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A B S T R A C T   

The fundamental role of geometry on the stability of historical arched structures has been unveiled centuries ago. 
In this study, a segmental arch consisting of an elliptical upper part (extrados) and a circular lower part 
(intrados) is introduced. This so-called part-elliptical arch is treated as a rigid monolithic body enabled to rock on 
a triggering base. The objective of the study is to extend the established methods applicable to the conventional 
circular arches, particularly in terms of: (i) stability analysis at incipient uplift, (ii) time-history analysis of the 
rocking response. The results are presented comparatively to those extracted from the circular arch of the same 
geometric characteristics.   

1. Introduction – Description of work 

Stability of masonry arches has always been a challenging task for 
architects and builders over the centuries. Nevertheless, the scientific 
community has started to be intrigued by this subject merely at the 
eighteenth century. Couplet, in his 1729′s pioneering work [1], was the 
first to successfully demonstrate the way a semi-circular arched struc-
ture can safely withstand its gravity load, in the framework of a struc-
tural mechanics approach. He unveiled the purely geometrical nature of 
the problem in a sense that collapse is not associated with material 
crushing but it involves the mobilisation of a kinematic mechanism. 
Accordingly, a graphical approach can be introduced to determine po-
tential equilibrium or collapse mechanisms through the notion of the 
thrust line. Equilibrium is established when the thrust line lies inside the 
arch, whereas collapse occurs as soon as the thrust line intersects the 
external curves. Couplet calculated the minimum required slenderness, 
t /R, of the semi-circular arch so that the thrust line be marginally 
bounded by the outer lines of the arch and limit equilibrium be estab-
lished. This assumption was based on a failure mechanism through the 
formation of four hinges but Couplet erroneously predefined the 
intrados hinges at an angle of 45◦ with respect to the spring points. 
Milankovitch [2], motivated by Couplet’s innovative work revisited the 
theory of thrust line and computed the exact location of the intrados 
hinge at 54.5◦, thus correcting the minimum required slenderness, t /R, 
from 0.101 to 0.1075. In recent years, Alexakis & Makris [3,4] 

investigated thoroughly the stability of a monolithic segmental arch 
setting the embrace angle, β, as a parameter of the design. They 
demonstrated that in a continuous arch the hinge locations should not be 
predefined but they had to be computed. In this way, they introduced a 
variational formulation incorporated in the principle of stationary po-
tential energy to derive the minimum thickness slenderness, t /R, for 
different values of β. The results demonstrate the favourable role of base 
confinement, as the minimum required slenderness, t /R, gradually re-
duces from 0.1075 at the semi-circular arch (β = π) down to 0.0075 at 
the segmental circular arch of β = π /2. Inherent to the afore- 
discussed analytical studies are the so-called Couplet-Heyman postu-
lates, considering for the masonry infinite compressive strength, zero 
tensile strength, and the coefficient of friction large enough to prevent 
sliding [5]. 

Unlike the stability of the masonry arch under self-weight, the 
response due to lateral dynamic loads didn’t receive much attention 
until Oppenheim’s notable work, merely in 1992 [6]. He derived the 
nonlinear equation of motion of a segmental circular arch consisting of 
seven voussoirs which together with the supporting base form eight 
radial joints. Since the arch is not considered as a monolithic structure, 
the imminent hinges can occur only at these predefined physical joints. 
Upon the application of rectangular pulses as input base motion, the 
arch was converted into a four-link mechanism of fixed hinge locations. 
This procedure allowed for the computation of the arch motion before 
the first impact occurs. Within the framework of time-history dynamic 
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analysis it is critical to determine the criterion for the phase transition 
from the full contact to rocking regime. Stability analysis in static terms 
can be used to this respect, on the condition of incipient uplift. Clemente 
[7] adopted an iterative procedure based on an energy approach to 
derive minimum levels of ground acceleration, as well as to calculate the 
hinge locations at the onset of rocking mode, for different values of the 
slenderness, t /R, and the angle of embrace, β. Ochsendorf [8], based on 
Clemente’s concept, proposed an alternative iterative procedure for 
stability analysis under constant horizontal acceleration. A growing in-
terest in the stability assessment of masonry arches using the limit 
analysis theory has lately been emerged in literature [9–14]. Recent 
studies further contributed to the arch seismic response under pulse-type 
ground motion, based either to analytical or to numerical methods 
[15–20]. In the latter, primarily the finite element method (FEM) as well 
as the discrete element method (DEM) are involved. A thorough 
comparative study on these methods has been presented by Sarhosis et al 
[21]. Many researchers have extensively implemented the DEM 
[9,21,22–24] to assess the collapse behaviour of masonry arches. 

While masonry arches of a uniform circular and sometimes elliptical 
profile have been subjected to thorough scrutiny in the past, only a few 
studies have addressed the non-uniform arch [9,12,25]. As an exception, 
Milankovitch in his doctoral dissertation developed the theory of the 
thrust line with reference to a masonry arch of variable thickness [2]. In 
the general case, the intrados and extrados lines are determined by two 
generic continuous functions so that the variable thickness of the arch 

ring can be considered. Despite the lack of theoretical background, the 
non-uniform arch has been implemented in the design of numerous 
historical bridges around the world. D′ Agostino & Bellomo document 
that historical bridges of a large span have a gradually increasing 
thickness from the key to the springers at a ratio of 1.1–1.6 [26]. Two 
representative examples of such stone bridges are portrayed in Fig. 1. 

Prompted by the lack of detailed investigation, the present study is 
oriented to non-uniform arches with the following geometrical partic-
ularity: elliptical at the extrados (upper curve) yet circular at the 
intrados (lower curve). For simplicity, this profile will be referred from 
now on as a part-elliptical. The objective is to investigate the role of the 
extrados curve on the structural performance of the arch under base 
horizontal motion. 

In light of the above, the analysis of rocking response is divided in 
two steps [3,6]: (a) stability analysis is performed in static terms to 
calculate the hinge locations as well as the minimum ground accelera-
tion at the onset of rocking, given the slenderness and the angle of 
embrace of the arch (t /R, β), (b) time-history analysis of rocking prior to 
impact is then feasible as the transition criterion from the full-contact to 
rocking phase has been established from the previous step. Regarding 
the first step, a rigorous variational formulation is implemented by 
adopting the principle of minimum total potential energy, P = U +

V, where U is the elastic strain energy and Vis the potential energy 
associated with force of gravity. According to this principle, the total 
energy is at a stationary position when an infinitesimal variation from 

Fig. 1. Two typical part-elliptical bridges: (a) Templas bridge, Aetolia-Akarnania, Greece. (b) The Bridge at Pontypridd, Wales.  
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such position involves no change in energy meaning that δ P = 0. As 
no elastic deformation is considered (U = 0), it eventually yields that 
δ V = 0. The second step deals with the time-history analysis of 
rocking response with analytical or numerical methods. Similar to the 
circular case, rocking of the arch ring is associated with a one-degree-of- 
freedom vibration once a four-link kinematic mechanism is developed. 
In the analytical procedures, the equation of motion derived with 
Lagrangian formulation is employed. Whenever a closed-form solution 
of equation of motion is not tractable the software system “Mathema-
tica” is utilised to extract the analytical solution. For the purposes of the 
numerical procedures, a two-dimensional finite element modelling is 
implemented. Numerical results are then discussed and compared to 
those provided by the analytical method. A comprehensive approach to 
gain insight to the geometrically nonlinear response of part-elliptical 
arches in the time-domain is through idealised pulses. Simple pulses 
are employed in the analysis not just to represent near-fault ground 
motion but also because in many cases the time history of the recorded 
acceleration can effectively be trimmed to a one-cycle pulse. 

Prior to the analysis of the part-elliptical profile the study revisits the 
uniform circular arch in Section 2, in terms of calculation of the immi-
nent hinges. Hence, the afore-described principle of minimum potential 
energy is engaged to extract closed-form solution of the hinge locations 
whereas the results are presented comparatively to those of the semi- 
analytical approach [3]. In Section 3, the response of the part- 
elliptical arch subjected to a horizontal acceleration is investigated. In 
particular, the model parameters are described in Section 3.1. Stability 
analysis is then presented in static terms in Section 3.2 through varia-
tional and Lagrangian formulation (Sections 3.2.1 and 3.2.2 respec-
tively). In Section 3.3, a time-history analysis of the response is 
performed through analytical and finite element approaches (described 
in Sections 3.3.1 and 3.3.2 respectively). To this end the results of a 
comparative study are presented in Section 3.3.3. The performance of 
the part-elliptical arch is evaluated with reference to the uniform, cir-
cular arch. Moreover, the two methods of analysis are also compared in 
the same section, in terms of time-histories of the problem parameters. 

It is worthy of note that this study regards only the weight of the arch 
ring. This simplification allows to isolate the response of the arch itself 
excluding the effect (beneficial or detrimental) of additional dead loads 
of spandrels, backfills etc. Moreover, it enables comparison of the results 
with some well-established studies of the literature. An extension of the 
analytical and numerical model that will simulate realistic conditions 
comprising of more complex loads and boundaries is worth contem-
plating in future work. 

2. Revisiting the circular arch 

2.1. Calculation of hinge locations in previous studies 

As stone is a material strong enough to crush under compression, the 

only failure mode of a masonry arch is through the formation of no- 
tension hinges that turns the structure into a rocking mechanism. In 
dynamic terms, as soon as the critical uplift acceleration is reached, a 
stone arch of mid-thickness radius R, thickness t, and of angle-of- 
embrace β, becomes a four-hinge mechanism and the blocks rock one 
to the other as portrayed in Fig. 2 (left side). It is implied that the 
structural stiffness is large enough so that in the full-contact phase no 
flexural displacements are developed. Evidently, in this regime the arch 
performs as a rigid body that follows the ground motion. 

The question arising is to locate the points of rupture under a specific 
horizontal acceleration. A first approach was to consider that hinges 
develop at the physical joints of the blocks [6]. In a subsequent approach 
the circular stone arch was treated as monolithic and the imminent 
hinges were determined by a method based on a variational formulation 
and the application of the principle of stationary potential energy [3]. 
This procedure is presented briefly and emphasis is given to the pro-
posed analytical solution. In Fig. 2 (left side) the location of the four 
hinges of the rocking mechanism developed by horizontal acceleration 
ẍg = ε g is depicted in which ε is the seismic coefficient, and g is the 
acceleration of gravity. In this work, a two-springing collapse mecha-
nism is studied which means that hinges A and D form at the extrados 
right springing (position φ0) and the intrados left springing (position φ3) 
respectively. On the other hand, hinges B and C form at the main arch 
body at positions φ1 and φ2 respectively. The weights (Wi) and the co-
ordinates of the centre of gravity 

(
xi, yi

)
of segment 2 (segment BC), 

segment 3 (segment CD) and the combined segment 1–2 (segment ABC) 
are presented in Eqs. (1) and (2). The limit equilibrium state of each 
segment (2,3, 1–2) is described below through Eqs. (3) and (4). The 
internal thrust force at point C (Tc) is analysed to the unknown hori-
zontal and vertical components (Tcx), 

(
Tcy
)

respectively (Fig. 2 right). 
For segments 2 and 3 (BC and CD respectively) it yields: 

Wi = ρg2R2r’(φi − φi− 1)

xi = R
(

1 +
r’2

3

) sinφi − sinφ(i− 1)

φi − φ(i− 1)
, yi = − R

(

1 +
r’2

3

) cosφi − cosφ(i− 1)

φi − φ(i− 1)

(1)  

where i = 2 or 3, and r’ = t
2R. Likewise, for the combined segment 1–2 

(ABC) it yields: 

W(i− 1)− i = ρg2R2r’
(
φi − φ(i− 2)

)

x(i− 1)− i = R
(

1 +
r’2

3

) sinφi − sinφ(i− 2)

φi − φ(i− 2)
, y(i− 1)− i 

= − R
(

1 +
r’2

3

) cosφi − cosφ(i− 2)

φi − φ(i− 2)
(2)  

where i = 2, and r’ = t
2R. In both sets of Eqs. (1) and (2), density ρ is 

considered constant. 

Fig. 2. The circular arch with mid-thickness radius R, thickness t and angle of embrace β becomes a four-hinge mechanism when subjected to horizontal ground 
acceleration ẍg = εg (left). Limit equilibrium analysis applied to the arch (right). 
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Moment equilibrium of segments 2, 3 about hinge B and C respec-
tively, in a slightly different formulation to that developed in [3] yields: 

aiTcx + biTcy + fi = 0

ai = R((r’ ± 1)sinφi − (1 ∓ r’)sinφ(i− 1) )

bi = R((1 ∓ r’)cosφ(i− 1) − (1 ± r’)cosφi )

fi =
2r’R3

3cosξ
(
(
r’2 + 3

)
(sin(ξ − φ(i− 1)) − sin(ξ − φi))

+3(r’ − 1)(φi − φ(i− 1))cos(ξ − φ*)) (3)  

where i = 2 or 3, φ* = φ(i-1) for segment 2 and φ* = φi for segment 3. 
Likewise, moment equilibrium of the combined segment 1–2 about 
hinge A yields: 

a(i− 1)− iTcx + b(i− 1)− iTcy + gf(i− 1)− i = 0
a(i− 1)− i = (r’ + 1)R(sinφi − sinφ(i− 2))

b(i− 1)− i = (r’ + 1)R(cosφ(i− 2) − cosφ2)

f(i− 1)− i = εW(i− 1)− i(y(i− 1)− i − (r’ + 1)Rsinφ(i− 2) ) + W(i− 1)− i(x(i− 1)− i 

− (r’ + 1)Rcosφ(i− 2) ) (4) 

where the multiplier of the horizontal earthquake ε = tanξ and i = 2. 
By solving the above Eqs. (3), (4) it yields: 

Tcx =
b2f3 − b3f2

a2b3 − b2a3
and Tcy =

a3f2 − a2f3

a2b3 − b2a3
(5)  

(a(1− 2)b2 − b(1− 2)a2)f3 +(b(1− 2)a3 − a(1− 2)b3)f2 +(a2b3 − b2a3)f(1− 2) = 0 (6) 

The horizontal (Tcx ) and the vertical (Tcy ) components of the internal 
thrust force Tc are unfolded on Eq. (5). Moreover, Eq. (6) involves only 
the radius R, the slenderness r′ and the angles φi (i = 1,2,3). Some of the 
formulae presented above (Eqs. (1)–(4)) can also be found in literature 
[3,4] however they are also included herein to facilitate independent 
reading. 

2.2. Analytical calculation of hinge locations 

Alternatively to what presented so far in literature [3,4], the left- 
hand side of Eq.(6) can be defined as a new function G of the indepen-
dent variables r′, R, φi, ξ, which should be zero: G(R, r’,φ1,φ2,φ3, ξ) = 0. 
The fourth power of the radius R is an overall factor, therefore, multi-
plying by the inverse R− 4 a new function F independent of R is defined: 
F(r’,φ1,φ2,φ3, ξ) = 0, which can be written as a fourth-degree poly-
nomial with respect to r′: 

F(r’,φ1,φ2,φ3, ξ) =
∑4

k=1
ckr’k = c4r’4 + c3r’3 + c2r’2 + c1r’+ c0 = 0 (7) 

The coefficients ck are known functions of the angles. Therefore, the 
solution of Eq. (4) can be expressed in terms of the roots of the poly-
nomial (Eq. (7)). It is noteworthy that the roots can be extracted 
analytically as functions of the angles φi. After algebraic manipulations, 
the coefficients of the fourth-degree polynomial (Eq.7) are presented on 
Eq. (8) presented below: 

c4 = κ, c3 = μ − λ, c2 = 3κ+ ν, c1 = − (3λ+ μ), c0 = ν (8)  

κ
2
= sin(φ1 − φ3)(sinξ − sinφ2)+ sin(ξ − φ2)(sinφ1 − sinφ3) (9)  

λ
2
= sin(φ1 − φ3)(sinξ − sinφ2) − sin(ξ − φ2)(sinφ1 − sinφ3) (10)  

μ
12

= (φ1 − φ2)cosφ1cos
ξ − φ3

2
cos

φ2 − φ3

2
sin

ξ − φ2

2 

+(φ2 − φ3)cosφ3cos
ξ − φ1

2
cos

φ1 − φ2

2
sin

ξ − φ2

2 
+(φ2 − ξ)cosξcos

φ1 − φ2

2
cos

φ2 − φ3

2
sin

φ1 − φ3

2
(11)   

v
3
= [(φ2

− φ1)cosφ1+sinφ1 − sinφ2 ][sin(ξ − φ2)+sin(φ2 − φ3)+sin(φ3 − ξ) ][(ξ

− φ2)cosξ − sinξ+sinφ2 ][sin(φ1 − φ2)+sin(φ2 − φ3)+sin(φ3 − φ1) ]+[(φ2

− φ3)cosφ3 − sinφ2 +sinφ3 ][sin(ξ − φ1)+sin(φ1 − φ2)+sin(φ2 − ξ) ]
(12) 

According to the principle of stationary potential energy, every 
system in stable static equilibrium should have its potential energy 
minimised and therefore its partial derivatives with respect to the angles 
φi should be set equal to zero. The potential energy and the partial de-
rivatives are given by the following forms, Eqs. (13) and (14) 
respectively: 

V(r’) = 4ρR3sin
β
2

r’
(

1+
r’2

3

)

(13)  

∂V
∂φi

= 4ρR3sin
β
2
(
1+ r’2) ∂r’

∂φi
= 0, i = 1, 2, 3 (14)  

where 

∂r’
∂φi

= 0, i = 1, 2, 3 (15) 

The derivative of r′ (Eq. (15)) can be extracted when differentiating 
Eq. (7): 

∂r’
∂φi

= −

∑4
k=1c(i)k r’k

∑4
k=1kckr’k− 1 where c(i)k =

dck

dφi
, i = 1, 2, 3 (16)  

where c(i)k defined in Eq. (8), are computed in terms of the angles φi 
through Eqs. (9)–(12). 

In this way, the location of the hinges can be determined by setting 
the numerator of the right-hand side of Eq. (16) equal to zero. Therefore, 
solution is sought where Eqs. (7) and (16) hold simultaneously. Denote 
that Eq. (16) provides the analytical solution of the polynomial function 
in contrast to the approach presented in [3] that was based on numerical 
procedures. A graphic illustration of the solution can yield the location 
of the hinges. In the diagram of Fig. 3, the results of the analytical so-
lution are compared to those derived numerically by Alexakis & Makris. 
The comparison is based on matching the location of the imminent 
hinges φ1 and φ2 of a circular arch for various angles of embrace β (β =

Fig. 3. Location of the imminent hinges φ1 and φ2 at points В, and C respec-
tively of a circular arch with a given angle of embrace β and slenderness t/R. 
Results of this work are compared with those obtained by Alexakis & Mak-
ris [3]. 
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90◦, 125◦, 157.5◦, 180◦) and slenderness t/R. The range of seismic co-
efficient ε associated with the curves is: ε = 0.05–1 for β = 90◦, 125◦ and 
ε = 0.07–1 for β = 157.5◦, 180◦. The comparison is proved remarkably 
good indicating the accuracy of the proposed analytical solution. The 
slight difference observed in the case of β = 157.5◦ is attributed to the 
comparison of the analytical solution with the other authors results of an 
arch of β = 155◦. 

3. Part-elliptical arch 

3.1. Model parameters 

Consider now the rigid masonry arch shown in Fig. 4 with the 
following particularity: circular on the inside (intrados) yet elliptical on 
the outside (extrados). In geometrical terms, this type of arch which 
from now on will be referred as part-elliptical, can be defined by the 
angle of embrace β, the thickness radius R(φ), along with the shape 
parameters of the ellipse: the semi major and minor axes (a and b 
respectively, where a > b > R(90◦)). In addition, as thickness t gradually 
decreases from the edge to the center, a nominal value has to be defined, 
which herein is set t = tmin (i.e. the thickness at the mid-point axis). The 
aforementioned choice of the minimum value is considered more suit-
able not only for comparison purposes with arches of uniform thickness 
but also for computational simplicity as t in this position (φ = 90◦) is 
independent of the angle of embrace β. The position of each focus of the 
ellipse is given in vector notation: 

r→(φ) =
ab

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b2cos2φ + α2sin2φ

√ (icosφ+ jsinφ) (17) 

in which, φ is the angle formed by the radius of the ellipse at a 
random point and the horizontal axis, whereas i and j represent the unit 
vectors with reference to the abscissa and the ordinate respectively. 
Accordingly, the thickness of the arch as a function of the angle, φ, is: 

t(φ) = Re(φ) − Ri =
b

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − a2 − b2

a2 cos2φ
√ − Ri (18)  

in which, Re and Ri are the external and internal radii respectively. 
Similar to the circular case, when a critical horizontal acceleration ẍg 

= ε g is applied at its supporting base, the arch transforms into a four- 
hinge mechanism. The presumable hinge locations A, B, C, D defined 
by the angles φ0, φ1, φ2, and φ3 respectively are illustrated in the 
schematic of Fig. 4. Hinge A forms at the right extrados of the springing 
at position φo = (π − β)/2 while hinge D is bounded by an unknown 
location φ3. In this work a two-springing collapse mechanism is studied 
which means that hinge D forms at the intrados left springing (position 
φ3 = π - φo). On the other hand, hinges B and C lie on the intrados and the 
extrados of the arch respectively. 

3.2. Stability analysis 

3.2.1. Variational formulation 
Equilibrium analysis is applied for the segments formed, as described 

above. Each segment is characterised by its weight W and the co-
ordinates of the centre of gravity xcm, ycm (Fig. 5). Alike the circular arch 
case, the cartesian components of the internal thrust force Tc (Tcx , Tcy ) 
acting at the hinge C are considered as the unknown parameters of the 
equations below. 

For segment 2 (BC), its weight W2 and the centre of gravity (x2, y2) 
yield: 

W2 = ρg
1
2

⎡

⎢
⎣(φ1

− φ2)(r’ − 1)2
+
(r’ + 1)2

(
π − tan− 1

(
tanφ1

λ

)
+ tan− 1

(
tanφ2

λ

))

λ

⎤

⎥
⎦ (19)    

in which, r′ is the slenderness ratio t/2R, and λ is the width-to-the-height 
ratio of the ellipse b/a. Likewise, for segment 3 (CD) its weight W3 and 
the centre of gravity (x3, y3) yield: 

W3 = ρg
1
2

⎡

⎢
⎣(φ2 − φ3)(r’ − 1)2

−
(r’ + 1)2

(
tan− 1

(
tanφ2

λ

)
− tan− 1

(
tanφ3

λ

))

λ

⎤

⎥
⎦

(21) 

Fig. 4. Schematic of the part-elliptical arch.  

x2 =

⎡

⎢
⎢
⎣ − (r’ − 1)3

(sinφ1 − sinφ2) +

(1 + r’)3
(

−
tanφ1̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2 + tanφ1
2

√ −
tanφ2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2 + tanφ2
2

√

)

λ2

⎤

⎥
⎥
⎦

3W2

y2 =

⎡

⎢
⎢
⎣ − (r’ − 1)3

(cosφ1 − cosφ2) +

(1 + r’)3
(

−
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2 + tanφ1

2
√ −

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2 + tanφ2

2
√

)

λ

⎤

⎥
⎥
⎦

3W2

(20)   

A. Leontari and M. Apostolou                                                                                                                                                                                                                



Engineering Structures 228 (2021) 111519

6

For the combined segment 1–2 (ABC) its weight W1-2 and the centre 
of gravity (x1-2, y1-2) yield: 

W1− 2 = ρg
1
2

⎡

⎢
⎣(φ0

− φ2)(r’ − 1)2
+
(r’ + 1)2

(
π − tan− 1

(
tanφ0

λ

)
+ tan− 1

(
tanφ2

λ

))

λ

⎤

⎥
⎦

(23)   

x1− 2=

⎡

⎢
⎢
⎣− (r’− 1)3

(sinφ0− sinφ2)+

(1+r’)3
(

−
tanφ0̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2+tanφ0
2

√ −
tanφ2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2+tanφ2
2

√

)

λ2

⎤

⎥
⎥
⎦

3W1− 2

y1− 2=

⎡

⎢
⎢
⎣− (r’− 1)3

(cosφ0− cosφ2)+

(1+r’)3
(

−
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2+tanφ0
2

√ −
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2+tanφ2

2
√

)

λ

⎤

⎥
⎥
⎦

3W1− 2

(24) 

Moment equilibrium of the combined segment 1–2 (ABC) around 
hinge A yields: 

Tcx

(
R(1+r’)sinφ2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1− ε2cos2φ2

√ −
R(1+r’)sinφ0̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1− ε2cos2φ0

√

)

+Tcy

(
R(1+r’)cosφ0̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1− ε2cos2φ0

√ −
R(1+r’)cosφ2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1− ε2cos2φ2

√

)

+∊W1− 2

(

y1− 2
cm −

R(1+r’)sinφ0̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1− ε2cos2φ0

√

)

+W1− 2

(

x1− 2
cm −

R(1+r’)cosφ0̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1− ε2cos2φ0

√

)

=0 (25) 

Likewise, moment equilibrium of (i) segment 2 (BC) around hinge B 
and (ii) segment 2 (CD) around hinge D yields Eqs. (26) and (27) 
respectively: 

Tcx

(
R(1+r’)sinφ2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1− ε2cos2φ2

√ − R(1+r’)sinφ1

)

+Tcy

(

R(1+r’)cosφ1 −
R(1+r’)cosφ2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1− ε2cos2φ2

√

)

+εW2(y2 − R(1+r’)sinφ1)+W2(x2 − R(1+r’)cosφ1)=0 (26)   

Tcx

(
R(1+r’)sinφ2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1− ε2cos2φ2

√ −
R(1+r’)sinφ0̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1− ε2cos2φ0

√

)

+Tcy

(
R(1+r’)cosφ0̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1− ε2cos2φ0

√ −
R(1+r’)cosφ2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1− ε2cos2φ2

√

)

+εW3

(

y3 −
R(1+r’)sinφ0̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1− ε2cos2φ0

√

)

+W3

(

x3 −
R(1+r’)cosφ0̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1− ε2cos2φ0

√

)

=0 (27) 

The subtraction of the potential energy of a purely elliptical (Vel) and 

a purely circular (Vc) arch gives the potential energy of this particular 
arch geometry (see Appendix A): 

V = gρ 2R3

3

(
(1 + r’)3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ε2cos2φ0

√ − (1 − r’)3

)

cosφ0 (28) 

Next, the principle of stationary potential energy is revisited. Equi-
librium is achieved when the potential energy is stationary meaning that 
the partial derivatives with respect to the critical angles φ1, φ2, φ3, are 
equal to zero (Eq. (29)). By differentiating Eq. (28) with respect to the 
angles φi yields: 

∂V
∂φi

=
dV
dr’

∂r’
∂φi

= 0

∂r’
∂φi

= 0, i = 1, 2, 3
(29) 

Fig. 6. Seismic coefficient ε of circular arch and part-elliptical arch (λ = b/a =
0.95) for given angles of embrace β corresponding to different slenderness t/R. 

Fig. 5. Limit equilibrium analysis applied to the part-elliptical arch.  

x3 =

⎡

⎢
⎢
⎣ − (r’ − 1)3

(sinφ2 − sinφ3) +

(1 + r’)3
(

tanφ2̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2 + tanφ2

2
√ −

tanφ3̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2 + tanφ3
2

√

)

λ2

⎤

⎥
⎥
⎦

3W3

y3 =

⎡

⎢
⎢
⎣ − (r’ − 1)3

(cosφ2 − cosφ3) +

(1 + r’)3
(

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2 + tanφ2

2
√ −

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2 + tanφ3
2

√

)

λ2

⎤

⎥
⎥
⎦

3W3

(22)   
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Evidently, Eqs. (25)–(27) are implicit functions of the independent 
variables (the slenderness ratio r′ and the acceleration ε as well as the 
dependent variable φi). Iterative procedures available in the code 
Mathematica are implemented to separate the dependent variable φi 
from r′ and ε and therefore to derive the locus of the solution. The so-
lution leads to the unknown locations of the ruptures φ1,2 as well as the 
minimum thickness t/R for given angles of embrace. 

Fig. 6 depicts comparatively a circular and a part-elliptical (λ = b/a 
= 0.95) arch for different levels of slenderness t/R and uplift accelera-
tion εg, in terms of the critical acceleration needed to initiate motion. In 
particular, Fig. 6 implies that for a given slenderness, higher accelera-
tion values are required to initiate uplift of a part-elliptical arch 
compared to those required for a circular one. In the first case, the 
slenderness t/R due to thickness variation is considered with regard to 
the smallest values of t (thickness) and R (radius). Each pair of curves 
with the same angle of embrace, has a lower bound determined by a 
minimum t/R and a common upper bound at ε = 1 (arbitrarily chosen). 
Fig. 7 illustrates the locations of hinges B and C forming when the arch is 
subjected to various values of uplift acceleration ε g, for given angles of 
embrace β. It is noted that the angle φ0 depends only upon β (φ0 = [π −
β]/2). Interestingly, it is also observed that as confinement of the arch is 
gradually enforced (larger values of φ0) the kinematic mechanism tends 
to be independent to the seismic coefficient, ε. On the other hand, for the 
unconfined arch (φ0 = 0) a rather linear trend is established between the 
angles φ1, φ2 and the coefficient ε. The endpoints of the curves (mini-
mum and maximum values of the seismic coefficient ε) are in one-to-one 
matching with the endpoints of the curves of Fig. 6. Fig. 8 yields that the 
ratio λ (=b/a) is linear to slenderness t/R for various levels of the seismic 
coefficient ε. It is confirmed that the arch thickness is favourable to the 

stability of the structural system, in a way that higher acceleration levels 
are required to induce rocking as the thickness is gradually increasing. 
Moreover, when comparing two arches of the same slenderness t/R but 
of different angles of embrace β it is concluded that the one of larger β 
becomes a four-hinge mechanism for a larger horizontal acceleration εg. 

A numerical example can further elucidate the interplay of the 
geometrical parameters and the acceleration required for incipient up-
lift. The numerical values are chosen from the graphs of Figs. 6 and 7. Let 
us consider the case where β = 157.5◦ and t/R = 0.194. A circular arch 
uplifts for a horizontal ground acceleration, ẍg = 0.51 g, whereas a part- 
elliptical one when ẍg = 0.61 g. In the first case, hinges form at φ1 =

56.622◦, φ2 = 116.611◦ and φ3 = 168.75◦, whilst in the second case at 
φ1 = 62.6◦, φ2 = 121.076◦ and φ3 = 168.75◦. Other geometrical pa-
rameters are: (a) the mid-radius R (R = 10 m), the thickness t (t/R =
0.194 => t = 1.94 m), the external radius b (b = R + t/2 = 10.971 m) 
which are identical in both cases and (b) the ratio λ (λ = b/a = 0.95) and 
a (a = b/λ = 10.971/0.95 = 11.5484) which are additional for the part- 
elliptical arch (Fig. 4). 

3.2.2. Lagrangian formulation 
The kinematic mechanism in combination with the Lagrangian non- 

linear formulation can contribute to extract the governing equation of 
motion. To this extent, the Lagrangian equation can be expressed in the 
following compact form. 

d
dt

(
∂T
∂θ̇

)

−
∂T
∂θ

+
∂V
∂θ

= Q (30)  

in which, T is the kinetic energy of the system, V the potential energy 
and Q the generalized forces. For this single-degree-of-freedom system 

Fig. 7. Location of the imminent hinges φi where i = 0, 1, 2 (points A, В and C 
respectively) of a part-elliptical arch (λ = b/a = 0.95) with a given angle of 
embrace β. 

Fig. 8. Minimum required slenderness as a function of λ = b/a for different levels of the uplift horizontal acceleration ẍg = εg.  

Fig. 9. Kinematic mechanism of the part-elliptical arch.  
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the angle θ = θAB = θ0 is chosen arbitrarily and without violating the 
constraint, as the Lagrangian independent variable (coordinate). 

The kinematics of the system employed to formulate the Lagrangian 
equation of motion is portrayed in Fig. 9. The horizontal supporting base 
is represented with a rigid plane free to undergo horizontal vibration. 
The rocking arch consists of 3 rigid segments (AB, BC, CD) that corre-
spond to different portions of the angle of embrace β (=θ1 + θ2 + θ3). 
The initial and the displaced state are determined with the angles θ0 and 
θ respectively measured anticlockwise from the horizontal. The rotation 
of such a system, is denoted as ϕ, is θ0 – θ with respect to the original 
geometry. The horizontal acceleration applied to the base from right to 
left (ẍg < 0) causes a positive rotation (ϕ) of the arch which initially will 
rock to the right. 

Consequently, the equation of motion takes the compact form: 

M(θ)θ̈+L(θ)θ̇
2
+F(θ)g = P(θ)ẍg (31)  

in which the coefficients M(θ), L(θ), F(θ), P(θ) are nonlinear equations of 
θ given below after replacing fxy = mxyr2

xy + Ixy. Where mxy, rxy, Ixy and 
ψxy are the mass, the distance to the centre of mass measured from the 
downstream joint corresponding to each link, the centroidal polar 
moment of inertia and the angular offset respectively (xy = AB, BC, CD) 
(Fig. 9). 

M(θ) = fAB + fBCθ’2
BC + fCDθ’2

CD + mBC

[

AB2 + 2ABrBCθ’
BCcos(θ − θBC

− ψBC)

]

(32)  

L(θ) = fBCθ’
BCθ’’

BC + fCDθ’
CDθ’’

CD + mBCABrBC[θ’’
BCcos(θ − θBC − ψBC) − θ’

BC(1

− θ’
BC)sin(θ − θBC − ψBC)]

(33)  

F(θ) = mABrABcos(θ+ψAB)+mBC[ABcosθ + rBCθ’
BCcos(θBC

+ ψBC)] +mCDrCDθ’CDcos(θCD +ψCD) (34)  

P(θ) = mABrABsin(θ+ψAB)+mBC[ABsinθ + rBCθ’
BCsin(θBC

+ ψBC)]+mCDrCDθ’CDsin(θCD +ψCD) (35) 

These functions have been presented in literature in similar forms 
[6,7,19]. In addition, their physical interpretation has also been eluci-
dated [6]. Eq. (31) is valid only when θ < θο, meaning that the 
computation of the rocking angle θ is limited to the prior-to-impact 
state. Evidently, the equation of motion is dependent upon the 
geometrical characteristics of the structure. A similar procedure has 
been followed for a circular arch [6,7,19]. Nevertheless, the part- 
elliptical arch requires a larger computational effort due to geometric 
complexities. The horizontal ground acceleration needed to initiate 

uplifting about the predefined hinges can also be extracted from Eq. (31) 
by applying the criterion for incipient rocking: θ̈ = θ̇ = 0. The above 
condition states that the supporting base should experience acceleration 

larger than 
⃒
⃒
⃒
⃒ẍg

⃒
⃒
⃒
⃒ = F(θ)/P(θ) = 0.61 g in order the developing inertia 

forces to set the arch on rocking. Compared to the circular arch case 

where 
⃒
⃒
⃒
⃒ẍg

⃒
⃒
⃒
⃒ = F(θ)/P(θ) = 0.51 g, the part-elliptical arch performs 

enhanced-resistance to entering the rocking mode. The above values of 
uplift acceleration can also be extracted from the diagram of Fig. 6. 

A comparison between the part-elliptical and the circular arches is 
performed in Fig. 10 in terms of the potential energy normalised to its 
value as a function of the rotation ϕ. A turning point of the system is at 
the moment the potential energy reaches its peak value which corre-
sponds to maximum rotation ϕc and ϕe for the circular and part-elliptical 
arch respectively. For these critical values of rotation, velocity and ki-
netic energy are instantaneously zero and the system “decides” whether 
it eventually collapses or not. For the circular case the point of non- 
recovery is reached after a relatively small rotation. In fact, as already 
pointed out by Oppenheim [6] “a typical arch has considerable resistance 
to the onset of mechanism motion but relatively little capacity to absorb 
forced excursions into such motion”. This finding is even more amplified in 
the part-elliptical arch in which the critical rotation ϕ drops from 0.25 
rad down to 0.20 rad at a maximum energy ratio V(ϕ)/V(ϕ0) even 
higher. 

For a rocking masonry arch, gravity is the restoring mechanism that 
brings the structure back to static equilibrium. In Fig. 11, both the 
restoring and the driving mechanism for each profile are portrayed. The 
alternation of sign in the case of the coefficient F(θ) denotes that the 
mechanism the gravitational force imposes to the system turns from 
restoring to driving. For the part-elliptical arch (continuous line) gravity 
leads the system to overturning faster compared to the circular arch 
(dotted line). Therefore, the point of non-recovery ϕcr is reached earlier 
in the first case. This is a reasonable finding as the part-elliptical arch is 
heavier, due to its geometry. On the other hand, during the entire mo-
tion, the ground acceleration contributes to the system as a destabilising 
factor. In concluding, a circular arch requires smaller acceleration am-
plitudes to uplift while the part-elliptical exhibits substantial resistance 
to earthquake pulses. On the other hand, the part-elliptical arch reaches 
the threshold of collapse in smaller rotations than the circular arch for a 
specific thickness/radius ratio. 

3.3. Time-history analysis 

3.3.1. Lagrangian formulation 
The governing equation of motion as derived from Lagrangian 

formulation (Eq. (31)) in combination with the nonlinear coefficients 
(Eqs. (32)–(35)) is implemented to compute the time-history of rocking 

Fig. 10. Recovery and non-recovery domain introduced by the normalised 
potential energy for both circular and part-elliptical arch (dotted and contin-
uous lines respectively). 

Fig. 11. Representative coefficients F and P defined by the non-recovery point 
for circular and part-elliptical arch (dotted and continuous lines respectively). 
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rotation. A numerical solution of the differential equation of motion in 
terms of rotation ϕ (or the angle θ) is accomplished with Mathematica 
code, after properly adjusting the coefficient P(ϕ) (or P(θ)) to implement 
ground shaking. The linearised equation of motion is solved iteratively 
through a numerical solver (ND solve) in the Wolfram Mathematica 8 
environment. To determine the solutions of the equation, initial condi-
tions are denoted in the form ϕ (0) = 0 and ϕ′ (0) = 0. Mathematica can 
switch methods many times if the situation asks for it. The explicit 
integration settings for the applied methods are the “Runge-Kutta” 
(Implicit or Explicit), the “Adams” methods or implicit backward dif-
ferentiation formulas (BDF or IDA). 

3.3.2. Finite element modelling 
Nonlinear analysis of a free-standing arch on accelerating base is 

implemented numerically in the time-domain with the finite element 
method. To this extent, the software suite Abaqus [27] is utilised for the 
mesh generation as well as for the analysis execution. Both the arched 
structure and the supporting base are represented with quadrilateral, 
continuum plain strain elements. A reasonably refined mesh of the 
model is generated, composed of elements varying from 0.33 m to 0.47 
m in width for the arch and from 0.17 m to 0.39 m for the base. The 
linearly elastic behaviour of the masonry arch is determined by elastic 
modulus, E = 10 GPa, Poisson ratio, ν = 0.20, and density, ρ = 2.2 t/m3. 
In the same way, for the supporting base the material properties are E =
30 GPa, ν = 0.20, and ρ = 2.5 t/m3. For such high levels of the elastic 
moduli, flexural deformations are rather negligible, and therefore each 
structural element can practically be considered as rigid. The arch is 
partitioned in three monolithic voussoirs which together with the base 
form four interfaces (hinges). A surface-based kinematic contact algo-
rithm has been adopted allowing for rigorous treatment of finite sepa-
ration (uplifting) and sliding at each interface. The latter is governed by 
a Coulomb-type frictional law at the interface. Experimental studies 
have pointed out that for masonry stones the coefficient of friction can 
roughly be estimated at 0.7 [28]. Geometric nonlinearity attributed to 
P − δ effects is taken into account through appropriate large displace-
ment formulation. A direct integration of the equations of motion is 
performed at each time increment through an explicit algorithm incor-
porated in the finite element code. This dynamic analysis procedure is 
based upon the implementation of the explicit central-difference inte-
gration rule of the kinematic variables (Eq. (36)): 

u̇N(

i+1
2

) = u̇N(

i− 1
2

) +
Δt(i+1) + Δt(i)

2
üN
(i) ,

uN
(i+1) = uN

(i) + Δt(i+1)u̇N(

i+1
2

) ,

(36)  

where uN is a degree of freedom (a displacement or rotation component) 
and the subscript i refers to the increment number. In addition, the use of 
diagonal (“lumped”) element mass matrices allows for the accelerations 
at the beginning of the increment to be computed according to Eq. (37). 

üN
(i) =

(
MN J)− 1

(
PJ
(i) − IJ

(i)

)
(37)  

where MN J is the mass matrix, PJ
(i) is the applied load vector, and IJ

(i) is 
the internal force vector. The afore-discussed explicit procedure is 
computationally efficient in a sense that it requires no iterations and no 
tangent stiffness matrix. The computational cost is further minimised by 
choosing reduced integration elements (CPE4R) available in Abaqus/ 
Explicit code. The finite element configuration of the model is illustrated 
in Fig. 12. 

The lateral boundaries of the model are free to move horizontally 
unlike the vertical movement of the base which is restricted. Concerning 
the horizontal loading, different types of pulses are in all cases uniformly 
imposed to the bottom surface of the base for representing seismic 
excitation. On the other hand, vertical loading is restricted to the self- 
weight of the structure excluding the effect of other gravitational 
loads caused by the backfill or live loads. 

3.3.3. Comparative study 
Effect of the non-uniform profile. The response of the part- 

elliptical arch is first computed with the finite element method for 
different levels of geometrical ratio λ. In this way the results can be 
comparatively presented with those of the circular arch (λ = 1). A series 
of one-cycle trigonometric pulses is applied as excitation at the base. 
This sort of pulses approximates the kinematic characteristics of recor-
ded near-source excitations and may lead to considerable permanent 
displacements. They are discretised to Type A (forward pulse or one sine 
pulse), Type B (forward-and-back pulse or cosine pulse) and Type Cn 

Fig. 12. 2-dimensional finite element model of the non-uniform arch and the supporting base. The four predefined interfaces are also depicted.  

Fig. 13. One-sine pulse (cycloidal Type A pulse).  
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(exhibits n cycles). The present study is limited to the first type due to its 
more detrimental effects. This so-called one-sine pulse is presented in 
Fig. 13. It is characterised by the amplitude ap, the period Tp, and the 
time for the onset of rocking ton expressed in terms of amplitude ap, 

frequency ωp = 2π
Tp

, and the ratio F(θ)/P(θ). Fig. 14 portrays time- 
histories of the normalised angle, θ, for three different values of λ: 
0.95, 0.97, 1. Hence, three arches of different upper curve (extrados) are 
selected, in which the minor axis (b = 10.97 m) is kept constant whereas 
the value of the major axis (a) ranges from a = b = 10.97 m (circular 
case) to a = 11.31 m and a = 11.5484 m (elliptical cases). In light of the 
above, a salient comparison among the three arches can be performed. 
During arch rocking, two different states can be distinguished: (a) 
rocking with impact during the excitation or (b) overturning at the first 
half of the cycle. For high frequency pulses (ωp = 2π) the increase in the 
acceleration amplitude, from 0.75 g to 1 g and eventually to 1.33 g, 
doesn’t essentially affect the arch behaviour for any of the arches. For 
lower values of frequency ωp (π, 0.5π) though, the acceleration ampli-
tude plays a crucial role to the arch response. For instance, a pulse of ωp 
= π may lead to collapse for ap = − 1.33 g whereas for lower amplitudes 
the arch survives failure. Another interesting response is the one caused 
by a pulse of ωp = 0.5π and ap = − 0.75 g where the arch of λ = 0.95 
manages to survive failure unlike the other two arches. The following 
one-cycle pulses induce larger rotations for circular arches which in 
some cases may lead to collapse. In view of the above findings, it may be 
stated that part-elliptical arches due to their slightly different geometry 
are more stable structures than the circular arches. Particularly the more 

Fig. 14. The influence of the geometrical ratio λ on the time history of the normalised angle θ when the arch is subjected to various one-sine pulses. Three different 
cases are investigated: (a) for λ = 0.95 (part-elliptical arch), (b) λ = 0.97 (part-elliptical arch) and c) λ = 1 (circular arch). Collapse bounds for each case are depicted. 

Fig. 15. Rotation time histories of the part-elliptical arch subjected to different 
rectangular pulses. Black lines: tp = 0.75 s. Red lines: tp = 0.80 s. Solid lines: 
analytical solution. Dashed lines: numerical solution. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 16. Illustration of snapshots of the part-elliptical arch subjected to rectangular pulses. (a) Recover, tp = 0.75 s (left), (b) overturning, tp = 0.80 s (right).  
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“elliptical” the upper curve is the less prone is the arch to failure. Their 
stability decreases as the geometrical ratio λ increases till the value of λ 
= 1 where the arch becomes circular. 

Comparison between analytical and numerical solution. The 
results of the time-history analysis obtained with the semi-analytical 
method are comparatively presented next with those of the finite 
element method for a part-elliptical arch with geometrical ratio λ =
0.95. Such a comparison is essential due to the assumptions and sim-
plifications involved in these two methods. Hence, the analytical 
approach adopts the rigid, no-tension model of a monolithic arch in 
which sliding along the joints is prevented. On the other hand, the finite 
element approach considers for the masonry a very stiff structure (E =
30 GPa), yet not ideally rigid. In addition, the imminent hinges are 
predefined as a prevailing kinematic mechanism under dynamic lateral 
load is regarded, whereas sliding is not prevented. A two-step rectan-
gular pulse is introduced to the analysis as an excitation to the sup-
porting base. It contains a large negative pulse (ap = − 1 g) of duration tp 
followed by a smaller positive pulse of half magnitude (ap = 0.5 g) and of 
double duration 2tp. Such pulses were introduced to the analyses and 
used in recent studies [5,6,9]. Their particularity is the lack of residual 
velocity. In Fig. 15, the arch response to pulses with duration tp = 0.75 s 
and tp = 0.80 s is illustrated using both the analytical and the numerical 
method. For a pulse of tp = 0.75 s as a base motion (black lines), the arch 
safely exhibits rocking and returns to equilibrium state (rotation ϕ = 0 
rad) regardless of the method, analytical or numerical (solid or dotted 
line respectively). On the contrary, for a pulse of tp = 0.80 s (red lines) 
both solutions predict that the arch is rocking and eventually overturns 
as rotation ϕ increases exponentially. More importantly, a good agree-
ment is also observed between analytical and numerical solution for 
both pulses. A sequence of snapshots resulted from the deformed FE 

mesh model is portrayed in Fig. 16. These snapshots portray the arch in 
the last increment of the pulse (state of recover and overturning). 

The comparative study of the two methods implemented to compute 
rocking response is extended next as illustrated in Fig. 17. To this end, 
the part-elliptical arch of the numerical example of Section 3.2.1 is once 
more adopted (β = 157.5◦ and t/R = 0.194). Ground motion applied to 
the supporting base is simulated with a one-sine pulse of acceleration 
amplitude values 0.75 g, 1.0 g, and 1.33 g. It is worthy of note that all 
three values exceed the threshold acceleration at incipient uplift (0.61 
g), hence rocking motion is expected. In addition, three values of the 
excitation period are adopted: 1.0 s, 2.0 s, 4.0 s. The above values of ap 
and Tp form a set of 9 analyses, all representative of very strong motion 
under quasi-static conditions. A remarkable agreement between the two 
methods is observed, which highlights the reliability of both approaches 
in the context of a dynamic time-history analysis. A slight deviation is 
observed in the case of ωp = 0.5π and ap = 0.75 g where the semi- 
analytical method gives more conservative results. 

4. Conclusions 

An arch ring of non-uniform thickness subjected to rocking is 
employed in this study. This so-called part-elliptical arch is described 
with an elliptical (upper) and a circular (lower) curve, and is frequently 
encountered in long-span masonry bridges. The paper investigates the 
response of such a structure in comparison with the uniform circular 
arch. 

Based on the existing method of a variational formulation in litera-
ture [3], in the beginning the paper calculates the hinge locations of a 
continuous monolithic circular arch when subjected to a given level of 
acceleration ẍg. What is new in this study is that the locations of the 

Fig. 17. Time histories of the normalised angle θ of a part-elliptical arch (λ = 0.95) excited by one-sine pulses at the base. Comparison between FE (dotted line) and 
semi-analytical solution (continuous line). 
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imminent hinges are calculated analytically through closed-form solu-
tions. The results are in excellent agreement with those derived from the 
semi-analytical approach of previous study [3]. 

Regarding the part-elliptical arch, (i) stability analysis and (ii) dy-
namic response analysis are engaged. Stability analysis involves both 
variational and Lagrangian formulation. In the context of a demand 
assessment, namely for a given slenderness, it is found that systemati-
cally higher acceleration levels are required to set a part-elliptical arch 
on rocking compared to those required for a circular one. This implies 
that an arch with increasing thickness from the key to the springers (as 
described with λ) performs enhanced resistance to hinge formation and 
rocking when subjected to ground horizontal excitation. Therefore, it 
has reasonably been adopted in the past as an improved profile in terms 
of seismic performance, for long-span masonry bridges. Moreover, when 
comparing two arches of the same slenderness t/R but of different angles 
of embrace β it is concluded that the one of larger β becomes a four-hinge 
mechanism for a higher horizontal acceleration ε g. Dynamic response 
analysis is performed in the time domain through analytical and nu-
merical methods. In the former, time-histories of the rocking response 
are computed from the analytical solution of the Lagrangian equation of 
motion. Idealised pulses are used as base excitation to represent condi-
tions of near-source ground shaking. Once rocking occurs it turns out 
that the non-uniform profile impacts the response but not in a 
straightforward fashion. Evidently, the response is very sensitive to the 
excitation period unveiling the profoundly non-linear nature of the 
problem. Apart from the analytical treatment, two-dimensional nu-
merical analysis with finite elements is performed. The results are pre-
sented comparatively with those of the analytical method for long- 
duration pulses. Both methods provide time-histories of the dynamic 
response which in general lines are in remarkable agreement. This is 
very important taking into account the essentially different assumptions 
adopted in two approaches: The analytical method considers a rigid, 
monolithic arch of zero tensile strength in which sliding at the joints is 

prevented. On the contrary, the numerical model implies a stiff but not 
ideally rigid structure with a predefined hinge mechanism, where in-
terfaces are reasonably rough allowing theoretically sliding. 

It has to be mentioned that in the analyses presented herein only 
dead loads due to the arch ring weight have been considered neglecting 
additional gravity loads mainly due to backfill or overburden material. 
This simplifying approach is conservative and allows for the comparison 
with a plethora of previous studies already presented in literature on the 
pure arch behaviour [3–20,22,23–25]. A more realistic simulation of the 
arch as a part of a structure (e.g bridge, entrance, vault) is a topic for 
future research. А complete masonry arch configuration could be 
implemented, including apart from the arch ring, the spandrel structure 
and the fill material above. The development of the semi-analytical 
method could expand taking into consideration more complicated 
loading and boundary conditions. The presence of spandrels, backfill 
soil, and piers is expected to strongly affect the arch stress distribution 
and its load-bearing capacity [21,23,29,30,31]. Finally, regarding the 
finite element model, the analysis can be extended in a future study to 
address a monolithic, no-tension arch. 
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Appendix A 

Algebraic manipulations to derive Eq. (28). 
Potential Energy of the solid surface determined by the elliptical upper curve of the arch (ACD′), and the segments (OA), (OD′) as illustrated in 

Fig. 4: 

Vel =

∫

dV = gρ
∫∫

(rsinφ)rdrdφ =
(ab)3

3
gρ
∫ φ2

φ1

sinφdφ
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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3
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⎜
⎝

1
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√ −
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b2 + a2tan2(π − β0)

√

⎞

⎟
⎠ (A.1) 

Potential Energy of the solid surface determined by the circular lower curve of the arch (A′C′D), and the segments (OA′), (OD) as illustrated in 
Fig. 4: 

Vcirc = gρ
∫

sinφdφ
∫ c

0
r2dr = gρ

(
R − t

2

)3

3
(cosφ1 − cosφ2) = gρ c3

3
(
cos2β0 − cos2(π − β0)

)
(A.2) 

The Potential Energy of the part-elliptical arch is derived by subtracting A.2 from A.1, namely: 

Vel = gρ ab3
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Appendix B. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.engstruct.2020.111519. 
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(DMEM) for the nonlinear structural assessment of masonry arches. Engng Struct 
2018;168:243–56. 

[23] Pulatsu B, Erdogmus E, Lourenco P. Comparison of in-plane and out-of-plane 
failure modes of masonry arch bridges using discontinuum analysis. Engng Struct 
2019;178:24–36. 

[24] Stockdale G, Sarhosis V, Milani G. Seismic capacity and multi-mechanism analysis 
for dry-stack masonry arches subjected to hinge control. Bull Earthq Engng 2020; 
18:673–724. 

[25] Tempesta G, Galassi S. Safety evaluation of masonry arches. A numerical procedure 
based on the thrust line closest to the geometrical axis. Int J Mech Sc 2019;155: 
206–21. 

[26] D’ Agostino S & Bellomo M. Ponti in muratura e in calcestruzzo armato. Manuale di 
ingeneria Civile (Vol. II). Buologne: Zanichelli/ESAC; 2001. 

[27] Abaqus. Theory and analysis user’s manual, version 6.8-3. Providence, RI, USA: 
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