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Abstract. Maritime trade unavoidably influences the economy, transportation 

and market worldwide. Deploying efficient, privacy-preserving and environmen-

tal-friendly solutions in maritime environments requires a continuous global ef-

fort. There are many obstacles associated with the centralized optimization for 

on-sail ships, including data security violation, signaling overhead and high-la-

tency response. Contradictorily, the emerging Federated Learning (FL) paradigm 

has been proposed as an efficient solution for promoting data privacy, low latency 

and high communication efficiency. In this context, this paper proposes a mari-

time-based FL scheme to ensure distributed, collaborative and secure optimiza-

tion for enabling predictive on-ship intelligence. A scenario targeting the accurate 

prediction of the Primary Engine Power (PEP) of large cargo ships is considered, 

as the output PEP is directly proportional to fuel consumption. Based on real data, 

several Machine Learning (ML) models were tested and validated, in terms of 

their PEP prediction accuracy, with all models exploiting both weather- and ship-

related data. Simulation results towards the selection of the PEP predictor, as well 

as the quantification of the FL scheme efficacy over traditional benchmarks were 

carried out, achieving a beneficial equilibrium between the prediction accuracy, 

data privacy and communication efficiency.  

Keywords: Distributed Intelligence, Federated Learning, Fuel Consumption, 

Machine Learning, Maritime Communication Network. 

1 Introduction 

Maritime trade is responsible for carrying out the majority of global trade and a ma-

jor driver of economic growth. Modern maritime systems necessitate significant im-

provements in energy efficiency and environmental-awareness with considerable re-

duction of their CO2 emissions. These requirements become more stringent due to the 

“Fit for 55” agreement, according to which, 173 countries declare to reduce emissions 

by 2050 produced by transport, buildings, agriculture and waste by about 55%, relative 

to the total emissions of 2008 [1]. Taking seriously this agreement and considering the 
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maritime sector as one of the primary sectors being responsible for CO2 emissions, the 

maritime industry should be transformed in several cross-coupled domains, including 

the transportation [2], communication and intelligence layers [3].  

A concerted global effort has been observed in developing novel solutions, being 

required in the domains of communication and intelligence. In this context, the intro-

duction of advanced services and technologies, such as the Internet of Things (IoT), is 

expected to leverage optimum transportation solutions due to the huge amount of data 

that are collected, stored, and processed [3]. Hence, real-time monitoring and auto-

mated optimization procedures are expected to play a key role in future maritime trans-

portation systems for ship path optimization or energy consumption-dependent and 

speed optimization purposes [4]. To this end, traditional optimization approaches might 

not be effective, since in general, they lead to non-convex problems, which are solved 

via iterative optimization approaches. 

IoT solutions in the maritime sector include the transmission and processing of a 

large amount of heterogeneous data under harsh propagation conditions [5]. Therefore, 

reliable maritime communication and networking design becomes a critical and chal-

lenging task, due to the multiple constraints that need to be taken into consideration. 

The goal of this design should be the optimization of certain performance metrics (i.e., 

overall data throughput, network outages) with reduced transmission power and signal-

ing burden [6]. In the vast majority of related works, the initial non-convex problem is 

decomposed into a discreet number of convex problems and solved via iterative opti-

mization approaches. Still, performance loss is inherently introduced, while the fre-

quent execution of iterative algorithms has a negative impact on the overall system 

response times [7]. Therefore, relying on conventional optimization to achieve ultra-

reliable low latency communications (URLLC), being needed in maritime transporta-

tion applications is highly questionable.  

Meanwhile, Machine learning (ML) comprises an ever-growing domain, mainly be-

cause it provides a powerful solution towards large-scale constrained optimization and 

predictive capabilities [8]. Most of the ML algorithms typically employed in the mari-

time sector require huge amounts of historically collected data. In order to ensure proper 

data processing and analytics, ML models are trained on a dataset to provide alarms, 

predictions or corrective actions, given a particular optimization task [9]. ML is classi-

fied into 3 main categories, namely (i) Supervised Learning (SL) in which labeled data 

are available as groundtruth to guide the model parameter adjustment during the train-

ing. SL algorithms are further divided, based on the type of the labels: classification 

refers to categorical labels, whereas regression refers to scalar-valued labels; (ii) Unsu-

pervised Learning (UL) in which the goal is to identify hidden clusters with high feature 

similarity or to reduce the dimensions of the data through the usage of linear combina-

tions of the features (i.e. components); (iii) Reinforcement Learning (RL) algorithms 

in which a cognitive agent finds an optimal decision-making policy through trial-and-

error interactions with the maritime environment, aiming to maximize a reward (e.g., 

best possible behavior or path) in a specific situation [10]. 

However, there are several obstacles towards enabling ML functionalities in the mar-

itime sector [3]. ML models require huge amounts of data in order to provide efficient 

solutions and predictions. From the maritime perspective, since the transmission and 
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exchange of multi-source data in such an environment can be characterized by a high 

degree of heterogeneity, attributed to the distances that the components of a signal have 

to cover and the diverse transmission conditions, traditional centralized ML seems quite 

problematic. Moreover, centralized data collection raises privacy violation issues, con-

sidering that the training carries commercial sensitive information that requires protec-

tion against malicious attacks. Since the demanding transmissions and exchange of 

data, as well as privacy violation in such environments are mainly the case in central-

ized schemes, the solution of distributed cooperative ML is preferred. 

Contrary to the aforementioned drawbacks, Federated Learning (FL) has been 

widely promoted, as an effective collaborative learning scheme [11]. FL training pro-

cess can ensure fast ML execution, no need for data transmissions and privacy preser-

vation of maritime sensitive data. In FL, maritime nodes exploit shared models trained 

from excessive amounts of data, without the need to centrally store it. In this context, 

instead of constantly updating a central node with data, the training of ML models is 

performed locally, and then, the global model is periodically updated. Therefore, this 

method can lead to four very important advantages: (i) reduction of the signaling load, 

(ii) reduction of the wireless transmission power, (iii) protection of security and privacy 

and (iv) enhanced model sharing abilities between maritime nodes, given the global 

observability of the FL-constructed global model that is finally deployed. 

The present paper outlines the implementation and comparison of FL methodology 

against various ML benchmark schemes. Using a labeled commercial dataset from a 

maritime enterprise, a scenario focusing on the prediction of the Primary Engine Power 

(PEP) of large cargo ships is considered. As PEP is proportional to the fuel oil con-

sumption, we target to demonstrate the potency of FL-assisted methods towards collab-

orative PEP prediction. Noteworthy, weather-related and on-sail ship-related features 

were used to accurately estimate the PEP required for the ship propulsion. To obtain 

optimal performance of FL, multiple SL ship-specific models were compared in the 

single-ship datasets, for the purpose of finding the best PEP regressor. The advantages 

and disadvantages of using FL against baseline methods are also identified. In sum-

mary, the contributions of this work can be identified as: 

(i) The exploitation of historical knowledge of both weather- and ship-related 

features, extracted by real data from a maritime enterprise, to obtain accu-

rate and ship-specific supervised learning models,  

(ii) The proposition of a general-purpose FL-based architecture to enable pri-

vacy-preserving and low-latency predictive abilities for on-sail cargo ships.  

(iii) The adoption of an end-to-end processing pipeline to implement FL in the 

maritime sector, including the training, testing and comparison of multiple 

regression models to properly find the best regressor for each ship. 

(iv) The quantitative comparison of FL against centralized and decentralized 

team learning methods in maritime setups. 

(v) The limitations of centralized ML solutions are tackled, facilitating the in-

tegration of ML in the maritime industry by addressing the privacy con-

cerns of the involved stakeholders while avoiding excessive transmission 

overheads in the operation of the FL solution. 
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2 Architectural and Technical Methodology 

2.1 Maritime Federated Learning 

In this section, a three-tier Maritime Federated Learning (MFL) architecture is pro-

posed (see Fig. 1). MFL is an adaptation of FL principles, properly embodied within a 

maritime setup, so as to provide an efficient handling of distributed ship-dependent 

datasets and to decouple model training from excessive transmissions to the central 

server. In the considered MFL scenario, local ship clients can be seen as common-goal 

agents, aiming to converge in an adequate solution of a given learning task. This process 

takes place with the supervision and collaboration of the central server, which is re-

sponsible for aggregating knowledge from all agents. Ship-specific data remain local-

ized; hence, any data privacy issue can be met only in isolated ship sites, not affecting 

the federation. 

 

 

Fig. 1. Three-tier Federated Learning Architecture for on-sail maritime intelligence. Local Mod-

els are trained in a decentralized manned, based on local ship-specific data. Only model param-

eters are exchanged through the Transmission layer. The Central Server layer aggregates the local 

models before sending the averaged global model back to the local ship agents.  

Driven by the aforementioned process, MFL can offer a unified distributed ML plat-

form, allowing local models to exploit information observed and processed by other 

learners using the global model. Moreover, incoming new models can directly grasp 

the knowledge obtained by the global model, after long-term federated training among 

existing clients. MFL can also enable learning, based on non-independent and identical 

distributed (non-i.i.d) sets of data [11]. This attribute can be extremely beneficial in on-

sail multi-ship collaborative learning, since different types of ships with diverse sizes 

of available datasets can also be harmonized according to MFL. Note that, although 
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here, we illustrate only neural networks as local/global models, MFL models can be of 

any type, spanning from decision tree, logistic regression and ensemble models to re-

current and convolutional neural networks. 

 

2.2 Cargo Ship Dataset 

To train the ML schemes deployed in this study, a 1-year duration dataset of two twin 

cargo ships was available. For each cargo, ten time-varying variables are captured with 

a sampling frequency of 1 sample per minute. The temporal course of the variables 

refers to multiple voyages of the ships. The data were sampled from 01-07-2021 to 30-

06-2022, resulting in 514,525 (for ship 1) and 525,005 (for ship 2) total instances per 

variable. Specifically, the dataset contained measures about both ship’s on-sail features 

and wind characteristics which are detailed below: 

 

i. Speed over ground (SOG): It quantifies the ship’s speed in relation to the sur-

face of the earth and is measured in knots. 

ii. Speed through water (STW): Different from SOG, STW represents the ship’s 

speed in relation to the water currents and is measured in knots. 

iii. Heading: It denotes the actual on-sail direction in which the ship is pointing 

and it is expressed, as the angular distance relative to north (0°), clockwise 

through 359°. 

iv. Continuous wind speed (CWS): It is the wind strength expressed in m/s. 

v. Discretized wind speed (DWS): It is the discretized version of CWS, quantized 

according to the Beaufort scale (bft). DWS can be considered as a categorical 

variable ranging from 0 to 12 in steps of 1 and mapping with the 13 wind 

classes or weather flags (from “calm” to “hurricane-force”). 

vi. Wind direction (WD): It represents the true wind direction in relation to the 

ship’s on-board heading. Thus, WD is expressed in degrees and varies be-

tween 0°-360° (wind on the bow at 0°, wind on the beam at 90°, wind on the 

stern at 180°). 

vii. Draft forward (DF): The draft forward (bow) is the ship’s depth in meters 

measured at the perpendicular of the bow based on predefined depth levels. 

viii. Draft aft (DA): The draft aft (stern) is the ship’s depth in meters, measured at 

the perpendicular of the stern, based on predefined depth levels. 

ix. Trim: The trim is simply the difference between the DF and DA (depth in 

meters), relative to the designed waterline located at the middle of the ship. It 

determines the minimum depth of water a ship can safely navigate. 

x. Primary engine power (PEP): It is the aggregated power supplied by the prime 

mover(s) which are responsible to provide useful propulsion to the ship and is 

expressed in kW. Obviously, PEP is positively correlated with the electricity 

requirements of the ship’s diesel engine, therefore being directly proportional 

to the fuel oil consumption. Additionally, PEP has also bi-directional causal 

relationship with the ship’s SOG and STW, as well as it is strongly affected 

by wind conditions, sea currents and ship’s drafts. 
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The ML methodology presented below exploits the labelled dataset, considering the 

PEP as the target variable (model output) and the rest of the measures as potential pre-

dictors (or model inputs). This will allow the adoption of an accurate training and ver-

ification process of the developed ML model by measuring the error between the 

model-predicted outputs and the actual historical values of the target variable. 

2.3 Machine Learning-based Pipeline for PEP Prediction 

To ensure high signal-to-noise ratio and sufficient performance of the final-stage col-

laborative learning schemes, a gradual 3-phase pipeline was adopted, including the data 

preparation, the ship-specific local model selection and the comparison among collab-

orative methods for multi-ship PEP prediction (see Fig. 2). 

 

 

Fig. 2. Proposed pipeline for Collaborative Learning of ship’s Primary Engine Power. 

1. Data Preparation: In this phase, all the preliminary steps required to reduce the 

model dimensionality and mitigate the data size and noise were performed. Initially, a 

set of multi-collinearity criteria were investigated towards avoiding feature redundancy 

and mitigating the model input dimensions. As an independent factor of the ship’s fuel 

consumption, Heading parameter was avoided from the regression inputs. In addition, 

both types of vessel drafts (DF and DA) were also ignored, given that retaining only 

their difference (Trim parameter) does not imply any information loss. Moreover, only 

one version of the wind speed was selected (i.e. DWS in bft) to reflect the wind strength. 

Noteworthy, since STW indirectly carries information about sea currents (whereas 

SOG is the ground-referenced speed), both types of speed (SOG and STW) were kept 
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as model inputs. Then, the missing values were replaced, following an average-inter-

polation calculation, based on the previous and the next available samples. The final 

number of interpolated values was not more than 8% of the total samples per variable. 

Instances corresponding to near-zero vessel speed (SOG<0.2 knots) were also ditched. 

Afterwards, the moving-average filter was applied to slightly smooth the data and elim-

inate the aliasing-caused distortion that will follow upon downsampling. Given the slow 

variations observed in all time-series, a downsampling operation was applied to ensure 

a sampling frequency of 1 sample per 15 minutes. Finally, the values of each variable 

were scaled in the range [0,1] using a Min-Max scaling operation.  

 

2. Ship-specific local model selection: In principle, the relationship between the 

ship’s PEP and the model inputs (SOG, STW, DWS, WD and Trim) is unknown and it 

can be either linear or non-linear. ML algorithms can be employed to create a local 

regression model, using historical instance-specific features as inputs and the respective 

PEP values as labels. To reveal the best ship-specific regressor, several ML (linear and 

non-linear) regression algorithms were trained and tested, namely: 

i. Multiple Linear Regression (MLR) assumes that a weighted linear combina-

tion of 𝑁 independent features can predict the target. The resulting model is 

linear with coefficients 𝑤𝑖 (𝑖 = 1, 2, … 𝑁), graphically demonstrated by the 

best-fitting straight line, showing the minimum mean squared error between 

the real and MLR-predicted values (calculated over validation samples). 

ii. Decision Tree Regression (DTR) is a non-parametric ML model which pro-

duces a rule-based tree by splitting the feature space properly, so as to guar-

antee low information entropy in each decision area. Then, using the separated 

decision areas as tree leafs, it constructs several rule paths, arriving at terminal 

leafs according to the prior feature space splitting rules. Each leaf predicts the 

average target value, computed across the target values of all samples, in-

cluded in the respective decision area. 

iii. Support Vector Regression (SVR) uses an ε-insensitive tube to allow for more 

flexibility in errors. Unlike Linear Regression, SVR penalizes only the data 

points that have at least ε distance from the fitting curve. The target of the SVR 

is to fit the best line within a threshold value (ε), reflecting the distance be-

tween the hyperplane and boundary line. 

iv. Random Forest Regression (RFR) is an ensemble learning version of DTR. 

By splitting the dataset in 𝑁 segments, multiple segment-specific DTRs are 

constructed. Given a new sample, the RFR predicts the average prediction, 

computed across all the individual trees. 

v. Artificial Neural Network (ANN) is a supervised non-linear learning scheme 

of sequentially-stacked and fully-connected layers. Each layer consists of mul-

tiple units, each one calculating the weighted sum of all the previous-layer 

outputs and then applying an activation function (e.g. ReLu, SoftMax). ANN 

properly tunes the connections between units (i.e. weights), so as to minimize 

the prediction error (or loss function). 
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3. Collaborative methods for multi-ship PEP prediction: Three schemes were con-

trasted in terms of the provided PEP prediction accuracy preparation, including one 

centralized and two decentralized collaborative schemes, namely: 

i. Centralized PEP prediction (C-PEPpred) is the traditional method to deploy 

ML models. Being sensitive to malicious attacks, C-PEPpred simply collects 

all the data in the central server, before building a powerful heavy model. Both 

ships can predict future PEP values upon request on the central model. Note 

that, this method can have near-optimal PEP estimation error, since the central 

model has been trained on the multi-ship dataset, thus obtaining global envi-

ronment observability. 

ii. Ship-to-ship model transfer for PEP prediction (S2S-PEPpred) is based on 

transferring a ship-specific already trained model to the rest of the ships, thus 

drastically reducing the training effort. Given adequate similarities across 

ships and their respective feature distributions, this method can have beneficial 

outcomes, leading both to extremely fast training and privacy-preservation, 

since the central server is used only for exchanging the models between local 

agents. 

iii. Maritime Federated Learning for PEP prediction (MFL-PEPpred) is based 

on transmitting only the pretrained model parameters to the central server, 

where the conventional FedAvg [11] algorithm is running. Periodically, local 

model weights are replaced with a weighted average model derived by aggre-

gation at the server site (usually located in ports). Apart from data privacy 

protection and low model dimensionality compared to C-PEPpred, MFL-

based local models have finally a global knowledge and can be proactive in 

predicting previously-unseen PEP conditions, as they indirectly exchange in-

formation between each other. 

3 Simulation Results 

For each of the following training setups, single-ship datasets were separated in training 

and testing sets after a 90/10 split ratio. All algorithmic implementations were con-

ducted in Python 3.0, using the Tensorflow (v2.4) and Scikit-learn libraries [12]. 

 

3.1 Optimization of ML Model Hyperparameters 

To ensure optimal configuration of the collaborative methods presented in subsection 

3.3, a careful hyperparameter tuning is required for ANN and RFR. The former’s con-

vergence performance is considerably affected by the network depth and the learning 

rate parameters, whereas the latter is strongly influenced by the number of individual 

tree estimators that are deployed to comprise the forest. Extensive simulations with 

varying learning rates (𝛼 =  0.1, 0.01, 0.001, 0.0001, 0.00001) and number of hidden 

layers (𝐻 = 1, 2, 3, 4, 5) were conducted to optimize the ANN performance. The ith hid-

den layer density was (6-i)×200 (where i=1, 2, …,5). For each (𝛼, 𝐻) pair, the valida-

tion metric was the mean squared error (MSE) between the actual and predicted PEP, 

computed over the testing set. Fig. 3 shows the validation MSE for different values of 



9 

(𝛼, 𝐻), as well as the loss curve for the optimal (𝛼, 𝐻) configuration. The impact of the 

different number of estimators in the RFR is also depicted. 

 

Fig. 3. Hyperparameter tuning of ANN and RFR models. A – B. Validation MSE for varying 

values of learning rate and number of hidden layers, for ship 1 and 2, separately. C. ANN training 

loss curves for ships 1 and 2 using the optimal hyperparameters. D. Validation MSE of RFR 

model, as a function of the number of estimators.  

Evidently, both ship-specific ANN models are optimally trained for H=4 hidden lay-

ers and 𝑎 = 10−3 learning rate. In addition, the RFR algorithm showed the best out-

comes for 120 (ship1) and 20 (ship 2) number of tree estimators, comprising the forest. 

 

3.2 Ship-Specific Model Selection 

Using the optimally configured RFR and ANN models for both ships, this section pre-

sents the performance comparisons between five ML model regressors, namely MLR, 

DTR, SVR, RFR and ANN. To decide which model is the best PEP predictor for rep-

resenting the local models in an FL setup, all models were compared, in terms of their 

resulting validation error, calculated over the testing set (see Fig. 4). 
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Fig. 4. Comparison among different local PEP prediction models for ship 1 and ship 2, in terms 

of the validation MSE.  

As shown in Fig. 4, all models show a validation MSE constantly below 0.018. 

Given the presence of non-linearities in the PEP prediction, MLR showed the highest 

prediction error. Allowing non-linear mapping between the features and the target, SVR 

and DTR exhibited improved error performance (in the order of 10−3). The ensemble 

version of DTR (i.e. RFR) improved further the MSE outcomes, being very close to the 

best regressor, which was the ANN models. Since ANN regressors outperform the rest 

of models, exhibiting an MSE of 0.0006 for both ships, they were finally selected to 

represent the local models of the subsequent analyses.  

 

3.3 Multi-ship Collaborative ML Methods 

In this section, a quantitative comparison is performed, amongst the considered collab-

orative between-ships learning schemes, namely the C-PEPpred, S2S-PEPpred and 

MFL-PEPpred (see Section 2.3). Based on an evaluation set of 100 data samples drawn 

from both ship 1 and ship 2 testing sets, the three collaborative methods were compared, 
in terms of their goodness of fit, based on normalized root MSE (NRMSE, degree of 

fitness between actual and predicted PEP values). To visually illustrate the fitting 

strength of all methods, Fig. 5 (panels A-C) depicts the actual PEP curve and the cor-

responding method-predicted series with all samples representing the evaluation set.  
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Fig. 5. Performance comparison between different collaborative PEP learning methods. A – C. 

Actual versus method-predicted PEP curves for C-, S2S- and MFL-PEPpred, respectively. D. 

Normalized Root MSE-base Goodness of Fit (%) for the three methods.  

Evidently, C-PEPpred shows the best accuracy, as the large ANN used (5 hidden 

layers) has been trained on the datasets of both ships (global observability). Contrary 

to the high demands of C-PEPpred to acquire the training data (massive data transmis-

sion to/from central server, privacy violation), S2S-PEPpred method shows the most 

relaxed requirement of having finally a model at each ship site, however providing 

multiple selfish models. This is attributed to the fact that the transferred model has been 

only trained on the source model data (low global observability). Towards achieving a 

reasonable trade-off between the accuracy of C-PEPpred and the flexibility of S2S-

PEPpred, the MFL-PEPpred model showed a goodness of fit very close to that of C-

PEPpred, offering also low-dimensionality and privacy-preserving benefits. The ade-
quate performance of MFL-PEPpred relies on the ability to obtain general observability 

for all the ship agents, given the aggregation operation at the central server, across all 

individual FL contributors. 

4 Conclusions 

In this paper, a Maritime Federated Learning scheme for decentralized on-ship learning 

is proposed, targeting to overcome the limits of the current centralized approaches. 

Considering a fuel consumption prediction use case, several models are compared, as 

local ship learners, with ANNs outperforming the benchmark ML algorithms. Using a 

real dataset that includes both on-sail ship features and wind information, multiple sim-

ulations were conducted for the optimal configuration of the ML models. The Federated 
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Learning method was compared against a centralized and a decentralized transfer learn-

ing-based method, in terms of the collaborative performance of multi-ship prediction. 

Results showed that Federated Learning comprises a promising solution for enabling 

accurate, collaborative and team learning abilities in maritime setups, overcoming the 

obstacles faced by centralized schemes. 
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