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ABSTRACT Energy efficiency (EE) constitutes a key target in the deployment of 5G networks, especially
due to the increased densification and heterogeneity. In this paper, a Deep Q-Network (DQN) based
power control scheme is proposed for improving the system-level EE of two-tier 5G heterogeneous and
multi-channel cells. The algorithm aims to maximize the EE of the system by regulating the transmission
power of the downlink channels and reconfiguring the user association scheme. To efficiently solve the EE
problem, a DQN-based method is established, properly modified to ensure adequate QoS of each user (via
defining a demand-driven rewarding system) and near-optimal power adjustment in each transmission link.
To directly compare different DQN-based approaches, a centralized (C-DQN), a multi-agent (MA-DQN) and
a transfer learning-based (T-DQN) method are deployed to address whether their applicability is beneficial
in the 5G HetNets. Results confirmed that DQN-assisted actions could offer enhanced network-wide EE
performance, as they balance the trade-off between the power consumption and achieved throughput (in
Mbps/Watt). Excessive performance was observed for the MA-DQN approach (>5 Mbps/Watt), since the
decentralized learning supports low-dimensional agents to be coordinated with each other through global
rewards. In further comparing the T-DQN against MA-DQN solutions, T-DQN presents beneficial usage for
very low or very high inter-cell distances, whereas the usage of MA-DQN is preferred (by a factor of ∼1.3)
for intermediate inter-cell distances (100-600m), where the power savings are feasible towards achieving
increased EE. Furthermore, T-DQN scheme guarantees good EE solutions (above 2 Mbps/Watt), even for
densely-deployedmacro-cells, with effortless training andmemory requirements. On the contrary,MA-DQN
offers the best EE solutions at the expense of massive training resources and required training time.

INDEX TERMS 5G network, deepQ-learning, energy efficiency, radio resourcemanagement, reinforcement
learning, transfer learning.

I. INTRODUCTION
The unstoppable evolution of wireless communication
networks intends to provide ubiquitous, reliable and
near-instant pervasive connectivity between humans and
machines [1], [2]. Driven by an endless need for ever-growing
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data capacity, 5G cellular networks will be the bridging
platform to meet unpreceded user requirements and enable
Internet of Things (IoT), massive unmanned mobility, aug-
mented reality (AR), virtual reality (VR) and Industry 4.0
applications [3]. These innovations are coupled with novel
technical approaches spanning across all the 5G network
layers, such as new physical-layer transmission schemes,
MIMO antenna systems, routing algorithms, network
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slicing, software-defined radios (SDR) and network function
virtualization (NFV). In this context, massive data will be
exchanged among numerous interconnected objects, with
each one requesting broadband, fast and reliable communi-
cation. According to Cisco [4], it is expected that by 2030,
5G networks have to support billions of connected devices,
offering coverage and capacity to every corner, while ensur-
ing enhanced Quality of Service (QoS) and data rates [5].
As an unfavorable consequence, it is also expected that
5G networks will consume a thousand times more energy
than existing systems [6]. Hence, a successful 5G system
has to not only bring high-capacity and complete cover-
age, but also to guarantee greener and more sustainable
deployments [7]–[9].

The surged growth of mobile data traffic results into over-
loaded communication systems. To deal with inadequacy
in the network-wide capacity, there are specific planning
options defined by Shannon’s capacity formula [10]; the lat-
ter implies that the capacity improvement is positively related
with bandwidth increase, spectral efficiency melioration
and/or frequency reuse. Bandwidth and spectral efficiency
increments have been thoroughly identified and addressed
from day-1 of 5G deployment, mainly exploiting already
known principles like carrier aggregation, cognitive radio,
MIMO techniques, interference mitigation, error-correction
coding and traffic adaptation [11]. Having noticed near-
saturated progress in the abovementioned metrics, 5G clearly
targets to increase the frequency reuse factor by densely
deploying multi-tier heterogeneous cells [12], ranging from
macro-area outdoor to femto-area indoor servers. This
high-degree densification not only boosts the complexity of
network planning, especially in the physical-layer infrastruc-
ture, but also re-poses spectral efficiency and signal-to-noise
ratio degradation issues due to severe interferences. Impor-
tantly, the energy efficiency (EE) defines the extent to which
the network is both throughput-sufficient (i.e. covers the
requested services) and cost-efficient (i.e. prefers low-cost
links and reduces the power consumption) [13]. Quantita-
tively, the system EE is strongly reduced when either the
interferences significantly degrade the experienced through-
put or the power consumption is not restricted. A key con-
flicting point of 5G is then identified: Towards the significant
improvement in system capacity, the EE may be proven a
major limiting factor.

In modern wireless systems, the optimization of a specific
metric (such as capacity or EE) usually sets upper-bounds
or even degrades the performance of other equally impor-
tant indices. Agreeing in this conflicting groundtruth, along
with the tremendous complexity of realistic wireless net-
works, the non-convexity nature of EE optimization has been
proven [14]. Traditionally, several EE optimization algo-
rithms, such as convex optimization, fractional programming
and game theory, have been proposed showing significant
drawbacks in their applicability. Notably, optimization algo-
rithms search for analytical solutions and thus can be applied
under simple system models, usually including unrealistic

network parameters and many simplifications to derive solv-
able expressions, such as perfect channel state indications,
limited interferences, low-dimensional environments, static
users and so on. Moreover, a specific optimization algorithm
usually targets at a single-component optimization, due to
dimensionality and complexity increase when considering
joint optimization of multiple metrics. Towards overcoming
these limitations, machine learning (ML) algorithms offer
a unique opportunity to supervise the future wireless net-
works, primarily due to (i) the massive data that are collected,
(ii) the tremendous progress in the computing power of
processors, (iii) the ability of learning extremely complex
patterns (i.e. function fitting) from data and (iv) the abil-
ity to provide predictions or make decisions in near-real
time.

With the exponential increase in the number of both access
and demand points, mathematical models that define the
network structure become inaccurate, thus raising immi-
nent challenges in network resource management. Moving
beyond traditional rule-based and brute-force methods for
supervising the 5G network resources, recent concepts of
self-organizing networks (SONs) and zero-touch optimiza-
tion (ZTO) have acquired considerable interest in the 5G era,
allowing the network configurations to be automatized and
eliminating the need for expensive hands-on management.
In this context, ML will be the key enabler for cognitive
networks as it provides efficient learning without requiring
explicit mathematical models. Deep learning (DL) based
algorithms have shown promising abilities in 5G resource
management given sufficient access to historically collected
data [15]. However, the presence of large datasets to train
DL networks still remains far away from reality, mainly due
to massive storage, privacy and confidential issues among
operators. On the contrary, reinforcement learning (RL) mod-
els [16] include a software agent interacting with the telecom
environment with the aim of finding a (sub) optimal strategy
to maximize its long-term rewards. At each training step,
the agent observes the system state, takes an action, receives
a scalar reward, and moves to the next state. Due to this trial-
and-error approach, RL does not require training datasets and
thus it is widely studied in wireless networks optimization
problems. Over the last years, neural networks have been
combined with RL (Deep RL or DRL) as function approx-
imators to estimate the ‘quality’ (Q-value) of performing a
particular action from a given state. As opposed to conven-
tional RL, DRL agents are insensitive to large state-action
space and can be applied to high-dimensional problems and
under non-stationary conditions.

In this paper, a mobility-aware multi-channel power con-
trol scheme is proposed for improving the system-level EE
of two-tier 5G heterogeneous cells. The algorithm aims to
maximize the EE of the system by regulating the trans-
mission power of the downlink channels and reconfig-
uring the user association scheme. To efficiently solve
the EE problem, a DQN-based method is established,
properly modified to ensure adequate QoS of each user
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(via defining a demand-driven rewarding system) and
near-optimal power adjustment in each transmission link.
After showing that the EE optimization follows the prin-
ciples of non-convex optimization problems, a three-way
DQN-based approach is outlined. Specifically, a centralized
DQN algorithm is initially employed to solve the problem of
interest exploiting the global network state. Inspired by the
distributed nature ofmulti-agentmethods, the same algorithm
was then implemented in a cooperative decentralizedmanner,
where each individual agent has partial observability and
thus low-dimensionality neural networks, to directly contrast
its pros and cons in relation to the first approach. Finally,
to further investigate potential complexity and cost reduction
possibilities of the EE optimization framework, we explore
the performance of the proposed DRL scheme using the prin-
ciples of transfer learning. The proposed framework is tested
on 5G-compliant environments with realistic user mobility
considering standardized channel models [17] and assum-
ing the simultaneous operation of macro- and micro-cells in
urban conditions.

The key contributions of the proposed algorithms may be
summarized as follows:
(i) The proposed algorithm is based on the model-free

DRL that learns by only reading network measure-
ments, making and correcting unprofitable moves.
Such an approach does not require the presence of train-
ing datasets which raises massive storage and confiden-
tial issues inmobile operators. A trained optimal-policy
software agent can be then inferred to supervise
the EE of the system.

(ii) The objective of the EE optimization is properly
defined so as to jointly ensure that adequate through-
put is allocated in the single-user level (considering
diverse realistic QoS requirements) and the transmis-
sion power is sufficiently reduced in the single-channel
and single-station levels.

(iii) This work directly deploys and investigates three DRL
approaches to solve the EE optimization problem,
namely the centralized, the multi-agent and the transfer
learning based solutions. As such, a direct contrast
in terms of performance, convergence speed, compu-
tational capacity and applicability among the three
approaches is provided, as an attempt to identify their
limitations in 5G HetNets.

(iv) Extensive simulations are performed to stabilize the
learning hyper-parameters and validate the potency of
the algorithms in the presence of 5G-compliant channel
models and mobility patterns of the mobile users, thus
establishing an EE ML-aided optimization framework
with increased scalability and generalizability.

(v) The developed methodology may be effortlessly
extended to include multi-tier network models
(e.g. pico, femto cells and IoT devices) with diverse
power constraints, various network topologies and dif-
ferent system parameters (operating frequency, propa-
gation characteristics, 5G numerology, etc.).

The rest of the paper is organized as follows: Section II
outlines the related work of the EE network optimization.
In Section III, the system model, the interference model
and the problem formulation are presented. In Section IV,
the three DRL-based algorithms are described, along
with the related mathematical principles and background.
In Section V, the simulation setup and the hyper-parameter
fine-tuning of the training phase are firstly outlined. In addi-
tion, several simulations took place in order to investigate
various comparative aspects between the proposed DRL and
baseline schemes. Finally, Section VI concludes the paper.

II. RELATED WORK
Several studies have highlighted the problem of EE max-
imization. In [13], the EE optimization is addressed using
fractional programming and sequential convex optimization
methods for centralized (network-centric) networks. The
EE problem is then extended to the multi-agent decentral-
ized (user-centric) case, considering multiple agents being
engaged in a non-cooperative game, i.e. each individual agent
targets at its own EE maximization. In both cases, mini-
mum throughput requirements of the users and maximum
power constraints of the transmitters are considered, which
reflect realistic conditions and allow smooth integration
of 5G technologies.

Moreover, in [14], the authors demonstrate the solution to
the EE optimization problem for downlink two-tier hetero-
geneous networks (macro- and pico-cells), by jointly con-
sidering the beamformer design and power regulation of the
transmitters. In this work, diverse sum-rate requirements of
the mobile users are considered including video conferencing
and online gaming, as well as file transfer and online video.
The authors formulate the EE optimization problem as a
mixed combinatorial and non-convex optimization problem
with multiple inequality constraints by effectively decom-
posing the original problem into multiple sub-problems with
a single inequality constraint. Their approach involves a
two-fold resource allocation strategy: an inner-layer is first
employed to find the maximum EE considering a specified
user-rate, followed by an outer-layer for optimizing the EE
via a gradient-based algorithm. However, the problem formu-
lation in [14] includes a single-channel and fixed user associ-
ation policy, whereas the optimization solutions are obtained
for multiple stationary network conditions (user positioning
and demand vector). It should be noted also that iterative
approaches may be time-consuming during the real-time net-
work operation, especially when time-varying and increased
mobility scenarios are considered. This is attributed to the
need for multiple iterations before obtaining a solution, which
is usually infeasible in the real-time network operation. Thus,
a significant drawback of iterative-obtained or heuristic solu-
tions against the DRLmethods relies on the fact: once a DQN
agent is pre-trained, it can almost effortlessly be inferred
(through basic arithmetic/array operations for the neural net-
work inference) to provide real-time suggestions. On the
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contrary, the training phase of a DRL scheme is more com-
plex than the conventional approaches.

Furthermore, the authors in [18] investigate the down-
link EE optimization problem by jointly performing power
allocation and user association, while also considering
the minimum sum-rate constraints and the maximum
power constraints for the transmitters. An energy-efficient
low-complexity algorithm is thus developed and imple-
mented on a downlink massive MIMO system to jointly
allocate the optimal transmission power using Newton’s
methods and configure the user association scheme based
on the Lagrange’s decomposition methods, ensuring high
minimal sum-rate constraints.

More recent research works focus on the implemen-
tation of DL and DRL methods in diverse 5G resource
allocation problems, showing that RL frequently outper-
forms analytical, rule-based and heuristic methods [15], [19].
For DL-based approaches, a recent trend is the ‘‘learn-
to-optimize’’ approach, according to which a neural net-
work is used to provide approximations of analytical
mathematical models after being trained on previously
derived analytical solutions [20]. On the other hand, typical
applications of RL-based algorithms include power allocation
strategies and user-association schemes [21]–[23], dynamic
spectrum access [24], beamforming techniques [25] or joint
approaches [26]–[28]. These studies are mainly focused
on optimizing fundamental physical-layer metrics, such as
sum-rate utility, interference management and spectrum
utilization.

Towards the specific objective of EE optimization, RL and
DRL methods have been also employed. For instance,
the authors in [29] propose a multi-agent distributed intuitive
online learning energy-efficient power allocation scheme
for multi-tier 5G heterogeneous network, also maintaining
QoS requirements. Each secondary transmitter (pico, femto
and device-to-device transmitters) in the network area of
a macro-cell acts as a single agent, speculating the power
allocation policies of the other agents by directly interacting
with the wireless environment. For purposes of reducing
the state space and facilitating the training process and the
algorithm convergence, the Q-value of the online learning is
approximated as a function of significantly reduced number
of parameters.

Finally, the authors in [30] develop a multi-agent
DRL framework for jointly optimizing the user association
and power control in OFDMA based uplink HetNets. Their
decentralized approach manages each user equipment (UE)
as a single agent, targeting at maximizing its individual
energy efficiency without coordinating with other agents,
taking also into consideration the maximum transmit power
constraint, as well as the UE’s own QoS requirements.
Other studies have focused on intelligent control of trans-
mitters’ operation (switch on/off) for purposes of eliminating
unwanted energy waste [31].

Various limitations may be identified in the existing
EE literature. At first, although the DL approaches

significantly reduce the time required for solving the EE opti-
mization problem, they inevitably inherit the over-idealized
assumptions of analytical solutions. Secondly, although both
centralized and distributed learning approaches have been
proposed, there is a lack of direct comparison between them
for the EE problem in terms of convergence speed, com-
putational capacity, storage requirements, performance and
sensitivity related to dimensionality. Furthermore, most of the
existing studies have not taken advantage of the transferable
learning option across cognitive agents (transfer learning),
which can efficiently speed up the learning process, given the
spatio-temporal correlation of the involved cells/agents. This
technique would allow to considerably reduce the amount
of training resources and presumably result into significant
system-level EE algorithm enhancements. Finally, simultane-
ous consideration of mobility-aware and dynamically chang-
ing environments to realistically reflect the non-stationary
network conditions have been understudied.

III. NETWORK MODEL AND PROBLEM FORMULATION
A. NETWORK MODEL
An urban 5G HetNet area is deployed by considering a
large-area macro radio unit (MaRU) overlapped with K
small-area micro cells (MiRUs), as depicted in Fig. 1. Each
RU has M available physical resource blocks (PRBs) for
physical-layer transmissions, depending on the selected oper-
ational 5G numerology and the available bandwidth B. The
first tier of the cell consists of a single MaRU dedicated to
cover a large area. Moreover, a second tier including multiple
low-powerMiRUs is also deployed for purposes of increasing
the network area capacity. Given that the MaRU is deployed
to provide fixed coverage in the network area, it simultane-
ously comprises the major interference source for the second
tier mobile users. To that end, when a particular user is located
inside a MiRU service area, it experiences the accumulated
interference of both MaRU and neighboring MiRUs.

FIGURE 1. Network model consisting of an urban two-tier 5G HetNet cell.

A set of N mobile demand points (DPs) are assumed
to be located in the second tier, requesting a specific ser-
vice that reflects realistic service level agreement (SLA)
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requirements in terms of throughput. A binary matrix A is
defined to denote the association between a specific DP n and
a single PRB m of MiRU k (Ak,m,n = 1 when the downlink
association is established). A demand vector with respective
elements Dn denotes the requested QoS of DP n expressed
in Mbps. A random walk model is also established for each
mobile DP n with velocity vn (in m/s) and polar direction ϕn
(in degrees).

The MaRU transmits over a particular PRB m with a
power level of PMaRU ,m (in Watts), whereas the trans-
mitted power of MiRU k over PRB m is denoted
as Pk,m. Sum-power constraints are considered separately
for MaRU and MiRUs, namely

∑M
m=1 PMaRU ,m ≤ P

MaRU
max

and
∑M

m=1 Pk,m ≤ P
MiRU
max ,∀k . Moreover, a minimum power

level of each PRB is also determined to account for basic
signaling and beacon transmissions, i.e. Pk,m ≥ Pmin,∀k,m.
A complete frequency reuse scheme among RUs is also
assumed.

The efficacy of the system-level EE is defined via
the extent to which the second tier cognitive network
jointly accommodates the QoS requirements and avoids
over-consumption of power resources.

Finally, we assume that a single DP occupies a single
PRB of a particular MiRU, whereas multiple DPs may be
associated with a particular MiRU.

B. INTERFERENCE MODEL
ADP n that establishes a downlink association with a particu-
lar PRB m of a MiRU k experiences a signal-to-interference-
plus-noise ratio (SINR) γ :

γk,m,n =
Pk,m · Lk,m,n

PMaRU ,m · LMaRU ,n +
∑

k ′ 6=k Pk ′,m · Lk ′,m,n + n0
,

(1)

where Lk,m,n and LMaRU ,n stand for the channel losses
between the DP n and the MiRUs and MaRU respectively
over PRB n and n0 stands for the noise power density at the
location of the receiver. The channel losses reflect the propa-
gation losses of the wireless environment, i.e. shadowing and
pathloss (PL) [17]. The PL model due to the operation of the
MaRU can be expressed by:

PLUMa−LOS =

{
PL1, 10m < d2D < d ′BP
PL2, d ′BP < d2D < 5km,

(2)

where d2D is the 2D distance between the DP and the MaRU,
d ′BP is the breakpoint distance and the pathloss models PL1
and PL2 may be calculated as follows:

PL1 = 28+ 22 log10 (d3D)+ 20 log10 (fc) (3)

PL2 = 28+ 40 log10 (d3D)+ 20 log10 (fc)

− 9 log10
[(
d ′BP

)2
+ (hBS − hUT )2

]
(4)

In the above equations, d3D is the 3D distance between
the DP and the MaRU, fc is the operating frequency of the

transmitter, hBS is the height of the transmitter and hUT is the
height of the DP. According to [17], the breakpoint distance
can be expressed by:

d ′BP = 4h′BSh′UT fc/c, (5)

where the effective antenna heights are calculated as h′BS =
hBS − hE , h′UT = hUT − hE , hE is the environmental height
and c is the speed of light.

Due to the cell heterogeneity, different channel models
are taken into account for the MiRUs in the calculation of
the SINR γ (Eq. (1)). The pathloss may be expressed
by:

PLUMi−LOS =

{
PL1, 10m < d2D < d ′BP
PL2, d ′BP < d2D < 5km,

(6)

where the pathloss models PL1 and PL2 in this case are
computed by:

PL1 = 32.4+ 21 log10 (d3D)+ 20 log10 (fc) (7)

PL2 = 32.4+ 40 log10 (d3D)+ 20 log10 (fc)

− 9.5 log10
[(
d ′BP

)2
+ (hBS − hUT )2

]
. (8)

Following the computation of the SINR for an established
downlink association, the transmission data rate R of a DP n
with a particular PRBm of a MiRU k can be calculated based
on the Shannon formula:

Rk,m,n =
B
M
· log2 (1+ β · γk,m,n), (9)

where the assumption that each DP may occupy a single PRB
has been also taken into consideration. Finally, β depends on
the Bit Error Rate (BER) threshold (β = 1 for BER = 10−6).

C. PROBLEM FORMULATION
As already mentioned, the system-level EE jointly examines
the second tier transmitting power resources of the K MiRUs
that are present in the network area and the requested QoS
of the DPs associated with this cell. The EE is formally
described by:

EE =

∑N
n=1 Rn∑K

k=1
∑M

m=1 Pk,m
, (10)

where Rn is the data transmission rate of DP n once a link has
been established between DP n andMiRU k over PRBm. The
EE optimization problem (P) can be formulated:

(P) max
P

{
EE =

∑N
n=1min {Dn,Rn}∑K
k=1

∑M
m=1 Pk,m

}
(11)

s.t .:

(C1) Rn = max
{
Rk,m,n

}
, ∀k, ∀m

(12)

(C2)
M∑
m=1

PMaRU ,m ≤ PMaRUmax (13)
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(C3)
M∑
m=1

Pk,m ≤ PMiRUmax , ∀k (14)

(C4) Pk,m ≥ Pmin, ∀k,m (15)

(C5)
K∑
k=1

M∑
m=1

Ak,m,n ≤ 1, ∀n (16)

It should be noted that the maximization of the opti-
mization problem involves the limitation of the requested
throughput in the calculation of EE, since the objective is to
fulfill the DP’s requirements and not total network throughput
maximization, avoiding the DP over-satisfaction. Moreover,
the constraint C1 implies that the DP nwill perform theMiRU
and PRB association according to the maximum throughput
criterion. Constraints (C2), (C3) concern the power limita-
tions of the MaRU and the K MiRUs, specifying that the
sum-power of each MiRU and MaRU should not exceed
a total power consumption threshold (different for MiRU
and MaRU) and also that a minimum power level for each
PRB is required to enable beacon transmissions (C4). Finally,
constraint (C5) reflects that each DP can occupy at most a
single PRB of one MiRU.

IV. METHODOLOGY APPROACH
In this section, the DQL principles are described and the pro-
posed DRL framework is outlined considering state, action
and rewards spaces. Furthermore, the centralized, the multi-
agent and the transfer learning methodologies implemented
to solve the EE optimization problem are presented.

A. DEEP Q-LEARNING PRINCIPLES
In general, RL enables an agent interacting with an envi-
ronment, and getting feedback loops between the learn-
ing system and its experiences, in terms of rewards or
punishments. The conventional form of RL is the tabular
Q-learning method, according to which the RL agents take
advantage of the so-called Q-table to become near-optimal
predictors of beneficial actions [16]. During the learning
process, the agent records its past experiences by continu-
ously filling-and-updating the Q-table. An immediate exten-
sion of the tabular Q-learning is to utilize a neural network
(DQL) as Q-function approximator, instead of using a
memory-inefficient array structure. The DQL has been suc-
cessfully applied in various non-convex optimization prob-
lems due to its capability to cope with enormous state and
action spaces [15], [19]. Since a tabular approach requires
a significant amount of state-action values, its feasibility is
limited to rather small state spaces. To this end, DQL has
been widely used in order to overcome the state-action space
restrictions and improve the generalizability of RL models.

In principle, the condition of the environment is acknowl-
edged to the DRL agent through the system state s ∈ S (state
space). The agent can then interact with the environment by
performing an action a ∈ A (action space). The learning pro-
cess loop is completed with the received reward r , involving
the feedback (positive, negative or none) of the performed

action, as well as the new state of the environment. The con-
cept of the learning method is to train the agent to gradually
prefer the actions that return the most profitable rewards.
In this manner, the agent is implicitly trained to learn a policy
for the objective of the optimization problem, i.e. a sequence
of actions for maximizing the long-term rewards. Using the
Bellman equation, the agent can estimate the ‘‘quality’’
(the so-called Q-value) of being in state st and performing
the action at [16]:

Qt (st , at) = (1− α) · Qt−1 (st , at)

+α · (r (st , at)+ γ · max
a′
{Q(st+1, a′)}) (17)

As readily observed from Eq. (17), the Q-value for a
given state/action pair is updated based on (i) its previous
value (Qt−1 (st , at)), (ii) the immediate reward (r (st , at))
received by performing the action at and (iii) the estimated
future return γ ·max

a′
{Q(st+1, a′)}. Moreover, the learning rate

α ∈ [0, 1] is used to weight the previous and learned
Q-values, while the discount factor γ ∈ [0, 1] notifies the
significance of future long-term rewards.

By repeatedly interacting with the environment, the DQL
agent aims to completely gather the information derived
by the environment. This may be achieved by minimiz-
ing the temporal difference (TD) function, which reflects
the difference between the learned value r (st , at) + γ ·

max
a′
{Q(st+1, a′)} and the old value Qt−1 (st , at) [16]:

TDt (st , at)

=

(
rt (st , at)+ γ · max

a′

{
Q
(
st+1, a′

)})
− Qt−1 (st , at)

≈ 0 (18)

The key concept of DQL is the utilization of two function
approximators (i.e., neural networks) to estimate the current
best action (Q-network) and to predict the next best action
(target Q–network). The Deep Learning part of the DQL is
basically a regression problem in which the objective is to
minimize a loss function. This function equals to the dif-
ference between the outputs of the Q- (considered as the
predicted values) and target Q-networks (considered as the
actual values). As a result of the training process, the weights
of the Q-network are properly adjusted so as to provide
predictions about which action to take from a given state
(inference phase).

B. PROPOSED DQL-BASED SOLUTIONS
In general, the DQN schemes are divided into 2 broad cat-
egories, namely the classical centralized/single-agent DQN
vs. the decentralized/multi-agent DQN. In this subsection,
three approaches to solve the optimization problem (P)
are formulated, namely a centralized Deep Q-Network
method (C-DQN), a multi-agent/decentralized DQL method
(MA-DQN) and a transfer learning-basedDQL (T-DQN) tech-
nique. The general state, action and reward definitions are
firstly described before being specifically adapted to each
solution:
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1) STATE SPACE
For a sequence of T episodes, the system state can be
described through the set S = {S1, . . . , St , . . . , ST }. At a
given time t , the state can be described via a three-fold
information for each DP. Specifically, each DP reports to
the DRL agent: the ID of the associated RU, the ID of the
associated PRB and an indicative parameter about its indi-
vidual satisfaction status. The satisfaction status SSn of DP n
is discretized in 5 levels:

SSn =



0, Rn
/
Dn < 0

1, 1 ≤ Rn
/
Dn < 1.2

2, 1.2 ≤ Rn
/
Dn < 1.5

3, 1.5 ≤ Rn
/
Dn < 2

4, Rn
/
Dn ≥ 2

(19)

The SSn reflects the extent to which the allocated through-
put of DP n is above its requested throughput Dn, rang-
ing from under-satisfaction (SSn = 0) to over-satisfaction
levels (SSn = 4).

2) ACTION SPACE
The performed actions during T episodes are notated as
{A1, . . . ,At , . . . ,AT }. At a given step t , the agent can
increase, decrease or maintain the power level of a selected
PRB on each RU. The action taken at time t is denoted
as At = [a1,m1 , . . . ak,mk , . . . , aK ,mK ], where ak,mk ∈
{Pstep,−Pstep, 0} is the power adjustment on the selected PRB
mk of RU k and Pstep is the power change value (in Watts).
Thus, the power update rule can be described by:

Pk,m(t) = Pk,m(t − 1)+ ak,mk (t) (20)

3) REWARD
After taking an action, the system transits into a new state
thus leading to alternate association scheme and SS levels.
The feedback received at time t is expressed by:

rt (St−1,At−1) =


EEt − EEt−1

EEt−1
× 100, if EEt > EEt−1

0, otherwise
(21)

where the EEt is the resulting system-level EE. It should be
noted that a positive reward quantifies the % EE increment.
Following this rewarding system, the agent will learn a policy
that gradually improves the network EE.

4) ACTION SELECTION POLICY
In each training episode, the agent selects either a (random)
explorative action or an exploitative action (based on the
predictedQ-values). For the action selection strategy, we used
the ε-greedy method, according to which the agent passes
smoothly-over-time from an exclusively exploration phase to
an exclusively exploitation phase. The ε decaying rule was
selected to be linear, starting from 1 and ending to 0 for the
first half of the training episodes.

C. CENTRALIZED DQL
The single-agent C-DQN algorithm can be described through
the agent-environment interaction, as shown in Fig. 2. A cen-
tralized controller is acknowledged with the network-wide
state and is able to perform an action concerning all MiRUs.

FIGURE 2. C-DQN algorithmic framework. Interaction cycle between the
centralized agent and the telecom environment.

To this end, a global network state is constructed by
combining N individual reports (R1, R2, . . . ,RN) from all
MiRUs. Each local report Ri (obtained from MiRU i) is com-
posed of a three-fold information about eachDP located in the
service area of MiRU i, namely the serving RU ID, the asso-
ciated PRB ID and the respective SS. Then, the central agent
selects either an explorative (randomly) or an exploitative
action (based on the Q-network output). The output layer
of the C-DQN consists of N × M × 3 neurons, includ-
ing the Q-value of increasing, decreasing or maintaining the
power level on PRB m (m = 1, . . . ,M ) of MiRU n (n =
1, . . . ,K ). By splitting the global action into N separate
actions, the MiRU-specific actions are obtained. According
to Eq. (21), the global reward, computed as the difference
between the current and previous system-level EE, quantifies
the impact of the global action on the network state. Fig. 4A
shows the architecture of the DQN used for C-DQN solution.

D. MULTI-AGENT DQL
Similar to the C-DQN framework, a multi-agent MA-DQN
approach was also deployed. As depicted in Fig. 3, one agent
per micro-cell is trained based on its partial observability
(i.e. the reports of associated DPs only). This approach results
into N different DRL models.
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FIGURE 3. MA-DQN algorithmic framework. Each individual agent
partially interacts with the telecom environment and collects a global
reward.

Specifically, each agent collects the local state vectors of
the respective MiRU, concerning the DPs that are presently
connected to it. Moreover, each agent can regulate the
power levels of its respective MiRU. Although the state and
action spaces have significantly lower dimensionality than
the C-DQN framework, the selfish behavior of each agent
could make the learning convergence infeasible. To obtain
a co-operative scheme among the multiple agents, a global
reward is returned to each DRL agent. Thus, the global
reward allows the agents to sense the others’ actions, as the
training phase unfolds. Fig. 4B illustrates the architecture of
a single-agent DQN.

The outline of the MA-DQN scheme may be summarized
in the following steps (for a given episode):
Step 1: Each agent observes only its associated users (their

associated PRB and their experienced throughput)
Step 2: Based on its own policy, selects a (local) action.
Step 3: The individual actions selected by each agent are

combined to form the global action vector, i.e. the power
value of each PRB and cell.
Step 4: Then, the reward is defined similarly to the

centralized scheme, defined in Eq. (21). Specifically, the
system-level EE increment takes into account the throughput
experienced by all users and the power level of all MiRUs
(i.e. global reward).
Step 5: In case that the system-level EE was improved,

the agents continues to play in the same episode. Otherwise,
the reward is zero and another episode is initiated.
Step 6: Steps 1-5 are repeated until convergence.
In this manner, although each individual agent has par-

tial observability of its environment, it is able to ‘‘sense’’

FIGURE 4. Architecture of the neural networks used in the proposed
solutions. A. Neural network for the C-DQN approach. B. Neural network
for the MA-DQN and T-DQN methods.

the network-wide environment by receiving the system-level
EE increment. For example, when a micro-cell agent selects
a selfish action based on the observability of its micro-
area users, it only contributes in some terms of the global
EE formula, as seen from Eq. (10). By taking into account the
throughput of each user and the power level of all micro-cells,
a global reward is returned to every micro-cell agent, giving
insights to each of them about how globally good were their
local actions.

E. TRANSFER LEARNING-BASED DQL
In the transfer learning based T-DQN approach, we investi-
gated the inheritance capabilities of a single-MiRU model
that has pre-trained for different positions inside the MaRU
area. This approach exhibits the simplest training approaches
in terms of dimensionality, convergence and computational
resources, since only one model is trained. In the infer-
ence phase, all the existing MiRUs simply inherit the same
pre-trained model in order to assist their EE objective.
Although the T-DQN has significantly reduced dimension-
ality in its training phase, the drawback of this approach is
that each agent has no information about the interaction with
other agents and, thus, multiple selfish models are obtained.
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As shown in Fig. 4B, the T-DQN uses the same neural net-
work as a single MA-DQN agent.

V. SIMULATION RESULTS
Several simulations were conducted to illustrate the per-
formance of the developed approaches both for evaluative
and comparative purposes. The following simulation setups
were implemented in Python 3.8 using Tensorflow 2.4.
The training phase of all algorithms ran on a personal PC
(CPU i7-8700; 3.2 GHz; RAM 8 GB; no GPU usage). This
section is divided into two sub-sections, including (i) the
presentation of the individual training procedures for each
EE solution (C-DQN, T-DQN and MA-DQN) and (ii) the
evaluation of the proposed approaches, along with their com-
parison with other baseline solutions. The validation pro-
cedure includes comparisons in terms of demandingness of
requested services, degree of densification and inter-cell dis-
tances, as crucial aspects in the EE degradation. All validation
results of the DQN-based algorithms were derived by infer-
ring the pre-trained DQN-based models.

In Table 1, we tabulate the simulation parameters both
for the configuration of the considered wireless net-
work [17], [32], [33] and the fundamental architectural
parameters of the DQN neural networks. Notably, according
to the selected 5G numerology 4 (i.e. each available channel is
segmented into 6 PRBs), we consider full-capacity scenarios
in the training phase (i.e. 6 users, each occupying 1 PRB) [33].
This setup ensures utmost spectrum utilization conditions in
the MiRU cells, while also guaranteeing that MaRU unavoid-
ably causes interferences to all PRBs of all MiRUs. All trans-
mitting sites are equipped with omnidirectional antennas,
while the mobility of users is characterized by the pedestrian
speed of 1 m/s following a random walk model and a random
initial positions. Note that, when a DP exits the area of its
served micro-cell, an additional DP is randomly initialized to
ensure constantly fully-capacity loads in the offloaded micro-
cell. This was done to ensure that all PRBs are constantly
active and test the EE optimization on the second tier of the
cell in worst-case interferences (the MaRU causes interfer-
ence to all PRBs of all MiRUs). Finally, to include realistic
variability in the requested services, three different types
of requested SLAs are assumed, namely SLA1 = 1 Mbps,
SLA2 = 5 Mbps, SLA3 = 10 Mbps.
It is worth noticing the inter-dependency between the

channelization (i.e. channel segmentation) scheme of the
system and the achievable throughput. In our simulations,
we used the numerology 4 of standardized 5G spectrum
guidelines [33], according to which the band (of 20 MHz)
is segmented into 2.88 MHz physical resource blocks.
It would be possible to apply the presented algorithms in
other spectrum configurations (i.e. 5G numerologies). A spe-
cific numerology defines how many channels are available
within a particular band. In this context, several concep-
tual alterations have to be noticed when the numerology is
modified, especially for those triggered by the relationship
between the available channels and the targeted throughput.

TABLE 1. Simulation setup parameters.

Shannon’s formula [10] justifies that the achievable through-
put is positively correlated with the available channel
bandwidth and the interference mitigation (i.e. the SINR).
Therefore, a lower numerology that segments the same band
into a higher number of subchannels has the following con-
tradictive consequences:
(i) A higher number of available channels results into

higher flexibility among users to occupy different chan-
nels or exchange channels between each other. This
directly increases the system-level SINR, because the
number of common-channel links is reduced.

(ii) On the other hand, a high-degree channel segmentation
results into low-bandwidth channels available to each
user, thus defining a lower upper-bound in the achiev-
able throughput per user.

To sum up, a throughout maximization scheme has to jointly
consider the power regulation strategy (to reduce the interfer-
ences), the channel allocation scheme (to intelligently assign
the users to channels) and the user association policy (to
handle for handovers and cell associations).

A. STABILIZATION OF DQN HYPER-PARAMETERS
The impact of the algorithm hyper-parameters has to be
cautiously stabilized, as their values can significantly influ-
ence the performance convergence. In general, DQN-based
algorithms are characterized by stochastic behavior, since
multiple runs of the same model could exhibit variations in
the resulted performance. The crucial learning parameters
in the proposed algorithms are initially fine-tuned according
to whether they present near-optimal convergence values in
terms of the achieved EE increment. Specifically, we sequen-
tially examined the number of episodes (directly affecting
the exploration duration), the learning rate (a, balances the
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FIGURE 5. Impact of the training hyper-parameters on the proposed approaches. A. Learning curve of the C-DQN solution for varying values of
the learning rate. B. Learning curve of the single-cell trained model for varying values of the learning rate. C. Learning curve of the MA-DQN
solution for varying values of the learning rate. The performance of the MA-DQN scheme was assessed by individually inferring each agent’s
model and computing the system-level EE. D. Convergence value of EE increment (average reward across the 100 last episodes) per method for
different values of discount factor. E. Convergence value of EE increment (average reward across the 100 last episodes) per method for varying
values of power step.

contribution of the new and old Q-value in the Bellman
formula), the discount factor (γ , defines the significance of
future rewards), as well as the power granularity (ps). This
was done for all deployed models, namely the centralized
(C-DQN), the multi-agent (MA-DQN) and the single-cell
(SC-DQN) model that will be used for the transfer
learning-based (T-DQN) scheme evaluation.

The hyper-parameter stabilization was performed fol-
lowing a ‘‘brute-force’’ approach, meaning that the algo-
rithm convergence was tested on multiple values of all
the learning parameters. According to this approach, one
model per parameter configuration was obtained and stored.
Then, the individual models were compared and the
parameter-specific model with the highest reward conver-
gence was selected.

For this section, we consider a topology consisting of
a MaRU and four fully-occupied MiRUs. The center of
the micro-cells was randomly selected at the start of each
episode, whereas the inter-cell distances were kept at a min-
imum of 100m, as recommended in [17] for the micro-cell
UMi areas. Fig. 5 depicts the training evaluation of the
proposed DQN-based algorithms. In general, a number of
30000 training episodes was proved sufficient for the reward
convergence of both SC-DQN and MA-DQN schemes. Evi-
dently, we observed a considerable impact of the learning rate
on the performance of all schemes, as it regulates how rapidly
or gradually the learning procedure unfolds (Fig. 5A-C).
As expected, the C-DQN requires lower learning rate
(α = 10−5) compared with SC- and MA-DQN approaches

(α = 10−4), since it takes into consideration larger state-
action spaces and monitors the global (high-dimensional)
network state. Noteworthy, the SC-DQN model achieved
a reward of ∼81%, meaning that it can guarantee ∼81%
EE increment relative to the initial system EE. This means
that, if we infer the SC-DQN model for purposes of max-
imizing the system EE, a gain of 81% will be achieved
relative to the initial system EE (without SC-DQN assis-
tance). Note also that, the final reward of a given episode
is accumulated by summing the individual rewards of the
actions (i.e. power regulation steps) taken during this par-
ticular episode. Furthermore, although the SC-DQN showed
excessive training performance, it refers to a single-cell (self-
ish) model that will be inherited to multiple cells in the
next section and, thus, it does not characterize the system-
level EE. Similar performance in the order of 80% EE incre-
ment was also observed for the MA-DQN model. This is
attributed to the ability of multi-agent schemes to combine
the low-dimensional DQN complexity (multiple DQNs iden-
tical to the SC-DQN) with the global reward to achieve
inter-cell coordination. We also noticed elongated delay
(∼500 episodes) required for the convergence stabilization
of MA-DQN relative to the SC-DQN model. This delay is
attributed to the inherent property of multi-agent RL schemes
that enforce multiple selfish agents to be coordinated with
each other (by sharing the same global reward) through partial
observability of the environment. Finally, we observed that
C-DQN approach resulted into ∼3.2 times worse EE per-
formance (∼23% EE increment) compared with MA-DQN.
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The significant differences in dimensionality between the
C-DQN and MA-DQN models could explain the superi-
ority of the MA-DQN scheme in achieving enhanced sys-
tem EE. Indicatively, the possible states that can be seen
from the C-DQN equal to (5 × K × M)N and the possible
actions equal to (3 × M)K , whereas those for a single-agent
is (5 × M)N/K and 3 × M , respectively (5 satisfaction
status levels, 3 available actions, K MiRUs, M PRBs,
N DPs). Apart from the large dimensionality and the enor-
mous state-action spaces that characterize the centralized
approach, the C-DQN model faces additional applicabil-
ity/technical challenges because it requires high-bandwidth
backhaul channels to carry the required information (a cen-
tralized controller collects the information of all users in
the network area, while also it manipulates all the existing
antennas in the network). In many real cases, this is prac-
tically infeasible, mainly due to the backhaul overhead and
the massive required storage at the controller side. Based on
this limitation, the C-DQN is primarily used for comparison
purposes, as well as to quantitatively show its inability to con-
verge in an adequate (i.e. comparable to the other schemes)
EE solution under the same number of training episodes.

As shown in Fig. 5D, discount factor showed negligible
impact on the performance of the algorithms, with the opti-
mal values being highlighted using arrows. Finally, Fig. 5E
illustrates the EE convergence values for discrete power gran-
ularity levels, ranging from 1 to 5 Watts in steps of 1 Watt.
Interestingly, the selfish SC-DQN model shows the optimal
reward when considering the maximum power step (5Watts),
as there were no other micro-cells inside the macro-area,
allowing for rapid power steps towards EE maximization.
On the contrary, MA-DQN scheme exhibited the optimal
performance for the median power step (3 Watts) among all
agents, indicating the coordinated behavior among micro-
cells. This behavior implies that a high-valued power step
can potentially enhance the EE of a single-cell, but, contra-
dictorily, can degrade the total system EE due to enhanced
inter-cell interferences. Thus, the optimal power configura-
tion towards ensuring high system EE requires the agents
to be more conservative in order to eliminate the inter-cell
interferences. The impact of power step in the C-DQN
model was negligible, showing the best value for power step
of 5 Watts.

Regarding the run time required for the training of the
algorithms, SC-DQN needed ∼1 hour, C-DQN ∼3 hours
and MA-DQN ∼15 hours to accomplish 30000 training
episodes, since the latter trains multiple model simultane-
ously. For the rest of the simulations, the hyper-parameters of
the neural networks were set to the optimal values presented
in Fig. 5.

B. PERFORMANCE COMPARISON BETWEEN DIFFERENT
METHODS
In this section, we evaluate the performance of the devel-
oped methodologies and we compare the DQN-based solu-
tions against three other baseline schemes. For this section,

we consider a similar network configuration (consisting of
a MaRU and four fully-occupied MiRUs) and a fixed topol-
ogy of the second-tier network (inter-cell distances 500 m
placed in squared topology). This was done to ensure fair-
ness in the performance comparisons among the considered
schemes. The three DQN-based models (C-DQN, MA-DQN
and T-DQN) were contrasted in terms of their final achieved
network-wide EE, following the suggested actions of the
pre-trained models.

The performance validation of each model was assessed
by inferring the respective model for 1000 different vali-
dation scenarios (i.e. random user positioning and service
requests per scenario). The final performance metric was
quantified as the average EE increment across the validation
scenarios. Three baseline schemes were additionally used for
comparison purposes, namely (i) the fixed average power
allocation scheme (AVG), which offers a reasonable trade-off
between the consumed power and the achievable throughput,
(ii) a random power control policy, which randomly assigns
power levels to each PRBs, respecting only the power limita-
tions and (iii) a heuristic Particle Swarm Optimization (PSO)
solution, targeting at the system-level EE maximization with
identical power constraints.

To account for diverse demanding conditions, validation
scenarios with incremental difficulty are considered:

� Scenario 1: all requests are SLA1 services,
� Scenario 2: all requests are SLA2 services,
� Scenario 3: random requests of SLA1, SLA2, SLA3
services,

� Scenario 4: random requests of SLA2, SLA3 services,
� Scenario 5: all requests are SLA3 services.
For each of the six methods, we computed the resulting

system-level EE (Mbps/Watt), as illustrated in Fig. 6.
In a general point of view, the performance deviation

between the methods becomes more obvious as the dif-
ficulty of scenario increases. As readily observed from
Fig. 6, AVG and Random methods showed poor EE per-
formance, primarily due to the absence of intelligent power
configuration to avoid inter-cell interferences. Given that
the rest of the methods involve non-fixed power control
strategies, it is shown that a beneficial reduction in the
power consumption may result into a gain in the EE perfor-
mance. C-DQN presented inability to optimally find the best
EE solution, since an enormous state space must be visited
during the training phase (i.e. exploration phase) in order to
gather sufficient knowledge about the possible environment
states.

The heuristic PSO-based solution showed median perfor-
mance among all validation scenarios. It constantly outper-
forms the C-DQN approach, since it searches a suboptimal
solution for each different user positioning instance. This
fact raises significant applicability issues of PSO in real 5G
deployments, as it would be infeasible to infer PSO-based
solutions (in the order of minutes to obtain a solution)
in time-varying and increased mobility scenarios. On the
contrary, all pre-trained DQN-based algorithms can almost
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FIGURE 6. Performance comparisons in 5 different demanding scenarios
between the six contrasted algorithms in terms of energy-efficiency.

effortlessly be inferred (in the order of milliseconds to obtain
the suggested action), given that the neural network weights
are already adjusted.

Importantly, MA-DQN method showed systematically the
best EE outcomes, since it combines the benefits of decen-
tralized low-dimensional learning with a centralized global
reward. The latter allows the discrete agents to sense the
whole environment, although the individual state space (that
is visible from each agent) offers partial network observ-
ability. In other words, following the MA-DQN approach,
it is possible for an agent to avoid selfish moves, since
actions that can degrade the network-wide EE would return
zero rewards. The opposite situation applies to the T-DQN
solution, where multiple optimal-but-selfish models are used
for the EE monitoring. Specifically, we observed that in
the first three scenarios, both T-DQN and MA-DQN exhibit
comparable outcomes in terms of EE performance, while in
scenarios 4 and 5, the superiority of MA-DQN over T-DQN
becomes clearer. When challenging requirements of the users
(as in scenarios 4 and 5) are considered, it is expected
that the link-specific power levels should be increased in
order to ensure acceptable reception. Simultaneously, if all
micro-cells use increased power levels to ensure local satis-
faction, inter-cell interferences will be the side effect in lim-
iting the targeted throughput. Thus, the underperformance of
T-DQN may be attributed to the selfishness of the single-cell
trained models, which, although are well-perform in stan-
dalone scenarios, do not take into account the presence of
the other micro-cells. On the contrary, MA-DQN approach
inherently considers the presence of all micro-cell inside the
macro-area, while the coordinated behavior among agents
is gradually achieved by adopting the global reward func-
tion. Moreover, scenario 5 highlights the main drawback
of T-DQN, noticing better performance for PSOwhen consid-
ering high-demanding conditions. Again, it should be noted
that PSO suffers from significant challenges in the response
time to obtain a solution. As intuitively expected, T-DQN
may become inefficient in cases that strict demands are
considered, since the increased demands require coordinated
behavior among the agents. To this end, MA-DQN seems the
most applicable option when extreme demanding conditions
are realized.

C. IMPACT OF NETWORK DENSIFICATION
Driven by the outcomes of the previous section, we fur-
ther evaluate the performance of the best EE solvers
(i.e. MA-DQN and T-DQN). We have already noted that
T-DQN is the optimal method in terms of computational
resources needed to train a single-cell model (and then share
it across all micro-cells), whereas the MA-DQN is the best
EE solver in terms of the achieved EE. To further address
whether it is beneficial to use T-DQN over MA-DQN (and
vice versa), we examined the impact of network densification
on the EE performance. Note that, an increase in the number
of MiRU inside the MaRU area results into reduced inter-cell
distances, thus increasing the overall system interferences.
To that end, five different topologies were realized with
increasing intrinsic micro-cells, ranging from 2 to 10 micro-
cells. This scenarios allowed us to not only contrast the
algorithms in increasing interferences conditions, but also
to assess the scalability of the algorithms, since the number
of DPs is increased by 6 for each additional micro-cell.
Note that, we used almost symmetrical topologies in order
to ensure that the MaRU causes near-identical interferences
to all MiRUs.

As depicted in Fig. 7, the EE degrades with the degree
of densification, independently of the method used for EE
maximization. We also observed that the MA-DQN supe-
riority in achieving better EE is more noticeable as the
degree of densification increases, whereas for sparse topolo-
gies (2 and 4 microcells), where the individual microcells
are relatively isolated between each other, the T-DQN is
probably beneficial, providing quasi-identical EEwith signif-
icantly cost-efficient training resources. As generic conclu-
sion, T-DQN scheme guarantees good EE solutions (above
2 Mbps/Watt), even for densely-deployed macro-cells, with
effortless training andmemory requirements. On the contrary,
MA-DQN offers the best EE solutions at the expense of
massive training resources and required training time.

FIGURE 7. Energy efficiency performance derived from T-DQN (red) and
MA-DQN (blue) schemes as a function of network densification.

D. IMPACT OF INTER-CELL DISTANCE
In this section, we consider two MiRUs located in equal
distances from the MaRU. The training of both T-DQN and
MA-DQN models was performed with dynamic topologies
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that were based on random center positions of the micro-cells
inside the macro-cell area. Then, 6 validation scenarios are
set, where the distance between the MiRUs varies between
100 and 600 meters to gradually eliminate the inter-cell
interferences. For comparison purposes, both models are
inferred for the 6 different topologies, one for each inter-cell
distance scenario, considering random SLA requirements
(SLA1-SLA3).
As depicted in Fig. 8, MA-DQN can clearly present

increased EE (by a factor of ∼1.3) compared with T-DQN in
cases that the inter-cell distances ranges between 200-400 m.
In such cases, we noticed a power saving of ∼3 Watt in
MA-DQN relative to T-DQN, at the expense of a through-
put degradation of ∼2 Mbps. It is worth also noting that
both methods allocate reduced power levels as the inter-cell
distances increase. In this way, this behavior results into
increased experienced throughput, thus offering enhanced
system EE solutions. In summary, EE is positively correlated
with the inter-cell distance, because micro-cells can be con-
sidered isolated between each other, thus they are able to
reduce their power costs. Importantly, the other case in which
MA-DQN and T-DQN performances are indistinguishable
occurs for the distance of 100 m (both EE ∼2.5 Mbps/Watt).
This is directly attributed to the generic inability of both
methods to optimally allocate the power levels in order to

FIGURE 8. Power consumption (A), Achieved throughput (B) and
corresponding energy efficiency (C) performance derived from T-DQN
(red) and MA-DQN (blue) schemes as a function of the
inter-cell distance (in m).

achieve EE. In such case, both algorithms show a peak power
consumption (∼16 Watt) as an attempt to overcome the pow-
erful interferences.

To sum up, T-DQN presents beneficial usage for very
low (<100 m) or very high (>600 m) inter-cell distances,
whereas the usage of MA-DQN is preferred for intermediate
inter-cell distances, where the power savings are feasible
towards achieving increased EE. In other words, key conclu-
sions include: (i) when the micro-cells are isolated enough,
the selfish models can present adequate EE due to eliminated
interferences, and (ii) when the micro-cells are very close,
there are no alternations in EE performance either by using
MA-DQN or T-DQN.

E. IMPACT OF MOBILITY SPEED
For the previous sections, we have used the constant user
speed of 1m/s (all pedestrians). However, a sufficiently
trained DQN agent should exhibit stable performance inde-
pendently of the user mobility speed and the spatio-temporal
traffic fluctuations. To verify this aspect, the MA-DQN
model, as the dominant EE maximization scheme, was fur-
ther validated for varying user speed scenarios. Five scenar-
ios were conducted by allowing 3 different types of users,
namely pedestrians (1m/s), low-speed vehicles (30 km/h) and
high-speed vehicles (80 km/h). The scenarios used the same
topology as in Section V.B and were parameterized as:

� Scenario 1: all users are pedestrians,
� Scenario 2: all users are low-speed vehicles,
� Scenario 3: all are randomly assigned as pedestrians,
low-speed or high-speed vehicles,

� Scenario 4: half of users are low-speed vehicles and half
are high-speed vehicles,

� Scenario 5: all users are high-speed vehicles.
Note that, scenarios 1-5 are sorted in increasing mobility

order. For each scenario, the achieved system-level EE and
the total allocated throughput were extracted as the average
EE across 1000 validation episodes. As readily observed
from Fig. 9, the DQN-assisted EE solution is independent

FIGURE 9. MA-DQN performance for 5 different mobility speed scenarios.
In the left y-axis, the mean EE performance (blue) across 1000 validation
scenarios is depicted. In the right y-axis, the mean throughput
performance (red) across 1000 validation scenarios is depicted.
Error bars represent the standard error of the mean.
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of the user velocity, showing stability both in the EE (with
small fluctuations around 10 Mbps/Watt) and throughput
(∼180Mbps) performance even for diverse mobility scenar-
ios ranging from slow- to fast-changing spatio-temporal traf-
fic patterns. Based on these simulations, it is concluded that a
mobility-aware DQN scheme can generalize for multiple user
mobility scenarios.

F. IMPACT OF THROUGHPUT DEGRADATION TOLERANCE
As implied by the definition of EE, there is a contradictive
relationship between the total allocated throughput and the
power consumptions. This section introduces a parameter that
can tune the trade-off between a user-centric and an operator-
centric (or environmental-centric) EE power allocation pol-
icy. This parameter is the Throughput Degradation Tolerance
(η) which defines the extent (0-100%) to which a throughput
degradation is acceptable towards EE improvements. So far,
the η has been deterministically set to 30% as a reasonable
value for degrading the throughput to obtain a power-efficient
solution. This means that the presented results can degrade
the total requested throughput at most 30% for purposes of
improving the system EE. Formally, this can be written as:∑

u∈U

min(Ru,Du) ≥ (1− η) ·
∑
u∈U

Du (22)

where U is the set of users, Ru is the allocated throughput
(in Mbps) at user u ∈ U and Du is the demand (in Mbps) of
user u ∈ U . The min operation ensures that the calculation of
the allocated throughput is upper-bounded by the demanded
throughput to avoid over-estimation in the allocated through-
put values. Eq. (22) implies that every EE power allocation
scheme resulted from the algorithm has to guarantee at least
1− η user satisfaction, thus low values of η can be used for
user-centric policies and high values of η can be used for
operator- or environmental-centric policies.

In this section, we investigate the impact of η in the
proposed MA-DQN scheme, as the latter was proved the
optimal EE solution. To this end, we reconsider the topol-
ogy of Section V.B and we extract the throughput sat-
isfaction (i.e. percentage ratio between the allocated and
the requested throughput) and the total power consump-
tion for varying values of η. Simulations involved ran-
dom SLAs (1, 5 or 10 Mbps) among users and random
user types (pedestrian, low- or high-speed vehicles). This is
illustrated in Fig. 10, where the total allocated throughput
and the total consumed power are illustrated as a function
of η.

As readily observed from Fig. 10, low values of η corre-
spond to high power consumptions and high system through-
put satisfaction, whereas high values of η correspond to
power-efficient system operation at the expense of through-
put degradation. A reasonable trade-off between the allo-
cated throughput and the consumed power is observed
for η = 30%, which means that a user satisfaction rate of
∼97% can beneficially influence (10-Watt reduction rel-
ative to the solution of η = 0) the power consumptions

FIGURE 10. Throughput satisfaction rate (blue) and consumed power
(red) derived by the MA-DQN scheme for varying values of throughput
degradation tolerance η. The individual points of throughput satisfaction
and power consumption curves correspond to the mean value across
1000 validation scenarios.

(and thus the system EE). Note also that, both throughput
and power curves are quasi-stable for η < 30%, whereas the
significant throughput degradation and power reduction are
observed for η > 30%. In addition, the throughput satisfac-
tion rate is lower-bounded by 55%, even when η allows for
>70% throughput degradation because the power levels of all
cells have reached their minimum values.

It should be noted that parameter η can have signifi-
cant impact on the EE optimization and its selection highly
depends on how user- or operator-centric the system actu-
ally is. To that end, a user-specific priority label (‘High’
for 100% satisfaction, ‘Medium’ for >70% satisfaction or
‘Low’ for >40% satisfaction) could be established in the
EE optimization framework to indicate whether a specific
user (or link) can actually experience throughput degradation
towards EE enhancements. This priority assignment highly
depends on the operator’s policy, energy consumption thresh-
olds, environmental aspects and user requirements. However,
the presented framework considers equal fairness across users
and does not distinguish between user priorities, thus the user
priority labels are ignored.

G. DEPLOYMENT OPTIONS WITHOUT COLLECTED DATA
In this section, we present three conceptual deployment
options for implementing the proposed framework without
(or with limited) need for historically collected data. Given
the serious confidential and privacy issues of mobile oper-
ators to store and share the network traffic data, it is worth
noting the deployment options of the resource management
algorithms to prove their applicability in real conditions. Note
that, once a DRL agent is pre-trained (i.e. the neural network
weights are adjusted to provide a good action given a state),
it can be directly deployed in a real network physical or
virtual infrastructure for purposes of providing suggestions
or predictions.

14 VOLUME 9, 2021



A. Giannopoulos et al.: DRL for Energy-Efficient Multi-Channel Transmissions in 5G Cognitive HetNets

In the proposed framework, the data required by the agent
(both for training and inference phase) at each time slot
are determined by the state space, which is basically what
the agent needs to observe before taking an action. The
defined state space includes a two-fold information, namely
the user-specific associated PRB and the SS. In a realistic
operation of the proposed algorithm, the online information
reported by the network to the agent is:
(i) the associated link of each user (i.e. PRB ID)
(ii) the demand of each user (i.e. the SLA of the request)
(iii) the experienced throughput of the user.

1) OPTION 1 – TRAINING WITH SIMULATIVE
MEASUREMENTS
In this option, the training of the algorithm is conducted
offline by using simulations, as exactly done in this paper.
Information (i) and (ii) can be easily adopted to reflect
realistic values, although the agent is trained on unreal
conditions. The first serious concern in using the simulated
channel models (urban models UMa and UMi) is their poten-
tial variation from real channel conditions. This means that,
since our agents are trained in the simulated environment,
the experienced throughput values (information (iii)) that is
visible by the agent during the training may be different
from the throughput of a real environment, mainly due to
the inaccuracies of the channel models. Based on this lim-
itation, we used the SS as part of the state space in order
to transform the continuous (and possibly untrue) values of
throughput into a discrete variable (of 5 levels). This trick
allows us to train our agent in a simulated environment
aiming to visit as much as possible pairs of state variables
(PRB ID and SS) per user. In this sense, the training of
the agent does not need collected training data, since it is
trained in a simulative DRL environment, while also it is
insensitive to channel model imperfections, since the val-
ues of throughput are translated into discrete satisfaction
levels.

2) OPTION 2 – TRAINING WITH GAN-GENERATED
MEASUREMENTS
Another option relies on an ongoing field of ML and wireless
networks, which basically produces ‘‘fake’’ network mea-
surements that are difficult to be distinguished from real
network measurements. This data generation is based on the
usage of Generative Adversarial Networks (GANs) and has
been recently proposed as experienced DRL [34]. Given a
limited training dataset, the goal of a GAN is to generate new
data with the same statistics as the training set [35]. Note
that, the key idea of this approach is to enrich an existing-
but-limited dataset with synthetic data, thus its application
requires a preliminary time-limited data collection from the
real network. Then, the dataset can be extended with syn-
thetic data showing superficially authentic properties. Such
an approach has been shown that, by gaining experience,
DRL can become more reliable to extreme events and faster
to recover and converge [34].

3) OPTION 3 – BACKGROUND TRAINING DURING
NETWORK OPERATION
The final option is the most straight-forward approach for
training a DRL agent, which is literally to adapt it on the
real network. By allowing the agent to interact with the
real environment (i.e. it observes the actual throughput,
the actual RSSI, etc.), the errors produced by the chan-
nel estimations are eliminated, offering the opportunity to
the agent to be trained accurately on the exact same envi-
ronment that will be used for inference. The main draw-
back of this approach is that it is time-consuming and
inflexible, mainly due to the long period required for the
training (hyperparameter fine-tuning) and the exploration
phase.

A promisingway to combine the benefits of options 1 and 3
is to train an agent in a simulation environment (option 1) and,
before deploying it to the real network, to test and validate
its performance for possible parameter adaptation based on a
short-range real inferences.

VI. CONCLUSION
In the present work, a DQN-based framework is proposed,
appropriate for improving the system-level EE of two-tier
5G heterogeneous cells with multi-channel transmissions.
To efficiently solve the EE problem and contrast differ-
ent approaches, three DQN-based methods (centralized,
multi-agent and transfer learning) are established and prop-
erly modified to ensure QoS adequacy and power-efficient
adjustment in each transmission link. Following extensive
simulations on 5G-compliant channel models, we showed
that DQN-based assistance on EE optimization can achieve
at least 2 Mbps/Watt, even in strict demanding scenar-
ios and densely-deployed areas. We observed that multi-
agent scheme (achieves up to 14 Mbps/Watt) constantly
outperforms the other schemes, mainly due to the coor-
dinated behavior among agents with simultaneously low
DQN dimensionality. Centralized solutions (performance of
<5 Mbps/Watt) have to be cautiously selected for solving
EE problems, since they provoke not only extremely high
overhead to collect the network-wide information, but also
require massive computation resources to be trained on all
possible network states. Transfer learning principles have to
be seriously considered to reduce computationally-intensive
re-training and simplify the optimization strategies. This is
especially applied when the transferred models are inherited
across micro-cells with quasi-identical interference profile
and the inter-cell distances are very low (∼2.5 Mbps/Watt)
or very high (∼13 Mbps/Watt).
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