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Abstract— As a consequence of the 5G network densification 

and heterogeneity, there is a competitive relationship between 

the sufficient satisfaction of the cell users and the power-

efficiency of 5G transmissions. This paper proposes a Deep Q-

Learning (DQL) based power configuration algorithm by 

jointly optimizing the energy-efficiency (EE) and throughput-

adequacy (JET) of 5G cells. The algorithm exploits the user 

demands to effectively learn-and-improve the user fulfillment 

rate, while ensuring cost-efficient power adjustment. To 

evaluate the potency of the developed methodology, several 

validation setups were conducted comparing the outcomes of 

the JET-DQL with those derived from conventional power 

control schemes, namely a Water-filling (WF) algorithm, a 

weighted minimum mean squared error (WMMSE) method, a 

heuristic solution and three fixed power allocation policies. JET-

DQL algorithm exhibits a remarkable trade-off between the 

allocated throughput (ensuring high user satisfaction rates and 

average behavior in total allocated throughput relative to 

baselines), while resulting into low-valued (almost minimum) 

power configurations. In particular, even for strict demand 

scenarios, JET-DQL outperforms the other baselines with 

respect to EE showing a gain of 2.9-4.5 relative to others, 

although it does not provide the optimal sum-rate utility and 

minimum power levels. 

Keywords—5G network, Reinforcement learning, Energy 

efficiency, Deep Q-learning, Power allocation, Radio resource 

management 

I. INTRODUCTION 

Driven by the rapid evolution of wireless communication 
systems, spanning from novel schemes on the radio channel, 
such as the concept of Non-Orthogonal Multiple Access 
(NOMA) [1], to the introduction of software-defined, 
virtualized network services, the fifth-generation (5G) 
networks have gained great interest to enable previously-
unseen capabilities to support services in several vertical 
domains [2]. According to 5G expectations [3], there are three 
main types of services, namely the massive machine-type 
communication (mMTC), enhanced mobile broadband 
(eMBB) and ultra-reliable low-latency communication 
(URLLC) services. All 5G types of communication will 
exhibit strict QoS with network connectivity requirements 
even for cell-edge users and under severe interference [3]. 

Thus, in 5G networks, billions of wireless devices are 
provisioned to be interconnected, communicating in a fast, 

heterogeneous and reliable manner. The considerable increase 
in the spatial density of the network architecture raises, in turn, 
significant challenges in the radio resource management 
(RRM) entity. In general, network densification results in 
lower probability of finding uncovered areas and/or users, but, 
contradictorily, increases the probability of severe 
interference. Moreover, the dense wireless environment also 
implies the simultaneous operation of multiple transmitters 
(e.g. macro and small-cell radio units, IoT devices) that are 
inevitably forced to use prohibitive power levels in order to 
surmount the experienced interference in their established 
links and provide adequate QoS to end users. On the other 
hand, demanding energy efficiency (EE) requirements of the 
wireless networks necessitate for deployment of novel power 
regulation schemes that incorporate autonomous, high-speed 
and smart solutions. Considering the significance of 
improving the EE by a factor of 2000 compared to existing 
network configurations [4], the power adjustment of both 
macro- and small-cell radio units has to be effectively re-
addressed not only to guarantee interference mitigation, but 
also to provide considerably increased EE levels. 

To this end, several suboptimal methods have been 
proposed to solve the EE maximization problem in wireless 
networks, which is typically an NP-hard problem [5]. The EE 
optimization problem has conflicting objectives, since it 
entails both the minimization of power levels of the 
transmitters and, at the same time, the maximization of the 
experienced throughput and interference mitigation, 
parameters that are usually positively correlated to the power 
increase. Traditional approaches to the non-convex EE 
maximization problem include interference mitigation 
methodologies and exploitation of the orthogonality between 
transmissions [4], [6]. More advanced techniques that involve 
fractional programming and sequential convex optimization 
or heuristic algorithms target at finding suboptimal solutions 
[7], [8]. However, the former methods suffer from poor 
resource utilization (e.g. spectral efficiency), while the latter 
are unable to provide effective solutions to large-scale 
wireless networks due to the complexity of the 
telecommunication environment and their poor convergence 
time. 

The tremendous progress in both computing power and 
artificial intelligence (AI) algorithms have placed the solution 
of non-convex optimization problems more closely to 



automated processes, rather than ruled-based, brute-force 
approaches. With reinforcement learning (RL), a specific 
branch of AI, it is possible to find the optimal strategy 
according to which an agent will achieve an objective after 
interacting with the environment [9]. As opposed to deep 
learning (DL), deep-RL (DRL) methods do not require 
training data to learn from, instead they can capture 
knowledge following a trial-and-error approach, while also 
exhibiting powerful generalization capabilities, since they can 
be easily implemented on large and complex environments 
[10]. Additionally, DRL pre-trained agents can be directly 
deployed in the network and provide near-real time 
predictions. Several studies have recently used RL methods in 
resource allocation problems, showing that usually RL 
outperforms the previously known, rule-based search 
algorithms [11]. Specifically, the authors in [12] propose an 
RL-based online learning power allocation framework in 
order to maximize the energy efficiency in multi-tier 5G 
heterogeneous networks. Moreover, a branch-and-cut method 
combined with DL was proposed in [4] to provide global EE-
driven power control, whereas a power allocation RL strategy 
has been proposed in [13] to mitigate the network power 
consumption in cloud radio access networks (RANs), while 
maintaining the user demands. Other studies [14], [16] 
proposed similar RL frameworks aiming at maximizing the 
total network throughput by adjusting the power of the 
wireless transmitters. 

In this paper, an urban heterogeneous coverage area is 
considered and the problem of configuring the power of 
transmitters is formulated towards ensuring near-optimal 
system-level EE. To this end, we propose a Deep Q-Learning 
(DQL) framework which, given the association scheme and 
the demand vector of diverse services, attempts to jointly 
maximize the EE, without disrespecting the requested 
throughput (JET-DQL). The main contributions of this work 
are: (i) The JET-DQL algorithm is tested in a heterogeneous 
5G-compliant wireless network including both primary and 
secondary transmitters and can be easily adjusted to diverse 
network configurations (number of cells/transmitters, 5G 
numerology, etc.), (ii) while the conventional approaches to 
solve the EE non-convex optimization problem are usually 
computationally intractable, pre-trained JET-DQL model can 
be effortlessly inferred for EE-targeted power control, (iii) the 
EE and the throughput adequacy are jointly optimized and (iv) 
as indicated by the results, the developed method achieves a 
remarkable balance between the conflicting objectives of total 
allocated throughput maximization and sum-power 
consumption minimization. 

II. NETWORK MODEL AND PROBLEM FORMULATION 

A. Network and Interference Model 

An urban 5G network area is considered to be 
heterogeneously deployed, consisting of a macro-cell (UMa) 
and 𝐾 overlapped micro-cells (UMi). Each cell 𝑘 is covered 
by the respective transmitter 𝑘  ( Tx𝑘 , ∀𝑘 = 1,2, … , 𝐾 +
1, where 𝑘 = 1  corresponds to the UMa transmitter). 
According to the selected operational 5G band and physical 
resource block (PRB) segmentation (5G numerology), each 
cell has 𝑁 available PRBs for physical-layer transmissions. A 
complete frequency reuse scheme across cells is also assumed. 
The system is controlled by a centralized cognitive controller, 
which targets at jointly accommodating the user requested 
services and ensuring low-valued power configuration. Each 
user  (𝑢 = 1,2, … , 𝑈) requested a throughput-specific service 

𝑠 defined by the service level agreement (SLA) profile of the 
available services (𝑠 = 1,2, … , 𝑆). Each service corresponds 
to a particular throughput demand in order to ensure adequate 
QoS. Therefore, a demand vector 𝐷, with respective elements 
𝑑𝑖 (𝑖 = 1,2, … , 𝑈), is adapted to notify the requested service 
class of user 𝑢 , expressed in terms of throughput (Mbps). 
Each single user 𝑢  may be associated with a PRB 𝑛  of a 
particular cell 𝑘 , thus defining the association matrix 𝐴 

(𝐴𝑘,𝑛,𝑢 = 1 when the association occurs, or 0 otherwise). The 

power level of cell 𝑘  over PRB 𝑛  is denoted as 𝑃𝑛,𝑘 . 

Moreover, a sum-power constraint is established for each cell 
due to power budget limitations (separate thresholds for UMa 

and UMi cells), i.e. ∑ 𝑃1,𝑛 ≤ 𝑃𝑚𝑎𝑥
𝑈𝑀𝑎𝑁

𝑛=1  and ∑ 𝑃𝑘,𝑛 ≤
𝑁
𝑛=1

𝑃𝑚𝑎𝑥
𝑈𝑀𝑖 , ∀𝑘 ≥ 2 . To account for signaling/sleeping mode 

operations, a PRB-specific minimum power level is also 
defined, i.e. 𝑃𝑘,𝑛 ≥ 𝑃𝑚𝑖𝑛 , , ∀𝑘 ≥ 1, 𝑛 ≥ 1 . Noteworthy, we 

assume that (i) each user is connected to a single PRB, (ii) the 
cell capacity is upper-bounded by the number of available 
PRBs and (iii) each cell can cover multiple users (at most 𝑁 
users). 

In heterogeneous environments, each user receives not 
only the signal from the associated UMa or UMi Tx, but also 
the accumulated interference signals from other operating 
stations. Inter-cell interference is taken into account via 
calculating the signal-to-interference-plus-noise (SINR) ratio 
𝛾. Given a particular association link between cell 𝑘 and user 
𝑢 over PRB 𝑛, parameter 𝛾 is given by: 

𝛾𝑘,𝑛,𝑢 =
𝑃𝑘,𝑛 ∙ 𝐿𝑘,𝑛,𝑢

(∑ 𝑃𝑘′,𝑛 ∙ 𝐿𝑘′,𝑛,𝑢𝑘′≠𝑘 ) + 𝑛0
, (1) 

where 𝐿𝑘,𝑛,𝑢 denotes the channel losses that characterize the 

link between Tx 𝑘 and user 𝑢 over PRB 𝑛, and 𝑛0 stands for 
the received noise power. Notably, the channel losses reflect 
the shadowing and path losses, while they are also positively 
correlated to the Tx-user distance [17]. The cell heterogeneity 
implies that different channel models should be considered, 
separately for UMa and UMi transmitters. Specifically, to 
reflect 5G-compliant conditions, UMa model and UMi model 
were assumed for the channel loss estimation of macro- and 
micro-links, respectively, as suggested in [17]. The achievable 
data rate of a particular link is characterized according to the 
respective 𝛾  status. The computation of the reachable 
transmission rate 𝑅 of the link between Tx 𝑘 and user 𝑢 over 
PRB 𝑛 is based on the Shannon formula, as follows: 

𝑅𝑘,𝑛,𝑢 = 𝑊𝑛 ∙ log2(1 + 𝛾𝑘,𝑛,𝑢), (2) 

where 𝑊𝑛  is the bandwidth of PRB 𝑛 , depending on the 
selected 5G numerology and operating band. 

B. Problem Formulation 

In this section, we address the problem of adjusting the 
transmitting power levels across all cells and PRBs of the 
network in order to maximize the ratio of the total network 
throughput and total power budget (i.e. EE). The system-level 
EE is, thus, expressed by: 

𝐸𝐸𝑠𝑦𝑠𝑡𝑒𝑚 =
∑ 𝑅𝑢
𝑈
𝑢=1

∑ ∑ 𝑃𝑘,𝑛
𝑁
𝑛=1

𝐾+1
𝑘=1

, (3) 

where 𝑅𝑢 is the experienced throughput of user 𝑢 given the 
respective associated cell and PRB. To avoid over-satisfaction 
of the users’ QoS, the numerator of the EE in Eq. 3 is modified 
so as each user-specific EE term to be upper-bounded by the 



requested throughput. The EE optimization problem (P) is 
then formulated as follows:  

 

(P) 

 

s.t.: 

max
𝑷
{𝐸𝐸𝑠𝑦𝑠𝑡𝑒𝑚 =

∑ 𝑚𝑖𝑛{𝑑𝑢, 𝑅𝑢}
𝑈
𝑢=1

∑ ∑ 𝑃𝑘,𝑛
𝑁
𝑛=1

𝐾+1
𝑘=1

} 

 

(4) 

(𝐶1) ∑𝑃1,𝑓 ≤ 𝑃𝑚𝑎𝑥
𝑈𝑀𝑎

𝑁

𝑛=1

 (5) 

(𝐶2) ∑𝑃𝑘,𝑛 ≤ 𝑃𝑚𝑎𝑥
𝑈𝑀𝑖

𝑁

𝑛=1

, ∀𝑘 = 2,… , 𝐾 + 1 (6) 

(𝐶3) 
𝑃𝑘,𝑛 ≥ 𝑃𝑚𝑖𝑛 , ∀𝑘 = 1,… , 𝐾 + 1; 𝑛

= 1,… , 𝑁 
(7) 

(𝐶4) ∑∑𝐴𝑘,𝑛,𝑢 ≤ 1

𝑁

𝑛=1

𝐾+1

𝑘=1

, ∀𝑢 = 1,… , 𝑈 (8) 

Optimization problem (P) is solved by finding a power 
configuration vector 𝑷  such that the system-level E is 
maximized. Moreover, constraints (C1)-(C4) guarantee the 
sum-power limitations of UMa (C1) and UMi (C2) 
transmissions, the minimum power level of each PRB (C3) 
and the link allocation scheme according to which every 
association link contains at most one single-user (C4).  

C. Deep Q-Learning Principles 

In principle, a DRL agent observes the current state 𝑠 ∈ 𝑆 
of the environment, takes an action 𝑎 ∈ 𝐴 (action space) and 
receives a reward 𝑟, reflecting the impact of the performed 
action. Q-learning allows the agent to predict the quality of 
being in state 𝑠𝑡 and performing the action 𝑎𝑡, based on the 
Bellman equation [9]: 

 𝑄𝑡(𝑠𝑡, 𝑎𝑡) = (1 − 𝛼) ∙ 𝑄𝑡−1(𝑠𝑡 , 𝑎𝑡) + 𝛼 ∙ (𝑟(𝑠𝑡, 𝑎𝑡)
+ 𝛾 ∙ 𝑚𝑎𝑥

𝑎′
{𝑄(𝑠𝑡+1, 𝑎′)}) 

(9) 

The Bellman equation defines the update rule of the Q-
table at time 𝑡 and implies that the new Q-value depends on 
both the previous Q-value for a given state-action pair (first 
term), while the second term represents the immediate reward 
(𝑟(𝑠𝑡 , 𝑎𝑡) ) and the optimal future discounted reward (𝛾 ∙
max
𝑎′
{𝑄(𝑠𝑡+1, 𝑎′)}). Additionally, the learning rate 𝛼 ∈ [0,1] 

and the discount factor 𝛾 ∈ [0,1] are used to balance between 
old/new Q-values and discount the future rewards, 
respectively. The agent gradually gathers experience about the 
beneficial actions and finally gains sufficient knowledge 
about the environment, meaning that the temporal difference 
(TD) between the learned value 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 ∙
max
𝑎′
{𝑄(𝑠𝑡+1, 𝑎′)}  and the old value 𝑄𝑡−1(𝑠𝑡 , 𝑎𝑡) is 

minimized. The TD function may be expressed as [9]: 

𝑇𝐷𝑡(𝑠𝑡, 𝑎𝑡) = (𝑟𝑡(𝑠𝑡, 𝑎𝑡) + 𝛾 ∙ 𝑚𝑎𝑥
𝑎′
{𝑄(𝑠𝑡+1, 𝑎

′)})

− 𝑄𝑡−1(𝑠𝑡, 𝑎𝑡) ≈ 0 
(10) 

An immediate extension of the tabular Q-learning is to 
utilize a neural network (DQL) as Q-function approximator, 
instead of using a memory-inefficient array structure. The 
main idea of DQL relies on the usage of two identical neural 
networks: (i) the Q-network which is used to estimate the 
current best action and (ii) the target Q–network which is used 

to predict the next action that will return the maximum long-

term reward (𝑚𝑎𝑥
𝑎′
{𝑄(𝑠𝑡+1, 𝑎

′)}). The outputs of the Q- and 

target Q-networks are considered as the features and the 
labels, respectively, of the deep learning part of DQL. During 
the training phase, TD minimization is achieved by 
appropriately adjusting the weights of the Q-network neurons, 
such that the loss function (difference between the predicted 
and actual values) is significantly reduced. Finally, the trained 
Q-network acts as a consultant of the agent, guiding its action 
selection policy throughout the inference (online) process. 

D. JET-DQL Framework 

To obtain a (sub)optimal solution for the optimization 
problem (P), a DQL agent is set to interact with a 
heterogeneous wireless environment. Fig. 1 outlines the 
training and inference pseudocode of the JET-DQL algorithm. 
The JET-DQL design parameter are defined as follows: 

State space: It is a function that describes the telecom 
environment, transforming the action taken in the previous 
step into a reward and a new set of actions. In the proposed 
algorithm, the state space includes the association information 
of each user 𝑢  and a throughput tolerance indicator 𝑡𝑜𝑙𝑢 , 
discretized in 5 tolerance levels. Specifically, the quantized 
values of tolerance are given by: 

𝑡𝑜𝑙𝑢 =

{
 
 

 
 
0,
1,
2,
3,
4,

 

𝑅𝑢 𝑑𝑢⁄ < 0 
1 ≤ 𝑅𝑢 𝑑𝑢⁄ < 1.2 
1.2 ≤ 𝑅𝑢 𝑑𝑢⁄ < 1.5 
1.5 ≤ 𝑅𝑢 𝑑𝑢⁄ < 2 
𝑅𝑢 𝑑𝑢⁄ ≥ 2 

(11) 

where the categorical values of 𝑡𝑜𝑙𝑢  reflect the user’s 
satisfaction status, ranging from under- to over-satisfaction 
levels (range 0-4). Therefore, the temporal sequence of the 
state space is 𝑆 = {𝑆1, … , 𝑆𝑡 , … , 𝑆𝑇}, where at a given time 𝑡, 
𝑆𝑡 = [(𝑇𝑥1, 𝑃𝑅𝐵1, 𝑡𝑜𝑙1), … , (𝑇𝑥𝑈, 𝑃𝑅𝐵𝑈 , 𝑡𝑜𝑙𝑈)]  determines 
the system state. This means that the controller, before taking 
an action, knows a triplet for each user 𝑢 , namely the 
associated Tx and PRB identifiers, as well as a demand-
related tolerance level. Noteworthy, user association is 
applied according to the maximum throughput criterion. 

Action space: The controller performs a sequence of 
actions {𝛢1, … , 𝐴𝑡 , … , 𝐴𝑇} during an episode, i.e. a complete 
series of agent-environment interactions, beginning from the 
initial state and terminating in the final state.  At a given step 
𝑡 , the agent performs a power ‘increment’, ‘decrement’ or 
‘null’ move on a selected PRB of each Tx. Formally, the 
action taken at time 𝑡  is denoted as 𝐴𝑡 =
[(𝑛1, 𝑎1), … , (𝑛𝐾+1, 𝑎𝐾+1)] and the power change on the 𝑛-th 

PRB of the 𝑘-th Tx is expressed by 𝑎𝑛𝑘 ∈ {𝑃𝑠𝑡𝑒𝑝 , −𝑃𝑠𝑡𝑒𝑝 , 0}, 

where the power step 𝑃𝑠𝑡𝑒𝑝  is constant. After selecting an 

action, the power update rule at Tx 𝑘 is given by 𝑃𝑘,𝑛𝑘(𝑡 +

1) = 𝑃𝑘,𝑛𝑘(𝑡) + 𝑎𝑘𝑛(𝑡). 

Rewarding system: The action taken by the agent results 
into a different system state, thus leading to association 
configuration and tolerance levels. The reward returned at 
time 𝑡 is defined as follows: 

𝑟𝑡(𝑆𝑡, 𝐴𝑡) = {
100

𝐸𝐸𝑡 − 𝐸𝐸𝑡−1
𝐸𝐸𝑡−1

, 𝑖𝑓 𝐸𝐸𝑡 > 𝐸𝐸𝑡−1

  0           ,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (12) 

where 𝐸𝐸𝑡  is system-level 𝐸𝐸 at time 𝑡. Note that, a non-zero 
reward quantifies the percentage increment in EE resulted by 



taking the current action. Intuitively, this rewarding system 
guides the agent to gradually prefer those sequence of actions 
that constantly improve the network EE. 

Algorithm 1. JET-DQL Algorithm  

 
1 
2 
3 
4 
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6 
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15 
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Training phase: 
Initialize 𝜀 =  1, learning rate and discount factor 
Initialize 𝑄- and 𝑡𝑎𝑟𝑔𝑒𝑡 𝑄-nets (random weights 𝜃) 
Initialize replay memory and mini-batch size 
Initialize the power levels of all transmitters. 
for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 =  1,… , 𝑇 do 
    Place the users randomly in the network area 
    Associate users (max throughput criterion) 
    for 𝑡 = 1,… , 𝑇′ do 
        With probability ε select a random 𝛢𝑡,  
        otherwise select 𝐴𝑡 with the highest Q-value. 
        Take action 𝐴𝑡 and observe 𝑟𝑡, 𝑆𝑡+1 
        Save tuple (𝑆𝑡, 𝐴𝑡, 𝑟𝑡, 𝑆𝑡+1) in replay memory 
        Select randomly a mini-batch of experience   
        tuples from replay memory 
        Set target values:  

            𝑦𝑗 = {
𝑟𝑗, 𝑖𝑓 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

𝑟𝑗 + 𝛾𝑚𝑎𝑥𝑎′ 𝑄(𝑠 + 1, 𝑎
′; 𝜃), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

         Do gradient descent on: (𝑦𝑗 − 𝑄(𝑠𝑡, 𝑎𝑗; 𝜃))
2
 

    end for 
    Decay 𝜀 
    Every 𝑋 episodes set the weights of 𝑡𝑎𝑟𝑔𝑒𝑡 𝑄- 
    net equal to 𝑄-net 
end for 

 
1 
2 
3 
4 
 
5 
6 

 
7 
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9 
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11 

Inference phase: 
Load the pre-trained 𝑄-model 
for 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑒𝑝𝑖𝑠𝑜𝑑𝑒 =  1,… ,𝑀 do 
    Observe the state 𝑆𝑡 
    Feed 𝑆𝑡 to the Q-net and select the action with the  
    highest Q-value 
    Observe new state and reward 
    while 𝐸𝐸 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 (or positive reward) is  
    observed: 

               repeat steps 3-4 
    end while 
    Calculate the accumulative EE increment 
    Store the final Throughput, Power vectors. 
end for 

Fig. 1. JET-DQL algorithm pseudocode for training and inference phases. 

III. SIMULATION RESULTS 

Simulations of the JET-DQL algorithm were implemented 
in Python 3.8 using Tensorflow 2.4. The training phase of the 
developed algorithm took ~1 hour running on a personal PC 
with a CPU i7-8700 at 3.2 GHz and a RAM of 8 GB (no GPU 
usage). Initially, the impact of the algorithm hyper-parameters 
is assessed and their values are stabilized depending on the 
performance of the algorithm. Subsequently, the proposed 
JET-DQL algorithm is compared against multiple baseline 
power allocation methods to elucidate its effectiveness. Table 
I summarizes the setup parameters both for the configuration 
of the telecommunication wireless network and the 
architectural design of the DQL network. Evidently, 
considering that each user may occupy a single PRB, each 
UMi cell reaches its full capacity (in terms of spectrum 
utilization) when the number of associated users equals to the 
number of available PRBs (6 PRBs for the selected 5G 
numerology 4). The above network realization ensures that the 
UMa transmitter unavoidably causes interferences across all 
established UMi links. Finally, we assume three different 
types of requested SLAs, with an SLA-throughput mapping 
of SLA-{1, 2, 3} = {1, 2.5, 5} Mbps. 

TABLE I.  SIMULATION SETUP PARAMETERS 

Network Parameters JET-DQL Architecture 

Parameter Value Parameter Value 

Central Frequency 6 GHz 
Update target 

frequency 
100 

Number of PRBs 6 Memory size 5000 

Number of users 
per UMi 

6 Mini-batch size 64 

5G numerology 4 Loss function Huber loss 

PRB Bandwidth 2.88 MHz 
Number of 

hidden layers 
3 

Number of UMi 

cells  
4 

Activation 

function of input 
and hidden layers 

Rectified 

Linear 
(ReLu) 

UMa/UMi Power 

Constraint 

𝑃𝑚𝑎𝑥
𝑈𝑀𝑎/𝑃𝑚𝑎𝑥

𝑈𝑀𝑖 

80/25 W 

Activation 

function of 
output layer 

Linear 

Minimum Power 

Constraint 𝑃𝑚𝑖𝑛 
0.1 W 

Monte-Carlo 

simulations 
1000 

UMa/UMi radius 500/100 m Optimizer Adam 

Noise Power 

Density 

-174 

dBm/Hz 
𝜀 decay Linear 

A. Impact of hyper-parameters on JET-DQL training 

The stochastic behavior of the DQN algorithms implies 
cautious fine-tuning among the crucial learning parameters, 
namely the number of episodes (directly affecting the 
exploration duration), the learning rate ( 𝑎 , balances the 
contribution of the new and old Q-value in the Bellman 
formula), the discount factor (𝑑𝑓, defines the significance of 
future rewards), as well as the power granularity (𝑃𝑠𝑡𝑒𝑝).  

 

Fig. 2. Learning curves of the JET-DQL training phase for different values 

of learning rate (A), power step (B) and discount factor (C). 



In the first part of the training, we examined the impact of 
the number of training episodes on the convergence rewards, 
observing that more than 10000 episodes result into similar 
reward values. Next, we set constant 𝑑𝑓 = 0.9 and 𝑃𝑠𝑡𝑒𝑝 = 2 

and experimented with different learning rate values 𝑎 ∈
{10−1, 10−2, 10−3, 10−4, 10−5}  (see Fig. 2A), noticing the 
best total reward (73%) for 𝛼 = 10−4. The impact of the 𝑑𝑓 
was then investigated (see Fig. 2C), showing a systematic 
independence between the reward convergence (~70%) and 
𝑑𝑓 (0.5, 0.7 and 0.9). Moreover, power granularity impact is 
shown in Fig. 2B, where the learning curve is depicted for 
different values of 𝑃𝑠𝑡𝑒𝑝 (~92% for both 3 and 4 Watts). 

Finally, to confirm the absence of significant convergence 
alterations in cases that diverse hyper-parameter combinations 
are used, we also conducted training simulations 
experimenting with all the possible dyads of 𝑎 ∈
{10−1, 10−2, 10−3, 10−4, 10−5}  and 𝑃𝑠𝑡𝑒𝑝 ∈ {1, 2, 3, 4} 
Watts. Fig. 3 depicts the reward converge value (% 
accumulative EE increment) of the above training setups. 
Again, it was verified that the optimal converge values are 
obtained for 𝛼 = 10−4 , independently of using 𝑃𝑠𝑡𝑒𝑝  of 3 

(92.3% total reward) or 4 Watts (92.4% total reward). For the 
rest of the simulations, we used the pre-trained JET-DQL 
model parameterized with the optimal hyper-parameters. 

 

Fig. 3. A 3-D representation of the JET-DQL convergence value (EE 

increment) as function of both learning rate and power step. 

B. Comparison with Baseline Methods 

To evaluate the performance of the developed 
methodology, we compare the JET-DQL outcomes against 
five well-established baseline power allocation methods. 
Specifically, two global network-wide throughput 
optimization algorithms, namely the Water-Filling (WF) and 
the Weighted Minimum Mean Square Error (WMMSE) 
methods, were implemented according to [18] and [19], 
respectively. Moreover, two additional fixed power control 
policies were considered for comparison purposes: the 
minimum power allocation scheme (MIN), according to 
which all UMi cells transmit with the minimum power level 
as the optimal power consumption solution, as well as the 
average power allocation scheme (AVG), which offers a 
reasonable trade-off between the consumed power and the 
achievable throughput. Finally, a heuristic Particle Swarm 
Optimization (PSO) solution was also implemented, targeting 
at the system-level EE maximization with identical power 
constraints. 

All methods were contrasted in terms of the three 
following metrics: (i) total allocated throughput, (ii) the total 

power consumption and (iii) the system-level EE. The above 
metrics were calculated as the average values across 1000 
different validation simulations (Monte-Carlo simulations), 
where in each simulation the users are randomly placed within 
the network area and the initial power levels of all transmitters 
are also randomly initialized. To account for various 
demanding situations, 4 validation scenarios with incremental 
difficulty are considered: Scenario 1: all requests are SLA-1 
services, Scenario 2: all requests are SLA-2 services, 
Scenario 3: random requests of SLA-1 or SLA-2 services and 
Scenario 4: random requests of SLA-1, SLA-2 or SLA-3 
services. 

As depicted in Fig. 4, WF and WMMSE algorithms are 
the best methods with regards the system throughput 
maximization (Fig. 4A). This is directly attributed to their 
objective in searching for power configuration that results into 
increased experienced throughput for the individual links with 
good channel conditions. However, these approaches have the 
drawback of over-satisfying already fulfilled users as an 
attempt to significantly improve the total network-wide 
throughput. In this context, both methods provide poor power 
consumption (Fig. 4B) and EE (Fig. 4C) performance, 
primarily due to the enhanced allocated power levels at PRBs 
with high-SINR. 

As expected, MIN method showed constantly the best 
performance in total power consumption as it uses the most 
cost-efficient power levels. On the contrary, minimum power 
allocation results into poor system throughput, mainly 
because the received signals are not sufficient to 
accommodate the SLA requirements. Overall, MIN results 
show also poor EE performance, since the high reduction in 
the denominator of the EE is counterbalanced by extremely 
low nominator values (i.e. total throughput). Moreover, AVG 
method exhibits median performance among all evaluation 
metrics, since it systematically guarantees a reasonable ratio 
between the experienced throughput and the allocated power, 
showing also acceptable EE solutions. Regarding the PSO 
performance, we observed adequate values across all 
evaluation metrics. Although PSO outperforms the other four 
baseline methods in the majority of validation scenarios, it 
fails to yield better performance than JET-DQL. Notably, 
unlike the other baseline methods (MIN, AVG, WF, WMMSE 
and JET-DQL inference phase) that do not have considerable 
response time to find the power allocation solution (all in the 
order of ms), PSO requires a run time in the order of min (~6 
minutes in our simulations) to obtain a sub-optimal solution. 
However, it provides ~29% enhanced EE solutions in relation 
to WF, MIN and WMMSE, as well as noticeably lower power 
consumption. Integrating the above observations, we noticed 
remarkably beneficial outcomes of the JET-DQL approach, 
primarily exhibiting an EE gain in the range of 2.9-4.5 relative 
to the other baselines. It is also worth noting that the proposed 
algorithm provides median solution (similar to that of AVG) 
in terms of the total allocated throughput (~36% below WF 
and WMMSE), while showing near-optimal performance in 
power consumption (follows the MIN solution).  



 

Fig. 4. Performance comparisons between JET-DQL algorithm and the five 

baseline methods in terms of (A) System Throughput, (B) Power 

Consumption and (C) Energy-efficiency. 

To sum up, results confirmed the effectiveness of both WF 
and WMMSE in optimizing the total network-wide 
throughput (around 36% enhancement relative to JET), while 
neglecting the cost-efficiency of the allocated power vectors 
(increased power consumption by a factor of ~4.5 compared 
with JET). The achieved equilibrium between the total 
allocated throughput and the wasted sum-power offered by 
JET-DQL algorithm may highlight its main objective: 
maximization of the EE at the cost of degrading the total 
system throughput. 

IV. CONCLUSION 

In the present work, a multi-channel 5G-compliant system 
is considered, including heterogeneous cells, while the power 
levels of the transmitters are supervised by a centralized DQL 
agent. Towards the stabilization of the DQL hyper-
parameters, we initially present the impact of the latter on the 
algorithm performance (percentage of EE increment) 
employing numerous training simulations. To evaluate the 
proposed scheme, several gradually demanding (in terms of 
SLA requirements) validation scenarios were considered. 
Although WF and WMMSE methods were the optimal 
techniques for total network-wide throughput maximization, 
JET-DQL showed dominant performance regarding the EE 
optimization compared to all baseline methods, illustrating an 
average solution for the sum-rate utility and near-optimal 
power consumption abilities. Overall, results confirm that 
JET-DQL can achieve a reasonable trade-off between power 
savings and system throughput degradation.   
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