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ITepiindm

H ovdntun cuotnudtev ixavedy var oaviyVEDouy Xt Vo avoy vwellouv autdpata Tig dpaotneldTnTes Tou exteiel
éval dTouo, xodog xal To mhaiolo 6To onolo exteleltan xdde dpacTneidTNTa, Elvan 1 emTouy) TS Avaryvapiong
Avdporivov Apdoewy (HAR). Ta cucthpota autd propoldy vo Xenoulonotoly dedopéva tou GUAEYOVTUL ond
éva pdopo atoUnTipwy, oTo omofo cupnepthaudvovtal ontixol cwodntrpes, m.y. Bivieoxduepes, xou un ontixol
aoInthpes, 6TwWS oL popnTol aoUNTAeS xou oL awotnthpee nepiBdriovtoc. H avayvopion avitpwnivev dpdoewv
Beloxel avaplduntes epapuoyéc otny xadnuepvi Lo, xuplte otov Toyéa tne uyelas, oTn PEOVTIdN NAUWUEVKY,
oty unofondoluevn dwflwon, oty adAnienidpaoy avipwnouv-unoloyloty, otny unoBondoluevn wdinorn xou
oTov adAnTIous.

Ye auth] T BmAouoaTiny epyooia, doYOROVUUGTE UE TNV oVOYVOELoT avitpwTivey Bpdoewy YENoLOTOLOVTOG
dedopéva popntidv awodnThpwy mou cUAAEYOvTUL oE U eheyyluevee ouvdiixec (in-the-wild), amd €Zumva
APV xou EEunva pordyta. Xe avtileon pe tny npodlayeypadpévn xon ToAD eheyyduevn diadixacior GuAhoYHC
oedouévev avipnnivwy dpdocwy 6To gpyaoTtiplo, N cLAROYY dedopévwy in-the-wild mpaypatonoeiton otnv
xodmuepv) Lwr, TEoxewévou va Uropoly Uetd vo extoudeudoly cuoThgaTa xavd vo avoryvwellouv xokitepa
TIC BpAoTNELOTNTEC TOU EXTEAODVIOL OF TpoYUaTixéc ouvirxec, xan amautel vor mAnpolvTal oL oxéioudeg
TeolOUECELC: Ol CUUUETEYOVTES VO YENOWOTOLO0Y T GUGKEVESC Toug Tig omoleg da ypnoulonotoboay o0Tee 1
e, Ywplc TEpLoplonolE TNy TOTOYETNOT TWV CUOXELWY, XAk YO EXTEAODY BpaoTnetdTnTeES oL Yo exTENOVGUY
TEAYUATIXG, OTO TEAYHATIXG TOUS TERBAANOV.

Me autév tov tpéTo, unopel ta dedouéva Tou cUAREYovTaL v avTixatonTellouy xoAUTERO TIC BEAoTNELOTNTES XaL
ToL Aol TV BPacTNELOTHTWY TNE xadnueptvic Long, ohkd tpoxintouy eniong TOAEC TPOXANCELS 6GOV APORd.
TN XPNoN TWY BESOUEVLY AUTWY YLl CUCTAUATO avaryvplong avipomvng dpaotnpidotntac. H daduacta tng
emonpeiwong etvon Suoxoldtepn dtay yiveton and tov xdde cuupetéyovia otny xadnuepvi {wr), ue anoTtéheoya
ol emonueldoels etxetédv (labels) vo efvan hydtepes xau yeipdtepes TOLOTIXG, XoddS 1) XoxT| YEHON ETXETMV 1
1 auENeLl Unopel VoL o8N YHoEL OE UEYAAO optdUd YN ETULCTUEIWHEVGDY 1) AAVIOCUEVOL ETICNUELOUEVWY BELYUETWY.
H eheddepn emonueinon etxetdv odnyel oe odvoha dedopéviv moloamhadv etixetdv (multi-label) mou etvon
e€oupeTixd un toopponnuéva. H cuhhoyy| Bedouévev ye tn yprion Slapope Ty TUTWY CUOXEUMY GE GLYBLAOUS
HE TNV EAAELYN TIEPLOPLOUGY OGOV aPopd GTNY TOTOVETNOY TV CUGXELMY 0dNYElL ot dedouéva ue VopufBo, xou
elvon mohb ouyVéC oL andAeleg oplouévmy aoIntiewy. Enlong, undpyet peydirn diampoowmixy xou ev80TeoomTiXY
petoAnTéTnTo oTor Sedouéva Tou GUAAEYOVTAL, xaddC Ul SpaoTNEIOTNTA UTOEEL Vol EXTEAE(TOL UE BLUPOPETING
TEOTO oMo BlaPOPETLXOUS YpNoTeS, 0ANE xou amd Tov (Blo YpRotn ot BlapopeTixés YpoVIXES aTLYMES.

Xernotponololye o cbvolo dedouévev ExtraSensory mou mepiéyel emonueiwpéva dedouéva and 60 yenoteg
cuvolxrc Sudpxetag dve twv 300000 Aemtddv, ta omoio €xouy culkeyVel and aodnthpes é€umvou xivnTol xou
¢€unvou pohoytol. Kdlde Selypa tou cuvbhou Sedopévwv avtiotolyel oe éva hkemtd Yo To onolo mapéyovton
HETENOELS TOAAAUTAGY oo ¥NThpwy xou ToAAAMAES eTixéTeg dpaotneiotnTag xat mAaiciov. To umocUvolo tou
oUVOAOL BEDOUEVKV TOU YPNOWOTOLOVUE TEPLAoBAVEL UETEHOELS atoUNTApWY antd TO EMULTAUYUVOLOUETEO, TO
yupooxomo, to GPS, tov ¥yo xou v xoatdotacy tou ¢EUTVoU TNAEPMVOU %oL Ad TO ETUTAYUVOLOUETEO TOU
¢Zumvou pohoYlol, xou tepthauPBdver cuvohxd 51 etixéteg dpaotneidtnTag xar mhatctou. To clvolo dedouéverv
TEPLEYEL TOOO TIC AVETEEEPYUOTES UETPNOELS Ad TOUG aUGUNTHPES 6C0 Xl OTATICTIXG YAUPAXTNELOTIXS TTOU €Y 0UV
egaydel. ‘Ocov agopd otouc aointripeg GPS xou fyou, yenowwonolotye povo enelepyacuéva dedopéva, Yia
Aoyoug mpooTaciag TNS WL TIXOTATIC.

Aol eZepeuviiooupe o GUVORO BEBOMEVWV YO VA XOTOVOTICOUUE TOCO [N LOOPEOTNUEVO elvon  Xou
Vo dlepeuVAcouUe TS UetoBdilovton tor WO elory¥évta yopaxTNEloTIXG OTOY EXTEAOUVTOL OLUPOPETIXEG
BpaoTNELOTNTES 1) 6Tay BlapopeTixol YeHoTeS exteholy TNV (Do BpooTNELdTNT, AVAToEdYOUUE OpLtopéva Boactxd
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HOVTERD avaryvedplone dpaotneldtntag and mponyolueves cpyaocies, Tto omolo mepthaufdvouy TN AoYLoTixy
mohvdpdunon xan éva amAd multilayer perceptron, yenowomowdvtag tor NON e€ayVEVTa YoLUXTNELOTIXG.
Enexteivoupe 1o Booixd poviého yenouonotdvtag éva augidpopo LSTM (BILSTM) yior vor poviehonoticoupe
por axohouvdior deryudtmy, yenowonolwvtoe xou Tkl to e€aydévia yopoxtnetotixd. Evioybouue eniong to
povtého BILSTM pe évo unyovioud auto-tpocoyfc (Self-Attention) mou evioylel tny anddoorn Tou poviéhov, 1
évor pumyaviopéd draotaupoluevne tpocoyfic (Cross-Attention) nov yenowwonoteitor yior Ty punveLoLdTNTO TOU
mpoodidel. Extelolue eniong melpdpota ypnouomowdvtag to aveneépyaoTa SedoUEva and Toug aicUNTHRES,
YETOWLOTOUOVTAS GTPOUNTA CUVENXTIXOV VELpwVIX®Y dixtimy (CNN) o otpduata Transformer Encoder
v TV e€0y®YN YoUpaXTNELOTIXGY, Yiot T WOVIEAOTONOY EVOC UEPOVWUEVOL delypatog, xal Ta ouvdudlouue
nepantépw pe éva BILSTM yio tn yovielonoinon wac axohoudiag Seryudtwy. Xe Oho Tol TELRAUOTE U
yenowonololue pla cuvdptnoT x60toug Paclouévn oto binary cross-entropy loss, oto omolo mpootétouue
oTdUuLoT BELYHAT®Y ovd eTixéta xou avd batch, yir va yeloiotobuye tnv avicoppornia 6Tov aptdud Twv
BELYHATWVY TOU elval ETIONUELUEVA PE XGVE eTéTa Xou TiC €TixéTeC Tou Aelmouv. Xt1o TéNog TOpEYOUUE
yerowee xateudivoelc vl Ty nepontépw PeATinon TV eMBOCEWY TWV HOVIEAWY ovayvapelong avipdmvng
dpaoTnedTNTAC o PEANOVTIXEC epyaoaieg, pe Bdorn tny eumelpla pog and T0 CUYXEXPWEVO TEdBANUL.

Aggeig Kheldid Avayvapion Aviponivey Apdoewv, In-the-wild, Popntéc Luoxevée, ExtraSensory
Dataset, Mnyovixry Mddnon, Bahd Mddnon, Interpretability



Abstract

Building systems capable of automatically detecting and identifying activities performed by a person, and also
the context in which each activity is performed, is the essence of Human Activity Recognition (HAR). These
systems can use data collected from a wide range of sensors, including visual sensors e.g., video cameras,
and non-visual sensors, including wearable sensors and ambient sensors. Human Activity Recognition has
widespread applications in everyday life, predominantly in healthcare, elderly care, assisted living, human-
computer interaction, assisted learning, and sports.

In this thesis, we tackle the HAR problem using wearable sensor data collected in-the-wild, from smartphones
and smartwatches. Contrary to the scripted and heavily constrained procedure of collecting HAR data in
the lab, in-the-wild data collection takes place in everyday life, in order to build systems capable of better
recognizing activities performed in real-life conditions, and requires that four terms are met: the participants
use their devices which they would naturally use, with unconstrained device placement, and they perform
activities that they would naturally perform, in their natural environment.

This way, the collected data might better reflect real-life activities and contexts, but also a lot of challenges
arise regarding using them for HAR systems. The task of labeling is harder when self-reporting during
everyday life, and label annotation is worse both quantity-wise and quality-wise, since misusing or forgetting
labels can lead to large portions of not annotated or wrongly annotated data. Open-ended label annotation
leads to multi-label datasets that are extremely unbalanced. Collecting data using different types of devices
combined with unconstrained device placement lead in data prone to noise, and missing sensors modalities
are very common. Also, there is large inter-personal and intra-personal variability in the collected data since
an activity might be performed differently among users, but also by a specific user at different times.

We use the ExtraSensory dataset which contains labeled data from 60 users totaling over 300k minutes,
collected from smartphone and smartwatch sensors. Each data instance corresponds to one minute for which
multi-sensor measurements and multiple relevant labels are provided. The dataset’s subset that we use
includes sensor measurements from the smartphone’s accelerometer, gyroscope, GPS, audio and phone state
and from the smartwatch’s accelerometer, and includes 51 activity and context labels in total. The dataset
contains both raw sensor measurements and pre-extracted statistical features. Regarding the GPS and audio
sensors, we use only processed data, for privacy reasons.

After exploring the dataset to understand how unbalanced it is and to investigate how the features change
when performing different activities or when different users perform the same activity, we reproduce some
baseline prediction models from previous work, which include logistic regression and a simple multilayer
perceptron, using the pre-extracted features. We build upon this work, and use a bidirectional LSTM
(BiLSTM) to model a sequence of examples, again using the pre-extracted features. We also augment the
BiLSTM model with a Self-Attention module which increases model performance, or a Cross-Attention
module which is used for interpretability. We also run experiments using the raw sensor data, using
convolutional neural network (CNN) layers and Transformer Encoder layers for feature extraction, to model
a single example, and we further combine them with a BiLSTM to model a sequence of examples. In all
our experiments we use a custom loss based on binary cross-entropy with instance weighting per-label and
per-batch, to account for label imbalance and missing labels. At the end, we provide valuable insights to
further improve HAR performance in future work, based on our experience on the task.

Keywords — Human Activity Recognition, In-the-wild, Wearable Devices, ExtraSensory Dataset,
Machine Learning, Deep Learning, Interpretability
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Euyaplotieg

Me v oloxhfpwon g mopolous BITAWUATIXAC EpYIoIS, OAOXANEAOVETAHL O XOXAOC TWV TPOTTUYLUXY
omoudwy wou oty oyohy Hihextpohdywv Mnyavixdv xon Mnyavixdv Troroyiotdv tou Edvixold Metadfiou
IToluteyvelou. Xto onpelo autd, Yo Hlelo va euyopiothiow Yepud Ghoug toug avipmroug Tou otddn oy dimia
pou otny mopeta auTh xau ywpelc Toug onoloug dev Yo unopolca va gépw eig TépAC AUTO To UeYdAo Tag (L.

H napotoa dimhopatiny epyooia extovidnxe oto Epyoaotipio ‘Opaone Troloyiotdyv, Emxowveviog Adyou xou
EneZepyaoiac Xnudtov. Hedta an’ dha euyaploted tov emPBrénovta Kadnyntr pov, x. Ilétpo Mapayxd, yio
Borideio xan T oTHEEY) Tou. XTal QoLTNTIXG PO Ypovid, To haduatd Tou anoteAoloay onueio avapopds, TYY
EUTVEUOTC, Yol EVOUOUOL Lot LEAETT xou avalTnom e Yvaone. Tov euyaplotad yio tn Sdaoxohla, tic cuuBouléc,
Y xododRynom xot To Uepdd Tou yia TNy emothun. Euyopiotod Baditata, emlong, v petaddoxtopixt
gpeuvitpla Ap. Ndvou Zhativton, 1 omola xod’6hn tn ddpxew e napoloas epyaciog otddnxe dimha pou
xou mopelye TNV unoothelEn mou ypewalotoy Yo va xataoTtel eQuxth N tepdtwor e. Euyopiotd axduo tov
Mdvo Beodwon yio Ty opéplotn Bordelo xan ti¢ cuUBoulég Tou.

Awo¥dvopan enione Ty avdyxn va evyaplotiow and to Badn tng xopedidc pou toug gihoug xat cuvodoltdpoug
ot golTnTr) Wou Cwh, Yo TNV oydnn xou T1) CUUTOEACTACY) TOUC 0Ta EUXOAA Xol OTA SOOXONA, OTIC YUPES Xa
otic Aumeg. Evyaplotd tov Mavdin, ty Adavasia, tov ARéEn, tov Kdota, tyv Khalpn, tov I'dvvn L.,
Néyia, Tov T'dvvn B. xou tov Opéotn. Ou cuvepyoaoiee, ol oulntroeic, ot Bohtec xou to Tadidiar pag Hrav 6
oTA TaL YPOVIL 1) XOAUTERT) CUVTEOPLA, o 0 xardévag Exel Wio Wiaitepn Veomn oty xapdid pou. Euyaplotd eniong
™ Mugoivy, ™ Xetotiva xa tov Kwvotavtivo, ye toug omoloug, av xou Huootay cupgolttntés, fedoue xovtd
apYOTEQRA, YOl 1] CUUTIEAOTACT] Toug Xat 1 Puyoroyixr aAiniobnootiplln anotéhece xadoploTind TapdyovTa
Yot TNV 0hOXMewaoN TNE Tapoloas epyactag.

Aev Eexvd, dpwe, Toug glloug amd tor podnTind xou to mponyolueva yeovia. Kwvotavtive, Baoiin, Opéoty,
Alé€avdpe, Xdpn, Xetotiva, Mupt, Eiprivn, euyaptotd Tohld yia tnv xatavonoT oL Ty UTouovy, Yo T o Tielen
o TNV eUPOYWoT, Yol TO YENO Xal YLol OAEC TLC YUPOVHEVES OAA Xa SLUYXLVITIXEC OTLYUES ou €youue {Hoel
pall. Buyoptoted T Btéhha xou to ©odwet), e Toug onoioug fetaue xoVTd AGYw GUYXUELWY AN pelvoue xovtd
yiatl yivoue mpaypatixol gilol.

Y10 onuelo autd ogelhw eniong va euyaploThow Veppd pia ToAD Eexwploth opdda, tTnv oudda ¢ Innoetics,
oTnyv omola €xw TV T XL TN Yoed Vou CUUUETEYW 0To TewTo Prue Tng enayyeApotixig wou {one. H oudda
auTH Hou €yel mpoogépel padiuata {wne, ouvepyaoieg, YVOOELS, éunveuon xa xivnteo, xat elgon egolpeTixd
ELYVOUWY YLl TNV EUTLOTOCUVY), TN OTARLEN XL TNV XATAVONOY) TOU €y AAPBel xou e€alpeTixd Tepipavy yio 6o
gyouue metUyel palf.
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Chapter 0. Extetopévrn Ieptindm

0.1 Eicoaywyn

0.1.1 Avayvopion Avipwnivewyv Apdoswy

O époc Avayvdpon Avipwrivwy Apdoewr (Human Activity Recognition — HAR) avagpépeton otn dwadixooio
AVEAUGTC TOV YELROVOULKY 1 TN %x{VNong Tou avlp®mvou oMUATOC, XeNOoULOTOLWVTAS deBoUEVA TOU GUAAEYOVTAL
ond awoUNTARES, HE OXOTE TNV QUTOPATY OVAYVOPLOY TV JpaoTnplotitwy nou extelel to dtoyo [AT14;
BBS14]. ITpbxeiton yio évar epeuvntind nedlo mou yapoxtneileton and auEnUévn TOAUTAOXOTNTA ol ATOTEAEL
onpeio dBLABEACTNC XAl CUYKEPAOUOU TOAAGDY ETULOTNUOVIXWY TEdWY, cuumepthauBavouévng e ahAnienidpaong
avipdrou-vnoroyioth, Tng eneéepyaciog ofuatog, Tng dpAcTC UTOROYLOTMY, TNG OTATICTIXTE AVAAUGNE XoL TNS
unyovixhc pddnone. Eva cbotnua avayvaetong avipnnivey Spdoewy Bactoyévo ot unyavixr) wéinor uropel
va yenowdonolel Teyvixég emPBAenouevne, un emBAenduevng N auto-emBAETOUEVNS ddnong 1 cuvBUACHS TOUG.

H avayvopion avipwrnivov dpdoewv €xel cupl medio eqoppoy®y, oto omolo mepthopfdveton 1 vyelo xou 1
uyetovopxy tepldordn (tapoxorotinom aocdevdv yio Ty LTOSTAPIEY CUGTNUETLY AAPNS XAVIXDY aTOPEoEWY),
To. ovothuata urtoBondoluevng Swflwong yio éEunva omiTia, 1 xatorypaPy) xou 1 agloAGYNON TN dOXNONG Xol
e modtnrag Lomfe, xou ol egappoyés tnhe-emxoveviag [AT14; Che+12; RMM16]. ‘Evoag onuavtinde otdyog
e avaryveplone avipwnivewy Spdoewy elvor vor TapEyel TANPOPOplEG OYETIXG UE TNV AVIPOTLYY CUUTERLPORE TOU
Yo emitpédouy ota utohoyloTixd cuoTAUaTa Vo utooTtnel€ouy evepyd Tig Bpaotneldtnteg g xadnuepvic Lwrig
oV aVEOTOoL.

Ye abpéc Ypouués, oL TEXVIXEC avayvmelone avipwrivey Bpdoewy Umopoly va yweioTtoly ot 800 Pootxég
xotnyopleg, avdhoya PE TOV TUTO TV oUNTHEWY TOU Ypnowlonotobvtal: oTny avayvaopion Opdocwy fdoel
ontikdy aodnTripwy xou otV avayvdpion dpdoewy Pdoe un ontikéy aiodntipwy [Che+12; CJK15; RMMI16].
Avutéc oL dUo xatnyopiec Sev elvan adAnhoamoxheldpevee, xadme pnopel eniong vo yenowwomounVel €vog
ouVBUNOUOE Xou TEVY BUO TUTWY cwadNTAPWY.

o H avayvdpion dedoewy Bdoel ontixwy aodnthpwy otnelletar o yeydro Badud oe awodnthpeg dnwe ol
Buvteoxduepeg, ol onolec CUAEYOLY onTd dedopéva oTa omola xautaypedpovion ol aviedmves dpdoelg
%ol CUUTERLPOEES 1) oL oyeTiloueveg alhayés oTic ouviixes tou mepBdilovTog. Xtny mepintwon auth,
pédodol Tng 6paoNC UTOAOYLOTOY elval amapodTNTES Yiot TNV EEXYWYH YAPUXTNELOTIXOY At TG OTTIXES
TUPATNENOELS.

o H avayvopion dpdoewy Bdoetl un ontxwyv aocdntipwy otneileton otn Xpnor HEUOVWUEVLY ouaUnTReeY
7 Oty awoINThEWY TEOCUPTNREVLY OTO ETORO TOU OTOlOU 1) CUUTERLPOEE xatoypdpetan (popnTol
aoOntipec B égunva xvntd) 1/xan Sixtuo cwodnthpwy mpocaptnuévey o avtixelyeve oto TepBdAhoy
evtéc Tou omolou emdupolue va xataypddoupe Tic avdpodmves Spoacelc (dense sensing). Xe yevixég
YEOUUES, To DEBOUEVA TTOU GUAAEYOVTOL UECL TNG XATAYEOPNG amd WUn onTixols aucUnTthees elvon, otny
TAELOYNQld TWV TEPITTOOEWY, YPOVOCEIRES UETUBANTOY TOU ovamaploToly oAAAYES XoTAoTAONG, Mol
umofdihovton xotd To Thelotov oe enefepyacio yenowonolvTag THAVOTIXY 1) CTATIOTXH AVEAUGY),
eneepyaoio ofuatoc xou teYvoroyie yYvdong.

Emunpociétng, ol teyvinég avayvoplong ovipnmivey Spdoewmy uropoly vo ywelatoly ot 800 Bacixég xatnyopleg,
pe Bdom tn Geuehddn apyr mhvew otny onola otnpllovtan ta wovtéla edBiedne Spdoewv: oty avayvdpion
Spdoewy Paciouévn ota Gebouéva (data-driven) xou otnv avayvdpion Spdoewyv Baociopévn otn yvdon
(knowledge-driven) [Che+12; Que+15]. Trdpyouv enione uBpWBnéc mpooeyyioels avayvopiong dpdoewy mov
ouvdudlouv teyvixée mou Bacilovton oe dedopéva xau oe yvohon [OCW14].

o H avayvopion Odpdoewv PBaolopévn oto dedouéva otnpileton otn poviehonoinon twv dpdoewv
YENOWOTOUIVTAS EUREWS BLord€atia GUVOAD BEBOUEVMV HEYEANG XALOXAS VLol VO EXTAUSELTOUY TdavoTIXNG
N oTaToTixd wovtéha Spdoewy, oxohouvddvtag TNy emovoyalduevn bottom-up mpocéyyiom.  Auth
N TEOGEYYLOY UTEPTEPEl OGOV aopd oToV yelploud Tne afefoudTnrac xou Twv Bedopévewy oE Uop@n
YEOVOOELR®Y, XoOE T LOVTEAN EXTUBEVOVTOL YPNOULOTOLWVTAS aUTd Tor dedopéva, ol ol amoutoeLg
oe dedopéva elvar cuvidne ToAD LPNAES, xou TaUTOY POV amonTE(ToL EWBKOS YELPIOHOS YLat Vo EEACPUAOTEL
1) EMEXTACIUOTNTA X0k VO UTOPOUY T LOVTEAX VO TPOCOQUOGTONY OE XoUVODRELOUS YPNOTEC.

o H ovayvidpion dpdoewv Poactouévn oty yvoorn otnelleton oty medTepn YVOOYN OTOV ToUéd TG
EXAOTOTE €QopUoYNS, TEOXEWEVOU Vo dnutoupyndolv dueco povtéia dpdoewy o&iomouwvTas edddoug
HOVTEANOTIOINONG XOU AVATORECTACNC YVOONS. LTNV TERITTWOT AUTY, To LOVTEAN BpAOEWY YENOULOTOLOOVTOL
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0.1. Ewoyoyn

Yot TNV avary vopetoT dpdoewy péow tumixic hoyic cuAhoYLoTixAc, axohovdmvtas Ty emtovoualduevn
top-down mpocéyyion. Auth 1 npocéyyion Baclouévn ot Yvohon @épel capy) oNUACLoAOYLXY epunveld,
oAAG M XeNoTOTNTA TNE ElVOL TIEPLOPLOUEVT) GTO YELPLOUO NG ofBEBaldTNnTog Xou TwV dedouévwy e Lop@n
yeovooelpwy. Eminiéov, n ehnrc yvoon otov Topéa tne egoppoync Yo €xel miavedg we anoTtéAecyo Vo
npoxOdouy ehn povtéra [Che+12; Que+15].

H nopoloa Simhwpatixy epyacio cotidlel oty avayvoplon avipwmivwy dedoewv Baotopévn oto dedouéva,
Yenowonoudvtoc dedouéva mou €youv cUMeyVel and un omtxolc aoUNTARES PORNTMY CUCXELGDY, OTWS T
gEunva xivtd xou Tar éEunval poAdyia. H emhoyR auth éyive xuploe yio mpoxtixole Adyoue, xadde Théov Tta
XINTE TAEQVAL PEpouY PeYERo oprdud aroInThowy, ne ol adpavetaxol popntol cuodntipes (emtoyyuvolbpetoa
X0l YLPOOXOTLA), OTOTE 1) SLANOYY TwV dedopévev unopel vo yivelr pe un mapeuBatixd tpéno. Emlong, dev
emAéydnxay omtixol auodnthpee yia Adyoug mpoataciog Tng WL TXSTNTOC.

0.1.2 3toyoVecia

H evdeheyhc xatavomon tou ovixelévou tne mopoloos cpyaoiac mpolnovetel Tr Yehétn tng olyypovng
BiBMoypapiog oyetixd ye TNy avoyveelon avitpwtivey dpdoewy tou Bacileton ot Sedouéva QopnTody ao¥nThewmyY
X0l TNV XATOVONOT] TWV ETMYUEPOUS TUNUATWY TNG AAUGiBoC avaryvidplong Spdoewy, otny onola cuunepthauBdvovton
1 mpoene€epyacio xa 1 XATETUNOT TWV BEBOPEVLY, 1) EEAYWYT] Yo TNELGTIXGY Xoi 1) TodivéunoT. Eivow eniong
amopod TTY 1) LEAETT TV SNUOPLAEGTEPWY TEYVIXDY unyovixnc udinong xou Bardidg udinong, oL Twv eQappoy Y
TOUG OTNV VoY Vidplon avipwrivey Bpdoewy, Ue oxord vo yenotporointoly oTa LOVTENS XoL GTO TELOGHUATE. oS
OTY) CUVEYELL.

Ou mo c0YYPOVEC X0 GUVAHO OTOUTNTIXEC EQPUPUOYES TOU ApopolY aTnY avayvapeton avipnmivey dpdocwy
grtovrar e cLAROYTC dedopévey péow popntdy aodnthpwy ot un eheyyduevee cuvdvixec (in-the-wild), Tou
onpalvel Twe 1 cUALOYT dedouévwy and Toug Yenoteg yiveta oe cuviixeg xonuepvic SloBlwone. H cuiloyy
dedopévwy pe autdv tov Teémo elacparilel Thololo mEpEOUEVO 0TO GUvVOho dedopévwy mou Yo mpoxUeEL,
GO0V APORIL GTLC OVITUPUACTACELS XAl OTIC EMCNUELWHEVES ETIXETES, OE OUYXELOT UE TN GUANOYTY Bedopévwy 6To
gpyaothplo. ‘Ouwg, tautdypova, €xel ¢ anotéleopa va yivetal 1 avayvopton avipnnivey dpdoewy oA mo
amontnTixy Stadixaotia, xodode to abvoho Bedouévewy Tou TpoxVTTeL elvan enlong ToAU mo 80oxolo GTo Yelploud
Tou, Toh) AY6TERO AELOTILOTO, Xal TEPLEYEL 0pXETO VopuPo. Oa axoloudricouue auTtéd To HOVOTdTL, XS GTOY O
pac elvan va melpouatiotoldue Ue dedouéva mouv cUANEYovTan in-the-wild, xou o yenolhonoioouue t0 GUVOIO
dedopévev ExtraSensory to omolo mepléyel emonueiwpéva dedopéva amd 60 yeRoTec cuVolxNg Bldpxelag Gvw
Twv 300000 Aentddv, To omola €xouv cuiheyVel and ac¥nTipeg EEUTVEY XIVNTGY XaL EEUTVKY POROYLLDY, Xol TA
onola elvon emonuetwpéva e 51 etinéte dpdoewy (activities) xow mhouoiov Spdoewvy (contexts).

ITpoxewévou vo diepeuvicoupe Biegodd v avayvopeton avipwrivey dpdoewy in-the-wild yenoylonowdviog
70 oUvolo dedouévev ExtraSensory, apyixd elvar anapaltnto Voo JEAETAOOUPE TG BNUOGIEVGELS TWV EPELVNTOV
Tou dNULodPYNoAY aUTO TO GUVOAO BEBOUEVWV, UE OXOTO VO XUTAVONCOUUE TN dlodixacior cUAAOYNG BEBOUEVWY
X0l To EMPEPOUC TUAHATA TOU GUVOROL Bedouévmwy, Ta onola tepthaufBdvouy petalld GAwY: Tig avene&épyaoTeg
peTpnoelc Twv aoInThpwy, xdmota HOT eay HEVTU CTATIOTIUG YARUXTNPLOTIXG TV PETENCEWY TV AoUNTHewY,
xou eTUXETES Opdoewy xau mhauciov. Eivaw enione amapaitnto vo peketAcoupe xou vo AdBouue umodn poc to
povtéha Bdone (baselines) mou viomouinxay and Toug epeUVNTES oWTONE, OAAG Xou TIC dNUOCLEVCELS GAALY
EPELYNTAV TIOU YENOLOTOL0Y TO (810 GOVOAO BeBOUEVWY.

ITpotoV UAomoicoLUE xaL EXTUOEVCOUUE T HOVTERA UaS, TRETEL VO EEEPEUVCOUPE TO GUVONO JEQOUEVGY Ylat
VO XATOVONIOOUUE TIC LOILTEQOTNTES TOL: TNV OVICOPEOTIA GTOV dplIUd TWV EMCNUEIWUEVWY DELYUATWY TOU
avTLoToLy o0V ot xdde eTETa, TOo SelyUorTa UTEEY oLy avd YeRoTn xat avd eTixéta, Tig ahhdlouy Ta e€aydévTta
OTATIOTIXG YA TNELOTIXG OTOY EXTENOOVTOL amd TOUC YPNOTEC BLUPOPETIXEC Bpdoelc V) O6Tay SlopopeTixol
yeroteg extelolby nyv Bl Bpdom. 3t cuvéyela, agol emavahdBoupe Ta mElpduata Ye Ta baseline yovtéla,
Tor omola déyovtan we elcodo ta e€aydévta yopoxTnetoTixd Yo €va delypa, Yo tpoomadfooupe vo BeATidooLUE
TOL AMOTEAEOUATOL TS OVALY VPLOTG dpdoewy enaudvovtag to baseline uéow evog aupidpouou-LSTM (BiLSTM)
yioo TN dovTeromoinon oyt uévo evog delypatog, aAhd yiog axoloudiog Seryudtwy. O mpoomodioouue va
BENTIOOOUYE TEPAUTER OUTO TO LOVTENO PE TNV Tpoodiur unyaviopol autonpocoyfc (Self-Attention). Eniong,
Yo Siepeuvicoupe av 1) tpootiun evéc pnyaviopol diaotaupoluevne tpocoyfc (Cross-Attention) avdueca otic
eZ6doug tou BILSTM xou ot yopaxtnplotixd g elo680u Ynopel vo TpoGPEpeL YpHOWWES TANpopoples 600V
APoEd TNV EPUNVELCOTNTA Tou wovTélou. Emmiéov, da xataoxsudooupe povtéha mou o Aauldvouv cov
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eloodo ta avenelépyoaota dedoyéva and Toug awointrpes xou Vo TELPUUATIOTOUUE UE TONNES OPYLTEXTOVIXEC,
mou Yol EUNEPLEYOLUY GTPOUATO GUVERXTIXGDY VEupwvixmv dixtiwy (CNN), otpduata Transformer Encoder xau
otpwpata BILSTM. Xto téhoc tne epyaociog, eueATOTOVUE VO TEOTEIVOUUE PEANOVTIXES TPOEXTACELS XOL Vol
petafiBdoouye TIC eUmELplEC Xal TIC YVOOELS TOU amox T XY XoTd T BIEVERYELX QUTAS TNG EPYACLAS TEOXEWWEVOL
vo BEATIOCOVUE TEPOLTEPW T LOVTEA avary VodpLone avilpwnivey dpdoewy o peAovTixéC epyaoieq.

0.2 To XUOvoio Acdouevwyv ExtraSensory

H Evétnta auty €xel Baototel oty npwtodTuny Souleld v Yonatan Vaizman, Katherine Ellis, Gert Lanckriet
xou Nadir Weibel [VEL17; VWLI18; Vai+18], oty onola eptypdpeton 1) Swadixacio culhoyic xou enelepyooiog
Tou cuvohou Bedouévewy ExtraSensory, xou 1 mpdtn yerion Tou yia v avdntulrn baseline yovtélwy yio T
vy veelor, ovlpwnivey Spdoewy xou CUUTERLPORMOY.

0.2.1 Xvulhovr Acdopévey oe Mrn Eleyyodueveg Luvifxeg

H evaoyoinot| pog e dedopéva mou €youv culheydel in-the-wild €yel tnv agetneia e ot daniotwon nwg
T cLOTAYATA TOU €xouv exTtandeuTel yior vor avary vep(louv Bpdoelc Tou EXTEAOUVTAL OE AUCTNEE EAEYYOUEVES
ouviixeg xon Thaiolo, EVOEYETOL Vo UNY UTopoly Vo YEWXEUOOUY oA ot dpdoelc mou Aaufdvouy yweo ot
TEOYUATXEG cLVITXES, AOYL NG aENUEVNE YETOBANTOTNTAC Toug o éva U eheyydpevo mepi3dihov. Ilpog
auth TV xatebduvor, ol epeuvnTéc Tou dnoveyYNoay to chvolo dedouévwy ExtraSensory eiofyayoav téooeplc
ouvixeg in-the-wild [VEL17] tou npénet va mAnpolvton yio va drocgakiletar 6Tt 1 sulhoyT dedopévmv xon xot’
EMEXTAOT 1) €pELVA YIVETOL OE QUOKES XOlL PEXMOTINES CUVDXES:

1. Hpoowmikés ovokevés Twy xpnotdr. H yehon uoc 1 teplocdtepwy EEVLV GUGKELWY UTOREL VoL ENNEedoEl
TN QUOIXOTNTA TNG CUUTIERLPORLS EVOC YEHOTY), ETOPEVIES TO LOAVIXO ELVOL OL YENOTES VoL YENOLHOTOLOUY TIG
TPOCWTIXES TOUC CUOXEVES (¢EuTval TNAEQuVAL, EEUTVAL PONGYIOL X.ATL. ), OTdC Dot EXOVOY HAVOVIXE.

2. TomoBétnon ovokevdy xwpls mepiopropols. Ilopdho mou 1 tomodétnomn xou 0 TEOCAVATONGUOS TNG
popNThc cuoxeLnc unopel va €yel xadoplotiny enldpacn otny axpiBelo e Ta€ivounong dpaotnelotTiTwy, N
eMPBOAY CLYXEXPWEVNE TOTOVETNONE XOl TEOCAUVATOAGHOU TG CUOXELNC BEV ElValL TROXTIXY OE EQPUPUOYES
TOU TEUYUATIXOU XOOUOU, EMOUEVWS Tol TEETEL VoL ATOPEVYETAL 0L 1) TEOXVTTOUCH YETOBANTOTNT TWVY
oLAMeYOEvTwY onudtewy Yo meénel Vo avTHeTOTETo OC Yl TPOXANOY TOU TEETEL VoL LU ELPLOTOUUE
XUTEAAN AL

3. Pealiotiké nepifdAdov. Ou dpaotnetdtnteg mou exterel o xdde ypriotng Yo npénel va exterolvial oe T6TO
%ol YPOVO xatdAAnio Yo xdde yerotn, xan Yo mpénel va eivon 0 TOTOC XAl 0 YpOVOg GTOV omolo o xdle
yeriotne Yo exteloloe QUOLXE TG BRUCTNELOTHTES QUTEC.

4. Peahiotikés ovumnepipopés. O dpaotnpdtnteg mou extehel o xdde yprotng Yo meénel va elvan dpootneld-
TNTEC TOU O CUYXEXPWEVOS YeNoTne Yo eEXTENOVGE PUOLOAOYIXE WS UEPOC NG XAUMUERLYOTNTOSC TOU.
Enione, ou ypfotec dev Go mpémer vo xadodnyolvton vor extelolv mpodlayeypoupévee aAAniouvyleg
BPUCTNELOTATWY.

‘Otav egapuélovton oL mopoamdve npobmodécelc vl 0 cLAAOYYH Oedouévewv avlpwrivov dpdoewv ot un
eheYydpeves ouvifxes, N EMONPEIGT TWV BEBOPEVKY UE ETIXETES BPACEWY O GYETIXWOY TAUGCIOY UETATEETETOL
ot apxeTd d0oxoho €pyo, ENELDY| oL emépoug dpdoel Sev elval TEOoYEBLAOUEVES Xou 1) BldpxeLlal xou 1) aAAnAouy Lo
Toug dev elvan mpoxadopiopévec. H npotepatonoinom twv cuvinuey in-the-wild unopel va 0dnyroet oe hydtepa
ETUONUELWHUEVOL DEIYUOTO X0l CUVETMC OE AYOTEPES EMONUELDCELS Ava SpaaTneLdTNTa, XadMdS 1) ovdyXxn Yo Slopxh
emoNUeiworn OAWY TV BpaoTNELOTATWY Yia xdde ypRoTn umopel va elvon xovpaoTixh xou BUOXOAY, xou ETloNg
elvan wiot emo@olng diadixactior xadde oL YpNoTES TOU ETUGMUEIDVOLY TIC BpAoTNELOTNTES TOUG XATE TN Sidpxeld
ohne tne xadnueptvotntoc unopel va efvon emippeneic og Add.

H peyding xhlgoxoag cuhhoyr dedopévewv Yl T Onuouvpyla Tou cuvohou dedouévwy  ExtraSensory
npaypatonotidnxe pe tn BoRdewr e epopuoyrc ExtraSensory App v é€unvo xivntéd (Android xou iOS),
xod®dg Xl ULAC EQUPUOYTE TROCUPUOCUEVNS Yiat To é€untvo podl Pebble. H egopuoyy) auvth frav uredduvn yia
Y aUTOPATH cUANOYT) Bedouévev and toug aodnthpes oto éEUTvo xivitd xat 0To EEUTVO POAGL, Xadde Yo
xdde Aemtéd mou ATAV EVERYT), XATEYPUPE TIC HETPNOEC TwV atoUnTipwy yia éva mopddupo 20 deuTepORETTLVY.
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0.2. To X0volo Aedopévwv ExtraSensory

Emnpoc¥étne, n epopuoy mapelye war e0YENCTN SLETAPT Yol VoL UTopoOY Ol YPHOTES VO EMLOTUELDVOUY TIG
dpaoTNELOTNTES TOUC.

Io ) dnlovpyia Tou cuvérou dedopévwy ExtraSensory culiéydnxov dedouévo and 60 yprotec, cuvohixic
dudpxetac dvew Twv 300 YAdBwY Aentddy, TEoXEWEVOU Vo umopolv Vo yenolponotndoly yio Tn poviehomolnon
avitpwnivev Spdoewy xan Thaiciwy avitpwmivng ouuneplpopds in-the-wild. Kdlde delyua tou cuvélou dedopévuv
avTIoTOLYEL OE €Vol AETTO, Yiot TO OTOLO TAPEYOVTAL Ol UETENOELS TOANATAWY oUoUNTAEWY Xl Ol CUVIPE(C ETIXETES.
H emonuelwon twv eTixetoy dpdocwy xou mAouclou cuumepLpopds €xel yivel ue self-reporting, xou to dedouéva
éyouv emonuelwdel e moAAamAéS cuvagelc eTxéteg, €TOL MOTE VO OVOTAPLOTOVTOL PEOAOTIXG Ol GUVDHXES
multi-tasking oty avdpmmivn xadnueptvotnto.

0.2.2 Acdopéva AlcUntrpwyv

To cbvolo dedopévev ExtraSensory nepiéyel tic oaxdlovdeg petprioelc oand awodntrpes:

e Metproeic LVPNAAc ocuyvotnTag. Ou axdhovdol aoUnTieee TV EEUTVOV XIVITOY TRAEPMVKY
delrypatonmitnay ota 40Hz xatd tn Sudexeior tou mopodipou xatoypaprc 20sec xdde Aemtou,
nopdyovTos gL Ypovooelpd tepinou 800 ypovixoy onueiwy.

— Emtayvvoiduetpo. Xpovooelpéc BlavuoUATOY ETTAYLVONG TELOV AEOVWY XUTH UHXOC TWV TUTILXWY
EOHVLV TV GUGKEVDY EEUTVODV TNAEQPOVWLY.

— I'ypookdmio. Xpovooelpés BlavuoUdTwY TELWY a€6vwy Tou pLBUD TeploTEoPTE YUEW amd xdde TUTIXS
GEova TWV GUOXEUDY EEUTVWY TNAEPOVGY.

— Mayvntiuetpo. Xpovooeipd Slavuoudteny Telmy a&dvwy Tou wayynTixol tedlov.

e Metproelg €§unvou poloyioV. To €unvo pordl Pebble xoatéypade ofuata amd toug dlo
diordéoiuoug anodnthpes Tou.

— Emtayvvoiduetpo. Xpovooelpée Blavuopdtmy EMTEYUVONG TELOV aEOVWY XUTA UWHAXOC TWV TUTIXMOY
a&bvwv TN guoxeuiic EEunvou pohoYlol, ue cuyvotnTa deryuatoindlac 25Hz.

— ITv&ilda. Xpovooelpd tne ywviae mopeiog, n onola dev éyel otadepd pudud Serypotorndlos, ohhd
napelye evnuépwaon xdde @opd mou aviyveudTay ooy peyodltepn and ula polpa.

e Metproeic O€one. H epapuoyy ExtraSensory App yio é€unva xivntd tniépwva cUAAEYEL dedopéva
tonovesiag yenowwonowdvtag 1o GPS tou »xvntol, mou dev €yel otadepd puidud derypatoindlog, aAAd
napéyel evnuépnwaon xdde @opd mou aviyvedel xivnor. Ou yetprioeic Yéong mou €youv culieydel elvou
Xeovooelpéc UetofAntol urxous, mou xuuaivetol omd éva WOVo Ypovixd oNuelo €mC xou TEPLOCOTERA
ané eixoot ypovixd onuela. Kdde evnuépwon Véong nepléyel Tic extipodueves uetphoels Véone (yewypa-
P TAGTOC, YEWYPUPIXS Wixoc, LPOUETPO, TayUTNTO, XaToxbpuRY axpifel, optldvTio oxplfeia) Tou
OVTLGTOLYOVY OE L0l GUYXEXPULEVT] XPOVIXT] OTLYUY) OVOPORdC.

e Metproeic Yauninse cuyxvotntag. O uetprioeic autéc cuAAEYovTaL pla opd ot xdde mapddupo
HOTOYPAUPHC.

— Katdotaon éfvnvov tniepdvou.  Tupmepihopfdver tny xatdotaon e epopuoyhc (foreground,
background), tnv xatdotacy tne cuvdeowodtntac Wi-Fi, tnv xatdotaor e pnatopiog (@bption,
exQOpTION), TO en{nedo ymotaplog, xaL TNV XATEOTACY TNAEPWVIXTC XAHOTC.

— AwoOntipes ovvOnkdy tepifdAdovtos. Metphoelc and aodntrpes eyyltnrac, neptBEAAOVTOC QWTL-
ouov, Yepuoxpaciag, vypoaoioc, mleons aépa %.&. (av undpyouv ol oucOnThpes awtol oto €€unvo
MAEPwVo)

o Kataypapn fixov. Kotd 1 didpxeia xdde daothiuatoc eyypaprc Sidpxeiag nepinou 20sec, xotayed-
PIXE NYOS OO TO UXPOPWYO TOU €EUTVOU TNAEQPMVOU, UE cuyvoTtnta derypatoindloc 22050Hz, 6tav to
AEPLVO BV Ypmotwomolotvtay yio xAhon. Kdde un enelepyaouévo nymmnd orua xoavovixormoriinxe
WoTE Vo €yel Yéyloto mAdTogc 1 xou ot cuvéyela umohoyiotnxoy oto TNAéPwvo ol cuvieheotéc Mel
Frequency Cepstral Coefficients (MFCC), ypnowonowdvtac nopdiupa wotfc emxdiudne 2048 deryudtwv,
40 Twveg ouyvotAtwy e xhipoxa Mel xou 13 cuvteheotée Cepstral, cuunepihopBavouévou Tou undevixon
ouvteheoT. Movo o cuvtereothc xavovixornoinong xou T MECC otdhdnxoav oTov Slaxouiots, Tpoxel-
HEVOU VOl BLIGPUALOTEL 1) B TIXOTNTA TWY YENOTWYV.
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0.2.3 E&ay9évia XopaxtneltoTixd

To clvoho Sedouévwv ExtraSensory nepiéyel enlong ta axdroudo yapaxtneiotixd, ta onofo éyouv e&orydel omod
ToL oAt And Toug Tpoavapeplévies alodntrpes, we axorollng:

o Emitayuvoldpetpo xot yupooxdmio EEuntvou xuvntol (26 yapaktnpotikd). Acdopévou 6t
oL ypfoteg elvan gehellepol va yenotpomololy to €EUnvo TNAEPMVO TOUC HUE OTOLOVONTOTE TEOTO TOUG
Bohelel xou BeV €LVl UTOYPEWUEVOL VO TO TPOGURTOLY G cuYXEXEWEVN F€am, Bev unopel vo Yewendel 6Tt
elvon mpocavatolopévo pe ouyxexpiwévo tpémo. I Tov Adéyo autd, dev anoddinxe Wialtepn onuoscio
OE OVEVOY amtd TOUG GEOVEC TOU EEUTVOU TNAEQPWVOU XOL TO TEQLOCOTERO YOPUXTNELOTIXE e&dyovTol
andé to mAdtoc tou ofuatos. To Swvuopatind ohpa TAdTous utoloyiotnxe we 1 Euxheldeia vopua tng
péteNnomg NG EMTAYUVONE GTouG TeElS dEoveg, oe xdle ypovixh otypr. ‘Eneita, e&iydnoay to axdrouvda
YOEAXTNELOTLXSL:

— Evvéa Baoixd otatiotind yopaxtnetotind Tou ohpatog TAdtous: UEcog dpog, TumxY| andxAiom, Teltn
pomy), TéTapTn pomi), 25° exatootnuodplo, 50° exatooTnudelo, 75° exatooTnuédelo, evipomia TWAC
(evtpomia mou umohoyileton and €va ITOYpopUA XPAVTIOUOU TV TV TAdtouc ot 20 bins) xou
evtponia ypdvou (evipornio mou vohoyiletar and THY XUVOVIXOTOMGT TOU CAUATOSC TAATOUS XL TOV
XELRLOUO TOU w¢ xatavour mdavetnTag, 1 omolo £xel oyedLACTEL Yiol Vo aviy VEVEL dLyUES OTO YpEdVO,
dnhadt| Eapvixée axpolec AUEOUEIDOELS OTO TAETOG).

— 'E& goopatixd yopaxtneioTxd tou ofuatog mhdtous: Aoyapduwéc evépyees oe 5 unolodves (0-
0.5Hz, 0.5-1Hz, 1-3Hz, 3-5Hz, >5Hz) %o @ooyotixs eviponia.

— A¥o yopoxtnploTnd auTocuoYETIoNS and To o TAdTous. O pécoc dpoc Tou GhPAToS TAATOUS
(ouviotiroo DC) agoupédnxe xat 1 GUVEETNOT QUTOCUCYETIONG UTOAOYIOTIXE %ot XavOVIXOTOLHOXE
étol Kote N T autoocucyétione oto lag 0 va elvan 1. Evtoniotnxe n yéylotn Tiun yetd tov xlplo
AoB6. H avtiotoiyn neplodog oe deutepdiento unoloyioTnxe we 1 xuplapyT TepLodXdTNTA Xt e€XyUn
eNONG 1) XOVOVIXOTOINUEVT] T AUTOCUCYETIONG TIG.

— Evvéa otatiotind otouyeia tne ypovooelpds Toldy afdvmv: o uécog dpog xou 1 Tutxy andxhior) xdie
G€oval xou oL 3 cLVTEAEGTEC CLUOYETIONG UETAED TWY AEOVLV.

e Emitayuvoidpetpo €Eunvou pohoyiol (46 yapaktnpiotikd). Aedouévou bt o €Eunvo pohdt
ToMOVETE(TOL UE CUYXEXPWEVO TEOTO YUPW amd TOV %Apnd TOu YEHoTN, UTopel vo amodolel vénua ctoug
G€ovéc tou. ‘Etol, extdg and ta idia 26 yapoxtneioTind nou mpoavapépinxay, 20 emnhéoy yopaxTneloTixd
e€fynoav and ta un enelepyaouévo oNUATA TOL GUAAEYTUNXAY oo TO ETMULTOYUVOLOUETEO TOU €EUTVOU
pohoyLol:

— Aexanévte yopoxtnelotixd ewdixd yio xdde d€ova: Aoyoprduxéc evépyeleg otig (Bleg unolwves 6w
mopandve (0-0,5Hz, 0,5-1Hz, 1-3Hz, 3-5Hz, >5Hz), adl& vnoloylopéves yio 1o ofpa xdde dZova
EeYLPLOTA.

— IIévte yapaxtnplotnd oyetxhc xatedYuvong: HYETA TOV UTOAOYIOUS TNG OUOdTNTAS ouvnuitovou
HETAED TOV %xaTeVIOVOEWY NS ETMLTAYLVONG OTOLWVYINTOTE BUO YPOVIXMY ONUEIY TS YPOVOOELRdS,
unohoyloTnxay oL UECEC TWES QUTWV TV TWOV ot 5 dlapopeTinés neployéc time-lag yetald Ttwy
SLYXPLYOUEVLY Ypovixwy otiyumy (0-0.5sec, 0.5-1sec, 1-5sec, 5-10sec, >10sec).

o Kotaypap? Oéong (17 yapaxtnprotikd). To yapoxtnplotind 9éone nov e&fydnoav Pacilovton uévo
oc oyeTxég VECELS, TEOXEWEVOU TO GUVONO BeBOPEVLY Vo uTtopel var yevixeuTtel xaAbTEPA OE OTOLBNTOTE
Vé€on xou var unv meplopileton oty meploy) e movemotnovtolne USCD énou éyive 1 cUAoYT Twv
dedouévov. E&iydnoav to axdlovda yapauxtneltotind:

— "B yopaxtnpiotind unoloylotnxay omeudelac 0To TAEQOVO: TUTIXY OMOXALOY) TOU YEWYEOPLXOL
TAATOUC, TUTIXY] AOXALOT| TOU YEWYEAUPLXOU Ux0oug, HETABOAY TOU YEWYEAUPIXOU TAATOUS, UETUSOAY
TOU YEWYEAUPLXOU Uxoug, HECT AmOALTY TYH TNE TOEAYWYOU TOU YEWYQEUPIXO) TAGTOUC ol UEOT
AmOAUTY THY) TNG TOPAYWYOU TOU YEWYEAUPLXOU Uxoug.

— "Evtexa oxoun yapoxtneiotid vroloyiotnxay €€ anootdoeng Ue Bdor Ti¢ UETAOOOUEVES UETPTOELS
Véong: apriudc evnuepwoewy, Aoydptduoc Tou Yewypapxod TAdTous, Aoydorduog Tou YewYpapxold
unipoug, eAdyioto LPouETEO, PEYLOTO LPOUETEO, ENAYLOTY TayUTNTA, PEYLOTY ToyOTNTA, XohOTEEN
(younhbtepn) xatoxdpuen oxpifela, xohOtepn (yaunhoteprn) opldvtia axpifeor xon Siduetpoc
(uéyion andotoor petall dvo Yéoewyv oto Topddupo xataypaphic, oc uétea).
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0.2. To X0volo Aedopévwv ExtraSensory

o Koataypagp?h Ayouv (26 xapaxtnpiotikd). And tn ypovooeipd twv 13-Sidotatov Svuoudtewv MECC
unoloylotnxay 1 péon Tir xou 1 TuTxy) andxhion xadevog and Toug 13 cuvteleoTéc.

o Katdotaon €Eunvou xwvntol (34 xapaktnpotikd). Xenowonofdnxay pévo or doxpitéc
TANEOYORIEC XATACTAONC TV EEUTVRV TNAEPWVLY, oL oToleg avanaplotavTa pe £va 26-8ldotato dldvuoua
one-hot. I'io x&0e plo amd Tic axdrouldeg WBLOTNTES, Yenowonotinxe évag duadixde delixtng yio xdie pio
and tic miaveg TWES, xadde xon Evag emmpocdetog Belxtng mou uTodeEVUEL EAMTY Sedouéva.

— Koatdotaon egopuoyic (3 emhoyéc: evepyd, avevepyd, povto)

— Mrnotapio cuvdedepévr (3 emhoyéc: AC, USB, aclpuato)

— Koatdotaon prataploc (6 emhoyéc: dyvwoty, anocuvledeuévn, un @opTion, ano@opTion, QOpTLoN,

mAienc)

— Y& mhegwvix xhior (2 emhoyéc: True, False)

— Aertovpyia xoudouvicpatoc (3 emhoyéc: xavovxd, addpufo ywpeic 86vnom, addpufo ue ddvnomn)

— Koatdotaon Wi-Fi (3 emhoyéc: un mpooBdoipo, tpocBdoipo péow WiFi, tpooBdoiwo yéow WWAN)
‘Ocov agopd otig mAnpogopies vl v Gpo TS Muépag Yl xde Belypa, 1 ypovooppeayldo Tou
xenowomnojdnxe yio vo e€aydel 1 ocuviotdoo e pog (wo and T 24 Slopités Tée). XN cuvEyELa,
onuovpyHinxav 8 yeovixd ebprn ue wor) emxdivdn: peodvuyta-6ny, 3ny-9ny, 6mu-yeonuéet, 9mu-3uy,
peonuépl-6uu, up-9up, Guu-yecdvuyta xon Juu-3ny. H dpo xdde delypatoc avanapiotdton pe o duodiny
Ty 8-bit, 6mou axpiBne 2 bins Yo elvon evepyd.

0.2.4 E<wxézec

Yrov Iivoxa 1 napousidloupe tig 51 enxéteg dpdoewy xou mhatciov mou mepthauBdvovion 6To GUVOAO SeBoUEVWY
ExtraSensory. O xde ypfotne unopoloe vo emionuetmvel xdde otyur 6heg Tic ouvagelc ye Tig dpdoelg Tou
eTéTeC, xou €Tol xdde delypa Tou mpoxdnTovtog cuVOLoL Bedouévou elval emionueElwPéVo e Uia 1} TeplocdTepe
enwxétec. H opadomoinoy otov Ilivaxa dev eumepiéyel mhnpogopia Yol aAANAOATOXAEIOUEVES ETIXETES, KOO
oL YPNoTEC XaTd TN Bidpxela TG cuAOYTC Bedouévwy elyav eheudeplo xotd TV emoNUelwon TwY dpdoewy.
O Ilivaxag dnuovpydnxe and euds xon amooxonel omhd oty xoh0Tepn TUEOUGIAOT) TWV ETIXETWY XL OTNY
evvololoyixy] opadonoinoy) Toug Y TV xah0OTeERn XoTAvOnCT TOu TEOBAAUATOS avayveione ovipnmivev
Bpdoewy oL €YOoupE Vo Bl ELELETOVUE.

Ot etixétec Tou ouvélou Bedopévwv ExtraSensory ouoabdonoimuéves evvolohoyixd

Ocpatiny Etuxéteg

Y 1dom,/Kivnon “Lying down”, “Sitting”, “Standing”, “Walking”, “Running”, “Bicycling”

Ewueq Kivnon “Strolling”, “Stairs - Going up”, “Stairs - Going down”, “Elevator”

O¢on Kivntol “Phone in pocket”, “Phone in hand”, “Phone in bag”, “Phone on table”

Epyaoio “In class”, “Lab work”, “Computer work”, “In a meeting”

TonoVeolec “At home”, “At school”, “At main workplace”, “At a restaurant”, “At a bar”,
“At a party”, “At the gym”, “At the beach”

Metaxivnon “In a car”, “On a bus", “Drive - Driver", “Drive - Passenger"

Aovleée Lmtiol “Shopping”, “Cooking”, “Cleaning”, “Doing laundry”, “Washing dishes”

Avtogpovtida “Bathing - Shower”, “Toilet”, “Grooming”, “Dressing”, “Sleeping”

Exeldepoc Xpbvoe  “Exercise”, “Eating”, “Drinking alcohol”, “Watching TV”, “Surfing the internet”,
“Talking”, “Singing”

Juvtpo@Ld “With co-workers”, “With friends”
ITepBdAhov “Indoors”, “Outside”

Table 1: Awnoctntiny opadonoinoy tewv eUxetdv dpdocwy xou Thatciou Tou cuvéiou dedopévwy ExtraSensory

Koatd ) didpxeta tng culhoyric Sedopévwy, o xpRotng avd ndoa oTyur unopoloe Vo ETLCTUELDVEL GTT) EQUPUOYT
TIC SpACTNELOTNTES TTOU EXTEAEl Xai TaL cLVOPT TAAlCLL. LUVETWE TO GUVOAO Bedouévwy mou dnulovpyRinxe, Yo
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Chapter 0. Extetopévrn Ieptindm

xde delypo mepielye xan éva didvuoua 51 duadidv Ty, Katd tnv eneepyacia Tou cuvélou dedoyévou and
TOUC ONULOVEYOUS TOU, XATOLEC €TETEC UeToTedmnxay o “missing labels” xou emonuewddnxay ue NaN. Eni
¢ ovaiog, oL eTixéteg Tou elvan emionuelwuéveg e NaN oto tehixd olvolro dedouévwy, elvan €va utooUVolo
TV Tpa ypatikdy missing labels (twv etixetdv ov elte o ypRotne napéler)e vo eTIoTUEWDOEL, Elte emonpeiwoE
Aovdoopéva ondTe dev unopolue vo yvwpiloude av elvor aflOTIoTES), Xat £X0uV avty VEUDE! Ue EVPLOTIXEC TEYVIXECS,
omwe Y. ov éva delypa €yel emonueiwdel pe 800 PeaAoTIXG dOBaltC ATOXAELOUEVES ETIXETEC TAUTOYPOVA,
ag mouue “Sleeping” xou “Running”, téte xan ot 500 umopoliv va tetdolv w¢ missing labels xadd¢ dev unopodue
vo yvwpilouye mola efvon 1 0wo T ondte xahbTtepa Vo g1 AdBouue untddm xoplo aro Tig dVo. Autr 1 Sodixacia
€ylve amd TOug EPELVNTEC TOU dMULoVEYNoaY To GUVOLO Jedouévwy, €Tol Kote Vo Yetwdolyv 6co yiveton T
OPIAPATO OTLC ETUONUELDTELS, Ywels BéBona var efvon epuetd var oviyveudoly e autdv Tov TpéTo GAo Tor Adin xon
ot mapoheideic. Bonddel dpwe oto vo un Aopfdvouy tar povtéha UnoYn XETOLES ETUONUELDOELS TTOU UTOPOUKE UE
olyoupld Vo xatahdBoude Twe elvon eTLo@oielc, ayvomvTag TIC missing eTxéteg 0Tov unohoyloud Tou loss.

0.3 Ileipopoatixy Awdtoln

0.3.1 Pudploeig Iepapdtwy

Ye 6o ta mepdpata yenowdonoleltar To “Core” umocUvoho tou cuvohou dedouévewy ExtraSensory, to omolo
nepiapBdver 169001 Seiyuota mou €youv uetprioelc xou and toug €€l Baoixols aoUNTARES: EMLTOYUVOLOUETEO,
YUPOOXOTIO, YeTENoEL BEOMG, XATAYPapY| H)YOU %ol XUTACTAGY, TRAEPOVOL and To €UtV XvNTd TNAEQWVO, Xal
ETUTOYUVOLOPETPO b TO €EUTVO POAOL.

Ta povtéha yoc pe Bdon to eldoc twv dedouévmy Tou yenoldonotobvtal Yo TV exnaidevcn Toug, Uropoly va
Ywelotoly oe 800 xatnyoplec:

e Movtéla mou YXeMoLkoToLoLY To eZayVEVTA YAPAKTNELOTIXA. LTA UOVTEAN AUTA YETO\-
ponololue we elcodo Yo xdde delyua ta cuvolxd 175 mpoavapepdévto yapuxtneloTixd and toug €EL
Baoixolg arcdnTrpee.

e MovTtéla TOU XENOLLOTOLOUY TLE UETEPNOELS TV oUCUNTARP®Y. LTA HOVTENN QUTE YpNOLHo-
TOLOVPE TLC UETENOELS OO TO EMLTUYUVOLOUETRO XOL TO YUPOOXOTLO TOU EEUTVOU TNAEPMVOL ol omd TO
EMUTAYUVOLOUETEO TOU €€unvou poloYlol, xan TN yeovooelpd twv MFCC 6cov agopd otov fyo. T
¢ petprioel Yéone xou TNV XATdoTaoY TOU TRAEQPWVOL Ypnoldonololue o tpoavapeplévta edaydévta
yopaxtneloTixd. ‘Ocov agopd To PAXOC TWV YENOLLOTOLOVUEV®WY YEOVOOELRMY, €Neldr) Olopépel avd
awodntrpo and delyuo oe delyua AoYw Blapoponotoewy o1 SLEEXELN TOU ToRatiPOU XUTAYPUPTC, VLo Vol
unopolue va yenoonoticoupe Buvehixtid Nevpwvixd Aixtua, optlouye éva otadepd uixoc xpovooeipdc
avé oucOnthpa (to avopevéuevo ue Bdon T cuyvétnta derypotoindiag tou xdde awodntipo yio Toug
adpavelonolc, xou audoalpeTa yiot ToV 1}0), To onolo givon 800 Lol TO ETUTAYUVOLOPETPO Xl TO YURPOGKOTLO
Tou €€unvou TnAep@vou, 500 yia To ETLTAYUVOLOUETEO Tou EEuTvou poloyiol, xat 700 yia TN ypeovooeled
twv MFCC, xau oty nepintwon mou 1 ypovooelpd tou xdde delyuoatog dev €xel To embuuntd urixog, Tny
enavahaufdvouye oAOxANEY €we 6Tou @Tdooupe oto emduuntd uixoc. Auth 1 diadxaocia elodyel xdmota
artifacts ota dedouévoa pag, oAAd elvan mpoTiunTéa évavtt Tou zero padding ¥ Tou padding yernowonoldvtog
v tereutaio Srdéoudn T TG XPOVoCELRdS.

Tao povtéha pac pe Bdon to nhidoc twv Setypdtonv mou hauPdvouy otny elcodd Toug, Unopody Vo YWELeToLY o
B0 xatnyoplec:

, "y 2 : . . . . . ;
e Movtéla nou xpnoipronololy €va deiypa. Ta yovtéha autd AauBdvouy otny elcodo éva delypa
%ol TPOBAETOLY TIG ETIXETEC TOV.

e Movtéla mTou XeMoLLOTOLOUY (it axoloLBia Bradoyixedy detyudtwy. To poviéha avtd
haBdvouv otny eloodo wa axohoudio deryUdtomy SlaBoyindy AETTMY, Xt €Y0UY W oToOY0 Vo TEoBAEPoLY
g eTiéteg Tou TeAeutaiou Belypatog. llapéyouue cuvende mAnpogople Yo To dueco mopeAdov. Lta
nepdpatd poc doxydoope axohovdice detypdtwv ye pixn {5, 10, 15, 30} delypato, dnhadh and 5 éwc
30 Aentd, ool xdde delypo avtiotolyel oe éva Aentd. Xe mepintwon nou to Belyyo Yo xdmolo and T
Aemtd tne axohoudiog Badoyxdy nopeAdovTixey BerypdTwy dev elvon Slodéoluo T1o GUVOAO BEBOUEVWLY,
yenowonololpe Eovd to delypa Tou axplBde enduerov AentoL.
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0.3. IHewpopatixr Awdtagn

Il xdde povtélo, oe xdde melpaya, cite yprnowwonololye tao HON elayVévra yapaxtnpiotixd eite Tic
oVETEEEPYAUOTEG UETPHOELS TWV oUoUNTARWY, TEWV YENOWOTOLCOUPE TA OEBOMEV, TO XOVOVIXOTOLOUUE
(standardization). T tn Swdixoaoio outh yenowonowiue ™ wéon Tuh xou Ty Tumxy andxhion yio xdde
YOPOXTNELOTING (GTAY YENOULOTIOLOVUE YopaxTNELoTd 0¢ e{c0d0) 1 yio xdde cnodnthpa (6tav yenoulonotolye to
oot and Toug aoUNTHPES we £lcodo), dnne avtéc £youy npoocdloploTel and To exdoTtote clvolo exnaldeuone
yioe Ty xdde enovdindn tou five-fold cross validation. ‘Otov yenowonotolyue o 1dn e€aydévta yopaxntneloTind
w¢ loodo, av undpyouv missing values oe xEmOLXL YOEUXTNELOTIXG, ToL VETOLUE GTNY TWH UNOEV Aol €youue
XUVOVIXOTIOLOEL TA YUPUXTNPLOTIXE, X0l ETOL PEPOLY TAEOV TN UECT] TULY) TOU YopUXTNELOTIXOU BAGEL TOU GUVOAOU
exmaldevong.

Xernowwonololye batch_size = 32 xatd tnv exnaidevon 6hwv twv pwoviédwv. ‘Ocov agopd T cuvdpetnom
%x60TOoUE, Yenotwonololue éva custom loss Baciopévo oto torch.nn.BCEWithLogitsLoss, eha@pdc tpomo-
TONUEVO (OOTE Vo ETULTEETEL TO duvapix6 masking avd batch xou avéd otouyeio ota loss matrices (étol dote
vo. undeviCouue to oTolyela Tou Tivaxa TOU avTioTolyolv ot missing ground-truth labels oe xdde batch
oL VoL Ny xenoudonotolviol otov unohoyiopd tou loss). Eriong, to pos_weight ypnowonoteiton yio
otdduon deryudtwy wote va Angdel unédn 1 avicopponio oTov apiud Twv YeTindy detypdtwy avd eTixéta,
noAamhaoldlovtac Tov 6po Tou aviiotolyel oto VeTind delypota yia TNV ETIXETA 0T CLUVAPTNOY XOOTOUG, UE
TO AOYO TV dpVNTIX®V Tpog Ta YeTnd delypata yio oautr) Tnv eTxéta 0to cUvoho exnaldevons. Emniéov,
xenowonotovue tov Adam [KB15| optimizer yio tnv exnaideuon 6wy twv poviéhov, xo npocapudlouye To
learning rate avdAoyo PE TNV AEYLTEXTOVIXN Xol TOV dpldud TopaUéTenmY Tou xdde wovtélou.

Kotd 7o inference, ov cuveyeic mpoBAédeic twv povtéhou nepvoly amd pa cuvdpTnom evepyomoinone Sigmoid
XL OTN CUVEYELD peTotpénovion oe duadnée e€6doug epapuolovtog xatwdeht 0.5. Ou yetpés allohdynong
unohoy(lovton yio xdde eteéta yenoylonoldvtog dha ta delyporta ta onola dev €youv ground-truth emonueivon
“missing label” yio ™) cuyxexpuévn eTixéTa.

H Noyiotny| nakivdpdunor xon ot etpixéc aloAdynong yia dha tor Lovtéla €youy vlononmdel yenotuomoldvTag
™ PModfxn scikit-learn [Ped+11]. Ta veupwvixd dixtua éyouy vhonowmdel ye tn yerfion PyTorch [Pas+19].

0.3.2 Metpixéc AZLoNoYTOTNS

Ipoxewévou va aflohoyAoouue Ty anddoot) e avayvopeions avlpnnivey dpdoewy Ye TOAES xat TOAATAES
euxétee, in-the-wild, eapuodlouvye éva cbotnua 5-fold cross validation, pe 12 yproteg oe xdie fold. Kpatchvtog
oe xde emavdindn o éva amd to névte folds we test set, xatodfyouue vo éxouue 48 yerioteg oto clvolo
exnaideuong xou 12 yprioteg 6to cUvVolo Soxunc ot xdie emavaindy. Kotd t diadcacio cross validation yua
x&e enavdAndn: xpatdue to emheypévo fold yia va yenowonomndel we ohvolo Soxunc, exnoudeboupe évay
tadivounth ota undhoina técoepa folds, xat émerta xdvoupe infernece oto chvoro doxrc.

EravohauBdvoupe auth 0 diaduacia tévte @opéc ouvohixd, étol dote xdie fold va elvan to test set oe pla
enavdindn. Me autdv tov tpémo cUAREYouuE T TEOPBAEPELC ETIXETOY TOU UOVTENOL HOC, YLol OAOXANEO TO
oclUvoho dedopévwy ExtraSensory. I'io xdde fold xou yia xdide etinéra, yetpdye to mhidoc twv AAnide Oty
(True Positives — TP), twv Adndde Apynuxdyv (True Negatives — TN), twv Teudde Oetixtdyv (False Positives
— FP) xou v Peudne Apvnuxddv (False Negatives — FN) twv anoteheopdtwy tne npdfredne oto test set. Ot
aptipol Twv TP, TN, FP xaw FN adpoilovtor yia tar 5 folds xou unoroyilovton or axdhouvdec yetpixéc:

o Accuracy eival T0 TOGOOTO TWY CWOTA TAELVOUNUEVKDY SELYUATWY Nl TOU GUVOAOU TKV BELYUdTwLY.

TP+ TN

3.1
TP+TN+FP+ FN (03.1)

Accuracy =

o AxpiBeia (Precision) elvon t0 1060016 TV 0wOTA Tallvopnuévewy deryudtny oand to delyuato Tou

to€ivopninxoy o¢ Yetixd:

. TP
Precision = m (032)

o True Positive Rate (TPR), nov ovopdleton enione EvaioOnoia (Sensitivity) £, AvdkAnon (Recall), eivou
T0 T0000TH TV YeTUDY delyudTwy Tou Tadivouinxay cwotd we Yetnd:

TP

Sensitivity = Recall = TPR = m

(0.3.3)
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Chapter 0. Extetopévrn Ieptindm

e True Negative Rate (TNR), mou ovopdleton erione Eibikétnra (Specificity), eivar to nocooctd twv

oEYNTIXWY BELYUATeVY Tou Toivouiinxay onoTd we dpvnTixd:

TN

ficity — TNR —
Speci ficity R TN+ FP

o Fl-score (F1) elvon o opuovinde yéoog poc e Axpifelac xou tne Avdxnong:
1o 2+xTPR * Prec

~ TPR+ Prec
e Balanced Accuracy (BA) elvar o péooc dpoc tne Evanodnoioc xou tne Edwdtntoc:

_ TPR+TNR

BA 5

0.4 Ilewpdpoto xaw ATOTEAECUATA

(0.3.4)

(0.3.5)

(0.3.6)

Yrov Hivaxa 2, éyovue cuYxeEVTPMOOEL Tic VPNASTERES TWES TWY PETEIXMY ombdoone mou AdBoaue yio xadéva
omd TA HOVTENX TOU UAOTIOLACUUE X0t BOXWACUUE OE ot TN SimAwuatixy epyaoia, yio va cuvodicouye Ta

anoTteAéopaTd Log xou vo eEQYOUUE YPNOWES THPATNENOELS.

SUYXELTIXN ETOXOTNOY TWV UECWY HETEXDV AELONOYNOTNG YIot OAEC TIC ETIXETEC
XENOWOTOLDOVTAC Yia x&¥e LovTéNO T BEATIOTEC UNEPTAUPOUETEOUS PACEL TWV TELRAUATWY Uog
Mov=e-
Eicodog 7‘;:2:}"]60_"'] Movtéio || Accuracy | Precision | Sensitivity | Specificity | F1-score BA
CELRPWYV
Tuyados 0.500 0.110 0.500 0.500 0.137 | 0.500
To&Lvountc
Tagivounthc
TAeLoPNELic 0.915 NaN 0.040 0.958 0.037 0.499
hdone
) ) LR [VWL18] 0.832 - 0.597 0.838 - 0.718
L | 0.839 0.246 0.612 0.844 0.314 0.728
NPT delyuo
oLt (Aert6) MLP [VWL18] 0.773 - 0.773 0.773 - 0.773
MLP 0.786 0.228 0.757 0.786 0.298 0.772
BILSTM 0.813 0.243 0.753 0.814 0.316 0.784
(last output)
BIiLSTM 0.810 0.241 0.761 0.811 0.314 0.786
EZay9évta| Axoloudia (all (XltPUt?)
xopaan- | Berypdrwy |Sel-Attention || g o) g 0.248 0.756 0.819 0.323 | 0.788
pLOTIXG (Aemtdv) & BiLSTM
BiLSTM &
Cross- 0.800 0.238 0.767 0.801 0.309 0.784
Attention
Aedoyéva ‘Eva CNN 0.782 0.228 0.762 0.781 0.296 0.772
awodnth- | Oetypa | ONN & 0.792 0.229 0.759 0.790 0.300 | 0.774
WV (Aentd) | Transfomer
Acedoyéva | Axohoudia CNN
awoVnTh- Bswpa‘,tmv | BiLSTM 0.819 0.241 0.728 0.821 0.313 0.775
pwV (Aemtdv)

Table 2: Emioxénnom 1oV p€owv YETE®V anddoone yio OAeg T eTéTeS, yia xdde poviého

YupnephopBdvouye 300 TETELUPEVOUS TOELVOUNTES Yial VoL AmOBEIEOUUE OTL T LOVTENDL TTOU XOTACXEVICUUE elval

7

onuovTXd xaibtepo and évav tuyaio tadivount 1 évay tadivounth mhetodneuic xhdong. IepihopPdvoupe
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0.4. Ilewpdpoto xou Anoteréoporo

eniong to B0 baseline yovtéla mou mpotddnxay amd TOUC ELELVNTEC TOU dNUOVEYNCAY TO GUVOAO BEBOUEVLV
ExtraSensory [VEL17; VWL18], ta onola eivan dueoo ouyxplowa ye ta govtéha mou avantiaue, xadoe ota
TELPAUOTE Lo YENOUWOTOLOVUE TO (510 UTOGUVOAD TWV BEBOUEVWY, TO (D10 oy fia Blay wplopoL xou cross-validation
TOU GUVOAOU BeBOUEVWY ol TO (Blo cUVOAO Dl eTixeTY.

Yrov Hivaxa 4.4 nopadétoupe 6heg i dnuootedoelc Tou TEOTEIVOLY HoVTEAA avay VopLone avitpwrivey dpdoewy
Yenowonoudvtoc 1o (Blo cbvolo dedouévev. dotéo0, €€ dowv yvwellovye, xapla and avtée Tic dnuooieloelg
dev mepthouBAveL TELPAUOTA YPNOULOTOWWVTAS apyttexTovixéc Minyavixrc Mddnong xow Bodide Mddnong mou va
elvan dueca ouyxplowa pe ) dwd poc (v v ouyxprdolv dlo apyttextovinéc autéc xad autéc npobinddeon
elvon var yenotomoteitar To (810 UTOCVUVOAD TWV BEBOUEVWY Xat TO (Blo Ty ua dloywpelolol xou cross-validation
7 To (Do test set yevdtepn, xan to (B0 olvolo euxetdv mov Véhouue va mpofiédoupe) xau eniong va
napdryel anoteléopata Topduota 1 xaAUtepa and to baseline anotehéopota. e mOAAEG and auTéC TG EpYaoiE,
yenowonolelton va BlapopeTixd, lxpdTepo test set ue Alyoug ypoTeg, eved oTa Sxd Yog TeLeduaTa XV YehoTng
nephapBdveton oo test set oxpBde oe pla and tic tévte emavalfideis Tou five-fold cross validation, xou étol yia
vor €8 yoUPE To TENXS OMOTEAECUATO XU TIC HETEIXES XpeNothomotolue Tig TpoBAédelc Tou povtélou yio bhoug
Toug XPNoTES, Amod TIC EMUEPOUS EXTTUDEVTELS Tou YovTélou. Enlong, oe moiléc amd Ti¢ epyaoieg, 1 dicpeuvdton
N avayvopLor avipntivey dpdoewy 6nou yenotporoLeltal €vol TOAD UIXPOTERO UTOGUVONO ETIXETOV-OTOYWY.

Yrov Iivaxa 2, éyouue ouumepthdPBel tig petpixés anodoone mou mpoéxuday and to axdiouda Lovtéhd, OTay
EXTIUSEVTNXOY YENOLLOTOLDOVTOG TLC UTEPTUPAUETEOUS TTOU TPOadLoploTnXay w¢ BEATIOTES UECK TWV TELPUUATLY
xo TV doxipey yog. To anoteAéopata moapovoldlovTal ouadoTolnuéva avahoYa PUE TOV TUTO TNE ELGOBOL XAl
avEAOYO UE TO AV HOVTENOTIOLOVUE €va hOVo Delyuo ¥ pior oxoloudia Beryudtwy.

0.4.1 Baselines

Apywd, yenowonowoope to oy IEVTa YopaxTNELOTIXG TOU TopéyovTal 6To olvoho dedopévwy ExtraSensory
yia xdde delyya xou poviehonojoaue éva uovo delypa mpoxeiévou vo tpofrédoupe Tic eTéTeC Bpdoemy Xal
mAatolou Tov, xou avamapaydyoue to baseline povtéha: hoylotiny naAvdpdunom yia xdde etixéta EexwploTd, Xau
€val VEupwvix6 dixtuo tonou multilayer perceptron to onoto cupfBoiiloupe we MLP(16, 16) nou mepthopPdver
800 %puYd enineda Twv 16 xOuBwv to xadéva, xau éva eninedo e€68ou ye 51 xépPoug mou avtioTolyoly ot 51
etéteg (Eyhuo 0.4.1).
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Trainable parameters: 4019 T

- Linear layers: 3955 y_gt
- Batch Norm: 64 (B x51)

Figure 0.4.1: To povtého MLP(16, 16) mou yenowonotfjiinxe we baseline

0.4.2 Apgidpopo LSTM

Y1 ouvéyela, ouveyloaue vo yenolonotodue tor oy IEvTa YoeaxTNELoTIXd, JAAG TWEO LOVTEAOTOLOVUE Uid
axoloudio Beryudtwy, tpoxeiévou va tpofrédoupe Tig eTxéteg Tou TeAeutalou delypoatog Tapéyovtos To TAdiolo
Tou duecou napeAtdvToc. Xenotwonoifioope éva BILSTM 800 emnédwmy yio var LovieAonolioouue Ty axoloudlo
BELYUATWY £10600L 1o doxiudooue 500 HOVTERA, VA YENOULOTOLOVTAS HOVO TIC TEAXES XPUPES XATACTACELS TWV
800 emmédwy tou BILSTM (EyAue 0.4.2a) xau éva ypnowwonotdvtog g e£680ug Tou teheutaiou emmédou Tou
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BiLSTM vyt 6how tor Buata tne ypovixfic oxohovdoc (Lyrua 0.4.2b). AdPBope ta xoahbtepa anotehéoyato xou
yia T 800 povtéha, dtav ddoaue pio axoroudia elo6dou urxoug window_len = 5 xou dTAV YENOLLOTOLACOUE To
hidden_size = 64 oe xddc eninedo tou BILSTM. Iapoatneolue 6Tt ot tiwée e petpnhic BA twv povtélwv,
nou etvan 0.784 xon 0.786 avtiotouya, lvan Behtiwyéveg oe oyéon e T TWéS Twv baseline yovtéhwv, mpdyua
Tou onuaivel 6TL 1) TpoPodETNoN Tou povTélou Pe pag oxohoutio 5 derypdtwy (Aentdv), ouunephauBavopévou
TOU TPEY0VTOC delypatog Yo To omoio Héhoupe va Tpofiédouye Tic eTétes, elval WPENUN Yo TO HOVTERO {HaC.
[ewpopatiotixaye enlong ye oxohovdleg Belyudtev HEYOADITEOU UAXOUS XAl BLATLOTOGUUE OTL xodde auEdvouue
10 unixog tng oxohouvdog €ng xan 30 Selyyata, 1 AdBOCT TOU HOVTENOU UELDVETOL.
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Trainable parameters: 235827 T
- BiLSTM: 222720 y_gt
- Linear layer: 13107 (B x51)
(a) Movtého BiLSTM ané to onolo yenowonototvton uévo to tehxd hidden states
masks
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Trainable parameters: 255411 T
- BILSTM: 222720 y_gt
- Linear layer: 32691 (B x51)

(b) Movtého BILSTM and to onolo ypnowwonoteitar 1 €é€0dog yior dha T Biwata tne ypovixhc axohouvdiog

Figure 0.4.2: To povtéla nou vhonojooue Boctopéva oe BILSTM

0.4.3 Apgidpopo LSTM pe Mnyaviowod Ilpocoyrg

Ta endueva nelpdpotd pog fitay tpoondieiee nepoutépw PBedtinwone tou povtéhou BILSTM. Apywd, enavidvovtac
T0 povtélo Paotopévo oto BILSTM 800 emnédwy e Mrnyavioud Avtonpocoyrc mou meonyeitar tou BiLSTM
000 emmédwy (EyAua 0.4.3a), emtuyydvouye mepautépws Pedtiwon tov BA, mou @ddver €w¢ to 0.788,
yenowonoudvtoe woévo Te Telxés xpupéc xatactdoelc tou BILSTM 80o emmédwv xon évav Mnyoavioud
Avtonpocoyfc ToAATA®Y xe@aAiwy pe num_heads = 5. 'Eva dhho yovtélo 1o onolo vhonotiooyue tepthopfdvel
évay Mrnyovioud Awaotovpotuevne Ilpocoyfc nolhamhedv xeqporody petd to BILSTM 800 emnédwv (Tyrua
0.4.3b). H éZodoc tou BILSTM vyt 6ha ta Brpota e ypovixric axohouvdiac yenollomoleiton Yo Thv Topay»wyYn
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0.4. Ilewpdpoto xou Anoteréoporo

Tou query Q, EVE T YORUXTNELOTIXG ELGOB0L Yenotdonololvtal yio TNy mopaywyy Tou key K xou Tou value V
Tou Mrnyaviopot Alactavpoluevng Ipocoyrc. Autd to poviého €xel mapduola anddoan UE TO OTAO HOVTENO
BILSTM pe BA 0.784, ahAd 0 YpNOLLOTOLO0UE YOl VO OTTLXOTOLACOUKME Xou va Uehetoouue to Bden tou
Mnyaviouol Atactavpoluevne Ilpocoync xatd to inference, yia va Siepeuviicouye tnv epunveucdTnTA TOU
HOVTENOU.
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|
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Trainable parameters: 359027
- Self-Attention: 123200
- BILSTM: 222720
- Linear layer: 13107 (B x51)
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(a) Movtého BiLSTM enavinuévo pe Mryoavioud Autonpocoyihc
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E
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v
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Trainable parameters: 322611
- BILSTM: 222720
- Cross-Attention: 34560
- Linear layer: 65331

(b) Movtého BILSTM enauvinuévo pye Mnyoviopd Awctavpoduevne Hpocoytc
Figure 0.4.3: To yovtéia nou viomoifioope Pactoyéva oe BILSTM xou enowénuéva pe Mnyovioud Ipocoyric

0.4.4 Eppnveuootnio

Yug Ewdveg 0.4.4, napotétoupe ta Bden tou Mnyaviopol Ilpocoyc xatd to inference yio evdewctind delyuota,
oe ouvduaouo pe Tic ground-truth etuéteg xou T enxéteg mou mpoéfiede 1o poviého pag.  Xto plots
autd, o dfovac x meplyel o 175 yapaxneloTixd €1cddou Twv Poaoixdv ao¥nNTenmy, opadoTolNUéve oV
aodntipa. O dfovac y avtioTtoiyel ota 5 ypovixd Brpata tne e£68ou tou BILSTM (to tpéyov hemtd xan ta
Tponyolueva técoepa Aentd). To o oxolpo ypwua avuotoryel ot yeyahitepa Bden. Ta Bden tov Mnyaviopol
Awaotavpotpevne Ilpocoytc yia neplocdtepa delypata topovotdalovtot exTevie oty Troevotnta 5.6.3.
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Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u04 at minute-precision timestamp 24010960
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(a) Ta Pden Tou Mnyoviouol Awctavpoluevne Ilpocoyhc yia Tov yeRotn u04 xou to Aentd £24010960
Tpoypatixée etixétes: Sitting, Indoors, At home, Computer work, Phone on table
Ewxétec mou npoBrépdnxav: Sitting, Indoors, At home, Surfing the internet, Computer work, Eating, Phone on table
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Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u06 at minute-precision timestamp 24057077
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(b) Ta Bden tou Mnyaviopol Awctaupotpevne Ipocoyhc yia tov yerotn udb xou to Aentd 24057077
Tlpaypatixée etixétec: Lying down, Sleeping, Indoors, At home, Phone on table
Euxétec mou npoPrépdnxav: Lying down, Sleeping, Indoors, At home, Phone on table
Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user ull at minute-precision timestamp 24031660
b
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(c) To Bden touv Mnyaviopol Aactaupolpevne Hpocoyhc yio tov yeHotn ull xou to hentd 24031660
Tpaypotixée etixétes: Sitting, In a car
Euxétec mou npoPAépdnxav: Sitting, Outside, In a car, On a bus, Drive - Driver, Drive - Passenger, Phone in
pocket, Shopping, At a party, At the beach, Phone in hand, Phone in bag, With friends

Figure 0.4.4: Ta Bdpn tTou Mnyaviouot Awctavpolpevng Hlpocoyrc
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0.4.5 E&aywyrn XapaxineltoTixwy Ue Juvehxtixd Nevpwvixd Aixtua

To enduevd pac PrAua Aoy vo apyicOUHE Vol YENOWOTOLOUUE TIC UVETEEEPYAOTES UETENOELS TV ouoUnTipwy
v x&e delyya, avtl yio ta e€aydévta yapaxtnetotixd. Ilpoteivoupe d0o apyitextovixéc mou Baoilovtar ot
Bodid Méinon yio v e€aywyy| yopaxtnplotiney and aveneépyaota dedopéva anointipny 66ov agopd oTic
YPOVOOELREC TOU EMLTAYLVOLOUETPOL, Yupooxomiou xau twv MFCC and to €€umvo xivntd xou Tou emitoyuv-
OLOPETEOU TOU EEUTVOU POAOYLOV.

H mpdytn apyrtextovix) (Zyfue 0.4.5a) eivan Baociouévn og nodld enineda Luvehntindv Nevpwvixav Axtiony
yioo TV ene€epyacia e ypovooelpds and xdde oawoOnthpa. Kaldéva and ta enineda nepihaufBdver: 2D/1D
Conv layer, leaky ReLU, Batch Normalization xou Dropout. H deltepn apyrtextovind (Lyfuo 0.4.5b)
elvon Boaotopévn oe Buvehixtind Nevpwvind Aixtua oe cuvduaopd pe eninedo Transformer Encoder yio tnv
ene€epyaoio TV xpovooelpdy xde acdntipa, xou nepthopPBdvel Téooepa emineda Luvehixtndv Neupwmvixohy
Awxtdwv axoloudolyeva ond dvo eninedo Transformer Encoder. Ko otic 8o nepintdoeie, éva MLP(16, 16)
hoPdvel wq eloodo Tig avamopactdoelg Bahidc uddnong mov mpoxvTTouy Yo va tpofiédel Tig eTixéteg Bpdoewy
xon mhonatou.

[Tapbho Tou aUTEC OL APYLTEXTOVIXES EEAYWYNG YUPOXTNELOTIXGY TP Yoryoy Tal XOAUTERA AmoTEAEGUOTA HeTAE)
OAWY TWV JPYLTEXTOVIXMY TOU SOXACOUE Yiot TNV eEaywyr YapoxtneioTixdy pe Bdorn tn Badid uddnorn oe
autd 10 olvoho dedopévwy, eoxohovdolv va pnv Eenepvolv to anotelécpota tou baseline MLP(16, 16) mou
yenowonolel we elcodo ta npo-e&ayEvTo YopoxTNELoTIXG.
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Trainable parameters: 1038259 (B x51)

- CNN modules: 1033152
- Linear layers: 5043
- LL Batch Norm: 64

(a) Movtého Baciopévo oe Buvehixtind Nevpwvixd Aixtuo

0.4.6 Xvuvehxtixd Nevpwvixd Alxtua xow Apgidpopno LSTM

To tehevtaio melpopa ota mhaioia tne mapoloug Simhwpatixhc epyactiog Baclotnxe xou Akl otn ypron Twv
avene€pyaoTwy UETPNOEWY and TOUC aoUNTHRES, ohAd T Yia Wit oxoloudia deryudtwy. Xenowonoudnxe
wa apyrtextovin Xpovind Kotaveunuévoy Tuveltixdv Nevpwvixdv Awxtioy (Time-Distributed CNN) yio
Y eE0yWYN YopOXTNELOTIXGDY Yot Oha Ta delypata Tng axoloudiac oGS0V Xt EMELTA LOVIENOTOLCUUE TNV
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(b) Movtého Bactopévo oe Luvehxtind Nevpwvixd Aixtua xou otpdpoata Transformer Encoder

Figure 0.4.5: Movtéha yia e€oywyy) YApoxTneto Ty Péce Luvextixdv Nevpwvixdy Axtdwy

axohovdior twv eCaydéviny avarapactdoewy pe éva BILSTM 800 emnédwv (Lyfuo 0.4.6), énwe xou ot
TpoNyolUeEva TELRAUATS woc To omola Tepielyay povieAonolnor axolouvdiog Sladoyxwy detyudtwy. 2otéco, o
T TNV TEpinTWoT, BeV Eyoupe xopla ovctaoTixn Bedtinon oty npoxinTouca Yetpxr BA mou élofe uéyiot
T 0.775 ota nelpdyatd pag, o obdyxplon e tny Ty 0.772 tne petpxric BA tou povtéhou Bacloyévou ota
Yuvehtnd Nevpwvind Aixtua mou povtelonolel éva uévo delypo. Ko o, TELQOUATIOTAXAUE EXTEVOC YE TIC
UTEPTIORUUETEOUE TOU UOVTEAOU oG O EXTIOUDEVCOUE BEXADEC LOVTEND, AAAG BEV XAUTAPEQUUE VO TAUEAY Sy OUUE
XOADTEQO AMOTEAECUATA UG TO OMOTEAECHATO TTOU TtapoLctdlovton e36.

0.4.7 Xvul7Tnonm

Iopatnpodye dti, dtay yenotponolioaue ta avene&épyaoto SeBoPéva amd Toug o UINTAEES XL TLC OPYLTEXTOVIXES
e€aywyNg YapaxTNElo TV Uéow Bahde Mddnone mou evonyotddnxay ot wovtéha pog, Sev xatapépaue Vo
ONULOVPYHOOVUE HOVTERX TIOU VO UTERTEPOUY omuavTixd évavtt tou baseline MLP(16, 16). Autd n Suoxolia
unopel evdeyouévwe vo amododel o Touldyiotov B0 TuEdyYovTEC TOL Umopolue Vo oxepTolpe. O mpwTog
TapdyovTag elvar 6Tt glvol TOAY TO XOLPACTIXY, XaL WE €X TOUTOL, TOAD o 8OOXOAY, 1 AemToueprc PLUULON
TWV UTEPTIUPUUETRGY TwV Bardlidy VELPWVIXMY LOVTEAWY TOL TiEplE YoV TohudpLiua enineda, To xoéva ue TOAAES
putuloweg unepnapauéteouc. H Beltiotonolnon autdv twv unepropauéteny and to undév eivon oAl ypovofBopa
xou omontel ToANoUG Thpoug, xou Bev elvor TEoQAvES TS Uropel var yivel ue €€UnvVo xal amoTEAECUATIXNG TEOTO.
‘Etot, évac Aéyog mou dev €youue TOAD BedTiwpéva anoteAéopato unopel vo elvor 6T, TaEOAO TOU XAVOUE WLol
extetopévn avalATnom yio Vo pUOHICOVUE TIC TES TGV UTERTUPUUETEWY TOU LOVTENOU, UTOREL VOL UMV XAUTOPEROUE
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0.4. Ilewpdpoto xou Anoteréoporo
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- CNN modules: 1698368
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Figure 0.4.6: To povtélo mou cuvBUAlel oy WYY YUPAXTNEIGTIXDY PEGL LUVEAX TV Nevpwvixdy Axtdwy
xai goviehonolnon plog oxoroudiag derypdtov ye BiILSTM

Vo BpolUe TIC XUAVTERES TWES TWV UTERTURUUETEWY YIoL TOV CUYXEXQLIEVO GUVBLIOUS UOVTEAOL ol GUVOAOU
dedouévmv. Xta povtéla mou yenotpomololoay e gicodo to KO e€uydévTa yopaxTEloTIXd, 6ToL 0 aptiude
TWV UTEPTOPAUUETPWY Tou €mpene Vo BeltiotonomPoly fray Tdlelc wxpdtepog, frav mo omiy 1 pdduon toug
O HATAPEQOUE VAL TTUPAYOUKE XOADTEQO AMOTEAECUATA TTOAD TLO EUXORAL.

O Beltepoc mapdyovtoc efvon 6Tl undpyel €va Blhnuua oyetixd pe to av ta hand-crafted yopoxtnplotixd %
oL Bardléc VEUPWVIXEC AVATOPUCTACELS ElVall XUATIAANAOTERES Yol TNV ovaryvadelon avipwmiviy Spdoewy, edixd
6TaY TEOXELTAL Yia OEBOUEVA TOU GUAAEYOVTAL EXTOC EpYacTNEion, xadoe Xal 68 TepITTOoELS 6Tou oTo inference
€youue YpoTteg mou dev €xel “Bel” To WOVTENOD XaTd TNV EXTOUBEVOT), Yial TOUEC OTO{OUE 1) AMECTACT) TNS XATUVOUNS
TOV OEDOUEVWY TOUC AO TNV XATavouY TwY dedopévwy exnaidevong urnopel va elvar yeyoldteen. Ilponyoduevn
épeuva oto Yépa autd éxel dedaydel and Touc Bento et al. [Ben+22| xa Swmiotdddnxe dtt xatd to inference
oe out-of-domain clvoha dedopévwy, Ta wovtéla mou yenoiwornololy hand-crafted yopoxtneiotind we elcodo
Telvouy va amodidouy xaibtepa. To svpruatd pog elvon clupwva ye autd to anoteréopota. Emniéov, dedopévou
6Tl Yenotgornololpe €va aOVoAo Bedouévewy mou mepthoBdvel TOAD TEQLOGOTERES ETXETES XOoL Elval TOAD un
Lo0pEOTNUEVD, YLoL TOAAEC amd Tig eTéteg €youne mohd Alya delyuota xou dnoUnTind oxe@TOUACTE OTL OL
avomapaoTdoele mou eEdyovtor amd to PBadd veupwvixd dixtuo v autée T etixétec dev Jo elvon robust.
Aebopévou 6Tl oTA TELPAUUTE Yoc OAEC Ol ETIXETES €youv TNV (Bla BapdTnTal XoTd ToV UTOAOYLOUS TWV PECWY
METEXOV Yol OAeC TiC eTXETES, aveddptnta and Tov dptdud twv deryudtwy mou €xouv emionueldel and Toug
yeroteg pe xdde eTiéta, €lval ONUAVTIXG YL TO UOVTENO Vo TpoBAETmEL TOCO TIC %OWVEC 600 XAl TIC OTAVIES
ETWETEC UE 600 TO BuVATOV UeyohlTtepn axpifeia, WoTe Vo TETOYOVUE XUAVTERES HECEC UETEIXES OVOLY VPLOTG.

Yuvolxd, mopatnewvtag tov Iivaxo 2, unopoltye va dolue 6Tt undpyel éva trade-off yeta€ld Sensitivity xou
Specificity. Ilopatnpolue 6Tl ToEOAO TOU ToL LOVTEAX TOU €Y0UV XOAUTERO AMOTENECUATA GTO GUYXEXPWIEVO
TEOBANUa avaryvoplong avidpntivey Spdoswv unopel va mopdyouy uPnAdTERES TIES o OTIS B0 peTpéS, oF
olUyxplom pe ta baselines ¥ ta mo adOvapo povtéra. Ouwe dtav exmoudedoude €va CUYXEXPLIEVO LOVTEAD UE
OLAPOPETIXEC TWEC UTEPTOPUUETEWY 1) OTOY EXTIUDEVOLUE TopdpoLa LoVTER, 6Tay To Sensitivity mou mpoximtel
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elvar udmrdtepo, To Specificity mou mpoxintel elvor cuvAdwe youniotepo. Emmhéov, mopatnpoluye 6Tl yia
Oho ot ovTéha, oL Twég Tou Sensitivity dev Bedtidvovtar onuavtind xon xuyaivovtow ot téc €wg xan 0.773.
Qotéoo, o Tée tou Specificity, ewdind otic Tepintooelg énou yenowonololue povtéha Bootopéva oe BiILSTM
xo oxohoudiec Bladoyxdy detyudtonv we eloodo, elvar auinuévec xou @tdvouv €we xon 0.810-0.820, mpdyuoa
mou onuaivel dtL xatd péoo bpo ol Weudde Oetinéc TEOPAEPELS AUTHOY TOV LOVTEAWY UELDVOVTOL CNUAVTIXG,
oe olUyxpion pe to baseline MLP(16, 16). Xe yevixéc ypoupéc, dedouévou 6Tl Boxudoape €vo eupl (pdoua
HOVTEAWY xou dev Umopéoope va tetdyouue BA peyolbtepn and yio tuy) mepinou 0.788, cuunepoivouye 61t elte
10 TEoBAnua elvan eyyevag duoeniluto eEoutiag Tou Yoplou xo TKV ATEAEIDY TOU GUVOLOU BESOUEVKY oL TA
neprddpla Bedtiwone elvar €€ oplopol oyetixd pixed, eite amanteltan yior pllixf) ohhoyr) TNV TEOGEYYLOT UoC
OTO CUYXEXPWEVO TPOBANUA avary vadptone avipwnivey dpdoewy Yo var Teox0Pouy eyoAUTERES BEATIOCELS OTLS
METPWES avaryvidpLome, elte xou tor dbo. Ilapouotdlouvye Wéec yia yeAhovuxt| épeuva otny evotnta 0.5.2.

0.5 Emniloyocg

0.5.1 Xvuveicgopég

YNV Topoloo SITAWUATIXY €pYAC(N, TEOYUATOTOLOUUE UL EXTEVY| UEAETY) TEVG GTLS APYLTEXTOVIXES VEURVIXWY
OTOWY YloL TNV avaryveplon avlpnnivey Spdoewy YeNoWOTOLOVTAS dedouéva Tou CUAAEYUNXOY oOE Un
eheyyouevee ouvdrixes (in-the-wild) péow @opntdyy cuoxev®y. XeENOWOTORCUUE TO GUVORO JEBOUEVLV
ExtraSensory, to omoio mepilopfdvel Sedouéva mou cuMEyUnxay and oaoUnTtipeg EEUTVWV TNAEPHOVOY %ol
EEUTVY pohoYudy omd 60 yprotee pe cuvolxd Téve and 300000 delypato (Aemtd), mouv cuvodelovton ond
51 etixéteg Bpdoewy xou mAociou, eved xdle TapddeLYUO ElVOL EMLOMUELOUEVO PE TOANUTAES OYETIXEC ETIXETEC.
‘Eyouue vionoufoet xou exmoudedoel moAudprdyo Lovtéha avayvoplong avipwrivey dpdoewy yevixol oxonol,
xau emiong ywele to wovtéha var hofdvouy urtddm Ty TAVTOTHTA TOU YEROTY, EVE GTO GUVOAO SoXIUNG Yio To
povTéla pag mepliauBdvouue uévo yprioteg mou dev “Brénel’ To YovTélo xatd TNy exnaldeuoy, YEYOvOg Tou
xohotd To €pyo pag axdun mo doxoro. Ou cuvelsgopés tne epyaociog pag cuvoilovtar wg axolobiwe:

o 'Eyouye yeletroel extevdg TN oxetiny) BifAloypapio yia Ty avayvopeiorn ovipwntiveoy dpdoewy Bdoet un
OTTIXAY AUoUNTHPWY PORTTHV GUGKEVMY XaL EYOVUE TopoLGLdoeL Wia dlegodr BBALOYpapIXT) avaoxoTNnon
OYETXd PE TNV TuTOTOUéVY Ododixacio avayvopione avlpwnivewy dpdocwy, mou mepthaudvel TNy
npoenegepyacia Twv dedouévey mou €youv culkeyVel péow Twv aoInTipwy, TNV TUNHaToTonoy Toug,
™y e€aywY YopaxTNeloTxdY xou Ty ta€ivounon. ‘Eyouue xatayeddel ta Siordéoipa, avoixtd chvola
OEBOUEVOV XL €YOUUE CUUTEQLAGPBEL TIC OMUAVTIXOTEPEC TEOXANOELS XU T OVOLXTA TEOBARUOTA TNG
avayveplong avipwnivov dpdoewy. ‘Eyouue, eniong, YEAETACEL TNV OEYLTEXTOVIXY XOL TNV EQUPUOYY
ONUoPAGY povTéhwy Padide udinone, cuurepthoUBavouévemy TV TEYVNTOY VELpYIXKOY dixtiwy (DNN),
TV CUVENXTIXOY VEupoVIXKY dxtimy (CNN), twv avadpouxdy veupwvixdv dixtiny (RNN) onwe
to LSTM xor to GRU, tou unyaviopol npocoyfc xou twv Transformers, oe epyaociec avayvodpiong
avipwnivev dpdoewy.

e 'Eyouue eVIpUPHOEL OTNY avaryviplon avipnnivey dpdoewy in-the-wild, 1 onola yetagpépel Tn diaducoscio
OUMNOYT|C DEBOUEVRDY amd TO TEODLYEYPOUUEVA GEVAPLAL DRACEWY XAl TNV EAEYYOUEVY XAUTAYQOPYH OF
gpyooTnploxd mepBdhhoy, o un eleyyoueva mepBdihovta tne mporypotixic Lwhc. ‘Eyouue pelethoel
dedopéva mou €youv cLAeY Vel xatd auTtdY ToV TEOTO, dTe To cUVolo dedouévwy ExtraSensory, To onolo
elvor TOAY TAOVOLO OE TEPLEYOUEVO XoU ETIXETEC Xal oVTIXATOTTE(CEL TIC BpAoTNELOTNTES TNS YO NUEQLVTC
Coe, ahAG 1) XEHoY TOU Yl TNV ovATTLEN HOVTEAWY avaryviplone avipnmivy dpdoewy €yel auEnuévn
TOAUTAOXOTNTA AOY® TWV EYYEVOV YOQUXTNELOTIXWY TOU, OTWS 1) axpola avicoppeotia 6To TAjog Twv
ETUXETWY, N UeYdheg ehheldeg deBouévwy amd toug aodnthpes, ol eAelelg, ol mapodeldeig xon tor Addn
ot Swdixacia Tng emonuelwong, o Yopufog oTa BEBOYEVA At TOU UGUNTHRES, XS Xal 1) BLaTEOCKTLXY
%ol EVOOTEOoWTXT] UETOBANTOHTNTA OTNY EXTEAECT] TOV BLAPOPWY BRUCTNELOTHTWY TNE XAINUERLVOTNTOC.

o 'Eyouue ohoxAnpdoel plo. cUCTNUATIXY X0t EXTETOUEVY Blepebvnor Hovtéhwv Minyovixre Mddnone xou
Badide Mdinone yia yevixol oxomol aviyveuorn aviponivwy dpdoewv, yopaxtnetlopevy ond ToANEC
xol TOAOMAEG eTx€teg, oTtneilduevn otn cUALoYY| dedouévwy in-the-wild. Xto melpduotd pog €youue
yenowonoljoel to obvolo dedopévwy ExtraSensory xou tic mpoavagepieioeg 51 etixéteg Spdoewy xou
mharotou. Mot Aemtouephc EMOXOTNOY) GAWY TOV TELRUUATOY XL TWY ATOTEAECUGTWY Wog elvar Slondéotun
oty Evétnra 0.4. Xuvontixd, éyouue avamopoydyel ta xoahbtepo dladéouuo baseline povtéla, to onolo
XENOUOTOLOY Tal 101N e€ayVEVTA YopoXTNELOTXG TOU GUVOROU BEBOPEVGY, XL EYOUHUE TROTEIVEL LOVTERN
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ot omolar GUPPLVL PE Tal TELRPaTd Yag epgavilouv Bedtiouévn BA cuyxpeitind pe to baseline. Avtd ta
povtéla Boaoilovtar oe évo BILSTM 6800 eminédwy, to onolo déyetan wq elcodo wa axoroudia Slaboyixdv
BELYUdTWY, YENoLoToldvTaS xou Tdhl tar HO1 e€oydévta yapaxtnplotxd. H mpootixn evéc unyoviopod
autonpocoyric ety and o BILSTM 600 emnédwy Behtinoe nepountépw tn weteinh) BA. Iepapatiotixoue
eniong pe ™ xeNRoN TwV AVETEEEPYAOTMOVY HETPHOEWY TV atoUNTAPWY Yl TNV EEXYWYT YAUPUXTNELOTIXDY
péow morhamiwy emnédwv CNN ¥ CNN-Transformer nou evowUATOOUUE OTO UOVTENO HOg, VLo EVa HOVO
delyua, 1) o ouvduaopd ue éva BILSTM yia tn povtelonoinon pog axorouvdiog derypdtov. oté6c0, autd
To MELpdaTa BEV AR Yoryoy TOAD xaAUTERY anoTeAéopaTa and Ta baseline.

Emniéov, npoonadfiooue vo HEAETACOUME TOV TEOTO AELTOLEY(OG TWV UOVTEAWY YOS, VAOTOLOVTOG €Vl
HOVTENO ouyxexpléva Y autdy Tov oxond. Enavirooue to poviého BILSTM 80o emnédwv pe
€vol UNYavIoUd Sl TAUPOUUEVNS Tpocoy e Xat yenotponololue T e€68oug tou BiLSTM vy 6ha ta
BruoTta Tne yeovixic axohoutiag Lo680L Yia VoL TOEYOUPE TO quUeries Tou Unyaviopol Teocoy g xol To
YOEAXTNELGTIXG TNE axohoutag elo6d0oL Yia va tapdyouye ta keys xau to values tou unyaviogod Teocoyng.
Koatd to inference tou povtéhov, anodnxedoupe ta Bdpn Tou unyoviopol BlacTaupolUuevns Tpocoyne Yo
xdde Selypo xou Tig avtiotolyes mpofiédeic Tou povtélou, eved €youpe emlong Bladéotues TI TROYUATIXEG
euxéteg xdde Selyuoatog mou elyav Solel xatd v emonuelnon and tov yeNotn. ATV UTOEVOTHTA
5.6.3, €youpe anewxovioel to BN Tou UNyYAVIOUOD BLACTAVEOVUEVNC TEOCOY NG oL €YOUUE BIEPEUVHOEL
01e€0dixd xotd TGO UTMOPOUV VA TUPEYOUV YPNOWES TANEOQPORIEC OYETIXE UE TO TOLL YUEAUXTNELOTLIXA
€youv ueyahitepn enlBpaom ot TEoPAédelc Tou LovTéAOU Yo SLdPopes ETXETES, XadidS xou XxaTd TG0
auTéC oL TpoPAédelc éxouv vonua 1 av To Hovtého molkéc gopéc mapamhavdtol and Peudelc cuoyetioelg
HETOED TWV YOPAUXTNELOTIXGY ELGOBOU Xl TWV ETIXETOV.

Katd ) ddpxewr e perétne xou tne Se€aywyhc TV TEROUATOY Yo TNV Topoloo SITAOUNTIX
epyaotio, dnulovpyriooue To anoYetriolo alexvioni/ExtraSensory-functionality oto Github, to onolo
nepLhopPdver xou vnootneilel Oheg T empépoug Aeltoupyieg and TN @opTwGN xan TN Blayelplon TwY
0edouévev, TNy e€epebvnon ol TNV ONTIXOTOMOY TWV YOQUXTNELOTIXWY UEYEL TO OYEDLIOUO ol TNV
vhomolnon Twv Yoviehwy unyavxic pddnong xo Bothde uddnong, xouw 6ha to amantodUevo TUAUATA
%O yior Ty exmoidevon, to inference xou v alloAdynoy touc, GUUTEPLAUUBOUVOUEVKDY TWV UETELXDY
%o TV dtarypopudtwy. Autd to anoletrplo elvan WWTKG we TN oTyph Tou Ypdgetow avtyh TN epyaocia,
oMAG evdéyeton YeAhovTixd va yivel avolyté 6To xowod, xou omotekel éva ready-to-use framework mou
unopel va yenotponoindel oe eLpl QACUA EQYACLOY, EMUTEENOVTIS TN YPYORY EVOWUATWOT| TEPLOCOTERWY
YOPAUXTNELOTIXWY X0 HOVTEAWY XOL T1| YPHYOEY| EMEXTACT OE NMEPLOGOTERA GUVOAN DEBOUEVWY, TOUELS Y
epyooiec.

0.5.2 MeAhovtixég Ilpoextdoeig

Yuvoliloupe axoholine oplopéves xateudivoel yia pelovtixn épeuva pe Bdon T Yvhoels mou amoxtidnxoy
XA T PEAETN xou TN BLeEory Wyl TELPUUTLY YLl THY Topolod epyaola:

‘Onwg avagépope TEONYOUREVWS, OTNY €pyaoiol pog LAOTONOOUE XL EXTOUBEVOUUE YEVIXO) OXOTOU
povTéAa avayvaplone avipwrivey Spdocwy, T onolor Unopoly va yenoilonoindody o omolodroTe
TEOBANU avary vopLone avipw vy 8pdoewy TOAATAGY ETXETOY, pe autalpeTo aptiud eTxe TV, apod dev
Yé€toupe xavevog eldoug meptoplolols atny medfBiedn Toug. oTdc0, o TOMG TEOBAAUOTA oVaY VHELoNG
avidpwnivov dpdoewv pnopolue va enwgeknlolue and CUYHEXOIEVEC CUCYETIOELS PETOED ETIXETAY,
oMW TAELVOUNOELS TV dpdoewy 1) Twv Thaciwy, LEpapyxés oyéoelg YeTaE) ETUXETOV 1N ETIXETEC TOUL
elvon auoBolws amoxAelduevee, yio vo pUUUICOUYE THO OTOTEAECUATIX TN CUVAETNOY XOOTOUS TOUL
YENOWOTOLEITOL Yiot TNV EXTADEUCT) TOU LOVTENOU, Yo Vo BEATIOCOUUE TNV amddoct] Tou. T'a mopddelyua,
av yvwpeiloupe 0Tl xdmoleg eTxETEC elvol opoBoiwe OMOXAEIOUEVES, UTOPOUUE VO YENOULOTOLACOUYE T
ouvdptnoT evepyonoinone Softmax, xodoe yperdleton va npoAédouye povo pla etixéta and Tic apolBoiwg
ATOXAELOUEVEC.

Emnpociétng, ta yovtéha yag dev AauBdvouv unddm tny TautdTnTe TOoU YeRoTn OTOV 0molo avAXEL TO
delyya 10680V xatd TNV exaldevor) xon xatd Ty TEdBAeT), eved eniong TdvTa S0XIUALOVUE TO LOVTEND YOG
O YPNHOTES oL ToL OVTEAX BeV €YouV Bel xatd TNy exnoddeuo), MoTe vo SlacPailcouye OTL €youv emapx
duvatdTTa Yevixevone. 2otdo0, dedopévou bt xdlde ypnotng €xet TN Bxn Tou poutiva xal TLC Bxég Tou
ouvideleg xou evBEyeTon var extehel SpaoTNEIOTNTES Ye TOV dxd TOU TEOTO, 1) EEUTOUIXEVOY) TOU HOVTENOU
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v xde yprjotn Yo pnopoloe Vo elvol EMWPEAAC YLOL TO UOVIEAO UOC XOL EVOEYOUEVWS Vo BEATIOOEL
v an6doct| tou. AauBdvovtag unddm 6t elvar 80ox0ho Vo GUAAEEOLUE UEYENO optiUd ETLONUELWUEVLY
dedouévev avitpwnivev dpdoewy and xdde véo yeRotn otov onolo YEAOULUE VoL TEOCUPUOCOUUE TO HOVTENO,
WOTE VO EXTIUBEVCOUIE TO UOVTEAO amd TNV opy Y| YENOWOTOLOVTOC LWOVO T Sixd Tou Bedouéval, Unopolue
VO YPTOYLOTIOLCOVUE i UXET] TOGOTNTO EMONUELWHUEVLV BEDOUEVMV YLOL VO TPOCUPUOCOUNE Ve GTOV
CUYXEXPWEVO YpNoTn éval 0N EXTUOELPEVO HOVTENO YEVIXOU oX0ToU. AUTH 1) TpoceyyLor cuvdudlel
BehTiwuévn amddoor xon TV avdyxn yia wxer] HOVO TOGOTNTA ETLONUELWUEVKDY DEBOUEVKLY amd xdie Véo
XeNo™, v to povtélo mou Yo mpoxddel Yo elvon BEATICTOTOMUEVO VL0l TOV GUYXEXPWIEVO YPNoTN XOou
dlardéolpo ot PopNTH CUCKELY| TOU.

o M dAAn evblagépouca xatedduvorn Vo Atav va Siepeuvniel ov UmopolUe Vo YENOWOTOCOUUE Un
emPBhenduevec N nui-emPBrenduevee pedddou, onwe 1 opadonoinon (clustering), yia vo mpoodlopicouye
TOLEC ETIXETEC TOU GLUVOAOU BEBOUEVWY elval cwoTéC xou moa delypata €youy emonueiwdel Aaviaouéva
ex mepitponAc.  Auth 1 Sdixacia o pelwve onuovtind v avdyxn Yl yewpoxivito xadogiopd Ttou
oUVOAOL BEBOPEVLY XolL 1) EXTIALBEVCT]) TV HOVTEAWY Ba emwpeholvTay and éva “xadapdtepo” ¥ xahbtepa
empeAnuévo obvolo Bedouévwyv. Eriong, avtl va anoppintovion to delyyota ¥ ot eTixéteg mou xpldnxoy
avoltomotes, Yo unopolooue (OWS Vo TEOCUPUOCOLUE TN CUVEETNOY XGOTOUC YENOWOoToWdVToS Bden
AVANOYOL UE TNV EPTLOTOCUVY) TTIOU €YOUUE AMOBWOEL O XGVE ETIXETA YLOL TO CUYXEXPWEVO BELYUL.

o H endyevn 1déa poc Baolleton 610 dtL, Map’6ho mou PeTELELOUPE TNV ENBEOCT, TNG OTOVIOTNTOC XETOLWY
ETXETOV Péow TNG yenone Bop®dyv avtloTtpopwy pe TN ouyvétTnTta TS xdde eTXéTac OTr cUVAETNON
XOGTOUC O XUTAPECVOUNE VoL XoJOBNYHOOUUE TO HOVTERO VO TEOBAETEL OAEC TIC ETETES XAl O)L UOVO
TS TLO XOLVEC, 1) EARELPN BELYUET®Y TTOU €YOUV ETLONUEIWVEL PE TIC OTIAVIEG ETIETEG EXEL WG AMOTENEGUA
CUCTAUATA OV DUCKOAEVOVTAL VoL HovTEAOTOLAoOUY auTES T eTwéTeg. Tlpotelvoupe Ty yerion Teyvixdy
1 UNYAvVou®y mou pmopoly va Bondhioouv mpog auth TNV XatebBUVeT), YENOHLOTOWVTAS TERLOCOTERN
emionueiwpéva ahvola dedopévwy yia TNV aOiNnoT Twv BelYUdTwy Tou €youv emonueiwdel Ye omdvieg
ETETEC 1) A€LOTIOLWVTOC UT) ETLOTUELWUEVA GUVOR BEBOUEVWY UE Y OT QUTOETBAETOUEVNC UATINoNS Yo TNV
eZoywyn avanapaotdoewy and auvtd. Emimiéov, Yo unopodooue vo enexteivoupe to mpoovagpepdéy diknuua
oyewuxd pe to av Tto hand-crafted otatioTind yopoxtneloTixd ¥ ol Bohéc VEURWVIXEG AVOTUPAOTATELS
elva XoTaAANAGTERES Ylor TNV avary vidplan avlpwmivey Spdoewy o yehoteg Toug omoloug dev éyel “Bel”
TO UOVTENO XaTd TNV exnaideuo), cuunepthouBdvovTtag oty cLRTNOY AVATUPAGTACELS ToU EEAYOVTAL oo
povtéha autoemBhenduevne udidnone [Yua+23].

o M axdyo mpdtaon yia yehhovtixy diepelvnon Yo AToy Vo EXUETOAAEUTOOUE TO GUVOAO BEBOUEVWV
ExtraSensory, mou yapoxtneileton and yeydin mowihia oe aoInThpes, BeBouéva XL ETLONUEWICELS, Xol
VO UETOPEQOUPE TN YVOGOT O YoVTEAX Tou Vo YeNnoulonololy povo évay aicUnthea xotd T Sidpxeid
tou inference. Oo Atav mOAG evdlagpépov va ehéyEouue ov Fo UTOPOUCOUE VO SNULOLEYNCOUUE Xl
vou exmoudelooude poviéha mou To emtiyouv mopduola amddocT avoyveelong ovlpwrivey dedoewy
YENOHLOTOUIVTAC AYOTEPOUS aloUNTAHEES 1) oxdun xou ovo évay awcunthpo. Ilpog v (Bl xatedduvor, Jo
fray enione ToAD evilapépov Vo EEETACOUUE oV UTOPOUUE VO EQUPUOCOUUE EVOL LOVTENO TOU eEXTOUOEVTIXE
oto obOvoho dedopévwy ExtraSensory, oe éva mohl Slapopetind cOVORO BEBOYEVODV amd BLUPOPETING
domain, m.y. oto cOvolo dedopévwv E-Prevention [Zla+22], xou va Siepeuviicoupe Tic duvotdTntee
avayveplong avipwrivewy dpdoewy oe cUvola dedouévewy ta onola dev efvon xotd tn dnuloupyio Toug
ETULONUELWHUEVD UE ETIXETES DPACEWY.

o Téhoc, mpoxewwévou to Yovtého va yenoidonondel oe mpayuatixég egoppoyée, anattelton To inference vo
unopel va yivel o mpaypatxd yeovo. Ilopdho autd, T0 HOVIERD UG YENOWOTOLEl XATAYRUPES DLAOUELNG
nepinou 20 Seuteporéntwy mpoxeévou vo TeoBrédel etixétec Yo xdde Aemtd e xadnuepvic Lwnic.
MEével va diegeuvniel av To poviého unopel vo tpoPAédel etixétec ye mapoduota axplBelol YeNnoLoToLdvTog
XxoTaYEopES TOAD WxedTeEENC SLdpXelag amd Toug awodnTrpeg 1 va yenowonoindolyv dAkeg mpooeyyloelg
yia Ty OTeEn avary voplon avidpnnivey dpdoswy. EmnAiéov, 1 oxp(Beia tou povtéhou mpénel va Bedtiwiel
npoxelévou va yenolponoiniel anpooxonta oty xadnuepvy Lwn.  Acdouévou O6TL eldope dTL elvou
oA BVoxolo vo Beitiwidel n uetpwh BA xou 6t undpyel trade-off petald Sensitivity xouw Specificity,
oe oplouéveg meplnTwoelc Yo pnopoloope vo emhé€oupe vo Pehtiotonoljooupe to Sensitivity, ov pog
evilapépel TeplocdTepo 1 eZdheldmn Twv Weudhde ApynTixmy, T.Y. OE Ui EQUpUOYT oToV Topéa Tng Lyelog,
7 to Specificity, av npotiudue vo eaheioupe ta Weudne Oetixd.
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Chapter 1. Introduction

1.1 Human Activity Recognition

The term Human Activity Recognition (HAR) — automatic recognition of physical activities — refers to the
procedure of analyzing human body gesture or motion, using data retrieved from sensors, to determine
the activity performed by the person [AT14; BBS14]. It is a research field characterized by increased
task complexity, and it involves multiple scientific fields, most notably human-computer interaction, signal
processing, computer vision, statistical analysis, and machine learning [AT14]. An HAR system might utilize
supervised learning techniques, unsupervised learning techniques, or a combination of both.

HAR is very promising and has become enormously valuable in multiple application contexts, including
healthcare (patient monitoring for clinical decision support systems), active assisted living (AAL) systems
for smart homes, surveillance-based security, and tele-immersion (TI) applications [AT14; Che-+12; RMM16].
A major objective of HAR is to provide information about human behavior that will let computing systems
actively support human daily life activities, in key areas of need [BBS14|. If a system that correctly identifies
human activities automatically is implemented, a variety of applications and services can take advantage of
it, in order for example to monitor health status, to detect diseases or health emergencies [Llo+15; Agh+07],
or to give advice on daily routine and lifestyle [Ali+15; NHC15].

HAR as a procedure can be divided in broad terms in four fundamental stages. These stages include, in
sequential order:

1. to select and arrange fitting sensors in humans, objects and/or environments in order to effectively
observe and track human behavior, along with state transitions in the surrounding environment

2. to store and process the data collected from sensors using suitable data analysis methods and/or
knowledge representation techniques

3. to choose and/or develop appropriate machine learning algorithms, which can be applied to the features
extracted from the processed data

4. to apply the selected algorithms in order to classify and recognize the performed activities that were
captured by the sensors

Over the years, methodologies and tools for each of the above stages have been developed and implemented
in abundance. In many cases, the selections of techniques for different stages are interdependent upon one
another [Che+12; Que+15].

1.1.1 Notion of “activity”

By now, there is no ontological definition of the notion of “activity” that has gained universal approval.
As follows, the most common approach to verge on this notion is to decompose it into granularity levels.
According to the activity theory [Leo78; May+16], activities (e.g. “preparing a sandwich”) hierarchically
counsist of actions (e.g. “enter the kitchen”, “slice bread”), that again are composed out of operations (e.g.
“grab the door handle”, “grab the knife”), atomic steps which sequentially implement the action. In this
way, actions can be seen as aggregations of operations, and activities can be seen as aggregations of actions
[RMM16].

Another approach to the notion of “activity” can be made from a specialization viewpoint, by elaborating on a
general activity, using more specific activities which are considered to be subcategories of the aforementioned
activity. For example, “preparing meals” can be specialized into “preparing hot meal” and “preparing cold
meal”; while “preparing cold meal” can be specialized into “preparing a sandwich”, “preparing a salad” and
“preparing a cold dessert” [NHC15].

Taxonomies

Different activity taxonomies have been proposed over the years, largely depending on the domain of
application and the respective living scenarios. Regarding the AAL domain, Katz [Kat+70; Kat83]
has proposed a so-called taxonomy for the activities of daily living (ADLs) and developed the Index of
Independence of ADLs. According to Katz [KA76] and Lawton [LB69], the ADLs can be subdivided in two
categories:
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e Basic ADLs (BADLSs), necessary personal self-care activities, such as dressing, eating, drinking, using
toilet, bathing, grooming, and functional mobility

e Instrumental ADLs (IADLs), activities not indispensable in the strict sense, but fundamental for a
person’s independent life in a community, such as preparing food, housekeeping, managing money,
shopping, taking medication, using telephone, and transportation

The capability to perform ADLs without assistance can be used to assess a person’s level of independent living
[NHC15]. Moreover, the term of ambulatory activities describes another type of activities, the spectrum of
postures and movements of the person. These activities can be divided in three basic categories:

e Stationary activities, which describe a posture, such as standing, sitting or lying

e Transitional activities, which describe the transition between two states, such as sit-to-stand, stand-to-
walk or stand-to-lie

e Dynamic activities, which describe movements and dynamic actions, such as walking, jogging, or
running

By tracking ambulatory activities, it is possible to determine a person’s physical activity level, in order to
promote a healthy lifestyle, to detect related health conditions, or to estimate the person’s psychological
well-being. Moreover, ambulatory activities are useful for detecting falls and other accidents [NHC15].

Each taxonomy establishes a solid foundation regarding the types and definitions of activities included, and
provides a certain level of understanding which affects choices concerning proper sensor selection and system
design. As the research in the field of HAR progresses, new taxonomies of activities, contingent on the needs
of each application, are required and are being developed. Depending on each application’s goals, a subset of
all activities that can be performed by humans needs to be detected and recognized, requiring the appropriate
taxonomy, and matching sensors and processing techniques [RMM16; NHC15].

Time-related connections

Each activity is performed within a finite time interval which is defined by the durations of the composing
actions. According to their composition and their concurrency, activities can be characterized as:

e Composite, regarding their complexity, when each one of them consists of an ordered succession of
simpler activities or actions (the order of the simpler steps might differentiate from person to person
according to their habits or preferences, and this might be the reason behind different variations of a
composite activity)

e Sequential, regarding their concurrency, when two or more activities are performed successively, with the
corresponding time intervals having or not having a gap between them, but without them overlapping

e Concurrent, regarding their concurrency, when two or more activities are performed at the same time,
so the corresponding time intervals overlap fully or partially

e Interleaved, regarding their concurrency, when an ordinarily longer activity is temporally interrupted
to perform a shorter and possibly sporadic activity, in a sense that the short activity is contained in
the break of the longer activity [NHC15]

1.1.2 Categorization

Human Activity Recognition techniques can be divided into two basic categories, according to the types
of sensors that are being used: visual sensor-based activity recognition and non-visual sensor-based activity
recognition [Che+12; RMM16]. These two categories are not necessary mutually exclusive, since it is possible
to use a combination of both types of sensors for an activity recognition task [CJK15; RMM16]. A comparison
of these approaches, in general terms, is presented in Table 1.1.

Visual sensor-based activity recognition relies heavily on the use of visual sensors such as video cameras
which gather visual data that capture human behavior or relevant environmental state changes. In this
case, computer vision techniques are essential in order to extract valuable features from visual observations
[Che+12].
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Non-visual sensor-based activity recognition relies on the use of sensor networks, by employing sensors
attached to the person whose behavior is being observed (wearable sensors or smartphones) and/or sensors
attached to objects in the activity environment (dense sensing). Wearable sensors capture human behavioral
information in order to identify physical movements, and by extension corresponding activities. On the
contrary, dense sensing captures human-object interactions, exploiting multiple multi-modal sensors attached
to different objects. In general, the collected sensor data from sensor-based monitoring are, in the majority
of cases, time series of variables depicting state changes. These sensor data are processed using probabilistic

or statistical analysis, data fusion, and knowledge technologies [Che+12].

Comparison of HAR approaches

Advantages

Disadvantages

Visual sensor-
based approaches

A single camera can track a
wide angle of an environment
One camera can replace many
sensory devices

Easy to operate

Provide reliable data

Suitable for security and
surveillance systems and
tele-immersion systems

Privacy issues

Acceptance issues

Cameras track only specific details
of the environment

High-sensitive video cameras are
comparatively expensive

Sensitivity to light /brightness factors
Cameras require higher power
consumption to operate

More computer processing power and
higher processing times required

in general

Non-visual A network of sensors can Acceptance issues
sensor-based track more aspects of human Intrusiveness of wearing single or
approaches behavior multiple sensors
Privacy can be ensured Might need a large set of sensors,
Sensors cost less in general specifically to track each behavior
Comparatively lower power Might provide unreliable data
consumption for the sensors Accuracy issues
to operate Prone to errors due to single sensor
Comparatively less computer malfunctions
processing power and less
processing time are required
Suitable for healthcare and
AAL systems
Multimodal Suitable for detecting complex Acceptance issues
approaches activities Require multiple sensors to capture

Light-weight sensors
Comparatively low power
consumption to operate
Suitable for healthcare and
AAL systems

full body movements

Intrusiveness of wearing single or
multiple sensors

Data fusion algorithms may lead to
false predictions

Table 1.1: Comparison of HAR approaches, based on the types of sensors that are being used [RMM16]

Human Activity Recognition techniques can be divided into two basic categories, based on the principles
the activity models are built on: data-driven activity recognition and knowledge-driven activity recognition
[Che+12; Que+15]. There are also hybrid HAR approaches which combine data-driven and knowledge-driven
techniques [OCW14].

Data-driven activity recognition relies on modeling activities using available large-scale datasets, by creating
probabilistic or statistical activity models which are trained and tested using the aforementioned datasets
(a so called bottom-up approach). This approach is superior regarding the ability to handle uncertainty and
temporal data, since it is built using them, but the requirements in data are usually very demanding, and it
also requires special handling to ensure scalability and adaptation to distinct individuals [Che+12; Que+15].

Knowledge-driven activity recognition is based on prior knowledge in the application domain, in order to
build activity models directly, exploiting methods from knowledge engineering and management technologies
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1.1. Human Activity Recognition

(knowledge modeling and representation). In this case, activity models are used for activity recognition via
formal logical reasoning (a so called top-down approach). This approach is clear and delicate from a semantical
and logical perspective, but its usability is limited when in need to handle uncertainty and temporal data.
Moreover, insufficient knowledge in the application domain will probably lead to activity models that will be
viewed as incomplete [Che+12; Que-+15].

This diploma thesis will focus on non-visual sensor-based, data-driven activity recognition, mainly for
practical and privacy reasons. Attempts to perform activity recognition tasks in an unconstrained daily
life context have brought inertial wearable sensors, such as accelerometers and gyroscopes, in the forefront
of this research endeavor, since they allow activity tracking beyond the laboratory’s instrumented rooms,
practically anywhere and at any time portable sensor recording is possible [BBS14].

1.1.3 History and Applications

Since the late 1990s, there have been ongoing feasibility studies regarding activity recognition using portable
sensors [FSF99]. As the years passed, successful activity recognition studies and technology advancements
have propelled HAR towards more ambitious, real-world applicable projects [BBS14]. There are numerous
domains where HAR using wearable sensors could have a beneficial impact, most notably in the following.

Healthcare and Active Assisted Living

Monitoring daily life activities can effectively enhance traditional medical practices, in order to support the
procedure of medical diagnosis, to facilitate recovery and/or rehabilitation, and to assist patients with chronic
diseases or impairments, in multiple ways [BBS14]. In many cases, it is useful to monitor daily activities
and/or vital signals of patients or older adults in order to check if a medical condition is under control, to
examine the development of an illness, and to take action when a rapid change in one of the parameters is
observed [NHC15].

In order to battle against any kind of cognitive decline that is observed among elderly people, it is crucial to
capture activity patterns in daily routines and use the irregularities in them to diagnose cognitive diseases,
such as dementia and Alzheimer’s disease, or other common, age-related diseases, such as depression and
diabetes, which naturally influence the patients’ daily activity routines. In addition, in these cases, a very
useful initiative would be to use the activity patterns to remind patients of activities they have forgotten or
neglected to do, or even remind them of the way a certain activity is performed, if needed [NHC15].

Anomaly detection aims to discover anomalies, irregularities in activities or in activity patterns which deviate
from normal behavior [NHC15]. One of the most valuable anomaly detection applications is fall detection for
older adults, since it is a common health condition among the elderly and its impact on quality of life and
rehabilitation is not negligible [WXO08].

Unobtrusive body-worn sensors can also be used by doctors and nurses in hospitals and health centers in order
to interact with the Hospital Information System (HIS) exclusively using gestures. In this way, the nurses’
and doctors’ hands are kept sterile, and they can assess the patient’s condition and access the patient’s data
at the same time [Luk+07].

Sports and Leisure

Body-worn sensors can be used to improve the daily quality of life, by recognizing athletic activities
and related movements [Avc+10]. Many different methods for sportive activity recognition have been
developed, including recognizing activities such as walking, running, cycling, rowing, using both supervised
and unsupervised data [Erm+08], recognizing walking and running at different intensities [Als+13], and
recognizing athletic activities in order to detect running asymmetries to prevent and manage injuries
[Mor+15]. Furthermore, wearable sensors can be used to segment sports motions and motion sequences,
to contribute to sports motion analysis and performance evaluation, and physical education [Hei-+06; KK18].

Industrial Sector

Unobtrusive body-worn sensors can be used to monitor work activities of production and maintenance
workers. In this way, the collected data regarding the way each activity in the production line is performed,
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can be used to create relevant how-to manuals, to validate the workers’ performance accuracy, and to provide
help and evaluate trainees’ progress [Luk+07].

1.2 Thesis Aims and Objectives

The scope of this work includes studying state-of-the-art literature on wearable sensor-based Human
Activity Recognition and understanding the constituent parts of the Activity Recognition Chain, including
preprocessing, segmentation, feature extraction and classification. Subsequently, a review on popular Machine
Learning and Deep Learning architectures and frameworks and their applications on HAR is necessary to
integrate such models in our experiments later on.

The most interesting and innovative part of HAR involves sensor data collection in-the-wild, which means
collected by users in free-living conditions. Although this data collection setup ensures the richness of
representations and labels compared to data collection in the lab, HAR tasks become more challenging since
the resulting dataset is much noisier, much less reliable, and much more difficult to handle. Following this
scenario, we aim to experiment with data collected in-the-wild and we will use the ExtraSensory dataset which
contains labeled data from 60 users totaling over 300k minutes, collected from smartphone and smartwatch
sensors, accompanied with 51 activity and context labels.

In order to conduct a thorough investigation on in-the-wild HAR using the ExtraSensory dataset, we will first
study the papers of the original researchers who created this dataset. We aim to understand the data collection
procedure and the provided dataset parts, which include among others: raw sensor measurements, pre-
extracted statistical features, and activity and context labels. We will study the baseline models implemented
by the original researchers and we will replicate their experiments. We will also study the publications of
other researchers using this dataset and summarize their efforts.

Our novel experiments will be preceded by exploring the dataset to understand its unique properties: how
unbalanced it is, how many examples exist per user and per label, how the features change when performing
different activities or when different users perform the same activity. Then, we will try to improve the
baseline recognition scores by enhancing the baseline models which use the pre-extracted features, by adding
a bidirectional LSTM (BiLSTM) to model sequences of examples. We will try to enhance this model further
by adding a Self-Attention module. Also, we will try to validate whether adding a Cross-Attention module
between the BILSTM outputs and the input features will can provide useful insights on model interpretability.
Furthermore, we will also build models using the raw sensor data as input, and we will experiment with many
architectures, including BiLSTM layers, convolutional neural network (CNN) layers and Transformer Encoder
layers. Finally, we hope to be able to share valuable insights in order to further improve HAR performance
in future work, based on our experience on the task.

1.3 Thesis Structure

In Chapter 2 a literature review on wearable sensor-based Human Activity Recognition will be presented, in
order to understand the evolution and the fundamental state-of-the-art techniques used in the field.

In Chapter 3 an overview of the most common Deep Learning techniques for wearable sensor-based HAR
will be provided.

In Chapter 4 the concept of Activity Recognition in-the-wild will be introduced and the ExtraSensory dataset
will be presented and explained, referring to the work of the researchers of the original publications, followed
by other researchers who have used it.

In Chapter 5 we present our work on Human Activity and Context Recognition based on wearable sensors
and in-the-wild data collection, using the ExtraSensory dataset, including brief exploration and visualization
tasks, followed by experiments using Machine Learning and Deep Learning models.

In Chapter 6 we summarize the most important conclusions of our experiments and we suggest directions for
future work.
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Chapter 2. Literature Review

In this Chapter, an attempt is made to give a thorough insight of the current literature, focusing on the
evolution of the state-of-the-art methods used in the field of Human Activity Recognition using wearable
sensors.

2.1 Formal Definition of the Problem

According to Lara and Labrador [LL13], the problem of non-visual sensor-based Human Activity Recognition
can be defined as follows.

Definition 2.1.1: Human Activity Recognition Problem (HARP)

Given a set S = {S1,..., S} of k time series, each one from a particular measured attribute, and all
defined within time interval I = [t,,t,], the goal is to find a temporal partition (I, ..., I,.)of I, based
on the data in S, and a set of labels representing the activity performed during each interval I;. This

-
implies that time intervals I; are consecutive, non-empty, non-overlapping, and such that |J I; = I.
=1

Definition 2.1 does not apply in cases where the activities performed in the initial time interval I are
concurrent, and it does not work for composite activities when it is desired that they are recognized in
multiple different granularity levels.

It should be noted that the HARP cannot be solved deterministically, since the number of combinations
of attribute values and activities could be infinite. Furthermore, as long as the activities’ durations are
unknown, finding the transition points remains a challenging task. For most machine learning techniques to
be applied (excluding some unsupervised ones), the problem is relaxed and reformulated as follows (Definition
2.1), dividing the time series into fixed length time windows, and providing activity labels. The objective
now is to find a function that maps time windows to activity labels in the best possible way [LL13].

Definition 2.1.2: Relaxed Human Activity Recognition Problem (RHARP)

Given (1) a set W = {W1,...,W,,} of m equally sized time windows, totally or partially labeled,
and such that each W; contains a set of time series S; = {S; 1, ..., i1} from each of the k measured
attributes, and (2) a set A = {ay,...,a,} of activity labels, the goal is to find a mapping function
f:S; = A that can be evaluated for all possible values of S;, such that f(.S;) is as similar as possible
to the actual activity performed during W;.

Due to the relaxation in Definition 2.1, some error is introduced to the model during transition windows.
This happens because although in the definition it is assumed that only one activity is performed during each
time window, in reality a person might perform two sequential activities in it, since the initial time interval
is arbitrarily divided into time windows. However, this relaxation error can be considered as insignificant
for most applications, as long as the number of transitions between activities is much smaller than the total
number of time windows [LL13].

To the extent of our knowledge, no definition which includes the case of concurrent activities was found in
the literature. Thus, in this work the following definition is proposed for this case (Definition 2.1).

Definition 2.1.3: Relaxed Concurrent Human Activity Recognition Problem (RCHARP)

Given (1) a set W = {W,...,W,,} of m equally sized time windows, totally or partially labeled,
and such that each W; contains a set of time series S; = {S; 1, ..., 5; 1} from each of the k measured
attributes, and (2) a set A, C P(A) where A = {ay, ..., a,} is the set of possible activity labels and A,
is the subset of the powerset of A which contains all possible activities and all possible combinations
of concurrent activities, the goal is to find a mapping function f : S; — A, that can be evaluated
for all possible values of S;, such that f(.S;) is as similar as possible to the actual activity or set of
concurrent activities performed during W;.
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2.2. Activity Recognition Chain

2.2 Activity Recognition Chain

An Activity Recognition Chain (ARC) is a sequence of signal processing, pattern recognition, and machine
learning techniques that comprise a specific activity recognition system (Figure 2.2.1). An ARC bears some
similarity to general-purpose pattern recognition systems, but also has a number of specific requirements
and constraints related to the activity recognition process. If supervised classification algorithms are used,
the chain can be executed in two different modes of operation, namely training (modeling) and testing
(classification). Unsupervised classification does not include a dedicated training step, since it directly infers
activities from the sensor data [BBS14].

Sensors Raw data Preprocessing Segmentation Feature Extraction Classification
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Figure 2.2.1: Typical Activity Recognition Chain (ARC) to recognize activities from wearable sensors
[BBS14]

The ARC input consists of sensor data streams acquired from sensors. Raw signals (D) are first preprocessed
(D’) to filter out signal variability and artifacts, and then segmented into sections of interest (W) that
are likely to contain an activity. Afterwards, feature vectors (X;) that capture the activity characteristics
are extracted from the signals within each segment. In training mode, the extracted features and the
corresponding ground truth labels are used as input to train a classifier model (determine parameters 6).
In classification mode, the features and the previously trained model are used to score ¢ activity classes
Y; = {y!,...,y°} with a confidence vector p;, and map these scores into a single class or multi class label. If
multiple sensors or classifiers are used, the output of several classifiers might be fused into a single decision.
Finally, a performance evaluation stage is used during design time to assess the performance of the ARC
[BBS14.

2.3 Sensors

The most commonly used sensors for monitoring human activity in recent research, in both visual and
non-visual approaches, and their main characteristics are presented in Table 2.1. Although cameras and
microphones, the primary sensors used in visual sensor-based activity recognition, undoubtedly can provide
rich context information about human activities, in general the acquired data from them require more
computational power in order to be processed. In addition, cameras and microphones are often perceived as
privacy threats, especially in a daily life setting [NHC15]. As long as the acceptance of the technology and
the convenience of the users are considered to be a setting stone of the system design and implementation,
the focus should be put on non-visual approaches, mainly based on portable (wearable) sensors.

During the past two decades, there have been exceptional advancements in the development of
microelectronics and computer systems, which enabled sensors and mobile devices with unprecedented
characteristics. They are characterized by their small size, high computational power and relatively low
cost, hence they have become obtainable for the general public, triggering the genesis of Ubiquitous Sensing,
an active research area with the main purpose of extracting knowledge from the data acquired by pervasive
sensors [LL13]. HAR using non-visual sensors can be approached in two different ways, namely using external
sensors (i.e. in smart homes) and wearable sensors, and in this thesis the focus is put on the latter approach.

29



Chapter 2. Literature Review

Sensors for activity recognition and their main characteristics

Sensor Measurement Data Advantages Disadvantages
Video cameras Human actions Image, video  Precise information  Privacy issues
Environmental Computational expense
state Acceptability issues
Microphones  Voice detection  Audio Certain and rich Implementation
Other sounds information about difficulty
sound Acceptability issues
Simple binary User-object Categorical Low-cost Provide simple and
sensors interaction Low-maintenance limited information
detection Easy to install for composite and
Movements and replace multi-user activity
and location Less privacy recognition
identification sensitivity
Minimal computa-
tional requirements
RFID Object and user Categorical Small size Reader collision
identification Low cost Tag collision
Limited range
Wearable Acceleration Time series Compact size Cumbersome and
inertial Orientation Low cost uncomfortable
sensors Non-intrusiveness feeling
High accuracy Insufficient context
User identification information
Location tracking
Wearable Vital signs Analog signal  Sensitive to Reliability constraints
vital signs slight changes Security issues
Sensors More accurate in Uncomfortable feeling

for long-time skin
attaching

emergency situation
detecting

Table 2.1: Commonly used sensors and their main characteristics related to activity detection [NHC15]

2.3.1 Wearable Sensors

The term wearable sensors refers to sensors that are directly or indirectly attached to the human body.
Usually, due to their small size, they can be embedded into clothes, shoes, accessories, and more recently into
wristwatches (smartwatches) and mobile devices (smartphones), in order to be easier to wear and to interfere
minimally with the users’ habits and daily activities. These sensors can be divided in two main categories,
inertial sensors and vital signs sensors (or biosensors). Wearable inertial sensors provide descriptive features
of the user’s body posture and movements. Wearable vital signs sensors capture vital signs of the user such
as heart rate, blood pressure and skin temperature, that are most useful for health monitoring applications
[NHC15].

Inertial Sensors

Inertial measurement units (IMU) usually consist of accelerometers, gyroscopes and potentially
magnetometers. Accelerometers are the most popular inertial sensors used for activity monitoring. They
measure the value of acceleration along a sensitive axis, and they are mainly targeted to monitor ambulatory
activities and activities involving movement in general, such as walking, standing, sitting, walking upstairs
or downstairs, exercising, or moving particular parts of the body, depending on the part or parts of the body
the accelerometers are attached to. They can also provide useful information in order to assess a person’s
posture.

Data collected from accelerometers has at least the following four attributes: acceleration value in x-axis,
y-axis and z-axis, and time. Due to their small size and their relatively low cost, accelerometers can be
embedded into belts, bracelets, wristbands and watches, and nowadays they are integrated in most mobile
phones. Recent research focuses in two different activity recognition challenges regarding accelerometers:
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researchers either try to place accelerometers in different body parts in order to identify the optimal
positioning combination for more accurate activity recognition, or try to get optimal activity recognition
predictions while minimizing the number of accelerometers used and their obtrusiveness.

Gyroscopes are also commonly used sensors for activity recognition, especially combined with accelerometers.
Gyroscopes use a small vibrating mass inserted into the sensor for measuring angular velocity and maintain
orientation. The change of the angle compared to the initial known value can be detected over a period of
time. The sensor’s limitations include output drift over time, output offsets when the device is in static state,
and sensitivity to a particular range of angular velocities.

The advantages of inertial sensors include their compact size, low power requirements, low cost, non-
intrusiveness and the capacity to provide data directly related to the user’s motion. Moreover, nowadays,
these sensors are usually integrated in smartphones and smartwatches, and thus can be used in a minimally
intrusive way. On the other hand, their limitations are not negligible. Their placement on the human body
might cause an uncomfortable feeling, especially when they are placed in diverse positions. Moreover, as
most inertial sensors collect data continuously, it is important to take precautions to protect the device’s
performance and battery life. Using inertial sensors cannot directly provide adequate context information,
in particular when the activities include interactions with environment objects [NHC15; Nwe-+18].

Vital Signs Sensors

There are multiple biosensors commonly used to monitor the respective human vital signals. These include
Electroengephalography (EEG) sensors for electrical brain activity, Electrooculography (EOG) sensors for
ocular activity, Electromyography (EMG) sensors for muscle activity, Electrocardiography (ECG) sensors
for cardiac activity, pressure sensors for blood pressure, CO2 gas sensors for respiration, thermal sensors for
body temperature and Galvanic Skin Response (GSR) for skin sweating.

These vital signs parameters are useful in order to observe a person’s health status while performing daily
activities. From EEG sensors, delta, alpha and beta waves are mainly used to detect sleep state, panic
disorder, and sudden unexplained nocturnal death syndrome. EOG sensors detect eye movements: rapid eye
movements would indicate that the person is awake, and slowly rolling eye movements would indicate that
the user is in the state of transition from being awake to sleeping.

EMG sensors can capture muscle activity in different parts of the body and associate it with matching daily
life activities. ECG sensors allow heart rate monitoring, which gives indications of arrythmias. Blood pressure
monitoring using pressure sensors, or indirectly using ECG sensors, is indicative of immediate changes, such
as hypotension or nose bleeding. Respiration monitoring measures the airflow through nose and mouth.
Monitoring body temperature is valuable for detecting fever, and skin sweating can be used to detect sport
and housework activities.

The advantages of vital signs sensors include their low cost, low error levels, non-intrusiveness and high
accuracy. Their main disadvantages are related to their reliability constraints and the uncomfortable feeling
that they cause when attached on the skin for long time periods, let alone on a daily basis [NHC15].

2.3.2 Sensor Data Acquisition

In the first stage of a typical ARC, raw data is acquired from the wearable sensors. Sensors placed in the
surrounding environment as part of advanced HAR systems are out of scope for the current study. Since
some sensors can provide multiple values (e.g., an accelerometer), or multiple sensors are jointly sampled,
vector notation is used to describe the collected data:

s; = (d',d?,d3,...,d"), fori =1,..., k, (2.3.1)

where k represents the number of sensors and d? the sensor i values at time ¢. Each sensor is usually sampled
at regular time intervals, thus the resulting data stream consists of multivariate time series. However, the
sampling rates of different sensors may differ, since they are dependent on the sensor type. For example, a
typical sampling frequency for GPS devices is 5H z, while acceleration is usually sampled at 25H z or more.
Sensors’ sampling frequency can also be altered for practical reasons, including power saving and application
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requirements. In order to synchronize multimodal sensors, to remove signal noise and artifacts, and to prepare
the data for the inference algorithms, a data processing stage is introduced next [BBS14].

2.4 Sensor Data Processing

Raw data collected by sensors has to be processed in order to extract valuable features that will be used in
the learning process later on. Sensor data processing plays a critical role in the output accuracy and the HAR
results, thus this is a pipeline step that must be well taken care of for optimal recognition results [NHC15].
The most common processing methods are presented in Figure 2.4.1.

Data processing methods

’ Preprocessing Dliznjéigﬂlty ’ Segmentation

Handlin Data ensor
Data nAIng Feature Feature Temporal Activity S
. missing transfor- . . event
cleaning . extraction selection based based
values mation based

Figure 2.4.1: Most common sensor data processing methods [NHC15]

2.4.1 Data Preprocessing

Sensor data is noisy by nature. Data preprocessing is necessary in most cases, and it usually consists of
data cleaning to remove artifacts and discard unwanted samples, data interpolation to handle missing values,
and data transformation to convert data to the desired format [NHC15]|. Preprocessing of acceleration and
gyroscope signals might also include resampling synchronization, or signal-level fusion.

The preprocessing stage transforms the raw multivariate and nonsynchronous time series data into a
preprocessed time series D’:

atody!
D'=|: . |=(d..d)", (2.4.1)
at oot

where d) corresponds to one dimension of the preprocessed time series, n to the number of total dimensions,
and ¢ to the number of samples [BBS14].

Data Cleaning

Raw sensor data is probably noisy and contains erroneous and possibly redundant information, because of
hardware imperfections and failures, and possible intermittent communication loss in wireless networks. In
order for this data distortion not to impact the HAR process, data cleaning must be applied. The goal is to
filter out artifacts and only keep the signals’ characteristics that can provide valuable information, by using
appropriate filters according to the type of sensor the data came from [NHC15].

The triaxial acceleration data from accelerometers contains a constant component due to gravity, which
should be removed in order to obtain the real acceleration (corresponding only to the person’s movements)
captured by the sensor. A low-pass filter can be applied to isolate the constant gravity acceleration in the
time series dataset obtained from the accelerometer, as demonstrated by Khan et al. in [KSL13].

Moreover, signal denoising is useful to reduce signal noise and artifacts. In [Wan+11], four common filters:
median filter, Butterworth low-pass filter, discrete wavelet package shrinkage, and Kalman filter, are used
for 3D acceleration signals denoising, and their performance is evaluated using signal-to-noise ratio (SNR)
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and correlation coefficient (R) between the filtered signal and a reference signal. The results showed that the
Kalman filter had the largest SNR and R values. Wavelet package shrinkage and median filter were similar
in terms of the metrics values, while the Butterworth low-pass filter had the worst performance due to the
waveform delay it causes.

When performing data cleaning, there are two more issues that might need to be taken into consideration,
namely class imbalance, when some classes exhibit many more samples than others, and class overlapping,
when a subset of the samples might correspond to more than one class, causing ambiguity. There are
numerous different approaches to cope with these issues, probably also depending on the type of machine
learning that will be later applied (supervised or unsupervised, single-class or multi-class) [NHC15]. Two of
the most common techniques applied to overcome the issue of class imbalance are undersampling the majority
class [Goo+10], or oversampling the minority class or some of the minority classes [BWG13].

Handling Missing Values

Data collected from sensor networks might have missing values. The most common practice to fill in
the missing readings is to use interpolation techniques, most notably linear interpolation [MM13], cubic
interpolation, or nearest neighbor interpolation [NHC15].

Data Transformation

Data must be transformed in an appropriate format in order to apply further data processing and analysis,
depending on the data mining approach and methods that will be used later on. For instance, nominal or
categorical attributes might be more convenient than numerical ones for some data mining algorithms, and
thus it is useful to convert them, if possible, to help optimize recognition performance later [NHC15].

Data normalization is also commonly used as a data transformation technique, to convert all sensor data
to a common scale, hence allowing quantitative or qualitative direct comparison. Because of the immense
range of different scales, data normalization should be performed while taking the following four criteria into
account [Mit07]:

1. nature of scale, referring to the fundamental mathematical properties of each scale, regarding scale
boundaries, ordering, and allowed operations

2. homogeneity, referring to the sensors measurements’ types similarity

3. statistical distribution, referring to the empirical statistical distribution that the sensor values follow
when the sensors are attached to a given population

4. semantics, referring to the meaning of a scale e.g. probabilistic, possibilistic, utility, or degree-of-
similarity, and the incommensurability issues that might arise with different scale semantics

2.4.2 Data Segmentation

Segmentation methods are introduced in order to resolve one of the main challenges in sensor data
preprocessing, to produce a proper division of the continuous input data flow into small segments of
information. Each data segment w; = (t1,t2) is defined by its start time ¢; and its end time to within
the time series. The segmentation stage yields a set of segments W containing potential activities:

W =A{w1, ..., wp,} (2.4.2)

Segmenting a continuous data stream is a difficult task and it is crucial to select the appropriate segmentation
technique and parametrize it accordingly, because the derived segments will be the fundamental units on
which feature extraction and inference algorithms will be applied. Current literature emphasizes on three
categories of segmentation approaches: temporal-based segmentation, activity-based segmentation and sensor
event-based segmentation. [BBS14; NHC15]
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Temporal-based Segmentation

There are two major temporal-based segmentation approaches: time interval segmentation and sliding
window segmentation. In the first approach, data obtained from sensors is divided into chunks of equal time
duration, and this approach is frequently used to subdivide the temporal data collected by accelerometers
and gyroscopes [NHC15; KP0§].

The time interval windowing approach is highly convenient for data streams that are continuously collected
by sensors over long time periods, and it is usually preferred because of its lower computational complexity.
Nonetheless, it is crucial to select an appropriate value for the time interval. An excessively small interval
might divide activities into two or more adjacent windows, and this can deteriorate the chances of accurate
classification, while an excessively wide interval might cluster two or more activities into the same segment,
leading again in classification issues [NHC15].

The sliding window approach is also very commonly used for activity monitoring. In this approach, the
data obtained from sensors is divided into windows with static or dynamic length. In the case of fixed
window length, it can be based on equal time intervals or equal number of sensor events. Three segmentation
algorithms of this kind are of particular interest: Fixed-size Non-overlapping Sliding Window (FNSW),
Fixed-size Overlapping Window (FOSW), and Sliding Window and Bottom-up (SWAB) [NHC15; Keo+01].

FNSW is the simplest approach, without any window overlap, but since it employs fixed length windows,
it carries the drawbacks already mentioned above. FOSW is an improvement to FNSW that implements
data overlap between adjacent windows. The overlap percentage may vary from 0% (practically FNSW) to
100% (non-sliding window). SWAB segmentation is a combination between the aforementioned techniques
and a more accurate offline processing of the data stream. It processes a buffer of samples that span several
segments, based on the structure of the buffer data [NHC15; Keo+01].

In [Ach+12], Achumba et al. conduct experiments to investigate the impact of window length when using the
FNSW algorithm, and the impact of overlap percentage and window length when using the FOSW algorithm
for segmenting the sensor data stream. After extracting features based on previous literature and applying
the Support Vector Machine (SVM) classifier, the results demonstrated that, for the particular feature and
classifier choices, the optimal segmentation approach out of the ones tested was the FOSW algorithm with a
window length of 12s and 90% window overlap.

Dynamic sliding window methods allow varying window sizes, depending on sensor state changes, location
changes, and/or typical activity characteristics. In [KC14], Krishnan and Cook propose combinations of
static and dynamic window lengths. They enhance the sliding window approach by making modifications
in order to calculate the window length dynamically based on the sensor data, the environment and the
monitored activity. Their approach evaluates the following factors to determine the window size: time-based
weighting, mutual information-based weighting, activity probabilities in the previous window and previously
detected activity.

The sliding window approach is very useful when monitoring activities that contain a significant periodic
component, such as walking and running, and when monitoring static activities, such as sitting and standing.
The computational complexity depends on the window length and whether it is fixed or not, and on the
factors that are being considered in the case of dynamic window length. Hence, there is a trade-off between
speed and accuracy in the activity recognition system [NHC15].

In current literature, a wide range of window sizes can be observed, depending on the type and the
characteristics of monitored activities. Typical window sizes for accelerometer data vary from 0.25s to 10s
[KWM11; SR12|. In [Ban+14b], Banos et al. evaluate the impact of different window sizes, from 0.25s to 7s,
used for activity recognition with a non-overlapping sliding window approach. From their results, they have
reached two main conclusions: window size significantly matters, and short windows normally lead to better
recognition accuracy. The use of larger windows appears to be a necessity when a simple set of features is
selected, while for richer feature sets it might be redundant. Furthermore, generally, activities with higher
motion variability (e.g. household activities) typically require longer window sizes, whilst activities with lower
motion variability and more repetitive movements (e.g. walking, running, cycling) work well with shorter
window sizes [NHC15].
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Activity-based Segmentation

Activity-based segmentation is based on identifying the start and end points of each activity and dividing
the sensor data stream accordingly. Thus, the main challenge in this type of segmentation is to identify the
time boundaries of each activity properly, and this can be done by using various methods. For instance, in
[YTO13], Yoshizawa et al. attempt to identify the boundaries, distinguishing between static and movement-
related activities. Regarding static activities, a threshold is set to detect the changing points, while for
movement-related activities an analysis of variations in the frequency domain is used to locate the boundaries.
Another way to obtain information about the time boundaries of the monitored activities, more approximately
this time, is to ask the users to give explicit feedback on the activities they perform, through a smartphone
interface for example [Der+12].

Another related approach, energy-based segmentation uses signal energy levels to identify the boundaries of
different activities. Since in many HAR problems different activities are performed with different intensity
levels (e.g., walking and running), and these intensity levels correspond directly to different intensity levels
of the recorded accelerometer signals. The energy E of a signal is defined as:

E = /OO |s(t)|?dt (2.4.3)

The differences in signal intensity translate to different energy levels, hence by thresholding on F, data
segments that are likely to belong to the same activity can be identified. A special case of energy-based
segmentation is to require the user to assume a predefined rest position between each two activities. This
way, whenever the predefined rest position is detected by the HAR system, a segment boundary will be
placed. [BBS14; Gue+09]

Sensor Event-based Segmentation

Sensor event-based segmentation methods are focused towards splitting the sensor data stream into chunks
based on sensor events rather than (static or dynamic) time intervals. They are mostly used in cases where
the events an that form the activity or the sensor measurements may not be distributed uniformly in time,
thus a time windowing approach is not appropriate. In most cases, this approach divides the time series of
input data into into segments with equal number of sensor events or into segments containing all the sensor
events of a single activity [NHC15]. Another approach is to segment sensor data using information derived
from additional modalities [BBS14]. For example, long-term acceleration data recorded on a mobile phone
can be segmented using GPS traces [AS03].

2.4.3 Dimensionality Reduction

Dimensionality reduction includes the extraction of features that are representative of the significant data
characteristics and discriminative of the different classes (activities) and the selection of specific features or
transformed features to reduce the feature vector’s dimensionality while maintaining most of the relevant
information and the portrayed discriminative capability. The ability to extract useful, substantial features
from raw sensor data is extremely practical in order to manage the potential huge volume of sensor data,
and becomes a key factor for the performance and accuracy of HAR systems [NHC15].

Feature Extraction

Features represent the major characteristics of the sensor data obtained from its quantitative values. It
is crucial to extract a relative low number of high representative and discriminative value, to improve the
accuracy of machine learning algorithms and reduce the computational cost of activity inference. In this
phase, the processed dataset is transformed into a collection of feature vectors, each one corresponding to a
single data segment, which must contain proper information to be used as input in the activities discrimination
and learning algorithms. Features are extracted as feature vectors X; on the set of segments W, with F
being the feature extraction function:
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The total number of features extracted from the data form the so-called feature space. In general, the more
clearly each activity can be separated in the feature space, the higher the achieved recognition performance
will be. Ideally, feature values corresponding to the same activity should be clustered in the feature space,
while feature values corresponding to different activities should be far apart. Furthermore, reliable features
should be robust across different people and to the activity’s interclass variability [NHC15; BBS14].

The most common approaches for feature extraction operate in three domains: time domain, frequency
domain, and discrete domain. Table 2.2 contains the main features which can be extracted in these domains.

Most common extracted features for HAR

Domain Extracted Features

Time domain Mean, Median, Average, Variance, Standard Deviation, Minimum,
Maximum, Range, Root Mean Square (RMS), Correlation,
Cross-Correlation, Zero-Correlation, Integration, Differences,
Velocity, Signal magnitude area (SMA), Signal vector magnitude
(SVM), Difference, Zero-crossing

Frequency domain Fourier Transform (DC component, Key Coefficients, Coefficients
sum, Dominant frequency, Spectrum Energy, Spectrum Entropy,
Spectrum centroid), Wavelet Transform

Discrete domain Euclidean-based Distances, Dynamic Time Warping, Levenshtein
Edit Distance

Table 2.2: Taxonomy of extracted features in three domains [NHC15]

Time Domain Metrics Simple mathematical and statistical metrics can be used to extract basic signal
information from raw sensor data. They can also be used as indicators in other domains, in order to select
key signal characteristics or features [Fig+10].

Among time domain features, mean is one of the most commonly extracted features because of its low
computational cost and representative ability. There have been various uses of the mean metric in activity
recognition: it has been used to discriminate between static and dynamic activities [Vel496], and also as
input to classifiers, such as Naive Bayes, Neural Networks, Decision Trees, and Kohonen Self-Organizing
Maps. [NHC15; Fig+10]

The standard deviation, which represents the stability of a signal around its mean, is also frequently used
as a basic metric for classifiers or threshold based algorithms. Another valuable feature, the median, can be
efficiently used to replace missing values from a sequence of discrete measurements.

Frequency Domain Features focus on the periodic structure of sensor data. The wavelet transform
can capture sudden changes in signals, thus it is usually used to detect activity boundaries. The Fourier
transform provides information about the main frequency components of a signal, and can be computed
for a time-based discrete signal over a specific window length by using algorithms, such as the Fast Fourier
Transform (FFT).

Discrete Domain Features map sensor signals to strings of discrete symbols. Euclidean-based distances,
Dynamic Time Warping, and Levenshtein Edit distance are some commonly used approaches used to extract
discrete features for classifying human activities [NHC15].

Feature Selection

If the feature space dimensionality is high, more training data is needed for model parameter estimation and
the classification becomes more computationally intensive. Especially for real-time processing on embedded
systems, where it is crucial to minimize memory, computational power, and bandwidth requirements, the
minimum number of features that still allow the ARC to achieve the target recognition performance should
be used.

Feature selection is the procedure responsible for selecting the most discriminative features and possibly
transforming the features in order to reduce the dimensionality of the feature vector. Hence, the main task
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here is to find and extract a more relevant subset of features from the feature vector created in the previous
step, to confine data redundancy, noise, and computational expense, before applying learning models to
the extracted features. Since manual selection of these features is a challenging task, various methods for
automatic feature ranking and selection have been developed [BBS14; NHC15].

The various different features selection methods that are being used, depending on the characteristics of
the extracted features, include Minimum Redundancy and Maximum Relevance (mRMR) feature selection
[PLDO05|, Correlation-based Feature Selection (CFS) [Hal99], SVM-based feature selection [NSS05]|, and
Sequential Forward Floating Search [GD14]|. Moreover, Principal Component Analysis (PCA), Independent
Component Analysis (ICA), and Linear Discriminant Analysis (LDA) are used to map the high dimensional
feature vector into a lower dimensional one [NHC15].

2.5 Model Training and Classification

There is an abundance of inference methods that can be used in activity recognition systems, due to the
extensive research in machine learning and computational statistics over the last decades. HAR researchers
have successfully utilized temporal probabilistic models, such as Hidden Markov Models (HMMs) [Finl4],
Conditional Random Fields (CRFs) [LFKO05; Kas+08], and Dynamic Bayesian Networks [Pat+05]. Moreover,
discriminative approaches, such as k-Nearest Neighbors (k-NN) [UB16], Support Vector Machines (SVMs)
[HJ09], Multilayer Perceptrons (MLPs) [AS17; PY19], Decision Trees [BI04; SS18], and Joint Boosting
[Les+05], have also been used in multiple activities and sensor settings.

There is no single best solution for all activity recognition tasks when choosing the suitable machine learning
algorithms. The choice for a particular inference method depends on the classification task and is subject to
the trade-off between computational complexity and recognition performance. In particular, when performing
classification on embedded systems with limited resources, the goal is to minimize computational complexity
and memory requirements while still achieving relatively high recognition performance. Consequently,
machine learning algorithms are selected contingent upon the subset of activities that must be recognized,
the complexity of the feature space, and other factors, such as the response latency and the mode of operation
(online or offline) [BBS14].

2.5.1 Training

Supervised learning models need to be trained before use for inference purposes. Training is performed using
training data 7 = {(X;, )}, with N pairs of feature vectors X; and corresponding ground truth labels
y;. Model parameters 6 can be learned, in order to minimize the classification error on 7. For instance,
Hidden Markov Models are defined by parameters 8 = (7, A, B), with matrix A corresponding to transitions
between states, B to the output probabilities of each state, and 7 to the initial state probabilities. Given the
training data 7 and an initialization of the parameters 6, a separate model is trained for each class using
the expectation-maximization (EM) algorithm [Rab89; Finl4]. Discriminative methods minimize the error
by employing gradient descent. In contrast, non-parametric classifiers, such as k-NN, take as parameters the
labeled training data 8 = (7)) and match the label of the k-nearest neighbors to the test sample.

2.5.2 Classification

The classification stage can be divided in two distinct steps. In the first step, each feature vector X; that
corresponds to an instance of the test set is mapped to a set of class labels ) = {y', ..., 4°} with corresponding
scores P; = {p},...,p¢}, using a trained model with parameters 6:

pi(y|X;,0) = I(X;,0), fory € Y, (2.5.1)
with the inference method Z. In many cases, including Bayesian approaches (e.g. Naive Bayes) and other,
non-Bayesian approaches with the appropriate calibration, the scores P; correspond to probabilities.

In the second step, the calculated scores can be used in various ways to determine the dominant class.
The most common practice is to find the maximum score and to consider the corresponding class as the
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classification output:

yi = argmax, .y ,cp, P(y|Xi, 0) (2.5.2)

Moreover, the scores can be fed as input to other functions to determine the classification output, and also
can be used in criteria to evaluate if the system’s output can be trusted [BBS14].

2.5.3 Decision Fusion

Decision fusion is the practice of combining several intermediate classification results into a single decision.
Tt is specially valued in HAR applications where it is usual to use multiple sensors and/or multiple classifiers.
Fusion can take place in earlier stages (feature level) or in a later stage (classification level) of an ARC [BBS14].
The most common fusion rules that are used in HAR research are summation, majority voting [Sti+08], Borda
count [War-+06], and Bayesian fusion [Zap+07]. In addition, boosting as a variant of decision fusion has been
successfully applied in HAR problems. Boosting works by sequentially applying a classification algorithm to
reweighted versions of the training data and then taking a weighted majority vote of the sequence of classifiers
thus produced [FHTO00].

Aside from the potential increase in recognition performance, sensor and decision fusion provide multiple
additional benefits for HAR systems, including:

1. increased robustness to faults and variability in the systems used
2. reduced classification problem complexity by using partial classifiers matching sensor modalities
3. derivation of confidence measures by evaluating the agreement between classifiers

4. classification with missing features (potentially)

2.5.4 Performance Evaluation

It is crucial to evaluate the recognition performance of an ARC and to do so optimally for each specific
activity recognition task, since different tasks might require different evaluation metrics. In general, activity
recognition systems can miss, confuse, or falsely detect activities. Classification can be correct and lead
to True Positives (TPs) and True Negatives (TNs), or wrong and lead to False Positives (FPs) and False
Negatives (FNs). The optimization objective might be to maximize a single performance metric or multiple
metrics at the same time; this highly depends on the application.

Activity recognition has adopted the most common performance metrics that are widely used in pattern
recognition in general, such as confusion matrices, related measures including accuracy, precision, recall,
and F-scores, and decision-independent Precision-Recall (PR) and Receiver Operating Characteristic (ROC)
curves. These metrics are briefly explained below [BBS14].

Confusion Matrix

A confusion matrix displays quantitatively how many instances of each activity class were classified correctly
and how many got misclassified (i.e., confused) by the system. Typically, the rows of a confusion matrix
correspond to the number of instances in each actual activity class, while the columns correspond to the
number of instances for each predicted activity class. To fill each row of the matrix, all ground truth instances
of the corresponding (actual) class are compared with the predicted class labels. Using the confusion matrix,
precision (TPZ%L recall (%), accuracy (TEXINY "and F1 score, the harmonic mean of precision and

2xprecisionkrecall

orecisiontrecall ), can be calculated for each activity class.

recall, (

The overall accuracy is representative of the true performance of a classifier only when the dataset is relatively
balanced. If a dataset is unbalanced, namely if the number of actual instances of the activity classes varies
significantly, accuracy can be strongly biased by dominant classes. To address this problem, normalized
confusion matrices and balanced performance metrics should be used to allow for objective comparison and
evaluation [BBS14].
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ROC and PR Curves

Since it is not always possible to set the optimal decision threshold on the classifier’s score in advance, it
is common practice to stretch the threshold of the score for each individual class and analyze the behavior
in so-called Receiver Operating Characteristic (ROC) or Precision-Recall (PR) curves [Faw06]. In an ROC
curve, the true positive rate (recall) is plotted against the false positive rate (prl%), while moving the
decision threshold. An ROC curve starts at the lower left corner, where (FPR = 0,TPR = 0), which
corresponds to a decision threshold of 1, and ends at the upper right corner, where (FPR = 1,TPR = 1),
which corresponds to a decision threshold of 0.

Best-case results approach the upper left corner, while random results follow the diagonal (if class distributions
are balanced). Since ROC curves depend on TN counts, having imbalanced class distributions can lead to
“overoptimistic” ROC curves. On the other hand, PR curves do not depend on the TN count, and thus
are more suitable for activity detection tasks, where several instances of a particular activity of interest are
hidden into a large corpus of various activities. A PR curve starts at the upper left corner, approximating
the point where (Precision = 1, Recall = 0), which corresponds to a decision threshold of 1, and ends at
the upper right corner, approximating the point where (Precision = 0, Recall = 1), which corresponds to a
decision threshold of 0. Best-case results approach the upper right corner.

Several metrics can be extracted from ROC and PR curves in order to render the depictions comparable.
Equal Error Rate (EER) represents the point in the PR curve where precision equals recall, and the higher
this value, the better. Average precision is calculated from the PR curve by measuring precision at uniform
steps of recall and then by taking the average. Finally, the most popular metric is the Area Under the Curve
which is calculated from ROC curves as a measure of the overall performance of a classifier. The AUC
corresponds to the probability that a classifier will rank a randomly chosen positive instance with a higher
score than a randomly chosen negative one [BBS14].

Evaluation Schemes

In general, activity recognition datasets may include recordings of multiple persons, on multiple days. and of
multiple runs containing repetitions of multiple activities from a set. Evaluation is generally conducted using
a leave-one-out cross validation scheme, in order to assess how the activity recognition performs in unseen
data. Thus, the experimental dataset is split into multiple folds. All but one folds are used in training
the recognition system, and the remaining fold is used for testing. This process is repeated several times,
alternating the left-out fold that is used for testing, until all folds have been used for testing once.

Dataset folds can be built by taking different aspects of the dataset into account, when trying to evaluate
different generalization aspects of the activity recognition system. When building a user-independent system,
leave-one-person-out is used to evaluate generalization to unseen users. In a user-specific system, leave-one-
run-out is used to assess performance in unseen runs. Leave-one-day-out is commonly used to evaluate the
robustness of the system over time [BBS14].

2.6 Challenges

HAR research is considered to be an exciting and demanding research field as it inherits various pattern
recognition challenges, and also is characterized by many inherent activity and sensor-related challenges.

2.6.1 Pattern Recognition Challenges
Intraclass Variability

As in pattern recognition in general, in HAR it is important to develop recognition systems that are robust
to interclass variability. Such variability is inevitable when capturing human activities and habits that might
be performed in different ways by different individuals, or even in different ways by the same individual due
to different conditions (varying factors include hour of the day, emotional and environmental state, stress
and fatigue). In cases where generalization performance across many users is of great interest, robustness
to intraclass variability must be ensured. HAR systems are subject to a sensitive trade-off between using a
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highly specific and discriminative feature set, and using a more generic feature set that has less discriminative
power but is potentially more robust across different people [BBS14].

Interclass Similarity

Interclass similarity poses an inverse challenge, where different activities might show similar characteristics in
the sensor data, rendering the discrimination between them much more difficult [BBS14]. Interclass similarity
might be present in different sports (e.g., between baseball and softball, or between basketball and netball),
and in daily activities (e.g., between eating food and eating desert) that consist of or include very similar
movements. Such close similarity could possibly be resolved by using additional cues captured by different
sensor modalities [Sti+08] or by analyzing concurrent or adjacent (predicted) activities [HFSO08].

The NULL Class Problem

Usually, only part of a continuous data stream is relevant for HAR systems, especially when the subset of
activities to be detected is limited to a specific domain (e.g., ADLs, movements, sports). Thus, activities of
interest can get confused with similar-patterned activities that are irrelevant to the desired application (the
so called NULL class). In most cases, it is impossible to explicitly model the NULL class, since it represents
a theoretically infinite space of arbitrary activities (all the activities not included in the target domain in an
uncontrolled environment). In some cases, it might be possible to implicitly identify the NULL class if some
corresponding signal characteristics differ considerably from those of the desired activities. In these cases,
the NULL class can be be identified by using a threshold on either the raw feature values or the confidence
scores calculated by the classifier [BBS14].

2.6.2 HAR-specific Challenges
Definition and Diversity of Activities

It is crucial for the design and development of HAR systems to establish a clear and precise definition of
the activities under investigation and their characteristics. Since human activity is complex and diverse, an
activity can be performed in many different ways and for various purposes. In this context, it is imperative
to use established activity taxonomies (briefly presented in Subsection 1.1.1), definitions, rules, detailed
descriptions, and any other means available to explicitly define and border the scope of each activity under
investigation in a specific HAR application [BBS14].

Class Imbalance

Another common difficulty is that of modeling different activity classes in the face of considerable class
imbalance. In uncontrolled environments and unscripted activity tracking, as in long-term behavioral
monitoring, some activities occur very ofter, such as sleeping, sitting, or walking, while many other are
performed less frequently, sparsely during the day, such as eating or brushing teeth. As already mentioned in
Subsection 2.4.1, class imbalance can often be addressed in various ways, for example by recording additional
training data, or, as an alternative, by generating artificial training data to extend the minority classes.
Recording additional training data might be challenging, or even impossible if experimental procedures are
not to be constrained or scripted in any way, in order to capture real-life behavior. On the other hand,
oversampling (i.e., duplicating) the classes which originally contained much less instances (refering to labeled
training data) is possible and can mitigate class imbalance [BWG13; BBS14]. It is important to note that the
extent to which a recognition system’s performance is impacted by class imbalance is largely contingent on
the selected models and algorithms that are used (different models are affected in different extents, depending
on they way they model data) and on the degree of imbalance itself.

Ground Truth Annotation

Another challenge for supervised HAR recognition tasks is the collection of annotated or “ground truth
labeled” training data. Ground truth annotation is a wearisome task, as it has to be completed manually,
in real time, or afterwards in cases where there is also available video footage of the activities performed,
since motion data recorded from an accelerometer or gyroscope is much more difficult to interpret. Posterior
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annotation using video footage is mainly possible in stationary and laboratory experiment settings, but
in daily life settings, in cases where cameras are not used, ground truth annotation is a far more difficult
problem. If only a few labeled training samples are available, semisupervised [Sti+11], unsupervised [HFS08],
or knowledge transfer [ZHY09] learning techniques can be used.

Data Collection

More experimental challenges are associated with data collection and the evaluation of HAR systems in real-
world environments. In contrast to other research fields such as speech recognition or computer vision, the
research community in activity recognition has not agreed upon some standard general-purpose datasets of
human physical activity, that could be widely used for system testing and direct comparison. This happens
mainly because data collection varies largely and depends on multiple factors: data quality, number of
modalities and sensors, recording duration, and number of participants, amongst others. Using standard
datasets is crucial for reproducible research and is becoming increasingly important in HAR as a research
discipline [BBS14].

2.6.3 Application Challenges
Variability in Sensor Characteristics

One major practical challenge for implementing HAR in real-world applications is caused by the variability
in sensor characteristics. This variability may be caused by various factors, including hardware errors and
failures, variety in recording devices, changes in the operating temperature or loose straps. Some sensors are
particularly sensitive to the environment and might need frequent recalibration. Moreover, portable devices
containing sensors, such as smartphones, might be carried and used in different ways [BS08|, resulting to
obvious differences in the recorded signals [BBS14].

Trade-offs in HAR System Design

Another practical challenge when implementing HAR systems involves the trade-off between accuracy, system
latency, and processing power [Yan+12]. For many real-world applications, such as systems supporting elderly
care, real-time signal processing and classification might be essential, while for others, such as behavioral
monitoring, offline data analysis and classification may be sufficient. Microscopic embedded sensors for data
recording typically have relatively limited processing power. In order to decrease runtime and render real-
time processing and classification possible, increasing the processing power is required. This requirement
can be fulfilled by introducing a central component (e.g., a smartphone or even a remote server) in the
experimental setup to aggregate and process the information drawn from different sensors [Lu-+10]. In cases
where a remote server is used to receive, process and retransmit the results back to the original device, the
devices must be connected in a network.

2.7 Datasets

Activity recognition datasets are essential in order to train and evaluate activity recognition models and
systems. There are two basic types of data acquisition schemes: self data collection and public datasets
[Wan+19].

e Self data collection is performed in some work, in order to fully control the data collection procedure,
regarding the setting, the sensor modalities and the quality, and to create datasets in different contexts,
for different sets of activities or with combinations of sensor modalities not available in existing datasets.
Self data collection requires thoughtfulness, patience and willingful volunteers, and it can be a tedious
procedure to collect, prepare and process all the data.

e As an alternative to self data collection, over the last years many HAR datasets have been published,
and these are adopted by many researchers for their work.

Although there is no single standard dataset that is used as a benchmark to test all activity recognition
systems, there are some widely used publicly available datasets. An attempt to summarize them has been
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made in Table 2.3. This table is focused on datasets with data from wearable inertial sensors and (potentially)
other additional sensors.

Public HAR datasets based on wearable sensors

Dataset Type Subjects Activities Samples Sensors Setting Ref
OPPORTUNITY ADL 4 18 701,366 A,G,M,0,AM controlled [Rog+10; Cha-+13]
Skoda Checkpoint  Factory 1 10 22,000 A controlled [Zap—+07]

UCI Smartphone ADL 30 12 10,929 AG controlled [RO+15; RO+16]
PAMAP2 Physical 9 18 3,850,505 A,G,M,HR  uncontrolled [Reil2; RS12]
USC-HAD ADL 14 12 2,520,000 A,G uncontrolled [ZS12]

WISDM Mixed 51 18 15,630,426 A,G controlled [Weil9; WYH19]
DSADS Physical 8 19 9,120 A,GM controlled [ABT10; BA10|
Darmstadt DR ADL 1 35 24,000 A uncontrolled [HFS08]

CHAD Mixed 10 13 n/a AG controlled [Sho+16; Sho+15]
MHEALTH Physical 10 12 16,740 A,G,M,ECG controlled [Ban+14a; BGS14]
Daphnet FoG Gait 10 2 1,917,887 A uncontrolled [Bac+10; RPH10]
REALDISP Physical 17 33 n/a A,GM,Q controlled [Ban+12; BTA12]
HHAR Physical 9 6 43,930,257 A,G controlled [Sti+15a; Sti+15b]
UniMiB SHAR Mixed 30 17 11,771 A controlled [MMN17]
MobiAct v2.0 Mixed 66 16 n/a AG controlled [Cha+17]
KU-HAR Physical 90 18 20,750 AG controlled [SN21]

A: accelerometer, G: gyroscope, M: magnetometer, Q: quaternion sensor, O: object sensor,
AM: ambient sensor, HR: heart rate monitor, ECG: electrocardiogram

Table 2.3: Public HAR datasets based on wearable sensors
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In this Chapter, recent advances in wearable sensor-based HAR using deep learning techniques are presented,
by describing the basic architectural elements and some HAR applications of each deep learning approach.

3.1 Introduction

Although conventional pattern recognition approaches have made enormous progress on HAR by adopting
machine learning algorithms, such as Decision Trees, Support Vector Machines (SVMs), naive Bayes, and
Hidden Markov Models (HMMs), there are several limitations that restrict the performance of conventional
pattern recognition methods regarding classification accuracy and model generalization. In controlled
environments with a small set of activities and labeled sensor data, conventional pattern recognition methods
are capable of achieving satisfying results. However, since these methods heavily rely on heuristic hand-
crafted feature extraction which provides only relatively shallow features, there is much potential for deep
learning techniques, especially regarding daily HAR tasks, uncontrolled environments, few labeled data and
online or transfer learning tasks.

Deep learning can largely diminish the effort on designing features and can learn much more high-level and
meaningful features by training an end-to-end neural network. The features can be learned automatically from
the raw or preprocessed signals through the network, instead of being manually designed. In addition, deep
neural networks can extract high-level representations in deep layers, rendering them more appropriate for
complex activities recognition tasks. Moreover, deep networks’ structure could be suitable for unsupervised,
transfer and incremental learning [Wan-+19]. A comparison of the two approaches for feature representation
and feature learning is summarized in Table 3.1.

Comparison of deep learning feature representation and conventional feature extraction

Characteristics Deep learning-based feature Conventional feature
representation extraction

Feature extraction Ability to learn features from raw Manually engineered feature

and representation sensor data and discover the most vectors that are application
efficient patterns to improve dependent and unable to model
recognition accuracy complex activities

Generalization Potential to automatically capture Requirement of labeled sensor

and diversity spatial and temporal dependencies data and use of arbitrary feature
and scale invariant features from selection and dimensionality
unlabeled raw sensor data reduction approaches that are not

necessarily generalizable

Data preparation Data preprocessing and Necessary data preprocessing,
normalization not always segmentation and dimensionality
compulsory to obtain improved reduction
results

Temporal and Hierarchical and translation- Handcrafted features mostly

spatial changes invariant representations useful inefficient in handling such changes

in activities to cope with such changes

Model training Requirement of large training Requirement of less training data,

and execution time dataset to avoid overfitting, and less computational power, and less
high computational power, mostly memory usage

GPUs, to speed up training

Table 3.1: Comparison of deep learning feature representation and conventional feature extraction [Nwe-+18]

3.2 Deep Learning Approaches

Deep Learning [HOTO06; Ben09] as a machine learning method has come a long way since its resurgence in
2006. Deep learning is a class of machine learning algorithms that uses multiple layers to progressively extract
higher level features from the raw input, embodying representation learning [Denl4]|. Over the years, deep
learning has been extensively used in image recognition, speech recognition, natural language processing,
amongst others. Research on the use of deep learning for feature representation and classification is growing
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rapidly. In general, deep learning techniques can be subdivided into discriminative models, generative models
and hybrid models.

Discriminative models are a class of supervised machine learning models used for classification or regression.
These distinguish decision boundaries by inferring knowledge from observed data. A discriminative model
is a model of the conditional probability of the target Y, given an observation x, symbolically p(Y|X = x).
Moreover, classifiers computed without using a probability model are also referred to loosely as discriminative.
Typical conventional discriminative classifiers include linear regression, logistic regression, support vector
machines (SVMs), conditional random fields (CRFs), decision trees, and neural networks. Deep discriminative
classifiers include convolutional neural networks (CNNs), recurrent neural networks (RNNs) and deep fully-
connected neural networks (DNNs).

Generative models are another class of machine learning models. Given an observable variable X and a
target variable Y, a generative model is a statistical model of the joint probability distribution on X x Y,
p(X,Y). From that, the conditional probability p(Y|X = z) can be computed and classification can be based
on that. Typical generative model approaches include naive Bayes classifiers, Gaussian mixture models
(GMMs), and hidden Markov models (HMMs). Deep generative models include variational autoencoders
(VAEs), generative adversarial networks (GANs), deep belief models, restricted Boltzmann machines, and
others [Nwe+18; NJ02].

Hybrid models are models that combine generative and discriminative models for pattern recognition tasks. In
these cases, generative models are used to derive feature maps and output a set of fixed length features that are
used by discriminative models to perform classification. These hybrid schemes sought to integrate the intra-
class information from generative models and the complementary inter-class information from discriminative
methods [LLL11]. Some examples of hybrid models include convolutional restricted Boltzmann machine,
convolutional sparse coding, and LSTM-density mixture model [Nwe-+18].

3.3 Deep Learning Models

3.3.1 Deep Neural Networks
Architecture

The perceptron is the simplest form of a neural network. It can be used to classify patterns that are linearly
separable. Tt consists of a single neuron with adjustable synaptic weights and bias. As shown in Figure 3.3.1,
the summing node computes a linear combination of the inputs, while also taking account of an externally
applied bias. The resulting sum is applied to a hard delimiter, which produces an output equal to +1 if the
hard limiter input is positive, and —1 if it is negative, as follows [Hay09].

y = sgn[w’x + 0] (3.3.1)
Bias
b
1 O— W1
T Hard
limiter Output
Inputs < 220 - W2 > Z —@l Y

I3 O——— W3
Weights

Figure 3.3.1: Signal-flow graph of a perceptron [Hay09]
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Deep Feedforward Networks, also often called Feedforward Neural Networks, or Multilayer Perceptrons
(MLPs), are the typical, quintessential deep learning models. These network structures are built to overcome
the practical limitations of the perceptron. According to the universal approximation theorem, a feedforward
network with a single hidden layer containing a finite number of neurons can approximate arbitrary well
real-valued continuous functions on compact subsets of R™ [Csa01; GBC16; Hay09].

A feedforward network defines a mapping y = f(x;6) between the inputs x and the outputs y, and learns
the value of the parameters 6 that result in the best function approximation. They are called feedforward
because there are no feedback connections in which outputs of the model are fed back into itself. MLPs are
usually characterized by the utilization of a non-linear, differentiable (or non-differentiable at only a small
number of points) activation function following each neuron, by the existence of hidden layers and by a high
degree of connectivity [GBC16; Hay(09]. An example of an MLP with four hidden layers is presented in Figure
3.3.2.

Input Hidden Hidden Hidden Hidden Output
layer layer 1 layer 2 layer 3 layer 4 layer

Tr1 —

o —

Tr3 —

Ty —

Figure 3.3.2: Architectural graph of a multilayer perceptron with four hidden layers

Application

MLPs usually serve as dense layers in other deep models, as seen for example in convolutional neural networks.
However, there are cases where they are used alone in HAR, for classification tasks, or, more rarely, for
both feature learning and classification. In [Vep+15|, the A-Wristocracy framework that is implemented
takes advantage of hand-engineered features extracted from the sensors, which are fed into a feedforward
artificial neural network with two hidden layers. Moreover, in [WDT16], PCA for dimensionality reduction
was applied on the hand-crafted features before using them as input in an MLP with one hidden layer.
A comparative study between different deep learning approaches was conducted in [HHP16], where the
researchers compared the performance of a five-hidden-layer MLP with that of CNN and RNN architectures
for HAR tasks, performing automatic feature learning and classification [Wan+19).

3.3.2 Convolutional Neural Networks
Architecture

Convolutional Neural Networks (CNNs or ConvNets) are a specialized type of neural networks for processing
data characterized by a grid-like topology, such as image data. As indicated by their name, convolutional
neural networks employ convolutions instead of general matrix multiplication in at least one of their layers
[GBC16|. The architecture of a typical CNN is structured as a series of stages. The first few stages are
composed of two types of layers: convolutional layers and pooling layers. The role of the convolutional layer
is to detect local conjunctions of features from the previous layer and the role of the pooling layer is to merge
semantically similar features into one. Two or three stages of convolution, non-linearity and pooling are
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stacked, followed by more convolutional and fully-connected layers, which perform classification or regression
tasks [LBH15; Wan+19].

The convolution of a two-dimensional image I, used as input, with a two-dimensional kernel K, is illustrated
in Figure 3.3.3 and given by:

S(i,§) = (I K)(i,5) = > > I(m,n)K (i —m,j—n) (3.3.2)
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Figure 3.3.3: A two-dimensional convolution operation [Vell8]

Application

Due to the effectiveness of CNNs, they are largely used in HAR applications. Most HAR wearable sensors
provide one-dimensional (1D) time series readings as input for a CNN. Therefore, input adaptation might be
required, in order to transform these 1D vectors into a 2D virtual image. This however, is not necessary since
CNNs can also be applied to 1D signals directly. Thus, input adaptation remains open as a design choice in
each HAR task implementation [Wan+19].

When treating each 1D signal as a channel and using 1D kernels for the convolution layers and 1D pooling,
the system identifies local patterns over time for each signal. In [Zen+14], each 1D accelerometer signal,
corresponding to the measurements along one of the accelerometer’s axes, is treated independently and the
convolution and pooling layers are not shared between the different signals. After convolution and pooling,
the outputs of each channel are flattened to unified hidden DNN layers. In [Yan+15|, a similar network is
implemented, with the difference that the kernels’ weights of the convolutional layers are unified and shared
across all signals. Convolutional practices and network designs similar to the aforementioned are included in
[HHP16].

When forming a 2D virtual image by stacking or by transforming the 1D signals and applying 2D convolutions
and 2D pooling, the system can capture both local dependencies over time and spatial dependencies over
sensors. In [HYC15], signals are stacked to form a 2D virtual image, after sensors placed in the same body
position have been grouped together, and within each group of signals, signals from each different type of
sensor (accelerometer, magnetometer, gyroscope) are separated by padding zeros between them, to not be
convolved together by the convolution kernel in the first convolutional layer. In [JY15], a novel activity image
algorithm is proposed, based on signals of gyroscope, total acceleration and linear acceleration.

Moreover, in [Rav+16], each inertial signal is converted to a spectrogram, a representation of the signal as
a function of frequency and time that is formed by calculating the squared magnitude of the short-time
Fourier transform (STFT) after dividing the signal into shorter segments of equal length. The network
applies 1D temporal convolutions on the spectrograms, so this is a case of an implementation that transforms
the 1D signal into a 2D virtual image but then applies 1D convolutions over time and, in addition, signals
corresponding to different axes or coming from different sensors are not combined together in the convolution
stage, since each spectrogram depicts only one 1D signal. Thus, this work fundamentally differs from the
previous mentioned ones regarding transforming the 1D signals to a 2D virtual image.

47



Chapter 3. Deep Learning for Wearable Sensor-based HAR

Another work, [CX15], explores the impact of the convolutional kernel’s shape over a 2D virtual image created
by stacking the signals corresponding to the three axes of an accelerometer. The researchers test the three
possible kernel widths, 1 (kernel Nx1, in essence temporal convolution), 2 (kernel Nx2, combining signals
from two axes), and 3 (kernel Nx3, combining signals from all three axes), on system accuracy, and found
that kernel width of 2 performed the best in their HAR task setting.

Most convolutional layers in most of the aforementioned CNN architectures are followed by a pooling layer.
Pooling helps to render the representation approximately invariant to small translations of the input [GBC16],
and progressively reduces the spatial size of the representation, the number of parameters, the memory
footprint and the computational requirements of the network. In most approaches, max [Zen+14; Yan+15;
HHP16] or average [Yan+15; JY15] pooling is employed.

Regarding weight sharing choices, weight sharing across sensors in 1D CNNs was discussed in a previous
paragraph. Weight sharing across the input space of each implementation has also been questioned. Although
weights of local filters are tied and shared by all positions within the whole input space in traditional CNNs,
serving the purpose of identifying an object or a feature regardless of its position in an image, in HAR
different patterns might appear in different frames for a reason, therefore it may be better to relax the weight
sharing constraint and adopt a partial weight sharing technique, as described in [Zen+14] and [HC16]. In
general, although total weight sharing helps to speed up the training process, in these papers it is shown that
partial weight-sharing could improve the performance of CNNs for HAR tasks [Wan+19].

3.3.3 Recurrent Neural Networks

Architecture

When feedforward neural networks are extended to include feedback connections, they are called Recurrent
Neural Networks (RNNs). Recurrent neural networks were developed to model sequential data, such as time
series data. RNNs process an input sequence one element at a time, maintaining in their hidden units a
“state vector” that implicitly contains information about the history of the past elements of the sequence.
RNNS, once unfolded in time, can be seen as very deep feedforward networks in which all the layers share the
same weights, as it can be seen in Figure 3.3.4. RNNs are very powerful, but training them has proved to be
challenging because of the backpropagated gradients that explode or vanish over many time steps. Moreover,
it has been shown that it is difficult for RNNs to learn to store information for very long [BSF94; GBC16;
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Figure 3.3.4: A recurrent neural network unfolding in time

To solve these problems, a helpful idea is to augment the network with an explicit memory. The Long Short-
Term Memory (LSTM) model [HS97; GSCO00] includes self-loops to produce paths where the gradient can
flow for long durations, with the weight on this self-loop conditioned on the context. This is implemented
using a memory cell that acts like an accumulator or a gated leaky neuron: it has a connection to itself at
the next time step that has a weight of one, so it copies its own real-valued state and accumulates the input
signal, but this self-connection is multiplicatively gated by another unit that learns to decide when to clear
the content of the memory [GBC16; LBH15]. A block diagram of an LSTM unit is depicted in Figure 3.3.5.
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Figure 3.3.5: LSTM block diagram

Another type of gated RNN is the one whose units are called Gated Recurrent Units (GRUs) [Cho+14]. The
main difference with the LSTM is that there is no cell state and a single gating unit simultaneously controls
the forgetting factor and the decision to update the state unit. A block diagram of a GRU is depicted in
Figure 3.3.6. The GRU has fewer parameters than the LSTM unit and thus networks using GRUs can be
trained faster. GRU’s performance in certain tasks was found to be similar to that of LSTM, while it has
been proved that the LSTM is “strictly stronger” than the GRU [WGY18]. Many more variants around this
theme can be designed. However, several investigations over architectural variations of the LSTM and GRU
found no variant that would clearly beat both of these across a wide range of tasks [Gre+17; JZS15] and
these two remain two of the most widely used RNN variations [GBC16].
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Figure 3.3.6: GRU block diagram

Application

HAR is a classic time series classification problem. Capturing the temporal dynamic in movement patterns is
essential to model complex activity details and improve the performance of recognition algorithms. RNNs can
be much more efficient than CNNs in modeling global temporal dependencies in sensor data. The potential
use of RNNs in HAR tasks using data from wearable sensors is explored in numerous publications [Nwe+18].

49



Chapter 3. Deep Learning for Wearable Sensor-based HAR

In [IIN16], a deep recurrent neural network (DRNN) with LSTM units is used for HAR with high throughput
from raw accelerometer data. Various architectures are investigated in order to determine the optimal
parameter values regarding the number of hidden layers, the number of units, time truncation, the gradient
clipping parameter, and the dropout rate. After determining a set of optimal parameter values for a specific
dataset, additional experiments using these parameters and a different HAR dataset were conducted to assess
their transferability and their generalization ability, with relatively satisfying results.

In [HHP16], recurrent approaches for wearable-based HAR are compared with MLPs and convolutional
approaches. The implemented recurrent neural networks are based on LSTM cells in two variants: deep
forward LSTMs, which contain multiple layers of recurrent units and are connected “forward” in time, and
bidirectional LSTMs which contain two parallel recurrent layers that expanding in both the “future” and the
“past” direction of the current time step, followed by a layer that concatenates their internal states for the
current time step. These recurrent approaches outperform the MLP and CNN ones in most experiments,
and they show similar behavior across multiple datasets and various model configurations.

Besides, in [Tam+17], LSTM-based RNNs are applied on multi-modal (acoustic and acceleration) singals
for an HAR task. LSTM-RNNs can capture longer temporal context and their performance on the task is
found to be superior to that of feedforward neural networks. Moreover, a system based on LSTM-RNN with a
recurrent projection layer (LSTMP-RNN) is implemented for a subject adaptation task, to build a customized
classifier for each user. In the experiments, it was observed that in subject adaptation, when providing 5 or
more adaptation samples per class, LSTMP-RNN outperformed LSTM-RNN and other variants, including
GRU-based RNNs.

In [GP17], fusion of multiple LSTM learners is implemented and the HAR framework that is built is based
on ensembles of LSTMs, using an epoch-wise bagging scheme, in order to achieve reliability in real-world
scenarios. The general idea of ensemble classifiers is to create collections of individual learners that are
trained on different views of the dataset, and thus focus on different aspects of the problem domain, resulting
in increased robustness and typically better average classification accuracy. The collection of LSTM learners
is created by introducing variation in two ways: random selection of subsets of the dataset used as training
data and two different loss functions for model training.

Moreover, in many works, additions or modification are made to the LSTM-RNN archicture in order to
improve its performance in HAR tasks, including hierarchical deep LSTM (H-LSTM) [WL19], deep residual
bidirectional LSTM [Zha+18], and attention-based LSTM [Sun+19] networks. [EK16] proposes a binarized
bidirectional Long Short-Term Memory network (B-BLSTM-RNN) for HAR, suitable for resource-constrained
environments, such as mobile and wearable devices. In this model, all weight parameters, input, and
intermediate hidden layer output signals are binary-valued, and by replacing either floating or fixed-point
arithmetic with significantly more efficient bitwise operations, it reduces its memory size and accesses and
improves power efficiency, while maintaining performance comparable to that of the full-precision network.

3.3.4 Hybrid CNN-RNN Models

Various research efforts have been made to explore the potential of hybrid models that combine CNN and
RNN layers for HAR tasks. The fundamental idea portrayed in this combination is that, in most cases, the
CNN layers are used for feature extraction and they are followed by RNN layers, that exploit the temporal
dependencies in the signal data [Nwe-+18; Wan+19].

In [OR16], a generic deep framework for activity recognition based on convolutional and LSTM recurrent
layers (DeepConvLSTM) is proposed, that is capable of automatically learning feature representations and
modeling the temporal dependencies between their activation. The framework is suitable for multimodal
wearable sensors’ data, it can perform sensor fusion naturally, it does not require expert knowledge in
designing features, and it explicitly models the temporal dynamics of feature activations. Compared to
a baseline CNN model followed by feedforward dense layers, DeepConvLSTM performs better and allows to
distinguish similar movements (e.g., open door, cloose door). A similar system combining convolutional and
LSTM-based recurrent layers, called C-LSTM, is described in [YQY18], while a comparable deep learning
framework, combining convolutional and GRU-based recurrent layers, called DeepSense, is proposed in
[Yao+16].
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In [MR16], the researchers employ a CNN-RNN architecture comprised of three convolutional layers, with
max pooling layers in between, followed by an LSTM-based layer. They investigate whether the kernels in the
convolutional layers are transferable in wearable activity recognition, considering transfer potential between
users, application domains, sensor modalities and sensor locations.

3.3.5 The Attention Mechanism
Architecture

An Attention function can be described as mapping a query and a set of key-value pairs to an output, where
the query, keys, values, and output are all vectors. The output is computed as a weighted sum of the values,
where the weight assigned to each value is computed by a compatibility function of the query with the
corresponding key.

One of the most popular attention functions is the Scaled Dot-Product Attention [Vas+17]. The input consists
of queries and keys of dimension dj, and values of dimension d,. The dot products of the query with all keys
are computed, then each is divided by v/dy, and a softmax function is applied to obtain the weights on the
values. In practice, the attention function is computed on a set of queries simultaneously, packed together
into a matrix (). The keys and values are also packed together into matrices K and V. The output matrix
is computed as:

Attention(Q, K, V) = softmaz (QKT) 14 (3.3.3)
Y ) - \/@ Je

Two other commonly used attention functions are Bahdanau (additive) attention [BCB15], and Dot-Product
(multiplicative) attention. The Scaled Dot-Product attention is similar to the Dot-Product attention, with
the addition of the scaling factor \/%. Additive attention computes the compatibility function using a feed-
forward network with a single hidden layer. While Bahdanau and Dot-Product are similar in theoretical
complexity, Dot-Product attention can be implemented using matrix multiplication which is optimizable,
and is much faster and more space-efficient in practice. The scaling factor in Dot-Product attention is added
since, while for small values of d; the two mechanisms perform similarly, additive attention outperforms
Dot-Product attention without scaling for larger values of dj.
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Figure 3.3.7: Attention mechanism details introduced in [Vas+17]

The concept of Multi-head Attention was introduced also in [Vas+17|, where instead of applying a single
attention function with d,,,q4¢-dimensional keys, values and queries, it was found beneficial to linearly project
the queries, keys and values h times with different, learned linear projections to dj, dix and d, dimensions,
respectively. On each of these projected versions of queries, keys and values the attention function is applied
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in parallel, yielding d,-dimensional output values. These are concatenated and once again projected, resulting
in the final values. Multi-head Attention allows the model to jointly attend to information from different
representation subspaces at different positions. With a single attention head, averaging inhibits this.

MultiHead(Q, K, V) = Concat(heady, ..., head,)W©

3.3.4
where head; = Attention(QVViQ7 KwWE vw}) ( )

The attention projections are parameter matrices W € Rimoderxdi J7K ¢ Rimoderxdi 7V ¢ Rdmoderxdy
and WO € Rhdvxdmoder,

Another attention taxonomy refers to the attention input source. When keys, values and queries are generated
from the same sequence, it is called Self-Attention. When the queries are generated from a different sequence
than that of the key-value pairs, it is called Cross-Attention.

3.3.6 Transformers
Architecture

The Transformer is a sequence-to-sequence Deep Learning architecture based on the Multi-head Attention,
introduced in [Vas+17]. It was proposed as an efficient architecture to handle long-distance dependencies
in sequential data, by replacing the convolutional and recurrent layers of traditional encoder-decoder
architectures, with stacked Self-Attention and point-wise, fully connected layers, as depicted in Figure 3.3.8,
for both the encoder (left) and decoder (right). The encoder consists of encoding layers that process the input
tokens iteratively one layer after another, while the decoder consists of decoding layers that iteratively process
the encoder output as well as the decoder output tokens so far. The main components of this architecture
are the following:

e The Encoder is composed of 6 stacked identical Transformer Encoder layers. Each layer has two
sub-layers: a Multi-head Self-Attention mechanism, and a simple, position-wise fully connected Feed-
Forward Network. A residual connection is employed around each of the two sub-layers, followed by layer
normalization. Thus, the output of each sub-layer is Layer Norm(xz + Sublayer(x)), where Sublayer(x)
is the function implemented by the sub-layer itself. All sub-layers in the model, as well as the embedding
layers, produce outputs of dimension d,,.qe; = 512, to facilitate these residual connections.

e The Decoder is also composed of 6 stacked identical Transformer Decoder layers. In addition to the two
sub-layers of each encoder layer, the decoder layers include a third sub-layer, which performs Multi-head
Attention over the output of the encoder stack. Residual connections around each of the sub-layers,
followed by layer normalization are used as in the encoder layers. Moreover, the Self-Attention sub-layer
in the decoder layer is masked to prevent positions from attending to subsequent positions. Since the
output embeddings are also offset by one position, it is ensured that the predictions for each position
can depend only on the known outputs at past positions.

o Multi-head Attention is leveraged in three different ways:

— Each encoder layer contains a Self-Attention sub-layer, whose input is the output of the previous
encoder layer. Each position in the encoder can attend to all positions in the previous layer of the
encoder.

— Each decoder layer contains a Self-Attention sub-layer, whose input is the output of the previous
decoder layer. Each position in the decoder can attend to all positions in the decoder up to and
including that position. Leftward information flow in the decoder must be prevented to preserve
the autoregressive property.

— In the encoder-decoder attention layers, the queries come from the previous decoder layer, and the
keys and values come from the output of the encoder. This allows every position in the decoder to
attend over all positions in the input sequence, which mimics the typical encoder-decoder attention
mechanisms in sequence-to-sequence models.
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Figure 3.3.8: The Transformer model architecture introduced in [Vas+17]

e Each of the encoder layers and the decoder layers contains a fully connected Position-wise Feed-Forward
Network, which means that it is applied to each position separately and identically. It consists of
two Linear transformations with a ReLU activation in between. Its ouput is given by the equation
FFN(z) = maz(0,zW1 + b1)Ws + by. While the Linear transformations are the same across different
positions, they are different from layer to layer. The dimensionality of input and output is d;,eqe; = 512,
and the hidden layer’s size is dyy = 2048.

e Learned Embeddings are used as usually to convert the input tokens and output tokens to vectors
of dimension dynoge;- A learned Linear transformation and Softmaz function is used to convert the
decoder output to predicted next-token probabilities. The same weight matrix is shared between the
two embedding layers and the pre-softmax Linear transformation, as in [PW17]. In the embedding
layers, those weights are multiplied by v/dmodei-

e The addition of some kind of Positional Encoding is necessary in order for the model to make use of the
order of the sequence since the input is not processed in a sequential order by the model. The positional
encodings are added to the input embeddings at the bottom of the encoder and decoder stacks, and
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they have the same dimension d,,,q4.; as the embeddings, so that the two can be summed. There are
many choices of positional encodings, fixed (e.g., sine and cosine functions) or learned. The sinusoidal
positional encodings are selected by [Vas+17] since they enable the model to extrapolate to sequence
lengths longer than the ones encountered during training.

Application

In [SK21], a general framework for inertial-based activity recognition with Transformers is proposed. IMU
data collected from mobile devices are given as input to a Transformer-based model, in order to perform
HAR tasks. The proposed model, which includes four convolutional layers to embed the input to a higher
dimension, followed by six Transformer Encoder layers and two Linear layers to produce the outputs for
each class, is shown to outperform a CNN baseline on smartphone location recognition and human activity
recognition. Also, in [DLKP22], a Transformer-based model which includes three Transformer Encoder layers
followed by a Linear classification head is used in a HAR task based on IMU data from smartphones, and
outperforms a Random Forest baseline. A lightweight Transformer for HAR using federated learning is
proposed in [Raz+21].

3.3.7 Restricted Boltzmann Machines and Deep Belief Networks
Architecture

Restricted Boltzmann Machines (RBMs) [Smo86] are generative stochastic artificial neural networks that can
generatively model input data. An RBM can be represented as an undirected bipartite graph, that consists of
a set of stochastic visible units and a set of stochastic hidden units [BL16]. RBMs are a variant of Boltzmann
machines, in which there are no connections between the units of each set, thus allowing for more efficient
training algorithms, such as the gradient-based contrastive divergence algorithm. Contrastive divergence is
an approximation of the log-likelihood gradient that has been found to be a successful update rule for training
RBMs [CPHO05; Ben09].

RBMs can be used in deep learning networks. In particular, Deep Belief Networks (DBNs) [HOTO06] can be
formed by “stacking” RBMs, where each sub-network’s hidden layer serves as the visible layer for the next.
DBNs can be trained greedily, one layer at a time, using the contrastive divergence algorithm, and learn
to probabilistically reconstruct their inputs, while the layers act as feature detectors. DBNs can be further
trained with supervision in order to be used for classification tasks.

Application

In [Ham+15], an HAR pipeline, including hand-crafted feature extraction and two RBMs to learn a generative
model of the input features, is designed as a Parkinson’s Disease assessment system. In [PHO11|, RBMs are
used for feature learning in HAR tasks, and their effectiveness is compared to hand-crafted statistical feature
extraction and PCA. In [Als+15], RBMs are also used for feature learning as part of a HAR framework that
combines deep learning and HMMs. Spectrograms of the segmented sensor data are fed as input to the first
RBM layer.

In [Rad+16], a multimodal RBM (MM-RBM) architecture is proposed to integrate multimodal sensor streams
and perform activity recognition tasks in resource-constrained computation units like wearable devices. The
proposed MM-RBM system outperforms an RBM architecture with concatenated sensor streams input
and three shallow classifiers (C4.5, SVM and Random Forest). Moreover, in [ZWL15]|, real-time HAR is
implemented on smartphones, employing a DBN with three hidden layers, whose parameters are initialized
by a generative pretraining and then finetuned using backpropagation. The model was trained offline and
then loaded in a smartphone for inference, using sensor data collected by the phone.

Regarding hybrid CNN-RBM models, Lasagna, proposed in [Liu+16], is a system aimed at deep hierarchical
understanding over mobile sensing data. In this system, all activity sensor data are embedded to multi-
resolution descriptors through a hierarchical descriptor extraction module, which is composed of multiple
stacked Convolutional Restricted Boltzmann Machines (CRBMs).
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3.3.8 Autoencoders
Architecture

Autoencoders (AEs) are artificial neural networks trained to attempt to copy their input to their output. An
AE has a hidden layer that describes a code used to represent the input, and can be viewed as an encoder-
decoder system. The encoder function maps the input into a latent space, and the decoder function maps
the latent space representation of the input signal to a reconstruction of the input. Through stacked hidden
layers of encoding-decoding operations, autoencoders learn efficient latent representations of the input data
in an unsupervised fashion. Several AE variants are proven to be efficient in learning representations for
subsequent classification tasks, including sparse, denoising and contractive AEs [GBC16; Var+18].

Application

In [AAA17], the use of a stacked autoencoder model, built by stacking two AEs, is proposed for HAR, to
enhance recognition accuracy and decrease recognition time. Similar work employing stacked autoencoders
for HAR is included in [ZGW15], while in [KT17] a channel-wise ensemble of AEs is used to detect unseen falls
from wearable devices’ sensor data. Furthermore, in [Var+418], researchers introduce a novel HAR approach
by expressing the problem as a set prediction problem, and propose Deep Auto-Set, a unified encoding-
decoding architecture that consists of convolutional and deconvolutional layers. The system is trained in two
steps: at start, in an unsupervised manner using the entire network, followed by a supervised finetuning step
employing only the encoder part of the network.

In [Li+14], a sparse autoencoder (SAE), a denoising autoencoder (DAE) and PCA are compared as techniques
for unsupervised feature leaning in HAR tasks, using SVM as a classifier. A similar comparison was made
in [LT14], where a shallow sparse autoencoder, a deep sparse autoencoder and PCA are compared, using
Random Forests as a classifier. In the same direction, a comparative study between data preprocessing
methods and their impact on autoencoders’ feature learning performance was conducted in [Har14].

3.3.9 Sparse Coding
Architecture

Sparse Coding |[OF96] is a representation learning method that aims to find a sparse representation of the
input data in the form of a linear combination of the elements of a basis as well as the basis itself. The learned
basis may be overcomplete, and sparse coding is used in order to derive convenient data representations
[Nwe-+18]. Sparse coding provides an efficient way to find succinct representations of unlabeled data, since
it can learn basis functions which capture high-level features in the data [Guo-+14], rendering classification
tasks easier and more accurate.

Application

Sparse coding is employed in HAR tasks to extract a compact, sparse and meaningful feature representation
of sensor data that generalizes well across activity domains and does not rely on labeled sensor data. In
[Bha+14], a sparse-coding framework for HAR is proposed, which uses a codebook of basis vectors that
capture characteristic and latent patterns in the sensor data. The first phase of the framework consists of
codebook learning from unlabeled data that produces a codebook of basis vectors, while the second phase
consists of extracting feature vectors from a small amount of labeled sensor data using the basis codebook
and training a standard classifier based on these features. A similar pipeline using sparse coding and sparse
sensor data representations for wearable-based HAR is described in [ZS13].
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Chapter 4. The ExtraSensory Dataset

In this Chapter, the concept of activity recognition in-the-wild is introduced and the ExtraSensory dataset is
presented thoroughly. This Chapter is based on the original work by Yonatan Vaizman, Katherine Ellis, Gert
Lanckriet, and Nadir Weibel, who collected, processed, and initially used this dataset for Human Activity
and Context Recognition. Their work can be found in the following papers: [VEL17; VWL18; Vai+18].
Additional references will be cited accordingly.

4.1 Introduction

Health monitoring and lifestyle interventions nowadays require automatic context recognition, which can be
helpful in order to offer immediate support when needed, by directly (e.g., fall detection) or indirectly (by
correlating health lapses or crises with specific contexts) detecting critical conditions. It has been proven
essential and beneficial to integrate automatic context recognition systems into large scale studies regarding
lifestyle and health monitoring, while at the same time emphasis should be put on preserving real-life settings
and sensor unobtrusiveness.

4.2 In-the-wild Conditions

Most activity and, more generally, context recognition datasets using wearable sensors prior to the
Extrasensory Dataset contain data that has been collected under heavily controlled conditions, with
subjects performing scripted sequences of tasks, accompanied with specific instructions, in constrained or
unconstrained, laboratory or other environments. However, systems trained to recognize activities performed
in such heavily controlled conditions might not generalize well in activities performed in real-life conditions
due to the increased activities’ variability. In this direction, four in-the-wild conditions are introduced [VEL17]
to ensure that research is done in natural and realistic settings:

1. Naturally used devices. Using one or multiple foreign devices might affect the naturalness of a subject’s
behavior, hence it would be ideal for the subjects to use their own devices (smartphones, smartwatches
etc.), as they naturally do.

2. Unconstrained device placement. Although device placement and orientation can have a great impact
on activity classification accuracy, forcing specific device placement and orientation is not practical in
real-world applications, thus it should be avoided, and the resulting variability should be addressed as
a challenge to overcome.

3. Natural environment. The recorded activities should be performed in a place and time convenient
for each subject, and they should be the place and time each subject would naturally perform these
activities.

4. Natural behavioral content. The recorded activities should be activities that each individual subject
would naturally perform. Moreover, the subjects should not be instructed to perform scripted sequences
of tasks.

Applying in-the-wild conditions on data collection for activity recognition research renders acquiring labels of
the subjects’ behavioral context a much more difficult task, because the activities are not scripted and their
duration and sequence are not predefined. Prioritizing in-the-wild conditions may result in fewer labeled
activity instances and a smaller range of activity labels, unless special attention is paid to the label collection
effort. In the ExtraSensory Dataset data collection process, the ExtraSensory App (Subsection 4.3.1) has
been carefully designed to facilitate label reporting.

4.3 ExtraSensory

In the work conducted by the ExtraSensory team (ExtraSensory App and ExtraSensory Dataset), labeled
data from over 300k minutes from 60 subjects was collected using smartphone and smartwatch sensors,
in order to recognize activity and context information of human behavior in-the-wild. Each data instance
corresponds to one minute for which multi-sensor measurements and relevant labels are provided. Labeling
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activities and context information has been provided through self-reporting and the data has been labeled
with combinations of relevant labels, to better depict possible multi-tasking conditions in natural behavior.

4.3.1 Data Collection

Large-scale data collection was possible using the ExtraSensory mobile app [Vai+18] developed by the
ExtraSensory team for both iPhone and Android smartphones, and an adapted app for the Pebble
smartwatch. The app’s high usability allows for automatic sensor data collection and manual ground truth
label annotation. For every minute that it is active, the app records a 20sec window of sensor measurements
from the phone and watch (there is no guarantee that the time samples of different sensors are strictly
aligned). The users can self-report the activity and context labels through the app’s user-friendly interface
that comes with practical and convenient mechanisms for self-reporting in order to maximize the number
and the variety of annotated labels while minimizing the interference of self-reporting with the performed
activity at the time.

Sixty subjects have participated in data collection, recruited from the UC San Diego campus. The subjects
were of diverse ethnic backgrounds, including Chinese, Mexican, Indian, Caucasian, African-American, and
more. Thirty four of the subjects were iPhone users, while the remaining twenty six were Android users with
various devices. The majority of the subjects were right-handed, and subsequently wore the smartwatch on
the left wrist. Thirty four subjects were female and twenty six subjects were male, and almost all the subjects
were students or research assistants. Additional characteristics are described in Table 4.1.

Additional subject characteristics

Range Mean (SD)
Age (years) 18-42 24.7 (5.6)
Height (cm) 145-188 171 (9)
Weight (kg) 50-93 66 (11)
BMI (kg/m?) 18-32 23 (3)
Labeled examples 685-9706 5139 (2332)
Additional unlabeled examples 2-6218 1150 (1246)
Average applied labels per example 1.1-9.7 3.8 (1.4)
Participation duration (days) 2.9-28.1 7.6 (3.2)

Table 4.1: Statistics over the 60 research subjects [VEL17|

The ExtraSensory app was installed on the subjects’ personal smartphone and the smartwatches were
provided to the subjects by the researchers. Fifty six out of the sixty subjects agreed to wear the smartwatch.
Rather than being instructed to perform any specific activities, the subjects were free to continue their daily
life as usual and engaged in their natural behavior for about a week. They had to keep the app running in
the background on their smartphone for as long as possible, but they were free to stop it when inconvenient,
and as well to remove the watch and turn off the watch-app. Each subject was given a basic compensation
of $40 and an additional compensation of up to $35 depending on the amount of the data they annotated.
The resulting ExtraSensory Dataset contains a total of 308,320 labeled instances (minutes) from sixty users
altogether. Details regarding the sensors characteristics and measurements are presented in Table 4.2.

4.3.2 Sensor Measurements

The publicly available ExtraSensory dataset contains all the following raw sensor measurements.

High Frequency Measurements

The following sensors were sampled at 40Hz during the 20sec recording window of each minute, producing a
time series of approximately 800 time points. Since the sampling rate of the devices could not be guaranteed
to be accurate, the time stamps of the samples of the time series were also recorded, and the differences
between consecutive time points were verified to be approximately 25msec.
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e Accelerometer. Time series of 3-axis vectors of acceleration along the standard axes of the smartphone
devices.

e Gyroscope. Time series of 3-axis vectors of rotation rate around each of the phone’s standard axes.

e Magnetometer. Time series of 3-axis vectors of the magnetic field.

Moreover, smartphones provide processed versions of the aforementioned signals. Regarding the
accelerometer, the raw acceleration is split into the gravity acceleration and the user-generated acceleration.
Regarding the gyroscope, a processed version is provided, in which the estimated drift effects have been
removed. Regarding the magnetometer, an unbiased version is provided, in which the estimated bias of the
device’s magnetic field has been subtracted from the original signal. The raw acceleration signal and the
calibrated gyroscope signal are included in the ExtraSensory Dataset, and attention was paid to unify the
units of measurement for each type of signal across all operating systems.

Sensor characteristics and measurements

Sensor Raw measurements Examples Users
Accelerometer 3-axis (40Hz) 308,306 60
Gyroscope 3-axis (40Hz) 281,883 57
Magnetometer 3-axis (40Hz) 282,527 58
Watch Accelerometer 3-axis (25Hz) 210,716 56
Watch Compass heading angle (var) 126,781 53
Location long-lat-alt (var) 273,737 58
Location precomputed location variability (1pe) 263,899 58
Audio 13MFCC (46ms frames) 302,177 60
Audio power 1pe 303,877 60
Phone state 1pe 308,320 60
Low frequency sensors 1pe 308,312 60
Core 176,941 51

Core: instances that have measurements from all six core sensors
(Acc, Gyro, WAcc, Loc, Aud and PS), 1pe: sampled once per instance,
var: variable sampling rate - sampled whenever the value changes

Table 4.2: Sensor characteristics and collected measurements [VEL17]

Watch Measurements

The Pebble smartwatch has provided signals from the two available sensors, accelerometer and compass.
Acceleration was sampled at 25Hz, while the compass does not have a constant sampling rate, but provided
an update every time a change of more than one degree was detected.

Location Measurements

The ExtraSensory smartphone app samples location data utilizing the phone’s location service, which does
not have a constant sampling rate but provides an update every time it detects movement. Thus, the collected
location measurements are time series of variable length, varying from a single time point up to more than
twenty time points. Each location update contains the estimated location measurements (latitude, longitude,
altitude, speed, vertical accuracy, horizontal accuracy) corresponding to a specific time reference.

In order to secure the subects’ privacy, the app allows users to disguise a location (preferably their home)
since the collected coordinates for instances annotated with the “at home” label could reveal their actual
home location. Thus, for users who have opted to disguise their home, whenever they were in a 500 meter
radius around it, no latitude and longitude coordinates were collected by the app, while all the other location
measurements were collected as usual.
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Low Frequency Measurements

These measurements are related to the smartphone’s phone state (PS): app state (foreground/background),
WiFi connectivity status, battery status (charging/discharging), battery level, phone call status, or are
collected from other, built-in sensors, if available, such as: proximity sensor, ambient light, temperature,
humidity, air pressure. These measurements were collected once in each recording window.

Audio Data

During each recording session of approximately 20sec, audio was recorded from the smartphone’s microphone
at a sampling rate of 22,050Hz, when the phone was not used for a call. Each raw audio signal was normalized
to have a maximal magnitude of 1, and then Mel Frequency Cepstral Coefficients (MFCCs) were calculated
on the phone, using half-overlapping windows of 2048 samples, 40 Mel-scaled frequency bands and 13 cepstral
coefficients including the Oth coefficient. Only the normalizing factor and the MFCCs for each raw audio file
were sent to the server, in order to ensure the subjects’ privacy.

4.3.3 Feature Extraction

The publicly available ExtraSensory dataset also contains the following features, which are extracted from
the raw signals collected by six particular sensors: accelerometer, gyroscope, watch accelerometer, location,
audio, and phone state.

Accelerometer and Gyroscope

Since the users are free to use their smartphone in any way that is convenient to them and they are not
obliged to keep it in a specific position, it cannot be assumed that it is oriented in any particular way. Thus,
no particular meaning was attributed to any of the smartphone’s axes and most of the features are extracted
from the overall magnitude of the signal. The vector magnitude signal was calculated as the Euclidean norm
of the 3-axis acceleration measurement at each time step. Afterwards, the following features were extracted:

e Nine basic statistics of the magnitude signal: mean, standard deviation, third moment, fourth moment,
25th percentile, 50th percentile, 75th percentile, value-entropy (entropy calculated from a histogram of
quantization of the magnitude values to 20 bins), and time-entropy (entropy calculated from normalizing
the magnitude signal and treating it as a probability distribution, which is designed to detect peakiness
in time, in other words sudden bursts of magnitude).

e Six spectral features of the magnitude signal: log energies in 5 sub-bands (0-0.5Hz, 0.5-1Hz, 1-3Hz,
3-5Hz, >5Hz) and spectral entropy.

e Two autocorrelation features from the magnitude signal. The average of the magnitude signal (DC
component) was subtracted and the autocorrelation function was computed and normalized such that
the autocorrelation value at lag 0 will be 1. The highest value after the main lobe was located.
The corresponding period in seconds was calculated as the dominant periodicity and its normalized
autocorrelation value was also extracted.

e Nine statistics of the 3-axis time series: the mean and standard deviation of each axis and the 3
inter-axis correlation coefficients.

Watch Accelerometer

Since the smartwatch is positioned in a specific way, tightly worn around the users’ wrist, meaning can be
attributed to its axes. Thus, in addition to the same 26 features as above, 20 more features were extracted
from the raw signals that were collected by the smartwatch accelerometer:

e Fifteen axis-specific features: log energies in the same sub-bands as above (0-0.5Hz, 0.5-1Hz, 1-3Hz,
3-5Hz, >5Hz) but calculated for each axis’ signal seperately.

e Five relative-direction features: after calculating the cosine similarity between the acceleration
directions of any two time points in the time series, these values were averaged in 5 different ranges of
time-lag between the compared time points (0-0.5sec, 0.5-1sec, 1-5sec, 5-10sec, >10sec)
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Location

The location features that were extracted are based only on relative locations, in order for the dataset to
better generalize to any location and not be limited in the USCD campus area. The following features were
extracted:

e Six features were calculated directly on the phone: standard deviation of latitude, standard deviation
of longitude, change in latitude, change in longitude, average absolute value of derivative of latitude
and average absolute value of derivative of longitude.

e Eleven more features were calculated remotely based on the transmitted location measurements:
number of updates, log of latitude-range, log of longitude-range, minimum altitude, maximum altitude,
minimum speed, maximum speed, best (lowest) vertical accuracy, best (lowest) horizontal accuracy and
diameter (maximum distance between two locations in the recording session, in meters).

Audio

From the time-series of 13-dimensional MFCC vectors (typically about 400 time frames) the average and
standard deviation of each of the 13 coefficients were calculated.

Phone State

Only the discrete smartphone states were used, and they were represented with a 26-dimensional one-hot
representation. For each of the following properties, a binary indicator was used for each of the possible
values, plus one indicator denoting missing data.

App state (3 options: active, inactive, background)

Battery plugged (3 options: AC, USB, wireless)

Battery state (6 options: unknown, unplugged, not charging, discharging, charging, full)

In a phone call (2 options: false, true)

Ringer mode (3 options: normal, silent without vibration, silent with vibration)
e WiFi status (3 options: not reachable, reachable via WiFi, reachable via WWAN)

Regarding time-of-day information for each instance, its timestamp was used to extract the hour component
(one out of 24 discrete values). Then, 8 half-overlapping time ranges were created: midnight-6am, 3am-9am,
6am-midday, 9am-3pm, midday-6pm, 3pm-9pm, 6pm-midnight and 9pm-3am. Each example’s hour was
represented with an 8-bit binary value, where exactly 2 bins will be active.

4.3.4 Label Correction

Since the annotation process is performed by the subjects while they are engaging in their natural behaviors,
the reliability of the collected labels cannot be ensured. Forgetting or neglecting to report accurate labels
during the day due to heavy workload or distractions might be a reason for that. In order to clean the
collected data, some labels were altered to better reflect the activities that were performed or the context
they were performed in, using two methods: based on location data and based on other labels.

Location-based Adjustment

It has been possible to verify whether many location context labels are accurate by checking the absolute
location coordinates of the examples that had location measurements and by visualizing them on a map.
This procedure facilitated the correction of falsely reported labels. For example, the “at the beach” label
was removed from examples whose absolute location coordinates did not belong to a beach when they were
visualized on a map and the same label was added to the examples whose absolute location coordinates
belonged to a beach. A similar procedure was also followed for the “at home” and “at main workplace” labels,
after determining the locations of the home and the main workplace of each subject, using the location
coordinates of examples already annotated with these labels for each subject.

62



4.3. ExtraSensory

Label-based Adjustment

Labels have been added to examples or removed from examples by applying logical reasoning using the
existing labels of each example. The existing labels of an example might reveal that a mistake was made
while annotating, if the labels are not compatible with each other, or that a compatible label was omitted
by mistake. For instance, the labels “walking” and “in a car” cannot coexist as labels in an example, since it
is not possible to be in a car and walk at the same time, and thus one of the two labels should be removed
for the labels to be consistent and as accurate as possible.

4.3.5 Classification Experiments using Logistic Regression

In [VEL17|, a relatively simple context recognition system is implemented, using binary logistic regression
(LR) classifiers, with a separate model corresponding to each context label. Each model receives the features
described in Subsection 4.3.3 as input, and the real-valued output of the model is interpreted as an indication
of the relevance of the specific conetext label. The goal is to detect the combination of relevant context
labels for each input sample, that is, for each minute. Each input sample is treated independently and the
sequence of minutes is not modeled as a time-series. These experiments using logistic regression are aimed
at establishing a baseline for context recognition in-the-wild using the ExtraSensory dataset.

Sensor Segregation and Sensor Fusion

At first, in order to specify how insightful each sensor can be, single-sensor classifiers are used. The output of
the logistic regression classifier is a continuous value that is interpreted as the probability of relevance (which
will be useful in the next stage, sensor fusion). A binary decision about the relevance of each context label is
made by applying a threshold of 0.5 to the continuous value. The procedure for single-sensor classifiers can
be summarized in the following steps, for a given sensor s and a given context label I:

1. for each example of the dataset, compute the feature vector x5 (ds-dimensional), according to Subsection
4.3.3

2. standardize each feature by subtracting mean and dividing by standard deviation (mean and standard
deviation are calculated using the training set only)

3. learn a ds-dimensional logistic regression classifier using the training set as input

4. apply the trained logistic regression classifier to a test example to obtain a probability value P(y; = 1|zs)
and a binary classification y;

Balanced class weights were used to neutralize the imbalance between the positive and the negative class for
each label. The weights were inversely proportional to the class frequency in the training set.

By taking advantage of prior domain knowledge, it is possible to correlate some sensors with corresponding
labels, i.e., the watch accelerometer is probably useful in detecting activities that include hand motions.
However, in order to reap the benefits from all sensors, sensor fusion is implemented in three alternative
ways.

In Farly Fusion (EF') classifiers, information from multiple sensors is combined prior to the classification
stage. The procedure to build such a classifier for a given label [ consists of the following steps:

1. starting from the sensor-specific feature vectors {x,}Y_,, standardize each feature, and then concatenate

the sensor-specific feature vectors into a single vector = of dimension d = Zil ds
2. learn a d-dimensional logistic regression classifier using the training set as input

3. apply the trained logistic regression classifier to a test example to obtain a probability value P(y; = 1|z)
and a binary classification y;

In Late Fusion classifiers (LF') the predictions of the N single-sensor classifiers are combined. More
specifically, the probability outputs P(y; = 1|z;) are combined, so to benefit from the “confidence” of each
classifier.

In Late Fusion using Average Probability (LFA ), the probability values from all the single-sensor classifiers are
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averaged to obtain the final “probability” value. In other words, P(y, = 1|lz1,22,...,2n) = + Zivzl Py, =
1|zs). By using this fusion technique, no further training is required after the single-sensor classifiers are
learned. This technique practically assigns equal weights to all sensors, relying on the fact that more relevant
sensors will hopefully output probabilities with higher confidence.

In Late Fusion using Learned Weights (LFL), the sensor weights are learned from the data, by introducing a
second layer of IN-dimensional logistic regression, which takes the N probability outputs of the single-sensor
classifiers as input, and the output is the final decision y;. This way, sensors that are more informative for
certain activites, thus certain labels, would end up with higher weights, and will contribute more to the
corresponding decisions.

Classification Configuration

As mentioned above, an independent logistic regression model was trained for each context label. At first,
the training set was internally partitioned in a training and a validation subset to run tests in order to
determine the cost parameter C for logistic regression. For each value out of {0.001,0.01,0.1,1,10,100} a
logistic regression model was trained on the training subset and tested on the validation subset, and the value
of C' was selected based on the highest F1-score on the validation subset.

Performance Evaluation

The performance of the classifiers was evaluated using five-fold cross validation, with each fold containing 48
users in the training set and 12 users in the test set. Moreover, leave-one-user-out (LOO) experiments were
conducted.

Regarding performance metrics, in cases of imbalanced data, classification accuracy can be misleading, since
for example for rare labels, a trivial classifier can achieve very high accuracy but is useless. A common
approach is to observe recall against precision, or to calculate their harmonic mean (Fl-score), but when
averaging these metrics over labels, some labels will unfairly dominate the score. Moreover, precision and
F1-score can be sensitive to dataset noise. However, the balanced accuracy, BA = 0.5« (TPR + TNR) can
be used in these cases as a reliable objective that balances competing metrics.

A Label examples | Sensor BA Sensor BA C classifier | accuracy | sensitivity | specificity | BA precision | F1
Stairs - going up 399 Gyro 0.73 Acc 0.70 p99 0.50 0.50 0.50 050 011 013
Stairs - going down 390 Gyro 0.73 Acc 0.71 Acc 0.73 0.64 0.73 0.68 0.17 0.22
Elevator 124 Gyro 0.76 Aud 0.71 Gyro 0.70 0.64 0.69 0.66 0.16 020
WA 0.73 0.67 0.72 0.70 0.18 0.22
Cleaning 1839 WAcc 0.71 Gyro 0.64 ¢
Loc 0.71 0.63 0.70 0.67 0.17 0.22
Laundry 473 WACc 0.66 Acc 0.65 od 075 065 75 070 018 022
u X X
Washing dishes 851 WAcc 0.70 Aud 0.60 S 0.76 074 0.76 0,75 5.20 0.4
Singing 384 Aud 0.68 Loc 0.61 EF 0.87 067 087 077 024 030
CR0 (EYy e g i (e e LFA 0.84 0.76 0.83 0.80 0.23 0.29
At the beach 122 Loc 0.72 PS 0.70 LFL 0.85 0.76 0.85 0.80 0.24 0.30
At a bar 520 PS 0.93 Gyro 0.66 EF-LOO 0.86 0.69 0.86 0.78 0.24 0.30
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Figure 4.3.1: Performance of the LR single-sensor classifiers (Acc, Gyro, WAcc, Loc, Aud and PS) and
sensor fusion classifiers (EF, LFA, LFL,EF-LOO) [VEL17]
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Insightful results are presented in Figure 4.3.1. In subfigure (A), it is shown that for specific labels with few
examples in the dataset, when utilizing the first or the second more intuitively relevant sensors, reasonable
recognition of the labels can be achieved.

Regarding sensor fusion improvements, in subfigure (B) depicts BA scores for selected context labels (number
of examples in parenthesis) for single sensor and sensor fusion strategies, according to the legend in subfigure
(C). It is shown that in most cases sensor fusion performance matches the best single sensor system, and
in many cases sensor fusion improves performance. This indicates that the system learns from data how to
take advantage from different sensors, and that there is complementary information in different sensors. In
subfigure (C), average performance metrics over the 25 labels from (B) can be seen. Sensor fusion methods
perform better in average, with LFL slightly ahead.

In general, it is shown that having sensors of different modalities is useful for distinguishing between a large
number of different activities and contexts. Different sensors can be helpful in recognizing different types
of activities, and multiple sensor placements (smartphone, smartwatch) are helpful in different contexts.
For instance, when in-the-wild conditions apply, in cases where the smartphone is placed on a surface, the
smartwatch is highly needed to provide additional sensor data, to aid context recognition.

User Personalization

Since people act, behave, and use their phone in different ways, fine-tuning a model on user-specific data
might be beneficial for context recognition. The researchers left out a single test user, and compared three
models: (1) universal, trained on data from other users, (2) individual, trained on data from the same test
user, and (3) adapted, which merges both, using LFA.

=]
o *®
S_O

<
~
=}

Il Universal
Il Individual

TN
. o BES
B Adapted fo® oo b
oine
| o
I
I
I
I
N 2 N
0)0'\, &% &8
N @ N
Ng g
e
@q ("c’
& N7
¥

Figure 4.3.2: Performance of LR user adaptation for a single test user, comparing models: universal,
individual and adapted [VEL17]

Figure 4.3.2 depicts the experimental results of this comparison. BA and F1-score metrics are calculated for
each of 15 tested labels. The bars on the right side of the plot show the average scores over the 15 tested
labels, and the average scores over 11 labels that had over 300 examples. The universal model demonstrates
good performance. The individual model performed better than the universal one, on labels that had many
individual examples, and poorly for the labels that had very limited examples. The user-adapted model shows
improvement over the two aforementioned models in most labels as well as in overall recognition performance.

4.3.6 Classification Experiments using Multilayer Perceptron

In [VWL18], multi-task context recognition employing a Multilayer Perceptron (MLP) is introduced to
improve recognition in-the-wild compared to the baseline described in the previous Subsection (4.3.5). The
output of the MLP model is multi-label, meaning that multiple context labels can be predicted for each
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input sample. In addition, by training with multi-label instance-weighting, the model can handle data with
incomplete and unbalanced labeling. Moreover, by employing sensor-dropout, the model becomes robust to
missing sensors. It should also be noted that this model enables transfer learning, and it can be used when
collecting new data and extending the system to new behavioral aspects.

Multilayer Perceptron Configuration

The proposed recognition model is based on the MLP architecture, and is carefully adapted to fit the
uncontrolled in-the-wild data. As previously mentioned, the model processes an input feature vector x € R?
with a sequence of J affine transformations, each followed by an element-wise non-linear activation function.
This allows all the sensor-features to be mixed together in a non-linear transformation to form a hidden
representation, which is then shared to predict the labels in the last layer. In a multi-class MLP setting,
multiple labels L can be classified simultaneously as positive.

For the hidden layers, a leaky rectified linear unit (ReLU) is used as activation: g(v) = max[{5,v]. For the
output layer, the logistic function (sigmoid) is used: g(v) = ﬁ, to produce valid probability outputs. The

actual binary predictions are extracted using a threshold of 0.5 on the continuous outputs.

We can define the MLP as a function f : RNX4 — [0, 1]V %%, considering it processes a batch of N instances.
This function is parametrized by the free parameters of the model; that are the weight matrices and bias
vectors of the affine transformations:

O = {W;,b;}1_, (4.3.1)

The training set is denoted with the feature matrix X € RV*? the ground truth labels matrix is denoted as
Y € {0,1}¥*L and the missing-label matrix is denoted as M € {0,1}¥*£. To train the model, the following
optimization problem is defined:

N
min (]\71L . Z\I’i,lc(f(X)i,layi,l)> + Ap(0) (4.3.2)

i=1 i=1

For every instance ¢ and label [, the entry’s prediction cost is the traditional cross entropy loss:

(¥, y) = —(ylog(g) + (1 — y)log(1 — §)) (4.3.3)

As a regularization term, ¢(O) was selected to be the total Frobenius norm of the weight matrices of the
model. This optimization problem is an instance-weighted version of maximum a posteriori probability
(MAP) estimation, where ¢(0) accounts for the prior.

The instance-weighting matrix ¥ is used to handle incomplete and unbalanced labeling. For entries (i,1)
that are regarded as “missing label” (M,; = 1), ¥, ; is set to zero, to make sure this example-label pair
contributes nothing to the total cost. The other entries are normalized for each label [ by their class (positive
or negative), with weights that are inversely proportional to the frequency of that class for this label in the
training set. As a result, for every label, the total contribution of the positive examples is equal to the total
contribution of the negative examples.

Instance-weighting is very important for various reasons. First, without the weighting matrix, the learned
model tends to be trivial - always declaring “no” for most labels. Second, the weighting matrix also
incorporates the missing label information, which enables training a multi-task model when the data has
incomplete labeling. In this way, instances with incomplete labeling can still contribute to the training, there
is no need to throw them away.

In all the experiments, early fusion of the sensors was used (the 175 features from six sensors are used as
input). Training was done using gradient descent with back-propagation, for forty epochs, with mini-batch
size of 300 examples. The learning rate was linearly decreasing at every epoch, from 0.1 to 0.01. Momentum
was used with weight 0.5.
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Data Preparation

The same six core sensors are kept, the same d = 175 extracted sensor features are used, and each feature is
standardized according to the mean and standard deviation estimated from the training set, as in the previous
experiments (Subsection 4.3.5). Also, the same evaluation protocol is retained: five-fold cross validation using
the same partition of the sixty participants to five folds.

In the previous experiments, every instance-label entry was treated as either positive or negative. In this
work, the concept of “missing labels” is introduced in order to better represent cases where a relevant label
was ignored or omitted unintentionally by a user. The original analysis assumed that whenever a label was
not marked, it was not relevant to the instance. However, it might be more fitting to apply several common
sense rules to infer when it is better to treat an entry as missing rather than negative. For example:

e In cases where no labels were used, all labels were marked as “missing” except for those which could be
adjusted based on location, e.g., “at home”.

e Subsets of labels that represent mutually-exclusive alternatives that typically cover all the possible
options for a certain aspect were identified (e.g., for body posture/movement, thse are “Lying down”,
“Sitting”, “Standing”, “Walking”, “Running”, and “Bicycling”). For every example, all these label subsets
were examined. If none of the labels in the set was selected, they were all marked as “missing” for this
example.

e For the phone position label subset, in the cases where a participant reported two of the labels (e.g.,
“Phone in hand” and “Phone in pocket”), both labels were marked as “missing” since there was no safe
way to determine which one was correct.

e For every participant, after determining the subset of labels that were used, all the other labels were
marked as missing for all the participant’s examples.

In this work, performance metrics are calculated by counting correct classification and errors only over non-
missing entries.

Evaluation

The full multi-task MLP, which is trained with all the labels, is compared to the baseline system, referred
as Early Fusion (EF) logistic regression in Subsection 4.3.5. While in the baseline system, the main results
focused on 25 labels with successful recognition, here the multi-task MLP predicts L. = 51 context labels
simultaneously; the initial 25 labels are jointly modeled with 26 additional labels that got poorer results with
the baseline system.

Different MLP architectures with none, one or two hidden layers of different widths are evaluated. To
determine the hyperparameter values, the training set is partitioned to 70% internal-training-set and 30%
internal-validation-set. The internal-training-set is used to train the MLP, performing a grid search over
possible hyperparameter values. The hyperparameter values are selected based on the highest internal-
validation-set balanced accuracy, and are subsequently used to re-train the model over the entire training
set.

The 70%/30% partition of the training set was done randomly, because there was no way to guarantee the
same positive/negative ratio for all the 51 labels. In the experiments, the depth of the MLP is fixed, but the
grid-search is done to select both A among {0.0001,0.0005,0.001,0.005,0.01,0.05,0.1}, and the dimension
(width) of the hidden layers, among {2,4, 8, 16, 32}.

Recognition performance of the MLP with regard to layer size and depth is presented in Table 4.3, along with
the inital baseline results of logistic regression (LR) per label. The “size” column corresponds to the number
of free parameters for each model, including weight matrices and bias vectors. For the MLP, the dimensions
of the hidden layers are put in parenthesis. For MLP (d) and MLP (d,d), where the hidden dimension or
dimensions are selected via internal validation, the architecture can be different for each test fold, so the
model size is not defined. Scores are averaged over all the 51 labels. The last two columns present the BA
measured on the training examples (train-BA) and the gap between training and test performance (BA gap),
to investigate the level of over-fitting.
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L Recognition scores reported for LR and for the multi-task MLP
Model Size | Accuracy Sensitivity Specificity | BA  Train-BA BA gap
LR 8976 0.832 0.597 0.838 0.718 0.875 0.158
MLP (linear) 8976 0.760 0.746 0.757 0.752 0.813 0.061
MLP (2) 505 0.666 0.773 0.661 0.717 0.735 0.017
MLP (4) 959 0.730 0.773 0.727 0.750 0.773 0.023
MLP (8) 1867 0.776 0.768 0.775 0.772 0.806 0.035
MLP (16) 3683 0.781 0.755 0.781 0.768 0.820 0.052
MLP (32) 7315 0.799 0.736 0.800 0.768 0.847 0.079
MLP (64) 14579 0.806 0.687 0.808 0.747 0.865 0.118
MLP (d) ? 0.799 0.736 0.800 0.768 0.847 0.079
MLP (2,2) 511 0.662 0.759 0.656 0.707 0.736 0.029
MLP (4,4) 979 0.707 0.769 0.707 0.738 0.763 0.025
MLP (8,8) 1939 0.761 0.772 0.759 0.766 0.803 0.037
MLP (16,16) 3955 0.773 0.773 0.773 0.773 0.817 0.044
MLP (32,32) 8371 0.805 0.729 0.807 0.768 0.845 0.078
MLP (64,64) 18739 0.817 0.661 0.823 0.742 0.877 0.135
MLP (d,d) ? 0.805 0.729 0.807 0.768 0.845 0.078

Table 4.3: Recognition scores reported for logistic regression (LR) per label, and for the multi-task MLP
(linear or with the hidden layers’ dimensions in parenthesis) [VWLI1§]

As it can be seen in Table 4.3, the switch from LR to the linear MLP substantially improves sensitivity but
we observe a drop in specificity. However the elevated BA reflects the overall improvement, which can be
also attributed to less overfitting, as seen in the “BA gap” column. In the MLP model, a single value has
been used for the hyper-parameter A for all labels, unlike LR, where the hyper-parameter Cjoqis+ Was tuned
separately for every label.

MLPs with hidden layers have the integrated advantages of non-linearity and dimensionality reduction. A
bottleneck hidden layer can greatly reduce model size, e.g. from the 8976 parameters of the linear model, to
3683 parameters for an MLP with a single hidden layer of sixteen nodes (175 x 16 + 16 for the hidden layer
and 16 x 51 4+ 51 for the ouput layer). A smaller model can be seen as an optimization constraint, which can
be beneficial to avoid overfitting. As it can be seen in the table, it seems that the smaller the model size, the
smaller the BA train-test gap column, this the model is less prone to overfitting.

It can be said that in general, MLP manages to capture relatively accurate predictive mappings from sensor
features to many diverse labels, in concise representations. Selecting a moderately-sized architecture can
balance the trade-off between sensitivity and specificity, and optimize the MLP performance. In summary,
modeling all the labels with a shared structure, contrary to the LR per label, has been shown to improve the
recognition performance.

Additional Experiments

Further evaluation was conducted to examine how each technique employed by the system contributes to the
results. The crucial role of instance-weighting was proved by training LR and MLP models without it, and
it was seen that the resulting models optimize the raw accuracy. In this way, the rare cases (positives) are
neglected and this results in almost-trivial classifiers in this multi-task setup.

Moreover, separate MLPs per label were trained to assess whether non-linearity and hidden layers were the
main contributing factors to the improvement of the multi-task MLP over the LR baseline. However, these
MLPs per label performed roughly at the same level as the baseline and, also, overfitting was noticed. At the
same time, when comparing the MLPs per label with a multi-task MLP with similar size, it was seen that
the latter performs better, which is a strong indicator for the beneficial influence of sharing parameters.

Another factor that should be taken into consideration is the dimensionality reduction using a hidden layer
with smaller dimension than the input features. By evaluating a pipeline of simply applying PCA to the
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input features before training a linear MLP with the dimensionally-reduced features, it was shown that
dimensionality reduction is not enough on its own to provide the full performance gain.

Regarding transfer learning scenarions where the model is extended or repurposed to include new labels, it
was shown that it is beneficial to share the model among labels. The shared model helps boost recognition of
the new labels, and when the parameters of the hidden layers are frozen and only the parameters of the output
layer are finetuned using the new-labels-only dataset, the recognition performance of the model regarding
the new labels can be nearly as good as the performance of the model that included the “new labels” in the
initial training set.

Regarding the robustness issues that naturally arise in real-world scenarios with missing sensors, it was shown
that, since some sensors are very important for accurate recognition, it is useful to adopt a sensor dropout
strategy to retain recognition performance and be more resilient in cases of missing sensors.

Regarding the explainability and interpretability of the model, it is not always intuitive or straightforward to
understand, and it is not easy to identify which specific features help the most, due to the architecture and
the non-linearity. An analysis was performed by selecting subsets of the labels and the sensors, to identify
which sensors mostly help in the recognition of different activity or context labels or settings. In total it was
seen that several sensors play an important role in the recognition of logically “relevant” labels.

Interpreting the multi-task MLP was also attempted on a node basis when studying a small architecture with
two hidden layers of two nodes (MLP (2,2)). The activations of hidden nodes were systematically observed,
to examine what kind of examples cause a node to have a high activation value in an attempt to characterize
the “meaning” of each node. This was mainly focused on features for which there is a strong contrast between
the low-activation and high-activation examples, since these give indications about what each hidden node
is sensitive to. From these observations it was possible to approach the MLP in a more human-interpretable
way.

Finally, the multi-task MLLP was validated on another HAR dataset to verify its performance. The “Activities
of Daily Living (ADL)” dataset [PR12] was used, and it was validated that the multi-task MLP with one or
two hidden layers can outperform a linear MLP (and also the SVM), while the same trends regarding model
size were also observed with this dataset.

4.3.7 Other Works and Publications on the ExtraSensory Dataset

Since the ExtraSensory dataset has been the first publicly available in-the-wild dataset for HAR using
smartphone and smartwatch sensors, it has been widely used in the HAR community, to develop and
evaluate human activity/context recognition models and for other tasks. A summary of publications using
the ExtraSensory dataset to train and evaluate HAR models can be found in Table 4.4. As it can be seen,
plenty of models have been assessed for human activity recognition using this dataset, including traditional
Machine Learning techniques, e.g. Decision Trees, Random Forests, k-Nearest Neighbors, and SVMs, as well
as Deep Learning models based on CNNs and RNNs. In addition, unsupervised methods, such as clustering,
have been employed to tackle HAR tasks.

As we can see in Table 4.4, the number of activities to be recognized differs in each work. In many works
the goals is to recognize Activities of Daily Living (ADL) in general, while in others a subset of activities,
mostly stationary/dynamic are the recognition target. In some works, multiple labels are merged, and the
goal is to recognize composite activities. In addition, in most papers the already extracted features from
[VEL17] are used, while in [Sou+23] features are extracted after converting the raw accelerometer, gyroscope
and magnetometer signals to the frequency domain. Fewer papers use the raw accelerometer, gyroscope and
magnetometer signals directly as input to the model, exclusively or complementary to the statistical features.

The ExtraSensory dataset has also found use in data generation tools which generate synthetic sensor data
for HAR, such as the HAR-CTGAN [DeO-+22]. In-the-wild data collection offers benefits when trying to
model and reproduce real-world sensor signals, since the collected signals are more representative of real-
world scenarios, and the synthesized results of data generation are more realistic. In addition, ExtraSensory
has been widely used in studies regarding techniques for imputating missing data, such as [Huo+22] and
[SOL18|, where imputation is performed on-the-fly and is based on sensory and temporal relatedness using a
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denoising or adversarial autoencoder. In [Ale+22], instead of imputating missing data, a data augmentation
method is proposed, which generates all possible combinations of utilized sensors for recorded observations.

Since data collected in a realistic setting often contains significant label noise, it is crucial to develop techniques
to mitigate the impact of noisy labels on model training. ExtraSensory has been used in a study where
VALERIAN [HWZ23], an invariant feature learning method, is proposed, leveraging self-supervised learning
and multi-task learning to create robust and personalized representations of HAR sensor data.

The ExtraSensory dataset in HAR models

Tools Sensors Raw Extracted | # Labels Application | Person- | Paper
Signals Features alized

Logistic Acc, Gyro, WAcc,

Regression Loc, Aud, PS X v o1 ADL xv [VEL17]

DT, RF, BG . . .

NN, NB Acc X 4 6, 15 Dynamic X [Asi+20]

DT, RF, o .

NN, BN Acc, WAcc X v 5, 29 Dynamic X [HA20]
Acc, Gyro, WAcc, .

RF, k-NN Loc. Aud, Comp X v 5 Dynamic X [Tee-+22]

XGBoost,

AdaBoost, é‘\f;’ Gyéo’ Mag, X v 5 Dynamic X [TB21]

Boosted C5.0 e, omp
Acc, Gyro, Mag, .

NN, SVM WAce, Comp X 4 5 Dynamic X [TB21]

SVM Acc X 4 6, 15%* Dynamic X [Asi+20]
Acc, Gyro, WAcc, .

SVM Loc, Aud, Comp X 4 5 Dynamic X [Tee+22]
Acc, Gyro, WAcc,

MLP Loc. Aud, PS X v 51 ADL X [VWL18]

MLP Acc, Gyro, WAcc, .

(+new loss) Loc, Aud, PS X v o1 ADL X [Li+19]

MLP Acc, Gyro X v 5 Dynamic v [Cru+20b]
Acc, Gyro, Mag,

MLP Comp, WAcc, X v 16** ADL X [Ale+22]
Aud, PS

Hier. DNN All X v 6 Dynamic X [Faz+21]
Acc, Gyro, Mag,

Hier. DNN Comp, Grav, Loc, X v 6 Dynamic X [Sou+23]
PS

(CNN)-LSTM,

w/ or w/o Att All X 4 51 ADL X v [CR19]

LSTM

w/ Hier. Att All X v 51 ADL X [Che+20]

CNN-GRU

w/ Att All v X 51 ADL v [She+22]

CNN neer Gyro, Aud, v X 51 ADL x| [saet19]

Pre-trained Ace, Gyro, Aud v v 51 ADL X | [Crut204]

CNN & RF €6, LYTO, Al rut20a

MLP & Acc, Gyro, WAcc,

CNN-QLSTM | Loc, Aud, PS, LF v v o1 ADL X [GA22]
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GCNN All X v 3,5,10,25 ADL X [Moh-+22]

CNN &

WTSVAL All v X 96 ADL X [Chut23]
Acc, Gyro, Grav,

HHGNN Loc Aud P8 X v 17 ADL v [Ge+23]
Acc, Gyro, WAcc,

AAE & NN foe, Aud PS X v 51 ADL X [SOL18]

LSTM-DAE

with k-NN & fcc’ Gyro, Mag, v v 16%* Dynamic X [Huo+22]

XGBoost o¢

Clustering All X 4 2049* ADL v [CD21]

CNN &

Knowledge Acc, Gyro, WAcc, v v 7 Dynamic X [ACB23]

Model Loc, PS, LF

DT: Decision Tree, RF: Random Forest, BG: Bagging, k-NN: k-Nearest Neighbors, NB: Naive Bayes
BN: Bayes Net, Att: Attention, Hier. Att: Hierarchical Attention, Hier. DNN: Hierarchical DNN
QLSTM: Quaternion LSTM, GCNN: Graph CNN, WTSVM: Weighted Twin SVM
AAE/DAE: Adversarial/Denoising Autoencoder, HHGNN: Heterogeneous Hyper-Graph NN
* multiple labels per instance merged in one
** gpecific combinations of labels merged in one

Table 4.4: Papers using the ExtraSensory dataset for HAR tasks

ExtraSensory has also been used in Transfer Learning scenarios. For example, in [Fat21], an LSTM-
CNN model pretrained on ExtraSensory (which is mostly populated by younger adults) is used for activity
recognition of older adults’ smartwatch data. Although further improvement is required to achieve satisfactory
recognition performance in this case, it is a promising real-life case with many applications on the well-being
and health of the elderly. Moreover, in [She+23b], cross-individual HAR is tackled via a Tranfer Learning
approach which identifies the approximately optimal source individuals by ranking interpretable meta-features
using a linear scoring function. Additionally, in [Cru+20b], a clustering-based semi-population approach is
adopted to select the optimal subset of users to be used to pre-train the model, before adapting it to the
target user, for better personalization.

Furthermore, strategies for efficient HAR have been developed and evaluated using ExtraSensory. [AFB23|
leverages Dissimilarity-Based Query Strategy (DBQS), an Active Learning-based approach which introduces
selective sampling to find the informative and diverse samples in the sensor data to train the model. In this
way, the recognition performance improves, while the model requires less training data. A similar concept
based on Active Learning and Conditional Mutual Information is employed in [AT19] to optimize training
batches and minimize the need for data annotation in HAR. Also, in [NPG18], Active Learning has been
leveraged for a novel oversampling method in order to overcome class imbalance. Another algorithm for
dynamic feature selection has been introduced in [Ard+20|, where feature selection is formulated as an
lp minimization problem across time, and the combinatorial optimization problem is cast into a stochastic
optimization formulation. A differentiable relaxation is used to make the problem amenable to gradient-based
optimization.

Another challenging HAR task, especially for health applications, is the “early” classification problem, in
which a label set must be assigned to the time series before the series is entirely observed. ExtraSensory has
been used to evaluate a potential solution to this problem [Har-+20b]| that includes a Recurrent Halting Chain
(RHC), a combination of RNNs and a Reinforcement Learning-based halting network. At each timestep of
the time series, RHC uses a transition model to represent both complex temporal dynamics and conditional
dependencies between labels as they are progressively predicted, while a halting policy network reads the
hidden state at each timestep and decides whether or not each label prediction should be returned as final.
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4.4 Other In-the-wild Datasets

The ExtraSensory dataset has paved the way for the creation and release of more wearable devices-based
HAR datasets collected in-the-wild, which satisfy the four conditions described in 4.2. A summary of the
publicly available such datasets so far, to the best of our knowledge, is presented in Table 4.5 (the ones
denoted as not open in the Table, appear to be available with restricted access or temporary unavailable
or correspong to broken website/download links). These datasets are ADL-oriented and capture realistic
activity sequences from everyday life, captured by smartphone and smartwatch sensors.

Public HAR datasets based on wearable sensors, collected in-the-wild

Dataset Type Subjects Labels Samples Devices IMU Open Ref
ULSTER HAR ADL 10 10* n/a SP, SW v X [Cru+19]
unnamed ADL n/a 16 n/a SP v X [Bra-+20]
ETRI ADL 22 =100 n/a SP, SW v v/ [Chut22]
SmartJLU ADL 50 23 30,000 SP v X [She+22]
SmartUnitn2 ADL 158 55 139,239 SP X X [Giu+22]
MarSense ADL 7 6 5,047 Sp v v [Giu+22]
SAMoSA ADL 20 27 n/a SW v v [Mol+22]
unnamed Motionless oy 3 6,000 Sp v v [Pir+22
Activities

LifeSnaps ADL 71 n/a >1M SW X v [Yfa+22]
IDLab ADL 18 5 394,318 SW v v/ [Sto+23]

SP: Smartphone, SW: Smartwatch
* subjects were also able to add their custom activity labels

Table 4.5: Public HAR datasets based on wearable sensors, collected in-the-wild

It should also be added that from the datasets that we have inspected, some satisfy all in-the-wild conditions
but one. DOMINO [Arr+23] does not satisfy condition 4: natural behavioral content, since during the data
collection process, the participants were instructed to perform specific sequences of tasks. In the dataset
collected in [BAT22| and in the HARTH dataset [Log+21], condition 2: unconstrained device placement is
not met, since, although participants perform all activities in free-living conditions, the sensors used were
placed in a specific -and realistically unnatural- way (chest-mounted smartphone, accelerometer in thigh and
back, and chest-mounted camera). Also, regarding the WASHSensory dataset [Man+19], it is not explicitly
stated to be proprietary or publicly available, but no digital footprint of it was found online.
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Chapter 5. Experiments and Results

In this Chapter, we present our work on human activity and context recognition based on wearable sensors
and in-the-wild data collection. Our work is based on the ExtraSensory dataset, which is very rich in content
and labels. We perform a short dataset analysis, followed by machine learning and deep learning experiments
aimed to improve recognition performance. We provide rich visuals including model architecture diagrams
and activity plots, and we take a shot on model interpretability.

5.1 Introduction

Our work focuses on investigating HAR approaches on a free-living setup, and evaluating which features
and architectures work best, while also considering model efficiency /size and explainability. To this end, our
pursuit has included the following steps along the way:

e At first, it is necessary to explore and visualize the ExtraSensory dataset in order to better understand
it and devise ways to handle the challenges it poses. We investigate how many examples exist per
user and per label, how the features change when performing different activities or when different users
perform the same activity, and how many missing sensor data we have to handle.

o Afterwards, we reproduce some baseline prediction models from previous work, which are already
mentioned in the previous Section: logistic regression and an MLP, using the pre-extracted features.

e We build upon this work, and use a bidirectional LSTM (BiLSTM) to model a sequence of examples,
again using the pre-extracted features. We also augment the BiLSTM model with a Self-Attention
module, or a Cross-Attention module which is used for interpretability.

e We also run experiments using the raw sensor data, using convolutional neural network (CNN) layers
and Transformer Encoder layers for feature extraction, to model a single example, and we further
combine them with a BILSTM to model a sequence of examples.

The ExtraSensory dataset poses some challenges that are addressed in this Chapter. It contains over 100
labels, out of which we use 51 as in the original work, and it is extremely unbalanced since the frequency
of each label is commensurate with the frequency of the corresponding activity or context in real life. In
addition, each example is labeled with more than one label, since many labels might be relevant at each
minute. Another major challenge is that the dataset contains a significant portion of unlabeled data, and
also a lot of wrongly annotated data, due to misusing or forgetting labels while self-reporting in everyday
life, which is much harder than labeling scripted sequences of activities during data collection in a lab. Also,
collecting data using different types of devices combined with unconstrained device placement lead in data
prone to noise, and missing sensors modalities are very common. Also, there is large inter-personal and
intra-personal variability in the collected data since an activity might be performed differently among users,
but also by a specific user at different times.

In order for all our results to be comparable with each other and with the baselines that are introduced in
previous works, we use the same five-fold cross validation scheme, with 48 users in the training set and 12 users
in the test set in each iteration. This means that the test set always contains data only from unseen users,
a.k.a. users that are not “seen” by the model during training. This makes the task of activity recognition
even more difficult, because of the variability among users, and, in addition, we cannot use established
personalization methods, such as a user embedding, in a standard way. However, we could use a fine-tuning
approach based on the user of the training set that is closer to the current test set user, based on some
metrics. Nevertheless, in this thesis we want to see how much we can improve the performance of universal
models, and we only test their performance on unseen users in a cold-start mode, without fine-tuning or
adapting them to each unseen user.

5.2 Dataset Exploration
At first, we try to explore the ExtraSensory dataset and unravel its noisy and unbalanced nature, resulting

from data collection in-the-wild. As already mentioned in Chapter 4, the dataset contains more than 100
activity and context labels annotated by the subjects, and in the curated data published by Vaizman et al. in
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their work, 51 labels are included. In order to make our lives easier, and create meaningful and interpretable
plots in this Section, we group these labels in an intuitive manner, as presented in Table 5.1.

ExtraSensory labels grouped conceptually

Concept Labels

Posture/Movement  “Lying down”, “Sitting”, “Standing”, “Walking”, “Running”, “Bicycling”

Special Movement “Strolling”, “Stairs - Going up”, “Stairs - Going down”, “Elevator”

Phone Location “Phone in pocket”, “Phone in hand”, “Phone in bag”, “Phone on table”

Work-related “In class”, “Lab work”, “Computer work”, “In a meeting”

Location-based “At home”, “At school”, “At main workplace”, “At a restaurant”, “At a bar”,
“At a party”, “At the gym”, “At the beach”

Transportation “In a car”, “On a bus", “Drive - Driver", “Drive - Passenger"

Chores “Shopping”, “Cooking”, “Cleaning”, “Doing laundry”, “Washing dishes”

Self-care “Bathing - Shower”, “Toilet”, “Grooming”, “Dressing”, “Sleeping”

Leisure Time “Exercise”, “Eating”, “Drinking alcohol”, “Watching TV”, “Surfing the internet”,
“Talking”, “Singing”

Companion “With co-workers”, “With friends”

Environment “Indoors”, “Outside”

Table 5.1: Intuitive grouping of activity and context labels of the ExtraSensory dataset

5.2.1 Users and Labels

Our exploration starts by visualizing all 60 ExtraSensory dataset participants, denoted from here on as users
(u00-ub9), and all 51 labels included in the “Primary Data” directory of the dataset. In Figure 5.2.1 we
get a first, qualitative analysis, visualizing which users have collected data for which labels. As we can see,
no user has collected data for all labels. The users with the most collected labels have used up to 41 out
of 51 labels, while the users with the least used labels have used only 13 out of 51 labels. This is a direct
consequence of an in-the-wild setting, where the users are not instructed or expected to perform specific
activities or sequences of activities, and is also logical from the perspective that in a real-life setting, the user
might forget or disregard updating the labels in the app. However, as we can see, this often also leads to
errors or non-accurate label annotation, since in many cases, some labels were omitted (e.g. some users have
no “Indoors” or no “Outside” labels but that is impossible).

YRR

Regarding the Figure’s column, we can easily see that only 3 labels, namely “Standing”, “Walking” and
“Sitting” were used by all users. In total, 20 labels were used by 40 or more users, 39 labels were used by
20 or more users, while only 6 labels, namely “At a party”, “Lab work”, “Singing”, “At the beach”, “At the
gym” and “At a bar”, were used by less than 10 users. As expected, the rarer labels appear less in the
dataset, however it is unclear whether a lot of missing labels for many users can be attributed to the users
not performing these activities or to omissions in label annotation (for example, only 30 users have used the

“Cleaning” label and only 18-19 users the “Stairs - Going Up/Down” labels respectively).

We proceed to a more thorough, quantitative analysis of all examples collected by all users, presented in
Figure 5.2.2, where the total number of examples annotated with each label for each user is depicted. As
expected, the users’ time is very unequally distributed across labels, since in everyday life, some activities and
contexts occupy most of the person’s time, such as “Sleeping”, “Sitting”, “At home”, while others, especially
chores or leisure time activities last much less. From this Figure it can also be seen that there are substantial
differences in the use of different labels by different individuals. We observe that, even though the most
“popular” labels overall are the most populated for nearly all users, each user distributes her/his time in a

personalized way.
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Figure 5.2.1: Qualitative visualization of context labels per subject
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Figure 5.2.2: (a) Quantitative visualization of number of context labels per subject - Part 1
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Chapter 5. Experiments and Results

We must remind that every example, which corresponds to 1 minute of daily-living (20 seconds of each
minute are recorded by the sensors, to constitute one example), can be annotated with more than one label
by the users, which means that the labels are not mutually exclusive and that the dataset is based on the co-
occurence of multiple labels for each example. Taking out of the equation the fact that each user participated
in the data collection process for a span of days varying from 2.9 to 28.1, the differences in the type and
amount of labels annotated by each user reflect the individual, personalized habits and routines of each user,
and also their label annotation habits (how often they used the app, which labels they ignored etc.).

5.2.2 Kernel Density Estimation for Feature Visualization

In order to delve deeper in the heterogeneity of the data, we adopt a feature visualization technique proposed
in [She+23a], using a Kernel Density Estimator (KDE) to calculate and visualize the conditional distribution
of each feature extracted from the dataset. The calculated distributions correspond to sensor features
conditioned on activity or user, as it will be explained more thoroughly in the next few paragraphs. All
sensor features have been analyzed, except for the discrete features, which have binary values in the one-hot
dataset features’ format.

Definition 5.2.1: Kernel Density Estimator (KDE)

Assuming that {X;,..X,} is an independent and identically distributed (IID) sample from an
unknown density function p, the KDE function p,, can be formally defined as:

() = % iK <X"h x) (5.2.1)

where K is the kernel, a non-negative function, and h > 0 is the bandwidth, a smoothing parameter.

In our work, the KDE functions were calculated and plotted in Python using seaborn.kdeplot, which calls
scipy.stats.gaussian_kde to estimate p, using Gaussian K, while the bandwidth h is calculated using
Scott’s Rule [Sco92].

In Figure 5.2.3, we present a subfigure per sensor feature. Each density function corresponds to a single
activity from the “Posture/Movement” subset, which includes the labels “Lying down”, “Sitting”, “Standing”,
“Walking”, “Running”, “Bicycling”, as stated in Table 5.1, and all the data are from a single user, u45, who
is the user with the most examples in total, who has used all six labels of the specific label subset. We can
see that the distribution of feature values across the different activities has discriminatory power for a lot of
the sensor features that have been extracted, while other features do not seem to be indicative of the label,

particularly for this specific subset of labels.

In Figure 5.2.4, we present a similar setup with the previous Figure, but in this one, the data from all the
users of the dataset for the particular activites has been used to calculate the density functions. Comparing
the two Figures, we observe a lot of similarities in the distributions of the same sensor features, but we
can also notice that in the second Figure, since the data of all the users has been merged, some trends and
patterns have been averaged out and the distributions are less informative about the differences in sensor
features across different activites.

In Figure 5.2.5, we also have a subfigure per sensor feature, but now the setup is different. We have a single
activity label, “Walking”, and in each subfigure, each density function corresponds to a single user from a
subset of users including u01, u04, u2l, u29, u45, and ubb, that were carefully selected to have enough
examples of the specific activity in order to be representative. We hypothesize that if we selected users with
less data for the specific activity, the differences among the users’ distributions would be even bigger.

In Figure 5.2.5, it can be observed that for most sensor features, the distributions across users are considerably
similar, but also tend to have differences which probably can be attributed to the particularity in the way
each user performs activities, or differences in the placement of the sensors, especially the smartphone which
might be held in different ways or placed in pockets with different orientation. These differences might
complicate HAR tasks in a real-life setting, but they are inherent in such a setting, thus they must be taken
into consideration to build HAR models with satisfactory performance for everyday life.
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Figure 5.2.3: (a) KDE plot visualizing the distribution of each feature
across the “Posture/Movement” activities subset, for user u45 - Part 1
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(e) KDE plot visualizing the distribution of each feature
across the “Posture/Movement” activities subset, for user u45 - Part 5
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(f) KDE plot visualizing the distribution of each feature
across the “Posture/Movement” activities subset, for user u45 - Part 6
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Figure 5.2.4: (a) KDE plot visualizing the distribution of each feature
across the “Posture/Movement” activities subset, for all users - Part 1
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(b) KDE plot visualizing the distribution of each feature
across the “Posture/Movement” activities subset, for all users - Part 2
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across the “Posture/Movement” activities subset, for all users - Part 3
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(d) KDE plot visualizing the distribution of each feature
across the “Posture/Movement” activities subset, for all users - Part 4
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(e) KDE plot visualizing the distribution of each feature
across the “Posture/Movement” activities subset, for all users - Part 5
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(f) KDE plot visualizing the distribution of each feature
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Figure 5.2.5: (a) KDE plot visualizing the distribution of each feature
across five users: u0l1, u04, u2l, u29, u4b, ub5, for the “Walking” activity - Part 1
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across five users: u01, u04, u2l, u29, udb, ub5, for the “Walking” activity - Part 2
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(d) KDE plot visualizing the distribution of each feature
across five users: u01, u04, u2l, u29, udb, ub5, for the “Walking” activity - Part 4
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(e) KDE plot visualizing the distribution of each feature
across five users: u01, u04, u21, u29, udb, ubs, for the “Walking” activity - Part 5
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(f) KDE plot visualizing the distribution of each feature
across five users: u01, u04, u2l, u29, udb, ub5, for the “Walking” activity - Part 6
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(g) KDE plot visualizing the distribution of each feature
users: u01, u04, u2l, u29, udb, ub5, for the “Walking” activity - Part 7

5.2.3 Missing Sensors

Another factor that should be taken into account in order to successfully train activity recognition models
is the aspect of missing sensors. In Figure 5.2.6, we visualize the number of data samples for each sensor,
for each user and in total, calculated from the already extracted features of the dataset as provided by the
original creators in [VEL17]. This Figure provides a user-level analysis on the data provided in Table 4.2.
Some discrepancies between that Table and this Figure can be attributed to the following factors:

e Regarding the total number of examples for each sensor, the discrepancy is due to a particular difference
in counting. In the Table 4.2 provided in [VEL17]|, only the examples that have been annotated with a
label of primary (main) activity, that is, an activity of the “Posture/Movement” subset, are counted as
labeled and that results in about 308K labeled examples, while in our analysis, all examples that have
at least one label (any label) are counted as labeled, totaling at about 326K labeled examples.

e Regarding the difference in counting sensor examples for each sensor, we have adopted a strategy for
simplifying the visualization, since it was impossible to visualize the number of examples for each of
the 225 sensor features. For each sensor we have counted all the examples that have no NaN values for
all features derived from the specific sensor. This approach comes handy for visualization, but cannot
provide thorough insights for specific sensors, because of the differences between smartphone types,
since some sensors and/or sensor features are not the same across both Android and iOS.

— For the “Location” sensor (features named location:*) or “Loc” in the Table, the number of
examples appears to be low due to specific missing location features in 27 out of 60 users. More
specifically, by analyzing the number of examples for each sensor feature separately, we can
see that the features: location:min_altitude, location:max_altitude, location:min_speed,
location:max_speed, and location:best_vertical_accuracy are missing for a lot of users, and
that is why the number of examples with all location sensor features available is totaling at only
around 71K at the Table.

Regarding “Low frequency measurements”’ (features named 1f_measurements:*), through our

analysis it was shown that while most examples have some values for this type of sensor, there
weren’t any examples of any user that had all such features available, and that is why all the last
column in the Figure is blank. The number of examples for each low frequency sensor feature

separately are presented in Table 5.2.
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Figure 5.2.6: Quantitative visualization of number of sensor examples per user
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Low frequency sensor features’ total examples

Feature Examples Users
1f_measurements:light 123,961 25
1f_measurements:pressure 92,620 18
1f_measurements:proximity_cm 125,351 26
1f_measurements:proximity 194,083 34
1f_measurements:relative_humidity 19,608 4
1f_measurements:battery_level 326,659 60
1f_measurements:screen_brightness 194,083 34
1f_measurements:temperature_ambient 20,010 4

Table 5.2: Low frequency sensor features and number of examples, separately per feature

5.3 Performance Evaluation

In order to evaluate multi-task, multi-label, in-the-wild HAR performance, we apply a five-fold cross validation
scheme, with 48 users in the training set and 12 users in the test set in each iteration. The cross validation
(CV) procedure for each iteration can be described as follows:

1. Hold out the selected fold to act as the test set.
2. Train a classifier on the remaining four folds.
3. Apply the classifier to the held out test set.
For each fold and for each label, we counted the numbers of True Positives (TP), True Negatives (TN), False

Positives (FP), and False Negatives (FN) of the prediction results over the test set. The numbers of TP, TN,
FP and FN are summed over the five-folds, and the following evaluation metrics are calulcated:

e Accuracy is the proportion of correctly classified examples out of all the examples.

TP+ TN
TP+TN+FP+ FN

Accuracy = (5.3.1)

e Precision (Prec) is the proportion of correctly classified examples out of the examples that the classifier

declared as positive:

. TP
Precision = m (532)

e True Positive Rate (TPR), also called Sensitivity or Recall, is the proportion of positive examples that
were correctly classified as positive:

TP

Sensitivity = Recall = TPR = TP LN

(5.3.3)

e True Negative Rate (TNR), also called Specificity, is the proportion of negative examples that were
correctly classified as negative:

TN
ificity =TNR = ——— 34
Speci ficity R TN+ P (5.3.4)
e ['I-score (F1) is calculated as the harmonic mean of precision and recall:
2xTPR * Prec
F1= TPR+ Prec (5:35)
e Balanced Accuracy (BA) is a measure that accounts for the trade-off between TPR and TNR:
TPR+TNR
BA = + (5.3.6)
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5.4 Baselines

In the following experiments, the “Core” subset of the dataset, which includes all examples that have
measurements from all six core sensors, which are the accelerometer (Acc), the gyroscope (Gyro), the location
sensor (Loc & Loc QF), the audio recordings (Aud) and the phone state (PS) of the smartphone and the
accelerometer (WAcc) of the smartwatch, totaling 169,001 examples, is used. These sensors correspond to
175 out of the 225 precomputed features that are included in the dataset. All the examples of the “Core” set
have at least some of the features corresponding to each core sensor. The NaN feature values, if existent, are
zero-imputated after standardizing the features in each iteration of the five-fold cross validation using the
mean and std values of the training set. In this way, the NaN feature values are replaced by the mean feature
value across the training set.

Python’s NumPy library [Har+20a| is used to generate random predictions for the random classifier. The
majority class classifier and logistic regression models are implemented using scikit-learn [Ped+11],
a standard Python Machine Learning library. The multilayer perceptron is implemented using PyTorch
[Pas+19], a popular Machine Learning and Deep Learning framework. Also, sklearn.metrics is used to
calculate the evaluation metrics for all models’ predictions.

5.4.1 Random Chance

Our first step in order to establish baselines for comparison purposes, is to calculate the performance metrics
of some dummy classifiers. Python’s numpy.random.Generator.integers has been used to imitate a random
classifier, that declares “relevant” with probability 0.5 independently of the example and the ground-truth
label. The evaluation metrics over 20 iterations are presented in Table 5.4 for all context labels, and in Table
5.3 averaged over the labels of each label subset presented in Table 5.1. As mentioned before, chance level of
BA is 0.5 for every label, while for the F1-score, the chance level for each label is dependent on the proportion
of positive and negative examples in the dataset. We also notice that Accuracy, Sensitivity and Specificity
are about 0.5, while Precision is very low, about 0.1, which can also be attributed to the very low proportion
of positive examples.

L Random Classifier recognition scores averaged for each label subset
Label Accuracy Precision | Sensitivity | Specificity F1-score BA
Posture/Movement 0.500 0.171 0.500 0.500 0.215 0.500
Special Movement 0.500 0.008 0.505 0.500 0.015 0.503
Phone Location 0.500 0.268 0.500 0.500 0.288 0.500
Work-related 0.500 0.087 0.500 0.500 0.142 0.500
Location-based 0.500 0.119 0.501 0.500 0.152 0.501
Transportation 0.500 0.029 0.499 0.500 0.054 0.499
Chores 0.500 0.013 0.498 0.500 0.026 0.499
Self-care 0.500 0.061 0.499 0.500 0.087 0.500
Leisure Time 0.500 0.065 0.500 0.500 0.111 0.500
Companion 0.500 0.103 0.500 0.500 0.167 0.500
Environment 0.500 0.510 0.499 0.502 0.396 0.500
Average 0.500 0.110 0.500 0.500 0.137 0.500

Table 5.3: Recognition scores reported for Random Classifier, averaged for each label subset. 20 simulations
of five-fold cross validation with 48 users in the training set and 12 users in the test set for each iteration.
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Random Classifier recognition scores for all context labels ‘

Label Support | Accuracy | Precision | Sensitivity | Specificity | F1l-score BA
Lying down 51682 0.500 0.309 0.499 0.500 0.381 0.500
Sitting 79368 0.500 0.469 0.500 0.499 0.484 0.500
Standing 22071 0.500 0.130 0.500 0.500 0.207 0.500
Walking 11715 0.500 0.069 0.499 0.500 0.121 0.499
Running 661 0.500 0.007 0.501 0.500 0.014 0.500
Bicycling 3504 0.499 0.043 0.503 0.499 0.080 0.501
Strolling 339 0.501 0.015 0.500 0.501 0.028 0.501
Stairs - Going up 399 0.500 0.007 0.502 0.500 0.014 0.501
Stairs - Going down 390 0.500 0.007 0.498 0.500 0.013 0.499
Elevator 123 0.499 0.003 0.520 0.499 0.006 0.509
Phone in pocket 14074 0.499 0.180 0.499 0.500 0.264 0.499
Phone in hand 7313 0.500 0.089 0.501 0.500 0.151 0.501
Phone in bag 5031 0.501 0.086 0.499 0.501 0.147 0.500
Phone on table 65979 0.500 0.715 0.500 0.500 0.589 0.500
In class 2852 0.500 0.057 0.500 0.500 0.103 0.500
Lab work 2898 0.501 0.110 0.500 0.501 0.180 0.500
Computer work 22536 0.500 0.159 0.500 0.500 0.241 0.500
In a meeting 2837 0.500 0.023 0.500 0.500 0.044 0.500
At home 80044 0.500 0.479 0.499 0.501 0.489 0.500
At school 25342 0.500 0.181 0.499 0.500 0.266 0.500
At main workplace 19235 0.500 0.201 0.499 0.500 0.287 0.500
At a restaurant 1275 0.500 0.015 0.499 0.500 0.029 0.499
At a bar 520 0.500 0.027 0.508 0.500 0.051 0.504
At a party 404 0.498 0.016 0.496 0.498 0.031 0.497
At the gym 897 0.500 0.028 0.504 0.500 0.053 0.502
At the beach 116 0.501 0.005 0.508 0.500 0.010 0.504
In a car 3550 0.500 0.034 0.497 0.500 0.064 0.499
On a bus 1179 0.499 0.012 0.502 0.499 0.024 0.500
Drive - Driver 4879 0.501 0.052 0.500 0.501 0.094 0.500
Drive - Passenger 1650 0.500 0.018 0.495 0.500 0.035 0.498
Shopping 809 0.500 0.010 0.501 0.500 0.020 0.501
Cooking 2212 0.500 0.018 0.492 0.500 0.034 0.496
Cleaning 1813 0.500 0.021 0.501 0.500 0.040 0.501
Doing laundry 471 0.500 0.009 0.494 0.500 0.017 0.497
Washing dishes 829 0.500 0.010 0.502 0.500 0.019 0.501
Bathing - Shower 1120 0.500 0.010 0.498 0.500 0.019 0.499
Toilet 1558 0.500 0.012 0.498 0.500 0.024 0.499
Grooming 1775 0.501 0.017 0.504 0.501 0.033 0.502
Dressing 1248 0.500 0.011 0.496 0.500 0.021 0.498
Sleeping 40869 0.500 0.256 0.500 0.500 0.339 0.500
Exercise 5191 0.500 0.036 0.498 0.500 0.068 0.499
Eating 9668 0.500 0.060 0.500 0.500 0.107 0.500
Drinking alcohol 859 0.499 0.021 0.502 0.499 0.041 0.501
Watching TV 8945 0.501 0.086 0.500 0.501 0.147 0.500
Surfing the internet 10668 0.500 0.103 0.499 0.500 0.170 0.499
Talking 18477 0.500 0.122 0.499 0.500 0.196 0.500
Singing 384 0.500 0.024 0.502 0.500 0.046 0.501
With co-workers 3972 0.500 0.064 0.502 0.500 0.113 0.501
With friends 12686 0.500 0.143 0.499 0.500 0.222 0.499
Indoors 102510 0.500 0.938 0.500 0.503 0.652 0.501
Outside 6793 0.501 0.081 0.499 0.501 0.140 0.500
Average 0.500 0.110 0.500 0.500 0.137 0.500

Table 5.4: Recognition scores reported for Random Classifier, for all context labels. 20 simulations of
five-fold cross validation with 48 users in the training set and 12 users in the test set for each iteration.
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5.4.2 Majority Class Classifier

Another dummy classifier which was tested to be used as reference, is the majority class classifier which
outputs the majority class seen during training, for all the examples of the test set. In other words,
if the majority of the examples seen during training were annotated as “relevant”, the classifier predicts
“relevant” for all the test set examples. If the majority of the examples seen during training were
annotated as “not relevant”, the classifier predicts “not relevant” for all the test set examples. We use
sklearn.dummy.DummyClassifier (strategy='most_frequent') to apply this classifier to the dataset. The
evaluation metrics of the five-fold cross validation iterations are presented in Table 5.6 for all context labels,
and in Table 5.5 averaged over the labels of each label subset.

As we can see in the Tables, for all labels, in most iterations of the five-fold cross validation procedure, the
majority class is “not relevant” and thus all test set examples are labeled as “not relevant”. So, for most labels,
we do not have any TP or FP predictions, thus Precision cannot be defined and is denoted as NaN. From
Table 5.6, it is observed that only for “Phone on table” and “Indoors” the majority class is “relevant” in all
cross validation iterations, and for “At home” the majority class is “relevant” for some iterations, leading to
non-zero Sensitivity values and high F1-score values, which however are not indicative of the high prediction
performance of the classifier. Also, we can see that for the remaining 48 labels for which the majority class
classifier always predicts “non relevant”, Accuracy has high values, which are correlated with the rareness of
each label. For labels that are very rare and have very few ground-truth positive examples, the Accuracy
of the classifier is very high, but again this is not indicative of high recogntion performance. Since very
few positive examples are predicted in total, average Fl-score is very low, and BA is again about 0.5 which
indicates poor performance.

L Majority Class Classifier recognition scores averaged for each label subset ‘
Label Accuracy Precision Sensitivity | Specificity Fl-score BA
Posture/Movement 0.828 NaN 0.000 1.000 0.000 0.500
Special Movement 0.992 NaN 0.000 1.000 0.000 0.500
Phone Location 0.840 NaN 0.250 0.750 0.209 0.500
Work-related 0.913 NaN 0.000 1.000 0.000 0.500
Location-based 0.874 NaN 0.005 0.981 0.009 0.493
Transportation 0.971 NaN 0.000 1.000 0.000 0.500
Chores 0.987 NaN 0.000 1.000 0.000 0.500
Self-care 0.939 NaN 0.000 1.000 0.000 0.500
Leisure Time 0.935 NaN 0.000 1.000 0.000 0.500
Companion 0.897 NaN 0.000 1.000 0.000 0.500
Environment 0.928 NaN 0.500 0.500 0.484 0.500
Average 0.915 NaN 0.040 0.958 0.037 0.499

Table 5.5: Recognition scores reported for Majority Class Classifier, averaged for each label subset.
Five-fold cross validation with 48 users in the training set and 12 users in the test set for each iteration.
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Majority Class Classifier recognition scores for all context labels ‘

Label Support | Accuracy | Precision | Sensitivity | Specificity | F1l-score BA
Lying down 51682 0.691 NaN 0.000 1.000 0.000 0.500
Sitting 79368 0.530 NaN 0.000 1.000 0.000 0.500
Standing 22071 0.869 NaN 0.000 1.000 0.000 0.500
Walking 11715 0.931 NaN 0.000 1.000 0.000 0.500
Running 661 0.993 NaN 0.000 1.000 0.000 0.500
Bicycling 3504 0.957 NaN 0.000 1.000 0.000 0.500
Strolling 339 0.985 NaN 0.000 1.000 0.000 0.500
Stairs - Going up 399 0.993 NaN 0.000 1.000 0.000 0.500
Stairs - Going down 390 0.993 NaN 0.000 1.000 0.000 0.500
Elevator 123 0.997 NaN 0.000 1.000 0.000 0.500
Phone in pocket 14074 0.820 NaN 0.000 1.000 0.000 0.500
Phone in hand 7313 0.911 NaN 0.000 1.000 0.000 0.500
Phone in bag 5031 0.914 NaN 0.000 1.000 0.000 0.500
Phone on table 65979 0.715 0.715 1.000 0.000 0.834 0.500
In class 2852 0.943 NaN 0.000 1.000 0.000 0.500
Lab work 2898 0.890 NaN 0.000 1.000 0.000 0.500
Computer work 22536 0.841 NaN 0.000 1.000 0.000 0.500
In a meeting 2837 0.977 NaN 0.000 1.000 0.000 0.500
At home 80044 0.461 0.204 0.043 0.845 0.071 0.444
At school 25342 0.819 NaN 0.000 1.000 0.000 0.500
At main workplace 19235 0.799 NaN 0.000 1.000 0.000 0.500
At a restaurant 1275 0.985 NaN 0.000 1.000 0.000 0.500
At a bar 520 0.974 NaN 0.000 1.000 0.000 0.500
At a party 404 0.984 NaN 0.000 1.000 0.000 0.500
At the gym 897 0.972 NaN 0.000 1.000 0.000 0.500
At the beach 116 0.995 NaN 0.000 1.000 0.000 0.500
In a car 3550 0.965 NaN 0.000 1.000 0.000 0.500
On a bus 1179 0.988 NaN 0.000 1.000 0.000 0.500
Drive - Driver 4879 0.948 NaN 0.000 1.000 0.000 0.500
Drive - Passenger 1650 0.982 NaN 0.000 1.000 0.000 0.500
Shopping 809 0.990 NaN 0.000 1.000 0.000 0.500
Cooking 2212 0.982 NaN 0.000 1.000 0.000 0.500
Cleaning 1813 0.979 NaN 0.000 1.000 0.000 0.500
Doing laundry 471 0.991 NaN 0.000 1.000 0.000 0.500
Washing dishes 829 0.990 NaN 0.000 1.000 0.000 0.500
Bathing - Shower 1120 0.990 NaN 0.000 1.000 0.000 0.500
Toilet 1558 0.987 NaN 0.000 1.000 0.000 0.500
Grooming 1775 0.983 NaN 0.000 1.000 0.000 0.500
Dressing 1248 0.989 NaN 0.000 1.000 0.000 0.500
Sleeping 40869 0.744 NaN 0.000 1.000 0.000 0.500
Exercise 5191 0.964 NaN 0.000 1.000 0.000 0.500
Eating 9668 0.940 NaN 0.000 1.000 0.000 0.500
Drinking alcohol 859 0.979 NaN 0.000 1.000 0.000 0.500
Watching TV 8945 0.914 NaN 0.000 1.000 0.000 0.500
Surfing the internet 10668 0.897 NaN 0.000 1.000 0.000 0.500
Talking 18477 0.878 NaN 0.000 1.000 0.000 0.500
Singing 384 0.976 NaN 0.000 1.000 0.000 0.500
With co-workers 3972 0.937 NaN 0.000 1.000 0.000 0.500
With friends 12686 0.857 NaN 0.000 1.000 0.000 0.500
Indoors 102510 0.938 0.938 1.000 0.000 0.968 0.500
Outside 6793 0.918 NaN 0.000 1.000 0.000 0.500
Average 0.915 NaN 0.040 0.958 0.037 0.499

Table 5.6: Recognition scores reported for Majority Class Classifier, for all context labels. Five-fold cross
validation with 48 users in the training set and 12 users in the test set for each iteration.
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5.4.3 Reproduce Baseline: Logistic Regression

Our next step is to reproduce the baseline models by Vaizman et al. referred in Subsections 4.3.5 and
4.3.6. Regarding Logistic Regression, we train binary LR classifiers for each context label. We follow the
preprocessing and validation process described in Subsection 4.3.5:

e We standardize each sensor feature (mean and standard deviation are calculated using the training set).
After standardization, missing feature values are zero-imputated.

e We implement the Farly Fusion configuration.

e Five-fold cross validation is used, with each fold containing 48 users in the training set and 12 users in
the test set (using the same partition as the original work).

e The training set of each CV iteration is further partitioned using another round of five-fold cross
validation (split into 80% internal training subset and 20% internal validation subset), to determine
the hyperparameter C out of {0.001,0.01,0.1,1, 10, 100} for each LR classifier.

e The selected value of the hyperparameter C' for each context label is then used to train the model using
the whole training set and evaluate it on the test set, for all CV iterations.

e The total number of learnable parameters is 8976 = 176 x 51, since the LR model for each label with
175 inputs (sensor features) has 176 learnable parameters and the number of context labels that we use
is 51.

e In the testing phase, the continuous predictions of the model are converted to binary outputs using a
threshold of 0.5.

e We calculate the evaluation metrics over non missing entries for each label.

The scikit-learn toolkit is used for all the experiments and evaluation pipeline. More specifically, we
use sklearn.linear_model.LogisticRegression(class_weight="'balanced') for Logistic Regression per-
label modeling with instance weighting, and sklearn.model_selection.GridSearchCV to optimize the
hyperparameter C.

L Logistic Regression recognition scores averaged for each label subset ‘
Label Accuracy Precision Sensitivity | Specificity F1l-score BA
Posture/Movement 0.832 0.394 0.708 0.832 0.474 0.770
Special Movement 0.898 0.023 0.284 0.903 0.042 0.593
Phone Location 0.784 0.456 0.713 0.789 0.525 0.751
Work-related 0.835 0.289 0.735 0.842 0.402 0.788
Location-based 0.880 0.316 0.601 0.887 0.387 0.744
Transportation 0.876 0.175 0.829 0.877 0.276 0.853
Chores 0.852 0.045 0.508 0.857 0.082 0.682
Self-care 0.833 0.176 0.571 0.836 0.213 0.703
Leisure Time 0.789 0.149 0.531 0.802 0.229 0.666
Companion 0.741 0.196 0.519 0.767 0.280 0.643
Environment 0.885 0.685 0.872 0.864 0.733 0.868
Average 0.839 0.246 0.612 0.844 0.314 0.728

Table 5.7: Recognition scores reported for Logistic Regression (LR) models per label, averaged for each
label subset. Five-fold cross validation with 48 users in the training set and 12 users in the test set for each
iteration.

In Table 5.8 we see the recognition scores reported for the LR models per label, for all context labels. Our
results are similar to the results of [VEL17] (where descriptive tables with Fl-score and BA for all context
labels are included) and [VWL18| (where average evaluation metrics over all context labels are compared to
the MLP results). Minor differences in the number of positive ground-truth examples (support) per label
are attributed to minor differences in examples’ filtering to be used in the final dataset for this experiment,
while small differences in some evaluation metrics are attributed to discarding the “missing label” examples
(according to the rules described in Subsection 4.3.6) which results in a substantially smaller number of
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negative examples for rare labels (since a lot of examples that were previously considered as negative, are
now discarded as “missing label”).

In Table 5.7 we see the recognition scores reported for the LR models per label, averaged over the labels of
each label subset. As we can see, the evaluation metrics substantially differ across different types of labels,
since some types of labels are easier to predict based on smartphone and smartwatch sensor data, while other
are harder.
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L Logistic Regression recognition scores for all context labels
Label Support | Accuracy | Precision | Sensitivity | Specificity | F1l-score BA
Lying down 51682 0.878 0.773 0.859 0.887 0.814 0.873
Sitting 79368 0.758 0.724 0.784 0.735 0.753 0.759
Standing 22071 0.686 0.246 0.679 0.687 0.361 0.683
Walking 11715 0.832 0.258 0.757 0.838 0.385 0.797
Running 661 0.917 0.030 0.336 0.921 0.056 0.629
Bicycling 3504 0.920 0.331 0.834 0.924 0.474 0.879
Strolling 339 0.851 0.045 0.460 0.856 0.083 0.658
Stairs - Going up 399 0.880 0.018 0.306 0.884 0.034 0.595
Stairs - Going down 390 0.902 0.017 0.238 0.907 0.032 0.573
Elevator 123 0.961 0.010 0.130 0.964 0.018 0.547
Phone in pocket 14074 0.782 0.441 0.785 0.781 0.564 0.783
Phone in hand 7313 0.726 0.190 0.639 0.735 0.293 0.687
Phone in bag 5031 0.832 0.286 0.630 0.851 0.393 0.741
Phone on table 65979 0.795 0.905 0.796 0.791 0.847 0.794
In class 2852 0.896 0.303 0.631 0.912 0.410 0.772
Lab work 2898 0.840 0.397 0.885 0.834 0.548 0.859
Computer work 22536 0.745 0.343 0.663 0.760 0.452 0.712
In a meeting 2837 0.859 0.115 0.761 0.861 0.199 0.811
At home 80044 0.758 0.746 0.748 0.766 0.747 0.757
At school 25342 0.753 0.400 0.721 0.761 0.514 0.741
At main workplace 19235 0.835 0.559 0.835 0.835 0.670 0.835
At a restaurant 1275 0.903 0.103 0.715 0.906 0.180 0.810
At a bar 520 0.952 0.324 0.750 0.958 0.452 0.854
At a party 404 0.923 0.108 0.517 0.930 0.179 0.723
At the gym 897 0.927 0.172 0.428 0.941 0.245 0.685
At the beach 116 0.992 0.117 0.095 0.996 0.105 0.546
In a car 3550 0.897 0.231 0.846 0.899 0.363 0.873
On a bus 1179 0.858 0.068 0.818 0.858 0.125 0.838
Drive - Driver 4879 0.893 0.305 0.843 0.895 0.448 0.869
Drive - Passenger 1650 0.855 0.095 0.810 0.856 0.170 0.833
Shopping 809 0.854 0.043 0.628 0.856 0.080 0.742
Cooking 2212 0.838 0.067 0.629 0.841 0.122 0.735
Cleaning 1813 0.834 0.054 0.424 0.843 0.096 0.633
Doing laundry 471 0.876 0.032 0.456 0.880 0.061 0.668
Washing dishes 829 0.858 0.028 0.402 0.862 0.052 0.632
Bathing - Shower 1120 0.826 0.026 0.454 0.830 0.049 0.642
Toilet 1558 0.783 0.030 0.512 0.787 0.056 0.649
Grooming 1775 0.814 0.044 0.482 0.820 0.080 0.651
Dressing 1248 0.846 0.036 0.511 0.850 0.068 0.680
Sleeping 40869 0.894 0.744 0.895 0.894 0.812 0.894
Exercise 5191 0.878 0.194 0.744 0.883 0.307 0.813
Eating 9668 0.676 0.114 0.649 0.678 0.194 0.663
Drinking alcohol 859 0.876 0.089 0.530 0.883 0.152 0.706
Watching TV 8945 0.778 0.203 0.538 0.801 0.294 0.670
Surfing the internet 10668 0.721 0.181 0.487 0.748 0.264 0.617
Talking 18477 0.676 0.222 0.658 0.678 0.332 0.668
Singing 384 0.921 0.043 0.109 0.941 0.062 0.525
With co-workers 3972 0.779 0.153 0.549 0.794 0.239 0.672
With friends 12686 0.704 0.239 0.488 0.740 0.321 0.614
Indoors 102510 0.894 0.989 0.896 0.851 0.941 0.874
Outside 6793 0.876 0.381 0.847 0.878 0.526 0.862
Average 0.839 0.246 0.612 0.844 0.314 0.728

Table 5.8: Recognition scores reported for Logistic Regression (LR) models per label, for all context labels.
Five-fold cross validation with 48 users in the training set and 12 users in the test set for each iteration.
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5.4. Baselines
Activity plot for user u40: ground-truth vs. LR predictions
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Figure 5.4.1: Activity plot including LR predictions for user u40
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Activity plot for user u45: ground-truth vs. LR predictions
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Figure 5.4.2: Activity plot including LR predictions for user uds
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Figure 5.4.3: Activity plot including LR predictions for user u49
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Activity plot for user u53: ground-truth vs. LR predictions
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Figure 5.4.4: Activity plot including LR predictions for user u53
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Figure 5.4.5: Activity plot including LR predictions for user ub7

115



Chapter 5. Experiments and Results

5.4.4 Reproduce Baseline: Multilayer Perceptron

In our next experiment, we reproduce a baseline MLP according to [VWL18], which is presented in Subsection
4.3.6. More specifically, we implement, train and test the the MLP(16,16) configuration, which has the best
recognition performance in the reference paper. In general, we follow the process as originally described. The
key points for this experiment are summarized below:

e Five-fold cross validation is used, with each fold containing 48 users in the training set and 12 users in
the test set (using the same partition as the original work).

e The training set of each CV iteration is further partitioned in a training subset and a validation subset,
as follows: for each of the 48 users of the training set, 80% of their data is used for training, and 20%
is used for validation, to decide which epoch’s checkpoint will be selected for the test inference.

e We standardize each sensor feature (mean and standard deviation are calculated using the training
subset). After standardization, missing feature values are zero-imputated.

e The MLP(16,16) configuration includes two layers of 16 hidden nodes each, followed by an output layer
of 51 nodes which correspond to the 51 context labels. As for the activation function, we use Leaky
ReLU as in the original work, and we have added Batch Normalization and Dropout layers, as we
found them to facilitate convergence and help avoid overfitting. The complete architecture is depicted
in Figure 5.4.6.

e The total number of trainable parameters is 4019, out of which 3955 belong to the Linear layers and
64 belong to the Batch Normalization layers.

e Regarding the loss, we implement a custom loss based on torch.nn.BCEWithLogitsLoss, slightly
modified to allow dynamic per-batch, per-element masking in the loss matrices (to mask the loss
elements corresponding to missing ground-truth labels for each batch, and not use them in the loss
computation). Also, the pos_weight is used for instance-weighting to account for the imbalance in the
number of positive examples per context label, by multiplying the term of the positive examples in the
loss, with the ratio of negative to positive examples for this label in the training set.

masks
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Figure 5.4.6: The MLP(16, 16) model architecture used as baseline, similar to the one used in [VWL18].
Two hidden layers of 16 nodes are followed by an output layer of 51 nodes corresponding to the 51 context
labels. Leaky ReLU is used as an activation function, followed by Batch Normalization and Dropout layers,

to facilitate convergence and avoid overfitting. A custom loss based on torch.nn.BCEWithLogitsLoss is

used, but with a slight modification to allow per-batch, per-element masking in the loss matrices (to
leverage missing labels information). Also, the pos_weight argument is used for instance-weighting to
account for the imbalance in the number of positive examples per context label.
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e We use a batch size of 32 to train the model.

e We use the Adam [KB15| optimizer with learning rate = 0.01, instead of Stochastic Gradient
Descent, to train the model.

e In the testing phase, the continuous predictions of the model pass through a sigmoid activation function,
and then they are converted to binary outputs using a threshold of 0.5.

e We calculate the evaluation metrics for each label over its non-missing ground-truth examples.

Since scikit-learn does not provide instance-weighting and loss masking for MLPs, we use PyTorch
[Pas+19] to build the model, the supervisor and the training scripts. The torch.nn modules that are
used, can be seen in detail in Figure 5.4.6.

In Table 5.10 we see the recognition scores reported for the MLP, for all context labels, and in Table 5.9 the
same results are averaged over the labels of each label subset. Our result of 0.772 average BA is comparable
to the original paper’s value of 0.773, while we also provide the full set of metrics over each context label and
in total, while in the original paper the only metric reported is BA.

In comparison with the results of the LR models per label, the multi-label MLP achieves an important
improvement in BA, using far less parameters in total (4019 in the MLP vs. 8976 for the LR per label models).
In the LR experiments, we created a single LR model per label, thus each label is modeled independently,
while in the MLP, all labels are modeled together, sharing the hidden layers’ parameters. This results in
improved Sensitivity, which means that the model is capable of predicting correctly more positive examples
per label. In LR, we noticed an imbalance between Sensitivity and Specificity; Sensitivity was 0.612, while
Specificity was 0.844. In MLP, this imbalance is mitigated and the values are much closer: 0.757 and 0.786,
respectively. This effect can be attributed to the instance-weighting applied in the loss function, that equalizes
the contribution of positive and negative examples for each label in the loss function. We notice that when
we train the same model, but without instance-weighting, the classifier optimizes raw Accuracy, becomes
almost trivial, and predicts only the most common labels, while ignoring the rare ones.

Regarding the detailed results per context label and per label subsets for the MLP, the increase in Sensitivity
values compared to LR, is mostly observed in the rarer labels, resulting also in higher BA for those labels,
compared to the previous baseline.

L MLP recognition scores averaged for each label subset ‘
Label Accuracy Precision Sensitivity | Specificity F1l-score BA
Posture/Movement 0.792 0.374 0.803 0.787 0.450 0.795
Special Movement 0.804 0.027 0.719 0.805 0.052 0.762
Phone Location 0.726 0.427 0.782 0.730 0.498 0.756
Work-related 0.795 0.248 0.793 0.793 0.365 0.793
Location-based 0.822 0.265 0.789 0.817 0.340 0.803
Transportation 0.852 0.151 0.862 0.852 0.247 0.857
Chores 0.797 0.041 0.653 0.799 0.077 0.726
Self-care 0.805 0.186 0.711 0.808 0.222 0.759
Leisure Time 0.711 0.144 0.709 0.712 0.231 0.711
Companion 0.687 0.190 0.672 0.688 0.295 0.680
Environment 0.852 0.663 0.873 0.868 0.703 0.870
Average 0.786 0.228 0.757 0.786 0.298 0.772

Table 5.9: Recognition scores reported for the simple MLP architecture, averaged for each label subset.
Five-fold cross validation with 48 users in the training set and 12 users in the test set for each iteration.
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L MLP recognition scores for all context labels
Label Support | Accuracy | Precision | Sensitivity | Specificity | F1l-score BA
Lying down 51682 0.888 0.813 0.829 0.915 0.821 0.872
Sitting 79368 0.767 0.730 0.799 0.739 0.763 0.769
Standing 22071 0.619 0.222 0.767 0.597 0.345 0.682
Walking 11715 0.778 0.213 0.823 0.774 0.339 0.799
Running 661 0.829 0.029 0.699 0.830 0.056 0.764
Bicycling 3504 0.871 0.238 0.900 0.870 0.377 0.885
Strolling 339 0.774 0.048 0.776 0.774 0.091 0.775
Stairs - Going up 399 0.810 0.024 0.667 0.811 0.047 0.739
Stairs - Going down 390 0.824 0.024 0.636 0.826 0.047 0.731
Elevator 123 0.809 0.012 0.797 0.809 0.023 0.803
Phone in pocket 14074 0.753 0.410 0.844 0.733 0.552 0.789
Phone in hand 7313 0.630 0.164 0.770 0.617 0.270 0.693
Phone in bag 5031 0.747 0.220 0.758 0.746 0.341 0.752
Phone on table 65979 0.776 0.915 0.756 0.824 0.828 0.790
In class 2852 0.803 0.190 0.755 0.806 0.304 0.780
Lab work 2898 0.809 0.354 0.891 0.799 0.506 0.845
Computer work 22536 0.735 0.345 0.744 0.733 0.471 0.739
In a meeting 2837 0.835 0.101 0.784 0.836 0.180 0.810
At home 80044 0.786 0.762 0.805 0.768 0.783 0.787
At school 25342 0.718 0.370 0.793 0.701 0.504 0.747
At main workplace 19235 0.835 0.558 0.862 0.828 0.677 0.845
At a restaurant 1275 0.854 0.076 0.798 0.855 0.139 0.827
At a bar 520 0.870 0.153 0.873 0.870 0.261 0.871
At a party 404 0.785 0.053 0.733 0.786 0.100 0.759
At the gym 897 0.852 0.119 0.679 0.857 0.202 0.768
At the beach 116 0.873 0.030 0.767 0.874 0.057 0.820
In a car 3550 0.862 0.180 0.843 0.862 0.297 0.853
On a bus 1179 0.827 0.060 0.878 0.826 0.112 0.852
Drive - Driver 4879 0.871 0.268 0.859 0.872 0.408 0.866
Drive - Passenger 1650 0.846 0.095 0.868 0.846 0.171 0.857
Shopping 809 0.779 0.036 0.820 0.779 0.070 0.799
Cooking 2212 0.780 0.055 0.695 0.782 0.102 0.738
Cleaning 1813 0.771 0.056 0.630 0.774 0.102 0.702
Doing laundry 471 0.854 0.028 0.469 0.858 0.053 0.663
Washing dishes 829 0.801 0.031 0.650 0.802 0.060 0.726
Bathing - Shower 1120 0.806 0.033 0.663 0.807 0.063 0.735
Toilet 1558 0.714 0.031 0.730 0.714 0.060 0.722
Grooming 1775 0.783 0.049 0.640 0.786 0.091 0.713
Dressing 1248 0.815 0.038 0.649 0.817 0.071 0.733
Sleeping 40869 0.904 0.779 0.874 0.915 0.824 0.894
Exercise 5191 0.846 0.169 0.819 0.848 0.280 0.833
Eating 9668 0.619 0.109 0.747 0.611 0.190 0.679
Drinking alcohol 859 0.807 0.089 0.885 0.805 0.162 0.845
Watching TV 8945 0.781 0.224 0.631 0.795 0.331 0.713
Surfing the internet 10668 0.690 0.174 0.538 0.708 0.263 0.623
Talking 18477 0.613 0.207 0.765 0.592 0.326 0.678
Singing 384 0.624 0.036 0.581 0.625 0.069 0.603
With co-workers 3972 0.757 0.170 0.732 0.759 0.276 0.745
With friends 12686 0.616 0.211 0.613 0.617 0.314 0.615
Indoors 102510 0.857 0.992 0.855 0.893 0.918 0.874
Outside 6793 0.847 0.335 0.890 0.843 0.487 0.867
Average 0.786 0.228 0.757 0.786 0.298 0.772

Table 5.10: Recognition scores reported for the simple MLP architecture, for all context labels. Five-fold
cross validation with 48 users in the training set and 12 users in the test set for each iteration.

118



5.4. Baselines
Activity plot for user u40: ground-truth vs. MLP predictions
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Figure 5.4.7: Activity plot including MLP predictions for user u40
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Activity plot for user u45: ground-truth vs. MLP predictions
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Figure 5.4.8: Activity plot including MLP predictions for user u45
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Activity plot for user u53: ground-truth vs. MLP predictions
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Figure 5.4.10: Activity plot including MLP predictions for user u53
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5.5 Bidirectional LSTM

The most profound way to leverage the sequential format of the data samples is to train a recurrent
architecture using the already extracted sensor features. We use the bidirectional Long Short-Term Memory
(BiLSTM) to implement two HAR models, combining a two-layer BILSTM with a Linear layer.

In these experiments we again use the aforementioned “Core” subset of the dataset, which includes all examples
that have measurements from all six core sensors (Acc, Gyro, WAcc, Loc & Loc QF, Aud, PS), totaling 169,001
examples. These sensors correspond to 175 out of the 225 precomputed features that are included in the
dataset. We follow the same preprocessing steps as described in Section 5.4. All the examples of the “Core”
set have at least some of the features corresponding to each core sensor. The NaN feature values, if existent,
are zero-imputated after standardizing the features in each iteration of the five-fold cross validation using the
mean and std values of the training set. In this way, the NaN feature values are replaced by the mean feature
value across the training set.

However, to abide by the recurrent logic introduced here, we now need to provide sequences of examples as
input to our models, instead of the single examples we provided in our previous, baseline models. Thus, we
can approach our data as time series of examples, and we need to select a N-length sequence of consecutive
data points as our models’ input. Since each of the examples of the dataset corresponds to a single minute for
a specific user, it is intuitive to select N consecutive examples to create our model input sequence. However,
the ExtraSensory dataset is characterized by an intrinsic difficulty for this task, since there are missing
examples due to the in-the-wild nature of the dataset and the recording conditions (the participants could
start and stop recording their daily routines as preferable and convenient). In addition, the “Core” subset
which is used, is characterized by a second intrinsic difficulty, since we filter out examples with missing core
sensors, and as a result, we end up with even more missing examples.

For these reasons, we devise a strategy to solve the missing examples issue when trying to create N-length
sequences of consecutive examples. Each example in the dataset, containing 225 features in total, and 175
features in the “Core” subset, is accompanied by the user_id of the corresponding user, and the timestamp
which contains all the date-time information for the specific example, with second precision. First, we convert
these timestamps to minute precision, to obtain the exact minute corresponding to each example. Then, for
each dataset example at time t for user u, we attempt to create a N-length sequence of consecutive examples
by gathering the examples of user u for minutes {t-N+1, ..., t}. If the example corresponding to a specific past
minute is missing, the next example is repeated, and this process is repeated recursively until the sequence
is created.

We choose to include only past examples in the time sequence of each example, in order not to impose any
constraints on real-time use, where we only have data for the current minute and the past minutes, we do not
have access to data in the future. When filling the missing examples in the sequence, we choose to repeat the
next example and not the previous example, because we want to pay attention more to the examples closer
to the current minute, and thus, if an example must be repeated to fill the missing example, it makes more
sense to repeat the next one, than to repeat the previous one or to fill the missing example with zeros.

In Figure 5.5.1 we can see an example of generation of {5, 10, 15}-length sequences of consecutive examples,
in cases where the examples for some timestamps are missing. It can be seen in the left, that the examples
for minute precision timestamps 24077947, 24077949 and 24077950 are missing for this user. In the right, it
is shown that when generating an examples sequence for the selected timestamp (minute) 24077959, in the
10-length sequence and 15-length sequence cases, the example corresponding to the next minute is repeated
to fill the missing example 24077951 is repeated for timestamps 24077950 and 24077949 which are missing,
24077948 is repeated for timestamp 24077947 which is also missing.

Therefore, it becomes possible to create examples sequences of equal length N for all examples of the dataset,
even in cases where some or all examples in the immediate past of an example are missing. This way, it is
much easier to handle sequential data to be used as input for recurrent NN architectures, since they can be
combined in batches and stored in Numpy arrays and PyTorch Tensors. Otherwise, if we split the examples
sequence every time missing examples appear, we would end up with examples sequences of very variable
length, that would require a lot of padding and elaborate handling to be used efficiently in recurrent NN
architectures.
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Figure 5.5.1: An example of generation of {5, 10, 15}-length sequences of consecutive examples, in cases

w.

here the examples for some timestamps are missing. It can be seen in the left, that the examples for

minute precision timestamps 24077947, 24077949 and 24077950 are missing for this user. In the right, it is
shown that when generating an examples sequence for the selected timestamp (minute) 24077959, in the
10-length sequence and 15-length sequence cases, the example corresponding to the next minute is repeated

to fill the missing example.

5.5.1 Using BiLSTM Final Hidden States

At first, we implement a model including a two-layer BiLSTM, whose h_n output, which contains a

conc

atenation of the final forward and reverse hidden states of each BiLSTM layer, is then fed to a Linear

layer, to predict the probabilities for each of the 51 context labels. This model is conceptually presented in

Figu

re 5.5.2, and the key points of the experiments are summarized as follows:

Five-fold cross validation is used, with each fold containing 48 users in the training set and 12 users in
the test set (using the same partition as the original work).

The training set of each CV iteration is further partitioned in a training subset and a validation subset,
as follows: for each of the 48 users of the training set, 80% of their data is used for training, and 20%
is used for validation, to decide which epoch’s checkpoint will be selected for the test inference.

We standardize each sensor feature (mean and standard deviation are calculated using the training
subset). After standardization, missing feature values are zero-imputated.

The model configuration includes a two-layer BiLSTM followed by a Linear layer. The h_n output of
the BiLSTM, which contains a concatenation of the final forward and reverse hidden states of the two
BiLSTM layers, is fed to the Linear layer of 51 nodes which correspond to the 51 context labels. We
use Dropout after the first BILSTM layer, with dropout rate = 0.5 to help avoid overfitting.

By using the h_n output of the BiLSTM, whose size is independent of the examples sequence length,
as input for the output Linear layer, the resulting model’s size is independent of the examples sequence
length. Since all other hyperparameters are fixed (input features size, bidirectional, number of layers,
output size), the model’s size depends only on the BiLSTM layers’ hidden_size.

We experiment with two hyperparameters: the input sequence length, denoted as window_len, and the
BiLSTM layers’ hidden_size. Regarding window_len, we experiment using lengths of 5, 10, 15, and
30 examples (minutes). Regarding hidden_size, we experiment using sizes of 16, 32, and 64. The
results of our investigation are thorougly presented in Table 5.11, along with the number of parameters
for each model.
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Figure 5.5.2: A simple two-layer BILSTM model is presented conceptually. An examples sequence of length

w (window_len) is given as input, and the target is to predict the context labels of the last example of the

sequence. The h_n output of the BILSTM, which contains a concatenation of the final forward and reverse
hidden states of each BiLSTM layer, passes through a Linear layer, followed by a sigmoid function to

convert the model’s outputs to labels’ probabilities.

Regarding the loss, we again use the custom loss that was first described in Subsection 5.4.4, based
on torch.nn.BCEWithLogitsLoss. This loss is slightly modified to allow dynamic per-batch, per-
element masking in the loss matrices (to mask the loss elements corresponding to missing ground-truth
labels for each batch, and not use them in the loss computation). Also, the pos_weight is used for
instance-weighting to account for the imbalance in the number of positive examples per context label,
by multiplying the term of the positive examples in the loss, with the ratio of negative to positive
examples for this label in the training set.

We use a batch size of 32 to train the model.

We use the Adam optimizer to train the model. The learning rate hyperparameter is adapted
according to the model size and to the input sequence length (window_len). The optimal values of
learning rate for each combination of window_len and BiLSTM layers’ hidden_size, as determined
by our experiments, are denoted in Table 5.11.

In the testing phase, the continuous predictions of the model pass through a sigmoid activation function,
and then they are converted to binary outputs using a threshold of 0.5.

We calculate the evaluation metrics for each label over its non-missing ground-truth examples.

We use PyTorch to build the model, the supervisor and the training scripts. The torch.nn modules and
torch functions that are used, can be seen in detail in Figure 5.5.3.

In Table 5.11 we present the recognition scores for the BILSTM model using the h_n output, averaged for
all labels, for different values of the hyperparameters: input sequence length window_len = {5, 10, 15, 30}
and BILSTM layers’ hidden_size = {16, 32, 64}. As it can be seen, for window_len = {5, 10, 15} we get
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Performance metrics averaged over all labels for the BILSTM model using only the final hidden states
Hyperparameter tuning: BiLSTM input sequence length & BiLSTM layers’ hidden size
ch.iden No. of Learning Accuracy | Precision | Sensitivity | Specificity | F1-score BA
size parameters rate

Window length: 5

16 34419 0.0001 0.798 0.233 0.756 0.798 0.303 0.777

32 85171 0.00005 0.800 0.236 0.760 0.800 0.308 0.780

64 235827 0.00002 0.813 0.243 0.753 0.814 0.316 0.784
Window length: 10

16 34419 0.0001 0.797 0.232 0.748 0.799 0.302 0.773

32 85171 0.00005 0.805 0.237 0.755 0.805 0.310 0.780

64 235827 0.00002 0.814 0.241 0.743 0.815 0.314 0.779
Window length: 15

16 34419 0.0001 0.790 0.230 0.767 0.790 0.300 0.779

32 85171 0.00005 0.813 0.240 0.732 0.814 0.311 0.773

64 235827 0.00002 0.810 0.240 0.746 0.810 0.313 0.778
Window length: 30

16 34419 0.0001 0.799 0.231 0.723 0.801 0.299 0.762

32 85171 0.00005 0.817 0.239 0.702 0.819 0.310 0.761

64 235827 0.00002 0.814 0.240 0.733 0.814 0.313 0.774

Table 5.11: Recognition scores for the BiLSTM model using the h_n output, averaged for all labels, for
different values of the hyperparameters: input sequence length (window_len) and BiLSTM layers’
hidden_size. Five-fold cross validation with 48 users in the training set and 12 users in the test set for
each iteration.

results consistently better than the results of the baseline MLP, while for for window_len = 30, the results
are worse than or similar to the baseline MLP. This means that providing past examples in an interval of
about 5-15 minutes helps the model better predict the context labels of the current minute, while providing
past context of a longer interval spanning 30 minutes does not seem to help and even deteriorates total
performance. We also observe that regarding hidden_size, in most cases, a larger hidden size improves the
recognition performance, but comes with a cost of a lot more model parameters. We achieve the best BA
of 0.784 with the combination of hyperparameters window_len = 5 and BiLSTM layers’ hidden_size = 64.
We also notice that when increasing hidden_size, we need to decrease the training’s learning rate for
best results, which reflect better model convergence.

For the best-performing model configuration, with window_len = 5 and BiLSTM layers’ hidden_size = 64,
we present the detailed model architecture in Figure 5.5.3, and the recognition scores for all context labels in
Table 5.13 and averaged over the labels of each label subset in Table 5.12. Regarding the recognition scores
for all context labels, we observe an improvement in BA for almost all context labels in comparison with the
MLP baseline. Regarding the recognition scores averaged over the labels of each label subset, we observe
an improvement in BA for almost all label subsets in comparison with the MLP baselines. Regarding the
averaged recognition scores for all labels, there is an increase in all metrics compared with the MLP baseline,
except for Sensitivity whose value is similar to that of the MLP. Overall we notice that this model has similar
performance with the MLP regarding Sensitivity, which means that the number of positive examples for each
label which are correctly recognized as positive is similar to that of the MLP, and a higher Specificity (0.814
compared with the MLP value of 0.786), which means that the number of negative examples for each label
which are correctly recognized as negative is higher compared with that of the MLP, which means that we
have on average less False Positives. Overall we achieve an average BA of 0.784, which improves the 0.772
BA value of the baseline MLP.
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Figure 5.5.3: The best-performing BiLSTM model architecture using output h_n. A 5-length examples
sequence (window_len = 5) is given as input to the two-layer BiLSTM with hidden_size = 64 and
dropout = 0.5. The h_n output of the BILSTM (which contains a concatenation of the final forward and
reverse hidden states of each BiLSTM layer), after being transposed and reshaped, passes through an
output Linear layer of 51 nodes corresponding to the 51 context labels. A custom loss based on
torch.nn.BCEWithLogitsLoss is used to account for missing labels information and label weights in loss
computation.

L Recognition scores of the BILSTM model using only the final hidden states, averaged for each label subset

Label Accuracy Precision Sensitivity | Specificity F1l-score BA
Posture/Movement 0.829 0.402 0.796 0.829 0.482 0.813
Special Movement 0.806 0.028 0.734 0.806 0.053 0.770
Phone Location 0.774 0.452 0.769 0.769 0.531 0.769
Work-related 0.807 0.260 0.820 0.804 0.384 0.812
Location-based 0.818 0.271 0.804 0.817 0.343 0.810
Transportation 0.869 0.174 0.883 0.869 0.279 0.876
Chores 0.842 0.053 0.637 0.845 0.097 0.741
Self-care 0.864 0.202 0.698 0.869 0.246 0.783
Leisure Time 0.742 0.159 0.667 0.747 0.248 0.707
Companion 0.708 0.191 0.614 0.721 0.287 0.668
Environment 0.885 0.694 0.894 0.891 0.743 0.892
Average 0.813 0.243 0.753 0.814 0.316 0.784

Table 5.12: Recognition scores reported for the BILSTM model using only the final hidden states (h_n
output), averaged for each label subset. Model configuration with window_len = 5 and hidden_size = 64.
Five-fold cross validation with 48 users in the training set and 12 users in the test set for each iteration.
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Recognition scores of the BILSTM model using only the final hidden states, for all context labels ‘

Label Support | Accuracy | Precision | Sensitivity | Specificity | F1l-score BA
Lying down 51682 0.893 0.819 0.840 0.917 0.829 0.878
Sitting 79368 0.778 0.741 0.809 0.750 0.774 0.780
Standing 22071 0.708 0.267 0.707 0.708 0.387 0.707
Walking 11715 0.825 0.259 0.817 0.826 0.393 0.821
Running 661 0.871 0.040 0.731 0.872 0.076 0.801
Bicycling 3504 0.901 0.288 0.873 0.902 0.434 0.888
Strolling 339 0.741 0.045 0.829 0.739 0.085 0.784
Stairs - Going up 399 0.839 0.028 0.652 0.841 0.054 0.746
Stairs - Going down 390 0.823 0.025 0.659 0.824 0.048 0.742
Elevator 123 0.821 0.012 0.797 0.821 0.024 0.809
Phone in pocket 14074 0.786 0.448 0.825 0.777 0.581 0.801
Phone in hand 7313 0.698 0.187 0.716 0.697 0.297 0.706
Phone in bag 5031 0.803 0.264 0.717 0.811 0.386 0.764
Phone on table 65979 0.810 0.908 0.817 0.792 0.860 0.804
In class 2852 0.828 0.220 0.793 0.830 0.345 0.812
Lab work 2898 0.771 0.315 0.928 0.752 0.471 0.840
Computer work 22536 0.766 0.380 0.751 0.769 0.505 0.760
In a meeting 2837 0.863 0.123 0.807 0.864 0.213 0.835
At home 80044 0.794 0.772 0.807 0.781 0.789 0.794
At school 25342 0.762 0.414 0.756 0.763 0.535 0.760
At main workplace 19235 0.838 0.564 0.846 0.836 0.677 0.841
At a restaurant 1275 0.877 0.091 0.814 0.878 0.164 0.846
At a bar 520 0.856 0.143 0.894 0.855 0.247 0.875
At a party 404 0.808 0.062 0.762 0.808 0.114 0.785
At the gym 897 0.809 0.100 0.734 0.811 0.176 0.772
At the beach 116 0.801 0.020 0.819 0.801 0.040 0.810
In a car 3550 0.888 0.219 0.877 0.888 0.351 0.883
On a bus 1179 0.837 0.064 0.885 0.836 0.119 0.860
Drive - Driver 4879 0.892 0.310 0.889 0.892 0.460 0.891
Drive - Passenger 1650 0.859 0.104 0.882 0.858 0.186 0.870
Shopping 809 0.801 0.038 0.778 0.801 0.073 0.789
Cooking 2212 0.837 0.073 0.691 0.840 0.132 0.766
Cleaning 1813 0.828 0.075 0.640 0.832 0.134 0.736
Doing laundry 471 0.865 0.030 0.452 0.869 0.056 0.661
Washing dishes 829 0.880 0.050 0.626 0.882 0.093 0.754
Bathing - Shower 1120 0.865 0.050 0.699 0.867 0.093 0.783
Toilet 1558 0.818 0.042 0.624 0.821 0.079 0.722
Grooming 1775 0.844 0.064 0.612 0.848 0.117 0.730
Dressing 1248 0.884 0.063 0.692 0.886 0.115 0.789
Sleeping 40869 0.907 0.793 0.864 0.922 0.827 0.893
Exercise 5191 0.878 0.202 0.796 0.881 0.322 0.839
Eating 9668 0.690 0.122 0.669 0.691 0.206 0.680
Drinking alcohol 859 0.866 0.114 0.790 0.868 0.199 0.829
Watching TV 8945 0.802 0.249 0.648 0.817 0.360 0.732
Surfing the internet 10668 0.722 0.182 0.485 0.750 0.264 0.617
Talking 18477 0.634 0.209 0.715 0.623 0.323 0.669
Singing 384 0.601 0.033 0.562 0.602 0.063 0.582
With co-workers 3972 0.756 0.165 0.706 0.759 0.268 0.733
With friends 12686 0.660 0.216 0.523 0.683 0.305 0.603
Indoors 102510 0.891 0.993 0.890 0.904 0.939 0.897
Outside 6793 0.879 0.394 0.898 0.878 0.548 0.888
Average 0.813 0.243 0.753 0.814 0.316 0.784

Table 5.13: Recognition scores reported for the BILSTM model using only the final hidden states (h_n
output), for all context labels. Model configuration with window_len = 5 and hidden_size = 64.
Five-fold cross validation with 48 users in the training set and 12 users in the test set for each iteration.
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Activity plot for user u40: ground-truth vs. BiLSTM_final_hidden_states predictions
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Figure 5.5.4: Activity plot including the predictions of the BiLSTM model using final hidden states for user
u40
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Activity plot for user u45: ground-truth vs. BiLSTM_final_hidden_states predictions
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Figure 5.5.5: Activity plot including the predictions of the BiLSTM model using final hidden states for user
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Activity plot for user u49: ground-truth vs. BiLSTM_final_hidden_states predictions
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Activity plot for user u53: ground-truth vs. BiLSTM_final_hidden_states predictions
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5.5.2 Using BiLSTM Output for all Timesteps

We also implement a model including a two-layer BiLSTM, whose full output, which contains the output
features (h_t) from the last layer of the BILSTM for all timesteps, is then fed to a Linear layer, to predict
the probabilities for each of the 51 context labels. This model is conceptually presented in Figure 5.5.9.

output 1 L 1 T—

e e e e
<« LSTM < LSTM <T——— LSTM <«1— Backward
| [ — I z
Forward —p LSTM — — LSTM ———> LSTM —+—>
LSTM layer 2 A I I A A
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Figure 5.5.9: A simple two-layer BILSTM model is presented conceptually. An examples sequence of length

w (window_len) is given as input, and the target is to predict the context labels of the last example of the

sequence. The output of the BiILSTM, which contains the output features (h_t) from the last layer of the
BiLSTM for each timestep, passes through a Linear layer, followed by a sigmoid function to convert the

model’s outputs to labels’ probabilities.

The key points of the experiments are summarized below:

Five-fold cross validation is used, with each fold containing 48 users in the training set and 12 users in
the test set (using the same partition as the original work).

The training set of each CV iteration is further partitioned in a training subset and a validation subset,
as follows: for each of the 48 users of the training set, 80% of their data is used for training, and 20%
is used for validation, to decide which epoch’s checkpoint will be selected for the test inference.

We standardize each sensor feature (mean and standard deviation are calculated using the training
subset). After standardization, missing feature values are zero-imputated.

The model configuration includes a two-layer BiILSTM followed by a Linear layer. The output of the
BiLSTM, which contains the output features (h_t) from the last layer of the BiILSTM for each timestep,
is fed to the Linear layer of 51 nodes which correspond to the 51 context labels. We use Dropout after
the first BILSTM layer, with dropout rate = 0.5 to help avoid overfitting.

Since the output size depends on the examples sequence length, the resulting model’s size grows as the
length of the input sequence grows, since the Linear layer’s size is proportional to the size of its input.
Since all other hyperparameters are fixed (input features size, bidirectional, number of layers, output
size), the model’s size depends on both the examples sequence length window_len and the BiLSTM
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layers’ hidden_size.

We experiment with these two hyperparameters: the input sequence length, denoted as window_len,
and the BiLSTM layers’ hidden_size. Regarding window_len, we experiment using lengths of 5, 10,
15, and 30 examples (minutes). Regarding hidden_size, we experiment using sizes of 16, 32, and
64. The results of our investigation are thorougly presented in Table 5.14, along with the number of
parameters for each model.

Regarding the loss, we again use the custom loss that was first described in Subsection 5.4.4, based
on torch.nn.BCEWithLogitsLoss. This loss is slightly modified to allow dynamic per-batch, per-
element masking in the loss matrices (to mask the loss elements corresponding to missing ground-truth
labels for each batch, and not use them in the loss computation). Also, the pos_weight is used for
instance-weighting to account for the imbalance in the number of positive examples per context label,
by multiplying the term of the positive examples in the loss, with the ratio of negative to positive
examples for this label in the training set.

We use a batch size of 32 to train the model.

We use the Adam optimizer to train the model. The learning rate hyperparameter is adapted
according to the model size and to the input sequence length (window_len). The optimal values of
learning rate for each combination of window_len and BiLSTM layers’ hidden_size, as determined
by our experiments, are denoted in Table 5.14.

In the testing phase, the continuous predictions of the model pass through a sigmoid activation function,
and then they are converted to binary outputs using a threshold of 0.5.

We calculate the evaluation metrics for each label over its non-missing ground-truth examples.

We use PyTorch to build the model, the supervisor and the training scripts. The torch.nn modules and
torch functions that are used, can be seen in detail in Figure 5.5.10.

Performance metrics averaged over all labels for the BILSTM model using all timesteps’ outputs
Hyperparameter tuning: BiLSTM input sequence length & BiLSTM layers’ hidden size
ch.lden No. of Learning Accuracy | Precision | Sensitivity | Specificity | Fl-score BA
size parameters rate

Window length: 5

16 39315 0.00005 0.791 0.232 0.764 0.791 0.302 0.778

32 94963 0.00001 0.795 0.234 0.764 0.795 0.305 0.779

64 255411 0.00001 0.810 0.241 0.761 0.811 0.314 0.786
Window length: 10

16 47475 0.00001 0.775 0.222 0.761 0.775 0.288 0.768

32 111283 0.00001 0.789 0.229 0.751 0.789 0.298 0.770

64 288051 0.00001 0.804 0.241 0.759 0.805 0.312 0.782
Window length: 15

16 55635 0.00001 0.782 0.223 0.742 0.782 0.290 0.762

32 127603 0.00001 0.807 0.240 0.754 0.808 0.311 0.781

64 320691 0.000005 0.814 0.242 0.746 0.814 0.315 0.780
Window length: 30

16 80115 0.00001 0.783 0.221 0.724 0.782 0.288 0.753

32 176563 0.000005 0.778 0.223 0.722 0.780 0.288 0.751

64 418611 0.000002 0.802 0.233 0.725 0.803 0.302 0.764

Table 5.14: Recognition scores for the BILSTM model using all outputs, averaged for all labels, for different
values of the hyperparameters: input sequence length (window_len) and BiLSTM layers’ hidden_size.
Five-fold cross validation with 48 users in the training set and 12 users in the test set for each iteration.

In Table 5.14 we present the recognition scores for the BiLSTM model using all timesteps’ output, averaged
for all labels, for different values of the hyperparameters: input sequence length window_len = {5, 10, 15,
30} and BiLSTM layers’ hidden_size = {16, 32, 64}. As it can be seen, for window_len = 5, we get results
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consistently better than the results of the baseline MLP, for window_len = {10, 15} we get results better
that those of the MLP only for larger hidden_size values, while for window_len = 30, the results are worse
than the baseline MLP. This means that providing past examples in an interval of 5 minutes is helpful for this
model configuration, independently of hidden_size among the tested values. Providing past context of a
longer interval of about 10-15 minutes is helpful only when the hidden_size of the BiLSTM is large enough
to capture adequate past information, while providing past context of a larger interval spanning 30 minutes
reduces total performance. We also observe that regarding hidden_size, again, in most cases, a larger
hidden size improves the recognition performance, but comes with a cost of a lot more model parameters.
We achieve the best BA of 0.786 with the combination of hyperparameters window_len = 5 and BiLSTM
layers’ hidden_size = 64. We also notice again that when increasing hidden_size, we need to decrease the
training’s learning rate for better model convergence.

For the best-performing model configuration, with window_len = 5 and BiLLSTM layers’ hidden_size = 64,
we present the detailed model architecture in Figure 5.5.10, and the recognition scores for all context labels in
Table 5.16 and averaged over the labels of each label subset in Table 5.15. In general, in the recognition scores
we observe trends similar to those of the previous experiment using only final hidden states. More specifically,
regarding the recognition scores for all context labels, we observe an improvement in BA for almost all context
labels in comparison with the MLP baseline. Regarding the recognition scores averaged over the labels of
each label subset, we observe an improvement in BA for almost all label subsets in comparison with the MLP
baselines. Regarding the averaged recognition scores for all labels, there is an increase in all metrics compared
with the MLP baseline. In detail, we notice that this model has similar performance regarding Sensitivity
and improved performance regarding Specificity (0.811 compared to the MLP value of 0.786), which again
means that we have a decrease on False Positives. Finally, overall we achieve an average BA of 0.786, which
is an improvement over the 0.772 BA value of the baseline MLP.
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Figure 5.5.10: The best-performing BiLSTM model architecture using all timesteps’ outputs. A 5-length
examples sequence (window_len = 5) is given as input to the two-layer BILSTM with hidden_size = 64
and dropout = 0.5. The output of the BILSTM (which contains the output features h_t from the last
layer of the BILSTM for each timestep), after being reshaped, passes through an output Linear layer of 51
nodes corresponding to the 51 context labels. A custom loss based on torch.nn.BCEWithLogitsLoss is
used to account for missing labels information and label weights in loss computation.
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L Recognition scores of the BILSTM model using all timesteps’ outputs averaged for each label subset
Label Accuracy Precision Sensitivity | Specificity F1l-score BA
Posture/Movement 0.825 0.397 0.792 0.823 0.476 0.808
Special Movement 0.798 0.028 0.744 0.799 0.053 0.771
Phone Location 0.770 0.453 0.783 0.766 0.533 0.774
Work-related 0.802 0.253 0.797 0.800 0.372 0.799
Location-based 0.814 0.267 0.804 0.812 0.338 0.808
Transportation 0.866 0.169 0.877 0.866 0.271 0.871
Chores 0.826 0.053 0.699 0.828 0.097 0.764
Self-care 0.856 0.201 0.700 0.861 0.243 0.780
Leisure Time 0.758 0.160 0.688 0.761 0.253 0.724
Companion 0.706 0.191 0.625 0.720 0.287 0.672
Environment 0.884 0.694 0.894 0.892 0.744 0.893
Average 0.810 0.241 0.761 0.811 0.314 0.786

Table 5.15: Recognition scores reported for the BiILSTM model using all timesteps’ outputs, averaged for
each label subset. Model configuration with window_len = 5 and hidden_size = 64. Five-fold cross
validation with 48 users in the training set and 12 users in the test set for each iteration.
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L Recognition scores of the BILSTM model using all timesteps’ outputs for all context labels ‘
Label Support | Accuracy | Precision | Sensitivity | Specificity | F1l-score BA
Lying down 51682 0.895 0.825 0.838 0.921 0.832 0.879
Sitting 79368 0.780 0.738 0.824 0.741 0.778 0.782
Standing 22071 0.697 0.257 0.700 0.696 0.376 0.698
Walking 11715 0.814 0.247 0.824 0.813 0.380 0.818
Running 661 0.872 0.039 0.696 0.874 0.074 0.785
Bicycling 3504 0.894 0.273 0.872 0.895 0.416 0.883
Strolling 339 0.772 0.051 0.823 0.772 0.096 0.797
Stairs - Going up 399 0.828 0.026 0.657 0.829 0.051 0.743
Stairs - Going down 390 0.815 0.023 0.644 0.816 0.045 0.730
Elevator 123 0.778 0.011 0.854 0.777 0.021 0.815
Phone in pocket 14074 0.782 0.444 0.839 0.769 0.581 0.804
Phone in hand 7313 0.684 0.183 0.736 0.679 0.293 0.707
Phone in bag 5031 0.807 0.274 0.746 0.813 0.401 0.779
Phone on table 65979 0.808 0.912 0.811 0.802 0.858 0.807
In class 2852 0.824 0.204 0.718 0.830 0.317 0.774
Lab work 2898 0.781 0.326 0.932 0.762 0.483 0.847
Computer work 22536 0.762 0.375 0.742 0.766 0.498 0.754
In a meeting 2837 0.842 0.107 0.797 0.843 0.189 0.820
At home 80044 0.788 0.768 0.800 0.777 0.784 0.789
At school 25342 0.759 0.407 0.728 0.766 0.522 0.747
At main workplace 19235 0.835 0.558 0.861 0.828 0.677 0.845
At a restaurant 1275 0.864 0.086 0.849 0.865 0.156 0.857
At a bar 520 0.831 0.122 0.875 0.830 0.214 0.852
At a party 404 0.832 0.075 0.829 0.832 0.138 0.831
At the gym 897 0.817 0.100 0.701 0.820 0.175 0.761
At the beach 116 0.782 0.018 0.784 0.782 0.035 0.783
In a car 3550 0.884 0.212 0.870 0.884 0.341 0.877
On a bus 1179 0.832 0.063 0.894 0.831 0.117 0.862
Drive - Driver 4879 0.887 0.295 0.864 0.888 0.440 0.876
Drive - Passenger 1650 0.860 0.105 0.879 0.860 0.187 0.869
Shopping 809 0.789 0.037 0.802 0.789 0.071 0.796
Cooking 2212 0.837 0.073 0.688 0.840 0.131 0.764
Cleaning 1813 0.808 0.070 0.672 0.811 0.127 0.742
Doing laundry 471 0.825 0.032 0.641 0.826 0.060 0.734
Washing dishes 829 0.872 0.051 0.692 0.873 0.095 0.783
Bathing - Shower 1120 0.849 0.042 0.649 0.851 0.078 0.750
Toilet 1558 0.807 0.041 0.647 0.809 0.077 0.728
Grooming 1775 0.839 0.063 0.618 0.843 0.114 0.730
Dressing 1248 0.875 0.060 0.712 0.877 0.111 0.794
Sleeping 40869 0.912 0.800 0.874 0.925 0.835 0.899
Exercise 5191 0.874 0.195 0.786 0.878 0.313 0.832
Eating 9668 0.667 0.115 0.681 0.666 0.197 0.674
Drinking alcohol 859 0.854 0.108 0.811 0.855 0.190 0.833
Watching TV 8945 0.801 0.248 0.648 0.815 0.359 0.732
Surfing the internet 10668 0.703 0.182 0.540 0.722 0.272 0.631
Talking 18477 0.632 0.212 0.739 0.617 0.329 0.678
Singing 384 0.772 0.062 0.607 0.776 0.113 0.691
With co-workers 3972 0.743 0.163 0.738 0.743 0.267 0.741
With friends 12686 0.670 0.220 0.512 0.697 0.307 0.604
Indoors 102510 0.888 0.993 0.887 0.906 0.937 0.896
Outside 6793 0.880 0.396 0.902 0.878 0.550 0.890
Average 0.810 0.241 0.761 0.811 0.314 0.786

Table 5.16: Recognition scores reported for the BILSTM model using all timesteps’ outputs, for all context
labels. Model configuration with window_len = 5 and hidden_size = 64. Five-fold cross validation with
48 users in the training set and 12 users in the test set for each iteration.
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Activity plot for user u40: ground-truth vs. BiLSTM_all_outputs predictions
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Figure 5.5.11: Activity plot including the predictions of the BiLSTM model using all outputs for user u40
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Activity plot for user u45: ground-truth vs. BiLSTM_all_outputs predictions
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Figure 5.5.12: Activity plot including the predictions of the BiLSTM model using all outputs for user u45
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Figure 5.5.13: Activity plot including the predictions of the BiLSTM model using all outputs for user u49
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Activity plot for user u53: ground-truth vs. BiLSTM_all_outputs predictions
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Figure 5.5.14: Activity plot including the predictions of the BiLSTM model using all outputs for user u53
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Figure 5.5.15: Activity plot including the predictions of the BiLSTM model using all outputs for user u57

Activity plot for user u57: ground-truth vs. BiLSTM_all_outputs predictions
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5.6 Bidirectional LSTM with Attention

In this Section, we investigate if the performance of the BiLSTM model for our task can be improved with the
addition of a self-attention or cross-attention mechanism. We augment the aforementioned BiLSTM-based
architectures of Section 5.5 in two different ways. In the first experiment, we add a self-attention module
before the two-layer BiILSTM whose final hidden states output h_n is used in the output Linear layer. In
the second experiment, we add a cross-attention module after the two-layer BILSTM whose output for all
timesteps is used as key in the cross-attention module while the input features are used as query and value.

In these experiments we again use the aforementioned “Core” subset of the dataset, exactly as described and
processed in Section 5.5. We follow the same standardization and missing values imputation techniques, and
the same cross-validation scheme. We also follow the same logic as previously described, for the creation of
N-length sequences of consecutive examples to be used as input for our models.

5.6.1 Self-Attention preceding BiLSTM using Final Hidden States

In this experiment, we expand the model of Subsection 5.5.1 by adding a self-attention module before the
BiLSTM. This way, the input sequence passes through the self-attention before being fed to the two-layer
BIiLSTM, whose h_n output (final forward and reverse hidden states of the two BiLSTM layers), passes
through a Linear layer to predict the probabilities for each of the 51 context labels. This model is conceptually
presented in Figure 5.6.1, and the key points of the experiments are summarized as follows:

e Five-fold cross validation is used, with each fold containing 48 users in the training set and 12 users in
the test set (using the same partition as the original work).

e The training set of each CV iteration is further partitioned in a training subset and a validation subset,
as follows: for each of the 48 users of the training set, 80% of their data is used for training, and 20%
is used for validation, to decide which epoch’s checkpoint will be selected for the test inference.

e We standardize each sensor feature (mean and standard deviation are calculated using the training
subset). After standardization, missing feature values are zero-imputated.

e The model configuration includes a Multi-head Self-Attention module, and a two-layer BiILSTM followed
by a Linear layer. The N-length examples sequence is given as input to the Multi-head Self-Attention
and its output is fed to the BiLSTM. The h_n output of the BiLSTM, which contains a concatenation
of the final forward and reverse hidden states of the two BiLSTM layers, is fed to the Linear layer of 51
nodes which correspond to the 51 context labels. We use Dropout after the first BILSTM layer, with
dropout rate = 0.5 to help avoid overfitting.

e Regarding the Self-Attention, we use Multi-head Attention, with Scaled Dot-Product Attention in each
head. The N-length examples sequence is fed in all three: queries Q, keys K and values V of the Self-
Attention. We use Multi-head Attention, with num_heads = 5, since single-head Attention did not give
as good results, and as number of heads we use the smallest integer greater than 1, which is a divisor
of the input features size (175). Also, after experimenting, we end up using dropout rate = 0.2 in
the Self-Attention, which was found to give the best results.

e We experiment with two hyperparameters of our model: the input sequence length, denoted as
window_len, and the BiLSTM layers’ hidden_size. Regarding window_len, we experiment using
lengths of 5, 10, 15, and 30 examples (minutes). Regarding hidden_size, we experiment using sizes of
16, 32, and 64. The results of our investigation are thorougly presented in Table 5.17, along with the
number of parameters for each model.

e Regarding the loss, we again use the custom loss that was first described in Subsection 5.4.4, based
on torch.nn.BCEWithLogitsLoss. This loss is slightly modified to allow dynamic per-batch, per-
element masking in the loss matrices (to mask the loss elements corresponding to missing ground-truth
labels for each batch, and not use them in the loss computation). Also, the pos_weight is used for
instance-weighting to account for the imbalance in the number of positive examples per context label,
by multiplying the term of the positive examples in the loss, with the ratio of negative to positive
examples for this label in the training set.
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Figure 5.6.1: A two-layer BILSTM model preceded by a Multi-head Self-Attention module is presented
conceptually. An examples sequence of length w (window_len) is given as input, and the target is to
predict the context labels of the last example of the sequence. The input is first fed to the Self-Attention
module and its output passes to the BiLSTM. The h_n output of the BiLSTM, which contains a
concatenation of the final forward and reverse hidden states of each BiLSTM layer, passes through a Linear
layer, followed by a sigmoid function to convert the model’s outputs to labels’ probabilities.
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e We use a batch size of 32 to train the model.

e We use the Adam optimizer to train the model. The learning rate hyperparameter is adapted
according to the model size and to the input sequence length (window_len). The optimal values of
learning rate as determined by our experiments, are denoted in Table 5.17.

e In the testing phase, the continuous predictions of the model pass through a sigmoid activation function,
and then they are converted to binary outputs using a threshold of 0.5.

e We calculate the evaluation metrics for each label over its non-missing ground-truth examples.

We use PyTorch to build the model, the supervisor and the training scripts. The torch.nn modules and
torch functions that are used, can be seen in detail in Figure 5.6.2.

Performance metrics averaged over all labels
for the Multi-head Self-Attention & BiLSTM model using only the final hidden states
Hyperparameter tuning: model input sequence length & BiLSTM layers’ hidden size
ch'iden No. of Learning Accuracy | Precision | Sensitivity | Specificity | F1l-score BA
size parameters rate
Window length: 5
16 157619 0.00005 0.805 0.237 0.757 0.805 0.309 0.781
32 208371 0.00002 0.810 0.242 0.760 0.811 0.315 0.786
64 359027 0.00005 0.818 0.248 0.756 0.819 0.323 0.788
Window length: 10
16 157619 0.0001 0.798 0.234 0.745 0.799 0.305 0.772
32 208371 0.00005 0.822 0.247 0.734 0.823 0.321 0.779
64 359027 0.00002 0.816 0.246 0.751 0.816 0.320 0.783
Window length: 15
16 157619 0.0001 0.792 0.230 0.754 0.791 0.300 0.773
32 208371 0.0001 0.810 0.239 0.732 0.812 0.311 0.772
64 359027 0.00002 0.812 0.241 0.738 0.813 0.313 0.776
Window length: 30
16 157619 0.0001 0.790 0.224 0.729 0.789 0.293 0.759
32 208371 0.0001 0.803 0.233 0.732 0.804 0.303 0.768
64 359027 0.00005 0.810 0.235 0.723 0.809 0.306 0.766

Table 5.17: Recognition scores for the Multi-head Self-Attention & BiLSTM model using the h_n output,
averaged for all labels, for different values of the hyperparameters: input sequence length (window_len) and
BiLSTM layers’ hidden_size. Five-fold cross validation with 48 users in the training set and 12 users in
the test set for each iteration.

In Table 5.17 we present the recognition scores for the Multi-head Self-Attention & BiLSTM model using
the h_n output, averaged for all labels, for different values of the hyperparameters: input sequence length
window_len = {5, 10, 15, 30} and BiLSTM layers’ hidden_size = {16, 32, 64}. Compared to the results of
the plain BiLSTM model using the h_n output, without the Self-Attention module (Table 5.11), we observe
that for window_len = 5 we get results consistently better, while for window_len = {10, 15} the results
are similar, and for window_len = 30, the results are similar or worse. A possible interpretation for this
observation is that the Self-Attention module preceding the BiLLSTM, is useful to compute more meaningful
representations of the input sequences only in cases of shorter input sequences, e.g., spanning 5 minutes,
which are more relevant to the current timestep labels, compared to longer input sequences. In total, we
achieve the best BA of 0.788 with the combination of hyperparameters window_len = 5 and BiLSTM layers’
hidden_size = 64, improved over the respective best BA of 0.784 of the plain BiLSTM model using only
final hidden states.

For the best-performing model configuration, with window_len = 5 and BiLLSTM layers’ hidden_size = 64,
we present the detailed model architecture in Figure 5.6.2, and the recognition scores for all context labels in
Table 5.19 and averaged over the labels of each label subset in Table 5.18. Compared to the plain BiLSTM
model using the h_n output, we can see that the Multi-head Self-Attention & BiLSTM model using the h_n
output offers a slight improvement in all performance metrics averaged for all labels. The improvement in
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both Sensitivity and Specificity means that on average, we achieve a slight decrease in the number of both
False Positives and False Negatives.
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Figure 5.6.2: The best-performing Self-Attention & BiLLSTM model architecture using output h_n. A
5-length examples sequence (window_len = 5) is given as input to the Multi-head Self-Attention module
with num_heads = 5 and dropout = 0.2, and its output passes through the two-layer BiLSTM with
hidden_size = 64 and dropout = 0.5. The h_n output of the BILSTM (which contains a concatenation
of the final forward and reverse hidden states of each BiLSTM layer), after being transposed and reshaped,
passes through an output Linear layer of 51 nodes corresponding to the 51 context labels. A custom loss
based on torch.nn.BCEWithLogitsLoss is used to account for missing labels information and label weights
in loss computation.

Recognition scores of the Multi-head Self-Attention & BiLSTM model using only the final hidden states,
averaged for each label subset

Label Accuracy Precision | Sensitivity | Specificity F1-score BA
Posture/Movement 0.836 0.408 0.776 0.836 0.488 0.806
Special Movement 0.815 0.029 0.732 0.816 0.056 0.774
Phone Location 0.774 0.454 0.774 0.765 0.534 0.770
Work-related 0.821 0.272 0.797 0.820 0.396 0.809
Location-based 0.830 0.279 0.797 0.827 0.354 0.812
Transportation 0.881 0.186 0.877 0.882 0.295 0.879
Chores 0.827 0.053 0.698 0.828 0.098 0.763
Self-care 0.864 0.204 0.698 0.869 0.246 0.783
Leisure Time 0.751 0.162 0.678 0.755 0.256 0.716
Companion 0.707 0.198 0.656 0.716 0.299 0.686
Environment 0.890 0.701 0.893 0.893 0.751 0.893
Average 0.818 0.248 0.756 0.819 0.323 0.788

Table 5.18: Recognition scores reported for the Multi-head Self-Attention & BiLLSTM model using only the
final hidden states (BiLSTM h_n output), averaged for each label subset. Model configuration with
window_len = 5 and BiLSTM hidden_size = 64. Five-fold cross validation with 48 users in the training
set and 12 users in the test set for each iteration.
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Recognition scores of the Multi-head Self-Attention & BiLSTM model using only the final hidden states,
for all context labels
Label Support | Accuracy | Precision | Sensitivity | Specificity | F1l-score BA
Lying down 51682 0.895 0.824 0.838 0.920 0.831 0.879
Sitting 79368 0.779 0.740 0.814 0.747 0.776 0.781
Standing 22071 0.713 0.272 0.710 0.714 0.393 0.712
Walking 11715 0.822 0.253 0.808 0.823 0.386 0.815
Running 661 0.893 0.042 0.625 0.895 0.079 0.760
Bicycling 3504 0.915 0.320 0.862 0.917 0.467 0.889
Strolling 339 0.784 0.053 0.814 0.784 0.099 0.799
Stairs - Going up 399 0.849 0.029 0.642 0.850 0.056 0.746
Stairs - Going down 390 0.820 0.023 0.618 0.822 0.044 0.720
Elevator 123 0.808 0.012 0.854 0.808 0.024 0.831
Phone in pocket 14074 0.785 0.447 0.821 0.777 0.579 0.799
Phone in hand 7313 0.676 0.179 0.736 0.670 0.288 0.703
Phone in bag 5031 0.820 0.284 0.713 0.830 0.406 0.771
Phone on table 65979 0.815 0.906 0.827 0.784 0.865 0.806
In class 2852 0.847 0.229 0.711 0.855 0.346 0.783
Lab work 2898 0.803 0.351 0.933 0.787 0.510 0.860
Computer work 22536 0.765 0.380 0.763 0.765 0.507 0.764
In a meeting 2837 0.872 0.128 0.783 0.874 0.220 0.828
At home 80044 0.799 0.772 0.823 0.777 0.797 0.800
At school 25342 0.773 0.430 0.777 0.772 0.554 0.775
At main workplace 19235 0.848 0.582 0.863 0.844 0.695 0.854
At a restaurant 1275 0.888 0.095 0.773 0.889 0.169 0.831
At a bar 520 0.881 0.164 0.862 0.881 0.275 0.871
At a party 404 0.835 0.072 0.770 0.836 0.132 0.803
At the gym 897 0.826 0.097 0.632 0.832 0.168 0.732
At the beach 116 0.788 0.020 0.879 0.788 0.040 0.834
In a car 3550 0.903 0.246 0.872 0.904 0.384 0.888
On a bus 1179 0.847 0.067 0.882 0.846 0.125 0.864
Drive - Driver 4879 0.892 0.309 0.883 0.893 0.458 0.888
Drive - Passenger 1650 0.883 0.122 0.869 0.884 0.215 0.876
Shopping 809 0.803 0.039 0.786 0.803 0.074 0.795
Cooking 2212 0.841 0.079 0.734 0.843 0.142 0.789
Cleaning 1813 0.809 0.070 0.671 0.812 0.127 0.741
Doing laundry 471 0.814 0.028 0.594 0.816 0.053 0.705
Washing dishes 829 0.866 0.050 0.704 0.868 0.093 0.786
Bathing - Shower 1120 0.866 0.050 0.698 0.868 0.093 0.783
Toilet 1558 0.816 0.042 0.630 0.819 0.079 0.724
Grooming 1775 0.842 0.065 0.621 0.846 0.117 0.733
Dressing 1248 0.885 0.063 0.681 0.887 0.115 0.784
Sleeping 40869 0.909 0.799 0.860 0.926 0.828 0.893
Exercise 5191 0.900 0.232 0.759 0.905 0.355 0.832
Eating 9668 0.695 0.125 0.681 0.696 0.211 0.688
Drinking alcohol 859 0.884 0.133 0.820 0.885 0.229 0.852
Watching TV 8945 0.786 0.234 0.653 0.799 0.344 0.726
Surfing the internet 10668 0.686 0.167 0.514 0.706 0.252 0.610
Talking 18477 0.613 0.199 0.716 0.598 0.312 0.657
Singing 384 0.693 0.046 0.604 0.695 0.086 0.650
With co-workers 3972 0.746 0.167 0.756 0.746 0.274 0.751
With friends 12686 0.667 0.228 0.557 0.686 0.324 0.621
Indoors 102510 0.894 0.993 0.894 0.900 0.941 0.897
Outside 6793 0.887 0.410 0.892 0.886 0.562 0.889
Average 0.818 0.248 0.756 0.819 0.323 0.788

Table 5.19: Recognition scores reported for the Multi-head Self-Attention & BiLSTM model using the final
hidden states, for all context labels. Configuration with window_len = 5 and BiLSTM hidden_size = 64.
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Activity plot for user u40: ground-truth vs. Multi-head Self-Attention & BiLSTM_final_hidden_states predictions
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Figure 5.6.3: Activity plot including the predictions of the Multi-head Self-Attention
& BIiLSTM model using final hidden states for user u40
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Activity plot for user u45: ground-truth vs. Multi-head Self-Attention & BiLSTM_final_hidden_states predictions
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Figure 5.6.4: Activity plot including the predictions of the Multi-head Self-Attention
& BIiLSTM model using final hidden states for user u45
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Activity plot for user u49: ground-truth vs. Multi-head Self-Attention & BiLSTM_final_hidden_states predictions
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Figure 5.6.5: Activity plot including the predictions of the Multi-head Self-Attention
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5.6. Bidirectional LSTM with Attention

Activity plot for user u53: ground-truth vs. Multi-head Self-Attention & BiLSTM_final_hidden_states predictions
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Figure 5.6.6: Activity plot including the predictions of the Multi-head Self-Attention
& BIiLSTM model using final hidden states for user u53

153



Chapter 5. Experiments and Results

Activity plot for user u57: ground-truth vs. Multi-head Self-Attention & BiLSTM_final_hidden_states predictions
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Figure 5.6.7: Activity plot including the predictions of the Multi-head Self-Attention
& BIiLSTM model using final hidden states for user u57
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5.6. Bidirectional LSTM with Attention

5.6.2 BiLSTM using Output for all Timesteps followed by Features’ Cross-

Attention

In this experiment, we expand the model of Subsection 5.5.2 by adding a cross-attention module after the
BiLSTM. The full output of the BiLSTM, which contains the output features (h_t) from the last layer
of the BILSTM for all timesteps is used to produce the query Q in the cross-attention module, while the
input features, after being transposed, are used to produce both key K and value V in the cross-attention
module. The output of the cross-attention module is concatenated with the BiLSTM output and then they
pass through a Linear layer to predict the probabilities for each of the 51 context labels. This model is
conceptually presented in Figure 5.6.8, and the key points of this experiment are summarized as follows:

Five-fold cross validation is used, with each fold containing 48 users in the training set and 12 users in
the test set (using the same partition as the original work).

The training set of each CV iteration is further partitioned in a training subset and a validation subset,
as follows: for each of the 48 users of the training set, 80% of their data is used for training, and 20%
is used for validation, to decide which epoch’s checkpoint will be selected for the test inference.

We standardize each sensor feature (mean and standard deviation are calculated using the training
subset). After standardization, missing feature values are zero-imputated.

The model configuration includes a two-layer BiLSTM and a Multi-head Cross-Attention module,
followed by a Linear layer. The N-length examples sequence is given as input to the BiLSTM, whose full
output, which contains the output features (h_t) from the last layer of the BiLSTM for each timestep,
is then used to produce the query Q in the Cross-Attention module, while the input examples sequence,
after being transposed, is used to produce both key K and value V in the Cross-Attention module. The
attn_output of the Cross-Attention module is concatenated with the BILSTM output and then they
pass through a Linear layer of 51 nodes which correspond to the 51 context labels.

Regarding the BiILSTM, we use Dropout after the first layer, with dropout rate = 0.5 to help avoid
overfitting. In this model, we do not try to optimize the two hyperparameters, window_len and
hidden_size, as we did in previous experiments. Instead, we use the best configuration of these
hyperparameters, window_len = 5 and BiLSTM layers’ hidden_size = 64, as determined in our
previous experiments, to achieve performance comparable to them, and we mostly focus on visualizing
the Attention weights, to unveil and better understand the input features’ importance on our model’s
predictions.

Regarding the Cross-Attention, we use Multi-head Attention, with Scaled Dot-Product Attention in
each head. The hyperparameters num_heads = 2 and dropout rate = 0.5 were found to produce the
best results.

Regarding the loss, we again use the custom loss that was first described in Subsection 5.4.4, based
on torch.nn.BCEWithLogitsLoss. This loss is slightly modified to allow dynamic per-batch, per-
element masking in the loss matrices (to mask the loss elements corresponding to missing ground-truth
labels for each batch, and not use them in the loss computation). Also, the pos_weight is used for
instance-weighting to account for the imbalance in the number of positive examples per context label,
by multiplying the term of the positive examples in the loss, with the ratio of negative to positive
examples for this label in the training set.

We use a batch size of 32 to train the model.
We use the Adam optimizer to train the model, with learning rate = 0.00005.

In the testing phase, the continuous predictions of the model pass through a sigmoid activation function,
and then they are converted to binary outputs using a threshold of 0.5.

We calculate the evaluation metrics for each label over its non-missing ground-truth examples.

We use PyTorch to build the model, the supervisor and the training scripts. The torch.nn modules and
torch functions that are used, can be seen in detail in Figure 5.6.9.
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Figure 5.6.8: A two-layer BILSTM model followed by a Multi-head Cross-Attention module is presented
conceptually. An examples sequence of length w (window_len) is given as input, and the target is to
predict the context labels of the last example of the sequence. The output of the BILSTM is used to

produce the query Q, while the input features, after being transposed, are used to produce both key K and
value V in the Cross-Attention module. The attn_output is concatenated with the BiLSTM output and
then they pass through a Linear layer, followed by a sigmoid function to convert the model’s outputs to
labels’ probabilities.
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Figure 5.6.9: A two-layer BILSTM model followed by a Multi-head Cross-Attention module. A 5-length

examples sequence (window_len

5) is given as input to the two-layer BILSTM with hidden_size = 64

and dropout = 0.5. The output of the BILSTM (which contains the output features h_t from the last
layer of the BiLSTM for each timestep) is used to produce the query Q, while the input features, after being
transposed, are used to produce both key K and value V in the Cross-Attention module with num_heads

and dropout = 0.5. The attn_output is concatenated with the BILSTM output and then, after being
reshaped, they pass through an output Linear layer of 51 nodes corresponding to the 51 context labels. A
custom loss based on torch.nn.BCEWithLogitsLoss is used to account for missing labels information and
label weights in loss computation.

=2

averaged for each label subset

Recognition scores of the BILSTM model using all outputs & features’ Cross-Attention,

Label Accuracy Precision Sensitivity | Specificity F1l-score BA
Posture/Movement 0.817 0.390 0.799 0.813 0.469 0.806
Special Movement 0.795 0.028 0.748 0.796 0.053 0.772
Phone Location 0.756 0.440 0.766 0.755 0.515 0.761
Work-related 0.803 0.259 0.819 0.800 0.380 0.809
Location-based 0.817 0.272 0.809 0.815 0.341 0.812
Transportation 0.861 0.166 0.881 0.861 0.267 0.871
Chores 0.799 0.049 0.766 0.799 0.092 0.783
Self-care 0.845 0.199 0.692 0.850 0.238 0.771
Leisure Time 0.729 0.144 0.669 0.731 0.231 0.700
Companion 0.715 0.197 0.617 0.728 0.293 0.672
Environment 0.885 0.695 0.891 0.889 0.744 0.890
Average 0.800 0.238 0.767 0.801 0.309 0.784

Table 5.20: Recognition scores reported for the BILSTM model using all outputs & features’ Multi-head
Cross-Attention, averaged for each label subset. Model configuration with window_len = 5 and BiLSTM
hidden_size = 64. Five-fold cross validation with 48 users in the training set and 12 users in the test set

for each iteration.
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Recognition scores of the BILSTM model using all outputs & features’ Cross-Attention,
for all context labels

Label Support | Accuracy | Precision | Sensitivity | Specificity | F1l-score BA
Lying down 51682 0.899 0.833 0.844 0.924 0.838 0.884
Sitting 79368 0.782 0.740 0.827 0.742 0.781 0.785
Standing 22071 0.677 0.249 0.730 0.669 0.371 0.700
Walking 11715 0.803 0.236 0.825 0.801 0.367 0.813
Running 661 0.864 0.036 0.675 0.866 0.068 0.770
Bicycling 3504 0.878 0.247 0.892 0.877 0.387 0.884
Strolling 339 0.787 0.052 0.796 0.787 0.098 0.792
Stairs - Going up 399 0.820 0.026 0.692 0.821 0.051 0.756
Stairs - Going down 390 0.793 0.022 0.692 0.794 0.043 0.743
Elevator 123 0.782 0.010 0.813 0.781 0.020 0.797
Phone in pocket 14074 0.768 0.426 0.833 0.753 0.564 0.793
Phone in hand 7313 0.671 0.177 0.739 0.665 0.286 0.702
Phone in bag 5031 0.789 0.246 0.697 0.797 0.363 0.747
Phone on table 65979 0.797 0.911 0.794 0.805 0.849 0.800
In class 2852 0.834 0.221 0.759 0.838 0.342 0.798
Lab work 2898 0.783 0.326 0.914 0.766 0.480 0.840
Computer work 22536 0.769 0.386 0.772 0.768 0.515 0.770
In a meeting 2837 0.827 0.102 0.830 0.827 0.181 0.828
At home 80044 0.799 0.778 0.813 0.786 0.795 0.800
At school 25342 0.782 0.442 0.769 0.785 0.561 0.777
At main workplace 19235 0.842 0.571 0.857 0.838 0.685 0.847
At a restaurant 1275 0.849 0.078 0.858 0.848 0.144 0.853
At a bar 520 0.859 0.140 0.848 0.859 0.240 0.854
At a party 404 0.786 0.065 0.906 0.784 0.121 0.845
At the gym 897 0.785 0.079 0.635 0.789 0.141 0.712
At the beach 116 0.831 0.023 0.784 0.831 0.044 0.808
In a car 3550 0.876 0.202 0.874 0.876 0.328 0.875
On a bus 1179 0.833 0.063 0.892 0.832 0.117 0.862
Drive - Driver 4879 0.889 0.301 0.871 0.890 0.447 0.880
Drive - Passenger 1650 0.847 0.097 0.886 0.846 0.175 0.866
Shopping 809 0.784 0.039 0.865 0.783 0.075 0.824
Cooking 2212 0.799 0.067 0.785 0.800 0.123 0.792
Cleaning 1813 0.796 0.069 0.712 0.797 0.126 0.755
Doing laundry 471 0.783 0.027 0.673 0.784 0.051 0.728
Washing dishes 829 0.833 0.045 0.796 0.834 0.085 0.815
Bathing - Shower 1120 0.839 0.037 0.604 0.841 0.069 0.723
Toilet 1558 0.793 0.037 0.628 0.795 0.071 0.711
Grooming 1775 0.823 0.059 0.640 0.826 0.109 0.733
Dressing 1248 0.855 0.052 0.705 0.857 0.096 0.781
Sleeping 40869 0.917 0.812 0.881 0.930 0.845 0.905
Exercise 5191 0.852 0.169 0.785 0.854 0.278 0.820
Eating 9668 0.651 0.117 0.732 0.646 0.201 0.689
Drinking alcohol 859 0.824 0.091 0.816 0.825 0.164 0.820
Watching TV 8945 0.771 0.230 0.707 0.777 0.347 0.742
Surfing the internet 10668 0.688 0.164 0.495 0.710 0.246 0.602
Talking 18477 0.622 0.204 0.722 0.608 0.319 0.665
Singing 384 0.693 0.034 0.427 0.699 0.062 0.563
With co-workers 3972 0.745 0.155 0.680 0.750 0.253 0.715
With friends 12686 0.684 0.238 0.553 0.705 0.333 0.629
Indoors 102510 0.890 0.993 0.889 0.899 0.938 0.894
Outside 6793 0.881 0.397 0.893 0.880 0.550 0.887
Average 0.800 0.238 0.767 0.801 0.309 0.784

Table 5.21: Recognition scores reported for the BiILSTM using all outputs & features’ Multi-head
Cross-Attention, for all context labels. Configuration with window_len = 5 & BiLSTM hidden_size = 64.
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5.6. Bidirectional LSTM with Attention

Activity plot for user u40: ground-truth vs. BILSTM & features' Multi-head Cross-Attention predictions
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Figure 5.6.10: Activity plot including the predictions of the BiLSTM model using all outputs
& features’ Multi-head Cross-Attention for user u40
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Activity plot for user u45: ground-truth vs. BILSTM & features' Multi-head Cross-Attention predictions
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Figure 5.6.11: Activity plot including the predictions of the BILSTM model using all outputs
& features’ Multi-head Cross-Attention for user u4b
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Activity plot for user u49: ground-truth vs. BiLSTM & features' Multi-head Cross-Attention predictions
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Figure 5.6.12: Activity plot including the predictions of the BILSTM model using all outputs
& features’ Multi-head Cross-Attention for user u49

161



Chapter 5. Experiments and Results

Outside

Indoors

With co-workers
Talking

Surfing the internet
Watching TV
Drinking alcohol
Eating

Exercise

Sleeping
Dressing
Grooming

Toilet

Bathing - Shower
Washing dishes
Doing laundry
Cleaning

Cooking
Shopping

Drive - Passenger
Drive - Driver

On a bus

Inacar

At a restaurant
At main workplace
At home

In a meeting
Computer work
Phone on table
Phone in bag
Phone in hand
Phone in pocket
Elevator

Stairs - Going down
Stairs - Going up
Running

Walking

Standing

Sitting

Lying down

Activity plot for user u53: ground-truth vs. BiLSTM & features' Multi-head Cross-Attention predictions

|ground-truth: WEE positive " negative  predicted: WM positive  negative
EE =TT I 1
IINNE DS (D 0 . | N
— T T s
- T m Y| = T o e ]
ST ST [ S e
SET I (S—_i IR A e — TR T
N R TR [ ]
| ST & ==
= == ;
L T CIR TR N S v -
R | - L e e e S o e -
[SETTRRSTR—Y | RS IR T R SR S S SSES W
RS I—T - TR W R e
- e Sl W S S
| OESES S =
- s S W= S
| e B O s
S T W S ]
——— - w
BEE- E-F W S = ==mmiEs
HEE---———— | o mEEE i EE
e, i b R — B WDl
ai-g— ] R H DN IO
=TT TR b | ] (WNIT T R vl ) L =13 B! v W8l =
Sun Mon Tue
9:00 AM 9:00 AM 9:00 AM
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Figure 5.6.14: Activity plot including the predictions of the BiLSTM model using all outputs
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For the model configuration with window_len = 5 and BiLSTM layers’ hidden_size = 64, we present the
detailed model architecture in Figure 5.6.9, and the recognition scores for all context labels in Table 5.21
and averaged over the labels of each label subset in Table 5.20. Compared to the previous BiLSTM and Self-
Attention & BiLSTM models, this model has comparable or a little worse performance, as it can be observed
from the averaged recognition scores. More specifically, compared to the previous Self-Attention & BiLSTM
using final hidden states only (Subsection 5.6.1), the BiLSTM using all outputs & features’ Cross-Attention
has slightly worse performance regarding all metrics (a BA of 0.784 compared to the respective best BA of
0.788 of the Self-Attention & BiLSTM model), except for Sensitivity, which is 0.767, where we notice an
improvement compared to the 0.756 value of the previous model. Overall, taking into consideration that the
BiLSTM & features’ Cross-Attention model has the highest Sensitivity and the lowest Specificity among all
BiLSTM and Attention & BiLSTM models that were implemented, we can conclude that on average this
model produces the less False Negatives and the most False Positives so far.

5.6.3 Visualizing Cross-Attention Weights for Interpretability

The BiLSTM & features’ Cross-Attention model of Subsection 5.6.2 is included in this thesis not only for
its performance regarding Sensitivity, but also and mainly as a study on Neural Network Interpretability.
Similarly to [CR19; Che+20], we visualize the weights of the Cross-Attention module between the BiLSTM
output for all timesteps and the features of the input examples sequence, to investigate whether they can
provide useful insights about which features are more impactful in the model’s predictions for various labels,
and also whether these predictions are meaningful or if the model is misdirected by false correlations between
input features and context labels.

During inference time, for each input example sequence, we save the attn_output_weights of the Cross-
Attention module after converting the Tensor to a NumPy array. We plot examples of Cross-Attention
weights and try to understand the model’s predictions. In the following plots of Cross-Attention weights, the
x-axis corresponds to the 175 input features of the core sensors (Ace, Gyro, WAcce, Loc & Loc QF, Aud, PS)
which are locally grouped by sensor. The y-axis corresponds to the 5 BILSTM output timesteps (the current
minute and the previous four minutes). Darker color corresponds to larger weights, which indicate that the
specific feature probably plays a more important role in the prediction.

Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u00 at minute-precision timestamp 24071356
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Figure 5.6.15: Attention weights of the BiILSTM & features’ Cross-Attention model for u00 and t24071356
Ground-truth labels: Sitting, Indoors, At home, Watching TV, Eating, Phone on table
Predicted labels: Sitting, Indoors, At home, Watching TV, Surfing the internet, Talking,

Eating, Phone on table, With friends

In Figure 5.6.15, we visualize the Attention weights for the example of user u00 and minute-precision
timestamp 24071356. We observe that the features that seem most important are the MFCC mean values,
and also the time-entropy magnitude statistic (entropy calculated from normalizing the magnitude signal
and treating it as a probability distribution, which is designed to detect peakiness in time—sudden bursts of
magnitude) from the smartphone gyroscope signal, the value-entropy magnitude statistic (entropy calculated
from a histogram of quantization of the magnitude values to 20 bins) and the ro_yz 3D feature (y-z inter-
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axis correlation coefficient) from the watch accelerometer signal. The importance on the specific watch
accelerometer features can explain the recognition of “Eating”, and also might lead to the false prediction of
“Surfing the internet” which might include some similar hand movements. “Sitting”, “Watching TV”, “Surfing
the internet”, “Eating”, and “Phone on table” all might possibly share the characteristic of phone immobility,
and that may be why they are all predicted at the same time, given the importance to the time-entropy
smartphone gyroscope magnitude feature. Also, the MFCC mean values are indicative of the sound levels
and characteristics, since they capture the shape of the power spectrum of the received sound signal, and
are useful to predict “Watching TV”, which might could be confused with “Talking” and “With friends” that
could be assigned in environments with similar sounds.

Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u01 at minute-precision timestamp 24171661
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Figure 5.6.16: Attention weights of the BILSTM & features’ Cross-Attention model for u01 and t24171661
Ground-truth labels: Sitting, Indoors, At home
Predicted labels: Indoors, Toilet, Phone on table

In Figure 5.6.16, we visualize the Attention weights for the example of user u0l and minute-precision
timestamp 24171661. We observe that a lot of features have comparatively large attention weights, but
the most prevalent ones are two: the log diameter location feature (log of the maximum distance between
two locations in the recording session) and the reachable Wi-Fi phone state feature. The “Indoors” context
label is predicted correctly, while our model also predicts “Toilet” and “Phone on table” instead of “Sitting”
and “At home”. “Sitting” and “Toilet” are pretty much alike and the feature importance of the aforementioned
two features is justifiable, since they are activities that involve no movement (the same goes for the “Phone
on table” label), and also are usually combined with being in Wi-Fi reach. However it remains unclear why
the “At home” label was not predicted alongside “Indoors” and “Toilet”.

Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u04 at minute-precision timestamp 24010960
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Figure 5.6.17: Attention weights of the BiILSTM & features’ Cross-Attention model for u04 and t24010960
Ground-truth labels: Sitting, Indoors, At home, Computer work, Phone on table
Predicted labels: Sitting, Indoors, At home, Surfing the internet, Computer work, Eating, Phone on table
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In Figure 5.6.17, we visualize the Attention weights for the example of user u04 and minute-precision
timestamp 24010960. The features which appear more prevalent in the plot come from the smartphone
gyroscope, and include the value-entropy magnitude statistic, the band4 log energy feature of the magnitude
spectrum, and the ro_xz 3D feature (x-z inter-axis correlation coefficient). Supposing the phone is placed on
a table, as denoted by the respective ground-truth label “Phone on table”, it probably remains still, so these
features have large weights to indicate the immobility and the orientation of the phone. However correctly
predicted labels such as “Sitting” and “Computer work” cannot be directly predicted from the phone position
since the phone does not participate in any way in these activities, but there might be a correlation between
phone placement and activity, e.g., the phone is usually placed on the table, flat and still, during “Computer
work”. Moreover, some of the correctly predicted labels, as well as the falsely predicted labels “Surfing the
internet” and “Eating” might be indicated also by the MFCC std features that appear with light blue in the
plot (the right half of the features denoted as “Audio”), which express the standard deviation of each MFCC
feature over time.

Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u04 at minute-precision timestamp 24011100
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Figure 5.6.18: Attention weights of the BILSTM & features’ Cross-Attention model for u04 and t24011100
Ground-truth labels: Sitting, Indoors, At home
Predicted labels: Sitting, At main workplace, Indoors, At home, Cooking, Bathing - Shower, Washing
dishes, Surfing the internet, Computer work, Eating, Toilet, Grooming, Standing, Phone on table

In Figure 5.6.18, we visualize the Attention weights for the example of user u04 and minute-precision
timestamp 24011100. We observe that the features with the largest attention weights are again the
smartphone’s gyroscope value-entropy magnitude statistic and band4 log energy feature of the magnitude
spectrum, and the MFCC std features, and also the ro xz 3D feature (x-z inter-axis correlation coefficient)
from the watch accelerometer signal and two phone state features regarding app state and ringer mode. In this
example we notice the paradox of being annotated by three, very generic labels, “Sitting”, “Indoors”, “At home”,
while the set of predicted labels is a superset of the predicted ones, also including other more or less possible
labels. Some predictions, such as “At main workplace”, “Bathing - Shower” and “Standing” are completely
odd, since they contradict other predictions, such as “At home” and “Sitting”, but this probably happens
because we do not use any constraints on joint context label predictions and there might be correlations of
specific features with labels contradictory to each other.

Overall, out of the set of predicted labels, excluding the ground-truth labels, all of which are correctly
predicted, some labels are absurd and wrongly predicted, such as the aforementioned “At main workplace”,
“Bathing - Shower” and “Standing” which are contradictory to the ground-truth labels, while some other
predicted labels could also be labels for activities that actually took place then, but were unintentionally
omitted by the user in the annotation process, such as “Cooking”, “Surfing the internet”, “Computer work”,
“Eating” or “Toilet”. These predicted features are not contradictory to the ground-truth labels, and there
is a possibility that the user performed some of them but forgot to use the corresponding label in the app.
This possibility is strengthened when we observe the attention weights, where the large weight of the watch
accelerometer’s ro_xz 3D feature attributes some importance in arm movement, compatible with some of
the aforementioned labels.
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Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u06 at mlnute precision timestamp 24050912
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Figure 5.6.19: Attention weights of the BILSTM & features’ Cross-Attention model for u06 and 24050912
Ground-truth labels: Sitting, Indoors, At home, Talking, At school, Phone in hand
Predicted labels: Sitting, In class, In a meeting, At main workplace, Indoors, Phone in pocket, Singing,
Talking, Eating, At school, Phone in hand, With co-workers, With friends

In Figure 5.6.19, we visualize the Attention weights for the example of user u06 and minute-precision
timestamp 24050912. As we can see, in this example there is an error in the ground-truth labels, since “At
home” and “At school” are both used by the user in the annotation process. Similar errors are common in the
dataset, and hinder both model training when located in the training set and model evaluation when located
in the test set. Regarding features’ importance, we observe that a lot of features have comparatively large
attention weights, but the most prevalent ones are: the value-entropy magnitude stat of the smartphone
accelerometer, the value-entropy and the time-entropy magnitude stats of the smartphone gyroscope, the
ro_xy and ro_yz 3D features as well as the bandl and band2 log energy of the y-axis signal spectrum of
the watch accelerometer, and the MFCC mean features. Labels “Sitting”, “Indoors”, “Talking”, “At school”,
“Phone in hand” are correctly predicted. More relevant or not so relevant labels are wrongly predicted, such
as “In class”, “In a meeting”, “With co-workers” and “With friends” that might be predicted because of the
MFCC features which capture voices talking, while other labels such as “Eating” might be resulting from hand
movement or relevant sounds. Some of the wrongly predicted labels might have been actually unintentionally
omitted by the user during annotation, while others, like “Singing”, are most probably irrelevant.

Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u06 at minute-precision timestamp 24052061
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Figure 5.6.20: Attention weights of the BILSTM & features’ Cross-Attention model for u06 and 24052061
Ground-truth labels: Sitting, Eating, At school, Phone on table
Predicted labels: Sitting, Indoors, Watching TV, Surfing the internet, Talking, Eating, At school, Phone in
hand

In Figure 5.6.20, we visualize the Attention weights for the example of user u06 and minute-precision
timestamp 24052061. The features with the largest attention weights are the mean value of the x-axis signal
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of the watch accelerometer, and the mean value of the second, fourth and eleventh MFCC. The ground-truth
labels “Sitting”, “Eating” and “At school” are predicted by our model, while “Watching TV” and “Talking”
are wrongly predicted and might be attributed to relevant sounds captured by the MFCCs, and “Surfing the
internet” and “Phone in hand” are also wrongly predicted and might be attributed to relevant arm or hand
movement. However, again, it is unclear whether the wrongly predicted labels are actually wrong or were
omitted or wrongly labeled by the user.

Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u06 at minute-precision timestamp 24057077
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Figure 5.6.21: Attention weights of the BILSTM & features’ Cross-Attention model for u06 and t24057077
Ground-truth labels: Lying down, Sleeping, Indoors, At home, Phone on table
Predicted labels: Lying down, Sleeping, Indoors, At home, Phone on table

In Figure 5.6.21, we visualize the Attention weights for the example of user u06 and minute-precision
timestamp 24057077. In this example, we have a rare case of perfect prediction accuracy, since all the
true labels were predicted, and also no false labels were predicted for the specific example. We can see
that the most prevalent features are the ro_xy 3D feature of the smartphone gyroscope, the time-entropy
magnitude stat and the mean value of the z-axis signal of the watch accelerometer, and the mean value of
the second, fourth, tenth, eleventh and twelfth MFCC. These features can justify body immobility, phone
placement and also at home and sleeping conditions (probably low noise conditions). We should also note
that, as we have also seen in the recognition scores’ tables for our experiments, for our models it is easier
to correctly predict sleeping and sleeping conditions than most other labels, since the sleeping body state is
very typical (very low or no movement) and has low variation for a user or between users, compared to most
other activity and context labels.

Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u08 at minute-precision timestamp 24050153
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Figure 5.6.22: Attention weights of the BiLSTM & features’ Cross-Attention model for u08 and t24050153
Ground-truth labels: Lying down, Sleeping, Indoors, At home, Phone on table
Predicted labels: Lying down, Sleeping, Indoors, At home, Bathing - Shower, Washing dishes, Toilet,
Grooming, Dressing, Phone on table
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In Figure 5.6.22, we visualize the Attention weights for the example of user u08 and minute-precision
timestamp 24050153. This example has the same ground-truth labels as the previous one, centered around
sleep, namely “Lying down”, “Sleeping”, “Indoors”, “At home” and “Phone on table”, but in the predicted
labels, we notice that although all ground-truth labels are correctly predicted, there are also other labels,
which are wrongly predicted. These labels are: “Bathing - Shower”, “Washing dishes”, “Toilet”, “Grooming”,
“Dressing”. We also notice that the features that are shown to be given the higher importance by the model
are: the ro_xy 3D feature of the watch accelerometer, and the std of MFCCO0, while more MFCC std features
also have relatively large attention weights. As most wrongly predicted labels potentially include running
water, a hypothesis is that a background noise of such type could maybe lead to the false prediction of those
labels. Other than that, it is difficult to imagine what type of arm or hand movement would be suited to a
person sleeping and also to a person bathing, washing dishes or grooming, to explain the additional, wrongly
predicted labels.

Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user ull at minute-precision timestamp 24030543
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Figure 5.6.23: Attention weights of the BILSTM & features’ Cross-Attention model for ull and 24030543
Ground-truth labels: Sitting, Lab work, Computer work, At school
Predicted labels: Sitting, Lab work, In class, At main workspace, Indoors, Surfing the internet, Computer
work, At school, Phone on table

In Figure 5.6.23, we visualize the Attention weights for the example of user ull and minute-precision
timestamp 24030543. We observe that the features that are given the largest attention weights include
the watch accelerometer’s time-entropy magnitude stat and the mean value of the tenth, eleventh and twelfth
MFCC. All ground-truth labels, namely “Sitting”, “Lab work”, “Computer work” and “At school” are correctly
predicted, and also some other labels are predicted, including “In class”, “At main workspace”, “Indoors”,
“Surfing the internet”, “Phone on table”. Once again, the additional, wrongly predicted labels are somewhat
conceptually related to the ground-truth ones, and it is unclear whether some of them were unintentionally
omitted during the annotation process. We should also notice that after also cross-checking other examples
with the ground-truth label “Lab work”, it was observed that in many cases with this label existent, the mean
value of the tenth, eleventh and twelfth MFCC features were attributed large attention weights, probably
meaning that “Lab work” at least for this dataset’s users, in many cases is associated with specific sounds
which are recognized by our model.

In Figure 5.6.24, we visualize the Attention weights for the example of user ull and minute-precision
timestamp 24031660. This is a typical example of transportation by car. The ground-truth labels are
“Sitting” and “In a car” and they are correctly predicted by our model, along with other labels which are
wrongly predicted, some of which are directly related to transportation, like “On a bus”, “Drive - Driver” and
“Drive - Passenger”, while others seem irrelevant, like “At a party” or “At the beach”. As expected, the most
prevalent features regarding the attention weight values, come from the location sensor, and include the log
of latitude range, the log of longitude range and the diameter (maximum distance between two locations
in the recording session, in meters), and also the mean value of MFCC1. The location features that have
large attention weights, are indicative of the means of transportation, and have discriminative power since
the latitude range, longitude range and diameter of an example is substantially different when the user is
on a moving car or bus, compared to being on foot. However, we see that the model does not seem to
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Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user ull at minute-precision timestamp 24031660
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Figure 5.6.24: Attention weights of the BILSTM & features’ Cross-Attention model for ull and t24031660
Ground-truth labels: Sitting, In a car
Predicted labels: Sitting, Outside, In a car, On a bus, Drive - Driver, Drive - Passenger, Phone in pocket,
Shopping, At a party, At the beach, Phone in hand, Phone in bag, With friends

be able to discriminate between “In a car” and “On a bus”, and also between “Drive - Driver” and “Drive -
Passenger”, and all those labels are predicted at the same time. In addition, the phone position, which is
not included in the ground-truth labels, is predicted with three labels at the same time, namely “Phone in
pocket”, “Phone in hand”, “Phone in bag”, out of which one might be correct, but we cannot know. Also, the
MFFC1 mean value feature attributes importance to the background sounds, e.g., the car radio might be on,
and that might be the reason other labels which potentially include music are predicted, like “Shopping”, “At
a party”, “At the beach”. However, since these activities are perfomed when not being in a moving vehicle,
they should not have been predicted. Finally, the label “With friends” could be an actual label that was
omitted during annotation, or might be wrongly predicted due to talking or other speech or singing sounds
in the background.

Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u21 at minute-precision timestamp 24158935
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Figure 5.6.25: Attention weights of the BILSTM & features’ Cross-Attention model for u21 and 24158935
Ground-truth labels: Walking, Outside, Talking, With friends
Predicted labels: Sitting, Walking, In class, In a meeting, Outside, Phone in pocket, Talking, Fating,
Standing, At school, Phone in hand, With co-workers, With friends

In Figure 5.6.25, we visualize the Attention weights for the example of user u21 and minute-precision
timestamp 24158935. The most prevalent feature is the mean value of the y-axis signal of the smartphone
accelerometer, which can explain correctly predicting the ground-truth “Walking” label. The remaining
ground-truth labels, “Outside”, “Talking” and “With friends” are also predicted by our models, although there
are no large attention weights in the sound-related features, namely the MFCC. We also see that many other
irrelevant labels are wrongly predicted, such as “Sitting” and “Standing” which contradict “Walking”, and also
“In class” and “In a meeting” which contradict “Outside”. In this case the model does not focus in meaningful
features for the specific example’s context, leading in odd and irrelevant additional predictions.
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Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u25 at minute-precision timestamp 24107302
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Figure 5.6.26: Attention weights of the BILSTM & features’ Cross-Attention model for u25 and t24107302
Ground-truth labels: Sitting, Drive - Driver, Phone on table
Predicted labels: Sitting, Outside, In a car, On a bus, Drive - Driver, Drive - Passenger, At a restaurant,
Drinking alcohol, At a party, At a bar, Phone in hand, Phone in bag, With friends

Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u25 at minute-precision timestamp 24107309
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Figure 5.6.27: Attention weights of the BILSTM & features’ Cross-Attention model for u25 and t24107309
Ground-truth labels: Sitting, Drive - Driver, Phone on table
Predicted labels: Sitting, Outside, In a car, On a bus, Drive - Driver, Drive - Passenger, Phone in hand,
Phone in bag, With friends

In Figure 5.6.26 and Figure 5.6.27, we visualize the Attention weights for the examples of user u25 and
minute-precision timestamps 24107302 and 24107309, respectively. In essence, these two examples are seven
minutes apart, and capture the same activity, driving, based on the same ground-truth labels “Sitting”, “Drive
- Driver”, “Phone on table” of the two examples. The two examples also share a common subset of predicted
labels, including “Sitting”, “Outside”, “In a car”, “On a bus”, “Drive - Driver”, “Drive - Passenger”, “Phone
in hand”, “Phone in bag” and “With friends”. As previously mentioned in the commentary of Figure 5.6.24,
in these cases the model mainly focuses on features from the location sensor, which can indicate being in a
moving vehicle, but these features are not so useful to discriminate between “In a car” and “On a bus”, and
also between “Drive - Driver” and “Drive - Passenger”. In Figures 5.6.26 and 5.6.27 the main focus is on the
latitude change (latitude last value minus first value of the minute’s recording session) location quick feature.

When comparing the two plots, we also notice a slight difference regarding the MFCC weights. It seems
that in Figure 5.6.26, the model pays more attention to some MFCC mean features, compared to Figure
5.6.27, which might explain why in the first case, the model also predicts labels such as “At a restaurant”,
“Drinking alcohol”, “At a party” and “At a bar”. However, the difference in the attention weights is small, so
our assumptions are uncertain and inconclusive.
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Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u26 at minute-precision timestamp 24024747
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Figure 5.6.28: Attention weights of the BiILSTM & features’ Cross-Attention model for u26 and t24024747
Ground-truth labels: Bicycling, Exercise
Predicted labels: Walking, Running, Bicycling, Outside, On a bus, Phone in pocket, Exercise, Shopping,
Strolling, Singing, At the gym, Stairs - Going up, Elevator, Phone in bag

In Figure 5.6.28, we visualize the Attention weights for the example of user u26 and minute-
precision timestamp 24024747. We observe that the feature with the largest attention weight is
the avr_cosine_similarity_lag_rangeO relative-direction feature of the watch accelerometer, which is
calculated as follows: first the cosine-similarity between the acceleration directions of any two time points
in the time series is calculated (value of 1 meaning same direction, value of -1 meaning opposite directions
and value of 0 meaning orthogonal directions) and then the cosine similarity values in the 0-0.5sec range
of time-lag between the compared time points are averaged. After cross-checking other examples with the
ground-truth label “Bicycling”, we observe that it is common for the model to attribute large attention
weights to the specific feature, which is related to rapid changes in watch orientation. We notice that the
avr_cosine_similarity_lag_rangel relative-direction feature of the watch accelerometer (averaging cosine
similarity values in the 0.5-1sec range of time-lag between the compared time points) is also given relatively
large attention weight. However, although all ground-truth labels, namely “Bicycling” and “Exercise”, are
predicted, the model also predicts a lot of other labels. Some of them are contextually relevant, such as
“At the gym”, while others are wrongly predicted, such as “Running”, “Shopping”, “Strolling” and “Elevator”,
which include different types of movement.

Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u42 at minute-precision timestamp 24153358
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Figure 5.6.29: Attention weights of the BILSTM & features’ Cross-Attention model for u42 and t24153358
Ground-truth labels: Sitting, Drive - Driver
Predicted labels: Sitting, Outside, In a car, On a bus, Drive - Driver, Drive - Passenger, Shopping, At a
party, Phone in bag, With friends
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In Figure 5.6.29, we visualize the Attention weights for the example of user u42 and minute-precision
timestamp 24153358. This is another case of being in a moving vehicle and driving, and the largest attention
weights are given to features of the location sensor: log of latitude range, log of longitude range, and diameter.
The features with the largest attention weights as well as the predictions and prediction errors of the model
are similar to the ones of the example of Figure 5.6.24, although in the current example, we can see that less
attention is paid to the MFCC1 mean feature.

Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u45 at minute-precision timestamp 24151983
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Figure 5.6.30: Attention weights of the BILSTM & features’ Cross-Attention model for u42 and t24151983
Ground-truth labels: Sitting, Indoors, At home, Watching TV, Talking, Phone on table
Predicted labels: Sitting, Indoors, At home, Watching TV, Talking, Eating, Phone on table, With friends

In Figure 5.6.30, we visualize the Attention weights for the example of user u45 and minute-precision
timestamp 24151983. The most prevalent features are the mean values of the fourth, fifth and sixth MFCC.
The model predicts all ground-truth labels: “Sitting”, “Indoors”, “At home”, “Watching TV”, “Talking” and
“Phone on table”, and also two other relevant labels, “Eating” and “With friends”.

Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u53 at minute-precision timestamp 24057460
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Figure 5.6.31: Attention weights of the BiILSTM & features’ Cross-Attention model for u53 and 24057460
Ground-truth labels: Indoors, At home, Grooming, Dressing, Standing
Predicted labels: Indoors, At home, Cooking, Bathing - Shower, Cleaning, Doing laundry, Washing dishes,
Toilet, Grooming, Dressing, Standing, Phone on table

In Figure 5.6.31, we visualize the Attention weights for the example of user ub53 and minute-precision
timestamp 24057460. In this example centered on self-care, the features with the largest attention weights
are: the mean of the x-axis signal, the mean of the y-axis signal and the ro_xy 3D feature of the smartphone’s
accelerometer, the mean of the z-axis signal of the watch accelerometer, and the mean of MFCCO. The model
predicts all ground-truth labels, “Indoors”, “At home”, “Grooming”, “Dressing” and “Standing”. However,
the model also wrongly predicts many more labels for house activities with similar movements, including

YRS 2 W

“Cooking”, “Bathing - Shower”, “Cleaning”, “Doing laundry” and “Washing dishes”.
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Attention weights of the BiLSTM & features' Multi-head Cross-Attention model
for the example of user u57 at minute-precision timestamp 24144110
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Figure 5.6.32: Attention weights of the BILSTM & features’ Cross-Attention model for u57 and t24144110
Ground-truth labels: Running, Indoors, Exercise, At the gym, Phone on table
Predicted labels: Walking, Running, Bicycling, Outside, Phone in pocket, Exercise, Shopping, Strolling,
Doing laundry, At the beach, Singing, Stairs - Going up, Stairs - Going down, Elevator, Phone in hand,
With friends

In Figure 5.6.32, we visualize the Attention weights for the example of user ub57 and minute-
precision timestamp 24144110. This is a rare example where only a few features have considerable
attention weights, and the model focuses mainly on the 75th percentile magnitude stat and the
avr_cosine_similarity_lag_range0 relative-direction feature of the watch accelerometer. The model
correctly predicts only two ground-truth labels, “Running” and “Exercise”, and also predicts over ten wrong
labels, some of which, such as “Outside”, “At the beach” and “Phone in hand”, directly contradict the ground-
truth labels. When paying attention to only a very small subset of the input features, the model is not able
to make sound decisions regarding activity and context labels, and as it can be seen in this example, most
labels reflecting physical activity are predicted.

5.6.4 Other Model Architectures

In our efforts to integrate a Self-Attention or Cross-Attention module in the BiLSTM model to improve its
performance, except for the aforementioned successful experiments including either a Self-Attention module
preceding the BiLSTM whose final hidden states are used in the output Linear layer (Subsection 5.6.1), or a
BiLSTM whose full output for all timesteps is used to produce the query in the Cross-Attention module that
follows, with the input features used to produce key and value (Subsection 5.6.2), we have also tried other
model architectures. They can be summarized as follows:

e Including a Self-Attention module preceding the BiLSTM whose full output for all timesteps is used in
the output Linear layer.

e Including a Cross-Attention module following the BiLSTM, whose full output for all timesteps is used
to produce the query in the Cross-Attention, while the model’s input sequence is used to produce key
and value, and the Attention’s output is fed to the output Linear layer.

e Including a Cross-Attention module following the BiLSTM, whose full output for all timesteps is used
to produce the query in the Cross-Attention, while the model’s input sequence is used to produce key
and value, and the Attention’s output is fed to another BILSTM and its output is fed to the output
Linear layer.

e Including a Cross-Attention module following the BiLSTM, where the final hidden states of the BILSTM
are used to produce the query in the Cross-Attention, and the full output for all timesteps of the BILSTM
is used to produce key and value, and the Attention’s output is fed to the output Linear layer.

According to our experiments, after training and evaluating these models, and experimenting with different
hyperparameter values, the performance of these models on the ExtraSensory dataset, using five-fold cross

174



5.7. Deep Learning Feature Extraction using Raw Sensor Measurements

validation as in all our previous experiments, was similar to or worse than the performance of the simple
BiLSTM models of Section 5.5, based on the recognition metrics. Thus, for reasons of brevity and simplicity,
we won’t provide more information or detailed tables of results regarding these models.

5.7 Deep Learning Feature Extraction using Raw Sensor
Measurements

In all our previous experiments, we have used the pre-computed sensor features provided in the ExtraSensory
dataset. In this Section, we attempt to leverage information directly from the collected sensor signals, by
using Deep Learning models to extract meaningful representations of them, instead of using the hand-crafted
features, as we did previously. In these experiments we again use the aforementioned “Core” subset of the
dataset, which includes all examples that have measurements from all six core sensors (Acc, Gyro, WAce,
Loc & Loc QF, Aud, PS), totaling 169,001 examples. More specifically, instead of using the 175 hand-crafted
features as we did in our previous experiments, we now use:

e The hand-crafted features for Loc & Loc QF (17 features) for privacy reasons, and also because there
is no standard or obvious way to handle Location map coordinates as input to a neural network

e The hand-crafted features for PS (34 features) since the Phone State sensors have a single measurement
for each example by nature, and the hand-crafted one-hot feature vectors are the intuitive way to use
them

e The raw sensor signal for Acc, which is a time series of 3-axis vectors of acceleration along the standard
axes of the smartphone, which is sampled at 40Hz during the 20sec recording window of each minute,
producing a time series of approximately 800 time points

e The calibrated signal for Gyro, which is a time series of 3-axis vectors of rotation rate around each of
the phone’s standard axes, which is sampled at 40Hz during the 20sec recording window of each minute,
producing a time series of approximately 800 time points (the calibrated version of the gyroscope signal,
in which the estimated drift effects have been removed, is provided in the dataset)

e The raw sensor signal for WAcc, which is a time series of 3-axis vectors of acceleration along the
standard axes of the smartwatch, which is sampled at 25Hz during the 20sec recording window of each
minute, producing a time series of approximately 500 time points

e The MFCCs for audio (which was recorded at 22,050Hz), which are calculated using half-overlapping
windows of 2048 samples, 40 Mel-scaled frequency bands and 13 cepstral coefficients including the Oth
coefficient (raw audio or Mel spectrograms are not provided in the dataset for privacy reasons)

However, although we use the “Core” subset of the dataset which contains examples with sensor measurements
for all six core sensors, since the dataset is collected in-the-wild there is no consistency in the lengths of time
series of each sensor. We summarize some statistics regarding the lengths of the time series of each sensor’s
measurements in Table 5.22. These differences have occurred not because of differences in the sampling rate,
but because of differences in the duration of the sensor recording window among examples of a sensor.

Statistics of the time-series lengths for each sensor

Sensor Median Mean SD Min Max
Acc (raw_acc) 800 800 0 800 800
Gyro (proc_gyro) 800 781 67.01 2 800
WAcc (watch _acc) 450 396 120.12 25 500
Aud (audio) 428 396 75.36 3 4894

Table 5.22: Statistics of the time-series lengths for each sensor, for the examples of the “Core” subset

In order to be able to use the raw sensor measurements with models that need consistency in the input
dimensions, e.g., CNNs which need input of standard dimensions, we devise a strategy to create time series
of equal length for all examples, for each sensor. We decide on the desired lengths of 800 for Acc and Gyro,
and 500 for WAcc (which are in accordance with the expected lengths, according to the sampling rate of
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each sensor) and 700 for Aud. This way, we have an input example size of (3, 800) for Acc and Gyro, (3,
500) for WAcc, and (13, 700) for Aud. For examples where the recorded sensor measurements have shorter
length, we repeat them from the beginning, once or as many times as needed to reach the desired lengths
(also, regarding Aud, in cases where the MFCC time series is longer than 700 timesteps, we only use the 700
first ones). This type of padding might introduce some artifacts in the signals, but it seems to be a better
solution than zero padding or repeating only the last available sensor values.

5.7.1 CNN-based Feature Extraction for IMU and Audio Data

At first, we implement a CNN-based pipeline for feature extraction from the raw sensor signals (Acc, Gyro,
WAce, Aud), followed by an MLP with two hidden layers and an output layer, similar to the baseline MLP
in Subsection 5.4.4. In essence, we want to replicate the baseline MLP experiment, but instead of using the
pre-extracted features provided by the dataset as input, CNN layers are used to extract meaningful features
from the sensor signals (for Loc and PS, the pre-extracted features are concatenated to the CNN-extracted
features of the other sensors, before passing through the MLP). This model is conceptually presented in
Figure 5.7.1, and the key points of the experiments are summarized as follows:

e Five-fold cross validation is used, with each fold containing 48 users in the training set and 12 users in
the test set (using the same partition as the original work).

e The training set of each CV iteration is further partitioned in a training subset and a validation subset,
as follows: for each of the 48 users of the training set, 80% of their data is used for training, and 20%
is used for validation, to decide which epoch’s checkpoint will be selected for the test inference.

e Regarding Loc and PS, for which we use the pre-extracted features provided in the dataset, we
standardize each sensor feature (mean and standard deviation are calculated using the training subset).
After standardization, missing feature values are zero-imputated. Regarding the rest of the sensors, for
which we use the raw sensor measurements, we standardize the measurements of each sensor (mean
and standard deviation are also calculated using the training subset).

e The model configuration includes a CNN pipeline for each of the raw signals’ sensors (Ace, Gyro, WAce,
Aud) to extract features from each sensor measurements’ time-series. The CNN pipeline for each of
these sensors includes multiple layers that contain the following operations, in this order: 2D/1D
Conv layer, leaky ReLU, Batch Normalization, and Dropout. The full CNN pipelines’ configuration
hyperparameters can be found in Table 5.23.

e The outputs of all sensors’ CNN pipelines are concatenated, and also concatenated with the pre-
extracted features from Loc and PS, and then they are fed to the baseline MLP configuration which
includes two hidden layers, followed by an output layer of 51 nodes which correspond to the 51 context
labels. Each of the hidden layers is followed by leaky ReLU activation, Batch Normalization, and
Dropout, as described in Subsection 5.4.4.

e We experiment with two hyperparameters: the CNN layers’ No. of filters, denoted as out_channels,
and the hidden Linear layers’ size, denoted as out_features. Regarding out_channels, we use the
same number in all CNN layers of each sensor. Given that the number of out_channels for each
CNN layer of the Acc and Gyro CNN pipelines is ¢; and the respective number of the WAcc and Aud
CNN pipelines is ¢z, we define the search space as (c1,c2) € {(16,32),(32,64), (64,128)}. Regarding
out_features, we experiment using sizes of 8, 16, and 32. The results of our investigation are thorougly
presented in Table 5.24, along with the number of parameters for each model.

e Regarding the loss, we again use the custom loss that was first described in Subsection 5.4.4, based
on torch.nn.BCEWithLogitsLoss. This loss is slightly modified to allow dynamic per-batch, per-
element masking in the loss matrices (to mask the loss elements corresponding to missing ground-truth
labels for each batch, and not use them in the loss computation). Also, the pos_weight is used for
instance-weighting to account for the imbalance in the number of positive examples per context label,
by multiplying the term of the positive examples in the loss, with the ratio of negative to positive
examples for this label in the training set.

e We use a batch size of 32 to train the model.
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e We use the Adam optimizer to train the model. The learning rate hyperparameter is adapted to get
the best results. The optimal values of learning rate for each combination of CNN layers’ No. of filters
(out_channels) and hidden Linear layers’ size (out_features), as determined by our experiments, are
denoted in Table 5.24.

e In the testing phase, the continuous predictions of the model pass through a sigmoid activation function,
and then they are converted to binary outputs using a threshold of 0.5.

e We calculate the evaluation metrics for each label over its non-missing ground-truth examples.

We use PyTorch to build the model, the supervisor and the training scripts. The torch.nn modules and
torch functions that are used, can be seen in detail in Figure 5.7.2.

Linear Layer

A A A A

‘7x CNN ‘ ‘7X CNN ‘ Eﬁx CNN}

. B B A

3x800 3x800 3x500 13x700

Figure 5.7.1: CNN-based model for feature extraction from sensor measurements, presented conceptually.
For raw sensor measurements for a single example from Acc, Gyro, WAcc and Aud sensors, CNN layers are
used to extract features. The outputs of all sensors’ CNN pipelines are concatenated, and also concatenated

with the pre-extracted features from Loc and PS, and then they are fed to an MLP that includes two
hidden layers and an output layer, followed by a sigmoid function to convert the model’s outputs to labels’
probabilities.

In Table 5.24 we present the recognition scores for the CNN-based model using raw sensor measurements for
Acc, Gyro, WAcc and Aud, averaged for all labels, for different values of the hyperparameters: CNN layers’
out_channels (c1,¢2) € {(16,32),(32,64), (64,128)} and hidden Linear layers’ size out_features = {8, 16,
32}. We notice that regardless of the values of the specific hyperparameters we have experimented on, the
BA of the model is consistently around 0.760-0.770. We get the highest BA of 0.772 with model configuration
out_channels (c1,c2) = (32,64), out_features = 16, and with model configuration out_channels (¢, ) =
(64,128), out_features = 16. As the best-performing model, we select the first of the two since it provides
the best BA with far less model parameters, compared to the second one. By observing the Table, we can
see that increasing the CNN layers’ out_channels with constant hidden Linear layers’ size, or increasing the
hidden Linear layers’ size with constant CNN layers’ out_channels, lead to an increase in Specificity and a
decrease in Sensitivity, and we achieve the highest BA when the trade-off between Sensitivity and Specificity
is balanced. Overall, we notice that increasing the CNN layers’ size or the MLP hidden layers size does
not improve the resulting BA of the model in general, and that, regardless of how much we have tried to
fine-tune other hyperparameters of the model, mostly the CNN layers’ number, kernel size, stride etc., we
did not achieve to get higher recognition BA.

177



Chapter 5. Experiments and Results

CNN model hyperparameters per sensor
No. of filters search space: (c1,c2) € {(16,32),(32,64), (64,128)}
L Smartphone accelerometer (Acc)
Input shape: (B, 1, 3,800)
Layer type No. of Kernel Stride Normalization Activation Dropout
filters size
Conv2d c1 (1, 5) 1 Batch LeakyReLU (0.1) 0.2
Conv2d c1 (1, 15) 1 Batch LeakyReLU (0.1) 0.2
Conv2d c1 (3, 5) 1 Batch LeakyReLU (0.1) 0.2
Conv2d c1 (1, 15) 3 Batch LeakyReLU (0.1) 0.2
Conv2d c1 (1, 15) 3 Batch LeakyReLU (0.1) 0.2
Conv2d c1 (1, 31) 3 Batch LeakyReLU (0.1) 0.2
Conv2d c1 (1, 17) 1 Batch LeakyReLU (0.1) 0.2
Output shape: (B,c1,1,1)
L Smartphone gyroscope (Gyro)
Input shape: (B, 1, 3,800)
Layer type No. of Kernel Stride Normalization Activation Dropout
filters size
Conv2d c1 (1, 5) 1 Batch LeakyReLU (0.1) 0.2
Conv2d c1 (1, 15) 1 Batch LeakyReLU (0.1) 0.2
Conv2d c1 (3, 5) 1 Batch LeakyReLU (0.1) 0.2
Conv2d c1 (1, 15) 3 Batch LeakyReLU (0.1) 0.2
Conv2d c1 (1, 15) 3 Batch LeakyReLU (0.1) 0.2
Conv2d c1 (1, 31) 3 Batch LeakyReLU (0.1) 0.2
Conv2d c1 (1, 17) 1 Batch LeakyReLU (0.1) 0.2
Output shape: (B,c1,1,1)
L Smartwatch accelerometer (WAcc)
Input shape: (B,1,3,500)
Layer type No. of Kernel Stride Normalization Activation Dropout
filters size
Conv2d c2 (1, 5) 1 Batch LeakyReLU (0.1) 0.2
Conv2d c2 (1, 15) 1 Batch LeakyReLU (0.1) 0.2
Conv2d c2 (3, 5) 1 Batch LeakyReLU (0.1) 0.2
Conv2d c2 (1, 15) 3 Batch LeakyReLU (0.1) 0.2
Conv2d c2 (1, 15) 2 Batch LeakyReLU (0.1) 0.2
Conv2d Cc2 (1, 31) 2 Batch LeakyReLU (0.1) 0.2
Conv2d Cc2 (1, 21) 1 Batch LeakyReLU (0.1) 0.2
Output shape: (B,c2,1,1)
L Smartphone audio (Aud)
Input shape: (B,1,13,700)
Layer type No. of Kernel Stride Normalization Activation Dropout
filters size
Conv2d c2 (3, 3) 1 Batch LeakyReLU (0.1) 0.2
Conv2d c2 (3, 5) 2 Batch LeakyReLU (0.1) 0.2
Conv2d c2 (3, 9) 2 Batch LeakyReLU (0.1) 0.2
Conv2d c2 (1, 15) 3 Batch LeakyReLU (0.1) 0.2
Conv2d c2 (1, 15) 3 Batch LeakyReLU (0.1) 0.2
Conv2d Cc2 (1, 13) 1 Batch LeakyReLU (0.1) 0.2
Output shape: (B,cz,1,1)

Table 5.23: CNN model architecture hyperparameters for Acc, Gyro, WAcc and Audio CNN encoders and
search space regarding CNN layers’ No. of filters (out_channels)
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Performance metrics averaged over all labels
for the CNN model using raw sensor measurements for Acc, Gyro, WAcc and Aud
Hyperparameter tuning: No. of CNN layers’ output channels & hidden Linear layers’ size
Hl('iden No. of Learning Accuracy | Precision | Sensitivity | Specificity | F1l-score BA
size parameters rate

No. of CNN layers’ output channels: Acc: 16, Gyro: 16, WAcc: 32, Aud: 32
8 261299 0.001 0.772 0.222 0.760 0.773 0.288 0.767
16 263123 0.001 0.774 0.222 0.761 0.775 0.289 0.768
32 267155 0.001 0.803 0.231 0.722 0.803 0.301 0.762

No. of CNN layers’ output channels: Acc: 32, Gyro: 32, WAcc: 64, Aud: 64
8 1035667 0.001 0.768 0.220 0.769 0.767 0.287 0.768
16 1038259 0.0005 0.782 0.228 0.762 0.781 0.296 0.772
32 1043827 0.0005 0.802 0.232 0.728 0.803 0.303 0.766

No. of CNN layers’ output channels: Acc: 64, Gyro: 64, WAcc: 128, Aud: 128

8 4126547 0.001 0.760 0.218 0.763 0.758 0.284 0.760
16 4130675 0.0005 0.790 0.230 0.754 0.790 0.299 0.772
32 4139315 0.001 0.801 0.232 0.727 0.801 0.303 0.764

Table 5.24: Recognition scores for the CNN model using raw sensor measurements for Acc, Gyro, WAcc

and Aud, averaged for all labels, for different values of the hyperparameters: CNN layers’ out_channels

and hidden Linear layers’ size out_features. Five-fold cross validation with 48 users in the training set
and 12 users in the test set for each iteration.

For the best-performing model configuration, with CNN layers’ out_channels (¢, c2) = (32,64) and hidden
Linear layers’ size out_features = 16, we present the detailed model architecture in Figure 5.7.2, and the
recognition scores for all context labels in Table 5.26 and averaged over the labels of each label subset in Table
5.25. As we can see, our CNN-based model outperforms similar models in the literature [Sae+19; Cru+20a]
which use CNN-based models for feature extraction from ExtraSensory dataset’s raw sensor measurements,
reporting BA scores of up to 0.750. However, the BA of 0.772 that our model achieves, is on par with the BA
score of the baseline MLP(16,16) using the hand-crafted features of Subsection 4.3.6, which means that the
inclusion of raw sensor data from Acc, Gyro, WAcc and Aud in our model via CNN-based feature extraction
did not lead to an improvement in BA. Moreover, we can see that our CNN-based model performs on par with
the baseline MLP(16,16) in all averaged recognition metrics, including Accuracy, Sensitivity and Specificity.
Furthermore, we notice that the per-label BA of both models is similar in most cases.

L Recognition scores of the CNN model, averaged for each label subset ‘
Label Accuracy Precision Sensitivity | Specificity F1l-score BA
Posture/Movement 0.797 0.374 0.799 0.790 0.451 0.795
Special Movement 0.793 0.027 0.737 0.794 0.051 0.765
Phone Location 0.757 0.446 0.792 0.755 0.525 0.774
Work-related 0.787 0.243 0.816 0.783 0.362 0.799
Location-based 0.793 0.264 0.821 0.789 0.332 0.805
Transportation 0.835 0.141 0.890 0.834 0.235 0.862
Chores 0.774 0.039 0.682 0.776 0.074 0.729
Self-care 0.826 0.190 0.653 0.831 0.224 0.742
Leisure Time 0.709 0.140 0.700 0.708 0.227 0.704
Companion 0.689 0.181 0.621 0.702 0.274 0.662
Environment 0.857 0.667 0.878 0.873 0.708 0.875
Average 0.782 0.228 0.762 0.781 0.296 0.772

Table 5.25: Recognition scores reported for the CNN model, averaged for each label subset. Model
configuration using CNN layers’ out_channels = 32 for Acc, Gyro and 64 for WAcc, Aud. Five-fold cross
validation with 48 users in the training set and 12 users in the test set for each iteration.
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32 for Acc, Gyro and 64 for

WAcc, Aud. For raw sensor measurements for a single example, a feature extraction pipeline including
CNN layers is used. The hyperparameters for each CNN layer are thoroughly listed in Table 5.23. The
outputs of all sensors’ CNN pipelines are concatenated, and also concatenated with the pre-extracted

features from Loc and PS, and they are fed to the baseline MLP(16,16) architecture of Subsection 4.3.6.
The aforementioned custom loss based on torch.nn.BCEWithLogitsLoss is used to train the model.
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Recognition scores of the CNN model, for all context labels

Label Support | Accuracy | Precision | Sensitivity | Specificity | F1l-score BA
Lying down 51682 0.888 0.822 0.815 0.921 0.819 0.868
Sitting 79368 0.762 0.714 0.823 0.708 0.765 0.765
Standing 22071 0.627 0.225 0.756 0.608 0.346 0.682
Walking 11715 0.788 0.220 0.809 0.787 0.347 0.798
Running 661 0.853 0.034 0.694 0.854 0.065 0.774
Bicycling 3504 0.866 0.230 0.899 0.864 0.367 0.881
Strolling 339 0.760 0.048 0.829 0.759 0.092 0.794
Stairs - Going up 399 0.817 0.024 0.639 0.819 0.047 0.729
Stairs - Going down 390 0.819 0.024 0.651 0.820 0.046 0.736
Elevator 123 0.777 0.010 0.829 0.777 0.020 0.803
Phone in pocket 14074 0.769 0.428 0.852 0.750 0.570 0.801
Phone in hand 7313 0.654 0.168 0.730 0.646 0.273 0.688
Phone in bag 5031 0.795 0.267 0.781 0.797 0.398 0.789
Phone on table 65979 0.812 0.921 0.806 0.825 0.860 0.816
In class 2852 0.825 0.214 0.772 0.828 0.335 0.800
Lab work 2898 0.767 0.310 0.913 0.749 0.463 0.831
Computer work 22536 0.745 0.354 0.741 0.745 0.479 0.743
In a meeting 2837 0.811 0.095 0.836 0.811 0.170 0.823
At home 80044 0.795 0.768 0.818 0.773 0.793 0.796
At school 25342 0.753 0.404 0.767 0.750 0.529 0.758
At main workplace 19235 0.850 0.588 0.857 0.849 0.697 0.853
At a restaurant 1275 0.833 0.072 0.864 0.833 0.133 0.849
At a bar 520 0.803 0.114 0.952 0.799 0.203 0.876
At a party 404 0.680 0.041 0.827 0.678 0.077 0.752
At the gym 897 0.837 0.108 0.670 0.842 0.185 0.756
At the beach 116 0.789 0.019 0.810 0.789 0.037 0.799
In a car 3550 0.843 0.164 0.867 0.842 0.276 0.855
On a bus 1179 0.815 0.058 0.906 0.814 0.109 0.860
Drive - Driver 4879 0.863 0.258 0.882 0.862 0.399 0.872
Drive - Passenger 1650 0.821 0.085 0.904 0.820 0.156 0.862
Shopping 809 0.769 0.036 0.865 0.768 0.070 0.816
Cooking 2212 0.778 0.056 0.722 0.779 0.104 0.751
Cleaning 1813 0.750 0.047 0.569 0.754 0.086 0.662
Doing laundry 471 0.760 0.021 0.567 0.762 0.040 0.664
Washing dishes 829 0.815 0.036 0.688 0.816 0.068 0.752
Bathing - Shower 1120 0.823 0.031 0.563 0.826 0.059 0.695
Toilet 1558 0.762 0.032 0.621 0.764 0.061 0.693
Grooming 1775 0.813 0.055 0.624 0.816 0.101 0.720
Dressing 1248 0.822 0.036 0.583 0.825 0.067 0.704
Sleeping 40869 0.909 0.794 0.872 0.922 0.831 0.897
Exercise 5191 0.843 0.162 0.796 0.845 0.270 0.820
Eating 9668 0.633 0.109 0.710 0.628 0.188 0.669
Drinking alcohol 859 0.797 0.083 0.860 0.796 0.152 0.828
Watching TV 8945 0.749 0.208 0.681 0.756 0.318 0.718
Surfing the internet 10668 0.683 0.182 0.597 0.693 0.279 0.645
Talking 18477 0.603 0.201 0.753 0.582 0.317 0.667
Singing 384 0.651 0.034 0.500 0.655 0.064 0.577
With co-workers 3972 0.712 0.147 0.734 0.711 0.244 0.722
With friends 12686 0.667 0.216 0.508 0.693 0.303 0.601
Indoors 102510 0.863 0.992 0.860 0.899 0.922 0.880
Outside 6793 0.850 0.341 0.896 0.846 0.494 0.871
Average 0.782 0.228 0.762 0.781 0.296 0.772

Table 5.26: Recognition scores reported for the CNN model, for all context labels. Model configuration
using CNN layers’ out_channels = 32 for Acc, Gyro and 64 for WAcc, Aud. Five-fold cross validation
with 48 users in the training set and 12 users in the test set for each iteration.
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Figure 5.7.3: Activity plot including the predictions of the CNN model for user u40
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Activity plot for user u45: ground-truth vs. CNN predictions
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Figure 5.7.4: Activity plot including the predictions of the CNN model for user u45
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Activity plot for user u49: ground-truth vs. CNN predictions

Computer work
Phone on table | =
i S
il js=

Phone in bag

Phone in hand

Phone in pocket

R
= g
- -
= Snai
o ISR
—r=:

—t
===
o o=l
= =]

|

[ ground-truth: B positive " negative predicted: W positive negative]
Outside ” :m = : : : e — :
Indoors = e [ 1 ==t
) —
Talking .m = I : m'l n: _=
Watching TV : = : = —:: =I m :
Eating {1 [ NI e I = CEENEE 2|
Exercise :F ] : = :: : _:
Steeping 1 [ T T [ - — ]
. T [
Dressing :_ J : = —:: =ﬂ _:
Bathing - Shower | | G = = ]
Washing dishes :h J : = —:: :ﬂ = :
Cooking . | e = o SRR EEEEEE
Drive - Driver : = : = =:: =: :
—
onabus{ | [ — B = == |
Ina car : = : : :: : | :
At the beach : = : = —:: i | :
—
At a bar : = : : :: : e :
At a restaurant : = : : :: : e :
At main workplace .— — I = -“ :: e :
Athome {1 [ R © B Rl R
| =
] 1
— n
— I
— "
e
n
i
]
|
]
-_—
-
|
_—
||
wk
ol
]

]

Stairs - Going down e s f| BEE 1
Bicycling [ N EE |

Running {0 I | EERENI

walking {1 [ S| EEEEEI

standing 1l @I s o s e

siing 45 = HEE T R | SEEEEC

Lying down 1 1T B | EIEEE
Wed
9:00 AM

Thu
9:00 AM

Fri
9:00 AM

Figure 5.7.5: Activity plot including the predictions of the CNN model for user u49
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Figure 5.7.6: Activity plot including the predictions of the CNN model for user u53
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5.7.2 CNN-Transformer-based Feature Extraction for IMU and Audio Data

Since the CNN pipeline for feature extraction does not take into account the temporal and sequential nature
of the raw sensor data, we attempt to build feature extraction pipelines leveraging the benefits of recurrent
layers, based on BiLSTM layers or CNN layers followed by BiLLSTM layers. However, these attempts were
unsuccessful since the resulting models’” BA were far lower than the BA reported for the baseline MLP(16,
16) and the CNN-based model of the previous Subsection. Subsequently, our next thought was to test a
Transformer-based model. Since the Transformer’s intended use is for sequence-to-sequence problems, while
our problem is a many-to-one classification problem, we use only Transformer Encoder layers to leverage their
sequence modeling capabilities, inspired by [SK21]. The Transformer Encoder layers are preceded by CNN
layers to transform the input data time-series in a shorter one, embedded in a higher dimension. This model
is conceptually presented in Figure 5.7.8, and the key points of the experiments are summarized below:

e Five-fold cross validation is used, with each fold containing 48 users in the training set and 12 users in
the test set (using the same partition as the original work).

e The training set of each CV iteration is further partitioned in a training subset and a validation subset,
as follows: for each of the 48 users of the training set, 80% of their data is used for training, and 20%
is used for validation, to decide which epoch’s checkpoint will be selected for the test inference.

e Regarding Loc and PS, for which we use the pre-extracted features provided in the dataset, we
standardize each sensor feature (mean and standard deviation are calculated using the training subset).
After standardization, missing feature values are zero-imputated. Regarding the rest of the sensors, for
which we use the raw sensor measurements, we standardize the measurements of each sensor (mean
and standard deviation are also calculated using the training subset).

e The model configuration includes a pipeline based on CNN layers and Transformer Encoder layer
for each of the raw signals’ sensors (Acc, Gyro, WAce, Aud) to extract features from each sensor
measurements’ time-series. The pipeline for each of these sensors first includes four CNN layers that
contain the following operations, in this order: 2D/1D Conv layer, leaky ReLU, Batch Normalization,
and Dropout.

e The feature extraction pipeline for each of the raw data sensors also includes a Transformer Encoder
module, which includes two Transformer Encoder layers, preceded by prepending the [CLS| token and
adding a trainable positional encoding in the input sequence.

e The outputs of all sensors’ CNN-Transformer pipelines are concatenated, and also concatenated with
the pre-extracted features from Loc and PS, and then they are fed to the baseline MLP configuration
which includes two hidden layers, followed by an output layer of 51 nodes which correspond to the 51
context labels. Each of the hidden layers is followed by leaky ReLU activation, Batch Normalization,
and Dropout, as described in Subsection 5.4.4.

e Regarding the hyperparameters that we use in this experiment, for the CNN layers we use out_channels
= 48 for all raw sensor modalities, and detailed information on the CNN layers’ configuration can be
found in Table 5.27. For the Transformer Encoder, the hyperparameters which produced the best results
in our experiments are: Transformer Encoder num_layers = 2, and for each Transformer Encoder layer:
nhead = 4 for the Multi-head Attention, dim_feedforward = 64 for the Linear layer, dropout = 0.2
and GELU activation.

e Regarding the loss, we again use the custom loss that was first described in Subsection 5.4.4, based
on torch.nn.BCEWithLogitsLoss. This loss is slightly modified to allow dynamic per-batch, per-
element masking in the loss matrices (to mask the loss elements corresponding to missing ground-truth
labels for each batch, and not use them in the loss computation). Also, the pos_weight is used for
instance-weighting to account for the imbalance in the number of positive examples per context label,
by multiplying the term of the positive examples in the loss, with the ratio of negative to positive
examples for this label in the training set.

e We use a batch size of 32 to train the model.

e We use the Adam optimizer to train the model, with learning rate = 0.0005.
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e In the testing phase, the continuous predictions of the model pass through a sigmoid activation function,
and then they are converted to binary outputs using a threshold of 0.5.

e We calculate the evaluation metrics for each label over its non-missing ground-truth examples.

We use PyTorch to build the model, the supervisor and the training scripts. The torch.nn modules and
torch functions that are used, can be seen in detail in Figure 5.7.9.

Linear Layer

A A A A

Transformer
Encoder
layers

Transformer
2X| Encoder
layer

Transformer
2X| Encoder

layer Iayer Iayer

Transformer Transformer
2X | Encoder Encoder
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Figure 5.7.8: CNN-Transformer model for feature extraction from sensor measurements, presented
conceptually. For raw sensor measurements for a single example from Acc, Gyro, WAcc and Aud sensors,
four CNN layers followed by two Transformer Encoder layers are used to extract features. The outputs of

all sensors’” CNN-Transformer pipelines are concatenated, and also concatenated with the pre-extracted
features from Loc and PS, and then they are fed to an MLP that includes two hidden layers and an output
layer, followed by a sigmoid function to convert the model’s outputs to labels’ probabilities.

For the aforementioned model configuration, we present the recognition scores for all context labels in Table
5.29 and averaged over the labels of each label subset in Table 5.28. Although the combination of CNN layers
and Transformer Encoder layers is promising, based on previous works applying CNN-Transformer pipelines
for feature extraction in HAR tasks, such as [SK21], in which the CNN-Transformer model outperforms a
CNN baseline in HAR tasks for activities performed in a controlled environment, in our case, the integration of
two Transformer Encoder layers in the feature extraction pipeline does not offer any substantial improvement
in the resulting BA score (0.774) compared to the BA of the CNN-based feature extraction pipeline (0.772).
We have experimented extensively with the hyperparameters of this CNN-Transformer architecture, varying
the CNN number of layers, number of filters, kernel size and stride, and also investigating the impact of the
Transformer Encoder layers’ number, Attention heads’ number and Linear layer size, but we were not able
to achieve higher recognition scores. There could be multiple reasons why the Transformer Encoder layers
are not compatible with this task: beyond the fact that Transformers are mainly oriented to and have been
proved to be well-suited mainly for sequence-to-sequence tasks [Vas+17] which is not our case, we could not
find any guarantees regarding the performance of Transformers on noisy data, and, in addition, we could
not satisfy the “data-hungry” property of Transformers, since in our dataset, especially for rare labels, the
available data are scarce.
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CNN architecture hyperparameters for the CNN-Transformer model

Smartphone accelerometer (Acc)

Input shape: (B, 1, 3,800)

No. of

Kernel

Layer type flters size Stride Normalization Activation Dropout
Conv2d 48 (1, 5) (1, 3) Batch LeakyReLU (0.1) 0.2
Conv2d 48 (1, 7) (1, 3) Batch LeakyReLU (0.1) 0.2
Conv2d 48 (3, 11) (1, 3) Batch LeakyReLU (0.1) 0.2
Conv2d 48 (1, 15) (1, 3) Batch LeakyReLU (0.1) 0.2

Output shape: (B,48,3,4)
Smartphone gyroscope (Gyro)
Input shape: (B, 1, 3,800)
Layer type No. of Kernel Stride Normalization Activation Dropout
filters size
Conv2d 48 (1, 5) (1, 3) Batch LeakyReLU (0.1) 0.2
Conv2d 48 (1, 7) (1, 3) Batch LeakyReLU (0.1) 0.2
Conv2d 48 (3, 11) (1, 3) Batch LeakyReLU (0.1) 0.2
Conv2d 48 (1, 15) (1, 3) Batch LeakyReLU (0.1) 0.2
Output shape: (B,48,3,4)
Smartwatch accelerometer (WAcc)
Input shape: (B, 1, 3,500)
Layer type No. of Kernel Stride Normalization Activation Dropout
filters size
Conv2d 48 (1, 5) (1, 3) Batch LeakyReLU (0.1) 0.2
Conv2d 48 (1, 7 (1, 3) Batch LeakyReLU (0.1) 0.2
Conv2d 48 (3, 11) (1, 3) Batch LeakyReLU (0.1) 0.2
Conv2d 48 (1, 15) (1, 3) Batch LeakyReLU (0.1) 0.2
Output shape: (B,48,3,1)
Smartphone audio (Aud)
Input shape: (B, 1,13,700)
Layer type No. of Kernel Stride Normalization Activation Dropout
filters size
Conv2d 48 (1, 5) (1, 3) Batch LeakyReLU (0.1) 0.2
Conv2d 48 (1, 7 (1, 3) Batch LeakyReLU (0.1) 0.2
Conv2d 48 (3, 11) (1, 3) Batch LeakyReLU (0.1) 0.2
Conv2d 48 (1, 15) (1, 3) Batch LeakyReLU (0.1) 0.2

Output shape: (B, 48,13, 3)

Table 5.27: CNN architecture hyperparameters for the CNN-Transformer model, for Acc, Gyro, WAcc and
Audio CNN encoders, with CNN layers’ No. of filters out_channels = 48
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Figure 5.7.9: CNN-Transformer model architecture, using out_channels = 48 for Acc, Gyro, WAcc, Aud.
For raw sensor measurements for a single example, a feature extraction pipeline including CNN and
Transformer Encoder layers is used. The hyperparameters for each CNN layer are thoroughly listed in
Table 5.27. The outputs of all raw sensors’ pipelines are concatenated, and also concatenated with the
pre-extracted features from Loc and PS, and they are fed to the baseline MLP(16,16) architecture of
Subsection 4.3.6. The aforementioned custom loss based on torch.nn.BCEWithLogitsLoss is used to train
the model.
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Recognition scores of the CNN-Transformer model, averaged for each label subset

Label Accuracy Precision Sensitivity | Specificity F1l-score BA
Posture/Movement 0.807 0.377 0.802 0.798 0.459 0.800
Special Movement 0.827 0.029 0.690 0.828 0.055 0.759
Phone Location 0.769 0.455 0.794 0.760 0.535 0.777
Work-related 0.792 0.247 0.814 0.788 0.368 0.801
Location-based 0.818 0.265 0.792 0.814 0.336 0.803
Transportation 0.832 0.140 0.893 0.830 0.233 0.861
Chores 0.782 0.039 0.665 0.784 0.073 0.724
Self-care 0.813 0.185 0.689 0.817 0.221 0.753
Leisure Time 0.719 0.142 0.701 0.717 0.232 0.709
Companion 0.694 0.193 0.674 0.698 0.296 0.686
Environment 0.862 0.668 0.874 0.867 0.710 0.870
Average 0.792 0.229 0.759 0.790 0.300 0.774

Table 5.28: Recognition scores reported for the CNN-Transformer model, averaged for each label subset.
Model configuration using CNN layers’ out_channels = 48 for Acc, Gyro, WAcc, Aud. Five-fold cross
validation with 48 users in the training set and 12 users in the test set for each iteration.
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L Recognition scores of the CNN-Transformer model, for all context labels
Label Support | Accuracy | Precision | Sensitivity | Specificity | F1l-score BA
Lying down 51682 0.885 0.802 0.834 0.908 0.818 0.871
Sitting 79368 0.768 0.716 0.838 0.706 0.772 0.772
Standing 22071 0.661 0.238 0.729 0.650 0.359 0.690
Walking 11715 0.786 0.217 0.801 0.785 0.342 0.793
Running 661 0.860 0.037 0.731 0.861 0.071 0.796
Bicycling 3504 0.881 0.251 0.880 0.881 0.390 0.880
Strolling 339 0.793 0.054 0.794 0.793 0.101 0.793
Stairs - Going up 399 0.835 0.023 0.551 0.837 0.044 0.694
Stairs - Going down 390 0.843 0.026 0.610 0.845 0.050 0.727
Elevator 123 0.838 0.014 0.805 0.838 0.027 0.821
Phone in pocket 14074 0.801 0.469 0.818 0.797 0.597 0.808
Phone in hand 7313 0.653 0.171 0.754 0.643 0.279 0.699
Phone in bag 5031 0.795 0.265 0.771 0.797 0.394 0.784
Phone on table 65979 0.825 0.914 0.834 0.803 0.872 0.819
In class 2852 0.822 0.213 0.784 0.825 0.335 0.804
Lab work 2898 0.795 0.336 0.882 0.784 0.486 0.833
Computer work 22536 0.729 0.344 0.782 0.719 0.478 0.750
In a meeting 2837 0.822 0.097 0.807 0.823 0.173 0.815
At home 80044 0.787 0.749 0.833 0.744 0.789 0.788
At school 25342 0.774 0.428 0.749 0.779 0.545 0.764
At main workplace 19235 0.838 0.566 0.841 0.838 0.677 0.839
At a restaurant 1275 0.852 0.077 0.814 0.853 0.140 0.833
At a bar 520 0.793 0.106 0.923 0.789 0.190 0.856
At a party 404 0.830 0.071 0.782 0.831 0.130 0.807
At the gym 897 0.835 0.101 0.630 0.841 0.174 0.735
At the beach 116 0.839 0.023 0.767 0.839 0.045 0.803
In a car 3550 0.834 0.158 0.885 0.832 0.269 0.858
On a bus 1179 0.811 0.055 0.882 0.810 0.104 0.846
Drive - Driver 4879 0.865 0.263 0.898 0.863 0.407 0.881
Drive - Passenger 1650 0.818 0.084 0.905 0.816 0.154 0.861
Shopping 809 0.781 0.037 0.823 0.781 0.070 0.802
Cooking 2212 0.766 0.055 0.746 0.766 0.102 0.756
Cleaning 1813 0.760 0.046 0.541 0.765 0.085 0.653
Doing laundry 471 0.804 0.025 0.563 0.806 0.048 0.684
Washing dishes 829 0.800 0.031 0.650 0.801 0.060 0.726
Bathing - Shower 1120 0.805 0.032 0.646 0.807 0.061 0.727
Toilet 1558 0.756 0.034 0.683 0.757 0.066 0.720
Grooming 1775 0.787 0.047 0.603 0.790 0.087 0.697
Dressing 1248 0.816 0.037 0.639 0.818 0.071 0.728
Sleeping 40869 0.901 0.772 0.873 0.911 0.819 0.892
Exercise 5191 0.866 0.178 0.741 0.871 0.287 0.806
Eating 9668 0.597 0.108 0.786 0.584 0.190 0.685
Drinking alcohol 859 0.814 0.091 0.873 0.813 0.165 0.843
Watching TV 8945 0.729 0.201 0.722 0.730 0.314 0.726
Surfing the internet 10668 0.643 0.163 0.599 0.649 0.257 0.624
Talking 18477 0.619 0.210 0.764 0.599 0.329 0.681
Singing 384 0.767 0.044 0.422 0.776 0.080 0.599
With co-workers 3972 0.753 0.176 0.785 0.751 0.287 0.768
With friends 12686 0.635 0.210 0.564 0.646 0.306 0.605
Indoors 102510 0.870 0.991 0.869 0.882 0.926 0.876
Outside 6793 0.854 0.344 0.879 0.851 0.495 0.865
Average 0.792 0.229 0.759 0.790 0.300 0.774

Table 5.29: Recognition scores reported for the CNN-Transformer model, for all context labels. Model
configuration using CNN layers’ out_channels = 48 for Acc, Gyro, WAcc, Aud. Five-fold cross validation
with 48 users in the training set and 12 users in the test set for each iteration.
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Activity plot for user u40: ground-truth vs. CNN-Transformer predictions
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Figure 5.7.10: Activity plot including the predictions of the CNN-Transformer model for user u40
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Activity plot for user u45: ground-truth vs. CNN-Transformer predictions
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Figure 5.7.11: Activity plot including the predictions of the CNN-Transformer model for user u45
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Activity plot for user u49: ground-truth vs. CNN-Transformer predictions
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Figure 5.7.12: Activity plot including the predictions of the CNN-Transformer model for user u49
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Figure 5.7.13: Activity plot including the predictions of the CNN-Transformer model for user u53
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Activity plot for user u57: ground-truth vs. CNN-Transformer predictions
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Figure 5.7.14: Activity plot including the predictions of the CNN-Transformer model for user u57

197



Chapter 5. Experiments and Results

5.8 Deep Learning Feature Extraction combined with BiLSTM
Sequence Modeling

In this Section, we present the last experiments that we conducted for this thesis, which combine ideas from
the previous Sections. More specifically, we combine Deep Learning-based feature extraction from raw sensor
measurements (Section 5.7) with the examples sequence modeling (Section 5.5), so as to give the features
extracted by CNN layers as input to the sequence modeling BiLSTM, instead of the hand-crafted features
that were given as input in previous BiLSTM experiments.

5.8.1 CNN-based Feature Extraction combined with BiLSTM Sequence
Modeling

Our goal is to combine the CNN-based feature extraction from raw sensor data of Subsection 5.7.1 with the
BiLSTM sequence modeling of an input sequence of consecutive examples of Section 5.5 and more specifically
the BILSTM model using only final hidden states presented in Subsection 5.5.1. In essence, we implement a
feature extraction CNN pipeline very similar to that of Subsection 5.7.1, but we give a sequence of examples
as input and we use Time-Distributed CNN layers, so as for all examples in the sequence to be processed
in parallel by the CNN layers. When given a sequence of input examples, the Time-Distributed CNN layers
produce a sequence of extracted features, which is then fed to a two-layer BiILSTM, whose h_n output, which
contains a concatenation of the final forward and reverse hidden states of each BiLSTM layer, is then fed
to a Linear layer, to predict the probabilities for each of the 51 context labels. We visualize this model in
Figure 5.8.1, and the key points of our implementation are summarized below:

e Five-fold cross validation is used, with each fold containing 48 users in the training set and 12 users in
the test set (using the same partition as the original work).

e The training set of each CV iteration is further partitioned in a training subset and a validation subset,
as follows: for each of the 48 users of the training set, 80% of their data is used for training, and 20%
is used for validation, to decide which epoch’s checkpoint will be selected for the test inference.

e Regarding Loc and PS, for which we use the pre-extracted features provided in the dataset, we
standardize each sensor feature (mean and standard deviation are calculated using the training subset).
After standardization, missing feature values are zero-imputated. Regarding the rest of the sensors, for
which we use the raw sensor measurements, we standardize the measurements of each sensor (mean
and standard deviation are also calculated using the training subset).

e The model configuration includes a CNN pipeline for each of the raw signals’ sensors (Ace, Gyro, WAce,
Aud) to extract features from each sensor measurements’ time-series. The CNN pipeline for each of
these sensors includes multiple layers that contain the following operations, in this order: 2D /1D Conv
layer, leaky ReLLU, Batch Normalization, and Dropout. We use out_channels = 64 for all CNN layers
of all raw sensor modalities, and detailed information on the CNN layers’ configuration hyperparameters
can be found in Table 5.31.

e Instead of a single example, an examples sequence of length window_len = 5 is given as input. Since
the Time-Distributed wrapper which allows to apply a layer to every temporal slice of an input that
exists in Keras, is not available in PyTorch as far as we know, we implement it manually, by reshaping
the CNN layers’ input of shape (batch_size, window_len, input_channels, timeseries_length)
to (batch_size X window_len, 1, input_channels, timeseries_length) in order for the CNN
layers to process all the examples of the input sequence of length in parallel. We reshape back the CNN
layers’ output, in order to acquire a sequence of extracted features corresponding to the input examples
sequence.

e The outputs of all sensors’ CNN pipelines are concatenated, and also concatenated with the pre-
extracted features from Loc and PS, and then they pass through a two-layer BiLSTM with hidden_size
= 64 followed by a Linear layer, as described in Subsection 5.5.1. The h_n output of the BiLSTM, which
contains a concatenation of the final forward and reverse hidden states of the two BiLSTM layers, is
fed to the Linear layer of 51 nodes which correspond to the 51 context labels. We use Dropout after
each BiLSTM layer, with dropout rate = 0.5 to help avoid overfitting.
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e Regarding the loss, we again use the custom loss that was first described in Subsection 5.4.4, based
on torch.nn.BCEWithLogitsLoss. This loss is slightly modified to allow dynamic per-batch, per-
element masking in the loss matrices (to mask the loss elements corresponding to missing ground-truth
labels for each batch, and not use them in the loss computation). Also, the pos_weight is used for
instance-weighting to account for the imbalance in the number of positive examples per context label,
by multiplying the term of the positive examples in the loss, with the ratio of negative to positive
examples for this label in the training set.

e We use a batch size of 32 to train the model.

e We use the Adam optimizer to train the model, with learning rate = 0.00005. We notice that when
modeling a sequence of examples and using a BiLSTM, smaller learning rates are required for better
model convergence, which is also in accordance with the learning rates of Section 5.5.

e In the testing phase, the continuous predictions of the model pass through a sigmoid activation function,
and then they are converted to binary outputs using a threshold of 0.5.

e We calculate the evaluation metrics for each label over its non-missing ground-truth examples.

PyTorch is used to build the model, the supervisor and the training scripts. The torch.nn modules and
torch functions that we use are presented in Figure 5.8.2.

For the aforementioned model configuration, we present the recognition scores for all context labels in Table
5.32 and averaged over the labels of each label subset in Table 5.30. With an average BA of 0.775, we notice
that this CNN-BiLSTM model leveraging both raw sensor measurements from Acc, Gyro, WAcc and Aud,
and a 5-length examples sequence as input, does not offer any substantial improvement over the previous
CNN-based and CNN-Transformer-based models that used raw sensor measurements from a single example
as input. Contrary to the previous experiments of Section 5.5 using hand-crafted features, where providing
a sequence of examples led in a substantial improvement on the recognition metrics, here, when we extract
features from the raw sensor data directly in the model, providing a sequence of examples does not seem
to help the model, at least in the extent of the experiments that it was possible to conduct in our study.
Although we have extensively experimented with the model’s hyperparameters, regarding both the CNN
layers (number of layers, number of filters, kernel size, stride) and the BiLSTM (number of layers, hidden
size), it hasn’t been possible to produce better results than the ones reported here.

L Recognition scores of the CNN-BIiLSTM model, averaged for each label subset
Label Accuracy Precision | Sensitivity | Specificity F1-score BA
Posture/Movement 0.826 0.391 0.788 0.829 0.472 0.808
Special Movement 0.856 0.029 0.570 0.858 0.055 0.714
Phone Location 0.782 0.461 0.770 0.777 0.538 0.773
Work-related 0.817 0.260 0.735 0.821 0.377 0.778
Location-based 0.816 0.276 0.821 0.814 0.343 0.817
Transportation 0.861 0.163 0.887 0.861 0.265 0.874
Chores 0.824 0.047 0.644 0.826 0.087 0.735
Self-care 0.868 0.191 0.626 0.871 0.238 0.749
Leisure Time 0.765 0.158 0.654 0.773 0.246 0.713
Companion 0.725 0.208 0.650 0.736 0.312 0.693
Environment 0.885 0.693 0.887 0.883 0.742 0.885
Average 0.819 0.241 0.728 0.821 0.313 0.775

Table 5.30: Recognition scores reported for the CNN-BiLSTM model, averaged for each label subset. Model
configuration using CNN layers’ out_channels = 64 for Acc, Gyro, WAcc, Aud. Five-fold cross validation
with 48 users in the training set and 12 users in the test set for each iteration.
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Figure 5.8.1: CNN-based model for feature extraction from sensor measurements, combined with BiLSTM
examples sequence modeling, presented conceptually. An examples sequence of length w (window_len) is
given as input, and the target is to predict the context labels of the last example of the sequence. For raw
sensor measurements from Acc, Gyro, WAcc and Aud sensors, Time-Distributed CNN layers are used to
extract features. The outputs of all sensors’ CNN pipelines are concatenated, and also concatenated with
the pre-extracted features from Loc and PS, and then they are fed to a two-layer BiLSTM. The h_n output
of the BiLSTM, which contains a concatenation of the final forward and reverse hidden states of each
BiLLSTM layer, passes through a Linear layer, followed by a sigmoid function to convert the model’s outputs
to labels’ probabilities.
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CNN architecture hyperparameters for the CNN-BiLSTM model

Smartphone accelerometer (Acc)

Input shape: (B x w,1,3,800)

Layer type lglc;'erosf Kseir;;el Stride Normalization Activation Dropout
Conv2d 64 (1, 5) 1 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 15) 1 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (3, 5) 1 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 15) 3 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 15) 3 Batch LeakyReLU (0.1) 0.4
Convad 64 (1, 31) 3 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 17) 1 Batch LeakyReLU (0.1) 0.4

Output shape: (B x w,64,1,1)
Smartphone gyroscope (Gyro)
Input shape: (B x w,1,3,800)
Layer type No. of Kernel Stride Normalization Activation Dropout
filters size
Conv2d 64 (1, 5) 1 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 15) 1 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (3, 5) 1 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 15) 3 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 15) 3 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 31) 3 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 17) 1 Batch LeakyReLU (0.1) 0.4
Output shape: (B x w,64,1,1)
Smartwatch accelerometer (WAcc)
Input shape: (B x w,1,3,500)
Layer type No. of Kernel Stride Normalization Activation Dropout
filters size
Conv2d 64 (1, 5) 1 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 15) 1 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (3, 5) 1 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 15) 3 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 15) 2 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 31) 2 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 21) 1 Batch LeakyReLU (0.1) 0.4
Output shape: (B x w,64,1,1)
Smartphone audio (Aud)
Input shape: (B x w, 1,13,700)
Layer type No. of Kernel Stride Normalization Activation Dropout
filters size
Conv2d 64 (3, 3) 1 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (3, 5) 2 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (3, 9) 2 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 15) 3 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 15) 3 Batch LeakyReLU (0.1) 0.4
Conv2d 64 (1, 13) 1 Batch LeakyReLU (0.1) 0.4

Output shape: (B x w,64,1,1)

Table 5.31: CNN architecture hyperparameters for the CNN-BiLSTM model, for Acc, Gyro, WAcc and
Audio CNN encoders, with CNN layers’ No. of filters out_channels = 64. In our experiments, we use an

input examples sequence of length w

5.
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Figure 5.8.2: The selected CNN-BIiLSTM architecture, with CNN layers’ out_channels = 64 for Acc,
Gyro, WAcc, Aud. For the raw sensor measurements of a 5-length examples sequence (window_len = 5), a
feature extraction pipeline including Time-Distributed CNN layers is used. The hyperparameters for each
CNN layer are thoroughly listed in Table 5.31. The outputs of all sensors’ CNN pipelines are concatenated,
and also concatenated with the pre-extracted features from Loc and PS, and they are given as input to the
two-layer BILSTM with hidden_size = 64 and dropout = 0.5 of Subsection 5.5.1. The aforementioned
custom loss based on torch.nn.BCEWithLogitsLoss is used to train the model.

202



5.8. Deep Learning Feature Extraction combined with BiLSTM Sequence Modeling

L Recognition scores of the CNN-BiLSTM model, for all context labels ‘
Label Support | Accuracy | Precision | Sensitivity | Specificity | F1l-score BA
Lying down 51682 0.874 0.764 0.859 0.881 0.808 0.870
Sitting 79368 0.775 0.753 0.775 0.774 0.764 0.775
Standing 22071 0.715 0.267 0.678 0.720 0.383 0.699
Walking 11715 0.819 0.251 0.808 0.820 0.383 0.814
Running 661 0.886 0.045 0.719 0.887 0.085 0.803
Bicycling 3504 0.888 0.264 0.888 0.888 0.408 0.888
Strolling 339 0.794 0.053 0.782 0.794 0.100 0.788
Stairs - Going up 399 0.870 0.026 0.481 0.873 0.049 0.677
Stairs - Going down 390 0.882 0.024 0.423 0.885 0.046 0.654
Elevator 123 0.877 0.013 0.593 0.878 0.026 0.736
Phone in pocket 14074 0.809 0.481 0.804 0.810 0.602 0.807
Phone in hand 7313 0.687 0.184 0.736 0.683 0.295 0.709
Phone in bag 5031 0.803 0.262 0.702 0.813 0.381 0.757
Phone on table 65979 0.827 0.915 0.836 0.804 0.874 0.820
In class 2852 0.842 0.213 0.655 0.853 0.321 0.754
Lab work 2898 0.743 0.269 0.775 0.739 0.399 0.757
Computer work 22536 0.779 0.397 0.751 0.785 0.520 0.768
In a meeting 2837 0.905 0.163 0.759 0.908 0.269 0.834
At home 80044 0.808 0.774 0.846 0.773 0.808 0.809
At school 25342 0.789 0.448 0.719 0.804 0.552 0.762
At main workplace 19235 0.863 0.615 0.850 0.866 0.714 0.858
At a restaurant 1275 0.858 0.080 0.818 0.859 0.146 0.838
At a bar 520 0.773 0.100 0.952 0.769 0.181 0.860
At a party 404 0.748 0.054 0.884 0.746 0.102 0.815
At the gym 897 0.824 0.105 0.715 0.827 0.183 0.771
At the beach 116 0.868 0.029 0.784 0.868 0.056 0.826
In a car 3550 0.871 0.197 0.884 0.871 0.322 0.877
On a bus 1179 0.844 0.067 0.891 0.843 0.125 0.867
Drive - Driver 4879 0.882 0.290 0.887 0.882 0.437 0.884
Drive - Passenger 1650 0.848 0.098 0.886 0.848 0.176 0.867
Shopping 809 0.819 0.044 0.820 0.819 0.084 0.820
Cooking 2212 0.830 0.068 0.669 0.833 0.124 0.751
Cleaning 1813 0.780 0.051 0.548 0.785 0.094 0.667
Doing laundry 471 0.832 0.030 0.590 0.834 0.058 0.712
Washing dishes 829 0.856 0.040 0.592 0.859 0.075 0.726
Bathing - Shower 1120 0.896 0.055 0.587 0.899 0.100 0.743
Toilet 1558 0.810 0.036 0.542 0.814 0.067 0.678
Grooming 1775 0.871 0.069 0.531 0.877 0.122 0.704
Dressing 1248 0.869 0.047 0.577 0.872 0.088 0.724
Sleeping 40869 0.895 0.747 0.892 0.896 0.813 0.894
Exercise 5191 0.874 0.197 0.805 0.876 0.317 0.841
Eating 9668 0.708 0.120 0.609 0.715 0.201 0.662
Drinking alcohol 859 0.831 0.094 0.818 0.831 0.169 0.825
Watching TV 8945 0.799 0.238 0.607 0.817 0.342 0.712
Surfing the internet 10668 0.725 0.178 0.464 0.755 0.257 0.609
Talking 18477 0.657 0.218 0.697 0.652 0.332 0.674
Singing 384 0.762 0.057 0.576 0.766 0.103 0.671
With co-workers 3972 0.785 0.194 0.759 0.786 0.309 0.773
With friends 12686 0.665 0.223 0.541 0.685 0.316 0.613
Indoors 102510 0.890 0.992 0.890 0.886 0.938 0.888
Outside 6793 0.880 0.395 0.883 0.880 0.546 0.882
Average 0.819 0.241 0.728 0.821 0.313 0.775

Table 5.32: Recognition scores reported for the CNN-BiLSTM model, for all context labels. Model
configuration using CNN layers’ out_channels = 64 for Acc, Gyro, WAcc, Aud. Five-fold cross validation
with 48 users in the training set and 12 users in the test set for each iteration.
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Figure 5.8.3: Activity plot including the predictions of the CNN-BiLSTM model for user u40

Activity plot for user u40: ground-truth vs. CNN-BiLSTM predictions
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Activity plot for user u45: ground-truth vs. CNN-BiLSTM predictions
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Figure 5.8.4: Activity plot including the predictions of the CNN-BiLSTM model for user u45
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Activity plot for user u49: ground-truth vs. CNN-BIiLSTM predictions
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Figure 5.8.6: Activity plot including the predictions of the CNN-BiLSTM model for user u53
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Activity plot for user u57: ground-truth vs. CNN-BiLSTM predictions
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Figure 5.8.7: Activity plot including the predictions of the CNN-BiLSTM model for user u57
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5.9 Results Overview

In this Section, in Table 5.33, we gather all the best performance metrics for each of the models we have
implemented and tested in this thesis, to summarize our results and extract useful remarks. We include two
trivial classifiers to prove that the models we built are significantly better than random guessing or a majority
class classifier. We also include the two baselines provided by the researchers who created the ExtraSensory
dataset [VEL17; VWL18], which are directly comparable to our work, since we use the same dataset subset,
the same dataset split and cross validation scheme, and the same set of 51 target activity and context labels.

We have referenced all the publications which perform HAR tasks using the same dataset in Table 4.4.
However, to the best of our knowledge, none of those papers includes an investigation on ML /DL architectures
which is directly comparable to ours (which would require the same dataset subset and the same cross
validation scheme or test subset in general and the same set of 51 target labels) and also produces results
similar or better than the results provided by the original researchers. In many of those papers, a different,
smaller test subset of specific users is used (while in our experiments we use cross-validation and eventually
all users are included in the test set in one of the five folds), and, also, in many of those papers, HAR is
performed using a much smaller subset of target labels.

Comparative results overview of the performance metrics averaged over all labels
for the best-performing model configuration for each subsection’s architecture
Time
Input series Model Accuracy | Precision | Sensitivity | Specificity | F1-score BA
modeling
Random 0.500 0.110 0.500 0.500 0.137 | 0.500
classifier
Majority
class 0.915 NaN 0.040 0.958 0.037 0.499
classifier
) LR [VWL18] 0.832 = 0.597 0.838 - 0.718
Extracted esgﬁfle LR 0.839 0.246 0.612 0.844 0.314 0.728
X
features | inute) |MLP [VWL1s] 0.773 - 0.773 0.773 - 0.773
MLP 0.786 0.228 0.757 0.786 0.298 0.772
g;ﬁfz‘i\fput) 0.813 0.243 0.753 0.814 0.316 0.784
BiLSTM
S Sequ?nce (all outputs) 0.810 0.241 0.761 0.811 0.314 0.786
xtracte o 3 :
features | examples ggétst;ﬁm 0.818 0.248 0.756 0.819 0323 | 0.788
(minutes) | giy gTM &
Cross- 0.800 0.238 0.767 0.801 0.309 0.784
Attention
Raw Single CNN 0.782 0.228 0.762 0.781 0.296 0.772
sensor |- example | NN & 0.792 0.229 0.759 0.790 0.300 | 0.774
data (minute) |Transfomer
Raw Seqt;?nce CNN
sensor examples |+ BiLSTM 0.819 0.241 0.728 0.821 0.313 0.775
data .
(minutes)

Table 5.33: An overview of the recognition scores of all models, averaged for all labels

In Table 5.33, we include the best-performing model configuration for each of the models we have implemented
and presented in the previous Sections, grouped according to the input type and according to whether we
model a single example or a sequence of examples. First, we used the hand-crafted, pre-extracted features
provided in the ExtraSensory dataset for each example, and we model a single example in order to predict
its activity and context labels, as it was also done in the baselines. In Section 5.4, we have reproduced the
baselines, Logistic Regression models per-label, and a universal MLP(16,16) which includes two hidden layers
of 16 nodes.
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Subsequently, we have continued using the hand-crafted features but we now model a sequence of examples, in
order to predict the labels of the last example by providing context of the immediate past. In Section 5.5, we
have used a two-layer BILSTM to model the input sequence of examples, and we have tested two models, one
using only the final hidden states of the two BiLSTM layers, and one using the outputs of the last BiILSTM
layer for all timesteps. We got the best results for both models, when providing an input sequence of length
window_len = 5 and when using BILSTM layers’ hidden_size = 64. We notice that the respective model
BA scores of 0.784 and 0.786 are an improvement over the baseline scores, which means that providing a
sequence of 5 examples (minutes) including the current example for which we want to predict the labels, is
helpful for our model. We have also experimented with longer sequences of examples, and it was found that
as we increase the sequence length up to 30 examples, the performance of the model decreases.

Our next experiments, in Section 5.6, were attempts to further enhance the BILSTM model. By preceding
the two-layer BiLSTM with a Self-Attention module, we get a further improvement on the BA, which reaches
0.788 when using the best-performing two-layer BILSTM using only final hidden states, and a Multi-head
Self-Attention module with num_heads = 5. Another model that we have implemented, includes a Multi-
head Cross-Attention module after the two-layer BILSTM. The output of the BiLSTM for all timesteps is
used to produce the query Q, while the input features are used to produce both key K and value V in the
Cross-Attention module. This model has similar performance to the simple BiLSTM model, but we use it to
visualize and study the attention weights during inference, for model interpretability.

The next step along the way is to start using the raw sensor measurements for each example, instead of the
hand-crafted features. In Section 5.7 we propose two pipelines based on Deep Learning for feature extraction
from raw sensor data. The first is a CNN-based pipeline for each of the raw sensor modalities, that contains
stacked CNN layers (which include: 2D/1D Conv layer, leaky ReLU, Batch Normalization, and Dropout).
The second one is a CNN-Transformer-based pipeline for each of the raw sensor modalities, that contains four
stacked CNN layers followed by two Transformer Encoder layers. In both cases, an MLP(16,16) takes the
extracted features as input to predict the context labels. Although these feature extraction pipelines produced
the best results among all model architectures and configurations that we tested for Deep Learning-based
feature extraction on this dataset, they still do not outperform the results of the baseline MLP(16,16) using
the hand-crafted features.

Our last experiment, in Section 5.8, is based again on using the raw sensor measurements, but now for a
sequence of examples. We use Time-Distributed CNN pipelines to extract features for all the input sequence
examples, and we model the sequence of extracted features with a two-layer BILSTM, as previously. However,
in this case, we get no substantial improvement in the resulting BA of 0.775 compared to the BA of 0.772 the
CNN-based model for a single example. Again, we have extensively experimented with the hyperparameters
of this model, but we did not succeed in producing better results than the ones reported here.

We notice that, when using the raw sensor data and Deep Learning feature extraction pipelines integrated
in our models, we did not succeed to build models that significantly outperform the baseline MLP(16,16).
This struggle can possibly be attributed to at least two factors we can think of. The first factor is that it is
much more strenuous, and as a result, much harder, to fine-tune the hyperparameters of deep models which
contain numerous layers, with a lot of configurable parameters each. Optimizing these hyperparameters from
scratch is very time-consuming and resource-consuming, and it is not straightforward how to do it in a smart
and efficient way. Thus, one reason for not getting very improved results might be that, although we did
an extensive search to tune the hyperparameter values, there might have been cues that we missed and we
might not have found the best hyperparameter values for the specific combination of model and dataset. In
the models using hand-crafted features, where the number of hyperparameters to be optimized was smaller,
it was more straightforward to tune them and we got better results much easier.

The second factor is that there is a conundrum on whether hand-crafted features or deep neural
representations are better suited for HAR tasks, especially for data collected out of the lab, and also in
cases of using unseen users during inference, for which the data distribution’s distance from the distribution
of the training data might be greater. Research on this topic has been conducted by Bento et al. [Ben+22]
and it was found that when testing on unseen users or datasets, the models using hand-crafted features as
input, tend to perform better. Our findings are in accordance with these results. Moreover, since we use a
dataset which includes many more labels and is very unbalanced, for a lot of the labels we have very few
examples and it is intuitive to think that the representations extracted by the deep neural pipelines for these

210



5.9. Results Overview

labels won’t be robust. Since in our experiments all labels have the same weight when calculating the average
metrics for all labels, irrespectively of the number of samples which have been annotated with each label, it is
important for the model to predict both common labels and rare labels as accurately as possible, to produce
better average recognition metrics.

Overall, by observing Table 5.33, we can see that there is a trade-off between Sensitivity and Specificity, that
was also mentioned in previous commentary of model results, earlier in this thesis. We notice that although
models better suited for this task might produce higher values in both metrics, compared to baseline or
weaker models, when we train a specific model with different hyperparameter configurations or when we train
similar models, when the resulting recognition Sensitivity is higher, the resulting Specificity is usually lower.
In addition, we notice that for all models, the Sensitivity values are not significantly improved, and range
in values up to 0.773. However, the Specificity values, especially in the cases where we use BiLSTM models
and sequences of consecutives examples as input, rise up to 0.810-0.820, which means that on average, the
False Positive predictions of these models are significantly decreased, compared to the baseline MLP(16,16).
In general, since we have tested a wide range of models and we could not get any BA values greater than a
value of about 0.788, we conclude that either the task is inherently flawed because of all the dataset’s noise
and imperfections and the margin for improvement is relatively small by default, or a radical change in our
approach to the specific HAR task is required to produce greater improvements in the recognition metrics,
or both. We present ideas for future research in Section 6.2.
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6.1 Contributions

In this Thesis, we have conducted an extensive study on neural network architectures for Human Activity
Recognition using data collected in-the-wild from wearable devices. We have used the ExtraSensory dataset
which includes data collected from smartphone and smartwatch sensors, from 60 users totaling over 300k
examples (minutes) accompanied with 51 activity and context labels, while each example is annotated with
all relevant labels. We have implemented and trained multiple general-puprose HAR models, in a user-
agnostic setup, and we always test our models in users unseen during training, which makes our task even
more challenging. The contributions of our work are summarized below:

e We have extensively studied the relevant literature on Human Activity Recognition based on non-visual,
wearable sensors, and we have presented a thorough literature review on the Activity Recognition
Chain, a standard pipeline which includes sensor data preprocessing, segmentation, feature extraction
and classification. We have listed the available open-source datasets, and we have reported major
HAR challenges, trade-offs and open problems. We have also studied the architecture and application
of popular Deep Learning models, including DNNs, CNNs, RNNs (LSTM, GRU), Attention and
Transformers, on HAR tasks.

e We have delved into HAR in-the-wild, which transfers the data collection process from the scripted
and controlled scenarios in a lab environment, to totally uncontrolled real-life settings. We have
familiarized ourselves with data collected in-the-wild, namely the ExtraSensory dataset, which is very
rich in content and labels, and better reflects the activities of daily living, but leads to HAR tasks
of increased complexity because of its inherent characteristics, which include extreme label imbalance,
missing sensor data, missing labels, noisy sensor data, wrongly-annotated data, inter-personal and
intra-personal variability.

e We have proceeded to conduct a systematic and widespread exploration of Machine Learning and Deep
Learning models for general-purpose multi-label, multi-task HAR in-the-wild using the ExtraSensory
dataset and the aforementioned 51 activity and context labels. A detailed overview of all our
experiments and results can be found in Section 5.9. Concisely, we have reproduced the best available
baselines, which use hand-crafted features, and we have proposed several models for which we report
improvements on the balanced accuracy (BA), compared to the baselines. These models are based
on a two-layer BiLSTM which takes as input a sequence of consecutive examples, again using the
pre-extracted, hand-crafted features. A Self-Attention module before the two-layer BILSTM was also
found to be useful and further improved the BA metric. We have also experimented with using the
raw sensor measurements instead of the hand-crafted features and extracting features via a CNN-based
or CNN-Transformer-based pipeline integrated in our model, for a single example, or combined with a
BiLLSTM to model a sequence of examples. However, these experiments did not produce much better
results than our baselines.

e We have tried to shed some light on the functionality of our models, by implementing a model with this
specific purpose. We have added a Cross-Attention mechanism after the two-layer BILSTM model, and
we use the BILSTM outputs for all timesteps to produce the Attention queries and the input sequnce
features to produce the Attention keys and values. At inference time, we save the Attention weights for
each example and the respective predictions of the model, while we also have the ground-truth labels
of each example available. In Subsection 5.6.3, we have visualized the Attention weights and we have
thorougly investigated whether they can provide useful insights about which features are more impactful
in the model’s predictions for various labels, and also whether these predictions are meaningful or if
the model is misdirected by false correlations between input features and context labels.

e Along the course of studying for this thesis, exploring the dataset and implementing the aforementioned
models, we have created the Github repository alexvioni/ExtraSensory-functionality which
includes and supports all modules from dataloading, data management, feature exploration and
visualization to the design and implementation of ML/DL models and all the required scripts to train,
test and evaluate them, including metrics and plots. This repository is private as of October 2023, but
might be released to the public at a later date, and it is a ready-to-use framework that can be used
for a wide range of tasks, enabling quick integration of more features and models and fast expansion to
more datasets, domains or tasks.
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6.2 Future Work

We present some ideas for future research based on the insights acquired during studying and conducting
experiments for this Thesis:

e As previously mentioned, in our work we have implemented and trained multiple general-purpose HAR
models, which can be used in any case of multi-label, multi-task HAR, with arbitrary number of labels,
since we do not impose any constraints on label prediction. However, in many HAR tasks we can
take advantage of specific label connections, such as taxonomies of activities or contexts, hierarchical
relations between labels, or labels that cannot coexist, to better define the loss that is used to train
the model and improve model performance. For example, if we know that some labels are mutually
exclusive, we can use the Softmax activation function since we only need to predict one label, the
predominant one, out of the mutually exclusive ones.

e In addition, our models have been user-agnostic, a.k.a. not conditioned on the user, and we always test
our models on users unseen during training to ensure that they can generalize adequately. However,
since each user has his/her own habits and routines and might perform activities in his/her own way,
user personalization could be beneficial for our model and could possibly improve model performance.
Considering that it is difficult to collect annotated human activity data from each new user that we
want to personalize in order to train the model from scratch using only his/her data, we can use a small
amount of data to fine-tune an already trained model, on the specific user. This approach combines
improved HAR performance and the need for only a small amount of annotated data from each new
user, and the resulting model will be adapted to a specific user, and available in his/her wearable device.

e Another interesting direction would be to find unsupervised or semi-supervised ways, e.g., clustering, to
determine which ground-truth labels of the dataset are correct and which examples have been wrongly-
annotated accidentally. This process would enormously reduce the need for manual cleaning and model
training would benefit from a “cleaner” or better curated dataset. Also, instead of discarding the
examples or labels that were found to be unreliable, the loss could be adapted using weights according
to the confidence of each label for the specific example.

e Our next idea is based on the fact that although we mitigate the fact that many of the dataset’s labels
are rare by using inverse label weights in the loss function and we manage to guide the model to predict
all labels and not only the most common ones, the scarcity of examples annotated with the rare labels
results in systems that struggle to model these labels. We propose to incorporate modules which can
assist in this task, by using more labeled datasets to increase the examples annotated by rare labels, or
by leveraging unlabeled datasets using self-supervised learning to extract meaningful representations.
Furthermore, we could expand the aforementioned conundrum on whether hand-crafted features or
deep neural representations are better suited for HAR on unseen users, by including representations
extracted from models based on self-supervised learning, e.g., [Yua+23], in the discussion.

e Another proposal for future work would be to take advantage of this dataset which is very rich in
sensor sources, data and annotations, and transfer the knowledge to models that will use a single sensor
modality during inference time. It would be very interesting to see if we could build and train models
that would achieve similar recognition performance using less sensors or even only a single sensor. In the
same direction, it would also be very interesting to investigate whether we can apply a model trained
on the ExtraSensory dataset on a very different dataset from a different domain, e.g., the E-Prevention
dataset [Zla-+22], and to evaluate its activity recognition potential on out-of-domain datasets without
ground-truth activity labels.

e Finally, in order for the model to be used in real-life applications, real-time inference is required. Still,
our model uses sensor recordings of about 20sec in order to predict labels for each minute of daily living.
It remains to be investigated whether the model can predict labels with similar accuracy using much
shorter sensor recordings, or to explore other options for activity recognition on the fly. Additionally,
the model’s accuracy must be improved in order to be used seamlessly in daily life. Since we have seen
that it is very hard to improve the BA, and there is a trade-off between Sensitivity and Specificity,
in some cases we could choose to optimize Sensitivity, if we care more about eliminating the False
Negatives, e.g., in a healthcare application, or Specificity, if we prefer to eliminate the False Positives.
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