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Abstract 

Background:  Global measures of neuronal activity embrace the advantage of a 
univariate, holistic and unique description of brain activity, reducing the spatial 
dimensions of electroencephalography (EEG) analysis at the cost of lower precision 
in localizing effects. In this work, the instantaneous radiated power (IRP) is proposed 
as a new whole-brain descriptor, reflecting the cortical activity from an exclusively 
electromagnetic perspective. Considering that the brain consists of multiple elemen-
tary dipoles, the whole-brain IRP takes into account the radiational contribution of 
all cortical sources. Unlike conventional EEG analyses that evaluate a large number of 
scalp or source locations, IRP reflects a whole-brain, event-related measure and forces 
the analysis to focus on a single time-series, thus efficiently reducing the EEG spatial 
dimensions and multiple comparisons.

Results:  To apply the developed methodology in real EEG data, two groups (25 con-
trols vs 30 body dysmorphic disorder, BDD, patients) were matched for age and sex and 
tested in a prepulse inhibition (PPI) and facilitation (PPF) paradigm. Two global brain 
descriptors were extracted for between-groups and between-conditions comparison 
purposes, namely the global field power (GFP) and the whole-brain IRP. Results showed 
that IRP can replicate the expected condition differences (with PPF being greater 
than PPI responses), exhibiting also reduced levels in BDD compared to control group 
overall. There were also similar outcomes using GFP and IRP, suggesting consistency 
between the two measures. Finally, regression analysis showed that the PPI-related IRP 
(during N100 time-window) is negatively correlated with BDD psychometric scores.

Conclusions:  Investigating the brain activity with IRP significantly reduces the data 
dimensionality, giving insights about global brain synchronization and strength. We 
conclude that IRP can replicate the existing evidence regarding sensorimotor gating 
effects, revealing also group electrophysiological alterations. Finally, electrophysiologi-
cal IRP responses exhibited correlations with BDD psychometrics, potentially useful as 
supplementary tool in BDD symptomatology.
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Background
The electroencephalography (EEG) measurement has been widely established as a cost-
efficient and temporally precise technique for examining the brain activity [1]. Among a 
wide variety of insights offered by EEG, event-related potential (ERP) technique has been 
widely used to characterize the normal and pathological neuronal activity [2]. EPRs are 
typically used to uncover the time-domain cognitive course of information processing by 
investigating peaks and troughs of the EEG time-series data [3]. Alternatively, the spatio-
temporal and spectral features of the EEG are further analyzed via conventional time–
frequency decomposition methods aiming at the characterization of the participant’s 
cognitive profile via EEG markers both in time and frequency domains [4]. To capitalize 
on the exquisite temporal resolution of EEG, various algorithms have been developed to 
solve the inverse problem, such as standardized low-resolution electromagnetic tomog-
raphy (sLORETA) and local autoregressive average (LAURA) [5, 6].

Global measures of brain activity emerge as compression factors towards reducing 
the dimensions of the analysis and improving the statistical power at the cost of lower-
ing the spatial precision [7, 8]. A global brain measure is commonly derived by averag-
ing or summing across all electrodes, voxels or brain regions, resulting into a univariate 
representation of single-subject data, usually by a single scalar or time-series. Several 
whole-brain measures have been proposed in the brain imaging literature for the assess-
ment of normal, pathological and psychiatric neural basis [8–11]. In functional magnetic 
resonance imaging (fMRI), the global signal (GS) has been used to carry information 
about widespread neural activity, showing that individual variation in GS topography 
recapitulates well-established patterns of large-scale functional networks [8]. Using the 
global brain synchrony (as the spatial coherence of the BOLD signal across regions of 
the brain) and global metastability (as the extent to which synchrony varies over time), 
Hellyer et  al. [11] showed significant associations between global and localized brain 
activities.

In the EEG literature, Skrandies [10] has proposed the global field power (GFP) of 
multichannel EEG recordings as a reference-independent descriptor corresponding to 
the spatial standard deviation. Complementarily to GFP, the global map dissimilarity 
(GMD) has been proposed to indicate the topographical change occurring in subsequent 
potential field distributions [12]. The combined usage of GFP and GMD has proved to 
be a reliable methodology for the identification of ERP latency and microstate segmen-
tation [13]. Principal component analysis (PCA) has been also used for dimensionality 
reduction, mainly resulting in three components that account for more than 90% of the 
variance [14]. Global field synchronization (GFS) was studied in [15] to measure func-
tional synchronization of EEG data in the frequency domain, showing synchronization 
disconnection for obsessive–compulsive disorder (OCD) patients.

Although the existing EEG global measures can be effectively used for data reduction, 
there are some key features of their applicability. Notably, GFP only quantifies the extent 
to which the EEG channels show dissimilar voltage values, assuming that high stand-
ard deviation among channels corresponds to increased amount of activity [10]. GMD 
contains only geometrical information about EEG topographical maps, measuring the 
geometrical distance between 2 successive EEG maps [12]. PCA can efficiently reduce 
the dimensions of the EEG data, however it is very sensitive to the pre-processing steps 
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(variance scaling and data standardization) and the selection of principal components 
[14]. Finally, GFS is a spectral descriptor that only carries information about the degree 
of global synchronization for a given frequency band [15].

Here, we tested whether the radiational profile of the brain responses could provide an 
additional whole-brain descriptor. The key motivations to treat the brain as a complex 
electromagnetic radiator include: (i) the description of the brain responses both in terms 
of strength (such as GFP and PCA) and synchronization (such as GFS); (ii) the descrip-
tion of the brain activity in the source level, as opposed to the existing scalp-oriented 
measures and (iii) the representation of brain activity by taking into account the elec-
tromagnetic contribution of massive elementary sources. To characterize the radiation 
signature of the brain, the instantaneous radiated power (IRP) is calculated according to 
the electromagnetic theory [16–18] and is considered as an overall measure for inspect-
ing the EEG measurements. The IRP calculation is based on the radiational contribution 
of all current source density (CSD) vectors under the head surface, reflecting the time-
course of the brain activity in terms of radiated power. Formally, the IRP computation 
is a non-linear transformation of the voxels’ activation, proportional to the product of 
the whole-brain current density and its second derivative. High values of IRP may be 
associated with the increased in-phase activity of brain sources and resource allocation 
required for stimulus response.

To test the potency of the proposed methodology, we recorded the EEG from two 
matched populations (30 body dysmorphic disorder, BDD, patients and 25 control sub-
jects) in a prepulse inhibition (PPI) versus prepulse facilitation (PPF) paradigm [19, 
20]. PPI of the startle reflex is defined as the response decrement that occurs when a 
startling acoustic stimulus (pulse) is preceded immediately by a lower-intensity stimu-
lus (prepulse). On the contrary, PPF refers to the tendency of a subject to increase the 
startle response when the interval between prepulse and pulse lasts longer than 0.5  s 
[21]. For these reasons, PPI is considered to reflect early stage of information processing 
(sensorimotor gating), whereas PPF is associated with later stages of generalized alert-
ing or orienting [20, 21]. Since PPI is thought to enable both global brain activation and 
synchronization processes, we tested whether the whole-brain IRP could reflect those 
mechanisms at once. Key motivations to apply the IRP method in this paradigm include: 
(i) the expected differences in condition, with PPI responses being reduced compared to 
PPF [22]; (ii) the long-range studies that use the PPI/PFF to contrast the sensorimotor 
gating effects in psychiatric groups [19]; (iii) the ability of PPI paradigm to be applied 
in cross-species studies [20], and (iv) the test–retest reliability of PPI/PPF experiments 
[23].

BDD is a relatively common and often severe psychiatric disorder [24] classified within 
the spectrum of obsessive–compulsive and related disorders, according to “Diagnostic 
and Statistical Manual of Mental Disorders” (DSM-5) [25]. This disorder is characterized 
by distress and excessive preoccupation with one or more perceived defects or flaws in 
appearance that are not observable or appear only slightly to others. There is a consid-
erable body of evidence suggesting executive dysfunction in BDD and OCD, including 
deficits in attention, decision-making, sensorimotor gating and cognitive dysregulation 
[26, 27]. Specifically, BDD patients exhibit different spectral profile (higher theta-1 and 
reduced beta-1 oscillations), as compared to healthy controls, when they are exposed 
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to PPI/PPF trials [28]. Moreover, N100 and P200 responses evoked by PPI/PPF were 
investigated in [29] with conventional ERP analysis, showing deficient N100 responses 
in BDD.

In the present study, we apply the developed IRP methodology on this real EEG data-
set, attempting to holistically characterize the neural PPI/PPF responses from a com-
pletely electromagnetic perspective. To the best of the authors’ knowledge, purely 
electromagnetic approaches for whole-brain assessment have not been proposed and 
examined in the framework of EEG clinical populations. Our hypotheses include that 
(i) PPI decrement (relative to PPF) may be uniquely reflected in the whole-brain IRP 
descriptor and (ii) BDD deficits in attentional resource allocation and early-stage pro-
cessing of the startle reflex may be replicated. For comparison purposes, we conducted 
two analyses with identical settings, separately using two global brain measures, namely 
the scalp-oriented GFP and the source-related IRP, as an attempt to investigate their 
consistency.

Results
Simulation results

In this section, we concretely describe the whole-brain measures presented in the Meth-
ods using simplified activation waves. To that end, we consider 100 cortical sources 
oscillating with ideal sinusoidal activations. Without loss of generality, it is assumed 
that each source oscillates in the x-direction with a center frequency of 10 Hz, a random 
amplitude in the range [0,1] and a random initial phase in the range [0, 2π], depending 
on the simulation scenario. The simulated activation of the ith source may be defined as:

where fc = 10 Hz is the center frequency, Ai is the amplitude and ϕi is the initial phase of 
the sinusoidal. To calculate the IRP, we use the formulas (12, 13) presented in the ‘Meth-
ods’ section (constant term µ0/6πc is ignored):

As observed from (2), IRP calculation involves a stretching of the activation by a factor 
of 
(

2π fc
)2 , as well as a frequency shift by a factor of 2. Figure 1 demonstrates simulation 

examples derived from 5 different simulation setups:

	 i.	 Whole-brain IRP for out-of-phase activations: all sinusoidal activations have 
unit amplitude and a random initial phase drawn from the uniform distribution 
ϕi ∼ U(0, 2π).

	 ii.	 Whole-brain IRP for in-phase activations: all sinusoidal activations have unit 
amplitude and a random initial phase concentrated in the narrow range of 
ϕi ∼ U(0,π/2).

	iii.	 Whole-brain IRP for in-phase activations with varying strength: all sinusoidal acti-
vations have different amplitudes drawn from Ai ∼ U(0, 1) and a random initial 
phase concentrated in the narrow range of ϕi ∼ U(0,π/2).
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	iv.	 Whole-brain IRP for opposite activations with equal strength: all sinusoidal activa-
tions have unit amplitude and a random initial phase concentrated either in the 
range of ϕi ∼ U(0, 0.1π) or ϕi ∼ U(π , 1.1π).

	 v.	 Whole-brain IRP for two distinct in-phase components activations: all sinusoidal 
activations have either near-unit or near-zero amplitude and a random initial phase 
concentrated in the range of ϕi ∼ U(0,π/2).

As readily observed from Fig. 1, the whole-brain IRP reaches its maximum amplitude 
values (in the order of 107) due to the global in-phase activations, oscillating with the 
maximum amplitude (scenario ii). On the contrary, IRP yields negligible peak values (in 
the order of 10–1) in the case of equal-but-opposite source activations (scenario iv). In 
scenario i, the IRP is reduced by a factor of 102 in relation to scenario ii due to the phase 
spread in the source waveforms. Similarly, IRP is also sensitive to the amplitude varia-
tions (scenario iii) in the source activations, being reduced by a factor of 101 relative to 
scenario ii. Finally, scenario v indicates that the IRP is dominated by the high-activation 
components of source activity, although other components are active and decrease the 
whole-brain IRP. The simulation analysis indicates a general interdependence between 
IRP and both phase and amplitude characteristics of the intrinsic dipole activations. 
Consequently, IRP amplitudes are positively correlated with global brain synchroniza-
tion and high-strength source activations, while exhibiting restricted spatial information.

Experiment results

Time‑windows of ERP components

Initially, the grand-averaged ERPs (across participants and conditions) were extracted 
at each channel to visually detect the location and latency of predominant early ERP 

Fig. 1  Simulated whole-brain IRP for five different configurations of the source activations. In each scenario 
(row), the time-course of the source activations, the amplitude and phase distribution of the sinusoidal 
waves, as well as the IRP time-course are sequentially depicted (columns)
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peaks. This approach, which is called “Collapsed Localizer” in [30], has been used as 
a preliminary analysis step to visually inspect the dominant ERP components, giving 
insights about the global task engagement. In line with previous studies on PPI-elicited 
ERPs (293132), Fig. 2 confirms the presence of two early evoked potentials of the grand-
average ERPs, namely the N100 (60–160 ms) and P200 (161–260 ms). Then, the global 
field power curve (GFP; standard deviation across electrode ERPs at each time point) is 
computed within the two windows of interest as the baseline global measure. Notably, 
GFP has been widely used as a reference-independent metric reflecting the global EEG 
strength in the scalp domain [10, 12].

Both ERP components showed a fronto-central distribution with peak voltage values 
at the Fz, FCz and Cz channels. In the next sections, we compare the group/condition 
differences using global descriptors both in the scalp (i.e., GFP) and the source space 
(i.e., IRP).

Global field power

At first, the GFP time-course was extracted separately for each subject and condition 
[33]. GFP measures were extracted by computing the spatial standard deviation across 
the scalp channel activity. The calculations were performed separately for the N100 
(mean GFP within 60–160 ms) and P200 (mean GFP within 161–260 ms) time-windows, 
showing the following statistical effects:

N100 time-window ANOVA test revealed a significant main effect of condi-
tion ( F(1, 53) = 6.70, p = 0.012, η2 = 0.11 ), with PPF ( MPPF = 2.10, SEPPF = 0.09) 
showing higher GFP than PPI ( MPPI = 1.85, SEPPI = 0.09) . Additionally, there 
was a significant main effect of group ( F(1, 53) = 6.76, p = 0.012, η2 = 0.11 ), with 
CTL group ( MCTL = 2.19, SECTL = .12 ) showing increased GFP than BDD group 

Fig. 2  Grand-averaged ERPs across subjects and conditions at all scalp channels. The 3D topographical 
distribution of N100 and P200 components are also depicted above the respective time-windows. 
The topographical values correspond to the mean voltage values across 60–160 ms and 161–260 ms 
time-windows, respectively
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( MBDD = 1.77, SEBDD = 0.11 ). Finally, no significant interaction effect ( p > 0.05 ) was 
observed.

P200 time-window ANOVA test showed only a significant main effect of condition 
( F(1, 53) = 12.85, p = 0.001, η2 = 0.195 ), with PPF ( MPPF = 2.04, SEPPF = 0.19) show-
ing higher GFP than PPI ( MPPF = 1.63, SEPPF = 0.15) . No other significant effects 
( p′s > 0.28 ) were observed.

Figure  3 depicts the grand-averaged GFP curves, separately computed as the mean 
across subjects and conditions.

Whole‑brain IRP

According to the calculation of the proposed IRP measure, each single-subject’s IRP is 
computed by applying the formulas (12)–(13) (see “Methods” section). This calculation 
was performed separately for N100 and P200 time-windows.

N100 time-window In line with GFP results, the whole-brain IRP during N100 range 
exhibited significant main effects both in condition ( F(1, 53) = 5.79, p = 0.02, η2 = 0.10 ) 
and group ( F(1, 53) = 7.75, p = 0.007, η2 = 0.13 ). Specifically, BDD patients 
( 5.25× 109A2/mm2ms2 ) showed reduced IRP compared to CTL group 
( 11.1× 109A2/mm2ms2 ), whereas the PPF responses ( 9.19× 109A2/mm2ms2 ) were 
enhanced overall, as compared to PPI ( 7.13× 109A2/mm2ms2 ). The interaction effect 
was not significant ( p = .33).

P200 time-window IRP during P200 range yielded a marginal effect on condition ( p =

0.059) and a significant main effect on group ( F(1, 53) = 6.91, p = 0.011, η2 = 0.12 ), 
whereas the interaction was not significant. BDD ( 4.46× 109A2/mm2ms2 ) showed 
again reduced IRP compared to CTL ( 7.89× 109A2/mm2ms2 ) group, while there was 
a trend for higher PPF ( 6.89× 109A2/mm2ms2 ) than PPI ( 5.46× 109A2/mm2ms2 ) in 
whole-brain IRP.

The grand-averaged IRP waves are illustrated in Fig. 4.

Spectral features of IRP

To further investigate the spectral characteristics of the IRP metric, a time–fre-
quency analysis was also conducted. This analysis aimed to identify the predominant 
frequency components of IRP in order to (i) verify the presence of N100 and P200 
components in the frequency domain and (ii) identify the frequency bands that are 

Fig. 3  Grand-averaged GFP curves for the main effect of condition (left) and group (right)
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responsible for the previous time-domain differences. The frequency decomposition 
of the IRP waveforms was performed via the continuous wavelet transform (CWT) 
to obtain a reasonable trade-of between temporal and spectral resolution (instead of 
using FFT which in general has low temporal resolution).

Figure  5 illustrates the results of the time–frequency analysis. As observed from 
Fig. 5A, B, the post-stimulus activity of both PPI and PPF is associated with an out-
burst of the 10–40  Hz frequency band during the N100/P200 time-windows (60–
260  ms post-stimulus). Following the cluster permutation testing presented in the 
Methods (section G.2.), two distinct frequency bands were indicative for the condi-
tion differences (see also Fig. 5C for PPF–PPI difference). Specifically, PPF responses 

Fig. 4  Grand-averaged whole-brain IRP for each condition (left) and group (right)

Fig. 5  Time–frequency analysis of IRP signals. All IRP spectral values are expressed in dB with respect to 
the pre-stimulus period (− 0.1 to 0). A Grand-averaged time–frequency representations of the IRP in PPI 
condition. B Grand-averaged time–frequency representations of the IRP in PPF condition. C Pixel-by-pixel 
difference between PPF and PPI. From C, PPF is greater than PPI responses in two distinct frequency bands 
(3.8–12.6 Hz and 25.3–31.2 Hz) during the N100/P200 time-windows. D Grand-averaged IRP spectral power 
values in PPI condition for both CTL and BDD groups. The gray-shaded area indicates the frequency band of 
significant group differences. E Grand-averaged IRP spectral power values in PPF condition for both CTL and 
BDD groups. The IRP spectrum was computed in the 0.6–0.26 s time-window for both D and E 
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were higher than PPI responses in the frequency bands 3.8–12.6 Hz ( p = 0.004 ) and 
25.3–31.2 Hz ( p = 0.032 ) during the 60–260 ms post-stimulus window. The spectrum 
waves of CTL and BDD groups were then compared. We found significant group dif-
ferences only in the PPI condition, with BDD responses being reduced in the band 
14.5–33.4 Hz compared to CTL ( p = 0.003 ). Panels D and E of Fig. 5 show the grand-
averaged spectrum waves of both groups in PPI and PPF conditions, respectively. All 
values are expressed in dB in relation to the pre-stimulus spectral power values.

Predictive strength of IRP on psychometrics

Given the remarkable consistency between the effects revealed by the GFP and IRP 
measures, we further evaluate the correlational relationship between the IRP and BDD 
psychometrics. Specifically, to test whether the IRP measures could predict either the 
BDD-YBOCS or DCQ scores, 2 separate stepwise linear regression (SLR) models were 
conducted. The dependent variables of SLRs were the psychometric scores, while the 
IRP-N100-PPI, IRP-N100-PPF, IRP-P200-PPI and IRP-P200-PPF responses were consid-
ered as predictors.

The models revealed that the IRP-N100 in PPI condition is a significant linear predic-
tor for both DCQ ( R2 = 0.114, p = 0.0116 ) and BDD-YBOCS ( R2 = 0.167, p = 0.002 ). 
No other terms were predictive on the screening measures. Figure 6 depicts the scatter-
graph plots between the IRP-N100 responses in PPI and psychometric ratings.

Discussion
There are multiple ways to study complex systems, principally by projecting their activ-
ity in multidimensional spaces and then searching for local or global descriptors to rep-
resent their patterns. This study proposes an electromagnetic methodology to inspect 
the EEG activity, treating the brain as a complex electromagnetic radiator. After apply-
ing source localization of ERP responses, a non-linear transformation of the source data, 
namely the IRP computation, may be performed to reflect the brain’s radiation profile 
[16]. To univariately describe the EEG responses, the IRP calculation relies on the radia-
tional behavior of the total current density of the brain taking into account the radia-
tional contribution of all elementary electric dipoles [17, 34].

Fig. 6  Best-fitting lines resulting from stepwise regression models for DCQ (left) and BDD-YBOCS (right) 
scores. Gray lines illustrate 95% confidence interval
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The developed methodology was used to characterize the electrophysiological activity 
in response to PPI and PPF trials. To test whether the inhibitory mechanisms and sen-
sorimotor gating effects [22] are globally reflected in the neural activity, two global brain 
descriptors were evaluated. Specifically, a widely used whole-scalp descriptor (GFP: spa-
tial standard deviation across channels) was firstly examined [10] and the results were 
contrasted with those derived by following the proposed IRP method.

As a general view, we observe that the inhibitory regulation effect was reflected both 
in the GFP and IRP responses, with PPI showing significantly reduced amplitudes com-
pared to PPF. PPI and PPF neural responses have been extensively addressed, especially 
in the electrophysiology literature [22, 29, 31, 32]. Specifically, long-term studies have 
shown the functionality of PPI mechanism as a diminishment of the startle reflex rela-
tive to pulse-alone response, either by evaluating the muscular [35, 36] or neural activity 
[31, 32]. Interestingly, the condition differences are in line with evidence indicating that 
PPI and PPF are independent processes [20]. Considering the timing of appeared dif-
ferences, multiple studies have investigated the electrophysiological responses of PPI in 
early time-windows, such as the N100 and P200. Indeed, studies [29, 31, 32] have shown 
reduced distributed LORETA activations during N100/P200 in PPI, attributed to the 
widespread neuronal networking that supports the inhibitory adjustment. Thus, the pre-
sented findings align with the existing evidence, confirming the presence of inhibitory 
regulation during PPI trials from the global descriptors’ perspective.

In addition, group alterations were observed both using GFP and IRP. Specifically, 
GFP indexed BDD deficits in the N100 time-window (60–160  ms post-startle), pre-
sumably corresponding to impaired performance in attentional orienting [24, 28, 37]. 
Indeed, given the overlap between OCD and BDD taxonomy [25], have found cortical 
inhibitory and excitatory dysfunction in patients with OCD [38]. Furthermore, BDD 
patients exhibit impairments in memory and attention, as demonstrated in several EEG 
paradigms [29, 37]. Extending the GFP group effect, IRP showed significant differences 
between control and BDD patients in both N100 and P200 time-windows (60–260 ms 
post-startle). This finding may constitute an additional electrophysiological marker for 
BDD, suggesting that the group effects are more elongated in the time-domain represen-
tation of the IRP curve.

The consistency in the presented effects between the GFP and IRP is attributed to their 
similarity in representing a measure that is proportional to the total power of the scalp 
and source activity, respectively. Specifically, the calculation of GFP is primarily domi-
nated by the sum of squares of channels’ activity, clearly reflecting the scalp-oriented 
EEG power [10]. Similarly, IRP is based on the summation across voxels representing the 
total source-domain EEG radiated power. Interestingly, the IRP N100 values in response 
to PPI trials were found to be significant linear predictor of the BDD severity indica-
tors, namely the BDD-YBOCS and DCQ questionnaires. This finding is also in line with 
evidence suggesting that BDD severity is negatively correlated with PPI-elicited electro-
physiological responses [29, 31].

Noteworthy, EEG activity investigation through the calculation of the IRP time-series 
is not limited in computations used in this work. Similar to the general EEG analy-
ses, IRP responses may be examined in the frequency and/or time–frequency domain. 
Such metrics may reflect band-specific brain activation in terms of energetic or power 
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resources required during the mental processing. By extracting a correlation measure 
between all brain areas of interest that are derived from the IRP curves, cross-frequency 
or connectivity analyses are also applicable. Goal-driven analyses may take advantage of 
the IRP metrics in a more precise spatial information, meaning that they may be inter-
ested in computing IRP amplitudes within specified brain areas, networks or regions of 
interest (e.g., DMN, right hemisphere, insula). Other studies may conduct location-wise 
IRP comparisons by juxtaposing, for example, the IRP emitted by specific brain lobes, 
regions, Brodmann areas or networks. Since LORETA is usually used as complemen-
tary analysis to localize the scalp-oriented effects, IRP computations have to be in line 
with the first-part analysis. This means that LORETA sources can be extracted either in 
a trial-by-trial basis or in the averaged-across-trials ERPs, depending on the approach 
used for the extraction of scalp-oriented measure. Note also that, the generalizability of 
LORETA-derived sources has to be cautiously interpreted, especially in cases that non-
dense (< 32) electrode caps are used for the EEG recordings [see “blurred-localization” 
effects in [39]. However, since IRP ditches the spatial information of the EEG modality, it 
is explicitly dedicated for neuroimaging applications requiring high temporal specificity 
of the measured signals. In this context, IRP may be applied in experiments that mainly 
attempt to concisely investigate the temporal occurrence of the cognition process, inde-
pendently of its localized origin. This mainly enables (i) the identification of widespread 
effects during the cognitive course of information processing and (ii) the determination 
of time-domain EEG markers discriminating clinical groups. For instance, when con-
sidering clinical populations in sensorimotor gating evaluation (such as PPI/PPF para-
digms), IRP measure could uniquely reflect global differences among groups, potentially 
attributed to widespread deficits in sensory systems.

Investigating the whole-brain IRP inherits all the advantages that are already identi-
fied in using global brain descriptors; those include dimensionality reduction, holistic 
representation, reference independence, low-complexity design and statistical robust-
ness. Contradictorily, global measures filter out all the spatial precision of the effects, 
mainly due to the summation or averaging operation across channels/voxels. In the case 
of EEG, this drawback is inherently relaxed due to not only the dependency in the refer-
ence selection, but also in the restricted precision of source reconstruction algorithms.

Conclusion
In this study, we proposed an electromagnetic approach tο reflect the radiation profile of 
brain activity aiming at a global description of the multidimensional EEG data. Simula-
tion analysis showed that the presented IRP time-series is sensitive to the global brain 
synchronization (in-phase source activation), as well as to the global brain activation 
strength (IRP amplitude is dominated by high-amplitude sources). To test the potency of 
the method, the IRP was extracted from two groups (control subjects and BDD patients) 
in a PPI/PPF paradigm. The GFP curves were also computed for purposes of testing the 
consistency in the effects revealed by IRP. Overall, we observed that both GFP and IRP 
replicated the expected differences in conditions, confirming the sensorimotor gating 
effect, with PPI responses being reduced relative to PPF. Regarding the group differ-
ences, we noticed that IRP responses were differentiated between groups in elongated 
time-windows (both N100 and P200), whereas GFP showed only N100 differences. All 
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group differences revealed reduced responses in the BDD group, potentially linked to 
the BDD/OCD impairments in attentional resource allocation and dysregulation of gat-
ing mechanisms. Importantly, PPI-elicited IRP amplitudes during N100 time-window 
was negatively correlated with BDD screening measures (DCQ and BDD-YBOCS), 
potentially helpful as electrophysiological marker to complement BDD symptomatology.

Methods
Participants

A total of 55 subjects participated in this study. The BDD group consisted of 30 patients, 
including 19 females (mean ± SD age of 32.53 ± 8.30 years) and 11 males (mean ± SD age 
of 27.55 ± 5.77 years). A control group consisting of 25 healthy individuals was matched 
for age and sex, including 16 women (mean ± SD age of 32.25 ± 9.066  years) and 9 
men (mean ± SD age of 27.55 ± 5.65  years). An independent samples t-test confirmed 
the absence of significant differences between the age of the two groups (t(53) = 0.153, 
p = 0.179). Written informed consent was obtained from all participants. Clinical assess-
ment of BDD was performed via clinical interviews by two psychiatrists. BDD was diag-
nosed according to DSM-5 criteria [25], along with the four supplemental screening 
measures to confirm the diagnosis: Body Dysmorphic Disorder Examination [40], Yale-
Brown Obsessive–Compulsive Scale for BDD [41], Dysmorphic Concern Questionnaire 
(DCQ) [42] and Brown Assessment of belief scale [43]. Exclusion criteria included active 
drug or alcohol abuse, history of neurological disorders, and current pregnancy.

Psychometrics

In order to investigate possible correlations between the electrophysiological (EEG met-
rics) and behavioral (psychometric scores) data, two different subject-specific scores are 
available both for BDD and healthy group, mainly assessing the body-related symptoms 
and proving a total score of BDD severity:

Yale-Brown Obsessive–Compulsive Scale for BDD (BDD-YBOCS) This psychometric 
rating is a specialized, concise and easily administered instrument that measures the 
severity of BDD symptoms. It is a scale widely used in evaluation of symptom sever-
ity and treatment outcome in BDD, recently translated, adapted and validated in Greek 
[44] resulting in a 12-item rater-administered measure. Each of the 12 items is rated 0–4 
points (0 = not at all to 4 = every day) on a Likert scale.

Dysmorphic Concern Questionnaire (DCQ) This questionnaire is used for the assess-
ment of dysmorphic concern [42]. Specifically, DCQ is a 7-item self-report measure that 
assesses cognitive and behavioral symptoms of overconcern with an imagined or slight 
physical defect. Respondents rate their concern about their physical appearance rela-
tive to others on a 4-point scale, ranging from 0 (not at all) to 3 (much more than most 
people).

BDD group showed 14.17 ± 0.82 (in DCQ) and 29.40 ± 1.04 (in BDD-YBOCS), while 
controls scored 6.04 ± 0.65 (in DCQ) and 3.80 ± 0.47 (in BDD-YBOCS), with all t-tests 
corresponding to p′s < 0.001 . Notably, the BABS and BDDE measures were obtained 
only for the BDD group, scoring 18.80 ± 2.80 (in BABS) and 117 ± 27 (in BDDE). Table 1 
summarizes the demographics and the psychometrics of both groups.
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EEG acquisition and stimuli

EEG recordings took place in an electromagnetically shielded room. For purposes 
of minimizing physiological noise, participants sit in a comfortable position and 
relax before the start of the recording session. The brain signals were amplified 
(gain 47  dB) by a Braintronics DIFF/ISO-1032 amplifier before entering a 32-bit 
analogue to digital converter (NI SCB-68). The digitized signal comprised an input 
for National Instruments PCI-6255 DAQ card (16 bits ADC) through two National 
Instruments CB-68LP terminal blocks. The PC with the DAQ Card runs a LabView 
program for the recording of the signals, which can be monitored by an onscreen 
graphical representation. Evoked biopotential activity was digitalized at a sampling 
frequency of 1000  Hz from 30 scalp sites (FP1/FP2, FPZ, AFZ, F3/F4, F7/F8, FZ, 
FC3/FC4, FCZ, FT7/FT8, CZ, T7/T8, CP3/CP4, CPZ, TP7/TP8, P3/P4, P7/P8, PZ, 
O1/O2, OZ) using active electrodes mounted on an elastic cap according to the 
International 10–20 System. To enable the detection of blinks and/or saccades, hori-
zontal (HEOG; placed at the outer canthi of the left eye) and vertical (VEOG; placed 
above the right eye) electro-oculograms were also recorded from two electrodes. 
Electrode impedance was kept constantly below 5kΩ. Online EEG biopotentials 
were referenced to the earlobes, while the ground electrode was placed on the left 
mastoid.

Participants were asked to hear 51 pairs of tones through headphones. The pres-
entation of the trials was random in each session, including 26 prepulse-pulse short 
intervals (PPI, 30–500 ms) and 25 prepulse-pulse long intervals (PPF, 500–2000 ms). 
Each trial recording had a duration of 4  s (− 2 to + 2  s), time-locked to the star-
tle-tone onset. The amplitude of the startling acoustic stimulus (pulse) was 140 dB, 
while that of the prepulse stimulus was 60  dB. Both stimuli had a frequency of 
2000 Hz. Figure 7 depicts the recording structure of PPI and PPF trials.

Table 1  Demographics and psychometric ratings of the experimental groups

BDD group CTL group Statistics for BDD-CTL 
difference

t-value p-value

Number of

 Males 11 9 – –

 Females 19 16 – –

 Total 30 25 – –

Age (years)

 Males 27.55 ± 5.77 27.55 ± 5.65 t(53) = 0.153 0.439

 Females 32.53 ± 8.30 32.25 ± 9.07

Education (years) 4.73 ± 1.64 5.45 ± 1.73 t(53) = 1.389 0.171

Psychometric scores

 DCQ 14,167 ± 0,815 6040 ± 0,654 t(53) = 7,560  < 0,001

 YBOCS-BDD 29,400 ± 1,039 3,800 ± 0,465 t(53) = 21,05  < 0,001

 BABS 18.80 ± 2.80 – – –

 sBDDE 117 ± 27 – – –
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Preprocessing pipeline

All datasets were preprocessed using EEGLAB’s (Version 2019.1) denoising functions 
[45]. Firstly, EEGs were down-sampled to 250  Hz for compression purposes. Offline 
digital band-pass filtering at 1–40  Hz was performed by using the EEGLAB’s [45] fil-
ter function (pop_eegfiltnew.m) whose implementation relies on a zero-phase Ham-
ming-windowed sinc FIR filter [46] parameterized as: transition bandwidth = 1  Hz, 
filter length = 827, roll-off -6 dB/octave. The electrodes showing abnormal time-course 
were excluded and interpolated. There were no significant differences in the number 
of rejected channels between groups (t(53) = 0.598, p = 0.553; 2.80 ± 1.06 channels in 
BDD; 2.48 ± 0.87 channels in controls). We also visually scanned the single-trial record-
ings and discarded the trials exceeding ±80µV  values as excessive blink-related artifacts 
(BDD group: 2.14 rejected trials per participant; CTL group: 1.93 rejected trials per par-
ticipant). Subsequently, the scalp activity was re-referenced to the common average.

The resulting datasets were then decomposed via independent component analysis 
(ICA), providing estimates of component activations. The SASICA tool [47] was used to 
guide the selection of non-brain (blinks and saccades) components. Component rejec-
tion criteria included simultaneous consideration of “Autocorrelation” (weak autocor-
relation reflects noisy components), “Focal components” (bad channels have too focal 
components), “Focal trial activity” (components with focal trial activity correspond to 
non-brain ones), “EOG correlation” (blink and saccade components are correlated with 
VEOG/HEOG), “ADJUST” [48] and “FASTER” [49] methods. Before further processing, 
continuous data were segmented into 4-s epochs (− 2 to + 2 s), time-locked to startle-
tone onset, and baseline-corrected based on 0.03 s pre-startle period. This narrow base-
line was selected to avoid overlaps with the prepulse tone in the PPI trials.

Electromagnetics background

In principle, electromagnetic (EM) fields may be distinguished in near and far field 
zones, depending on the observation distance from a radiating source. In the far field 

Fig. 7  Recording structure of PPI (A) and PPF (B) trials. The inter-stimulus interval (ISI) between prepulse and 
pulse varies between 0.03–0.5 s for the PPI trials and 0.5–2 s for the PPF trials. The startle tones and prepulses 
have an amplitude of 140 dB and 60 dB, respectively. All stimuli have a duration of 0.04 s and a frequency of 
2000 Hz
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zone, the emitted EM field is described in terms of real power (energy) expressed 
in watt [17]. Generally, the EM behavior of the brain may be simulated by fitting a 
large number of elementary dipoles into the cortical matter. Inverse problem algo-
rithms, such as sLORETA, acceptably calculate the equivalent current densities flow-
ing through the dipole sources, each radiating an EM field [5]. These sources may be 
viewed as a 3D dipole antenna array [17]. The total brain radiation may then be esti-
mated as the superposition of the input power of the dipole array.

Here we present the theoretical background of electromagnetics, according to 
which the IRP is calculated and extracted from the measured EEGs. Without loss of 
generality, the current density of each voxel is assumed to be associated to the current 
of an electric dipole that is only z-orientated (bold notation stands for vector) [18]:

where L is the length (related to the dimensions of the voxel) of the Hertzian dipole fed 
by current I that is oscillating in the time domain i(t) = I · cos(ωt) . By employing spher-
ical coordinates, the theta component of the electric field generated by this elementary 
oscillating dipole can be expressed [16, 17]:

where ω is the frequency of the oscillating dipole, r is the observation distance, θ is the 
elevation angle, c is the speed of light and µ0 is the magnetic permeability of free space. 
In order to calculate the induced electromotive force on the source, the focus of this 
analysis is on close proximity distances to the dipole, i.e., r → 0 , where the electric field 
comprises of a singular component and a non-singular component [16]. The latter does 
not depend on the observation distance r. The exponential term of (4) can be expanded 
in series:

In principle, these four terms are sufficient to calculate the non-singular component 
of the electric field. By substituting (5) in (4), the non-singular component of the elec-
tric field may be expressed:

or transforming into Cartesian coordinates:

This expression can be generalized in the time domain by employing the inverse 
Fourier transform:

(3)Jz = I/L,
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By expressing the non-singular electric field parallel to the dipole moment, the electro-
motive force (induced EMF E ) on the elementary dipole may be calculated as the follow-
ing line integral:

The instantaneous radiated power of the Hertzian dipole can be then calculated:

The instantaneous radiated power may be generalized in all spatial orientations tak-
ing into consideration the current density vector J =

(

Jx, Jy, Jz
)

. By ignoring the constant 
term of (10), the 3D instantaneous radiated power may be computed with the following 
formula:

Method outline

The proposed method utilizes an inverse-problem (here the sLORETA) algorithm to 
estimate the CSD vectors that produce the scalp ERP waveforms. The computations 
of sLORETA rely on a realistic head model based on the MNI-152 template with the 
three-dimensional solution space restricted to cortical gray matter (5). Before the source 
localization, ERPs are extracted by separately averaging the condition-specific trials, 
individually for each single-subject dataset. The 30-channel arrays are then fed into sLO-
RETA-xyz algorithm to calculate the 6239-voxel source arrays (electric current density of 
each cube). For each subject, sLORETA outputs the activation of each voxel in the three 
cartesian dimension ( J voxeliX (t) , J voxeliY (t) , J voxeliZ (t),∀voxeli = 1, . . . , 6239).

(8)Eznon-singular =
µ0

6πc

d2i(t)

dt2
L.

(9)E(t) = −

∫

l

Enon-singular · dl = −
µ0

6πc

d2i(t)

dt2
L2.

(10)Prad(t) = E(t)i(t) = −
µ0L

2

6πc

d2i(t)

dt2
i(t).

(11)Prad(t) = J(t) ·
d2J(t)

dt2
.

Fig. 8  Method outline. In Step 1, sLORETA algorithm returns the time-course of cortical activations as a 3D 
current density vector. In step 2, the total current density vectors are calculated by summing across voxels, 
individually for X, Y and Z directions. In step 3, the whole-brain IRP is computed by applying Eq. (13)
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The whole-brain IRP computation is outlined following the procedure illustrated in 
Fig. 8. Specifically, from the sLORETA modeling, each voxel may be considered to con-
tain an elementary electric dipole source, represented by the current density vector and 
the dimensions of the elementary cube (voxel). According to electromagnetic compat-
ibility theory, the impact of opposite current densities (differential mode currents) of 
nearly placed voxels to the electric field may be safely neglected, given that the distance 
between them is very small compared to the dimensions of the problem, such as the 
wavelength [17, 34]. The significant component of the electric field is generated mainly 
due to the contribution of the common mode currents (currents of equal sign). Hence, it 
can be safely assumed that the algebraic summation of the current density vectors over 
all voxels nullifies the differential mode components [34], while maintaining the com-
mon mode components (whole-brain sLORETA activations):

The whole-brain IRP can be then calculated from (11) (dot denotes the time 
derivative):

Finally, the total power within the window of interest [t1, t2] may be calculated as the 
sum of the respective IRP values:

Given that sLORETA algorithm computes the current density J =
(

Jx, Jy, Jz
)

 for each 
elementary 5× 5× 5mm3 cube (current density units of A

mm in each direction), the nor-
malized IRP values are expressed in 

(

A
mm·ms

)2
 and referred to all figures as ‘Normalized 

IRP’.

Time–frequency analysis

The time–frequency decomposition of the IRP time-domain signals was performed via 
the continuous wavelet transform (CWT) in the time period of − 100 to 700 ms (time-
locked to the startle-tone onset) [50]. The IRP signals were convolved with complex 
Morlet wavelets using 78 linearly separated frequencies (from 2 to 80  Hz). The Mor-
let wavelet kernel used for convolutions with the original IRP signals had a length of 
0.5 s, while the kernel was sliding in steps of 4 ms (corresponding to the sampling rate 
of 250 Hz) until the whole signal is covered. The IRP spectral power at each time–fre-
quency point ( P

(

t, f
)

 ) was then computed as the squared absolute value of the respec-
tive complex wavelet coefficient [50]. To account for inter-subject variability in spectral 
power values, the data were dB-normalized ( PdB

(

t, f
)

 ) based on the pre-stimulus period 
− 100 to 0 ms (point 0 refers to the pre-prepulse onset) by applying the following for-
mula (for each time–frequency point (t, f )):

(12)
JX (t) =

∑6239
i=1 J voxeliX (t),

JY (t) =
∑6239

i=1 J voxeliY (t),

JZ(t) =
∑6239

i=1 J voxeliZ (t).

(13)IRP(t) = JX (t)J̈X (t)+ JY (t)J̈Y (t)+ JZ(t)J̈Z(t).

(14)IRP[t1,t2] =

t2
∑

t=t1

IRP(t).
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Note also that, in a small number of PPF trials (0.93 trials per participant), there was 
no sufficient 100-ms-long pre-stimulus interval. In those extreme cases, we consider the 
previous trial’s baseline as the current baseline.

Statistical analysis

Separately for each of the 2 whole-brain descriptors (GFP and IRP) resulted from the 
time-domain signals, a two-way mixed analysis of variance (ANOVA) test is conducted 
to investigate the impact of group (between-subjects factor: BDD vs CTL) and condition 
(within-subjects factor: PPI vs PPF). Post hoc paired t-tests were conducted to compare 
the conditions (PPI vs PPF) when a significant main effect of condition was observed. 
All ANOVA tests refer to Bonferroni and Greenhouse–Geisser corrections to adjust 
for multiple comparisons and sphericity violations, respectively. Regarding the group 
comparisons, Levene’s tests were used to confirm the equality of variances between the 
groups. All statistical procedures were performed using SPSS and MATLAB software. 
Statistical thresholds were set at α = 5%.

Frequency-domain differences This section corresponds to the Results section B.4. 
First, the spectrum waves (from 2 to 80 Hz) during the N100/P200 window (60–260 ms) 
were derived from the time–frequency representations of the IRP signals. To identify the 
frequency sub-bands that show significant differences between conditions and groups, 
we used non-parametric cluster permutation tests [51, 52]. Cluster permutation test-
ing allows to compare the groups/conditions across all frequency points and detect the 
‘clusters’ (i.e., consecutive frequency points) of the major differences. It is also appro-
priate to control for multiple comparisons problem, since the difference distribution 
is conducted in a data-driven manner using 5000 permutations [52]. In each permuta-
tion instance, we randomly shuffle the condition/group labels (‘PPI’ vs. PPF or ‘CTL’ vs. 
‘BDD’) across the participants. Then, all possible t-tests are performed at each frequency 
point. The t-scores > 2 (corresponding to p = 0.05) are then grouped into clusters accord-
ing to whether they belong to successive frequency points. The sum of t-scores within 
each cluster is then computed to represent the cluster t-statistic. Finally, the difference 
distribution is constructed by using the maximum cluster t-statistic of each permutation 
instance [51]. Original clusters resulted from the actual labels are considered significant 
if they exceed the critical t-scores (corresponding to p = 0.05). The cluster permutation 
tests were conducted separately for the groups and conditions and allowed us to deter-
mine the dominant frequency bands of the N100/P200 differences.
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