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Abstract—The goal of this paper is to demonstrate the 
implementation of technological solutions that will enable the 
optimization of 5G network resources and services in an 
automated and self-configured manner. At first, the practical 
implementation of intelligence loops in the 5G network 
architecture is presented, according to the O-RAN specifications. 
Then, the development of an open source, general-purpose 
simulator, compliant with 3GPP specifications for generating 
physical-layer measurement reports from the radio access 
network is presented, while its functional logic and configuration 
capabilities are fully highlighted. Moreover, this paper illustrates 
how effectively trained machine learning (ML) models can be 
incorporated into the architecture for network configuration and 
optimization. In this context, an indicative use case is presented 
and evaluated, focusing on closed-loop power adjustment of the 
transmitters in a 5G cellular orientation, via the appropriate 
deployment of a deep reinforcement learning agent. The 
simulation results outline the interaction loop between the 
developed 5G simulator and the deployed ML model, targeting at 
increasing the network-wide throughput of user equipment. 

Keywords—5G; Open-source 5G Simulator; O-RAN; Machine 
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I.  INTRODUCTION 

The full deployment of fifth-generation (5G) broadband 
wireless cellular networks has accelerated the support of latency 
and bandwidth-demanding applications, as well the massive 
connectivity of heterogeneous devices [1]-[3]. In this context, 
various novel technologies have been introduced, such as 
network function virtualization (NFV), decoupling network 
node functionality from hardware equipment [4], [5]. Hence, a 
holistic infrastructure redesign can be supported according to 
traffic needs, where a large number of access points (APs) is 
deployed over small geographical regions (ultra-dense 
networking [6]). To this end, the exploitation of millimeter-wave 
(mmWave) frequency bands in the physical layer, along with the 
deployment of massive multiple-input multiple-output (m-
MIMO) architectures over various APs, can leverage the 
provision of acceptable quality of service (QoS) over a mass 
number of user equipment (UEs) [7].  

It becomes apparent from the above that 5G networks can be 
more complex in nature compared to the previous generations of 
mobile networks, due to the incorporation of diverse 
technologies and the associated signaling burden. Therefore, a 
constant monitoring and potential redesign is required in order 

to ensure their proper functionality. To this end, machine 
learning (ML) algorithms, being a subcategory of artificial 
intelligence (AI), can facilitate the optimum network design and 
deployment according to the processed monitoring data. Hence, 
many network operators and service providers are interested in 
the incorporation of the appropriate AI/ML algorithms in order 
to build networks that are capable of self-management and self-
healing. ML-based applications can respond in near real-time 
data generated by the 5G network, thus providing new 
opportunities for process automation. In this context, the need 
for interoperability among various network operators and 
hardware components has leveraged the adoption of open access 
solutions for radio access network (RAN) functionalities, such 
as the O-RAN alliance [8]. O-RAN aims to reduce the cost of 
network deployment by using low-cost and white-box hardware 
for radio components. In the O-RAN alliance specifications 
regarding the AI/ML workflow in the radio access network, two 
main cognitive entities are designed to have a significant role in 
the management and lifecycle of AI/ML models. Specifically, 
the non-real-time (RT) RAN Intelligent Controller (RIC) and the 
near-RT RIC determine the optimization rationale of the O-RAN 
deployments and supervise the training, deployment and update 
of AI/ML models, depending on the corresponding time-scales 
of interest (e.g., the near-RT RIC operates in the range of 10-500 
ms, while the non-RT RIC at a range greater than 500 ms). 

However, the effective training of ML models requires 
access to a vast amount of data, directly collected from realistic 
5G networks’ infrastructure. The access to those data may be 
quite limited, either due to privacy issues or insufficient network 
deployment, especially in the last two years of the pandemic 
crisis. Therefore, the need for an artificial source of data that can 
substitute real-world measurements is crucial. In this 
framework, various research efforts have focused on the design 
and development of efficient 5G network emulators over the last 
years. In [9], the authors introduce the 5G K-SimNet, which 
provides various features such as dual-radio protocol, traffic 
management on multi-connectivity, and software-defined NFV. 
In [10], the authors have evaluated the performance of Simul5G, 
a 5G emulator which introduces lightweight models of UEs and 
gNBs, facilitating the simulation of large-scale 5G multicellular 
networks. In [11], the SyntheticNET simulator is introduced, 
based on python, incorporating the latest 3GPP 5G release as 
well as AI-based ray-tracing propagation modelling. The 
developed simulator can include additional AI/ML-based 
solutions for autonomous configuration and optimization of 
network parameters. In [12], an emulation platform for SDN-



enabled 5G integrated fiber-wireless networks is presented and 
evaluated, which provides a transparent view of the 5G 
infrastructure to any SDN-based control plane. Nonetheless, the 
accurate performance evaluation of 5G networks that can 
incorporate real-time ML algorithms for KPI optimization, 
poses additional degrees of complexity in the designed 
solutions. Finally, a survey on 5G simulators is provided in [13]. 

This paper aims to demonstrate the support of intelligence 
control loop in O-RAN, by adopting open software solutions and 
embracing the concept of Zero-Touch Automation (ZTA). The 
developed open software solutions presented herein are thus 
compatible with the O-RAN specifications, as they are provided 
by AI/ML official guidelines. In addition, this work presents the 
implementation of a Deep Reinforcement Learning (DRL) 
algorithm in the radio access part. The main contributions of this 
work include: (i) the development and testing of a general-
purpose RAN parameter generator that provides simulated 
measurements of 5G-compliant urban cells, following 3GPP 
guidelines and supporting UE mobility 
(https://github.com/FanisKar); (ii) the ZTA in the configuration 
of RAN components through the interlinking between the near-
RT RIC and the RAN collected measurements; (iii) the testing 
and validation of O-RAN compliant intelligent functions 
(namely xApps) in a commercial, real-network near-RT RIC and 
associated inner modules, such as Databus, listeners, publishers 
and external containers; (iv) the optimization of the RAN 
experienced downlink throughput through power control, based 
on AI/ML and DRL. Finally, it is worth mentioning that all the 
presented material has been deployed in a virtualized server of a 
real testbed. 

II. ARCHITECTURE AND METHODOLOGY 

A. System Model and Parameters 

An urban 5G network area is considered, consisting of 𝐾 
macro and/or micro-cells, which may have overlapping 
coverage areas, following the specifications of UMa/UMi cells 
detailed in [14]. Each cell contains the respective Radio Unit 
(RU) transmitter 𝑘 (Tx 𝑘, ∀𝑘 =  1, 2, … , 𝐾), having a total 
bandwidth 𝐵. The selected 5G numerology dictates the number 
𝑁 of available Physical Resource Blocks (PRB) that will be used 
for physical-layer transmission (𝑛 =  1, 2, … , 𝑁). In addition, 
depending on the operational 5G frequency band, data are 
transmitted using the OFDM modulation scheme through an 
effective bandwidth 𝑊 of each PRB. The UEs (𝑢 =  1, 2, … , 𝑈) 
that are located inside the network area can establish a link with 
a single PRB 𝑛 of a particular RU 𝑘. The association status of 
each UE is expressed by the binary-valued association matrix 
𝐴௞,௡,௨, which takes the value of 1 if a link is established between 
UE 𝑢 and PRB 𝑛 of RU 𝑘 (or 0 otherwise). The sum-power 
constraint over all transmitting PRBs can be expressed by:  

 ∑ 𝑃௡,௞
ே
௡ୀଵ <  𝑃௠௔௫ 

where the transmit power of RU 𝑘 over PRB 𝑛 is denoted by 
𝑃௡,௞, while Pmax is the maximum allows transmission power per 
RU. A minimum power constrained 𝑃௡,௞ >  𝑃௠௜௡ is also 
assumed for each PRB band in order to take into account the 

idle/beaconing operational modes of the RU. At a specific time 
instance, the UEs that are located inside the 5G network area 
evaluate the beacon signals from all RU transmitters and are 
associated with the particular PRB of a specific RU that provides 
the maximum throughput. The Signal to Interference plus Noise 
Ratio (SINR) can be expressed as: 

 𝑆𝐼𝑁𝑅௨
௡,௞ =

௉೙,ೖ∙ீೖ,ೠ

(∑ ௉೙,ೖᇲ∙ீೖᇲ,ೠ)಼
ೖᇲಯೖ ାேబ

 

where 𝐺௞,௨ indicates the channel gain between UE 𝑢 and RU 𝑘 
and 𝑁଴ is the noise power density at the UE device. The 
theoretical experienced throughput of UE 𝑢 can be described by 
the Shannon formula: 

 𝑅௨
௡,௞ = 𝑊 ∙ 𝑙𝑜𝑔ଶ൫1 + 𝑆𝐼𝑁𝑅௨

௡,௞൯. 

Hence, at each time instance, the received throughput by all 
possible RUs and PRBs are calculated for each UE and the links 
providing the maximum throughput are selected as association 
connections. Then, each UE has a probability 𝐹 to move towards 
a random direction with a maximum velocity 𝑉௨ and the same 
calculations for association are repeated through time.  

Finally, the described RAN is controlled by a centralized 
intelligent entity (near-RT RIC) that is capable of regulating the 
power levels of the PRBs in all RUs at each time step. The main 
target of the cognitive controller is the maximization of the 
network-wide throughput (∑ 𝑅௨

௡,௞௎
௨ୀଵ ), thus significantly 

enhancing the QoS experienced by each UE inside the wireless 
network area. In the following subsection, we will present the 
individual building blocks to support both the 5G network 
simulator and the throughput optimization in the form of xApp 
developed in the centralized near-RT RIC.  

B. Supporting xApps: Near-RT RIC Architecture   

The internal structure of an xApp is shown in Fig. 1, where 
the individual boxes are essential for the development and 
implementation of the xApp core, xApp Database and the near-
RT RIC Databus. The xApp API is used to provide 
communication with the near-RT RIC, while also enabling 
lifecycle and configuration management of the xApp. The xApp 
Database stores the xApp configuration parameters provided by 
the API and is responsible to deliver the configuration file inside 
the xApp core. 

The internal structure of the xApp core includes the 
following modules: (i) Database listener: this inner module 
communicates with the xApp Database, retrieves the 
configuration and forwards it to the xApp configuration, where 
it is stored locally in order to be used in real-time processing, (ii) 
Databus listener: this module communicates with the near-RT 
RIC Databus and retrieves real-time RAN information, (iii) In 
queue: the data from the Databus listener are then provided to 
the in queue module and they can be shared across the xApp 
core, (iv) Processor: this module is the main building block of 
the xApp core where the data from in queue can be retrieved and 
processed according to the functional logic that the xApp is 
designed to perform (e.g., 5G network simulator, AI/ML model 



inference), (v) Out queue: the output data from the processor are 
placed in the out queue module. This will automatically trigger 
the Databus publisher, which in turn will publish the data in the 
near-RT RIC Databus and (vi) Action taker: this module can be 
optionally accessed from the processor and is responsible for 
implementing the output results (e.g., adjust RAN parameters). 

 

 It is evident that the flexible architecture of the inner near-
RT RIC modules enables the dynamic configuration of an xApp, 
allowing for efficient AI/ML model delivery and RAN 
parameter control. 

C. POSS: a Python Open-Source Simulator for 5G systems   

In the framework of this paper, a general-purpose flexible 
Python Open-Source Simulator (POSS) for 5G network systems 
is built in the form of xApp to provide physical-layer O-RAN 
measurements for further processing (see Fig. 2). The following 
input parameters can be adjusted for the configuration of the 
POSS: (i) Number of UMa and UMi cells that are considered in 
the network area and the location of the transmitters (RU 
topology), (ii) Maximum power budget limitation per RU and 
minimum power level of each PRB, (iii) Operating 5G 
frequency band, 5G numerology (spectrum channelization) and 
total available bandwidth that is used for downlink 
transmissions, (iv) Initial number of UEs inside the network area 
and their maximum velocity of the random walk model and (v) 
Probability of new UE entering inside the network coverage area 
from the cell borders in a given time slot. 

The algorithm starts by randomly positioning the initial 
number of UEs inside the network area and randomly initializing 
the power level of each PRB of all RUs, while also respecting 
the maximum and minimum power budget limitations, as in (1). 
The channel gain 𝐺௞,௨ for all UEs and all possible association 
links is calculated based on the relative distance between the 
UEs and each individual RU (5G specifications of UMa/UMi 
cells [14]). The key functionality of the simulator includes the 
interference calculations for each UE by also considering the 
accumulated interference caused by the non-serving RUs. After 
the calculation of the transmission power of PRB/RU and the 

channel gain, our algorithm calculates the SINR and the 
throughput that each UE can experience from all possible 
RU/PRB combinations, using (2) and (3). An association link is 
then formed among each UE and the PRB of the RU that 
provides the maximum QoS in terms of throughput. 

 At each time instance, seven metrics can be produced by the 
POSS once the association links are established, namely the 
(Receive Strength Signal Indicator (RSSI), Reference Signal 
Received Power (RSRP), Reference Signal Received Quality 
(RSRQ), Channel Quality Indicator (CQI), associated RU ID, 
associated PRB ID and UE experienced throughput.  

 Before moving to the next time slot, each UE follows a 
random-walk mobility model, whereas the border users have a 
probability to exit the network area. In addition, new users may 
enter the border cell areas with a probability specified in the 
configuration input file. Hence, the POSS is able to support 
time-varying mobile users, while also handling potential 
handovers. Output user-specific time series may be then 
exploited for further analysis, such as AI/ML model training and 
inference, network statistics or analytics.  

D. Throughput Optimization algorithm 

 Here we consider the problem of network-wide throughput 
maximization through power regulation. In general, 
improvements in the network throughput can be achieved by 
increasing the power level of the associated links, while 
simultaneously mitigating the co-channel interferences. Thus, 
the algorithm exploits the Shannon’s formula to calculate the 
sum of individual data rates and, based on the measurement 
reports in each cell, aims to maximize the total network-wide 
throughput. Formally, the algorithm objective, according to (3), 
can be expressed as: 

 max
௣ఢ௉

∑ ∑ 𝑊 ∙ 𝑙𝑜𝑔ଶ൫1 + 𝑆𝐼𝑁𝑅௨
௡,௞൯௡ఢே௞∈௄  

 

Fig. 1. Part of the near-RT RIC architecture supporting xApp delivery. 
The intelligent module of the xApp core is the Processor, whereas the other 
modules are dedicated for information exchange with the databus and 
database. 

 

Fig. 2. Configuration of POSS including the input parameters, the 
provided internal functionalities (association, pathloss, channel model, 
interference, mobility, handover) and the output UE measurement reports. 



where 𝑃, 𝐾, 𝑁 are the sets of power configuration, RUs, PRBs, 
respectively, while the constraints are discussed in Section II.A.  

 In DRL terminology, the centralized agent (the near-RT 
RIC) interacting with a telecom environment (cellular areas) 
aims to maximize the objective function (the network 
throughput) by observing the state space (the measurement 
reports) and taking actions (power level adjustments) [15]. 
Specifically, the agent-environment interaction cycle involves 
the following procedure: given a state observation (i.e., CQI 
reports for each RU/PRB pair), the agent performs an action 
(selection of a PRB from each RU and increase, decrease or 
maintain its power level by a predefined power step) and 
receives a reward (difference between the current and previous 
total network). Note that in the case of a non-occupied PRB, the 
respective state element is set to -1. Following a trial-and-error 
approach, the agent gradually converges in power control policy 
that ensures increased network utility. 

E. Network Automation through xApps 

In this section, the practical implementation and interaction 
of the POSS and the DRL agent, which can be deployed in the 
form of xApps in the near-RT RIC, is presented (Fig. 3). To this 
end, 5G-compliant measurement reports of UEs in a configured 
network topology are generated by the POSS simulator (xApp1) 
and acknowledged to the near-RT RIC Databus (Step 1). 
Consequently, the pre-trained DRL agent (xApp2) reads the 
measurement report from the Databus (Step 2) and, after 
combining all the RU-specific reports, uses them as input to infer 
the DRL model and provide corrective power levels to ensure 
throughput increments. Finally, the RU/PRB power suggestions 
are published back to the Databus (Step 3) and applied to the 
next network instance (Step 4). This process is continuously 
repeated to visualize the time-course of the model inference 
performance. Note that in the beginning of each interaction cycle 
the environment dynamically changes not only due to the power 
corrections, but also due to the mobility of the UEs (see 
functionalities of the POSS in section II.C).  

 

It is worth mentioning that, during the real network 
operation, the measurement report generated by the POSS 
simulator is actually the real network measurements, thereby can 
be directly provided to xApp2 for throughput maximization. 
Additionally, several xApps can be deployed in the near-RT RIC 
that either contain different ML models for the same 
optimization objective (throughput maximization) or even 
different optimization objectives concerning the RAN operation 
(for instance bandwidth allocation, energy efficiency 
maximization, etc.). In this context, diverse objective-specific 
AI/ML models can be deployed, dockerized and stored in a 
dedicated ML catalogue, being available for potential future 
inference. Depending on the real-time policy provided by the 
higher layers (e.g. the non-RT RIC in the Service and 
Management Orchestration layer) and/or the Intent-based 
manager, the near-RT RIC may select from the ML catalogue 
the appropriate model that aligns with the targeted optimization 
intent.  

F. Dockerization and Deployment of xApps 

Given that the implementation of the xApps framework 
presented above was deployed in a commercial near-RT RIC 
product, in this section we describe some of the key development 
aspects. To achieve co-operation between the involved 
development modules, we used the Kubernetes cluster 
framework. The xApp1 is a wrapper application that uses the 
POSS functions, providing a Redis and an Apache Kafka 
interface to store or read data. In every iteration, the xApp1 is 
responsible for getting the output data of the POSS and writing 
them inside a Kafka message broker (near-RT RIC Databus) 
using its implemented interface. For that purpose, the main 
function of our xApp1 application reads information on how to 
access the Kafka bus and Redis from a configuration file. The 
xApp1 is dockerized and can be easily deployed on a docker 
container or a Kubernetes cluster with the help of a Dockerfile 
that is written inside the code-base. Running on a cluster will 
also ensure maximum availability for our application. 

The xApp2 wraps our inference logic. This means that, at a 
given timeslot of the network operation, the xApp2 performs the 
DRL model inference, upon reading the data written by xApp1 
on the Kafka bus. The inference result (i.e., the suggested power 
vector) is then written back to the Kafka bus on another topic. It 
should be noted that when a different model is required for 
usage, a separate xApp is required to be deployed. Since 
multiple xApps deployments are required to infer multiple 
models (e.g. several models that are simultaneously running in 
the near-RT RIC), a mechanism to support automated model 
serving would provide generalized model delivery. To support 
such flexibility and avoid the deployment of numerous xApps, 
automated model serving tools (e.g. Tensorflow serving) could 
be alternatively incorporated. For instance, if Tensorflow 
serving has been included in the xApp2 logic, the inference 
operation can be effortlessly performed via an HTTP Rest API 
call. 

III. SIMULATION RESULTS 

In this section, we firstly present simulation results to 
highlight the functionalities of the POSS. Then, results 
concerning the hyper-parameter tuning during the training phase 

 

Fig. 3. Development of xApps for closed-loop automation: xApp1 (POSS 
for measurement report generation) and xApp2 (DRL optimization agent), 
interacting through the near-RT RIC Databus. Green-shaded boxes 
indicate the internal functional logic of xApps. 



of the DRL agent are demonstrated. Finally, subsection III.C 
illustrates the interaction and simultaneous operation of the two 
xApps that are deployed in the near-RT RIC. The presented 
results for the POSS and the DRL agent were conducted in 
Python 3.8 using the TensorFlow (version 2.3), Keras and 
Scikit-Learn libraries. The hardware used to run the scripts was 
a personal PC (CPU i7-2600; 3.4 GHz; RAM 12 GB; no GPU 
usage). We considered the operating frequency of 6 GHz 
(bandwidth of 𝐵 = 20 MHz) and omnidirectional antenna 
radiation patterns. 

A. xApp1: Simulator Functionalities 

In this subsection, the functional logic and the different 
configuration capabilities of the developed 5G simulator (POSS) 
are demonstrated. Indicatively, three configuration scenarios of 
the simulator are considered, parameterized as: (i) a full-capacity 
scenario with a 3-cell topology and numerology 5 (3 PRBs per 
RU, each one with bandwidth 5.76 MHz) (ii) a full-capacity 
scenario with a 4-cell topology and numerology 4 (6 PRBs per 
RU, each one with bandwidth 2.88 MHz) (iii) a full-capacity 
scenario with a 5-cell topology and numerology 3 (12 PRBs per 
RU, each one with bandwidth 1.44 MHz). 

 

In each scenario, diverse user mobility speeds can be 
established to represent heterogeneous network demand points. 
Typical categories include fixed reception points/PCs (0 m/s), 
pedestrians (1m/s) and vehicles (10 – 20 m/s). Figs. 4a – 4c 
depict a snapshot of the three considered topologies, along with 
the instantaneous allocated data rate experienced by 2 extreme 
case users; namely 1 best-conditioned user (nearby its associated 
cell) and 1 worst-conditioned user (located in the overlap area of 
the server and interferers). Firstly, it is evident that the selected 
numerology and channel segmentation strongly affects the user-
specific allocated throughput. This is illustrated in Fig. 4d, 
where the average UE data rate is positively correlated with the 

numerology. Contradictorily, the UE capacity decreases with the 
numerology, as high-degree segmentation creates higher 
number of available channels per transmitter. As expected, it is 
also evident that the experienced data rate decreases for the 
border/overlap-area users (circled in Fig. 4a – c). Note that, the 
possible POSS configurations are not limited to those presented 
here. 

B. xApp2: Training and Evaluating the DRL agents 

 As already mentioned, the training of the DRL agent for 
throughput maximization is done offline, and the pre-trained 
DRL agent is deployed in the near-RT RIC as an xApp. To this 
end, the training process was performed with simulated 
measurements of the POSS simulator and herein we present 
indicative results concerning the DRL hyper-parameter tuning 
for a network topology of 3 cells (5G numerology is 3, initial 
number of users is 10). In each training episode, before letting 
the agent start to interact with the environment, the initial power 
levels of all PRBs and RUs are set to the average power level. 
This means that the DRL algorithm begins with a good initial 
throughput status in the network, since the average power levels 
ensure a reasonable trade-off between the obtained links’ 
throughput, while mitigating their harmful interference in the 
rest of the co-channel transmissions. Typical parameters to be 
fine-tuned include the learning rate, the discount factor and the 
hidden layers of the neural network [16], [17]. Noteworthy, the 
discount factor (γ) is used in the Bellman equation for updating 
the Q-values and is associated with the extent to which the agent 
prefers immediate (γ=0) or future (γ=1) rewards [18]. 

 

 As readily observed from Fig. 5, the agent begins by 
performing random actions on the wireless environment, i.e., 
selecting randomly the PRBs and increasing, decreasing or 
maintaining the power level (exploration phase). Gradually the 
agent advances to the exploitation phase, thus performing 
actions that, based on his experience, will give him the maximal 
rewards. It is evident from Fig. 5 that the optimal values of the 
discount factor are presented for median values (0.5 or 0.7), and 
not for extremely low or extremely high settings. This implies 
that the agent performs beneficially when balances between the 
old and the expected return (or between past values and future 
estimations of the reward). 

 

Fig. 4. Configuration capabilities of POSS. A – C. Network topologies 
consisting of different number of cells and different 5G numerology. D. 
Average UE data-rate relative to the employed 5G numerology.  

 

Fig. 5. Learning curves for different values of 𝛾 during the training 
phase of the DRL agent. The red curve corresponds to the ε-greedy 
selected policy.  



C. Overall Assessment: Integrating xApp1 and xApp2 

Here we demonstrate the integration of the two xApps to 
concretely visualize the achieved closed-loop automation. The 
right panel of Fig. 6 depicts a snapshot of the network, where the 
moving UEs located inside the topology are color-coded in line 
with their associated RU. We observe (in Mbps) the UE-specific 
throughput denoted above each user. In the left panel, the DRL-
assisted power levels (in Watts) are provided as a heatmap, 
whereas the total throughput derived by the DRL suggestion is 
compared to the total data rate obtained by the average power 
level policy (initial state) during a period of 10 time instances. 
Benchmarking comparisons can be found in [16], [17]. 

 

Evidently, the DRL scheme is capable of enhancing the 
network-wide throughput, noticing at least equal performance to 
the average scheme. Since there is a possibility of UEs being 
located in the cross-cell areas (such as in time instance #3), the 
throughput increment may not be feasible in every time slot. 
Note that, given the mobility of UEs, the reception conditions 
and the UE pathloss are recalculated in each time slot, thereby 
the DRL inference is time-varying. 

IV. CONCLUSION 

This article presented the key aspects of the current 
technological advances underlying O-RAN deployments. After 
describing the internal structure of the RIC to support extended 
optimization applications (xApps), the implementation and 
validation of the xApps were demonstrated. Indicatively, we 
considered 2 xApps to enable closed-loop, automated and self-
configured optimization for radio resource management. A 
general-purpose and open-source simulator (xApp1) was also 
provided for testing the performance of a throughput 
maximization targeted DRL agent (xApp2) in realistic 
measurements. Finally, quantitative simulations for training, 
testing and visualizing the AI/ML models were presented 
aiming to concretely illustrate the procedure for deploying and 
running xApps in the O-RAN architectures.  
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Fig. 6. A snapshot of the network operation following the xApp1 and 
xApp2 integration. The total allocated throughput for 10 time slots is 
depicted (upper left) with and without DRL assistance, whereas the 
instantaneous power vectors are also shown (lower left) as heatmap.  


