
National Technical University of Athens
School of Electrical and Computer Engineering

MSc Data Science and Machine Learning

Load-centric data shuffling with a patch-based

repartitioning algorithm exploiting the data

placement and distribution

Diploma Thesis
of

EVDOKIA KASSELA

Supervisor: Nektarios Koziris

Professor

Athens, October 2023

National Technical University of Athens

School of Electrical and Computer Engineering

MSc Data Science and Machine Learning

Load-centric data shuffling with a patch-based

repartitioning algorithm exploiting the data

placement and distribution

Diploma Thesis
of

EVDOKIA KASSELA

Supervisor: Nektarios Koziris

Professor

Approved by the examination committee on 31st October 2023.

(Signature) (Signature) (Signature)

. .

Nektarios Koziris Ioannis Konstantinou Georgios Goumas

Professor Assistant Professor Associate Professor

Athens, October 2023

National Technical University of Athens

School of Electrical and Computer Engineering

MSc Data Science and Machine Learning

Copyright © – All rights reserved.

Evdokia Kassela, 2023.

The copying, storage and distribution of this diploma thesis, exall or part of it, is prohibited

for commercial purposes. Reprinting, storage and distribution for non - profit, educational

or of a research nature is allowed, provided that the source is indicated and that this

message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work

/ contributions of third parties for which the permission of the authors / beneficiaries is

required and are not a product of partial or complete plagiarism, while the sources used

are limited to the bibliographic references only and meet the rules of scientific citing. The

points where I have used ideas, text, files and / or sources of other authors are clearly

mentioned in the text with the appropriate citation and the relevant complete reference

is included in the bibliographic references section. I fully, individually and personally

undertake all legal and administrative consequences that may arise in the event that it is

proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

(Signature)

. .

Evdokia Kassela

31st October 2023

Abstract

This diploma thesis aims to the development of a novel data repartitioning algorithm

that can be used to process unordered skewed data in distributed environments. In

workloads involving joins and aggregations, the presence of skew in the join/group by

attribute values typically causes load balancing issues in such environments, where one

worker becomes a straggler. To address this problem, solutions that employ a subset-

replicate partitioning methodology and rely on cost models have been applied in research,

however they are based on custom-build execution engines or custom hardware. Typical

general-purpose distributed processing engines which are widely used in industry, try to

address the problem through dynamic task monitoring and partition resizing based on

user-defined limits. Similarly, code-based user solutions such as key-salting can be used

for creating more equally sized partitions. The aforementioned industry-based approaches

tackle the problem of uneven load balancing based on task management and rely on user-

defined thresholds, yet ignoring the network i/o related overheads that are induced by

the replication of the unskewed side. Our goal is to develop an algorithm that can be

easily integrated with any distributed processing system without involving cost-models or

user-defined parameters and addresses both the load balancing and replication-related

network overheads that arise under the presence of data skew for reduce-side operations.

Our implementation uses information regarding the data distribution and placement on

the workers and tries to minimize data movements by creating prioritized local-based

partitions that can be locally processed with zero or minimal data movement while main-

taining an even load on the workers. We evaluate our algorithm for different levels of skew

in comparison with the hash-based partitioning algorithm using three different evalua-

tion parameters; the size of data that were transferred over the network, the load on

the workers, and the estimated execution time using a linear model. The experimental

results confirm that the load balancing performed with our algorithm is always perfectly

even, and that the increased network traffic which occurs with our algorithm due to data

replication incurs a minimal overhead in the execution time in case of a low level of skew.

At moderate to high skew levels the overall performance of our algorithm is superior as it

is proved to be mainly affected by the worker load and less by the network i/o overheads.

Keywords

distributed execution, hash join, reduce-side, skew, partitioning, shuffling, load bal-

ancing, data placement, key-salting, subset-replicate

1

Περίληψη

Αυτή η διπλωµατική εργασία στοχεύει στην ανάπτυξη ενός νέου αλγορίθµου ανακατανο-

µής δεδοµένων που µπορεί να χρησιµοποιηθεί για την επεξεργασία λοξών δεδοµένων σε

κατανεµηµένα περιβάλλοντα. Σε ϕορτία εργασίας που περιλαµβάνουν συνενώσεις και συνα-

ϑροίσεις, η παρουσία της λοξότητας στις τιµές του χαρακτηριστικού συνένωσης/ συνάθροισης

προκαλεί ανισορροπία στον ϕόρτο εργασίας σε τέτοια περιβάλλοντα, όπου κάποιοι κόµβοι

γίνονται πολύ αργοί. Για να αντιµετωπιστεί αυτό το πρόβληµα, έχουν αναπτυχθεί ερευνητικές

λύσεις που χρησιµοποιούν τη µεθοδολογία ανακατανοµής subset/replicate και ϐασίζονται

σε µοντέλα κόστους. Ωστόσο, αυτές οι λύσεις ϐασίζονται σε εξατοµικευµένες µηχανές εκ-

τέλεσης ή εξατοµικευµένο υλικό. Οι γενικού σκοπού κατανεµηµένες µηχανές επεξεργασίας

που χρησιµοποιούνται ευρέως στη ϐιοµηχανία προσπαθούν να αντιµετωπίσουν το πρόβληµα

µέσω δυναµικής παρακολούθησης των εργασιών και ανακατανοµής των δεδοµένων ϐάσει

ορίων που ορίζει ο χρήστης. Επίσης, λύσεις που ϐασίζονται σε υλοποίηση του ίδιου του

χρήστη, όπως το key-salting, µπορούν να χρησιµοποιηθούν για τη δηµιουργία πιο ισοµεγε-

ϑών τµηµάτων δεδοµένων προς επεξεργασία. Οι προαναφερθείσες προσεγγίσεις στον κλάδο

της ϐιοµηχανίας αντιµετωπίζουν το πρόβληµα της ανισορροπίας του ϕόρτου εργασίας µε

ϐάση τη διαχείριση εργασιών και ϐασίζονται σε όρια που καθορίζει ο χρήστης, αγνοώντας

την αυξηµένη δικτυακή κίνηση που προκαλείται από την ανακατανοµή τµηµάτων των δε-

δοµένων. Στόχος µας είναι η ανάπτυξη ενός αλγορίθµου που µπορεί να ενσωµατωθεί εύκολα

σε οποιοδήποτε σύστηµα κατανεµηµένης επεξεργασίας χωρίς τη χρήση µοντέλων κόστους

ή παραµέτρων που καθορίζονται από τον χρήστη. Ο αλγόριθµος στοχεύει στο να αντιµετω-

πίσει τόσο την ανισορροπία του ϕόρτου εργασίας όσο και την αυξηµένη δικτυακή κίνηση

που σχετίζεται µε την ανακατανοµή τµηµάτων δεδοµένων. Η υλοποίησή µας χρησιµοποιεί

πληροφορίες σχετικά µε τη κατανοµή και την τοποθέτηση των δεδοµένων στους κόµβους

και προσπαθεί να ελαχιστοποιήσει τις µετακινήσεις των δεδοµένων δηµιουργώντας κατά

προτεραιότητα τοπικά τµήµατα δεδοµένων που µπορούν να επεξεργαστούν τοπικά µε µη-

δενική ή ελάχιστη µετακίνηση δεδοµένων, διατηρώντας παράλληλα ένα οµοιόµορφο ϕόρτο

εργασίας στους κόµβους. Αξιολογούµε τον αλγόριθµό µας για διάφορα επίπεδα λοξότη-

τας σε σύγκριση µε τον αλγόριθµο ανακατανοµής ϐάσει κατακερµατισµού (hash) χρησι-

µοποιώντας τρεις διαφορετικές παραµέτρους αξιολόγησης : το µέγεθος των µεταφερόµενων

δεδοµένων στο δίκτυο, τον ϕόρτο εργασίας στους κόµβους και τον εκτιµώµενο χρόνο εκ-

τέλεσης χρησιµοποιώντας ένα γραµµικό µοντέλο. Τα πειραµατικά αποτελέσµατα επιβεβαιώ-

νουν ότι ο ϕόρτος εργασίας που επιτυγχάνεται µε τον αλγόριθµό µας είναι απόλυτα εξισ-

σοροπηµένος και ότι η αύξηση της δικτυακής κίνησης που προκύπτει από τον αλγόριθµό

µας λόγω της ανακατανοµής των δεδοµένων επηρεάζει ελάχιστα τον χρόνο εκτέλεσης σε

περιπτώσεις χαµηλού επιπέδου λοξότητας. Σε περιπτώσεις µέτριας έως υψηλής λοξότητας, η

3

Abstract

συνολική απόδοση του αλγορίθµου µας είναι καλύτερη, καθώς αποδεικνύεται ότι ο χρόνος

εκτέλεσης επηρεάζεται κυρίως από το ϕόρτο εργασίας και λιγότερο από τη δικτυακή κίνηση.

Λέξεις Κλειδιά

κατανεµηµένη εκτέλεση, συνένωση, λοξότητα δεδοµένων, τµηµατοποίηση, ανακατανοµή,

ϕόρτος εργασίας, key-salting, subset-replicate, hash

4

to my parents

Acknowledgements

I would like to start by thanking professor Nectarios Koziris for supervising this thesis

and for the opportunity he gave me to complete it in the Computing Systems Laboratory. I

would also like to express my special thanks to Dr. Ioannis Konstantinou for his guidance

and the exceptional cooperation we had. Thanks also to my fiance Kostas, for putting up

with me being sat in a desk for hours on end, and for providing guidance and a sounding

board when required. Finally, I would like to thank my parents for their guidance and

moral support they provided me throughout these years.

Athens, October 2023

Evdokia Kassela

7

Table of Contents

Abstract 1

Περίληψη 3

Acknowledgements 7

Preface 17

1 Introduction 19

1.1 Subject of the work . 19

1.2 Content organization . 21

2 State-of-the-art partitioning techniques 23

2.1 Problem description . 23

2.1.1 Skew examination . 23

2.1.2 Subset-replicate partitioning . 23

2.1.3 Optimization targets . 24

2.2 Related Work . 24

3 Methodology 27

3.1 Approach overview . 27

3.1.1 Load balancing . 29

3.1.2 Network transfer . 29

3.2 Local and global skew examination . 29

3.3 Balanced load assignment . 31

3.4 Two phase partitioning algorithm . 31

3.5 Patch-based group partitioning . 33

3.6 Reduce-side processing . 36

3.7 Proof of concept . 38

3.8 Implementation . 45

3.8.1 Patch-based partitioning algoritm . 45

3.8.2 Data generation . 45

3.8.3 Statistics for the data skew . 46

4 Experimental evaluation 47

4.1 Load balancing . 48

4.2 Data movement . 52

9

TABLE OF CONTENTS

4.2.1 Comparison with hash-based shuffle 53

4.2.2 Impact of number of keys and workers 58

4.3 Execution time . 60

5 Epilogue 67

5.1 Conclusions . 67

5.2 Future work . 67

Appendices 69

A Code for data generation 71

B Code for data placement in workers 73

C Code for statistics computation 75

Bibliography 78

10

List of Figures

4.1 Records distribution in the keys for different skew factors 47

4.2 Maximum worker load with the patch-based and naive hash-based algo-

rithms for different skew factors in table S (θS) 49

4.3 Minimum worker load with the patch-based and naive hash-based algo-

rithms for different skew factors in table S (θS) 49

4.4 Maximum worker load with the patch-based and naive hash-based algo-

rithms for various skew factors applied in both tables S and T 50

4.5 Minimum worker load with the patch-based and naive hash-based algo-

rithms for various skew factors applied in both tables S and T 51

4.6 Maximum worker load with the patch-based and naive hash-based algo-

rithms for different skew factors in table S (θS) having unique keys in table

T . 52

4.7 Minimum worker load with the patch-based and naive hash-based algo-

rithms for different skew factors in table S (θS) having unique keys in table

T . 52

4.8 Produced shuffle data size of the patch-based and naive hash-based algo-

rithms for different skew factors in table S (θS) 53

4.9 Gini index for the shuffle data size sent to each worker with the patch-based

and naive hash-based algorithms for different skew factors in table S (θS) . 54

4.10 Produced shuffle data size of the patch-based and naive hash-based algo-

rithms for various skew factors applied in both tables S and T 55

4.11 Gini index for the shuffle data size sent to each worker with the patch-based

and naive hash-based algorithms for various skew factors applied in both

tables S and T . 56

4.12 Produced shuffle data size of the patch-based and naive hash-based algo-

rithms for different skew factors in table S (θS) having unique keys in table

T . 57

4.13 Gini index for the shuffle data size sent to each worker with the patch-based

and naive hash-based algorithms for different skew factors in table S (θS)

having unique keys in table T . 57

4.14 Produced shuffle data size of the patch-based algorithm as the number of

distinct keys |V | increases for different skew factors in tables S (θS) 59

4.15 Produced shuffle data size of the patch-based algorithm as the number of

workers N increases for different skew factors in tables S (θS) 60

11

LIST OF FIGURES

4.16 Estimated execution time split into shuffling and execution phases with the

patch-based and naive hash-based algorithms for different skew factors in

table S (θS) . 61

4.17 Estimated execution time split into shuffling and execution phases with

the patch-based and naive hash-based algorithms for various skew factors

applied in both tables S and T . 63

4.18 Estimated execution time split into shuffling and execution phases with the

patch-based and naive hash-based algorithms for different skew factors in

table S (θS) having unique keys in table T 64

12

List of Images

3.1 Effect of skew presence in a single key (yellow) 28

3.2 Subset-replicate methodology to handle skewed data 28

3.3 Patch-based partitioning of the join group Pa . Each subgroup is denoted

as a blue rectangle and is colored differently depending on the worker it is

assigned to. The cross-hatched areas can eventually be computed using

only local records of the worker, while the dashed areas use partially local

records. 33

3.4 Partitioning based on consecutive divisions (left) and size limit (right) ignor-

ing the data placement . 35

3.5 Records placement in the subgroups created for group Pa 37

3.6 Representation of the initial four groups and their sizes, as well as the data

placement in the two workers . 39

3.7 The first subgroup created for group Pb, assigned to worker 0 39

3.8 The second subgroup created for group Pa , assigned to worker 1 40

3.9 The third subgroup created for group Pc, assigned to worker 1 41

3.10 The areas noted with ’4’ and ’3’ cannot be assigned to worker 1 to exploit

the data locality, therefore the area noted with ’2’ will be next studied for

worker 0 . 41

3.11 The fourth subgroup created for group Pd, assigned to worker 0. The first

phase is complete as no more locality-based subgroups can be created. . . 42

3.12 The fifth and last subgroup is created for group Pc without considering data

locality, and is assigned to worker 0. 42

3.13 Groups assignments with the hash-based partitioning (worst case) 43

3.14 Subset-replicate based partitioning of subgroups 44

3.15 Patch-based partitioning of subgroups exploiting data locality 45

13

List of Tables

3.1 Variables notation . 30

3.2 Number of records in each set and the computed local weights per worker

for group Pa . 30

3.3 Parameters used for proof of concept . 38

4.1 Parameters used for the experiments in Figures 4.2 and 4.3 48

4.2 Parameters used for the experiments in Figures 4.4 and 4.5 50

4.3 Parameters used for the experiments in Figures 4.6 and 4.7 51

4.4 Parameters used for the experiments in Figures 4.8 and 4.9 53

4.5 Parameters used for the experiments in Figures 4.10 and 4.11 55

4.6 Parameters used for the experiments in Figures 4.12 and 4.13 56

4.7 Parameters used for the experiments in Figure 4.14 58

4.8 Parameters used for the experiments in Figure 4.15 59

4.9 Parameters used for the experiments in Figure 4.16 61

4.10 Parameters used for the experiments in Figure 4.17 62

4.11 Parameters used for the experiments in Figures 4.6 and 4.7 63

15

Preface

This work is presented as a diploma thesis for the Master of Data Science and Ma-

chine Learning offered by the National Technical University of Athens’s ECE School. The

development took place in Athens, Greece in the premises of the Computing Systems

Laboratory of the ECE School.

17

Chapter 1

Introduction

1.1 Subject of the work

A typical organization/institute nowadays keeps many hundred GBs of data dis-

tributed in various datastores depending on their source, format and processing capa-

bilities. The most common cases include limited structured data stored in relational

databases that are used to perform simple analytics, and large-scale semi-structured or

unstructured data stored in NoSQL databases and distributed file systems on top of which

Big Data analytics is performed, such as Machine Learning, SQL, etc. In many of these

cases, data residing in different datastores also need to be combined (i.e. joined in SQL

semantics) in order to perform complex/multi-domain Big Data analytics.

SQL analytics is generally a very popular domain, which is commonly included in

complex analysis scenarios, as it is used for joining and filtering datasets. Many research

and production systems have been created in an effort to address the problem of perform-

ing such complex analytics with various data sources efficiently. The most prominent

examples are Apache Spark [2] and Presto [4] which are autonomous distributed process-

ing engines, however polystore systems such as BigDawg [11] also exist, which on the

contrary exploit the sophisticated processing engines of the underlying datastores. Irre-

spective of owning a processing engine, the most important components of each of these

systems for achieving the best performance is, however, the query planner/optimizer and

the task scheduler.

In the context of SQL analytics when trying to efficiently join two or more datasets,

most of the existing optimizers mainly focus on exploiting data locality profits (to mini-

mize network traffic) by choosing the appropriate operator while the task scheduler aims

to achieve a fine load balancing for the workers by distributing tasks to them. Especially

when using different data sources however, the performance is greatly affected by the cor-

rect data management as a large amount of data may need to be transferred between/from

different datastores inevitably.

Although a common optimizer considers these data transfer overheads before per-

forming a join as we stated, it unfortunately lends no weight to the data skew which is a

particularly important aspect in data management. For example, the hash-based repar-

tition join algorithm which is the standard choice of optimizers when joining two large

datasets, can not achieve good performance by definition when a dataset presents a high

19

Chapter 1. Introduction

skew. In such cases, a large part of the data will be placed in a few partitions only by

the underlying hash-based shuffling mechanism. On the other hand, the task scheduler

which is responsible to select the worker that each data partition will be assigned, will

blindly assign some large partition to a worker without considering the size of it rendering

this worker overloaded.

Another aspect that is worth considering regarding the data transfer minimization is

the exploitation of the data placement. In theory an optimizer is trying to schedule as

many map-side operations as possible and avoid the network-related overheads induced

by data shuffling operations. For example, under certain conditions an optimizer would

select a broadcast join that is executed on the map-side instead of the the hash-based

repartition join if less data movement is required for it. However, in some cases the

hash-based repartition join would be preferred as the better option. The shuffling is

therefore inevitable in some cases for performing reduce-side operations such as joins

and aggregations, however the placement of data is completely ignored in this case.

Recent research works have been trying to develop new algorithms to address the

problem of joining large skewed datasets over multiple nodes or engines. In all of the

existing efforts the developed join algorithm is skew insensitive, meaning that it is used to

perform any join irrespective of the level of skew (even with zero skew). In these cases, the

optimizer simply provides existing data statistics to the join algorithm (if they are needed)

for managing the data partitions, and does not participate in the join optimization process.

However, the proposed algorithms lack extensive evaluation over large clusters and non-

skewed datasets ([11],[14]) in order to prove their generality, come with autonomous

engines ([11],[16]) or rely on specific hardware and protocols for their operation [16].

On the other hand, in release 3.0 of the Apache Spark engine the Adaptive Execution

framework [1] has been introduced, which is able to handle skewed datasets by managing

the size of data partitions during execution using some user-defined thresholds. However,

the applied methodology is very simple as it uses no optimization rules and it can hardly

be considered skew insensitive, as its operation and performance can vary significantly

depending on the defined thresholds which may differ per use case. A similar but more

generic approach was used in SkewTune, which makes on-the-fly cost-based decisions

for repartitioning data of MapReduce tasks whenever a slot becomes available in the

cluster using collected data statistics. It is clear that these approaches try to tackle the

skew handling problem through the system itself, using continuous task monitoring and

rescheduling. Although this methodology could be sufficient for load imbalances that

appear in a cluster (related to skew or not), it is a system-centric approach that requires

the modification of the internal operation of each engine.

In brief, solutions that rely on cost models have been applied in research using custom-

build execution engines ([11],[14]) to address the problem of partitioning a skewed dataset.

Also, typical distributed general-purpose engines which are widely used in industry, try

to address the problem through task monitoring and dynamic rescheduling focusing on

the load balancing aspect of the problem only. Moreover, code-based custom solutions

such as key-salting which can be used with any engine, also deal only with the load

balancing and ignore network-related overheads. Our goal is to develop an algorithm that

20

1.2 Content organization

can be used with any distributed processing system without involving cost-models and

addresses both the load balancing and duplication-related network overheads that arise

under the presence of data skew.

Our work aims to present a new skew-insensitive repartitioning algorithm that can be

integrated in any system in the category of distributed SQL analytics engines to efficiently

execute large-scale joins or any other aggregation of unordered skewed or unskewed

datasets. Our algorithm can be used as a shuffling mechanism in place of the hash-

based shuffling implementation which is commonly used at present. The key features of

our developed technique are:

• Operation insensitive to data skew: using our algorithm we eliminate the impact

of the reduce-side skew and achieve optimal load-balancing, while the performance

with unskewed datasets is minimally affected. The run-time overhead of our algo-

rithm is minimal irrespective of the level of skew and it requires zero parameteriza-

tion.

• Integration with common distributed SQL engines: irrespective of the internal oper-

ation of each engine, our algorithm could be integrated as-is in any MapReduce-type

engine interacting with its task scheduler. Also, its operation is not affected by the

decisions of the engine’s query optimizer, and the opposite.

• Locality-aware partitioning of input data: data statistics will be used to repartition

the skewed parts of the dataset in a way that ensures minimum data movements.

• Priority to local processing: to ensure maximum exploitation of data locality, we

split the partitioning procedure in two phases; first we create and assign as many

’local’ partitions as possible (which can be processed with the least required data

transfer) and then randomly process the rest of the partitions.

1.2 Content organization

The rest of the document is organized as follows: in Section 2, we discuss the state-

of-art partitioning techniques and present the related work. In Section 3, we present our

methodology including examples and implementation details. The experimental evalua-

tion is presented in Section 4 and we conclude our findings in Section 5.

21

Chapter 2

State-of-the-art partitioning techniques

In this section, we provide an overview of the subgroup partitioning strategy which is

most commonly used (with slight variations) for splitting the join groups of an equi-join

in the presence of skew.

2.1 Problem description

The most common algorithm which is used by distributed execution engines for joining

two large datasets relies on hash-based partitioning. With this basic partitioning, the

different values of the join attribute are assigned to different workers using a simple hash

function, however if these values are highly skewed certain workers will inevitably present

a significantly higher load. The impact of the load imbalance in such cases, is observed

in the increased overall execution time.

Considering a join group as the set of input records with a specific join attribute value,

a group that corresponds to a value with higher frequency will have a significantly larger

size. Such a group will be assigned to a single worker using the default hash partitioning.

The simplest approach to address the increased worker load caused by a large group, is

to split any large join group into subgroups that will be distributed to multiple workers.

2.1.1 Skew examination

In order to identify the groups that need to be partitioned, the sizes of the various

join groups must be first determined. The frequencies of the join attribute values in each

dataset must be calculated for this purpose. Although any existing data statistics can also

be re-used, in general these simple calculations can be quickly performed either before

the actual join or dynamically during its execution. Moreover, sampling techniques can

be used in both cases to avoid examining the whole dataset(s). Such simple count-style

calculations are necessary for determining skewed values and are part of the initial skew

examination phase in all of the existing research works.

2.1.2 Subset-replicate partitioning

When a decision has been made to split a large group in two subgroups, the records

belonging to each dataset are considered as two different sets which are handled in a

23

Chapter 2. State-of-the-art partitioning techniques

different way. Depending on the number of records in each set, the largest set is usually

split in two subsets forming two different subgroups and the records of the other set must

be replicated in both subgroups. This methodology is called subset-replicate partitioning

and is executed iteratively to split the largest join groups into smaller subgroups. It

is also known as rectangular partitioning, since a join group can be represented as a

rectangle whose each side has the size of a single set and it is consecutively split in

smaller rectangles. It is important to mention that the replication of a set of records in

different subgroups means that the same records will be sent to multiple workers instead

of a single one, known as input duplication.

The partitioning of groups into subgroups can happen once before the join execution

in an offline manner or it can be a dynamic procedure that constantly calculates the

optimal partitioning for the remaining records to be joined, depending on the latest data

statistics.

2.1.3 Optimization targets

The most important decision during the partitioning procedure is whether or not to

further partition. The question can take many different forms: Will the overall execution

time profit? Will we benefit more from splitting this set of the group? Will we have better

load balancing? Will the replication of records cause network-related overheads? This

particular problem can be formulated in many different ways and various cost models

with different optimization rules have been evaluated in the past. However, there are two

common targets in all existing efforts: a) even load balancing and b) minimal network

traffic. Even the most complicated execution time models have been created along the

same lines after carefully modelling the worker processing time and the network transfer

time in terms of the number of records processed/transferred.

2.2 Related Work

BigDawg [11] is, to the best of our knowledge, the first polystore engine among many,

that aims to optimize the execution of cross-engine shuffle-joins taking into account

the data skew. In this polystore system, the shuffle-join framework of SciDB [10] is

integrated and modified to operate on simple relational data instead of multi-dimensional

arrays. Initially, to calculate the data skew, a similar histogram is populated for each

table (engine) by taking random data samples of the join attribute and the histogram

buckets form the join-units. The final assignment of join-units to engines is produced

after two steps; first each of the join-units is assigned to the engine that has most data

locally to minimize data transfer, and then an algorithm called Tabu Search is used to

unload certain engines by reassigning join-units to engines with lower cost. Both the data

migration cost and the actual join cost are considered for each engine, modeled as simple

quadratic functions of the number of tuples. The performance of the used algorithm is

satisfactory even for non-skewed datasets, however it is untested with a large number of

nodes and distributed relational engines.

24

2.2 Related Work

In [14] a novel algorithm for executing hash-joins with large skewed datasets is pre-

sented. The aim of this work is to determine the best partitioning for heavy-hitters in

order to balance the worker load as evenly as possible. A greedy algorithm that performs

rectangular sub-group partitioning is used (each side of the rectangle represents a table).

This algorithm gradually increases the number of partitions on each join side by splitting

its largest partition, choosing the side that produces the greatest benefit in each iteration.

In order to quantify this benefit, the load expectation and variance of a worker are de-

fined (load is a linear function of the number of input and output tuples) and the chosen

partitioning is the one that causes the greatest variance reduction. Although the afore-

mentioned partitioning strategy is considered near-optimal for hash-joins and does not

require any knowledge of the heavy-hitters beforehand, it causes input duplication each

time a partition is split in two which means higher worker load expectation as the num-

ber of partitions increases. The best balance between load expectation and variance must

therefore be determined such that the running time is minimized. Another linear model,

similar to the worker load, is used for the running time which includes both the network

transfer time and the join execution time. For each partitioning, the algorithm uses de-

terministic assignment of partitions to workers and then the running time is estimated

based on the number of shuffled tuples and join I/O tuples. The algorithm terminates

when the running time does not improve significantly and the partitioning with the lowest

running time is selected. The performance of this algorithm with non-skewed datasets is

not properly studied however.

A similar, but much simpler, approach is used by Apache Spark ([2],[17]) for handling

data skew with the Adaptive Execution framework [1] that is included since release 3.0.

With Adaptive Execution, if a partition is much larger than the median partition size and

a preconfigured threshold value, it is split into smaller partitions that have the average

size of non-skewed partitions or a preconfigured size. In this case the matching partition

on the other side of the join needs to be replicated. Although this methodology can suc-

cessfully address the skew problem in specific simple use cases, it relies on user-defined

thresholds and the performance may actually be hurt depending on the configuration

and the use case. For example, the user must carefully consider the fact that when both

join sides are skewed the join could become a cartesian product. Moreover, the standard

shuffle mechanism is still used to randomly assign partitions to workers and locally avail-

able data are not exploited properly in order to reduce the amount of shuffle data which

is greatly increased due to the previously mentioned replication.

In a recently developed general-purpose framework [9] that can be used with vari-

ous workloads employing multiple execution engines in shared clusters, the authors use

automatic run-time skew detection and dynamic plan adjustment by gathering statistics

during execution. This approach is based on task management, similar with the Spark

framework, and locally available data are not exploited too.

Another system-centric approach is presented with SkewTune [13]. Being imple-

mented as an extension for MapReduce-type engines, it monitors task execution and

reacts whenever a slot in the cluster becomes available to rebalance the load. In order

to do so, it stops the task with the maximum estimated completion time and repartitions

25

Chapter 2. State-of-the-art partitioning techniques

its input data to new tasks using a heuristic algorithm. For the partitioning process,

SkewTune collects a compressed summary of the input data.

In Flow-Join [16] the authors focus on fast skew detection when executing hash-joins

over modern high-speed networks. A novel algorithm is presented, which detects heavy-

hitters and repartitions the data at runtime using small approximate histograms. Each

worker maintains its own histogram with local heavy-hitters, and constantly updates it

using the Space-Saving algorithm while performing the join. After processing only 1%

of the probe input, each worker can start using his histogram to decide on its local

heavy-hitters based on a fixed skew threshold value. The probe tuples are normally sent

to the build side if no skew is detected, otherwise they are kept local and the worker

asks to receive the build side tuples from other workers asynchronously. This method is

called Selective Broadcast and aims to minimize network transfers. For a more general

approach, a global histogram is built for each of the input sides and in case the skew

is detected in both sides the heavy-hitter tuples are redistributed using the Symmetric

Fragment Replicate shuffling scheme. With this scheme a grid is created that repartitions

data to the servers, in order to avoid the excessive network I/O and load imbalance that

the Selective Broadcast would cause. The grid shape depends on the relative frequency

of a heavy-hitter in both inputs, i.e. the heavy-hitters are partitioned using a square

grid in case skew is similar in both input sides. The final algorithm uses lazy tuple

materialization while building the two global histograms and uses a pipelined probing

approach for deciding how each tuple will be joined.

Finally, addressing the increased network traffic that incurs with the hash-based

shuffle mechanism which is used not only in hash-joins but in the deep learning domain

too, the authors in [15] propose a partial instead of global shuffle of the data aiming

to maximize local processing and minimize data movement. This approach is highly

applicable to other domains too except from the deep learning domain, such as large-

scale relational processing.

26

Chapter 3

Methodology

In this section, we formulate the problem and describe our methodology to repartition

skewed data. Our approach is based on the fact that the state-of-the-art partitioning

methodology which relies on cost models has been mainly applied in research using

custom-build execution engines. On the other hand, typical distributed general-purpose

engines which are widely used try to address the problem through task monitoring and

dynamic rescheduling focusing on the load balancing aspect of the problem. Moreover,

code-based custom solutions such as key-salting which can be used with any engine, also

deal only with the load balancing and ignore input duplication overheads. Our goal is to

develop an algorithm that can be easily implemented in any distributed processing system

without involving cost-models and addresses both the load balancing and duplication-

related network issues that arise under the presence of data skew.

3.1 Approach overview

The proper partitioning of data groups is of crucial importance to effectively improve

the performance of a highly skewed reduce-side operation. To visualize the impact of skew

in such cases, we present in Image 3.1 an example where two relations must be combined,

tables A and B, and the different colors represent data that belong to a different group.

Each group represents a part of the data that are related to a specific join/aggregation

attribute value and must be processed independently. If some value appears with higher

frequency (0 in Image 3.1) the corresponding group will contain more data in relation with

others (yellow) and our data will be skewed. Skew is usually present in one side of the

joined/aggregated relations (Table A in Image 3.1), but in general both relations could

present skew. Assuming that each group is usually assigned to a different worker for

processing it, i.e. partitions A0 and B0 of Image 3.1 will be sent to the same worker, this

worker will obviously receive more load compared with others.

27

Chapter 3. Methodology

Image 3.1: Effect of skew presence in a single key (yellow)

The state-of-the-art subset-replicate methodology which is used to unload workers in

such cases, is two split the large partition A0 which is created from the skewed relation

(table A) into two subsets A0-0 and A0-1 as presented in Image 3.2. Each of this subsets

will then be sent to a different worker in order to achieve a more even load balancing.

However, each of these workers will need a copy of partition B0 in order to perform the

computation, hence the name subset-replicate. Partitions A0-0 and B0 would therefore

form one subgroup, and partitions A0-1 and B0 a second subgroup which are created

from the original group related to key 0.

Image 3.2: Subset-replicate methodology to handle skewed data

Every time we choose to split/repartition a single group we share the load between

two or more workers and at the same time we increase the network traffic due to the

duplication of input records in different subgroups. Following the flow, we choose to

focus on the load balancing and network traffic aspects too, however we introduce a new

approach which is solely based on the assignment of subgroups to workers without the

need for developing any cost models. We argue that through the guided initial creation

and assignment of subgroups to workers one can tackle both issues:

28

3.1.1 Load balancing

3.1.1 Load balancing

To achieve an even load balancing, each subgroup must be assigned to a worker taking

into account its size and the existing assignments/load of the worker. We consider the

load of a worker as the aggregate size of the subgroups assigned to it or as the aggregate

number of computed output tuples. When a new subgroup is created, we select a worker

for it (based on different criteria that we explain in 3.4) under the condition that its total

load will not exceed a threshold which is common for all workers. We therefore prefer

to follow an over-partitioning approach when creating subgroups to ensure that we have

minimal load variance between workers. We provide more details about this in subsection

3.3.

3.1.2 Network transfer

Instead of attempting to minimize the data transfer that is caused by every splitting/-

partitioning decision, we use an equivalent approach in which we try to ensure maximum

data locality when creating and assigning subgroups. In particular, when we examine

how a specific group should be partitioned we first consider the workers that have most

of the group data stored locally and we create and assign to them the largest possible

subgroups without overloading them. For the remaining data of the group, for which we

can not ensure locality, we iteratively assign the largest possible subgroup to the worker

with the least load.

In the following paragraphs we describe in more detail our methodology and we present

the final developed algorithm for executing a highly skewed reduce-side operation.

3.2 Local and global skew examination

As in all previous works, before we start partitioning the groups we must first compute

their sizes with a skew examination phase. Each group corresponds to a specific attribute

value and the data inside it must be joined/aggregated in the reduce side. The size of

each group is calculated as the product of the frequencies of this specific value in the two

combined datasets. We perform these calculations once before we execute our partitioning

algorithm and we store a few different metrics for each group Px : a local weight lx (n) per

worker n and its total size gx . The local weight is computed for each worker similar to the

group size but using only its local data. The notation of the variables that we will use is

presented in detail in Table 3.1.

For example, let us assume two datasets S and T that need to be joined on a single

attribute A, and a join group Pa which is for the attribute value a. We also assume that

there are four workers available, of which only two contain data related to the attribute

value a. In Table 3.2, we can see the number of records in each worker where this value

appears (i.e. its frequency) and the local weights which are computed as:

la(n) = sa(n) × ta(n), n = {1, .., N}

29

Chapter 3. Methodology

Table 3.1. Variables notation

Variable Meaning

N number of workers in the clus-

ter

S, T input datasets

A join attribute

V set of distinct join attribute val-

ues

Sa , Ta Sa = {s ∈ S : s.A = a}, Ta = {t ∈
T : t.A = a}

Pa Pa = {p ∈ Sa ∪ Ta}

sa(n), ta(n) sa(n): number of Sa records in

worker n, ta(n): number of Ta

records in worker n
la(n) local weight of worker n for join

group Pa

ga size of join group Pa

Cmax maximum allowed load on a

worker

Table 3.2. Number of records in each set and the computed local weights per worker for
group Pa .

Worker sa size ta size la weight

0 10 20 200

1 41 10 410

2 0 0 0

3 0 0 0

The total number of Sa records across all workers is |Sa | =
∑N

n=1
sa(n) = 51. Respectively

|Ta | =
∑N

n=1
ta(n) = 30. |Sa | and |Ta | are considered as the group dimensions and the group

size is computed as ga = |Sa | × |Ta | = 1530.

In essence, the size of a join group indicates the total load that this group will pro-

duce in our execution environment, in terms of the number of comparisons that will be

performed (using a cartesian product) or the number of final output tuples. The local

weights, on the other hand, indicate the load that will be put on each worker iff its local

group data are joined locally. Most importantly, the local weights are used in our case

to measure the benefit of selecting a ’local’ join i.e. creating a subgroup that contains its

local data and assigning it to this particular worker. The highest the local weight of a

worker is for a particular attribute value, the least network transfer will be required for

the group given that we attempt to assign the largest possible subgroup to this worker.

Based on our example, worker 1 is the first candidate to be assigned with the largest

possible subgroup and then worker 0. Workers 2 and 3 will only be used at the end in

case the two first workers have been overloaded.

At the end of the skew examination phase, the local weights, the group dimensions

and the size for each group have been computed. Next, we calculate the maximum load

that can be assigned to any worker by our partitioning algorithm to ensure an even load

30

3.3 Balanced load assignment

balancing.

3.3 Balanced load assignment

Let V be the set of all the distinct values of the join attribute for a specific join

operation. Each element in V corresponds to a different join group. By adding the

sizes of all the join groups that are computed in the skew examination phase, we can

estimate the total load L induced by this join operation:

L =
∑
v∈V

gv

Assuming an optimal totally even load balancing between workers, the maximum load of

a worker, which we will refer to as maximum capacity, is:

Cmax = L/N + 1

The maximum worker capacity will indicate in our case the maximum allowed load of a

worker and will be used as a strict threshold to avoid overloading any single worker at

any time.

In practice, when we examine a specific worker that has most data of a particular group

locally, we will try to assign the largest possible subgroup to it. If the worker already has

a great amount of load from previous assignments of other groups and therefore only a

little capacity left until reaching Cmax value, we force the creation of even the smallest

subgroup that can be assigned to it without violating this threshold to exploit any existing

data locality. Although this may lead to an aggressive over-partitioning that we should

avoid since it causes input duplication, it tends to happen more during the last decisions

taken by our algorithm. At this point, both the remaining capacity of workers and the

remaining records are limited and the benefits from constantly trying to schedule as much

local joins as possible prove to be much more important in overall.

3.4 Two phase partitioning algorithm

Before we start partitioning groups and assigning subgroups to workers, the maximum

worker capacity is computed and is initialized to this value for all workers and all the

computed local weights are gathered and sorted in descending order creating a queue.

Then starting from the largest weight, we identify the worker and group that it refers to

and compute the largest possible subgroup that can be assigned to the worker without

exceeding its remaining capacity. When we reach the end of the queue, we update the

local weights of the workers by excluding any records that will not be used again and we

rebuild the queue using the new local weights. Then the procedure is repeated with the

updated queue.

When we fail to create and assign a new subgroup after traversing the whole queue

(which means that no worker has enough capacity left) the first phase of our algorithm,

31

Chapter 3. Methodology

that mainly tries to schedule local computations using the local weights, is completed.

A second phase follows, for which we create a new queue by ordering the remaining

group data in descending size. We traverse this queue only once and for each group we

repeatedly assign the largest possible subgroup to the worker with the most remaining

capacity without again exceeding the maximum allowed load. We do not proceed to

the next group in the queue until all the current group data have been aggressively

assigned to workers. During this second phase, we therefore randomly schedule reduce-

side computations ignoring the initial data location.

Our partitioning algorithm is presented in Algorithm 1 and includes the two aforemen-

tioned distinct phases. In brief, in the first phase we create subgroups trying to exploit

the data locality based on the queue that we update constantly, and the second phase

simply handles the remaining group data ignoring data locality. During both phases the

worker maximum capacity is never exceeded, leading to the optimal load balancing.

Algorithm 1: patchPartitionAndAssign

Input: |Sv |, |Tv |, sv(n), tv(n), lv(n), gv for each worker

n = {1, .., N} and join attribute value v ∈ V ,

maximum capacity Cmax

Output: Set R containing worker-subgroup pairs

R ← ∅

cap(n) = Cmax , n = {1, .., N}

/* 1st phase */

q ← orderDescending(lv1(1), .., lv1(N), lv2(1), ..)

while changed(q) do

for lv(w) in q do

if cap(w) > |Sv | or cap(w) > |Tv | then

r ← computeMaxLocalitySubgroup(v, w)

R ← R ∪ {r}

q ← orderDescending(lv1(1), .., lv1(N), lv2(1), ..)

/* 2nd phase */

q ← orderDescending(gv1, gv2, ..)

for gv in q do

while gv > 0 do

w =getWorkerWithMostCapacity()

r ← computeLocalityAgnosticSubgroup(v, w)

R ← R ∪ {r}

return R

In the next subsection, we present a detailed example of how a single subgroup is cre-

ated from a group for a specific worker during the first phase and the different algorithms

that are used in each phase for the subgroup creation.

32

3.5 Patch-based group partitioning

Image 3.3: Patch-based partitioning of the join group Pa . Each subgroup is denoted as
a blue rectangle and is colored differently depending on the worker it is assigned to. The
cross-hatched areas can eventually be computed using only local records of the worker,
while the dashed areas use partially local records.

3.5 Patch-based group partitioning

Continuing from our previous example in subsection 3.2, we can visualize group Pa

and the subgroups it is broken into in Figure 3.3. The size of each side of the whole

rectangle is equal to the number of records on each dataset i.e. |Sa | = 51 and |Ta | = 30,

and the total area is equal to the group size. We also note next to each side the part of

records stored in each worker and try to visualize the different locations of the data with

the delimited black cross. Assuming that worker 1 is the one with the largest local weight

(410) in the queue for group Pa and assuming that its remaining capacity until reaching

Cmax value is 973, the first subgroup that we create and assign to worker 1 includes 32

records from Sa and all the 30 records of Ta , and is shown as the largest pink area in Fig.

3.3.

To explain this subgroup selection, first we try to assign the whole group to the worker.

If its size exceeds the worker’s remaining capacity as in this case (ga = 1530 > 973), we

split the largest set between Sa and Ta which is Sa . In this case, we attempt to use

only the local Sa records and all of the Ta records which will create a subgroup of size

41 × 30 = 1230. As this number still exceeds the available capacity, we finally decide

33

Chapter 3. Methodology

to select as much local Sa records as possible given the remaining capacity i.e. we use

973 ÷ 30 = 32 records from Sa in the subgroup that we create. The final subgroup size,

which is the new load assigned to worker 1, is 32×30 = 960, leaving a remaining capacity

of 13 to the worker. The aforementioned procedure is depicted in Algorithm 2 and is used

during the first phase of our algorithm.

Algorithm 2: computeMaxLocalitySubgroup

Input: attribute value v, worker w, worker capacity

cap(w), |Sv |, |Tv |, sv(n), tv(n), lv(n), gv for each

worker n = {1, .., N}

Output: A subgroup of group Pv for worker w with

the maximum data locality

exts ← ∅, extt ← ∅

/* consider whole group initially */

rt = |Tv |, rs = |Sv |

if gv > cap(w) then

/* split largest of Sv and Tv */

if |Tv | > |Sv | and |Sv | < cap(w) then

rt = tv(w)
if rs × rt > cap(w) then

rt = cap(w) ÷ |Sv |

else if |Tv | < cap(w) then

rs = sv(w)
if rs × rt > cap(w) then

rs = cap(w) ÷ |Tv |

if rs × rt > cap(w) then

return ()

if rs > sv(w) then

exts ←fromOtherWorkers(rs − sv(w))
rs = sv(w)

if rt > tv(w) then

extt ←fromOtherWorkers(rt − tv(w))
rt = tv(w)

update cap(w), |Sv |, |Tv |, sv(w), tv(w), lv(w), gv

return (w, (v, rs, exts, rt , extt))

With the predescribed approach it is clear that we do not split the largest set exactly in

half or use predefined dimensions like previous works which consecutively divide in half

the set or create subsets that do not exceed a specific size limit (Figure 3.4). Instead we

aggressively try to exploit the data locality keeping as many records locally as possible.

This is the reason why we call our partitioning method patch-based, since we create

subgroups with random dimensions that resemble patches instead of being subdivisions

of the initial group dimensions. The choice of splitting the largest set of the two is based

34

3.5 Patch-based group partitioning

on the simple reasoning that if we split the smallest one then the large set must inevitably

be replicated and used again in the future by other workers transferring a largest amount

of data over the network.

Image 3.4: Partitioning based on consecutive divisions (left) and size limit (right) ignoring
the data placement

Regarding the data locality in the created subgroup, all the 32 Sa records can be found

locally on worker 1 (see table 3.2), however only the 10 out of 30 Ta records are local and

the remaining 20 will be transferred from worker 0 to 1. The number of records that

need to be transferred from each remote worker is also stored when creating a subgroup

(variables ext in Algorithm 2). It is important to notice that although we try to use as much

local data as possible, the subgroup contains records transferred from other workers too,

for example in this case the 20 Ta records that we mentioned. This is necessary in order

to ensure that the 32 local Sa records will not be used again as they are joined with all

the corresponding Ta records. Therefore we have fully exploited the locality for these 32

records since they will not be needed again by other workers. The values of the variables

sa , ta , la , ga are updated at the end, considering that the 32 Sa records of the subgroup

will not be used again.

In the next iterations of Algorithm 2, new subgroups are examined for creation de-

pending on the updated local weights and the remanining capacity on the workers. The

first and largest local weight that appears on the queue indicates the group that will be

examined next and the worker that it will be assigned. The rest of the subgroups ap-

pearing in Figure 3.3 for group Pa will therefore be created at future iterations, and not

necessarily successively as other groups are also being partitioned in between.

During the second phase of our algorithm a slightly different procedure is used for

creating subgroups, which is presented in Algorithm 3. The difference from Algorithm

2 is that the local weights are no longer used, and the algorithm will simply create the

35

Chapter 3. Methodology

largest possible subgroup for the worker.

Algorithm 3: computeLocalityAgnosticSubgroup

Input: attribute value v, worker w, capacity cap(w),
|Sv |, |Tv |, gv

Output: A subgroup of group Pv for worker w

ignoring data locality

exts ← ∅, extt ← ∅

rt = |Tv |, rs = |Sv |

if gv > cap(w) then

if |Tv | > |Sv | then

rt = cap(w) ÷ |Sv |

else

rs = cap(w) ÷ |Tv |

exts ←fromOtherWorkers(rs)

extt ←fromOtherWorkers(rt)

update cap(w), |Sv |, |Tv |, gv

return (w, (v, rs, exts, rt , extt))

The complexity of Algorithms 2 and 3 is O(1). In the worst case scenario, Algorithm 1

will assign to all the created subgroups 1 S record and 1 T record therefore turning the

calculation of the output into a Cartesian product. The number of subgroups that will be

computed from Algorithm 1 in such case is L, where L is the total load defined in section

3.3, and is equal to the total number of output tuples that will be computed. Algorithm

1 has a worst case complexity of O(L).

3.6 Reduce-side processing

After the subgroups and their assignments are computed using Algorithm 1, the join

or any other reduce-side operation can be executed. In order to perform the required

operation, the records must first placed into the subgroups by tagging them with the

corresponding subgroup ids. During this tagging procedure the necessary records are

also transferred to specific workers and then the actual operation can be executed.

More specifically, if for a record’s attribute value there are relative subgroup(s) that are

assigned to the worker itself, the record will be kept locally and be tagged (with an extra

field) with some subgroup id(s). If there are other workers that must receive records for

this particular attribute value (noted in their assigned subgroups) the worker also sends

the record with the appropriate tag(s) to the required workers. A record is not necessarily

placed in all the relative subgroups that are assigned to the worker. The subgroup size is

considered for this purpose along with some more recorded metrics which are constantly

updated during the tagging procedure. Tagging each record with multiple tags generally

helps us avoid duplicating a record for each subgroup inside a worker and therefore

reduces the memory footprint of our algorithm.

36

3.6 Reduce-side processing

A graphical representation of the tagging procedure for group Pa that was presented

in the previous subsection, is presented in Image 3.5. The black allows represent records

that will only be tagged and kept locally, and the red allows represent records that will be

tagged and sent to other workers. In case of record s5, it will be sent to worker 3, but it

will be included in only in one of the two subgroups assigned to this worker. On the other

hand, record s30 will be included in both subgroups of worker 3. The record will not be

emitted twice in this case, instead two tags will be sent together with this record.

Image 3.5: Records placement in the subgroups created for group Pa .

When the record tagging and transfer is finished all the workers can start processing

their local subgroup data. The records from each dataset are joined/aggregated on the

selected attribute for each of their common tags i.e. for each subgroup that they are

collocated.

The selective tagging procedure that we previously described is not yet fully imple-

mented. In particular, the algorithm that performs the tagging before the data is trans-

ferred on the reduce-side is currently being designed. The selection of the subgroups

that each record will be placed is a variation of the subset sum problem [6] which is

an NP-hard problem. For the subset sum problem there exist pseudo-polynomial time

dynamic programming solutions and polynomial time approximation solutions which will

be studied for the final implementation. Another approach that could be used is based on

the two-dimensional bin packing problem [3] or the rectangle packing problem [5], which

are also NP-hard.

37

Chapter 3. Methodology

In the next chapter we will evaluate the resulting worker load and amount of data

that must be transferred to each worker based on the subgroups assignments that our

patch-based partitioning algorithm produces for various skewed datasets. We will also

compare the results with the corresponding load and data transfer expected when using

the common hash-based shuffling procedure.

3.7 Proof of concept

In this section we will present in detail a simple example of the execution of Algorithm

1 and analyze the outcome and profit compared with the common hash-based partitioning

used for shuffling.

We create two datasets, with the following characteristics:

Table 3.3. Parameters used for proof of concept

N 2

|V | 4

|S| 40

|T | 20

|Sa |, |Sb |, |Sc |, |Sd | 23,12,3,2

|Ta |, |Tb |, |Tc |, |Td | 4,6,4,6

sa , sb, sc, sd [10,13],[9,3],[0,3],[1,1]

ta , tb, tc, td [2,2],[4,2],[2,2],[2,4]

la , lb, lc, ld [20,26],[36,6],[0,6],[2,4]

ga , gb, gc, gd 92,72,12,12

L 188

Cmax 95

Table S presents significant skew as 23 out of 40 records are referring to attribute

value a, 12 to b and only 5 records to attribute values c and d. The initial queue is

created from variables la , lb, lc, ld as:

q = [36, 26, 20, 6, 6, 4, 2]

To visualize the partitioning procedure, which includes 6 iterations in total, we will

present graphically the groups and subgroups after each iteration of the algorithm. The

initial groups, with their sizes, data placement in each worker and the local weights that

form the queue are presented in Image 3.6.

38

3.7 Proof of concept

Image 3.6: Representation of the initial four groups and their sizes, as well as the data
placement in the two workers

The first subgroup created will be related to lb(0) = 36 which is the first element in

the queue, and will be assigned to worker 0. The subgroup will contain 6 Tb records and

12 Sb records, hence the whole group Pb will be assigned to worker 0. The remaining

capacity in worker 0 after this assignment is 95− 6 · 12 = 23. As we can see in Image 3.7

a large part of the created subgroup will be computed with local records, but 2 Tb and

3 Sb records will need to be transferred from worker 1 to 0. The local weights become

lb = [0, 0] and the queue is updated to the following:

q = [26, 20, 6, 4, 2]

Image 3.7: The first subgroup created for group Pb, assigned to worker 0

The second subgroup created will be related to la(1) = 26 which is the first element

in the queue, and will be assigned to worker 1. The subgroup will contain 4 Ta records

39

Chapter 3. Methodology

and 23 Sa records, hence the whole group Pa will be assigned to worker 1. The remaining

capacity in worker 1 after this assignment is 95 − 4 · 23 = 3. As we can see in Image 3.8

a part of the created subgroup will be computed with local records, but 2 Ta and 10 Sa

records will need to be transferred from worker 0 to 1. The local weights become la = [0, 0]
and the queue is updated to the following:

q = [6, 4, 2]

Image 3.8: The second subgroup created for group Pa , assigned to worker 1

The third subgroup created will be related to lc(1) = 6 which is the first element in the

queue, and will be assigned to worker 1. The subgroup will contain 1 Tc and 3 Sc records

and the remaining capacity in worker 1 after this assignment is 3−1 ·3 = 0. As we can see

in Image 3.9 only local records will be used in this subgroup. The local weights become

lc = [0, 3] and the queue is updated to the following:

q = [4, 3, 2]

40

3.7 Proof of concept

Image 3.9: The third subgroup created for group Pc, assigned to worker 1

The first two elements in the queue are related to ld(1) = 4 and lc(1) = 3, however no

subgroups can be created for them since worker 1 has no capacity left. The last element

in the queue related to ld(0) = 2, can however be used to create a subgroup for worker 0

which still has some capacity left (Image 3.10).

Image 3.10: The areas noted with ’4’ and ’3’ cannot be assigned to worker 1 to exploit the
data locality, therefore the area noted with ’2’ will be next studied for worker 0

The fourth subgroup created will therefore be related to ld(0) = 2, and will be assigned

to worker 0. The subgroup will contain 6 Td and 2 Sd records, hence the whole group Pd

will be assigned to worker 0. The remaining capacity in worker 0 after this assignment

is 23 − 6 · 2 = 11. As we can see in Image 3.11 a part of the created subgroup will be

computed with local records, but 4 Td and 1 Sd record will need to be transferred from

worker 1 to 0. The local weights become ld = [0, 0] and the queue is updated to the

following:

41

Chapter 3. Methodology

q = [3]

Image 3.11: The fourth subgroup created for group Pd , assigned to worker 0. The first
phase is complete as no more locality-based subgroups can be created.

At this point we enter the second phase of the partitioning algorithm where the re-

maining groups are simply greedily assigned to the remaining workers.

The fifth and final subgroup consisting of 3 Tc and 3 Sc records can be whole assigned

to worker 0, which finally obtains a minimum capacity of 11 − 3 · 3 = 2.

Image 3.12: The fifth and last subgroup is created for group Pc without considering data
locality, and is assigned to worker 0.

The final load of the workers is 95 and 93, which means that they are practically

perfectly balanced. With the simple hash-based partitioning algorithm two groups would

be assigned to worker 0, and the other two to worker 1. Assuming the best case scenario,

groups Pa and Pc would be assigned to worker 1 and Pb and Pd to worker 0, hence the load

42

3.7 Proof of concept

of the workers would be 104 and 84. In the worst case however, groups Pa and Pb could be

both assigned to worker 1 leading to load values of 164 and 24, which is a significant load

imbalance as worker 1 would be 6.8X slower than worker 0. The reduce-side operation’s

execution time would be proportional to the maximum worker load, which is 95 with our

partitioning algorithm and 164 with the worst case hash-based approach i.e. the default

’naive’ approach would be 73% slower due to the presence of skew.

The records that were transferred are in total 26, 17 S records and 9 T records. The

default hash-based approach would in the worst case scenario transfer 36 records i.e.

38% more than our approach, and in the best case scenario 24 records i.e. 8% less

than our approach. However, in the base case scenario our approach is 9% faster. We

argue that the benefits of better load balancing in the final measured execution time

are much more important compared to network-related overheads, especially with the

development of the last generation Ethernet and InfiniBand networks. We intend to verify

this argument in the experimental evaluation section.

To demonstrate the differences between our approach in comparison with the hash-

based partitioning as well as the original subset-replicate method that uses subdivisions

of the initial group size, we constructed a diagram presenting the subgroup assignments

in each case. In the first diagram in Image 3.13 we present the worst case naive hash-

based partitioning in which groups Pa and Pb are randomly assigned to worker 1, leading

to a serious load imbalance.

Image 3.13: Groups assignments with the hash-based partitioning (worst case)

In the second diagram, appearing in Image 3.14, we can see that the subset-replicate

methodology splits in half sets Sa and Sb which are significantly larger and achieves a

perfectly even load balancing. However, with this method sets Ta and Tb are sent to both

workers as we can see in Image 3.14 with the red arrows. This will increase the size of

shuffle data by the amount |Ta |+ |Tb| which corresponds to 10÷ 60 = 0.166 or 17% of the

initial total number of records.

43

Chapter 3. Methodology

Image 3.14: Subset-replicate based partitioning of subgroups

Finally, our patch-based method is presented similarly in Image 3.15. As we can

see, the subgroups created with our algorithm are completely different from the common

subset-replicate partitioning for two reasons; 1. Our algorithm does not necessarily split

skewed groups if the examined worker has enough capacity to receive it without being

overloaded. 2. Our algorithm tries to exploit data locality by performing specific as-

signments to workers (instead of random) and this leads to less data movement between

workers. Even the order that the subgroups are created and assigned is selected specif-

ically to maximize data locality and minimize data transfer. In particular, the dashed

arrows in Image 3.15 are movements that will not be performed with our algorithm and

instead locally available data will be used (denoted as cross-hatched areas). Only set Sc

will be replicated in this case which corresponds to only 5% of the initial total number of

records, while the common subset replicate methodology replicated 17% as we previously

mentioned and achieved the same optimal load balancing. Also, the total size of shuffle

data is 27% less than the worst case hash-based partitioning, and 8% more than the

best case hash-based as we previously mentioned however we achieve a perfectly even

load balancing. Therefore, our methodology seems to present better results than both the

common subset-replicate and hash-based partitioning approaches.

44

3.8 Implementation

Image 3.15: Patch-based partitioning of subgroups exploiting data locality

3.8 Implementation

3.8.1 Patch-based partitioning algoritm

We choose to implement Algorithm 1 and all underlying methods using Java. As we

focus our efforts in optimizing the execution on distributed environments, we use multiple

workers which are implemented as separate threads and each worker initially loads in

his memory a part of the input data. Various thread-safe memory access mechanisms

are used in our implementation. Considering the initial random placement of data on the

workers of distributed systems, we focus on performing as much local processing of the

data as possible and at the same time avoid expensive data movements. This approach

is fully compatible with the logic of our algorithm that tries to schedule as much local

subgroup assignments as possible, considering the initial location of the in-memory data

instead of the physical data location.

The code is still under development and many future optimizations are scheduled for

implementation, therefore it is not yet publicly available.

3.8.2 Data generation

Two datasets with a predefined number of records are generated on-the-fly in the

beginning each experiment. The number of distinct values for the attribute (or key)

used to combine the datasets is initially defined, and each dataset is generated using a

Zipfian distribution for this attribute values. The distribution exponent (θ parameter) is

predefined and different for each dataset as it controls the level of skew that will appear

in the keys of each dataset. The Java code that performs the aforementioned procedure

is included in Appendix A.

When the generation is complete, each dataset’s records are uniformly divided to N

equal sized parts, where N is the defined number of workers. Each worker will later use

his in-memory part of the data. This approach is similar with big data concepts where a

45

Chapter 3. Methodology

distributed filesystem is used and the workers can access in their local disk an equally

sized part of the physical data which will be loaded in memory for further processing. The

Java code that performs the aforementioned procedure is included in Appendix B.

3.8.3 Statistics for the data skew

Similar to previous works that require the group sizes to be previously known/com-

puted, we first need to compute similar statistics using a multi-threaded task. First we

perform some partial aggregation on the workers and compute the frequency of the join

attribute values on each worker. We assume for the workers, that each one contains

multiple different keys and there is no sorting of the join key. Then a global aggregation is

performed to compute the local weights, by summing up the results per worker. Finally, a

computation of the groups dimensions and sizes is performed based on the local weights.

The Java code that performs the aforementioned procedure is included in Appendix C.

46

Chapter 4

Experimental evaluation

A virtual machine running Ubuntu 20.04 with 40VCPUs and a RAM of size 200GB

is used for the experiments. For each experiment the following parameters are initially

defined: the S and T table sizes, the number of unique keys, the number of workers and

the distribution exponent θ for each table which we will refer to as skew factor. Each

experiment includes two consecutive executions on the same initially generated datasets:

the patch-based partitioning algorithm and a random case of the hash-based shuffling

method. Each worker is implemented as a single thread, as we have previously mentioned.

To visualize the change of the skew factor in a dataset, assuming that we have 32

unique keys and 200000 records, we present in Figure 4.1 the ratio of records that

correspond to each key. Each line represents a dataset with a different skew factor in the

range θ : [0, . . . 3].

0 5 10 15 20 25 30
Unique key index

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

R
ec

o
rd

s
ra

ti
o

0.00001
0.5
1.0
2.0
3.0

Figure 4.1. Records distribution in the keys for different skew factors

In Figure 4.1, the red line corresponds to zero skew (uniform distribution), the purple

47

Chapter 4. Experimental evaluation

line which corresponds to skew factor θ = 0.5 has 10% of the records in one key, the

green line which corresponds to skew factor 1.0 has 25% of the records in one key, while

the orange line which corresponds to skew factor 3.0 has 83% of the records in one key.

In real datasets we usually find skew factors less that 1.0, however we will present some

of the results for skew factors greater than 1.0 to exhibit the behavior of our algorithm

under extreme cases.

Three sets of experiments are used for evaluating the performance of our algorithm.

The first set of experiments examines the load balancing that occurs with our repartition-

ing algorithm compared with the ’naive’ hash-based repartitioning using varying skew

factors for the datasets. The second set focuses on the size of the data that were trans-

ferred over the network, which we will refer to as shuffle data in the rest of this section,

comparing our algorithm with the hash-based technique. For this set we use varying

skew factor in both datasets and the number of unique keys and workers. The third set

of experiments is used to evaluate the overall performance of our implementation com-

pared to the simple hash-based partitioning. For this purpose, a linear model is used to

simulate the total time required for the data exchange and reduce-side processing in a

distributed cluster.

4.1 Load balancing

In the first set of experiments we will compare the minimum and maximum load

that appeared among the workers, using our implementation and the ’naive’ hash-based

repartitioning. In order to compare our implementation with the hash-based technique,

we choose a number of workers which is equal to the number of unique keys. This setup

will allow us to better present the differences using a simple self-explained base case in

which the hash-based technique would simply assign one whole group to each worker.

Assuming that table T has zero skew in the keys (θT ≊ 0), we vary the skew factor

in table S using values in the range θS : [0, . . . 3]. Both tables contain multiple records

for each attribute value in this case, using a different distribution however, resembling

a foreign-foreign key join scenario. The number of workers and the parameters used for

creating the datasets are presented in Table 4.1.

Table 4.1. Parameters used for the experiments in Figures 4.2 and 4.3

N 32

|V | 32

|S| 200000

|T | 200000

θT 0.00001

We create two diagrams with the results. The first diagram (Figure 4.2) presents the

maximum expected worker load as the factor in table S increases for the two algorithms.

The load is normalized using the average worker load value.

48

4.1 Load balancing

0.00001 0.001 0.1 1.0 2.0 3.0
Zipf exponent

0

5

10

15

20

25

M
ax

im
u
m

 w
o
rk

er
 l

o
ad

 (
n
o
rm

al
iz

ed
)

Patch-based
Naive

Figure 4.2. Maximum worker load with the patch-based and naive hash-based algorithms
for different skew factors in table S (θS)

As we can observe in Figure 4.2, our patch-based implementation presents a max-

imum worker load equal to the average value in all skew factors, therefore performing

perfect load balancing under all circumstances. On the contrary, the hash-based tech-

nique is of course affected by the skew in table S and as the skew factor increases to

values greater than 0.1 the maximum worker load increases significantly up to 26 times

more than the average value.

The second diagram (Figure 4.3) presents similarly the normalized minimum expected

worker load as the factor in table S increases for the two algorithms.

0.00001 0.001 0.1 1.0 2.0 3.0
Zipf exponent

0,0

0,2

0,4

0,6

0,8

1,0

M
in

im
u

m
 w

o
rk

er
 l

o
ad

 (
n

o
rm

al
iz

ed
)

Patch-based
Naive

Figure 4.3. Minimum worker load with the patch-based and naive hash-based algorithms
for different skew factors in table S (θS)

49

Chapter 4. Experimental evaluation

The results from Figure 4.3 are in agreement with Figure 4.2, and present the perfect

load balancing performed by our algorithm and how the hash-based technique is again

affected by the skew leading to zero minimum load in some worker(s) as the skew factor

increases.

Next, assuming that both tables S and T present the same amount of skew, we vary the

skew factor using values in the range θS : [0, . . . 1]. Both tables contain multiple records

for each attribute value, resembling a foreign-foreign key join scenario. The number of

workers and the parameters used for creating the datasets are presented in Table 4.2.

Table 4.2. Parameters used for the experiments in Figures 4.4 and 4.5

N 32

|V | 32

|S| 200000

|T | 200000

Like previously we create two diagrams, one presenting the normalized maximum

worker load (Figure 4.4) and one presenting the minimum worker load (Figure 4.5) for the

two algorithms as the skew factor increases.

0.00001 0.01 0.05 0.1 0.5 0.9
Zipf exponent

0

4

8

12

16

20

M
ax

im
u
m

 w
o
rk

er
 l

o
ad

 (
n
o
rm

al
iz

ed
)

Patch-based
Naive

Figure 4.4. Maximum worker load with the patch-based and naive hash-based algorithms
for various skew factors applied in both tables S and T

50

4.1 Load balancing

0.00001 0.01 0.05 0.1 0.5 0.9
Zipf exponent

0,0

0,2

0,4

0,6

0,8

1,0

M
in

im
u

m
 w

o
rk

er
 l

o
ad

 (
n

o
rm

al
iz

ed
)

Patch-based
Naive

Figure 4.5. Minimum worker load with the patch-based and naive hash-based algorithms
for various skew factors applied in both tables S and T

The inductions are similar with Figures 4.2 and 4.3. In this case we observe for the

naive hash-based technique that the maximum load increases to much larger values and

the minimum drops to even lower values due to the presence of skew in both tables.

Finally, assuming that table T has zero skew in the keys (θT ≊ 0), we vary the skew

factor in table S using values in the range θS : [0, . . . 3]. In this case table T contains

a unique appearance of each key in its records, resembling a primary-foreign key join

scenario. The number of workers and the parameters used for creating the datasets are

presented in Table 4.3.

Table 4.3. Parameters used for the experiments in Figures 4.6 and 4.7

N 32

|V | 32

|S| 200000

|T | 32

θT 0.00001

Like previously we create two diagrams, one presenting the normalized maximum

worker load (Figure 4.6) and one presenting the minimum worker load (Figure 4.7) for the

two algorithms as the skew factor increases. The inductions are identical with the ones

for Figures 4.2 and 4.3.

51

Chapter 4. Experimental evaluation

0.00001 0.001 0.1 1.0 2.0 3.0
Zipf exponent

0

5

10

15

20

25

30

M
ax

im
u
m

 w
o
rk

er
 l

o
ad

 (
n
o
rm

al
iz

ed
)

Patch-based
Naive

Figure 4.6. Maximum worker load with the patch-based and naive hash-based algorithms
for different skew factors in table S (θS) having unique keys in table T

0.00001 0.001 0.1 1.0 2.0 3.0
Zipf exponent

0,0

0,2

0,4

0,6

0,8

1,0

M
in

im
u

m
 w

o
rk

er
 l

o
ad

 (
n

o
rm

al
iz

ed
)

Patch-based
Naive

Figure 4.7. Minimum worker load with the patch-based and naive hash-based algorithms
for different skew factors in table S (θS) having unique keys in table T

4.2 Data movement

The second set of experiments includes two different evaluation targets. Initially, we

will compare the total number of records transferred over the network using our patch-

based partitioning algorithm and the ’naive’ hash-based partitioning. Then we will study

52

4.2.1 Comparison with hash-based shuffle

in a more large scale setup the impact that the number of workers and the number of

unique keys have in the produced shuffle data size.

4.2.1 Comparison with hash-based shuffle

In order to compare our implementation with the hash-based technique, we choose a

number of workers which is equal to the number of unique keys. This setup will allow

us to better present the differences using a simple self-explained base case in which the

hash-based technique would simply assign one whole group to each worker.

Assuming that table T has zero skew in the keys (θT ≊ 0), we vary the skew factor

in table S using values in the range θS : [0, . . . 3]. Both tables contain multiple records

for each attribute value in this case, using a different distribution however, resembling

a foreign-foreign key join scenario. The number of workers and the parameters used for

creating the datasets are presented in Table 4.4.

Table 4.4. Parameters used for the experiments in Figures 4.8 and 4.9

N 32

|V | 32

|S| 200000

|T | 200000

θT 0.00001

We create two diagrams with the results. The first diagram (Figure 4.8) presents the

total number of records that need to be transferred as the skew factor in table S increases

for the two algorithms. The number of records is normalized using the initial number of

records which is |S| + |T |.

0.00001 0.001 0.1 1.0 2.0 3.0
Zipf exponent

0,0

4,0

8,0

12,0

16,0

S
h
u
ff

le
 d

at
a

si
ze

 (
n
o
rm

al
iz

ed
) Patch-based

Naive

Figure 4.8. Produced shuffle data size of the patch-based and naive hash-based algo-
rithms for different skew factors in table S (θS)

In the case of the naive hash-based algorithm, the total number of records is expected

53

Chapter 4. Experimental evaluation

to be less or equal to the initial number of records as each record is sent exactly once

to the relative worker. With our algorithm, the total number of records is higher, as

expected, due to the replication that happens. As the skew increases, we can notice that

the shuffle data size increases significantly, and it is 10 times larger in the case of θS = 1.0

and almost 16 times larger in case of θS = 3.0.

The second diagram graphically presents the statistical dispersion of the received

number of records in each worker using the Gini index. A Gini value close to zero repre-

sents an exactly equal number of records sent to each worker, while higher Gini values

indicate greater inequality in the number of records per worker. In Figure 4.9 we present

the Gini index value as the skew factor θS increases for the two algorithms. The results

show that initially, when there is little skew in the data, the naive algorithm has better

distribution of the records to workers and our patch-based algorithm performs worse

having constantly a Gini value of 0.25. However, as the skew factor increases to values

greater than 0.1 we can see an opposite result as the Gini index constantly drops for our

algorithm while the naive technique is seriously affected from the skew and reaches a

value of 0.49 for skew factor 3.0. It is expected that our algorithm will not present the

optimal behavior in terms of data exchange, as the main goal is the even load balancing

and the exploitation of data locality to reduce the total amount of data transferred, given

that the replication costs can not be avoided.

1e-05 0,0001 0,001 0,01 0,1 1

Zipf exponent

0,0

0,2

0,4

0,6

0,8

1,0

G
in

i

Patch-based
Naive

Figure 4.9. Gini index for the shuffle data size sent to each worker with the patch-based
and naive hash-based algorithms for different skew factors in table S (θS)

In more detail, at large skew factors our algorithm tends to sequentially create sub-

groups for the largest group which are assigned to all the workers in turn leading to

almost equally sized subgroups being distributed to the workers. The naive technique is

on the contrary better with no to little skew as it simply distributes the almost equally sized

groups to the workers. At small skew factors, our algorithm is suboptimal in terms of data

distribution due to the priority given to local processing which leads to over-partitioning

54

4.2.1 Comparison with hash-based shuffle

and over-replication.

Combining the results from Figures 4.8 and 4.9 an important observation is derived.

Although with our algorithm at large skew factors the total size of shuffle data is increas-

ing up to 15.6X compared with the hash-based technique, these data are more equally

distributed to the workers compared with the hash-based technique where a significant

amount of data will be sent to a single worker. In other words, the network traffic will not

be concentrated in one worker with out algorithm, therefore the observed impact of the

increased size will be significantly less visible. This observation will be further established

with the results of section 4.3.

Next, assuming that both tables S and T present the same amount of skew, we vary the

skew factor using values in the range θS : [0, . . . 1]. Both tables contain multiple records

for each attribute value, resembling a foreign-foreign key join scenario. The number of

workers and the parameters used for creating the datasets are presented in Table 4.5.

Table 4.5. Parameters used for the experiments in Figures 4.10 and 4.11

N 32

|V | 32

|S| 200000

|T | 200000

Like previously we create two diagrams, one presenting the normalized total number

of records that need to be transferred as the skew factor increases (Figure 4.10) and one

with the Gini index (Figure 4.11) for both algorithms.

0.00001 0.01 0.05 0.1 0.5 0.9
Zipf exponent

0,0

2,0

4,0

6,0

8,0

10,0

12,0

S
h

u
ff

le
 d

at
a

si
ze

 (
n

o
rm

al
iz

ed
) Patch-based

Naive

Figure 4.10. Produced shuffle data size of the patch-based and naive hash-based algo-
rithms for various skew factors applied in both tables S and T

55

Chapter 4. Experimental evaluation

1e-05 0,0001 0,001 0,01 0,1 1

Zipf exponent

0,0

0,2

0,4

0,6

0,8

1,0

G
in

i

Patch-based
Naive

Figure 4.11. Gini index for the shuffle data size sent to each worker with the patch-based
and naive hash-based algorithms for various skew factors applied in both tables S and T

The inductions are similar with those for Figures 4.8 and 4.9. Comparing with Figure

4.8, in Figure 4.10 there is a very small increase in the total shuffle data size in this case

that the skew is present in both tables. Regarding the Gini index, the naive algorithm

presents an even higher value as the skew factor increases, i.e. greater imbalance, which

is normal. The observed results for the performance of our patch-based algorithm do not

change with the appearance of skew in both tables.

Finally, assuming that table T has zero skew in the keys (θT ≊ 0), we vary the skew

factor in table S using values in the range θS : [0, . . . 3]. In this case table T contains

a unique appearance of each key in its records, resembling a primary-foreign key join

scenario. The number of workers and the parameters used for creating the datasets are

presented in Table 4.6.

Table 4.6. Parameters used for the experiments in Figures 4.12 and 4.13

N 32

|V | 32

|S| 200000

|T | 32

θT 0.00001

Like previously we create two diagrams, one presenting the normalized total number

of records that need to be transferred as the skew factor increases (Figure 4.12) and one

with the Gini index (Figure 4.13) for both algorithms.

We can observe in both Figures a significant differentiation from the previous cases.

In Figure 4.12 the total size of records transferred is always smaller compared with the

naive technique. When there is no skew in table S our algorithm transfers almost the

56

4.2.1 Comparison with hash-based shuffle

same amount as the naive technique, and as the skew increases in table S our algorithm

tends to transfer even less data especially for skew factors larger than 1.0. Our algorithm

profits from the exploitation of data locality for table S in this case which combined with

the small size of T records that will be replicated, leads to a significant reduction in the

amount of data transferred.

0.00001 0.001 0.1 1.0 2.0 3.0
Zipf exponent

0,0

0,2

0,4

0,6

0,8

1,0

1,2

S
h

u
ff

le
 d

at
a

si
ze

 (
n

o
rm

al
iz

ed
) Patch-based

Naive

Figure 4.12. Produced shuffle data size of the patch-based and naive hash-based algo-
rithms for different skew factors in table S (θS) having unique keys in table T

1e-05 0,0001 0,001 0,01 0,1 1

Zipf exponent

0,0

0,2

0,4

0,6

0,8

1,0

G
in

i

Patch-based
Naive

Figure 4.13. Gini index for the shuffle data size sent to each worker with the patch-based
and naive hash-based algorithms for different skew factors in table S (θS) having unique
keys in table T

57

Chapter 4. Experimental evaluation

In Figure 4.13 we also confirm that with zero to little skew our algorithm is similar

with the naive solution in terms of the data transferred to each worker, which are almost

equal in size. As the skew factor increases to values larger than 0.1 the naive solution is

greatly affected by the skew in table S, as expected, since almost 85% of the data will be

placed in one worker. Our algorithm, on the contrary, presents lower Gini index values

due to the better load balancing that it tries to perform. However, compared to Figures

4.9 and 4.11 we can see that in this case we have larger values of the Gini index for

increased values of the skew factor. This is because the unique keys of table T are placed

one in each worker, and this leads to an initial creation of exactly one subgroup in each of

these workers for his unique key during the first phase of our algorithm. The total size of

local data exploited in the first phase is around 30% based on the distribution of 4.1 and

the number of workers. The local S data of the single largest group in each worker are

therefore fully exploited only by one worker, and randomly a few more may be exploited

in the second phase.

4.2.2 Impact of number of keys and workers

In this set of experiments we will evaluate how the total shuffle data size is affected

in setups that resemble real large scale environments. We will study two different pa-

rameters, the number of distinct keys and the number of workers. The initial data size

is not evaluated for large scale setups too, as it is expected that the shuffle data size will

increase as the initial data size increases.

Assuming that table T has zero skew in the keys (θT ≊ 0), we vary the number of dis-

tinct keys using values in the range |V | : [100, 10000]. We perform the same experiment

for different skew factors in table S using values in the range θS : [0, . . . 1]. Both tables

contain multiple records for each attribute value in this case, using a different distribu-

tion however, resembling a foreign-foreign key join scenario. The number of workers and

the parameters used for creating the datasets are presented in Table 4.7.

Table 4.7. Parameters used for the experiments in Figure 4.14

N 32

|S| 1000000

|T | 150000

θT 0.00001

Figure 4.14 presents the normalized total number of records that need to be trans-

ferred as the number of distinct keys increases for different skew factors in table S.

58

4.2.2 Impact of number of keys and workers

0 2000 4000 6000 8000 10000
Number of distinct keys

2

4

6

8

10

S
h

u
ff

le
 d

at
a

si
ze

 (
n

o
rm

al
iz

ed
) 0.00001

0.01
0.1
0.5
0.75
1.0

Figure 4.14. Produced shuffle data size of the patch-based algorithm as the number of
distinct keys |V | increases for different skew factors in tables S (θS)

In Figure 4.14, we can observe that independent of the skew factor there is an initial

decrease in the normalized number of records that are sent over the network as the

number of distinct keys increases. This is expected as with more distinct keys the group

sizes become smaller therefore less subgroups will be created per group and less data

replication will take place. The decrease seems to be exponential as the number of distinct

keys increases. The shuffle data size is initially (|V | = 100) bigger for higher skew factor

values, and the higher the skew factor is the higher seems to be the rate parameter (λ) of

the exponential distribution.

Next, we perform the same set of experiments by setting the number of distinct keys to

a stable value and varying the number of workers using values in the range N : [16, 256].
We repeat each experiment using different skew factors in table S with values in the range

θS : [0, . . . 1]. The number of distinct keys and the rest of the parameters used for creating

the datasets are presented in Table 4.8.

Table 4.8. Parameters used for the experiments in Figure 4.15

|V | 3000

|S| 1000000

|T | 150000

θT 0.00001

Figure 4.15 presents the normalized total number of records that need to be trans-

ferred as the number of workers increases for different skew factors in table S.

59

Chapter 4. Experimental evaluation

0 50 100 150 200 250 300
Number of workers

0

4

8

12

16

20

S
h
u
ff

le
 d

a
ta

 s
iz

e
 (

n
o
rm

a
li

z
e
d
) 0.00001

0.01
0.1
0.5
0.75
1.0

Figure 4.15. Produced shuffle data size of the patch-based algorithm as the number of
workers N increases for different skew factors in tables S (θS)

As we can observe in Figure 4.15, the shuffle data size seems to be increasing as

the number of workers increases for all skew factors. Since the same initial data are

distributed to more workers it is expected that more subgroups and more data replication

will take place. The rate that the size increases is different however depending on the

skew factor. For small skew factors (θ ≤ 0.5) the rate is very low, however for larger skew

factors the rate increases significantly and therefore the shuffle data size increases faster

as the number of workers increases.

4.3 Execution time

In the third set of experiments we focus on the overall evaluation of the data shuffling

and reduce-side execution as the main phases that differentiate between the patch-based

and hash-based algorithms and can affect the final observed execution time. The overhead

inserted from the initial data loading from disk into memory is common in both algorithms,

therefore omitted from our analysis, while the overhead of the execution of our patch-

based algorithm is very small (milliseconds) and could not be visible in the following

graphs, therefore it is omitted too.

Initially we assume a distributed cluster setup where each worker has 4 cores with

a clock speed of 2.2GHz, therefore in total 8.8GHz, and a simple 1Gbit ethernet network

with transfer rate 125MB/s. A single record of either table is considered to have a size of

1KB. Various studies [12, 7, 8] around the performance of the hash-join and sort-merge-

join algorithms have indicated that the cycles required in hash-based implementations

per join output tuple are 30 (independent of the record size). It is safe to use this amount

for our experimental evaluation assuming that the reduce-side operation is using key

matching techniques to join/aggregate the records.

60

4.3 Execution time

The final observed execution time is of course dependent on the slowest worker, and

the model for the time estimation is created as follows:

t(x, y) = max
w

(
30 · x(w) ÷ 8.8 · 10

−9 + 1000 · y(w) ÷ 125 · 10
−6
)

where x is a list containing the number of output tuples that each worker w calculated,

and y is a list containing the number of records that were sent to each worker w.

Assuming that table T has zero skew in the keys (θT ≊ 0), we vary the skew factor in

table S using values in the range θS : [0, . . . 3]. Both tables contain multiple records for

each attribute value in this case, using a different distribution however. The number of

workers and the parameters used for creating the datasets are presented in Table 4.9.

Table 4.9. Parameters used for the experiments in Figure 4.16

N 32

|V | 32

|S| 200000

|T | 200000

θT 0.00001

0.00001 0.001 0.1 1.0 2.0 3.0
Zipf exponent

0

1

2

3

4

5

6

E
st

im
at

ed
 e

x
ec

u
ti

o
n

 t
im

e
(s

ec
)

Patch-based cpu

Naive cpu

Patch-based net i/o
Naive net i/o

Patch-based

Naive

Figure 4.16. Estimated execution time split into shuffling and execution phases with the
patch-based and naive hash-based algorithms for different skew factors in table S (θS)

The diagram presenting the total estimated execution time broken into the data shuf-

fling (net i/o) and reduce-side processing (cpu) phases appears in Figure 4.16 for both

algorithms. A we can observe in this Figure, for smaller values of the skew factor our

algorithm spends more time in transferring the bigger amount of replicated data that it

produces in one worker. Our implementation is 3X slower with no to little skew, as it

uses a methodology which is not profitable in this case compared with the hash-based

61

Chapter 4. Experimental evaluation

partitioning. However, for skew factors θS ≥ 1.0 our implementation is faster than the

hash-based partitioning which is seriously affected by the skew. Although our algorithm’s

performance is generally affected only by the data shuffling phase, we can observe that

the hash-based technique is affected in both the shuffling and execution phases by the

presence of skew that struggles one worker. Our algorithm is 1.1X faster for θ = 1.0 and

2.6X faster for θ = 3.0.

As a general observation, the data shuffling phase in our algorithm is proportionally

constantly dropping as the skew factor increases compared with the hash-based tech-

nique. Although the total size of shuffle data becomes 15.6 times more than the hash-

based for θ = 3.0 as we have previously seen, these data are equally distributed among

the 32 workers therefore a single worker will receive 15.6 · 400000 ÷ 32 = 195K records.

On the contrary, with the hash-based approach for θS = 3.0 84% of the S records and

3% of the T records i.e. 174K records will be sent to a single worker which will of course

be the slowest. These numbers fully explain the difference that we observe in Figure 4.16

when θS = 3.0 for the net i/o. Our algorithm greatly profits from the uniform distribution

of data at large skew factors, and the impact of the increased size of shuffle data becomes

negligible.

Next, assuming that both tables S and T present the same amount of skew, we vary the

skew factor using values in the range θS : [0, . . . 1]. Both tables contain multiple records

for each attribute value, resembling a foreign-foreign key join scenario. The number of

workers and the parameters used for creating the datasets are presented in Table 4.10.

Table 4.10. Parameters used for the experiments in Figure 4.17

N 32

|V | 32

|S| 200000

|T | 200000

62

4.3 Execution time

0.00001 0.01 0.05 0.1 0.5 0.9
Zipf exponent

0

1

2

3

4

5

6

7

8

E
st

im
at

ed
 e

x
ec

u
ti

o
n

 t
im

e
(s

ec
)

Patch-based cpu

Naive cpu

Patch-based net i/o
Naive net i/o

Patch-based

Naive

Figure 4.17. Estimated execution time split into shuffling and execution phases with the
patch-based and naive hash-based algorithms for various skew factors applied in both
tables S and T

The diagram presenting the total estimated execution time broken into the data shuf-

fling (net i/o) and execution (cpu) phases appears in Figure 4.17 for both algorithms. The

inductions are similar with the ones for Figure 4.16. As we can observe in this Figure,

our algorithm is 2.47X slower for zero skew but it becomes 1.25X faster for θ = 0.5 and

4.2X faster for θ = 0.9.

Finally, assuming that table T has zero skew in the keys (θT ≊ 0), we vary the skew

factor in table S using values in the range θS : [0, . . . 3]. In this case table T contains

a unique appearance of each key in its records, resembling a primary-foreign key join

scenario. The number of workers and the parameters used for creating the datasets are

presented in Table 4.11.

Table 4.11. Parameters used for the experiments in Figures 4.6 and 4.7

N 32

|V | 32

|S| 200000

|T | 32

θT 0.00001

63

Chapter 4. Experimental evaluation

0.00001 0.001 0.1 1.0 2.0 3.0
Zipf exponent

0,0

0,3

0,6

0,9

1,2

1,5

E
st

im
at

ed
 e

x
ec

u
ti

o
n
 t

im
e

(s
ec

)
Patch-based cpu

Naive cpu

Patch-based net i/o
Naive net i/o

Patch-based Naive

Figure 4.18. Estimated execution time split into shuffling and execution phases with the
patch-based and naive hash-based algorithms for different skew factors in table S (θS)
having unique keys in table T

The diagram presenting the total estimated execution time broken into the data shuf-

fling (net i/o) and execution (cpu) phases appears in Figure 4.18 for both algorithms.

As we can observe in this Figure, our algorithm is always performing the same or better

compared the naive hash-based technique. In particular, for small amounts of skew the

performance of our algorithm is similar with the naive hash-based, and becomes signifi-

cantly faster for θ ≥ 0.1 being 25X faster for θ = 3.0. For this particular case, the overall

execution time is mainly affected by the shuffling phase as the reduce-side processing

time appears to be negligible. The amount of data that is transferred in a single worker

by the hash-based technique becomes therefore a major struggling point as the skew in-

creases. On the contrary, for θ = 3.0 our algorithm transfers in total nearly half of data of

the hash-based technique and also distributes them more uniformly compared with the

hash-based technique, as we have previously seen. This is the reason why we observe a

huge difference in Figure 4.18 for the net i/o with θ = 3.0, as approximately 84% of the

records are sent to the slowest worker with the naive technique and only 3.4% using our

algorithm.

The final key points for the performance of our algorithm compared with the naive

hash-based approach are the following:

• Our patch-based algorithm is on average 4.3X faster than the hash-based approach

for a moderate to high skew factor (θ = 1.0).

• Our patch-based algorithm is 25X faster than the hash-based approach for an

extremely high skew factor (θ = 3.0) in a primary-foreign key join scenario.

64

4.3 Execution time

• Our patch-based algorithm is on average 2.1X slower than the hash-based approach

when there is zero skew in the data.

• Our patch-based algorithm has the same performance with the hash-based ap-

proach when there is zero skew in the data in a primary-foreign key join scenario.

• The network-related overhead is greater with our algorithm in foreign-foreign key

join scenarios due to replication of records.

• The network-related overhead is smaller with our algorithm in primary-foreign key

join scenarios.

• At high skew levels the load-related overhead is eliminated with our algorithm.

• At high skew levels the overall performance is mainly affected by the load balancing

on the workers and less affected by the network overheads in foreign-foreign key

join scenarios.

65

Chapter 5

Epilogue

5.1 Conclusions

In this diploma thesis we presented a novel partitioning algorithm for distributing

skewed data to workers in order to eliminate load imbalances that incur for reduce-

side operations when skew is present. The methodology used relies on the subset-

replicate state-of-the-art partitioning technique which includes data replication leading

to increased network traffic. Our algorithm uses statistics for the data distribution and

data location and aims to facilitate as much local processing as possible in an effort to

reduce network traffic. The implemented algorithm is skew-insensitive as it does not need

any use case specific parameterization, and can be integrated in any distributed execu-

tion engine in place of the shuffle mechanism which is commonly used for operations

on unordered datasets. The performance evaluation of our algorithm confirms that the

load balancing performed with our algorithm is always perfectly even, and that the overall

performance is superior compared with the typical hash-based partitioning as it is proved

to be mainly affected by the worker load and less by the network i/o overheads.

5.2 Future work

The planned future work can be summarized as follows:

• Design and implementation of the record tagging procedure which is required for

completing the network transfer before executing any reduce-side operations, which

is an NP-hard problem.

• Design and evaluation of more sophisticated rules for the subgroup creation deci-

sions in order to further decrease the network traffic.

• A more extensive performance evaluation with fully implemented join operations in

large scale setups and compare with other implementations.

• Adapt the logic of the partitioning algorithm to present better performance for

datasets with a low level of skew.

• Transform the statistics collection and record tagging procedures to be executed

dynamically during execution.

67

Appendices

69

A

Code for data generation

import java.util.*;

import java.util.stream.IntStream;

import org.apache.commons.math3.distribution.ZipfDistribution;

static String[][] tableS, tableT;

// Generate two datasets with custom skew based on the Zipfian distribution

// s_size, t_size: number of records in each table

// s_fact, t_fact: the Zipf exponent used for each dataset

// numKeys: number of distinct keys

// numWorkers: number of workers

static void generate_data(int s_size, int t_size, double s_fact, double

t_fact, int numKeys, int numWorkers){

tableS = new String[s_size][];

tableT = new String[t_size][];

System.out.println("Creating datasets..");

ZipfDistribution zipfDistribution = new ZipfDistribution(numKeys, s_fact);

ZipfDistribution finalZipfDistribution = zipfDistribution;

IntStream.range(0, s_size)

.parallel()

.forEach(i -> {

int sample = finalZipfDistribution.sample();

tableS[i]=new String[]{"stuple"+i, "key"+sample};

});

zipfDistribution = new ZipfDistribution(numKeys, t_fact);

ZipfDistribution finalZipfDistribution1 = zipfDistribution;

IntStream.range(0, t_size)

.parallel()

.forEach(i -> {

int sample = finalZipfDistribution1.sample();

tableT[i] = new String[]{"key"+sample, i+"ttuple"};

});

}

71

B

Code for data placement in workers

import java.util.*;

import java.util.Map.Entry;

import java.util.concurrent.ConcurrentHashMap;

import java.util.stream.Collectors;

import java.util.stream.IntStream;

static ConcurrentHashMap<Integer, List<String[]>> localTData, localSData;

// Split equally each table’s data to the workers

static void compute_local_data(int numWorkers){

int s_per_worker = tableS.length / numWorkers;

int t_per_worker = tableT.length / numWorkers;

System.out.println("Creating random worker input data..");

localTData = new ConcurrentHashMap<>();

localSData = new ConcurrentHashMap<>();

IntStream.range(0, numWorkers)

.parallel()

.forEach(i -> {

int extra=0;

// In the last worker add the remainder number of records

if (i==numWorkers-1)

extra = tableT.length % numWorkers;

localTData.put(i, Arrays.stream(Arrays.copyOfRange(tableT,

i*t_per_worker, i*t_per_worker + t_per_worker +

extra)).collect(Collectors.toList()));

});

IntStream.range(0, numWorkers)

.parallel()

.forEach(i -> {

int extra=0;

// In the last worker add the remainder number of records

if (i==numWorkers-1)

extra = tableS.length % numWorkers;

localSData.put(i, Arrays.stream(Arrays.copyOfRange(tableS,

i*s_per_worker, i*s_per_worker + s_per_worker +

extra)).collect(Collectors.toList()));

73

B. Code for data placement in workers

});

}

74

C

Code for statistics computation

static Map<String, Integer> tableSGroupSizes, tableTGroupSizes;

static Map<String, Long> groupSizes;

static Long totalTuples, Z;

static ConcurrentHashMap<Integer,Map<String, Integer>> SWeights, TWeights;

// Compute statitics regarding the distribution and location of data

static void compute_stats(){

// Compute cardinality for each key in table S

List<String[]> tableSGroupSizesList = Arrays.stream(tableS)

.collect(Collectors.groupingBy(ints -> ints[1]))

.entrySet().stream()

.map(entry -> new String[]{

entry.getKey(),

String.valueOf((long) entry.getValue().size())

})

.collect(Collectors.toList());

tableSGroupSizes = tableSGroupSizesList.stream()

.collect(Collectors.toMap(x -> x[0], x->Integer.valueOf(x[1])));

System.out.println("Table S cardinality: "+tableSGroupSizes.toString());

// Compute cardinality for each key in table T

List<String[]> tableTGroupSizesList = Arrays.stream(tableT)

.collect(Collectors.groupingBy(ints -> ints[0]))

.entrySet().stream()

.map(entry -> new String[]{

entry.getKey(),

String.valueOf((long) entry.getValue().size())

})

.collect(Collectors.toList());

tableTGroupSizes = tableTGroupSizesList.stream()

.collect(Collectors.toMap(x -> x[0], x->Integer.valueOf(x[1])));

System.out.println("Table T cardinality: "+tableTGroupSizes.toString());

// Compute number of output tuples of each join group(key)

tableSGroupSizesList.addAll(tableTGroupSizesList);

List<String[]> groupsSizesList =

Arrays.stream(tableSGroupSizesList.toArray(new String[0][]))

.collect(Collectors.groupingBy(ints -> ints[0]))

75

C. Code for statistics computation

.entrySet().stream()

.map(entry -> new String[]{

entry.getKey(),

String.valueOf(((long) entry.getValue().size() <2) ? 0 :

entry.getValue().stream().mapToInt(num->Integer.parseInt(num[1]))

.reduce(1, (a,b) -> (a+b)>1? a*b:0))

})

.collect(Collectors.toList());

groupSizes = groupsSizesList.stream()

.collect(Collectors.toMap(x -> x[0], x->Long.valueOf(x[1])));

System.out.println("Group sizes: "+groupSizes.toString());

// Total output tuples/load

totalTuples = groupSizes.values().parallelStream().reduce(0L, Long::sum);

System.out.println("Total load: "+totalTuples);

// Average load computed per worker (initial capacity)

Z = totalTuples/numWorkers+1;

System.out.println("Initial maximum worker’s capacity: "+Z);

// Compute the number of local records per key in each worker

TWeights = new ConcurrentHashMap<>();

SWeights = new ConcurrentHashMap<>();

IntStream.range(0, numWorkers)

.parallel()

.forEach(i -> {

List<String[]> SworkerGroupSizesList = localSData.get(i).stream()

.collect(Collectors.groupingBy(ints -> ints[idx1]))

.entrySet().stream()

.map(entry -> new String[]{

entry.getKey(),

String.valueOf((long) entry.getValue().size())

})

.collect(Collectors.toList());

SWeights.put(i, SworkerGroupSizesList.stream()

.collect(Collectors.toMap(x -> x[0], x->Integer.valueOf(x[1]))));

List<String[]> TworkerGroupSizesList = localTData.get(i).stream()

.collect(Collectors.groupingBy(ints -> ints[idx2]))

.entrySet().stream()

.map(entry -> new String[]{

entry.getKey(),

String.valueOf((long) entry.getValue().size())

})

.collect(Collectors.toList());

TWeights.put(i, TworkerGroupSizesList.stream()

.collect(Collectors.toMap(x -> x[0], x->Integer.valueOf(x[1]))));

});

}

76

Bibliography

[1] Adaptive execution. https://www.databricks.com/blog/2020/05/29/

adaptive-query-execution-speeding-up-spark-sql-at-runtime.

html.

[2] Apache spark. https://spark.apache.org/.

[3] Bin packing problem. https://en.wikipedia.org/wiki/Bin_packing_

problem.

[4] Presto db. https://prestodb.io/.

[5] Rectangle packing problem. https://en.wikipedia.org/wiki/Rectangle_

packing.

[6] Subset sum problem. https://en.wikipedia.org/wiki/Subset_sum_

problem.

[7] Balkesen, C., Alonso, G., Teubner, J., and Özsu, M. T. Multi-core, main-memory

joins: Sort vs. hash revisited. Proc. VLDB Endow. 7, 1 (sep 2013), 85–96.

[8] Balkesen, C., Teubner, J., Alonso, G., and Özsu, M. T. Main-memory hash joins on

multi-core cpus: Tuning to the underlying hardware. In 2013 IEEE 29th International

Conference on Data Engineering (ICDE) (2013), pp. 362–373.

[9] Chen, Y., Wang, J., Lu, Y., Han, Y., Lv, Z., Min, X., Cai, H., Zhang, W., Fan, H., Li, C.,

Guan, T., Lin, W., Jia, Y., and Zhou, J. Fangorn: Adaptive execution framework for

heterogeneous workloads on shared clusters. Proc. VLDB Endow. 14, 12 (jul 2021),

2972–2985.

[10] Duggan, J., Papaemmanouil, O., Battle, L., and Stonebraker, M. Skew-aware join op-

timization for array databases. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data (2015), SIGMOD ’15, p. 123–135.

[11] Gupta, A. M., Gadepally, V., and Stonebraker, M. Cross-engine query execution

in federated database systems. In 2016 IEEE High Performance Extreme Computing

Conference (HPEC) (2016), pp. 1–6.

[12] Kim, C., Kaldewey, T., Lee, V. W., Sedlar, E., Nguyen, A. D., Satish, N., Chhugani,

J., Di Blas, A., and Dubey, P. Sort vs. hash revisited: Fast join implementation on

modern multi-core cpus. Proc. VLDB Endow. 2, 2 (aug 2009), 1378–1389.

77

https://www.databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://www.databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://www.databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://spark.apache.org/
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Bin_packing_problem
https://prestodb.io/
https://en.wikipedia.org/wiki/Rectangle_packing
https://en.wikipedia.org/wiki/Rectangle_packing
https://en.wikipedia.org/wiki/Subset_sum_problem
https://en.wikipedia.org/wiki/Subset_sum_problem

BIBLIOGRAPHY

[13] Kwon, Y., Balazinska, M., Howe, B., and Rolia, J. Skewtune: Mitigating skew in

mapreduce applications. In Proceedings of the 2012 ACM SIGMOD International Con-

ference on Management of Data (2012), SIGMOD ’12, p. 25–36.

[14] Li, R., Riedewald, M., and Deng, X. Submodularity of distributed join computation.

In Proceedings of the 2018 International Conference on Management of Data (2018),

SIGMOD ’18, p. 1237–1252.

[15] Nguyen, T. T., Trahay, F., Domke, J., Drozd, A., Vatai, E., Liao, J., Wahib, M.,

and Gerofi, B. Why globally re-shuffle? revisiting data shuffling in large scale deep

learning. In 2022 IEEE International Parallel and Distributed Processing Symposium

(IPDPS) (2022), pp. 1085–1096.

[16] Rödiger, W., Idicula, S., Kemper, A., and Neumann, T. Flow-join: Adaptive skew han-

dling for distributed joins over high-speed networks. In 2016 IEEE 32nd International

Conference on Data Engineering (ICDE) (2016), pp. 1194–1205.

[17] Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,

Rosen, J., Venkataraman, S., Franklin, M. J., Ghodsi, A., Gonzalez, J., Shenker, S.,

and Stoica, I. Apache spark: A unified engine for big data processing. Commun. ACM

59, 11 (oct 2016), 56–65.

78

	Abstract
	Περίληψη
	Acknowledgements
	Preface
	Introduction
	Subject of the work
	Content organization

	State-of-the-art partitioning techniques
	Problem description
	Skew examination
	Subset-replicate partitioning
	Optimization targets

	Related Work

	Methodology
	Approach overview
	Load balancing
	Network transfer

	Local and global skew examination
	Balanced load assignment
	Two phase partitioning algorithm
	Patch-based group partitioning
	Reduce-side processing
	Proof of concept
	Implementation
	Patch-based partitioning algoritm
	Data generation
	Statistics for the data skew

	Experimental evaluation
	Load balancing
	Data movement
	Comparison with hash-based shuffle
	Impact of number of keys and workers

	Execution time

	Epilogue
	Conclusions
	Future work

	Appendices
	Code for data generation
	Code for data placement in workers
	Code for statistics computation

	Bibliography

