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Abstract — In the present work, a deep learning-based neural network for magnetic dipole modeling (MDMnet) is 

introduced in the framework of DC magnetic cleanliness for space missions. The developed method targets at modeling 

the static magnetic signature of a spacecraft unit that is obtained during the unit level characterization stage of the 

extensive pre-launch electromagnetic compatibility test campaign. By employing synthetic magnetic field data generated 

by virtual dipole sources, the MDMnet can be trained to accurately estimate the magnetic parameters of real equipment 

based on its near field measurements. The target of the proposed deep learning algorithm is, on the one hand, to 

effectively minimize the prediction errors (loss function) throughout the training process and, on the other hand, to enable 

the generalization of the model predictions, i.e. exhibit accurate model estimations with unseen magnetic field data. 

Extensive simulations towards the stabilization of the MDMnet hyperparameters are outlined, and indicative model 

inferences employing artificial magnetic field data are carried out. Finally, the MDMnet can achieve a predictive accuracy 

of 0.8 mm with respect to the dipole localization and 1% with respect to the magnetic field magnitude, verifying the 

potency of the developed method. 
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I. INTRODUCTION 

Conformance with stringent magnetic cleanliness requirements is a 

crucial concern in several space exploration missions that primarily 

focus on measuring the static magnetic fields originating from 

planetary and/or various objects. Such space missions include 

specialized instrumentation in order to capture the magnetic signature 

of these celestial bodies, namely high-resolution magnetic field 

sensors (typically tri-axial fluxgate magnetometers) [Glassmeier 

2010]. The magnetometers that are mounted on the spacecraft, 

however, need to operate in zero-field conditions in order to provide 

accurate field measurements of the objects of interest. Therefore, the 

magnetic fields generated from the equipment inside the spacecraft or 

even the spacecraft enclosure itself need to be cautiously controlled 

and minimized [Mehlem 1978]. Static magnetic fields usually 

originate in the design and manufacturing of the spacecraft units, 

where materials with magnetic properties can be used, but their 

generation may be also attributed to the operation of actuation 

mechanisms (e.g. reaction wheels) and integral parts of the spacecraft 

(e.g. solar array) [ESA 2012]. 

Therefore, the magnetic cleanliness tests are a key pillar to 

accomplish the scientific objectives of various missions as part of the 

general electromagnetic compatibility and interference (EMC/EMI) 

campaign. Towards this direction, methods to meet the increasingly 

strict DC magnetic cleanliness requirements have been extensively 

studied, developed and implemented on many space programmes, 

such as BepiColombo, Juice and Solar Orbiter [Kaiser 2008, Brown 

2019, Pudney 2019]. In the framework of all these programmes, 

magnetic measurements extend from unit level characterization (each 

spacecraft unit is individually subjected to measurements and 

modeling) to system level tests (measurement of the magnetic 

signature of the entire spacecraft).  

The unit level characterization is the cornerstone of every magnetic 

cleanliness programme. This involves a standardized procedure 

targeting to capture the static near-field magnetic signature produced 

by an individual spacecraft unit and identifying a model consisting of 

virtual magnetic sources. Subsequently, the estimated models that are 

derived from all units can be employed to evaluate the total magnetic 

field and validate it against the system level measurements. 

According to [ESA 2012], several consequential actions are required, 

including magnetic budget simulations with regards to the placement 

of the units inside the spacecraft, investigation of design changes in 

their internal structures of each unit, higher-order demagnetization, 

etc.  

The unit level near-field measurements are typically carried out in 

dedicated facilities, namely the Magnetic Coil Facility (MCF) and the 

Multi-Magnetometer Facility (MMF) [ESA 2012, Tsatalas 2019], 

using similar or identical measuring equipment with the onboard 

magnetic field sensors (fluxgate magnetometers). The sensors are 

placed in close proximity to the unit under test, while also aiming to 

effectively capture its spatial magnetic signature from various 

possible angles/orientations. Then, the acquired near-field magnetic 

data are modeled with well-established methods, the most prominent 

being the multiple dipole modeling (MDM) [Junge 2011]. The MDM 

method is principally based on the assumption that a set of virtual 

magnetic dipole sources can optimally reproduce the measured 

magnetic signature, thus accurately representing the original unit in 

terms of magnetic field generation. Notably, the implementation of 

the MDM method mainly relies on the determination of the model 

parameters, namely the position vectors of the magnetic dipoles inside 

the volume of the unit, as well as their magnetic moment vectors. 
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Multiple scientific space missions have taken advantage of the 

MDM method for their magnetic cleanliness programmes, for 

instance the Swarm mission, Solar Orbiter, Ulysses, etc. Towards 

applying the MDM method, both deterministic and stochastic 

optimization techniques are deployed; in particular, Genetic 

Algorithms (GAs) and Particle Swarm Optimization (PSO) are typical 

optimization methods used to identify the dipole parameters that 

accurately fit the measured magnetic field data [Carrubba 2012, 

Kapsalis 2012]. Importantly, these techniques exhibit adequate 

performance in terms of accuracy of the predicted field (deviation 

between the measured data and the magnetic field generated by the 

estimated model) and, additionally, demonstrate a satisfactory 

convergence speed for simple dipole sources. Nevertheless, since the 

determination of each dipole requires 6 model parameters (i.e. 3-D 

position and magnetic moment), the convergence time of these 

techniques becomes gradually elongated for increasing complexity of 

the magnetic sources comprising the unit, or the algorithms may even 

converge at suboptimal solutions [Spantideas 2016]. 

Driven by the ability of neural networks to efficiently estimate 

extremely complex functions, the present work introduces a deep 

learning algorithm for solving the MDM (MDMnet) inverse 

electromagnetic problem [Erricolo 2019]. The MDMnet is employed 

in order to learn (map) the relation between the input (magnetic field 

measurements) and the output (parameters of the dipole sources) via 

training with synthetic data. To obtain labeled data for the supervision 

of the model, simulated datasets containing multiple magnetic field 

data/model parameters pairs are generated and used to train the neural 

network. The training targets to adjust the MDMnet weights, so as to 

(i) minimize the defined loss function (mean square error between the 

actual dipole parameters and the predicted outputs of the model) and 

(ii) ensure generalization capabilities, i.e. achieve enhanced accuracy 

not only for the training samples, but also for data that have not been 

encountered by the algorithm during the training phase (in-sample and 

out-of-sample data). The main benefit of using a pre-trained network-

based predictor is the ability to make inferences in near-real time and 

without considerable computational effort. In this context, the pre-

trained model can be implemented directly on near-field measurement 

of real spacecraft equipment from the MCF or MMF facilities and 

provide predictive services in near-zero-time, even when complex 

scenarios are considered. 

 

II. MATHEMATICAL FORMULATION 

A. Background 

According to the MDM method, the magnetic field generated by a 

unit under test is equal to the superposition of the fields produced by 

its magnetic dipoles, assuming that the unit contains 𝑗 = 1,2, … ,𝑀 

dipoles. The magnetic flux density vector (herein referred as magnetic 

field) due to the presence of the 𝑗𝑡ℎ dipole source can be expressed 

[Mehlem 1978, Jackson 1999]: 

 

𝐁𝑖𝑗 =
𝜇0
4𝜋
[
3(𝐫′𝑖 − 𝐫𝑗)[(𝐫′𝑖 − 𝐫𝑗) · 𝐦𝑗]

|𝐫′𝑖 − 𝐫𝑗|
5 −

𝐦𝑗

|𝐫′𝑖 − 𝐫𝑗|
3], 

(1) 

 

where 𝐫′𝑖 = (𝑥𝑖0, 𝑦𝑖0 , 𝑧𝑖0)  denotes the position of the 𝑖𝑡ℎ 

measurement point in Cartesian coordinates, 𝐫𝑗 = (𝑥𝑗, 𝑦𝑗 , 𝑧𝑗)  and 

𝐦𝑗 = (𝑚𝑥𝑗 , 𝑚𝑦𝑗 , 𝑚𝑧𝑗)  stand for the position and magnetic moment 

vectors of the 𝑗𝑡ℎ dipole source inside the unit under test and 𝜇0 is the 

permeability of free space. The total magnetic field at the location of 

the 𝑖𝑡ℎ  measurement point (magnetometer) can be calculated in 

components by summing up all the contributions from the 𝑀 dipole 

sources: 

 

𝐁𝑖 =∑𝐵𝑥𝑖𝑗

𝑀

𝑗=1

�̂� +∑𝐵𝑦𝑖𝑗

𝑀

𝑗=1

�̂� +∑𝐵𝑧𝑖𝑗

𝑀

𝑗=1

�̂� (2) 

B. Proposed Method 

Without loss of generality, the geometrical shape of the unit under 

test is considered cuboid with dimensions 𝐿 ×𝑊 ×𝐻 . Since the 

magnetic field sources can be located anywhere inside the volume of 

the unit, the position components of the training dipole parameters are 

generated according to the uniform distribution in the intervals 

[−𝐿 2⁄ , 𝐿 2⁄ ],  [−𝑊 2⁄ ,𝑊 2⁄ ]  and [0, 𝐻]  for the (𝑥𝑗, 𝑦𝑗 , 𝑧𝑗) 

components, respectively. Similarly, the values for the components of 

the magnetic moments (𝑚𝑥𝑗 , 𝑚𝑦𝑗 , 𝑚𝑧𝑗) can also be drawn from a 

uniform distribution in the interval [−𝑚𝑚𝑎𝑥 ,𝑚𝑚𝑎𝑥], where 𝑚𝑚𝑎𝑥 is 

the maximum value of the magnetic moment. It is also worth noting 

that different distributions may be used to generate magnetic moment 

data, without having a significant impact on the results of the 

proposed method. 

The generated values for the parameters of the dipoles are then 

employed in Eq. (1) (and Eq. (2) if more than one dipoles are 

considered for the model of the unit) in order to generate the magnetic 

field at 𝑖 = 1,2, … ,𝑁  measurement points and create multiple 

simulated measurements. Finally, these 𝑝 = 1, 2,…𝑃  pairs of 

magnetic field and dipole(s) parameters are used for the training of 

the neural network. 

 

 
Fig. 1. Number of neurons and corresponding activation functions of 

input, output and hidden layers of the fully-connected MDMnet. 

 

In this study, the MDMnet is deployed to solve a regression 

problem with supervised learning, targeting at learning the mapping 

function between the multi-site magnetic field measurements and the 

characteristics of the equivalent dipole. The dimensions of the neural 

Authorized licensed use limited to: National Technical University of Athens (NTUA). Downloaded on April 02,2021 at 16:16:16 UTC from IEEE Xplore.  Restrictions apply. 



1949-307X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LMAG.2021.3069374, IEEE
Magnetics Letters

IEEE MAGNETICS LETTERS                                                                                                                                                                                                      Page 3 of 7 

————————————————————————————————————– 
network (input, output and hidden layers) are depicted in Fig. 1. The 

input layer consists of 3 ×  𝑁  neurons, since 𝑁  tri-axial magnetic 

field sensors are considered for the measurement of the magnetic 

signature of the unit. Moreover, the output layer is 6 ×  𝑀 neurons, 

considering that 6 parameters are used to describe each of the 𝑀 

magnetic dipoles. Finally, the number of neurons in the 𝐾 hidden 

layers (intermediate layers between the input and output of the neural 

network that apply non-linear data transformation through an 

activation function [Goodfellow 2016]) are associated with the 

dimensions of the output layer, i.e. the number of dipole parameters 

to be estimated. 

The 𝑃 generated data pairs are used to train the neural network. The 

target is to adjust the weights of the neurons in order to minimize the 

loss function, i.e. the deviation between the actual positions and 

moments of the dipoles with respect to the output of the neural 

network (predicted values). We used an L2 loss function which can 

be expressed as: 

 

𝐹 =
1

6 ∙ 𝑃 ∙ 𝑀
∑∑∑(𝑌ℎ𝑗𝑝 − �̂�ℎ𝑗𝑝)

2

6

ℎ=1

𝑀

𝑗=1

,

𝑃

𝑝=1

 (3) 

 

where 𝑌ℎ𝑗 = (𝑥𝑗, 𝑦𝑗 , 𝑧𝑗 ,𝑚𝑥𝑗 , 𝑚𝑦𝑗 , 𝑚𝑧𝑗)  stands for the actual 6 

parameters of the 𝑗𝑡ℎ  magnetic dipole and �̂�ℎ𝑗  stands for the 

parameters estimated by the neural network. The algorithm performs 

multiple epochs (defined as the number of complete scans of the 

whole training dataset with multiple “feed-forward and back-

propagation” cycles) during the training phase. In each epoch, the 

input and output values of all data pairs are used to update the neuron 

weights through the back propagation process [Goodfellow 2016]. 

The process converges when the objective function of Eq. (3) is 

substantially minimized, i.e. the weights of the neural network are 

properly adjusted to predict the output dipole parameters of all data 

samples. 

 

III. SIMULATION RESULTS 

A. Simulation Setup 

In order to verify the proposed methodology, it is assumed that the 

unit level magnetic measurements are performed in the MMF facility, 

where 12 magnetic field sensors are used to simultaneously capture 

the signature of the unit [Tsatalas 2019], as depicted in Fig. 2. 

The equally-spaced magnetometers are configured across 2 circles 

above and below the table in which the unit is placed at a radius of 25 

cm and a height of ± 10 cm. Moreover, it is assumed that the unit’s 

dimensions are 20 × 20 × 10 cm3 and its magnetic signature can be 

well represented by a single dipole source, having a maximum 

magnetic moment of ± 10 mAm2 only in the 𝑧-direction.  

Initially, 𝑃 = 10000 data pairs are generated in order to evaluate 

the performance of the algorithm. Following the presented 

methodology, the MDMnet is configured with 36 neurons in input 

layer and 6 neurons in the output layer. Before the fine-tuning 

simulations, the number of hidden layers is varied from 1 to 9 and the 

learning rate ranges from 0.01 to 0.0001. The rectified linear (ReLu) 

activation function is adapted to the neurons of all layers, except for 

those of the output layer, to which the linear activation is employed. 

The MDMnet construction and the training/validation simulations 

were carried out in Python 3.8 and TensorFlow 2.3 (using the Adam 

optimizer). 

 

 
  

Fig. 2. Simulated measurements setup configuration using multiple 

magnetic field sensors (depicted as light blue circles) around a table 

that the unit under test is placed. 

B. MDMnet Fine-Tuning 

In order to determine the training hyper-parameters of the MDMnet, 

training/validation split of the data pairs 𝑃 is set to 90%/10%. The 

selection criteria regarding the number of MDMnet hidden layers rely 

on three metrics that are extracted from the validation data. For each 

MDMnet configuration with varying number of hidden layers, the 

model is initially trained and then inferred employing 1000 validation 

scenarios. The calculation of the average position deviation between 

the actual dipole’s parameters and the output of the MDMnet 

algorithm may be performed as follows: 

 

𝛥𝑟 =
1

0.1 ∙ 𝑃
∑ [(𝑥𝑝 − 𝑥𝑝)

2 + (𝑦𝑝 − 𝑦𝑝)
2 + (𝑧𝑝 − 𝑧�̂�)

2 ]

𝑃

𝑝=900

 (4) 

 

and similarly regarding the average deviation of the magnetic moment. 

 

 
Fig. 3A. Deviation of position (in cm) and magnetic moment (in mAm2) 

for varying number of hidden layers and 3B. Occurrences of position 

deviation greater than 0.5 cm (exceedance score) for different number 

of hidden layers. 
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Furthermore, the exceedance score (i.e. number of validation 

scenarios that the position deviation is greater than a specific 

threshold) is also calculated. To ensure significant accuracy in the 

prediction of the dipole’s position, the threshold is set at 𝛥𝑟 < 0.5 cm 

[Tsatalas 2019]. Fig. 3 illustrates the position and moment deviation 

(panel A), as well as the exceedance score (panel B) as a function of 

the number of hidden layers. Evidently, the densification of the 

MDMnet is positively correlated with its performance, exhibiting 

locally optimal accuracy with the usage of 7 hidden layers.  

Regarding the learning rate stabilization, similar simulations using 

7 hidden layers and variable learning rates, i.e. {0.01, 0.001, 0.0001}, 

are conducted. As shown in Fig. 4, all learning rate configurations 

converge in semi-identical validation losses (𝐹 < 0.001), showing 

the optimal convergence speed in the scenario with a = 0.001.  

 

 
Fig. 4. Convergence of the validation loss function (MSE) with respect 

to the number of epochs for varying value of learning rate parameter a 

during the training session. 

C. Verification Results 

In order to evaluate the resulting estimations of the MDMnet (with 

7 hidden layers and learning rate a=0.001) and verify its predictive 

performance with regard to the magnetic field signature, we exploit 

𝑃 = 1000 (out of training samples) different model predictions by 

using them for solving the forward problem. To this end, the magnetic 

field produced by the estimated models’ parameters is calculated and 

compared to the input field of the neural network. This process 

guarantees that the estimated dipole from the MDMnet algorithm can 

accurately represent the magnetic signature of the virtual source.  

In Fig. 5, the mean relative deviation (MRD) between the magnetic 

field magnitudes across all validation scenarios is depicted for all 𝑖 =

1, 2,… 12 observation points, along with the standard error (SE) bars 

of the mean. MRD extracted from measurement point 𝑖  can be 

expressed by: 

 

MRD𝑖(%) =  100
1

𝑃
∙∑

(

 
 
√𝐵𝑥𝑖,𝑝

2 + 𝐵𝑦𝑖,𝑝
2 + 𝐵𝑧𝑖,𝑝

2 −√𝐵′𝑥𝑖,𝑝
2 + 𝐵′𝑦𝑖,𝑝

2 + 𝐵′𝑧𝑖,𝑝
2

√𝐵𝑥𝑖,𝑝
2 + 𝐵𝑦𝑖,𝑝

2 + 𝐵𝑧𝑖,𝑝
2

)

 
 
,

𝑃

𝑝=1

  (5) 

 

where 𝐵  and 𝐵′ correspond to actual and predicted magnetic field 

values, respectively. Evidently, in all measurement points, the mean 

relative deviation (~1%) is within the range of 0.05 – 2%, indicating 

accurate reproduction of the magnetic field magnitude generated by 

the virtual dipole sources. 

To precisely localize the MDMnet performance, Fig. 6 illustrates 

the mean absolute error (MAE ± SE) separately for each component 

of the magnetic signature between the predicted and actual field 

values (for the same 1000 scenarios). Evidently, MDMnet exhibits 

also adequate component-specific (~ 0.1 nT in 𝑥-, ~ 0.3 nT in 𝑦-, 

~ 0.2 nT in 𝑧-component) predictive accuracy in all measurement 

points. 

 

 
Fig. 5. Mean and Standard Error for the relative deviation (%) between 

actual and model-predicted magnitude of the magnetic field across the 

12 measurement points.  

 

 
Fig. 6. Component-specific mean absolute error (in nT) between actual 

and model-predicted magnetic field across the 12 measurement points. 

 
IV. CONCLUSION 

In this work, a deep learning method for solving the MDM non-

linear optimization problem is presented. A neural network 

(MDMnet) is trained with simulated data pairs of virtual 

sources/associated magnetic field. The pre-trained MDMnet is 

validated with different simulation scenarios in order to verify its 

potency. The resulting validation data confirm the MDMnet ability to 

accurately predict the magnetic source parameters.  

The method may be further extended with multiple MDMnets, each 

one predicting a different number of virtual dipoles, introducing the 

concept of ensemble learning. Finally, another straightforward 

extension of the method involves the inclusion of measurements’ 

setup configuration as inputs to the MDMnet. 
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ANSWER TO REVIEWER 1  
 
The authors of the manuscript “A Deep Learning 
Method for Modeling the Magnetic Signature of 
Spacecraft Equipment using Multiple Magnetic Dipoles” 
report on a deep learning algorithm to determine the 
magnetic dipole configuration from magnetic field 
measurements. The knowledge of the magnetic dipole 
configuration is critical for space probes, which study 
the magnetic signature for stellar objects. The 
existence of dipoles within the probe itself can 
contaminate the magnetic signature under 
investigation. The authors present an algorithm, which 
helps to solve the inverse problem, where the location 
and orientations of the dipoles is not known. The author 
test the algorithm with different parameters and 
validate the results. 
We would like to thank Reviewer 1 for his/her comments and 
suggestions that helped us to clarify important issues and 
enhance the quality of the paper. Based on these 
comments/suggestions, several changes to the manuscript 
have been made. 
The manuscript is well written but would benefit from 
the following revisions: 
1)      It is not clear, what “hidden layers” are. 
The reviewer is correct. In order to clarify the definition of 
hidden layers, we have added the following phrase and the 
respective reference: 
 “(intermediate layers between the input and output of the 
neural network that apply non-linear data transformation 
through an activation function [Goodfellow 2016])”.  
2)       It appears that the parameter “a” in line 15 on page 
4 was not defined. The reader can only guess that this 
is the learning rate. 
We would like to thank the reviewer for his/her comment. 
This has been clarified in the updated version of the 
manuscript.  
3)      The authors refer to the magnetic field but use the 
unit Tesla and the variable B to quantify it. B is usually 
used for the magnetic induction and the unit for 
magnetic fields is A/m not Tesla, which is the unit of 
magnetic induction. 
We would like to thank the reviewer for his/her comment. 
We actually calculate the magnetic induction (or magnetic 
flux density) B and refer to this as magnetic field. B has the 
units of Tesla, and taking into consideration that the 
relationship between B and H is linear (B = μ0H), Eq. (1) 
may be used to calculate the magnetic field H (in A/m), by 
simply omitting the constant μ0. However, in order to be 
more concrete, we have clarified this issue before the 
definition of the magnetic induction (Eq. (1)). 
4)      The captions of the figures are generally not very 
clear and do not fully describe the figure. 
As correctly suggested by the reviewer, the captions of the 
figures have been extended in order to clearly describe the 
respective figures. 
5)      In line 48 on page 3 it should read cm^3 not just 
cm 
This has been corrected in the updated version of the 
manuscript. 

6)      The description within figure 2 is too small and 
hard to read. 
As correctly suggested by the reviewer, the font size inside 
Fig. 2 has been increased for improved presentation 
purposes. 
7)      What is the difference between “in-sample” and 
“out-of-sample” data? 
The reviewer’s comment is valid. In principle, in-sample data 
are the training samples that are used for training purposes 
of the neural network, while out-of-sample data are data not 
previously encountered by the neural network and are used 
for validation of the deep learning algorithm. For clarification 
purposes, the following phrase has been added in the 
Introduction section: 
“(ii) ensure generalization capabilities, i.e. achieve 
enhanced accuracy not only for the training samples, but 
also for data that have not been encountered by the 
algorithm during the training phase (in-sample and out-of-
sample data).” 
8)      The authors state in the abstract that they can 
achieve an accuracy of 1% with respect to the magnetic 
field. Does this refer to the direction or magnitude of the 
magnetic field? 
As correctly suggested by the reviewer, we have clarified in 
the Abstract that the accuracy of 1% corresponds to the 
magnitude of the magnetic field (also shown in the 
Verification Results subsection – Fig. 5). Regarding the 
direction of the magnetic field, we have also included in the 
results the mean absolute error (Fig. 6) for each individual 
component.  
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ANSWER TO REVIEWER 2  
 
The manuscript is well written and the methods and 
results are reasonable.  I do not have any objections to 
publish it in the present form. 
We would like to thank Reviewer 2 for his/her feedback. 
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