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Abstract

In this thesis, a high fidelity aeroelastic analysis solver for rotor configurations has

been developed. This newly formed computational tool is capable of analyzing complex

flow phenomena over a wide part of the sub–sonic region and under the same compu-

tational framework. The structural dynamics problem is solved by GAST, an in–house

elasto–dynamic analysis module, the development of which started in previous theses

[1, 2] and continued in the present. In previous versions of GAST, a Wind Turbine (WT)

configuration was approximated as an assembly of linear full stiffness matrix Timoshenko

beams [3] discretized through a 1D Finite Element Method (FEM) approach and being se-

quentially connected in the context of a generic multi–body dynamics representation,

not restrained to sequential configurations. During the present thesis, the kinematic

and dynamic analysis part was reformed to follow a multi–body dynamics methodology.

As a result, GAST may now be used for the structural dynamics analysis of any arbi-

trary configuration of multiple load paths and connections between slender components

(beams). The aerodynamic analysis is based on MaPFlow and HoPFlow [4]. MaPFlow is

an in–house conventional Eulerian CFD solver which solves the compressible unsteady

Reynolds averaged Navier–Stokes equations under a cell–centered finite volume discretiza-

tion. Flows in the incompressible region are simulated using Low Mach Preconditioning

[5]. HoPFlow is a hybrid Eulerian–Lagrangian compressible CFD solver that combines the

standard Eulerian CFD formulation implemented in MaPFlow close to the solid bound-

aries, with a Lagrangian CFD approach for the rest of the computational space, through

a domain decomposition approach. The Fluid Structure Interaction (FSI) framework is

formed through a proper communication protocol that has been developed in the present

work and connects the individual structural and aerodynamic modules under a strong

coupling approach.

To have the option of an holistic and cost–effective design tool, especially for WTs,

and for rotor applications in general, the Actuator Line (AL) methodology has been im-

plemented in MaPFlow. In the AL approach, the blades of a rotor are simulated as a

set of control points along their axes; they are allowed to move freely inside the compu-

tational grid and their aerodynamic loads are applied to the flow–field as source terms

on the computational cells they slice during their rotation. In this way, multi–body and

aeroelastic simulations are facilitated, while computational cost is restrained. AL has

been widely used in studying the generation and convection of WT rotor wakes [6, 7],

due to the detailed description of the flow–field that the CFD framework offers. However,

in this study, it is found capable of predicting also the loads of both WT and helicopter

rotor blades in accuracy and under moderate computational requirements. Moreover,
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to reproduce the true (atmospheric) conditions in which a WT operates, the method of

Generation Zone (GZ) has been implemented in MaPFlow and is used for the first time

in order to impose pre–defined turbulent fields (produced with Mann’s model [8]) onto an

averaged flow–field within a CFD context. It is found that GZ is able to create turbulent

fields that are closer to the turbulent field produced by the Mann’s model, compared to

conventional methodologies found in literature.

The validation of this new high accuracy, but cost–effective aeroelastic module (coupled

GAST–AL module) consists of:

i) aeroelastic simulations of the DTU 10MW Reference Wind Turbine (DTU 10MW RWT)

[9] under constant wind and atmospheric (turbulent) conditions;

ii) aeroelastic simulations of the Main Rotor (MR) of the model BO105 helicopter used

in the HeliNoVi experimental campaign [10], under low, medium and high flight

speed in forward flight conditions.

AL results are compared against Blade Element Momentum Theory (BEMT) and Lifting

Line (LL) models results in the case of the WT, whereas LL and measured data are consid-

ered in the helicopter cases. AL results show significant differences compared to BEMT

predictions that get more intense as the flow conditions get more complex. However,

excellent agreement between AL and LL is observed in all the examined cases, due to the

detailed representation of the flow–field by the CFD and the Free Vortex Wake frameworks

respectively. Hence, AL proves to be as reliable as LL in terms of loads and deflections pre-

dictions. The main advantage of the AL method, is that the effect of the rotor and ground

on the local turbulent inflow can be accounted for in detail within the CFD context, under

moderate computational requirements.

Simulations of both WT and helicopter rotors, considering the actual geometry of the

rotor blades, are performed using the coupled GAST–HoPFlow aeroelastic solver. The

simulated cases concern:

i) aerodynamic analysis of the model WT rotor used in the New MEXICO experimental

campaign [11, 12] for an axial flow case at 14.7 m/s;

ii) aeroelastic analysis of the MR of the model BO105 helicopter used in the HARTII

experimental campaign [13] for the Base–Line descent case at 33 m/s flight speed.

The accuracy and the features of this newly formed, high fidelity aeroelastic solver are

assessed in complex local flow conditions and over a wide part of the sub–sonic region. In

the root region of a WT rotor, characterized by lower Mach values, detached flow conditions

occur. On the other, weak shock waves appear near the blades tip of the helicopter rotor,

where higher Mach values are encountered. Results are compared against experimental

measurements and predictions produced by other CFD based aeroelastic codes. In both

cases, the aerodynamic loads of the blades are predicted in great accuracy (comparable

to that of standard CFD solvers). The resulting structural loads and the corresponding

deflections are estimated fairly well. The same remark is made for the flow–field developed

in the region close to the rotors. The above remarks confirm that the coupling method
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between the Eulerian and the Lagrangian sub–domains that determines the boundary

conditions for the confined Eulerian grid is adequate and consistent. The same conclusion

is drawn for the coupling between the structural module and the aerodynamic solver.

Keywords

FSI, multi–body dynamics, CFD, hybrid CFD solvers, actuator line, atmospheric con-

ditions, wind turbine rotor, DTU 10MW RWT, New MEXICO, helicopter rotor, HeliNoVi,

HARTII
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Chapter 1

Introduction

In this introductory chapter, the context of the present thesis is defined. First, the

technological framework of wind turbines and helicopters is examined and the relevance

of aeroelasticity with these technological fields is highlighted. The goal of the thesis for

developing a high fidelity aeroelastic analysis tool is then justified. In support to that,

an overview of the current state of the art in structural dynamics and aerodynamics

analysis tools is given. An outline of the contributions of the present work, alongside

with a summary of the examined test cases and the foremost remarks are then briefly

presented. Finally, the structure of the following chapters of the thesis is explained.

1.1 Aeroelasticity and technology

Wind Turbines (WTs) and helicopters are substantial paradigms of human technology

in which atmospheric air flow through a rotor is leveraged for producing useful work. Wind

exploitation for electric power generation has been long time feasible thanks to WTs. In

helicopter technology, rapid development is noted again nowadays to support not only

transport, but also numerous commercial uses including fire fighting, agricultural crop

spraying, medical evacuation, etc. and in this way upgrade the quantity and quality

of the provided services to the society. Technological improvement is desirable in both

fields, so that performance is enhanced alongside with cost reduction. To that end,

research is today directed towards the development of high fidelity computational tools,

capable of concurrently addressing all the underlying processes that take place when the

airflow passes through the rotors. The goal is to use them in order to identify and better

understand the significance of the various and different physical phenomena taking place

during the operation of both WTs and helicopters. By supplementing the procedure of

design with high fidelity numerical tools, performance and safety may be improved.

In the effort to reduce wind energy cost, wind energy sector is directed towards increas-

ing the size and flexibility of modern WT rotors. To that end, rotor blades are becoming

larger and more slender, undergoing large deflections which increases the complexity of

both the structural model and the flow–field formed in their wake and thus makes dif-

ficult the aeroelastic analysis of the full configuration. For their part, helicopter rotors

and their drive train systems are characterized as fundamentally aeroelastic systems of

high complexity and non–linear responses. It therefore follows that, in order for highly
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flexible and complex constructions to be efficiently developed, design procedure needs to

be equipped with accurate numerical tools applying elaborated and physically motivated

models, able to account in detail for aeroelastic phenomena which play a decisive role in

determining the dynamic behaviour and loads of rotating blades. This calls for sophisti-

cated computational models both for the elasto–dynamic and the aerodynamic analysis

of the blades, which combined comprise the fields of aeroelasticity.

1.2 Scope of the thesis

The aim of the present work is the development and validation of a general application

and high fidelity computational tool for the aeroelastic analysis of rotors. This newly devel-

oped tool is tested on aerodynamic and aeroelastic simulations of both WT and helicopter

rotors, and its accuracy is evaluated by comparing the produced results against experi-

mental data and predictions by other computational tools of similar accuracy. Moreover,

it is compared against already validated in–house computational tools that use lower fi-

delity aerodynamic models such as Blade Element Momentum Theory (BEMT) and Lifting

Line (LL), which are considered as state of the art in WT and helicopter design respec-

tively. In this case, simple flow cases are examined first, where the less sophisticated

models are considered to be reliable and then more complex flow cases are addressed, so

that the advantages of the new high fidelity model may be assessed.

For the newly developed tool to be general enough and perform analyses of high accu-

racy, kinematics and dynamics are based on a multi–body dynamics framework, whereas

the aerodynamic analysis is performed through Computational Fluid Dynamics (CFD)

techniques. In order to enable easy interchange between different individual models of

varying cost and accuracy, the two systems, the elasto–dynamic and the aerodynamic one,

are solved separately and get coupled through a proper aeroelastic interface framework

that has been developed during the present thesis.

The elasto–dynamic analysis tool can simulate any structure with long and slender

components, that can be legitimately modelled as beams interconnected by joints acted

upon by forces and restricted by constraints. Rigid body and elastic motion due to struc-

tural flexibility are concurrently accounted for within the multi–body dynamics frame-

work, alongside the non–linear inertial and structural effects and geometric couplings

imposed by large deflections of highly flexible components. These highly flexible compo-

nents are approximated as assemblies of Timoshenko beams discretized through Finite

Element Method (FEM). In this way, the non–linear geometric phenomena are accurately

resolved in the structural analysis.

General application and high accuracy in terms of aerodynamics is accomplished by

employing CFD techniques. In this way, load–driving conditions related to compressibility

and viscous effects (e.g. shock waves, stall–induced effects) are properly accounted for and

complex flow phenomena may be resolved with great accuracy. In order to investigate the

interaction between the rotating blades and stationary bodies (e.g. ground, WT tower or

helicopter fuselage), an Actuator Line (AL) approach may be employed within a standard

Eulerian CFD framework, that does not resolve the actual geometry of the rotor blades,
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rather than models them as a set of control points forming lines along their axes. These

lines, are allowed to move and deform freely within the computational grid and commu-

nicate with the flow through body–forces. In this way, aeroelastic analysis is facilitated

and computational cost is restrained. However, in cases where flow phenomena related

to the exact geometry of the simulated body (e.g. shock waves, flow separation) are to be

investigated, the actual geometry of the rotor blades is resolved and multi–body configu-

rations (interaction between arbitrarily moving bodies) are realized through a hybrid CFD

code that employs a domain decomposition approach, like overset methodologies do, in

order to combine an Eulerian approach close to solid–wall boundaries with a Lagrangian

one for the rest of the domain.

The two systems are solved separately but get tightly coupled through a Fluid Struc-

ture Interaction (FSI) protocol that carries out the required information communication

between the two distinct systems. Intercommunication is performed multiple times within

every time–step of a time–marching procedure until both systems converge, so that the

full aero–mechanic system is analyzed in accuracy. The aero–elastic coupling framework

developed is capable of dealing only with beam structured configurations.

1.3 Literature survey

The aeroelastic analysis of a complete WT or helicopter configuration consists of vari-

ous fields of analysis that alternatively could be studied separately, such us aerodynam-

ics, structural and dynamic analysis and control. However, in order to accurately ap-

proach the complex subject of aeroelasticity in such advanced technological applications,

those distinct fields need to be concurrently analyzed, so that interaction is properly taken

into account. In order to facilitate the present survey, the available modelling options for

the individual fields of structural dynamics (elasto–dynamic analysis) and aerodynamics

are considered first, based on the accuracy of the produced results and their computa-

tional requirements.

1.3.1 Structural dynamics models

The discretisation of a WT or helicopter structure may be theoretically performed

through 3D FEM, which however are rejected due to prohibitive computational require-

ments. In practice, structural discretization is based on either quasi–3D shell elements

or beam modelling (1D FEM) of the various components of the structure which are then

connected under a multi–body formulation.

Beam models are usually preferred over 3D FEM mainly due to the fact that the slen-

der components of WT and helicopter configurations (e.g. rotor blades) may be very well

approximated as beams. Full 3D FEM structural modelling could be applied to certain

areas such as the WT hub and the nacelle, where beam theory fails to provide design infor-

mation. It needs to be stressed, however, that beam models rely on prior cross–sectional

analysis in order to obtain the cross-sectional properties of the blades (e.g. cross–sectional

stiffness and mass per unit length) at various span–wise stations. Furthermore, with the

ever increasing use of composite materials in WT and helicopter blades manufacturing,
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transverse shear deformation, cross–sectional warping, and elastic coupling caused by

material anisotropy are becoming significant in elastic analyses. Composite blades can be

discretised using 3D composite shell elements, which are capable of describing composite

layer characteristics throughout the shell thickness and predict such 3D phenomena in

accuracy. Even so, instead of a 3D FEM analysis, the most computationally effective

approach to modelling this complex beam problem is to split the basic 3D, geometrically

non–linear elasticity problem into two separate problems: i) a geometrically nonlinear

1D problem of a beam in the span–wise direction, where cross–sections are assumed to

be rigid [14] and ii) a 2D linear elastic problem at the various span–wise stations, from

which the cross–sectional warping is determined [15, 16, 17]. Such approaches have been

followed in [18, 19].

Another essential motivation for applying beam modelling instead of 3D FEM is the

fact that beam models are very well validated against analytic solutions and have proven

to provide predictions of sufficient accuracy even for large deformation problems. On the

other hand, 3D FEM based structural analysis may be coupled with CFD aerodynamic

models in order to form a full 3D FSI analysis framework [20]. However, computational

cost of such approaches is usually prohibitive, unless coarse discretization of doubtful

accuracy is employed. The excessively lower computational requirements of beam models

compared to higher fidelity options has led to structural modelling of WT and helicopters

being almost exclusively based on beam theory [21, 22, 23]. Consequently, the vast

majority of computational resources may be utilized in the aerodynamic analysis.

A number of different beam model based approaches of varying fidelity for the struc-

tural analysis of a WT or helicopter configuration may be adopted. One is a modal

approach, where the description of the various bodies deflections can be made as a

linear combination of some physical realistic modes; typically the lowest eigen–modes

[24, 25, 26]. Modal approaches are usually referred to as Reduced Order Models (ROM)

to substantially reduce computational cost in view of a long list of simulations during

design. When higher fidelity approaches of more degrees of freedom are to be adopted

1D FEM discretization of beam models is followed. Early developments were based on

simple linear beam models, such as the Euler–Bernoulli [27] or the Timoshenko [28]

beam models, enhanced with certain important non linear contributions such as rota-

tional stiffening effect. Both the Euler–Bernoulli and Timoshenko beam models contain

the assumption of small deflections. However, as the configurations increase in size, ro-

tors become larger and the rotor blades get highly slender and undergo large deflections.

As a result, non–linear beam models are required in order to accurately predict the geo-

metric non–linearities brought about by large deflections. With respect to accounting for

non–linear structural phenomena there are two options;

• higher order beam models, such as the 2
nd

order Euler–Bernoulli model presented

in [29] that was based on the earlier developments of Hodges and Dowell [30] and

geometrically exact models developed by Simo and Reissner [31], Hodges [32, 33]

or more recent works such as the one of Meier [34, 35] that are based on the

Kirchhoff–Love beam models and usually adopt an intrinsic formulation of beam
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theory (instead of expressing variations in terms of displacements and rotations

they use linear and angular velocities)

• multi–body formulations [36, 37, 38] where a slender body undergoing large deflec-

tions is considered as an assembly of linear beams, each having its own co–ordinate

system with respect to which deflections and rotations are assumed small. In this

case, large deflections and rotations are gradually built by imposing to each beam

local co–ordinate system, the deflections and rotations of the preceding ones as

large rigid–body motions. The connection between consecutive beams is accom-

plished by satisfying proper kinematic and dynamic conditions at the connection

points (joints) [39]. In an alternative approach, the components of a configuration

may be divided into a number of interconnected rigid elements, supplemented with

concentrated springs at the connection points in order to account for the flexibility

of the component.

1.3.2 Aerodynamic models

There are multiple options of varying fidelity for performing aerodynamic analysis of

rotating blades; compute their aerodynamic forces and assess the disturbances they bring

about on the flow–field. The different options may be classified based on their compu-

tational cost and the accuracy of the results they produce. Simplified engineering tools,

such as BEMT [40] based models or linearised dynamic wake models [41], are very fast

and reliable in simple flow cases. For this reason, they are widely employed in design

and analysis tools. A more elaborate option is LL panel codes employing Free Vortex

Wake (FVW) modelling [42]. The latter can handle complex aerodynamic phenomena (yaw

misalignment, high shear of the Atmospheric Boundary Layer (ABL) ) with greater accu-

racy [43]. However, they are essentially inviscid and incompressible, which means that

load driving conditions related to compressible and viscous effects (such as shock waves

or stall induced effects), can only be considered through engineering correction models.

On the other end, the highest fidelity option is fully resolved, grid–based CFD solvers that

solve the Navier-Stokes equations on grids composed of millions cells [44]. Despite being

computationally expensive, they have the ability to take into account compressibility and

viscous effects of the flow or unsteady and 3D phenomena related to the geometry of the

blades. Viscous effects are important when studying the rotor wake interaction with the

boundary layer developed on surrounding bodies, such as the WT tower or the ground

[45].

The various modelling options may be classified as well into grid–based (Eulerian) or

grid–free (Lagrangian) ones according to the formulation in which the flow equations are

expressed. In Eulerian formulations the computational space is discretised in grid cells

and the flow–field evolution is described by recording the values of the flow quantities

on the grid nodes. In Lagrangian (material) formulations the flow properties are car-

ried by numerical particles which act as flow markers and the flow–field description is

accomplished by following the properties of the particles along their trajectories.
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Simplified aerodynamic models

The most widely known and used simplified aerodynamic models are based on BEMT

combined with engineering correction models in order to account for dynamic inflow con-

ditions [46]. In such methodologies the rotor is modelled as a disk and gets discretized in

annular elements (rings). The lateral boundaries of these elements are assumed to consist

of streamlines, which means that no flow across the elements is permitted. This hypoth-

esis dictates a strong 2D character of the method. The equations for momentum and

angular momentum conservation (1D momentum theory) are solved on the plane of each

annular element, whereas the dynamic closure of the equations is accomplished with the

use of the blade element approach. Consequently, the computation of the aerodynamic

loads of the rings depends on tabulated airfoil data (2D polars) of the airfoil section that

characterizes the ring.. The aerodynamic loading of each ring is considered to be constant

across its surface, corresponding to a rotor with an infinite number of blades. In order

to correct the latter assumption a tip loss correction model was introduced by Prandtl

[47]. BEMT models have proven to be quite accurate in predicting the steady state rotor

loads. Combined with engineering correction models they are also able to take into ac-

count, in a simplified approach, unsteady phenomena such as the dynamic response of

a quasi–steady wake [48, 49, 46] or the asymmetric distribution of the induced velocities

over the rotor disk due to wake skewness [48, 49, 46]. Moreover, unsteady and highly

viscous phenomena related to the geometry of the blades, such us flow separation, may

be accounted for by using Dynamic Stall models [50, 51, 52]. Their validity in simple flow

cases under low computational requirements is the main asset of simplified BEMT based

models, rendering them suitable for rotor design and performance analysis, where large

series of simulations need to be performed. For this reason, they are regarded as state of

the art in WT design.

As a higher fidelity approach in complex flow cases (e.g. yaw misalignment cases),

more sophisticated dynamic wake models are usually combined with the blade element

approach in order to describe the flow–field close to the rotor plane (near wake region) in

greater accuracy. In this way, the unsteady response of a dynamic wake and its varying

induction on the rotor plane are properly taken in to account. Such are the linear theory

for describing the dynamic wake response developed by Pitt and Peters [53] or the near

wake models for the trailing vorticity [54]. In practice, the latter depend on a LL modelling

of the rotor blades, where only a part of the wake structure (e.g. quarter revolution) is

described as circular vortex paths originating from the rotor blades.

Grid–free (Lagrangian) methodologies

A much more elaborate option would be to represent the flow–field in Lagrangian

(material) form. In such formulations, the flow is approximated by a set of numerical par-

ticles that cover the entire computational space and act as flow markers, approximating

the flow–field at discrete positions. The flow–field evolution is described by following the

trajectories of the numerical particles while recording the values of the flow quantities

they are assigned with. In that sense, particle methods are grid–free, self–adaptive and
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(in theory) have zero numerical diffusion. Furthermore, no truncation of the computa-

tional domain is needed and the true velocity conditions are satisfied at infinity [55]. On

the other hand, the treatment of wall boundary conditions constitutes a major challenge,

involving costly convolution operations and large number of particles [56, 57]. Another

drawback is the fact that computational cost rises proportionally to N
2

(N is the number of

particles), unless special techniques such as Particle Mesh (PM) [58, 59, 60] or multi–pole

expansions [61, 62, 63] are adopted. Furthermore, the ability of particles to move freely

within the computational domain may lead to excessive clustering or spreading which in

turn may bring about loss of accuracy and/or numerical instabilities. To prevent this,

re–meshing, which is a typical procedure in particle methods that redistributes the parti-

cles regularly in space, may be employed. In this way, full coverage of the computational

domain is recovered and regular distribution of the numerical particles is ensured.

According to the flow quantities that the particles carry, the Lagrangian formulations

may be distinguished in Smooth Particle Hydrodynamics (SPH) [64, 65, 66] methods or

Vortex Particles Methods (VPM) [55, 67, 68]. In the former ones momentum and energy

are used as the primary flow variables of the particles, whereas dilatation, vorticity and

pressure are preferred in the latter. Due to their robustness in pressure variations, VPM

are quite popular in external aerodynamics applications. They are usually combined

with Boundary Element Methods (BEM) [42] and have been widely used for capturing

the 3D wake behind rotating bodies like WTs rotors [43], Helicopter rotors [69], but also

Airplanes [70]. Their popularity is mainly attributed to the use of non–diffusive properties

(primarily vorticity) that makes them befitting for wake modelling, especially in cases

where the interaction between lifting bodies and free wake structures, known as Blade

Vortex Interaction (BVI) [71], is to be studied.

There are various blades modelling options to be combined with a Lagrangian flow–field

representation approach. The simplest one would be the LL method of Prandtl [72, 73],

where a blade can be modelled as a single or an assembly of vortex filaments with constant

circulation along its quarter–chord (c/4) line. In the context of BEM, the blade geometry

can be represented as a set of boundary elements (panels) attached to the actual blade

surface (thick representation of a lifting body) or its camber surface (thin representation

of a lifting body as a Lifting Surface). In the Lifting Surface methodology [74] the blades

are modelled as a surface distribution of dipoles along its camber surface, whereas in the

thick body approach the actual blade geometry can be represented as a distribution of

potential value φ under a direct [75] or a distribution of sources and dipoles under an

indirect [76] formulation. Alternatively, the Lagrangian flow–field representation may be

combined with a CFD modelling of the aerodynamic bodies in order to take into account

the viscous and compressibility phenomena related to the body geometry in maximum

accuracy. Such approaches are known as hybrid CFD methodologies.

Grid–based (Eulerian) methodologies

Eulerian CFD is the most popular simulation method in aerodynamics, due to the

high accuracy it provides in describing the flow–field close to a body. This stems from the
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fact that the Navier–Stokes equations are solved. Hence, the evolution of the flow both in

space and time is described in detail. Complex flow patterns may be accurately analyzed,

whereas compressible and viscous phenomena are properly accounted for when the flow

interacts with the simulated bodies. Moreover, the accurate treatment of wall boundaries

(no–penetration and no–slip conditions may be exactly satisfied) leads to a good estimation

of the development of the boundary layer of a body. Therefore, aerodynamic phenomena

that are strongly related to the geometry of the body (e.g. shock waves, flow separation)

may be consistently predicted.

Computational space is discretized in “stationary” grid nodes through which the fluid

moves and on whom the flow properties are recorded. The discrete flow equations can be

formulated based on a variety of approaches, namely the Finite Differences Method (FDM)

[77], the Finite Volume Method (FVM) [78], the Discontinuous Galerkin Method (DGM)

[79] or the Spectral Method [80].

Turbulence may be accounted for through multiple approaches of varying fidelity and

computational cost. In Reynolds Averaged Navier Stokes (RANS) [81], the spectrum of

turbulent fluctuations is averaged in frequency. By applying this kind of averaging to the

flow equations, the so–called Reynolds stress terms appear in the momentum and energy

equations leading to a closure problem. There are several closures ranging from simple

algebraic up to multi–equation differential models. To the other end, in Direct Numerical

Simulation (DNS) [82] turbulence modelling is not needed and turbulent fluctuations are

resolved, provided that sufficient grid and time resolution are employed. Large Eddy

Simulation (LES) [83] stands in between. Instead of averaging over the frequency range,

space filtering is carried out that distinguishes large scales which are resolved from the

smaller ones, which are modelled through a sub–grid scale model. The grid requirements

in DNS are very demanding while in LES more manageable sizes are needed. Still, in High

Reynolds flows the grid requirements are very high and hence hybrid RANS/LES models

have been developed [84].

The outer boundaries of the computational domain are typically located far away from

the simulated bodies, so that the corresponding boundary conditions may approximate

those of the undisturbed flow at infinity. A typical distance of the outer boundaries in the

case of flow around an airfoil is 50 to 100 chords length. This distance can be shortened

without loss of accuracy only if special techniques are followed, such as vortex correction

[85]. Still, truncation of the computational domain at a finite distance is a numerical

approximation that leads to errors perceived by the flow as reflections of acoustic waves.

This is considered as significant drawback in external aerodynamics applications. Damp-

ing of such high frequency waves is typically accomplished through special techniques,

such as the multigrid method [86] or a conventional gradual grid coarsening towards

the outer boundaries, which however increases numerical diffusion and adds errors as

well. Local grid refinement seems like an obvious remedy, but it comes with a substantial

increase in computational cost. Moreover, the consideration of the interaction between

independently moving and deflecting bodies is usually implemented through the applica-

tion of special methodologies like Immersed Boundary Methods (IBMs) [87], Sliding grids

[88], Overset grids [89] or Deforming grids [90]. Each method raises different issues, such
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as temporal discontinuity of regional cells, loss of conservativeness or deterioration of grid

quality and penalizes computational cost. In certain cases, this problem may be overcome

using Actuator methods [91, 92], in which bodies are simulated as a set of control points

that may move freely within the computational space, while their forces are simulated

as source terms in the momentum and energy equations. Nevertheless, when Actuator

methods are employed, the accuracy of the produced flow–field close to the bodies gets

lower, while flow phenomena that are strongly related to the geometry of the body (e.g.

shock wave, flow separation) cannot be analyzed.

Lagrangian vs Eulerian methodologies

To sum up, Lagrangian methodologies are more effective in the off–body region, due

to the lower numerical diffusion of the Lagrangian formulation of the flow equations and

the fact that they satisfy the true far–field boundary conditions. On the other hand,

Eulerian methodologies are very effective in the region close to the solid–wall boundaries

due to the fact that wall boundary conditions are accurately satisfied. Hence, high fidelity

computation of the near–body flow–field is possible with proper grid resolution. It is

therefore reasonable to combine the two methodologies in order to enhance accuracy and

reduce computational cost.

Hybrid (Lagrangian–Eulerian) methodologies

Lagrangian and Eulerian methodologies may be combined in a hybrid formulation

by following a domain decomposition approach. The sub–domains may either overlap

or not. Strong viscous–inviscid interaction models [93, 29] and RANS–Vortex coupled

ones [94, 95] are examples of completely overlapping hybrid methodologies that combine

an inviscid Lagrangian formulation for the entire flow with a viscous layer close to the

solid boundaries and define coupling conditions for pressure and velocity on the outer

boundary of the viscous layer. Coupling in this case is approximate, not only because the

two formulations are not equivalent, but also because the sub–domains overlap. Exact

coupling consists of imposing continuity to all flow quantities which in principle refers

to non–overlapping sub–domains. In this case, the coupling conditions take the form of

integral equations (also known as Neumann to Dirichlet map) defined on the boundary

interface [96, 97]. While in 2D problems the extra cost is manageable, the penalty in 3D

can be substantial. For this reason, certain hybrid methods have at least some degree

of overlapping, in the form of a buffer area, [98], while others directly approximate the

coupling conditions. In [99, 100] compressible RANS solvers were coupled with viscous

vortex methods implementing non–overlapping decomposition. Vortex particles are de-

fined outside the Eulerian domain based on the flux of vorticity across the interface while

the computation of the velocity on the interface includes the vorticity within the Eulerian

domain. Finally, in [101] a compressible particles formulation has been combined with

an Euler code.
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1.4 Outline of the thesis

The main objective of this thesis is the development of a high fidelity aeroelastic anal-

ysis tool that can be applied on all type of rotor based configurations (e.g. vertical and

horizontal wind turbines, helicopters, propeller driven air–crafts, etc.) and model very

complex load–path configurations on both open–loop and closed–loop topologies. The dif-

ferent modules (elasto–dynamic analysis and CFD based aerodynamic codes) of this new

tool have been developed at the National Technical University of Athens in previous Ph.D.

theses as stand–alone tools. In this work, however, the elasto–dynamic module has signif-

icantly been modified in order to enlarge its scope, whereas additional modelling options

have been added to the standard CFD code in order to allow its use as a high fidelity

but affordable computational tool for a few WT design cases defined in the IEC standard

[102] (computational cost may be overwhelming for a full list of simulations). Moreover,

these improved individual modules have now been coupled under an FSI framework into

a general application and high fidelity aeroelastic analysis tool.

1.4.1 General application GAST

The elasto–dynamic analysis module of this newly developed tool is a new version of

GAST [1] and hGAST [2]. The structural analysis of the various components of a config-

uration is based on a Timoshenko beam modelling discretized in space by combining the

method of virtual work with the FEM approach. This part of the analysis has been in-

herited by the previous versions of GAST. However, the kinematic and dynamic analyses

followed in order to connect the different components into a full operational configuration

exceeds the previous ad–hoc approaches that mainly focused on wind turbines. This is

accomplished by employing a multi–body dynamics methodology that connects the differ-

ent arbitrarily moving beams through joints and dynamic constraints that are realized by

satisfying non–linear connection equations [36]. As a result, the new GAST is now capable

of simulating any arbitrary configuration that may be validly modelled as an assembly of

beams. On its previous versions, GAST has been coupled with RAFT [103], a simplified low

fidelity BEMT based aerodynamic model, and GenUVP [42], a more sophisticated medium

fidelity model employing panel formulations within a FVW context. Nevertheless, in order

to be able to analyze in detail the aerodynamic behaviour of not only thin (lifting), but also

bluff bodies, and in order to be able to account for aerodynamic phenomena driven by

compressibility and viscous effects, this new elasto–dynamic tool is herein coupled with

CFD based aerodynamic models. The CFD codes used for the aerodynamic analysis are

MaPFlow and HoPFlow [4].

1.4.2 MaPFlow–AL modelled rotor blades

MaPFlow solves the compressible Unsteady Reynolds Averaged Navier Stokes (URANS)

equations under a cell–centered finite volume spatial discretization scheme and can han-

dle both structured and unstructured grids. Low Mach Preconditioning is applied on

the equations solved when the local Mach number gets close zero, which is typical for
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WT applications. 2
nd

order schemes are used for space and time integration. In order

to facilitate multi–body configurations, where independently moving bodies interact with

each other (e.g. blades–ground or blades–tower interaction), and in the same time restrain

computational cost (e.g. when multiple WTs are to be simulated in a wind farm set–up)

the AL technique [92] for modelling rotor blades has been implemented in MaPFlow dur-

ing this thesis. The new coupled GAST–AL model is tested on aeroelastic simulations of

both WT and helicopter rotors. Its accuracy is evaluated by comparing the produced re-

sults against experimental measurements and predictions by already validated in–house

computational tools that use lower fidelity aerodynamic models based on BEMT and LL

theories, which are considered as state of the art in WT and helicopter design respectively.

Smooth free–stream flow cases

In the WT cases, axial and yaw misalignment flows are tested at various wind speeds

and comparison is made among the AL module, the standard BEMT model and the LL

approach. At simple axial cases, good agreement is achieved between all three models in

terms of loads and deflections prediction. Deviations occur between BEMT and the other

two models at yawed free–stream flow conditions. These differences become more pro-

nounced as the yaw angle increases. However, excellent agreement is observed between

AL and LL at all the examined cases. For the helicopter simulations, AL predictions are

validated against LL simulation results and wind tunnel measurements of the HeliNoVi

experiment [10]. In general, predictions are close to the experimental measurements and,

when differences occur, the two models results seem to agree very well with each other.

Turbulent flow cases

In order to simulate the operation of a WT in true atmospheric conditions, the model

of Mann [104, 105, 8] has been used in order to create a synthetic 3D turbulent field and

a new technique for imposing the produced turbulent field into a CFD context has been

developed and implemented in MaPFlow. This new technique is based on the Generation

Zone (GZ) concept presented in [106] and is able to create a spectrum which is less diffused

compared to the one produced by the conventional methodology of the Actuator Disk (AD)

[107] and hence closer to the initial one produced by the model of Mann. The new coupled

GAST–AL model, alongside with the new internal module of MaPFlow to generate turbulent

wind fields within a CFD context is tested on aeroelastic simulations of an isolated WT

rotor at an axial and yaw misalignment flow case. A full WT configuration (rotor, shaft and

tower) operating inside the ABL under turbulent free-stream flow is also examined. The

produced results are compared against the ones obtained by the standard BEMT model.

As in the smooth free–stream flow cases, good agreement is achieved between BEMT and

AL predictions at the simple axial flow case, whereas differences show up at the more

complex flow cases. At all the examined cases it is shown that the main advantage of AL

over BEMT is the consideration of the mutual interaction of the rotor and the surrounding

bodies (ground) with the ambient turbulence and the nearby inflow, thanks to the CFD

representation of the flow–field.
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1.4.3 HoPFlow–fully resolved rotor blades

There are cases in which the actual blade geometry (or the geometry of any other body)

needs to be simulated, no matter the increased computational cost. This is inevitable

when flow phenomena that are directly related to the body geometry (e.g. development of

boundary layer) are to be investigated. In these cases, HoPFlow is used as the aerody-

namic module of the new aeroelastic code. HoPFlow is a hybrid CFD code that employs

a domain decomposition approach, like overset methodologies do, in order to combine an

Eulerian approach (the one followed in MaPFlow) close to solid–wall boundaries with a

Lagrangian one for the rest of the domain. In the Lagrangian sub–domain, flow–field is

represented by following the evolution of a number of particles along their trajectories. In

the Lagrangian approach implemented in HoPFlow, numerical particles are assigned with

mass, dilatation, vorticity, pressure and volume. The velocity field is computed using

the Helmholtz’s decomposition theorem in conjunction with the PM technique in order

to solve the resulting Poisson equations for the scalar potential φ and the vector poten-

tial ~ψ. The domain decomposition employed in HoPFlow is suitable for multi–body and

aeroelastic configurations within a CFD context, without minimizing the accuracy of the

produced near–body flow–field that the AL methodology brings about. HoPFlow is tested

on an aerodynamic simulation of a WT model rotor used in the New MEXICO experimental

campaign [11] and the coupled GAST–HoPFlow aeroelastic tool is tested on an aeroelastic

simulation of a helicopter model rotor used in the HARTII experiment [13]. In both cases

the rotor blades are fully resolved. The accuracy of the produced results is evaluated by

comparing them against experimental measurements and predictions by other computa-

tional tools of similar accuracy (coupling between beam structural models and CFD based

aerodynamic analyses) developed by other institutions and research centers.

Aerodynamic analysis case

In the case of the aerodynamic analysis of the WT model rotor it is shown that the

accuracy of the boundary layer solution (near–body flow–field) of the hybrid solver is

comparable with that produced by a standard Eulerian CFD code. This confirms that the

coupling method that determines the boundary conditions for the confined Eulerian grid

is adequate and consistent. It is also shown that the reduced numerical diffusion of the

Lagrangian formulation followed in the off–body region leads to better preservation of far–

wake structures and, thus, to a more accurate estimation of the wake deficit compared

to its Eulerian counterpart MaPFlow.

Aeroelastic analysis case

In the case of the aeroelastic analysis of the helicopter model rotor the procedure

followed to couple GAST with HoPFlow is validated as well. It is shown that the aero-

dynamic and structural loads, the corresponding deflections and the produced nearby

flow–field predicted by this new high fidelity aeroelastic solver is in good agreement with

the experimentally measured data and comparable to the predictions by other high fidelity

aeroelastic tools.
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1.5 Structure of the thesis

Regarding the validation cases examined in the present study, emphasis has been

given to WT and helicopter configurations. However, the capabilities of this newly created

aeroelastic tool exceed those cases and it may as well be used on drones, aircraft and

marine propellers, including their drive–train systems, cluster of photovoltaic panels and

any other structure that consist of long and slender components and may be legitimately

modelled as assemblies of beams that interact with fluid flows.

1.5 Structure of the thesis

In Chapter 2, the theoretical base of the individual modules of this new aero–elastic

tool is presented. It includes the multi–body dynamics and the modelling of the struc-

tural dynamics through beam theory, the aerodynamic analysis following Eulerian and

hybrid CFD approaches and the aeroelastic coupling procedure followed in all the different

aerodynamic modelling options.

In Chapter 3, the capabilities of the new GAST–AL aeroelastic model are validated for

the analysis of both WT and helicopter rotors operating under different constant wind

speeds and flight speeds respectively. The produced results are compared against exper-

imental measurements and computational predictions when BEMT and LL models are

used instead of AL, which are considered as state of the art in WT and helicopter rotors

design respectively. Furthermore, in the same chapter, the aeroelastic analysis of a WT

under turbulent free–stream flows is performed. AL results are now compared against

the results obtained by the standard BEMT model. The goal is to assess the benefit from

incorporating CFD in WT analysis.

In Chapter 4 the accuracy of the new GAST–HoPFlow aeroelastic model is tested on

an aerodynamic simulation of a WT model rotor and an aeroelastic simulation of a heli-

copter model rotor. The produced results are compared against experimentally measured

data and predictions by other computational tools of similar accuracy developed by other

institutions and research centers.

In Chapter 5, the thesis is concluded by summarizing the work and highlighting the

most significant findings made in the previous chapters. Finally, a few interesting topics

for future research using this new high fidelity aeroelastic tool are indicated.
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Chapter 2

Methodology

The aim of this chapter is to provide the theoretical background and the equations

of the simulation codes used in the present research along with some numerical imple-

mentation details of the models. Firstly, the structural dynamics theoretical background

followed in beam–structured configurations and implemented in GAST is detailed. The

different CFD based aerodynamic options of varying fidelity that have been employed in

the study are then analyzed in some detail. Both the standard Eulerian approach followed

in MaPFlow and the hybrid Eulerian–Lagrangian approach implemented in HoPFlow are

presented. Finally, the procedure followed to accomplish the interaction and communi-

cation between two separate solvers, the structural dynamics one with any of the various

aerodynamic modules, is presented. The herein presented coupling interface focuses

essentially in beam–structured configurations.

2.1 Multi–body dynamics of beam–structured configurations

The structural and dynamic response of a configuration is accounted for using GAST [1,

29, 37, 38]. GAST is a servo–aero–elasto–dynamic solver based on a multi–body approach,

in which all the structure components are considered as flexible generalized Timoshenko

beams, structurally modelled by full stiffness matrix [3] and solved based on a 1D F.E.M.

approximation. In this way a full structure configuration may be modelled, in which all

flexible components (e.g. rotor blades, shaft and tower constitute a WT configuration)

are included. Rigid body and elastic motion due to structural flexibility are concurrently

accounted for within the multibody dynamics framework, alongside with the non–linear

inertial and structural effects and the geometric couplings imposed by large deflections

of highly flexible components (e.g. rotor blades). The flexible components (bodies) are

approximated as an assembly of linear Timoshenko beam elements (hereafter called sub–

bodies). The assembly of all the separate components into the full system is carried out

by imposing appropriate non–linear kinematic and dynamic constraint equations at their

connection points. In this way, non–linear effects due to high deflections are accounted

for using linear beam theory at the sub–body level, but considering non–linear effects at

the connection of different sub–bodies [38]. Following this approach, multiple load path

joints can be easily introduced. In brief, the multi–body approach employed in this work

demands that in case of multiple connected sub–bodies one of the connected compo-
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nents specifies the position (displacements) and orientation (rotations), while all others

contribute their reaction loads (see Figure 2.1).

Figure 2.1. Connection conditions. Example between 3 interconnected sub–bodies. A

single point (P2 of sb1) provides the kinematics, while all the others (P1 of sb2 and P2 of

sb3) contribute their reaction loads.

2.1.1 Multi–body kinematics

A local coordinate system [O (x, y, z)] (see Figure 2.1) is attached to one end of the

sub–body which is considered as the start point (P1), with respect to which linear elastic

displacements are defined. The y axis of the local system is chosen to coincide with the

beam (sub–body) elastic axis. The local frame of the sub–body is subjected to (a) rigid body

and (b) elastic motions. Rigid body motions are divided into two kinds. There are rigid

body motions that bodies undergo by themselves and motions induced by other bodies

that are connected to them.

Let qk =
[
qk
t
,qk

r

]T
denote the set of (rigid body) translations

(
qk
t

)
and rotations

(
qk
r

)
that define the origin and orientation of the local system of the k

th
body in its initial

undeformed state. Both qk
t

and qk
r

may be time varying. The qk vector contains i) all

time invariant translations and rotations that define local the co–ordinate system of the

beam with respect to the inertial frame, ii) time variant self sub–body motions (e.g pitching

motion of the blade), iii) global rigid body kinematic degrees of freedom (dofs) undergone

by a collection of bodies including the k
th

body (eg. rotor rotational speed, floater motion).

The latter are either prescribed (constant rotational speed) or determined through the

solution of a dynamic equation (floater motion).

qk
0

=
[
qk

0t
,qk

0r

]T
is a 6-component vector including 3 translations

(
qk

0t

)
and 3 rotations(

qk
0r

)
denoting motions induced by other bodies, in particular the elasto–dynamic motions

induced by other bodies that are connected to the k
th

body (e.q. tower deflections as

shown in Figure 2.2). qk
0

values are determined by satisfying proper non–linear connection

equations. Hence qk
0

is responsible for moving the k
th

body, so that is stays connected to

its preceding bodies (e.g. shaft shown in Figure 2.2). In that sense, it can be said that

the elastic deflections of the other bodies that are connected to the k
th

body (e.q. tower

32



2.1 Multi–body dynamics of beam–structured configurations

and shaft deflections shown in Figure 2.2) are summed up to qk
0

as rigid body motion.

It is noted that with regard to rigid body motion dofs, there is not always clear dis-

tinction between q and q0. Some dofs may belong to either of the two sets. For example

rotor blades rotation could be included in the q vector of the shaft and through that they

can be communicated to the q0 vector of all the blades connected to the shaft (directly or

indirectly). But also, rotor azimuthal rotation can be considered (as a global rotation dof)

in the q vector of all rotating components.

Rigid translations (denoted by sub-script “t”) will displace the body as a whole to

positions denoted by Rk

p
and Rk

0
respectively for the two types of motions, while rigid

rotations (denoted by sub-script “r”) lead to rotation matrices Tk
p

and Tk
0
. Based on the

above, the (global) position vector rk
G

, the velocity ṙk
G

and the acceleration r̈k
G

of an arbitrary

point P of the deflected k
th

body with respect to the global (inertial) frame [OG (xG, yG, zG)]
(see Figure 2.3) are expressed as follows:

rk
G

= Rk

p

(
qk , t

)
+ Tk

p

(
qk
r
, t

) (
Rk

0

(
qk

0
, t

)
+ Tk

0

(
qk

0r
, t

) (
rk
L

+ Suk (t)
))
⇒

rk
G

=
(
Rk

p

(
qk , t

)
+ Tk

p

(
qk
r
, t

)
Rk

0

(
qk

0
, t

))︸                                       ︷︷                                       ︸
Rk

+ Tk
p

(
qk
r
, t

)
Tk

0

(
qk

0r
, t

)︸                    ︷︷                    ︸
Tk

(
rk
L

+ Suk (t)
)
⇒

rk
G

= Rk + Tk
(
rk
L

+ Suk (t)
)

ṙk
G

= Ṙk + Ṫk
(
rk
L

+ Suk (t)
)

+ Tk
(
Su̇k (t)

)
r̈k
G

= R̈k + T̈k
(
rk
L

+ Suk (t)
)

+ 2Ṫk
(
Su̇k (t)

)
+ Tk

(
Sük (t)

) (2.1)

where Rk

p
and Tk

p
are the translation vector and rotation matrix that express the rigid

body motion up to the 1
st

node of the sub–body, whereas Rk

0
and Tk

0
are the trans-

lation vector and rotation matrix of the 1
st

node of the sub–body that are defined by

the elasto–dynamic motion induced by other bodies that are connected to the sub-

body. rk
L

=
(
x
k

L
, y

k

L
, z
k

L

)T
is the local position vector of P in the initial undeformed state,

uk =
(
u
k
, v
k
, w

k
, θk

x
, θk

y
, θk

z

)T
is the vector of the local elastic deflections (displacements

and rotations), u̇k =
(
u̇
k
, v̇
k
, ẇ

k
, θ̇k

x
, θ̇k

y
, θ̇k

z

)T
and ük =

(
ü
k
, v̈
k
, ẅ

k
, θ̈k

x
, θ̈k

y
, θ̈k

z

)T
are the cor-

responding velocities and accelerations (all defined in the local coordinate system of the

body). Matrix S is given by:

S =


1 0 0 0 z

k

L
0

0 1 0 −zk
L

0 x
k

L

0 0 1 0 −xk
L

0

 (2.2)

where the right 3 × 3 part of S takes into account the extra displacements of a point that

is offset with respect to the elastic axis, due to the elastic rotation of the axis.

It is noted that Tk
p

and Tk
0

are all expressed as a sequence of successive elementary

rotations about a single axis:

T = T1

(
q

1

r

)
T2

(
q

2

r

)
· · ·Tm−1

(
q
m−1

r

)
Tm

(
q
m

r

)
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whereas, Rk

p
and Rk

0
are expressed as a sum of elementary rotations (around one axis)

multiplied with an elementary translation:

R = R1

(
q

1

t

)
+ T1

(
q

1

r

) (
R2

(
q

2

t

)
+ T2

(
q

2

r

)
· · ·Rm−1

(
q
m−1

t

)
+ Tm−1

(
q
m−1

r

)
Rm

(
q
m

t

))
where m = 6 for Rk

0
and Tk

0
.

In equation (2.1) Rk
and Tk are the translation vector and rotation matrix following

the connection of the 1
st

node of the k
th

sub–body with another sub–body.

Figure 2.2. Realization of a rotating blade consisting of 2 sub–bodies. Initial undeformed

state depicted in black dashed line, current undeformed state (after azimuthal rotation)

depicted in black continuous line and deformed state (after azimuthal rotation and elastic

deflections) depicted in red continuous line. Distinction between q and q0 vectors. q
expresses the rigid body motion of a body (azimuthal rotation), while q0 is defined by the

elasto–dynamic motion induced by other bodies that are connected to this body. Hence, in

this simple example, the position vectors and rotation matrices of sub–bodies k − 1 and k

are defined as:

Tk−1 = R3 (Ψ), Rk−1 = Tk−1

 0

Rhub

0

, Tk
P

= Tk−1, Rk

P
= Rk−1 + Tk−1

 0

L
k−1

0

,
Tk

0
=

 0 −θz θy
θz 0 −θx
−θy θx 0


k−1

(P2), Rk

0
=

uv
w


k−1

(P2), Tk = Tk
P
Tk

0
= Tk−1

 0 −θz θy
θz 0 −θx
−θy θx 0


k−1

(P2),

Rk = Rk

P
+ Tk

P
Rk

0
= Rk−1 + Tk−1


 0

L
k−1

0

 +

uv
w


k−1

(P2)

.
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2.1 Multi–body dynamics of beam–structured configurations

Figure 2.3. The kinematics of an arbitrary point P can be defined through the multi–body

dynamics equations (2.1), based on the initial local coordinates and elastic deflections with

respect to the body it belongs to, the position vector and the rotation matrix of the body.

It is important that the above multi–body formulation is here extended to the body

level. Highly flexible bodies, such as the blades, are divided into a number of intercon-

nected sub-bodies, each considered as a single or as an assembly of linear beam finite

elements. Large deflections and rotations gradually build up and non–linear dynamics

are introduced by imposing the deflections and rotations of preceding sub–bodies as rigid

body motions to each sub–body. Dynamic coupling of the sub–bodies is introduced by

communicating the reaction loads (3 forces and 3 moments) at the first node of every

sub–body to the free node of the previous sub–body as external loading. Illustration

of the extension of the multi–body framework on the level of a body is illustrated in Fig-

ure 2.4. Moreover, Figure 2.5 shows how a body (local co–ordinate system [OB (xB, yB, zB)])
can be discretized into a number of interconnected sub–bodies (local co-ordinate system

[O (x, y, z)]) and every sub–body into a sequence of linear Timoshenko beam elements.
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Chapter 2. Methodology

Figure 2.4. Application of multi–body dynamics for modelling of non–linear bodies as a

sequence of linear inter–connected beams. Non–linear effects are included at the connection

points.

Figure 2.5. Discretization of a non–linear body. Bodies are divided into a sequence of inter–

connected sub–bodies, which in turn are discretized into a number of linear Timoshenko

finite elements.
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2.1 Multi–body dynamics of beam–structured configurations

2.1.2 Timoshenko beam model

Figure 2.6. Definition of the beam local coordinate system and local deflections.

2.1.2.1 Equations of structural equilibrium

Linear Timoshenko beam modelling is applied in order to account for the local deflec-

tions vector uk of a flexible body. The body fitted coordinate system
[
O
′
(
ξ, η, ζ

)]
shown in

Figure 2.6 is the cross section local system. Around the axes of this system, local bending

and torsion rotation take place. The set of dynamic equilibrium equations (3 forces and

3 moments equations) of the k
th

body takes the form:

∫
A

ρSTTkT r̈k
G
dA =



F
′
x

F
′
y

F
′
z

M
′
x

+ Fz − Fyw
′

M
′
y

M
′
x
− Fx + Fyu

′



k

+


external loads including

reaction loads communicated

by connected bodies


(2.3)

where ()′ = ∂

∂y
denotes derivative with respect to the beam–wise local y direction. The

terms Fyw
′

and Fyu
′

in the moment x and z equations are the only non–linear terms

retained in this analysis. This is because they are expected to contribute significantly,

especially in the case of rotating beams in which axial force increases due to the centrifugal

effect. The two terms give rise to virtual stiffening of the beam proportionally to the square

of the rotational speed. It is noted that equilibrium equations (2.3) are written with respect

to the local co–ordinate system of the sub–body.

The acceleration of an arbitrary point P with respect to the local co–ordinate system

of the body it belongs to is written as:

TkT r̈k
G

= TkT R̈k︸  ︷︷  ︸
acceleration of origin

+ TkT T̈k
(
rk
L

+ Suk (t)
)︸                     ︷︷                     ︸

Centrifugal

+ 2TkT Ṫk
(
Su̇k (t)

)︸                ︷︷                ︸
Coriolis

+
(
Sük (t)

)︸    ︷︷    ︸
local acceleration

(2.4)
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As indicated under every term of equation (2.4), in addition to local acceleration due

to local deflection of the sub–body, the acceleration of the origin of the local sub–body

co–ordinate system and the centrifugal and Coriolis terms due to the rotation of the local

sub-body co–ordinate system are taken into account in the analysis. It is noted that

the first, second and third term of equation (2.4) depend linearly on qk =
[
qk
t
,qk

r

]T
and

qk
0

=
[
qk

0t
,qk

0r

]T
.

The constitutive relation between the generalized structural loads over a cross section

of a beam and the strains-curvatures is given by:

Fk = Kkεk ⇒

Fx

Fy

Fz

Mx

My

Mx



k

︸︷︷︸
Fk

=



K
A

xx
K
A

xy
K
A

xz
K
B

xx
K
B

xy
K
B

xz

K
A

yy
K
A

yz
K
B

yx
K
B

yy
K
B

yz

K
A

zz
K
B

zx
K
B

zy
K
B

zz

sym. K
C

xx
K
C

xy
K
C

xz

K
C

yy
K
C

yz

K
C

zz



k

︸                                            ︷︷                                            ︸
Kk



u
′ + θz

v
′

w
′ − θx

θ′
x

θ′
y

θ′
z



k

︸       ︷︷       ︸
εk

⇒



Fx

Fy

Fz

Mx

My

Mx



k

=



K
A

xx
K
A

xy
K
A

xz
K
B

xx
K
B

xy
K
B

xz

K
A

yy
K
A

yz
K
B

yx
K
B

yy
K
B

yz

K
A

zz
K
B

zx
K
B

zy
K
B

zz

sym. K
C

xx
K
C

xy
K
C

xz

K
C

yy
K
C

yz

K
C

zz



k

︸                                            ︷︷                                            ︸
Kk

1
=Kk



u
′

v
′

w
′

θ′
x

θ′
y

θ′
z



k

︸︷︷︸
u′k

+



0 0 0 −KA
xz

0 K
A

xx

0 0 0 −KA
yz

0 K
A

xy

0 0 0 −KA
zz

0 K
A

xz

0 0 0 −KB
zx

0 K
B

xx

0 0 0 −KB
yz

0 K
B

xy

0 0 0 −KB
xz

0 K
B

xz



k

︸                                ︷︷                                ︸
Kk

2



u

v

w

θx

θy

θz



k

︸︷︷︸
uk

⇒

Fk = Kk

1
u′k + Kk

2
uk (2.5)

Kk
is the sectional Timoshenko full stiffness matrix.

With respect to a standard Timoshenko beam approach the elements K
A

xx
and K

A

zz

signify transverse shear rigidity, K
A

yy
axial stiffness, K

C

xx
and K

C

zz
flexural stiffness in flap–

wise and edge–wise directions respectively and K
C

yy
torsional stiffness. The off–diagonal

elements K
C

xy
and K

C

yz
signify bend–twist coupling.

By substituting equation (2.5) into equation (2.3) the dynamic equations are expressed

with respect to the local deflections dofs in the form:

∫
A

ρSTTkT r̈k
G
dA =

(
Kk

1
u′k

)′
+

(
Kk

2
uk

)′
+

(
Kk

3
u′k

)
+

(
Kk

4
uk

)
+ external loads (2.6)
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where,

Kk

3
=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

K
A

xz
K
A

yz
K
A

zz
− Fy K

B

zx
K
B

zy
K
B

zz

0 0 0 0 0 0

−KA
xx

+ Fy −KA
xy

−KA
xz

−KB
xx
−KB

xy
−KB

xz



k

Kk

4
=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −KA
zz

0 K
A

xz

0 0 0 0 0 0

0 0 0 K
A

xz
0 −KA

xx



k

For uniform/isotropic material beams, matrices Kk

1
, Kk

2
, Kk

3
, Kk

4
take the form:

Kk

1
=



GxA 0 0 0 GxAx 0

0 EA 0 −EAx 0 EAz

0 0 GzA 0 −GzAz 0

0 −EAx 0 EIxx 0 −EIxz

GxAx 0 −GzAz 0 GIt 0

0 EAz 0 −EIxz 0 EIzz



k

(2.7)

Kk

2
=



0 0 0 0 0 GxA

0 0 0 0 0 0

0 0 0 −GzA 0 0

0 0 0 0 0 0

0 0 0 GzAz 0 GxAx

0 0 0 0 0 0



k

(2.8)

Kk

3
=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 GzA − Fy 0 −GzAz 0

0 0 0 0 0 0

−GxA + Fy 0 0 0 −GxAx 0



k

(2.9)

Kk

4
=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −GzA 0 0

0 0 0 0 0 0

0 0 0 0 0 −GxA



k

(2.10)
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where

EIxx =

∫
A

Ez
2
dA, EIzz =

∫
A

Ex
2
dA, EIxz =

∫
A

ExzdA

EA =

∫
A

EdA, EAx =

∫
A

EzdA, EAz =

∫
A

ExdA

GxA = κx

∫
A

GdA, GzA = κz

∫
A

GdA

GxAx = κx

∫
A

GzdA, GzAz = κz

∫
A

GxdA, GIt =

∫
A

(
κxGz

2 + κzGx
2
)
dA

κx and κz are the shear correction factors that depend on the direction of the cross–section.

In GIt calculation warping is neglected.

2.1.2.2 FEM approximation of the beam dynamic equations

By applying the principle of virtual work, equation (2.6) takes its weak form:

∫
L

δukT
[∫

A

ρSTTkT r̈k
G
dA

]
dy =

∫
L

δukT
(
Kk

1
u′k

)′
dy +

∫
L

δukT
(
Kk

2
uk

)′
dy

+

∫
L

δukT
(
Kk

3
u′k

)
dy +

∫
L

δukT
(
Kk

4
uk

)
dy

+work of external loads⇒∫
L

δukT
[∫

A

ρSTTkT r̈k
G
dA

]
dy =

[
δukT

(
Kk

1
u′k

)]L
0

+
[
δukT

(
Kk

2
uk

)]L
0︸                                         ︷︷                                         ︸

boundary terms

−

∫
L

δu′k
T
(
Kk

1
u′k

)
dy −

∫
L

δu′k
T
(
Kk

2
uk

)
dy

+

∫
L

δukT
(
Kk

3
u′k

)
dy +

∫
L

δukT
(
Kk

4
uk

)
dy

+work of external loads⇒∫
L

δukT
[∫

A

ρSTTkT r̈k
G
dA

]
dy = −

∫
L

δu′k
T
(
Kk

1
u′k

)
dy −

∫
L

δu′k
T
(
Kk

2
uk

)
dy

+

∫
L

δukT
(
Kk

3
u′k

)
dy +

∫
L

δukT
(
Kk

4
uk

)
dy

+work of external loads + boundary terms

(2.11)

The boundary terms represent the virtual work done by the reacting forces and moments

at the support points (edges) of the beam. If a kinematic condition is specified there,

then the virtual term vanishes (δukT = 0), because there is no admissible displacement.

On the contrary, if a dynamic condition is specified (communication of force/moment

from a connected body) then the work done by the reaction load is added (as indicated in

equation (2.11) through the boundary terms).

The local deflections along every element (of length Le) of the beam are approximated

through discrete dofs û at the nodes of the finite element:

u (y, t) = N (y) û (t) (2.12)
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2.1 Multi–body dynamics of beam–structured configurations

where N is the shape function matrix of the element. 1
st

order shape functions are

used for tension and torsion, and modified C
1

Hermitian functions for the two bending

displacements [108] that prevent shear locking effect [109] (by satisfying static equilibrium

compatibility relations for a Timoshenko beam with uniform properties).

In equation (2.12),

û (t) =
(
u

1
, v

1
, w

1
, θ1

x
, θ1

y
, θ1

z
, u

2
, v

2
, w

2
, θ2

x
, θ2

y
, θ2

z

)T
where

1
and

2
indicate the first and the second node of the element respectively and

N (y) =



N
1

1u
0 0 0 0 N

1

2u
N

2

1u
0 0 0 0 N

2

2u

0 N
1

v
0 0 0 0 0 N

2

v
0 0 0 0

0 0 N
1

1w
N

1

2w
0 0 0 0 N

2

1w
N

2

2w
0 0

0 0 N
1

1θx
N

1

2θx
0 0 0 0 N

2

1θx
N

2

2θx
0 0

0 0 0 0 N
1

θy
0 0 0 0 0 N

2

θy
0

N
1

1θz
0 0 0 0 N

1

2θz
N

2

1θz
0 0 0 0 N

2

2θz



N
1

v
(ξ ) = N

1

θy
(ξ ) = 1 − ξ

N
2

v
(ξ ) = N

2

θy
(ξ ) = ξ

N
1

1u,w
(ξ ) = 1 − ξΦx,z1 − 3ξ

2Φx,z2 + 2ξ
3Φx,z2

N
2

1u,w
(ξ ) = 1 − N1

1u,w
(ξ )

N
1

2u,w
(ξ ) =

(
−ξ + 0.5ξΦx,z1 + 0.5ξ

2Φx,z1 + 2ξ
2Φx,z2 − ξ

3Φx,z2

)
Le

N
2

2u,w
(ξ ) =

(
0.5ξΦx,z1 − 0.5ξ

2Φx,z1 + ξ2Φx,z2 − ξ
3Φx,z2

)
Le

N
1

1θz ,θx
(ξ ) = 6ξ (1 − ξ )Φx,z1/Le

N
2

1θz ,θx
(ξ ) = −N1

1θz ,θx
(ξ )

N
1

2θz ,θx
(ξ ) = 1 − ξΦx,z1 + ξ (−4 + 3ξ )Φx,z1

N
2

2θz ,θx
(ξ ) = −ξΦx,z1 + ξ (−2 + 3ξ )Φx,z1

where v and θy indicate tension and torsion respectively, u and w indicate bending dis-

placements in x and z axes respectively, and θz and θx are the corresponding bending

angles. ξ = y/Le ϸ [0,1] and

Φx,z1 =
φx,z

1 + φx,z
, Φx,z2 =

1

1 + φx,z
, φx,z =

12EIzz, xx

Gx,zAL
2
e

where EIzz, xx, Gx,zA are the average bending stiffness and shear rigidity over the element

in x or z directions.
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2.1.2.3 Linearization of the beam dynamic equations

Non–linear equations (2.11) are linearized and written in perturbed (∆) form with

respect to a reference (steady state, periodic state or intermediate solution) denoted by

the superscript 0. It is thereby assumed that:

qk = qk0

+ ∆qk , q̇k = q̇k
0

+ ∆q̇k , q̈k = q̈k
0

+ ∆q̈k

uk = uk0

+ ∆uk , u̇k = u̇k
0

+ ∆u̇k , ük = ük
0

+ ∆ük

By keeping the 1
st

order terms in equations (2.4), the following approximations are

introduced:

TkT R̈k =
(
TkT R̈k

)0
+ ∂q

(
TkT R̈k

)0
∆qk + ∂q̇

(
TkT R̈k

)0
∆q̇k + ∂q̈

(
TkT R̈k

)0
∆q̈k

TkT Ṫk =
(
TkT Ṫk

)0
+ ∂q

(
TkT Ṫk

)0
∆qk + ∂q̇

(
TkT Ṫk

)0
∆q̇k

TkT T̈k =
(
TkT T̈k

)0
+ ∂q

(
TkT T̈k

)0
∆qk + ∂q̇

(
TkT T̈k

)0
∆q̇k + ∂q̈

(
TkT T̈k

)0
∆q̈k

(2.13)

where ∂q, ∂q̇ and ∂q̈ are the derivatives with respect to the kinematic degrees of freedom

q, q̇ and q̈ respectively.

By combining equations (2.11), (2.12) and (2.13) and by eliminating the virtual dis-

placements δûT , the linearized dynamic equations of a finite element can be written in

the following matrix form:

Ma

e
∆ü + Ca

e
∆u̇ + Ka

e
∆u + Mq

e∆q̈ + Cq

e∆q̇ + Kq

e∆q = Qe (2.14)

where the local linearized mass, damping and stiffness matrices of every FEM element

along the beam are expressed as follows:

Ma

e
=

∫
Le

(
NT

(∫
A

ρSTSdA
)

N
)
dy

Ca

e
=

∫
Le

(
NT

(∫
A

ρST2

(
TkT Ṫk

)0
SdA

)
N
)
dy

Ka

e
=

∫
Le

(
NT

(∫
A

ρST
(
TkT T̈k

)0
SdA

)
N
)
dy

+

∫
Le

(
N′TK1N′

)
dy +

∫
Le

(
N′TK2N

)
dy −

∫
Le

(
NTK3N′

)
dy −

∫
Le

(
NTK4N

)
dy

Mq

e =

∫
Le

(∫
A

ρNTST∂q̈
(
TkT R̈k

)0
dA

)
dy +

∫
Le

(∫
A

ρNTST∂q̈
(
TkT T̈k

)0 (
rk
L

+ Suk0
)
dA

)
dy

Cq

e =

∫
Le

(∫
A

ρNTST∂q̇
(
TkT R̈k

)0
dA

)
dy +

∫
Le

(∫
A

ρNTST∂q̇
(
TkT T̈k

)0 (
rk
L

+ Suk0
)
dA

)
dy

+

∫
Le

(∫
A

ρNTST2∂q̇
(
TkT Ṫk

)0 (
Su̇k

0
)
dA

)
dy
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Kq

e =

∫
Le

(∫
A

ρNTST∂q
(
TkT R̈k

)0
dA

)
dy +

∫
Le

(∫
A

ρNTST∂q
(
TkT T̈k

)0 (
rk
L

+ Suk0
)
dA

)
dy

+

∫
Le

(∫
A

ρNTST2∂q
(
TkT Ṫk

)0 (
Su̇k

0
)
dA

)
dy −

∫
Le

(
NT
∂q

(
TkT

)0
Fext

)
dy

Qe = +

∫
Le

(
NT

(
TkT

)0
Fext

)
dy

−

∫
Le

(∫
A

ρNTST
(
TkT R̈k

)0
dA

)
dy −

∫
Le

(∫
A

ρNTST
(
TkT T̈k

)0 (
rk
L

+ Suk0
)
dA

)
dy

−

∫
Le

(∫
A

ρNTST2

(
TkT Ṫk

)0 (
Su̇k

0
)
dA

)
dy −

∫
Le

(∫
A

ρNTST
(
Sük

0
)
dA

)
dy

−

∫
Le

(
N′TK1N′uk0

)
dy −

∫
Le

(
N′TK2Nuk0

)
dy +

∫
Le

(
NTK3N′uk0

)
dy +

∫
Le

(
NTK4Nuk0

)
dy

where Fext are the external loads of the finite element, which are dependent on the refer-

ence state qk0

and uk0

.

By directly assembling the local matrices over the successive finite elements of a beam,

the dynamic system of a single beam takes the form of Figure 2.7. This procedure is valid,

because the beams are assumed to be rectilinear and thus they have the same orientation

with their finite elements. Otherwise, the local matrices of a finite element e should be

pre–multiplied by TkTTe and post–multiplied by TeTTk in order to be expressed into the

local co–ordinate system of the beam that the element belongs to, where Te denotes the

rotation matrix of the finite element e and Tk the rotation matrix of its beam k. It is

also noted that the boundary terms between adjacent elements (representing internal

reaction loads) will counteract each other. So, the only boundary terms that remain are

those of the first and the last node of the beam. When the end of the beam is a free–end

(e.g. blade tip) reactions will be equal to zero since free–ends are load free. At the first

node, deflections are usually constrained (Dirichlet condition is applied) and, therefore,

boundary terms also vanish. In cases that the beam is connected to some other body,

reaction loads from the adjacent body should be communicated. Such boundary reaction

loads are equivalent to external loading terms and are included to the external loading

terms that depend on the dofs of this other sub–body. They also contribute in M, C and

K matrices, as is shown in the following section.

The global M, C, K and Q matrices of the complete dynamic system consisting of an

assembly of sub–bodies (which are not yet connected to each other – see next section

for the definition of constraint equations), takes the form of Figure 2.8. It is noted that

when assembling the matrices of the full dynamic system, qk
0

dofs of every sub–body are

grouped together with its local deflection dofs uk while the global qk dofs are placed at

the bottom of the vector of the unknowns. Separate equations must be defined for every

time dependent qk dof. In the example of the Figure 2.8 two non–connected sub–bodies

are considered.
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Chapter 2. Methodology

Figure 2.7. System form for a single beam. By assuming the beam to be rectilinear,

its matrices are created by directly assembling the local matrices of its successive finite

elements.

Figure 2.8. System form for two non–connected beams. qk
0

dofs of every beam are grouped

together with its local deflection dofs uk , while the global qk dofs are placed at the bottom

of the vector of the unknowns.
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2.1 Multi–body dynamics of beam–structured configurations

2.1.3 Multi–body constraint equations

The closure of equation (2.11) is accomplished by defining the work of the external

loads (this is carried out through the coupling of the structural dynamics solver with an

aerodynamic one) and the boundary terms

[
δukT

(
Kk

1
u′k + Kk

2
uk

)]L
0

at the root (y = 0) and

the tip (y = L) of every sub–body. Boundary conditions can be divided into two categories;

kinematic and dynamic conditions. Kinematic conditions are usually expressed in Dirich-

let form. In that case, there is no admissible displacement for this FEM node

(
δukT = 0

)
,

equation (2.11) degenerates into a trivial one 0 = 0 and cannot be used in order to define

the respective dofs. Instead, the position (displacement and/or rotation) of the node is

specified through an appropriate compatibility equation, resulting in a Dirichlet condi-

tion for the corresponding dofs. Dynamic conditions are considered as external loads that

need to be applied at either ends of the beam in order to maintain equilibrium. In most

cases, the position of the root of the beam is constrained through a kinematic condition,

whereas the loads at the tip are set to a specific value that may be either the sum of

the reaction loads contributed by the connected beams, or zero if the tip is a free–end.

This is usually true for single load–path structures (e.g. consecutive sub–bodies forming

a non–linear blade), however it may not be the case in multiple load–path configurations.

2.1.3.1 Kinematic boundary conditions

For the simulation of a stiff connection between two beams r and m (see Figure 2.9),

3 translation and 3 rotation non–linear constraint equations are defined:

rm
G

(P1 or P2) − rr
G

(P1 or P2) − dr,m
0

= 0

θθθr,m − θθθr,m
0

= 0
(2.15)

where dr,m
0

, θθθr,m
0

is a vector, column matrix containing the relative distance, angle between

the the local coordinate systems that are attached to the connected nodes (P1 or P2 of

sub–body r and P1 or P2 of sub–body m). In the simple case of a straight beam consisting

of two sub–bodies, dr,m
0

and θθθr,m
0

are set to zero.

The position of the connected nodes expressed in the global co–ordinate system (see

Figure 2.9a) are given by:

rr
G

= Rr + Tr

rrL +


u

v

w


r

rm
G

= Rm + Tm

rmL +


u

v

w


m

dr,m
0

= Tr

dr0 +


θx

θy

θz


r

× dr
0



(2.16)
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The term Su (t) of equation (2.1) results in


u

v

w

, as the sub–bodies are assumed to be

rectilinear and therefore xL = zL = 0 in equation (2.2) for all the nodes of a sub–body. The

term


θx

θy

θz


r

×dr
0

is added in dr,m
0

computation in order to ensure that the extra displacement

due to the angular deformation of the connected node of sub–body r, will be taken into

account when an initial offset dr
0

(computed in the initial undeformed state and expressed

in the local co–ordinate system of sub–body r) is present.

The relative angles θθθr,m with respect to the 3 local axes of sub–body r are given by [36]:

cos θr,m
i

(
em
j
· er
k

)
− sin θr,m

i

(
em
k
· er
k

)
= 0 (2.17)

cos θr,m
i

=
(
em
k
· er
k

)
sin θr,m

i
=

(
em
j
· er
k

) (2.18)

where er
i,j,k

and em
i,j,k

are the two unit vector bases defining the local orientation of the

connected nodes of the sub–bodies r and m respectively (see Figure 2.9b). So θr,mi is the

relative rotation about axis er
i

of the local basis attached to the node of sub–body m with

respect to the local basis attached to the node of sub–body r. No Einstein convention is

used in equations (2.17) and (2.18) and thus repeated indices do not imply summation.

It is noted that vectors ei,j,k are formed by the columns of the rotation matrix Tn of the

node, which is equal to the rotation matrix T of the sub–body it belongs to when referring

to P1 or with TTL where

TL =


1 −θz(P2) θy(P2)

θz(P2) 1 −θx (P2)
−θy(P2) θx (P2) 1


when referring to P2. In the definition of TL it is implied that local deflection angles at end

node P2 are small. This is consistent with the linear Timoshenko beam theory applied to

sub–bodies.

The angular constraint equations of (2.15) are valid only in cases where the relative

rotations vanish in the reference configuration (initial undeformed state) [39]. In cases

where the beams to be connected do not initially share the same orientation between

their connection points, one or more angles θr,mi are not properly defined. As a result,

the corresponding constraint equations are not linearly independent from the rest. To

overcome this problem, the local basis vectors of sub–body m are rotated by Tmr . Tmr is a

time invariant matrix that describes the rotation from the local co–ordinate system of sub–

body m to the local co–ordinate system of sub–body r as defined in the initial undeformed

state

(
Tmr = TmT (qm

0
= 0, t = 0)Tr(qr

0
= 0, t = 0)

)
. Consequently, the connection angles

may be perceived as the difference in the relative rotation from the initial relative angles

θθθr,mr = θθθr,m − θθθr,m
0

. For a stiff connection between two beams θθθr,mr = 0 and as a result of
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2.1 Multi–body dynamics of beam–structured configurations

equation (2.17), the angular constraint equations defined in this way may be simplified

in:

θr,m
ri

= 0⇒ em
j
· er
k

= 0

where [
er

1

T er
2

T er
3

T
]

=

Tr , when referring to P1

TrTr
L
, when referring to P2

[
em

1

T em
2

T em
3

T
]

=

TmTmr , when referring to P1

TmTm
L

Tmr , when referring to P2

Relative rotations and therefore constraint equations can be also applied with respect

to a predefined arbitrary system as shown in Figure 2.9b, which is typically referred

to as the local co–ordinate system of the joint. The rotation matrix of the joint Tj =[
ej

1

T

ej
2

T

ej
3

T
]

may easily be defined as a time invariant rotation Trj with respect to

the local co–ordinate system of sub–body r: Tj = TrTrj. Consequently the vectors ei are

formed by the columns of the rotation matrices TnTrj of the nodes to be connected.

To sum up, the constraint equations for a stiff connection between two beams r and

m expressed in the local co–ordinate system of the joint are defined as:

TjT
[
rm
G

(P1 or P2) − rr
G

(P1 or P2) − dr,m
0

]
= 0

θr,m
ri

= 0⇒ em
j
· er
k

= 0

(2.19)

where

dr,m
0

=Tr

dr0 +


θx

θy

θz


r

× dr
0


[
er

1

T er
2

T er
3

T
]

=

TrTrj, when referring to P1

TrTr
L
Trj, when referring to P2

[
em

1

T em
2

T em
3

T
]

=

TmTmrTrj, when referring to P1

TmTm
L

TmrTrj, when referring to P2

TL =


1 −θz(P2) θy(P2)

θz(P2) 1 −θx (P2)
−θy(P2) θx (P2) 1


Tmr =TmT (qm

0
= 0, t = 0)Tr(qr

0
= 0, t = 0)

Trj =Tr T (qr
0

= 0, t = 0)Tj(qr
0

= 0, t = 0)

(2.20)
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(a) Definition of relative distance between two

connected sub–bodies r and m. The relative

distance needs to be retained in stiff connec-

tions.

(b) Definition of unit bases er
i

and em
i

of two

connected sub–bodies r and m. The unit base

eji defines the local co–ordinate system of the

joint, with respect to which the angular con-

straint equations are applied.

Figure 2.9. Basic definitions concerning the linear (a) and angular (b) constraint equations

applied at the end nodes of two connected beams r and m.

2.1.3.2 Dynamic boundary conditions

In a stiff connection, one sub–body defines the kinematics (in the example sub–body

r) and the others provide reaction loads (see Figure 2.1). These reactions loads (3 forces

and 3 moments) are applied as external point forces/moments to the node which defines

the kinematics. The reaction loads QR =
(
FR,MR

)T
, where FR =

(
F
R

x
, F

R

y
, F

R

z

)T
and MR =(

M
R

x
, M

R

y
, M

R

z

)T
, at a connection point are obtained as the reaction loads of a FEM node 1 or

2 (1 indicating the start and 2 the end node of the finite element) and can be expressed as

linear functions of the local deflection dofs û of the element and the global and local q and

q0 dofs respectively of the sub–body that the element belongs to. Consequently, based on

equation (2.14), the reaction loads at the edges of a finite element can be computed as:QR(1)
QR(2)

 = Ma

e
∆ü + Ca

e
∆u̇ + Ka

e
∆u + Mq

e∆q̈ + Cq

e∆q̇ + Kq

e∆q −Qe (2.21)

The first six rows QR(1)T are the reaction loads (forces and moments) at the 1
st

node of

the element, while the last six QR(2)T are the reaction loads at the 2
nd

node. The reaction

loads at the edges of the element represent the boundary terms that are eliminated when

the element is connected to an adjacent one, or when the displacement of the node is
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2.1 Multi–body dynamics of beam–structured configurations

specified through a Dirichlet kinematic condition. Otherwise, if the loading is specified,

then the reaction loads must equal this given value. It needs to be stressed that the loads

QR
are computed with respect to the local co–ordinate system of the sub–body that the

element belongs to. So, in order to be transferred to another sub–body, they have to be

rotated to its local co–ordinate system:

QR(2)r = −Tr TTmQR(1)m (2.22)

Based on the above, the global matrices M,C,K,Q of Figure 2.8, take the form of

Figure 2.10 for a stiff connection between two sub–bodies.

Figure 2.10. System form for a stiff connection between sub–bodies r and m. Sub-body r

defines the kinematics and sub–body m provides reaction loads.

For the simulation of a free or elastic connection between two sub–bodies r and m

(as shown in Figure 2.11), the position of the node that receives kinematics is defined by

solving the dynamic conditions of a soft joint (linear/angular spring and/or damper):

FR
x,y,z

= kt
x,y,z

[
TjT

(
rm
G
− rr

G
− dr,m

0

)]
+ ct

x,y,z

[
TjT

(
ṙm
G
− ṙr

G

)]
MR

x,y,z
= kr

x,y,z

[
θθθr,m
r

]
+ cr

x,y,z

[
θ̇θθ
r,m

r

] (2.23)

where FR
x,y,z

, MR

x,y,z
are the reaction loads at the edges of the joint, kt

x,y,z
, ct
x,y,z

are the linear

and kr
x,y,z

, cr
x,y,z

are the angular stiffness and damping properties of the joint, defined in

its local co–ordinate system.

ṙG is given by equation (2.1), whereas the relative angular velocities θ̇θθ
r,m

r
expressed

with respect the local co–ordinate system of the joint can be computed by differentiating
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equation (2.17) in time and by exploiting equation (2.18):

cos θr,m
ri

(
em
j
· er
k

)
− sin θr,m

ri

(
em
k
· er
k

)
= 0⇒

− θ̇r,m
ri

sin θr,m
ri

(
em
j
· er
k

)
+ cos θr,m

ri

˙(
em
j
· er
k

)
− θ̇r,m

ri
cos θr,m

ri

(
em
k
· er
k

)
− sin θr,m

ri

˙(
em
k
· er
k

)
= 0⇒

θ̇r,m
ri

[
sin θr,m

ri

(
em
j
· er
k

)
+ cos θr,m

ri

(
em
k
· er
k

)]
= cos θr,m

ri

˙(
em
j
· er
k

)
− sin θr,m

ri

˙(
em
k
· er
k

)
⇒

θ̇r,m
ri

��
���

���
���

�:1[(
sin θr,m

ri

)2
+

(
cos θr,m

ri

)2]
=

(
em
k
· er
k

) ˙(
em
j
· er
k

)
−

(
em
j
· er
k

) ˙(
em
k
· er
k

)
⇒

θ̇r,m
ri

=
(
em
k
· er
k

) ˙(
em
j
· er
k

)
−

(
em
j
· er
k

) ˙(
em
k
· er
k

)
(2.24)

where

[
ėrT

1
ėrT

2
ėrT

3

]
=

ṪrTrj, when referring to P1

ṪrTr
L
Trj + TrṪr

L
Trj, when referring to P2

[
ėmT

1
ėmT

2
ėmT

3

]
=

ṪmTmrTrj, when referring to P1

ṪmTm
L

TmrTrj + TmṪm
L

TmrTrj, when referring to P2

ṪL =


0 −θ̇z(P2) θ̇y(P2)

θ̇z(P2) 0 −θ̇x (P2)
−θ̇y(P2) θ̇x (P2) 0



(2.25)

As in the case of a stiff connection between two sub–bodies, the node that receives

kinematics transfers its reaction loads to the node that provides kinematics according to

equation (2.22).

Figure 2.11. System form for a free/elastic connection between sub–bodies r and m.

Sub-body r defines the kinematics through dynamic conditions and sub–body m provides

reaction loads.
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2.1 Multi–body dynamics of beam–structured configurations

By choosing arbitrarily large values for kt
x,y,z

and kr
x,y,z

in equation (2.23), rigid con-

nections between sub–bodies may be realized in a dynamic approach. In this way, a node

receives kinematics without zeroing out its admissible displacement

(
δukT , 0

)
. Conse-

quently, this node is also allowed to receive reaction loads. When equations (2.15) and

(2.23) are satisfied on the same co–ordinate system, they can efficiently be combined,

covering all possible assemblies of connected sub–bodies and realizing multiple load–path

configurations.

Finally, it needs to be stressed that an important advantage of the herein presented

multi–body approach compared to other similar implementations is that the dynamic

equations, including those of constraints, are linearized allowing thus to perform eigen-

value stability analyses. The system of dynamic equations is provided in a linearized state

space form.
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2.2 Aerodynamic modelling

In the present section, the theoretical part of the various CFD based aerodynamic

models that have been used in this study is presented. Details for the medium–fidelity

Lifting Line (LL) model can be found in [110], and for the low–fidelity Blade Element

Momentum Theory (BEMT) based aerodynamic model in [1, 2]. Both are used as an extra

reference, additional to experimental data, in order to validate the higher–fidelity CFD

models, as they are considered as state of the art in helicopter and Wind Turbine (WT)

rotors design respectively.

2.2.1 The Eulerian CFD solver MaPFlow

The most accurate way to simulate flows in the presence of solid bodies, is to solve

the Eulerian expression of the Navier–Stokes equations. This ensures that the boundary

conditions on solid–wall boundaries are accurately satisfied. The main advantage of

employing CFD in rotor analyses is related to its capability to account in maximum detail

for viscous and compressible effects (flow separation, formation of boundary layers, shock

waves). These are dominant in wind farm simulations, where rotor wake evolution has

an impact on the performance of downwind turbines. Furthermore, viscous effects are

important when studying the rotor wake interaction with the boundary layer developed on

surrounding bodies, such as the WT tower or even the ground. Such interactions affect

the rotor performance and the loading of the blades.

In this section, the basic concept and add–ons of MaPFlow, an in–house Eulerian

CFD solver developed in [4], are described. MaPFlow solves the compressible Unsteady

Reynolds Averaged Navier Stokes (URANS) equations under a cell-centered finite volume

spatial discretization scheme. MaPFlow can handle both structured and unstructured

grids; it is parallelized under the MPI protocol, and the grid partitioning is performed

using the METIS library [111]. The convective fluxes are evaluated by solving the pre-

conditioned local Riemann problem between the neighboring cells of each face, using the

Roe’s approximate Riemann solver [112] with the Venkatakrishnan limiter [113]. The

viscous fluxes are discretized using a central 2nd order scheme. For the reconstruction

of variables at the interface, a piecewise linear interpolation scheme is used. The eval-

uation of the spatial gradients of the primitive variables is done using the Green–Gauss

formula, with a centered scheme approximation. Multiple options are available for tur-

bulence modelling, such as the one-equation model of Spalart–Allmaras [114] or the

two-equation model k − w SST of Menter [115]. Regarding laminar to turbulent flow

transition modelling, the γ − Reθ model of Menter [116] is used. A Delayed Detached

Eddy Simulation (DDES) approach is also implemented in MaPFlow, following the sug-

gestions of [117]. Unsteady simulations are performed through an implicit 2nd order

backwards difference scheme [118], along with a dual time-stepping technique [119] in

order to facilitate convergence. Flows in the incompressible region are simulated using

Low Mach Preconditioning [5]. Finally, the implicit operator inversion is accomplished

with the use of the Gauss–Seidel iterative method alongside the reverse Cuthill–Mckee
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reordering scheme [120].

2.2.1.1 Governing Equations and Implementation

Let D denote a volume of fluid and ∂D its boundary. By integrating the governing

equations over D, the following integral form is obtained:

∂

∂t

∫
D

UdD +

∮
∂D

(Fc − Fv)dS =

∫
D

QdD (2.26)

In equation (2.26), ~U is the vector of the Conservative Flow Variables:

U =



ρ

ρu

ρv

ρw

ρE


(2.27)

where ρ denotes density, (u, v,w) the three components of the velocity field and E the

total energy, while Fc and Fv denote the Convective and Viscous Fluxes respectively:

Fc =



ρV

ρuV + nxp

ρvV + nyp

ρwV + nzp

ρ(E +
p

ρ
)V


(2.28)

Fv =



0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxΘx + nyΘy + nzθz


(2.29)

In equations (2.28) and (2.29) V = u · n, p denotes pressure, τττ is the viscous stress tensor

and

Θx = uτxx + vτxy +wτxz (2.30)

Θy = uτyx + vτyy +wτyz (2.31)

Θz = uτzx + vτzy +wτzz (2.32)

The above system is completed with the equation of state for perfect gases:

p = (γ − 1)ρ
[
E −

u
2 + v2 +w2

2

]
(2.33)

In case the local Mach number gets close zero (typical for WT simulations) there is

large disparity in the wave propagation speeds. The speed of sound (c) becomes very large
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compared to the flow velocity (V ) and completely deteriorates the stability and convergence

properties of the system. In such cases, the equations are modified by applying Low Mach

Preconditioning that acts on the time derivatives of the equations and basically modifies

the speed of sound. By that, the convergence and stability characteristics of the system

are improved. In MaPFlow Eriksson’s Preconditioning Matrix [121] is implemented,due to

its successful use in [122].

2.2.1.2 Space Integration and Implementation

In MaPFlow the flow variables are computed and stored at cell centers. Assuming that

the cell volume remains unchanged:

∂

∂t

∫
D

UdD = D
dU
dt

(2.34)

where

U =
1

D

∫
D

UexactdD (2.35)

and ∫
D

QdD = DQ (2.36)

where

Q =
1

D

∫
D

QexactdD (2.37)

The surface integral of equation (2.26) sums the fluxes over the faces of every cell.

The fluxes are assumed to be piecewise constant over the cell faces and their values are

computed at the face center:

∮
∂D

(Fc − Fv)dS =

Nf∑
f =1

(
Fcf − Fvf

)
∆Sf (2.38)

The discretized form of equation (2.26) becomes:

dU
dt

= −
1

D

Nf∑
f =1

(
Fcf − Fvf

)
∆Sf + Q (2.39)

The Convective Fluxes

(
Fcf

)
are evaluated by solving the local Riemann problem

between the neighboring cells (I, J) of each face (f ), using the Roe’s approximate Riemann

solver [112], which is a flux-difference scheme:

Fcf =
1

2
[Fc(VR) + Fc(VL) − |ARoe|f (VR − VL)] (2.40)

where, the Left and Right states (VL ,VR) of the primitive variables

(
V = (ρ, u, v,w, p)T

)
of

the face are computed using a Piecewise Linear Reconstruction (PLR) scheme:

VL = VI + ΨI (∇VI · rL)

VR = VJ − ΨJ (∇VJ · rR)
(2.41)
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where rL , rR denote the distance vectors pointing from the cell centers to the face cen-

ter (Figure 2.12) and Ψ is the Venkatakrishnan limiter function [113] that reduces the

gradients.

Figure 2.12. Reconstruction of variables on a face f .

In equation (2.40) |ARoe| is constructed using the absolute values of the eigenvalues

and the right eigenvector matrix R:

|ARoe| = R−1|ΛΛΛ|R (2.42)

In case the preconditioned system of equation is used, the eigenvalues and the eigen-

vectors of the preconditioned system must be used (ΛΛΛΓ,RΓ). Hence, |ARoe| is changed to

(according to [123]):

|AΓRoe| = |ΓΓΓ
−1ΓΓΓARoe|

' ΓΓΓ−1|ΓΓΓARoe|

' ΓΓΓ−1R−1

Γ |ΛΛΛΓ|RΓ (2.43)

In equation (2.41), the gradients are computed at the corresponding cell centers using

the Green-Gauss formulation:

∇V ≈
1

D

∫
∂D

VndS (2.44)

which in the Cell-Centered scheme takes the form:

∇VI ≈
1

D

Nf∑
J=1

1

2
(VI + VJ )nIJ∆SIJ (2.45)
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For the computation of the Viscous Fluxes

(
Fvf

)
a central 2nd order scheme is used:

VIJ =
1

2
(VI + VJ ) (2.46)

while for the gradients, the Green-Gauss formula is applied using the face averaged values

VIJ as defined in equation (2.46) but supplemented with a directional derivative [124]:

∇VIJ = ∇VIJ −

[
∇VIJ · tIJ −

(
∂V
∂l

)
IJ

]
· tIJ (2.47)

where

∇VIJ =
1

2
(∇VI + ∇VJ ) (2.48)

is the mean gradient (
∂V
∂l

)
IJ

≈
VJ − VI

lIJ

(2.49)

and lIJ is the distance between cell centers I and J and tIJ is the unit vector pointing from

cell center I to cell center J.

2.2.1.3 Time Integration and Implementation

For the temporal discretization, the method of lines is used. This means that temporal

and spatial discretization are done separately leading for every control volume to the

following equation:

d (DIUI )
dt

+ RI = 0 (2.50)

where RI =

[
Nf∑
f =1

(
Fcf − Fvf

)
∆Sf − DQ

]
I

. In comparison to equation (2.39), the form of

equation (2.50) is more general in the sense that the control volume may vary in time.

Temporal discretization can be either explicit or implicit. Explicit methods use the Un

known solution and march in time using the corresponding residual Rn
to obtain solution

at (t + ∆t). On the other hand the implicit schemes use R(Un+1) = Rn+1
to obtain the new

solution and are favored because they allow larger time-steps. Since Rn+1
is unknown,

the following linear approximation is used:

Rn+1 ≈ Rn +

(
∂R
∂U

)
n

∆Un
, ∆Un = Un+1 − Un

(2.51)

In MaPFlow, a finite difference scheme is used for the time derivative (see [125]):

d (DIUI )
dt

=
1

∆t

[
φn+1 (DIUI )n+1 + φn (DIUI )n + φn−1 (DIUI )n−1 + φn−2 (DIUI )n−2 + . . .

]
(2.52)

Depending on the choice of φn the corresponding Backwards Difference Formulae

(BDF) of the temporal scheme are defined. BDF2OPT refers to a class of optimized, 2nd
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order, backward difference methods with an error half as large as the conventional 2
nd

order scheme [119].

Table 2.1. Backwards Difference Schemes

order φn+1 φn φn−1 φn−2

1
st

1 -1 0 0

2
nd

3/2 -2 1/2 0

3
rd

11/6 -3 3/2 −1/3

BDF2OPT 3/2 − φn−2 −2 + 3φn−2 1/2 − 3φn−2 −0.58/3

Even in steady–state simulations, a pseudo-unsteady technique is followed. For

steady state simulations in MaPFlow, a 1
st

order scheme is chosen to march the solution

in pseudo-time until convergence is reached. At 1
st

order, after linearizing ~R
n+1

(see

equation (2.51)) and by rearranging the terms, the final system of discrete equations is

obtained in which the system matrix defines the implicit operator and the explicit operator

of the scheme: [
DI

∆tI
+

(
∂R
∂U

)
I

]
︸            ︷︷            ︸
Implicit Operator

∆Un

I
= −Rn

I︸︷︷︸
Explicit Operator

(2.53)

In order to facilitate convergence, the Local Time Stepping technique is used [86].

The time step for steady–state computation can be defined using the spectral radii of each

cell. Consequently, a different time step may be defined for each cell:

∆tI = CFL
DI(

Λ̂c + CΛ̂v

)
I

(2.54)

where Λ̂c, Λ̂v is the sum of convective and viscous eigenvalues over all cell faces. The

constant which multiplies the viscous spectral radius is usually set as C = 4 [124].

The convective spectral radius is defined by:

(Λ̂c)I =

Nf∑
J=1

(|uIJ · nIJ | + cij)∆SIJ (2.55)

where |uIJ · nIJ | and cij are the normal velocity and speed of sound respectively over the

various faces of area ∆SIJ of a control volume.

The viscous spectral radius is defined by:

(Λ̂v)I =
1

DI

Nf∑
J=1

[max(
4

3ρIJ

,
γIJ

ρIJ

)(
µL

PrL

+
µT

PrT

)IJ (∆SIJ )2] (2.56)

where γIJ =
Cp

Cv

∣∣∣∣∣
IJ

is the adiabatic index and ρIJ is the density of the fluid, µL and µT

denote the laminar and turbulent dynamic viscosity coefficients respectively, whereas PrL

and PrT are the respective laminar and turbulent Prandtl numbers.

However, if Time True Computations are to be performed, one global time–step value
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has to be employed for all control volumes, usually ∆t = min (∆tI ) or a user defined value.

In Time True computations temporal discretization is crucial, because any remaining

numerical error propagates in the flow as a disturbance. In order to minimize temporal

errors higher order schemes should be used in conjunction with the Dual Time–Stepping

technique [126].

By setting, R*

I
=
d(DIUI )
dt

+ RI equation (2.50) becomes R*

I
= 0, resembling a steady–

state equation. The Dual–Step approach adds an extra time-like derivative in the trans-

port equation that refers to a different “time variable” τ, called “pseudo–time”. The vari-

ables in the “pseudo–time” problem are denoted by ~U
*

because they do not satisfy the

original unsteady problem of equation (2.50) until convergence. Using this approach the

unsteady problem of every true time–step is transformed into a steady one in which the

following equation is solved in the “pseudo–time” τ:

∂(DIU*

I
)

∂τ
+ R*

I
= 0 (2.57)

or,

∂(DIU*

I
)

∂τ
+
∂(DIU*

I
)

∂t
+ R(U*) = 0 (2.58)

When equation (2.57) converges in “pseudo–time” τ, R*

I
= 0 and U*

I
= Un+1

I
which satisfies

the original unsteady problem in time–step n + 1.

The discretised form of equation (2.58) can be written as:

D
n+1

I
∆U*k

I

∆τI
+

1

∆t

[
φn+1

(
DIU*k+1

I

)n+1

+ φn (DIUI )n + φn−1 (DIUI )n−1

]
+ Rk+1

I
= 0 (2.59)

where ∆U*k

I
= U*k+1

I
− U*k

I
and k denotes sub–iteration, thus, ∆U*k

I
= 0 ⇒ U*k+1

I
= U*k

I
=

Un+1

I
.

By setting R*k+1

I
=

1

∆t

[
φn+1

(
DIU*k+1

I

)n+1

+ φn (DIUI )n + φn−1 (DIUI )n−1

]
+ Rk+1

I
we may

apply an Implicit Scheme in the Dual Time–Step procedure and linearize the unsteady

residual R*k+1

I
as:

R*k+1

I
≈ R*k

I
+

(
∂R*

I

∂U*

I

)
k

∆U*k

I
(2.60)

where

R*k

I
=

1

∆t

[
φn+1

(
DIU*k

I

)n+1

+ φn (DIUI )n + φn−1 (DIUI )n−1

]
+ Rk

I
(2.61)

and (
∂R*

I

∂U*

I

)
k

=

(
∂RI

∂U*

I

)
k

+
1

∆t

[
φn+1 (DI )n+1

]
(2.62)

By substituting the above defined expressions (equations (2.60),(2.61),(2.62)) in equa-

tion (2.59), the final discretised form of equation (2.58) is obtained:Dn+1

I

∆τI
+ φn+1

D
n+1

I

∆t
+

(
∂RI

∂U*

I

)
k

 ∆U*k

I
= −Rk

I
−Qk

I,dual
(2.63)
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It is noted here that the “pseudo time–step” ∆τI is defined as in the steady–state

computations using local time–stepping equation (2.54).

The dual–step unsteady source–like terms Qk

I,dual
are given by:

Qk

I,dual
=

1

∆t

[
φn+1

(
DIU*k

I

)n+1

+ φn (DIUI )n + φn−1 (DIUI )n−1

]
⇒

Qk

I,dual
=

1

∆t

[
Un

I

(
φn+1D

n+1

I
+ φnD

n

I
+ φn−1D

n−1

I

) ]
︸                                                  ︷︷                                                  ︸

Un

I

dDI

dt

+
1

∆t

[
φn+1

(
U*k

I

n+1

− Un

I

)
D
n+1

I
+ φn−1

(
Un−1

I
− Un

I

)
D
n−1

I

] (2.64)

For undeformable grids
dDI

dt
= 0, thus:

Qk

I,dual
=

1

∆t

[
φn+1

(
U*k

I

n+1

− Un

I

)
D
n+1

I
+ φn−1

(
Un−1

I
− Un

I

)
D
n−1

I

]
(2.65)

2.2.1.4 Implementation of Deforming Grids

In Fluid Structure Interaction (FSI) configurations the grid must deform. For the

Eulerian CFD solver part, two are the main aspects distinguishing the analysis followed

so far that need to be taken care of. The first one is the change of the cell volume that

needs to be considered

(
dDI

dt
, 0

)
and the second one is the grid deformation method that

needs to ensure that the grid lines do not overlap.

Grid deformation renders the cell volume D(t) time dependent. Even though the

time derivative of the cell volume can be estimated by a backwards difference scheme as

shown before

(
dDI

dt
= φn+1D

n+1

I
+ φnD

n

I
+ φn−1D

n−1

I

)
, in MaPFlow the so called Geometric

Conservation Law (GCL), proposed by Thomas and Lombard [127], is preferred:

d

dt

∫
D(t)

dD =

∮
∂D(t)

Vf · nf dSf (2.66)

The principle of GCL is that a uniform flow solution must remain unchanged regardless of

the grid motion. Various numerical implementations of the GCL are found in the literature

(e.g [128]). In MaPFlow that of [129] is adopted, which consists of adding a source term

to the original equations. Starting from the integral form of the equations and assuming

volume averaged approximation,

d

dt
(UD) + R = 0⇒

dU
dt
D +

dD

dt
U + R = 0

So, by introducing (2.66),

dU
dt
D + R = −U

∮
∂D(t)

Vf · nf dSf (2.67)
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and applying (2.52), the following discrete formulation is obtained,

1

∆t

[
φn+1Un+1 + φnUn + φn−1Un−1 + φn−2Un−2 + . . .

]
D
n+1 = −Rn+1−

[
U

∮
∂D(t)

Vf · nf dSf
]n+1

(2.68)

In this way, the same velocity distribution is used in order to compute the face integrals in

equation (2.38) and the time derivative of the cell volume, thus, ensuring a compatibility

between the explicit operator R and the dual–step unsteady source term Qdual . Otherwise,

the estimation of
dDI

dt
through a backwards difference scheme introduces numerical errors

that yield in incompatibility between R and Qdual and, thus, a wrong solution of the flow

variables U. It is noted that for rigid body motions

∮
∂D(t) Vf · nf dSf ≈ 0.

For grid deformation, the work by Zhao [90] is followed. The idea in Zhao’s scheme

is to propagate the displacements of the solid boundaries into the grid nodes without

changing the far–field boundary while keeping the same grid topology. This is carried out

at nodal level as follows:

dr(node) = f (node)dr(nodewall) (2.69)

where dr is the displacement of an arbitrary grid node, dr(nodewall) is the displacement

of the corresponding/closest node that belongs to the solid boundary and f is the propa-

gation function decaying exponentially in space:

f (x) =
ly

2(x)
lx2(x) + ly2(y)

(2.70)

lx(x) =
1 − exp(−d(x)/dmax )

(e − 1)/e

ly(x) =
1 − exp(1 − d(x)/dmax )

1 − e
(2.71)

where d(x), is the distance of the node to the corresponding/nearest solid node and dmax

is the maximum distance of all nodes from the solid boundary, ensuring that the far–field

nodes remain in their undeformed positions. It is noted that dr(node) is superimposed to

any rigid body motion undergone by the nodes.

2.2.1.5 Implementation of the Actuator Line model

In an actuator line modelling approach, the actual geometry of the rotor blades is not

resolved. Instead, the blades are modelled as a set of blade elements along their axes as

shown in Figure 2.13. The blade loads are computed on specific control points along the

blade span through a blade element analysis in conjunction with 2D polars. The reaction

of the computed aerodynamic forces of the control points are then applied to the flow

as external forcing (source terms) on the cells swept by the blades during their rotation.

In order to avoid numerical instabilities, the source terms are spread across the cells

surrounding the control points through a 3D Gaussian convolution [7] (see Figure 2.14).
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Figure 2.13. Actuator Line modelling of a WT rotor blades. Blade element nodes and

control points are depicted as black circles and red diamonds respectively.

Figure 2.14. Actuator Line modelling of a blade. Gaussian projection of the blade element

forces. Image copied from [130].
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As stated before, Lift, Drag and Moment on every strip are computed through a blade

element analysis, as shown in Figure 2.15 and detailed in equations (2.72).

Figure 2.15. Actuator Line modelling of a blade. Blade element analysis and Gaussian

projection of the resulting aerodynamic forces.

aeff = arctan
Weff,z

Weff,x

L =
1

2
ρW

2

eff
CL(aeff )c∆r

D =
1

2
ρW

2

eff
CD(aeff )c∆r

M =
1

2
ρW

2

eff
CM (aeff )c2∆r

fcp = LeL + DeD
mcp = MeM

(2.72)

where aeff is the effective angle of attack, CL(aeff ), CD(aeff ) and CM (aeff ) are the lift, drag

and moment coefficients for the specific angle of attack, ρ is the density of the fluid, Weff

is the norm of the local 2D inflow velocity, c is the blade element characteristic chord, ∆r

is the width of the blade element, and eL , eD and eM are the unit vectors in the direction

of lift, drag and moment respectively.

In order to compute the local 2D inflow velocity Weff (the radial component of the

inflow velocity is neglected), the orientation of the blade element needs to be defined. This

is performed through the computation of the Rotation Matrix of the blade element

(
Acp

)
by following a multi–body approach, as shown in Figure 2.16 and explained in equations

(2.73). In order to do so, apart from the control point of each blade element, a few more

auxiliary points may be defined. Such are a pair of nodes at the edges of the blade

element along the quarter–chord line

(
XL,R

G

)
and the Leading and Trailing Edge points of

the corresponding sections

(
XL,R

LE
& XL,R

TE

)
. Consequently a total number of 7 points on
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each blade element are needed in order to perform the kinematic analysis. These points

follow all the rigid body motions (e.g. azimuthal rotation and pitching motion) of the

blades and the elastic deformations (e.g. transnational displacements due to bending

and torsion) if elasticity is included in the analysis. In this way, the local twist, pitch and

torsion angle of the blade element are inherently accounted for in the computation of the

effective angle of attack when expressing the inflow velocity in the local coordinate system

of the blade element.

Figure 2.16. Actuator Line modelling of a blade. Orientation of the blade element is defined

in a multi–body approach by computing its Rotation Matrix Acp.

Weff = AT

cp

(
Ufl − Ub

)
where Weff,y ≡ 0

Ueff = Weff,x ich +Weff,zinrm
eD = Ueff /

∣∣∣Ueff

∣∣∣
eL = eD × isp
eM = isp

(2.73)

where Weff is the local 2D inflow velocity expressed in the local coordinate system of the

blade element, Ueff is the local 2D inflow velocity expressed in the inertial frame, Ufl is

the flow velocity interpolated to the control point from the neighbouring cells solution, Ub

is the body motion of the control point (containing the rigid body velocity and the velocity

of the elastic deformations), and ich , isp and inrm are the unit vectors in the chord–wise,

span–wise and normal direction of the blade element respectively.

The reaction of body forces and their work are then imported as source terms in the

momentum and energy equations of the cells that are swept by the blades during their

rotation. In order to avoid singularities, the body forces and their corresponding work are
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numerically spread across a few cells using a 3D isotropic Gaussian distribution:

fϸ = fcpηϸ

fc = −

Ncp∑
i=1

fcpηϸ(cpi , cell)
(2.74)

where:

• fϸ is the projected force per unit volume [N/m
3
];

• fcp is the computed force on the actuator line emission (control) point [N];

• ηϸ = 1

(ϸ √π)3 e
−( d

ϸ
)2

is a 3D isotropic Gaussian distribution function;

• d = |xcp − xc | is the distance between the actuator line emission point and the point

where the force is applied [m];

• ϸ is the Gaussian kernel that defines the projection width [m].

The actuator line control points define the location of different blade elements that have

specific Lift (L), Drag (D) and Moment (M) depending on their airfoil type, chord and span

lengths and the incoming flow velocity that determines the effective angle of attack. They

are placed at the mid–span of the blade element they represent, along it’s quarter–chord

line and are the center of the blade element forces distribution. In the Actuator Line (AL)

methodology implemented in MaPFlow, the incoming flow velocity is directly sampled on

the control points as well [131]. The reason is that the control points are also the centers

of the blades’ bound vorticity, where the blade local flow effects (upwash and downwash

created by the bound vortex) vanish. Hence, a consistent estimation of the inflow velocity

is performed. The velocity at the control points is estimated through a distance and

volume weighted interpolation to the computed velocities of the neighbouring cells using

Radial Basis Functions (RBF) [132]. In that sense the actuator line control points serve as

both the kinematic analysis centers and the emission points of the aerodynamic forces.

Even though recommended by [133], tip correction models are not used in the current

implementation, since the three-dimensional flow–field containing tip and root vortices

can be fully resolved, provided that an adequately fine grid resolution is used in the vicin-

ity of the actuator lines. In [134] and Section 3.1.1.2 it is shown that with a small enough

characteristic cell length (∆x) of up to R/90 (R is the rotor radius), the isotropic Gaussian

distribution of the aerodynamic forces is sufficient to accurately predict the radial distri-

bution of the blade forces and to resolve the tip and root vortices. For this reason and for

sake of simplicity, it is preferred over more sophisticated projection techniques proposed

in [135, 136, 137, 130].

Both Cartesian and cylindrical grids can be used in the region of the actuator lines.

However, cylindrical grids are inherently non–uniform and hence their use complicates

significant aspects of the AL implementation, such as the inflow velocity interpolation on

the control points. For this reason Cartesian grids are usually preferred. Both structured
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and unstructured grids can be employed, as long as the characteristic cell length (∆x) is

kept fine (and preferably constant) in the vicinity of the actuator lines.

As a rule of thumb, in most AL implementations the time step value is chosen so

that the tip of the actuator line sweeps no more than one cell per time step

(
∆t ≤ ∆x

Vtip

)
.

However, according to [134] and as is shown in Section 3.1.1.2 a more strict approach of

the above rule of thumb

(
∆t ≤ 0.5

∆x
Vtip

)
is required for WT simulations.

With respect to the radial resolution ∆r, accuracy is maintained when it is chosen to

be fine enough so that the spherical regions around the body forces sufficiently overlap

with each other (see Figure 2.14). In this way a continuous force distribution along the

blade is secured. In [134] and Section 3.1.1.2 it is shown that at most double the grid

spacing (∆r ≤ 2∆x) is adequate when uniform spacing along the blade span is employed.

Geometric refinement towards the two edges (root and tip) has also been tested, but it

turned out to make no difference, since the actuator line spacing ends up to be really fine.

There are numerous advantages when following the AL approach:

1. CFD grid is not forced to follow the blades rotation;

2. Overset grids methodologies can be avoided when interaction between rotor wake

and other configurations (e.g., WT tower, helicopter fuselage, other rotors) is to be

assessed;

3. Aeroelastic simulations can be performed without many implementation difficulties,

as the computational grid does not need to deform along with the blades.

The above render the AL model befitting for complex aeroelastic analyses, provided that

the loads are accurately predicted. The main weakness of AL is its dependence on tab-

ulated 2D airfoil data. The correct estimation of aerodynamic loads in stall conditions

is critical in aeroelastic simulations. For this reason, a dynamic stall model needs to be

used. In the AL methodology implemented in MaPFlow, the extended ONERA model [138]

is used. The delay parameter of the original ONERA model, which accounts for dynamic

stall delay in deep stall conditions is omitted. Moreover, the leading edge vortex and the

vortex shedding effect considered by Truong [52] in more recent versions of the ONERA

model are not included in the present implementation. However, these are not expected

to significantly affect the aerodynamic and structural loads of large modern WTs as most

of them are pitch regulated. Consequently, all cases of normal operating conditions deal

with at most light stall conditions, with the maximum effective angle of attack lying in

the vicinity of (CLmax ) where the leading edge vortex is not present. Analytical descrip-

tion and implementation details of the Dynamic Stall model utilized in the current AL

implementation can be found in [139]. Nevertheless, 2D polars, even though corrected

for unsteady aerodynamics and dynamic stall effects, still cannot account for unsteady

phenomena due to vortex shedding (e.g., when massive flow separation takes place or

secondary cross-flow effects at the scale of chord length appear). In such cases (e.g.

stand–still configurations where the blades operate at nearly a 90
◦

angle of attack) the

actual geometry of the rotor blades needs to be accurately resolved.
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2.2.1.6 Turbulence Generation in MaPFlow

2.2.1.6.1 Mann’s generator of synthetic turbulence

Turbulent fields can be generated through spectral computational methods. In the

present research, the one developed by Mann [104, 105, 8] has been used. The Mann

model creates a synthetic 3D incompressible turbulent field based on the 3D von–Karman

energy spectrum tensor representation of turbulence derived from Rapid Distortion The-

ory (RDT) of isotropic turbulence. A 3D Fast Fourier Transform (FFT) is then used to

generate all three velocity components by summing a set of wave–number vectors, each

with the appropriate amplitude and a random phase. The anisotropy of turbulence due

to shear and the blocking effect of the ground are described through a parameter Γ that

is connected to the “lifetime” of the eddies. By setting the value of the parameter Γ to 0,

isotropic turbulent flows are modelled. Apart from Γ, the user needs to define the size of

the largest energy–containing eddies through a length–scale parameter L and a parameter

αϸ
2/3

containing the Kolmogorov length scale α and ϸ that defines the dissipation rate of

the turbulent kinetic energy per unit mass. The produced turbulent field has shown to

have the same 2nd order statistics with the atmospheric turbulence. The resulting spec-

tral energy density distribution is adjusted by the values of Γ, αϸ
2/3

and L. For Γ = 3.9

the produced spectrum follows the distribution of the Kaimal spectrum for neutral stable

conditions. Detailed instructions on how to choose the values of these parameters for

various turbulence conditions based on the free–stream Turbulence Intensity (TI), the

hub–height Zhub and the wind speed at hub–height Vhub can be found in [140]. For neu-

tral stable conditions and medium turbulence intensity the following expressions can be

followed:

σ1 = TI ∗ Vhub

σiso = 0.55σ1

Λ1 =

0.7Zhub, if Zhub ≤ 60m

42m, if Zhub ≥ 60m

L = 0.8Λ1

αϸ
2/3 = 1.453L

−2/3
σ

2

iso

Γ = 3.9, for Kaimal spectrum

(2.75)

The turbulent field is expressed as a set of time-series of the velocity fluctuations with

respect to a mean velocity field. These time-series of velocity fluctuations are stored at

the nodes of a plane perpendicular to the mean wind speed. By using Taylors’ frozen

turbulence hypothesis the sequence of instants is attributed to a sequence of distances

between these planes in the direction of the mean wind speed. Consequently, the output

of the generator is a box named “Mann box” (see Figure 2.17) that contains the velocity

fluctuations. The axis of the mean wind speed is referred to as the time axis.
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Figure 2.17. Mann box with 512, 128 and 128 points in the x, y, and z axes.

Detailed instructions concerning the discretization of the Mann box are given in [141].

The number of nodes in the three directions (axial/longitudinal, lateral and vertical) of the

box must be a power of two for efficient FFT computations. In the longitudinal direction,

the number of points is determined by the length of the time history required. The

maximum wavelength (length of the Mann box) used is the length of the turbulence history

to be generated (the mean wind speed multiplied by the duration of the required time

series). The minimum wavelength is twice the longitudinal spacing of points, which is the

mean wind speed divided by the maximum frequency of interest. In the lateral and vertical

directions, fewer points may be used. The maximum wave–length in these directions must

be significantly greater than the rotor diameter, since the solution is spatially periodic,

with period equal to the maximum wavelength in each direction. Consequently, in cases

where the required time series exceeds the duration of the Mann box, its time–history

may be repeated until the end of the simulation.

2.2.1.6.2 Implementation of the Actuator Disk methodlogy

The most commonly adopted approach in order to apply a pre-defined turbulent field in

the computational domain is to superimpose the velocity fluctuations to the mean velocity

at the inlet boundary. However, in order to ensure that the inlet turbulent field is not

altered significantly while getting convected downstream, a pretty fine grid is needed. The

region of interest is usually placed far away from the inlet in order to avoid boundary

effects. This means that a huge amount of computational cells needs to be used in the

upstream area in order to preserve turbulence, thus, exploding the computational cost of

the simulation. Alternatively, an immersed boundary approach can be used, so that the

turbulent fluctuations are imposed on an internal region of the computational domain
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located close to the region of interest. This saves computational resources and leads

to a less diffused turbulent profile impacting the region of interest. This approach was

used by Gilling [142] for the simulation of turbulent flows over airfoils and by Troldborg

et al in [143, 107] for the simulation of atmospheric flows. The typical approach used

in those studies in order to impose the turbulent fluctuations was to introduce time

varying body forces (source terms in the momentum and energy equations) in a cross-

section upstream to the region of interest that resembles the methodology of the Actuator

Disk (AD). In this case however, the body forces are computed based on 1D momentum

theory in conjunction with the Bernoulli equation:

fp =
ρU′

∆n

(
Un +

1

2
U
′
n

)
(2.76)

where fp is the force per unit volume required to drive the fluid velocity from U to U + U′.
U and U′ are vectors containing the three components of the mean and the fluctuating

velocity. Un and U
′
n

are the magnitude of the mean and the fluctuating velocity in the

direction of the mean wind speed. ∆n is the grid spacing normal to the AD. In order to

avoid numerical instabilities, these source terms are spread in the direction normal to

the AD using a 1D Gaussian convolution:

fe = fpηϸ

ηϸ =
1

ϸ
√
π
e
−( n−nd

ϸ
)2 (2.77)

where ϸ is the Gaussian kernel that defines the projection width and n − nd is the normal

distance from a grid point to the turbulence plane. Besides adding the source terms to

the momentum equations, the work of the source terms can also be added to the energy

equation as:

fw = fe · Uc (2.78)

where ~Uc is the velocity at the cell that the source terms are applied on.

2.2.1.6.3 Implementation of the Generation Zone methodology

In this work, an alternative approach for imposing a given velocity profile is tested. Instead

of confining the turbulence actuator region to a single plane (the plane of the AD) and

few computational cells around this plane, as a result of the Gaussian smearing, the idea

is to spread the generation of the turbulent profile in a zone that is called a Generation

Zone (GZ). The cells located inside this zone are assigned with source terms that drive

the solution to the imposed velocity Utar = U + U′:

Sc = Cρc (Utar − Uc)

C = a ∗ e
−

 x − xs

0.2 (xe − xs)

 (2.79)

68



2.2 Aerodynamic modelling

Figure 2.18. Function C regulating the intensity of the Generation Zone. Maximum value

of C is set at the start of the zone and then decays smoothly (as a first order filter) towards

zero by the end of the zone.

C is a function that regulates the intensity of the source terms and ρc is the air density

in the computational cell that the source term is applied on. The maximum value of C

is set through the parameter a. The start point of the GZ is denoted by xs, while the

end point by xe and x is the position in the mean wind speed direction of the cells that

lie within the zone. The parameter 0.2 ensures that the effect of the source terms of

the GZ decays with the same rate as a first order filter and is damped by the end of the

zone (see Figure 2.18). The desired numerical solution (e.g. a turbulent velocity profile)

is obtained implicitly, which means that the solver needs to converge to that solution

through the numerical procedure. The source terms, should be able to drive the solution

to the desired one, while at the same time maintain the convergence properties of the

method. Large values of a may lead to numerical instabilities, while small ones may not

be able to effectively drive the desired one. A reasonable rule of thumb would be to use

the maximum value of a for which the simulation runs properly. The maximum value of a

may alter depending on the GZ length and other numerical parameters of the simulation.

The fact that the maximum value of C is set at the starting plane of the zone drives

the solution of the nearby cells pretty close to the desired velocity profile. This is clearly

depicted in Figure 2.19, where the time-series of the axial velocity and the corresponding

spectrum that are produced with the GZ method are compared against the ones produced

by the conventional methodology of the AD and the input signals produced by the Mann

generator. It is obvious, that the GZ creates a velocity profile that is almost identical to the

desired one. This is clearly not the case when it comes to the AD and the reason is that

its source terms are computed based on potential approach (1D momentum equations

in conjunction with the Bernoulli equation) which is not fully compatible with a CFD

solver. Moreover, the smooth decay of the source terms towards the end plane of the

GZ ensures that the velocity profile created by the end of the zone is a true solution

of the equations solved and compatible with the solver settings used (e.g. spatial and

temporal discretization scheme and order, type of preconditioner, e.t.c.). Consequently,

no numerical instabilities are expected.
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Figure 2.19. Velocity time–series (left) and spectra (right) captured at start of GZ and center

of AD, where the source terms are the strongest. Contrary to AD, the GZ creates a velocity

profile that is almost identical to the desired one.

The idea was first introduced in [144] (there referred to as “sponge zone”) for absorbing

free-surface waves in order to avoid reflection of waves from outlet boundaries. However,

for the first time in [106] the same approach was used in order to generate a wave velocity

profile and the idea of the Generation Zone was born. In that project, the GZ was placed

near the far-field boundary of a domain. By only extending a few wavelengths (2 or more)

and with 150 cells per wavelength, the GZ was able to precisely reproduce the desired

velocity profile of the wave.

Nevertheless, the efficiency of the methodology is not that high when it comes to tur-

bulent velocity profiles. In turbulent fields, the velocity profile is composed by multiple

wave signals whose wavelengths vary in a wide range. The presence of very small wave-

lengths (the maximum frequency may go up to 10Hz) renders the use of 150 cells per

minimum wavelength not viable in terms of computational cost. Furthermore, the 3D

nature of the current application of the methodology is an additional factor that leads

to greater numerical diffusion compared to the 2D simulations it was applied regarding

waves generation. Another crucial difference between waves and turbulence, is that tur-

bulence is essentially dissipative, while waves are not. In fact, gravity is an important

preservation factor when it comes to wave propagation. On the other hand, turbulence

cannot maintain itself but depends on its environment to obtain energy. For these rea-

sons, the turbulence spectrum at the end of the GZ is already slightly changed compared

to the one created by Mann’s generator, or the one produced at the start of the zone (see

Figure 2.20). The most notable differences are observed in the higher frequency region

(> 1.4Hz), where much less computational cells per wavelength exist compared to lower

frequencies (≤ 1.4Hz). However, the fact that the numerical solution is obtained implicitly

and is compatible with the solver settings, leads to a velocity profile that is less sensitive

to numerical diffusion when convected downstream compared to the one created by the

standard approach of the AD. In order to justify this statement, the spectra obtained by

the two methodologies at the point of interest (hub center location of the WT) are directly

compared in Figure 2.21. The newly proposed methodology is able to create a spectrum
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which is less diffused compared to the conventional method.

Figure 2.20. The velocity spectra captured at the start and end plane of the GZ are

compared against the desired one. The turbulence spectrum at the end of the GZ is already

changed compared to the one created by Mann’s generator, or the one produced at the start

of the zone

Figure 2.21. The velocity spectra captured at the point of interest (e.g. rotor hub center)

with the two methodologies are compared against the desired one. GZ is able to create a

spectrum which is less diffused compared to AD.
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2.2.2 The Lagrangian CFD solver

In a Lagrangian formulation (material coordinates), the flow-field is represented by

following the evolution of a number of particles along their trajectories. In that sense,

particles act as flow marker points that are assigned with volume Vp and carry mass

Mp, dilatation Θp, vorticity Ωp and pressure Πp, regarded as the volume integrals of the

continuous flow quantities density ρ, dilatation θ, vorticity ωωω and pressure p respectively.

In material coordinates, the flow equations take the form:

dZp
dt

= Up

dVp

dt
= Vp θp

dMp

dt
= 0

dΩp

dt
= Vp

[
(ωωω · ∇)U +

1

ρ2
∇ρ × ∇p + ν∇2

ωωω

]
p

dΘp

dt
= Vp

[
2‖∇U‖ −

1

ρ
∇2
p +

1

ρ2
∇ρ · ∇p + ν

4

3
∇2θ

]
p

dΠp

dt
= Vp

[
(1 − γ)pθ + (γ − 1) (∇ · (τ · U) − U · (∇ · τ))

]
p

(2.80)

where d/dt denotes the material time derivative, and (·)p indicates evaluation at the

position of particle p. ∇ · τ = µ

(
4

3
∇θ − ∇ ×ωωω

)
denotes the divergence of the viscous stress

tensor, and ν = µ/ρ is the kinematic viscosity, which here is assumed constant.

The flow equations are supplemented with the Helmholtz’s decomposition theorem

(2.81), which states that every velocity field u can be expressed as the sum of a rot-free

potential part uφ and a div-free vortical one uω, alongside a constant velocity component

representing the undisturbed velocity field at infinity U∞. The potential part is defined

through a scalar potential φ
(
uφ = ∇φ

)
and is associated with the compressibility effects

expressed by the dilatation of the flow θ (θ = ∇ · u), whereas the vortical part is defined

through a vector potential (stream-function) ψ (uω = ∇ ×ψ) which is associated with the

free vorticity of the flow ωωω (ωωω = ∇ × u). Consequently, the scalar and vector potential

satisfy the Poisson equation (2.82).

u (x, t) = U∞ + uφ (x, t) + uω (x, t) (2.81)

∇2φ = ∇ · u = θ

∇2ψ = −∇ × u = −ωωω
(2.82)

By using Green’s theorem, the velocity field u can be expressed in integral form:

u (x) = U∞+

∫
D

[
θ(y)∇G(r) +ωωω(y) × ∇G(r)

]
dD(y)+

∫
S

[
n · u(y)∇G(r) + n × u(y) × ∇G(r)

]
dS(y)

(2.83)

where G (r) is the Green’s function for the Laplace operator, r = x − y and S = ∂D.

Computational cost is dominated by the space convolution integral in equation (2.83).
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For N particles, the associated cost is proportional to N
2
, which can easily explode as

N becomes large and the intended duration of the simulation is long. In order to re-

duce computational cost, the Particle Mesh (PM) technique is employed, and the Poisson

equation (2.82) is solved for the scalar potential φ and the stream function ψ. In such

a manner, computational cost is minimized from N
2

to N logN . Computational perfor-

mance is also enhanced by using Cartesian grids in order to discretize the Lagrangian

domain, thus, enabling the use of fast Poisson solvers [145]. Particularly, in HoPFlow,

the James–Lackner algorithm is used [146].

The PM framework is also employed in order to evaluate the Right Hand Side (RHS) of

(2.80). The Lagrangian particles solution is interpolated to the PM nodes, and the desired

differentiations are easily computed through finite difference schemes. Consequently, the

RHS terms are first evaluated on the PM nodes, and then they are interpolated back

to the particles positions. Afterwards, time marching is performed through a standard

4th order Runge–Kutta explicit scheme. In every sub–step of Runge–Kutta, intermediate

convection steps are carried out, requiring intermediate evaluations of velocity, which are

also conducted with the PM technique.

At the end of each time-step, remeshing is applied in order to recover full coverage of

the computational domain and ensure a regular distribution of the numerical particles.

Remeshing is a standard procedure in order to prevent excessive concentration or spread-

ing of particles. In this way, the consistency and accuracy of the numerical solution is

preserved.

For a given number of particles {Zn
p
, M

n

p
, V

n

p
, Ωn

p
, Θn

p
, Πn

p
}, the sub-steps taken in the

nth Lagrangian time-step can be listed as follows:

Step 1: Project {Mn

p
, Θn

p
,Ωn

p
, Πn

p
} on the PM grid and obtain ρ

n

ijk
, θn

ijk
, ωωω

n

ijk
, p

n

ijk

Step 2: Solve ∇2φ = θ,∇2ψ = −ωωω and obtain φn
ijk
, ψn

ijk
, un

ijk

Step 3: Compute the RHS terms of equation (2.80), (e.g. ∇ρn
ijk
, ∇pn

ijk
, ∇un

ijk
) on the PM grid;

Step 4: Interpolate all grid-based data q
n

ijk
at the particle positions q

n

p

Step 5: Update all particle properties (integrate equation (2.80) in time)

Step 6: Re-mesh if needed
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2.2.3 The Hybrid Lagrangian–Eulerian CFD solver HoPFLow

The rationale behind the application of the hybrid CFD solver HoPFlow is to combine

an Eulerian approach close to solid–wall boundaries with a Lagrangian one for the rest of

the domain. In this way, both the solid–wall and the exact far–field boundary conditions

are satisfied in accuracy within the Eulerian and Lagrangian framework respectively. The

Lagrangian particles are distributed over the whole computational domain, overlapping

with the Eulerian computational cells close to solid boundaries (see Figure 2.22). The

Eulerian part of the hybrid solver solves the compressible Navier–Stokes equations un-

der a cell–centered finite-volume approach in a confined region (DE) around solid-wall

boundaries (SB). The Lagrangian part solves the compressible flow equations as well, in

their material form, based on particle representation of the essential flow quantities, e.g.

mass, pressure, dilatation and vorticity [67].

Figure 2.22. Decomposition of Eulerian (DE) and Lagrangian (DP) computational domains.

SB denotes the solid-wall boundaries, and SE the far-field of the Eulerian domain. The

Lagrangian particles are distributed over the whole computational domain, overlapping

with the Eulerian computational cells close to solid boundaries.

The Eulerian and Lagrangian solutions are coupled in two ways. In the Lagrangian to

Eulerian direction, the Lagrangian part provides the proper flow conditions on the outer

boundaries of the Eulerian domain SE. In order to do so, the Lagrangian solution is

interpolated from the PM nodes (or, in a more generic approach, from the Lagrangian

particle positions) to the ghost cells of the Eulerian grid (see Figure 2.23). The fluxes

at the Eulerian boundary SE may now be evaluated from the Riemann invariants and

MaPFlow shall be capable of computing the flow–field close to the wall boundaries in the

detail and accuracy that is provided by the Eulerian framework.
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Figure 2.23. The Lagrangian particles solution is interpolated to the ghost cells of the

Eulerian sub–domain to define its far-field boundary conditions. Lagrangian particles are

depicted as solid blue circles. Solid and dotted red circles denote the centers of the Eulerian

cells and ghost cells, respectively.

The closure of the coupling is achieved by correcting the flow information on the PM

nodes (more generally on the Lagrangian particles) that lie within the Eulerian domain

DE and then by updating the whole Lagrangian field. In order to do so, the Eulerian

solution is transformed into particles that carry mass, dilatation, vorticity, pressure and

volume (ρ, θ,ωωω, p, V )
E
. The Eulerian particles need to be densely populated and regularly

placed within the Eulerian computational cells, so that full coverage of the PM nodes is

ensured (see Figure 2.24). The flow quantities of the Eulerian particles are interpolated

from the cell–centered values based on a purely geometric approach using iso–parametric

finite element approximations. The presence of solid boundaries is taken into account

as surface (singular) particles that carry dilatation θs and vorticity ωωωs, but no pressure,

volume and mass. These particles only affect the solution of the Poisson equation (2.82)

as contribution in n · u(y) and n × u(y) in the surface convolution related to boundary

terms of equation (2.83) and must not be convected during time marching. The corrected

Lagrangian particles information is then used in order to update the whole Lagrangian

field and, thus, ensure that it is a smooth extension of the Eulerian one. In this way, the

presence of solid–wall boundaries is effectively communicated from the Eulerian to the

Lagrangian part.

The steps followed for the coupling between the Lagrangian and the Eulerian solver are

depicted in the flow chart displayed in Figure 2.25. The corresponding implementation

details have been thoroughly analyzed in [4, 147, 148, 45].
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Figure 2.24. The Eulerian solution is used in order to correct the Lagrangian particles that

lie within the Eulerian sub–domain. The corrected Lagrangian particles information is then

used in order to update the whole Lagrangian field and ensure that it is a smooth extension

of the Eulerian one. Lagrangian particles are depicted as solid blue circles. Dotted red

circles denote the centers of the Eulerian cells. Small solid red circles illustrate the Eulerian

particles that correct the Lagrangian ones.
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Initialize HoPFlow

Solve PM

Obtain the correct boundary conditions

on the far-field of the Eulerian domain
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Compute the finite differences of the RHS on the PM
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order Runge–Kutta
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Next RK step
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Figure 2.25. Flowchart of the hybrid solver HoPFlow.
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2.3 Fluid Structure Interaction on beam–structured configura-

tions

2.3.1 Aeroelastic coupling

Aeroelastic coupling consists of the interaction between the aerodynamic and elas-

todynamic modules within every time step of the numerical process. In order to do so,

there are two different options of similar fidelity. The first one (full coupling) is to combine

the two systems and solve them as one; alongside with their off–diagonal coupling terms

(see Figure 2.26a). In this way the solution of the two systems are concurrently updated.

Alternatively, the two systems can be solved separately (see Figure 2.26b). In this ap-

proach, the off–diagonal terms of the aeroelastic system are neglected and are “treated”

as boundary terms of the two separate systems. The solution of the two systems are

updated sequentially, by applying internal iterations until convergence is achieved for

both. Within every internal iteration, compatibility information is exchanged between the

systems (strong coupling) based on the solution of the previous iteration. In this way, it is

easy to interchange between various aerodynamic or structural models of varying fidelity.

Nevertheless, every pair of models needs an interface protocol of its own.

The aerodynamic code provides the elasto–dynamic module with loads, whereas the

structural model provides kinematics to the aerodynamic one. More precisely, the distri-

bution of the aerodynamic loads along the body, computed by the aerodynamic model, is

fed to the structural dynamic module so that the work of the external loads in equation

(2.11) can be estimated. In turn, the deformed coordinates and the deflection velocities

at the nodes of the blade surface grid are computed by the structural analysis model and

communicated to the aerodynamic module in order to define the correct solid–wall bound-

ary conditions. This procedure is repeated within every time–step until convergence of

both the aerodynamic and elastic solution is attained.

(a) Fully coupled aeroelastic system. (b) Strongly coupled aeroelastic system.

Figure 2.26. Matrix form of aeroelastic equations.
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2.3 Fluid Structure Interaction on beam–structured configurations

2.3.1.1 Kinematic (aerodynamic) boundary conditions

In an aeroelastic code the structural dynamics module needs to provide the aerody-

namic solver with the correct kinematic boundary conditions (positions and velocities),

so that both the rigid body motion and the elastic deformations of the body are prop-

erly accounted for at every point of its aerodynamic grid. In the current framework, the

elasto–dynamic analysis of the various components of a configuration is based on a beam

modelling approach. This means that the kinematics information which is concentrated

on the beam axes, needs to be properly projected on the blade surface points of the

aerodynamic grid (see Figure 2.27).

In particular, the primary kinematics information is concentrated on the nodes of

the 1D Timoshenko beam finite elements (û (t)) and gets distributed along the beam

axis through the shape function (N (y)) of the finite elements. In this way, the elastic

deformations of any arbitrary point along the beam can be defined (u (y, t) = N (y) û (t))
and then they are projected to all the blade surface points that belong to the corresponding

cross–section (uL (rL , t) = S (xL , zL) u (yL , t)).

This means that in a linear Euler–Bernoulli modelling of a beam, in order to calcu-

late the elastic deformation of an aerodynamic point P, one could just simply project

this point to the structural axis of the beam and acquire all the needed information

as described above. However, in the current framework, non–linear beam (body) mod-

elling is accomplished by connecting consecutive linear Timoshenko beams through non–

linear constraint equations (see Section 2.1.3). Hence, the cross–sections of a beam,

although still planar (warping is neglected), are not perpendicular to the structural axis

(θx , w′, θz , −u′). Therefore, for every aerodynamic point P one needs to know: i) the

beam (sub–body) it belongs to and ii) the local co–ordinates of the point P with respect to

the beam local co–ordinate system defined in the initial undeformed state (rk
L0

), as shown

in Figure 2.28. Consequently, a mapping between the aerodynamic and structural grids

should precede the time–marching of the aeroelastic analysis.

The position and velocity of any blade surface point is computed by using the multi–

body kinematics equations (2.1):
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is the rigid body motion part and rP
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))
is the elastic deformation. This is sufficient for all the grid–free aerodynamic models

(BEMT and FVW codes) and the actuator–based CFD methods (e.g. Actuator Line), where

the aerodynamic bodies move freely inside the computational domain. A few more pa-

rameters need to be considered in the Eulerian formulations when the actual geometry of

the body is resolved and the rest of the grid nodes need to comply with the motion of the

aerodynamic bodies.

There are various implementation options permitting body motion and aeroelastic
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analyses within an Eulerian CFD framework, like Immersed Boundary Methods (IBMs)

[87], Overset grids [89] or Deforming grids [90], each coping with the aforementioned prob-

lem more or less differently and raising different issues, such as temporal discontinuity

of regional cells, loss of conservativeness or deterioration of grid quality respectively. In

the following paragraphs, emphasis is given to Overset and Deforming grids implementa-

tions details, as they are the ones used in the present research (the Lagrangian domain

of the hybrid solver serves as the coupling domain between distinct and separately dis-

cretised sub–structures of the computational domain in the same way as Overset grids

techniques).

In an Overset grids approach, every aerodynamic body has its own grid, confined

in a narrow regions around its solid–wall boundaries and separate from the rest body–

fitted grids. Their interaction is accounted for with the aid of a stationary background

grid applying field communication, through which the different body–fitted grids move

freely. Consequently, the elastic deflections of the body surface nodes can be expanded

undamped to the rest of the body–fitted grid nodes, as if they were part of the body

(uL (rL , t) = S (xL , zL) u (yL , t)). In this way, the initial topology of the grid is not affected by

the elastic deflections (and rigid body motion in general) of the body and, thus, the grid

quality remains more or less intact (see Figure 2.29).

In cases where a single Eulerian domain contains all the deforming bodies, the grid

needs to follow the motion of the various bodies whilst keeping the connectivity of the

nodes unchanged. The Deforming grids approach may efficiently serve such cases whilst

preserving the accuracy of the numerical approach and confining computational cost.

There are multiple grid deformation techniques implemented in MaPFlow, such as the one

proposed by Rendal and Allen [149], where Radial Basis Functions are used to interpolate

the displacements of the inner grid nodes based on the displacements of the body surface

nodes [150]. In the present work, the algorithm of Zhao [90] (see Section 2.2.1.4), in

which the deformation of the grid nodes gets diminished through an exponential function

as the distance from the body gets higher, is used. However, the motion of a grid node

is explicitly determined by the motion of its closest body surface node, thus, significantly

limiting computational cost.

In both of the aforementioned grid deformation techniques (rigid deformation, expo-

nentially damped deformation) the velocity of the grid nodes is computed by applying a

1
st

order finite differences scheme between the position of the previous time–step and the

current time–step iteration. A linear distribution of the velocity is assumed over the faces

based on the values of their nodes and the GCL is applied in order to estimate the time

derivative of the volume of the cells.
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2.3 Fluid Structure Interaction on beam–structured configurations

Figure 2.27. In an aeroelastic framework, the aerodynamic and structural grid nodes are

expressed in the same kinematics framework.

Figure 2.28. Mapping between the structural and aerodynamic grid is applied in the initial

undeformed state and is based on the local co–ordinates of the aerodynamic point P with

respect to its local beam co–ordinate system.
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Figure 2.29. Rigid deformation of the body–fitted grid nodes in an Overset grids formula-

tion. Elastic deflections of the body surface nodes are expanded undamped to the rest of

the grid nodes. Consequently, the initial topology and the quality of the grid remain intact.

2.3.1.2 Dynamic (structural) boundary conditions

External loads (dominated by the aerodynamic forces and moments) act as dynamic

condition to the structural module. The utter goal is to estimate their virtual work in

equation (2.11). To that end, the aerodynamic code provides a 1D line distribution of

forces and moments along the body axis to the elasto–dynamic module (beam modelling)

by following a two–step procedure:

i) the aerodynamic forces are integrated from pressure and viscous stresses (surface

friction) over the aerodynamic surface grid in strips according to equation (2.84) (see

Figure 2.30):

faer(s) =

∑
p fp∆spW1

(
sp − s

∆s

)
∆s

maer(s) =

∑
p rp × fp∆spW1

(
sp − s

∆s

)
∆s

(2.84)

where
∑
p denotes summation over the panels that formulate the surface grid of

the body, fp is the total force exerted on the panel surface in N/m (pressure and

viscous stresses are multiplied with the area of the panel and then normalized by

the length of the panel along the span–wise direction of the body), rp is the distance

in m between the control point of the panel and the control point of the strip (the

control points over successive strips form the aerodynamic reference line), sp is the

arc length in m of the control point of the panel, s is the arc length in m of the
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2.3 Fluid Structure Interaction on beam–structured configurations

control point of the strip, ∆sp is the length of the panel in m along the span–wise

direction of the body, ∆s is the length of the strip in m along the span–wise direction

of the body and W1(h) is a 1D interpolation function. In the present work, the M1

interpolation function is used (for others see [55]).

This results in a line distribution of normalized forces (faer(s)) and moments (maer(s))
along the aerodynamic reference line (usually set at quarter–chord).

ii) this distribution is transferred to the structural reference line (the line with respect to

which the structural properties are defined), by taking into account their in between

offset (∆x) as indicated in equation (2.85):

fstr(s) = faer(s)

mstr(s) = maer(s) + ∆x × faer(s)
(2.85)

In general, the two lines can be offset with respect to each other (see Figure 2.31).

Due to the above offset an extra twisting moment must be communicated when trans-

ferring loads from the aerodynamic line to the elastic line. The above offset must also

be taken into account when transferring deflections and velocities from the elastic line to

the aerodynamic line, as rotations around the structural axis induce translations at the

aerodynamic points.

In the blade–element based aerodynamic methods (BEMT, LL, AL) the computation of

normalized loads over strips along the aerodynamic reference line is part of the standard

procedure. Likewise, in CFD, the grid is divided into strips along the body axis. If the

surface elements are densely populated over the aerodynamic reference line (highly likely

for standard CFD grid resolutions), reasonably smooth distributions of aerodynamic loads

are generated. Otherwise, the forces of a surface element may be regularly distributed

over multiple points inside the element in order to increase the density of the force points.

Finally, it needs to be stressed that the aerodynamic reference line is considered as an

actual part of the body and, for this reason, it follows its deformation.

In order to transfer the aerodynamic loads distribution from the aerodynamic reference

line to the structural reference line, a mapping needs to be applied between the two

lines. In general, the 1D discretization of the aerodynamic and structural reference lines

is different. In the aerodynamic model, the reference line is divided into a number of

aerodynamic strips over which aerodynamic loads are computed and considered uniformly

distributed. With regard to the structural model, the elastic line of a single blade can be

shared among several connected beams (sub–bodies), which in turn are discretized into

a number of linear finite elements. The above definitions for the aerodynamic strips,

the structural elements and the corresponding grids are shown in Figure 2.31a. The

correspondence of the aerodynamic and structural grids is defined based on a material

co–ordinate s0 in the initial undeformed state (see Figure 2.31b). The material co–ordinate

s0 represents the arc length of every point with respect to the reference line it belongs

and has a unitary numbering along the blade, no matter how many sub–bodies have been
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used to describe it. If the blade is straight, s0 coincides with the radial y co–ordinate

of the blade local system. The need for introducing the material co–ordinate s0 stems

from the fact that when the blade is deformed the structural nodes are displaced in all

directions and, depending on the deformation field, the length of the deformed blade

changes (increases in case of pure tension, decreases in case of bending deflection).

Figure 2.30. Definition of the aerodynamic reference line in a CFD aerodynamic grid.

Strips are defined along the body axis. The loads on the strips are computed by integrating

pressure and viscous stresses over the surface grid panels that lie within the strip.

84



2.3 Fluid Structure Interaction on beam–structured configurations

(a) Undeformed state.

(b) Deformed state.

Figure 2.31. Correspondence between the aerodynamic and structural grids is based on

the material co–ordinate s0 and is defined in the initial undeformed state.
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Chapter 3

AL modelled rotor blades using MaPFlow

In this chapter, the results produced through aeroelastic simulations of a WT rotor

and a model helicopter Main Rotor (MR) under smooth free–stream flow conditions are

presented. Then, aeroelastic analyses of a full WT configuration (tower, shaft, rotor) op-

erating in turbulent wind conditions follow. The aerodynamic analysis of the rotor blades

is based on the Actuator Line (AL) model implemented in MaPFlow. Results are compared

against the ones produced by a standard Blade Element Momentum Theory (BEMT) model

and a classical Lifting Line (LL) approach. These two models constitute standard state–

of–the–art approaches for the aeroelastic analysis of WT and helicopter rotors, at least on

industrial level. In any case, the elasto–dynamic analysis of the rotor blades is performed

through GAST. In helicopter MR simulations, experimentally measured data are used as

an extra reference.

3.1 Smooth free–stream flow cases

This section addresses the aeroelastic operation of both WT and helicopter rotors un-

der smooth free–stream flows. First, the effect of multiple numerical parameters involved

in the AL model will be assessed in purely aerodynamic simulations where the elastic

deflections of the blades are neglected (rigid blades assumption). The extracted conclu-

sions are then transferred and extended in the respective aeroelastic simulations, where

GAST–AL results are compared against experimental measurements and computational

predictions by lower fidelity aerodynamic models; namely BEMT and LL, which are the

standard options in WT and helicopters design respectively.

3.1.1 Aeroelastic analysis of a WT rotor

In this section, aeroelastic simulations are performed for the DTU 10MW Reference

Wind Turbine (DTU 10MW RWT) rotor operating at 8 and 11 m/s wind speed at various

yaw misalignment angles from −30
◦

to +30
◦
. The rotor blades are modelled as actuator

lines in a purely Eulerian context, using MaPFlow. The structural dynamics analysis is

performed through GAST and the rotor blades are modelled as beam assemblies, in order

for non–linear geometric phenomena to be properly accounted for. The two systems are

solved separately, but tightly coupled. First, aerodynamic simulations (blades deforma-

tions neglected) are performed at 11 m/s axial wind speed case in order to investigate the
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effect of numerical parameters (e.g. spreading of aerodynamic forces, grid and time–step

resolution, grid set–up) on the predicted aerodynamic loads. Then, aeroelastic simula-

tions are performed at all the aforementioned wind speed cases and the produced results

are compared against BEMT and LL predictions.

3.1.1.1 The DTU10MW Reference Wind Turbine

The DTU 10MW RWT is an IEC Class 1A conceptual WT that was designed during

the Light Rotor project [151]. The Light Rotor project has been initiated as a cooperation

between DTU Wind Energy and Vestas; its goal was to describe the design of a large

scale light–weight WT with conventional methods and techniques in order to serve as a

reference to future advanced rotor designs. Although the project mainly focused on the

design of the rotor, the entire WT (tower, drive–train, rotor) was developed in order to

understand the effect of the entire system (structural dynamics of the blades, the tower

and the drive–train) on the rotor performance. The DTU 10MW RWT design was based

on an up–scaling of the conceptual NREL 5MW RWT [152]. Later, it was employed as the

reference turbine in a number of research projects, such as the INNWIND.EU European

project [153] that among others addressed the design of large scale (10-20 MW) and cost

effective WTs and the development of new modelling tools, capable of analyzing large scale

innovative turbine systems.

DTU 10MW RWT is a traditional 3–bladed, upwind, horizontal axis WT (see Figure 3.1).

It employes variable speed and pitch control systems. Its basic operational and geomet-

rical characteristics are listed in Table 3.1, whereas more details can be found in [9].

Table 3.1. Basic operational and geometrical characteristics of the DTU 10MW RWT.

Wind Regime IEC Class 1A

Rotor Orientation Clock–wise rotation / Upwind

Control Variable–Speed / Pitch–Regulated / Yaw–Control

Operational Wind Speed 4 − 25 m/s

Rated Wind Speed 11.4 m/s

Rated Power 10MW

Number of Blades 3

Rotor Diameter 178.3m

Hub Diameter 5.6m

Hub Height 119m

Range of Rotor Speed 6 − 9.6 rpm

Maximum Tip Speed 90 m/s

Hub Overhang 7.1 m/s

Shaft Tilt 5
◦

Blade Pre–cone Angle 2.5
◦

Blade Pre–bend 3.332 m

Blade, Nacelle and Tower Mass 227962 kg, 446036 kg, 628442 kg
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3.1 Smooth free–stream flow cases

Figure 3.1. Sketch of the DTU 10MW RWT. Image copied from [154].

3.1.1.2 Numerical investigation

In this section, aerodynamic simulations are performed for the DTU 10MW RWT rotor

operating at 11 m/s axial wind speed (partial load operation). Constant rotational speed

and pitch angle of the blades are considered (open loop operation). The rotor blades are

modelled as actuator lines in a purely Eulerian context, using MaPFlow. The goal is to

investigate the effect of multiple numerical parameters (e.g. spreading of aerodynamic

forces, grid and time–step resolution, grid set–up) on the produced aerodynamic loads.

Any engineering correction model that needs case specific tuning (e.g. tip correction

models) is neglected and the numerical parameters that affect the produced results in a

more generic way are investigated in detail. A new way to define the projection width of

the computed aerodynamic forces (firstly proposed in [134]) is applied, which is based on

the standard 3D Gaussian convolution described in 2.2.1.5 and leads to a straightforward

grid independent solution under moderate computational requirements.

The set–up of an AL model involves multiple numerical parameters that affect the

produced results. In particular, the method used in the projection of the blade forces

onto the CFD grid plays an important role in the intensity of the produced tip and

root vortices [155], which, in turn, affects the computed blade loads. A great deal of

research effort has been devoted to determining the best option of body force projec-
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tion [135, 136, 137, 130]. A common requirement for the successful application of all

these methods is the adoption of really fine grid resolution around the blades and in

particular close to the blades tip. The alternative is to use a coarse grid and account

for the tip vortex effect through proper tip loss correction [133, 156] or smearing correc-

tion [157, 158] models. In most of the above discussed studies, AL results are compared

against results produced by LL models [47] or BEMT models that use Prandtl’s tip correc-

tion [40]. Apart from the specific technique for blade forces projection, there are multiple

additional numerical parameters that have to be carefully determined in order to acquire

an accurate distribution of aerodynamic loads. Such are: the time–step value of the un-

steady simulations, the number of strips used in order to discretise the actuator lines

or/and the computational grid set–up.

The AL numerical parameters in WT simulations have been calibrated on an axial

case at 11 m/s uniform wind speed. The blades are evenly distributed and considered to

be rigid. Structural deflections alongside prebend, cone, and tilt angle of the blades are

neglected, so that the configuration is as simple as possible for this parametric study. As

a result, we end up with a purely axisymmetric case. In order to reduce computational

cost, only one blade has been resolved in the rotating frame, with the use of periodic

boundaries and in steady–state condition. The domain is a cylindrical section of 10 rotor

diameters (10D) radius (see Figure 3.2a) and of 20D length (see Figure 3.2b). Structured

and uniform meshing under maximum grid resolution is applied in a thin region sur-

rounding the actuator line. The structured area extends adequately around the actuator

line, so that maximum accuracy is acquired in resolving the Gaussian projection of loads

(see Figure 3.3). The characteristic length of this region is denoted by ∆x. This fine re-

gion is followed by an unstructured and slightly coarser area that resolves the near wake

region, which is characterized by high velocity gradients and significantly affects the de-

velopment of the aerodynamic forces over the rotor. This area extends up to 1D upstream,

3D downstream, and 1D radially from the actuator line, so that the wake expansion fits

in. The characteristic length of this region is denoted by ∆w.

(a) Axial view. (b) Lateral view.

Figure 3.2. Axial (a) and lateral (b) view of the computational domain in the axisymmetric

case for the DTU 10MW RWT rotor at 11 m/s wind speed. Only 1 out of 3 blades is

resolved. The blade is modelled as an actuator line that is located inside a cylindrical

section of a 10D radius and a 20D length. Periodic boundary conditions have been applied

to the circumferential sides. In light of the above and in order to reduce computational

requirements, a steady–state simulation has been performed in the rotating frame.
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3.1 Smooth free–stream flow cases

Figure 3.3. Gaussian projection of the aerodynamic forces of the actuator line. The cells

that lie within the distribution are painted in red. The support of the projected forces is fully

included in a fine, structured and uniform region, so that maximum accuracy is acquired.

Grid Dependency Analysis

First ∆x is calibrated. The corresponding results are presented in Table 3.2 and Fig-

ure 3.4. Each column lists the extracted power in MW, with respect to different values

of ∆x and for various approaches in defining the Gaussian kernel value ϸ. The standard

approach in defining ϸ proportionally to ∆x [7] fails to provide a grid independent solution.

Since the blade geometry is not resolved, flow does not perceive the presence of a solid

body. The volume of the blade is regarded as the volume of the distributed aerodynamic

forces of the actuator line, as shown in Figure 3.3. Consequently, when ∆x → 0 the

“blade” volume degenerates and numerically disappears, along with the blade forces. As

a remedy, the Gaussian distribution kernel ϸ may vary proportionally to the chord c of

each blade section in order to take into account the effect of the blade geometry [135]. In

this study, the proportionality factor 0.47 is chosen so that the Gaussian projection of the

aerodynamic forces extends up to 1c around the emission points. (The projection width

of the Gaussian distribution is 3σ = 3√
2
ϸ. If the projection width is decided to extend up

to 1c around the emission points, then c = 3√
2
ϸ or ϸ ' 0.47c.) This approach can resolve

in detail the blade geometry and, thus, leads to a grid independent solution. However,

the reduction of the chord close to the tip, results in very small values of ϸ thereby, even

less than ∆x, leading to numerical singularities that are avoided only when very fine grid

resolution is employed in the AL vicinity. Then, computational cost is unbearably pe-

nalized, especially in unsteady simulations with many blades and rotors. In an attempt

to restrain computational requirements, the two former approaches may be combined by

setting a lower bound for ϸ, ϸmin = 2∆x, as proposed by [7]. According to Figure 3.4, this

allows for grid independent and accurate solution under moderate grid resolution and,

91



Chapter 3. AL modelled rotor blades using MaPFlow

thus, reasonable computational cost. Based on the results in Table 3.2, ∆x = R/90 seems

to be a good trade-off between accuracy and computational cost.

Table 3.2. Variation of power [MW] with increasing the structured region characteristic

length ∆x [m]. Convergence with respect to ∆x when different approaches for defining

the Gaussian distribution kernel ϸ are adopted. Reference power corresponds to minimum

values ∆x = R/180. The hybrid approach ϸ = max(2∆x,0.47c) provides an accurate and

grid independent solution at ∆x = R/90, by using less than 1/4 of the cells needed when

the geometric approach ϸ = 0.47c is employed (with ∆x = R/180).

∆x ϸ = 2∆x ϸ = 0.47c ϸ = max(2∆x, 0.47c)

R/30 (151 · 10
3
cells) +31.4% +67.5% +9.2%

R/60 (283 · 10
3
cells) +22.6% −37.6% +2.6%

R/90 (495 · 10
3
cells) +15.1% −20.7% −0.8%

R/120 (884 · 10
3
cells) +9.5% −10.1% −1.5%

R/150 (1.500 · 10
6
cells) +4.5% −3.9% −0.9%

R/180 (2.290 · 10
6
cells) 7.921 MW 9.202 MW 9.362 MW

Figure 3.4. Variation of power [MW] with increasing the structured region characteris-

tic length ∆x [m] for AL modelled WT rotor simulations. Comparison among different ap-

proaches of defining the Gaussian kernel ϸ. The standard approach ϸ = 2∆x fails to provide

a grid independent solution. The geometric approach ϸ = 0.47c is successful under exces-

sively fine grid resolutions. The hybrid approach ϸ = max(2∆x,0.47c) provides an accurate

and grid independent solution under moderate grid resolution. The values printed in this

Figure are listed in Table 3.2.

Wake region characteristic length ∆w is examined in Table 3.3. The crucial aspect

in choosing ∆w is the detail in resolving near wake velocity and vorticity. Apparently, as

∆w gets finer, the accuracy of the predicted flow field is enhanced, which comes at an

extra computational cost. This improvement does not imply any additional benefits in

load predictions which is the main focus of the present work. For this reason, ∆w = 10∆x
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is considered a good compromise between accuracy and computational cost. However, if

wake dynamics is important (simulation of many aligned WT rotors, interacting with each

other), ∆w should be refined as much as possible in order to reduce numerical diffusion

in the wake.

Table 3.3. Variation of power [MW] with increasing wake region characteristic length ∆w

[m]. Reference power corresponds to minimum value ∆w = 5∆x. ∆w = 10∆x provides a

good trade–off between accuracy (within 1% of the reference value) and computational cost

when rotor loads are to be captured. All the different ∆w values have been tested by using

the hybrid approach ϸ = max(2∆x,0.47c) to define the Gaussian kernel ϸ. Refinement

should be considered in wake dynamics studying in order to reduce numerical diffusion.

∆w Power [MW]

20∆x (340 · 10
3
cells) +2.2%

10∆x (495 · 10
3
cells) +0.9%

5∆x (1.653 · 10
6
cells) 9.202 MW

Blade Grid Dependency Analysis

The outcome of the investigation for the effect of the number of strips (#strips) (AL control

points are located at the center of each strip) and their distribution pattern in the power

output is shown in Table 3.4 and Figure 3.5. As a first step, the AL control points are

uniformly distributed along the blade span, thus, leading to a constant strip length (∆r).

The parameter #strips is not independently studied, except through the correlation of ∆r

with ∆x. In Table 3.4, it is clear that ∆r ≤ 3∆x is a reasonable choice for defining ∆r that

can thereafter be used as a rule of thumb. Nevertheless, since #strips adds no significant

computational cost, the ratio ∆r = 1.5∆x is proposed for the WT AL simulations, in order

to ensure a smooth representation of the radial distribution of aerodynamic forces. Fig-

ure 3.5a and 3.5b present a comparison between a uniform distribution of control points

(∆r = 1.5∆x) with a non–uniform one, with the same number of points. Non–uniformity

implies a coarse discretization close to the root that gradually gets finer as we approach

the tip. As seen in Figure 3.5, where the normal ( 3.5a) and tangential ( 3.5b) force along

the blade span are plotted for the two different discretisations, the two distributions al-

most coincide due to the large number of points used. Uniform distribution better resolves

the loads at the radius of ' 30m where a local peak appears in particular in the tangential

force. No advantage is observed at the tip region when employing denser distribution of

points. It is easy to understand that due to the large number of control points along the

blade span, a non–uniform distribution adds no extra benefit. Consequently, constant

strip length ∆r is proposed for the sake of simplicity.
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Table 3.4. Variation of power [MW] with increasing blade grid size ∆r [m]. Reference

power corresponds to minimum value ∆r = ∆x. ∆r = 3∆x provides an accurate and grid

independent solution. However, since #strips adds no significant computational cost, more

control points may be used (∆r ≤ 3∆x) in order to ensure a smooth representation of the

radial distribution of aerodynamic forces.

∆r Power [MW]

4∆x −1.8%
3∆x +0.1%
2∆x +0.06%
∆x 9.286 MW

(a) The two distributions indicate an ex-

cellent agreement due to the large num-

ber of points used.

(b) Uniform distribution better resolves

the loads at the radius of ' 30m where

a local peak appears.

Figure 3.5. Normal (a) and tangential (b) force radial distribution in a purely aerodynamic

axial case of the DTU 10MW RWT rotor at 11 m/swind speed. Comparison between uniform

distribution of control points against a non–uniform one with the same number of points (60)

but concentrated in dense distribution towards the tip. Very good agreement is shown in the

distributions of both components. The uniform distribution better resolves the loads close

to the root. No advantage is observed at the tip region when employing denser distribution

of control points. Hence, a non–uniform distribution adds no extra benefit, provided that a

sufficiently large amount of control points is already employed.

Time–step Dependency Analysis

Next, the time-step ∆t is investigated. In most AL implementations, the maximum allowed

value of ∆t is selected so that the blade tip crosses a maximum of one cell within two

consecutive time–steps

(
∆t = ∆x/Vtip

)
. However, based on the results in Table 3.5, a

more strict approach of the above rule of thumb

(
∆t = 0.5∆x/Vtip

)
is required for WT

simulations. Table 3.5 results have been extracted by a typical unsteady, 3-bladed rotor

simulation on a full–scale grid.
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Table 3.5. Variation of power [MW] with increasing time-step ∆t [sec]. Reference power

corresponds to minimum value ∆t = 0.25∆x/Vtip. ∆t = 0.5∆x/Vtip provides a good trade–off

between accuracy (within 1% of the reference value) and computational cost when rotor

loads are to be captured. All the different time–step values have been tested by using the

hybrid approach ϸ = max(2∆x,0.47c) to define the Gaussian kernel ϸ.

∆t Power [MW]

∆x/Vtip −2.0%
0.5∆x/Vtip −0.2%
0.25∆x/Vtip 9.631 MW

Grid set–up

Another aspect to be examined is the grid type employed. Fully unstructured, structured,

and hybrid grids can be used. Structured grids are orthogonal but with high aspect

ratio cells. On the other hand, unstructured grids result in a good aspect ratio, but

orthogonality is lost. Computational cost is sensitive to the type of grid employed. For

this reason, grid structure needs to be properly examined, both in terms of computational

cost and accuracy of the produced results (in this case, aerodynamic forces predictions).

In Table 3.6 the total number of grid cells and the power output of four different grid

setups are listed, which are visualized in Figure 3.6. In Figure 3.6a, a fully structured

grid (“setup1”) is shown with 8.9 · 10
6

cells. The area nearby the rotor is kept uniform

and fine with a characteristic length of ∆x = R/90, followed by a gradual coarsening up

to ∆w = 10∆x at the limits of the near wake region and a more steep one up to the outer

boundaries of the grid. Figure 3.6b illustrates two grid strategies similar to the one used

in the periodic, steady–state simulations. Particularly, in “setup2” a fine and structured

area is considered around the blade with length ∆x = R/90, while the rest of the domain

is unstructured. Again the near wake region has a characteristic length of ∆w = 10∆x

and the total amount of grid cells is 2.9 · 10
6
. The only difference in “setup3” is that

the AL vicinity is unstructured, thus, exploding the number of cells to 6.2 · 10
6
. Finally,

a hexahedral grid (“setup4”) is shown in Figure 3.6c with a total number of 1.9 · 10
6

cells. The characteristic length of ∆x = R/90 close to the rotor and ∆w = 10∆x in the

near wake region have been maintained in this setup. Based on Table 3.6, all 4 grid

setups produce similar results. “setup3” shows the greatest discrepancy (' 2%) due to

the reduced accuracy in the AL region provoked by the unstructured grid. Consequently,

“setup4” is qualified due to its minimum number of grid cells.
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Table 3.6. Variaton of power [MW] with different grid setup. Reference power corresponds

to grid “setup4”. All the different grid setups produce similar results. “setup3” shows the

greatest discrepancy due to the unstructured grid in the actuator lines region. “setup4” is

preferable to the rest, as it provides an accurate solution (concerning rotor loads estimation)

under a minimum number of computational cells. All the different grid setups have been

tested by using the hybrid approach ϸ = max(2∆x,0.47c) to define the Gaussian kernel ϸ.

Grid type Power [MW]

setup1 (8.9 · 10
6
cells) −0.12%

setup2 (2.9 · 10
6
cells) −0.17%

setup3 (6.2 · 10
6
cells) +1.93%

setup4 (1.9 · 10
6
cells) 9.607 MW

(a) Structured grid setup.

Figure 3.6. Cont.
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3.1 Smooth free–stream flow cases

(b) Unstructured grids setup.

(c) Hexahedral grid setup.

Figure 3.6. Simple grid setups, structured (a), unstructured (b) and hexahedral with haning

nodes (c), used for AL modelled WT rotor simulations. No solid–walls are present. The region

close to the actuator lines is uniform and fine (with characteristic length of ∆x = R/90).

Grid coarsening is employed towards the near wake region (characteristic length up to

∆w = 10∆x ) and a steeper one follows up to the far–field boundaries.
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3.1.1.3 Comparison against BEMT and LL predictions

In this section, aeroelastic simulations results using the AL model as the aerody-

namic analysis tool are compared against reference results obtained using lower fidelity

aerodynamic tools. The rotor of the conceptual DTU 10MW RWT is modelled. This WT

has been developed by DTU and was employed as a reference turbine in a number of

research projects (e.g., INNWIND.EU see [9]). Herein, the 5
◦

tilt angle of the rotor, the

2.5
◦

pre–cone angle of the blades, and the 3.332 m prebend at the blade tip have been

properly considered (see Table 3.1). Constant free–stream flow conditions are simulated

for the wind speeds of 8 and 11 m/s. Yaw misalignment conditions are considered as

well, where free–stream flow angle ranges from −30
◦

to +30
◦
. Constant rotational speed

and blade pitch angle is assumed for all cases, as described in Table 3.7. The azimuth

angle is assumed to be zero when the blade points upwards (opposite to the ground). The

airfoil data used for the blade element analysis on the control points of all the different

aerodynamic models have been generated by DTU, using the in–house CFD solver El-

lipSys2D [159] in fully turbulent 2D simulations. Blade loads and elastic displacements

results are depicted as azimuthal variations and radial distributions along the blade span.

Comparisons are made between a standard BEMT model and the classical LL approach

under the framework of Free Vortex Wake (FVW) modelling [42].

WT aeroelastic anaysis within the Wind Energy sector are usually based on BEMT

models, as they are fast and reliable in simple flow cases. Therefore, they have been

widely employed in design and analysis. For this reason, BEMT results are regarded as

reference data in these WT simulations. However, when analyzing complex aerodynamic

conditions (yaw misalignment or high shear of the atmospheric boundary layer), the LL

model constitutes a more accurate alternative due to the detailed vortex particle repre-

sentation of the wake. On the contrary, the original BEMT formulation is based on the

assumption of a uniform, axi–symmetric and steady–state inflow. The dynamic response

of the wake due to time varying conditions is accounted for through an engineering dy-

namic inflow model [49]. The inflow model is actually a first order filter equation, which

imposes a time delay on rotor induction and therefore on rotor loads when the thrust

changes in time. It assumes the wake structure to be a cylindrical vortex sheet with a

radius equal to that of the rotor and is tuned based on free–vortex–wake aerodynamic

model results. In yaw misalignment cases, the induced velocity is corrected through the

introduction of an extra term that models the asymmetric distribution of the induced

velocities over the rotor disk due to wake skewness [49]. Consequently, LL results will be

used as an extra reference in the complex free–stream flow conditions (yaw misalignment

cases), where AL and BEMT results are expected to deviate.

Table 3.7. Operational data for the DTU 10MW RWT under constant wind speed.

Wind Speed (m/s) Yaw misalignment (
◦
) Rotational Speed (rpm) Pitch Anlge (

◦
)

8 −30,−15,0,15,30 6.423 0

11 −30,−15,0,15,30 8.837 0
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Structural verification

Table 3.8 lists the predicted natural frequencies of GAST and other state–of–the–art aeroe-

lastic tools (based on beam models) that were used in the Work Package 2 of the IN-

NWIND.EU project for the DTU 10MW RWT blades. The predicted frequencies are com-

pared to 3D FEM predictions obtained with NISA FEM code [160]. In Figure 3.7, the first

modes of the isolated rotor blade are depicted, where an overall good agreement among

the models is observed in all components, apart from the 1
st

torsional mode, where GAST

predicts a slightly lower torsion angle along the blade span. Moreover, a strong flapwise

component is predicted by the 3D FEM code which is not identified by GAST. More details

can be found in [161].

Table 3.8. DTU 10MW RWT blade natural frequencies. Comparison among different struc-

tural models (GAST – multi–body & 1
st

order Timoshenko beam, NEREA – Generalized Tim-

oshenko beam, Cp–Lambda – Geometrically Exact beam, HAWC2 – 1
st

order Timoshenko

beam, NISA – 3D FEM) used in WP2 of the INNWIND.EU project. Beam models slightly

underestimate the lower frequencies (former 5) compared to the 3D FEM model, however

they agree well with each other. In higher frequencies (latter 3), minor discrepancies among

the beam models appear (maximum ' 2.3%) and a small underestimation of the natural

frequencies compared to 3D FEM (maximum ' 12%).

Mode GAST NEREA Cp-Lambda HAWC2 NISA

1st flap 0.62 0.62 0.62 0.61 0.64

1st edge 0.94 0.94 0.94 0.93 0.96

2nd flap 1.76 1.74 1.76 1.74 1.85

2nd edge 2.80 2.79 2.80 2.77 2.86

3rd flap 3.59 3.52 3.60 3.57 3.76

1st torsion 5.40 5.36 — 6.60 6.01

3rd edge 5.73 5.61 5.74 5.70 5.82

4th flap 6.09 6.03 6.11 6.11 —

Figure 3.7. Cont.
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Figure 3.7. DTW 10MW RWT! blade mode–shapes. Comparison among different struc-

tural models (GAST – 1
st

order Timoshenko beam, Cp–Lambda – Geometrically Exact beam,

NISA – 3D FEM) used in WP2 of the INNWIND.EU project. An overall good agreement is

observed in most of the presented modes. GAST predicts a slightly lower torsion angle

along the blade span in the 1
st

torsion mode. Moreover, a strong flapwise component is

predicted by the 3D FEM code which is not identified by GAST.

3.1.1.3.1 Axial flow cases

In Figure 3.8, the edgewise bending moment (Medge) at the blade root and the correspond-

ing deflection at the blade tip (Uedge) are shown for axial wind speed at 8 and 11 m/s.

Nearly perfect agreement is achieved among the different aerodynamic models. Edgewise

loads and deflections are mainly driven by gravitational loads. Consequently, deviations

among different aerodynamic analysis methodologies are expected to be small. This con-

clusion is valid in yaw misalignment cases as well. For this reason, the corresponding

figures are omitted in the yaw misalignment section.
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(a) Edgewise bending moment at the blade root. (b) Edgewise deflection at the blade tip.

Figure 3.8. Edgewise bending moment at the blade root (a) and the respective tip deflection

(b) at 8 and 11 m/s axial wind speed. Comparison among different aerodynamic methods

coupled with the same structural module. Almost total agreement is observed among the

different aerodynamic models due to the fact that edgewise loads and deflections are driven

by gravitational loads.

Figure 3.9 depicts the flapwise bending moment (Mflap) at the blade root and the

corresponding deflection at the blade tip (Uflap) for axial wind speed at 8 and 11 m/s. The

once per rotor revolution (1P) variation appears as a result of the 5
o

tilt angle of the rotor

that shifts the maximum loading towards the azimuth position of 180
o
. Good agreement

is observed in the mean values (maximum difference 1.8% at 8 m/s and 1.3% at 11 m/s).

Furthermore, all the models predict a small amplitude of the 1P variation (≤ 3.25% of

the mean load at 8 m/s and ' 1.9% of the mean load at 11 m/s). Nevertheless, BEMT

appears to have a phase difference of approximately 35
o

at 8 m/s and 70
o

at 11 m/s,

while the AL and LL results match perfectly with each other. Results for the predicted

by the different models mean load, amplitude, and phase are tabulated in Table 3.9. The

phase difference in the BEMT results are due to the omission of the wake skewness effect

induced by the tilt angle of the rotor in BEMT model. On the other hand, the detailed

description of the flow–field within the CFD and the FVW frameworks, renders the AL

and LL models (respectively) capable accurately estimating the positioning and evolution

of the emitted wake vortices with respect to the rotor plane and hence account for the

varying wake induction over it. Finally, the quality of agreement is similar among the

different models in the flapwise deflection.
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(a) Flapwise bending moment at the blade root. (b) Flapwise deflection at the blade tip.

Figure 3.9. Flapwise bending moment at the blade root (a) and the respective tip deflection

(b) at 8 and 11 m/s axial wind speed. Comparison among different aerodynamic methods

coupled with the same structural module. BEMT slightly underestimates the flapwise mo-

ment mean values (maximum difference 1.8% at 8 m/s and 1.3% at 11 m/s) compared to

the higher fidelity models. It also shows a phase difference of approximately 35
o

at 8 m/s

and 70
o

at 11 m/s, which is attributed to disregarding the wake skewness effect induced

by the tilt angle of the rotor. Very good agreement is observed between the higher fidelity

models predictions. Similar remarks can be made for the tip deflection.

Table 3.9. Flapwise bending moment at the blade root at 8 and 11 m/s axial wind speed.

Comparison among different aerodynamic models. Good agreement is observed in the mean

values and amplitudes predictions by all three models (maximum difference 1.8% at 8 m/s

and 1.3% at 11 m/s). BEMT shows a phase difference that increases with the wind speed

and is attributed to disregarding the wake skewness effect induced by the tilt angle of the

rotor.

8 m/s 11 m/s

Mean Value Amplitude Phase Mean Value Amplitude Phase

BEMT 17.004 MNm 0.434 MNm 124
◦

31.270 MNm 1.863 MNm 86
◦

LL 17.307 MNm 0.560 MNm 160
◦

31.700 MNm 1.895 MNm 156
◦

AL 17.151 MNm 0.559 MNm 156
◦

31.531 MNm 1.865 MNm 149
◦

As Figure 3.10 shows, the different aerodynamic models are in good agreement re-

garding the twisting moment (Mtw) at the blade root. Very small differences are noted in

the mean value of the tip torsion angle (about 0.02
◦

at 8 m/s and 0.04
◦

at 11 m/s). The

phase differences seen in Mflap and Uflap have vanished herein.
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(a) Twisting moment at the blade root. (b) Torsion angle at the blade tip.

Figure 3.10. Twisting moment at the blade root (a) and torsion angle at the blade tip (b) at 8

and 11 m/s axial wind speed. Comparison among different aerodynamic methods coupled

with the same structural module. Very good agreement is observed among the different

models predictions both in the loads and the deflections.

Comparison of the aerodynamic models

It needs to be stressed, that in LL and AL models, the blade “perceives” the wake-induced

velocity in a different way compared to BEMT. This is attributed to the detailed description

of the 3D flow field by the FVW and the CFD methodologies respectively. Figure 3.11a

verifies the correct effect of the tip correction model used in BEMT [40], as the aerodynamic

forces are effectively reduced close to the tip. As depicted in Figure 3.11b however, axial

induction factor computed by BEMT has a constant level difference and an increase

towards the tip. This is the result of applying Prandtl’s tip correction formula directly on

the thrust coefficient CT in order to reduce the aerodynamic loads close to the tip. In the

root region, no corresponding correction model has been used to capture the effect of root

vortices. For this reason, the axial induction factor there drops to zero.

Back to the tip region, the same pattern holds for LL, but for a different reason. In this

case, it is a result of the excessively strong vortices released from the tip. The exaggeration

in tip vortices intensity, stems from the fact that the non–zero circulation of the last strip

of the blade is followed by zero circulation after that. In vortex methodologies, this sharp

drop of circulation is directly translated to very high vorticity of the near wake filaments

close to the tip. This is a fundamental difference between LL and AL, as the latter affects

the flow through momentum exchange between the fluid and the blade. Another difference

between the two models comes from the method of computing the wake–induced velocity.

In LL, the computation is performed directly on the control points of the strips through

the application of Biot–Savart law. On the other hand, in this AL implementation the

control point velocity is computed based on a distance and volume weighted interpolation

to the surrounding cells velocities using Radial Basis Functions [132]. For these reasons,

the induced velocity predicted by the AL model tends to zero towards the tip along with

blade normal force. This is confirmed in [162], where the wake–induced velocity by a FVW

flow–field solver is first computed on the nodes of a stationary back–ground grid and then

is interpolated to the control points of the blade, in a similar approach to the one followed
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in the AL model. In this case, the radial distribution of the wake–induction tends to zero

towards the tip.

A comparison of the predicted circulation distribution along the span is shown in

Figure 3.11c. AL effectively predicts a circulation distribution that decreases sharply close

to the tip. However, this is not reflected on the axial induction factor the same way with

LL (Figure 3.11b). It is therefore shown that in AL, the axial induction factor is not directly

related to circulation radial variation as in the case of LL, or to an engineering correction

model as in the case of BEMT. The increased values of circulation in the root vicinity of

LL can be justified by the potential nature of LL that changes circulation proportionally to

the angle of attack. The higher circulation predicted by the LL model is related to the high

values of the angle of attack at the root of the blade (see Figure 3.11d) and the fact that

the LL model presumes a 2π slope for the lift variation of the cylindrical sections close

to the root (although this is not valid for those thick non–aerodynamic sections). Then,

an a posteriori correction on loads is performed to account for the reduced (or even zero)

lift of these sections and the higher drag. In BEMT and AL analyses, the computation

of the induction and the loads are in tight connection with the local airfoil polars. To

sum up, the main differences among the models in predicting the above mentioned flow

parameters are limited to the blade tip and root regions.

(a) Normal force radial distribution. Good agree-

ment in the aerodynamic forces reduction close to

the tip, indicating the effectiveness of the tip loss

correction model used in BEMT.

(b) Axial induction factor radial distribution.

BEMT prediction shows a constant level differ-

ence compared to the higher fidelity models that

originates in the crude estimation of the wake

induction, whereas the higher fidelity models

agree well with each other. The abrupt increase

towards the tip is the result of the direct appli-

cation of the tip correction on the thrust coeffi-

cient CT . The same pattern is predicted by the

LL model, as a result of the excessively strong

vortices emitted from the tip. AL predicted induc-

tion tends to zero in a more physical representa-

tion computed through an interpolation from the

neighbouring cells.

Figure 3.11. Cont.
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(c) Circulation radial distribution. Good agree-

ment is shown in the circulation drop close to the

tip by all aerodynamic models. A small level differ-

ence is observed by LL and an unnatural increase

towards the root that stems from the computation

of circulation proportionally to the effective angle

of attack.

(d) Radial distribution of the effective angle of

attack. Very good agreement is achieved among

the different models prediction, apart from the

root region where the LL model underestimates

the angle of attack compared to the other two

models. This is related to the root vortices emit-

ted in the LL model and the strong downwash

they induce.

Figure 3.11. Normal force (a), axial induction factor (b), circulation (c) and angle of attack

(d) radial distributions at 8 m/s axial wind speed. Averaging over the final revolution of

the simulation. Comparison among different aerodynamic methods coupled with the same

structural module.

3.1.1.3.2 Yawed flow cases

Figure 3.12 depicts the flapwise bending moment of the blade root at 8 and 11 m/s

wind speed, for yaw misalignment angles of ±15
◦

and ±30
◦
, respectively. A mean value

difference is observed among BEMT and the two higher fidelity models that increases

with yaw angle (' 3.5% at ±15
◦

and ' 8.5% at ±30
◦
). Mean wind speed has a smaller

impact. Nevertheless, the amplitude of the variation changes similarly for all three meth-

ods. Moreover, a phase difference in the range 35
◦
–45

◦
among BEMT and the other two

models exists in all cases. The corresponding deflections at the blade tip are depicted in

Figure 3.13, presenting qualitatively similar results with the moments.
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(a) ±15
◦

yaw at 8 and 11 m/s wind speed.

(b) ±30
◦

yaw at 8 and 11 m/s wind speed.

Figure 3.12. Flapwise bending moment of blade root at ±15
◦

(a) and ±30
◦

(b) yawed wind

speed at 8 and 11 m/s. Comparison among different aerodynamic methods coupled with

the same structural module. BEMT shows a mean value underestimation that increases

with yaw angle and a constant phase difference. Good agreement is shown between the

higher fidelity models.
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(a) ±15
◦

yaw at 8 and 11 m/s wind speed.

(b) ±30
◦

yaw at 8 and 11 m/s wind speed.

Figure 3.13. Flapwise deflection of blade tip at ±15
◦

(a) and ±30
◦

(b) yawed wind speed

at 8 and 11 m/s. Comparison among different aerodynamic methods coupled with the

same structural module. Similar remarks with the respective loads (see Figure 3.12) can be

made here as well, indicating that flapwise deflection is mainly driven by the corresponding

loads.

Figure 3.14 shows the twisting moment of the blade root at 8 and 11 m/s wind speed,

for yaw misalignment angles of ±15
◦

and ±30
◦
. The corresponding torsion angles at

the blade tip are depicted in Figure 3.15. Very good agreement is observed both for the

mean values and for the amplitudes of the variations. The phase differences of BEMT
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encountered in the flapwise signals are not present, or at least are much less pronounced

herein. The torsion angle is not only driven by the aerodynamic twisting moment but

also by the flapwise bending loads as a result of very high flapwise deflection that gives

rise to a twisting of the section due to non–linear geometric coupling effects [38]. This is

also justified by the phase difference in the torsion angle signals, comparing positive and

negative yaw angles, which agrees with the corresponding phase difference of the flapwise

signals.

(a) ±15
◦

yaw at 8 and 11 m/s wind speed.

(b) ±30
◦

yaw at 8 and 11 m/s wind speed.

Figure 3.14. Twisting moment of blade root at ±15
◦

(a) and ±30
◦

(b) yawed wind speed at

8 and 11 m/s. Comparison among different aerodynamic methods coupled with the same

structural module. Good agreement is shown among the different models predictions.
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(a) ±15
◦

yaw at 8 and 11 m/s wind speed.

(b) ±30
◦

yaw at 8 and 11 m/s wind speed.

Figure 3.15. Torsion angle of blade tip at ±15
◦

(b) and ±30
◦

(b) yawed wind speed at 8

and 11 m/s. Comparison among different aerodynamic methods coupled with the same

structural module. Good agreement is shown among the different models predictions. The

increased phase difference between positive and negative yaw angles compared to the

respective loads (see Figure 3.14) indicates that the torsion angle is not only driven by the

aerodynamic twisting moment, but also by the flapwise bending moments (see Figure 3.12)

as a result of the very high flapwise deflection (see Figure 3.13) that brings about geometric

couplings.
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In summary, the main differences among the three models mainly concern the flapwise

moments (Figure 3.12) and deflections (Figure 3.13). A deviation in between 4% and

10% is observed in the mean value, alongside with a phase difference of about 35
◦

to

45
◦
. This can be attributed to the differences encountered in the axial induction factor

(axial component of wake induced velocity divided by the reference velocity, which in WT

applications is the wind speed) seen in Figure 3.16. Clearly, AL and LL predict lower mean

values compared to BEMT, which is in line with the level difference shown in the axial

cases (see Figure 3.11b) and explains the level difference of moments and deflections

(lower induction results in higher inflow velocity and therefore in higher loads). This

difference grows as the yaw angle increases. Furthermore, AL and LL predict higher

variation amplitude of the induction than BEMT at all wind speeds and yaw angles with

a phase difference of about 20
◦

to 45
◦
, close to the one seen in the flapwise moments and

deflections. At positive yaw angles, both at a wind speed of 8 and 11 m/s, all aerodynamic

models predict the maximum loading around the azimuth angle of 180
◦
. The reason for

that is the increased relative velocity seen by the blade at this azimuth position, due to

its clockwise rotation. There, the in–plane component of the wind is superimposed to

the rotational speed of the blade. Apart from that, the effect of the wake skewness is

important. It is the origin of the differences among the different aerodynamic models. The

variation in the axial induction factor is much less pronounced in BEMT results (7% to

15% of the mean value), which, in turn, leads to decreased phase shifting of the loads

due to the wake skewness effect as compared to AL and LL models, where the amplitudes

are higher (12.5% to 29% of the mean value). Minimum–induced velocity is predicted by

all models close to the azimuth angle of 270
◦
, thus, shifting maximum loads towards a

greater azimuth position. The lower minimum–induced velocity predicted by AL and LL

explains the 35
◦

to 45
◦

phase difference in the flapwise moments and deflections. Similar

results are observed at negative yaw angles, but with a phase shift of 180
◦

compared to

positive values. The reason of the above differences is that, in the AL and LL models, the

wake induction is inherently included in the flow field and wake computations while in

the BEMT it is determined by an engineering yaw correction model.
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3.1 Smooth free–stream flow cases

(a) ±15
◦

yaw at 8 and 11 m/s wind speed.

(b) ±30
◦

yaw at 8 and 11 m/s wind speed.

Figure 3.16. Axial induction factor at 75%R of the blade at ±15
◦

(a) and ±30
◦

(b) yawed

wind speed at 8 and 11 m/s. Comparison among different aerodynamic methods coupled

with the same structural module. BEMT predicts greater mean values that grow with yaw

angle. This is in line with the lever difference shown in the axial cases (see Figure 3.11b).

Moreover, BEMT predicts lower amplitudes (7% to 15% of the mean value) and a phase

difference (about 20
◦

to 45
◦
) that are related to its crude estimation of the wake skewness

effect through an engineering yaw correction model (wake skewness induced by the tilt

angle of the rotor is neglected). Good agreement is shown between the higher fidelity

models predictions, where again a minor level difference is observed that is attributed to

the different techniques in computing the wake induced velocity (see Section 3.1.1.3.1).

Nevertheless, there is very good agreement in the amplitude and phase.
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3.1.2 Aeroelastic analysis of a helicopter MR

In this section, aeroelastic simulations are performed for the MR of the model BO105

used in the HeliNoVi wind tunnel experimental campaign [10]. Computations are per-

formed in forward flight conditions at low (12.3 m/s), medium (50.5 & 50.9 m/s) and high

(69.6 & 69.9 m/s) flight speed. The rotor blades are modelled as actuator lines in a purely

Eulerian context, using MaPFlow. The structural dynamics analysis is performed through

GAST and the rotor blades are modelled as beam assemblies, in order for non–linear ge-

ometric phenomena to be properly accounted for. The two systems are solved separately,

but tightly coupled. First, aerodynamic simulations (blades deformations neglected) are

performed at the low speed case (12.3 m/s) in order to investigate the effect of multiple

numerical parameters (e.g. grid and time–step resolution) on the predicted aerodynamic

loads. Then, aeroelastic simulations are performed at all the aforementioned flight speed

cases and the produced results are compared against experimental measurements and

LL predictions.

3.1.2.1 The HeliNoVi experimental campaign

The Helicopter Noise and Vibration (HeliNoVi) reduction project was performed in

April 2002, in an open–jet facility of the German-Dutch wind tunnel (DNW) as a joint

effort of Eurocopter Deutschland GmbH (ECD), German Aerospace Center (DLR), French

Aerospace Lab (ONERA), VIBRATEC France, Netherlands Aerospace Center (NLR), SENER

Spain, National Technical University of Athens (NTUA) and DNW to generate a compre-

hensive database for noise and vibration measurements. The objective was to investigate

the potential of tail rotor noise and helicopter vibration reduction by modifying important

design parameters such as the position of the tail rotor, the sense of rotation and its

rotations speed, as well as the main rotor to fuselage distance. The model rotor was a

1 : 2.45 Mach and dynamically scaled BO105 hingeless rotor (see Figure 3.17) operating

in forward flight cases of full helicopter configurations (Main Rotor, Fuselage and Tail

Rotor). Hub loads and blade loads at various span–wise positions have been measured

with load sensors (strain gauges and accelerometers). Additionally, Stero Pattern Recogni-

tion (SPR) was used for the first time in order to determine the blade deflections, whereas

Particle Image Velocimetry (PIV) measurements have been performed in order to obtain

the detailed flow–field in the vicinity of the MR and the evaluation of wake structures.

The basic geometric characteristics of the model MR used in the experimental cam-

paign can be found in Table 3.10.
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3.1 Smooth free–stream flow cases

Figure 3.17. BO105 helicopter wind tunnel model used in the HeliNoVi experimental

campaign. Image copied from [10].
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Table 3.10. Summary of the basic geometric characteristics of the model MR used in the

HeliNoVi experimental campaign.

Characteristic Symbol Value

Mast angle (tilt forward) asft 3
◦

Rotor radius R 2 m

Blade chord c 0.121 m

Number of blades Nb 4

Rotor solidity σ 0.077

Non–dim. root cut–out ra 0.22

Non–dim. zero twist radius rtw 0.75

Blade linear twist Θtw −8
◦
/R

Airfoil modified ∼ trailing edge tab NACA23012

Tab length tL 5 mm

Tab thickness tth 0.9 mm

3.1.2.2 Numerical investigation

Following the preceding analysis for the effect of the AL numerical parameters on WT

rotor loads, a helicopter MR is examined. The AL numerical parameters ∆x, ∆r and ∆t

are tested on case 851 of the HeliNoVi experimental campagin [10], which is a forward

flight case at 12.3 m/s flight speed. The elastic deformation of the blades is neglected in

this study as well. Many of conclusions drawn through the respective WT analysis (see

Section 3.1.1.2) have been used here without further investigation, namely:

• As depicted in Figure 3.18, a hexahedral grid set–up has been utilized;

• The ratio ∆w = 10∆x is used again for the near wake region;

• The Gaussian kernel is defined by the relationship ϸ = max(2∆x,0.47c).

Grid Dependency Analysis

In Table 3.11, the rotor thrust predictions are listed with respect to different values of

∆x. Thrust is preferred as a metric over power in this case, due to its higher sensitivity to

changes in the numerical parameters in helicopter cases. Ratio ∆x = c/8 is considered

to be the optimal compromise between accuracy and computational cost.

Table 3.11. Variation of thrust [kN] with increasing the actuator lines region characteristic

length ∆x [m]. Reference thrust corresponds to minimum value ∆x = c/10. The hybrid

approach ϸ = max(2∆x,0.47c) provides an accurate and grid independent solution at ∆x =

c/8.

∆x Thrust

c/4 (830 · 10
3
cells) −3.4%

c/6 (1.65 · 10
6
cells) −1.7%

c/8 (4.22 · 10
6
cells) −0.6%

c/10 (9.33 · 10
6
cells) 4.706 kN
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3.1 Smooth free–stream flow cases

Figure 3.18. MR hexa grid setup. Simple hexahedral grid setup with haning nodes, used

for AL modelled Helicopter MR simulations. The whole computational domain is discretized

in cells (no solid–walls are present). The region close to the actuator lines is uniform and

fine (with characteristic length of ∆x = c/8). Grid coarsening is employed towards the near

wake region (characteristic length up to ∆w = 10∆x ) and a steeper one follows up to the

far–field boundaries.

Blade Grid Dependency Analysis

In Table 3.12, the effect of #strips is investigated. Due to constant airfoil along the blade

span, reasonable accuracy in thrust prediction is obtained even with a lower number

of control points. For MR simulations, a uniform distribution of control points with

∆r = 2∆x is used. Since #strips does not penalize computational cost, the main criterion

for choosing this parameter is the smooth radial distribution of the aerodynamic forces.

Table 3.12. Variation of thrust [kN] with increasing blade grid size ∆r [m]. Reference

thrust corresponds to minimum value ∆r = 2∆x. ∆r = 4∆x provides an accurate and grid

independent solution. However, since #strips adds no significant computational cost, more

control points may be used (∆r ≤ 4∆x) in order to ensure a smooth representation of the

radial distribution of aerodynamic forces.

∆r Thrust

4∆x −0.16%
3∆x −0.07%
2∆x 4.679 kN
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Time–step Dependency Analysis

The time–step ∆t is investigated in Table 3.13. In this case, the rule of thumb

(
∆t = ∆x/Vtip

)
seems to be satisfactory. Overall blade grid and time resolution requirements are found

to be relaxed in the helicopter case as higher values for ∆r and ∆t provided (#strips) and

time independent loads.

Table 3.13. Variation of thrust [kN] with increasing time-step ∆t [s]. Reference thrust

corresponds to minimum value ∆t = 0.25∆x/Vtip. ∆t = ∆x/Vtip provides a good trade–off

between accuracy (within 1% of the reference value) and computational cost when rotor

loads are to be captured.

∆t Thrust

2∆x/Vtip −4.0%
∆x/Vtip −0.9%

0.5∆x/Vtip −0.01%
0.25∆x/Vtip 4.683 kN

3.1.2.3 Comparison against measurements and LL predictions

In this section, aeroelastic simulations are performed in forward flight conditions at

low (12.3 m/s), medium (50.5 & 50.9 m/s) and high (69.6 & 69.9 m/s) flight speed.

Operational details can be found in Table 3.14. AL results are compared against mea-

surements and LL predictions. Comparisons of predictions and measurements are made

for blade loads and elastic displacements and the results are presented as azimuthal

variations. 0
o

azimuth corresponds to the blade pointing towards the tail boom. Fur-

thermore, a discrete Fourier analysis has been performed to blade loads. The results

have been expressed in terms of amplitude and phase for the harmonic frequencies of

the highest energy content. The corresponding mean values are presented in tabulated

form. In the wind tunnel tests, all blades where instrumented with load sensors, therefore

blade loads for all blades were obtained. In the comparisons, predictions are compared

to data from all available sensors. The missing data in some of the comparisons are due

to broken or malfunctioning sensors.
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Table 3.14. Operational data for the simulated cases of the HeliNoVi experimental cam-

paign.

Case: 851 844 847 983 907 918

Flight Speed (m/s) 12.3 50.5 69.6 12.3 50.9 69.9

Air density (kg/m
3
) 1.19956 1.20347 1.19578 1.19304 1.19081 1.19713

Temperature (
◦
C) 21.5 20.6 22.6 23.9 23.6 23.0

Pitch Attitude (
◦
)

(positive nose up)

+3.0 −2.6 −8.2 +3.1 −2.7 −8.2

Roll Attitude (
◦
)

(positive advancing side down)

−0.2 −2.8 −5.1 −0.3 −2.7 −5.2

Rotational Speed (rpm) 1047 1050 1050 1051 1051 1051

Collective Pitch (
◦
) 7.6 7.2 11.6 7.8 7.3 11.7

Lateral Pitch (
◦
) 2.8 1.0 0.7 2.7 1.1 0.7

Longitudinal Pitch (
◦
) −0.2 −2.7 −5.5 −0.2 −2.7 −5.4

Thrust (N) 3774.7 3857.5 3999.5 3787.3 3883.1 4008.4

Pitch Moment (Nm)

(positive nose up)

132.4 220.6 231.0 152.7 223.3 226.6

Roll Moment (Nm)

(positive advancing side down)

33.1 37.5 86.9 22.6 48.9 84.7

Structural verification

In Figure 3.19, the predicted by GAST Campbell diagram (rotational speed range 0–1050

rpm) of the BO105 model blade is compared against the one produced by a commercial

code and provided by ECD to the HeliNoVi consortium. Very good agreement is observed

at all the presented mode frequencies, with minor discrepancies at the 1
st

torsional fre-

quencies.

Figure 3.19. Campbell diagram of an isolated BO105 model MR blade used in the HeliNoVi

experimental campaign. Comparison among the natural frequencies produced by GAST and

a commercial code (provided by ECD). Very good agreement is observed at all the presented

mode frequencies, with minor discrepancies at the 1
st

torsional frequencies.
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For a fair comparison against experimental measurements, the control angles (collec-

tive and cyclic pitch) have been trimmed based on a feedback control algorithm which

aims at matching the predicted hub loads (thrust force, pitching and rolling moment) to

the measured ones. The latter are considered as the target values of the control loop. Fig-

ure 3.20 compares the predicted by the two aerodynamic models MR pitch control angles

against those used in the wind tunnel test campaign. Very good agreement is observed

for all flight speeds in the collective and longitudinal pitch, whereas for lateral pitch there

is an increasing deviation with the flight speed with a maximum difference of 2
◦

at 70

m/s.

Figure 3.20. Control angles comparison. Trimmed simulation values vs experimental

measurements. Good agreement is observed at all the simulated flight speeds for the

collective and longitudinal pitch. A small deviation is observed for lateral pitch that increases

with flight speed up to 2
◦

at 70 m/s. Almost total agreement is achieved between the two

computational models.

3.1.2.3.1 Forward Flight case at 12 m/s

Notable differences, both in the mean value, as well as in the amplitude of the once per

rotor revolution (1/rev) variation are observed in the lead–lag bending moment (Figure

3.21a). Load variations due to high frequency harmonics are well captured by the AL

simulations. The LL model predicts a smoother variation of loads at higher frequencies,

while the predicted signal is slightly shifted with respect to AL predictions and mea-

surements. In the lead–lag deflections (Figure 3.21b), predictions lead with respect to

measurements. It is noted that positive deflection is in the lag direction. This is common

in all three flight speeds and is mainly attributed to the technique used to measure blade

deflections in the experimental campaign. SPR that was used for the first time in the

HARTII and HeliNoVi projects, has been repeatedly reported to show a consistent 2–4 cm

(' 1−2%) translational offset in the lag direction with respect to numerous and of varying

fidelity computational method results [163, 164, 165]. In [10], the flexibility of the drive

train system and the hub, which are regarded as infinitely stiff in our simulations, are
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3.1 Smooth free–stream flow cases

considered as an extra source of discrepancies between measurements and predictions.

The “soft” drive train system used in the experimental campaign allows for a torsion angle

at the end of the shaft that is dictated by the mean value of the lead–lag bending moment

at the root of the blades. In turn, a positive (towards the lag direction) level shift of the

blade tip deflections is to be expected. Nevertheless, the 1/rev amplitude of the variation

is well predicted by the computational models, but the high frequency oscillations seen

in measurements seem to be almost completely damped in both simulations.

(a) Lead–lag moment at r/R = 0.03. Mean

value is overestimated by ' 17% in the compu-

tational predictions. 1/rev amplitude is fairly

predicted (overestimated by 6% (LL) and 2%
(AL) of the mean value) with a small phase

lead (19
◦

(LL) and 6
◦

(AL)). Higher frequency

components are fairly predicted by the models.

(b) Lead–lag deflection at r/R = 0.99. Mea-

sured signal shows an ' 1% offset in the lag

direction with respect to computational predic-

tions that is attributed to the SPR method used

to determine deflections and the infinitely stiff

drive train assumed in the simulations. Ex-

cellent agreement between measurements and

LL results concerning 1/rev amplitude and a

7% underestimation by the AL. Moreover, a

small phase lead of 30
◦

(LL) and 20
◦

(AL)

is shown in the current harmonic. Higher

frequency oscillations are almost completely

damped in simulations.

Figure 3.21. Forward flight at 12.3 m/s, cases 851 (a) and 983 (b) of the HeliNoVi

experimental campaign. Lead–lag moment at r/R = 0.03 (a) and deflection at r/R = 0.99 (b).

Comparison between computational predictions and experimental measurements. Positive

in the lag direction.

Good agreement is observed in the mean value of the flapwise bending moment (Figure

3.22a). The 1/rev amplitude is fairly predicted. High frequency variations seen in the

measurements (mainly 2/rev and 3/rev) are effectively reproduced by the simulations,

with a small under–prediction of the respective amplitudes in LL results. Furthermore, a

minor phase difference is seen in AL predictions which appears to be more pronounced

in the LL predictions. The 1/rev flapwise deflection amplitude (Figure 3.22b) is clearly

under–predicted by the two computations, which however agree well with each other. The

high frequency variations seen in measurements are again effectively predicted.
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(a) Flapwise moment at r/R = 0.1465. Mean

value predictions are within the experimental

range. 1/rev amplitude is slightly underesti-

mated (6% by LL and 3% by AL) with a phase

lag of ' 20
◦
. Higher harmonics are effectively

predicted by the computational models.

(b) Flapwise deflection at r/R = 0.99. Com-

putational models predict higher mean value,

whereas 1/rev amplitude is clearly underesti-

mated with a phase lag of ' 10
◦
. Higher har-

monics are effectively predicted by the compu-

tational models.

Figure 3.22. Forward flight at 12.3 m/s, cases 851 (a) and 983 (b) of the HeliNoVi

experimental campaign. Flapwise moment at r/R = 0.1465 (a) and deflection at r/R = 0.99

(b). Comparison between computational predictions and experimental measurements.

Regarding twisting moment (Figure 3.23a), a small difference is seen in the predicted

mean value. A clear 3/rev variation is seen in measurements, which is slightly under–

predicted by the simulations. The mean value of the torsion angle is well predicted by the

models (Figure 3.23b), however with almost zero 1/rev amplitude. Although the measured

signal exhibits a dominant 3/rev variation, a small 1/rev component is also noted. The

3/rev variation is well captured by the simulations, while a small phase shift is observed.

The high frequency ripple in the LL simulation is related to higher harmonics or some

higher frequency mode due to the BVI phenomena. This does not appear in the AL results

due to the increased numerical diffusion of the AL analysis associated with the coarser

far wake grid.
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(a) Twisting moment at r/R = 0.332. Mean

value is slightly overestimated by ' 5%. Com-

putational models predict clearly greater 1/rev

(' 13%). However, the 3/rev seen in measure-

ments are effectively predicted by the compu-

tational models, although slightly underpre-

dicted. Higher frequency oscillations seen in

the LL signal are effectively damped by AL.

This is attributed to the increased numerical

diffusion of the Eulerian framework.

(b) Torsion angle at r/R = 0.99. Mean value

is fairly predicted but the 1/rev amplitude

is almost completely damped. 3/rev har-

monic seen in measurements are effectively

predicted by the computational models, al-

though slightly underestimated and with a

phase lag of 25
◦

for LL and 15
◦

for AL pre-

dictions.

Figure 3.23. Forward flight at 12.3 m/s, cases 851 (a) and 983 (b) of the HeliNoVi

experimental campaign. Twisting moment at r/R = 0.332 (a) and torsion angle at r/R =

0.99 (b). Comparison between computational predictions and experimental measurements.

3.1.2.3.2 Forward Flight case at 50 m/s

Much better agreement is achieved in the lead–lag moment (Figure 3.24a) compared to

the previous case. The mean value is slightly overestimated (' 17%), whereas the 1/rev

amplitude is fairly predicted. However, the 4/rev harmonic excited in the experiment

seems to have a much smaller amplitude in the simulations. The excitation of the 4/rev

in the measurements could be related to a miss–placement of the 2nd lead-lag mode in

close proximity to the 4/rev frequency (70Hz) in the experimental set–up. The higher

damping of the mode in the simulations is attributed to higher aerodynamic damping

by the models and a miss–tuning of the structural damping of the corresponding mode.

Regarding the lead–lag deflection (Figure 3.24b), similar remarks can be made as in the

low speed case.

In flapwise bending moment (Figure 3.25a), predictions are in line with measurements.

There is very good agreement in the mean value and a minor underestimation of the 1/rev

amplitude. Again, higher harmonics are less pronounced in the simulations. Predictions

of the flapwise deflection (Figure 3.25b) have a small offset with respect to experimental

data, whereas the 1/rev amplitude is computed correctly. Both 2/rev and 3/rev harmon-

ics are excited in the measurements, while in the predictions 3/rev component almost

vanishes. The main difference is observed in the 3rd and 4th quadrants of the azimuth

circle.

The comparison regarding the torsion moment (Figure 3.26a) shows good agreement in

the mean value and a small under–estimation of the amplitude of 1/rev. 2/rev load varia-
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tions measured in the experiments are fairly predicted by the simulations. In torsion angle

(Figure 3.26b) there is a good agreement in the mean value and a small over–prediction

of the amplitude of 1/rev variation. 2/rev oscillations are reproduced by the simulations,

however 3/rev frequencies that are excited in the measurements seem to have zero am-

plitude in the predictions. Moreover, a phase difference towards lower azimuth angles is

seen in the simulations results.

The reason why higher than 2/rev frequencies have small amplitude in the simulations

is most probably the use of a global Rayleigh type structural damping [166] which cannot

reproduce correctly the exact modal damping of each vibration direction.

(a) Lead–lag moment at r/R = 0.03. Mean

value is slightly overestimated (' 17%) by the

computational models but the 1/rev amplitude

is fairly predicted (approximately +7% of the

mean value for LL and +2.5% for AL). A phase

lead of ' 20
◦

for LL and ' 7
◦

for AL is reported.

4/rev harmonic excited in measurements is al-

most completely damped by the computational

models. This could be attributed to a miss–

placement of the 2nd lead–lag mode close to

the 4/rev natural frequency (70Hz) in the ex-

perimental set–up. Excessive damping of this

harmonic by the computational models is at-

tributed to the use of a global Rayleigh struc-

tural damping that is not properly tuned for

higher natural frequencies.

(b) Lead–lag deflection at r/R = 0.99. Mea-

sured signal shows an ' 1% offset in the lag

direction with respect to computational predic-

tions that is attributed to the SPR method used

to determine deflections and the infinitely stiff

drive train assumed in the simulations. 1/rev

amplitude is fairly predicted with a phase lag

of ' 30
◦

(LL) and ' 20
◦

(AL). 4/rev harmonic

excited in measurements is almost completely

damped by the computational models.

Figure 3.24. Forward flight at 50 m/s, cases 844 (a) and 907 (b) of the HeliNoVi exper-

imental campaign. Lead–lag moment at r/R = 0.03 (a) and deflection at r/R = 0.99 (b).

Comparison between computational predictions and experimental measurements. Positive

in the lag direction.
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(a) Flapwise moment at r/R = 0.1465. Mean

value is fairly predicted by the computations.

1/rev amplitude is slightly underestimated

with a phase lag of ' 20
◦
. Higher harmon-

ics seen in measurements are less pronounced

in the simulations, as a result of a global

Rayleigh type structural damping that exces-

sively damps higher frequencies.

(b) Flapwise deflection at r/R = 0.99. Mean

value is overestimated in computational pre-

dictions. 1/rev amplitude is fairly predicted

but an approximately 10
◦

lag is reported.

Higher harmonics seen in measurements are

less pronounced in predictions.

Figure 3.25. Forward flight at 50 m/s, cases 844 (a) and 907 (b) of the HeliNoVi experi-

mental campaign. Flapwise moment at r/R = 0.1465 (a) and deflection at r/R = 0.99 (b).

Comparison between computational predictions and experimental measurements.

(a) Twisting moment at r/R = 0.332. Mean

value is fairly predicted by the computations.

1/rev amplitude is underestimated (−15% (LL)

and −20% (AL)) with a 35
◦

phase lead. 2/rev

harmonic is effectively predicted.

(b) Torsion angle at r/R = 0.99. Mean value

is fairly predicted, but the 1/rev amplitude is

slightly overestimated. 2/rev harmonic is ef-

fectively predicted, but the 3/rev oscillations

seen in measurements are clearly damped in

computations.

Figure 3.26. Forward flight at 50 m/s, cases 844 (a) and 907 (b) of the HeliNoVi experi-

mental campaign. Twisting moment at r/R = 0.332 (a) and torsion angle at r/R = 0.99 (b).

Comparison between computational predictions and experimental measurements.
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3.1.2.3.3 Forward Flight case at 70 m/s

In the lead–lag moment comparison shown in Figure 3.27a, both the mean value and the

amplitude of the 1/rev variation match very well. As in the previous case, the 4/rev har-

monic excited in the experiment is much less pronounced in the simulations. Concerning

the lead–lag deflection (Figure 3.27b), similar remarks can be made as in both previous

speeds cases.

The mean value in the flapwise moment signals (Figure 3.28a) is clearly overestimated.

There is good agreement regarding the 1/rev amplitude, but with a phase lag of approxi-

mately 40
◦
. However, 2/rev variations are more pronounced in the simulations. On the

contrary, the 3/rev harmonic that is excited in measurements is slightly damped in pre-

dictions. The comparison between flapwise deflection (Figure 3.28b) is in line with the one

of the previous case (Figure 3.25b). The difference in the mean value is more pronounced

herein. On the contrary, the amplitude of 1/rev is fairly predicted and 2/rev variations

are captured by predictions, but their amplitude is smaller compared to measurements.

Concerning torsional moment (Figure 3.29a) and angle (Figure 3.29b), similar remarks

can be made as in the previous speed case.

(a) Lead–lag moment at r/R = 0.03. Mean

value and 1/rev amplitude match very well.

Higher harmonics (especially 4/rev) excited in

measurements are less pronounced in simu-

lations results. This could be attributed to

a miss–placement of the 2nd lead–lag mode

close to the 4/rev natural frequency (70Hz) in

the experimental set–up. Excessive damping

of this harmonic by the computational models

is attributed to the use of a global Rayleigh

structural damping that is not properly tuned

for higher natural frequencies.

(b) Lead–lag deflection at r/R = 0.99. Mea-

sured signal shows an ' 1% offset in the lag

direction with respect to computational predic-

tions that is attributed to the SPR method used

to determine deflections and the infinitely stiff

drive train assumed in the simulations. 1/rev

amplitude is fairly predicted with a phase lag

of ' 9
◦

(LL) and ' 5
◦

(AL). 4/rev harmonic

excited in measurements is almost completely

damped by the computational models.

Figure 3.27. Forward flight at 70 m/s, cases 847 (a) and 918 (b) of the HeliNoVi exper-

imental campaign. Lead–lag moment at r/R = 0.03 (a) and deflection at r/R = 0.99 (b).

Comparison between computational predictions and experimental measurements.
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3.1 Smooth free–stream flow cases

(a) Flapwise moment at r/R = 0.1465. Mean

value is clearly overestimated by the compu-

tational models (' 60%). 1/rev amplitude is

fairly predicted but with a phase lag of ' 40
◦
.

2/rev harmonic is more pronounced in the sim-

ulations. On the other hand, 3/rev seen in

measurements are slightly damped in the com-

putational predictions.

(b) Flapwise deflection at r/R = 0.99. Mean

value is clearly overestimated by the compu-

tational models and 1/rev amplitude is fairly

predicted but with a phase lag of ' 60
◦
, in line

with the differences reported in flapwise bend-

ing moment. Higher harmonics are effectively

predicted by the computations, but the respec-

tive amplitudes are slightly underestimated.

Figure 3.28. Forward flight at 70 m/s, cases 847 (a) and 918 (b) of the HeliNoVi exper-

imental campaign. Flapwise moment at r/R = 0.03 (a) and deflection at r/R = 0.99 (b).

Comparison between computational predictions and experimental measurements.

(a) Twisting moment at r/R = 0.332. Mean

value is slightly overestimated by the compu-

tations (13% (LL) and 10% (AL)). 1/rev ampli-

tude is slightly underestimated by AL predic-

tions with a 20
◦

phase lead for both compu-

tational models. 2/rev harmonic is effectively

predicted.

(b) Torsion angle at r/R = 0.99. Mean value is

fairly predicted but 1/rev amplitude is slightly

overestimated (' 1
◦
). 2/rev harmonic is ef-

fectively predicted, but the 3/rev oscillations

seen in measurements are clearly damped in

computations.

Figure 3.29. Forward flight at 70 m/s, cases 847 (a) and 918 (b) of the HeliNoVi experi-

mental campaign. Twisting moment at r/R = 0.332 (a) and torsion angle at r/R = 0.99 (b).

Comparison between computational predictions and experimental measurements.
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3.1.2.3.4 Harmonic Analysis

As stated in previous paragraphs, computational simulations over–predict the mean value

of the lead–lag moment at the low speed case. In Table 3.15, it is shown that this difference

is about 17% both for the LL and AL results. However, in the medium and high flight

speed, the predicted mean values are within the scatter zone of the measurements of the

different blades. The corresponding deflections in Table 3.16 show an ' 1% difference.

This is consistent in all three flight speeds and is totally in line with the comments made

in the previous paragraph.

The mean value of the flapwise bending moment is fairly predicted by the two aero-

dynamic models at 12.3 and 50.5 m/s, whereas an over–estimation of about 1.5 Nm is

observed at 69.6 m/s. This difference may seem large (' 60%), however it is smaller than

the maximum difference of ' 2.5 Nm among different blades measurements. As far as the

flapwise deflection is concerned, the computational results consistently predict slightly

higher mean values at all flight speeds with a maximum difference of ' 0.4% at 69.9 m/s.

Finally, the simulations predict slightly smaller absolute mean values of the twisting

moment at all the assessed cases. This difference increases with the flight speed up to

13% at 69.6 m/s. On the other hand, very good agreement is achieved in the tip torsion

angle, where a maximum difference of ' 0.15
◦

is noted at 50.9 m/s.

Both in cases where the predicted values are close to the measured ones and in cases

where discrepancies are noted, AL and LL seem to be in good agreement with each other.

Fourier analysis is performed on loads. Based on the analysis of the previous sections,

where the azimuthal variation signals have been presented, similar conclusions with

respect to the harmonic content are expected to be drawn for deflections.

Table 3.15. Forward flight cases of the HeliNoVi experimental campaign at low, medium

and high flight speed. Mean values of blade structural loads. Comparison between com-

putational predictions and experimental measurements. An overall good agreement is ob-

served in lead–lag bending moment (slightly overestimated by ' 17% at 12 m/s) and flap-

wise bending moment (overestimated by ' 60% at 70 m/s). Twisting moment is slightly

overestimated at all flight speeds. Computational predictions agree very well with each

other.

Blade 1 Blade 2 Blade 3 Blade 4 LL AL

Mlag [Nm] — 100.86 — 85.26 117.93 117.31

12.3 m/s Mflap [Nm] −4.38 −11.91 −8.51 −12.13 −4.95 −5.22

Mtors [Nm] — — −2.94 −4.49 −2.80 −2.80

Mlag [Nm] — 135.17 — 97.65 104.68 105.62

50.5 m/s Mflap [Nm] −2.83 −12.12 −9.84 −11.99 −4.10 −4.19

Mtors [Nm] — — −3.49 −5.02 −3.28 −3.39

Mlag [Nm] — 217.76 — 173.15 186.84 186.71

69.6 m/s Mflap [Nm] −2.53 −5.01 −5.19 −4.94 −0.91 −0.97

Mtors [Nm] — — −4.36 −5.64 −3.79 −3.91
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3.1 Smooth free–stream flow cases

Table 3.16. Forward flight cases of the HeliNoVi experimental campaign at low, medium

and high flight speed. Mean values of blade deflections. Comparison between computa-

tional predictions and experimental measurements. Lead–lag deflections show a consistent

' 1% difference that is attributed to the SPR method used to determine deflections and

the infinitely stiff drive train assumed in the simulations. Flapwise deflections are slightly

overestimated in computations at all flight speeds, but torsion angle is fairly predicted.

Computational predictions agree very well with each other.

Blade 1 Blade 2 Blade 3 Blade 4 LL AL

Ulag/R [%] 0.99 1.04 1.05 0.97 −0.07 −0.09

12.3 m/s Uflap/R [%] 0.45 0.25 0.30 0.36 0.49 0.61

Θtors [deg] −1.21 −1.45 −1.79 −1.53 −1.70 −1.72

Ulag/R [%] 0.45 0.54 0.58 0.45 −0.15 −0.15

50.9 m/s Uflap/R [%] −0.17 −0.22 −0.31 −0.16 0.22 0.24

Θtors [deg] −1.36 −1.52 −1.84 −1.53 −1.94 −1.98

Ulag/R [%] 1.51 1.72 1.50 1.57 0.46 0.45

69.9 m/s Uflap/R [%] 0.34 0.27 0.05 0.29 0.71 0.72

Θtors [deg] −1.72 −1.87 −2.43 −2.05 −2.41 −2.46

In Figure 3.30a, the amplitude of the 1/rev, 2/rev and 4/rev variations are shown for

the lead–lag bending moment. These are the highest excited harmonics. Both 1/rev and

2/rev amplitudes are fairly predicted by the computational tools, except from a difference

in the 1/rev amplitude at 50 m/s (' 15% of the mean value) and the 2/rev amplitude at

70 m/s (' 6.5% of the mean value for the LL and ' 5% for the AL). The 4/rev harmonic

exhibits much higher amplitudes compared to predictions. This is attributed to a possible

miss–match of the 2nd lead–lag mode of the wind tunnel model with respect to the design

value. The corresponding frequency approaches 4/rev in the test, which explains its high

excitation. The 2nd lead–lag frequency is predicted at 91.58 Hz by the computational

structural beam model, well apart from the 4/rev (70 Hz) and close to the design value.

This explains the low excitation of the 4/rev harmonic in predictions. Better agreement is

shown in phase computations (Figure 3.30b) where a maximum phase shift is observed

in the 4/rev at the high speed case (70
◦

for LL and 110
◦

for AL).

The flapwise bending moment amplitudes (Figure 3.31a) are generally predicted con-

sistently. However, in 3/rev harmonic frequency, a maximum phase shift of 120
◦

is seen

at the medium flight speed in the LL results and 110
◦

at the high flight speed in the AL

results (see Figure 3.31b).

Finally, the amplitudes of the different harmonic frequencies of the twisting moment

are shown in Figure 3.32a. A maximum difference of about 13% of the mean value is ob-

served at the 1/rev amplitude of the low speed case for the LL results. The corresponding

difference increases to 15.5% for the AL case. Furthermore, the 3/rev amplitude, that

seems to be in the measurements of the low speed case, is slightly under–predicted by the

simulations (10% of the mean value in LL and 6.5% in the AL results). The greatest phase

difference (Figure 3.32b) is observed in the 1/rev phase of the low speed case, where a

phase shift of 100
◦

is noted in the LL results case and 110
◦

in the AL case.
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(a) Amplitude of lead–lag bending moment harmonics. An overall good agreement is observed

in 1/rev (slightly underestimated by ' 15% of the mean value at 50 m/s) and 2/rev (slightly

overestimated by ' 6.5% of the mean value at 70 m/s) amplitudes. 4/rev harmonics excited

in measurements are much less pronounced by computational tools predictions. This could be

attributed to a miss–placement of the 2nd lead–lag mode close to the 4/rev natural frequency (70Hz)

in the experimental set–up. Excessive damping of this harmonic by the computational models is

attributed to the use of a global Rayleigh structural damping that is not properly tuned for higher

natural frequencies. Computational predictions agree very well with each other.

(b) Phase of lead–lag bending moment harmonics. An overall good agreement is observed, especially

in lower harmonics (highest energy content). The maximum phase shift is in 4/rev at the high speed

case (70
◦

for LL and 110
◦

for AL). Computational predictions agree well with each other.

Figure 3.30. Harmonic analysis of lead–lag bending moment. Amplitude (a) and phase (b)

of frequencies with the highest energy content.
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3.1 Smooth free–stream flow cases

(a) Amplitude of flapwise bending moment harmonics. An overall good agreement is observed,

especially in lower harmonics (highest energy content). Computational predictions agree very well

with each other, except from 3/rev amplitude of 12 m/s flight speed where AL predictions are closer

to experimental measurements.

(b) Phase of flapwise bending moment harmonics. An overall good agreement is observed, especially

in lower harmonics (highest energy content). Maximum phase shift is observed in 3/rev at the

medium speed case (120
◦

for the LL results) and at high flight speed (110
◦

for the AL). Computational

predictions agree very well with each other.

Figure 3.31. Harmonic analysis of Flapwise bending moment. Amplitude (a) and phase

(b) of frequencies with the highest energy content.
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(a) Amplitude of twisting moment harmonics. An overall good agreement is observed. Maximum

difference is observed in 1/rev at the low speed case (+13% for the LL results and +15.5% for the

AL). Computational predictions agree very well with each other.

(b) Phase of twisting moment harmonics. An overall good agreement is observed. Maximum phase

shift is observed in 1/rev at the low speed case (100
◦

for the LL results) and at high flight speed

(110
◦

for the AL). Computational predictions agree very well with each other.

Figure 3.32. Harmonic analysis of twisting moment. Amplitude (a) and phase (b) of

frequencies with the highest energy content.
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3.2 Turbulent free–stream flow cases

3.2 Turbulent free–stream flow cases

In this section, the aeroelastic response of a WT operating under turbulent inflow

conditions is simulated within a CFD framework. The utter goal is:

i. to investigate the mutual interaction between a WT rotor and a stochastic atmo-

spheric inflow

ii. to assess how much the loading of the various WT components may change due to

the effect of the WT on the local inflow conditions.

First, the numerical reproduction of turbulent atmospheric fields in a CFD context is

performed. This is accomplished by using the model of Mann [8] to generate a synthetic

3D turbulence field (indicative instructions given in Section 2.2.1.6.1) and the method

of the Generation Zone (presented in Section 2.2.1.6.3) in order to impose the turbulent

velocity fluctuations of the Mann box onto the mean wind field provided by the CFD

code. A set of simulations reproducing only the turbulent wind field without the presence

of a WT are initially performed, in order to investigate the effect of multiple numerical

parameters (e.g. grid resolution, length of the zone) on the spectral characteristics of the

reproduced turbulent field. Then, aeroelastic simulations are performed for the isolated

rotor of the DTU 10MW RWT operating at V∞ = 16m/smean wind speed at axial and +30
◦

yawed flow cases. Moreover, a full WT configuration (tower, shaft and rotor) operating

inside the Atmospheric Boundary Layer (ABL) is simulated in the present analysis. The

flow–field inside the boundary layer is initialized based on a logarithmic distribution of the

wind velocity in the axial direction that is also continually imposed as the inlet boundary

condition. The boundary layer length is set to δ = 1200m and the surface roughness to

z0 = 0.1m. Axial wind speed at hub height (Zhub = 119m) is set to Vhub = 16m/s. Neutral

stability conditions at 14% Turbulence Intensity (TI) are assumed for all the different cases

tested, that correspond to Normal Turbulence Model (NTM) of the IEC standard. The rotor

blades are modelled as ALs, using MaPFlow. The structural dynamics analysis of the

various WT components is performed through GAST and the rotor blades are modelled as

beam assemblies, in order for non–linear geometric phenomena to be properly considered.

The two systems are solved separately, but tightly coupled. The coupled GAST–AL results

are compared against computational predictions of the GAST–BEMT model, which as

already discussed is the standard modelling approach in WT design.

3.2.1 Numerical investigation

In this section, turbulent wind field simulations in the absence of a WT are performed

at 16 m/s axial mean wind speed with 14% TI. The synthetic turbulent field is produced

with the the model of Mann [8]. The maximum frequency resolved by the produced

Mann box is fmax ' 5.85Hz that corresponds to a ∆xMann = 1.367m spacing in the

longitudinal direction (the maximum frequency of interest is the mean wind speed divided

by the minimum wavelength, which is twice the longitudinal spacing of the grid points

in the Mann box). The maximum frequency resolved is set to that value, because higher
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frequencies in the response of the WT (greater than 1 Hz) show much less energy content

compared to lower ones (see Figure 3.33) and hence do not significantly contribute to the

WT loading. The length of the produced Mann box is LMann ' 11200m that corresponds

to a total number of 8192 grid points in the longitudinal direction and a time duration of

TMann ' 700s (the desired length of Mann box equals the mean wind speed multiplied by

duration of the required time series). The proposed by [102] time duration of turbulent

inflow simulations is 10 minutes. In the lateral and vertical direction 32 points have been

used with ∆yMann = ∆zMann = 8m that result in planes of 248m × 248m = 61504m
2

and

are much greater than the rotor disk area (' 25000m
2
) that is used in the aeroelastic

simulations to follow.

Figure 3.33. Kaimal and von Karman energy spectrum for wind modelling. Frequencies

higher than 1 Hz show much lower energy content compared to lower frequencies.

The method of Generation Zone (GZ) is then used in order to superimpose the turbu-

lent velocity fluctuations onto the mean wind field. This is accomplished through source

terms that are applied in the momentum and energy equations of the cells located inside

the zone. In this way, the nearby velocity field is forced to the desired (turbulent) one.

The zone must be placed sufficiently far from the rotor disk, so that the local velocity field

is not that heavily influenced by the rotor and vice versa. Otherwise, the effect of the rotor

in the formation of the overall flow–field (expansion and deceleration of the flow) will be

consumed by the strong source terms of the GZ. However, as the zone is placed further

upstream from the rotor plane, the grid resolution needs to get finer so that the turbulent

field will not be altered significantly while getting convected downstream. In Figure 3.34,

it is shown that a good compromise between accuracy and computational cost is to place

the GZ approximately 1R upstream of the rotor plane. In the following simulations, the

end of the zone is fixed at 1R upstream of the rotor hub, whereas the starting plane
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is defined by the length of the zone. The GZ length is later investigated in detail along

with other numerical parameters such as the grid resolution. The goal of the following

paragraphs is to assess the sensitivity of the spectral characteristics of the turbulent

field we end up with at the rotor plane (region of interest). The great difference between

the minimum and maximum wave–lengths of simulated turbulence (λmin ' 2.734m and

λmax = 11200m) dictate the application of LES turbulence modelling, so that multiple

turbulent scales are accounted for. Consequently, large eddies (larger than the grid size)

are directly resolved, whereas smaller ones (Sub-Grid Scale (SGS)) are modelled with the

algebraic SGS model of Smagorisnky [167].

Figure 3.34. Axial velocity distribution at 75%R radial position extracted from an aero-

dynamic simulation of the DTU 10MW RWT isolated rotor (modelled as actuator lines) op-

erating at 11m/s axial wind speed. X and Y axes are normalized with rotor radius and

free–stream velocity. Axial velocity is at 94% of U∞ at 1 rotor radius upstream, indicating

small interaction between the rotor and the free–stream flow in this region.

Grid set–up

The computational domain used in these simulations is a box of 20 rotor diameters (20D)

length in the longitudinal direction (5D upstream and 15D downstream) and 20D in the

lateral and vertical directions (10D around the center of the box where the rotor hub

center will be placed in the aeroelastic simulations to follow). Structured and uniform

meshing under maximum grid resolution is applied in a region extending 1R upstream,

2D downstream in order to better resolve the development of the wake deficit and its

impact on the aerodynamic forces and 1.5R around the center of the box so that the flow

expansion fits in when the WT is present. GZ is placed at the beginning of this structured

area that for this reason extends slightly further upstream, depending on the length of

the GZ, as illustrated in Figure 3.35. However, the end plane of the GZ is always placed

1R upstream of the box center. The characteristic length of this region is denoted by ∆x.
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Figure 3.35. Side view of the computational domain used in the turbulent flow simulations

of the DTU 10MW RWT rotor at 16 m/s mean wind speed. The rotor blades are modelled

as actuator lines and are located inside a box of 20D length and 10D radius around the

rotor hub center. The end plane of the GZ is placed 1R upstream of the rotor. The whole

GZ is inside an equidistant region of maximum grid resolution in order to better resolve the

turbulent wake structures.

Grid Dependency Analysis

The first parameter checked is the characteristic length (denoted by ∆x) of the structured

and equidistant region that contains the GZ and the turbulent eddies (in the aeroelastic

simulations that follow, the WT and the near wake vortices are also inside this region). A

maximum of ∆x = 1m has been used in all 3 directions (longitudinal, lateral and vertical)

throughout the equidistant region, based on findings of Section 3.1.1.2 (∆x = R/90 ' 1m

in a uniform and structured region around the rotor has been found to provide a grid

independent solution yielding both affordable and accurate estimation of the aerodynamic

loads when they are simulated as actuator lines). In order to restrain computational cost,

finer values of ∆x are tested only in the longitudinal direction, employing them from the

beginning of the fine region and up to 10m upstream of the center of the domain (hub

center will be placed there in the aeroelastic simulations). This approach is adopted,

so that the Gaussian projection of the aerodynamic forces of the actuator lines is fully
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3.2 Turbulent free–stream flow cases

included in the uniform region, according to the instructions in Section 3.1.1.2. Three

different values of ∆x have been tested (∆x = 1m,0.5m,0.25m) and the corresponding

grid size (number of cells) is listed in Table 3.17. The spectra of the axial velocity that we

end up with at the rotor plane are compared against the input spectrum in Figure 3.36.

Both fixed point (sampled at the WT hub center) and rotating point (sampled at 75%R)

samplings are depicted. For the fixed point sampling spectra, the finest grid resolutions

seem to better preserve the high frequency content of the wind fluctuations (≥ 1Hz)

(see Figure 3.36a). However, all three different grid resolutions end up in lower energy

content compared to the target. The reason for these differences is grid diffusion acting

from the GZ up to the WT plane. Use of even finer grids in order to reduce numerical

diffusion leads to prohibitive computational cost. It needs to be highlighted, that the

ultimate objective of this study is to produce a turbulent field that will be later used

for the investigation of the interaction between the stochastic atmospheric inflow and

the aeroelastic response of a WT. Hence, this numerical set–up is meant to be used in

multiple and long lasting simulations (the proposed by [102] time duration of turbulent

inflow simulations is 10 minutes). Moderate grid resolutions must be employed so that

the resulting computational cost remains affordable. After all, frequencies greater than

1Hz have much lower energy content and, thus, minor contribution to the excitation of

the WT. For this reason, the value ∆x = 1m is considered to be acceptable. Moreover,

the spectrum of the axial velocity captured by a rotating point at 75%R is shown in

Figure 3.36b. The rotational velocity of the sampling point is the same as the rotational

velocity of the WT considered in the following aeroelastic simulations. In this case, the

energy content of all the depicted frequencies is well captured even for the coarse grid of

∆x = 1m. The reason is that due to the rotation of the sampling point, the energy content

of turbulence is concentrated on the frequency of rotation and its harmonics. The rotating

sampling spectrum shows the energy content of turbulent excitation at it is perceived by

the rotating blades of the WT. For this reason, it is considered to be much more significant

as a metric compared to fixed point sampling. Overall, ∆x = 1m ends up providing an

accurate estimation of the turbulent excitation under moderate grid resolution both for

the fixed and rotating point sampling. For this reason it is adopted for the discretization

of the fine equidistant region in the aeroelastic simulations to follow.

Table 3.17. Grid size (in million cells) vs grid characteristic length ∆x [m] employed up-

stream of the rotor hub in the longitudinal direction of the fine and structured region that

contains the GZ and the produced turbulent structures. ∆x = ∆y = ∆z = 1m is used in

the remaining region in the longitudinal direction and everywhere in lateral and vertical

directions.

∆x #cells

1m 48.4 M

0.5m 56.9 M

0.25m 73.8 M
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(a) Turbulence spectrum of axial velocity cap-

tured at rotor hub center. Fixed point sam-

pling.

(b) Turbulence spectrum of axial velocity cap-

tured at 75%R. Rotating point sampling.

Figure 3.36. Axial velocity spectra, captured at the plane of interest (rotor plane) with

different grid resolutions are compared against the desired one (input). Fixed point sampling

at hub center (a) and rotating point sampling at 75%R (b). Numerical diffusion is the main

source of discrepancies. Lower energy content is captured in frequencies ≥ 1Hz at fixed

point sampling. Finer grid resolutions are slightly closer to the input spectrum. All different

grid resolutions predict comparable energy content at all the depicted frequencies of rotating

point sampling.

GZ Length Dependency Analysis

A number of simulations have been performed in order to check how much does the GZ

length (measured in number of cells in longitudinal direction) affect the resulting spectra

of the axial velocity at the rotor plane. In Figure 3.37, it is shown that 2 cells are not

enough to produce reasonable spectra at the rotor plane. The GZ length needs to be at

least 5 cells long to sufficiently preserve the wind fluctuations. Frequencies higher than

1Hz are again not adequately resolved in the fixed point sampling (see Figure 3.37a) and

no significant improvement is reported when more than 5 cells are employed. However,

very good agreement is shown in the energy content of all the depicted frequencies in the

rotating sampling (see Figure 3.37b). This means that a GZ length of at least 5 cells is

acceptable. Since there is no big difference in total amount of grid cells when greater

lengths of GZ are employed, 20 cells are used in the following aeroelastic simulations.
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(a) Turbulence spectrum of axial velocity cap-

tured at rotor hub center. Fixed point sam-

pling.

(b) Turbulence spectrum of axial velocity cap-

tured at 75%R. Rotating point sampling.

Figure 3.37. Axial velocity spectra, captured at the plane of interest (rotor plane) with

different lengths of GZ (measured in number of cells in longitudinal direction) are compared

against the desired one (input). Fixed point sampling at hub center (a) and rotating point

sampling at 75%R (b). Non–realistic spectra are produced when only 2 cells are used in GZ

length. Reasonable spectra are captured when at least 5 cells are employed. Lower energy

content is captured in frequencies ≥ 1Hz at fixed point sampling. Use of more than 5 cells

does not significantly improve the produced fixed point spectrum. All GZ implementations

with at least 5 cells predict comparable energy content, similar to the desired one, at all the

depicted frequencies at rotating point sampling.

3.2.2 Comparison against BEMT predictions

In this section, turbulent inflow aeroelastic simulations results using the AL model

as the aerodynamic analysis tool are compared against reference results obtained by a

standard BEMT model. 3 different cases are addressed at 16 m/s mean wind speed; i) an

isolated WT rotor at axial mean wind, ii) an isolated WT rotor at +30
◦

yaw misalignment,

and iii) a full WT (tower, shaft, rotor) operating inside the ABL. In the latter case, 16 m/s

refers to the mean wind speed at hub height. Only the rotor blades are included in the

aerodynamic analysis, whereas shaft and tower are modelled as elastic beams without

external aerodynamic forcing. The modelled WT is the conceptual DTU 10MW RWT, which

has been analyzed in Section 3.1.1.1. Constant rotational speed at 9.6 rpm and 12
◦

blade

pitch angle is assumed for all cases (WT controller continually regulating rotational speed

and pitch angle is not enabled in the simulations). The azimuth angle is assumed to be

zero when the blade points upwards (opposite to the ground). Flapwise bending moments

(based on Section 3.1.1 results, flapwise bending moment dictates the overall loading of

the rotor blades) at the root of the blades and the tower (when present) are depicted as

time history and azimuthal variations. The above loads are also provided in the frequency

domain, by performing an Fast Fourier Transform (FFT) analysis in the corresponding

time–history signals. Finally, rain–flow counting [168] is applied in order to determine the

number of fatigue cycles that exist in the time–history and extract the Damage Equivalent

Loads (DEL).
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3.2.2.1 Axial flow case

Turbulent eddies generated by the GZ and the wake produced by the aeroelastic AL

model on the axial mean flow case are visualized in Figure 3.38 by plotting Q–Criterion iso–

surfaces [169]. In Figure 3.39a, the corresponding time–history of the flapwise bending

moment measured at the root of the 1
st

blade is shown, where an overall good correla-

tion is observed between AL and BEMT predictions for a 6 minutes simulation. In order

to assess the differences between the two models predictions, the respective azimuthal

variation is shown in Figure 3.39b. Dots indicate the instantaneous predicted values,

whereas the solid lines indicate the azimuthally averaged values. An overall good agree-

ment is shown in the mean value, amplitude and phase predictions of the averaged signal

between AL and BEMT. This is expected based on the good agreement shown in axial

flow cases under constant wind in Section 3.1.1.3.1. However, AL results for the flapwise

bending moment exhibit higher energy values at higher frequencies (beyond 5P). This is

in line with the higher energy observed in the spectrum of the rotational sampled wind

at the rotor plane shown in Figure 3.36b). This is also captured in Figure 3.40a, where

the spectral density of the flapwise moment is shown. It needs to be stressed that in

BEMT simulations, as opposed to CFD ones, the turbulent field is directly imposed on

the rotor plane and hence no discrepancies are expected with respect to the turbulent

field produced by the Mann’s model. Indeed, AL shows slightly greater energy content in

higher frequencies (≥ 0.8Hz) as compared to BEMT. This explains the increased range

of the AL predicted loads in the large number of cycles (≥ 80) (see Figure 3.40b) and the

corresponding difference in the computed DEL.

Figure 3.38. Turbulent eddies and wake visualization of the DTU 10MW RWT rotor oper-

ating at 16 axial mean wind speed under NTM conditions. Rotor blades are modelled as

actuator lines, whereas the turbulent eddies are produced with the method of GZ. Vorticity

structures are visualized by plotting Q–Criterion iso–surfaces.
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(a) Time–history of flapwise bending moment. (b) Azimuthal variation of time averaged flap-

wise bending moment.

Figure 3.39. Flapwise bending moment measured at the root of the 1
st

blade expressed

as time–history (a) and azimuthal variation (b) for axial mean wind speed at 16 m/s.

Good agreement is observed in mean value, amplitude and phase of the averaged signal

predictions between the two models. Higher frequency excitation is shown in the AL results

that originates in the effect of numerical diffusion on the produced turbulent spectrum at the

rotor plane.

(a) FFT of flapwise bending moment. (b) RFC of flapwise bending moment.

Figure 3.40. FFT (a) and RFC (b) of flapwise bending moment measured at the root of

the 1
st

blade for axial mean wind speed at 16 m/s. Higher energy content excitation is

shown in higher frequencies (≥ 0.8Hz) of AL results that originates in the effect of numerical

diffusion on the produced turbulent spectrum at the rotor plane. This leads to increased

range of loads in the large number of cycles (≥ 80) and, in turn, to greater DEL.
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Chapter 3. AL modelled rotor blades using MaPFlow

3.2.2.2 Yawed flow case

In Figure 3.41a, the time–history of the flapwise bending moment predicted at the

root of the 1
st

blade is shown for the case of a mean wind with +30
◦

yaw misalignment.

As in the case of the axial mean wind, an overall good correlation is observed between

AL and BEMT predictions for a 6 minutes simulation. The differences between the two

models predictions are more clearly depicted in the corresponding azimuthal variation

shown in Figure 3.41b. Dots indicate the instantaneous predicted values, whereas the

solid lines indicate the azimuthally averaged values. As in the yawed flow cases under

constant wind (see Section 3.1.1.3.2), an overestimation of ' 9% is observed by BEMT

in the mean value and ' 29% in the amplitude. Moreover, an ' 35
◦

phase difference is

noted. These differences are attributed to the omission of the wake skewness in BEMT

simulations. Consequently, no increased wake induction is considered, due to the relative

angle between the wake and the rotor plane. On the other hand, this is inherently

accounted for in the AL simulations, thanks to the CFD framework through which the

wake vortices are described. For this reason, the minimum load predicted in BEMT

simulations is at ' 225
◦

azimuthal position, whereas in the AL predictions it is at ' 260
◦
,

closer to 270
◦

where the wake induced velocities are minimized. The difference in 1P

amplitude is also captured in Figure 3.42a as a notable difference in the peak at the

rotational frequency (0.16Hz). This explains the increased load ranges of BEMT in the

low number of cycles (≤ 100) that are computed by the Rain-Flow Counting (RFC) method

(see Figure 3.42b) and the corresponding difference in the computed DEL.

(a) Time–history of flapwise bending moment. (b) Azimuthal variation of time averaged flap-

wise bending moment.

Figure 3.41. Flapwise bending moment measured at the root of the 1
st

blade expressed

as time–history (a) and azimuthal variation (b) for +30
◦

yawed mean wind speed at 16

m/s. BEMT overestimates the mean value and the 1P amplitude by approximately 9%
and 29% respectively. Moreover an ' 35

◦
phase shift is observed. Those differences are

attributed to the detailed description of the wake vortices in the AL simulations due to

the CFD framework. Hence, more accurate estimation of the wake induced velocities is

accomplished.
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3.2 Turbulent free–stream flow cases

(a) FFT of flapwise bending moment. (b) RFC of flapwise bending moment.

Figure 3.42. FFT (a) and RFC (b) of flapwise bending moment measured at the root of

the 1
st

blade for +30
◦

yawed mean wind speed at 16 m/s. A greater peak is predicted

in BEMT simulations at the rotational frequency (0.16Hz), that is directly related to the

overestimation of the 1P amplitude seen in Figure 3.41b. This leads to increased load

ranges at low number of cycles (≤ 100) and, in turn, to greater DEL.

3.2.2.3 Atmoshperic boundary layer flow case

In Figure 3.43a, the time–history of the flapwise bending moment predicted at the root

of the 1
st

blade is shown for the case of the full WT operating inside the ABL. As in the

previous cases, an overall good correlation is observed between AL and BEMT predictions,

which however show a significant level difference herein. The differences between the two

models predictions are more clearly depicted in the corresponding azimuthal variation

shown in Figure 3.41b. Dots indicate the instantaneous predicted values, whereas the

solid lines indicate the azimuthally averaged values. An overall good agreement is ob-

served in the phase of the averaged response. However, mean value is underestimated

by ' 26% in BEMT simulations, whereas the amplitude is overestimated by ' 35%. The

difference in 1P amplitude is also depicted in Figure 3.44a as a notable difference in the

peak value of the spectrum at the rotational frequency (0.16Hz). This explains the in-

creased range of loads predicted by BEMT in the intermediate number of cycles (20−100)

that are computed by the RFC method (see Figure 3.44b). On the other hand, greater

energy content response is shown in higher frequencies (≥ 0.8Hz) of AL results that, as

discussed in Section 3.2.2.1, originates in the effect of the numerical procedure on the

produced turbulent spectrum at the rotor plane. This counteracts the difference in inter-

mediate number of cycles and, for this reason, the computed by the two different models

DEL are similar.
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Chapter 3. AL modelled rotor blades using MaPFlow

(a) Time–history of flapwise bending moment. (b) Azimuthal variation of time averaged flap-

wise bending moment.

Figure 3.43. Flapwise bending moment measured at the root of the 1
st

blade expressed as

time–history (a) and azimuthal variation (b) for a full WT operating inside the ABL. The axial

velocity is 16 m/s at hub height. BEMT underestimates the mean value by approximately

26% and overestimates the 1P amplitude by approximately 35%. Those differences are

attributed to the detailed description of the wake vortices in the CFD framework and the

effect of the rotor and the ground on the turbulent wind inflow, that is properly accounted

for in AL simulations.

(a) FFT of flapwise bending moment. (b) RFC of flapwise bending moment.

Figure 3.44. FFT (a) and RFC (b) of flapwise bending moment measured at the root of the

1
st

blade for a full WT operating inside the ABL. The axial velocity is 16 m/s at hub height.

A greater peak is predicted in BEMT simulations at the rotational frequency (0.16Hz), that

is directly related to the overestimation of the 1P amplitude seen in Figure 3.43b. This leads

to greater range of loads at the intermediate number of cycles (20 − 100). Greater energy

content response is shown in higher frequencies (≥ 0.8Hz) of AL results that originates in

the effect of the numerical procedure on the produced turbulent spectrum at the rotor plane.

This leads to greater range of loads at the large number of cycles (> 100). Hence, the

computed DEL by the two models end up being similar.

As in the yaw case, the differences in the flapwise bending moment at the root of the

blades are attributed to the detailed description of the local flow conditions close to the

rotor in the AL simulation. In the CFD framework, varying inflow conditions on the rotor
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3.2 Turbulent free–stream flow cases

disk are properly resolved. On the contrary, in the reference BEMT module a simplified

representation of the inflow conditions is considered. The dynamic response of the wake

due to time varying conditions is accounted for through an engineering dynamic inflow

model [49]. The inflow model is actually a first order filter equation, which imposes a time

delay on rotor induction and therefore on rotor loads when the thrust changes in time. It

is shown in Section 3.1.1.3.2, that as the flow conditions get more complex, the modelling

of the local inflow in BEMT simulations becomes less accurate.

In order to better understand the origin of the differences in the flapwise bending

moment predictions (Figure 3.43b), the measured height distribution of the axial velocity

inside the ABL of the AL simulation is shown in Figure 3.45a. Axial velocity is averaged in

time and measured at the rotor plane. The analytical profile corresponds to the averaged

logarithmic profile of the ABL for axial velocity of Vhub = 16 m/s at the hub height

(Zhub = 119 m) and for surface roughness of z0 = 0.1m, that is developed without the

presence of the WT. Greater axial velocity above the hub height, leads to near wake being

convected downstream faster compared to lower regions. As opposed to BEMT, this is

properly accounted for in the AL model and leads to lower induction on the upper part of

the rotor. This explains the level difference in the flapwise bending moment predictions

on the upper part of the rotor (approximately from 315
◦

to 45
◦

azimuth angle), shown

in Figure 3.41b. Moreover, a significant acceleration of the local inflow is measured on

the lower part of the rotor (below hub height). This is clearly depicted in the measured

height distribution of the mean axial velocity when the WT is present (averaged profile),

as shown in Figure 3.45a. Due to the blocking effect of the rotor on the flow and the

downwash induced by the emitted wake, the measured distribution was anticipated to

show reduced values compared to the analytical profile (mean profile when the rotor is

not present) throughout the height of the WT. Even though this is true for heights greater

than 70m, significant acceleration is noted up to this height. This is attributed to the

contraction of the flow between the lower part of the rotor and the ground, as illustrated in

Figure 3.45b. This reasoning is confirmed by the axial velocity field shown in Figure 3.46.

The increased axial component of inflow velocity on the lower part of the rotor results in

greater angle of attack from 135
◦

to 225
◦

azimuth angle (see Figure 3.47) and explains the

plateau formed in the AL predictions. On the other hand, due to the simplified modelling

of the inflow, BEMT is not able to predict the acceleration on the lower part of the rotor

and leads to reduction of the angle of attack in the corresponding azimuthal positions.

This explains the level difference in the flapwise bending moment predicted by the two

models (see Figure 3.41b) on the lower part of the rotor (approximately from 135
◦

to 225
◦

azimuth angle), but also the difference in the overall amplitude predictions. To sum up;

i. lower induction on the upper part of the rotor and ii. acceleration of the local inflow on

the lower part of the rotor in the AL simulations result in a level and amplitude difference

of the AL and BEMT predicted angle of attack (see Figure 3.47). These differences are

directly reflected in the flapwise bending moment shown in Figure 3.43b.
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Chapter 3. AL modelled rotor blades using MaPFlow

(a) Height distribution of mean (averaged in

time) axial velocity (red) in AL simulation, mea-

sured at rotor plane. Comparison against an-

alytical (undisturbed) profile (green) that cor-

responds to a mean (averaged in time) profile

when the WT is not present.

(b) Schematic representation of rotor and

ground. Visualization of their effect on accel-

erating the local inflow on the lower part of the

rotor.

Figure 3.45. Height distribution of the mean axial velocity measured at the rotor plane

(a) and schematic representation of the WT and the ground forming an aerodynamic nozzle

(b). Due to the WT rotor blocking the flow, the measured axial velocity (red line) is expected

show lower values compared to the analytical profile (green line) that corresponds to an

undisturbed distribution when the WT is not present. This is true for heights greater than

' 70m and up to the higher tip of the rotor plane. The acceleration observed at the lower

part of the rotor ' 0 − 70m is attributed to the nozzle formed between the ground and the

lower part of the rotor.

Figure 3.46. Mean axial velocity field close to the rotor for a full WT operating inside the

ABL. The axial velocity is 16 m/s at hub height. The effect of the rotor and the ground on

the flow is accounted for in detail thanks to the CFD framework. Expansions of the flow is

shown at the upper part of the rotor. Contraction of the flow is observed between the lower

part of the rotor and the ground that accelerates the local flow.
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3.2 Turbulent free–stream flow cases

Figure 3.47. Azimuthal variation of the averaged effective angle of attack measured at 75%
radial station of the 1

st
blade. Full WT case operating inside the ABL. The axial velocity is

16 m/s at hub height. BEMT underestimates the mean value by ' 2
◦

and overestimates

the 1P amplitude. Minimum values are predicted between 135
◦

and 225
◦

azimuthal angle

in BEMT results. AL predictions show a flat variation throughout the azimuthal circle. This

is attributed to the acceleration of the local inflow at the lower part of the rotor that leads to

mitigation of the expected reduction between 135
◦

and 225
◦
.

The greater mean value of the rotor blades loads predicted by the AL model (see

Figure 3.43) lead to increased loading of the tower, both in terms of mean value and

amplitude. This is clearly depicted in Figure 3.48 where the for–aft bending moment at

the bottom of the tower is shown as time–series (Figure 3.48a) and azimuthal variation in

the time averaged signal (Figure 3.48b). BEMT predicts lower mean value (' −22%) and

3P amplitude (' −46%) compared to AL results. However, an overall good agreement is

observed in the phase due to the corresponding phase agreement in the flapwise bending

moment at the root of the rotor blades. The difference in 3P amplitude of the for–aft

bending moment at the root of the tower is also depicted in Figure 3.49a as a difference

in the peak value of the spectrum at 0.48Hz which is 3 times the rotational frequency of

the rotor blades. This explains the large differences in the equivalent loads predicted by

the two models that are computed by the RFC method (Figure 3.49b). It is noted that the

nacelle is omitted in the computational set–up. This leads to a significant mass reduction

at the top of the tower, that increases the natural frequency of the for–aft mode from

' 0.31Hz to ' 0.77Hz.
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Chapter 3. AL modelled rotor blades using MaPFlow

(a) Time–history of for–aft bending moment. (b) Azimuthal variation of time averaged for–

aft bending moment.

Figure 3.48. For–aft bending moment measured at the root of the tower expressed as time–

history (a) and azimuthal variation of the time averaged signal (b) for a full WT operating

inside the ABL. The axial velocity is 16 m/s at hub height. BEMT underestimates the

mean value by approximately 22% and the 3P amplitude by approximately 46%. Those

differences are attributed to the mean value difference in the flapwise bending moment

measured at the root of the blades, shown in Figure 3.43b.

(a) FFT of for–aft bending moment. (b) RFC of for–aft bending moment.

Figure 3.49. FFT (a) and RFC (b) of for–aft bending moment measured at the root of the

tower for a full WT operating inside the ABL. The axial velocity is 16 m/s at hub height.

A greater peak is predicted in AL simulations at 0.48Hz, which is 3 times the rotational

frequency of the blades. This originates in the increased mean value of the blade loads

predicted by AL (Figure 3.43b). In turn, greater equivalent loads are computed by AL for all

number of cycles.
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3.3 Conclusions

In this chapter, the accuracy of an AL model is assessed in aeroelastic simulations

of WT and helicopter rotors. In WT cases, both constant wind speed and turbulent

flow simulations are conducted. Comparisons are presented against a standard BEMT

model and a classical LL approach, which are considered as state of the art in WT and

helicopters design respectively. All the different aerodynamic modules are coupled with

the same structural solver, GAST. In helicopter cases, AL results are compared against

experimental data and LL predictions.

First, a detailed investigation of the numerical parameters of the AL model is per-

formed. For WT simulations, it is found that a number of 90 cells in the rotor radius

provides a grid independent solution, whilst a three times coarser discretization is sug-

gested for the actuator lines. For the helicopter simulations, a number of 8 cells in the

blade chord is sufficient. Time step is defined based on the grid resolution and tip ve-

locity. A grid resolution 10 times the one used in the vicinity of the actuator lines is

found to be sufficient for the near wake region, in order for an accurate estimation of the

wake induction on the rotor to be accomplished. Various grids set–up are tested, showing

minor effect on the computed blade loads, but having great differences in the resulting

computational cost. A hexahedral grid set–up with hanging nodes is preferred, as it is

found yielding accurate results under minimum number of grid cells. Finally, a new rule

of thumb is proposed for computing the Gaussian kernel that leads to a grid independent

and accurate solution under moderate grid resolution. Hence, the Gaussian kernel is

chosen to vary with the chord length, but a lower bound of twice the grid spacing is also

set in order to avoid too small kernel values at the blade tip.

In the WT cases under constant wind speed, comparisons among the AL module, a

standard BEMT model, and a LL approach are presented. At simple axial cases, good

agreement is achieved by all three models in terms of loads and deflections predictions.

Deviations between BEMT and the other two models occur at yawed flow cases, due to

simplified modelling of the inflow conditions in BEMT that does not properly take into

account the positioning and evolution of the emitted wake vortices with respect to the

rotor plane. These differences become more pronounced as the flow conditions get more

complex (e.g. as yaw angle increases). However, excellent agreement between AL and LL

is observed in all the examined cases, due to the detailed representation of the flow–field

thanks to the CFD and Free Vortex Wake frameworks respectively. In contrast to LL, AL

predicted wake–induced velocities tend to zero near the blade tip. The same difference

between these two models is observed in the circulation close to the blade root.

For the Helicopter MR simulations, AL predictions are validated against LL simulation

results and wind tunnel measurements of the HeliNoVi experiment. In general, predic-

tions are close to the experimental measurements and when differences occur the two

models results seem to agree well with each other. Nevertheless, at low speed cases, in

which wake–induced effects are stronger, the AL model achieves a better phase agree-

ment with experimental data but also increased aerodynamic damping due to increased

numerical diffusion.
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In turbulent flow cases, a novel approach is assessed in order to impose the velocity

fluctuations of a predefined turbulent field onto an averaged flow–field, within an Eulerian

CFD context. The approach is based on source terms imposed upstream to a region of

interest that drive the solution of the nearby flow–field to the desired one. This newly pro-

posed methodology provides better representation of the intended spectral characteristics

on the region of interest compared to other conventional approaches. This originates in

spreading the source terms in a large zone and regulating their intensity through proper

space functions within that zone. Hence, a very accurate representation of the intended

flow–field is achieved in the region where the source terms have their maximum values.

Moreover, reduced numerical diffusion is accomplished when the turbulent field gets con-

vected downwards. A zone length of at least 5 grid cells is required so that the spectral

characteristics of the produced turbulent field are close to the desired ones. Moreover,

a uniform grid resolution of 90 cells in the rotor radius for all the near wake region is

found to be sufficient for an accurate estimation of the mutual interaction between the

rotor and the ambient turbulence.

In WT simulations under turbulent inflow, comparisons between the AL module and

a standard BEMT model are made in terms of loading on the various WT components, in

particular rotor blades and tower. As in the constant wind speed cases, good agreement

is achieved at simple axial cases, whereas differences occur at more complex flow cases.

The detailed description of the flow–field within the CFD framework, provides the AL

model with the ability to accurately account for the varying wake induction on the rotor

plane and the effect of the rotor and the ground on the local turbulent inflow. These

are not properly regarded in simple BEMT approaches yielding in significant differences

concerning the predictions in loading and wear, of the various WT components.

Overall, AL results show significant differences compared to BEMT predictions that

get more intense as the flow conditions get more complex. Most of them originate in the

detailed description of the flow–field close to the rotor provided by the CFD framework.

On the other hand, AL results share the same level of accuracy with the ones produced by

the LL method, when it comes to blade loads and deflections in isolated rotor cases. Al-

though much more affordable than resolving the whole blades geometry, AL simulations

remain at least 2 orders of magnitude more computationally demanding than LL. The

main advantage of the AL method, is that the effect of the rotor and ground on the local

turbulent inflow are accounted for in detail within the CFD context under moderate com-

putational requirements. This is not easily resolved in a potential FVW framework, where

the consideration of viscous effects close to the ground and the modelling of turbulence

can be tricky.
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Fully resolved rotor blades using HoPFlow

In this chapter, the results produced by an aerodynamic simulation of a model Wind

Turbine (WT) rotor and an aeroelastic simulation of a model helicopter Main Rotor (MR)

under smooth free–stream flow cases are presented and compared against measurements

and other CFD based predictions. The actual geometry of the rotor blades is now fully re-

solved in a hybrid Lagrangian–Eulerian context, using HoPFlow. The value of the present

method lies in multi–body and aeroelastic applications in which there are multiple, mutu-

ally interacting regions of interest within the computational space [170]. The Lagrangian

sub–domain serves as the background coupling domain between the moving Eulerian

sub–domains in the same way that overset grids function in standard Eulerian CFD

simulations. Lagrangian methods are advantageous compared to overset approaches, as

they minimize numerical diffusion and therefore preserve wake structures and flow distur-

bances. HoPFlow and coupled GAST–HoPFlow results are compared against experimental

measurements and computational predictions by other CFD solvers.

4.1 Aerodynamic analysis of a WT rotor

In this section, aerodynamic simulations are performed for the New MEXICO WT

model rotor. The goal is firstly to investigate the effect of multiple numerical parameters

(e.g. blade surface grid, time–step value, PM discretisation length) on the predicted aero-

dynamic loads when the hybrid Eulerian–Lagrangian CFD solver HoPFlow is employed

in the aerodynamic analysis. A thorough comparison of blade loads is then performed

against experimental measurements and computational results from the Eulerian coun-

terpart (MaPFlow) of the hybrid solver and other CFD solvers predictions. Blade loads

are depicted as span–wise distribution of aerodynamic loads and pressure distribution at

specific span–wise positions. The axial velocity distribution (parallel to the direction of the

wind), predicted at constant span–wise positions, representing the wake deficit formation,

will be compared as well. The test case is the run no. 266, which is a 14.7 m/s axial flow

case at 425 rpm of the New MEXICO experimental campaign [11, 12] that corresponds to

a tip speed ratio of λ = 6.81 and a pitch angle of 2.3
◦

nose down.
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4.1.1 The New MEXICO experimental campaign

The New Mexico experiment was partially funded by the INNWIND.EU project [153]

and was a follow–up to the MEXICO experiment [171]. The New MEXICO WT model rotor

is a 4.5 m diameter 3–bladed rotor (see Figure 4.1). It consists of three different airfoil

shapes at the root (DU91-W2-250), mid-span (RISØ A1-21) and tip (NACA 64418) region

of the blade according to Table 4.1. The twist and chord distribution of the blade are

shown in Table 4.2. Turbulent transition is triggered with trip tapes of 5 mm width and

0.2 mm thickness placed at 10% of the chord on both the pressure and suction sides of

the blade. Results from numerical investigations concerning test cases from the MEXICO

and the New MEXICO experimental campaigns can be found in [172, 173, 174, 175, 176,

177, 178].

Figure 4.1. Set–up of the New MEXICO experimental campaign. Tip vortices visualization

with smoke. Image copied from [11].

Table 4.1. New MEXICO WT model rotor blade airfoils.

Radius [m] r/R Airfoil

0.45–1.025 20–45% DU91-W2-250

1.225–1.475 55–65% RISØ A1-21

1.675–2.25 75–100% NACA 64418
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Table 4.2. New MEXICO WT model rotor blade radial distribution of twist and chord.

Radius [m] Twist [
◦
] Chord [mm]

0.21 0 195

0.23 0 195

0.235 0 90

0.300 0 90

0.375 8.2 165

0.450 16.4 240

0.675 12.1 207

0.900 8.3 178

1.025 7.1 166

1.125 6.1 158

1.225 5.5 150

1.350 4.8 142

1.475 4.0 134

1.575 3.7 129

1.675 3.2 123

1.800 2.6 116

2.025 1.5 102

2.165 0.7 92

2.193 0.469 82

2.232 0.231 56

2.250 0.0 11

4.1.2 Numerical investigation

In this section, a detailed calibration of the most significant numerical parameters

involved in the computational set–up of the hybrid model is performed; namely, the blades’

surface grid, the time–step value and the PM discretization length.

Blade Surface Grid Dependency Analysis

First, the blades surface grid is investigated in the Eulerian solver framework. The domain

is a cylinder of a 20 rotor diameters (20D) length (5D upstream and 15D downstream) and

a 10D radius (see Figure 4.2). In order to take into account the near–wake effect on the

aerodynamic loads, the region close to the rotor blades is kept fine. This (blue rectangle

in Figure 4.2) is a cylindrical region that extends up to 1D upstream, 3D downstream,

and 1D radially from the rotor hub center, so that the wake expansion fits in. These

simulations consider that the whole grid is rotating about the rotor hub center.
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Figure 4.2. Lateral view of the computational domain (cylinder) used by the Eulerian solver

(MaPFlow) for the axial test case no. 266 of the New MEXICO experimental campaign. A

fine region is considered around the rotor (blue box), so that the effect of near wake fits is.

This region is chosen to reach up to 1D upstream, 3D downstream and 0.75D radially from

the rotor center, in order to also account for wake expansion. The outer region of the grid

extends up to 5D upstream, 15D downstream and 10D radially.

Results from three different blade grids are reported, employing 5280, 20350 and

56260 surface cells for the blade discretization. In the coarse grid, 66 cells describe the

airfoil shape and 80 cells cover the span–wise direction. Similarly, in the medium and

fine surface grids, 110 × 185 and 194 × 290 surface elements are employed respectively.

The corresponding total amount of grid cells are 1.4 · 10
6
, 4.8 · 10

6
and 11 · 10

6
cells,

respectively. The integrated rotor loads produced by the three grids are presented in

Table 4.3. The coarse blade discretization underestimates the thrust value by ' 3.8%
and the torque by ' 13.9% with respect to the finest grid, whereas the corresponding

differences for the medium blade discretization are 2.3% and 3.9%, respectively. Based

on the above, the medium surface blade discretization (110 × 185 blade surface cells

and 4.8 · 10
6

total amount of cells) provides a reasonable compromise between accuracy

and computational cost. For this reason, the specific set-up is used in the following

simulations. It also needs to be stressed, that due to the early presence of trip–tapes in

the experimental set–up, at 10% of the chord on both the pressure and suction sides of

the blade, fully turbulent simulations are conducted.
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4.1 Aerodynamic analysis of a WT rotor

Table 4.3. New MEXICO WT model rotor thrust and torque estimation by the Eulerian solver

(MaPFlow) with respect to different blade surface grids. The test case is the run no. 266 of

the experimental campaign. Reference values correspond to finest grid results. The medium

blade discretization 110 × 185 is preferred to the rest, as it provides a good compromise

between accuracy (concerning integrated rotor loads estimation) and computational cost.

chord × span (overall) Thrust Torque

66 × 80

(
1.4 · 10

6
cells

)
−3.8% −13.9%

110 × 185

(
4.8 · 10

6
cells

)
−2.3% −3.9%

194 × 290

(
11 · 10

6
cells

)
1875.2 [N] 317.55 [Nm]

Time–step Dependency Analysis

In order to investigate how the selected time–step affects the aerodynamic loads, a number

of different time–step values (dt) have been tested. As one may see in Table 4.4, the time–

step values have been defined with reference to the rotor rotation period (T ) (certain

number of time steps per revolution). All the listed time–step values provide acceptable

results as the greatest differences shown are an ' 2% under–estimation of the thrust value

at dt = T/360 and an ' 1.8% over–estimation of the torque at dt = T/720. However, the

final choice of the time–step value for the hybrid solver simulations is also dependent on

the grid discretization because of the CFL condition, as will be pointed out in the next

paragraphs.

Table 4.4. New MEXICO WT model rotor thrust and torque estimation by the Eulerian solver

(MaPFlow) with respect to different time–step values. The test case is the run no. 266 of

the experimental campaign. Reference values correspond to finest time–step value results.

All the different time–step values produce similar results. dt = T/360 and dt = T/720 (T

is the rotor revolution period) show the greatest discrepancies concerning thrust and torque

estimation respectively.

Thrust Torque

dt = T/360 −2.0% +0.3%
dt = T/720 −0.1% +1.8%
dt = T/1440 −0.9% +1.1%
dt = T/2880 −0.2% +1.4%
dt = T/5760 1846.6 [N] 301.79 [Nm]

HoPFlow Grid set–up

In the hybrid solver simulations, the Eulerian sub–domain is restricted to a narrow region

around the rotor blades. In particular, it consists of cylinders that surround the rotor

blades and extend at least up to one local chord away from the largest section of the

blade, as is recommended in [148] and illustrated in Figure 4.3. The greatest chord

length of the specific blade is approximately 240 mm at 20% of its radius. The Eulerian

grid consists of hexahedral cells (structured-type) close to the blade surface in order to

better represent the boundary layer properties, whilst it is unstructured at the rest of

the domain. Another numerical parameter that needs to be considered is that the largest

dimension of the Eulerian cells should not exceed the PM discretization length. Otherwise,
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the number of Eulerian particles (particles generated within the Eulerian grid) may not

be sufficient to ensure dense population within the PM grid. Typically, this restriction

concerns the surface discretization of the Eulerian sub–domain far–field (SE); however,

care needs to be taken of the span–wise discretization of the blade as well. This justifies

the great number of cells used in the span–wise direction of the blade surface grids that

were tested before. The Eulerian sub–domain that is used in the hybrid solver simulations

consists of 4.1 millon computational cells.

The Lagrangian sub–domain is defined as a box that covers the entire computational

domain, extending from 1D upstream up to 2.5D downstream and 1D radially about the

rotor hub center. In Figure 4.4, the placement and the extent of the two sub–domains is

depicted. As stated in Section 2.2.2, the Lagrangian sub–domain is discretised with the

use of the PM technique and by employing uniform Cartesian grids. The different values

of the PM discretisation length (DXpm) were chosen to vary proportionally to the local

chord length at 75% of the blade radius, which is approximately 120 mm and, from now

on, will be denoted by c.

Figure 4.3. The Eulerian sub–domain defined in the hybrid solver (HoPFlow) simulations

consists of cylindrical sections around the rotor blades and totals 4. · 10
6
1 computational

cells. The cylindrical sections extend at least 1 local chord away from the largest section of

the blade (at ' 20%R). The region close to blade surface is of structured type (hexahedral

cells) in order to accurately resolve the boundary layer. The characteristic length of the

largest Eulerian cells (typically located at the far–field SE of the Eulerian sub–domain) does

not exceed the PM discretization length.
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Figure 4.4. Visualization of the Lagrangian and the Eulerian sub–domains in the hybrid

solver simulations. Details for the Eulerian sub–domain can be found in Figure 4.3. The

Lagrangian sub–domain is a box that extends 1D upstream, 2.5D downstream and 1D

radially from the rotor hub center.

It also needs to be stressed, that not the actual hub geometry, as illustrated in Fig-

ure 4.5, has been modelled. The root of the blade is modeled as a cylindrical section while

the geometry of the spinner is not included in the simulations.

Figure 4.5. Hybrid solver wake visualization with Q criterion. Tower and nacelle are

omitted in the computational set–up. This allows for root vortices to be emitted in the

simulations.

155



Chapter 4. Fully resolved rotor blades using HoPFlow

PM Grid Dependency

In Table 4.5, the integrated rotor loads predicted for the different values of DXpm are

listed. Five different values of DXpm have been tested, DXpm = 1c, DXpm = 0.5c,

DXpm = 0.35c, DXpm = 0.25c and DXpm = 0.20c, which correspond to 2, 3 , ' 4, 5

and 6 PM nodes per chord, respectively. It needs to be stressed that the time–step values

employed in these simulations correspond to more than 360 steps per rotor revolution,

complying with the results of the previous time–step dependency analysis. Nevertheless,

for the hybrid solver simulations, there is one extra restriction. Since the time–marching

scheme is explicit, the time–step values need to respect the CFL condition. Consequently,

dt = T/540, dt = T/900, dt = T/1440, dt = T/1800 and dt = T/2160 have been utilized

for the DXpm = 1c, DXpm = 0.5c, DXpm = 0.35c, DXpm = 0.25c and DXpm = 0.20c

simulations, respectively.

In Figure 4.6, it is shown that the differences in the predicted rotor loads decrease

as DXpm gets smaller, with values less than DXpm = 0.35c (at least 4 points per chord

length) providing a good compromise between accuracy and computational cost. Apart

from the integrated rotor loads, the detailed description of the radial distribution of the

aerodynamic loads is also of great importance. Table 4.6 shows the normalized forces and

moments at 60% of the span, predicted by the different values of DXpm. The loads of the

specific radial position experience the highest sensitivity with respect to the numerical

parameters (this will be also shown in the next paragraphs). For this reason, the rest of

the available span–wise positions are omitted in this table. It needs to be stressed, that

the tangential normalized loads (FT/dr) and the resulting rotor Torque, are very sensitive

to changes of the numerical parameters. This is attributed to their overall small values

and to the fact that they are driven by the drag forces of the blade. As a result, in order to

obtain a grid independent solution for the blade radial distribution of aerodynamic loads,

at least 5 PM nodes per chord length (DXpm ≤ 0.25c) need to be used. However, it also

needs to be highlighted (see Table 4.5) that as DXpm gets smaller, the total number of PM

nodes increases dramatically, thus, substantially penalizing computational cost. Based

on all the above remarks, DXpm = 0.25c seems to provide the best compromise between

accuracy and computational cost.

Table 4.5. PM grid dependency analysis for New MEXICO WT model rotor simulations

with the hybrid CFD solver (HoPFlow). Rotor thrust and torque estimation for different PM

discretisation lengths DXpm . Tabulated data of Figure 4.6. Reference values correspond to

minimum value DXpm = 0.20c (c is the local chord length at 75%R) results. Time–step val-

ues have been set so that the CFL condition gets respected (T is the rotor revolution period).

PM discretization with DXpm ≤ 0.35c (≥ 4 PM points per c) provides a grid independent

solution concerning integrated rotor loads.

DXpm dt PM Nodes PM Nodes per c Thrust Torque

1c T/540 1.1 · 10
6

2 +17.7% +53.8%
0.50c T/900 7.3 · 10

6
3 +4.1% −1.3%

0.35c T/1440 23.3 · 10
6

4 +0.5% +0.7%
0.25c T/1800 52.2 · 10

6
5 +0.03% +0.25%

0.20c T/2160 123.2 · 10
6

6 1796.3 [N] 293.6 [Nm]
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4.1 Aerodynamic analysis of a WT rotor

Figure 4.6. Rotor thrust and torque estimation with respect to the number of PM nodes per

characteristic chord length (chord length at 75%R). ≥ 4 PM points per chord length provide

a grid independent solution concerning integrated rotor loads. Values printed in this Figure

are listed in Table 4.5.

Table 4.6. Normalized aerodynamic loads estimation at 60%R with respect to different

PM discretisation lengths. Reference values correspond to minimum value DXpm = 0.20c.

Loads at other radial positions are neglected, because the loads of the specific position

are the most sensitive to the numerical parameters. DXpm ≤ 0.25c is required in order to

accurately acquire the radial distribution of the aerodynamic loads.

DXpm FN/dr (60%R) FT/dr (60%R) Mtw/dr (60%R)

1c +16.06% +50.42% +18.44%
0.50c +4.15% −4.57% +8.29%
0.35c +0.98% +5.81% +1.03%
0.25c +0.42% +1.24% −1.27%
0.20c 356.8 [N/m] 35.44 [N/m] 4.876 [Nm/m]
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4.1.3 Comparison against measurements and other CFD predictions

In this paragraph, the simulation results by the Eulerian solver, MaPFlow, and the

hybrid solver, HoPFlow (DXpm = 0.25c), are compared against available experimental

data and computational predictions by other CFD solvers of similar accuracy, such as

the incompressible solver EllipSys3D [179, 180] and the compressible solver Wind Multi–

Block of CENER [181].

In Figure 4.7, the gauge pressure ( p∞ − p) distributions predicted by different CFD

solvers at various radial positions are compared against experimental measurements.

Very good agreement is observed between computational predictions and experimental

measurements at the radial stations close to the root (25%R and 35%R). A minor level

shift towards lower pressure is predicted by MaPFlow and HoPFlow on the suction side

that is attributed to the fact that the spinner geometry is not included in the NTUA

computations (see Figure 4.5). This allows for root vortices to be produced while the local

acceleration induced by the nacelle is neglected. Both predict reduced local angle of attack

(geometric angle of attack ' 14
◦

at 25%R and ' 13
◦

at 35%R) away from the stall region,

thus, reducing the pressure level at the suction side. Very good agreement is also observed

close to the tip (82%R and 92%R). The predicted and measured distributions of both the

pressure and suction sides are very close to each other. A minor difference in the suction

side pressure predictions by EllipSys3D at 92%R is attributed to the incompressible flow

equations solved along with the high local Mach number (M92%R = 0.27). Significant

discrepancies with respect to measured data are observed at the mid–span of the blade

(60%R). The pressure side predictions match very well with each other and with the

experimental values. On the other hand, the suction side pressure close to the leading

edge is underestimated by all computational models, which however agree very well with

each other. This difference is connected to the abrupt change of the airfoil profile in

the mid–span region (see Table 4.1) and to the fact that the RISØ A1-21 airfoil used

thereby has a much different zero lift angle compared to the preceding DU91-W2-250

(root) and the following NACA 64418 (tip). In [11], this is reported to be the main reason

for the systematic over–prediction of the measured suction side pressure compared to

computational predictions. The causes were not clarified during the New MEXICO project

and, for this reason, the quasi–2D polars of the stationary blade are compared to the

3D sectional characteristics of the rotating blade in Figure 4.8. A significant lift offset

of ∆CL ' 0.33 is reported at the geometric angle of attack in which the airfoil operates

in the examined test case, that justifies the reported difference between predictions and

measurements at 60%R. Whether this offset originates from the three-dimensional set–

up, a misalignment in the geometric angle of attack or the Reynolds number difference

was not clarified during the project and still remains a subject of further investigation.
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Figure 4.7. Pressure distribution at different radial positions. Comparison among compu-

tational predictions by different CFD solvers (EllipSys3D – incompressible solver, CENER

– compressible solver, MaPFlow – compressible solver, HoPFlow – compressible hybrid

Lagrangian–Eulerian solver) and experimental measurements. Very good agreement is

observed between computational predictions and measurements at the root (25%R, 35%R)

and the tip region (82%R, 92%R). The different suction side pressure prediction close to the

leading edge by the incompressible solver EllipSys3D at 92%R is attributed to the increased

local Mach number (M92%R = 0.27). The most notable discrepancies are observed at 60%R,

where the suction side pressure close to the leading edge is slightly underestimated by all

computational predictions, which however agree very well with each other.
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(a) Sectional lift at 60%R. (b) Sectional drag at 60%R.

Figure 4.8. Comparison between quasi–2D (stationary blade) and 3D (rotating blade)

sectional characteristics of the RISØ A1-21 airfoil, measured during the New MEXICO

experimental campaign. A significant offset between the quasi–2D and the 3D lift curves is

reported. The slope of the 3D lift curve is smaller. These differences cannot be fully justified

by the different Reynolds numbers and the 3D effects. Images copied from [11].

In Table 4.7 and Figure 4.9, the normal and tangential forces distribution along the

blade span are depicted where an overall good comparison is shown. It needs to be

stressed that, as in the CFD predictions, the experimental values for the aerodynamic

forces result from integrating the measured pressure distributions shown in Figure 4.7.

However, due to the low number of installed pressure taps in the experimental set–up

and the approximation of a linear variation of pressure between two consecutive taps,

a level of uncertainty is to be expected concerning the measured forces. The maximum

discrepancies with respect to the experimental values are observed about the mid–span

of the blade (60%). An ' 22% and ' 18% higher normal force is predicted by the Eulerian

and the hybrid solver respectively compared to the measured value. The corresponding

differences in the tangential force are ' 28% and ' 21%. Both are attributed to the

over–prediction of the measured suction side pressure (see Figure 4.7). Even though the

percentage differences concerning normal forces at the root of the blade (25% and 35%)

are slightly bigger, they are not considered that important. The high percentage difference

originates in the small values of the forces, whereas the absolute error in the loads esti-

mation is quite smaller. This statement is confirmed by the very good agreement shown

in the corresponding pressure distributions in Figure 4.7. Very good agreement is also

achieved at the tip region (82% and 92%), where the hybrid solver results are slightly

closer to the measured values compared to those of its Eulerian counterpart. This is the

region where the effect of the tip vortices is significant in the computations of the aerody-
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namic forces. Hence, the differences in the predicted loads are attributed to the increased

numerical diffusion of the Eulerian methodology resulting from the gradual coarsening

of the computational grid towards the far–field. Consequently, the wake is dissipated

when convected downstream, and its upstream induced effect (downwash) is not prop-

erly resolved, yielding in over–estimation of aerodynamic loads. On the other hand, the

Lagrangian formulation of the Navier–Stokes equations reduces numerical diffusion in

the off–body region. Consequently, the emitted tip vortices are effectively preserved and

the near–wake deficit is formed in greater detail, yielding in a more physical representa-

tion of the downwind flow–field with increased axial induction and, thus, reduced loads

compared to the Eulerian solver predictions.

The latter statement is also verified in Figure 4.10, where wake velocity predictions by

HoPFlow and MaPFlow are compared to measurements. In particular, the axial velocity

distribution (parallel to the direction of the wind), predicted at constant span–wise posi-

tions is presented. For the radial position of 1.4 m (' 60%), both the Eulerian and the

Lagrangian solver provide acceptable predictions. The Eulerian solver predicts slightly

higher values of the axial velocity downstream (reduced near–wake deficit) and is closer to

the measurements of the New MEXICO experiment, whereas the hybrid solver agrees with

the measurements of the old MEXICO. The two solvers are in good agreement with each

other and with the experimental measurements in the upstream region. In the second

radial position at 1.8 m (80%), the Eulerian solver predicts higher values for the axial

velocity downwards, whereas the hybrid solver results agree with both experimental mea-

surements, not only in the predicted level but also in the slope of the downstream axial

velocity variation. This shows that, opposed to the predictions of its Eulerian counter-

part, the wake deficit formed in the hybrid solver simulations is close to the one formed

during the wind tunnel experiment. The differences are again attributed to the reduced

numerical diffusion of the Lagrangian–Vorticity formulation of the hybrid solver in the

near–wake region that preserves the wake structures with greater success. Of course,

numerical diffusion is an inevitable feature of all numerical methodologies and cannot be

completely eliminated. In particle methods, remeshing is the main source of numerical

diffusion and it gets increased alongside with the PM grid spacing.

Finally, in Table 4.8, the measured and computationally predicted rotor loads are

listed. The hybrid solver seems to predict a thrust value that is closer to the measured

value (overestimated by ' 9%), as compared with the Eulerian solver (overestimated by

' 13%). Better agreement with measurements is achieved in torque prediction by both

computational tools (HoPFlow under–predicts the torque value by ' 7% and MaPFlow by

' 4%).

To sum up, simulations results by various CFD solvers are very close to measure-

ments in the root and tip regions. Small discrepancies are reported in the mid–span of

the blade, which are attributed to the over–prediction of the measured suction side pres-

sure. However, computational predictions agree very well with each other. The tip region

loading dictates the overall loading and performance of the rotor. This explains why the

differences in the integrated rotor loads are not substantial. The slightly smaller values

of aerodynamic forces (closer to the experimental ones) predicted by the hybrid solver are
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attributed to the reduced numerical diffusion and, thus, the increased wake induction

due to the Lagrangian formulation used in the off–body region.

Table 4.7. Radial distribution of normal and tangential forces. Comparison between

computational predictions and experimental measurements. Tabulated data of Figure 4.9.

Reference values correspond to experimental measurements. The hybrid solver predicts re-

duced aerodynamic forces compared to the Eulerian ones at all the different radial positions

that overall are closer to the measured values. This is attributed to the increased numerical

dissipation of the Eulerian formulation in the wake region that ends up in reduced wake

induced velocities.

FN [N/m] FT [N/m]

Radius Measurements MaPFlow HoPFlow Measurements MaPFlow HoPFlow

25% 119.0 +29% +25% 31.98 −11% −14%
35% 198.1 +8% +7% 27.23 +21% +14%
60% 303.4 +22% +18% 29.76 +28% +21%
82% 421.9 +6% +3% 44.22 +7% +2%
92% 452.9 +1% −1% 43.37 +7% +4%

(a) Normal forces radial distribution. (b) Tangential forces radial distribution.

Figure 4.9. Radial distribution of normal (a) and tangential (b) forces. Comparison among

computational predictions by different CFD solvers (EllipSys3D – incompressible solver,

CENER – compressible solver, MaPFlow – compressible solver, HoPFlow – compressible

hybrid Lagrangian–Eulerian solver) and experimental measurements. The NTUA results

printed in this Figure are listed in Table 4.7. Good agreement is observed at most radial

positions. At 60%R where the differences from measured values are greatest, the compu-

tational models predictions agree well with each other. Overall, HoPFlow predicted loads

are lower compared to MaPFlow and CENER (the two compressible Eulerian solvers) and

slightly closer to the experimental values. Underestimation of loads by EllipSys3D at most

radial positions (even compared to measured values) is attributed to solving the incompress-

ible flow equations.
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Figure 4.10. Axial velocity distribution at constant radial positions r = 1.4 m (left) and

r = 1.8 m (right). X and Y axes have been normalized with rotor diameter D = 4.5m

and free-stream velocity U∞ = 14.7m/s respectively. Comparison between computational

predictions and experimental measurements. Good agreement is observed in the upstream

region at both radial positions. The Eulerian solver predicts higher values for the axial

velocity in the downstream (wake) region. This is attributed to the increased numerical

diffusion of the Eulerian formulation. Moreover, the slope of the axial velocity reduction

downstream of the rotor (wake deficit) is fairly captured by the hybrid solver, opposed to

the Eulerian one. This is again associated with the reduced numerical diffusion of the

Lagrangian–Voricity formulation of the hybrid solver in the wake region that preserves the

wake structures more efficiently than the Eulerian finite volume approach.

Table 4.8. Thrust (N) and Torque (Nm) estimation of New MEXICO WT model rotor for the

axial case of run no. 266. Comparison between computational predictions (produced by

the hybrid CFD solver HoPFlow and its Eulerian counterpart MaPFlow) and experimental

measurements. Reference values correspond to measured values. Thrust is overestimated

by both computational models, with the hybrid solver predictions being closer to the ex-

perimental measurements. Torque is better predicted but slightly underestimated by both

computations. The overall reduced integrated loads predicted by the hybrid solver com-

pared to its Eulerian counterpart are attributed to the increased wake downwash, due to

the reduced numerical diffusion of the Lagrangian formulation in the wake region.

Thrust Torque

MaPFlow +13% −4%
HoPFlow +9% −7%

measurements 1620.1 [N] 319.33 [Nm]
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4.1.4 Computational Requirements

In Table 4.9, a comparison concerning the computational cost of the Eulerian and

two hybrid solver simulations is made. In the former, a coarse PM grid (DXpm = 0.50c)

has been used, whereas in the latter, the fine PM grid (DXpm = 0.25c) has been used, in

which the PM grid dependency analysis resulted. It is noted that the PM grids for which

computational costs are presented result in similar forces predictions, within a 5% margin

(see Table 4.6). Due to the usage of uniform PM grids, even the coarse discretization length

ends up in approximately 2 times more computational elements than the ones used in

the Eulerian solver simulation, which rises to 12 times if the fine discretization length

is employed. Nevertheless, the Eulerian solver simulation needs more rotor revolutions

in order to achieve convergence of aerodynamic loads. This is because the Lagrangian

method exactly satisfies the boundary conditions at infinity, and therefore, the required

number of revolutions for the convergence of the loads depends only on the distance

that the wake has traveled away from the rotor disk plane. On the other hand, in the

Eulerian simulation, the convergence rate depends on the extent of the domain, which

dictates the reflection of the numerical errors and the coarsening of the grid in the far–

field, which regulates their decay rate. The differences in the utilized time–step values

(expressed as steps per rotor revolution) come from the fact the CFL condition needs to

be respected in the hybrid simulations, as no preconditioning has been applied to the

Lagrangian formulation of the flow equations (2.80). This explains the greater number

of steps per revolution required by the fine grid simulation. Even though the amount of

PM nodes used in the fine grid simulation is an order of magnitude greater than the ones

used in the coarse grid simulation, the computational time–lengths of the time–steps are

comparable. This is due to the fact that in the coarse grid simulation, more sub–iterations

are needed to accomplish a converged time–step solution. Furthermore, fewer processors

have been used in the specific simulation. Overall, the computational cost of the coarse

PM grid hybrid simulation is 1.4 times higher than that of the Eulerian solver simulation,

whereas the fine PM grid hybrid simulation costs 5.7 times more than the Eulerian one.

In Figure 4.11a, the normal force distribution computed by the three different sim-

ulations is depicted. The distributions predicted by the Eulerian and the coarse grid

hybrid simulation are close to each other, whereas the distribution predicted by the fine

grid hybrid simulation is slightly closer to the experimental values. In Figure 4.11b, the

pressure distribution at 60% of the blade is depicted. The coarse grid hybrid simulation

results exhibit a small shift towards lower pressure with respect to measured data–sets

and other predictions, which results from the insufficient density of the PM grid used.

However, these deviations in pressure do not significantly affect the overall aerodynamic

force prediction.
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Table 4.9. Computational cost comparison among Eulerian and two hybrid solver simula-

tions, with coarse and fine PM. Due to uniform PM discretization implemented in HoPFlow,

the coarse and fine PM simulations end up in 2 and 12 times more computational elements

than the Eulerian simulation respectively. Nevertheless, the predicted aerodynamic loads

are within 6% according to Tables 4.6 and 4.7 and Figure 4.11, with the coarse PM being

slightly closer to fine PM results and experimental values. Time–step values employed in

the hybrid simulations are smaller than the Eulerian one due to the CFL condition that

needs to be respected in order to successfully solve the non–preconditioned Lagrangian

equations of the flow. However, satisfying the exact boundary conditions in the Lagrangian

sub–domain far–field leads to greater convergence rate and less number of rotor revolutions

needed in the hybrid solver simulations. Consequently, the total computational costs of

the three simulations are comparable, with the Eulerian simulation having approximately

double computational cost per element compared to the hybrid simulations.

Solver Computational

Elements

Revolutions
Steps

Revolution

Sec

Step

Sub − Iterations

Step
Processors Corehours

MaPFlow 4.8M
a

10 1440 3.5 9 480 6720

HoPFlowcoarse 7.3M
b + 4.1M

a
6 900 76.75 17 80 9210

HoPFlowfine 52.2M
b +4.1M

a
6 1800 81 9 120 38,800

a
Number of computational cells.

b
Number PM nodes.

(a) Radial distribution of normal forces. (b) Pressure distribution at 60% of the blade.

Figure 4.11. Comparison of aerodynamic forces between computational predictions and ex-

perimental measurements. According to Table 4.9, the simulations experience comparable

computational costs. In turn, the predicted aerodynamic loads (a) and pressure distribution

(b) are close to each other, with the fine PM results being slightly closer to experimental

values.
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4.2 Aeroelastic analysis of a helicopter rotor

In this section, aeroelastic simulations of the MR of a BO105 helicopter model are

presented. HoPFlow is used for the aerodynamic analysis, in which the rotor blades are

fully resolved. The fuselage and rotor hub geometries are omitted in the simulations.

The structural dynamics analysis is performed through GAST and the rotor blades are

modelled as beam assemblies, in order for non–linear geometric phenomena to be properly

accounted for. The aerodynamic and structural problems are solved separately, but

tightly coupled. The test case is the Base–Line case of the HARTII experimental campaign

[13], which is a descent flight at 33 m/s. First, the most important numerical parameters

(grid set–up and resolution, time–step value, # dual–steps) are examined. The produced

aeroelastic results (wake geometry, aerodynamic loads at 87% radial station, structural

loads close to the blade root and the corresponding deflections at the blade tip) are then

compared against experimental measurements and computational predictions extracted

from other CFD based aeroelastic simulations performed. The corresponding structural

dynamics analyses are based on beam models as well. Results from these computational

predictions are copied from [163, 164].

4.2.1 The HARTII experimental campaign

The second higher Harmonic control and Aeroacoustic Rotor Test (HARTII) was per-

formed in October 2001, in an open–jet facility of the German-Dutch wind tunnel (DNW)

as a joint effort of the U.S. Army Aero-Flight Dynamics Directorate (AFDD), NASA Lang-

ley (NL), German Aerospace Center (DLR), French Aerospace Lab (ONERA) and DNW to

generate a comprehensive database of wake geometry, aerodynamic and structural loads,

blade deflections and acoustic radiation measurements. The objective was to provide a

comprehensive experimental database for code validation and technical interchange of

expertise in rotorcraft analysis and modelling. The model rotor was a 1 : 2.45 Mach and

dynamically scaled BO105 hingeless rotor operating in descent flight conditions in which

strong Blade Vortex Interaction (BVI) is expected.

A detailed description of the HARTII data and how they were measured is available

in the test documentation [13] and has been reported in numerous papers and reports

[182, 183, 184, 185, 186]. A subset of the data has been released to the international

community in 2005 with the opening of the HARTII International Workshop. Since then

numerous workshops have been held at both the European Rotorcraft Forum (ERF) and

the Annual Forum of the American Helicopter Society (AHS) with increasing participation

from rotorcraft research establishments and the industry worldwide. The database of the

HARTII project are now accessible via www.dlr.de/ft/HART-II.

The operational conditions used in the workshop were two Higher Harmonic Control

(HHC) cases (a Minimum–Noise and a Minimum–Vibration case) and a Base–Line case

without HHC. The most important variables that determine the conditions for the Base–

Line case of the HARTII experimental campaign are listed in Table 4.10.
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4.2 Aeroelastic analysis of a helicopter rotor

Table 4.10. Summary of the simulation conditions for the HARTII Base–Line case.

Characteristic Symbol Value

Rotor geometry

Rotor radius R 2 m

Blade chord c 0.121 m

Number of blades Nb 4

Rotor solidity σ 0.077

Non–dim. root cut–out ra 0.22

Non–dim. zero twist radius rtw 0.75

Blade linear twist Θtw −8
◦
/R

Airfoil modified ∼ trailing edge tab NACA23012

Tab length tL 5 mm

Tab thickness tth 0.9 mm

Wind tunnel data

Air pressure p∞ 100.97 kPa

Air temperature T∞ 17.3
◦
C

Air density ρ∞ 1.2055 k/m
3

Speed of sound c∞ 341.7 m/s

Wind speed V∞ 32.9 m/s

Mach number M∞ 0.0963 m/s

Operational data

Rotational speed Ω 109.12 rad/s

Hover blade tip Mach number Mh 0.639 rad/s

Rotor shaft angle of attack as 5.3
◦

Wind tunnel interference angle ∆as −0.8
◦

Advance ratio µ 0.151

Rotor thrust T 3300 N

Roll moment (positive advancing side down) Mx 20 Nm

Pitch moment (positive nose up) My −20 Nm

Rotor power P 18.3 kW

Collective control angle Θcoll 3.8
◦

Lateral cyclic control angle Θc 1.92
◦

Longitudinal cyclic control angle Θs −1.34
◦

Mean steady elastic tip torsion Θel −1.09
◦
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4.2.2 Numerical investigation

The objective of this section is to assess the effect of the grid and the time–step on

the aerodynamic loads predictions. To this end, the measured normal aerodynamic force

(CNM
2
) and twisting moment (CMM

2
) at 87%R radial station are the reference. Because of

that, aeroelastic simulations are used. For a fair comparison with the experimental mea-

surements, the control angles (collective and cyclic pitch) of the simulations are trimmed

based on a feedback control algorithm in order to match the predicted hub loads (thrust

force, pitching and rolling moment) to the measured ones.

Eulerian grid set–up

In the standard approach followed in HoPFlow simulations, every aerodynamic body has

its own near–body Eulerian grid, typically of unstructured type, following its motion (rigid

body motion and elastic deflections). The off–body region is filled with particles and the

field communication is applied by solving the Navier–Stokes equations in a Lagrangian

approach. In order to compute the convectional terms of the particles in accuracy, the

off–body region is discretized in a uniform Cartesian stationary grid called Particle Mesh

(PM). This concept is illustrated in Figure 4.12a and resembles the standard Overset grids

approach followed in Eulerian CFD. From now on, this grid structure will be referred to

as the “blades” set–up.

In order to estimate the grid resolution effect on the computed aerodynamic loads,

different values of PM discretisation lengths (DXPM ) need to be tested, starting from DXPM =

c/4. However, the use of uniform PM in the current HoPFlow implementation does not

allow for finer grid resolutions to be tested, as the resulting number of PM nodes explodes

and, thus, computational cost becomes prohibitive. To circumvent this problem, the

different rotor blades are incorporated within a single Eulerian disk–shaped grid that is

confined in a narrow region close to the rotor and extra grid refinement is applied on

the Eulerian disk. The Eulerian disk follows the rotor motion (rigid body motions that

are common for all the blades), such as helicopter attitudes and azimuthal rotation. The

motion that is different for every blade (pitching motion and elastic deflections) is projected

from the blade surface nodes to the internal nodes of the disk by following the Zhao

deforming grid method (see Section 2.2.1.4). This concept is illustrated in Figure 4.12b

and, from now on, will be referred to as the “disk” set–up.

In both cases of the Eulerian grid sub–domains (“blades”, “disk”), only the pure aero-

dynamic part of the blades is modelled. The blade holder (elliptical form), the hub cylinder

and the fuselage are omitted in the simulations. The PM grid is defined as a box that en-

capsulates the entire computational domain, extending 1.5R upstream, 3R downstream,

1.5R transversely, 0.5R towards the top and 1R towards the bottom from the rotor hub

center. It is discretised by employing uniform Cartesian grids under a constant dis-

cretization length of DXpm = c/4. Larger domains have been tested, but no significant

differences are found.
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4.2 Aeroelastic analysis of a helicopter rotor

(a) “blades” set–up. Every blade has its own

Eulerian grid, confined in a narrow region

around it and separate from the other blade–

fitted grids. Their interaction (field communi-

cation) is accounted for through the PM (La-

grangian background grid). The rigid body mo-

tion (e.g. azimuthal rotation, pitching motion)

and elastic deflections of a blade are trans-

ferred from the surface nodes to the rest of its

blade–fitted Eulerian grid nodes.

(b) “disk” set–up. A single Eulerian domain

contains all the blades. Their interaction (field

communication) is accounted for directly by the

Eulerian solver. The Eulerian disk follows the

rigid body motions that are common for all the

blades (e.g. helicopter attitudes, azimuthal

rotation). Individual rigid motion and elastic

deformations are extrapolated from the blade

surface to the space and the grid is accordingly

deformed.

Figure 4.12. Different grids set–up employed in helicopter main rotor aerorelastic simu-

lations using HoPFlow. Black solid lines indicate the boundaries of the PM used in the

Lagrangian sub–domain. PM is a box that extends 1.5R upstream, 3R downstream, 0.5R to

the top, 1R to the bottom and 1.5R to the lateral sides of the rotor center. In “blades” set–up

(a) the space between the different blades is discretized solely in a PM with DXPM = c/4,

whereas in “disk” set–up (b) the rotor blades are inside a finer single Eulerian sub–domain

(disk formed) with DXEul = c/8, c/12, c/16.

In this way the region close to the rotor may by refined within the Eulerian framework,

by following a similar approach to the one used in Section 3.1.2.3 for the Actuator Line (AL)

cases. This is depicted in Figure 4.13. It needs to be stressed, that in the following

analyses, uniform grid spacing has been adopted throughout the whole Eulerian disk

and its characteristic length is denoted by DXEul. Moreover and contrary to the “blades”

set–up, the interaction between the rotor blades (field communication) is accounted for

directly by the Eulerian solver. No intermediary intervention of the Lagrangian sub–

domain is needed, which is solely assigned with the task of providing far–field boundary

conditions at the boundaries of the disk. Consequently, no information is lost through the

interpolation schemes used to transfer the flow–field information from one sub–domain to

the other. Consequently, numerical diffusion is reduced, not only due to grid refinement,

but also due to minimizing the transfer of the flow information from one sub–domain to

the other. This is clearly shown in Figure 4.14, where the vorticity structures created

in the early steps of an aeroelastic simulation are compared between the ‘blades” and

‘disk” set–ups. The vorticity contours shown are extracted from the same PM background

grid. Yet, the corrections in the Eulerian near–body region drastically reduce numerical
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diffusion when the ‘disk” set–up is employed. On the other hand, the Eulerian corrections

are less efficient in the ‘blades” set–up.

Figure 4.13. Close to solid boundaries grid set–up. Comparison between the fineness of

discretization in the rotor region. In “blades” set–up (down) the space between the different

blades is discretized solely in a PM with DXPM = c/4, whereas in “disk” set–up (up) a much

finer discretization is accomplished through an Eulerian sub–domain (disk formed) with

DXEul = c/8, c/12, c/16 < DXPM .

Figure 4.14. Vorticity contours in the close to solid boundaries region. By employing a

fine Eulerian sub–domain (“disk” set–up) the diffusion of the near wake vortices is reduced

compared to the coarse PM used in “blades” set–up.
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4.2 Aeroelastic analysis of a helicopter rotor

Grid dependency

In Table 4.11, the mean values of the normalized aerodynamic loads predictions are listed

with respect to different grid refinement attempts. The blade surface grid used in these

simulation consists of 14308 elements, 138 cells to describe the airfoil shape and 100

cells in the span–wise direction. 720 time–steps have been used in rotor revolution,

each divided in 8 dual–steps. The corresponding control angles and the torsion angle

at the blade tip are listed in Table 4.12. The azimuthal variation of the normalized

aerodynamic loads is depicted in Figure 4.15. The medium Eulerian disk set–up provides

a grid independent solution and a good compromise between accuracy and computational

cost at DXPM = c/4 and DXEul = c/12. The difference from the fine disk set–up is −0.6%
for CNM

2 and −1.2% for CMM
2. A significant level difference is reported with respect to

the measured values that gets minimized as the grid gets finer for CNM
2

(up to ' −8%
for the fine disk set–up). Small improvement from grid refinement is reported for CMM

2

which is predicted almost twice (in absolute) the measured one (' −70%). This brings

about an almost double value for the tip torsion angle (' 1.5
◦

difference), which, in turn,

explains the ' 1
◦

difference in the collective pitch angle. Good agreement is observed in

the cyclic pitch amplitudes (< 0.5
◦

difference). For this reason, an overall good agreement

is reported in trend of the azimuthal variation of the aerodynamic loads in Figure 4.15.

The great difference in the aerodynamic twisting moment is frequent for most CFD

based predictions, as shown in Section 4.2.3. This is attributed to the tab that has been

used in the airfoil profile of the rotor blades in order to confine the increase of CM with

the angle of attack. Due to the small length of the tab (' 4%c), a great number of points

is expected to be required in the trailing edge region to effectively predict its aerodynamic

effect, thus, implying increased computational cost. Hence, if the tab is poorly resolved a

level difference in the torsion angle is to be expected. Increasing the collective pitch during

the trim procedure, seems to be a reasonable engineering compromise. The reduced

mean value of the aerodynamic normal force at 87% is also frequent for most CFD based

predictions. In the NTUA predictions, it is related to the poor prediction of the BVI in the

advancing side of the rotation (0
◦ − 90

◦
).

In Figure 4.15a, we see an overall better agreement with the experimental measure-

ments when the disk set–up is employed in HoPFlow simulations. BVI induced variations

of the aerodynamic loads show up in the 1
st

and 4
th

quadrants, although less pronounced

compared to measurements, especially in the 0
◦ − 60

◦
region. Moreover, the local peaks

at 70
◦

and 250
◦

are predicted closer to the measured values. These are attributed to

the reduced numerical diffusion brought about by the disk set–up, as explained in para-

graph 4.2.2. Grid refinement in the Eulerian sub–domain efficiently leads to a grid inde-

pendent solution. Small differences remain with respect to experimental measurements,

that are not attributed to the grid resolution. This indicates the effect of another phys-

ical mechanism, apart from numerical diffusion, that weakens BVI, especially in the 1
st

quadrant. This is examined in detail in Section 4.2.3.
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Table 4.11. Variation of the number of grid cells and normalized aerodynamic loads with

increasing the refinement of the Eulerian sub–domain. Reference values correspond to ex-

perimental measurements. A small difference in the mean value of the normal aerodynamic

force is reported (' 10%). A significant difference is shown in the mean value of the twist-

ing moment (' 70%). Grid refinement in the Eulerian sub–domain (disk set–up) does not

significantly improve the predicted mean values.

Discretisation # Eulerian cells CNM2 CMM2

HoPFlow blades DXPM = c/4 4.8M −14.1% −80.8%
HoPFlow disk coarse DXPM = c/4 & DXEul = c/8 6.16M −10.3% −71.9%

HoPFlow disk medium DXPM = c/4 & DXEul = c/12 12.45M −9.0% −70.4%
HoPFlow disk fine DXPM = c/4 & DXEul = c/16 26.65M −8.3% −68.8%

Experiment - − 0.0902 −0.0026

Table 4.12. Control angles comparison among trimmed simulation values for different

Eulerian sub–domains. The computationally predicted CMM
2 is almost twice (in absolute)

the measured one (see Table 4.11). This almost doubles the predicted tip torsion angle

(' 1.5
◦

difference), that, in turn, leads to an ' 1
◦

increase in the collective pitch angle. Good

agreement (< 0.5
◦

difference) is observed in the cosinus pitch amplitude. This difference

is slightly greater in the sinus pitch amplitude, however it gets smaller as the Eulerian

sub–domain gets finer.

collective cos sin tip torsion

HoPFlow blades 4.83
◦

1.45
◦ −0.55

◦ −2.74
◦

HoPFlow disk coarse 4.81
◦

1.63
◦ −0.78

◦ −2.60
◦

HoPFlow disk medium 4.81
◦

1.58
◦ −0.91

◦ −2.58
◦

HoPFlow disk fine 4.68
◦

1.50
◦ −0.97

◦ −2.57
◦

Experiment 3.8
◦

1.92
◦ −1.34

◦ −1.09
◦

*

* Averaged over all four blades.
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4.2 Aeroelastic analysis of a helicopter rotor

(a) Non–dimensional normal aerodynamic

force at 87% radial station. A small level

difference in the 1
st

and 4
th

quadrants is

reported between the predictions and exper-

imental measurements. This explains the

mean value differences reported in Table 4.11.

Better agreement is shown in the 2
nd

and 3
rd

quadrants where the level is fairly well pre-

dicted (maximum at 250
◦

slightly underesti-

mated in blades set–up) but with an ' 20
◦

phase lag of the minimum (minimum at 180
◦

(blades) , 170
◦

(disk) and 155
◦

(measure-

ments)). Disk set–up results predict mild BVI

(compared to measurements) in the 1
st

and 4
th

quadrants, whereas in blades set–up the BVI

induced variations of the aerodynamic force

are almost completely damped.

(b) Non–dimensional aerodynamic twisting

moment at 87% radial station. A level dif-

ference is reported between the computational

predictions and experimental measurements

(' −80% (blades) and ' −70% (disk)). The

variations trend is fairly predicted by the disk

set–up, apart from the 120
◦ − 210

◦
curvature

which is almost completely flattened. The BVI

in the 1
st

and 4
th

quadrants are fairly pre-

dicted by the models, with a minor phase lag

in the 4
th

quadrant.

Figure 4.15. Non–dimensional normal aerodynamic force (a) and twisting moment (b)

at 87% radial station. Comparison among HoPFlow predictions under different Eulerian

sub–domains and experimental measurements. Computational predictions are improved

when the disk set–up is employed. No great improvements are reported as the Eulerian

sub–domain (disk set–up) gets finer.

Blade Surface Grid dependency

In Table 4.13, the mean values of the normalized aerodynamic loads predictions are

listed with respect to different blade surface grid refinement attempts. The corresponding

control angles and the torsion angle at the blade tip are listed in Table 4.14. The azimuthal

variation of the normalized aerodynamic loads is depicted in Figure 4.16. Three different

blade grids have been tested, employing 7324, 14308 and 28224 surface cells for every

blade discretization. In the coarse grid, 96 cells were used to describe the airfoil shape

and 70 cells were used in the span–wise direction, whilst in the medium and fine grids,

the corresponding number of cells were 138 × 100 and 201 × 130, respectively. The

corresponding total amount of grid cells are 12.42, 12.45 and 14.84·10
6

cells, respectively.

In these simulations, 720 time–steps have been used in rotor revolution, each divided in

8 dual–steps. Again, no great improvements are observed as the blade surface grid gets

finer, especially in CNM
2

predictions, indicating the effect of a physical mechanism (not

numerical convergence) on the reported differences. The twisting moment level shifts
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towards the measured one, but no great improvement is reported. An excessive grid

refinement could possibly bridge the gap (' 70%), but the computational cost would rise

prohibitively. As stated in the previous paragraph, the increase of the collective pitch angle

through the trimming procedure seems like an affordable engineering remedy. Finally,

no crucial differences are observed among the different blade grids concerning the the

azimuthal variation of the aerodynamic loads. As a result of the above, the medium

blade surface grid is considered to provide the best compromise between accuracy and

computational cost.

Table 4.13. Variation of number of surface panels and normalized aerodynamic loads

with increasing the refinement of blade surface grid. Reference values correspond to ex-

perimental measurements. All the different surface grids have been tested by employing

the medium disk set–up (Eulerian sub–domain grid). A small difference in the mean value

of the normal aerodynamic force is reported (' 10%). A significant difference is shown

in the mean value of the twisting moment (' 70%) that gets smaller as the blade surface

grid gets finer. Nevertheless, the differences among the various blade surface grids are not

considered to be crucial.

# Eulerian cells # surface panels CNM2 CMM2

HoPFlow blade grid coarse 12.42M 7324 −10.8% −79.3%
HoPFlow blade grid medium 12.45M 14308 −9.0% −70.4%

HoPFlow blade grid fine 14.84M 28224 −9.3% −62.5%
Experiment - − 0.0902 −0.0026

Table 4.14. Control angles comparison among trimmed simulation values for different blade

surface grids and experimental values. The computationally predicted CMM
2 is almost

twice (in absolute) the measured one (see Table 4.13). This almost doubles the predicted

tip torsion angle (' 1.5
◦

difference), that, in turn, leads to an ' 1
◦

increase in the collective

pitch angle. Good agreement (< 0.5
◦

difference) is observed in the cosinus and sinus pitch

amplitudes.

collective cos sin tip torsion

HoPFlow blade grid coarse 4.87
◦

1.51
◦ −0.91

◦ −2.68
◦

HoPFlow blade grid medium 4.81
◦

1.58
◦ −0.91

◦ −2.58
◦

HoPFlow blade grid fine 4.74
◦

1.62
◦ −0.94

◦ −2.53
◦

Experiment 3.8
◦

1.92
◦ −1.34

◦ −1.09
◦

*

* Averaged over all four blades.
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4.2 Aeroelastic analysis of a helicopter rotor

(a) Non–dimensional normal aerodynamic

force at 87% radial station. A small level dif-

ference in the 1
st

and 4
th

quadrants is reported

between the computational predictions and ex-

perimental measurements. This explains the

mean value differences reported in Table 4.13.

Better agreement is shown in the 2
nd

and 3
rd

quadrants where the level is fairly well pre-

dicted. Local maximum at range 60
◦ − 120

◦

and minimum at 150
◦

are slightly underes-

timated by computational models, with an '

20
◦

phase lag. Maximum at 250
◦

is fairly well

predicted (slightly overestimated) by computa-

tional models. Medium and fine surface grids

are closer to measurements than the coarse

one. BVI in 1
st

quadrant is almost completely

smoothed out in computations. The respective

BVI in the 4
th

quadrant is effectively predicted,

but less pronounced along with a minor lag.

(b) Non–dimensional aerodynamic twisting

moment at 87% radial station. A level dif-

ference is reported between the computational

predictions and experimental measurements

that gets smaller as the blade grid mesh gets

finer. Overall, medium and fine grid predic-

tions are relatively closer to each other com-

pared to the coarse one. The variations trend

is fairly predicted, apart from the 120
◦ − 210

◦

curvature which is almost completely flat-

tened. The BVI in the 1
st

and 4
th

quadrants

are fairly predicted by all the different grids

(fine grid produces sharper spikes), with a mi-

nor phase lag in the 4
th

quadrant.

Figure 4.16. Non–dimensional normal aerodynamic force (a) and twisting moment (b) at

87% radial station. Comparison among HoPFlow predictions under different blade surface

grids and experimental measurements. No great differences are observed for the various

blade surface grids tested herein. Overall, medium and fine grid predictions are relatively

closer to each other compared to the coarse one.

# Dual–steps Dependency

In order to properly investigate how the selected time–step affects the aerodynamic loads,

the PM must be refined accordingly to the time–step value. Very big time–step values

(according to the PM characteristic length) cannot be used due to the CFL stability con-

dition that needs to be respected in the hybrid simulations. This is because we do not

apply preconditioning in the Lagrangian formulation of the flow equations (2.80). On

the other hand, very small time–step values cannot be used either. This is attributed to

the remeshing technique that is applied at the end of every time-step in order to recover

full coverage of the computational domain and ensure a regular distribution of the nu-

merical particles. Remeshing is a standard procedure to prevent excessive concentration

or spreading of particles and, in this way, preserve the consistency and accuracy of the

numerical solution. However, when very small time–step values are employed, it also

prevents the flow information from convecting downwards, thus, blocking the conver-
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gence of the numerical procedure. In the present study, no finer PM discretization than

DXPM = c/4 are employed, as the computational cost becomes prohibitive. Consequently,

a constant time–step value of ∆t = T/720 (T is the rotor rotation period) is employed in

all the presented simulations.

Therefore, instead of the time–step value, the number of dual–steps performed within

every time–step is tested. In Table 4.15, the mean values of the normalized aerodynamic

loads predictions are listed with respect to different number of dual–steps employed. The

corresponding control angles and the torsion angle at the blade tip are listed in Table 4.16.

The azimuthal variation of the normalized aerodynamic loads is depicted in Figure 4.17.

The blade surface grid used in these simulation consists of 14308 elements and the total

amount of grid cells that the Eulerian disk is discretized in is 12.45 · 10
6
. No great

differences are observed as the number of dual–steps increases, concerning the mean

value of the predicted aerodynamic loads (slightly improved) and the trimmed control

angles. However, when it comes to azimuthal variation of the aerodynamic loads, better

agreement with measurements regarding the phase of the BVI spikes in the 4
th

quadrant

is achieved. As a result of the above, the use of 12 dual–steps is considered to provide

the best compromise between accuracy and computational cost.

Table 4.15. Variation of normalized aerodynamic loads with increasing the number of

dual steps (# Dual–steps) used within every time–step. Reference values correspond to

experimental measurements. All the different # Dual–steps have been tested by employing

the medium disk set–up and the medium blade surface grid (Eulerian sub–domain grid). A

small difference in the mean value of the normal aerodynamic force is reported (' 10%). A

significant difference is shown in the mean value of the twisting moment (' 70%) that gets

smaller as the # Dual–steps is increased. Nevertheless, the differences among the various

# Dual–steps are not considered to be crucial.

CNM2 CMM2

HoPFlow 8 Dual–steps −9.0% −70.4%
HoPFlow 12 Dual–steps −8.3% −65.2%
HoPFlow 16 Dual–steps −7.9% −63.4%

Experiment 0.0902 −0.0026

Table 4.16. Control angles comparison among trimmed simulation values for different

number of dual steps. The computationally predicted CMM
2 is almost twice (in absolute)

the measured one (see Table 4.15). This almost doubles the predicted tip torsion angle

(' 1.5
◦

difference), that, in turn, leads to an ' 1
◦

increase in the collective pitch angle. Good

agreement (≤ 0.6
◦

difference) is observed in the cosinus and sinus pitch amplitudes.

collective cos sin tip torsion

HoPFlow 8 Dual–steps 4.81
◦

1.58
◦ −0.91

◦ −2.58
◦

HoPFlow 12 Dual–steps 4.81
◦

1.65
◦ −0.82

◦ −2.52
◦

HoPFlow 16 Dual–steps 4.80
◦

1.68
◦ −0.78

◦ −2.48
◦

Experiment 3.8
◦

1.92
◦ −1.34

◦ −1.09
◦

*

* Averaged over all four blades.
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(a) Non–dimensional normal aerodynamic

force at 87% radial station. A small level dif-

ference in the 1
st

and 4
th

quadrant is reported

between the computational predictions and ex-

perimental measurements. This explains the

mean value differences reported in Table 4.15.

Better agreement is shown in the 2
nd

and

3
rd

quadrants where the level is fairly pre-

dicted. Local maximum at range 60
◦ − 120

◦

and minimum at 150
◦

are slightly underes-

timated by computational models, with an

' 20
◦

phase lag. Maximum at 250
◦

is fairly

predicted (slightly overestimated) by computa-

tional models. BVI in 1
st

quadrant is almost

completely smoothed out in computations. The

respective BVI in the 4
th

quadrant is effectively

predicted, but less pronounced along with a

minor lag when 8 Dual–steps are used. 12

and 16 Dual–steps simulations agree well with

measurements and with each other regarding

the phase of the BVI spikes.

(b) Non–dimensional aerodynamic twisting

moment at 87% radial station. A level dif-

ference is reported between the computational

predictions and experimental measurements

that gets smaller as number of Dual–steps in-

creases. The variations trend is fairly pre-

dicted, apart from the 120
◦ − 210

◦
curvature

which is almost completely flattened. The BVI

in the 1
st

and 4
th

quadrants are fairly pre-

dicted by all the simulations results, with a

minor phase lag in the 4
th

quadrant when 8

Dual–steps are used. 12 and 16 Dual–steps

simulations agree well with measurements

and with each other regarding the phase of

the BVI spikes.

Figure 4.17. Non–dimensional normal aerodynamic force (a) and twisting moment (b) at

87% radial station. Comparison between experimental measurements and HoPFlow pre-

dictions when different number of Dual–steps are used per time–step. No great differences

are observed for the number of Dual–steps tested herein. 12 and 16 Dual–steps simulations

accomplish better agreement with measurements regarding the phase of the BVI spikes in

the 4
th

quadrant.

4.2.3 Comparison against measurements and other CFD based aeroelastic

predictions

In this section, computational results produced by the coupled HoPFlow–GAST aeroe-

lastic solver are compared against measurements and computational predictions ex-

tracted from other CFD based aeroelastic simulations. First, a comparison concerning

the natural frequencies and mode–shapes predicted by the different structural solvers is

performed. Comparison of aeroelastic predictions and measurements is made for blade

loads (aerodynamic loads and structural/reaction loads) and elastic deflections and the

results are presented as azimuthal variations. The corresponding mean values are pre-

sented in tabulated form. Furthermore, a comparison concerning the produced wake
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geometry is performed by estimating the position of specific tip vortices traces on a lateral

plane of the advancing and retreating sides. The results of computations performed by

other research centers are extracted from [163, 164], where more details can be found.

It needs to be stressed that the NTUA did not participate in the HARTII project and the

respective results have been appended to original images copied from [163, 164].

In Table 4.17 the structural dynamics and aerodynamic codes used by the different

research centers and the consortium of the HARTII project are listed. All the structural

dynamics codes are based on beam–structures modelling, whereas CFD codes are used

for the aerodynamic analyses. Short presentation of the most important features of the

individual codes is given in the following paragraphs, whereas more details can be found

in [163, 164]. It needs to be pointed out that DLR results are extracted by a less expensive

comprehensive code that has been found to be the best performing among various com-

prehensive codes in [165]. Its structural dynamics analysis is based on a modal approach,

whereas aerodynamics is estimated through semi-empirical math models for loads cal-

culations implemented within a prescribed wake context. Nevertheless, DLR results are

shown to be overall comparable with the high fidelity CFD/beam–FEM methods.

Table 4.17. Structural dynamics (beam FEM) and aerodynamics (CFD) codes used by

different groups of researchers participated in HARTII experimental campaign.

Researcher’s group Label

Structural
Dynamics

code
CFD code

U.S. Army aero/flight–dynamics dir. AFDD1 CAMRADII OVERFLOW

U.S. Army aero/flight–dynamics dir. AFDD2 RCAS Helios

NASA–Langley NL1 CAMRADII OVERFLOW

NASA–Langley NL2 CAMRADII FUN3D

Georgia Institute of Technology GIT1 DYMORE4 FUN3D

Georgia Institute of Technology GIT2 DYMORE2 GENCAS

Konkuk University KU CAMRADII KFLOW

University of Maryland UM UMARC TURNS

German Aerospace Center DLR S4 N/A

National Technical University of Athens NTUA GAST HoPFlow

Structural verification

In Table 4.18 the structural dynamics codes used by the different research centers that

participated in the HARTII project are listed. All the structural dynamics codes (except

from S4 used by DLR) model the rotor blades as beams discretized using FEM. Non–

linear phenomena are properly taken into account either implicitly (CAMRADII, DYMORE,

RCAS, UMARC), or through non–linear connections in a multi–body context (GAST).

The Campbell diagram (Figure 4.18a) and the natural frequencies computed at nom-

inal rotation speed (Figure 4.18b) show a good agreement in the lower frequencies of the
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10 lowest frequency modes depicted. Small differences occur on the higher frequencies

at all rotational velocities. These differences are not expected to play a significant role in

the aeroelastic results, as the last 3 modes (2
nd

torsion, 3
rd

lag and 5
th

flap) do not con-

tribute significantly to the overall blade deflections. Nevertheless, the NTUA model shows

an overall good agreement with other computational predictions at nominal rotational

speed, lying systematically within the scatter range. In Figure 4.19, the corresponding

mode–shapes are depicted. Again, very good agreement is observed for the first modes

whilst minor deviations occur on the higher ones. The fact that the torsional modes be-

gin from a non–zero root deflection is attributed to the pitch spring that is considered in

the root of the blade in order to represent the stiffness of the pitch link mechanism that

connects the blade with the hub. The pitch spring stiffness value is calibrated so that

a non–dimensional 1
st

torsion frequency of 3.77 is captured. The pitch spring stiffness

in the NTUA simulations is set to 800 Nm/rad, whereas the values used by the group

participants vary from 400 to 2336 Nm/rad.

Table 4.18. Structural dynamics codes (short description of discretisation method) used

by different groups of researchers.

Structural
Dynamics

code

Researcher′s
group Developer Discretization

method

CAMRADII

AFDD1

NL1

NL2

KU

commercial
non − linear

beam FEM

DYMORE
GIT1

GIT2
Georgia Institute of Technology

multi − body

non − linear

beam FEM

RCAS AFDD2 U.S. Army

multi − body

non − linear

beam FEM

UMARC UMD University of Maryland

2
nd
order

Euler − Bernouli

beam FEM

S4 DLR German Aerospace Center modal approach

GAST NTUA National Technical University of Athens

multi − body

1
st
order

Timoshenko

beam FEM
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(a) Campbell diagram. (b) Natural frequencies at 100%RPM.

Figure 4.18. BO105 model rotor natural frequencies predicted by different structural dy-

namics methodologies (beam based models) among various institutions and research cen-

ters. Very good agreement is observed among the predictions computed by all the different

structural models, especially for the lower natural frequencies, whilst minor deviations occur

on the higher ones.

Figure 4.19. Cont.
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4.2 Aeroelastic analysis of a helicopter rotor

Figure 4.19. BO105 model rotor mode–shapes predicted by different structural dynamics

methodologies (beam based models) among various institutions and research centers. Very

good agreement is observed among the predictions computed by all the different structural

models. The NTUA predictions deviate from the rest computational models results for the

5
th

flap and 3
rd

lag mode. The respective natural frequencies at nominal rotational speed

(see Figure 4.18b) are shown to be at least an order of magnitude greater than the lower

ones. For this reason, these discrepancies are not considered significant for the total blade

deflection prediction in aeroelastic simulations.

Aeroelastic analysis

In Table 4.19 the CFD based aerodynamic analysis codes used by the different research

centers that participated in the HARTII project or later workshops are listed. Both un-

structured and structured (high order) codes have been used. Moreover, Overset grids

and hybrid Eulerian/Lagrangian approaches have been employed. It is noted that the hy-

brid CFD codes used by GIT2 (GENCAS) and UMD (TURNS) follow a potential Lagrangian
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approach (Free Vortex Wake) in the off–body region, contrary to HoPFlow in which the

field communication is applied by solving the Lagrangian formulation of the compressible

Navier-Stokes equations.

Table 4.19. Aerodynamics codes (short description of discretisation method) used by

different groups of researchers.

CFD code
Researcher′s

group Developer Discretization
method

OVERFLOW
AFDD1

NL1
NASA structured NS

FUN3D
NL2

GIT1
NASA unstructured NS

Helios AFDD2 U.S. Army

Overset NS

unstructured near − body

structured off − body

KFLOW KU Konkuk University

Overset NS

unstructured near − body

structured off − body

GENCAS GIT2 Georgia Institute of Technology hybrid NS/FW

TURNS UMD University of Maryland hybrid NS/FW

HoPFlow NTUA National Technical University of Athens hybrid NS/PM

In Table 4.20 the mean values of blade loads (aerodynamic and structural loads)

and elastic deflections predicted by different codes are compared against the measured

values. Significant differences in the mean value of the aerodynamic twisting moment

(CMM
2
) are reported for most CFD based computational predictions. As explained before

(paragraph 4.2.2), this is attributed to the difficulty (excessive cost) in properly resolving

the tab that has been used in the airfoil profile of the rotor blades in order to confine the

increase in CM with the angle of attack. This, in turn, leads to a big level difference in

the mean value of the structural twisting moment (Mtw) and consequently in the torsion

angle at the blade tip (Θtors). The differences in the torsion angle (up to ' 1.5
◦
) are bridged

(at least concerning the geometric angle of attack) by adjusting the collective pitch during

the trim procedure. Moreover, differences between predictions and measurements are

reported in the mean values of the aerodynamic normal force (CNM
2
) at 87% radial station.

The big differences between measurements and computational predictions regarding the

mean values of structural bending moments (Mflap and Mlag) cannot be justified by the

differences in the aerodynamic forces. In [163, 164, 165] they are attributed to the

calibration of strain gauges on non–rotating blades in the experimental set–up. It is,

thus, suspected that a bias due to centrifugal forces may be undergone in measured

values. For this reason, the differences in structural bending moments are not reflected

in the tip flapwise deflection (Uflap), where an overall good agreement is reported. In

the tip lead–lag deflections (Ulag), measurements lag with respect to all CFD predictions
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4.2 Aeroelastic analysis of a helicopter rotor

(positive deflection is in the lag direction). This is common with the forward flight speed

cases of the HeliNoVi experimental campaign showed in Section 3.1.2.3. In [163, 164,

165] it is mainly attributed to the technique used to measure blade deflections in these

experimental campaigns. Stero Pattern Recognition (SPR) that was used for the first time

in the HARTII and HeliNoVi projects, has been repeatedly reported to show a consistent

2–4 cm (' 1 − 2%) translational offset in the lag direction with respect to numerous

and of varying fidelity computational method results. In [10], the flexibility of the drive

train system and the hub, which are regarded as infinitely stiff in the simulations, are

considered as extra sources for discrepancies between measurements and predictions.

The “soft” drive train system used in the experimental campaign allows for a torsion angle

at the end of the shaft that is dictated by the mean value of the lead–lag bending moment

at the root of the blades. In turn, a positive (towards the lag direction) level shift of the

blade tip deflections is to be expected.

Table 4.20. Mean values of non–dimensional aerodynamic loads (normal force CNM
2

and twisting moment CMM
2

at 87% of the blade), structural moments (flapwise moment

Mflap and lead–lag moment Mlag at 17% of the blade and twisting moment Mtw at 33%
of the blade) and elastic deflections (flapwise displacement Uflap, lead–lag displacement

Ulag and torsion angle Θtors at blade tip). Comparison between experimental measurements

and computational predictions extracted from CFD based aeroelastic simulations (structural

dynamics analyses are based on beam models) performed by various institutions and

research centers.

CNM2

[−]
CMM2

[−]
Mflap
[Nm]

Mlag
[Nm]

Mtw
[Nm]

Uflap
[zel/R ∗ 100]

Ulag
[xel/R ∗ 100]

Θtors
[◦]

AFDD1 0.0775 −0.0039 3.87 51.67 −0.01 −0.914 −0.679 −1.894

AFDD2 0.0766 −0.0032 2.56 47.04 −7.85 −0.955 0.783 −1.438

GIT1 0.0723 −0.0035 −3.14 0.00 −4.49 −0.939 0.000 −1.995

GIT2 0.0787 −0.0046 −1.61 56.78 −5.69 −0.997 0.675 −2.384

KU 0.0800 −0.0027 −0.84 −9.94 −3.49 −0.879 −0.354 −1.232

NL1 0.0782 −0.0040 3.19 57.21 48.36 −0.915 −0.460 −1.922

NL2a 0.0820 −0.0029 3.41 58.12 −3.62 −0.777 −0.318 −1.151

NL2b 0.0814 −0.0030 3.52 58.12 −3.71 −0.778 −0.307 −1.167

UMD 0.0892 −0.0025 −13.62 −2.94 −2.94 −0.657 −0.244 −1.204

DLR 0.0863 −0.0027 −12.48 15.02 −1.31 −1.036 1.345 −0.724

NTUA 0.0821 −0.0043 −8.71 65.98 −5.54 −0.792 −0.317 −2.519

Experiment 0.0902 −0.0026 −9.27 −10.25 −2.90 −0.871 1.399* −1.09*

* Averaged over all four blades.

In Figure 4.20, the azimuthal variation of the non–dimensional normal aerodynamic

force (a) and twisting moment (b) at 87% radial station is shown. Due to the big level

differences reported in Table 4.20, mean values have been removed, so that the overall

trend is assessed. In Figure 4.20a, it is shown that the NTUA (along with GIT1 and NL2)

underestimates the CNM
2

in the 1
st

quadrant and fails to predict the strong BVI induced

fluctuations. The trend in the 60
◦ − 120

◦
is not effectively predicted and the local peak

is predicted with an ' 20
◦

phase lag. Nevertheless this is in line with most computa-

tional predictions. The overestimation of the minimum (in the 150
◦ − 180

◦
range) and

the maximum (at ' 250
◦
) in the NTUA predictions originates in the removal of the mean
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value. Otherwise, very good agreement is reported in Figure 4.17a. The BVI is effectively

predicted in the 4
th

quadrant, whereas the local maximum close to 345
◦

is slightly shifted

(' 10
◦
) towards higher azimuth angle compared to measurements and other computa-

tional predictions. An overall good agreement is observed in CMM
2

shown in Figure 4.20b

between the NTUA results and measurements. The overall trend is effectively predicted

except from the 120
◦ − 210

◦
dip which is flattened in the NTUA predictions, yet within

the range of other computational predictions. Nevertheless, the BVI in the 1
st

and 4
th

quadrants are in phase with measurements and fairly predicted concerning their strength.

(a) Non–dimensional normal aerodynamic force at 87% radial station. Means removed. The NTUA

predictions underestimate the normal force over the 1
st

quadrant compared to measurements. How-

ever, it is still within the range of other computational predictions. The BVI induced fluctuations are

almost completely damped. Better agreement is shown in the 2
nd

and 3
rd

quadrants where the level

is fairly predicted, but with an ' 20
◦

phase lag from measurements, which however is in line with

most computational predictions. BVI in the 4
th

quadrant is effectively represented but slightly less

pronounced compared to measurements. Local maximum close to 345
◦

is overestimated and slightly

shifted (' 10
◦

lag) to measurements and other computational predictions.

Figure 4.20. Cont.
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4.2 Aeroelastic analysis of a helicopter rotor

(b) Non–dimensional aerodynamic twisting moment at 87% radial station. Means removed. The

variation trend is fairly predicted, apart from the 120
◦ − 210

◦
curvature which is almost completely

flattened in the NTUA and most computational results. The NTUA results slightly under–predict the

twisting moment in the range 70
◦−135

◦
and over–predict it in 345

◦−5
◦
. However, it is still within the

range of other computational predictions. The BVI in the 1
st

and 4
th

quadrants are fairly predicted.

Figure 4.20. Non–dimensional normal aerodynamic force (a) and twisting moment (b) at

87% radial station. Comparison between experimental measurements and computational

predictions extracted from other CFD based aeroelastic simulations. An overall good agree-

ment is observed against measurements. In most cases where discrepancies occur, the

NTUA results are in line with most of the other computational predictions.

In order to better assess the differences seen in the azimuthal variation of the aero-

dynamic loads, the wake geometry generated by the simulations needs to be examined.

The position of the vortex structures, especially of the tip vortices, is crucial for the ac-

curate estimation of the aerodynamic loading in strong BVI regions. In descent cases,

these are usually found in the 1
st

and 4
th

quadrants, where the blades are approximately

parallel to the vortices. In Figures 4.21 and 4.22, the wake structures generated in the

NTUA simulations are depicted at two snap–shots when the 1
st

blade is at 20
◦

(sub–

figures a) and 70
◦

(sub–figures c) azimuthal position. The location of specific tip vortices

at the same azimuthal positions was experimentally identified in various lateral planes

(y/R = ±0.4,+0.55,±0.7,±0.85,±0.97) of the advancing (+) and retreating (−) side by

analyzing PIV maps in order to estimate the vortex centers. However, only the vortex

center locations at y/R = ±0.7 are presented herein, as a higher quality camera was used

for image capturing in these planes. The vortices position in the simulations have been

identified as the center of the largest vortices in the corresponding planes through visual

inspection. Therefore, an additional error due to personal judgment is to be expected. The

specific tip vortices tracked are defined in [13] and may be seen in red circles in Figures

4.21a, 4.21c, 4.22a and 4.22c. The vortex center positions are given with respect to the

local hub coordinate system.
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In Figure 4.21b, the measured and computationally predicted position of the tip vor-

tices at y/R = +0.7 (advancing side) is shown. The fact that the tip vortices predicted by

the NTUA, GIT1 and NL2 in the 1
st

quadrant (captured at Ψ = 20
◦

azimuthal position) are

located ' 5%R lower compared to the measured ones explains why these code fail to pre-

dict BVI and they overall underestimate CNM
2

in the corresponding region. Moreover the

4
th

vortex center of the specific azimuthal position is untraceable in the NTUA predictions.

This is attributed to the strong root vortices that are emitted from the blades cut–out (in

Figure 4.12a it is shown that the inner part of the blades and the hub are not included in

the NTUA simulations), that according to Figure 4.21a seem to drastically interfere with

the tip vortices and either partially (3
rd

tip vortex), or completely (4
th

tip vortex) break

their structure. This assumption is amplified by the fact that the blade holders that con-

nect the blades with the hub and the top of the hub cylinder have been also neglected in

GIT1 and NL2 simulations (see Figure 4.23), thus, allowing for root vortices to be emitted

from the inner parts of the blades. Better agreement is shown in the tip vortices that are

located in the 2
nd

quadrant (captured at Ψ = 70
◦

azimuthal position). However, again the

2
nd

and 3
rd

tip vortices are placed below the measured ones. This explains the different

trend compared to measurements of the aerodynamic loads in the 60
◦ − 90

◦
region.

In Figure 4.22b, the measured and computationally predicted position of the tip vor-

tices at y/R = −0.7 (retreating side) is shown. Very good agreement is observed in the

location estimation of the tip vortices at both the 3
rd

(captured at Ψ = 20
◦

azimuthal

position) and 4
th

(captured at Ψ = 70
◦

azimuthal position) quadrants. The fact that the

2
nd

tip vortex of the 4
th

quadrant is untraceable in the NTUA and GIT1 predictions is

again associated with the strong root vortices and explains the phase lag of the last CNM
2

peak (slightly before 360
◦
) in the NTUA predictions. Nevertheless, the overall good agree-

ment in the retreating side is not unexcepted, due to the more consistent results of the

aerodynamic loads predictions in the corresponding region.

Finally, it also needs to be stressed that omitting the fuselage in the NTUA simula-

tions is an important aspect concerning BVI events, especially in the advancing side. Tip

vortices experience a displacement due to the presence of fuselage that affects their posi-

tioning with respect to the hub, thus, influencing the strength of BVI. Another possibly

significant factor is the correction of the angle of attack that is usually applied in order

to account for the wind tunnel interference in the rotor thrust estimation. Such engi-

neering corrections have been found to be very effective when it comes to integrated hub

loads predictions. However, their effect in more sensitive aspects, such as the tip vortices

positioning with respect to the rotor hub, has not been yet thoroughly investigated.
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(a) Visualisation of the wake structures created in the NTUA simulations under Q–criterion and the

respective contour at 70% lateral position of the advancing side (y = 0.7R), when the 1
st

blade is

at 20
◦

azimuth angle. Strong root vortices are emitted from the aerodynamic root cut–out of the

blades. Root vortices seem to drastically interfere with the tip vortices and break their structure.

This is illustrated in the 3
rd

and 4
th

tip vortex cases, where their trajectories are partially (3
rd

tip

vortex depicted in blue line) or fully (4
th

tip vortex estimated in red line) broken by the root vortices.

Consequently, they are expected to be miss–located compared to measurements.

(b) Position of the tip vortices, expressed in the hub local coordinate system, at 70% lateral position of

the advancing side (y = 0.7R), when the 1
st

blade is at 20
◦

and 70
◦

azimuth angles. Most of the tip

vortices traces that lie within the 1
st

quadrant (x/R ≥ 0), where BVI is encountered, are miss–located

in the NTUA simulations, placed ' 5%R lower than the measured ones, yet within the range of other

computational predictions. Better agreement is observed in the 2
nd

quadrant (x/R ≤ 0).

Figure 4.21. Cont.
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(c) Visualisation of the wake structures created in the NTUA simulations under Q–criterion and the

respective contour at 70% lateral position of the advancing side (y = 0.7R), when the 1
st

blade is at

70
◦

azimuth angle. Root vortices do not heavily interfere with the tip vortices. Consequently, they

are expected to be located correctly.

Figure 4.21. Position of the tip vortices in the advancing side (y=0.7R), when the 1
st

blade

is at 20
◦

and 70
◦

azimuth angles. Visualisation of the wake structures created in the NTUA

simulations (a,c) and comparison between experimental measurements and computational

predictions extracted from various CFD based aeroelastic simulations (b).

(a) Visualisation of the wake structures created in the NTUA simulations under Q–criterion and the

respective contour at 70% lateral position of the retreating side (y = −0.7R), when the 1
st

blade is at

20
◦

azimuth angle. Root vortices do not heavily interfere with the tip vortices. Consequently, they

are expected to be located correctly.

Figure 4.22. Cont.
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(b) Position of the tip vortices, expressed in the hub local coordinate system, at 70% lateral position

of the retreating side (y = −0.7R), when the 1
st

blade is at 20
◦

and 70
◦

azimuth angles. Most of the

tip vortices positions are fairly predicted by the NTUA. The 5
th

tip vortex tracked does not intersect

with the plane of interest.

(c) Visualisation of the wake structures created in the NTUA simulations under Q–criterion and the

respective contour at 70% lateral position of the retreating side (y = −0.7R), when the 1
st

blade is

at 70
◦

azimuth angle. The 2
nd

tip vortex is partially diffused and does not intersect with the plane

of interest.

Figure 4.22. Position of the tip vortices at 70% lateral position of the retreating side

(y = −0.7R), when the 1
st

blade is at 20
◦

and 70
◦

azimuth angles. Visualisation of the wake

structures created in the NTUA simulations (a,c) and comparison between experimental

measurements and computational predictions extracted from various CFD based aeroelastic

simulations (b).
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Figure 4.23. Grid set–up employed in FUN3D aeroelastic simulations performed by GIT1

and NL2. Image copied from [163, 164]. The inboard portions of the blades (transition from

the aerodynamic root cut–out to the blade holder) are properly modelled. The blade holders

(elliptical or cylindrical sections) that connect the blades with the hub and the top of the hub

cylinder have been neglected. Consequently, root vortices are expected to be emitted from

the inner parts of the blades.

In the following Figures presenting the structural moments, only the strain gauges

measurements of the 1
st

blade are depicted. Hence, an estimation of the blade to blade

differences can only be made through the respective differences in deflections measure-

ments.

In Figure 4.24, the lead–lag bending moment at 17% of the blade (a) and the corre-

sponding deflection at the blade tip (b) are shown. Due to the big level differences reported

in Table 4.20, mean values have been removed and emphasis is placed on load variations.

Good agreement is observed among the NTUA results, measurements and other computa-

tional predictions. The phase of the dominant once per rotor revolution (1/rev) harmonic

variation in the lead–lag signal is well predicted in the lead–lag moment (see Figure 4.24a).

The corresponding amplitude is slightly overestimated, which however is typical for most

simulations. The flattened plateau in the peak region is effectively predicted, although

slightly narrowed compared to measurements. Higher harmonics are almost completely

damped in the NTUA and most of the other simulations, thus, indicating increased nu-

merical diffusion and damping. As far as the NTUA simulations is concerned, this can be

justified by the use a global Rayleigh type structural damping [166] which cannot repro-

duce correctly the exact modal damping of higher frequency modes. A miss–placement of

a higher lead–lag mode close to a harmonic of the rotational frequency in the experimental

set–up could be also possible. Concerning the lead–lag deflection (see Figure 4.24b) good

agreement is observed both in the phase and the amplitude of the 1/rev harmonic. Higher

harmonics seen in the lead–lag bending moment are less pronounced herein.
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In Figure 4.25, the flapwise bending moment at 17% of the blade (a) and the corre-

sponding deflection at the blade tip (b) are shown. Due to the big level differences reported

in Table 4.20, the mean value of the flapwise moment has been removed in Figure 4.25a

and emphasis is placed on load variations. Great differences in amplitude and phase are

shown among many computational predictions and experimental measurements. This

is attributed to the low (in absolute) hub moments (see Table 4.10) that, in turn, min-

imize the amplitude of the flapwise moment, rendering it very sensitive even to minor

discrepancies. This explains the phase differences seen among measurements and many

computational predictions. In particular, the ' 55
◦

phase lag of the NTUA results for

the high azimuth angle peak (measured at ' 340
◦
) originates in the corresponding phase

lag of CNM
2

(see Figure 4.20a). Nevertheless, the overall amplitude and the 2/rev trend

seen in measurements is effectively reproduced in the NTUA results. In the flapwise de-

flection depicted in Figure 4.25b, good agreement is shown in the predicted mean value,

whereas the 1/rev amplitude is slightly underestimated in the NTUA predictions. The

2/rev behaviour seen in measurements is predicted but slightly underestimated in the

NTUA results. The phase differences seen herein are in line with the phase differences re-

ported in the flapwise moment, but slightly shifted towards higher azimuth angles (phase

lag) due to inertial effect.

In Figure 4.26, the twisting moment at 33% of the blade (a) and the corresponding

torsion angle at the blade tip (b) are shown. Due to the big level differences reported in

Table 4.20, the mean value of the twisting moment has been removed in Figure 4.26a

and emphasis is placed on load variations. The overall amplitude and phase are fairly

predicted by the NTUA. The excessive reduction shortly before 90
◦

originates in the corre-

sponding underestimation of CMM
2

in the vicinity of 60
◦

(see Figure 4.20b). Respectively,

the plateau behaviour in the 120
◦ − 180

◦
region originates in the flattening of the dip in

CMM
2

in the same region. In the torsion angle depicted in Figure 4.26b an ' 1.5
◦

differ-

ence is reported compared to measurements. The torsion level predicted by the NTUA is

still comparable to the one predicted by other simulations (GIT1,GIT2,NL1,AFDD1) and

originates in the level difference of CMM
2

reported in Table 4.20. The overall amplitude

and phase are fairly predicted by the NTUA, in line with the twisting moment reports. The

excessive torsion angle shortly before 90
◦

is again in line with the differences shown in

the corresponding moment.
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(a) Lead–lag bending moment at 17% radial station. Positive in the lag direction. Mean removed.

1/rev amplitude is slightly overestimated in the NTUA results as a result of higher peak prediction (in

the range 90
◦−270

◦
) compared to measurements, which however is in line with most computational

predictions. The flattened plateau behaviour is effectively predicted in the NTUA results, but in

a more narrow region compared to measurements. Again, this is in line with most computational

predictions. Higher harmonics seen in measurements are less pronounced in all computational

results.

(b) Lead–lag deflection at blade tip. Positive in the lag direction. Mean removed. Good agreement is

observed both in the amplitude and phase of the 1/rev harmonic among experimental measurements,

the NTUA predictions and most of the other computational results. Higher harmonic variations shown

in the lead–lag bending moment measurements are less pronounced herein.

Figure 4.24. Lead–lag bending moment at 17% radial station (a) and tip deflection (b).

Positive in lag direction. Comparison between experimental measurements and computa-

tional predictions extracted from various CFD based aeroelastic simulations. An overall

good agreement is observed against measurements. In most cases where discrepancies

occur, the NTUA results are in line with most of the other computational predictions.
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(a) Flapwise bending moment at 17% radial station. Mean removed. 2/rev behaviour of the mea-

sured signal is effectively predicted, but slightly overestimated by the NTUA. Amplitude and phase

differences form measurements are also reported in many computational predictions. This is at-

tributed to the rotor trim targeting for zero hub moments that leads to minimization of flapping

moment amplitude.

(b) Flapwise deflection at blade tip. Good agreement is shown in the mean value between mea-

surements and all the different computational models predictions. A dominant 1/rev behaviour is

observed along with a 2/rev of much lower amplitude. 1/rev and 2/rev amplitudes are slightly

underestimated by the NTUA. Phase differences form measurements are also reported in the NTUA

and many other computational predictions.

Figure 4.25. Flapwise bending moment at 17% radial station (a) and tip deflection (b).

Deflection is relative to pre–cone. Comparison between experimental measurements and

computational predictions extracted from various CFD based aeroelastic simulations. Dom-

inant 1/rev and 2/rev harmonics are effectively predicted in the NTUA results. However,

amplitude and phase differences form measurements are reported, which is common for

most computational predictions.
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(a) Twisting moment at 33% radial station. Mean removed. A fair prediction is observed by the

NTUA and most of the other computational predictions. The amplitude is overall predicted well. The

excessive reduction close to 90
◦

and the flattened curvature in the 120
◦ − 180

◦
region predicted by

the NTUA that are directly related to different behaviour of the predicted CMM
2

from the measured

on (see Figure 4.20b) in the same regions.

(b) Torsion angle at blade tip. An ' 1.5
◦

level difference is reported between the NTUA predictions

and measured data, which originates in the respective mean offset of CMM
2

(see Table 4.20). Small

improvement from grid refinement is shown in Section 4.2.2. The NTUA predicted mean value is still

comparable to other computational results (GIT,NL1,AFDD1). The amplitude and phase are overall

predicted well.

Figure 4.26. Twisting moment at 33% radial station (a) and tip torsion angle (b). Tip

torsion is relative to pre–twist and control angles. Comparison between experimental mea-

surements and computational predictions extracted from various CFD based aeroelastic

simulations. An overall good agreement is observed against measurements and other com-

putational predictions.
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4.3 Conclusions

In this chapter, the accuracy of the hybrid CFD solver HoPFlow is assessed in the

aerodynamic analysis of an axial flow case around the model WT rotor used in the New

MEXICO experimental campaign [11, 12]. Moreover, the coupled GAST–HoPFlow solver

is validated in the aeroelastic analysis of the model BO105 helicopter rotor operating in

the conditions of the Base–Line descent case of the HARTII experiment [13]. In this way,

this newly composed CFD based aeroelastic analysis tool is evaluated over a wide part

of the sub–sonic region. On the lower Mach values (in the root region of the WT rotor)

re–circulations may appear, while the onset of weak shock–waves is to be expected near

the helicopter’s blades tip (higher Mach values).

First, a detailed investigation is performed on the effect of the numerical parameters

of HoPFlow on the produced results of the WT aerodynamic analysis. It is found that

under a PM discretisation with 5 nodes per chord length (in this analysis the character-

istic chord length is assumed to be the one at 75% of the blade), HoPFlow predicts the

loading of rotor blades with great accuracy. HoPFlow results are compared against exper-

imental measurements and predictions produced by MaPFlow, the Eulerian counterpart

of HoPFlow, and other CFD solvers. Results are presented as integrated rotor loads, ra-

dial distribution of aerodynamic forces and moments, pressure distributions at various

span–wise positions along the rotor blades and axial flow distributions along a line being

at a constant radial positions. Deviations from the measured loads are observed in the

middle region of the blade. However, very good agreement is shown with all the other CFD

solvers predictions. These discrepancies are attributed to the abrupt change of the airfoil

profile used in the mid–span region and its much different zero lift angle compared to the

preceding (root) and the following (tip) airfoils. Hence, the accuracy of the hybrid solver

HoPFlow in the predicted pressure distributions along the whole blade span is found to

be comparable with the one of standard Eulerian CFD codes. This indicates that the

near–body flow–field (boundary layer solution) is described in detail and, thus, confirms

that the coupling method that determines the boundary conditions for the confined Eu-

lerian grid is adequate and consistent. Furthermore, it is shown that the Lagrangian

formulation followed in the off–body region reduces numerical diffusion significantly com-

pared to standard Eulerian solvers. For this reason, the wake vortices are resolved more

effectively and the near–wake deficit is formed in greater accuracy (in better agreement

with the wind tunnel measurements). Nevertheless, the cost of the hybrid approach is

overwelming for a single rotor simulation. A remedy for moderating the computational

cost is the application of multi–level/telescopic PM grids [42], finer in the vicinity of the

body and coarser in the far–domain.

A detailed numerical investigation of HoPFlow parameters is also performed for the

aeroelastic analysis of the helicopter rotor. In this case, it is found that a fine grid

resolution under a constant characteristic length of c/12 (c is the chord length of the

helicopter rotor blades that remains constant over the whole blade span) is needed in

the region close to the rotor. However, due to the use of uniform PM grids in the current

HoPFlow implementation, such a fine discretization over the whole computational domain

195



Chapter 4. Fully resolved rotor blades using HoPFlow

renders the cost of this kind of numerical set–ups prohibitive. For this reason, the far–

domain is discretized under a PM with a characteristic length of c/4 and the required

grid refinement in the region close to the rotor is applied on the Eulerian sub–domain.

Hence, the need for the development of multi–level/telescopic PM grids [42] is stressed

herein as well. GAST–HoPFlow results, are compared against wind tunnel data and

predictions by other CFD based aeroelastic solvers. The comparison concerns azimuthal

variation of aerodynamic loads measured at 87% radial station, azimuthal variation of

structural loads close to the root of the blades, azimuthal variation of the corresponding

deflections at the tip of the blades and position of tip vortices traces on a lateral plane

of the advancing and retreating sides of the rotor. Significant differences are reported in

the mean values of the azimuthal variations compared to measurements, which however

are frequent for most CFD based predictions. Most of them are related to experimental

mechanisms that are not easily reproduced in the numerical set–up (e.g. aerodynamic

effect of the blade tab, stiffness of the drive–train system, of the shaft and of the pitch–link

mechanism), poor calibration or malfunctioning/broken sensors for loads measurements,

or the use of immature techniques (SPR) for estimating blade deflections. Nevertheless

the overall trend is fairly well predicted by the GAST–HoPFlow aeroelastic solver. In cases

that discrepancies appear, very good agreement is shown with all the other CFD solvers

predictions. Consequently, the coupling between the aerodynamic solver HoPFlow and

the structural dynamics solver GAST is confirmed and the accuracy of the aeroelastic

solver is found to be comparable to that of other CFD based aeroelastic codes.
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Conclusions

In this chapter, a synopsis of the work done in this thesis is performed. The main

objectives and the most significant conclusions drawn from this research are then sum-

marized. Finally, indicative topics for future research and development are proposed.

5.1 Synopsis

The main objective of this thesis was the development of a high fidelity aeroelastic

analysis tool for rotor configurations, capable of analyzing complex flow phenomena over

a wide part of the sub–sonic region and under the same computational framework. The

structural dynamics problem is solved by GAST, an in–house elasto–dynamic analysis

module, the development of which has started in previous theses [1, 2] and continued

in the present. In GAST, the structural analysis of a Wind Turbine is applied by ap-

proximating its various components as Timoshenko beams, discretized under a 1D FEM

approach. In order to broaden the scope of GAST in the present thesis, the kinematic and

dynamic analysis part was reformed to follow a multi–body dynamics methodology. In

this way, the various components of a configuration are allowed to independently move

in space and are connected into a full configuration through proper kinematic and dy-

namic constraints that are realized by satisfying non–linear connection equations [36].

Consequently, GAST may now be used for the structural dynamics analysis of any arbi-

trary configuration consisting of slender components. Another important advantage of

the multi–body approach compared to other similar implementations is that the dynamic

equations, including those of constraints, are linearized allowing, thus, to perform eigen-

value stability analyses. The system of dynamic equations is provided in a linearized state

space form.

The aerodynamic analysis is based on MaPFlow [4], an in–house CFD code that solves

the compressible URANS equations. In order to accurately analyze low Mach flow regions

(e.g. WT applications), preconditioning is applied to the system of the flow equations

[123]. During this thesis the method of the Actuator Line (AL) [92] was implemented in

MaPFlow, where the blades of a rotor are simulated as a set of control points along their

axes. In this way, the “blades” (group of control points) are allowed to move freely inside

the computational grid and their aerodynamic loads are applied to the flow field as source

terms on the computational cells they slice during their rotation. The AL model was then
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coupled with GAST, in order to be applicable to aeroelastic analyses of rotors. In this

approach, multi–body and aeroelastic simulations are facilitated, while computational

cost is restrained. Opposed to standard design tools, such modelling options were found

adequate for describing in detail the varying inflow conditions of complex flow cases.

Furthermore, in order to reproduce the true (atmospheric) conditions in which a WT

operates, the method of Generation Zone (GZ) was implemented in MaPFlow in order

to impose a pre–defined turbulent field (produced with Mann’s model [8]) onto a mean

flow–field within a CFD context.

In order to describe the actual geometry of the rotor blades (or other moving bodies) and

to resolve load–driving conditions that are related to it (e.g. flow separation, shock waves),

the hybrid CFD solver HoPFlow [4] is used. In HoPFlow, multi–body and aeroelastic

applications are facilitated by a domain decomposition approach that is followed in order

to combine the standard Eulerian CFD formulation, implemented in MaPFlow, close to the

solid boundaries with a Lagrangian CFD approach for the rest of the domain. Hence the

actual geometry of any arbitrary body may be described through a body–fitted grid that is

confined in a narrow region around its solid–wall boundaries. HoPFlow has been coupled

with GAST during the present study. In the coupled HoPFlow–GAST context, the positions

and velocities of the blade surface nodes are defined through the multi–body kinematics

framework, based on the kinematics of the corresponding structural body (beam). The

individual rigid motion and elastic deformations of a body are then extrapolated from its

surface to the surrounding grid nodes either un–damped, or by applying a deforming grid

approach.

5.2 Remarks

This study aimed at the development of a general application high accuracy aeroelastic

analysis tool. For the aerodynamic problem, this is effectively accomplished by employing

CFD analysis. For the structural dynamics part, a multi–body dynamics framework was

incorporated to the elasto–dynamics solver along with non–linear kinematic and dynamic

equations in order to connect the different bodies into a full configuration. The flexible

components are numerically treated in the context of 1D beam FEM analysis. Conse-

quently, this newly formed aeroelastic analysis tool employs high level of fidelity in the

modelling of both the aerodynamics and the structural dynamics and is capable of sim-

ulating a wide variety of complex load path configurations. However, the applications

tested herein are limited to rotor configurations.

AL modelled rotor blades using MaPFlow

By employing an AL representation of the rotor blades and by incorporating turbulent

wind conditions (through the method of GZ) within the CFD context, this newly developed

aeroelastic code may serve as an holistic and cost–effective design tool especially for WTs,

and for rotor applications in general. AL has been widely used in studying the generation

and convection of WT rotor wakes [6, 7], due to the detailed description of the flow–field

that the CFD framework provides. However, in [134] it is found capable of predicting also

the radial distribution and azimuthal variation of loads, of both WT and helicopter rotor
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blades, in accuracy and under moderate computational requirements. The fact that the

computation of the blade loads is based on the use of predefined airfoil polars makes the

AL model similar to BEMT and LL options, which are considered as state of the art in WT

and helicopter rotors design respectively. Polar based approaches perform exceptionally

in the mid–span and tip region of the blades that dictate the overall performance of the

rotor. On the other hand, they poorly describe the root region in which separation and

secondary flows phenomena are present, which however in modern large WT designs are

treated engineeringly through Vortex Generators and Gurney Flaps [187, 188, 189]. It is

therefore shown that the new GAST–AL module befits the current trend in designing pitch

regulated WT rotors that do not operate in deep stall conditions. The validation of this

new highly accurate, but cost–effective aeroelastic module consists of:

i) aeroelastic simulations of the isolated rotor of the DTU 10MW RWT [9] under smooth

and turbulent free stream flow in axial wind and yaw misalignment cases;

ii) full configuration of the DTU 10MW RWT (rotor blades, shaft and tower included)

operating within the Atmospheric Boundary Layer (ABL) in neutral atmospheric

conditions (turbulent wind).

Results were compared against computational results produced using the same struc-

tural solver coupled with lower fidelity aerodynamic models; namely a Blade Element

Momentum Theory (BEMT) based model and a standard Lifting Line (LL) approach.

Good agreement is achieved between all three models predictions at simple axial flow

cases, in terms of loads and deflections predictions. Deviations occur between BEMT and

the higher fidelity models (LL and AL) in yawed flow cases that become more pronounced

as the flow conditions get more complex (e.g. increase of yaw angle). However, excellent

agreement between AL and LL is observed in all the examined flow cases. These differ-

ences, originate in the detailed description of the flow–field within the CFD (AL) and the

FVW (LL) frameworks. Hence, the AL and LL models manage to account for the varying

wake induction on the rotor plane, due to complex flow conditions. This is not properly

regarded in simple BEMT approaches due to the simplified modelling of the rotor inflow.

Similar remarks are made in WT simulations under turbulent wind, where significant dif-

ferences are reported between AL and BEMT predictions in terms of rotor blades loading.

Due to the CFD framework, the AL model is able to consider the effect of the rotor and the

ground on local turbulent inflow conditions. The differences shown in the rotor blades

loads are directly reflected in the loading and wear of the rest of WT component, such as

the tower. Concerning the representation of a turbulent flow–field within a CFD context, it

needs to be stressed that the approach of GZ was used for the first time in order to impose

the velocity fluctuations of a predefined turbulent field onto an averaged flow–field. GZ

was able to create turbulent fields that are closer to the turbulent field produced by the

Mann’s model, compared to conventional methodologies found in literature.

The newly created coupled GAST–AL aeroelastic model has been also validated in

aeroelastic simulations of the Main Rotor (MR) of the model BO105 helicopter used in

the HeliNoVi experimental campaign [10]. The examined test cases consider forward
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flight conditions at low, medium and high flight speed. In these cases, AL produced

results were compared against LL predictions and wind tunnel measured data. In general,

computational results were close to measured data and when differences occurred the two

models predictions were in good agreement with each other.

Overall, AL results show significant differences compared to BEMT predictions that

get more intense as the flow conditions get more complex. Most of them originate in the

detailed description of the flow–field close to the rotor that the CFD framework provides.

On the other hand, AL results share the same level of accuracy with the ones produced

by the LL method, when it comes to blade loads and deflections in isolated rotor cases.

Although much more affordable than resolving the whole blades geometry, AL simulations

remain at least 2 orders of magnitude more computationally demanding than LL. The

main advantage of the AL method, is that the effect of the rotor and ground on the

local turbulent inflow are accounted for in detail within the CFD context under moderate

computational requirements. This is not easily resolved in a potential Free Vortex Wake

(FVW) framework, where the consideration of viscous effects close to the ground and the

modelling of turbulence can be tricky.

Fully resolved blades using HoPFlow

For an accurate aeroelastic analysis of slender bodies undergoing large deflections and

operating within complex flow fields the actual geometry of the rotor blades needs to

be resolved. This was accomplished by coupling GAST with HoPFlow, a compressible

hybrid Eulerian–Lagrangian CFD solver that employs a domain decomposition approach

in order to combine a Lagrangian representation of the back–ground flow–field through

numerical particles with an Eulerian approach close to the solid wall boundaries (bodies).

The validation of this newly formed high fidelity aeroelastic solver consists of both WT

and helicopter rotors simulations. To that end, its accuracy is assessed in complex local

flow phenomena and over a wide part of the sub–sonic region. On the lower Mach values

(in the root region of the WT rotor), detached flow conditions are produced, while weak

shock–waves appear near the helicopter’s blades tip (higher Mach values). The simulated

cases concern:

i) aerodynamic analysis of the model WT rotor used in the New MEXICO experimental

campaign [11, 12] for an axial flow case at 14.7 m/s;

ii) aeroelastic analysis of the MR of the model BO105 helicopter used in the HARTII

experimental campaign [13] for the Base–Line descent case at 33 m/s flight speed.

The accuracy and the features of the coupled GAST–HoPFlow aeroelastic solver were

evaluated by comparing its results against experimental measurements and predictions

produced by other CFD based aeroelastic codes.

In both cases, the hybrid CFD code was able to predict the aerodynamic loads of the

blades in great accuracy (comparable to that of standard CFD solvers). Consequently,

the resulting structural loads and the corresponding deflections were estimated fairly

well. The same remark can be made for the flow–field developed in the region close to

the rotors. In fact, it is shown in the WT aerodynamic analysis case that the reduced
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numerical diffusion of the Lagrangian formulation followed in the off–body region leads

to better preservation of wake structures and, thus, to a more accurate estimation of

the developed wake deficit compared to its Eulerian counterpart MaPFlow. The above

remarks confirm that the coupling method between the Eulerian and the Lagrangian

sub–domains that determines the boundary conditions for the confined Eulerian grid

is adequate and consistent. The same conclusion is drawn for the coupling between the

structural module and the aerodynamic solver. Hence, the aeroelastic behaviour of the full

rotor configuration is well predicted (close to measured data) by the new aeroelastic solver.

In cases where deviations are observed with respected to experimental measurements,

the simulations results agree well with the computational predictions of other CFD based

aeroelastic solvers. These deviations are mainly attributed to small geometrical differences

between the models used in wind tunnel tests and computational simulations.

Nevertheless, it needs to be stressed that the cost of the hybrid approach is excessive

for a single rotor simulation. A remedy for moderating the computational cost is the ap-

plication of multi–level/telescopic Particle Mesh (PM) grids [42], finer in the vicinity of the

body and coarser in the far–domain. The benefit for paying this increased computational

cost (using fine PM grids in the entire computational domain) lies in unsteady applica-

tions where interaction phenomena (e.g. rotor–rotor interactions) are prominent or in

cases where the accurate characterization of the far–wake dynamics is required. It is also

attractive for aeroelastic analyses in which a standard Eulerian methodology relies on

the use of overset grids and the corresponding coupling between different sub–domains,

which penalizes computational cost.

5.3 Recommendations for future work

The recommendations proposed next concern improvements and development of the

individual solvers and suggestions for future research of technological interest.

Development

From a methodological point of view, there are various development options capable of in-

creasing the accuracy, reducing computational requirements and enhancing the stability

of the presented solvers, namely:

1. development of a higher order and more accurate beam model (e.g. Geometrically

Exact Timoshenko [33]) as an alternative to the use of multiple sub–bodies in order

to describe non–linear structural phenomena.This approach will only slightly affect

computational cost and not the level of accuracy, as shown in [190]. This is because

by applying the geometrically exact representation at every point along the blade and

not in a discrete manner from one sub–body to another relaxes the requirements on

number of elements (sub–bodies) needed in the analysis;

2. application of multi–level/telescopic PM grids [42], finer in the vicinity of the body

and coarser in the far–domain;

3. generation of synthetic turbulence using particles and simulation of the exact ge-

ometry of the various components of a full WT configuration operating in turbulent
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inflow conditions through the coupled GAST–HoPFlow solver;

4. preconditioning of the Lagrangian formulation of the flow equations in order to

increase the stability of the hybrid CFD solver HoPFlow in low Mach number regions

and, thus, permit the employment of larger time–step values and accelerate the

simulations.

Technological research

The newly created CFD based aeroelastic solver may be efficiently used, in its current

form, in order to investigate:

1. the interaction between multiple rotors, such as wind farm simulations, where rotor

wake diffusion has an impact on the performance of the downwind turbines, or the

interaction between the main rotor wake and other components of a helicopter (e.g.

horizontal stabilizers, tail rotor) where stability or acoustic issues occur in specific

flight cases;

2. the effect of large scale vortex structures on the loading and wear of various com-

ponents of a full configuration (e.g. rotor blades, WT tower). Such cases are the

massive separation of the flow around a helicopter fuselage and the induced vibra-

tion loads on the rotor blades, or a WT rotor in parked/idling conditions, where the

rotor blades operate at extremely high angles of attack (' 90
◦
) deeply within the

stall region of their airfoils.
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Στο κεφάλαιο αυτό παρατίθεται µια εκτεταµένη περίληψη της διατριβής γραµµένη στα

Ελληνικά.

A Eιιισσσαααγγγωωωγγγηηη

Οι Ανεµογεννήτριες (ΑΓ) και τα ελικόπτερα είναι χαρακτηριστικά τεχνολογικά επιτεύγ-

µατα τα οποία αξιοποιούν τις ατµοσφαιρικές ϱοές για την παραγωγή ωφέλιµου έργου. Η εκ-

µετάλλευση του ανέµου για την παραγωγή ηλεκτρικής ενέργειας είναι εδώ και χρόνια εφικτή

χάρη στις ΑΓ. Συνεπώς, για τη µείωση του κόστους παραγωγής της ηλεκτρικής ενέργειας

από τον άνεµο είναι επιθυµητή τόσο η µείωση του κόστους κατασκευής των ΑΓ, όσο και η

αύξηση της απόδοσής τους. Αντίστοιχα, στον τοµέα των ελικοπτέρων παρατηρείται ϱαγδαία

ανάπτυξη τα τελευταία χρόνια µε στόχο τη ϐελτίωση της ασφάλειας και της απόδοσης των

εναέριων µεταφορών, αλλά και άλλων υπηρεσιών που αυτά παρέχουν, όπως η πυρόσβεση, οι

γεωργικές εργασίες κ.α. Με αυτό το σκεπτικό, η έρευνα στις µέρες µας κατευθύνεται στην

ανάπτυξη αξιόπιστων υπολογιστικών εργαλείων, ικανών να προβλέπουν όλα τα επιµέρους

σύνθετα ϕυσικά ϕαινόµενα που λαµβάνουν χώρα κατά τη διάρκεια της αλληλεπίδρασης ενός

δροµέα µε τον αέρα, ούτως ώστε αυτά να αναλυθούν µε ακρίβεια και να γίνουν πλήρως

κατανοητά. Τέτοια εργαλεία είναι ιδιαίτερα χρήσιµα στη ϕάση του σχεδιασµού και µπορούν

να ϐοηθήσουν σηµαντικά στη ϐελτίωση της ασφάλειας και της απόδοσης τόσο των ΑΓ, όσο

και των ελικοπτέρων.

Στην προσπάθεια µείωσης του κόστους παραγωγής της αιολικής ενέργειας, οι ΑΓ αυξά-

νουν σε µέγεθος. Με τη σειρά τους, τα πτερύγια του δροµέα γίνονται όλο και µεγαλύτερα,

συνεπώς και πιο εύκαµπτα. Σαν αποτέλεσµα, υφίστανται µεγάλες παραµορφώσεις που

επηρεάζουν σηµαντικά τόσο την ελαστο-δυναµική τους συµπεριφορά, όσο και το κοντινό

πεδίο ϱοής, δηµιουργώντας έτσι ένα σύνθετο αεροελαστικό ϕαινόµενο. Αντίστοιχα, οι δροµείς

των ελικοπτέρων χαρακτηρίζονται από πολύπλοκους µηχανισµούς λειτουργίας µε πολύ εύκαµπτα

πτερύγια, συνιστώντας έτσι ένα ιδιαίτερα σύνθετο δυναµικό σύστηµα µε έντονα µη-γραµµικές

αποκρίσεις. Εύλογα, εποµένως, προκύπτει η ανάγκη δηµιουργίας υπολογιστικών εργαλείων

υψηλής ακρίβειας για τη λεπτοµερή ανάλυση σύνθετων αεροελαστικών ϕαινοµένων, ούτως

ώστε να ϐοηθηθεί ο σχεδιασµός τέτοιων πολύπλοκων και εύκαµπτων κατασκευών.

Στόχος αυτής της διατριβής είναι η ανάπτυξη και η πιστοποίηση ενός υπολογιστικού ερ-

γαλείου υψηλής ακρίβειας για την αεροελαστική ανάλυση δροµέων. Για την εξασφάλιση τόσο

της γενικότητας σε σχέση µε την εφαρµογή, όσο και της υψηλής ακρίβειας, το κοµµάτι της

δυναµικής ανάλυσης ϐασίζεται στη µέθοδο της ∆υναµικής Πολλαπλών Σωµάτων (Multi–Body

Dynamics), ενώ για την αεροδυναµική ανάλυση χρησιµοποιούνται µέθοδοι Υπολογιστικής

219



BIBLIOGRAPHY

Ρευστοµηχανικής (Computational Fluid Dynamics – CFD) που ϐασίζονται στην επίλυση των

εξισώσεων Navier–Stokes. Τα δύο αυτά συστήµατα (ελαστο-δυναµικό και αεροδυναµικό)

επιλύονται ξεχωριστά, ενώ η σύνδεσή τους πραγµατοποιείται µέσω ενός ειδικά διαµορφωµέ-

νου πρωτοκόλλου επικοινωνίας που ϐασίζεται στη λογική των εσωτερικών επαναλήψεων. Με

αυτόν τον τρόπο είναι δυνατή η εύκολη εναλλαγή µεταξύ µοντέλων διαφορετικού κόστους

και ακρίβειας.

Ο ελαστο-δυναµικός κώδικας που αναπτύχθηκε στην παρούσα διατριβή είναι µία νέα

έκδοση του GAST [1] και του hGAST [2] που αναπτύχθηκαν στο εργαστήριο αεροδυναµικής

στο πλαίσιο προηγούµενων διδακτορικών διατριβών. ΄Οπως και στις προηγούµενες εκδόσεις

του GAST, οι διάφορες συνιστώσες µίας κατασκευής (ΑΓ, ελικόπτερο κ.α.) µοντελοποιούν-

ται σαν δοκοί. Η ελαστική τους ανάλυση ϐασίζεται στη ϑεωρία δοκών Timoshenko και

η διακριτοποίησή των διαφορικών τους εξισώσεων στο χώρο πραγµατοποιείται µέσω της

Αρχής των ∆υνατών ΄Εργων (Principle of Virtual Work) και της Μεθόδου των Πεπερασ-

µένων Στοιχείων (Finite Element Method – FEM). Στη νέα µορφή του κώδικα, ωστόσο,

η κινηµατική και η δυναµική ανάλυση που ακολουθείται για τη σύνδεση των επιµέρους

συνιστωσών σε µία ενιαία κατασκευή είναι γενικής εφαρµογής και δεν περιορίζεται σε ΑΓ.

Για το σκοπό αυτό, ακολουθείται η µέθοδος της ∆υναµικής Πολλαπλών Σωµάτων και η

σύνδεση µεταξύ δύο ανεξάρτητα κινούµενων σωµάτων (δοκών) πραγµατοποιείται µέσω της

επαλήθευσης κατάλληλων µη–γραµµικών κινηµατικών και δυναµικών εξισώσεων σύνδεσης

[36]. Ως εκ τούτου, ο GAST µπορεί πλέον να προσοµοιώνει τη λειτουργία οποιασδήποτε

διάταξης αποτελείται από δοκούς.

Σε προηγούµενες εκδόσεις του, ο GAST είχε συνδεθεί µε το RAFT [103], έναν χαµηλού

κόστους και ακρίβειας αεροδυναµικό κώδικα ανάλυσης δροµέων που ϐασίζεται στη µέθοδο

∆ίσκου Ορµής και Στοιχείων Πτερύγωσης (Blade Element Momentum Theory – BEMT),

και τον GenUVP [42], έναν αεροδυναµικό κώδικα µέσης ακρίβειας που µοντελοποιεί αερο-

δυναµικά σώµατα οποιασδήποτε γεωµετρίας (κινούµενα ή µη) µέσω των Μεθόδων των Συνο-

ϱιακών Στοιχείων (Boundary Element Methods – BEM) και τον οµόρρου τους µέσω Στοιχείων

Ελεύθερης Στροβιλότητας (Free Vortex Wake – FVW). Λόγω της αδυναµίας αυτών των

µεθοδολογιών να περιγράψουν µε ακρίβεια τα έντονα συµπιεστά και συνεκτικά ϕαινόµενα,

η νέα έκδοση του GAST συνδέθηκε, στο πλαίσιο αυτής της διατριβής, µε το MaPFlow και

το HoPFlow [4], δύο αεροδυναµικούς κώδικες υψηλής ακρίβειας που επιλύουν τις συµπι-

εστές εξισώσεις Navier–Stokes. Ο υπολογιστικός κώδικας MaPFlow επιλύει τις συµπιεστές

µη-µόνιµες εξισώσεις Navier–Stokes για ένα χρονικά µέσο πεδίο κατά Reynolds (URANS).

Η χωρική διακριτοποίηση των εξισώσεων γίνεται µέσω ενός κεντροκυψελικού σχήµατος

πεπερασµένων όγκων (cell–centered finite volume scheme), ενώ για την επιτυχή περιγραφή

της ϱοής σε περιοχές όπου ο αριθµός Mach είναι χαµηλός (σύνηθες κατά τη λειτουργία

ΑΓ), εφαρµόζεται προσταθεροποίηση (preconditioning) των εξισώσεων της ϱοής. Η ολοκ-

λήρωση τους στο χώρο και στο χρόνο πραγµατοποιείται µε τη χρήση σχηµάτων 2ης τάξης.

Σε εφαρµογές πολλαπλών σωµάτων, όπου συνυπάρχουν περισσότερα του ενός σώµατα και

κινούνται στο χώρο ανεξάρτητα το ένα από το άλλο (π.χ. αλληλεπίδραση δροµέα ΑΓ και

εδάφους), η µοντελοποίηση των αεροδυναµικών σωµάτων γίνεται µε τη µέθοδο της Γραµµής

∆ράσης (Actuator Line - AL). Στην περίπτωση αυτή, το πτερύγιο ενός δροµέα αντικαθίσ-

ταται από µία αλληλουχία σηµείων ελέγχου (control points) που τοποθετούνται κατά τον
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άξονα του πτερυγίου σχηµατίζοντας µία γραµµή και πραγµατοποιούν χωρίς περιορισµούς

όλες τις κινήσεις του πτερυγίου εντός του υπολογιστικού πλέγµατος. Για κάθε ένα από αυτά

τα σηµεία ελέγχου υπολογίζεται µέσω της πεδιακής λύσης µία ϕαινόµενη ταχύτητα ϱοής

και µε τη ϐοήθεια πινακοποιηµένων αδιάστατων συντελεστών (2D polars) πραγµατοποιεί-

ται µία εκτίµηση των αντίστοιχων αεροδυναµικών δυνάµεων του πτερυγίου στη ϑέση αυτή.

Με τη µέθοδο της Γραµµής ∆ράσης, περιορίζεται σηµαντικά το υπολογιστικό κόστος, µε

αποτέλεσµα να καθίσταται δυνατή η χρήση του νέου αυτού αεροελαστικού εργαλείου (GAST–

AL) και για σειρές τρεξιµάτων κατά τη ϕάση του σχεδιασµού. Στην περίπτωση αυτή, και

ιδίως κατά το σχεδιασµό ΑΓ, απαιτείται η ανάλυση της λειτουργίας τους σε τυρβώδεις συν-

ϑήκες ανέµου. Για το σκοπό αυτό, κατά τη διάρκεια αυτής της διατριβής αναπτύχθηκε

και ενσωµατώθηκε στο MaPFlow µία νέα µεθοδολογία για την υπέρθεση ενός τυρβώδους

προφίλ διαταραχών ταχυτήτων σε ένα µέσο πεδίο ανέµου. Η µοντελοποιήση της πραγ-

µατικής γεωµετρίας ενός αεροδυναµικού σώµατος σε εφαρµογές πολλαπλών σωµάτων είναι

δυνατή µε τη χρήση του υβριδικού CFD κώδικα HoPFlow. Στην περίπτωση αυτή, η χωρική

διατύπωση (Eulerian formulation) των εξισώσεων της ϱοής επιλύεται από το MaPFlow σε ένα

σωµατόδετο πλέγµα που περιορίζεται κοντά στο εκάστοτε αεροδυναµικό σώµα, ενώ µακριά

από τα σώµατα οι εξισώσεις της ϱοής διατυπώνονται στην υλική τους έκφραση (Lagrangian

formulation) και η εξέλιξη της ϱοής περιγράφεται παρακολουθώντας την κίνηση και την

αλλαγή των ϱοϊκών µεγεθών που χαρακτηρίζουν ορισµένα υλικά σωµατίδια (Lagrangian

Particles) που δρουν σαν ϱοϊκοί σηµειακοί δείκτες.

Συνοψίζοντας, στην παρούσα διατριβή αναπτύχθηκε ένα νέο υπολογιστικό εργαλείο υψη-

λής ακρίβειας, για την αεροελαστική ανάλυση δροµέων. Λόγω της γενικότητας στην εφαρ-

µογή των επιµέρους µεθοδολογιών που χρησιµοποιήθηκαν για την δηµιουργία του, το νέο

αυτό εργαλείο είναι σε ϑέση να προσοµοιώνει διαφορετικού τύπου δροµείς (π.χ. δροµείς

οριζόντιων και κατακόρυφων ΑΓ, κύριο και ουραίο στροφείο ελικοπτέρου, drones, αερο-

πορικές έλικες κ.α.), που λειτουργούν κάτω από ένα µεγάλο εύρος αριθµών Mach στην

υπο–ηχιτική περιοχή, όπως και άλλων αεροδυναµικών κατασκευών που µπορούν να µον-

τελοποιηθούν σαν διατάξεις δοκών (π.χ. πλήρεις διατάξεις ανεµογεννητριών και ελικοπ-

τέρων, διατάξεις από ϕωτοβολταϊκά πάνελ κ.α.). Για το λόγο αυτό, στην παρούσια δια-

τριβή εξετάζονται δροµείς τόσο ΑΓ, όσο και ελικοπτέρων. Για την πιστοποίηση της υψηλής

του ακρίβειας, τα αποτελέσµατά του νέου αυτού αεροελαστικού κώδικα συγκρίνονται µε

πειραµατικές µετρήσεις και υπολογιστικές προβλέψεις που παράχθηκαν από άλλα εργαλεία

παρόµοιας ακρίβειας. Τέλος, σύγκριση πραγµατοποιείται και µε υπολογιστικές προβλέψεις

ήδη πιστοποιηµένων προγραµµάτων αεροελαστικής ανάλυσης δροµέων, αλλά χαµηλότερης

ακρίβειας, που αναπτύχθηκαν παλαιότερα στο εργαστήριο Αεροδυναµικής του ΕΜΠ. Τα

εργαλεία αυτά χρησιµοποιούν πιο οικονοµικά και λιγότερο ακριβή αεροδυναµικά µοντέλα

που ϐασίζονται στη µέθοδο BEMT και στη µέθοδο της Γραµµής ΄Ανωσης (Lifting Line – LL),

µέθοδοι οι οποίες χρησιµοποιούνται κατά κόρον στη ϕάση του σχεδιασµού δροµέων ΑΓ και

ελικοπτέρων αντίστοιχα.

Το οικονοµικό αεροελαστικό εργαλείο GAST–AL χρησιµοποιήθηκε για την ανάλυση της

λειτουργίας του δροµέα της πρότυπης ΑΓ 10MW που σχεδιάστηκε στο DTU [151], υπό στα-

ϑερές και τυρβώδεις συνθήκες ανέµου. ∆οκιµάστηκαν συνθήκες αξονικής ϱοής και ϱοής

υπό διάφορες γωνίες απόκλισης για διαφορετικές ταχύτητες ανέµου, ενώ εξετάστηκε και η
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περίπτωση της λειτουργίας της πλήρους διάταξης της ΑΓ (πύργος, άξονας, δροµέας) υπό

τυρβώδεις συνθήκες ανέµου και εντός του οριακού στρώµατος του εδάφους. Τα αποτελέσ-

µατα του νέου αυτού εργαλείου συγκρίνονται µε αυτά που παράγονται όταν ο ίδιος ελασ-

τοδυναµικός κώδικας (GAST) συνδέεται µε τη µέθοδο BEMT και τη µέθοδο LL. Στις απλές

περιπτώσεις της αξονικής ϱοής παρατηρείται πολύ καλή συµφωνία µεταξύ των διαφορετικών

υπολογιστικών εργαλείων, ενώ διαφορές προκύπτουν στην περίπτωση των πιο σύνθετων συν-

ϑηκών λειτουργίας (ϱοή µε απόκλιση ανέµου, ϱοή εντός του οριακού στρώµατους του εδά-

ϕους) µεταξύ του χαµηλότερης ακρίβειας µοντέλου BEMT και των άλλων δύο µεγαλύτερης

ακρίβειας µοντέλων (LL και AL), οι προβλέψεις των οποίων συµφωνούν πάρα πολύ καλά

µεταξύ τους. Ειδικά στην περίπτωση της λειτουργίας της ΑΓ σε τυρβώδη άνεµο και εντός του

οριακού στρώµατος του εδάφους αναδεικνύεται η ικανότητα του νέου αυτού εργαλείου να

περιγράφει µε ακρίβεια σύνθετα ϱοϊκά ϕαινόµενα και να προβλέπει επιτυχώς την αλληλεπί-

δραση µεταξύ του δροµέα και του εδάφους µε την ατµοσφαιρική τύρβη. Ακόµη, εξετάστηκε

η περίπτωση του µοντέλου του δροµέα ελικοπτέρου που χρησιµοποιήθηκε στο πείραµα He-

liNOVI [10] για συνθήκες ευθείας πτήσης σε µικρές, µεσαίες και µεγάλες ταχύτητες. Εδώ,

τα αποτελέσµατα του νέου εργαλείου (GAST–AL) συγκρίνονται µε πειραµατικές µετρήσεις

και µε τις προβλέψεις που προκύπτουν όταν χρησιµοποιείται το αεροδυναµικό µοντέλο που

ϐασίζεται στη ϑεωρία LL. Σε αυτήν την περίπτωση παρατηρείται µία γενικά καλή συµφωνία

µεταξύ των προβλέψεων και των πειραµατικών µετρήσεων, ενώ όταν προκύπτουν διαφορές,

τα δύο υπολογιστικά εργαλεία συµφωνούν πολύ καλά µεταξύ τους.

Το πιο ακριβές, αλλά και µε µεγαλύτερες υπολογιστικές απαιτήσεις, αεροελαστικό ερ-

γαλείο GAST–HoPFlow είναι σε ϑέση να µοντελοποιεί την πραγµατική γεωµετρία πολλών και

ανεξάρτητα κινούµενων σωµάτων. Για την πιστοποίηση της ακρίβειας των αποτελεσµάτων

του, χρησιµοποιήθηκε αρχικά για την αεροδυναµική ανάλυση του µοντέλου δροµέα ΑΓ που

µελετήθηκε στο πείραµα New MEXICO [11]. Η πολύ καλή σύγκριση των υπολογισµών

των αεροδυναµικών ϕορτίων των πτερυγίων, τόσο µε τις πειραµατικές µετρήσεις, όσο και

µε υπολογιστικές προβλέψεις από άλλους CFD κώδικες επαληθεύουν τη διαδικασία σύν-

δεσης µεταξύ του χωρικού (Eulerian) επιλύτη MaPFlow, που χρησιµοποιείται στην περιοχή

κοντά στα σώµατα, και του σωµατιδιακού (Lagrangian) επιλύτη που χρησιµοποιείται στο

µακρινό πεδίο. Ακόµη, η µειωµένη αριθµητική διάχυση που χαρακτηρίζει την υλική δι-

ατύπωση των εξισώσεων της ϱοής στο µακρινό πεδίο, οδηγεί σε µία πιο ακριβή πρόβλεψη του

ελλείµατος ταχύτητας που διαµορφώνεται κατάντι και σε καλύτερη συµφωνία µε τις πειρα-

µατικές µετρήσεις σε σχέση µε την περίπτωση που χρησιµοποιείται ο Eulerian επιλύτης

MaPFlow. Στη συνέχεια, ο αεροελαστικός επιλύτης GAST–HoPFlow χρησιµοποιήθηκε για

την αεροελαστική ανάλυση του µοντέλου του δροµέα ελικοπτέρου που χρησιµοποιήθηκε στο

πείραµα HARTII [13] σε συνθήκες πτήσης καθόδου. Και σε αυτήν την περίπτωση η σύγκρ-

ιση των αποτελεσµάτων του νέου αυτού εργαλείου, τόσο µε πειραµατικές µετρήσεις, όσο και

µε προβλέψεις από άλλους υπολογιστικούς κώδικες αντίστοιχης ακρίβειας είναι πολύ καλή

και πιστοποιεί την ακρίβεια των επιµέρους επιλυτών και την ορθότητα της διαδικασίας που

ακολουθήθηκε για τη σύνδεσή τους.

222



B Mεεεθθθoooδδδoooλλλoooγγγιιιααα

B Mεεεθθθoooδδδoooλλλoooγγγιιιααα

Στην ενότητα αυτή παρατίθεται το ϑεωρητικό υπόβαθρο στο οποίο ϐασίζονται οι υπ-

ολιγστικοί κώδικες που χρησιµοποιούνται στην παρούσα διατριβή. Πρώτα αναλύεται ο

ελαστο-δυναµικός κώδικας GAST και στη συνέχεια ακολουθούν ο Eulerian CFD επιλύτης

MaPFlow, (έµφαση δίνεται στις µεθόδους που αναπτύχθηκαν κατά τη διάρκεια αυτής της

διατριβής, δηλαδή στη µέθοδο της Γραµµής ∆ράσης (AL) και στη µέθοδο της Ζώνης Παραγ-

ωγής (Generation Zone – GZ), για την επιβολή των τυρβωδών διαταραχών ταχύτητας σε ένα

µέσο πεδίο) και ο υβριδικός CFD επιλύτης HoPFlow.

B.1 O εεελλλααασσστττoooδδδυυυννναααµµµιιικκκoooςςς εεεπππιιιλλλυυυτττηηηςςς GAST

Η ελαστο–δυναµική απόκριση ενός συστήµατος αναλύεται µε τη χρήση του επιλύτη

GAST [1, 29, 37, 38]. Ο GAST προσεγγίζει µία συνολική κατασκευή σαν ένα σύνολο από

επιµέρους τµήµατα (δοκούς), για τη δυναµική ανάλυση των οποίων ακολουθείται η µέθοδος

της ∆υναµικής Πολλαπλών Σωµάτων (ϐλέπε Εικόνα 5.1). Σύµφωνα µε αυτήν, ένα τοπικό

σύστηµα συντεταγµέων [O (x, y, z)] είναι προσδεδεµένο στην αρχή της κάθε δοκού (P1), µε

ϐάση το οποίο καθορίζονται οι ελαστικές παραµορφώσεις της. Η ϑέση και ο προσανατολισ-

µός ενός σώµατος k καθορίζονται µε ϐάση το ∆ιάνυσµα Θέσης Rk
και το Μητρώο Στροφής

Tk του συστήµατος συντεταγµένων του. ΄Ετσι, η δυναµική συµπεριφορά ενός οποιουδήποτε

σηµείου που ανήκει στο σώµα k µπορεί να καθοριστεί µε ϐάση τις εξισώσεις της ∆υναµικής

Πολλαπλών Σωµάτων:

rk
G

= Rk + Tk
(
rk
L

+ Suk (t)
)

ṙk
G

= Ṙk + Ṫk
(
rk
L

+ Suk (t)
)

+ Tk
(
Su̇k (t)

)
r̈k
G

= R̈k + T̈k
(
rk
L

+ Suk (t)
)

+ 2Ṫk
(
Su̇k (t)

)
+ Tk

(
Sük (t)

) (5.1)

όπου rk
L

=
(
x
k

L
, y

k

L
, z
k

L

)T
είναι οι τοπικές συντεταγµένες του σηµείου στην αρχική απαραµόρ-

ϕωτη κατάσταση, uk =
(
u
k
, v
k
, w

k
, θk

x
, θk

y
, θk

z

)T
είναι το διάνυσµα των τοπικών παραµορ-

ϕώσεων (µετατοπίσεις και γωνίες), ενώ u̇k =
(
u̇
k
, v̇
k
, ẇ

k
, θ̇k

x
, θ̇k

y
, θ̇k

z

)T
και ük =

(
ü
k
, v̈
k
, ẅ

k
, θ̈k

x
, θ̈k

y
, θ̈k

z

)T
είναι οι αντίστοιχες ταχύτητες και επιταχύνσεις (όλα ορίζονται στο τοπικό σύστηµα συντεταγ-

µένων του σώµατος k). Το µητρώο S δίνεται από τον τύπο:

S =


1 0 0 0 z

k

L
0

0 1 0 −zk
L

0 x
k

L

0 0 1 0 −xk
L

0

 (5.2)
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Figure 5.1. Μοντελοποίηση της διάταξης ανεµογεννήτριας µε ϐάση τη Μέθοδο των Πολ-

λαπλών Σωµάτων. Η αρχική απαραµόρφωτη κατάσταση απεικονίζεται µε κόκκινη γραµµή,

ενώ η παραµορφωµένη κατάσταση µε µαύρη. Οι κινηµατικοί ϐαθµοί ελευθερίας qk ενός

σώµατος k καθορίζονται από τις κινήσεις που κάνει το σώµα από µόνο του, ενώ οι τοπικοί

κινηµατικοί ϐαθµοί ελευθερίας qk
0
καθορίζονται από τα σώµατα µε τα οποία συνδέεται το σώµα

k.

Το διάνυσµα ϑέσης Rk
και το Μητρώο Στροφής Tk ενός σώµατος k καθορίζονται ως προς

το αδρανειακό σύστηµα σύστηµα συντεταγµένων [OG (xG, yG, zG)] µε ϐάση τους κινηµατικούς

ϐαθµούς ελευθερίας qk =
[
qk
t
,qk

r

]T
, οι οποίοι χωρίζονται σε γραµµικές µετακινήσεις

(
qk
t

)
και

γωνίες στροφής

(
qk
r

)
που µπορεί να µεταβάλλονται στο χρόνο ή να παραµένουν σταθερές. Εκ-

τός από όλες τις µετακινήσεις και τις γωνίες στροφής που υφίσταται το σώµα k λόγω των δικών

του κινήσεων, το διάνυσµα ϑέσης Rk
και το Μητρώο Στροφής Tk του σώµατος καθορίζονται

επιπλέον από ένα σετ τοπικών κινηµατικών ϐαθµών ελευθερίας qk
0

=
[
qk

0t
,qk

0r

]T
, οι οποίοι

χωρίζονται σε σε γραµµικές µετακινήσεις

(
qk

0t

)
και γωνίες στροφής

(
qk

0r

)
που υφίσταται το

σώµα k λόγω της σύνδεσής του µε άλλα σώµατα (π.χ. τα πτερύγια µιας ανεµογεννήτριας

υφίστανται επιπλέον µετακινήσεις και γωνίες στροφής λόγω της παραµόρφωσης του πύργου).

Οι τιµές του qk
0
υπολογίζονται ικανοποιώντας κατάλληλες µη–γραµµικές εξισώσεις σύνδεσης

µεταξύ των επιµέρους δοκών της συνολικής κατασκευής. Από αυτήν την άποψη, µπορεί να

ειπωθεί ότι οι ελαστικές παραµορφώσεις των σωµάτων που είναι συνδεδεµένα µε τη δοκό k,
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αθροίζονται/συσσωωρεύονται στο qk
0
και οι µεγάλες αυτές κινήσεις πραγµατοποιούνται από

το σώµα k υπό τη µορφή µεγάλων κινήσεων απαραµόρφωτου σώµατος (rigid–body motion).

΄Ετσι, οι σχέσεις για τον υπολογισµό του ∆ιανύσµατος Θέσης Rk
και του Μητρώου Στροφής

Tk ενός σώµατος k παίρνουν τη µορφή:

Rk = Rk

p

(
qk , t

)
+ Tk

p

(
qk
r
, t

)
Rk

0

(
qk

0
, t

)
Tk = Tk

p

(
qk
r
, t

)
Tk

0

(
qk

0r
, t

) (5.3)

όπου τα µητρώα στροφής Tk
p

και Tk
0

υπολογίζονται σαν µία αλληλουχία από διαδοχικές

στοιχειώδεις στροφές γύρω από έναν άξονα (στροφές Euler):

T = T1

(
q

1

r

)
T2

(
q

2

r

)
· · ·Tm−1

(
q
m−1

r

)
Tm

(
q
m

r

)
ενώ τα διανύσµατα ϑέσης Rk

p
και Rk

0
υπολογίζονται σαν µία αλληλουχία από στοιχειώδεις

στροφές, κάθε µιας από τις οποίες προηγείται µία στοιχειώδης µετακίνηση κατά µήκος ενός

άξονα:

R = R1

(
q

1

t

)
+ T1

(
q

1

r

) (
R2

(
q

2

t

)
+ T2

(
q

2

r

)
· · ·Rm−1

(
q
m−1

t

)
+ Tm−1

(
q
m−1

r

)
Rm

(
q
m

t

))
όπου m = 6 για τα Rk

0
και Tk

0
, ενώ µπορεί να πάρει οποιαδήποτε τιµή για τον καθορισµό των

Rk

p
και Tk

p
.

΄Ολα τα εύκαµπτα τµήµατα µιας κατασκευής µοντελοποιούνται σαν δοκοί, για την ελαστική

ανάλυση των οποίων χρησιµοποιείται η γραµµική ϑεωρία δοκών Timoshenko µαζί µε την

καταστατική εξίσωση για τη σχέση τάσεων–τροπών στις διατοµές των δοκών που ισχύει στην

ελαστική περιοχή (νόµος του Hook):

Timoshenko:

∫
A
ρSTTkT r̈k

G
dA =



F
′
x

F
′
y

F
′
z

M
′
x

+ Fz − Fyw
′

M
′
y

M
′
x
− Fx + Fyu

′



k

+



εξωτεϱικα ϕoϱτια

και αντιδασϸις

συνδϸδϸµϸνων

σωµατων


Καταστατική: Fk = Kkεk


⇒

∫
A

ρSTTkT r̈k
G
dA =

(
Kk

1
u′k

)′
+

(
Kk

2
uk

)′
+

(
Kk

3
u′k

)
+

(
Kk

4
uk

)
+ εξωτεϱικα ϕoϱτια (5.4)

όπου το ()′ = ∂

∂y
συµβολίζει τη χωρική παράγωγο στην αξονική κατεύθυνση y της δοκού, ενώ

τα Kk

1
, Kk

2
, Kk

3
και Kk

4
ορίζονται αναλυτικά στην Ενότητα 2.1.2.1. Οι όροι Fyw

′
και Fyu

′
στις

εξισώσεις των ϱοπών γύρω από τους x και z άξονες αντίστοιχα είναι οι µόνοι µη–γραµµικοί

όροι που έχουν διατηρηθεί στο σετ των δυναµικών εξισώσεων της δοκού. Ο λόγος είναι ότι

αυτοί οι όροι αυξάνουν τη ϕαινόµενη δυσκαµψία της δοκού ανάλογα µε το τετράγωνο της

γωνιακής ταχύτητας.
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Συνδυάζοντας την εξίσωση (5.4) µε την Αρχή των ∆υνατών ΄Εργων προκύπτει η ασθενής

µορφή των εξισώσεων της δοκού:∫
L

δukT
[∫

A

ρSTTkT
[
R̈k + T̈k

(
rk
L

+ Suk (t)
)

+ 2Ṫk
(
Su̇k (t)

)
+ Tk

(
Sük (t)

)]
dA

]
dy =

−

∫
L

δu′k
T
(
Kk

1
u′k

)
dy −

∫
L

δu′k
T
(
Kk

2
uk

)
dy +

∫
L

δukT
(
Kk

3
u′k

)
dy +

∫
L

δukT
(
Kk

4
uk

)
dy

+ ϸϱγo των εξωτϸϱικων δυναµϸων + συνoριακoι oρoι

(5.5)

Η διακριτοποιµένη µορφή των εξισώσεων της δοκού που παρουσιάζεται στην εξίσωση (5.6)

επιτυγχάνεται εφαρµόζοντας στην εξίσωση (5.5) τη Μέθοδο των Πεπερασµένων Στοιχείων και

προσεγγίζοντας τις ελαστικές παραµορφώσεις ενός στοιχείου ως u (y, t) = N (y) û (t), όπου

N (y) είναι το µητρώο των Συναρτήσεων Μορφής του στοιχείου και û (t) οι χρονικά εξαρτώ-

µενοι ελαστικοί ϐαθµοί ελευθερίας του στοιχείου, που ορίζονται αναλυτικά στην Ενότητα 2.1.2.1.∫
Le

NT (y)
∫
A

ρSTSdAN (y)dy ¨̂u (t)

+

∫
Le

NT (y)
∫
A

ρSTTkT2ṪkSdAN (y)dy ˙̂u (t)

+

∫
Le

NT (y)
∫
A

ρSTTkT T̈kSdAN (y)dy û (t)

+

∫
Le

N′T (y) Kk

1
N′ (y)dy û (t) +

∫
Le

N′T (y) Kk

2
N (y)dy û (t)

−

∫
Le

NT (y) Kk

3
N′ (y)dy û (t) −

∫
Le

NT (y) Kk

4
N (y)dy û (t) =

−

∫
Le

NT (y)
∫
A

ρSTTkT R̈k
dAdy −

∫
Le

NT (y)
∫
A

ρSTTkT T̈krk
L
dAdy

+ϸϱγo των εξωτϸϱικων δυναµϸων + συνoριακoι oρoι

(5.6)

Οι παραπάνω µη–γραµµικές εξισώσεις γραµµικοποιούνται ως προς τους κινηµατικούς

και τους ελαστικούς ϐαθµούς ελευθερίας, ακολουθώντας τη Μέθοδο των ∆ιαταραχών:

q = q0 + ∆q, q̇ = q̇0 + ∆q̇, q̈ = q̈0 + ∆q̈

u = u0 + ∆u, u̇ = u̇0 + ∆u̇, ü = ü0 + ∆ü
(5.7)

Η γραµµικοποιηµένη µορφή των εξισώσεων ενός πεπερασµένου στοιχείου παίρνει τη

µορφή:

Ma

e
∆ü + Ca

e
∆u̇ + Ka

e
∆u + Mq

e∆q̈ + Cq

e∆q̇ + Kq

e∆q = Qe (5.8)

όπου τα γενικευµένα µητρώα µάζας, απόσβεσης, δυσκαµψίας και δυνάµεων του στοιχείου

ορίζονται αναλυτικά στην Ενότητα 2.1.2.1.

Συγκεντρώνοντας τα µητρώα κατά µήκος των διαδοχικών πεπερασµένων στοιχείων µίας

δοκού, το σύστηµα των εξισώσεων της δοκού παίρνει τη µορφή της Εικόνας 5.2.
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Figure 5.2. Η µορφή του συστήµατος των εξισώσεων µίας µεµονωµένης δοκού χτίζεται συγ-

κεντρώνοντας όλα τα µητρώα κατά µήκος των διαδοχικών πεπερασµένων στοιχείων της δοκού.

Η σύνδεση των ξεχωριστών δοκών σε µία συνολική διάταξη επιτυγχάνεται µε την ικανοποίηση

κατάλληλων µη–γραµµικών κινηµατικών και δυναµικών εξισώσεων σύνδεσης. Στη γενική

περίπτωση της σύνδεσης µεταξύ δύο δοκών r και m, η µία καθορίζει την κινηµατική (ϑέση

και προσανατολισµός) του κοινού σηµείου σύνδεσης, ενώ η δεύτερη καθορίζει την ϕόρτισή

του (ϐλέπε Εικόνα 5.3).

Figure 5.3. Συνθήκες σύνδεσης µεταξύ δύο δοκών. Η πρώτη (r) καθορίζει την κινηµατική του

κοινού σηµείου σύνδεσης, ενώ η δεύτερη (m) καθορίζει τη ϕόρτισή του.
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Οι κινηµατικές συνθήκες σύνδεσης, συνήθως παίρνουν τη µορφή Dirichlet οριακών συν-

ϑηκών µε ϐάση τις οποίες καθορίζονται οι τιµές των τοπικών κινηµατικών ϐαθµών ελευθερίας

qk
0

=
[
qk

0t
,qk

0r

]T
της κάθε δοκού. Οι µη–γραµµικές κινηµατικές εξισώσεις για τη σταθερή σύν-

δεση µεταξύ δύο δοκών r και m έχουν τη µορφή:

rm
G

(P1 or P2) − rr
G

(P1 or P2) − dr,m
0

= 0

θθθr,m − θθθr,m
0

= 0
(5.9)

όπου dr,m
0

και θθθr,m
0

η απόσταση και η γωνία αντίστοιχα, µεταξύ των σηµείων σύνδεσης (P1

ή P2 της δοκού r και P1 ή P2 της δοκού m). Τα διανύσµατα rm
G

και rr
G

υπολογίζονται µε

ϐάση το αδρανειακό σύστηµα συντεταγµένων από την εξίσωση (5.1) και οι σχετικές γωνίες

θθθr,m υπολογίζονται γύρω από τους άξονες του τοπικού συστήµατος συντεταγµένων της δοκού

r σύµφωνα µε τις εξισώσεις [36]:

cos θr,m
i

(
em
j
· er
k

)
− sin θr,m

i

(
em
k
· er
k

)
= 0 (5.10)

cos θr,m
i

=
(
em
k
· er
k

)
sin θr,m

i
=

(
em
j
· er
k

) (5.11)

όπου er
i
και em

i
είναι τα µοναδιαία διανύσµατα ϐάσης που καθορίζουν τον προσανατολισµό

των διατοµών των δοκών r και m αντίστοιχα.

Οι δυναµικές συνθήκες σύνδεσης συµπληρώνουν τις κινηµατικές και καθορίζουν τη ϕόρ-

τιση του κοινού σηµείου σύνδεσης. Υλοποιούνται µεταφέροντας τα ϕορτία αντίδρασης από

τον κόµβο της δοκού που δέχεται την κινηµατική (έστω το σηµείο P1 της δοκού m) στον κόµβο

της δοκού που καθορίζει την κινηµατική του κοινού σηµείου σύνδεσης (έστω το σηµείο P2

της δοκού r). Τα ϕορτία αντίδρασης στους δύο κόµβους ενός πεπερασµένου στοιχείου e

υπολογίζονται µε ϐάση την εξίσωση (5.12):QR(1)
QR(2)

 = Ma

e
∆ü + Ca

e
∆u̇ + Ka

e
∆u + Mq

e∆q̈ + Cq

e∆q̇ + Kq

e∆q −Qe (5.12)

Οι πρώτες 6 γραµµές QR(1)T είναι τα ϕορτία αντίδρασης (δυνάµεις και ϱοπές) στον 1ο κόµβο

του στοιχείου, ενώ οι τελευταίες 6 γραµµές QR(2)T είναι τα ϕορτία αντίδρασης στο 2ο κόµβο.

Τα ϕορτία αυτά είναι εκφρασµένα στο τοπικό σύστηµα συντεταγµένων της δοκού που περιέχει

το συγκεκριµένο στοιχείο (έστω η δοκός m). Εποµένως, οι αντιδράσεις αυτών στο σηµείο της

δοκού που δέχεται τα ϕορτία (έστω το σηµείο P2 της δοκού r) προκύπτουν από τη σχέση:

QR(2)r = −Tr TTmQR(1)m (5.13)

Με αυτόν τον τρόπο, ορίζονται πλήρως οι οριακές συνθήκες µίας δοκού (κινηµατική ή

ϕορτία στα δύο άκρα) και το σύστηµα που προκύπτει για την περίπτωση δύο συνδεδεµένων

δοκών r και m παίρνει τη µορφή:
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Figure 5.4. Η µορφή του συστήµατος για την περίπτωση της άκαµπτης σύνδεσης µεταξύ δύο

δοκών r και m. Η δοκός r καθορίζει την κινηµατική του κοινού σηµείου σύνδεσης, ενώ η δοκός

m τη ϕόρτισή του.

Τα πολύ εύκαµπτα σώµατα που υφίστανται µεγάλες παραµορφώσεις, µοντελοποιούν-

ται σαν µία αλληλουχία από διαδοχικές γραµµικές δοκούς Timoshenko που συνδέονται

µεταξύ τους. ΄Ετσι, οι µεγάλες παραµορφώσεις ενός πολύ εύκαµπτου σώµατος χτίζονται

σταδιακά, αθροίζοντας τις µικρές παραµορφώσεις (γραµµικές και γωνιακές) των προηγού-

µενων δοκών Timoshenko σε µεγάλες µετακινήσεις και γωνίες στροφής που εκφράζονται

µέσω του διανύσµατος ϑέσης και του µητρώου στροφής των δοκών που ακολουθούν και υπ-

ολογίζονται µε ϐάση τις παραπάνω µη–γραµµικές εξισώσεις σύνδεσης. Με αυτόν τον τρόπο,

ο ελαστο–δυναµικός κώδικας GAST, είναι σε ϑέση να προβλέπει µε ακρίβεια τα µη–γραµµικά

γεωµετρικά και αεροελαστικά ϕαινόµενα που προκύπτουν λόγω µεγάλων παραµορφώσεων,

χρησιµοποιώντας τη γραµµική ϑεωρία Timoshenko στο επίπεδο τον δοκών, αλλά λαµβάνον-

τας υπ΄ όψιν τα µη–γραµµικά ϕαινόµενα στα σηµεία σύνδεσης.

B.2 O Eulerian εεεπππιιιλλλυυυτττηηηςςς MaPFlow

Ο MaPFlow είναι ένας κλασσικός Eulerian CFD επιλύτης που αναπτύχθηκε στο Ερ-

γαστήριο Αεροδυναµικής του ΕΜΠ στο πλαίσιο προηγούµενων διδακτορικών διατριβών [4,

191]. Επιλύει τις συµπιεστές µη–µόνιµες εξισώσεις Navier–Stokes για ένα χρονικά µέσο

πεδίο κατά Reynolads (URANS). Η χωρική διακριτοποίηση των εξισώσεων γίνεται µέσω ενός

κεντροκυψελικού σχήµατος πεπερασµένων όγκων. Ο MaPFlow µπορεί να χειριστεί τόσο

δοµηµένα, όσο και µη–δοµηµένα πλέγµατα. Η παραλληλοποίησή του γίνεται σύµφωνα µε

το πρωτόκολλο επικοινωνίας MPI, ενώ η διαµέριση του πλέγµατος στους ξεχωριστούς επεξ-

εργαστές (grid partitioning) υλοποιείται µε τη ϐοήθεια της ϐιβλιοθήκης METIS [111]. Οι

όροι συναγωγής υπολογίζονται επιλύοντας ένα πρόβληµα ασυνέχειας Riemann µεταξύ δύο

γειτονικών κελιών, χρησιµοποιώντας τον προσεγγιστικό επιλύτη του Roe [112]. Για τον υπ-

ολογισµό των µεταβλητών της ϱοής στα σύνορα µιας υπολογιστικής κυψέλης ακολουθείται

η διαδικασία της ‘ανακατασκευής’ (reconstruction) των µεταβλητών, ϑεωρώντας γραµµική

µεταβολή της λύσης στον πεπερασµένο όγκο (Piecewise Linear Reconstruction). Για την
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αποτροπή των ακραίων τιµών των µεταβλητών στη διεπιφάνεια µεταξύ δύο κελιών, χρησι-

µοποιείται ο ‘περιοριστής’ (limiter) του Venkatakrishnan [113], ενώ οι παράγωγοι των µεταβλ-

ητών υπολογίζονται στα κέντρα των υπολογιστικών κυψελών είτε µε τη µέθοδο του Green–

Gauss [124], είτε µε τη µέθοδο των Ελαχίστων Τετραγώνων [192]. Οι όροι συναγωγής διακρι-

τοποιούνται χρησιµοποιώντας ένα κεντρικό σχήµα 2ης τάξης. Για την επιτυχή περιγραφή

της ϱοής σε περιοχές όπου ο αριθµός Mach είναι χαµηλός, πραγµατοποιείται ‘προστα-

ϑεροποίηση’ (preconditioning) των εξισώσεων της ϱοής χρησιµποιώντας το Μητρώο Προστα-

ϑεροποίησης του Eriksson [121]. Ο MaPFlow διαθέτει πολλές επιλογές για τη µοντελοποίηση

της τύρβης, όπως το µοντέλο µίας εξίσωσης των Spalart–Allmaras [114] ή το µοντέλο δύο

εξισώσεων k − ω SST του Menter [115], ενώ ακόµα υπάρχει και η δυνατότητα περιγραφής

των µεγάλων δοµών στροβιλότητας (δινών) µέσω των µεθόδων LES (για τη µοντελοποίηση των

δινών µικρής κλίµακας χρησιµοποιείται το αλγεβρικό µοντέλο του Smagorinsky [167]), DES

και DDES [117]. Η ολοκλήρωση των εξισώσεων στο χρόνο πραγµατοποιείται µέσω ενός ‘άρ-

ϱητου’ (implicit) σχήµατος πεπερασµένων διαφορών 2ης τάξης [125, 118] που συνδυάζεται

µε την τεχνική των ‘εσωτερικών ψευδο–χρονικών ϐηµάτων’ (dual time–stepping) [119] για

τη ϐελτίωση της σύγκλισης. Τέλος, η επίλυση του γραµµικοποιηµένου συστήµατος πραγ-

µατοποιείται χρησιµοποιώντας την επαναληπτική µέθοδο Gauss–Seidel, µαζί µε τη µέθοδο

‘αναδιάταξης’ (reordering) Reverse Cuthill–Mckee για την ισχυροποίηση της διαγώνιας µορ-

ϕής του συστήµατος [120].

B.2.1 HHH µµµεεεθθθoδδδoςςς τττηηηςςς ΓΓΓρρραααµµµµµµηηηςςς ∆∆∆ρρρααασσσηηηςςς – AL

Για την εύκολη διαχείριση εφαρµογών Πολλαπλών Σωµάτων (Multi–Body applications)

(π.χ. ανάλυση πολλαπλών δροµέων), αλλά και τον ταυτόχρονο περιορισµό του υπολογιστικού

κόστους για την ανάλυσή τους, ενσωµατώθηκε στο MaPFlow κατά τη διάρκεια αυτής της

διατριβής η µέθοδος της Γραµµής ∆ράσης (Actuator Line – AL). Στη µέθοδο αυτή, το πεδίο

ϱοής επιλύεται χωρίς να λαµβάνεται αυστηρά υπ΄ όψιν η ϕυσική παρουσία ενός σώµατος εντός

του υπολογιστικού χωρίου. Αντίθετα, το σώµα αυτό µοντελοποιείται σαν µία αλληλουχία από

σηµεία ελέγχου (control points) κατά τον κύριο άξονά του, που σχηµατίζουν µία γραµµή

(ϐλέπε Εικόνα 5.5). Η γραµµή αυτή έχει τη δυνατότητα να κινείται και να παραµορφώνεται

ελεύθερα µέσα στο πλέγµα του υπολογιστικού χωρίου, κάτι το οποίο είναι ιδιαίτερα ϐολικό

σε αεροελαστικές προσοµοιώσεις πολλαπλών σωµάτων.
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Figure 5.5. Μοντελοποίηση των πτερυγίων ενός δροµέα ΑΓ µε τη µέθοδο Γραµµής ∆ράσης.

Τα σηµεία ελέγχου στο κέντρο των στοιχείων πτερύγωσης απεικονίζονται µε κόκκινες τελείες,

ενώ τα άκρα των στοιχείων πτερύγωσης µε µαύρες τελείες.

Τα σηµεία ελέγχου της γραµµής συνήθως τοποθετούνται στα κέντρα των στοιχείων πτερύγ-

ωσης στα οποία διακριτοποιείται το υπό µελέτη σώµα (π.χ. πτερύγιο). Σε κάθε ένα από αυτά

τη σηµεία ελέγχου υπολογίζεται µία τοπική ταχύτητα Weff (local inflow velocity) µέσω παρεµ-

ϐολών από τη λύση των υπολογιστικών κελιών που τα περιβάλλουν. Στην παρούσα υλοποίηση

της µεθόδου χρησιµοποιούνται συναρτήσεις ΡΒΦ [132] για την πραγµατοποίηση των παρεµ-

ϐολών µε ϐάση τον όγκο και την απόσταση των γειτονικών υπολογιστικών κελιών. Με ϐάση

αυτήν την ταχύτητα, υπολογίζεται και η γωνία πρόσπτωσης aeff του στοιχείου πτερύγωσης.

Με αυτήν τη γωνία πρόσπτωσης και τη ϐοήθεια πινακοποιηµένων καµπυλών CL , CD, CM υπ-

ολογίζονται τα αεροδυναµικά ϕορτία του πτερυγίου στη ϑέση των σηµείων ελέγχου (fcp,mcp),

όπως περιγράφεται στην εξίσωση (5.14) και ϕαίνεται στην Εικόνα 5.6.

aeff = arctan
Weff,z

Weff,x

L =
1

2
ρW

2

eff
CL(aeff )c∆r

D =
1

2
ρW

2

eff
CD(aeff )c∆r

M =
1

2
ρW

2

eff
CM (aeff )c2∆r

fcp = LeL + DeD
mcp = MeM

(5.14)
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Figure 5.6. Μοντελοποίηση ενός πτερυγίου µε τη µέθοδο Γραµµής ∆ράσης. Ανάλυση

στοιχείων πτερύγωσης για τον υπολογισµό των αεροδυναµικών ϕορτίων στα σηµειά ελέγχου

του πτερυγίου και προβολή των αεροδυναµικών δυνάµεων στο χώρο µέσω µιας 3∆ κατανοµής

Gauss.

Στη συνέχεια, και για λόγους αριθµητικής ευστάθειας, οι αντιδράσεις αυτών των ϕορτίων

κατανέµονται στο χώρο µέσω µιας 3∆ κατανοµής Gauss και µοντελοποιούνται σαν όροι

πηγής στα υπολογιστικά κελιά που ϐρίσκονται εντός αυτής της κατανοµής (ϐλέπε εξίσωση

(5.15) και Εικόνα 5.7). Τέλος, οι εξισώσεις της ϱοής επιλύονται λαµβάνοντας υπ΄ όψιν τους

συγκεκριµένους όρους πηγής, το πεδίο της ϱοής ανανεώνεται λαµβάνοντας υπ΄ όψιν την

‘παρουσία’ του αεροδυναµικού σώµατος που µοντελοποιείται σαν Γραµµή ∆ράσης και η

διαδικασία αυτή επαναλαµβάνεται έως ότου συγκλίνει.

fϸ = fcpηϸ

fc = −

Ncp∑
i=1

fcpηϸ(cpi , cell)
(5.15)

όπου:

• fϸ είναι η δύναµη ανά µονάδα όγκου [N/m
3
] που προβάλεται στο υπολογιστικό πλέγµα;

• fcp είναι η δύναµη [N ] που υπολογίζεται σε ένα τυχαίο σηµείο ελέγχου του σώµατος;

• ηϸ = 1

(ϸ √π)3 e
−( d

ϸ
)2

είναι η συνάρτηση της 3∆ κατανοµή Gauss [1/m
3
];

• d = |xcp − xc | είναι η απόσταση [m] µεταξύ του σηµείου ελέγχου xcp και του σηµείου

xc στο οποίο εφαρµόζεται η κατανεµηµένη δύναµη;

• ϸ είναι η τυπική απόκλιση της κατανοµής Gauss [m] που καθορίζει και το πλάτος της

κατανοµής.
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Figure 5.7. Μοντελοποίηση ενός πτερυγίου µε τη µέθοδο Γραµµής ∆ράσης. Προβολή των

αεροδυναµικών δυνάµεων στο χώρο µέσω µιας 3∆ κατανοµής Gauss. Η εικόνα δηµοσιεύτηκε

πρώτη ϕορά στο [130].

B.2.2 HHH µµµεεεθθθoδδδoςςς τττηηηςςς ZZZωωωνννηηηςςς ΠΠΠαααρρραααγγγωωωγγγηηηςςς – GZ

Για να υπάρχει η δυνατότητα χρήσης του αεροελαστικού κώδικα GAST–AL στη ϕάση του

σχεδιασµού δροµέων ΑΓ, πρέπει να υπάρχει η δυνατότητα προσοµοίωσης ατµοσφαιρικών

(τυρβωδών) συνθηκών ϱοής. Για αυτό το σκοπό, κατά τη διάρκεια αυτής της διατριβής,

αναπτύχθηκε και ενσωµατώθηκε στο MaPFlow η µέθοδος της Ζώνης Παραγωγής (GZ) για

την επιβολή των τυρβωδών διαταραχών ταχύτητας σε ένα µέσο πεδίο CFD.

Το πρώτο πράγµα που πρέπει να γίνει για την αναπαράσταση ενός τυρβώδους πεδίου

ανέµου σε ένα περιβάλον CFD είναι η δηµιουργία ενός συνθετικού τυρβώδους πεδίου.

Αυτό επιτυγχάνεται µε ένα εξωτερικό εργαλείο το οποίο δηµιουργεί µία αλληλουχία από

διαταραχές ταχύτητας U′ γύρω από ένα µέσο πεδίο ταχύτητας U και τις αποθηκεύει σε δι-

αδοχικά επίπεδα κάθετα στην κατεύθυνση της ϱοής. Το εργαλείο που χρησιµποιήθηκε στο

πλαίσιο αυτής της διατριβής ϐασίζεται στο µοντέλο του Mann [104, 105, 8].

Σε δεύτερη ϕάση, αυτές οι διαταραχές ταχυτήτων πρέπει να προστεθούν στο µέσο πεδίο

που περιγράφεται σε ένα περιβάλλον CFD. Αυτό επιτυγχάνεται µε την επιβολή όρων πηγής

Sc σε ορισµένα κελιά του υπολογιστικού χωρίου, ούτως ώστε η λύση της ταχύτητας αυτών

των κελιών να οδηγηθεί στην επιθυµητή Utar = U + U′. Αυτοί οι όροι πηγής απλώνονται σε

µία Ϲώνη (Ζώνη Παραγωγής) κοντά στο επίπεδο της ΑΓ. Οι τιµές τους εξαρτώνται τόσο από τη

χρονική στιγµή, όσο και από τη ϑέση και την τρέχουσα ταχύτητα των υπολογιστικών κελιών

στα οποία επιβάλλονται, όπως ϕαίνεται στην εξίσωση (5.16). Η ένταση των όρων πηγής

ϱυθµίζεται µέσω µίας συνάρτησης C, η οποία παίρνει τη µέγιστη τιµή της στην αρχή της

Ζώνης Παραγωγής (xs) και τείνει στο 0 προς το τέλος της (xe) (ϐλέπε Εικόνα 5.8). Το γεγονός

ότι οι όροι πηγής έχουν εξαφανιστεί µέχρι το τέλος της Ϲώνης σηµαίνει ότι εκεί καταλήγουµε

µε ένα προφίλ ταχυτήτων το οποίο είναι σε συµφωνία µε τις υπολογιστικές παραµέτρους που

χρησιµοποιούµε (π.χ. τύπος των εξισώσεων που επιλύονται, τάξη αριθµητικού σχήµατος

κ.α.), µε αποτέλεσµα να µην υπάρχει σηµαντικός κίνδυνος αριθµητικών ασταθειών κατά τη

διάρκεια της προσοµοίωσης.

Sc = Cρc (Utar − Uc)

C = a ∗ e
−

 x − xs

0.2 (xe − xs)

 (5.16)
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Figure 5.8. Η συνάρτηση C ϱυθµίζει την ένταση των όρων πηγής της Ζώνης Παραγωγής.

Παίρνει τη µέγιστη τιµή της στην αρχή της Ϲώνης (xs) και τείνει οµαλά στο 0 προς το τέλος της

(xe).

Η παράµετρος a που καθορίζει τη µέγιστη τιµή της συνάρτησης C ϱυθµίζεται από τον

χρήστη. Αυτό σηµαίνει ότι οι όροι πηγής εντός της Ζώνης Παραγωγής µπορούν να γίνουν

όσο ισχυροί χρειάζεται ούτως ώστε, τουλάχιστον στην αρχή της Ϲώνης, να επιτευχθεί ακριβώς

το επιθυµητό προφίλ ταχυτήτων. Ο ισχυρισµός αυτός επιβεβαιώνεται από την Εικόνα 5.9,

όπου συγκρίνονται τα ϕάσµατα της αξονικής ταχύτητας που παράγει η µέθοδος της Ζώνης

Παραγωγής (GZ) και η συµβατική µέθοδος του ∆ίσκου ∆ράσης (Actuator Disk – AD) σε σχέση

µε το ϕάσµα που παράγει το µοντέλο του Mann. Αυτό έχει σαν αποτέλεσµα, και το ϕάσµα

µε το οποίο καταλήγουµε στο επίπεδο του δροµέα της ΑΓ, όταν χρησιµοποιούµε τη µέθοδο

του GZ, να είναι πολύ πιο κοντά στο επιθυµητό σε σχέση µε αυτό που καταλήγουµε όταν

χρησιµοποιούµε τη συµβατική µέθοδο του AD (ϐλέπε Εικόνα 5.10).

Figure 5.9. Αξονική ταχύτητα στο πεδίο του χρόνου (αριστερά) και στο πεδίο των συχνοτήτων

(δεξιά). Σε αντίθεση µε το προφίλ που παράγεται στο κέντρου του AD, το προφίλ που παράγεται

στην αρχή του GZ είναι σχεδόν ίδιο µε το επιθυµητό προφίλ που παράγεται από το µοντέλο του

Mann.

234



B Mεεεθθθoooδδδoooλλλoooγγγιιιααα

Figure 5.10. Το ϕάσµα αξονικής ταχύτητας στο κέντρο του επιπέδου του δροµέα της ΑΓ, όπως

υπολογίζεται από τη µέθοδο του GZ και του AD. Η µέθοδος του GZ καταλήγει σε ένα ϕάσµα

που είναι πολύ πιο κοντά στο επιθυµητό σε σχέση µε τη µέθοδο του AD.

B.3 O υυυ���ρρριιιδδδιιικκκoςςς Lagrangian–Eulerian εεεπππιιιλλλυυυτττηηηςςς HoPFlow

Ο υβριδικός Lagrangian–Eulerian CFD επιλύτης HoPFlow ϐασίζεται στο διαχωρισµό του

υπολογιστικού χωρίου σε δύο επιµέρους υπο–πεδία (ϐλέπε Εικόνα 5.11). Στο ένα, το οποίο

περιορίζεται κοντά στα στερεά σύνορα, ακολουθείται η Eulerian περιγραφή των εξισώσεων της

ϱοής, ούτως ώστε να επαληθεύονται µε ακρίβεια οι συνθήκες τοίχου. Μακριά από τα σώµατα

επιλύονται οι εξισώσεις της ϱοής στην υλική τους διατύπωση, η οποία επαληθεύει ακριβώς τις

συνθήκες της αδιατάραχτης ϱοής στο άπειρο, ενώ ακόµη παρουσιάζει µειωµένη (ϑεωρητικά

µηδενική) αριθµητική διάχυση. Με αυτόν τον τρόπο συνδυάζονται τα πλεονεκτήµατα των δύο

διατυπώσεων, µε αποτέλεσµα να αυξάνεται η ακρίβεια των υπολογισµών και να περιορίζεται

το υπολογιστικό κόστος. Χάρη στο διαχωρισµό των επιµέρους πεδίων, διευκολύνεται ακόµη

η µοντελοποίηση πολλών σωµάτων που κινούνται και παραµορφώνονται ανεξάρτητα το ένα

από το άλλο.

Η σύνδεση µεταξύ των δύο πεδίων είναι ισχυρή και επιτυγχάνεται µέσω µίας αµφίδροµης

επικοινωνίας. Αρχικά η πεδιακή λύση παρεµβάλεται από τα υλικά σωµατίδια στα εξωτερικά

όρια του Eulerian πεδίου, καθορίζοντας έτσι τις οριακές του συνθήκες (ϐλέπε Εικόνα 5.12).

Στη συνέχεια, οι εξισώσεις της ϱοής επιλύονται στην Eulerian µορφή τους. Με ϐάση την Eu-

lerian λύση διορθώνονται, µέσω παρεµβολών, και τα ϱοϊκά µεγέθη των υλικών σωµατιδίων

που ϐρίσκονται εντός του Eulerian πεδίου (ϐλέπε Εικόνα 5.13). Τέλος, ολόκληρο το La-

grangian πεδίο ανανεώνεται, ούτως ώστε να καταλήξει να είναι µία οµαλή συνέχεια του

Eulerian πεδίου.
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Figure 5.11. ∆ιαχωρισµός του Eulerian (DE) και του Lagrangian (DP) πεδίου. Με SB συµ-

ϐολίζονται τα στερεά σύνορα (τοίχος) και µε SE τα εξωτερικά σύνορα του Eulerian πεδίου. Τα

Lagrangian σωµατίδια ϐρίσκονται παντού µέσα στο υπολογιστικό χωρίο και επικαλύπτουν τα

υπολογιστικά κελιά του Eulerian πεδίου.

Figure 5.12. Τα ϱοϊκά µεγέθη των υλικών σωµατιδίων παρεµβάλλονται στα ghost cells

του Eulerian πεδίου. Με αυτόν τον τρόπο καθορίζονται οι οριακές του συνθήκες. Τα υλικά

σωµατίδια απεικονίζονται ως συµπαγείς µπλε κύκλοι. Οι συµπαγείς και διακεκοµµένοι κόκκινοι

κύκλοι συµβολίζουν τα κέντρα των υπολογιστικών κελιών και των ghost cells του Eulerian

πεδίου αντίστοιχα.
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Figure 5.13. Η Eulerian λύση χρησιµοποιείται για να διορθωθούν τα ϱοϊκά µεγέθη των

υλικών σωµατιδίων που ϐρίσκονται εντός του Eulerian πεδίου. Στη συνέχεια, η πληροφορία

από τα διορθωµένα υλικά σωµατίδια χρησιµοποιείται για την ανανέωση ολόκληρου του La-

grangian πεδίου, ούτως ώστε να εξασφαλιστεί η οµαλή συνέχεια µεταξύ των δύο. Τα υλικά

σωµατίδια απεικονίζονται ως συµπαγείς µπλε κύκλοι. Οι διακεκοµµένοι κόκκινοι κύκλοι συµ-

ϐολίζουν τα κέντρα των υπολογιστικών κελιών του Eulerian πεδίου. Οι µικροί συµπαγείς

κόκκινοι κύκλοι συµβολίζουν τα Eulerian σωµατίδια που διορθώνουν τα µπλε Lagrangian

σωµατίδια.

Στη Lagrangian διατύπωση των εξισώσεων της ϱοής, τα ϱοϊκά µεγέθη συγκεντρώνονται σε

υλικά σωµατίδια και η εξέλιξη του πεδίου παρακολουθείται ακολουθώντας τις τροχιές αυτών

των σωµατιδίων και καταγράφοντας την αλλαγή στα ϱοϊκά τους µεγέθη. Στη διατύπωση

που ακολουθείται στο HoPFlow, τα υλικά σωµατίδια µεταφέρουν µάζα Mp, διόγκωση Θp,

στροβιλότητα Ωp, πίεση Πp και όγκο Vp [67], ενώ για την επίλυση της Lagrangian µορφής

των εξισώσεων της ϱοής, η οποία είναι υπερβολικού τύπου, χρειαζόµαστε ακόµα την ταχύτητα

Up και τις παραγώγους των παραπάνω ϱοϊκών µεγεθών ∂Qp, ∂Up:

Qp (t) =



M

Θ

Ω

Π

V



T

p

dQp

dt
(t) = F

(
Qp,Up, ∂Qp, ∂Up, t

)
(5.17)
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Για τον υπολογισµό του πεδίου της ταχύτητας χρησιµοποιείται το ϑεώρηµα διαχωρισ-

µού ταχυτήτων του Helmholtz, µε ϐάση το οποίο η ταχύτητα ενός πεδίου u (x, t) µπορεί

να περιγραφεί σαν άθροισµα της επ΄ άπειρο ταχύτητας U∞ και µιας ταχύτητας διαταραχής

που περιγράφεται από ένα ϐαθµωτό δυναµικό φ
(
uφ = ∇φ

)
και ένα διανυσµατικό δυναµικό

(ϱοϊκή συνάρτηση) ψ (uω = ∇ ×ψ):

u (x, t) = U∞ + uφ (x, t) + uω (x, t) (5.18)

Οι τιµές των φ και ψ υπολογίζονται επιλύοντας τις εξισώσεις Poisson της ϱοής, οι οποίες

εισάγουν άµεσα τον ελλειπτικό χαρακτήρα της ϱοής στη διατύπωση που ακολουθείται από

το HoPFlow:

∇2φ = ∇ · u = θ

∇2ψ = −∇ × u = −ωωω
(5.19)

Οι εξισώσεις Poisson στο HoPFlow λύνονται µε τη χρήση της µεθόδου του Particle

Mesh (PM) [58, 59, 60]. Αυτό σηµαίνει ότι τα ϱοϊκά µεγέθη προβάλλονται από τις ϑέσεις

των υλικών σωµατιδίων στους κόµβους του δοµηµένου πλέγµατος PM (ϐλέπε Εικόνα 5.14),

όπου επιλύονται οι εξισώσεις Poisson και υπολογίζονται τα φ και ψ. Στο πλέγµα αυτό πραγ-

µατοποιούνται και όλες οι παραγωγίσεις που απαιτούνται για να υπολογιστεί η ταχύτητα

και όποια άλλη παράγωγος υπάρχει στο δεξί µέλος των εξισώσεων (5.17). Στη συνέχεια, όλα

τα µεγέθη που έχουν υπολογιστεί στους κόµβους του PM παρεµβάλλονται στις ϑέσεις των

υλικών σωµατιδίων. Με γνωστό πλέον το δεξί µέλος των εξισώσεων (5.17), τα υλικά σωµατί-

δια µετακινούνται στο χώρο και τα ϱοϊκά τους µεγέθη ανανεώνονται µέσω ενός σχήµατος

ολοκλήρωσης Runge–Kutta 4ης τάξης.

Figure 5.14. Στη µέθοδο του PM, ένα δοµηµένο πλέγµα καλύπτει το Lagrangian χωρίο. Οι

τιµές των θ καιωωω παρεµβάλλονται στους κόµβους του µε ϐάση τις αντίστοιχες τιµές των υλικών

σωµατιδίων. Οι εξισώσεις Poisson λύνονται στο δοµηµένο πλέγµα και στη συνέχεια οι τιµές

των φ και ψ που υπολογίστηκαν παρεµβάλλονται πίσω στα υλικά σωµατίδια. Το δοµηµένο

αυτό πλέγµα µπορεί ακόµα να χρησιµοποιηθεί και για τον υπολογισµό όλων των απαιτούµενων

παραγώγων που συναντώνται στο δεξί µέλος των εξισώσεων της ϱοής.
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Στην ενότητα αυτή παρατίθενται τα αποτελέσµατα που προκύπτουν από τη χρήση των

νέων εργαλείων, που αναπτύχθηκαν στο πλαίσιο αυτής της διατριβής, για την αεροελαστική

ανάλυση δροµέων ΑΓ και ελικοπτέρων. Το νέο GAST–AL εργαλείο εφαρµόζεται για την

αεροελαστική ανάλυση του δροµέα της πρότυπης ΑΓ 10MW που σχεδιάστηκε στο DTU [151],

υπό σταθερές και τυρβώδεις συνθήκες ανέµου, ενώ ο αεροελαστικός κώδικας GAST–HoPFlow

χρησιµοποιείται για την αεροδυναµική ανάλυση του µοντέλου δροµέα ΑΓ που µελετήθηκε

στο πείραµα New MEXICO [11] και για την αεροελαστική ανάλυση του µοντέλου του δροµέα

ελικοπτέρου που χρησιµοποιήθηκε στο πείραµα HARTII [13]. Στόχος είναι η επιβεβαίωση της

ορθής λειτουργίας των νέων αεροελαστικών εργαλείων και η ανάδειξη των πλεονεκτηµάτων

τους σε σχέση µε τις συµβατικές µεθοδολογίες που χρησιµοποιούνται κατά τη ϕάση του

σχεδιασµού των δροµέων ΑΓ και ελικοπτέρων.

C.1 TTTααα αααπππoτττεεελλλεεεσσσµµµααατττααα τττoυυυ αααεεεϱϱϱoooεεελλλααασσστττιιικκκoυυυ ϸϸϸϱϱϱγγγαααλλλεεεoυυυ GAST–AL

Σ΄ αυτήν την υποενότητα, το νέο αεροελαστικό εργαλείο GAST–AL χρησιµοποιείται για την

αεροελαστική ανάλυση της πρότυπης ΑΓ 10MW που σχεδιάστηκε στο DTU [151], όταν αυτή

λειτουργεί σε συνθήκες σταθερού και τυρβώδους ανέµου. Τα αποτελέσµατα της ανάλυσης

συγκρίνονται µε αυτά που παράγονται από άλλα, ήδη πιστοποιηµένα αεροελαστικά εργαλεία,

που χρησιµοποιούν τις αεροδυναµικές µεθόδους LL και BEMT. Στόχος είναι η επιβεβαίωση

της ορθής λειτουργίας του νέου αεροελαστικού εργαλείου GAST–AL, αλλά και η ανάδειξη

των πλεονεκτηµάτων του σε σχέση µε τις δύο πιο συµβατικές αεροδυναµικές µεθόδους.

C.1.1 ΛΛΛεεειιιτττoυυυϱϱϱγγγιιιααα AΓΓΓ σσσεεε σσσττταααθθθεεεϱϱϱooo ααανννεεεµµµooo

Πρώτα εξετάζεται η περίπτωση της αεροελαστικής λειτουργίας της ΑΓ σε σταθερό άνεµο

για δύο διαφορετικές ταχύτητες ανέµου και για διάφορες γωνίες απόκλισης, όπως ϕαίνε-

ται στον Πίνακα 5.1. Ειδικά για την περίπτωση της αξονικής ϱοής (µηδενική απόκλιση

ανέµου), πραγµατοποιείται στην Εικόνα 5.15 σύγκριση της ακτινικής κατανοµής του κά-

ϑετου αεροδυναµικού ϕορτίου και του συντελεστή αξονικής επαγωγής που υπολογίζονται

όταν χρησιµποιούνται τρία διαφορετικά αεροδυναµικά µοντέλα που ϐασίζονται στις µεθό-

δους BEMT, LL και AL. Χρειάζεται να τονιστεί ότι τα µοντέλα LL και AL εκτιµούν µε πολύ

διαφορετικό τρόπο το κατώρευµα του οµόρρου απ΄ ότι η µέθοδος BEMT, χάρη στη λεπτοµερή

αναπαράσταση του 3∆ πεδίου της ϱοής που προσφέρουν οι FVW και CFD µεθοδολογίες αν-

τίστοιχα. Η Εικόνα 5.15α επιβεβαιώνει την ορθή λειτουργία του µοντέλου ακροπτερυγίου

που χρησιµοποιεί το BEMT [40], καθώς αυτά τείνουν στο µηδέν κοντά στο άκρο. Ωστόσο, η

Εικόνα 5.15β δείχνει ότι ο συντελεστής αξονικής επαγωγής που υπολογίζεται από το BEMT

είναι σταθερά πιο υψηλός από τις προβλέψεις των άλλων δύο αεροδυναµικών µοντέλων.

Μάλιστα οι υπερβολικά µεγάλες τιµές που υπολογίζονται κοντά στο ακροπτερύγιο οφείλον-

ται στην τεχνητή αύξηση αυτών από το µοντέλο ακροπτερυγίου του Prandtl, προκειµένου να

µειωθούν τα αεροδυναµικά ϕορτία. Το αντίστοιχο µοντέλο στη ϱίζα δεν έχει χρησιµοποιηθεί

στις συγκεκριµένες προσοµοιώσεις και γι΄ αυτό οι τιµές του συντελεστή αξονικής επαγωγής

εκεί τείνουν στο µηδέν. Αντίστοιχη συµπεριφορά παρουσιάζουν και οι προβλέψεις του LL
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στην περιοχή του ακροπτερυγίου. Στην περίπτωση αυτή, ωστόσο, οι υπερβολικά µεγάλες

τιµές του συντελεστή αξονικής επαγωγής οφείλονται στους πολύ ισχυρούς στροβίλους που

απελευθερώνονται από το άκρο του πτερυγίου και αντίστοιχα στο πολύ ισχυρό κατώρευµα

που αυτοί επάγουν. Η µεγάλη ένταση των στροβίλων ακροπτερυγίου δικαιολογείται από την

απότοµη πτώση της κυκλοφορίας όσο πλησιάζουµε στο άκρο του πτερυγίου. Αυτή είναι και

η ϐασική διαφορά µεταξύ των µοντέλων LL και AL, καθώς η ένταση των στροβίλων που σχη-

µατίζει το AL δεν καθορίζονται από τη µεταβολή της κυκλοφορίας στα πτερύγια, αλλά από

τη συνναλαγής ορµής µεταξύ πτερυγίων και ϱοής. Αυτός είναι ένας ϐασικός λόγος για τον

οποίον ο συντελεστής αξονικής επαγωγής που υπολογίζει το AL µειώνεται όσο πλησιάζουµε

στο ακροπτερύγιο. ΄Ενας ακόµη πολύ σηµαντικός λόγος για αυτήν τη συµπεριφορά είναι ο

τρόπος µε τον οποίον υπολογίζεται η επαγώµενη ταχύτητα από τον οµόρρου στα πτερύγια.

Στο LL, αυτή υπολογίζεται απευθείας από τα στοιχεία στροβιλότητας του οµόρρου πάνω στα

σηµεία ελέγχου του πτερυγίου, ενώ στο AL υπολογίζεται µέσω παρεµβολών από την πεδιακή

λύση των γειτονικών κελιών.

Στην Εικόνα 5.16 ϕαίνεται η αζιµουθιακή µεταβολή της ϱοπής πτερύγισης στη ϱίζα των

πτερυγίων και η αντίστοιχη παραµόρφωση στο ακροπτερύγιο. Η 1P διακύµανση οφείλεται

στην κλίση 5
o

του άξονα του δροµέα (ϐλέπε Πίνακα 3.1). Καλή είναι η συµφωνία που

παρατηρείται στη µέση τιµή της ϱοπής (µέγιστη διαφορά 1.8% στα 8 m/s και 1.3% στα 11

m/s) και στο πλάτος. Ωστόσο, η ϱοπή που προβλέπει το BEMT παρουσιάζει µία διαφορά

ϕάσης περίπου 35
o
στα 8 m/s και 70

o
στα 11 m/s σε σχέδη µε τα δύο άλλα µοντέλα, τα

οποία συµφωνούν σχεδόν απόλυτα µεταξύ τους. Η διαφορά αυτή οφείλεται στο γεγονός ότι το

συγκεκριµένο µοντέλο BEMT δεν έχει τον τρόπο να αντιλαµβάνεται την κλίση του οµόρρου

ως προς τον δροµέα και τη διαφορά που αυτή επιφέρει στην ένταση του κατωρεύµατος

που επάγεται στις διαφορετικές γωνίες αζιµουθίου. Αντίθετα, η λεπτοµερής περιγραφή του

3∆ πεδίου που παρέχουν οι FVW και CFD µεθοδολογίες, καθιστούν την πρόβλεψη τέτοιων

ϕαινοµένων ιδιαίτερα ακριβή από τα LL και AL µοντέλα αντίστοιχα. Αντίστοιχα είναι και τα

συµπεράσµατα που προκύπτουν από την ανάλυση της παραµόρφωσης του ακροπτερυγίου

στην κατεύθυνση της πτερύγισης.

Αντίστοιχα, στην Εικόνα 5.17 παρουσιάζεται η ϱοπή πτερύγισης στη ϱίζα των πτερυγίων

για τις ίδιες ταχύτητες ανέµου, αλλά µε απόκλιση +15
◦
και +30

◦
. Στην περίπτωση αυτή,

παρατηρείται µία σηµαντική διαφορά στη µέση τιµή που υπολογίζει το BEMT σε σχέση

µε τα δύο άλλα µοντέλα, η οποία µεγαλώνει όσο αυξάνει και η απόκλιση του ανέµου ('

3.5% στις +15
◦
και ' 8.5% στις +30

◦
). Ακόµη, παρατηρείται µία σταθερή διαφορά ϕάσης

µεταξύ 35
◦
–45

◦
. Οι αποκλίσεις αυτές οφείλονται στις διαφερικές τιµές που υπολογίζουν

τα µοντέλα για τον συντελεστή αξονικής επαγωγής (ϐλέπε Εικόνα 5.18). ΄Οπως και στην

περίπτωση της αξονικής ϱοής (ϐλέπε Εικόνα 5.15β), το BEMT προβλέπει µεγαλύτερες τιµές

για το συντελεστή αξονικής επαγωγής από τα άλλα δύο µοντέλα, κάτι που δικαιολογεί τη

µικρότερη µέση τιµή της ϱοπής πτερύγισης (µεγαλύτερη επαγώµενη ταχύτητα οδηγεί σε

µικρότερη ϕαινόµενη ταχύτητα και µικρότερη γωνία πρόσπτωσης). Το διαφορετικό πλάτος

και η διαφορά ϕάσης που παρατηρείται στο συντελεστή αξονικής επαγωγής (περίπου 20
◦

µε 45
◦
) οδηγεί στη διαφορά ϕάσης που παρατηρείται και στα ϕορτία. Το BEMT υπολογίζει

τη µέγιστη ϱοπή πτερύγισης κοντά στις 180
◦
, γιατί εκεί η συνιστώσα του ανέµου που είναι

παράλληλη στο
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Table 5.1. Συνθήκες λειτουργίας της DTU 10MW πρότυπης ΑΓ υπό σταθερό άνεµο.

Ταχύτητα Ανέµου (m/s) Απόκλιση Ανέµου (
◦
) Γωνιακή Ταχύτητα (rpm) Γωνία Βήµατος (

◦
)

8 0,15,30 6.423 0

11 0,15,30 8.837 0

(a) Ατκινική κατανοµή της κάθετης αεροδυναµικής

δύναµης. Η καλή συµφωνία των αποτελεσµάτων

κοντά στο ακροπτερύγιο υποδηλώνει την αποτελεσ-

µατική δράση του µοντέλου διόρθωσης των ϕορτίων

ακροπτερυγίου που χρησιµοποιείται από τη µέθοδο

BEMT.

(b) Ακτινική κατανοµή του συντελεστή αξονικής

επαγωγή. Οι προβλέψεις του BEMT παρουσιάζουν

µία σταθερή υπερεκτίµηση σε σχέση µε τις άλλες

δύο πιο ακριβείς µεθόδους, οι οποίες συµφωνούν

πολύ καλά µεταξύ τους. Η διαφορά αυτή οφείλε-

ται στην πρόχειρη εκτίµηση των επαγώµενων

ταχυτήτων του οµόρρου από το BEMT. Η από-

τοµη αύξηση κοντά στο ακροπτερύγιο οφείλεται

στο µοντέλο ακροπτερυγίου, το οποίο επιτυγχάνε-

ται µέσω της τεχνητής αύξησης του συντελεστή αξ-

ονικής επαγωγής στην περιοχή αυτή. Παρόµοια

συµπεριφορά παρουσιάζει και το LL, αλλά αυτό

λόγω των υπερβολικά ισχυρών στροβίλων που

αποβάλλονται από το άκρο του πτερυγίου. Αντί-

ϑετα, το AL προβλέπει µία ϕυσιολογική πτώση του

συντελεστή αξονικής επαγωγής κοντά στο άκρο

του πτερυγίου. Η διαφορά αυτή οφείλεται κυρίως

στο διαφορετικό τρόπο υπολογισµού της επαγώ-

µενης ταχύτητας από τον οµόρρου, αφού στο

LL αυτή υπολογίζεται απευθείας από τα στοιχεία

στροβιλότητας του οµόρρου πάνω στα σηµεία

ελέγχου του πτερυγίου, ενώ στο AL υπολογίζε-

ται µέσω παρεµβολών από την πεδιακή λύση των

γειτονικών κελιών.

Figure 5.15. Ακτινική κατανοµή της κάθετης αεροδυναµικής δύναµης (a) και του συντελεστή

αξονικής επαγωγής (b) σε αξονική ϱοή µε ταχύτητα ανέµου στα 8 m/s. Μέση τιµή στην τελευ-

ταία περιστροφή. Σύγκριση µεταξύ διαφορετικών αεροδυναµικών µοντέλων (Γραµµή ∆ράσης

(AL), Γραµµή ΄Ανωσης (LL), ∆ίσκος Ορµής και Στοιχεία Πτερύγωσης (BEMT) ), συνδεδεµένων

µε τον ίδιο ελαστο–δυναµικό επιλύτη (GAST).

πεδίο του δροµέα προστίθεται στην ταχύτητα περιστροφής και αυξάνει τη συνολική ϕαινό-

µενη ταχύτητα. Εκτός από αυτό, η απόκλιση του ανέµου οδηγεί στην ταχύτερη αποµάκρυνση

του οµόρρου από το δροµέα κοντά στις 270
◦
, µε αποτέλεσµα οι επαγώµενες ταχύτητες να
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είναι χαµηλότερες στη γύρω περιοχή και να µετατοπίζεται η µέγιστη ϕόρτιση προς αυτή τη

γωνία αζιµουθίου. Σε αντίθεση µε το BEMT, το ϕαινόµενο αυτό προβλέπεται µε επιτυχία

από το LL και το AL, γιατί µπορούν να περιγράψουν µε ακρίβεια τη ϑέση και την εξέλιξη

των δοµών στροβιλότητας του οµόρρου χάρη στη λεπτοµερή αναπαράσταση του 3∆ πεδίου

της ϱοής από τις FVW και CFD µεθοδολογίες αντίστοιχα. Αυτός είναι και ο ϐασικός λόγος

για τις διαφορές στη µέση τιµή, το πλάτος και τη ϕάση του συντελεστή αξονικής επαγωγής,

ο οποίος µε τη σειρά του επηρεάζει άµεσα και τα αεροδυναµικά ϕορτία που υπολογίζει το

κάθε µοντέλο.

(a) Ροπή πτερύγισης στη ϱίζα του πτερυγίου. (b) Παραµόρφωση ακροπτερυγίου στην κατεύθυνση

της πτερύγισης.

Figure 5.16. Αζιµουθιακή µεταβολή της ϱοπής πτερύγισης στη ϱίζα των πτερυγίων (a) και

η αντίστοιχη παραµόρφωση ακροπτερυγίου (b) σε αξονική ϱοή µε ταχύτητα ανέµου στα 8 και

11 m/s. Σύγκριση µεταξύ διαφορετικών αεροδυναµικών µοντέλων (Γραµµή ∆ράσης (AL),

Γραµµή ΄Ανωσης (LL), ∆ίσκος Ορµής και Στοιχεία Πτερύγωσης (BEMT) ), συνδεδεµένων µε τον

ίδιο ελαστο–δυναµικό επιλύτη (GAST). Το BEMT ελαφρώς υποεκτιµά τη µέση τιµή των ϱοπών

πτερύγισης (µέγιστη διαφορά 1.8% στα 8 m/s και 1.3% στα 11 m/s) σε σχέση µε τις άλλες

δύο πιο ακριβείς µεθόδους, οι οποίες συµφωνούν πολύ καλά µεταξύ τους. Επίσης, παρουσιάζει

µία σηµαντική διαφορά ϕάσης περίπου 35
o
στα 8 m/s και 70

o
στα 11 m/s, η οποία οφείλεται

στην αδυναµία πρόβλεψης της διαφορετικής επίδρασης του οµόρρου στα αεροδυναµικά ϕορτία

λόγω της κλίσης του σε σχέση µε το επίπεδο του δροµέα. Παρόµοια είναι και τα συµπεράσµατα

που εξάγονται από τη σύγκριση της παραµόρφωσης του ακροπτερυγίου.
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(a) Απόκλιση ανέµου +15
◦
. (b) Απόκλιση ανέµου +30

◦
.

Figure 5.17. Αζιµουθιακή µεταβολή της ϱοπής πτερύγισης στη ϱίζα των πτερυγίων για ϱοή

µε απόκλιση ανέµου +15
◦

(a) και +30
◦

(b) και ταχύτητα ανέµου στα 8 και 11 m/s. Σύγκριση

µεταξύ διαφορετικών αεροδυναµικών µοντέλων (Γραµµή ∆ράσης (AL), Γραµµή ΄Ανωσης (LL),

∆ίσκος Ορµής και Στοιχεία Πτερύγωσης (BEMT) ), συνδεδεµένων µε τον ίδιο ελαστο–δυναµικό

επιλύτη (GAST). Το BEMT ελαφρώς υποεκτιµά τη µέση τιµή των ϱοπών σε σχέση µε τις άλλες

δύο πιο ακριβείς µεθόδους, οι οποίες συµφωνούν πολύ καλά µεταξύ τους. Η διαφορά αυτή

αυξάνει µαζί µε τη γωνία απόκλισης του ανέµου (−3.5% στις +15
◦

και −8.5% στις +30
◦
).

Επίσης, προβλέπει µία σηµαντική αλλά σταθερή διαφορά ϕάσης περίπου 35
◦ − 45

◦
σε σχέση

µε τις άλλες δύο µεθόδους, οι οποίες και εδώ συµφωνούν πολύ καλά µεταξύ τους.

(a) Απόκλιση ανέµου +15
◦
. (b) Απόκλιση ανέµου +30

◦
.

Figure 5.18. Αζιµουθιακή µεταβολή του συντελεστή αξονικής επαγωγής στο 75% των

πτερυγίων για ϱοή µε απόκλιση ανέµου +15
◦

(a) και +30
◦

(b) και ταχύτητα ανέµου στα 8

και 11 m/s. Σύγκριση µεταξύ διαφορετικών αεροδυναµικών µοντέλων (Γραµµή ∆ράσης (AL),

Γραµµή ΄Ανωσης (LL), ∆ίσκος Ορµής και Στοιχεία Πτερύγωσης (BEMT) ), συνδεδεµένων µε

τον ίδιο ελαστο–δυναµικό επιλύτη (GAST). Το BEMT προβλέπει µεγαλύτερη µέση τιµή από τα

άλλα δύο µοντέλα που αυξάνει µε την απόκλιση και την ταχύτητα του ανέµου (διαφορά από

7% έως 15% της µέσης τιµής). Ακόµη προβλέπει µία διαφορά ϕάσης που κυµαίνεται µεταξύ

20
o
και 45

o
. Και τα δύο συνδέονται µε την αδυναµία της µεθόδου να προβλέψει µε ακρίβεια

τη διαφορετική επίδραση του οµόρρου λόγω της κλίσης του σε σχέση µε το επίπεδο του δροµέα.

Αντίθετα, πολύ καλή είναι η συµφωνία µεταξύ των δύο άλλων µοντέλων, µε µια µικρή διαφορά

στη µέση τιµή η οποία ϕαίνεται και στην Εικόνα 5.15β και συνδέεται µε τη διαφορετική τεχνική

υπολογισµού των επαγώµενων ταχυτήτων από τον οµόρρου.
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C.1.2 ΛΛΛεεειιιτττoυυυϱϱϱγγγιιιααα AΓΓΓ σσσεεε τττυυυρρρ���ωωωδδδηηη ααανννεεεµµµooo

Στη συνέχεια, εξετάζεται η περίπτωση της αεροελαστικής λειτουργίας της πλήρους ΑΓ

(πύργος, άξονας, δροµέας) σε µέσης έντασης τυρβώδη άνεµο (TI = 14%) και εντός του ορι-

ακού στρώµατος του εδάφους, για µέση ταχύτητα ανέµου στα 16 m/s στο ύψος του άξ-

ονα (Zhub = 119m). Στην περίπτωση αυτή τα αποτελέσµατα του αεροελαστικού µοντέλου

GAST–AL συγκρίνονται µε τα αντίστοιχα αποτελέσµατα που παράγονται όταν ο ίδιος ελασ-

τοδυναµικός επιλύτης GAST είναι συνδεδεµένος µε ένα BEMT αεροδυναµικό µοντέλο.

Στην Εικόνα 5.19α ϕαίνεται η µέση αζιµουθιακή µεταβολή (συνεχείς γραµµές) της ϱοπής

πτερύγισης που προβλέπουν τα δύο µοντέλα στη ϱίζα των πτερυγίων του δροµέα. Οι τελείες

δείχνουν τις στιγµιαίες προβλέψεις. ΄Οπως και στις περιπτώσεις λειτουργίας σε σταθερό

άνεµο, το BEMT υποεκτιµά τη µέση τιµή του ϕορτίου (εδώ κατά ' 26%). Παρατηρείται και

µία υπερεκτίµηση του πλάτους κατά ' 35% σε σχέση µε το AL, η οποία ϕαίνεται και από τη

διαφορά στο ϕάσµα της ϱοπής στη συχνότητα περιστροφής (0.16Hz) (ϐλέπε Εικόνα 5.19β).

Και σε αυτήν την περίπτωση, οι διαφορές οφείλονται στην ακριβή περιγραφή της ϑέσης και

της εξέλιξης των δοµών στροβιλότητας του οµόρρου όταν χρησιµοποιείται το AL. Για να γίνει

καλύτερα κατανοητό το ϕαινόµενο που κυριαρχεί σε αυτήν την περίπτωση, παρουσιάζεται

στην Εικόνα 5.20α η υψοµετρική κατανοµή της µέσης αξονικής ταχύτητας στο επίπεδο του

δροµέα της ΑΓ, όπως υπολογίζεται από το µοντέλο AL (κόκκινη γραµµή) και όπως προκύπτει

από το αναλυτικό προφίλ (πράσινη γραµµή) που ισχύει όταν δεν υπάρχει η ΑΓ. Η µεγάλη αξ-

ονική ταχύτητα πάνω από το ύψος του άξονα, έχει σαν αποτέλεσµα τη γρήγορη αποµάκρυνση

των στροβίλων από το άνω τµήµα του δροµέα που οδηγεί σε µικρό κατώρευµα σε αυτήν την

περιοχή. Σε αντίθεση µε το BEMT, αυτή η συµπεριφορά προβλέπεται µε ακρίβεια από το

AL και οδηγεί σε µεγαλύτερα αεροδυναµικά ϕορτία στην αζιµουθιακή περιοχή 315
◦
µε 45

◦
.

Λόγω της επιβράδυνσης που επιφέρει ο δροµέας στο κοντινό ανάντι πεδίο, ϑα περιµέναµε η

κατανοµή της αξονικής ταχύτητας που υπολογίζεται από το AL (κόκκινη καµπύλη) να χαρακ-

τηρίζεται από χαµηλότερες τιµές σε σχέση µε το αναλυτικό προφίλ (να ϐρίσκεται αριστερά

της πράσινης καµπύλης). Αν και αυτό ισχύει για τα ύψη πάνω από τα 70m, παρατηρείται

µια σηµαντική επιτάχυνση της αξονικής ταχύτητας µέχρι αυτό το ύψος. Αυτή η επιτάχυνση

οφείλεται στην γεωµετρία ακροφυσίου που σχηµατίζεται µεταξύ του εδάφους και του κάτω

µέρους του δροµέα (ϐλέπε Εικόνα 5.20β), ϕαινόµενο το οποίο ϕαίνεται να προβλέπεται µε

επιτυχία από το AL (ϐλέπε Εικόνα 5.21). Η αύξηση της αξονικής ταχύτητας στο κάτω µέρος

του δροµέα εµποδίζει την περεταίρω µείωση της γωνίας πρόσπτωσης στις γωνίες αζιµουθίου

µεταξύ 135
◦
και 225

◦
, όπως ϕαίνεται και από το πλατό που σχηµατίζεται από το AL στην

Εικόνα 5.22. Το ϕαινόµενο αυτό δεν µπορεί να προβλεφθεί από το BEMT, πράγµα που

οδηγεί στην απότοµη αύξηση της διαφοράς στη γωνία πρόσπτωσης, συνεπώς και στη ϱοπή

πτερύγισης σε αυτή την αζιµουθιακή περιοχή (ϐλέπε Εικόνα 5.19α). Τα δύο αυτά ϕαινό-

µενα (i. µικρότερο κατώρευµα στο άνω τµήµα του δροµέα και ii. επιτάχυνση της ϱοής στο

κάτω τµήµα του δροµέα) δεν µπορούν να περιγραφούν από το BEMT, αλλά προβλέπονται

µε επιτυχία από το AL, και εξηγούν τη διαφορά τόσο στη µέση τιµή, όσο και στο πλάτος της

ϱοπής πτερύγισης που προβλέπουν τα δύο µοντέλα.
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(a) Μέση αζιµουθιακή µεταβολή. (b) Ανάλυση Fourier και κατανοµή στο πεδίο

των συχνοτήτων.

Figure 5.19. Ροπή πτερύγισης στης ϱίζα των πτερυγίων για ϱοή εντός του οριακού στρώ-

µατος του εδάφους µε ταχύτητα ανέµου στα 16 m/s στο ύψος του άξονα. Μέση αζιµουθιακή

µεταβολή (a) και κατανοµή στο πεδίο των συχνοτήτων (b). Σύγκριση µεταξύ διαφορετικών αερο-

δυναµικών µοντέλων (Γραµµή ∆ράσης (AL), ∆ίσκος Ορµής και Στοιχεία Πτερύγωσης (BEMT) ),

συνδεδεµένων µε τον ίδιο ελαστο–δυναµικό επιλύτη (GAST). Το BEMT υποεκτιµά τη µέση τιµή

κατα 26% και υπερεκτιµά το 1P πλάτος κατά 35%. Αυτό αντικατοπτρίζεται και στη διαφορά

στο ϕάσµα της ϱοπής στη συχνότητα περιστροφής (0.16Hz). Οι διαφορές αυτές οφείλονται στη

λεπτοµερή περιγραφή του πεδίου ϱοής στο CFD περιβάλον. Σαν αποτέλεσµα, η επίδραση του

δροµέα και του εδάφους στο ανάντι πεδίο προβλέπονται µε επιτυχία από το AL, κάτι το οποίο

δεν λαµβάνεται καθόλου υπ΄ όψιν από το BEMT.

(a) Υψοµετρική κατανοµή της µέσης αξονικής

ταχύτητας που προβλέπει το AL (κόκκινη

γραµή). Σύγκριση µε το αναλυτικό προφίλ

(πράσινη γραµµή), που αντιστοιχεί στο µέσο αδι-

ατάραχτο προφίλ απουσία ΑΓ.

(b) Σχηµατική αναπαράσταση ΑΓ και εδά-

ϕους. Η γεωµτερία ακροφυσίου που σχη-

µατίζεται µεταξύ δροµέα και εδάφους έχει σαν

αποτέλεσµα την επιτάχυνση της ϱοής στο κάτω

τµήµα του δροµέα.

Figure 5.20. Υψοµετρική κατανοµή της µέσης αξονικής ταχύτητας (a) και σχηµατική ανα-

παράσταση ΑΓ και εδάφους (b). Λόγω της επιβράδυνσης που επιφέρει η ΑΓ στη ϱοή, η αξονική

ταχύτητα που προβλέπει η µέθοδος το AL (κόκκινη γραµµή) ϑα έπρεπε να έχει πιο χαµηλές

τιµές από το µέσο αναλυτικό προφίλ (πράσινη γραµµή) που αντιστοιχεί στην κατανοµή της

µέσης αξονικής ταχύτητας απουσία ΑΓ. Αυτό ισχύει πάνω από τα 70m και µέχρι το άνω άκρο

του δροµέα. Η επιτάχυνση που παρατηρείται στο κάτω µέρος του δροµέα (0 − 70m) οφείλεται

στην γεωµετρία ακροφυσίου που σχηµατίζεται µεταξύ του εδάφους και του κάτω µέρους του

δροµέα.
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Figure 5.21. Μέσο πεδίο αξονικής ταχύτητας κοντά στο επίπεδο του δροµέα. Η ταχύτητα στο

ύψος της πλήµνης είναι 16 m/s. Η επίδραση του δροµέα και του εδάφους στη ϱοή περιγράφεται

µε ακρίβεια από τη λύση του CFD πεδίου. Στο πάνω µέρος του δροµέα παρουσιάζεται διαστολή

της ϱοής, ενώ η συστολή της ανάµεσα στο έδαφος και στο κάτω µέρος του δροµέα οδηγεί σε

επιτάχυνση της αξονικής ταχύτητας.

Figure 5.22. Μέση αζιµουθιακή µεταβολή της γωνίας πρόσπτωσης στο 75% των πτερυγίων. Το

BEMT υποεκτιµά τη µέση τιµή κατά ' 2
◦
και υπερεκτιµά το πλάτος της 1P µεταβολής. Ακόµη,

προβλέπει την ελάχιστη τιµή της γωνίας πρόσπτωσης µεταξύ 135
◦
και 225

◦
, σε αντίθεση µε τη

µέθοδο το AL που υπολογίζει ένα σταθερό πλατό σε αυτήν την περιοχή. Αυτό οφείλεται στην

γεωµετρία ακροφυσίου που σχηµατίζεται µεταξύ του εδάφους και του κάτω µέρους του δροµέα

και οδηγεί στην τοπική επιτάχυνση της αξονικής ταχύτητας, σταµατώντας την περαιτέρω µείωση

της γωνίας πρόσπτωσης στις γωνίες αζιµουθίου µεταξύ 135
◦
και 225

◦
.
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C.2 TTTααα αααπππoτττεεελλλεεεσσσµµµααατττααα τττoυυυ αααεεεϱϱϱoooεεελλλααασσστττιιικκκoυυυ ϸϸϸϱϱϱγγγαααλλλεεεoυυυ GAST–HoPFlow

Σ΄ αυτήν την υποενότητα, ο αεροελαστικός κώδικας GAST–HoPFlow χρησιµοποιείται για

την αεροδυναµική ανάλυση του µοντέλου δροµέα ΑΓ που µελετήθηκε στο πείραµα New

MEXICO [11] και για την αεροελαστική ανάλυση του µοντέλου του δροµέα ελικοπτέρου που

χρησιµοποιήθηκε στο πείραµα HARTII [13]. Και στις δύο αυτές περιπτώσεις µοντελοποιείται

η πραγµατική γεωµετρία των πτερυγίων. Τα αποτελέσµατα που παράγονται συγκρίνον-

ται µε πειραµατικές µετρήσεις και υπολογιστικές προβλέψεις από άλλα αεροδυναµικά και

αεροελαστικά εργαλεία που χρησιµοποιούν CFD κώδικες για την αεροδυναµική ανάλυση.

Στόχος είναι η επιβεβαίωση της ορθής λειτουργίας του νέου αεροελαστικού κώδικα GAST–

HoPFlow, αλλά και η ανάδειξη των πλεονεκτηµάτων του υβριδικού CFD αεροδυναµικού

κώδικα HoPFlow σε σχέση µε τον συµβατικό Eulerian CFD επιλύτη MaPFlow.

C.2.1 Aεεερρρoδδδυυυννναααµµµιιικκκηηη αααννναααλλλυυυσσσηηη δδδρρρoµµµεεεααα AΓΓΓ

Πρώτα εξετάζεται η περίπτωση της αεροδυναµικής λειτουργίας του µοντέλου δροµέα ΑΓ

που χρησιµοποιήθηκε στο πείραµα New MEXICO [11], τα γεωµετρικά χαρακτηριστικά του

οποίου ϕαίνονται στους Πίνακες 4.1 και 4.2. Εδώ εξετάζεται η περίπτωση της αξονικής ϱοής

σε ταχύτητα 14.7 m/s. Η γωνιακή ταχύτητα του δροµέα είναι 425 rpm, που αντιστοιχεί σε

λόγο ταχύτητας ακροπτερυγίου λ = 6.81. Η γωνία ϐήµατος των πτερυγίων είναι 2.3
◦
.

Στην Εικόνα 5.23 ϕαίνεται η κατανοµή της πίεσης σε διάφορες ακτινικές ϑέσεις κατά το

εκπέτασµα των πτερυγίων. Οι πειραµατικές µετρήσεις συγκρίνονται µε τις προβλέψεις από

διάφορους CFD αεροδυναµικούς κώδικες (EllipSys3D – ασυµπίεστος επιλύτης, CENER CFD

– συµπιεστός επιλύτης, MaPFlow – συµπιεστός επιλύτης, HoPFlow – συµπιεστός υβριδικός

Lagrangian–Eulerian επιλύτης). Πολύ καλή είναι η συµφωνία που παρατηρείται µεταξύ

προβλέψεων και µετρήσεων τόσο κοντά στη ϱίζα (25%R και 35%R), όσο και κοντά στο

άκρο (82%R και 92%R) των πτερυγίων. Μια µικρή διαφορά στην πίεση που υπολογίζει ο

ασυµπίεστος επιλύτης EllipSys3D στην πλευρά υποπίεσης στο 92%R οφείλεται στον σχετικά

υψηλό τοπικό αριθµό Mach (M92%R = 0.27). Η πιο σηµαντική διαφορά εντοπίζεται κοντά

στο κέντρο των πτερυγίων (60%R), όπου η πίεση που µετρήθηκε στην πλευρά υποπίεσης

είναι πιο µεγάλη σε σχέση µε αυτήν που προβλέπουν τα υπολογιστικά µοντέλα, τα οποία

συµφωνούν πολύ καλά µεταξύ τους. Η διαφορά αυτή µεταξύ µετρήσεων και υπολογισ-

τικών προβλέψεων συνδέεται µε την απότοµη αλλαγή αεροτοµής στη συγκεκριµένη περιοχή

(ϐλέπε Πίνακα 4.1) και στο γεγονός ότι η RISØ A1-21 που χρησιµοποιήθηκε στο µέσο των

πτερυγίων έχει πολύ µεγάλη διαφορά στη γωνία µηδενικής άνωσης σε σχέση µε τις άλλες δύο

αεροτοµές που χρησιµοποιήθηκαν στη ϱίζα και στο άκρο. Η επίδραση που έχει αυτή η δι-

αφορά µεταξύ των γειτονικών αεροτοµών στα αεροδυναµικά ϕορτία ϕαίνεται να προβλέπεται

µε επιτυχία από όλα τα υπολογισιτκά µοντέλα, αλλά να µην αποτυπώνεται στις µετρήσεις. Ο

ισχυρισµός αυτός επιβεβαιώνεται και από τη σύγκριση της πειραµατικής καµπύλης CL−a της

συγκεκριµένης αεροτοµής που µετρήθηκε στο 3∆ πτερύγιο και σε µία 2∆ αεροτοµή (ϐλέπε

Εικόνα 5.24). Μάλιστα, σηµειώνεται µία σηµαντική απόκλιση ∆CL ' 0.33 στη γεωµετρική

γωνία λειτουργίας της αεροτοµής. Οι λόγοι γι΄ αυτή τη διαφορά διερευνήθηκαν, αλλά χωρίς

επιτυχία κατά τη διάρκεια διεξαγωγής του πειράµατος New MEXICO.
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‘

Figure 5.23. Κατανοµή πιέσεων σε διάφορες ακτινικές ϑέσεις. Σύγκριση µεταξύ υπολογισ-

τικών προβλέψεων από διάφορυς CFD κώδικες (EllipSys3D – ασυµπίεστος επιλύτης, CENER

CFD – συµπιεστός επιλύτης, MaPFlow – συµπιεστός επιλύτης, HoPFlow – συµπιεστός υβριδικός

Lagrangian–Eulerian επιλύτης) και πειραµατικές µετρήσεις. Πολύ καλή συµφωνία παρατηρεί-

ται µεταξύ των υπολογιστικών προβλέψεων και των µετρήσεων κοντά στη ϱίζα (25%R, 35%R)

και στο άκρο του πτερυγίου (82%R, 92%R). Η διαφορετική πίεση στην πλευρά υποπίεσης

που προβλέπει ο ασυµπίεστος επιλύτης EllipSys3D στο 92%R οφείλεται στον σχετικά υψηλό

τοπικό αριθµό Mach (M92%R = 0.27). Η πιο σηµαντική διαφορά παρατηρείται στο 60%R, όπου

η πίεση που µετρήθηκε στην πλευρά υποπίεσης είναι πιο υψηλή σε σχέση µε τις προβλέψεις

όλων των υπολογιστικών µοντέλων, τα οποία ωστόσο συµφωνούν πολύ καλά µεταξύ τους.
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Figure 5.24. Πειραµατική καµπύλη CL − a για την αεροτοµή RISØ A1-21 που χρησι-

µοποιήθηκε στο 60%R των πτερυγίων του δροµέα ΑΓ που µελετήθηκε στο πείραµα New MEX-

ICO. Σύγκριση µεταξύ 2∆ και 3∆ µετρήσεων. Παρατηρείται µία σηµαντική απόκλιση η οποία

δεν µπορεί να αιτιολογηθεί πλήρως από τα 3∆ τοπικά ϕαινόµενα της ϱοής και από τη διαφορά

στον αριθµό Reynolds. Η εικόνα δηµοσιεύτηκε πρώτη ϕορά στο [11].

Στην Εικόνα 5.25 ϕαίνεται η ακτινική κατανοµή του κάθετου αεροδυναµικού ϕορτίου,

όπου παρατηρείται µία καλή σύγκριση µεταξύ µετρήσεων και υπολογιστικών προβλέψεων.

Αξίζει να σηµειωθεί, ότι οι πειραµατικές τιµές των αεροδυναµικών ϕορτίων προκύπτουν από

ολοκλήρωση των πιέσεων που µετρήθηκαν στις αντίστοιχες ϑέσεις (ϐλέπε Εικόνα 5.23). Λόγω

του µικρού αριθµού αισθητήρων πίεσης γύρω από τις αεροτοµές και της ϑεώρησης γραµ-

µικής κατανοµής της πίεσης µεταξύ διαδοχικών αισθητήρων, οι πειραµατικές εκτιµήσεις

των ϕορτίων δεν είναι ιδιαίτερα ακριβείς, πράγµα το οποίο δικαιολογεί σε κάποιο ϐαθµό τις

µικρές διαφορές που προκύπτουν στα ϕορτία ορισµένων ακτινικών ϑέσεων. Η πιο σηµαντική

διαφορά εντοπίζεται στο µέσο του πτερυγίου (60%R), όπου ο Eulerian επιλύτης MaPFlow

και ο υβριδικός Lagrangian–Eulerian επιλύτης HoPFlow προβλέπουν ' 22% και ' 18%
αντίστοιχα µεγαλύτερο ϕορτίο από την πειραµατική εκτίµηση. Η διαφορά αυτή οφείλεται

στη αντίστοιχη διαφορά πίεσης στην πλευρά υποπίεσης που αναλύθηκε παραπάνω. Από την

άλλη µεριά, πολύ καλή είναι η συµφωνία των ϕορτίων κοντά στη ϱίζα (25% και 35%) και

στο άκρο (82% και 92%) των πτερυγίων. Μάλιστα, οι προβλέψεις του υβριδικού επιλύτη

HoPFlow στο ακροπτερύγιο είναι ελαφρώς πιο κοντά στις πειραµατικές µετρήσεις από αυτές

του Eulerian επιλύτη MaPFlow. Ο λόγος έγκειται στο γεγονός ότι το HoPFlow επιλύει την

υλική µορφή των εξισώσεων της ϱοής µακριά από τα σώµατα (στην περιοχή του οµόρρου).

Η µειωµένη αριθµητική διάχυση που χαρακτηρίζει την υλική περιγραφή των εξισώσεων,

έχει σαν αποτέλεσµα την καλύτερη διατήρηση των δοµών στροβιλότητας του οµόρρου και
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συνεπώς τον πιο ακριβή υπολογισµό της επαγώµενης ταχύτητας των ακροστροβίλων. Τα

ϕορτία στην περιοχή του ακροπτερυγίου είναι και αυτά που επηρεάζονται πιο έντονα από το

κατώρευµα του οµόρρου και στα οποία ϕαίνονται πιο καθαρά τέτοιες διαφορές. Αντίθετα,

η Eulerian περιγραφή της ϱοής που ακολουθεί το MaPFlow χαρακτηρίζεται από αυξηµένη

αριθµητική διάχυση στην περιοχή του οµόρρου, που οφείλεται στην αραίωση του υπολογισ-

τικού πλέγµατος µακριά από τα πτερύγια. Συνεπώς, οι δοµές στροβιλότητας του οµόρρου δι-

αλύονται γρήγορα όσο προχωρούν κατάντι, µε αποτέλεσµα την υποεκτίµηση της επαγώµενης

ταχύτητάς τους και την υπερεκτίµηση των αεροδυναµικών ϕορτίων του δροµέα. Αυτό έχει

σαν αποτέλεσµα και την εσφαλµένη εκτίµηση του ελλείµατος ταχύτητας που διαµορφώνεται

κατάντι. Ο ισχυρισµός αυτός επιβεβαιώνεται από την Εικόνα 5.26, όπου παρουσιάζεται η

κατανοµή της αξονικής ταχύτητας για µία σταθερή ακτινική ϑέση στα 1.8 m (80%R). Αν

και οι πειραµατικές µετρήσεις και οι προβλέψεις του MaPFlow και του HoPFlow συµφωνούν

πολύ καλά µεταξύ τους στην ανάντι περιοχή, το MaPFlow υπολογίζει µεγαλύτερες τιµές και

διαφορετική κλίση ταχύτητας κατάντι. Αντίθετα, ο υβριδικός επιλύτης συµφωνεί πολύ καλά

µε τις µετρήσεις, επιβεβαιώνοντας έτσι την καλύτερη διαµόρφωση και διατήρηση της δοµής

του οµόρρου που επιτυγχάνεται χάρη στην υλική περιγραφή των εξισώσεων της ϱοής.

Figure 5.25. Ακτινική κατανοµή κάθετης αεροδυναµικής δύναµης. Σύγκριση µεταξύ υπ-

ολογιστικών προβλέψεων από διάφορυς CFD κώδικες (EllipSys3D – ασυµπίεστος επιλύτης,

CENER CFD – συµπιεστός επιλύτης, MaPFlow – συµπιεστός επιλύτης, HoPFlow – συµπι-

εστός υβριδικός Lagrangian–Eulerian επιλύτης) και πειραµατικές µετρήσεις. Καλή συµφωνία

παρατηρείται στις περισσότερες ακτινικές ϑέσεις. Στο 60%R, όπου υπάρχουν σηµατνικές δι-

αφορές µεταξύ των πειραµατικών µετρήσεων και των υπολογιστικών προβλέψεων, τα αποτελέσ-

µατα των διάφορων υπολογιστικών µοντέλων συµφωνονύν πολύ καλά µεταξύ τους. Γενικά,

τα ϕορτία που υπολογίζει ο υβριδικός κώδικας HoPFlow είναι πιο µικρά σε σχέση µε τους δύο

συµπιεστούς κώδικες MaPFlow και CENER CFD και πιο κοντά στις πειραµατικές µετρήσεις.

Ο υπολογισµός χαµηλών ϕορτίων από τον επιλύτη EllipSys3D (σε κάποιες ακτινικές ϑέσεις τα

ϕορτία που υπολογίζονται είναι πιο χαµηλά ακόµα και σε σχέση µε τις πειραµατικές µετρήσεις),

αποδίδεται στην επίλυση των ασυµπίεστων εξισώσεων Navier–Stokes.
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Figure 5.26. Κατανοµή αξονικής ταχύτητας στην κατεύθυνση του άξονα περιστροφής και

σε σταθερή ακτινική ϑέση στο r = 1.8 m. Οι άξονες X και Y έχουν αδιαστατοποιηθεί µε τη

διάµετρο του δροµέα D = 4.5m και την ταχύτητα της αδιατάραχτης ϱοής U∞ = 14.7m/s

αντίστοιχα. Σύγκριση µεταξύ υπολογιστικών προβλέψεων και πειραµατικών µετρήσεων. Καλή

συµφωνία παρατηρείται στην περιοχή ανάντι. Ο Eulerian επιλύτης MaPFlow προβλέπει πιο

υψηλές τιµές στην κατάντι περιοχή (περιοχή οµόρρου) που αποδίδεται στην αυξηµένη αρι-

ϑµητική διάχυση της συγκεκριµένης µεθοδολογίας. Αντίθετα, τόσο οι τιµές, όσο και η κλίση

της κατανοµής που προβλέπει ο υβριδικός επιλύτης HoPFlow είναι σε καλή συµφωνία µε τις

πειραµατικές µετρήσεις. Αυτό αποδίδεται στη µειωµένη αριθµητική διάχυση που παρουσιάζει η

επίλυση των εξισώσεων της ϱοής στην υλική τους µορφή και έχει σαν αποτέλεσµα την καλύτερη

διατήρηση των δοµών στροβιλότητας του οµόρρου και συνεπώς την πιο ακριβή πρόβλεψη του

ελλείµατος ταχύτητας που διαµορφώνεται κατάντι.

C.2.2 Aεεερρρoεεελλλααασσστττιιικκκηηη αααννναααλλλυυυσσσηηη δδδρρρoµµµεεεααα εεελλλιιικκκoπππτττεεερρρoυυυ

Στη συνέχεια, εξετάζεται η αεροελαστική λειτουργία του µοντέλου του δροµέα ελικοπ-

τέρου που χρησιµοποιήθηκε στο πείραµα HARTII [13]. Εξετάζεται η Base–Line περίπτωση

που αποτελεί πτήση καθόδου στα 33 m/s. Οι συνθήκες λειτουργίας αναφέρονται αναλυτικά

στον Πίνακα 4.10. Τα αποτελέσµατα του αεροελαστικού κώδικα GAST–HoPFlow συγκρίνον-

ται µε πειραµατικές µετρήσεις και προβλέψεις από άλλα αεροελαστικά εργαλεία που χρησι-

µοποιούν µοντέλα δοκού για την ελαστική ανάλυση και CFD επιλύτες για την αεροδυναµική

ανάλυση.

Στην Εικόνα 5.27 παρουσιάζεται η αζιµουθιακή µεταβολή του κάθετου ανηγµένου αερο-

δυναµικού ϕορτίου στο 87%R, όπου πραγµατοποιείται σύγκριση µεταξύ µετρήσεων και

υπολογιστικών προβλέψεων από διάφορα ερευνητικά κέντρα και πανεπιστήµια. Λόγω των

σηµαντικών διαφορών που παρατηρούνται σε αυτές (ϐλέπε Πίνακα 4.20), οι µέσες τιµές

έχουν αφαιρεθεί και εξετάζεται µόνο η αζιµουθιακή µεταβολή γύρω από αυτές. Σε γενικές

γραµµές, τα αποτελέσµατα του GAST–HoPFlow (NTUA), συγκρίνονται καλά µε τις µετρήσεις

και τις υπόλοιπες προβλέψεις. Παρατηρείται µία µικρή υποεκτίµηση των ϕορτίων στο 1ο

τεταρτηµόριο και αδυναµία πρόβλεψης της έντασης µε την οποία αλληλεπιδρούν οι δοµές

στροβιλότητας του οµόρρου µε τα πτερύγια. Αντίστοιχη συµπεριφορά ωστόσο παρουσιάζουν
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και οι προβλέψεις από άλλους κώδικες, η οποία δικαιολογείται από την εσφαλµένη ϑέση στην

οποία ϐρίσκονται οι ακροστρόβιλοι που απελευθερώνονται από τα προπορευόµενα πτερύγια.

Στην Εικόνα 5.28α ϕαίνεται πως οι ϑέσεις των ακροστροβίλων που προβλέπονται από το

ΕΜΠ στο πρώτο τεταρτηµόριο (x/R ≥ 0), είναι περίπου 5%R πιο χαµηλά από τις ϑέσεις που

µετρήθηκαν στο πείραµα, ενώ καλύτερη είναι η συµφωνία στο 2ο τεταρτηµόριο (x/R ≤ 0).

Αυτός είναι και ο λόγος για τον οποίον το µέγεθος του κάθετου αεροδυναµικού ϕορτίου υπ-

ολογίζεται σωστά µεταξύ 90
◦
και 180

◦
. Εκεί σηµειώνεται µία διαφορά ϕάσης ' 20

◦
σε σχέση

µε τις µετρήσεις, η οποία ωστόσο είναι κοινή για τις περισσότερες υπολογιστικές προβλέψεις,

που συµφωνούν πολύ καλά µεταξύ τους. Πολύ καλή είναι η πρόβλεψη των ϕορτίων στο 3ο

και στο 4ο τεταρτηµόριο, όπου µάλιστα περιγράφεται µε ακρίβεια από το GAST–HoPFlow

και η έντονη αλληλεπίδραση του οµόρρου µε τα πτερύγια. Αυτό επιβεβαιώνεται και από

την καλή ϑέση στην οποία υπολογίζονται οι ακροστρόβιλοι στην πλευρά υποχώρησης του

δροµέα, όπως ϕαίνεται στην Εικόνα 5.28β.

Figure 5.27. Αδιάστατος συντελεστής κάθετου αξονικού αεροδυναµικού ϕορτίου στο 87%R.

Σύγκριση µεταξύ πειραµατικών µετρήσεων και προβλέψεων από beam–CFD αεροελαστικά

µοντέλα. Οι µέσες τιµές έχουν αφαιρεθεί. Οι προβλέψεις του ΕΜΠ υποεκτιµούν τη δύναµη

στο 1ο τεταρτηµόριο σε σύκγριση µε τις µετρήσεις· ϐρίσκονται, ωστόσο, εντός του εύρους των

προβλέψεων των υπόλοιπων υπολογισµών. Ακόµη, δεν προβλέπεται έντονη διακύµανση του

ϕορτίου λόγω αλληλεπίδρασης των πτερυγίων µε τον οµόρρου, όπως ϕαίνεται στις µετρήσεις.

Καλύτερη είναι η συµφωνία µε τις µετρήσεις στο 2ο και 3ο τεταρτηµόριο, όπου οι τιµές του

ϕορτίου που προβλέπονται είναι στο σωστό εύρος, αλλά µε µία υστέρηση περίπου 20
◦
. Αυτή

η διαφορά ϕάσης µε τις µετρήσεις υπάρχει στις προβλέψεις σχεδόν όλων των υπολογιστικών

µοντέλων, τα οποία συµφωνούν πολύ καλά µεταξύ τους. Οι διακυµάνσεις του ϕορτίου στο 4ο

τεταρτηµόριο, λόγω αλληλεπίδρασης των πτερυγίων µε τον οµόρρου, προβλέπονται επιτυχώς

από το µοντέλο του ΕΜΠ, αλλά είναι ελαφρώς ασθενέστερες σε σχέση µε τις µετρήσεις. Το

τοπικό µέγιστο κοντά στις 345
◦

υπερεκτιµάται και παρουσιάζει µία ελαφρά υστέρηση κοντά

στις 10
◦
σε σχέση µε τις µετρήσεις και τις υπόλοιπες υπολογιστικές προβλέψεις.
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(a) Πλευρά προχώρησης. Οι περισσότεροι από τους στροβίλους που εντοπίζονται στο 1ο τεταρτηµόριο

(x/R ≥ 0), όπου αναµένεται έντονη αλληλεπίδραση των πτερυγίων µε τον οµόρρου, προβλέπονται σε

λάθος ϑέσεις από το µοντέλο του ΕΜΠ, περίπου 5%R πιο χαµηλά από τις ϑέσεις που µετρήθηκαν στο

πείραµα. Καλύτερη ωστόσο είναι η συµφωνία στο 2ο τεταρτηµόριο (x/R ≤ 0).

(b) Πλευρά υποχώρησης. Οι ϑέσεις των περισσότερων ακροστροβίλων προβλέπονται µε ακρίβεια από το

µοντέλο του ΕΜΠ. Ο 5ος στρόβιλος, ωστόσο, δεν ϕαίνεται να ϐρίσκεται εντός των ορίων που παρουσιά-

Ϲονται στην εικόνα.

Figure 5.28. Θέσεις των ακροστροβίλων στην πλευρά προχώρησης (y = 0.7R) (a) και υπο-

χώρησης (y = −0.7R) (b), όταν το 1ο πτερύγιο ϐρίσκεται σε αζιµουθιακή γωνία 20
◦
και 70

◦
. Οι

συντεταγµένες των στροβίλων εκφράζονται στο τοπικό σύστηµα του δροµέα. Σύγκριση µεταξύ

πειραµατικών µετρήσεων και προβλέψεων από beam–CFD αεροελαστικά µοντέλα.
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Στην Εικόνα 5.29 ϕαίνεται η αζιµουθιακή µεταβολή της ϱοπής στην κατεύθυνση της

πτερύγισης και της περιστροφής, όπως µετρήθηκε και υπολογίστηκε στο 17%R. Και σε αυτήν

την περίπτωση, οι µέσες τιµές έχουν αφαιρεθεί και εξετάζεται η διακύµανση των ϕορτίων

γύρω από αυτές. Στη ϱοπή πτερύγισης (Εικόνα 5.29α) παρατηρούνται σηµαντικές διαφορές

ως προς το πλάτος και τη ϕάση µεταξύ των µετρήσεων και των επιµέρους υπολογισµών.

Ο λόγος είναι οι πολύ µικρές τιµές των ϱοπών στο µη στρεφόµενο σύστηµα του δροµέα

(ϐλέπε Πίνακα 4.10) που οδηγεί στην ελαχιστοποίηση του πλάτους της ϱοπής πτερύγισης.

Αυτό έχει σαν αποτέλεσµα η ϱοπή που υπολογίζεται να καθίσταται ιδιαίτερα ευαίσθητη στις

µικρο–διαφορές µεταξύ των µοντέλων (πειραµατικών και υπολογιστικών). Παρ΄ όλα αυτά,

η 2/rev διακύµανση που ϕαίνεται στις µετρήσεις, προβλέπεται µε επιτυχία από το GAST–

HoPFlow, αλλά ελαφρώς πιο έντονη σε σχέση µε αυτές. Από την άλλη µεριά, πολύ καλή

είναι η συµφωνία που παρατηρείται στη ϱοπή στην κατεύθυνση της περιστροφής (Εικόνα

5.29β). Η ϕάσης της κυρίαρχης 1/rev διακύµανσης προβλέπεται σωστά από το µοντέλο

του ΕΜΠ, ενώ παρατηρείται µία ελαφρά υπερεκτίµηση του αντίστοιχου πλάτους, η οποία

οφείλεται στην πρόβλεψη µεγαλύτερης τιµής για τη µέγιστη ϕόρτιση µεταξύ 90
◦ − 270

◦
. Η

συµπεριφορά αυτή είναι κοινή για τα περισσότερα υπολογιστικά µοντέλα. Αξίζει ακόµη να

σηµειωθεί ότι το πλατό που παρατηρείται σε αυτήν την περιοχή προβλέπεται µε επιτυχία από

το GAST–HoPFlow, αλλά ελαφρώς πιο στενό σε σχέση µε τις πειραµατικές µετρήσεις, κάτι το

οποίο επίσης συνατάται στις περισσότερες υπολογιστικές προβλέψεις.

(a) Ροπή κάµψης στην κατεύθυνση της πτερύγισης. Η 2/rev διακύµανση που ϕαίνεται στις µετρήσεις,

προβλέπεται µε επιτυχία από το µοντέλο του ΕΜΠ, αλλά ελαφρώς πιο έντονη. ∆ιαφορές παρατηρούνται

στο πλάτος και τη ϕάση µεταξύ όλων των υπολογιστικών προβλέψεων και των πειραµατικών µετρήσεων,

οι οποίες οφείλονται στις πολύ µικρές τιµές των ϱοπών στο µη στρεφόµενο σύστηµα του δροµέα (ϐλέπε

Πίνακα 4.10). Σαν αποτέλεσµα, ελαχιστοποιείται το πλάτος της ϱοπής πτερύγισης και καθίσταται

ιδιαίτερα ευαίσθητη στις µικρο–διαφορές µεταξύ των µοντέλων.
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(b) Ροπή κάµψης στην κατεύθυνση της περιστροφής. Θετική ϑεωρείται η κατεύθυνση αντίθετα της

περιστροφής. Το πλάτος της 1/rev διακύµανσης προβλέπεται από το µοντέλο του ΕΜΠ ελαφρώς πιο

µεγάλο σε σχέση µε τις µετρήσεις. Αυτό οφείλεται στην πρόβλεψη µεγαλύτερης τιµής για τη µέγιστη

ϕόρτιση µεταξύ 90
◦ − 270

◦
, το οποίο ωστόσο συναντάται στις περισσότερες υπολογιστικές προβλέψεις.

Figure 5.29. Ροπή κάµψης στην κατεύθυνση της πτερύγισης (a) και της περιστροφής (b) στο

17%R. Σύγκριση µεταξύ πειραµατικών µετρήσεων και προβλέψεων από beam–CFD αεροε-

λαστικά µοντέλα. Οι µέσες τιµές έχουν αφαιρεθεί. Σε γενικές γραµµές παρατηρείται µία καλή

συµφωνία των προβλέψεων του ΕΜΠ σε σύγκριση µε τις πειραµατικές µετρήσεις, ενώ όπου

παρατηρούνται διαφορές, τα αποτελέσµατα του µοντέλου του ΕΜΠ είναι σε συµφωνία µε τα

υπόλοιπα υπολογιστικά µοντέλα.

D ΣΣΣυυυµµµπππεεερρρααασσσµµµααατττααα

Κύριο στόχο αυτής της διατριβής αποτέλεσε η ανάπτυξη ενός αεροελαστικού εργαλείου

υψηλής ακρίβειας για την ανάλυση δροµέων, ικανού να διαχειρίζεται εφαρµογές εντός ενός

µεγάλου εύρους αριθµών Mach της υπο–ηχιτκής περιοχής σε ένα ενιαίο υπολογιστικό πλαί-

σιο.

Το κοµµάτι της ελαστο–δυναµικής ανάλυσης το διαχειρίζεται ο GAST, ένας σερβο–αερο–

ελαστο–δυναµικός επιλύτης για ΑΓ, ο οποίος αναπτύχθηκε στο Εργαστήριο Αεροδυναµικής

του ΕΜΠ στο πλαίσιο προηγούµενων διδακτορικών διατριβών [1, 2] και συνεχίζει να αναπ-

τύσσεται µέχρι και σήµερα. Στον GAST, η ελαστική ανάλυση µιας ΑΓ ϐασίζεται στη µον-

τελοποίηση των επιµέρους τµηµάτων της σαν δοκούς Timoshenko, οι οποίες διακριτοποιούν-

ται στο χώρο µε τη µέθοδο των 1∆ Πεπερασµένων Στοιχείων (FEM). Για τη διεύρυνση του

πεδίου εφαρµογής του GAST πέρα από τα όρια των ΑΓ, το κοµµάτι της κινηµατικής και

της δυναµικής ανάλυσης αναµορφώθηκε, κατά τη διάρκεια αυτής της διατριβής, ώστε να

ακολουθεί το πλαίσιο της ϑεωρίας ∆υναµικής Πολλαπλών Σωµάτων (Multi–Body Dynam-

ics). Με αυτόν τον τρόπο, τα επιµέρους τµήµατα µιας οποιασδήποτε κατασκευής µπορούν

να κινούνται στο χώρο ανεξάρτητα το ένα από το άλλο, ενώ η σύνδεσή τους σε µία ενι-

αία διάταξη υλοποιείται µε την ικανοποίηση κατάλληλων µη–γραµµικών κινηµατικών και
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δυναµικών εξισώσεων σύνδεσης [36]. Συνεπώς, ο GAST είναι πλέον σε ϑέση να αναλύει την

ελαστο–δυναµική συµπεριφορά οποιαδήποτε διάταξης αποτελείται από επιµήκη τµήµατα

που µπορούν µε ακρίβεια να µοντελοποιηθούν σαν δοκοί.

Για το αεροδυναµικό πρόβληµα, η υψηλή ακρίβεια και η δυνατότητα γενικής εφαρ-

µογής επιτυγχάνεται µε την υιοθέτηση µεθόδων CFD. Γι΄ αυτό το λόγο, η αεροδυναµική

ανάλυση του νέου αυτού εργαλείου ϐασίστηκε στο MaPFlow και το HoPFlow [4], έναν κλασ-

σικό Eulerian CFD επιλύτη και έναν υβριδικό Lagrangian–Eulerian επιλύτη που αναπ-

τύχθηκαν επίσης στο Εργαστήριο Αεροδυναµικής του ΕΜΠ κατά τη διάρκεια µιας προ-

ηγούµενων διατριβών [4, 191, 45]. Καθώς και οι δύο αεροδυναµικοί κώδικες επιλύουν τις

συµπιεστές εξισώσεις Navier–Stokes, µπορούν να χρησιµοποιηθούν για την ανάλυση ενός

µεγάλου εύρους αριθµών ·ατινΜαςη της υπο–ηχητικής περιοχής. Σαν πρώτο ϐήµα, και

για τη δηµιουργία µίας οικονοµικής επιλογής που µπορεί να χρησιµοποιηθεί ακόµα και

κατά τη ϕάση του σχεδιασµού δροµέων ΑΓ και ελικοπτέρων, ενσωµατώθηκε στο MaPFlow

και συνδέθηκε µε τον GAST ένα µοντέλο Γραµµής ∆ράσης (AL), όπου τα πτερύγια ενός

δροµέα µοντελοποιούνται σαν γραµµές από σηµεία ελέγχου κατά τον άξονα των πτερυγίων.

Οι γραµµές αυτές έχουν τη δυνατότητα να κινούνται και να παραµορφώνονται ελεύθερα

µέσα στο υπολογιστικό πλέγµα. Με αυτόν τον τρόπο γίνονται πιο εύκολες οι εφαρµογές

πολλαπλών σωµάτων σε ένα Eulerian CFD περιβάλλον, ενώ παράλληλα περιορίζεται σηµαν-

τικά το υπολογιστικό κόστος. Ακόµη, για να µπορεί αυτό το εργαλείο να χρησιµοποιηθεί

σε όλες τις ϕάσεις του σχεδιασµού δροµέων ΑΓ, πρέπει να είναι δυνατή και η αναπαραγωγή

των πραγµατικών (ατµοσφαιρικών) συνθηκών λειτουργίας µιας ΑΓ. Γι΄ αυτό το λόγο, αναπ-

τύχθηκε και ενσωµατώθηκε στο MaPFlow και η µέθοδος της Ζώνης Παραγωγής (GZ), για

την υπέρθεση ενός προφίλ διαταραχών της ταχύτητας λόγω τύρβης σε ένα µέσο CFD πεδίο.

Μάλιστα, η µέθοδος GZ έδειξε να παράγει τυρβώδη πεδία που υφίστανται χαµηλότερη αρι-

ϑµητική διάχυση και διατηρούν πιο αποτελεσµατικά τα ϕασµατικά χαρακτηριστικά τους σε

σχέση µε τις συµβατικές µεθοδολογίες που απαντώνται στη ϐιβλιογραφία. Το νέο GAST–AL

αεροελαστικό µοντέλο εξετάστηκε τόσο σε εφαρµογές ΑΓ όσο και ελικοπτέρων. Σε αντί-

ϑεση µε τα συνήθη εργαλεία που χρησιµοποιούνται κατά τη ϕάση του σχεδιασµού δροµέων,

παρατηρήθηκε η ικανότητά του να υπολογίζει µε ακρίβεια, κάτω από σύνθετες συνθήκες

ϱοής και χωρίς ιδιαίτερα υψηλό υπολογιστικό κόστος τόσο τα ϕορτία των πτερυγίων, όσο και

το πεδίο ϱοής που διαµορφώνεται κοντά. Μάλιστα, ιδιαίτερα σηµαντική κρίνεται η ικανότητα

του µοντέλου να προβλέπει µε επιτυχία όχι µόνο την επίδραση της τύρβης στο δροµέα και

την εξέλιξη του οµόρρου, αλλά και την επίδραση του δροµέα και του εδάφους στο ανάντι

τυρβώδες πεδίο.

Για τις περιπτώσεις που απαιτείται η µοντελοποίηση της πραγµατικής γεωµετρίας ενός

σώµατος (π.χ. για την πρόβλεψη της ϕόρτισης κάτω από συνθήκες που επηρεάζονται άµεσα

από τη γεωµετρία του σώµατος, όπως τα κύµατα κρούσης ή οι έντονα αποκολληµένες ϱοές),

αυτό είναι δυνατό µε τη χρήση του υβριδικού Lagrangian–Eulerian CFD επιλύτη HoPFlow.

Στην περίπτωση αυτή, η Eulerian διατύπωση των εξισώσεων της ϱοής επιλύεται από το

MaPFlow σε ένα σωµατόδετο πλέγµα που περιορίζεται κοντά στο εκάστοτε αεροδυναµικό

σώµα, ενώ µακριά από τα σώµατα, οι εξισώσεις της ϱοής διατυπώνονται στη Lagrangian

έκφρασή τους και η εξέλιξη της ϱοής περιγράφεται παρακολουθώντας την κίνηση και την

αλλαγή των ϱοϊκών µεγεθών που χαρακτηρίζουν ορισµένα υλικά σωµατίδια που δρουν σαν
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ϱοϊκοί σηµειακοί δείκτες. Ο κώδικας HoPFlow συνδέθηκε µε τον GAST στο πλαίσιο αυτής

της διατριβής και το νέο αυτό αεροελαστικό εργαλείο εξετάστηκε τόσο σε εφαρµογές ΑΓ όσο

και ελικοπτέρων. Και στις δύο περιπτώσεις ϕάνηκε ότι η ακρίβεια του GAST–HoPFlow στην

πρόλεξη των ϕορτίων του δροµέα και στη διαµόρφωση του οµόρρου είναι τουλάχιστον παρό-

µοια µε αυτή των κλασσικών CFD υπολογισµών, πράγµα που πιστοποιεί τόσο τη διαδικασία

σύζευξης µεταξύ του Eulerian και του Lagrangian πεδίου, όσο και τη σύνδεση µεταξύ του

ελαστο–δυναµικού επιλύτη GAST και του αεροδυναµικού επιλύτη HoPFlow.
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