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Abstract Seismic response of masonry arches is examined in this study through analytical and numerical
methods. Emphasis is placed on the low-amplitude levels where linearisation techniques may be efficient.
When dealingwithmonumental arches of fragmentedmasonry, rocking rotation even in low levels ismost often
undesirable as it may lead to severe permanent displacements and dislocation of the arch axis, and sometimes
to general instability of the structure. It is therefore of great importance to develop simplified procedures for
estimating the levels of such low-amplitude arch response in earthquake-prone regions. Near-source ground
excitation at the base of the structure is idealisedwith rectangular and cycloidal pulses. The analysis is limited to
the prior-to-impact regime in which rocking occurs between successive fragments (voussoirs). This limitation
does not prevent from extracting conclusions, as the prior-to-impact state is themost crucial to rocking response
and it can determinewhether the structurewill undergo rocking vibration or eventually overturns. For simplicity,
a specific kinematicmechanismof the fragmented arch,well known in the literature, is implemented throughout
the study, thus allowing for comparison of the results with existing solutions. This idealisation is justified as
the predominant mechanism from both previous analytical and experimental studies. A good correlation of
the results between simplified closed-form solutions and rigorous semi-analytical methods is accomplished.
Moreover, these results are also quite close to those of the 2D finite element analysis.

Keywords Masonry arches · Idealised pulses · Rocking · FE analysis

1 Introduction

Arched masonry structures (such as vaulted bridges and cathedral domes) are an important part of the cultural
heritage worldwide. Although nowadays construction of this kind of structures is quite rare, the necessity
of their preservation has spurred many researchers to thoroughly investigate collapse mechanisms, as well
as ways to protect them against natural hazards and decay through time. In this context, Coulomb’s [1] and
then Couplet’s [2] studies are highlighted, confirming what master builders knew by empirical intuition: arch
equilibrium is a pure geometric problem rather than a problem of strength of material.

Early studies on the stability of masonry arches under gravity loads were made by Heyman [3–5]. The
equilibrium approach proposed in these studies stemmed from the plastic analysis principles of steel struc-
tures. Within the framework of the limit state analysis, Heyman established three fundamental assumptions
concerning material properties of stone blocks: (a) infinite compression strength, (b) zero tensile strength and
(c) coefficient of friction at the interface of subsequent voussoirs adequate large so that sliding be avoided. As
a consequence, failure of the arch may occur through the formation of four hinges that turns the arch into a
mechanism.
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Motivated by Heyman’s fundamental work, Clemente extended the static equilibrium approach to incor-
porate earthquake lateral loads. In this way, the arch is considered to be subjected to a combination of constant
horizontal and vertical acceleration (earthquake and gravity load, respectively). Then equivalent static analysis
is performed to derive minimum levels of ground acceleration required to collapse the arch. It is denoted,
however, that this pseudo-static method actually provides the minimum peak ground acceleration required to
initiate rocking motion and transform the arch into a mechanism. It depends upon the dynamic properties of
the structure and the excitation characteristics whether the structure safely experiences rocking or eventually
collapses.

Oppenheimwas the first one to incorporate the time-dependent nature of dynamic loading (e.g. earthquake)
into the analysis of the masonry arch. In his pioneering study [6], Oppenheim was inspired by Housner’s work
on freestanding rigid blocks rocking on an accelerating base [7] and treated the arch as a rigid body assembly
subjected to ground motion, through idealised pulses. This typical, circular arch consists of seven voussoirs,
each one obeying Heyman’s postulates. When subjected to dynamic loading, the rigid blocks may rock one
to the other about fixed points, and the arched structure becomes a four-hinge mechanism with one degree
of freedom. Among all the kinematically admissible mechanisms (each one is characterised by a different
equation of motion, and corresponding to a different level of minimum horizontal ground acceleration for
the onset of the mechanism motion), Oppenheim addresses the one which is associated with the lowest such
minimum ẍg for the onset of motion, namely the governingmechanism. Evidently, the dynamic response under
base excitation is a geometrical problem (characterised by the thickness ratio t/R and the angle of embrace β)
and depends on initial conditions.

Clemente [8] implemented time-domain numerical analysis to compute the dynamic response of the
masonry arch once the pseudo-statically predicted ground acceleration required for rocking initiation is
exceeded. He examined arch response during free vibration as well as under rectangular and sinusoidal pulses.
Emphasis was placed given on kinematic characteristics (frequency and amplitude) without yet taking impact
and damping into consideration. De Lorenzis et al. [9] moved a step further by calculating analytically the arch
response after the first impact of rigid blocks, when hinges reopen and a new four-link mechanism is formed.

As already discussed, Oppenheim did not consider a continuous monolithic arch with zero tensile strength
but rather a circular arch that consists of seven voussoirs. He further simplified the rocking arch to a four-hinge
mechanism,whereas the location of the hinges is dictated by the governingmechanism (i.e. the one correspond-
ing to the minimum peak ground acceleration). This theoretical prediction of the rigid body mechanism once
rocking occurs was confirmed experimentally by DeJong et al. [10]. Recently, Alexakis and Makris [11] revis-
ited the analysis of a continuous monolithic circular arch through limit equilibrium approach. The locations
of the hinges is in close agreement to those predicted by Oppenheim.

2 Statement of the problem

Consider the model illustrated in Fig. 1. Originally, the arched structure complies with the supporting base in a
purely horizontal motion. When a crucial acceleration is reached, it launches a four-link rocking mechanism.
Impacts may occur at four pivot points (A, B ′, C ′, D) where hinges are formed. It is assumed thereafter, that
hinge formation cannot take place in any other point along the arch. In view of this postulation the system can
be simplified as a single degree of freedom. In accordance with the Oppenheim’s model [6], the geometric
characteristics are: (a) the angle of embrace β = 157.5◦, (b) the centreline radius R = 10m and (c) the ratio
t/R = 0.15. Following Heyman’s assumptions [3], the stone material of the arched structure is of infinite
compressive strength, zero tensile strength and a large coefficient of friction to avoid entering the sliding mode
at any instant in the rocking motion. In addition, it is assumed that hinges locations are predefined.

2.1 Kinematics of arch response

During dynamic motion, a hinge point may move along the arch axis; therefore, different instantaneous
kinematic mechanisms are being developed. The governing kinematic mechanism according to Oppenheim [6]
is presented in Fig. 1. This is the one that yields the lowest possible horizontal ground acceleration needed to
set the arch to motion, and was chosen as the case study in the present work. A simplified form of the arch
in its initial and displaced state is presented in Fig. 2, depicting only the links of the three parts (AB, BC
and CD) formed before and after hinges (A, B,C, D) are open. Links AB and CD perform rotational motion
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Fig. 2 Kinematics of mechanism motion as linkage synthesis

(uAB, uCD) considering A and D fixed. On the other hand, link BC performs a combination of rotational
(uBC ) and translational (uB) motion. Considering combined motion, the total kinetic energy of the rigid body
at each moment is the sum of (a) the translational component and (b) the rotational component about the
instantaneous pole. The rotation of each link θι measured anticlockwise from the horizontal, as well as rotation
ϕ = (θ0 − θ > 0) with respect to the original geometry fully determine the motion. The presented kinematic
mechanism is the result of the base acceleration to the left (ẍg < 0), causing a positive rotation (ϕ) of the arch
which initially will rock to the right.

2.2 Methods of analysis

The response of such a complicated dynamic nonlinear system may be investigated with various analysis
procedures which can be grouped into two categories: (a) analytical or semi-analytical methods and (b) numer-
ical methods with finite elements. In this study, both categories are employed. With regard to the analytical
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treatment, the Lagrangian method is adopted to derive the equation of motion that describes this kinematic
system [6,9]. To further reduce the complexity of the problem, linearisation of the nonlinear equation ofmotion
is necessary. Whenever a closed-form solution of equation of motion is not feasible, a general software system
for mathematical applications “Mathematica” is utilised to compute the response.

On the other hand, numerical analysis is accomplished by using the sophisticated code Abaqus and by
applying the explicit integration algorithm for solving the nonlinear dynamic response of the system in the
time domain. Two-dimensional finite element (FE) analysis is performed assuming that hinges open at specific
and fixed points (A, B,C, D). For the FEmodel, plane strain elements are used. Each block is idealised as rigid,
by using a large enough modulus of elasticity (E = 10GPa), characterised by density ρ = 2.2 t/m3. The base
is also considered to be rigid by adopting concrete elastic values (elastic modulus, E = 30GPa and density,
ρ = 2.5 t/m3). A sophisticated contact algorithm is utilised for modelling contact interface at hinges sections,
thus allowing for separation but not for sliding. Hence, the coefficient of friction is adequately large (μ = 0.7).
Different types of pulses are imposed to the bottom surface of the base to represent seismic excitation. The
major task of the finite element analysis is to evaluate the efficiency of the linearisation techniques in predicting
the nonlinear response.

2.3 Equation of motion

As already discussed, the Lagrangianmethod is a convenient tool for the analysis of the above dynamic system.
In its general form:

d

dt

(
∂T

∂θ̇
− ∂T

∂θ
+ ∂V

∂θ
= Q

)
(1)

in which T is the kinetic energy of the system, V the potential energy and Q the generalised forces. For this
single-degree-of-freedom system, the angle θ = θAB = θ0 is chosen arbitrarily and without violating the
constraint, as the Lagrangian independent variable (coordinate). The complete expression of these values as a
function of θ is given by Oppenheim [6]. For compactness, these formulations are not retyped herein. Finally,
substitution of T , V and Q to Eq. (1) leads to the general nonlinear equation of motion as follows:

M(θ)θ̈ + L(θ)θ̇2 + F(θ)g = p(θ)ẍg (2)

where the coefficients M(θ), L(θ), F(θ), P(θ) are nonlinear equations of θ given below after replacing
fxy = mxyr̄2xy + Ixy :

M(θ) = f AB + fBCθ ′2BC + fCDθ ′2
CD + mBC

[
AB2 + 2ABr̄BCθ ′

BC cos(θ − θBC − ψBC )
]

(3a)

L(θ) = fBCθ ′
BCθ ′′

BC + fCDθ ′
CDθ ′′

CD

+mBC ABr̄BC
[
θ ′′
BC cos(θ − θBC − ψBC ) − θ ′

BC (1 − θ ′
BC ) sin(θ − θBC − ψBC )

]
(3b)

F(θ) = mABr̄AB cos(θ + ψAB)

+mBC
[
AB cos θ + r̄BCθ ′

BC cos(θBC + ψBC )
] + mCDr̄CDθ ′

CD cos(θCD + ψCD) (3c)

P(θ) = mABr̄AB sin(θ + ψAB)

+mBC
[
AB sin θ + r̄BCθ ′

BC sin(θBC + ψBC )
] + mCDr̄CDθ ′

CD sin(θCD + ψCD) (3d)

Their physical interpretation has been approached by Oppenheim [6]. Equation 2 is valid only when the
angle θ < θ0, meaning that the computation of the rocking angle θ is limited to the prior-to-impact state. Once
θ0 is exceeded, a new kinematic mechanism is generated which requires a fundamentally different analytical
treatment.

3 Linearisation techniques of arch response

The coefficients M(θ), L(θ), F(θ), P(θ) in Eq. (2) may be divided by M(θ) reformulating the equation of
motion as follows:

θ̈ + b(θ)θ̇2 = c(θ)g + d(θ)ẍg (4)
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in which b(θ) = L(θ)/M(θ), c(θ) = F(θ)/M(θ) and d(θ) = P(θ)/M(θ).
This is the general form of the equation of motion, which is nonlinear as coefficients of Eq. (4) are

complicated functions of the angle θ . For small variations, however, it can be postulated that these coefficients
remain constant [6]. Searching out for the solution of Eq. (4), the following transformation is introduced.

θ(t) = 1

b
log(u(t)) (5)

The left side of Eq. (4) may be expressed in terms of a new variable u as:

θ̈ + bθ̇2 = 1

b

ü

u
(6)

Then, the equation of motion yields:

1

b

ü

u
= cg + dẍg (7)

Equation (7) may now be written in a standard form of a linear differential equation of 2nd degree:

ü(t) − b(|c|g + d ẍg)u(t) = 0 (8)

3.1 Equation of motion in terms of rotation ϕ

Alternatively, the equation of motion can explicitly be expressed in terms of ϕ (defining ϕ = θ0 − θ ):

M(ϕ)ϕ̈ + L(ϕ)ϕ̇2 + F(ϕ)g = P(ϕ)ẍg (9)

Coefficients F , P are Taylor series expansions about ϕ and are approximated by keeping only the first-order
terms. Clearly, an approximate rather than a detailed solution is sought. In a similar algebraic procedure to that
when the variable θ is regarded, Eq. (9) finally yields:

2ϕ̈ − bϕ̇2 − cϕ − h = 0 (10)

The above is applicable only for small values of rotation φ; otherwise, the expansion does not converge.
The general solution of Eq. (10) is unveiled below and it can be characterised as a differential equation in terms
of the phase space variables (ϕ̇, ϕ).

ϕ̇2 = c + bh

b2
(ebϕ − 1) − cϕ

b
(11)

3.2 Onset of mechanism motion

Recall now Eq. (2). The ground acceleration amplitude required to transform the arch into a four-link mech-
anism is extracted from this equation by applying the criterion for incipient rocking: θ̈ = θ̇ = 0 [12,13].
Hence, for a ground acceleration larger than |ẍg| = F(θ)/P(θ), the developing inertia forces set the arch on
rocking. From that point on, equilibrium becomes unstable and overturning is possible. Nevertheless, there is
a thin zone, in terms of the angle θ , in which the structure can safely undergo rocking. This zone is bounded by
critical values of θmax = θ0 and θmin. The latter is associated with a critical point that Oppenheim called it the
“non-recovery” point, as it determines whether the structure will return to its initial position (recovery region)
or will eventually collapse (non-recovery region). Energy approach can provide levels of this lower value of
θ . Similarly, if the independent variable ϕ is chosen, the rocking criterion becomes ϕ̈ = ϕ̇ = 0, and through
Eq. (9), the critical ground acceleration becomes |ẍg| = F(ϕ)/P(ϕ). Then, the critical rotation separates safe
from overturning response. All the above are portrayed in Fig. 3, using the numerical example of the preceding.
Hence, for a rocking rotation larger than ϕ = 0.07 rad, the gravitational force is converted from restoring to
overturning, meaning that it destabilises structural equilibrium. This conclusion results from the fact that the
coefficient F(ϕ) normalised to its value, becomes negative after the non-recovery point as shown in Fig. 3. On
the contrary, the coefficient P(ϕ) normalised to its value reveals that the ground acceleration destabilises the
four-link mechanism from the beginning, having its contribution increasing almost linearly in relation to the
rotation ϕ.
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Fig. 3 Potential energy normalised to its maximum value along with the representative coefficient F and coefficient P defined
by the non-recovery point

4 Linearised response under pulse-type motion: numerical examples

4.1 Constant acceleration pulse

At first, the arch is subjected to a constant acceleration pulse ẍg = −λg. A negative (positive) sign of the
ground acceleration denotes clockwise (anticlockwise) rocking rotation (ϕ) of the structure. Recalling equation
of motion in terms of u [Eq. (8)] and substituting ẍg = −λg and c̃ = (λd − c)g, it yields:

ü(t) + b c̃ u(t) = 0 (12)

which is a second-order differential equation with fixed coefficients and its solution can be built up by a linear
combination of trigonometric functions.

u(t) = A1 cos
(√

bc̃ t
)

+ A2 sin
(√

bc̃ t
)

(13)

where A1, A2 are constants. It is evident that:

u(t) = c2 cos
(√

bc̃(t − c1)
)

(14)

where c1, c2 are new constants that can be defined from initial conditions.
Equation (14) in combination with the transformation of Eq. (5) yields the solution in terms of the angle

θ(t).

θ(t) = c2 +
log

(
cos

(√
bc̃(t − c1)

)
b

(15)
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At t = 0 angle θAB is:

θ(0) = c2 +
log

(
cos

(√
bc̃(−c1)

)
b

(16)

Or

θ0 = c2 + log(cos c1
√
bc̃)

b
(17)

Derivation of Eq. (15) provides the rotational velocity:

θ̇ (t) = −
√
c

b
tan

(√
bc̃(t − c1)

)
(18)

At t = t0, the rotational velocity is zero; therefore,

θ̇ (0) = 0 = tan
(√

bc̃(−c1)
)

=> c1 = 0 (19)

Substitution of the value of c1 to Eq. (17) allows for c2 to be calculated:

θ(0) = c2 +
log

(
cos

(√
bc̃ 0

)
b

= θ0 => c2 = θ0 (20)

Eventually the analytical solution yields in terms of θ :

θ(t) = θ0 +
log

(
cos

(√
bc̃t

))
b

(21)

Numerical implementation is presented next based on the above solution. The coefficientsM , L , F , P of the
equation ofmotion are calculated considering the aforepresented numerical example (geometric characteristics:
arch radius a = 10m, angle of embrace β = 157.5◦, ratio thickness/radius (t/R) = 0.15). For this specific
case, Eqs. (2) and (4) become, respectively:

4370 θ̈ + 59249θ̇2 − 87.7g = 239 ẍg (22)

θ̈ + 13.56θ̇2 − 0.02g = 0.055 ẍg (23)

It is noted the computed response is associated with the specific kinematic mechanism adopted so far. (A
different kinematic mechanism would respond to different values of these coefficients.)

Figure 4 depicts the development of rotation θAB over time for different constant pulses based on the
above equation. Initially, the static angle of the link AB is θ0 = 0.8972 rad and consequently the starting
point of all curves. The ground acceleration amplitude that transforms the arch into a four-link mechanism is
extracted from Eq. (22) by applying the criterion for incipient rocking: θ̈ = θ̇ = 0. For a ground motion larger
than |ẍg| = F(θ)/P(θ) > 0.37g, the developing inertia forces set the arch on rocking. From that point on,
equilibrium becomes unstable and overturning is inevitable as depicted from the time histories of Fig. 4.

This value of ϕ corresponds to θ = θmin = 0.8272 rad (in displaced state) and it is highlighted in Fig. 4
with black dashed line. Curves that cross that line (i.e. |ẍg| = 0.39g, 0.45g, 0.56g, 0.61g, 0.71g) represent
arches that fail as rotation θ drops below the critical value. In contrast, curve 0.37g represents a rocking arch
in marginal equilibrium. The stronger the impulse the sooner the arch collapses.



A. Leontari, M. Apostolou

θ 
: r

ad

t : sec

θ0=0.8972

ẍ g
=-

0.
71

g

ẍg
= -

0.
61

g

ẍg
=-

0.
56

g

ẍg
= 

-0
.4

5g

overturning

ẍg = -0.37g

θ=0.82720.8

0.6

0.4

0

1.0

0.5 1.0 2.52.01.5

ẍg = -0.39g

Fig. 4 Time history of angle θAB for different levels of ground excitation

4.2 One-sine pulses

Herein, the linearised equation of motion is readjusted for a sinusoidal ground motion. Cycloidal pulse of type
A approximates a forward pulse of near fault ground motion and is chosen over one cosine pulse (type B Pulse)
because of its more destructive effects [14]. Within the limits of the linear approximation and for a ground
acceleration,

ẍg = −ap sin(ωp t) (24)

(where ap and ωp are the acceleration amplitude and the angular frequency of the pulse, respectively, t is the
time and the minus sign designates positive rotation ϕ), the governing Eq. (8) becomes:

ü(t) − b(|c|g − dap sin(ω t))u(t) = 0 (25)

A suitable transformation of variable [Eq. (26)] is used to convert q. (25) to a linear second-order homo-
geneous differential equation, similar to that are well known from the literature Mathieu equation [Eq. (27)].

ω t = 2x + π

2
(26)

ü(x) + (A − 2Q cos(2 x))u(x) = 0 (27)

Mathieu equation commonly occurs in nonlinear vibration problems, (a) in systems in which there is
periodic forcing and (b) instability studies of periodic motions in nonlinear autonomous systems [15,16].
Recall the case of a pendulum whose support is periodically forced in a vertically direction as a typical
example. Obviously, the coefficient of the differential equation is periodic without entailing that the equation
possesses only periodic solutions. Only for specific values of the constants A, Q (which are often referred as
characteristic number and parameter, respectively) a periodic solution is achieved. Both of them are expressed
in terms of excitation parameters and of the coefficients of the equation of motion (b, c, d) [Eqs. (28–30)].
As already mentioned, the latter are complicated functions of angle θ , but assuming small variations of θ ,
they remain constant. Adopting initial formulae, they may be rewritten as in Eqs. (29–30). It is noted that
A encompasses the potential energy which is proportional to θ at any displaced configuration of the arch.
Similarly, Q describes the applied external force, emphasised on the excitation amplitude ap.

A = 4gbc

ω2 Q = 2apbd

ω2 (28)

A = 4gL(θ)F(θ)

[ωM(θ)]2 Or A = 2EF(θ)g (29)

Q = 2apL(θ)P(θ)

[ωM(θ)]2 Or Q = EP(θ)a (30)
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where

E = 2L(θ)

[ωM(θ)]2
According to superposition principle, Eq. (27) possesses a solution which is a linear combination of two

independent solutions, u1(x) and u2(x). This solution is obtained below:

u(x) = c1u1(x) + c2u2(x) (31)

The arbitrary constants c1 and c2 are defined by the boundary conditions supposing that for x = x0, the
general solution is u(x) = u(x0) and its derivative is u′(x0) = 0.

To bemore specific, the example of the aforediscussed arch will be used. The numerical solution of Eq. (31)
is obtained with a computational algorithm. It is omitted, however, due to the intricacy of the coefficients c1,2
and of the solutions u1,2. It is worth mentioning that no periodic solutions correspond to this system. For
convenience, however, the differential equation [Eq. (27)] can be presented numerically. Hence, for various
sine pulses (ap, ωp) it yields:

ü(x) + 1

ω2 (10.6 − 2.96ap cos(2 x))u(x) = 0 (32)

As already discussed, the motion initiates when the ground acceleration ẍg exceeds the value of 0.37g. For

the sine pulse case, the aforementioned applies when ap sin(ωpt) > | − 0.37|g => t0 = 1
ωp

sin−1[ (|−0.37|g)
αp

].
At that time, hinges are formed, and as a result, the arch is transformed into a mechanism. The arch rocking
response can be further described with the excitation parameters, the acceleration amplitude (ap) and the
excitation frequency (ωp = 2π/Tp). It is therefore interesting to develop diagrams of rotation θAB for different
levels of the former parameters (Fig. 5). Thus, the way the pulse characteristics affect the overturning response
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is analysed separately. Notably, the selected pulses to be examined can adequately resemble recorded time
histories of zero final ground velocity. In the first case, the excitation frequency remains constant and equal
to ωp = π (Tp = 2 s), whereas the acceleration amplitude fluctuates between −(4/3)g to −1g and −0.75g
(Fig. 6a1). Evidently, the detrimental effect of the increasing ap is clear as higher values lead more rapidly
the arch to overturning (when the angle θAB exceeds the critical value of 0.8272 rad as mentioned above). For
the most unfavourable case of the maximum ap = −(4/3)g, the system is set into motion at t0 = 0.089 s
and overturning occurs at tover = 0.67 s, at the second quarter of the pulse, whereas, for the other two levels
of the acceleration amplitude, the motion onsets later at t0 = 0.12 for ap = −1g and at t0 = 0.16 s for
ap = −0.75 g, and collapse time is defined at tover = 0.8 (second quarter of the pulse), 1.05 s (third quarter
of the pulse), respectively. In the second case, as shown in Fig. 6b, decreasing the ωp from π (Tp = 2 s)
to 0.75π (Tp = 2.66 s) and 0.5π (Tp = 4 s) (consequently increasing the excitation period Tp) and keeping
constant the acceleration amplitude ap(= −3/4g) affects favourably the overturning response. Additionally,
for all the examined cases, the results indicate that the arch rocks and collapses straightforward to the right,
with no impacts to occur. 3D diagrams presented in Fig. 5b1, b2 are constructed to give insight of the predicted
collapse mechanism.

Initially, the equation of motion is transformed for sinusoidal pulses into a Mathieu kind differential
equation. Appropriate solution of this equation is found corresponding to this specific arch geometry [Eq. (32)].
In this respect, the computed timehistory of angle θAB for various one-sine pulse excitationswith period ranging
from Tp = 0.75 s to 4 s is presented in Fig. 6. The study of the impulse response is feasible till the first impact.
Alternatively, the arch response under the same set of one-sine pulses may be repeated by implementing two
additional methods: (a) a semi-analytical solution, in which the linearised equation of motion of Eq. 9 is solved
iteratively through a numerical solver available in Mathematica code and (b) two-dimensional finite element
analysis using Abaqus code. The results are comparatively portrayed in Fig. 6 along with those extracted from
Mathieu equation. The comparison among the three methods proves to be remarkably good indicating the
validity of the linearisation techniques. Nevertheless, as the finite element method provides rigorous solution
for the four-link mechanism it still remains to be checked the accuracy of this simplified model.

In the preceding, Mathieu equation has been proved a useful tool to extract closed-form solutions for low
amplitudes of rocking. It is also reminded that in this series of analyses, a unique value of the ratio t/R was
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considered (t/R = 0.15). Simplified analysis of the rocking response based on Mathieu equation is extended
next, by introducing more values of the ratio t/R. As before, the arched structure is subjected to cycloidal
pulse-type excitation at the base.Whether the structure can safely experience rocking vibration or immediately
collapses is illustrated with the overturning spectra of Fig. 7. For lower values of the period Tp, higher values
of the acceleration amplitude are required to overturn the arch. In addition, for a specific period Tp, the higher
the ratio t/R is, the higher the minimum acceleration is required to collapse. A long-period pulse (Tp = 2 s
or ωp = π rad) is chosen from Fig. 7 as suitable to enlighten the rocking response at marginal equilibrium
(Fig. 8). Time histories of the normalised angle θAB , the normalised rotation ϕ and the phase portrait confirm
the influence of the geometrical parameters on the arch limit response. The heavier arch (t/R = 0.18) sustains
larger rotations which is a rational conclusion given the larger inertia.

4.3 Rectangular pulses

The two-step rectangular pulse as an excitation to study the arch rocking response was introduced by Oppen-
heim [6]. Later, this extreme pulse was also used byDe Lorenzis et al. [9]. In this context, the time history of the
acceleration consists of a large negative pulse (ap = −1g) of duration tp, followed by a smaller positive pulse
of half magnitude (ap = 0.5g) and of double duration 2tp. These pulse shape parameters lead to zero terminal
ground velocity (Fig. 9). Two different values of the duration tp have been adopted by Oppenheim, namely
0.40 and 0.44 s. These values of tp are also applied herein so that comparative results can be extracted. General
remarks for both cases regard mainly the movement of the base. The maximum value of the base velocity
occurs when the acceleration changes sign, and it vanishes at the end of the pulse. On the other hand, the
displacement time history indicates the change in curvature with the sign change and a residual displacement
after the end of the pulse.

A computational solution of the equation of motion in terms of rotation ϕ (Eq. 9) is accomplished with
Mathematica code, after properly adjusting the coefficient P(ϕ) to implement ground shaking idealised with
the two rectangular pulses illustrated in Fig. 9.

445ϕ̈ − 6017.75ϕ̇2 + 87.86 = (−1g)(−237.45) 0 ≤ t ≤ tp (33)

445ϕ̈ − 6017.75ϕ̇2 + 87.86 = (+0.5g)(−237.45) tp ≤ t ≤ 3tp (34)

The results obtained with the above method along with the results derived by Oppenheim are portrayed in
Fig. 10. Moreover, the finite element method through Abaqus code is implemented to evaluate these analytical
solutions. The comparison of these three methods is satisfying. When tp = 0.40 s, the arch after rocking for
a while returns to its initial position (ϕ = 0). On the other hand, when tp = 0.44 s, the rotation ϕ gradually
increases leading to overturning.

Similar results of the comparison between two methods of analysis can be extracted when the excitation
period is significantly lower. In this way, a new set of rectangular pulses is adopted with duration values 0.20
and 0.27 s. Time histories of the computational solution of Eq. (9) (Mathematica) and comparison with the
finite element analysis (Abaqus) are illustrated in Fig. 11.
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5 Applicability and limitations

5.1 Influence of the number of blocks

As mentioned above, the hinge locations are assumed fixed during the rocking vibration. The accuracy of
the simplification of a four-hinge mechanism is strengthened by computational and experimental results of
earlier studies [10]. The applicability of the four-hinge model is investigated herein by conducting analyses
through finite element formulation of a seven-rigid block arch. The same type of pulses used in previous
analyses is implemented to simulate ground excitation at the base of the model: (a) one-sine pulses and (b)
rectangular pulses. Time histories of angle θAB in the case of a seven-block arch are in a good agreement
with the numerically and analytically computed results of a three-block arch as illustrated in Fig. 12. On the
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other hand, in the case of rectangular pulses, the results indicate not only a larger rotation φ (especially for
tp = 0.27 s) but also a slower return from θ to θ0 (Fig. 13). Although it is a complicate task to describe the
behaviour of each voussoir of the arch, it is also challenging for future research.
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5.2 Influence of sliding

The effect of friction on the arch response is also investigated. Influence of sliding has met only limited
investigation in the past. A few experimental studies have revealed that the results are not generally influenced
as initiation of sliding is difficult to occur. According to the results of finite element analyses, the coefficient of
friction (μ) has practically no appreciable effect on the arch behaviour in the case of a three-block arch imposed
on both rectangular and sine pulses (Figs. 14, 15 left). On the other hand, for an arch of seven voussoirs, some
differentiations are observed. Particularly, from Fig. 14 (right), where time history of rotation φ is depicted, it
is extracted that a low coefficient of friction (μ = 0.51) is accompanied with larger rotations. It is important to
note that such values ofμ are less than the typical ones. The numerical investigation continueswith specific sine
pulses (Fig. 15 left). In the first half cycle of high-frequency shaking, the coefficient of friction does not play
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Fig. 14 Effect of the coefficient of friction on the behaviour of arches consisting of three (left column) and seven blocks (right
column) under rectangular pulses

any particular role. Larger deviations in angle θAB under various coefficients are observed for higher values
of acceleration amplitudes ap. Differentiations in rotations or angles are totally expected due to accumulated
small displacements on each joint.

From the investigation that took place, as presented on the diagrams below, sliding does not essentially
affect the collapse mechanism. Small-scale experiments offer a strong corroboration to the above conclusion.
De Jong et al. [10] performed harmonic and seismic testing on two geometrically different arches finding out
that no sliding occurs. They remarked that “failure occurred as a result of hinging and rocking”.

To this end, the above findings give a glimpse of how the number of blocks and coefficient of friction affect
the arch response. They should await considerably more analytical and experimental testing before being
evaluated.
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column) under sine pulses

6 Conclusions

The study revisits the dynamic behaviour of a part-circular masonry arch subjected to ground motion, as
introduced by Oppenheim in 1992. The examined model, under horizontal acceleration applied at its base, is
transformed into predefined rigid body assemblies. This concept of arch modelling founds a direct application
to monumental masonry arches. In such stiff structures, rocking rotation even in low-amplitude levels is most
often undesirable as it may lead to severe permanent displacements accompanied with possible dislocation
of the arch axis, and sometimes to general instability of the structure. It is therefore of great importance to
develop simplified procedures for estimating the levels of the low-amplitude response. In this context, simplified
analytical techniques are applied to calculate the linear response. These methods comprise both closed-form
solutions and numerical integration of the equation of motion. Applicability of linearised response is evaluated
mainly through comparison with rigorous two-dimensional finite element analysis. Moreover, where available,
the results are compared with those of the literature. Near-source earthquake shaking is represented with
idealised cycloidal and rectangular pulses. In addition, constant acceleration pulses are involved.

A general solution of the resulting linear equation ofmotion, extractedwith the Lagrangianmethod, suitable
for any arch geometry is presented. The impact of the gravitational and the external forces to the system,
represented by the coefficients, F(φ) and P(φ), respectively, is also discussed. Then, a first application of
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this general solution is given through the examination of constant acceleration pulses. Simplified forms of the
rotation θAB (Lagrangian variable) with respect to time are presented.

One-sine pulses are also introduced to represent ground excitation. In this respect, a linear second-order
homogeneous differential equation of motion is derived, similar to Mathieu equation. According to superpo-
sition principle, each solution of the Mathieu equation is a linear combination of two independent solutions,
thus allowing for a closed-form solution to be obtained. In parallel, numerical integration of the equation of
motion is involved to compute the response. A parametric comparative study is presented for different values
of the peak ground acceleration and excitation period. Nonlinear finite element analysis in the time domain
is also employed to further strengthen the comparison. The results reveal a close agreement between these
methods and justify the applicability of the linear simplification of the response. The benefit of the Mathieu
equation to easily derive reliable results in large amounts is applied to the study of the overturning response
of the arch. The parametric study reveals that overturning of the arch according to the minimum overturning
acceleration spectrum is more sensitive to high values of ap and low values of Tp. Another interesting finding
is that overturning and imminent collapse occur without impact.

Rectangular asymmetric pulses are also involved in the study of the earthquake response. The type of the
pulse and the values chosen are those used by Oppenheim so that a comparative study is possible. The results
indicate convergence between linear analytical and nonlinear finite element methods. The reliability of these
results is further strengthened by the comparison with Oppenheim’s results for rectangular pulses.
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