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Abstract—Power allocation is strongly related to the coverage and 

capacity of wireless networks, playing a critical role in the 
development of 5G networks. This paper proposes a Demand-Driven 

Power Allocation (DDPA) algorithm aiming to fulfill the requested 

throughput of individual users and accommodate their needs. DDPA 

is based on model-free Deep Reinforcement Learning (DRL) 

approaches and has the ability to proactively adjust the power levels 

of network transmitters. The performance of the developed algorithm 

is evaluated for a variety of simulation parameters and variable user 

demands. According to the presented results, the DDPA scheme 

exhibits a near-optimal performance for up to 50 users in the network 

area (i.e. satisfaction percentage exceeds 95%), with each one 

requesting 1 Mbps. Moreover, performance comparison between 

DDPA and two typical baseline methods reveals that the former results 

into enhanced total allocated throughput solutions (i.e. a performance 

increase by a factor of approximately 9% against baseline methods). 

Keywords—Reinforcement learning, Power allocation, Deep Q 

Network, Resource allocation 

I. INTRODUCTION 

Fifth-generation (5G) networks will act as a unified 

connectivity platform for future innovations, embracing the 
evolving cellular systems to incorporate diverse services, 
devices and deployments. It is expected that 5G networks will 

support billions of inter-connected devices, ensuring high-
quality of experience [1]. Such networks are provisioned to 
present self-organizing capabilities, including self-

configuration of radio resources and self-optimization of 
network parameters [2]. However, due to the large number of 

mobile users and/or densely-deployed network elements, 
overall interference defines an upper-bound in the network 
performance. 

In such complex environments, the optimal resource 
allocation inevitably becomes a non-convex problem, 
enforcing the idea of finding sub-optimal solutions [3]. 

Traditionally, heuristic algorithms have been widely used to 
solve Radio Resource Management (RRM) problems, such as 

brute-force search, genetic algorithms, rule-based and branch-
and-cut approaches [4]-[5]. The main drawback of such 
methods is the excessive computational cost, as well as the 

inability to generalize their solutions, thus becoming infeasible 
for large-scale cellular systems [3]. Reinforcement learning 
(RL) algorithms have yielded promising results in various 

RRM problems so far and have been recently adapted for 
network optimization [6]. 

In the framework of designing and implementing the 
interference mitigation techniques towards ensuring sufficient 
Quality of Service (QoS) to mobile users, intelligent 

optimization methods aim to decrease the operational costs 

associated with commissioning additional network elements. 
Among a variety of physical layer optimization algorithms, 
power allocation has attracted considerable scientific interest. 

To this end, several power configuration algorithms have been 
proposed to optimize the network capacity, eliminate inter-cell 
interferences and regulate the coverage area of the network 

cells [7]-[10]. Specifically, the authors in [11] proposed a 
cooperative Q-learning algorithm to control the power of dense 

cells, while ensuring fairness across users. Moreover, a  
different RL strategy was followed in [12], where a multi-cell 
power allocation scheme targeting at the maximization of the 

overall network capacity was presented. In addition, a joint user 
association and resource allocation algorithm was proposed in 
[13], in order to maximize the long-term overall network utility 

in heterogeneous networks.  
In this paper, a  Demand-Driven Power Allocation (DDPA) 

algorithm is formulated and implemented on realistic network 
configurations. A general-purpose power control scheme is 
described, aiming to ensure acceptable QoS to mobile users by 

adjusting the power levels of radio units (RUs). The algorithm 
is based on Deep Reinforcement Learning (DRL), taking 
advantage of its generalizability and applicability to large state-

action spaces. The developed algorithm targets at the 
fulfillment of the maximum possible allocated throughput, 

driven by the user-specific requested throughput. The main 
contributions of this paper include: (i) The proposed DRL-
based power allocation scheme relies on a model-free 

algorithm, (ii) the presented framework allows the 
generalizability of the DDPA algorithm to complex 
telecommunication environments, (iii) as opposed to several 

existing power allocation approaches focusing on the total 
network-wide throughput maximization, DDPA addresses the 

power control problem from a demand-driven perspective, (iv) 
a  novel rewarding system is established in order to overcome 
the significant drawback of the total network-wide throughput 

maximization (i.e. unbalanced throughput allocation that leads 
to over-satisfaction of some users and poor QoS for others) and 
(v) the DDPA algorithm can take advantage of training-

inference split. In specific, the pre-trained DQL agent can be 
effortlessly inferred throughout the online network operation.  

II. SYSTEM MODEL AND PROBLEM FORMULATION 

A. Network and Interference Model 

A network area accommodating 𝑀 RUs is considered, each 

one having available 𝐹 resource blocks (RBs) that may be 
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grouped in 𝑁 equally-divided channels with the same 

bandwidth 𝐵. Moreover, the mth RU transmits over each 
channel 𝑛 with a specified power level 𝑃𝑚,𝑛 = 𝑝(𝑙), which is 

selected from a set of available power levels {𝑙 = 1,2,… , 𝐿}. 
Finally, a  maximum total power constraint 𝑃𝑚𝑎𝑥

𝑚  is considered 
for each RU. Each user 𝑢 ∈ {1,2,…, 𝑈} located inside the 

network area may be associated with ≥ 1 RBs of a particular 

RU 𝑚. This user requests a service corresponding to a 
throughput demand vector 𝐷𝑢 (in Mbps). The system is 
supervised by a centralized intelligent controller, which 

effectively adjusts the transmit power of the RUs’ channels 

(denoted as 𝑃𝑚,𝑛).  

The wireless environment implies accumulated interference 
signals from operating neighboring RUs in the network area. 

The signal-to-interference-plus-noise ratio (SINR) of the 𝑢th 
user that is associated with the nth channel of the mth RU may 
be expressed as: 

 

𝑆𝐼𝑁𝑅𝑢
𝑚 ,𝑛,𝑓 =

𝑃𝑚,𝑛,𝑓 ∙ 𝐺𝑚,𝑛,𝑢

(∑ 𝑃𝑚′ ,𝑛,𝑓 ∙ 𝐺𝑚′ ,𝑛,𝑢)
𝑀
𝑚′≠𝑚 +𝑁0

,          (1) 

 

where 𝑃𝑚,𝑛,𝑓 denotes the transmit power of the mth RU over RB 

𝑓 of channel 𝑛, 𝐺𝑚,𝑛,𝑢 denotes the channel gain (log-normal 

shadowing and the corresponding path-loss [7], [14]) from the 

mth RU to the uth user over the nth channel and 𝑁0′ stands for the 
noise power at the receiver level. The downlink capacity can be 
calculated from the Shannon formula as: 

 

𝑅𝑢
𝑚,𝑛 = 𝑗𝑢,𝑛,𝑚

𝑁 ∙ 𝐵𝑛

𝐹
∙ 𝑙𝑜𝑔(1+ 𝑆𝐼𝑁𝑅𝑢

𝑚 ,𝑛,𝑓),          (2) 

where 𝑗𝑢,𝑛,𝑚 is number of RBs assigned to satisfy the demands 

of user 𝑢. 
 

B. Problem Formulation 

The target of the DDPA modeling methodology is to adjust 

the power vectors of the 𝑀 RUs in order to fulfil the requested 
throughput of each user. The optimization problem (P) may be 
defined as follows:  

 

(P) 

 

s.t.: 

𝑚𝑖𝑛 ∑(𝐷𝑢−  𝑅𝑢
𝑚 ,𝑛)

𝑈

𝑢=1

 

 

(3) 

(𝐶1) ∑ 𝑎𝑢,𝑚,𝑛 ≤ 1

𝑀

𝑚=1

, ∀𝑢, (4) 

(𝐶2) ∑ 𝑃𝑚,𝑛 ≤ 𝑃𝑚𝑎𝑥
𝑚

𝑁

𝑛=1

, ∀𝑚 (5) 

(𝐶3) ∑ 𝑎𝑢,𝑚,𝑛 𝑗𝑢,𝑛,𝑚 ≤
𝐹

𝑁

𝑈

𝑢=1

, ∀𝑚, 𝑛 (6) 

(𝐶4)      𝑅𝑢
𝑚 ,𝑛 ← 𝑚𝑖𝑛{𝐷𝑢, 𝑅𝑢

𝑚,𝑛} (7) 

 
Equations (3)–(7) constitute the optimization problem 

constraints. Specifically, (𝐶1) ensures that each user can only 

be associated to a single RU, (𝐶2) reflects the power budget 

limitation, (𝐶3) secures the channel capacity overflow and, 

finally, (𝐶4) ensures that the user data-rate is upper bounded 
by the requested throughput requirements. 

 
C. The Deep Q-Learning Framework 

A DRL framework is described via (i) the state space of the 
environment observed by the agent, (ii) the action space that 
contains all possible actions (iii) the rewarding function to 

model the environment responses. State space: The 
environment state is efficiently described via a three-fold 

information, namely the user-specific (i) Channel Quality 
Indicator (CQI, [14]), (ii) the serving RU number and (iii) the 

allocated channel ID. Formally, the system state is 𝑆𝑡 =
[(𝐶𝑄𝐼1,𝑅𝑈1,𝐶𝐻1),…, (𝐶𝑄𝐼𝑈,𝑅𝑈𝑈 ,𝐶𝐻𝑈)], at time 𝑡. The user 
association is based on the maximum throughput criterion. 

Action space: At a given time 𝑡, the performed action is 𝐴𝑡 =
[(𝑃1,1,… ,𝑃1 ,𝑁),…, (𝑃𝑀,1 ,…, 𝑃𝑀,𝑁)]. Reward system: The 

feedback of the telecommunication environment may be 
described via the rewarding function: 

 

𝑟𝑡 =

{
  
 

  
 
𝐼 =∑𝑚𝑖𝑛{𝐷𝑢, 𝑅𝑢

𝑚,𝑛}𝑡

𝑈

𝑢=1

−∑𝑚𝑖𝑛{𝐷𝑢,𝑅𝑢
𝑚 ,𝑛}𝑡−1

𝑈

𝑢=1

,   𝑖𝑓 𝐼 > 0 

∑{𝐷𝑢}𝑡

𝑈

𝑢=1

,   𝑖𝑓 {𝑅𝑢
𝑚,𝑛}𝑡 ≥ {𝐷𝑢}𝑡 ,   ∀𝑢

 0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   
         

(8) 

 
The main goal of the rewarding function is to uniformly 

increase the allocated sum-rate among the individual users. 
Specifically, the agent receives: 

Case 1: a  positive reward equal to the difference 𝐼 between the 
current and the previous sum-rate in case of sum-rate increase, 

Case 2: a  high-valued positive reward equal to the total 
requested throughput if the demands of all users are totally 
fulfilled, 

Case 3: a  zero value when the current action does not increase 
the sum-rate with respect to its previous value. 

Action selection policy: The ε-greedy method was used for 

the action selection strategy. 
 

 

Fig. 1. The process of the DQL algorithm for DDPA.  

 The neural network that is employed to solve the 
optimization problem is depicted in Fig. 1, along with 
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progression of the DDPA algorithm. The number of neurons in 

the input layer is related to the state space, which in turn is 
positively correlated to the number of users. The output layer is 
based on the number of RUs and channels, i.e. the action space 

includes all the possible combinations of the power regulation 
for the channels of all RUs. 

III. SIMULATION RESULTS 

A. Simulation setup and DQN fine-tuning 
In this section, simulation results are provided regarding the 

performance of the proposed DDPA algorithm, which was 
implemented in Python 3.8. In this context, we consider a 
network area consisting of four RUs with a minimum inter-RU 

distance of 750m [14]. To validate the proposed RL scheme in 
extreme interference conditions, we also consider two channels 

for each RU (𝐵 = 9𝑀𝐻𝑧, 𝑓𝑐 = 2𝐺𝐻𝑧, 𝐹 = 50 RBs). Each 
channel operates at a  specific power level selected by the set of 

available powers {6.4, 9.6, 12.8, 16, 19.2} W (with 𝑃𝑚𝑎𝑥 =
38 𝑊). The antenna system of each RU had three equally-
spaced sectors (HPBW = 70o and minimum gain = -35dB per 
sector [14]). The path loss part of the channel gain was 

computed according to the model specified in [14], with a noise 
power density of -174dBm/Hz. For simulation purposes, we 
indicatively consider three requested QoS levels, namely 0.1, 1 

and 2.5 Mbps. 

 

Fig. 2. Accumulated reward for different values of the learning rate 𝜶 (left) 
and number of hidden layers (right). 

The performance of the DDPA algorithm is evaluated by 
monitoring the training process using various hyper-parameters 
in the neural network configuration. Fig. 2 depicts the 

accumulated reward for several values of the learning rate as a 
function of the training episodes (left), for different number of 

hidden layers in the Q- and target Q-networks (right).  
Integrating the results of Figs. 2-3, the value of the learning 

rate is set at 10-4, whereas the neural networks are deployed 

using 3 fully-connected hidden layers, discount factor=0.99, 
update target frequency every 500 episodes, memory 
size=5000, batch size=64 and Huber loss as loss function. The 

number of neurons in 1-3 hidden layers was 4×, 3× and 2× 
number of actions, respectively.  

 
B. Performance Evaluation 

The algorithm performance is verified by conducting Monte-
Carlo simulations for different user positioning realizations 
within the network area. In each positioning scenario, the users 

are randomly placed within the network area. We define the 
performance of each simulation setting as the ratio between the 
total allocated throughput and the total requested throughput 

(i.e. the optimal solution) for 𝑁𝑖= 10
3  different user 

positioning scenarios. Formally, the performance metric for a 

simulation setting with 𝑈 users is given by: 

𝑃𝑈(%) =
∑ ∑ 𝑅𝑢

𝑈
𝑢=1

𝑁𝑖
𝑖=1

∑ ∑ 𝐷𝑢
𝑈
𝑢=1

𝑁𝑖
𝑖=1

×100, (9) 

where 𝑅𝑢 is the allocated throughput to the user 𝑢 and 𝐷𝑢 is the 
corresponding throughput demand. 

In the first part of the evaluation, we investigate the 
performance of the proposed scheme as (i) a  function of the 
number of users and (ii) the requested service becomes more 

stringent. To that end, the DDPA algorithm is verified for 10, 
20, 30, 40 and 50 users and for varying demand vector, namely 
all users request QoS (i) class 1, (ii) class 2 and (iii) class 3. 

 

Fig. 3. DDPA performance in cases that all users request service 1, 2 and 3, 
respectively, as a function of the number of users  

Evidently, the results shown in Fig. 4 indicate that the DDPA 

algorithm achieves 96-100% performance when the demand 
vectors are 0.1 and 1 Mbps, regardless of the number of users. 
As expected, the performance ratio gradually deteriorates in the 

case of the strictest demand vector (2.5 Mbps). Although the 
ratio remains above 85% for 10, 20 and 30 users, the results of 
Fig.4 imply the need for additional channel capacity in cases of 

increased total requested throughput (substantial number of 
users, very challenging demands, etc.).  

In the second set of simulations, we consider five different 
realistic scenarios with increasing complexity, as the number of 
active users ranges from 10 to 50. Specifically, the 

configuration of the 5 scenarios included: (i) 10 users 
requesting 17.5 Mbps, (ii) 20 users requesting 30.5 Mbps, (iii) 
30 users requesting 40.5 Mbps, (iv) 40 users requesting 46 

Mbps and (v) 50 users requesting 63.5 Mbps. The resulting 
performance metrics for all scenarios, along with the total 
allocated throughput (in Mbps) are demonstrated in Fig. 5. For 

comparison purposes, Fig. 5 also depicts the performance 
metric resulted from two baseline methods, namely the 

Weighted Minimum Mean Square Error (WMMSE) algorithm 
and a fixed power allocation policy (Average Power), 
according to which each RU/channel transmits with the 

average/median power level as a reasonable trade-off between 
the achieved coverage and the potential interferences. 
WMMSE algorithm is implemented as suggested in [5] and 

[12], with the objective of maximizing the weighted sum-rate 
across users.  
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As readily observed in Fig. 6, the three methods exhibit near-

optimal outcomes in the first scenario (10 users). However, as 
the simulation scenario becomes more challenging with respect 
to the number of users and their requested throughput, the 

benefits of the developed DDPA algorithm against the two 
baseline methods become more noticeable. Evidently, all 

methods show above 93% performance for the simple scenarios 
(1 & 2), whereas for scenarios 3, 4 and 5 a significantly 
improved performance is achieved for the DDPA case. 

Specifically, the DQN based algorithm allocates (39.54, 44.21, 
54.9) Mbps out of the total requested throughput of (40.5, 46, 
63.5) Mbps in scenarios 3, 4 and 5, respectively (Fig. 6). The 

average performance of DDPA across the five scenarios was 
equal to 95.6%, while the same for metric for WMMSE was 

87.9, resulting to a performance increase of approximately 9%.  
 

 

Fig. 4. Comparison among methods: DDPA performance against WMMSE 
and Average methods for five different simulation scenarios (up) and total 

allocated throughput for the three methods (down).  

The results clearly indicate that the DDPA algorithm 
outperforms the two baseline methods in terms of total 
allocated throughput, especially for increasing number of users 

and/or more strict demands. Moreover, it should be noted that 
the pre-trained DQL models can be effortlessly inferred during 
the online network operation in order to provide accurate 

estimates of the most beneficial power configuration (real-time 
decision-making). To enhance the efficiency of these models, 

offline training can also be carried out without affecting the 
real-time network performance. 

IV. CONCLUSIONS 

In the present study, a  DRL approach for power adjustment 
is proposed, which efficiently adjusts the transmit power of 
RUs following a demand-driven strategy. In contrast to several 

algorithms attempting to maximize the total network 
throughput, DDPA uses an alternative state space and 

rewarding system definition to, finally, proactively allocate 
power levels to RUs. Evaluation results show enhanced 

performance of the algorithm, even in extreme demand 

scenarios, as compared to other baseline methods.  
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