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Human Activity Recognition (HAR)

HAR refers to the procedure of analyzing human body gesture or motion, using data
retrieved from sensors, to automatically determine the activity performed by the user.

HAR has widespread applications in everyday life, predominantly in healthcare, elderly
care, assisted living, human-computer interaction, assisted learning, and sports.
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Sensors

Visual sensors
e.g., video cameras

Non-visual sensors

Wearable sensors Ambient sensors
(dense sensing)Biosensors

e.g., EEG, ECG
Inertial sensors
and others
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Human Activity Recognition (HAR)

Data collection  in-the-wild  must abide by the following conditions:
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Naturally used devices

Unconstrained device placement

Natural environment

Natural behavioral content
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Motivation & Contributions
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To study the relevant literature on HAR based on non-visual, wearable sensors,
to figure out its standard processing pipeline, to find open datasets and to
understand major HAR challenges, trade-offs and open problems

To get acquainted with HAR based on sensor data collected in-the-wild, to
understand its inherent flaws and to study existing approaches

To investistigate the use of ML/DL models to improve HAR on ExtraSensory,
an open, multi-label dataset collected in-the-wild in an everyday life setup
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The ExtraSensory Dataset
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Large-scale: 60 users, over 300k examples (minutes) in total

In-the-wild data collection using everyday devices: multiple sensors from
smartphone (Android/iOS) and smartwatch

Created by UCSD researchers; participants recruited at the campus

Real-time annotations via the ExtraSensory App, 51 labels

Multiple labels annotation for each example (minute)

[VEL17] Vaizman, Y., Ellis, K., and Lanckriet, G. “Recognizing Detailed Human Context in the Wild from Smartphones and Smartwatches”. In: IEEE Pervasive Computing 16.4 (Oct. 2017), pp. 62–74. doi: 10.1109/mprv.2017.3971131.

[VWL18] Vaizman, Y., Weibel, N., and Lanckriet, G. “Context Recognition In-the-Wild: Unified Model for Multi-Modal Sensors and Multi-Label Classification”. In: Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 1.4 (Jan. 2018), pp. 1–22. doi: 10.1145/3161192.
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ExtraSensory labels grouped conceptually

  Type Labels

  Posture/Movement Lying down, Sitting, Standing, Walking, Running, Bicycling

  Special Movement Strolling, Stairs - Going up, Stairs - Going down, Elevator

  Phone Location Phone in pocket, Phone in hand, Phone in bag, Phone on table

  Work-related In class, Lab work, Computer work, In a meeting

  Location-based At home, At school, At main workplace, At a restaurant, At a bar, At a party, At the gym, At the beach

  Transportation In a car, On a bus, Drive - Driver, Drive - Passenger

  Chores Shopping, Cooking, Cleaning, Doing laundry, Washing dishes

  Self-care Bathing - Shower, Toilet, Grooming, Dressing, Sleeping

  Leisure Time Exercise, Eating, Drinking alcohol, Watching TV, Surfing the internet, Talking, Singing

  Companion With co-workers, With friends

  Environment Indoors, Outside

Table 1: Intuitive grouping of activity and context labels of the ExtraSensory dataset
Each example of the dataset has annotations for all labels: 1 (relevant), 0 (non-relevant) or NaN (missing)
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The ExtraSensory Dataset: Labels
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The ExtraSensory Dataset: Labels
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Figure 1: Number of ExtraSensory examples annotated with each label (ExtraSensory Core subset)
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The ExtraSensory Dataset: Sensor Data & Features
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Smartphone’s accelerometer (Acc) sampled at 40Hz

Smartphone’s gyroscope (Gyro) sampled at 40Hz

Smartwatch’s accelerometer (WAcc) sampled at 25Hz

Smartphone’s location (Loc) sampled at varying rate (when movement is detected)

Smartphone’s audio (Aud) sampled at 22050Hz

Smartphone’s phone state (PS) sampled once per example

We use the  Core  subset, which includes all the examples (169,001) with
measurements from the following sensors:

        Sensor recordings: 3-axis time-series (3, 800)             Extracted features: 26

        Sensor recordings: 3-axis time-series (3, 800)             Extracted features: 26

        Sensor recordings: 3-axis time-series (3, 500)             Extracted features: 46

        Sensor recordings: long−lat−alt (var)                                Extracted features: 17

        Time-series data: 13 MFCC (13, 700)                                  Extracted features: 26

        Time-series data: -                                                                     Extracted features: 34

For every minute, the
ExtraSensory App
recorded a 20sec
window of sensor

measurements from
the phone and watch
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The ExtraSensory Dataset: Challenges
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HAR  challenges  that arise when using in-the-wild data collection include:

Multi-label dataset

Unbalanced dataset

Noisy data

Missing sensors

Missing or wrong labels

Inter-personal & intra-personal variability
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Experimental Setup
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Input: pre-extracted features or raw sensor data
Time-series modeling: a single example or a sequence of examples

Model design choices:

All the features or raw sensor data that are used as input, are first standardized
using the mean and standard deviation of the training set.

Missing feature values are zero-imputated after standardization.

All neural networks are implemented in PyTorch. Logistic Regression and the
evaluation metrics are based on scikit-learn.
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Experimental Setup
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per-batch, per-element we mask the loss elements corresponding to missing
ground-truth labels for each example.

per-label we multiply the term of the positive examples in the loss, with the
ratio of negative to positive examples for this label in the training set, to
account for the imbalance in the number of positive examples per label.

Based on Binary Cross-Entropy loss, we implement a custom loss:

We use the Adam optimizer and a batch size of 32 to train all our models.

In the testing phase, we use a threshold of 0.5 to convert the output values after
the sigmoid activation function to binary outputs.
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Evaluation Scheme
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The models are always tested on users unseen during training.

We use a five-fold cross validation (CV) scheme with 12 users in each fold. In
each of the five CV iterations we have 48 users in the training set and 12 users
in the test set.

For each of the 48 users of the training set, 80% of their data is used for
training, and 20% is used for validation

For each label, we count the numbers of True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN) of the prediction results
over the test set, for the five CV iterations.
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Evaluation Metrics
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We calculate the following metrics for each label (over its non-missing ground-
truth examples):

Moreover, we average each of the metrics over all labels.

Accuracy = 
TP + TN

TP + TN + FP + FN
Precision = 

TP

TP + FP

Sensitivity = Recall = TPR =
TP

TP + FN
Specificity = TNR = 

TN

TN + FP

F1-score =
2 × Precision × Recall

Precision + Recall
Balanced Accuracy (BA) =

TPR + TNR

2
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Baselines
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Comparative results overview of the performance metrics averaged over all labels for the baseline models

Input Time-series modeling Model Accuracy Precision Sensitivity Specificity F1-score BA

 Random classifier 0.500 0.110 0.500 0.500 0.137 0.500

 Majority class classifier 0.915 NaN 0.040 0.958 0.037 0.499

Extracted
features Single example 

 Logistic Regression [VWL18] 0.832 - 0.597 0.838 - 0.718

 Logistic Regression 0.839 0.246 0.612 0.844 0.314 0.728

 MLP [VWL18] 0.773 - 0.773 0.773 - 0.773

 MLP 0.786 0.228 0.757 0.786 0.298 0.772

Table 2: An overview of the recognition scores of the baseline models, averaged for all labels
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Bidirectional LSTM (only final hidden states)
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Figure 2: BiLSTM model architecture, using only the final hidden states

Accuracy Precision Sensitivity Specificity F1-score BA

0.813 0.243 0.753 0.814 0.316 0.784

Table 3: Recognition scores of the BiLSTM model using only the
final hidden states, averaged for all labels

Input sequence length: {5, 10, 15, 30}
BiLSTM number of layers: {1, 2, 3}
BiLSTM hidden size: {16, 32, 64}
BiLSTM dropout: 0.5
Learning rate: 0.00002
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Bidirectional LSTM (output for all timesteps)
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Figure 3: BiLSTM model architecture, using the output for all timesteps

Accuracy Precision Sensitivity Specificity F1-score BA

0.810 0.241 0.761 0.811 0.314 0.786

Table 4: Recognition scores of the BiLSTM model using the
output for all timesteps, averaged for all labels

Input sequence length: {5, 10, 15, 30}
BiLSTM number of layers: {1, 2, 3}
BiLSTM hidden size: {16, 32, 64}
BiLSTM dropout: 0.5
Learning rate: 0.00001
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Self-Attention & Bidirectional LSTM
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Figure 4: Self-Attention & BiLSTM model architecture,
using only the final hidden states

Accuracy Precision Sensitivity Specificity F1-score BA

0.818 0.248 0.756 0.819 0.323 0.788

Table 5: Recognition scores of the Self-Attention & BiLSTM
model using only the final hidden states, averaged for all labels

Input sequence length: {5, 10, 15, 30}
Attention heads: 5
Attention dropout: 0.2
BiLSTM number of layers: {1, 2, 3}
BiLSTM hidden size: {16, 32, 64}
BiLSTM dropout: 0.5
Learning rate: 0.00005
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Self-Attention & Bidirectional LSTM: Activity Plots
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Figure 5: Activity plot including the predictions of the Multi-head Self-Attention & BiLSTM model
using final hidden states, for user u45
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Self-Attention & Bidirectional LSTM: Activity Plots
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Figure 6: Activity plot including the predictions of the Multi-head Self-Attention & BiLSTM model
using final hidden states, for user u53
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Self-Attention & Bidirectional LSTM: Activity Plots
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Figure 7: Activity plot including the predictions of the Multi-head Self-Attention & BiLSTM model
using final hidden states, for user u57
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Bidirectional LSTM & Cross-Attention
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Figure 8: BiLSTM & features’ Cross-Attention model architecture,
where the BiLSTM output for all timesteps is used to produce the query and
the input features are used to produce key and value in the Cross-Attention

Accuracy Precision Sensitivity Specificity F1-score BA

0.800 0.238 0.767 0.801 0.309 0.784

Table 6: Recognition scores of the BiLSTM & Cross-Attention
model, averaged for all labels

Input sequence length: 5
BiLSTM number of layers: 2
BiLSTM hidden size: 64
BiLSTM dropout: 0.5
Attention heads: 2
Attention dropout: 0.2
Learning rate: 0.00005
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Bidirectional LSTM & Cross-Attention: Interpretability
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Figure 9: Attention weights of the BiLSTM & features’ Cross-Attention model for u04 and t24010960
Ground-truth labels: Sitting, Indoors, At home, Computer work, Phone on table

Predicted labels: Sitting, Indoors, At home, Surfing the internet, Computer work, Eating, Phone on table
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Figure 10: Attention weights of the BiLSTM & features’ Cross-Attention model for u06 and t24057077
Ground-truth labels: Lying down, Sleeping, Indoors, At home, Phone on table

Predicted labels: Lying down, Sleeping, Indoors, At home, Phone on table
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Bidirectional LSTM & Cross-Attention: Interpretability
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Bidirectional LSTM & Cross-Attention: Interpretability
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Figure 11: Attention weights of the BiLSTM & features’ Cross-Attention model for u11 and t24031660
Ground-truth labels: Sitting, In a car

Predicted labels: Sitting, Outside, In a car, On a bus, Drive - Driver, Drive - Passenger, Phone in pocket,
Shopping, At a party, At the beach, Phone in hand, Phone in bag, With friends
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CNN-based model
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Figure 12: CNN-based model architecture

Accuracy Precision Sensitivity Specificity F1-score BA

0.782 0.228 0.762 0.781 0.296 0.772

Table 7: Recognition scores of the CNN-based model,
averaged for all labels

Conv layers’ number of output channels:
{Acc: 32, Gyro: 32, WAcc: 64, Aud: 64}
CNN dropout: 0.2
MLP hidden size: (16, 16)
MLP dropout: (0.1, 0.2)
Learning rate: 0.0005
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CNN-Transformer model
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Figure 13: CNN-Transformer model architecture

Accuracy Precision Sensitivity Specificity F1-score BA

0.792 0.229 0.759 0.790 0.300 0.774

Table 8: Recognition scores of the CNN-Transformer model,
averaged for all labels

Conv layers’ number of output channels:
{Acc: 48, Gyro: 48, WAcc: 48, Aud: 48}
CNN dropout: 0.2
Transformer Encoder number of layers: 2
Transformer Encoder layers’ Attention heads: 4
Transformer Encoder layers’ Feedforward dim: 64
Transformer Encoder layers’ dropout: 0.2
MLP hidden size: (16, 16)
MLP dropout: (0.1, 0.2)
Learning rate: 0.0005
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CNN-BiLSTM model

20/10/2023

Figure 14: CNN-BiLSTM model architecture

Accuracy Precision Sensitivity Specificity F1-score BA

0.819 0.241 0.728 0.821 0.313 0.775

Table 9: Recognition scores of the CNN-BiLSTM model,
averaged for all labels

Input sequence length: 5
Time-Distributed CNN
Conv layers’ number of output channels:
{Acc: 64, Gyro: 64, WAcc: 64, Aud: 64}
CNN dropout: 0.4
BiLSTM number of layers: 2
BiLSTM hidden size: 64
BiLSTM dropout: 0.5
Learning rate: 0.00005
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Results Overview
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Comparative results overview of the performance metrics averaged over all labels for each models’s best-performing configuration

Input Time-series modeling Model Accuracy Precision Sensitivity Specificity F1-score BA

 Random classifier 0.500 0.110 0.500 0.500 0.137 0.500

 Majority class classifier 0.915 NaN 0.040 0.958 0.037 0.499

Extracted
features Single example 

 Logistic Regression [VWL18] 0.832 - 0.597 0.838 - 0.718

 Logistic Regression 0.839 0.246 0.612 0.844 0.314 0.728

 MLP [VWL18] 0.773 - 0.773 0.773 - 0.773

 MLP 0.786 0.228 0.757 0.786 0.298 0.772

Extracted
features Sequence of examples

 BiLSTM (last output) 0.813 0.243 0.753 0.814 0.316 0.784

 BiLSTM (all outputs) 0.810 0.241 0.761 0.811 0.314 0.786

 Self-Attention & BiLSTM 0.818 0.248 0.756 0.819 0.323 0.788

 BiLSTM & Cross-Attention 0.800 0.238 0.767 0.801 0.309 0.784

Raw data Single example
 CNN 0.782 0.228 0.762 0.781 0.296 0.772

 CNN & Transformer 0.792 0.229 0.759 0.790 0.300 0.774

Raw data Sequence of examples  CNN & BiLSTM 0.819 0.241 0.728 0.821 0.313 0.775

Table 10: An overview of the recognition scores of all models, averaged for all labels
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Conclusions
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Regarding the models using the extracted features for a sequence of examples:

Regarding the models using the raw sensor data, we did not manage to produce
results better than the baseline models.

        −  BiLSTM and BiLSTM & Attention models produce constantly better results
             compared to the baselines, when using a 5-length examples sequence.
        −  The Self-Attention & BiLSTM model produces the best results overall.

        −  More hyperparameter tuning might be required.
        −  Deep learning based feature extraction might not always be the best solution
             for HAR when testing on unseen users or out-of-domain data [Ben+22].

[Ben+22] Bento, N. et al. “Comparing Handcrafted Features and Deep Neural Representations for Domain Generalization in Human Activity Recognition”. In: Sensors 22.19 (2022). issn: 1424-8220. doi: 10.3390/s22197324.
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Conclusions
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Regarding improvements in individual metrics:

Regarding individual labels, the labels with the higher recognition metrics are:

        −  Adding a Cross-Attention mechanism after the BiLSTM produced the larger 
             improvement in Sensitivity.
        −  When using a BiLSTM to model a sequence of input examples, we consistently 
             got higher Specificity values.

        −  labels with a lot of positive examples in the dataset
        −  labels less prone to be mislabeled by users
        −  labels that correspond to activities with small variability
        −  labels that are suited to be predicted using the specific set of sensors
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Conclusions
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The improvements we have achieved are relatively small.

Finally, we should note that all our models and experiments are included in the
Github repository alexvioni/ExtraSensory-functionality (temporarily private,
will be opened), which is a flexible and ready-to-use codebase for HAR.

        −  The task is inherently flawed because of the dataset’s imperfections and
             the margin for improvement might be relatively small by default.

        −  A radical change in our approach to the specific HAR task is required to
             produce greater improvements in the recognition metrics.
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Directions for Future Work
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Activity taxonomies & mutually exclusive labels

Model personalization

Unsupervised or semi-supervised methods for label confidence

More examples for rare labels

Data representations from self-supervised models

Activity recognition on other datasets, e.g., e-Prevention [Zla+22]

Real-life use: shorter sensor recording segments and improved Accuracy

[Zla+22] Zlatintsi, A. et al. “E-Prevention: Advanced Support System for Monitoring and Relapse Prevention in Patients with Psychotic Disorders Analyzing Long-Term Multimodal Data from Wearables and Video Captures”. In:
Sensors 22.19 (2022). issn: 1424-8220. doi: 10 . 3390/s22197544.
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Appendix - Features
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Smartphone Accelerometer and Gyroscope (26 features each):

Watch Accelerometer (46 features):

Location (17 features):

        -  statistics of the magnitude signal (mean, standard deviation, third moment, fourth moment, 25th percentile, 50th percentile, 75th 
            percentile, value-entropy, time-entropy)
        -  spectral features of the magnitude signal (log energies in 5 sub-bands: 0–0.5Hz, 0.5–1Hz, 1–3Hz, 3–5Hz, > 5Hz) and spectral entropy
         -  two autocorrelation features from the magnitude signal
         -  statistics of the 3-axis time series (mean and standard deviation of each axis and the 3 inter-axis correlation coefficients)

        -  the features described above for the Smartphone Accelerometer
        -  spectral features of the 3-axis time series (log energies in 5 sub-bands: 0–0.5Hz, 0.5–1Hz, 1–3Hz, 3–5Hz, > 5Hz)
        -  five relative-direction features (the cosine-similarity between the acceleration directions of any two time points in the time series is
            calculated and then these cosine similarity values are averaged in 5 different ranges of time-lag between the compared time points:
            0–0.5sec, 0.5–1sec, 1–5sec, 5–10sec, > 10sec)

        -  coordinates-derived features: standard deviation of latitude, standard deviation of longitude, change in latitude, change in longitude,
            average absolute value of derivative of latitude and average absolute value of derivative of longitude, number of updates, log of
            latitude-range, log of longitude-range, minimum altitude, maximum altitude, minimum speed, maximum speed, best vertical accuracy,
            best  horizontal accuracy and diameter
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Appendix - Features
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Audio (26 features):

Phone State (34 features - one-hot representation):

        -  statistics of the MFCC time series (mean and standard deviation of each of the 13 coefficients)

        -  app state (active, inactive, background, missing)
        -  battery plugged (AC, USB, wireless, missing)
        -  battery state (unknown, unplugged, not charging, discharging, charging, full, missing)
        -  in a phone call (false, true, missing)
        -  ringer mode (normal, silent no vibrate, silent with vibrate, missing)
        -  WiFi status (not reachable, reachable via WiFi, reachable via WWAN, missing)
        -  time-of-day (eight half-overlapping time ranges: midnight-6am, 3am-9am, 6am-midday, 9am-3pm, midday-6pm, 3pm-9pm, 6pm-
            midnight and 9pm-3am)


