.1l,
(as presented below in Section )

3.6 Autonomous User-to-BS Association

In this section, we introduce a fully distributed and user-centric user-to-BS association
framework, where the users of the underlying network topology, acting as learning automata,
autonomously select the BS to be associated with and transmit their data. To enhance the
users’ satisfaction with the provided communication service, their decision is probabilistically
reinforced by considering the prospective BSs’ network-related and social characteristics.
Analytically, we introduce a mechanism based on the Bayesian Truth Serum (BTS) concept
to truthfully elicit the users’ perceived satisfaction when served by a certain BS. The users
are allowed to express their subjective opinions regarding their achieved data rate after
the contract-theoretic uplink power allocation is performed. The overall users’ satisfaction
reports contribute to the extraction of an objective outcome pertinent to each BS’s service
provisioning. This objective outcome is further utilized to formulate each BS’s reputation
as a Bayesian Belief and provide it back to the users as feedback for their BS selection.
The concluded intelligent user-to-BS association mechanism, whose high-level overview is
illustrated in Fig. B.2, provides a tangible application example of Artificial Intelligence (AT)
and Machine Learning (ML) toward solving a fundamental problem in 5G and beyond
networks and has been characterized as a critical enabler therein [79]. Additional details with
respect to each mechanism, are provided in the subsequent sections. Finally, a comprehensive
analysis of the algorithmic complexity of the unified user association and power allocation
scheme complements the section.
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Figure 3.2: Unified user-to-BS and resource management framework overview.

3.6.1 Users’ Satisfaction-related Information Truthfulness based on
Bayesian Truth Serum

Undoubtedly, the primary concern when designing resource allocation mechanisms for 5G
networks, is to enhance users’ perceived satisfaction. Aligning with the user-centric flavor of
the overall resource orchestration procedure, we introduce an assessment phase, where the
users report their personal assessment about the service provided by the BS that they are
associated with, revealing in this way their corresponding perceived satisfaction. As a means
of eliciting truthful assessments from the users in a vastly heterogeneous network, we adopt
the method of Bayesian Truth Serum (BTS) [80]. The BTS method is strict Bayes-Nash
incentive compatible for |U.| — oo and allows us to extract a holistic objective evaluation
from the users’ subjective reviews when the ground truth is unknown.

In particular, each user u € U, provides an answer regarding a binary question, i.e., "Are
you satisfied with the experienced data rate when served by BS ¢?”, by filing two reports:
aNO Y ES } , which is the user’s answer to the aforemen-

u,c ) u,c

o The information report x{, = [
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tioned question. It holds true that 3, no v ps) ai, . =1, where 2, . € {0,1},Vi €
(NO,YES.

o The prediction report y§ = [yiv O Y fs], where yYES corresponds to the prediction

regarding the proportion of the users which answered Y ES| i.e., mYES =1, while yN o
is the prediction regardmg the users whose answer is NO, i.e., a:N o = 1. It holds true
that 3 _,cvo vEs) Yho =1, where g, . € [0,1],Vi € {NO,YES}.

Afterwards, the population endorsement frequencies 7', and the geometric mean of the users’
predictions 7, for each of the available answers i € {N O,Y ES} can be calculated by

. 1 U] )
T 2 e (329)
u=1

and 1 ol |
m@)w§m@J (3.30)

As a consequence, the BTS score srg (X5, yy) of each user u, which corresponds to
the truthfulness of the user’s committed answer, can be expressed by

Shren (6:91) = ek o (Z) o > s (2. (331)

where the parameter a_€ R* controls the effect of the prediction score in the total BTS score.
The first part of Eq. () is known as the information score, while the second part is the
prediction score of the users. Regarding the information score, it increases with respect to
how surprisingly common an answer is, i.e., how much greater the population endorsement
frequency T’ is compared to the 7. It is noteworthy to mention that the surprisingly
common criterion is based on the Bayesian Reasoning principle, according to which a user
is of the opinion that the rest of the population will eventually underestimate its personal
opinion, and hence, the user reports a higher prediction for its answer to further support
t [81]. This is in line with the Bayesian argument, which concludes the fact that a user’s
truthful opinion is more likely to be surprisingly common. The prediction score formulation
is based on a penalty that is proportional to the Kullback-Leibler divergence between the
actual population endorsement frequencies T of the answers and the corresponding user’s
predictions ¢}, .,Vi € {NO,YES} [82].

As a result, the optimal prediction score (i.e., the lowest penalty) is equal to 0, which
is achieved when the user’s prediction ny,C is equal to the real users’ proportion T of the

. i) Yee=Re
answer i, i.e., log | 2 = " log(1) = 0, also known as absolute accuracy. Thus, the

average BTS score of each answer ¢ € {NO,Y ES}, can be written as

1 [Ue|

u=1

The final holistic and most truthful answer xpgrg . regarding the satisfaction of the users
belonging to the set U, and served by the BS ¢, is the one with the highest average BTS
score, as follows

Tprs.= argmax .. (3.33)
i€{NO,YES}
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3.6.2 BSs’ Reputation as a Bayesian Belief

After acquiring the users’ personal assessment for a given BS association via the BTS method
described in Section , we can eventually extrapolate the long-term social characteristics
of the network, in terms of the users’ perceived satisfaction, over several iterations of the user-
to-BS association procedure. In our setting, to formulate the network’s social characteristics
we utilize the reputation u. for each BS ¢, which is a Bayesian model featuring adverse
selection based on Bayesian updating of belief [83]. We assume that all users associated
with a certain BS share the same prior belief distribution p.o = po, Ve € C, regarding the
potential satisfaction that they might receive by getting associated with BS ¢. We consider
that every BS c¢ can offer either a satisfying or dissatisfying data rate with probabilities a
and ar,, respectively, where it holds that 0 < ay, < ag < 1. After the BTS evaluation takes
place (Section ), an up-vote or down-vote Ve € C occurs, creating a history for every BS
throughout the time horizon. We introduce S. and F, to indicate the number of times that
BS ¢ satisfied (zprs,. = YES) and dissatisfied (zprs,. = NO) the users being associated
with it, correspondingly, up to the present time instance. Thus, each BS’s ¢ posterior belief
distribution can be expressed as follows:

o - agfc) . (]_ — G’H)(FC)

o -agg” - (1= am)0 + (1= po) -aif - (1 - ap) ™)

e = (3.34)

To prevent situations, where large S, and F,. exponents lead to unrepresentable numbers,
the S. and F, counters are updated with a step equal to 0.5, each time a user is satisfied or
dissatisfied, respectively.

By observing Eq. (@), we deduce that the reputation pu. is correlated with the BS’s
¢ history of the users’ BTS evaluations, i.e., S. and F,, since it increases when the former
increases and decreases when the latter increases.

3.6.3 Reinforcement Learning-enabled User-to-BS Association

In this section, we adduce the reinforcement learning approach based on the Stochastic
Learning Automata (SLA) model [84], according to which each user selects the most bene-
ficial BS to be associated with in a distributed and autonomous manner.

Inherently, the users within the considered wireless environment aim at minimizing their
communication delay and, thus, exhibit a preference towards associating with a BS in their
proximity. Furthermore, in our proposed solution, the users’ association preference is af-
fected by the BSs’ bandwidth and reputation, leaning towards a resource-conscious utiliza-
tion of BS’s available frequency resources, by preventing the drawing of excessive network
traffic. Considering a user-to-BS association at a specific iteration ite of the SLA algo-
rithm, each BS ¢ within the network determines a vector of personalized feedback signals

Flite) = []—'16’(“6), . ,fl%(i‘te) for each serving user u, and broadcasts them to the respective
user devices. Naturally, the users’ personalized feedback signals reflect their benefit from

communicating with the specific BS ¢ and are given by

|C|
He * Bc/ Zl Bc

w0
di/ 3 4

u=1

Folite) = (3.35)

where . is the BS’s long-term reputation over the preceding SLA iterations, while B,/ Z‘gl B,
and d/ ZLUZCQ d¢, correspond to the normalized BS’s available bandwidth and user’s distance
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from the BS, respectively. Each user’s personalized feedback signal in Eq. () is further
1/4

. ~c,(ite) c,(ite) Vel c,(ite) 2c,(ite)
normalized as F;’ =|F7) > FL , such that Fy’ €10,1].
u=1

After each BS in the network broadcasts the users’ normalized feedback signals, each

user u acts as a stochastic learning automaton and updates its personal action probabilities

(ite)

vector Pr,,

= [Prilj(ite)7 . ,PTLC"(“P‘)} at the end of iteration ite. Specifically, for a user

u associated with a BS ¢ € C' at iteration ite, the probability of selecting the same BS ¢ in
the subsequent iteration ite + 1 is defined as

Protest) — ppetite) 4 . Folte) . (1 pro), (3.36)

while the probability of selecting a different BS ¢ € C, ¢’ # c¢ at the next iteration is
determined by

Pr;’,(ite+1) _ Prz’,(ita) _b. ﬁi,(ite) . P’I’ZI’(ite), (337)
where 0 < b < 1 is the SLA algorithm’s learning rate.

The users’ update of their action probabilities concludes the overall resource orchestra-
tion procedure along one iteration of the proposed algorithm, initiating the subsequent algo-
rithm’s iteration with their updated BS selections, as demonstrated in Fig. B.4. Throughout
the time horizon, this iterative procedure enables the users to converge to the most ben-
eficial selection of BS, as dictated by their normalized feedback signal. The optimization
policy of the proposed reinforcement learning mechanism aims to optimize the long-term
normalized personalized feedback received by each user, converging to a beneficial user-to-
BS association, which is beneficial from the users’ perspective. The convergence of the SLA
algorithm is achieved when for all users u € U there is at least one action probability such
that PTZ’(“CH) > e, e — 1 [85, BA]. The complete process and operation of the proposed
unified user association and power allocation scheme is summarized in Algorithm B.1l.

3.6.4 Complexity Analysis

First, to analyze the complexity of Algorithm @, we investigate the contract-theoretic power
allocation mechanism that is encapsulated in the overall user-to-BS association procedure.
For a given iteration of the SLA algorithm, where all users in the network are associated
with a prospective BS, the fully distributed optimization problem P2, presented in Section
B.5.3, is executed by each BS. Hence, in our complexity analysis, we presume that the
contract-theoretic power allocation is performed in parallel by all BSs of the system.

The optimization problem P2 can be solved via well-known existing methods for solving
constrained non-linear optimization problems, and accordingly, obtain the optimal contracts
under the incomplete information scenario. For demonstration purposes, we utilize the
Sequential Quadratic Programming (SQP) method [87], along with the fmincon() [8§]
function implemented by the MATLAB Optimization Toolbox to return the constrained non-
linear optimization problem’s solution, the computational complexity of which is denoted
as O(K) [89]. We also indicate as ITE the total number of the iterations required by the
SLA algorithm to converge. Consequently, the SLA algorithm’s complexity is calculated as:
O(ITE- (K + U+ |[U|-|C|)), i.e., O(ITE - (K +|U|-|C])), taking into account that the
complexities of the BSs’ selections and the users’ action probabilities’ updates at every SLA
iteration are O(|U]) and O(|U| - |C|), respectively. Finally, because both the complexities
of the Bayesian Truth Serum and the reputations’ updates are O(|U]), and since the rest
of the SLA algorithm includes only algebraic calculations (of O(1) complexity), the overall
complexity of Algorithm EI is obtained as: O (ITE - (K + |U|-|C])).
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Algorithm 3.1 Unified User Association and Power Allocation.

1: Initialize ar, ag, fic,0, b and set ite =0, S. =0, F, =0, Ve € C.
Initialize the action probabilities vector Prff”, Vu € U with equal probabilities for the
BSs, in the coverage area of which each user belongs, otherwise set Pr;’(o) =0.

1N

3: repeat

4: foru=1to|U|do

5: Choose a BS to associate with based on the action probabilities vector Pr{*®.

6: end for

7. for c=1to |C| do

8: Sort the user types in ascending order.

9: Obtain the optimal contract bundles by solving P2.

10: Broadcast the optimal contract bundles to all associated users u € U..

11: for u =1 to |U.| do

12: Select the contract designed for its type.

13: Execute the contract and transmit the data with uplink transmission power pg*.

14: Evaluate the achieved data rate RS by broadcasting x¢ and y¢, reports to BS c.

15: end for

16: Calculate the holistic answer zprg . regarding the serving users’ satisfaction based
on Eq. ()

17: Update the counters S, and F. based on xprs,, and thereafter, update the repu-

tation u. based on Eq. ()
18: Calculate users’ feedback signals F(*®) as in Eq. ()
19: Broadcast the users’ normalized feedback signals vector ﬁz’(ite).
20:  end for
21:  for u=1to |U| do
22: Update the action probabilities vector Pri*+) based on Eq. () and Eq. ()
23:  end for
24: until for all users u € U there is at least one action probability such that Pr
€, e— 1.

J(ite+1
oltetl) >

3.7 Performance Evaluation

In this section, the performance and effectiveness of the proposed unified user association
and power allocation scheme is demonstrated by performing a detailed numerical evaluation,
via modeling and simulation. First, in Section , we focus on validating the operation
of the contract-theoretic mechanism in terms of the allocated optimal contract bundles and
the obtained user and BS utilities. The specifics of the user-to-BS association procedure
are further studied in Section , where we explore and analyze the characteristics that
pertain to the operation of the pure autonomous user-to-BS association mechanism. Having
verified and analyzed the pure performance of both the contract-theoretic power allocation
and the RL and BTS-based user association in detail, Section B.7.3 concludes our evaluation
with some comparative results obtained from their seamless joint operation. In particular, a
comparative analysis over different heuristic user-to-BS association mechanisms and under
different spatial user distributions is provided, which demonstrates and explains the supe-
riority of the proposed RL-enabled orchestration scheme in increased-density heterogeneous
wireless deployments. For the latter, both uniform and non-uniform user distribution sce-
narios are evaluated over the network topology. The results of this work are also presented
in [90].

Throughout our evaluation, we consider a densely deployed portion of a macrocell of
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450-meter radius, consisting of one Macro BS (MBS) located in the center of the cell, as well
as two Pico BSs (PBSs) and two Unmanned Aerial Vehicles (UAVs), serving as NFPs aiming
at temporarily alleviating the excessive network traffic. The coverage radius of the PBSs
and the UAVs is set to 300 m and 200 m, respectively. In that manner, the coverage ar-
eas of all BSs overlap with each other, forming the hybrid aerial-terrestrial communications
environment that is graphically represented in Fig. . In the following, unless otherwise
explicitly stated, we consider that the simulated network topology serves 50 users uniformly
distributed with maximum uplink transmission power equal to 23 dBm. It should be noted
that users associated with the same BS are further grouped and allocated different sub-
channels, following the work in [24], such that implementing the SIC technique is feasible.
The specific simulation parameters are given in Table B.1. Our setting is perfectly aligned
with the heterogeneous system baseline simulation model defined by the Third-Generation
Partnership Project (3GPP) in [91] and is further extended to account for UAV-assisted
communications. We model the channel conditions of the ground-to-air links between the
users and the UAVs according to the reference free-space path loss model, as proposed in [92].
Regarding the contract theory-related parameters, we consider that each BS ¢ estimates its
serving users’ channel conditions, i.e., their types, following a uniform distribution, such that
X = 1/|U.|, Ve € C, Yu € U.. Each BS’s ¢ unit cost is set equal to C = 0.65, while each
user’s u € U reward factor is p = 100. In the following results, for demonstration purposes,
unless otherwise explicitly stated, the learning rate parameter of the SLA algorithm is set
equal to b = 0.7. It is noted that the users and the UAVs remain stationary throughout a
decision period, while the inclusion of the mobility aspect within the examined problem is
part of our current and future work.

Table 3.1: Simulation Parameters.

Parameter Value
MBS’s bandwidth 1.8 MHz
PBSs’ bandwidth 720 kHz
UAVs’ bandwidth 360 kHz

MBS to user path loss
PBS to user path loss
UAV to user path loss
Shadowing standard deviation
AWGN power spectral density
Users’ max transmit power
Carrier frequency
UAVS’ height

128.1 4 37.61og,(d[km]) dB
140.7 + 36.7logy(d[km]) dB
92.45 + 201og,(d[km]) dB
8 dB
-174 dBm/Hz
23 dBm
2 GHz
20 m

3.7.1 Contract-theoretic Mechanism Evaluation

In this section, the proper functioning and operation of the proposed contract-theoretic
power allocation mechanism is examined under both complete and incomplete CSI scenar-
ios. A complete execution of the unified user association and power allocation scheme is
performed and the contract-theoretic results for the optimal user-to-BS association, where
the algorithm converged, are obtained. In Fig. —, we indicatively analyze and present
the results of the contract-theoretic power allocation achieved for the MBS and its 16 asso-
ciated users in total. Similar results and analysis are obtained for any BS of the considered
wireless network topology.

The obtained optimal contract bundles are depicted in Fig. - as a function of
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Figure 3.3: Wireless network simulation topology with uniform user distribution.

the user index, where a higher user index represents a higher type and, thus, channel gain
user, considering the different users sorted in ascending order of their types/channel gains.
Specifically, the user’s invested transmission power (Fig. ) and the corresponding MBS’s
provided reward (Fig. B.4H) are illustrated, under both cases of complete and incomplete
CSI. Moreover, the MBS’s attained utility Uy, z¢ by each user’s u € Uy pg provided effort
(i.e., uplink transmission power) and each user’s utility UMP9 when associated with the
MBS, are presented in Fig. and Fig. , respectively. The results show that a user of a
highee, who experiences better channel conditions, transmits its data with higher power

(Fig. )7 maintaining the distinctness of the received signals by the MBS encouraged by
power-domain NOMA. Thus, the MBS rewards the users of a higher type, with a higher
reward (Fig. ), and consequently, those users achieve higher utility compared to users
of a lower type (Fig. ) Apart from the increased users’ achieved utility, MBS’s utility
is, also, increasing concerning the users’ type (Fig. )

Furthermore, comparing the results in Fig. — between the scenarios of complete
and incomplete CSI, it is inferred that the obtained contract bundles follow a similar behav-
ior with respect to the users’ types in both scenarios. Thus, the results verify the accuracy
of the performed resource allocation in situations where there is the absence of complete
CSI on the MBS’s behalf. Nevertheless, the motivation behind the MBS’s contract bundle
allocation strategy along the different CSI scenarios, primarily differentiates the achieved
users’ and MBS’s attained utilities, as revealed by the results in Fig. —@ Specifically,
knowing a priori the users’ types, the MBS fully exploits the users’ effort to maximize its
utility, providing them back with the minimum possible reward that marginally ensures
the users’ acceptance of the contract, i.e., the satisfaction of their rationality constraints.
Consequently, based on Fig. , the MBS’s utility is higher under the complete CSI sce-
nario, while at the same time, the utility achieved by all associated users is equal to zero
(Fig. B.4d).

To complement the evaluation of the contract feasibility under incomplete CSI, in Fig. ,
the utilities of two selected users with indexes 5 and 10 are examined over each contract bun-
dle designed by the MBS (represented in the horizontal axis by the user index) to showcase
that the contract bundles are incentive compatible. The results confirm the IC condition
satisfaction, in the sense that each user being part of the proposed contract-theoretic agree-
ment is provided with adequate incentives to select the contract bundle designed for its
type and experienced channel characteristics. By selecting the most appropriate contract
for their type, the users on the one hand steer the power allocation procedure, while on
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the other hand, they incidentally reveal their type and, thus, their CSI, contributing to the
establishment of a common CSI knowledge with the MBS.
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Figure 3.4: Pure contract-theoretic power allocation evaluation for MBS under complete
and incomplete CSI scenarios.

3.7.2 User-to-BS Association Mechanism Evaluation

In this section, we aim to elucidate the operational characteristics of the pure autonomous
user-to-BS association mechanism proposed. First, we target the evaluation of the RL-
enabled association mechanism’s external operation, i.e., its convergence behavior and achieved
association outcome (Fig. —). Afterward, we emphasize the internal features that
guide the RL algorithm and thus, the users’ behavior throughout the association process.
In this regard, the impact of the users’ satisfaction-related information elicitation via the
BTS method on the overall association_procedure is analyzed (Fig. —). The results
introduced for the rest of the Section @ - unless otherwise explicitly stated - have been
averaged over a number of 500 executions.

Initially, we study the convergence behavior of the proposed RL association mechanism
based on the SLA algorithm. In Fig. , the cumulative mean users’ normalized feed-
back signal (Eq. (@)) is illustrated with respect to the SLA algorithm’s iterations. The
results reveal that after approximately 50 SLA iterations, the mean users’ normalized feed-
back signal converges to its maximum value and, henceforth, the users persist in their BS
association selection. Indeed, the convergence of the users’ feedback signal directly implies
the convergence of the users’ personal action probabilities vector, determined by Eq. (@)—
(), which dictates the probability of selecting a specific BS. This observation is further
verified by Fig. , which demonstrates the action probabilities for one indicative user as
a function of the SLA algorithm’s iterations. Taking into consideration that the user under
investigation is located within the coverage areas of the MBS, the PBS2, and the UAV2, an
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equal number of approximately 50 SLA iterations is required for the user’s action probabil-
ities to converge. Eventually, the specific user’s most beneficial BS association is the one,
for which the user’s action probability converges at 1, i.e., UAV2 in this case.

Concerning the overall RL-enabled association algorithm’s speed of convergence, which
actually refers to the speed of convergence of Algorithm B.1}, we conduct a Monte Carlo sim-
ulation over all possible values of the SLA algorithm’s learning rate parameter b € [0.1,0.9]
and derive the resulting real execution time in [s], as well as the achieved mean users’ nor-
malized feedback signal (Fig. B.5d). As the value of the learning rate parameter b decreases,
the exploration of the possible user-to-BS association alternatives is becoming exhaustive.
Consequently, the algorithm identifies user-to-BS associations that lead to improved user
benefit, denoted by the increasing trend of the mean users’ normalized feedback signal.
Thus, the exploration of higher benefit user-to-BS associations is performed with the cost
of increased real execution time. The learning rate parameter b can appropriately be con-
trolled in realistic applications accounting for the tradeoff between the users’ benefit and
the time-critical decision-making.
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Figure 3.5: Pure reinforcement learning-enabled association mechanism’s evaluation.

To gain more insight into the convergence behavior of the RL mechanism across the
overall wireless network simulation topology, as presented in Fig. B.3, we calculate the mean
BSs’ probabilities of being selected as a function of the SLA iterations (Fig. @) The
corresponding results are next, correlated with the emerged total number of users associated
with each BS versus the SLA iterations (Fig. ) Because the MBS provides complete
coverage to the considered wireless network topology, the mean MBS’s probability of being
selected is higher compared to the rest of the BSs during the first SLA iterations. As a
result, the total number of users associated with the MBS is, also, higher during the first
SLA iterations. As the algorithm’s execution evolves, part of the users that were initially
assigned to the MBS are uniformly assigned to other BSs after assessing the tradeoff between
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user-to-BS distance and BSs’ bandwidth availability.

Targeting the interpretation of the RL-enabled association mechanism’s internal features
that steer such a user-to-BS association, we provide an analysis regarding the evolution of
the BSs’ reputation based on their history of users’ BTS evaluations. Specifically, Fig.
presents the sum of users’ BT'S score for each BS (i.e., the sum of "YES” and "NO” answers)
after the algorithm’s convergence, which is captured by the counters S, and F,. Accordingly,
Fig. depicts each BS’s reputation with respect to the SLA iterations. At this point,
it should be recalled that for a total number of 120 SLA iterations, the sum BTS scores
of "YES” and "NO” answers add up to 60, due to the S. and F,. counters’ increment with
a step equal to 0.5. Following our analysis and focusing on the MBS, the dominance of
its associated far-distanced users, whose achieved data rate is not satisfying enough, leads
to an equal to zero "YES” BTS score (Fig. ), justifying the degradation of the MBS’s
reputation over the SLA iterations (Fig. ) On the contrary, the short-distanced users
communicating with the PBSs, whose available bandwidth is adequate to provide them with
a satisfying service, vote in favor of the PBSs, causing an increase in the reputation of the
latter over the SLA iterations. However, this observation does not apply to the users served
by the UAVs, mainly due to the restricted UAVs’ available bandwidth.
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Figure 3.6: The impact of BSs’ history of users’ BTS evaluations on the evolution of BSs’
reputation over the SLA iterations.
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Figure 3.7: Wireless network simulation topology with non-uniform user distribution.
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3.7.3 Comparative Evaluation

This section is devoted to demonstrating the effectiveness of the devised unified scheme
towards the achieved users’ fairness in the share of the available resources. Specifically, our
proposed RL-based user-to-BS association mechanism is compared against other heuristic
mechanisms, i.e., short-distance and random associations. Following the short-distance as-
sociations, the users are associated with the BS in their closest proximity, whereas based
on the random association the users are randomly associated with a BS, given that they
belong to its coverage area. After the association phase, for fairness in the comparison, the
designed contract-theoretic power allocation is, also, applied to the derived short-distance
and random user-to-BS associations. Apart from the different association mechanisms used
for benchmarking purposes, we adduce an additional comparative analysis considering dif-
ferent _spatial user distributions. The results presented encompass the cases of both uniform
(Fig. B.3) and non-uniform (Fig. B.7) user distribution. Both wireless network deployments
consist of the same number and type of BSs, as well as the same number of users.

Fig. — present the resulting total number of associated users to each BS, as well
as the sum of users’ transmission power and achieved data rate per BS, after the application
of each unified alternative scheme under the uniform user distribution case. Similar results
are derived for the case of non-uniform user distribution in Fig. —. A comparison
between the resulting fairness in terms of the users’ achieved data rates under each unified
alternative scheme is introduced in Fig. —. To evaluate the users’ fairness, we
consider the converged user-to-BS associations between the users v € U and BSs ¢ € C
and derive the system’s overall fairness by applying the fairness criterion known as Jain’s
index [93], defined as follows

o\’
(57)
J= T e (3.38)

U] ’

Ul- > (R)?

u=1

Nominally, Jain’s index constitutes an independent scale criterion that measures how fair and
even the performed share of throughput is in distributed computer systems. The higher the
index, the fairer the resource allocation is. Hence, the maximum index value is obtained in
the case when all users receive the same share of resources, which in our analysis corresponds
to the equal share of the data rates.

25 = 2510
SLA
I SLA
[ Short distance ‘o [ Short distance
20 [Random 8 2 [—IRandom
2 Q
- 15 ©15
D 2
= [
510 31
§ E
<5 Eo.
w
0 0
MBS PBS1 PBS2 UAV1 UAV2 MBS PBS1 PBS2 UAV1 UAV2
(a) (b)

Figure 3.8: Comparative evaluation between SLA, short distance, and random association
per BS, in terms of (a) total number of associated users and (b) sum of users’ rates, under
uniform users’ distribution.
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Figure 3.9: Comparative evaluation between SLA, short distance, and random association
per BS, in terms of (a) total number of associated users and (b) sum of users’ rates, under
non-uniform users’ distribution.
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Figure 3.10: Comparative evaluation between SLA, short distance, and random association
in terms of the overall achieved Jain’s fairness index under (a) uniform users’ distribution
and (b) non-uniform users’ distribution.

Considering the uniform user distribution case, there exists direct discrimination between
the unified scheme employing short-distance compared to the SLA and random-based associ-
ation mechanisms, stemming from the uneven user-to-BS association induced when applying
short-distance (Fig. B.84). In more detail, due to the shortest intermediate distance between
the users and the PBSs and UAVs, a significantly high number of users is ultimately served
by the PBSs and UAVs, while an extremely low number of users is associated with the MBS.
As a result, the low number of users served by the MBS achieves an extremely high data rate
compared to the rest of the users served by the small BSs of restricted bandwidth resources
(Fig. ) The unfair share in the users’ data rate is further corroborated by the resulting
Jain’s fairness index, depicted in Fig. . Indeed, the users’ fairness when applying the
short-distance association mechanism is very low, while the SLA-based and random-based
unified schemes present similar behavior under the uniform user distribution.

Next, we examine the case of non-uniform user distribution (Fig. @) Emphasizing the
operation of the random-based unified scheme, we observe that there are no adequate incen-
tives for the random association mechanism to uniformly associate the users with different
BSs other than the PBS2 and MBS (Fig. ), in the proximity of which the majority of
the users are located (as observed in Fig. ) Hence, the remarkably high number of users
associated with the PBS2 experience lower data rates compared to the rest of the users
(Fig. ) Also, the large number of users associated with the MBS achieve low data rates,
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which are balanced due to the high bandwidth availability that characterizes the MBS. This
result is further confirmed by the obtained Jain’s fairness index presented in Fig. . The
SLA-enabled user-to-BS association mechanism concludes with a more even and fair share
of the users’ achieved data rates, by uniformly associating them with different BSs. Also,
the results reveal that the users’ association with longer-distanced BSs from the users is
performed with the cost of the increased sum of users’ consumed powers (Fig. )
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Chapter 4

Resource Allocation in

RIS-assisted NOMA Wireless
Networks

4.1 General Setting

Taking one step further to the heterogeneity of the wireless network topology and, espe-
cially, placing our focus on UAV-assisted communications, several emerging technologies
have been unveiled recently from the research community and the standardization bodies,
leading to the latter’s gradual maturity. A characteristic example of such a technology is
the Integrated Access and Backhaul (IAB) network deployment [94]. This paradigm pro-
poses that the Next Generation Node Bases (gNBs), referred to as IAB nodes , wirelessly
relay the mobile traffic in a multi-hop manner to finally reach the IAB donor , which is
connected to the core Internet with fiber infrastructure [95]. The principal idea behind
the TAB paradigm is to efficiently utilize the 5G New Radio (NR) spectral resources across
the fronthaul and backhaul network parts (including multiple intermediate hops), by uti-
lizing advanced resource optimization and multiple access techniques. In this context, by
increasing the UAV’s (acting as an IAB node) degrees of freedom in terms of wireless ser-
vice provisioning and its connectivity to the core network, the IAB network architecture is
seen as one of the primary enablers of the vision of fully reconfigurable and energy-efficient
wireless networks. Building upon the concept and potentials of the ITAB networks, another
technology that has lately received notable attention and is deeply related to the future
wireless networks’ attributes of reconfigurability and energy efficiency, is the Reconfigurable
Intelligent Surface (RIS).

In this chapter, we capitalize on the joint benefits of IAB and RIS technologies, and we
design and propose an end-to-end resource management framework, tailored to the converged
RIS-aided and UAV-assisted network deployments. Such a converged network deployment is
adapted to the future urban UAV-assisted communications, in which the wireless propaga-
tion environment can be appropriately controlled to account for different objectives, while
the UAVs serve as an integral part of the network’s infrastructure to provide end-to-end
connectivity under adverse situations. In this context, we consider the uplink communica-
tions and treat the distinct objective of end-to-end energy efficiency maximization by jointly
accounting for and controlling: a) the RIS elements’ phase shifts, b) the bandwidth splitting
among the fronthaul and backhaul network parts, ¢) the users’ uplink transmission power
to the UAV, and d) the UAV’s uplink transmission power to the micro BS/core network.
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To deal with this multivariable optimization problem in a distributed manner, we resort to
the adoption of Game Theory and, especially, Stackelberg games, capturing the hierarchy
between the users, UAV, and microcell, as imposed by the IAB network architectural de-
ployment. Complementary to the above, and for better revealing the benefits and tradeoffs
of the obtained solution when aiming at energy efficiency, we also analyze and evaluate the
application of the proposed framework under a different optimization objective, namely the
end-to-end data rate optimization.

4.2 Related Work

Although the paradigm of TAB deployment is still in its infancy, there exist research works
in the literature that deal with timely resource allocation problems under the umbrella
of TAB. In [96], a multi-hop TAB network that operates under the combination of Time
(TDMA) and Frequency Division Multiple Access (FDMA) is considered to coordinate the
transmissions along the different wireless links. The problem of subchannel and power
allocation is formulated to maximize the sum system throughput, while insights regarding
the optimal TAB node placement and user association are presented. Under a similar multi-
TAB-node, though single-hop, network topology, the authors in [97] treat the problem of
spectrum assignment to the different IAB nodes via a Deep Reinforcement Learning (DRL)
approach while trying to maximize the sum users’ throughput. Also, a joint traffic load
balancing and interference mitigation optimization problem is introduced in [98], targeting
the maximization of the overall network’s capacity. The joint problem is organized into two
sub-problems, which are iteratively solved following the successive convex approximation
method.

Moving from the terrestrial network deployments to the promising inclusion of the UAVs
within the concept of TAB, different challenges and considerations behind the idea of UAV-
based communications in Millimeter Wave (mmWave) frequencies are discussed in [99], while
investigating the effect of UAVs’ and users’ mobility to the network’s performance. Other
works that deal with backhaul-aware UAV-assisted networks can be found in [100, 101].
In the former, the joint problem of 3D UAV positioning, wireless backhaul sub-band as-
signment, and downlink transmission power allocation is formulated, such that the UAV’s
transmission power is minimized while accounting for the users’ Quality of Service (QoS)
prerequisites. On the other hand, the uplink communication is assumed in [101], and the
joint user association, power, and bandwidth assignment are determined to maximize the
sum system throughput. Targeting the interference mitigation at the access and backhaul
links, the authors in [[102] introduce a joint optimization problem of the users’ association
to the BSs, the downlink power allocation regarding the access and backhaul transmissions,
and the UAV’s deployment within the examined communications environment. Settings
with multiple UAVs that belong to different providers and compete for service provisioning
to multiple users are also considered, e.g., [103], further highlighting the heterogeneity of
the emerging wireless networks and the usage of UAVs as temporary cellular infrastructure.

To further enhance the energy and spectral efficiency of 5G and beyond networks, signif-
icant attention has been paid to incorporating RIS technology under a plethora of different
communication scenarios. Initial works, such as [104, 105, [106], focused on simple use cases
and scrutinized the joint problems of power control and RIS elements’ phase shift opti-
mization. Both aforementioned works compared the performance gain incurred by the RIS
considering different multiple access techniques, such as orthogonal and non-orthogonal,
while targeting the users’ power minimization and data rate maximization, respectively.
Similar problems have been formulated for more complex setups, such as the Simultaneous
Wireless Information and Power Transfer (SWIPT) case in [107] and the Multiple-Input
Single-Output (MISO) NOMA network considered in [10&€]. In the latter work, the au-
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thors addressed the sum users’ data rate maximization problem under a combination of
machine learning algorithms based on K-means Gaussian Mixture Model (K-GMM) and
deep Q-Network (DQN) while optimizing the RIS’s passive beamforming vector and the
users’ decoding order and power allocation, subject to their data rate prerequisites.

The majority of the relevant existing research works exclusively consider the downlink
direction of the RIS-enabled communications, while only a few attempts have been made
towards modeling and optimizing the wireless network’s resources treating the uplink direc-
tion. Focusing on the uplink communication of a RIS-enabled wireless cellular network, the
authors in [L109] deal with the maximization problem of the sum rate of all users subject
to their power constraints. In [[110], a comparative study between OMA and NOMA RIS-
enabled networks is presented, examining both the uplink and downlink communication for
several fading characteristics of the communications environment. The authors conclude
that the RIS-enabled network consistently achieves a high signal-to-noise ratio, while its
increasing trend is not affected by the number of RIS elements and/or the fading param-
eters. Also, in [[111], the tradeoff between the energy and spectral efficiency in the uplink
communication is studied by jointly optimizing the users’ transmit precoding and the RIS’s
reflective beamforming to maximize the resource efficiency.

Finally, the joint power of RIS and UAV-assisted communications has also been ex-
amined. In [112], the deployment of a RIS on the boundary of a UAV’s serving area is
considered, and the joint users’ resource allocation and UAV’s trajectory optimization are
designed to take advantage of its existence. The authors in [113] introduce a machine
learning approach to jointly determine the UAV’s trajectory, the phase shifts of the RIS
elements, the power allocation policy from the UAV to the users, and the dynamic decoding
order, towards minimizing the overall system’s energy consumption. The scenario of an RIS
mounted on a UAV to maintain the Line-of-Sight (LoS) communication is studied in [114]
and similarly, a joint resource allocation and UAV mobility problem is devised.

4.3 Contributions & Outline

Undoubtedly, the existing research has focused on different network optimization problems
about the emerging technologies of UAVs, TAB, and RIS, and has identified their challenges
and performance gains in a rather fragmented manner. To the best of our knowledge,
there exists no work in the current literature that identifies the prospect of RIS and its
added value in a backhaul-aware network optimization process, as the one revealed by the
IAB paradigm. In this chapter, our objective is to address this issue and demonstrate the
prospect of RIS in a UAV-assisted IAB network targeting its energy efficiency. In this
way, we aim to introduce a dynamic, intelligent, and reconfigurable resource optimization
framework, which jointly accounts for the access and backhaul resource optimization and
operation towards ensuring end-to-end service provisioning for the users. Respecting the
need for the design and deployment of decentralized resource management processes, we
capitalize on the distributed nature of Game Theory models and, especially, Stackelberg
games, and accordingly, we jointly treat the wireless propagation environment’s adaptation
and the network’s resources’ optimization under a low-complexity end-to-end framework. It
is shown that RIS can provide significant improvements in terms of higher sum users’ energy
efficiency, driving the overall equilibrium and the UAV’s performance at more energy-efficient
points. The key contributions of this work are summarized as follows:

1. A system model capturing a RIS-aided and UAV-assisted IAB network is introduced,

accounting for the communications established at the uplink of both the wireless access
and wireless backhaul network parts (Section {.4).
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2. The problem of the IAB network’s end-to-end resource management towards its en-
ergy efficiency optimization is formulated and treated via a distributed Stackelberg
game-theoretic approach. The proposed approach comprises three stages, across which
the following parameters are controlled and dynamically optimized: a) the RIS ele-
ments’ phase shifts, b) the bandwidth splitting among the wireless access and backhaul
network parts, and c) the users’ and d) the UAV’s uplink transmission powers (Sec-
tion @) The UAV, acting as leader, determines in the first stage the RIS elements’
phase shifts that maximize the sum users’ signal strength in the uplink, following a
low-complexity heuristic approach (Section @) Then, the UAV calculates the band-
width splitting and its uplink transmission power to the TAB donor (Section )
In the third stage, the users, i.e., the followers, optimize their uplink transmission
powers to the UAV in a distributed manner (Section ) The overall Stackelberg
game-based algorithm is presented in Section

3. The applicability and adaptation of the proposed resource management framework are
also demonstrated for the treatment of the IAB network’s end-to-end data rate opti-
mization problem. The solution is obtained following a similar distributed Stackelberg
game-theoretic approach with its energy efficiency-related counterpart (Section W.G).
This alternative optimization objective serves as the basis for highlighting the benefits
and tradeoffs of the obtained solution when aiming at energy efficiency.

4. The overall network’s performance is evaluated and extensive numerical results are pre-
sented that demonstrate the benefits introduced to both the users’ and UAV’s energy
efficiency, by the joint exploitation of UAV, IAB, and RIS technologies (Section §.17).

Notation Conventions: The notations used in the remainder of the chapter are listed
as follows. The vectors and matrices are denoted by bold-face letters and are accompanied
by their size. CX*Y represents the X x Y space of a complex-valued matrix. Given any
matrix G, G” and G¥ indicate the transpose and conjugate transpose of the general matrix
G, accordingly, while G; ; is the (7, j)-th element of the matrix. Given any vector g, diag(g)
refers to the diagonal matrix, whose elements on the main diagonal are the elements of
the vector g. CN(p,0?) denotes the Circularly Symmetric Complex Gaussian (CSCG)
distribution with mean g and variance o2, and « stands for "distributed as”. Considering a
complex number g, |g| denotes its absolute value and Zg its phase. Considering any function
f, dom denotes the domain of the function f.

4.4 System Model

We consider the uplink communication of a RIS-aided and UAV-assisted two-tier IAB net-
work, as illustrated in Fig. @, consisting of |N| users, with N = {1,...,n,...,|N|} denoting
their set, a UAV and a micro Base Station (mBS). The UAV, serving as an IAB node, col-
lects the users’ data in the first tier and the second tier and forwards this data to the mBS
(i.e., the TAB donor) through the wireless backhaul. In this work, the position of the UAV
is considered to be fixed throughout the operation of the resource management procedure.
It should be noted that the problem of the UAV’s trajectory optimization and its impact on
resource management under different operation scenarios and requirements, though inter-
esting and challenging by itself, is considered beyond the scope of this work and is part of
our current and future research activities. All the involved transmitting/receiving entities,
i.e., the users, the UAV, and the mBS, bear single-antenna transmitters and receivers. The
IAB network operates in out-of-band mode, meaning that the wireless access and backhaul
links use different frequency bands. Hence, the total system bandwidth W [Hz] is split into
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two parts pW and (1 — p)W [Hz] to facilitate the wireless access and backhaul communi-
cations, respectively, where p € [0, 1] is the corresponding bandwidth splitting ratio. The
users’ transmissions in the first tier are multiplexed using the combination of power-domain
NOMA and SIC techniques.

UAV
IAB node
= ﬁ %
P S hu,m mBS
7 T~ IAB donor

3y ff

- = = Wireless access - = = Wireless backhaul

Figure 4.1: Overview of the RIS-aided and UAV-assisted Integrated Access and Backhaul
(TAB) network.

4.4.1 Path Loss Model

In the considered TAB network, the path loss between any network entity and the UAV is
stochagtically determined to account for both the Line-of-Sight (LoS) and Non-LoS (NLoS)
cases [[101]. The probability that the wireless link between a network entity and the UAV is
LoS derives from the function:

1

LoS _
Pr (ZU7d) - 1 +we_ﬂ(9_w)7

(4.1)

where 0 = %sin_l (ZTU) [rad] is the elevation angle between the network entity and the

UAV, with d [m] denoting their in-between Euclidean distance and zy [m] representing the
UAV’s altitude. Also, 1, 3 € RT are constants depending on the carrier frequency and the
type of the communications environment, e.g., rural, urban, suburban. The path loss for the
oL.oS case between a network entity and the UAV is defined as a function of their in-between
Euclidean distance d as:

4r fod\ Y
PL™S(d) = npos ( il > , (4.2)
c
while the respective path loss model for the NLoS case is:
Ar fod\ Y
PLNES(d) = iy Log ( utl ) : (4.3)

where f. [Hz] is the carrier frequency, ¢ [m/s] is the speed of light, ays is the path loss exponent
and Nros,MNLos [dB] are the excessive path loss coefficients, such that nyros > Nros > 1.
The overall expected path loss is probabilistically given by:

PL(zy,d) = PrieSpLios 4 (1 - PrL"S) PLNEeS, (4.4)

Focusing on the first network tier, the prospect of RIS is scrutinized, and a Uniform
Linear Array (ULA) consisting of a set of M = {1,...,m,...,|M|} reflecting elements is
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considered, placed at a height of zg meters above the ground. For each reflecting element
m of the RIS, we denote as w,, € [0,27) the phase shift of the reflection and we assume
that no change in the amplitude of the incident signal is incurred, i.e., the amplitude of the
reflection coefficient is equal to 1. The diagonal reflection matrix of the RIS elements is noted
as Q = diag(e’*1, ..., el% ) € CIMIXIMI while the first RIS element is used as a reference
point for the performance of the subsequent calculations. The direct communication link
between a user n and the UAV follows the probabilistic path loss modeling, such that
PL,y = ﬁ(zU, dnv), where d,, y [m] is the Euclidean distance between user n and the
UAV. Thus, the corresponding channel gain coeflicient h,, ; € C is given as follows:

1 -
h 4.
PLy,y ’ (4.5)

hn,U =

with i v~ CN(0,1) denoting the random scattering component captured by a zero-mean and
unit-variance complex Gaussian random variable. The path loss between a user n and the
RIS is PL, r = p(dn r)*®, where p [dB] is the path loss at the reference distance 1m, d,, r
[m] is the Euclidean distance between user n and the reference point of RIS and ap is the
path loss exponent [29]. Assuming that the RIS is in the users’ proximity, the channel gain
coefficient h,, p € CIMIX1 hetween a user n and the RIS is:

1 o o T
hor = | 51— [1,e—127d-'¢nﬁ,...,e—ﬂ%“M“”ds%ﬂ] , (4.6)
n,

where A [m] is the carrier wavelength, ds [m] is the antenna separation and ¢y, g is the cosine
of the angle of arrival of the user’s signal to the RIS. The channel gain hg € CIMIX1 of
the RIS-to-UAV wireless link is modeled as:

PR VA VO "

where PLry = PL(zy — zr,dgv) is the link’s path loss determined probabilistically and

k is the Rician factor. Also, hé‘j{? = [1,6*327‘15‘1’&0, .. ,,efazT(llel)dsm,U} is the LoS
component, with ¢r iy denoting the cosine of the angle of departure of the signal from the
RIS to the UAV, and hgfj’s « CN(0,1) is the NLoS component, which follows the complex

Gaussian distribution. Subsequently, the total channel power gain between a user n and the
UAV is given by:

2

Gy = |hnu +hil ;Qhy, g| . (4.8)

Concerning the second TAB network tier, the path loss of the wireless backhaul link
between the UAV and the mBS follows the probabilistic model and is defined as PLy , =
PL(2v,dy.m), where dy,, [m] is the Euclidean distance between the UAV and the mBS.
The channel gain coefficient hy,, € C between the UAV and the mBS is:

1 -
Wy = I 4.9
U, PLom (4.9)

with A/« CN (0,1) accounting for the random scattering, while the respective channel power
gain is noted as:

Gu = |hum|”. (4.10)
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4.4.2 Communications Model

Focusing on the communication between the users and the UAV, the SIC technique is im-
plemented at the UAV’s receiver to decode the received signals. Without loss of generality,
we assume that the users’ total channel gains G,, are sorted as G; < --- <G, <--- < G‘ N|
and decoding starts from the highest channel gain user. Thus, a user’s n achieved data rate
through the wireless access R:\C is as follows:

R = puWlog, [ 14+ —— Gl [bps], (4.11)
Zn’:l G"/Pn/ + IU‘WNO

where P, [W] denotes the uplink transmission power of user n, and Ny [dBm/Hz] is the
power spectral density of the zero-mean Additive White Gaussian Noise (AWGN).

Let Py [W] indicate the UAV’s transmission power for forwarding the users’ data to the
mBS, then the UAV’s achieved data rate through the wireless backhaul RﬁH is:

RBH = (1 — u)Wlog, (1 + %) [bps]. (4.12)

From the cumulative UAV’s achieved data rate REH , we adopt a proportionally fair
approach and derive each user’s n achieved data rate at the wireless backhaul REH as
follows:

RBH — 1 RBH[bps). (4.13)
Accordingly, the user’s n end-to-end achieved data rate RE2F is obtained by:

RE2E — min (R, RE™) [bps). (4.14)

4.5 End-to-End Energy Efficiency Optimization

4.5.1 Design for Reconfigurability and Efficiency

In the following, we elaborate on our proposed dynamic and reconfigurable resource manage-
ment framework that targets the end-to-end energy efficiency optimization of the network
topology under consideration. In particular, we seek to dynamically allocate the available
spectrum and power resources in both the wireless access and wireless backhaul parts of
the considered RIS-aided and UAV-assisted IAB network, while maximizing the overall IAB
network’s energy efficiency. Under this scope, the corresponding joint optimization problem
is formulated, simultaneously accounting for and controlling: a) the RIS elements’ phase
shifts w, b) the bandwidth splitting ratio parameter u, c) the users’ transmission power
vector P to the UAV, and d) the UAV’s transmission power Py to the mBS. This joint
optimization problem is formulated as a single-leader multiple-followers Stackelberg game
and treated in three sequential stages. The UAV, acting as the leader, determines in the first
stage the optimal RIS elements’ phase shifts that enhance its overall received signal strength
and broadcasts the appropriate control signals to the controller of the RIS. Then, in the
second stage, the UAV calculates the bandwidth splitting ratio and its transmission power
to the mBS that maximize its energy efficiency. The results of the second stage are fed back
to the users, who are acting as the followers and determine in a distributed and autonomous
manner their uplink transmission powers towards maximizing their energy efficiency. The
second and third stages of the devised Stackelberg game are played iteratively to converge to
the Stackelberg equilibrium. An overview of the proposed end-to-end resource management
framework is illustrated in Fig. 4.2, in the form of a block diagram.
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It is noted that in our introduced paradigm and resource management framework, the
radio propagation environment, from simply being a passive exogenous entity, becomes a
controllable and reconfigurable element with programmable properties, through the intelli-
gent RIS’s phase shifts’ adaptation. In this way, the quality of the received signal strength
is improved, combating the unfavorable propagation conditions due to the wireless channels’
fading, while resulting in reduced transmission powers and interference. The inclusion of the
RIS in the wireless environment provides an extra degree of freedom apart from the typical
power and bandwidth control when seeking to maximize the end-to-end energy efficiency or
data rate. Moreover, owing to the emergence of RISs and the advanced intelligent decision-
making methods adopted, we treat the wireless environment and resources as part of the
overall network design that can be adapted to satisfy specific system and user requirements
in a dynamic manner (i.e., dynamic access and backhaul bandwidth splitting).

Start

!

Leader/UAV: Determine the effective
RIS elements’ phase shifts @*

}

Leader/UAV: Initialize randomly the users’
transmission powers P, within the feasible range

<

v

Leader/UAV: Determine the optimal bandwidth
splitting ratio #* and transmission power Py

v

Each follower/user: Determine the
optimal transmission power P,

}

Yes No

17 Converged?

End

Figure 4.2: End-to-end resource management framework overview.

4.5.2 RIS Elements’ Phase Shifts’ Adaptation

As discussed earlier, the optimization of the wireless propagation environment, via the con-
structive beams created by reflection from the RIS, is used to assist and boost the network’s
resources’ optimization procedure. To achieve this, the UAV determines the effective RIS
elements’ phase shifts w* = [wy,...,wn,...,w] that enhance its overall received signal
strength, towards further supporting the system’s energy efficiency optimization via the op-
timal bandwidth splitting ratio ;* and its optimal transmission power F; to the mBS. For
the UAV to maximize the overall received signal strength, it suffices to find the effective RIS
elements’ phase shifts w* that maximize the overall channel power gain of the users. Hence,
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the UAV treats the following optimization problem:

IN] ,

max Y ’hn,U + hg{Unhn,R‘ (4.152)
n=1

s.t. 0<wy, <2m,Vm e M. (4.15b)

To easier handle the problem in Eq. ()—(), we denote as v,, = e/“m VYm € M
and define the corresponding reflection-coefficient vector v = [v1,...,Vm, ..., var]. Then,
by substituting flﬁR = hg’Udiag(hmR) e C'™IMI the problem in Eq. ()—() is
equivalently rewritten as:

| V]

. 2
max Z hn,u + hf,Rv (4.16a)
n=1
s.it. |um| =1,Vm € M, (4.16b)

where Eq. () is the unit-modulus equivalent constraint to the one expressed in Eq. ()
i .16a

Eq. ( ) is a_non-concave function concerning the vector v and the unit-modulus con-
straint in Eq. (4.16H) defines, also, a non-convex set. Thus, the optimization problem in
Eq. (f.164)-(.161) is generally non-concave and there exists no standard method to derive a
globally optimal solution [29, 115]. For this reason, we adopt an effective and low-complexity
heuristic approach [104], as presented in the sequel.

Consider the case when a single user, denoted by n = 1, exists in the system. Then, it
generally holds that this user’s channel power gain is maximized when its signals arriving
from different paths at the receiver of the UAV, i.e., the direct signal and the signal created
by reflection from the RIS, are perfectly aligned and coherently combined [35, 104]. This
happens when the phase shifts of the direct and the reflected signals are equal, such as:

éhl,U = —Zfll’R =+ ZV = ZV ES éhLU + éﬁl,Rv (4’17)

concluding to the optimal 1 x |M| phase-shift vector w* = Zv for the single-user system.

As a logical consequence of Eq. (), in the multiple-user case, there exists a different
reflection-coefficient vector v,, = [vn 1, ., Vnm; - -, U |ar)] fOr each user n that maximizes
each individual user’s n channel power gain, which is given by:

vy = ejéthejA‘"»R,Vn € N. (4.18)

Apparently, the reflection-coefficient vectors v, of different users differ from each other,
which suggests that there does not exist a single reflection-coefficient vector v maximizing
all users’ |N| channel power gains concurrently.

Towards striking a balance between the different users’ reflection-coefficient vectors v,,
and obtaining a global solution for the RIS elements’ phase shifts’ adaptation problem, we
introduce for each user n an appropriate weight factor w, € [0,1] and derive the linear
combination of the overall users’ reflection-coefficients v,, as follows:

|V

v = Z Wn Vi, (4.19)
n=1

such that Z‘n]\gl w, = 1 holds true.
Our ultimate objective is to determine the optimal value of the weight factor w, of
each term of the reflection-coefficient vector v in Eq. () that concludes to an increased

65



sum of the users’ channel power gains, as imposed by Eq. () Thus, the corresponding
optimization problem to be addressed to derive an efficient and effective RIS elements’ phase
shifts’ adaptation is formulated as:

IN|

max Z |hn,u + hii ;Qhy, g (4.20a)
n=1
s.t. 0<w, <1,Vn €N, (4.20b)

> wn =1, (4.20¢)
n=1

where the reflection matrix € is calculated with backward induction as © = diag (ej 4").
Also, w = [wi,...,Wy,...,wy|| is the vector of the users’ assigned weight factors. The
optimization problem defined in Eq. ()—() comprises a non-negative linear objec-
tive function and constraints, which can be optimized straightforwardly to conclude to the
optimal weights w*.

The optimal weights’ w* derivation leads to a single and effective RIS elements’ reflection-
coefficient vector v* = [v1,...,Um,..., ], and eventually determines the effective RIS
elements’ phase shifts w* = [wi,...,Wm, ..., W]

4.5.3 Leader’s Energy Efficiency Optimization
Following the RIS elements’ phase-shift adaptation, the UAV playing the role of the leader,

derives the optimal bandwidth splitting ratio p* and its optimal transmission power Pf;
to the mBS, given the users’ uplink transmission power vector P = [Py,..., Py,..., Py,
towards maximizing its energy efficiency EFEy. The corresponding optimization problem,
solved by the leader, is formulated as follows:
ZINI RAC 4 RBH

n

n=1

EEy(u, Py) = 4.21
max v(p, Pr) Py (4.21a)
st. 0<pu<l, (4.21b)

Py < Ppaz (4.21c)

RE?E > R, in,¥n € N. (4.21d)

Having the ability to control the network parameters that pertain to both the access and
the backhaul network parts, the UAV pursues the maximization of the total achieved data
rates at the access and the backhaul network (Eq. ())7 while trying to minimize its
transmission power to the mBS. Eq. () refers to the feasible range of values of the
bandwidth splitting ratio parameter pu. Also, Eq. () guarantees that the UAV’s optimal
transmission power to the mBS does not exceed the UAV’s maximum power budget P;**,
while Eq. (@) reassures that the optimal bandwidth splitting ratio satisfies the users’
end-to-end achieved data rate QoS requirement R,,;pn.

The outcome of the optimization problem described in Eq. ()—() is the optimal
bandwidth splitting ratio p* and the UAV’s optimal transmission power Fj; to the mBS. To
establish the existence of an optimal solution (u*, Pf;) for the specific problem, we observe

that the numerator of EEy (1, Py)_consists of two terms, i.c., SV RAC and RBH. How-
ever, based on Eq. () and Eq. () and by calculating their derivatives with respect to
the bandwidth splitting ratio parameter p, it is concluded that the numerator of EEy (u, Py)
in Eq. () is not always a concave function on u, complicating twice the derivation of

an optimal solution for the two-variable optimization problem in Eq. (4.21a))-(4.21d) [116].
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To address this problem and provide a tractable solution, we decompose the optimization
problem presented in Eq. ()—() into an exhaustive search of the optimal value of
14 over its strategy space, and an optimization problem concerning the optimal value of Py .
The optimization problem in Eq. ( .213])—('&5) is solved with respect to Py over different
values of the parameter p and ultimately, the values of ;1 and Py that yield the maximum
energy efficiency, based on Eq. (), are selected to serve as the optimal solution (u*, Pf).
For all practical purposes, the partitioning of the bandwidth is typically performed into a
finite discrete region (i.e., resource blocks or slices of predefined sizes), and therefore the u
takes discrete values in a finite strategy space. Thus, for demonstration purposes, we can
consider some indicative discrete values of p, e.g., u = 0.05,0.1,0.15, ...,0.95, and determine
the corresponding optimal values of Py}, as follows.

Lemma 4.1. The energy efficiency function EEy in Eq. ) is strictly quasi-concave
with respect to Py.

Proof. As defined in [[117], a function f : R™ — R is strictly quasi-concave if its sublevel

set S, = {x|x € domf, f(x) > a} is strictly convex for every a, where x is the correspond-

ing vector of variables. Accordingly, the sublevel set S, defined for the EFEy function in

Eq. (1.21d) is:

9(Py)
Py

Se = {Py|Py € dom EEy, > a}, (4.22)
— YNl pac BH ; : - o
where g(Py) = >, 2} R;“ + Ry" is the sum data rate function, for which it holds that it is

strictly concave on Py, since the term Z‘nN:‘l RAC is independent of Py, and the term REH
is a concave function with respect to Py. As a result, when a < 0, then S, is obviously
convex on FPy. In the case when a > 0, then the sublevel set in Eq. () is rewritten as:

S, = {PU|PU EdomEEU,aPU—g(PU) SO} (423)

Given that the sum rate function g(Py) is strictly concave with respect to Py, it follows
that —g(Py) is strictly convex on Pr;. while the term aPy increases linearly with Py. As a
result, the sublevel set S, in Eq. (@) constitutes a strictly convex set. This completes the
proof that the FFEy (Py) function is quasi-concave. O

Lemma 4.2. The constraints in Eq. )-) form a compact, i.e., closed and

bounded, and convex set.

Proof. The constraint in Eqg. ) generally forms a compact set, while for the rest of the
constraints in Eq. ()—( d) we consider the following functions:

s =Py — Py

4.24
s?) = Rpin — RE?F vn e N. (4.24)

It can be easily proved that the functions sV and Sg)ﬁn € N are convex on Py. Hence,

their level sets, are defined generally as follows:
So = {x|x € domf, f(x) = 0}, (4.25)

considering any function f and any vector of variables x, are convex sets. This completes
the proof. O

Based on Lemmas @—@ and the preceding analysis, the optimization problem defined
in Eq. ()—() forms a quasi-concave program that belongs in the broader area
of concave fractional programming and, thus, admits an optimal solution P} [118]. The
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solution can be obtained by appropriately transforming the quasi-concave problem into a
series of concave problems via existing methods [117], and subsequently, by utilizing existing
concave/convex optimization tools [88]. Overall, an effective, efficient, and well-established
methodology is to employ Dinkelback’s algorithm [119, 120].

4.5.4 Followers’ Energy Efficiency Optimization

After the UAV reports back to the users the optimal bandwidth splitting ratio, the users’
decision-making process takes place. Specifically, each user aims to distributively maximize
its energy efficiency achieved at the access network part, by optimizing its uplink transmis-
sion power to the UAV. Hence, each user’s n personal utility function is expressed as:

RAC
where P_,, = [Py,..., Py1, Pay1,..., Pjw)] is the vector of uplink transmission powers of

all users except for user n. The interactions among the users are captured via a non-
cooperative game G = [N, {A, }vnen, { EE, }vnen], where N is the set of players, i.e., the
users, A, = [0, P7*%*] is each user’s strategy set, i.e., the set of feasible uplink transmission
power levels, as indicated by the user’s maximum power budget P/***, and EE, is each
user’s payoff function, i.e., its energy efficiency. The non-cooperative game G is treated
as a distributed utility maximization problem, in which each user n updates its uplink
transmission power P, selfishly, by having prior information about the rest of the users’
transmission powers P_, as broadcasted by the UAV, seeking to maximize its perceived
satisfaction, i.e., its energy efficiency. The corresponding optimization problem that is solved
by each user is formulated as:

RAC
max FEE,(P,,P_,)=—"—,Yne N (4.27a)
P, P,
s.it. P, < P Yn e N, (4.27D)
n—1
GnPn— Y GuPu > Pioyn=2,...,|N|, (4.27¢)
n’/=1
RAY > Rin,Vn € N. (4.27d)

Apart from the maximum power budget constraint that the user’s uplink transmission power
to the UAV should meet, as imposed by Eq. (4.27h), Eq. (M)—(é.Q? denote the extra
group of constraints that the users’ n strategy P, should satisfy. Eq. ( ) guarantees that
the SIC technique is successfully performed at the UAV’s receiver, according to the receiver’s
sensitivity /tolerance Py, while Eq. () ensures the user’s minimum acceptable data rate
QoS requirement Ry .

Let us denote as I',, the strategy space of each user, formed by the inclusion of the
extra set of constraints in Eq. ()—()7 ie., 'y = {(P,) satisfies Eq. (.27 )—(M)}
Then, each user’s n overall feasible strategy space is reformulated as A, = A, NT",,,Vn € N
and the non-cooperative game is restructured as G = [N, {A, }vnen, {EEn }vnen]-

Towards solving the updated non-cooperative game G, the widely used concept of Nash
equilibrium is adopted. The Nash equilibrium point is the users’ strategy vector P* =
[P1,..., Ppn,..., Py, from which no user has the incentive to deviate, given the strategies
of the rest of the users.

To further accommodate our discussion regarding the existence of at least one Nash
equilibrium point for the non-cooperative game G and, thus, the convergence of the users’
strategies to the Nash equilibrium, we adopt the theory of the n-person generalized concave
games [121].
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Theorem 4.1. (Existence of Nash Equilibrium) The non-cooperative game G is a
n-person generalized concave game and admits at least one Nash equilibrium point if the
following conditions hold [|121]:

1. the strategy sets Ay, ..., A|n| are non-empty, compact, convex subsets of finite dimen-
stonal Euclidean spaces,

2. all payoff functions EE,, ..., EE|N| are continuous on A = Ay X -+ X Ay,

3. every payoff EE, is a quasi-concave function of P, over A, if all the other strategies
are held fized.

Proof. The Theorem @ is proved by exploiting the content of Lemmas @—@ introduced
in Section , properly adapted to suit the energy efficiency function in Eq. () and
the constraints defined in Eq. ()—() Condition 1 of Theorem @ holds following
a similar procedure to Lemma 1.9, Condition 2 holds given that the energy efficiency
function is continuous on the users’ strategy space A. Last, condition 3 holds following the
analysis presented in Lemma Y.1|, verifying that the energy efficiency function in Eq. ()
is strictly quasi-concave. Therefore, the non-cooperative game G is a n-person generalized
concave game and at least one Nash equilibrium point exists. O

The convergence of the users’ strategies to the Nash equilibrium point is achieved by im-
plementing a Best Response Dynamics algorithm [122], as shown in Algorithm . At
each iteration of the Best Response Dynamics algorithm, the quasi-concave optimization
problem defined in Eq. ()—() for each user is equivalently transformed and treated
as a series of convex optimization problems via the Dinkelbach’s algorithm , following the
procedure described earlier in Section §.5.3.

4.5.5 Stackelberg Game-based Optimization Process

After the convergence of the users’ strategies, their optimal uplink transmission powers P*,

are fed back to the UAV to establish the next iteration of the Stackelberg game. In other

words, the optimization problem in Eq. (4.214)-(#.21d) and the non-cooperative game among

the users are iteratively solved and the output of the one acts as input to the other, complying

with the relationship between the leader and the followers. This iterative procedure results to

the Stackelbﬁequili brium (p*, Py, P*) that concludes the preceding mathematical analysis
5

in Sections §.5.3 and {.5.4.

The complete Stackelberg game-based optimization process and operation of the pro-
posed dynamic resource management framework are summarized in Algorithm @.1. Note
that the superscript () is used to dictate the value of each variable after the i-th iteration
of the leader’s and followers’ optimization stages, which are iteratively updated until con-
vergence is reached, whereas the superscript (j) is used to indicate the iterations required
for the nested non-cooperative game that is played among the users.

To calculate the computational complexity of the Stackelberg game-based optimization
process presented in Algorithm , the following algorithmic complexities should be first
considered alone. The complexity of the optimization problem in Eq. ()—() can be
regarded as O(M?®), where 1 < x < 4, by employing an interior-point algorithm intended
for linear programming [[123]. The sorting of the users according to their channel power gain
can be performed with complexity O(N?) via the well-known Quicksort algorithm [124],
while the search within the set S is of O(log(K)) complexity when using the Binary Search
algorithm [[124], where K denotes the number of bandwidth splitting ratio values tested
(i.e., K = 19). Concerning the Dinkelbach’s algorithm, it is known to have a super-linear
convergence rate [119, 120], while the asymptotic complexity of each convex optimization
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problem addressed at each iteration of the Dinkelbach’s algorithm is polynomial in the num-
ber of optimization variables [111, B2]. Hence, our resulting single-variable problems have
computational complexity equal to O(1). The remainder of the typical mathematical manip-
ulations are of O(1) complexity and are omitted, while we also assume that the distributed
non-cooperative game among the users is performed in parallel.

For representation purposes and following commonly used methodologies, let 19 and I%
denote the number of Dinkelbach’s algorithm’s iterations required to_solve the UAV’s and
each user’s n optimization problems in Eq. ()—(@) and Eq. ()—(), respec-
tively. Also, we indicate as I and J the total number of iterations required for the Stackelberg
and the nested non-cooperative game to converge, accordingly. Consequently, the overall
computational complexity of Algorithm @ is equal to O (M‘” +N?2+1-(K-1Y-1+log(K)
+J I3 - 1)) Indicative numerical results regarding the actual number of required Stackel-
berg game iterations, as well as the real execution time needed to converge to the Stackelberg
equilibrium, are presented in Section Y.7, below.

Algorithm 4.1 Stackelberg game-based optimization process.

1: Initialize network simulation topology, including users’, RIS’s, UAV’s, and mBS’s loca-
tions.

2: Initialize v, B, Mros, INLos, fes € au, p, ar, ds, W, No, P7 P Py, Royin.

3: Determine RIS elements’ phase-shift adaptation by solving Eq. ()-( and cal-
culate G,,,Vn € N.

4: Sort users in ascending order according to G,.

5: Initialize randomly Py € [0, Pj*®].

6: Set 1 = 0.

7: repeat

8 Seti=1+1.

9:  for p=0.05:0.05:0.95 do

10: Determine optimal uplink transmission power Fj; by solving Eq. ()—()
with respect to Py.

11: Add solution {(u, Pg), EE{} to S.

12:  end for

13:  Select {(p*, Py), EE}} from S, for which FE}; is the maximum in S.

14:  Set p*® = p* and P{}(i) = Pp.

15:  Initialize randomly P, € A,,,Vn € N.

16:  Set j =0.

17:  repeat

18: Set j =7 +1.

19: for n € N do 4

20: Determine optimal uplink transmission power Pf{m by solving Eq. ()—
(p27d).

21: end for

22 until |P;°[(j) — P:(j71)| <€, Vn € N, where e ~ 107°.
23 until |P;" — P}07Y| < ¢, where ¢ ~ 1075.

4.6 End-to-End Data Rate Optimization

In this section, we extend our proposed dynamic spectrum and power management frame-
work, analyzed in detail in Section {.5, to account for an alternative objective, namely the
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end-to-end data rate optimization. On the one hand, we aim to corroborate the reconfig-
urability and adaptability of the devised resource optimization framework, under different
optimization objectives, while revealing the benefits introduced by the proper manipulation
of the wireless propagation environment. On the other hand, we seek to macroscopically
identify and promote the significance of energy efficiency optimization.

Specifically, concerning the resource optimization framework design presented in Sec-
tion K.5, we subsequently introduce its counterpart towards maximizing the IAB network’s
end-to-end data rate. The joint optimization problem is formulated and solved in a dis-
tributed manner, following once again the principles of the Stackelberg games. Next, the
three-stage optimization procedure adopted and explained in Fig. is presented in a con-
cise, though comprehensive manner, emphasizing the main differences arising from the dif-
ferent optimization objectives.

By the methodology followed in Section @, the first stage of the dynamic resource man-
agement framework towards the end-to-end data rate optimization refers to the appropriate
RIS elements’ phase-shift adaptation by the UAV, which concludes with its increased re-
ceived signal strength. The RIS elements’ adaptation is performed following the proposed
intelligent and low-complexity approach described in Section . Then, the second stage
takes place and the UAV proceeds to the derivation of the optimal bandwidth splitting ratio
and its transmission power to the mBS, which maximize the sum users’ end-to-end data
rate, given the users’ uplink transmission powers. The corresponding optimization problem
solved by the UAV is written as:

|N|
max RE2E 4.28a
g R (4.280)
st. 0<pu<l, (4.28b)
Py < P, (4.28¢)
RE?E > R in,¥n €N, (4.284)

where the constraints in Eq. ()-() are in accordance with the ones introduced in
the energy efficiency optimization problem counterpart. The problem defined in Eq. ()—
() is, once again, solved with respect to Py under a range of values of the parameter
1, as discussed in Section . Thus, we derive the optimal solution (u*, Pf).

In the third stage, the users optimize in an autonomous and distributed manner their
uplink transmission powers to the UAV, such that their data rate in the access network part
is maximized. The optimization problem to be solved by each user is given by:

max RAY(P,,P_,),Yne N (4.29a)
s.t. P, <P ¥ne N, (4.29b)
n—1
ann_ZGn’Pn’Zptolyn:27-'~7‘N|a (429C)
n’=1
RA° > R,in,Vn € N. (4.294)

Once again, their in-between interactions are coordinated through a non-cooperative
game, according to which each user n updates its uplink transmission power (i.e., its strat-
egy) in a selfish way, given the other users’ strategies P_,. The outcome of the non-
cooperative game is the Nash equilibrium point of the users’ strategies, i.e., the vector
P* = [Py,...,P,,...,Pn|]. The analysis, based on which the existence of at least one
Nash equilibrium and the convergence at this point is ensured, follows the n-person concave
games due to the objective function’s strict concavity on P,,Vn € N and is analogous to the
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one incorporated in Section . The second and third optimization stages are iteratively
performed and updated between the UAV and the users to ultimately conclude the overall
system’s Stackelberg equilibrium point (u*, Py, P*), as illustrated in Fig. @

4.7 Performance Evaluation

In this section, we evaluate the performance and effectiveness of the proposed end-to-end
resource management framework, via modeling and simulation. First, the pure performance
of the distributed Stackelberg game, as well as its convergence behavior to the Stackelberg
equilibrium is demonstrated, targeting the energy efficiency of the considered TAB network.
Then, a comparative analysis between the two distinct optimization objectives, namely the
end-to-end energy efficiency optimization analyzed in Section and the end-to-end data
rate optimization approach summarized in Section {.4, is enclosed. Finally, our proposed re-
source management framework is compared against different baseline resource management
approaches in terms of both the RIS elements’ phase shifts adaptation and the dynamic
spectrum management solutions devised in this work. The results of this work are also
presented in [125].

The simulation setting used to generate the numerical results presented in the remainder
of this section is initialized as follows. Considering a three-dimensional coordinates system,
the three main network entities of the RIS-aided and UAV-assisted IAB network, i.e., the
RIS, the UAV, and the mBS, are located along the y = x line, and their distances from
the coordinates system’s origin are set to 100 m, 200 m, and 400 m, respectively. The UAV
hovers at 150 m above the ground, whereas the RIS, composed of | M| = 100 elements (unless
mentioned otherwise), is placed at a height of 1.5 m and near the users. We consider a NOMA
cluster of |N| = 4 users in total, placed with increasing distances from the RIS, denoted as
dy [m], dy + 10 [m], dq + 20 [m], di + 30 [m], respectively, where d; indicates the distance
of the first user from the RIS and is generally set as d; = 5 m unless otherwise stated.
The parameters that characterize the wireless propagation environment are configured as:
Y = 11.95, B = 0.14, n10s = 3 dB, nxros = 23 dB, f. = 2 GHz, ¢ = 3-10® m/s, ay = 2,

p =100, ar = 2.8, ds = % The remaining communications-related simulation parameters

are set as: W = 5 MHz, Ny = —174 dBm/Hz, P"*® = 24 dBm, PJ'** = 46 dBm,
P,p; = —114 dBm, R,,;, = 1 Mbps, unless otherwise explicitly stated. Finally, for statistical

purposes, the results have been averaged over 100 different channel model realizations.

4.7.1 Pure Evaluation of the Stackelberg Game-based Optimization
Process

In Fig. @, we study the performance of the overall Stackelberg game-based process to-
wards the TAB network’s energy efficiency optimization, while at the same time assessing
its convergence behavior concerning the number of iterations I and the real execution time
required to converge to the Stackelberg equilibrium point. Specifically, Fig. depicts
the sum of users’ uplink transmission powers as a function of the required iterations and
the real execution time in seconds. The different curves present an analysis over a different
number of RIS elements |M| = [100,200, 300], while the term "no RIS” refers to the case
where no RIS exists within the simulated network topology. The real execution time has
been calculated as the mean execution time of the four different RIS elements’ scenarios, as
presented above. On the one hand, the results reveal that after a small number of iterations
(e.g., I = 5 iterations or approximately 0.085 seconds in the case under consideration) the
proposed approach converges to the optimal solution. On the other hand, it is confirmed
that the use of RIS concludes to significantly lower power levels for the users, owing to the
increased channel power gains incurred by the proper adaptation of the RIS elements’ phase
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shifts. Given that the optimization objective targeted is the network’s energy efficiency, the
decreased sum users’ power levels lead apparently to the remarkable increase of the sum
users’ energy efficiency, as illustrated in Fig. @, The findings of Fig. demonstrate
that the use of RIS can provide almost 1.5 orders of magnitude higher sum users’ energy
efficiency, considering a number of |M| = 300 RIS elements, compared to the case where no
RIS exists in the network topology. Although the RIS is deployed in the access network part,
directly affecting the users’ power and energﬁiciency it results in the end-to-end system’s

optimized performance, as indicated in Fig. . Fig. M shows the pure UAV’s energy ef-
ficiency, which is calculated as the fraction of the UAV’s achieved data rate at the backhaul
to its consumed uplink transmission power. Apparently, the access network’s optimized
performance steers the end-to-end system’s Stackelberg equilibrium to more energy-efficient
points. Furthermore, the introduction of a RIS deployed at a higher point above the ground
and in LoS with the UAV, can further enhance the UAV’s performance and strengthen the
communications established at the backhaul network part.

Execution time [s] x10'° Execution time [s] x10° Execution time [s]
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Figure 4.3: Evaluation of the performance and the convergence behavior of the Stackelberg
game-based process towards the end-to-end energy efficiency optimization, under different
number of RIS elements.

4.7.2 Comparative Evaluation of Different Network Optimization
Objectives

To gain more insights regarding the significance of energy efficiency optimization objective in
the wireless network’s performance, we proceed to a comparative examination between the
two distinct optimization objectives of end-to-end energy efficiency and end-to-end data rate
maximization. In particular, in Fig. we scrutinize the network’s performance in terms of
the sum users’ transmission power levels and their achieved sum end-to-end data rates under
the two different optimization objectives/approaches, which are denoted as "EE-Opt” and
"DR-Opt”. Furthermore, a study over different values R,,;, = [0.5,1.5, 3] Mbps of the users’
minimum end-to-end data rate requirement accompanies our analysis, to further identify
and highlight the network’s enhanced performance under the energy efficiency optimization
approach, considering different user QoS requirements.

Apparently, when the "DR-Opt” optimization approach is treated, the users are forced
to transmit in the uplink using their maximum power budget regardless of their minimum
data rate QoS requirement R,,;,, as properly presented in Fig. . On the contrary, the
sum users’ transmission powers are approximately thirty times lower in the case of "EE-
Opt” compared to "DR-Opt”, while a slight increase is imposed as the minimum data rate
requirement increases. The sum users’ end-to-end data rates achieved by utilizing the sum
power levels of Fig. are accordingly shown in Fig. . It can be easily observed that
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the thirty-times increase in the users’ power levels results in almost only three orders higher
end-to-end data rates, verifying the significant gains provided by the "EE-Opt”, mainly in
terms of the resulting efficiency. Last, it should be noted that the small decrease in the sum
users’ end-to-end data rates, induced as the R,,;, requirement increases, is due to the need
for a higher bandwidth portion in the access network part that is shared among the users
which are interfering with each other, such that the remaining bandwidth part about the
backhaul network part decreases.
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Figure 4.4: Comparative evaluation between the two distinct end-to-end energy efficiency
and data rate optimization approaches, under different users’ minimum end-to-end data rate
requirements.
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Figure 4.5: Comparative evaluation of the proposed dynamically allocated spectrum solution
between the access and backhaul network parts, against different fixed bandwidth splitting
approaches.

4.7.3 Evaluation of the Dynamic Spectrum Management

Subsequently, we aim to investigate the effectiveness and efficiency of the proposed end-
to-end resource management framework concerning the dynamically allocated spectrum in
the access and backhaul network parts, under our primarily targeted energy efficiency opti-
mization objective. Towards this direction, our dynamic spectrum management solution is
compared against other heuristic mechanisms that assume a fixed bandwidth partitioning
between the two network parts (i.e., access and backhaul). For demonstration purposes,
three different fixed bandwidth splitting schemes are considered with bandwidth splitting
ratio parameter values equal to u = [0.25,0.5,0.75]. The outcome of this comparison is
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presented in Fig. @, where the term "Dynamic” refers to our proposed dynamically allo-
cated spectrum procedure. The numerical results in Fig. have been specifically averaged
over 300 different IAB network topologies, considering different locations of the mBS, which
range from 400 m to 700 m far from the origin of the three-dimensional coordinates system,
to account for the potential different needs in terms of bandwidth splitting among the ac-
cess and backhaul network parts. Evidently, the proposed dynamic spectrum management
solution results in remarkably lower sum users’ power levels compared to any of the fixed
bandwidth splitting schemes, as demonstrated in Fig. . Moreover, a small differentiation
occurs in the achieved sum users’ end-to-end data rates under the different spectrum man-
agement approaches (Fig. g.51). Nevertheless, the dominance of the dynamically allocated
spectrum is identified, when considering the sum users’ energy energy efficiency achieved,
as presented in Fig. .

4.7.4 FEvaluation of the Proposed RIS Elements’ Phase-Shift Adap-
tation

Our evaluation analysis is complemented with an extensive study pertinent to the perfor-
mance gain provided by the introduction of the RIS within the network topology, as well as
its proper configuration and phase-shift adaptation via our proposed method, as described
in Section . To this end, we compare our proposed RIS elements’ phase-shift adaptation
method against a baseline approach, in which a random phase-shift configuration is selected
for the RIS, referred to as "Random” in the following. In Fig. , appropriate results
corresponding to the two different phase-shift configuration schemes, i.e., the "Proposed”
one and the "Random” one, are extracted considering a different number of RIS elements
| M| = [100,200, 300] and different distances of the users’ from the RIS. The different users’
distance scenarios from the RIS are indicated via the first user’s distance d; [m] from the RIS
along the x-axis. Also, the general case where no RIS exists within the network simulated
topology is included as a reference scenario. In particular, in Fig. , the sum of users’
power levels is depicted as a function of the different phase-shift configuration schemes and
the different users’ distances. As the number of RIS elements increases, the sum users’ up-
link transmission powers decrease, resulting correspondingly in their increased sum achieved
energy efficiency, as indicated by Fig. f.6h.

x1073 o RIS | x10'°
§-4 [ 100 RIS el. - Random =
100 RIS el. - Proposed ~
= 200 RIS el. - Random £ 10 | [EEE 100 RIS el. - Random
5 ) 1100 RIS el. - Proposed
o3 200 RIS el. - Proposed Qo
g 221300 RIS el. - Random o =§gg 2:2 z: : E:J":;Zd
Q B 50 RIS o.- Propose w =300 RIS e. - Random
K% 2 X7 300 RIS el. - Proposed
—_ —_ 5
o) o)
%) 7]
=F 5
€ IS
@ @
0 0
25 5 25 5
User's 1 distance d1 [m] User's 1 distance d1 [m]
(a) (b)

Figure 4.6: Comparative evaluation of the proposed RIS elements’ phase-shift adaptation
method against a random phase-shift configuration approach, under different numbers of
RIS elements and distances of the users from the RIS.
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Chapter 5

Resource Allocation and
Incentive Mechanism Design in
Multi-tier Computing Networks

5.1 General Setting

To facilitate the computationally and battery-constrained user devices to meet their ap-
plications’ QoS requirements, the concept of computation offloading of resource-intensive
tasks has become extremely popular. Especially, among the different computing capabilities
and options existing within the computing continuum, the Multi-Access Edge Computing
(MEC), often implemented within the Radio Access Network (RAN), has revolutionized
the successful completion of low-latency applications. Nevertheless, driven by their appeal-
ing properties, the overexploitation of the edge computing networks will gradually lead to
their performance degradation. To alleviate this issue and ameliorate the overall system’s
resource utilization, a heterogeneous multi-layer computing architecture should be pursued,
where different computing entities of various capabilities across the network cooperate. In-
deed, the diversity of the offloaded tasks in terms of their intensity, as well as the hetero-
geneity of the corresponding user applications’ performance requirements regarding their
delay (in)sensitivity and power consumption, create a solid ground for the proper utilization
of the different computing options across the network. Nevertheless, despite the potential
ability of the delay-tolerant tasks to be processed in the fog (or even the cloud) without
degrading the QoS, edge computing’s appealing features regarding its proximity to the users
along with the users’ selfish behavior, may prove to impede the realization of the envisioned
heterogeneous multi-layer computing paradigm.

In this chapter, we aim to exactly address this challenge under a two-layer computing
environment, consisting of an edge service layer and a fog service layer that are distinguished
from an architectural point of view concerning the location where their computation power
is placed (see Chapter [ and Section [l.2). First, an incentive mechanism is designed and
proposed based on multi-dimensional Contract Theory (CT). The edge server seeks to mo-
tivate its offloading users to allow part of their offloaded tasks to be further forwarded and
processed at the fog, based on their distinct and heterogeneous applications’ characteristics,
as a means of improving the resource utilization efficiency across the network and increasing
its overall service capacity, especially under the presence of delay-tolerant services. Accord-
ingly, we utilize the outcome of the economic interplay between the users-edge-fog layers to
tackle the challenging problem of a multi-layer computing environment’s resource orchestra-
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tion. Given the percentage of the initially ofloaded tasks to the edge that are allowed to be
further forwarded to the fog, the joint computation task offloading and uplink transmission
power allocation problem between the users and the edge is addressed, considering the users’
transmissions’ multiplexing via the NOMA technique. Respecting the need for decentralized
resource management approaches, the joint radio and computation task offloading problem
is formulated as a Stackelberg game and solved in a distributed manner by the network
entities.

5.2 Related Work

Several works exist in the literature, dealing with computation task offloading and resource
allocation problems in multi-layer computing environments, e.g., [126, 127, 128, 129, 130].
In [126], the users’ full offloading of their computation tasks to a primary fog server is
assumed and the problem of invoking the assistance of other fog servers or the cloud is
studied to complete the users’ tasks within their time constraint. In [127], the multi-user
decision problem of their computation tasks’ execution either locally, at the fog, or the
cloud is formulated and solved as a potential game, while other works consider similar
offloading decision problems to multiple computing layers along with computing resource
allocation [128], joint computing resource, uplink transmission power and radio resource
allocation [[129], or servers’ service caching decision [[130] problems. On the one hand, none
of the existing works accounts for the three-level splitting (i.e., local, edge, and fog layers)
of the users’ computation tasks, while overlooking the economic and market perspective of
the computation offloading as a service.

In this work, though the users are provided with a transparent computing service -
meaning that the multiple service layers are viewed as a contiguous computing network - they
can still smartly evaluate the emerging tradeoffs between delay tolerance and task intensity
and size, which are directly affected by the available computing options. Shifting the selfish
users’ preference to upper computing layers according to their delay-tolerance levels calls for
the creation and provisioning of appropriate incentives. In this context, a well-established
method to deal with the problem of incentives comes from the field of labor economics and
Contract Theory [41]. Among the wide variety of applications of Contract Theory in wireless
communications and networking (e.g., cognitive radio networks [75], Device-to-Device (D2D)
communications [[131)], crowdsourcing [[132], resource allocation like Chpater E of this thesis),
some effort has been made in the direction of computation offloading. In [133], the problem
of incentivization of potential temporary edge nodes from an edge computing operator is
examined under an MEC paradigm. Similar problems are considered in [134, 135] under
the concept of vehicular edge/fog computing offered by vehicles to other traveling vehicles
or roadside users. Different from the concept of computation offloading, but relevant to the
incentivization of delay-tolerant users is the work in [136]. In this work, the users capitalize
on their delay tolerance and cost sensitivity, and forward their traffic through the available
Delay-Tolerant Networks (DTNs) or WiFi networks, in return for reduced service cost.

Focusing on the practical application of contract theory models, most of the existing
works in the literature, including the aforementioned ones in [[75, 131, 132, 133, [134, 135, 136],
rely on one-dimensional user types that typically capture each user’s level of willingness
or ability to participate in the contract. Nevertheless, such an approach appears to be
rather restrictive, since in most cases there is more than one distinguishing feature for each
user that should steer the contract modeling, especially when these features are conflicting.
Recently, the problem of multi-dimensional contract theory in terms of the number of user
types that characterize each user has been investigated in [137, 138, 139]. In [137], the
interplay between an advertiser and the users is modeled under a contract, in which different
user types are devised to account for the users’ enjoyment, disutility, and ad sensitivity,
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respectively. In [13§], the contractual agreement between a federated learning model owner
and different UAVs that offer their computation capabilities is examined, in which each UAV
is jointly distinguished based on its sensing, computation, and transmission costs. In [139],
the problem of optimal wireless data plans offered by an MNO to its subscribing users is
studied, by incorporating the users’ satisfaction and network substitutability as two distinct
user types in the model.

Concerning the computation offloading under single-layer computing environments, a
wide variety of works exist in the literature. Indicative ones in [[140, B9], treat unilaterally
the problem of computation offloading from different perspectives, accounting for multi-
server setups [140] or devising usage-based pricing policies [89]. Other attempts, e.g., [141,
142, 143], focus on the challenging joint communication and computing resource allocation
under NOMA-enabled computing systems, by mainly proposing game-theoretic approaches
to obtain a solution in a tractable manner and within polynomial time [144]. In [141], the
authors aim to minimize the users’ sum delay by optimizing their offloading strategies and
uplink transmission powers to the edge server. Optimizing a similar set of variables, the
minimization of the total energy is pursued in [142], while the concurrent minimization of
the users’ energy consumption and latency is achieved in [143], via a Stackelberg game.
However, all aforementioned works in [140, 89, 141, 142, 143], consider this single layer as a
practically infinite energy and resource computing layer compared to the users’ constrained
devices, whereas our approach removes this limitation, by taking the edge service layer’s
energy efficiency into account.

5.3 Contributions & Outline

It becomes apparent that although several efforts have been devoted to the joint task of-
floading and power control problem that pertain to different multi-layer computing settings,
the overwhelming majority of them are founded on the effective and efficient execution of
delay-sensitive tasks. In our work, in contrast to the rest of the research works, we aim
to, first, study the problem of collaborative edge-fog computing from a market perspective
and leverage the economic interplay between the involved parties to tackle the challenging
two-layer computing environment’s resource orchestration. Under this objective, our goal is
to better utilize the available computing resources in such a heterogeneous and multi-layer
computing setting, increasing in this way its computing service capacity, while minimiz-
ing the end-to-end energy overhead. Specifically, the key contributions of this work are
summarized as follows:

1. A system model of a two-layer edge-fog computing environment is introduced, ac-
counting for both the computing models of the users, the edge and fog servers, and
the wireless users-to-edge and edge-to-fog communication models (Section p.4).

2. An incentive mechanism is designed between the edge server and the users following
the principles of multi-dimensional contract theory. Based on the heterogeneity of the
users’ applications and, hence, their multi-dimensional private information, the edge
server derives a set of contract bundles, comprising the required efforts from the users
and their offered rewards. Each user’s effort represents the percentage of the initially
offloaded task to the edge server that can be further transmitted and processed at the
fog (Section @)

3. A joint computation task offloading and uplink transmission power control problem
is designed between the edge server and the users in the form of a Stackelberg game.
The edge server, i.e., the leader, determines the users’ optimal amounts of tasks to
be offloaded to the edge, being aware of the percentage of each user’s task that will
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be processed at the fog. Subsequently, the users, i.e., the followers, being multiplexed
via power-domain NOMA, derive their optimal uplink transmission powers to the
edge. The edge server seeks to maximize its perceived satisfaction minus the end-to-
end energy overhead from the users to the fog, while the users pursue their personal
energy efficiency maximization under a non-cooperative game. The overall resource
allocation procedure is iteratively executed until the Stackelberg equilibrium is reached
(Section @)

4. Based on the above theoretical foundations, we study the inherent operational char-
acteristics of both the incentive mechanism and the resource allocation procedure,
via modeling and simulation. Moreover, we prove the performance efficiency of the
proposed incomplete information contract by comparison with the benchmark com-
plete information case, while demonstrating, at the same time, the superiority of the
proposed _resource allocation approach, against different baseline offloading strategies
(Section @)

5.4 System Model

A two-layer computing environment is considered, consisting of a set of users N" = {1,..., N},
an edge server , and a fog server . We assume that the edge server can be mobile, with con-
sequently some limitation on its available energy, and, hence, can move near the users. On
the other hand, the fog server lies between the edge and the cloud/core network, serving -
among others - the purpose of computation alleviation/relaxation of the edge. It should be
noted that the problem of the edge server placement, though interesting and challenging, is
considered beyond the scope of this work, while the extension to the multi-edge server case
is part of our future research activities. The focus of the current work is primarily placed
on the interplay between the various computing layers (users-edge-fog) and their joint and
collaborative exploitation. A high-level overview of the general users-edge-fog computin
architecture, aligned with the system model considered in this work, is presented in Fig.
Fig. EI highlights the architectural differentiation between the edge and fog computing lay-
ers, concerning the location where their intelligence and computation power is placed within
the overall network [[14, 145, 146, 147].

In this system, each user n has a computing application A,,, which can range from a
typical smart city, transportation [148], healthcare, industry, and agriculture computing
application (e.g., [[149, [150]), as illustrated in Fig. @ Each user’s computing application’s
A,, specific characteristics are defined as A,, = (D,,, ¢n, Tn, Frn), where D,, [Bytes| denotes
the application’s total input bytes, ¢,, [CPU cycles/Byte] indicates the application’s intensity
and T, [s] is the end-to-end completion time requirement, which implicitly reveals the user’s
level of delay tolerance. Last, E,, [J] is the user device’s energy constraint. Accordingly, the
term ¢, D,, [CPU cycles] denotes the number of CPU cycles required for the application’s
execution, which is referred to as "task” in the following and can represent a number of
images, videos, text, voice, or maps, depending on the user’s computing application’s nature.
In this work, we pursue a realistic scenario, under which the user application’s characteristics
take values from discrete sets, such that D, € D, ¢, € &, T,, € T and E,, € £, where
D,d,T,E are the corresponding discrete sets. Also, we assume that a task ¢, D, can be
arbitrarily partitioned into subsets of any size, which can be executed at either the user
device, edge server, or fog server.

Owing to the edge server’s appealing attributes, including its proximity to the users, we
assume that each user n chooses to communicate with the edge server and offload part of
its total task ¢, D, for remote computation. We denote as ¢, d,, [CPU cycles] the part of
the task that is actually offloaded by the user to the edge, where d,, € [0,D,] [Bytes] is
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the user’s n offloading bytes. Based on the application’s A,, characteristics, a percentage
x, € [0,1] of the initially offloaded task ¢,d, by the user n to the edge, is allowed to
be further transmitted and processed at the fog. The value of the percentage x,, is derived
from the contractual agreement between the edge server and the user n, which is analytically
presented later in Section . As a result, considering a user n, a total amount of x,d,
[Bytes] is wirelessly transmitted from the edge to the fog, and z,¢,d, [CPU cycles] are
computed at the fog server, while the remaining (1 — x,,)¢$,d,, are ultimately processed at
the edge. Finally, it is noted that D,, — d,, bytes are reserved for local computation at the
user’s device.

Fog Computing
Layer

Edge Computing
Layer

%9

User Device Layer

Figure 5.1: High-level overview of the two-layer computing environment’s architecture.

5.4.1 Wireless Communication Model

Focusing on the communication model, we assume that the two-layer wireless network oper-
ates in out-of-band mode, meaning that the transmissions in the wireless access and backhaul
network parts (e.g., user-to-edge and edge-to-fog) are performed using different frequency
bands. We denote as W, [Hz| the bandwidth of the wireless access and Wy [Hz] the band-
width of the wireless backhaul that facilitates the transmission from the edge to the fog. The
users’ transmissions in the wireless access are multiplexed using the combination of power-
domain NOMA and SIC techniques, while no interference is sensed by the edge server at
the wireless backhaul network part.

In detail, regarding the wireless access of the users to the edge server, we denote by G,
the channel gain of a user n, which is defined as G, = pd, ¢, where p [dB] is the path loss
at the reference distance of 1m, d,, . [m] is the Euclidean distance between the user n and
the edge server and a, is the path loss exponent. Without loss of generality, we assume that
the users’ channel gains are ordered in ascending manner, i.e., G; < --- < G, -+ < Gy,
such that the decoding starts from the higher channel gain user when the SIC technique
takes place at the receiver of the edge server. Hence, following the combination of NOMA
and SIC, the user’s n achieved data rate in the uplink direction to the edge server is:

anzl Gn’pn/ + Iy

] [W] indicates the user’s n uplink transmission power that is constrained

R, = W, log, (1 SR Gnpn ) [bps], (5.1)

max
n

where p,, € [0,p
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by a maximum transmission power level p*®*, and Iy [dBm/Hz] is the power spectral density
of zero-mean Additive White Gaussian Noise (AWGN). As a result, considering that a user
n transmits d,, bytes to the edge server, we can define the transmission time and energy

overheads that experiences as follows:
1. User’s n offloading time overhead:

g, (5.2)

n

Tgff —

2. User’s n offloading energy overhead:

o dnpn

n

Regarding the wireless backhaul transmission from the edge to the fog, we define as
G, = pd;‘;f the channel gain between the edge and fog servers, where d. ; [m] is the
Euclidean distance between the two servers and ay is the corresponding path loss exponent.
Denoting as p. [W] the uplink transmission power of the edge server to the fog, the edge
server’s achieved data rate is expressed as:

Ge €
R. = Wy log, (1 + Ip ) [bps]. (5.4)
0

Accordingly, we define the transmission time and energy overheads at the backhaul, experi-
enced by the edge server, considering a single user n:

1. Edge server’s offloading time overhead for user’s n task:

Ten,off _ Tndy

€

[s]. (5.5)
2. Edge server’s offloading energy overhead for user’s n task:

dnp
proff — TnlnPer p 5.6
€ Re [ ] ( )

5.4.2 Computing Model

The two-layer edge-fog computing setting under consideration provides, apparently, three
levels of different computing capabilities to its serving users. Analyzing these options from a
bottom-up perspective, we denote as F,, [CPU cycles/s| the user n device’s inherent (local)
computing capability, and o,, its processor’s chip energy coefficient [151)]. Considering that
the user n executes locally a task of size ¢,,(D,, —d,,) CPU cycles, the user’s n_corresponding
computation/execution time and energy overheads are defined as follows [[152, [153]:

1. User’s n execution time overhead:

D, —d
qeaee _ fnl e n) (g (5.7)
2. User’s n execution energy overhead:
B¢ = g, ¢ (Dy, — dy) F2[J). (5.8)
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Adopting similar modeling for the subsequent computing layer, we indicate as F, [CPU
cycles/s| the edge server’s computing capability, which is assumed to be higher than each
user’s n, but finite and more limited compared to the fog. Also, let 0. denote its processor’s
chip energy coefficient. Considering that the edge servers’ resources are sufficient and can
facilitate the parallel computation of the users’ tasks [154, 155], the edge server’s incurred
time and energy consumption overheads for each user n are:

1. Edge server’s execution time overhead for user’s n task:

gyesee — L= 2n)dnthn xgj%d” 5] (5.9)

2. Edge server’s execution energy overhead for user’s n task:

Eg,emec — Ue(l _ xn)¢nane2[J] (510)

As far as the fog computing layer is concerned, in this work, we assume that the processing
capabilities of the fog server significantly excel both the edge server and the user devices, and
hence, without loss of generality and for simplicity in the presentation, we assume that the
fog induces practically zero time and energy costs compared to the other two lower computing
layers. However, this analysis is still valid and can be easily extended to additionally account
for these overheads at the fog computing layer.

5.4.3 Overall Framework

In this work, we aim to promote the utilization of the end-to-end users-edge-fog computing
paradigm, under the case that the users’ tasks are characterized by some form of delay
tolerance. Considering that the users typically exhibit selfish and greedy behavior about
their perceived satisfaction from the remote computation of their tasks, we first employ an
incentive mechanism that targets to shift their preference from the prevailing edge server
to the fog server. To this end, a multi-dimensional contract is designed by the edge server,
which based on the edge server’s statistical knowledge of the potential user applications’ het-
erogeneous features, concludes to a set of optimal contract bundles w* = {x* ,r*} intended
for the users. The term x* indicates the vector of the users’ required efforts, which are
mapped to the percentage of each user’s task ¢,,d, that is further offloaded to the fog, while
the term r* represents the vector of the corresponding rewards, which can be considered
as a form of discount to the users’ received computing service from the edge server. The
exact definition of these parameters is provided later in Section . Based on its private
information, i.e., user application characteristics, each user autonomously selects the con-
tract bundle w} = {x}, 7} that best fits its type, revealing implicitly in this way its private
information to the edge server.

Being aware of the percentage of task z that is allowed by each user n to be transmit-
ted to the fog, the edge server can calculate the end-to-end system’s total energy and time
overhead from the users to the fog, as presented in Eq. (@)—(E) and Eq. (@)—(E) Tar-
geting to maximize its perceived satisfaction minus the end-to-end computing environment’s
energy overhead, the edge server calculates each user’s n optimal amount of offloaded task
¢nd}, having prior knowledge of the users’ uplink transmission powers to the edge. The
edge server’s decision is fed back to the users, who accordingly determine their optimal
uplink transmission power levels p¥,¥n € N in a distributed manner, by participating in
a non-cooperative game among themselves. The optimization procedures of both the edge
server and the users are iteratively updated, until convergence of this joint resource alloca-
tion is achieved, resulting in a Stackelberg game. A high-level overview of the individual
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steps of the proposed incentive mechanism and resource allocation framework is presented
in Fig. , revealing also the interactions that take place between the edge server and the
users at each step.

Start

;

Edge: Design optimal contract bundles {x;,, 7}, Vn

;

Each user: Select contract bundle
{xy, 17} that best fits the user type

;

Edge (Leader): Initialize randomly users’ uplink

transmission powers p,, € [0, pp***],Vn

le

-

Edge (Leader): Determine optimal users’
offloading tasks ¢, by, Vn at the edge

|

Each user (Follower): Determine
optimal uplink transmission power p;,

}

Yes No

17 Converged? >———

End

Figure 5.2: High-level overview of the overall incentive mechanism and resource allocation
framework.

5.5 Multi-Dimensional Contract-based Incentive Mech-
anism Design

This section is devoted to the introduction and analytic description of the devised incen-
tive mechanism, based on multi-dimensional contract theory. First, we define the multi-
dimensional private information and user types that distinguish the users and reflect their
heterogeneity, along with the designed contract bundles and utilities. Then, we study the
problem of contract formulation and, gradually, we derive the optimal contracts.

5.5.1 User Types, Contract Bundles & Utilities

Following each user application’s A,, heterogeneous characteristics, the users can be catego-
rized into different user types that capture their ability and willingness to allow part of their
initially offloaded tasks to the edge server to be forwarded to the fog. Assuming that the dis-
crete sets D, ®, T comprise K, L, M values, respectively, such that D = {Dy : 1 < k < K},
O ={9 :1<I<Lyand T ={Tn : 1 < m < M}, there exist K x L x M combi-
nations of user types in the system, which derive from the Cartesian product B x I' x A
of the sets B,I', A analyzed in the following. Specifically, we categorize the users into
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aset B={8:1 <k < K} of K application size evaluation types, which are deter-
mined by the rule 8y = Dp/maxi<p<g{Dr}, aset T = {y : 1 <1 < L} of L ap-
plication intensity evaluation types that are derived as v = ®;/maxi<;<p{®;}, as well
as aset A = {0, : 1 < m < M} of M delay sensitivity evaluation types, such that
Om = (’Tm/ maxlSmSM{l/Tm})_l. For all user types it holds that 8, i, ., € (0, 1], Vk, I, m.
Without loss of generality, we assume that the user types are sorted in ascending order
under all dimensions, ie., ;1 < -+ < B < - < B, 1 < - <y < -0 < g,
0 < -+ < 6y < --- < Opp. Also, each combination of the K x L x M user types is
characterized by a joint probability mass function Pr(Bk,¥i,0m), Vk,l,m. At this point,
it should be reminded that the user types constitute the users’ private information that
is unknown to the edge server, whereas the edge server is only aware of the different user
types’ joint probability mass function, and should appropriately design the contract bundles
relying on this partially complete (or incomplete) information.

As mentioned earlier, the edge server designs a set of optimal contract bundles w* =
{x*,r*} of the users’ required efforts and offered rewards, respectively, based on its proba-
bilistic knowledge of the potential users’ types. Specifically, we denote as 27, ,, € [0,1] the
effort of user n of type (B, v,0m), and rj; € RT its corresponding reward. Apparently,
different users from the set A can be of the same type (Bk, Vi, 0m), acquire the same con-
tract bundle and, hence, experience the same utility. Since our analysis is focused on the
differentiation of the contract bundles concerning the different user types, in the following,
we drop the superscript n that points to a specific user for notation simplicity. In addition,
we refer to the user type (Bk, 71, 0m) as (k,1,m)-type user, whose corresponding contract
bundle is WEk,1,m = {Ik,l,m7rk,l,m}-

Given a (k,l,m)-type user’s effort xy ;. and its offered reward 74, we define its
perceived satisfaction from its participation in the contract by the following utility:

Uk, t,m (Wi ,i,m) = Tk,1m — (1.5 4 0m — Brv)a(Tk,1,m), (5.11)

where ¢(xg;m) is an increasing function of x;,,, which together with the term (1.5 +
Om — Bryi) implies its evaluation of provided effort. Specifically, the term Srvig(xkim)
indicates that the user’s benefit from exerting its effort to the edge server increases as its
Bk, types increase since a higher amount of task can be executed at the combination of
edge-fog. On the contrary, the user’s benefit decreases as its delay sensitivity evaluation §,,
increases, noted by the term —d,,¢(zx ,m). The physical meaning and interpretation of the
overall utility function is that the (k, I, m)-type user’s satisfaction derives from its offered
reward minus its provided effort, which, in turn, increases proportionally to its application’s
input bytes and intensity and is inversely proportional to its delay sensitivity. For ease of
reference, we define as Qg 1.m(Tkim) = —(1.5 + 0 — BiV)q¢(Tk,1,m), and we rewrite the
(k,1, m)-user type’s utility as Uk 1.m (Wk,1,m) = Qk.1,m(Tk,i.m) + Tk,i,m. Taking into account
0Qk,1,m <0,

0Tk 1,m
and, thus, Qg 1,m(zk,,m) is a decreasing function on xy ;. For demonstration purposes and
without loss of generality, in the following, we consider q(zg,m) = x%l,m.

Concerning the utility that the edge server attains from a single (k,1,m)-type user’s
participation in the contract, this is modeled as Vi jm(Wk 1,m) = h(Tk,1,m) — ETk,1,m, Where
h(zg,m) is an increasing and concave function on x ;.,, accounting for the edge server’s
evaluation of received effort, while £ > 1 is the edge server’s cost of offered rewards. Obvi-
ously, the edge server’s utility increases as the user’s effort increases and decreases propor-
tionally to its offered reward. As a result, the overall edge server’s utility from the different
user types’ participation can be expressed as follows:

that Bk, i, 0m € (0,1] and that q(xy ;) is an increasing function, it holds that

K L M

V(W) = Z Z Z Prk,l,m (h(zk,l,m) - €rk,l,m) , (512)

k=11=1 m=1
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where W = {wgm,1 <k < K,1 <1 <L1<m < M} is the set that contains the
ensemble of contract bundles. Motivated by [[137], in the following we consider the function

1

hxgim) = ﬁmk??n to capture the sharp increase of the edge server’s marginal rate of

satisfaction with the user’s effort increase, by intelligently controlling ¢ € [0,1] and A € (0,1).

5.5.2 Contract Formulation

Considering the realistic scenario of the incompleteness of information from the edge server’s
perspective, the designed contract bundles should bear specific properties to promote the
users’ participation in the contract. In particular, the edge server should ensure that each
user experiences a non-negative utility, while its utility is, also, maximized when selecting
the contract bundle designated for its specific type. These two conditions are summarized
under the notions of Individual Rationality (IR) and Incentive Compatibility (IC), which
are formally defined below.

Definition 5.1. (Individual Rationality (IR)) A contract bundle wy i m = {Tk,1.m, "k,1,m }
satisfies the individual rationality condition if each (k,l, m)-type user for all 1 <k < K,;1 <
I < L,1<m < M receives a non-negative utility, i.e.,

Uk ,1,m(Wk,1,m) > 0,VEk, I, m. (5.13)

Definition 5.2. (Incentive Compatibility (IC)) FEach (k,1,m)-type user for all 1 <
E<K1<I<L1<m< M receives the maximum utility, when selecting the contract
bundle Wi 1.m = {Tk1,m, Tk1,m} that is intended for its own type, i.e.,

Uk,lym(wk,hm) Z Uk,l,m(wk’,l’,m/)7Vk; l, m, k’ 7£ k/,l 7é l,, m 7é m'. (514)

Hence, the multi-dimensional contract problem to be solved by the edge server can be
formally written as:

max V(W) (5.15a)
s.t. (B03), (e13). (5.15Db)

The resulting optimization problem in Eq. () includes KLM IR and KLM(KLM—1) IC
constraints, which fully interconnect the contract bundle design between the different user
types. To derive a tractable solution, an appropriate procedure should take place to reduce
its constraints, which primarily differs from the standard method used in the one-dimensional
contract problems (e.g., [[75, L31. 132, 133, 134, 135, 136]) and is comprehensively presented

in Section and Section .

5.5.3 Contract Feasibility

In this section, we study the necessary conditions that must be satisfied to render the
formulated contract problem feasible. To facilitate this analysis, we first transform the
three-dimensional contract problem to a single-dimensional one, by introducing a single
7virtual” user type that bears all three-dimensional private information of the users. To this
end, we resort to some useful properties of the theory of economics.

We consider a (k, [, m)-type user’s indifference curve in the contract plane {zx ;m, 7k,1,m }
between its effort and reward, which under a fixed utility value U(w) = U satisfies:

U=rrim— (154 0m — Ben)a(Tk 1m)

(5.16)
= Qktm(Thm) + Thilm,
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which actually yields all combinations of {x,m,7k,1,m} that result in the same utility to
the users.

The slope s of the indifference curve is calculated by taking the partial derivatives of
both sides in Eq. () as:

0Qrim  Olkim

Skim\Tkim) = — -
ooty (T t,m) OTkim  OTkim (5.17)
= (1.5 +0m — Ben)d (@r1,m),

which is referred to as "marginal rate of substitution”, implying the rate at which a user
is expected to abandon a {xk m,7k,m} combination in exchange for another while main-
taining the same utility value. Apparently, Eq. () depends on the three-dimensional
(k,1, m)-type in a combined manner, and the effort zj ; ,,,. By scrutinizing the definition of
parameter s, we can easily deduce that the lower the value of s, the lower the delay sensi-
tivity evaluation type ¢ and the higher the application size and intensity evaluation types g
and +, respectively. This leads to a higher user’s willingness to participate in the contract.
On the contrary, the opposite holds under a higher value of s, which increases the user’s
unwillingness to participate. Hence, as the value of the marginal rate of substitution s in
Eq. (p.17) increases, the user’s overall willingness decreases. Therefore, we may additionally
refer to s as the "unwillingness-to-participate” parameter.

Without loss of generality, we sort the K x L x M user types in ascending order with
respect to the unwillingness-to-participate parameter s as follows:

Zy(x), .. Zi(@), ..., Zrera (@), (5.18)

where Z;(z) £ (Bi,7i,6:),1 < i < KLM denotes a user type under the new formulation,
which is actually the virtual user type we are seeking. Thus, considering an effort = and
under the ordering in Eq. (), it holds that:

s(Zr,x) < - <s(Ziyx) < - < s(Zrpy,x). (5.19)

Tt is interesting that although the value of s(Z;, z) changes for different efforts x, the virtual
user type ordering in Eq. (p.1§) remains unchanged, which we elaborate on Lemma
below.

Lemma 5.1. The new user type ordering in Eq. ) is independent of the effort x, i.e.,
Zl(l‘) = Zi(.’I,‘/),.T 7é .’I,‘I, 1 S ) S KLM.

Proof. The proof of this lemma stems intuitively from the fact that the unwillingness-to-
participate parameter (3,7, d, ) has a separable structure concerning the three-dimensional
types (8,7, 0) and the effort z, as can be easily observed by its definition in Eq. () O

In the remainder of this work, we directly use Z; to refer to the virtual user type,
referred to as unwillingness-to-participate user type. Also, the contract bundle intended for
Z; is denoted as w; = {x;,r;}, while this notation applies to all other considered variables.
Consequently, the utility function of a user type Z; is written as U; = Q(Z;, x;) + r;, where
Q(Z;,x;) is the equivalent of Q.1 m (X 1.m)-

Given the outcome of Lemmam@k, we conclude that whatever the value of z is, the
minimum unwillingness-to-participate user type is Z1 = (Bk,7L,01), whose application
size and intensity is the highest, while its delay sensitivity is the lowest. Conversely, the
maximum unwillingness-to-participate user type is Zxay = (8 ,0a1), which, also, attains
the minimum utility based on the definition of utility in Eq. (ﬁ)

Next, we derive the necessary conditions that render a contract W = {w;,1 < i <
K LM} feasible, meaning that the IR and IC conditions defined in Eq. () and Eq. @
respectively, are successfully met.
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Lemma 5.2. For any feasible contract W = {w;,1 < i < KLM?}, it holds true that
Ty > Tj =T >Tj.

Proof. First, we prove that r; > r; = x; > x;, by utilizing the IC condition that holds for
user type Z;, which gives Q(Z;, ;) +r; > Q(Z;,z;) +1i < Q(Z;,x5) — Q(Z;,x;) > ri — 5.
Thus, if r; > r; then Q(Z;,z;) > Q(Z;,x;) and considering that function @ is decreasing
with respect to x, we get x; > x;.

To prove that z; > z; = r; > r;, we follow a similar procedure and we elaborate
on the IC condition that holds for user type Z; as Q(Z;,z;) +ri > Q(Zi,zj) +r; <
Q(Z;i,x;) — Q(Z;,xj) > rj —r;. Then, if x; > x; & Q(Z;,x;) < Q(Z;,x;) and thus, it
can be easily concluded that r; > r;. This completes the proof. O

The rationale behind Lemma @ is that a user receives a higher reward when providing
a higher effort to the edge server, to be properly incentivized to participate in the contract.

Lemma 5.3. (Monotonicity) For any feasible contract W = {w;,1 <i < KLM}, it holds
true that s(Z;,x) > s(Z;,x) = x; < xj, for any .

Proof. We prove this lemma by contradiction, assuming that there exists x; and z;, such
that z; > x;, which gives s(Z;,z) > s(Z;, z), for any x.

We write the IC conditions that hold for the user types Z; and Zj;, respectively, as
Q(Zi,x;) +r; > Q(Zi,xj) +r; and Q(Z;,x;) +1; > Q(Z;,x;) + ;. By adding these two IC
condition inequalities by parts, we get Q(Z;,z;) + Q(Z;,x;) > Q(Zi, z;) + Q(Z;, ;), which
is equivalently written as:

(Q(Zi, i) + Q(Zj, x5)] — [Q(Zi, x) + Q(Zj,x:)] > 0. (5.20)
Elaborating on Eq. () via the fundamental theorem of calculus, we obtain:

(Q(Zi, i) + Q(Zs, 7)) — [Q(Zi,x) + Q(Z, 1)

[, [,
- ox - ox

J J

:/Ii = [s(Zi,x) — 5(Z;, )] dw. (5.21)

J

Since z; > z;, Eq. () gives s(Z;,x) < s(Zj,x), which contradicts with our initial
assumption. In this way, we have proved that there does not exist x; > x; such that
s(Z;,x) > s(Zj, x), which confirms the soundness of this lemma. O

The reasoning behind the monotonicity condition in Lemma @ is that a higher unwilling-
ness-to-participate user type provides a lower effort to the edge server and, thus, is rewarded
less, taking also into account Lemma p.2.

Based on the above analysis, we can summarize the necessary conditions of a feasible
contract in the following theorem.

Theorem 5.1. (Necessary Conditions) A feasible contract W = {w;,1 < i < KLM}

must meet the following two conditions concurrently: 1 > -+ > x; > -+ > Ty and
L2212 2TKLM-
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5.5.4 Contract Sufficiency

In this section, we resolve the problem of reducing the IR and IC conditions, defined in
Eq. () and Eq. (), respectively, as a means of obtaining an optimal solution for the
contract problem designed in Eq. (@) in Section . The outcome of this analysis is
the definition of the sufficient conditions of a feasible contract under the realistic scenario
of incompleteness of information.

Lemma 5.4. (IR Conditions Reduction) Under a feasible contract, if the IR condition
of the lowest utility user type, i.e., the highest unwillingness-to-participate user type Zxn,
holds, then the IR conditions of all other user types are automatically satisfied:

UKLM(’U)KLM)ZO@Ui(wi)ZO,lg’L’SKLM. (5.22)

Proof. The IC condition that holds between a user type Z;,1 < i < KLM and the lowest
utility user type Zxrar is Uj(w;) > U;(wipar). Furthermore, for the minimum utility user
type, it holds that UKLM(wKLM) S Ui(wKLM), 1 S ) S KLM. Thus, ifUKLM(wKLM) Z O7
then U;(w;) > 0,1 < i < KLM. This completes the proof. O

The Lemma allows the reduction of the K LM IR constraints of the optimization
problem in Eq. ( ) to a single IR constraint, i.e., Uxpap(wrpa) > 0.

Next, we introduce the Pairwise Incentive Compatibility (PIC) condition to facilitate the
IC conditions reduction process later in this section.
Lemma 5.5. (Pairwise Incentive Compatibility (PIC)) The contract bundles w;, w; €
W,1<i,57 < KLM,i+# j are pairwise incentive compatible, denoted as w; PELEN wy, if the
following two conditions are concurrently satisfied: U;(w;) > U;(w;) and Uj(w;) > Uj(w;).

Lemma 5.6. (IC Conditions Reduction) Under a feasible contract, the following con-
dition holds for any i1 < iy < i3:

If w1 <P:IC> wa and w2a & ws, then w1 <P:IC> ws. (523)

Proof. To prove this lemma, we write the IC conditions that are satisfied for the user types
Z;1 and Z;o, respectively, as:

Q(Ziu‘r’il) +Ti1 > Q(Zi1733i2) +Ti27 (524)
and
Q(Ziy, iy) + iy > Q(Ziy, Tiy) + Ty - (5.25)

Since i1 < 42 < 13, from Theorem EI we have z;, > x;, > x;, and s(Z;,,x) < s(Zi,,x) <
$(Zi,,x). Founded upon this, it holds that [*2[s(Z,,x) — s(Z;,,x)]dz > 0, on which we
i3

subsequently elaborate according to the fundamental theorem of calculus as:

37

/Iiz [S(Ziz,l‘) - S(Zil,l‘)] dx

[, [ 00,

- ox . ox
= I:Q(Zizvxig) - Q(Ziwxh)] - [Q(Z’wala) - Q(Zinxiz)] . (526)
Therefore, the following condition holds, also, true:
Q(Ziy, xiy) — Q(Ziy, wiy) > Q(Ziy, wiy) — Q(Ziy s 24y)- (5.27)
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By adding the three inequalities in Eq. (), Eq. () and Eq. () by parts, we get:
Q(Ziy,xiy) + iy > Q(Ziy, i) + 7y (5.28)
Another set of IC conditions that can be written for the user types Z;, and Z,,, is:
Q(Ziy, xiy) +1iy > Q(Ziy, xiy) + 14y, (5.29)

and
Q(Ziy, Tiy) +1iy > Q(Ziy, xiy) + 14y - (5.30)

A

By applying similar steps to Eq. (p.26) via the use of the fundamental theorem of calculus,
we can easily conclude the next condition:

Q(Zig, iy) — QZig, xiy) > Q(Ziy, wiy) — Q(Ziy, w4y). (5.31)
We add Eq. ()—() by parts and we obtain:
Q(Ziy, i) + 13y = Q(Ziy, m4y) + 7y (5.32)

The combination of Eq. () and Eq. () proves that w; L s, confirming the

lemma. O

The Lemma @ enables the reduction of the KLM(KLM — 1) IC constraints of the
optimization problem in Eq. () into a set of 2(KLM — 1) PIC constraints between the
adjacent user types Z; and Z;41,1 <i < KLM — 1.

By combining our findings in Section and Section 0 far, we can summarize
the sufficient conditions for a feasible contract in the Theorem , below.

Theorem 5.2. (Sufficient Conditions) Under a feasible contract, the IR and IC' condi-
tions can be reduced as:

l.x12--2x;2 " 2TKLM,
2. Uxrm(wirom) >0,

3 riv1 — QZiv1, %) + Q(Ziy1,ziv1) < 1 < rigr + Q(Zi, i) — Q(Zisxi),1 < i <
KLM —1.

The first condition in Theorem @ derives from the necessary conditions in Theorem @7
while the second condition stems from the findings in Lemma and pertains to the IR
conditions reduction. Concerning the third condition in Theorem @, this represents the
PIC conditions, as defined in Lemma , between two adjacent user types ¢ and i + 1,
which constitutes the sufficient condition that should be met as a result of the IC conditions
reduction procedure described in Lemma p.G.

Based on the preceding analysis and the reduced IR and IC conditions listed in The-

orem , the optimization problem in Eq. () is equivalently transformed as follows:
KLM

max V(W) = > Pri(h(wi) — &ry) (5.33a)
i=1

s.t. Conditions in Theorem @ (5.33b)

Without loss of generality and for ease in the optimal contract bundles’ derivation, we
consider the users’ rewards as strictly increasing functions with their efforts in respect to
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the fact that the edge server acts fairly and rewards more the users that provide a higher
effort, as described in Theorem B.1l, and we_define r;(x;) = /Z;x;. Hence, the edge server’s
utility function V/(W), as described in Eq. (), is concave as the sum of concave functions
on z;,1 < i < KLM, while the reduced constraints form a convex set. Thus, by applying
standard optimization methods and utilizing existing concave/convex optimization tools [3§],
the optimal contract bundles w} = {z},r’},1 <i < KLM.

1771

5.5.5 Benchmark Contract under Complete Information

In this section, a benchmark contract-based incentive mechanism is introduced, which is
related to the case of complete information, in the sense that the edge server is a priori aware
of the users’ private information, i.e., their unwillingness-to-participate user types. Under
this ideal case, the edge server can fully exploit the users’ efforts and marginally satisfy their
IR conditions to ensure their participation in the contract. Hence, the optimization problem
to be solved by the edge server for each user type 1 < i < KLM is written as follows:

max v; = h(x;) —&r;,1 <i < KLM, (5.34a)
Wi
s.t. Q(ZZ,IZ) +r; =0. (534b)

From Eq. () we get rf = —Q(Z;,x;) = Z;x?, while Eq. () is written as v; =
h(z;)—&r; = 50~ —£&ry, based on the provided definitions of the functions Q(-), q(-), (")
earlier in this section. By substituting r; back to v; and calculating the first order derivative

v, _ c

of v; with respect to x;, we get 57t = -5 — 2§Z,;x;. By solving the equation gsf = 0 with

respect to x; we obtain the optimal solution of the optimization problem, which is expressed

™=
as r; = <2£Czi> .

Concerning the feasibility of the optimization problem in Eq. ()—(), by taking
into account that £ > 1, ¢ € [0,1], A € (0,1) and Z; € [0.5,2.5],1 < i < KLM, the latter of
which is determined by calculating the extreme values of the term Z; = 1.5 + §; — B;s, it
holds that zf > 0,1 < i < KLM. Additionally, considering the extreme case that c =¢§ =1
and Z; = 0.5, under which the term ZELZ takes its highest value that is equal to 25% =1,it
is verified that 27 < 1,1 <i < KLM. Hence, the optimal solution z is within the required
range [0, 1], yielding a feasible solution to the problem.

5.6 Stackelberg Game-based Resource Allocation

After the completion of the multi-dimensional contract-based incentive mechanism, each
user n has autonomously - and via the interaction with the edge server - determined its
optimal amount of effort, i.e., the percentage x} of the task ¢,d, that is offloaded to the
edge, which is allowed to be further transmitted and processed at the fog. Depending on
the user’s n application’s A,, characteristics, each user n is represented by an unwillingness-
to-participate user type Z; and, thus, the optimal contract bundle for this user is w; =
{zf,ri} o wfeW={w1<i< KLM}.

At this second stage, the joint communications and computing resource allocation is pur-
sued under a Stackelberg game-theoretic approach, in which the edge server (i.e., the leader)
determines each user’s n optimal offloaded task ¢, d} and the users (i.e., the followers) de-
cide on their optimal uplink transmission power p;, iteratively, by exchanging information
between each other. Specifically, with the term ”task offloading optimization” we refer to
the optimal amount of bytes d} offloaded by each user n that determine the whole optimal
amount of offloaded task ¢, d}. It should be noted that the joint computation task ofloading
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and uplink transmission power allocation problem in NOMA-enabled computing environ-
ments, under both the energy efficiency maximization and the delay/time minimization
objectives, as adopted in this work and presented later in this section, is generally non-
convex and NP-hard [156, 157, [141]. As a result, there does not exist any algorithm that
provides an optimal solution to this joint problem in polynomial time. For this reason, either
approximation or alternating [158] optimization algorithms are proposed in the literature to
deal with it. Indeed, the proposed Stackelberg game-theoretic approach is aligned with both
the decentralized and iterative optimization needs of the considered two-variable problem.
Next, the optimization problems of the leader and followers are presented, while the overall
incentive mechanism and resource allocation framework is summarized in Algorithm p.1l.

5.6.1 Leader’s Optimization

Given the users’ uplink transmission power vector p = [p1,...,Dn,-..,pnN], the edge server
seeks to maximize its perceived satisfaction minus the end-to-end edge-fog computing envi-
ronment’s incurred energy overhead. To this end, the edge server determines the vector of
the optimal amount of offloaded bytes d* = [d],...,d,...,d%], while meeting the users’
end-to-end completion time and energy constraints, and its personal energy constraint that
stems from its inherent limitation on its available energy. Therefore, the corresponding

optimization problem that is treated by the edge server is formulated as follows:

| V]

max Y [1 S (ng T 4 geree 4 oty 4 E”xﬂ (5.35a)
n=1
st. 0<d,<D,,VnecN, (5.35b)
max{T°// T} 4 max{T™°// Tmeeel < T, Vne N, (5.35¢)
E°IT 4 Eeec < B, VneN, (5.35d)
N
> (Brelf + Bresee) < E.. (5.35¢)
n=1

Regarding the physical meaning and interpretation of the edge server’s utility function in

Eq. (), the term 1 — e% constitutes a strictly increasing and concave function with re-
spect to each user’s n amount of offloaded bytes d,,, expressing the edge server’s satisfaction,
which saturates as its computational burden increases. The remainder of Eq. () con-
stitutes the end-to-end edge-fog computing environment’s total energy consumption (over-
head), while C € R is a cost-of-energy constant factor measured in [1/J]. Concerning the
optimization problem’s constraints, Eq. (5.35h) indicates the feasible range of values of each
user’s amount of offloaded bytes d,,. Eq. (5.35d) represents each user’s n end-to-end com-
pletion time requirement, which is calculated as the sum of the maximum time overheads
from the transmission and the execution at the user and the edge server layers, assuming
that the wireless transmission and computation processes can be performed concurrently.
Last, Eq. (@) and Eq. (@) guarantee each user device’s and the edge server’s energy
consumption constraint, respectively, where E. [J] is the edge server’s maximum energy
constraint.

The optimization problem in Eq. ()—() is concave, since the utility function is
a sum of concave functions on d,,Vn € N and the constraints form a compact, i.e., closed
and bounded, and convex set. Therefore, to derive the optimal solution, which is the vector
of the optimal amount of offloaded bytes d* = [d3,....d}, ..., dy], existing concave/convex
optimization tools can be utilized [8§].
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5.6.2 Followers’ Optimization

Given the amount of offloaded bytes d,, for each user n, after broadcasting by the edge server
to the users, the users’ uplink transmission power control takes place. Specifically, each user
aims to distributively maximize its transmission-based energy efficiency, by optimizing its
uplink transmission power to the edge server, while satisfying its personal transmission time
requirement. As a result, the optimization problem to be solved by each user n is given by:

R,
max EE,(pn,p_n)=—,VneN (5.36a)
Pn n
sit. 0<p, <pr* VneN, (5.36b)
n—1
Gnpn — Z Gn'pw 2 proi,n =2,..., N, (536C)
n’/=1
Tl < Tofimar yp ¢ N (5.36d)

In the above optimization problem, Eq. () represents the user’s n energy efficiency util-
ity function, where p_,, = [p1,...,Pn—1,Pn+1,---,Pn]| is the vector of uplink transmission
powers of all users except for user n. The constraint in Eq. () guarantees_the user’s
satisfaction of its maximum uplink transmission power budget p/7®*, while Eq. ( ) guar-
antees the successful decoding of the user’s signal via the SIC technique at the edge server’s
receiver, according to the receiver’s sensitivity /tolerance pio;. Eq. () refers to the user’s

personal transmission time constraint 7.%f/ma@ [g].

To capture the interplay among the different users’ power control procedure, a non-
cooperative game is formulated among them, denoted as IT = [N, {2, }vnen, { EEn bonen],
where N is the set of players, i.e., the users, ¥, _is each user’s strategy set of feasible power
levels, as imposed by the constraints in Eq. ()—(), and E'FE,, is each user’s utility
function. The non-cooperative game II is treated as a distributed utility maximization
problem, in which each user n updates its uplink transmission power p, autonomously,
by possessing prior information about the other users’ transmission power levels p_,, as
broadcasted by the edge server.

Towards solving the non-cooperative game I1, the concept of Nash equilibrium is adopted,
and the optimal users’ strategy vector p* = [p},...,ps,...,py], from which no user has the
incentive to deviate given the strategies of the rest of the users, is determined via a Best
Response Dynamics (BRD) algorithm. The interested reader may refer to [159] regarding
the definition of the Nash equilibrium, as well as the description of the BRD algorithm. To
ensure the existence of at least one Nash equilibrium point for the non-cooperative game II
and thus, the convergence of the users’ strategies to the Nash equilibrium , we adopt the
theory of the n-person generalized concave games [121].

Theorem 5.3. (Ezistence of Nash Equilibrium) The non-cooperative game Il is a
n-person generalized concave game and admits at least one Nash equilibrium point if the
following conditions hold true [121]:

1. the strategy sets Xq,...,X N are non-empty, compact, convexr subsets of finite dimen-
stonal FEuclidean spaces,

2. all utility functions EE1, ..., EEN are continuous on % = X1 X -+ X Xy,

3. every utility EE,, is a quasi-concave function of p, over ¥, if all the other strategies

are held fized.
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The energy efficiency problem under consideration has been extensively studied in the
literature and_it is well known that bears the properties that are summarized in Theo-

rem 160. B2], while an extensive proof of Theorem can be found in Chapter f and
Section . Given that each follower’s, i.e., user’s, distributed optimization problem in
Eq. ( )—() is quasi-concave due to the quasi-concave energy efficiency function,

this can be effectively treated by applying the Dinkelbach’s algorithm [119, B2] , which
transforms the quasi-concave problem into a series of concave problems that are iteratively
solved until convergence. Accordingly, each concave problem can be solved based on existing
optimization tools [8§].

After the convergence of the non-cooperative game, the users’ optimal uplink transmis-
sion powers p* are fed back to the edge server, and the next iteration of the Stackelberg
game is established. This procedure is repeated until convergence of the overall Stackel-
berg game is reached and the Stackelberg equilibrium point (d*, p*) is found, according to
which neither the edge server nor the users have any incentive to deviate from, as shown in
Algorithm p.1}.

Algorithm 5.1 Incentive and resource allocation framework.

1: Initialize the discrete sets D, ®, T, B, I', A.

2: Calculate the unwillingness-to-participate user types Z;,1 < i < KLM and sort them
in ascending order.

3: Initialize &, ¢, A, r(+), q(+), h(-).

4: Design the optimal contract bundles w} = {z},7},1 < i < KML by solving Eq. ()

27"

5: Initialize the set A" and the edge-fog computing environment, including users’, edge, and
fog servers’ locations.

6: Initialize D,,, ¢, T, En, Gp, po®, TOImaw B g E., Ge, pe, We, e, Fe, 0, Wy,
af, P, Iy, piol, C.

7. Map each user to its optimal contract bundle w} = {z}, 7} <> wf e W = {w},1<i <
KLM}.

8: Sort the users in ascending order according to G,.

9: Initialize randomly p,, € [0, p"**],Vn € N.

10: Set ¢ = 0.

11: repeat

122 Seti=1+ 1.

13:  Determine the optimal amount of offloaded bytes dfl(i) ,Vn € N by solving Eq. ()—

(5.35d).

14:  Set j =0.

15:  repeat

16: Set j=75+1.

17: for n € N do _

18: Determine the optimal uplink transmission power pZ(J ) by solving Eq. ()-
(B:36d).

19: end for

20:  until |p2(j) —pfl(j_l)| < €,Vn € N, where € ~ 107°.
21: until |d;§(z) — dfl(z_l)| <€, Vn € N, where € = 1075,

5.6.3 Computation Complexity

To facilitate the derivation of the overall proposed incentive mechanism_and resource al-
location algorithm’s computation complexity, as presented in Algorithm EI, the following
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algorithmic complexities are considered alone. First, the asymptotic complexity of a convex
optimization problem is polynomial in the number of the optimization variables [111, 32,
which applies to the optimization problems in Eq. (), Eq. (b.354))-(b.35d) and Eq. (@)-
(), while the Dinkelbach’s algorithm has super-linear convergence rate [[119, 120]. The
users’ sorting concerning their channel gain can be performed with O(N?) complexity via
the Quicksort algorithm, while for the mapping of each user to its optimal contract bundle a
searching algorithm can be employed, e.g., the Binary Search Algorithm, whose algorithmic
complexity is O(log(K LM)) in our case, due to the K LM existing contract bundles. The
rest of typical mathematical manipulations are of O(1) complexity.

We indicate as I and J the total number of iterations required for the Stackelberg and the
non-cooperative game among the users to converge, respectively. Also, following commonly
used practices, we denote as Ip the total number of iterations required for the Dinkelbach
algorithm to converge when solving a single user’s optimization problem in Eq. (@)—
() As a result, considering that the distributed non-cooperative game among the users
is performed in parallel, the overall computation complexity of Algorithm is calculated
as O (2- KLM + N -log(KLM)+ N?+1-(N+J-Ip-1)). Indicative numerical results
that depict the actual number of Stackelberg game iterations, which are required until
convergence is met, are enclosed in Section @ below.

5.7 Performance Evaluation

This section is devoted to the performance evaluation of the proposed incentive mechanism
and the joint task offloading and uplink power control procedure, via modeling and simu-
lation. First, we examine the operational characteristics of the multi-dimensional contract-
based incentive mechanism, congidering, also, the benchmark contract under complete infor-
mation (as described in Section p.5). Subsequently, we focus on validating the operation and
performance of the Stackelberg game-based joint task offloading and power control problem,
accounting for its convergence behavior, as well as comparing it against various alternative
baseline offloading approaches. It should be noted that NOMA has been adopted as an un-
derlying technique to facilitate the users’ multiplexing and transmissions to the edge. The
results of this work are also presented in [161].

The simulation setting and the parameters that were used throughout the numerical
evaluation enclosed in the remainder of this section are initialized as follows. We con-
sider a two-layer edge-fog computing environment, consisting of an edge server, which lies
200 m away from a fog server, and N users deployed with 20-meter increasing distance
from the edge server that form a NOMA cluster. Each user has a computing application
A,,, whose characteristics can be derived from the following sets: D = {1,1.2,1.4} Mbits,
¢ = {20,30,40} CPU cycles/bit, T = {0.08,0.1,0.12} s and £ = {1} J. As a result, we
assume that there exist K x L x M = 3 x 3 x 3 different combinations of user applica-
tion characteristics. The users offload part of their computation tasks to the edge server,
while a part of them can be further forwarded by the edge server to the fog, if beneficial.
Both the users-to-edge server and edge-to-fog server transmissions are performed wirelessly,
while the corresponding bandwidth in the two transmission levels is defined as W, = 5
MHz and Wy = 1 MHz, accordingly. Other communications-related parameters are set
as: p® = 24 dBm, T2//ma® = 0.05 s, p. = 24 dBm, a. = 3.5, ay = 2, E. = 200 J,
p = —20dB, Iy = —174 dBm/Hz, p;,; = —114 dBm. Considering the computing-related
parameters, we consider F,, = 10° CPU cycles/s and o,, = 10727 J/CPU cycle for each user,
and F, = 5 x 101! CPU cycles/s and o, = 1072 J/CPU cycle for the edge server [142].
Last, regarding the multi-dimensional contract we define the parameters ¢ = 0.5, A = 0.8,
¢ = 1, while we set C = 10* in the Stackelberg game, subsequently. Finally, for statisti-
cal purposes, the numerical results enclosed in Section p.7.2, below, which pertain to the
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Stackelberg game-based resource allocation procedure, have been averaged over 100 different
users’ computing application characteristics’ realizations.
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Figure 5.3: Pure evaluation of multi-dimensional contract under different values of the three-
dimensional user types (3,7, 9).

5.7.1 Evaluation of Multi-dimensional Contract-based Incentive Me-
chanism

Given that there exist K x L x M = 3 x 3 x 3 different combinations of user application
characteristics, then, 3 x 3 x 3 different unwillingness-to-participate user types are formed,
capturing the (un)willingness to allow part of their initially offloaded tasks to the edge
to be further forwarded and processed at the fog. In this section, we first scrutinize the
pure operation of the designed multi-dimensional contract, by analyzing the behavior and
trend of the resulting 3 x 3 x 3 unwillingness-to-participate (or virtual) user types and their
suited optimal efforts, under different values of the three-dimensional private information
(8,7,0). In particular, in Fig. @, the values of the virtual user types and their optimal
efforts are depicted as a function of the different values of (5,7, d), assuming that are sorted
in ascending order as 51 < B2 < 3, 71 < 72 < 73 and 01 < dp < d3. From Fig. @, we
observe that as the delay sensitivity evaluation type 0 increases, then the values of the virtual
user types increase, resulting in lower provided efforts to the edge server in Fig. p.3d-p.3,
which in turn, verify the monotonicity condition of the contract in Lemma é Focusing
on a single value of §, e.g., §; in Fig. , then it can be easily deduced that a low value
of either parameter S or « results in a higher value of the virtual user type, according to
the definition of the unwillingness-to-participate parameter in Eq. () As a result of the
higher unwillingness to participate in the contract, the users’ efforts decrease, as shown in
Fig. p.3d. The same observation holds for the instances J; and 3 regarding the values of the
virtual user types in Fig. Eﬂ and their optimal efforts in Fig. , respectively.
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Figure 5.4: Comparative evaluation of multi-dimensional contract under incomplete and
complete information cases.

This is quite intuitive, since 8 and v represent an evaluation of the application size and
intensity, higher values of which show the "need” to participate in the contract to offload as
many bytes as possible.

Next, we proceed to the comparative evaluation of the proposed multi-dimensional con-
tract, taking into account the benchmark complete information contract case. To this end,
in Fig. , we consider the K x L x M virtual user types sorted in ascending order as
Zi(z) < - < Zi(x) < - < Zgpm(x),1 < i < KLM, indicating them by their sorted
index (horizontal axis), and we examine the values of different metrics, such as their efforts,
rewards or utilities (vertical axis), under both the incomplete and complete information
cases. All graphs in Fig. ‘@. validate the monotonic behavior of the designed contract,
according to which a higher unwillingness-to-participate/virtual user type provides a lower
effort to the edge server, and, hence, is rewarded less, yielding at lower utilities for both itself
and the edge server. Evidently, in the complete information case, the edge server designs
contract bundles that require higher efforts to be provided by the users in exchange for
lower rewards compared to the incomplete information case. This naturally stems from the
fact that the edge server knows a priori the users’ types and fully exploits their efforts, by
marginally ensuring their participation in the contract, i.e.. the satisfaction of their Individ-
ual Rationality (IR) conditions, as expressed in Eq. () Accordingly, in the complete
information case, each virtual user type perceives a zero utility, as illustrated in Fig. ,
while the edge server achieves a higher utility per user type under such an ideal complete
information availability case compared to the incomplete information one (Fig. p.4d). To
complement our evaluation of the multi-dimensional contract-based incentive mechanism,
we investigate the derived optimal contract bundles’ compliance to the Incentive Compati-
bility (IC) condition in Definition p.2. For this reason, the virtual user types of index 3, 13,
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and 23 are indicatively selected and their utility values are plotted over all the K x L x M
contract bundles that have been designed by the edge server (horizontal axis), as shown in
Fig. . Indeed, it can be easily observed that the utility of either virtual user type from
the 3, 13, and 23 is maximized when selecting the contract bundle that is tailored to this
specific type, verifying the incentive compatibility of the designed contract.
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Figure 5.5: Convergence evaluation of Stackelberg game-based resource allocation under
different numbers of users V.

5.7.2 Evaluation of Non-Cooperative Game-based Offloading Mech-
anism

In this section, we aim to elucidate the operational characteristics of the proposed Stack-
elberg game-based overall task offloading and power control procedure. To this end, we
initially study the pure performance and convergence behavior of the proposed Stackelberg
game, by examining the progression in the values of different metrics as a function of the
different iterations that are required for the game to converge. In particular, Fig. EM
presents the mean users’ transmission power levels and amount of offloaded bytes, accord-
ingly, concerning the corresponding Stackelberg game iteration index. The different curves
that are incorporated in Fig. —5.5b, correspond to different scenarios with respect to the
number of users existing in the system, i.e., N = {3,5,7,9}, that share the same wireless
access bandwidth and are multiplexed via the NOMA technique. Additionally, Fig. de-
picts the edge server’s utility, as defined in Eq. () in the leader’s optimization problem
in Section E, as a function of the Stackelberg game iteration index.

The results reveal that the overall interaction between the leader and the followers, via
the Stackelberg game, is completed after a small number of iterations (i.e., approximately
I = 6 iterations for practical purposes), while the number of iterations required increases
with the number of the users existing in the NOMA cluster. This can be easily noticed
and verified by comparing the curves that regard N = 3 and N = 9 number of users in
Fig. —. Furthermore, it is confirmed that as the number of users increases, then
their mean consumed uplink transmission power, as derived from the non-cooperative game
among them in Section , increases as well, whereas their mean offloaded bytes to the
edge server decrease, as calculated by the leader’s optimization problem in Section . On
the one hand, the latter originates from the fact that the overall sensed interference by the
users within the NOMA cluster increases, affecting, i.e., reducing, their achieved data rate
and, hence, increasing the required time to transmit their data. On the other hand, this
behavior is, also, encouraged by the edge server’s, i.e., the leader’s, utility function, which
expresses the edge server’s dissatisfaction and disutility from the increase in the amount of

offloaded bytes by each user and is denoted by the term 1 — 62’:[’17: in Eq. () On the
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contrary, considering the absolute increase in the sum of users’ offloaded bytes due to the
increase in the number of users in the system, the edge server’s utility increases, as can be
seen in Fig. .
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Figure 5.6: Comparative evaluation of Stackelberg game-based resource allocation under
different offloading approaches and number of users N.

Subsequently, we aim to investigate the effectiveness and efficiency of the proposed Stack-
elberg game-based resource allocation, by comparing it against various alternative baseline
offloading approaches. Specifically, in our comparative analysis we consider the cases in
which the users’ tasks are computed: exclusively locally (?Only local”), at the edge (”Ounly
edge”), or at the fog ("Only fog”), as well as indicative intermediate cases that 20%, 33%
or 40% of the users’ total bytes are computed locally, denoted as "20% local”, ”33% local”
and ”40% local”, respectively, are also taken into account. In these latter cases the rest
offloaded amount of bytes, i.e., 80%, 67%, and 60% of the overall user application bytes, is
equally split between the edge and fog server layers. Last, we, also, invoke the "Random”
offloading baseline case, under which a random amount of bytes is offloaded to the edge
and fog server layers. At this point, it should be noted that for fairness purposes in all of
the aforementioned offloading approaches that require users-to-edge server wireless trans-
missions, the non-cooperative game among the users that determines their optimal uplink
transmission powers to the edge, is performed without exception.

Fig. ‘ presents the sum of users’ end-to-end time overhead, which is calculated based
on Eq. (p.35d), concerning the different offloading approaches and different numbers of users
existing in the system. Apparently, our proposed approach exhibits the lowest sum users’
end-to-end time overhead, with the lowest marginal increase with the number of users, except
for the ”Only local” case, which benefited in terms of time by the zero users-to-edge server
and edge-to-fog server wireless transmissions. However, as clearly shown in Fig. , this
latter behavior of the "Only local” case occurs at the cost of much higher energy consumption
(i-e., the worst performance among all alternatives) for the energy-constrained user devices
due to local execution, as is discussed later in this section.

To better visualize the effect of the increased users’ end-to-end time overhead on the
satisfaction of their completion time requirement T},,Vn € N, we summarize the percent-
ages of the users that successfully met their time constraints in Table p.1|, considering all
the aforementioned offloading alternatives for different number of users in the system. It
should be noted that in the designed simulation setup, the ”Only local” case provides always
a feasible solution in terms of user time satisfaction, though at the cost of high energy con-
sumption from the users’ perspective. As demonstrated by the provided results in Table .1},
the proposed approach proves to be the only one among the rest of the examined offloading
alternatives that allows for the satisfaction of the users’ completion time constraints under
varying numbers of users. Especially, as the number of users increases, e.g., N = 9, the
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majority of the baseline offloading approaches fail to satisfy the users’ requirements, while
in most cases the percentage of satisfied users drops significantly below 50%. Therefore, it
becomes apparent, that the dynamic and adaptive features of our proposed optimization-
driven approach, achieve the 100% assurance of each user’s end-to-end completion time
requirement in all considered settings.

Table 5.1: Percentage of users that satisfy their end-to-end time requirement under different
offloading approaches.

’ApproachHN:S‘N:5‘N:7‘N:9‘
Only local 100% 100% 100% 100%
Only edge 100% | 90.8% 50% 34.89%
Only fog || 44.67% | 32% | 15.43% | 10.67%
20% local 100% | 98.8% | 61.14% | 36.45%
33% local 100% 100% | 86.29% | 53.33%
40% local 100% 100% | 97.43% | 66.89%
Random || 97.33% | 95.6% | 93.71% | 81.11%
Proposed 100% 100% 100% 100%

Continuing, in Fig. , the sum users’ energy overhead, which accounts for both the
wireless transmissions to the edge and their local computation energy consumption, accord-
ing to Eq. (@), is depicted, verifying that the proposed approach yields the lowest sum
users’ energy consumption along with the "Only edge” and ”"Only fog” baseline cases. How-
ever, it is reminded that these other two alternatives, as shown in Table p.1|, fail to meet the
user time constraints for most of the users in most of the different numbers of user cases, thus
resulting in lower user satisfaction percentages compared to the proposed one. Concerning
the edge server’s energy consumption, which is derived following Eq. () and accounts
also, for both the wireless transmission and the computation energy overheads, Fig.
demonstrates that in our proposed approach, the edge server operates at its maximum al-
lowed energy consumption point, as denoted by the F, constraint, while the ”Only fog” case
intuitively incurs significantly low energy consumption to the edge, at the excessive cost of
increased users’ energy consumption. It is noteworthy that in Fig. , the ”Only local”
case that results in zero edge server’s energy consumption is omitted due to the inherent
limitation of the logarithmic scale used. Regarding the rest of the alternative scenarios, i.e.,
"20% local”, ”33% local”, ”40% local” and "Random”, they appear to yield similar edge
server energy consumption, slightly exceeding the edge server’s upper energy consumption
point F. as the number of users increases, in contrast to the "Only edge” scenario, which
steadily exceeds the edge server’s upper energy consumption bound, having to deal with the
whole system’s computation burden.
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Chapter 6

Resource Allocation in RSMA
Multi-server Multi-access Edge
Computing Networks

6.1 General Setting

In this chapter, we delve into the distribution of the users’ ofloaded computation tasks hor-
izontally (i.e., within the same computing tier) to multiple servers. Specifically, motivated
by the distributed deployment of Multi-Access Edge Computing (MEC) servers within the
Radio Access Network (RAN) and the advancements in next-generation non-orthogonal mul-
tiple access techniques, we suggest that the users utilize the different available RANs nearby
and offload computation tasks of their compute-intensive and latency-critical applications to
multiple MEC servers simultaneously. To tackle the critical problem of inter-server interfer-
ence management stemming from the concurrent transmissions of a user to multiple servers,
we examine the application of the Rate-Splitting Multiple Access (RSMA) technique, which
is considered a key enabler of the upcoming 6G wireless networks. The rate-splitting lies in
splitting a user’s message into two or more parts that can be flexibly decoded at one or more
receivers, respectively. The common message — as it is called — is intended for and decoded
by all the involved servers in the transmission, contrary to a private message intended for
each MEC server separately. As a result, when decoding the private message, the interfer-
ence originating from the other servers’ private messages is treated as noise. By smartly
controlling the split among the common and private messages, an acceptable tradeoff be-
tween efficient spectrum usage, multi-server interference management, and signal processing
complexity at the receivers is achieved.

Apparently, the MEC network’s performance is majorly interwoven with the radio re-
source allocation under the RSMA technique to achieve the user application’s targeted la-
tency requirement and thus should be studied jointly. Consequently, the challenging prob-
lem of joint computation task offloading and radio and computing resource allocation among
the users and the multiple MEC servers arises, which remains mainly unsolved in the lit-
erature, and we strive to address it. Specifically, in this chapter, we introduce a holistic
solution to minimize the sum of users’ maximum experienced delay among the different
MEC servers, stemming from both the computation task offloading and processing. To this
end, the users’ computation task assignment ratios to the different MEC servers, and their
allocated rates, uplink transmission powers, and computing resources with reference to the
corresponding MEC server are jointly optimized. The formulated min-max-sum problem
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is equivalently transformed and decomposed into two independent sub-problems, namely
the rate and power allocation and the computing resource allocation problems, while the
optimal solution of computation task assignment naturally derives from the aforementioned
transformation and decomposition procedure. In this way, a near-optimal solution to the
initial problem is concluded that is proved to be highly efficient in terms of complexity and
experienced delay by the users compared to conventional non-linear optimization algorithms.

6.2 Related Work

The problem of joint task offloading and resource allocation in MEC networks is well-
established in the literature and has been extensively studied under different network settings
and objectives over the years. Preliminary works focused on single-server network topologies,
and can be further distinguished according to the adopted wireless access technique, i.e., Or-
thogonal Frequency Division Multiple Access (OFDMA) [162], power-domain NOMA [141],
and Multi-Carrier (MC)-NOMA [163]. In [162], the joint problem of computation task as-
signment, computing resource allocation, and subcarrier allocation is treated via an iterative
algorithm, to minimize the total MEC system’s energy consumption. In [141]], the authors
consider a pure NOMA case and perform computation task assignment and uplink power
control to minimize the maximum task completion time among the users. The formulated
minimax optimization problem is then solved via a bisection search iterative algorithm.
Complementary to the above, the work in [163] considers MC-NOMA and jointly optimizes
the users’ task offloading decision, subchannel assignment, uplink transmission power, and
allocated computing resource to minimize the weighted sum of the system’s computation
time and energy overhead. Last, a comparative analysis over Orthogonal Multiple Access
(OMA)-based and NOMA-based MEC systems is presented in [164] regarding the problem
of minimizing the total system’s energy consumption.

However, a remarkable amount of work can also be found on multi-server MEC network
topologies, employing both OMA [[165, 166] and power-domain NOMA [167, 168, 169, 170].
Both works in [165, 166] account concurrently for multiple optimization objectives (e.g.,
minimization of MEC system’s total time and energy overhead, users’ subscription cost)
and derive the task offloading decision and the power and computing resource allocation
of the users. Considering the NOMA-based MEC topologies, the works in [167, 168, 169]
target the MEC system’s energy consumption minimization, whereas [170] pursues each
user’s maximum task completion time minimization among the different MEC servers. All
of them optimize quite similar sets of variables but differ in the optimization techniques
used such as Reinforcement Learning (RL) algorithms apart from conventional optimiza-
tion [167], the underlying network setting in terms of perfect or imperfect Channel State
Information (CSI) [16§], and the consideration of the additional problem of Central Process-
ing Unit (CPU) frequency scheduling along [169]. Although multi-server MEC topologies
are considered, the concurrent task offloading to multiple MEC servers is exclusively studied
in [[167, 168, [L70], the former two of which focus on the sum system’s energy consumption
minimization. As a result, the problem of minimizing the sum of users’ maximum experi-
enced delay among multiple MEC servers that results in a min-max-sum problem formulation
remains notably unexplored.

Regarding the literature around the RSMA technique, several works have been recently
published dealing with fundamental problems related to resource allocation in pure wireless
communication scenarios. Indicative examples constitute the works in [27, 171, 172, 173,
174], where the joint rate and power control are performed under different performance
metrics. In [27] and [171], the sum-rate and weighted sum-rate maximization in downlink
multi-user Sinlge-Input Single-Output (SISO) and Multiple-Input Single-Output (MISO)
systems are studied, respectively, and two different iterative algorithms are proposed to ob-
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tain solutions to the formulated non-convex problems. The energy efficiency of a two-user
downlink RSMA MISO system is pursued in [[172], while another interesting approach to-
wards controlling the spectral and energy efficiency tradeoff in a multi-user downlink RSMA
Multiple-Input Multiple-Output (MIMO) system appears in [173]. Considering learning-
based optimization frameworks, the authors in [[174] design and propose the application of
Deep Reinforcement Learning (DRL) algorithms to target both the sum-rate and energy
efficiency maximization in downlink multi-user RSMA networks. Moving one step further,
the authors in [[175] introduce the model of RSMA-based Simultaneous Wireless Information
and Power Transfer (SWIPT) in MISO Broadcast Channels (BC) and study the precoder
design of the Information Receivers (IRs) and the Energy Receivers (ERs) along with the
common-message rate control problem to maximize the system’s weighted sum rate.

Other attempts are gradually being made in the direction of exploiting the benefits of
RSMA and supporting specific types of applications and services. For instance, in [176],
the idea of integrating RSMA with Time Division Duplex (TDD) cell-free massive MIMO
to support massive machine-type communications is investigated. Other applications of
RSMA to a bistatic Dual-Functional Radar-Communication (DFRC) satellite system and a
vehicular communication network aided by Unmanned Aerial Vehicles (UAVs) and Recon-
figurable Intelligent Surfaces (RISs) can be found in [177] and [178], respectively. Regarding
the utilization of RSMA as a means of enabling the users’ computation task offloading in
MEC applications, only a limited number of works exists, i.e., [L79, 180]. In [179], RSMA is
used to assist MEC in a Cognitive Radio (CR) network, such that the secondary user avoids
deteriorating the primary user’s offloading by dynamically adjusting the rate-splitting pa-
rameters related to its transmission. In [[180], a single-server MEC network is considered,
where aerial users offload their tasks via RSMA, and the joint problem of offloading deci-
sion, rate, and uplink power control, and decoding order optimization is solved via a Deep
Deterministic Policy Gradient (DDPG) method.

6.3 Contributions & Outline

In this chapter, we capitalize on the ability to simultaneously access multiple servers in a
multi-server MEC system and suggest the application of the novel RSMA technique, which
is considered a key multiple access technique in the upcoming 6G wireless networks. Conse-
quently, the challenging problem of joint computation task offloading and radio and comput-
ing resource allocation among the users and the multiple MEC servers arises, which remains
mainly unsolved in the literature, and we strive to address it. The main contributions of
this work are summarized as follows.

1. The problem of minimizing the sum of users’ maximum experienced delay stemming
from their task’s offloading and processing among the different MEC servers is formu-
lated. The aim is to jointly optimize the users’ computation task offloading assignment
ratios to the different MEC servers and their allocated rates, uplink transmission pow-
ers, and computing resources related to the corresponding MEC server.

2. The equivalent transformation of the initially formulated min-max-sum problem is
analyzed to lead to an objective function of continuous form and derive the optimal
conditions holding for the problem.

3. The Karush-Kuhn-Tucker (KKT) conditions are employed to decompose the trans-
formed problem into two independent sub-problems, the solutions of which separately
provide suboptimal values for the radio (i.e., uplink transmission power and rate) and
optimal values for the computing resource allocation. The optimal computation task
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assignment to the different MEC servers is also directly derived from the equivalent
problem transformation and decomposition analysis.

4. Numerical results are obtained via modeling and simulation to demonstrate the ef-
ficiency of the proposed solution in terms of complexity and experienced delay by
the users and to showcase the overall system’s effectiveness against other traditional
multiple access techniques.

6.4 System Model

We consider an RSMA-based multi-server MEC system, as illustrated in Fig. @, which
consists of multiple MEC servers of potentially different computing capabilities that reside at
the Base Stations (BSs) or the Access Points (APs) of the mobile network infrastructure. The
MEC servers serve the purpose of offering computing services to the mobile users existing in
the system. We assume that each user fully offloads its computation task, due to the limited
energy availability of the user device, while a combination of different available MEC servers
can be chosen to process different parts of its computation task. Specifically, heavy Machine
Learning (ML) tasks, e.g., image processing, can benefit from multi-server MEC offloading.
Different video feeds generated from vehicular, healthcare, or security applications - to name
a few - can be offloaded to different MEC servers for processing [181], 182, 183]. In this way,
the total task complexity is reduced, and various levels of processing accuracy can be targeted
for each part of the task based on each MEC server’s computing capability.

Both the BSs or APs that host the MEC servers and the users are equipped with a single
antenna. The overall system bandwidth is B Hz. To eliminate the inter-user interference in
such a multi-user multi-server communication scenario, it is assumed that the users utilize
separate frequency bands of bandwidth B, = % Hz to accommodate their computation
task offloading, while a single user’s transmissions to multiple MEC servers are performed
concurrently and under the same frequency band, via the application of the RSMA technique.

We denote the set of MEC servers by M = {1,..., M} and the set of offloading users by
N ={1,...,N}. A user’s n computation task is defined as C,, = ¢,,D,, [CPU cycles]|, where
D, [bits] and ¢,, [CPU cycles/bit] denote the task’s input data and intensity, respectively.
It is considered that a task C), can be arbitrarily partitioned into subsets of any size that,
in turn, can be computed at different MEC servers. Specifically, we indicate as 3, € [0, 1]
the user’s n computation task assignment ratio to MEC server m, such that Zn]\le Brnm =
1,Vn e N.

Access point Base station

() User (( )
:(,(‘)2* - -y %,i

o ~_ 0 - e b =
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Computation task e
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Figure 6.1: High-level overview of the multi-server MEC system.
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6.4.1 Communication Model

Concerning the RSMA-based communication model, we denote as W, ,, the message of
user n intended for MEC server m, containing the corresponding offloaded computation
task B ,»Cr. Each message Wy, is split into a common and a private part, i.e., Wg

and W7, respectively. The common parts intended for all MEC servers from user n, i.e.,
¢ c ¢ . . .
ot s Whomy oo, Wiy, are combined and encoded into a single common stream sn o

that is transmitted to all MEC servers with uplink transmission power p, o [Watt]. The
remaining private messages WP ., Vm € M are encoded into different private streams sy

and are separately transmitted to the MEC servers with uplink transmission power py, ,,
[Watt]. Hence, the transmitted signal of user n is defined as:

M
Ly = \/msn,o + Z \/pn7m3n,m~ (61)
m=1

The received signal at each MEC server m that is transmitted by user n is given by:

M
yn,m =V Gn,mpn,()sn,() + Z \Y4 Gn,mpn,jsn,j + Zn,ma (62)
j=1

where G, ,,, denotes the channel gain between user n and MEC server m and z,_,, is the
corresponding Additive White Gaussian Noise (AWGN) with zero mean and variance o2.
Accordingly, the achievable rate of decoding the common stream s, ¢ transmitted by

user n to each MEC server m is:

G
Cm = Bnlog, [ 1+ n,mPn.,0 [bps]. (6.3)

M
G 2 j=1 Pnj + 07

Without loss of generality, we consider that the channel gains between a user n and the
offloading MEC servers are sorted in ascending manner, ie., Gp1 < -+ < Gpp < -+ <
Gn,m. We denote as ay, ., [bps] the allocated rate of the common stream s, o transmltted
by user n to each MEC server m. Then, in order to ensure that all MEC servers m € M
can successfully decode the user’s n common stream s, o, the allocated rates a, , should
satisfy the following condition:

M
g a < min ¢
n,m_meM n,m

m=1
G
= Bulogy (14— 1m0 = Cn1, (6.4)
n 1 Zm 1 Pnym + o?

where the equality follows from the channel gains’ ordering.

Additionally, for the Successive Interference Cancellation (SIC) to be successfully imple-
mented at the receiver of each MEC server m, the following condition should be satisfied
for each user n:

M
Gn;mpn,o - Gn;m an,] = PTtLOlv (65)

where P [Watt] is the corresponding receiver’s SIC decoding tolerance/sensitivity. Fol-
lowing the ordering of the channel gains, Eq. (R.4) can be reduced as:

M
Gn,lpn,O - Gn,l Z Pn,m Z P»rt;)l- (66)

105



After the decoding of the user’s n common stream at each MEC server, the decoding of
the corresponding private stream s, ,, takes place at each MEC server, the achievable rate
of which is calculated as:

Gn,mpn,m
M 2
G 2=t jm Proj + O

Tnom = Bplogy | 1+ [bps]. (6.7)
The total achievable offloading rate from user n to MEC server m is:

tot __
rn,m = Gn,m + Tn,m

Gn,mpn,m
M P
Gnm Zj:l,j;ém Pnj+o

= Qp,m + Bplogy [ 1+ (6.8)

Therefore, given that 3, ,, D, [bits| are transmitted by user n to each MEC server m,
then the corresponding transmission/offloading delay is defined as follows:

Bn,mDn

tot
Tn,m

T =

[s]. (6.9)

6.4.2 Computing Model

The computing model regards the remote processing of different parts of each user’s n
computation task at the different available MEC servers. Specifically, we denote as fy,
[CPU cycles/s] the computing resource that the MEC server m allocates to user n for
the processing of its task, for which it holds that an:1 fr,m = Fm,Ym, where F,, [CPU
cycles/s] is the total computing resource owned by MEC server m. Given that 5, ,,¢nDs,
[CPU cycles| are processed by MEC server m for user n, then the corresponding processing
delay is given by:

proc _ ﬁanDn¢n [8] (610)

o frm
As a result, the overall experienced delay by a user n from the computation task offloading
and processing at an MEC server m is:

Ty = TS 4 TPToC, (6.11)

n,m n,m

It should be noted that, in this work, the delay incurred by the downlink transmission of
the computed output from the MEC servers to the corresponding users is omitted since its
impact on the overall delay experienced by the users is negligible [168, 165, 170]. On the
one hand, the size of the computed output is usually much smaller than the input while on
the other hand, the downlink transmission is subjected to less interference and is performed
with significantly higher power than the uplink transmission/offloading performed by the
user devices.

6.5 Problem Formulation, Transformation & Decompo-
sition
6.5.1 Problem Formulation

In this work, our objective is to minimize the sum of the users’ maximum experienced
delay stemming from their computation task offloading and processing among the differ-
ent MEC servers, as defined in Eq. () To achieve this, we jointly optimize each
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user’s n vectors of allocated common-message rates a, = [an,1,. s Anm,-- -, an.n)t, up-
link transmission powers Pn = [Pn.0sPn.1s---sPnms---sPn.m) ., computing resources f, =
[frts--es fams--s fu]T, and computation task assignment ratios 8,, = [Bn.1, - Bnm, - - -
to the MEC servers. The corresponding maximum delay minimization problem to be solved
is formally written as follows:

N
an,pvi%ir,lﬂn,\fn Z::l nr?ea/\}fl {Tn’m} (6.12&)
M G P
s.t. nm < Bplogy |1+ 17,0 Vn, (6.12b)
mzzl 2 < Gn,l Zn]\{zl Pn,m + 02
M
Gn,lpn,O - Gn,l Z DPnym = P£Ol7vn7 (612C)
m=1
M
Pro+ Y Pum < BT, Vn, (6.12d)
m=1
N
an,m S Fm;vm; (6126)
n=1
M
Z Bn,m = 1,Vn, (612f)
m=1
Tf:zn Z R:Lnin7vn’ m, (612g)
An, ms Pn,0s Pn,m; fn,m > 07 5n,m € [O; 1],Vn,m, (612}1)

where P%% [Watt] and R™™ [bps| are the user’s n maximum power budget and minimum
allowable uplink transmission/offloading rate requirement, respectively, The constraints
of the formulated optimization problem are explained as follows. Eq. (6.12H) and (.12q)
represent the required constraints over each user’s n allocated common-message rates a,, and
powers p,,, respectively, for the successful decoding and implementation of the SIC technique
at the receivers of the MEC servers, as analytically described earlier in Section [6.4. Also,
Eq. () constitutes each user’s n maximum transmission power constraint. Eq. ()
guarantees that the allocated computing resources by each MEC server m to the users do not
exceed the corresponding MEC server’s maximum computing resource availability F,,, [CPU
cycles/s] while Eq. () ensures that each user’s n computation task is fully offloaded to
the available MEC servers. Eq. () captures each user’s n minimum acceptable offloading
data rate to each MEC server m. Last, Eq. () defines the feasible range of values of
the optimization variables.

The optimization problem () is non-convex, due to the non-convexity of the objec-
tive function, while the rate a,, power p,, computing resource f,,, and task offloading 3,,
vectors are highly coupled, complicating the derivation of a tractable solution. Thus, it is
challenging to obtain a global optimum within polynomial time. In the following, we outline
the procedures of equivalent transformation and decomposition of problem (@) that allow
the derivation of a local minimum.

6.5.2 Problem Transformation & Optimal Conditions

Our first result allows reducing the objective function () to a differentiable expression.
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Lemma 6.1. Let {{an,m,pn,m,fn,m,ﬁn,m}m,pn,o}n be an optimal solution to problem
(6.13). Then, it holds

Tn,l = Tn,2 == n,M7vna (613)
Bn,mDn Bn,mDndn
where Tn,m = n,m(an,m7p7L,Oapn,ma fn,ma ﬁn,m) = ot + T

Proof. Lemma EI is proved by contradiction. Let {{a@n m,Pn.m, fn.m>Bn.m}m:Pno}, bean
optimal solution of problem (E), for which, without loss of generality, it holds

Tn1(@n1,Pnts fo1s Brt) > To2(an2,Pn2;s fr2, Br2)s (6.14)
for some n € N. This implies that there exists € > 0 such that
Tr1(@n,1,Pn1s fr1s B —€) > Tn2(an2,Pn2, fr,2, Bn2 +€), (6.15)
and thus we conclude that

Tn,l(an,lvpn,la fn,la /Bn,l) > Tn,l(an,hpn,la fn,h Bn,l - E)

(6.16)

> Tn,2 (an,van,% fn,2a 5n,2 + 5)~
In particular, we conclude that if we replace the points 3,1, 8,2 with the points 3,1 —
€, Bn,2 + €, we then obtain a point belonging to the feasible region for which the objective
function decreases, contrariwise to the assumption that the points 3, 1, 5p,2 are optimal. O

According to the Lemma EI, the users’ overall experienced delays T, ,,, at the different
MEC servers m € M are equal to each other at the optimal solution point. This observa-
tion is subsequently utilized to equivalently transform the problem’s objective function, as
described in Lemma (.2, below.

Lemma 6.2. Let {{&n,m,pn,m,fn,m,ﬁn,m}m,pn,o}n be an optimal solution of problem
). Then, it holds

1+ZM: B, bn_.tot
T, =D, ML T T g (6.17)
’ M ot
Zm:l rn,m

Proof. From Lemma EI, we have proved that at the optimal solution point, it holds that

Tpi1 =+ =Ty M, Vn, which may equivalently be written as:
n D’V‘L n n Dn n
Bu1 Do + et let B D + Egnterlon,
tot == ol . (6.18)
n,1 n,M
Now observe that for each m € {2,..., M} it holds
Bn,mDndn
P 6n,mDn + T’ngfn B r;‘jﬁn (6 19)
" BniDn + %Tfﬁ rhot”
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which, in turn, implies that

bn_.tot
ﬂn,l + ﬁn,l fn,nl Tn(?l
D, :

T =
7
(5n,1 + Bn f?,ll rfftl) (A +tg+ - +ty)
- PO (Tt tat -+ tar)
6.20)
M (
S0 (B + Bum vt )
Z7n:1 Tzo,tm
M bn_.tot
1+ Zm:1 6n,m fT,mrmm
- n M )
Zm:l rﬁto,sn
where the last equality follows from Zi\le Bom = 1. Since T, 1 = -+ = Ty, s the result
follows. .

Therefore, the outcome of Lemma @ is the transformation of the problem’s objective
function into a continuously differentiable function, which allows further mathematical ma-
nipulations toward obtaining a solution to the overall problem. Next, we proceed to the
analysis of the optimal conditions that further simplify the initially formulated problem.

Lemma 6.3. At the optimal solution of problem ), the constraint ) over the

. . M Gn,1Pn
common-message rate holds with equality: Y, 1 anm = Bplogy | 1+ e ZM’IP -2 o ,Vn.
n1) , _ Pnmto

Proof. Lemma, @ can be easily proved by contradiction. O

In particular, Lemma @ implies that for an optimal choice of ay, ,, Vn, m, the sum of
total achievable offloading rates from user n to the different MEC servers is:

M G
> i = Balog, [ 1+ AP0
m=1 G”%l Zm:l p’ﬂvm + 02

Gn,mpn,m
G M 2
nm Qi1 jtmPrg O

M
+ ) Bylog, 1+ : (6.21)
m=1

which should be noted that does not depend on a,, s, Vm.

Lemma 6.4. At the optimal solution of problem ), the constraint ) over the uplink
transmission powers of the private messages holds with equality: Z%Zl Dnm = P —

Pn,o, Vn.
Proof. Let py,;,t € M, be an optimal solution of problem () Suppose, towards arriving

pmax
Pn,oJrZiZ:l Pn,m
a > 1. Now, define pj, ; = apn i, for i € M. It can be easily noticed if we replace the values
Pn,i,t € M in the optimal solution with the values pj, ;,i € M, then the objective function
decreases. Furthermore, since it holds that

at a contradiction, that Zf\le DPnm < P —ppo. Set o = , and note that

M M M Ptol
p;,o - Z p:;,m =a- | Pno — Z Pnm > Pno — Z Pnm > Gn ) (622)
m=1 m=1 m=1 n1

109



the points pj, ;,,i € {0,1,..., M}, belong to the feasible region of problem (), thus
contradicting the assumption that p, ;,4 € {0,1,..., M}, is optimal. O

Lemmas @ and @, so far, provided the optimal conditions that hold with respect to
the users’ allocated common-message rates and private-message uplink transmission powers.
Lemma [.5, below, focuses on the optimal condition that holds for the allocated computing
resources to the users.

Lemma 6.5. At the optimal solution of problem ), the constraint ) over the

allocated computing resources holds with equality: 22;1 fom = Fm, Vm.

Proof. Lemma @ can be easily proved by contradiction. O

Owing_to the preceding analysis, the initially formulated maximum delay minimization
problem (p.19) is reformulated as follows:

M
N 1+ Zm:l Br,m ffnm r’lt’gﬁn

i D, 6.23
a Pt B, 0 ; S ot (6.232)
M Go1p
s.t. nm = Bplogy |1+ 1,0 Vn, (6.23b)
’le:l ’ < Gn’l Zn]\le DPn,m + 02
1 1 Ptol
" > 7Pmll£l/' - n , , 2
p70_2 n +2Gn,1 Vn (6 3C)
M
Z DPn,m = P — pno, V0, (6.23d)
m=1
N
> fom = Fn,Ym, (6.23¢)
n=1
M
Z ﬂn,m = 1,V’fl, (623f)
m=1
P 2 R, (6.23¢)
An. ms Pn,0s Pn,m; fn,m > 07 Bn,m € [Oa 1],Vn,m, (623h)

where constraint () derives from () following Lemma @ and by setting Znﬂf{:l Drom =

P — pao.

6.5.3 Problem Decomposition

In this section, we exploit the structure of the equivalently transformed problem ()7
which, upon combination with the KKT conditions, allows the decomposition of the problem
into two independent sub-problems that can separately provide suboptimal solutions to
the radio and optimal solutions to the computing resource allocation. We begin by first
describing the KKT conditions corresponding to problem ()
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The Lagrangian function (see [184, Theorem 2.1]) of problem () can be written as:

M G »
+ A Up.m — Bplogy | 1+ n,157n,0
mz::l Gn,l Zyj\,{zl Prnym + o2
1 max 1 PtOl min tot
PR g o) ¢ o (<)

M
+)\£ (an,m_P"mx""pnO +)\B Zﬁnm_

m=1 =
M N
A MDD fam = Fa | (6.24)
m=1 n=1

where for each n and m, A2, A2, A" m> b M2 NS > 0 are the, so-called, Lagrange multipliers
that correspond to the constraints of problem (| ).

It follows from the KKT theorem (see [[184, Theorem 2.1]) that if {an’,mpn ms frms Bnom Fms Pn, O}n
is a local minimum of problem (), then there exist Lagrange multipliers A, A2, Anmos AL NS
such that

oL oL AL oL L
aan,m B apn,O B apn,m B afn,m B aBn,m

=0, (6.25)

which is the stationary condition of the KKT conditions.

Lemma 6.6. Let {{an,m,pn,m, fn,m,ﬁn,m}mpn,o}n be a local minimum of problem ()
Then, it holds

o M

o Eonrich 626
P =S (6.26)
n,m Zj:l fn.i

Proof. Note that Eq. () and the partial derivative with respect to £, ,, imply that for
each m € M it holds m‘? £_ =0, which in turn yields:

r

ey
ﬁ:...f’M:_Afz_ (6.27)

tot
Let m be fixed and for each j # m let t; = :;Ut; = ;—; Then, Eq. () implies that

it o (L4 2 ) ij 1T
mo _ > (6.28)
fn,m fn,m : (1 + Zj;ﬁm J) Zj:l fn,j

completing the proof. O
Now, using Eq. (6.26) and the fact that Zf\:{:l Bn,m = 1, we may write each addend in
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the objective function () as:

M Dn tot
T 1+3 =1 Bam Froom Tm
n,m — n M tot
Zm=1 7’n,rn
M tot
Z]‘:l "n,j

M
Dn Zm:l Bn,mDn¢n Zj»il fflu;

M tot M ot
ZTYL:l rn,m Zmzl Tn,m

D Dy ¢
SN n (6.29)

7 .
Zm:l szofn Zm:l Jnm

Observe that the first term of Eq. () depends only on {pn,0, {Pn,m}m}n and thus,
indirectly on {@y, m }n,m, whereas the second term depends only on { fy, m }n,m. Consequently,
the transformed problem () is further decomposed into two independent optimization
problems.

First, given the assumption that different users utilize different frequency bands to ac-
commodate their computation task offloading and thus, their transmissions do not interfere
with each other, it suffices to solve N independent problems to derive each user’s n optimal
common-message rate a;; and uplink transmission power p; vectors. Based on the first term
of Eq. ()7 the corresponding optimization problem may be written as the maximization
of each user’s n sum of total achievable offloading rates to the different MEC servers. The
solution to this problem will be discussed later in Section , while its formal description
is as follows:

M
, max Z e, (6.30a)
P S0 M1
st (6.234), (6.23d), (6.23d), (6.23¢). (6.30D)

Regarding the derivation of each user’s n optimal computing resource allocation £ vector,
it suffices to solve the following problem:

N
min > _Dufn (6.31a)

M
Frm>05nm At M e

N
s.t. > fom = Fo,Vm. (6.31b)
n=1

The closed-form solution of problem () and the procedure that results in this solution
are detailed later in Section .

6.6 Delay Minimization Solution for RSMA-based Multi-
server MEC Systems

In this section, we present the proposed solution to the joint computation task offloading
and radio and computing resource allocation problem. First, in Section , the users’
optimal computation task assignment ratios to the different MEC servers are determined,
based on the preceding analysis of equivalent problem transformation and decomposition.
Then, the optimal solution to the computing resource allocation problem () is derived
using the KKT conditions (Section p.6.9), while an iterative algorithm is utilized to lead
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to a suboptimal solution for the joint rate and uplink transmission power problem ()
(Section p.6.3). The section concludes with the algorithm description of the overall proposed
solution and its complexity analysis (Section |6.6.j).

6.6.1 Computation Task Assignment

The overall problem transformation and decomposition analysis presented in the previous
section is founded on the basis that, in the optimal solution, the users’ experienced delays re-
lated to different MEC servers are equal to each other, ie., T}, 1 =Ty 2 = -+ - =T, p, Vo, m.
Particularly, in Lemma B.1|, it has been proved that to minimize each user’s n maximum
experienced delay among the different MEC servers, each user’s vector of computation task
offloading assignment ratios 8* will be optimized such that the equalization of the experi-
enced delays related to different MEC servers is achieved. Lemma (.7, below, provides the
optimal solution to this problem along with insights on how to obtain this solution.

Lemma 6.7. Let {{anym,pn,m, fn7m,ﬂ:7m}m,pn,o}n be a local minimum of problem ()
Then, each user’s n optimal computation task assignment ratio to MEC server m is:

r'fz(jin'fn-,m
fr,m+onrict
* _ ) n,m %%
= n,m 6.32
n,m ZM r»flojn'fn,rn ’ ’ ? ( )

m=1 Fr mtonrict,

satisfying the conditions f,, ,, € [0,1] and Zf\,{:l Bim=1

Proof. From the general definition of each user’s n overall experienced delay T, ,,,, we have

5n,mDn 6n,mDn¢n
= et T

fn;m + ¢n7a20)$n

tot .
7an,m fn,m

= DynBnm (6.33)

Furthermore, Eq. () implies that
DTL ‘Dn n
Tom = ¢

3 M M
Zm:l Tfﬁ?n Zm=1 fn,m
D,

tot
2 :M TTL,TTL
m=1 M tot

I+¢n L

M
Zj:l I

Eq. :(19) D,

i
Zm:l 7'%(:571
on g
D,,
_ _ 6.34)
e (
Z n,m Jn,

m=1 f?’L,7YL +én 7':;:5,1

By setting Eq. (%) and () equal to each other and solving with respect to 5, m,

the result of Lemma follows. O

6.6.2 Computing Resource Allocation

In the following, the solution to problem () is derived, which provides the optimal
computing resource allocation vectors £ for all users n € A/ in the system.
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Lemma 6.8. Let {f;: ,,}nm be a global minimum of problem () Then, each user’s n
optimal computing resource allocation by each MEC server m is:

VDnon

fom = Fn—x———,Yn,m. (6.35)
> =1V Djd;
Proof. We begin by considering the following more general problem:
N
. Dy én
i, 3 oo

n=1

N M
ste > zp= Y Fu, (6.36b)
n=1 m=1

which is obtained by setting z, = an\f:l fr,m,Vn, in problem () The constraints of
problem () are convex, while it can be easily found that the objective function ()
is also convex by verifying that the corresponding Hessian is positive definite. As a result,
problem (5.36) is convex and a globally optimal solution can be obtained using the KKT
conditions (see [184, Theorem 3.8]). The Lagrange function of problem () is given by:

N D(b N M
A:Z;%Jr)\ z—:lzn_z—:lFm , (6.37)

where A > 0 is the corresponding Lagrange multiplier of constraint () From the
stationary condition 387/\ = 0,Vn, we get that % = A\, Vn, and therefore it holds

Dy on
A

V. (6.38)

Zn =

In particular, considering Eq. (), this implies that

Z F,, = Z 2y = \% Z /Dy, (6.39)

m=1 n=1 n=1

and a global optimal solution of problem () follows as:

* Z Fm Vv Dn¢n (640)

—— Vn.
n N )
- > =1V Djd;

vV Dnén
" Z;il /Djd;’
resource allocation by the different MEC servers.

It is straightforward to verify that the points {f} .}, . belong to the feasible region
of problem @), and that the objective function ) evaluated at the points given
by Eq. (@) is equal to the function (@) evaluated at the poir@given by Eq. ()

)

Now, set f;,, = Vn,m and obtain each user’s n optimal computing

Summarizing the above, we conclude that the points defined in Eq. ( constitute a global
minimum of problem () O
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6.6.3 Rate & Uplink Transmission Power Allocation

Considering each user’s n optimal common-message rate a’ and uplink transmission power
p;, vectors, these are determined by solving problem ()7 independently for each user.
The analytic formal presentation of the corresponding optimization problem to be solved
for each user is written as:

M
tot
LI D (6.41a)
pn,mZONM m=1
M Goip
s.t. an,m = Bplog, <1 + 1\;,1 n,0 ) ’ (6.41b)
mzzjl Gn’l Zm:l Pn,m + o
1 1 Ptol
no Z o B 5 e 6.41
p70_2n +2Gn’1 ( C)
M
> Pom =Pl = puo, (6.41d)
m=1
o > Ry Ym. (6.41e)

From the definition of problem (), it can be easily concluded that it resembles the
typical sum rate maximization problem in the downlink communication scenario between a
single BS and multiple users, where the transmissions from the BS to the different users are
multiplexed via the RSMA technique. Therefore, given the intensive efforts in the literature
so far in the domain of RSMA-based wireless communications, an analytic solution to the
latter problem exists and can be found in [27]. In this work, we capitalize on the analogy
between the single-user multi-server MEC system and the single-BS multi-user communica-
tions system and borrow the common rate and uplink transmission power allocation solution
introduced in [27]. In the following, we summarize the respective solution as applied in our
RSMA-based multi-server MEC system, while the interested reader may refer to [27] for the
details.

In detail, owing to problem’s () non-convexity, it is generally hard to directly optimize
the parameters ap m,Pn,m,¥m and p, o of each user n, and for this reason, an iterative
optimization procedure is followed. First, considering that each user’s n common-message
rates an,m, Ym and uplink transmission power p,, o are fixed, its optimal uplink transmission
powers p;, ., of the private messages to the different MEC servers are determined according
to Lemma below.

Lemma 6.9 (see [27], Theorems 1 and 2). Let {{an,m, D}, m}tm> Pno}n be a local mazimum
of problem () Then, there exists my € M such that each user’s n optimal uplink
transmission power of the private message to each MEC server m is:

- if m # mo, 6.42)
n,m Pmer o — Zm#mo pﬁ%’, if m = mg,
where
. an,m—Rp" o?
ppn = <1 —27 Ba > | P —pro + G (6.43)
n,m
and
o — RITI o2
mgo = argmin2~  Bn P —pp o+ . (6.44)
meM Gn,m
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From Lemma @, it can be deduced that each user’s n optimal solutions py, ,,,Vm are
equal to the minimum acceptable uplink transmission powers pnmﬁ,’z that meet the user’s
minimum offloading rate requirement in Eq. (), except for one MEC server mg € M,
the wireless link between which and the user n is allocated the whole amount of the remaining
power of the user n from P***. The purpose of the latter is to allow the maximization of the
user’s n sum of total offloading rates to the different MEC servers. Consequently, the MEC

server mg that is specifically selected for this purpose is determined as my = argmax rfﬁfn,
meM

min
an,m— Ry

which by substitution of Eq. () gives mg = argmin2~  Bn (P;"‘“” — Do+ GF—Q)
meM e
Given each user’s n optimal uplink transmission powers py, ,,,, Vm of the private messages
and considering the corresponding common-message power p,, o as fixed, the user’s n opti-
mal common-message rates a,, ,,, to the different MEC servers are obtained as described in
Lemma , below.

Lemma 6.10 (see [27], Theorem 3). Let {{ay, ,,,, Pn,m }m, Pn,o}n be local mazimum of prob-
lem () Considering the different MEC servers sorted in ascending order as per the
channel gains between them and the user m, i.e., Gp1 < -+ < Gy < -+ < Gy v, each
user’s n optimal common-message rate to each MEC server m is:

i) if e < M - R™":

RmMin, ifm <l
Uy =S c1—(—=1)- R ifm=1, (6.45)
0, otherwise,

where |_satisfies (I — 1) - R™™ < ¢; < 1. R™" with 0 <1 < M, and ¢ is as defined in
Eq. )

ii) if ¢y > M - Rmin; |
ay, = Ry, Vm. (6.46)

Lemma m indicates that it is optimal to allocate more rate to the wireless links between
the user and the MEC servers of lower channel gains, and equal in amount to the user’s
minimum offloading rate requirement R™", enabling in this way the maximization of the
user’s n sum of total offloading rates to the different MEC servers. Also, given the obtained
solution ay, ,,,, we can return to Lemma and observe that the specific mg that should be
selected is equal to my = M. In other words, the wireless link between user n and MEC
server M that is characterized by the maximum channel gain G,, 5s is optimal to be allocated
more power.

Given the solution ay, .., Vm, the user’s n optimal uplink transmission power p;, o of the

common message to the different MEC servers is, then, calculated as follows.

Lemma 6.11 (see [27], Theorem 5). Let {{an m;,Pn,m}m, Photn be a local mazimum of
problem () Then, each user’s m optimal uplink transmission power of the common
message to the MEC servers is:

1 1Pt0l
p;kL,O E{Pmax+ n

2°n 2G,,

M 2
(1 — 92 Zm:1 an,m) . (P:lnafb + C? > 7Pn70 (647)
n,1

)
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where P, o satisfies the following condition:

M RMin 2
Inm_"Tn max o
5 (1 — 2T > - <Pn —Poo+ Gn,m>

m=1
= P _ P, . (6.48)

Practically, Lemma implies that the user’s n optimal uplink transmission power py, o
of its common message to the different MEC servers is equal to one out of the candidate
values defined in the discrete set of Eq. (), which results in the maximum sum of the
total offloading rates, i.e., the maximum value of the objective function ()

6.6.4 Algorithm Overview

The overall solution to the joint task offloading and radio and computing resource alloca-
tion problem scrutinized in this work under the RSMA-based multi-server MEC system,
while targeting the sum of users’ maximum experienced delay minimization, is analytically
presented in Algorithm @ Especially, lines 6-10 of Algorithm @, illustrate the iterative
procedure that is followed to obtain the optimal common-message rate and uplink trans-
mission power for each user. Considering that the solutions of all optimized parameters are
given in closed forms, the complexity of the overall Algorithm EI is O(NMT), where T de-
notes the number of iterations required for the iterative procedure in lines 6-10 to converge.
Indicative numerical results regarding the real execution time required for Algorithm to
converge are presented in Section j

Algorithm 6.1 Joint Task Offloading, and Radio and Computing Resource Allocation in
RSMA-based multi-server MEC systems

1. Initialize 02, B,, Plol, pmez Rmin D ¢ G, . F.. Yn.m.

2: Determine fy, ,,,Vn, m based on Lemma % and Eq. (3.3§).

3: Determine 3}, ,,,Vn, m based on Lemma .7 and Eq. (6.32).
4: for n € N do

Initialize agg)m,Vm, pgg()) and set t = 1.

repeat

5
6
7: Given p(tgl), determine agi)m,Vm based on Lemma and Eq. ()—( Q).
8
9

Given agf,)m,Vm, determine pff,)o based on Lemma and Eq. ()
Set t =t+ 1.

10:  until the objective value () converges.

11:  Set ay,,, = ag,)m,Vm and p;, o = p%Vm.

12:  Derive pj, ,,, ¥m based on Lemma and Eq. ()
13: end for

6.7 Performance Evaluation

In this section, the performance of the proposed solution for the joint task offloading and
radio and computing resource allocation in RSMA-based multi-server MEC systems is eval-
uated via modeling and simulation. Throughout our simulation experiments, we consider
N users randomly and uniformly distributed in a square area of size 150 x 150 m. The users
concurrently offload part of their computation tasks to M MEC servers spatially uniformly
located within this area. The channel gain between user n and MEC server m is calculated
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based on the distance-based path loss model PL = 128.1+37.6 log,,(d), with d measured in
km, while the standard deviation of the shadow fading is 4 dB [1165, 27]. Depending on the
simulation setup, different values of the overall system bandwidth B [Hz| are considered,
while the rest of the communication-related parameters are set as 02 = —104 dB, P/%% = 24
dBm, R™" = 1 Mbps and P!’ = —94 dBm, VYn € N/, unless otherwise explicitly stated.
The input data size of each user is D,, = 2 Mbits, while the value of its computation task
size C,, [CPU cycles] varies depending on the simulation setup and the system density. The
computing resource availability of the MEC servers is considered as F,, = 5 GHz, Vm € M.
The simulation results have been averaged over 3000 different channel realizations. The
results of this work are also presented in [[185].
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Figure 6.2: Comparison between the proposed and SQP algorithms’ solutions in terms of
the (a) sum of users’ maximum experienced delay, and (b) real execution time.

First, to characterize and evaluate the effectiveness of the proposed solution, we compare
its performance against the solution of the Sequential Quadratic Programming (SQP) iter-
ative algorithm used in constrained non-linear optimization [87]. SQP algorithm is widely
implemented as part of the optimization toolbox of different programming platforms, such
as MATLAB [88], and, in_this evaluation scenario, is used to solve the initially formulated
min-max-sum problem () Due to the high complexity of the original problem ()
and the inability of the SQP algorithm to result in a stable and feasible solution as the
number of users and MEC servers increases, the comparison is carried out in a small system
of B =5 MHz overall bandwidth with N = [2, 5] users, the computation task size of which
is set equal to C,, = 2000 Mega-CPU cycles. The outcome of the comparison between the
SQP algorithm (labeled as "SQP”) and Algorithm EI (labeled as "Proposed”) is reported
in Fig. . In particular, Fig.Q@ illustrates the sum of the users’ maximum experienced
delay among the different MEC servers (vertical axis) that is defined in Eq. (@.)v as a
function of the number of users (horizontal axis) and MEC servers (different graph coloring),
whereas Fig. m examines the real execution time in seconds required for each one of the
proposed and SQP algorithms to obtain a solution (vertical axis) under different user and
MEC server numbers.

The numerical results reveal that for particularly small systems with N =2 or N =3
users, the two algorithms present comparable performance regarding the minimum achiev-
able value of the optimization objective (Fig. ). On the contrary, as the number of users
increases, the proposed algorithm manages to conclude at lower sums of the users’ maximum
experienced delay among the different MEC servers than the SQP, while this performance
gap between the two algorithms diminishes as the number of MEC servers increases. This
is owed to the fact that for a small number of MEC servers, the SQP algorithm can quickly
pinpoint a local minimum of the problem by potentially sacrificing the minimization proce-
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dure’s performance. The latter is further corroborated in Fig. , where it is demonstrated
that the real execution time required for the SQP algorithm to lead to a solution is increas-
ing proportionally to both the number of users and MEC servers in the system, being faster
than the proposed algorithm for M = 2 and slower for M = 3 or M = 4. At this point,
it is quite interesting to observe that although the proposed algorithm’s complexity is a
function of both N and M (see Section [6.6.4), its real execution time is steered by the for
loop initiated in line 4 of Algorithm 6.1, and thus is mainly affected by the number of users
existing in the system. Consequently, its real execution time gets gradually higher for more
users in the system but remains unchanged as the number of servers increases. Conclud-
ing, the proposed algorithm strikes a good balance between the users’ achieved maximum
experienced delay and the real execution time.
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Figure 6.3: Pure performance evaluation of the proposed solution in terms of the users’ (a)
overall experienced delay, (b) mean offloading delay, and (¢) mean processing delay.

Subsequently, we aim to evaluate the pure performance of the proposed solution under
a large-scale system and interpret the operation of this multi-server MEC system in terms
of the individual offloading and processing delays as the number of users and MEC servers
increases. In this simulation setup, the overall system bandwidth is set equal to B = 20
MHz, and the number of users and servers varies in the intervals N = [10, 50] and M = [1,4],
while each user’s computation task size is set as C,, = 80 Mega-CPU cycles. Fig. depicts
the mean values of the users’ (a) overall experienced delays as defined in Eq. (6.17), (b)
mean offloading delays to the different MEC servers, and (c) mean processing delays at
the different MEC servers. Apparently, considering a fixed number of MEC servers, the
higher the number of users existing in the system, then the higher their overall experienced
delay is. The inverse behavior is observed as the number of MEC servers increases, given
a fixed number of users. The rationale behind this operation is as follows. Considering
that the MEC servers are spatially uniformly distributed within the square area, the denser
this area becomes with the number of MEC servers increasing from M = 2 to M = 4, the
users are getting closer to the MEC servers and achieve higher data rates (see Fig. @),
while the overall system’s computing capacity increases at the same time. For this reason,
both the users’ mean offloading and processing delay at the different MEC servers decrease.
Concerning the special case, when a single MEC server exists in the system (i.e., M = 1),
Fig. @ shows that a lower offloading delay is achieved compared to the multi-server MEC
case since the users utilize the whole available bandwidth B,, = % [Hz] to them without
splitting it to accommodate multiple concurrent transmissions. This behavior is further
corroborated by the results in Fig. where it is implied that a higher offloading data rate
per server is achieved by the users under the single-MEC server case. Nevertheless, given
the high computing demands of the users, a significantly higher processing delay is caused
in the single-server case than the multi-server case, which dominates and results in low
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Figure 6.4: Pure performance evaluation of the proposed solution in terms of the users’ total
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overall experienced delays on the users’ side for the latter. This highlights the superiority
and benefits of multi-server to single-server MEC offloading in dense and high-computing
demands systems.

To further identify the performance gains of an RSMA-based multi-server MEC system
regarding the users’ experienced delay, we compare its performance against the equivalent
NOMA-based implementation in [170] and an OFDMA-based implementation, whose solu-
tion of problem () follows the work in [18G]. The comparison is performed considering
the same simulation setup as in Fig. , while an indicative number of N = 40 users and
M = 3 MEC servers is selected. In Table p.]|, the mean values of the users’ overall experi-
enced delays (as defined in Eq. ()) are summarized, considering different values of the
minimum acceptable offloading data rate R™" to the MEC servers. As the minimum data
rate demand R™™ increases, the users’ experienced delay ameliorates both in the RSMA
and NOMA-based MEC systems, while the RSMA-based MEC system yields at average 28
ms lower experienced delays to the users compared to the NOMA-based one in all examined
R™m cases. The OFDMA-based MEC system operates only under very low R™" demands,
i.e., R™™ = 0.5 Mbps, for the given available bandwidth, number of users and servers, where
its performance surpasses the RSMA and NOMA-based systems. The latter is justified by
the fact that, in OFDMA, each separate transmission/offloading is performed over a distinct
frequency band that does not interfere with any other, resulting in a higher data rate and
thus, lower users’ experienced delay.

Table 6.1: Comparison among RSMA, NOMA, and OFDMA-based schemes in terms of the
users’ overall experienced delay, under different values of R,

Technique 0.5 Mbps 0.75 Mbps 1 Mbps 1.25 Mbps
RSMA 0.6194 0.5570 0.5117 0.4777
NOMA 0.6398 0.5827 0.5404 0.5082

OFDMA  0.5143 - - -
1.5 Mbps 1.75 Mbps 2 Mbps

RSMA 0.4521 0.4333 0.4229
NOMA 0.4852 - -
OFDMA - - -
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The results indicate that the RSMA-based system proves to be the only one among the
rest of the alternatives that can provide a solution to the sum rate maximization problem
() for increasing values of R™" up to 2 Mbps which is attributed to the intelligent
control between decoding interference and treating interference as noise. Specifically, when
employing power-domain NOMA, each transmission of a user to a MEC server senses the
interference that stems from all other transmissions to the MEC servers for which the user-
to-MEC-server channel gain is higher, making it hard to reach the minimum acceptable
data rate requirement R”". On the other hand, the inability of the implementation under
the OFDMA technique to achieve a high value for the minimum acceptable data rate lies
in the total available bandwidth fragmentation to N equal portions allocated to each user
individually, each of which is then divided into M portions to facilitate the computation
task offloading to the M different MEC servers.
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Figure 6.5: Comparison between RSMA, NOMA, and OFDMA-based schemes in terms of
the users’ (a) overall experienced delay, and (b) min data rate, under different values of
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Fig. @ illustrates the mean values of the users’ experienced delays under the RSMA,
NOMA, and OFDMA techniques, but this time considering different values of the users’
maximum power budget P***. As the users’ power budget P/*** increases, they can achieve
higher offloading rates and thus, experience lower delays (left sub-figure) under all compar-
ative multiple access techniques, while the RSMA-based solution provides constantly better
performance. Fig. 6.5, also, reveals the significant impact that the maximum power budget
P’** has on the performance of the OFDMA-based system, where the optimal solution
for each user is to equally allocate its power to the different offloading MEC servers, i.e.,
P’;{;L, and maximize the individual data rates to the servers since no interference exists
between them. This effect is claimed by the sharp decrease in the users’ experienced delays
as their power budget gets higher (left sub-figure), which is further justified by the behavior
of the users’ minimum achievable data rate among the different MEC servers at the right
sub-figure.
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Chapter 7

Conclusions & Future Work

In this chapter, the main outcomes of this thesis are discussed (Section EI) Also, interesting
directions for further research in the future are identified. Appendix A lists the publications
that the author contributed to this thesis.

7.1 Conclusions

The advancements in NextG 5G wireless networks enable and are particularly enabled by the
exaggerated data traffic demands and congestion, creating a never-ending cycle of fundamen-
tal and disruptive changes in the underlying wireless network architecture, infrastructure,
and operation in general. Besides, the stringent and diversified user-application requirements
hinder seamless service provisioning from the network operators’ and providers’ perspective,
bringing the existing networks to their operational and capacity limits. Although various
technologies have emerged lately in the direction of increasing spectrum capacity and ex-
panding mobile computing service delivery, their plain and simplistic adoption is insufficient
to address the resource-sharing problem. Apparently, a structural redesign of the resource
management and optimization approaches is needed to be aligned with the evolution of the
rest of the network.

In this thesis, we aimed to fill this gap by designing and developing resource management
and optimization solutions that are compatible with and account for the emerging NextG 5G
network’s technologies and architectural paradigms while providing a more pragmatic and
real-life spirit in the modeling and the derivation of the respective solutions. The specific
common assumptions and practices of traditional resource management frameworks that we
aimed to reduce are mainly: (i) the ability of the network to perform decision-making in a
centralized manner, (ii) the existence of complete/full information at the different network
entities, (iii) the altruistic and unselfish behavior of the network entities towards common
pool resource sharing, (iv) the unilateral treatment of radio and computing resource man-
agement problems. To deal with the aforementioned challenges, different economic-theoretic
models from the fields of Game Theory and Contract Theory were adopted to formulate and
solve novel use case scenarios while considering multiple resources to be allocated, several
network entities, and, thus, heterogeneous optimization objectives simultaneously. Thor-
ough experimentation and simulation of the designed and proposed resource management
solutions complemented our work to evaluate their operational characteristics and behav-
ior under varying scenarios and against other state-of-the-art frameworks in the literature.
Apart from the inherent benefits of the proposed frameworks owing to their distributed na-
ture and flexibility, notable performance advantages were also identified in terms of spectral
and energy efficiency, resource fairness, and response time minimization, to name a few.
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The conclusions to which we arrived are the following:

¢ Contract Theory can provide a powerful tool to enable decentralized decision-

making under incompleteness of information.

Generally, Contract Theory provides the principles and mathematical foundations for
how to regulate a market under the existence of incompleteness of information, e.g., the
employment contract between employer and employees. Capitalizing on its statistical
knowledge about the employees’ (named as agents) private information, the employer
(known as the principal) creates a menu of contractual arrangements, and each agent
autonomously selects the one arrangement out of the menu that best fits its private
information. The specific model has been successfully used in this thesis to formulate
and solve the typical uplink power control problem in a NOMA-based heterogeneous
multi-BS wireless network under the case of incomplete CSI on the BSs’ behalf. The
users, from their side, having potentially a better estimation regarding their experi-
enced wireless channel conditions, are allowed to self-adapt and autonomously select
the uplink transmission power level that best fits them out of the different contracts
designed by the BSs. In this way, it is concurrently guaranteed that the selected con-
tract meets the BSs’ requirement for successful implementation of the SIC technique
and signal decoding.

¢ Contract Theory can be successfully used to reconcile conflicting goals of
the network entities.
By designing mutually beneficial contractual arrangements, the principal can recon-
cile its conflicting goal with the agents that participate in the contract. To this end,
a sort of reward is offered to the corresponding agents proportional to their private
information and their autonomously selected effort for compensating their effort or
even motivating them to provide a higher effort than they can afford. This concept
of reconciling conflicting goals between the users and the computing service providers
has been successfully applied within a multi-tier mobile computing network. Specifi-
cally, the novel idea presented in this thesis is to adequately motivate the selfish and
greedily-acting users to utilize the whole spectrum of the computing continuum (in-
cluding the edge and fog service layers in our work). Due to its appealing properties
concerning its proximity to the users and the adequate computing capacity, the users
tend to prefer more edge computing services to fog ones, gradually leading to the edge
service layer’s congestion and performance degradation. By properly designing con-
tractual agreements, e.g., subscription packages, that provide a good tradeoff between
monetary cost and QoS satisfaction, the computing service providers can shift the
users’ preferences and increase the network’s capacity and efficiency.

¢« Game Theory is another powerful tool to enable distributed decision-making
between multiple heterogeneous network entities.
Given the already distributed nature of NextG 5G wireless networks and the inherent
competition for sharing a common pool of resources such as spectrum or computing
power of a remote server, we have extensively applied the principles of Game Theory
in our works and our proposed frameworks. The specific application of this modeling
has been used to allow for the users’ distributed uplink power control in pure wire-
less communication networks while competing for the shared spectrum through which
their transmissions are performed. Other game-theoretic models enable the hierarchi-
cal modeling of the players in the game in the form of leader(s) and follower(s). In
this type of game, the leader makes a decision that is observable to the followers, who
subsequently make their personal decisions. This game-theoretic model has also been
widely applied to capture the hierarchy between the decisions of the BS or remote
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server and the users lying in the user plane. Each distributively formulated and solved
problem by the network entities becomes a maximization/minimization problem over a
well-defined function. Then, Game Theory offers the tools for concrete mathematical
formulations and provides interesting solution concepts leading to stable game out-
comes, such as the Nash Equilibrium point that provides a common way to measure
the effectiveness of the proposed framework.

Real-life modeling of network’s behavior is complex, but the proposed
frameworks and solutions need to be of low complexity.

Real-life applications on the NextG 5G environment require instantaneous transmis-
sions and offloading, as well as real-time computations and decision-making to meet
the ultra-low-latency and high-reliability QoS requirements. Furthermore, from a scal-
ability perspective, a high-complexity centralized algorithm can rapidly become a bot-
tleneck for the network from the viewpoints of execution and information transmission
signaling overhead towards the centralized entity. In this context, effective and effi-
cient algorithms of low complexity are required. Economic-theoretic and reinforcement
learning algorithms tend to fit the above description by distributing the process and
allowing each individual to perform the corresponding calculations. In this thesis, we
designed and proposed relatively complex models that capture the participants’ be-
havior, interdependent interactions, and decisions in a realistic manner but require
low-complexity computations to converge to the optimum outcome.

Reconfigurable Intelligent Surfaces (RISs) can ameliorate both the spectral
and the energy efficiency of the network.

Reconfigurable Intelligent Surfaces (RISs) consist of several reflecting elements con-
structed by engineered meta-materials, which can reflect the impinging electromag-
netic waves by specifying their phase shift via a controller. The controller can be
dynamically configured in a software-defined manner to adjust the placement of the
elements to provide programmable properties to the radio propagation environment.
This property is aligned with the broader vision of NextG 5G networks for instanta-
neous reconfigurability and adaptability, depending on the network’s needs. At the
same time, however, the employment of RISs has been verified - within the context
of this thesis - that achieves its ultimate goal of combating the unfavorable propaga-
tion conditions due to the wireless channels’ fading. Specifically, the prospect of RISs
to enhance the energy and spectral efficiency along both the wireless access and the
wireless backhaul of the network has been investigated, demonstrating the superior
achieved performance compared to the benchmarking scenario where no RISs are de-
ployed within the network topology. In this way, the network connectivity and the
individual network entities’ battery lifetime can be extended.

Using the whole spectrum of computing continuum leads to superior per-
formance in terms of both energy and response time.

Apart from the QoS requirements of the user applications that steer the users’ pref-
erences and decisions towards a computing service provider (i.e., edge, fog, cloud),
their inherent selfish and greedy behavioral characteristics play an important role
when competing for a common pool of resources. Modeling the behavioral and eco-
nomic interplay between the users and the competitive computing service providers
is imperative to provide real-life spirit during the computing request scheduling and
computing resource allocation procedure across the different computing service lay-
ers. This is the key idea upon which our proposed framework has been built towards
utilizing the whole spectrum of the computing continuum, using Contract and Game
Theories. The main findings of our work are that the proper utilization of multiple
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tiers of computing capabilities allows for 100% satisfaction of the users’ computing
response time requirements while maintaining low energy consumption levels at the
different computing layers when compared to different offloading alternatives, e.g.,
only local on users’ devices, only edge, only fog.

Concurrent computation offloading to multiple servers reduces response
times while allowing for customization and security.

Multi-server MEC offloading is another valuable strategy for various computing ap-
plications. This strategy takes advantage of the geographically distributed servers
within the RAN of the NextG 5G networks to reduce the latency for users in different
regions. The users of limited computation or energy availability can offload parts of
their computation task to a combination of available MEC servers. Given that each
MEC server is characterized by a different configuration, e.g., computing power and
integrity in the calculations, this strategy allows for customization and flexibility from
the user side depending on the needs of each part of the offloaded task. Specifically,
heavy Machine Learning (ML) tasks, e.g., image processing, can benefit from multi-
server MEC offloading. Different video feeds generated from vehicular, healthcare, or
security applications - to name a few - can be offloaded to different MEC servers for
processing. In this way, the total task complexity is reduced, and various levels of pro-
cessing accuracy can be targeted for each part of the task based on each MEC server’s
computing capability. At the same time, distributing computations across multiple
servers can improve security in the event of a security breach on one server. Specif-
ically, regarding the reduced latency, this benefit has been practically identified and
measured in this thesis while experimenting with different multiple access techniques
during the users’ radio transmission.

Designing holistic solutions is of utmost importance to exploit the full po-
tential of the network architecture, infrastructure, and technology.

The NextG 5G wireless communication and mobile computing networks comprise an
ever-rising number of degrees of freedom concerning the resources that need to be
concurrently managed, stemming from the various enabling architectural paradigms
and technologies adopted. The spectrum, transmission power, data rate, association
to BSs, association to remote servers, RISs’ elements’ phase shifts, computation of-
floading, and computing power constitute only a few of the different parameters and
resources that need to be considered at each time while a different subset of them has
been jointly optimized in the context of this thesis. The specific outcomes of this the-
sis have verified the dominance of holistic optimization frameworks when compared
against benchmarking solutions that unilaterally treat the optimization of different
types of resources, resulting in more spectral, energy, and response-time efficient solu-
tions. Low-complexity frameworks to address such combinatorial problems that most
likely do not bear either linear or convex properties within polynomial time (i.e., mil-
liseconds) are of significant and practical importance, further revealing the effectiveness
of economic-theoretic modeling and solution frameworks.

7.2 Future Work

The work summarized in this thesis proposes a realistic, though, generic framework for
resource management and optimization, where the control intelligence and decision-making
process lie at the distributed network entities of the multi-tier and highly heterogeneous
network topology. By either modeling the competitive interactions between them (game-
theoretic modeling) or seeking to introduce their cooperation via contractual arrangements
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(contract-theoretic modeling), the self-adaptation and optimization of the different network
entities are encouraged, while providing a realistic flavor by reducing common assumptions,
such as the existence of complete/full knowledge or the altruistic acting towards a common
goal. Of course, interesting extensions of this theoretical framework can arise, and novel
applications under the emerging 6G networks can be explored.

First, building upon the competitiveness of the underlying wireless communication and
mobile computing network, new solution concepts based on the Market Equilibrium (ME)
- or Economic Equilibrium as it is also called - can be explored. The ME is a fundamental
concept in economics, describing the case in which the supply of a good or service matches
the demand for that good or service in the market [187]. In other words, it is the point at
which the quantity of a product that producers are willing to supply is equal to the quan-
tity that consumers are willing to buy. The ME ensures that the resources are allocated
efficiently, are not wasted, and the prices of the goods or services cover the producer costs.
As a result, understanding the ME is critical for determining the prices and the quantities
in a market economy, while it can also provide insights and predict how changes in various
factors can impact the market. Market equilibrium concepts apply to wireless networks
as well. In the context of wireless communication, market equilibrium helps optimize the
allocation of limited resources such as radio spectrum and network capacity [L8§]. When
supply (network capacity) aligns with demand (user data traffic), it results in efficient re-
source utilization. If the network capacity exceeds demand, it represents an underutilization
of resources, whereas excess demand without sufficient capacity leads to congestion and a
degraded user experience. Wireless providers constantly strive to find the equilibrium point
where they can efficiently meet user demand while managing network investments. Market
equilibrium principles guide decisions on pricing, capacity expansion, and quality of service
to ensure the smooth operation of wireless networks while meeting consumer needs. Similar
analogies can be made for the mobile computing market, offering computation offloading as
a service, or any other service provided inherently by the network to the subscribed users.

Another interesting extension more related to the users’ perspective when subscribing to
a communication or computing service is their QoS satisfaction instead of the myopic QoS
maximization. In this thesis - and in the majority of the literature on wireless networks -
the user-centric solution concepts based on Game Theory concentrate on the users’ total
QoS maximization captured by their utility function. Such a strategy, however, results in
unjustified network resource drainage or unfair resource allocation among the users. Instead
of targeting optimality, the philosophy of aiming at a satisfactory QoS can be adopted. There
are naturally several types of services that users are either simply interested in achieving
a minimum QoS level, or they are insensitive to small QoS changes, such that there is no
point in consuming additional resources or paying higher subscription fees for a better QoS
level. This allows for remarkable savings in terms of power, cost, and signal processing
complexity from the users’ side, as well as contributes to increasing network capacity in the
number of satisfied users while offering more personalized user satisfaction treatment. Given
the need for sustainability in the designed and proposed resource allocation frameworks for
future wireless networks, the concept of QoS satisfaction can ameliorate energy efficiency
and overall resource utilization. This solution concept can be realized by following problem
formulations based on Games in Satisfaction Form [189].

Considering the extension of the application of the proposed theoretical frameworks, an
intriguing example constitutes Federated Learning (FL) over wireless networks. Federated
learning is a distributed machine learning method that enables mobile users to collabo-
ratively learn a shared prediction model while keeping their collected data on their de-
vices [190, 191]. To train an FL algorithm over a wireless network, the users must transmit
the training parameters over wireless links to the responsible network entity that controls
the federated learning procedure (e.g., edge server), which in turn can introduce training
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errors due to the limited and shared wireless resources between them, as well as the inherent
unreliability of the wireless propagation environment. First, as implied by its operation,
FL provides a distributed communication and computing architectural paradigm perfectly
aligned with the ones studied in this thesis. Secondly, the incompleteness of information
between the users and their communication with the controlling network entity worsens
the training procedure and results in the users’ unnecessary energy consumption for both
transmission and local model training/computation task execution. The latter has as a con-
sequence limited motivation from the users’ perspective to participate in a federated learning
procedure, calling for appropriate mutually beneficial arrangements between them and the
controlling entity. Last, holistic solutions that jointly treat the problem of radio and com-
puting resource allocation at the user devices’ side should be implemented to unleash this
architectural paradigm’s benefits. Therefore, the problem of federated learning over wireless
networks provides a perfect application that naturally extends our work along the different
research directions that we tackle [[192].

Last, apart from the different theoretical frameworks and emerging application examples
where our proposed resource management solutions could provide a good fit, the evolution
of the resource management algorithms is also possible and even necessary. Continuing on
the wide topic and research area of machine learning while placing our focus on Reinforce-
ment Learning (RL) and Deep Reinforcement Learning (DRL) [193], several practices and
algorithms from the latter field can be utilized and contribute to the excellence of our pro-
posed frameworks. Indeed, RL/DRL is another powerful tool that enables decision-making
in situations where perfect information on the system is impossible, by simply relying on the
corresponding agent’s past actions and the observation of its effects on them and the envi-
ronment, possibly ignoring the effect on other agents or more precise network information.
RL/DRL can also model both single-agent and multi-agent systems and distributively solve
resource management problems when the second case applies, allowing at the same time
more complex modeling in _general compared to the meticulously hand-crafted economic-
theoretic utility functions [[194]. As a consequence, more complex behaviors, interactions
and decisions can be captured, leading to even more realistic solutions to the resource man-
agement and optimization problem, with the cost, however, of potentially higher execution
and training times.
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Exterauévn Hepidnyn

Y76 TO TPLOO. TOU EVPUTEPOV OPAUOTOS i wn(ptonoinon KO UETOOYTUATIONO TWV KABETWV
[Stom]xowum/ (.. szwsg moheLg, EEvTTvo ovomua Uysuxg, eEwwoc £pY00TAOLEL), onuawvemt
LOL GLVED TEPOTYOULEVOL aOENOT TWV ecpotpuoywv LE EVIOTLKEG omocm]oug WG TPOG TOV OYKO TV
SeBOUEVDV TTOV SLayEPLTOVTOL KL TV OVOYKOLO VITOMOYLOTLKT Lo}V YioL TV emeEepyaoio av-
TMV. AUTO €)EL WG UTOTEAEOUA TV ETLBOA GUOTNPDV OTALTNOEWY TTOV GPOPOVV TO ALOVPUOLTO
SUKTLO ETLKOLVMVLOV KO VTTOAOYIOUMV. G LECO ETEKTOONG THG GUVOECLUOTHTOG, AVENONG TG
(POOUOTIKNG KOL EVEPYELOKTG ATOS00TG KOL UELDOTG TG YXPOVIKNG KaBLaTEPN OGS, PLa TANOdpa.
TEYVOAOYLOV KOL OPYLTEKTOVIKDV TOPASELYUATMOV AvOSELKVIOVTAL WG BOOLKG HEGK EVEPYOTOL-
NONG Kal EVOUVAI®ONG TV aoVpRaTwy SIKTOwV 5G €TOUEVIG YEVLAG. Z€ aUTO TO TTAGLOLO, 1|
ATAOIKT] VIOOETNON VPLOTAUEVOY ADOEWV 0F TOPASOOLAK(, TPOPAUATO KATAVOUNG TOPWV €l
VOIL OVOLTTOTELEOUALTLKT) YLOL TNV €E€PEVVNON KOl TNV EKUETAMEVOT] TWV SUVATOTHTWV TOU SIKTHOU.
Avtifeta, apketol Babuot ehevbeplog TPEmeL Vo KaBoPLLOVIOL TAVTOXPOVO. OYETIKA e T (Vo
KO TO €L80G TWV TOPMV TTOV KATAVEUOVTAL GTO SIKTVO, AAUBAVOVTOG TOUTOYPOVE VITOYLY TOV TTO-
MTAEUPO aVTAYMVIOUO UETAED TOV SLAPOPETIKDY EVOLAPEPOUEVOV UEPMV (TT.). OCUVOPOUNTEG,
TAPOYOL).

21 SLoTPLPN OUT AVOAIOVTIOL OL CUYKEKPLUEVEG TEXVOLOYLEG TTOV AELTOUPYOUY G BaoLkd
LETOL EVEPYOTTOINONG TV EEETALOUEVWV AOVPUOTOV DIKTOWV ETOUEVIG YEVLAG OE CUVOVOOUO UE
TOL TTPOPANUATA SLOYELPLONG TTOPWV TTOU CUTEG AVASELKVIOUV KL TOL OTTOLCL AAUBAVOVTOL VITOYLY.
EtétKétspa TOPAKATW usketd)wat eEeMEelg oty aovpuatn derag (air interface), dmwg véeg
TEYVIKEG TOAMOTTANG TPOOPAONG 1 n GALEG TEYVONOYLEG snsuﬁawcsg 7LPOG TO CLOVPUOLTO nepLBaMov
6La600n<;, SESMESLQ OV a(popovv OTNV OPYLTEKTOVLKT] TOU SKTUOU, aAMG KaL 0TI Wop@Y TG
EVPULOG TTOV AVTO TPETEL VAL (PEPEL.

1. EEeMiers oty acOpuotn demag

1.A. Néeg teyvikég morhamdns Tpocpacns

Méoo. 0g oUTO TO GURPOPNUEVO KOL OTTOLTNTIKO TEPLBAALOYV AOVPUOTOV ETLKOLYWVLMV, TO
TPOPANUA TNG ATOTELEOUATIKNG, OUVETNG KoL PELOWANG YPNO1G TOV TOPWV KL TMV SUVOTOTY-
TV TOV CUOTNUOTOG KOL TWV (PNOTOV YIVETOL 0KOUT TTLO ETELYOV. ATTO TNV TAEVPE. TOU GoVpP-
LOTOV SLKTVOV, GUTH 1] GVAYKT) OVILKOTOTTTPLLETOL OTHV OITOTELECUATLKT XPTO1 TWV SLoOEcLmv
TOPWV PAOUATOG. ATTO TNV TAEVPA TV XPNOTMV, GUTOL TPETEL VO, Sl ELpLLovTal EEvmva TV
eMEVOUON LOYVOG TV (POPNTMV OUOKEVDY TOUG YLO. TNV EKTEAECT) SLAPOPETIKMV EPYATLDV ETTL-
KOWV@OVLG kKo vtohoytopov. Tlpdyuatt, 1 texvikn ToAOTANG TPOORAOTG TTOU YPTOLULOTTOLELTOL
Y10 TV TOAUTAEELD TV SLAPOPETIKNDV UETUSOCEMVY TOU TPOYILOTOTOLOVVTAL ELTE OTNV CeVEN
avodou 1] KaBOSOU £lval KPLOLUY VIO T PACUOTIKT] KL TV EVEPYELOKT] 0t0d0on Tou dtkthov.

Iponyobueveg yeviég aovpuatov SIkTomy, .., 1G, 2G, 3G, Baciloviov amoKAELoTIKA OF Te-
yvikég OpBoywvikng Morhasing Ipdopaong (Orthogonal Multiple Access - OMA) [[19], oOugpmvo
ue T omoieg Ta Srabeapua Mok Iopwv (Resource Blocks - RB) og k46g kupéhn ywplLovral op-
Boydvia gite 070 TESIO TOV XPOVOV, TG GUYVOTITAG 1] TOU KMOSLKA KOl KOTOVELOVTOL KATAAMNAL
£T0L (DOTE VO KOTOOTEMAETAL 1) TOPEUBOMT HETAED yertovikdv RBs. Av kau ot teyvikég OMA emi-
TPETOVY TNV OITAT GV VEVOT] OTUOTOG OTOV SEKTN], ELVOL ONUAVTIKG TTEPLOPLOTIKEG OTOV apLOud
TWV TAVTOYPOVOY UETADOCEWY TTOU UTTOPOVV VAL VITOOTNPLEOVY AOY®™ TOV TETEPAOTUEVOL UPLOUOD
v Sabéoumv RBs koL, og gk ToUTou, 0d1yoUV 08 KoK ¥pNon Tou @dopotos. Emuthéov, 1
OV KOKT| TTOLOTITO TOU KAVOAOU TV YPNOTMV O GUVOVAOUO E TNV TUXALC. VO TOV oVp-
LOTOL TTEPLBAANOVTOG SLAS00NG SV UTOPOUV VO, £yYUN000V THV ETLTUYLC TG UETAB00NG dedOE-
VOV akOun Ko vitd opBoydvia Katovout Topmy @aouatos. Qg ek to0Tov, 0 oYedLoopds Kal 1
AVATTTUET TTPONYUEVWV KOL LOYVPDV TEYVIKDV TTOAATANG TPOOROONG SLEPEVVATAL CUVEX DG TA.
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TEAEVTALOL YPOVLEL, UE ATTOTEREGUA TV ELo0ywYT) TG M1 OpBoywvikng TToAhaning [pdofaong
(Non-Orthogonal Multiple Access - NOMA) [21]].

1.A.1. Mn OpOoywvikn ITorrarti IIpéofaon (Non-Orthogonal Multiple Access - NOMA):
To NOMA &ivou o BootKY) TEXVIKT] TTOV ETLTPETEL TV ATOTEAECUOTIKY] EKUETAAAEVOT] TV SLa-
0oLV PadLOTOPWY KoL TV EEVTNPETNON TTOAADV YPNOTMOV TOUTOYPOVE. 0TO0 1810 RB, molvmhé-
KOVTOG TO. ONUOTO TOUG 0T0 TTEdLo TG Loyvog [22] 1 oto mtedio tov kmwdika [23]. T wopadetyua,
Bewpdvtag ™ LevEn kabodov ka epapudtovioag to NOMA oto medio g Loyvog [24], To on-
UOTOL TTPOG UETAB00T 0Ttd T0 0TaBud BAONG VPLoTAvVTOL VITEPHEON KoL ETELTO PETODIOOVTAL OF
TOAMOVG YPNOTES YPNOLUOTOLMVTOG SLAPOPETIKA emtimteda LoyVog. OL XpNoTEG UE OYETLKG VYNAO
KEPOOG KAVOAALOU OITOKMOLKOTOLOUV Ta, GTULOITO. TTOPEUBOATG TPLV ATTOKMSOLKOTOLGOUV TO G0
JTOU TTPOOPLLETOL VL0 AUTOVG YPNOLUOTTOLDVTAG TNV TEXVIKT Atadoyikng AkUpwong [apeuBoldv
(Successive Interference Cancellation - SIC), evd oL ¥p10TEG YAUNIOU KEPOOUG KOVAALOD OVTLUE-
TORLovv TV Topeufort) mg 00pufo. Amd TNV AN TAEVPd, KaTd TV e@apuoyn Tov NOMA
070 Tedlo TG Loyvog ot LeVEN avodov [24], 1 GTOKMSLKOTOL 0T TOU VITEPTIOEUEVOU ONUATOG
7OV MapBaveTor artd To oTadud BAoNg EEKIVE 0Td TO G TOV YPNOTN UE TO VYNAOTEPO KEPDOG
Kavolol, kabng To o1uo Tov elvat mo mavo o 1oyvpotepo. O xpnoTeg ue vPMAO KEPSOG Ka-
VOALOU VTTOKELVTOL O TTAPEUPOAEG aITO GROVG TOUG AAAOVG YPTOTEG TOU OUGTHUATOG, EVX OL YP1)-
OTEG XOUNA0D KEPSOVG KOVAAOU ATTOLAUBEVOUY UETAS00T X WPLG TAPEUPOLES. AedOUEVOL OTL OL
XPNOTEG SLakpivovtal e BAom THV TOLWOTNTA TG AOVPUATHG CUVOEDT|G TOVG KL TNV OVTILOTOLT|
£mEVOLOT LoYVOG KATA T1 LETADOON TTOU, UE TN OELPA TG, KOOOPLTETOL PACEL TG EMIOLWKOUEVNG
TOLOTNTOG VITNPETLOG, T0 NOMA TTapgyel JLo amoTELEOUATLKT WEOOSO YLa TNV emITEVEN Stkano-
00VNG UETOED TOV SLOQOPETIKMV YPNOTMV. Q0TO00, Ta. emtitetyuata Tov NOMA 600V agopd ™)
POOUOTLKY KOL EVEPYELOKTY amtod00N, KaBdg KoL T Stkaoouvn UeTaEl TwV YPNoTdV, ouvodel-
OVTOL A0 TO KOOTOG TG CLUENUEVTG TTOMUTTAOKOTNTAG ATTOKWOLKOTTOIN 0TS OTUATOG OTOUG OEKTEG
o€ avtiOeon ue TIg ToPAd0oLOKES TeYVIKEG OMA.

1.A.2. MoAhamin Hpoopaocn Awaipeons PuOuov (Rate-Splitting Multiple Access - RSMA):
To RSMA avnkel otnv gupOTept KaTnyoplo Twv () opOoywviK®mV TEXVIKOV TOMOTANG TPo-
opaong Ko Bempeitar TPOKTIKE wg 0 duadoyog tov NOMA, TapE ovTog Vo YEVIKOTEPO KL
LOYUPOTEPO TAALOLO UETAB00NG GTTd TOV FTPOKATOXO Tou [23, 26]. AkorovBdvtag avth TV Te-
YVIKY, TO UNVOROTO KOOEVOG X pNoTh X mPLLoviol og Kowvd (common parts) Ko SLwTika (private
parts) UEPY 0TOV JTOWTTO, £TOL MOTE WEPOG TNG TAPEUPOANG VA OTTOKMOLKOTOLELTOL OTOV SEKTN
EV(M TO VTTOAOLITTO VO, OVILUETWTTLCETAL ¢ 00puPog. Me autdv Tov Tpdmo, To RSMA emitpémel Ty
OULOAY YEQUPWON KO, ETOUEVIS, TOV OVUBLBOOUO TV SV0 GKPOLWV OTPATYLIKMV SLorEPLoNG
TAPEUPOADY, SNAAST CUTMV TNG AVTUETMITLONG TV TOPEWBOLDOV wg BopUBOV Kal Thg TANPOoVG
ATOKWOLKOTTOINONG TapeuBormv. H TpdTn 0Kpailo TEPLTTOON EIVOL XOPAKTNPLOTIKY TWV OU-
otudtwv Modhamhng pdopaong Awaipeong Xwpov (Space Division Multiple Access - SDMA)
ko [ToAhosmdng Ewoodov TMoihaming EE6Sov (Multiple Input Multiple Output - MIMO), evd 1)
dettepn mpoeteivetar amd to NOMA. [N mapdaderyua, kotd 1o RSMA ot CevEn kabddov [27],
TO VTEPTIOLUEVO UNVULLC, TTOU PeTadideTal artd o 0Tabud Baong Tpog TOAOVG YPNOTEG XWPL-
Tetow og €va Kowo wivupo (common message) kKo £vo tdwTikd unvuua (private message). To
KOLVO WVUILOL TTPOOPLEETAL KO ATOKMSLKOTTOLELTAL 0td OAOVG TOUG EUTTAEKOUEVOUG YPNOTEG OTH|
UETAB00T, EVH TO LOLOTIKO UNvupa agopd kabe xpNnot Eexmplotd. Qg amoTéleoud, Kot TV
OTOKMSLKOTTOLN 0N TOU LOLWTLKOV UNVIIOTOG, OL TTAPEUPOAES TOV TPOEPYOVTOL OTTO TO LOLWTLKG
UNVOUATA TOV GAA®Y XPNOTOV OVTLUETOTLLOVTAL mg 00pVPog. Me auTtdv TOV TPOTO, ITOPEL Va.
£mITEVYOEL Lo KO LOOPPOTTLOL LETAED ATTOTEAEOULATIKNG XPNONG PAOLOTOS, SLOLELPLONG TTOPEU-
BoADY Ka TOAMTAOKOTNTAG ETEEEPYOOLOG ONUATOG, BEATLOVOVTAG TV ATTO800T] TOU AOUPUATOV
SukTov.

1.B. Avadwepopgaoues ‘EEvnveg Emugaveies (Reconfigurable Intelligent Surfaces - RIS)

Me 0TOY0 THV AVTLHETMITLON TOV TPORAMIUOTOG TG ETEKTAONG TNG KAALYNG TOU SLkTHOoU, 1)
teyxvoloyia Twv Avadiapopeononv ‘EEvmvov Emwpaverdv (Reconfigurable Intelligent Surfaces
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- RIS) avodeiybnke mg évag AAhog BAOIKOG EVEPYOTOTHG TOV ACUPUAT®V SIKTUMV ETOUEVIG
vevidg 5G. H eloaywyn twv RIS wg tpdmov yeiptopot tov meptfdiloviog aovpuotng Siddoong
amoTELEL EVOL TPOKATAPKTLKO Buat TTPog To evupitepo dpapa Twv Atktiov Kabopliouevov amd
Aoywopkd (Software-Defined Networking - SDN), o0ugpmvo ue 1o 0molo To. SiKTue, Wropolv vo.
eMEYYOVTOL €€ QITOOTAOEWG PEOW TNG YPNOTG TPOYPAUUOTLLOUEVOY Aoyiowkoy [28]. EmuwAgov,
0 oyediaonog Twv RIS tkavortolel T BAOLKT QITOLTNOT YO EVEMKTES, EPIKTEG KL OLKOVOULKAL
OTOSOTLKEG MIOELG OO0V OLPOPQ. TV OVATTTUEN], T1) GUVTIPTON KO TOV ELeyy0. Qg €K TOUTOU, TOA-
AEC EPEVVNTIKEG £PYAOLEG WTOPOVV Va, BpeBovv 0T PLBAOYPApLe TOU UEAETOVV SLaPOPETLKEG
TTUYEG TOV OYESLOOUOT, THG AVATTTUENG KoL TNG BEATLOTOTOINONG TOVG, KAVOVTAG YPNOT] KoL (-
AoV 0pwv, dntwg ‘EEumveg Avaxhaotikég Empaveieg (Intelligent Reflecting Surfaces - IRS) [29]
Kkow Meydheg Evgueig Emupaveieg (Large Intelligent Surfaces - LIS) [30]. Ipoxtikd, €va RIS eivon
UL EAEYYXOUEVT OTTO NOYLOULKO LETOETLPAVELD. YAUNAOU TTAKOVG KOL OYNUATOS MOG SLodLAoTa-
™G emimedng SLaTaEng ov aroTeheltal artd Evay apLdpd TAONTIKOY avaKAAOTIKOV OTOLYELMmV
Yoot k6otoug. Kabe uepovmuévo avakhaoTikd OTOLYEL WTOPEL VEEGPTITO VO AVTAVOKAG
TOL TTPOCTLITTOVTO, ONUOITO, TTPOG EVOLV ETLOVUNTO TPOOPLOUO, 0 0TT0l0g KaDOopLZeTan pe YneLako
€Yy o ToU pUBLOUEVOU TTAATOUG KOl TV UETATOTLOEWY QAONG TV oToLyelmv tov RIS puéow
evog €Eumvou eleykt). O abpoloTikog 0TOY0G TULOW ATTd TOV ELEYXO TMV AVOKAQOTIKOV GTOL-
YELWV UTOPEL VO. ALPOPd. T UEYLOTOTTOMNON TNG QaouaTikng amrddoong [B1]], Tnv ehayiotomoinon
Katavalwong evépyelag [B2] 1 v mapoyn EEapetikd AEOmiotmv vinpeotwv Xouning Xpo-
vikng Amtokpiong (Ultra Reliable Low Latency - URLL) [33]. Ev to peta&l, o RIS pmopoiv va
gyKkataotafolv omoudnmote, mKaADTTOVTOG EMLpaveLeg £8Gpovg [B4] 1) axdpo Kol agpoueta-
pepoueveg mhateopues [33].

2. EEeMEerg otnv 0pyttekToviKy] dikTiou

MéypL OTLYUNG, TO. VIEAPYOVTA QLOVPUATO SIKTVO, £XOUV OYESLOOTEL YLOL Vo EEVTTNPETOVV OU-
OLOOTLKGL ETTLKOLVOVIEG TTPOCAVUTOMOUEVEG OTO. bit, 08 AVTLOEOT e TV TPOCAVOTOMOUEVT] 0TIV
EKTELEON EPYAOLDV VITOAOYLOUOU QUOT TOV QOVPUOTMV ETLKOVOVLMOV ETOUEVNG yevide. Ta Si-
KTua €TTOUEVNG YEVLAG D0l TTPETEL VO, VITOOTNPLLOVY GUETEG AAMAETIOPAOELG AVOPMITOU UE UN)-
YOVT] KOL UNYOVIG LE PITYAVT] LECW KELUEVOD, OULAOG KOL ELKOVAG, KOOMG Kol ETCVENUEVNC KoL
ELKOVIKNG TTPOYUATLKOTITOG YL VO EUOVYPOUULOTOUV UE T1) YEVIKOTEPT) AVOYKT] YLOL YPLOTIOL-
non, Kabdg ko e TG avaykeg Twv kdbetmv fopnyoviov. H televtaio amaltnon emBailet
1] GUYKALOT] ETLKOLVWVIOG KOL UTTOAOYLOW®MY, UE OITOTELEOUO, WLt BadLd oAAayY) 0T OUVOMLKT|
CPYLTEKTOVLKT] TOV SLKTVOU.

TToAG. LOVTEAQ VITOAOYLOUMDY £X0UV TPOTAOEL TA TEAEUTALA YPOVLA OTTO TV EPEVVIITLKT] KOL-
VOTNTO TTOU SLOUOPPAVOVY TO AeYOUEVO "UTTOMOYLOTIKO GUVEYXES", UE VTTOMOYLOTIKG GUOTIUOTO
EYKATEOTNUEVAOTIY AKPT) TOU SLKTVOV £mG TO VEPOG, OTTDTEPOG OKOTTOG TWV OTTOLWYV ELVOL VOL ALVTL-
UETWILOOVY TNTHUOTO TOV EQPAPUOYMV IUE GTTALTHOT VPNA0D 0poVg TMOVNG, YEWYPOUPLKNG Sl
0TOPAG, EEULPETLKG YOUNATG YPOVIKNG aTOKpLonG Kat ovENuévng Wimtikdtntag. Ta o dnuo-
QUM TOPOSELYUATA, WOTOCO, Elva oL TeXVohoyieg Trroroyotikol Négoug (Mobile Cloud Compu-
ting - MCC) [[13, [16], Troroyiotikng Ouiying (Mobile Fog Computing - MFC) [[14] koL ta Tmolo-
YLOTLKG Zvothuata oty Akpn Tov Auktiovu (Mobile/Multi-Access Edge Computing - MEC) [[17]. O
KOLVOG TTOPOVOUALOTIG UETAED QUTOV TOV TOPOSELYUATMV ELVAL 1] AVATTTUEY] SUVATOTHTMV TOU
HOLGLOUV UE TO VTTOMOYLOTIKO VEQPOG 0TIV GKPT) TOU SLKTVOV UE TN Uop@l] KEVTPWV dEdouEvmV
(data senters), evdd SLAKPIVOVTOL GITO GPYLTEKTOVIKT] GITOY OYETLKG e T O£0m 6mov TomofeTel-
TOL 1] VITOAOYLOTLKT) TOUG Loy UG, BLdIKOTEPT, 0TO LOVTEAD VTTOAOYLOUMY TNV GKPT TOU SIKTVOU, 1)
VITOAOYLOTLKY LOYUG KOt 1) ugpuics VAOTOOUVTAL AKPLBMG 0TV GKPY Tou SIKTHOV, EVM 0TIV TTe-
PLITTWON TOV VITOAOYLOUO OULYXANG, CUTY 1) AELTOUPYLC. PTTOPEL VO, TPOCYEPETUL OE SLAPOPETLKES
0¢oeLg ueta€ g GKpPNG Tou SLKTHOV KoL TOV SIKTVOL Kopuol (core network) mov ouvdgeTaL ue
10 vépog. Eival, emopuévmg, Suvatod va dnuovpyn et (Lo Lepopy k) TOAVETLITEST APYLTEKTOVLKY,
SLoovvOEdEUEVT tEe TNV VITOSOUT 0LOVPUOTOV SLKTVOV, 1) OTTOLC. ETLTPETTEL TI) CUVEPYAOLA TV ETTL-
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p,spovg Kevrpmv 6860“.8\’(1)\’ ueta&l tovg. Onoloadnmote nskom]c_, amo Tpitovg napoxouc_, vITn-
PECLMOV swg tekucovg YPNOTES, OGALG KOL oG 1d10vg ToUg napoxovg VITOSOUNG — WITOPEL VaL PN
OLUOTTONOEL GUTO TO VITOMOYLOTIKO GUVEXEG KO VO EKPOPTMOEL TIG VITOLOYLOTIKEG TOU EPYAOLEG
YLO. LTTOUOKPUOUEVT EKTEAEDT], OELOTTOLDVTOG TNV VITAPYOVO0, VITOKELUEVT] VTTOSOUT] CLOVPUOTOV
dikTvov.

2.A. Yroloyotikd ZTvotuate otnv Akpn tov Awrvov (Multi-Access Edge Computing -
MEC)

Edwkotepa, to MEC €xel eloayBel yio var EPEL TLG VITNPECLEG KOL TOVG TTOPOUG TOU VEPOUG
7O KOVTA OTOV TEMKO YPNOTI), OOV 0 OPOG "TLo KOVTA" VITOSNADVEL TNV GUECT) EQYAPUOYY] TOU
£vtog Tov Akthov Padiompdopoong (Radio Access Network - RAN). Ewdikdtepa, oL eVOEIKTIKEG
Tormo0eoieg avartTuENg mov eEetdtovron yia o MEC amd to MEC ISG mepithapfavouy, Kupeheg
LTE/5G BS (eNodeBs/gNodeB), eheyktég aovpuatng mpooBaong 3G (Radio Network Controllers -
RNC) kot dixtva morhamhdv padio-texvoroyidv (3G/LTE/WLAN) [39], evoouatdvovtag emi-
ong dAhovg StkTvakolg TOPOVG Kat TOPOVG aTTobNKeVONg e TN popgn ¢ mhatpopuag MEC.
SVVERMDC, MOYm TG TTUKVING £YKOTA0TA0NG TV dtakouotdv MEC kot tg eyyUTNTig TOUG 0TOUG
xpNoTES, To MEC Tapgyet ot ToAG virooyouevn Ao oto TPoPANUaTe. ETEKTACLUOTITAS, VITO-
OTNPENG KIVNTIKOTNTAG, GOPAAELOG KOl LOLWTIKOTITAG, EKTOG QITd TNV VITOOTNPLEY ETTLKOLVM-
VIOV KO EKTEAECEMY OTTOUAKPVOUEVMV VTTOAOYLOUMY UEYAAOU OYKOU, YLOL TOL 0TTOL0L TPOOPLLOTALY
apykd. Ta SIKTVO KLVIITAV VITOMOYLOUWMV ETOUEVNG YEVLAG Ba TTPETEL VA UITopovV vo. eEurn-
petolv TANBDPO. KIVOOUEVOY OUGKEVMV KL, MG €K TOVTOV, OUTOLTELTOL 1] SUVOULKT] KL Atpo-
oKomTN SLayElpLon Touv aptduol Kot Tng Kivnong Toug YLa. T SLaThpron Wog VYnANg ToLOTHToG
vrnpeotog. Emumigéov, 1o MEC akolou0sel TLg YEVIKEG OPYEG TWV KATAVEUNUEVMV OPYLTEKTOVL-
KMV, TOPOUOLT UE TNV KATAVEUNUEVT] OPYLTEKTOVLKY TOV AGUPUATOV SIKTOWV, EVIOYVOVTOG TNV
AOPARELD, TOU GUVOAMKOD SLKTHOV KOl LELDVOVTAG UEUOVIUEVA onuelo aoTtoyiag. Eivar aEloon-
LELDTO, WOTO0O, OTL AVEEAPTNTO ATTO TO EAKVOTLKG KO KUPLOPY O XopakTneLotika tov MEC og
0UVYKPLON UE GAMG. LOVTERD. VITOLOYLOUMYV, ELVOL CNULAVILKO VO AOUBAVETAL VITOYN KOl VO, YP1)-
OLILOTTOLELTOL (0G CUUTTAT PO, TOU IOVTELOU VTTOAOYLOTIKOU VEQPOUG Ko Oyl G VIIKOTAOTAONG
tov tehevtanov. To MEC omotelel puor akouo Ko deEauev) mopwv mov Oa TpEmeL Vo ypnoL-
LLOTTOLELTOUL OLTTOTEAEOUATUREL, GUVETA KO Ue Pedd yia va KaprwBolue ta ogpéhn Tov, apouott
LLE TOUG TTOPOVG (PACUATOG OTO TAGLOLO TV QLOVPUATOV ETLKOLVWVLMOV. ALOPOPETIKA, 1) VITEPEK-
neTdAlevon tov Oa 081 yNoeL otadLokd og VITORAOULOT TNG ATOSOO0NG TOV.

3. Evooudrnon svguiog

H onuavtikn avEnon g KukAoQoplag SeS0UEVMV KaL TOV EPYACLHV VTOAOYLOUOD 0dNYel
OT1] LETATPOTTH TOV POSIOTOPWYV KO TOV VITOAOYLOTLKOV TOPWV O€ KPLOLIO CTUELD GUUPOPNONG
TV aoVPUATOV SIKTOMV ETKOLVWVLNG KO KIVITMV VITOLOYLOUMV ETOUEVTS YEVLAG. 'Eva ldog
VONUOOUVIG TOV SIKTVWV ETOUEVIIG YEVIAG EYKELTOL 0TIV LKAVOTITA TOUG VAL EKTEAOUV SUVOLLLKT
Sayeilplon Ko BELTLOTOTOINOT TOV TOPWV AVTMOV. AESOUEVIG TG KATAVEUNUEVHG PVONG TOUG,
aUTO 1O €180¢ VONUooUVNG Oa TPETEL VoL EKTELVETOL 08 OMO TO £TTLITESO YPNOTI], OTO TUNUA TOU
SIKTHOU PASLOTPOGRAONG KAl VITOAOYLOTLKOD (KPOU, 0TO SIKTUO KOPUOU KOL TO VEPOG, UE TNV
gvvola OTL KGBe SLKTLOKT) OVIOTNTA B0 TPETEL VO UTTOPEL VO, AOUPBAVEL AUTOVOUEG ATTOQPAOELG
OYETLKG, 1€ TNV TLPOCWITLKY] EKUETAAAEVON TV TOPWY TG, BV Tw neta€v, ammd otkovouk dmoyn
K0 07t0 TAEVPAG AYOPAS, TO SIKTUA ETTOUEVNG YEVLAG ATTOTEAOTVY £VOL AVTOYWVLOTIKO TTEPLBAAAOV,
OOV TTOAAOL EVOLAPEPOUEVOL, TT.Y. SLUYELPLOTEG SIKTVWV KIVNTNG TNAEQOVIOG, TAPOYOL VTTNPE-
OLMV VITOSOUNG 1) VITNPECLMV VEPOUG, OUVEPYATOVTAL 1) GKOUT] KOl AVTOYWVILOVIOL 0TIV TTAPOYN
TAPOUOLWY VITNPECLOV EMLOLDKOVTAG TOUG TPOTHITLKOVG TOUG 0TOY0UG. OL TELEVTALOL OTOYOL UITO-
PEL VO, ELVOIL SLOPOPETLKOL KOL/T) oc}\M]kosEapr(buavot OTTWG 1) LEYLOTOTTOLNOT] TG EVEPYELOKNG 1)
cpaouawcng anoéoong TOU SIKTVOU, 0 UETPLAOUOG TWV napeuﬁokwv n skaxtoronomm} ™G ¥po-
VIKNG KaBUOTEPNONG 1) 1 AOENON TOV KEPOOVG, YLOL VO AVAPEPOULLE UOVO UEPLKG 0TT0 Tat SLdpopa

136



napadetypora. Tavtdyxpova, 1 TOAVSLACTOTY PUOT TOU TPOBANUATOG SLOYELPLOTG TTOPMV O)E-
TIKG (e TOV TUTO TOUG KO TLG OUTOULTNOELG TTOLOTTOG VITNPECLAG TWV YPNOTOV TOV TPETEL VO
tkavortom 0oV, KAVEL POV TNV avOaYKT VL0, KOLVO ETLOTNUOVLKG epyalela, ueBodoloyieg kan
TPOOEYYILOELS TTOV UE AKPLPBELOL KOl PEUALOUO LOVTEROTOLOVV T GUIITEPLPOPCL TOU VIO SLepedivon
dikTvov.

O amhTEPOG 0TOYOG, WOTOGO, OTNV TPAYUATOTOWON THG VONUOoUVIG Bl TPETTEL VoL elval 1)
TOPOYN OMOTIKOV ADOEMY 0TO GUYKAVOVTO, TTPOPANUATA SLOYELPLOTG PASLOTOPWY KL VTTOAO-
YIoTKOV opwv. To MEC Booiletor og peydio Babud oty achpuoatn Siemapy mov TpokTika
eEVITNpEl 0TV EKPOPTMOOT EPYOOLDY VTTOLOYLOUOU OTOV EEETATOVTOL EQAPUOYES YLOL KIVNTEG GU-
OKEVEG. AUTO ONUALVEL OTL 1] ATTOS00T] TWV KLVITMV VITOAOYLOUMV ELVOL CUVUPAOUEVT] LLE TNV TTOLO-
TNTO TNG COVPUATIG ETLKOLVMVIAG, KL MG EK TOUTOV, TG, AVTLOTOL(C TPOPAUOTO SLOELPLONG
TOpwv B0 TpEmeL va, pueketn0ov 0mtd KoLvou.

3.A. Movtehomoinon néom Ocmpiog Moryvimv (Game Theory - GT)

Mua kaOiepmuévn ueébodog ot BLBAOYPAPLO VLo TN SLATVTMOT KO ETIAVON KATAVEUTUEVODY
TPOPANUATOV Lo elpLong TOpwv gival 1] Ocwpio awyviwv (Game Theory - GT) [40]. v o
OUY VG YPTOLUOTOLOVUEVY LLOPYPY) TG, TO TPOBANUA SLAYELPLONG TOPWY SLATUTMVETOL WG EVOL 1]
OUVEPYOTLKO TTALYVIO LETAED TMV TOLKTMV, OTT0V KAOE mTaiktng Osmpelton e AminoT ovioTTa
OV ETMUOLOKEL AVEEAPTITO, VO. LEYLOTOTIOLNOEL T1) YPNOLUOTNTA/ W@ELELD TNG. Q0TOC0, VITAPYOUV
OUVEPYOTIKEG UOPPEG TTALYVIWV OTTOV OL UEUOVWILEVOL TUKTEG ETLOLDKOUV £VALY KOWVO 0TOY0 0TTd
™mv npocmmucﬁ TOUG OFTTLKT] 1) TV OTTTLKT) Tov StkTvov. Ot noc'u(rsg JTOU GUUUETEYOVY OTO TTALYVLO
UITOPOvV Vo owuorow]ﬁovv oe onouaénnors StKTLaKY ovTOTNTA 1) svétacpspousvo ptepog TOoV
Stkthov. Ou TAUKTES HOLPALOVTOL KOL GUVETMG avawwloth YLOL (L KoLV 6e§auevn TOpWV
(common pool of resource), 1 OTOLOL UE TN CELPG TNG WTOPEL VAL ATTOTEAELTAL OO PASLOTOPOVG
1 VTOAOYLOTIKOUG TTOPoLG. Emiong, oL TalKTEG WTOPEL VO OVTOywVILOVTaL Yo, To TAN00G TV
EYYEYPOUEVV OE (LG VITNPECLA XPNOTMV, 0TIV TEPLITTWON TOV KAVOURE AOYO OF avVIAymVLULGO
UeTagy mapoywv.

To KOpLo. TAEOVEKTNUATA TOU KATOVEUNUEVOU TAULGIOU SLOELPLONG TTOPMV TTOV LIYVOLV Ye-
VK ol Ko e1d8tkdTEPa 0TO TAALoLo TG Oewpiog Mauyviwv eivan (i) 1 tKavoTTa TWV YPN-
OTMV VO ATOQACLZOVY AUTOVOU KOl UE YVOOTIKO TPOTO TOV L0 WPEMUO TPOTO AELTOVPYLOG
Tovg, (ii) 1 eEdheryn tov novadikol onuetov aotoyieg (single point of failure) wou yapakTnPLtel
TG KEVIPLKOTOINUEVEG MDOELG, (V) 1) UELWOT TNG VITOAOYLOTLKTG TTOAUTAOKOTITAG TV AVGEWY, 1
07TolaL UOLPALeTal UETOED TOMMY GUTOVOUMY OVIOTHTMY, (V) 1] BEATIOOT TV ETLITESMV 0OQA-
LELOG KoL artoppNTou KaBdG 1) SLOSIKAGLO AP 0TOPAOEMY LOLPATETAL LETAED SLapOPETLKDV
OUOKEVMV, OL OTTOLEG OVTAAMAOGOVY TEPLOPLOUEVO ApLBIO TANPOPOPLOY, (Vi) 1] VTTOGTHPLEY THG
OUCGANG AELTOUPYLOG TOU GUVOALKOU GUOTHUATOG OTAY EUTAEKOVTOL TAPOYOL KO YPTOTEG UE ETE-
POYEVT] OLKOVOULKG, KIVNTPAL.

3.B. Movtehomoinon puécm Ocmpiag Tvuporainv (Contract Theory - CT)

Q01000, VoL YVOOTO OTL TOL OEWPITLKA LOVTELQ TTOUY VWV VtoBETouv Tov opBoroyloud (ratio-
nality) TV TOLKTOV TOU CUUUETEXOVV OTO JTOLYVLO, KATL JTOU ELVOL W] TPOKTIKO 1 OKOUO Ko
adivato kabmg to ueyebog Tou dtkthou peyordvel. ‘Eva vEo TAGLOLO 0O TOV TOUED TWV OLKO-
VOULK(V TTOU £YEL EEETAOTEL T TELEVTALA YXPOVIQL glval 1 Oewpla ZupPoraimv (Contract Theory
- CT) [¢41]. H Ozwpio Suufolaimv, 1 OTOLO EUTTLTTEL OTOV TOUEC, TG OLKOVOULAS TG EPYAOLOG
(labor economics), TaPEEL TO LOONUOTIKA OEUEALDL YL, T SMULOVPYLO AUOLBOLOL OTTOSEKTHOV OUU-
BoraiwV 1 CVUPWVLOV UETOED OLKOVOULKMV TAPAYOVIWY, IT.Y. pY0dOTI Kot epyalouevov, vimd
™MV OapEN eMUTog TANPOPOPNOTG (CUYVAE UVOPEPOUEVTC KOL OG CLOVUUETPNG TANPOPOPY-
one). H erMumig tAnpoqopnon avapepeTal oTta AyvwoTta amd Tov epyodoT TPOoWITLKA Yopa-
KTNPLOTIKA TV PYATOUEVOYV, TO. OTTOLO. LAMOTA. ELVOL CUTO TTOU KaO0PLLOUY T1 SNULovpYLe. TOU
TeMKOU ovuBoraiov. Yo To TPLoUA auTo, 0 EPYOSOTNG SNULOVPYEL TAKETA CUUBOAALWOY UE BAom
TN OTUTLOTLKY] YVDOT] TTEPL TOV TPOSMOITUKMV TATPOPOPLOY TOV TULOAVDY VITOPNPLOV EPYATOUE-
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vaov, dMAadi Toug mBavolg THTOUG TV ePYUTOUEVOV OTTWG AVAPEPETOL GOV OPOAOYLEL, YLOL VO.
TOUG TTAPAKLVIOEL VO GUVOPAIOUV T SOUAELG TOUG KaiL, WG £K TOUTOV, VA, ATTOKAADPOUV TOV TOITO
TOVG,.

Katd ovvémeia, 1 Ocmpio SVUBOACLWV WTOPEL VAL TTOPEYEL LLOL TTLO PECALOTLKT] LOVTEAOTTOLNOT
TOV OANAEEQPTOUEVOV CUUTEPLPOPDV, CANAETLOPACEWV KOL ATOPAOEDY TOV SLOPOPETIKMV
SIKTUAKMV OVIOTHTMV KO TOV EVOLAPEPOUEVOV LEPMV, YWPLG VO TPOVTTODETEL TANPY YVDON) te-
TaED Toug KoL EVMD TPOOTAOEL VO CUUPLMMDOEL TOVG SUVITIKG OVILKPOVOUEVOUG OTOYOUG TOUG,
XopaKTnPLOTLKO TOPASELYILOL TETOLAG TEPLITTWONG GO THV TAEVPG TOU SIKTVOV GTTOTEAEL 1) TTPO-
00l TOV Vo GVENTEL TN XWPNTIKOTNTA TOU KaOMG KoL TV OUTOTEAECUOTIKY XP10T] TWV TTO-
PWV TOU pAopatog ne ™ Pondela texvoloyuny dntmg ot Emkovmvieg Zuokeung mpog Zuokeun
(Device-to-Device - D2D), ta I'vootikd Zvotnuoto Padioemkovawvidv (Cognitive Radio - CR)
1 wkpég kupéheg (small cells). TIPOKEWEVOU VO LEYLOTOTOLGOUV TV MPELELXL TOUG, OL YPTOTES
elvai 1o TOavO Vo amropUyYouV T GUVEPYUOLO LE GAAEG YELTOVIKEG OUOKEVEG, HOLPALOVTOG OTTO
Kool Toug OPoUG TOUS, SNAAST T XWPNTIKOTNTA TG UITATAPLOG, TNV VITOAOYLOTLKY LoD Ko
t0 drobioo @dopa Tovg. Emuthéov, eivan o mbovo vo Tapakaupouy TV ETLKOLVMVIC, UE
éva 0taBuo BAoNg PKpNg KUPEANG Kal XOUNANG Loy00G, EAAYLOTOTOLMVTAG TOV KivOuvo £ke-
onNG o€ VYNAOTEPES TAPEUPOAEG AOYW TOV UELOUEVOV TOPWV PAOUOTOG TNG WKPNG KVPEANG OF
OoUYKPLON BE o Rokpokuvehy. Fevikd, omooodnmote otadudg PAong WKpNg KVYPEANG 1) Ho-
KPOKVYEANG, TAPOYOG VITNPECLMV 1] VITOSOUNG UTOPEL VA, TTALEEL TO POAO TOV £pYOSOTN TTOV ELVAL
VIEEvBUVOG Y10, TO OYESLOOUO TWV TAKTEMY GUUBOAOLMY TTOV TTPOOPLLOVTOL L0, TOUG VITOYHPLOUG
£pYalOUEVOUG, OTTWG OVOKEVEG TEAKOU YpN 0T 1) Ghhot otaduol Baong [42, 43, 44]. Zdugpmvo. pe
CUTNY TNV LOEX, [LOL LEYOAT] TTOLKIALOL TTPOBANUATOV BEATLOTOTOINOTG UITOpoV Vo, StapopmBotv
KoL va emlv0o0v, eaveEeTAlovTag TG OUVOMKEG TAPOS00LHKEG TPOOEYYLOELG SLOYELPLONG TTO-
PWV 0T AOVPUATE SLKTUC ETLKOLVWVLOY KOL KIVITOV VITOAOYLOWDV.

4. MpoxMjozeis kot Kivirpa

Ao ™) puéypL oTyung oulnTon, evoL oapEg OTL TO GOVPUATE SLKTVO ETOUEVNG YEVLOG TTO-
POVOLAZOVY TOAATAOUG Babuolg eevdeplag OOV OPOPA TOV EAEYXO TOV ALOVPUATOV TEPLBAA-
AOVTOG Kl TOU TEPLBAAAOVTOG UTTOAOYLOUMDY YLO, THY ETLTEVEN TG ATTALTOVUEVTG TTOLOTITAG VITH-
PEOLOG OITO TNV OTTTLKT] YWVIC TOV YPNOTOV 1)/K0L TOU dtkthov. QoTdo0, 0UTd T0 CVENUEVO £TTi-
7180 gVEMELAG PEPVEL VEEG TTPOKANOELG TTOV TTPETEL VO, EEETAOTOVV TTPooekTIKA. H mapotoa dua-
TPLPN ETLYELPEL VO AVATTTUEEL VEEG TTPOCEYYLOELG TTOV TTPOTOLOOUV EVAL TPAYUOTLKO KOL PEAMOTIKO
JTVEVLLOL OTY] LOVTEROTTOL O TTPOPANUATWY dtarelpLong TOpwv. ITopGAAMAC EMKEVIPMVETAL 0TIV
TAPOYT OMOTIKMV AMIOEMV, AAUBAVOVTOG VITOYLY TOAMOTAOVG THTTOUG TOPWY TTOV GYETILOVTOL UE
TG AOVPUOLTEG ETUKOLVOVIEG KO TOUG KLVNTOUG VTTOLOYLOUOUG. ZUYKEKPULEVA, OL BAOLKOL TUAM-
VEG TTAVM 0TOUG 0TToloVG £eL oLkodounBel avtn 1 StatpiP ouvoypifovion wg eEng:

* Awoyeipion topov & Behtioromoinon: H katavoun mopwv elvor KpLown astd Tig Ttpon-
ym’)uevsg YEVIEG 0OVPUATMV SIKTOWV KL YIVETOL AKOUT TTL0 smwKqu] KaOmg 1 Tolvmho-
KOTNTA TOL SLkTHOU ocUEocvswL (G TPOG TOV apteuo TWV YPNOTMOV KOL TOV scpocpuoyu)v mv
avompomw TWV aa‘camlosuw TOLOTNTOG VRNPESLOG, TIG rexvo)»oyteg OV AVOTTVOOOVTOL
Ka Tov TUo tov topwv. H amin vioO£tnon 1dm mpotetvouevoy Moswv og mopadoolakd,
TPOPANUATO SLAYELPLONG TOPWV, OTTMG TO TUVTLKO TPOBANUC UEYLOTOTOLNONG TOU OUVOAL-
KoU puOuol petadoong ot LevEn kabddov/avodou, elvar adivaty Aoyw Thg aovufato-
TTOG Ue TIG BAOLKEG TEXVOLOYIEG EVEPYOTTOLNONG TOV SIKTVOL emOuevng yevidg 5G, dmmg
YL TOPASELYIO, TG VEEG TEYVIKEG TOAMMOTTANG TPOOPOONG, TIG AVOSLOUOPPDOLUEG EEVTTVEG
ETTUPAVELES, TO, VTTOMOYLOTIKG OUOTHUOTO 0TV GKPT Tou Stkthov. Emuthiéov, 1 vonuooivy
oW OO TLG TPOTELVOUEVEG MIOELG SLOYELPLONG TTOPWV TEPETEL VO eEEMYOEL YL VOL AVTL-
UETWILOEL TNV TOAVTAOKOTITO. TOU VITOKELUEVOD SIKTUOKOU TTEPLRAAAOVTOO. QG €K TOVTOV,
1 SLOELPLOT TOPMV KO 1] BEATLOTOTOINON ATTOTEAOVV TV KVpLa Kivieipie. Shvaun tiow
a6 quTh T dtaTpLp).
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* Karaveunuévny Myn arogdoeov: H kataveunuévn @ion tov dikthov emouevg YeEVLag
5G 6y uovo mpomBel oAAG Kat emBailel T SLathmmon TPoPANUGTOV dLorElpLong TOPWV
UE KaTavepumuévo Tpomo. TEtoleg AMIOELG EMITPETOVY T LOVTEAOTIOLNOT] TIG ETEPOYEVELOG
OT1) OUUTTEPLPOPG KAL TNG VITOKELUEVIKOTNTOG 0TIV AVTIMYPT TG TTOLOTNTOG URNPECLOG
aTt0 TIG SIKTUOKEG OVTIOTITEG, EVA TOPEYXOUV EVEMKTEG KOl ETTEKTAOLUEG EVOMAOKTIKEG KO-
g peyahmvel 1) TOATAOKOTITA TOV StkThov. H 05T0pEN KEVIPLKMV OVIOTIHTWYV IOV GU0-
OWPEVOVY TN YVADOT] TOV VITOKELUEVOU SLKTVOU SEV ELVOL PEOALOTLKT OTA TEPLOOOTEPQ OVY-
YPOVQL 0EVAPLE. EPAPUOYDV. 'EToL, T0 ETLOTHUOVIKE TAALOLOL TTOV ETULTPETOVY TNV CUTOVOUT)
MM ATOPAOEMV AITO TLG SLAPOPETIKEG OVTOTITEG 081 YOUV OF TTLO PLOOLIEG AMIOELG.

* AVTIKPOUOUEVOL 0TOYOL: ATTO OLKOVOULKNG oG KoL atd TAEUPAG ayopds, T diktua,
emmOUeVNG YeVLG 5G astoTeAOUV £VOL AVTOYWVLOTIKO TTEPLBAALOV, OTTOU TTOMAOL PN OTEG KO
arha evoLapepoueva uépn (stakeholders) ov gUTAEKOVTIOL GTNY TAPOYY VITNPECLDV ETTL-
KOLVOVLOLG KL KIVITOV VITOLOYLoUmV Ba TpEmeL vo. ouvtoviCovioL. g ek ToUTtov, eilvol
ONUOAVTIKO VO, LOVTELOTTOLOOUIE TOUTOYPOVE THY OLKOVOULKY] KO TEYVOMOYLKT] TOUG CARY-
AeTTdpaon Kat va AABOUIE VITOYLY TOUG SLOQOPETIKOVG Kol SUVITLKG GVTLKPOUOUEVOUG
0TOYOVG TOUG YLOL VO ETLTUYXOVUE TTEPLOCOTEPO PEOMOTIKEG AMDOELG 0TO TEAMKO TPOBANUL
Srorelplong TOpmV Kat BEATLOTOTOINONG. =€ AT TO TROLOLO, ATTOTEAEOUOTIKG Bempn Tk
TAOLOLO OTTO TOV TOPEQ TWV OLKOVOULKMV UITOPOTV VoL YPNOLUostotnouv yia vo. ouupBa-
OOUV TOUG OTOYOUG KO VO, KATAANEOUV 08 OUoLBal OTTOSEKTEG CUUPMVIEG UETAED SLoPO-
POV EVOLAPEPOUEVOV HEPDV.

* EMmog tinpogopnon: TEpay Tng oNUAVTLKNG ETEPOYEVELAG TOV, TO AVOIVOUEVO SIKTVO
emmopevng Yeviag 5G amotehel £va eEaupetikd duvouko weplBailov (dnhadr, otoyaotikd
1 YPOVIKG UETABANTO), TPAYUOL TTOV ETLBAAAEL TPOGHETOVG TPAKTIKOVG TEPLOPLOUOVG OTO
ETLTESO YVMDONG TTOV WWTOPEL VAL EXEL LLOL SIKTUAKY OVIOTNTA OYETLK LE TIG EVEPYELEG TWV
VITOMOLTTWV SLKTUOK(DV OVIOTNTWV [UE TIG OTTOLEG AVTAYMVLLETAL. QG €K TOUTOU, 1) EPOPUOOL-
UOTNTA KOL 1) AKPIPELO TV TOPASOOLAKDY KOTUVEUNUEVWY TPOOEYYLOEMY AYPNG OUTOPA.-
O£V OV BactLoVIOL 0TV 0pOOLOYLKOTIITO TWV TOKTMOVY, SNAAdT TWV avToymviLOuevmv
SIKTUAKMV OVIOTINTOV, TAOYOUV a0 TIG EMMITELG KO UEPIKMG Stabéotueg TANPOopopieg
mov dLabétel kaBe maikTng. O AMOELG TOV TEPLOPLEOVTIOL OTLG TTANPOPOPLES TTOV SLaOETEL
KGO TALKTNG OYETIKA UE TLG SIKEG TOVG ATTOPACELS /KA TLG EMMITELS Ko aBEPaueg TAN-
POPOPLEG YLOL TO TPLYVPW TEPLBAILOV TOV ELVOL TOAD ONUGVTLKEG,

. Olwtucsg lvosng Ta diktua snouevng vevidg 5G mapgyouvy asztovg Baeuovg ehevbe-
pLocg OYETIKA Ue T QUOT KaL TOV THTO TwV mpog SLayelpLon TOPWV, TOU KUUALVOVTOL Ttd
TOPOVG BLOVPUOTOV SIKTVOU (TT.). PAOUC, LOYELG Ko pUOUOL LETASOONG SESOUEVOIV, LETATO-
mioelg pdong koL TAat RIS) £wg vohoyloTikog TOPOUG (TT.). VITOMOYLOTIKY] GUYVOTITO
Ko 1oy0c). H povopepng oviluetdmion mpoBANudtov SLoyelplong Topmv Sev emLtpemnel
NV TANPN EKUETAAAEVON TOU SUVOULKOD KO TG TPOOTTTLKTG TOV UTOKELUEVOU CLOVPUOL-
TOU SIKTVOU ETLKOLVOVIOG Ko VITOAOYLou®V. T'ia va aokaivgBoiv Ta opLoa Tou Stktov,
CLTTOULTELTOL ULOL TTLO OALOTUKT] OVTLUETAOILON TWV TPOPANUATWV KATAVOUNG TOPWV TPOohE-
TOVTAG TEPLOTOTEPOUS BaBuols ehevbeplog KoL KOTOQeDYOVTOG OF O EMEKTAOLUO KOL
YEVIKG woviéha oyediaopot mpofAnudtwy. H mpootidiuevn agla Twv oMoTikdv Aoswy
elvolL TTOAQTTAN Kot SeV TEPLOPLEETAL LOVO GTOV TOUEN TOV SIKTVMV KOL TWV VITOAOYLOUWMY,
CALGL LUTOPEL ETLONG VOL TTAPEYEL TANPOPOPLES YL, TV CVTLUETMITLON TTOPOUOLDY TTPOPAN-
UATWV CVYOVAOTIKNG BENTLoTOTOINONG 08 GAAOVG KAASOUG.

5. Zuupoin dvotpipiis

H mtapotoo SlotpLfi 0ToyevEL Vo AVILUETMOITIOEL TG TPOAVOPEPHELTES TPOKANOELG TTOV TPO-
KOTTTOUV 0T0L 0VASVOUEVH SIKTUA OLVPUATNG ETLKOVOVIOG KO KLVITMV VTTOAOYLOUMY ETOUEVIG
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YEVLAG, TPOTELVOVTAG PEAMOTIKEG AMDoELG O SLapopa oevapLa xpnons. H kupla eotiaon diveton
ot SLadkaolo MYNGg ATOPACEDY TMV SLOPOPETIKMY SIKTUAKDV OVIOTITWV, OOV UELOVWILE-
VEG OVOKEVEG YPNOTI KOl OITOUOKPUOUEVOL SLOKOIOTEG TTPETEL VA, EVEPYOUV CUTOVOULO, KO VO
KAVOUV ETLOYEG OYETLKG IUE TN XPTON TWV TOPWY KOL TNV ETEVOVOT TOUG EVTOG TOU AELTOUPYLKOD
Toug mePLPAAhovTog. O BOOLKEG OUVELOPOPEG aUTNG TG SLatpiPg cuvopilovral wg eENg:

* ITohvdrdotarn poviehomoinon svetuetos: To aclppata diktva emduevng yeviag 5G
gyouv eEehyOel og évo 0UVOETO 0VOTNUO TOAVAPLOUWY SLACUVOECEMY UETOED YPNOTMOV
KO SLAPOPETKDY TUTMV TapOY OV (). VITOSOUNG, VTTNPESLAG) AOY® TG EVEPYOD OUNUE-
TOYNG TWV XPNOTDOV 08 TTOMOTAEG VTN PECLEG AOVPLATNG ETTLKOLVMVIOLG KL KLVITMV VITOLO-
YLIOU®OV. Mio GNUOVTLKT] KGLYOTOULO GUTNG THG SLaTPLPNG £YKELTOL 0TO YeYovog OTL oL SLoi-
(POPETLKEG SLKTUOKEG OVIOTNTEG WITOPOVV VA TPOGSLOPLEOVY TOAATA0UG Babuovg ehevbe-
plog katd ™) dradikaoia Katavoung mopwv. Fia vo emitevy et awtd, eEetdtovion didgpopa
eSO SIKTVOV, QPYLTEKTOVIKEG KOl JTOLKIAEG VITNPECLEG, UETATOMLIOVTAG, UE OUTOV TOV
TPOTTO, T1) LOVIELOTTOLNOT] TOV VITOKELUEVOU GUOTHUOTOG TEEPQL AITO TLG TTOPASOOLUKES «ETTL-
TESECH TOTOLOYLEG. ZTH CUVEXELQ, GPKETOL TTOPOL TPOG SLAOe0T eEETATOVTOL TAVTOYPOVOL
o€ KAOe OEVAPLO EQPAPUOYNG KOL TPOBANUA SLOYELPLOTG TOPWV, TPOYXWPMVTUG 0TAOEPH
amd TEPPAAROVTO auryols aoUPUOTNG ETTLKOLVOVLOG OF GUYKMVOVTO TTEPLBAMOVTA ETTL-
KOLVWVLAG KaL KIVITMDVY VTTOAOYLOUMY.

* Karavom) Topmv Ko 6YESLAOUOS YOVIGUOY KIVI TPV 6€ aovpuote Siktva NOMA:
ApPYLKQ, HERETOVTOL TPOBAUOATO KATAVOUNG TOPMV TTOAMATADY LETUBANTMV OF ETEPOYEVT|
KoL TTOMETLTES 0L 0loVPUATe SIKTVOL ETLKOLVOVLOY. ME GTOY0 TNV AVTLUETMDITLON TOV TPO-
BARaTOg TG EAAMITTONC/UEPLKTG TTANPOPOPTIONG TWV OTAOUMV BAOTG OXETLKA, LE TV KOTA-
0TOOT KAvOoAoU, KaBdg KaL TG avTLpaong UETAED TV XPNOTMOV Kol TOV 0Todudhv Bdong
OYETIKG g To emLmedo 1oy 00g uetddoong ot LeVEN avOdov, ELOGYETAL LG GUVEPYOTLKY)
TPOOEYYLON PETOED TwV §V0 QUTOV PEPMV, 1) 0TT0LL BACLZETAL OTLG APYES TNG Owplag Zuu-
Boraiwv. Ot otabuol Bdong oxedLalovv éva oUVOAO GUUBOAALMY TTOV ATOTEAOVVTOL OTTO
evOELKTIKG emtlmeda Loy VoG Yo T TevEN avodov nall Pe Lo AvVTLOTOLYT AVTOUOLPT TPOG
TOUG YPNOTEG, KAVOVTAG YPNOT] TG OTATLOTIKTG TOUG YVMONG OYETIKG UE TV KOTOOTAON
TOU KOVaAoU TV pnotmv. Ta emimeda 1oy0og TwV GUIBOAALOY ETAEYOVTOL e TETOLO
TPOTO MOTE VOL EMLTPETOVY TNV ATOKMSLKOTOINON TWV HETAILOOUEVWV ONUATOV TOV YP1)-
OTMV A0 TOUG SEKTEG TV OTAOUDV BAOTG, KAvovTag ypnomn Tov texvikdy NOMA ko SIC.
OL PNOTEG EMAEYOUV QUTOVOUO. EVO. GUUBOAALO GTTO TO OVVOAO TWV GUUBOAALWYV, TO OTTOLO
Touptaler Kahitepa oTig ouvOnkeg Kavolol tovg. Emumhéov tov mapamavew, avartio-
oetal évag alyopldpog Evioyvtikng Madnong (Reinforcement Learning - RL) spokeiuévou
KaOg ypnoTng va Tpoodlopllel GuTOVOIO KOl KOATAVEUNUEVO TNV TTEPLOOOTEPO WPERLUT YLO.
QUTOV GUOYETLON TOV e Evay 0Ttd Tovg SLabgotuovg otabuoig Baong.

» Karavou mépov oe aovpnore diktve NOMA vroompiioueva amxd RIS: IInyaivo-
VIOG €VOL PNUC TAPATEPT. OGOV OPOPE. THV VTOKELUEVT] CPYLTEKTOVIKY SIKTOOU Ko Tig
YPNOUWLOTIOLOVUEVES TEYVOLOYIES, OTOXEVOVUE VO GUVUITOAOYLOOUHE KL VO KOTUVELULOVUE
BELTIOTA TOVG TTOPOVG OTO TUNUATO AOVPUOTNG TPOOPaomg (access network) kow 0mo6o-
TevEng (backhaul network) evog duktov vropfonboluevov omd My Eravdpouéva Evagpra
Oynuata (Unmanned Aerial Vehicle - UAV) ko RIS. AELomoumvTog T Souuki] lepapyla. Tou
diktov, drapoppavetar éva atyvio Stackelberg ueta&0 Tou otabuol dong mov @épst To
UAV KaiL ToV (pnoTdv YLoL TV KOTOVEUTUEVT ETUAVOT TOV aKOAOVBOL GUVSVOOTIKOD TTPO-
BAnpatog kKatavoung topmv. To UAV, evepydvtag g NYETNG, KAOOPLLEL TLG LETOTOTLOELG
®aonG tov RIS €101 hoTe 1) LOYVG TOV GTIUATOG TOU GUVOLOU TV YPNOTMV 01 LeVEN 0vodou
vo. peyrotoroLettal. Entong, to UAV, og deltepn @aor, voloyiler amd Kool Ty KoTo-
vour| g0povg LOvNg ouyvoTNTOVY Kot eLEYYoV 1oy bog ot LeEn avodov Tov omoBolevkTi-
KoU 81KtV TPOG TO SIKTVO Koppov (core network). Ze tpitn (Ao, oL YPNOTES, EVEPYDVTAG
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¢ aKOAoVOOL, BENTLOTOTOLOVV TNV npoommm] TOUG Loy ustaéocmc_, ot CevEN avodov Tov
diktiov pdoPaong mpog to UAV, emiong ue Karowsm]usvo tporco H 6evr8pn Ko TpiTn
@aon emovalaupavovial £mg 0Tov Ppedel To ONUELD LOOPPOTTICG TOV TTaLyviou Stackelberg,
OTO OTTOLO EMLTUYYAVETOL 1 LEYLOTOTOLN 01 TG EVEPYELAKNG/ QAOUATIKNG artdd00Mg TOU St-
KTOoU Tpdofaong kat omoBOlevEng asmtd Gkpo oe GKpo.

Karavou) Topmv Kot 6YESLAoHOS U avVIGU®Y KIVIJTPOYV GE SIKTUC UTOAOYIGU®Y TOA-
hamhdv EMTESMV: SePOUEVOL TNV AVAYKT YL 0TTO KOLVOU Y AVIOUOUG KATAVOUNG TTOPWV
o€ AoVPUATO SIKTUC ETLKOLVOVLOY KL SIKTUC KIVITMV VTOAOYLOWDY, EEETALETOL ULa. TTO-
MUETTLITEST) TOTOAOYLAL KLVIJTMV VITOAOYIOUMDY KL UELETATOL TO OTTO KOLVOU TTPOBANUO TNG
EKQPOPTMONG EPYAOLOV VITOLOYLOUOD KO KATOVOUTG Loy00g HeTadoonc/ekqpopTmong. e
avTifEoN PE TNV VITAPXOVOa. BLRALOYPAPLE, OOV LOVTEALOTTOLOUVTOL SIKTUA VITOAOYLOWMY
evog eTESOV, SNAAST OTTOTENOVUEVEL ELTE QTTO £VOL ETTLTTESO VITOLOYLOWDV GKPNG, OULYANG
1 VEQOUG, ETLOLUDKETOL TAVTOYPOVA 1] YPNOT] EVOG EVPELOG PACILATOG VITOMOYLOTIKMOY duvai-
TOTNTOV Kal EMAOYDOV. AESOUEVIG TG EYWLOTIKIG CUIITEPLPOPUG TWV YPNOTMV YL EK-
@OPTWON OTNY GKPY] TOV SIKTVOU AOYM TNG eYYUTNTAG TOU TEAEUTALOV, OYESLATETAL EVAG
UNYOVIOROG KVITPWY TTov Bactletal ot Ocwplo. SUUPOAGL®V VLG VO TOPOKIVIOEL TOVG
YPNOTEG VA, ETUTPEYPOLY £VOL TTOCOOTO TMV APYLKDY EKPOPTOUEVWV EPYAOLDV TOUG OTO ETTL-
7edo TG AKPNG va TPowONBoUV TEPALTEP® KaL Vo eneEepyaatodv 0To entinedo TG opi-
yAnc. ‘Exovtag kaboplogt autd To 1000070, T0 TEMKO TOC00TO EKPOPTMONG VTTOMOYLOTIKMV
EPYAOLDV TWV XPNOTMV OTHV AKPT Tov StkTVov, KaOMg Kat To emimedo oybog ot LeVEn
avOd0U KUTA TV EKPOPTMOT], VITOAOYLLOVTOL UE KATAVEUNUEVO TPOTO, SLATVITDVOVTUG VAL
(1 CUVEPYOTIKO TTalyvio UeTa&l TV xpnotdv. Me T ¥p1or TOMATAMV ETTESMV VITOo-
LOYLOU®V, TTPOKVITTEL UG EVEPYELOKG ATTOSOTIKT] AVGT), EV() ETEKTELVETAL 1] VITOLOYLOTLKT)
LKAVOTITO, TOU ETTTESOV VTOAOYLOUMDY GKPNG.

Karavou mépov e RSMA vtoAoyioTiKd 6uoTHUOTE TOAATADY dLOKOMGTOV 6TV
axp1 Tov dikTHov: TENOG, e OTOYO TNV TEPALTEP®W UELETY) TNG KOTUVOUNG TOV EPYOOLMDV
VITOAOYLOLUOU OPLEOVTLO, SNAAST EVIOG TOU I8L0V EMLITESOV VITOLOYLOUMV BEMPMOVTAG TTOA-
MOTTAOVG SLOKOULOTEG, LOVTENOTTOLELTOL £VO, SLKTVO UTTOAOYLOTIKMY GUGTNUATWY 0TIV GKPEN)
Tov SIKTVOU TOMATAMV Stakowotdmv. O xphoTeg aEL0TOLOUY To SLaQOopPeTIKA SLadLoLuo
dlkTVO PASLOTPOTPUONG YL VAL EKQPOPTDOTOVY TLG VTTOLOYLOTIKG OTTOLTITIKES KO Y POVLK(L
KPLOWWEG EQPAPUOYEG TOVG 08 TToAaTA0UG Stakouotég MEC tavtdypova. To Ty avtiue-
TMOITLON TOV KPLOLWWOU TPOPANUOTOG SLOELPLONG TAPEUBOAMV VIO TV TPOKVITTOVON TO-
nokoyioc SukTHov TOMATAMY 6L<1Komom')v TOMATADY ¥PNOTOV, KABDG KaL VITOKLVOUE-
VoL aT0 g eEeMEelg oTg TEYVIKEG UM opGoy(m/ucng ToANOTTANG TTpdoPaong, eEeTaleTon
N EQAPUOYN TG texvucng RSMA. Y6 owtd to nptoua ETMLOLWKETOLL n EAOYLOTOTTOLN O
TOU 0OPOLOUATOG TNG UEYLOTNG UETPOVUEVIG YPOVIKTIG KAOVOTEPNONG aTtd TV TTAEVUPA TWV
YPNOTMV HETAED TwV SLagopeTtk®v Stakomotdv MEC péow g astd kowvol Beltiotorol-
NONG TWV TOCOOTMV EKPOPTMONG Unokoytomc(bv epya(mbv Tou pUbuoy Ko TNg Loxﬁog
ueraéo(mg/smpoprw(mg o'm CeEN avddov 0td Tovg XPNOTES, Kabmg Kot ™s KOTOVOUNG
UJ‘EOXOYLO‘ELK(DV TOPWV artd Tovg drapopoug drakootég MEC mpog tovg yphoteg. To ma-
POTAV® 0TTd KOLVoU TPORANUO. BEATLOTOTOINONG EMAVETAL OVAAVTIK(, YPNOLUOTOLDVTOG
Khaooukég nebddovg Bektiotomoinong ov faoifovral otig ouvOnkeg Karush-Kuhn-Tucker
(KKT). H puehétn Kou emiAvon tov mpofANUaTtog outol GUUTANPMVEL TOV TTMTEPO OKOTTO
™G TAPOVOAG SLATPLPIG VO TTOPAOYEL UL OMOTLKT] TTPOOEYYLON KOL ATTOWYT MG TPOG TNV
KOTOVOUT] TOPMV 0€ GUYKALVOVTO GLOUPROTO SIKTUO ETLKOLYWVLMV KOL KIVIITOV VITOAOYL-
OUOV.

AEw0AdyNnon Tov TPOTELVOREVMV TAULGTOY HE 6PLOUNTIKA 0TOTELECRATH HEGH MOVTE-
Aomoinong Kot tpocouoimons: Iapouotdlovrol KTETAUEVE OPLOUNTIKA TTOTEAECULOTOL
OV TTPOKVITTOVV UECW KATAAANANG LOVTELOTTOLNOTG KOLL TTPOCOUOLWOTG TOU SIKTVOKOD TTe-
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PLBAAAOVTOG KO TOV eEETALOUEVOL TPOPANUOTOG YLOL VO KUTUDELYOEL 1] ATTOTEAEOUATIKO-
TNTO KO 1) ATTOSOTIKOTNTO TWV TPOTEWVOUEVOY TAALGLOV KO TWV MIGEMV TTOV TPOKVITTOVV.

11 CUVEXELQ, TTEPLYPAPOVTAL OVAAVTLKG OL ETLUEPOVG EPYAOLES TTOU GUVOETOVY TO. SLAPOPOL
KEPAAOLO TNG TAPOVOAG SLOTPLPNG, BLVOVTAG EUPOOT] OTO VITOKELUEVO TTEPLBAALOV StkThou oy
UEAETATOL, TO CUYKEKPLUEVO TTPOPANUO KOTOVOUTNG TOPMY KOL AMNYPNG OTOPACEMY TTOV CTOYEVE-
T, Kabog kot ot uEBodo emilvong avtol.

6. Katavou] mépov Ko 6YeSLOoHos unyaviondv Kivijtpov ot aovpuote diktva NOMA

Mopd ™V TAOMPE EPEVVIITIKDOV EPYUOLDV TOV £XOUV VIOOETNOEL KOL EKUETAANEVTEL TV
ggapuoyn tou NOMA og £Tepoyevi] aoVpuato. Siktua, eEaKoAoU00VY Va, VITAPYOUV OUAVTLKEG
TPOKANOELG TTOV TPETTEL VO, AVTLILETWILOTOVY, OYETLKG, UE TNV VAOTTOLN 0T TOV. AESOUEVNC TG EYYE-
VOUG TTOPEUBOANG TTOV TPOKAAELTAL 0TTO SLAPOPETLKOVG YPNOTEG TOU UETASLOOVY UNVUILATOL LECW
TV LBLWV TOPMYV, OL TTPONYUEVEG TEYVLKEG SLOLELPLONG TTOPEUBOLDV elval CWTIKNG ONUAOLHG VL0
™mv gyyinon tov KEpdovg amddoong Tov NOMA. To teheutaio, Ue T 0elpd Tov, eEapTatal oe
ueyho fabud amd to amrd Kool TpoBAnua SPpoHordyNong xPNoTOV Kat EAEYYOU LOYVO0G UETASO-
oNg, TOVILOVTaG TNV avayKT Yo atd Kool pedodoug BELTLOTONOINONG TV TAPUTAV®. Q0TO00,
uia oo TG POOLKEG TPOKANOELG TTOU GVTLUETMITLLOVY OL VITAPYOVOEG LEBOSOL KaTavouNg TOpmY,
7OV eTNPEALEL GUEDT, TNV OTTOTELEOUATIKOTNTA KL THV EQPOAPUOYT] TOVG, ELva 1) EMAELYT TATNPOVG
YVAOONG TV TANPOPOPLMV KATAOTAONG KOValoy 0to otafud Baons. Adyw g eyyevols ofe-
BadTNTOG TOV ELOGYOVV T TUXEWS UETOBOAAOUEVE KOVAMO KOL TNG GUENUEVIG ETLBAPUVOTG
TOU 0TLOO0LEVKTLKOD SIKTVOU TTOU npOKaksitaL amd TV TANOMPE oUVOESEUEVMV GUOKEVDY TV
Xpnom)v TANPNG va(m tov CSI eivon TpakTikd SVOKOAO va, smtsvxeu va TEPLTTOON TOV
vnapxsu OrauouKn yviom tov CSI Suabeoun oto oraﬁuo Bdong, TOTE 1] EKTIUN 0T TG CUOKEUTNG
TOU YPNOTN OYETIKA UE TO KEPOOG TOU KAVOALOU UTOPEL VOL XPNOLUOTONOEL YLoL TV KaBodNynon
™G SLOSIKAGLOG KOTUVOUNG TTOPMV. TTO auTh TNV £VVOLA, TO TTPOPANUC TG KATAVOUNG TOP®V
VIO OTOTLOTIKY YVMOoT Tov CSI propel va povtehorotn0el Kol Vo, AVTLIETWILOTEL WG TPOPANUL
eMMITOUg TANPOPOPNONG 0Tt TNV TALUPA TOV oTaduov Rdong.

ST0 OVTLOTOLYO KEQAANLO TNG SLOTPLPYIC, ELOGYETOL L0 OUVEPYLOTLKY] TIPOCEYYLOT UETOUED TWV
0TaOUmV BAONG KL TWV GUOKEVMV TOV YPNOTMOV TOU EEVTNPETEL OTNV AVTLUETMITLON TOV TPO-
BApatog TG eEAMIToNg Yvmong Tov CSI amd v mhevpd Twv otadumv Baong, evd To Tpdfinua.
KOTOVOUNG TOPWV EMAVETAL OTO TV TAEVPA TV XpNoTdV. 'Evag TETOL0G [y ovIoNoOg KOTOVO-
UNG TOPWV UE ETUKEVIPO TOV YPNOTY 0TOYEVEL EMITPOCOETA VO BEATLMOEL TV LKAVOTIOLNOT] TWV
YPNOTWV KO VO, SLEVKOAMIVEL TNV TUXOV TPOCMPLVI] GVATTTUEN £vOg SIKTVOU, TT.Y. SLKTLO VITOPON-
Bovpeva aTTd PN ETOVOPWUEVA EVAEPLL OYNUOTE, EVAVTL EVOG OUVEX(DG eEEMOTOUEVOV ETEPOYE-
voig eplBariovtoc. H epyaoia pog otoyebel otny mopoyt) eVOg EVOTOUEVOU TAULGLOV YLOL TNV
CVTLUETOTLON TV EPEVVITIKMV KEVOV TTOU OYETLLOVTOL (e TNV KaTaveunuévn (dniadn, e emi-
KEVTPO TOV YPNOTN) APN AToQAcE®Y, THV EAMTN TANPOQOPNOT], TOUG CVTLPATIKOVG 0TOYOUG
UETAED TV XPNOTMV KAl TV 0TUOUDV BAONG KOL TNV TOP0YT OMOTIKOV AVOEWV OO0V GPopa TO
Ao Kool TpOPANUe SPOUOAOYNONC/CUOYETLOUOD TWV XPNOTOV Ue 0TaOUOVG BAONG KoL EAEY-
%OV Lo 00g 071 LEVEN avOdOU OF ETEPOYEVT] BLOVPUAT SLKTVO, ETLKOLVWVIAG TTOV BACLZovVTaL 0TO
NOMA. T to 0K0mo auTo, viobetohvrol Ta haiowe TG Ocwplog ZVUPOAALWV KaL TNG EVLOYL-
KNG wabnong (RL) mpokeluévou vo omotummBouv KoL vo. Lovieromton0ohv 6motd oL oYE0ELg
UETAED TWV SIKTVOKMV OVIOTITWYV IOV EUTAEKOVTOL OE QLUTT T SLAdLKOOL0 KATAVOUNG TOPWV.

SUYKEKPLUEVAL, OL KUPLEG GUVELGPOPES CUTNG TG EPYOLOLOG UTOPOVY VO GUVOYLOTOUV 10G EENG:

» Eiwodyetol évag unyaviopdg RL yio vo KOTaoTHoeL dSuvaTh) TV KOTOVEUNUEVY KL OUTO-
VO OUOYETLON YPNOTY Ue Kamolov otabud Baone. Kabe ypnotng emhéyer éva otabud
Bdong ue to omolo O CVOYETLOTEL, Ue OTOXO TN PENTLOTOTOINOT THG TOPEYOUEVIG CIVTO-
HoLBNg artd To TEPLBAAAOV ETKOLVMVIOG TTOU GITOTUTTDVEL TO. XOPOKTIPLOTLKG TNG AVTL-
otolng oVoXETLONG. Ta YOPOKTNPLOTIKG UTa TEPIAAUBAVOLY TN LOKPOTTPOBETUY QU
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TV 0TaBUOV BAONG TOU SLAUOPPMVETOL UTTO TV EKQPPUOUEVT] VITOKELUEVLKT] YVOUT TV
YPNOTWV OYETLKG, ILE TV VITNPECLOL TTOU OTOAQUPAVOLY OTav cuVdEovTaL pe avtove. I va
SKMOLLS”()GO”UMS ue SLMKpL\/SLa TNV VTTOKELUEVLKT] YVOUT TOV YPNOTMV, nporeivewt 1 Kevo-
TOU Xpn(m ToL puNyoviopov Bayesian Truth Serum, eTPETOVTIOG TEPUTEP®M THV EKPPAOT|
™G PNUNG TwV oTadumdv Bdong mg MrebCiavn [emoibnon (Bayesian Belief).

* TIpoteivetal £vog Wy aviouos EAEYY0U Loyog uetasl kabe otabuot Bdong KoL Twv ovoye-
TLOUEVOV [IE QUTOV YPNOTMV, 0 0TT0L0G BAcLieTon 0T Owpio ZUUBOMULOVY TPOKELUEVOD VO,
MeBel vToOYPLv KoL vo povtehomowBel 1 meplmtwon elmolg yvwong tou CSI amd v
TAEUPA ToV 0TaORoU BAong. O xPNoTeg SLAKPLVOVTOL OE SLO(POPETLKOVG TOTOUG AVOIAOYOL
e TG oVVONKeg Kavailov Tovg. 'Etol, oL otaduot Baong oxedidlovv Siapopetikd cupBo-
MOLLOL TEPOCOPUOOUEVO. GTOUG SLOPOPETIKOVG THTTOUG YPNOTOV EXOVIAG OTATIOTIKT YVMOOT)
yioe T Vap€n tovg. Ta cuuforaie TEPIAAUBEVOUY THV TPOCPOPA TV YPNOTOV TPOG
TOV £KA0TOTE OTOOUO BAONG, 1] OTTOLOL AVTLOTOLYLTETAL OTNY LoYD HETABOOTG TOVG 0T LeVEN
VoSOV, KO (L0l OVTOUOLPT] TTOV TTOPEXETOL TLOW OTOVG XPNOTES Ao To 0Tadud faong. H
ovvolkn dadikaoto eEAEyyov Loy bog 0TV CeVEN 0vOSOU PEATLOTOTOLELTAL ETAVONITTIKCL,
EV( TPAYUATOTOLELTOL 1) SLAdIKAOLO OVOYETLONG XPNOTN Ue otadud Baong mov Baoileton
oto RL.

* TlapovotaZovrol ovaAvTIKG aplunTikG OTOTELECUATA, TTOV FTPOKVITOVY UECM UOVTELO-
TTOLNONG KL TTPOCOUOLMONG YL VA KATASELKOEL 1] 0WOTY AELTOUPYLC KO ATTOTEAEOUOTIKO-
TNTO TOV nporswéuevov shaioiov. Eidikdtepa, WEAETDOVTOL TO EYYEVT| XapaK‘mpLouKd TOU
U OVIOUOD ske«/xou Loy VOG Ue Xpn(m ™G Oswplag Zvuporalwv oug nspmtmosug nknpoug
Ko eMstovg yvaong tou CSI, evd 1 AELToupylo ToU Y aviopol ouoYETLONG Xpncrn oe
otadud Baong mov Baocitetar 6to RL eEeTdleTon wg TPog T 0UYKALOT OTO ONUELS. TG TTe-
PLOCOTEPO MPEMUNG OVOYETIONG. TTPOyILOTOTOLEITAL OVYKPLTLIKY aptBun Ty aELohdynon
NG TPOTELVOUEVHG TTPOOEYYLONG EVOVTL GAAMDV Y OVIOIMV GUOYETLONG XPNOTI Ue 0Tafud
Baong, KOTOSELKVIOVTAG TG OPENT] TOU GUVOMKOU TTPOTELVOUEVOU TTALOLOU OO0V GLpopa.
TOV EMITUYYaVOUEVO pudud dedouevmv Kar ™) dtkawoovvn (fairness) peta&l towv ypnotmv
EVTOG TOU ETEPOYEVOVG QLOVPUATOV SLKTVOV.

7. Katavop) tépwv oe acvpuare diktve NOMA vrootypiioueve oo RIS

Kavovrag éva frua Tapamépo mg TPog TV ETEPOYEVELD. TG TOTOAOYLGG TOU AOVPUOTO Si-
Kthov Ko, eL8LKOTEPQL, soudCovmg ot smKowo)visg 7OV vnoﬁoneoﬁth amd UAVs, apKetég
TEYVOAOYIES AvOTTTUYONK AV npoacpon:oc amd TV epsvvnrmn Kowornw KaLTovg (POPELG TUTTOTTOLN)-
ong, 0dNymVTag o OTOdLOKT coptuowon TWV ETUKOLVOVLDV CUTNG TG LOPPNG. XOPUKTNPLOTLKO
TOPASELYILOL LLOLG TETOLAG TEYVOROYLOG ELVOL 1] AVAITTUEN Tov OLokAnpwuévoy Atktiov [Tpdopa-
ong ko Omo06CevEng (Integrated Access and Backhaul - IAB) [94]. H teyvohoyla vt TpoTelveL
otL oL otaduol Paong emduevng yeviag (gNBs), mov avagépovtor wg IAB nodes, avapetadidovv
AoVPUATE TV KIVION UECW TOAMOTAMY fnudtov (multi-hop) uéxpt vo @taost teMkda otov IAB
donor, 0 0molog CUVdEETAL 0TO SIKTVO KOPROU HECH VITodouNg ortTtkdY vdv [93]. H xipia 1déa
oW azd TV TEYvoroyio TAB elval 1) AToTEREOUATIKY XPNON TV POOUATIKOV TTOpwv 5G New
Radio (NR) o¢ OAa TOL TUNUOTO TOV SIKTVOV TPOOROoNg ko 0moBOTevEng (ovumepihapfovo-
p,évuw TOMATADY eviLdueowy hops), Xpnmuonoubvmg TPONYUEVEG TEYVIKEG PEATLOTOTOINONG
TOPWV Ko noMom?mg Tpoopaong. H apyrrektovikn tov Suktvov IAB (—)ewpswm Ol Baoucog
EVEPYOTTOUTIG TOU OPGUOTOG VL0 TANPMG AVASLOUOPPOGLU KO svepyswucoc ATOd0TIKG AoVp-
nota diktua. Emurpdodeta tg teyvohoyiag IAB, wa dAkn texvohoyia mov £xel MABeL TpdogaTa
AELOONUELWTT) TTPOCOYT KO OYETLLETAL BABLA UE TAL Y OPAKTNPLOTIKG OVASLAUOPPMONG KOL EVEP-
YELOKTG TO800MG TWV UEAOVIIKDY 0oVpratmv StkTdmv, gival To RIS.

ZT0 AVTLOTOLYO KEPAAALO TG SLOTPLPNG, GELOTOLOVUE TOL KOLVGL OQEMT] TMV TOPATAVMD TEYVO-
AOYLDV Ko 0YeSLATOVIE KOL TTPOTELVOUE £VO, TTAGLOLO SLOLELPLOTG TOPWV AITO GKPO 08 AKPO,
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TPOCAPUOoUEVO 0To. acppata diktva IAB mov vrootnpifovrar amd RIS kaw UAVs. Autdg o
TOTOG SIKTVWV TPOCAPUOTETOL OTLG LeEMOVTLKEG viToBonBotueveg ammd UAVS GOTIKEG ETLKOLVO-
vieg, 6mov T UAVs ypnouedovy mg avastdomaoTo HEPog TG VIodoung Tov Stkthov yio Ty
TAPOYT] OUVIESLUOTNTAG ATTO AKPO OF GKPO OE AVTIEOEG KATAOTAOELS. 2& T TO TAALOL0, eE¢-
TATOVUE TIG ETUKOLVWVIEG 0T1) TEVEN aivOdOU Ko avTLETWILTOUUE TO TPOBANLUOL UEYLOTOTOINONG
TNG EVEPYELAKNG OTTOSOONG 0TTO AKPO OE AKPO AAUBAVOVTOG VITOPLY KL ELEYYOVTOG AT KOLVOU:
o) TG UETATOTLOELG PAONG TWV AVAKAAOTIKMV oToLyelmv Tov RIS, B) T SLaympiond tov ehpovg
Thvng LeTal TV TUNRATWV Tov SikThou TPOoPaong Kot ontoeéCwEng, y) ™V oyl petddo-
ong ot LeVEn avodov Twv xpnotwv mtpog To UAV kot §) Tv 1oy uswéocmg ot Csv%n avodov
tov UAV (IAB node) mtpog to diktvo kopuov (IAB donor). T va. avuustwmoovue oTo TO TPO-
BAnua BeATLOTOTOINONG TOAMATAMY UETABANTMOV UE KATAVEUNUEVO TPOTO, KOTOPEDYOUUE 0TIV
vwobETNON TG Oewplog [aryvimv KL, Wdiaitepa, ot XpNon Twv Taryviov Stackelberg, eKpUeToh-
AEVOUEVOL TG EYYEVOUG LEPOUPYLOG TTOV VITAPYKEL 0TO SIKTVO UETAED TV XPNOTMV Kaw Tou UAV.
SUUTANPOUCTIKG UE TO TOPOTAVM, KOL YIO. TV KAAITEPY GTOKGAVYY] TOV TAEOVEKTNUATOV
Kar twv ovufioaoudv (tradeoffs) g mpokimTovoag oG Tov TPOPANUATOG OTOV OTOXEVOUUE
0TIV EVEPYELOKT] ATTOd00T), avaADoUUE Kol 0ELOAOYOVUE ETTLONG TV EQPAPLUOYT TOV TPOTELVOUE-
VOU TTAOLOLOV KAT® artd V0L SLapopeTLkd 0TOY0 BEATLOTOTOINOG, S1AAST T BEATLOTOTOINOY TOU
puOuoY dedouévmv amrd GKpPo oE GKPO.

SUYKEKPLUEVA, OL KUPLEG OUVELGYOPEG UTNG THG EPYAOLOG UTOPOVY VO OUVOPLOTOUV WG EENG:

* TIapovoLaZETOL TO LOVTELO GUOTHIATOG TTOL TTePLAaUPaveL €va SikTuo IAB vrofonOoluevo
am6 €vo, RIS kot éva UAV, AauBavovtog voyiv Tig emkolvevieg oty CevEn avodov tmv
UEPMV TOU SLKTVOV aoVpuaTng TPOoRaong Kol omaeBOLevEng.

o ALOTUTTOVETOL TO TPOPANUA THG SLaELPLOTG TTOPWV atd dkpo og GKpo Tou diktuov IAB
7POG TN BELTLOTOTOINOT TNG EVEPYELOKNG TOV 0tddoong. To mpofAnua avTueTomieTon
UECW LG KOTAVEUTIUEVTG TTLYVI0-OempnTikhg Tpoogyyiong Stackelberg. To tpotetvouevo
TAQLOLO TTEPLAAUPBAVEL TPLOL OTADLAL, GTC OTTOL0, ELEYXOVTOL KO BELTLOTOTOLOVVTOL SUVAULKL
oL akOLOVOEG TOPAUETPOL: L) OL UETATOTLOELG PAONG TV oToLELwY Ttov RIS, B) 0 Siayw-
PLOUOG TOV €0POUG TOVIG UETAED TOV TUNUATOVY TOV SIKTUOU AoVPUATNG TTPOSROONG KoL
07TLo00TEVENG KalL Y) OL LOYELG UETADOONG TV YPNOTMV Ko 8) ot 1oy uetddoong tov UAV
ot CevEn avodov. To UAV, evepydviag mg NYETHG Tov taryviov Stackelberg, kabopilet
070 TPADTO OTASLO TIG UETATOTLOELG PAONG TV oTor elwV RIS ov peyiotomolotv Ty 1oyt
TOU ONUATOG TOV AOPOLOILOTOG TWV YPNOTOV 0TNY AV CeVEN, aKohouBhVTOG UL EVPLOTLKT)
TPOOEYYLON YCUNANG TTOMTAOKOTNTOG. 2T ouvEYELd, To UAV vmoroyilel Tov Siaymplopd
TOV g0POVG LMVNG Kau TV Loy neTddoong ot LevEn avodou mpog tov IAB donor. Zto
TPLTO OTAdLO, OL YPNOTES, dMAAST oL akdAovBoL Tov Ttaryviov Stackelberg, BektioTomolovv
TG LOYELG UETAB00NG 0T CeVEN avodov mtpog to UAV ue KOTovEUUEVO TPOTO.

* H epoppoottdTnTo. KoL TposapuooTKOTIITO TOU TTPOTELVOUEVOU TTACLOLOU SLOELPLOT|G TTO-
PWV OTTOSELKVOETOL ETTLONG YLO. TNV GVTLUETMDITLON TOU TPOPANUOTOG BEATLOTOTOLNONG TOV
puOuov dedoutvav Tov duktvov IAB amd dxpo og dxpo. H Mion happdvetar akohovOo-
VTOG LG TTAPOUOLO KOTOVEUNUEVT TPOCEYYLOT LEOM TV TToryvimv Stackelberg, avriotouyn
L€ QUTY] TTOV TLPOTELVETOL VLA TH BEATLOTOTIOWON THG EVEPYELOKTG 0TTOS00NG. AVTOG O EVALA-
MIKTIKOG 0TOY0G BEATLOTOTOMNONG XPNOWEVEL 1OG BAON YOl THV AVASELET TOV TAEOVEKTY)-
uaTwv KoL Twv ovufLpacuov (tradeoffs) g mpokimrovoog AMong Otav oToyevETOL 1) EVEP-
veLokT amddoon tov diktuov IAB.

* H ovvohikn ar0800m tou SIKTUoU OELOLOYELTAL KOl TOPOVOLALOVTOL EKTETAUEVT. apLOun-
TUKGL ATTOTEAECULOTA TTOU KATASELKVDOUV TO. OQENT] TTOV ELOAYOVTOL 0TIV EVEPYELOKT] OITO-
8001 600 TV YPNOTDOV 600 Kaw Tou UAV, amd TV amd Kooy EKUETOAAEVOT TWV TEYVO-
royunv UAV, TAB kau RIS.
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8. Katavoul mopmv Kot GYESLICUOS unyavion®y KivTpmy 6 SIKTLO VTOAOYIoUOY
TOLLATADY EMTEdOV

TN va dtevkoluvBovv ot nepmptcusveg o€ va‘tokoytoum] LoV KO UTTOTAPLO, OUOKEU&; xoN-
0TI HOTE Va owrocnOprova 0TI omozm]oeu; TOLOTNTOG VITNPEGLAG TWV scpozpp,oyu)v 1 évvola
™G EKPOPTWONG EPYUOLDV UE VYPNAEG AVAYKES YO VITOAOYLOTIKOUG TTOPOVG £xeL YiveL eEoupe-
TLKG SMuopLing. Eldikd, peta&l tmv SLagpopeTik®v VIToOMOYLOTIKMY SUVOTOTNTOVY KOl ETAOYMV
JTOV VITAPYOUV EVTOG TOV VTOAOYLOTLKOD ouveyolg, To MEC, mov ouyvé vhomoleital evidg Tou
SLKTVOV PaSLOTPOOPAONG, EYEL PEPEL EXAVAGTO.ON OTNV ETTUYY OLOKANPWON] EQUPUOYDV Y OUN-
MG APOVIKNG OTOKPLONG. 20TO00, AOYM TOV EAKVOTIKMV LOLOTINTOV TOU, 1] VITEPEKUETAMEVON
TV SLOKOUOTOV 0TV GKpn Tov dtkthou Ba 081 yNoeL otadiakd og vToBdduon g omddoong
toug. [ vor petpLaotel autd to TPoPANUe Ko vo BEATLIwOEL 1) GUVOALKT] XP101 TOV TOPWV TOU
OVOTNUATOG, B0 TTPETEL VoL ELOLWYOEL L ETEPOYEVIG OPYLTEKTOVLKY VITOAOYLOUMV TTOAATADV
EMTES WV, OTOV SLOPOPETLKEG VITOLOYLOTLKEG OVIOTNTEG dLAPOPMV SUVATOTITWV CUVEPYALOVTOL
o€ 6)0 10 dikTvo. ITpAyRaTL, 1) TOLKIAOUOPPLO. TWV EKQPOPTWUEVMV EPYOOLDV WG TPOG TV GVAYKT)
Yo vno}\oywrmoi)g n(’)povg, KOOMG KL 1) ETEPOYEVELD, TWV CLTTOLTHOEWMV omc')éo(mg TWV AVTLOTOL-
YOV EQAPUOYDV TOV Xpnom)v OYETUKAL UE TV svatoenow 1 W1 ©G TPOG T Xpovucn Ka@vorspncm
Kow Thv Karowakwon EVEPYELAG, dNUOVPYODV Eva OTEPED séa(pog YLoL T ocoorn XPNON TWV L0~
POPETIKMV ETAOYDV VTOMOYLOWDV GTO VITOAOYLOTLKO oUVeEYES. Q0TO00, TAPA THV OOV LKa-
VOTITO. TWV EPYOOLDY IUE AVEKTLKOTNTO 0T YPOVLKT KaOVOTEPNON Vo vIToBaihovTal ot emeEep-
yaola, 6TV oplyAn (1 akduo KoL 6To VEQOG) YwPLg va. VITOPAOULOVY TNV TaPEOUEVT TOLOTITO
VITNPEOLOG, TO. EAKVOTIKG, YOPOKTIPLOTLKG TOU VITOAOYLOUOU OTHY GKPT) TOU SIKTVOU OYETLKG e
TV eYYUTNTA TOU 0TOVG YPNOTEG OF GUVOUAOUO UE TNV EYMLOTIKY) CUWITEPLPOPA TWV YPNOTMV,
WITOPEL VO. atodeLy 000V TPOYOTEST 0TIV VAOTTOLNOT) TOV OPAIATLLOUEVOU TTOAMVETLTESOV SLKTVOU
VITOALOYLOUMV.

ST0 aVTLOTOL(O KEPAAQLO TG SLATPLPNG, OTOYEVOUUE VO, AVTIUETWITLOOVIE OKPLPDG QUTHV
™MV TPOKANOT 0 £va, TEPLBAMOV VITOAOYLOUMY VO EMTEdWV, TOU GTOTEAELTAL AITTO VITOMOYL-
OTLKG OUGTHUOTO OTNY GKPT TOU SIKTUOU KoL 0ITO VTTOMOYLOTLKY] OULYANG, TO. OTTOLC SLOKPLVOVTOL
AT APYLTEKTOVIKY] ATTOYPT) WG TTPOG T1) BECT OOV TOTOOETELTAL 1) VITOAOYLOTLKT] TOUG LOYVG EVTOG
tov diktvov. MpdTOV, OYESLATETAL KOL TTPOTELVETAL EVAG UWIYAVIOUOS KIVITPOV TTov Baoiieton
otv [olvdiaotaty Oewplo Svuporaimy (Multi-Dimensional Contract Theory). To vToAoYLOTIKO
000TNUA OTNY GKPT TOV SIKTVOU EMLOLMKEL VO, TTAPAKLVIOEL TOVG YPNOTES TTOV EKPOPTHVOUV £P-
YOOLEG 08 QUTO VO ETUTPETOVY O UEPOG TWV EKPOPTWUEVIV EPYAOLOV TOVG VO TTPOowOoUvVTaL
TEPALTEPM KL VO VITOPAAAOVTOL O emeEepyaoia 0Ty outyAn ue Paon o EexwpLotd Ko £Te-
POYEVT] YOPOKTIPLOTIKA TOV EPOPUOYMV TOVG. ATTMTEPOG 0TOY0G elvar 1) BeTiwon Tng amodo-
TKOTNTOG YPNONG TOPWV O OAO TO SLKTVO KoL 1] AOENOT TG GUVOMKNG TOV LKOVOTNTOG £EU-
TINPETNONG, LOLWG VITO TV TAPOVSLO, VITNPECLOY OVEKTIKDOV MG TTPOG T YPOVIKT KabvoTépnon.
To GTOTENEOUE. TNG TTUPAUTAV® OLKOVOULKNG GAMAETIOPAONG HETOED TV ETMTESWV YPNOTDOV-
AKPNG-OULYANG YPNOULOTOLELTAL 0T GUVEYELD. YLOL VO AVTLUETOTLOTEL TO SVOKOLO TTPOBANUT TG
EVOPYNOTPWONG TOPWV EVIOG TOU TEPLRAAAOVTOG VITOAOYLOUMY TTOAMATADY EMUTESWV. AedOuE-
VOU TOU JTOGO0TO TWV APYLKDV EKPOPTWUEVV EPYAOLDV 0TIV GKPT] TOU SIKTVOU TTOV ETPETE-
T Vo TPowON OOV TEPULTEPM 0TIV OULYAY, AVTIUETWILLETAL TO OTTO KOLvoU FTPOPANUC EKQOpP-
TMONG VTOAOYLOTIK(DY EQYAOLDV KOL EAEYYOU LOYV0G 0T TEVEN avOd0ou HeTaEl Twv YpNoThV Kot
TOU UTTOROYLOTLKOU GUOTHUOTOG OTNY AKPY) TOU SIKTVOV, OEMPHOVTOG TOG TA ONUATA TWV YPNOTDOV
ToAVTTAEKOVTAL PECW TNG TEYVIKNG NOMA. ZeBOuevoL TNV ovayKn YLo KATAVEUUEVES TTPOOEY-
YLOELG SLOYELPLONG TTOPWV, TO ATTO KOLVOU TTPOPBANUC SLAYELPLONG PASLOTOPWYV KalL EKPOPTWONG
VITOLOYLOTLKMV EPYACLOV SLAUOPPMOVETAL WG £va Talyvio Stackelberg Kou emldleTon e Katave-
UNUEVO TPOTTO aTtd TLG SLAPOPEG OVTOTNTEG TOV SIKTVOV.

SUYKEKPLUEVQL, OL KUPLEG GUVELGPOPES OUTIG TG EPYOLOLOG UTOPOVV VO, GUVOYLOTOUV 10G EENG:

* TIapouoLaZETOL TO LOVTERO GUOTNUGTOG TTOV TTEPLAAUPAVEL Eva SLemimedo mepLBAilov vio-
MOYLOUMYV, OTTOTELOVUEVO aTtd £V, dLOKOMOTH GKPNG KoL €va Stakomot) owying. Mo-
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VIEAOTTOLOVVTOL OL VITOAOYLOOL IOV TTPOLYUATOTOLOVVTOL OTIG OUOKEVEG TV YPNOTMV KOL
0TOUG SLOKOULOTEG ALKPNG KO OULYANG, KOOMG KL OL ETLKOLVWVIEG LETAED YPNOTWV KOL TOU
dLoKouLoT GKPNG, Ko HeTaED TOU SLaKOMOTN GKPNG KoL SIKOULOTH OANG.

o Syedialetal £vag unyoviopdg KIvTpmy HeTaE Tou SLoKopLoTH GKpNG KAl TV YPNoTHhV
aKOAOVOMVTAG TG aPYEG TG TOAVSLAOTOTNG Osmwplag Zupporaiwv. Me Bdon Ty etepo-
YEVELDL TWV EQAPUOYDV TOV YPNOTOV KO TIG TOMSLAOTOTES LOUWTIKEG TANPOPOPLEG TOVG,
0 dLoKooTNg o'ucpng 0%ed1LeL Evo. 0VVOLO ovuﬁokaimv KaOEVO 0o TO OTTOLAL TTEPLALL-
Baver tig anatrouuavag npoocpopsg amno ToUg Xpnoteg TPOG AUTOV KL G avOaLOYEG OVTOL-
uolBég ov Ha nozpom/ mow. H npoocpop(x KGOe ypnot owunpocmmevet TO TOGOOTO g
VITOAOYLOTLKNG EPYOOLOG TTOU lye apyLKd EKQOPTWOEL 0TV AP TOU SIKTVOU KOl ITOPEL
va, LeTad00el TEPALTEPM KOl VO VTTOBANOEL OF eTeEepyaoio. 0TV OulyAn.

* ALOTUTTMOVETOL TO ATTO KOLVOU TTPOPANUC EKQPOPTWOTG VITOAOYLOTIKMV EPYUOLDV KOL EAEY-
YOV LOYV0G 0T LEVEN 0vOSOU HETAED TV XPNOTOV KL TOU SLOKOULOTH GKPNG LE T LOPEPT|
evog maryviou Stackelberg. O dtakouaTig AKpng, SNAAdT 0 MYETNG TOV TTALY VIOV, KaBopi-
el TG BEATLOTEG TTOOOTTEG EPYAOLOV TOV YPNOTMOV Tov o EKPOPTMOOVY TNV GKPT] TOV
dtkThov, £(0VTaG ETLYVMOT] TOV TOCOOTOV VITOAOYLOTIKNG EPYOOLOG KAOE Y P10TH TTOV TPO-
KELTAL VO, VITOBANOEL Yo TEPOULTEP®M ETEEEPYAOLE. OTNY OUYAN. TN OUVEYELD, OL YPNOTEG,
dMAadN oL aKOAOVOOL TOV TALYVIOU, TWV OTOLMV TO, ONUOTO TOAVTAEKOVTAL LECW TG TE-
yvikng NOMA, vrohoyiCouv Tig BELTLOTEG LOYELG UETAOOTG TWV ONUATWY TOUG 0T LeVEN
avodov Tpog To drakowot akpng. O nyEtng tov oryviov Stackelberg emduwkel vo. pe-
YLOTOTTOLNOEL TNV GVTIANITTH OF GUTOV LKOVOTTOON AOY®W EKPOPTMONG TWV EPYOOLOV TWV

YPNOTDOV usiov ™mv svepysmm'] emBapuvon Tov dikTHov amtd dKpo oe Gkpo, dSMadn atd
TOVG TOUG YPNOTEG EWG KO mv opiyAn. Ov ak6hovBot, dSnhadn ot xpnctsg, EMLOLOKOUV UE
o OELPAL TOUG T1| usywtonom(m NG TPOCWITLKNG TOUG EVEPYELOKTG omoéoong noufgovwg
£va U ouvepyaTiko Talyvio ueta&d toug. H ouvolikn SLadikacio Katovoung mopwy eKTe-
LELTOL ETAVOANTTTIKG PéYPL Vo emtevyOel 1) Looppostia Stackelberg.

e Me [Sacm TOL TAPATTAV®D Oampntma OSMEMOL UELETMVTOL T, EYYEVT) kettovpyu{a XApaKTIPL-
OTLKG TOGO TOV UNYOVIOUOY mepwv 000 KalL TG SLASIKAGLOG KATAVOUNG TTOPWY UECH po-
VIELOTIONONG KOl TTPocouolmong. EmmAéov, avadetkvieTal 1) ammoteleOUaTIKOTNTA 0T~
8001 TOU TPOTELVOUEVOL GUUBOAALOV VITO GTATLOTLKT] YVADOT TOU TOITOV TOV EPYAOLDV EK-
POPTWONG TV YPNOTDOV 08 GUYKPLOT] UE TNV TEPLTTWON OVAPOPAG OOV VITAPYEL TANPNG
TANPOPOPNON OYETLKA UE TOV TUTTO AUTOV, EVE AVOSELKVUETOL, TOAUTOYPOVAL, 1) VITEPOYT] TG
TPOTELVOUEVNG TTPOGEYYLONG KOTAVOUNG TTOPMV EVAVTL SLOUPOPETIKMV OTPUTNYIKMV EKPOP-
TOOMNG.

9. Karavou tépov e RSMA umoloyioTiKd 6UeTHROTA TOAGTADY SLOKOMGTOV 6TV
axpn Tov dikTHou

Se auTo To KEPAraLo, euadivouue otV 0pLLovILe. KOTAVOUT TV EKQPOPTOUEVWV VITOMOYL-
OTLKDV EPYOOLMV OTTO TOUG YPNOTES, dN0dT 08 TOANUTAOVG SLAKOUOTEG EVTOG TOU LOLOV ETLITE-
S0V VTOLOYLOUMY. ZUYKEKPLUEVCL, IUE KIVITPO TV KATAVEUNUEVT] OVATTTUEY TTOAATAMY SLOKOWUL-
otV MEC evtog tov SiKTiou padiompdoBoaong Kot Tig eEeMEELG 0TLG TEYVIKEG U1 0pOOYWVIKNG
TOMATANG TTPOOPAONG ETOUEVIG YEVLAG, TTPOTELVOULLE OL XPTOTEG VO YPTOLUOTOLOVV T SLOPOPE-
TIKG Stabéotua SikTua, padlompdofacng oty UPELELG TOUG KO VA EKPOPTHOVOVY TOUTOYPOVOL
o¢ ToAOVG Stakopotég MEC vitohoYLOTIKEG EPYAOLEG e VYNAEG UTTALTIOELG YL VITOAOYLOTL-
KOUG TTOPOUG KOL EVCLoBNOLA MG TTPOG TN YPOVIKT KaBLoTéEPNOoN. Tl Vo avTlUeTmTIooVUE TO
KPLOLWO TTPOPANUA TNG SLOYELPLONG TUPEUBOMDV UETAED SLOKOUOTDV TOV TTPOEPYOVIOL ALTTO TLG
TOUTOYPOVEG LETODOOELG EVOG YPNOTN OF TTOALOUG SLOKOMOTEG, EEETALOVUE TNV EPUPUOYT TNG TE-
yvikng RSMA, 1) omtota Bewpeiton Baoikdg evepyomouthg Twv Sikthmy exduevng yeviag. H diai-
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peo pvep,ov £YKELTOL 0TO SLOWPLOUO TOV p,nwuonog svog xpnot og dvo N nsptooorspa ueP
OV unopouv VO ATOKMOLKOTTOO0UV EVEMKTO. O EVaV 1] TTEPLOCOTEPOUG DEKTEG, QVTLOTOLYOL.
To Kowd pnvupo (common message) - OmmWG OVOUALETAL - TPOOPLLETUL KOL ATOKMOLKOTTOLELTAL
a7td OAOVG TOVG EUTTAEKOUEVOUG SLAKOULOTEG 0T UETAS00T, O€ AVTLOEON e EVOL LOLWTLKO UVUUA.
(private message) sov stpoopiteton yio kdbe drakouot MEC Egxwprotd. Qg amotéleoua, katd
TNV OTOKWOLKOTTONOT] TOU LOLMTLKOD UHVURLOTOG, OL TTOPEUBOLES TTOU TTPOEPYOVTAL CLTTO TO. LOLW-
TUKG VOOt Tov GAA®MY SLOKOULOTMV OVILIETWITLLOVTOL wg 00pupoc. Me tov €Eumvo £heyyo
TOV Lo WPLOROY UETAED TV KOLVADY KOL TOV LOLOTIKMV UNVURGTMV, ETLTUYAVETOL WO 0ITOdE-
KT avTlotaduon pneta&l amoTteAeopaTIKNG XPNONG PAOIATOS, SLAXELPLONG TAPEUPOMDV TTOA-
ADV SLOKOULOTOV KOl TOAMTAOKOTNTAG ETEEEPYAOLAG ONUOTOG OTOVG SEKTEG,

Ipogavmg, 1 amddoon tov MEC givar og neyaro Pabud cuvugQaouevn e TNV KOTavouT| Tmv
padiomdpwv ohupwva pe v texviki) RSMA yio T entitevEn TG OTOYEVUEVIG OTTaTNONG 08
YPOVIKY ATTOKPLON TNG EQPAPUOYNG KAOE YpNOoTN Ko eTouévag 0o, mtpémel vo, uehetn0el ammd Kot
vou. Katd ovvémeia, pokimtel to d00koro TpdBANUa TG 0Td Kooy eKQOPTWONG VTTOMOYL-
OTIKDV EPYAOLOV KOL KOTAVOUTG POSLOTOPWV KOL VITOAOYLOTIKMOV TOPWV HETAED TMV YPNOTHOV
Ko TV ToAamAmv Stakomotdv MEC, 1o omolo Topauével Kuplng aluto ot PiBioypapia
Ko TPOOTaOVIE VO OVTLUETOILOOVUE. ZUYKEKPLUEVO, OTO AVILOTOLO KEQPALALO TNG TApoVoaG
SLOTPLPNG, TPOTELVOUNE (e OAMOTLKY ADOT YL TV EAOI(LOTOTOLN 0T TOU A.OPOLOUATOG TNG UEYL-
OTNG XPOVLKNG KAOVOTEPNONG TWV YXPNOTHOV HETAED TV SLapopeTikdv drakowotdv MEC, mou
TPOEPYETAL TOOO OTTO TNV EKPOPTWOT) 000 KOl Gt TV ETEEEPYAOLO, TWV VITOMOYLOTLKMV EPYQL-
OUDV OTOVG SLAPOPOVG SLOKOWOTES. I'loL TO 0K0TTO 0UTO, BEATLOTOTOLOVVTAL AT KOLVOU OL OVOAO-
YIES EKPOPTWONG vno}»oymm(dw EPYAOLDV OTTO TOUG YPNOTEG OTOUG SLAPOPETIKOVG SLAKOULOTEG
MEC, ou vaMOL Ko ot Loxug uswéocmg TOV YPNOTHOV 0T LEVEN 0vOdov, Kang KOlL OL VTTOAO-
YLOTLKOL TTOPOL TTOU Ka‘toweuovrat amtd TOUG SLUKOULOTES TPOG TOV KGOg pNOT OVALOYO UE TO
HEYEDOG TNG EKPOPTWUEVIG OE CUTOVG VITOAOYLOTLKNG EpYa.otag. To dtapoppwuévo min-max-sum
TPOPANUA - OTTWG Y APAKTNPLLETAL LE OPOVG BEATLOTOTOLNONG - LETAOYNUATILETAL LOOSVVOULA KOL
amoouvtifeTal og dV0 aveEGPTNTA VITOTPOPAUATA, CUTO TOV EAEYYOU PUOROD KoL LOYVOG [e-
TAB00NG KOl QUTO TNG KOTAVOUNG VITOAOYLOTIKOV Topwv. H BédTiot) Aon yio Tig avoloyieg
EKQPOPTMONG VTOLOYLOTIKMOV €py0oLdv og kKaOe diakopot) MEC mpoépyeton guotkd amd v
TPOAvVOaPePOELTO, SLASLKOOLO HETATYNUOTIONOD KL 0ITOOUVOETG TOV APYLKOU TPORANUATOC.
Mze auTOV TOV TPOTTO, KATAAM]YOUE OF Lot 0XESOV BEATLOTY AVOT] 0TO 0PYLKO TPOPANULOL TTOV OLTTO-
deLkviETOL LOLALTEPO ATTOTEAEOILOTLKT] OTTO QUTOYT) TTOAVTTAOKOTITOG KL XPOVIKNG Ka.OuoTépnomng
7OV UOOAVOVTAL OL XPNOTEG 08 OVYKPLOT LUE TOUG GUUBOTIKOVG Ui} YPoukols odydptuovg Beh-
TLOTOTOLNOMG,

SUYKEKPLUEVA, OL KUPLEG OUVELGYOPEG UTNG THG EPYAOLOG UTOPOVY VO CUVOPLOTOUV WG eENG:

o ALOTUTMVETOL TO TPOBANUA TNG EAAYLOTOTOONG TOU ALOPOLOIATOG TG UEYLOTIG YPOVIKNG
KOOUOTEPNO1G TWV YPNOTOV OV TPOEPYETOL OTTO TNV EKPOPTWOT KOL TV EXEEEPYATLOL TG
VITOLOYLOTLKNG EPYAOLAG TOUG HeTaED Tmwv Siapopetikdv Sakouotmv MEC. O otdyog &l-
vaiL v, BEATLOTOTTOmN B0V amtd Kowvol oL avoloyieg EKQOPTWONG VTOAOYLOTIKDY EPYUOLMDV
TV YPNOTOV 0TOVG dLapopeTikong dtokouotég MEC, ol puOuol Kot Loyglg UeTidoomng Toug
011 LeVEN avodov, KaHMG KoL 0L VITOAOYLOTLKOL TOPOL TOV KATAVELHOVTAL 0t KGOE Sia-
Kouoti) MEC tpog toug eEumnpetoiuevoug ypnoTeS Tov.

* O 1008VVOHOG UETAOYNUATIONOG TOU CpyLke SLATUTMUEVOY Min-max-sum JTPOoRANUATOS
avOADETAL VL0 VO OB YHOEL OE LG AVTLKELUEVLKY] GUVAPTION OUVEXOUG HOPEPIG Ko VoL eEaL-
YayeL TG PEATLOTEG CUVONKEG TTOU LOYVOUV Y10, TO TPOPANUA BEATLOTOTOINOTG,

* O ovvOrkeg KKT ypnoipomolohvral yio TV orooiviest) ToU LETUOYTUATLOUEVOD TPO-
BANuaTog 08 V0 aveEAPTITA VITOTPOPANUOTA, OL ADOELG TWV OTTOLWV TAPEYKOVY Y WPLOTA
un PBEATLOTEG MIOELG YL0L TO TTPOPANUOL EALEYYOV TV padlomdpwv (Snhadn, Twv LoydwV Kot
puOudV neTddoong ot LevEn avodov) kat BEATLOTEG MIOELG YLOL TO TPOPANUOL KOTOVOUNG
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VITOROYLOTLK MV TTOPWV 07TO T LePLd Tmv drakowotdv MEC. H BélTiotn avaloylo ek@op-
TMWONG VTOALOYLOTIKDV EPYAOLMV 0TOVG Stapopetikolg dtokouoteg MEC mpogpyetal emi-
ONG GUETO ATTO TNV LOOSVVOUT AVALUOT HETOOYUATIONOD KL ATO0VVOEGTS TOU apyLko

TPOPAUATOG.

* AopuBavovrat aptdunTikd oToTELECUATA UECKH HOVIEROTTOLONG KO TTPOCOUOLWONG YL, VO,
Katadelyel 1 aToTELEoUATIKOTITA TNG TTPOTELVOUEVIG ADONG 00OV apopd TV TTOAVITTAO-
KOTNTO KO T1) XPOVIKT] KAOUOTEPN T TTOU VTILAUBAVOVTAL OL YPNOTES, KABMDG KoL VAL €L
de1y el 11 CLUVOMLKT] OTTOTEAEOUATIKOTITO. TOU CUOTNUATOG EVOVTIL GAAMY TOPASOCLUKDY
TEXVIKMV TOMATTANG TPOCRaoNG.

10. Tvpmepdopoata dreTpiPis

Ed1k0tepa, To. GUUTEPAOUATE OTC OTTOLC. KATAANECUE HECW THG TOPOV0AG dLaTPLpNG elval
To. akOAovVOa:

* H Otopia Tvuporainv umopel vo. awoteréoel £Va 1oupo epyYaAeio YIo Vo, emLTpeyel
TNV KOTOVEUNUEVI] MY ATOQACENMY OE TEPITTWOT EAMITOVS TTAMPOQOpN OGNS,
Cevikd, N Oewplo ZupBorailmv TaPEYEL TIG 0pYES Ko TaL Ladnuatikd Oguéha yio T Aet-
TOVPYLOL LLOG AYOPAG VT TV VITAPEY EAAMITOVG TANPOPOPNOTG, OTTWG YLO. TAPADELY DL EVOL
OVUBOAALO EPYOOLOG UETAED £VOG £pY0d0TI (1] EVTIOAEQ OTWG OVOUATETAL e CUUBOAALO-
OewpNTIkog OPOVG) KOl TOAMY pyalopuevmv (1 TPaKTOpwV). AELOTOLOVTAG T OTATL-
OTLKY) YVDOT| OYETIKG UE TLG TPOTMITUKEG TATPOPOPLES TWV EPYATOUEVOV, O EPYOSOTNG O)E-
d1aZeL £éva pevol amd ovufolaia kKoL Kabe epyalopevog emLEYEL QUTOVOUO EVA OTTO TO.
Stdpopa cupBoroLe TOV TUPLALEL KAADTEPO OTLG TTPOCMTUKESG TOV TANPogopies. To ov-
YKEKPLUEVO LOVIERO YPNOLUOTOLNONKE UE ETLTUYLO O QT T1 SLATPLPY], TPOKELUEVOU VO,
droTumwOel ko va. emAvOel To TUTTLKS TPOPANUA EAEYYOL Loy VoG 0T LeVEN avddov oe £va
ETEPOYEVEG ALOVPUATO SIKTUO Ue TOMATAOUG 0TaOIong ﬁdong 7ToU Baoi@swu oto NOMA,
eWdLKOTEPQL YLOL TV nspmtwon 1y VA pENG TANPOVG vaong tov CSI astd v rc)»evpa TV
oraeu(m/ Bdomg. O xpNnoteg, armd TV Thevpd TG, exovrag mbavng kadbtepn ektiunon
OYETIKG, UE TN OUVONKY TOU GOVPROTOV KAVOALOD TOUG, £X0UV T1] SUVOTOTITO VO UTO-
TPOCAPUOLOVTOL KOL VAL ETUALEYOUY CUTOVOUQL TO ETTLTESO LOYVOG UETAdOONG 0T LeVEN arvo-
dov oV TOUg TOUPLALEL KOADTEPQ ATt TO SLAPOPa GUUBOLOLA TOV £XOUV OYESLOOTEL QTO
Tovg 0TabUoG BAong. Me autdv Tov Tpdmo, eEaopaiiletol TauTopova OTL To emthey OV
OVUBOLALO TTANPOL TLG CTTOULTNOELG TOV OTOOUDY BAONG YLOL ETTLTUXY EQOPUOYT] TG TEYVIKNG
SIC k0L ATOKMBLKOTOINONG TOU ONUATOG OV PTAVEL OF CUTOVG,

* HOzmpio Zvpuforaimv umwopei vo pnotpomon)dei pue emrvyio yio vo supufifacet tovg
OVTIKPOVOUEVOUS OTOYOVS TOV SIKTVUK DY OVIOTHTOY.
TyedLalovrag auolato eTw@ert CVUBOAALO, O EKAOTOTE EVIOAENG UTOPEL VO oUUBLRAoEL
TOV OVTLKPOUOUEVO OTOYO TOU UE TOUG TPAKTOPESG OV OUUUETEXOVY 0TO Guuforato. T
TO OKOTTO QUTO, TPOOPEPETAL £VOL ELBOG AVTAUOLPNG OTOVG TPAKTOPES TTOU EIVAL OVAAOYO
LE TIG TPOOMITIKEG TOUG TATPOPOPLEG KOL TNV TPOGPOPAL TTOV ETAEYOVY CUTOVOUC, VO, TT0L-
PAOYOUV OTOV EVIOLEQ, MG HEGO AVTLOTAOULONG TG TPOTPOPAG TOVG 1) OKOUT] KoL TALPaL-
KLVNOTG Y10 VO, KATOBAAOUV UEYOAVTEPT TPOOTAOELO QITO CUTH) TTOU OKOTEVOLUY. AUTi) 1
1OE0 TNG CUUPIALMONG GVTLKPOUOUEVMVY OTOXWV UETAED TV XPNOTMOV KUl TWV TOPOYWV
VITNPEOLMV VITOMOYLOWMV £XEL EQAPUOOTEL IUE ETLTUYLO. OTO TAAULOLO £VOG TTOAMVETTLTTESOV SI-
KTUOU KIVITOV VITOAOYLOUMV. SUYKEKPLUEVQ, 1] VEQ LOEA TOV TOPOVOLALETAL O CUTH] T
SLaTPLPN EYKELTOL 0TV ETAPKT TTOPAKLVIOT TOV EYMLOTIKA KOL AITANOTO CUUTEPLPEPOLLE-
VOV (PNOTOV VO Xpnotuoa'cow']oovv OMOKAPO TO PAOUA TOV VITOMOYLOTLKOD OUVEX0VG (FTOV
TePLaUBAVEL TO ETTLITES QL oqung Ko outx)mc; omv TOPOVOTL 6L(xtpt[3n) AOY® TV eAKL-
OTLKMV LOLOTNTWV TOUG 0 OYE0T UE TV £YYUTNTA TOUG UE TOUG YPNOTES KO TNV ETAPKN
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VITOLOYLOTLKT] TOUG LKowornw oL Xpncsrsg TOPOVOLALOVY TNV TAON VO, TPOTLHOVV TEPLOTO-
TEPO TOL UJ‘EO)\O‘\(LO‘ELKOL OUOTNULOTC 0TV GKPY) TOU SIKTHOU OUYKPLTLKG UE TLG VITOLOYLOTUKEG
VINPEOLEG OWYANG, OdNYDVTAG OTAdIAKE 08 oUIEOPNON KoL vtofddwon g amddoong
TV TPDOTWV. ZYESLATOVTAG OWOTA GUUBOAALA, TOL OTTOLOL TTAPEYOUV (LG, KOA avTLOTAOULO
UETAED VOUOROTLIKOU KOOTOUG KO LKOVOTTOINOT|G G TTPOG TNV TTOLOTNTO. TG TIAPEXOUEVIG
VITNPECLOG, OL TAPOYOL VITOAOYLOTIKMV VITNPECLDOY WITOPOVV va. GALAEOUV TIG TPOTUOELG
TV PNOTOV KOL VO GUENGOVV TN XWPNTIKOTNTO KOL TNV OTOTEAECUATIKOTITO TOU SIKTVOV.

H Ozopio Mowyviov eivor £ve oo woyupod epyareio Tov exITPETEL TV KOTAVENT]-
PEVI MY ato@aocmv NETUED TOAMNTADY ETEPOYEVOY SIKTUOKAOY OVIOTITOY.
Aedopévng g 101N KOTUVEUNUEVIG PUONG TWV AoVPUAT®V SIKTVOV etduevng yevidg 5G
KO TOU £YYEVOUG OVIAYWMVLOUOU YLOL TNV KOV YPN0T] KATToLag Kowig SdeEauevig mopwv,
OTTWG TO PACUOL 1] 1] VITOAOYLOTLKY LOYVG EVOG ATTOUAKPUOUEVOD SLOKOULOTY, £XOVILE EQOP-
HooEL EKTEVAG TG apYES TG Oempiag Maryvimvy 6TIG EpYaoleg LaG KOl 0T, TTAALOLE KOTOL-
VOUNG TTOPMVY KoL AMYNG OITOQACEMY OV TTpoTtelvoupe. Eldukdtepa, 1 epapuoyn oy vio-
OWPNTIKMV TPOCEYYIOEWY £XEL AELOTONOEL LOLALTEPC YLOL VO EMLTPEYPEL TOV KOTOVEUT-
HEVO €AeYX0 Loyvog otn CeVEN avodou oe aoUpuaTa SIKTUO ETLKOLV@MVIDY, EVAD OL YPT-
OTEG AVTUYOVIOVTOL L0 TO KOLVO (AOUN UECW TOU OTTOLOV TTPALYUOTOTOLOVVTCL OL UETOL-
860e1g Tovg. AMOL TTOLYVIO-OEWPT TG LOVTELQL ETTLTPETOVY TNV LEPOPYLKT] LOVTEAOTIONOM)
TOV TAUKTOV 0TO naiywo UE TN Hopet| nyém/nyet(bv Ko akorovBov/axorotBwv. Ze autd
10 £180g nouywov 0 nysmg noupvu Lo omocpoccm TOV Elva napom]pnmm] amd Tov 0Ko-
Lov0o, 0 0TTOLOG 0TI GUVEXELDL noupvu owtovou(x ™mv rcpooomucn ToU aTOPaAoN. AUt TO
Hovtero g Oswplag Tlaryvimv £xeL eTONG EQAUPUOOTEL EVPEWG YLOL VO TOTUTTMOEL TNV
LEPAPYLOL TTOV VTTAPYEL LETOED TV OTOPACEMV £VOG 0TOOUOD BAONG 1) ATOUOKPUOUEVOU
SLOKOULOTI KOL TV YPNoTOV Tov dtktiov. Kade £va amd Ta Kataveunueva SLatummuevo
KO ETAVUEVO, TTPOBAUATO 0TTO TLG SIKTUAKEG OVTIOTITEG UETATPETETAL OF TPOPANUAL e~
YLOTOTTOINOYC/EAOLLOTOTOINONG OE OYEOT UE WO, Kahd Kaboplopévi ovvapton. ‘Ereta,
N Oewpic Mowryviov Tapéxel evOLApPEPOVOE TPOOEYYLoELG AMoEwV oV 0dNYoUV ot AL
TOVPYLKG ONuELo, OTTmg To onuelo woppomiag Nash, To 0olo apéyel évav ouvnon TpoTo
UETPNONG TG UTOTEAECUATLKOTITAG TMV TTPOTELVOUEVOV TTAULTLOV.

H wovtelomoinon g cuumeplpopds £vog Siktiov eivan Tepimdok, Ahhd To TPOTEL-
VOUEV TAOIGLO KOl 0L MOGELS TTPEMEL VO vl Yo Ms ToAvmhokdtnTas.

O eappoyEg 0To TAALOLO TOV SIKTVMV eTOUEVNG YeVIAG 5G amantohy oTLyioles HETad0-
OELG KO EKPOPTMON, KOOHMG KL VITOLOYLOUOVG KL AT OTTOQACEMY OF TTPOLYILOTLKO YPOVO
YLC. TV LKOVOTTOLNOT] TOV CITOLTY|OEMV EECLPETIKA XOUNANG YPOVIKNG OTOKPLONG KO L1)-
Mg aEomotiog. EmutAéov, amd Gmoyn) emeKTOOUOTITOG, £VOG KEVIPIKOTOUEVOG aAYO-
PLOUOG VYNNG TTOMVTAOKOTHTOG UWITOPEL VO, SNULOVPYHOEL ONUELD TUUPOPNONG VLol TO Si-
KTUO artd TAEUPAG ekTENEONG MM KaL artoutolpuevng onuatodootiog (signaling) stpog v
strpLKT'] ovIOTITO TOV eKTENEL TOV alyOpLOuo. Tia To AOYo autd, amaltoVvTol omoTeAe-
OUOTIKOL KaiL atod0TKoL akydpLOuol xotm]kng no}mnkmcomrotg OL otkovouo-0ewpnTikol
OLM(OpLQMOL KaL ot akyopteum ewoxvum]g wabnong Telvouv va, ratpta@ovv Kalvtepa us
TNV TOPATAVOD TEPLYPAPT], KATAVELOVTUG T1) SLOdLKOOIH KO ETLTPETOVTAG 08 KAOE OVTO-
TNTO VL EKTENETEL LOVY TIG TOUG OLVTLOTOLYOVG VTTOOYLOUOUG. Ze autn) T dtatpifn, oye-
drdoape Kol TPoTEivope TOMITAOKA HOVTEAD TTOV OTTOTUTTMOVOVY T1) GUUITEPLPOPX, TIG OA-
MAOEECPTOUEVEG AAANAETLOPAOELG KL TLG UTTOPACELG TMWV CUUUETEXOVTWV OVIOTITWV UE
PEAMOTIKO TPOTTO, OAAG OTTALTOVY VITOAOYLOUOUG Y AUNATG TTOAVTAOKOTITAG YLC: VO GUYKAL-
VOUV JTPOLYUOITLKG OTO BEATLOTO QITOTEAEOUAL.

Ta RIS uropovv va. BeEATLOCOVV TOGO T1) PAOUOTIKY 600 KOL TNV EVEPYELOKT] 0TOd00)

ToV dikTVOU.
To RIS amotehotvton amd ueydho aplOpd ovaKAAOTIKMOV OTOLEWV KOUTUOKEVAOUEVMV
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OO UETO-VALKQL, TO OTTOLC, WITOPOVV VO, OVIOVOKAODY T TTPOOKPOVOUEVA TAEKTPOUOYVT-
TIKG KOuaTa, KoOopliovTag T UETATOMON @AoNg TOug HECW evog Eumvou eheyktr). O
ELEYKTIG UTTOPEL Va. gEAeYYOel duvaka ue TpOTo Tou KaOopilletol omd AoYLoWKO Yo vo.
TPOCAPUOLEL THV TOTOBETNOT TV GTOLYEIWY KOL VO TAPEYEL TPOYPOUUATILOUEVES LOLO-
™mTeg 070 TEPPBAMLOV Padlodiddoong. At 1 LOOTNTO elval ATOAUTO EVOVYPAUULOUEVT
e To evpiTEPO OPAU TV SIKTHMV eTOUEVNG YeVIAG 5G YLl OTLYILOLO AVOSLOUOPPOON
KOl TTPOCUPUOOTIKOTITA, AVAAOYO UE TLG AVAYKEG TOU SLKTUOV. Tautdypova, OUmG, £XEL
EMOANOLVTEL - 0TO TAALOLO TNG TAPOVOOG SLaTPLPNG - OTL 1) XpNon Twv RIS umopel vo emi-
TOYEL TOV ATTMTEPO OTOYO THG KATATOAEUNONG TWV SUoUEVDV GUVONKOY neTddoong Aoym
™G eEATHEVIONG TOV ACVPUATOV KAVOMODY. ZUYKEKPLUEVQ, £XEL SLePEVVNDEL 1) TPOOTTTLKT
twv RIS va BEATUOOOVY TNV EVEPYELOKY KOL QAOUOTIKT] 008001 TOGO 0TO KOUUATL TOU
dikthov aovpuaTng TPOoRAoNg 0AAG Ko 0TLOBOTEVENG, ATOSELKVIOVTOG TV AVWTEPO-
TNTOL OTNV EMLTUYOVOUEVT aTdOd00T 08 GUYKPLON We To 0evapLo agohdynong omov dev
yivetar xpnon RIS evidg tng tomohoyiag tov dikthov. Me autdv tov Tpomo, 1 GuvOeoLud-
mra dikthov Kabmg Kow N SidpKela Tong TG WTOTOPLOG TOV UELOVOUEVMV SIKTUOK®OV
OVIOTNTWY WITOPOVV VO, ETEKTAOOVV.

H yp1jon 6Aov Tov QACUATOS TOU VTOAOYLETIKOU GUVEXOUS 0ONYEL 6E AVATEPT OTTO-
8001 1060 06 Aoy evépyeras 660 Kot YPOVIKNS ATOKPLONC.

EKrég oo g OTTALTIOELG TV E(p(xpuoydw OYETUKA UE TV not()mr(x napsxéusvng upe-
(nag, oL ormoteg Korevdhvouv Tig npoum]oug KOL TLG ATOPAOELS TOV Xpnorwv 7TPOG Evay
TAPOYO VINPECLDV vnokoywumv (61]%0(61], axpn, ouLxM], VEQPOG), TOL EYYEVT] eymtorma Ko
ATTANOTOL YUPAKTNPLOTIKG GUUTEPLPOPAS TWV XPNOTMV TAUTOUV TOV L0 ONUAVTLKO pOLO
Otov avtaywviovrol yio o Kowr deEapevn topwv. H povrehomoinom tg ouustepipo-
PLKNG KOL OLKOVOULKNG OAANAETLOPOONG UETAED TWV YPNOTMOV KUL TV OVTOYOVLOTIKMOV
TAPOY WV VINPECLOY VITOAOYLOWMY ELVOL ETLTOKTLKY) GVAYKT] YLC: VO, TTPOOOMDCOUNE EVa. PE-
CAMOTIKO TTVEVULOL KOTA T SPOUOAGYNON TV OLTHUGTWY VL0 VTTOAOYLOWO Ko T Stodikooia,
KOTOvounG opmv 0Ta SLAQopo. ETLITESO VITNPECLDHV VITOAOYLOWMY. AVt elvan 1 BAoLKT
€ AV 0TV 07Ol £)EL OLKOSOUNOEL TO TPOTELVOUEVO TAALOLO YLOL T1] YPT)01) OAOU TOU
(PAOUATOG TOU VITOLOYLOTLKOD GUVEXOVGS, YPNOoLoTotdvTag Oewpleg Zvuforaiwv ko Mo~
yviwv. To KOpLo. EUpNUOTA TG EPYAOLAG LOG ELVAL OTL 1] OWOTI PN 0T TOAAGITAMY ETTLITE-
dwv VTOAOYLOTIKMV duvaToTNTtwV emiTpémet TV 100% LKOVOTOLNOo TWV ATOLTHOEWY TWV
YPNOTMV MG TPOG TN XPOVIKY KAOUOTEPNOT], SLUTNPOVTAG TAPAIMNAG XOUNAG eTimedo
KOTOVALWOONG EVEPYELOG OTO SLAPOPETLKL ETUTES O, VTTOAOYLOUDY GUYKPLTLKG Ue AANEG ETTL-
MOYEG EKPOPTMONG, T.X., EKTEAEDT] VTOAOYLOUMDV CITOKAELOTIKG TOTLK(, OTIG CUOKEVEG TWV
YENOTAOV, EKPOPTMOT VITOROYLOUDV COTKAELOTLKG 0TV GKPT), EKQOPTMON VITOLOYLOUDY
CLTTOKAELOTLKGL 0TIV OULYAN.

H tovtoypovn ek popTmon] voloyioudy € Tollhovs SLuKOULOTES MELDVEL T1) POVIKT
KaOUOTEPN 01 EVO EMLTPETEL BEATIOUEVT] TPOCUPUOCTIKOTI|T KOL AGPAAELXL.

H exgpoptmon og morhamhoig dwakouotég MEC amotehel o ko molUTiun oTpotnyLKn
VL0 SLAPOPEGS EPAPLOYES VITOAOYLOUMYV. AUTI) 1] OTPOTYLKY EKUETOAAEVETAL TOVG YEWYPOL-
(PLKG KOTOVEUNUEVOUG SLAKOULOTEG EVIOG TOU SIKTVOV padLompdoBoong Twv SIKTOmV e0-
HevNg Yeviag SG yLa v LELDOEL TN POVLKY KAOUOTEPT01) VL0 TOUG YPNOTEG OE SLOLPOPETLKES
TEPLOYEG. OLYPNOTEG TEPLOPLOUEVNG SLLOEGLUOTITALG VTTOLOYLOTLKMV 1] EVEPYELAK MV TTOPWV
UTTOPOVV V&L EKPOPTHTOVY TUNUOTO. TG VITOAOYLOTIKNG TOUG EPYAOLOG O VOV GUVOVUOUO
dradgopwv daxopotdv MEC. Aedouévou ot ka0e Staxouotig MEC gépet Stogpopetikd
YOPOKTNPLOTIKG, TT.X. VITOMOYLOTLKT LoYD Ko aKpIBELd ToVG VITOAOYLOUOUS, OUTH 1) OTPa-
TIYLKY] EMLTPETEL TV TPOOAPUOYT KoL TNV EVEMELD atd TNV TAEVPA TOV YPNOTH AVOLOYC,
LE TIG AVAYKEG KAOE HEPOVG TG EKPOPTOVUEVIC EPYAOLAG. ZUYKEKPLUEVC, OL BUPLEG EQYOL-
oleg Y aviknG uanong, m.y. 1 exeEepyaoia etkdvag, urTopovv va ermeelnolv amd v
eKQOPT™OoN o€ oM ahovg Stakomotég MEC. AlagopeTikeég pogg BLVTED OV TPOEPYOVTOL
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amod acpocpuoyeg oYNUATOY, Uyatovoumng TEPLOGAPNG 1 AOPAAELOG - VIO, VO, AVOPEPOVUE
uepLKd apadelypnoto. - unopouv Vo EKQPOPTWHOVY GE SLOLPOPETLKOVG 6Lou<0mcreg MEC
yio emeEepyaoio. Me avtdv Tov TpOm0, 1) GUVOMKT TOMTAOKOTITA TG EPYOOLOG UELDVE-
TOL KO SLAPopaL ETTLITES 0L K PLPELAG ETTEEEPYAOLAG WTOPOVV VO GTOYEVOOUV Yol KAOE UEPOG
™G epyaoiog ue BAon v vITohoyLoTIKY tkavotnTa ke diakowot) MEC. Tovtoypova,
1 KOTOVOUT] VTTOMOYLOUMV 08 TOANOVG SLOKOUOTEG WTOPEL VO, BEATLOOEL THV AOPALELD. OE
TEPLTTWON TAPOPLAONG EVOG ATTO AUTOUG. ZUYKEKPLUEVQ, OO0V QPOPQ. T UELWUEVT] (PO-
VIKT KaOUOTEPN O, AUTO TO OPELOG E)EL TTPUKTLKC, EVTOMLOTEL Ko LETPNOEL 0TIV TTapoloo
SLoTPLPN eved TEPAUATIEONOOTE UE SLOPOPETIKEG TEYVIKEG TOAMUTANG TPdoPaoNG KOTA
™ PASLOUETASO0N UTTOG TOVG YPNOTEG,

O 0oYedLaouds OMOTIK®OV AGEMV £IVOL VYIOTIIS ONUAGINS Yo TNV ¢ELoToinon Tov
TAM]POVS SUVEIIK OV TIS APYLTEKTOVIKIS, TS VTOd0UNS KoL TS TELVOAOYIAS TOV di-
KToov.

Ta aobppota SIKTUA ETLKOLVOVICG KOL KIVIITOV VTOAOYLOWDY e0uevNg yeviag 5G mept-
MUBAVOUV Evay ouvey MG QVEAVOUEVO aplBud Babuny ehevbeplog 660V apopd. Tovg TTo-
POVG TTOU TIPETEL VA SLOYELPLLOVTOL TAVTOYPOVA, O OTTOLOG TNYALEL AITO TO SLAPOPL. ap-
YLTEKTOVLKG TTOPOADELYIOTA KOL TEYVOLOYLES 1OV vioBetouvtal. To gaoua, 1 Loy0g KoL o
pLOUOG UETADOONG SESOUEVMV, 1] CUGYETLON XPNOTY Ue 0TaABUd BAONG 1) CTTOUAKPVOUEVO
SLOKOULOTH), OL LETATOTLOELG PAONG TV 0ToLYELwV TV RIS, 1 eKQOPTMON VITOAOYLOUMY KoL
1 VITOAOYLOTLKT] LOY VG, AITOTEAOUV OVO LEPLKEG ATTO TLG SLOPOPETIKEG TAPAUETPOVS KL TTO-
POVG TTOV TTPETTEL VO AAUBAVOVTAL VITOYT) KAOE (POPQ, £V £VOL SLAPOPETIKO VITOOVUVOAO QLU-
TV £xeL BerTioTomonOel artd Koo ota SLipopo. Kepahaia te apovoag datpipng. Ta
OTTOTELEOUOTO AUTHG TNG SLATPLRNG £XOUV ETLBERALDOEL TV KUPLAPYKLO TOV TAOLOLWV OAL-
oTikNg Pehtiotomoinong, oe oUYKpLon pe AMIOELG CUYKPLTLKNG AELOAOYNONG TTOU OVILUETW-
TULOVY HOVOUEPDS TN BEATLOTOTON O SLAPOPETIKMV TUTWV TOPWV, UE OITOTELEOILOL TTEPLO-
00TEPO OTOSOTIKEG MICELG WG TPOG TV AELOTTOLN O TOU (PACUATOG, TNV EVEPYELD, OANE KO
10 YPOVo amdkprong. H dnuovpyla mhaioiov BEATLotomoinong yeuning TorTAoKOTNTAG
YLOL TNV OVTLIETMITLON evrég nokvmvvumoi) Xpévov TETOLWV CUVOVAOTIKDV TPOBANUATMVY
7OV TUOAVOTOTO SEV PEPOVY OVTE YPOUULKES OVTE Kvprsc_, 1SLotTEG (SMAAdT YILOOTA TOU
SEVUTEPOAETTTOV) ELVOL ONUOVTLKNG KO TIPOKTIKNG ONUAOLOG, ATOKOADTTOVIOG TEPALTEP®
TNV ITOTELEOUATIKOTNTO THG OLKOVOO-0EmPTLIKIG HOVTIEALOTTOINONG Kol TTAALGLmV ADOTG.
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