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Ektevng MepiAnyn

EKTENHZ NMEPINHWH

(N Meprypapn Tov mpofARpatog & Ikomog Tng AwxtpBng

MNeprypa@n Touv TMPoPARHATOG.- Eva HeyAAO PEPOG TNG TIOALTIOTIKNAG KANPOVOULAG
Tou EAAaSIKOU XWPOU KOAUTITEL TO GUVOAO TOU SOMLKOU TIAOUTOU TIOU UTIOPEL Vot
XOPOKTNPLOOEL UE TOV OPO UVNUELOKEG KATAOKEVEG. Aapufavovtag utoyn waoTtoaoo,
OTL OmENETOL OAO KO TIEPLOCOTEPO HE POOPA, ATIWAEIX OKEPALOTNTOG I OKOWUN
XELPOTEPA E TIANPN ACTOXIQL, N ETILOTNHOVLKI EPEVVX ETILKEVTPWVETAL GTNV OVATITUEN
HEBOSWV TOPEPPAONG ELSIKA TIPOCAVATOALTUEVWVY YLO KABE TIEPITITWON UVNUELOKWVY
KOTOOKELVWV HE OKOTIO TNV €EOVOETEPWON QUTWYV TWV HOKPOTIPOOEoUWY
EMMTWOEWY. H 0otaBepdTNTa TWV MVNPEWOKWY KATOOKELVWY ETMNPEALETAL OTIO
TIOAAOVUG TIAPAYOVTEG TIOU TIPETIEL OAOL Vo An@BoUV umdwn OTaV TIPOKELTAL VO
SegoxBouv dladlkaoieg ouVTAPNONG, ATTIOKATACTAONG I KAl Evioxuong. MNPoKeLuEVOL
VOl OVTIHETWTILOTEL UTO TO {ATNUA, TIPETIEL TIPWTA V& SlEPEVVHOOVUE SLEEOSIKA Evar
aTto TO OgUEALWSN SOWIKA OTOLXEIO AUTWV TWV LOTOPLKWYV KATAOKEVWVY TIOV Eival TO
AiBwo t6éo. 210 ZXAMA 1 TEPAAULAVOVTOL HEPLIKA AV TITIPOCWTIEVTIKA TIAPASEly HOTL

TETOLWV KATAOKELWVY OTIOV TO TOEO €ival To kKuplapxo SopLkd aToLxElo.

To AiBwvo 1680 eival pa apBpwT KATAOKELT, TIOU OTOTEAEITOL ATIO OPNVOELSEIG
TETPEG, TOVG OoAiteg ('voussoirs'). AUTEG Ol TIETPEG €lval OLOTETAYUEVEG OE ML
KOUTIOAN ypappun Slatnpwvtog TNV B€on Toug e apotPaieg TETELG ETa@NG o€ KAOE
Sempavela. H otrptén mou mapexel N KAOs TIETPA OTN YELTOVIKN TNG, TIEPLOTACIAKA
EVIOXVETAL KOl pE Koviapa 0Tl apBpwoelg. To idlo Papog Tou TOEou padll pe Ta
UTIOAOLTIAl (POPTIO TOU TOEOV, METAPEPOVTAL HECW TWV BOAITWY KATA PAKOG TWV
apOpwoewy, amd TO UTIEPKEIUEVO OTO UTIOKEipNEVO oTolxEio. MOAG To "KAeldl”

(kevTplKOg BoAiTNng) TomoBeTnBel aTnV KopLPN TOL TOEOVL, oL BoAiTEG “"KAELWOWVOLV”
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Ektevng MepiAinyn

otnv B€on TOUG METOPEPOVTOG TIG TIAEUPLKEG KOl KOTOKOPUPEG TAOELG,

e£aoaAilovTag £TOL TNV LOOPPOTIi TOV TOEOL.

IxAHa 1 Mepk& OVTUTPOOWTIEVTIKA TIAPASEYHOTA LOTOPIKWY UVNUEIWY YUpw amd TtV
Meodyelo Odhagoa: ABwa To&ax otnplopeva o aPtdooTdTeg Kat KuAvdpikol BoAot
EVOWUXTWHUEVOL OTO £€5aQOC.
Ta Baokd pépn evog ABwvou to&ou ov otnpiletal oe aPtdootdTeg amelkovi(ovTal
07O ZXAHa 2. To Aeyopevo eEwppdiXLlo Kol E0WPPAXLO TOL TOEOU, SnAadH n KLUPTH Kol
N KOIAN TAELPA AVTIOTOLXA, ETILONMAIVOVTOL UE CUVEXN EVTOVN HOPN YPOMMN KOl

OLOKEKOUMEVEG AV TIOTOLX .

H ouumepipopd tng ABoSouNG Teplypa@eTal KUPLWG Pe TNV ataBnTd XaunAdTEPN
QVTOXN OTOV €PEAKVOUO TIOPA aTNV BAIYN. XTNV TAELOVOTNTA TWV ETILOTNHOVIKWY
MEAETWY WG BACLKN TIPOCEYYLON YLX TNV avAAUon Tng AlBoSouNG XpnotpoToLeital To
HovTEAO TOu Heyman (1966) Ttou TIPOCOHOLWVEL TO EELOAVIKEVPEVO AKOUTITO 0 OAIYN
VAIKO XWwpig €@eAkLopd. YTO Oedopeveg OuVONKeG MOPTIONG, OL ALOOKTIOTEG
KOTOOKEVEG UTIOPEL VO UTIOOTOUV PWYHEG 1 amtoouvdeoelg Snuovpywvtag media
METATOTILONG TIOU OVOPALOVTOL MNXOVIOUOL, Ol OTIoioL avVATTUCCOVTOL QATOVCix
OTIOLAOSATIOTE aoTOoX G VALKOU. H avBeKTIKOTNTA TOU TOEOV OTOV XPOVO QVAYETAL
o€ TPOPANUA VOTABELOG KABWC VTIO TNV TOPATN SLASOXIKWY ATOKAITEWVY IO TNV

OPXLKH TOUG B€an (Slatapaxwv), N LOOPPOTI TOU SUVATAL VO KATAOTEL o TaBNG Kalt

va odnynoel oe katdppevon. Katd ouvémela eival TIOAY onUavTikd, n avAamtuén

A. Agovtapn, Adaktopikn Aworpifn 2023 ii



Ektevng MepiAnyn

OWPEVTIKWY METOKIVAOEWY OTI, apOpwoElg LTIO OTOTIKEG OUVONKEG va gival n
eAdixLotn Suvath. Moapopoiwg, 0 oXNUATIONOG xpBPpWoEWV AOYwW CELOULKAG POPTLONG

ETUSLWKETAL VA £lvVal AVAOTPEWPLIOG HETA TO TEPACG TNG SLEyEPONG.

KAelsi

E§wppaxlo BoAitng

Ecwppdxio «
A

Féveon

Kévtpo tou to§ouv

APdootatng — P ———F- - - — - —mmmmmm————— =Y

IxApa 2 H yewpetpia evog AiBvou to€ou mou otnpiletal og aPlS00TATEC.

Itnv StpPr) outr €EeTACETAL N CEOULKN QTIOKPLON TWV ABOKTIOTWY TOEWV UE
OVOAUTIKEG KOl  aplOuUNTIKEG peBOdoug. ‘Epgpaon  Sivetaw otnv  avamtuén
OTMAOUOTEVHEVWY  SLASIKOOWWY Yyl TNV  €KTIHNON TNG OmoKplong ToOgou o€
OELoMOYEVEIG TIEPLOXEC. ME TOV OXNUATIONO apBpwoswv N SUVOULKN OTOKPLON TOU
TOEOU QVAYAYETAL O AIKVIOTIKH TOAAVTWON OTEPEWV CWHATWVY €V ETIAPN UETAEV

TOUG.

To edaog Beperiwong dtadpapatiCel Kupiapxo POAO TNV SOULKH AKEPALOTNTA TWV
Hvnpeiwv T omola pe Paon TNV aMnAemidpaocn Toug pe outd Svvavtal va
SLOXWPLOTOVV OF: (O) UTIEPYELEG KATAOKEVEG (TIX. apxaiol vool, yépupeg) OTov To
£€80(POC AELTOVPYEL ATTOKAELOTIKA WG VTTOOTNPIOV HECO KA, (B) YEW-KATAOKEVEC (TL.X.
BoAwTol Tapol, BoAwTeg eioodol oe apxaia otadia, Beatpa, opLYHATA) OTIOL TO
£€8apog ekTOG amo vrtoatnpidov Asltoupyel evioTe Kat WG AvTIOTNPL(OUEVO HETO 1) Kall
w¢ @optiCov peco. Ou duopevel €0APIKEG OUVONKEG UTTOPOUV Vo ETULOPATGOLV

KOTOOTPETTIKWG TOOO 0TNV OgpleAiwan 000 KAl OTNV UTIEPYELD LWVNUELOKT) KATAOKEV).

A. Agovtapn, Awdaktopikn Atatpipn 2023 iii



Ektevng MepiAnyn

Emopévwg, n avayvwplon tou €da@lkoy Tpo@id kaBwg kat n Slepsvvnon Tou
OVOTAMOTOC E8APOVG-OEPEAWONG TIPETIEL VO ATTOTEAOVV QVOTIOOTIAOTO KOUUATL TNG
MEAETNG aVaOTAAWONG KA ATIOKATACTAONG TWV PVNUEIWV. OAa Tar €i6N UVNUELOKWVY
KOTOOKELWVY TIPOOPIJOVTaL VO OVTEXOLV HEOW MLOG OEPAG HOKPOTIPOOEoHWY
ETUTITWOEWV TIOU TIPOKOAOUVTAL OTO TO £8APOC. AUTEG Ol CWPEVTIKEG ETILOPAOTELG
elval IO €VTOVEG OTLIG YeEWSOMES KABWC Ol SUOHEVEIG ESQPLKEG CLUVONKEG UTTOPOVV VAL
TIPOKOAEOOUV HEYOAEG (NULEG OXL HOVO oTnv BepeAdiwon aAA& kot otnv Soun Tou
pvnueiov. Ot Suopeveig eSa@IkEG CUVONKEG €lVaL YEVIKA CUVETIELA LG CLUVEXLLOMEVNG
Sadikaoiog, Ta amoTeAéopata NG omolag yivovtal upavy Ye TNV TIApodo Twv
XPOvwv. ETumAéov, n vPnAn OEopIK SPOTNPLOTNTA TIOU CUVAVTATOL OTNV EAANVIKN
ETUKPATELN, €KTOG OO TG (OLEC TG KOATOOKEVEG, MTOPEL Vo ETUOEWVWOEL
HokpoTipOBeopa TG ouvBnkeg Tou €dAPoug. TEAog, oL avBpwToyeveig
SpaOoTNPLOTNTEG OTIWG Ol EKOKAPEC, N KATAOKELN VEWV KTLPLWV, OL ONPAYYEG ) AKOWN
Kol oL aAAayeg atov udpoopo opifovta dvvavtal €Miong va €MNPEXCOLV TLG

€80PIKEG OLUVONKEG KOVTA O YEWSOEC.

Ikomog TG Adaktopikng SwatpBnig.- Me Pdon Ta aVWTEPW, N TAPOVOA
AbokTOpIK AlTPBr) ATOOKOTIEL VO EUTTAOUTIOEL TIG NON UTIAPXOUVCEG YVWOELG
OXETIKA E TNV OTOKPLON UTIO OTATIKN, WEVLSO-0TATIKA Kol SUVOULKA (POPTION TWV
AMBW WV TOEWTWV KATAOKEVLWV E(TE AUTEC ElVAL UTIEPYELEG ] X paKTNPIlovTal WG YEW-
KO TOIOKEVEC.

EldikdTepa, SlepeuvwvTal TEPALTEPW OL UNXAVIOHOL OOTOXIOG TETOLWV KATOOKEVWV
KOl ME EU@aon otnv avadelgn tng onupaociag tng oAAnAsmidpaong €5&POUG-
KOTOOKEVNG TWV PVNIELOKWVY AIBIVWV BOAWTWVY KATAOKELWV £iTE aLTEG PopTilovTal
OTATIKA (KATw amo To 8o PApog kal To uTepkeipevo €8aog) 1 dieyeipovtal
SUVALKE aTtO €ELOAVIKEVEVOUG TIOAMOUG KA TIPOYHUATIKEG OELOULKEG KATAYPAPEG. H
KUplX 1O €lval N EVOWHATWON TWV QVOTITUYUEVWY UEBOSWY OTIG MEAETEG
ATIOKATAOTOONG.

O mpwTapxtkoil atdxol TNG SLATPLPAG KTTOPOUV VO GUVOYLOTOVV WG EENG:

o) N OUUPOAN OTNV AKVIOTIKH OTTOKPLON TNG XMAOVOTEPNG HOPPHG TOU TOEWTOU

SOMLKOU OTOLXEIOV: TOU KUKALKOU TOEOU

A. Agovtapn, Awdaktopikn Atatpipn 2023 iv
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B) N ETEKTAON AVOAUTIKWY KL KAELOTWVY OVOAUTIKWY AVCEWV 08 TOEA e YEWMETPI
o oVVOETN aTtd TNV OPOLOPOPPN KUKALIKH

y) n a§loAoynon kot n avamtuén pebodwv Paoctldpevwy otnv avadAuon opLakng
LOOPPOTIIOG TIPOKELPEVOU VO avayvwpLloBovv ol pnxaviopol aotoxiag evog togou
PEPOUEVOU eTtl aPLdooTaTWY, KABWCG Kot va e€eTaoBel N ALKVIOTIKY ammokplon oTtav
oUTO UTIOPRAAAETAL OF EELOAVIKEVUEVOUC TIOAROVG

8) n Stepsvvnon NG cAANAeTIS paong E6APOVG-KATATKEVNG
Mpog Tov okoTtd aUTO TPELG PAOLKEG TOEWTEG KATAOKEVEG Bt SlepsuvnBoUV SLeE0SIKA:

e To 1680 otnNV amAoVOTEPN HOPPN TOL TIOU ESPACETAL EAEVOEPA OE AKOTITN
KO ETILITOXVVOHEVN Baon. AapBavovTal uTtogn U0 SLOPOPETIKA YEWHUETPIKA
TIPOWIA, TO KUKAIKO Kol TO UBPLSIKO EAAEITTTIKO-KUKALKO TIOU OO €8W KOl OTO
€€Ng Ba avaPepeTal WG "UEPIKWG EAAETTIKG" (ZXNMO 3a).

e O AiBwog KVAWSPIKOG BOAOG oL XAPLY AMAOTNTOG TIPOCOUOLWVETOL HE
entinedo to€o (Xxnpa 3B).

e O TUTILKOG KLALVOPLKOG BOAOG e OHOLOPOPPN KUKALKN Statopn otnpllOpevo

o€ aPLd00TATEG TTOU TEPIPAAAETAL ATIO £6aPOG (ZxNHa 3y).

Mpog emitevén TwWV OKOTIWV TNG MEAETNG, OL akoAouBeg peBodol avdiuvong Ba

eQappoabouv:

- AVOAUTIKEG pEBoSOoL TToL evowpatwvouy TNV Avaiuon Oplakng looppotiag (Limit
Equilibrium Analysis). Apxik&, n avadvan optakng tgopportiag PoacllOTav oTov
TIPOOSLOPLOPO TNG OPLAKNG YPOUUARG wBNnong (line of thrust) SnAadn otov yewpeTpiko
TOTIO TWV ONUEIWV a0 TA OTtola SLEPXETAL N OUVIOTOUEVN TWV ECWTEPLKWV
Suvapewv yla dedopevn @OPTION Kol Omelkovilel OUVOLAOTIKA TNV TIOPEid Twv
@OpPTIWV pEXPL TIG oTNpi&elg. H yewueTpikn aut peBodog XPNOLUOTIOLEITO EVPEWC
OTIG MeAETEG LooppoTiiag TOEou oAA& n TepimAokn @Uon NG TNV KaBlotovoe
XpovoPopa. MNMpoo@ATWG, EPEVVNTEG QVETITUEOV L0 EVEPYELOKN TIPOCEYYLON TOUL
TPOPRAAUATOG TNG EVOTABELAG EVOG TOEOL XPNOLUOTIOLWVTAG TNV apXH TNG OTACLUNG
Suvapkng evepyelog (principle of stationary potential energy) (AAe€&kng kat Makpng
2013, 2014, 2015, 2017, 2018). AAMEeG avaAUTIKEG peBodol TtepAapBAvouy: ) TNV KATA

Lagrange KatdoTpwon Twv €§lOWOEWV KWVNOEWG, €va POAKO epyadeio ylar TV

A. Agovtapn, Awdaktopikn Atatpipn 2023 v
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aVOAUON TOU SUVOULKOU CUOTHMOTOG, ) €va AOYLOMIKO YEVIKAG XPAONG Yyl

HaBNnpaTikég epappoyEg (Mathematica) Tou xpnOLUOTIOLELTAL TIEPLOTATLOKA KAL Y) UL

apxetutikn €€lowon NG PN-YPOUMIKAG Bewplag kpadaopwy (YPApMIKY ouvhong

Slapopikn e€lowon devtépag Ta&ewg ov ovopaletal cuvaptnon Mathieu).

- H apBuntikn avaAuon suodoutal pe TNV aplOPNTIKA HEBO0SO TWV TIEMEPACUEVWV

otolxeiwv (Abaqus). AloSLA0TATA KOl TPLOSIAOTATO HOVTEAX KATAOTPWVOVTAL OTO

mieplBdAov Abaqus, evw oL aAyoplBpoL AppnTNG Kol EPPEONG OAOKARPWONG

QVTIOTOLX A, XPNOLUOTIOLOUVTAL YLO TOV UTIOAOYLOMO TNG YPOXUMULIKAG, TNG KN YPOUMUKAG

OTOTIKNG KAl TNG SUVAULIKAG OTIOKPLONG TOU GUOTHUATOG,.

a) To 16&o oe akaprmtn Paon
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(ii) “"pepikwg EAAsimTIKG” TOEO

y) To eykipwTiopévo To&o emi

aPLbooTaTWV

IxApa 3 OL KUPLEC TOEWTEG KATAOKEVEG TIOU HEAETWVTOL € QUTAV TNV SaTppn: (o) éva
TOEO KUKALIKNG KOL HEPIKWE EMEITITIKAG YEWMETPlaG Tou edpaletal og dkaumtn Bdon, (B)
10 160 emi aPdootatwy edpaldpevo o AKapmTn PAon, (y) To eykBwTiopévo 160 emi

ayibooTaTwy.

A. Agovtapn, Awdaktopikn Atatpipn 2023
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1. BIBAIOTPA®IKH ANAAPOMH

O natépag Vicente Tosca, ApXLTEKTWV, GIAOCOPOG, LOBNUATIKOG KL A0TPOVOROG UE
co@ia eixe SnAwoel OTL «To AeMTOTEPO KAl TO €€aiolo0 PEPOG TNG APXLITEKTOVLIKAG...
glval o oxnuaTIopog k&Be eidoug TOEwv kKot BOAwv» (uEpog Tng Compedio
mathematico, 1707-1715) . H towtn AslToupyiat WG HNXAVIOHOG HETAPOPAG POPTIOV
glval eyyevng o€ CUOTAPATA CLVEXOUG PONG OTIWG SOULKA (TL.X. TOLXOG TOLXOTIOUAG HE
ovolypaTa) | OKOPA KOl QUOLKA (TLX. €6a@QIKO HECO). Ol 'TMPWTO-HUACTOPES TNG
apxaoTnTag €£apxNg avTIANEONKaY aUTOV TOV UNXOVIORO KOl QVOyVWPLOOV T
TIAEOVEKTAUATA TOU 0TNV 0XeSlaon EVPUTEPWY CAAX TAUTOXPOVA UTIEPPOPTWHEVWV
QVOLYpATWY. K&Tw amod autrh TNV TIPOOTITIKA, €MVONOaV OOMIKEG HOPYEG ElTe
povodidotateg, agovikoy TUTov (To&a), ite Slodldotateg, TUTIOV KEAVPOUG (BOAOL,
TPOVAOL), OTLG OTtOlEG N TOEWTH AELTOUPYIX Elval O KUPIPXOG LNXOVIOUOG LETAPOPAS
popTiov.

AVO apXETUTIO KAAUYNG EVOG QVOIYUATOG UE EKTPOTIN TNG SLASPOUAG KATAKOPLPOU
poptiov gival () Sokdg emi oTVAwWV (the post and lintel system), ka (B) To ekPOPLKO
(N Yevdeg) oo (corbel arch). Ot AiBwveg kaTaokeVEG IOV amelkovi(ovTal 0TO ZXQUA
4 sival eppavn TOPaSEYHOTO AUTWY TWV SOUIKWY HOpPWVY TIov £€Bgcav TtV facn
yla TNV €€€AEN TNG KAALYNG evOG avolypatog. To TeAsutaio pmopel va BewpnBel wg

TIPWTOTIOPOG TOU APXLTEKTOVIKOU AiB1vou TOEOU e OKTIVWTOUG OPUOVE.

{

L

’ X ‘\\1 X

>
:

D DA TDsl0 2007

IxApa 4 Mopadslypato evog ouaTAUATOC SOKOG Tt GTUAWVY (- N MYAN TwV AgdVTWV OTLG
MUKAVEG) Kal eVOg ekpopLlkov To&ou (B'- To LlEpd Touv HpakAn atnv AnAo).

A. Agovtapn, Adaktopikn Aworpifn 2023 vii
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H eupdvion tng ApxLTEKTOVIKAG Twv KoumuAwv xpovoloyeital Tiow ot
TPOIOTOPLKA Xpovia. ABwva To&a aveyepBnkav atnv BafuAwva mpv amod mepinou
6000 xpovia. E§aipeTikd mapadsiypota BoAwTwy Ta@wv givarl ot factAikol BoAwTol
Ta@ol otnv Megomotapia ov xpovoAoyouvtat oto 3000 1.X. kat otnv EAA&Sa Ttov
xpovoAoyouvtal to 1250 1.X. (Tdpog Tou Ayapeéuvova). OOAWTEG KATAOKEVEG TNV
EAAGSa xpnotpevav wg eicodol os apyaio atadia i Bcatpa (BoAwTr dlodog n kputth
eloodog tou otadiov g apxaiog Nepeag, n BoAwtn onpayyax touv otadiov TG
apxaiog OAvpriog kat n BoAwTtA dlodog oto Béatpo TNG ApP) AL LIKLWVAG).

H mpwtn mpoogyylon TG HNXOAVIKAG CLUTIEPLPOPAG Tou TOou amoddOnke oToV
Leonardo da Vinci (1451-1519). Zto BipAio Tou o Marcolongo amodidet otov da Vinci
Vv €€NG PPAON: «...To TO&O Sev eival Tapd pa SUVaPN TIov dnpovpyeitat amno dvo
aduvapies...”. To meipapa tov Ste§nxOn og eva TOEo amod OTIOU TIPOEKVYE TO KPLTNPLO
AOPAAELOG KOl O Kavovag aotoxiag. To 1675, o Robert Hooke £dwog piar Stopatikn
gpunveia NG woppotiog Ttou AiBvou TOEOUL: «..O0TMWG KPEUETAL EVO EVKOUTITO
KOAWSLO, €TOL, OAAX QVECTPOAUUEVO, Ba 0TaOel TO TOEO». ATIO TIG TIPWTEG KLOAQG
ETILOTNUOVLIKEG MEAETEG SLATUTIWONKE N €VOTABEIX TWV TOEWTWY KATAOKELWY WG
YEWUETPIKO TTPOBANUA KOt OXL WG TIPORANPA avTox NG Twv VAKwv. O De la Hire (1695)
YLt VO EKTLUAOEL TNV €VOTABELD TOU TOEOL ETIVONTE TO GXOWOTIOAVYWVO SUVAREWY
(funicular polygon). O Couplet (1729) SiamioTwoe WG N LOOPPOTIX ETIITUYXAVETAL
OTaV N YPopUUn wnong Bpioketal péoa 0To TOEO, EVW N KATAPPEVON ETTEPXETAL HOALG
N YPOMUN wlnong TuNoeL TIG eEWTEPLKEG KAUTIUAEG. H Bewpia Tou Coulomb (1773)
OMWG ETILONMALVEL OTL TIPETIEL VAL EETATTOVV YELITOVIKOL ATOSEKTOL UNXaVIOHOL KAt OTL
n aotoxia Tou TO&ou CUMPAIVEL HOVO PE TOV OXNHATIONO POPWOEWY GTOUG APHUOVG
TwV BoATwv. ApKeTd Xpovia apyotepa o Milankovitch (1907), smaveetaos tnv
Bewpla TNG ypopung wbnong kot gfyaye pla KAt TuTou e€iowon. Emiong,
UTTOAOYLOE OPOWC TO EAXXLOTO ETILTPETTO TIAXOG TOV TOEoVL (t / R = 0.1075). Miax TTOAV
onpavtikni Stamiotwon €ywve and toug Pippard and Baker (1943) Ttou katéAn&av Twg
ylo VO PETATPOTIEL TO TOEO O HMNXOVIOMO TIPETIEL VO OXNMOTIOTOUV TEOOEPLG
apBpwaelg. O Kooharian (1952) odriynoe tnv €pguva otnv xpron peBodwv opLlakng

LOOPPOTIOG OTA TIPOTUTIA TNG TIAXCTIKNAG AVAAVONG TWV HETOAAKWY KATAOKELWVY N
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omola Ba umopovoE Vo EPAPPOOTEL KAl 08 GANeG kataokeve. O Heyman (1969)
epdppoos autv TNV Bewpia otoug ABwvoug OoAiteg kol €0eoe emiong TPELg
OepeALWSELG TIAPASOXEG OXETIKA ME TIG LOLOTNTEG TWV LVAKWY Twv AiBwv: (o) amelpn
avToxn o€ oupttieon, (B) UNdevikn avtoxn EPEAKUGUOV, KAl (Y) HEYAAOG OUVTEAETTNG
TPPNG oTNV SLeETPAVELX yla TNV amto@uyn TnG oAloBnong. Ot AAe€dkng kot Makpng
(2013, 2014, 2017, 2018) Siepevvnoav Ste€odIka TNV 0TABEPOTNTA EVOG LOVOALOIKOU
TOEOU SLAPOPETIKWY YEWUETPLWY HE Un TIpokaBoplopéveg BEoelg Twv apOpwaoswv.
M TOV LTTOAOYLOMO TWV B€0cwV KABWG KAl TOU EAXXLOTOU ETUTPETTOV TIAXOUC,
glonyayov Tov Aoylopo twv petofolwv (variational formulation) otnv apxn g
OTAONG SUVOUKNG evépyelag. Eva au€avopevo evdlagpepov yia tTnv Bswpia TG
OPLOKNG AVAAVONG OTNV EVOTAOELA TWV TOEWV EXEL TIAPATNPNOEL TIPOTPATWE OTNV
BBAoypaia (Dimitri, 2015; Cavalagli, 2017; Di Carlo, 2018; Zampieri, 2017; Stockdale,
2019, 2020).

O Oppenheim (1992) otnv a&loonpeiwtn KoL TPWTOTIOPA EPYATia TOL PEAETNOE TNV
OUVOILLK)  OUUTIEPLPOPA TOU AIBWVOU TOEOU TIOU HETOATPETIETOL OE HUNXOAVIOMO
TEOOAPWV apBpwoswv OTav oTnV PAcn aokeital n Kplown eda@ikn emtdyuvon. O
ETUKPOATWY PNXAVIOPOG aoToXiag TeEplypaPeTal amo tnv e&iowon Kivnong n omoia
gfayetan amd tnv e€iowon Lagrange. JuvexLoTeg UTTAPEAV APKETOL LEAETNTEG OTIWG O
Clemente (1998), Ochsendorf (2002), De Lorenzis, 2007; Dimitrakopoulos, 2013; De
Santis, 2014; Gaetani, 2017; Leontari, 2018; Kollar, 2019)

. Tpoappikn Amtokpion Todwtwv Kataokeuwv Utokeipeveg o
TaAUIKEG SleyépoElg
ApXlKWG HEAETATOL TO ABWVO TOEO, pe OYN TIOL TIEPLYPAPETAL OO OMOKEVTPA
KUKALKA TUAROTO. XApWv amAOTNTaG, €PeEng Ba meplypapetal wg kukAiko toéo. H
QKOUTITN QTN KATOOKELR, LTIO 0pl{OVTIA ETIITAXVVON 0TNV BACN TNG METATPETIETAL
0€ €VaV AIKVIOTIKO PINXAVIOMO TEOOApWY apBpwaoewv. Kpovoelg pmopei va gupouv
HOVO oTa TEooepa onpeia TteploTpo®n (A, B, ', A) 6tov oxnpatifovtal apOpwaoelg
o€ TIPOKABOPLOpEVEG BETELG. O ETIKPATWY HNXAVIOUOG CUMPWVa e Tov Oppenheim

(1992) oklaypageital 0To ZXAHA 5 kat gival auTtog Tov amodidel TNV XapuNnAOTEPN
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duvatrn opldvtia €da@iKn emiTtdyuvon Tou amatteital yo va tebel To T0&o Of
TOAGVTWON. T YEWHUETPIKA XAPOAKTNPLOTIKA TOU TIPOCOHUOLWHATOG Elval Ta €EAG: )
n ywviog mepo@ifewg B = 157.5° B) n péon axktiva R = 10m, kat y) n avoroyia t /R
= 0.15. N TIg PNXAVIKEG BLOTNTEG TOU VALKOU MG ABVNG TOEWTNG KOTAOKEUNG
vloBetovvtal ol mapadoxég Tou Heyman, 1966: €xel amelpn avtoxn o OAWYnN,
MNSEVIKN avTOXN O€ EPEAKVOMUO KAl HEYAAO CUVTEAEOTH TPLPNC WOTE VA amtoPevx Oel
n oAloBnon kat& tnv ToAdvtwon. Katd tn Suvaptkn kivnon, éva onpeio dpBpwong
MTTOPEL Vo KIVEITOL KATA MAKOG Tou G&ova Tou TOEOV, ETIOMEVWG QVATITUOCOVTAL

SlapopeTikol oTLypLaiol KVNUATIKol pnxaviopol.

Initial state

B usc + us c
Q

Impact
Pivot point

D
Pivot point

IxAna 5 To AlBwo 16€o oe Sleyelpopevn AKapumtn BAON WG UNXOVIOUOG TECORPWVY
apBpwoswv Tou oxnuoatiCovtal ota onueia A, B, C, D (aplotepr) pepld); Ta €idn Twv
KWVNOEWV TIOU KAVEL O KGOe OUVOECUOC e ONUELWMEVEG TIG POOIKEG TIAPAETPOUG TOU
TIPOPRARLATOC TIOV €ival oL eTUépoug Yywvieg Teplo@iewg 6 (i = 1, 2, 3), n otpoer B Tou
METOTOTILOUEVOU OUVOEGUOU AB pe tnv 0pllOVTIO, N OTPOPH KATA TNV OapXKA TOU
kotaotaaon By, Kal n aTPoPn ¢ WG N SLAPop& TwV SO KATACTATEWV (¢ = By — 6) (aplotepn
MEPLY).
H oamokpon €vog TOOO TEPIMAOKOU OSUVAMIKOU MN  YPOHUUKOU CUCTAHUATOG
SlEPEVVATOL XPNOLUOTIOLWVTAG TIG AKOAOUVOEG SladLlkaoieg avaAvonG: (o) XVOAUTLKEG
1 NUL-OVOAUTIKEG PeBOSOoUG Kal, (B) aplBUNTIKEG HEBOSOUG e TIEMEPATUEVO OTOLXELD.
Ava@oplkd pe To (o), vioBeteitan n peBodog Lagrange yia tnv e€aywyn tng eiowong
klvnong n omola AmAOTIOLEITAL TNV YPOAWILKOTIOINHEVN TNG HOP®r. ‘OToTE pia AVon
KAELOTAG Mop®NG TNG €€lowaong kivnong dev elval @IKTH, €val AOYLOMIKO Yl
HOONpOTIKEG epappoyEG ("Mathematica”) xpnoloToLEiTAL YL TOV UTTOAOYLOMO TNG
aTOKPLONG. AVOPOPLKA UE TO (B), ETAEXONKE O €EEALYHEVOG KWOLIKOG TIETIEPATUEVWIV

oTolxeiwv "Abaqus”. H aplOunTIK emiduon Twv €ELOWOEWY TIPAYUXTOTIOINONKE HE

BAMA-TIPOG-PAHa EV-XPOVW OAOKANPWON, pHEow TNG HEBOSOUL AueoNnG SLXTUTIWONG
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(explicit algorithm). Kat& tnv avdiuon ot Béoslg Twv apBpwoswv Bewpndnkav
TIPOKAOOPLOPEVEG KOL T OTOLXElX aTtd Tl OTtola AMOTEAEITAL TO HOVTEAO, ETtiTedNg
TOPAPOPPWONG. Ol IBLOTNTEG TOL VAIKOU, OTIWG TO HETPO EAAOTIKOTNTOG (E) KO N
TIUKVOTNT (0) €XOLV TIG €ENG TIHEG. Mo T THApOT TOoV TOEOoV, £ = 10 GPa, p = 2.2
t/m® evw yla TNV dkaurren Bdon, E = 30 GPa, p = 2.5 t / m?). H oAioBnon oTig
SLETUPAVELEG QTTOPEVYETAL PE TNV VYNAR TR Tou ouvteAsotn TpPng (u = 0.7). O
Baolkdg pOAOG TNG avAAUONG TIEMEPATUEVWY OTOLXEIWV €lval va aloAoynoeL TV
OTIOTEAECUATIKOTNTO TWV HEBOSWY  YPOAMPMIKOTIOINONG YWt TNV N YPORMIKA

aToKpLon.

Texvikég amAomnoinong tng E§¢iowong Kivnong. - Na to getaldpevo povopabuio
oVOTNUO N Ywvia O = 6,5 = O eTAEyeTAL WG N oveEXPTNTN HeTAPANTA TNG e€lowang
Lagrange. H yeviki popon tng ivac:

M(6)6 + L(0)6% + F(6)g = P(6)%, )
OTtov oL ouvteAeateg M(0), L(6), F(0), P(6) slval pun YpoUUKEG eELOWOELG TNG 6.
Avadlatuniwvovtag tnv (1):

6+ b(6)6% = c(0)g + d(6)%, 2)
omovu b(0) = L(0)/M(0), c(8) = F(0)/M(0) kaw d(8) = P(8)/M(6).

H e€iowon 1 sival €ykupn povo otav n d < 6,. Katd auTtdv TOV TPOTIO OL UTIOAOYLOHOL
™G ywviog autng TepLopilovTal 0TNV KATAOTAON TPV TV Kpouon. Metd amd i
OELPA LVTTOAOYLOMWY KOL ATAOTIOINOEWV N €&lowaon kivnong Uopel va ypa@Tel wg pia

YPOMMKA Slapopikn g€iowaon 2°° Babpov:
ii(t) = b(lclg + d %y )u(t) =0 (3)

H e&iowon kivnong wg tpog tnv @.-
20 —bp? —cp—h=0 4)

H yeviki AVon tng e€iowong (4) MapouolaleTal PETA Kal XopakTnpileTal wg Ui

Slapopikn €€lowon wg TPOog TIG LETAPANTEG TOU XWPOU TWV PATEWV (@, @).

c+ bh c
¢* =—3 (e —1) —7"’ (5)
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‘Evapé&n Tng Kivnong Touv pnXaviopov. — To eUpog TNG eSAPIKNG ETIITAXVVONG TIOV
OTAUTEITAL YL VO LETATPATIEL TO TOEO OE PNXAVIOUO TECTAPWVY apBpwoewv e§dyeTal
a6 v e&lowaon (1) epappolovtag To KPLTAPLO YLt TNV EVapén TOL ALKVIOPOU: ¢ =
. F(p)

@ = 0. EMopévwg, yia S0Pk mTéuvon peyoAvTepn amo |i,| = > 0379 ot

QVOTITUOOOHEVEG OSPAVELOKEG SUVANELG Atkvi{ouv TO TOEO. ATtd auTd TO onuEio Kol
META, N LWooppoTiia eival aoTtaBng Kot N katdppeuon emikertal. QoTO00, VTTAPXEL EV
Kplolpo onpeio Tov o Oppenheim To OVOUAOE ONUELD «UN AVAKTATEWE» (PN-R), KAOWG
kaBopidel e&v N KaTaokeun Ba eMOTPEPEL OTNV ApXLKN TNG B€on (Tteploxn avakTnong
OTIOL P < (Pn-R) N TEAKA Bat KOTOPPEVOEL (TIEPLOXH PN AVAKTNONG OTIOL (0 > (PN-R)
(ZxApa 6). Na otpoPn ALkviopoU peyoAutepn amod ¢ = 0.07 rad, n BapuTikr dvvapn
OTIOKTA ATOOTAOEPOTIOINTIKO POAO APOV OO SUVAN ETMAVAPOPAG LETATPETIETAL OE
SUVaNN AVATPOTING (ATIOKTA APVNTIKO TIPOCGNHO OTAV @ > Pn-r). AvTiOeTa, OO TOV
OUVTEAEOTH P((p) TIPOKUTITEL OTL N EMTAXLVVAN TOU £8APOVG amooTtadepoTolel TO

oVOTNUO EEAPXNG, EXOVTAG OXESOV YPOLKT) OE OXEON UE TNV OTPOYPN ¢.

Recovery ! Non-Recovery

Vip)
\Y (%) 098 [

Recovery Non-Recovery

$n-r=0.07rad

Lo L L L L |
0.05 $ 0.10 0.15 0.20 0.25 030

bns=0.07rad ¢ :rad

IXAHa 6 H SuvOuLKN EVEPYELX KOVOVIKOTIOINMEVN WG TPOG TNV MEYLOTN TR TNG
(V()/V(o)), oL &0 meploxég LooppoTiiag (recovery) Kal avaTpoTiig (non-recovery) Tou
opifovtatl amd to onueio 'un-avaktrioewg ¢ tagopporiog” on-r =0.07 rad (mGvw oxNU); o
OUVTEAEOTAG F(B) TIOU QVTITPOCWTIEVEL TIG YEVIKEUUEVEG BapuTikég Suvapelg os k&Be
MeTOTOTILOUEVN B€on TOL TOEOL KAl 0 GUVTEAETTNG P(B) TTOU AV TITIPOCWTIEVEL TLG EEWTEPLKEG

SUVAELG WG TIPOG TNV OTPOYPN @ (KATW OXAUD).

MNoaApog otaBepng emitéyuvong Xg=—-24g.- H AVon e e€iowonc (3) sivat:

u(t) = c; cos(Vbé (t — cy)) (6)
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H AVon wg¢ pog tnv ywvia B(t) didetav:

log(cos(Vbé (t — ¢1)) @)

a(t) =
t)=c; + 5

ATO TNV omola TTPOKVTITEL TO SIAYPAPA TOU ZXRUATOG 7 ££XYOVTOC TO GUUTIEPACHA

TIwG 600 TILo SuvaTA N WBNCN TOCO TILO YPRYOPX OSNYEITAL TO TOEO OTNV AVATPOT.

10 |

90=0.8972

0.8

0:rad
Ny

0.4

-0.71g
-0.45g

Xg

o Xg

0 0.5 1.0 15
t:sec

N

2.5

Figure 7 Xpovoiotopia Tng ywviag 8,5 Yo Siapopa emimeda eda@ikng Siéyepong. H apxikn
ywvia Touv ouvdéopouv AB givar 6, = 0.8972 rad, KL CUVETIWG TO ONUElo ekkivnong OAwvV
TWV KOUTUAWY. H ywvia 0Tnv TOpapop@wUEVn KATAOTAON B, = 0.8272rad pe popn
SLOKEKOPUEVN YPOUUE. KOUTTUAEG TTIOU TEUVOUV QUTH TNV YPOUUN (TL.X. |5c'g| =0.39¢g,045g,
0.56 g, 0.61 g, 0.71 g) avtimpoowmeVouV TOEA OV KATAPPEOLV KABWG N ywvia 6 Aapupavel
TIHEG MKPOTEPEG QMO TNV KPLlown Twn. X avtiBean, N kaumVAn 0.37 g avTImPoowTEVEL EVa
AkvI(OUEVO TOEO Og OPLOKN LOOPPOTILAL.
MNoApog npitovou €vog kUKAov.- EGv otnv egiowon (3) Béoovpe tnv e€iowaon Tou

NMLTOVOELSOVG TIAAUOU TIPOKUTITEL

ii(t) — b(lclg — daysin(w t))u(t) =0  6mMOUL wt=2x +g (8)
Kat oo tnv e€iowon (7) MOPAYETAL UL YPOUULKY SEVTEPOG TAEEWG OUOLOYEVAG
Slapoptkn e&iowon yvwotn and tnv BpAoypagia wg “Mathieu Equation” [EE.(8)].

it(x) + (A—2Qcos(2 x))u(x) =0 (9)

Ké&vovtag xprion tng egiowong (8) mpokumtel 1o Sidypappa tov ZxRuatog 8. H
emAua eMidpaon TNG AVEAVOUEVNG ap Elval TIPOPAVAG KABWC VYNAOTEPEG TIUEG

08NyoLV TaXUTEPA TO TOEO OE AVATPOTIH.
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a1) bi)
90=0.8972 : — .ap=-(3/4)g  so-08972]
1 --ap=-lg
0.88 . —ap=-(4/3)g 0884
| \ |
- 086 \ 0.86
E .
® 0.4 | \ 0.841
1 'y \9=0.8272 - o
; \ ] :
0.82 \ S \ i 0.824 !
v v
0.80 0.80 T T T T T T T |
00 02 04 06 08 10 12 00 0.4 0.8 12 16
t:sec t:sec

IxAna 8 Emidpaon tou eUpoug TG EMITAXVVONG ap (a1) KAl TNG ouxvotnTtag wp (by) otnv
AKVIOTIKA amokplon. H TEploxn KATAPPELONG OKLOYPOPEITOL HE YKPL XPWHOA KOl
SloxwplleTal amod TNV UTIOAOLTIN TIEPLOXH TOU SLOYPAPUOTOG HE UL UTTAE YPOUUR TIOU
AVTLOTOLXEL 0TNV OpLaKA T TG ywviag B = 0.8272 rad.
OL xpovoioTopieg TNG YwViag B,p YO SLAPOPEG NULITOVOELDELG SleyEPTELg e TiEPLoSO
TIov KupaiveTal amo T, = 0.75 sec péxpt 4sec mapovotd{ovtal oTo IXAHa 9. H peAetn
TNG ATOKPLONG £lVaL EPIKTI HOVO HEXPL TNV TIPWTN KPOUOTN. Ta ATIOTEAECUATO TIOL
ggayovtal amd tnv e€lowaon Mathieu ouykpivovtal pe autd dAWv SVo peBOSwV: a)
plag nui-avoAuTikng peBodov, otnv omoila n ypappikn e&iowon (9) emAveTal
EMOVOANTITIKA HEOW €VOG KWK  aplOunTikng emidvong SwBéoipov  otnv
Mathematica, b) d18idotatng avdAvong TEMEPACUEVWV OTOLXELWY X PNOLUOTIOLWVTAG
ToV KWdIKa. H ovykplon peTadl Twv Tplwv peBOSwV amodelkvieTal a§loonpeiwta

KOAR UTTOSELKVUOVTAG TNV EYKUPOTNTA TWV HEBOSWV ypapULKoTIoinoNG.

19 %g=-0.75gsin(2.67nt) —— FEAnalysis 1 R -075gn() —— FE Analysis 1  %e=-075gsin(0.5mt) — FE Analysis
------ Mathieu Equation A ------ Mathieu Equation j/L =--=-=- Mathieu Equation
0.96 v Semi-Analytical Method 0.96 < Semi-Analytical Method 0.96 - i-Analytical Method

0:rad

F%2 o4 06 08 1 12

1 xg=-1.33gsin(2.67nt) ____ i 1 &g = -1.33gsin(mt) i 1 ;
FEAnéIvsns ) FE Analysis Kg = -1.33gsin(2nt) FE Analysis
------ Mathieu Equation j/L -====- Mathieu Equation Mathieu Equation
- Semi-Analytical Method ~ 0-96 < Semi-Analytical Method Semi-Analytical Method
0.92
0.8972]
0.88
. \\\ 8. 0.827
T T 1 0.8 555505 T T T 0.8 “r=ppzET T T " T T Y
0.8 1 12 14 0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14
t:sec t:sec t:sec

IxAna 9 Xpovoiotopieg tTng ywviag 845 TIOU AVTIOTOLXOUV OF NULITOVOELSELG TIOAUOVG:
(ypoupn 1) ap = -0.75 g, T, = 0.75, 2, 4 sec; (ypoupn 2) ap = -133 g, T, = 0.75, 1, 2 sec;
oUykplon HeTagl avAaAuonG TIETIEPOCHEVWY  OTOLXEIWV KOl  YPOUULKOTIOINUEVWV
QVOAUTIKWY AVCEWV (NPL-aVOAUTIKA eTtiAvon g e€iowong (9) ko KAELOTAG-PoPPNG eTtiAuan
pe Tnv e€lowon Mathieu).
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H amAomoinpévn avédAuon T AKVIOTIKAG amtokplong pe faon tnv eiowaon Mathieu

XPNOLUOTIOLELTOL OTNV OUVEXELD, VLA TIEPLOCOTEPEG TLEG TOUV Aoyou t /R (ZxApua 10).

1.4

1.2 4
1 -
a0 0.8 4
Q
o 0.6 -
0.4
0.2
0 T T T T T T T

Tp : sec

IxAua 10 AcQoAnG TTEPLOXT KOL TIEPLOXH AVOTPOTING TToU KaBopileTal OTav NLTOVOELSE(S
ToApol Slapodpwv {euywv emtdyuvong (op)- Teplodou (T,) Sleyeipouv SLaPOPETIKEG
yewpetpieg 168U (t / R =0.13-0.18). H aloaAng meploxr} avTioTolxel HOVO YL TO XPOVIKO
SLOTNUA TIPLV TNV KPoUon.
OpBoywvikoi MoaApoi.- To ATMOTEAECHATO TIOU TIPOEKUYOAV ME TIG TIOPOTIAVW
HEBOSOUG pall PE T QTOTEAECUOTO TIOU TIpoékuWav omd Tov Oppenheim
amelkoviCovtat oto ZxAua 11. EmumAgov, n pebodog Twv MEMEPATUEVWY OTOLXEIWV
HEOW TOU KWK Abaqus g@appoleTal yla TNV a&loAdyncon qUTWY TWV AVOAUTIKWY
AVogwv. H oVyKpLoT) TOuG Elval IKAVOTIONTLKN.

Oppenheim Analytical Numerical

— tp=040sec = tp=0.40 sec tp=0.40 sec 19

© bs 1 115 2 25

¢ :rad

tp=0.40sec
tp=0.44sec

t:sec

IxAna 11 Amokplon Ttou TOEou 0t €€lbavikeupevoug opOoYywWVIKOUE TIOAUOUE. XTNnV
TEPITITWON TIOV N XPOVIKN SIAPKELX TOV TtaApOU gival t, = 0.40 sec (Lopn ypapun oto Se&i
Slaypappa), To TO&o apov AkviCeTal yla Alyo eTIOTPEPEL TNV apXLk Tou Béon (¢ = 0).
AVTIBETWG, OTOV N XPOVLKH SIAPKELX TOU TIOAOU gival t, = 0.44 sec (UTtAe ypoppn oto Seéi
Saypappa) n otpopn @ avédavetal otadlakd Kol To Tofo avatpémnetal Me ouvexeig
YPOUMEG aupPoAiCovTtal ol amokpioelg otov ToAUS t, = 0.40 sec evw HE SLOKEKOUMUEVES
ouppoAifovTal ol amokpioslg otov TIOAO tp = 0.44 sec. H KaUTIUAEG TTIOL PEPOUVV TO PAUPO
XPWHO AVTIOTOLXOUV 0Ta amoTeAéopata tou Oppenheim, 0TO KOKKWVO QVTIOTOLXOUV TX
AMOTEAEOHATA TNG AVOAUTIKAG AVONG KoL OTO YKPL TNG MEBOSOU TWV TEMEPACUEVWV
oTolxEiwv.
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Iv. EvotaOeia kot AkVIOHOG TOEWTWY KATAOKEV WV
VO HOLOHOPPNG OYPNG: TO HEPIKWG EAAELTTTIKO TOEO

Y& auTO TO KEPAAQLO N aTtOKPLON EVOG TOEOL AVOUOLOPOPEPOU TIGXOUG TIOU UTIOKELTOL
0€ AIKVLOTIKA TOAGVTWON SlepeuvATal o€ CUYKPLON HE EVOL KUKALKO TOEO. To ev Aoyw
‘UEPIKWG eMemTikO TOEO XopakTnElleTal Omd Mt EAAEUTTIKN  KOWUTIUAN OTO
€EWPPAXLO KOL PE WX KUKALKN OTO eowppdxlo (ExAna 12 aplotepd). AuToU TOU
€ldoug N yewPeTpla amavtATaL CUXVA O YEQPUPEG eEyAAOL avoilypaTod. Ev ouvexeia,
N avAAuon €VOTABELOG UTIO OTATIKOUG OPOUG SLEPEVVATAL HECW TOU AOYLOHOU TWV
HeTaBoAwV kat TG peBdSou Lagrange (ZxApa 12 8g€d). Ot ev xpdvw avoAVoELG TNG
ATIOKPLONG SLEVEPYOUVTAL HECW TNG VOAUTIKNG TIPOCEYYLONG KAl TNG peBodou Twv
TIEMEPATUEVWVY OTOLXEIWV. O 0KOTIOG UTOV TOV KePoAaiou givatl SITTOG: amod TNV pia
N eMiSpaON TIOV €XEL N KAT' EAGXLOTOV METABOAN TNG YEWHETPLAG EVOG KUKAIKOU TOEOU
KoBWG Kal N oELoTIOTIO TWV TIPOTEWVOUEVWY OVOAUTIKWY HEBOSWV PE KPLTAPLO TNV

OTIOKALON OTTO TNV HEBOSO TWV TIETEPATUEVWV OTOLXELWV.

Segment 2
~ W2 -

Segment 3 e

/ -
W oY) Segment 1
£ 4

! . i Segment 1-2

IxAna 12 Aplotepdc IXNUATIKA OQVOTIOPACTOCN TOU MEPIKWE EAAELTITIKOU TOEOL
METABOANOPEVNG OKTIVAG R((p), ouEVOEVOL TIAXOUG t EEKIVWVTAG ATIO MLt EAGXLOTN TN
tmin OTNV OTEWYN TOU KAL OL YEWHETPLKEG TIAPAPETPOL TNG EMNeWYNG a > b > R(p). H dpBpwon
A oxnpotifetal otnv eEwTepKn pepLd TG Se&LAG yéveang Tou To&ov, otnv Béon @, = (TT-
B)/2, n &pBpwon D oxnpotileTal 0TNV E0WTEPLKN UEPLA TNG YEVEDNG, oTnV Béon (3 = T -
®o. OLapBpwoaelg B (B€on 1) kaw C (B€on (p2) KelTOVTAL OTNV E0WTEPLKA KO OTNV EEWTEPLKN
pepLX Tou TOgou avtioToxa. Aggld: To PEPKWG EAAEITITIKO TOEO UTIOKELTAL O ovAAUON
oplakng ooppotiag. To Bapog tou k&Bs TuRpnatog Wi (i=1, 2, 1-2), Ol CUVTETOYEVEG TOU
K.B Tou K&OE TUNPATOC Xem, Yem. Ol KAPTECLAVEG CUVTETAYMEVEG TNG SUVONG wWBNoNg otnv
apBpwon C, Tc (T, Te,).
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Ektevng MepiAnyn

Na dedopévo Aoyo A(=b / a), damotwbnke OTL amaltoUVTol VYNAOTEPEG TLUEG
ETUTAXVVONG YL VO TEOEL Eval HEPIKWG EANEITTIKO TOEO O€ AIKVIOTIKN TOAGVTWON O€

oLYKPLON UE TLG ETUTOXVVOELG TIOU OTTALTOVVTAL YIX VO KUKAIKO (ZXAHa 13).

12
B=90° B=125° B=1575° B=180°
0.8
0.6

04

0.2 —— Part-Elliptical Arch (A =b/a =0.95)

------------ Circular Arch

0 0.1 0.2 03 04 05 06

IxApa 13 O oelopuLlkOg CUVTEAEOTNAG € EVOG KUKALKOU KOl EVOG HEPLKWE EMELTTTIKOU TOEOU (A
= b /a = 0.95) wg mpog TNV Auynpdtnta t / R ylor SESOUEVEG TIUEG TNG YwViog TIEPLOPIEEwC
B (90° 125° 157.5°, 180°).

Ao 10 ZXAMa 14 TIPOKUTITEL OTL O AOYyoG A (= b / a) elval ypappikdg pe TNV
Auynpotnta t / Ry SOQOPETIKA €TIMEOA TOU OCELOULKOU OUVTEAEOTH €.
ErmBePaiwvetal 6Tt n od€non tou maxoug Tou TOEOL AslToupyel EUVOIKA OTNV
0TaBEPOTNTA TOVU CUOTHHATOG, LG KOL OTIAULTOVVTAL UYNAOTEPEG TIHEG ETULTAXVVONG
yla va Atkviotel. EmmAéov, otav ouykpivoupe dvo to€a tng idlag Auynpotntog t / R
OANG SLOPOPETIKWY YWVIWV TEPLOPIEEWG B oupmepaiveTal OTL OUTO ME TNV
MEYOAUTEPN B UETATPETETAL OE HUNXOAVIOUO TECOAPWY APOPWOEWV YL UKPOTEPEG
ETUTAXVVOELG € g.
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A A
IxAna 14 H gAdxloTn amautoVpevn AuynpotnTta t / R wg ouvadpTnon tTou Adyou A = b /a
ylo SlopopeTika emtimeda NG opllOVTLaG EMUTAXVVONG AVATPOTIAG X9 = € g. AapufavovTal
UTIOYLIY §VO SLPOPETIKEG ywvieg Tteplo@i&swe, B = 157.5° (aploTepd Sidypoupa) Kat B =
125° (aplotepd S1&ypoppa).
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Ektevng MepiAnyn

Acto)ia Tou TOEoU WG UNXAVIOUOU TECCAPWVY apBpwotwv. — Ta vTd eETaon
TOEA (KUKAILKO  KOL  HEPIKWG  EAAELTITIKO) €XOUV T TIOPOKATW  YEWHETPLKA
XopaKTNPoTike: B = 157.5°,t /R = 0.194, n péon aktiva R (R = 10 m), To méxog t (t/
R=0.194 => t = 1.94 m), n eowTteplkn aktiva b (b = R + t/2 = 10.971 m) tov TawvTileTal
yla T SU0 TOEQ, KAl ETITTPOOOETWE YIX TO HEPIKWG EAAEITITIKO 0 AOyoGA (A =b /a =
0.95) & a (@ =b/A=10.971/0.95 = 11.5484). O\ kpioleg eTUTAXVVOELG YL TIG SVO
YEWHETPIEG TTPOKVTITOUY a6 TO IXNpA 14 (Yot To KUKAWKO: |4 | = F(6) / P(6) = 0.51 g;
Y& TO MEPIKWG MemTkO: |%,| = F(6) / P(6) = 0.61 g. Tuykpivovtag Tig Svo
TIEPITITWOELG TIPOKUTITEL TIWG TO TEAEUTAUO TIPOOPEPEL EVIOXVHEVN QVTIOTAON OTOV
AKVIOPO. Ap 'eTépOV, TIANCLACEL OTNV AOTOXIO YA KPOTEPEG OTPOPEG O OTL TO
KUKALKO ylar dedopévo Aoyo t / R (¢e = 0.20 rad ¢c = 0.20 rad). Omwg oAU gvoTOX
dotunwoe o Oppenheim (1992): " éva toéo mpofdAst aéioonusiwn avtiotaon atnv
evapén ™G  kivnong aAA&  OXETIKWG UIKPY) QvTOoxXN OTnV  aroppopnon

g&avayKaouEvVwyY UETAKIVNTEWV .

— Part-Elliptical

e Circular "

15
—— Part-Elliptical

"""" Circular
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L
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IxAna 15 Aplotepd AGypoppa: n SUVOLKA EVEPYELX KOVOVIKOTIOINHMEVN WG TIPOG TNV
peytotn tipn g (V() / V(po)), ol SVo Tieplox€g LooppoTtiag (recovery) KoL avatpoTtig (non-
recovery) Tiov opifovtatl and To onpeio "un-avaktioswe g toopporias” (pc = 0.25 rad yua
TO KUKAIKO TOE0, r=0.20 rad ywo TO HEPIKWG EAAEMTIKO TOEO); A&l Adypapuc: o
OUVTEAEOTAG F(O) TIOU QVTITIPOCWTIEVEL TIG YEVIKEVUEVEC POpUTIKEG SUVANELS O KABE
METOTOTILOUEVN BE0N TOU TOEOL KAl 0 GUVTEAETTNG P(B) TTOU AV TITIPOCWTIEVEL TLG EEWTEPLKEG
SUVAUELG WG TIPOG TNV OTPOPN P YLt TA KUKALKA KOl HEPIKWG EAAETITIKA TOEA (KOKKLVN
SLOKEKOPUEVN KO Hodpn CUVEXNG YPOUUA avTioToL o).

AvdaAuon oto Tiedio Tov xpovou: (1) Emidpacon tng avopoldpoppng Statopng. -
H avdAuvon tng SUVALKNG ATTOKPLONG TIPOAYXTOTIOLETOL OTO TteS0 TOU XPOVOU HECW
avoAVTIKWV (e€iowon kivnong Lagrange) kat apl@puntikwyv pebddwv. Qg Sieyepon

otnV Bdaon xpnotpomoBnkav e§LdavikeupEvol TIaALOL TNG ESAPLKNG Kivnang (Kupilwg
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Ektevng MepiAnyn

TPLYWVOUETPLKOL TTOAROL EVOG KUKAOU Kat TtaApol TuTtou Ricker). Ao ta Stay pappata
TOU ZXNHATOG 16 CUUTIEPAUVETOL OTL T LEPIKWG EAAELTTTIKA TOEQ AOYW TNG EAQPPWG
OLOPOPETIKAG YEWUETPIAG TOUG Elval TILO OTAOEPEC KATAOKEVEG OO TA KUKAIKA.
JUYKEKPLUEVD, OCO TILO «EAAELTITIKI» EIVAL N ETTAVW KOUTIVAN TOGO AlyOTEPO ETILPPETIES
glval To 1680 otnv avatpotn. H euoTABelX TOUG HELWVETAL KOABWG O YEWUETPLIKOG

AOYOG A av€dveTal Ewg TNV TN T OTIoV TO TOEO YIVETAL KUKALKO.
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IxApa 16 H emidpoon TOu yewpeTpKOL Adyou, A oTnv Xpovoiotopia 1TNG
KOVOVIKOTIOINKEVNG Ywviag 8 otav To TOEo UTOBAMETOL O SLAPOPOUVC NULTOVOELSELG
TIOAHOVUG. TPelg SLoPOPETIKEG TEPIMTWOELG Slepsuvwvtat (a) yx A = 0.95 (pepkwg
EAMETTTIKO TOE0), (B) A = 0.97 (LEPIKWG EANELTITIKO TOED), Kat (Y) A = 1 (kukAkO TOE0). Ta OpLa
QVOTPOTING: E UTTAE YPOUUN YL TNV TIEPITITWON (Q), Pe KOKKIVN YPOUUN YLO TNV TIEPITTTWON
(B), KO pE poipn Ypoppn yox Tnv mepintwon (y).

(2) ZUykplon peTadV avaAuTIKAG Kat aplOunTtiking Avong. —Ektog amd tnv
OVOAUTIKA €TAVON TOU OLUOTAMATOG, Slevepyeital emiong SidldoTatn aPOPNTIKN
QVAOALVON HE TIETEPAOHEVA OTOLXEI. TO ATTOTEAETUATA TIAPOVGLALOVTOL CUYKPLTIKA UE
OUTA TNG AVOAUTIKAG HEBOSOU yla TIOAROUG HeYAANG Stapketag. Kat ot Svo pgBodol
TIPEXOUV XPOVOIOTOPLEG TNG SUVOULKNAG OTIOKPLONG, Ol OTIOIEG O YEVIKEG YPOAUMUES
Bpiokovtal og afloonueiwtn oupPwvia, yeyovog Tov utoypappilel tnv aglomiotia

Kol Twv SV0o Tpoaoeyyioewv. AuTO sival TTOAD GNUAVTIKO Aaufavovtag vmoyn Tiq
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Ektevng MepiAnyn

OUOLOOTIKA OLOPOPETIKEG VUTIODETELG TIoL uloBeToLvTaL 0 dVO Tpooeyyioelg H
avOAVTIKN pEB0SOC Bewpel éva Akt To, POVOABIKO TOEO PUNSEVIKAG EPEAKVTTIKAG
QVTOXNG OTO OTOl0 OMOTPEMETAL N OAloOnon ot apBpwoelg. AvtiBéTwg, TO
OPLOUNTIKO LOVTEAO TIPOCOUOLWVEL Lot SUOKOUTITN KATAOKELH OAAG OXL Lot LOEXTA
QKOUTITN, ME TIPOKAOOPLOUEVO HNXOVIOUO apBpwoewv, OOV oL SLETPAVELEG Sev

€lVal OPKETA TPAXLEG WOTE VO AMOTPEYOLVV TNV OAloONnoN.

Semi-Analytical Method

v/
/i," FE Analysis

Semi- Analytical Method

FE Analysis

iXg = -0.75gsin(mt) 0.9
0.88 - 0.88 1

0/ 6o

0.86 1 0.86 1
0.84 1 0.84 1
0.82 1 0.82 1

0 0.5 1 15 2 0 0.5 1 15 2

/ Semi-Analytical
/! Method
/

)
N
0.94 FE Analysis 7

%g =-0.75gsin(0.5mt)

0/ 60

“Collapse bound”

0 0.5 1 15 2 25 3 35 4 3 3.5 4
t (sec)

ZxAHa 17 XpovoioTopieg TNG KAVOVIKOTIOINEVNG YWVING B eVOC LePLKWG EANELTITIKOU TOEOU
(A = 0.95) mou SieyeipeTal amd NUITOVIKOUG TIOALOUG 0TnV BAcn Tou (YKPL YPOUUN).
TUykplon PeTaED TNG HEBOSOU TIEMEPACHEVWVY OTOLXEIWY (SLOKEKOUMEVN YPOUUN) KAL TNG
NHL-CVOAVTIKAG €THAVONG (OUVEXNG YPOUUNG). TO OPLO OVOTPOTING OKLAYPOPEITAL HE UTIAE

ypoppn.

V. AiOwa Toa emi ayrdootatwv

Eva and ta BepeAdlwdn otoixeior TOAWY pvnpeiwy Taykoopiwg omwg ot AiBveg
YEQUPEC, T VOpaywyeia, ol yotOikol kaBedpikol vaol, ot BulavTivég eKkANGILEG, Kal
Ol OTOEG HETAEV AAAWV gival To AiBwvo To&o emti aPrdootatwy. Ot KEKALUEVEG SUVAELG
wBONnong oL aokoVVY Ta TOEX OTIG OTNPIEELG TOUG PETAPEPOVTAL OTOUG APIOOOTATEG
oL oTtoiot CUUPBAAAOUV EVUVOIKA 0T OTAOEPOTNTA TNG KATATKEVNG KAOWG PETAPEPOLUV

outr) TNV wlnon oto €dapog Bepediwong. MNa Tnv akpifela Tng avaAvong tng
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Ektevng MepiAnyn

EVOTADELOG HECW TNG KIVNUATIKNG BEwpilag amatteital n avayvwplon Twy apbpwtwyv

HUNXOVIOUWV.

AvAAoya PE TNV YEWHETPIX KOl OUYKEKPLMEVO WE TNV OXETIKN avodoyia tdEou-
adootdtn, Slakpivovtal ot akdAovBol pnxaviopol apbpwoswv oto IxAua 18,
OTWG apXK& TpoTdOnke amd tov De Luca (2004): (i) Mnxaviopog I (Tomikog n
apBpwWTOG UNXAVIOPOG) CLVABWG ATIAVTATAL OTNV TEPITITWON AEMTWY TOEWVY TIOV
otnpifovtal og oYU aPLS00TATEG OTIOV OAEG OL apBpwaelg oxnpati(ovtal 0To TIO
EVOAWTO TUAMA, TO TOEO, Kal kKapio oToug aPdootdTeg, (i) Mnxaviopodg 1T (nut-
KOBOALKOG 1 LBPLOIKOG MNXaVIOUOG) OmavVTATAL OTAV EKTOG omd TO TOEO, OTOV
apOPWTO PNXAVIOPO OCUMMETEXEL KOl €vaG aPLSO0TATNG. ZUYKEKPLUEVA, N Mia
apBpwan avolyel 0TNV KATW ywvia Tou aPldooTATN VW oL GAAOL TPELG KATA PAKOG
Tou TOEovu, Kau (i) Mnyxoaviopog III (kaBoAlkdg Mnxoviopog) amoavidtol Otav
avamtuooovTtal SUo apBpwaelg oTo TOEO Kal oL dAAeg Suo og k&Be adooatatn. Ot
dVo TeAevuTtaiol pnxaviopol Slapop@wvoval ouvnBwg ylx oyl TOE  Kal
VYikoppoug aPLdooTATEG (ELOIKOTEPA O TEAELTALOG Yl OKOMPN TILO LVWIKOPHUOLG
aPLb00TATEC Kal &pa TIo TPWTOVG). Edv n &pBpwoan B r D umtepPaivel Tnv yéveon tou
TOEOL Ko oxnuotideTal evTog Tou aPldooTATN, TOTE EVEPYOTIOLEITAL O MNXAVIOHOG
IV (mapoAAayn tov Mnxaviopov II). e authiv TNV TEPIMTWON OUWGE YLt TNV ATTOPUYH
TOV £APUOLOVTAL KATAAANAEG OPLOKEG OLUVONKEG. AVTITIPOOWTIEVTIKA TIAPASELYHAT
TWV AVWOEV KIVNUATIKWY HNXOVIoPHWV amelkovidovtal oto ZxAua 19 (Brandonisio
2017).

Ou Alexakis & Makris (2017, 2018) 0TI TIPWTOTIOPLOKEG TOUG EPYAOCIEG YLO TOUG
KUALVSpLkoUg BOAoug, Toug omoioug katd Tnv avaiuon tng Oplakng loopportiag
Bewpnoav HOVOALBIKOUG, LTTOAOYLOAV LE TNV ePAPUOYT] TNG APXNG TNG OTACIUNG
SUVOULIKNG eVEPYELAG TNV €AGXLOTN OPLIOVTIA ETIITAXUVON OVOONKWHATOG KOL TLG
Boclg TwV TECOGPWY aPBpwoewv UNSEVI(OVTOG TIG MEPLKEG TIOPAYWYOUS TNG

SUVOULKNAG EVEPYELAG.
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Ektevng MepiAinyn

Mechanism | Mechanism I Mechanism Il

—
g =9

IxAna 18 Tpewg Swapopetikol kivnuatikol pnxaviopot (I, II, III) mov eival mBavdv va
gvepyoTioinBovv Tav pLa E8APIKN ETILTAXUVON Xy OOKETOL TNV BACN TOug amd aploTepd
Tpog Ta Sela.

IxAHa 19 AvTIMPOOWTIEVTIKA TOPASEYHATA TWV AVWOEY KIVNUATIKWY pnxoviopwyv: H
ekkAnola g Ayilag Maplag tou Collemaggio otnv L'Aquila (Itoia) katd Tnv St&pKeLa TOU
oglopov L'Aquila (2009), To dnuapxeio oto San Agostino (ITaAia) otov oelopod tou 2012 otnv

Emilia Romagna, n ekkAnoia tng Ayiag Akatepivng otnv Venzone (ItaAia) to 1976 otov
o€lopo Friuli (Brandonisio 2017).
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Ektevng MepiAnyn

TG PeUSOOTATIKEG AVOAVCELG IOV aKoAouvBouv Ba e€eTtaotel N IKAVOTNTA TWV
VY ikoppwv aPtdootatwy Tou oTnpilouv éva TIoXY KUKAIKO TOEO VO OVTIOTEKOVTOL
oTtnNV  AKVIOTIK]  TOAGvTwon  (IXxAna  20-aplotepd). ZUUPWVO  HE  TA
mpoavaPepBévTa, Otav n eAdxloTn Kployn opldvtia emtdxuvon aoknBsl otnv
akoumtn Baon evepyotoleital o Mnxaviopog I (A pelktdg R NUL-KaABOALIKOG) (XK
20-8ed1x). H yewpetpla touv aydootdtn (b, h) mailel kupilapxo poAo otn
0TaBepOTNTA TNG SOUNG OE AVTIBeaN e TOV SEVTEPEVOVTA POAO TNG YEWHETPIOG TOV
To&ou. H oupPoAn Toug SlepeuvaTtal TIAPAKATW. TECTEPLG SLAPOPETIKEG YEWMETPLEG
AapBavovtat vtoYv. H Auynpotnta Tou agidootdtn s = b / h kupaivetal amo 0.25
og 0.75. To €0POC TWV TIHWV TWV TIAPAUETPWY TOU TOEOL eivat: (i) yla TNV ywvia
nieplo@iewg B, ot Tipég kupaivovtal amo 90° (TUNUATKO TO&0) o 180° (NUKUKALKO
T0&0), Kau (ii) ylax TNV avadoyia peoov méxoug t / R, amod 0.025 og 0.275 Bewpwvtag

QVTLOTOLX WG TIOAD AETITA EX PL TIOAU TtaXL& TOEAL.

Segment 2

Segment 3

Segment 1
—|a

A: right corner of the right buttress eWi1—p
B: o <1 <7/2 h
C /2 @:<qz h
D: @s<m—@o 1

AIAN 77AN X, =¢€g
SR — 2 AN

Xg=¢9

IxAHa 20 Aplotepd: OXNUOTIKA OVOTIOPACTOON €VOCG TIXXEOG KUKAIKOU TOEou €Tl
vYPikoppwv aidootatwy. ‘Otav n kpioln opllovTia eTITAXVVON aokeital otnv Bdon Tou
amod Ta aploTeEPA TPOog Ta Se&Ld evepyotoleital o Mnxaviopog II; oL kKUPLEG YEWUETPLKEG
TIOPAUETPOL TIOU  eMNPedlouv TNV €UOTABsel TOU OuOTHMOTOG. Aegfld: Asmtopepn
avamapdotacn tng Oplakng Avaduong looppotiag. Ta tpia TpApaTa Tou Kivnpatikoy
Mnxaviopov I kat To ouvSUACTIKO THANA 2-3 TIOU XPNOLHOTIOLOVVTAL 0TNV avaiucn; Ot
opLlOVTIEG (€ W) Ko oL kaTakopupeg (W) Suvapelg TTOU dOKOUVTOL OTO KEVTPO TNG HAlog
(Xi, i) YLt KAOE TUAPO KABWG Ol KAPTETLAVEG OUVIOTWOEG TNG SUvaUNg wbnaong.

H av&non tou mAd&toug Tou ayidbootdtn e€ao@olilel peyoAuTepn otabepoTnTa

KoBWE amautouvTal VPNAOTEPEG TIHEG ETUTAXUVONG YLO VO LETATPOTIEL N KATAOKEVN
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Ektevng MepiAnyn

0€ PNXQVIOUO (ZXxAMa 21). Mo Tapadetypa, pa avgnon tov TAdToug Katd 50% odnyel
oe 50% vPnAOTEPEC TIHEG KPIOWWWVY €TUTAXVVOEWV. [eVikd, 0TV n AuynpodtnTa S
ogavetal (eite awEdvovTag To TAATOC TOL APLSOOTATN 1 KELWVOVTACG TO VYOG TOV),
N Kotookeur yivetat mo otafepry kaBwg n evapgn TOu AKKVIOHOU OmalTEl
MEYOAVTEPEC TIHEG ETUTAXVVONG. MIKPOTEPEG TIHEG TNG Ywviag Tteplo@iewg B €xouv
guvolkn emidpaon otnv evotdBela. H epimtwon evog oxeTika oTiBapou aPtdootdtn
(b/R =075 H/R=1) elvalL pla oplakn KAtdoTaon OTov ylo HEYOAUTEPA TIAATN TO
TOEO METATPEMETAL OTO EVOAWTO TUAMA TNG KOTOOKEUAG KL UTIO Mo KPIOoLn
emtdyuvaon Kwntomoleitat o Mnyxaviopog I émou kat ot téooeplg prRéelg oupPaivouv
HOVO 01O TOEO. ATtO Ta StaypAappata emiBeBatwveTal To vpnua Tov Housner (1963)
OTL avApeoa oc SVO €§l00V ULWIKOPHUEG KATOOKEVEG OLOPOPETIKOU peYEBOUG N
MEYOAUTEPN €lval TOOO TILO OTaBEPN. TEAOG, Pt ONUOAVTIKY SLToTWOoN TIPOKUTITEL
aTto TO ZXAMA 22 OTIOL TIAPOVOLALOVTAL Ol BE0ELG TWV ETUKEPNEVWVY apBpwaoswv @1,
2, (3 Twv onueiwv B, C, D. H Slapudoppwon tou TOEOU TIOU UETATPETETAL OF
MNXOVIOUO UTIO TNV Kpion optllOVTia eTTAXVVON TIEPAAUBAVEL VoV PEYOAUTEPO
OUVOEOUO ME Avolypo B1 Tou Tponyeital TAvVTa Twv SVO ETIKEMEVWY e (o
avolypata (62 = 63). H teplypagpeioa SIapOp@WON CUUTIITITEL HE QUTAV TIOU KATEANEE

o Oppenheim (1992).

To&a emi aPrdooTatwy eviaiag Kot HnN-eviaiag SLATOUNG.-2€ oUTN TNV vOTNTX
ETIKEVTPWVOMAOTE OTNV SOULIK ammoKplon Twv ABvwv To§wv umo KaBeoTwg
Slappong otav Sleyeipovtal amd SLAKPLTOUE TIOAUOVUG, OL OTtoiol UTIOKABLOTOUV
ETIOPKWG TIG OELOMIKEG OleyePOELG. H KaTtaokeun amoTeAsital amnod emipepoug OoAiteg
ME TpokaBoplopéveg Beoslg apOpwoswy. AVOPOPLIKA HE TOUG TETTAATUOUEVOUG
adootateg N AuynpotnTa toug (b / R) avgavetal katd 25% dnAadn amo b /R = 0.3
og b’/ R = 04 evw OAa TO UTIOAOITIAl YEWMETPLIKA XAPOAKTNPOTIKA (t / R, h / R, B)
mopapévouy  otabepd  (IxAua 23). H oapBuntikn emidvon Twv  €€lowoswv
TIPAYUATOTIONONKE pe BAUA-TIPOG-PANa EV-XpOVw OAOKARpwWON, péow TNG pEBdSou
apeong dtatumwong (explicit algorithm). Q¢ Siéyepon otnv fdon xpnotpomoOnkav
TPLYWVOUETPLKOL TIOApOL €EVOG KUKAOUL Kal TtaApol tuttou Ricker. H evaioBnoia tovu
TPLOSIAOTATOU HOVTEAOU OTO XOPOKTNPLOTIKA TWV TOARWY OTEKOVI(ETAL OTO

QPACPOTO AVATPOTING TWV ZXNHATWvY 24, 25. To SOMKO CUOTNPA TIAPOUVCLALEL

A. Agovtapn, Awdaktopikn Atatpipn 2023 XXV
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ONUOVTIKA avTioTaon o€ vPiouxvoug TTOAPOUG. Mo TIapASELyPa, Evag TIOAUOG Ricker
pe mepiodo Te = 0.2 sec (case A) gival TPOKTIKWG AdUVATOV VA TIPOKOAETEL TNV
QVOTPOTIN TNG KATAOKELNG OPOV YIX VO ETIITEVXOEL KATL TETOLO TIPETIEL TO EVPOC TNG
ETUTAKUVONG VO PTAOEL TNV TN 3 = 3 g. OL pakpomepiodol moApot Ricker €xouv
KOTOOTPOPLKEG OUVETIEIEC OTNV EVOTADEL TNG KATOOKELNG. XTOV avTimoda yl
OPKETA HEYBGAEG TEPLOSOUG (Te > 0,9 sec) n eAdxlotn emtdyuvon Tpooeyyidel Tnv

YeudOoOTATIKA TLUN.

A. Agovtapn, Awdaktopikn Atatpipn 2023 XXV
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07 h/Re 045 o
= =0.75 R=1.5 -
[~ b/R=0.75 § ° ? b/raos § 5= 050

A 0.025 & 0.05 - = =0.075 | ====- 0.1 S -
0.125 0.15 0.175 --—-0.2
€ 0.05 ©O 0.075 o 0.1 E O 3 0.225 0.25 - - (0275
€ o4 ’ h/R=1.5
o / s=0.33
b/R=0.5
A
0.4 h/R 1
~ = s=0.50
I b/R=0.5 0.25 3

90 100 110 120 130 140 150 160 170 180
B(°) B(°)

IxApa 21 Enidpaon tng av§nong tou mAatoug (b / R = 0.5 - 0.75) evdg aidootdtn pe dedopevo vyog h (h/ R =1 & 1.5) otov

OELOULIKO OUVTEAEDTN € YLO SLAPOPETIKEG YEWUETPLEG TOV TOEOV (t / R, B).

A. Agovtapn, Awdaktopikn Atatpipn 2023 XXVi
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IXAHa 22 O£0€lg TWV ETUKEHEVWV apBpwoEwY @1, @2, @3 Twv onpeiwv B, C, D (IxAua 5.2)
QVTLOTOIX WG Yl pict ToEwTr Kotaokeur pe Sedopévn yewpetpia aPidootatwy (b / R, h / R). Ot
TIOPAUETPEG TOV TOEOL (B KaLt / R) KOAUTITOUV €Val LKAWVOTIONTLKO EUPOG TIHWV.

>

b’ b

Geometric parameters

R 133m
YR 03
B 146°
h 1.66 m
b 040 m
b 0535m

IxAMa 23 TeWPETPIKEG TIAPAUETPOL TOU TOEOU €Tti APLSOOTATWY: N HEON aKTiva R Tou
TOE0V, N AuynpodTnTa Tov TO&O0UL t/ R, N ywvia teplo@iewg S, To VYOG KAl TO TIAATOG TOV
adootdtn h, b avtiotola Kot To TdX0G b’ Tou TEMAATUOUEVOU APLEOOTATN.

A. Agovtapn, Awdaktopikn Atatpipn 2023
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AVOQOPLKA UE TIG ETITITWOELG TIOV OOKEL KABE TIOAUOC 0TNV KaTaokeun Slapaivetal
EVOPYWG OTL O NULITOVIKOG TIOAUOG €lval TILO KATAOTPETTIKOG Ao TOV TIOAUO Ricker
€WOIKWG Yyl oelopovg Hikpng Swapketag (Te < 0.2 sec). H AlyOTEPO KOTOOTPETITIKN
enidpaon tou ToAYoU Ricker amodidetal amMAWCG OTNV €UVOIKH OOVMHETPIX TIOU
TIPOOPEPEL EVA TIPOCTOETO «SiXTV ACPOAEIG». X HETPLOUG KOl HOKPOTIEPIOSOUG

TIOAROUG O TUTIOG TOV Sev SLadpapaTilel oNUAVTIKO pOAO.

ATtO TN oUYKPLON TWV SLOPOPETIKWY YEWMETPLWY OTTIOKOAUTITETOL OTL KON KO JLLOL
Hikp av€non oTto TAATOG Tou aPId00TATN AVEAVEL TNV EVOTABELX TNG KATAOKEVNG
aveEAPTNTA OO TOV TUTIO TIOAPOV. Mo TIHEG T peyoAvtepeg amo 0,2 sec, n eAXLoTN

PGA yla TNV avaTPOTIH) TOU EVIOXUHUEVOL TOEOU HELWVETOAL YPHyOPQL.

ITIG TIEPLOCOTEPEG TIEPITITWOELG O ETUKPATWY HNXAVIOPOG glval o Mnxaviopog 11
E€aipeon amoteAel 0Tav To oVOTNPA SleyelpeTal amO €vav HAKPOTIEPIOOO TIOAUO
Ricker (Te = 1.2 sec) kat evepyotoleitat 0 Mnxaviopog III (kaBoAikdg). Qg ek TovTov,
N SLVATOTNTA EVEPYOTIOINGNG EVOG UNXOAVLIOPOU EVAVTL KATIOLOU AAAOU Oev €apTaTal
MOVO OmoO TN YEWUETPLIK avodoyla ToEou-aPldootdtn oAA& Kol amo T

XOPOKTNPLOTIKA TNG POPTLONG.

A. Agovtapn, Awdaktopikn Atatpipn 2023 XXViii
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IxApa 24 OAOPATO AVOTPOTIAG TNG TOEWTAG KOTAOKEVNG ME eviaiot Slatopn Tou LTORAAAETOL 0 TIOAMOUG TUTou Ricker (aplotepn pepLd) Kot o€
nptovoeldeic moApovg (Se€id pepld). Mo k&Be moAuo A-G (mepiodol Te: 0.2, 0.3, 0.4, 0.6, 0.9, 1.2, 1.6 sec) amelkoVI(ETAL O EKAOTOTE UNXAVIOUOG TWV

TEOOAPWV aPBPWOEWV TIOU EVEPYOTIOLELTAIL

A. Agovtapn, Awdaktopikn Atatpipn 2023
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IxApa 25 PAopaTa AVaTPOTING TNG TOEWTHG KATAOKEVNG PE UNn-eviaia SITopn Tiou uTtoBEAAETaL o€ TTaAoUG TUTou Ricker (aplatepr pePLA) Kot o€
nptovoeldeic moApovg (Se€La pepldr). MNa k&Be oApd A-G (miepiodol Te: 0.2, 0.3, 0.4, 0.6, 0.9, 1.2, 1.6 sec) amelkovileTal 0 EKACGTOTE PNXOVIOUOC TWV

TEOOAPWV OPOBPWOEWV TIOU EVEPYOTIOLELTAIL.
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VI. EyKIBwTIopéveG OOAWTEG KATAOKEVEG:
AAAnAenidpaon ESapoug-Kataokeung

To Saypoppa €AEVBEPOV CWHATOG TNG EYKIPWTIONEVNG OOAWTAG KATAOKEUNG
oklaypo@eital oto ZXAUa 26. ‘OTaV N KOTOOKELN TOTOOETEITAL OTNV EKOKAPN
(“wished in place”), to i6to B&pog TNG (Warch + Wh) evepyotiotel Suvapelg avtidpaong
amd 1o €daog BepeMlwong (N, Toase). H SOvapun avtidpaong Thase €lval egartopévn
otnV SlETPAVELX ESAPOVG-OeUEAWONG HE POPA TIPOG TO ECWTEPLKO KAl EEXPTATAL
OO TOV OUVTEAEOTH TPBAG U KATA MAKOG Tng Olemipavelag. H oAloBnon tng
KoTookeung Oa amo@euyOel edv autn n Svvapn ivat pikpdTePN Amtd TO YIVOUEVO TOV
H*N (omou N givat n dVvapn mov givat n k&Betn otnv SleTpavela Touv BoAitn). Me
TNV ETXWON TWV KEVWV EKATEPWOEV TwV Tolxwv, Ol BOAITEG UTIOKEVTAL ETITTAEOV OF
opllovTieg edaikeg TEoelg. H (wvn TARpwong - mAdtoug 30 cm- Asttoupyel uTod
OAlYN  (dnuovpyel ouvONKeEG TAELPIKAG QTOPOPTIONG) avTtiotaduilovtag TNV
avTidpaaon edapoug - Bepediwong. H Tpywvikn katavoun Twv opllovTiwy eSA@IKWY
TIECEWVY, OUMPWVa pe TNV Bswpia Twv Rankine kat Coulomb, ameikovidetal oto
IXAHa 26. TEALKWG, OTOV N KATOOKEVN EMAVETILXWOEL, TO PAPOG TOV VTIEPKEIUEVOL
edapoug Ba An@eBel amd TNV KAUTIUAN ETULPAVELX TOU TOEOU WG KOATAVEUNUEVEG
KATOKOPUPEG ESAPLKEC TILETELG (Prer). AVAAOYQ e TO VYOG TOU UTIEPKEIEVOL SAPOUG
KaBwg Kol TNV okouyiot TNG KOTOOKELAG, N (POpTIon Tou TOgou umopel va
OUVOSEVETAL OTIO LA TIETEPACEVN HETATOTILON TIOV UTIOPEL VO OSNYNTEL OKOMN KAl
og kaBi¢non tou edd@oug. H Sduopevig TepimTwaon OTOV N KATAOKELH Kot n {wvn
TIANPWONG TIAPOAXUPAVOUV OAO TO UTIEPKEIUEVO POPTIO ATIEIKOVI(ETAL OTO ZXAHNA
26a. Qg avTOTABUIONA, N SLTUNTIKA avTioTtaon evtog tng (wvng ema@ng Twv
SLOPPEOVOWVY KOl OTATIKWY palwv Uropel va avTiteBel o auTr TNV Kivnon kat va
dlatnpnosl TNV apxtkn tng Béon. Katd ocuvvénela, n mieon tng Sappéovoag palog
MELWVETOL €VW N Tiieon oTtnVv Topokeipevn otaBepr) palo avgavetal Auvthi n
METAPOPA TILECEWV Elval amoppola TNG TOEWTNG Asttoupyiag tou edd@oug. Ot
SIS POEC TWV TACEWY TIAPATIEUTIOVV OTN SNHLOVPYIa EVOG EIKOVIKOU TOEOU TTAVW
amo tnv dappeovoa (wvn. O UNXAVIOUOG TIOL ETUTPETIEL QUTH TNV EKTPOTI TWV

TPOXWV TWV TACEWV OO TNV KATOKOPUPN KaTeLBUVON TPOEPXETAL Omd TNV

A. Agovtapn, Awdaktopikn Atatpipn 2023 XXXi
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UTIEPOTATIKOTNTA TOU SIBIACTATOU £8APIKOV HETOU. AVAAOYOL UNXOVLIOHOL TOEWTNG
AsLTOUPYIOG TTAPATNPOVVTAL O PEPOVON TOLXOTIOLIX TIAVW Ao avolypota. AuTh n
KOTAoTOON, N omola €€aPTATAL ATO TIG METATOTIOELG TNG KATOOKEVNG, UTTOPEL v
XOPOKTNPLOTEL WG M TIPOOWPLVH  CUMUTEPLPOPA TNG €Sa@lkAG pAalag otnv

Slappeovoa {wvn Tapa pa otaBepn. (ZxRHa 26B).

Pror

[ : HE .
¢ kil
|«

== Stress path
. Soil arching

IxAna 26 ATELKOVION TOU SLOAYPAPHOTOG €ASVOEPOLV CWHATOG HIOG EYKIBWTIOUEVNG
BoAWTNAC KaTaokeLAG. o) H Suopevig mepimTwaon omou ayvoeital N To§wTr Asltoupyia Tou
edapoug, B) Zuvurodoyidovtag TNV ToEWTN AstToupyia n omoia emionpaiveTal padi pe Tnv
Slodpopn tdoswv. Ol opllovTieg eSAPIKEG TiLETElG uTtoAoyiovTal amd To emimedo Tou
KAELSL0V.

A. Agovtapn, Awdaktopikn Atatpipn 2023 XXXi
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H pn ypouulky avaAuon tng OTATIKAG KAl OELOULKAG OTOKPLONG TOU GUOTAMATOG
guodovutal pE TNV opOuNnTky PEOOSO TWV TIETMEPOOUEVWY OTOLXEIWY  Kal
OUYKEKPLUEVA E TOV YEVIKAG XPNOEWS KWOLKA TIETEPAOUEVWY aTotxeiwv ABAQUS.
To ZxAqua 27 amekovidel TNV SLOKPLTOTIOINON TIEMEPACUEVWY OTOLXEIWY TOU
MOVTEAOL POl HE ML OXNUOTIKY SLATOEN TWV AETITOPEPELWY HovTeAoTIoiNONG. M
ABwn BOAWTA KOTOOKEUN TIOU OTOTEAEITOL OO TIEMEPAOHEVO OPLOUO BoATwV
KOTOOKEVALETOL 0 KATaKOpupn Ta@po Paboug 5,50 p. mou SwavoixBnke oe
OUVEKTLKO £€800oc¢. H kataokeur Kal To TEPIPAANOV £80POC AVTITIPOCWTIEVOVTOL UE
SL8LaoTaTA TETPATIAEVPIKA OTOLXELD ETTITIEONC TIAPAUOPPWONG. LTNV GpEDN YeLTOVIX
TNG KOTOOKELNG OTIOU TO TOOWKO Tedio TAPOouCIalel HEYAAO EvOlAPEPOV N
SLOKPLTOTIOINGON YIVETAL TTUKVOTEPN TIPOKELMEVOU VA SIOOPOALOTEL N EMAPKELX TWV
OTMOTEAEOUATWY. [ TNV PEAALOTIKA TIPOCOUOIWON TWV YEWOTATIKWY GUVONKWV,
TIPONYELTOL OTIOLOOATIOTE OTATIKNG 1} SUVAHLKNG AVAAVONG TO YEWOTATIKO “Prua’”,
e dadikaoio  evowpatwpévn oto ABAQUS. H  aplBuntik emidvon Ttwv
TEMAEYHEVWY €§LOWOEWV LooppoTtiag yiveTal pe aAyoplBuo &ueong oAOKANpwaong
(implicit algorithm). Ot tAgup kol KOUBOL TNG EKTKAPNG CLVOEOVTAL LETAED TOUG HECW
KLVNUOTIKWY TIEPLOPLOUWY, WG TIPOowPVA peBodog avTlotipEng yla TNV amoguyn
eda@lkwy Kwnoswv. Kata tn Swdlkooio emixwong, autol oL TepLOpLopol
OTIEVEPYOTIOLOVVTAL OTASIOKA YLt VO ETIITPOTIEL N QUOLKA avATTUEN OPLlOVTIWY
eSaPlKWV TLECEWV. To PBpoxwdeg uvnofabpo Bswpeitar wg akAovnto. Na tnv
emitevén TNG AMOKOAANONG OTLG SLETLPAVELEG TWV BOATWVY Tou TOEOL PETAEY TOVG,
TOU TOEOU HE TOUG AYLOOOTATEG, TOU TEAELTALOL e TO £8apog BepeAiwong kabwg
KoL OTNV  OLETULPAVELX  €6APOUG-KATAOKEVNG  EPAPUOLETaL evag  €EEALYHEVOG
oAyOpLOpOG emoPnC. Evag apketd peydhog ouvteAeoTtng TPPAG (U = 0,7) emAéxOnke
WOTE VO SIACPOALOTEL OpLlyWE N ALKVIOTIK TOAGVTWON -ETILKPATOVOX 0T VPIKOPUQL

OUOTHHATA- KOL VO amo@euxOei n oAioOnon.

A. Agovtapn, Awdaktopikn Atatpipn 2023 XXXiii
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Backfill sequence:

Overburden 2

2.2m

—— Soil-Structure Interface:
kinematic contact algorithm

|
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E==4  Vaulted structure o6ml il | | Backfill 3
Linear 4-noded plane o, 210m o Backfill
. 1.0m| o1l || Backfill 2
strain elements T [
(limestone) 0.5m HHHH Foundation Backfill | 0-25 ?ﬂg;-zom 0.50 ’%-Zom
{II22223 Excavationtrench 0.40 m Gap:0.27.m detail a detail b
Y. R4

5 £ S52 S222

ol
P
e
255y
©

|
«

st

: 30 m > 0o0m——

IxApa 27 H ekoka@n, n ABwvn BoAWTA KATAOKELN, TA TIAXN TWV ETILXWOEWV KOl TOU UTIEPKEIPNEVOL £8APOUC; YEWUETPIA Kall
Slakpltomoinon Twv TEMEPATUEVWY OTOLXEIWV BEWPWVTAG CUVONRKEG ETITESNG TTAPAUOPPWANG.
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Idi=

HHH T
a. Phase 1: Barrel Vault b. Phase 2: Foundation Backfill

- c. Phase 3: 2" layer of Backfill 'd. Phase 4: 3" layer of Backfill

11 11 11 1T
e. Phase 5: Overburden soil 1 - f. Phase 6: Overburden soil 2 |

IXAHa 28 ATEIKOVION TNG KOXTOOKEVAOTIKAG OAANAOUXIAG |E TIETIEPACHEVA OTOLXEX: Q)
®don 1: n to§wTn Kataokeun “TomoBeteital” oTNV eKoKa@r Kal Ta f&Bpa vrtoatnpiovtat
TPOCWPVWC, ) Pdon 2: pe pia oatpwon emixwong di = 0.5 m oTiq eEWTEPIKEG TIAEVPEG TOV
aibootdtn Stapoppwvetal n BepeAiwon, y) ®don 3: To VYo emixwong aVEAVETAL KATA
d2 = 1 m (backfill 2), &) ®aon 4: TMARpwWC eTixwEVOoL apLdootdteg (backfill 3, ds = 0.60 m),
€) ®don 5: N TPWTN OTPWAON VTIEPKEIUEVOU POPTIOV, ds = 1.20 m KOAUTITEL TO TOEO PEXPL
v otéyn tou (overburden 1) kot {) ®don 6: pic SeVtEPN oTPWON LVTIEPKEIHEVOU ESAPOUG
Tiaxoug ds = 2.2 m @TAveL oTNV 0TEPN TNG EKOKAQNG (overburden 2).

H onpooia tng kataokevaoTikAg cAAnAovxiag (EXAHa 28) eykeltal oo akoAovBa: (1)
n otadlokn emixwon emnpedlel TNV €VOTABEI TNG KATAOKELNG, (2) omoKInon
AETITOUEPWV TIPOPIA TWV ESAPLIKWV TILECEWV TIOU AVATITUOOOVTOL O K&OE Prpa, (3)

A. Agovtapn, Awdaktopikn Awatpipn 2023 XXXV
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OV aVATITUEN TOL PALVOUEVOL TNG TOEWTNAG AELTOUPYIOG TOU £8APOVG KATA TNV
SlapKeEL TNG ETiXWONG.

To €da@ikd TPOPIA €vOG OMOLOYEVOUG OUVEKTIKOU €8APOVE OTOU OTIolou N
QOTPAYYLOTN AVTOXN KOL TO HETPO EAAOTIKOTNTAG AVEAVOVTAL OTASIOKA PE TO PAB0G
amelkoviCetal 0To IXAMA 29. H EAAOTO-TIAQOTIKY) CUUTIEPLPOPA TNG OKANPNG apyilov
UTIO AOTPAYYLOTEG OUVONAKEG TIPOCOHUOLWVETOL ME TO TPOTIOTIOLNUEVO KPLTAPLO
aotoxiag Von-Mises pe Oswpnon HN-YPOUMIKAG KIWNHOATIKAG KPATUVONG HE

OVOXETIWOMEVO VOO TIAQCTIKNAG PONG.

Su (kPa) E (MPa) G (MPa)

h: 0 20 40 60 80 100 120 O 50 100 150 200 250 300 O 20 40 60 80 100 Layers:

L
1
T
S lw N -

10 =

-11 10
-12

-13 ’

14 \ 11

-15 - - - - -

IxAna 29 To £do@kd TMPo@IA paGg okAnpng opyidov. Kotavopn pe 1o PaBog tng
AOTPAYYLOTNG SLATUNTLKAG avTtoXn¢ Su (kPa), Tou pétpou ehaotikdéTnTag £ (MPa), kat Tou
pETpou Siatpnong G (MPa).

Opl{ovTieg edaikég miéoelg.- Katd Tnv TmPoodeuTik emixwon Tov
OVOOKOUPEVOU OPUYHUATOG KAL META TNV TOTOBETNON TNG BOAWTNG KATAOKEVAG,
AopBavovtal vTtoYtv N cAANAeTiOpaan €8APOVG-KATAOKEVNG EVW AXUPOTEPEG OL
OTIOKPLOELG TWV CAANAETILE pWVTWV TUNHATWYV €§aPTWVTAL ATIO TOUG aKOAOLVBOoLG
TIAPAYOVTEG:
(1) Tnv peBodo eloaywyng tou €8APOUE Kal TOU KUAWWSpLkow BOAov oTo
apPOUNTIKO HMOG MOVTEAO TIOU €V TOLXUTN TEPIMTWOEL TO TPWTO

tomoBeteital otadlakd kat To deVtepo pe TNV Bswpnaon “wished in place”

A. Agovtapn, Awdaktopikn Atatpipn 2023 XXXVi
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(avemnpeaatn TOMOBETNON €VVOWVTOG OTL QyVOE(TaL N OTMOladATOTE
enidpaon oto Taolko Tedio Tou £8A&POUG).

(2) Tov vPnAo cuvteAeotn TPPNAG (U =0.7) wote va amoevxOel n oAioBnaon
OTLG OLETILPAVELEG.

(3) TNV IKAVOTNTA TWV HETAKIVACEWY TNG KATATKEVNG, TIOV TO HEYEBOG TOLG
oxeTiCeTal pe TNV adpavela Tou AoBECTOAIBOL, VA EVEPYOTIOLOUV TNV

SLATUNTIKA AVTOXH TOV £8&POVG.

EvSlagpépov mapouotdlouv ol BATTIKEG TAOELG TTOU AOKOUVTOL OO TO £8A(POC
enixwong otnv Slempavela tng Kataokeung (ZxAue 30). Ot eSa@LKEG TILEDELG
ETIAPNG HTIOPOVV VA AVOKATAVEUNBOUV KATA PNKOG TNG SLETILPAVELAG UE TETOLO
TPOTIO WOTE Ol AVATITUYHEVEG SLAKUUAVOELG TOU YPOUMLKOU TIPOPIA VO TIOAPEXOLV
pomég otabepomoinong Tou aPldbooTaTn ot Katakopuen BO<on. Katomwv
TARNPWONG TOV UTEPKELHEVOL €8APOVG, N amaitnon Tou TOEOV Yyl HETOKIVNON
TPOG Ta €€W 0TNV PACN OTAPLENG TOV EVEPYOTIOLEL ONUAVTIKEG EOAPLKEG SUVAELG
yloo va Slao@aAlotel n SOMIKA akepaldTNTa TOou TO&ou. Auto TO (€UYOq
OUUUETPLKWY OPLLOVTIWV SUVAHEWV ETILOELKVUETAL LE TOTILKO HEYLOTO OTO TIPOPIA
TWV SUVAHPEWV ETIAPNG TOV £6APOVE, YUpW amd Ta oTnplypata Tou Togou. To
QVWTEPW PALVOUEVO eival auTto TNG Soutkng ToéwTNG AstToupyiog X&pwv OTO
OTol0  ETUTUYXAVETAL N OTATIKA LOOPPOTIHA TNG KOTOOKEUNG ME EAXXLOTEG

METATOTLOELG.

Mo va SLEVKPLVLOTEL TIEPALTEPW O E€UVOIKOG POAOG TOL £8APOVG €TiXwong, N
avATTUEN 0PL{OVTLWV TILECEWV ESAPOUG OTO TUNUA EKOKAPNG TIAPOVCLALETAL OTO
IxAua 31. H emPoAn KIWWNUOATIKWY TEPLOPLOPWY HETOED TWV KATOAKOPUPWV
oplwv TNG EKOKAPNG EXEL WG ATIOTEAETUA TIPOCOETEG OPLLOVTLEG EOAPIKEG TILETELG.
H ouykévtpwon autwv Twv TECEWV Tapatnpeital oe Béoelg o6mou Oa

EMPAVIOTAV TIAPAPLOPPWOELG EAV SeV ETIRAAAOVTAV QUTOL OL TIEPLOPLOMOL.
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! _ 1
2 s ®) Sussl
— Phase 2 <§§D ! — Phase 3 &Q |
. Phase2 /-
/ ’Fj ase 4 )3/

-100 -80 -60 -40 20 0 20 O -20 -40 -60 -80 -100-120 -100 -80 -60 -40 -20 O 20 O -20 -40 -60 -80 -100-120

Ohor (kPa) GChor (kPa)

-100 -80 -60 -40 -20 0 20 O -20 -40 -60 -80 -100-120

Chor (kPa)

e)
—— Phase6
————— Phase5

d)
— Phase5
————— Phase4

,,,,,,,,,

-100 -80 -60 -40 -20 0O 20 O -20 -40 -60 -80 -100-120 -100 -80 -60 -40 -20 0O 20 O -20 -40 -60 -80 -100-120

Opor (kPa) Ohor (kPa)

IxApa 30 H kotovopry twv oplloviiwy e50@QIKWY TIECEWY TIOU OOKOUVTAL OTNV
Semupdivela emtixwong-aPltdootdtn yla K&Oe PAA TNG KATAOKEVAOTIKAG AELTOVPYIOG,.

Katd tn Swadikaoio emixwong (paoelg 3-6) mapoatnpeital avakoL@Lon Twv
eSa@LKWV TILETEWV 0TO emimedo Twv aPtdootatwy. KabBwg to VYo emixwaong
QUEAVETAL, HEYAAUTEPN TIOCOTNTA £8APOUVG CUUPBAAAEL OTNV AVOKATAVOUN TNG
TAoNG. TNV TeEAsuTala ACN TNG KATOAOKELAOTLKAG akoAouBiag (paon 6), ol
TAoelg oTo eminmedo Tou 1°° umepkeipevou popTtiov (overburden 1) gival apkeTd

MEYOAVTEPEG ATIO TIG YEWOTATIKEG AOYW TNG SOWUIKAG TOEWTNG AslToupylag evw
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oto eminedo Tov 20V vuTEpKeipevou (overburden 2) eival eEA@PWC LEYOAVTEPEG
AOYw NG TOEWTAG AstToupylog TOu €6AQPOVG. JUUTIEPACUATIKY, TO £60(POC
eTiXwong oVPPBAAAEL pe SO TPOTOUG: (1) KATA TNV POPTION TOL TOEOU ATO TO
UTIEPKELLEVO £8APOC TIOVU €XEL WG CLUVETIELX TNV AVATITUEN TNG SOWIKAC TOEWTNG
Aettovpylag, mpoo@épel TNV opllovTia avtidpaon otnv fdaon tou TOEoL yla va
TEpLopioel TNV TMAATUVON TOV, (2) TAPAAAUPAVEL Eva PHEPOC TOU POPTIOL TOU
LTIEPKELLEVOU E6APOUG KAL YEVIKWG CUUTIEPLPEPETAL WG «UNXAVITUOG HatAaploU»

(cushion mechanism).

- — — — Free surface of backfill soil [Z7777] Excavation Backfill
Supported excavation section [ Natural Soil

— Phase2 ——Phase3
+ Geostatic

Phase0

+ Geostatic

* Geostatic

-100 -80 -60 -40 -20 0 -100 -80 -60 -40 -20 0 -100 -80 -60 -40 -20

ohor (kPa) ohor (kPa) ohor (kPa)

Phase 6
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Phase 5
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Phase 4
* Geostatic
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IxApa 31 OpllovTieg e8APIKEG TILETELG KATA MAKOG TNG EKOKAPNG e TopdBson tnv
TPLYWVLK) KOTAVOH TILECEWV WG METPO OUYKPLONG Yo TNV a§loAdynaon Tng emidpaong tng
KOTOOKEVOOTIKNG AstToupyioag.
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Opl{OVvTIEG KOl KOATOAKOPUWPEG HETATOMIOELG.- ALLOONUEIWTO OCUPTIEPATUATO
Sle€dyovtal Kal amod TIG KOUTIVUAEG PeTATOToNG. 2TOo IXAMa 32 amelkoviovtal ot
LOOUWEIG TWV HETOAKIVATEWV TNG KATAOKEVAG 0TOV 0PL{OVTLO KAl KATAKOPUPO A&ova
TIOV TIPOKOAOUVTAL AT TNV SLadOXIKN ETXWON TNG KATAOKELNG. H amokplon tng
KOTOOKEVNG SLETIETAL KUPIWG OTtd TNV OTOKPLON TOL £8APOUG TIOV YELTVIALEL PE TNV
Kotaokeur. Ot peTOPoANOpEVEG SUVAUELG amd TO £da@og emixwong n amd To
UTIEPKEIUEVO TIOL AOKOUVTAL 0TNV BOAWTH KATOOKEUN EVEPYOTIOLOUV SLOQOPETIKOUG
KaWVABoug Topapop@wong. To péyebog auTwY TWV UETATOTIIOEWY eEaPTATAL OTIO:
Qo) TNV YeEWMETpla TG Kataokeung, B) tv Sduvokapyio tng ABodoung, y) tnv
Suokauia Tou e8A&POoUG, KAl §) TNV KATAOKEVAOTIKA aAAnAouxia. AlakpivovTal TPELG
BAOIKEG PACELG TNG ETXWONG TNG KATAOKELNG: (i) ol aPldooTtateg sival TANPWG
ETX WHATWHEVOL (TO £80POG VP wveTAL O h3 = 2,16 m amo tn Paon BepeAiwaond), (ii)
TO TOEO KOAUTITETAL PEXPL TO VYOG TOU KAEWSLOU (hs =3,30 m), kau (iii) n TomtoBetnon
TOU UTIEPKEIPEVOU €8APOVE TTIAVW OTO TO TOEO OXNMATI(EL TNV TEAKKA €8A@IKN

emLpAveLa o€ VPog hs =5 m amod tn Paon BspeAiwonc.

Me Tnv oAOKANpWON TNG ETXWONG, N EVOOCLUOTNTA TOL aPIS00TATN EvEPYOTIOLETAL
TIANPWG OTIWG PaiveTal 0To ZXAMA 32i. AUTEC Ol UETAPOPLKEG KOL TIEPLOTPOPLKEG
petatotioelg k&Be apidootdtn (oplovtia petatomnion 0,4 mm) meplopidovtal amno
TO TO&0 KOBWG evToveG SUVAUELG TPLPBNAG AVATITUCCOVTOL OTLG SLETILPAVELEG BATNG-
TOEOV. H 0TaTIKA LOOPpPOTIO 0TO TEAOG AUTAG TNG PATNG ETITUYXAVETOL LE TNV HElWON
TWV SUVAPEWV ETOPAG OTOUG APISOOTATEG (TTAEUPLKN ATTOPOPTLON) KA TNV ovEnan
(TAELPIKA POPTION) KATAX MNKOG TOU TOEOUL (TAON YLt EVEPYNTIKA Kol TtaBOnTikA
kKataotaon avtiotoxa). KaBwg 1o UPog tng emixwong auidvetal kot To TOE0
eykIpwrieTatl péxpL TNV otePn tou (EXAUa 32ii), oL eSaPLKEG SUVANELG ETTAPNG
eMPAANOVY KAUYN TOL TOEOU OUVOSELOHEVN aTIO OPLLOVTLIEG ETATOTIOELG TWV
APLSO0TATWY TIPOG TA HETO KABWE KOt AVWOEV Kivnon Twv KEVTPLKWY BOAITWY TOV
(1,8 mm mepimov). TeAkd, OTav n ekoka@r KOAVEOsl TANPWC pe €daog, n oTeEwn
OUMTILECETOL  OTOSIKA KOL Ol UTIEPKEIMEVEG TILECELG  ATIOKOOLOTOUV TV
TIUPAPOPPWHEVN YEWHETPIX. EV KaTokAeidl, n oTtaTikn ooppotia kaBdpveTal
KaBw¢ To uTEPKEipeVO PopTio TapoAapBaveTaL HECW SVO TOEWTWY UNXAVICUWV: (i)

amto TNV SopLkr ToEwTn Asttoupyia kaBwg ot BoAiteg popTilovtal Kupiwg pe agovikn
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BAIYN kot avamtuooovTtal SpLueiq 0pllOVTIEG SUVANELG OTLG YEVETELG TOVU TOEOL WOTE
va e£a0QOALOTEL TO TIpoaVaPEPBEY PaLvopevo. AuTég oL Suvapelg petadidbovtal oTo
MECO TOL £8APOVC YUPW OTIO UTA TA OTNPIYHUATA TIOU PAIVOVTOL WG CUYKEVTPWON
TWV TILECEWV €TTAPNG 0TO TIPOPIA Tou Zxuatog 30e, (i) pe TNV TOEWTH AstToupyia
TOV £8APOVG. AUTOG O UNXAVIOUOG AVATITUCCETAL OTO THOW HEPOG TWV APLSO0TATWV
KO TTAVW OTIO TO TOEO KO ETILTPETIEL LECW TWV SLIASPOMUWV TILETEWY TNV EKTPOTIN TOU
SopikoV To&ou petadidovtag éva HEPOC TOU UTIEPKEIPEVOL PopTiou amevbeiag oTo

€SQPLKO peco.

Height of backfill surface:

(i) —o- 2.16 m (backfill 3- at the base of the arch)
(i) .= 3.30 m (overburden 1-crown)
(iii) - 5 m (overburden 2)

hs

ha

hs

08 -04 0 04 08 ) ) 0.8 04 0 04 08
Horizontal displacement ux (mm)
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IxApa 32 looUyeiq Twv (o) oplldvTIwY Uy Kal (B) KOTAKOPUPWY HETATOTIOEWY Uy, (V)
TIOPOUOPPWHEVOC KAVWWAPOC TNG KOTOOKEVAG (ETILKAAKLO avaywyr 200%) yla TPELg
SLOKEKPLUEVEG TIEPITTTWOELG: (i) oL aPISOOTATEG Eival TTANPWG ETILXWHEVOL LEXPL TO VYOG h;
=2.16 m, 2) n emixwaon @TAaveL péxpL TNV oTéwn, hs =3.30 m and 3) to umepkeipevo @optio
TomoBeteita Tavw amod To T6&0, a€ VYOG hs =5 m oo Tnv PBACH EKOKAPNAG.

Enidpaon tou memAatuouévou aPidootatn.- Oa SiepguvnOei n emidpaon Twv
TIEMAQTUOUEVWY APLS00TATWY OTNV EVOTABEL HLaG EYKIPWTIOMEVNG KATAOKEVNG
KOl 0TNV aAANAeTiSpaon TNG U TO €6a@OG. AapfaveTal uTTOYN N YEWUETPIA TOV
KUAWVSpLkoV BOAou mou amelkovidetal 0to ZXARa 23, OTIoL N AuynpdTNTA TOL
avgavetal povo katd 25% (amd b / R =0,3 oe b'/R = 0,4). Eivaw evdiapepov oTt
MEPOG TOU VTIEPKEIPHEVOL @OpTiov Tapoiaufavetal amevbeiag amd toug dvo
aPldooTaTeG OMWCG VUTIAyopevel n didldotatn Swpopwaon. Ta @optia Sev

KOTaVEPOVTAL 08 KABEeTN S1e¥Buvaon oAA& kateuBUVovTal Aogd tpog Ta €§w. AuTth
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N TPOG TA €€W UETAPEPOUEVN WONON TIapOAAUPAVETAL ATIO TO TIPOCOETO TUNUAL.
Ta AMOTEALOHATA TWV AVOAVOEWV YL KUALVEPLKOUG BOA0UG N OpoLOUop®NG
Slatopng mapatiBevtal v ouykpioel Pe aUTA yla BOAOLG OHOLOHOPPNG SLATOUNG.
To und e&étaon povTtéAo oklaypo@eital oto IXAMA 33. AETTOPEPELEG TWV
SUVAPEWY TIOU QOCKOUVTOL OTNV OPLOTEPN Yeveon tou ToOEou amelkovidovtal
emiong oto Ixnua 33 (ii).

H ouviotapévn twv BAMTIKWY Suvapewy Tou emipepel 0 BoAitng (wbnon T)
avTLTiBeTaL Ao TNV MadNnTIKA avtiotaon Tov edagoug (P), Tnv avtiotaon TPPAG
otnv yéveon tou BoAitn (F) kat To vmepkeipevo Bapog, W tov aokeital 0To TURU
Tou aPldoAlBov Touv TpoegExel. ‘Otav n opllOVTIIX CUVIOTWOR TNG wlnong
UTIEPVIKNOEL TNV avTtiotaon TpPpnRg otnv dempavela (Tx > F), amatteiton

KLVNTOTIolnoNn TaONTIKWY TILETEWV CUYKPATNONG aTd TO TEPLPBAAAOV £6aPOG.

(i) (i) Detail 1

W: overburden self-weight
P: passive soil resistance
T: Thrust from the arch

F: frictional force

S: voussoir self-weight

Overburden load

-

Lateral backfill
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IxApa 33 (i) Amelkovion NG eYKPWTIOPEVNG BOAWTAG KATOOKEVNG ME SLEVPUUEVOUC
apibootdteg (ZxApa 6.5) oe okANpO oTpwHa opyldov. Ta OTPWHATO ETXWONG
Sloxwpiovtal e ouvexeiq YKPILLeG YPOUMEG, (ii) Stdypoppa Suvdpewy EAEUBEPOLV CWHATOC
€vog BoAitn tou apLSootdn.

JuyKkplvovTag TIG KATOVOUEG TWV €85Q@IKWY TILECEWY TWV OATIAWY KAl TWV
EVIOXUMEVWY aPldooTatwy (ZXARa 34) sival ELEAVAG N €VVOIKN emidpaon Twv
TEAELTALWV. ZUYKEKPLUEVA TIAPATNPEITAL ALOONTA UTIOXWPNON TNG CUYKEVTPWONG
TWV €8APIKWY TACEWV YyUpw amod Tn PAaon Tou TOEOL, OTNV TEPIMTWON TOU
EVIOXUHEVWY aPtdooTtatwy. To YaAidlopa auTwy TwV TACEWY OPEIAETAL OTNV
pelwon tnNg amattovpevng opllovTiag aviidpaong otn Paon Tou TOEOUL XAPLG
OTNV TAUTOXPOVN avamtuén TEMvouoag OSUvauNng amd TOV  EVIOXUUEVO

agldootaTn.
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Euvoikn eival kat n emidpaon TWV UTIEPKELUEVWV YALWY OTIWE TIPOKVTITEL ATIO TOUG
TIOPOAUOPPWHEVOUG Kavvafoug Tou ZxAuatog 35. H otadlakni emavenixywaon tng
EKOKAPNG Tiow amd Toug aPLdooTATEG TIPOKOAEL OTPOPEG KAL TIAPAUOPPWOTELG
otnv ToWTN KOTAOKELH. MOKPOOKOTILKA QUTEG Ol UETOKLVAOELS Oeixvouv
oupTtieon TNG SLIATOMNAG N oTtoia yiveTal OAO Kot TILO aleONnTr UE TNV TTPOOSEVTLKN
avodo TNG oTABuNg TG emavenixwong QoTO00 TO PALVOUEVO QUTO TEIVEL vVa
QVTLOTPOQPEL LE TNV CGUVEXLON TNG TIANPWONG TNG EKOKAPNG XPOTOL €XEL ETILX WOEL
TANPWG N KOATOOKELN. ZUYKEKPLUEVD, Ol TILECELG TWV UTIEPKELMEVWY  YALWVY
TIOPOAHOPPWVOLV TO TOEO KAL KATA GUVETIELX KL TO GUVOAO TNG KATAOKEVNG TTPOG
TNV avTiBeTn KatewLBLVVON €V CUYKPIOEL PE TIG TIAEUPLKEG TILECELG. AUTO EXEL WG
ATIOTEAEOHA N SLATOWN VA TEWVEL VO ETTAVEADEL OTNV APXLKN TNG KATACTAON KAL VX

avalpeBei n Suopevng emidpaon TNG HEPLKAG TANPWONG TNG EKOKAPNG.

---- Uniform section — Non-Uniform section

1 ¢) Phase 4

a)Phase2 /- _ b) Phase 3

-100-80 -60 -40 -20 0 20 -100-80 -60 -40 20 0 20 100 -80 -60 -40 -20 0 20

Oy, (kPa) o, (kPa) Opor (kPa)

d) Phase 5 1 e) Phase 6

-100 -80 -60 -40 20 0 20 -100-80 -60 -40 -20 0 20

Ohor (kPa) Onor (kPa)

IxApa 34 TUykpLon Twv KaB' VYOG KATAVOUWY TWV TIAEUPLKWY SAPIKWY TATEWV TIOU
QOKOUVTOL OTNV EMPAVELX TOV aPLdooTdtn os k&Be Pripa Tng Stadikaoiag emixwong
pLaG BOAWTNG KATOOKEUNG HE OPOLOHOPPN (LOVUPN SLOKEKOUUEVN YPORMN) KOl HLOG HE
avopoLopop®n (mpdotvn ypapun) Slxtopn.
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Katd tn @don 5 (Eikkéva 35(ii)), To VP0G TNG EMAVETIIXWONG CUVETIAYETAL ATKNGN
€50@IKWYV TILECEWV O OAN TNV TEPILETPO TNG KATAOKEVNG. X€ OUYKPLON HE TOV
avtioTolxo KavvafBo Tapapop@wong tTov IXAuatog 32, n avodikh kivnon tou
TOEoU glval PALVOPEVIKA ULKPOTEPN, OAAX N AIKVIOMOC HETAEY TwV BOALTWY oTNV
Teploxn tou BepeAtwdoug Aibovu eival evtovotepn. Ev katakAeidt, n TomoBetnon
TOU UTIEPKEILEVOU E8APOVG ETTAVAPEPEL UEV TOVG APLOOOTATEG OTNV APXLKA TOUG
Béon, aAA& €xel WG ETTAKOAOUVOO PEYOAVTEPEG LOVLIUEG TOTILKEG PETATOTI{OELG TWV

Aavw BOAITWVY 0€ CLYKPLON E TNV TTPONYOVHEVN YEWMETPLA.

Al i T
NN i il
Hinn immt T
. 1 I
i H (ii) :r+ i (iii) i [JI
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IxApna 35 MapapopPWUEVOG KAVWAPOG TNG KOTOOKEUAG (ME ETILKAUGKIOL OvVOywyn
200%) Yo TPEG OLOKEKPLMEVEG TIEPIMTWOELG (i) Ol aPldooTATEG elval TIANPWG
EYKIBWTIOREVOL PEXPL TO VWOG hs =2.16 m, 2) n emixwon QTAVEL HEXPL TNV OTEYN, hy
=3.30 m, ko 3) TO uTtEPKEiEVO popTio TomoBeTeiTan MGvw amo To t6€o, og VYog hs =5
m amod TNV PACH EKOKOPNG.

Zelopkn) ATOKPLON.- H OSloKT) amtOKPLON TWV EYKIBWTIOREVWY KATOOKELWV Elval
gva ouvOeTO TIPOPANUA CAANAETIIS paoNG E6APOVG-KATATKEVNG. Ol HETATOTILOELG TNG
KOTOLOKEVNG KOl Ol SUVOULKEG ESAPLKEG TILETELG EEAPTWVTOL OTIO TNV ATIOKPLON TOU
edaoug BepeAiwong, TNV amOKPLON TOU E8APOVE ETIAVETIXWONG, TIG AOPAVEIXKES
KOL KOUTITIKEG OTIOKPIOELG TwV aPIS00TATWY KOl TG OELOMIKEG ETUTOXVVOELG. H
BoAwTn kotaokevn Sieyeipetal SUVOMIKA OTtO  €§LOAVIKEVPEVOUG TIOAMOUG TNG
edalkng kivnong, moApol tomou Ricker (ZxApa 36 (i) ~ (iv)) Kol TIPAYUOTIKEG

KOTOYPOPEG OELOIKWVY ETELCOSIWV (ZxApa 36 (V) ~ (vi)).
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IxApa 36 MMoApol Ricker (i), (i), (iii), (iv), KoL TPELG TIPAYHUATIKEG KATOYPOAPEG

OELOLKEG TtEL00SIWV (V), (Vi), (Vi) TIou Xpnoomo|Bnkav wg Sieyepan otnv Bdon
ME TO AVTIOTOLX O (PACHUATA ETULTAXUVONG.

Mo k&Be mepimtwon @oOpTIoNg pe ToAPoUg Ricker meplodov Te = 0.90 sec kau
oVEXVOEVOL EVPOLG ETIITAYXVVONG ap (PGA: 0.2 g, 0.6 g, 1 g) uTtoAoyiovTal Ol LEYLOTEG

KOl EAXXLOTEG OUVOULKEG €OAPIKEG TIETELG OTNV  Slempdvela aPdbootdtn —
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emywpotog (ExAua 37). Moapatnpolvtal €vToveG e0QPLIKEG QVTIOPAOEL, OTNV
Slemupdvelar TO€ov-aPidootdtn, umodnAwvovtag TNV amaitnon Touv Toou va
TEMAQTUVOEL XZTNV oLVEXELD, EEETALETAL O VOKOUPLOTIKOG POAOG TNG ETiXWONG OTO
miepPaArov €daoc. H emikpatovoa Tepiodog Twv TMoApwy Ricker dev paivetal va
eMNPEALEL TIG OPLLOVTLEG ESAPLKEC TILETELG TIOU QVATITUOCOVTAL TIEPX ATIO TO £5APOG
eniywong. H katavopn Twv e80@IKWY TIECEWV OTO £TiMESO TOU UTIEPKE(EVOU
eddpoug (h=2.8 m - 5 m) gival ypappLkr aveEdpTnTa omd TA XOXPAKTNPLOTIKA TOU
TOAROU (@p, Te). O HNXavVIoMOG Tou TOEOL emnpeddlel To  TEPBAANOV €8aPOG
oEAVOVTAG TIG TILETELG TOTIKY, 0TO h = 1.66 m. YTtdpxel pa agloonpeiwtn avgnon
OTLG TIAEVPLKEG ESUPLKEG TILETELG OTAV EQAPUOLOVTOL HEYOAVTEPA TIAATN ETULTAXVVONG.
H popen tng katavoung dsv mapouoldlel HEYAAEG HETABOAEG Kal ival aveExptnTo
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Chapter 1: Introduction

CHAPTER 1:

Introduction

1.1  Problem description

Historic building and structural environment of Greece is a valuable asset of the
Hellenic Cultural Heritage. Considering though, that it is increasingly threatened with
deterioration, loss of integrity or even worse with total failure, scientific research is
focused at developing case-oriented intervention methods to counteract these long-
term effects. Stability of monumental structures is affected by many factors which
should all be taken into consideration when preservation, restoration, rehabilitation or
strengthening procedures are about to be conducted. In order to address this issue,
we should first explore thoroughly one of the principal components of those heritage
structures which is the masonry arch. Figure 1.1 summarises some representative
examples of historical monuments where the arch is the fundamental structural

element.

A masonry arch is an articulated structure, composed of wedge-shaped stones
(voussoirs). These stones are arranged on a curved line retaining their position by
mutual pressure. Occasionally, they are also reinforced with mortar at joints. The self-
weight of the arch along with any other load the arch sustains, are transferred through
the voussoirs across the joints, from the overlying to the underlying element. Once the
keystone (central voussoir) is placed at the apex of the arch, the voussoirs are locked
into position bearing the lateral and vertical stresses and binding the structure of the

arch together.
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Chapter 1: Introduction

1. Entrance to the ancient theatre of Tindari, Sicily
. Entrance to the ancient theatre of Dodona, Epirus

. Entrance to the ancient stadium of Olympia, Greece

. Entrance to the ancient theatre of Sikyon, Greece

. Entrance to the ancient stadium of Nemea, Greece

. The arch of Hadrian or Hadrian's Gate in Athens, Greece
. Street of ancient Agora in Smyrna

. "Frotinus” Gate in Hierapolis, Phrygia

. Roman arch in Caesarea, Israel

Co~NOYTULTh~ WDN

Figure 1.1 Some representative examples of historical monuments around the Mediterranean Sea: masonry buttressed arches-
arcades and barrel vaults embedded in soil.
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Chapter 1: Introduction

The basic parts of a masonry arch supported on buttresses are depicted in Figure 1.2.
The so-called extrados and the intrados lines of the arch, namely the convex and the
concave side respectively, are highlighted with continuous bold black line and dotted

respectively. The highest point of the extrados is called the crown.

Keystone

Extrados Voussoir
Intradk‘

Center of the arch

Pier/ abutment
Springing line

Figure 1.2 Geometry of a masonry arch supported on abutments

Masonry behaviour is mainly described with the lower strength in tension than in
compression. In the majority of the scientific studies, the Heyman masonry model (19,
the idealised rigid in compression tensionless material is used as the basic approach
for the masonry analysis. Under a given loading path, masonry structures can suffer
cracks or detachments generating displacement fields called mechanisms, which
develop in the absence of any material failure. Collapse may occur solely due to loss of
equilibrium even in masonry with infinite compressive strength. Specifically, failure of
the arch may occur through the formation of four hinges that turn the arch into a

mechanism.
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Chapter 1: Introduction

Despite the wealth of results that have been published over the years on the static
performance of arches, it is still considered a subject not fully explored and difficult to
assess accurately. Most of previous studies are focused on the circular uniform profile

and pseudo-static limited equilibrium analyses.

In this work, seismic response of masonry arches is examined by means of analytical
and numerical methods. It is of great importance to develop simplified procedures for
estimating the levels of low-amplitude arch response in earthquake prone regions.
Once rocking occurs, the rigid body mechanism is mobilised. The dynamic response
under base excitation turns into a geometrical problem and depends on initial

conditions.

With reference to the interplay between structure and soil, monuments of the Hellenic
territory can be grouped in two major categories: (i) Structural systems rising above the
ground such as historical buildings, ancient temples, arches, entrance gateways,
bridges etc. In this type of structures, soil performs exclusively as a supporting medium,
as superstructural loads are transmitted to it through foundation (either shallow or
deep). On the other hand, as an example of deep foundation, piles have been used
embedded in the soil stratum of the Amphipolis bridge. Some representative examples
of the above described foundation systems are portrayed in Figure 1.3; (ii) Geo-
structures, namely structural systems lying on or below ground level. In this case, soil
is not only a supporting medium but it may also exert loads to the structure through
its self-weight or even be retained by it. Some examples are: Cut and cover structures
such as tumulus tombs (Kasta Tomb in Amphipolis, tholos tomb in Acharnes) or vaulted
tunnels (entrance at ancient stadium of Nemea, entrances at the Sikyon theatre). Bored
tunnels such as the Eupalinian aqueduct. Retaining structures such as bastions which
are elements of monumental fortifications, as part either of a castle (Corfu, Mytilene
etc) or of a town’s acropolis (Acropolis in Athens). Ancient theatres can also be
included in this category (ancient theatre of Dodona, Epidaurus, Sikyon). Their
geotechnical behaviour is twofold. They can be considered a foundation system as

much as a retaining system.
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All kinds of monumental structures are meant to withstand through a series of soil-
induced long-term effects. These cumulative effects are more pronounced on geo-
structures as unfavorable soil conditions can cause major damages not only to the
foundation alone but also to the structure of the monument. Poor soil conditions are
generally a consequence of an ongoing process the effects of which become evident
through the years. In addition, high seismic activity encountered in Greek territory,
apart from the structures themselves, may deteriorate soil conditions in the long run.
Finally, man-induced activities such as excavations, construction of new buildings,
tunneling or even changes in the water table may also affect soil conditions in the

vicinity of geo-structures.
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Figure 1.3 Foundation systems of iconic monuments of antiquity: a) temple of
Athena in llion, b) Athenaion of Paestum, Italy, c) Heraion in Samos, and d) temple
of Apollo Epikourios, Peloponnese.
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1.2 Primary objectives of the study

The research aim of this thesis is to offer new knowledge on the response under static,
pseudo-static, and dynamic loading of masonry arched structures whether they are
above or below the ground surface.
In particular, the aim is to extend previous works on the rocking failure mechanisms of
such structures and to prompt the interest of the scientific community on the soil-
structure interaction of heritage masonry barrel vaults, loaded statically (under their
self-weight and overburden soil) or excited dynamically by idealised pulses, and real
accelerograms.
The main idea therefore is to integrate the developed methods with the restoration
studies of the historic buildings.
Within this framework the primary objectives of the study can be summarised as
follows:
a) to contribute to the rocking response of the simplest form of an arch structural
element: the circular arch
b) to extend analytical and closed-form solutions to more complicated
geometrical forms of the arch
c) to evaluate and develop methods based on limit equilibrium analysis in order
to identify the failure mechanisms when the arch structure is supported on
buttresses, as well as to examine the rocking response when subjected to
idealised pulses

d) toincorporate the role of soil to the structural response of barrel vaults
Three fundamental arch structures are thoroughly investigated in this thesis:

e The arch structure in its simplest form on a rigid base. Two different profiles are
taken into consideration, the circular and the hybrid elliptical-circular called
from now on “part-elliptical” (Figure 1.4a).

e A masonry barrel vault (which behave as a series of side-by side arches)

supported by lateral walls. Assumed for simplicity for the static and dynamic
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analyses, the masonry vault is thus reduced to that of a masonry vault with
equal profile and thickness (Figure 1.4b).

A common barrel vault with part-circular uniform profile supported at its ends
by transverse walls, and surrounded by soil. Soil-structure interaction is taken

into account (Figure 1.4c).

The following analysis procedures will be undertaken in order to attain these objectives:

Analytical methods incorporating Limit Equilibrium Analysis. Although the
traditional limit equilibrium analysis based on geometric formulation
(identification of a limiting thrust line) has gained widespread use among arch
equilibrium studies, its complicated nature renders it time consuming. Many
researchers have overcome this drawback by developing an energy approach
utilising the principle of stationary potential energy (Alexakis and Makris 2013,
2014, 2015, 2017, 2018). Other analytical treatments include: (a) the Lagrangian
method, a convenient tool for the analysis of the dynamic system, (b) a general-
purpose software for mathematical applications (Mathematica) which is
occasionally used, and (c) an archetypical equation of non-linear vibration
theory (linear second-order ordinary differential equation called Mathieu
function)

Numerical analysis is accomplished by using the comprehensive finite element
code (Abaqus). Two and three dimensional models are designed in the Abaqus
environment while implicit and explicit integration algorithms respectively, are
utilised to compute the linear, the non-linear static, and the dynamic response

of the system.
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a) The arch structure on a rigid base

Xg = €9

(i) “part-circular” profile

circle: t R?
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(ii) “part-elliptical” profile
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b) The buttressed arch

/7 \ S — AN

¢) The embedded buttressed arch

Figure 1.4 The fundamental arched structures investigated in this thesis: a) the
arch structure (circular & part-elliptical profile) on a rigid base, b) the buttressed
arch, c) the embedded buttressed arch.
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1.3 Outline of thesis

In Chapter 2 of the thesis, an extensive literature survey in principle, addresses three

main topics:

- Pseudo-static analysis of masonry arched structures which involves the
determination of the governing collapse mechanism depending on the
geometrical parameters of each structure

- The dynamic analysis of such structures accelerated on their base by idealised
pulses

- Soil-structure interaction employing fully covered arched structures

In Chapter 3, seismic response of masonry arches is examined in this study by means
of analytical and numerical methods. Emphasis is placed on the low-amplitude levels
where linearisation techniques may be efficient. When dealing with monumental arches
of fragmented masonry, rocking rotation even in low levels is most often undesirable
as it may lead to severe permanent displacements and dislocation of the arch axis, and
sometimes to general instability of the structure. It is therefore of great importance to
develop simplified procedures for estimating the levels of such low-amplitude arch
response in earthquake prone regions. Near-source ground excitation at the base of
the structure is idealised with rectangular and cycloidal pulses. The analysis is limited
to the prior-to-impact regime in which rocking occurs between successive fragments
(voussoirs). Yet, this limitation does not prevent from extracting conclusions, as the
prior-to-impact state is the most crucial to rocking response and it can determine
whether the structure will undergo rocking vibration or eventually overturns. For
simplicity, a specific kinematic mechanism of the fragmented arch, well-known in the
literature is implemented throughout the study, thus allowing for comparison of the
results with existing solutions. This idealisation is justified as the predominant
mechanism from both previous analytical and experimental studies. A good correlation
of the results between simplified closed-form solutions and rigorous semi-analytical
methods is accomplished. Moreover, these results are also quite close to those of the

2-d finite element analysis.
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In Chapter 4, a segmental arch consisting of an elliptical upper part (extrados) and a
circular lower part (intrados) is introduced. This so-called part-elliptical arch is treated
as a rigid monolithic body enabled to rock on a triggering base. The objective of the
study is to extend the established methods applicable to the conventional circular
arches, particularly in terms of: (a) stability analysis which is performed in static terms
to calculate the hinge locations as well as the minimum ground acceleration at the

onset of rocking, given the slenderness and the angle of embrace of the arch (¢ /R, §),

(b) time-history analysis of rocking prior to impact is then feasible as the transition
criterion from the full-contact to rocking phase has been established from the previous
step. The results are presented comparatively to those extracted from the circular arch

of the same geometric characteristics.

In Chapter 5, the arch structure supported on buttresses is introduced. Buttresses
operate by applying a counterforce opposing the thrust induced by the arch. In
addition to the arch geometry, buttress dimensions play a crucial role to the horizontal
capacity of the entire structure. Depending on the arch-to-buttress relative proportion,
three different hinging mechanisms can arise as mentioned in the literature. The
aforementioned states (mechanisms) regard the location of the four ruptures (hinges)
that will initiate the rocking mode of the structure. The cases where Mechanism Il is
mobilised are investigated. Furthermore, a three dimensional finite element model of
two different geometries, consisting of individual voussoirs is triggered with idealised
pulses of various frequencies and acceleration amplitudes. The nonlinear response of
these structures is determined by the produced overturning spectra and the developed

collapse mechanisms.

In Chapter 6, soil structure interaction effects are implemented to investigate the
stability of masonry arches supported on buttresses. Initially, a schematic illustration
of the model under its self-weight and the forces acting on it are presented along with
two possible cases of pressure redistribution above the structure. In the first case the
arch sustains the whole overburden load whilst in the second case the phenomenon of
arching effect is associated with the transfer of the load at the surrounding soil.

Emphasis is given to the construction sequence of the cut & cover structure throughout
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the whole chapter. A series of sophisticated nonlinear FE analysis is performed to
models whose soil profiles are described as homogeneous cohesive. The elastoplastic
soil behaviour under undrained conditions is described with Von-Mises failure criterion
combined with an isotropic and kinematic hardening model in the post-yielding
domain. Considerable attention is given to the induced lateral earth pressures and
displacements acting on crucial points. The effect of the arch geometric characteristics
is also investigated and the results are presented comparatively. Ultimately, the soil
stratum is subjected to idealised pulses and records of acceleration time histories.
Some of the most iconic monuments of antiquity embedded on soil are depicted in

Figure 1.5.

Figure 1.5 Geo-structures of antiquity: (a) vaulted tunnel at the Entrance of Nemea
stadium, (b) vaulted tunnel at the Entrance of Sikyon Theatre, (c) tholos tomb in
Acharnes, and (d) bored tunnels at the Eupalinian aqueduct.
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CHAPTER 2:

Literature Review

2.1 History of Arches

Father Vicente Tosca, architect, philosopher, mathematician and astronomer very
wisely stated that:" The subtlest and more exquisite part of Architecture ....is the
formation of every sort of Arches and vaults” (a part of his Compedio mathematico,
1707-1715). Arching as a mechanism of load transfer is inherent to continuum systems
such as structural (e.g. a masonry wall with openings) or even natural (i.e soil medium).
Master builders of antiquity soon captured this mechanism and acknowledged its
benefits on the design of wider spans yet heavily loaded at the same time. Under this
perspective, they devised structural forms either 1-dimensional, axial-type (arches) or
2-dimensional, shell-type (vaults, domes), in which arching is the predominant load
transfer mechanism.

Two primitive archetypes of spanning a space by diverting the vertical load paths are
(@) the post and lintel system and (b) the corbelled (or false) arch. The masonry
structures illustrated in Figure 2.1 are prominent examples of these structural forms.
which are believed to have set the basis for the evolution of spanning an opening: (a)
the Lion Gate at Mycenae with the characteristic relieving triangle dated back to 1300
B.C. (Figure 2.1a), (b) the sanctuary of Hercules in Delos (Figure 2.1b). In particular, the
former consists of strong horizontal elements (lintel) which laid across the top surfaces
of vertical elements (posts). The latter can be regarded as a precedent step for the
master builders until they acquire the empirical skill necessary to construct true stone
arches with radial joints. Their similarity is only geometrical as their structural behaviour
is fundamentally different. For example: (i) the horizontal stones at the key section are

unable to transfer thrust, (ii) not all the structure’s tensile stresses caused by the weight
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of the superstructure are transformed into compressive stresses, (iii) only friction

opposes the stones from sliding.

]

. X

Figure 2.1 Examples of a post and lintel system (a- the Lion Gate at Mycenae)
and a false arch (b- the sanctuary of Hercules in Delos).

The history of Curved Architecture dated back to the prehistory. Stone arches were
erected in Babylon about 6000 years ago. Outstanding examples of vaulted tombs are
the Royal tholos tombs in UR Mesopotamia dated at 3000 B.C and in Greece dated at

1250 B.C (tomb of Agamemnon). Roman builders evolved further the architecture of
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arched structures. A better arrangement of the stones at the curved surface along with
the usage of mortar between the voussoirs allowed the construction of wide-span
vaults and therefore opened a gateway for the widespread usage of the arches in many
constructions like bridges and aqueducts.

Vaulted structures in Greece were erected to serve as entrances to ancient stadiums or
theatres. Some examples of such structures are the vaulted tunnel at Nemea of 36 m
length (built at 400 B.C), the vaulted tunnel at Olympia of 32 m length (built at 300 B.C)
and the vaulted tunnel at Sikyon of 16 m length (built at 300 B.C).

As a continuation of the ancient Greek architecture, remarkable new arch typologies
were developed in the Byzantine architecture. The distinguished architectural features
in medieval structures (which are characteristic examples of Gothic architecture) are

the ribbed vaults portrayed in Figure 2.2.

Figure 2.2 A six-part Gothic ribbed vault (Drawings by Eugene Viollet-le-Duc).
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2.2 Origins of the statics of the Arch

The first approach of defining the mechanical behaviour of the arch was attributed to
Leonardo Da Vinci (1451-1519). As reported by Marcolongo he stated that: “...arch is
no more than a strength caused by two weaknesses, in that in its construction the arch
is composed of two quarter circles each of which, being in and of itself very weak tends
to fall, but as each opposes this tendency in the other, the two weaknesses are
transformed into one strength”. He made some experimental tests on an arch and came
up with a criterion of safety reported in Figure 2.3b and a failure rule reported in Figure
2.3c. He also synthetised the failure rule with these words: "...the arch will not crack if

the chord of the outer arch will not touch the inner arch...".

FNAN 7N

Figure 2.3 a) Experimental test on an arch by Leonardo da Vinci, b) the safety
criterion and c) a failure rule.

In 1675, Robert Hooke gave an insightful interpretation of the masonry arch

1

equilibrium: “...as hangs a flexible cable so, but inverted, will stand the arch”. The
analogy between inverted funicular curve and rigid masonry arches is depicted in

Figure 2.4.
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Figure 2.4 Hooke's analogy as schematised by Poleni: the catenary in tension under
its own weight and a rigid arch standing in compression.

2.3 The evolution of theories of Arch statics

In the core of these efforts, the following studies confirmed what master builders knew
by empirical intuition: arch equilibrium is a pure geometric problem rather than a

problem in strength of material.
- Limit equilibrium analysis based on geometrical formulation:

Gregory (1691) understood that the catenary was the proper shape of a uniform arch
carrying only its own weight and stated that an arch of any other shape could stand
only by virtue of a catenary being contained within its thickness. Interpreting this
statement in terms of lines of thrust, it is, as will be seen, as precise preformulation of

the lower bound theorem of plastic theory (Heyman 1968).

De la Hire (1695) studied a semi-circular arch as an assemblage of rigid voussoirs and
considered no-frictionless joints. He introduced the force polygon and the

corresponding funicular polygon for assessing the arch static equilibrium. La Hire's
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conception of the funicular polygon triggered the succeeding framework of graphical

statics.

Couplet (1729), in his pioneering work, was the first to successfully demonstrate the
way a semi-circular arched structure can safely withstand its gravity load, in the
framework of a structural mechanics approach. He unveiled the purely geometrical
nature of the problem in a sense that collapse is not associated with material crushing
but it involves the mobilisation of a kinematic mechanism. Accordingly, a graphical
approach can be introduced to determine potential equilibrium or collapse
mechanisms through the notion of the thrust line. Equilibrium is established when the
thrust line lies inside the arch, whereas collapse occurs as soon as the thrust line
intersects the external curves. Couplet calculated the minimum required slenderness,

t /R, of the semi-circular arch so that the thrust line be marginally bounded by the

outer lines of the arch and limit equilibrium be established. This assumption was based
on a failure mechanism through the formation of four hinges but Couplet erroneously

predefined the intrados hinges at an angle of 45° with respect to the spring points.

Coulomb’s theory (1773), which was developed on his study "essai sur une application
de regies de maximis & minimis a quelques problemes de statique, relatifs a
l'architecture”, constitutes a milestone in the evolution of the arch equilibrium. The
main objectives are: (i) the presence of a pressure line within the arch isn't an indication
of the arch safety, hence neighboring admissible mechanisms should be examined, (ii)
the arch failure occurs only with the formation of hinges at the joints of the voussoirs,
(iii) friction is enough to prevent any sliding, (iv) the lower and upper limit for the value

of horizontal thrust is defined through the method of maxima and minima.

Moseley (1843) introduced the terms: a) ‘line of resistance’ (or line of thrust) which is
defined as the geometrical locus of the points of application of the resultant thrust
force that develops at any cross section of the masonry arch, and b) ‘line of pressure’
which was calculated by searching for the optimal position of this curve via the so-
called principle of minimum pressure. He also stated that the line of thrust should not

pass outside the entire cross-section.
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Figure 2.5 A conceptual drawing presented by Moseley which distinguishes the line

of resistance (line of thrust) from the line of pressure (funicular polygon).

Milankovitch (1907), on his “well-established” theory over the equilibrium analysis of
curved masonry arches, developed the thrust line concept (Drunkkurven) in the most
rigorous treatment. Motivated by Couplet’'s innovative work revisited the theory of
thrust line and derived the closed-form expression for the thrust line. He calculated
correctly the centre of gravity of an infinitesimal voussoir and computed the exact
location of the intrados hinge at 54.5°, thus correcting the minimum required

slenderness, t /R, from 0.101 to 0.1075.

Pippard and Baker (1943) concluded that collapse occurs when the arch is
transformed into a mechanism with the formation of four hinges (Figure 2.6). Pippard
made experimental tests modelling arches of steel voussoirs. But, he erroneously
interpreted the results in the light of the elastic theory rather than in terms of the

recently ascenting plastic theory.

A. Leontari, doctoral dissertation 2023 19



Chapter 2: Literature Review

Figure 2.6 Collapse mechanism proposed by Pippard & Baker.

Many other researches in the literature, based on the above fundamental theories,

interlarded the static approach of masonry arches.

2.4 Modern theories of arch statics

Kooharian (1952) discovered during his thesis that LA initially formulated for ductile
steel structures could also be applied to structure composed of concrete voussoirs.
Heyman would later recognise that this result was also valid for masonry structures
satisfying the non-tension assumptions. The first systematic investigation of the
stability of arches was made by Heyman. The equilibrium approach proposed for the
static analysis of masonry arches, stemmed from the limit principles of the plastic
analysis of steel structures. He also established three fundamental assumptions
concerning material properties of the stone blocks: (a) infinite compression strength,
(b) zero tensile strength, and (c) the coefficient of friction at the interface adequately
large so that sliding be avoided. In so doing, the only way the arch collapses, is through

the formation of 4 hinges that turns the arch into a mechanism.

- Limit equilibrium analysis based on energy approach:
As very aptly Alexakis and Makris (2023) pointed out: “The principle of stationary
potential energy is a powerful and simple tool to obtain rigorous solutions for the limit
equilibrium state of curved structures without the need to describe geometrically the load

path of forces of apply equilibrium in each individual block".

In recent years, Alexakis & Makris investigated thoroughly the stability of a monolithic

segmental arch setting the embrace angle, g, as a parameter of the design. They
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demonstrated that in a continuous arch the hinge locations should not be predefined
but they had to be computed. The fourth hinge position at the downstream of the left
springing and the angle of embrace (B) were determined by the authors whereas the
effects of the arch thickness t / R and the seismic loading (iiy = e g) on the hinges
locations were under examination. In this way, they introduced a variational
formulation incorporated in the principle of stationary potential energy to derive the

minimum thickness slenderness, t/R, for different values of p. The results

demonstrate the favourable role of base confinement, as the minimum required

slenderness, t/R, gradually reduces from 0.1075 at the semi-circular arch (B =)
down to 0.0075 at the segmental circular arch of g = n /2. The authors extended the

above-mentioned work on circular arches to elliptical ones and on single-nave barrel
vaults (circular arch supported on two rectangular buttresses). Figure 2.7 portrays the

three systems under examination.

Lame and Clapeyron's findings (1823) over vertical and radial rupture at the hinge
position lead them to analyse the arch response for both directions. The solution was
based on energy approach and specifically on the application of the principle of
stationary potential energy, leaving aside the well-known geometric approach of the
thrust line. Moreover, they introduced a twofold transcendental equation suitable for
calculating either the arch size for a given loading or the sustainable loading for a
predefined arch. Finally, they conclude quoting equations that give the exact positions
of the three unknown hinges as well as the minimum thickness t / R for a given angle

of embrace.
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Figure 2.7 Formation of a four-hinge mechanism in: (a) a circular arch, (b) single-
nave barrel vault, (c) an elliptical arch when subjected to a horizontal ground
acceleration (Alexakis & Makris 2013, 2014, 2017)

2.5 Dynamic analysis methods

Unlike the stability of the masonry arch under self-weight, the response due to lateral
dynamic loads didn't receive much attention until Oppenheim’s notable work, merely
in 1992. Inspired by Housner's paper on rigid blocks rocking on a moving base,
Oppenheim treated the masonry arch as a rigid body subjected to idealised pulses. He
derived the nonlinear equation of motion of a segmental circular arch consisting of
seven voussoirs, each one obeying Heyman's limitations, which together with the
supporting base form eight radial joints. To derive this equation Lagrangian Mechanics

was employed. Since the arch is not considered as a monolithic structure, the imminent
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hinges can occur only at these predefined physical joints. Upon the application of
rectangular pulses as input base motion, the arch was converted into a four-link
mechanism with one degree of freedom of fixed hinge locations. This procedure
allowed for the computation of the arch motion before the first impact occurs. Within
the framework of time-history dynamic analysis it is critical to determine the criterion
for the phase transition from the full contact to rocking regime. Stability analysis in

static terms can be used to this respect, on the condition of incipient uplift.

Among all the kinematically admissible mechanisms (each one is characterised by a
different equation of motion, and corresponding to a different level of minimum
horizontal ground acceleration for the onset of the mechanism motion) Oppenheim
addresses the one which is associated with the lowest such minimum %, for the onset
of motion, namely the “theoretical governing mechanism” which was later confirmed
by computational and experimental results. Evidently, the dynamic response under

base excitation is a geometrical problem and depends on initial conditions.

Figure 2.8 Rigid prism mechanism motion of an arch by Oppenheim (1992)

Clemente (1998) on the other hand, addressed dynamic response through pseudo
static analysis. An iterative procedure based on energy and geometric approach (via
virtual work and thrust line respectively), was used to track down the collapse
mechanism of a structure subjected to horizontal acceleration. After defining the
minimum accelerations needed to set geometrically different arches into motion, he

examined arch response during free vibration as well as under rectangular and
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sinusoidal pulses. Emphasis was given on kinematic characteristics (frequency and

amplitude) without yet taking impact and damping into consideration.

De Lorenzis (2007) et al moved a step further calculating analytically the arch response
after the first impact of rigid blocks, when hinges reopen and a new four-link

mechanism is formed.

Ochsendorf (2002), based on Clemente’s concept, proposed an alternative iterative
procedure for stability analysis under constant horizontal acceleration. A growing
interest in the stability assessment of masonry arches using the limit analysis theory
has lately been emerged in literature (Dimitri, 2015; Cavalagli, 2017; Di Carlo, 2018;
Zampieri, 2017; Stockdale, 2019, 2020). Recent studies further contributed to the arch
seismic response under pulse-type ground motion, based either to analytical or to
numerical methods (De Lorenzis, 2007; Dimitrakopoulos, 2013; De Santis, 2014;
Gaetani, 2017; Leontari, 2018; Kollar, 2019). In the latter, primarily the finite element
method (FEM) as well as the discrete element method (DEM) are involved. A thorough
comparative study on these methods has been presented by Sarhosis et al (2019).
Many researchers have extensively implemented the DEM (Dimitri, 2015; Sarhosis,
2019; Cannizzaro, 2018; Pulatsu, 2019; Stockdale, 2020) to assess the collapse

behaviour of masonry arches.

While masonry arches of a uniform circular and sometimes elliptical profile have been
subjected to thorough scrutiny in the past, only a few studies have addressed the non-
uniform arch (Dimitri, 2015; Zampieri, 2019; Tempesta, 2019). As an exception,
Milankovitch in his doctoral dissertation developed the theory of the thrust line with
reference to a masonry arch of variable thickness (Milankovitch, 1904). In the general
case, the intrados and extrados lines are determined by two generic continuous
functions so that the variable thickness of the arch ring can be considered. Despite the
lack of theoretical background, the non-uniform arch has been implemented in the
design of numerous historical bridges around the world. D° Agostino & Bellomo
(2001) document that historical bridges of a large span have a gradually increasing

thickness from the key to the springers at a ratio of 1.1 + 1.6.
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CHAPTER 3:

Linearised Response of Arched Structures under Pulse-type
Excitation

3.1 Introduction

Arched masonry structures (such as vaulted bridges, cathedral domes etc.) are an
important part of the cultural heritage worldwide. Although nowadays construction of
this kind of structures is quite rare, the necessity of their preservation has spurred many
researchers to thoroughly investigate collapse mechanisms, as well as ways to protect
them against natural hazards and decay through time. In this context, Coulomb's
(1821) and then Couplet's (1730) studies are highlighted, confirming what master
builders knew by empirical intuition: arch equilibrium is a pure geometric problem

rather than a problem of strength of material.

Early studies on the stability of masonry arches under gravity loads were made by
Heyman (1966, 1969, 1982). The equilibrium approach proposed in these studies
stemmed from the plastic analysis principles of steel structures. Within the framework
of the limit state analysis, Heyman established three fundamental assumptions
concerning material properties of stone blocks: (a) infinite compression strength, (b)
zero tensile strength, and (c) coefficient of friction at the interface of subsequent
voussoirs adequate large so that sliding be avoided. As a consequence, failure of the
arch may occur through the formation of four hinges that turns the arch into a

mechanism.

Motivated by Heyman's fundamental work, Clemente (1998) extended the static
equilibrium approach to incorporate earthquake lateral loads. In this way the arch is
considered to be subjected to a combination of constant horizontal and vertical

acceleration (earthquake and gravity load respectively). Then equivalent static analysis
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is performed to derive minimum levels of ground acceleration required to collapse the
arch. It is denoted however, that this pseudo-static method actually provides the
minimum peak ground acceleration required to initiate rocking motion and transform
the arch into a mechanism. It depends upon the dynamic properties of the structure
and the excitation characteristics whether the structure safely experiences rocking or

eventually collapses.

Oppenheim was the first one to incorporate the time-dependent nature of dynamic
loading (e.g. earthquake) into the analysis of the masonry arch. In his pioneering study
Oppenheim (1992) inspired by Housner’s work (1963) on free-standing rigid blocks
rocking on an accelerating base and treated the arch as a rigid body assembly
subjected to ground motion, through idealised pulses. This typical, circular arch
consists of seven voussoirs, each one obeying Heyman'’s postulates. When subjected
to dynamic loading, the rigid blocks may rock one to the other about fixed points, and
the arched structure becomes a four-hinge mechanism with one degree of freedom.
Among all the kinematically admissible mechanisms (each one is characterised by a
different equation of motion, and corresponding to a different level of minimum
horizontal ground acceleration for the onset of the mechanism motion) Oppenheim
addresses the one which is associated with the lowest such minimum %, for the onset
of motion, namely the governing mechanism. Evidently, the dynamic response under
base excitation is a geometrical problem (characterised by the thickness ratio t/R and

the angle of embrace B) and depends on initial conditions.

Clemente (1998) implemented time-domain numerical analysis to compute the
dynamic response of the masonry arch once the pseudo-statically predicted ground
acceleration required for rocking initiation is exceeded. He examined arch response
during free vibration as well as under rectangular and sinusoidal pulses. Emphasis was
given on kinematic characteristics (frequency and amplitude) without yet taking impact
and damping into consideration. De Lorenzis et al (2007) moved a step further by
calculating analytically the arch response after the first impact of rigid blocks, when

hinges reopen and a new four-link mechanism is formed.
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As already discussed, Oppenheim did not consider a continuous monolithic arch with
zero tensile strength but rather a circular arch that consists of seven voussoirs. He
further simplified the rocking arch to a 4-hinge mechanism whereas the location of the
hinges is dictated by the governing mechanism (i.e. the one corresponding to the
minimum peak ground acceleration). This theoretical prediction of the rigid body
mechanism once rocking occurs was confirmed experimentally by DeJong et al (2008).
Recently, Alexakis and Makris (2014) revisited the analysis of a continuous monolithic
circular arch through limit equilibrium approach. The location of the hinges is in close

agreement to those predicted by Oppenheim.

3.2 STATEMENT OF THE PROBLEM

Consider the model illustrated in Figure 3.1. Originally, the arched structure complies
with the supporting base in a purely horizontal motion. When a crucial acceleration is
reached, it launches a four-link rocking mechanism. Impacts may occur at four pivot
points (A, B, C', D) where hinges are formed. It is assumed thereafter, that hinge
formation can't take place in any other point along the arch. In view of this postulation
the system can be simplified as a single degree of freedom. In accordance to the
Oppenheim's model (1992) the geometric characteristics are: a) the angle of embrace
B = 157.5° b) the centreline radius R = 10m, and ¢) the ratio t / R = 0.15. Following
Heyman's assumptions (1966), the stone material of the arched structure is of infinite
compressive strength, zero tensile strength and a large coefficient of friction to avoid
entering the sliding mode at any instant in the rocking motion. In addition, it is

assumed that hinges locations are predefined.
3.2.1 Kinematics of arch response

During dynamic motion, a hinge point may move along the arch axis, therefore
different instantaneous kinematic mechanisms are being developed. The governing
kinematic mechanism according to Oppenheim (1992), is presented in Figure 3.1. This
is the one that yields the lowest possible horizontal ground acceleration needed to set

the arch to motion, and was chosen as the case study in the present work. A simplified
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form of the arch in its initial and displaced state is presented in Figure 3.2, depicting
only the links of the three parts (AB, BC, CD) formed before and after hinges (A, B, C,
D) open. Links AB and CD perform rotational motion (uAB, uCD) considering A and D
fixed. On the other hand, link BC performs a combination of rotational (ug;) and
translational (ug) motion. Considering combined motion, the total kinetic energy of
the rigid body at each moment is the sum of: a) the translational component and b)
the rotational component about the instantaneous pole. The rotation of each link 6,
measured anticlockwise from the horizontal, as well as rotation ¢ = (68, — 6 > 0) with
respect to the original geometry fully determine the motion. The presented kinematic
mechanism is the result of the base acceleration to the left (&, < 0 ), causing a positive

rotation (¢) of the arch which initially will rock to the right.

__________

-
________
03

—————
-
R
-

Direction of rocking

Impact

Pivot point ,,_-:,-i\ Pivot point

Figure 3.1 Rocking arch on a rigid oscillating base: configuration of the system.
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Initial state

B / usc + us (og

Figure 3.2 Kinematics of mechanism motion as linkage synthesis.

3.2.2 Methods of analysis

The response of such a complicated dynamic nonlinear system may be investigated
with various analysis procedures which can be grouped into two categories: a)
analytical or semi-analytical methods, b) numerical methods with finite elements. In
this study both categories are employed. With regard to the analytical treatment, the
Lagrangian method is adopted to derive the equation of motion that describes this
kinematic system (Oppenheim, 1992; De Lorenzis et al, 2007). To further reduce the
complexity of the problem, linearisation of the nonlinear equation of motion is
necessary. Whenever a closed form solution of equation of motion is not feasible, a
general software system for mathematical applications "Mathematica" is utilised to

compute the response.

On the other hand, numerical analysis is accomplished by using the sophisticated code
Abaqus and by applying the explicit integration algorithm for solving the nonlinear
dynamic response of the system in the time domain. Two dimensional Finite Element
(FE) analysis is performed assuming that hinges open at specific and fixed points (A, B,
C, D). For the FE model, plane strain elements are used. Each block is idealised as rigid,

by using a large enough modulus of elasticity (E = 10 GPa), characterised by density p
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= 2.2 t/m>. The base is also considered to be rigid by adopting concrete elastic values
(elastic modulus, E = 30 GPa and density, p = 2.5 t/m®. A sophisticated contact
algorithm is utilised for modeling contact interface at hinges sections, thus allowing
for separation but not for sliding. Hence, the coefficient of friction is adequately large
(u = 0.7). Different types of pulses are imposed to the bottom surface of the base to
represent seismic excitation. The major task of the finite element analysis is to evaluate

the efficiency of the linearisation techniques in predicting the nonlinear response.

3.2.3 Equation of motion

As already discussed, the Lagrangian method is a convenient tool for the analysis of

the above dynamic system. In its general form:

d (dT\ oT oV _

3t(e) 55" 56 (3.1)

in which, T is the kinetic energy of the system, V the potential energy and Q the
generalised forces. For this single-degree-of-freedom system, the angle 6 = 8,5 = 6,
is chosen arbitrarily and without violating the constraint, as the Lagrangian
independent variable (coordinate). The complete expression of these values as a
function of 6 are given by Oppenheim (1992). For compactness are not retyped herein.
Finally, substitution of T, V, and Q to Eq. (3.1) leads to the general nonlinear equation

of motion as follows:

M(6)0 + L(0)6% + F(8)g = P(6)%, (3.2)

where the coefficients M(6), L(6), F(0), P(8) are nonlinear equations of 6 given below

after replacing fyy = Myy 75, + Lyy
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M(0) = fap + f3c0%c + fep8'ep + mpc[AB? (3:3a)
+ 2AB7g¢0'gc cos(0 — Ope — Ype)]

L(0) = fpcOpcOpc + fepbepOcp + MmpcABTpc[0pccos(0 — Opc — Ppc) (3.3b)
— 0pc(1 —6'pc)sin(6 — O — Ppc)]

F(0) = myptyp cos(0 + Pap) + mpc[ABcosO + 1pc0'pc cos(Opc + PYpc)] (3.30)

+ mepTepB'cp cos(Bcp + Yep)

P(0) = mypiyp sin(6 + Y 4p) + mpc[ABsinG + 750’ g sin(Bpc + Ppe)] (3.3d)

+ mepTepb'cp Sin(Bcp + Pep)

Their physical interpretation has been approached by Oppenheim (1992). Equation 3.2
is valid only when the angle 6 < 8,, meaning that the computation of the rocking angle
0 is limited to the prior-to-impact state. Once 6, is exceeded, a new kinematic

mechanism is generated which requires a fundamentally different analytical treatment.

3.3 LINEARISATION TECHNIQUES OF ARCH RESPONSE

The coefficients M(8), L(6), F(8), P(8) in Eq. (3.2) may be divided by M(0)

reformulating the equation of motion as follows:

6 +b(6)0? = c(8)g + d(0)%, (3.4)

in which b(8) = L(8)/M(8), c(8) = F(8)/M(8) and d(8) = P(8)/M(8).

This is the general form of the equation of motion, which is nonlinear as coefficients of
Eq. (3.4) are complicated functions of the angle 8. For small variations however, it can
be postulated that these coefficients remain constant (Oppenheim, 1992). Searching

out for the solution of Eq. (3.4) the following transformation is introduced.
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o(t) = %log(u(t)) (3.5)

The left side of Eq. (3.4) may be expressed in terms of a new variable u as:

.. . 1
b+bo2=—— (3.6)
bu
Then, the equation of motion yields:
Lii
“Z= g +ai, 37

bu

Equation (3.7) may now be written in a standard form of a linear differential equation

of 2" degree:

ii(t) — b(lclg + d %, )u(t) = 0 (3.8)

3.3.7 Equation of motion in terms of rotation ¢

Alternatively, the equation of motion can explicitly be expressed in terms of ¢ (defining

@ =0, —0):

M(p)§ + L(p)p* + F(p)g = P(p)ig (3.9)

Coefficients F, P are Taylor series expansions about ¢ and are approximated by keeping
only the first order terms. Clearly, an approximate rather than a detailed solution is
sought. In a similar algebraic procedure to that when the variable 6 is regarded, Eq.

(3.9) finally yields:
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2¢ —bp? —cp—h=0 (3.10)

The above is applicable only for small values of rotation @, otherwise the expansion
does not converge. The general solution of equation (3.10) is unveiled below and it can

be characterised as a differential equation in terms of the phase space variables (¢, ¢).

., C+bh
(p = b2

(et —1) -7 3.11)

3.3.2 Onset of mechanism motion

Recall now Eq. (3.2). The ground acceleration amplitude required to transform the arch
into a four-link mechanism is extracted from this equation by applying the criterion for
incipient rocking: 6 = 6 = 0 (Apostolou, 2011; Zhang & Makris, 2001). Hence, for a
ground acceleration larger than |5c'g| = F(08)/P(0), the developing inertia forces set the
arch on rocking. From that point on, equilibrium becomes unstable and overturning is
possible. Nevertheless, there is a thin zone, in terms of the angle 8, in which the
structure can safely undergo rocking. This zone is bounded by critical values of 6,4, =
8, and 0,,;». The latter is associated with a critical point that Oppenheim called it the
"non-recovery" point, as it determines whether the structure will return to its initial
position (recovery region) or will eventually collapse (non-recovery region). Energy
approach can provide levels of this lower value of 8. Similarly, if the independent
variable ¢ is chosen, the rocking criterion becomes ¢ = ¢ = 0 and through Eq. (3.9)
the critical ground acceleration becomes |5c'g| = F(¢)/P(¢). Then, the critical rotation
separates safe from overturning response. All the above are portrayed in Figure 3.3,
using the numerical example of the preceding. Hence, for a rocking rotation larger than
¢ = 0.07 rad, the gravitational force is converted from restoring to overturning

meaning that it destabilises structural equilibrium. This conclusion results from the fact
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that the coefficient F(¢) normalised to its value, becomes negative after the non-

recovery point as shown in Figure 3.3. On the contrary, the coefficient P(¢) normalised

to its value, reveals that the ground acceleration destabilises the four-link mechanism

from the beginning, having its contribution increasing almost linearly in relation to the

rotation ¢.
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Figure 3.3 Potential energy normalised to its maximum value along with the

representative coefficient F, and coefficient P defined by the non-recovery point.
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3.4 LINEARISED RESPONSE UNDER PULSE TYPE MOTION:
NUMERICAL EXAMPLES

3.4.1 Constant acceleration pulse

At first, the arch is subjected to a constant acceleration pulse ¥, = —1 g. A negative
(positive) sign of the ground acceleration denotes clockwise (anticlockwise) rocking
rotation (¢) of the structure. Recalling equation of motion in terms of u [Eq. (3.8)] and
substituting ¥, = —A1g and ¢ = (Ad — ¢)g, it yields:

i) +béult) =0 (3.12)

which is a second order differential equation with fixed coefficients and its solution can

be built up by a linear combination of trigonometric functions.

u(t) = Aycos(Vbé t) + A,sin(Vbé t) (3.13)

where As, A, are constants. It is evident that:

u(t) =c, cos(\/ﬁ(t — cl)) (3.14)

where c1, ¢; are new constants that can be defined from initial conditions.

Equation (3.14) in combination with the transformation of Eq. (3.5) yields the solution

in terms of the angle O(t).
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log(cos(Vbé (t — ¢1)) (3.15)
b

0(t) =c, +

At t = 0 angle Ongis:

log(cos (\/E(—cl))

6(0) = c, + (3.16)
b
Or
8y = ¢, + log(coscyVbE) (3.17)
b
Derivation of equation (3.15) provides the rotational velocity:
o(t) = —\/%tan(\/bf (t —c1)) (3.18)
At t = to, the rotational velocity is zero therefore:
6(0) = 0 = tan(WVhé (—¢;) =>¢; = 0 (3.19)
Substitution of the value of ¢; to Eq. (3.17) allows for ¢, to be calculated:
1 bé 0
8(0) = ¢, + og(Cosl()\/ ¢ 0) =, => ¢, = 6, (3.20)

Eventually, the analytical solution yields in terms of 6:
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log (cos(\/b_ét))
b

6(t) = 6, + (3.21)

Numerical implementation is presented next based on the above solution. The
coefficients M, L, F, P of the equation of motion are calculated considering the
aforepresented numerical example (geometric characteristics: arch radius a =10 m,
angle of embrace f = 157.5°, ratio thickness/radius (t / R) = 0.15). For this specific case,

Egs. (3.2) and (3.4) become respectively:

4370 6 + 59249602 —87.7 g = 239 %, (3.22)

6 +13.5602 — 0.02 g = 0.055 %, (3.23)

It is noted the computed response is associated with the specific kinematic mechanism
adopted so far. (A different kinematic mechanism would respond to different values of

these coefficients).

Figure 3.4 depicts the development of rotation 6,5 over time for different constant
pulses based on the above equation. Initially, the static angle of the link AB is 6, =
0.8972 rad, and consequently the starting point of all curves. The ground acceleration
amplitude that transforms the arch into a four-link mechanism is extracted from Eq.
(3.22) by applying the criterion for incipient rocking: 6 = 6 = 0. For a ground motion
larger than |5c'g| = F(0)/P(8) > 0.37g, the developing inertia forces set the arch on
rocking. From that point on, equilibrium becomes unstable and overturning is

inevitable as depicted from the time histories of Figure 3.4.

This value of ¢ corresponds to 0 = 6,,,;, = 0.8272rad (in displaced state) and it is
highlighted in Figure 3.4 with black dashed line. Curves that cross that line (i.e. |%,| =

0.39g,0.45¢,0.56 g,0.61 g, 0.71 g) represent arches that fail as rotation 8 drops below
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the critical value. In contrast, curve 0.37 g represents a rocking arch in marginal

equilibrium. The stronger the impulse the sooner the arch collapses.
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Figure 3.4 Time history of angle 6,5 for different levels of ground excitation.

3.4.2 One-sine pulses

Herein, the linearised equation of motion is readjusted for a sinusoidal ground motion.
Cycloidal pulse of type-A approximates a forward pulse of near fault ground motion
and is chosen over one cosine pulse (Type-B Pulse) because of its more destructive
effects [Makris & Roussos, 1998]. Within the limits of the linear approximation and for

a ground acceleration,

Xg

= — ap sin(w, t) (3.24)
(where, a, and w, are the acceleration amplitude and the angular frequency of the
pulse respectively, t is the time and the minus sign designates positive rotation ¢), the

governing eg. (3.8) becomes:
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i(t) — b(lclg — daysin(w t))u(t) =0 (3.25)

A suitable transformation of variable [Eq.(3.26)] is used to convert Eq. (3.25) to a linear
second-order homogeneous differential equation similar to the well-known from the

literature Mathieu Equation [Eq.(3.27)].

TC
wt=2x+ > (3.26)
it(x) + (A—2Qcos(2 x))u(x) =0 (3.27)

Mathieu Equation commonly occurs in nonlinear vibration problems, a) in systems in
which there is periodic forcing, and b) instability studies of periodic motions in
nonlinear autonomous systems. Recall the case of a pendulum whose support is
periodically forced in a vertically direction as a typical example. Obviously, the
coefficient of the differential equation is periodic without entailing that the equation
possesses only periodic solutions. Only for specific values of the constants A, Q (which
are often referred as characteristic number and parameter respectively) a periodic
solution is achieved. Both of them are expressed in terms of excitation parameters and
of the coefficients of the equation of motion (b, ¢, d) [Egs. (3.28-3.30)]. As already
mentioned, the latter are complicated functions of angle 8 but assuming small
variations of 6, they remain constant. Adopting initial formulae, they may be rewritten
as in Egs. (3.29-3.30). It is noted that A encompasses the potential energy which is
proportional to 6 at any displaced configuration of the arch. Similarly, Q describes the

applied external force, emphasised on the excitation amplitude a,,.

4gb 2a,bd
A= ch 0= ‘2)02 (3.28)

_4gL(B)F(0) _

= T or A =2EF(0)g (3.29)
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_ 2a,L(0)P(6)

[wM(O)]2 Or Q = EP(6)a (3.30)

2L(0)

Where, E = W

According to superposition principle, Equation (3.27) possesses a solution which is a
linear combination of two independent solutions, ui(x) and ux(x). This solution is

obtained below:

u(x) = cquy (%) + cpu,(x) (3.31)

The arbitrary constants ¢; and ¢, are defined by the boundary conditions supposing

that for x = xo, the general solution is u(x) = u(xo) and its derivative is u'(xp) = 0.

To be more specific, the example of the afore-discussed arch will be used. The
numerical solution of equation (3.31) is obtained with a computational algorithm. It is
omitted however, due to the intricacy of the coefficients c;,> and of the solutions u;..
It is worth mentioning that no periodic solutions correspond to this system. For
convenience, although, the differential equation [Eq.(3.27)] can be presented

numerically. Hence, for various sine pulses (ap, wp) it yields:

ii(x) + 5(10.6 —2.96a,c0s(2 x))u(x) = 0 (3.32)

As already discussed, the motion initiates when the ground acceleration %, exceeds

the value of 0.37 g. For the sine pulse case, the aforementioned applies when
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a, sin(w,t) > |-0.37|g => ¢, = wisin‘1 [(l_oaﬂ] At that time hinges are formed,
14 p

and as a result the arch is transformed into a mechanism. The arch rocking response
can be further described with the excitation parameters, the acceleration amplitude
(ap) and the excitation frequency (wp, =21 / Tp). It is therefore interesting to develop
diagrams of rotation 8, for different levels of the former parameters (Figure 3.5). Thus,
the way the pulse characteristics affect the overturning response is analysed separately.
Notably, the selected pulses to be examined can adequately resemble recorded time
histories of zero final ground velocity. In the first case, the excitation frequency remains
constant and equal to wy = 1 (T, =2 sec) whereas, the acceleration amplitude fluctuates
between -(4/3) g to -1 g and -0.75 g (Figure 3.5a,). Evidently, the detrimental effect of
the increasing a;, is clear as higher values lead more rapidly the arch to overturning
(when the angle 6,5 exceeds the critical value of 0.8272 rad as mentioned above). For
the most unfavourable case of the maximum a, = -(4/3) g, the system is set into motion
at tp=0.089 sec and overturning occurs at t.er = 0.67 sec, at the second quarter of the
pulse, whereas, for the other two levels of the acceleration amplitude, the motion
onsets later at top= 0.12 for a, = -1 g and at to = 0.16 sec for a, = -0.75 g, and collapse
time is defined at toer = 0.8 sec (second quarter of the pulse), 1.05 sec (third quarter of
the pulse) respectively. In the second case, as seen on Figure 3.5b1, decreasing the w,
from 1 (T, = 2 sec) to 0.751m (T, = 2.66 sec) and 0.5 (T, = 4 sec) (consequently
increasing the excitation period T,) and keeping constant the acceleration amplitude
ap (= -3/4 g) affects favourably the overturning response. Additionally, for all the
examined cases, the results indicate that the arch rocks and collapses straightforward
to the right, with no impacts to occur. 3D diagrams presented on Figures 3.5bs, b, are

constructed to give insight of the predicted collapse mechanism.
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Figure 3.5 Effect of the acceleration amplitude a, (a1, a2) and of the excitation

frequency wy (b1, bz) on the rocking response presented in 2D and 3D.

Initially, the equation of motion is transformed for sinusoidal pulses into a Mathieu
kind differential equation. Appropriate solution of this equation is found
corresponding to this specific arch geometry [Eq.(3.32)]. In this respect, the computed
time history of angle 6,5 for various one-sine pulse excitations with period ranging
from T, = 0.75 sec to 4sec is presented in Figure 3.6. The study of the impulse response
is feasible till the first impact. Alternatively, the arch response under the same set of
one-sine pulses may be repeated by implementing two additional methods: (a) a semi-
analytical solution, in which the linearised equation of motion of Eq.3.9 is solved
iteratively through a numerical solver available in Mathematica code, (b) two-

dimensional finite element analysis using Abaqus code. The results are comparatively
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portrayed in Figure 3.6 along with those extracted from Mathieu Equation. The
comparison among the three methods proves to be remarkably good indicating the
validity of the linearisation techniques. Nevertheless, as the finite element method
provides rigorous solution for the four-link mechanism it still remains to be checked

the accuracy of this simplified model.
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Figure 3.6 Time histories of the angle 8,5 under one-sine pulse base excitation: (line 1) a, = -0.75g, T, = 0.75, 2, 4 sec, (line 2) a, = -1g, T =

0.75, 2, 4 sec, (line 3) a,

analytical solution of Eqg. (3.9) and closed-form solution with Mathieu equation).
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In the preceding, Mathieu equation has been proven a useful tool to extract closed-form
solutions for low amplitudes of rocking. It is also reminded that in this series of analyses, a
unique value of the ratio t / R was considered (t / R =0.15). Simplified analysis of the rocking
response based on Mathieu equation is extended next, by introducing more values of the ratio
t/R. As before, the arched structure is subjected to cycloidal pulse-type excitation at the base.
Whether the structure can safely experience rocking vibration or immediately collapses is
illustrated with the overturning spectra of Figure 3.7. For lower values of the period Ty, higher
values of the acceleration amplitude are required to overturn the arch. In addition, for a specific
period Ty, the higher the ratio t / R is, the higher the minimum acceleration is required to
collapse. A long-period pulse (T, = 2 sec or wp = 1 rad) is chosen from Figure 3.7 as suitable
to enlighten the rocking response at marginal equilibrium (Figure 3.8). Time histories of the
normalised angle 6,5, the normalised rotation ¢, and the phase portrait confirm the influence
of the geometrical parameters on the arch limit response. The heavier arch (t /R = 0.18) sustains

larger rotations which is a rational conclusion given the larger inertia.

1.4

1.2 A

0.4 -

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4
Tp : sec
Figure 3.7 Safe and overturning region formed by acceleration-period pairs under sine

pulses for different arches. Safe mode refers to the first impact moment. Overturning
after one impact cannot be excluded.
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Figure 3.8 Time histories of the normalised angle 6,5, rotation ¢ and phase diagram
of a marginally safe arch subjected to sine pulses (w, = n) for different values of t /R.

3.4.3 Rectangular pulses

The two-step rectangular pulse as an excitation to study the arch rocking response was
introduced by Oppenheim (1992). Later, this extreme pulse was also used by De Lorenzis et al
(2007). In this context, the time history of the acceleration consists of a large negative pulse
(a, = —1g) of duration t,, followed by a smaller positive pulse of half magnitude (a, = 0.5g)
and of double duration 2t,. These pulse shape parameters lead to zero terminal ground velocity
(Figure 3.9). Two different values of the duration t, have been adopted by Oppenheim, namely
0.40 sec and 0.44 sec. These values of t, are also applied herein so that comparative results can

be extracted. General remarks for both cases regard mainly the movement of the base. The
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maximum value of the base velocity occurs when the acceleration changes sign, and it vanishes
at the end of the pulse. On the other hand, the displacement time history indicates the change

in curvature with the sign change and a residual displacement after the end of the pulse.
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Figure 3.9 The impact of the impulses, with durations t, = 0.40, 0.44sec and
acceleration magnitude a = 1 g, on velocity and displacement time histories of the arch

base.

A computational solution of the equation of motion in terms of rotation ¢ (Eq. 3.9) is
accomplished with Mathematica code, after properly adjusting the coefficient P(¢) to

implement ground shaking idealised with the two rectangular pulses illustrated in Figure 3.9.

4454 — 6017.75¢% + 87.86 = (—1g)(—237.45) 0<t<t, (3.33)
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445% — 6017.75¢2 + 87.86 = (+0.59)(—237.45) t, <t <3t, (3.34)

The results obtained with the above method along with the results derived by Oppenheim are
portrayed in Figure 3.10. Moreover, the finite element method through Abaqus code is
implemented to evaluate these analytical solutions. The comparison of these three methods is
satisfying. When t, = 0.40 sec, the arch after rocking for a while, returns to its initial position (¢
= 0). On the other hand, when t, = 0.44 sec, the rotation ¢ gradually increases leading to

overturning.
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Figure 3.10 Response to idealised ground motion pulse.

Similar results of the comparison between two methods of analysis can be extracted when the
excitation period is significantly lower. In this way, a new set of rectangular pulses is adopted
with duration values 0.20 sec and 0.27 sec. Time histories of the computational solution of
Eq.(3.9) (Mathematica) and comparison with the finite element analysis (Abaqus) are illustrated

in Figure 3.11.
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Figure 3.11 Response to idealised ground motion pulse.

3.5 Applicability and limitations

3.5.7 Influence of the number of blocks

As mentioned above, the hinge locations are assumed fixed during the rocking vibration. The
accuracy of the simplification of a four-hinge mechanism is strengthened by computational
and experimental results of earlier studies (Clemente, 1998). The applicability of the four-hinge
model is investigated herein by conducting analyses through finite element formulation of a
seven-rigid block arch. The same type of pulses used in previous analyses are implemented to
simulate ground excitation at the base of the model: (a) one-sine pulses (b) rectangular pulses.
Time histories of angle 8,5 in the case of a seven-block arch, are in a good agreement with the
numerically and analytically computed results of a three-block arch as illustrated in Figure 3.12.
On the other hand, in the case of rectangular pulses, the results indicate not only a larger
rotation ¢ (especially for t, = 0.27sec) but also a slower return from 6 to 6. Although It is a
complicate task to describe the behaviour of each voussoir of the arch, it is also challenging

for future research.
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3.5.2 Influence of sliding

The effect of friction on the arch response is also investigated. Influence of sliding has met only
limited investigation in the past. A few experimental studies have revealed that the results
aren't generally influenced as initiation of sliding is difficult to occur. According to the results
of finite element analyses the coefficient of friction () has practically no appreciable effect on
the arch behaviour in the case of a 3-blocks arch imposed on both rectangular and sine pulses
(Figures 3.14, 3.15 left). On the other hand, for an arch of seven voussoirs, some differentiations
are observed. Particularly, from Figure 3.14 (right), where time history of rotation ¢ is depicted,
it is extracted that a low coefficient of friction (u=0.51) is accompanied with larger rotations. It
is important to note that such values of p are less than the typical ones. The numerical
investigation continues with specific sine pulses (Figure 3.15 left). In the first half cycle of high
frequency shaking, the coefficient of friction doesn’t play any particular role. Larger deviations
in angle Bz under various coefficients are observed for higher values of acceleration
amplitudes ap. Differentiations in rotations or angles are totally expected due to accumulated

small displacements on each joint.

From the investigation that took place, as presented on the diagrams below, sliding doesn't
essentially affect the collapse mechanism. Small-scale experiments offer a strong corroboration
to the above conclusion. De Jong et al (2008) performed harmonic and seismic testing on two
geometrically different arches finding out that no sliding occurs. They remarked that “failure

occurred as a result of hinging and rocking”.

To this end, the above findings give a glimpse of how the number of blocks and coefficient of
friction affect the arch response. They should await considerably more analytical and

experimental testing before being evaluated
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Figure 3.12 Time histories of the angle 6,5 under one-sine pulse base excitation: (line 1) a, = -0.75 g, T, = 0.75, 2, 4sec, (line2) a, = -1g, Tp =
0.75, 2, 4sec, (line 3) a, = -1.33 g, T, = 0.75, 1, 2sec: Comparison between arches consisting of three blocks and seven blocks.
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Figure 3.13 Response to idealised rectangular pulses for arches consisting of three and
seven blocks.
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Figure 3.14 Effect of the coefficient of friction on the behaviour of arches consisting of
three (left column) and seven blocks (right column) under rectangular pulses.

A. Leontari, doctoral dissertation 2023 52



Chapter 3: Linearised Response of Arched Structures under Pulse-type Excitation

0.98

0.96

0.94

0.92

0.9

0:rad

0.88

0.86

0.84

0.82

0.8

0.98

0.96

0.94

0.92

0.9

0 :rad

0.88

0.86

0.84

0.82

0.8

0.98

0.96

0.94

0.92

0.9

0 :rad

0.88

0.86

0.84

0.82

0.8

Arch of 3-Blocks

0.2

0.4

0.6

0.2

0.4

0.6

t:sec

0.8

0.8

0.8

----- p=0.51
u=0.56

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

0.2

Xg = -1gsin(0.5mt)

Arch of 7-Blocks

0.4

0.6

%g = -1.33gsin(2.67mt)

0.2

0.4

0.6

0.8

t:sec

Figure 3.15 Effect of the coefficient of friction on the behaviour of arches consisting
of three (left column) and seven blocks (right column) under sine pulses.

3.6 CONCLUSIONS

The study revisits the dynamic behaviour of a part-circular masonry arch subjected to

ground motion, as introduced by Oppenheim in 1992. The examined model, under

horizontal acceleration applied at its base, is transformed into predefined rigid body

assemblies. This concept of arch modeling founds a direct application to monumental

masonry arches. In such stiff structures, rocking rotation even in low-amplitude levels
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is most often undesirable as it may lead to severe permanent displacements
accompanied with possible dislocation of the arch axis, and sometimes to general
instability of the structure. It is therefore of great importance to develop simplified
procedures for estimating the levels of the low-amplitude response. In this context,
simplified analytical techniques are applied to calculate the linear response. These
methods comprise both closed-form solutions and numerical integration of the
equation of motion. Applicability of linearised response is evaluated mainly through
comparison with rigorous 2-dimensional finite element analysis. Moreover, where
available, the results are compared with those of the literature. Near-source earthquake
shaking is represented with idealised cycloidal and rectangular pulses. In addition,

constant acceleration pulses are involved.

A general solution of the resulting linear equation of motion, extracted with the
Lagrangian method, suitable for any arch geometry is presented. The impact of the
gravitational and the external forces to the system, represented by the coefficients,
F(p) and P(p) respectively, is also discussed. Then, a first application of this general
solution is given through the examination of constant acceleration pulses. Simplified

forms of the rotation 8as (Lagrangian variable) with respect to time are presented.

One-sine pulses are also introduced to represent ground excitation. In this respect, a
linear second-order homogeneous differential equation of motion is derived, similar
to Mathieu equation. According to superposition principle, each solution of the
Mathieu equation is a linear combination of two independent solutions, thus allowing
for a closed-form solution to be obtained. In parallel, numerical integration of the
equation of motion is involved to compute the response. A parametric comparative
study is presented for different values of the peak ground acceleration and excitation
period. Nonlinear finite element analysis in the time domain is also employed to further
strengthen the comparison. The results reveal a close agreement between these
methods and justify the applicability of the linear simplification of the response. The
benefit of the Mathieu equation to easily derive reliable results in large amounts is
applied to the study of the overturning response of the arch. The parametric study
reveals that overturning of the arch according to the minimum overturning

acceleration spectrum, is more sensitive to high values of a, and low values of T.
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Another interesting finding is that overturning and imminent collapse occur without

impact.

Rectangular asymmetric pulses are also involved in the study of the earthquake
response. The type of the pulse and the values chosen are those used by Oppenheim
(1992) so that a comparative study is possible. The results indicate convergence
between linear analytical and nonlinear finite element methods. The reliability of these
results is further strengthened by the comparison with Oppenheim’s results for

rectangular pulses.
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CHAPTER 4:

STABILITY and ROCKING RESPONSE of NON-UNIFORM
MASONRY ARCHES: THE ‘PART-ELLIPTICAL’ PROFILE

4.1 Introduction

Stability of masonry arches has always been a challenging task for architects and builders over
the centuries. Nevertheless, the scientific community has started to be intrigued by this subject
merely at the eighteenth century. Couplet, in his 1729’'s pioneering work, was the first to
successfully demonstrate the way a semi-circular arched structure can safely withstand its
gravity load, in the framework of a structural mechanics approach. He unveiled the purely
geometrical nature of the problem in a sense that collapse is not associated with material
crushing but it involves the mobilisation of a kinematic mechanism. Accordingly, a graphical
approach can be introduced to determine potential equilibrium or collapse mechanisms
through the notion of the thrust line. Equilibrium is established when the thrust line lies inside
the arch, whereas collapse occurs as soon as the thrust line intersects the external curves.

Couplet calculated the minimum required slenderness, ¢ /R, of the semi-circular arch so that

the thrust line be marginally bounded by the outer lines of the arch and limit equilibrium be
established. This assumption was based on a failure mechanism through the formation of four
hinges but Couplet erroneously predefined the intrados hinges at an angle of 45° with respect
to the spring points. Milankovitch (1904), motivated by Couplet’s innovative work revisited the
theory of thrust line and computed the exact location of the intrados hinge at 54.5° thus
correcting the minimum required slenderness, ¢t /R, from 0.101 to 0.1075. In recent years,
Alexakis & Makris (2013, 2014) investigated thoroughly the stability of a monolithic segmental
arch setting the embrace angle, g, as a parameter of the design. They demonstrated that in a
continuous arch the hinge locations should not be predefined but they had to be computed.
In this way, they introduced a variational formulation incorporated in the principle of stationary

potential energy to derive the minimum thickness slenderness, t /R, for different values of g.
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The results demonstrate the favourable role of base confinement, as the minimum required

slenderness, t /R, gradually reduces from 0.1075 at the semi-circular arch (g = n) down to
0.0075 at the segmental circular arch of g = /2. Inherent to the afore-discussed analytical

studies are the so-called Couplet-Heyman postulates, considering for the masonry infinite
compressive strength, zero tensile strength, and the coefficient of friction large enough to

prevent sliding (Heyman 1982).

Unlike the stability of the masonry arch under self-weight, the response due to lateral dynamic
loads didn’t receive much attention until Oppenheim’s notable work, merely in 1992. He
derived the nonlinear equation of motion of a segmental circular arch consisting of seven
voussoirs which together with the supporting base form eight radial joints. Since the arch is
not considered as a monolithic structure, the imminent hinges can occur only at these
predefined physical joints. Upon the application of rectangular pulses as input base motion,
the arch was converted into a four-link mechanism of fixed hinge locations. This procedure
allowed for the computation of the arch motion before the first impact occurs. Within the
framework of time-history dynamic analysis it is critical to determine the criterion for the phase
transition from the full contact to rocking regime. Stability analysis in static terms can be used
to this respect, on the condition of incipient uplift. Clemente (1998) adopted an iterative
procedure based on an energy approach to derive minimum levels of ground acceleration, as
well as to calculate the hinge locations at the onset of rocking mode, for different values of

the slenderness, ¢t /R, and the angle of embrace, g. Ochsendorf (2002), based on Clemente’s

concept, proposed an alternative iterative procedure for stability analysis under constant
horizontal acceleration. A growing interest in the stability assessment of masonry arches using
the limit analysis theory has lately been emerged in literature (Dimitri, 2015; Cavalagli, 2017;
Di Carlo, 2018; Zampieri, 2019; Stockdale, 2019, 2020). Recent studies further contributed to
the arch seismic response under pulse-type ground motion, based either to analytical or to
numerical methods (De Lorenzis, 2007; Dimitrakopoulos, 2013; De Santis, 2014; Gaetani, 2017;
Leontari, 2018; Kollar, 2019). In the latter, primarily the finite element method (FEM) as well
as the discrete element method (DEM) are involved. A thorough comparative study on these

methods has been presented by Sarhosis et al (2016). Many researchers have extensively
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implemented the DEM (Dimitri, 2015; Sarhosis, 2019; Cannizzaro, 2018; Pulatsu, 2019;

Stockdale, 2020) to assess the collapse behaviour of masonry arches.

While masonry arches of a uniform circular and sometimes elliptical profile have been
subjected to thorough scrutiny in the past, only a few studies have addressed the non-uniform
arch (Dimitri, 2015; Zampieri, 2019; Tempesta, 2019). As an exception, Milankovitch in his
doctoral dissertation developed the theory of the thrust line with reference to a masonry arch
of variable thickness (1904). In the general case, the intrados and extrados lines are determined
by two generic continuous functions so that the variable thickness of the arch ring can be
considered. Despite the lack of theoretical background, the non-uniform arch has been
implemented in the design of numerous historical bridges around the world. D" Agostino &
Bellomo (2001) document that historical bridges of a large span have a gradually increasing
thickness from the key to the springers at a ratio of 1.1 + 1.6. Two representative examples of

such stone bridges are portrayed in Figure 4.1.

Prompted by the lack of detailed investigation, the present study is oriented to non-uniform
arches with the following geometrical particularity: elliptical at the extrados (upper curve) yet
circular at the intrados (lower curve). For simplicity, this profile will be referred from now on as
a part-elliptical. The objective is to investigate the role of the extrados curve on the structural

performance of the arch under base horizontal motion.

In light of the above, the analysis of rocking response is divided in two steps (Alexakis, 2014;
Oppenheim, 1992): (a) stability analysis is performed in static terms to calculate the hinge
locations as well as the minimum ground acceleration at the onset of rocking, given the
slenderness and the angle of embrace of the arch (¢ /R, B), (b) time-history analysis of rocking
prior to impact is then feasible as the transition criterion from the full-contact to rocking phase
has been established from the previous step. Regarding the first step, a rigorous variational
formulation is implemented by adopting the principle of minimum total potential energy,
P =U+V ,where U is the elastic strain energy and V is the potential energy associated with
force of gravity. According to this principle, the total energy is at a stationary position when

an infinitesimal variation from such position involves no change in energy meaning that
8P = 0. As no elastic deformation is considered (U = 0), it eventually yields that 6V = 0. The

second step deals with the time-history analysis of rocking response with analytical or
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numerical methods. Similar to the circular case, rocking of the arch ring is associated with a
one-degree-of-freedom vibration once a four-link kinematic mechanism is developed. In the
analytical procedures, the equation of motion derived with Lagrangian formulation is
employed. Whenever a closed-from solution of equation of motion is not tractable the

software system “Mathematica” is utilised to extract

the analytical solution. For the purposes of the numerical procedures, a two-dimensional finite
element modelling is implemented. Numerical results are then discussed and compared to
those provided by the analytical method. A comprehensive approach to gain insight to the
geometrically nonlinear response of part-elliptical arches in the time-domain is through
idealised pulses. Simple pulses are employed in the analysis not just to represent near-fault
ground motion but also because in many cases the time history of the recorded acceleration

can effectively be trimmed to a one-cycle pulse.

Prior to the analysis of the part-elliptical profile the study revisits the uniform circular arch in
Section 4.2, in terms of calculation of the imminent hinges. Hence, the afore-described
principle of minimum potential energy is engaged to extract closed-form solution of the hinge
locations whereas the results are presented comparatively to those of the semi-analytical
approach (Alexakis, Makris 2014). In Section 4.3, the response of the part-elliptical arch
subjected to a horizontal acceleration is investigated. In particular, the model parameters are
described in Section 4.3.1. Stability analysis is then presented in static terms in Section 4.3.2
through variational and Lagrangian formulation (Sections 4.3.2.17 and 4.3.2.2 respectively). In
Section 4.3.3, a time-history analysis of the response is performed through analytical and finite
element approaches (described in Sections 4.3.3.7 and 4.3.3.2 respectively). To this end the
results of a comparative study are presented in Section 4.3.3.3. The performance of the part-
elliptical arch is evaluated with reference to the uniform, circular arch. Moreover, the two
methods of analysis are also compared in the same section, in terms of time-histories of the

problem parameters.

It is worthy of note that this study regards only the weight of the arch ring. This simplification
allows to isolate the response of the arch itself excluding the effect (beneficial or detrimental)
of additional dead loads of spandrels, backfills etc. Moreover, it enables comparison of the

results with some well-established studies of the literature. An extension of the analytical and
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numerical model that will simulate realistic conditions comprising of more complex loads and

boundaries is worth contemplating in future work.
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Figure 4.1 Two typical part-elliptical bridges: a. Templas bridge, Aetolia-Akarnania,
Greece b. The Bridge at Pontypridd, Wales.
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4.2 Revisiting the circular arch

4.2.1 Calculation of hinge locations in previous studies

As stone is a material strong enough to crush under compression, the only failure mode of a
masonry arch is through the formation of no-tension hinges that turns the structure into a
rocking mechanism. In dynamic terms, as soon as the critical uplift acceleration is reached, a

stone arch of mid-thickness radius R, thickness t, and of angle-of-embrace g, becomes a

four-hinge mechanism and the blocks rock one to the other as portrayed in Figure 4.2 (left
side). It is implied that the structural stiffness is large enough so that in the full-contact phase
no flexural displacements are developed. Evidently, in this regime the arch performs as a rigid

body that follows the ground motion.

Figure 4.2 The circular arch with mid-thickness radius R, thickness t and angle of embrace
B becomes a four-hinge mechanism when subjected to horizontal ground acceleration %,
= &g (left). Limit equilibrium analysis applied to the arch (right).

The question arising is to locate the points of rupture under a specific horizontal acceleration.
A first approach was to consider that hinges develop at the physical joints of the blocks
(Oppenheim 1992). In a subsequent approach the circular stone arch was treated as monolithic
and the imminent hinges were determined by a method based on a variational formulation
and the application of the principle of stationary potential energy (Alexakis & Makris 2014).
This procedure is presented briefly and emphasis is given to the proposed analytical solution.

In Figure 4.2 (left side) the location of the four hinges of the rocking mechanism developed by
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horizontal acceleration 559 = &9 is depicted in which ¢ is the seismic coefficient, and g is the

acceleration of gravity. In this work, a two-springing collapse mechanism is studied which
means that hinges A and D form at the extrados right springing (position (o) and the intrados

left springing (position ¢3) respectively. On the other hand, hinges B and C form at the main
arch body at positions @1 and . respectively. The weights (W,) and the coordinates of the
centre of gravity (Xi,yi) of segment 2 (segment BC), segment 3 (segment CD) and the

combined segment 1-2 (segment ABC) are presented in Egs. (4.1) and (4.2). The limit
equilibrium state of each segment (2,3, 1-2) is described below through Egs. (4.3) and (4.4).

The internal thrust force at point C (TC) is analysed to the unknown horizontal and vertical

components (TCX), (Tcy) respectively (Figure 4.2 right).

For segments 2 and 3 (BC and CD respectively) it yields:

W; = pg2R*r'(¢; — ¢i-1)

72\ sin @; — sin @ ;_ 2\ cos @; — cos @ ;_
xi=R<1+—> Pi (p(l 1) ,yi=—R<1+—> Pi (p(l 1)
3 Vi — Pi-1) 3 Vi — P-1)

4.1)

wherei=2or3,and r' = ﬁ. Likewise, for the combined segment 1-2 (ABC) it yields:

Wei—1y—i = pg2R*r" (¢; — ¢(i-2))

712\ sin@; —sin @(;_z) 712\ COS Qi — COS P(i-2) (42)
Xi-1)-i = R (1 + ?) v s Yi-p-i =R (1 + T) Pi—P(i-2)

wherei=2,and ' = ﬁ. In both sets of Egs. (4.1) and (4.2), density p is considered constant.

Moment equilibrium of segments 2, 3 about hinge B and C respectively, in a slightly different

formulation to that developed in (Alexakis & Makris, 2014) yields:
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aiTCx + biTCy + fl =0
a; =R ((r' + sing; — (1 F r')simp(i_l))

b; =R ((1 +rYcospi_1y— (1 % r')cosgoi) (4.3)

2rR3

fi= st (' + 3)(sin(€ — @—1y) — sin(€ — ) + 30" — 1) (p; —

<P(i—1)) cos(§ — @.))

where i = 2 or 3, @+ = @ur for segment 2 and ¢+ = ¢; for segment 3. Likewise, moment

equilibrium of the combined segment 1-2 about hinge A yields:

aii-1)-ile, + bi-1)-iTe, +9f(i-1)-i =0
ai-1y-i = (r' + DR(sing; — sing;_z))
bii-1)—i = (r' + DR(cos@_z) — cosp,) (4.4)

fie1-1 = eWio1y-i(Vi—1y-i — "+ DRsing_2)) + W1y—i(xg-1y-i — ' +
DRcos@(i_2))

where the multiplier of the horizontal earthquake ¢ = tan¢ and i = 2. By solving the above Egs.

(4.3), (4.4) it yields:

_ bafs = bsfy and T. = asf; — arfs

— = 4.
azb; — byas e azbs — byas *)

Cx

(a(1—2)b2 - b(l—Z)aZ)f3 + (b(1—2)a3 - a(1—2)b3)f2 + (azbs — byas)f1-zy =0 (4.6)

The horizontal (T. ) and the vertical (Tc,) components of the internal thrust force T. are

unfolded on Eq. (4.5). Moreover, Eq. (4.6) involves only the radius R, the slenderness r’ and the
angles @; (i =1,2,3). Some of the formulae presented above (Eqs.4.1-4.4) can also be found in
literature (Alexakis & Makris, 2013, 2014) however they are also included herein to facilitate

independent reading.
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4.2.2 Analytical calculation of hinge locations

Alternatively to what presented so far in literature (Alexakis & Makris, 2013, 2014), the left-
hand side of Eq.(4.6) can be defined as a new function G of the independent variables r, R, ¢,
&, which should be zero: G(R,7', @1, ¢,, ¢3,&):= 0. The fourth power of the radius R is an
overall factor, therefore, multiplying by the inverse R=* a new function F independent of R is

defined: F(r', @1, ¢,, ¢3,€) = 0, which can be written as a fourth-degree polynomial with

respect to r”

4
F(r', @1, @2 03,8) = Z ' =yt e3P+ er’? o’ ¢ =0 4.7
k=1

The coefficients cx are known functions of the angles. Therefore, the solution of Eq. (4.4) can
be expressed in terms of the roots of the polynomial (Eq. 4.7). It is noteworthy that the roots
can be extracted analytically as functions of the angles (.. After algebraic manipulations, the

coefficients of the fourth-degree polynomial (Eq.4.7) are presented on Eq. (4.8) presented

below:
Ch=KC3=U—Acy,=3k+Vv,c;, =—(BA+u),co=v (4.8)
g sin(g@; — ¢3) (siné —sing,) + sin(§ — ¢,) (sin g, — sin@3) (4.9)
2 3 2 2 P1 @3
A . . . . . (4.10)
5 = sin(ps — ¢3) (sin¢ —sing,) — sin(§ - ¢;) (sinp; — sin @)
£ (¢1 — @2) cos cos";_(pg'cos(pz_(p?'sin'f_(p2 (4.11)
12 1~ P2 P1 ) 2 5
§— ¢ P1— @2 . §— ¥
+ (¢, — @3) cos @5 cos 5 Cos———sin— + (¢,
P1— P2 Q2 —P3 . P1—P3
— &) cosécos 2 cos 2 sin 3
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v
§ = [(¢2 — ®1) cos @y + sin@; — sin@,][sin(§ — ¢,) (4.12)

+ sin(gz — ¢@3) + sin(@z — O — @2) cos§ —siné

+ sing,][sin(p; — @2) + sin(p, — @3) + sin(@s — ¢1)]
+ [(92 — @3) cos 93 — sinp, + sin@s][sin(§ — ¢,)

+ sin(p; — @2) + sin(p, — §)]

According to the principle of stationary potential energy, every system in stable static
equilibrium should have its potential energy minimised and therefore its partial derivatives
with respect to the angles ¢; should be set equal to zero. The potential energy and the partial

derivatives are given by the following forms, Egs. (4.13) and (4.14) respectively:

I 3 . B Vi TJZ
V(") =4pR smzr 1+? 4.13)
V—4 R3 'ﬂ(1+ 'Z)arl—o i =1,2,3 (4.14)
e p sm2 r 9, i=1,2, .
where
ar (4.15)
=0, i=123
d¢;

The derivative of r' (Eq. 4.15) can be extracted when differentiating Eq. (4.7):

/ 4 (D sk N dc
o k=G T where cW=""ki-123 (416)
9, Yhoq k cpr’kt dg;

Where C}Ei) defined in Eq. (4.8), are computed in terms of the angles @i through Egs. (4.9-4.12).

In this way, the location of the hinges can be determined by setting the numerator of the right-
hand side of Eq. (4.16) equal to zero. Therefore, solution is sought where Egs. (4.7) and (4.16)

hold simultaneously. Denote that Eq. (4.16) provides the analytical solution of the polynomial
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function in contrast to the approach presented in Alexakis & Makris (2014), that was based on
numerical procedures. A graphic illustration of the solution can yield the location of the hinges.
In the diagram of Figure 3, the results of the analytical solution are compared to those derived
numerically by Alexakis & Makris. The comparison is based on matching the location of the
imminent hinges ¢; and ¢, of a circular arch for various angles of embrace 8 (8 = 90°, 125°,
157.5°,180°) and slenderness t /R. The range of seismic coefficient € associated with the curves
is: e =0.05 =+ 1for B =90° 125° and € = 0.07 + 1 for B = 157.5°, 180°. The comparison is
proved remarkably good indicating the accuracy of the proposed analytical solution. The slight
difference observed in the case of B = 157.5° is attributed to the comparison of the analytical

solution with the other authors results of an arch of § = 755 °.

B (9 90 125 157.5 180

€ 0.0503 —1 0052 — 1 | 0078 — 1 007 —1

160

140 -

120 -

100 +

@2 (hinge C)

= 900 o
W - 125 _ 157‘50 .
60 - /B _ —
° o 2 @1 (hinge B)

Hinge location (°)
8

40 - °
20 - Analytical Solution
0 00 00 Alexakis&Makris (2014)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

t/R

Figure 4.3 Location of the imminent hinges ¢; and ¢: at points B, and C respectively of a
circular arch with a given angle of embrace 8 and slenderness t / R. Results of this work are

compared with those obtained by Alexakis & Makris.
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4.3 Part-Elliptical Arch

4.3.1 Model parameters

Consider now the rigid masonry arch shown in Figure 4.4 with the following particularity:
circular on the inside (intrados) yet elliptical on the outside (extrados). In geometrical terms,
this type of arch which from now on will be referred as part-elliptical, can be defined by the
angle of embrace 3, the thickness radius R(¢p), along with the shape parameters of the ellipse:
the semi major and minor axes (a and b respectively, where a > b > R (90°)). In addition, as
thickness t gradually decreases from the edge to the center, a nominal value has to be defined,
which herein is set t = tmi (i.€. the thickness at the mid-point axis). The aforementioned choice
of the minimum value is considered more suitable not only for comparison purposes with
arches of uniform thickness but also for computational simplicity as t in this position (¢ =90°)
is independent of the angle of embrace 3. The position of each focus of the ellipse is given in

vector notation:

ab
7o) = (icosg + jsing) 417
JbZcos2p + a?sinZgp @17

in which, ¢ is the angle formed by the radius of the ellipse at a random point and the horizontal
axis, whereas i and j represent the unit vectors with reference to the abscissa and the ordinate

respectively. Accordingly, the thickness of the arch as a function of the angle, ¢, is:

t((p)=Re(§D)_Ri=\/ b — R (4.18)
1- oz CosT e

in which, R. and R; are the external and internal radii respectively.

Similar to the circular case, when a critical horizontal acceleration %, = € g is applied at its

supporting base, the arch transforms into a four-hinge mechanism. The presumable hinge
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locations A, B, C, D defined by the angles o, @1, >, and @srespectively are illustrated in the
schematic of Figure 4.4. Hinge A forms at the right extrados of the springing at position ¢, =
(m-B)/2 while hinge D is bounded by an unknown location ¢s. In this work a two-springing
collapse mechanism is studied which means that hinge D forms at the intrados left springing
(position 3 = 1 - o). On the other hand, hinges B and C lie on the intrados and the extrados

of the arch respectively.

C ellipse: (fj +(%) =1
u T a

A r((P),/””/X tmin T B’

Figure 4.4 Schematic of the part-elliptical arch.

4.3.2 Stability analysis

4.3.2.1 Variational formulation

Equilibrium analysis is applied for the segments formed, as described above. Each segment is
characterised by its weight W and the coordinates of the centre of gravity Xcm, yem (Figure 4.5).

Alike the circular arch case, the cartesian components of the internal thrust force T, (T, Tcy)

acting at the hinge C are considered as the unknown parameters of the equations below.
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Segment 2

Segment 3 Segment 1

Segment 1-2

Figure 4.5 Limit equilibrium analysis applied to the part-elliptical arch.

For segment 2 (BC), its weight W, and the centre of gravity (x, y>) yield:

' -1 (tan ¢, _1 (tan @;\\]
1 (T' + 1)2 T — tan 1(=—=*1 + tan =
W, = g | (o — 920 =~ 17 + ( (f R v 0| I
U tan ¢, tan ¢, T
a+r3 (— - )
A2+t 2 12+t 2
—(r' — 1)3(sin @, —sin@,) + \/ + 332901 \/ + tan ¢,
T 3,
(1+1)3 <_ 1 _ 1 ) (4.20)
J2* +tang;2 /A% + tan @,?
A

—(" = 1)3(cos p; —cos p,) +

Y2 = 3W,

in which, r’ is the slenderness ratio t / 2R, and A is the width-to-the-height ratio of the ellipse

b / a. Likewise, for segment 3 (CD) its weight W5 and the centre of gravity (xs, y3) yield:
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P A Gl s i )| SRR
, tan @ t
—(' = 1)*(sin @, — sin @) + a+ry <\//12 + ta;/{gzz - JA2 j—ntjrj (p32)
= 30,
l[ @+ry’ <\//12 +1tang0 2 J22 +1ang0 2>]| ed
|—( " —1)3(cos ¢, — cos @3) + /122 3 |
y3=l 30, J

For the combined segment 1-2 (ABC) its weight Wi., and the centre of gravity (xi-2, y1-2) yield:

! -1 (tan ¢, _1 (tan @,\\]
1 "+ 1)?(mr —tan ! (—2) + tan
Wi, =pgs5 (o — ) (' — 1) + ( ( 1/1 ) ( p) )) 4.23)
[ "3 tan o tan @, ]
I 1+ - — - — y
| —(r' —1)3(sin @y —sin ;) + VA2 + tai{z‘Po JA% + tan g,
_1L
X1-2 = W
(4.24)
|— N3 < 1 1 )'I
a+r3 - _
I_(T" — 1)3(cos gy —cos @) + VA2 +tarjl(p02 JA% + tan @, 2 I
| |
Vi-2 = W

Moment equilibrium of the combined segment 1-2 (ABC) around hinge A yields:

A. Leontari, doctoral dissertation 2023 70



Chapter 4: Stability and Rocking response of Non-Uniform masonry arches: The ‘part-elliptical’ profile

RA+7r")sinp, R(1+71")sing,
Cx <\/1—52 cos? ¢, _\/1—52 cosz(p())
i <R(1+r')cos<p0_R(1+r')cos<p2>
Y \J1—¢2 cos2g, +/1— &2 cos?q,
R(1+1r")sing,
R(l+r’)cos<p0>=0

J1—¢€? cos? g,

(4.25)

+eW_, (yén‘f -

+ Wi, (xé;f -

Likewise, moment equilibrium of (i) segment 2 (BC) around hinge B and (ii) segment 2 (CD)

around hinge D yields Eqgs. (4.26) and (4.27) respectively:

< R (1+7r")sing,
Cx

J1—¢€? cos? ¢,

+ T, <R (1+7r")cosp; —

—R(1+1r")sin g01>

R (1+7")cos <p2> (4.26)
J1—¢€? cos? ¢,

+eW,(y,—R@A+7)singp)) + W, (x;—R(1+7r")cosep;) =0

R(A+7r")sinp, R(1+71r")sing,

N <\/1—£2 cos? ¢, _\/1—82 coszg()o)
R(A+r)cosp, RA+7r")cosep,

& <\/1—£2 c052<p0_\/1—52 coszg02>

4.27)

R(1+ r")sin R(1+1") cos
+eW, <y3— ( ) §00>+W3 (xa— ( ) ‘Po)

J1—¢€? cos? ¢, J1—¢€? cos? ¢,
=0

The subtraction of the potential energy of a purely elliptical (Ve) and a purely circular (Vc) arch

gives the potential energy of this particular arch geometry (see Appendix A):
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2R3 1+71)3
V=gp

3 \J1-¢€2 cos2 g,

-(1- r')3) cos @, (4.28)

Next, the principle of stationary potential energy is revisited. Equilibrium is achieved when the
potential energy is stationary meaning that the partial derivatives with respect to the critical
angles @1, (2, 3 are equal to zero (Eq. 4.29). By differentiating Eq. (4.28) with respect to the
angles (; yields:

v _av ar 3
do, dr' d¢;
(4.29)
or 0,i =123
= ’l: 4,
0 @;

Evidently, Egs. (4.25) ~ (4.27) are implicit functions of the independent variables (the
slenderness ratio r’ and the acceleration € as well as the dependent variable ). Iterative
procedures available in the code Mathematica are implemented to separate the dependent
variable ¢; from r’ and € and therefore to derive the locus of the solution. The solution leads
to the unknown locations of the ruptures ¢1,2as well as the minimum thickness t / R for given

angles of embrace.

Figure 4.6 depicts comparatively a circular and a part-elliptical A = b / a = 0.95) arch for
different levels of slenderness t / R and angles of embrace S, in terms of the critical acceleration
needed to initiate motion. In particular, Figure 4.6 implies that for a given slenderness, higher
acceleration values are required to initiate uplift of a part-elliptical arch compared to those
required for a circular one. In the first case, the slenderness t / R due to thickness variation is
considered with regard to the smallest values of t (thickness) and R (radius). Each pair of curves
with the same angle of embrace, has a lower bound determined by a minimum t / R and a
common upper bound at € = 1 (arbitrarily chosen). Figure 4.7 illustrates the locations of hinges
B and C forming when the arch is subjected to various values of uplift acceleration € g, for

given angles of embrace . It is noted that the angle o depends only upon 8 (¢o = [1t-B] /
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2). Interestingly, it is also observed that as confinement of the arch is gradually enforced
(larger values of ¢o) the kinematic mechanism tends to be independent to the seismic
coefficient, €. On the other hand, for the unconfined arch (¢o = 0) a rather linear trend is
established between the angles 1, @2 and the coefficient €. The endpoints of the curves
(minimum and maximum values of the seismic coefficient €) are in one-to-one matching with
the endpoints of the curves of Figure 4.6. Figure 4.8 yields that the ratio A (= b /a) is linear to
slenderness t / R for various levels of the seismic coefficient €. It is confirmed that the arch
thickness is favourable to the stability of the structural system, in a way that higher acceleration
levels are required to induce rocking as the thickness is gradually increasing. Moreover, when
comparing two arches of the same slenderness t/R but of different angles of embrace S it is
concluded that the one of larger B becomes a four-hinge mechanism for a smaller horizontal

acceleration € g.

12

B=90° B=125° B=157.5° B=180°

0.8

0.6

04

0.2

Part-Elliptical Arch (A=b/a =0.95)
------------ Circular Arch

0 0.1 0.2 03 04 0.5 0.6

Figure 4.6 Seismic coefficient € of circular arch and part-elliptical arch (A = b /a = 0.95)

for given angles of embrace 8 corresponding to different slenderness t /R.
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Figure 4.7 Location of the imminent hinges ¢; where i = 0, 1, 2 (points A, B, and C
respectively) of a part-elliptical arch (A = b /a = 0.95) with a given angle of embrace £.
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Figure 4.8 Minimum required slenderness as a function of A = b / a for different levels of
the uplift horizontal acceleration %4 = € g.

A numerical example can further elucidate the interplay of the geometrical parameters and
the acceleration required for incipient uplift. The numerical values are chosen from the graphs
of Figures 4.6 and 4.7. Let us consider the case where B = 157.5° and t /R = 0.194. A circular
arch uplifts for a horizontal ground acceleration, %4 = 0.51 g, whereas a part-elliptical one when

%4 = 0.61 g. In the first case, hinges form at ¢; = 56.622°, > = 116.611° and ¢3 = 168.75°,
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whilst in the second case at ¢ = 62.6°, > = 121.076° and 3 = 168.75°. Other geometrical
parameters are: (a) the mid-radius R (R = 10 m), the thickness t (t /R = 0.194 => t = 1.94 m),
the internal radius b (b = R + t/2 = 10.971 m) which are identical in both cases and (b) the ratio
AA=b/a=095 anda(a=>b/A=10.971/0.95 = 11.5484) which are additional for the part-
elliptical arch (Figure 4.4).

4.3.2.2 Lagrangian formulation
The kinematic mechanism in combination with the Lagrangian non-linear formulation can
contribute to extract the governing equation of motion. To this extent, the Lagrangian

equation can be expressed in the following compact form.

d <6T> oT oV
(4.30)

dt\ap) "3 T30 -
in which, T is the kinetic energy of the system, V the potential energy and Q the generalized

forces. For this single-degree-of-freedom system the angle 6 = 645 = 6 is chosen arbitrarily

and without violating the constraint, as the Lagrangian independent variable (coordinate).

The kinematics of the system employed to formulate the Lagrangian equation of motion is
portrayed in Figure 4.9. The horizontal supporting base is represented with a rigid plane free
to undergo horizontal vibration. The rocking arch consists of 3 rigid segments (AB, BC, CD)
that correspond to different portions of the angle of embrace 8 (= 81 + 8, + 63). The initial and
the displaced state are determined with the angles 6y and 6 respectively measured
anticlockwise from the horizontal. The rotation of such a system, is denoted as ¢, is 80— 6 with
respect to the original geometry. The horizontal acceleration applied to the base from right to

left (X4 < 0) causes a positive rotation (¢) of the arch which initially will rock to the right.
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[ 4 hinge mechanism ]

----- Initial state — Displaced state

Figure 4.9 Kinematic mechanism of the part-elliptical arch.

Consequently, the equation of motion takes the compact form:

M(6)6 + L(0)6% + F(8)g = P(6)%, (4.31)

in which the coefficients M(6), L(6), F(6), P(B) are nonlinear equations of 8 given below after
replacing fy, = mxyr‘xzy + . Where my, 7y, Iy, and (, are the mass, the distance to the
centre of mass measured from the downstream joint corresponding to each link, the centroidal

polar moment of inertia and the angular offset respectively (xy = AB, BC, CD) (Figure 4.9).

M(B) = fAB + chg%c (4.32)
+ fop8'ep + mpc[AB? + 24B¢0" pc cos( 8 — Opc — W)l

L(0) = fpcOpcOpc + fcpbcpOcp + MpcABTpc[0pccos(0 — Opc — Ppc) (4.33)
— 0pc(1 —6'pc)sin(6 — O — Ppc)]

F(8) = mypiyp cos(0 + Pup) + mpc[ABcosO + 75c0'pc cos(Opc + Ppe)] (4.34)

+ mepicp8'cp c0s(@cp + Yep)
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P(0) = mypTyp Sin(6 + Pup) + Mpc[ABsing + 150" g¢ sin(fpc + Ypc)] (4.35)

+ mepTepO'cp Sin(Bcp + Yep)

These functions have been presented in literature in similar forms (Oppenheim, 1992;
Clemente, 1998; Leontari, 2018). In addition, their physical interpretation has also been
elucidated (Oppenheim, 1992). Eq. (4.31) is valid only when 6 < 6, meaning that the
computation of the rocking angle 6 is limited to the prior-to-impact state. Evidently, the
equation of motion is dependent upon the geometrical characteristics of the structure. A
similar procedure has been followed for a circular arch (Oppenheim, 1992; Clemente, 1998;
Leontari, 2018). Nevertheless, the part-elliptical arch requires a larger computational effort
due to geometric complexities. The horizontal ground acceleration needed to initiate uplifting
about the predefined hinges can also be extracted from Eq. (4.31) by applying the criterion for
incipient rocking: 6 = § = 0. The above condition states that the supporting base should
experience acceleration larger than |5c'g| = F(©6) / P@6) = 0.61 g in order the developing inertia
forces to set the arch on rocking. Compared to the circular arch case where |5c'g| = F(6) / P(6)
= 0.51 g, the part-elliptical arch performs enhanced-resistance to entering the rocking mode.

The above values of uplift acceleration can also be extracted from the diagram of Figure 4.6.

A comparison between the part-elliptical and the circular arches is performed in Figure 4.10 in
terms of the potential energy normalised to its value as a function of the rotation ¢. A turning
point of the system is at the moment the potential energy reaches its peak value which
corresponds to maximum rotation ¢. and ¢. for the circular and part-elliptical arch
respectively. For these critical values of rotation, velocity and kinetic energy are
instantaneously zero and the system "decides” whether it eventually collapses or not. For the
circular case the point of non-recovery is reached after a relatively small rotation. In fact, as
already pointed out by Oppenheim (1992) “a typical arch has considerable resistance to the
onset of mechanism motion but relatively little capacity to absorb forced excursions into such
motion”. This finding is even more amplified in the part-elliptical arch in which the critical
rotation ¢ drops from 0.25 rad down to 0.20 rad at a maximum energy ratio V(¢) / V(¢o) even

higher.
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Figure 4.10 Recovery and non-recovery domain introduced by the normalized
potential energy for both circular and part-elliptical arch (dotted and continuous lines
respectively).

For a rocking masonry arch, gravity is the restoring mechanism that brings the structure back
to static equilibrium. In Figure 4.11, both the restoring and the driving mechanism for each
profile are portrayed. The alternation of sign in the case of the coefficient F(6) denotes that
the mechanism the gravitational force imposes to the system turns from restoring to driving.
For the part-elliptical arch (continuous line) gravity leads the system to overturning faster
compared to the circular arch (dotted line). Therefore, the point of non-recovery ¢. is reached
earlier in the first case. This is a reasonable finding as the part-elliptical arch is heavier, due to
its geometry. On the other hand, during the entire motion, the ground acceleration
contributes to the system as a destabilising factor. In concluding, a circular arch requires
smaller acceleration amplitudes to uplift while the part-elliptical exhibits substantial resistance
to earthquake pulses. On the other hand, the part-elliptical arch reaches the threshold of

collapse in smaller rotations than the circular arch for a specific thickness/radius ratio.
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Figure 4.11 Representative coefficients F and P defined by the non-recovery point for
circular and part-elliptical arch (dotted and continuous lines respectively).

4.3.3 Time-history analysis

4.3.3.1 Lagrangian formulation

The governing equation of motion as derived from Lagrangian formulation (Eq. 4.31) in
combination with the nonlinear coefficients (Egs. 4.32 ~ 4.35) is implemented to compute the
time-history of rocking rotation. A numerical solution of the differential equation of motion in
terms of rotation ¢ (or the angle 6) is accomplished with Mathematica code, after properly
adjusting the coefficient P(¢) (or P(6)) to implement ground shaking. The linearised equation
of motion is solved iteratively through a numerical solver (ND solve) in the Wolfram
Mathematica 8 environment. To determine the solutions of the equation, initial conditions are
denoted in the form ¢ (0) = 0 and ¢’ (0) = 0. Mathematica can switch methods many times if
the situation asks for it. The explicit integration settings for the applied methods are the
"Runge-Kutta” (Implicit or Explicit), the “Adams” methods or implicit backward differentiation

formulas (BDF or IDA).
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4.3.3.2 Finite element modelling

Nonlinear analysis of a free-standing arch on accelerating base is implemented numerically in
the time-domain with the finite element method. To this extent, the software suite Abaqus is
utilised for the mesh generation as well as for the analysis execution. Both the arched structure
and the supporting base are represented with quadrilateral, continuum plain strain elements.
A reasonably refined mesh of the model is generated, composed of elements varying from
0.33 m to 0.47 m in width for the arch and from 0.17 m to 0.39 m for the base. The linearly
elastic behaviour of the masonry arch is determined by elastic modulus, £ = 10 GPa, Poisson
ratio, v = 0.20, and density, p = 2.2 t/m?. In the same way, for the supporting base the material
properties are E = 30 GPa, v = 0.20, and p = 2.5 t/m>. For such high levels of the elastic moduli,
flexural deformations are rather negligible, and therefore each structural element can
practically be considered as rigid. The arch is partitioned in three monolithic voussoirs which
together with the base form four interfaces (hinges). A surface-based kinematic contact
algorithm has been adopted allowing for rigorous treatment of finite separation (uplifting) and
sliding at each interface. The latter is governed by a Coulomb-type frictional law at the
interface. Experimental studies have pointed out that for masonry stones the coefficient of
friction can roughly be estimated at 0.7 (Marino M. 2014). Geometric nonlinearity attributed
to P—0 effects is taken into account through appropriate large displacement formulation. A
direct integration of the equations of motion is performed at each time increment through an
explicit algorithm incorporated in the finite element code. This dynamic analysis procedure is
based upon the implementation of the explicit central-difference integration rule of the

kinematic variables (Eq. 4.36):
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-N - N LAt AW N

™ wy— 5 o (4.36)

where 4" is a degree of freedom (a displacement or rotation component) and the subscript I
refers to the increment number. In addition, the use of diagonal (“lumped”) element mass
matrices allows for the accelerations at the beginning of the increment to be computed

according to Eq. (4.37).

iy = (M) (P({) - I(]i)) (4.37)

where M"/ is the mass matrix, P{

) is the applied load vector, and [/, is the internal force vector.

(i)
The afore-discussed explicit procedure is computationally efficient in a sense that it requires
no iterations and no tangent stiffness matrix. The computational cost is further minimised by
choosing reduced integration elements (CPE4R) available in Abaqus/Explicit code. The finite

element configuration of the model is illustrated in Figure 4.12.

------ Predefined Interfaces

Figure 4.12 2-dimensional finite element model of the non-uniform arch and the
supporting base. The four predefined interfaces are also depicted.

The lateral boundaries of the model are free to move horizontally unlike the vertical movement
of the base which is restricted. Concerning the horizontal loading, different types of pulses are

in all cases uniformly imposed to the bottom surface of the base for representing seismic
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excitation. On the other hand, vertical loading is restricted to the self-weight of the structure

excluding the effect of other gravitational loads caused by the backfill or live loads.

4.3.3.3 Comparative study

Effect of the non-uniform profile. The response of the part-elliptical arch is first computed
with the finite element method for different levels of geometrical ratio A. In this way the results
can be comparatively presented with those of the circular arch (A =1). A series of one-cycle
trigonometric pulses is applied as excitation at the base. This sort of pulses approximates the
kinematic characteristics of recorded near-source excitations and may lead to considerable
permanent displacements. They are discretised to Type A (forward pulse or one sine pulse),
Type B (forward-and-back pulse or cosine pulse) and Type C, (exhibits n cycles). The present
study is limited to the first type due to its more detrimental effects. This so-called one-sine
pulse is presented in Figure 4.13. It is characterised by the amplitude a,, the period T,, and the
time for the onset of rocking to, expressed in terms of amplitude ap, frequency w, =§,—ﬂ, and
p
the ratio F(B) / P(6). Figure 4.14 portrays time-histories of the normalised angle, 8, for three
different values of A: 0.95, 0.97, 1. Hence, three arches of different upper curve (extrados) are
selected, in which the minor axis (b = 10.97 m) is kept constant whereas the value of the major
axis (a) ranges from a = b = 10.97 m (circular case) to a = 11.31 m and a = 11.5484 m (elliptical
cases). In light of the above, a salient comparison among the three arches can be performed.
During arch rocking, two different states can be distinguished: (a) rocking with impact during
the excitation or (b) overturning at the first half of the cycle. For high frequency pulses (w, =
2m) the increase in the acceleration amplitude, from 0.75 g to 1 g and eventually to 1.33 g,
doesn't essentially affect the arch behaviour for any of the arches. For lower values of
frequency wp (1, 0.5m) though, the acceleration amplitude plays a crucial role to the arch
response. For instance, a pulse of w, = ™ may lead to collapse for a, = -1.33 g whereas for
lower amplitudes the arch survives failure. Another interesting response is the one caused by
a pulse of w, = 0.5m and a, = -0.75 g where the arch of A = 0.95 manages to survive failure
unlike the other two arches. The following one-cycle pulses induce larger rotations for circular
arches which in some cases may lead to collapse. In view of the above findings, it may be

stated that part-elliptical arches due to their slightly different geometry are more stable
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structures than the circular arches. Particularly the more “elliptical” the upper curve is the less
prone is the arch to failure. Their stability decreases as the geometrical ratio A increases till

the value of A = 1 where the arch becomes circular.

Comparison between analytical and numerical solution. The results of the time-history
analysis obtained with the semi-analytical method are comparatively presented next with
those of the finite element method for a part-elliptical arch with geometrical ratio A = 0.95.
Such a comparison is essential due to the assumptions and simplifications involved in these
two methods. Hence, the analytical approach adopts the rigid, no-tension model of a
monolithic arch in which sliding along the joints is prevented. On the other hand, the finite
element approach considers for the masonry a very stiff structure (E = 30 GPa), yet not ideally
rigid. In addition, the imminent hinges are predefined as a prevailing kinematic mechanism
under dynamic lateral load is regarded, whereas sliding is not prevented. A two-step
rectangular pulse is introduced to the analysis as an excitation to the supporting base. It
contains a large negative pulse (a, = -1 g) of duration t, followed by a smaller positive pulse
of half magnitude (a, = 0.5 g) and of double duration 2t,. Such pulses were introduced to the
analyses and used in recent studies (Heyman, 1982; Oppenheim, 1992; Dimitri, 2015). Their
particularity is the lack of residual velocity. In Figure 4.15, the arch response to pulses with
duration t, = 0.75 sec and t, = 0.80 sec is illustrated using both the analytical and the numerical
method. For a pulse of t, = 0.75 sec as a base motion (black lines), the arch safely exhibits
rocking and returns to equilibrium state (rotation ¢ = 0 rad) regardless of the method,
analytical or numerical (solid or dotted line respectively). On the contrary, for a pulse of ¢, =
0.80 sec (red lines) both solutions predict that the arch is rocking and eventually overturns as
rotation ¢ increases exponentially. More importantly, a good agreement is also observed
between analytical and numerical solution for both pulses. A sequence of snapshots resulted
from the deformed FE mesh model is portrayed in Figure 4.16. These snapshots portray the

arch in the last increment of the pulse (state of recover and overturning).

The comparative study of the two methods implemented to compute rocking response is
extended next as illustrated in Figure 4.17. To this end, the part-elliptical arch of the numerical
example of Section 4.2.1 is once more adopted (8 = 157.5° and t /R = 0.194). Ground motion
applied to the supporting base is simulated with a one-sine pulse of acceleration amplitude

values 0.75 g, 1.0 g, and 1.33 g. It is worthy of note that all three values exceed the threshold
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acceleration at incipient uplift (0.61 g), hence rocking motion is expected. In addition, three
values of the excitation period are adopted: 1.0 sec, 2.0 sec, 4.0 sec. The above values of a,
and T, form a set of 9 analyses, all representative of very strong motion under quasi-static
conditions. A remarkable agreement between the two methods is observed, which highlights
the reliability of both approaches in the context of a dynamic time-history analysis. A slight
deviation is observed in the case of w, = 0.5m and a, = 0.75 g where the semi-analytical

method gives more conservative results.

Onset of p
Rocking
0]
1 . |P(8)
ton = —arcsin
Wp ap

Figure 4.13 One-sine pulse (cycloidal Type A pulse).
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Figure 4.15 Rotation time histories of the part-elliptical arch subjected to different
rectangular pulses. Black lines: t, = 0.75 sec. Red lines: t, = 0.80 sec. Solid lines:
analytical solution. Dashed lines: numerical solution.

tp=0.80sec

Figure 4.16 lllustration of snapshots of the part-elliptical arch subjected to
rectangular pulses: (a) Recover, tp = 0.75 sec (left), (b) Overturning, tp = 0.80 sec
(right).
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4.4 Conclusions

An arch ring of non-uniform thickness subjected to rocking is employed in this study.
This so-called part-elliptical arch is described with an elliptical (upper) and a circular
(lower) curve, and is frequently encountered in long-span masonry bridges. This
chapter investigates the response of such a structure in comparison with the uniform

circular arch.

Based on the existing method of a variational formulation in literature (Alexakis &
Makris 2014), in the beginning, the hinge locations of a continuous monolithic circular
arch are calculated when subjected to a given level of acceleration X;. What is new in
this study is that the locations of the imminent hinges are calculated analytically
through closed-form solutions. The results are in excellent agreement with those

derived from the semi-analytical approach of previous study (Alexakis & Makris 2014).

Regarding the part-elliptical arch, (i) stability analysis and (ii) dynamic response analysis
are engaged. Stability analysis involves both variational and Lagrangian formulation. In
the context of a demand assessment, namely for a given slenderness, it is found that
systematically higher acceleration levels are required to set a part-elliptical arch on
rocking compared to those required for a circular one. This implies that an arch with
increasing thickness from the key to the springers (as described with A) performs
enhanced resistance to hinge formation and rocking when subjected to ground
horizontal excitation. Therefore, it has reasonably been adopted in the past as an
improved profile in terms of seismic performance, for long-span masonry bridges.
Moreover, when comparing two arches of the same slenderness t / R but of different
angles of embrace f it is concluded that the one of larger B becomes a four-hinge
mechanism for a higher horizontal acceleration € g. Dynamic response analysis is
performed in the time domain through analytical and numerical methods. In the
former, time-histories of the rocking response are computed from the analytical
solution of the Lagrangian equation of motion. Idealised pulses are used as base
excitation to represent conditions of near-source ground shaking. Once rocking occurs

it turns out that the non-uniform profile impacts the response but not in a
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straightforward fashion. Evidently, the response is very sensitive to the excitation
period unveiling the profoundly non-linear nature of the problem. Apart from the
analytical treatment, two-dimensional numerical analysis with finite elements is
performed. The results are presented comparatively with those of the analytical
method for long-duration pulses. Both methods provide time-histories of the dynamic
response which in general lines are in remarkable agreement. This is very important
taking into account the essentially different assumptions adopted in two approaches:
The analytical method considers a rigid, monolithic arch of zero tensile strength in
which sliding at the joints is prevented. On the contrary, the numerical model implies
a stiff but not ideally rigid structure with a predefined hinge mechanism, where

interfaces are reasonably rough allowing theoretically sliding.

It has to be mentioned that in the analyses presented herein only dead loads due to
the arch ring weight have been considered neglecting additional gravity loads mainly
due to backfill or overburden material. This simplifying approach is conservative and
allows for the comparison with a plethora of previous studies already presented in
literature on the pure arch behaviour (Alexakis, 2013, 2014; Heyman, 1982;
Oppenheim, 1992; Gaetani, 2017, Leontari, 2018; Kollar, 2019; Cannizzaro, 2018;
Pulatsu, 2019; Stockdale, 2020; Tempesta, 2019). A more realistic simulation of the arch
as a part of a structure (e.g bridge, entrance, vault) is a topic for future research. A
complete masonry arch configuration could be implemented, including apart from the
arch ring, the spandrel structure and the fill material above. The development of the
semi-analytical method could expand taking into consideration more complicated
loading and boundary conditions. The presence of spandrels, backfill soil, and piers is
expected to strongly affect the arch stress distribution and its load-bearing capacity
(Sarhosis, 2016, 2019; Pulatsu, 2019; Reccia, 2014; da Porto, 2016). Finally, regarding
the finite element model, the analysis can be extended in a future study to address a

monolithic, no-tension arch.
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CHAPTER 5:

Masonry arched structures on buttresses

5.1 Introduction

The fundamental structure of many masonry monuments worldwide is the buttressed
arch. Masonry bridges, aqueducts, gothic cathedrals, byzantine churches, arcades and
barrel vaults among others are supported by this typical structure. Masonry arches at
their springings, exert inclined thrust forces which are loading the buttresses. The latter
contribute favourably to the structure stability as they carry this thrust from the arch
and transmit it to the supporting soil. In this chapter the ultimate capacity of simple
masonry arched structures supported on buttresses under combined static and seismic
loading is investigated. It is assumed, that they are composed of masonry voussoirs

resting on top of each other, freely supported.

Arched structures have already been discussed and analysed in previous chapters
(chapter 3 & 4) as a vivid paradigm of structures whose stability is dependent solely on
their equilibrium. The monolithic structural model allows for investigating their
mechanical behaviour through Limit Equilibrium Analysis. Similar to the cases of
circular and part-elliptical arches the same procedure is followed for the analysis of
buttressed arches. What is new in this case is a possible hinge formation on one or on
both buttresses leading to more complicated computations. Contingent upon the
arch-to-buttress height ratio, rocking could turn out crucial for stability. Alexakis and
Makris (2017, 2018) in their pioneering work investigated the hinging mechanisms and
the minimum uplift horizontal acceleration of masonry single-nave barrel vaults
subjected to lateral and gravity loads by employing the principle of stationary potential
energy. Lastly, a numerically based approach with the aim of the finite element method
can be a very useful tool for the rocking overturning analysis under seismic excitation

when the structure is considered as an assemblage of voussoirs.
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5.2 Limit analysis of masonry buttressed arches subjected to
lateral and gravity loads

5.2.1 Geometry and loading conditions

Buttressed arched structures either as principal components of heritage buildings or
as individual structures can be found in many different geometries. The arch part can
be of uniform section (circular) or of non-uniform section (non-circular such as part-
elliptical, pointed, ogee). Depending on the angle of embrace they can be segmental
or semi-circular. Buttress geometry also varies to thick or slender. In this chapter the
circular buttressed arch is studied. The parameters that define the arch geometry are

analytically presented below.

Loading conditions can also vary. The buttressed arch must support its self-weight or
other additional dead loads (e.g. overburden soil, fill of other materials). For masonry
arch bridges live loading should also be considered. Horizontal forces of increasing
intensity may also influence the loading conditions of the structural system. Seismic
excitation exerts lateral loading that can be crucial for the structure sustainability.
Herein, loading conditions comprise the gravity load of each part of the structure (arch
and buttresses) and the lateral inertial loading produced by the applied constant

horizontal acceleration.

5.2.2 Assumptions for the application of L.A and hinging mechanisms

The most suitable approach to address the stability of unreinforced masonry (URM)
arches under horizontal loads is through Limit Analysis (L.A.). For the application of this
method, the following postulates for the masonry behaviour as proposed by Heyman
should be taken under consideration: infinite compressive strength, zero tensile
strength, and the coefficient of friction large enough to prevent sliding. Under these
requirements, the masonry becomes an assemblage of rigid parts held in by mutual
pressure and the failure mode of the system is activated by the formation of no-tension

hinges that turns the structure into a rocking mechanism.
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Stability analysis of the arched masonry structures through the kinematic theorem
requires the identification of the hinging mechanisms. As already discussed analytically
in previous chapters, a voussoir-arched structure transforms into a mechanism when
relative separation and rotation occur at four deformable joints simultaneously, leading
to the formation of hinges. In a parallel approach, when the arch is treated as
monolithic, the principle of stationary potential energy unveils the four locations of the

structure where the partial derivatives of the potential energy become zero.

Depending on the structure geometry and precisely on the arch-to-buttress relative
proportion, the following hinging mechanisms in Figure 5.1 (initially proposed by De

Luca, 2004) are distinguished:

(i) Mechanism | (Local or Arch Mechanism) usually occurs in the case of slender
arches atop of stocky buttresses where all four hinges form at the most
vulnerable part, the arch, and none at the buttresses,

(ii) Mechanism Il (semi-global or mixed Mechanism) occurs when apart from the
arch, one buttress also participates in the hinging mechanism. Specifically, one
hinge opens at the bottom corner of the buttress while the other three across
the arch and

(iii) Mechanism Il (global Mechanism) occurs when two hinges develop at the
arch and the other two at each buttress. The last two mechanisms are usually
formed for thick arches and slender buttresses (Mech.lll for even more slender

and therefore more vulnerable buttresses).

If hinge B or D exceeds the arch springing and forms horizontally across the buttresses
then Mechanism IV is activated, which is a variation of the Mechanism Il. Boundary

conditions are implemented to avoid the latter mechanism.

Some representative examples of the above kinematic mechanisms on buttressed

arches are portrayed in Figure 5.2 (Brandonisio 2017).

The failure mechanisms of the buttressed arches were recently studied by Calderini
and Lagomarsino (2014) who carried out an experimental program on the 1:10 scaled
buttressed arch with the aim of studying the structural response under seismic

excitation. Dimitri & Tornabene (2015) examined the effect of geometry on the seismic
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capacity of buttressed arches. Bradonisio et al (2017) proposed a numerical procedure
based on the application of Limit Analysis combined with non-linear programming
techniques to calculate the actual horizontal load multiplier A and the location hinge
that defines the most probable failure mechanism. In his succeeding work (Bradonisio
et al, 2020), 128 buttressed arches of different geometries, with emphasis to the angle
of embrace (), were analysed under seismic motion in order to capture their precise

mechanical behaviour.

Mechanism | Mechanism I Mechanism Il

———

Xg =g

Figure 5.1 Three different kinematic mechanisms (I, II, 1ll) that can be possibly
activated under the implementation of a ground acceleration %4 from the left to the
right.

Figure 5.2 Representative examples of the above kinematic mechanisms on
buttressed arches: Santa Maria di Collemaggio church in L'Aquila (Italy) during the
2009 L'Aquila earthquake, Town Hall in San Agostino (Italy) during the 2012 Emilia
Romagna earthquake, and Santa Caterina church in Venzone (Italy) during the 1976

Friuli earthquake (Brandonisio 2017).
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5.2.3 Thick arches atop of slender buttresses

The horizontal capacity of slender buttresses that support a circular thick arch which
are common parts of monumental structures such as vaulted entrances, bridges etc.
are examined next. According to the previous section, when the minimum horizontal
ground acceleration for the onset of rocking applies at the base, Mechanism Il (or
mixed or semi-global) is activated. The buttress geometry (b, h) plays a dominant role
to the structure stability in contrast to the minor role of the arch geometry. Their

contribution is investigated in the following sections.

i. Model Parameters

Consider now the rigid masonry buttressed arch shown in Figure 5.3. The model below
consists of a thick arch supported by slender buttresses and it can be geometrically
defined by (i) the arch parameters: the angle of embrace 3, the thickness t, the mid-
thickness radius R and (ii) the buttress parameters: the height h and the width b. The
buttress slenderness s is usually defined by the ratio of width to height. Given that the
equilibrium of masonry arches (as already discussed) is a purely geometrical problem,
the collapse of the overall structure is governed by the above parameters which are
normalised to the mid-thickness radius R.

When a critical horizontal acceleration %4 = € g is applied at the structure base from the
left to the right, the buttressed arch transforms into a four-hinge mechanism. The
presumable hinge locations A, B, C, D are illustrated in the schematic of Figure 5.3
which portrays a Mechanism lI-model. Hinge A is placed at the bottom right corner of
the right buttress (given the direction of the excitation) while the rest of the hinges are
defined by the angles @1, @2, and (3 respectively (from the horizontal). Specifically,
hinge B is activated at position o < 7 < 90° (hinge at the right springing when "¢; =
®0"), hinge C is formed somewhere at the left semicircle, while hinge D is bounded by
a location 3 < (11- o). When “@; = o"and "3 = m", happen simultaneously (hinges

forms at the right and left springing respectively) a “two-springing” mechanism is
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formed. From the above limitations (boundaries at the springings), Mechanisms IV is

automatically excluded.

A: right corner of the right buttress

B: o<1 <m/2 h
C: m/2<@p2< 3
D: @p3<m—@o
| A v
e e 77AN
—y
Xy = &g

Figure 5.3 Schematic of a thick circular masonry arch supported by slender masonry
buttresses. Mechanism Il is activated under horizontal acceleration acting from the
left side to the right. The main arch and buttress geometric parameters that influence

the system stability are depicted.

ii. Stability analysis at incipient uplift — Variational formulation

Stability analysis is pre-formed in static terms to calculate the hinge locations as well
as the minimum ground acceleration at the onset of rocking.

In the framework of limit equilibrium analysis, a proper configuration of the model
under examination should be selected. The illustration of the L.A model is depicted in
Figure 5.4 where three basic parts for the analysis are distinguished: segment 1 (or part

AB), segment 2 (or part BC) and the combined segment 2-3 (or part BCD). It should be
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noted here that segment 1 consists of two areas, the arch portion and the buttress area
which embodies two parallelepipeds and a little triangle at their intersection. Segments

2 and 2-3 are portions of the arch body.

Segment 2

—>0(x2,y2)

Segment 3 5
ALY
TT
By Tsx B
Segment 1
t
Eb—"Tq A
Ioo00F Segment 2-3
(X1,y1
sWi—be
h
[
\4
Wi
Xg = &9 A v
g e
<«—'h.=>>

Figure 5.4 lllustration of the limit equilibrium analysis. The three segments of the
four-link mechanism Il and the combined segment 2-3 used for the analysis are
depicted in detail. Horizontal (¢ W;) and vertical (W;) forces acting on the centre of
gravity (xi, yi) for each segment are also highlighted.

Next step is the determination of the applied forces on the centre of gravity (x; y: are
the Cartesian components) of each segment. The horizontal forces € W; are developed
by the horizontal component of the seismic excitation %4 = € g while the vertical ones,
W; are the self-weights, where “{" identifies the three segments (1, 2, 2-3) of the
dominant hinging mechanism. When “¢" reaches a value capable to transform the
arched structure into a mechanism, the thrust line (the resultant of both vertical and

horizontal forces) reaches the surface of the masonry and touches the intrados at
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points B and D, and the extrados at point C. Specifically, the unknown internal thrust

force at hinge B is analysed to the horizontal and vertical components Tg, and Tg,,.

The weights and the Cartesian components of the center of gravity for each part are:

x1W1 = xarcWarC + xtriangleWtriangle + xparallwparall + xparalZWparalz
Wi = YarcWare + YeriangteWeriangte T YparattWparain + YparaizWparai2

Wl = Warc + Wtriangle + Wparall + Wparalz

r2\ sin @, — sin
o142,
P2 —P1

72\ cos @, — cos ¢,
y, = —R <1 + —>
2 3) ¢2—os

W, = 2R2T(‘P2 —®1)

r2> sin@; — sin @

xH:R(H? 93~ 1

72\ cos @3 — cos @4
a=-R(1+=
Y23 < 3) P2 — ¢

W, 3 = 2R27'(<P3 - ¢1)

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

Equations 5.1-5.3 are presented analytically on the Appendix C due to their complexity.

Moment equilibrium of segments 1 (AB) and 2 (BC) about hinges A and C respectively

yields:
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Cx1Tx + €y1Tpy +f1 =0

Cx2Tpx + €y Ty + =0

Moment equilibrium of the combined segment 2-3 (BD) about hinge D yields:

Cx2-3Tpx + Cy2-3Tpy + f2-3=10

Cy1 = R((l —r)sing; — (1 +r)sing, + ZCh)

cy1 = R((1 —7) cos oy — (1 — 1) cos ¢y — 2sp)

fi= (W1x+5*W1y)—W1
*R((1—1)cosgg+ex (1L +71)singg + 2(s, — € * cp))

Cyy = R((l +7r)sing, — (1 —71)sin <p1)

¢y2 =R((1+7)cos g, — (1 —1) cos ¢y)

fo =Wy(xy, —R(1+71)cos@y) + eWy(y, — R(1+71)sing,)

Cx2—3 = R((1 —7)sings — (1 — 1) sing,)

Cyp—3 = R((l —r)cos s — (1 —1)cos (pl)

fa—3 = Wy_3(xp_3 = R(1 — 1) cos @3) + eW,_3(y,—3 — R(1 — 1) sin ¢3)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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where Tgx, Tg, are the unknown Cartesian components of the internal thrust force Ts

and ¢, Gy, fi (Where i=1, 2, 2-3) are coefficients which are defined below.

The parameters cp, s» are half the normalized to R, height and width of the buttress.
By solving the equations (5.11) and (5.12) the components of the thrust force Tstake

the following form:

Cya—3f2 — Cyafo_
y2-3/2 y2)2-3
TBX = (5.22)
Cy2€Cx2-3 — Cx2Cy2-3

T — Cx2f2-3 — Cx2-3/2 (5.23)
BY — .
CyZCx2—3 - CxZCy2—3

By substituting the thrust force components as functions of the coefficients cx, ¢y; fi

into Eq. (5.10), the following simplified form is yielded:

cifitcafa +ca3f-3=0 (5.24)

The coefficients ¢; and the functions fi (where ( represent each segment) are
combinations of: (i) the arch parameters (r, o), (ii) the buttress parameters (ss, cn) and
(iii) the characteristic parameters (g, ;) of the dominant hinging mechanism (Egs. 5.13-
5.21). Their detailed form is presented in the Appendix. A subject of interest is the
rupturing acceleration € g and, the presumable rupture-points over the arch body
defined by angles of embrace 1, @2, 3. Therefore, equation (5.24) is solved for the

parameter € which is expressed as a function of the angles ¢; (i=1, 2, 3) (Eq.5.25).

e = f(o) (5.25)

According to the principle of stationary potential energy, every system in stable static
equilibrium should have its potential energy minimised and therefore its partial

derivatives with respect to the angles ¢i should be set equal to zero (Eq.5.26).
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=——=0, =123 (5.26)

iii. Numerical results

The effect of the buttress geometry (b, h) is depicted in the following diagrams (Figures
5.5-5.8). Four different buttress geometries are considered (Table 1). The buttress
slenderness s = b / h is set from 0.25 to 0.75. The arch parameters ranges: (i) for the
angle of embrace S, values fluctuate from 90° (very segmental arch) to 180° (semi-
circular arch) and (ii) for the mid-thickness ratio t / R, from 0.025 to 0.275 considering

respectively very thin to thick arches.

Table 1 Buttress geometries

1 2 3 4 5 6
b/R 0.50 0.75 0.50 0.75 0.50 0.75
h/R 1 1 1.5 1.5 2 2
s 0.50 0.75 0.33 0.50 0.25 0.375

For relatively very slender arches (proportional to the buttresses), the curves e-f5 don't
cover the whole range of the angle of embrace or they may not exist at all. This happens
either because they can't stand their own weight or because for such vulnerable arches
Mechanism | is activated.

For each pair of diagrams where the height h / R is fixed and the width b / R increases
to 50% (b / R = 0.50 to 0.75), it is concluded that:

-The seismic coefficient € is almost doubled meaning that as the slenderness s increases
the structure obtains better resistance to the mechanism motion.

- For the case b/ R = 0.75 & h / R = 1 (relatively stocky buttress), all the curves
corresponding to various t / R end at the angle of embrace 8 = 165°. For larger angles

Mechanism | is activated.
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- The minimum horizontal ground acceleration for the onset of motion will decrease
with a larger angle of embrace.

Generally, a buttressed semi-circular arch (angle of embrace 8 = 180°) is more unstable
than a segmental one (angle of embrace 8 = 90°). For a given t / R, the difference in
seismic resistance between these extreme cases, is smaller as the normalised height h
/ R increases.

Buttresses with the same coefficient of slenderness s but with different size (for
exampleb/R=05&h/R=1andb/R=0.758&h/R =1.5)don't display the same
resistance to the onset of motion. The larger buttress is more stable than the smaller
one (Housner 1963).

By doubling the height from h / R=1 to 2, the buttress becomes slenderer (slenderness
ratio s decreases) which entails a more unstable structure that enters the rocking mode
for low value of horizontal ground acceleration.

As has already been clarified from the previous diagrams, the illustrated curves of
Figure 5.7 likewise, represent only the buttressed arches that can support their own
weight and correspond to collapse mechanism Il (mixed or semi-global). For arches
with angle of embrace 8 = 90° and 125° regardless of their thickness, the location of
the fourth hinge (hinge D) resulting from Eq. (5.26), exceeds the left springing
boundary representing Mechanism IV. In that case, hinge D is set to the left springing.
Concerning hinge B location, for some thickness range of the very segmental arches (8
= 90, it is calculated beyond the right boundary and is readjusted to the right
springing. The angle of embrace 8 seems to play a minor role to the rupture locations.
Specifically, the curves that correspond to hinge C location (¢2) almost coincide
regardless of the arch embrace. As the arch becomes slenderer (t / R decreases) hinge
B curve slopes upwards meaning that it diverges from the springing.

For the cases that no adjustment is necessary, it has been observed that the angle ¢2

equals to:

0, = (¢4 ‘; ®3) (5.27)
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If each particular one of the angles above (measured from the horizontal) is expressed
as a function of the angles corresponding to the three links of the four-link mechanism,

it yields:

©1=@o+ 61, @2=@o+ 01+ 0, 3=o+ 61+ 6, + 63 (5.28)

Where 64, 6, 63 are the angles forming between the horizontal and hinge B, the latter
and hinge C and, the latter and hinge D respectively. Replacing Eq. (5.28) to Eq. (5.27)
it results to 6, = 63 meaning that this configuration always gives the governing

mechanism which yields the minimum horizontal ground acceleration.

A. Leontari, doctoral dissertation 2023 102



Chapter 5: Masonry arched structures on buttresses

0.7

h/R=1 }
s=0.75
& ~ b/R=0.75

0.65

0.6

0.55

0.5

¢ 0.05 O 0075 O o1

€ o045

0.4

0.3

0.25

0.2

Figure 5.5 Effect of the width increase (b /R = 0.5 to 0.75) of a buttress with a given

h (h /R =1) on the seismic coefficient € for various arch geometries (t / R, B).
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Figure 5.6 Effect of the width increase (b /R = 0.5 to 0.75) of a buttress with a given

h (h /R =1.5) on the seismic coefficient € for various arch geometries (t /R, f5).
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Figure 5.7 Effect of the width increase (b /R = 0.5 to 0.75) of a buttress with a given

h (h / R =2) on the seismic coefficient € for various arch geometries (t /R, f5).

A. Leontari, doctoral dissertation 2023 105



Chapter 5: Masonry arched structures on buttresses

180

160

140

120

100

80

60

Hinge location (°)

40

20

0

180

160

140

120

100

80

60

Hinge location (°)

40

20

0

180

160

140

120

100

80

Hinge location (°)

60

40

20

0

180 -

160 -

140 -

120 A

100

80 -

60 -

40 4

20 +

180

160 -

140

120

100 -

80 1

60

40 4

20 -

o mmmemmaee
b2
b1
B R ]
a. h/R=1& b/R=0.5
0 0025 005 0075 01 0125 015 0175 02 0225 025 0275
b3
________ IR A S —
$2
— - - .
c. h/R=1.58&b/R=0.5
0 0025 005 0075 01 0125 015 0175 0.2 0225 0.25 0275
b3
e —— T L
d2
\dn
———
e. h/R=2&b/R=0.5 t/R

180 4

160 4

140 4

120 +

100 4

80

60 -

40 +

20 -

b3 FE=====
d2
b. h/R=1&b/R=0.75
0 0025 005 0075 01 0125 015 0175 02 0225 025 0.275
3 ——mm==e===c
$2
¢1
d. h/R=1.5&b/R=0.75
0 0025 005 0075 01 0125 015 0175 02 0225 025 0275
$s | —————
b2
¢1
f. h/R=2&b/R=0.75 t/R

0 0.025 0.05 0.075 0.1 0125 0.15 0.175 0.2 0.225 025 0.275

0 0.025 005 0.075 0.1 0.125 015 0175 0.2 0.225 025 0.275

B(%) 90" | 125°

155°

165° 180°

Figure 5.8 Location of the imminent hinges ¢1, 2, (3 at points B, C, D (Figure 5.2)

respectively of a buttressed arch with given buttress geometries (b /R, h /R). Arch parameters

(B and t / R) cover a satisfying range of values.
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5.3 Time history analysis

5.3.1 Finite element Modelling

In the foregoing pseudo-static analyses, buttressed arches of various geometries
idealised as monolithic structures were examined for their ability to resist in the rocking
mode. Inherent to the monolithic model is that the imminent hinges may occur at any

possible location permitting the development of any admissible mechanism.

Within the framework of a time-history analysis, buttressed arches consist of individual
stones (voussoirs) assembled each other without mortar. When uplifting takes place
hinges can only form at predefined locations which are the interfaces of voussoirs. The
dimensions and proportions considered for our model (Figure 5.9) were defined
through real historic structures (in particular the tunnel entrance of an ancient Greek
stadium located in Nemea, Peloponnese). The model under examination consists of a
segmental arch, assemblage of nine voussoirs each one of thickness t = 0.4 m, with
embrace 8 = 146" and radius R = 1.33 m. Each one of the supporting buttresses is h =
1.66 m in height and b=0.40 m in width and is structured with four voussoirs. The
contribution to stability that larger buttresses may offer to the system is examined by
applying a higher value of the width (b" = 0.535 m). Figure 5.9 presents the two
structural models: the arch atop of buttresses of uniform cross-section and, the arch

atop of buttresses of non-uniform cross section (dotted line).

Nonlinear analysis of rocking and uplifting response under seismic excitation is
implemented numerically in the time domain with the finite element method. To this
extent, the comprehensive code Abaqus is used and the explicit integration algorithm
for solving the nonlinear dynamic response of the system in the time domain is
implemented. Finite Element (FE) analysis is performed assuming that hinges open at
specific and fixed points (interfaces of voussoirs). The structure is presented with plane-
strain elements. Each block is idealised as rigid, by using a large enough modulus of
elasticity (E = 6.5 GPa), characterised with density p = 2.2 kg/m>. The base is also

considered to be rigid by adopting concrete elastic values (elastic modulus, E = 25 GPa
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and density, p = 2.5 kg/m?). A sophisticated contact algorithm is utilised for modeling
contact interface at hinges sections, thus allowing for separation but not for sliding.
Hence, the coefficient of friction is adequately large (u = 0.7). The finite element model
is excited in the horizontal direction along the base of the soil layer with trigonometric
pulses of one cycle and Ricker wavelets. This idealised motion is commonly used to
represent directivity affected near-fault ground excitation. In particular, Ricker wavelets
represent records with long-duration pulses which result of the “rupture directivity”

effect and “permanent offset” effect.

Our interest in this section focuses on the structural response of yielding masonry
buttressed arches under distinguishable pulses which substitutes the earthquake

induced response adequately.

Geometric parameters

R 133m
t/R 03
B 146°
h 1.66 m
b 040 m
b’ 0.535m

> >

b’ b

Figure 5.9 Geometric parameters of the buttressed arch models.

A. Leontari, doctoral dissertation 2023 108



Chapter 5: Masonry arched structures on buttresses

5.3.2 Arch atop of buttresses of uniform cross-section

The 3-d finite element model of Figure 5.10 depicts a buttressed arch supported on a
rigid accelerating base. A reasonably refined mesh of the model is generated from

Abaqus.

Figure 5.10 3-dimensional finite element model of a buttressed arch of uniform
cross-section supported on a rigid base. The predefined interfaces between voussoirs
where hinges may occur are highlighted with red dotted line. The base is excited with
idealised pulses (Ricker & one-sine pulse).

The mortar-free interfaces are highlighted with red dotted lines suggesting the
presumable locations of hinges forming when the vault is excited with idealised pulses
(Ricker & one-sine pulse).

Minimum acceleration levels for toppling (ap) are computed in terms of the excitation

period (Tg) of the buttressed arch. The overturning spectra are plotted in Figures 5.11,
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5.12. The dominant collapse mechanism, as suggested on previous section for slender
buttresses, is Mechanism Il (or Mixed or Semi-global) except from the cases D (Te = 0.6
sec) and E (Te = 0.9 sec) where five-hinge mechanism prevails. Cases A and B that
correspond to high frequency pulses (Te=0.2 sec & 0.3 sec respectively) activate two-
springing mechanisms which occur to be diametrically opposite. The structural system
displays a significant resistance to such low duration pulses and specifically a Ricker
wavelet of period Te = 0.2 sec (case A) is practically impossible to overturn the
illustrated buttressed arch (ap = 3 g!!).

For values of Tt increasing at levels higher than 0.2 sec the minimum PGA to overturn
the buttressed arch is rapidly decreasing. Eventually, for sufficiently large periods (Tt >
0.9 sec) the minimum acceleration relatively approaches the pseudo-static value.
Evidently, these long duration wavelets have a detrimental effect on the stability of the

buttressed arch.
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Figure 5.11 Overturning Spectrum of the vaulted structure on buttresses with uniform
cross-section (Figure 5.9) subjected to Ricker pulses at the base. For each pulse A-G
(pulse periods Te: 0.2, 0,3, 0.4, 0.6, 0.9, 1.2, 1.6 sec) the hinge locations are marked on
the deformed FE mesh models (1-5).
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The overturning spectra of Figures 5.11 and 5.12 are comparatively highlighted to
determine the potential destructiveness that each utilised pulse exercises to the
buttressed arch of Figure 5.10. Hence, it can be seen that among these motions, the
one-sine pulse is the most detrimental in comparison with the Ricker wavelet,
especially for low duration pulses. For moderate and long period pulses the effect of
the type of motion is minimal. Nevertheless, the hinge locations that correspond to
each pulse period differ. For Ricker pulses, five different combinations are obtained.
On the other hand, for sine pulses, two different combinations dominate. One for Tg <
0.9 sec (Mechanism Ill or global) and one for Tt > 0.9 sec (Mechanism Il or semi-global)

as depicted in Figure 5.12.
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Figure 5.12 Overturning Spectrum of the vaulted structure on buttresses with uniform
cross-section (Figure 5.9) subjected to sinusoidal pulses at the base. For each pulse A-
G (pulse periods Te: 0.2, 0.3, 0.4, 0.6, 0.9, 1.2, 1.6 sec) the hinge locations are marked

on the deformed FE mesh models (1-5).
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5.3.3 Arch atop of buttresses of non-uniform cross-section (buttresses of
thicker section)

After examining the collapse behaviour of a buttressed arch with uniform cross-section
along the structure, we can now further investigate the effect of a nonuniform thickness
along the buttressed arch. In this way, the buttress slenderness (b / R) increases by 25%
namely from b /R = 0.3 to b’/ R = 0.4 while all the other geometrical characteristics (t
/ R, h /R, B) remain constant. For the Abaqus analysis, the mesh model is modified by
adding a series of elements at the external sides of the buttresses as depicted in Figure
5.13. The results are presented through the overturning spectra calculated for different
ground shakings: Ricker wavelets and one-sine pulses with a period ranging from 0.20
sec to 1.60 sec. The aforementioned diagrams are plotted in Figures 5.14 & 5.15
respectively. Snapshots of the collapse mechanisms of the structural model for all the

cases (A -> Q) are also included to the graphs.

The reformed model is also subjected to the aforementioned idealised pulses so that
the results can be comparable to the previous geometry. It is obvious from the
overturning spectra of Figures 5.14 & 5.15 the remarkable difference of the overturning
amplitude levels caused by each type of short period impulses (Ricker & one-sine). The
beneficial effect of the Ricker pulses with respect to the one-sine pulses is attributed
merely to the favorable asymmetry which offers an additional “safety net”. For
moderate and long period pulses the response is almost identical. From the
comparison of the different geometries it is revealed that even a small increase in the

buttress width offers stability to the structure regardless the impulse type.

In all cases, the Mechanism Il is the governing one. The only exception is when the
structural model is accelerated by a long period Ricker wavelet (Te = 1.2 sec) and
Mechanism Ill (global) is activated. Hence, the possibility of activation of one
mechanism in place of another not only depends on the arch-to-buttress relative

geometrical proportion but on the loading distributions too.
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----- Predefined surfaces

Figure 5.12 3-dimensional finite element model of a buttressed arch of non-uniform
cross-section supported on a rigid base. The predefined interfaces between voussoirs

where hinges may occur are highlighted with red dotted line. The base is excited with

idealised pulses (Ricker & one-sine pulse).
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Figure 5.14 Overturning Spectrum of the vaulted structure on buttresses with non-
uniform cross-section (Figure 5.12) subjected to Ricker pulses at the base. For each
pulse A-G (pulse periods Te: 0.2, 0.3, 0.4, 0.6, 0.9, 1.2, 1.6 sec) the hinge locations are

marked on the deformed FE mesh models (1-5).
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Figure 5.15 Overturning Spectrum of the vaulted structure on buttresses with non-
uniform cross-section (Figure 5.12) subjected to sinusoidal pulses at the base. For each
pulse A-G (pulse periods Te: 0.2, 0.3, 0.4, 0.6, 0.9, 1.2, 1.6 sec) the hinge locations are

marked on the deformed FE mesh models (1-5).

5.4 Conclusions

At the first part, a monolithic circular buttressed arch under seismic action is examined.
Among the three possible failure mechanisms, the so-called Mechanism Il (or mixed or
semi-global) is studied. This mechanism is associated with the formation of three
hinges in the arch and one hinge at the corner of the buttress. It develops under specific
geometries and particularly when thick arches are supported by slender buttresses. A

variational formulation utilising the principle of stationary potential energy as
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proposed by Alexakis & Makris (2014, 2017, 2018) is revisited for the four different

buttress geometries. Some of the main conclusions are:

1. Increasing the buttress width ensures stability as it requires higher values of
acceleration to transform the structure into a mechanism. For example, a 50%
increase of the width leads to 50% higher values of critical accelerations.
Generally, when the slenderness s increases, either by increasing the buttress
width or by decreasing the height, the structure becomes more stable as it
entails higher values of acceleration to impose rocking.

2. Smaller values of embrace 8 have a favourable effect to the stability.

3. The case of a relative stocky buttress (b / R =0.75, H/ R = 1) is a limit state
where for larger buttresses the arch becomes relatively vulnerable and under a
critical acceleration another mechanism is mobilised where all four ruptures
occur at the arch.

4. Concerning the buttresses, Housner's finding (1963) is confirmed. According to
that, between two equally slender structures but different in size the larger one
is the more stable.

5. An important observation from Figure 5.7 where the locations of the imminent
hinges are depicted, concerns the angles @i (i=1, 2, 3). It is found that they
satisfy the relation ¢1 + 3 =2¢> as it is described by equation (5.10). Expressing
the angles ¢ as functions of the angles of each link (6) (see equation 5.11), it
leads to the critical mechanism that yields the minimum ground acceleration.
This configuration consists of two equal links (with the same angle 6;) and one
larger and resembles the one that Oppenheim (1992) has considered as a

representative arch in his study.

At the second part, a time history analysis at the buttressed arches consisting
of individual voussoirs (with predefined hinge locations) is conducted. The
nonlinear rocking behaviour of 3d buttressed arch models is highlighted with

the aid of the explicit algorithm available in the FE code Abaqus. The seismic
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excitation is introduced in the horizontal direction along the base of the soil
layer with trigonometric pulses of one cycle and Ricker wavelets. The sensitivity
of the 3d model to the pulse characteristics is depicted in the overturning
spectra of Figures 5.11, 5.12, 5.14 & 5.15. It is concluded that:

1. The structural system exhibits a significant resistance to low duration pulses. In
this way, a Ricker wavelet of period Te = 0.2 sec (case A) is practically impossible
to overturn the illustrated buttressed arch (a, = 3 g!!).

2. The dominant failure mechanism is Mechanism Il (or semi-global)

3. The long duration Ricker wavelets have a detrimental effect on the stability of
the buttressed arch. Specifically, for sufficiently large periods (T > 0.9 sec) the
minimum acceleration gradually approaches very close to the pseudo-static
value.

4. The one-sine pulse is the most detrimental in comparison with the Ricker
wavelet, especially for low duration pulses. For moderate and long period
pulses the effect of the type of motion is minimal. The beneficial effect of the
Ricker pulses with respect to the one-sine pulses is attributed merely to the
favorable asymmetry which offers an additional “safety net”.

5. From the comparison of the different buttress geometries (Figure 5.10 & 5.12)
it is inferred that even a small increase in the buttress width offers stability to

the structure regardless the impulse type.
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CHAPTER 6:

Embedded Vaulted Structures: Soil-Structure Interaction

6.1 Introduction

In Chapter 5, a masonry arch supported by two buttresses on free contact with a rigid
base was investigated thoroughly. Stability analyses were performed on monolithic
structural models whereas dynamic analyses were implemented on articulated models
with predefined interfaces. This vaulted structure, is revisited now by taking into
consideration that either the pair of buttresses alone or the entire structure is covered
with soil. In the latter case the crest of the arch lies at a depth d underneath the soll
surface. For simplicity this type of structure will be appointed from now on as an
embedded vaulted structure. Unlike in the case of the simple vaulted structure of
Chapter 5, the foundation base is replaced with soil which performs as a supporting
medium in the foundation level. Moreover, in this case the surrounding soil medium,
apart from supporting the structure, contributes to the static equilibrium in two more,
distinct ways. In particular, the backfill soil is retained by the structure, especially by
the two buttresses and additionally, in fully embedment conditions it may also impose

loads to the structure through overburden pressures.

Two prominent examples of such monumental masonry geostructures are illustrated in
Figure 6.1: A vault with embedded lateral walls, used as the entrance to the ancient
stadium of Olympia, Western Peloponnese (Figure 6.1a), and a vaulted tunnel, used as
the entrance to the ancient stadium of Nemea, Northeastern Peloponnese (Figure
6.1b). Other examples of cut and cover tunnels are the vaulted entrances at the Sikyon
theatre, the tumulus tombs in Kasta, Amphipolis and in Acharnes, Attica. In addition,
bored tunnels such as the Eupalinian aqueduct are supported by masonry arch and
therefore these can be regarded as embedded vaulted structures. Although the scope

of this study is focused on geostructures in which a cut-and cover construction
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procedure has been adopted, the findings extracted herein can also be extrapolated

to bored tunnels with masonry support, by adopting some conservative assumptions.

(b) Type Il embedded vaulted structures

Figure 6.1 Embedded vaulted structures in Ancient Greece: (a) masonry vault with
embedded lateral walls, used as the entrance to the ancient stadium of Olympia,
western Peloponnese, (b) masonry vaulted tunnel, used as the entrance to the ancient

stadium of Nemea, northeastern Peloponnese.
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6.2 System Configuration incorporating the Construction Sequence

The free body diagram of the embedded vaulted structure is illustrated in Figure 6.2.
When the structure is “wished in place” at the excavated area the gravity loads of the
structure parts (Warch and Whuttress) mobilise reaction forces from the foundation soil (N,
Thase). (The term “wished in place” refers to the neglection of the reduction of the

horizontal stresses into the trench due to ground relaxation at the FE analysis).

The reaction force Trase is tangential to the soil-foundation interface outwards and
depends on the coefficient of the friction u along the interface. Sliding of the structure
will be avoided if this force is less than the product of u*N (N: is the force normal to
the stone interface). The larger the coefficient of friction i the less possible the

structure to slide.

When the gaps on either side of the walls are filled with soil, the voussoirs are subjected
additionally to the horizontal earth pressures phor. The infill zone (30cm in width) is set
on compression providing counterbalance to the soil-foundation reaction. The lateral
earth pressure distribution depicted on the schematic configuration of Fig. 6.2
develops according to Rankine’s and Coulomb’s theory of linear increase of lateral

pressure with depth.

Eventually when the overburden soil is placed upon the structure its weight will be
received by the curved surface of the arch as distributed vertical earth pressures (pver)
depicted in Fig. 6.2. Depending on the height of the overburden soil as well as the
structure’s rigidity the distress of the arch may be accompanied with a finite
displacement. This compliance may impose in return soil settlement. The
unfavorable case where the structure and the infill zone receive all the overburden
load is illustrated in Fig. 6.2a. On the other hand, shearing resistance within the
contact zone of the yielding and stationary masses may oppose to this movement
and tends to maintain it in its original position. As a consequence, the pressure of

the yielding mass reduces while the pressure on the adjoing stationary mass
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increases. This transfer of pressure is called the arching effect. The stress path
along a curved line resembles to a fictitious arch over the yielding zone. The
mechanism that allows for this diversion of stress paths from the vertical direction
stems from the redundancy of the two-dimensional soil medium. Similar
phenomena can be encountered in a solid masonry wall above an opening. This
state though is a rather temporary behaviour of soil mass in the yielding zone than

a stable one, which evolves with the structure’s displacement (Fig. 6.2b).

Conventionally, active lateral pressure against rigid walls was calculated using
classical earth-pressure theories such those developed by Coulomb and Rankine.
While Coulomb’s theory considers the forces acting on a failure wedge with a plane
of rupture, Rankine's theory assumes that the distribution of lateral earth pressure
against the wall is triangular and increases linearly with depth with the maximum
value at the lowest point of the wall and extended up to the crest of the wall.
Numerous studies however, have revealed that a more realistic distribution of
lateral pressure on the back of a retaining wall is curvilinear or other nonlinear
forms (Terzaghi 1943; Tsagareli 1965; Spangler and Handy 1982; Fang and Ishibashi
1986; Wang 2000; Ghosh and Saha 2014). The reduction and the redistribution of
stresses within the backfill is resulted from arching effects in the backfill due to
roughness of the retaining wall. Lateral earth pressure increases at the upper
portion of the wall while decreases at the lower portion. The afore-discussed

theories are summarised in Figure 6.3.
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Figure 6.2 lllustration of the free body diagram of a masonry vaulted structure
underneath a layer of ds = 2.20 m overburden soil. a) The unfavorable case of
neglecting soil arching: 1) Forces tangential and normal to the foundation interface
Thase and N respectively, 2) gravity loads of masonry vaulted structure (Warch, Whillar)
and 3) horizontal and vertical earth pressures pnor and pver respectively. b)
Considering soil arching: stress path and soil arching are highlighted. Horizontal
earth pressures are considered from the keystone level.
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Figure 6.3 lllustration of the linear earth pressure distribution against rigid
retaining wall by Rankine & Coulomb (black line) in comparison with the rounded
earth pressure distribution by arching based formulation (red line). The zones of
increased and decreased earth pressures resulting from the comparison are
highlighted with yellow.

6.3 Finite Element Modelling

6.3.1 Two-dimensional Configuration

Nonlinear analysis of the response under static and earthquake loading is implemented
numerically with the Finite Element Method. To this extend, the sophisticated code
ABAQUS is utilised. Figure 6.4 portrays the finite element discretisation of the model
along with a schematic layout of modelling details. A masonry vaulted structure
consisting of a finite number of voussoirs is constructed in a trench at a depth of 5.50
m which is excavated in cohesive soil. The structure and the surrounding soil are
represented with plane-strain elements. For the purposes of the two-dimensional
modelling, soil medium is represented with quadrilateral, continuum elements.
Regarding the finite element mesh, a sufficiently refined one is required especially in

the area around the structure to ensure the adequacy of the results from the Abaqus
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simulation. A fairly fine mesh is selected for an area of 30 m length and 15 m height
where the magnitude of stresses is of high interest. It is meshed with quadrilateral
plane strain continuum elements of 0.25 m x 0.20 m (detail a). Towards lateral
boundaries the mesh is coarser with quadrilateral elements of 0.50 m x 0.20 m (detail
b). Table 1 compiles the material properties of the structure. General section beam
elements are utilised to support the structure which are gradually removed as the
backfill height increases.

A static step is preceding any static or dynamic analysis to establish geostatic
conditions within. An implicit direct-integration algorithm incorporated in the code
Abaqus is employed to compute the nonlinear dynamic response of this system. With
this technique the global equations of motion are integrated through time using the
implicit Hilber-Hughes-Taylor operator. Equilibrium solution within each time
increment is obtained with an iterative process applying Newton's method. An
automatic incrementation scheme is also used with the general implicit dynamic
integration method. The scheme uses a half-step residual control to ensure an accurate
dynamic solution. The half step residual is the equilibrium residual error (out-of-
balance forces) halfway through a time increment. This half-step residual check is the
basis of the adaptive time incrementation scheme. If the half-step residual is small, the
accuracy of the solution is high and the time step can be increased safely; conversely,
if the half-step residual is large, the time step should be reduced. The automatic
incrementation scheme is especially effective in case where a sudden event is
introduced to the dynamic problem. In such studies small time increments are required
immediately after the sudden event. At later times the response can be modelled
accurately with large time increments because most of the high frequency content of

the solution has been damped out by the dissipation mechanisms present in the model.
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Figure 6.4. The excavation trench, the masonry vaulted structure, and details of the backfill and overburden layers; geometry
and finite element discretisation assuming plane strain conditions.
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Table 6.1: Material Properties of the structure

. El.Modulus Poisson ratio Density
Material (GPa) ) (kg /m3)
limestone 6.5 0.25 2.2

Boundary conditions

Location and type of boundaries require special consideration. Under static loading
(either monotonic or cyclic) these boundaries can be placed as close as possible to the
embedded structure (just outside the “pressure bulb” of the foundation) given that
free field conditions are ensured along any soil profile. Under static loading (either
monotonic or cyclic) such a threshold between free field and new field can be placed
fairly close to the embedded structure. On the other hand, in dynamic loading there is
a significantly larger soil mass around the excavation which interacts with the structure.
In this case the aforementioned threshold line should be shifted away from the
structure. Vertical boundaries measure 10 m approximately from the excavation
bottom. Regarding lateral boundaries, the corresponding nodes at the opposite
vertical sides of the same elevation are tied together and forced to move
simultaneously only in the horizontal direction preventing any rotation. The side nodes
of the excavation are also constrained, as temporary retaining scheme to avoid ground
movements. During the backfill procedure these constraints are deactivated to allow
the physical development of horizontal earth pressures. Vertical component of the
displacement is constrained along the base of the soil medium (vertical movement of

the base is restricted).

Interface model

A sophisticated contact algorithm is utilised for modeling contact interface at hinges
sections [voussoir-to-voussoir and voussoir-to- buttress (monolithic)] as well as at soil-

structure interface. A sufficiently large coefficient of friction (u = 0.7) was chosen to
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approach pure rocking conditions associated with slender systems. The effect of sliding

on the response is negligible.

Construction Sequence

The construction sequence of Figure 6.5 is modelled through FE analyses to rigorously
capture the effects associated with the interaction between the vaulted structure and
the surrounded soil. The arched structure is initially “wished in place” in a trench of 5.5
m depth and the buttresses are temporarily supported. The excavation area is gradually
backfilled first with a layer of height di = 0.5 m which is placed to both the exterior
sides of the buttresses to form the foundation (foundation backfill). Next, the backfill
height increases by d> = 1 m (backfill 2) and in a third phase the buttresses are fully
backfilled (backfill 3, d3 = 0.60 m). The first layer of overburden soil covers the arch
laterally to its top surface (overburden 1) and lastly a 2.2 m overburden soil reaches

the trench upper surface (overburden 2).
By increasing the backfill height gradually, the following can be underscored:

- the backfill and overburden soil affect the structure stability
- detailed profiles of the earth pressures that develop in every step

- possible development of soil arching phenomena at the arch base

The significance of installation sequence on the earth pressures acting on retaining
walls and on wall movements relative to the retained soil were mentioned by several
authors (Poulos et al, 2001, Potts & Fourie, 1984, Clayton et al, 1993). Finite element
analyses conducted on previous works have also highlighted the importance of the

construction sequence.
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Figure 6.5 Representation of the construction sequence with finite elements: (a)
Phase 1: the arched structure is built in a trench and the buttresses are temporarily
supported, (b) Phase 2: a backfill layer of height di = 0.5 m is placed to both the
exterior sides of the buttresses to form the foundation (foundation backfill), (c) Phase
3: backfill height increases by d> = 1 m (backfill 2), (d) Phase 4: the buttresses are
fully backfilled (backfill 3, d3 = 0.60 m), (e) Phase 5: the first layer of overburden soil,
ds = 1.20 m covers the arch laterally to its top surface (overburden 1), and (f) Phase
6: a ds = 2.2 m overburden soil reaches the trench upper surface (overburden 2).
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6.3.2 Soil material modelling

A soil profile of homogeneous cohesive soil in which stiffness and strength are
gradually increasing with depth is implented in this study. Soil properties of the stiff
clay stratum such as the undrained shear strength (S.), the Modulus of Elasticity (E),

and the shear Modulus (G) are portrayed in Figure 6.6.

Su (kPa) E (MPa) G (MPa)

h: 0 20 40 60 80 100 120 O 50 100 150 200 250 300 O 20 40 60 80 100 Layers:
0 q

Figure 6.6 Soil profile of a stiff cohesive soil. Height distribution of the undrained
shear strength S, (kPa), the modulus of Elasticity E (MPa), and the shear modulus G
(MPa).

The elastoplastic soil behavior of cohesive soils under undrained conditions is
described with Von-Mises failure criterion, available in the finite element code Abaqus.
Representation of the yield surfaces in principal stress coordinates is illustrated in
Figure 6.7 along with Tresca’'s hexagonal yield surface. The post-yield behavior is

simulated by an isotropic/ kinematic hardening and the associated plastic flow rule.
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During two-dimensional (plane strain) conditions, the yield surface can be expressed

in the principal stress space by the following function:

F=(01—02)2+(02—03)2"'(03_01)2_2*03/: (M

In which o123 are the principal stresses and oy is the maximum yield stress. For F < 0,

the stress levels are inside the yield surface and soil behavior is elastic. The latter is

determined by the visco-elastic parameters E, v and &.

The evolution law consists of two components:

» a nonlinear kinematic hardening component, which describes the translation of
the yield surface in stress space and is defined through a “"back-stress” parameter
a,

» an isotropic hardening component, which describes the change of the equivalent

stress defining the size of the yield surface oo as a function of plastic deformation.
The evolution of the kinematic component of the yield stress is defined as:

dzCEp'i(c—a)—yaép' )

o

Where Cis the initial kinematic hardening modulus and y is the parameter determining
the rate of decrease of the kinematic hardening with increasing plastic deformation

(Ziegler 1959, Chaboche 1990). The plastic flow rate is £P!

; F
ent = g oF 3)
do

Where P! is the equivalent plastic strain rate.

The maximum yield stress for clays can be defined as
o, = V35S, 4)

In that case the hardening parameter y may be expressed as
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C

}’=m (5)

Calibration of the kinematic hardening component is based on the equation C = E = 2
(1+v) for very small strains (where E is the modulus of elasticity and v is the Poisson's
ratio). The stress at zero plastic strain gy is taken as 1/10 to 1/3 of the undrained shear
strength S, for smaller computational cost reasons. Model parameters are calibrated
against G-y curves of the literature, as described in Gerolymos et al (2005). In this study,
model parameters are calibrated to fit published G: y curves of Vucetic and Dobry

(1991) for a plasticity index, PI=15.

Regarding the profile of the backfill and overburden soil, it resembles with the
surrounding soil (Figure 6.6) but the behavior under undrained condition is neatly/

simply elastic linear.

Von Mises
Yield Surface

7
//6 > Hydrostatic

Tresca

n-plane
(Deviatoric Plane)

0+07+03= 0

Figure 6.7 Representation of the three-dimensional extended pressure dependent
Von Mises failure criterion in the principal stress space. Tresca yield surface is also
seen in a hexagonal prism.
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Figure 6.8 Constitutive model calibration for stiff clay. Comparison of FE-computed
against G-y curves with published curves of Ishibashi & Zhang (1993) for plasticity
index P/ = 15.
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6.4 Establishment of Static Equilibrium

6.4.1 Earth pressures on a vaulted structure of uniform section

In a soil that currently exists under the condition of zero horizontal deformation
with principal planes that are horizontal and vertical the coefficient of earth
pressure at rest, Ko, is the ratio of the effective horizontal pressure o, at any depth

below the soil surface to effective vertical pressure o.:

Ko = G'ho/ Tvo (6)

Based on the movement of the retaining wall the following types of lateral earth
pressure can be exerted on retaining walls. Active earth pressure state is developed
on the wall when the wall moves away from its initial "at rest” condition. In that

case the horizontal stress is reduced which leads to an increase in shear stresses.

The latter mobilises the full shear strength of soil which eventually fails. The

coefficient of active lateral pressure K, at a given depth is defined as

Ka=0adha/ 0’y (7)

Where o'y > 0'ha

Passive earth pressure state is developed when the wall moves towards the soil.
The horizontal pressure g’ is increased whilst the vertical stress g', which is
controlled by self-weight and wall friction, remains constant. As the wall moves in
towards the soil the shear stress changes and eventually when the applied shear
stress reaches the available shear strength, soil failure will occur. In order to

increase the ‘at rest’ pressure to limiting passive values, larger displacements are
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required. The coefficient of passive lateral pressure K, at a given depth is defined

as

Kp = Ulhp/ g\ (8)

Where o'y < 0'hp

The following investigates the effect of the construction sequence of the
embedded barrel vault on the stress field of the soil. In Figure 6.9 four sections at
near field (x = 1 m), middle field (x = 6 & 12 m) and far field (x = 25 m) of soil
medium are highlighted (where x is the distance from the excavation boundary

line).

2.80m

1.66m
1m

Om
-0.5m

Excavation Backfill (E, v, p) C——2 Masonry Structure

Fig.6.9 Four sections at the soil medium: a) near the excavation trench (x =1 m), b)
at a distance of x =6 m, ¢) at the mid-axis (x =12 m) and d) at the boundary (x =25

"o n

m). Horizontal distance "x” is measured from the trench edge. The height levels of
each backfill layer are also depicted.

Figure 6.10 depicts the earth pressure coefficient "K” distribution from the bottom
edge of the excavation to the soil surface. Each diagram corresponds to a different

phase of the construction sequence as presented analytically in Figure 6.3.
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e Sign convention for stresses is as follows: Normal stresses are positive,
meaning that they induce tension, when they are directed away from the
retained medium and negative are those directed towards it. Concerning
the vertical stresses, negatives are those directed downwards. Therefore,
the negative values of the coefficient K are resulting from tensile horizontal
stresses (ogn) whilst the positive values indicate that horizontal stresses
induce compression.

e The coefficient K is calculated according to equation 6, in which both
horizontal and vertical stresses are computed numerically.

e Generally, for the interpretation of the results it should be taken into
consideration that the coefficient K is influenced by various factors such as
the previous stress history of the retained soil, the friction between the wall
and the soil, the soil cohesion, the wall inclination and rigidity.

e After the excavation, the surrounding soil relaxes and the stresses “at rest” are
increased near the excavation bottom. Without the imposed kinematic
restrains, soil would have failed resulting in excessive deformations at the
excavation base. The impending of the deformations at the sidewall (vertical)
surfaces leads to “passive” conditions near the bottom and “active” conditions
at the surface (these conditions can be referred as “initial conditions” of
construction sequence).

e Once the supported material is placed (backfill procedure) the near field
lateral earth stresses (x = 1 m) are intensely affected especially when the
wall is fully covered and loaded with overburden soil. As the backfill height
increases into the gap from the foundation stones to the keystone, the
retained soil deforms laterally (active state) and “pushes” the walls inwards.
In order the structure to receive the torque, the arch pushes the soil and
reaches the passive state. These masonry walls are non-yielding structures
which usually undergo relatively very small movements.

e The horizontal earth pressures at the structure base are noticeable relieved
by the partial embankment of the gaps next to the buttresses (phase 2, 3).

When the structure is fully covered with backfill soil (phase 5), the structure
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receives these pressures with slightly higher compliance and conditions of
active state are developed. During phase 4, passive state is developed at
the backfill surface. The boundary that separates the two states moves
upwards when the arch is covered to its key and lowers again when a 2.20

m overburden soil is placed (phase 6).
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Figure 6.10 Heightwise distribution of the lateral earth pressure coefficient K at four
different sections of the soil stratum (Figure 6.10) during each step of the
construction of a vaulted structure of uniform section: (a) geostatic, (b) excavation
of the trench (phase 0), (c) construction of the vaulted structure (phase 1), (d) 1%
layer of the backfill soil (h1=0.50 m) (phase 2), (e) 2" layer of the backfill soil (h,=1.50
m) (phase 3), (f) 3" layer of the backfill soil (h3=2.10 m) (phase 4), (g) 1*! layer of the

backfill soil (h4=3.30 m) (phase 5), and (h) 2" layer of overburden soil (hs=5.50 m)
(phase 6).

Horizontal Earth Pressures

During the progressive embankment of the excavated trench after the vaulted
structure has been placed, soil-structure interaction occurs and both the responses
of the interacted parts depend on the following factors:
1) Structure-soil placement techniques. In our case the structure is “wished in
place” and the backfill soil is placed successively.
2) The coefficient of friction at the soil-structure interface which in our case is
high enough to prevent sliding (n =0.7)
3) The ability of the wall movements, which are related to the limestone

inertia, to mobilise the soil shear strength capacity
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Of interest are the stresses arising in the backfill soil in the vicinity of the structure.
According to the aforementioned sign convention for stresses, the earth pressures
presented in Fig.6.11 are compressive stresses acting on the vicinity of the wall.
Soil contact pressures can be redistributed along the interface in such a way the
developed fluctuations of the linear profile provide moments to stabilise the
buttress in vertical position. Upon the refill of the overburden soil the demand of
outward dislocation of the arch at its supporting base mobilises significant soil
forces to ensure the structural integrity of the arch. This pair of symmetrical
horizontal forces is demonstrated with a local peak in the profile of soil contact
forces, around the supports of the arch. In this way structural arching effect is
attained and thus static equilibrium of the structure is established with minimal

displacements.

To further elucidate the favorable role of backfill soil the development of horizontal
earth pressures on the excavation section is presented in Figure 6.12. The
enforcement of kinematic constraints among the vertical boundaries of the
excavation results to additional horizontal earth pressures. The concentration of
these pressures is observed at positions that deformation would develop if these
constraints didn't impose. During the backfill procedure (phases 3-6) a stress relief
is observed at the soil next to buttresses. As the backfill height increases larger
amount of soil mass contributes to the tension redistribution. At the last phase of
the construction sequence (phase 6), the stresses at the interface with overburden
1 are quite larger than the geostatic due to the structural arching whereas at the
interface with overburden 2 are slightly larger due to soil arching.

The backfill soil contributes in two ways:

1) When the arch is loaded by the overburden soil, resulting to the
development of the structural arching phenomenon, it offers the horizontal
reaction at the arch base to limit the arch flattening,

2) It receives a portion of the overburden load and generally behaves as a

“cushion mechanism”.
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Figure 6.11 Heightwise distribution of the lateral earth stresses acting on the
buttress-arch surface during every step of the backfill procedure after the
construction of the vaulted structure.
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Figure 6.12 Lateral soil pressures along the excavation section (supported with
numerical constraints at nodes). The stress distribution on each step is illustrated
along with the triangular earth pressure distribution. The latter is utilised as a
yardstick for evaluating the effect of the construction sequence to the stresses.
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Horizontal and vertical displacements

Apart from horizontal earth pressure distributions, remarkable conclusions can be
drawn from the displacement curves. Figure 6.13 illustrates the contours of structural
displacements on x and y components due to the successive embankment of the
structure. The response of the structure is governed primarily by the response of the
soil adjacent to the structure. The changing forces from the backfill or overburden soil
that are applied to the vaulted structure mobilise different deformation modes. The
magnitude of these displacements depends on: a) the structure geometry, b) masonry
stiffness, c) soil stiffness and d) the construction sequence. For the sake of convenience
displacements are positive when they are directed along the positive direction of the

corresponding co-ordinate axis.

Three essential phases of the structure’s embankment are distinguished: (i) the
buttresses are fully backfilled (the soil arises at the height of hs = 2.16 m from the
foundation base), (ii) the arch is covered to its crown (hs =3.30 m) and (iii) the
placement of overburden soil above the arch forms the final soil surface at a height of

hs =5 m from the foundation base.

Upon completion of backfill, the compliance of the buttress is fully mobilised as
depicted in Figure 6.13i. These inwards translational and rotational displacements of
each buttress (horizontal displacement of 0.4 mm) are restrained by the arch as severe
friction forces are developed along each buttress-to-arch interface. Static equilibrium
at the end of this phase is established resulting in contact forces which are reduced
along the buttress and increased along the arch (tendency for active and passive state
respectively). As backfill proceeds, and the arch is covered with soil up to its top point
(Figure 6.13ii), soil contact forces impose bending of the arch accompanied with
inward horizontal displacements as well as upward movement especially of its central
voussoirs (1.8 mm approximately). Eventually, when the excavation is fully recovered
with soil, the crown is gradually depressed and the overburden pressures restore the

undeformed geometry.

Static equilibrium is then established as the overburden load is undertaken through

two arching mechanisms:
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i) by the structural arch as the voussoirs are stressed with predominantly axial
compression and severe horizontal forces are developed at the arch supports
to ensure arching mechanism. These forces are transmitted to the soil medium
around these supports which are demonstrated as concentration of the contact
pressures in the profile of Fig. 6.11e,

i) by soil arching. This mechanism is developed at the back and above the arch
and allows of stress paths to divert the structural arch transmitting a part of

the overburden load directly to soil medium

Height of backfill surface:

(i) —o- 2.16 m (backfill 3- at the base of the arch)
(i) -=— 3.30 m (overburden 1-crown)
(iii) - 5 m (overburden 2)

hs

ha

hs

-0.8 -04 0 04 0.8 . . -0.8 04 0 04 08
Horizontal displacement ux (mm)
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Figure 6.13 Contours of (a) horizontal ux and (b) vertical displacements uy, (c)
deformation mode with a scale factor of 200% of the structure calculated for three
distinguished loading increments: (i) the buttresses are fully backfilled to the height
of hs =2.16 m, 2) the backfill arises at the height of the crown, hs =3.30 m and 3)
overburden load is placed above the arch, hs =5 m from the foundation base.
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Figure 6.14 Evolution of the thrust line of the vaulted structure for the different
phases of the construction sequence of Fig.6.4.

In Figure 6.14 the evolution of the thrust line of the vaulted structure for the different

phases of the construction sequence is depicted. The definition of the thrust line lies

upon the following phrase: “"For a structure in pure compression to be in equilibrium

with the applied loads there must be a line of thrust that lies entirely within the section

of the structure. The thrust line (or line of resistance) is defined as the geometrical locus

of the points of application of the resultant thrust force that develops at any cross section

of the masonry arch.”

As already had been mentioned, buttresses are simulated as monolithic. Therefore, line

of thrust isn't representative along their height. Furthermore, buttresses are supported

by vertical beams which are removed as the backfill height increases.
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6.5 Effect of a stiffen buttress

In this section, the effect of enlarged buttresses to the stability of an embedded
structure, and to its interaction with soil is explored. The geometry of the barrel
vault portrayed in Figure 5.3.1, where the buttress slenderness increases only by
25% (from b / R =0.3 to b'/R =0.4), is considered. Interestingly, part of the
overburden load is undertaken directly by the two buttresses as the 2d
configuration dictates. The arched structure on the enlarged buttresses are more
safe and heavier structures. The applied loads aren’t distributed in a vertical
direction but they are obliquely directed outwards. This outward transferred thrust
is absorbed by the additional part. The previous FE analyses for a barrel vault of
uniform section are repeated for the non-uniform section and the results are
presented in comparison. The sketched representation of the model under
examination is shown in Figure 6.15. Detail of the forces applying on the left
skewback is also portrayed in Figure 6.15 (ii).

The resultant of the compressive forces induced by the voussoir (thrust T) is
opposed by the passive soil resistance (P), the frictional resistance at the bottom
“skewback-type” voussoir (F) and the overburden weight above the skewback (W).
When the horizontal component of thrust overcomes the frictional resistance at
the interface (Tx > F), mobilisation of passive restraining pressures from the

surrounding soil is required.
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(if) Detail 1

K N W: overburden self-weight
/, \,\’ P: passive soil resistance
W /! /! T: Thrust from the arch
J/ T J/ F: frictional force
JL / ég // S: voussoir self-weight

—>F
)

Figure 6.15 (i) lllustration of a vaulted structure with enlarged buttresses embedded
on the stiff clay stratum of Fig.6.5. The backfill layers are separated with continuous
grey lines, (ii) free body force diagram of a buttress voussoir.
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6.5.1 Earth pressures on a vaulted structure of non-uniform section

Similar to the case of the vaulted structure of uniform section, the distribution of
lateral earth pressure coefficient K is presented below (Figure 6.16). With a cursory
glance, the distributions for both the vaulted structures (Figures 6.2 & 6.15) are
almost identical. Distribution of the coefficient K during Phase 2 is quite similar
with the previous phases. It seems that the placement of the first layer of backfill
is incapable of mobilising reactions from the enlarged buttresses which in return
will cause changes to the soil stress state. At Phase 4, it is observed that the ability
of the arch to move outwards is more limited when the buttresses have larger
width than the supported arch (the case of a vaulted structure of non-uniform
section). A larger part of the vaulted structure (from the foundation to almost the
height of the keystone) mobilise an active state to the surrounding soil when the
arch is covered up to the crown (Phase 5: overburden 1). An overburden load upon

the structure has a stabilising effect on the system’s equilibrium in all cases.
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Figure 6.16 Heightwise distribution of lateral earth pressure coefficient K at four
different sections of the soil stratum (x=1 m, x=6 m, x=12 m and x=25 m) during
each step of the construction of a barrel vault of non-uniform section: a) geostatic,
b) excavation of the trench (phase 0), c) construction of the vaulted structure
(phase 1), d) 1°* layer of the backfill soil (h1=0.50 m) (phase 2), e) 2nd layer of the
backfill soil (h,=1.50 m) (phase 3), f) 3" layer of the backfill soil (h3=2.10 m) (phase

4), g) 1° layer of the backfill soil (h4=3.30 m) (phase 5) and h) 2nd layer of
overburden soil (hs=5.50 m) (phase 6).

A. Leontari, doctoral dissertation 2023 148



Chapter 6: Embedded Vaulted Structures: Soil-Structure Interaction

Conspicuous recession of the horizontal earth reaction at the arch base in
comparison with the vaulted structure of uniform section is observed at the
diagrams of Figure 6.17 during phase 5 & 6 of construction sequence. It seems
that part of the horizontal force needed to support the arch is now received by the
buttresses as shear mechanism. The stiffen buttress in now capable of receiving

moment loading from the arch tendency to flatten.

---- Uniform section — Non-Uniform section

a) Phase 2 b) Phase 3 c) Phase 4

D

-100-80 -60 -40 -20 0 20 -100-80 -60 -40 -20 0 20 -100-80 -60 -40 -20 0 20

Ohor (kPa) Ohor (kPa) Ohor (kPa)

d) Phase 5 1 e) Phase 6

-100 -80 -60 -40 -20 0 20 -100-80 -60 -40 -20 0 20

Ohor (kpa) Ohor (kPa)

Figure 6.17 Comparison of the heightwise distribution of the lateral earth stresses
acting on the wall surface during every step of the backfill procedure after the
construction of the vaulted structure of uniform and non-uniform section.
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Figure 6.18 Comparison of the lateral earth pressures that develop along the excavation
section as the soil interacts with a vaulted structure of either uniform or non-uniform
section (black and green line respectively). Distributions are presented for each step of
the construction sequence (Fig.6.4). The backfill and overburden layers as well as the
position of the beams (which are removed as the backfill layers are gradually placed)

are highlighted.

When the buttresses are embedded from their outer side (Figure 6.19(i)) the
developed soil pressures push them inwards. This movement is prevented not only
by the mobilization of the friction at the arch-buttress surface but by the new
geometry as well. The latter factor impends the arch from moving outwards and
eventually from flattening. As a consequence, rocking initiates about the pivot
point which is formed at the contact point of the arch extrados with the buttress.

During phase 5 (Figure 6.19(ii)), the backfill soil levels up to the arch crown leading
to the application of soil pressures at the whole structure’s perimeter. Comparing

with the corresponding deformation mode of the configuration of Figure 6.13, the
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upward movement of the arch is apparently smaller but rocking between the
voussoirs in the vicinity of the keystone is more intense. Finally, the placement of
the overburden soil restores the system to its initial position regarding the
buttresses but resulting to larger permanent local dislocations of the upper

vVoussoirs in comparison with previous geometry.

______

fic SR &I R ST 2
fish i I
L Ll !

Figure 6.19 Deformation mode with a scale factor of 200% of the structure with
the stiffen buttresses calculated for three distinguished loading increments: (i) the
buttresses are fully backfilled to the height of h; =2.16 m (phase 4), (ii) the backfill
arises at the height of the crown, hs =3.30 m (phase 5), and (iii) overburden load
is placed above the arch, hs =5 m from the foundation base (phase 6).
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6.6 Seismic Response

The seismic response of embedded structures is a complex soil-structure interaction
problem. Structure movements and dynamic earth pressures depend on the response
of the soil underlying the structure, the response of the backfill, the inertial and flexural
responses of the buttresses, and the nature of the input motions.

The vaulted structure is dynamically excited using a variety of records as base
excitations. Specifically, the soil base is horizontally shaked by a set of both idealised
mathematical pulses (Ricker Wavelets) and real earthquake records. The first category
comprises one significant pulse, preceded and followed by two smaller pulses. The
selected wavelets are characterised by low (0.4 g) and strong (1 g) intensity and two
different periods Te (see Figure 6.20 (i) ~ (iv)). Concerning the real acceleration time

histories, they cover a wide range of frequencies and intensities (Figure 6.20 (v) ~ (vi)).

For example:

(1) a medium intensity record as that of the 2003 Lefkada M;s 6.4 earthquake: peak
ground acceleration (PGA) = 0.42 g, dominant period-range T, = 0.2-0.65 sec
(Gazetas et al 2005).

(2) very strong accelograms such as the Japan Mountaineering Association (JMA)
record of the 1995 M,, = 7.2 Kobe earthquake: PGA=0.82 g, 7,=0.25-1 sec, and
the Rinaldi-228° record of the 1994 M,, = 6.8 Northridge California earthquake:
PGA=0.84 g.
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Figure 6.20 Ricker pulses (i), (ii), (iii), (iv) and three different real earthquake records
(v), (vi), (vii) utilised to trigger the soil base of the embedded vaulted structure. The

acceleration spectra are also depicted.
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Initially, the role of soil amplification will be examined. In this context, the acceleration
distributions developed to three different selected sections, the one at the centreline
of excavation (x=0 m), the second behind the excavation (x=0.25 m) and the third at
the far field (x=25 m) will be presented in Figure 6.21. The most important observations

are:

» Shakings of the same acceleration amplitude a, give similar acceleration
distributions throughout each section.

» In moderate shakings of acceleration amplitude of a, = 04 g, the three
distributions of maximum acceleration corresponding to different positions in
the soil medium are identical. The explanation for this observation lies on the
fact that the soil structure interface follows the shear deformation of the soil
strata.

» The increase of the pulse period from Te = 0.90 sec to 1.33 sec seems to have
negligible effect to the acceleration distribution.

» Interestingly, the maximum accelerations, developed above the structure (z
=2.8 m to 5 m) at cases (i) & (iii) remain constant whilst at cases (ii) & (iv) are
distorted significantly from the distribution “route”. The presence of the
structure tents to reinforce certain harmonic components of the incident
seismic waves. The soil amplification phenomenon is observable from the level
of the structure foundation to the surface. It is amplitude-dependent and
roughly related to pulse frequency.

» The sharp peak of the maximum acceleration at the base is due to the soil

plastification.

It can be readily seen from Figure 6.22 that for the case of Lefkada 2003, a low-intense
earthquake: (i) the maximum horizontal acceleration at the surface takes values about
twice the acceleration of the input motion, (ii) the distributions of the maximum
accelerations at the three sections (a-a’, b-b’, c-c') are identical, (iii) the soil

amplification of the seismic motion is apparent from the base to the surface.

For the cases of JMA 000 & Rinaldi 228, which are strong seismic shakings that have
produced high peak accelerations (~ 0.80 g), a different behaviour governs the

response. In particular, along the sections there exists both amplification and de-
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amplification of the input motions. The latter is observed up to the level of the structure
foundation whilst from this level to the ground surface the phenomenon is twisted.
The amplification is generally larger in the vicinity of the free-field. The effect of
boundaries is obvious. The incident wave is trapped within the boundaries undergoing

reflections.

Horizontal Earth Pressures

Increasing acceleration levels form weak to strong intensity amplitudes have been
implemented in the analysis (PGA: 0.2 g ~ 1 g). For each loading case the maximum
and minimum dynamic earth pressures at the backfill-buttress interface are calculated.
For Ricker pulses of period Te = 0.90, 1.33 sec (Figure 6.23 & 6.24), intense soil reactions
are observed at the arch-buttress interface, suggesting the crucial demand of the arch

to flatten.
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Figure 6.21 Lines a, b and c show the position of three selected sections on the soil stratum where acceleration distributions will be developed:
(a) centreline of excavation (x = 0 m), (b) behind the excavation (x = 0.25 m), (c) far-field (x = 25 m)Distribution of maximum horizontal
acceleration along sections a, b and ¢ (position of each section is shown in Fig.6.18) when the bedrock level is triggered with Ricker pulses: (a1)
ap=04g&Te=0.90sec, (az2) ap =1 g & Te = 0.90 sec, (b1) ap = 0.4 g & Te = 1.33 sec and (b2) ap =1 g & Te = 1.33 sec.
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Figure 6.22 Distribution of maximum horizontal acceleration along sections a, b and c when the bedrock level is triggered with three different
real earthquake records. The selected ensemble of these three records range from medium intensity (Lefkada 2003) to very strong
accelerograms characterized by forward-rupture directivity effects, large number of significant cycles (Rinaldi 228 & JMA 000).
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Figure 6.23 lllustration of the maximum & minimum dynamic earth pressures at the backfill-buttress interface when the base is subjected
to Ricker wavelets of fixed duration Tz = 0.90 sec and increasing acceleration amplitude froma, =0.2gto 1g.
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Figure 6.24 lllustration of the maximum & minimum dynamic earth pressures at the backfill-buttress interface when the base is subjected
to Ricker wavelets of fixed duration Tz = 1.33 sec and increasing acceleration amplitude froma, =02 gto 1g.
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Next, the relieving role of the backfill to the surrounding soil is examined. The evolution

of the lateral stresses that develop along the left excavation boundary when Ricker

wavelets of three different durations (T = 0.6 sec, 0.90 sec & 1.33 sec) are applied at

the base is calculated. For each duration the structure is subjected to a wide range of

acceleration amplitudes a, from very low values (0.2 g) to moderate (0.4 g, 0.6 g) and

to very strong (1 g). The distribution of the lateral stresses under static condition is

used as a yardstick for the comprehension of the effect of the pulse characteristics (ap,

Te). In the view of the calculated results obtained from the numerical analyses, depicted

in Figure 6.25 it is clear that:

>

the predominant period of Ricker pulses doesn’t seem to affect the horizontal
earth pressures that develop beyond the backfill soil.

The earth pressure distribution at the level of the overburden soil (h=2.8 m -5
m) is linear regardless the pulse characteristics (ap, Te).

The arch mechanism influences the surrounding soil increasing the pressures
locally at h = 1.66 m.

There is a notable increase in the lateral earth pressures when larger
acceleration amplitudes are applied.

The shape of the distribution is similar and irrespective of the prescribed seismic
input motion and consequently from the pulse characteristics. They have a
minor role on the modulation of the distribution shape which is determined by

the static response.
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Figure 6.25 Evolution of the lateral stresses that develop along the left excavation
boundary when Ricker wavelets of three different durations (T: = 0.6 sec, 0.90 sec &
1.33 sec) are applied at the base. For each duration the structure is subjected to a
wide range of acceleration amplitudes a, from very low values (0.2 g) to moderate
(0.4 g, 0.6 g) and to very strong (1 g). Distribution of the lateral stresses under static
condition is also depicted.

Inspection of the maximum and minimum principal stresses (Figure 6.26) helps to
visualise the most vulnerable locations of the structure when a cluster of idealised

Ricker pulses of different intensity trigger the model.

1-D kinematic analysis

Considering the nonlinear behaviour of the model, the fundamental eigen period of
the soil column is calculated Te = 0.30 sec. Therefore, a Ricker pulse with the above
predominant period is chosen as seismic excitation. In Figure 6.27 the results of the 1-
D analysis are presented in the following way: at the left side, the shear wave velocity
and the maximum acceleration distribution at the excavation section, in the middle
bottom the input motion while above the resulting ground surface motion, and at the
right side of the figure the acceleration response spectrum of the base and the surface.

The Peak Ground Acceleration (PGA) is 0.68 g which corresponds to a maximum SA =
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2.11 g for eigen value period Te =0.30 sec. The ground amplification at that point is A
=2.1.
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Figure 6.26 Structural distress when the embedded vaulted structure is subjected to
a Ricker wavelet of duration T = 1.33 sec. For each acceleration amplitude a, (0.2 g-
1 g) contours of the maximum and minimum principal stresses are presented.

Principal
Stresses (kPa) :

Omax

941 kPa

¥ .
i A
[ -l.
I T
= Omin ‘
| -952kPa |
17 ]

i

FT 1T
;=

M

A. Leontari, doctoral dissertation 2023 162



Chapter 6: Embedded Vaulted Structures: Soil-Structure Interaction

vs:m/s a:g

0 100 200 300 0 0.3 0.6 0.9

0 5 ;
-0.68¢g
resulting ground surface motion
5 F 0
€
<
-
3] 3
0 1 2 4
© L L L L L 1
seconds
-10 - 5t
excitation : bedrock

-15 -10 ﬁ/vk
-0.40g

Figure 6.27 1-D kinematic analysis at the excavation section.
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6.7 Conclusions

This chapter presents the overall response of an embedded vaulted tunnel into a stiff
clay soil under vertical and lateral loading with the aim of identifying the developed
physical and structural mechanisms affecting the static and seismic capacity of the

structure. The pivot points of this chapter are:

(1) The assembly of an advanced finite-element model of the aforementioned
structure

(2) The step-by-step analysis of the construction sequence which allows a spherical
observation of the soil-structure interaction

(3) The two arching mechanisms developed to receive the applied loads by the
structural arch and the soil arching

(4) The contribution of the backfill soil as a cushion mechanism for the embedded
structure

(5) the accumulation of permanent displacements as well as at the maximum soil
reactions that can develop in the structural elements.

(6) The crucial role of the structure geometry studying and analysing a vaulted
structure with slightly enlarged buttresses

(7) The seismic response of this category of structures (embedded arched

structures) and their vulnerability to a variety of ground motions.

Regarding (1), an advanced finite-element modeling of the soil-structure system is
developed, incorporating the construction sequence. Special attention has been given
choosing the appropriate boundary conditions, the interface and the soil material

modelling.

Regarding (2), when observing the structure's response during the construction

sequence the following can be extracted:

» The prevailing initial conditions at the excavated trench are passive at the

bottom whilst active at the surface.
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> As the backfill height gradually increases, two different conditions of the earth
pressures are established behind the structure: An active state behind the

buttress accompanied with a passive state behind the arch.

» The deformed configurations of the structure enclose the ongoing developed
structural mechanism of a vaulted tunnel through the whole procedure of its

embankment.

Regarding (3), A fictitious arch is developed within soil medium to carry the overburden
load, along with the structural arch. According to this ‘soil arching” mechanism, stress
paths are diverted within soil medium around the embedded vault. The remaining part
of the overburden load is sustained by the structural arch and transferred to the
buttresses with a combined shear and vertical load. This severe shear force developed
at the bottom of the arch is demonstrated as concentration of contact pressures in the

profile of Figure 6.11e.

Regarding (4), backfill soil contributes as a cushion mechanism for the embedded
structure: (i) it offers the horizontal reaction at the arch base to prevent arch from
flattening upon the overburden load, (ii) by virtue of two-dimensional redundancy it

receives directly a portion of the overburden load (soil arching).

Regarding (5), arches on enlarged buttresses are more safe and stiff structures. The
applied loads aren't distributed in a vertical direction but they are obliquely directed
outwards. This outward thrust is safely transferred downwards along the additional
part. Evidently, part of the horizontal force needed to support the arch is now received
by the buttresses as shear mechanism. In addition, the stiffen buttress offers enhanced

capacity under moment loading due to the arch tendency to flatten.

Finally, regarding (6), the seismic response of such structures and their vulnerability to
a variety of ground motions is investigated. In this perspective, idealised Ricker pulses
are imposed to the base as input motion and the influence of their characteristics (ay,
T) are highlighted. For different periods Tg, different structural mechanisms are

mobilised resulting in excessive horizontal earth reactions at different positions. At the
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excavation interface the earth pressures development is rather irrelevant to the pulse

period, it depends yet on the pulse amplitude.
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CHAPTER 7:

Conclusions

7.1 Main Findings

As stated in the introduction the scope of this Thesis was to study the stability, the
seismic response and the soil-structure interaction of masonry arches structures. The
aim was to contribute to the better understanding of a 300-year old problem which in

some way it is not yet fully investigated.
Some of the key conclusions of the Thesis are as follows:

The study revisits the dynamic behaviour of a part-circular masonry arch subjected
to ground motion, as introduced by Oppenheim in 1992. The examined model, under
horizontal acceleration applied at its base, is transformed into predefined rigid body
assemblies. In such stiff structures, rocking rotation even in low-amplitude levels is
most often undesirable as it may lead to severe permanent displacements
accompanied with possible dislocation of the arch axis, and sometimes to general
instability of the structure. It is therefore of great importance to develop simplified
procedures for estimating the levels of the low-amplitude response. In this context,
simplified analytical techniques are applied to calculate the linear response. These
methods comprise both closed-form solutions and numerical integration of the
equation of motion. Applicability of linearised response is evaluated mainly through
comparison with rigorous 2-dimensional finite element analysis. Near-source
earthquake shaking is represented with idealised cycloidal and rectangular pulses. In
addition, constant acceleration pulses are involved.

> A general solution of the resulting linear equation of motion, extracted with the
Lagrangian method, suitable for any arch geometry is presented. The impact of the
gravitational and the external forces to the system, represented by the coefficients,

F(p) and P(g) respectively, is also discussed. Then, a first application of this general
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solution is given through the examination of constant acceleration pulses. Simplified
forms of the rotation B4g (Lagrangian variable) with respect to time are presented.

> One-sine pulses are also introduced to represent ground excitation. In this
respect, a linear second-order homogeneous differential equation of motion is
derived, similar to Mathieu equation. According to superposition principle, each
solution of the Mathieu equation is a linear combination of two independent solutions,
thus allowing for a closed-form solution to be obtained. In parallel, numerical
integration of the equation of motion is involved to compute the response. A
parametric comparative study is presented for different values of the peak ground
acceleration and excitation period. Nonlinear finite element analysis in the time domain
is also employed to further strengthen the comparison. The results reveal a close
agreement between these methods and justify the applicability of the linear
simplification of the response. The benefit of the Mathieu equation to easily derive
reliable results in large amounts is applied to the study of the overturning response of
the arch. The parametric study reveals that overturning of the arch according to the
minimum overturning acceleration spectrum, is more sensitive to high values of a, and
low values of T,. Another interesting finding is that overturning and imminent collapse
occur without impact.

> Rectangular asymmetric pulses are also involved in the study of the earthquake
response. The type of the pulse and the values chosen are those used by Oppenheim
so that a comparative study is possible. The results indicate convergence between
linear analytical and nonlinear finite element methods. The reliability of these results is
further strengthened by the comparison with Oppenheim'’s results for rectangular

pulses.

An arch ring of non-uniform thickness subjected to rocking is employed next. This so-
called ‘part-elliptical’ arch is described with an elliptical (upper) and a circular (lower)
curve, and is frequently encountered in long-span masonry bridges. The response of

such a structure in comparison with the uniform circular arch is investigated.

> Based on the existing method of a variational formulation in literature (Alexakis

& Makris, 2014), in the beginning their study calculates the hinge locations of a
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continuous monolithic circular arch when subjected to a given level of acceleration Xg.
What is new in this study is that the locations of the imminent hinges are calculated
analytically through closed-form solutions. The results are in excellent agreement with
those derived from the semi-analytical approach of previous study (Alexakis & Makris,

2014).

> Regarding the part-elliptical arch, (i) stability analysis and (ii) dynamic response
analysis are engaged. Stability analysis involves both variational and Lagrangian
formulation. In the context of a demand assessment, namely for a given slenderness,
it is found that systematically higher acceleration levels are required to set a part-
elliptical arch on rocking compared to those required for a circular one. This implies
that an arch with increasing thickness from the key to the springers (as described with
A) performs enhanced resistance to hinge formation and rocking when subjected to
ground horizontal excitation. Therefore, it has reasonably been adopted in the past as
an improved profile in terms of seismic performance, for long-span masonry bridges.
Moreover, when comparing two arches of the same slenderness t / R but of different
angles of embrace f it is concluded that the one of larger B becomes a four-hinge
mechanism for a higher horizontal acceleration € g.

> Dynamic response analysis is performed in the time domain through analytical
and numerical methods. In the former, time-histories of the rocking response are
computed from the analytical solution of the Lagrangian equation of motion. Idealised
pulses are used as base excitation to represent conditions of near-source ground
shaking. Once rocking occurs it turns out that the non-uniform profile impacts the
response but not in a straightforward fashion. Evidently, the response is very sensitive
to the excitation period unveiling the profoundly non-linear nature of the problem.

> Apart from the analytical treatment, two-dimensional numerical analysis with
finite elements is performed. The results are presented comparatively with those of the
analytical method for long-duration pulses. Both methods provide time-histories of the
dynamic response which in general lines are in remarkable agreement. This is very
important taking into account the essentially different assumptions adopted in two
approaches: The analytical method considers a rigid, monolithic arch of zero tensile

strength in which sliding at the joints is prevented. On the contrary, the numerical
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model implies a stiff but not ideally rigid structure with a predefined hinge mechanism,

where interfaces are reasonably rough allowing theoretically sliding.

The monolithic circular buttressed arch under seismic action is examined. Among the
three possible failure mechanisms, the so-called Mechanism Il (or mixed or semi-
global) is studied. This mechanism is associated with the formation of three hinges in
the arch and one hinge at the corner of the buttress. It develops under specific
geometries and particularly when thick arches are supported by slender buttresses.

> A variational formulation utilising the principle of stationary potential energy
as proposed by Alexakis & Makris (2014, 2017, 2018) is revisited for the four different
buttress geometries. Some of the main conclusions are:

1. Increasing the buttress width ensures stability as it requires higher values of
acceleration to transform the structure into a mechanism. For example, a 50% increase
of the width leads to 50% higher values of critical accelerations. Generally, when the
slenderness s increases, either by increasing the buttress width or by decreasing the
height, the structure becomes more unstable as it entails lower values of acceleration
to impose rocking.

2. Smaller values of embrace 8 have a favourable effect to the stability.

3. The case of a relative stocky buttress (b / R =0.75, H/ R = 1) is a limit state
where for larger buttresses the arch becomes relatively vulnerable and under a critical
acceleration another mechanism is mobilised where all four ruptures occur at the arch.
4, Concerning the buttresses, Housner's finding (1963) is confirmed. According to
that, between two equally slender structures but different in size the larger one is the
more stable.

5. An important observation from Figure 5.7 where the locations of the imminent
hinges are depicted, concerns the angles i (i=1, 2, 3). It is found that they satisfy the
relation @1 + 3 =2¢> as it is described by equation (5.10). Expressing the angles ¢ as
functions of the angles of each link (6) (see equation 5.11), it leads to the critical
mechanism that yields the minimum ground acceleration. This configuration consists
of two equal links (with the same angle 8)) and one larger and resembles the one that

Oppenheim (1992) has considered as a representative arch in his study.
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> A time history analysis at the buttressed arches consisting of individual
voussoirs (with predefined hinge locations) is conducted. The nonlinear rocking
behaviour of 3d buttressed arch models is highlighted with the aid of the explicit
algorithm available in the FE code Abaqus. The seismic excitation is introduced in the
horizontal direction along the base of the soil layer with trigonometric pulses of one
cycle and Ricker wavelets. The sensitivity of the 3d model to the pulse characteristics is
depicted in the overturning spectra of Figures 5.11, 5.12, 5.14 & 5.15. It is concluded
that:

1. The structural system exhibits a significant resistance to low duration pulses. In this
way, a Ricker wavelet of period Tt = 0.2 sec (case A) is practically impossible to overturn
the illustrated buttressed arch (a, = 3 g!!).

2. The dominant failure mechanism is Mechanism Il (or semi-global)

3. The long duration Ricker wavelets have a detrimental effect on the stability of the
buttressed arch. Specifically, for sufficiently large periods (Te > 0.9 sec) the minimum
acceleration gradually approaches very close to the pseudo-static value.

4. The one-sine pulse is the most detrimental in comparison with the Ricker wavelet,
especially for low duration pulses. For moderate and long period pulses the effect of
the type of motion is minimal. The beneficial effect of the Ricker pulses with respect to
the one-sine pulses is attributed merely to the favorable asymmetry which offers an
additional "safety net".

5.  From the comparison of the different buttress geometries (Figure 5.10 & 5.12) it is
inferred that even a small increase in the buttress width offers stability to the structure

regardless the impulse type.

This chapter presents the overall response of an embedded vaulted tunnel into a stiff
clay soil under vertical and lateral loading with the aim of identifying the developed
physical and structural mechanisms affecting the static and seismic capacity of the

structure. The pivot points of this chapter are:

@) The assembly of an advanced finite-element model of the aforementioned

structure.
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(2) The step-by-step analysis of the construction sequence which allows a spherical
observation of the soil-structure interaction.
(3) The two arching mechanisms developed to receive the applied loads by the

structural arch and the soil arching.

4) The contribution of the backfill soil as a cushion mechanism for the embedded
structure.
(5) the accumulation of permanent displacements as well as at the maximum soil

reactions that can develop in the structural elements.

(6) The crucial role of the structure geometry studying and analysing a vaulted
structure with slightly enlarged buttresses.

(7) The seismic response of this category of structures (embedded arched

structures) and their vulnerability to a variety of ground motions.

Regarding (1), an advanced finite-element modeling of the soil-structure system is
developed, incorporating the construction sequence. Special attention has been given
choosing the appropriate boundary conditions, the interface and the soil material

modelling.

Regarding (2), when observing the structure’'s response during the construction

sequence the following can be extracted:

» The prevailing initial conditions at the excavated trench are passive at the
bottom whilst active at the surface.

» As the backfill height gradually increases, two different conditions of the earth
pressures are established behind the structure: An active state behind the

buttress accompanied with a passive state behind the arch.

» The deformed configurations of the structure enclose the ongoing developed
structural mechanism of a vaulted tunnel through the whole procedure of its

embankment.

Regarding (3), A fictitious arch is developed within soil medium to carry the overburden
load, along with the structural arch. According to this ‘soil arching’ mechanism, stress

paths are diverted within soil medium around the embedded vault. The remaining part
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of the overburden load is sustained by the structural arch and transferred to the
buttresses with a combined shear and vertical load. This severe shear force developed
at the bottom of the arch is demonstrated as concentration of contact pressures in the

profile of Figure 6.11e.

Regarding (4), backfill soil contributes as a cushion mechanism for the embedded
structure: (i) it offers the horizontal reaction at the arch base to prevent arch from
flattening upon the overburden load, (ii) by virtue of two-dimensional redundancy it

receives directly a portion of the overburden load (soil arching).

Regarding (5), arches on enlarged buttresses are more safe and stiff structures. The
applied loads aren't distributed in a vertical direction but they are obliquely directed
outwards. This outward thrust is safely transferred downwards along the additional
part. Evidently, part of the horizontal force needed to support the arch is now received
by the buttresses as shear mechanism. In addition, the stiffen buttress offers enhanced

capacity under moment loading due to the arch tendency to flatten.

Finally, regarding (6), the seismic response of such structures and their vulnerability to
a variety of ground motions is investigated. In this perspective, idealised Ricker pulses
are imposed to the base as input motion and the influence of their characteristics (ap,
T) are highlighted. For different periods Te, different structural mechanisms are
mobilised resulting in excessive horizontal earth reactions at different positions. At the
excavation interface the earth pressures development is rather irrelevant to the pulse

period, it depends yet on the pulse amplitude.

7.2  Epilogue-Recommendations for further research

The development of the current subject is of great interest and many topics could be

further investigated.

- Regarding the circular and the part-elliptical arches, the development of the
semi-analytical method could expand taking into consideration more complicated
geometries, loading and boundary conditions. Regarding the finite element model, the

analysis can be extended in a future study to address a monolithic, no-tension arch.
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- Regarding the embedded structures, the arching mechanisms, both structural
and soil, could be further investigated. Different soil properties for the soil backfill and
the soil stratum could lead us to the better understanding of the soil-structure
interaction. More advanced soil failure criterion could be applied. Moreover, the

material decay should be taken into consideration in the FE analyses.
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APPENDICES

Appendix A (Chapter 3)

A.1 Segment AB of the circular arch transformed into a four-link mechanism

For this single-degree-of-freedom system, the angle 6 = 6,5 = 6, is chosen arbitrarily
and without violating the constraint, as the Lagrangian independent variable

(coordinate). The arch segment under examination is portrayed in Figure A1.

Figure A1 Geometric parameters of the arch segment AB under examination.
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The relationships amongst the remaining angles will be defined with the aid of
trigonometric identities. Firstly, the relationship between the angle x and the angle of
the segment AB will be calculated. If the internal radius a=OA and the external one
b=0B, from triangles and the law of sines in the triangle OAB, the following equation

results:

sinB sin(n + x) (A.1)
AB OB

In the triangle AEB the angle AEB is equal to ™ —n. From the law of sines it yields:

sin(mt —n) B sin(x) (A.2)
AB  BE

From the ratio of equations (A.1) and (A.2) the following equation is obtained:

sin®, % sin(n + x) _b—-a sin(n + x) (A.3)
sin(m—n) OB sin(x) b sin(x)
Considering that:
O t2n=m-0 =m—2n (A4)
sin 0, = sin(m — 2n) = sin(2n) & sin(w — 1) = sin(n) (A.5)

The Eq. (A.3) becomes:

sin(2n) _b—a sin(n + x) (A.6)
sin) b sin(x)

Expanding the numerators Eq. (A.6) is transformed to:
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2sin(m) cos(m) _ b —a sin(n) cos(x) + cos(n) sin(x) (A7)
sin(n) b sin(x)

Rearranging Eq. (A.7), it yields:

b ; ¢ {sin(n) cos(x) + cos(n) sin(x)} (A8)

2 cos(n) sin(x) =

The final expression is:

b—a
tanx = b atann (A9)

Dividing the semicircle into N segments, the arch will consist of N-7 segments. The

angle of embrace in terms of N is expressed as:

(N-Dm (A.10)
N

while the angle made with the horizontal line 6o is expressed as %
Therefore, the angle of embrace of the first segmentis 6, = ’;V—T[ Then, the angle n

can be computed from the following relation:

k
2n+9k=n—>n=g(1—ﬁ) (AT

Specifically, in the case of the Oppenheim arch the latter is divided into (N-1) = 7
segments while the first link of the four-link mechanism consists of k=3 segments. The

corresponding angles of interest are:

71 15750 g 311& 51t
— . — e —
8 Pk T g ¢ N =g

Becauseb —a =tand b+ a = 2R it follows:
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b-a_t _4i1s t (—0'15t (5“)) 0.1118 (A.12)
b Ta oR X arctan 2 an 16
and the angle of the first link is:
_ T _ 0 (A.13)
GAB —x+n__—0.8972 *

16

Thus, the angles of embrace of the three resulting segments of the four-link

mechanism from left to right are 31/8, 2m/8, 21/8 respectively.

The angle KAB is denoted with yag as shown in Figure A1 and can be calculated

through the relation:

KB? = AK? + AB? — 2AK - AB - cos({1 45) (A.14)
which gives:
KB? — AK? — AB? (A.15)

A2. Lagrange equation

Generally, the Lagrange equation of a mechanical system is L = T — U. Firstly, the
kinetic energy of each part of the arch (Figure A2) should be expressed as a function
of the derivative of the variable 8 and the potential energy U(8). The kinetic energy is
given by the rotational speed of the center of mass and the part of the moment of

inertia I,5 (EQ. (A16)).
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Figure A2 Rotations B, Osc and B¢p of the three segments which are formed when

the arch is transformed into a four-link mechanism.

o1 1 .
T, = 5 myp(Tap)? + > I4p0% = 5 MapVhp + 5 I46? (A.16)

where, the mass of the first beam is denoted with mag whilst the rotational speed as

the angle changes is given by the formula:

de

Vap = T4p q 745 0 (A17)

Similar notations hold for the other two beams.

The center of mass of the second beam rotates around the joint B, but B also moves
with a rotational speed vg = (AB) % perpendicular to the beam (AB), so the velocity of

the center of mass 7 is the vector sum ¥, = ¥ + Uge. To find the kinetic energy, the
square of the velocity measure v3 is calculated which is equal to the inner

pI‘OdUCt 1]22:132 . 132 = U; + véc + ZﬁB . ﬁBC‘

But the velocity vz is perpendicular to beam AB and v is perpendicular to BC, so

they form the same angle as AB and 7, i.e., equal to ¢pc. Therefore:
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Up * Upc = VpVpc COS Gpc = VpVpc €0S(B45 — Opc — Wpc) (A.18)

Thus, the kinetic energy for the second beam is:

1 2 52
T, = Echvz + EIBCGBC

1 .
= EmBC(Vé + Véc + 2vgvpc cos(B — Bgc — Wpe)) + EIBCGZBC

1 A A .« .
= Ech[(ABG)2 + (fBCGBC)Z + AB7g005c cos(0 — Bpc (A.19)

1
—Ype) + EIBCGBC

The case of the third beam is the same as the first one. Adding all three components,

Ty 2 3, yields the formula of the kinetic energy implemented in the main text.

A.3 Derivatives of the angles

As it is already mentioned, the angle Bas has been chosen as the independent variable
of the Lagrangian equation. The rotations 6sc, 6o of the other two links (BC, CD) can
be written as a function of 6 = 6(t). Therefore, 8z = 05¢(0(t)) and 8¢p = 8¢, (0(1)).

Their derivatives with respect to time are:

65  dpcdo

— 0.0 A.20
dt do dt O5c0 (A.20)

and,

docp dbcp db .
— D7 _ g A21
dt do dt Ocp0 (A-21)
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The same procedure is followed to compute the second derivatives.

A.4 Moments of Inertia

If o denotes the constant mass density, the arch mass is given by the double integral

M=ffdm=0ffdr(rd9)=Lbrdrf:2d¢=ob2;a2¢0 (A.22)

where ¢, is the angle of the arch segment apparently equal to 8, — 6,. The center of

mass can be calculated using a similar integral:

- 1 = o =

Tom = Mf frdm = Mf f rdr (rdd) (A.23)
Integration yields:

4(b% — a®)sin (%)

em = 307 = e, fcos(22+0,) -+ sin (L2 +0,)5) (A.24)

~ 4(b3 — a3) sin (%)

— (A.25)
Tem 3(b* — a*)@g

Next, the distances to the centre-of-mass of links AB, BC, CD measured from hinges A,

B, D respectively are calculated.
Hinge A in the figure is defined by the position vector

74y =acosB; i+ asinb,] (A.26)
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Then, the distance of the center of mass 7.,,, from hinge A is:

dA = |ch - FAl

_ |, 4(a®+ba+b*)[2(a* + ba + b?)(cos(9,) — 1) + 3a(a + b)@, sin(¢,)] (A.27)
T 9a+ )¢}

Accordingly, from hinge B, defined by the vector:

g =bcosd, i+ bsind,f (A.28)

the distance dj is equals to:

(A.29)

g |pz— 4(a? + ba + b?)[2(a? + ba + b?)(cos(@y) — 1) + 3b(a + b)@, sin(@,)]
B 9(a + b)% ¢}

A.5 The four-link mechanism as a trapezoid

For our calculations it is important to define the lengths of the links as well as all the

involved angles.

_ Parallel to AD

........ B - - - - Horizontal

A Horizontal
Figure A3 The three links AB, BC, CD and the line AD form a quadrilateral with angles

o,B,v,9.
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The length of the links AB, BC and CD is:

12 = a? + b? — 2ab cos(0) (A.30)

where 6 is the angle of embrace of each arch segment.
The length of the horizontal line is
h=2R sing
2
AD in Figure A3 is given by the formula

0
AD? =t + 4R(R +1t) sinzE (A31)

wheret =b —a,R = (a+ b)/2.

Let ‘a’ the angle of the quadrilateral associated with the hinge A. Then, the angle
between the horizontal line and the line segment AD is € = 8,5 — a. Its sine is given

by the expression:

t m O
i = —sin{=—4—- A.32
sine ADsm(2+2> ( )

A.6 The rotations 0 of each link

The angles, involved in the Lagrangian equation must be expressed in terms of the
independent variable 6,5 = 6. It is useful first to mention the following relations of the

angles a, B, y, 6 of the quadrilateral (see Figure A3).

a+B=m+E a+B+y+86=2m (A.33)

From Figure A3, the rotations of each link can be expressed in terms of the angle € as

follows:
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eAB =a+e (A.34)
Opc =8+ ¢ (A.35)
Bcp=TT—8+¢ (A.36)

From the triangles ABC and BAD involving the diagonals AC and BD, the following

equations are derived:

AC? = a? + b? — 2ab cos(B) = ¢? + d? — 2cd cos(8) (A.37)
BD? = a? + d? — 2ad cos(a) = b? + c¢? — 2bc cos(y) (A.38)

From where the following relations between the angles yield:

cos(B) =k + Acos(8),cos(y) = p+ vcos(a) (A.39)

where:

_a2+b2—c2—d2 cd b? +c?—a?>—-d? ad

= 2ab ,)\=E,u= 2bc V= be (A40)
If the angles of Eq.A.39 are replaced by Eq.A.33, it yields:
cos(a—&) = —x —Acos(6), cos(8+& = —p—vcos(a) (A41)
Let, 0 =064+§ x=8+a=>x—w=a-2¢
Then, cos(w) =—p—vcos(a) = w = arccos(—p —v cos(a)).

Hence, w is expressed in terms of the angle a and consequently the angle 6. Also,

cos(w—yx) = cos(a—&) = —x—Acos(8) .

Plugging in § = x — a and expanding the cosines it results to:
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Pcos(x) + Qsin(y) = —x (A.42)

where P = cos(w) + Acos(a), Q = sin(w) + Asin(a).

If tan(Y) = %, then Eq.(A.42) becomes:

K K
(P2 + Q)12 J1+22 + 22X cos(a — w)

cos(Y —x) =

(A43)

In the following equations the various angles are expressed as a function of the angle

a=0—¢:

w = arccos(—p—vcos(a)) (A.44)
_ Qy\ sin(w) + Asin(a)
Y = arctan (F) = arctan <cos (@) + Acos ((x)> (A.45)
—K
—X= A.46
W 7 x= arceos <\/1 + A2 +2)\cos((x—u))) (49

Using previous identities, it is now straightforward to compute the rotations 6z¢, 6¢p.

The moments of inertia in the Lagrangian equation are calculated with respect to the

center of mass from the general formula:

4 1
Iem =3 (a® — b®)r,,0sin (%) - Z(a2 — b2)(a% + b% + 21%,) 00, (A47)

The distances of the centers of mass of the three segments from the coordinate center

are calculated next.

Tem(AB) = 7.01(—i+ ) » 74, =+/7.012 + 7.012 = 9.91
Tem(BC) = 1, (CD) = 10.24

(A.48)
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Replacing Eq.(A.48) to Eq.(A.47) it yields:

L = 151.8740
IBC = ICD = 46.5420-

(A.48)

For the case of the Oppenheim arch:

AB = 11.70m, BC =CD = 8.09m

The line AD that closes the quadrilateral is not exactly parallel to the horizontal line

(Figure A3). The length of the horizontal is:

h = 2R sin (g) = 2sin (Z—z) ~ 19.62 meters (A.49)

where 0 is the angle of embrace of the arch (as opposed to the main text, here a
different notation for the angle of embrace is chosen in order to avoid confusion with

the angle B of the quadrilateral, introduced above). Then, the distance AD is given by

AD? = t? + 4R(R + t) sin? = = 1 + 440 cos? (116) => AD =~ 20.60 meters (A.50)

Replacing Eq.(A.50) to Eq.(A.32) it yields:

t m+0
sin(e) = —sin( ) ~ 0.0095 => € =~ 0.54° (A.51)

AD 2
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Appendix B (Chapter 4)
Algebraic manipulations to derive Eq. 4.28.

Potential Energy of the solid surface determined by the elliptical upper curve of the

arch (ACD’), and the segments (OA), (OD’) as illustrated in Figure 4.4:

Ver = f dv = gpf (rsin@)rdrde B.1
_ (ab)® J“pz sing do
B 3
3 #1 (\/bzcoszgo + azsinzgo)

ab3< 1 1 )
=9Pp— -
3 \Jb2 + a2tan?B, +/b? + a’tan?(m — f,)

Potential Energy of the solid surface determined by the circular lower curve of the arch

(A’C'D), and the segments (OA"), (OD) as illustrated in Figure 4.4:

3
s (R-3)

Veire = gp | sinpde | rdr = gp——==—(cos ¢; —cos ;)
0

3 B.2

3
=gp % (cos?By — cos?( — By))

The Potential Energy of the part-elliptical arch is derived by subtracting B.2 from B.1,

namely:

. ab? < 1 1 )
! 3 \(/b% + a?tan?B, /b% + a?tan?(w — o)

3
— gp% (cos?By — cos*( — By)) B.3
2R3 ( (14713

=gp
3 \J/1—¢€2 cos? g,

-(1- r’)3> cos @,
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Appendix C (Chapter 5)

In this appendix the centre of gravity and the weight of the first segment of Figure 5.4
are presented analytically (Egs.5.1-5.3). It should be noted here that segment 1 consists
of two areas, the arch portion and the buttress area which embodies two

parallelepipeds and a little triangle at their intersection.

The coordinates of the centre of gravity (Xarch, Yarch) and the weight Waren of the arch

portion are:

sin@, — sing,

,r.z
Xaren = R(1 + ?) 01— 0o C.1

r2_C0os @, — COoS @,
Yarcn = —R(1 + ?) 01— 0o c2

Warch = ZRZT((pl = @o) C3

wherer =t /2 R.

The coordinates of the centre of gravity (xu, y«) and the weight W4, of the arch portion

are:

r
Xer = R(1 4+ §) COS Qg

Cc4

r 0
Yer = R(1—3)singg Cs
Wi = 2R?12 cos @, sin @ c6

The coordinates of the centre of gravity (xe1, yr1) and the weight Wp: of the first

parallelepiped are:

xp1 = R(cos g + sp)

Cc7
Yp1 = R sin Po CS8
Wp1 = 4R?%r sin @, (s, — 7 cos @g) co
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The coordinates of the centre of gravity (xe2, yr2) and the weight Whs, of the second

parallelepiped are:

xp; = R((1 —7)cos@gy + sp)

C.10
yp1 =R(Sin(pﬂ_ch) C.11
Wp1 = 4R?r sin @ (sp — 7 €OS @) c12
where s, =b /2R and ¢h = h/ 2R.

Replacing Egs.(C.1-C.12) to Egs.(5.1-5.3) it yields:

x, Wy = R?(4cysp, — 12 sin2¢y — 2r@q + 2r@;) c13
2
Wy = §R3(6chsb2 —6cp(—1+71)s,cos @y —7(3 +712)singy + (-3
+ )12 cos @y ? sin @, + 3rsing; +r3sing;) ¢14
2

W, = —§R3(r(3 +12) cos @1 + 6¢psp(ch, — (1 + 1) singy) + 17 cos @y (=3 — 12 C1s5

+7(3 + 1) sin@,?))
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