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A B S T R A C T   

Body dysmorphic disorder (BDD) is characterized by an excessive preoccupation with perceived defects in 
physical appearance, and is associated with compulsive checking. Visual illusions are illusory or distorted sub
jective perceptions of visual stimuli, which are induced by specific visual cues or contexts. While previous 
research has investigated visual processing in BDD, the decision-making processes involved in visual illusion 
processing remain unknown. The current study addressed this gap by investigating the brain connectivity pat
terns of BDD patients during decision-making about visual illusions. Thirty-six adults - 18 BDD (9 female) and 18 
healthy controls (10 female) - viewed 39 visual illusions while their EEG was recorded. For each image, par
ticipants were asked to indicate (1) whether they perceived the illusory features of the images; and (2) their 
degree of confidence in their response. Our results did not uncover group-level differences in susceptibility to 
visual illusions, supporting the idea that higher-order differences, as opposed to lower-level visual impairments, 
can account for the visual processing differences that have previously been reported in BDD. However, the BDD 
group had lower confidence ratings when they reported illusory percepts, reflecting increased feelings of doubt. 
At the neural level, individuals with BDD showed greater theta band connectivity while making decisions about 
the visual illusions, likely reflecting higher intolerance to uncertainty and thus increased performance moni
toring. Finally, control participants showed increased left-to-right and front-to-back directed connectivity in the 
alpha band, which may suggest more efficient top-down modulation of sensory areas in control participants 
compared to individuals with BDD. Overall, our findings are consistent with the idea that higher-order disrup
tions in BDD are associated with increased performance monitoring during decision-making, which may be 
related to constant mental rechecking of responses.   

1. Introduction 

Body dysmorphic disorder (BDD) is a psychiatric illness character
ized by distress and excessive preoccupation with perceived defects in 
physical appearance that are not at all or only slightly observable to 
others (American Psychiatric Association, 2013). These concerns are 

usually focused on facial features or body parts (e.g., nose, denture, 
limbs). Importantly, BDD symptoms include repetitive thoughts and 
compulsive behaviours, due to a preoccupation with the respective 
concerns. This constant preoccupation is associated with many 
time-consuming rituals, such as skin picking, mirror gazing, excessive 
grooming, and constant checking (Buhlmann et al., 2002). In addition, 
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BDD patients often compare the appearance of others’ features to their 
own. Due to the ritualistic nature of these symptoms, BDD was recently 
classified under the obsessive-compulsive and related disorders in the 
DSM-5, alongside obsessive-compulsive disorder (OCD) (American 
Psychiatric Association, 2013). Excessively checking the perceived flaw 
in mirrors or other reflective surfaces in BDD might thus be associated 
with cognitive dysfunction of the inhibition of unwanted impulses, as in 
OCD (Mataix-Cols et al., 2004). 

As in the case of OCD, BDD patients show different attentional pat
terns compared to healthy controls during processing of visual stimuli, 
especially faces (Toh et al., 2015). For instance, BDD patients show a 
reduced inversion effect compared to healthy controls, which has been 
attributed to greater focus on detail and reduced holistic processing 
(Feusner et al., 2010a). The face inversion effect, i.e. the decrement in 
performance for processing inverted vs. upright faces, is a prominent 
measure of holistic processing (Bennetts et al., 2022). Stangier et al. 
(2008) also found enhanced sensitivity to facial feature changes in BDD 
patients compared to healthy controls, indicating increased detailed 
visual processing in BDD. Furthermore, when presented with images of 
their own faces, both BDD and OCD patients, but not healthy controls, 
perceived distortions that did not actually exist (Yaryura-Tobias et al., 
2002). In another study, Buhlmann et al. (2004) found that BDD patients 
had difficulty interpreting facial expressions, as they often misclassified 
faces as being angry when that was not the case. Following from the 
aforementioned findings, here we examined whether BDD patients show 
different susceptibility to visual illusions compared to healthy controls; 
and investigated their brain connectivity patterns during 
decision-making about illusion-inducing visual stimuli, in order to shed 
light onto how cognitive processing in BDD differs from unaffected 
individuals. 

Visual illusions refer to percepts that are different in some respects 
(e.g., length, size, shape, or direction of elements) from the physical 
stimulus. They are context-induced subjective distortions of visual fea
tures (Bruno, 2005; Murray and Herrmann, 2013; Sterzer and Rees, 
2008) leading to ambiguous percepts (Murray and Herrmann, 2013). In 
many cases, illusions are perceptually experienced even though the in
dividual is aware of the illusory features, suggesting that perceptual and 
conceptual knowledge are markedly distinct (Gregory, 1997). Impor
tantly, illusions reflect the constraints of our visual system, which sup
ports efficient visual processing of our external environment (see 
Eagleman, 2001 for a review). For instance, these constraints allow us to 
perceive the world as stable, even though we are constantly moving our 
head, eyes, and body. Illusions therefore provide a powerful tool to 
study not only the neurobiology of vision, but also other cognitive 
processes related to subjective experiences of the world (Eagleman, 
2001; King et al., 2017). Given the subjectivity of perceived distortions 
produced by the visual illusions and the visual abnormalities of BDD, 
here we tested whether illusory percepts that are not related to the self 
(e.g., own face processing) would differ between BDD and control 
subjects. 

Previous neuroscientific studies have shown differentiated structural 
and functional brain patterns in BDD compared to healthy individuals 
(e.g., Buchanan et al., 2013; see Grace et al., 2017 for a review). Spe
cifically, BDD patients show brain activation abnormalities when pro
cessing their own face, and specifically hypoactivation of the occipital 
cortex potentially associated with differentiated processing of facial 
features, as well as frontostriatal hyperactivation possibly related to 
obsessive thoughts and compulsive behaviours (Feusner et al., 2010b). 
Two fMRI studies in which participants performed a matching task of 
pictures of others’ faces found that local and distant degree brain con
nectivity of the right orbitofrontal cortex positively correlated with BDD 
(Beucke et al., 2016) and OCD symptom severity (Beucke et al., 2013). 
Overall, OCD patients show a generalized disorganization among neural 
tracts, as well as specific abnormalities in the frontostriatal pathway, the 
corpus callosum, and the superior longitudinal fasciculus (Bora et al., 
2011; Garibotto et al., 2010). Besides visual processing, previous 

research has demonstrated cognitive impairments in BDD patients in 
memory and attention (e.g., Kapsali et al., 2020; Toh et al., 2015, 2017). 
For example, decreased alpha power during cognitive tasks in BDD and 
OCD has been associated with difficulties with cognitive inhibition 
(Perera et al., 2019). Furthermore, an EEG study using the prepulse 
inhibition paradigm found reduced neural inhibition of the startle tone 
in BDD patients compared to healthy controls, suggesting impaired 
sensorimotor gating and abnormalities in attention (Giannopoulos et al., 
2021). 

While previous research on the neurophysiological correlates of BDD 
has provided substantial insight into the visual processing mechanisms 
behind the condition, the corresponding decision-making processes 
remain unknown. The present study aims to fill this crucial gap by 
investigating the brain connectivity patterns of BDD during decision- 
making on visual illusion judgements. We recorded and analyzed the 
EEG of BDD patients and healthy controls while they evaluated visual 
illusions (Giannopoulos et al., 2022). Participants had to decide whether 
they perceived or not the illusory features of each image. To examine 
confidence fluctuations throughout the task, participants also reported 
the degree of confidence in their judgment. Besides the BDD diagnosis 
performed by clinical psychiatrists, participants completed two ques
tionnaires assessing BDD symptomatology. At the behavioural level, we 
examined whether BDD patients differed in relation to their perception 
of the images and confidence in their own judgments, while at the neural 
level, we analyzed brain connectivity and network characteristics using 
graph theoretical measures during the decision-making period. Finally, 
the potential relationship between BDD severity and the identified graph 
indices was examined. 

Considering that BDD patients have biased visual processing when 
perceiving their own faces (e.g., Yaryura-Tobias et al., 2002) rather than 
deficits in general visual processing, we hypothesize that the BDD group 
will be equally susceptible to the illusory effects as the control group. 
Given the compulsive behavior that characterizes BDD patients 
(Nedeljkovic et al., 2009), we predict that their increased feelings of 
doubt will be reflected in lower confidence about their answers. It is also 
expected that BDD patients’ confidence ratings would fluctuate more 
compared to healthy controls, due to their compulsive performance 
evaluation. At the neural level, considering the constant BDD checking 
habits, as well as the role of midfrontal theta band activity (4–8 Hz) in 
performance monitoring (Cavanagh et al., 2012), we hypothesize that 
BDD patients will show stronger theta band interchannel phase syn
chronization in frontocentral electrodes during decision-making 
compared to healthy controls. Since disrupted interhemispheric con
nectivity in BDD indicates detailed processing (Buchanan et al., 2013), 
we also expect that BDD patients will exhibit reduced connectivity be
tween hemispheres during decision-making, attributed to impaired ho
listic processing (Stangier et al., 2008). 

2. Methods 

2.1. Subjects 

Thirty-six adult participants were included in this study. The first 
group consisted of 18 BDD patients (9 females, mean ± SD age of 36.7±
8.3 years; 9 males, mean ± SD age of 27.1± 6.0 years). The second group 
consisted of 18 healthy controls (CTL), matched for age and sex (10 
females, mean ± SD age of 28.8± 4.9 years; 8 males, mean ± SD age of 
30.0± 5.7 years). The absence of significant group differences in age was 
confirmed by an independent-samples t-test (t(34) = − 1.081, p =

0.287). Participants underwent two independent clinical interviews by 
two psychiatrists. BDD was diagnosed according to DSM-5 criteria. The 
Yale-Brown Obsessive-Compulsive Scale for BDD (YBOCS-BDD) and the 
Dysmorphic Concern Questionnaire (DCQ) confirmed the diagnosis. All 
participants had normal or corrected vision, while exclusion criteria 
were history of neurological or psychiatric disorders and current 
pregnancy. 
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All participants were extensively informed about the procedure and 
gave written consent for participation. In accordance with the Decla
ration of Helsinki, the study was performed in the psychophysiology 
laboratory of the University Mental Health, Neurosciences and Precision 
Medicine Research Institute ‘Costas Stefanis’, in collaboration with the 
First Department of Psychiatry, Eginition Hospital, Medical School, 
National and Kapodistrian University of Athens. The study was 
approved by the local ethics committee of the First Department of Psy
chiatry, Medical School, Eginition Hospital, National and Kapodistrian 

University of Athens (protocol code 349 and date of approval 29 
September 2013). 

2.2. Paradigm and procedure 

The visual stimuli set comprised of 39 previously tested visual illu
sions assembled and tested by Papageorgiou et al. (2020) (see Fig. 1A for 
examples). Those comprised two-dimensional images (28 black and 
white, 11 colored) of 23 well-known visual illusions plus their 

Fig. 1. A. Examples of the experimental stimuli composed by Papageorgiou et al. (2020). The illusions depicted are the following: vertical-horizontal, Zöllner, 
Poggendorff, Ebbinghaus, Kanizsa’s triangle, café wall, Hering, Shepard tables, and Sander. The images have been obtained by the authors from Wikipedia (available 
under a CC BY-SA 3.0 license). B. Illustration of the trial structure. First, a visual illusion is presented on screen for 7 secs, together with a statement and the question 
Right or Wrong? Below the stimulus. A blank screen is then presented for 1 s, followed by a 0.1‑s warning stimulus tone. Participants are given 1 s to think of their 
response. A second warning stimulus tone is then presented for 0.1 s. Afterwards, participants verbalize two responses: 1. Whether the statement is right or wrong, 
and 2. What is their degree of confidence for their answer. There is an inter-trial interval jittered from 4 to 9 s. 
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variations. The length of the images ranged from 8 to 33cm, while the 
height of the images ranged from 5.5 to 14.5cm. Each stimulus (i.e. 
visual illusion) was accompanied with a written statement referring to a 
feature of the respective image. Each of these statements required a 
‘right’ or ‘wrong’ answer. There were 19 ‘right’ (e.g., illusion 3 in 
Fig. 1A: Line C is an extension of line A.) and 20 ‘wrong’ statements (e.g., 
illusion 2 in Fig. 1A: The diagonal lines are not parallel.). 

Participants were seated in an electromagnetically shielded cage and 
they were asked to look straight and keep their eyes open throughout the 
session. Participants were instructed that they would be presented with 
39 visual illusions together with a written statement, and would be 
prompted to answer two questions: 1. Whether the statement is right or 
wrong, and 2. What is their degree of confidence for their answer on a 
scale from 0 (not at all certain) to 100 (absolutely certain). Each visual 
illusion stimulus was presented on screen for 7 s (see Fig. 1B for the trial 
structure). A statement referring to the illusion was presented below the 
stimulus, followed by the question ‘Right or Wrong?’. A blank screen 
was then presented for 1 s, followed by a 0.1‑s warning stimulus tone 
(500Hz, 65dB). Then, a 1‑s period was given to participants for decision- 
making. A second warning stimulus tone was then presented for 0.1 s 
prompting participants to respond. Participants’ verbal responses were 
recorded by an experimenter seated outside the testing room. There was 
an inter-trial interval jittered from 4 to 9 secs. 

2.3. Recordings and preprocessing 

EEG recordings were obtained from 30 Ag/AgCl electrodes mounted 
on an elastic cap according to the International 10–20 System: Fp1, F3, 
P3, O1, F7, T3, T5, Afz, Fz, FCz, CP3, FC3, TP7, Fpz, FT7, Oz, FT8, Fp2, 
F4, C4, P4, O2, F8, T4, T6, Cz, Pz, CPz, CP4, FC4. The sampling fre
quency was 1000Hz. Electrode impedance was kept constantly below 
5kΩ. Online reference was the average of the left and right ear lobes and 
the ground electrode was placed on the left mastoid. Continuous data 
were band-pass filtered at 0.5–40Hz to remove DC offsets and ignore the 
line noise. Using EEGLAB (Delorme and Makeig, 2004), we detected the 
channels that showed constantly abnormal activity and then replaced 
their data using spherical interpolation. Each channel’s activity was 
then re-referenced to the whole-scalp common average. Eye-blinks and 
saccades were corrected using the Independent Component Analysis 
(ICA) algorithm. SASICA tool (Chaumon et al., 2015) was used to guide 
the selection of artifactual components, along with visual inspection of 
the identified artifacts. In controversial cases, we also consulted the 
MARA tool suggestions (Winkler et al., 2011). The SASICA guidelines 
were parameterized as: “Autocorrelation” (Threshold r = auto; Lag =
20ms), “Focal components” (Threshold z = auto), “Correlation with 
EOG” (enabled for VEOG and HEOG with threshold r = 0.2), “ADJUST” 
(Mognon et al., 2011) and “FASTER” (Nolan et al., 2010) methods 
(enabled for blink channels). Finally, continuous data were epoched 
from − 0.3 to 1 s, time-locked to the first warning stimulus tone. 

2.4. Psychometric questionnaires 

2.4.1. Yale-Brown obsessive-compulsive scale (Y-BOCS) for BDD 
We used a 12-item version of Y-BOCS assessing BDD symptom 

severity (Phillips et al., 1997) translated and validated in Greek (Kapsali 
et al., 2019). Items 1–5 assess obsessional preoccupation with the 
perceived defect in appearance, while items 6–10 assess compulsive 
behaviours. Item 11 measures the degree of insight, and item 12 mea
sures avoidance. It is rated on a 0 (not at all) to 4 (every day) Likert scale. 
Scores for all items are summed up to create the total score. 

2.4.2. Dysmorphic concern questionnaire (DCQ) 
This is a 7-item self-report questionnaire that evaluates cognitive and 

behavioural symptoms of dysmorphic concern (Oosthuizen et al., 1998). 
Respondents rate their concern about their physical appearance on a 
4-point Likert scale from 0 (not at all) to 3 (much more than most 

people). 

2.5. Behavioural data analysis 

2.5.1. Behavioural measures 
The following behavioural measures were extracted from the par

ticipants’ answers and their respective degree of confidence:  

• Correctness: the percentage ratio between the correct answers and the 
total number of trials (39). A correct response means the participant 
response was aligned with the physical stimulus rather than the vi
sual illusion.  

• Confidence: the average self-reported confidence across trials. This 
measure was computed separately for the correct vs. incorrect 
answers.  

• Confidence variability: the variance of the self-reported confidence 
across trials. 

About correctness, note that the terms "correct", "incorrect", and 
"accuracy" are used throughout the manuscript by convention. None
theless, this measure represents how many times participants were 
susceptible to the visual illusions (being susceptible to an illusion does 
not mean a "wrong" response, rather it reflects the constraints of our 
visual system; see Eagleman, 2001 for a review). For instance, low 
correctness does not indicate poor performance, but rather a high sus
ceptibility to illusions, which is a behavior linked to the function of our 
visual system. 

Furthermore, to ensure that subjects did not randomly select their 
answers, we asked them to report their confidence and, in cases of 
random guessing, they were instructed to declare low degree of confi
dence (i.e. when confidence is close to zero, participants tended to 
respond randomly). As there is no way to know what participants 
perceived, confidence comprises a measure of whether participants 
actually saw the illusions or not. In other words, the level of confidence 
reveals whether responses are randomly selected or whether they are 
based on participants’ perception. 

2.5.2. Statistical analysis 
Parametric statistics were used to compare the behavioural measures 

across groups/conditions. Independent samples t-tests were conducted 
to compare the group differences in the correctness and confidence vari
ability measures. A 2 × 2 mixed-design ANOVA was also conducted to 
assess the differences in the confidence (between-subjects factor: CTL vs. 
BDD; within-subjects factor: correct vs. incorrect). The normality of data 
distribution and the equality of variances across groups were assessed 
with Shapiro-Wilk and Levene’s tests, respectively. Both tests showed 
that the data fulfilled the basic requirements for the subsequent para
metric tests (all p’s>0.05). Post-hoc contrasts refer to Bonferroni- 
corrected p-values at 0.05, two-tailed. 

2.6. Electrophysiological data analysis 

2.6.1. All-to-all connectivity 
Before the computation of EEG connectomes, we performed time- 

frequency decompositions of the EEG signals using the continuous 
wavelet transform (CWT) in the post-stimulus period (0 to 0.8s). Single- 
trial EEG signals were convolved with complex Morlet wavelets using 50 
linearly-separated frequencies (from 1 to 40Hz) with cycles linearly 
increasing from 3 to 12. The spectral values were then grouped ac
cording to the canonical frequency bands, namely the delta (1–4 Hz), 
theta (4–8Hz), alpha (8–12.5Hz), beta (13–30Hz) and low gamma 
(30–40Hz). Subsequently, the cross-spectra density matrix was extrac
ted for each pair of channels using the complex-valued CWT coefficients. 

Based on the cross-spectrum arrays, the undirected functional con
nectivity between all pairs of channels (all-to-all connectivity) was 
computed by means of debiased weighted Phase Lag Index (dwPLI: 

A.E. Giannopoulos et al.                                                                                                                                                                                                                       



Psychiatry Research 325 (2023) 115256

5

Vinck et al., 2011). As an extension of the PLI (Stam et al., 2007), dwPLI 
is a quantitative measure of the asymmetry in the distribution of phase 
differences between two signals. It is calculated from the instantaneous 
phases of two waveforms. Key advantages in using the dwPLI include (i) 
robustness against volume-conducted (‘false positive’) connectivity 
(Stam et al., 2007), (ii) insensitivity on connectivity variations caused by 
uncorrelated noise (Chennu et al., 2016) and (iii) correction for 
sample-size biases (Vinck et al., 2011). The main idea in the dwPLI 
calculation is (i) to ignore the zero-lag (0 or π) phases that are principally 
attributed to either volume-conducted or coupled activity and (ii) to 
weight differently the phases close to 0 or π (low influence on connec
tivity estimate) from the other middle phases (large influence on con
nectivity estimate). dwPLI values ranged from 0 (zero coupling) to 1 
(max phase coupling) and were computed separately for each canonical 
band using the FieldTrip Toolbox (Oostenveld et al., 2011). Finally, the 
dwPLI value of a particular channel pair and frequency band was 
extracted by averaging across the respective frequency points. 

Following a similar approach, we also extracted a measure of directed 
connectivity, namely the Phase Slope Index (PSI). It is a phase-based 
connectivity measure that indicates whether the network connectivity 
flows from channel A to B or vice versa (Nolte et al., 2008). Non-zero PSI 
values reflect the overall asymmetry of directed connectivity between 
two channels (PSI>0 when A is driven by B; PSI<0 when B is driven by 
A, PSI=0 when A and B are equally bidirectional). The PSI connectivity 
matrices were also extracted using FieldTrip Toolbox (Oostenveld et al., 
2011) for each of the five frequency bands. 

2.6.2. Thresholding of connectivity graphs 
The connectivity arrays were considered as network graphs with the 

channels representing the nodes and the dwPLI/PSI values representing 
the edge weights. To retain the strong edges of the networks for the 
subsequent graph-theoretical analysis, we followed a thresholding pro
cedure. Specifically, we computed a threshold connectivity value for 
each separate frequency band as the median plus 1 standard deviation 
across the absolute connectivity values of all edges. Then, the edges 

corresponding to below-threshold values were discarded (set to 0) from 
each participant’s graph. We obtained a binarized graph (the edges that 
survived after the thresholding procedure were set to 1) and a weighted 
graph (the edges that survived after the thresholding procedure retained 
their actual values) for each participant and frequency band. Fig. 2 de
picts the procedure of network graphs extraction for a particular fre
quency band following four steps. 

To further quantify the organizational properties of the derived 
networks, several graph-theoretical measures were then computed from 
both the undirected/directed and binary/weighted graph representa
tion, as presented below. 

2.6.3. Graph theoretical measures 
Given a thresholded connectivity graph, the following measures 

were extracted (including both global and local graph metrics): 

• Density: the percentage of present connections to all possible con
nections (weights are ignored).  

• Strength: the sum across all edge weights.  
• Degree: the number of incoming/outcoming connections for each 

electrode.  
• Clustering coefficient (CC): the fraction of triangles around a node. It 

reflects the extent to which the neighbors of a channel are also 
neighbors with each other. 

• Average Clustering coefficient (Ccavg): the average clustering co
efficients across all channels.  

• Floyd-Warshall matrix: it contains the length of shortest path between 
each pair of channels according to the Floyd-Warshall algorithm. In 
the case of weighted matrices, the distance between each pair of 
channels was considered as the inverse of the respective weight.  

• Characteristic path length (CPL): the average shortest path length of 
the network.  

• Global efficiency (GE): the average inverse shortest path length of the 
network. 

Fig. 2. Processing pipeline for the extraction of network graphs. The procedure converts the all-to-all connectivity matrices at a particular frequency band (panel A) 
into binary and weighted graph representations (panel D). The functional connectivity measure is the undirected dwPLI between all pairs of channels. The same 
approach was followed for the directed PSI networks by calculating the threshold (panel B) as the Median + 1SD across the absolute PSI values and ditching the edges 
with |PSI|<threshold. 
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2.6.4. Statistical evaluation 
Statistical analyses varied between three approaches depending on 

whether we compared (i) the functional networks (i.e. the edges that 
survived in dwPLI/PSI between groups), (ii) the global graph-theoretical 
measures (i.e. Density, Strength, Ccavg, CPL and GE) and (iii) the 
electrode-specific graph-theoretical measures (i.e. Degree and CC).  

(i) Functional networks comparisons: To compare the functional 
connectivity (dwPLI/PSI networks) between CTL and BDD 
groups, we used a non-parametric cluster permutation approach 
(Maris and Oostenveld, 2007). This was preferred to eliminate 
the biases introduced by multiple comparisons and distribution 
assumptions of parametric tests, since the difference distribution 
for CTL vs BDD networks is constructed in a data-driven manner 
using label randomizations combined with a network-based sta
tistic (NBS; Zalesky et al., 2010). Specifically, we conducted 5000 
iterations using 5000 random permutations across the subjects’ 
labels (‘CTL’ and ‘BDD’). In each iteration, we first calculated the 
t-values (independent t-tests) between groups at each edge. The 
uncorrected t-scores with absolute value higher than 2 were then 
discarded. Then, the edges that survived were clustered in Strong 
Connected Components (SCCs; partition into subgraphs with the 
property of having at least one path between all pairs of nodes) 
depending on whether they reflect identical effects (separate 
clusters for positive and negative edges). The sum of t-scores 
within each cluster was considered as the cluster t-statistic 
(Zalesky et al., 2010). Subsequently, the difference distribution 
curve of the group differences was estimated using the maximum 
cluster t-statistic of each permutation. The t-critical values were 
then calculated to align with the significance level of 0.05 
(two-tailed). Clusters formed by the actual labels with cluster 
t-statistic exceeding the t-critical values were finally identified 
following an SCC-wise inference on the difference distribution 
(Zalesky et al., 2010). Fig. 3 depicts the cluster permutation 
approach for comparing the functional networks between groups. 

(ii) Global measures: The global graph-theoretical measures resul
ted in a single scalar value for each participant and frequency 
band. To compare those metrics, we used mixed-factor 2× 5 
ANOVAs with Group as a between-subject factor and Band as a 
within-subject factor. Post-hoc comparisons were conducted in 
case of significant effects using independent t-tests. Sphericity 

violations were adjusted by Greenhouse-Geisser corrections and 
the two-tailed alpha was set at 0.05.  

(iii) Local measures: Since the local measures are extracted by each 
channel, cluster permutation tests were used to correct for mul
tiple comparisons (across 30 channels). We followed the similar 
approach described in (i), except that: in each iteration, we 
computed the independent t-scores in a channel-by-channel 
manner and then the clusters were formed according to 
whether the significant effects were spatially neighbored and had 
the same sign (positive or negative). This allowed us to identify 
clusters of neighboring electrodes that showed the same effects 
on a particular band. The cluster t-statistic was also the sum of t- 
scores within each cluster and the t-critical values were derived 
by 5000 random permutations. 

2.7. Correlation between EEG and BDD severity 

To investigate potential associations between the psychometric 
(DCQ, YBOCS-BDD scores) and EEG connectivity data (derived by Sec
tions 3.2 and 3.3), separate multiple stepwise linear regression (MSLR) 
models were conducted. EEG data considered for possible correlations 
were those that showed significant connectivity differences between 
groups both in the undirected and directed network analyses. Firstly, we 
tested whether the EEG connectivity measures could predict BDD 
symptomatology. This was done by using an MSLR model with the 
psychometrics as dependent variables and the EEG data as predictors. 
Each MSLR model contained an intercept, linear terms for each pre
dictor, and all products of pairs (i.e. interactions) of distinct predictors 
(squared terms were ignored). 

3. Results 

3.1. Behavioural results 

First, we compared behavioural performance between the BDD and 
the CTL group. Table 1 summarizes the results of the behavioural data 
comparisons between groups. 

3.1.1. Correctness 
There was no significant difference in correctness between groups 

(t(34) = 0.36, p = 0.72), with the CTL and BDD groups showing 55.0±

Fig. 3. Cluster permutation testing with network-based statistics. A. The starting point of each iteration is the connectivity matrices of all subjects. B. Random label 
assignment (CTL or BDD) to each subject. C. Edge-by-edge comparisons between the shuffled groups. D. In each one of the 5000 random permutations, the un
corrected t-scores are clustered in strong connected components (SCCs), which are represented with different colours on panel D. E. The difference distribution of CTL 
vs BDD is constructed based on the maximum t statistic (where t statistic is the sum of t-scores of all edges within an SCC). The steps B-E are repeated 5000 times and, 
finally, the t-critical values correspond to one-sided probabilities of 0.025. 
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12.2% and 53.6± 11.6% correctness, respectively. 

3.1.2. Confidence 
A 2 (correct, incorrect) x 2 (CTL, BDD) ANOVA on confidence 

revealed that BDD subjects reported significantly lower confidence 
when responding incorrectly (81.56± 2.44%) compared to the CTL 
group (90.31± 2.43%) (answer × group interaction: F(1,34) = 6.026, p 
= 0.019, η2

p = 0.151). However, confidence levels were not signifi
cantly different between groups when responding correctly (p = 0.66). 
There was no significant main effect of confidence or group. 

3.1.3. Confidence variability 
The BDD group also exhibited higher confidence variability across 

trials (304.23± 27.65) compared to the CTL group (207.48± 32.08), 
indicating increased variability in the confidence levels (t(34) = − 2.28,
p = 0.028). 

3.2. Undirected connectivity 

3.2.1. dwPLI networks 
Cluster permutation testing comparing the dwPLI functional net

works between CTL vs BDD revealed a significant subgraph component 
with inter-connected edges in the theta band (tcluster = − 243.5, tcritical−
= − 176.6, p = 0.005). As depicted in Fig. 4A, the significant cluster 
showed stronger phase synchronization in the BDD compared with the 
CTL group. The theta cluster showed a widespread distribution of 
network edges, exhibiting high degree of connectivity in fronto-central 

electrodes (Fig. 4C). Electrode FCz may serve as the ‘hub’ of this theta 
cluster showing a degree of 10. To concretely illustrate the properties of 
the identified cluster, Fig.4B shows the number of connections shared 
between seven regions of interest (ROIs). Fronto-central nodes primarily 
show inter-connections with left-temporal and occipital electrodes. 
There were no significant clusters in the other frequency bands (all 
p’s>0.05). 

It is worth noting that the comparisons presented in this section 
revealed the sub-network showing significant differences in the phase 
synchronization between groups. Thus, the identified cluster does not 
necessarily consist of the ‘strong’ edges of individuals’ networks, instead 
it is a cluster of edges that measured high statistical differences in dwPLI 
networks between groups. Complementary to this analysis, we used the 
single-subject thresholded matrices (i.e. strong edges) to extract the 
graph theoretical measures, as presented in Section 3.2.2. 

Since ERP responses are usually reflected as theta band activity, we 
also tested whether there were ERP differences between groups. Upon 
calculating the average across trials (i.e. ERP waves referenced to the 
− 200 to 0 baseline period) for each subject, a cluster permutation test 
was conducted using 5000 randomizations to estimate the group dif
ference distribution. The cluster permutation test considered the time 
points 1–500ms after the stimulus onset and all the electrodes except 
FP1,FP2,FPz (as artifact-sensitive channels). There were no statistically 
significant spatiotemporal clusters (all p’s=0.13). 

In general, midfrontal theta connectivity has been considered as an 
indication of the degree of performance monitoring (Luft et al., 2013; 
Vijver et al., 2011). Thus, stronger midfrontal theta connectivity 

Table 1 
Behavioural data comparisons between groups (CTL vs BDD). ‘SE’ stands for the standard error of the mean. Notation ‘*’ indicates a statistically significant difference.  

Measure Description CTL BDD Statistics 
Mean SE Mean SE t-value 

(df = 34) 
p-value 

Correctness % correct answers 55 12.2 53.6 11.6 0.36 0.72 
Confidence Correct 90.15 2.24 88.72 2.25 0.45 0.66 

Incorrect 90.31 2.43 81.56 2.44 2.54 0.016* 
Conf. variance Across trials 207.48 32.08 304.23 27.65 − 2.28 0.028*  

Fig. 4. Undirected network cluster for CTL vs. BDD in theta band. A. Connectogram of the theta band network that showed higher dwPLI in BDD than CTL group. For 
convenience, the electrodes are also grouped in seven ROIs. Panels B. and C. present the descriptives of the identified significant cluster in the ROI level (B.) and the 
electrode level (C.). B. Heatmap for the number of connections between each ROI pair of the significant cluster (intra-ROI connections are ignored). C. Scalp 
topography of the connectivity degree for the identified theta cluster. 
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suggests that BDD patients show increased performance monitoring 
activity during decision-making and under uncertainty (McLoughlin 
et al., 2021). 

3.2.2. Undirected graph measures 
To further investigate the organizational properties of the undirected 

networks of CTL vs BDD, the graph theoretical measures were also 
contrasted. ANOVA on graphs density showed a Band × Group interac
tion (F(4, 136) = 3.89, p = 0.011, η2

p = 0.103), but not main effects 
(p’s>0.38). Networks of BDD patients (21.0± 2.3%) showed signifi
cantly (t(34) = − 3.8, p = 0.001) higher density than CTL group (11.2 

± 1.0%) in theta band, as shown in Fig. 5A. To localize the effects of 
density (see Fig. 5C), the cluster permutation testing on degree showed a 
significant negative (BDD>CTL, tcluster = − 17.5, tcritical− = − 8.1, p =
0.004) cluster comprised of fronto-central channels {FP1, FP2, F3, F4, 
FPz, Afz, Fz}, with BDD showing a fronto-central degree of 6.77± 0.91, 
whereas that of CTL was 3.21± 0.53. There were no statistically sig
nificant outcomes in terms of clustering coefficients, neither in the 
global Ccavg (p’s>0.41) nor in the local CC (p’s>0.072). ANOVA on CPL 
revealed also a significant Band × Group interaction (F(4,136) = 3.61, p 
= 0.017, η2

p = 0.096), with CTL (2.71± 0.12) showing elongated CPL 
(t(34) = 3.24, p = 0.003) compared with BDD (2.12± 0.14) only in 
theta band (see Fig. 5B). As the GE is inversely proportional to the CPL, 
the CTL (0.49± 0.02) showed also reduced (t(34) = − 2.22, p = 0.033) 
theta GE compared with BDD (0.56± 0.02) group. The effects on CPL/ 
GE suggest that the BDD group recruited more efficient theta connec
tions (and thus higher reachability between pairs of channels) due to the 
increased densification of their dwPLI networks. Given that the 

significant measures will be used as predictors in the subsequent cor
relation analysis (see Section 3.4), and in order to prevent predictor 
redundancy in the models, we also addressed whether the connectivity 
measures show dependencies between each other. Fig. 5D illustrates the 
inter-dependencies of the identified measures, along with the respective 
correlation coefficients and p-values. 

3.3. Directed connectivity 

3.3.1. PSI networks 
The directed PSI comparisons between CTL vs. BDD revealed a sig

nificant cluster of directed edges in alpha band (tcluster = 161.2,
tcritical− = 141.3, p = 0.033). This cluster showed significantly higher 

PSI values in CTL than BDD subjects. As depicted in Fig. 6A, the iden
tified cluster showed widespread connections, with dense inter- 
connections from left to midline frontocentral channels. To concretely 
illustrate the structure of this cluster, Fig. 6B shows the directed con
nections among seven ROIs. There was a remarkable directed flow 
indicating that right temporo-parietal (RTP) channels are driven by 
midline (MFC) and left frontocentral (LFC) regions. In addition, a gen
eral lateralized (“left-to-right”) flow is observed from the directions of 
the cluster edges, suggesting that the CTL group shows a more pro
nounced “left-to-right” lag (i.e. right-hemispheric electrodes were lag
ged compared to left ones) than the BDD group. Channels F7 and FT7 
exhibited the highest number of outward links, mainly driving the MFC 
electrodes. This left-to-right flow is shown in Fig. 6C, where the maximal 
outward and inward degrees are observed in left and right electrodes, 
respectively. There were no significant clusters in the other frequency 
bands (all p’s>0.05). 

Fig. 5. Undirected graph measures. A. Bar graph for Density of CTL (blue) and BDD (red) networks in five frequency bands. B. Bar graph for CPL of CTL (blue) and 
BDD (red) networks in five frequency bands. Error bars indicate the Mean ± Standard Error. C. Scalp topography of t-scores for the Degree (CTL vs BDD) comparisons 
in theta band. Enlarged channels belong to the identified significant cluster. D. Scatter plots between Density vs CPL (left y-axis, black) and GE (right y-axis, blue) in 
theta band. Individual points correspond to single-subject measures. The dashed lines correspond to the best-fitting line curves, accompanied with the respective 
Pearson’s correlation coefficient (r) and the p-value (p). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Overall, disrupted interhemispheric connectivity in BDD patients has 
been associated with difficulties integrating detailed information into a 
coherent whole (J.D. Feusner et al., 2010). Thus, the identified 
inter-hemispheric difference between the groups could indicate that 
BDD patients cannot efficiently combine the features of the visual 
stimuli in order to make a final decision. 

3.3.2. Directed graph measures 
Graph measures extracted from the thresholded PSI matrices were 

investigated further to give insights about the directed flow of connec
tivity. Firstly, ANOVA tests yielded no significant effects on the Density 
(p’s>0.086), Strength (p’s>0.077) and Degree (p’s>0.13). These out
comes suggested that the group differences on PSI (see Section 3.3.1.) 
are not attributed to alternations in the densification degree of the PSI 
networks. Instead, since the identified alpha cluster recruited a strong 
connected component, the group alterations may be attributed to 
different structural network properties between groups. As depicted in 
Fig.7A, there was a significant Band (p<.001) and Band × Group inter
action (F(4, 136) = 3.92, p = 0.01, η2

p = 0.104) effects on global 
clustering coefficient CCavg. Planned contrasts at each band showed that 
the CTL group (0.031± 0.003) presented significantly higher Ccavg than 
the BDD group (0.017± 0.003) only in alpha band (t(34) = 3.16, p =
0.003). This result implied that the alpha PSI network of the CTL group 
has stronger clustering properties (i.e. increased number of internal 
triangles) relative to the BDD group. To localize the scalp areas showing 
the highest CCs, a cluster permutation on the electrode-specific CCs 
revealed a positive (CTL>BDD, tcluster = 7.43, tcritical− = 5.30, p =

0.031) cluster consisting of the right temporo-parietal channels P4, CP4 
and T6 (see Fig. 7C for the t-statistic scalp map). Subsequently, the BDD 
group presented elongated CPL (2.51± 0.11), as well as lower GE, 
compared with CTL (2.12± 0.10) group in alpha band (see Fig. 7B). 
Again, to assess the inter-dependencies between the directed measures, 
the correlation coefficients were extracted. As shown in Fig. 7D, the 
Ccavg measures were also negatively correlated with the CPL (and thus 
positively correlated with GE), since an increased clustering coefficient 
allows the distances (i.e. shortest paths) between the graph nodes to be 
reduced. 

3.4. Associations between EEG and psychometrics 

The significant outcomes of the connectivity analyses were further 
tested for possible correlations with the psychometrics. In summary, two 
significant connectivity measures were used, namely (i) the undirected 
degrees in the frontal theta cluster and (ii) the directed clustering co
efficient in the right-temporal sites. Other measures (CPL and GE) were 
excluded from correlation analyses, given their inter-dependencies with 
the identified EEG measures, as shown in Figs. 5D and 7D, respectively. 

The regression model for psychometrics revealed that both the un
directed frontal theta degree (X1) and the directed right temporal clustering 
coefficient (X2) are significant linear predictors of DCQ scores. The model 
showed a significant overall fit of: DCQ ∼ 11.96+ 0.14 × X1 − 1.699 ×

X2;R2 = 0.39; p < 0.001. Moreover, YBOCS ratings were well- 
predicted by only X2 measures with an overall fit of: YBOCS ∼ 24.15 −

3.34 × X2;R2 = 0.17; p = 0.014. In Fig. 8, the scatter box-plots of DCQ 
versus X1 (Fig. 8A), DCQ versus X2 (Fig. 8B), YBOCS-BDD versus X1 
(Fig. 8C) and YBOCS-BDD versus X2 (Fig. 8D) are depicted, along with 
the respective Pearson’s coefficients and p-values. 

3.5. Coexisting spectral differences between groups 

To test for potential underlying spectrum differences between 
groups, a time-frequency control analysis was conducted (for details see 
“Supplementary Material”). This approach allowed us to evaluate 
whether the reported connectivity effects coexist with spectral effects in 
the same frequency bands considered during connectivity analysis. This 
analysis revealed significantly higher alpha power in the CTL compared 
to the BDD group, with the effect being spatially localized in the midline 
frontal-central-parietal scalp region. There was no significant difference 
between groups in the theta band (see “Supplementary Material”). 

4. Discussion 

In this study, we investigated the brain connectivity profile of BDD 
patients relative to healthy controls during decision-making about visual 
illusions. Results revealed no group differences in susceptibility to visual 

Fig. 6. Directed network cluster for CTL vs BDD in alpha band. A. Connectogram of the alpha band network that showed higher PSI in CTL than BDD group. For 
convenience, the directions are ignored and the electrodes are also grouped in seven ROIs. B. Network graph showing the directed connections between ROIs. Above 
each arrow A->B, the number of links interconnecting A and B is also noticed. C. Scalp topography of the outward (left) and inward (right) degree for the identified 
alpha cluster. 
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illusions, i.e. both groups perceived the illusory effects to a similar de
gree. However, the BDD group showed less confidence in their answers 
compared to the control group, but only when responding incorrectly. 
Importantly, the BDD patients exhibited higher variability in their 
confidence levels throughout the session. At the neural level, the BDD 
group showed greater theta band connectivity when making decisions 
about visual illusions, indicating widespread synchronization in fron
tocentral channels. Furthermore, directed connectivity from left to right 
frontal electrodes in the alpha band was lower in the BDD patients 
compared to the control group. This effect could be interpreted as less 
efficient inter-hemispheric communication, and could potentially result 
from individuals with BDD hyper-focusing on stimulus details. Overall, 
our findings suggest that performance monitoring processes when 
making visual judgments might be an important aspect of BDD. This 
could result in widespread connectivity in midfrontal channels, 
reflecting constant mental rechecking. 

Our first hypothesis was confirmed, as we did not observe a signifi
cant difference in susceptibility to the visual illusions in the BDD pa
tients compared to controls. There is evidence to suggest that BDD 
patients may show enhanced sensitivity in the processing of facial fea
tures or details (e.g., Stangier et al., 2008). However, this claim has been 
disputed considering the lack of differences between BDD patients and 
controls in the Navon task and other face processing tasks (Monzani 
et al., 2013). Considering evidence from multiple domains that faces are 
processed differently from other classes of objects (Bate et al., 2019; 
McKone and Robbins, 2011), it is possible that BDD patients could show 
differences in face processing which are not generalized to visual 

perception. A meta-analysis (Johnson et al., 2018) on the cognitive 
processes in BDD observed no significant effect of BDD on local visual 
processing, but mostly higher order effects on selective attention. Their 
analysis indicated that people with BDD have increased selective 
attention towards perceived threats (including potential flaws in 
appearance) which tend to trigger feelings of anxiety and disgust. They 
also reported findings on abnormalities in memory and suggested that 
those can account for inaccurate coding and recall of both face and body 
stimuli. Furthermore, they concluded that these memory issues could 
trigger maladaptive behaviours, such as constant mirror checking and 
seeking out cosmetic procedures. Overall, we believe that Johnson et al. 
(2018) findings might provide evidence that BDD is mostly mediated by 
higher order cognitive processes instead of lower order visual 
processing. 

As expected, BDD patients reported lower confidence in their visual 
judgments. In particular, the BDD group was significantly less confident 
about their answers compared to the CTL group, but that was only the 
case when they succumbed to the illusory effects. The confidence ratings 
of the BDD group also fluctuated significantly more compared to con
trols. These findings are interesting considering that, in our task, par
ticipants made judgments from memory, after the visual stimuli were 
removed from the screen. Not being able to accurately recall the image 
might have affected participants’ confidence levels. It could be that the 
BDD patients’ lower perceptual memory (Johnson et al., 2018) leads 
them to second-guess their own visual judgments more. These results are 
in line with previous studies showing that individuals with BDD exhibit 
high levels of doubt and uncertainty (Hermans et al., 2008; Nedeljkovic 

Fig. 7. Directed graph measures. A. Bar graph for Average Clustering Coefficient (Ccavg) of CTL (blue) and BDD (red) networks in five frequency bands. B. Bar graph 
for CPL of CTL (blue) and BDD (red) networks in five frequency bands. Error bars indicate the Mean ± Standard Error. C. Scalp topography of t-scores for the 
Clustering Coefficient (CTL vs. BDD) comparisons in alpha band. Enlarged channels belong to the identified significant cluster. D. Scatter plots between Ccavg vs CPL 
(left y-axis, black) and GE (right y-axis, blue) in alpha band. Individual points correspond to single-subject measures. The lines correspond to the best-fitting line 
curves, accompanied with the respective Pearson’s correlation coefficient I and the p-value (p). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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et al., 2009). Similar to our findings, Tolin et al. (2001) found lower 
self-reported confidence in OCD patients in a memory recall task, in 
which participants were repeatedly exposed to threat-related objects. 
Based on the absence of performance accuracy difference between the 
OCD and control groups, the authors suggested that confidence differ
ences might reflect increased feelings of doubt in OCD patients, rather 
than memory deficits, potentially linked to the fact that they often 
repeat ritualistic behaviours (Tolin et al., 2001). 

Notably, the widely observed lack of confidence, lower memory, and 
excessive monitoring/checking in individuals with BDD could lead to 
changes in behavior. Widespread differences in cognitive processes such 
as confidence and memory pose a potential problem, which may call for 
extra caution when interpreting findings comparing perceptual perfor
mance of BDD against controls. For example, Feusner et al. (2011) 
observed that individuals with BDD showed slower reaction times in a 
visual perception task, but similar accuracy when compared to the 
control group, which could reflect the different contribution of these 
cognitive processes. Thus, when interpreting differences in visual pro
cessing between BDD and controls, we need to consider (1) whether the 
task had a memory component (e.g., matching vs. face memory tasks) 
and (2) whether the performance was inferred from reaction times, 
which could be worse if participants feel the need to mentally check 
their decision, especially in memory-based tasks. 

With regards to our brain connectivity findings, there is evidence 
that connectivity (i.e. interchannel phase synchronization) in midfrontal 
areas in the theta frequency band is a marker of performance monitoring 
processes (Luft et al., 2013; Vijver et al., 2011). Therefore, it could be 
that enhanced theta connectivity in BDD patients might be related to 

increased cognitive control during excessive activation of the perfor
mance monitoring system. In particular, midfrontal theta connectivity 
might contribute to cognitive control by facilitating information transfer 
across regions via synchronized phase entrainment (Cavanagh and 
Frank, 2014). In particular, midfrontal theta activity potentially reflects 
activation of thalamocortical feedback loops, which have been estab
lished as a neural correlate of cognitive control (Cavanagh and Frank, 
2014). Furthermore, theta band activity in general plays a role in 
cross-regional phase synchrony, through the formation of large-scale 
networks which work together to optimize behavior under uncertainty 
(McLoughlin et al., 2021; Womelsdorf et al., 2010). Stronger midfrontal 
theta connectivity could indicate that BDD patients are more intolerant 
to uncertainty, leading to increased performance monitoring activity 
during decision-making. It is noteworthy that midfrontal theta connec
tivity did not correlate with behavioural performance, potentially 
providing additional evidence that it constitutes a higher order perfor
mance monitoring mechanism rather than reflecting actual visual illu
sion processing. 

Furthermore, the BDD group exhibited weaker directed left-to-right 
hemispheric connectivity in the alpha band compared to the control 
group. One potential explanation for this could be that individuals with 
BDD are less capable of contextualizing information, i.e. they are inef
ficient in combining the elements of the visual scene into a coherent 
whole (Arienzo et al., 2013). Both BDD and OCD patients have previ
ously demonstrated poor visuospatial construction and memory, which 
can be attributed to selective recall of details instead of large elements, 
and could be associated with their clinical features (Deckersbach et al., 
2000). This has also been evidenced in neuroimaging studies showing 

Fig. 8. Relationship between EEG and Psychometrics. A. Scatter plot between DCQ and Undirected Frontal Theta Degree. B. Scatter plot between DCQ and Directed 
Right Temporal Clustering Coefficient. C. Scatter plot between YBOCS-BDD and Undirected Frontal Theta Degree. D. Scatter plot between YBOCS-BDD and Directed 
Right Temporal Clustering Coefficient. In the upper part of each panel, the Pearson’s correlation coefficient and the respective p are notated. Colored-shaded areas 
correspond to 95% confidence interval. 
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disrupted interhemispheric connectivity (via the corpus callosum) in 
BDD patients (Buchanan et al., 2013), potentially reflecting difficulties 
in integrating detailed information into a coherent whole (Feusner et al., 
2010a). Therefore, it could be that, when BDD patients recalled a given 
visual stimulus in order to make their decision, they evaluated its parts 
separately, unable to efficiently combine them. On the contrary, the 
control group might have been more successful in integrating the details 
into a coherent image, due to better regulation of communication be
tween hemispheres during recall and evaluation of the illusions. 

Considering that the control group showed stronger left-to-right and 
front-to-back directed connectivity, another explanation could be that 
there is higher top-down modulation in the control group compared to 
the BDD. Specifically, it could be that controls have increased directed, 
top-down modulation of the sensory areas while making a decision, 
potentially representing access to visual information. On the contrary, 
our findings suggest that BDD patients have increased performance 
monitoring associated with double checking their responses, rather than 
accessing the visual memory component itself. Previous neurophysio
logical studies on bistable and illusory perception have also linked 
connectivity patterns to percept categories (e.g., Rassi et al., 2022, 
2019). In particular, increased prestimulus connectivity from the fusi
form face area (FFA) to the primary visual cortex (V1) in lower fre
quencies predicted face (vs. vase) percepts both in the Rubin face/vase 
illusion (Rassi et al., 2019), as well as in a face/house binocular rivalry 
task (Rassi et al., 2022). Previous neuroimaging studies have further 
shown that the prefrontal cortex performs top-down modulatory control 
of perceptual inputs (Miller and D’Esposito, 2005; Miller and Cohen, 
2001) via interactions between frontal and posterior regions (Bressler 
et al., 2008; Gregoriou et al., 2009). In line with this, an fMRI study 
employing a retro-cue paradigm demonstrated higher functional con
nectivity between frontal and posterior occipital regions which was 
attributed to top-down modulation (Kuo et al., 2011). Furthermore, it 
has been suggested that alpha phase synchronization organizes 
top-down control and access to memory (Klimesch et al., 2010), as 
observed in studies demonstrating that long-distance alpha phase 
coherence between the frontal and posterior regions might provide a 
mechanism underlying top-down modulation of color feature processing 
(Zanto et al., 2010, 2011). Therefore, our findings corroborate the 
possibility that BDD is characterized by higher-order disruptions in 
top-down communication, coupled with inefficient information con
textualization during recall. These disruptions are likely attributable to 
constant performance monitoring and double-checking as opposed to 
lower-order impairments in visual processing. 

Interestingly, we also found a difference in alpha power between 
groups (see SuppMat.pdf), with the BDD group showing lower alpha 
activity at the midline fronto-centro-parietal channels during the post- 
stimulus period. In principle, alpha oscillatory activity is considered 
vital to attentional processes (Foxe, and Snyder, 2011). Specifically, 
alpha is suggested to actively inhibit task-irrelevant brain regions 
(Jensen, and Mazaheri, 2010). The role of alpha is to guide attention by 
suppressing the impact of distracting inputs, which enhances processing 
of task-relevant stimuli (Jensen and Mazaheri, 2010). Accordingly, 
reduced alpha band activity has been related to impairments in the 
inhibitory mechanisms responsible for eliminating task-irrelevant dis
tractors. In line with this, it has been found that OCD patients show 
reduced alpha activity during wakeful-resting condition compared to 
healthy controls (Pogarell et al., 2006). Given that BDD patients have 
attentional deficits, possibly linked to hyperactivity of the selective 
attention-related circuits (Bucci et al., 2004), our findings might be 
explained as a synergy between (i) the reduced inhibition of 
task-irrelevant stimuli in BDD and (ii) the over-attention of BDD patients 
during illusory perception. 

The simultaneous presence of alpha power and alpha PSI-based 
connectivity effects is a limitation of this study, especially with respect 
to interpreting directed alpha connectivity. On the one hand, the 
observed power and connectivity effects (stronger for the CTL than BDD 

group) in the alpha band cannot be easily disentangled, since connec
tivity was computed through a measure which is robust to volume 
conduction, namely the PSI (Nolte et al., 2008). The connectivity be
tween EEG channels is calculated as the sum of the true connectivity, 
volume conduction artifacts and noise. Using measures that are blind to 
volume conduction, only the second term is mitigated towards isolating 
the true connectivity. In this sense, dwPLI/PSI metrics measure 
non-instantaneous synchronization which makes the connectivity mea
sures independent of power (Vinck et al., 2011). Furthermore, the fact 
that we did not find a power effect in the theta band (despite the con
nectivity effect) may provide some additional evidence that power and 
connectivity effects are not necessarily coupled in our study. Never
theless, although the simultaneous power and connectivity effect does 
not necessarily indicate a volume conduction artifact, a potential 
carryover effect between power and connectivity during illusory 
perception needs to be investigated further in future replication studies. 

5. Conclusions 

In this study, we investigated the susceptibility of BDD patients to 
visual illusory effects, and their respective brain connectivity patterns 
while they were making decisions about the corresponding visual 
stimuli. BDD patients showed an equal degree of susceptibility to illu
sory effects as controls. However, the BDD group was less confident in 
their answers when responding incorrectly, and their confidence levels 
were more variable than controls. We also observed stronger theta 
synchronization in fronto-central electrodes in BDD patients, which 
might be associated with excessive activity in their performance moni
toring system. Lower alpha connectivity from the left to right hemi
sphere in BDD patients might indicate issues with inter-hemispheric 
communication, potentially resulting from less efficient global pro
cessing. Connectivity measures of midfrontal theta and inter- 
hemispheric alpha activity that showed differences between groups 
were significantly correlated to illness severity in BDD. Overall, these 
findings shed light on the neurophysiological signature underlying 
psychopathology in BDD. 
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