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Abstract

The necessity to reduce emissions in the transport sector has led to the advancement of electromobility. Nowadays,
electromobility is developing rapidly in the urban freight transport sector. This helps to reduce the environmental
footprint of transport, given the large portion of emissions that originate from the freight transport sector. However, the
use of electric vehicle fleets for freight transport has some limitations, such as autonomy, charging delays, and lack of
charging infrastructure. In this study, we focus on the problem of finding the optimal locations for charging stations of
freight transport vehicles in the urban network. The installation of charging stations is a major issue, as it is necessary to
identify the optimal locations of installation points in order to improve the delivery of products and reduce the empty
vehicle kilometers driven for charging purposes. This study formulates the charging station location selection problem
aiming at minimizing the empty kilometers driven to reach the charging stations, taking into consideration the
destinations of truck deliveries. The developed model is an Integer Linear Program (ILP) that can be effectively solved
to global optimality for realistic problem instances. Further, this study employs sensitivity analysis to identify specific
factors with significant impact on the selected locations of charging stations. Experiments are performed using
benchmark instances demonstrating the scalability of our approach and the sensitivity of our solutions to the changes of
different factors.



Summary

Nowadays, the urban freight transport sector is evolving rapidly and impressively as climate change intensifies, and
increased concerns about air quality promote the transition to more sustainable forms of alternative transportation. In
this context, the development of electrification has emerged as one of the key solutions to reduce greenhouse gas
emissions and improve air quality. However, the optimal functionality of electric vehicles in the urban freight transport
sector depends to a large extent on the existence and efficiency of charging infrastructure.

Undoubtedly, in the 21st century, freight transportation faces significant challenges. Given the population growth and
concentration in large urban centers, there is an increase in the demand for goods and distribution services. However,
high levels of air pollution emissions, noise pollution, and traffic congestion hinder the optimal transportation planning.
Based on all the above, the transition from conventional vehicles (with internal combustion engines) to electric vehicles
is a one-way path for transportation and distribution companies. Electric vehicles are environmentally friendly, have
better performance, are more cost-effective, and contribute to noise reduction. However, this transition requires
strategic planning and a significant background of charging infrastructure networks to be sustainable.

The development of electric vehicle charging infrastructure is a crucial step towards sustainable mobility. The selection
of the optimal location is a research problem in transportation science as it contributes to the efficiency, accessibility,
and efficiency of charging infrastructure. When selecting a location, multiple parameters are taken into account, such as
the geographical distribution of demand, public accessibility, specific needs and constraints of the local community, and
economic factors. The analysis of the optimal locations of electric vehicle charging stations also requires the
consideration of different types of loads (fast charging, regular charging, etc.) and different user categories, including
individuals, businesses, communities with stationary charging needs, and designated areas.

In this work, the importance of the optimal planning of charging infrastructure on the urban network is examined with
the aim of serving the consumers (level of satisfaction). In addition, the main factors contributing to location selection,
such as demand, cost, and station capacity, are analyzed. By developing an integer linear programming model, the best
locations are found through a series of scenarios.

To assess the model's effectiveness, sensitivity analysis was conducted to examine the influence and importance of
factors such as station capacity, proximity and budget in solving the model. It is evident that station capacity
significantly affects the solution in relation to proximity and budget.
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Xovoyn

H avaykn yio m Hel®on TV EKTOUTOV GTOV TOUEN TOV PETAPOPDY 001yNGE OTNV AVATTLEN VEOV BIOCILOV Kol
npdovaov mtpoktik®v. H niektpoxivinon Bempeitat pio omd T1¢ ovadvopUEVES TAGELG TNG ETOYNG KOl AVOTTOCCETOL
poydaio. GTOV TOUEN TMV OOTIKOV EUTOPEVUATIKOV LETAPOPOV. AVTO GLUUPAALEL 6N peimon TG TEPBAAAOVTIKNG
EMPAPLVONG TOV HETAPOPDV, AOUPAVOVTOC VTTOYN TO LEYAAO TOGOGTO TMV EKTOUTMY TOV TPOEPYOVTAL OO TOV TOUEN
TOV EUTOPEVUATIKOV LETAPOPOV. Q6TOC0, 1) YPNIOT NAEKTPIKMDY POPTIYDV Y10 TIS OOTIKEG LETAPOPES £XEL OPICUEVOLS
TEPLOPIGLOVG, OTMG 1) VTOVOLLL, 01 KABVGTEPNGELG POPTIONG KaL 1) EAAELYT) VTOSOUDV POPTIONG. Z€ AVTIV TN LEALTN,
EMKEVIPOVOULAGTE 6TO TPOPAN L E0pECNS TOV PEATIGTOV TOTOOESIDV Y10 TOVG GTAOUODS POPTIOTG Yo Yp1IoT
OYNUAT®V EUTOPEVUATIKOV LETAPOPAOV GTO 00TKO dikTvo. H gykatdotacn tov otafudmv opTiong anotelel Kaipto
Ompe, Kabodg eivar amapaitnto va eviomoTolv ot BEATIoTEG TomoBeGieg eykaTdoTOoNS Yia T BeATioon g
TOPAS06NG TPOIOVTIMV KoL TN HEIMOT TOV VEKPOV YPOVOV Kol YIMOUETPMV TOV OXNLOTOG, TOL SIVOOVTOL Y10 GKOTOVG
@options. H peAétn avt datumdvet To tpdPAnua emroyng tomobeciog otabpod gpdptiong pe 6tox0 v
EAOYIOTOTOINGT) TOV KEVOV YIMOUETPOV TPOG TOVG GTAOLOVG POPTIONG, AAUBAVOVTAG VIOWT TOVG TPOOPLGHLOVS TV
@opy®dv. To poviélo Tov avarTueceTat givat £vo LOVTELD aKEPALOV YpapLpikod Tpoypappaticpoy (ILP) mov propei
va emAV0el 0TOTEAEGLOTIKA KAVOVTOG XPOT KOl SOKIES GE PEAMOTIKEG TEPITTMOGELS TPOPANUATOV (PEAAMGTIKA
dedopéva). EmmAéov, mpaypoatonoteitar avaivon evaodnciog yio Tov KabBopiopod tmv mopayoviov EKEIV@V 01 0010l
etval o1 o onpavtikoi 6t Sondpemaen g PEATIOTNG Ao Xuykekpluéva, eEetaletal ) enidpacn g
YOPNTIKOTNTAG TV 6TAOU®V pOPTIONGS, TOV d1fECoV KEPAAAIOL KAOMS KOt TNG 0modeKTNG AmdoTACNG TOV KAAEITAL O
00N YOG VoL KAADWYEL Y1 VoL pOPTIGEL TO dynud Tov, ot PéATIoT emhoyn oTafudv eopTions. [ 1o oKkomd avtod
S1e&ayovTal EKTEVI] VTTOAOYIOTIKE TEPAUOTO TAVED GE VEW, TPOTOTOMUEVE TPOTLTO TTPOoPARaTa TG PLproypapiog Ta
omoin, AVAGEIKVOOLY TNV OTOTEAEGULOTIKOTITO TOV LOVTEAOD EMAVOTG GE PEGAinG Kot LEYOANG KAMUOKOG TPOPANLOTAL.



Hepidnyn

2T1G HEPEG O TOUENS TOV AOTIKMOV EUTOPEVUATIKAOV LETAPOPDY £EEAIGOETOL e paydaio Kol EVIVTOGIAKO pLOLLO,
KaODG 1 KMUATIKN dAAaYT| EVTEIVETOL KAl Ol CVENUEVEG AVNOLYIEG Y10 TV TTO10TNTO TOV a€pa TPowBovv TN petdfacn
0€ TO PUOCYEG LOPPEG KO EVOAALAKTIKEG LETOPOPEG. ZTO TAAIGLO AVTO, 1) AVATTLEN TNG NAEKTPOKIVIONG €)XEL
avaderyBel og pio and TG Pacikéc AVCELS Y10, TV LEIMON TOV EKTOUTOV aepimv Beppoknmiov Kot tnv PeAtioon tng
TOLOTNTOG TOL aépa. QoTdG0, 1 BEATIOTN AEITOVPYIKOTITO TOV NAEKTPIKAOV OXNILATOV GTOV TOUEN TOV OCTIKOV
EUTOPEVLATIKAV LETAPOPDV EAPTATOL OE PeYdA0 BaBpd amd TV DIOPEN KL TNV ATOTEAESLOTIKOTNTO TV VTOOOUMDV
PopTIONG.

Avopoeifola, Tov 21° aidvo 01 EUTOPEVUATIKEG LETOPOPEG AVTILETMOTILOVV PeYOAeg TPOKANGELS. AESOUEVTS TG
aHvENONG KoL TNG CLYKEVIP®OTG TOV TANOVGLOD GTa LEYAAN AGTIKA KEVTIPA, Tapatnpeitol avénon ot {imon ayabov
Kot 6TIG VAN PETies dtavoung. Opme, ot Peydleg TOCOTNTES EKTOUTMV GEPLOV POTWOV, 1| NYOPVITAVCT] KOL 1|
KUKAOQOPLOKT] GULPAPNOT, dSVGYEPUIVOLY TO PBEATIOTO GYESOGHO TOV LETOPOPDV. Bdoel OAmv TV mapamdvm, 1
petdfaon v cuUPATIKGOV OYNUATOV (LE KIVNTHPES ECOTEPIKNG KODOTG) G€ NAEKTPIKE OYNLLOTA, ATOTEAEL LOVOSPOLLO
Yo TIG ETOpEieg PeETAPOPDOV Kat Stavopdv ayadmv. Ta niektpikd oxfLoTo amotehoby HEGO Kivong, PIAKO TPOG TO
nepIPAALOV, £xoVV KOADTEPT 0dS0GN, EIVOL TTO OIKOVOULIKA, EVH GUUPBAAAOVY Kot ot peiman tov Bopvfov. Qotdco,
QLT 1) LETAPOOT OTOLTEL GTPOTNYIKO GYESAGUO Kot £va oNUOVTIKO VdBabdpo vTodong SIKTO®V POPTIONG Y10 Va. Eivat
Buooiun.

H avantoén vrodopmv popTiong NAEKTPIKOV OYNLAT®OV omoTelel Kaipla evépyetla petdfaonc Tpog v
katevBovon g Prociung kvntikottog. H emioyn g Bértiog tonobeciog amotedel mpofAnpa peréng yio v
EMOTNUN TOV HETUPOPDV, KOODS CUUPAAAEL GTNV ATOTEAECLATIKOTITA, TNV TPOCPACILOTNTO KOL TNV 000 TIKOTN T,
™G vodoung eoptiong. Katd v emihoyn tonobeciog Aapupavovrol veoyn toivapifpes tapduetpot, 6nmg 1
YEOYPAPIKN KaTavopun g {Rtnong, N tpodcPaot Tov Kovov, ot EW01KES 0VAYKES Kol TEPLOPIGUOL TNG TOTIKNG
KOWOTNTOG, Kot Ol 01KOVOUIKoi mapdyovteg. H avaivon g Bértiotng Tomobesiog otafpdmy popTiong NAEKTPIKGV
oYNUAT®V amattel ET{OTG T1 CLVEKTIUNGT] TOV SLOPOPOV TOTWV POPTIOL (YPNYOpN POPTIOT), KOVOVIKT POPTIOT) KAT.) KOt
TOV SWPOPETIKMV KOTYOPLOV YPNOTOV, OTMG WOIDTEG, EXLYEPNGELS, KOWOTNTEG UE aVAYKEG oTadEPNG POPTIONG, OAAYL
Kot ToEIVOUNUEVES TEPLOYES.

Y1y Topovca STk epyacia, e&etaleton To TpoPAnpa g PEATIOTNG MMy g ToTofeGing VTOSOUMY POPTIONG
o€ SiKTLa LETAPOPDV, LE GKOTO TNV UEIMON TG GUVOAIKE S1VVOUEVTS OTOGTAOTS (KOGTOVG) TV NAEKTPOKIVIIT®V
oynuatmv. I'ia 10 oKomd avTd, OVATTHCGETOL LOVTELO AKEPOLOV YPAUUIKOD TPOYPUULATIGHLOV, LEGM TOV 0TOi0V
emruyydvetal ) €bpeon TV PEATIOT®V TOTODECIOV, Y10 (o 6€1pd cevapimv. [ v e€€Ta.om TG OmOTEAECLATIKOTI TG
TOV TPOTELVOLEVOL HOVTEAOL dMovpyRnkay véa, tponorompéva tpdtuma tpoPfinuatae g BipAoypapios. Emmiéov,
OVOADOVTOL Ol KUPLOL TAPAYOVTEG TOV GUUPBAALOLY GTNV EMAOYN TNG PEATIGTNG TOTMOBEGING, OTMG 1 XOPNTIKOTNTO TOV
otafpdv EOpTIoNg, T0 SHECIO KEQAAMO KAOME KOl 1 ATOSEKTT) OMOGTAGT] TOL KOAEITAL O 03TYOS VO KOADWEL Y10 VO
PopTicel To OyNud Tov. To VTOAOYIGTIKA TEWPAUATA KATOSEIKVOOLV OTL ] YOPNTIKOTNTA TOL 6TOOUOD OPTIONG
emnpealetl onuavticd m BEATIoT Ao Tov vo e&étacn TpofAnudToy.



1 Introduction

One of the biggest issues of the 21st century is the global warming due to the excessive
greenhouse gas emissions [1]. Although the advancement of new technologies aims to
reduce the greenhouse gas emissions, particularly COs, approximately one-quarter of
these emissions come from the transportation sector [2]. More specifically, in 2017 it
was recorded that 27% of the total greenhouse gas emissions in the European Union
came from transportation. Furthermore, it was noted that from 1990 there has been
an increase of over 25%, with further increases expected in the future, primarily from
the freight transport sector [1]. Based on the above, the adoption of green applications
and practices has become necessary to make freight transport more sustainable in
terms of economic, societal, and environmental aspects [3].

One of the big changes of our time is electrification ( e-mobility), a nd particu-
larly the use of electric battery-powered fleets for last-mile deliveries (Electric Freight
Vehicles) [4]. According to research conducted in 2010, the growing population and
the rapid growth in freight transport are expected to contribute to a 77% increase
in general transportation by 2055 [5—11]. Given this, the development and adoption
of electric vehicles is expected to play a crucial role in achieving very low emissions,
reducing noise, and improving air quality in major urban centers. Although the use
of electric fleets in freight t ransport h as n umerous a dvantages, t he l ack o f charging
infrastructure is one of the main concerns for businesses that are exploring the con-
vention of their fleets from ¢ onventional t o e lectric v ehicles. A s a ¢ onsequence, the
functional integration of electrification into the field of freight transport is postponed.

Taking into consideration all the above, the strategic installation of charging sta-
tions in “key” locations becomes essential to support long-distance deliveries. The
optimal design and placement of charging stations is necessary to ensure autonomy,
efficiency, su fliciency in f rei ght tran sport oper ations, and mini mization of t he final
operational cost. It should be emphasized that the optimal location selection of charg-
ing stations is needed to reduce the cost of electricity provision and charging times
(delays-queue) [12]. Given that, the decision of location selection is crucial for the effi-
cient functioning of a charging station, and considering that there are limited financial
resources available for the construction of infrastructure, it is necessary select opti-
mally the locations of charging stations in the urban network. This will help to limit
the potential negative effects of charging station installation, such as environmental,
economic, and social impacts, while contributing to increased levels of final customer’s
satisfaction.

The optimal location of a charging station is determined by various factors, includ-
ing the type of technology used for the station, the drivers’ behavior, the charging
time, the installation cost, the travel time to the charging station, and the traffic
network [13]. Installing charging infrastructure in the road network is a critical deci-
sion because the utilization rate of a public electric vehicle charging station is a key
factor in determining its efficiency and eff ectiveness. The necessity of optimal place-
ment is highlighted in many studies, which show that the utilization rates of existing
charging stations are low, indicating poor/inappropriate location choices [14-16]. Fur-
thermore, the rapid increase in the simultaneous use of multiple electric vehicles poses



a significant challenge for the energy sector. It necessitates the development of appro-
priate charging infrastructure, the creation of the required network conditions, and
the advancement of technology [17].

Based on all the previous information provided, it becomes evident that exist-
ing electric vehicle charging infrastructure is typically inadequate to cover the needs
of freight transport. The utilization of existing electric vehicle charging stations has
significant impacts on b oth road traffic (traffic congestion) and energy consumption,
while potentially causing voltage drop issues within the network. This highlights the
shortcomings of the charging station location choices in urban areas. Specifically, in
many areas with such installations there is a burden on the transport network due
to vehicle overload, leading to increased delays and reduced parking space availability
[18]. Additionally, energy consumption rises in certain areas due to simultaneous charg-
ing, resulting in difficulties in power supply and po tential issues such as transformer
overloads, imbalances in phase, and voltage deviations. In light of these challenges,
it is essential to carefully plan the location and distribution of electric vehicle charg-
ing stations, taking into account factors such as the network capacity, the traffic flow,
and the energy demand to ensure their optimal functionality and minimize the neg-
ative impacts on both transportation and energy systems [16, 19-21]. Undoubtedly,
the need for the development of fast, reliable, and user-friendly technologies would
facilitate freight transport operators in the practical use of electric vehicles, promote
green transportation practices, and reduce the dependency of distribution on fossil
fuel sources [22, 23].

The aim of this thesis is to find the optimal locations for installing charging stations
for urban freight transport in a given area, with the primary criterion being the service
level improvement and the reduction of empty kilometers driven for charging purposes.
More specifically, the constraints encountered during the creation of a charging station
will be analyzed and presented, such as economic limitations, routing constraints,
and placement within the road network. Precisely determining the coordinates of the
most suitable locations for charging station installation requires special attention to
factors such as the charging technology, charging time, type of electric vehicle, and
the availability of charging infrastructure. Based on all of the above, a design model
is created that optimally selects the locations for charging station installation, with
an emphasis on freight vehicles.

The remainder of the thesis is structured as follows. The second section consists
of the literature review, which involves the review of past studies that have addressed
the classic Facility Location Problem (FLP). The aim is to gather information and
mathematical models developed to solve the problem of optimal placement of electric
charging stations in the urban network, considering the constraints in their design and
operation, as well as any applications that have been implemented to evaluate their
effectiveness in freight transportation. Gaps in the existing literature are identified by
creating summary tables to consolidate all the research conducted on the problem of
optimal placement, focusing on areas that require improvement. In the third section,
the methodology is analyzed and an integer linear program for the charging station
location selection problem for urban freight transport is developed. The proposed
model is analyzed and it is tested in numerical experiments in section four. The model

10



is programmed in Python and it is solved with Gurobi. To assess the effectiveness of the
model, a case study is conducted in a defined area. In the fifth section, the conclusions
of the analysis are presented, highlighting potential areas for future research.

2 Literature Review

2.1 Charging Technologies

The rapid increase of environmental pollution has led to the advancement of elec-
trification. T his m arks t he p ath t owards g radual d ecarbonization a nd independence
of transportation from fossil fuels [13, 24]. Electric vehicles are one of the emerg-
ing trends, as electrificationi so neo ft he m ost s ustainable a nd environmentally
friendly approaches. Electric vehicles significantly contribute to the reduction of CO2
emissions, and therefore, to the mitigation of the greenhouse effect [ 25]. T hey also
contribute to reducing noise levels in large urban centers [26]. However, the rapid inte-
gration of electric vehicles into urban areas is challenging due to the lack of charging
infrastructure, specifically c harging s tations’ a vailability. T he s mooth i ntegration of
electrification into freight t ransportation p oses a significant ch allenge in today’s con-
text. While the goal is to reduce emissions, there are many constraints that make the
conversion of distribution fleets f rom c onventional t o e lectric v ehicles d ifficult, thus
hindering the improvement of the end consumer’s service level.

In transportation, the constraints faced by electric vehicle providers primarily
relate to the vehicles’ battery range and the availability of electric vehicle charging
infrastructure along their routes. Many cities and communities have started to recog-
nize the benefits of electrification, and there is willingness to improve the planning of
charging stations in order to promote the use of electric vehicles [27, 28]. Therefore,
the decision-making process for the optimal location selection of new charging stations
within a city is crucial. The Charging Station Location Problem (CSLP) involves a
set of constraints that need to be defined and satisfied when selecting the most appro-
priate installation points. The most important aspects that are typically taken into
consideration are the following [29]:

Charger Utilization: Charging stations for electric vehicles are categorized into
three (3) basic levels, each of which determines their technical specifications and final
cost, according to [30]. Specifically, f or r esidential use, L evel 1 ¢ hargers a re recom-
mended, which are typically slow-charging installations. For work and public use in
parking lots, hotels, supermarkets, etc., Level 2 installations are recommended, which
are usually fast-charging stations. Level 3 chargers are primarily recommended for
locations such as highways and fuel stations. The different ¢ haracteristics o f each
charging level are illustrated in Fig.1.

11
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Level 1 and Level 2
Residential Charging

Electric vehicles are charged
via an AC power supply at a
normal (Levell) or semi fast
charging rate:

Voltage

120V 1-Phase AC

Amps

12-16 Amps

Charging Loads

1.4to 1.9 KW

Charging Time

3-5 Miles of range per hour
Price per Mile

2¢-6¢ mile

Level 2
Work and Public place Charging

Electric vehicles are charged
via an AC power supply at
semi fast (Level2) charging
rate:

Voltage

208V or 240V 1-Phase AC
Amps

12-80 Amps (Typ 32 Amps)
Charging Loads

2.5 to 19.2KW (Type 7KW)
Charging Time

10-20 Miles of range per hour
Price per Mile

2c-6¢ mile

Level 3
DC Fast Charging

Electric vehicles are charged
via an DC power supply at a
fast (Level3) charging rate:
Voltage
208V or 480V 3-Phase AC
Amps
<125 Amps (Typ 60 Amps)
Charging Loads

<90KW (Type 50KW)

Charging Time

80% Charge in 20-32 minutes
Price per Mile

12¢-25¢ per mile

Fig. 1 Charger utilization per level [31]

Charger Types: The types of chargers at electric charging station installations
are divided into two categories: direct current (DC) chargers and alternating current
(AC) chargers. Specifically, DC chargers allow for the direct charging of the vehicle,
as opposed to alternating current (AC), which is present in the grid and needs to be
converted into DC in order to be adapted in electric vehicle batteries. As a result, the
charging process is much faster since the step of converting from AC to DC is skipped
[32, 33].

Charging Technologies: Starting with the types of charging stations, advance-
ments in technology and expertise in the field of electrification have led to the
development of various new charging station technologies aimed at enhancing user
convenience. According to the literature, emerging charging station technologies
include:

® Conductive Charging: Conductive charging offers several advantages, including its
economic feasibility, fast charging capability, user-friendly operation, and high effi-
ciency. In addition to this, conductive charging has been further classified into
two categories[34]. Onboard chargers, such as AC-DC converters, are typically slow
chargers designed to charge the vehicle entirely within. On the contrary, offboard
chargers are known for their rapid charging capabilities. Furthermore, using off-
board chargers can also enhance the electric vehicle’s range by reducing the vehicle’s
weight[35]. In the following, two types of conductive charging are presented.
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Overnight Depot Charging: Overnight depot charging facilities provide both fast
and slow charging options, with the charging point typically located at the end of
designated lines. These facilities are primarily used for overnight charging, taking
advantage of the minimal impact on the distribution grid. Slow charging is the most
advantageous choice in this context[36] [37]. However, for applications necessitating
high battery capacity and quick recharging, the Pantograph charging technique is
more suitable.

Pantograph Charging: Pantograph charging offers a range of charging options and is
commonly employed for applications requiring greater battery capacity and power,
such as buses and trucks. This charging approach reduces the investment required
for bus batteries but increases infrastructure costs[38].

Fast Charging: This method allows electric vehicles to charge as quickly as possi-
ble compared to conventional plug-in methods. Fast charging reduces the battery
recharging wait time, making it more practical for drivers and distributors [39]. Fast
charging stations can be categorized into DC (direct current) stations, which con-
nect to direct current, and ultra-fast charging stations, which achieve even faster
charging levels but require high voltage levels in the grid. However, it’s important
to note that the charging time depends not only on the type of charger but also on
factors such as battery size (capacity) and the charger’s power capacity for recharg-
ing batteries. In Greece, for example, the most common capacity for fast chargers
ranges from 50-150 kilowatts (kw). In a fast charging station, an electric vehicle’s
battery can be charged from 0% to 80% within 45 minutes. The last 20% for a full
charge takes longer because the system slows [40].

Battery swapping: This is an alternative technology that allows users to replace
their depleted electric vehicle battery with a fully charged one, whether it’s new or
recharged. This technology may potentially increase waiting times, as access to a
battery swapping station is required, and it takes some time to perform the battery
swap. According to [29, 41], a Battery Swapping Station (BSS) can slow down the
charging process, resulting in an extended battery lifespan. Forms of renewable
energy sources, such as solar and wind power generated from the local grid, can be
integrated into the BSS system [31, 42].

Inductive Charging: Inductive charging is a wireless charging technology that allows
electric vehicles to charge without the need for a physical connection between the
vehicle and the charging infrastructure. Through the presence of an electromagnetic
field, electrical energy is transferred between the vehicle’s pole and the charging
infrastructure [43, 44]

Dynamic Charging: Similar to inductive technology, but in this case, it allows for
the charging of moving vehicles. This method requires the installation of charging
infrastructure on the road surface or overhead, enabling wireless power transfer to
the vehicle’s wireless power receiver as it moves [45].

Vehicle to Grid (V2G): This refers to a system in which electric vehicles can be used
to provide supplemental power to the electrical grid. With this technology, electric
vehicles not only draw energy from the grid (often causing issues like voltage sags
in the area or overloading the grid) but can also feed energy back into the grid
to contribute to its stabilization. In a V2G system, the electric vehicle connects
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to the grid through a charging station, which is primarily connected to substation
equipment (medium voltage). In cases where the grid needs additional power, energy
can be drawn from the electric vehicle’s battery through the charging station and
supplied to the grid. Conversely, when the grid has surplus power, the charging
station can effectively charge the electric vehicle’s battery and allow it to store
energy for later use [46].

Vehicle Battery Type — Technology: In terms of vehicle battery type
technologies, the categorization is as follows:

® Lead-Acid Batteries: Lead-acid batteries are one of the types of batteries commonly
used in modern electric vehicles. They are known for being a relatively inexpensive
energy storage technology due to the low cost of the raw materials. However, they
have certain disadvantages, such as a limited lifespan. The advantages of lead-acid
batteries include their low material costs, high safety levels, and recyclability. They
are also known for their high recycling rates. However, due to their low energy
density and limited energy storage capacity, these batteries are typically used in
vehicles designed for shorter distances and lower weights, such as electric scooters.
Lead-acid batteries are not commonly found in long-range electric vehicles, where
higher-capacity and longer-lasting battery technologies like lithium-ion batteries are
preferred for their ability to provide more energy and longer driving ranges [47].

e Nickel-Cadmium (NiCd) Batteries: Nickel-cadmium (NiCd) batteries are another
type of battery technology. These batteries offer higher energy storage capacity
compared to lead-acid batteries but come with a significantly higher cost. However,
they are not recommended for use in electric vehicles due to their environmental
impact, primarily related to the cadmium content, as well as the high cost of the
batteries. Cadmium is a toxic heavy metal, and its use in batteries raises environ-
mental concerns, especially in terms of disposal and recycling. As a result, NiCd
batteries have been largely phased out in favor of more environmentally friendly and
cost-effective battery technologies like lithium-ion batteries for most applications,
including electric vehicles.Lithium-ion batteries have become the dominant choice
for electric vehicles due to their higher energy density, longer lifespan, and lower
environmental impact compared to older battery technologies like NiCd [47].

e Nickel-Metal Hydride (NiMH) Batteries: Nickel-metal hydride (NiMH) batteries are
a more recent iteration of nickel-cadmium (NiCd) batteries. They do not contain
toxic cadmium as the primary material but offer similar efficiency. In contrast to
their earlier version, NIMH batteries can achieve nearly double the energy density
and have a longer lifespan. However, due to the high cost of the raw materi-
als used in NiMH batteries, they cannot compete with lithium-ion batteries in
terms of cost-effectiveness. As a result, lithium-ion batteries have largely surpassed
NiMH batteries in popularity, especially in applications like electric vehicles. While
NiMH batteries are more environmentally friendly than NiCd batteries due to the
absence of cadmium, they still face limitations in terms of energy density and cost
competitiveness compared to lithium-ion batteries [47].
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e Lithium-Ion (Li-ion) Batteries: The term ” Lithium-Ion batteries” refers to a variety
of material combinations used to create a battery, such as lithium cobalt oxide (Li-
Co Oxide), lithium manganese oxide (Li-Mn Oxide), lithium iron phosphate (Li-Fe
Phosphate), and lithium nickel cobalt manganese oxide (Li-Ni-Mn-Co Oxide). The
characteristics of Li-ion batteries, such as power, lifespan, performance, and safety,
largely depend on the specific material combinations used in their construction.
However, it is well-known that this technology achieves the highest energy and power
density, resulting in low weight and volume [47].

Li-ion batteries are considered the most capable and reliable batteries because they
can store up to three times more energy (per unit of weight and volume) compared to
conventional lead-acid and nickel-metal hybrid batteries. Due to their characteristics
and high energy storage capacity, they find widespread applications in sectors like
aviation and electric vehicles. Li-ion batteries have become a dominant choice for
portable electronic devices, electric vehicles, and various other applications due to
their high energy density, lightweight design, and long cycle life [33, 47].

Installation Area Network (Thermal Limits and Power): During the design
and selection of the optimal location for the installation of electric vehicle battery
charging infrastructure, the interconnection network of the area with the charging
station is taken into consideration. More specifically, many studies related to the devel-
opment of EV (Electric Vehicles) usage focus on assessing the impacts of charging on
the electrical grid. These impacts may include effects on transformer operation [48],
power system quality [49], grid voltage instability [21], adequate electrical energy gen-
eration [50], and possible power losses [51]. Therefore, according to the studies and
sources, the limitations that need to be studied and evaluated before the installation
of electric vehicle charging infrastructure are as follows:

® Power Infrastructure: Charging station installations require substantial additional
power capacity to charge multiple vehicles simultaneously. This can sometimes lead
to issues on the grid, especially when the power infrastructure is not sufficient to
support the increased or sudden demand [29]

® Distribution Point Overload: In areas with a high concentration of electric vehi-
cles, charging can overload distribution points, particularly when the infrastructure
hasn’t been adapted for the increased power demand.

® Load Management: Load management is crucial to avoid extreme charging peaks
and address any imbalances in the grid [29]

® Distance from Substation: The distance from the nearest electrical substation can
affect power availability for charging [29]

These limitations can be addressed through investments in urban power infrastruc-
ture, intelligent load management, the development of advanced grid systems, and the
integration of alternative energy sources, such as Renewable Energy Sources (RES),
to supply the electric vehicle charging stations.

Installation Cost: The total costs considered during the design of a charging
station are divided into installation costs, operational costs, and maintenance costs.
These costs should align with the available budget. Specifically, according to Liu and
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Bie [52], when estimating the cost of a charging station, whether it’s for direct cur-
rent (DC) or alternating current (AC) installation, various factors must be taken into
account, such as the cost of installing the charging infrastructure, land costs, network
costs, and delay costs. However, it’s challenging to determine these costs with preci-
sion, as they depend on factors like the manufacturer, the type of charger, the local
infrastructure, the area and land use, as well as the demand.

To sum up, the basic parameters for making a decision regarding the placement
of an electric vehicle charging station in the urban network, which could serve freight
routes and deliveries, are as follows:

® Approach to congested traffic areas: Charging stations are typically more sought
after when located in high congestion areas and central arteries, such as highways
and main roads. This contributes to easy access to charging and the convenience
of drivers in terms of their vehicle’s autonomy, as well as the uninterrupted flow of
their deliveries. Availability of parking spaces: The installation of charging stations
is recommended areas with sufficient parking space availability [18]. Specifically,
electric vehicle drivers need a parking space during the charging process. Therefore,
during the planning stage, it is necessary to consider that the number of parking
spaces should be proportional to the number of charging stations for the specific
location under study.

® Access to amenities: It is beneficial to install charging stations in areas near shop-
ping centers, restaurants, or entertainment venues. This allows drivers to engage
in other activities or even perform some form of distribution during their vehicle’s
charging. (This depends on the type of charging; in the case of wireless charging,
the distributor may distribute their goods while charging their vehicle) [53].

® Access to electrical infrastructure: Charging stations require a stable and robust
power supply. Therefore, access to electrical infrastructure, such as substations or
transmission lines, is crucial to ensure the reliability and effectiveness of charging
operations and the network as a whole [29].

® (Collaboration with the power company: It is essential for a given area to assess
the network’s capacity to ensure that the power station’s power requirements can
be met without overloading the network. Additionally, it needs to be ensured that
there are no connectivity issues. Therefore, areas with high capacity, high voltage
(network resilience), and access to renewable energy sources are recommended. In
the case of energy extraction from renewable sources, the planning and installation
process becomes more straightforward, as it does not impose a significant burden
on the network.

2.2 Mathematical Models

The problem examined in this thesis is based on the classic Facility Location Problem
(FLP). Hakimi [54] proposed the concept of the p-center location model and p-median
location model in 1964. The set-coverage location model (SCLM) was proposed by
Toregas et al. [55], while few years later Church and ReVelle [56] proposed the maxi-
mum coverage location model (MCLM). These location selection problems are applied
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to network facilities location selection, such as factory, warehouse, station, etc. How-
ever, past studies has shown that some location problems cannot be solved by existing
models [57, 58].

The objective of the FLP is to optimally select one or more locations from a large
set of candidate locations while incorporating constraints on the selected locations.
In the field of electric vehicles, studying t he FLP can help determining suitable loca-
tions for the installation of public charging stations and the number of chargers in
each area or point [53]. Initially, a literature review is conducted to investigate the
FLP in the context of finding t he o ptimal l ocation for e lectric v ehicle c harging sta-
tions. Subsequently, the combined problem of Facility Location and Vehicle Routing
is reviewed.

The need for recharging electric vehicle batteries can significantly impact the acces-
sibility of an area with high rates of electric vehicle deliveries or freight distribution.
For this reason, it is necessary to design and select the optimal location (geographic
points) for charging station infrastructure to maximize the autonomy of battery-
powered vehicles, taking into account the spatial distribution of the network [28].
This is typically achieved by developing new models that extend the Charging Station
Location Problem (CSLP) formulation [59].

Zhu et al. [60] focused on finding t he o ptimal locations for charging s tations and
determining the charging infrastructure to be installed at each available point. Initially,
they developed a linear programming model with the goal of minimizing the total
cost of the charging station installations. However, in this initial model, the available
locations for potential charging stations were point-based. In a subsequent version of
their model, they modified t he available 1 ocations. I nstead o f p oint-based locations,
they used line segments defined by two nodes. Both versions of the model were solved
using a genetic algorithm, and it was observed that the higher cost reduction was
achieved in the second case. This was attributed to the consideration that a significant
factor in determining the optimal location is the distance that a driver can travel to
recharge his/her vehicle. The availability of different t ypes o f1ocations ( points and
line segments) allowed for a more flexible a pproach in o ptimizing t he p lacement of
charging stations while considering the travel distance of drivers.

Kong et al. [13] developed a method which takes into account many factors that
affect t he s election o f ¢ harging s tation 1 ocations o n t he r oad n etwork. T hey devel-
oped a multi-layered model that simultaneously optimizes both cost-related factors of
charging stations (installation cost, land cost, traffic congestion im pact, an d station
distribution within a given area) in the first 1 ayer and t he o peration o f t he charg-
ing station and its impact on vehicle drivers, traffic flow, and net work safety in the
second layer. The solution was implemented using a simulation platform in Beijing,
China, based on dynamic real-time data. The results demonstrated that the proposed
model contributes to cost optimization, allowing for the identification of optimal loca-
tions for charging station installations. Yazdekhasti et al. [53] aimed to maximize the
level of service, cover the demand and minimize the cost of installing charging infras-
tructure. They developed a multi-level model focusing on three stages. In the third
stage of the model, they determined the locations of charging stations, the distribu-
tion, and the number of charging slots. Initially, they defined an acceptable distance
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between available charging station installation points, calculated the acceptable radius
where candidate station points would be placed to maximize service levels and cover
the demand. Finally, they calculated the battery capacity and the available power of
vehicles that would require recharging. When applying their model to California, the
results showed the following: when there is a low number of available charging sta-
tions in the network, increasing battery capacity requires the installation of charging
stations to a central area of the network. Conversely, when there is a significant num-
ber of available charging stations in the network, increasing the basic battery capacity
causes the station locations to shift towards the periphery. Additionally, by selecting
a city with low congestion rates near a larger urban center, demand in these areas and
neighboring ones can be optimally covered by minimized costs.

Ahangar et al. [61] developed a two-level model (bi-objective mathematical model)
with the aim of determining the optimal locations for installing charging stations.
In the first level, t he g oal w as t o m inimize c osts, w hile t he s econd 1 evel f ocused on
maximizing drivers’ satisfaction. To solve the model, it was assumed that two types
of charging technologies are available, while the acceptable distance that drivers are
willing to travel to charge their vehicles is taken into account. The numerical results
indicated that the available budget for building charging stations must be increased
in order to reduce the number of users who travel a greater distance than desired to
charge their vehicles.

The authors [62] proposed a multi objective optimization problem taking into con-
sideration transportation energy loss cost, station build-up cost and sub-station energy
loss cost for finding the optimal location of Fast Charging Stations, which was solved
by the binary lighting search algorithm . Sadeghi-Barzani et al.[63] formulated a mixed
integer nonlinear problem (MINLP) by considering the CS equipment cost, land costs
electrification cost, electric grid loss cost, and EV loss cost ,while the optimal solution
is obtained with GA. The authors [64] have analyzed the finding of the optimal loca-
tion of parking lots by maximizing the revenue of parking lots and have considered
the energy costs such as power loss costs, reliability cost, voltage improvement cost,
and parking lot cost, whereas the solution of the model is obtained with the usage of
GA. He et al. [65], taking into account the costs associated with batteries, charging
stations, and energy storage systems, formulated a mixed-integer linear programming.
This model aims to determine the strategic deployment of charging stations and the
configuration o f b atteries and e nergy s torage s ystems in an o ptimal m anner. Based
on cost model and genetic algorithm Zhou et al. [66] constructed a total social cost
model covering economic and environmental costs, in order to minimize the construc-
tion costs of charging station. As for economic costs, they include construction costs
and operating costs, while the environmental costs include the cost of carbon diox-
ide emissions. They took into consideration constraints such as charging supply and
charging distance. A sensitivity analysis is conducted, in order to observe the possi-
ble relevant factors. The findings indicate t hat t he placement o f charging s tations is
highly influenced by factors s uch a st he q uantity o f ¢ harging s tations, t he demand
for charging at intersections, and the probability of daily charging. Furthermore, the
overall social cost is directly associated with both the number of charging stations and
the probability of charging.
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Viewed from a different p erspective, and n ot with t he p rimary goal o f minimiz-
ing the total cost, Ma and Xie [67] studied the problem of determining the locations
of charging stations focusing on minimizing the total time of delays and the waiting
time in line for charging during the day. Their modeling method was a bi-level opti-
mization problem, employing mixed-integer linear programming, while the Lagrangian
method was chosen as the solving method. The study was applied to Luxembourg for
fast charging and continuous current infrastructure. The results of the model showed
that the optimal charging station locations can be determined given externally defined
parameters such as demand, vehicle battery size, and the number of chargers that
would be deployed. Moreover, a mixed-integer programming model has been devel-
oped by [68] in order to maximize the overall plug-in EVs flows in t he n etwork and
the GA has used to solve the proposed problem. [69] proposes a model based on
parameters such as power loss, voltage deviation and EVs charging costs infrastruc-
ture in order to find t he o ptimal 1 ocation o f ¢ harging s tation a nd a nd t he optimal
implementation of renewable energy sources which is solved by differential evolution
algorithm. Recently, in study of [70] the location problem has received considerable
attention, with a focus on analyzing both supply and demand aspects, incorporating
the psychological factors of drivers. Luo et al. [71] and Balakrishna et al.[72] have
not only proposed the deployment of charging stations (CS) but also recommended
the integration of distributed generation sources. Their studies have demonstrated
that integrating distributed generation can alleviate unforeseen loads on established
urban distribution power grids, which have typically served cities for many years. A
holistic approach was taken by Bouguerra et al.[73], which considered factors such as
driving range, real-world constraints, investment expenses, and user convenience. A
weighted model was developed to ascertain the optimal location and capacity of the
charging station, taking into account all these elements. In this research [74], an inno-
vative station-level optimization framework has been introduced to execute the most
efficient charging st ation pricing policy and charging schedule. This mo del seamlessly
integrates human behavior, providing a clear and effective r epresentation o f drivers’
decision-making processes when it comes to charging their vehicles.

An approach based on partitioning has been introduced by [75] to find optimal
station location by minimizing traffic loss. Furthermore, Frade et al.[76] has identified
the ideal locations for stations in Lisbon with the aim of optimizing accessibility for
electric vehicle (EV) owners. Optimal station location was examinated [77] to minimize
station infrastructure’s and operating cost. An analytical method has been proposed
in Hanabusa’ study [78] to find optimal station location considering driving patterns.
Graph theory has been used in [79] to find o ptimal s ize a nd 1 ocation o f charging
stations. A two step technique was proposed in [80] to determine optimal location and
size of the charging stations. Particle swarm optimizazation technique was used in
[80] for optimal charging station planning. In this research, Wang et al. [81] a traffic-
constrained optimization framework was introduced to ascertain the most efficient
planning of electric vehicle charging stations.

Schiffer et al. [82] focused on the study and solution of the Electric location routing
problem with time windows and partial recharges (ELRPTWPR). Specifically, they
found that electric vehicle charging stations can be located near customer locations,
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and the time during distribution and loading can be used for vehicle charging. This
research demonstrated the importance of combining the location of charging stations
and the routes of electric vehicles, particularly when the final destination of the dis-
tribution is not far from warehouses or the vehicle’s starting location. Subsequently,
Schiffer and Walther [83] studied and compared the ELRPTWPR and E-VRPTWPR
(Electric vehicle routing problem with time windows with partial recharging). They
found that the ELRPTWPR provided optimal solutions in all cases. According to their
research, electric vehicles can charge while serving (distributing and loading goods),
reducing the delay times to and from charging stations during off-peak hours. Lastly,
Sun et al. [58] examined the location problem by developing an optimal model for
electric charging station placement. However, they did not consider routing based on
residents’ travel demand in the studied area. Their findings indicated that for short
distances, drivers would use slow chargers for charging, while for long distances, fast
charging facilities would be utilized. Charging station locations were determined based
on maximizing the level of service, and an economic budget constraint was imposed to
determine each location. Tang et al. [84]also focused in The optimal location of energy
supply centers for EVs. Considering the routing problem and EV autonomy they
developed a decision problem, which determines the optimal number of CS, locations,
allocation of users to each CS, and economic dispatching policy. Kinay et al.[85] devel-
oped an innovative comprehensive modeling framework for the planning of refueling
station infrastructure. The model specifically concentrated on the strategic placement
of fast-charging stations for long-range battery electric vehicles. It introduced a new
approach to addressing the facility location problem related to the installation of
refueling and recharging infrastructure for vehicles[86].

In Table 1 the most typically considered aspects in mathematical models that select
the locations of charging stations are presented.

In addition, Table 2 provides a summary of the objectives, mathematical formula-
tions, solution methods, and applications of past studies.

As we can see, numerous pieces of literature have dedicated significant attention
to the optimal arrangement of charging stations. This underscores the wide-ranging
interest in charging station research. Previous investigations have primarily centered
on a variety of factors influencing charging station layouts, the development of optimal
charging station models, and the introduction of diverse model-solving techniques.
These studies have made substantial contributions within these domains and serve as a
foundational basis for future research. Concurrently, the majority of existing literature
delves into aspects such as charging station technology, user preferences and behaviors,
environmental advantages, and thereby showcases the diverse range of optimization
methods employed [66].

From the studies presented in Tables 1 and 2, the closest prior art to this work is
the study of Zhu et al. [60]. The study of Zhu et al. [60] is a variation of the FLP. The
approach developed in this work differs from the work of [60] in the following aspects:

1. it focuses on freight transport considering heterogeneous fleets of electric vehicles,
such as electric light trucks and electric medium trucks;

2. it does not consider the installation costs as part of the objective function, but as
model constraints;
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Table 2 Summary table of mathematical models from past studies

Study Objective Function Mathematical Solution Application
Formulation Method
Zhu et al. Optimize the location of single weighted  genetic Beijing, China
[60] charging infrastructure and objective algorithm-
the number of chargers that based method
should be installed in each
charging station, to minimize
the total cost.
Kong et al.  minimize the total bi-level real-time data Simulation in
[13] construction cost of all optimization- analysis Beijing, China
charging stations and simulation
optimization of operators, model
drivers, vehicles, traffic
condition and power grid
Ma and minimize the total travel time MILP (Mixed Lagrangian Luxembourg
Xie [67] and queuing delays for daily integer linear Relaxation
charging operation program) (LR) method-
Heuristic
Yazdekhasti minimize the portion of the bi-level Metaheuristic Artificial
et al. [53] demand uncovered by the optimization- Method/ network using
charging stations, and simulation Hybrid Multi data from
objective to minimize the model / MILP Objective California
charging station installation Scatter Search
cost Variable
Ahangar minimizes the difference bi-objective Lagrangian Tehran, Iran
et al. [61] between system revenues and mixed-integer Relaxation
costs in which revenues are linear (LR) method
generated from charging mathematical
electric vehicles, and costs are model
incurred by constructing
charging stations and
installing chargers and to
minimize the amount of
customer dissatisfaction
Schiffer Minimization of total bi-objective genetic Simulation
and distance,number of vehicles mixed-integer algorithm-
Walther and CSs used, total costs: mathematical based method
[83] investments and operations model
costs
Sun et al. maximize the coverage of all mixed integer CPLEX Simulation
[58] EV flows, which intends to programming with data from

locate fast recharging stations
on paths and slow charging
stations on nodes

China
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3. it adds new aspects in the model formulation, such as the capacity of the charging
station and the capacity of the battery of the vehicles.

3 Methodology

Optimization methods find a pplication a cross various d omains, aiming t o maximize
or minimize specific o bjective functions o finterest. T hese o bjectives c an encompass
minimizing production costs, maximizing profits, reducing raw material usage in prod-
uct development, or optimizing production efficiency [8 7], to na me fe w. So me the
optimization problem formulations that widely appear in practice are:

Linear Programming (LP): LP is used to optimize a linear objective function
subject to linear equality and inequality constraints [88].

Integer Linear Programming (ILP): Similar to linear programming, but with the
additional constraint that all decision variables must take integer values. ILP is applied
in situations where variables represent whole quantities, like in production planning
[89].

Nonlinear Programming (NLP): NLP deals with optimization problems where
the objective function or some constraints are nonlinear. It is used in various fields,
including engineering design and financial modeling [88].

Quadratic Programming (QP): QP is a special case of nonlinear programming
where the objective function is quadratic, and constraints are linear. It is used in
portfolio optimization, robotics, and structural optimization [90].

Mixed-Integer Linear Programming (MILP): MILP combines elements of linear and
integer programming to handle problems with both continuous and discrete decision
variables. It is used in network design, scheduling, and logistics [91].

Dynamic Programming: This method is suitable for solving optimization problems
with a sequential decision-making process. It is widely used in control theory, finance,
and operations research [92].

In this thesis, the model of Zhu et al. [60] is extended, which is a variation of the
classic FLP, in order to specify the optimal locations of charging stations for electric
trucks in a fixed study region. In their study, Zhu et al. [60] focused on minimizing the
total charging stations construction costs and attaining a desired traveler convenience
by minimizing the distance that travelers are willing to going through.

In our model formulation the main idea is similar to [60], but there are some key
differences. First ofall, focusis given on t he freight t ransport i nstead o f passenger
transport. Second, an heterogeneous fleet o f e lectric v ehicles i s ¢ onsidered, s uch as
electric light trucks and electric medium trucks. Third, the parameter of the cost is not
included in the objective function. On the contrary, the cost aspect is considered as an
additional problem constraint, given that the budget of constructing charging stations
is limited. Finally, new parameters such as the capacity of the charging stations and
the capacity of the battery of the vehicles are included in the model formulation.

To formulate the problem, the sets, parameters and decision variables are defined.
These are presented in Table 3.
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Table 3 Nomenclature

Sets

R Set of available electric vehicles (EVs).

I Set of the EVs destination locations, from which they would need to travel to a charging
station for recharging.

K Set of vehicle types (light and medium trucks).

J Set of all possible charging station locations.

Parameters

P, the destination location ¢ € I that is matched with each EV r € R

Q capacity of charging station.

Qk battery capacity of vehicle of type k € K.

D, tolerance distance, indicating the maximum distance each EV r € R is willing to cover
for charging.

cj installation cost of charger, depending on its location 5 € J.

B available budget for installing charging stations, including infrastructure, energy, and
maintenance.

My 0-1 parameter, where m,. , = 1 if vehicle r is of type k and 0 otherwise.

ij Distance from point ¢ to charging station location j

Decision Variables

n; Number of chargers that will be installed in charging station location j

T; A binary variable that is 1 if a charging station will be installed in region j, and 0
otherwise

Yrj A binary variable that is 1 if vehicle » € R that needs to recharge after arriving at
destination location P, chooses to charge in a charging station in region j, and 0
otherwise

In our model, the goal is to minimize the distance that the truck drivers are going
to cover in order to charge their vehicles. In this way, focus is given on minimiz-
ing the empty kilometers traveled for vehicle charging purposes. The mathematical
formulation is based on the following assumptions:

1. Each charging point can accommodate as many vehicles as its energy power
(supply) allows it to do so.

2. Aiming at the strategic planning level, vehicles that charge at the same charging
point can pre-schedule their chargings at different times of the day to avoid queuing
delays, and thus delays due to queuing at the charging points are not considered
as an extra cost (see [60]).

3. Truck drivers need to charge their vehicle when they arrive at a particular point
i at which they have finished their deliveries and their state of charge (SoC) does
not allow them to perform a new round of pickups and deliveries without charging.

Usually, the charging points are far away from the points i € I where the truck
drivers need to charge. Due to this fact, drivers would have to take a detour and travel
from point 7 to a charging station. This detour is translated into a travel cost that needs
to be minimized by placing the charging stations at strategic locations. In practice,
each truck trip is matched with one location i from which it will need to travel to a
charging station. It is also matched with one type of Plug-in Electric Vehicles (PEVs)
(light or medium truck). While we seek to minimize the travel distance of trucks to
the charging station, an upper bound (threshold) is also imposed to the maximum
distance a PEV is willing to travel for charging purposes to avoid excessive empty
kilometers traveled for particular vehicles.

24



The mathematical formulation of the problem is provided below.

minZdemjym (1)

JEJTrER

subject to: Zym =1 VreR (2)
jed
Ti 2 Yrj VreR,jeJ (3)
Tj = ny vjeJ (4)
n; = Z Yr,j VJ eJ (5)

rER

dp,,jYrj < Dy VreR,jEJ (6)

ZC]'TL]‘ S B (7)

JjeJ

SN v mesQe < Q VjieJ (8)
rcRkeK

n; € Ly VjelJ (9)
zj € {0,1} VjeJ (10)
yrj € 10,1} VreR,jeJ (11)

The objective function (1) minimizes the total distance that drivers need to cover in
order to charge their vehicles. Constraints (2) ensure that each vehicle r € R is charged
in exactly one region j € J. Constraints (3) denote that the EVs can be charged in
region j only when there is charging station located in region j. Constraints (4) ensure
that a charging station is located only when there are vehicles needing to be charged
at this station. Constraints (5) denote that the number of the chargers in region j is
equal with the number of EVs that choose to be charged in region j. This condition
ensures that there are enough chargers in each charging station to serve all the drivers
without delays. Constraints (6) ensure that each EV r € R which finishes its trip at
location P, chooses to be charged in region j only when the distance between P, and
j is not larger than D,.. Constraints (7) denote that the total cost of installation for
all the chargers is no greater than the given budget. Constraints (8) ensure that the
capacity of stations in energy power is sufficient to cover the demand. The remaining
constraints ensure that decision variables n; take non-negative integer values and z;,
Yr; binary values.

The resulting mathematical program is an Integer Linear Program (ILP) that can
be solved to global optimality with Branch-and-Cut and a solution method for linear
programming (i.e., Simplex or Karmarkar’s Interior Point Method).

4 Numerical Experiments

In this section, a description of the data utilized for the computational experiments
is provided. Next, the performance of the proposed model for problem instances of
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practical scale is discussed. In addition, the impact of the tolerance distance and total
budget in the location decisions is demonstrated. All numerical experiments are coded
in Python 3.11 (64-bit) on a desktop computer equipped with an Intel(R) Core(TM)
i7-1065G7 processor 1.50 GHz and a 8,00 GB RAM. The optimization solver used is
the GUROBI 10.02 optimizer.

4.1 Toy Network

For demonstration purposes, an application of the proposed mathematical model in a
toy network is presented. The toy network is presented in Fig.2. It involves 10 truck
locations represented by a black square, and 4 potential charging station locations
represented by a triangle (in gray colour). We consider that there are 50 EVs destined
to one of the predefined locations. Each EV is either a medium or a light vehicle, with
battery capacity equal to 70 and 250 kWh, respectively. The station capacity for each
of the potential charging stations is equal to 3400 kWh.
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Fig. 2 Toy network with 10 locations (in squares) and 4 potential charging station locations (in
triangles)

Since the toy network used in this demonstration is small, it can be solved to global
optimality. The number of EVs assigned to charging stations and the total travel cost
are presented in Table 4. The optimal solution demonstrates that location 2 is not
selected as a charging station location. Thus, there are 10, 17 and 23 truck trips served
by locations 1, 3 and 4, respectively.

The analytic solution indicating the assignment of EVs to charging stations is
presented in Table 5.
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Table 4 Optimal solution
of the toy network

station  number of EVs

1 10
2 0

3 17
4 23

total travel cost: 1487.69

4.2 Computational results

For the initial assessment of the proposed model, 20 problem instances have been ini-
tially generated. The generated problem instances involve 100, 400 and 1000 locations
(as a total of truck locations and potential charging stations locations). Five network
schemes are considered, involving different 1 ocations, c harging s tation 1 ocations and
trucks destined to the network locations. The number of locations (I), the number of
potential charging stations (J) and the number of trucks-drivers (D) involved in each
scenario, are demonstrated in Table 6. For each scenario, five problem instances were
generated (a,b,c,d,e), based on the well-known data set of [93], originally introduced
for the Vehicle Routing Problem with Cross-Docking (VRPCD). An heterogeneous
fleet of EVs is considered with two vehicle types: light and medium trucks. Each vehi-
cle type is associated with a different level of b attery usage. F inally, for all problem
instances a common value for the tolerance distance value (D)) for each driver, is
considered.

Table 7 presents the computational results obtained by the proposed model. Table
7 reports the results of the cost objective function. Each row of Table 1 provides the
best solutions (bst) obtained, the %gap and the time (t) in seconds, required to obtain
bst, over each problem instance.

Specifically, t he r esults indicate t hat, with a budget of 4,000,000 and a tolerance
distance of 60 in cases with 70 locations and 30 potential charging station loca-
tions(L_70 S_30 scenario), the same number of stations that are selected is on average
the same, while there is an increase in the average number of charger slots encoun-
tered per charging station. The same observation applies to the next two instances. It
is worth noting that for the larger scale problem instances, the time required to find
the optimal solution also increases.

4.3 Sensitivity Analysis

In order to assess the important model parameters, further computational experiments
were conducted considering different values for the capacities of t he charging stations
(Q), the available budget for installing charging stations (B) and the tolerance distance
(D). More specifically, t hree 1 evels ( Low, M edium a nd High) at e ach o f t he three
model parameters under examination are considered. The values of each parameter at
each level, are indicated in Table 8.
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Table 5 Optimal
assignment of EVs to
charging stations
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Table 6 Scenarios

1 J D

70 30 100
70 30 400
150 50 400
150 50 1000

I: Number of EVs
destination loca-
tions; J: Number of
possible  charging
stations; D: Num-
ber of EVs destined
to all locations

Table 7 Computational results for the generated
problem instances

Scenario bst gap%  t (sec)
L_70.5.30_D_100

741.22 0.00%  0.93s
1190.22  0.00%  0.58s
1027.08 0.00%  0.19s
833.44 0.00%  0.18s
1122.66  0.00%  0.83s

o0 T

L_70.S_30_D_400

2306.61  0.00% 1.78s
4059.78  0.00%  0.46s
3599.00 0.00% 0.33s
3042.60 0.00%  0.23s
3903.19  0.00% 0.44s

I =P el o

150_S_50_D_400

L_

a 2119.13  0.00%  0.97s
b 2826.01  0.00%  1.82s
¢ 2307.28 0.00% 0.80s
d 2519.34  0.00%  1.27s
e 2687.52  0.00% 1.51s

150_S_50_D_1000

L_

a 5671.44 0.00%  1,95s
b 6339.16 0.00%  1.97s
c 5190.98 0.00% 1.02s
d 5430.32  0.00%  2.64s
e 5430.32  0.00% 1.81s

An attempt was made to find t he s mallest t hreshold v alues f or e ach parame-
ter, where each scenario can be solved (feasibility). The maximum value used for
the parameters in the sensitivity analysis was chosen since tests showed that beyond
this threshold, there is no significant differentiation of scenarios in the best objective
solution.
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Table 8 Parameter values

Scenario D, B Q
L_70.5-30_D_100

48 400.000 550
60 4.000.000 600
200  6.000.000 800

L_70.5-30_D_400

48 2.000.000 2.000
60 4.000.000 3.000
200  6.000.000 4.000

L_150.5-50_D_400

48 2.000.000 1.200
60 4.000.000 1.500
200  6.000.000 3.000

L_150_5_-50_D_1000

48 4.000.000 3.000
60 6.000.000 6.000
200 10.000.000  9.000

L: Low level; M: Medium level; H: High level

Table 9 demonstrates the computational results for the different1evelso feach
model parameter under examination. In particular, Table 9 displays the computa-
tional results considering different levels of the station capacity, Table 11 displays the
computational results considering different levels of the available budget and Table 12
displays the computational results considering different levels of the tolerance distance.

We observe that by modifying the capacity of the charging stations, the value of
the best objective solution, which is the travel cost, decreases as the capacity increases.
However, there is a decrease in the number of stations that are ultimately selected
(S°Pe™) and an increase in the average number of chargers per station (C**9). This
result is logical because with the increase of the capacity of the station, given the
battery capacity of electric vehicles, it might be more economically favorable to add
additional chargers to an existing station, rather than opening a new one. The results
are more apparent for the larger scale problem instances.

Table 10 demonstrates the % difference in the total traveled costs and the number
of selected stations, between any two station capacity levels. In particular, the decrease
in the solution costs for a network with 70 locations is on average 14.53% and 24.99%,
when increasing the station capacity from low to high levels (presented in the fourth
column). For a network with 150 locations, the decrease is on average 25.96% and
22.36%. The same conclusions can be drawn for the number of selected stations, where
we observe a 12.43% and 18.83% decrease, for the smaller and larger scale problem
instances, respectively, when the station capacity increases. Therefore, it is evident
that capacity is a parameter that significantly contributes to determining the optimal
solution.
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Table 9 Sensitivity analysis w.r.t the station’s capacity (Q)

Scenario QL QM oQH
L_70.S_30_D_100 bst Sopen (Cavg  bgt Sopen  Cavg  bst soren  Cavg
a 785.61 27.00 3.70 741.22 26.00 3.85 708.51 26.00 3.85
b 1253.31  30.00 3.33 1190.22  28.00 3.57 1066.01  28.00 3.85
¢ 1077.06  30.00 3.33 1027.08  28.00 3.57 936.47 27.00 3.70
d 837.07 29.00 3.45 833.44 29.00 3.45 784.45 28.00 3.57
e 1209.24  28.00 3.57 1122.66  28.00 3.57 978.73 26.00 3.85

L_70_.S_30_D_400

3377.43  27.00 14.81  2306.61  25.00 16.00 2238.49 24.00 16.67
4517.41  29.00 13.79  4059.78  27.00 14.81  3922.12  25.00 16.00
4381.77  29.00 13.79  3599.00 27.00 14.81  3436.06  25.00 16.00
3472.39  29.00 13.79  3042.60 28.00 14.29  2947.36  28.00 14.29
4848.80  30.00 13.33  3903.19  26.00 15.38  3709.81  24.00 16.67

o Q00 T

L_150_S_50_D_400

2266.21  47.00 8.51 2119.13  44.00 9.09 2005.31  43.00 9.30
3298.55  50.00 8.00 2826.01  44.00 9.09 2574.33  42.00 9.52
2546.30  49.00 8.16 2307.28  49.00 8.16 2213.98  45.00 8.89
2938.94  50.00 8.00 2519.34  46.00 8.70 2267.87  38.00 10.53
3438.07  50.00 8.00 2687.52  45.00 8.89 2362.31  40.00 10.00

o Q0 T

L_150_S_50-D_1000

6680.19  48.00 20.83 5671.44 43.00 23.26  5624.30  43.00 23.26
7524.99  50.00 20.00 6339.16  44.00 22.73  6282.17  42.00 23.81
6617.27  49.00 20.41  5190.98  46.00 21.74 5187.28  45.00 22.22
6409.77  49.00 20.41 5430.32  38.00 26.32 5351.78  38.00 26.32
7555.11  49.00 20.41 6075.52  41.00 24.39 6001.16  39.00 25.64

o oo oW

Notation: Q¥: Low level of station’s capacity; Q™: Medium level of station’s capacity; Q: High level of
station’s capacity; bst: best solution value obtained; S°P¢™: Number of stations selected; C*¥9: Average
number of trucks assigned to the stations

Regarding the increase of the total available budget, we observe negligible differ-
ences in the number of CS (Charging Stations) that are selected and in the average
number of chargers per station. This result, can be attributed to the network charac-
teristics as well as the fact that the strict constraints imposed in our model, do not
allow much room for the the exploration of cost-saving opportunities in the solution.

Finally, as part of the sensitivity tests, we attempted to examine the impact of the
tolerance distance parameter (D,.) on the optimal solution. The results are presented
in Table 12. Note that the empty cells represent an infeasible solution for the particular
problem instance. Table 13 demonstrates the % difference in the best solution obtained
and the number of selected stations, between any two levels of the tolerance distance.

We can observe that for low levels of the D, parameter, we do not have an optimal
solution for two problem instances. When comparing solutions with increased values
of the tolerance distance (60 and 80), we notice differences in some cases, primarily
in the best objective and not so much in the number of charging stations that open.
It is worth noting that the selected charging stations vary each time as we modify
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Table 10 Impact of the station capacity (Q) on the optimal solution

Scenario bst (%diff) Seren (%diff)

QM- Q* QRF-QM  QH-QF QM-QF QF-QM  QH-QF
L_70_S-30-D_100
a -5.65 -4.41 -9.81 -3.70 0.00 -3.70
b -5.03 -10.44 -17.57 -6.67 -7.14 -13.33
[ -4.64 -8.82 -15.01 -6.67 -3.57 -10.00
d -0.43 -5.88 -6.71 0.00 -3.45 -3.45
e -7.16 -12.82 -23.55 0.00 -7.14 -7.14
avg -4.58 -8.47 -14.53 -3.41 -4.26 -7.53
L_70_.S_30_D_400
a -31.71 -2.95 -33.72 -7.41 -4.00 -11.11
b -10.13 -3.39 -15.18 -6.90 -7.41 -13.79
[ -17.86 -4.53 -27.52 -6.90 -7.41 -13.79
d -12.38 -3.13 -17.81 -3.45 0.00 -3.45
e -19.50 -4.95 -30.70 -13.33 -7.69 -20.00
avg -18.32 -3.79 -24.99 -7.60 -5.30 -12.43
L_150-S-50_-D_400
a -6.49 -5.37 -11.51 -6.38 -2.27 -8.51
b -14.33 -8.91 -28.13 -12.00 -4.55 -16.00
c -9.39 -4.04 -15.01 0.00 -8.16 -8.16
d -14.28 -9.98 -29.59 -8.00 -17.39 -24.00
e -21.83 -12.10 -45.54 -10.00 -11.11 -20.00
avg -13.26 -8.08 -25.96 -7.28 -8.70 -15.33
L_150.S_50_-D_1000
a -17.79 -0.84 -18.77 -11.63 0.00 -11.63
b -18.71 -0.91 -19.78 -13.64 -4.76 -19.05
[¢ -27.48 -0.07 -27.57 -6.52 -2.22 -8.89
d -18.04 -1.47 -19.77 -28.95 0.00 -28.95
e -24.35 -1.24 -25.89 -19.51 -5.13 -25.64
avg -21.27 -0.90 -22.36 -16.05 -2.42 -18.83

Notation: QL: Low level of station’s capacity; @M : Medium level of station’s capacity; Q¥ : High level
of station’s capacity; bst: best solution value obtained; S°P¢™: Number of stations selected; % diff -
the % average deviation over two station capacity levels,i.e % diff Q¥ - QL= 100*((Q¥-QL)/Q%);
avg - the average % deviation over all problem instances of each scenario

the parameter values, but their total number remains the same. This is due to the
strict constraints we have set, and therefore, by changing the D,. level, we do not see
significant d ifferences in the op timal so lution. Table 13 in dicates sm all de viations in
the total traveled costs and the number of selected stations, when increasing the level

of tolerance distance.
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Table 11 Sensitivity analysis w.r.t the overall budget (B)

Scenario BL BM BH

L._70.5_30_.D_100 bst Seopen (Cavg bt gopen (a9 hgt, seopen  (Cavyg
a 741.22 26.00 3.85 741.22 26.00 3.85 741.22 26.00 3.85

b 1190.22  28.00 3.57 1190.22  28.00 3.57 1190.22  28.00 3.57

c 1027.08  28.00 3.57 1027.08  28.00 3.57 1027.08  28.00 3.57

d 833.44 29.00 3.45 833.44 29.00 3.45 833.44 29.00 3.45

e 1122.66  28.00 3.57 1122.66  28.00 3.57 1122.66  28.00 3.57

L_70_.S_30_D_400

2306.61  25.00 16.00 2306.61  25.00 16.00 2306.61  25.00 16.00
4059.78  27.00 14.81  4059.78  27.00 14.81  4059.78  27.00 14.81
3599.00 27.00 14.81  3599.00 27.00 14.81  3599.00 27.00 14.81
3042.60  28.00 14.29  3042.60 28.00 14.29  3042.60 28.00 14.29
3903.19  26.00 15.38  3903.19  26.00 15.38  3903.19  26.00 15.38

o Q00 T

L_150_S_50_D_400

a 2119.13  44.00 9.09 2119.13  44.00 9.09 2119.13  44.00 9.09
b 2826.01  44.00 9.09 2826.01  44.00 9.09 2826.01  44.00 9.09
c 2307.28  49.00 8.16 2307.28  49.00 8.16 2307.28  49.00 8.16
d 2519.34  46.00 8.70 2519.34  46.00 8.70 2519.34  46.00 8.70
e 2687.52  45.00 8.89 2687.52  45.00 8.89 2687.52  45.00 8.89
L

~150_S_50_-D_1000

a 5671.44  43.00 23.26  5671.44  43.00 23.26  5671.44  43.00 23.26
b 6339.16  44.00 22.73 6339.16  44.00 22.73 6339.16  44.00 22.73
c 5190.98  46.00 21.74  5190.98  46.00 21.74  5190.98  46.00 21.74
d 5430.32  38.00 26.32  5430.32  38.00 26.32  5430.32  38.00 26.32
e 6075.52  41.00 24.39 6075.52  41.00 24.39 6075.48 42.00 23.81

Notation: BY: Low level of budget value; BM: Medium level of budget value; BH: High level of budget
value; bst: best solution value obtained; S°P¢™: Number of stations selected; C*9: Average number of trucks
assigned to the stations

5 Conclusions

The need to reduce environmental pollution and limit emissions, which largely orig-
inate from the freight transportation sector, has led to the adoption of greener and
more sustainable practices. The advancement of technology and the constant effort to
introduce new concepts of electric mobility on a large scale have encouraged the sci-
entific community to develop products to reduce the CO2 emissions of conventional
private and public transport. Today there are multiple electric mobility alternatives,
such as bicycles, cars and generally public and freight transport. However, it has not
been possible to massively introduce EVs into the land transportation system due to
variables that do not make large scale purchases attractive to potential users in urban
and rural areas. These unattractive variables for consumers could be limited autonomy,
long charging times, battery life, high costs, and lack of EV charging infrastructure.
One of the challenges of electric mobility is the limited battery autonomy of vehicles
and, consequently, the restriction on the distance a driver can travel[18]. The lack of
charging infrastructure on road networks poses one of the biggest concerns. Therefore,
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Table 12 Sensitivity analysis with respect to the tolerance distance (D)

Scenario DE DM DX

L_70_.S_30_D_100 bst gopen Ce9  bst sopen C9 bst sopen . Cvg
a 744.13 27.00  3.70 741.22 26.00 3.85 741.22 26.00 3.85

b 1190.22  28.00 3.57 1190.22  28.00  3.57

c 1049.34  28.00  3.57 1027.08  28.00 3.57 1024.66  28.00  3.57

d 847.88 29.00  3.45 833.44 29.00 3.45 833.44 29.00 3.45

e 1131.58  28.00 3.57 1122.66  28.00 3.57 1122.66  28.00 3.57

L_70.S_30-D_400

2306.61  25.00 16.00 2306.61  25.00 16.00 2306.61  25.00 16.00

4059.78  27.00 14.81  4059.78  27.00 14.81
3613.45  27.00 14.81  3599.00 27.00 14.81  3599.00 27.00 14.81
3097.86  28.00 14.29  3042.60 28.00 14.29  3042.60 28.00 14.29
3990.81  26.00 15.38  3903.19  26.00 15.38  3903.19  26.00 15.38

o A0 T

L_150-S_50_D_400

2119.13  44.00 9.09 2119.13  44.00 9.09 2119.13  44.00 9.09
2826.01  44.00 9.09 2826.01  44.00 9.09 2826.01  44.00 9.09
2307.28  49.00 8.16 2307.28  49.00 8.16 2307.34  49.00 8.16
2519.34  46.00 8.70 2519.34  46.00 8.70 2519.35  46.00 8.70
2687.52  45.00 8.89 2687.52  45.00 8.89 2687.52  45.00 8.89

o Q0 T

L_150-S_50-D_1000

5671.44  43.00 23.26 5671.44 43.00 23.26  5671.44 43.00 23.26
6339.00 44.00 22.73 6339.16  44.00 22.73  6339.16 44.00 22.73
5190.98  46.00 21.74 5190.98  46.00 21.74 5190.98  46.00 21.74
5430.46  38.00 26.32  5430.32  38.00 26.32  5430.46  38.00 26.32
6075.52  41.00 24.39 6075.52 41.004 24.39 6075.52 41.00 24.39

o QA0 T

Notation: DL: Low level of tolerance distance; DM: Medium level of tolerance distance; DX: High level
of tolerance distance; bst: best solution value obtained; S°P¢™: Number of stations selected; C*V9: Average
number of trucks assigned to the stations

it is evident that selecting strategic locations for the installation of charging stations
will significantly contribute to increasing the satisfaction of citizens and the service
levels.

In this work, the model of [60] is extended, which is a variation of the classic FLP,
in order to specify the optimal locations of charging stations for an heterogeneous
fleet of electric trucks in a fixed study region. The problem is formulated as an ILP,
aiming at minimizing the empty kilometers (travel costs) driven to reach the charging
stations, taking into consideration operational constraints such as number of chargers
at each station in order to cover the demand for charging, charging station’s capacity,
battery capacity, total costs, and the distance that a driver is willing to cover in order
to charge his/her vehicle.

To validate the proposed model, a toy network was generated and solved by Gurobi
Optimizer 10.02. To test the effectiveness of the proposed model on instances of prac-
tical scale, a set of problem instances were generated, based on well-known benchmark
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Table 13 Impact of the tolerance distance (Dy) on the optimal solution

Scenario bst (%diff) Seren (%diff)

DM_ DL DH.pM pH.pL pM_.pL DH.-pM pH_pL
L_70-S-30_D_100
a -0.39 0.00 -0.39 -3.70 0.00 -3.70
b - 0.00 - - 0.00 -
c -2.12 -0.24 -2.41 0.00 0.00 0.00
d -1.70 0.00 -1.73 0.00 0.00 0.00
e -0.79 0.00 -0.79 0.00 0.00 0.00
avg -1.25 -0.05 -1.33 -0.93 0.00 -0.93
L_70-S_30_D_400
a 0.00 0.00 0.00 0.00 0.00 0.00
b - 0.00 - - 0.00 -
c -0.40 0.00 -0.40 0.00 0.00 0.00
d -1.78 0.00 -1.82 0.00 0.00 0.00
e -2.20 0.00 -2.24 0.00 0.00 0.00
avg -1.09 0.00 -1.12 0.00 0.00 0.00
L_150_S-50_D_400
a 0.00 0.00 0.00 0.00 0.00 0.00
b 0.00 0.00 0.00 0.00 0.00 0.00
c 0.00 0.00 0.00 0.00 0.00 0.00
d 0.00 0.00 0.00 0.00 0.00 0.00
e 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.00 0.00 0.00 0.00 0.00
L_150_S-50_D_1000
a 0.00 0.00 0.00 0.00 0.00 0.00
b 0.00 0.00 0.00 0.00 0.00 0.00
c 0.00 0.00 0.00 0.00 0.00 0.00
d 0.00 0.00 0.00 0.00 0.00 0.00
e 0.00 0.00 0.00 0.00 0.00 0.00
avg 0.00 0.00 0.00 0.00 0.00 0.00

Notation: DL: Low level of tolerance distance; DM : Medium level of tolerance distance; DX : High level
of tolerance distance; bst: best solution value obtained; S°P¢™: Number of stations selected; % diff -
the % deviation over two tolerance distance levels,i.e % diff DJ- DL = 100*((DH-DL)/DL); avg- the
average % deviation over all problem instances of each scenario

datasets in the literature. The results show that the developed model can effectively
obtain optimal solutions for realistic problem instances.

Furthermore, this thesis performs sensitivity analysis to assess the impact of various
factors on the selection of charging station locations. The impact of model parameters
such as the charging station’s capacity, the total budget, and the tolerance distance
is examined. Results were collected for three values per parameter: low, medium, and
high, in order to observe variations in the outcomes. The results indicate that the
capacity of the charging station significantly affects the results, as an increase in this
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parameter leads to a notable reduction in travel costs and a decrease in the number
of stations opened. Additionally, in tests involving adjustments to the budget, it was
observed that the budget does not significantly affect the total travel costs for all
problem instances. This is primarily due to specific network characteristics, such as
geographic location, and the stringent constraints imposed, such as distance tolerance
and station battery capacity constraints. Conversely, increasing the distance tolerance
has a negligible impact on the optimal solution.

Our contribution represents a first step towards research on the strategic plan-
ning of electric freight fleets. Future work has to be done on the development of
meta-heuristic solution methods capable of solving large-scale instances for real world
applications in acceptable computational times. Furthermore, the present work could
also be extended by considering additional components such as the vehicle service
times and charging times.
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Appendix
Model Formulation

import gurobipy as gp

import matplotlib

from gurobipy import GRB

import random

import math

import numpy as np

import matplotlib.pyplot as plt
from matplotlib import style
import matplotlib
matplotlib.use ('TkAgg')

numberoflocations = 150

numberofstations = 50

numberofnodes = numberoflocations+numberofstations
typesofvehicles = 2

numberofdrivers = 1000

data = 'e'

Mbig=10000 #a large positive number

#SETS

drivers = (r for r in range(l, numberofdrivers+l))
drivers = tuple(drivers)

locations = (r for r in range(l, numberoflocations+1))
locations = tuple(locations)

stations = (r for r in range(l, numberofstations+1l))
stations = tuple(stations)

#PARAMETERS

#for 1 in drivers:

# p = {i:random.randint (1, numberoflocations) }

# print (p[i])

# p={1:1, 2:1, 3:1, 4:2, 5:2, 6:3, 7:4, 8:5, 9:6, 10:6}

vehiclestype = (1,2)

#TD = {r:random.randint (1000,5000) for r in drivers}
TD = {r:60 for r in drivers}

#V0Qk = {k:random.randint (10,20) for k in vehiclestype}
VQk = {1:70, 2:200}

#100-300kwh for medium

#30-100kwh for light

#StationCapacity = (numberofdrivers/numberofstations) * 1.1 * 250

StationCapacity = 6000
print ('Station Capacity:')
print ( StationCapacity)
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#totalbudget = 10000*numberofstations*2/3*25

totalbudget = 10000000

print ( totalbudget)

#Cost = {j: random.randint (1000,3000) for j in stations}
Cost ={3:4000 for J in stations}

#10000 euros for a unit (approx. 3000euros per year for
maintenance)

filenamel = 'Instances/Data L ' + str(numberoflocations) + ' S ' +
str (numberofstations) +' '+ data +'.txt'

DataX a= filenamel

data header=np.loadtxt (DataX a,max rows=1l,dtype=int)

data header decimal=np.loadtxt (DataX a,max rows=1,dtype=float)
data main body=np.loadtxt (DataX a,skiprows=1,dtype=int)

n=data header[0]
#read coordinates

latitudelLocations = {}; longitudeLocations ={}
latitudeStations = {}; longitudeStations ={}
g={}; d={}

for 1 in locations:
latitudelocations[i]=data main body[i, 3]
longitudeLocations[i]=data main body[i, 4]

for j in stations:
latitudeStations[j]=data main body[numberoflocations+j, 3]
longitudeStations[j]=data main body[numberoflocations+]j, 4]

MinDistance = -1;
MaxDistance = 0;
d={};t={}; the distance={}
from scipy.spatial import distance
for i in locations:
for j in stations:

dl(i,3)] =
(1/1000) *distance.euclidean ([latitudeLocations[i], longitudelLocatio
ns[i]], [latitudeStations[]j], longitudeStations[j]]) *
(60/data header([4])
if d[(i,7)] > MinDistance:
MaxDistance = d[ (i, 7)]

MinDistance = d[(i,73)]

print (MaxDistance/3)

filename2 = 'Instances/Data L ' + str(numberoflocations) + ' S ' +
str (numberofstations) + ' D ' +str(numberofdrivers) +' '+ data

+' DriversInfo.txt'

DataX b= filename2

data header=np.loadtxt (DataX b,max rows=1,dtype=int)

data header decimal=np.loadtxt (DataX b,max rows=1,dtype=float)
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data main body=np.loadtxt (DataX b, skiprows= 1, dtype=int)

p = {1
mrk = {}
for 1 in drivers:
p[i] = data main body[i, 1]

vehicleType = data main bodyl[i, 2]

if vehicleType ==
mrkf[i,1] =1
mrk[i, 2] =

if vehicleType ==
mrk[i, 1] = 0
mrk[i, 2] =1

0
2

print ('NOT FOUND LOCATIONS —————————————————— ")
for k in range(l,numberoflocations):
Notfound = True
for i in drivers:
if k == p[i]:
Notfound = False
continue
if (Notfound == True):
print (k)

# Initialize the Gurobi model
model = gp.Model ()

# VARIABLES

numberofchargers = model.addVars (stations, vtype=GRB.INTEGER,
name="numberofchargers") #n j

open = model.addVars (stations, vtype=GRB.BINARY,name="open") #x jJ
assign =

model.addVars (drivers, stations, vtype=GRB.BINARY, name="assign")#y r
]

# CONSTRAINTS

model.addConstrs (sum(assign[r, Jj] for j in stations) == 1 for r in
drivers)

model .addConstrs (numberofchargers[j] >= 0 for j in stations)
model.addConstrs (open[j] >= assign|[r,j] for r in drivers for J in
stations)

model.addConstrs (open[]j] <= numberofchargers[j] for j in stations)
model.addConstrs (numberofchargers[j] <= Mbig * open[j] for j in
stations)

model.addConstrs (sum(assign[r,j] for r in drivers) ==

numberofchargers[j] for j in stations)

model.addConstrs(d[p[r]l,Jj] * assign[r,j] <= TD[r] for r in drivers
)

for j in stations
model .addConstr (sum(Cost[j] * numberofchargers[j] for j in
stations) <= totalbudget)

model.addConstrs (sum(sum(assign[r,j]* mrk[r,k]* VQk[k] for k in
vehiclestype) for r in drivers) <= StationCapacity for j in
stations)
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model.setObjective (sum(sum(d[p[r],Jjl* assign|[r,j] for r in
drivers) for j in stations), GRB.MINIMIZE)
model .optimize ()

if model.status == GRB.OPTIMAL: # check if the solver is capable
of finding an optimal solution

model .printAttr ('X")

print (model.status, 'optimal')

print ('Obj: %g' % model.objVal)
else:

print (model.status, 'not optimal')

model .printAttr('x")

for i in locations:
plt.scatter (latitudelocations[i], longitudelocations[i],
c="black",
linewidths=2,
marker="gs"
edgecolor="black",
s=70)
plt.text (latitudelocations[i], longitudelLocations[i]*1.0001,
i, va='bottom', ha='center', fontsize=15)

for j in stations:
# if (open[j] >= 1):
plt.scatter (latitudeStations[j], longitudeStations[j],
c="grey",
linewidths=2,
marker=""",
edgecolor="grey",
s=70)
plt.text (latitudeStations[j], longitudeStations[j]*1.0001,
j,va='bottom', ha='center', fontsize=15)
# else:
plt.scatter (latitudeStations[j], longitudeStations[j],
c="grey",
linewidths=2,
marker=""",
edgecolor="grey",
s=70)
plt.text (latitudeStations[j], longitudeStations[j] *
1.0001, j, va='bottom', ha='center', fontsize=15)

plt.xlabel ("X-axis")
plt.ylabel ("Y-axis")
averageNumberOfChargers = 0
numberOfOpenStations = 0
for j in stations:
if (open(j]):
averageNumberOfChargers += numberofchargers[j].X
numberOfOpenStations += open[]j].X
averageNumberOfChargers = averageNumberOfChargers /
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numberOfOpenStations

print ('FINAL RESULTS')
print( '$.2f' % model.objVal ,
|l

'$.2L

model .MIPGap, '%.2f' % model.Runtime,
averageNumberOfChargers, '$.2f" % numberOfOpenStations)

plt.show ()

style.use ("ggplot")
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