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Abstract

In recent years, the rapid expansion of machine learning has inevitably led to the
integration of artificial intelligence into diverse scientific disciplines, where machine learn-
ing techniques have played a pivotal role in revolutionizing the processing and analysis
of large-scale datasets. This integration has significantly transformed the field of remote
sensing.

This thesis contributes to this evolving landscape by presenting a comprehen-
sive investigation into the classification of multimodal remote sensing data using semi-
supervised Variational Autoencoder architectures. Variational Autoencoders have eme—
rged as a powerful tool for uncovering the underlying patterns and structures inherent
in data, showing significant potential in semi-supervised learning.

The architectural innovation proposed here incorporates a latent feature-level fu-
sion strategy into the Variational Autoencoder framework, enabling the seamless inte-
gration of multiple modalities within the realm of remote sensing. Through a series
of extensive experiments conducted on dataset representing rural area, we demonstrate
the critical impact of encoder selection and latent space dimensionality on classification
performance. The semi-supervised Variational Autoencoder models outperformed tradi-
tionally used methods such as Support Vector Machines and Random Forests, not only
in terms of metrics but also in qualitative performance and uncertainty assessment.

Furthermore, this study provides insights into the strengths and limitations asso-
ciated with data-level fusion and latent feature-level fusion strategies. As we test the
capability of the proposed architectures on progressively larger dataset of urban area,
we gain a deeper understanding of the importance of qualitative analysis, which reveals
valuable insights about the performance of each fusion strategy.

As we navigate the complex landscape of multimodal data analysis, the framework
proposed in this thesis not only offers valuable insights into remote sensing but also
opens up exciting possibilities for creative solutions and applications across a spectrum

of scientific domains.

- Keywords: machine learning, remote sensing, multimodality, variational au-

toencoder, semi-supervised learning, data fusion



Multimodal Remote Sensing Data Classification using Semi-Supervised Variational Autoencoder

ITepiindm

To teheutaio ypdvia, 1 Toryelar avdmTLEnN TN PNy ovixc uddnone odhynoe oTNV EVOWUS
TWOTN TG TEYVNTHS VONUOCUVNG G BLAPOPOUS ETUC TNUOVIXOUS (AADOUS OTIOU OL TEYVIXES
unyavixhc pdinong €gepay TNV ETAVACTACT OTNY ENECEQYAGIA Xl OAVIAUCT]) GUVOAWY OE-
dopEVWY PEYAANG xhipoxag. H evonolnon auty| €yl pépel onpavtinés arlayéc otov Touéa
e TNAemioxoTnone. Auth 1 dlateBr) cUUPBAAAEL ot aUTYH TNV TEOOBO TAEOUGLALOVTUC [l
ONOYXANPWUEVT EQEUVOL YLOL TNV TAEVOUNOT] TWV TOAUTPOTIXDY OESOUEVKY TNAETLOXOTNOTG
YENOWOTOIOVTOC TU-ETBAETOUEVES 0Py LTEXTOVIXEG e Variational Autoencoders. Ou Vari-
ational Autoencoders €youv avadetydel wg Eva toyupd epyolelo yia TNV YEAETN TV UTO—
xeluevwy potiBwv xar dopmy mou yapaxtnellouy TIC EXOVEC TNAETLOXOTNOTS, delyvovTac
ONUOVTIXES BUVITOTNTES OTNY NUL-ETOTTEVOUEYY Hdinom.

H aipyttextoviny| xouvotoula Tou TEoTEVOUUE, EVOWUATOVEL T1) OTEATIYIXY| GUY Y OVEUCTS
dedouévmy ot eminedo latent yopaxtneioTixwy oto mhaloto Tou Variational Autoencoder,
ETUTEETOVTOC TNV ATPOCXOTTY EVOWOUITWOT TOAUTOOTUXMY DEDOUEVV GTOV TOUEN TNG TNAETL -
oxomnone. Méow wag oetpdc EXTETAUEVOY TEROUATOY TOU TpaypatoToLinxay o cOVoAa
OEBOUEVLY TOU ATEXOVILOUV aYROTIXEG YO ACTIXEG TEQLOYES, QUTH 1) UEAETT OVABEXVUEL TO
avTiXTUTO TNG EMAOY TS XWOWOTOLNTY XaL TNG OldoTaong Tou latent ywpou otnv anddoon
tagwvounone. To nui-enonteudueva povtéia Variational Autoencoder Eemépacay Tic mapa-
doctaxeg uevddoue, 6mwe to Support Vector Machine xar to Random Forest, dyt uévo
0C TPOG TLG UETEIXES AAAG X WC TEOG TNV TOLOTIXY amddooT) xaL TNV o3efondTnToL.

Emmiéov, mop€youue pio avdhuoT Ty SUVITOTATWY Xl TGV TEPLOPIOUMY TOU CYETI-
Covton Ue TIC OTEUTNYWES OUVTNENG TOAUTEOTUXWY BEBOUEVWY TGO GE OF Eminedo Oe-
dopévwy xat cUVTNENG o€ eninedo latent yopoxtnelo Tixwy. AoxdlovTog TIC TEOTEWVOUEVES
UQYLTEXTOVIXEC O TMEOOOEUTIXY UEYUADITERO GUVOAD DEDOUEVMY AOTIXMY TEQLOY WY, OTO—
x«to0uE o Barditepn xatavonor Tng onuaciog TS TooTIXAG avAAUGTS, 1) OTolol ATOXAADTTTEL
TONOTIIES TANPOPORIEC OYETXA UE TNV amddOCT Xde GTEUTNYAC SUVTNENG.

Kadde epeuvolye Tov xhddo tne ToAUTEOTIXAC avIAUCTC BEBOUEVLY, TO TAULGLO TTOU
TeoTEVETL GE AUTY TN SLTESY| Ot LOVO TIPOCPEREL TOAUTIIES YVWOELS YIO TNV TNAETLOXOTI~
o1 ahhd emlong TPOGPEREL CUVAPTACTIXEG DUVITOTNTES Yol ONULOVEYIXEC ADCELS Xou Ealp-

HOYEC OE €Vl PAOUO ETLC TNHOVIXODY TOUEWY.

- Aééerg KAerdrd: pnyavixry udidnor, TnAEmoxomnor, TOAUTEOTIXG OEBOUEVA, Vari-

ational autoencoder, nui-emBAenopevn udinor, cdvinin Sedouévwy

II
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Euyapiotieg
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Yyort) Hiextpohdywy Mryovixov xow Mnyavixov Troloyiotov tou Edvixold Metodfou
ITohuteyvelou xadog xou 1 €peuva Tou mpaypatonoinoa oto Earth Observation Labora-
tory tou Arctic University of Norway (UiT). Me tv agoput| howndv mou pou Sivetor, Yo
fela vor euyaploTHOW apyLxd Tov emBAEnovta xodnynth x. [Iétpo Mopayxd, o omnolog,
UECL TV ETOXOB0UNTIXDY TOU BIAAEEEDY GTO TAUIGLO TWY TEOTTUYLOXWY UoINUSTWY AAAd
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University of Norway (UiT). Eniong, oe éhouc 670 gpyacthplo yior T @uhoZevio xou T
Borpdewd Toug, ogellw Tic YepudTepeg evyapioTie pou. H ouvepyaoia xou 1 oo THEEN
OUC HTAY OVATOOTIACTO XOUUATL TNE ETMLTUYOUS OAOXAHPWOTNS TG €pELVAC pou. Idioutépeg
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euydploTeg oLlNTHOELS xou TNV TohOTIuN Borjdela Tou wou Tpocgpepe xad’ OAN TNV SLdpxeLd
¢ ouvepyaoiog yag. Téhog, eluon euyvOU®Y 0TNY 0XXOYEVELS oL oL TOug GlAoug Loy
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1 Extevic nepiindn ota EAANvVIX

1.1 Ewooywyn

T teheutaieg dexoetieg, N yerRon Twv uedddwy unyavixnic udinong €yl QEpeL onuavTixy
ENAVACTUCT, OTOV TOPEN TG TNAETULOXOTNONG, EMTEETOVTOS TNV ATOTEAECUATIXY) ENECEQYU—
ola xou avIAUCT] CUVOAWY BEBOUEVMLY UEYSANG XAluanog (Zhang and Han, 2020). Me
TNV QUTOUATOTOINOY EPYUOLOY OTwS 1) TokvounoT yerone 1 xdhudng I'ng xou BeAtichvo-
VTG TIC TEOPAEPELC TEQIBOUANOVTIXOY PETOBANTOY, Ol TEYVIXES UNYAVIXAC uddnong €youy
eCoheler TNV avdyxn yior EXTETOUEVY YELROVOXTIXT Epyacio xal avilp®Tve TeY VoY Voot
Auté elye we amotéheoya TNV €£0XOVOUNCT) YPOVOL Xl XOGTOUC YLoL TOUG ETOYYEAUOTIES
TNAETULOXOTNOTNG, EVG Topdhhnho eTéTeede VEeg xan O CEIDXEUPEVES EQPUPUOYEC OE OLd-
popa edior (Li et al., 2020, Khelifi and Mignotte, 2020, Zhu et al., 2017, Camps-Valls,
2009). Qotéoo, N yeron YeVddwy unyavixic Uddnone o EQupUOYES TNAETLOXOTNONG
pEPVEL UPXETEC TEOXANOES. H avTWUETOTION dUT®Y TOV TEOXANOEWY EVOL ETUTOUXTIXY Yiol
™ Behtlwon tng oxplBelag xan TNG ATOTEAECUATIXOTNTAG TWVY UEVODWY Unyavixhg udinong
OE EQPUPUOYES TNAETLOXOTNOTG.

Mo amd Tic xOpteg mpoxhrioelc ebval 1) TOLOTNTA TWV BEBOUEVWY TNAETLOXOTNONG, N
omofa umopel vo emneeacTel and TePBUAAOVTINO00C THEAYOVTES, CUUTERLAUBAVOUEVKDY TV
OTUOCPUEODY TAPEUBOAGY, Tou YopUBou Tou acUnTrhpa xou TG vepoxdiudng. Auth
UETABANTOTNTA Pmopel Vo UTOBIoEL TNV aVATTUEY LOVTEAWY UNYOVIXTC Hddnong Tou amo-
TUTIYOLY e oxpifela Ta eyyevi potifo ota Sedopéva (Yuan et al., 2020). Mdhota, n nept-
0PLOPEVT) BLAECUOTNT TWV ETIXETOTONUEVKY BEBOUEVWY LPNATC TotoTNTAC VETEL Lol GAAT
ONUOVTIXT TEOXANGT] YLoL TNV ATOTEAECUATIXT EXTUOELCT) ohyopilumy Unyavixnic wdinone.
To dedopeva TnhemioxoTNoNg ebvar cuyvd ToAdThoxa xon 50ox0 0 Vo epunveutoly, ewdixd
yioe un edwols. To yeyovog autd xahoTd TNy EMOHUAVOT ETIXETWY YEOVOPORA XL do-
TovneY| Sodixacior Tou amontel e€edneupévn YVmoT). §2¢ AmOTEAEOUA, TO ETIXETOTONUEV
dedopéva umopet vo efvar omdvia, eunodilovtag Ty amddoon Twv ohyoplluwy unyavixic
uddnone (Yuan et al., 2020, Zhang et al., 2022). Emniéov, ta 6edouéva TNAETLOXOTNONS
umopel va etvon TepdoTiou peyédoug, VETovTag TeoXhAoEC GTNY anoUXEUOT), TN ETEEEQY U
olot xou TNV avdAUGT) TV BEDOPEVWLY, LOLUUTEQA Yo BOPUPORIXES ELXOVES LIMATC avdAuoTC.
Enfong, ot ahydpripor unyovixic uéinong evogyetot var amattoly onuoayTixols UTOAOYLOTL-
%0U¢ TOpoug, oL omolol UTopel Vo eivon TEPLOPLOUEVOL, ELOXE GE EPUPUOYES EVOWUATWUEVLY

CUG TNUATOV 1) OE EQUPUOYES TPy HOTX0U Ypovou (Zhang et al., 2022). Téhog, ta dedouéva



Multimodal Remote Sensing Data Classification using Semi-Supervised Variational Autoencoder

TNAETLOXOTNOTG €lvor BUVOTO Var Tpogpyovtal and ToAlamholg acinthces. Koabdévag and
Toug aoUNTARES Exel TIg amanToElS enelepyaciog Tou, YEYOVOS Tou xohotd HUGXOAN TNV
EVOWUATWOT BEBOPEVRLY and Bldpopoug awonTtApeg o€ éva uévo povtéro. To dedouéva

outd ovoudlovton mohutpomixd (Li et al., 2022).

1.1.1  AvTuxelgevo tng SITAOUATIXNS

Tao Bayesian veupwmvixd dlxtua £youv 00NyNOEL ONUAVTIXES TEOOBOUS Tl TEAEUTULA YEO-
vio (Wang and Yeung, 2020). Qot6c0, 1 €@opuoyy| TOUC GTNY TNAETOXOTNOT Elvon TEe-
cloplopévn wéyet ottyurc (Shirmard et al., 2022). H Bayesian mpooéyyion twv veu—
POVIX®Y OIXTOWY UTOCYETOL TN OLEUXOAUVOT] TNG OUCLACTIXNG AVIAUOTS TV OEDOUEVHY
TNAETULOXOTNONG, OWHTEPO YOl TNV AVTHIETMOTLOT) TEOXAACENY OTKG 0 VopuUBog SedoUévey,
To opatd GUVOAA BEBOUEVWY xou 1) amoucior Thnpogopldy (Shirmard et al., 2022). Me
YVOUovo Ti¢ To tpbopates épeuves otov Touéa (Wang and Yeung, 2020, Zhang et al.,
2022, Yuan et al., 2020, Shirmard et al., 2022), n napoVoa BIMAOUATIX ETXEVTRMOVETL
oty tagvounon xdiudmng I'ng pe amoteAeouaTind YEPLOUd TMV TOAUTEOTUXMY XAl TEPL-
OPLOUEVAL ETUOTUACUEVRY OEQOUEVMY. LXOTEVOUNE VU OIEQEUVHCOUNE TIG DUVATOTNTEG TNG
Bayesian Yewploac o cuvduooud e teyvinéc Badide pddnone yio vo EETEPACOUUE aUTHY

NV TEOXANCT).
Yuvelcpopeg:

O otbyo¢ g pehétng pag ebvar va emexteivouue To Nui-emPBAendpevo povtéro Varia-
tional Autoencoder (VAE) mou npoteiveton oméd toug Kingma et al. (2014) yio va emitdyoupe
ToEVOUNGCT) TOAUTEOTIXGY BedoUEVWY TNAEToxOTNoNne. Xe avtileon ye to Kingma et al.
(2014), to povtéro pag howBdver undn o dedopéva Light Detection And Ranging (Li-
DAR) xau Hyperspectral Imaging (HSI) yir vo tagvourioer xdde ewovostotyeio tng
exovog. Epeuvolye eniong ) ouyy®veusn twv 600 acinthpwy ot eMiNEdo €XOVOGTOL-
Yelwv xou oe eninedo latent yopoxtnootinwy. H mpooéyyion auty| ebvor xotdhhnin yio
EWMOVEC TNAETLOXOTNONG Xou Umopel v BeATudoel TNy oxpifBeia Talvounong oe olyxplom Ue
uedoooug mou Bacilovton o UEUOVWUEVOUS JCUNTARES. LUVOTTXG, 1) SlaTEBr) Xdvel Tig

oxONOVIEC GUVELGQOREC:

o Ilpocapuoyt evoc Bayesian povtélou Bothdc udidnong yio v xahOel Ti¢ amontioelg

NG TaEIVOUNOTC TOAUTROTUXMY OEQOUEVKY TNAETIOXOTNOTNG.

o AVTWETOTLON NG TEOXANONG TWV TEQLOPLOUEVOL ETIXETOTOINUEVGY DEDOUEVKY TNAETL

OXOTNONG AELOTOLOVTIC TNV NU-ETBAETOUEVT uddnon).
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Figure 1: T'paguxy avanapdotaon Autoencoder

o Aigpehvnom TV BUVATOTATWY TWYV TEYVIXWY GUYYOVEVCTE OEGOUEVLY TOCO OE ENTEBO

latent yopoxTnolo TV 0G0 ot GE ETUTMEDO EIXOVOC TOLYEIWY.

1.2 Oswpntixd vnéBadeo

1.2.1 Variational Autoencoders

Ov VAEs ovopdZovton autoencoders (auroxm&xonomrég) eTeLdY) polpdlovtan TN (B oyt
TEXTOVIXY| XWBLXoTONoTG-amoxmdxonoinone Ye toug autdxwdixonotéc (Figure 1, 2).
(o600, oc aviiieon pe toug mapadoolaxols avtoxmdonontés, ot VAEs cuumélouv
0EdOUEVYL ELGOBOU LYNAGY BlacTdoswy = ot éva latent Sidvuopa z avti Yo éva vieTepuL—
vioTixd ddvuoya r. Ot variational napduetpol ¢ Pehtiotomololvion yio va tpooeyyicouv
v posterior xatovoun py(z|x), n onolo ye tn oepd e Bondd ot BertioTonoinon tng
marginal mdavotntog py(x):

gp(2]7) = po(2|7)

Téoo to variational yovtého ¢, (z|z) 600 xat to povtého tne xatovouic pe(z|2) propolv vo
TopopeTeoTo o0V yenoonouwvTag Bordid VEupmVIXE dixTua e EXTALOEDCUIES TUQUUETOOUC
0 xou p avticTorya.

To xpithpio BeAtiotonoinone tou VAE elvan 1 peyiotonolnon tou xotortotou oplou

mdoavotntoag (evidence lower bound - ELBO), xou otoyeber oty xahOTepn TpOGEYYIoN

TNG TEOYUOTIXAG XATAVOUNG:

bl 2), 0

Llgp(efe)) = By, mlloa” "
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Figure 2: I'paguf avonopdotoaoy Variational Autoencoder

1.2.2 Hp-emPBAenopevrn wadnon pe VAEs

To teheutaio ypovia, 1 mpocoyr €yl otpagel otny NU-emPBAenouevn uddnon Aoyw Tng
OLYVATOTNTOC TNG VO AVTIHETOTILEL TEoBAYUaTa Tatvounong Tou TEPLAUBAVOLY UEYHAO
OYX0 BeBOPEVWY ahhd xan amantolyv 8UoX0AES 1) Samavneéc Sodixaoiec emohuovone. Al
OTIOLWVTAS OEOOUEVY TOCO UE ETIXETEG OO0 XAl YWElG ETIKETES, 1) NU-ETBAETOUEYY pdinon
umopel vo exterécel emBAETOUEVT 1| Un emPBAenopevn udinor, Behtidvovtag Ty dadixaocia
udinone e dedopévar ywpic etéta (Zhu, 2005).

Ou VAESs €youv mpdo@ata amoxTHCEL SNUOTIXOTNTO YIo TNV AVTIUETOTLOT NUL-ETUBAETO—
uevwyv gpyaotwy pdinone. Ou Kingma et al. (2014) mpoteivay Tpelg tpéTOUC YeHONE NG
latent avoamapdotaong Twv dedopévwy yio Tr Bedtinon Tng anddoong TaEvounong yenot-

womotwvtag VAE xou epeic Yo mpooiécouue évayv tétapTo.

1. To npcdto povtéro (M1), mou elorydn and toug Kingma et al. (2014), avagpépeton g
10 latent-feature discriminative povtého (Figure 3). To yovtého autd, nepthapBdvet
exnofdevon evoc VAE oe 6ho tor mapatneolueva Se00UEVa T YLol TV EXTEAECT| Un
emfBAenopevng e€aywyhc latent YetaBAnTdvY 2. XTn oUVEYELR, YENOWOTOIOVTIS TIC
ETIETEC Y, ExToudEVETOL EVag EEYWELOTOC EMBAETOUEVOS TAVOUNTAS OTo SEdoUEVY

ue euxéta (2,y).

2. Xy apyrtextovixt| tou dedtepou povtédou (M2) (Kingma et al., 2014), ot minpo-

opleg TNG ETETAUC EVOWUATMOVOVTAL XaTd TNy eCaywyr| latent yapaxtneloTix®y yia
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Figure 3: Ipagur| avanopdotaoy latent-feature discriminative povtéhou - M1

™ Bedtioon g anddoong tng Ttodwounonc. To M2 elvan éva generative semi-
supervised povtého (Figure 4) mou éyet 0o latent uetoPAnTég, 2 xau ¢. Ou etixéteg
y avTeTwTilovion we elcodog ot Bedopéva Ye eTixéTa xou w¢ latent petaBinth c =y

o€ BedoUEva ywplc eTIXETA.

3. Téhog, to povtého M1+M2 (Kingma et al., 2014), eivar éva stacked generative
semi-supervised HOVIENO TOU GUVOUALEL T TAEOVEXTAUATO TOU NUI-ETUBAETOUEVOU
uovtéhou M2 xau tn latent avanapdotoon dedoyévwy oto poviého M1 (Figure 5).
[or 0edopevar e ETIXETA, OL TOPUTNEOVUEVES UETUBANTES & XaL Ol ETIXETEG Y = C
VewpolvTar o¢ elcodog xa ot latent yetofSAntéc elvan 2z xou u. o 6edopéva ywpls
eTXETA, POVO 1) UETOPBANTH @ avTwetonileton w¢ elcodog xou ol latent yetoBAntéc

elval oL 2z, ¢ XL U.

1.3 MéJodoc

O¢éhouUE Vo aVTWETWTIOOUUE €va TpoBAnua Tallvounong o omolo mepthopfdvel Bedopéva
ond nolomiéc mnyéc. To Sedopéva auvtd oupforilovion wC Ty, Tg, ..., Tp. 2TOYOC UOC
elvor var ONULOURYY|OOUNE £Vl CUCTNHA IOV O)L LOVO EXPETAAAEVETAL To OQPENT) EVOC stacked
generative semi-supervised JOVTENOU AAAS Xot AV THIETWTICEL ATOTEAEOUATING TNV TEOXANON
TOU YELPLOUOU TOAUTEOTIUXMY OEQOUEVWV.

H npotevouevn mpocéyyion wag, Exel wg 0TOYO VoL TUREYEL Lol XUVOTOUO A)GT GTNY
TagLvounoT EovLy TnAemoxonnons. Anogacioous va euBadivouues oe TEONYUEVES oYL
TEXToVIXEG LoveT®VTag To MI+M2 yio nui-emPBAenouevn tadivounon pue VAE. Emduwd-
XOVTOC VO TAELVOUOOUUE TOAUTEOTIXG OEQOUEVA, ETEXTEIVOUUE QUTHY TNV GEYITEXTOVIXN

ue dvo dlaxprttolg Teomoug. Ilpwrtov, yéow NG oLYYWVEUCTC OE ET{TEDO BEBOUEVLY L,
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Figure 5: I'poagun avarapdotaon stacked generative semi-supervised yoviéhou - M14+-M2
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OEUTEQOY, UE TNV EloUYWYY| EVOS TpdoleTtou emmédou latent petoffAnthc yio xde eidog

0edopéVwY (oTE TpayUaToTotnUel cuyyveuon oe eninedo latent yopuxTnELGTIXOY.

Yuyyxwvevon oe eninedo dedopevwy: H apyrtextoviny) M1+M2 €yel oyedi-
a0 TEl Yl VO EVOWUATOVEL To OEGoUEVa o iol eviaio €lcodo yio To Yoviého. Auta Ta
OEDOUEVA, TIOU AVTITPOCWTEVOVIOL WG L1, X2, ..., Tn, Vo UTOPOVGAY VoL EEVOL BLAPORGY TUTWY
OTWS EXOVES, N0 1 xelUevo. JuvOudlovTag To, ONULOVEYOUUE Lo EVOTIOUNUEVT €{COB0
x ToU Ta evowUat®vel Oha pall. Me Ttov (Blo 1pémo Omwe oTNV apyixy TEOGEYYLoN ToU
mpotdinxe and toug Kingma et al. (2014), n ocuvevwuévn elcodoc = yenowonoleiton yio
TNV EXTUBEVOT] EVOC TRy WYIXOU HOVTEAOU X0 EVOC TOEIVOUNTY TAUTOY POV

Yuyywvevon oe eninedo latent yapaxtneioTixwy: llpoteivouue to mul-
timodal stacked generative semi-supervised yovtého 1y Multi-M1+M2. To ornolo avti—
uetwnilel xdde TOTO TWV TORUTNPOVUEVGY OEBOUEVWY T, Ta, ...Tx WS CEYWELOTY| €080
(Figure 6). Kdie petaAnt eto6dou xwdixonoteiton o wio avtiotoyn latent petafBint
21, %2, ..., 2K - AUTéC ol latent peToBANTEC 0T CUVEYELL GUVEVKVOVTOL XAl TROPOBOTOUVTAL
070 undAoirto dixtvo. o Sedopéva Ue ETIXETA, Ol TUPATNEOVUEVES UETOPBANTES X1, X2, ... Tk
XL Ol ETIXETEC I = ¢ VewpolvTan w¢ elcodog xa ol latent yetafintéc elvon 21, 29, ..., 2k
xou u. I BeBopévar ywelc eTéta, uovo ol UETABANTEC X1, Tg, ... Tx AVTWETWTILOVTOL WS

7’ z 7
eloodog xou ot latent petaBAntéc etvan 21, 29, ..., 2, € XU U.

1.4 Eqgoapuoy”n oc BEBOUEVA TNAETLOXKOTNONG

TNV OUVEYELX TUPOUCLALOUUE TOl TELRGUOTA oS, T oTtola Tepthau3dvouy Taklvounom xdhu—
dne I'ng arypo Ty xon aoTix®y Teploy®y yenotuonotwvtog nui-emBienopevo VAE. H tadi-
vounon xdiudne I'nc xatnyoplonowel v emgdvela e I'ne pe Bdon o yopaxtnelotind
NG, CUVATKC YENOHLOTOLOVTOC BOPUPORIXES EXOVES 1) acpogwToypapiec. H avdiuvon o
ETMUXEVTPWVETAL OF BUO UPYLTEXTOVIXES VELPWVIXGY O(TL®Y: MI1+M2 o Multi-M1+M2.

[ v o€lordynon Twy pedddwy allomololue 800 TOAUTEOTIXA GUVOR BEBOUEVLY,
to Trento Ghamisi et al. (2016) xou to Houston (Xu et al., 2019) ta onoio tepthowBd-
vouv tagvounon xdiudne I'ng uiog aypotinhc xou actixfc meptoyfic avtiotoya. To 6o
oUvola Bedopévmy avorlovta Leywplotd. Kdbe olvoho dedopévwy amoteieiton amd 600
€lon 6edouévwyv: LiIDAR xon HSI

O exéveg HSI anotelolvtan omd morhamhd xovdhia pe poouatixée tAnpogopies (Fig-
ures 7a,8a). To oedopéva LIDAR nopéyouv mAnpogoplec upouétpou o pétpa mdvew omd
v emdveto e Vdhaooog (Figures 7b,8b). Ta LiDAR tou Houston mepilopBdvouy

eniong multispectral LIDAR. To multispectral LIDAR anoteheiton and tpla xovdhior ta
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Figure 6: D'pagu avanapdotaon multimodal stacked generative semi-supervised povtého - Multi-

M1+M2
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(b)

Figure 7: X0volo debouévwv Trento: (a) Weudrc RGB avanapdotoaon ue yprion xovahdy HSI, (b)
LiDAR DSM

omola ToEEYOUY TANEOPORIES YIoL TNV YUCT) TNG ETLPAVELIS, OTWS YUHVT| Y1) 1) avpmTOYEVELS
dopéc (Figure 8c).

[ voo ouyxpivouye v enidoon xdde povtélou ypeelaleTon Vo EXTYUHCOUUE Xal Vo
ovahOoOUPE ToL amoTeAEopaTa TNE Taktvounong Tou. T vo xdvoupe Slaxpltée Tig SLdpope
TTUYEC TNC AMOBOCNC TWV HOVIEAWY, EMOTEATEVOUUE TOGO TOGOTIXEC OCO XL TOLOTIXES
TeYVIXEC allohoynone. Ol TOCOTIXES UETPXES TIOU YENOWOTOLOVUE £lval: cUVORLXT) 0pUo—
e (accuracy), oxpifeto (precision), avdxhnon (recall), Baduoroyia F1 (Fl-score) »au
ovvteheotic Kappa (Kappa coefficient). H nototxq agiohdynon yivetaw pe v yeron
YTV Todtvounong xou yoeTtey ofeBaudotntac. Adloloyolue To Uétpo g afefondtnTog
mou Paciletar 0TV opopuAia (homophily based uncertainty - HU) n onola npocéyyilet
Vv ofefoudnTa Twv TEOBAEYEWY TWV XAACEWY, OTOHIULOUEVN AT TNV AVOUOLOTATA TOUG
(Chlaily et al., 2023).

1.4.1 Arypotixn neploy™

LNy Te®T OElpd TEWUUATWY, YENoHLoTOouE To wovtého M1+M2 w¢ Bdorn yio To 8o
Hoc povtého tadvounoneg, mpocupuolovide tny apyrtextovixh twv (Lopez et al., 2020)
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Figure 8: X0volo dedopévev Houston: (a) Peudic RGB avanapdotacn pe yerion xavahioy HSI, (b)
LiDAR DSM, (c) Xpoyatxh avaropdotoorn multispectral LIDAR

10



Multimodal Remote Sensing Data Classification using Semi-Supervised Variational Autoencoder

Table 1: ApyltexTovixy] TV XWIXOTONTOV

Encoder Layers Pooling Activation
# Type in  out Type Size
E1 3X Linear 512 128 - -
E2 3X Linear 1024 256 - -
E3 3x 1D Convolutional 32 128 1D Max pooling 2 SELU
E4 3x 1D Convolutional 128 512 1D Max pooling 2
E5 2x 2D Convolutional 128 256 2D Max pooling 2

ToL oEYWd GYEBdoTXE Yl TadvounoT dnplwy yenowonowvtag to MNIST. Qotéoo,
euelc eotidlouye oty TALVOUNOT| EXOVOCTOLYEIWY EMOVOY TNAETIOXOTNONG, Yo QUTO
TPOTOTOLAOLUE TO TUH A xwdonoinong tne apyttextovixic. o va fertidcoupe To yovté—~
MO [OG, TEWUUATIO TAXOUE UE DLUPOPETIXOUS XWOLXOTONTES, UETOBdANOVTAS TO TTAdTOg, TO
Bédoc xou Toug THnoug EMTEBWY Toug. Anulovpyrooue tov Kwoixonomntr 1 (E1) xou tov
Kwbixonomth 2 (E2) ye tpla TAHpwe cuvdedepéva ypouuixd eninedo o€ dtopopeTind peyédn.
O Kodwornomtic 3 (E3) xou 0o Kewdixoromtic 4 (E4) yenowonoinoay éve A pwe cuvde—
0euévo eminedo axoroudoluevo and Tl 1D cuvehixtnd enineda o€ SLopopeTind UeyEd.
O xwodixonomnthc 5 (E5) enelepydletar patches and ) oxnvy| yenowonowdviag 8o 2D
ouvehxtind eninedo. O ES evowuatdvel yweixéc mhnpogopieg, ahhd €xel umhdtepn ToAU-
mhoxotnta exnofdevone (Table 1).

Hpoxewévou va mpoodloplotel To BéhTioTto péyevog latent yopou, Tou Vo aVTLTEOGW-
TEVEL T DEBOUEVA ELGOBOV, TEUYUATOTOWCUUE TELRQUOTA UE UeYEDT Tou xupalvovTon amd
10 €w¢ 20. Aoufdvovtog unodn 6T To cUvolo bedouévwy Trento mepthauBdver €L xotn-
yopleg, otoyeloaue oe pa oelpd ueyedov latent yweou cuyxpicwwy ye tov aprdud Twv
TdCewv. Apywd, extoudevoaue TNy apyttextovixs M14+-M2 yio toug xwdixorointee E1-E4
ota Sudpopa ueyédn latent yweou. Me Bdon tny anddoom aut®dY TKV TERUUATWY, ETMAELOUE
7o latent péyedog ye v xahTepn amddOOT XAl TO YENOWOTOWOUUE Yo TNV EXTABEUOT)
Tou E5. Téhog, emAéCaue TOV xWOXOTOINTY| UE TNV XAADTERT AmOBOOT Yol TNV EXTAU(OEUOT
g apyrtexTovixc Multi-M1+M2. Agol avahdcoouue to nui-enonteudpeva povtéha VAE,
UENOUUE VoL ToL GUYXEIVOUUE PE TNV ATOBOGCT] TWV EUREWS YPNOWOTOLOUUEVKDY UEVOOWY Sup-
port Vector Machine (SVM) xar Random Forest (RF).

Arné T netpduarto mou deyinoay 6to clvolo dedouévey Tou Trento, mapatnpolue
OTL 1) EMAOYY) TOU XwOLXOTONTH Xou To Uéyedoc Tou latent ydpou emnpedlouvy onuavTL-
x& Ty amédoon tng Tadounong.  Buyxexpwéva, 1 adinon tou peyédoug Tou latent
Yweou dev eCacpaiilel Tdvta BeATiwuévn anddoon (Table 2). Emmiéov, T TELQOUOTIXY)

woc Btadixaoior UE TOUC XWMOXOTOINTES AMOXSAUTTEL Piot agloonueiwTn TopatAenon: €V 1

11
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Table 2: X0Uvoho dedoyévwy Trento: Metpixéc yio To yovtého M1+M2 pe toug xwdixonontéc E1, E2,
E3, xou E4 o dapopetind ueyédn latent yeou

Encoder Latent size Accuracy Precision Recall Fl-score Kappa coeff

10 84.80 73.05 80.51 76.09 78.91
El 15 84.86 72.19 80.76 75.63 79.03
20 84.94 72.38 80.70 75.75 79.13
10 90.44 88.55 92.58 89.94 87.44
E2 15 92.48 92.17 92.92 92.43 90.01
20 88.48 87.70 92.28 88.68 85.01
10 90.24 87.92 91.89 89.40 87.13
E3 15 84.68 71.49 80.50 75.05 78.79
20 89.52 88.13 91.65 89.36 86.22
10 91.13 89.62 92.54 90.76 88.28
E4 15 90.70 88.83 91.93 90.01 87.73
20 91.85 90.10 92.77 91.20 89.21

Table 3: Xivolo dedopévwy Trento: Loyxpion yetpnodvy Twv xohltepwy VAE yovtélwyv xa twv SVM,
RF

Movtélo Accuracy Precision Recall Fl-score Kappa coeff
M1+M2 with E2 92.48 92.17 92.92 92.43 90.01
M1+M2 with E5 96.69 92.55 95.08 93.53 95.59

Multi-M1+M2 with E2 87.49 87.09 91.60 87.85 83.77
SVM 86.34 83.07 88.80 84.83 82.10
RF 88.38 85.38 89.56 86.92 84.62

YENON YWEMWY TANEOPORLWY oTNVy €l0od0 0dnyel ot PelTiwuéva YeTEixd amotehéouaTa,
TOUTOY POV OONYEL XaL OE AyOTEQO UBdLdXELTA amoTEAESUATY, TO ontoto elvar avemdiunto
(Figure 9g). To povtého Multi-M14+M2 nou mepthopfdvel cuyydVELUOY 0TO ETUTESO TwWY
latent yopoxTnElo TIXGY Tapouatdlel TNy xaAlTepn ENBOCT) GTOV BLayWEWOUS UETAE) GTEVE
CLVAPEY XATNYOELOY BAdoTNoNG (Figure 9d). H OTTIXT| OVIAUCT) TV YoETWY TAEVOUNCTS
Topeyel BadiTEpeg AETTOUEPELES OTT CUUTERLPOES TOU UOVTEAOU, ETULCTUAVOVTAG TEQLOYES
obyyuone xou ecpatuévey taivourioewy (Figure 9). Enong, ov ydpteg afefoudtntoc Bo-
ndolv oty xatavénon g autonemoldnone Tou HOVTEAOU Yiol TIC ToEVOUNOES TOU %ol
OTOV EVIOTIOUO TEploy KV maviAg oy yuomng (Figure 10). Muw o AETMTOUEPTC OUYXELOT
ue ta povtéra SVM xan RE avadetnviet tnv avdtepr BuvatdtnTo TaEVOUNoTS TWV TEY VXMV
Bordidg pdinong, ahhd xon T0 yEYOVOS OTL TElVOUV VO €Y0UV UTIODEEC TEPT] ATOBOTIXOTN T

ypovou (Table 3, Figure 9).
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(1)
. Uknown . Apple Trees I Buildings . Ground

Woods Vineyards Roads

Figure 9: Yvoho dedopévwv Trento: (a) Peudric RGB avanapdotaot e yprion xavaidv HSI (b)
Etuéteg, Xdpteg todivéunone yua to poviého M1+M2 pe: (c) E1 yu latent size = 20, (d) E2 v
latent size = 15, (e) E3 ywx latent size = 10, (f) E4 vy latent size = 20, (g) E5 v latent size =
15 and patch size = 5x5, (h) xou yio To povtého Multi-M1+M2 ye E2 vy latent size = 15 xodec
xou v (i) SVM, (j) RF
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Figure 10: X0volo 8edopévewv Trento: (a) Yeudic RGB avonopdotaoy pe yprhorn xovoyv HSI,
(b) Euxétec, Xdptee afefoudtnroc yioo 1o poviého MI+M2 pe (¢) E1 yio latent size = 20, (d) E2
yio latent size = 15, (e) E3 yio latent size = 10, (f) E4 yuwx latent size = 20, (g) E5 ywx latent size

= 15 and patch size = 5x5, (h) xou yio To povtého Multi-M1+M2 pe E2 yio latent size = 15 and
(i) SVM, (j) RF
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Table 4: X0volo dedopévev Houston: Metpixéc yia to povtého M1+M2 pe xwdixononti E2 oe di-
apopeTnd ueyedn latent ydpou

Latent size Accuracy Precision Recall Fl-score Kappa coeff

10 64.75 51.42 76.47 58.39 56.06
20 66.03 51.94 76.58 07.84 58.81
30 77.26 64.12 78.96 68.89 71.53
40 64.79 43.72 65.19 49.86 55.62

1.4.2 AocTtuxv neploy

211 6e0TERT OELRA TELROUATWY YOS, OTOYEVOUUE VoL AELOTIOLGOUYE TOL TROTYOUUEVO ATOTENE -
OUOTO GTO GUVOAO DEDOUEVMY OYPOTIXMY TEEQLOY WY X0 VO DIEEUVACOUUE TNV ATO000T| TOV
nu-emBAenopeVeY Loviéhwv VAE oe éva mo oivieto clivoho Sedouévmy. Suyxexpuuéva,
Véloupe var a€loAoYHOOUUE KOS Vo AmoBMCOLY oL BLoPopeTIXOl TEOTOL GUVTNENG BEBOUEVLY
oty avTHETOTICOVUE oNUoVTXG UEYUAUTERO dpLiud XAACEWY X0l XAJOEC UE TLO BUCOL-
dxprteg Oapopec. Mo va To TeTUYOUPE aUTO, EMXEVTIPOVOUUCTE TNV €LEpEOVNOT TOU
xwoxonont| E2, o omolog €deie ta o eATO0QOE ATOTEAEOUATA OGOV APOEE. TG UETET-
OEIG XL TNV TOCOTIXY AVIAUGT) 0T TEOTYOUUEVAL TELSUATY UG,

"ot To oUvolo dedouévey Houston, 1 €peuvd pog oyetind ue tny enldpact Tou yeyédoug
Tou latent ywpou oty anddoor e TAEVOUNOTE AmoXaAUTTEL OTL Eva BEATIoTO Yéyedog
Tou latent ypou LlooppoTel TNV tavdTNTA TOU oVTEROU Vo avTthaBdveton Tig Bardiéc mohu-
mhoxdtnTeg Twv dedopévewy (Table 4). To povtého M1+M2 xat to Multi-M14+M2 epgovi-
Couv oyuUeY| amédOCT) GTOV EVIOTIOUSO TWV TEQIOCOTEQWY AOTIXWY XATNYORWY. (26T600,
XATOVOOUUE OTL, OF OPLOUEVEC TEQITTWOELS, 1) ECLOOPEOTNCT] TWV BEBOUEVWY ELGOBOL UE
TN GLUYYWVELOT 0To ETEdO TwV latent yopoxtneloTinwy unopel vo 0dnynoeL oe yelpdTERY
amoteréopato. H evowudtwon twv dedopévewy HSI xow LIDAR péow tng ouyywveuong oto
eninedo TV latent yopoxTnEloTIXOY TapéyEl oNUOVTIXES BEATIOOELS GTNY SLdXELoT) UETAUL)
XTI Yoty Ue dtoxpttd pdopata xar LIDAR vrnoypagéc. ‘Ouwe, yio xatnyopleg e mopod-
uota yopoxtneiotxd HSI ¥ LIDAR, 6nwe dudpopa idn dpouwy, ot pédodol cuyywvevong
etvan Ary6tepo amoteheopotixéc (Table 5). H ontnd avdluon twv yaptov tadivounone xau
TV Yoty ofefudtntag Bonldel oty xaTavoNon TV BUVATOTHTOY TOV HOVIEAWY WA,
%S %o OTOV EVIOTIOUO TEQLOY WY OTOL BLPopot TaEVOUNTES avTiETwTIouY Suoxohies
(Figures 11, 12).
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(d)
Uknown
Healthy grass Stressed grass Artificial turf Evergreen trees
Deciduous trees Bare earth Water . Residential buildings
Non-residential buildings I Roads Sidewalks Crosswalks
Major thoroughfares Highways Railways . Paved parking lots
Unpaved parking lots Cars . Trains Stadium seats

Figure 11: Yvolo dedopévev Houston: (a) Peudric RGB avaropdotaoy pe ypriorn xovahiody HST,
(b) Euxértec, Xdptec talivounone yio ta povtéha: (¢) M14+M2 pe E2 v latent size = 30, (d)
Multi-M14+M2 pe E2 vy latent size = 30
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Table 5: X0volo dedopéverv Houston: Metpunée yio ta xahltepa VAE povtéla

Movtélo Accuracy Precision Recall Fl-score Kappa coeff
M1+M2 with E2 77.26 64.12 78.96 68.89 71.53
Multi-M1+M2 with E2 70.81 57.53 80.23 64.41 64.22

Figure 12: Yvolo dedopévev Houston: (a) Peudric RGB avaropdotaoy pe ypriorn xovahiody HST,
(b) Euxétec, Xdptec ofefoudtnroc yia o povtého: (c) M1+M2 model pe E2 vy latent size = 30,
(d) Multi-M14+M2 pe E2 vy latent size = 30
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1.5 XulAtnon xou CUUNECACTUAT

Fevixd, Brénoupe 6Tl oL Tadvountéc eyouv xahlTERT amddOoT 0TO GUVOAO OEDOUEVHV
Trento oe cUyxpion pe to Houston. Ot dlagopéc oe autd Tor oUVOA BEGOUEVKY TEPL—
ApPovouy Tov TUTo ToL TERBAAAOVTOS, TNV TOLUA{N TWY XAJOEWY TOUG XAl TNV QUOT) TGV
dedopévwy LiDAR.

Ev xataxeldy, 1 épeuvd yag €deoe pa toyuet| Bdon yio TNy TagvounoT) TOAUTROTUXGOY
OEDOUEVLV TNAETLOXOTNONG YENOWOTOWWVTAS Uit NU-ETBAETOUEVT Tpocéyyion ue VAE.
Evowuoatovovtag 1660 ToGOTIXES HETPNOEC 600 XAl TOLOTIXY AVEAUGT), XUATUVONIOOUE OTL
N oO&NoN TWV TOCOTIXWY YETPNOEWY OEV avTIoTOLYEl TdvToTE o€ UPNAY ToloTix amd-
doon. Ta melpouatind Yog anoTehéopata AmEdEIEayY TNV ATOTEAECUATIXOTNTO TNS TPOTEVO-
uevng apyrtextovixric tou Multi-M14+M2 povtéhou xon avéEdelloy To TAEOVEXTAUOTA XoL
TOL MELOVEX T~ MATOL TG TROGEYYIGHC MG OTNY TAEVOUNOT) TTOU TOAUTOOTIXGY DEDOUEVWY.
Kaddg ouveyiloupe va e€epeuvolue tov mepitAoxo x6ouo NG aveAucTg TOAUTROTIXMY
OEDOUEVMY, TO TPOTEWOUEVO TAUICLO OVOLYEL TOV BPOUO YLoL XOVOTOUES AUGCELS Xl VEEC

EQUPUOYEC OTOV TOUEN TNG TNAETLOXOTNONG XAl TEQUY AUTOU.

1.6 Amnuoocieboelg

H épeuva mou mparyuatonoinoa oto Earth Observation Laboratory tou Arctic University

of Norway (UiT) odrjynoe otic axdrouvieg dnuoacietoelc:

e Chlaily, S., Ratha, D., Lozou, P. and Marinoni A. (2023). On measures of uncer-
tainty in classification, IEEE Transactions on Signal Processing 71: 3710-3725.

e Khachatrian, E., Sandalyuk, N., Lozou, P. (2023). Eddy Detection in the Marginal
Ice Zone with Sentinel-1 Data Using YOLOv)H, Remote Sensing 15: 2244.
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2 Introduction

We live in the Big Data era (Mashey, 1999). Every second, a vast amount of
various data are produced, stored, and analyzed. According to IDC prediction by 2025
the global volume of digital data will reach 175 zeta bytes. The manipulation of these
volumes creates the need for automation in data analysis which is the role of machine
learning (Murphy, 2012). Specifically, machine learning is a term that includes methods
for pattern recognition, regression or decision making (Murphy, 2012). In contrast to
other methods that use specific predefined instructions, machine learning algorithms
make data-driven decisions based on experience extracted from the examples (Bishop
and Nasrabadi, 2006).

Machine learning has numerous applications in various fields, including healthcare
(Qayyum et al., 2020), marketing (Ma and Sun, 2020), and finance (Henrique et al.,
2019), and is particularly useful in tasks such as clustering, regression, and classification.
In this thesis, we are interested in exploring the application of machine learning in remote
sensing. The integration of machine learning with remote sensing has led to significant
advancements and opened up new research opportunities and innovations. For example,
according to Scheunders et al. (2018), classification problems accounted for 16% of papers
published on remote sensing in ISI Web-Science between 2004 and 2015. These statistics
demonstrate the importance of machine learning in remote sensing data analysis, which
poses numerous challenges.

The purpose of this introduction is to provide readers with a comprehensive overview
of the thesis’s focus. It begins by offering a brief overview of machine learning in section
2.1. The discussion then delves into remote sensing, providing details on its various
types, as well as its historical context in section 2.2. Additionally, the application of
machine learning to remote sensing is explored in section 2.3. The thesis’ objectives
are then described, followed by a detailed literature review of relevant works in section
2.4. By the end of this introduction, readers will have a clear understanding of the

background and context of the research, as well as its significance and contribution to
the field of study.
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2.1 Machine learning

Depending on the availability and the use of the training data machine learning can be
divided into several categories (Mohri et al., 2018). We are going to focus on the three

main ones:

e Supervised learning: Labeled training data are used to learn the correspondence
between the samples and the labels or target values and make predictions for

unseen samples.

e Unsupervised learning: Unlabeled training data are used to learn patterns that

can be also identified in unseen samples.

e Semi-Supervised learning: Training data consists of both labeled and unlabeled

samples to make predictions in unseen samples.

Machine learning is a rapidly growing field with a wide range of applications. From
predicting sales trends (Alon et al., 2001) to identifying fraudulent transactions (Shirgave
et al., 2019), machine learning methods can be used to solve a variety of problems.
In Table 6, we highlight some commonly used machine learning methods and their
applications. These methods can be used to predict patterns in data (Burges, 1998),
classify (Li et al., 2014) or categorize data (Jiang et al., 2012), make decisions based
on conditions (Rish et al., 2001), and identify important features in data (Biau and
Scornet, 2016). Understanding the applications of machine learning methods can help
researchers and practitioners select the appropriate method for their specific problem.

Artificial neural networks (ANNS) are a subset of machine learning systems inspired
by the structure and function of the human brain. They consist of layers of intercon-
nected nodes, or "neurons,” that process information and make predictions based on
input data (Krohn et al., 2019). Deep learning, refers to ANNs with many layers that
allow for complex, non-linear relationships between inputs and outputs (Krohn et al.,
2019).

Deep learning is a powerful tool that has revolutionized various fields such as
computer vision, natural language processing, robotics, and more (Dong et al., 2021,
Alzubaidi et al., 2021). In Table 7, we have listed some of the most popular deep learn-
ing techniques along with their applications. Each technique is uniquely designed to
tackle specific tasks and problems. Understanding their strengths and limitations can

help researchers and practitioners choose the right approach for their applications.
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Table 6: Applications of machine learning methods

Method

Applications

Linear/Logistic Regres-
sion

Model relationships between variables and predicting trends
or patterns in data

Decision Trees /Ran-
dom Forest

Making decisions based on a series of conditions, identifying
important features in data

Support  Vector Ma-

chines

Classifying data into multiple categories, finding the best
boundary between classes

K-Nearest Neighbors

Clustering by finding similar data points, making predictions
based on similar data

Naive Bayes

Estimating probabilities based on prior knowledge, predicting
the likelihood of an event

Artificial Neural Net-
works

Learning complex patterns in data, making predictions based
on large amounts of data

Table 7:

Deep learning techniques and their applications

Deep Learning Tech-
nique

Applications

Convolutional Neural
Networks (CNNs)

Image and video recognition, object detection, segmentation,
and classification.

Generative Adversarial
Networks (GANs)

Image and video synthesis, super-resolution, style transfer,
data augmentation, image inpainting and anomaly detection.

Deep Reinforcement Decision making in complex environments.
Learning
Autoencoders Data compression, image denoising, feature learning, anomaly

detection, image generation and recommendation systems.

Recurrent Neural Net-
works

Language modeling, natural language processing, machine
translation, speech recognition and time series prediction.

Long Short-Term Mem-
ory Networks

Sequence modeling, language translation, speech recognition,
speech synthesis, text generation and music composition.

Transformers

Language modeling, natural language processing, machine
translation and text summarization.

Deep Belief Networks

Unsupervised feature learning, image and audio denoising, di-
mensionality reduction, anomaly detection and speech pro-
cessing.
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Figure 13: Landsat 1 illustration, (Source)

2.2 Remote sensing

Over the past several decades, space-borne remote sensing has emerged as a primary
source of data for a wide range of applications. With the ability to gather information
about the Earth’s surface without direct physical contact, remote sensing has proven to
be a powerful tool. Remote sensing involves the measurement and analysis of electro-
magnetic radiation reflected or emitted from various sources, such as the Earth’s surface,
atmosphere, or oceans (Swain and Davis, 1981). As a result, remote sensing has become
an essential tool for obtaining critical insights and understanding of various phenomena

related to our planet.

2.2.1 Evolution of remote sensing

The history of remote sensing dates back to the early 19th century when photographic
technology became available (Emerling, 2013), and people started to use air balloons and
kites to observe the Earth’s surface (e.g. Gaspad-Felix Tournachon, 1958). Since then,

the technology and techniques used in remote sensing have evolved significantly, driven
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by the need and interest in understanding our planet. Remote sensing has been applied
in various fields such as cartography, agriculture, forestry, meteorology, and military
operations.

Campbell and Wynne (2011) give a description of the evolution of remote sensing
in the 20th century. During World War I, remote sensing techniques such as air pho-
tography were greatly advanced for military surveillance purposes. The use of improved
cameras in aircraft during and after the war provided the potential for innovations like
mapping areas and photogrammetry (use of photographs to make measurements). With
the worldwide economic depression of 1929-1939, remote sensing was first used by the
government to examine the impact of economic crises on the environment. During World
War I, remote sensing expanded to the use of non-visible spectra for deeper penetration
into enemy territories. Research and operations during the war built the theoretical and
practical base for using non-visible spectra, specifically infrared and microwave. This
technology continued to advance, leading to reliable systems not only for defense and
security but also for civilian use.

Remote sensing technology has undergone significant evolution in recent decades.
The Landsat 1 satellite (Figure 13), launched in 1972, was the first Earth-orbiting satel-
lite designed for systematic Earth observation, marking the beginning of an era with
extended availability of multispectral data (Lauer et al., 1997, Goward and Williams,
1997). Along with routine availability of multispectral data for large regions of the
Earth’s surface, there was rapid and broad expansion of uses of digital analysis for re-
mote sensing. Landsat has since served as a model for the development of other land
observation satellites operated by various organizations worldwide (Loveland and Dwyer,
2012).

Instruments with finer spatial resolution were developed by the early 1980s, and me-
ter and sub-meter resolutions were developed by the early 1990s (Campbell and Wynne,
2011). Such progress, combined with the parallel development of geographic informa-
tion systems (GIS), which provided the ability to bring remotely sensed data and other
geospatial data into a common analytical framework, opened new civil application mar-
kets like mapping of urban infrastructure (Jensen and Cowen, 1999), geomorphology (Lo
et al., 1997), and flood management (Lin et al., 2016).

Up to that point, the understanding and use of remote sensing was limited between
the experts. At the beginning of the 21st century, the increasing capabilities of the
internet led to remote sensing products becoming publicly available. This breakthrough

in technology has allowed for a more widespread and accessible use of geospatial data
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and remote sensing products (e.g. Google Earth, 2005). As a result, the field of remote
sensing has experienced substantial growth and innovation, as more researchers and
professionals can now access and analyze geospatial data for a broad range of applications
(Gorelick et al., 2017).

2.2.2 Remote sensors

There are two main types of remote sensors: passive and active. Passive remote sensors
receive energy from the sunlight that is reflected by the targets or radiation that is natu-
rally emitted from the Earth’s surface (Campbell and Wynne, 2011), while active sensors
emit radiation to the object of interest and analyze the reflected radiation (Cracknell,
2007).

Active sensors: Active remote sensors use their own energy source to emit radi-
ation towards the target and detect the back-scattered radiation to generate a remote
sensing image. The main types of active remote sensing sensors include Light Detection
And Ranging (LiDAR), Radio Detection and Ranging (Radar), Sound Navigation and
Ranging (Sonar) and Synthetic Aperture Radar (SAR). LiDAR sensors use lasers to
emit short pulses of light towards the target and measure the time it takes for the light
to reflect back to the sensor, providing high-resolution elevation data for applications
such as topographic mapping, forestry, and urban planning (Dong and Chen, 2017).
Radar sensors emit radio waves towards the target and measure the strength and phase
of the back-scattered signal to generate an image, which is used for various applications
such as short-term weather forecasting and monitoring (Fukao et al., 2014), agriculture
(Dingle Robertson et al., 2020), and military surveillance (Fletcher, 1990). Sonar sen-
sors use sound waves to measure the distance and shape of underwater objects, making
them ideal for marine exploration, fisheries, and naval operations (Kolev, 2011). SAR
sensors transmit electromagnetic waves which can penetrate clouds, haze, rain and fog
and precipitation with very little attenuation. SAR responds to dielectric properties,
geometry, roughness of surface providing information about the texture, composition,
and other features of the terrain (Chan and Koo, 2008). Some examples of active sensors
and their applications are presented in Table 8.

Passive sensors: Passive remote sensors detect the natural electromagnetic radi-
ation emitted or reflected by the Earth’s surface and atmosphere without any external
sources. There are several types of passive remote sensing sensors, including optical,
thermal, and polarimeters. Each type of sensor detects a different range of electro-

magnetic radiation, providing unique information about the region of interest. Optical
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Table 8: Examples of active remote sensing sensors and their applications

Sensor type Radiation emit- Applications

ted
LiDAR Light Topographic mapping, forestry, urban planning
Radar Radio waves Weather monitoring, agriculture, military
Sonar Sound waves Marine exploration, fisheries, naval operations
SAR Microwaves Topographic mapping, disaster monitoring
Altimetry Microwaves Ocean studies, sea level monitoring
Sounder Impulses Weather forecasts

sensors, such as cameras and scanners, which detect visible and near-infrared light are
commonly used for oceanography (Dickey et al., 2006) or to provide information about
vegetation properties (Van der Meij et al., 2017), and water resources (Huang et al.,
2018). Thermal sensors, which detect infrared radiation emitted by objects have been
used in precision agriculture (Khanal et al., 2017) and urban climate tracking (Voogt
and Oke, 2003). Polarimeters, which measure the polarization of the incoming light
are useful in detecting atmospheric properties such as aerosols (Travis, 1992), biomass
tracking, and wetland monitoring (Boerner, 2003). Table 9 provides more examples of

the radiation detected and applications for each type of passive remote sensing sensors.

Table 9: Examples of passive remote sensing sensors and their applications

Sensor type Radiation de- Applications
tected
Optical Visible light Land use/cover mapping, urban planning
Hyperspectral Visible to infrared Mineral mapping, pollution detection
light
Thermal Infrared Surface temperature, wildfire detection
Polarimeters Polarized light Aerosol studies, cloud properties,
Passive microwave  Microwave Atmospheric temperature, precipitation
Radiometers Infrared, ultraviolet ~ Surface temperature, atmospheric studies
Spectrometers Light Mineral identification, vegetation mapping

2.2.3 Multimodality

As previously discussed, individual sensors are capable of producing diverse and com-
plementary data, resulting in datasets that are referred to as multimodal due to the
co-existence of dissimilar modalities. At a human level, the use of multiple sensory in-

formation is a natural process through our senses. For instance, when we experience
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food, our senses of smell, sight, and taste work together to provide us with a more
comprehensive experience.

The utilization of multimodal data holds great potential in various domains. In
the realm of communication, the fusion of hand shapes, mouthing patterns, and hand
positions has been demonstrated to significantly enhance cued speech recognition (Pa-
padimitriou et al., 2021). In the field of medicine, the integration of diverse data sources
such as ultrasound images, laboratory tests, and clinical data has proven to be a robust
strategy for the classification and staging of diseases (Ribeiro et al., 2012). For human-
robot interactions, the use of multimodal data that combines sensory information from
sources like force/torque sensors, visual sensors, and microphones has shown promise
in enhancing user-robot interactions (Chalvatzaki et al., 2014, Zlatintsi et al., 2018).
Furthermore, in sentiment analysis, the proper integration of audio, text, and visual
data can yield notable improvements (Paraskevopoulos et al., 2022). In autonomous
driving, datasets encompassing various modalities like RGB images, LiDAR, thermal
images, and Radars are becoming increasingly important for improving vehicle automa-
tion (Feng et al., 2020). Lastly, in the field of cognitive science, multimodal data col-
lections that incorporate modalities such as eye-tracking, electroencephalography, and
webcams hold substantial potential to enhance predictions related to human cognition
(Giannakos et al., 2019). In all these contexts, the amalgamation of multiple sensory
modalities proves to be a powerful strategy for advancing research and applications.

Similarly, by combining spectral and spatial data, we can obtain a more nuanced
understanding of Earth’s processes. Therefore, by using a combination of different sen-
sory data to train a land classifier, we can achieve more accurate classification results.
The fusion of observations from different modalities is a promising domain in remote
sensing, although it has not been thoroughly investigated (Tsagkatakis et al., 2019).
The vast amount of monitoring satellites and the increasing number of sensors have
resulted in a considerable data collection for a given scene. The integration of remote
sensing sensors provides a more detailed depiction of the observed area, leading to more
precise monitoring outcomes. For instance, although the spectral profiles of vegetation
on the ground and on the roof may not differ significantly, LIDAR data can provide
height information to differentiate them, as demonstrated by (Heiden et al., 2012).

A standardized categorization of fusion problems in remote sensing is frequently
delineated (Gomez-Chova et al., 2015, Rasti and Ghamisi, 2020, Mohla et al., 2020,

Hong et al., 2021). This taxonomy comprises the following four fusion strategies:

1. Sub-pixel-level fusion, which typically processes data on different spatial scales.
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This method involves the use of appropriate transforms to reduce the data-dimensionality

from each modality prior to fusing them at the sub-pixel level.

2. Data-level fusion, where the data sets from different modalities are directly fused
at the pixel level, necessitating the establishment of a direct pixel correspondence

between them.

3. Feature-level fusion, entailing feature extraction for all modalities followed by a
fusion at the feature level, which may encompass both the extraction and selection

of more appropriate attributes.

4. Decision-level fusion, in which distinct processing paths are adopted for each
modality, culminating in fusion at the decision level. This method presumes that

all outputs can be combined to improve the accuracy of the outcome.

Depending on the type of modalities being combined, fusion can be divided into
homogeneous and heterogeneous categories (Li et al., 2022). Homogeneous fusion, such
as spatiospectral and spatiotemporal fusion, aims to address the spatial-spectral and
spatial-temporal resolution trade-offs that occur in optical images due to the imaging
process. On the other hand, heterogeneous fusion involves combining data from differ-
ent imaging mechanisms, such as LiDAR-optical or SAR-optical. Because the imaging
mechanisms of these data sources are entirely different, feature-level and decision-level
fusion methods are typically employed.

Data fusion involves combining multiple datasets to obtain a comprehensive un-
derstanding of a phenomenon. A critical challenge in data fusion is establishing re-
lationships between the different datasets (Gémez-Chova et al., 2015). Deep learning
is a technique that can address this challenge by capturing abstract features from re-
mote sensing observations and learning potential associations between different datasets
through multi-layer learning. This enables deep learning to represent complex relation-
ships in data fusion. Furthermore, deep learning establishes relationships by extracting
abstract features from data samples, which are less sensitive to observation properties
such as sensor type and spatial scale. As a result, deep learning models can establish

robust relationships between datasets (Yuan et al., 2020).

2.2.4 Applications of remote sensing

Remote sensing technology has been accelerated by advances in sensor technology. These

sensors are found on satellites (Kuenzer et al., 2014), Unmanned Aerial Vehicles (UAVs)
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Table 10: Applications of remote sensing

Application Description

Land cover / land use Analyzing satellite images to accurately map land cover and
mapping land use patterns, essential for environmental studies.
Environmental pa- Retrieval of environmental parameters, such as temperature,
rameter retrieval moisture content, and air quality.

Data fusion and down- Merging data from multiple sources to obtain high spatial, tem-
scaling poral, and spectral resolution of remote sensing data.
Information construc- Filling in missing information in remote sensing data caused
tion and prediction by dead lines, gaps, and cloud cover, to construct information

and make predictions.

Object detection and Providing a better understanding of objects in remote sensing

tracking images by detecting and tracking them.

Forecasting Predicting weather patterns, precipitation, etc., using atmo-
spheric measurements and physical laws.

Change detection Detecting changes in the landscape using two registered remote
sensing images taken at different times.

Soil classification Categorization of soils according to their unique attributes.

(Adao et al., 2017), and ground observation stations (Chien et al., 2020), creating space-
air-ground Earth observation systems. Remote sensing space technology has been devel-
oped to meet the demand for large-region and precise environment and resource applica-
tions. Aerial remote sensing technology has been recognized as an effective complement
to traditional space-based platforms because of its flexibility, high spatial resolution,
and data acquisition on demand. Furthermore, ground observation stations have been
established due to the development of new technologies in smartphones and wireless
networks, which produce high-frequency on-the-spot observations that enrich the re-
mote sensing data sources. Overall, the space-air-ground observation systems provide
massive, multi-source, multimodal, multi-scale, high-dimensional, dynamic-state, and
heterogeneous remote sensing big data (Zhang et al., 2022).

Remote sensing is a powerful tool that has numerous applications in various fields.
Useful insights into the applications of remote sensing can be gained from several recent
surveys (Yuan et al., 2020, Ball et al., 2017) that have been conducted. Some of the
most prominent applications of remote sensing are summarized in Table 10.

Researchers in the field of signal processing, computer vision and pattern recog-
nition have conducted their researches in application to remote sensing. Among these
techniques, traditional feature matching methods, such as the scale-invariant feature

transform (Lowe, 1999), have been adapted to enhance remote sensing tasks like image
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registration and change detection (Goncalves et al., 2011, Li, Hu and Ai, 2019). Addi-
tionally, the utilization of principal components analysis, a well-established multivariate
methodology (Jolliffe, 1990), has proven valuable in assessing the reliability of aerosol
parameter retrieval from satellite data (Zubko et al., 2007). Furthermore, the integra-
tion of partial differential equation models, used in image processing and segmentation
(Sofou and Maragos, 2008), has enabled the enhancement of soil structure analysis and
segmentation into homogeneous regions by combining contrast and texture information
(Sofou et al., 2005). Moreover, efficient possibilistic clustering algorithms (Xenaki et al.,
2015) have found effective application in online unsupervised classification of remote
sensing Hyperspectral Imagery (HSI) data (Xenaki et al., 2016). Finally, the imple-
mentation of sophisticated spectral unmixing methods has yielded promising results in
clustering HSI that represent urban and vegetation areas (Mylona et al., 2017), as well
as in the physical interpretation of planetary surface data (Themelis et al., 2012). Signal
processing, computer vision and pattern recognition techniques, along with the integra-
tion of machine learning, collectively shape the evolving landscape of remote sensing,

offering a potent blend of approaches to tackle complex challenges and drive innovation
in the field.

2.3 Machine learning for remote sensing

In the last few years, the use of machine learning methods has significantly revolutionized
the field of remote sensing by enabling efficient processing and analysis of large-scale
datasets (Zhang and Han, 2020). Through the automation of tasks and improving
predictions of environmental variables, machine learning techniques have eliminated the
need for extensive manual efforts and human expertise. This has resulted in time and
cost savings for remote sensing practitioners, while also enabling new and more specific
applications in diverse fields (Li et al., 2020, Khelifi and Mignotte, 2020, Zhu et al., 2017,
Camps-Valls, 2009). However, using machine learning in remote sensing applications
poses several challenges. Addressing these challenges is crucial to improve the accuracy

and effectiveness of machine learning in remote sensing applications.

2.3.1 Applications of machine learning in remote sensing

The integration of remote sensing and machine learning has unlocked new possibilities
for addressing critical environmental issues such as climate change, natural resource

management, and disaster response. For example, in forestry, machine learning algo-
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rithms can be used to automatically identify tree species (Yu et al., 2017) and monitor
the spatiotemporal changes in forest cover (Tariq et al., 2023) or crop yield (Cheng et al.,
2022). Additionally, in water resource management, remote sensing data can be utilized
to monitor water quality and detect pollution (Wang et al., 2017) while machine learning
algorithms can also predict wildfire spread (Huot et al., 2022). Deep learning algorithms
have also shown very promising results for sea-ice and permafrost tracking (Khaleghian
et al., 2021) as well as oceanic eddy detection in polar regions (Khachatrian et al., 2023).

The integration of remote sensing and machine learning has also facilitated progress
in urban planning, where deep learning algorithms can process high-resolution imagery
to analyze urban growth and building footprints (Li, Liu, Wang, Li, Jia and Gui, 2019),
road network mapping (Senchuri et al., 2021) and estimate livelihood (Ratledge et al.,
2022) . Furthermore, in the energy sector, machine learning techniques can be used to an-
alyze satellite imagery to estimate the capacity of solar energy farms (Ravishankar et al.,
2022), identify potential locations for renewable energy installations (Majidi Nezhad
et al., 2021), such as rooftop photovoltaic (Zhong et al., 2021). The combination of re-
mote sensing and machine learning has led to a wide range of applications across various

fields and opened up new avenues for research, development, and innovation.

2.3.2 Challenges of machine learning in remote sensing

However, there are several challenges associated with using machine learning in remote
sensing applications. One of the primary challenges is the quality of the remote sensing
data, which can be influenced by environmental factors, including atmospheric inter-
ference, sensor noise, and cloud cover. Such variability can hinder the development of
machine learning models that accurately capture the inherent patterns in the data (Yuan
et al., 2020). Additionally, the limited availability of high-quality labeled data poses an-
other significant challenge for effectively training machine learning algorithms. Remote
sensing data is often complex and difficult to interpret, especially for non-experts, which
makes labeling it a time-consuming and expensive process requiring specialized knowl-
edge and expertise. As a result, labeled data may be scarce, impeding the effectiveness
of machine learning algorithms (Yuan et al., 2020, Zhang et al., 2022). Furthermore,
remote sensing data can be massive in size, posing challenges in storing, processing, and
analyzing the data, particularly for high-resolution satellite imagery. Machine learning
algorithms can also demand substantial computational resources, which may be limited,
especially in on-board or real-time applications (Zhang et al., 2022). Finally, in light of

the challenges associated with machine learning in remote sensing, the concept of mul-
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timodality becomes even more significant. Remote sensing data may involve multiple
sensors, each with its processing requirements, making it challenging to integrate data
from various sensors into a single model (Li et al., 2022).

Overall, the challenges of using machine learning in remote sensing applications are
significant, but they can be overcome with careful data preparation, algorithm design,

and interpretation.

2.3.3 Machine learning for multimodal remote sensing

The development of artificial intelligence has led to the emergence of deep learning as
a promising approach for modeling complex relationships of real-word observations and
the desired output. Deep learning achieves this by autonomously performing feature
extraction and fusion. Depending on the types of observed data being combined and the
corresponding objectives, deep learning-based fusion of multiple modalities in remote
sensing can be accomplished through a unified framework (Li et al., 2022).

Recent studies have demonstrated the effectiveness of deep learning-based multi-
modal data fusion in a variety of remote sensing applications. For instance, Sharma
et al. (2020) proposed a multimodal version of the YOLO architecture for vehicle detec-
tion using RGB and infrared data. In another study, Wu et al. (2021) used CNNs for
multimodal data fusion and classification of urban areas. Additionally, several studies
have proposed an efficient and effective framework for fusing HSI and LiDAR data using
CNNs (Hang et al., 2020, Zhang et al., 2021, Xie et al., 2022). These findings highlight
the potential of deep learning-based multimodal data fusion for enhancing the accuracy

and reliability of remote sensing applications.

2.4 Objectives of the thesis

Bayesian neural networks have made significant advancements in recent years (Wang
and Yeung, 2020). Nevertheless, their application in remote sensing has been limited
thus far (Shirmard et al., 2022). These approaches hold promise for facilitating the
meaningful analysis of remote sensing data, particularly in addressing challenges like
data noise, sparse datasets, and missing information (Shirmard et al., 2022). Driven
by the latest surveys in the field (Wang and Yeung, 2020, Zhang et al., 2022, Yuan
et al., 2020, Shirmard et al., 2022), the focus of this thesis is to improve the land cover
classification by effectively handling the multimodal and limited labeled remote sensing

data. To this end, we intend to investigate the potential of Bayesian theory coupled
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with deep learning techniques to overcome this challenge.

2.4.1 Literature review and related work

Kingma and Welling (2013) introduced Variational Autoencoder (VAE) as a way to
implement variational Bayes algorithm with deep neural networks. VAEs have shown
great promise in capturing the underlying patterns and structures of remote sensing
images, such as HSI and SAR images. VAEs have been utilized in various applications,
such as desertification detection, soil classification, and multispectral image classifica-
tion. Zerrouki et al. (2021) used VAEs to extract features for desertification detection
in multi-temporal satellite images, while Harefa and Zhou (2021) applied VAEs for di-
mensionality reduction in soil classification with laser-induced breakdown spectroscopy.
Valero et al. (2021) proposed a VAE architecture for feature extraction and classifica-
tion of multispectral Sentinel-2 images. In addition, Ma et al. (2022) integrated a VAE
model with a GAN to better align cross-modal features. Shen et al. (2020) used VAE
to extract spatial and semantic features of the remote sensing image for achieving the
image captioning task.

Classification is a crucial task in remote sensing, and VAEs have also been employed
for this purpose. Wang et al. (2020) and Li et al. (2021) proposed conditional VAEs
with an adversarial training process for HSI classification.

Meanwhile, semi-supervised techniques have gained interest due to the difficulty of
data availability. Kingma et al. (2014) introduced a semi-supervised learning model with
stacked VAEs and applied it for classification in MNIST handwritten digit database, us-
ing this model Connors and Vatsavai (2017) constructed an auxiliary semi-supervised
VAE that takes temporal dependencies into account for the domain of change detection.
Cenggoro et al. (2017) used variational semi-supervised learning to solve the imbal-
ance problem in land use/land cover classification using Landsat 7 satellite images with
six bands. Moreover, Thoreau et al. (2022) introduced a semi-supervised model that
combines conventional neural network layers with physics-based layers for the semantic
segmentation of remote sensing HSI. The study by Arun et al. (2022) utilized a VAE to
map the spatial and spectral data of UAVs and HSI to a common latent space. This
allowed for the creation of a latent graph generator-based classifier that could use both

labeled and unlabeled samples for prediction purposes.
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2.4.2 Methodology and contributions

The aim of our study is to extend the semi-supervised model proposed by Kingma et al.
(2014) to achieve pixel-wise classification of multimodal remote sensing data. Unlike
Kingma et al. (2014), our model takes into account LiDAR and HSI data to provide
a classification for each point in the image. We also investigate the fusion of the two
modalities on either the pixel level or feature level. This approach is more suitable for
remote sensing imagery and can improve classification accuracy in comparison to single

modality-based methods. In brief, the thesis makes the following contributions:

e Adapting a Bayesian deep learning model to cater to the requirements of remote

sensing multimodal data classification.

e Addressing the challenge of limited labeled data in remote sensing by leveraging

semi-supervised learning.

e Investigating the potential of fusion techniques at both latent feature and data

levels.
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3 Theoretical background

This chapter serves as an introduction to the fundamental concepts used in this
thesis. We begin by providing an overview of the basic generative modeling concepts in
section 3.1. We then delve into the specifics of VAEs in section 3.2. Finally, we discuss
how VAEs are utilized for semi-supervised classification in section 3.3. Through this
comprehensive explanation of key concepts, readers will gain a deeper understanding of

the methods and approaches used in the thesis.

3.1 Generative and discriminative models

Discriminative and generative models are two fundamental types of machine learning
models that differ in their approach to modeling the underlying probability distribution
of the observed variables x based on the corresponding labels y. The goal of a discrimi-
native model is to find the decision boundary that separates the different classes of data
in the input space. For example, in the binary case the decision boundary can be repre-
sented by a function f(x) such that if f(z) > 0, the input x is classified as belonging to
one class, and if f(z) < 0, it is classified as belonging to the other class (Jebara, 2012).
From a probabilistic point of view, the discriminative model learns the posterior prob-
ability distribution of the output variable given the input variable, denoted as p(y|x)
(Ng and Jordan, 2001). Contemporary machine learning classifiers primarily consist of
various models, such as logistic regression, support vector machine (SVM), supervised
feed-forward deep neural networks, nearest neighbors, conditional random fields, and
others (Harshvardhan et al., 2020). The common objective of these models is to perform
discriminative classification.

In contrast, a generative model learns the joint probability distribution of both the
inputs x and the labels y, denoted as p(z,y) (Jebara, 2012). Once the model has learned
this distribution, it can be used to generate new samples of data that are similar to the
training data. Generative models are currently employed as effective feature extraction
tools in addition to their conventional use in pattern recognition followed by generation,
regression, clustering, classification, recommendations, topic modeling, text generation,

and other applications (Harshvardhan et al., 2020). To summarize:

e Discriminative: Learning the boundary between different classes of data.

e Generative: Modeling the underlying probability distribution of the data.
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Discriminative models have some advantages over generative models. For instance,
discriminative models are generally faster at predicting new data points, while generative
models often require iterative solutions. Additionally, discriminative models usually have
better predictive performance since they are trained to predict the class label instead
of the joint distribution of input vectors and targets (Ulusoy and Bishop, 2005). Fur-
thermore, training generative models, especially deep generative models, is a lengthier
process since it involves learning a higher number of correlations to create a probability
distribution that resembles the original data (Harshvardhan et al., 2020) as well as mak-
ing strong assumptions about the data structure (Dimakis, 2022). This is in contrast to
discriminative models that simply label instances to their most probable classes.

On the other hand, generative models offer several advantages compared to dis-
criminative models. First, they can effectively handle missing or partially labeled data,
and can leverage a large quantity of unlabeled data to supplement small amounts of
expensive labeled data. Additionally, generative models can handle compositional data,
without needing to see all possible combinations during training. This is not the case
for standard discriminative models (Ulusoy and Bishop, 2005). Generative models also
allow for predicting missing data parts because they provide an understanding of the
data manifold through manifold learning. Furthermore, generative models are versatile,
allowing for multimodal outputs and a single input to perform various tasks without sep-
arate training. Finally, generative models have been shown to enhance data quality in
studies where they generate super-resolution images, among other applications (Turhan
and Bilge, 2018).

3.1.1 Generative models

One of the earliest and highly influential generative models is the Hidden Markov Model
(HMM), which was introduced in the 1960s (Rabiner, 1989). This model has found
extensive application in signal processing, particularly in speech recognition. The HMM
is a generative model that models the joint distribution of hidden states and observations
as a Markov process. It is mainly applied in speech recognition (Rabiner, 1989), but it
has also been used in other domains such as financial and statistical applications (Bhar
and Hamori, 2004), biological sequence modeling (Krogh et al., 1994), and more.
Another important generative model is Gaussian Mixture Model (GMM). GMM is
a type of parametric probability density function that uses a combination of Gaussian
component densities, where the model’s parameters are derived through the Expectation-

Maximization algorithm or Maximum A Posteriori estimation from a prior model (Reynolds
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et al., 2009). In biometric systems, GMMs are typically used as a way to represent the
probability distribution of continuous measurements or features. GMMs have found
use in a wide range of applications, including image and video clustering (Yang and
Ahuja, 1998), speech recognition (Burget et al., 2010), language identification (Torres-
Carrasquillo et al., 2002), anomaly detection (Zong et al., 2018), and others.

3.1.2 Deep generative models

Recently, there have been remarkable advances in the field of generative models. One of
the most significant developments is the use of deep neural networks to learn generative
models (Rezende et al., 2014). According to (Ruthotto and Haber, 2021) deep generative
models refer to neural networks with numerous hidden layers and are trained to approx-
imate complex, high-dimensional probability distributions. Essentially, the objective in
training these models is to learn a probability distribution that is either unknown or
difficult to calculate due to its complexity, using only a limited number of samples.
Deep neural networks have emerged as a powerful tool for learning generative mod-
els, which can generate new data samples that are similar to those in the original dataset.
Two popular types of generative models are VAEs (Kingma and Welling, 2013) and
GANs (Goodfellow et al., 2020). GANs have been particularly successful in generating
high-quality images (Karras et al., 2020) and have also shown promise in audio and text
generation (Zhang et al., 2017). Additionally, GANs can be used for data editing (Zhu
et al., 2020) and data augmentation (Frid-Adar et al., 2018, Waheed et al., 2020). On
the other hand, VAEs are capable of learning complex patterns in data and can extract
informative features from it (Nishizaki, 2017, Kuznetsov et al., 2020). Moreover, they
have been successfully applied to identify anomalies in data and detect potential frauds
(Pol et al., 2019, An and Cho, 2015, Park et al., 2018). This is because VAEs learn
to represent the data in a lower dimensional latent space and can identify samples that

deviate significantly from the learned distribution.

3.2 Fundamentals of VAEs

VAEs are among the most widely used deep generative frameworks. This model does not
rely on strong assumptions and can be trained quickly via back-propagation (Kingma
and Welling, 2013). Although VAEs introduce some approximation errors, the errors
are typically small, especially when using high-capacity models. These characteristics

have contributed to the rapid popularity and growth of VAEs in the research community
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Figure 14: Graphical representation of an autoencoder

(Ruthotto and Haber, 2021). To understand in-depth the idea of VAEs 3.2.6, we need
to introduce some basic concepts like Autoencoders 3.2.1, Probabilistic Models 3.2.2,
Latent Variables 3.2.3 and Variational Inference 3.2.5.

3.2.1 Autoencoders

Autoencoders are a type of unsupervised artificial neural network architecture . They
are used to learn low-dimensional representations of unlabeled data, and consist of two
primary components: an encoder and a decoder. Observed variables z used as input.
The encoder maps the input data x to a compressed representation r, while the decoder
maps the compressed representation back to the original input data Z (e.g., Baldi, 2012)
(see Figure 14). The quality of the encoding is evaluated by how well the input can be
regenerated by the decoder. It’s worth highlighting that an autoencoder is not considered
a generative model, because it only reconstructs the given input.

Autoencoders have gained widespread attention in recent years due to their ability
to perform a variety of tasks, such as dimensionality reduction, feature extraction, and
denoising. Dimensionality reduction is a key application of autoencoders, where the
aim is to map high-dimensional input data to a lower-dimensional space that preserves
as much information as possible. This is particularly useful when dealing with high-
dimensional data such as images or text, where reducing the dimensionality can lead to
more efficient storage and computation (Ryu et al., 2020). Autoencoders are also used
for denoising, where the aim is to remove noise from the input data. This is achieved by
training the autoencoder to map noisy input data to the corresponding clean input data
(Vincent et al., 2008, Alain and Bengio, 2014). Feature extraction is another important
application of autoencoders. In this context, the encoder is trained to learn a compressed
representation of the input data that captures the most important features or patterns in
the data (Zabalza et al., 2016). These learned features can then be used for downstream

tasks such as classification, clustering, or regression.
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3.2.2 Probabilistic models

Probabilistic models can help understand natural and artificial phenomena, predict fu-
ture events, and make automated decisions. These models are mathematical descriptions
of the phenomena and incorporate uncertainty in the form of probability distributions
(Murphy, 2022). Probabilistic models can include both continuous and discrete vari-
ables, and the most complete models specify the relationships between variables in the
form of a joint probability distribution (Murphy, 2022).

So, probabilistic models aim to model a probability distribution for a set of observed
variables z. The true distribution of the data, p*(x), is unknown, so a model py(z) with
parameters # is chosen to approximate it. The goal of learning is to find the value of 0
that makes py(x) as close as possible to p*(x) for any observed z. To achieve this, pg(x)
must be flexible enough to adapt to the data, but also take into account prior knowledge
about the distribution of the data (Kingma et al., 2019).

Frequently, for tasks like classification or regression, the goal is a conditional model
pe(y|z) that estimates the underlying conditional distribution p*(y|z), which represents
the distribution of a variable y given an observed variable x. To achieve this, a model
po(y|x) with parameters 6 is selected to approximate the unknown distribution p*(y|x)
(Kingma et al., 2019).

Neural networks can be used as a type of function approximator that are flexible
and computationally scalable. Neural networks are particularly useful for probabilistic
models, such as modeling Probability Density Functions (PDFs). This is because they
allow for stochastic gradient-based optimization, which makes it possible to scale to
large models and large datasets. Deep learning has been shown to be effective for many
classification and regression problems. For instance, in image classification, deep neural

networks are used to parameterize a categorical distribution:
po(y|z) = Categorical(y; NeuralNet(z))

over a class label y, conditioned on an image x, NeuralNet(.) represents a deep neural
network. (Kingma et al., 2019).

3.2.3 Latent variables

Latent variables are variables that cannot be directly observed but carry information

about the observable world. For instance, a person’s intelligence cannot be measured
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directly, but it can be inferred through IQ tests, making intelligence a latent variable
with respect to 1Q scores (Borsboom, 2008). However, latent variables do not need to
correspond to real-world phenomena. In machine learning, latent variables are used to
elegantly model a variety of applications. For example, in an image recognition model,
latent variables can represent textural and shape information that is not always easily
discernible by humans. The use of latent variables allows for more efficient and accurate
models in many fields, including psychology and health research (Cai, 2012)

To formalize this, let us assume that x is an observed variable and z the corre-
sponding latent variable that can be sampled from a PDF py(2). The distribution py(z)
is often called the prior distribution over z. In case of unconditional modeling marginal

distribution (or marginal likelihood or the model evidence) py(z) over x is given by:

po(x) = /pg(x,z)dz (2)
where and py(x, z) denotes the joint distribution over both x and z.

3.2.4 Deep Latent Variable Models

A probabilistic model that aims to model the joint distribution py(x, z) with parameters
0 is a latent variable model. Deep Latent Variable Models (DLVM) refers to a type of
latent variable models py(z, z) that uses neural networks to parameterize distributions
with trainable parameters §. A major advantage of DLVMs is that even if the individual
factors in the model are simple, like conditional Gaussian, the marginal distribution py(x)
can still be very complex and contain almost any kind of dependency (Kingma et al.,
2019). Therefore, DLVMs are useful for approximating complex underlying distributions.
The most common DLVM is one that implies conditionally dependent variables x and z.

So, the joint distribution py(z, 2) is specified as factorization with the following structure:

po(x, 2) = po([2)pe(2) (3)

The primary challenge in DLVMs is that the integral of the marginal probability
po(z) as described in (2) is intractable (Blei et al., 2017). As a result, it’s not possible
to differentiate it with respect to the parameters and optimize it, as is possible with
fully observed models. The intractability of the marginal probability is related to the

intractability of the posterior distribution py(z|z) through Bayes rule and factorization
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While the joint distribution pg(z, 2) is efficient to compute, both the marginal likelihood

po(z) and the posterior py(z|x) are intractable in DLVMs. However, variational inference

can be used to estimate them.

3.2.5 Variational inference

Variational inference is a method for approximating the conditional density of latent vari-
ables given observed variables or posterior distribution (Bishop and Nasrabadi, 2006).
The objective of variational inference is to estimate an approximate posterior distribu-
tion, g,(z|x), that is computationally tractable. Among the most common approaches
for evaluating the similarity between the posterior and approximate posterior distri-
butions (Bhattacharyya, 1946) is the Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951), which has been widely used in machine learning. The KL divergence

between the posterior and approximate posterior distributions can be written as:

D r(qp(2]7)[pe(2[x)) = Eq, 21z [log g, (2|2) — log po(z|z)] (5)
= Ey, (zz) [l0g ¢, (2]7) — log pg(, 2)] + log pe(x) (6)
= L(g,(2|z)) + log pe(7) (7)

Since the KL divergence is non-negative, we can deduce that logpy(z) > L(g,(z|z)).

This inequality motivate the introduction of the Evidence Lower Bound (ELBO):

p@(% Z)
L =E, (z2a)|log ——— 8
(45(217)) = Eq, (2} [log q@(z‘x)] (8)
To obtain a good approximation of the posterior distribution, we need to minimize
the KL divergence. However, the KL divergence (7) still involves the intractable term
po(x), so it cannot be optimized directly. Instead, we can maximize the ELBO (8), which

is equivalent to minimizing the KL divergence (Blei et al., 2017, Bishop and Nasrabadi,
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2006). Thus, we aim to maximize the ELBO as follows:

q"(z|z) = argmin(Dx (g, (2|2)[|pe(z]x))) (9)
4o (2]7)EQ

= arg max(L(qy(2[2))) (10)
4 (2|2)€Q

Here, () is a family of simple distributions, such as Gaussian and Bernoulli distributions.

3.2.6 Variational autoencoder

VAEs were introduced by Kingma and Welling (2013) as a method for performing ef-
ficient variational inference using artificial neural networks. VAEs are named autoen-
coders because they share the same encoding-decoding architecture as autoencoders
(see Figures 14, 15). However, unlike traditional autoencoders, VAEs compress high-
dimensional input data x to a latent vector z rather than a deterministic vector r (Sec-
tion 3.2.1). The variational parameters ¢ are optimized to approximate the posterior

distribution py(z|x), which in turn helps optimize the marginal likelihood py(x):
gp(2]7) = po(2|7)

Both variational model ¢,(z|z) and the conditional distribution pg(x|z) are parameter-
ized using deep neural networks with trainable parameters ¢ and 6 respectively. The
optimization objective of the VAE is maximizing ELBO, expressed in (8), which aims
to better approximate the true distribution.

To optimize the ELBO using standard gradient-based techniques, Kingma and
Welling (2013) introduced the Auto-Encoding Variational Bayes algorithm to efficiently
compute the gradient of the ELBO. They assume that the distributions py(z) and py(z|z)
are differentiable almost everywhere with respect to both 6 and z. For a chosen approxi-
mate posterior q,(z|z), they use the reparameterization trick, where the random variable
z = q,(z|x) is re-parameterized with a differentiable transformation g, (e, z) of a noise
variable ¢, such that z = g¢,(e,2). This trick allows gradients to be calculated with
respect to mini-batches of data (see Figure 15).

In order to simplify the calculations, Kingma and Welling (2013) assume the varia-
tional approximate posterior g, (z|x) to be a multivariate Gaussian with diagonal covari-

ance matrix. As for the prior py(z) they assume for simplicity a multivariate Gaussian
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Figure 15: Graphical representation of a variational autoencoder

with diagonal covariance matrix N (z; 0, I) although, a full covariance matrix is possible:

Gy (2|2) = N (231, 0°1), (11)
po(z) = N (20, 1), (12)
2= ptoke, (13)

e~ N(0,1) (14)

3.3 Semi-supervised classification with VAEs

In recent years, semi-supervised learning has drawn significant attention due to its po-
tential to address classification tasks that involve large amounts of data but require
difficult, expensive, or expert labeling procedures. By leveraging both labeled and un-
labeled data, semi-supervised learning can perform supervised or unsupervised learning
tasks, with a particular focus on enhancing supervised learning tasks with unlabeled
data (Zhu, 2005).

Semi-supervised learning has a wide range of practical applications, including tu-
mor classification on methylation data (Tran et al., 2022), automatic speech recognition

(Zhang et al., 2020), and semantic image segmentation (Papandreou et al., 2015). In
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these cases, unlabeled data are abundant and easy to collect, but labeling the entire
dataset is very expensive and time-consuming. Semi-supervised learning can help over-
come these challenges by leveraging the unlabeled data to improve the accuracy of
the classification tasks. For example, in tumor classification on methylation data, semi-
supervised learning can improve the accuracy of tumor diagnosis by leveraging unlabeled
data to identify important features that distinguish between tumor and normal samples.

VAEs and generative models have recently gained popularity for tackling semi-
supervised learning tasks. To this end, Kingma et al. (2014) proposed three frameworks
that utilize the latent representation of the data to enhance classification performance
using VAE s.

3.3.1 Latent-feature discriminative model

The first framework (M1), introduced by Kingma et al. (2014), referred to as the latent-
feature discriminative model (Figure 16), involves training a VAE on all the observed
data z to perform unsupervised extraction of latent variables z. Then using the labels
y a separate classifier is trained on the embedding of the labeled data (z,y). The VAE

is trained using the assumptions (11-14) along with:

polz|z) = f(x;2,0) (15)

where f is a suitable function, such as a Bernoulli or Gaussian.
The objective function of the model of this model, Jys1(x) is the negative of ELBO
of the marginal distribution py(x) on the approximate posterior g,(z|z). For a single

data point, it is expressed as:

L(gp(2]7)) = =T (2) (16)

By minimizing Jy1 (), i.e, maximizing ELBO, the VAE learns a compact representation
of the data that captures the most relevant features for classification. The embedding of
the labeled data (z,y) is then used to train a separate classifier, such as SVM, to predict
the class labels of the unlabeled data. This framework has shown promising results on

various classification tasks, especially in scenarios where labeled data is scarce.
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Figure 16: Graphical representation of latent-feature discriminative model - M1

3.3.2 Generative semi-supervised model

In the second model’s architecture (M2), introduced by Kingma et al. (2014), the label
information is incorporated during feature extraction to improve performance on the
classification task. M2 is a generative semi-supervised model (Figure 17) that has two
latent variables, z and c. The labels y are treated as input on labeled data and as a
latent variable ¢ = y on unlabeled data. The joint distribution is factorized with the

following structure:

po(, 2, ¢) = po(x|z, c)p(c)p(2) (17)

The generative process for the data is defined by:

p(e) = Cat(c|r) (18)
p(z) = N(2[0,1) (19)
po(z|z,¢) = f(x;2,¢,0) (20)

Here, Cat(c|m) is a multinomial categorical distribution with probabilities 7, and as be-
fore, f is a simple and suitable function, such as a Bernoulli or Gaussian. The variational

model for each of the latent variables z and ¢ has a factorized form:

Go (2, clz) = gp(2[7) g4 (cl) (21)
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The factor distributions are specified as Gaussian and Categorical:

Q<p<Z|x7 C) ZN(Z|M¢($,C),U<2P(I)I) (22)
gy (clz) = Cat(c|my(z)) (23)

To calculate the objective function of the model, two cases are considered: labeled
data and unlabeled data.

e For labeled data, input variables are z and ¢ = y, and the latent variable is z. The
objective function Jyso(z) of the model is the negative of ELBO of the marginal
distribution py(z, c) on the approximate posterior ¢,(z|x,c). Using the factorized

form from (17), the objective function for a single data point is expressed as:

( po(x|z, c)p(c)p(2) )

1ozl ) (24

log(po(7,c)) > By, (zlz.0)[l0g
= —Lyp(z,c) (25)

e For unlabeled data, only variable z is treated as input, and z and c are treated
as unknown latent variables. By considering again the marginal distribution of
the input(s), the objective function Upso(z) is the negative ELBO of the marginal
distribution pp(z) on the approximate posterior g,(z,c|z). Using the factorized
forms from (17) and (21) the objective function for a single data point is expressed

as:

po(z|z, ¢)p(e)p(z)
SPRESPREER

log(pe(7)) = Eq, (2.l [log (26)

= —Un2() (27)

Hence, the objective function of the generative semi-supervised model is computed by
the bound on the marginal likelihood, encompassing the complete dataset. This is

represented as follows:

jMQ = Z EMQ(I‘,C) + Z Z/[MQ(I‘) (28)

x€labeled z€unlabeled

By minimizing Jype(z) thus maximizing ELBO Lyp(x,c¢) and Uye(z) the VAE
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learns a latent representation of the data that captures the most relevant features for

classification while also solves the classification task.

3.3.3 Stacked generative semi-supervised model

Lastly, the M1+M2 model, introduced by Kingma et al. (2014), is a stacked genera-
tive semi-supervised model that combines the advantages of semi-supervised generative
model M2 and the latent representation of data in model M1 (see Figure 18). The

input variables x are expressed from two levels of latent variables z,c¢,u whose joint

distribution py(z, z, ¢, u) is factorized into:

po(, 2, ¢;u) = po([2)po(2|c, u)p(c)p(u)

(29)
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The generative process for the data is defined as follows:

p(¢) = Cat(c|r) (30)
p(u) = N(ul0, 1) (31)
po(zle,u) = f(z;¢,u,0) (32)
po(z|z) = f(x;2,0) (33)

The variational model for each of the latent variables (z, ¢, and ) has a factorized form:

9o (2, ¢, ulr) = qp(2]2)gp(cl2)gp (ul2; €) (34)

following the corresponding assumptions with the M2. The factor distributions are

specified as Gaussian and Categorical:

qp(ulz, ¢) = N (ulpg(2, ), 05(2)1) (35)
Q¢(C|Z) = C’at(c|7np(z)) (36)
qp(2|2) = N (2|py(x), o2 (2)1) (37)

To calculate the objective function of the semi-supervised model (M14+M2), we need
to consider both labeled and unlabeled data, just like in model M2.

e For labeled data, observed variables x and the labels y = ¢ are considered as
input, and latent variables are z and u. The variational model is g, (z, u|z,c) =
4,(2|7)q,(ulz, ¢). The objective function L£14a2(2, ) is the negative of the ELBO
of the marginal distribution py(x,c) on the approximate posterior g,(z,u|z,c).
Using the factorized form from (29), the objective function for a single data point

is expressed as:

(pe(xIZ)pe(Zlc, w)po()po(w) )
9o (2[2) g, (u]2, ¢)

Ingg(.T, C) > Eqw(z,ulx,c) [lOg (38)
= _£M1+M2(xa C) (39)

e For unlabeled data, only variable z is treated as input, and latent variables are z,
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Figure 18: Graphical representation of stacked generative semi-supervised model - M1+M2

¢, and u. The objective function Upsi4po(x) is the negative ELBO of the marginal
distribution py(z) on the approximate posterior g,(z, ¢, u|z). Using the factorized

forms from (29) and (34), for a single data point, it is given by:

Po(|2)po(z]c, w)po(c)po(u)
9 (2|7)gp(¢l2)gp (ul 2, ¢)

log pe() > By, (z.culz) [l0g( (40)

= —Z/[MH_MQ(]?). (41)

Hence, the objective function of the semi-supervised model for the stacked generative
semi-supervised model is calculated as the marginal likelihood for the entire dataset,

given by the following equation:

Tmsmz = Z Lanyma(z,c) + Z Unii a2 () (42)

xElabeled x€unlabeled

By minimizing Ju14a2(x) thus maximizing ELBO Ly a2(, ¢) and Ungy g ara (),
the VAE learns two levels of latent representation of the data that captures the most
relevant features for classification while also solves the classification task.

As discussed in the section (2.4.1), these models’ architectures have served as the
foundation for numerous classification scenarios. However, a modification for multimodal

data has yet to be introduced. This is precisely what we aim to accomplish in the next
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chapter.
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4 Method

As previously addressed in section 2.4.1, the semi-supervised architectures explained
in section 3.3 have laid the groundwork for various classification scenarios. However, an
adaptation tailored specifically to multimodal data has not yet been presented. Our
primary objective in this chapter is precisely to fill this gap by introducing a framework
capable of accommodating multimodal datasets. Multimodality refers to data encom-
passing two or more distinct modalities. Consequently, our initial stride involves the
introduction of models suitable for handling two modalities, with the subsequent poten-

tial for facile expansion to accommodate additional modalities.

4.1 Multimodal data classification with semi-supervised VAE

Problem definition: We are presented with a classification problem that involves data
in multiple modalities, denoted as xq,xs,...,x,. Our objective is to create a model
that by combining the advantages of deep generative models and effectively managing
multiple modalities, provides an innovative solution to the classification problem using
limited labeled data.

We have decided to delve into the realm of advanced architectures by adopting
M1+M2 for semi-supervised classification with VAE. In our pursuit of classifying multi-
modal data, we have extended this architecture in two distinct manners. Firstly, through
data-level fusion, and secondly, by introducing an additional layer of latent variables for

each modality to enable latent feature-level fusion.

4.1.1 Data-level fusion

M1+4M2’s architecture is designed to integrate multiple modalities into a single input
for the model. These modalities, represented as x1, xs, ..., T,, could be different types of
data such as images, audio, or text. By concatenating them, we create a unified input
x that incorporates all the modalities. In the same manner as in the original approach
described in section 3.3.3, the concatenated input x is used to train a generative model
and a classifier simultaneously.

However, in some cases, the modalities may have variations in shape or the amount
of information they provide. For instance, let’s say we have two modalities: images and

textual descriptions. The images may have different dimensions or resolutions, while
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the textual descriptions may vary in length or level of detail. When we concatenate
these modalities, we implicitly assume that the importance of each modality is directly
proportional to its shape or size. This assumption may not always be true.

In reality, the importance of each modality might not solely depend on its shape
or size. Other factors, such as the inherent relevance or quality of the information
provided, could also play a significant role. To address this, we aim to find a way to
input each modality separately and ensure that they have a balanced influence on the
overall model’s output. By exploring alternative fusion methods, we can potentially

achieve a more nuanced integration of the modalities.

4.1.2 Latent feature-level fusion - multimodal stacked generative semi-supervised

model

We propose the Multi-M14+M2, a multimodal stacked generative semi-supervised model
that treats each modality of the observed data zi, xs, ...z as a separate input (Figure
19). Each input variable is encoded into a corresponding latent variable 2y, zs, ..., 2k
These latent variables are then concatenated and fed into the rest of the network, fol-
lowing a similar methodology as described in section 3.3.3.

Consider our dataset {xgj),xéj), ...,xg), c(j)}é\;l consisting of N i.i.d. samples of K
different modalities 21, 2o, ..., 75 and their corresponding class labels ) € {0,1,2...,C}.
The data generation process involves unobserved latent variables 21, zs, ..., 2k and u. are

obtained from prior distributions pj (21),p5,(22), -, Pj,. (25 ). Then, the values xgj ), xgj ),

e x%) are generated from conditional distributions pg, = (1|21), Pay (22|22), ..., Do (T i |2K)
respectively. The prior and conditional distributions are parameterized by families of
distributions: py, (2;), pe, (z:|z;) for i = 1,2, ..., K. This results in a deep generative model
with one stochastic variable for each modality, whose joint distribution is factorized with

the following structure:

K

Do(T1, Tay . Tk, 21, 2y -y 2K, C, W) = Py 21, 22, .., 2K|C, w)p(c)p(u) Hpai(lﬂzi) (43)
i=1

o1



Multimodal Remote Sensing Data Classification using Semi-Supervised Variational Autoencoder

The generative process for the data is defined by:

p(c) = Cat(c|m) (44)

p(u) = N(ul0, 1) (45)

Po(21, 22, ooy 2 |Cy 1) = N (21, 22, ..o, 2| g (c, u), o (¢, 1)) (46)
pos(wilz) = Cat(x;|mg,(2)),i = 1,2, .. K (47)

To address the task of multi-class classification, we utilize the prior distribution p(c) =
Cat(c|m), which represents a multinomial categorical distribution with probabilities
m = 1/C assigned to each of the C classes. The conditional distributions p(z;|z;) =
Cat(x;|mg,(2;)) in our model are Bernoulli distributions. The probabilities for these dis-
tributions are denoted as 7y, (2;). Following the same approach as with M2 and M1+M2,

we make the assumption that the variational model can be factorized as follows:

qw(Zh Z9, -~7ZK707U|$17$2, $K) =

K
qo(clz, 2o o, 210) (U214, 22, ..., 2K, €) H qp, (zilx:)  (48)
i=1

In this factorization, we specify the distributions as Gaussian and Categorical:

qp(ule, 21, 22, .2k) = N(ulpy(c, 21, 22, . 2k), 0 (21, 22, .2k ) ) (49)
qs(clz1, 22, ..25) = Cat(c|my(21, 22, ..2K)) (50)

To calculate the objective function of the model, two cases are considered: labeled
data and unlabeled data.

e For labeled data, the input variables are x1,xs,...xx,c = y , and the latent vari-
ables are z1, 29, .., 2k, u. The variational model can be expressed as:

K

qgo(zla 22y 4y ZK U‘C, Ty, T2, xK) = @P(u‘zlv Ry -0y RK C) H q%<$l|zl) (52)
=1
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The objective function £(x) of the model is the negative of ELBO of the marginal
distribution py(z1, 2..., i, ¢) on the approximate posterior g, (21, 22, ..., 2k, u|x1, 22,
..xg,c). Using the factorized form from (43), the objective function for a single

data point is expressed as:

1ng9('r17x27 ...$K7C) Z

Do (21, 22, RK, |C, U)pe (C)pe (U) Hfil Do, (% |Zz)]

E K
qw(u‘zla 22y 5 RK C) Hi:l Ay, ($1|ZZ)

Qo (21,222 K U] T1,22,... T ¢ ,C) [log

= —L(z1,x9,..xx,c) (53)

e For unlabeled data, only the variables x1, xo, ...xx are treated as input, while zq, 2,
...y 2K, C, w are treated as unknown latent variables. Similar to the labeled data case,
the objective function U (xq, x2, ...x ) is the negative ELBO of the marginal distri-
bution pp(x1, 2, ...T k) on the approximate posterior ¢, (21, 22, .., 2k, ¢, |1, Ta, ...TK).
Using the factorized forms from (43) and (48) the objective function for a single

data point is expressed as:

log po(x1, 2, ..0x) >

po(21, 22, -2, | ¢, w)pa(c)po(w) TTE, po, (x:]2:)

q%(dzla 22, - RK, )Q@<u|217 22y -y RK C) Hzlil q%<$€i|2¢>

Eqw(zl,zz,..,z;(,c,u T1,T2,...TK ) UOg

= —Z/{(,Tl, Ta, ZL‘K) (54)

Therefore, the objective of the semi-supervised model for the stacked multimodal

model, calculated as the marginal likelihood for the entire dataset, is as follows:

j: Z ,C(.Tl,xQ,...xK,C)‘i‘ Z U(xlaan“'xK) (55)

labeled unlabeled
In this problem formulation, the term gq,(c|z1,22,..2x) = Cat(c|m,(21, 22, ..2K)) rep-
resents the classifier. Like in any classification problem, the output is a categorical
distribution that provides a score for each class.

By minimizing J, the VAE aims to maximize the ELBO L for labeled data and U

for unlabeled data. This process allows the VAE to learn latent representation for each
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modality in the data. These latent representations capture the essential features needed
for classification while simultaneously addressing the classification task.

In summary, we have proposed a technique for conducting data-level fusion with the
semi-supervised VAE model M1+M2. Additionally, we have introduced an extension of
this model, named Multi-M1+M2 that enables latent feature-level fusion.
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Figure 19: Graphical representation of multimodal stacked generative semi-supervised model - Multi-

M1-+M2 architecture
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5 Experimental evaluation

This section presents the experiments, results, and analysis of multimodal data clas-
sification using semi-supervised VAE in two land cover pixel-wise classification scenarios.
Land cover classification involves categorizing the Earth’s surface into different classes
based on its physical or biological characteristics. It involves analyzing satellite imagery
or aerial photographs to determine the distribution of land cover types in a particular
area or region. Pixel-wise classification is implemented which classifies individual pixels
in an image into different categories based on their characteristics.

The neural networks employed for analysis are the ones described in section 4: (1)
M1+4+M2 architecture, which treats both modalities as a single input, and (2) Multi-
M1+M2 architecture, designed to process two separate modalities independently as de-
picted in Figure 20. Both of these architectures are implemented using PyTorch (Paszke
et al., 2019). We compared M1+M2 and Multi-M14+M2 classification results with the
well-known Support Vector Machines (SVM) and Random Forest (RF) classification
methods. SVM and RF are implemented using scikit-learn (Pedregosa et al., 2011).

The primary objective of this experimental section is to assess the architectures’
quality and robustness. We achieve this by utilizing two multimodal datasets, namely
Trento and Houston which represent an urban and rural area respectively. The two
datasets are analyzed separately. Each dataset consists of two modalities: LiDAR and
HSI and more details regarding each dataset will be provided in subsections 5.2.1 and
5.3.1 respectively.

Section 5.1 will present the evaluation methods applied for comparing the developed
architectures. Furthermore, section 5.2 and section 5.3 elaborate on the experimental
procedures and analysis carried out on the Trento and Houston datasets respectively.
Lastly, section 5.4 offers an overall comparison on the architectures performance in both
of the datasets.

5.1 Evaluation methods

To compare each method’s performance we need to assess and analyze its classification
results. To achieve this, we employed both quantitative and qualitative evaluation meth-
ods to capture different aspects. The quantitative evaluation utilized metrics such as

accuracy, precision, recall, Fl-score, and Kappa coefficient. Meanwhile, the qualitative
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assessment involved an examination of the classification maps and uncertainty maps.
These offer valuable insights into each architectures’ outcomes. The following section

outlines the evaluation methods under consideration.

5.1.1 Accuracy

Accuracy, in the context of classification, is a measure of how well a classification model
or algorithm correctly identifies or predicts the target classes or categories. It is typically
calculated as the ratio of the number of correct predictions to the total number of
predictions made by the model. The formula to calculate accuracy (Hossin and Sulaiman,
2015) is:

Number of Correct Predictions (56)

Accuracy =
4 Total number of Predictions

Accuracy is a commonly used evaluation metric, especially when the classes are balanced,
meaning they have similar proportions in the dataset (Hand, 2012). However, accuracy
alone may not provide a complete picture of the model’s performance, particularly in
scenarios where the class distribution is imbalanced or the cost of misclassification varies
across classes.

In imbalanced datasets, where one class dominates the sample, accuracy can be
misleading. For instance, if 95 of instances belong to Class A and 5 belong to Class
B, a naive model that predicts all instances as Class A would have a high accuracy
of 95%, but it would fail to correctly predict any instances of Class B. In such cases,
additional evaluation metrics like precision, recall, Fl-score, or Kappa coefficient may

be more informative (Hand, 2012).

5.1.2 Precision

Precision measures the proportion of correctly predicted positive instances out of all in-
stances predicted as positive. Precision is calculated using the following formula (Hossin

and Sulaiman, 2015):

Precisi True Positives (57)
recision =
True Positives + False Positives

True Positives are the number of instances correctly predicted as positive, while False
Positives are the number of instances incorrectly predicted as positive when they are
actually negative. In the case of multiple classes we calculate as precision the average of

the precision for each class, this method is called macro averaging (Hossin and Sulaiman,
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2015).
Precision focuses on the quality of positive predictions and disregards instances that
are incorrectly predicted as positive. Precision is particularly useful in situations where

the cost of false positives is high.

5.1.3 Recall

Recall, also known as sensitivity or true positive rate, is a performance metric used
in classification and information retrieval tasks to evaluate the ability of a model to
correctly identify positive instances. It measures the proportion of true positive instances
that are correctly predicted as positive out of all instances that are actually positive.

Recall is calculated using the following formula (Hossin and Sulaiman, 2015):

True Positives
Recall = o8
ced True Positives + False Negatives (58)

True Positives represent the instances that are correctly predicted as positive, while
False Negatives represent the instances that are incorrectly predicted as negative when
they are actually positive. For multiple classes we calculate recall with macro averaging
for all the classes (Hossin and Sulaiman, 2015).

Recall focuses on the ability of the model to identify positive instances and avoid
false negatives. Recall is particularly important in scenarios where missing positive

instances carries significant consequences.

5.1.4 F1l-score

The Fl-score is a commonly used performance metric in classification tasks that com-
bines precision and recall into a single value. It provides a balanced assessment of the
model’s accuracy in predicting both positive and negative instances. The F1l-score is

calculated using the following formula (Hossin and Sulaiman, 2015):

2 x Precision x Recall
F1— = 59
seore Precision + Recall (59)

We choose to evaluate on F1-score since it is particularly useful when the class distribu-
tion is imbalanced or when both false positives and false negatives have similar costs or
implications. It gives equal importance to precision and recall, taking into account both

the positive and negative class predictions.
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5.1.5 Kappa coefficient

The Kappa coefficient (Cohen, 1960), also known as Cohen’s Kappa, is a statistical
measure that assesses the level of agreement between two raters or evaluators when
classifying categorical items. The Kappa coefficient takes into account the agreement
between the observed agreement and the expected agreement that occurs due to chance.
It corrects for the possibility of agreement occurring randomly and provides a more
reliable measure of agreement than simply calculating the raw agreement rate. The
Kappa coefficient ranges from -1 to 1, where: A value of 1 indicates perfect agreement
between the raters or classifiers. A value of 0 indicates agreement that is no better than
chance. A negative value indicates agreement that is worse than chance. The formula
to calculate the Kappa coefficient is as follows (Sim and Wright, 2005):
P, — P

Kappa = 1P (60)
Where P, represents the observed agreement, which is the proportion of agreement
between the raters. P, represents the expected agreement, which is the proportion
of agreement expected by chance. To calculate the expected agreement P,, the Kappa
coefficient considers the marginal probabilities of each rater’s classifications and assumes
independence between the raters. It is calculated as the product of the proportions of

items assigned to each category by each rater.

5.1.6 Classification map

A classification map is a visual representation of the categorization of classes within a
specific geographic area. It provides a spatial depiction of the distribution and extent of
various classes or categories of interest. These maps enable decision-makers, researchers,
and planners to analyze and understand the spatial patterns and relationships between
different classes, identify areas of interest, monitor changes over time, and make informed

decisions based on the information conveyed by the map.

5.1.7 Uncertainty

An uncertainty map is a spatial representation that depicts the level of uncertainty or
confidence associated with the classification or prediction of different features or classes
within a specific area. Uncertainty serves as a valuable tool for decision-making by

providing information about the reliability or uncertainty of the classification results
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(Chlaily et al., 2023). It can offer insights into areas where the classification results may
be less reliable, indicating the need for further investigation or data collection (Amodei
et al., 2016). This information is crucial for making informed decisions and utilizing the
classification results cautiously in subsequent applications or decision-making processes.
By incorporating uncertainty maps into the analysis and interpretation of classification
results, users can gain a better understanding of the limitations and potential errors in
the classification process.

To assess and quantify uncertainty in classification results, various approaches and
techniques can be employed. These include measures such as variance, Gini-Simpson
index, or Shannon entropy (Shadman Roodposhti et al., 2019). In our analysis, we
utilize the Homophily-based Uncertainty using Energy distance (HU) approach that
Chlaily et al. (2023) proposed:

C C
A pIH ® Hp* . Zizl Zj:l p*ip*jd((b‘; Qj>2
Piax © Hpmax PraxH © Hpmax

HU (y.) (61)
Where p, is a probability vector associated with a classifier’s outcome 7/,. Symbols .7
and ® denote the transpose operator and Hadamard product, respectively. Also, H
denotes the distance/similarity measure between the probability distributions ¢; and g,
corresponding to classes ¢ and j, respectively. And where pp.. = argmaz(p’ H ® Hp,).

The concept of HU considers the likeness between classes and can be interpreted as
a weighted summation. In this scheme, greater weights are allocated to classes that are
farther apart. This is achieved through the utilization of a matrix denoted as H. This

matrix quantifies the Energy distance between the probability distributions of classes.

H = (d(gi, qj) h<ij<c = (\// 1Qi(z) — Qj()|[? diU) (62)
(

27])6{1770}2

Where C'is the number of classes and (); and @); are the cumulative distribution functions
for classes i and j, respectively. Consequently, HU quantifies the extent to which a

classifier deviates from one that confuses distant classes.
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¥ 63 channels — x; = HSI modality

¥ 9 channels —— 25 = LiDAR modality

Figure 21: Trento Dataset: Modalities representation

5.2 Rural area classification

5.2.1 Trento dataset

The Trento dataset represents a rural area located in the city of Trento, Italy (Ghamisi
et al., 2016). This dataset comprises two modalities: HSI data and LiDAR Digital
Surface Model (DSM) data (Figure 21). The HSI consists of 63 bands spanning the
spectrum of 402.89 — 989.09nm, with a spectral resolution of 9.2nm. Figure 22a illus-
trates a false-RGB representation of the entire scene using HSI bands. The LiDAR DSM
data provides elevation information in meters above sea level, with a spatial resolution
of Im (Figure 22b). The dataset size is 600 x 166 pixels.

The scene has been partially labeled with six classes, as outlined in Table 11 and
illustrated in Figure 22c¢. These classes offer a general indication of the presence of woods,
apple trees, vineyards, ground areas, and more detailed identification of human-made
structures. Table 11 gives also information about the number of training and testing
samples for different classes. Additionally, we have utilized 1000 randomly selected
unlabeled data points for unsupervised learning purposes. We use 20% of the training

test for validation during the training process.

5.2.2 Experimental process

In our initial series of experiments, we employed the M1+M2 model as a basis for our
classification model. The code implementation for these experiments was based on the
repository provided by Lopez et al. (2020), which originally implemented the M1+M2
model for handwritten digit classification using the MNIST dataset. However, our focus
was on point-wise remote sensing image classification, so we made modifications to the
encoding part of the original architecture.

To explore different possibilities and improve our model, we experimented with var-

ious encoders. These encoders were varied in terms of their width, depth, and layer
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Figure 22: Trento dataset: (a) A false-RGB representation using HSI bands, (b) LiDAR DSM, (c)
Ground truth labels
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Table 11: Trento dataset: Color code and name of classes, number of training and test samples

Class Number of Samples

No Color Name Labelled Training Testing

Co Uknown 69386 1000 0
c1 Apple Trees 4034 129 3905
cao Buildings 2903 125 2778
c3 - Ground 479 105 374
Ca Woods 9123 154 8969
cs L Vineyards 10501 184 10317
c6 Roads 3174 122 3252
Total 99600 1819 29395

Table 12: Encoders’ architectures and configuration

Encoder Layers Pooling Activation
# Type in  out Type Size
El 3% Linear 512 128 - -
E2 3X Linear 1024 256 -

E3 3x 1D Convolutional 32 128 1D Max pooling
E4 3x 1D Convolutional 128 512 1D Max pooling
E5 2x 2D Convolutional 128 256 2D Max pooling

SELU

NN DN

types. Table 12 contains details about each encoder’s architecture. Specifically, we im-
plemented Encoder 1 (E1) and Encoder 2 (E2), which consisted of three fully-connected
linear layers with increasing feature sizes. In contrast, Encoder 3 (E3) and Encoder 4
(E4) utilized a fully connected layer to input the data into three 1D convolutional layers
of increasing size. Additionally, Encoder 5 (E5) was designed to process patches of size
n X n from the scene and incorporated spatial information through two 2D convolutional
layers. It is important to note that E5 had a higher training complexity compared to
the other encoders due to its patching nature. Every encoder utilized the Scaled Ex-
ponential Linear Unit (SELU) as its activation function. We prefer SELU over other
activation functions since it addresses the vanishing and exploding gradient problems
that can occur in deep networks, promoting more stable and efficient training Goceri
(2019). We also incorporated a dropout rate of 0.1 for effective regularization purposes.

In order to determine the optimal latent space size, which represents the input
data, we conducted experiments with latent spaces ranging from 10 to 20. Considering
that the Trento dataset comprises six classes, we aimed for a range of latent space sizes

comparable to the number of classes. Initially, we trained the M14+M2 architecture
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Table 13: Trento dataset: Test set metrics for the M1+M2 model with encoders E1, E2, E3, and E4
on different latent spaces

Encoder Latent size Accuracy Precision Recall Fl-score Kappa coeff

10 84.80 73.05 80.51 76.09 78.91
El 15 84.86 72.19 80.76 75.63 79.03
20 84.94 72.38 80.70 75.75 79.13
10 90.44 88.55 92.58 89.94 87.44
E2 15 92.48 92.17 92.92 92.43 90.01
20 88.48 87.70 92.28 88.68 85.01
10 90.24 87.92 91.89 89.40 87.13
E3 15 84.68 71.49 80.50 75.05 78.79
20 89.52 88.13 91.65 89.36 86.22
10 91.13 89.62 92.54 90.76 88.28
E4 15 90.70 88.83 91.93 90.01 87.73
20 91.85 90.10 92.77 91.20 89.21

for encoders E1-E4 across the various latent space sizes. Based on the performance of
these experiments, we selected the best-performing latent size and utilized it to train
E5. Finally, we selected the best-performing encoder based on the evaluation methods
described in section 5.1 to train the Multi-M1+4M2 architecture.

Throughout all our experiments, we employed the Adam optimizer with an initial

learning rate of le-4 and trained the models for 500 epochs.

5.2.3 Results

Table 13 presents the classification accuracy, precision, recall, Fl-score, and Kappa
coefficient for each latent space and different encoders. The highest score for each
encoder is marked in italics, while the best performing combination of encoder and
latent size is marked in bold. By selecting an appropriate latent size and autoencoder,
we can strike a balance between performance and computational efficiency.

Regarding the impact of latent size on performance, it is observed that increasing
the size of the latent space for E1 positively affects its performance, although this effect
is not as pronounced for the other models. Specifically, for E2, a latent size of 15 yields
the optimal results, while for E3, a latent size of 10, and for E4, a latent size of 20.

E1, which features the smallest linear layers, exhibits the lower performance. Com-
paratively, convolutional encoders E3 and E4 produce results that are on par with the
larger linear encoder E2. Notably, E2 consistently outperforms the others across all

metrics. Moreover, the convolutional nature of E3 and E4 comes with increased com-
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Figure 23: Trento dataset: Test set metrics for the M14+-M2 model with encoders E1, E2, E3, E4 and
E5 on latent size = 15, (a) Accuracy and Fl-score, (b) Precision and recall

Table 14: Trento dataset: Comparison of test set metrics for the best VAE models with SVM and RF

Model Accuracy Precision Recall Fl-score Kappa coeff
M1+M2 with E2 92.48 92.17 92.92 92.43 90.01
M1+M2 with E5 96.69 92.55 95.08 93.53 95.59

Multi-M1+M2 with E2 87.49 87.09 91.60 87.85 83.77
SVM 86.34 83.07 88.80 84.83 82.10
RF 88.38 85.38 89.56 86.92 84.62

putational complexity. It is interesting to emphasize that greater complexity does not
necessarily translate to improved performance in this context.

Based on the findings from the experiments in encoders E1 through E4, a latent
size of 15 is selected for the training of the more computationally expensive E5, which
utilizes patches of size 5x5.

Figure 23 depicts bar plots illustrating the classification accuracy, precision, recall,
and F1l-score across various encoders within the M1+M2 architecture’s latent space set
at 15. Focusing on Figure 23a, we observe that the Fl-score consistently registers lower
values than accuracy. This difference arises due to accuracy’s failure to account for data
imbalances. Notably, certain encoders like E2 and E4 exhibit narrower gaps between
these metrics, indicating their effectiveness in addressing data imbalance issues. In
Figure 23b, another pattern becomes evident: recall consistently outperforms precision.
This pattern signifies our architecture’s effectiveness in identifying a majority of correct
outcomes, though it may struggle to deliver a higher ratio of relevant-to-irrelevant results.

Table 14 presents the performance metrics for different models, including M14+M2
with the best performing encoder using patching (E5) and without patching (E2), as well
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Figure 24: Trento dataset: (a) A false RGB representation using HSI bands, (b) Ground truth
labels, Classification maps for M1+M2 model with (¢) E1 on latent size = 20, (d) E2 on latent
size = 15, (e) E3 on latent size = 10, (f) E4 on latent size = 20, (g) E5 on latent size = 15 and
patch size = 5x5, (h) Multi-M1+M2 model with E2 on latent size = 15 and (i) SVM, (j) RF

as the Multi-M14+M2 model, SVM, and RF. The purpose of this table is to compare the
performance of these models based on various metrics. By examining these metrics, we
can gain insights into the effectiveness of different models and make informed decisions
regarding our selection.

In addition to the quantitative metrics presented in the previous section, it is also
important to consider the visual representation of the classification maps to gain a
deeper understanding of the model’s performance. Figure 24 provides an overview of
the classification maps for the entire dataset, including both labeled and unlabeled data
points. The latent sizes with the highest metrics for E1, E2, E3, and E4 were selected
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for display in this figure.

While E5 demonstrates the best metrics on the test set, a closer examination of
Figures 24c¢-24g reveals that the classification maps generated by this encoder exhibit
a higher degree of blurriness when applied to the entire image. This blurriness may
indicate a loss of detail and precision in the classification results. To mitigate this issue,
we have chosen to incorporate E2 into the Multi-M1+M2 model. By referring to Figure
24h, Figure 24i, and Figure 24j, we can observe the classification maps for the results
obtained using the Multi-M1+M2 model, SVM, and RF, respectively.

Figure 25 presents the uncertainty maps for the selected classifications using the
Homophily uncertainty approach. The Homophily matrix in Equation 63 is defined using
the energy distance.

In the uncertainty maps, lower uncertainty values are represented by blue colors,
indicating areas where the classifier exhibits higher confidence in its classifications. As
the uncertainty values increase, the colors transition from blue to red, indicating areas
where the classifier is more uncertain due to the presence of closely related classes or
a small number of classes. As the uncertainty values approach red, it signifies higher

confusion between multiple or more distant classes.

c1 Co C3 4 Cs Cé
0 089 058 035 0.36 0.88] ¢y

0.89 0 056 08 1 033 ¢

0.58 056 0 0.6 0.73 0.65]| c3 (63)

0.35 0.85 0.6 0 051 091 ¢4

036 1 073 051 0 0.95]| ¢

[0.88 0.33 0.65 091 095 0 [ ¢

H’I‘rento =

5.2.4 Analysis

Comparing the classification maps (Figure 24), VAE models demonstrate high accuracy
for the classes of Buildings lé8! and Roads ¢g . Additionally, these classes exhibit low
uncertainty, showing a high level of confidence in the classification results (Figure 25)
which indicates that there is no confusion or confusion between a very small amount
or close classes. It is worth noting that Buildings [é' and Roads ¢g show low energy
distances between them and very high energy distances between the rest of the classes

(Equation 63). While these classes are closely related due to their human-made nature
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Figure 25: Trento dataset: (a) A false RGB representation using HSI bands, (b) Ground truth
labels, Homophily-based uncertainty maps for M1+M2 model with (¢) E1 on latent size = 20, (d)
E2 on latent size = 15, (e) E3 on latent size = 10, (f) E4 on latent size = 20, (g) E5 on latent size
= 15 and patch size = 5x5, (h) Multi-M1+M2 model with E2 on latent size = 15 and (i) SVM,
(j) RF
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and use of similar materials, they exhibit significant differences in terms of their elevation
which results in accurate classification.

Models M14+M2 with E2, E3, E4, and particularly with E1 (Figure 24c-24f), as well
as the Multi-M1+M2 model, successfully detect Ground [ areas. The Multi-M14-M2
model exhibits a particularly sharp Ground @ detection. It is worth noting that, apart
from the ground spaces between the fields, there are detections between the Apple Trees
. It’s key to recognize that these detections may be considered incorrect based on
the way labels are created. However, in reality, there is indeed ground between the
vegetation. These areas exhibit higher uncertainty, indicating confusion between distant
classes.

The use of patching of E5 results in a degradation of the definition of the Buildings

¢ , Roads ¢g , and Ground Z classes, as it smooths out their boundaries (Figure
24g). This effect is also evident in the corresponding uncertainty map (Figure 25g),
where increased uncertainty is observed at the edges of Buildings [&' , Roads ¢g , and
Ground )

The class of Woods [¢€4 is successfully detected by all the M14+M2, Multi-M1+4+-M2
models (Figure 24c-24h), even in areas outside the main forested region with low un-
certainty, showing again a high level of confidence in the classification results (Figure
25). The vegetation classes of Apple Trees ! , Vineyards and Woods (€4 show low
energy distances between them. Upon closer inspection, a few wood pixels are classified
as Vineyards [@ or Apple Trees B - These predictions exhibit a slightly higher level
of uncertainty (Figure 25¢-24h), indicating the potential confusion among those classes.
The M1+M2 model with patching encoder E5 provides a smooth classification of the
large Woods (¢4 area.

The classes of Apple Trees B and Vineyards exhibit the most variation. The
M1+M2 model with E1 fails to detect any Apple Trees [l ., classifying all of them
as Vineyards ! (Figure 24c). Evidently, this model lacks the capacity to learn the
differences between these two vegetation classes. By increasing the size of the layers,
the model with E2 achieves much better results in Apple Trees ! classification (Figure
24d). With convolutional encoders E3 and E4 (Figure 24e-24f), there is still a mixture
between Vineyards and Apple Trees . The spatial information provided by
E5 appears to improve the mixing between these two classes (Figure 24g), while also
reducing the levels of uncertainty (Figure 25g), but at the cost of producing a bulkier
result. The Multi-M1+M2 model demonstrates the best separation between these two

classes (Figure 24h), indicating that latent feature-level fusion has helped improve the
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Figure 26: Trento dataset: (a),(b) HSI spectrum and LiDAR channels respectively for vegetation
classes, (c¢),(d) HSI spectrum and LiDAR channels respectively for buildings and roads

distinguishability between the two vegetation classes. An interpretation of our outcome
could stand from the fact that HSI dimensionality significantly surpasses that of LiDAR.
Hence, a feature-based approach proves to be more effective as it adeptly balances the
contributions from each modality.

Figure 26 shows the mean values of the channels for HSI and LiDAR data for a
selection of Trento dataset’s classes.

When comparing the HSI and LiDAR of Buildings &' and Apple Trees Z , minimal
overlap is observed (Figure 26c, 26d). What’s interesting is that none of the classifiers
get confused between these two classes. This clear distinction between the HSI and
LiDAR characteristics of these classes contributes to their accurate separation.

In contrast, the classes that exhibit a higher degree of mixing during classification

are Vineyards [@] and Apple Trees 8 . which are both vegetation classes. A comparison

71



Multimodal Remote Sensing Data Classification using Semi-Supervised Variational Autoencoder

of the mean values obtained from HSI and LiDAR for these two classes (see Figure 26a
and Figure 26b) reveals a substantial degree of similarity. Specifically, the first half of the
mean HSI signatures and the second channel of LIDAR exhibit significant overlap. This
overlapping phenomenon presents a considerable challenge in effectively distinguishing
between these classes.

Nevertheless, it is noteworthy that none of the models are able to achieve a com-
plete and distinct separation between these classes. This observation implies that solely
relying on HSI and LiDAR data may not be sufficient for discriminating between classes
like Apple Trees ] and Vineyards @] . Additionally, the possibility exists that this
overlapping is a result of incorrect labeling.

Lastly, it is worth significant to point out that the M1+M2 model with 2D patched
encoder exhibits the highest metrics (Table 14). However, the classification results of
the other classifiers are preferable since they maintain important spatial details. This
observation underlines the limitation of relying solely on quantitative metrics as an
indicator of model performance.

These findings highlight the effect of VAEs and deep semi-supervised learning in the
classification process, as it has strong learning capabilities that can aid in distinguishing
between classes. By leveraging the unique characteristics of each data source using
latent feature-level fusion, it is possible to enhance the performance and reliability of
the classification outcomes. Moreover, it’s worth emphasizing that standard metrics
appeared to be able to provide only an initial overview of performance. Relying solely
on metrics calculated on a very small labeled dataset is not advisable. Instead, a more

comprehensive evaluation can be achieved by delving deeper into the qualitative results.

5.2.5 Comparison with SVM and RF

After analyzing the semi-supervised VAE models we want to compare them with the
performance of widely used methods of SVM and RF. Similarly with M1+M2 and Multi-
M1+M2, SVM and RF classifier has high accuracy for classes of Buildings [&' and Roads
¢g (Figure 24) while exhibiting low uncertainty, indicating a high level of confidence
in the classification results (Figure 25). SVM and RF model has an amplified effect
of detecting Ground [@ between the Apple Trees a (Figure 24i, 24j). As mentioned
above there is indeed Ground [@] between the vegetation but RF appears to be even
more aggressive in Ground ! detection, as it detects the entire Apple Trees area
as Ground (Figure 24j). These areas exhibit higher uncertainty than M1+M2 and

Multi-M14-M2 models, indicating the confusion between a bigger number or more distant
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classes.

Furthermore, the RF classifier appears to have a greater confusion than M1+M2,
Multi-M14+M2 and SVM when it comes to Woods [€g] , as it detects some Vineyards
as Woods [€; and identifies numerous Woods [€é4 areas in regions that should contain
Vineyards [@l and Apple Trees B - The challenging classes of Apple Trees B and
Vineyards seem to be more weakly separated in SVM than the Multi-M1+M2 model.
While, the RF classifier further aggravates the mixing of classes, detecting Apple Trees
, Vineyards , and Woods [€4 in areas that consist solely of Vineyards @ or
Apple Trees [} (Figure 24j), with these areas exhibiting higher uncertainty (Figure
25)).

There are different aspects to the reason why SVM and RF show inferior perfor-
mance than the deep learning approach. One factor that can affect the performance
of SVM compared to neural networks is the complexity of the problem. SVMs are
known for their ability to handle high-dimensional feature spaces and perform well in
cases where the number of features is larger than the number of samples. However, in
cases where the problem is highly complex and the relationship between the features
and the target variable is nonlinear, neural networks with their ability to learn complex
patterns and relationships may outperform SVM (Coltekin and Rama, 2018). Further-
more, RF may be more sensitive to noisy or irrelevant features in the dataset compared
to neural networks. RF constructs decision trees based on random subsets of features,
and if the dataset contains noisy or irrelevant features, these may be included in the
decision-making process. In contrast, neural networks can learn to ignore irrelevant fea-
tures through the process of training and regularization, leading to potentially better
performance in the presence of noisy data (Chen and Ishwaran, 2012).

Shallow learning techniques such as SVM and RF exhibit an advantage in terms
of efficiency when it comes to training duration. This stands in sharp contrast to deep
learning methods, which require more extensive computational resources and time for
training. Although, when the computational resources are available neural networks can
be trained efficiently using parallel processing and can handle large amounts of data
more effectively (Huang et al., 2012).

In Figure 27 we can see the elapsed time for training the deep learning models we
developed along with SVM and RF as implemented from scikit-learn (Pedregosa et al.,
2011). We conducted our experiments on a computer system equipped with the following
specifications: an Intel Core i7-5500U CPU running @2.4GHz, 16GB of DDR4 RAM.

The experiments were executed on a Ubuntu operating system (Version 20.04.6 LTS),
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Figure 27: Training elapsed time at Intel Core i7-5500U@2.4GHz, 16GB DDR4 RAM on Ubuntu
20.04.6 LTS, Python 3.8.(Bar heights are represented on a logarithmic scale for enhanced visualization)

and we employed Python 3.8 for our computations. Elapsed time measurements were
taken using Python’s 'time’ module. The absolute time values may vary on different
systems. Training M1+M2 with the spatial information from encoder E5 takes nearly
five hours, while models M1+M2 and Multi M1+M2 with encoder E2 require two and
a half hours, in contrast to SVM and RF methods, which only take a few seconds.
Overall, in comparison to widely adopted shallow learning techniques, VAE models
demonstrated superior results while entailing longer training times. The next step is to
further evaluate the capabilities of the selected M1+M2 and Multi-M14+M2 and assess
their potential for real-world applications. Moving forward we will employ a dataset

with a larger number of classes and more challenging class differentiation.

5.3 Urban area classification

5.3.1 Houston dataset

The Houston dataset 2018 was collected to capture urban areas around the University
of Houston, USA campus and its surroundings. This dataset was originally distributed
for the 2018 Geoscience and Remote Sensing Society Data Fusion Contest (Xu et al.,
2019). The dataset includes two modalities: HSI and LiDAR (Figure 28). The HSI
consists of 48 bands ranging from 380 to 1050 nm with a spectral resolution of 0.5m.
Figure 29a presents a false-RGB representation of the total scene using HSI bands. The
image size is 4172 x 1202 pixels. The LiDAR data consists of seven channels. The four
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Figure 28: Houston Dataset: Modalities representation

elevation channels represent the DSM and the Digital Earth Model (DEM) (Figure 29b).
The other three channels provide intensity rasters at three different laser wavelengths
that include information about the surface nature, such as bare earth or human-made
structures (Figure 29¢). The size of the LIDAR dataset is 8344 x 2404 pixels, and it has
been down-sampled by a factor of two to match the size of the HSI, resulting in a final
spatial resolution of 1m.

The Houston dataset has been partially labeled with twenty classes of the urban
scene, as outlined in Table 15 and illustrated in Figure 29d.. These classes provide
a detailed separation between similar classes, such as residential and non-residential
buildings, different parts of the road, various types of vegetation, and trees. Additionally,
some relatively rare objects like cars, trains, and stadium seats were labeled to test the
limits of both the sensor devices and the classification algorithms.

For training and validation purposes, a random split was performed with 2000
labeled datapoints per class with the exception of classes Water and Unpaved parking
lots , which lacked a sufficient number of labeled samples. Consequently, we opted
for 1000 samples for Water @ and 500 samples for Unpaved parking lots @il - In
addition, 5000 unlabeled datapoints were used for unsupervised training (Table 15).
The main goal of this split was to ensure an equal representation of all the classes

during training. The remaining labeled data were used for testing purposes.

5.3.2 Experimental process

In our second series of experiments, we aim to build upon our previous results on the
rural area dataset and investigate the performance of semi-supervised VAE models on a
more complex dataset. Specifically, we want to assess how the different fusion methods
will perform when deal with a significantly larger number of classes and more challenging
distinctions between classes. To achieve this, we will focus on exploring the encoder E2,

which exhibited the most promising results in terms of metrics and quantitative analysis
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(d)

Figure 29: Houston dataset: (a) A false RGB representation using HSI bands, (b) LiDAR DSM, (c)
Color composite of multispectral LIDAR intensity, (d) Ground truth labels
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Table 15: Houston dataset: Color code and name of classes, number of training and test samples

Class Number of Samples
No Color Name Labeled Training Testing
co Uknown 3712226 5000 0
c1 - Healthy grass 39196 2000 37196
co Stressed grass 130008 2000 128008
cs3 Artificial turf 2736 2000 736
cy Evergreen trees 54322 2000 52322
cs Deciduous trees 20172 2000 28172
cg Bare earth 18064 2000 16064
cr Water 1064 1000 64
cs Residential buildings 158995 2000 156995
Cy Non-residential buildings 894669 2000 892669
co || Roads 183283 2000 181283
11 Sidewalks 136035 2000 134035
C12 Crosswalks 6059 2000 2059
c13 - Major thoroughfares 185438 2000 183438
c14 Highways 39438 2000 37438
15 Railways 27748 2000 25748
c16 Paved parking lots 45932 2000 43932
ci7 - Unpaved parking lots 587 500 87
c18 Cars 26289 2000 24289
cio N Trains 21479 2000 19479
€20 Stadium seats 27296 2000 1976410

Total 5731136 42500 5688636
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Table 16: Houston dataset: Test set metrics for the M1+M2 model with encoder E2 on different latent
spaces

Latent size Accuracy Precision Recall Fl-score Kappa coeff

10 64.75 51.42 76.47 58.39 56.06
20 66.03 51.94 76.58 07.84 58.81
30 77.26 64.12 78.96 68.89 71.53
40 64.79 43.72 65.19 49.86 55.62

in our previous experiments.

To ensure an optimal latent space for the Houston dataset, which contains a con-
siderably larger number of classes compared to the Trento dataset, we increased the size
of the latent space to test values of 10, 20, 30, and 40. We trained the M14+M2 model
with E2 for all four latent sizes and selected the latent space that yields the best metrics.
Once we had determined the optimal latent size, we trained the Multi-M1+M2 model
using this chosen latent size.

Throughout all of our experiments, we utilized the Adam optimizer with an initial
learning rate of le-4. The models were trained for a total of 500 epochs to ensure
sufficient convergence and capture the underlying patterns in the data.

By conducting these experiments, we aimed to gain insights into the performance
of our models in a more complex dataset with a larger number of classes and more
challenging class differentiation. This allowed us to further evaluate the capabilities of

our models and assess their potential for real-world applications.

5.3.3 Results

Table 16 provides a comprehensive analysis of the classification performance of model
M1+M2 with E2, showcasing evaluation metrics such as classification accuracy, preci-
sion, recall, F1-score, and the Kappa coefficient for each corresponding latent space size.
The highest score for each metric is highlighted in bold, allowing us to identify the most
effective configurations.

Our investigation into the impact of latent space size on performance reveals an
intriguing trend. Initially, as the latent space size increases from 10 to 30, we observe
a progressive improvement in model performance, indicating that a larger latent space
allows for more meaningful representations and enhanced learning capabilities. However,
beyond a latent size of 30, the performance starts to deteriorate, suggesting that an

excessively large latent space may lead to overfitting or loss of important information.
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Table 17: Houston dataset: Test set metrics for the best VAE models

Model Accuracy Precision Recall Fl-score Kappa coeff
M1+M2 with E2 77.26 64.12 78.96 68.89 71.53
Multi-M1+M2 with E2 70.81 57.53 80.23 64.41 64.22

Table 18: Houston dataset: Confusion matrix of M1+M2 model with E2

Ci C2 C3 C4 C5 Cg Cr Cg Cg Cip C11 C12 €13 Ci4 C15 Cie Ci7 C18 C19 C20
cq 9 0 001 O OO O O OO O OO O O0O O o0 0 O
cg 04930 0 0 0O O O O 020 0 O O 0O 0o 0 0 O
cgs 0 01 0 0 OO0 O O O O OO O O O 0 0 o0 o0
cg 01 0 0 9 O 0 0 .01 0 0 02 0 0O O O 0 O 0o o0 o0
cs 0 .02 0 O 990 0 .03.01.01.02 0 0 0 O O 0 0 o0 O
c O 0 0O 0 0 10 0O O O O O o O o O o o 0 o
c;c O 000 0010 0 0 0 0 0 0O O 0 0 0 0 O
cgs 0 0 O .01 .01 00 94902 0 010 0 0 0 0 0 0 0 O
cg 0 0O O O .01 0 0 .04 .8 .01 05 .01 0 .01 0 O 0O 0 .01 0O
co 0O 0 OO O 0 O04.02 0 61 .13.18 0 .03 .00.001 0 0 0 O
c1 02 .03 0 .02 .01 0 0 .03 .01 .09 .72 05 0 .01 0 O O O 0 O
cp 0 0 OO 0 OO O O 03.0493 0 0 0 0 0 0 0 O
c;s 0 01 0 0O 0 O O O O 38 .22.26 0 .1 0O 01 0 0 0 O
cu, 0 0 0 0 0 O O O O .02.04.06 0 87 0 0 O O 0 O
c;s 0 0O OO 0O OOO O O O O O 0O 90 0 0 0 o
cge 0 0 OO O OO O O 020 010 0 0 9 0 .02 0 O0
ccy 0 0 00O OOOO O 8.14 0 0 0 0 0 O 0 0 O
c;g 0 0 0 0 01 0 0O O 01 0O 01 .01 0 O O .04 0 93 0 O
c.g9p 0 0 0OO 0O OO 0O O O O O O O o o o0 0 9 o0
cc 0 0 OO OOO O O o o o o0 o o o0 o0 o0 o0 1

Based on the compelling findings from these experiments, we conclude that a la-
tent space size of 30 emerges as the optimal choice for our dataset. This particular
configuration strikes a balance, enabling the model to effectively capture the underlying
complexities of the data without succumbing to the pitfalls of excessive dimensionality.
Thus, the chosen latent size of 30 is expected to facilitate robust and accurate learning
on the given dataset.

Table 17 displays a comparison of performance metrics for the models including
M1+4+M2 and the Multi-M1+M2 model utilizing the most effective encoder E2. The pri-
mary objective of this table is to assess and contrast the effectiveness of these models
based on a range of performance metrics. By analyzing these metrics, we can draw
valuable insights into how these models scale and perform in different scenarios. Ad-
ditionally, it offers us valuable guidance on selecting the most appropriate model for

specific tasks, considering their respective scalability and overall effectiveness.
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Table 19: Houston dataset: Confusion matrix of Multi-M1+M2 model with E2

€l C2 C3 C4 C5 Cg Cr Cg C9 Cio Ci1 Ci2 C13 Cig C15 Ci6 Ci7 C18 C19 C20
cac 9 0 0010 0 0O 0O 0 0 0 o o o o o0 0o 0 0 O
c 06 9 0 0 01 0 0 0 0 01 0O 0 .01 0O 0 0 O 0 0 O
cs 0 01 0 0 0 0O OO 0O 0 0 o o o0 o0 o0 0 0 O
cqg 0O1 0 O 9701 0 0 0 0 0O O O O O O O O O O O
cs 0 010 O 9490 0 0101010 0O O OO O O .01 0 O
c 0 O O 0O 0 9 0 01 0 0 0 0 0 0O 0 0 0 0 0 O
cc 0 00 0 O 0 9O 0 0 06 0o o o 0o 0 0 0 0 O
cg 0 0 O 0206 0 0 81.06.02 0 0 0 0 0 .01 0 0 .01 O
cg 0 0 0 O 01 O 0 .07 .75.04 0 .01 .01 0 0 .02 0 .06 .02 .01
co 0 01 0 .01 02 .01 0 05 0 49 0O .1 .21 .04 .01 .03 0O .03 0 O
cp 02 1 0 .03 .11.04 0 1 0 23 0 .09.21.03 0 .01 0 .03 0 O
cg 0 01 0O OO .01 OO O .1 0 .73 .1 .020 .0220 .00 0 0
c3 0 030 0 .01 .01 0 01 0 .15 0 .09 57 .08 0 .01 0 .03 0 O
cy 0 0 00 O O O O O 020 01059 0 0 0 0 .01 0
cs 0 0 OO O O O O O OO O O 0.9 0 0 0 0 O
ce 0 0 OO O O O O O 0 0 0 .01 0 0 9490 .03 0 0
a7 0 0 00 OO O O OO OO O O O0O O0O 1T 0 0 O
cg 0 0 00 O1 OO O O 010 01O O O .0 0 9 0 O
cg 0 0 00 O 0 0O O O O O O O O O O 0 .01.98 0
cco 0 00O 0 O O O O O O O O 0O 0 o o0 o0 o0 1

To give more details on the performance for each class we present corresponding
confusion matrices in Tables 18 and 19. Each matrix’s rows correspond to the actual
conditions or ground truth, while its columns depict the predicted conditions. These
matrices have been normalized based on the true conditions (rows) to ensure accurate
representation.

Figure 30 offers an overview of the classification maps generated for the entire
dataset, encompassing both labeled and unlabeled data points. These maps showcase
the results obtained from utilizing the M1+M2 model as well as the Multi-M14+M2 model
with E2.These visualizations facilitate the identification of potential patterns, clusters,
or misclassifications, which might not be evident solely through quantitative metrics.

Figure 32, showcases the uncertainty maps for the selected classifications. These
maps were generated using the innovative HU approach. The figure offers a visual rep-
resentation of the uncertainty inherent in the selected classifications. The HU approach
provides valuable insights into the level of confidence and the quality of classification
as explained earlier (Section 5.1.7). To calculate the Homophily matrix, we used the
energy distance as our main measurement. In Figure 34, a heatmap that shows the
normalized energy distance Hy on a logarithmic scale is presented. The colors on the

heatmap range from blue, which indicates an energy distance closer to 1.0 x 10717, to
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Healthy grass Stressed grass Artificial turf Evergreen trees
Deciduous trees I Bare earth Water . Residential buildings

Non-residential buildings Roads Sidewalks Crosswalks
Major thoroughfares Highways Railways . Paved parking lots
Unpaved parking lots Cars . Trains Stadium seats

Figure 30: Houston dataset: (a) A false RGB representation using HSI bands, (b) Ground truth
labels, Classification maps for models: (c) M1+M2 with E2 on latent size = 30, (d) Multi-M1+M2
with E2 on latent size = 30
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Figure 31: Houston dataset focused areas: False RGB representation (Left), Ground truth labels
(Middle left), Classification maps from M1+M2 model with E2 on latent size = 30 (Middle right)

and from Multi-M1+M2 model with E2 on latent size = 30 (Right) 2
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Figure 32: Houston dataset: (a) A false RGB representation using HSI bands, (b) Ground truth
labels, Uncertainty maps for models: (c) M1+M2 with E2 on latent size = 30, (d) Multi-M1+M2
with E2 on latent size = 30
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Figure 33: Houston dataset focused areas: False RGB representation (Left), Ground truth labels
(Middle left), Uncertainty maps from M1+M2 model with E2 on latent size = 30 (Middle right)

and from Multi-M1+M2 model with E2 on latent size = 30 (Right) 84
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Figure 34: Houston dataset: Heatmap representation of the normalized Homophily matrix Hy,
in logarithmic scale
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yellow, which signifies an energy distance closer to 0. Since the logarithm of zero is not
defined, zero values have white color. We chose this representation because it helps us
focus on the relative values of class distances, which are more important for our analysis
than their absolute values.

Dealing with the complex Houston dataset, characterized by an extensive number of
classes, underscores the necessity of conducting a detailed per-class analysis. We want to
facilitate a more comprehensive comparison of M1+M2 and Multi-M1+M2 associated
with each individual class. Thus, except for the confusion matrices we also focus on
some areas of higher interest. Figure 31 showcases these areas’ classification maps and

Figure 33 the corresponding uncertainties.

5.3.4 Analysis

We base our analysis on the impact of latent feature-level fusion and data-level fusion on
the utilization of modalities. Figures 35 and 36 provide a visual representation of mean
channel values for both HSI and LiDAR data, specifically focusing on selected classes
within the Houston dataset, which will serve as the basis for our subsequent analysis.

The classification of various vegetation classes, including Healthy grass @ , Stressed
grass ¢ , Artificial turf ¢3 , Evergreen trees Jé§ , and Deciduous trees ¢5 , exhibits
a remarkable level of accuracy(Tables 18, 19). Notably, the M1+M2 and Multi-M1-+M2
models achieve accuracy rates exceeding 91% on the test set. The Multi-M1+M2 model
demonstrates slightly higher accuracy for Evergreen trees [€ and Deciduous trees c¢s5 |,
albeit slightly lower for Stressed grass ¢; . When we narrow our focus to the central
Houston area, characterized by abundant vegetation (Figure 31a), it becomes evident
that the M1+M2 model occasionally misclassifies certain regions containing Evergreen
trees J@l and Deciduous trees ¢5 as Sidewalks [€17" (Figure 31¢). Conversely, the Multi-
M1+M2 model exhibits improved differentiation between Evergreen trees [€4 and De-
ciduous trees c¢s (Figure 31d). These classes display overlapping HSI signatures in the
latter portion of their spectral profiles (Figure 35a). By adjusting the relative impor-
tance of each modality through latent feature-level fusion, we enhance the separation
of these classes, simplifying their discrimination. Both classifiers demonstrate minimal
uncertainty for these cases (Figures 33c¢,33d), signifying limited confusion.

The Unpaved parking lots - class presents an intriguing case, as the M1+4+M2
model misclassifies it as Roads g and Sidewalks [¢7 with low uncertainty, while
the Multi-M14+M2 method accurately identifies it successfully with minimal uncertainty
(Figures 310,31p and Figures 330,33p). Neither the HSI data nor the LiDAR data for
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these classes do not overlap significantly (Figures 36¢,36d). This indicates why latent
feature-level fusion enhanced the ability of the classifier to distinguish the characteristics
of these classes.

The Cars ¢15 and Paved parking lots [ classes exhibit fairly accurate detection
by both classifiers (Tables 18,19). However the levels of uncetainty for the two classi-
fiers vary. Multi-M14-M2 has significantly lower predictions indicating more confident
classification (Figures 33p, 330) Also, a small percentage of these classes is occasionally
confused between them, resulting in pixelated detections. This confusion may arise from
the proximity of these classes in labeling, as well as the diminutive size of cars within the
image, making them susceptible to human labeling errors. Focusing further in certain
unlabeled regions (Figures 31w,31x) we can see that Multi-M1+M2 successfully detects
the Cars ¢;g in contrast with M1+M2 which detects Sidewalks [¢j;| . These areas are
not included in the labels so the efficacy of Multi-M1+M2 is not reflected in its accuracy
(Table 19).

Lastly, both classifiers correctly detect the limited Stadium seats cyg regions. The
M1+M2 model occasionally identifies some Sidewalks [€j1 inside the stadium (Figures
31s,31t). Intuitively, areas with Stadium seats cop are more likely to be present than
Sidewalks (€17 within a stadium. Multi-M1+M2 manages to detect Stadium seats ¢y
in the stadium but with higher uncertainty (Figure 33t), indicating potential confusion
with distant classes in this area. It’s important to mention that also Stadium seats ¢
has a substantial energy distance from most of the other classes (Equation 34) which
means that confusion with most of classes will result in higher uncertainty.

Both classifiers excel in effectively detecting Bare earth (Tables 18,19), a com-
mon strength shared across both models, even extending to areas beyond labeled regions
(Figure 30). This is an example of a class that either selection of encoding fusion can
work effectively.

In the context of identifying the limited Water regions, all tested classifiers
perform adeptly (Tables 18,19). However, it is noteworthy that the M14+M2 model
exhibits substantially higher uncertainty in proximity to Water areas (Figures 33g,
33h). This discrepancy can be attributed to M1+M2 potentially misclassifying a greater
number of classes as Water ! , plus due to a significant energy distance between the
Water class and others (Equation 34).

The asphalt classes, encompassing Roads E , Sidewalks [¢17 , Crosswalks c¢qo
Major thoroughfares - , and Highways (€14 , present a challenge due to varying sizes,

city locations, and colors. Both architectures show high confusion between these classes.
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M1+M2 assigns big part of Roads | as Crosswalks c¢i2 while Multi-M1+M2 mixes
Roads [Jjij with Major thoroughfares and both classifiers detect a part of Major
thoroughfares || as Highways (¢ (Figures 31k,311, 310, 31p). Also, Multi-M1+M2
misses all of the Sidewalks [¢171 and M1+M2 all of the Major thoroughfares . By
inspecting the HSI and LiDAR of these classes (Figures 35¢, 35d) we see that this is
happening because all modalities highly overlap making this kind of data very challenging
for classification. While both classifiers exhibit relatively low uncertainties (Figures
33k,331, 330, 33p), even for misclassifications. Which shows that the complexities of
these classes even when comes to uncertainty remain apparent since classifiers are falsely
confident. On the bright side we can note that these classes are confused mainly between
them and not with other more irrelevant classes which also defies the low levels of
uncertainty.

All classifiers excel in identifying labeled Railways ¢;5 , with both M1+M2 and
Multi-M1+M2 achieving detection accuracy exceeding 97% (Tables 18,19). But, a closer
examination of classification maps (Figures 31k,311) reveals some illogical Trains
placements in the urban center, particularly pronounced with the Multi-M1+M2 model.
These defections are, in fact, areas with parked cars, as evident from the false RGB
image of Houston. This possibly occurred due to the fact that cars and trains are man
made metallic objects thus they share some similar characteristics in the spectral and
LiDAR signatures (Figures 36a,36b) so this might occur to mixing them in some areas.

Both classifiers demonstrate satisfactory detection of buildings. Notably, the M1+M?2
model outperforms in terms of accuracy the Multi-M1+M2 model in both building classes
(Tables 18,19). Both models occasionally misclassify some Residential buildings as
Non-residential buildings ¢y , and vice versa (Table 19). This phenomenon can be at-
tributed to the amount of overlap in the LIDAR modality for these two classes (Figure
35f). Data-level fusion places more emphasis on the considerably larger HSI modality,
giving the LiDAR channels a smaller role in the classification decision. As a result,
confusion between these classes increases with latent feature-level fusion. Notably, both
Residential buildings || and Non-residential buildings ¢g classes exhibit a significant
energy distance from other classes (Equation 34). Therefore, it is reassuring to observe
that Multi-M1+M2 has lower levels of uncertainty compared to M1+M2 in the Resi-
dential buildings and Non-residential buildings ¢g area (Figures 33c 33d ,33s, 33t).
This indicates that Multi-M14+M2 confuses between smaller amount or closer classes
than M1+M2.

In terms of metrics, M1+M2 outperforms Multi-M1+M2 except for recall (Table
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Houston dataset: HSI spectrum (Left) and LiDAR channels (Right) for selected classes
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17). Lower accuracy and precision may be attributed to the fact that Multi-M14M2
faced more challenges in distinguishing between the various asphalt classes in the la-
beled dataset compared to M1+M2. Additionally, M1+M2 struggled to detect both the
Unpaved parking lots and Major thoroughtares @i classes (Table 18), whereas
Multi-M1+M2 only had issues with detecting Sidewalks [€1° (Table 19). Especially
when dealing with a complex and extensive dataset, it’s not advisable to solely rely on
metrics for drawing conclusions. Instead, a more comprehensive and detailed analysis
of the entire dataset’s area is necessary.

Our findings underscored the effectiveness and limitations of both fusion approaches
in certain contexts. The Multi-M1+M2 model proved to be a valuable tool for enhanc-
ing class separation, particularly among vegetation classes. This approach significantly
reduced confusion and minimized uncertainty, even among these closely related classes.
Multi-M14-M2 showcases enhanced capabilities in distinguishing complex classes like
parking lots, thanks to its latent feature-level fusion approach, which leverages the
strengths of both HSI and LiDAR data. In some cases, particularly with the detec-
tion of stadium seating and buildings, Multi-M14+M2 exhibits higher uncertainty, po-
tentially due to confusion with high energy distance classes. However, in general it seems
more confident about its detections than M1+M2. The M1+M2 model demonstrated
its strength in consistently separating between buildings. However, this fusion method
exhibited higher uncertainty in proximity to building and water areas, potentially stem-
ming from confusion between more high energy distance classes. Asphalt classes re-
mained a challenge for both models, revealing the complexities of these classes, yet
highlighting the classifiers’ confidence even when making erroneous judgments. Lastly,
parking lots and cars were accurately distinguished by both models, but occasionally
exhibited confusion between the two, largely due to their close proximity and small car
sizes.

The choice between these models depends on the specific classification task and the
degree of class complexity and the quality of the data, with each model offering unique

advantages and trade-offs.

5.4 Discussion

Our experiments and analysis provide valuable insights into the strengths and limitations
of VAEs when combining features and data for pixel-wise classification in rural and urban

areas. This offers guidance for improving future multimodal classification techniques and
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applications.

The classifiers performed better, both in terms of numbers and the overall quality
of results, when classifying the Trento dataset compared to the Houston dataset. The
Trento dataset represents rural environment mainly characterized by large vegetation
areas. In contrast, the Houston dataset presents a more diverse landscape, featuring an
extensive mix of earth, vegetation and human-made structures. Additionally, the urban
nature of the Houston dataset results in finer details within its classes. Furthermore, the
LiDAR data in the Trento dataset consists solely of DSM channels, while the Houston
dataset includes both DEM and DSM data and multispectral LiDAR. It is probable that
these additional LIDAR channels do not significantly contribute to data separation, es-
pecially when considering the Multi-M1+M2 scenario, where they have a notable impact
on feature generation.

Despite achieving higher metrics for Trento, we decided not to use spatial infor-
mation for pixel classification in Houston. This decision was made to maintain sharper
results. We anticipate that patching would have an even more detrimental effect in

Houston, given that some classes are as narrow as a single pixel.
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6 Conclusion & future work

6.1 Conclusion

In this thesis, we have addressed the gap in the existing literature by introducing a novel
framework for multimodal data classification using a semi-supervised VAE. We began by
reviewing the landscape of semi-supervised VAE architectures and their applications in
classification scenarios, highlighting the absence of a tailored adaptation for multimodal
data. Our primary objective was to develop a model capable of accommodating diverse
modalities within the remote sensing domain.

Through the formulation of our problem and the development of the Multi-M14+M2
architecture, we have demonstrated the potential of our approach in handling multimodal
data. By extending the M1+M2 framework to incorporate two levels of fusion — data-
level and latent feature-level — we have achieved a comprehensive diverse integration of
modalities. The data-level fusion method involved concatenating multiple modalities
into a single input, while the latent feature-level fusion method introduced separate
latent variables for each modality. These strategies not only allowed us to harness the
advantages of a generative model but also effectively manage some of the challenges
posed by multimodal data.

We conducted an extensive analysis of rural and urban area classification using
various encoders on two distinct datasets: Trento and Houston. Our results and analysis
shed light on the strengths and limitations of different models, latent space sizes, and
fusion strategies.

From the experiments conducted on the Trento dataset, we observed that the choice
of encoder and latent size significantly affects classification performance. While increas-
ing the latent size does not always guarantee improved performance. Furthermore, our
experimentation with encoders also revealed a noteworthy observation: while leveraging
spatial information in our inputs yielded enhanced metrics, it resulted in less distinct
classifications, an undesirable outcome. The Multi-M1+M2 model incorporating latent
feature-level fusion demonstrated improved separation between closely related vegeta-
tion classes. The visual analysis of classification maps provided deeper insights into
model behavior, highlighting areas of confusion and misclassifications. Additionally, the
uncertainty maps facilitated understanding the model’s confidence in its classifications

and identifying regions of potential confusion. A more in-depth comparison between
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SVM and RF models highlights the superior classification potential of deep learning
techniques but that they tend to typically exhibit suboptimal time efficiency.

For the Houston dataset, our investigation into the impact of latent size on clas-
sification performance revealed an optimal latent size effectively balanced the model’s
ability to capture underlying data complexities. The M1+M2 and Multi-M1+M2 model
exhibited strong performance in detecting most urban classes. Although, we understood,
that in some cases, the balancing of modalities with latent feature-level fusion can lead
to worse results. The integration of HSI and LiDAR data through latent feature-level
fusion provided notable improvements in distinguishing between classes with distinct
spectral and LiDAR signatures. However, for classes with highly analogous HSI or Li-
DAR properties, such as different types of roads, the fusion methods were less effective.
The visual analysis of classification and uncertainty maps aided in comprehending the
models’ strengths, as well as highlighting areas where different classifiers struggled.

In conclusion, our research has laid a strong foundation for the classification of re-
mote sensing multimodal data using a semi-supervised VAE approach. By integrating
quantitative metrics and qualitative analysis, we gained a comprehensive understand-
ing that elevated quantitative measures do not invariably align with superior qualita-
tive performance. Our experimental results proved the effectiveness of the proposed
Multi-M14M2 model’s architecture and highlighted the strengths and weaknesses of
our approach in the robustness of classification tasks involving multimodal data. As we
continue to delve into the intricate landscape of multimodal data analysis, the proposed
framework opens the door to innovative solutions and impact applications within the

field of remote sensing and beyond.

6.2 Future work

While our research has made a stride in the realm of multimodal data classification using
VAE, there are several avenues for further exploration and refinement. The following

areas present opportunities for future work:

e Balanced loss function : In the context of multimodal data we can use a balanced
loss function to achieve a desirable distinction in different data modalities during

learning. Ensuring equitable weightage to each source of information.

e Attention is all you need: The attention mechanism is a technique that allows

the model to focus on different parts of the input data when making predictions.

94



Multimodal Remote Sensing Data Classification using Semi-Supervised Variational Autoencoder

The self-attention mechanism, in particular, is an improvement of the attention
mechanism that is better at capturing internal correlations within the data or
features (Vaswani et al., 2017). By incorporating an attention mechanism into the
VAE, the model might be able to assign different weights to different modalities

based on their relevance to the classification task.

Training performance: One of the limitations of Bayesian deep learning models
is computational complexity. One approach to mitigate these issues is variational
dropout, which is a generalization of Gaussian dropout where the dropout rates are
learned (Kingma et al., 2015). Dimensionality reduction techniques can also help
reduce the computational complexity of Bayesian deep learning methods (Jospin
et al., 2022).

Improvement on the reconstruction and generation performance of VAEs: An ap-
proach to further enhance the semi-supervised VAE is to find ways to have a better
reconstruction and generation performance. Some approaches are to combine the
strengths of both GANs and VAEs (Zemouri, 2020) and the use of dilated convo-
lutions in the decoder part (Yang et al., 2017), leading to improved performance

and can potentially benefit our semi-supervised VAE models.

Additional modalities and scalability: Our experiments were conducted in datasets
with two modalities. Extending it to accommodate more modalities could enhance
its versatility and applicability to a broader range of tasks. Investigating the
scalability of the proposed architecture to handle an arbitrary number of modalities
is an intriguing direction for future research. Although in the sector of remote
sensing it is challenging to find a dataset that incorporates more than two aligned

modalities.

Enhancing data exploration: Applying the proposed architecture to more real-
world applications within the remote sensing domain, such as sea-ice classification
or anomaly detection, would demonstrate the practical utility of our model and
its potential for addressing complex challenges in remote sensing data analysis.
Broadening the scope of this study not only could involve gathering and evaluating
the suggested architectures across a wider array of remote sensing data types, such
as SAR or Polarimetry, but also could include temporal data, such as time series of

satellite images, in order enable tracking changes and patterns in areas over time.
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e Other domains: Our versatile approach can be adapted and applied to various
multimodal data types, such as medical imaging, natural language processing, and

more, to tackle complex classification challenges across different fields.

Incorporating these directions into future research could enhance the performance
of VAE which will lead to more accurate and robust classification models contributing

to better urban planning, resource management, and environmental monitoring.
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7 Publications

The research I conducted in Earth Observation Laboratory of the Arctic University

of Norway (UiT) has led to the following publications:

e Chlaily, S., Ratha, D., Lozou, P. and Marinoni A. (2023). On measures of uncer-
tainty in classification, IEEE Transactions on Signal Processing 71:3710-3725.

e Khachatrian, E., Sandalyuk, N., Lozou, P. (2023). Eddy Detection in the Marginal
Ice Zone with Sentinel-1 Data Using YOLOv)H, Remote Sensing 15:2244.
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