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ACADEMIC YEAR: 2022-2023 

Abstract 

The necessity to reduce emissions in the transport sector has led to the advancement of electromobility. Nowadays, 

electromobility is developing rapidly in the urban freight transport sector. This helps to reduce the environmental 

footprint of transport, given the large portion of emissions that originate from the freight transport sector. However, the 

use of electric vehicle fleets for freight transport has some limitations, such as autonomy, charging delays, and lack of 

charging infrastructure. In this study, we focus on the problem of finding the optimal locations for charging stations of 

freight transport vehicles in the urban network. The installation of charging stations is a major issue, as it is necessary to 

identify the optimal locations of installation points in order to improve the delivery of products and reduce the empty 
vehicle kilometers driven for charging purposes. This study formulates the charging station location selection problem 

aiming at minimizing the empty kilometers driven to reach the charging stations, taking into consideration the 

destinations of truck deliveries. The developed model is an Integer Linear Program (ILP) that can be effectively solved 

to global optimality for realistic problem instances. Further, this study employs sensitivity analysis to identify specific 

factors with significant impact on the selected locations of charging stations. Experiments are performed using 

benchmark instances demonstrating the scalability of our approach and the sensitivity of our solutions to the changes of 

different factors. 
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Summary 

Nowadays, the urban freight transport sector is evolving rapidly and impressively as climate change intensifies, and 

increased concerns about air quality promote the transition to more sustainable forms of alternative transportation. In 

this context, the development of electrification has emerged as one of the key solutions to reduce greenhouse gas 

emissions and improve air quality. However, the optimal functionality of electric vehicles in the urban freight transport 

sector depends to a large extent on the existence and efficiency of charging infrastructure. 

Undoubtedly, in the 21st century, freight transportation faces significant challenges. Given the population growth and 

concentration in large urban centers, there is an increase in the demand for goods and distribution services. However, 

high levels of air pollution emissions, noise pollution, and traffic congestion hinder the optimal transportation planning. 

Based on all the above, the transition from conventional vehicles (with internal combustion engines) to electric vehicles 
is a one-way path for transportation and distribution companies. Electric vehicles are environmentally friendly, have 

better performance, are more cost-effective, and contribute to noise reduction. However, this transition requires 

strategic planning and a significant background of charging infrastructure networks to be sustainable. 

The development of electric vehicle charging infrastructure is a crucial step towards sustainable mobility. The selection 

of the optimal location is a research problem in transportation science as it contributes to the efficiency, accessibility, 

and efficiency of charging infrastructure. When selecting a location, multiple parameters are taken into account, such as 

the geographical distribution of demand, public accessibility, specific needs and constraints of the local community, and 

economic factors. The analysis of the optimal locations of electric vehicle charging stations also requires the 

consideration of different types of loads (fast charging, regular charging, etc.) and different user categories, including 

individuals, businesses, communities with stationary charging needs, and designated areas. 

In this work, the importance of the optimal planning of charging infrastructure on the urban network is examined with 

the aim of serving the consumers (level of satisfaction). In addition, the main factors contributing to location selection, 

such as demand, cost, and station capacity, are analyzed. By developing an integer linear programming model, the best 

locations are found through a series of scenarios. 
To assess the model's effectiveness, sensitivity analysis was conducted to examine the influence and importance of 
factors such as station capacity, proximity and budget in solving the model. It is evident that station capacity 

significantly affects the solution in relation to proximity and budget. 
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Σύνοψη 

Η ανάγκη για τη μείωση των εκπομπών στον τομέα των μεταφορών οδήγησε στην ανάπτυξη νέων βιώσιμων και 

πράσινων πρακτικών. Η ηλεκτροκίνηση θεωρείται μια από τις αναδυόμενες τάσεις της εποχής και αναπτύσσεται 

ραγδαία στον τομέα των αστικών εμπορευματικών μεταφορών. Αυτό συμβάλλει στη μείωση της περιβαλλοντικής 

επιβάρυνσης των μεταφορών, λαμβάνοντας υπόψη το μεγάλο ποσοστό των εκπομπών που προέρχονται από τον τομέα 

των εμπορευματικών μεταφορών. Ωστόσο, η χρήση ηλεκτρικών φορτηγών για τις αστικές μεταφορές έχει ορισμένους 

περιορισμούς, όπως η αυτονομία, οι καθυστερήσεις φόρτισης και η έλλειψη υποδομών φόρτισης. Σε αυτήν τη μελέτη, 

επικεντρωνόμαστε στο πρόβλημα εύρεσης των βέλτιστων τοποθεσιών για τους σταθμούς φόρτισης για χρήση 

οχημάτων εμπορευματικών μεταφορών στο αστικό δίκτυο. Η εγκατάσταση των σταθμών φόρτισης αποτελεί καίριο 

ζήτημα, καθώς είναι απαραίτητο να εντοπιστούν οι βέλτιστες τοποθεσίες εγκατάστασης για τη βελτίωση της 

παράδοσης προϊόντων και τη μείωση των νεκρών χρόνων και χιλιομέτρων του οχήματος, που διανύονται για σκοπούς 

φόρτισης. Η μελέτη αυτή διατυπώνει το πρόβλημα επιλογής τοποθεσίας σταθμού φόρτισης με στόχο την 

ελαχιστοποίηση των κενών χιλιομέτρων προς τους σταθμούς φόρτισης, λαμβάνοντας υπόψη τους προορισμούς των 

φορτηγών. Το μοντέλο που αναπτύσσεται είναι ένα μοντέλο ακέραιου γραμμικού προγραμματισμού (ILP) που μπορεί 

να επιλυθεί αποτελεσματικά κάνοντας χρήση και δοκιμές σε ρεαλιστικές περιπτώσεις προβλημάτων (ρεαλιστικά 

δεδομένα). Επιπλέον, πραγματοποιείται ανάλυση ευαισθησίας για τον καθορισμό των παραγόντων εκείνων οι οποίοι 

είναι οι πιο σημαντικοί στη διαμόρφωση της βέλτιστης λύσης. Συγκεκριμένα, εξετάζεται η επίδραση της 

χωρητικότητας των σταθμών φόρτισης, του διαθέσιμου κεφαλαίου καθώς και της αποδεκτής απόστασης που καλείται ο 

οδηγός να καλύψει για να φορτίσει το όχημά του, στη βέλτιστη επιλογή σταθμών φόρτισης. Για το σκοπό αυτό 

διεξάγονται εκτενή υπολογιστικά πειράματα πάνω σε νέα, τροποποιημένα πρότυπα προβλήματα της βιβλιογραφίας τα 

οποία αναδεικνύουν την αποτελεσματικότητα του μοντέλου επίλυσης σε μεσαίας και μεγάλης κλίμακας προβλήματα. 
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Περίληψη 
Στις μέρες ο τομέας των αστικών εμπορευματικών μεταφορών εξελίσσεται με ραγδαίο και εντυπωσιακό ρυθμό, 

καθώς η κλιματική αλλαγή εντείνεται και οι αυξημένες ανησυχίες για την ποιότητα του αέρα προωθούν τη μετάβαση 

σε πιο βιώσιμες μορφές και εναλλακτικές μεταφορές. Στο πλαίσιο αυτό, η ανάπτυξη της ηλεκτροκίνησης έχει 

αναδειχθεί ως μία από τις βασικές λύσεις για την μείωση των εκπομπών αερίων θερμοκηπίου και την βελτίωση της 

ποιότητας του αέρα. Ωστόσο, η βέλτιστη λειτουργικότητα των ηλεκτρικών οχημάτων στον τομέα των αστικών 

εμπορευματικών μεταφορών εξαρτάται σε μεγάλο βαθμό από την ύπαρξη και την αποτελεσματικότητα των υποδομών 

φόρτισης. 

Αναμφίβολα, τον 21ο αιώνα οι εμπορευματικές μεταφορές αντιμετωπίζουν μεγάλες προκλήσεις. Δεδομένης της 
αύξησης και της συγκέντρωσης του πληθυσμού στα μεγάλα αστικά κέντρα, παρατηρείται αύξηση στη ζήτηση αγαθών 

και στις υπηρεσίες διανομής. Όμως, οι μεγάλες ποσότητες εκπομπών αέριων ρύπων, η ηχορύπανση και η 

κυκλοφοριακή συμφόρηση, δυσχεραίνουν το βέλτιστο σχεδιασμό των μεταφορών. Βάσει όλων των παραπάνω, η 

μετάβαση των συμβατικών οχημάτων (με κινητήρες εσωτερικής καύσης) σε ηλεκτρικά οχήματα, αποτελεί μονόδρομο 

για τις εταιρείες μεταφορών και διανομών αγαθών. Τα ηλεκτρικά οχήματα αποτελούν μέσο κίνησης, φιλικό προς το 

περιβάλλον, έχουν καλύτερη απόδοση, είναι πιο οικονομικά, ενώ συμβάλλουν και στη μείωση του θορύβου. Ωστόσο, 

αυτή η μετάβαση απαιτεί στρατηγικό σχεδιασμό και ένα σημαντικό υπόβαθρο υποδομής δικτύων φόρτισης για να είναι 

βιώσιμη. 

Η ανάπτυξη υποδομών φόρτισης ηλεκτρικών οχημάτων αποτελεί καίρια ενέργεια μετάβασης προς την 

κατεύθυνση της βιώσιμης κινητικότητας. Η επιλογή της βέλτιστης τοποθεσίας αποτελεί πρόβλημα μελέτης για την 

επιστήμη των μεταφορών, καθώς συμβάλλει στην αποτελεσματικότητα, την προσβασιμότητα και την αποδοτικότητα 
της υποδομής φόρτισης. Κατά την επιλογή τοποθεσίας λαμβάνονται υπόψη πολυάριθμες παράμετροι, όπως η 

γεωγραφική κατανομή της ζήτησης, η πρόσβαση του κοινού, οι ειδικές ανάγκες και περιορισμοί της τοπικής 

κοινότητας, και οι οικονομικοί παράγοντες. Η ανάλυση της βέλτιστης τοποθεσίας σταθμών φόρτισης ηλεκτρικών 

οχημάτων απαιτεί επίσης τη συνεκτίμηση των διαφόρων τύπων φορτίου (γρήγορη φόρτιση, κανονική φόρτιση κλπ.) και 

των διαφορετικών κατηγοριών χρηστών, όπως ιδιώτες, επιχειρήσεις, κοινότητες με ανάγκες σταθερής φόρτισης, αλλά 

και ταξινομημένες περιοχές. 

Στην παρούσα διπλωματική εργασία, εξετάζεται το πρόβλημα της βέλτιστης επιλογής τοποθεσίας υποδομών φόρτισης 
σε δίκτυα μεταφορών, με σκοπό την μείωση της συνολικά διανυόμενης απόστασης (κόστους) των ηλεκτροκίνητων 

οχημάτων. Για το σκοπό αυτό, αναπτύσσεται μοντέλο ακέραιου γραμμικού προγραμματισμού, μέσω του οποίου 

επιτυγχάνεται η εύρεση των βέλτιστων τοποθεσιών, για μια σειρά σεναρίων. Για την εξέταση της αποτελεσματικότητας 

του προτεινόμενου μοντέλου δημιουργήθηκαν νέα, τροποποιημένα πρότυπα προβλήματα της βιβλιογραφίας. Επιπλέον, 

αναλύονται οι κύριοι παράγοντες που συμβάλλουν στην επιλογή της βέλτιστης τοποθεσίας, όπως η χωρητικότητα των 

σταθμών φόρτισης, το διαθέσιμο κεφάλαιο καθώς και η αποδεκτή απόσταση που καλείται ο οδηγός να καλύψει για να 

φορτίσει το όχημά του. Τα υπολογιστικά πειράματα καταδεικνύουν ότι η χωρητικότητα του σταθμού φόρτισης 

επηρεάζει σημαντικά τη βέλτιστη λύση των υπό εξέταση προβλημάτων. 



1 Introduction
One of the biggest issues of the 21st century is the global warming due to the excessive 
greenhouse gas emissions [1]. Although the advancement of new technologies aims to 
reduce the greenhouse gas emissions, particularly CO2, approximately one-quarter of 
these emissions come from the transportation sector [2]. More specifically, i n 2017 it 
was recorded that 27% of the total greenhouse gas emissions in the European Union 
came from transportation. Furthermore, it was noted that from 1990 there has been 
an increase of over 25%, with further increases expected in the future, primarily from 
the freight transport sector [1]. Based on the above, the adoption of green applications 
and practices has become necessary to make freight transport more sustainable in 
terms of economic, societal, and environmental aspects [3].

One of the big changes of our time is electrification ( e-mobility), a nd particu-
larly the use of electric battery-powered fleets for last-mile deliveries (Electric Freight 
Vehicles) [4]. According to research conducted in 2010, the growing population and 
the rapid growth in freight transport are expected to contribute to a 77% increase 
in general transportation by 2055 [5–11]. Given this, the development and adoption 
of electric vehicles is expected to play a crucial role in achieving very low emissions, 
reducing noise, and improving air quality in major urban centers. Although the use 
of electric fleets i n f reight t ransport h as numerous a dvantages, t he l ack o f charging 
infrastructure is one of the main concerns for businesses that are exploring the con-
vention of their fleets f rom c onventional t o e lectric v ehicles. A s a  c onsequence, the 
functional integration of electrification into the field of  freight transport is  postponed.

Taking into consideration all the above, the strategic installation of charging sta-
tions in “key” locations becomes essential to support long-distance deliveries. The 
optimal design and placement of charging stations is necessary to ensure autonomy, 
efficiency, su fficiency in f rei ght tran sport oper ations, and mini mization of t he final 
operational cost. It should be emphasized that the optimal location selection of charg-
ing stations is needed to reduce the cost of electricity provision and charging times 
(delays-queue) [12]. Given that, the decision of location selection is crucial for the effi-
cient functioning of a charging station, and considering that there are limited financial 
resources available for the construction of infrastructure, it is necessary select opti-
mally the locations of charging stations in the urban network. This will help to limit 
the potential negative effects o f charging s tation i nstallation, such a s environmental, 
economic, and social impacts, while contributing to increased levels of final customer’s 
satisfaction.

The optimal location of a charging station is determined by various factors, includ-
ing the type of technology used for the station, the drivers’ behavior, the charging 
time, the installation cost, the travel time to the charging station, and the traffic 
network [13]. Installing charging infrastructure in the road network is a critical deci-
sion because the utilization rate of a public electric vehicle charging station is a key 
factor in determining its efficiency and eff ectiveness. The  nec essity of opt imal place-
ment is highlighted in many studies, which show that the utilization rates of existing 
charging stations are low, indicating poor/inappropriate location choices [14–16]. Fur-
thermore, the rapid increase in the simultaneous use of multiple electric vehicles poses
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a significant challenge for the energy sector. It necessitates the development of appro-
priate charging infrastructure, the creation of the required network conditions, and 
the advancement of technology [17].

Based on all the previous information provided, it becomes evident that exist-
ing electric vehicle charging infrastructure is typically inadequate to cover the needs 
of freight transport. The utilization of existing electric vehicle charging stations has 
significant impacts on both road t raffic (traffic conge stion) and energy consumption, 
while potentially causing voltage drop issues within the network. This highlights the 
shortcomings of the charging station location choices in urban areas. Specifically, in 
many areas with such installations there is a burden on the transport network due 
to vehicle overload, leading to increased delays and reduced parking space availability 
[18]. Additionally, energy consumption rises in certain areas due to simultaneous charg-
ing, resulting in difficulties in  power supply and potential is sues such as  transformer 
overloads, imbalances in phase, and voltage deviations. In light of these challenges, 
it is essential to carefully plan the location and distribution of electric vehicle charg-
ing stations, taking into account factors such as the network capacity, the traffic flow, 
and the energy demand to ensure their optimal functionality and minimize the neg-
ative impacts on both transportation and energy systems [16, 19–21]. Undoubtedly, 
the need for the development of fast, reliable, and user-friendly technologies would 
facilitate freight transport operators in the practical use of electric vehicles, promote 
green transportation practices, and reduce the dependency of distribution on fossil 
fuel sources [22, 23].

The aim of this thesis is to find the optimal locations for installing charging stations 
for urban freight transport in a given area, with the primary criterion being the service 
level improvement and the reduction of empty kilometers driven for charging purposes. 
More specifically, the constraints encountered during the creation of a charging station 
will be analyzed and presented, such as economic limitations, routing constraints, 
and placement within the road network. Precisely determining the coordinates of the 
most suitable locations for charging station installation requires special attention to 
factors such as the charging technology, charging time, type of electric vehicle, and 
the availability of charging infrastructure. Based on all of the above, a design model 
is created that optimally selects the locations for charging station installation, with 
an emphasis on freight vehicles.

The remainder of the thesis is structured as follows. The second section consists 
of the literature review, which involves the review of past studies that have addressed 
the classic Facility Location Problem (FLP). The aim is to gather information and 
mathematical models developed to solve the problem of optimal placement of electric 
charging stations in the urban network, considering the constraints in their design and 
operation, as well as any applications that have been implemented to evaluate their 
effectiveness in freight transportation. Gaps in the existing literature are identified by 
creating summary tables to consolidate all the research conducted on the problem of 
optimal placement, focusing on areas that require improvement. In the third section, 
the methodology is analyzed and an integer linear program for the charging station 
location selection problem for urban freight transport is developed. The proposed 
model is analyzed and it is tested in numerical experiments in section four. The model
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is programmed in Python and it is solved with Gurobi. To assess the effectiveness of the 
model, a case study is conducted in a defined area. In the fifth section, the conclusions 
of the analysis are presented, highlighting potential areas for future research.

2 Literature Review

2.1 Charging Technologies
The rapid increase of environmental pollution has led to the advancement of elec-
trification. This marks t he p ath t owards g radual d ecarbonization a nd independence 
of transportation from fossil fuels [13, 24]. Electric vehicles are one of the emerg-
ing trends, as electrification i s o ne o f t he m ost s ustainable a nd environmentally 
friendly approaches. Electric vehicles significantly contribute to the reduction of CO2 
emissions, and therefore, to the mitigation of the greenhouse effect [ 25]. T hey also 
contribute to reducing noise levels in large urban centers [26]. However, the rapid inte-
gration of electric vehicles into urban areas is challenging due to the lack of charging 
infrastructure, specifically c harging s tations’ a vailability. T he s mooth i ntegration of 
electrification into f reight transportation poses a  s ignificant challenge in  today’s con-
text. While the goal is to reduce emissions, there are many constraints that make the 
conversion of distribution fleets f rom c onventional t o e lectric v ehicles d ifficult, thus 
hindering the improvement of the end consumer’s service level.

In transportation, the constraints faced by electric vehicle providers primarily 
relate to the vehicles’ battery range and the availability of electric vehicle charging 
infrastructure along their routes. Many cities and communities have started to recog-
nize the benefits of electrification, and there is  willingness to  improve the planning of 
charging stations in order to promote the use of electric vehicles [27, 28]. Therefore, 
the decision-making process for the optimal location selection of new charging stations 
within a city is crucial. The Charging Station Location Problem (CSLP) involves a 
set of constraints that need to be defined and satisfied when selecting the most appro-
priate installation points. The most important aspects that are typically taken into 
consideration are the following [29]:

Charger Utilization: Charging stations for electric vehicles are categorized into 
three (3) basic levels, each of which determines their technical specifications and final 
cost, according to [30]. Specifically, f or r esidential u se, L evel 1  c hargers a re recom-
mended, which are typically slow-charging installations. For work and public use in 
parking lots, hotels, supermarkets, etc., Level 2 installations are recommended, which 
are usually fast-charging stations. Level 3 chargers are primarily recommended for 
locations such as highways and fuel stations. The different c haracteristics o f each 
charging level are illustrated in Fig.1.
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Fig. 1 Charger utilization per level [31]

Charger Types: The types of chargers at electric charging station installations
are divided into two categories: direct current (DC) chargers and alternating current
(AC) chargers. Specifically, DC chargers allow for the direct charging of the vehicle,
as opposed to alternating current (AC), which is present in the grid and needs to be
converted into DC in order to be adapted in electric vehicle batteries. As a result, the
charging process is much faster since the step of converting from AC to DC is skipped
[32, 33].

Charging Technologies: Starting with the types of charging stations, advance-
ments in technology and expertise in the field of electrification have led to the
development of various new charging station technologies aimed at enhancing user
convenience. According to the literature, emerging charging station technologies
include:

• Conductive Charging: Conductive charging offers several advantages, including its
economic feasibility, fast charging capability, user-friendly operation, and high effi-
ciency. In addition to this, conductive charging has been further classified into
two categories[34]. Onboard chargers, such as AC-DC converters, are typically slow
chargers designed to charge the vehicle entirely within. On the contrary, offboard
chargers are known for their rapid charging capabilities. Furthermore, using off-
board chargers can also enhance the electric vehicle’s range by reducing the vehicle’s
weight[35]. In the following, two types of conductive charging are presented.
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Overnight Depot Charging: Overnight depot charging facilities provide both fast
and slow charging options, with the charging point typically located at the end of
designated lines. These facilities are primarily used for overnight charging, taking
advantage of the minimal impact on the distribution grid. Slow charging is the most
advantageous choice in this context[36] [37]. However, for applications necessitating
high battery capacity and quick recharging, the Pantograph charging technique is
more suitable.
Pantograph Charging: Pantograph charging offers a range of charging options and is
commonly employed for applications requiring greater battery capacity and power,
such as buses and trucks. This charging approach reduces the investment required
for bus batteries but increases infrastructure costs[38].

• Fast Charging: This method allows electric vehicles to charge as quickly as possi-
ble compared to conventional plug-in methods. Fast charging reduces the battery
recharging wait time, making it more practical for drivers and distributors [39]. Fast
charging stations can be categorized into DC (direct current) stations, which con-
nect to direct current, and ultra-fast charging stations, which achieve even faster
charging levels but require high voltage levels in the grid. However, it’s important
to note that the charging time depends not only on the type of charger but also on
factors such as battery size (capacity) and the charger’s power capacity for recharg-
ing batteries. In Greece, for example, the most common capacity for fast chargers
ranges from 50-150 kilowatts (kw). In a fast charging station, an electric vehicle’s
battery can be charged from 0% to 80% within 45 minutes. The last 20% for a full
charge takes longer because the system slows [40].

• Battery swapping: This is an alternative technology that allows users to replace
their depleted electric vehicle battery with a fully charged one, whether it’s new or
recharged. This technology may potentially increase waiting times, as access to a
battery swapping station is required, and it takes some time to perform the battery
swap. According to [29, 41], a Battery Swapping Station (BSS) can slow down the
charging process, resulting in an extended battery lifespan. Forms of renewable
energy sources, such as solar and wind power generated from the local grid, can be
integrated into the BSS system [31, 42].

• Inductive Charging: Inductive charging is a wireless charging technology that allows
electric vehicles to charge without the need for a physical connection between the
vehicle and the charging infrastructure. Through the presence of an electromagnetic
field, electrical energy is transferred between the vehicle’s pole and the charging
infrastructure [43, 44]

• Dynamic Charging: Similar to inductive technology, but in this case, it allows for
the charging of moving vehicles. This method requires the installation of charging
infrastructure on the road surface or overhead, enabling wireless power transfer to
the vehicle’s wireless power receiver as it moves [45].

• Vehicle to Grid (V2G): This refers to a system in which electric vehicles can be used
to provide supplemental power to the electrical grid. With this technology, electric
vehicles not only draw energy from the grid (often causing issues like voltage sags
in the area or overloading the grid) but can also feed energy back into the grid
to contribute to its stabilization. In a V2G system, the electric vehicle connects
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to the grid through a charging station, which is primarily connected to substation
equipment (medium voltage). In cases where the grid needs additional power, energy
can be drawn from the electric vehicle’s battery through the charging station and
supplied to the grid. Conversely, when the grid has surplus power, the charging
station can effectively charge the electric vehicle’s battery and allow it to store
energy for later use [46].

Vehicle Battery Type – Technology: In terms of vehicle battery type
technologies, the categorization is as follows:

• Lead-Acid Batteries: Lead-acid batteries are one of the types of batteries commonly
used in modern electric vehicles. They are known for being a relatively inexpensive
energy storage technology due to the low cost of the raw materials. However, they
have certain disadvantages, such as a limited lifespan. The advantages of lead-acid
batteries include their low material costs, high safety levels, and recyclability. They
are also known for their high recycling rates. However, due to their low energy
density and limited energy storage capacity, these batteries are typically used in
vehicles designed for shorter distances and lower weights, such as electric scooters.
Lead-acid batteries are not commonly found in long-range electric vehicles, where
higher-capacity and longer-lasting battery technologies like lithium-ion batteries are
preferred for their ability to provide more energy and longer driving ranges [47].

• Nickel-Cadmium (NiCd) Batteries: Nickel-cadmium (NiCd) batteries are another
type of battery technology. These batteries offer higher energy storage capacity
compared to lead-acid batteries but come with a significantly higher cost. However,
they are not recommended for use in electric vehicles due to their environmental
impact, primarily related to the cadmium content, as well as the high cost of the
batteries. Cadmium is a toxic heavy metal, and its use in batteries raises environ-
mental concerns, especially in terms of disposal and recycling. As a result, NiCd
batteries have been largely phased out in favor of more environmentally friendly and
cost-effective battery technologies like lithium-ion batteries for most applications,
including electric vehicles.Lithium-ion batteries have become the dominant choice
for electric vehicles due to their higher energy density, longer lifespan, and lower
environmental impact compared to older battery technologies like NiCd [47].

• Nickel-Metal Hydride (NiMH) Batteries: Nickel-metal hydride (NiMH) batteries are
a more recent iteration of nickel-cadmium (NiCd) batteries. They do not contain
toxic cadmium as the primary material but offer similar efficiency. In contrast to
their earlier version, NiMH batteries can achieve nearly double the energy density
and have a longer lifespan. However, due to the high cost of the raw materi-
als used in NiMH batteries, they cannot compete with lithium-ion batteries in
terms of cost-effectiveness. As a result, lithium-ion batteries have largely surpassed
NiMH batteries in popularity, especially in applications like electric vehicles. While
NiMH batteries are more environmentally friendly than NiCd batteries due to the
absence of cadmium, they still face limitations in terms of energy density and cost
competitiveness compared to lithium-ion batteries [47].
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• Lithium-Ion (Li-ion) Batteries: The term ”Lithium-Ion batteries” refers to a variety
of material combinations used to create a battery, such as lithium cobalt oxide (Li-
Co Oxide), lithium manganese oxide (Li-Mn Oxide), lithium iron phosphate (Li-Fe
Phosphate), and lithium nickel cobalt manganese oxide (Li-Ni-Mn-Co Oxide). The
characteristics of Li-ion batteries, such as power, lifespan, performance, and safety,
largely depend on the specific material combinations used in their construction.
However, it is well-known that this technology achieves the highest energy and power
density, resulting in low weight and volume [47].

Li-ion batteries are considered the most capable and reliable batteries because they
can store up to three times more energy (per unit of weight and volume) compared to
conventional lead-acid and nickel-metal hybrid batteries. Due to their characteristics
and high energy storage capacity, they find widespread applications in sectors like
aviation and electric vehicles. Li-ion batteries have become a dominant choice for
portable electronic devices, electric vehicles, and various other applications due to
their high energy density, lightweight design, and long cycle life [33, 47].

Installation Area Network (Thermal Limits and Power): During the design
and selection of the optimal location for the installation of electric vehicle battery
charging infrastructure, the interconnection network of the area with the charging
station is taken into consideration. More specifically, many studies related to the devel-
opment of EV (Electric Vehicles) usage focus on assessing the impacts of charging on
the electrical grid. These impacts may include effects on transformer operation [48],
power system quality [49], grid voltage instability [21], adequate electrical energy gen-
eration [50], and possible power losses [51]. Therefore, according to the studies and
sources, the limitations that need to be studied and evaluated before the installation
of electric vehicle charging infrastructure are as follows:

• Power Infrastructure: Charging station installations require substantial additional
power capacity to charge multiple vehicles simultaneously. This can sometimes lead
to issues on the grid, especially when the power infrastructure is not sufficient to
support the increased or sudden demand [29]

• Distribution Point Overload: In areas with a high concentration of electric vehi-
cles, charging can overload distribution points, particularly when the infrastructure
hasn’t been adapted for the increased power demand.

• Load Management: Load management is crucial to avoid extreme charging peaks
and address any imbalances in the grid [29]

• Distance from Substation: The distance from the nearest electrical substation can
affect power availability for charging [29]

These limitations can be addressed through investments in urban power infrastruc-
ture, intelligent load management, the development of advanced grid systems, and the 
integration of alternative energy sources, such as Renewable Energy Sources (RES), 
to supply the electric vehicle charging stations.

Installation Cost: The total costs considered during the design of a charging 
station are divided into installation costs, operational costs, and maintenance costs. 
These costs should align with the available budget. Specifically, according to Liu and
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Bie [52], when estimating the cost of a charging station, whether it’s for direct cur-
rent (DC) or alternating current (AC) installation, various factors must be taken into
account, such as the cost of installing the charging infrastructure, land costs, network
costs, and delay costs. However, it’s challenging to determine these costs with preci-
sion, as they depend on factors like the manufacturer, the type of charger, the local
infrastructure, the area and land use, as well as the demand.

To sum up, the basic parameters for making a decision regarding the placement
of an electric vehicle charging station in the urban network, which could serve freight
routes and deliveries, are as follows:

• Approach to congested traffic areas: Charging stations are typically more sought
after when located in high congestion areas and central arteries, such as highways
and main roads. This contributes to easy access to charging and the convenience
of drivers in terms of their vehicle’s autonomy, as well as the uninterrupted flow of
their deliveries. Availability of parking spaces: The installation of charging stations
is recommended areas with sufficient parking space availability [18]. Specifically,
electric vehicle drivers need a parking space during the charging process. Therefore,
during the planning stage, it is necessary to consider that the number of parking
spaces should be proportional to the number of charging stations for the specific
location under study.

• Access to amenities: It is beneficial to install charging stations in areas near shop-
ping centers, restaurants, or entertainment venues. This allows drivers to engage
in other activities or even perform some form of distribution during their vehicle’s
charging. (This depends on the type of charging; in the case of wireless charging,
the distributor may distribute their goods while charging their vehicle) [53].

• Access to electrical infrastructure: Charging stations require a stable and robust
power supply. Therefore, access to electrical infrastructure, such as substations or
transmission lines, is crucial to ensure the reliability and effectiveness of charging
operations and the network as a whole [29].

• Collaboration with the power company: It is essential for a given area to assess
the network’s capacity to ensure that the power station’s power requirements can
be met without overloading the network. Additionally, it needs to be ensured that
there are no connectivity issues. Therefore, areas with high capacity, high voltage
(network resilience), and access to renewable energy sources are recommended. In
the case of energy extraction from renewable sources, the planning and installation
process becomes more straightforward, as it does not impose a significant burden
on the network.

2.2 Mathematical Models

The problem examined in this thesis is based on the classic Facility Location Problem 
(FLP). Hakimi [54] proposed the concept of the p-center location model and p-median 
location model in 1964. The set-coverage location model (SCLM) was proposed by 
Toregas et al. [55], while few years later Church and ReVelle [56] proposed the maxi-
mum coverage location model (MCLM). These location selection problems are applied
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to network facilities location selection, such as factory, warehouse, station, etc. How-
ever, past studies has shown that some location problems cannot be solved by existing 
models [57, 58].

The objective of the FLP is to optimally select one or more locations from a large 
set of candidate locations while incorporating constraints on the selected locations. 
In the field of e lectric vehicles, studying the FLP can help determining suitable loca-
tions for the installation of public charging stations and the number of chargers in 
each area or point [53]. Initially, a literature review is conducted to investigate the 
FLP in the context of finding t he o ptimal l ocation f or e lectric v ehicle charging sta-
tions. Subsequently, the combined problem of Facility Location and Vehicle Routing 
is reviewed.

The need for recharging electric vehicle batteries can significantly impact the acces-
sibility of an area with high rates of electric vehicle deliveries or freight distribution. 
For this reason, it is necessary to design and select the optimal location (geographic 
points) for charging station infrastructure to maximize the autonomy of battery-
powered vehicles, taking into account the spatial distribution of the network [28]. 
This is typically achieved by developing new models that extend the Charging Station 
Location Problem (CSLP) formulation [59].

Zhu et al. [60] focused on finding the optimal l ocations f or charging s tations and 
determining the charging infrastructure to be installed at each available point. Initially, 
they developed a linear programming model with the goal of minimizing the total 
cost of the charging station installations. However, in this initial model, the available 
locations for potential charging stations were point-based. In a subsequent version of 
their model, they modified t he available l ocations. I nstead o f p oint-based locations, 
they used line segments defined by two nodes. Both versions of the model were solved 
using a genetic algorithm, and it was observed that the higher cost reduction was 
achieved in the second case. This was attributed to the consideration that a significant 
factor in determining the optimal location is the distance that a driver can travel to 
recharge his/her vehicle. The availability of different t ypes o f l ocations ( points and 
line segments) allowed for a more flexible a pproach i n o ptimizing t he p lacement of 
charging stations while considering the travel distance of drivers.

Kong et al. [13] developed a method which takes into account many factors that 
affect t he s election o f c harging s tation l ocations o n t he r oad n etwork. T hey devel-
oped a multi-layered model that simultaneously optimizes both cost-related factors of 
charging stations (installation cost, land cost, traffic co ngestion impact, an d station 
distribution within a given area) in the first l ayer a nd t he o peration o f t he charg-
ing station and its impact on vehicle drivers, traffic flow, and  network saf ety in the 
second layer. The solution was implemented using a simulation platform in Beijing, 
China, based on dynamic real-time data. The results demonstrated that the proposed 
model contributes to cost optimization, allowing for the identification of optimal loca-
tions for charging station installations. Yazdekhasti et al. [53] aimed to maximize the 
level of service, cover the demand and minimize the cost of installing charging infras-
tructure. They developed a multi-level model focusing on three stages. In the third 
stage of the model, they determined the locations of charging stations, the distribu-
tion, and the number of charging slots. Initially, they defined an acceptable distance
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between available charging station installation points, calculated the acceptable radius 
where candidate station points would be placed to maximize service levels and cover 
the demand. Finally, they calculated the battery capacity and the available power of 
vehicles that would require recharging. When applying their model to California, the 
results showed the following: when there is a low number of available charging sta-
tions in the network, increasing battery capacity requires the installation of charging 
stations to a central area of the network. Conversely, when there is a significant num-
ber of available charging stations in the network, increasing the basic battery capacity 
causes the station locations to shift towards the periphery. Additionally, by selecting 
a city with low congestion rates near a larger urban center, demand in these areas and 
neighboring ones can be optimally covered by minimized costs.

Ahangar et al. [61] developed a two-level model (bi-objective mathematical model) 
with the aim of determining the optimal locations for installing charging stations. 
In the first l evel, t he g oal was t o m inimize c osts, while t he s econd l evel f ocused on 
maximizing drivers’ satisfaction. To solve the model, it was assumed that two types 
of charging technologies are available, while the acceptable distance that drivers are 
willing to travel to charge their vehicles is taken into account. The numerical results 
indicated that the available budget for building charging stations must be increased 
in order to reduce the number of users who travel a greater distance than desired to 
charge their vehicles.

The authors [62] proposed a multi objective optimization problem taking into con-
sideration transportation energy loss cost, station build-up cost and sub-station energy 
loss cost for finding the optimal location of Fast Charging Stations, which was solved 
by the binary lighting search algorithm . Sadeghi-Barzani et al.[63] formulated a mixed 
integer nonlinear problem (MINLP) by considering the CS equipment cost, land costs 
electrification cost, electric grid loss cost, and EV loss cost ,while the optimal solution 
is obtained with GA. The authors [64] have analyzed the finding of the optimal loca-
tion of parking lots by maximizing the revenue of parking lots and have considered 
the energy costs such as power loss costs, reliability cost, voltage improvement cost, 
and parking lot cost, whereas the solution of the model is obtained with the usage of 
GA. He et al. [65], taking into account the costs associated with batteries, charging 
stations, and energy storage systems, formulated a mixed-integer linear programming. 
This model aims to determine the strategic deployment of charging stations and the 
configuration o f b atteries a nd e nergy s torage s ystems i n a n o ptimal manner. Based 
on cost model and genetic algorithm Zhou et al. [66] constructed a total social cost 
model covering economic and environmental costs, in order to minimize the construc-
tion costs of charging station. As for economic costs, they include construction costs 
and operating costs, while the environmental costs include the cost of carbon diox-
ide emissions. They took into consideration constraints such as charging supply and 
charging distance. A sensitivity analysis is conducted, in order to observe the possi-
ble relevant factors. The findings i ndicate t hat t he p lacement o f charging s tations is 
highly influenced b y f actors s uch a s t he q uantity o f c harging s tations, t he demand 
for charging at intersections, and the probability of daily charging. Furthermore, the 
overall social cost is directly associated with both the number of charging stations and 
the probability of charging.
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Viewed from a different p erspective, a nd n ot w ith t he p rimary g oal o f minimiz-
ing the total cost, Ma and Xie [67] studied the problem of determining the locations 
of charging stations focusing on minimizing the total time of delays and the waiting 
time in line for charging during the day. Their modeling method was a bi-level opti-
mization problem, employing mixed-integer linear programming, while the Lagrangian 
method was chosen as the solving method. The study was applied to Luxembourg for 
fast charging and continuous current infrastructure. The results of the model showed 
that the optimal charging station locations can be determined given externally defined 
parameters such as demand, vehicle battery size, and the number of chargers that 
would be deployed. Moreover, a mixed-integer programming model has been devel-
oped by [68] in order to maximize the overall plug-in EVs flows i n t he n etwork and 
the GA has used to solve the proposed problem. [69] proposes a model based on 
parameters such as power loss, voltage deviation and EVs charging costs infrastruc-
ture in order to find t he o ptimal l ocation o f c harging s tation a nd a nd t he optimal 
implementation of renewable energy sources which is solved by differential evolution 
algorithm. Recently, in study of [70] the location problem has received considerable 
attention, with a focus on analyzing both supply and demand aspects, incorporating 
the psychological factors of drivers. Luo et al. [71] and Balakrishna et al.[72] have 
not only proposed the deployment of charging stations (CS) but also recommended 
the integration of distributed generation sources. Their studies have demonstrated 
that integrating distributed generation can alleviate unforeseen loads on established 
urban distribution power grids, which have typically served cities for many years. A 
holistic approach was taken by Bouguerra et al.[73], which considered factors such as 
driving range, real-world constraints, investment expenses, and user convenience. A 
weighted model was developed to ascertain the optimal location and capacity of the 
charging station, taking into account all these elements. In this research [74], an inno-
vative station-level optimization framework has been introduced to execute the most 
efficient charging station pricing policy and charging schedule. This model seamlessly 
integrates human behavior, providing a clear and effective r epresentation o f drivers’ 
decision-making processes when it comes to charging their vehicles.

An approach based on partitioning has been introduced by [75] to find optimal 
station location by minimizing traffic loss. Furthermore, Frade et  al.[76] has identified 
the ideal locations for stations in Lisbon with the aim of optimizing accessibility for 
electric vehicle (EV) owners. Optimal station location was examinated [77] to minimize 
station infrastructure’s and operating cost. An analytical method has been proposed 
in Hanabusa’ study [78] to find optimal station location considering driving patterns. 
Graph theory has been used in [79] to find o ptimal s ize a nd l ocation o f charging 
stations. A two step technique was proposed in [80] to determine optimal location and 
size of the charging stations. Particle swarm optimizazation technique was used in 
[80] for optimal charging station planning. In this research, Wang et aL. [81] a traffic-
constrained optimization framework was introduced to ascertain the most efficient 
planning of electric vehicle charging stations.

Schiffer et al. [82] focused on the study and solution of the Electric location routing 
problem with time windows and partial recharges (ELRPTWPR). Specifically, they 
found that electric vehicle charging stations can be located near customer locations,
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and the time during distribution and loading can be used for vehicle charging. This
research demonstrated the importance of combining the location of charging stations
and the routes of electric vehicles, particularly when the final destination of the dis-
tribution is not far from warehouses or the vehicle’s starting location. Subsequently,
Schiffer and Walther [83] studied and compared the ELRPTWPR and E-VRPTWPR
(Electric vehicle routing problem with time windows with partial recharging). They
found that the ELRPTWPR provided optimal solutions in all cases. According to their
research, electric vehicles can charge while serving (distributing and loading goods),
reducing the delay times to and from charging stations during off-peak hours. Lastly,
Sun et al. [58] examined the location problem by developing an optimal model for
electric charging station placement. However, they did not consider routing based on
residents’ travel demand in the studied area. Their findings indicated that for short
distances, drivers would use slow chargers for charging, while for long distances, fast
charging facilities would be utilized. Charging station locations were determined based
on maximizing the level of service, and an economic budget constraint was imposed to
determine each location. Tang et al. [84]also focused in The optimal location of energy
supply centers for EVs. Considering the routing problem and EV autonomy they
developed a decision problem, which determines the optimal number of CS, locations,
allocation of users to each CS, and economic dispatching policy. Kinay et al.[85] devel-
oped an innovative comprehensive modeling framework for the planning of refueling
station infrastructure. The model specifically concentrated on the strategic placement
of fast-charging stations for long-range battery electric vehicles. It introduced a new
approach to addressing the facility location problem related to the installation of
refueling and recharging infrastructure for vehicles[86].

In Table 1 the most typically considered aspects in mathematical models that select
the locations of charging stations are presented.

In addition, Table 2 provides a summary of the objectives, mathematical formula-
tions, solution methods, and applications of past studies.

As we can see, numerous pieces of literature have dedicated significant attention
to the optimal arrangement of charging stations. This underscores the wide-ranging
interest in charging station research. Previous investigations have primarily centered
on a variety of factors influencing charging station layouts, the development of optimal
charging station models, and the introduction of diverse model-solving techniques.
These studies have made substantial contributions within these domains and serve as a
foundational basis for future research. Concurrently, the majority of existing literature
delves into aspects such as charging station technology, user preferences and behaviors,
environmental advantages, and thereby showcases the diverse range of optimization
methods employed [66].

From the studies presented in Tables 1 and 2, the closest prior art to this work is
the study of Zhu et al. [60]. The study of Zhu et al. [60] is a variation of the FLP. The
approach developed in this work differs from the work of [60] in the following aspects:

1. it focuses on freight transport considering heterogeneous fleets of electric vehicles,
such as electric light trucks and electric medium trucks;

2. it does not consider the installation costs as part of the objective function, but as
model constraints;
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Table 2 Summary table of mathematical models from past studies

Study Objective Function Mathematical
Formulation

Solution
Method

Application

Zhu et al.
[60]

Optimize the location of
charging infrastructure and
the number of chargers that
should be installed in each
charging station, to minimize
the total cost.

single weighted
objective

genetic
algorithm-
based method

Beijing, China

Kong et al.
[13]

minimize the total
construction cost of all
charging stations and
optimization of operators,
drivers, vehicles, traffic
condition and power grid

bi-level
optimization-
simulation
model

real-time data
analysis

Simulation in
Beijing, China

Ma and
Xie [67]

minimize the total travel time
and queuing delays for daily
charging operation

MILP (Mixed
integer linear
program)

Lagrangian
Relaxation
(LR) method-
Heuristic

Luxembourg

Yazdekhasti
et al. [53]

minimize the portion of the
demand uncovered by the
charging stations, and
objective to minimize the
charging station installation
cost

bi-level
optimization-
simulation
model / MILP

Metaheuristic
Method/
Hybrid Multi
Objective
Scatter Search
Variable

Artificial
network using
data from
California

Ahangar
et al. [61]

minimizes the difference
between system revenues and
costs in which revenues are
generated from charging
electric vehicles, and costs are
incurred by constructing
charging stations and
installing chargers and to
minimize the amount of
customer dissatisfaction

bi-objective
mixed-integer
linear
mathematical
model

Lagrangian
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3. it adds new aspects in the model formulation, such as the capacity of the charging
station and the capacity of the battery of the vehicles.

3 Methodology

Optimization methods find a pplication a cross various d omains, a iming t o maximize 
or minimize specific o bjective f unctions o f i nterest. These o bjectives c an encompass 
minimizing production costs, maximizing profits, reducing raw material usage in prod-
uct development, or optimizing production efficiency [8 7], to  na me fe w. So me the 
optimization problem formulations that widely appear in practice are:

Linear Programming (LP): LP is used to optimize a linear objective function 
subject to linear equality and inequality constraints [88].

Integer Linear Programming (ILP): Similar to linear programming, but with the 
additional constraint that all decision variables must take integer values. ILP is applied 
in situations where variables represent whole quantities, like in production planning 
[89].

Nonlinear Programming (NLP): NLP deals with optimization problems where 
the objective function or some constraints are nonlinear. It is used in various fields, 
including engineering design and financial modeling [88].

Quadratic Programming (QP): QP is a special case of nonlinear programming 
where the objective function is quadratic, and constraints are linear. It is used in 
portfolio optimization, robotics, and structural optimization [90].

Mixed-Integer Linear Programming (MILP): MILP combines elements of linear and 
integer programming to handle problems with both continuous and discrete decision 
variables. It is used in network design, scheduling, and logistics [91].

Dynamic Programming: This method is suitable for solving optimization problems 
with a sequential decision-making process. It is widely used in control theory, finance, 
and operations research [92].

In this thesis, the model of Zhu et al. [60] is extended, which is a variation of the 
classic FLP, in order to specify the optimal locations of charging stations for electric 
trucks in a fixed study region. In their study, Zhu et al. [60] focused on minimizing the 
total charging stations construction costs and attaining a desired traveler convenience 
by minimizing the distance that travelers are willing to going through.

In our model formulation the main idea is similar to [60], but there are some key 
differences. F irst o f a ll, f ocus i s g iven o n t he f reight t ransport i nstead o f passenger 
transport. Second, an heterogeneous fleet o f e lectric v ehicles i s c onsidered, s uch as 
electric light trucks and electric medium trucks. Third, the parameter of the cost is not 
included in the objective function. On the contrary, the cost aspect is considered as an 
additional problem constraint, given that the budget of constructing charging stations 
is limited. Finally, new parameters such as the capacity of the charging stations and 
the capacity of the battery of the vehicles are included in the model formulation.

To formulate the problem, the sets, parameters and decision variables are defined. 
These are presented in Table 3.
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Table 3 Nomenclature

Sets

R Set of available electric vehicles (EVs).
I Set of the EVs destination locations, from which they would need to travel to a charging

station for recharging.
K Set of vehicle types (light and medium trucks).
J Set of all possible charging station locations.

Parameters

Pr the destination location i ∈ I that is matched with each EV r ∈ R
Q capacity of charging station.
Qk battery capacity of vehicle of type k ∈ K.
Dr tolerance distance, indicating the maximum distance each EV r ∈ R is willing to cover

for charging.
cj installation cost of charger, depending on its location j ∈ J.
B available budget for installing charging stations, including infrastructure, energy, and

maintenance.
mr,k 0-1 parameter, where mr,k = 1 if vehicle r is of type k and 0 otherwise.
dij Distance from point i to charging station location j

Decision Variables

nj Number of chargers that will be installed in charging station location j
xj A binary variable that is 1 if a charging station will be installed in region j, and 0

otherwise
yrj A binary variable that is 1 if vehicle r ∈ R that needs to recharge after arriving at

destination location Pr chooses to charge in a charging station in region j, and 0
otherwise

In our model, the goal is to minimize the distance that the truck drivers are going
to cover in order to charge their vehicles. In this way, focus is given on minimiz-
ing the empty kilometers traveled for vehicle charging purposes. The mathematical
formulation is based on the following assumptions:

1. Each charging point can accommodate as many vehicles as its energy power
(supply) allows it to do so.

2. Aiming at the strategic planning level, vehicles that charge at the same charging
point can pre-schedule their chargings at different times of the day to avoid queuing
delays, and thus delays due to queuing at the charging points are not considered
as an extra cost (see [60]).

3. Truck drivers need to charge their vehicle when they arrive at a particular point
i at which they have finished their deliveries and their state of charge (SoC) does
not allow them to perform a new round of pickups and deliveries without charging.

Usually, the charging points are far away from the points i ∈ I where the truck
drivers need to charge. Due to this fact, drivers would have to take a detour and travel 
from point i to a charging station. This detour is translated into a travel cost that needs 
to be minimized by placing the charging stations at strategic locations. In practice, 
each truck trip is matched with one location i from which it will need to travel to a 
charging station. It is also matched with one type of Plug-in Electric Vehicles (PEVs)
(light or medium truck). While we seek to minimize the travel distance of trucks to 
the charging station, an upper bound (threshold) is also imposed to the maximum 
distance a PEV is willing to travel for charging purposes to avoid excessive empty 
kilometers traveled for particular vehicles.
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The mathematical formulation of the problem is provided below.

min
∑
j∈J

∑
r∈R

dPr,jyr,j (1)

subject to:
∑
j∈J

yr,j = 1 ∀r ∈ R (2)

xj ≥ yr,j ∀r ∈ R, j ∈ J (3)

xj ≤ nj ∀j ∈ J (4)

nj =
∑
r∈R

yr,j ∀j ∈ J (5)

dPr,jyr,j ≤ Dr ∀r ∈ R, j ∈ J (6)∑
j∈J

cjnj ≤ B (7)

∑
r∈R

∑
k∈K

yr,jmr,kQk ≤ Q ∀j ∈ J (8)

nj ∈ Z+ ∀j ∈ J (9)

xj ∈ {0, 1} ∀j ∈ J (10)

yrj ∈ {0, 1} ∀r ∈ R, j ∈ J (11)

The objective function (1) minimizes the total distance that drivers need to cover in 
order to charge their vehicles. Constraints (2) ensure that each vehicle r ∈ R is charged 
in exactly one region j ∈ J . Constraints (3) denote that the EVs can be charged in 
region j only when there is charging station located in region j. Constraints (4) ensure 
that a charging station is located only when there are vehicles needing to be charged 
at this station. Constraints (5) denote that the number of the chargers in region j is 
equal with the number of EVs that choose to be charged in region j. This condition 
ensures that there are enough chargers in each charging station to serve all the drivers 
without delays. Constraints (6) ensure that each EV r ∈ R which finishes i ts t rip at 
location Pr chooses to be charged in region j only when the distance between Pr and 
j is not larger than Dr. Constraints (7) denote that the total cost of installation for 
all the chargers is no greater than the given budget. Constraints (8) ensure that the 
capacity of stations in energy power is sufficient to  cover the demand. The remaining 
constraints ensure that decision variables nj take non-negative integer values and xj , 
yrj binary values.

The resulting mathematical program is an Integer Linear Program (ILP) that can 
be solved to global optimality with Branch-and-Cut and a solution method for linear 
programming (i.e., Simplex or Karmarkar’s Interior Point Method).

4 Numerical Experiments

In this section, a description of the data utilized for the computational experiments 
is provided. Next, the performance of the proposed model for problem instances of
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practical scale is discussed. In addition, the impact of the tolerance distance and total
budget in the location decisions is demonstrated. All numerical experiments are coded
in Python 3.11 (64-bit) on a desktop computer equipped with an Intel(R) Core(TM)
i7-1065G7 processor 1.50 GHz and a 8,00 GB RAM. The optimization solver used is
the GUROBI 10.02 optimizer.

4.1 Toy Network

For demonstration purposes, an application of the proposed mathematical model in a
toy network is presented. The toy network is presented in Fig.2. It involves 10 truck
locations represented by a black square, and 4 potential charging station locations
represented by a triangle (in gray colour). We consider that there are 50 EVs destined
to one of the predefined locations. Each EV is either a medium or a light vehicle, with
battery capacity equal to 70 and 250 kWh, respectively. The station capacity for each
of the potential charging stations is equal to 3400 kWh.

Fig. 2 Toy network with 10 locations (in squares) and 4 potential charging station locations (in 
triangles)

Since the toy network used in this demonstration is small, it can be solved to global 
optimality. The number of EVs assigned to charging stations and the total travel cost 
are presented in Table 4. The optimal solution demonstrates that location 2 is not 
selected as a charging station location. Thus, there are 10, 17 and 23 truck trips served 
by locations 1, 3 and 4, respectively.

The analytic solution indicating the assignment of EVs to charging stations is 
presented in Table 5.
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Table 4 Optimal solution
of the toy network

station number of EVs

1 10
2 0

3 17
4 23

total travel cost: 1487.69

4.2 Computational results
For the initial assessment of the proposed model, 20 problem instances have been ini-
tially generated. The generated problem instances involve 100, 400 and 1000 locations 
(as a total of truck locations and potential charging stations locations). Five network 
schemes are considered, involving different l ocations, c harging s tation l ocations and 
trucks destined to the network locations. The number of locations (I), the number of 
potential charging stations (J) and the number of trucks-drivers (D) involved in each 
scenario, are demonstrated in Table 6. For each scenario, five problem instances were 
generated (a,b,c,d,e), based on the well-known data set of [93], originally introduced 
for the Vehicle Routing Problem with Cross-Docking (VRPCD). An heterogeneous 
fleet of EVs is considered with two vehicle types: light and medium trucks. Each vehi-
cle type is associated with a different l evel o f battery u sage. F inally, f or a ll problem 
instances a common value for the tolerance distance value (Dr) for each driver, is 
considered.

Table 7 presents the computational results obtained by the proposed model. Table 
7 reports the results of the cost objective function. Each row of Table 1 provides the 
best solutions (bst) obtained, the %gap and the time (t) in seconds, required to obtain 
bst, over each problem instance.

Specifically, t he r esults i ndicate t hat, with a  budget o f 4 ,000,000 and a  tolerance 
distance of 60 in cases with 70 locations and 30 potential charging station loca-
tions(L 70 S 30 scenario), the same number of stations that are selected is on average 
the same, while there is an increase in the average number of charger slots encoun-
tered per charging station. The same observation applies to the next two instances. It 
is worth noting that for the larger scale problem instances, the time required to find 
the optimal solution also increases.

4.3 Sensitivity Analysis

In order to assess the important model parameters, further computational experiments 
were conducted considering different values for the capacities of the charging stations 
(Q), the available budget for installing charging stations (B) and the tolerance distance 
(Dr). More specifically, t hree l evels ( Low, M edium a nd H igh) a t e ach o f t he three 
model parameters under examination are considered. The values of each parameter at 
each level, are indicated in Table 8.
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Table 5 Optimal
assignment of EVs to
charging stations

EV location station

1 5 4
2 4 3
3 2 1
4 4 3
5 10 4
6 8 3
7 6 1
8 8 3
9 10 4
10 1 4
11 2 1
12 4 3
13 1 4
14 3 4
15 5 4
16 2 1
17 3 4
18 3 4
19 8 3
20 6 1
21 2 1
22 10 4
23 4 3
24 8 3
25 2 1
26 1 4
27 7 3
28 4 3
29 2 1
30 9 4
31 5 4
32 5 4
33 8 3
34 7 3
35 2 1
36 7 3
37 9 4
38 5 4
39 9 4
40 9 4
41 7 3
42 4 3
43 2 1
44 10 4
45 3 4
46 1 4
47 4 3
48 8 3
49 1 4
50 1 4

EV: ID of EV; location: ID 
of the location at which is 
EV is destined; station: ID 
of the selected  charging sta-
tion



Table 6 Scenarios

I J D

70 30 100
70 30 400
150 50 400
150 50 1000

I: Number of EVs
destination loca-
tions; J: Number of
possible charging
stations; D: Num-
ber of EVs destined
to all locations

Table 7 Computational results for the generated
problem instances

Scenario bst gap% t (sec)

L 70 S 30 D 100

a 741.22 0.00% 0.93s
b 1190.22 0.00% 0.58s
c 1027.08 0.00% 0.19s
d 833.44 0.00% 0.18s
e 1122.66 0.00% 0.83s

L 70 S 30 D 400

a 2306.61 0.00% 1.78s
b 4059.78 0.00% 0.46s
c 3599.00 0.00% 0.33s
d 3042.60 0.00% 0.23s
e 3903.19 0.00% 0.44s

L 150 S 50 D 400
a 2119.13 0.00% 0.97s
b 2826.01 0.00% 1.82s
c 2307.28 0.00% 0.80s
d 2519.34 0.00% 1.27s
e 2687.52 0.00% 1.51s

L 150 S 50 D 1000
a 5671.44 0.00% 1,95s
b 6339.16 0.00% 1.97s
c 5190.98 0.00% 1.02s
d 5430.32 0.00% 2.64s
e 5430.32 0.00% 1.81s

An attempt was made to find t he s mallest t hreshold v alues f or e ach parame-
ter, where each scenario can be solved (feasibility). The maximum value used for 
the parameters in the sensitivity analysis was chosen since tests showed that beyond 
this threshold, there is no significant differentiation of  scenarios in  the best objective 
solution.
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Table 8 Parameter values

Scenario Dr B Q

L 70 S 30 D 100

48 400.000 550
60 4.000.000 600
200 6.000.000 800

L 70 S 30 D 400

48 2.000.000 2.000
60 4.000.000 3.000
200 6.000.000 4.000

L 150 S 50 D 400

48 2.000.000 1.200
60 4.000.000 1.500
200 6.000.000 3.000

L 150 S 50 D 1000

48 4.000.000 3.000
60 6.000.000 6.000
200 10.000.000 9.000

L: Low level; M: Medium level; H: High level

Table 9 demonstrates the computational results for the different l evels o f each 
model parameter under examination. In particular, Table 9 displays the computa-
tional results considering different levels of the station capacity, Table 11 displays the 
computational results considering different levels of the available budget and Table 12 
displays the computational results considering different levels of the tolerance distance.

We observe that by modifying the capacity of the charging stations, the value of 
the best objective solution, which is the travel cost, decreases as the capacity increases. 
However, there is a decrease in the number of stations that are ultimately selected 
(Sopen) and an increase in the average number of chargers per station (Cavg). This 
result is logical because with the increase of the capacity of the station, given the 
battery capacity of electric vehicles, it might be more economically favorable to add 
additional chargers to an existing station, rather than opening a new one. The results 
are more apparent for the larger scale problem instances.

Table 10 demonstrates the % difference in the total traveled costs and the number 
of selected stations, between any two station capacity levels. In particular, the decrease 
in the solution costs for a network with 70 locations is on average 14.53% and 24.99%, 
when increasing the station capacity from low to high levels (presented in the fourth 
column). For a network with 150 locations, the decrease is on average 25.96% and 
22.36%. The same conclusions can be drawn for the number of selected stations, where 
we observe a 12.43% and 18.83% decrease, for the smaller and larger scale problem 
instances, respectively, when the station capacity increases. Therefore, it is evident 
that capacity is a parameter that significantly contributes to determining the optimal 
solution.
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Table 9 Sensitivity analysis w.r.t the station’s capacity (Q)

Scenario QL QM QH

L 70 S 30 D 100 bst Sopen Cavg bst Sopen Cavg bst Sopen Cavg

a 785.61 27.00 3.70 741.22 26.00 3.85 708.51 26.00 3.85
b 1253.31 30.00 3.33 1190.22 28.00 3.57 1066.01 28.00 3.85
c 1077.06 30.00 3.33 1027.08 28.00 3.57 936.47 27.00 3.70
d 837.07 29.00 3.45 833.44 29.00 3.45 784.45 28.00 3.57
e 1209.24 28.00 3.57 1122.66 28.00 3.57 978.73 26.00 3.85

L 70 S 30 D 400

a 3377.43 27.00 14.81 2306.61 25.00 16.00 2238.49 24.00 16.67
b 4517.41 29.00 13.79 4059.78 27.00 14.81 3922.12 25.00 16.00
c 4381.77 29.00 13.79 3599.00 27.00 14.81 3436.06 25.00 16.00
d 3472.39 29.00 13.79 3042.60 28.00 14.29 2947.36 28.00 14.29
e 4848.80 30.00 13.33 3903.19 26.00 15.38 3709.81 24.00 16.67

L 150 S 50 D 400

a 2266.21 47.00 8.51 2119.13 44.00 9.09 2005.31 43.00 9.30
b 3298.55 50.00 8.00 2826.01 44.00 9.09 2574.33 42.00 9.52
c 2546.30 49.00 8.16 2307.28 49.00 8.16 2213.98 45.00 8.89
d 2938.94 50.00 8.00 2519.34 46.00 8.70 2267.87 38.00 10.53
e 3438.07 50.00 8.00 2687.52 45.00 8.89 2362.31 40.00 10.00

L 150 S 50 D 1000

a 6680.19 48.00 20.83 5671.44 43.00 23.26 5624.30 43.00 23.26
b 7524.99 50.00 20.00 6339.16 44.00 22.73 6282.17 42.00 23.81
c 6617.27 49.00 20.41 5190.98 46.00 21.74 5187.28 45.00 22.22
d 6409.77 49.00 20.41 5430.32 38.00 26.32 5351.78 38.00 26.32
e 7555.11 49.00 20.41 6075.52 41.00 24.39 6001.16 39.00 25.64

Notation: QL: Low level of station’s capacity; QM : Medium level of station’s capacity; QH : High level of
station’s capacity; bst: best solution value obtained; Sopen: Number of stations selected; Cavg : Average
number of trucks assigned to the stations

Regarding the increase of the total available budget, we observe negligible differ-
ences in the number of CS (Charging Stations) that are selected and in the average
number of chargers per station. This result, can be attributed to the network charac-
teristics as well as the fact that the strict constraints imposed in our model, do not
allow much room for the the exploration of cost-saving opportunities in the solution.

Finally, as part of the sensitivity tests, we attempted to examine the impact of the
tolerance distance parameter (Dr) on the optimal solution. The results are presented
in Table 12. Note that the empty cells represent an infeasible solution for the particular
problem instance. Table 13 demonstrates the % difference in the best solution obtained
and the number of selected stations, between any two levels of the tolerance distance.

We can observe that for low levels of the Dr parameter, we do not have an optimal
solution for two problem instances. When comparing solutions with increased values
of the tolerance distance (60 and 80), we notice differences in some cases, primarily
in the best objective and not so much in the number of charging stations that open.
It is worth noting that the selected charging stations vary each time as we modify
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Table 10 Impact of the station capacity (Q) on the optimal solution

Scenario bst (%diff) Sopen(%diff)

QM - QL QH - QM QH - QL QM - QL QH - QM QH - QL

L 70 S 30 D 100

a -5.65 -4.41 -9.81 -3.70 0.00 -3.70
b -5.03 -10.44 -17.57 -6.67 -7.14 -13.33
c -4.64 -8.82 -15.01 -6.67 -3.57 -10.00
d -0.43 -5.88 -6.71 0.00 -3.45 -3.45
e -7.16 -12.82 -23.55 0.00 -7.14 -7.14

avg -4.58 -8.47 -14.53 -3.41 -4.26 -7.53

L 70 S 30 D 400

a -31.71 -2.95 -33.72 -7.41 -4.00 -11.11
b -10.13 -3.39 -15.18 -6.90 -7.41 -13.79
c -17.86 -4.53 -27.52 -6.90 -7.41 -13.79
d -12.38 -3.13 -17.81 -3.45 0.00 -3.45
e -19.50 -4.95 -30.70 -13.33 -7.69 -20.00

avg -18.32 -3.79 -24.99 -7.60 -5.30 -12.43

L 150 S 50 D 400

a -6.49 -5.37 -11.51 -6.38 -2.27 -8.51
b -14.33 -8.91 -28.13 -12.00 -4.55 -16.00
c -9.39 -4.04 -15.01 0.00 -8.16 -8.16
d -14.28 -9.98 -29.59 -8.00 -17.39 -24.00
e -21.83 -12.10 -45.54 -10.00 -11.11 -20.00

avg -13.26 -8.08 -25.96 -7.28 -8.70 -15.33

L 150 S 50 D 1000

a -17.79 -0.84 -18.77 -11.63 0.00 -11.63
b -18.71 -0.91 -19.78 -13.64 -4.76 -19.05
c -27.48 -0.07 -27.57 -6.52 -2.22 -8.89
d -18.04 -1.47 -19.77 -28.95 0.00 -28.95
e -24.35 -1.24 -25.89 -19.51 -5.13 -25.64

avg -21.27 -0.90 -22.36 -16.05 -2.42 -18.83

Notation: QL: Low level of station’s capacity; QM : Medium level of station’s capacity; QH : High level 
of station’s capacity; bst: best solution value obtained; Sopen: Number of stations selected; % diff -
the % average deviation over two station capacity levels,i.e % diff QH - QL =  100*((QH -QL)/QL); 
avg - the average % deviation over all problem instances of each scenario

the parameter values, but their total number remains the same. This is due to the
strict constraints we have set, and therefore, by changing the Dr level, we do not see 
significant d ifferences in  th e op timal so lution. Table 13  in dicates small deviations in
the total traveled costs and the number of selected stations, when increasing the level
of tolerance distance.
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Table 11 Sensitivity analysis w.r.t the overall budget (B)

Scenario BL BM BH

L 70 S 30 D 100 bst Sopen Cavg bst Sopen Cavg bst Sopen Cavg

a 741.22 26.00 3.85 741.22 26.00 3.85 741.22 26.00 3.85
b 1190.22 28.00 3.57 1190.22 28.00 3.57 1190.22 28.00 3.57
c 1027.08 28.00 3.57 1027.08 28.00 3.57 1027.08 28.00 3.57
d 833.44 29.00 3.45 833.44 29.00 3.45 833.44 29.00 3.45
e 1122.66 28.00 3.57 1122.66 28.00 3.57 1122.66 28.00 3.57

L 70 S 30 D 400

a 2306.61 25.00 16.00 2306.61 25.00 16.00 2306.61 25.00 16.00
b 4059.78 27.00 14.81 4059.78 27.00 14.81 4059.78 27.00 14.81
c 3599.00 27.00 14.81 3599.00 27.00 14.81 3599.00 27.00 14.81
d 3042.60 28.00 14.29 3042.60 28.00 14.29 3042.60 28.00 14.29
e 3903.19 26.00 15.38 3903.19 26.00 15.38 3903.19 26.00 15.38

L 150 S 50 D 400

a 2119.13 44.00 9.09 2119.13 44.00 9.09 2119.13 44.00 9.09
b 2826.01 44.00 9.09 2826.01 44.00 9.09 2826.01 44.00 9.09
c 2307.28 49.00 8.16 2307.28 49.00 8.16 2307.28 49.00 8.16
d 2519.34 46.00 8.70 2519.34 46.00 8.70 2519.34 46.00 8.70
e 2687.52 45.00 8.89 2687.52 45.00 8.89 2687.52 45.00 8.89
L 150 S 50 D 1000

a 5671.44 43.00 23.26 5671.44 43.00 23.26 5671.44 43.00 23.26
b 6339.16 44.00 22.73 6339.16 44.00 22.73 6339.16 44.00 22.73
c 5190.98 46.00 21.74 5190.98 46.00 21.74 5190.98 46.00 21.74
d 5430.32 38.00 26.32 5430.32 38.00 26.32 5430.32 38.00 26.32
e 6075.52 41.00 24.39 6075.52 41.00 24.39 6075.48 42.00 23.81

Notation: BL: Low level of budget value; BM : Medium level of budget value; BH : High level of budget
value; bst: best solution value obtained; Sopen: Number of stations selected; Cavg : Average number of trucks
assigned to the stations

5 Conclusions

The need to reduce environmental pollution and limit emissions, which largely orig-
inate from the freight transportation sector, has led to the adoption of greener and
more sustainable practices. The advancement of technology and the constant effort to
introduce new concepts of electric mobility on a large scale have encouraged the sci-
entific community to develop products to reduce the CO2 emissions of conventional
private and public transport. Today there are multiple electric mobility alternatives,
such as bicycles, cars and generally public and freight transport. However, it has not
been possible to massively introduce EVs into the land transportation system due to
variables that do not make large scale purchases attractive to potential users in urban
and rural areas. These unattractive variables for consumers could be limited autonomy,
long charging times, battery life, high costs, and lack of EV charging infrastructure.
One of the challenges of electric mobility is the limited battery autonomy of vehicles
and, consequently, the restriction on the distance a driver can travel[18]. The lack of
charging infrastructure on road networks poses one of the biggest concerns. Therefore,
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Table 12 Sensitivity analysis with respect to the tolerance distance (Dr)

Scenario DL
r DM

r DH
r

L 70 S 30 D 100 bst Sopen Cavg bst Sopen Cavg bst Sopen Cavg

a 744.13 27.00 3.70 741.22 26.00 3.85 741.22 26.00 3.85
b 1190.22 28.00 3.57 1190.22 28.00 3.57
c 1049.34 28.00 3.57 1027.08 28.00 3.57 1024.66 28.00 3.57
d 847.88 29.00 3.45 833.44 29.00 3.45 833.44 29.00 3.45
e 1131.58 28.00 3.57 1122.66 28.00 3.57 1122.66 28.00 3.57

L 70 S 30 D 400

a 2306.61 25.00 16.00 2306.61 25.00 16.00 2306.61 25.00 16.00
b 4059.78 27.00 14.81 4059.78 27.00 14.81
c 3613.45 27.00 14.81 3599.00 27.00 14.81 3599.00 27.00 14.81
d 3097.86 28.00 14.29 3042.60 28.00 14.29 3042.60 28.00 14.29
e 3990.81 26.00 15.38 3903.19 26.00 15.38 3903.19 26.00 15.38

L 150 S 50 D 400

a 2119.13 44.00 9.09 2119.13 44.00 9.09 2119.13 44.00 9.09
b 2826.01 44.00 9.09 2826.01 44.00 9.09 2826.01 44.00 9.09
c 2307.28 49.00 8.16 2307.28 49.00 8.16 2307.34 49.00 8.16
d 2519.34 46.00 8.70 2519.34 46.00 8.70 2519.35 46.00 8.70
e 2687.52 45.00 8.89 2687.52 45.00 8.89 2687.52 45.00 8.89

L 150 S 50 D 1000

a 5671.44 43.00 23.26 5671.44 43.00 23.26 5671.44 43.00 23.26
b 6339.00 44.00 22.73 6339.16 44.00 22.73 6339.16 44.00 22.73
c 5190.98 46.00 21.74 5190.98 46.00 21.74 5190.98 46.00 21.74
d 5430.46 38.00 26.32 5430.32 38.00 26.32 5430.46 38.00 26.32
e 6075.52 41.00 24.39 6075.52 41.004 24.39 6075.52 41.00 24.39

Notation: DL
r : Low level of tolerance distance; DM

r : Medium level of tolerance distance; DH
r : High level

of tolerance distance; bst: best solution value obtained; Sopen: Number of stations selected; Cavg : Average
number of trucks assigned to the stations

it is evident that selecting strategic locations for the installation of charging stations
will significantly contribute to increasing the satisfaction of citizens and the service
levels.

In this work, the model of [60] is extended, which is a variation of the classic FLP,
in order to specify the optimal locations of charging stations for an heterogeneous
fleet of electric trucks in a fixed study region. The problem is formulated as an ILP,
aiming at minimizing the empty kilometers (travel costs) driven to reach the charging
stations, taking into consideration operational constraints such as number of chargers
at each station in order to cover the demand for charging, charging station’s capacity,
battery capacity, total costs, and the distance that a driver is willing to cover in order
to charge his/her vehicle.

To validate the proposed model, a toy network was generated and solved by Gurobi
Optimizer 10.02. To test the effectiveness of the proposed model on instances of prac-
tical scale, a set of problem instances were generated, based on well-known benchmark
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Table 13 Impact of the tolerance distance (Dr) on the optimal solution

Scenario bst (%diff) Sopen(%diff)

DM
r - DL

r DH
r - DM

r DH
r - DL

r DM
r - DL

r DH
r - DM

r DH
r - DL

r

L 70 S 30 D 100

a -0.39 0.00 -0.39 -3.70 0.00 -3.70
b - 0.00 - - 0.00 -
c -2.12 -0.24 -2.41 0.00 0.00 0.00
d -1.70 0.00 -1.73 0.00 0.00 0.00
e -0.79 0.00 -0.79 0.00 0.00 0.00

avg -1.25 -0.05 -1.33 -0.93 0.00 -0.93

L 70 S 30 D 400

a 0.00 0.00 0.00 0.00 0.00 0.00
b - 0.00 - - 0.00 -
c -0.40 0.00 -0.40 0.00 0.00 0.00
d -1.78 0.00 -1.82 0.00 0.00 0.00
e -2.20 0.00 -2.24 0.00 0.00 0.00

avg -1.09 0.00 -1.12 0.00 0.00 0.00

L 150 S 50 D 400

a 0.00 0.00 0.00 0.00 0.00 0.00
b 0.00 0.00 0.00 0.00 0.00 0.00
c 0.00 0.00 0.00 0.00 0.00 0.00
d 0.00 0.00 0.00 0.00 0.00 0.00
e 0.00 0.00 0.00 0.00 0.00 0.00

avg 0.00 0.00 0.00 0.00 0.00 0.00

L 150 S 50 D 1000

a 0.00 0.00 0.00 0.00 0.00 0.00
b 0.00 0.00 0.00 0.00 0.00 0.00
c 0.00 0.00 0.00 0.00 0.00 0.00
d 0.00 0.00 0.00 0.00 0.00 0.00
e 0.00 0.00 0.00 0.00 0.00 0.00

avg 0.00 0.00 0.00 0.00 0.00 0.00

Notation: Dr
L: Low level of tolerance distance; Dr

M : Medium level of tolerance distance; Dr
H : High level 

of tolerance distance; bst: best solution value obtained; Sopen: Number of stations selected; % diff -
the % deviation over two tolerance distance levels,i.e % diff Dr

H -Dr
L =  100*((Dr

H -Dr
L)/Dr

L); avg -  the 
average % deviation over all problem instances of each scenario

datasets in the literature. The results show that the developed model can effectively 
obtain optimal solutions for realistic problem instances.

Furthermore, this thesis performs sensitivity analysis to assess the impact of various 
factors on the selection of charging station locations. The impact of model parameters 
such as the charging station’s capacity, the total budget, and the tolerance distance 
is examined. Results were collected for three values per parameter: low, medium, and 
high, in order to observe variations in the outcomes. The results indicate that the 
capacity of the charging station significantly affects the results, as an increase in this

35



parameter leads to a notable reduction in travel costs and a decrease in the number
of stations opened. Additionally, in tests involving adjustments to the budget, it was
observed that the budget does not significantly affect the total travel costs for all
problem instances. This is primarily due to specific network characteristics, such as
geographic location, and the stringent constraints imposed, such as distance tolerance
and station battery capacity constraints. Conversely, increasing the distance tolerance
has a negligible impact on the optimal solution.

Our contribution represents a first step towards research on the strategic plan-
ning of electric freight fleets. Future work has to be done on the development of
meta-heuristic solution methods capable of solving large-scale instances for real world
applications in acceptable computational times. Furthermore, the present work could
also be extended by considering additional components such as the vehicle service
times and charging times.
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[82] Schiffer, M., Stütz, S., Walther, G.: Are ecvs breaking even?-competitiveness of
electric commercial vehicles in medium-duty logistics networks. RWTH Aachen
Univ., Aachen, Germany, Work. Paper OM-02/2016 (2016)

[83] Schiffer, M., Walther, G.: The electric location routing problem with time win-
dows and partial recharging. European journal of operational research 260(3),
995–1013 (2017)

43



[84] Tang, X., Bi, S., Zhang, Y.-J.A.: Distributed routing and charging scheduling
optimization for internet of electric vehicles. IEEE Internet of Things Journal
6(1), 136–148 (2018)

[85] Kınay, Ö.B., Gzara, F., Alumur, S.A.: Full cover charging station location problem
with routing. Transportation Research Part B: Methodological 144, 1–22 (2021)
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Appendix 

Model Formulation 

import gurobipy as gp 

import matplotlib 

from gurobipy import GRB 

import random 

import math 

import numpy as np 

import matplotlib.pyplot as plt 

from matplotlib import style 

import matplotlib 

matplotlib.use('TkAgg') 

numberoflocations = 150 

numberofstations = 50 

numberofnodes = numberoflocations+numberofstations 

typesofvehicles = 2 

numberofdrivers = 1000 

data = 'e' 

Mbig=10000 #a large positive number 

#SETS 

drivers = (r for r in range(1, numberofdrivers+1)) 

drivers = tuple(drivers) 

locations = (r for r in range(1, numberoflocations+1)) 

locations = tuple(locations) 

stations = (r for r in range(1, numberofstations+1)) 

stations = tuple(stations) 

#PARAMETERS 

#for i in drivers: 

# p = {i:random.randint(1,numberoflocations)} 

# print(p[i]) 

# p = {1:1, 2:1, 3:1, 4:2, 5:2, 6:3, 7:4, 8:5, 9:6, 10:6} 

vehiclestype = (1,2) 

#TD = {r:random.randint(1000,5000) for r in drivers} 

TD = {r:60 for r in drivers} 

#VQk = {k:random.randint(10,20) for k in vehiclestype} 

VQk = {1:70, 2:200} 

#100-300kwh for medium 

#30-100kwh for light 

#StationCapacity = (numberofdrivers/numberofstations) * 1.1 * 250 

StationCapacity = 6000 

print('Station Capacity:') 

print( StationCapacity) 
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#totalbudget = 10000*numberofstations*2/3*25 

totalbudget = 10000000 

print( totalbudget) 

#Cost = {j: random.randint(1000,3000) for j in stations} 

Cost ={j:4000 for j in stations} 

#10000 euros for a unit (approx. 3000euros per year for 

maintenance) 

filename1 = 'Instances/Data_L_' + str(numberoflocations) + '_S_' + 

str(numberofstations) +'_'+ data +'.txt' 

DataX_a= filename1 

data_header=np.loadtxt(DataX_a,max_rows=1,dtype=int) 

data_header_decimal=np.loadtxt(DataX_a,max_rows=1,dtype=float) 

data_main_body=np.loadtxt(DataX_a,skiprows=1,dtype=int) 

n=data_header[0] 

#read coordinates 

latitudeLocations = {}; longitudeLocations ={} 

latitudeStations = {}; longitudeStations ={} 

q={}; d={} 

for i in locations: 

latitudeLocations[i]=data_main_body[i,3] 

longitudeLocations[i]=data_main_body[i,4] 

for j in stations: 

latitudeStations[j]=data_main_body[numberoflocations+j,3] 

longitudeStations[j]=data_main_body[numberoflocations+j,4] 

MinDistance = -1; 

MaxDistance = 0; 

d={};t={}; the_distance={} 

from scipy.spatial import distance 

for i in locations: 

for j in stations: 

d[(i,j)] = 

(1/1000)*distance.euclidean([latitudeLocations[i],longitudeLocatio 

ns[i]],[latitudeStations[j],longitudeStations[j]]) * 

(60/data_header[4]) 

if d[(i,j)] > MinDistance: 

MaxDistance = d[(i,j)] 

MinDistance = d[(i,j)] 

print(MaxDistance/3) 

filename2 = 'Instances/Data_L_' + str(numberoflocations) + '_S_' + 

str(numberofstations) + '_D_' +str(numberofdrivers) +'_'+ data 

+'_DriversInfo.txt' 

DataX_b= filename2 

data_header=np.loadtxt(DataX_b,max_rows=1,dtype=int) 

data_header_decimal=np.loadtxt(DataX_b,max_rows=1,dtype=float) 
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data_main_body=np.loadtxt(DataX_b,skiprows= 1, dtype=int) 

 

p = {} 

mrk = {} 

for i in drivers: 

p[i] = data_main_body[i, 1] 

vehicleType = data_main_body[i, 2] 

if vehicleType == 1: 

mrk[i,1] = 1 

mrk[i, 2] = 0 

if vehicleType == 2: 

mrk[i, 1] = 0 

mrk[i, 2] = 1 

 

print('NOT FOUND LOCATIONS ------------------ ') 

for k in range(1,numberoflocations): 

Notfound = True 

for i in drivers: 

if k == p[i]: 

Notfound = False 

continue 

if (Notfound == True): 

print(k) 

 

# Initialize the Gurobi model 

model = gp.Model() 

 

# VARIABLES 

numberofchargers = model.addVars(stations,vtype=GRB.INTEGER, 

name="numberofchargers") #n_j 

open = model.addVars(stations,vtype=GRB.BINARY,name="open") #x_j 

assign = 

model.addVars(drivers,stations,vtype=GRB.BINARY,name="assign")#y_r 

j 

 

# CONSTRAINTS 

model.addConstrs(sum(assign[r, j] for j in stations) == 1 for r in 

drivers) 

model.addConstrs(numberofchargers[j] >= 0 for j in stations) 

model.addConstrs(open[j] >= assign[r,j] for r in drivers for j in 

stations) 

model.addConstrs(open[j] <= numberofchargers[j] for j in stations) 

model.addConstrs(numberofchargers[j] <= Mbig * open[j] for j in 

stations) 

model.addConstrs(sum(assign[r,j] for r in drivers) == 

numberofchargers[j] for j in stations) 

model.addConstrs(d[p[r],j] * assign[r,j] <= TD[r] for r in drivers 

for j in stations) 

model.addConstr(sum(Cost[j] * numberofchargers[j] for j in 

stations) <= totalbudget) 

model.addConstrs(sum(sum(assign[r,j]* mrk[r,k]* VQk[k] for k in 

vehiclestype) for r in drivers) <= StationCapacity for j in 

stations) 
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model.setObjective(sum(sum(d[p[r],j]* assign[r,j] for r in 

drivers) for j in stations), GRB.MINIMIZE) 

model.optimize() 

 

if model.status == GRB.OPTIMAL: # check if the solver is capable 

of finding an optimal solution 

model.printAttr('X') 

print(model.status, 'optimal') 

print('Obj: %g' % model.objVal) 

else: 

print(model.status, 'not optimal') 
 

 

model.printAttr('x') 

 

for i in locations: 

plt.scatter(latitudeLocations[i], longitudeLocations[i], 

c="black", 

linewidths=2, 

marker="s", 

edgecolor="black", 

s=70) 

plt.text(latitudeLocations[i], longitudeLocations[i]*1.0001, 

i, va='bottom', ha='center', fontsize=15) 

 

for j in stations: 

# if (open[j] >= 1): 

plt.scatter(latitudeStations[j], longitudeStations[j], 

c="grey", 

linewidths=2, 

marker="^", 

edgecolor="grey", 

s=70) 

plt.text(latitudeStations[j], longitudeStations[j]*1.0001, 

j,va='bottom', ha='center', fontsize=15) 

# else: 

plt.scatter(latitudeStations[j], longitudeStations[j], 

c="grey", 

linewidths=2, 

marker="^", 

edgecolor="grey", 

s=70) 

plt.text(latitudeStations[j], longitudeStations[j] * 

1.0001, j, va='bottom', ha='center', fontsize=15) 

 

plt.xlabel("X-axis") 

plt.ylabel("Y-axis") 

averageNumberOfChargers = 0 

numberOfOpenStations = 0 

for j in stations: 

if (open[j]): 

averageNumberOfChargers += numberofchargers[j].X 

numberOfOpenStations += open[j].X 

averageNumberOfChargers = averageNumberOfChargers / 
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numberOfOpenStations 

print('FINAL RESULTS') 

print( '%.2f' % model.objVal , '%.2f' % model.objBound , '%.2f' % 

model.MIPGap, '%.2f' % model.Runtime, '%.2f' % 

averageNumberOfChargers, '%.2f' % numberOfOpenStations) 

plt.show() 

style.use("ggplot")` 
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