

National Technical University of Athens

School of Mechanical Engineering

Section: Mechanical Design & Control Systems

I3GA: An Integrated, Interactive

Isogeometric Analysis tool in

MATLAB for 2D problems

Diploma Thesis

Dimitrios Tolis

Supervision:

Christopher Provatidis (Professor NTUA),

Ioannis Dimitriou (PhD Candidate NTUA)

Revision: Ioannis Dimitriou

Athens, October 2023

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

2

Διπλωματική Εργασία

Δημήτριος Τόλης

Επίβλεψη:

Χριστόφορος Προβατίδης (Καθηγητής ΕΜΠ),

Ιωάννης Δημητρίου (Υποψήφιος Διδάκτορας ΕΜΠ)

Αναθεώρηση: Ιωάννης Δημητρίου

Αθήνα, Οκτώβριος 2023

I3GA: Ένα Ολοκληρωμένο και

Διαδραστικό εργαλείο

Ισογεωμετρικής Ανάλυσης στο

περιβάλλον της MATLAB για

δισδιάστατα προβλήματα

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Τομέας: Μηχανολογικών Κατασκευών & Αυτομάτου

Ελέγχου

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

3

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

4

Έχω διαβάσει και κατανοήσει τους κανόνες για τη λογοκλοπή και τον τρόπο σωστής αναφοράς

των πηγών που περιέχονται στον οδηγό συγγραφής Διπλωματικών Εργασιών. Δηλώνω ότι, από

όσα γνωρίζω, το περιεχόμενο της παρούσας Διπλωματικής Εργασίας είναι προϊόν δικής μου

εργασίας και υπάρχουν αναφορές σε όλες τις πηγές που χρησιμοποίησα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτή τη Διπλωματική εργασία είναι του

συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις της Σχολής

Μηχανολόγων Μηχανικών ή του Εθνικού Μετσόβιου Πολυτεχνείου.

 Δημήτριος Τόλης

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

5

Contents
Abbreviations .. 11

1 Introduction ..12

1.1 Motivation ..12

1.2 Literature ..14

1.3 Outline ...18

2 The Journey from FEA to IGA ...19

2.1 Finite Element Method - FEM ...19

2.2 Isoparametric Finite Elements..22

2.3 Isogeometric analysis: Intuition and Notation ...24

3 Basis Functions ...27

3.1 Bernstein Basis Functions ..27

3.2 B-Splines ..28

3.3 Non-Uniform Rational B-splines (NURBS) ..36

3.4 T-splines ...40

4 Refinement Procedures in NURBS ...44

4.1 Knot Insertion (H-refinement) ...44

4.2 Degree Elevation (P-refinement) ...52

4.3 K-refinement ..54

5 Isogeometric Formulation on 2D problems ..56

5.1 Thermal Analysis using IGA ..56

5.2 Thermal Analysis using Bézier Extraction ...61

5.3 Plane stress analysis using Bézier Extraction ..66

6 Results using I3GA ...71

6.1 Annulus Benchmark Test and Refinements ...71

6.2 Square with Non-Uniform Dirichlet conditions Benchmark Test ..84

6.3 Cases with sources ...86

6.4 Effect of refinement on code execution time ...91

6.5 Adaptivity ..95

7 Concluding remarks & Future work ...109

8 List of Figures ... 111

9 List of Tables .. 115

10 References .. 116

Appendix Α ... 118

A.1 Example of FEM formulation using Galerkin method ... 118

A.2 Example of isoparametric FEM formulation using Lagrange Shape Functions120

Appendix B..125

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

6

Appendix C: Manual of I3GA ...128

C.1 Central menu and Loading Geometries...128

C.2 Refinement ..135

C.3 Plot grid ..139

C.4 Analysis ...142

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

7

In loving memory of my grandfather,

a beautiful butterfly that I will always remember,

and to those people who struggle every day with their own

demons…

To a future based on humanity and science…a better one

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

8

Acknowledgements

After a difficult period in my life, which made me much stronger, I managed to finish my thesis in a very

interesting and state-of-the-art topic that of Isogeometric Analysis. Discovering the mysteries of Isogeometric

Analysis, not only I expanded my horizons in aspects of Computational Mechanics and Geometry but also, I

learned how to research. That process was very intriguing and made it clear that I would like to follow the

path of researcher in the future…

First, I would like to thank my professor Christopher Provatidis, for his patience and chance he gave me to

enter into this interesting topic. From his questions and ideas, I examined some interesting parts of

Isogeometric Analysis. I hope that this thesis meets his expectations.

Next, I would like to thank my colleague and mentor Ioannis Dimitriou. His numerous ideas, observations,

and questions were important in order to dive deep into the topic and complete my thesis. His help was

precious and pivotal. His passion and countless hours of discussion not only was driving me out during

strange times for my life, but also taught me that a true scientist lives for his research and do not live from it.

I am thankful that I met this man and I hope to continue cooperate with him in academic and personal level.

I would like also thank people who helped me during my studies at NTUA and especially my two friends

Michalis Tsagaris and Matthaios Chantzopoulos. Without them the school would not have been enjoyable. I

wish them to have a good life and I hope to keep them in mine because their spirit and mentality is rare.

I would like to thank my family for the patience, the ethics that taught me and their constant support

throughout the years of my life. Special thanks also to my friends and relatives that helped me in this period.

Finally, I would like to thank my grandpa Dimitrios Trigazis, not only for been so caring with me but also

for teaching me the principles of studying and loving science in every aspect of human life. I hope that he

watches me and continues to be on my side from “above” and someday he will be proud for his grandson…

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

9

Abstract

Nowadays, the most common way of dealing with engineering problems (elasticity, heat transfer, etc.) is to

firstly model the problem within a CAD system and then use Finite element method. However, this method

shows inevitable errors because the model’s geometry is approximated and does not follow exact geometry

with accuracy. In order to eliminate these problems, the method of Isogeometric analysis has been used in

the last 15 years. The concept behind isogeometric analysis is that the model’s mesh is the same as the

computational; thus, the analysis process is faster and exact. However, codes that provide an integrated

CAD/CAE environment do not exist. The goal of this thesis is the creation of a GUI tool in MATLAB

environment where the user can create an initial geometry, interacts freely with it, and then executes

isogeometric analysis using NURBS basis functions. The program was designed to solve 2D elasticity and

heat transfer problem, not only using Isogeometric analysis with NURBS but also with Bézier elements via

Bézier extraction method. The latter is a method that decomposes the initial geometry into 𝐶0- elements.

Furthermore, refinement methods were coded in order to study the mesh accuracy. H- and p- refinements

were programmed in which the knots are inserted immediately in knot vectors or interactively on surface.

Moreover, the code runs with different forms (constant value or function) of boundary conditions Dirichlet

or Neumann. The code was tested using benchmark problems where different kind of refinement were

studied. For the studies it was concluded that p-refinement gives satisfying error for less control points but

with higher running time than h-refinement. Finally, mesh Adaptivity was studied, where two adaptivity

algorithms were programmed for a specific problem.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

10

Περίληψη

Στην εποχή μας, η συνήθης διαδικασία προσομοίωσης ενός προβλήματος μηχανικού (ελαστικότητα,

μετάδοση θερμότητας κτλ.) γίνεται με τη χρήση της μεθόδου των πεπερασμένων στοιχείων, έχοντας πρώτα

μοντελοποιήσει το πρόβλημα σε ένα σύστημα CAD. Ωστόσο, η μέθοδος αυτή παρουσιάζει αναπόφευκτα

σφάλματα, καθώς προσεγγίζει και δεν ακολουθεί με ακρίβεια τη γεωμετρία του μοντέλου. Για την απάλειψη

αυτών των σφαλμάτων τα τελευταία χρόνια χρησιμοποιείται η μέθοδος της Ισογεωμετρικής ανάλυσης κι

ιδιαίτερα στη περίπτωση που οι συναρτήσεις βάσης είναι NURBS. Το νόημα της μεθόδου είναι ότι το πλέγμα

που χρησιμοποιείται για τη γεωμετρία του μοντέλου είναι το ίδιο με αυτό της ανάλυσης. Ωστόσο δεν

υπάρχουν κώδικες που να δημιουργούν ένα ολοκληρωμένο περιβάλλον CAD/CAE. Στόχος της

διπλωματικής είναι η δημιουργία ενός εργαλείου GUI στο περιβάλλον του MATLAB στο οποίο ο χρήστης

δημιουργεί μια αρχική γεωμετρία, αλληλοεπιδρά ελεύθερα μαζί της και εν συνεχεία πραγματοποιεί την

ισογεωμετρική ανάλυση χρησιμοποιώντας συναρτήσεις NURBS. Το πρόγραμμα σχεδιάστηκε να λύνει

δισδιάστατα προβλήματα θερμότητας και επίπεδης ελαστικότητας, όχι μόνο με τη μέθοδο της

Ισογεωμετρικής ανάλυσης χρησιμοποιώντας NURBS αλλά και με την εξαγωγή Bézier η οποία αποσυνθέτει

τη γεωμετρία σε 𝐶0 στοιχεία. Επίσης προγραμματίστηκαν διαφορετικές τεχνικές εκλέπτυνσης πλέγματος για

μεγαλύτερη ακρίβεια. Δοκιμάστηκαν οι h-,p- εκλεπτύνσεις οπού οι κόμβοι εισάγονται είτε στα

κομβοδιανύσματα είτε διαδραστικά κατευθείαν πάνω στη γεωμετρία. Επίσης ο κώδικάς προγραμματίστηκε

να τρέχει με διαφορετικές μορφές (σταθερή τιμή ή συνάρτηση) συνοριακών συνθηκών Dirichlet ή Neumann.

Σε ότι αφορά τα αποτελέσματα ο κώδικας μελετήθηκε σε κλασικά benchmark προβλήματα όπου μελετήθηκε

η επίδραση διαφορετικού είδους εκλεπτύνσεων στο πλέγμα. Από τη μελέτη διαπιστώθηκε ότι η p-

εκλέπτυνση δίνει αρκετά ικανοποιητικό σφάλμα για λιγότερα σημεία ελέγχου αλλά ελάχιστα μεγαλύτερο

χρόνο προσομοίωσης σε σχέση με τη h-εκλέπτυνση. Τέλος, μελετήθηκε η Προσαρμοστικότητα του

πλέγματος, όπου αναπτύχθηκαν δύο αλγόριθμοι προσαρμογής του πλέγματος για ένα συγκεκριμένο

πρόβλημα.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

11

Abbreviations
PDE: Partial Differential Equation

BC: Boundary Condition

FEM: Finite Element Method

FEA: Finite Element Analysis

IGA: IsoGeometric Analysis

CAD: Computer-Aided Design

CAE: Computer-Aided Engineering

NURBS: Non-Uniform Rational B-splines

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

12

1 Introduction

1.1 Motivation

Engineering problems are physical problems (e.g., solids, structures, fluids etc.); therefore, most of them are

described by differential equations and in particular partial differential equations (PDEs). These PDEs

describe the advancement of physical phenomena in a problem domain Ω and on its boundary (denoted as Γ

or 𝜕Ω). For example some problems could be the stress or thermal analysis of a structural component, the

fluid flow on vessels (i.e., aerodynamic problems on airplanes, cars, ships, etc.) or even medical simulations

of the human circulatory system [1]. Within the domain Ω the governing PDE is generally described by (the

strong form) [2]:

𝐷(𝐮(𝐱, 𝑡)) = 𝐟(𝐱, 𝑡) in Ω (1.1)

where 𝐷(∙) denotes a differential operator, 𝐮(𝐱, 𝑡) is the vector of state or field variables of problem (e.g.,

displacements, temperature, pressure etc.) and 𝐟(𝐱, 𝑡) is the vector of external loads (source) terms that

provokes the phenomena in problem domain. In boundary, the boundary conditions of PDE exist, which can

take one of forms below (see fig 1.1):

Boundary Conditions (BCs):

• 𝐮 = �̅� in Γ1 (Dirichlet BC)

•
𝜕𝐮

𝜕𝒏
= �̅� in Γ2 (Neumann BC)

• 𝑎𝐮 + 𝛽
𝜕𝐮

𝜕𝒏
= �̅� in Γ3 (Robin BC)

where, �̅�, �̅� are vectors of specific values, 𝑎, 𝛽 are coefficients and 𝒏 is the normal vector on boundary Γ.

Figure 1.1: The problem domain 𝛺 along with boundary conditions.

In general case, PDEs have not analytical solution, as a result numerical methods have been adopted in order

to give approximate but precise solutions. These numerical solutions due to problems’ complexity are

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

13

executed by computers. The whole analysis process is called Computer-aided Engineering (CAE).

Nowadays, there is a huge variety of methods used in CAE, for example finite elements, boundary elements,

collocation methods or newest ones as mesh-free, and point methods [2].

Finite element method or analysis (FEM or FEA) which was originally developed in mid- 20th century is

today the prevailing method for numerical solution on PDEs [3]. The method is based on the discretization

of problem domain into finite elements which all together form a computational mesh [2], on which the PDE

is solved approximately. Each finite element consists of nodal points (or nodes), which form simple shapes

(e.g., triangles and quadrilaterals, tetrahedrals, hexahedrals etc.) with respect to problem dimension (e.g., Ω ∪

Γ ⊂ ℝ𝑛) [2]. These shapes are usually defined mathematically in terms of interpolatory polynomials

(Lagrange or Hermite) [4].

In order to use FEA, the problem needs firstly to be represented geometrically by a designer. This modelling

process is commonly embodied at the computers using Computer- aided design (CAD) as a tool. At most

cases, CAD systems construct the geometry by “interpolating” or “regressing” points using shape functions

(i.e., polynomials), creating a mesh. The most common of these polynomials for creating surfaces are the

Non-uniform rational B-splines (NURBS) [3], [4]. After geometry is created it needs to be imported into

FEA system that solves the problem. In FEA formulation the solution space approximates the initial model

space Ω ∪ Γ with different polynomials from CAD (e.g., Hermite or Lagrange Polynomials).

However a FEM mesh is created when the CAD model is translated into an analysis-suitable geometry [5].

This process of conversion is trivial and not automatically generated. According to industry two steps are

needed for this process. The first step of conversion would be to create a model in which analysis is possible

(20% of total analysis time), while the second step would involve creating a model which is suitable (80%

of total analysis time). This totals an 80/20 factor of conversion process versus actual analysis. Except this

bottleneck, recent trends taking place in engineering analysis and high-performance computing are also

demanding greater precision [5]. The classic CAD-to-FEA analysis method does not ensure exact geometrical

representations. The FEA mesh is only an approximation of CAD geometry, which is viewed as “exact” [4].

This approximation can lead to errors, for example in shell buckling analysis problems solution space must

be precise because they are very sensitive to geometric imperfections [4]. In fig 1.2 we can see schematically

the error between FEA mesh and exact geometry. The most common technique to enhance mesh’s geometrical

precision is by automatic adaptive mesh refinement which is not widely used in industry because it requires

access to the exact geometry, and thus it also requires continuous and automatic communication with CAD

which is impractical [5]. So, the classic analysis method is both time-consuming and unfortunate to exact

geometrical representations [3].

Figure 1.2: A simple representation of FEA mesh inaccuracy to exact geometry. Source: [5]

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

14

In order to address the problems of FEA, a new numerical method was proposed; the IsoGeometric Analysis

(IGA) [6]. In this technique CAD-based geometries are directly employed in analysis framework without

making approximations like in FEA. In other words, in IGA the same mesh which is used for construction of

exact CAD-based model is also used for analysis. According to T.J. Hughes, who is the father of IGA, with

this method three goals are satisfied [6]. The primary goal is to be geometrically exact on solution space no

matter how coarse the discretization of mesh is. Another goal is to simplify mesh refinement by eliminating

the need for communication with the CAD geometry once the initial mesh is constructed. The third goal is to

integrate the mesh generation process more tightly within CAD. The founding polynomial for this procedure

is the NURBS which is used widely in most CAD systems.

Even if, IGA codes are being developed the last 15 years, it is a relative new method, which has not yet been

adopted in industry. In industry FEA-based frameworks are dominating (ANSYS, Altair, NASTRAN, etc.)

because of the existence of a huge class of solved problems that has been examined over the 70 years that

this method exists. Moreover, IGA is taught at universities in master’s degree level, and there is not exist a

code that is user friendly for students to use in order to examine thoroughly the method. Moreover, the

problems that has been solved are limited on specific geometries and not at free-hand geometries. In addition,

there is not a GUI that permits further manipulation methods of computational mesh as refinement.

Consequently, to address the needs above an integrated tool is needed to be developed in order to help

students or even engineers to learn or use IGA. The term “integrated” means that user can construct the

geometry and then use analysis tools in same environment. MATLAB is the ideal language for the initial

development of that GUI because it is a programming environment that is easy to use. MATLAB had in May

2022, more than 4.1 billion users worldwide from universities, startups and major organizations and

companies [7]; thus is very popular to scientific and industry community.

1.2 Literature

A fundamental part of Isogeometric analysis is the model representation in CAD. Geometries are mostly

created using methods of computational geometry. The most common methods are either parametric feature-

based modelling (SolidWorks) or by using polynomial interpolation. Parametric feature-based modelling is

used mostly on solid modelling and is based creating geometries according to parameters. The parameters

are two; Numerical such as line lengths or arc radius and Geometrical such as tangency, parallel, etc. [8]. All

parameters are associated with each other to create the final geometry. On the other hand, polynomial

interpolation is used on curves, surfaces, or volumes. These methods exist approximately from 1912 with the

invention of Bernstein polynomials but they are used in CAD from mid-1960s. According to prof.

Christopher Provatidis at his book “Precursors of Isogeometric Analysis”, the basic stations in these methods

are six and they are presented in table below [2]:

CAD Interpolation Method Year

Coons Interpolation Formula 1964

Gordon Interpolation ~1970

Bézier Interpolation ~1970

B-Spline Interpolation 1972

NURBS Interpolation 1975

Barnhill Interpolation ~1980
Table 1-1: The basic stations of CAD interpolation.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

15

From the above, the NURBS interpolation is the most used CAD method nowadays. This method permits the

exact representation of all conical surfaces (cylinders, spheres, ellipsoids, etc.), so it is suitable for the free-

form surface modelling [4]. For example, CAD frameworks such as Rhinoceros [9] and Autodesk’s Maya

[10] provide a NURBS-based modelling system. However, NURBS modelling have a few drawbacks. For

instance, in order to construct a complex geometry like the hand in fig. 1.3a below they are needed 7 patches

(“surfaces”), so the need for data is relatively high. By the term “data” we mean the control points of the

patches where at NURBS are superfluous and exist only to satisfy topological contains without adding

additional information about geometry (see fig. 1.4). Furthermore, it can be seen in fig. 1.3b, at the green

square region, that the two NURBS surfaces do not create the desired continuous surface and a gap exists,

something that is common in NURBS formulation. All the above reasons are enough to search other

geometrical representations. In 2003 Sederberg introduces T-splines which is a generalization of NURBS.

Figure 1.3: (a) The hand produces by NURBS surfaces. (b) The gap that exists between surfaces in green area. Source:

[4].

Figure 1.4: A head NURBS model with 4800 control points. The red control points are the ones that do not add extra

information. Source: [4].

T-splines combine the advantages of NURBS as smoothness across patch and exact representation of quadric

surfaces along with the less information on data and creation on watertight geometries [4]. As it can be seen

in fig. 1.5 the control points grid or mesh that creates the surface are different in NURBS and T-splines. At

NURBS (fig. 1.5a) the control mesh is rectangular, meaning that each control point is connected to four

control points except on the boundary. This is happening because it is the result of a tensor product. On the

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

16

other hand, at T-spline control mesh, the internal control points have not necessarily four adjacent control

points. These control points are called T-junctions. This difference enables the local refinement property on

surface, meaning that the needed information can be on focused on regions of the surface according to

problems conditions. Because of their properties T-splines can create surface from a single patch without

gaps as in NURBS case. Furthermore, with T-splines we can manipulate trimmed geometries which gives

powerful possibilities on problem design [6].

Figure 1.5: (a) NURBS control mesh. (b) T-spline control mesh with T-junctions.

T-splines is a possible CAD method that can be a solution to CAD/CAE integration problem [6]. T-splines is

far more powerful than NURBS in CAD and with them more analysis-suitable geometries can be created.

These analysis-suitable geometries can be used by a FEA framework in order to create trustworthy analysis

models. In industry the only known framework that works this way is Autodesk’s Fusion 360. In Fusion we

can create T-spline surface (see fig. 1.6) and then solve a problem using FEA. However, the benefits of IGA

are not used. There are many integrated frameworks using FEA (ANSYS, SolidWorks, FEATools (see fig.1.7,

1.8, etc.), but none could use IGA. On the other hand, the last 15 years many problems have been solved, and

many IGA codes have been developed without importing them to an integrated environment. For instance,

in field of contact mechanics FEA creates numerical errors at simulation results in comparison with IGA,

which leads to more accurate and robust results using high order NURBS [11]. Also, in other areas such as

fluid mechanics, thin shell problems and structural vibration IGA dominates over FEA [11]. An open-source

IGA code is IGAFEM [12] which is a MATLAB suite with linear elasticity problems, plate and shell problems

using NURBS and T-splines in 2D and 3D dimension. Another open-source package in MATLAB is called

GeoPDEs and works as a starting point for learning Isogeometric analysis using NURBS. In 2010 Vuong et

al. created ISOGAT [13] a tutorial MATLAB code that solves a specific form of Poisson equation. All the

above frameworks have the disadvantage that they do not provide an integrated CAD/CAE environment and

the geometry is needed to be imported externally. ISOGAT differs on previous demand because it provides a

GUI, however the geometries that can be manipulated are specific and cannot change interactively. The only

known integrated environment that performs IGA is the Coreform IGA [14] which is using U-splines [15], a

new method of creating geometries, but it is under development and it costs.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

17

Figure 1.6: A T-spline surface in Autodesk’s Fusion 360.

Figure 1.7: Triangular mesh generation on FEATools.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

18

Figure 1.8: Solving a heat conduction problem on FEATools with Dirichlet boundary conditions.

1.3 Outline

On this thesis we try to solve some of the problems mentioned on previous section (1.2). Specifically, we

created an integrated CAD/CAE tool where the user can interactively manipulate geometry and perform

analysis using IGA. For the geometry representation NURBS will be used in the tool. The tool will provide

the user with mesh refinement options, variety on boundary conditions and interactive modification on the

geometries. The tool is called I3GA and constitutes an evolution of ISOGAT on use and capabilities. The

I3GA runs on MATLAB 2018b and later versions.

In Chapter 2 we will describe the basics of the theory of FEA along with the basics of IGA. In Chapter 3 we

will describe the crucial properties of the most notable basis functions. Basis functions are the piecewise

“polynomials” that along with control points form the geometry (i.e., curve, surface and solids). In Chapter

4 we will describe some mesh refinement options along with examples. In Chapter 5 we will describe the

theoretical formulation of IGA problems that will be solved along with another method which is Bézier

Extraction. Bézier extraction is a method of decomposing the surface into 𝐶0-continuous elements and use

them into analysis with FEA codes [11]. In Chapter 6 some interesting results will be implemented using

I3GA and we will introduce the reader to mesh adaptivity. Finally, we will mention some concluding remarks

and mention the next step on our research after this project.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

19

2 The Journey from FEA to IGA
The problems of the classic design to analysis (CAD-to-FEA) method which were mentioned on introduction

do exist, because CAD and FEA have been developed for different purpose. CAD is for designers and FEA

for engineers. Designers are focusing more on the tools which would help them to easily manipulate, visualize

and construct geometries. On the other hand, engineers want tools which would be computationally fast and

interpretable [16]. The tools are the different types of polynomials used for the creation of geometry or mesh.

These polynomials are called shape functions in FEA and basis functions in CAD. These tools were

developed independently from both communities [16]; therefore the communication between these systems

was not a straightforward task, as the two areas are practically decoupled. The isogeometric concept has

unified these CAD and analysis solvers (not only FEA) into a single framework, leading to elimination of

cost, time-consumption and inaccuracies created by FEA mesh and probably by communication of CAD and

analysis [6]. In this chapter we will present the evolution from FEA to IGA describing briefly the basic

mathematical concepts behind FEA, IGA, along with an intermediate method the isoparametric finite

elements.

2.1 Finite Element Method - FEM

As already been told in previous chapter the concept of finite element method is to discretize the problem

domain Ω into smaller subdomains Ωe (elements) in order to approximate the exact solution of PDE or

function 𝐮(𝐱, 𝑡) by solving it “approximately” in each element [17]. Supposing that the problem domain is

steady-state (time terms = 0) using the notation from [2] the unknown function is approximated by �̅�(𝐱),

which is a series expansion of 𝑛 terms in the form:

𝐮(𝐱) ≅ �̅�(𝐱) = ∑𝑁𝑖(𝐱)𝐚𝑖

𝑛

𝑖=1

= 𝐍𝐚 (2.1)

Where, 𝑛 is the number of nodes, 𝑁𝑖(𝐱) are the weighting or “shape” functions prescribed by physical

coordinates of each node and 𝐚𝑖 are the unknown nodal parameters that have to be evaluated. These shape

functions are defined usually locally for elements [17] and are based on interpolatory polynomials [4]. The

nodal values 𝐚𝑖 are computed by formulating a system of 𝑛 equations where the strong form of eq. (1.1) (or

system equations [17]) is transformed to a discretized integral form. Integrating PDE leads to its

approximation element by element and then by a suitable assembly a global approximate solution is obtained

[17]. One of the most notable and precise methods for obtaining this approximation is the weighted residuals

method or Galerkin method [17].

The basic idea of Galerkin procedure is that PDEs can be "integrally" satisfied in Ω ∪ Γ if firstly they are

multiplied with a suitable set of linear independent arbitrary functions 𝑊𝑖(𝑥), 𝑖 = 1,2, … , 𝑛. Let 𝐷(𝐮(𝐱)) −

𝐟 = 𝟎 ≡ 𝐃(𝐮) = 𝟎 be a system (in matrix form) of 𝑛 differential equations satisfied in Ω and 𝐁(𝐮) = 𝟎 is

the system of respective boundary conditions on Γ. If there is a suitable set of 𝑊𝑖(𝐱) and 𝑊𝑖(𝐱) for 𝐃(𝐮) and

𝐁(𝐮) respectively then Galerkin proposes that the PDE is satisfied wherever the integral below is satisfied:

∫𝐖T𝐃(𝐮)dΩ
Ω

+∫�̅�T𝚩(𝐮)dΓ
Γ

= 0 ⇔

⇔ ∫ ∑𝑊𝑖𝐷𝑖(𝐮)

𝑛

𝑖=0

dΩ
Ω

+∫∑�̅�𝑖𝐵𝑖(𝐮)

𝑛

𝑖=0

dΓ
Γ

= 0 (2.2)

The functions 𝑊𝑖(𝐱), 𝑊𝑖(𝐱) are chosen in order to avoid infinite integrals and also be at least 𝐶𝑚−1-

continuous if m is the derivative order of 𝐃(𝐮) or 𝐁(𝐮) [17]. The eq. (2.2) is satisfied only in one element

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

20

Ω𝑒 (and its respective boundary Γ𝑒 if exists), so a proper sum of all integrals in each element should be

computed in order to calculate the exact value of the unknowns 𝐚𝑗. In order to achieve the correct

approximation, the functions 𝐖, 𝐖 is favorable to be written as an expansion of the unknowns as:

𝐖 =∑𝐰𝑗(𝐱)𝛿𝐚𝑗

𝑛

𝑗=1

 �̅� =∑�̅�𝑗(𝐱)𝛿𝐚𝑗

𝑛

𝑗=1

(2.3)

Where, 𝛿𝐚𝑗, 𝛿�̅�𝑗 are arbitrary parameters and 𝒘𝑗 , �̅�𝑗 are also linear independent weighting functions. Then

by inserting eq. (2.1) and (2.3) to (2.2) we have:

(2.2)
(2.1)+(2.3)
⇒ ∫𝐰𝑗

T𝐃(𝐍𝐚)𝛿𝐚𝑗
TdΩ

Ω

+∫�̅�𝑗
T𝚩(𝐍𝐚)𝛿𝐚𝑗

TdΓ
Γ

= 0 ⇒

⇒ 𝛿𝐚𝑗
T [∫𝐰𝑗

T𝐃(𝐍𝐚)dΩ
Ω

+∫�̅�𝑗
T𝚩(𝐍𝐚)dΓ

Γ

] = 0

The δ𝒂𝑗 are arbitrary and constant so from the above equation we have 𝑛 equations to compute the unknowns

𝒂𝑗 in form:

∫𝐰𝑗
T𝐃(𝐍𝐚)dΩ

Ω

+∫�̅�𝑗
T𝚩(𝐍𝐚)dΓ

Γ

= 0, 𝑗 = 1,… , n (2.4)

The procedure represented by eq. (2.4) is called method of weighted residuals or generalized finite element

method. The term 𝐃(𝐍𝐚) is called residual or error and is obtained by substitution of the approximation into

PDE [17] (𝑩(𝐍𝐚) is the residual of boundary conditions). The system derived from eq. (2.4) is closer to the

physical problem than the one defined by PDE as the solution in former case is becoming more smooth [17].

Alternatively, eq. (2.4) is the weak form of the problem. As already been told in order to realize the analysis

in whole problem domain eq. (2.4) must be computed for each element and then take the whole sum for all

𝑚 elements:

∑(∫𝐰𝑗
T𝐃(𝐍𝐚)dΩ

Ω

+∫�̅�𝑗
T𝚩(𝐍𝐚)dΓ

Γ

)

𝑚

𝑒=1

= 0, 𝑗 = 1,… , n (2.5)

Proportional to the analysis case, the weighting function could take different forms. Some of most common

choices are:

Collocation methods:

In collocation methods the differential equation is satisfied in 𝑛 discrete positions of problem domain Ω,

without excluding the boundary in general case [2], [18]. In this condition a system of n equations is formed

leading to finding the unknown parameters. The weighting function that fulfills this condition is the Dirac 𝛿-

function, Δ𝑖 . Collocation methods are used on elliptic, parabolic or hyperbolic problems (linear or nonlinear)

for example in vibration analysis of elastic rods [19]. There are two main types of collocation methods the

Point and Subdomain (or Finite Volume method) collocation [17]:

• Point collocation: 𝐰𝐣 = 𝚫𝑗1. This procedure is equivalent to simply making the residual zero at 𝑛

points within Ω and then integration can be satisfied.

1w𝑖 ≡ 𝚫𝑖 = {
+∞, 𝑥 = 𝑥𝑖 ; 𝑦 = 𝑦𝑖 ; 𝑧 = 𝑧𝑖

0, otherwise
 and ∫ 𝐰𝑖dΩΩ

= 𝐈

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

21

• Subdomain collocation: 𝐰𝐣 = 𝐈 (the unit matrix), in each subdomain Ω𝑗 and zero elsewhere; thus,

the integrals of residuals in eq. (2.5) becomes 0 in each Ω𝑗.

The choice of collocation points in each method can influence the numerical solution [2], [18]. Proportional

to the position of collocation points in [2], [18], we have Nodal, Orthogonal and Least-squares collocation.

For more information on Collocation methods see Provatidis [2], [18] and Zienkiewicz [17].

Galerkin or Bubnov-Galerkin Method:

In Galerkin method the used weighting functions are the shape functions 𝑁𝑗(x) used for the approximation

of exact solution. The shape functions give the property of “locality” on analysis procedure; thus is the most

used method in approximation of problems. The shape functions can have different forms as interpolatory

polynomials, splines , trigonometric functions, wavelets etc. [18].

The Bubnov-Galerkin Method for weighting functions applied to eq. (2.5) gives the most used method for

numerical analysis, the Finite Element Method. In FEM the problem domain is discretized into a finite

number of elements in which each element is connected to another via nodes. Each node constitutes a vector

of unknown parameters 𝐚𝑗 and a cluster of nodes forms an element or shape. The cluster of elements forms

the computation mesh over the problem domain in which the approximation is done. The elements are not

the same with each other (Laplacian grid) instead their shape or size differs. For example in positions where

source terms affect, the elements must be smaller in order to stabilize the effect of high gradient of problem

variables 𝐮 [2] or in cases where the problem domain is irregular, the elements should be also irregular in

order to be more accurate. In each element the variable 𝐮 is described by eq. (2.1) where the shape functions

are given in Cartesian coordinates of problem domain or other coordinate system proportional to element

kind. Independently of elements' kind or the PDE's initial form (linear or nonlinear) the final purpose of FEM

is to derive a global system of equations which can be solved numerically and find the parameters 𝐚. In other

words, the eq (2.5) can be written as:

(2.5)
𝐰𝑗,�̅�𝑗→𝐍

⇒ ∑(∫𝐍T𝐃(𝐍𝐚)dΩ
Ω

+∫𝐍T𝚩(𝐍𝐚)dΓ
Γ

)

𝑚

𝑒=1

= 0, 𝑗 = 1,… , n ⇔

⇔ 𝐊Global𝐚 = 𝐟 (2.6)

where, 𝐊Global ∈ ℝ
𝑛×𝑛 is the stiffness matrix of problem domain, 𝐚 ∈ ℝ𝑛 is the vector of nodal parameters

and 𝐟 ∈ ℝ𝑛 is the vector of source terms. By applying the boundary conditions then from eq. (2.6) we can

find the nodal values 𝐚. The stiffness matrix is symmetric because of shape functions that are used [17] and

in most cases is positive definite. The stiffness matrix contains information on the steady properties of

problem (i.e., on structural problems the stiffness matrix contains information for density, elasticity, geometry

of structure etc.). The 𝐊Global and 𝐟 are defined as [17]: 𝐊Global = ∑ 𝐊𝑒𝑚
𝑒=1 and 𝐟 = ∑ 𝐟𝑒𝑚

𝑒=1 . If the problem

is hyperbolic or parabolic then derivatives of time exist in problem's strong form; thus, a similar analysis

should be applied when except of stiffness matrix there is also mass matrix. Finally, the key difference

between a linear and a nonlinear FEM problem is that the solution of eq. (2.6) is far more complex as in

nonlinear case 𝐊Global = 𝐊Global(𝐚). In Appendix:A.1 we present an example of FEM formulation on a

steady-state elasticity problem [18].

Of course, most FEM problems due to their complexity are solved with the use of computers and the

calculations are numerical and not analytical. For example, the integrals in eq. (2.6) are calculated using

numerical schemes (i.e., Gauss Quadrature). A traditional code-architecture of FE procedure for a structural

problem is presented on fig. 2.1 below [11]. A FEM code consists of 3 stages the pre-processing stage where

the mesh is constructed along with the definition of boundary conditions and maybe some numerical

coefficients, the processing stage where the solution of eq. 2.6 is implemented and the post-processing stage

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

22

where some quantities of interest (e.g., derivatives) may be computed. In this flowchart the researchers used

Lagrangian shape functions and Gauss Quadrature for numerical integration.

Figure 2.1: A flowchart of traditional FE code. The I,II,III are the 3 stages of FE code described on section 2.1. Source

[11].

2.2 Isoparametric Finite Elements

The mesh generation described on previous section is not necessarily respect the initial geometry of domain

and when the approximation is done it is not decent. The use of eq. (2.1) as the only starting point for FEM

formulation may not be sufficient in terms of accuracy and computational cost of procedure, because the

computational mesh is not necessarily close to real geometry. Geometries are in fact irregular in real world

problems. The classic elements are most commonly triangles and quadrilateral elements. The triangular

elements can be used in both regular or irregular geometries but the higher computational power and the

lower accuracy are needed to take into consideration [20]. On the other hand, quadrilateral elements can

surpass the problems of triangles except the fact that cannot be applied to irregular geometries because they

maintain their orthogonality on Cartesian space. In order to address these problems and create meshes that

are closer (not exact) to problem domain and the compatibility of variables 𝐮 between neighboring elements

is ensured [20], researchers have introduced the isoparametric element concept. References on isoparametric

elements, a reader can find on [18], [21].

Isoparametric elements use the same shape functions used for the interpolation of elemental nodal values as

for the coordinates of element’s nodes [18]. In other words, the basic relationships for isoparametric elements

are:

Geometry: 𝐱 ≅ �̃� = ∑ 𝑁𝑖𝐱𝑖
𝑛
𝑖=0

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

23

Field variables: 𝐮 ≅ �̃� = ∑ 𝑁𝑖𝐮𝑖
𝑛
𝑖=0

Where 𝑛 is the number of nodes, 𝑁𝑖 the shape functions and 𝐱𝑖, 𝐮𝑖 are the nodal values of coordinates and

field variables respectively. The isoparametric formulation begins by defining a mesh not in Cartesian

(physical or global) space but on parameter (natural or intrinsic) space where the elements are regular. Let

the natural coordinates (𝜉, 휂, 휁) defined on interval [−1,1]. Defining shape functions on natural coordinates

𝑁 = 𝑁(𝜉, 휂) permits integration using numerical schemes as Gaussian Quadrature, which is defined on

interval [−1,1] and the creation of more flexible and irregular curved elements on Cartesian space (see fig.

2.2 in 2D case). The element on parameter space is called parent element and on Cartesian space global

element. The two coordinate systems for each element relate to each other using a transformation mapping

𝚽. This transformation mapping is achieved using Jacobian matrix 𝐉 which relates the derivatives of

coordinate system. A family of shape functions that is used on isoparametric elements are 𝑝𝑡ℎ order Lagrange

polynomials 𝐋𝑖
p(𝜉).

Figure 2.2: A 2-D schematic representation of an isoparametric quadrilateral element in Cartesian space and its respective

element on parameter space. The two elements are related with a mapping 𝜱.

A Lagrange polynomial L𝑖
p(𝜉) of 𝑝𝑡ℎ order associated with node 𝜉𝑖 is able to interpolate (𝑝 + 1) points and

can be defined as:

L𝑖
p(𝜉) = ∏

𝜉 − 𝜉𝑘
𝜉𝑖 − 𝜉𝑘

𝑝+1

𝑘=1,𝑘≠𝑖

(2.7)

with 𝑘 ∈ [1, 𝑝 + 1] and 𝜉 ∈ [−1,1]. Lagrange polynomials have interesting properties [11] that make them

suitable for FEM as:

• Kronecker’s delta: L𝑖
p
(𝜉𝑗) = 𝛿𝑖𝑗 = {

0, 𝑖 ≠ 𝑗
1, 𝑖 = 𝑗

• Partition of Unity: ∑ L𝑖
p(𝜉) = 1𝑛

𝑖=1

• Linear Independence: ∑ 𝛼𝑖L𝑖
p(𝜉) = 0𝑛

𝑖=1 ⇔ 𝛼𝑘 = 0, 𝑘 = 1,2, … , 𝑛

• −1 ≤ L𝑖
p(𝜉) ≤ 1

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

24

Each property has its own meaning. The “Partition of Unity” and “Linear Independence” properties are

“must” properties that a shape function should satisfy in order to be used in analysis. The “Kronecker's delta”

property notes that Lagrange polynomials can be used as one dimensional shape functions [18]. In fact,

Lagrangian shape functions have very interesting properties that permit the isoparametric formulation not

only in one dimension but in more dimensions2\. In Appendix A.2 we will see an example of isoparametric

formulation using Lagrangian shape functions. Except for the benefits of Lagrange polynomials there are

also some shortcomings that will be explained in section about IGA's basis functions. Briefly Lagrangian

shape functions are sensitive to higher order formulations and present only 𝐶0-continuity across the inter-

element boundary [11]. In general, higher order shape functions lead to more accurate approximations.

However, Lagrangian functions are restricted mostly on orders 𝑝 ≤ 2, because they present non-smooth

interpolations. The second disadvantage leads to inaccuracy during the calculation of derivative quantities as

strains or stresses in structural mechanics problems. Even their problems, Lagrange polynomials are the most

popular shape functions in FEA community [11] and they have been integrated in a variety of research and

industrial FEA software.

2.3 Isogeometric analysis: Intuition and Notation

With isoparametric finite elements, the analysis approximates geometry without being exact. This leads to

accuracy problems within process and a bottleneck in duration of analysis procedure as it is time-consuming

to adjust a suitable mesh close to the geometry of problem domain. The geometric models of problem

domains are constructed by CAD software. A possible solution to these problems could be the use of CAD

representations as an analysis model. This is the concept of isogeometric analysis (IGA). In IGA the analysis

is executed in a physical mesh which is the decomposition of CAD geometry [5]. In fig. 2.3 we can see the

difference between a physical and a control mesh which create the former for the same surface. In FEM the

control mesh has the same role as the physical mesh in IGA. Furthermore, in IGA the control points in most

cases are outside the surface.

Unlike FEM, the mesh in IGA consists of surfaces or patches. Each patch is not considered as one element

but the image of rectangular elements in parameter space [4]. In isoparametric formulation, the parameter

space consists of one parental element which is mapped into each element of physical space in contrast to

IGA where several elements of parameter space correspond to the ones in physical space. The mapping is

taken place using again the Jacobian matrix. The patches are constructed by linear combination of piecewise

polynomials consisting of suitable basis functions along with the points of control mesh. The term basis

function has a similar role as shape functions in analysis [5], however they have different properties

permitting the exact and smooth designing of geometrical objects.

2 We will see in next section how a shape function can be extended to further dimensions.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

25

Figure 2.3: Schematic representation of isogeometric concept. A patch is depicted on physical space with both physical

and control mesh. Physical space is the image of parameter space in which basis functions are defined constructing the

surface in physical space. Parameter space is constructed from knot vectors and the index space shows the support of

basis functions from knots. Source:[5].

Each patch is decomposed into knot vectors [5]. The knot vector is a nondecreasing set of 𝜉𝑖 ∈ ℝ in each

direction of parameter space that define the space where the basis functions are defined. The knot vector can

be written as:

Ξ = {𝜉1, 𝜉2, … , 𝜉𝑖 , … , 𝜉𝑛+𝑝+1}
T

(2.8)

where, 𝜉𝑖 ∈ ℝ is the 𝑖𝑡ℎ knot, 𝑖 = 1,2, … , 𝑛 + 𝑝 + 1, 𝑛 the number of basis functions comprising the spline

space [3], [16] and 𝑝 is the polynomial degree of basis functions. The length of knot vector is defined as

‖Ξ‖ = 𝑛 + 𝑝 + 1. If a knot vector has all knots equally spaced then it is called uniform, otherwise it is called

non-uniform. Furthermore, in CAD industry the used basis functions commonly use knot vectors that are

“open”. A knot vector is open if its first and last knots are repeated 𝑝 + 1 times. The main property of open

knot vectors is that they are interpolatory at the boundaries of parameter space (e.g., 𝜉1, 𝜉𝑛+𝑝+1), something

important for the proper definition of boundary conditions in problem domain [3].

In fig. 2.3 an example of the above definitions is shown. A patch in physical space is constructed by a linear

combination of basis functions along with control points defined in a control mesh. The parameter space is

defined from open knot vectors 𝚵 = {0,0,0,
1

2
, 1,1,1}

T

 and 𝐇 = {0,0,0,
1

3
,
2

3
, 1,1,1}

T

 and each element is

defined in the interval of different knots. For example, the yellow element in figure spans in 𝜩𝒓⊗𝑯𝒓 =

[
1

2
, 1] × [

1

3
,
2

3
]. Εach knot vector (in each direction) defines a set of basis functions. Because of the repetition

of knots in knot vectors, the parameter space is not suitable to present the support of basis functions.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

26

Therefore, in IGA was introduced the concept of index space, which is a space where all knots are plotted at

equally space intervals and each line is labelled with its index value [4], [22]. The knot vectors are selected

based on the number of necessary elements and the continuity level across the element boundary [4], [5].

Each type of basis function is constructed differently after selecting the appropriate knot vector which values

are positive and can vary from 0 to 1. In next chapter we will present the main basis functions used in IGA.

The general architecture of a code in IGA and FEM do not change a lot except the fact that instead of

computing shape functions, we evaluate the basis functions at different values of parameter space. This can

be seen in fig. 2.4 where we see the basic algorithm of an IGA code. When comparing with fig. 2.1 all steps

are the same except one.

Figure 2.4: The basic algorithm of an IGA code. Source: [11].

In general, IGA manages better results in terms of accuracy and efficiency than FEM. IGA can be used in

the analysis of many difficult engineering problems in which FEM fails. For example, in contact mechanics

FEM results in faceted mesh representations of contact surfaces, leading to numerical errors in comparison

with IGA where the higher continuity of IGA’s basis functions leads smoother mesh representation; thus,

more accurate results [23]. Another field except physical problems where IGA achieves great results is in

structural shape optimization [22] because in IGA the design (geometric) and the analysis model of problem

domain is practically the same in contrast to FEM method where the design needs to be done in CAD system

which differs from the analysis model.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

27

3 Basis Functions

As already been mentioned in previous chapter the surface in physical space is constructed using a mesh of

control points along with a suitable piecewise polynomial function defined in parameter space. In CAD

theory these functions are called basis functions and they are used because of their properties on representing

geometrical objects. In these chapter we will describe the properties of the most notable basis functions, along

with the function that was used in I3GA; NURBS.

3.1 Bernstein Basis Functions

Let a univariate parameter space 𝜉 ∈ [0,1], then a 𝑝𝑡ℎ order Bernstein basis function 𝐵𝑖
𝑝(𝜉) is defined as

[24]:

𝐵𝑖
𝑝(𝜉) = (

𝑝
𝑖
) (1 − 𝜉)𝑝−𝑖𝜉𝑖 (3.1)

with 𝑖 = 0,1, … , 𝑝.

Bernstein polynomials were widely in CAD industry for the construction of curves and surfaces and are still

usable in aeronautical industry. Let {𝐏𝑖 ∈ ℝ
ds|𝑖 = 0,1, … , 𝑝} a set of points in ds-dimensional space. Then

the curve defined by linear combination of these points and suitable Bernstein polynomials is the 𝑝𝑡ℎ order

Bézier curve and it is defined as:

𝐶(𝜉) = ∑𝐵𝑖
𝑝(𝜉)𝐏𝑖

𝑝+1

𝑖=1

=∑𝐵𝑖
𝑝(𝜉) [

𝑥1𝑖
𝑥2𝑖
⋮
𝑥ds𝑖

]

𝑝+1

𝑖=1

(3.2)

The 𝐏𝑖 with 𝑖 = 1,… , 𝑝 + 1 is called Control Point (CP). The properties of Bézier curve are the following:

1. Non-Negativity: 𝐵𝑖
𝑝(𝜉) ≥ 0∀𝑖, 𝑝: 𝜉 ∈ [0,1]

2. Partition of Unity: ∑ 𝐵𝑖
𝑝(𝜉)

𝑝
𝑖=0 = 1

3. 𝐵0
𝑝(0) = 𝐵𝑝

𝑝(1) = 1

4. 𝐵𝑖
𝑝(𝜉) attains exactly one maximum in the interval [0,1], at 𝜉 =

𝑖

𝑝
.

5. Symmetry: For any 𝑝, the set of polynomials {𝐵𝑖
𝑝(𝜉)} is symmetric with respect to 𝜉 =

1

2
.

6. Recursive definition: 𝐵𝑖
𝑝(𝜉) = (1 − 𝜉)𝐵𝑖

𝑝−1(𝜉) + 𝜉𝐵𝑖−1
𝑝−1(𝜉)

7. 𝐵𝑖
𝑝(𝜉) ≡ 0 if 𝑖 < 0 or 𝑖 > 𝑝

8. Derivatives: 𝐵𝑖
𝑝′(𝜉) =

d𝐵𝑖
𝑝(𝜉)

d𝜉
= 𝑝 (𝐵𝑖−1

𝑝−1(𝜉) − 𝐵𝑖
𝑝−1(𝜉))

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

28

Figure 3.1: A typical cubic Bézier curve. The red line is called control polygon.

Bézier curve is practically a univariate polynomial of 𝑝𝑡ℎ degree. This formulation has a lot of shortcomings

that make them an inadequate choice in use of professional CAD frameworks, however we mention them for

historic reasons and because they are used in a specific form in IGA. Their main disadvantages are [24]:

• The numerical processes concerning these curves are inefficient because these curves have a relative

high degree (number of control points -1) and high degree polynomials are numerically unstable.

• These curves have not the local support property. The local support property implies that each basis

function is nonzero in only limited number of subintervals [𝜉𝑖 , 𝜉𝑖+1] and not in the entire knot vector.

• Continuity of these curves depends on control point’s position, as a result there is difficulty in

maintaining continuity while changing the position.

• Redundant data need to be stored in memory during numerical processing using these curves.

3.2 B-Splines

B-splines are basis functions which form curves, surfaces or volumes that address the disadvantages of

Bernstein polynomials. These curves are constructed from piecewise polynomials and are defined in a

parametric space by a knot vector Ξ. These knot vectors are open and non-uniform in most cases in CAD

applications. There are many definitions of B-splines basis functions [24] but the most computationally

efficient is the Cox-De Boor recurrence formula. Thus, a basis function 𝑁𝑖
𝑝
 of a given 𝑝 degree is defined as:

𝑁𝑖
𝑝(𝜉) = {

𝐻𝜉𝑖(𝜉) − 𝐻𝜉𝑖+1(𝜉), 𝑝 = 0

𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖

𝑁𝑖
𝑝−1(𝜉) +

𝜉𝑖+𝑝+1 − 𝜉

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝑁𝑖+1
𝑝−1(𝜉), 𝑝 ∈ ℕ∗

(3.3)

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

29

Where 𝐻𝜉𝑖(𝜉) is the Heaviside function activated at 𝜉 = 𝜉𝑖 , 𝜉𝑖 ∈ Ξ is a knot. B-splines basis functions have

interesting properties as [3], [4], [11]:

• Non-Negativity: 𝑁𝑖
𝑝(𝜉) ≥ 0, ∀𝜉 ∈ [𝜉1, 𝜉𝑛+𝑝+1]

• Partition of Unity: ∑ 𝑁𝑖
𝑝(𝜉)𝑛

𝑖=1 = 1

• Linear Independence: ∑ 𝛼𝑖𝑁𝑖
𝑝(𝜉)𝑛

𝑖=1 = 0 ⇔ 𝛼𝑘 = 0, 𝑘 = 1,2, … , 𝑛

• Compact or Local support: {𝜉|𝑁𝑖
𝑝(𝜉) > 0} ⊂ [𝜉𝑖 , 𝜉𝑖+𝑝+1]

• Continuity: The basis functions are 𝐶∞-continuous meaning that basis functions of degree 𝑝 have

infinitely continuous derivatives. However, the continuity at knots is 𝐶𝑝−𝑘 where 𝑘 is knot’s

multiplicity. If 𝑘 = 𝑝 the basis function is 𝐶0-continuous and interpolatory at knot’s location.

Below an example of B-splines continuity is depicted for quadratic basis functions (𝑝 = 2) and knot

vector Ξ = {0 0 0 1 2 3 4 4 5 5 5}T or {0 0 0 0.2 0.4 0.6 0.8 0.8 1 1 1}T. This knot vector results in
(11 − 2 − 1 = 8) basis functions (see fig. 3.2). Each basis function corresponds to different color. The

analytical form of these basis function is calculated in Appendix B.

Figure 3.2: Quadratic B-spline basis functions for 𝚵 = {0 0 0 0.2 0.4 0.6 0.8 0.8 1 1 1}T. The plots were done in

MATLAB using NURBS toolbox by M.Spink

From figure above we can see that the basis functions are interpolatory at 𝜉 = 0 and 𝜉 = 1 due to the fact Ξ

is open knot vector. Except 𝜉 = 0.8 basis functions are 𝐶2−1 = 𝐶1-continuous at other knots. At 𝜉 = 0.8

basis function is 𝐶0-continuous and interpolatory because the multiplicity of this knot is equal to the degree

of basis function. These properties pass to the B-spline-based geometries (curves, surfaces, and volumes). In

this special case where at knot 0.8 basis function takes its maximum value; the basis function and the knot

are in one-to-one correspondence but in general this is not the case. The locations in parameter space in which

basis functions are associated (gaining their maximum value) are called anchors. The anchors 𝑡𝑖 are addressed

by the order of basis functions as:

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

30

𝑡𝑖 = {

𝜉
𝑖+
(𝑝+1)
2

, 𝑝 = 2𝑐 + 1, 𝑐 ∈ ℕ

1

2
(𝜉
𝑖+(

𝑝
2
)
+ 𝜉

𝑖+(
𝑝
2
)+1
) , 𝑝 = 2𝑐, 𝑐 ∈ ℕ

According to this definition, the anchors for this knot vector Ξ = {0 0 0 0.2 0.4 0.6 0.8 0.8 1 1 1}T are 𝐓 =
{0 0.1 0.3 0.5 0.7 0.8 0.9 1}T. We can observe 𝑡6 = 𝜉7 = 𝜉8 = 0.8; therefore, one-to-one correspondence

between knots and basis functions exist at this point.

The derivatives of B-splines basis functions can be calculated by the relationships below [24]:

➢ First Derivative:

𝑁𝑖
𝑝′(𝜉) =

𝑝

𝜉𝑖+𝑝 − 𝜉𝑖
𝛮𝑖
𝑝−1(𝜉) −

𝑝

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝛮𝑖+1
𝑝−1(𝜉)

➢ 𝜅𝑡ℎ order Derivative:

𝑁𝑖
𝑝(𝜅)(𝜉) = 𝑝(

𝑁𝑖
𝑝−1(𝜅−1)(𝜉)

𝜉𝑖+𝑝 − 𝜉𝑖
−
𝑁𝑖+1
𝑝−1(𝜅−1)(𝜉)

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
)

or

𝑁𝑖
𝑝(𝜅)(𝜉) =

𝑝!

(𝑝 − 𝜅)!
∑𝑎𝜅,𝑗𝑁𝑖+𝑗

𝑝−𝜅(𝜉)

𝜅

𝑗=0

with 𝑎0,0 = 1

𝑎𝜅,0 =
𝑎𝜅−1,0

𝜉𝑖+𝑝−𝜅+1 − 𝜉𝑖

𝑎𝜅,𝑗 =
𝑎𝜅−1,𝑗 − 𝑎𝜅−1,𝑗−1

𝜉𝑖+𝑝+𝑗−𝜅+1 − 𝜉𝑖+𝑗
, 𝑗 = 1, … , 𝜅 − 1

𝑎𝜅,𝜅 = −
𝑎𝜅−1,𝜅−1

𝜉𝑖+𝑝+1 − 𝜉𝑖+𝜅

with 𝜅 ≤ 𝑝

B-splines Curves

The simplest geometry that can be constructed from linear combination of B-spline basis functions is the B-

spline curve. This curve is built using a set of control points {𝐏𝑖 ∈ ℝ
ds|𝑖 = 0,1, … , 𝑝} along with basis

functions and is defined as:

𝐶(𝜉) =∑𝑁𝑖
𝑝(𝜉)𝐏𝑖

𝑛

𝑖=1

=∑𝑁𝑖
𝑝(𝜉) [

𝑥1𝑖
𝑥2𝑖
⋮
𝑥ds𝑖

]

𝑛

𝑖=1

(3.4)

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

31

Where 𝑛 is number of basis functions (or control points) and 𝑝 is the degree of the curve. The order of a B-

spline curve is denoted as 𝑘 and it is 𝑘 = 𝑝 + 1. The number of basis functions it is the same as control points

and it is calculated as: 𝑛 = ‖Ξ‖ − 𝑘. In fig. 3.2 an example of a quadratic B-spline curve (cyan color) is

presented based on knot vector Ξ = {0 0 0 0.2 0.4 0.6 0.8 0.8 1 1 1}T.

Figure 3.3: A quadratic B-spline curve.

The red piecewise curve is called control polygon. From figure the curve inherits the continuity properties of

respective basis functions. At ends the curve is interpolatory because the knot vector is open. Curve is also

interpolatory and 𝐶0-continuous at 𝜉 = 0.8 because the knot’s multiplicity is 2. Everywhere else the curve

is 𝐶1-continuous. Furthermore, B-spline curves except for the properties of their basis functions, they have

also interesting properties as [4], [25]:

• Affine invariance: An affine transformation 𝑭 as rotations or translation in space is applied to the

curve if it is applied to its control points, (3.4)
𝑭
⇒ 𝑭(𝐶(𝜉)) = 𝑭(∑ 𝑁𝑖

𝑝(𝜉)𝐏𝑖
𝑛
𝑖=1) =

∑ 𝑁𝑖
𝑝(𝜉)𝑭(𝐏𝑖)

𝑛
𝑖=1 .

• Convex hull: The curve lies in convex hull created by its control polygon (see the green areas in fig.

3.4).

• Variation diminishing: A curve cannot cross any straight line (or affine hyperplane) more often than

its control polygon. This property gives the advantage that in higher degree the curves preserve their

monotony and do not show oscillating phenomena as Lagrange shape functions in FEA (see fig.3.5).

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

32

Figure 3.4: The convex hull property for a quadratic B-spline curve.

Figure 3.5: (a) Lagrange oscillations in discontinuous data and higher degree. (b) Variation diminishing property. Source:

[16].

Another important property of B-splines is the local control property on curve. The compact support property

tells us practically that 𝑁𝑖
𝑝(𝜉) > 0, 𝜉 ∈ [𝜉𝑖 , 𝜉𝑖+𝑝+1). When 𝜉 ∉ [𝜉𝑖 , 𝜉𝑖+𝑝+1) ⇒ 𝑁𝑖

𝑝(𝜉) = 0. So, the basis

function is active only in a specific region on parameter space. But every control point corresponds to a basis

functions. So, moving a control point to another position in physical space do not change the whole curve as

it happens on Bézier curves, but it changes the part of the curve where basis function is active [26]. That

gives local control on curve, something important when a geometry is manipulated. That property can be

seen on fig. 3.6 whereby changing the 3rd control points it is affected only the part of curve which depends

on 𝑁3
𝑝(𝜉).

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

33

Figure 3.6: Local support property on a quadratic B-spline curve. (a) The physical space, moving the 3rd control point (b)

The corresponding basis function in parameter space affecting only a specific part of the curve. Source: [26].

B-splines Surfaces

The theory of B-splines in curves is extended to surfaces using the tensor product operation between basis

functions on different directions. A surface element in parametric space has the form 𝛯 ⊗𝛨 =

[𝜉𝑖 , 𝜉𝑖+1] × [휂𝑗, 휂𝑗+1]. The extended element which supports the basis according to local support property is

𝛯𝑒𝑥𝑡⊗𝛨𝑒𝑥𝑡 = [𝜉𝑖 , 𝜉𝑖+𝑝+1] × [휂𝑗, 휂𝑗+𝑞+1] where, 𝑝, 𝑞 are the degrees of basis functions in two parametric

directions. Then the basis functions that is supported by 𝛯𝑒𝑥𝑡⊗𝛨𝑒𝑥𝑡 are the tensor product of basis function

in two different parametric directions.

𝑁𝑖,𝑗
𝑝,𝑞(𝜉, 휂) = 𝑁𝑖

𝑝(𝜉)𝛮𝑗
𝑞(휂) (3.5)

Where, 𝑁𝑖
𝑝(𝜉), 𝛮𝑗

𝑞(휂) are the basis functions in different directions. Given a control net 𝐏𝑖𝑗 with 𝑖 = 1,2, … , 𝑛

and 𝑗 = 1,2, … ,𝑚 according to eq. (3.5) the surface 𝑆(𝜉, 휂) will be defined as:

𝑆(𝜉, 휂) = ∑∑𝑁𝑖,𝑗
𝑝,𝑞(𝜉, 휂)

𝑚

𝑗=1

𝑛

𝑖=1

𝐏𝑖𝑗 ⇔

⇔ 𝑆(𝜉, 휂) = ∑∑𝑁𝑖
𝑝(𝜉)𝛮𝑗

𝑞(휂)

𝑚

𝑗=1

𝑛

𝑖=1

𝐏𝑖𝑗 (3.6)

The B-spline surfaces have the same properties as B-splines curves. Below it is shown an example of B-

spline surface using I3GA. The surface is a square with side length a = 1 m. In this example we have knot

vectors 𝚵 = {0 0 0 1 1 1}T and 𝚮 = {0 0 0 1 1 1}T. According to these open knot vectors the degree of basis

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

34

functions per parametric direction will be 𝑝 + 1 = 3 ⇔ 𝑝 = 2. Having only knot vectors we can calculate

the basis functions. In order to acquire a surface, we also need a set {𝐏𝑖𝑗} of control points. Given the control

points net of table 3.1 then the surface is shown on fig. 3.7.

Control Points

0.000 0.000

0.500 0.000

1.000 0.000

0.000 0.500

0.500 0.500

1.000 0.500

0.000 1.000

0.500 1.000

1.000 1.000

Table 3-1: Control Points for the example surface.

Figure 3.7: The control mesh and the example surface in I3GA.

The number of control points is in correspondence with the number of selected control points (9) of table 3.1

because according to knot vectors the number of control points per direction need to be 𝑛 + 𝑝 + 1 = 6 ⇒

𝑛 = 3. So, a 3 × 3 grid is needed to be given. The surface is 𝐶1-continuous in every internal knot and at the

boundary of control mesh every control point is interpolatory to surface because the knot vectors are open.

The basis functions for this case are shown in figure below. They are 9 as the number of control points.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

35

Figure 3.8:Basis functions for the example case.

As we can see every basis functions is activated near the corresponding control point where they take their

maximum value. The local support property is proven also on B-spline surfaces, because of the tensor product

property. If we move only one control point to a specific area of the surface then only this area will be affected

as it is shown in fig. 3.9 because the corresponding basis function will be unaffected. The fact that the surface

is of degree 2 can be proven from the curve that is created on the left side of square. I3GA has been

programmed in order to manipulate the geometry interactively. We can simply change the geometry by

clicking and moving with a mouse the control point to a specific position.

Figure 3.9: Moving only one control point, only a specific region is changed.

The theory of B-spline surface is extended also to volumes, where we will have got 3 knot vectors per

parametric direction. If the degree of functions in three directions is noted as 𝑝, 𝑞, 𝑟 respectively the function

will be calculated by the tensor product:

𝑁𝑖,𝑗,𝑘
𝑝,𝑞,𝑟(𝜉, 휂, 휁) = 𝑁𝑖

𝑝(𝜉)𝛮𝑗
𝑞(휂) 𝑁𝑘

𝑟(휁) (3.7)

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

36

And given control point cloud the volume is computed as:

𝑉(𝜉, 휂, 휁) =∑∑∑𝑁𝑖
𝑝(𝜉)𝛮𝑗

𝑞(휂) 𝑁𝑘
𝑟(휁)

𝑙

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

𝐏𝑖𝑗𝑘 (3.8)

3.3 Non-Uniform Rational B-splines (NURBS)

There are some types of curves which cannot be modelled using B-splines basis functions. These curves are

quadric ones as conical sections. These curves can be constructed using a projective transformation of a B-

spline curve in higher dimension. This type of basis function is called rational B-spline basis function [4],

[6], [16]. Using the piecewise polynomials, we could for example approximate a circle using quadratic B-

splines (see fig. 3.10). As it shown in fig. 3.10a, we project the control points 𝑃𝑖
𝑤 ∈ ℝ3 of distance 𝑤𝑖 from

the origin on plane 𝑧 = 1, where we finally have 𝑃𝑖 ∈ ℝ
2. The control points 𝑃𝑖 ∈ ℝ

dS relate to 𝑃𝑖
𝑤 ∈ ℝds+1

with:

Figure 3.10: A circle constructed by the projective transformation of a B-spline curve in 𝑅3 to 𝑅2. (a) The control mesh.

(b) The evaluated points in physical mesh. Source: [16].

(𝑃𝑖)𝑗 =
(𝑃𝑖
𝑤)𝑗

𝑤𝑖
, 𝑗 = 1, … , ds

𝑤𝑖 = (𝑃𝑖
𝑤)ds+1

Where, (𝑃𝑖)𝑗 is the 𝑗𝑡ℎ component of control point vector 𝑃𝑖 and 𝑤𝑖 is the 𝑖𝑡ℎ weight. Geometrically the

weight is the height of B-spline control point [3]. So, NURBS are projected to B-splines. Every major

operation as refinement can be done in B-spline form and then the latter can be reprojected back to ℝds in

order to acquire the NURBS form [6]. The NURBS basis functions are defined by the B-spline basis functions

𝑁𝑖
𝑝(𝜉) in the rational form below:

𝑅𝑖
𝑝(𝜉) =

𝑁𝑖
𝑝(𝜉)𝑤𝑖
𝑊(𝜉)

=
𝑁𝑖
𝑝(𝜉)𝑤𝑖

∑ 𝑁�̂�
𝑝(𝜉)𝑤�̂�

𝑛
�̂�=1

(3.9)

Where, 𝑊(𝜉) is the weighting function. The above equations can also be written in matrix form. If we define

the diagonal matrix of weights as 𝐖 then:

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

37

𝐖 =

[

𝑤1

𝑤2
⋱

𝑤𝑛]

And the column vector of B-spline basis functions 𝐍(ξ) then eq. (3.9) can be written in matrix form as:

𝐑(𝜉) =
1

𝑊(𝜉)
𝐖𝐍(ξ) (3.10)

Given a set of control points a NURBS curve is constructed as piecewise polynomial as the B-spline curve.

It is defined as:

𝐶(𝜉) =∑𝑅𝑖
𝑝(𝜉)𝐏𝑖

𝑛

𝑖=1

=∑𝑅𝑖
𝑝(𝜉) [

𝑥1𝑖
𝑥2𝑖
⋮
𝑥ds𝑖

]

𝑛

𝑖=1

=∑
𝑁𝑖
𝑝(𝜉)𝑤𝑖

∑ 𝑁�̂�
𝑝(𝜉)𝑤�̂�

𝑛
�̂�=1

[

𝑥1𝑖
𝑥2𝑖
⋮
𝑥ds𝑖

]

𝑛

𝑖=1

(3.11)

The NURBS inherit all the important properties of B-spline basis functions.

• Non-Negativity: 𝑅𝑖
𝑝(𝜉) ≥ 0, ∀𝜉 ∈ [𝜉1, 𝜉𝑛+𝑝+1]

• Partition of Unity: ∑ 𝑅𝑖
𝑝(𝜉)𝑛

𝑖=1 = 1

• Linear Independence: ∑ 𝛼𝑖𝑅𝑖
𝑝(𝜉)𝑛

𝑖=1 = 0 ⇔ 𝛼𝑘 = 0, 𝑘 = 1,2, … , 𝑛

• Compact or Local support: {𝜉|𝑅𝑖
𝑝(𝜉) > 0} ⊂ [𝜉𝑖 , 𝜉𝑖+𝑝+1]

• Affine invariance

• Convex hull

• Variation diminishing property

The strong hull property on NURBS is assured only and only if the weights are non-negative. It is common

the weights belong to the interval [0,1]. If 𝑤𝑖 = 𝑎 ∈ ℝ+
∗ for all 𝑖 then 𝑅𝑖

𝑝(𝜉) = 𝑁𝑖
𝑝(𝜉). This means that a

NURBS curve can become a B-spline curve. Furthermore, if the knot vector has not interior knots a NURBS

curve is transformed to a rational or non-rational Bézier curve [24]. In each element [𝜉𝑖 , 𝜉𝑖+1] the curve is

𝐶∞-continuous except the knot positions where the continuity is 𝐶𝑝−𝑚, where 𝑚 is the knot multiplicity [24].

The first derivative of a NURBS basis function which is the most important of the derivatives it is computed

as:

𝑑

𝑑𝜉
𝑅𝑖
𝑝(𝜉) = 𝑤𝑖

𝑊(𝜉)𝛮𝑖
𝑝′(𝜉) − 𝑊′(𝜉)𝛮𝑖

𝑝(𝜉)

𝑊2(𝜉)
(3.12)

Where, 𝛮𝑖
𝑝′(𝜉) =

𝑑

𝑑𝜉
𝑁𝑖
𝑝(𝜉) and 𝑊′(𝜉) = ∑ 𝑁�̂�

𝑝′(𝜉)𝑤�̂�
𝑛
�̂�=1 .

NURBS surface

As for surfaces NURBS follow the same procedure as B-splines, they form a tensor product. A NURBS

surface is defined as:

𝑆(𝜉, 휂) = ∑∑𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 휂)

𝑚

𝑗=1

𝑛

𝑖=1

𝐏𝑖𝑗 ⇔

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

38

⇔ 𝑆(𝜉, 휂) = ∑∑𝑅𝑖
𝑝(𝜉)𝑅𝑗

𝑞(휂)

𝑚

𝑗=1

𝑛

𝑖=1

𝐏𝑖𝑗 (3.13)

Where, 𝑝, 𝑞 is the degree of basis functions in two parametric directions. NURBS surfaces has all properties

of NURBS curve except for the variation diminishing property [24]. Below it is following an example of

NURBS surface using I3GA. In fact, I3GA it is a program for constructing NURBS surfaces and not B-

splines. It is used before for B-splines, because the square that was displayed it is NURBS with all control

point weights equal to 1. In this example we will create a circle of diameter 𝑑 = 1 m. The knot vectors for

this case are 𝚵 = {0 0 0 1 1 1}T and 𝐇 = {0 0 0 1 1 1}T, so the degree is 𝑝, 𝑞 = 2 for the two directions. The

control points and their respective weights are shown in table below. The result is shown on fig. 3.11 and the

respective basis functions on fig. 3.12. As we can see in figure 3.12 each basis function influences a rectangle

area of [𝜉𝑖 , 𝜉𝑖+𝑝+1] × [휂𝑗 , 휂𝑗+𝑞+1]. The local support property still is proven on NURBS surfaces as we can

see in fig. 3.13. It is obvious that if we change the weights the geometry changes. That can be seen on figures

3.14 and 3.15 where we set the control point weight equals to 𝑤𝑖 = 0.5. Changing the weights can have

significant effect on a NURBS entity.

Control Points Weights

-0.3536 0.3536 1.000

-0.7071 0.000 0.7071

-0.3536 -0.3536 1.000

0.000 0.7071 0.7071

0.000 0.000 1.000

0.000 -0.7071 0.7071

0.3536 0.3536 1.000

0.7071 0.000 0.7071

0.3536 -0.3536 1.000

Table 3-2: Control points and weights for the circle of diameter 𝑑 = 1𝑚.

Figure 3.11: A circle surface created from NURBS.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

39

Figure 3.12: The basis function of NURBS surface.

Figure 3.13: The local support property of NURBS after moving a specific point to another position.

Figure 3.14: The surface before changing the control point in I3GA. In I3GA we can select a control point and change its

position and weight on our own will.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

40

Figure 3.15: The control mesh and the physical domain of the curve after changing the weight of control point from 1

to 0.5.

3.4 T-splines

NURBS basis functions is a widely used tool in CAD and IGA community, but they have some limitations.

As already been written in Introduction, NURBS cannot mostly achieve smooth representation when two or

more NURBS patches need to form a continuous surface. In previous sections it is showed that if the knot

vectors are open and clamped, then in the boundaries of the curve or the surface, the continuity is 𝐶0 because

the multiplicity of knots in the boundaries (0 or 1) is 𝑝 + 1. As a result, if two NURBS surfaces are coincide

their representation is not smooth. In case which the NURBS do not have common boundary it cannot achieve

merging without topological violation of the two surfaces [16]. This creates surfaces with gaps or overlaps.

Furthermore, NURBS show another drawback, that of global refinement. Refinement process will be

explained in the next chapter, but its main concept is that with refinement we divide an element into more

elements in order to add extra information for analysis, without changing the parameterization of physical

domain. In NURBS, more information is added from the needed one. These shortcomings can be dealt with

using a new kind of spline, the T-spline.

In order to explain T-splines first we need to explain the Point Base-splines (PB-splines). In previous section

we saw that NURBS knot vector is defined for all basis functions. However, from local support property it is

showed that a basis function is only active on the interval [𝜉𝑖 , 𝜉𝑖+𝑝+1]. So, instead of defining a global knot

vector we define local knot vectors 𝚵𝑖
𝑙𝑜𝑐 = {𝜉𝑖+𝑗}𝑗=0

𝑝+1
. Each basis functions will be defined now from a local

knot vector of length 𝑝 + 2 [16]. The basis functions are now called “blending” functions because properties

as linear independency are not valid here [6]. If we now define a set of arbitrary local knot vectors with each

knot vector being independent in its element from others, then we can define a blending function for each

element. This set of blending functions composes the PB-splines [6].

PB-splines

Let suppose that we are in ℝ2, and we want to create a surface using PB-splines. If we define some local knot

vectors of arbitrary length 𝑚𝑎 then we can collect all knot vectors to a set 𝚵𝛂 for all parametric directions as:

𝚵𝛂 = {𝜩𝜶
𝒍 }
𝒍=𝟏

𝟐
(3.14)

and

𝜩𝜶
𝒍 = {𝜉𝑖

𝑙}
𝑖=1

𝑚𝑎

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

41

Where 𝑙 is the index of parametric direction. Each knot vector is associated to a blending function 𝑁𝑎
𝑙(𝜉𝑙)3

with degree 𝑝𝑎 = 𝑚𝑎 − 2. The blending function for the bivariate case defined by 𝚵𝛂 is given as:

𝐵𝑎(𝜉, 휂) ≡ 𝐵𝑎(𝜉
1, 𝜉2) =∏𝑁𝑎

𝑙(𝜉𝑙)

2

𝑙=1

(3.15)

The support of these can be defined as:

𝐃𝒂 =⊗𝒍=𝟏
𝟐 [𝜉1

𝑙 , 𝜉𝑚𝑎
𝑙]

If we collect all blending functions to a set 𝛢 the irregular space in which PB-spline is created is defined as:

𝐃 =⋃𝐃𝒂
𝛼∈𝐴

(3.16)

𝐃 is defined in order that ∑ 𝐵𝑎(𝜉, 휂)𝑎∈𝐴 > 0 [4]. The blending functions can acquire a rational form in 𝐃 if

we define them as:

𝑅𝑎(𝜉, 휂) =
𝛣𝛼(𝜉, 휂)

∑ 𝛣𝛽(𝜉, 휂)𝛽∈𝐴

(3.17)

If knot vectors are such that we can establish a basis using 𝑅𝑎(𝜉, 휂) [4], then by assigning a control point to

each basis function we can define a PB-spline surface as (see fig. 3.16):

𝑆(𝜉, 휂) = ∑𝐏𝛼𝑅𝑎(𝜉, 휂)

𝛼∈𝐴

 (3.18)

From fig. 3.16 we can

3 𝜉1 ≡ 𝜉 and 𝜉2 ≡ 휂 according to the notation in previous sections of the chapter.

Figure 3.16: PB-spline. (a) The support space for the spline (b) PB-spline surface with four control points. Source: [4]

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

42

From fig. 3.16 we can see that there is not an obvious ordering in control points as they form a control cloud.

This unstructured environment ensures that some important features of NURBS still exist however there are

some problems. For example, the concept of element is abolished, and refinement process is difficult to be

accomplished. So, we need a set of blending functions that preserve the freedom of PB-splines along with

the structure properties of NURBS. That is the T-spline technology.

T-spline and T-mesh

T-spline combine the benefits from both of NURBS and PB-splines as they are balanced between the two. In

T-splines each blending function is defined from a local knot vector which has been inferred from a global

“knot vector” as in NURBS. The global knot vector is a structure in index space, the T-mesh. The T-mesh has

at least 2 dimensions, so T-splines do not form curves. A T-mesh is shown on fig. 3.17 and has been produced

by a code from Ioannis Dimitriou. As we can see the T-mesh has T-junctions which are vertices connected

with three edges. That do not exist in NURBS. In T-mesh the construction of local knot vectors is different

in case of odd or even degree T-splines.

In odd-degree T-splines for each vertex we set an anchor 𝑠𝑎 = {𝑖, 𝑗} and each one of them is associated with

a control point. Then to form the local knot vector we initially set the values of 𝑠𝑎 in the middle of knot vector

. Then for horizontal (𝑖) direction we add the right knots from the middle by recording the values of
(𝑝+1)

2

orthogonal edges to the right of the anchor in T-mesh. The same happens for the left knots. For the vertical

direction (𝑗) we do the same procedure with the difference that instead of right and left we travel up and

down. Below an example is following. If we consider a T-spline of 𝑝 = 3 then for anchor 𝑠𝑎 = {3,3} in fig.

3.18 the local knot vectors are 𝛯𝛼 = {1,2 3,6,7}
T and 𝐻𝑎 = {1,2,3,4,6}

T. For even degree the differences are

in the positions of anchors (where they fall at the center of each tile) and the fact that we now must record
𝑝

2
+ 1 values. In general, the index space plays very important role on T-splines, but in NURBS they are

auxiliary.

Figure 3.17: A T-mesh. Created by Ioannis Dimitriou.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

43

Figure 3.18: An anchor at 𝑠𝑎 = {3,3} from T-mesh in [4].

T-splines blending functions are like NURBS with the difference that now the blending function is not

produced by a global tensor product. The tensor product happens in a local level. The blending function is

defined by:

𝑅𝑎(𝜉, 휂) =
𝑤𝑎𝐵𝑎(𝜉, 휂)

∑ 𝑤𝛽𝛣𝛽(𝜉, 휂)𝛽∈

(3.19)

If we define the control point 𝑷𝑎 for each 𝑎 ∈ 𝐴 then a T-spline surface is given by:

𝑆(𝜉, 휂) = ∑𝐏𝛼𝑅𝑎(𝜉, 휂)

𝛼∈𝐴

T-splines have most of beneficial properties of NURBS and PB-splines but they cannot be used in analysis

immediately. This happens because T-spline blending functions are not linearly independent. In order to be

used in analysis, T-splines must be transformed into Analysis-Suitable T-splines [3], [27].

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

44

4 Refinement Procedures in NURBS
When we want to perform analysis to a specific geometry, we may want to add some additional information

to computational mesh. For example, in fluid mechanics the mesh near boundary must be more fined in order

to address boundary element phenomena and approximate better the field variables for the problem. Another

example would be from CAD industry where we need to refine a mesh in order to give to a surface more

degrees of freedom. In IGA there are two main ways for refining the physical mesh [16]. The first one is Knot

insertion or h-refinement and the second one is called Degree elevation or p-refinement. Each method has its

own advantages and disadvantages and can be combined in order to create a new method k-refinement. I3GA

has both h and p refinements. H-refinement has been programmed with three different methods that will be

explained. So, in this chapter we will explain the procedures for all refinement methods along with examples

from code.

4.1 Knot Insertion (H-refinement)

Knot insertion is the process of inserting a new knot to index space. By inserting a new knot, the length of

knot vector is increased by one; thus, a new control point must be added to the curve. This process gives

more degrees of freedom in geometry without changing it [16]. Given a NURBS curve of degree 𝑝 with a

knot vector 𝚵 = {𝜉1, 𝜉2, … , 𝜉𝑛+𝑝+1}
T
 we want to add a new knot at 𝜉̅ ∈ [𝜉𝑘 , 𝜉𝑘+1]. The new knot vector 𝚵∗

will be: 𝚵∗ = {𝜉1, 𝜉2, … , 𝜉𝑘 , 𝜉,̅ 𝜉𝑘+1, 𝜉𝑛+𝑝+1}. As a result, the length of knot vector will be ‖𝚵∗‖ = (𝑛 + 1) +

𝑝 + 1, so another control point and basis function must be added to the curve. However, not only a single

control point must be added but also the positions of old control points must change in order to preserve the

curve parametrically. So, if the initial set of control point is {𝑃𝑖}𝑖=1
𝑛 then the new set of control points {�̅�𝑖}𝑖=1

𝑛+1

will be computed by the relationship below [16], [24]:

�̅�𝑖 = 𝑎𝑖𝑃𝑖 + (1 − 𝑎𝑖)𝑃𝑖−1 (4.1)

Where,

𝑎𝑖 =

{

 1, 1 ≤ 𝑖 ≤ 𝑘 − 𝑝

𝜉̅ − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖

, 𝑘 − 𝑝 + 1 ≤ 𝑖 ≤ 𝑘

0, 𝑘 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑝 + 2

Below you see an example of knot insertion to a quadratic curve of knot vector 𝚵 = {0,0,0,1,1,1}𝐓. The

inserted knot is at 𝜉̅ = 0.5. We can observe that the two curves are geometrically exact. The only thing that

changes is the number of control points and basis functions. The continuity of the curve is also preserved

after knot insertion [16]. The only case where continuity is reduced is when we add the same knot more times.

The same procedure can also be repeated when we want to add multiple knots. This process is called knot

refinement [24]. Knot refinement has many applications as [24]:

• Decomposition of B-spline curves (or surfaces) to Bézier counterparts.

• Merging of two or more knot vectors in order to acquire a curve with a final knot vector.

• Bring closer the curve (or surface) to control polygon (or control net respectively).

Knot refinement has some efficient algorithms that are based on eq. (4.1) but the one that is used is the

algorithm of Boehm and Prautzsch [24]. The algorithm works on B-splines and not on NURBS. In order to

be used for NURBS we need to transform the control points into their projective counterparts, perform knot

refinement and then reproject the new control points. In fig. 4.2 we can see an example where we insert knots

𝜉1 = 0.25 and 𝜉2 = 0.75 in knot vector 𝚵 = {0,0,0,0.5,1,1,1}T. Now two control points must be added

because we added two knots. As we can see the new (green) control points do not change the curve at all.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

45

Figure 4.1: Knot insertion in curve with original knot vector 𝜩 = {0,0,0,1,1,1}. The red dots are the control points. We

can also see the basis functions. Source: [16].

Figure 4.2: A quadratic NURBS curve with original knot vector 𝜩 = {0,0,0,0.5,1,1,1}. The “*” control points are the old

ones and the green dots the new ones.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

46

Knot refinement can be done also using another algorithm in matrix form. This algorithm is an improved

version of a known refinement procedure known as the Oslo Algorithm [28]. This algorithm was developed

from scratch at the lab and has the capability of inserting multiple knots simultaneously in both directions.

Supposing that we have an original knot vector 𝚵 = {𝜉1, 𝜉2, … , 𝜉𝑛+𝑝+1}
𝐓
 and its extended form 𝚵 =

{𝜉1̅, 𝜉2̅, … , 𝜉�̅�+𝑚+𝑝+1}
𝐓

 containing the new 𝑚 knots. Then, the new control points �̅� = {�̅�1, �̅�2, … , �̅�𝑛+𝑚}
T are

formed by the original ones 𝐏 = {𝐏1, 𝐏2, … , 𝐏𝑛}
T from the relationship below:

�̅� = 𝐓𝑝𝐏 (4.2)

With 𝐓𝑝 ∈ ℝ(𝒏+𝒎)×𝒏 be computed by:

𝑇𝑖,𝑗
0 = {

1, if 𝜉̅ ∈ [𝜉𝑗 , 𝜉𝑗+1]

0, otherwise
(4.3)

And

𝑇𝑖,𝑗
𝑞+1

=
𝜉�̅�+𝑞 − 𝜉𝑗

𝜉𝑗+𝑞 − 𝜉𝑗
𝑇𝑖,𝑗
𝑞
+
𝜉𝑗+𝑞+1 − 𝜉�̅�+𝑞

𝜉𝑗+𝑞+1 − 𝜉𝑗+1
𝑇𝑖,𝑗+1
𝑞
 , 𝑞 = 0,1,2, … , 𝑝 − 1 (4.4)

Using the equations above we can insert multiple knots to a knot vector. The process for using the above

equations is described in flowchart below:

Figure 4.3: Flowchart that shows the knot refinement process.

An important observation in order to check the validation of the code is to check if the sum of elements in

every row of 𝑇𝑞 is 1. The polynomials defined by (4.4) are also called Kharitonov polynomials according

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

47

to a report by Ioannis Dimitriou. Both Boehm’s algorithm and algorithm of equation (4.2) are extended to

surfaces. In case of algorithm of eq. (4.2) if we add knots to one direction we can compute the 𝐓𝒑 and then

multiply it by the row or column in a control mesh [4]. In practice we do the process for both directions

with the same manner one for the first direction and then for the second one.

In I3GA we have used the two algorithms for different occasions. In fig. 4.4 we can see the refinement menu

of I3GA. In this menu 5 options for h-refinement do exist. The first 3 options take place using Boehm’s

algorithm and the final two using the algorithm of eq. (4.2). Specifically in the first 3 options, the new knots

are inserted in positions where a knot span (element) [𝜉𝑖 , 𝜉𝑖+1], 𝜉𝑖 ≠ 𝜉𝑖+1 is divided by a specific value 𝑛 ∈
(0,1]. In other words, we subdivide each element by a value 𝑛 and then we import the new values in the

original knot vector. For example, if the initial knot vector is 𝚵 = {0 0 1 1}T and we subdivide at 𝑛 = 0.5, a

new knot will be added in half of the unique element [0,1] and the new knot vector will be 𝚵 = {0 0 0.5 1 1}T.

The three choices for subdivision are:

• “Refine globally at 0.5”: Each knot span (of the form [𝜉𝑖 , 𝜉𝑖+1], 𝜉𝑖 ≠ 𝜉𝑖+1) is divided at half in both

directions.

• “Refine globally at 𝑛”: Each knot span is divided at 𝑛 ∈ (0,1] in both directions.

• “Refine globally in different directions”: Each knot span is divided in both directions at 𝑛𝜉 ∈ (0,1]

and 𝑛𝜂 ∈ (0,1] respectively.

Figure 4.4: Refinement menu of I3GA.

Below we see examples of this type of knot refinement in L-shape with knot vectors 𝚵 =

{0 0 0 0.5 0.5 1 1 1}T and 𝐇 = {0 0 0 1 1 1}T in both directions. We can observe that in 𝜉-direction we have

double knot at 𝜉 = 0.5. That means at first that from 𝜉-direction we have two elements. In fact the number

of elements in this geometry are two because in 𝜉-direction we have 𝑒𝑙𝑒𝑚𝜉1: [0,0.5] and 𝑒𝑙𝑒𝑚𝜉2: [0.5,1] and

in 휂-direction 𝑒𝑙𝑒𝑚𝜂1: [0,1]; thus we have in total two elements 𝑒𝑙𝑒𝑚1: [0,0.5] × [0,1], 𝑒𝑙𝑒𝑚2: [0.5,1] ×

[0,1] (see fig. 4.6 for parameter space). The two elements are showed also in physical space where the patch

is divided in two sub-patches with a diagonal line where is the knot position (𝜉 = 0.5) in physical space (see

fig. 4.5). The second observation is that the continuity at 𝜉 = 0.5 is 𝐶0, so the two sub-patches are joined

only with 𝐶0 continuity at their boundary.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

48

Figure 4.5: The original L-shape.

Figure 4.6: The parameter space for the L-shape.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

49

Figure 4.7: Knot refinement with subdivision at n=0.5.

Figure 4.8: Knot refinement with subdivision at 𝑛 = 0.8.

Figure 4.9: Knot refinement with subdivision at 𝑛𝜉 = 0.8 and at 𝑛𝜂 = 0.2.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

50

From the above figures we make some conclusions. The first one is that refinements are successful because

the geometry (along with continuity) is preserved. The goal of knot refinement is to make a coarse mesh finer

without change its parameterization. That is succeeded using Boehm’s algorithm. A second observation is

that from the image of knot lines in physical space we can find the knot vector in each direction. In NURBS

knot refinement is a global process, so if we insert a knot, the whole patch is affected. In physical domain of

fig. 4.7 to 4.9 we can see that except the initial diagonal line we have also 3 lines. Two in 𝜉-direction and one

“L-line” in 휂-direction. From the position of lines, we can understand the knots inserted by knot refinement

process in knot vectors. For example, the “L-line” when 𝑛𝜂 = 0.8 is closer to the northeast edge and when

𝑛𝜂 = 0.2 is more near at southwest edge respectively. These lines change their positions proportional to the

subdivision number 𝑛. We make denser an area in physical domain just by changing the subdivision number.

The other two knot refinement options use the algorithm of eq. (4.2). In “Manually arbitrary h-refinement”

we can insert multiple knots in different directions and then perform knot refinement. In “Automatic arbitrary

h-refinement” we insert multiple knots automatically in each direction by inserting the start, the end knot,

and the knot generation step. Below you see an example of inserting new knots at 𝜉 = {0.1, 0.9} and at 휂 =

0.8 in circle of diameter 𝑑 = 1 m and knot vectors 𝚵 = {0 0 0 1 1 1}T and 𝐇 = {0 0 0 1 1 1}T. As we can

see the knots are inserted without changing the initial geometry, something that implies that the new control

points and weights are calculated correctly. Manual h-refinement can be used in order to explicitly add a new

knot in area of interest when we want to make mesh finer. This algorithm will be used in adaptivity and of

course in new form of knot refinement, the knot refinement in physical domain.

Figure 4.10: Knot refinement at knots 𝜉 = 0.1, 0.9 and at 휂 = 0.8.

Knot refinement via point inversion

Until now we saw how to insert a new knot in parameter or index space. Although most of CAD programs

insert a knot by inserting a point in physical space. This is a more logical procedure because we want to make

finer the mesh in physical domain and not directly in parameter space. So, by choosing a point in the physical

space we want to add the corresponding knot in parameter space globally and do the “knot refinement”

process. Point inversion is the procedure of finding the parameter values 𝜉, 휂̂ of a surface point 𝐏(𝑥, 𝑦) =

𝑺(𝜉, 휂̂). The procedure of point inversion is [24]:

1. At first, we form the vector function:

𝒓(𝜉, 휂) = 𝑺(𝜉, 휂) − 𝐏(𝑥, 𝑦) ⇔

⇔ 𝒓(𝜉, 휂) = 𝑺(𝜉, 휂) − 𝐏

And two scalar functions:

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

51

𝑓(𝜉, 휂) = 𝒓(𝜉, 휂) ∙
𝜕𝑺(𝜉, 휂)

𝜕𝜉
= 0

𝑔(𝜉, 휂) = 𝒓(𝜉, 휂) ∙
𝜕𝑺(𝜉, 휂)

𝜕휂
= 0

(4.5)

2. The we solve eq. (4.5). If we define as:

𝛿𝑖 = [
𝛥𝜉
𝛥휂
] = [

𝜉𝑖+1 − 𝜉𝑖
휂𝑖+1 − 휂𝑖

]

𝐽𝑖 =

[

𝜕𝑓

𝜕𝜉
|
(𝜉𝑖,𝜂𝑖)

𝜕𝑓

𝜕휂
|
(𝜉𝑖,𝜂𝑖)

𝜕𝑔

𝜕𝜉
|
(𝜉𝑖,𝜂𝑖)

𝜕𝑔

𝜕휂
|
(𝜉𝑖,𝜂𝑖)]

=

[

 |
𝜕𝑺

𝜕𝜉
|
2

+ 𝒓 ∙
𝜕2𝑺

𝜕𝜉2
|
(𝜉𝑖,𝜂𝑖)

𝜕𝑺

𝜕𝜉
∙
𝜕𝑺

𝜕휂
+ 𝒓 ∙

𝜕2𝑺

𝜕𝜉𝜕휂
|
(𝜉𝑖,𝜂𝑖)

𝜕𝑺

𝜕𝜉
∙
𝜕𝑺

𝜕휂
+ 𝒓 ∙

𝜕2𝑺

𝜕휂𝜕𝜉
|
(𝜉𝑖,𝜂𝑖)

|
𝜕𝑺

𝜕휂
|
2

+ 𝒓 ∙
𝜕2𝑺

𝜕휂2
|
(𝜉𝑖,𝜂𝑖)]

𝜅𝑖 = − [
𝑓(𝜉𝑖 , 휂𝑖)

𝑔(𝜉𝑖 , 휂𝑖)
]

 The eq. (4.5) is solved by solving the linear system of equation for the unknown 𝛿𝑖, given by the

system:

𝐽𝑖𝛿𝑖 = 𝜅𝑖 (4.6)

 With

𝜉𝑖+1 = 𝛥𝜉 + 𝜉𝑖
휂𝑖+1 = 𝛥휂 + 휂𝑖

(4.7)

The whole process of eq. (4.6), (4.7) is the point inversion via Newton-Raphson method. In order to acquire

a proper solution, we need to secure some convergence criteria. The two criteria are:

Point Coincidence:

|𝑺(𝜉𝑖 , 휂𝑖) − 𝐏| ≤ 휀1

Zero cosine:

|
𝜕𝑺
𝜕𝜉
|
(𝜉𝑖,𝜂𝑖)

∙ (𝑺(𝜉𝑖 , 휂𝑖) − 𝐏)|

|
𝜕𝑺
𝜕𝜉
|
(𝜉𝑖,𝜂𝑖)

| |𝑺(𝜉𝑖 , 휂𝑖) − 𝐏|

≤ 휀2 and

|
𝜕𝑺
𝜕휂
|
(𝜉𝑖,𝜂𝑖)

∙ (𝑺(𝜉𝑖 , 휂𝑖) − 𝐏)|

|
𝜕𝑺
𝜕휂
|
(𝜉𝑖,𝜂𝑖)

| |𝑺(𝜉𝑖 , 휂𝑖) − 𝐏|

≤ 휀2

In our case because the code is experimental, we have used only the first convergence criterion. After

selecting a point and acquiring its values in parameter space we can choose the direction of doing knot

refinement via the algorithm of eq. (4.2). Because of the fact Newton-Raphson is an iterative algorithm it is

important the initialization step. For the needs of our code, we select as initialization the (𝜉𝑖 , 휂𝑖) = (0.5,0.5)

after experiments. This initialization works perfectly for square or rectangle primitive shapes but has some

convergence problem for other shape as L-shape or circle. This is step that could be investigated by creating

an algorithm that searches the proper initialization proportional to the edge that we are near in order to take

initialization from a known knot value. In figures below we see the knot refinement via point inversion in

I3GA for square case.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

52

Figure 4.11: Selecting a point in physical domain for point inversion.

Figure 4.12: After selecting a point we perform knot refinement in 𝜉-direction.

In this section we saw the knot refinement process and how it was integrated in I3GA. Surely many

algorithms for knot refinement. In general, with h-refinement we make the geometry more flexible by giving

more freedom to its control points. The finer mesh would give more accurate results in the analysis process,

although the process would be more time-consuming [26]. As we show in NURBS this is a global process,

because by adding a knot we add lines to whole parameter space and as a result in physical. In T-splines, the

knot refinement process is more local as, the inserted knot affects only a specific area of the parameter space.

4.2 Degree Elevation (P-refinement)

Except for knot insertion there is also another technique for refining the geometry. This technique is the

degree elevation or p-refinement. In this technique the degree of basis functions is increased by increasing

the multiplicity of knots in the knot vector. With the increase in degree of basis functions, control points are

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

53

also increased. However, this is done without changing the curve or surface parametrically. Degree elevation

is not only used as a refinement procedure to curves or surfaces but also is used for the construction of

NURBS surfaces from curves [24]. For a B-spline curve the process of degree elevation algorithm presented

by Piegl and Tiller [24] is described below [16], [24]:

1. First subdivide the curve into multiple Bézier curves via knot insertion [24]. The inserting knots are

the same with existing knots, so we insert knots until the continuity of the curve reduced and each

sub element cuts off.

2. Then in Bézier “element” we elevate the degree.

3. Finally, we remove the unnecessary knots from each segment and combine them into one B-spline

curve.

In order to use this algorithm in NURBS we must project the control points in higher dimension ℝds+1,

transform them into B-spline, do the process and then reproject them back in order to acquire the refined

NURBS. For surfaces we perform degree elevation first for 휂-direction and then for 𝜉-direction. An example

to degree elevation to a curve is shown in fig. 4.13, where the initial knot vector 𝚵 = {0 0 0 1 1 1}T it has

been transformed to 𝚵∗ = {0 0 0 0 1 1 1 1}T. As we can see the curve has elevated by 1 degree, so 1 control

points and one basis function has been added.

Figure 4.13: Degree elevation to a curve with knot vector 𝜩 = {0 0 0 1 1 1}𝑇. The red dots are the control points.

The whole process has programmed to I3GA. In I3GA we use as input how many times we want our surfaces

to be elevated in each parametric direction. Below you see an example of square where the degree in each

direction is 1 and it has been elevated 1 degree in each direction. The initial knot vector is 𝚵 = {0 0 1 1}T for

each parametric direction. After elevating the degree by 1, the surface has not been changed, even though the

number of control points has been increased from 4 to 9. Not only that but the number of elements has not

yet changed because the knots have just been multiplied without new ones been added. Last but not least, the

process of degree elevation in IGA is called order elevation because in IGA we refer more to the order

(𝑑𝑒𝑔𝑟𝑒𝑒 + 1) of basis functions and not so much about degree.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

54

Figure 4.14: Initial square of length 1 𝑚.

Figure 4.15: The square after degree elevation of one degree.

4.3 K-refinement

Except for the classical refinement strategies Hughes et al. [16], have been developed superior method for

high-precision analysis [5]. This is the 𝑘-refinement process. In 𝑘-refinement we make more flexible the

physical space by adding control points without reducing the continuity as it happens in degree (order)

elevation where the 𝐶0-continuity is preserved [5], [16]. In 𝑘-refinement we perform degree elevation to the

curve or surface and then knot refinement. The reversed process does not give satisfying results. Let us give

an example.

Let use a square surface with initial knot vectors 𝚵 = 𝐇 = {0 0 1 1}T. Then after performing a knot insertion

at 𝜉 = 휂 = 0.5, we elevate the order by one in both directions. As a result, the final knot vectors are 𝚵𝟏 =

𝐇𝟏 = {0 0 0 0.5 0.5 1 1 1}
Tand the results in physical domain are shown in fig. 4.16. In contrast to the

previous process, we perform 𝑘-refinement with the same steps. The final knot vectors are 𝚵𝟐 =

𝐇𝟐 = {0 0 0 0.5 1 1 1}
T and the results are in fig. 4.17.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

55

Figure 4.16:Knot refinement at 𝜉 = 휂 = 0.5 and then degree elevation to a square surface.

Figure 4.17: 𝑘-refinement to a square surface.

As we can see both surfaces geometrically are the same, but parametrically are different. Initially the first

procedure produces 25 control points (basis functions) and the second one 16. So, 𝑘-refinement produces

same geometry with less information. Moreover, the continuity on both surfaces is different. On the boundary

the control points are interpolatory to both surfaces. However, in knot 𝜉 = 휂 = 0.5 the continuity in first case

is 𝐶0 and in 𝑘-refinement case is 𝐶1. So, we acquire a higher order surface with 𝑘-refinements and that results

in better precision during analysis process, because when a surface has higher order, the solution becomes

closer to analytical. In general 𝑘-refinement is only possible if the physical mesh consist of one element as

in case above, because if in initial mesh exist constraints on continuity across element boundaries these will

propagate in higher orders as well [5]. As a rule of thumb, 𝑘-refinement is still effective as long as refinement

is performed in order to basis functions have 𝑝 − 1 continuous derivatives across the new element boundaries

that will be created [5].

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

56

5 Isogeometric Formulation on 2D problems
After explaining the basics of IGA along with basis functions and refinement methods, it is important to

explain further how we formulate problems using IGA. From Chapter 2 we saw that a typical code of

Isogeometric analysis do not have many differences in relation to a Finite elements code. So, the formulation

do not change much, as the only difference is in the use of basis functions. However, in FEA exists a huge

knowhow in methods and codes that with the use of IGA, will be disappeared. Consequently, a new method

that bridges the geometric representations (basis functions) of IGA and FEA has been developed. This method

is called Bézier Extraction [3], [27], [29]. Both “pure” IGA and analysis using Bézier Extraction has been

programmed in I3GA. The problems that have been dealt with are 2D thermal problems and plane stress

problems. In this chapter we will present the formulation of these with the use of methods mentioned

previously.

5.1 Thermal Analysis using IGA

In this section we will describe the IGA formulation in a crucial category in practical engineering, the thermal

conduction problem. Specifically, we present the 2D thermal conduction problems on surfaces or solids of

constant thickness. FEM and other methods mentioned in Chapter 1, dominated in numerical analysis of

thermal problems. However, the problematic mesh generation and 𝐶0-continuity of finite elements leads to

the adoption of IGA. The formulation of IGA and FEA has not many differences. The only difference is that

instead of using polynomial approximation for the state variables we use the model’s geometry itself for

doing this. Consequently, we can apply the same formulation as in case of FEM.

Beginning the formulations, the governing equation for a 2D heat conduction problem is:

−∇ ∙ (𝒌∇𝑇) = 𝑓 (5.1)

Where, 𝒌 is the thermal conductivity parameter, 𝑇 the temperature and 𝑓 the source term. The 𝒌 is a

symmetric positive define matrix and its value is prescribed by the surface material. For example, for an AISI

4320 steel the value of matrix is 𝒌 = [
44.5 0
0 44.5

]
W

m℃
 according to a material database (MATWEB). Except

for the strong form of equation, we have also the boundary conditions for the boundary Γ of problem domain

Ω. Considering the boundary is decomposed in three parts (Γ1, Γ2, Γ3) proportional to the type of boundary

conditions Dirichlet, Neumann and Robin then the equations in boundary conditions are:

Dirichlet Boundary Conditions

𝑇 = �̅� on Γ1

Neumann Boundary Conditions

−𝒌
𝜕𝑇

𝜕𝒏
= 𝑞𝑛 on Γ2

Robin Boundary Conditions

−𝒌
𝜕𝑇

𝜕𝒏
= ℎ(𝑇 − 𝑇𝑤) on Γ3

Where, �̅� is the specified temperature in the boundary, 𝑞𝑛 is the specified heat flux density on the

boundary, 𝑇𝑤 is the ambient temperature, ℎ the convective heat transfer and 𝒏 the normal on the boundary.

Neumann and Robin boundary conditions are the weak boundary conditions as the impose on the weak form

of the problem, instead of Dirichlet boundary conditions where are fixed and imposed on during solution

phase. Now in order to continue the formulation we will use an approximation and the Galerkin method.

Instead of FEM approximation of Chapter 2 the IGA approximation of state variable 𝑇 use the geometry

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

57

model (NURBS basis function) in order to be defined. Specifically, the IGA approximation of temperature

field is:

𝑇(𝑥, 𝑦) ≅∑𝑅𝑖
𝑝𝑞(𝜉, 휂)𝛵𝑖

𝑛

𝑖=1

(5.2)

Where 𝑅𝑖
𝑝𝑞(𝜉, 휂) is the NURBS basis function for the surface, 𝑇𝑖 is the temperature in control point 𝑖 and 𝑛

is the number of control points. After using the Galerkin method and substitute (5.1), Neumann and Robin

boundary conditions and (5.2) to eq. (2.6) we have an equation of the form:

𝑲𝑻 = 𝑭 (5.3)

Where, 𝑲 ∈ ℝ𝑛×𝑛 is the global stiffness matrix, 𝑻 ∈ ℝ𝑛 is the vector of temperatures in every control point

and 𝑭 ∈ ℝ𝑛 is the global vector of sources. The term global as in case of FEM means that we calculate the

stiffness in every element and then we sum all the matrices in order to take the result. The elements in every

𝑲 and 𝑭 according to Bubnov-Galerkin method are the following:

𝐾𝑖𝑗
𝑒 = ∫ (𝑩𝑖)

T𝒌(𝑩𝑗)
Ω𝑒

dΩ + ∫ 𝑅𝑖
𝑇ℎ𝑅𝑗dΓ

𝛤3

 (5.4)

and

𝐹𝑖
𝑒 = ∫ 𝑞𝑣𝑅𝑖

Ω𝑒

dΩ − ∫ 𝑞𝑛𝑅𝑖dΓ
𝛤2

+∫ ℎ𝑇𝑤𝑅𝑖dΓ
𝛤3

(5.5)

Where, 𝑩𝑖 = [
𝜕𝑅𝑖

𝜕𝑥

𝜕𝑅𝑖

𝜕𝑦
]
T

, 𝑅𝑖 is the NURBS basis function in every control point of the element Ω𝑒. The

inhomogeneous Dirichlet boundary conditions can be imposed to eq. (5.3) in source term and stiffness matrix

suitably.

Gauss Quadrature

In order to compute the terms of stiffness matrix and source term vector the most notable method for

executing this is the Gauss-Legendre Quadrature. The Gauss Quadrature is based on computing the integral

in certain points (gauss points) in each knot span and then summing up all the results to obtain the integral.

However, in order to apply this method to eq. (5.4) and eq. (5.5) we need first to change a little the above

equations in more suitable form. In I3GA the equations above do not have this form because not all boundary

conditions are applied. The only boundary conditions that are true, the Dirichlet and a specific form of

Neumann boundary conditions. So, all the others may be omitted.

(5.4) ⇒ 𝐾𝑖𝑗
𝑒 = ∫ (𝑩𝑖)

T𝒌(𝑩𝑗)
Ω𝑒

dΩ

(5.5) ⇒ 𝐹𝑖
𝑒 = ∫ 𝑞𝑣𝑅𝑖

Ω𝑒

dΩ − ∫ 𝑞𝑛𝑅𝑖dΓ
𝛤2

The Neumann boundary conditions are applied for the special case 𝑞𝑛 = 0 so we can also omit them. In order

to compute the integral for each element in physical space we need to transfer them in parameter space in

order to compute them in each IGA element (knot span). In order to do this, we use the Jacobian 𝐉 ∈ ℝ2×2

that connects the physical with parameter space as:

J𝑖𝑗 = [
𝜕𝑅1(𝜉, 휂)

𝜕𝑖

𝜕𝑅2(𝜉, 휂)

𝜕𝑖
…

𝜕𝑅𝑚(𝜉, 휂)

𝜕𝑖
]

[

coordj,1
coordj,2
⋮

coordj,m]

 (5.6)

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

58

Where, coordj,k is the 𝑗 coordinate (x or y) of control point 𝑘 that supports the element and
𝜕𝑅𝑔(𝜉,𝜂)

𝜕𝑖
 is the

derivative of NURBS basis about 𝑖 = {𝜉 or 휂}. Moreover, in integrals of eq. (5.4) and (5.5) we need the

determinant of Jacobian det(𝐉).

Before proceeding to the integral calculation, we need to explain the Gauss-Legendre Quadrature method.

The Gauss method transforms an integral over [−1,1] × [−1,1] to a sum, meaning ∫ ∫ 𝑓(𝑥, 𝑦)
1

−1

1

−1
dxdy ≈

∑ ∑ 𝑤𝑗
𝑚
𝑗=1 𝑤𝑖𝑓(𝑥𝑖 , 𝑦𝑗)

𝑛
𝑖=1 , where 𝑥𝑖 , 𝑦𝑖 are the gauss point (roots of Legendre polynomial) in parent element

[−1,1] × [−1,1], 𝑤𝑖 , 𝑤𝑗 are the corresponding weights. In our case after we have gone from parameter to

physical space using Jacobian, then we need to go from parameter space to parent element with a suitable

transformation. Let suppose that parent element spans from [−1,1] × [−1,1] and proportional to the degree

of basis function a set of coordinates 𝜉𝑅 , 휂𝑅 corresponds to that reference element as root of Legendre

polynomial. The coordinates in parameter space in the element [𝜉𝑖 , 𝜉𝑖+1) × [휂𝑖, 휂𝑖+1) and the respective

weights will be [26]:

𝜉 =
(𝜉𝑖+1 − 𝜉𝑖) ∙ 𝜉𝑅 + (𝜉𝑖+1 + 𝜉𝑖)

2

𝑤𝜉
𝑔𝑝
=
𝜉𝑖+1 − 𝜉𝑖
2

∙ 𝑤𝜉
𝑅

And

휂 =
(휂𝑖+1 − 휂𝑖) ∙ 휂𝑅 + (휂𝑖+1 + 휂𝑖)

2

𝑤𝜂
𝑔𝑝
=
휂𝑖+1 − 휂𝑖

2
∙ 𝑤𝜂

𝑅

For a square with knot vectors in parameter space 𝚵 = 𝐇 = {0 0 0.5 1 1}T the parametric coordinates for

gauss points per element are shown in fig. 5.1. As we can observe in each element 4 gauss points correspond

because the order of basis functions is 𝑝 + 1 = 2. So, after defining gauss integral rule the elements of

stiffness matrix and source vector can be written as:

(5.4) ⇒ 𝐾𝑖𝑗
𝑒 =∑∑ (𝑩(𝜉𝑖 , 휂𝑗))

T

𝒌 (𝑩(𝜉𝑖 , 휂𝑗)) det(𝐉)w𝑖
GPw𝑗

GP

𝑚𝐺𝑃

𝑗=1

𝑛𝐺𝑃

𝑖=1

 (5.7)

(5.5) ⇒ 𝐹𝑖
𝑒 =∑∑ 𝑞𝑣𝑅𝑖(𝜉𝑖 , 휂𝑗)det(𝐉)w𝑖

GPw𝑗
GP

𝑚𝐺𝑃

𝑗=1

𝑛𝐺𝑃

𝑖=1

(5.8)

Where, 𝜉𝑖 , 휂𝑗 are the parametric gauss coordinates, w𝑖
GPw𝑗

GP are the respective weights, 𝑛𝐺𝑃 , 𝑚𝐺𝑃 is the

number of gauss points in each direction. In I3GA, we can calculate gauss points for basis function degrees

up to 7. In general, the algorithm of computation the elements of these matrices in IGA is shown on fig. 2.4.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

59

Figure 5.1: Gauss points in parameter space for a square with knot vectors 𝚵 = 𝐇 = {0 0 0.5 1 1}𝑇.

Dirichlet Boundary Conditions

After defining the way of computing the elements of stiffness matrix and source vector, then we need to

impose the Dirichlet boundary conditions on the system of equation (5.3). The algorithm of imposing a fixed

boundary condition on a degree of freedom (DoF) is:

1. Subtract from all elements of 𝐹, the value of boundary condition times the corresponding column

values of 𝐾 matrix in column of the DoF.

2. Zero all columns and rows of the DoF.

3. Set 𝐾𝐷𝑜𝐹,𝐷𝑜𝐹 = 1

4. Set 𝐹𝐷𝑜𝐹 equal with the value of boundary conditions

This algorithm is applied in every problem with Dirichlet boundary conditions. In I3GA this algorithm is

used, however it is important to show the algorithm for selecting the DoFs. This algorithm is shown in the

flowchart below. The first step of the algorithm is to set the type of boundary conditions. The boundary

conditions are applied to the whole side of the geometrical object. As it shown in fig. 5.3 the contour of

geometrical entity is decomposed to four edges: “down”, “up”, “left” and “right”. Each edge is prescribed

by an index number for the DoF. Each DoF corresponds to a control point because it is a thermal problem

and we have only one variable. So, if we begin the numbering from down edge the DoFs are numbered as:

“Down” edge: DoF = 1: n𝜉

“Left” edge: DoF = 1: 1 + n𝜉(n𝜂 − 1)

“Up” edge: DoF = 1 + n𝜉(n𝜂 − 1): n𝜉 + n𝜉(n𝜂 − 1)

“Right” edge: DoF = n𝜉: n𝜉 + n𝜉(n𝜂 − 1)

According to the numbering above the DoFs for each side are selected and if we have a Dirichlet condition

we set it to these. Each side independently of the number of its real edges will always be “translated” in grid

of 4 sides as in fig. 5.3. However, in the joints of each side (the 4 red dots in fig 5.3) two boundary conditions

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

60

will contribute one from each edge. The prevailing boundary condition will be the one with the biggest

absolute value.

Figure 5.2: Flowchart of setting Dirichlet boundary conditions

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

61

Figure 5.3: The grid for setting the boundary conditions.

5.2 Thermal Analysis using Bézier Extraction

Except for pure IGA codes, many researchers want to use existing finite element codes, combining them with

IGA formulation. They do it by decomposing the geometry into 𝐶0 Bézier elements by using the Bézier

extraction operator [29]. The Bézier extraction operator is the map between piecewise Bernstein polynomial

basis functions and B-spline basis functions [29]. In order to define the way for computing stiffness matrix

and source vector via Bézier elements we need first to show how a NURBS curve or surface is represented

by Bézier elements and then how Bézier extraction operator is computed.

In order to decompose a NURBS geometry into Bézier elements, we repeat all the interior knots of the knot

vector until the multiplicity equals 𝑝 + 1. We could also repeat the knots until the multiplicity equals 𝑝 for

lower computational cost but then adjacent Bézier elements will share control points. The knots are repeated

by a knot refinement process. After the decomposition we shall compute the Bézier extraction operator.

Let suppose that the B-spline curve (in ℝds+1) of a NURBS in ℝds is defined by a knot vector 𝚵 =

{𝜉1, 𝜉2, … , 𝜉𝑛+𝑝+1}
T

 and a set of control points 𝐏 = {𝐏𝐴}𝐴=1
𝑛 . If we insert the knots {𝜉1̅, 𝜉2̅, … , 𝜉�̅�} via knot

refinement such that we decompose the B-spline into Bézier elements, then for each new knot 𝜉�̅� , 𝑗 =

1,2, … ,𝑚 we define 𝑎𝐴
𝑗
, 𝐴 = 1,2, … , 𝑛 + 𝑗 to be the 𝐴𝑡ℎ alpha as prescribed in knot insertion defined in

eq. (4.1). Then, by defining 𝐂𝑗 ∈ ℝ(𝑛+𝑗−1)×(𝑛+𝑗) as:

𝐂𝑗 =

[

𝑎1 1 − 𝑎2 0 ⋯ 0

0 𝑎2 1 − 𝑎3 0 ⋯ 0
0 0 𝑎3 1 − 𝑎4 0 ⋯ 0

⋮
0 ⋯ 0 𝑎𝑛+𝑗−1 1 − 𝑎𝑛+𝑗]

(5.9)

We can rewrite eq. (4.1) as:

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

62

�̅�𝑗+1 = (𝐶𝑗)T�̅�𝑗

For 𝑗 = 𝑚 the final set of control points �̅�𝑚+1 defines the Bézier elements [29]. By renaming as �̅�𝑚+1 = 𝐏b

and for every knot we define 𝑪T = (𝑪𝑚)T(𝑪𝑚−1)T…(𝑪1)T then we have:

𝐏b = 𝑪T𝐏 (5.10)

Where 𝐏 is the control points matrix that each row contains the control point coordinates. So, 𝐏 ∈ ℝ𝑛×ds (𝑛

number of control points), 𝑪 ∈ ℝ𝑛×(𝑛+𝑚) and 𝐏𝐛 ∈ ℝ(𝑛+𝑚)×ds . After the Bézier decomposition which it has

been done using knot refinement, the curve has not change parametrically. As a result, from final knot vector

a set of Bernstein basis functions has been defined as 𝐁(𝜉) = {𝐁𝐴(𝜉)}𝛢=1
𝑛+𝑚 and the final curve 𝑪(𝜉) =

 (𝐏)T𝐍(𝜉) can be written as:

𝑪(𝜉) = (𝐏b)
T
𝐁(𝜉) = (𝑪T𝐏)T𝐁(𝜉) = (𝐏)T𝑪𝐁(𝜉) ≡ (𝐏)T𝐍(𝜉)

So, considering that 𝐏 is arbitrary a new basis function has been developed along with a new linear operator

𝑪 which is called Bézier Extraction operator. From the relationship above we have this equation:

𝐍(𝜉) = 𝑪𝐁(𝜉) (5.11)

As we show this operator is computed only by knowing the knot vector. As a result, the extraction operator

it can be applied to NURBS directly because it depends only to parameterization of the curve. According to

Borden by using eq. (3.10) and (5.10) a NURBS curve can be written in terms of Bernstein basis as:

𝐶(𝜉) = (𝐏)T𝑹(𝜉) =
1

𝑊(𝜉)
(𝐏)T𝐖𝐍(𝜉) =

1

𝑊(𝜉)
(𝐏)T𝐖𝑪𝑩(𝜉) =

1

𝑊(𝜉)
(𝑪Τ𝐖𝐏)T𝐁(𝜉) (5.12)

Considering the weight function 𝑊(𝜉) and NURBS weights 𝐰 = {𝑤𝐴}𝑨=𝟏
𝒏 , 𝑊(𝜉) using again eq. (5.10) can

be written as:

𝑊(𝜉) = 𝐰𝐓𝐍(𝝃) = ⋯ = (𝐰𝐛)
𝐓
𝐁(𝝃) = 𝑊𝑏(𝜉) (5.13)

Where, 𝐰𝐛 = 𝑪Τ𝐰 are the Bézier basis function associated weights. If we define the diagonal matrix 𝐖b as:

𝐖𝐛 =

[

𝑤1
𝑏

𝑤2
𝑏

⋱
𝑤𝑛+𝑚
𝑏]

The Bézier control points are now computed as:

𝐏b = (𝐖𝐛)
−1
𝑪𝐓𝐖𝐏 (5.14)

If we multiply eq. (5.14) by 𝐖𝐛 it is derived that:

𝐖𝐛𝐏b = 𝑪𝐓𝐖𝐏 (5.15)

Finally, the NURBS curve can have its Bézier representation form by using eq. (5.12), (5.13), (5.15) as:

𝐶(𝜉) =
1

𝑊𝑏(𝜉)
(𝐖𝐛𝐏b)

T
𝐁(𝝃) (5.16)

Each Bézier element hat its own Bézier extraction operator [29]. If we have a NURBS surface then we have

two knot vectors. So, for each Bézier element we have to compute two extraction operators and then take

their tensor product in order to find the bivariate extractor operator for the element. In other words:

𝑪𝒆 = 𝑪𝜼
𝒋
⊗𝑪𝝃

𝒌 (5.17)

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

63

Where the tensor product for two matrices is defined as:

𝑨⊗𝑩 = [

𝐴11𝑩 𝐴12𝑩 ⋯

𝐴21𝑩 𝐴22𝑩

⋮ ⋱

]

So, having for each Bézier element the bivariate extraction operator along with the Bézier geometrical and

parametric surface representation of NURBS (like eq. (5.16)) then we can import the latter to a FEM code.

The algorithm an IGA code using Bézier extraction for a thermal problem is shown in figure below. The code

has little difference with a classic FEM or IGA algorithm. The only differences are that we need to compute

the extraction operators for each parametric direction in order to compute the needed basis functions and the

Jacobian matrix for the formation of stiffness matrix and source vector. In other words, the equations

(5.7), (5.8) are still valid we the difference that the NURBS basis function will be expressed by their Bézier

counterpart.

(5.7) ⇒ 𝐾𝑖𝑗
𝑒 =∑∑ (𝑩𝒃(𝜉𝑖 , 휂𝑗))

T

𝒌 (𝑩𝒃(𝜉𝑖 , 휂𝑗)) det(𝐉
𝐛)w𝑖

GPw𝑗
GP

𝑚𝐺𝑃

𝑗=1

𝑛𝐺𝑃

𝑖=1

 (5.18)

(5.8) ⇒ 𝐹𝑖
𝑒 =∑∑ 𝑞𝑣𝑅𝑖

𝑏(𝜉𝑖 , 휂𝑗)det(𝐉
𝐛)w𝑖

GPw𝑗
GP

𝑚𝐺𝑃

𝑗=1

𝑛𝐺𝑃

𝑖=1

(5.19)

Where, 𝑩𝒃 = [
𝜕𝑅𝑖
𝑏

𝜕𝑥

𝜕𝑅𝑖
𝑏

𝜕𝑦
]
T

, 𝑅𝑖
𝑏 is 𝑖𝑡ℎ NURBS basis function which is written in terms of Bézier elements and

𝐉𝐛 being the Jacobian matrix which depends on 𝑅𝑖
𝑏. The superscript "𝑒" corresponds to the 𝑒𝑡ℎ element. But

the elements here, are the NURBS elements which will decomposed into Bézier. The NURBS elements are

in one-to-one correspondence with Bézier [29]. Thus, the same control points (basis functions) that support

a NURBS element, also support the Bézier element. Consequently, we can create a mapping between the

local numbering of NURBS control points and a global control point numbering [29]. That map is called IEN

array and practically the superscript "𝑒" is each row of the IEN array. That term exist also in standard FEM.

The algorithm for constructing the IEN array in I3GA is:

Algorithm for IEN array:

1. Compute the number of NURBS elements in each direction.

2. Construct a matrix that each row has the limits of the intervals [𝜉𝑖 , 𝜉𝑖+1], [휂𝑖, 휂𝑖+1] for each

NURBS element.

3. Construct two matrices one for each parametric direction. Each matrix represents the intervals

for the support of basis functions, in other words each row has the ending knots of the interval

[𝜉𝑖 . 𝜉𝑖+𝑝+1) (or [휂𝑗. 휂𝑗+𝑞+1) respectively).

4. Construct a matrix belonging to ℝ𝑛𝜉×𝑛𝜂 that has as elements the control points.

5. Combine all the above to complete IEN array. A control point belongs to a NURBS element if

the intervals that is supported is subset of the intervals [𝜉𝑖 , 𝜉𝑖+1] and [휂𝑖 , 휂𝑖+1].

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

64

Figure 5.4: Flowchart of IGA code using Bézier extraction.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

65

For example, in table below you see the IEN for the geometry with the parameter space of fig. 5.1. The

NURBS geometry can be seen on fig. 5.5. The Bézier control mesh along with control points is shown on

fig. 5.6 and the physical mesh in fig. 5.6.

IEN array

1 2 4 5

2 3 5 6

4 5 7 8

5 6 8 9

Table 5-1: IEN array for a square with knot vectors 𝚵 = 𝐇 = {0 0 0.5 1 1}𝑇.

Figure 5.5: NURBS geometry with knot vectors 𝜩 = 𝑯 = {0 0 0.5 1 1}𝑇.

Figure 5.6: Bézier control mesh for fig. 5.5.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

66

Figure 5.7: Bézier physical mesh for fig. 5.5.

Because of the geometry is first degree, the Bézier physical elements are equivalent to the NURBS physical

elements. Moreover, the positions of control points are coincided in the two cases. That is not the rule. If the

geometry would be more complex and with higher order, then the Bézier physical and control mesh would

be different from their NURBS counterpart. This is the only case that the extraction operator for these

elements is the identity matrix.

Finally, the material properties in I3GA are taken from a custom-made database that has been developed in

MS Excel (see. Manual in Appendix C). This database gives thermal and elasticity material properties. For

this thesis two materials were selected, and many more can be imported from the user.

5.3 Plane stress analysis using Bézier Extraction

In I3GA except for thermal problem also the plane stress problem has been solved using Bézier extraction.

The plane stress problem is defined in Appendix A.2 where is formulated using isoparametric Lagrange shape

functions. Both formulations and algorithms (Bézier extraction and isoparametric FEM) are equivalent and

only slight differences do exist. The only differences are:

• Each control point has two DoFs, the displacements in the two directions of ℝ2.

• The eq. (5.18), (5.19) about stiffness matrix and source vector are formulated with different

parameters. More specifically:

(5.18) ⇒ 𝐾𝑖𝑗
𝑒 =∑∑ (𝑩𝒃(𝜉𝑖 , 휂𝑗))

T

𝐃(𝑩𝒃(𝜉𝑖 , 휂𝑗)) tdet(𝐉
𝐛)w𝑖

GPw𝑗
GP

𝑚𝐺𝑃

𝑗=1

𝑛𝐺𝑃

𝑖=1

 (5.20)

(5.19) ⇒ 𝐹𝑖
𝑒 =∑∑ 𝑞𝑣𝑅𝑖

𝑏(𝜉𝑖 , 휂𝑗)det(𝐉
𝐛)w𝑖

GPw𝑗
GP

𝑚𝐺𝑃

𝑗=1

𝑛𝐺𝑃

𝑖=1

(5.21)

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

67

Where, 𝑡 is the thickness and 𝐃 is the elasticity matrix where with the use of Poisson ratio 𝜈 and Young

Modulus 𝐸 is defined in plane stress problems as

𝐃 =
𝛦

1 − 𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1

2
(1 − 𝜈)

]

And strain-displacement matrix as 𝑩𝒃:

𝑩𝒃 =

[

𝜕𝑅1

𝑏

𝜕𝑥
… …

𝜕𝑅𝑚
𝑏

𝜕𝑥
0 0 0 0

0 0 0 0
𝜕𝑅1

𝑏

𝜕𝑦
… …

𝜕𝑅𝑚
𝑏

𝜕𝑦

𝜕𝑅1
𝑏

𝜕𝑦
… …

𝜕𝑅𝑚
𝑏

𝜕𝑦

𝜕𝑅1
𝑏

𝜕𝑥
… …

𝜕𝑅𝑚
𝑏

𝜕𝑥]

Where, 𝑚 is the final control point in every row of the IEN array.

As we can see only the computation of stiffness matrix changes, but slightly enough that does not change the

algorithm of fig. 5.4. As an example, we present the square of fig. 5.5 in which we impose Dirichlet boundary

conditions in right side (a shear uniform distribution with load 𝑞 =
1

16
N/m) and fixed boundary conditions

on the left side (zero displacement in both directions). In I3GA we have the capability of inserting two types

of loads; tensile and shear but in the future, we will enrich the code with other options. We can see the two

different types of boundary conditions in fig. 5.8. The used material is Steel AISI 4340 and the thickness of

the plate is 1 mm. Except the displacements (unit m) we also plot the stresses that are computed according

to Appendix A.2. and the Von Mises equivalent stress which is defined as:

𝜎𝑒 = √𝜎𝑥
2 − 𝜎𝑥𝜎𝑦 + 𝜎𝑦

2 + 3𝜏𝑥𝑦

The units of stresses are in [GPa]. As we see in the figures below on the right side the vertical displacement

is bigger and on the left side is zero in both horizontal and vertical directions. The equivalent stress is bigger

near the left edge because the support is on that edge. The number of Gauss points is 25 because we have

one element (Bézier element) and 25 gauss points correspond, because the degree of basis function equals to

4.

Figure 5.8: The two types of loading for plane stress demo.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

68

Figure 5.9: Displacement U (Parallel to 𝑥-axis)

Figure 5.10: Displacement V (Parallel to 𝑦-axis)

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

69

Figure 5.11: Distribution of 𝜎𝑥.

Figure 5.12: Distribution of 𝜎𝑦

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

70

Figure 5.13: Distribution of 𝜏𝑥𝑦.

Figure 5.14:Distribution of Von Mises equivalent stress.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

71

6 Results using I3GA
After explaining the basics for the methods used in I3GA, we proceed in running some cases in order to

validate the program. We will show some results on various cases and classic finite elements benchmark tests

in 2D thermal analysis. We will study the effect of different type of refinement on these cases and the different

type of boundary conditions. We will also present for a specific problem, results from our adaptivity

algorithms.

6.1 Annulus Benchmark Test and Refinements

In this case we examine the thermal problem on an annulus of fig. 6.1. In this problem we examine a quarter

disk as part of a whole disk because the problem is axisymmetric. The inner radius is 𝑅𝑖𝑛 = 2.5 m and the

outer is 𝑅𝑜𝑢𝑡 = 10 m. We have two types of boundary conditions; two Dirichlet (𝑇 = {0,100℃}) and two

homogeneous Neumann boundary conditions 𝑞𝑛 = 0
W

m2
 (zero heat flux). We run this problem using both

NURBS and Bézier elements for various h and p refinement cases. For Bézier extraction case we also

calculate the error between the exact and the numerical solution. This error is calculated by the L2 norm as:

‖𝑇𝑎𝑝𝑝𝑟𝑜𝑥 − 𝑇𝑒𝑥𝑎𝑐𝑡‖2 =
√
∫ (𝛵𝑎𝑝𝑝𝑟𝑜𝑥 − 𝑇𝑒𝑥𝑎𝑐𝑡)

2
dΩ

Ω

∫ (𝑇𝑒𝑥𝑎𝑐𝑡)
2dΩ

Ω

(6.1)

Where, 𝑇𝑎𝑝𝑝𝑟𝑜𝑥 is the numerical solution and 𝑇𝑒𝑥𝑎𝑐𝑡 is the exact solution. The evaluated points in

𝛵𝑎𝑝𝑝𝑟𝑜𝑥 , 𝑇𝑒𝑥𝑎𝑐𝑡 are evaluated on the same control points for each NURBS or Bézier element. For the

computation of the integrals Gauss Quadrature is used as in previous chapter. The analytical solution of this

problem according to [30] is:

𝑇(𝑥, 𝑦) =
100

ln(4)
ln (

10

√𝑥2 + 𝑦2
) (6.2)

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

72

Figure 6.1: Annulus benchmark test. Source: [30].

In order to prove that the accuracy of I3GA is valid we demonstrate the same problem using one of the

commercial CAD/CAE packages, SolidWorks. After model was created in SolidWorks’ CAD environment,

we passed it in CAE to perform the FEM analysis. In this example it was selected Steel AISI 4340

(normalized) for the simulation. After setting the boundary conditions the mesh was developed. Because of

simplicity of the problem, there is no need for an adaptive mesh. A triangular mesh as this in fig .6.2 is

sufficient. The mesh consists of 20834 nodes and 10675 elements. In order to design the geometry in

SolidWorks the thickness was set 1 mm for this 2D analysis problem. In 2D thermal analysis the thickness

is not present in the parameters of calculation. The temperature distribution across the domain is shown in

fig. 6.3.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

73

Figure 6.2: The triangular mesh of the benchmark problem.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

74

Figure 6.3: FEM solution for the benchmark test.

As we can see the temperature is maximum on the inner arc and near zero (10−6 order) on the outer arc.

Practically from the exact solution the value should be zero on the outer arc but due to numerical precision

in plot, the SolidWorks does not show 0. As we can see the heat transfer is decreasing from maximum to

minimum value logarithmically, which is in accordance with the theoretical results.

Below we present the results from I3GA (NURBS and Bézier elements) for the same problem. The surface

is 2nd degree in every parametric direction with knot vectors 𝚵 = 𝐇 = {0 0 0 1 1 1}T. The control mesh and

the physical domain are shown on fig. 6.4 and control points weights on table 6.1. This problem has been

evaluated for different knot insertion and degree elevation cases. For the h-refinement case we inserted

globally knots at the half of each NURBS element for 4 times and for the p-refinement case we elevated the

degree of the surfaces every time by one degree, again for 4 times (finally 6 degree). In each case during

Bézier extraction method we have computed the error according to eq. (6.1). The table showing the errors

and a semilogarithmic diagram of DoFs -vs- error is following below. Finally, we will present for each case,

the Bézier control mesh and the physical domain in order to compare the results from the NURBS

counterpart.

Control Points Weights

0.000 2.500 1.000

0.000 6.250 1.000

0.000 10.000 1.000

2.500 2.500 0.7071

6.250 6.250 0.7071

10.000 10.000 0.7071

2.500 0.000 1.000

6.250 0.000 1.000

10.000 0.000 1.000

Table 6-1: Control points and weights for the surface of benchmark test.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

75

Figure 6.4: The control mesh and the physical mesh for the benchmark test.

Figure 6.5: The control mesh and the physical mesh for the surface after refining globally one time. In total 16 control

points.

Figure 6.6: The control mesh and the physical mesh for the surface after refining globally two times. In total 36 control

points.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

76

Figure 6.7: The control mesh and the physical mesh for the surface after refining globally three times. In total 100 control

points.

Figure 6.8: The control mesh and the physical mesh for the surface after refining globally four times. In total 324 control

points.

Figure 6.9: The control mesh and the physical mesh for the surface after degree elevation by one time. In total 16 control

points.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

77

Figure 6.10: The control mesh and the physical mesh for the surface after degree elevation by two times. In total 25

control points.

Figure 6.11: The control mesh and the physical mesh for the surface after degree elevation by three times. In total 36

control points.

Figure 6.12: The control mesh and the physical mesh for the surface after degree elevation by four times. In total 49

control points.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

78

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

79

Figure 6.13: Temperature distribution on h-refinement cases using IGA and Bézier extraction.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

80

Figure 6.14: Temperature distribution on p-refinement cases using IGA and Bézier extraction.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

81

Figure 6.15: Bézier control and physical mesh on h-refinement cases.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

82

Figure 6.16: Bézier control and physical mesh on p-refinement cases.

Figure 6.17: Error of Bézier extraction method-vs- degrees of freedom for different cases in h and p refinement

(MATLAB).

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

83

h-refinement p-refinement

DoFs error DoFs error

9 0.0462 9 (𝑝, 𝑞 = 2) 0.0462

16 0.0111 16 (𝑝, 𝑞 = 3) 0.0086

36 0.0016 25 (𝑝, 𝑞 = 4) 0.0021

100 1.93E-04 36 (𝑝, 𝑞 = 5) 5.67E-04

324 2.28E-05 49 (𝑝, 𝑞 = 6) 1.59E-04

Table 6-2: Table with DoFs and errors for all cases in Bézier extraction method. The 𝑝, 𝑞 are the basis functions degrees

in 𝜉 and 휂 direction respectively.

Conclusions

At first the analysis algorithms using IGA NURBS and IGA Bézier extraction are validated. As we can see

in both figures 6.13 and 6.14, the results for every case are the same with the distribution in FEM analysis on

fig. 6.3. Although the number of nodes in FEA is way much larger than the number of control points in IGA

cases. That shows the superiority of IGA vs FEA, in which we use the geometric mesh for computational

space, something that gives precise results with less information (control points).

The results from h-refinement are the same for both IGA NURBS and Bézier extraction. Even when the

number of control points is increasing, the results remain unchanged. H-refinement shows its potential in

more complex problems with different types of boundary conditions. However, as we can see in fig.6.17 and

table 6.2 the overall error is decreasing as long as the number of control points increases. This is a logical

outcome. In correspondence with h-refinement in p-refinement the error also decreases while the surface

degree increases. Then the analysis is becoming more accurate. We can see that with p-refinement the number

of DoFs for 𝑝, 𝑞 = 6 becomes 49 with an error of 0.016% in contrast to h-refinement in which at 100 DoFs

the number becomes 0.019%. The higher continuity due to degree elevation gives more accurate results

comparing with knot insertion process.

We can also observe that the NURBS control and physical mesh have more similarities than differences with

their Bézier counterparts. If we see figures 6.4 to 6.8 and fig. 6.15, we can also notice that with more refined

geometry we take more elements in both cases. Each Bézier element share 9 control points with NURBS and

Bézier element. The same also happens in p-refinement where the physical domain has only one element in

both NURBS and Bézier extraction case. The number of control points in corresponding cases is also the

same. The only difference that the two methods have is their representation where Bézier elements have 𝐶0-

continuity instead of NURBS elements which have higher continuity.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

84

6.2 Square with Non-Uniform Dirichlet conditions Benchmark Test

Another case that was executed by using I3GA is the square with Non-Uniform Dirichlet boundary conditions

that is shown in fig. 6.18.

Figure 6.18: Square with Non-Uniform Dirichlet Boundary conditions. Source [27]

Considering zero source term and the boundary conditions of fig. 6.18 the theoretical solution of the problem

is:

𝑇(𝑥, 𝑦) = 𝑇𝑚 (
sinh (

𝜋𝑦
2𝑎
)

sinh (
𝜋𝑏
2𝑎
)
) cos (

𝜋𝑥

2𝑎
) (6.3)

Where, 𝑇𝑚 is the maximum temperature. For this problem we consider 𝑎 = 1, 𝑏 = 1 and 𝑇𝑚 = 100 ℃. The

geometry of this surface it is shown in next figure. The knot vectors in each direction are 𝚵 =

𝐇 = {0 0 0 1 1 1}T and all weights are equal to 1.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

85

Figure 6.19: Geometry for the problem of fig. 6.18

We solve this problem again using IGA NURBS and Bézier extraction. The boundary conditions on the “up”

side of the square are imposed differently from the boundary conditions in I3GA. So, another version of I3GA

was implemented for dealing with this problem. Until now we impose the values of Dirichlet boundary

conditions directly to the unknown control variables parameters 𝑇𝑖 calculated by eq. (5.3). In this case, since

the temperature follows a distribution to the upper side, we need to find the 𝑇𝑖 that corresponds to this side.

In order to calculate them we need to find “𝑥-coordinate” of control points in the side and then calculate the

corresponding basis functions [27]. After that, we calculate the basis functions at these points and then we

solve the system between the basis function values, the corresponding distribution values and the control

variables. In other words, we solve the system below:

𝑻 = 𝑵𝒎𝒂𝒕
−𝟏 𝒒 (6.4)

Where, 𝑻 ∈ ℝ𝒎 is the control variable vector, 𝑵𝒎𝒂𝒕 ∈ ℝ
𝒎×𝒎 is the basis function matrix, 𝒒 ∈ ℝ𝒎 is the

vector with elements, the distribution values at 𝑥-coordinate of upper side control points and 𝑚 is the number

of control points in the upper side. After calculate the control variables we impose them directly to system

(5.3) as with the other boundary conditions. The results of analysis are following below:

Figure 6.20: Results of square problem with non-uniform boundary conditions.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

86

Figure 6.21: Isometric view of temperature distribution of IGA NURBS analysis case.

In both IGA NURBS and Bézier extraction the temperature distribution are the same. The maximum value is

near the left edge and the minimum value is on the right edge of the upper side. This distribution is imposed

by the cosine of boundary conditions. In “isometric view” of distribution (fig. 6.21) we have a better view of

the effect of cosine has on the upper side. The overall error of Bézier extraction analysis was calculated equal

to 2.63 %. Due to the amount of control points that were used for the first approximation the overall error

seems quite expected.

6.3 Cases with sources

In this section we study cases where we impose a source term on the governing equation. The three cases that

we study are the C0 and C1 L-shapes and the circular disk.

L-shapes

The two L-shapes control mesh and their physical mesh is shown in fig. 6.22 and 6.23. The L-shape of fig.

6.22 has 15 control points (C0) and the other one 12 (C1). Although the physical space in two L-shapes

seems the same it is not. First, the knot vectors are different. In case of fig. 6.22 the knot vectors are 𝚵 =

{0 0 0 0.5 0.5 1 1 1}Τ and 𝐇 = {0 0 0 1 1 1}T while in case of fig. 6.23 the knot vectors are 𝚵 =

{0 0 0 0.5 1 1 1}Τ and 𝐇 = {0 0 0 1 1 1}T. In 𝜉-direction in the first case we have a double knot at 0.5 in

contrast to the other case. So, the continuity in first case is 𝐶0 at 𝜉 = 0.5 and in the other 𝐶1 because the

overall degree of the surface in both directions equals to 2. Let name the first case L-shape C0 and the second

case L-shape C1. The diagonal line in physical space represents the position where 𝜉 = 0.5. The control

points in C1 case seem to be 10 in number but this happens because two of them are coincide in order to

create the internal 𝐶1-continuity.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

87

Figure 6.22: L2-shape with C0 internal boundary.

Figure 6.23: L2-shape with C1 internal boundary.

Before performing the analysis, we refine the geometries near their internal boundary because near

boundaries the mesh must be finer. More specifically we add these knots in 𝜉-direction

{0.4, 0.41, 0.42, … ,0.49, 0.51, 0.52, … ,0.6} and in 휂 {0.1, 0.2, 0. 3, … ,0,9}. The figures that show the final

mesh are fig. 6.22, 6.23. The source term for both cases is the 𝑓 = 2𝜋2 sin(𝜋𝑥) sin(𝜋𝑦) and the boundary

conditions are homogeneous Dirichlet on each side. The IGA NURBS results are following below.

Figure 6.24: L2-shape C0 final mesh after knot refinement.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

88

Figure 6.25: L2-shape C1 final mesh after knot refinement.

Figure 6.26: L2-shape C0 IGA NURBS results.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

89

Figure 6.27: L2-shape C0 IGA NURBS results (isometric view).

Figure 6.28: L2-shape C1 IGA NURBS results.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

90

Figure 6.29: L2-shape C1 IGA NURBS results (isometric view).

From fig. 6.24 and 6.25 we see that the physical mesh is different because the control point distribution along

with continuity at 𝜉 = 0.5 differs. In C1 two control points are coincident with other in order to create the

𝐶1-continuity. That is the reason that in C1 we have less DoFs than in C0. Moreover, the curvature in isolines4

that are shown in physical space is also different because of the different continuity. Another difference exist

also in the results, where the curvature of grid lines follows the lines of the respective shape in physical space.

The distribution of temperature is following a trigonometric form as it is implied by the source term.

Circular Disk

In this case we have a circular surface which was refined until it has acquired 100 DoFs and then was solved

using both IGA NURBS and Bézier extraction. The boundary conditions were again homogeneous Dirichlet

and the source term follows a sinus function of the form 𝑓 = sin(10√𝑥2 + 𝑦2). Below the results follow

along with the control mesh and physical space.

4 Lines of constant 𝜉 and 휂.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

91

Figure 6.30: The control mesh and physical domain of a disk.

Figure 6.31: The results from IGA NURBS and Bézier extraction.

6.4 Effect of refinement on code execution time

The calculation time in analysis is significant so in this section we present a study on the effect of refinement

methods on the analysis time while I3GA tool was used. Specifically, we use a benchmark test, using different

refinement procedures in order to accomplish the study. The benchmark test is a square surface with length

1 m and Dirichlet and Neumann boundary conditions. The inhomogeneous Dirichlet boundary conditions are

𝑇 = 60℃ on the “left” side and 𝑇 = 20℃ on the “right” side. The homogeneous Neumann boundary

conditions will be applied to “down” and “up” edges.

The initial surface is a square with knot vectors 𝚵 = 𝚮 = {0 0 1 1}Τ. We have applied four refinement cases.

These are:

• 2-h: Two h-refinements at the half of each NURBS element.

• 2-p: Two p-refinements by elevating the degree in total 2 times at both parametric directions. The

final degree of surface is three.

• k: One k-refinement by applying one p-refinement for one degree and the one h-refinement at the

half of the elements.

• h-p: One h-refinement at the half of the elements and then we elevate the degree by one globally.

The figures with the control mesh and physical domain for all cases are following below along with the

results. We also present a bar graph with the execution times for all methods.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

92

Figure 6.32:The surface and the results for 2-h method.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

93

Figure 6.33: The surface and the results for 2-p method.

Figure 6.34: The surface and the results for k method.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

94

Figure 6.35: The surface and the results for h-p method.

Figure 6.36: Execution time for different methods.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

95

As we see in all the methods, the results are the same in terms of temperature distribution. However, the

number of control points and elements have difference in each case:

❖ (2-h): 25 control points; 16 elements; 1st degree per direction.

❖ (2-p): 16 control points; 1 element; 3rd degree per direction.

❖ (k): 16 control points; 4 elements; 2nd degree per direction.

❖ (h-p): 25 control points; 4 elements; 2nd degree per direction.

From the above data and fig. 6.36 we may conclude that the degree of the surface is more significant than the

number of elements in the surface. This happens because the surface degree defines the number of Gauss

points. So, the execution time increases in accordance with the polynomial degree. Three of the four methods

seem to have practically the same time results, but in problems with more complex geometries the k-

refinement method is the most efficient according to Hughes [16]. The h-refinement method seems faster but

as we showed in theory is less accurate.

6.5 Adaptivity

In industry and in Academic community there is an important need. The need is how a proper mesh can be

built automatically for a problem in order to be accurate enough and computationally fast. There are certain

areas in a model that need more information (elements) such as the boundaries of problem domain or near

external sources. On the other hand, there are areas that do not need elements and the mesh could be coarser

without affecting the analysis. The process of creating automatically the mesh with the adequate information

for a model is called Adaptivity.

In I3GA two adaptivity examples are included for a specific problem case. The problem is a square with

length equal to 1 m which has inhomogeneous Dirichlet boundary conditions. We have 𝑇 = 10℃ on the “up”

edge and 𝑇 = 0℃ on all the other edges. The knot vectors for each direction are 𝚵 = 𝚮 = {0 0 1 1}Τ. The

problem was also solved using FEA in SolidWorks. The mesh and the solution are shown on fig. 6.37 and

6.38. As we can see on the upper boundary the temperature is maximum and the heat is transmitted in a way

such that the temperature becomes zero on the other boundaries.

Let us return to adaptivity examples. A flowchart5 for our current implementation is shown in fig. 6.39.

In order to create an adaptivity code we need a criterion, that controls how many times refinement should be

done in order to be accurate enough during analysis. It is not a simple process to find a general criterion for

each case. A criterion could be for example the error of solution between the computed and the exact solution

in each element. Because this is the first adaptivity implementation in I3GA we have adopted a very simple

criterion for this problem. Because of problems’ symmetry as it is shown in solution space of fig. 6.38., after

the 3rd refinement (see fig. 6.39) we calculate the temperature values at three points on the symmetry axis,

which is parallel to y-axis. After we solve the problem once more, we check if the new three temperatures

are different from the ones calculated in the previous iteration. Their comparing takes place for a specific

error tolerance (휀 = 10−2). If the new values are near enough to the previous ones, the algorithm stops. In

any other case the refinement continues. After the problem converges, we receive the results.

The difference between the two examples is the refinement algorithm. In the first example we apply h-

refinement at the half of each NURBS element. In the second example we perform h-refinement at the half

of specific NURBS elements. These specific elements are the elements that are near the edge that we have

applied the non-zero Dirichlet boundary condition. In the case of “Example 2” we have chosen to perform

refinement between the “up” edge and the axis parallel to x-axis that passes through the center of gravity.

5 There is a typo in “if-statement” and the term is ‖𝑇𝑜𝑙𝑑 − 𝑇𝑛𝑒𝑤‖𝐿1 < 휀

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

96

Figure 6.37: The mesh for the problem domain.

Figure 6.38:The distribution of temperature for thermal problem.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

97

Figure 6.39: Flowchart of adaptivity code in I3GA.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

98

Finally, we have performed a study in order to see the effect of the surface degree in adaptivity. In this study

we examined for each example, 4 adaptivity cases, in which the initial mesh has different degree of surface.

We examined surfaces from degree equal to 1 up to 4. The distributions of temperature along with the final

mesh for each example are following below.

Example 1

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

99

Figure 6.40: Temperature distributions from example 1 of adaptivity and final mesh for surface of degree 1.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

100

Figure 6.41: Temperature distributions from example 1 of adaptivity and final mesh for surface of degree 2.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

101

Figure 6.42: Temperature distributions from example 1 of adaptivity and final mesh for surface of degree 3.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

102

Figure 6.43: Temperature distributions from example 1 of adaptivity and final mesh for surface of degree 4.

Example 2

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

103

Figure 6.44: Temperature distributions from example 2 of adaptivity and final mesh for surface of degree 1.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

104

Figure 6.45: Temperature distributions from example 2 of adaptivity and final mesh for surface of degree 2.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

105

Figure 6.46: Temperature distributions from example 2 of adaptivity and final mesh for surface of degree 3.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

106

Figure 6.47: Temperature distributions from example 2 of adaptivity and final mesh for surface of degree 4.

We also show the effect of surface degree on execution time and the amount of refinement iterations during

algorithm execution. Below two diagrams follow for the two examples mentioned.

Figure 6.48:Total number of refinement iterations-vs-degree of surface.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

107

Figure 6.49: Execution time-vs-degree of surface.

In figures 6.40 to 6.47 we can see from both examples the evolution of temperature distribution with different

DoFs. As long as the number of DoFs increases the results seems closer to the result from FEM. That is

happening because with less NURBS elements we cannot achieve the desired accuracy. From the results we

can conclude that the method (IGA) becomes more accurate over 300 DoFs approximately which are still

less than the corresponding nodes in FEM mesh.

For every example, when we move on from surface degrees 𝑝, 𝑞 = 1 to 𝑝, 𝑞 = 2 then the final DoFs are

decreasing. For instance, in “Example 1” we move on from 1089 to 324 DoFs and in “Example 2” we move

on from 693 to 252 DoFs. However, as the surface degree increases the number of resulting DoFs is also

increases. For instance, we see that in “Example 1” when 𝑝, 𝑞 = 4 the DoFs are 400 and in “Example 2”

they are 320. So, the increase in surface degree does not always result to a less coarse mesh. That happens

only when we move from 1 to 2. Moreover, as long as the degree increases for 𝑝, 𝑞 ≥ 3 the execution time

augments (see fig. 6.49). The needed time for “Example 2” is less than “Example 1” because the DoFs in

“Example 2” are less. Although, the number of total knot refinement iterations is constant for 𝑝, 𝑞 ≥ 2 for

both examples.

Finally, in every figure of the examples, we can see the final meshes. In “Example 2” the mesh is finer only

to a specific region near the edge that is loaded in contrast to “Example 1” which is globally refines. The

final meshes on both “Example 1” and “Example 2” for 𝑝, 𝑞 ≥ 2 are the same. The only difference exists in

the control mesh where the control mesh is finer near the external boundary of the shape. That is happening

because of the initial p-refinement before the h-refinements. With p-refinement the number of elements are

not increased but only the number of control points. So, beginning from the same surface for 𝑝, 𝑞 ≥ 2, five

h-refinements happen but with different starting number of control points.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

108

The used adaptivity criterion of checking only the number of 3 values it is only a simple criterion in

developing adaptivity algorithms. Also, other criteria as one mentioned have also been tested and many more

can be included in the future. In future version of I3GA more complex and generic methods of Adaptivity

will follow.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

109

7 Concluding remarks & Future work
In this thesis we presented a fully integrated and interactive tool of Isogeometric analysis. We have presented

in detail the used methods in refinement, knot refinement and degree elevation, the used Basis functions, the

NURBS and used methods for analysis. In h-refinement we implemented our own Oslo algorithm that enables

the multiple knot insertion in both parametric directions. We have seen the pure IGA formulation and the use

of IGA with Bézier extraction and how problems are formulated in thermal and plane stress analysis. From

the results of our examples, we have many interesting conclusions. Let us mention the effectiveness in

accuracy of h and p-refinement, the effect of non-uniform boundary conditions and the internal or external

sources to the problems. Finally, we examined a custom-made adaptivity formulation for a thermal problem

and the effects of p-refinement in these examples.

Except for creating geometries in I3GA we have also developed algorithms that export the geometries to

other formats as .iges and .iga (IGAFEM). Below we see an example of an exported I3GA geometry in Fusion

360. After opening it to another framework further manipulation can be achieved.

Figure 7.1: A free-hand geometry in I3GA.

Figure 7.2: The above geometry in Fusion 360.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

110

Someone could say that I3GA that is extension ISOGAT. The developed code has many differences from his

precursor. Overall, the characteristics of I3GA that offer more control to engineer and student of IGA are

listed here:

• I3GA offers a GUI with which the user can manipulate and design geometries freely. We can also

move control points in specific locations or change their weights using this GUI. These capabilities

do not exist in ISOGAT where the geometries are very specific and cannot be manipulated. Also,

ISOGAT is not GUI oriented.

• I3GA has at least 6 refinement options and ISOGAT only 1. For h-refinement an alternative method

has been programmed which is used in knot insertion both from parameter and physical space. In

physical space the point insertion is interactive. Except for p-refinement we have also programmed

p-refinement something that does not exist in ISOGAT.

• ISOGAT solves a specific form of thermal equation. I3GA solve a more generic form via

Isogeometric analysis, where the materials are listed in a database. Moreover, in I3GA we solve

thermal and plane stress equation via Bézier extraction method something that does not exist too in

ISOGAT. Finally, we have programmed I3GA to take also inhomogeneous Dirichlet boundary

conditions.

• With I3GA we can extract geometries to other formats in order to work with commercial packages

as Autodesk’s Fusion 360.

The above differences can be summarized in the table below:

Function I3GA ISOGAT

GUI with geometry manipulation Yes No

Free-hand geometry Yes No

Plotting geometry Yes Yes

Importing/Exporting/Saving geometries Yes No

H-refinement via element subdivision Yes Yes

H-refinement multiple knots Yes No

P-refinement Yes No

Insertion of point in physical space Yes No

Solving using NURBS with homogeneous boundary

conditions

Yes Yes

Solving using NURBS with inhomogeneous boundary

conditions

Yes No

Solving using NURBS with internal sources Yes Yes

Solving using NURBS with internal external Yes No

Solving using NURBS Bézier extraction Yes No
Table 7-1: Functions of I3GA and ISOGAT.

In general, I3GA offers an integrated tool for the education of IGA. However, many topics could evolve this

tool. Initially I3GA could be programmed in other environments than MATLAB like in Python or C++

programming languages in order to make it even faster and opensource. We could change the kind of basis

functions. LR-Bsplines [31] and T-splines are blending functions that offer the local refinement property and

not global as in NURBS. Using them we could refine certain areas of the physical domain. Although a

problem specifically in T-splines is difficult to program an efficient knot insertion algorithm. Furthermore,

in this current form we could add some other adaptivity algorithms like the adaptivity algorithm using a

posteriori error estimation. In steady heat conduction problems like in I3GA we could use adaptivity via error

estimation based on temperature gradient recovery [30]. However, there are also other adaptivity techniques

that could be tested using error estimation. Finally, we could also add in I3GA other problems that can be

solved as acoustic problems that are based on Poisson equation.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

111

8 List of Figures

Figure 1.1: The problem domain 𝛺 along with boundary conditions. ...12

Figure 1.2: A simple representation of FEA mesh inaccuracy to exact geometry. Source: [5]13

Figure 1.3: (a) The hand produces by NURBS surfaces. (b) The gap that exists between surfaces in green

area. Source: [4]. ...15

Figure 1.4: A head NURBS model with 4800 control points. The red control points are the ones that do not

add extra information. Source: [4]. ..15

Figure 1.5: (a) NURBS control mesh. (b) T-spline control mesh with T-junctions.16

Figure 1.6: A T-spline surface in Autodesk’s Fusion 360. ...17

Figure 1.7: Triangular mesh generation on FEATools. ..17

Figure 1.8: Solving a heat conduction problem on FEATools with Dirichlet boundary conditions.18

Figure 2.1: A flowchart of traditional FE code. The I,II,III are the 3 stages of FE code described on section

2.1. Source [11]. ..22

Figure 2.2: A 2-D schematic representation of an isoparametric quadrilateral element in Cartesian space and

its respective element on parameter space. The two elements are related with a mapping 𝜱.23

Figure 2.3: Schematic representation of isogeometric concept. A patch is depicted on physical space with

both physical and control mesh. Physical space is the image of parameter space in which basis functions are

defined constructing the surface in physical space. Parameter space is constructed from knot vectors and

the index space shows the support of basis functions from knots. Source:[5]. ..25

Figure 2.4: The basic algorithm of an IGA code. Source: [11]. ...26

Figure 3.1: A typical cubic Bézier curve. The red line is called control polygon. ...28

Figure 3.2: Quadratic B-spline basis functions for 𝚵 = 0 0 0 0.2 0.4 0.6 0.8 0.8 1 1 1T. The plots were

done in MATLAB using NURBS toolbox by M.Spink ...29

Figure 3.3: A quadratic B-spline curve. ...31

Figure 3.4: The convex hull property for a quadratic B-spline curve. ...32

Figure 3.5: (a) Lagrange oscillations in discontinuous data and higher degree. (b) Variation diminishing

property. Source: [16]. ...32

Figure 3.6: Local support property on a quadratic B-spline curve. (a) The physical space, moving the 3rd

control point (b) The corresponding basis function in parameter space affecting only a specific part of the

curve. Source: [26]. ...33

Figure 3.7: The control mesh and the example surface in I3GA. ..34

Figure 3.8:Basis functions for the example case. ..35

Figure 3.9: Moving only one control point, only a specific region is changed. ...35

Figure 3.10: A circle constructed by the projective transformation of a B-spline curve in 𝑅3 to 𝑅2. (a) The

control mesh. (b) The evaluated points in physical mesh. Source: [16]. ...36

Figure 3.11: A circle surface created from NURBS...38

Figure 3.12: The basis function of NURBS surface. ...39

Figure 3.13: The local support property of NURBS after moving a specific point to another position.39

Figure 3.14: The surface before changing the control point in I3GA. In I3GA we can select a control point

and change its position and weight on our own will. ...39

Figure 3.15: The control mesh and the physical domain of the curve after changing the weight of control

point from 1 to 0.5. ..40

Figure 3.16: PB-spline. (a) The support space for the spline (b) PB-spline surface with four control points.

Source: [4] ...41

Figure 3.17: A T-mesh. Created by Ioannis Dimitriou. ..42

Figure 3.18: An anchor at 𝑠𝑎 = 3,3 from T-mesh in [4]..43

Figure 4.1: Knot insertion in curve with original knot vector 𝜩 = 0,0,0,1,1,1. The red dots are the control

points. We can also see the basis functions. Source: [16]. ...45

Figure 4.2: A quadratic NURBS curve with original knot vector 𝜩 = 0,0,0,0.5,1,1,1. The “*” control points

are the old ones and the green dots the new ones. ...45

Figure 4.3: Flowchart that shows the knot refinement process..46

file:///C:/Users/User/Desktop/Thesis/Chapter/final_gia_katathesi.docx%23_Toc149068436
file:///C:/Users/User/Desktop/Thesis/Chapter/final_gia_katathesi.docx%23_Toc149068436

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

112

Figure 4.4: Refinement menu of I3GA. ...47

Figure 4.5: The original L-shape. ..48

Figure 4.6: The parameter space for the L-shape. ...48

Figure 4.7: Knot refinement with subdivision at n = 0.5..49

Figure 4.8: Knot refinement with subdivision at 𝑛 = 0.8. ..49

Figure 4.9: Knot refinement with subdivision at 𝑛𝜉 = 0.8 and at 𝑛휂 = 0.2. ..49

Figure 4.10: Knot refinement at knots 𝜉 = 0.1, 0.9 and at 휂 = 0.8. ..50

Figure 4.11: Selecting a point in physical domain for point inversion. ...52

Figure 4.12: After selecting a point we perform knot refinement in 𝜉-direction. ..52

Figure 4.13: Degree elevation to a curve with knot vector 𝜩 = 0 0 0 1 1 1𝑇. The red dots are the control

points. ..53

Figure 4.14: Initial square of length 1 𝑚. ..54

Figure 4.15: The square after degree elevation of one degree. ..54

Figure 4.16:Knot refinement at 𝜉 = 휂 = 0.5 and then degree elevation to a square surface.55

Figure 4.17: 𝑘-refinement to a square surface. ..55

Figure 5.1: Gauss points in parameter space for a square with knot vectors 𝚵 = 𝐇 = 0 0 0.5 1 1𝑇.............59

Figure 5.2: Flowchart of setting Dirichlet boundary conditions ..60

Figure 5.3: The grid for setting the boundary conditions. ...61

Figure 5.4: Flowchart of IGA code using Bézier extraction. ...64

Figure 5.5: NURBS geometry with knot vectors 𝜩 = 𝑯 = 0 0 0.5 1 1𝑇. ...65

Figure 5.6: Bézier control mesh for fig. 5.5. ...65

Figure 5.7: Bézier physical mesh for fig. 5.5...66

Figure 5.8: The two types of loading for plane stress demo. ...67

Figure 5.9: Displacement U (Parallel to 𝑥-axis) ..68

Figure 5.10: Displacement V (Parallel to 𝑦-axis) ..68

Figure 5.11: Distribution of 𝜎𝑥..69

Figure 5.12: Distribution of 𝜎𝑦 ...69

Figure 5.13: Distribution of 𝜏𝑥𝑦. ...70

Figure 5.14:Distribution of Von Mises equivalent stress. ..70

Figure 6.1: Annulus benchmark test. Source: [30]. ...72

Figure 6.2: The triangular mesh of the benchmark problem..73

Figure 6.3: FEM solution for the benchmark test. ...74

Figure 6.4: The control mesh and the physical mesh for the benchmark test. ...75

Figure 6.5: The control mesh and the physical mesh for the surface after refining globally one time. In total

16 control points. ...75

Figure 6.6: The control mesh and the physical mesh for the surface after refining globally two times. In

total 36 control points. ...75

Figure 6.7: The control mesh and the physical mesh for the surface after refining globally three times. In

total 100 control points. ...76

Figure 6.8: The control mesh and the physical mesh for the surface after refining globally four times. In

total 324 control points. ...76

Figure 6.9: The control mesh and the physical mesh for the surface after degree elevation by one time. In

total 16 control points. ...76

Figure 6.10: The control mesh and the physical mesh for the surface after degree elevation by two times. In

total 25 control points. ...77

Figure 6.11: The control mesh and the physical mesh for the surface after degree elevation by three times.

In total 36 control points. ...77

Figure 6.12: The control mesh and the physical mesh for the surface after degree elevation by four times. In

total 49 control points. ...77

Figure 6.13: Temperature distribution on h-refinement cases using IGA and Bézier extraction.79

Figure 6.14: Temperature distribution on p-refinement cases using IGA and Bézier extraction.80

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

113

Figure 6.15: Bézier control and physical mesh on h-refinement cases. ...81

Figure 6.16: Bézier control and physical mesh on p-refinement cases. ...82

Figure 6.17: Error of Bézier extraction method-vs- degrees of freedom for different cases in h and p

refinement (MATLAB). ...82

Figure 6.18: Square with Non-Uniform Dirichlet Boundary conditions. Source [27]84

Figure 6.19: Geometry for the problem of fig. 6.18 ..85

Figure 6.20: Results of square problem with non-uniform boundary conditions. ...85

Figure 6.21: Isometric view of temperature distribution of IGA NURBS analysis case.86

Figure 6.22: L2-shape with C0 internal boundary. ..87

Figure 6.23: L2-shape with C1 internal boundary. ..87

Figure 6.24: L2-shape C0 final mesh after knot refinement. ...87

Figure 6.25: L2-shape C1 final mesh after knot refinement. ...88

Figure 6.26: L2-shape C0 IGA NURBS results. ..88

Figure 6.27: L2-shape C0 IGA NURBS results (isometric view). ..89

Figure 6.28: L2-shape C1 IGA NURBS results. ..89

Figure 6.29: L2-shape C1 IGA NURBS results (isometric view). ..90

Figure 6.30: The control mesh and physical domain of a disk. ...91

Figure 6.31: The results from IGA NURBS and Bézier extraction. ..91

Figure 6.32:The surface and the results for 2-h method. ...92

Figure 6.33: The surface and the results for 2-p method. ..93

Figure 6.34: The surface and the results for k method. ...93

Figure 6.35: The surface and the results for h-p method. ..94

Figure 6.36: Execution time for different methods. ...94

Figure 6.37: The mesh for the problem domain. ...96

Figure 6.38:The distribution of temperature for thermal problem. ..96

Figure 6.39: Flowchart of adaptivity code in I3GA. ..97

Figure 6.40: Temperature distributions from example 1 of adaptivity and final mesh for surface of degree 1.

 ...99

Figure 6.41: Temperature distributions from example 1 of adaptivity and final mesh for surface of degree 2.

 ...100

Figure 6.42: Temperature distributions from example 1 of adaptivity and final mesh for surface of degree 3.

 ...101

Figure 6.43: Temperature distributions from example 1 of adaptivity and final mesh for surface of degree 4.

 ...102

Figure 6.44: Temperature distributions from example 2 of adaptivity and final mesh for surface of degree 1.

 ...103

Figure 6.45: Temperature distributions from example 2 of adaptivity and final mesh for surface of degree 2.

 ...104

Figure 6.46: Temperature distributions from example 2 of adaptivity and final mesh for surface of degree 3.

 ...105

Figure 6.47: Temperature distributions from example 2 of adaptivity and final mesh for surface of degree 4.

 ...106

Figure 6.48:Total number of refinement iterations-vs-degree of surface. ...106

Figure 6.49: Execution time-vs-degree of surface. ..107

Figure 7.1: A free-hand geometry in I3GA. ...109

Figure 7.2: The above geometry in Fusion 360. ..109

Figure A.1: The articulated beam rotating about 𝑥 = 0 with constant angular velocity 𝜔. Source: [18] .. 118

Figure A.2: Bilinear Quadrilateral Element in 𝜉, 휂-plane. The white dots are the 4 nodes of element and the

black dots are the Gauss points for the accurate numerical integration of this element. Source: [3]122

Figure B.1: The plot of polynomial 𝑁32.decomposed to its different parts. ...127

Figure C.1 The central menu of I3GA. ..128

Figure C.2: Submenu “Load Predefined geometry”. ...129

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

114

Figure C.3: Primitive shapes ...129

Figure C.4: Bar in which we put the length of square’ s edge. ..130

Figure C.5:Result of “Plot Grid” tab. ..130

Figure C.6:1st Window in tab “Free nU x nV”. ...131

Figure C.7:2nd Window in tab “Free nU x nV” ..131

Figure C.8: 3rd window in tab “Free nU x nV” along with the result. ...132

Figure C.9:1st window on “Specific geometry”. ..132

Figure C.10:2nd Window on “Specific geometry” ...133

Figure C.11: Result of Specific geometry ...133

Figure C.12: "Plot basis functions tab" ..134

Figure C.13: Parameter and Index space ...134

Figure C.14: “Refine” tab menu. ...135

Figure C.15: Refine globally at 0.5. ..135

Figure C.16: Refine globally at 𝑛 = 0.8. ...136

Figure C.17:Insertion bars for 𝑛𝑢, 𝑛𝑣. ...136

Figure C.18: Refine globally at different directions for 𝑛𝑢 = 0.8 and 𝑛𝑣 = 0.1 ..136

Figure C.19: The two bars of the tab “Manually arbitrary h-refinement”. ..137

Figure C.20: Knot refinement in 𝜉-direction at 0.8,0.9. ..137

Figure C.21: Bars of sub-menu "Automatic arbitrary h-refinement" ..137

Figure C.22: Example for the case of “Automatic arbitrary h-refinement”. ..138

Figure C.23: The two bars of tab “p-refinement”. ...138

Figure C.24: Example of p-refinement ..138

Figure C.25:1st step of changing control point's position. On the title we see the numbering index and the

coordinates of this control point. ...139

Figure C.26: 2nd step of changing the control point. ..139

Figure C.27: “Data” operation. ..139

Figure C.28: Cross on "DataPhys". ...140

Figure C.29: Example of knot insertion with “DataPhys”. ..140

Figure C.30: Data for a surface from “Show Data” button. ...141

Figure C.31: Sub-menu of “Export-to” ...141

Figure C.32: Inserting the file name ..141

Figure C.33: Choosing material. ..142

Figure C.34: Choosing boundary conditions. ..142

Figure C.35:Final result. ..143

Figure C.36: File “matData.xlsx”. ...143

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

115

9 List of Tables
Table 1-1: The basic stations of CAD interpolation. ...14
Table 3-1: Control Points for the example surface. ...34
Table 3-2: Control points and weights for the circle of diameter 𝑑 = 1𝑚. ...38
Table 5-1: IEN array for a square with knot vectors 𝚵 = 𝐇 = 0 0 0.5 1 1𝑇. ..65
Table 6-1: Control points and weights for the surface of benchmark test. ..74
Table 6-2: Table with DoFs and errors for all cases in Bézier extraction method. The 𝑝, 𝑞 are the basis

functions degrees in 𝜉 and 휂 direction respectively. ..83
Table 7-1: Functions of I3GA and ISOGAT. ... 110

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

116

10 References
[1] J. Wan et al., “A One-dimensional Finite Element Method for Simulation-based Medical Planning for

Cardiovascular Disease,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 5, no.

3, pp. 195–206, Jan. 2002, doi: 10.1080/10255840290010670.

[2] C. G. Provatidis, Precursors of Isogeometric Analysis: Finite Elements, Boundary Elements, and

Collocation Methods, vol. 256. in Solid Mechanics and Its Applications, vol. 256. Cham: Springer

International Publishing, 2019. doi: 10.1007/978-3-030-03889-2.

[3] T. N. Nguyen, “Isogeometric Finite Element Analysis based on Bézier Extraction of NURBS and T-

Splines”.

[4] Y. Bazilevs et al., “Isogeometric analysis using T-splines,” Computer Methods in Applied Mechanics

and Engineering, vol. 199, no. 5–8, pp. 229–263, Jan. 2010, doi: 10.1016/j.cma.2009.02.036.

[5] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, ISOGEOMETRIC ANALYSIS TOWARD

INTEGRATION OF CAD AND FEA. Wiley, 2009.

[6] K. A. Johannessen, “An adaptive isogeometric finite element analysis”.

[7] “Reddit - Dive into anything.” Accessed: Sep. 19, 2023. [Online]. Available:

https://embed.reddit.com/r/Python/comments/u6bcgc/why_do_people_still_pay_and_use_matlab_havi

ng/i57cwr0/?depth=2&showmore=false&embed=true&context=1&showmedia=false

[8] L. s n c S. I. per il T.- http://www.logovia.it, “SOLIDWORKS® 3D.” Accessed: Sep. 20, 2023.

[Online]. Available: https://www.socoges.it/en/facilities/solidworks-3d.html

[9] R. M. & Associates, “Features,” www.rhino3d.com. Accessed: Sep. 20, 2023. [Online]. Available:

https://www.rhino3d.com/features/

[10] “Maya Help | NURBS Modeling | Autodesk.” Accessed: Sep. 20, 2023. [Online]. Available:

https://help.autodesk.com/view/MAYAUL/2024/ENU/?guid=GUID-735A0B9A-2180-4FB8-9A7B-

68F21F306E97

[11] V. Agrawal and S. S. Gautam, “IGA: A Simplified Introduction and Implementation Details for Finite

Element Users,” J. Inst. Eng. India Ser. C, vol. 100, no. 3, pp. 561–585, Jun. 2019, doi:

10.1007/s40032-018-0462-6.

[12] “igafem,” SourceForge. Accessed: Sep. 22, 2023. [Online]. Available:

https://sourceforge.net/projects/cmcodes/

[13] A.-V. Vuong, Ch. Heinrich, and B. Simeon, “ISOGAT: A 2D tutorial MATLAB code for Isogeometric

Analysis,” Computer Aided Geometric Design, vol. 27, no. 8, pp. 644–655, Nov. 2010, doi:

10.1016/j.cagd.2010.06.006.

[14] “Isogeometric Analysis is the next generation of FEA.” Accessed: Sep. 22, 2023. [Online]. Available:

https://coreform.com/products/coreform-iga/

[15] D. C. Thomas, L. Engvall, S. K. Schmidt, K. Tew, and M. A. Scott, “U-splines: Splines over

unstructured meshes,” Computer Methods in Applied Mechanics and Engineering, vol. 401, p. 115515,

Nov. 2022, doi: 10.1016/j.cma.2022.115515.

[16] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS,

exact geometry and mesh refinement,” Computer Methods in Applied Mechanics and Engineering,

vol. 194, no. 39–41, pp. 4135–4195, Oct. 2005, doi: 10.1016/j.cma.2004.10.008.

[17] O. C. Zienkiewicz and R. L. Taylor, The finite element method, 5th ed. Oxford ; Boston: Butterworth-

Heinemann, 2000.

[18] Χ. Γ. Προβατίδης, ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ ΣΤΗΝ ΑΝΑΛΥΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ

ΚΑΤΑΣΚΕΥΩΝ, 2η Έκδοση. ΕΚΔΟΣΕΙΣ ΤΖΙΟΛΑ.

[19] C. Provatidis, “Free vibration analysis of elastic rods using global collocation,” Archive of Applied

Mechanics, vol. 78, pp. 241–250, Apr. 2008, doi: 10.1007/s00419-007-0159-4.

[20] “Engineering at Alberta Courses » Isoparametric Elements.” Accessed: Jan. 14, 2023. [Online].

Available: https://engcourses-uofa.ca/books/introduction-to-solid-mechanics/finite-element-

analysis/one-and-two-dimensional-isoparametric-elements-and-gauss-integration/isoparametric-

elements/

[21] D. L. Logan, A first course in the finite element method, 5th ed. Stamford, CT: Cengage Learning,

2012.

[22] W. A. Wall, M. A. Frenzel, and C. Cyron, “Isogeometric structural shape optimization,” Computer

Methods in Applied Mechanics and Engineering, vol. 197, no. 33, pp. 2976–2988, Jun. 2008, doi:

10.1016/j.cma.2008.01.025.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

117

[23] L. De Lorenzis, P. Wriggers, and T. J. R. Hughes, “Isogeometric contact: a review,” GAMM-

Mitteilungen, vol. 37, no. 1, pp. 85–123, 2014, doi: 10.1002/gamm.201410005.

[24] L. Piegl and W. Tiller, The NURBS Book, Second. Springer-Verlag Berlin Heidelberg.

[25] D. F. Rogers, An introduction to NURBS: with historical perspective. San Francisco: Morgan

Kaufmann Publishers, 2001.

[26] Δ. Καρράς, “Ιεραρχική Βελτίωση της Προσωμοίωσης με τη μέθοδο της Ισογεωμετρικής Ανάλυσης,”

Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, 2015.

[27] Π. Ζησιμοπούλου, “Αποσύνθεση Bézier για παρεμβολή T-spline σε διδιάστατα προβλήματα πεδίου,”

Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, 2022.

[28] T. Lyche and K. Mørken, “Making the Oslo Algorithm More Efficient,” SIAM J. Numer. Anal., vol. 23,

no. 3, pp. 663–675, Jun. 1986, doi: 10.1137/0723042.

[29] M. J. Borden, M. A. Scott, J. A. Evans, and T. J. R. Hughes, “Isogeometric finite element data

structures based on Bézier extraction of NURBS,” Numerical Meth Engineering, vol. 87, no. 1–5, pp.

15–47, Jul. 2011, doi: 10.1002/nme.2968.

[30] T. Yu, B. Chen, S. Natarajan, and T. Q. Bui, “A locally refined adaptive isogeometric analysis for

steady-state heat conduction problems,” Engineering Analysis with Boundary Elements, vol. 117, pp.

119–131, Aug. 2020, doi: 10.1016/j.enganabound.2020.05.005.

[31] T. Dokken, T. Lyche, and K. F. Pettersen, “Polynomial splines over locally refined box-partitions,”

Computer Aided Geometric Design, vol. 30, no. 3, pp. 331–356, Mar. 2013, doi:

10.1016/j.cagd.2012.12.005.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

118

Appendix Α

A.1 Example of FEM formulation using Galerkin method

In this subsection an elasticity problem is formulated using Galerkin method. The problem is based the

exercise 10.1 (pg.462) from [18], even though the formulation will be more generic than the exercise. Let an

elastic beam with Young’s Modulus 𝐸, surface 𝐴 and length 𝐿, density 𝜌 rotated with constant angular

velocity 𝜔 about a joint at position 𝑥 = 0 and with the other edge (𝑥 = 𝐿) being free. In fig. A.1 the beam is

loaded with constant stress 𝜎𝐿. The purpose of this problem is to find the axial displacement u of free edge.

Figure A.1: The articulated beam rotating about 𝑥 = 0 with constant angular velocity 𝜔. Source: [18]

The differential equation describing the problem is:

𝐷(u(𝑥)) = 𝐸
𝜕2u

𝜕𝑥2
+ 𝜌𝜔2𝑥 = 0, 𝑥 ∈ (0, 𝐿) (A. 1)

And boundary conditions are:

𝐁(u) = {

u = 0, 𝑥 = 0

𝐸
𝜕u

𝜕𝑥
− 𝜎𝐿 = 0, 𝑥 = 𝐿

(A. 2)

In this problem we have both Dirichlet and Neumann BCs. Although the problem has exact solution6 we will

formulate it using Finite Element method. Let suppose that our mesh consists of only one element with nodes

at 𝑥 = 0 and 𝑥 = 𝐿 (positions 1 and 2 respectively). Using notation from chapter 2.1 the distribution of axial

displacement 𝑢 (the unknown state variable of problem) that satisfy BCs can be approximated as:

(2.1) ⇒ u ≈ �̃� = 𝑎1𝑁1 + 𝑎2𝑁2 (A. 3)

where, 𝑁𝑖 = 𝑁𝑖(𝑥) are suitable shape functions (i.e., Taylor mononyms: 𝑁1 = 𝑥, 𝑁2 = 𝑥
2) and 𝑎𝑖 are the

unknown nodal values at position 1 and 2. From eq. (2.6) for one element the weak form of the system using

Galerkin method is:

(2.6)
1−𝐷
⇒ ∫𝑁𝑖𝐷(ũ)dΩ

Ω

+∫𝑁𝑖𝐵(ũ)dΓ
Γ

 𝑗 = 1 to 2 (A. 4)

The problem domain Ω is the beam with length 𝐿 and area 𝐴, so it consists of elementary volumes dΩ ≡
𝑑𝑉 = 𝐴d𝑥. The boundary Γ respectively consists of the edges of beam and particularly 𝑥 = 𝐿 where the BC

exists. So, the eq. (A. 4) is written as:

6Exact solution: u =
𝜌𝜔2

6𝛦
(3𝐿2𝑥 − 𝑥3) +

𝜎𝐿𝑥

𝐸

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

119

(A. 4) ⇒ ∫ 𝑁𝑖𝐷(ũ)𝐴d𝑥
𝐿

0

+ 𝐴[𝑁𝑖𝐵(ũ)]𝑥=𝐿 = 0
(A.1)+(A.2)
⇒

⇒ ∫ 𝑁𝑖 (𝐸
𝜕2ũ

𝜕𝑥2
+ 𝜌𝜔2𝑥)𝐴d𝑥

𝐿

0

+ 𝐴 [𝑁𝑖 (𝐸
𝜕ũ

𝜕𝑥
− 𝜎𝐿)]

𝑥=𝐿
= 0 ⇒

⇒ ∫ 𝑁𝑖 (𝐸
𝜕2ũ

𝜕𝑥2
+ 𝜌𝜔2𝑥)𝐴d𝑥

𝐿

0

− 𝐴 [𝑁𝑖 (𝐸
𝜕ũ

𝜕𝑥
− 𝜎𝐿)]

𝑥=𝐿
= 0 (A. 5)

The substitution of “+” with “−“ symbol means that forces and stresses execute positive work during a

displacement. So, eq. (A. 5) continues as:

(A. 5) ⇒ ∫ 𝑁𝑖𝐸𝐴
𝜕2ũ

𝜕𝑥2
d𝑥

𝐿

0⏟

[𝐸𝐴𝑁𝑖
𝜕ũ
𝜕𝑥
]
0

𝐿

−∫ 𝐸𝐴
𝜕𝑁𝑖
𝜕𝑥
𝜕ũ
𝜕𝑥
d𝑥

𝐿
0

+∫ 𝑁𝑖𝜌𝜔
2𝑥𝐴d𝑥

𝐿

0

− 𝐴 [𝑁𝑖𝐸
𝜕ũ

𝜕𝑥
]
𝑥=𝐿

+ 𝐴[𝑁𝑖𝜎𝐿]𝑥=𝐿 = 0 ⇔

⇔ −[𝐸𝐴𝑁𝑖
𝜕ũ

𝜕𝑥
]
𝑥=0

+∫ 𝑁𝑖𝜌𝜔
2𝑥𝐴 − 𝐸𝐴

𝜕𝑁𝑖
𝜕𝑥

𝜕ũ

𝜕𝑥
d𝑥

𝐿

0

+ 𝐴[𝑁𝑖𝜎𝐿]𝑥=𝐿 = 0
(A.3)⇒

𝜕ũ

𝜕𝑥
=
𝜕𝑁1
𝜕𝑥
𝑎1+

𝜕𝑁2
𝜕𝑥
𝑎2

⇒

⇔ −𝐸𝐴 [𝑁𝑖 (
𝜕𝑁1
𝜕𝑥
𝑎1 +

𝜕𝑁2
𝜕𝑥
𝑎2)]

𝑥=0
+ 𝐴∫ 𝑁𝑖𝜌𝜔

2𝑥 − 𝐸
𝜕𝑁𝑖
𝜕𝑥
(
𝜕𝑁1
𝜕𝑥
𝑎1 +

𝜕𝑁2
𝜕𝑥
𝑎2) d𝑥

𝐿

0

+ 𝐴[𝑁𝑖𝜎𝐿]𝑥=𝐿 = 0 ⇔

⇔ −𝐸𝐴 [[𝑁𝑖
𝜕𝑁1
𝜕𝑥
]
𝑥=0
𝑎1 + [𝑁𝑖

𝜕𝑁2
𝜕𝑥
]
𝑥=0
𝑎2] + 𝐴∫ 𝑁𝑖𝜌𝜔

2𝑥d𝑥
𝐿

0

− 𝐴∫ 𝐸
𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁1
𝜕𝑥
𝑎1d𝑥

𝐿

0

− 𝐴∫ 𝐸
𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁2
𝜕𝑥
𝑎2d𝑥

𝐿

0

+ 𝐴[𝑁𝑖𝜎𝐿]𝑥=𝐿 = 0 ⇔

⇔ [𝐸𝐴 [[𝑁𝑖
𝜕𝑁1
𝜕𝑥
]
𝑥=0

+∫ 𝐸
𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁1
𝜕𝑥
d𝑥

𝐿

0

]] 𝑎1 + [𝐸𝐴 [[𝑁𝑖
𝜕𝑁2
𝜕𝑥
]
𝑥=0

+∫ 𝐸
𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁2
𝜕𝑥
d𝑥

𝐿

0

]] 𝑎2

= 𝐴∫ 𝑁𝑖𝜌𝜔
2𝑥d𝑥

𝐿

0

+ 𝐴[𝑁𝑖𝜎𝐿]𝑥=𝐿
𝑖=1,2
⇒

⇒

[

 𝐸𝐴 [[𝑁1

𝜕𝑁1
𝜕𝑥
]
𝑥=0

+∫ 𝐸
𝜕𝑁1
𝜕𝑥

𝜕𝑁1
𝜕𝑥
d𝑥

𝐿

0

] 𝐸𝐴 [[𝑁1
𝜕𝑁2
𝜕𝑥
]
𝑥=0

+∫ 𝐸
𝜕𝑁1
𝜕𝑥

𝜕𝑁2
𝜕𝑥
d𝑥

𝐿

0

]

𝐸𝐴 [[𝑁2
𝜕𝑁1
𝜕𝑥
]
𝑥=0

+∫ 𝐸
𝜕𝑁2
𝜕𝑥

𝜕𝑁1
𝜕𝑥
d𝑥

𝐿

0

] 𝐸𝐴 [[𝑁2
𝜕𝑁2
𝜕𝑥
]
𝑥=0

+∫ 𝐸
𝜕𝑁2
𝜕𝑥

𝜕𝑁2
𝜕𝑥
d𝑥

𝐿

0

]
]

⏟
𝐊Global

[
𝑎1
𝑎2
]

⏟
𝐚

=

[

 𝐴∫ 𝑁1𝜌𝜔

2𝑥d𝑥
𝐿

0

+ 𝐴[𝑁1𝜎𝐿]𝑥=𝐿

𝐴∫ 𝑁2𝜌𝜔
2𝑥d𝑥

𝐿

0

+ 𝐴[𝑁2𝜎𝐿]𝑥=𝐿
]

⏟
𝐟

(2.6)
⇔

⇔ 𝐊Global𝐚 = 𝐟 (A. 6)

With eq. (A.6) by choosing proper 𝑁1,𝑁2 we can derive a system of linear equations about 𝑎1, 𝑎2 in order to

have an approximate solution. If we choose from original example, 𝑁1 = 𝑥, 𝑁2 = 𝑥
2 then the nodal values

will be:

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

120

𝑎1 =
𝜎𝐿
𝐸
+
7𝜌𝜔2𝐿

12𝐸
 𝑎2 = −

𝜌𝜔2𝐿

4𝐸
 (A. 7)

A.2 Example of isoparametric FEM formulation using Lagrange Shape Functions

In this subsection we will present an example of isoparametric element formulation of plane (2-D) stress

problem using Q4 elements which are derived from Lagrange shape functions. The example is taken from

[3]. However, let first consider some preliminaries on mechanics. Considering that we work on linear

elasticity region the stress-strain relationship is given by [17]:

𝝈 = [

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦
] = 𝐃(𝜺 − 𝜺0) + 𝝈0 ⇔

⇔ 𝝈 =
𝛦

1 − 𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1

2
(1 − 𝜈)

] (𝜺 − 𝜺0) + 𝝈0 (Α. 8)

where, 𝝈, 𝜺 are the vectors of plane stresses and strains respectively, 𝐃 is the elasticity matrix, 𝐸 is the

Young’s modulus and 𝜈 is the Poisson’s ratio for the specific material. The subscript ”0” defines the initial

stress or strains but in our case, we consider them zero. In every elasticity problem the primary variable is

the displacement and it is inserted in problem by strain. The strain-displacement relationship is:

𝜺 = [

휀𝑥
휀𝑦
𝛾𝑥𝑦
] = 𝝏𝐮 =

[

𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦
𝜕

𝜕𝑦

𝜕

𝜕𝑥]

[
𝑢(𝑥, 𝑦)

𝑣(𝑥, 𝑦)
] = [

1 0 0 0
0 0 0 1
0 1 1 0

]

[

𝜕𝑢

𝜕𝑥
𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥
𝜕𝑣

𝜕𝑦]

(A. 9)

Now we would need to formulate Finite element method using Galerkin method (eq. (2.6)). For this purpose,

we would firstly need to discretize the arbitrary domain Ω and then after choosing suitable shape functions

we then apply the process described on section 2.1. However, the differential equations are needed to apply

Galerkin. The differential equations of elasticity (Navier equations) are complex. Thus, we use an alternative

and equivalent method to formulate eq. (2.6), the principle of virtual work. According to this method if we

apply a virtual force to the system then the external work 𝐖EXT has to be equal to the internal 𝐖INT. So, for

one element the alternate notation of eq. (2.6) is:

∫(𝛿휀)Τ𝝈dΩ
Ω⏟

𝐖INT

= ∫(𝛿𝐮)Τ𝐅dΩ
Ω

+∫(𝛿𝐮)Τ𝚽dΓ
Γ⏟

𝐖EXT

(Α. 10)

where 𝛿 denotes the virtual strain or displacement, 𝐅 are the virtual external forces in domain (volume) Ω

and 𝚽 are the surface tractions on the boundary Γ. For example, we create a mesh with 𝑚 elements and 𝑛

nodes. The vector of nodal parameters will be noted as: 𝐚 = [𝑢1 𝑢2…𝑢𝑛 𝑣1 𝑣2…𝑣𝑛]
T. Using the previous

notation from before the approximation of displacement 𝐮 according to eq. (2.1) will be written as:

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

121

(2.1) ⇒ 𝐮 = [
𝑢
𝑣
] ≅ 𝐍𝐚 =

[

 ∑ 𝑁𝑖𝑢𝑖

𝑛

𝑖=1

∑ 𝑁𝑖𝑣𝑖
𝑛

𝑖=1]

= [
𝑁1 𝑁2 … 𝑁𝑛 0 0 0 0
0 0 0 0 𝑁1 𝑁2 … 𝑁𝑛

]

[

𝑢1
𝑢2
⋮
𝑢𝑛
𝑣1
𝑣2
⋮
𝑣𝑛]

(A. 11)

where 𝑁𝑖 , 𝑖 = 1,2, … , 𝑛 are the element’s shape functions. According to the approximation above from

eq. (A. 9), strains will be written as:

(A. 9)
(A.11)
⇒ 𝜺= 𝜕(𝐍𝐚)

a→const.
⇔

⇔ 𝜺 = 𝜕(𝐍)𝐚
𝝏𝐍≡𝐁
⇔

⇔ 𝜺 = 𝐁𝐚 (A. 12)

where 𝐁 is called strain-displacement matrix.

Now we need to formulate the eq. (A. 10) to a similar manner as eq. (2.6) is order to derive a system of

equations that can be solved. From eq. (A. 11) and eq. (A. 12) the virtual strains and displacements can be

written as:

𝛿𝐮T = (𝛿𝐚)T𝐍T and 𝛿𝜺T = (𝛿𝐚)T𝚩T (Α. 13)

Then eq. (A. 10) will be expressed as:

(A. 10)
(A.13)
⇒ ∫(𝛿𝐚)T𝐁T𝝈dΩ

Ω

= ∫(𝛿𝐚)T𝚴T𝐅dΩ
Ω

+∫(𝛿𝐚)T𝚴T𝚽dΓ
Γ

(Α.8)→𝝈=𝐃𝜺=𝐃𝚩𝐚
⇒

⇒ 𝛿𝐚T (∫𝐁T𝐃𝚩𝐚dΩ
Ω

−∫𝚴T𝐅dΩ
Ω

−∫𝚴T𝚽dΓ
Γ

) = 0
𝛿𝐚T:𝐚𝐫𝐛𝐢𝐭𝐫𝐚𝐫𝐲
⇒
𝐚 ≠ 𝐚(𝑥, 𝑦)

⇒ ∫𝐁T𝐃𝚩𝐚dΩ
Ω

−∫𝚴T𝐅dΩ
Ω

−∫𝚴T𝚽dΓ
Γ

= 0 ⇔

⇔ 𝐊𝐚 = 𝐟 (A. 14)

with 𝐊 = ∫ 𝐁T𝐃𝚩𝐚dΩ
Ω

 and 𝐟 = ∫ 𝚴T𝐅dΩ
Ω

+ ∫ 𝚴T𝚽dΓ
Γ

. After deriving the FE equation, we need to choose

the proper shape functions, in other words the element type. As element we chose an isoparametric element,

the Bilinear Quadrilateral (Q4) element (see fig. Α.2). From fig. Α.2 this element consists of 4 nodes on

vertices of the element with natural coordinates 𝜉, 휂 ∈ [−1, 1]. For this element we have four shape functions

that are matched to four nodes and they are derived from 1𝑠𝑡 -order Lagrange polynomials as:

𝑁1 =
1

4
(1 − 𝜉)(1 − 휂)

𝛮2 =
1

4
(1 + 𝜉)(1 − 휂)

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

122

𝛮3 =
1

4
(1 − 𝜉)(1 + 휂)

𝛮4 =
1

4
(1 + 𝜉)(1 + 휂)

Figure A.2: Bilinear Quadrilateral Element in 𝜉, 휂-plane. The white dots are the 4 nodes of element and the black dots

are the Gauss points for the accurate numerical integration of this element. Source: [3]

In isoparametric formulation a mapping between global and parent elements exists. This mapping is defined

by Jacobian matrix. The Jacobian matrix 𝐉 is defined as:

[

𝜕

𝜕𝜉
𝜕

𝜕휂]

= 𝐉

[

𝜕

𝜕𝑥
𝜕

𝜕𝑦]

=

[

𝜕𝑥

𝜕𝜉

𝜕𝑦

𝜕𝜉
𝜕𝑥

𝜕휂

𝜕𝑦

𝜕휂]

[

𝜕

𝜕𝑥
𝜕

𝜕𝑦]

(A. 16)

In isoparametric elements the same shape functions that are used for displacement are also used for the

geometry in Cartesian space. According to chapter 2.2 the 𝑥, 𝑦 coordinates are written for Q4 elements as:

𝑥 =∑𝑁𝑖𝑥𝑖

4

𝑖=1

 and 𝑦 =∑𝑁𝑖𝑦𝑖

4

𝑖=1

 (A. 17)

Substituting eq. (A. 17) to Jacobian matrix then:

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

123

𝐉 =

[

∑
𝜕𝑁𝑖
𝜕𝜉
𝑥𝑖

4

𝑖=1

∑
𝜕𝑁𝑖
𝜕𝜉
𝑦𝑖

4

𝑖=1

∑
𝜕𝑁𝑖
𝜕휂
𝑥𝑖

4

𝑖=1

∑
𝜕𝑁𝑖
𝜕휂
𝑦𝑖

4

𝑖=1]

=
1

4
[
(휂 − 1) (1 − 휂) −(1 + 휂) (1 + 휂)

(𝜉 − 1) (1 − 𝜉) −(1 + 𝜉) (1 + 𝜉)
] [

𝑥1 𝑦1
𝑥2 𝑦2
𝑥3 𝑦3
𝑥4 𝑦4

] = [
𝑱𝟏𝟏 𝑱𝟏𝟐
𝑱𝟐𝟏 𝑱𝟐𝟐

] (A. 18)

The benefit of isoparametric analysis is to write eq. (𝐴. 14) about natural coordinates 𝜉, 휂 where calculations

are easier, because for integrals Gauss quadrature can be used. The reason that Gauss Quadrature is used

because the fact that 𝜉, 휂 ∈ [−1,1]. So, the derivatives of natural coordinates in eq. (A. 16) need to be

expressed about Cartesian coordinates using the inverse Jacobian matrix 𝚪. The inverse Jacobian is defined

as:

𝚪 ≡ 𝐉−1 =
1

det(𝐉)
[
𝐽22 −𝐽12
−𝐽21 𝐽11

] (A. 19)

So, using eq. (𝐴. 16) and eq. (𝐴. 19) for displacement derivatives we have:

[

𝜕𝑢

𝜕𝑥
𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥
𝜕𝑣

𝜕𝑦]

= [
𝚪 0
0 𝚪

]

[

𝜕𝑢

𝜕𝜉
𝜕𝑢

𝜕휂
𝜕𝑣

𝜕𝜉
𝜕𝑣

𝜕휂]

 (Α. 20)

If we differentiate about natural coordinates from eq. (A. 11) we have:

(A. 11) ⇒

[

𝜕𝑢

𝜕𝜉
𝜕𝑢

𝜕휂
𝜕𝑣

𝜕𝜉
𝜕𝑣

𝜕휂]

=

[

𝜕𝑁1
𝜕𝜉

𝜕𝑁2
𝜕𝜉

𝜕𝑁3
𝜕𝜉

𝜕𝑁4
𝜕𝜉

0 0 0 0

𝜕𝑁1
𝜕𝜉

𝜕𝑁2
𝜕𝜉

𝜕𝑁3
𝜕𝜉

𝜕𝑁4
𝜕𝜉

0 0 0 0

0 0 0 0
𝜕𝑁1
𝜕휂

𝜕𝑁2
𝜕휂

𝜕𝑁3
𝜕휂

𝜕𝑁4
𝜕휂

0 0 0 0
𝜕𝑁1
𝜕휂

𝜕𝑁2
𝜕휂

𝜕𝑁3
𝜕휂

𝜕𝑁4
𝜕휂]

𝐚 (A. 21)

So, by combining the eq. (A. 9), eq. (A. 20), eq. (A. 21) the strain-displacement matrix becomes:

𝐁 =

[

𝜕𝑁1
𝜕𝑥

𝜕𝑁2
𝜕𝑥

𝜕𝑁3
𝜕𝑥

𝜕𝑁4
𝜕𝑥

0 0 0 0

0 0 0 0
𝜕𝑁1
𝜕𝑦

𝜕𝑁2
𝜕𝑦

𝜕𝑁3
𝜕𝑦

𝜕𝑁4
𝜕𝑦

𝜕𝑁1
𝜕𝑦

𝜕𝑁2
𝜕𝑦

𝜕𝑁3
𝜕𝑦

𝜕𝑁4
𝜕𝑦

𝜕𝑁1
𝜕𝑥

𝜕𝑁2
𝜕𝑥

𝜕𝑁3
𝜕𝑥

𝜕𝑁4
𝜕𝑥]

 (A. 22)

Now we have all the needed parts in order to write the eq. (A. 14) in terms of natural coordinates, as it is

demanded by isoparametric formulation. Having plane stress problem, the elementary volume dΩ = 𝑡 d𝑥 d𝑦

where 𝑡 is the constant thickness in 𝑧-direction. If we apply “Substitution rule” to the integrals of stiffness

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

124

matrix changing the Cartesian to natural coordinates and Gaussian quadrature for numerical integration we

have:

(A. 14) ⇒ 𝑡∫ ∫ 𝐁T𝐃𝐁
1

−1

1

−1

det(𝐉) d𝜉d휂 ≈ 𝑡∑∑𝐁T(𝜉𝑖 , 휂𝑗)𝐃𝐁(𝜉𝑖 , 휂𝑗) det(𝐉) 𝑤𝑖𝑤𝑗
𝑗𝑖

 (A. 23)

where, 𝜉𝑖 , 휂𝑗 are the coordinates of Gauss points and 𝑤𝑖 , 𝑤𝑗 are the corresponding weights. In previous figure

it is shown that the chosen values for 4 Gauss points for the integration of Q4 element, (𝜉𝑖 , 휂𝑗) = (±
1

√3
, ±

1

√3
)

with 𝑤𝑖 , 𝑤𝑗 = 1 for all points. The same logic can be applied to 𝐟 where the shape functions are written about

natural coordinates. Then according to flowchart of fig. 2.1 the unknown values of 𝐚 are computed along

with useful quantities (e.g., stresses, strains etc.).

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

125

Appendix B

In this appendix we will present an example of computing basis functions using eq. (3.3) The knot vector in

which basis functions will be computed is the 𝚵 = {0⏟
𝜉1

, 0⏟
𝜉2

, 0⏟
𝜉3

, 0.2⏟
𝜉4

, 0.4⏟
𝜉5

, 0.6⏟
𝜉6

, 0.8⏟
𝜉7

, 0.8⏟
𝜉8

, 1⏟
𝜉9

, 1⏟
𝜉10

, 1⏟
𝜉11

}. The order

of this B-spline according to this open knot vector is 𝑝 + 1 = 3; thus, the degree is 𝑝 = 2. The number of

basis functions is needed to be computed are 𝑛 + 𝑝 + 1 = 11 ⇔ 𝑛 = 8. Then

𝑁1
2(𝜉), 𝛮2

2(𝜉), 𝛮3
2(𝜉), 𝛮4

2(𝜉),𝛮5
2(𝜉), 𝛮6

2(𝜉), 𝛮7
2(𝜉), 𝛮8

2(𝜉) should be computed. In order to compute these

basis functions, we need firstly to compute the corresponded basis functions of reduced degree. Let us begin

with basis functions of zero degree (𝑝 = 0).

For computing them we will define each basis function in the corresponding interval [𝜉𝑖 , 𝜉𝑖+1). The length of

Ξ is 11, therefore the number of zero-degree basis functions is 10, because 10 intervals exist. The first

interval is [𝜉1, 𝜉2) = [0,0). Because 𝜉1 = 𝜉2 ⇒ 𝛮1
0(𝜉) ≡ 𝛮1

0 = 0, ∀𝜉. The same is also for 𝛮2
0 because

[𝜉2, 𝜉3) = [0,0). For the third basis functions the interval is [𝜉3, 𝜉4] = [0,0.2) ⇒ 𝜉3 ≠ 𝜉4. So according to

eq. (3.3) 𝑁3
0 = {

1, 𝜉 ∈ [𝜉3, 𝜉4)

0, otherwise
. The corresponding procedure goes for other zero-degree functions. The

results are:

𝑁1
0 = 𝑁2

0 = 𝑁7
0 = 𝑁9

0 = 𝑁10
0 = 0

and

𝑁3
0 = {

1, 𝜉 ∈ [0,0.2)

0, otherwise

𝑁4
0 = {

1, 𝜉 ∈ [0.2,0.4)

0, otherwise

𝑁5
0 = {

1, 𝜉 ∈ [0.4,0.6)

0, otherwise

𝑁6
0 = {

1, 𝜉 ∈ [0.6,0.8)

0, otherwise

𝑁8
0 = {

1, 𝜉 ∈ [0.8,1)

0, otherwise

Now, that 𝑁𝑖
0 have been defined the next degree basis functions must be computed. As the degree of basis

functions is increasing, the number of calculated basis functions is decreased by 1. As a result, the number

of 𝑁𝑖
1 is 9. The 𝑁𝑖

1 will be computed using the recursive form of eq. (3.3). For example, we could start by

calculating 𝑁1
1. According to eq. (3.3) the function will be:

𝑁1
1 =

𝜉 − 𝜉1
𝜉2 − 𝜉1

𝛮1
0 +

𝜉2 − 𝜉

𝜉3 − 𝜉2
𝛮2
0 (B. 24)

The terms
𝜉−𝜉1

𝜉2−𝜉1
,
𝜉2−𝜉

𝜉3−𝜉2
 are not defined because (𝜉1 = 𝜉2 and 𝜉3 = 𝜉2). However, the terms 𝛮1

0 = 𝛮2
0 = 0

from before; thus from eq. (Α. 24) the 𝑁1
1 = 0. Proceeding to 𝑁2

1 we have:

𝑁2
1 =

𝜉 − 𝜉2
𝜉3 − 𝜉2

𝛮2
0 +

𝜉4 − 𝜉

𝜉4 − 𝜉3
𝛮3
0 (B. 25)

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

126

The
𝜉−𝜉2

𝜉3−𝜉2
 is not defined again, but

𝜉4−𝜉

𝜉4−𝜉3
=

0.2−𝜉

0.4−0.2
=

1

5
−𝜉

1

5

= 1 − 5𝜉. This coefficient is multiplied by 𝛮3
0

which is 1 on interval [0,0.2) and 0 elsewhere. So, from (B. 25) we will have:

𝑁2
1 = (1 − 5𝜉)𝛮3

0 = {
1 − 5𝜉, 𝜉 ∈ [0,0.2)

0, otherwise

The same procedure goes for other basis functions. So, the results will be:

𝑁1
1 = 𝛮9

1 = 0

𝑁2
1 = 1 − 5𝜉, 𝜉 ∈ [0,0.2)

𝑁3
1 = {

5𝜉, 𝜉 ∈ [0,0.2)

2 − 5𝜉, 𝜉 ∈ [0.2,0.4)

𝑁4
1 = {

5𝜉 − 1, 𝜉 ∈ [0.2,0.4)

3 − 5𝜉, 𝜉 ∈ [0.4,0.6)

𝑁5
1 = {

5𝜉 − 2, 𝜉 ∈ [0.4,0.6)

4 − 5𝜉, 𝜉 ∈ [0.6,0.8)

𝑁6
1 = 5𝜉 − 3, 𝜉 ∈ [0.6,0.8)

𝑁7
1 = 5 − 5𝜉, 𝜉 ∈ [0.8,1)

𝑁8
1 = 5𝜉 − 4, 𝜉 ∈ [0.8,1)

Now, 𝑁𝑖
2 must be computed with same procedure as above. Finally:

𝑁1
2 =

𝜉 − 𝜉1
𝜉3 − 𝜉1

𝛮1
1 +

𝜉4 − 𝜉

𝜉4 − 𝜉2
𝛮2
1 = ⋯ = (1 − 5𝜉)2, 𝜉 ∈ [0,0.2)

𝑁2
2 = {

5𝜉(1 − 5𝜉) + (1 −
5

2
𝜉) 5𝜉, 𝜉 ∈ [0,0.2)

(1 −
5

2
𝜉) (2 − 5𝜉), 𝜉 ∈ [0.2,0.4)

𝑁3
2 =

{

25

2
𝜉2, 𝜉 ∈ [0,0.2)

5

2
𝜉(2 − 5𝜉) + (

3 − 5𝜉

2
) (5𝜉 − 1), 𝜉 ∈ [0.2,0.4)

(
(3 − 5𝜉)2

2
) , 𝜉 ∈ [0.4,0.6)

𝑁4
2 =

{

(5𝜉 − 1)2

2
, 𝜉 ∈ [0.2,0.4)

(5𝜉 − 1)

2
(3 − 5𝜉) +

(4 − 5𝜉)

2
(5𝜉 − 2), 𝜉 ∈ [0.4,0.6)

(4 − 5𝜉)2

2
, 𝜉 ∈ [0.6,0.8)

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

127

𝑁5
2 =

{

(5𝜉 − 2)2

2
, 𝜉 ∈ [0.4,0.6)

(5𝜉 − 2)

2
(4 − 5𝜉) +

4 − 5𝜉

2
(5𝜉 − 3), 𝜉 ∈ [0.6,0.8)

𝑁6
2 =

{

(5𝜉 − 3)2

2
, 𝜉 ∈ [0.6,0.8)

(5 − 5𝜉)2

2
, 𝜉 ∈ [0.6,0.8)

𝑁7
2 =

(5𝜉 − 4)

2
(5 − 5𝜉) +

(5 − 5𝜉)

2
(5𝜉 − 4), 𝜉 ∈ [0.8,1)

𝑁8
2 =

(5𝜉 − 4)2

2
, 𝜉 ∈ [0.8,1)

Below the plot of 𝑁3
2 is following. As we can see each polynomial constructs a specific part of curve.

Figure B.1: The plot of polynomial 𝑁3
2.decomposed to its different parts.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

128

Appendix C: Manual of I3GA
In this Appendix we will present the manual of the current version of I3GA.

C.1 Central menu and Loading Geometries

The program runs by executing the following process.

1. Run from Command Window the program as: g=i3ga

2. Call the menu with the commnad: g.menu()

The menu of I3GA is the following:

Figure C.1: The central menu of I3GA.

As we can see there is a variety of choices. The first thing that should be done in order to start the analysis

process is to use a geometry. Loading the geometry is done in tab “Load predefined geometry”. If we select

it, we go to the following submenu:

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

129

Figure C.2: Submenu “Load Predefined geometry”.

Except to tab “Back” that returns to the initial menu, the other 5 tabs create the geometry.

“Primitives” Tab

The “Primitives” tab contains some initial shapes which can be manipulated and processed freely. More

specifically we have 9 shapes:

Figure C.3: Primitive shapes

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

130

Except for the triangle by choosing a geometry we can perform an analysis to it or to an edited version of it.

After choosing the shape and pass the needed geometry parameters (i.e., lengths, radius, etc.) we can see the

geometry by clicking in central menu the “Plot grid” tab.

Example:

Let suppose that we have chosen the “Square” in Primitives menu. Then it is asked one parameter, the length

of the square’s edge.

Figure C.4: Bar in which we put the length of square’ s edge.

Let suppose that the length is 10 m. Then we go back to the initial menu and we click the “Plot grid” button.

The result is following below:

Figure C.5: Result of “Plot Grid” tab.

On the left we have the control net, on the right is the physical space. Later we will see how can create free-

hand objects from “Plot grid” tab.

Free nU x nV

This tab permits the construction of a grid in which the user chooses the number of control points per

direction. As we can see in figure C.6 the user inserts the degree of NURBS Basis functions the number of

control points per parametric direction (u ≡ 𝜉 and 𝑣 ≡ 휂 parametric direction). Next the user inserts the max

and min values of desired knot vectors per direction (fig. C.7). In the end as it is shown in fig. C.8, a window

is showed up in which we insert the control points whenever we want with left click. At the last point we

push right mouse click. Next by clicking again “Plot grid” tab in the central menu we can see the result. In

the example that is following we create a quadratic NURBS curve by 3x3 grid.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

131

Figure C.6: 1st Window in tab “Free nU x nV”.

Figure C.7: 2nd Window in tab “Free nU x nV”

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

132

Figure C.8: 3rd window in tab “Free nU x nV” along with the result.

Specific geometry

The “Specific” geometry tab was created for the construction of a specific geometry by providing the

degree and knot vector of a grid. The user can manipulate the geometry by using the capabilities of Plot

grid. Initially after the user clicks on this tab, he/she is asked to insert the degrees and the knot vectors of

NURBS surface (see fig. 2.9). Next two windows are showed up. The first windows shows the number of

control points that need to be inserted in every direction. The other is the window for placing the control

points on the net. The result is showed again by using “Plot grid” in fig. C.11.

Figure C.9: 1st window on “Specific geometry”.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

133

Figure C.10: 2nd Window on “Specific geometry”

Figure C.11: Result of Specific geometry

Load Geometry

With this tab we load a saved geometry to edit it. The saved geometries are saved in .mat files and their

format is a structure with the name obj. The obj structure contains the following properties:

 obj.pU → Degree of basis function in 𝜉-direction.

 obj.pV → Degree of basis function in 휂-direction.

 obj.knotVectorU → Knot vector in 𝜉-direction.

 obj.knotVectorV → Knot vector in 휂-direction.

 obj.controlPoints → Control points.

 obj.weights → Weights

 obj.kU → Length of knot vector in 𝜉-direction.

 obj.kV → Length of knot vector in 휂-direction.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

134

 obj.nobU → Number of basis functions in 𝜉-direction.

 obj.nobV → Number of basis functions in 휂-direction.

Plot Basis Functions

After selecting the geometry, the user can see the basis functions for the NURBS surface he has chosen. He

can do this in the central menu by selecting the tab “Plot basis functions”. The result for a square with edge

length 10 m (4 control points → 4 basis functions) is shown in figure below.

Figure C.12: "Plot basis functions tab"

Index & Parameter space

The user can also observe the index and the parameter space if he chooses the tab “Index&Parameter” space

from central menu. In fig. C.13 we observe the two spaces for a square with length 10 m and knot vectors

{0 0 1 1} per direction.

Figure C.13: Parameter and Index space

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

135

C.2 Refinement

If the user wants to refine geometry, he can do it through “Refine” tab in the central menu. This tab opens

another menu that is shown in fig. C.13.

Figure C.14: “Refine” tab menu.

We will present the capabilities of each refinement option using as an example a 4-control point square.

Refine globally at 0.5 and at n

The first refinement option that the user could have used, is ℎ-refienment or knot refinement. The first and

the second tab in refinement menu, do knot insertion process on both directions (globally) by partitioning

every non-empty knot span [𝜉𝑖 , 𝜉𝑖+1] at its half or at value 𝑛 ∈ (0,1] proportional to the selected tab. Below

two figures are following where he have two knot refinement options one at 𝑛 = 0.5 and one at 𝑛 = 0.8. The

results are shown by pressing the “Plot grid” tab in central menu.

Figure C.15: Refine globally at 0.5.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

136

Figure C.16: Refine globally at 𝑛 = 0.8.

Refine globally at different direction

This tab has the same concept with the others but the difference here is that the portioning of space in every

direction happens at different 𝑛. Below it is following an example where 𝑛𝑢 = 0.8 and 𝑛𝑣 = 0.1.

Figure C.17:Insertion bars for 𝑛𝑢 , 𝑛𝑣.

Figure C.18: Refine globally at different directions for 𝑛𝑢 = 0.8 and 𝑛𝑣 = 0.1

Manually arbitrary h-refinement

This specific tab is responsible for the knot insertion at desired knots. When we press it, two bars are showed

up in where we can insert one or multiple knots in every direction. If the user does not want to insert knots

in a direction, we just leave the bar empty. For example, here we have inserted the two knots at 0.8,0.9 only

in 𝜉 −direction.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

137

Figure C.19: The two bars of the tab “Manually arbitrary h-refinement”.

Figure C.20: Knot refinement in 𝜉-direction at 0.8,0.9.

Automatic arbitrary h-refinement

In this tab we can insert a series of knots in the desired direction. After we press this tab, then for evary

direction a menu will be showed up.

Figure C.21: Bars of sub-menu "Automatic arbitrary h-refinement"

At this menu we insert the limits of the interval that we want to do h-refinement, the knot step, and the

direction where we want this knot series be deployed. From the smaller to larger value, we put +1 and for

the inverse we put −1. Below we see an example where we have place knots in 𝜉-direction from 0.5 to 1

with knot step 0.05 and in 휂-direction from 0.8 to 1 with step 0.03.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

138

Figure C.22: Example for the case of “Automatic arbitrary h-refinement”.

P-refinement

With this last tab we can do p-refinement or degree elevation in the geometry. By pressing this tab, a window

with two bars is showed up, which asks how many times we want to elevate the degree of the surface in each

parametric direction. If the user does not desire to elevate a specific degree can leave the bar empty. Below

we see an example where we have elevated the degree 1 time in both directions.

Figure C.23: The two bars of tab “p-refinement”.

Figure C.24: Example of p-refinement

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

139

C.3 Plot grid

Except for displaying the surfaces this tab is in charge for the free manipulation of them. Specifically, the

user can press on one control point with the mouse and by keeping the mouse pressed, move it to another

position. The results of this procedure are showing up in figures C.25 and C.26.

Figure C.25:1st step of changing control point's position. On the title we see the numbering index and the coordinates of

this control point.

Figure C.26: 2nd step of changing the control point.

Except for the free-hand positioning of control points the user can also move them on specific locations and

change their weight. That can be done by choosing the “Data” button in “Plot grid” window. When we select

it is showed up a cross with which we select the control point that we want to move. When we select a control

point, a label shows up with data about the point (its coordinates and weight). Next, on the window left side

we can insert the new data for the control point and then click “update”. The data will have been updated but

in order to update the visual result we need to press again the “Data” button. Moreover, we can see the index

numbering of control points with choice Index.

Figure C.27: “Data” operation.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

140

Furthermore, the user can execute knot refinement in physical space by clicking the “DataPhys” button. When

we hit this button a cross is showed up where we can click on the Physical space to insert a point. Then a

menu is showed up with three choices. The three choices are if we want to insert a knot only in 𝜉-direction,

only in 휂-direction and on both 𝜉, 휂-direction. In figure C.28 and C.29 we see an example.

Figure C.28: Cross on "DataPhys".

Figure C.29: Example of knot insertion with “DataPhys”.

Finally, with “DataGauss” button we can see the gauss points for the surface on parametric space.

Show Data

In this operation which is located in the initial menu, the user can see all the basic data of geometry in the

command window. These data are the surface degrees, the knot vectors per parametric direction, the

coordinates and weight of control points and the type of boundary conditions.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

141

Figure C.30: Data for a surface from “Show Data” button.

Export to…

With this tab that is accessible from the central menu the user can extract the NURBS geometry in three

formats, .igs, .iga(IGAFEM) and .mat (This format saves the geometry to use it another time). After clicking

on central sub-menu, a new menu is showed up with the 3-file format. If the user press a file format, then he

can insert the name of the file without insert its format.

Figure C.31: Sub-menu of “Export-to”

Figure C.32: Inserting the file name

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

142

C.4 Analysis

Type of Boundary conditions

In this tab, which is in the central menu, the user defines the type of boundary conditions in each side (up,

down, right, left). The types are two Dirichlet or homogeneous Neumann. After pressing the tab, a sub-menu

with the types of Boundary conditions is showed up and next another menu is showed up with the sides that

the user must select. Except for the square the kind of each side (“up”, “down”, etc.) is not coincide with that

on that is written on the menu, for example we may select a boundary condition in the “down” side but this

corresponds visually to the left side.

Demo Thermal problem NURBS

In this demo problem we solve thermal problems with the use of IGA. After selecting the tab, a list with

materials is showed up which is connected to the file “matData.xlsx”. By choosing a material, next we can

place the values of boundary conditions in the window that is following. Let that we examine the thermal

conductivity in a square with Neumann conditions up and down, and Dirichlet left 𝑇 = 60 and 20 right. After

finishing this step, the analysis runs and the result are shown in a contour plot. The same steps we are

following in “Demo Thermal Problem Bézier Extraction”. In the “Demo Plane Stress Bézier Extraction” the

only input from the user is the thickness of plate in this version of I3GA.

Figure C.33: Choosing material.

Figure C.34: Choosing boundary conditions.

I3GA: An Integrated, Interactive Isogeometric Analysis tool in MATLAB for 2D problem

143

Figure C.35:Final result.

Material file “matData.xlsx”

In this file we can write the natural properties of the materials in format that can be written in MATLAB. The

file is shown in the figure below:

Figure C.36: File “matData.xlsx”.

