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ABSTRACT 

 

Magnetic Dipole Modeling (MDM) is a well-

established method for fitting the spatial magnetic 

signature generated by magnetic sources into a model  

comprised of magnetic dipoles. In this paper, we study 

the dipole fitting problem using Machine Learning  

(ML) techniques. Simulated data were used to 

estimate the dipole parameters that can accurately 

reconstruct the measured magnetic field. We appl ied 

our methodology in two widely used measurement 

facilities, namely the Magnetic Coil Facility (MCF) 

and the Multi Magnetometer Facility (MMF). To 

solve this regression problem, Artificial Neural  

Networks (ANNs) were considered. Simulation 

results showed that ANNs significantly outperform 

other benchmark ML methods in terms of the 

achieved accuracy of the estimated dipole 

parameters.  Finally, we observed that MMF model  

shows enhanced field reconstruction accuracy with 

reduced position estimation loss (~70%  lower position 

error), magnetic moment estimation loss  (~55%  lower 

moment error) and model complexity (33.3%  lower 

complexity) compared to the MCF model.  

 

1. INTRODUCTION 

Well-established measurement methodologies and 

characterization procedures for static magnetic 

cleanliness programmes in space missions primarily  

involve unit-level measurements during the design of the 

spacecraft. Post-processing of the measured data is also 

required to derive an accurate magnetic model that can 

be interchangeably used to represent the original piece of 

equipment [1]. In this framework, several spacecraft 

units that may be significant magnetic field generators 

are subjected to test measurements with detailed 

specifications, depending on the individual magnetic 

cleanliness requirements of each space mission.  

 

These tests are traditionally performed in the Magnetic 

Coil Facility (MCF) or the Multi-Magnetometer Facility  

(MMF); in the former the unit rotates and a fixed tri-axial 

magnetic field sensor is acquiring the spatial signature of 

the unit every 10 degrees  (Fig. 1), while in the latter, 

multiple sensors simultaneously measure the signature of 

the unit from various orientations, obtaining a snapshot 

of the magnetic field from various spatial orientations 

(Fig. 2) [2]. 

 

Figure 1. Magnetic Coil Facility (MCF). The magnetic 

field measurements are obtained while the unit 

completes a full rotation. 

 

 

Figure 2. Multi Magnetometer Facility (MMF). Multiple 

sensors simultaneously capture the spatial magnetic 

signature of the unit from different orientations.  

 

The measured spatial variations of the magnetic field are 

then used for dipole fitting purposes, usually following  

the well-established Multiple Dipole Modeling (MDM) 

method [1], [3]. The target is to derive a model 

composing of one or more magnetic dipoles to represent 

the field created from the original unit, enabling system 



 

level simulations and/or identifying possible design 

defects due to non-uniform distribution of the magnetic 

material. The dipole(s) parameters determined by the 

MDM algorithm include the 3D position vectors of the 

sources inside the unit and their respective 3D magnetic 

moment vectors, leading to 6 variables per dipole source. 

The MDM algorithm can be applied by using either 

deterministic or stochastic (genetic algorithm or particle 

swarm optimization based stochastic solver) 

optimization techniques [1], [3].  

 

These solvers, currently implemented both on the MCF 

and MMF facilities, follow an iterative way to fine-tune 

the dipole(s) parameters in order to minimize the 

deviation between the measured field and the field  

generated by the model. However, they show some key 

limitations: (i) although the algorithms are optimized to 

provide fast estimations (for instance in MCF and MMF 

the algorithm runtime is upper-bounded to 1s to 

determine the model parameters), they fail to provide 

reliable models in terms of estimated position and 

magnetic moment [4], especially when more complicated  

spatial magnetic field variations are encountered (i.e. the 

unit consists of multiple dipoles). To this end, these 

methods need significant runtime to provide accurate 

models and, beyond that, they can be stuck in suboptimal 

solutions [5]; (ii) the facility operator has to manually  

register the values of the position of the magnetometers; 

the algorithms use these values as input in order to solve 

the inverse problem and provide the model parameters, 

whose accuracy naturally depends on the accuracy of the 

position of the magnetic field sensors [2]. 

 

Machine Learning (ML) algorithms can be used to solve 

regression problems given a complex mapping between 

input and output vectors [6]. ML targets to find a 

mapping between inputs (or features) and outputs (or 

dependent variables) in order to minimize the difference 

between the predicted and groundtruth values. When the 

desired groundtruth values are known in advance, we 

refer to a specific branch of ML, namely the Supervised 

Learning (SL). SL relies on historically collected data 

(both input and desired outputs ) for training an ML 

model to accurately predict the output values of input 

samples not encountered during the training (validation 

samples). Deep Network Networks (DNNs) comprise a 

powerful toolset to estimate extremely complex and non-

linear functions by stacking multiple layers of 

fundamental units (perceptrons or neurons) for purposes 

of resolving the hidden correlation patterns between the 

input vectors [7].   

 

Based on the above considerations , this paper uses DNNs 

to solve the MDM inverse problem. Following the 

principles of Deep Learning (DL), we train a DNN to 

“learn” the magnetic field equation, i.e. to “learn” the 

inverse mapping between dipole parameters (output 

variables) and the generated magnetic field at an 

observation distance (input variables). Extending the 

previous work on DL-based MDM approach, here we test 

the performance of DNNs in estimating the dipole 

parameters derived by two different facilities (MCF and 

MMF). In further extending the previous work [4], we 

introduce varying observation distance in the model input 

to obtain a generalized distance-independent solution. 

Additionally, we aim to investigate whether (i) DNNs  

generally outperform other baseline ML schemes  and (ii) 

compare the model performance against two widely used 

facilities.  

 

In summary, the benefits of using DNNs to solve the 

MDM problem include:   

 Training and testing of the two neural networks can 

be performed offline with simulated data from 

virtual magnetic sources.  

 Once the neural networks are trained, the inference 

(output estimation, i.e. model prediction) can be 

performed swiftly, while possible model updates can 

be effortlessly conducted through soft DNN 

retraining. 

 The trained model exhibits the property of 

generalizability, in the sense that the training is 

performed for various positions of the magnetic field  

sensors, targeting to make the neural network 

independent of the specific measurement setup.  

 This approach can be further extended for increasing 

number of virtual dipole sources, i.e. the training 

data consists of magnetic field generated by multiple 

dipoles in order to overcome the limited accuracy of 

the stochastic solutions. 

 

2. BACKGROUND AND METHODOLOGY 

In principle, given the parameters of 𝑀  equivalent 

magnetic dipoles representing the magnetic signature 

produced by a unit, the dipole-specific field can be 

calculated via: 

𝐁𝑖𝑗 =
𝜇0

4𝜋
[
3(𝐫𝑖 − 𝐫′𝑗)[(𝐫𝑖 − 𝐫′𝑗) · 𝐦𝑗]

|𝐫𝑖 − 𝐫′𝑗|
5

−
𝐦𝑗

|𝐫𝑖 − 𝐫′𝑗|
3], (1) 

 
where 𝐁𝑖𝑗 denotes the magnetic field vector generated by 

the 𝑗 𝑡ℎ dipole (𝑗 = 1, 2, … 𝑀) and captured at the 𝑖𝑡ℎ 
measurement point (𝑖 = 1, 2, … 𝑁). In addition, 𝐫𝑖 − 𝐫′𝑗 

denotes the relative 3D position between the 𝑖𝑡ℎ 

measurement point and the 𝑗 𝑡ℎ dipole source, 𝐦𝑗 stands 

for the magnetic moment of the 𝑗 𝑡ℎ dipole and 𝜇0 is the 

permeability of free space. The total magnetic field at a 

measurement point can be calculated as the accumulated 

contribution of 𝑀 dipoles. 

 

Eq. (1) defines a forward problem in the sense that the 

magnetic field captured at the measurement points is 



 

calculated based on the dipole parameters (position and 

magnetic moment). On the contrary, the inverse problem 

refers to the exploitation of the magnetic field  

measurements to quantify the dipole parameters. This 

problem has been proven ill-posed and, theoretically, 

requires massive measurement points to uniquely 

describe the parameters of the dipole sources.  

 

In this paper, we address the inverse problem by forming  

the MDM as a regression problem, considering the dipole 

parameters as predictors of the produced magnetic field  

(dependent variable). To obtain the training dataset, we 

use Eq. (1) to generate 10000 input/output pairs relating 

the magnetic field at all observation points (input) to the 

dipole parameters (output). Two separate neural 

networks (MCFnet and MMFnet) are trained on the 

generated data, according to the specifications of the 

measurement procedures of these two facilities. Thus, 

two different training datasets were generated separately 

for each facility and measurement procedure. In each 

case, 9000 data samples are used for the DNNs training 

phase consisting of the dipole parameters (as features) 

and the associated magnetic field at an observation 

distance (as labels). DNN training is in charge of 

efficiently solving this non-linear regression problem, 

ensuring high performance not only in the training 

samples, but also in unseen validation data (i.e. 

avoidance of overfitting). The remaining 1000 samples 

were used to evaluate the performance of the DNNs  on 

data not encountered during the training. 

 

 

Figure 3. Dimensionality of the MMFnet (panel A) and 

MCFnet (panel B). DNN inputs involve the magnetic 

field measurements and the observation distance 

defined by each facility specifications, whereas DNN 

outputs are the dipole parameters.   

 

The dimensionality of the neural networks for both 

facilities are shown in Fig. 3, taking into account that the 

MCF and MMF obtain 36 (0-360° in steps of 10°) and 12 

(6 equally-spaced sensors below and above the turntable) 

tri-axial magnetic field measurements , respectively. 

Without loss of generality, the single dipole fitting 

approach was used to train both DNNs. The virtual 

dipoles in each of the 9000 training samples are assumed 

to be located on the turntable of each facility with 

multiple values of 3D position and varying magnetic 

moment vectors, randomly drawn from a uniform 

distribution. Moreover, the radial observation distance 𝐷  

of the magnetic field sensors  is included in the input 

(feature) set, allowing to train the models with varying 

values of distance, thus obtaining distance-independent 

model predictions. 

 

It should be noted that, during the training process , DNNs 

target to properly adjust their weights (interconnections 

between layers), so as to minimize a predefined loss 

function. In this study, we use the Mean Squared Error 

(MSE) as the loss function for both MMFnet and 

MCFnet, given by: 

 

𝐿𝑜𝑠 𝑠𝑀𝑆𝐸 =
1

𝑁𝑠
∑(𝑦𝑎𝑐𝑡𝑢𝑎𝑙(𝑖) − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑖))

2

𝑁𝑠

𝑖=1

, (2) 

 

where 𝑁𝑠 is the number of samples , 𝑦𝑎𝑐𝑡𝑢𝑎𝑙(𝑖) and 

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑖) are the groundtruth and the DNN-derived 

output values of the 𝑖𝑡ℎ sample. 

 

Following the architecture of the conventional multi-

layer perceptrons, the number of neurons between two 

consecutive layers is reduced by a factor of 2, whereas 

the final hidden layer has at least 2x6 neurons (6 is the 

number of neurons in the output layer). Finally, the 

Rectified Linear (ReLu) activation function was selected 

as a typical setting in the regression problems. 

 

3. SIMULATION RESULTS 

3.1. MMFnet and MCFnet training  

The DNN training process mainly involves the fine-

tuning (or stabilization) of the major learning parameters, 

including the number of hidden layers, the number of 

neurons and the learning rate (𝑎) in order to guarantee 

stable-and-high performance. This means that before 

using a DNN for making predictions, we have to 

determine the optimal hyper-parameter configuration 

that ensures high predictive accuracy in the validation 

data. To this end, we conducted extensive simulations 

with different combinations of learning rate values (𝑎 =
0.1,0.01, 0.001, 0.0001, 0.00001) and number of 



 

hidden layers (1-7). Fig. 4 depicts the validation MSE 

loss (i.e. the deviation metric between the actual dipole 

parameters and DNN-estimated parameters across the 

1000 validation samples) for the MMFnet and MCFnet. 

 

To effectively monitor the training process and 

convergence of both DNNs, we additionally applied the 

following stopping criterion: the training process 

terminates if at least 0.001 decrement in the loss function 

was not observed for 20 consecutive epochs. This 

stopping criterion prevents time-consuming training 

process, allowing to identify the period of convergence.  

 

Figure 4. Validation loss (MSE) relative to different 

values of learning rate, number of hidden layers and 

number of neurons for the MMFnet (panel A) and the 

MCFnet (panel B). 

 

As observed from Fig. 4, the optimal hyper-parameters 

(corresponding to the minimum MSE validation loss) for 

the MMFnet are obtained for 𝑎 =  0.001 and 4 hidden 

layers, whereas the optimal hyper-parameters for 

MCFnet are 𝑎 =  0.0001 and 3 hidden layers. Notably, 

the MMFnet converged to lower MSE value (by 

approximately one order of magnitude) compared with 

the MCFnet.  

3.2. Comparison with ML baseline regressors 

In this subsection, we compare the optimally configured 

DNNs (see section 3.1.) with 6 typical ML regressors. 

Specifically, the following benchmark algorithms were 

implemented: (i) Linear Regression (LR); (ii) Lasso 

Regression; (iii) ElasticNet Regression; (iv) Ridge 

Regression; (vi) Decision Tree (DT) Regression and (vii) 

Random Forest (RF) Regression. All regressors were 

trained on the same input and output samples and had the 

same objective as the DNNs. 

 

Fig. 5 demonstrates the validation performance of all 

regressors in a descending order in terms of MSE. In both 

MCF and MMF scenarios, it is evident that DNNs  

outperform the other ML baselines. Moreover, the linear 

regressors (Lasso, Elastic, LR and Ridge) fail to 

effectively estimate the dipole model parameters, 

converging in higher MSE values, whereas the non-linear 

regressors (DT, RF and ANN) show reduced validation 

loss values. It is also worth mentioning that RF 

outperforms the DT regressor, since it inherently uses 

multiple decision trees (ensemble learning) for 

prediction-making.  

 

Figure 5. Comparison between the seven ML regressors 

in terms of validation loss (MSE). 

 

3.3. MCFnet versus MMFnet predictions 

Having fine-tuned the DNNs hyper-parameters for the 

minimal MSE validation loss , the performance of the 

MCFnet and the MMFnet is also assessed in terms of 

resulting position and magnetic moment deviation in 

order to quantify the predictions of the trained models. 

Based on 1000 instances of DNN-predicted model 

parameters, we test the model performance (i.e. goodness 

of dipole fitting) against the actual parameters provided 

by the validation samples. Fig. 6 demonstrates the 

average position deviation (root mean squared – RMS – 

deviation between the predicted and the actual dipole 

position in cm) and the average magnetic moment  

deviation (RMS deviation between the predicted and the 

actual magnetic moment in mAm2).  

 

Figure 6. RMS position deviation (left panel), moment 

deviation (central panel) and model complexity (right 

panel) for MCFnet and MMFnet.  

 

Evidently, the predictions of the MMFnet exhibit a 

position deviation of ~0.2 cm and a moment deviation of 

~0.05 mAm2, whereas the MCFnet estimation exhibit  



 

~0.75 cm and ~0.12 mAm2 deviations respectively. The 

DNN model complexity was quantified taking into 

account: (i) the neural network density (𝐷 , total number 

of neurons divided by the total number of hidden layers) 

and (ii) the number of training epochs required for 

convergence (𝑇). Therefore, the model complexity is 

defined by the sum 𝐷 + 𝑇. This parameter is shown in 

the third panel of Fig. 6, where the MCFnet displays 

33.3% more complexity than the MMFnet. This might be 

attributed to the more complete geometrical coverage of 

the magnetic signature offered by MMF (as compared to 

the MCF), capturing the generated field from two planes 

and several orientations. 

 

Finally, we extracted the magnetic field that is 

reconstructed by using the DNN-predicted dipole 

parameters. Fig. 7 shows the actual and the reconstructed 

magnitude of the magnetic field at each measurement  

point both for the MMFnet and MCFnet models. 

 

Figure 7. Magnetic field (magnitude) reconstruction 

accuracy for the MMFnet (upper panel) and MCFnet 

(lower panel) at the measurement points. 

 

The resulting field reconstruction values deviate from the 

actual field magnitude by at most ~0.1% for the MMFnet, 

and at most ~3% for the MCFnet. 

 

4. CONCLUSION 

This paper applies ML methods  for purposes of dipole 

fitting, based on magnetic field measurements obtained 

by two facilities. To this end, two DNNs are trained and 

tested on two separate datasets, properly adapted to the 

MCF and MMF setups. The trained DNNs are also 

compared to other baseline ML schemes, showing 

beneficial performance in terms of their MSE 

convergence. We also provide evidence regarding the 

performance of both MMF and MCF neural networks, 

quantifying their accuracy in the position and magnetic 

moment estimation, as well as their model complexity . 

We conclude that MMFnet can effectively estimate the 

dipole parameters with lower complexity compared with 

the MCFnet. 
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