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ITepiindm

H T'eveuxr; Teyvntq Nonpoolvn Beloxetan otny medtn yeauur tne obyyeovne texvoloyiag, enexteivovioc ta
6pLOL TOU TL UToEOVY VoL DNULOVEYNCOLY XAl VAL PAVTAGTOUY oL utoloylotxég unyavée. To cuyxexpiévo nedlo
AVTLTPOOWTEVEL VALY ETOVACTATING GUVOLAOUS TNG ETULCTAUNG TWY UTOAOYLOTAY, TNG UNY VXS HAdnone xou Twv
VEUPWVIXOY BIXTOWY, ETTEETOVTOEC GTOUC UTOAOYLOTES VL BNULoUp Yol TEWTOTUTO TEQIEYOUEVO, TOU UlelTaL TNy
avdpdmivn dnuovpyotnta. H avdntuén tng yevetinig texvntAc vonuooivng €yl TeoxahéoeL Ulol ENAVACTAUOT)
oe dLdpopoug Touelc, amd T dnplovpyia tepleyopévou xan Ty Puyaywyio €we Tnv Lyeia xou TN yeNUATOoOIXOVOuLL.

e auThv TN SITAOUOTIXY, XENOLOTOLO0UE HOVTERA BLEYUOTC, YL VAL AVTIUETWTICOVUE TO TeplnAoxo TedBAnua
e Hoapaywyhc Xepdypapou Kewévou, eotidlovtoc 610 var 10 cuviécoupe BAcel TEpLEOUEVOL XELWEVOU %ol
oTuh Ypoagphc. Eumveduevol and npdo@atec epydolec 0TOV TOULN TV YEVXEUUEVWY Doy UOEWY, Topouatdlouye
plot véar un yeouper Staduoctia didyuone Pactopévr oe évay Geuehlddr TEAECTH TWV LOPPOROYIXMY UUdNUOTIXGY,
NV BLoTOMN.

Apyxd, mopoucidloupe ta netpdpatd yag oto avora dedouévev MNIST xou CIFAR-10, nopéyovtog éva Bacixd
proof-of-concept yia v npocéyyiot| yac. ‘Eneita, cuyxpivouye tn pedodoloyia pog pe mpdogateg egehilels otig
yevxeLuéveg dlay0oeLe, avadeviovTag pio aviaywviot anddoor. Emmiéov, mpotelivoupe po duadixaocio 800
oTadiwy, ouuninpwpévn and Ty evowpdtwon evoc Hopaywyod Avtaywviotixod Awtiov (GAN), dote va
EMTEEPOLUE TN TORAYWYTN EOVWY UTG cuVIXY Yiot To cUvolo dedouévewv MNIST. H o&la tne ouyxexppévng
Tpooéyylong avadexvieTon Wialtepa and 1o yeyovoe ot umepPBaivel Ti¢ xAaoixég dladxaciec didyuong, otav
AmOTEAOUVTOL OO EVAV TEQLOPLOUEVO optdud BrudTwy.

Y ouvvéyeln, eoTidloude TNy mpocoy)| uag oto mepimioxo mpofBinua e Hoapaywyhe Xewpdypapou Keyué-
Vou. O ETUYELEHOOVUE Vol TOPEYOVUE TEPAULTEPL PEATIOTOTOACELS, EVIoYVOVTAG To 1N undpyov state-of-the-
art Yovtélo pe mo anodotxols aAYOpLIUoUE TapaYWYNS EXOVWY, OTwe avagpépetar otn PiBAoypapio. Em-
TAéoV, BEATIOTOTOLOUUE TNV OMOTEAECUATIXOTNTO TOU HOVTENOU HE TNV ELCAYWYY) TNS £VVOLAS TNG LOPPOAOYLXNAC
Budryuone. LUYXEXPUEVA, ATOXAVOLUE amd TO GUUPBATIXG YXUOVCLOVO TAXCLO %ot TEOTOTOLOUUE T CUVEETNOT
AT TEOPRE EdVLY NG dlodixaciag Sidyuong, LVeTdVTIC TN wop@ohoyixy didyuor. Auth 1 petatpony
TUPEYEL AVTUYWVIC TLXA AMOTEAECUATO OE CUYXPLOY UE TO XOopupala LOVTEAN GO0V apopd TNV TOLOTNTA, EVE,
TOUTOYEOVA, UELWVEL ONUAVTIXE TS UTOAOYLOTIXEC OmAUTACELS XaTd T Bldpxela, T000 TNe exmaldevone, 660 xou
e dadaciog mapaywyNg EMOVEV.

AgZeigc KAewdid — Bothd Mddnon, I'evetinry Teyvnt Nonpoolvn, Mopgoroyixd Madnuotixd, Movtéia
Audyvone, Mopgoroywh Audyvon, Hapaywyh Xewpdypapou Kewévou, Aavidvovoa Awdyvorn, Wuyer Adyuon
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Abstract

Generative Artificial Intelligence, often referred to simply as "Generative AI", stands at the forefront of
modern technology, pushing the boundaries of what machines can create and imagine. This remarkable field
represents a ground breaking fusion of computer science, machine learning, and neural networks, enabling
computers to generate original content that mimics human creativity. The emergence of generative Al has
sparked a revolution in various domains, from content creation and entertainment to healthcare and finance.
It has given birth to powerful applications, such as natural language generation, style transfer in images, and
autonomous creative agents that can inspire, inform, and entertain.

In this thesis, we use Diffusion Models to address the intricate challenge of Handwritten Text Generation
(HTG), with a focus on conditioning it on textual content and writing style. Drawing inspiration from recent
breakthroughs in the realm of generalized diffusions, we introduce a novel non-linear diffusion process rooted
in a fundamental operation of morphological mathematics, specifically, the dilation.

We initially present our baseline experiments conducted on the MNIST and CIFAR-10 datasets, serving as
a foundational proof-of-concept for our novel approach. We compare our methodology with recent advance-
ments in generalized diffusions, shedding light on its comparative performance. Furthermore, we advocate
for a two-stage approach, complemented by the inclusion of a Generative Adversarial Network (GAN), to fa-
cilitate conditional generation within the MNIST dataset. This approach proves its mettle by outperforming
classic diffusion frameworks, when operating within a constrained number of timesteps.

Subsequently, we pivot our focus towards the intricate task of Handwritten Text Generation. In a quest
for optimization, we enhance the existing state-of-the-art model with more efficient sampling algorithms,
as documented in the bibliography. Furthermore, we streamline the model’s efficiency by introducing the
concept of morphological diffusion. Specifically, we deviate from the conventional Gaussian framework and
modify the degradation function within the latent diffusion process to embrace morphological diffusion. This
transformation yields competitive results, rivalling the state-of-the-art, all while significantly reducing the
computational demands imposed during both training and sampling procedures.

Keywords — Deep Learning, Generative Al, Morphological Mathematics, Diffusion Models, Morphologi-
cal Diffusion, Handwritten Text Generation, Latent Diffusion, Cold Diffusion
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Euyaplotieg

Oa fdeha, apyxd, vo evyaplotion Yepud tov Kadnynt Ilétpo Mapayxé yia tnv eumiotocivn mou you €delle,
hote va exonoviow T Stmhwpatiny pou epyasia oto Epyaocthpio ‘Opaone Troroyiotdv, Enxowveviag Adyou
xa Enegepyooioc Enpdrtwy.

Y ouvéyela, Yo Hieha, enlong, va euyopiotion Toug cuvemBAiénovtes, Ap. Iedpyio Petowd xan Ap. Iexdvvn
Kopdmvr, yio tic oupgPoulés, tny xadodhynon xou TNV CUVELGPOEA TOUC GTNV OAOXAARKGT] TNG CUYXEXPWIEVNC
epyaoiog.

Téhoc, opelhw éva peydho euyaplotd oToug Yovelc wou, Nixo xat Xtéhha, yiot Ty unooThiplen xou TNy xotavonon
Toug xad 6NN TN BLdpxELd TV GTOUBDY YOU, XDEC X0l OTOUC UTOAOLTOUS XOVTIVOUS O avIp®OTOUS, UE TOUG
0TolOUC OV POLRUGTAXOPE QUTE TOL YEOVIAL.

Mmoxdhng Anuritetog
OxtedfBerog 2023
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Extetopevn Ilepiindn ota EAANvVIxd

Ewooaywyr

Yt ouyxexpuyévn dimhwyatixn Yo aoyohniolue pe to TEdBANUO TNG TPy WYNHS EXOVWY YELROYEAUPOU XELUEVOU.
ITpoxewévou var avTHETOTICOVUE TIg BUOXOAES TOU CLUYXEXPWEVOL TEOBAAUNTOC Yo YENOLOTOLACOUUE EVa Ho-
viého havidvouoag didyvong, to onolo Yo enextelvouye, OGTE 1 BLdYVUON VO TEAYUATOTOIELTAL UE HOPPOAOYLXN
BllG TOAY, AOY® NG avTloToly g TOU cLYXEXEWEVOL TeheaTh pe Tto alvolo dedopévey IAM. H ocuyxexpiuévn
neplindm VYo yweiotel otig oxdhoudeg evotnteg:

o Ewcaywyn

o OewpenTtixd YTroPadeo

o Syetixr BifAioypapia

o ITpotewodpevn MéOBodog

o ITeipapatixd AnoTeAEoUaTA

o Yuunepdopata xou MeAhovitixée Enextdoeig

Oewpentixd TroBadpo
Ewaywy? otn Badid Mddnon

Yuvehixtixd Nevpwvixd Aixtuoa (CNNs)

To Buvehtind Nevpwvixd Aixtua (CNNs) anotelolv évay and toug Bacixois nukdves tne Badde pdidnong,
Wiadtepa o€ epyaoiec mou oyetilovtor ye ta omtixd dedopéva. Eunvedpeva and to avipdmivo onuxd chotnua
%o Tov TeéTo Ue Tov onolo avtihauBavouacte ta avtixeldeva Yopw pag, o CNNs éyouv Eavaopioet T dpta Tng
VoY VOeLomg xat TovounoTg EXOVwY.

Ye avtideon pe ta mapadoactond vevpwvixd dixtua, ta omola enegepydlovial TIC EIGOB0UE PE TAHPWS CUVEEDEUEVO
Tp6m0, T CNNs exyetodhetovtor 0 yweh @O Twv emdévewy. Avayvepllouvy 6t ta pixels, mou Peloxovto
%0ovtd T0 éva 610 dhho e Wi euxdva ouyvd oyetilovtou teplocdTEpo amd Ta pixels mou améyouv TeEpLOCOTERO.
Avtn n xoatavonon emtpénel ota CNNs vo omotundvouy Tomixd wotifa, Omwe oL axuéc 1 ol VEES, oTa dpyixd
CTPWHATO, CUVIPHOROYOVTOG To otadloxd oe o meplnhoxec Sous, 6mwe oyfuata 1 avixelpeva, oe Poditepa
otpdpata [1].

‘Onwe unovoeiton xou amd t0 dvopd toug, N xpta Aettoupyio twv CNNs elvan 1 cuvéMn. Tlpdxerton yia éva
eZedixeuuévo eldoc ypauuxhc hettoupyiog, 6mou éva wxed Gikteo 1 Tuphvac “YAMoTed Téve and To EloayOUEV
dedopéva (dTwe plar ExOvaL), YLol Vo TRGYEL EVOY XEETN YAUPOUXTNPLOTIXGDY, HETAoYNaTilovTos omoTeENEoUATIXG
Ta Sedopéva e Bdon to potifo tou @lhtpou. Auth 1 Aettoupyia Bondd to Bixtuo va emixevipwlel oe Tomixd
YOEAUXTNELOTIXA.

Enavainrtixd Nevpwvixd Aixtuo (RNNs)

Y10V TOPEN TV YELPWVIXMY BixtlnY, to Enavolnrtind Neupomvixd Alxtua (RNNs) [1] Eeywpilouv we to tAéov
XUTIAANAO HovTEND Yl axoloutond dedopéva. Ev avtrdéoel e ta mopadooiaxd feedforward veupwvixd dixtua,
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Extetopévn Hepikndn oto EXnvixd

nou eneepydlovion Tic £l06d0ug autévoua, to RNNs dadétouv tn povaduxr ixavétnta vo Slortnpolv ol wviun
TEONYOUPEVRY ELGOBWY GTNY ECWTERIXT| TOUS XUTAGTACT. AUTO TO YopUXTNELOTIXG Tot Xorha T WBtalTeEpol XAUTAA-
Anha yio gpyaoieg, 6mou ol ypovixée Suvauixéc xou to mAoiolo amd mponyolueva Bruota elval ouolac TXd, 6w
N TEOPAedT Ypovooelpdy, 1 avary Vidpelon ophlac xou 1) enegepyasia UOIXAC YADCOAS.

H Boowr 16éa niow and ta RNNs elvon 1 eloaywyy| Bedywv yéoo oto dixtuo, enLtpénoviag otny TAnpopopia vo
dlatnpeiton. Xe xdde ypovixd Briua, éva RNN 8éyeton piar véa eloodo pall ue tnv mponyoluevr xatdotaocy| Tou
(state) (mou mepiéyel mAnpopopio amd TEoNYOLUEVA YEOVIXG BriuaTta) Yo vor Tapdyel pio E£000 xou Vol EVIHEROTEL
TNV XOTAo AT TOU.

Qot600, T RNNs éyouv xdmoia onuovtind ehattodyato. Avtipetonilouv tpoliiuota pe paxponpddeoues egop-
moel [2], Aoy mpoBAnudteny mou elval yvwotd we vanishing xou exploding gradients. Q¢ anotéleoya, €xouv
elooy Vel mo nponyuévee apyttextovixéc RNN, érwe 1o LSTMs [3] xou oo GRUs [4].

Exnaidsuon Nevpwvixdv AwxtOwy

H Suodixaoio exnoldeuong Twv vELpwVIXGDY BIXTUOY TepthauBdvel T SLdBooT] Twv dedopévwy EL06B0U UEU omd TO
dixtuo, Tov uTohoYLoUS TNG amAeLS () TOL oPIAYNTOS) oLYXEivovTas THY €080 TOL BIXTUOL UE TIC TEOYUATIXES
ETXETES, Xl TNV avadLddooT) Tou o@dhuatoc iow péoo and To BixTUOo Yio Vo evuep®aEL To Bdpe.

Apywxd, ta dedopéva elo6dou BladidovTol PEow Tou VELpWVLXOD BixTOou ot wio dladixacior mou amoxaheiton -
unpboda diddoor (feedforward pass). Kobdde ta Sedopéva eio6dou nepvolv and xdde oTpdua, 0L VEVPOVES
ene€epydlovtan ol dedopévar YeNolonowdVTaS Tor TEEYovTa Bdpn %o TIC CUVAPTHOELS EVERYOTOINOTG.

H ¢Z080¢ tou 8iXTU0L 6T CUVEXELD CUYXPIVETOL HE TIC TPAYHAUTIXES ETIXETES, YLOL VO UTONOYLOTEL 1) AMOAEL UE
™ BoRdewa prog cuvdptnone amodietos (loss function). H andleto auth anotedel éva uétpo tne dapopds petalld
NG TEOPBAETOUEVNE XOU TNG TEAYUATIXNAG ETIXETOC.

Y ouvéyewa, epopudleton 1 olybprduoc mpog ta tiow Siddoone (backpropagation), yio va Swadolel to opdiua
low oo dixtvo. Katd tny npog ta niow 8iddoon, ta Bden tou dixtdou evnueptivovtal, Bdoel Tou Bektiotonomnt
(optimizer), dote vo pewwdel To opdhpa oty enduevn enavdhndn e eprpdodioc dddoorng.

JuvapTtioels AndAsiag

‘Onwe avopépinxre xou Tapamdve, 1 CUVIETNOT ATWAELNS TOCOTXXOTOEL TGO XUAd €val LOVTERD TpOBAETEL o€
oUyxplor pe v mpaypotxotna.  Ioapéyel éva aptiuntind pétpo e amdxiione Yeta€d twv npoBienduevwy
X0 TWV TEOYUOTIXWY TGOV, AELTovpydvtoas w¢ tuEida mou xatodnyel tn Bedtiotonolnoyn twv nopouéTenwy Tou
povtéhou. ‘Oco yaunidteen elvar 1 T NG CUVEETNONC ATOAELIC, TOCO XUAUTERT) Elval 1 andBOCT) TOL LOVTEROU.
Teelc and Tic To XOWES CLUVUPTAHCELS amMAELNC elvat ot eEHC:

e L1 loss (MAE)
e L2 loss (MSE)
e Cross Entropy Loss

Yuvaptnoeic Evepyornoinong

Ot ouvapthoelc evepyomolnong ELGaYOUV U YEOUULXOTNTE GTO BIXTUO, ETUTEENOVTNS TOU VO LOVTEAOTOLEL Xou
vou pordolvel TOAOTAOXES, U1 YROUUXES OYETELS UETAED TwV EL06BWY xou Twy e€68wv. Xwplc autée, aveldptnta
ané 1o m6co Padl X eupl elvan To Bixtuo, Vo Aeltoupyoloe ATADS W EVAC YEUUMIXOS TUAVOROUNTHS, TEELO-
ptlovtac SpaoTind TNV xavoTnTd Tou vo npooeyy(lel tepimhoxec ouvopthoels. Kdmoleg dnpogikeic cuvapthoec
evepyomoinong mou Ya yenoiponondoly oe auth TN Bimhwpoatixny elvan o e€Xg:

e Sigmoid
e Softmax
e ReLU

e SiLU

e GELU




Ewcaywyf ota ITapaywyixd Movtéla

Ou Variational Autoencoders, mou elvon eupéwe yvwotol wg VAES, éyouv avadudel wg éva and to mo Snuopuiy
xou Woyupd epyahela oTov xbopo e yevvnuixrc povielonoinone. Ewofydnoav to 2013 [5] xou yepupmvouy
T0 Ydopo YeToEl B0 nlplwv mpooeyyioewy oty unyovixy wdimon: e Badide uddnone xan e Mreblioavic
ocuunepaoUotoloyiag.

O autoencoders efvar vevpwvixd dixtua mou oyedidoTnxay, yia vo avaxataoxeudlovy v elcodd toug. To
emTLYY&vouv autd cupmiElovtac TNy €lcodo oe Yio cuunoyy), Aavdvouca AVATUEdo TUOY) UECL EVOS XWOXOTOL-
Nty (encoder) xau, oTr CLUVEXELY, AVATTUCCOVTAC ALTH TN Aavddvouca avanapdotacy Tow oTov apyYxd YMOEo
dedopévwy Péow evoe anoxwdxonomty (decoder). Qotbdoo, o VAES npocdétouy pa mdavotixy neplotpogn
oe auth N Bladixacio. Avti va xwdixomololy wa elcodo we éva anhéd onpeio atov Aavidvovto xhpo, TV Xw-
BIxoToloVY W¢ WLal xatavour]. Auth 1 eyyevig tuyodTnta emtpenel otoug VAES va Snuoupyolv véa, mapduold
OedoUEVa, BELYUATOANITOVTOC Omd QUTH TNV XATOVOUY.

m
" Encoder z A Decoder
o
e d

Z=l+00¢

=

N(O,I) -=™E>

Eyua 0.0.1: H apyrtextovint| evog VAE. And €86

To Hopoywywd Aviayoviotind Alxtuae (GANs) napoustdotnxay to 2014 [6] xou and t6tE £Y0ouv xepdioet tny
Tpocoy ), Oyt wbvo Yol Tr pordnuotind Toug xopdoTnTa, ohhd XaL YLOL TV TEUXTIXY] TOUG LXAVOTIHTO VoL dNULoupYolv
PEAAOTIXG ATOTEAECUATA, TOLXIANOVTOG ATO ELXOVES EWG %ol NYOUC.

H x0pior 1déa miow omd 1o GANSs agpopd tnv extoideuon dUo Sixtdwy, Tou YevvATopa (generator) xou Tou Sleuxpl-
vio 1 (discriminator), péow evée narywvidot pndevixol adpoiouatoc. Elbixdtepa, o otdyoc Tou yevhTopa eivou
Vo dnuloupyYel pEdAlo Tixd BelyuoTa, TwV oTolwy 1 xotavouy eival XOVTd GTNY avTio ToLY N TWV TEAYUATIXOY Bed0-
HEVWY, EVEK 0 OTOYOC TOU DLleLXPLOTY efvar vor umopel vor Sloxplvel TiC TEoYUaTIXES EXOVES amd TIC ouVIETINES
(mou dnwoveyRdnxay and tov yevvhtopa). H cuvolund apyttextovix evoc GAN anewovileton 010 mopaxdte

oy
Enopévee, n exnaidevor pnopel vor diatunemdel podnuatind ¢ éva mouy vidt minimax, 6mou o yevvrtopog mpo-

omadel vo peyiotonotfoetl Tic miavotnes va EEYENSOEL TOV BleuxpLoTY, eVt 0 Teheutaiog mpotideton var eloyt-
oToTmolAcEL AUTH THY ThovdTN T,

Training set V Discriminator

Ly
rF]{gir;gom /j' .@E {Fake
E Ef

Generator Fake image

Syfua 0.0.2: H apyrtextovind| evoc Hopoywyod Aviaywviotixod Awtdou. And e3¢
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Ewaywy? ota Mopgporoyixd Madnuatixd

Ta Mopgohroyixd Madnuotixd anotehoby éva TAOL0 EVTOC TwV TOUEWY TN AvEAUGTG EOVOC Xal TS eneiepya-
olog 0RUATOC, TOU EMUXEVTPWVETAL GTOV HORPPOAOYIXO YEWPLOUO TwY BOUMY eVTOC Twv dedouévwy. Avamtiydnxe,
QEYLXAL, YLOL TNV AVAALOT) BLABIXWY EXOVWY, ahAd and TOTE Exel enextatel o mo MeEpiThOXES LOPPEC BEBOUEVWY,
onwe Yxpllec etdve, TELODIACTUTA SESOUEVAL, OXOUY XKoL W1 YWEXE CHUNTA.

H Yewpla tov popporoyixdy padnuatxdy ewofydn and tov Matheron [7] xou tov Serra [8] xau Booiotnxe ot
Yewplo TV cLVORWY, TN Vewpio Tou TAEYUaTOg xou TNV Tomohoyia. O xlpleg Aertoupyieg, dnAadY, 1 SlacToAY
(dilation), 1 diéPpwon (erosion), to dvolype (opening) xou to xhelowo (closing), dvtinoav and to Minkowski
set operations. To tekeutala ypdvia, To LOpPOIOYIXA padnuotixd €xouv eqopuootel oe ToutAla EQYAOLDY
uToloYIoTAS bpaone 6mwe 1 avdhuon ewxdvag [9, 10], n todwéunon [11, 12], to guktpdplopoa [13], 1 xatdtunon
[14, 15], n aviyveuon oxpodv [16] x.Am.

To pop@oroyd pardnuatixd, AOYe TWV U YROUULXDY TOUS LBLOTATWY, UTOPOUY VA ATOTUTGOUY YoRUXTNELOTIXG,
ot omofa 8ev unopolyv va dlatnendody and dhkec ypaupuxés mpooeyyioelc. Ou Baoixol yoppolroyixol teheotéc
TopOoLCLAoVTOL GTNV THPUXATE EXOVAL

erosion operation dilation operation

closing operation opening operation

Tyfua 0.0.3: Baowol Mopgoroyixol Teheotéc. Ané [17]

Ewaywy? ot Moviéha Awdyvong

Ta povtéra dLdyuong, Tou aviAxouv GTNY gUpElol XUTNYORIX TWV YEVWNTIXOV HOVTEAWY, ATOXTOUY OO Xol TEQLO-
obTEEPN QNN VIOl TIC EVIUTOCLAXES TOUG SUVITOTNTES OTNY TORAYOYT) UPNAHAC TOLOTNTOC, PEAMO TIXODY BELYUETWY.
Ta Yewpentnd depéhio TV woviéwy didyuong etvon Botid pllouéva oTic apyYEc TNG U looppoTnuévng Yeprodu-
VOIS XoL TOV GTOXACTIXOVY dtadixactédv [18].

H exnoidevon evéc poviéhou didyuone wooduvapel e tn uddnon yia Ty avtloteopr) authc Tne dladixaoctog
dudyuone mpog ta eunpds. Ao TV apyxh xortavour| dedouévey, tpootidetan G6puBoc otadiaxd uéypt ta dedouéva

4



VO UETAULORPOVOVTOL OF Wial omAr] xotavour| Yoplfou. O otéyog tou poviéhou elvon vo pddel Ty avtiotpopn
hertovpyia - v amopaxpeivel Tov §6pufo xou EToL VoL avaxXTHOEL TNV opy W xortovopn. Auth 1 eyt elvon mapduota
e toug denoising autoencoders, ot onofol enlong emixevtpdvovtol atny e€dhewdn Touv YoplPou and ta Sedouéva.
Qot600, 10 n0plO Bloxpltnd onueio TEoxONTEL amd TO YEYOVOS OTL Tl LOVTEAN SLdyuome elodyouv otodloxd
Vépufo oe apxetd Prnata, eved ol denoising autoencoders evowpatdvouy Yépufo oe éva Brua [19].

Tapoxdtew, napouotdleton 1 dradixacio Sidyuons 1660 oynuatTnd, 660 xou ToloTxd (Yio dUo BlopopeTixd ypovo-
Brory pduportar), xadede xou d0o Tivoxes mou TEpLEY oLV Toug olYopiduouc exntalBeuong xau TapUYKYHS EXGVLY Yid
oL povtéha Bidyuome.

Po(Xe—1[%¢)

Yyhua 0.0.4: H Swowasio didyuone oynuotxd. Ané [20]

Yyfue 0.0.5: Avo Swpopetind ypovoduarypduporta (Yeouuxd xon cuvnutovixd) yia tn Sadxacio didyuong.

Arné [21]
Algorithm 1: Training. From [20] Algorithm 2: Sampling. From [20]
1: repeat 1z ~ N(0,1)
2: 1z ~ q(xo) 2: for t =T to 1 do
3:  t~ Uniform({1,...,T}) 33 z~N(O,I)ift>1,else z=0
4 e ~N(0,I) _ 1 ( [1—a; )
) 4 Ty = Ty — ~Leg(Te,t) ) + 02
5. Take gradient descent step on 5 en dt fi)r var \T A '
— — 2 :
Vo ||5 — o (Vauzo + V1 —aye,t) H 6: return

6: until converged

Ewaywy? otnv Avayvopeiorn xo Iapaywyr Xewpdypagou Keipnévou

H Avayvopeion Xepdypagou Kewévou (HTR) emxevtpdvetar xuplwe o1 UETATEOTN TOU YELRGYEOPOU XEWEVOU
oe xelyevo nou elvat xwdxonownuévo and tov vnoroyioty. Hpdxeiton yio éva Wiaitepa Bboxolo nEdBANua, AOYw
e vetaBAnToTnTaC ot enl Pépoug OTUN YpaPRS, TNS ACUVETOUC AmdoTAONE UETAED TV YOQUXTHEMY oL TWV
drapopeTindv TOTwY ypagrc [22]. Trdpyouv dvo xlpiec uédodol otic onolec Pacilovton ta cuothpate HTR, to
online xa o offline. Autd mou Biagoponotel autés Tic 8o uedddoug elvor tar dedouéva TOU YENCLHLOTOLOVVTOL
v Ty exnoddevon twv woviéiwy HTR.

H Anwoupyia Xewdypagou Kewévou (HTG), and tny dhhn theupd, otoyebel oTn dnpoupyia peahlo ol yet-
EOYEAUPOL XEWEVOL BEBOUEVOU EVOC XEWWEVOU TOU EIVAL XWDLXOTONUEVO O TOV UTOAOYLO T Xl EVOS CUYXEXQL-
uévou oTUA Ypoaphc. Autd unopel vo elvor yeroudo yio T dnuioupyior cuvleTindy SeBouévev yio TNy exmaldevon
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HOVTEAWY Unyovixic pddnong, tny xodlteyvixy| dnuiovpyia xeyévou xan teplocdtepo. Enlong, avdhoyo pe to
Yenowonolotuevo clvolo dedouévwy, o HTG Swupelton, eniong, oe online HT'G »ou offline HTG.

Online Avayvaopior xou IMapaywyh Xepdypagouv Keituévou

To online HTR neplopPdvel dedopéva mou nopdyovtoar and tn Fon tne mévag, eved €va EYYpapo 1 tlol gedon
yedpeton. AvtioTouya, To online HT'G agopd ) abvieon yewpdypagpou xewévou ue Bdon Tig yweixés cuvtetay-
pévee wag Tévae xadde ouufaivel To ypdduwo. O Graves [23] npdtewve tny npddTn npocéyyion pe eviappuvtind
anotehéopata, ta onoio Pacilovtav oe dixtua Long Short-Term Memory (LSTM) [3] ot tov pnyovioud mpo-
coyfic. H enduevn epyaoia [24] nupeiye nepoutépw Behtidoec pe ty eoaywyf twv Conditional Variational
Recurrent Neural Networks (CVRNNs). Xto DeepWriting [25], autd mpooeyyileton daywpllovtac to meple-
YOUEVO TOU XEWEVOU amd TO GTUA TOU, V) Bertiwoay axdun TeplocdTERO Tal ATOTEAECUATO AV TIXOILG TWVTAC T
CVRNNSs pe Stochastic Temporal Convolutional Neural Networks (STCNNs) [26].

Offline Avayvaeion xou IMapaywy?h Xepdypagouv Ketpnévou

Ané v dAAn, ol egappoyéc offline HTR oyetiCovtan ye dedopéva mou mapdyoviar and 0 odpwon opylxedy
eyyedowy. Ipogavae, to ofline HTR anotekel o mohd mo mohbmhoxn epyaoia, xodode tor ovola Sedopévuwy
yiaonline HTR yoapoxtnellovton cuyvd and nold xaibtepn notdtnta. dotéco, ta ofline chvoha dedopévewy etvau,
TREOPAVAS, EUXONITERO VoL dMutoupyndoly, evd oL eapuoyeéc Toug elvar entlong supltepes, cupnepthauBavopévng
™e Pnglomoinomng 1oTopxwy eYYRAPLY, TNS auTtopatonoinong TS TaEvounong TayLdpouxic cAAnioypopiog xou
OXOUN Xall TNG oVAYVEPLomG pordnuatixdy elohoewy [27].

Avtiotowya, to offline HT'G, tou onolou ot egapupoyéc anoteholv 1o xUpto avuxelpevo authc e dtmhopatixic,
oyetileton ge 0 oOVIEST YELEOYPUPOU XEWEVOU YENOULOTOLOVTAS dedouéva and copwuéva eyypapa. Ol tpdopo-
TEC TEPAOTIEG BEATUICEL GTOV TOUEN TOV YEVVITIXWY LOVTEAWY Yid TN GUVIEDT) EXOVKV EYOUY EMNEEGOEL EVPEWS
Tov topéa tou offline HT'G, ot ta nopeydueva povtéra yopoxtneilovtal and mponypéve Suvatdtntes, 6mwe
(QOLVETAL X0 OTLC TOPAYOUEVES EXOVEC TOUC.

Ewwodtepa, ol nepiocdtepec mpbopates epyaociec mpooeyyilouv autd to mpoBinuo ye to Hapaywyid Avtoyw-
viotxd Aixtua (GANs) [6]. To ScrabbleGan [28] eivon plo and Tic npdtee npooceyyioelc Tou TopdyeL TEWCTIX
anoteréopata. To GANWriting eiofydn we wa enéxtoaon tou ScrabbleGAN, enttuyydvovtag axdun vdniodteene
roldtog oOVIEDY) YRuphc, EVR, enlong, TEOCUPUOGTNXE TO HOVTEAO GTa GTUA Ypapric xdie AéEng.

O ouvbuaopéde evéc GAN xau evée autoencoder, mov mpotddnxe oto [29], 0dynoe oe nepautépw TPGodo GTOV
touéa tou HT'G, odAd, avtideta pe Tig dhheg uedodoug, auth 1 epyacio emxevtpadnxe otn dnuovpyia oAdxAnpev
TROTACEWY YELPOYPUPOU Xelwévou. Bunveuouévol and authv v epyaotia, ow Mattick, Mayr, Seuret, Maier xou
Christlein [30] nopovsiacay to SmartPatch, mou eivou, eniong, wo npocéyyion Pootopévn oe GAN (v
dnuovpyia YedYpoPLY AEEEWMVY) Xou EEMEPUCE Tal TIEONYOUUEVA LOVTEND TOPAYOVTAS XOPUPUL ATOTENECUATA.

Avtideta pe tic tponyolpevee nepintioeis, o WordStylist [31] tpotddnxe, yio vo avtigetwnioet 1o TpdBinua Tou
HTG pe povtéha havddvovoae Sidyuone (LDMs) [32]. EWdwdtepa, éva LDM ypnotdonoleiton yio Tnv mopay»wyn
EXOVWY YELROYPUPWY AéEewy, hauBdvovtoe Thnpogopia and to TEplEXOUEVO Xan Tor oTUA Ypagphc. ‘Ocov agopd
NV ToLOTNTAL TNG Eovag, To WordStylist avtorywvileton to amoteAéopota tou SmartPatch, eve otnyv viodétnon
CUYXEXPWEVWY GTUN YRophc omodiBel eupavs xahbTepa and GheC Ti¢ dhAec Tpooeyyioels.

Yxetwxr BiBAoypapia
Puyer Awdyvon

H Tuyper Audyuon [33] npotddnxe yio vor oppioBntAcer Ty avoryxotdtnTo Tou yxaouotavol YoplBou, 1 onotao-
OATOTE TUYAOTNTAC, YL TNV TEAXTIXY EQUOUOYT TwV UoVTEAWY dudyuong. Ilpdxeiton yior yevixeupéva wovtéia
didyvone mou exteivovian mépo and ta VewpenTtind dptar mou apyxd TEVNHaY Yol auTd Tol povtéda. Avtl va e-
TUXEVTROVOVTOL ATOXAEIC T 6 WovTéAa mou oTnellovton oTov yxaouotavd $6pufo, e€etdlovton wovtéia mou
XxTooXeVGLovTon Yipw omd TUXOHOUS HETAOYNUATIONOVS EXOVaGS. Xx0omoc elvon var exmondeutel €va dixtuo, Yo
VoL avTLo TEEEL AUTES TIC TUPUUOPPRCELS, EAXYLOTOTOLWOVTOC ol GUVEETNOT| ATOAELS [p.
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Ebixdtepa, cuy Ve XeNoWOTOLO0VTOL ETOVOUANTITIXG VEURGVIXE HOVTEAN YLOL TNV AVTIUETOTLON AVTIoTPOPWY TEO-
BAnudTev [34, 35, eved tpbdopata, To povTéNa Sidyuong €youy Tpooappoc tel enlong ot autd, ewdixd yia {nthuoTa
omee to deblurring [36], n anoYopuPonoinoy [37] o 1 urep-avdivor [38].

H ouyxexpwévn epyaoto emtyetpel va 8doel pla Behtiwuévn Ao oyeTixd ye Tov ahyoplduo tapaywyRg Eovmy

Yot ToL LOVTENA UE VTETEPUIVIOTIXY BLdyuoT. O adybdprduoc autde, dnwe xat 1 avtioTolyn anhoVoTERT EXDOY T TOU
ahyopldpou cuvoilovton oo mopaxdte Tvexdxia.

Algorithm 3: Naive Sampling Algorithm 4: Improved Sampling for Cold Diffusion
Require: A degraded sample x; Require: A degraded sample x;
for s=t,t—1,...,1do for s=t,t—1,...,1do
Zo « R(xs,s) Zo  R(xs, )
Zs—1  D(Zg,5—1) Ts—1 ¢ x5 — D(Zo,s) + D(Zo,s — 1)
end for end for
return zg return zg

O mpotewvouevog ohydpriuog emBEVUEL ONUOVTIXY VIEXTIXOTNTO O GQPAAUNTA TOU povTéhou anotopufonoinong
Ry xpée tiwée tov x xou s. o va xortavoricoupe to yotl, tar oxdhoutor yooax tTnetoTixd Tou TeoTEVOUEVOU
ohyopidpou emonuaivovton oto [33]:

Trodétovtag wiot Yeopuuxy) cUVAETNOT XUTACTEOPHC TOL TAPVEL T1) Hop®N

D(z,s)~x+s-e (0.0.1)

yior éval cuyxexpyévo didvuopa e. Tlapdho Tou galveton neploploTixd, otoladhtote ool cuvdptnon D(x, s),
uéow tng oepdc Taylor yopw and = = g, s = 0, naipvel TNV TopoxdTe Lop@N:

D(z,s)=x+s-e+ HOT (0.0.2)

omov HOT' oavunpoowneler bpoug udhnidteene t@ine. O otadepdc/undevinfic tdEne dpoc oe auth TN oelpd
Taylor eivon undév, diét D(zp,0) = xp.

Aedouévne plag cUVEETNONE TS TUEOTAVE LOPPNC XAl OTOLUBHTOTE LOVTENOL R, 1) EVNUEPWOT TOU YENOULO-
notelton oTov TpoTEVdUEVO ahybprduo uropel va ypagtel we e€nc:

Ts—1 = s — D(R(zs,5),s) + D(R(zs,5),s — 1)
= D(zo,8) — D(R(zs, 8),8) + D(R(zs,$),s — 1)
=x0+s-e—R(zs,8) —s-e+ R(zs,s)+(s—1)-e
=zp+(s—1)-e
= D(xg,s— 1)

Q¢ amotéheopa, cupnepaivoude 6Tt 0 ahydprduoc mopdyer o xs = D(zp,s) v Oha To § < ¢, avelapTHTLS
e emhoyhc Tou R. Anhady, 1 enavdindrn cuunepipépeton axplBig omwe Yo éxave av o R oy por téhewa
avTioteoy |, g unoPdduone D. And tnv dAhn, o ageric oiyoprduog Sev eugavilelr auth Ty wotnTo. H
onpacia TS Yprong Tou TEOTEVOUEVOL ohYopldou QalveTal Xol GTNY TORUXATL ELXOVAL.

Aavddvouvoa Aldyuvon

To tehevtodo ypdvio Exel mopatnenVel eviunwolox avdntuén otov toueva g dpaong umoloylotidv. Eva n
cOvdeon udniic avdiuone arnoteeiton xuplng and povtéha tdavétntog pe autoregressive transformers [39, 40)
Tou unopel vor €xouv SLoEXATOPUOELY TUPUUETEOUC, 1 YenowotnTa Tewv Hapaywyxdy Avtaywviotxoy Awtdony
(GANS) [41, 42, 43] éyer neploptopoie Aoy TS BUOXOAE TOUC GTO VoL LOVTEAOTOCOUY CUOVIETES XUTAVOUES
OEDOUEVV.




Extetopévn Heplindn ota EAAnvixd

Eyfue 0.0.6: Xoyxplon twv 800 akyopiduwy. Ané [33]

To Movtéha Adyuong éyouv npdogoto emdellel avdtepa anotehéopata ot olvieon exdvov [20, 44] xa dhhec
epyaoiec [45, 46, 47]). Qo1600, €vol ONUAVTING PELOVEXTTUA TLV LOVTEA®Y Bidyuome elvat 1 TohuThoxdTnTd TouG,
xod®g, 1600 1 exaddeVOY), GO XU 1) TUPAYWYT| EXOVWY ATUUTEL TEPAOTIOUE UTOAOYLOTIXOUE TTOPOUC.

T vo avtipetwrioouy oautd to npdPfinua, oo Rombach, Blattmann, Lorenz, Esser xou Ommer [32] npoteivouv
o povtéha havddvouoag dudyuone (LDMs). Ewlwétepa, ta Jepéha autic e mpocéyyiong elvon tor d0o xlpla
oTddla Tne pdinong:

o AvTiAnnTixy) cupnieoy, nou oxetileton pe tn Slayeipion AeTTOUEPELDY LPNADY GLUYVOTATWY.
o XNUACLONOYLXY) CLUUTIEST), TOU EMXEVIPOVETU GTIC EVVOLES TWV OEDOUEVLY.

Loppova pe ta mapamdve, 1 xOpta 1oéa efvan 1 UeTEPBooT ot Evay UTOAOYLOTIXG ITOTEAEGUATIXG YOEO Yiol TNV EX-
naidevon Movtéhnv Adyvong, ye oxomnd tn obvieon emdvev VPNAAC avdhuong. AxohoudodvTac TEOTYOUUEVES
oyetwéc epyaoiec [48, 49, 50, 39, 40], oo Rombach, Blattmann, Lorenz, Esser xou Ommer [32] napovcidlouv
Lo Sradixacior exnaldeuone mou anotehelton and 800 otddior Ilpwtov, exnadeleton évag autoencoder, yia vo
TOEEYEL EVOV Y DPO OVATURAC TACTE IXEOTERNE DIACTAONS, O OTOl0¢ TEAX YENOWOTOLElTOL Yior TNV EXTaldeucT
Movtéhwv Aidyvong.

Mio ancduor onuavTins CUVELSPORA TG CUYXEXPWEVNC pyaoiog eivan 0 TEOTOC TOU TEOTEIVETOL, TEOXEWEVOU Vol
EVOWUATOVETUL 0TO HOVTEAD 1) UTO oLV mhnpogopia, Xl 1 ¥eHom UNYAVIOUOL DUGTAVPOVUEYNS TEOCOY NS
(cross attention mechanism) emtpénet Ty oy WY ATOTENECUATIXGDY AVATAUPACTICEWY Yot TOMAG BlopopeTINd
eldn ocuvinudy (v mapdderypa xelpevo f exdvec). H ouvolnd dpyttextovixd evoc poviéhou havidvousac
didyuone TopouctdleTal GTNY TUPUXATL EXOVA.

( N\ @ Latent Space ) (Conditioning)
. Diffusion Process emanti
Ma
z ( Denoising U-Net €g 2r Text
Repres
entations

Pixel Space)

denoising step crossattention switch  skip connection concat

H
—

Syua 0.0.7: Apyrtextovin Movtéhwv Aavddvoucac Awdyuone. And [32]
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IMopaywy” YEPOYPAPOU XELLEVOU
GANWriting

H cuyxexpwévn epyaocia [51] npotelver pa uédodo yor tn dnuroupyio peahioTixdy yelpbypapwy AEewy, ue Bdon
To OTUA ypogphc xou to mepleydpevo. To anoteréopata tou goviédou yapaxtnellovtol and ueydin mowhia,
)¢ To povtélo dev neplopiletar oTic Aé€elg mou BT UTdPYOLY GTO GUVOAO BeBoUEVmY xou Utopel va avTiypddet
YeHYopa To GTUA eVOC dedopévou cuYYpapEd.

H apyitextoviny) Tou cuvoluod dixtiou elvon 1 axdhouvdn:

o TTopaywywmd Aixtuo

— IevvATopag: O yevvitopog Aaufdvel w¢ elcodo TG CUYXATAVETOUEVES OVITOROC THOELS TOU TEQLE-
YOEVOU xou Tou oTUA xau amoteleltan and dVo residual blocks [52] pe xavovixonoinon AdaIN [53].
H el emdva T mopdyeton Yetd and téooepa evotnteg cLVEAENS xou Wit evepyoroinon tanh.

— Kwdworomths Ttuk: F, = S(X;) + Z, 6mou S ebvan éva VGG-19-BN [54] xoun Z ~ N(0,1).

— Kwdixonowntvg Ilepieyopevou: H tehnr] avanopdoTtaon elvon 1 YEOUULXY HETATY NUATIOUOS
TV BLovuoPETeY 0ve-notT twv cuuBohocepy pe 2 MLPs g1, g2 (x&e pla pe 3 enineda pe evepyo-
nojoeic ReLU xau batch normalization [55]) yia tnv xedixonoinorn yapaxthea xat cuyBoloocelpds,
avtioToLyo.

o Ytbyol Mdlnone

— AeuxpivioTixr Anoieia: H apyitextovixd tou Aleuxpvio T nepthauBdvel éva eninedo cuvéL-
&ne xou €€ residual blocks [52] pe evepyonovfioeic LeakyReLU xau average poolings.

— AndAeta Ltuk: O ta€vountic ouyypapéo axohoulel Ty (Bila apyttexTovixy Ue Tov AlEUXpLoTY),
EVQ, OE QUTH TNV TERITTWOT, XENOLOTOLEITOL W CUVAPTNOT AMWAELNS 1) DIACTAVEOVUEVY] EVIPOTIAC.

— Andrera ITepieyopévou: O avayvootne hewv onoteheiton and éva VGG-19-BN [54] xou
évo. Bidirectional Gated Recurrent Unit (B-GRU) [56]. H andiewx mou ypnoiwornoleiton eivon to
Kullback-Leibler divergence.

ZoN G e
D »Lq

X
,@ discriminator

%’ W= {u,'l,'if‘g._..-'ﬂ-';\u‘}
v

W > Lo

writer classifier

A e

word recognizer

Tyfue 0.0.8: H opyttextovinf tou poviéhou GANWriting. Ané [51]

SmartPatch

IMepoutépw Peltidoelc oTn Topaywyl YXelpdypoapou xewwévou ntapéyoviar oto [30] ye v ewoaywyr Tou Smart-
Patch. H apyttextovin) tou mpotevéuevou povtéhou anewovileton napoxdte. ‘Onwe golvetot, 1 opyltextovixy
elvon évrtova epnveuopévn and o GANWriting [51], evd ol Bertidoeic oyetilovton pe pla EMTAEOY GUILCTOCH
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Extetopévn Hepikndn oto EXnvixd

andelae, Tov Tonxd deuxpiot (local discriminator) Lg 1ocal. To xivntpo miow and auth v npocixn, eivou
1 ep@dvion xdmowwy atrifacts oto GANWriting, 6mwe @aiveton otny axdhovdn euxdva.

Do T Y Suddnly

YyAua 0.0.9: GANWriting Artifacts. Ané [30]

X C Xuriter te 44.1
I abcdefghi-stuvwxyz
|ﬂ.ﬂralkﬂﬂ “l
WTM
C

style | encoder content| encoder

generator

they
o ~wv . SRk S~

Ed, global Ewrlter rel:o gnizer £'d local

Yyhuoe 0.0.10: H apyrtextovies) tou SmartPatch. Ané [30]

AZiler v avagepdel mweg 0T cUYXEXEIEVY BOUAELd SoxiudoTnxoy Tpla SLopopeTixd EldN TOTIXWY BIELXEVIGTAV:

e NaivePatch: ITpbxetton yia T Booixr] npocéyyion, n onola axohoudel tnv cpyitextovixt) Pix2Pix [57] xou

omhag droywpeilel TNy exdva o€ emxoALTTOUEVY TETRPG YWV (Le EmxdAudn W) EUTVELGUEVY) OO
7o ScrabbleGAN [28].

o CenteredPatch: Auth 1 npocéyylon eXPETUAAEVETAL TO GUCTNUA VLY VORLOTG XEWEVOU, TROXEWEVOL Vol
npocdlopioel ta patches twv dnuiovpynuévwy deryudtwy. Ilo cuyxexpyéva, n unep-detypatondia Tou
Bravdopotog npocoyfic (and Tov ydpetn npocoyfic Tou dnulovpyeitol 6Tov Aavldvovia XMpo Tou YEVVHTopA
[58]) oto mAfpec mMhdtog Tng ewxdvag odnyel oe éva xevipind mopddupo Yo xdle yopaxthea. Tédoo
AEYLTEXTOVIXY) OGO XOL 1) CUVEETNOY| OMMAELNS AUTOU TOU TOTUXOU BLEUXPVIOTY Tapopévouy (Bleg Ye To
NaivePatch.

e SmartPatch: Ye autd v nepintwon, to CenteredPatch Beitidvetan tepoutépw petafBiBdlovtac Tic ¥Adoeic
YOPOXTAPOV Creal, Ctake OTO HOVTENO (UETE TNV TEOPOM TV xAdoewv one-hot oe évav havddvovta ydeo

Cenc)~
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WordStylist

Ev avudéoel ye tc nponyolpevee epyaoiec [51, 30], To WordStylist [31] avtetonilel tnv nopay»y exovev
YEWOYPapou xewwévou pe TN Yehon Movtéhwy Audyvong [18, 20, 21, 59] avti yi GANs [6]. ITio cuyxexpyéva,
yenoonoovvtan povtéda Aavitdvousag didyuone [32] yio T pelwon tou utoloyloTinod x6GTouC oL amanTe{Tal
Yio TV EXTBEUOT] Xou TN ToPAY WYY ELXOVWY, EVE) TO HOVTENO TTpoGapéLETAL TOCO GTO TEPLEYOUEVO TOU XELEVOU
660 %ol 0TO OTUN Ypophic TwY exxévey hZewy, Tapduola Ye Tponyolueves avtioTtoylee tpooeyyioes [51, 30].

H apyttextovixy] tou npotetvépevou povtélou elvar oe peydho Bodud eumvevopévn and to aviiotolyo woviého
e [32]. EWwdtepa, yia tn dudixacio npoddou tne exnaldeuone xon e mapaywYhc EOVeY, 1 HeTdBacT otov
hav3dvovTo Ypo TEYUATOTOLE(TOL YENOLLOTOLWMVTIS £vay Tpoextatdeupévo autoencoder and to Hugging Face,
evd we 0 TpoPAéntne Yoplfou Yo to poviého havidvouoas didyvone yenowwonoteiton éva UNet [60].

Tyeuxd ye tic ouvidixeg, to xeluevo tepvdel 610 dixTuo Péow evog pnyaviolol dlaoTaupoluevne tpocoyhc [61]
O TPoTelvETOL 070 [32], EVE 1 EVOWUATWOT TOL OTUN Ypagphc amhd npootidetu oo ypovixd Priua. Ta ypovixd
Broto xewdwonotobvton and éva sinusoidal positional embedding énwe npoteivetar oto [61], ta oTUN Ypaphc
xwdonooUvton o éva embedding layer, evéd 1 avamopdotacT Tou xewwévou anoteleiton and to eEHC oTddaL

e Tokenization

e Embedding layer

e Positional Encoding (6nwc npoteiveton oto [61])
o Self-Attention [61]

H cuvohur| apyitextoviny) amexoviletal 610 Topaxdte oy fud.

Pixel Space Latent Space
! "that"
l : y
_‘.\AUA—:—P Vg -i-b ——b[ Diffusion process 'r" P PTETT PR .
: M v ST ]
' ' 3 Y :
' : z e mm . -.-——-—- . : i
! 5 ‘ . ' Embedding i
; : ! UNet i ; '
: : : : : v :
! : s : E [Positional Encoding ] E
Jf <« Vpl<€— «— <« <« : - . !
<-i- < |-« <-- < : Y :
E ' : ; ; Self-Attention :
i | " 1 x '
" r 20 Zi—1 e~ oo L. ! Zt zZr v Ce [
<— Training Y |
«-- Sampling |
Sl

EyAua 0.0.11: H apyrtextovinsf tou Wordstylist. Ané [31]
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ITpotewobpevn Médobdog

Moggohoywx Aidyvon
Kivnteo

H duyper) didyvon [33] Hrav 1 mpdtn TEocEYYLoN TOU TEOTEVE YEVIXEUMEVES Doy UOELS UE VIETEPUVIOTIXES OU-
VOPTACELS XATACTROPNE EXOVWY. ‘Oneg culNTAUNKE KoL TEONYOUPEVKC, 1) CUYXEXPLIEVY EpYsia ELONYUYE EVay
Behtiwpévo alybprduo mopaywyhc emdvey yia tétoeg cuvaptioec. Iopd v doxun tou mpotelvéuevou oA-
yopiduou yia pior Towahior Swadxaoudv didyuone, extée and to snowification (yio to omolo Sev avapépinyay
TOGOTIXG anoTENEOpATA), OAES oL dhec dayVoele Poaoilovton oto yxaouotavd blur (blur, inpainting, downsa-
mpling), enouyévwe dev avtanopxivoviar mhfipwe otov bpo Tevixeuvuéves Awryloeic’. Xe authv T dSimhopatixy,
Yo mepapaTioToOUE PE TN Lop@oloyxt| Blaotohty (morphological dilation) we tn Swdacia Sidyuong, n onola
drapépet onuavtind amnd i ddyuoelc Tou [33], xadde byt uévo dev Pacileton oo yxaovolavé blur, odid xatotd
xou Wla amd TIC TEOTES TEOCTAUVELES UE UY) YRUUUXT] CUVARTNOY XATAC TEOPNE EXOVWY.

H Xoywd niow and tnv emhoyr| tne Slaotohfic we cuvdptnomn xataotpogrc Bacileton ot poppoloyia Twy exdvLy
v ouVOAWY dedopévwy MNIST [62] xou IAM [63]. To gneplo xon to yepdypapo xelpevo, avtiotorya, mouxiihouv
AVIAOYOL UE TOV CUYYROUPEN 1) AxOUN XAl THY TEVAL, TROXAAWVTUS EAUPEES AMOXAICELS GTO TG YedpeTal Uit AEEN
1 évac oprdude (hemtdtepec 1 moyOTEPES YPoUMES Yior opddetyua). AUTéC oL TopahhoyéC AMTOVTOL UEPXV
HOPPONOYIXAOVY AELTOUPYIOY 6Twe 1) didPpwon (erosion) # 1 Swotohd] (dilation), Tic onoleg Ya ypnowwonotioouue
yior v dnuopyio wag Staduxactog Sudyuone mou elvon To xoTdAANAN Yo auTd Tor oOvoAa dedopévey. Eminiéoy,
Yo tpoolécouye xou Ty andédoomn e wopporoyixhc didyvone v to CIFAR-10 [64], 6yt uévo yio oxomolc
olyxplong pe 1o [33], odhd xou o midavég pelhovixée epyaoiee yio tétola ohvora dedouévev.

Yyhua 0.0.12: H popgoroyio tou MNIST.

VLl _ AN a%)
(/ A4,

Avaxataoxeuy] sixdveyv

” e€en
. waotawy

Yyuo 0.0.13: H popgoroyia tou TAM.

I tv avaxotaoxeuric exdvey, Yo yenotdonotficouye ta cOvoha dedopévwy MNIST xou CIFAR-10, mpoxetr-
pévou va efpacte oe €om vo cuyxplvoupe o anoteléopotd pag e auvtd tou [33]. H mpotewduevn diadixascio
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BLdyLoNS YLoL TO €PYO OVOXOTUOXELNC Exovae amotehelton amd 8 Briuata. Kdde Briuo npayuotonoieiton ye éva
TeTpaywVnd douxd ototyelo (square structuring element) 3 x 3.

O mopaxdtey eixdveg ameixoviCouv Tic dladixaciec didyuvong tou MNIST xa CIFAR-10 avtictowa, vy éva
tuyaio Selypo xdde xAdone Twv cLUVOALY dedopévwy:
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Syfuo 0.0.14: Topdderypa didyvone v xde dnplo Ly 0.0.15: Hopdderypa didyuone yia xdie xAdom
tou MNIST. tou CIFAR-10.
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Yné cuvOnxY TAPAY WYY EXOVLY

Avtideta, yio v nepintwon g und cuviinn mopoaywyhc ewdvwy, augdvouue o Bripata didyuone and 8 oe
11, xodcde, o auth TV mepintwon, Yéhovpe to wovtéro vo xododnyeitan xuplewe amd Ty xAdor xou oyt amd
™V oy (xatecTpoppévn) exdva. QoTtoo0, N TedTn ewdva e Sadaciag Topaywyhe EOVEV TOpUUEVEL
TedBANua, xadde 1 wopporoyxy Sudyuon Satneel T yewuetpla xdde Pnplou (oe oplouéves tepLnTHOOELS oxdUa
%o 0To TeEheuTalo Bua), oe avtideon ye Ty TuTX Yxoouotav SudyuoT. Autd dev ennpedlet povo Ty ToldTnTa
TWV THEAYOUEVLY EXOVWY, OAAG xou TNV TTotxth{ol Toug, xaddg Ol TEPLOGOTERES ELXOVES, XATA TNV BLAYUOY), XoTa-
Myouv o€ anhéc domnpeg edvec (6ho to pixels AowPdvouy Ty LéyoTtn T Tne apyxhc exdvag). Ilpoxeévou
VO AVTIUETOTICOLUE aUTO TO TEOBANUL, apyixd, Yo telpapatiotolpe opllovtag Ty Slactohr amhod YopiBou we
v apyxh exova (oav benchmark). Xtn cuvéyeta, Yo expetahheUTOVUE ToL TAEOVEXTNUOTOL SLUPOPETIXDY YEV-
VIOV LOVTEA®Y, Ylo Vo BektioTonolicouye Ty tpotevopevn dadixacio. 1o cuyxexpéva, Bactopévol xa
o€ dhhec poceYYioels Tou Yenoworololy 300 dlapopeTind povtéra oTo (Blo cuvolixd dixtuo [32, 48, 49, 40, 65,
66, 67] Yo yenotwonoioouue éva uTd cuvifixn TopaYwYXG avTaywvioTixd dixtuo (cGAN), yio va napdyoupe
Tic opywég exovee. ‘Enetta, mopatneddviag 61l to cuyxexpiuévo cGAN poadoivel amoteAeoyotind T YewueTpla
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Extetopévn Hepikndn oto EXnvixd

plog ewdvag Yetd amd Blac TohY), TPocVEToVTaS, waTdc0, Alyo yxaoualovd YopufBo, Yo eniycipicoupe va BeATi-
(OOOVUE TEEAUTEPE TOL AMOTEAECUATA HOC TEAYUATOTOWVTOS €va Lop@oloyxd xhelowo (morphological closing)
oTi¢ ewxoveg mou mopdyel o cGAN. H enibpacn autol tou closing cuvodileton otny mopoxdte eixova.

0 0
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20 20
25 25
30 30
0 10 20 30 0 10 20 30
0 01
2 21
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6 6
8 8
0 2 4 6 8 0 2 4 6 8

Syuo 0.0.16: H enidpoaon tou closing otic nopoayduevee eodves tou cGAN.

Enextdoeig oto povtého WordStylist

To WordStylist [31] eivon 1 u6évn mpocéyyion nou Bacileton oo OVTEN DIdyUoNE Yio THY Topay Wy XELWOYEAPOU
xewwévou. To ouyxexpiuévo HOVTENO TOPAYEL ATOTEAECUATA XOPUPALOS TOLGTNTOS TOPOUOLaL Ue autd Tou [30], eved
UTEPTEPEL UPXETA OGAWY TWY FAAWY HOVTEAWY GTNY TEOGUPUOYHE 0TO OTUA Yeapnc. I'evixd, unopel va dewpndel ot
elvon T0 HOVTELO PE TNV XoADTERN an6d0aT, X0k To TOGOTIXA ATOTEAEGHATA TOL GE ,TL APopd TNV ToLdTNTA
TWY TOPAYOPEVOV EXOVOV Elvan Tapopolou emnédou pe to SmartPatch [30] (to FIDs efvon 22.74 xou 22.55
avtioTolya), EVO 1) anddoon ToU OTNY TPOCUPUOYTH 6TO GTUN Ypa@hc elvon onuavtixd udgmiétepn.

Qotéoo, bnwe avagépeton oo [31], 0 xUploc Teploptowds auTAC NG TPOsEYYIoNG elval 1 UTOAOYIGTIXH TONU-
ThoxOTNTA TNG Btaduaciag mapaywyhc emdvwy. Tlapd tn onpavtiny peiwon twv anuthoswy oe UToAOYIo TO0G
TOPOUC YE TN YEHoM TV poviéhwy havddvouoas didyvone (latent diffusion models) [32] xou 0 mopaywyy et
%x6vov pe 600 Pruate avtl v 1000 (6nwe oty exmoidevon), 1 ocuyxexpiuévn dadixacio anoutel Tepinou 12
DEVTEPOAETITAL YLOL TNV TORAY WYY WLog WOvo exdvag. ‘Onmg @alvetol oTNny Topoxdte exova, 1 TEpuTépn Uelwon
TV Brudtwy odnyel ot oNuavTix anwielo toldtnTag, Wing dtayv ta Bruata etvar 300 v Avydtepa.

T =100 T = 200 T =300 = 400 = 500
o it (ohecr wif\.od' - U\od'
T = 600 T =700 T = 800 T =900 T = 1000

(,\,.L’\a'/' W{/\a'f' W[f\ét"' Wfr\a'f' w[f\Ok‘f'

SyAua 0.0.17: Toporywyr edvev pe Sropopetixd aprdud Prudtwy and 100 emde 1000. Ané [31]

ITpoxewévou vor avTETOTICOUUE aUTO TO TEOBANUL, aEyixd, Yo EPUPUOCOUUE TO ATOTEAECUATINOVS alyopituoug
v TV Topay oy ewovev. o ouyxexpiéva, ol ahydprduol mou Yo eppapudcovye ebvar ot axdhoudol:
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e Denoising Diffusion Implicit Models (DDIM) Sampling [68]
e Pseudo-Numerical Methods for Diffusion Models (PNDM) sampling [69]

‘Oocov agopd to. DDIMs, ot Song, Meng xou Ermon [68] apgioffitnoay tny e€dptnomn tne andhetog evée Movtéhou
Audyvone and ta tepdwptoxd (marginals) g(xpr|rg) pévo, énwe goivetar oty eliowon 2.3.13. Elwdtepa, o
ot6y0c Tponomodnxe Mote vo eCoptdton xon amd To evOdueEsa otdda g(xr.r|Te) (dnwe gaiveton xou oTNY
Topaxdte exdva). ¢ anotéheopa, eZetdlovtan un-Mopxofavd inference processes, ta omola Siupopomolotv
otov ot6y0 twv DDPMs [20]. O cuyxexpwévoc ahydprdpoc cuvolileton oto axdhoudo mvoxdxt.

s Do ~
/—.\ /_ ) > -/_\ \| S EE— N » e \u > /:B
@) @— @) @ @ — @— @

“glao|xy, )

—

NI
@ @ q(xs|za, o

Eyfue 0.0.18: Denoising Diffusion Implicit Models. Ané [68]

Algorithm 5: DDIMs. From [69)

1. xp ~ N(0,1)

2. fort=T-1,...,1,0do

3: Tt :¢(£L’t+1,69(1’t+17t+1),t+17?5)
4: end for

5:

6: return xg

O Liu, Ren, Lin xou Zhao [69] Behticddhvouv nepautépe 610 TNy dtadixacio mapoywyhc edvemy elodyovtas Toug
aryoptduouc PNDM, ot omolot amodexvietan 61t ebvon yevixdtepot tou DDIM (o DDIM eivou o eidind nepintoon
v PNDMs). Elwétepa, npoteivovio 800 napdpotor ahydprdpor, FPNDM xa s-PNDM, ot onoiot Bacilovton
ot apuiunTixéc pedodouc Tedtng xan devtepne NS, avtioTolya.

Ko ot 800 arydprduor dewpotv t Swodixacio arodopufornoinone we v Kavovixh; Awgopix| EZloworn (ODE)
mou mopouctdletar oty e€iowon 2.3.20, ahkd yenoonooly dlapopeTnés aptiunTés uedodoug Yo var TV
Aooouv.

Axohov®VTAC TNV TPOTEWVOUEVT] GUVTOUEUOT):
e Pseudo Linear Multi-Step method: PLMS
e Pseudo Runge-Kutta method: PRK
e Pseudo Second-Order Linear Multi-Step method: PLMS’
e Pseudo Improved Euler method: PIE

oL 300 ahyderipol Umopolv vo cUVOPLETOUY GTOUS TopoXdTe TVOXES:

Algorithm 6: {-PNDMs. From [69] Algorithm 7: s-PNDMs. From [69]
1: xTwN(O,I) 1: xTwN(O,I)
2. fort=T-1,T-2,T—-3do 2: fort=T—1do
3: T, €t = PRK(I’t+1,t+ 1,t) 3: Tty €t = PIE(It+17t+ 17t)
4: end for 4: end for
5. fort=T—4,...,1,0 do 5: fort=T-2,...,1,0 do
6:  x, e = PLMS(441,{ep}tp>t,t +1,1) 6: ¢, ep = PLMS (w41, {ep}pst, t + 1,1)
7: end for 7: end for
8: return xg 8: return xg

15



Extetopévn Hepikndn oto EXnvixd

Moggoloywxry Awdyvon yia Iapaywyr Xepdypagou Keipnevou

Ye auth) TNy uoevoTNTA, Yo ¥ENOWOTOCOVUE TNV TREOTEWOUEVY Bladxacio Bidyuong Twv Budtwy popQoloyi-
NS Bl TOAC Yl Vo BekTidoouye Tepantépe TNV AmodoTixdTnTa Tou TuTXoL mAatciouv Aavddvouoag didyuong
Tou yenotpornoteitow oto WordStylist [31]. Ewdudtepa, petd tny x63xonolinoy twy apyxdy exdvwy 6Tov hov-
Ydvovta yoOpo péow evoc tpoextoudeupévou Autoencoder, Yo ypnowonoicoupe 30 Bruota SlaoToAS YL Vo Tic
emdewvdooupe. ‘Onwg xou oTi TEoTYoUUEVES TEQITTWOOELS, Vo yenowonomdel éva tetpdywvo 3 X 3 w¢ douixd
Touyelo yio xdde Brya. O Aavddvwy yweog arnoteheiton amd 4 xavdhia, OTeg QoiveETon TUPAXdTe, T Omolo U-
ploTovton utoderypatohndlo xatd napdyovta 8 oe xdde Sdo taon, uia pelworn mtov odnyel oe onuavtixy cLunTugn
e apyic TAnpogoplac and (3, 64, 256) (pixel space) oe évay o cuunayy) xou dwyetpiowo (4, 8, 32) (latent
space).

Wao _}\:o corrot Lo | cas U huch

ync a/ \6 /ﬁm P'uI» D O an lr"/ T{%D
o i/ ol Z{Zé J&; ob o/

.4 ( MA & «\.va af\AQ(

of I @ oo e oo
wr dowes | Vo {ly 5

Eyhua 0.0.19: Apywd npoene€epyaouéva delypato tou TAM.

corpnt e | Gl | ol Lo kool o | Lo 1 i

Syfuo 0.0.20: Ta 4 xovdiia omd Tic Aavidvouces avamopaotdoel Ty detypdtony tou TAM.

Eyhua 0.0.21: To 4 xavdiie and Tic Aavidvouoes avarnopaotdoels v detyudtwy tou TAM yetd and diactoly.

16



ITeipopoatind AnoteAEéopota

YOvoho Aecdopevwy
O TEAYPATOTOLCOVUE ToL TEWIUATE Log 0Tl axdhovda GOVOAYL BEBOUEVLV:

e MNIST [62]: To ciOvoho dedopévwy MNIST civon piar cuhhoyy| yelpdypopwy Ynolny mou éxer yivel
TEOTUTO Yol TNV 0&LOAGYNoT TwY alyopiduny enelepyaciog eudvev xan unyovixhic uddnong. IepthauPdvel
60.000 ewdveg exnaldeuone xou 10.000 ewxdves doxiuhc oe oTEOUAVEO YEOUA, OAEC dlaoTdoewy 28 X 28.
Adyw g amhomTog Tou Xat TS XoepUEVNS @RUNG Tou, oLy VA Aetoupyel wg onueio exxiviong yia
eXElVOUC TIOU ELGERYOVTOL GTOV TOPEN TNE UNyovixic pdinong, eldwd otov Topéa TN Tagvounong EXOVLY.

e CIFAR-10 [64]: To cGvoho dedouévwv CIFAR-10 amotehel mio éva omd 1ot o ouyve YenoyLotoldueva
GUVOAX BEBOUEVWY Yiol TNV 0ELOAGYNOT] TWY LOVTEAWY UNYOVIXAC HEHNCTEC TTOL PLEECVOVTOL GTTV AVAY VORI
o avixewévey. Anoteheltar and 60.000 Eyypwues etxdves mou Sioupolvton oe 10 diaxprtéc xatnyoplec,
OTWC OEPOTAAVYL, TOUALE Xan awtoxivta, we xdde xatnyopio vo nepiéyel 6.000 eixdves. Autég ol exdveg,
pe avdiuon 32 x 32, ntpoc@épouy wa o dUoxoAT epyacio ta€vounong andé to MNIST, Adyw tng molu-
TAOXOTNTAC oL TNS TOLUAOHOEQlC TOUC.

e TAM [63]: To cuyxexpyévo cOvoho dedopévwy amotehel €vay xevipnd tdpo Lo épeuvec ou oyetilo-
VTOL UE TN AVAYVORLOT 1) TapaywyY) Xewedypapou xewévou. Tlpoopépel uio mhodola GUANOYY| YEWOYPAPOL
ayYhixol xeyévou mou €yel cuvtayvel and mhvew and 600 cuyypageic. Ltny neplntwot| wag, Yo yenoulo-
nowfjooupe To unocuvoho Aachen split, ye 1o urixoc v Aéewv va xupalvetan and 2 éwg 10 yopaxtripeg,
pe amotéheoya 44,412 ewdveg ye 339 oTuA ypuprc. Oo uvodethooupe, eniong, Ty (Bla dladixacta Teoene-
Eepyaoiac dnwe npotelvetar oto [31], Tpoxewwévou va ahhdEoupe To péyedoc Twv exdvey ot éva otadepd
péyedoc emodvag 64 x 256.

Mertpwxég Enidoong

Y& autd To onuelo, Yo avalbooupe oOVTOUA TS HETEXES TTIOL Vol YPNOWOTOW COUUE OTT) GUVEYELD, YLOL VO ETOAT
Yedooupe to exmoudeupéva povtéda pag. O uetpxég enidoong eivon ol axdhoudeg:

e Fréchet Inception Distance [70]: To FID eivou g petpuxt| tov tpotddnxe, apyixd, yio tnyv a&lohdynonm
wwv GANs [6]. Qotéoo, teheutain, ypnowwonoteiton evpéwe otous toelc e Trohoyiotxic ‘Opacne xon
e Fevetinhic Teyvntic Nonuoolvng, v v a&lohdynorn tne noldtntog twv tapaySUevey emévmy. To
FID napoucidleton we wot Bedtiwon tou Inception Score [71], xodd¢ o unohoylopde tou amoutel, T660
TROYUUTXd, 660 xou cuvdeTixd delypata. Yroloy(leton and tov nopaxdtey THno:

d? ((m, C), (M, Cu)) = ||m — mu |3 + Te (C 10, — 2\/001,,)

e Structural Similarity [72]: To Structural Similarity (SSIM) napoucidotnixe we pio Bertiwon tou
Universal Quality Index (UQI). TnrpZe onuavtind yetexd yia Ty oflohbyNnom ne TotdTnTas Twy EXOVKY,
oV Xl ToL TEAEUTAOL YEOVLAL DEV YENOUOTOLE(TO TOGO GUY VA AOYW TNE ERPAVIONS VEWY, TUO LOYUROY HETEXOY
onwe to FID. Trolyileton péow tou axdroudou tinou:

(2pzpty + C1)(200y + C2)

SSIM(x,y) =
(z,9) (12 + 2 + C1)(02 + 02 + Ca)

¢ Root Mean Square Error: Ou ypnoyonojoouye, eniong, xou 1o RMSE w¢ uetpur}, To onolo optleton

wc:
1 M N
RMSE(I, I2) = || 37 ;;(h(i,j) — I5(i,5))?
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YAonoinon
Avaxataoxeuy] sixdveyv

T tor povTéha avaxataoxeLic exovey pog oo yia to MNIST [62] 600 xou v to CIFAR-10 [64], ot Aento-
uépetec uhoroinome eivon ot (Blec, Aoyw tne alhoryfic tou peyédouc twv detypdtwy Tou MNIST oe 32 x 32 (400
xau tou CIFAR-10), énwe oto [33]. ITo ouyxexpéva, mpaypoatonotfooue exnaidevon 500 emoywy, pe batch size
32, yenowonowsvroc tov Behtiotonomth Adam [73] pe pudud pddnonc 2 x 1075, ‘Ocov agopd 0 dladixacic
dudyvomng, xdde exxdva Sl TEAAETAL 8 Popéc pe Eva TETpaywVixd dowxd otolyelo 3 x 3.

To yovtéro mou ypnotpornoteltan yior Ty anoYopuBornoinon eivar éva U-net [60], eved to tehxd poviého mou
YENOWOTOLOVUE Yot Th Toparywyl) Exévev efvan évag exdetindc wvoluevoe pécoc dpoc (Exponential Moving
Average - EMA) tou exmoudeupévou poviéhou (pudude umofdduone 0,995), mpoxewévou vo auEfioouue T
otadepdTnTa TG cLYXMONE Tou YovTtélou uoc. H apyitextovins tou U-net eivon 1 (Bio ue authv mou mpoteiveton
o710 [33], doTe VoL UTBpYEL CUVETELS GO0V QPO TOL TIELPUUATIXG ATOTEAEGUATAL.

IMopaywyn exxdVLY VO cLVOIAXT

Tt o LTtd sUVIHKN povtého pac yioe to MNIST [62], ou hentopépeieg Lhonoinong eivan ot e€fc: Tparypatonowioo-
pe wo exmoddevon 100 emoy v, ue batch size 128 ypnowonowdvtog tov Bedtiotoromt) AdamW [74] pe pudud
péinone 1074, ‘Ocov agopd ) dadixacto didyuorne, xdde exdva dtactéheton 11 popéc pe évo TeETpary VXS
douixd otouyeio 3 X 3.

To povtého nov yenowonoteiton yioo TV omovopufonoinon ebvar, xou oe auTh ™V Tepintwon, éva U-net [60],
EVG TO TEMXO HOVTENO TOL Ypenoldonolobue Yo T Betypatolndlo elvon mdht éva exdetinde uvoluevoe Yéoog
6poc (Exponential Moving Average - EMA) tou exnoaudevpévou poviéhov (pudpde unopdduone 0,995) yio vo
avgnooupe N otadepdtnTa TS CUYXAMGNE Tou povtéhou Woc. AvtioTtoiya, 1 apyttextovixy) Tou U-net etvar 1 (Slat
pe ot mtou mpoteiveton and Ty [31], dote Vo undpyEL CUVETELN oTaL TELpaTXd amoteEAéopata. O cuviixeg
yio i xhdoele (class conditions) tou cuvérou dedopévwv MNIST nepvolv oto povtélo yéow evée otouyeiov
dlaotawpoluevne npocoy e (cross attention) [61] petd and éva anhé embedding layer.

‘Onwe éyel 1on oulnniel, To npdto oTddlo TN dradaciog derypotolndlag elvan éva amhéd und cuvdrixn GAN
(conditional GAN) [75]. H exnaidevot| tou difipxnoe 50 enoyée ue batch size 128 xau Behtiotonomnts Adam
[73] pe pudud pddnone 1071 Ou cuvdxec vl Tic xhdoelc xwdxonohdnxay oe one-hot xou 01N cuvéyelo
ouvevednxay e tov apyxd BopuBo tou 3édnxe otov Tevvitopa (generator).

Enextdoeic oto povtého WordStylist

Avth 1 vnoevdnta apopd Ty epopuoyy Twv akyopiduwy DDIM [68], -PNDM [69] xa s-PNDM [69], ondte
dev vAomolinxe xdmolo dladixacio exmaldeuone. ot vo mpayaToTo COUUE To TELPAUOTA, YPTOULOTOLACHUE Tot
Béen tou exnandevpévou poviéhou WordStylist [31] and £d¢.

IMapaywyh YELEOYPAPOU XELLEVOL

It to und cuvdixn wovtélo pog yio To cUvoho dedopévev IAM [63], ou neploodtepec hentopépeieg UAoTOMOTNG
oyetxd pe TN Sodxaoio exmaldevong xan T UTEPTapoUETEOUE elvon (Bleg UE AUTEC OTO AVTIOTOLYO UOVTENO
yioo to MNIST. Qotdoo, xdvope pa tporonoinon otov unyoviopd e cuvidixne (conditioning mechanism),
v va avtomoxpildel 0To xeluevo xou To OTUA Yeapric Tou cuvdlou dedouévwy. Emmiéov, uetafrxoue omd TN
xeron e ouvdptnone andielas Ly otn cuvdptnon andiews Li. Auvth 1 oddoyr) ogeihetan 6t0 €0pog TV
Tou Aavddvovtoc yopou (latent space) oto povtého poc. Buyxexpiwéva, ol Aavidvouces avanapaotdoelc Rtay
EVTOC £VOC eVpoug amd -4 éwe 4. H yprion tne anwieiog Ly og autd to mhaicio 0dYynoe oe unepBolind udmiéc
OmONELES, 0ONYOVTAC ot onuavtixd Buata xhorne (gradient steps) xou enaxdhoudr uneprpocuppoyh oto civoro
dedopévwy (overfitting). H uiodétnon tne cuvdptnone andhetog Ly avTipe tdmos autd 10 TpdBAnua, tpowddviag
pLa o otodepy) xou amoteheouatixy diadixacio extaidevons. O pnyaviouds cuvdixne mou axohoudooue eivon
autéc mov mpotelveton oto Wordstylist [31].

18


https://github.com/koninik/WordStylist

Arnoteléopata
Moggoloyixr, Awdyvon

To TOWTIXE AMOTEAEGUATO TOU HOVTENOL UaC YL TNV ovoxaoTaoxeut] exévewy tou MNIST o tou CIFAR-10,
xadde xon ud cUVIRHN TapaywYY ewdvwy Tou MNIST napouctdlovton ot TapoxdTe EiXdveS.
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Syfuoer 0.0.22: Avoxataoxev) exévov tou MNIST.
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Syfuor 0.0.23: Avoaxataoxeu) exdévov tou CIFAR-10.
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Extetopévn Hepikndn oto EXnvixd

Y1n ouvéyela, Yo THpOUCIACOVUE Ta ATOTENESUATA KOG, cLuYXpivovtag To e ta avtioToyo tou [33]. ‘Onwe go-
tveton mapoxdtw, t6oo oto MNIST, 660 xow oto CIFAR-10, pe 0 Lop@ohoyixy| SidyuoT ETLTUY YAVETOL TUEOUOLAL
X0l OE TOAAEC TIEQLTTMOELS XohUTepT eTldoon and 6Tt pe Tic Yedodoug tne Puypehc ddyuone.

Table 0.1: Comparison of Metrics for the Proposed Diffusions of [33] and ours for MNIST [62].

Degradation Degraded Sampled

FID SSIM RMSE FID SSIM RMSE
Gaussian blur 438.59 0.287 0.287 4.69 0.718 0.154
Inpainting 108.48 0.490 0.262 1.61 0.941 0.068
Downsampling 368.56 0.178  0.231 4.33 0.820 0.115

Dilation (our approach) 314.87 0.005 0.78 246 0.96 0.05

Table 0.2: Comparison of Metrics for the Proposed Diffusions of [33] and ours for CIFAR-10 [64].

Degradation Degraded Sampled

FID SSIM RMSE FID SSIM RMSE
Gaussian blur 298.60 0.315 0.136  80.08 0.773  0.075
Inpainting 40.83 0.615  0.143 892  0.859 0.068
Downsampling 358.99 0.279 0.146 152.76 0.411  0.155

Dilation (our approach) 217.81 0.11 0.39 5242  0.63 0.11

O emdpevoc mivaxag delyvelr Ta anoteAéopata Yoo TNV mapaywyne emovwy tou MNIST und cuvinxrn. Ere-
01 Oev umdpyel axdun xdmola dAAY) TEOCEYYIOT TOU 0POEd TN YEVIXEUUEVY], VIETEPUIVIOTIXY OldyuoT Ylol ThV
AU AUy WY O GUVDT XY, Tal ANOTEAEGHATA TWY TEROUATWY Uag o ouYXELIoUY UE EXEVO TOV TUTLXEDY
HOVTEAWY BLAYUONG YXAOUCLOVHG, To OTtolal £X0LY OPLOUEVES OUOLOTNTES UE TNV TPOCEYYION UIC, OGOV aQORd TNV
ToAuTAOXOTNTA TNG Bladixaciog exTalBEVoTC XoL TUPUYWYNE EXOVWY.

ITio ouyxexpuéva, Yo exnoudeboovpe TewMTa v LovTélo Bidyuong pe 10 Brpara xon Yo petpricouue to FID tou
HE TO apyxd GUVORO BEBOUEVLYV, EVE ToL GG LOVTENX YXaoUGLaVAE Bldyuone Yo exmoudeutodv yia 100 Brparto
oaAd Yo yenoronoimndolv pohic 10 yio Ty mapoywYh exdvwy, uéow twv akyopiduwy DDIM [68], -PNDM
[69] xou s-PNDM [69]. ‘Onewe gaiveton, Ghec awtée oL pédodol amoTtuyydvouy Tpogavas va Topdyouy adlotpeni
delypara, Aoyw Tou Uixpol aptduol Twy Brudtoy. Avtildeta, n tpocéyyior pog, nou Baciletar oTn woppohoyixt
BidyuoT), QalveTon VoL Tapdyel AmoTEAECHATA TOU efval TOAD xUAUTERA, OTWE UTOBEVVEL o To avtiotowyo FID.

Table 0.3: Comparison of Metrics for Different Conditional Generation Models with 10 sampling steps for

MNIST [62].
Model FID
Gaussian Diffusion (100 steps) 4.31
Gaussian Diffusion (100 steps) with 10 DDIM [68] sampling steps 163.90
Gaussian Diffusion (100 steps) with 10 ~PNDM [69] sampling steps 293.76
Gaussian Diffusion (100 steps) with 10 s-PNDM [69] sampling steps 226.02
Gaussian Diffusion (10 steps) 123.31
Morphological Diffusion (10 steps) with dilated noise 41.30
Morphological Diffusion (10 steps) with GAN masks 19.45

Morphological Diffusion (10 steps) with GAN masks after morphological closing 15.53
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Enextdoeic oto povtého WordStylist

Ye autd 1o onuelo, Yo TopOLCIAcOLUE To ToTIXG amoTeENéoUaTa LETH TN XeHon Twv ahyopiduwy DDIM [68],
f-PNDM [69] xou s-PNDM [69] oto povtého WordStylist [31]. Ou moapoxdrtew ewmdvee anewxovilouv autd ta
anoteréopata yia évay aptdud Brudtwy and 20 éwg 200, v tov akydprduo DDIM (1o anotehéoporto twv
TPV ohyopidumy elvar apxetd topduota), xodae xo plo clyxplon Ghwy Tev ohyoépduny (cuunepthauBvouévng
e W xeron xdmowou akyoplduou) yia 100 BAuata. Iopatnpolue Eexddopa 6TL HE TNV ELCUYWYH QUTOV TWV
ohyopluwy UTOPOUUE VO PELOCOUME BRoaTXd TNV avdyxn yiot ToAAG Bruata, xaddg axdun xa 50 BrApoarta
umopoly va elvon emoexn ylor TN Slatipnon Tng ToLOTNTAG TWV TApAYOUEVLY ewdvewy. H ypron Aydtepwy and
50 Brudtev derypatohndlag €xel Ouws apyNTd amoTEAECUN GTNY TOLOTNTA TG delypatolndlag, dnwe gaiveto
OTNY TEOTN CELPd TWV ANOTEAECUAT®WY Ylot Tov ohyderduo DDIM.

‘Etot, avtipetoniCoupe yio and tig xpieg neptoptopols tou povtéhou WordStylist, mou agopd tnv utoloylotxy

Tou mohumhoxdTnTa, xowg tor 600 Briuarta derypotolndlag mou yeeldlovtay yio Tn YEVVATEL BEV elvon TAEOV
ATAEALTNTOL XAk 1) TOLOTNTA TWV AMOTEAECUATWY TORUUEVEL OYEBOV (Bla.

10\ ho bl oo e Al o | b1af
wha! | whot | Wt oAb/
whid | whed | A W lak] wlat

W & [ W x\“& 4/%&/ L\/M Wéh /

Eyua 0.0.25: Anoteléopora ue epopuoyy Tou ahyopiduou DDIM. Kélde ceipd nepiéyet 5 anoteréopota yio T
(Bl AéZn (what’) ye 5 tuyada oTuk Yeagphc xon aprdud Brudtwy a) 20, b) 50, ¢) 100, d) 200.

'{' Y- Q“ e
| mw:t

M;/ W X ‘fo Lot
LW ’ ’b\ >4l WAL
e T akd ol o

Yyfuor 0.0.26: LOyxpion anoteAeoudTov Yo dlapopetixols ahyopldpoug mapoywyhc emoévey yio 100 Bruata.
Kd&de oeipd nepiéyet 5 anotehéopata yioo t &N ("what’) pe 5 tuyada otuk ypophc xou ahydprduo a) default,
b) DDIM, c) {-PNDM, d) s-PNDM.

£

.xv{ PV A
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Mopgoloyixh Awdyvon yia IHopaywyh Xepdypapou Keipévou

e auTH TNV EVOTNTA, XUTATLOO TAXAUE UE Wiot EE0VUYLOTIXY EEETUOT TWV TOLOTIXGDY ATOTEAECUATWY TIOU TROEXU-
Qov and To mewpduatd poc. Ilépa and Tic mocoTiXéC peTERoEC XAl TIC OTATIOTIXES avahloElS, elval Xploo va
0 LONOYCOUUE TNV TOLOTNTA XAl TOL YUPAXTNELO TIXE TWV ANOTEAECUATWY YE EVAY TILO TEQLYPAUPLXO XOL EQUNVEUTIXG
TpoéTO.

Eexwvdpe auth Ty e€€TaoT TopouctdlovTog OTTIXG oVaXaTUoXEVACHEVA Belyorta Tou e€Xyincay omd to ahvolo
dedouévev IAM. H napaxdtw ewxdvo anewxovilel xadopd tny endpxelo Tou HOVTENOL 6T GUANOYT, TOGO TWV CUV-
VNV XEWEVOL, 6CO XOL TWV ATOUXWY OTIA Ypaprc Tou oyetilovtal pe xdde yewpdypapn AéEn. Ilogd to yeyovic
oTL extoudevTNXE Yior WOAC 250 emoyég xon 30 ypovixd Briwata, To LovTéAo emBENVUEL APXETA XOAY anddooT O
éva towxiho @dopo oTIA Yeapric xou AéEewv, LTOYPUURILOVTAS TNV TOAUULOPPIO XaL TNV ATOTEAECUATIXOTNTE TOU.
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Extetopévn Heplindn ota EAAnvixd
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TTpoxeévou va amoxTHoouPEe ol axdpo XA TERT EXOVIL TWV SUVATOTATKY TOU HOVTEROU Hag, Bol TOpOUGIACOUUE,
emTAéoV, xdmola ToloTxd anotekéoporto yia el (dance oe auth Ty tepintwaon) Tou Sev unhpyoay 6To APy
olvolo dedopévmv (out-of-vocabulary), xodde xou xdmota ToloTind amoTeAéoUTod Yior CUYXEXPWWEVN MEEN (what)
ue dapopeTind otk Ypaprc. A&(lel va onueiwdel towg xon 0Tl 800 TEPLTTWOELS, Ot edveg and Tic onoieg Eextvnoe
7 TOEAYWYT) TV TEAXWY EXOVOY HTOY TUYAES XATECTRUUUEVES EXOVES GAAWY AéZewv Tou IAM, yeyovde mou
TPOGBIBEL TUYALOTNTY GTNV BLaBLXAC(Ol TOPAYWYHAS ELXOVEV.

Adauce

et
Wl el dauce

Syfua 0.0.28: Out-Of-Vocabulary anotedéopata yio T AéEn "dance”

whot  4sha/ |
/a//a/ L/L'/I[
what | whot

Eyue 0.0.29: Anoteléopata yio Sapopetind oTuk Yeophc e Aééne "what"

Ye auté 1o onpelo, npénel va onuelwdel Twe ol napandve ewxdvee dev avuxatonteilouv andhuta TNV entldoon
TOU POVTEAOU, XD UTEPYOUY X0l TEQLTTAOOELS, OOV ToL ATMOTEAECUOTA EiVOL YOUNAOTEENS TOLOTNTAS, AvVAAOY
X0l UE TOV GUVBLAOUS AEENG oL GTUN Ypaphc.

Y TpEPovTag TR TNV TPOCOY T HoG OTNV TocoTiXY) agloAGYNOT TOL LOVTEROUL poc, Vo TUpOUGCLECOUUE Ul GUYXELOT
twv FIDs, dote va anoxticovue éva apriuntind p€Teo Tng TOLOTNTIC Xol TNE TOLXLAOUOPQIAIC TV EXOVWY TOU
ONULOVEYNOE TO UOVTERO [aC.

O rapaxdte nivaxag mopouctdlel wa cUyxplon twv FIDs tou povtélou pag évavtt teidv alyypovmy xopupalnwy
ped6dwv: GANWriting [51], SmartPatch [30], xou WordStylist [31]. To povtélo poc xataypdpel oxop 27.85,
TAEOUGIALOVTAC TNV AVTAYWVICTIXOTNTE ToU, 68 cUYXELON UE TIC PETEIXES AMOBOOTC TWV THUPATAVE UOVTEAWY.

Model FID |

GANWriting [51]  29.94
SmartPatch [30] 22.55
WordStylist [31] 22.74
Ours 27.85

Table 0.4: FID score comparison for our model with state-of-the-art.
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Extetopévn Hepikndn oto EXnvixd

‘Onwe avagpépeton xou 6o [31], Tapdro tou to FID eivon piat suyvé Y pnottonotoduevn HeTetxy yiot TV adlohdynon
TOROY WYLXDY HOVTEAWY, 1) XATOAANASTNTA Tou unopel va augofBntniel yia epyaociec mou dev aoyololvtol ye
puoéc emdvec napdpoles pe avutéc tou ImageNet [76], to cOvolo dedopévwy 6To omolo exnaudedtnxe apyixd
T0 BixTvo.

E&autiog tou mopandve neplopiouot e petpinic FID, enextelvoupe tnv alohdynom pag, yio va aglohoyHoouUE
X0l TNV TEOCUPUOYT] GTO GTUN YROPNC TOU LOVTEAOU UUC, YENOHOTOLOVTOC To TAdiolo agloAdynong mou mepl-
yedpeton oto [31]. Edixétepa, Yo ypnowonoiooupe évor CNN ResNet18 [77], yior var xatnyoploTolcoupE o
OTUN YPUQNC TWV TOEAYOUEVWY SELYUdTwVY poc. AeSouévou 4Tt 0 ETAEYUEVOS TAEWVOUNTAS KOG EXEL TEOEXTOL-
deutel oto ImageNet [76], o mpaypotonomde! éva fine-tuning oto odvoro dedouévwy IAM mpw mpoywerficouue
otnv tadvounon. Ta anoteléopota auTHC TNG AVEAUGTE TOEOUCLALOVTOL AETTOUERMS GTOV TOROXATE TiVoIXd.

Test Set Accuracy (%) t
GANWriting [51] 4.81
SmartPatch [30] 4.09
WordStylist [31] 70.6
Ours 26.7

Table 0.5: Style Adaptation comparison for our model with state-of-the-art.

O mivaxae amoxahOnTel OTL ol TopayOUEVOL SElYHOTo TOU HOVTEAOL ag emTuyydvouv axp(Beia 26.7%, unep-
Baivovtae onpovuxd to GANwriting [51] xou to SmartPatch [30], yowpic duwe vo gptévouv v amddoon nou
nopovotdler to WordStylist [31]. Eved to 26.7% unopel apyixd va gaiveton pétplo, elvar evdextixd plag oapxetd
xaAfig amodoone ot wunon twv oTuk Yeapnc, ewdwd av Angdel urodn n napoucia 339 SLoPOEETINDY GTUA o 1
ONUAVTIXY avlooppeoTila 6To 6UVoAo dedouévwy TAM, 660V agopd TNy avanapdo Taon xdde GUYXEXPLLEVOU GTUA.

Y UVELCPORES ®al UEANOVIXES TEOEXTACELS

Ye auth) TN BIMAWUATIXY, OVTIHETOTICOUE TO TEOBANUA TNG TAUPAYWYNS YELROYEAUPOU XEWWEVOU YENOLLOTOLOVTOG
éva latent diffusion model (LDM) pe popgoloyixt| Sudyuon. Apywxd, napoucidoaue 1o dewpentind undBadpeo,
o710 onofo Booileton ) pocéyylon poc, xadde xat T oyetxt| Bihoypapio, ToL ATOTEAESE TNV EUTVELGT) YLd TNV
OPYLTEXTOVIXY, TNV EXTUBEVGT Xol TIC AELTOVRYIES TV HOVTEAWY Yag, cuunepthopfoavopévng tne Juyerc Sidyuong
(cold diffusion) yio yevixeupéveg dadixasiee Sudyuone [33], havldvoucac Sudyuone [32] xat twv state-of-the-art
OPYLTEXTOVIXAOY Yl TN TopaywY | YElpdypagpou xewévou [31, 51, 30].

Avupetonioaye pla evpela oo tpofinudtwy mou oyetilovtal Ye TNy tpotewduevn dladixacior LopPoloYIXhc
dudyvone. T opyn, avty elvon pla omd Tic mpMTeg, ov Oyt 1) TEWOTY), Tpoomddelo vor oploTel YLl Un YEoUWXT
daduxaota Bidyuong, 1 onola cUVEREYETAL GNUAVTIXOUE TEPLOPIOUOVS, XM To YopaxTNElo Td TNg Asttovpyiag
didyvone emétpedoy évay TOND CLYXEXEWEVO apliud YPOVIXDY Brudteny, avdioya pe to péyedog Tng eovag.
Emuniéov, ol nhipwe xateotpoppéves (degraded) emdvee xou twv d0o cuvohwv dedopévev MNIST [62] xou
IAM [63] (o omolar Atav Tt x0ptor chvolor Bedouévwy pe tor omola melpapatio Tixaue) elyay TV Tdon vo ebvat
plar VTEAMG “"Aguxn’ exdva, emnpeedloviag €10l opYNTIXA TN BlapopoToinoT Xou TNY TOMAlL TWV TAPUYOUEVHY
BelypdTev v ovtélwy pac. Emmiéoyv, avtideto pye dAheg epyaoieg ye yevixeuuéves amogaotoTixée Slobixaoieg
Bidyuomne, TOpElyoE Wiol TPOCEYYLON Yiol Topay WY EdVwy untd cuviixn (conditional generation) ypnoiwonot-
OVTOG VIETEPUIVIO TIXEC CUVIPTACELS XATAC TROPNE EMOVWY UE TNV eXTOBELOY) EVOC UTE CLVITIXY TaEAYWYLXOV
avtaywvioxob dixtbou (conditional generative adversarial network) yio tov yetooynuatiopd touv xodupol
YopUBou ot wa edva ToU THUELACEL UE TNV XOTOVOUY] TWV XATECTROUUEVLV ELXOVOY.

Metd v ohoxhipwon twv Tewpopdtny ota oUvolo dedouévey MNIST xou CIFAR-10 xou 0 olyxpion wwv ono-
TEAEOHETWY Pac pe Ta avtioTotya tne epyaciog tne Puyphic didyuone [33], mporyuatonotficaue to x0Oplat TELRSUAT
oG pe o ahvoro dedouévmy IAM pe oxomd tn napay YT yelpdypapou xeywévou. Apywnd, Ttopelyaue xdnoleg Bei-
TIOTOTOAOELS OYETXE Pe T dtadixasio Ttapaywyhc exdvmv tou povtéhov WordStylist [31], yenoiwonodvtog Tic
pedédoue twv povtéhwy Denoising Diffusion Implicit Models (DDIMs) [68] xou Tic deuvdoopiduntixéc pedddoug
yior povtéha ddyvone (Pseudo Numerical methods for Diffusion Models) [69], xatodfyovioc oe onuaviixy
uelworn Tou AmUTOUUEVOU YEOVOU ToEAYWYTC EXOVKY, XoOC DIATNENCOUE TOEOUOLN TOLOTNTA TWY TURYOUEVLV
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EXOVOY UETE TN UElWOT TwY cLYONXOY Brudteny and 600 o pokic 50 (12x emtdyvuvon). Me autév tov tpédmo,
avTgeTwnicaue évay omd Toug x0eloug TEploplools auThe Tou wovtéhou WordStylist yweic va ennpedoouue v
TOLOTNTOL Kol T1) oA TWV TOROYOUEVWY OELYHATMY.

XENOWOTOLOVTOC TO TAAOLO LoRQOROYIXAC BLdyUoTC TOU TEPLYRAPNXE TAUPATEVW, TEOCTUUTCOHUE VO UEUOGOUUE
TEPAUTERW TIC UTOANOYIOTIXEC OVAYXES YIOL TNV TORUYWYT YELROYEAUPOU XEWEVOL, ELOAYOVTAS VA LOVTEAO TOU
exmoudelTNXe Yo 30 Bripata. Egpdcov, o auth Ty mepintwom, 1600 1 exmaldeuct), 6G0 ot 1) TUEUY WY EXOVLV
anowtolv 30 Buata (oe avtideon ye v mponyoluevn pédodo mou anatodoe 50 Buata yio mapoywY T exdvwy,
A& 1 exntaddevon tparypatoroidnxe yia 1000 Bhpota), pewdvoviag Tot Oyt pOVo Tov YpOvo ol TOUC TOPOUS
TOU ATOUTOVVTOL Yol AOTENESHTIXY] oOVDEDT EldVLY 0ARG xan Yol emopxl| exaidevon (250 enoyéc). Omnwe
oulntidnxe ota TewpopaTnd amoteréopata, To LovTélo pac onuelnoe aflompeny| enidoon xa fitav oe Véon va
yevixeloel, xadde Hrav iavd va tapdyet Méewe extoc AeZihoyiov (Out-Of-Vocabulary). Hoapdho tou 1 anddooy
Tou dev égtace o eninedo tou WordStylist [31], napelyope éva proof-of-concept éti, howfdvovrag unddn Tic
TEOCPATEC TEOOBOUS OTIC YEVXEUUEVES Dladxacieg didyuong, N eMAOYH Xl 1 TEOCUPUOYT MLOC XATIAANANG
dladuxaotag didyuone oe éva cUVOAO Bedouévev unopel va €xel YeTind avtixtumo oty anddocr) Tou LoVIEAOU.
Yty meplntwot| pog, auth 1 enidpoon oy éva trade-off petad tne motdtnTac Tne ewdvag xou TG YPOVIXTC
TOAUTAOXOTNTOC VIOl TNV TOEAYWOYT) EXOVWY, AhAd, EQOCOV TEOXELTOL YIoL VOV TEOCPAUTA oVUXaALQBEVTA Topéd
€PELVAC, 1) TEQUUTERL EPEUVAL OE TETOLOUE TUTOUG BLadIXACLOY Bldyuong Umopel va odnyfoel o axodurn xaAdTERY
ATOTEAEGUATAL.

Iopd tor evioippuvTixd amoTeAEoUOTd LoC, UTEEY 0LV axOUT| Bldpopol Teploplolol 6Ny TEOCEYYLoN UoC, YEYOVOS
Tou umopel var winoel TepalTépw LEANOVTIXY €PEUVA GTOV TOUEN TWV YEVIXEUUEVKY DLOBIXACIOV BLdyuong xou NG
noporywyhe xetedypapou xewévou. Ta mopaxdtw bullets napousidlouv xdmolec ndavég UeEANOVTIXES EPELVNTIXES
TEPLOYES YLOL TNV AVTLIETWTLOY TWV TEEYOVIWY TEPLOPIOUMY TNE TEOGEYYIOHE HOC.

o Aradixacio Atdyvoneg: Kotd t didpxeia twv melpopdtony pog, epappoctnxe uio pédodoc Lopgoloyi-
xS Bldyuong, GTOU 1 XATUC TEOPY TV EXOVWY e xdVe ypovixd Brua tav otadepr| xou avennpéaotr and
ot To Ypovixol Briua. Xenowomowjoope Eva TeTpaywvixd Souixd ototyeio (square structuring element)
3 % 3 yio N Sudyuon exdvewy oe xde ypovixd Buc. Autéd odhynoe oe po andtoun dadixacio didyvong,
UTOVOUEVOVTAS TNV amtoTEAEGUATIXOTNTA TNG GOMAPNG TN XAUTOVOPTC SESOUEVWY amd TO HOVTEAD Hog. Xe
avtideon ye autod, oL xhaoixéc pédodol didyuong evteivouv Ty unoBdduion pe xdde auEavouevo yeovixo
Bruo. H npocopuoyy) xou Bektictonolnon evog vEou Tpoypdlatos XoTao Tpo@ic EXOVWY, Tou Toupldlel ot
un Yeouuxée ouvapthoelc anotekel wia mbovy) meploy) yia HEAAOVTLIXY €peuvaL.

o Alvyobprdpoc mapaywyhe ewxxévmyv: Onwe golveton and v Puyper| ddyuon [33], o alydprduog
TApAYWYNHS EXOVWY Tou Yenotwonoiinxe oty €peuvd oc Baoiletal o8 YopaxTNEIO TIXE TWV YEOUUULXDY
CLUVAPTHOEWY. LUVETAS, VoG TOUENS Yiot LeEAhoVTIXY €peuva teplhauBdvel TNy evioyuon autolh Tou ahyo-
pldpou, TEOXEWEVOL VAl AVTATOXPIVETOL OTOTEAECUATIXG KOl OE U] YEOUUIXES CUVAPTHCELS XAUTAC TROPNC.

o ITpcoocO7xn evdég pix2pix Loviélou yia TNy BeATiwon TNE TOLOTNTAC TWV TAEAYOUEVE®Y
EOVLV: AedoUévng TG HELWUEVNS TOLOTNTOS TKV BElYHATLY Tou mapdydnxay, wo miav Beltivwon da
UmopoloE Vo TEpLAAUBAVEL TNV EVOWUATKOT VS WovTélou pix2pix [57]. Autd to povtého Va pmopoloe
va. tonovetniel, yio va eneepyaotel Tic edveg €680V and To POVTEND BidyuoTc Hag, BEATIOVOVTOSC TNV
ToloTNTd Touc. Auty 1 npocéyylon Yo itay mapduola ue TN pedodohoylo Tou mepLypdgnxe OTNV AVAAUOT
NG TEOTEWVOUEYNS MEVOBOU Uog, oARd Exel emixevTpo, Oyt ot dnuloupyia dpy XV BelyUdTwY €XOvac,
oM oTNV epapuoyT) poc dtadixasioc urep-avdhuone (super-resolution) otic Rd1 mopaydpeves elxdvec.
AeBopévou 6Tl To pix2pix yenowomotel éva L-VET Yot TOV YEVVHTOpO (generator), 1 eVOWUAT®OT| Tou Vo
taipiale GTNY GUVORXT] HEYITEXTOVIXT| TOU LOVTELOL, xodw¢ Yo anantoloe Eva emmAéoy Briua otn Sobixacia
delypatoAndlac yior vo BEATIOOEL GNUAVTIXE TNV TOLOTNTA TWV THPAYOUEVHV ELXOVOV.
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Chapter 1. Introduction

1.1 Morphological Mathematics

Morphological mathematics plays a pivotal role in digital image processing, offering a toolkit of operations
to analyze and manipulate the geometrical structures within images. It is a branch of set theory that deals
with the transformation and analysis of spatial structures, and although its applications were mainly focused
on processing binary images and grayscale images, the have recently been expanded to RGB images as
well. Morphological operations are fundamental in a plethora of applications, including edge detection, noise
reduction, image enhancement, and object recognition. The main operations which are commonly used are
the following:

e Dilation
e Erosion
e Opening
e Closing

Intuitively, dilation tends to brighten the original image to an extent determined by a defined structuring
element, while erosion, as the dual operation of dilation, darkens the original image. Additionally, closing
operation is performed by applying an erosion after a dilaition, and its main effect can be described as bridging
gaps between disparate segments of objects and removing small holes. Likewise, opening is performed by
applying a dilation after an erosion and results in separating objects that are closely intertwined. These
morphological operations have proved indispensable across an array of disciplines, from computer vision
and artificial intelligence to biomedical imaging and geographical information systems and their effect can
visualized in Figure 1.1.1.

erosion operation dilation operation

;

closing operation opening operation

Figure 1.1.1: Basic Morphological Operations. From [17]

30



1.2. Diffusion Models

1.2 Diffusion Models

In the intricate domain of deep learning, diffusion models [18, 20, 21, 59] have recently surged into prominence,
emerging as a powerful tool for generating complex and high-quality samples. Originally inspired by statistical
physics and probabilistic modeling, these models interpret the data generation process as a diffusion process,
a continuous-time Markov process, that gradually transforms a simple distribution, like Gaussian noise, into
the target data distribution.

Diffusion models rest upon the principle of reverse-time diffusion. They model the data generation mechanism
as a process of corrupting the original data sample step-by-step, with Gaussian noise until it transforms into
pure noise. The learning task is to reverse this process: starting with noise, the model iteratively refines the
sample, reducing the noise at each step until a meaningful sample from the data distribution is obtained.

One of the profound advantages of diffusion models is their flexibility. Unlike some generative models that
can struggle with issues like mode collapse, diffusion models showcase a robust performance across varied
types of data. They are also amenable to a range of architectural and training innovations, accommodating
improvements and refinements in model architecture, training techniques, and sampling algorithms.

The diffusion process an be summarized in Figure 1.2.1

Po(x¢—1|x;)

q(xe|xe-1)

<4=-=-===- Forward Diffusion
-=-===== Reverse Diffusion

Figure 1.2.1: Diffusion Process. From here

1.3 Handwritten Text Recognition and Generation

In the interface between the analog expressiveness of handwriting and the digital precision of computational
technologies, Handwritten Text Recognition (HTR) and Handwritten Text Generation (HTG) have emerged
as twin pillars enabling a seamless transition and interaction between these two worlds.

HTR plays a quintessential role in deciphering, interpreting, and converting handwritten content into digital
text. It addresses the complexities arising from the inherent variability and uniqueness in individual hand-
writing styles, capitalizing on advances in artificial intelligence and machine learning to enhance accuracy and
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efficiency. HTR finds applications in sectors ranging from archival digitization where historical documents
are converted into machine-readable formats, to healthcare where patient notes and prescriptions are digitally
recorded and managed.

Complementing HTR, HTG is an equally potent technology focused on emulating and generating human-like
handwritten content. Utilizing generative models embedded with deep learning algorithms, HTG creates
handwritten texts that encapsulate the stylistic nuances and aesthetics associated with individual or gener-
alized handwriting styles.

Figure 1.3.1 illustrates an example of deep learning based system for Handwritten Text Recognition, which
consists of some Convolutional Neural Network (CNN) layers, some Recurrent Neural Network (RNN) layers
and a Connectionist Temporal Classification (CTC) layer.

1.4

width=128

length=32
height=32

features=256 .
time-steps=32

time-steps=32

length=32

chars=80

Figure 1.3.1: An example of an HTR system. From here

Outline

This thesis consists of 6 chapters, each one of which is summarised in the following outline:

Chapter 1: We provided an introduction to the main topics which are discussed in this thesis and in
which we base the theoretical foundations of our proposed method and experimental setup, namely,
morphological mathematics, diffusion models and handwriten text recognition and generation.

Chapter 2: We present the theoretical background in which the work of this thesis is founded. An
introduction to deep learning as well as an more extended introcution to the topics discussed in chapter
1 are included in this chapter.

Chapter 3: We summarize the related work to this thesis, by introducing the state-of-the-art approaches
to the methods in which our work is based on, such as generalised diffusion processes and latent diffusion
along with the most popular models for HTG.

Chapter 4: We analyze our proposed method regarding morphological diffusion starting from easier
datasets to HTG along with an extension to the current state-of-the-art model for HTG.

Chapter 5: We discuss our experimental setup including the examined datasets, the evaluation metrics,
our implementation details ceoncerning our models’ archutecture and training hyperparameters and we
report both qualitative and quantitative results for our experiments.
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1.4. Outline

e Chapter 6: We summarize the conclusions and the results of this thesis and provide an overview of
possible future work that was not included.
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Chapter 2. Theoretical Background

2.1 Introduction to Deep Learning

Deep learning is a transformative technology that sits at the intersection of artificial intelligence and machine
learning. In particular, deep learning is a subset of machine learning, which itself is a branch of artificial
intelligence. What sets deep learning apart is its use of artificial neural networks, especially those with a deep
structure. These networks are computational models inspired by the human brain’s interconnected neurons.
By processing data through multiple layers of neurons, deep learning algorithms can discern intricate patterns
and make decisions based on them.

The true power of deep neural networks lies in their ability to learn hierarchically. In other words, as data
passes through each layer of the network, the model gradually extracts increasingly abstract and complex fea-
tures from the raw input. This layered, hierarchical approach enables deep learning models to automatically
and adaptively improve their performance as they are exposed to more data.

One of the most captivating aspects of deep learning is its vast array of applications. From image and speech
recognition to predicting stock market trends, deep learning is reshaping industries by offering sophisticated
solutions to longstanding challenges.

2.1.1 Architectures of Deep Neural Networks
Convolutional Neural Networks

Convolutional Neural Networks (CNNs) stand as one of the cornerstones of deep learning, particularly in
tasks related to visual data. Drawing inspiration from the human visual system and how we perceive objects
in our surroundings, CNNs have redefined the frontier of image recognition and classification.

Unlike traditional neural networks, which process inputs in a fully connected manner, CNNs leverage the
spatial nature of images. They recognize that pixels close to each other in an image are often more related
than pixels far apart. This understanding allows CNNs to capture local patterns, such as edges or textures, in
the initial layers, gradually assembling them into more complex structures, like shapes or objects, in deeper
layers [1].

The architecture of a typical Convolutional Neural Network is depicted in Figure 2.1.1

Image

= ! — 64x7x7 - SR 4 v
e w,. 9

28 x 28 L] 32x14x 14 64x 14 x 14

128 x 10

32x28x28
Convolution Convolution 3136 x 128
padding =1, padding = 1, Max pooling x
kernel = 3x3, Max pooling kemel = 3x3, Kemel =2x2,  Fjatten
stride = 1 Kernel = 2x2, stride = 1 Stride = 2
N +
+ Stride = 2
RelU RelU

Figure 2.1.1: CNN Architecture. From here

As implied by their name, CNNs’ key operation is the convolution. This is a specialized kind of linear
operation, where a small filter or kernel slides across the input data (like an image) to produce a feature
map, effectively transforming the data based on the filter’s pattern. This operation helps the network focus
on localized features. Convolution is visualised is Figure 2.1.2.
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Figure 2.1.2: Convolution on a 7 x 7 image with a 3 x 3 kernel. From here

As shown in Figure 2.1.1 another significant component is the pooling layer. These layers are usually places
after the convolutional layers in order to aggregate the feature maps into lower dimensions. Hence, they do
not only reduce the learning parameters and the computational efficiency of the model, but they are also
critical to avoid overfitting. The most common pooling layers are the max-pooling and the average-pooling
which can be summarized in Figure 2.1.3

POOLING

Average pooling

Max pooling

Figure 2.1.3: The effect of max-pooling (left) and average-pooling (right) layers. From here
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Another layer which is frequently used in Convolutional Neural Networks is the Batch Normalization [55].
This method leads to a faster and more stable training of CNNs, while it also prevents overfitting. Consider
the values x of a mini-batch B = {x; ., } and 7, 8 the learnable parameters. The proposed the normalization
[55] is defined as:

Yi =& + (2.1.1)

where,

g, = S HB (2.1.2)
U= —» x; (2.1.3)

oF = =3 (i - i)’ (2.1.4)

and e is a small constant used for numerical stability.

As can be seen from Figure 2.1.1 another layer that is commonly used in CNNs is Dropout [78]. Similar to
pooling and batch normalization, this method is also used widely to prevent overfitting, due to its simplicity
and effectiveness. More specifically, Dropout is a regularization technique which involves randomly "dropping
out" or deactivating a subset of neurons in a layer at each iteration during training. By doing so, the network
becomes less reliant on any single neuron, encouraging a more distributed and robust representation.

In essence, dropout can be seen as training a collection of "thinned" networks with shared weights. At test
time, all neurons are used, but their outputs are typically scaled down by a factor equal to the dropout rate
to compensate for the larger active network.

Dropout can be summarized in Figure 2.1.4

(b) After applying dropout

Figure 2.1.4: The effect of dropout in the training. From here
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Convolutional Neural Networks (CNNs) have undergone a rapid evolution since their inception, with a variety
of more specific architectures emerging, each tailored to address specific challenges or improve performance in
visual tasks. The early days of CNNs were marked by simple architectures like LeNet [62], while soon other
more complex and deep architectures such as AlexNet [79], VGGNet [54] and GoogLeNet (or Inception-V1)
[80] arose to provide even better results in substantially harder datasets.

Two of the most important such architectures which will be discussed and used later for the scope of this
thesis are the ResNet [77] and the U-net [60].

In the realm of deep learning, especially for tasks related to visual data, achieving deeper neural networks
often promises better performance, capturing more intricate patterns from data. However, training very
deep networks can be challenging due to problems like vanishing or exploding gradients. ResNet, or Residual
Network, emerged as a solution to this depth dilemma.

The main idea behind ResNet is the introduction of residual connections that bypass one or more layers.
Instead of aiming to learn the direct underlying mapping from inputs to outputs, ResNets try to learn the
residual or difference between the two. By doing so, ResNets effectively ease the training process by letting
the gradients flow and allow for the construction of much deeper networks.

A residual block is illustrated in Figure 2.1.6, while the entire archtiecture of ResNet-12 [77] is shown in
Figure 2.1.5.
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Figure 2.1.5: The Archirecture of ResNet-12. From here
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Figure 2.1.6: Residual Block. From [77]

On the other hand, U-Net [60] emerged initially as a very powerful network in the domain of medical
image segmentation, before being used for a variety of tasks.
2.1.7, is distinctively shaped like a "U", consisting of a contracting (downsampling) path and an expansive

(upsampling) path.

The contracting path captures context and reduces the spatial dimensions using convolutional and pooling
layers, while the expansive path focuses on precise localization, using up-convolutions to upscale feature
maps. What makes U-Net particularly effective is its use of skip connections between corresponding layers of
the contracting and expansive paths. These connections ensure that detailed spatial information lost during

downsampling is reintroduced during upsampling.
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Recurrent Neural Networks

In the intricate domain of neural networks, Recurrent Neural Networks (RNNs) [1] stand out as the most
suitable model for sequential data. Unlike traditional feedforward neural networks, which process inputs in
isolation, RNNs possess the unique capability to maintain a memory of past inputs in their internal state.
This characteristic makes them particularly suited for tasks where temporal dynamics and context from earlier
steps are essential, such as time series forecasting, speech recognition, and natural language processing.

The core idea behind RNNs is the introduction of loops within the network, allowing information to persist.
At each time step, an RNN takes in a new input along with its previous state (which contains information
from prior time steps) to produce an output and update its state.

Figure 2.1.8: The Architecture of an unrolled RNN. From here

As shown in Figure 2.1.8, the output of an RNN at each timestep is defined as

ht = tanh(Wht_l + U(Z’t + b) (215)

where W, U are the learnable parameteres and b the bias.

However, vanilla RNNs are not without flaws. They struggle with long-range dependencies [2] due to issues
known as the vanishing and exploding gradient problems. As a result, more advanced RNN architectures
have been introduced.

Long Short-Term Memory Networks (LSTMs) [3] are a clear example of such architectures, as they are
designed to remember patterns over long durations. They achieve this through a system of gates (input,
forget, and output gates) that regulate the flow of information, ensuring that the network retains only
relevant context and discards unnecessary data. The overall architecture of LSTMs is depicted in Figure
2.1.9

The functionality of each gate is the following:

e Forget Gate: This gate determines which information is going to be kept in the cell state C; and
which is going to be thrown away (values close to 0 indicate that infromation will be thrown away, while
values close to 1 indicate that information will be kept). The formulation of this gate is the following:

ft = U(Wf[ht_l,aft] + bf)

e Input Gate: This gate determines which new information will be updated and, combined with C
(which uses a tanh layer to determine the values of the new information), they update the cell state.
The input gate as well as the C' are defined as:

iy = o(Wilhe—1, 24 + b;)

C; = tanh(Welhs—1, ] + b)
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e Cell State Update: The update of the cell state is the following:

Ct = fie % Cy_y + s * Gy

e Output Gate: The output gate decides which information will go to the output. This information
will be a limited version of the cell state which will determined by a sigmoid layer as shown in the
equations below:

O = G(Wo[ht—la It] + bo)

ht = O¢ ® tanh(Ct)

® C?D ®

A Lebgl A

Figure 2.1.9: The Architecture of an LSTM. From here

Another widely used approach to address the vanishing and exploding gradients problem is the Gated Recur-
rent Unit (GRU) [4]. Similarly to LSTMs, GRUs use the reset and update gates to process the information
flow. Their architecture is summarized in Figure 2.1.10

Figure 2.1.10: The Architecture of a GRU. From here

The final type of RNN which is going to examined is the Bidirectional Recurrent Neural Network [81]. Bidi-
rectional RNNs offer a significant enhancement by processing data from two directions: from the beginning to
the end and from the end to the beginning. By doing this, they ensure that the information at any given time
step is influenced by both past and future context, providing a more comprehensive view of the sequence.

This dual approach is achieved by stacking two separate RNNs. The first processes the sequence in the
regular order (forward), while the second processes it in reverse (backward). The outputs of these two RNNs
are typically concatenated at each time step, resulting in a combined representation that is then fed into
subsequent layers or used for predictions.

The strength of Bidirectional RNNs shines especially in tasks where future context can inform current inter-
pretations. This makes them exceptionally valuable in various applications, especially in natural language
processing tasks like machine translation, named entity recognition, and speech recognition.
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2.1.2 Training
Backpropagation

Neural networks, with their intricate architectures and vast number of parameters, possess the capability to
approximate a wide range of functions. However, to transform a neural network from a random initializer
into a powerful predictor, it’s essential to adjust its weights appropriately. The driving force behind this
adjustment is an optimization algorithm called backpropagation [82].

Backpropagation, short for "backward propagation of errors," is a supervised learning algorithm used for
minimizing the error in neural network predictions. Conceptually, it can be understood as a two-step process:

e Feedforward: An input is passed through the network to produce an output. This output is then
compared with the true label to compute an error or loss. For a specific layer of the network, the
forward pass can be formulated as:

x; = f(W;-a-1 + b;)

where z; is the output of the i-th layer, W, the trainable weights, b; the bias and f the activation
function as will be discussed in the following subsections.

e Backward pass: The gradient of this loss is computed with respect to each weight in the network by
applying the chain rule of calculus. This gradient signifies how much each weight contributed to the
error. The weights are then adjusted in the direction that decreases the error. Considering the loss
function as L its gradient with respect to W; in the above example is the following:

L  OL

Loss Functions

The loss function quantifies how well a prediction of a model aligns with the actual truth. It provides a
numerical measure of the discrepancy between predicted values and actual values, serving as a compass
guiding the optimization of model parameters. The lower the value of the loss function, the better the
performance of the model. Three of the most common loss functions are the following:

e L1 loss (MAE): In the landscape of loss functions, the L1 loss, often referred to as the Mean Absolute
Error (MAE), stands out for its straightforward interpretation and computational simplicity. It treats
each deviation linearly, ensuring that large discrepancies don’t disproportionately impact the model’s
learning, thus making it suitable for tasks where outliers are common and their influence should be
limited. Given true values y; and predicted values y; for i = 1,2,..., N where N is the number of
samples:

| X
Li(y,9) = Nz lyi — il
i=1

e L2 loss (MSE): Commonly used in regression tasks, L2 loss calculates the average of squared differ-
ences between predictions and actual values. This emphasizes larger errors over smaller ones, leading
to a robust performance metric. Given true values y; and predicted values g; for i = 1,2, ..., N where
N is the number of samples:

LN
La(y,9) = N Z(yi — i)
=1

e Cross Entropy Loss: Predominantly used in classification tasks, this function measures the dissimi-
larity between the predicted probability distribution and the true distribution. It’s particularly suitable
when modeling probabilistic outputs, like in logistic regression or deep neural networks for classification.
It is defined as:

Hiyp) =~ >

i
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where y; . is a binary indicator for the class (usually one-hot encoding) and p; . the predicted probability
that observation ¢ belongs to class c.

Optimization

At its core, the goal of an optimizer is to find the optimal set of parameters that results in the lowest
possible loss for a given model on a specific task. To achieve this, optimizers utilize gradients (computed by
the backpropagation algorithm as described above), which are essentially the directions and magnitudes of
changes in parameters that lead to the steepest decrease in the loss. The most fundamental optimizer is the
Gradient Descent. It adjusts model parameters iteratively in the direction of the negative gradient. However,
vanilla gradient descent can be slow and might not always find the best possible solution. Two of the most
common optimizers which will be used in this thesis are Adam [73] and AdamW [74].

e Adam: Adam (Adaptive Moment Estimation) is a method for efficient stochastic optimization which
combines the benefits of AdaGrad [83] and RMSProp [84]. Adam operates by computing adaptive
learning rates for each parameter, offering faster convergence in many tasks. This is achieved by
maintaining an exponentially decaying average of past gradients and the square of these gradients. The
update rule of Adam is summarized in the following steps:

L gt < Vo fi(0i-1)

2. my < Bromyg1+ (1= 1) g
3. v = By -vpm1 + (1= Pa) - g7
4. my, — T

-4

U
5. Vp, 1_%;

mbt
A/ Vb, €

e AdamW: AdamW was introduced to address the limitation of Adam regarding its interaction with
weight decay regularization. This is rectified by decoupling the weight decay from the optimization
steps, making it more compatible with the adaptive nature of Adam. In terms of mathematical forula-
tion the only difference from the Adam optimizer can be seen in the last step of the update rule which
becomes:

6. Hteﬂt_l—Op

Ht — 01571 — Q- (Tnbt + )\Gt1>
Vp, + €

Some typical values for the above hyperparameters are the following: o = 0.001, 5, = 0.9, 52 = 0.999,¢ =
1078, X eR

Activation Functions

Activation functions introduce non-linearity into the network, which allows it to model and learn complex,
non-linear relationships between inputs and outputs. Without them, no matter how deep or wide the net-
work, it would behave merely as a linear regressor, drastically limiting its capacity to approximate intricate
functions. Some popular activation functions which are going to be used in this thesis are the following;:

e Sigmoid: Defined in the range between 0 and 1, the sigmoid function was historically popular due to
its clear interpretation as a probability. However, it has since waned in usage for deep networks due to
issues like vanishing gradients. It is defined as:

o(x) !

1 +e 7
e Softmax: As a generalization of the sigmoid activation, Softmax is often used in the output layer of
classification tasks, in order to transform a vector into a probability distribution over multiple classes.

evi

Z;'V:l e’

softmax(z;) =
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where z; is the ith component of the vector x and N is the dimensionality of x.

ReLU: A simple yet powerful function that outputs the input if positive, otherwise zero. Due to its
efficiency and effectiveness, it has become the default choice for many deep learning tasks.

ReLU(z) = max(0, z)

SiLU: Often referred to as the Swish function, SiLU [85] adaptively gates the activations, providing a
smooth, bounded, and non-monotonic curve, while experiments have shown that SiLU often outperforms
the more traditional ReLLU, especially in deeper architectures.

SiLU(z) = z - o(x)

where o is the sigmoid function.

GELU: The GELU [86] function finds its inspiration in the Gaussian distribution. Its mathematical
form closely resembles the cumulative distribution function (CDF) of a Gaussian. This smooth acti-
vation function has shown promising results, especially in transformer architectures, where it has been

favored for its ability to handle the training dynamics of such models.

GELU(z) = 0.5z (1 + tanh <\/§ (z+ 0.044715933)))
s
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Figure 2.1.11: The Sigmoid, ReLU, SiLU and GELU activation functions.
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2.1.3 Introduction to Generative Models
Introduction to Variational Autoencoders

Variational Autoencoders, commonly known as VAEs, have emerged as one of the most popular and powerful
tools in the world of generative modeling. Introduced in 2013 [5], they bridge the gap between two key
approaches in machine learning: deep learning and Bayesian inference.

At its core, a VAE is an autoencoder. Autoencoders are neural networks designed to reconstruct their input.
They do this by compressing the input into a compact, latent representation through an encoder, and then
expanding this latent representation back into the original data space through a decoder. However, VAEs
add a probabilistic twist to this process. Instead of encoding an input as a single point in the latent space,
VAEs encode it as a distribution. This inherent randomness allows VAEs to generate new, similar data points
by sampling from this distribution. In total, the architecture of VAEs involves an encoder and a decoder:

e Encoder: The encoder’s role is to take an input data point and produce parameters (typically means
and variances) of a proposed latent space probability distribution. In essence, it encodes the data into
a set of parameters from which we can sample latent representations. The effect of the encoder can
also be formulated as the extraction of a posterior distribution g(z|z), where z is the initial distribution
and z the latent representation, respectively.

e Decoder: The decoder’s role is to reconstruct the original input data from this latent representation.
Essentially, it decodes the latent space back to the original data space. Likewise, the role of the decoder
can be interpreted as a conditional distribution g(z|z) which produces a distribution with respect to
the latent samples z.

Additionally, the objective of VAEs consists of two losses, one that indicates the quality of image reconstruc-
tion and another one which measures the similarity of the latent space distribution with a prior one:

e Reconstruction Loss: As mentioned above, this component estimates the quality of the reconstructed
image compared with the original one, similar to traditional autoencoders. Cross entropy or MSE are
some of the most common functions used for this purpose.

e Kullback-Leibler Divergence: This term ensures that the latent space distributions are kept close
to a prior, usually a standard normal distribution. It acts as a regularizer, promoting smoothness and
continuity in the latent space. KL divergence is defined as:

P(x)
Q(x)

DgL(P||Q) =) P(x)log

where P is the true probability distribution and () the model probability distribution.

Although the above loss combination constitutes a powerfull tool for image generation from random noise,
the balance between these two components can sometimes be tricky, as there is a risk of the model focusing
too much on either term, leading to issues like over-regularization or poor reconstruction [87].
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Figure 2.1.12: Variational Autoencoder. From here
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Introduction to Generative Adversarial Networks

Generative Adversarial Networks (GANs) were introduced in 2014 [6] and have since garnered attention not
just for their mathematical elegance, but for their practical ability to generate realistic outputs, varying from
images to sounds.

The main idea behind GANs is to train two networks, namely, generator and discriminator through a zero-sum
game. More specifically, the aim of the generator is to generate realistic samples, the distribution of which is
close to the respetive of the real data, whereas the goal of the discriminator is to be able to distinguish real
images from synthetic (generated by the generator). The total architecture of a GAN is depicted in Figure
2.1.13.

Therefore, the training can be mathematically formulated as a minimax game, where the generator tries to
maximize the chances of fooling the discriminator, while the latter intends to minimize this chance, as shown
in the equation below:

V(D.G) = Eymppyn (o) 108 D(@)] + By (o) llog(1 — D(G(2))] (2.1.6)

where the first term (Eg.p,...(2)[log D(z)]) represents the expected value over real samples x (it maximizes
when the discriminator correctly identifies real samples) and the second term (E. ., (.)[log(1 — D(G(2)))]) is
the expected value over noise vectors z (it maximizes when the discriminator correctly identifies fake samples).

The ideal state of GAN convergence is achieved when the generator produces samples that come from the
same distribution as the real data, rendering the discriminator’s task equivalent to a coin toss, i.e., assigning
a probability of 0.5 to each sample (real or fake).

Formally, this state corresponds to the Nash equilibrium of the minimax game, where neither player (Genera-
tor or Discriminator) has an incentive to change their strategy given that the other player’s strategy remains
fixed. The Global Nash equilibrium for the GAN game is achieved when the generated distribution, p, ,
matches the real data distribution, pgata. However, achieving this equilibrium in practice is non-trivial, and
GANSs are notorious for the challenges encountered during training. Some of the most common challenges
are the following:

e Mode Collapse

Vanishing Gradients

Oscillations

e Sensitivity to Hyperparameters

e Overpowering Discriminator

Training set Discriminator

AN
- @ ) _[Fake

=

X

Fake image

Generator

Figure 2.1.13: Generative Adversarial Networks. From here
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2.2 Introduction to Morphological Mathematics

Morphological Mathematics, also known simply as mathematical morphology, is a framework within the fields
of image analysis and signal processing that focuses on the shape-based manipulation of structures within
data. Developed initially for binary image analysis, it has since been extended to more complex data forms
such as gray-scale images, 3D data, and even non-spatial signals.

The theory of morphological mathematics was introduced by Matheron [7] and Serra [8] and it was based on
set theory, lattice theory, and topology. The main operations, namely, dilation, erosion, opening and closing,
were inspired by Minkowski set operations. In the past few years, morphological mathematics have been
applied to a variety of computer vision tasks such as image analysis [9, 10|, classification [11, 12], filtering
[13], segmentation [14, 15|, edge detection [16], etc.

Morphological mathematics, due to their non-linear properties, are able to capture features which cannot be
preserved by other linear approaches. Figure 2.2.1 clearly illustrates the need of such operations.

QOutcomes

Possible
Filters

0.20.10.4

[ LBy
03 03K

Desired
Qutcome

1. 0fK8) 1 .0f
0.0 0.0

Figure 2.2.1: An example of how morphological operations are capable of generating outcomes that
convolution-based filtering is not. From [88]

2.2.1 Structuring Elements

Structuring Elements (SE) are essential for every morphological operation and can be defined as a function
to determine how an image is processed (similar to kernels in convolutions). Depending on the values that
they take, SEs can be divided into two categories:

e Flat Structuring Elements: Flat SEs are binary and they indicate which pixel values should be included
in order to determine the final value of the processed pixel.

e Non-Flat Structuring Elements: The values Non-Flat SEs are usually float numbers and they indicate
not only which pixels considered for the final result, but also the extent to which each pixel in the
neighborhood should be taken into acount.
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Figure 2.2.2: Flat and Non-Flat Structuring Elements. From here

2.2.2 Morphological Operations

The morphological operations which will be analyzed below are the main operations, dilation, erosion, opening
and closing, as well as top-hat transformations and geodesic reconstruction. Additionally, Table 2.1 provides
the main properties (for an operator v), which will be matched to each of the morphological operations.
Let us consider an image A and a structuring elemnt B, the morphological operations can be defined as
demonstrated below.

Dilation

Dilation is a core operation in the field of morphological mathematics and its qualitative effect is that it
brightens the darker areas contained in the neighborhood that is specified by the selected SE. It is and
increasing and extensive operation which is defined as:

3(4,B) = A® B(z) = sup {A(z — ) + Bly)} (2.2.1)

Erosion

On the contrary, erosion, as the dual operation of dilation, darkens the bright areas of each neighborhood.
It is an increasing and anti-extensive operation and it is formulated as follows:

€(A,B)= Ao B(z) = yieann{A(x +y)— B(y)} (2.2.2)

Opening

Opening operation is the result of performing a dilation right after an erosion for an image with same SE. It
is an increasing, idempotent and anti-extensive opertaion defined as:

v(A,By=AoB=(A6B)®B (2.2.3)

Closing

On the other hand, performing an erosion right after a dilation results in the closing operator, an increasing,
idempotent and extnensive operation which is the following:

$(A,B)=AeB=(A®B)SB (2.2.4)

Top-Hat Transformations
Top-Hat transormations constitute another useful set morphological operations and they are separated into:

e White Top-Hat Transformation:

TY(A,B)=A—AoB (2.2.5)
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e Black Top-Hat Transformation:

T*A,B)=AeB—A (2.2.6)

Geodesic Reconstruction

The final morphological operation which is going to be examined is the Geodesic Reconstruction. This
transformation is also divied into two types, the geodesic reconstruction by erosion and by dilation. In the
first case, the input is an image A and a SE B and by this operation we intend to to reconstruct the A from
A® B with consecutive erosions as shown in Equation 2.2.7. Apparently, geodesic reoconstruction by dilation
is the exact opposite annd is defined in Equation 2.2.8.

These two equations are the following

e Geodesic Reconstruction by Erosion:

p¢ =R(B',3(A, B)) (2.2.7)

e Geodesic Reconstruction by Dilation:

p° =R%(B',e(A, B)) (2.2.8)

Table 2.1: Properties of Morphological Operations

Property Definition
Increasing A< B=y(A) <¢(B)
Extensive P> A
Anti-Extensive P <A
Idempotent P2 =1

The effect of the above morphological operations is illustrated in Figure 2.2.3.

(a) Orlgmal (b) Orlglnal (c) Er0510n (d) Dilation (e) Opemng
Highlight

(f) Closing (g) White Top -(h) Black Top-(i) Closing by(j) Opening by
hat hat Reconstruction Reconstruction

Figure 2.2.3: Morphological Operations with a 5 x 5 square SE. From [8§]
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2.3 Introduction to Diffusion Models

Diffusion models, part of the broad class of generative models, have gained substantial attention for their
impressive capabilities in generating high-quality, realistic samples. The theoretical foundation of diffusion
models is deeply rooted in the principles of nonequilibrium thermodynamics and stochastic processes [18].

Training a diffusion model equates to learning to invert this forward diffusion process. From the observed data
distribution, noise is slowly added until the data transforms into a simple noise distribution. The model’s
aim is to learn the reverse operation - to denoise the data and thereby recover the original distribution.
This principle draws parallels with denoising autoencoders, which also focus on eliminating noise from the
data. However, the key distinction arises from the fact that diffusion models gradually introduce noise across
several steps, whereas denoising autoencoders incorporate noise all at once [19].

Do (Xt—1|x:)

*
*
"

v
.

Figure 2.3.1: The directed graphical model. From [20]

2.3.1 Background

Assume we have a data distribution denoted as xg, following the distribution ¢(xg). We establish a forward
noise addition process, symbolized as ¢, that results in latent variables x; to x7. This process adds Gaussian
noise at each time step t with variance §; falling within the range (0,1). The equation is expressed as:

=

q(z1,...,x7|T0) i= q(ze|zi—1) (2.3.1)

t=1

where

q(zilzi—1) =N (l“t; V1= Btﬂ?t—l,ﬁtI) (2.3.2)

For a sufficiently large T and an appropriately managed schedule of 3, the resulting latent z1 is approximately
an isotropic Gaussian distribution. Hence, if we can identify the accurate reverse distribution q(z;—1|zt), we
can sample x7 from a standard Gaussian distribution A(0,I) and execute the process in reverse to get a
sample from g(z).

As q(x¢—1|z:) depends on the entire data distribution, we approximate it using a neural network as follows:
po(ri—1lre) = N (xi-1; po (e, ), Xo (x4, 1)) (2.3.3)
As established by Ho, Jain and Abbeel, in 2020, [20] the noising process articulated in Equation (2) provides

the capability to sample any step from the noised latent variables directly conditioned on the input zy. With
a; :=1— 3 and at := [[ s = 0'as, the marginal q(z;|7o) can be written as:

q(zi|wo) = N (245 Va@rwo, (1 — @)I) (2.3.4)

and

e = Vagwy + V1 — te (2.3.5)
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where € ~ N(0,I). Here, 1 — &; denotes the variance of the noise at any arbitrary time step, offering an
alternative definition for the noise schedule instead of [;.

By applying Bayes’ theorem, the posterior q(z;—1|x¢,xo) can be computed in terms of B, and i (xy, ) as
follows:

~ l—Oétl

Br=—"-0 (2.3.6)

].—O[t

\/mm L Ve —ai) (2.3.7)

lit(xt,xo) = 1—a, I—a, Tt

yielding
q($t71|$t7$0) :N(mt,h (l’t7$0) ﬂtI) (2-3-8)

Since the combination of ¢ and p is a variational auto-encoder, we can train the model such that p(xp) learns
the true data distribution ¢(x¢), by optimizing the following variational lower bound:

Loyow=Lo+Li+...+Ly_1+ Lt (2.3.9)
Lo = —log po(zo|z1) (2.3.10)

Liy = Drr(q(@ialze, xo)llpo(zi—1|2)) (2.3.11)
Ly = Dip(q(zr|zo)||p(zT)) (2.3.12)

2.3.2 Training-Sampling

The objective given in Equation 2.3.9 is a sum of independent components, denoted by L; ;. An efficient
way of sampling from any step of the forward noising process and estimating L; i is provided by Equation
2.3.5, using the posterior (Equation 2.3.8) and prior (Equation 2.3.3). Consequently, a random sample of ¢
can be taken and the expectation Ey 5, [Li—1] can be used to approximate Lyi,. According to Ho, Jain and
Abbeel (2020) [20], an effective strategy is to uniformly sample ¢ for each image in a mini-batch.

Despite the sound reasoning behind the aforementioned objective, Ho, Jain and Abbeel [20] discovered that a
distinct objective yielded superior practical samples. Specifically, they didn’t directly parameterize pg(x¢,t)
using a neural network. Instead, they trained a model €p(x¢,t) to predict € from Equation 2.3.5. This leads
to the definition of a simplified objective as follows:

Lsimple = Bty ellle = €o(ze, £)][?) (2.3.13)

Lgimple, the reweighted form of L.y, (excluding the terms that impact ¥y), led to better sample quality
when optimized instead of directly optimizing L,. This surprising result is explained by drawing parallels
to generative score matching. One point of nuance is that Lemple provides no learning signal for g (z¢,t),
since Ho, Jain and Abbeel (2020) [20] obtained their best results by setting the variance to a fixed value of
0?1 rather than learning it. They found comparable sample quality using either o? = 3; or 07 = By, which
represent the upper and lower bounds of the variance given that ¢(z¢) can be either isotropic Gaussian noise
or a delta function.
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However, Nichol and Dwariwal [21] argue that the above method does not perform optimally when sampling
with fewer diffusion steps. They suggest an alternative approach, which is to parameterize Yg(x¢,t) using a
neural network. The output of this neural network, denoted as v, is then interpolated as follows:

S(@1,t) = exp(vlog f; + (1 - v)log ) (2.3.14)

Additionally, Nichol and Dhariwal [21] then put forward a hybrid training objective that optimizes both
gg(xe,t) and Xg(z¢,t). They use a weighted sum:

Lhybrid = Lsimple + /\Lvlb (2315)

to achieve this. By learning the reverse process variances using their proposed hybrid objective, they found it
possible to perform sampling with fewer steps, without a significant reduction in the quality of the samples.
For their experiments, Awas set to the value of 0.001, in order to prevent L., from overwhelming Lgimple-

Algorithm 8: Training. From [20] Algorithm 9: Sampling. From [20]
1: repeat 1 zp ~N(0,1)
2: xo ~ q(zo) 2: fort =T to 1 do
3:  t ~ Uniform({1,...,7T}) 3 z2~N(0,I)ift>1,else 2=0
4: e~ N(0,I) _ 1 ( [1=a )
’ 4 Tyl = —— (T — ~teg(xe,t) ) + 02
5. Take gradient descent step on s dt fl var \T 1o o(1,1) ot
_ _ 2 : end for
Vo |le — eo (Varmo + VI — aue, t)|| 6 return o

6: until converged

2.3.3 Improvements
Cosine schedule

Nichol and Dhariwal [21] proposed cosine schedule, as they found that, although the linear noise schedule
proposed by Ho, Jain and Abbeel (2020) [20] was effective for high-resolution images, it underperformed with
images of lower resolution, specifically 64 x 64 and 32 x 32. One of the reasons is that the later stages of the
forward noising process are excessively noisy, which marginally contributes to the quality of the samples, as
can be observed in Figure 2.3.3.

To rectify this, a new noise schedule in terms of the cumulative noise scale &; was proposed:

I 0) t/T+s w\°
_ b = T 2.3.16
G =g 10 =eos (T (23.16)
The variances ; can then be determined from this definition as:
Br=1-—4 (2.3.17)
Qi1

The cosine schedule is designed to maintain a consistent linear decrease of @; during the midpoint of the
process, while avoiding drastic changes near the extreme points ¢ = 0 and ¢ = T to evade abrupt shifts in
noise levels. Figure 2.3.4 illustrates the progression of a; for both schedules. It becomes apparent that the
linear schedule diminishes towards zero much faster, resulting in the rapid loss of information.

Furthermore, a small offset is introduced, denoted by s, to keep §; from being excessively small close to
t = 0 as we observed that having minuscule noise levels at the process’s inception complicates the network’s
prediction of . More specifically, s was selected such that /B8y was slightly smaller than the pixel bin size
1/127.5, which provides s = 0.008.
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Figure 2.3.2: Sampled from linear (top) and cosine (bottom) schedules. From [21]

0.0 02 0.4 06 0.8 10
diffusion step (t/T)

Figure 2.3.3: @; throughout diffusion in the linear and cosine schedules. From [21]

Adaptive Group Normalization

Nichol and Dwariwal [59] also examine the effect of implementing a layer known as Adaptive Group
Normalization (AdaGN). This layer brings together the timestep and class embeddings into every resid-
ual block, following the execution of a group normalization operation [89]. This approach echoes the
tactics employed in Adaptive Instance Normalization [43] and FiLM [90]. The layer is structured as
AdaGN(h,y) = ysGroupNorm(h) + yp, where h refers to the intermediate activations that follow the first
convolution in the residual block, while y = [y, ys] is derived from a linear projection of the timestep and
class embeddings. The use of AdaGN results in the following FID [70] improvement:

Operation FID

AdaGN 13.06
Addition + GroupNorm  15.08

Figure 2.3.4: FID improvement by replacing Addition + GroupNorm [20] with AdaGN [59]. From [59]

2.3.4 Score-based generative modeling with stochastic differential equations

A different perspective on Denoising Diffusion Probabilistic Models (DDPMs) was offered in [44]. Tt is
suggested viewing the diffusion process as a solution to a specific stochastic differential equation, which is
represented as:

dz = (v/1— B(t) — Dz(t)dt + B(t)dw (2.3.18)

In this equation, the rate of change of the system (dz) is determined by a function of the system’s current
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state (x(t)), and a noise term (S(t)dw), where (B(t) signifies the noise level at time ¢ and dw indicates a
random, small variation in the noise.

By beginning with samples from the distribution p(T") denoted by x,(T"), we can reverse the process to obtain
samples x,(0) from the distribution p(0). Anderson (1982) [91] presented an insightful result stating that
reversing a diffusion process simply results in another diffusion process, albeit one that operates backwards
in time, and can be described by the reverse-time Stochastic Differential Equation (SDE):

dz = (( 1—B(t) — Dx(t) — ﬁ(t)ee(x(t)7t)> dt + /B(t)dw (2.3.19)

This refers to Variance Preserving Stochastic Differential Equations (VP-SDEs). If we alter the domain of ¢
from [1, N] to [0, 1], as N approaches infinity, the sequences {3;}X¥; and {z;}Y, become continuous functions
B(t) and x(t) over the interval [0, 1]. This work [44] further demonstrates that this equation corresponds to an
Ordinary Differential Equation (ODE) variant with the same marginal probability density as that of Equation

2.3.19:

dr = <( 1=p(t) - Da(t) - %ﬂ(t)ee(x(t),t)> dt (2.3.20)

The equation 2.3.20 is named as the probability flow ODE in [44]. When the score function is estimated
by a model based on time, often a neural network, it exemplifies a neural ordinary differential equation, as

discussed in [92].

orward SDE (data — noise)
.7 dx = f(x, t)dt + g(t)dw —>@

.

F
N ‘ score function
= 10,8~ 07 o) + oty @

Reverse SDE (noise — data)

Figure 2.3.5: Solving a reverse-time SDE yields a score-based generative model. From [44]

Forward SDE Prior Reverse SDE Data

dz = f(z,t)dt + g(t)dw %@— dz = [f(a,1) - ¢*(6)V, logpy(2)] dt + g(t)dw

o
8
o

AR/

po(x)

Figure 2.3.6: Overview of score-based generative modeling through SDEs. From [44]
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2.4 Introduction to Handwritten Text Recognition and Generation

2.4.1 Handwritten Text Recognition

Handwritten Text Recognition (HTR) primarily focuses on converting handwritten text into machine-encoded
text. This is a particularly challenging problem due to the variability in individual handwriting styles,
inconsistent spacing between characters, and different types of script (cursive, print, etc.) [22]. There are
two main methods in which HTR systems are base on, online and offline. What differentiates these two
methods is the data that are used to train the HTR models.

Online HTR

In particular, online HTR involves data, which are generated by the pen’s location, while a document or a
document or a phrase is being written. An example of online handwritten text is shown below in Figure 2.4.1.

S_‘I,EIL‘\{_Y ‘OQFCEH{_ DQ SUrcess qa 3';/»,,:,%;“% wp

1:_:|3'h1r}; petcent of success is showing up

EIJHY ﬁfﬂﬁﬂi Qj’ ourtess llgjl’\ﬂlull"* Lﬂ‘)

Figure 2.4.1: Online Handwritten Text. From [25]

Offline HTR

On the other hand, offline HTR applications are related to data which are generated by scanning original
documents. Apparently, offline HTR constitutes a much more complex task, since datasets for online HTR are
often characterised by a much better quality. Nonetheless, offline datasets are clearly easier to create, while
their applications are also wider including digitizing historical documents, automating postal mail sorting,
and even recognizing mathematical equations [27]. Figure 2.4.2 provides an example of offline handwritten
text:

7{4&)‘ //{})t.(/({ = _%d /ﬁﬂ;v 145?// lzlvn'ws./‘{t';?'c-_ A//z<¢-7 M//

the Parme (1ivisées To oS v es devpp ed
Jyauais comma.nde/ 5O CD \netses ' \_\’ aimesaw 8 - vous - Plallr

rmomae nrrorem  cumquodam fut fecurra conrempru: Acceffir

Figure 2.4.2: Offline Handwritten Text. From here
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2.4.2 Handwritten Text Generation

Handwritten Text Generation (HTG), on the other hand, aims to create realistic handwritten text given a
machine-encoded text and a specific writing style. This can be useful in generating synthetic data for training
machine learning models, artistic text generation, and more. Likewise, depending on the used dataset, HTG
is also divided into online HT'G and offline HTG.

Online HTG

As mentioned above, online HT'G concerns the synthesis of handwriting text based on the spatial coordinates
of a pen as the writing occurs. Graves [23] proposed the first approach with promising results which was
based in Long Short-Term Memory (LSTM) networks [3] and the attention mechanism. Later work [24]
provided further improvements in this task by introducing Conditional Variational Recurrent Neural Networks
(CVRNNS). In DeepWriting [25], this is approached by differentiating the content of the text from its style,
while they improved even more the results by replacing CVRNNs with Stochastic Temporal Convolutional
Neural Networks (STCNNs) [26].

Offline HTG

On the contrary, offline HT'G, the applications of which are the main scope of this thesis, is related to the
synthesis of handwritten text using data from scanned documents. The recent vast improvements in the field
of generative models for image synthesis have widely influenced the field of offline HT'G, since the provided
models are characterised by advanced capabilities which can be obtained in their generated images. In partic-
ular, most recent works approach this task with Generative Adversarial Networks (GANSs) [6]. ScrabbleGan
[28] is one the first appraches which produces convicing results. GANWriting was introduced as an extension
to ScrabbleGAN, achieving even higher-quality handwriting synthesis, while they also conditioned the model
in the writing styles of each word. The combination of a GAN and an autoencoder, which was proposed in
[29] led to further advancement in the field of HT'G, but contrary to the other methods, this work focused
on generating entire lines of handwritten text. Inspired from this work, Mattick, Mayr, Seuret, Maier and
Christlein [30] introduced SmartPatch, which is also a GAN-based approach (for handwritten word gener-
ation) which outperformed the previous models producing state-of-the-art results. Unlike previous works,
WordStylist [31] was proposed to address the HTG problem with Latent Diffusion Models (LDMs) [32]. More
specifically, a LDM is used to produce handwritten words and, according to previous works, it is conditioned
on the content and the writing styles. In terms of image quality, WordStylist produces competitive results to
SmartPatch, while in the task of adopting a specific writing style it shows superior performance to all other
approaches.

The following models are going to be further discussed in Section 3.3:
e GANWriting
e SmartPatch
o WordStylist
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3.1 Cold Diffusion

3.1.1 Introduction

Recently, diffusion models have gained prominence as effective instruments for generative modeling [93].
Although diffusion models have various forms, they all revolve around the notion of eradicating random noise.
These models train a denoising network capable of receiving a Gaussian noise-infected image and producing
a cleaned version. At the testing phase, the network transforms pure Gaussian noise into a photorealistic
image via an alternating update rule involving the denoiser and the addition of Gaussian noise. The proper
series of updates can reveal intricate generative behavior.

Cold Diffusion [33] was proposed to question the necessity of Gaussian noise, or any randomness at all, for
the practical application of diffusion models. They contemplate generalized diffusion models that venture
beyond the theoretical boundaries originally set for these models. Instead of solely focusing on models
centered around Gaussian noise, models constructed around random image transformations are explored. A
restoration network is trained to reverse these deformations using a basic I, loss.

In particular, iterative neural models have been used to address inverse problems [34, 35], while, recently,
diffusion models have also been adapted to these, especially for issues such as deblurring [36], denoising [37],
super-resolution [38], and compressive sensing [94].

3.1.2 Sampling

Let ¢ be an image from the real-valued space RY and consider the degradation of o through an operator
D with severity level ¢, expressed as xy = D(xp,t). The output distribution D(zg,t) resulting from the
degradation should demonstrate continuous variation with respect to t. The operator should fulfill the
following condition:

D(LL'(),O) =X (311)

In the classic diffusion framework, the operator D introduces Gaussian noise with a variance which depends
on t. In the following work [33], D is selected to perform different transformations, namely, blurring, pixel
masking, downsampling, and snowification, with severity depending on t.

In order to reverse the degradation D, we also need a restoration operator, which is denoted as R. This
operator holds the characteristic:

R(z,t) =~ x9 (3.1.2)

In practical terms, this operator is realized via a neural network characterized by parameters 6. The restora-
tion network’s training is achieved through the minimization problem:

meinEINXHRg(D(x,t),t) | (3.1.3)

where x represents a random image sampled from the distribution X and ||-|| represents a norm (which is
chosen to be the ¢; norm in the paper’s experiments). Ry has been used to stress the dependence of R on 6
during training, but 8 will be discarded for simplicity.

The degradation operator D and restoration model R can be used together to invert severe image degrada-
tions using methods from diffusion literature. For slight degradations, a single application of R suffices. But
for larger degradations, the restoration can be blurry. Diffusion models solve this by iteratively denoising and
adding decreasing amounts of noise back to the image as shown in Algorithm 1. For imperfect restoration op-
erators, this can result in deviations and inaccuracies. In this work [33] a new sampling algorithm (Algorithm
2) is proposed that performs better for smooth, cold degradations and can provide exact reconstructions even
when R fails to perfectly invert D.
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Algorithm 11: Improved Sampling for Cold Diffu-
sion
Require: A degraded sample x;
for s=tt—1,...,1do
Zo < R(xs,s)
ZTs—1 < xs — D(Zg,8) + D(Zg,s — 1)
end for
return z;

Algorithm 10: Naive Sampling

Require: A degraded sample x;
fors=t,t—1,...,1do
Zo + R(xs, )
Ts—1 < D(i‘o, s — 1)
end for
return zg

If the restoration operator is an exact reverse of the degradation operator, both Algorithms accurately
recreate the iterator x5 = D(xg, s) for all s < ¢t. In this segment, it is ineteresting how these algorithms react
to inaccuracies in the restoration operator.

The proposed algorithm displays great resilience against restoration operator R errors for minimal values
of x and s. To understand why, the following properties of proposed sampling algorithm (Algorithm 2) are
pointed out in [33]:

Think of a model issue with a linear degradation function that takes the form

D(z,s)~x+s-e (3.1.4)

for a certain vector e. Despite appearing restrictive, any smooth degradation D(x,s)’s Taylor expansion
around x = zg, s = 0 takes the following form:

D(z,s)=x+s-e+ HOT (3.1.5)

where HOT represents higher order terms. The constant/zeroth-order term in this Taylor series is zero
because of Equation 3.1.1.

Given a degradation of the above form and any restoration operator R, Algorithm 2’s update can be written
out as follows:

Zs—1 = xs — D(R(xs,58),s8) + D(R(zs,s),s — 1)
= D(zo,8) — D(R(zs, 8),8) + D(R(zs,s),s — 1)
=290+s-e— R(zs,8) —s-e+ R(xzs,8)+(s—1)-e
=xp+(s—1)-e
= D(zg,s — 1)

As a result, we deduce that the algorithm generates the value xs = D(xg,s) for all s < t, irrespective
of the selection of R. In other words, the iteration behaves identically to how it would if R was a perfect
reverse of the degradation D. On the other hand, Algorithm 1 does not exhibit this property. In fact, if
R does not perfectly reverse D, x( is not even a constant point of the update rule in Algorithm 1 since
20 # D(R(z,0),0) = R(z,0). Figure 2 clearly illustrates the difference of the stability of Algorithms 1 and
2.

3.1.3 Generalized Diffusions

In the following section, both qualitative and quantitative results from the experiments of the cold diffusion
work [33] are presented for the transformations that were mentioned above. The datasets which are examined
is this work are MNIST [62], CIFAR-10 [64] and Celeb-A [95], while the metrics in which the experiments
are based are the Frechet Inception Distance (FID) [70], the Structural Similarity (SSIM) [72] and the Root
Mean Square Error (RMSE).
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00

Figure 3.1.1: Comparison of algorithms 1 and 2. From [33]

Deblurring

After training a deblurring model, following the diffusion process:

2y = Gy * ... x Gy x kg = D(x0,1) (3.1.6)

the following results were obtained:

Degraded Direct Alg.

Original

[

Bm B<m Bem

Figure 3.1.2: Comparison of deblurred images to the degraded and the original ones. From [33]

W

e}

Table 3.1: Metrics for quality of deblurred images . From [33]

Degraded | Sampled | Direct
FID SSIM RMSE‘ FID SSIM RMSE‘ FID SSIM RMSE

MNIST 438.59 0.287  0.287 4.69 0.718 0.154 5.10 0.757  0.142
CIFAR-10 298.60 0.315 0.136 | 80.08 0.773 0.075 | 83.69 0.775 0.071
CelebA 382.81 0.254 0.193 | 26.14 0.568 0.093 | 36.37 0.607 0.083

Dataset

Inpainting

The diffusion process of the inpainting transformation is the following:

t
D(xo,t) =z - Hzﬁi (3.1.7)
i=1

where zg, are n x n Gaussian masks and 3; the variances of these masks. The results of the inpainting models
are shown below:

Super-Resolution

The diffusion process of the Super-Resolution transformation is donwsampling the original image to a 4x4
images in MNIST and CIFAR-10, and 2x2 images in Celeb-A. The results are the following;:

Snowification

Bansal et al [33] also experiment with the snowification transform in order to provide an even more general
transformation that is not characterized by the blur operators’ properties.
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Degraded Direct Alg. Ongma]
Q 2 5
Figure 3.1.3: Comparison of reconstructed images from inpainting to the degraded and the original ones.

From [33]

Table 3.2: Metrics for quality of reconstructed images from inpainting. From [33]

Degraded | Sampled | Direct
FID SSIM RMSE ‘ FID SSIM RMSE ‘ FID SSIM RMSE

MNIST 108.48 0.490 0.262 | 1.61 0.941 0.068 | 2.24 0.948 0.060
CIFAR-10 40.83 0.615 0.143 | 8.92 0.859 0.068 | 997 0.869 0.063
CelebA 127.85 0.663 0.155 | 5.73 0917 0.043 | 7.74 0.922 0.039

Dataset

Degraded Direct Original

| 42 Bgg B Bk

Figure 3.1.5: Comparison of reconstructed images from snowification to the degraded and the original ones.
From [33]
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Degraded

X
P
-

Direct Ongmal

-.""

El'aﬂ =13 s Ksla'ts
Figure 3.1.4: Comparison of reconstructed images from downsampling to the degraded and the original
ones. From [33]

Table 3.3: Metrics for quality of reconstructed images from downsampling. From [33]

Degraded ‘ Sampled ‘ Direct
FID  SSIM RMSE‘ FID SSIM RMSE‘ FID SSIM  RMSE

MNIST 368.56 0.178  0.231 4.33 0.820 0.115 4.05 0.823 0.114
CIFAR-10 358.99 0.279 0.146 | 152.76 0.411 0.155 | 169.94 0.420 0.152
CelebA 349.85 0.335  0.225 96.92 (0.381 0.201 | 112.84 0.400 0.196

Dataset

3.2 Latent Diffusion Models

3.2.1 Introduction

The field of image synthesis in computer vision has seen impressive growth recently. While high-resolution
synthesis is driven by likelihood-based models with autoregressive transformers [39, 40] that can have billions
of parameters, the utility of Generative Adversarial Networks (GANSs) [41, 42, 43] has limitations due to its
difficulty in modeling complex data distributions.

Diffusion Models have recently demonstrated superior results in image synthesis [20, 44] and other tasks [45,
46, 47]. However, Diffusion Models are resource-intensive, since training them requires vast computational
resources.

To address this problem, Rombach, Blattmann, Lorenz, Esser and Ommer [32] propose Latent Diffusion
Models (LDMs). In particular, the foundations of this approach are the two main stages of learning:

e Perceptual compression, which is about handling high-frequency details.
e Semantic compression, which focuses on the conceptual aspects of data.

Accordingly, the main idea is to transition to a computationally efficient space for training Diffusion Models for
high-resolution image synthesis. Following previous relative work [48, 49, 50, 39, 40], Rombach, Blattmann,
Lorenz, Esser and Ommer [32] demonstrate a training procedure which consists of two stages: First, an
autoencoder is trained to provide a lower-dimensional representational space, which is finally used to train
Diffusion Models, as shown in Figure 3.2.1.

3.2.2 Latent Diffusion - Conditioning Mechanisms

As mentioned above, the proposed perceptual compression model is an autoencoder trained to minimize a
percpeptual loss [96] and a patch-based [57] adversarial objective [97, 49, 67]. In particular, the autoencoder
receives an RGB image as an input and encodes it to a latent represenation. The importance of this encoding
is substantial, since the latent dimensions are downsampled by a factor f = 2™, with m € N, hence reducing
the computational complexity of training and sampling, compared to a Diffusion Model.

Additionally, Rombach, Blattmann, Lorenz, Esser and Ommer [32] propose a method for more general
conditional generation with Diffusion Models. In the realm of image creation, the integration of Diffusion
Models’ (DMs) generative capabilities with conditionings beyond just class labels [59] or blurred image inputs
[38] remains a relatively untouched research topic. The versatility of DMs as conditional image creators is
enhanced by enriching their foundational UNet [60] structure with a cross-attention technique [61].
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Latent Space Diffusion

p(z1)

Datax Encoder p(zo)
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p(x|zo) Decoder KL(q(zo|x)||p(zo)) Latent Space Denoising

Figure 3.2.1: Latent Diffusion Models. From Improving Diffusion Models as an Alternative To GANs, Part 2

For preprocessing various input types, a specialized encoder 1y is employed in order to convert y into a
midway representation. This representation then interacts with the UNet’s intermediate layers through a
cross-attention layer, defined by the formula:

. QKT
Attention(Q, K, V') = softmax i) 14 (3.2.1)

Q=W - ¢i(zt)
K =W m(y)
V=w ()

The overall architecture of Latent Diffusion Models is illustrated below in Figure 3.2.2

r‘r -\ 1/_ Latent Space ) 60“("“0“'“&
E + Diffusion Process Eeman“q
Ma
> é Denoising U-Net €g zr Text
Repres
entations

D
Pixel Space)

denoising step crossattention  switch  skip connection concat

H
—

Figure 3.2.2: Conditional (via concatenation or cross-attention) Latent Diffusion Models. From [32]

More precisely, Rombach, Blattmann, Lorenz, Esser and Ommer [32] parameterize 7y as a transformer-encoder
model [61] using the Bidirectional Encoder Representations from Transformers (BERT) tokenizer [98], while
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the application of classifier-free diffusion guidance provides further improvements leading to state-of-the-art
results [99].

The class-conditional ImageNet [76] models which perform best (f € (4,8)) are presented in the following
table compared with other state-of-the-art models.

Table 3.4: Comparison of different methods using various metrics. From [32]

Method FID IS Precision  Recall Nparams
BigGAN-deep [42]  6.95 203.6+2.6 0.87 0.28 340M

ADM [59] 10.94 100.98 0.69 0.63 554M (250 DDIM [68] steps)
ADM-G [59] 4.59 186.7 0.82 0.52 608M (250 DDIM [68] steps)
LDM-4 [32] 10.56  103.49+1.24 0.71 0.62 400M (250 DDIM |[68] steps)
LDM-4-G [32] 3.60 247.67+5.59 0.87 0.48  400M (250 steps, c.f.g [32], s = 1.5)
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3.2.3 Applications
Inpainting

As described in section 3.1.3, Inpainting involves filling in masked or corrupted areas of an image with
new content, or replacing existing unwanted content. The performance of LDMs is evaluated through a
comparison with other specialized state-of-the-art methods for inpainting. Using the LaMa [100] protocol as
a benchmark (a model empoloying Fast Fourier Convolutions [101]), Latent Diffusion Models achieve at least
a 2.7x speed-up and 1.6x FID score improvement compared to pixel-based models. However, as shown in
the quantitative results in the table below [32], Learned Perceptual Image Patch Similarity (LPIPS) [96] of
LDMs is a bit higher than LaMa’s [100].

input result

Figure 3.2.3: Object removal with the inpainting LDM. From [32]

Method 40-50% masked All samples
FID | LPIPS | FID | LPIPS |

LDM-4 [32] (big, w/ ft)  9.39  0.246+£0.042  1.50  0.137 %+ 0.080
LDM-4 [32] (big, w/o ft) 12.89  0.257+0.047  2.40  0.142 4 0.085
LDM-4 [32] (w/ attn) 11.87 0.257 +0.042 2.15 0.144 + 0.084
LDM-4 [32] (w/o attn) 12.60 0.259 +£0.041 2.37 0.145 + 0.084
LaMa [100] f 12.31 0.243 + 0.038 2.23 0.134 £ 0.080
LaMa [100] 12.0 0.24 2.21 0.14
CoModGAN [102] 10.4 0.26 1.82 0.15
RegionWise [103] 21.3 0.27 4.75 0.15
DeepFill v2 [104] 22.1 0.28 5.20 0.16
EdgeConnect [105] 30.5 0.28 8.37 0.16

Table 3.5: Comparison of quantitative results for the ipainting model with the state-of-the-art.
frecomputed on [32] test set, since the one used in [100] was not available. From [32]
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Super-Resolution

Latent Diffusion Models can be trained effectively for super-resolution by directly using low-resolution images
as conditions. In an experiment that follows the methodology of SR3 [38] and uses a 4x bicubic downsampling,
the performance of the super-resolution model outperfoms SR3 in the FID score. However, SR3 achieves a
higher Inception Score (IS) [71]. On the other hand, even though a simple image regression model can
achieve top PSNR and SSIM scores, the capabilities of such metrics are not the appropriate concering human
perception [96].

bicubic LDM-SR SR3

Figure 3.2.4: Upsampling from 64 to 256 results in ImageNet with the super-resolution LDM. From [32]

Method FID | ISt PSNR 1 SSIM 1 Nparams
Image Regression [38] 15.2 121.1 27.9 0.801 625M
SR3 [38] 5.2 180.1 26.4 0.762 625M
LDM-4 [32] (100 steps) 2.87/4.8%  166.3 24.4+38 0.694+0.14 169M

LDM-4 [32] (big, 100 steps) — 2.4T/4.3t 1749 247441 0.71+0.15  552M
LDM-4 [32] (50 steps, guiding) ~ 4.47/6.4F  153.7 258 4+3.7 0.74+£0.12  184M

Table 3.6: Upsampling results (4x) using the super-resolution LDM. {FID on validation set, {FID on
training set. From [32]
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3.3 Handwritten-Text Generation

3.3.1 GANWriting
Architecture-Training

This work [51] proposes a method for creating realistic artificial handwriting, conditioned on style and content.
The model aims for lifelike images, mimicking specific styles and accurately depicting text. It’s versatile, not
limited by vocabulary, and can emulate a given writer’s style quickly.

Let {X,Y, W} be a multi-writer handwritten word dataset, containing grayscale word images X, their content
(text) Y, and their writer ids W = {w;}}¥ ;. Let X; = {zy, }JKzl C X be a random subset of K word images
from the same given writer w; € W. Additionally, let A be the character-level vocabulary (alphabet), while
A! being a subset of A, which includes only strings of length /. Based on the above, the generative model H
can be formulated as follows:

i‘ZH(t,Xi):H(t7{$1,...,.’L‘K}) (331)

where T is the generated image.
The proposed architecture in [51], as shown in Figure 3.3.1, consists of the following components:

e Generative Network

— Generator: The generator receives as an input the concatenated representations of the content
and the style and consists of two residual blocks [52] with AdaIN [53] normalization:

AdaIN(z, o, 8) = a <Z“(Z)> 18 (3.3.2)
()
where p and o are the channel-wise mean and standard deviations.
The final image Z is produced after four convolutional modules and a tanh activation.
— Style encoder: F, = S(X;)+ Z, where S is a VGG-19-BN [54] and Z ~ N(0,1).

— Content encoder: The final repesentation is the linear transformation of the one-hot vectors of
the strings with 2 MLPs g1, g2 (3 layers each with ReLU activations and batch normalization [55])
for character-wise and global string encoding, respectively.

e Learning Objectives

— Discriminative loss: The Discriminator’s architecture includes a concolutional layer and six
residual blocks [52] with LeakyReLU activations and average poolings. The discriminative loss is
the following;:

La(H,D) = Eqx [log(D(2))] + Bz x [log(1 — D(z))] (3.3.3)

where D is the discriminator, and X the distribution of the output images.

— Style loss: The writer classifier follows the same architecture as the discriminator, while, in this
case, cross entropy loss is used, so the formulation is the following:

W]

Ly(HW)=—E, (xx} | Y wilog(i) (3.3.4)
i=1

where w is the predicted distribution of writing styles.

— Content loss: The word recognizer consists of a VGG-19-BN [54] and Bi-directional Gated
Recurrent Unit (B-GRU) [56]. The loss used is the Kullback-Leibler divergence:
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U |A]

ti

L.(HR)=-E, (xx} |>_ > tijlog (tj
2,7

i=0 j=0

) (3.3.5)

The total loss for the end-to-end training of GANWriting model is the sum of the above three loss functions:

L(H,D,W,R) = Lq(H,D) + L,(H,W) + L,.(H,R) (3.3.6)

The overall model architecture, the detailed word recognizer architecture, as well as the training procedure,
are illustrated in Figure 3.3.1, Figure 3.3.2 and Algorithm 12, respectively.

Z ~ N(0,1) generator T~ {fﬂ?}-
T D > L

.
discriminator

%’ W = {wy, wy, ..wn}
v

- L,

writer classifier

it "weight"

word recognizer

Figure 3.3.1: GANWriting Architecture. From [51]
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encoder decoder

Figure 3.3.2: Word Recognizer Architecture. From [51]

Image Generation

The following qualitative results (Figure 3.3.3) were obtained, demonstrating a performance, which in Out-
Of-Vocabulary words or unseen writing styles is competitive to the respective performance in In-Vocabulary
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Algorithm 12: Training algorithm for GANWriting. From [51]
Require: Input data {X,Y,W}; alphabet A; max training iterations T
Ensure: Networks parameters {Og,0p, 0w ,0r}

1: repeat

2. Get style and content mini-batches {X;,w; }N5 and {t;} 5

3: Ly < Eq. 3.3.3 . Real and generated samples z ~ {X, X'}

4: Ly, < Eq. 3.3.4 + Eq. 3.3.5 . Real samples z ~ X

5: ('E)D(*@D‘FF(V@DLd)

6:  Owpr <+ Owr —I'(Vey zLwa)

7

8

9:

L + Eq. 3.3.6 . Generated samples 2 ~ X
: @H%@H—F(V@HL)
until Max training iterations T

and seen writing styles. The quantitative results of this work will be discussed in the next subsections for
comparison purposes.

a) 1v-s N\GW\ /m\z &7‘*’/:9/ J/&ﬁ&/@, WOU{]/I Wﬂw
b) vu  gound e ﬁ(/&y Amans /11 tucd NN e begoned
¢) oov-s rtkr-\u’,jg fiwl‘QO(r ;’ vecles péf.f/’ 6é "';ﬂ? h\OOA m%é&]
d) cov-u SQUANZS Fomets pmh U2 QOU\ woddiug { Iy dey

Figure 3.3.3: Image generation: a) In-Vocabulary - Seen style, b) In-Vocabulary - Unseen style, c)
Out-Of-Vocabulary - Seen style, d) Out-Of-Vocabulary - Unseen Style. From [51]

3.3.2 SmartPatch

Architecture

Further improvements in handwritten-text generation were provided in [30] by introducing SmartPatch.
The architecture of the proposed model is illustrated in Figure 3.3.5. As can be seen, the architecture is
highly inspired by GANWriting [51], while the improvements are related to an additional loss component,

the local discriminator L4 jocal. The motivation behind this addition, is the appearance of some artifacts in
GANWriting, as shown in Figure 3.3.4.

s 1 ﬂ Suddndy

Figure 3.3.4: GANWriting Artifacts. From [30]
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Figure 3.3.5: SmartPatch Architecture. From [30]

Local Disciminators

e NaivePatch: This is the baseline approach, which follows the Pix2Pix architecture [57] and just separates

the image into overlapping squares (w overlap), inspired by ScrabbleGAN [28]. Accordingly,
the total loss becomes:

»C(G7 D7 VV, R) = ‘Cd,glob(Gy D) + ACw (G, W) + Er(Ga R) + Ed,loc(pa (]) (337)

where ¢ € Preal and p € Prake are the sets of patches.

The loss function of the NaivePatch local discriminator is the following:

Ld,loc(pa q) = ]E[log Dloc (Q)] + E[l - 1Og Dloc (p)} (338)

CenteredPatch: This approach leverages the text recognition system, in order to identify the patches
of the generated samples. More specifically, up-sampling the attention-vector (from the attention map
which is generated in the generator’s latent space [58]) to the image’s full width leads to a centered
window for each character. Both the architecture and the loss function of this local discriminator
remain the same as in NaivePatch.

SmartPatch: CenteredPatch is further improved by passing the character-labels cieal, Cfake to the model
(after projecting the one-hot character-labels to a latent space Cene). The updated loss function is
defined as:

Cd,loc(p, q, Creal, Cfakc) = E[log Dloc (qa Crcal)] - E[]- - log Dloc (pa Cfakc)] (339)
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The architectural overview of the these three different methods is depicted in Figure 3.3.6.

NaivePatch

— Ldlocal
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»cd,local

Embedded target text

Figure 3.3.6: SmartPatch Methods. From [30]

Image Generation

The following qualitative results were obtained, outperforming the GANWriting [51] model. The quantitative
results of this work will be discussed in the next subsection for comparison purposes.
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Figure 3.3.7: Comparison of generated images from SmartPatch and GANWriting [51]. From [30]
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3.3.3 WordStylist

Contrary to the previous works [51, 30], WordStylist [31] work approaches the generation of handwritten-text
images with Diffusion Models [18, 20, 21, 59| instead of GANs [6]. More specifically, Latent Diffusion Models
[32] are used in order to reduce the computational cost that is needed for training and sampling, while the
model is conditioned to both textual content and writing style of the word images similarly to [51, 30].

Architecture

The architecture of the proposed model is highly inspired by the respective model of [32]. In particular, for
the forward process of training and sampling, the departure to latent space is performed using a pretrained
autoencoder from Hugging Face !, while a UNet [60] is utilized as the noise predictor for the Latent Diffusion
Model. Regarding the conditions, the textual content is passed to the network through a cross-attention
module [61] as proposed in [32], while the writing style embedding is just added to the time step embedding.
Timesteps are encoded by a sinusoidal position embedding as proposed in [61] and writing styles are encoded
in an embedding layer, whereas the representation of the text constists of the following stages:

e Tokenization

e Embedding layer

Positional Encoding (as proposed in [61])

Self-Attention [61]

The overall architecture is depicted in Figure 3.3.8.
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Figure 3.3.8: Wordstylist Architecture. From [31]

Image Generation and Model Comparison

The following results were obtained, regarding the FID score of the trained model. Apart from the qualita-
tive results illustrated in Figure 3.3.9, the table below 5.4 shows that WordStylist [31] clearly outperforms
GANWriting [51], while its score is slightly lower than the respective score of [30]. However, as mentioned in

Thttps://huggingface.co/CompVis/stable-diffusion
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[31], FID may not be the most appropriate metric when it comes to the evaluation Handwritten-Text Gen-
eration, since it is the Inception V3 [106] (which performs the features extraction of the images) is trained
on ImageNet [76].

Real IAM WordStylist (ours) SmartPatch GANwriting
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dearey  daarer Clare foacer

e Ahe Hu e

Ll“’-%se ‘0‘2-44?-4452 loe(‘_ccu,m bf@qﬁﬂ-

'\.-Ol g  V ol ¢ Vo ( yume \/O (M«é

Figure 3.3.9: Comparison of generated images from Wordstylist, SmartPatch [30] and GANWriting [51].
From [31]

Model FID |

GANWriting [51]  29.94
SmartPatch [30]  22.55
WordStylist [31] 22.74

Table 3.7: FID score comparison for the models. Results from [31]

On the other hand, Wordstylist achieves significantly superior results to both GANWriting and SmartPatch
in the task of style adaptation. The table 5.5 below illustrates the accuracy of writer-classification performed
by a finetuned ResNet18 [77] CNN pretrained on ImageNet.

Test Set Accuracy (%) 1
GANWriting [51] 4.81
SmartPatch [30] 4.09
WordStylist [31] 70.67

Table 3.8: Style Adaptation results for the models. From [31]

75



Chapter 3. Related Work

76



Chapter 4

Proposed Method

4.1 Morphological Diffusion . . . . . . . . . ... L
4.1.1  Motivation . . . . . ..o e
4.1.2 Image Reconstruction . . . . . .. . .. ..o
4.1.3 Conditional Generation . . . . . . . . . .. . L o
4.2 Extensions in the WordStylist model . . . . . . . . . .. ... . L oL
4.2.1  WordStylist Sampling Limitations . . . . . . . . . . ... ... 0.
4.2.2 DDIM Sampling . . . . . . . . ... e
4.2.3  PNDM Sampling . . . . . . . ...
4.3  Morphological Diffusion for Handwritten-Text Generation . . . . . . . . ... ... .. ..

7



Chapter 4. Proposed Method

4.1 Morphological Diffusion

In this section, we will introduce the main idea regarding the diffusion process for specific tasks along with
some components that improved the results that are going to be discussed in the next chapter.

4.1.1 Motivation

Cold Diffusion [33] was the first approach to propose generalised diffusions with deterministic image degrada-
tions. As discussed in section 3.1, this work proposed an improved sampling algorithm for such degradations.
Despite providing a proof-of-concept for a variety of diffusions processes, apart from snowification (for which
quantitative results were not provided in the paper), all the other diffusions are based on gaussian blur
(blurring, inpainting, downsampling), hence not fully aligning with the term ’Generalised Diffusions’. In this
thesis, we will experiment with morphological dilation as the diffusion process, which differs significantly
from the diffusions of [33], since it is not only a non blur based approach, but also one of the first attempts
with non-linear degradation function.

The intuition behind the selection of dilation as the degradation function is founded in the morphology of
the images of MNIST [62] and IAM [63] datasets. Handwritten text or digits vary depending on the writer
or even the pen, which causes slight deviations on how a word or a number (thinner or thicker lines for
instance) is written. These variations clearly align with morphological operations such as erosion or dilation,
which we will use to perform a diffusion process that is more suitable for these datasets. Additionally, we will
demonstrate the performance of morphological diffusion for CIFAR-10 [64] not only for comparison purposes
with [33] but also for potential future work for such datasets.

The following figures (4.1.1 and 4.1.2) consist of some examples from both MNIST and TAM datasets that
illustrate the idea described above. As can be seen, both dataset’s morphology is clear, due to the variety of
writing styles which correspond to the same digit or letter, respectively.

Figure 4.1.1: MNIST Morphology.

VAL AN @’YL)

T Yo | been
deadts | fe wAOSIWY

Figure 4.1.2: ITAM Morphology.
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Our experiments concern the following tasks:
e Image Reconstruction
e Conditional Generation
4.1.2 Image Reconstruction
For the image reconstruction task, we will use both MNIST and CIFAR-10 datasets in order to be able
to compare our results with the respective of [33]. The proposed diffusion process for the task of image

reconstruction consists of 8 dilation steps. Each dilation step is performed with a 3 x 3 square structuring
element.

Figures 4.1.3 and 4.1.4 depict the diffusion processes of MNIST and CIFAR-10, respectively, for a random
instance of each class of the datasets:
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Figure 4.1.4: CIFAR-10 degraded examples for each

class.

4.1.3 Conditional Generation

On the contrary, as shown in Figure 4.1.5, we increase the diffusion steps from 8 to 11, since, in this case,
we want the model to be guided mainly by the class condition rather than the degraded image. However,
the first image of the sampling process remains a problem, since the morphological diffusion maintains the
geometry of each digit (even in some cases in the final time step) unlike the typical gaussian diffusion.
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Figure 4.1.5: MNIST degraded examples for each digit.

This problem does not limit just the quality of sampling (since the quality of the final image certainly depends
on the first one), but also the diversity of of our generated images. This is a result of the non linear properties
of dilation, since, in a finite number of steps, each image is degraded to another (constant image), each pixel
values of which is the maximum value of the initial image (most the times this value is 1.0). A similar
problem is obtained in the case of blurring diffusion [33], where the degraded images are also constant, but
their value is the mean of all the pixels as stated in [33], which provides better diversity.

To address this, we will first experiment with dilated gaussian noise, in order to have a benchmark for our
next approaches. In particular, after the generation of a random noisy image z, where z ~ N(0,1), we clip
and normalize the values to (—1,1) and then dilate it with a 17 x 17 square structuring element to achieve
a dilated digit-like image. Figure 4.1.6 illustrates examples of this process.

80



4.1. Morphological Diffusion

Figure 4.1.6: Dilated noise as the first image of sampling.

In the past years, a lot of research has been based in combining the advantages of two different generative
models to substantially increase the performance of the whole network [32, 48, 49, 40, 65, 66, 67]. We will
further extend our approach by introducing a two stage class conditional image generation. In particular,
the first stage consists of a conditional Generative Adversarial Network (¢cGAN) [75], while the second stage
is a morphological diffusion model as described above. Figure 4.1.8 illustrates five examples of generated
images for each class.

As can be seen from this figure, while the trained cGAN captures efficiently the geometry of the dilated
digits, it fails to learn the non linear properties of these images, as it introduces some gaussian noise. We
will address this problem by zero-padding the image and then performing a closing with a large structuring
element (11 x 11 square) in order to increase the quality of the generated samples. Figure 4.1.9 depicts some
examples of the produced samples by the cGAN after the closing, while Figure 4.1.7 demonstrates the effect
of this morphological operation.
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Figure 4.1.7: The effect of closing on the cGAN generated samples.
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Figure 4.1.8: cGAN samples. Figure 4.1.9: cGAN samples after closing.

It is important to highlight the simplicity of the cGAN that is used for this purpose. Since one of the major
drawbacks of diffusion models concerns their computational needs for efficient training and sampling, we
choose a very basic generator, which consists of only 3 convolutional layers with batch normalization [55]
and ReLU activations, in order to prevent the sampling process from becoming even more time and resource
consuming. Additionally, given the fact that the training lasted just 50 epochs makes cGAN as a minor
computational addition in our whole network. More details about its implementation will be discussed at

section 5.3.1.
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4.2. Extensions in the WordStylist model

4.2 Extensions in the WordStylist model

4.2.1 WordStylist Sampling Limitations

WordStylist [31] is the only diffusion based approach to Handwritten-Text Generation. As seen in Section
3.3.3 this model produces state-of-the-art results similar to [30], while it clearly outperforms the other models
in the task of style adaptation. Overall, it is arguably the best performing model, since its quantitative results
in terms of the quality of the generated images is slightly less than SmartPatch [30] (FID scores of 22.74 and
22.55), while its performance in style adaptation is substantially higher as shown in Table 5.5.

However, as mentioned in [31] the main limitation of this approach is the computational efficiency of the
sampling process. Despite significantly reducing the computational resource needs by using Latent Diffusion
Models [32] and sampling images with 600 steps instead of 1000 (like the training), the sampling process still
requires ~ 12 sec to generate a single image. As shown in Figure 4.2.1, simply reducing the sampling steps
leads to a notable quality loss, especially when the sampling consists of 300 steps or below.

T =100 T = 200 T = 300 = 400 = 500
et w(/\.af' - (r\c:d'
T = 600 T =700 T = 800 T =900 T = 1000

WL’\OL'IL W{f\a'f' W[’\tﬁ{' Wfr\a*' w[f\Ok‘f'

Figure 4.2.1: Sampling with different number of timesteps ranging from 100 to 1000. From [31]

To address this problem we will, first, explore different and more efficient ways of sampling. More specifically,
we will use the following sampling algorithms to lower the sampling timesteps with minor effects in the quality
of the generated images:

e Denoising Diffusion Implicit Models (DDIM) Sampling [68]
e Pseudo-Numerical Methods for Diffusion Models (PNDM) sampling [69]

4.2.2 DDIM Sampling

In this work, Song, Meng and Ermon [68] questioned the dependence of the loss of a Diffusion Model by the
marginals ¢(zr|zo) only as shown in equation 2.3.13 of Section 2.3.2. In particular, the objective was altered
in order to depend on the joint g(z1.7|z¢). As a result, non-Markovian inference processes are examined
(Figure 4.2.2), which lead to the objective of DDPMs [20].
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Figure 4.2.2: Graphical models for diffusion and non-markovian inference models. From [68]

83



Chapter 4. Proposed Method

The proposed sampling method is defined as:

(t)
r — 1 -« T
Tp—1 = Q-1 ( ; \/OTtEG ( t)> +4/1— o1 — 0} ~e((f) (x4) + or€q (4.2.1)
t

As mentioned in [68], when oy = /(1 — a¢—1)/(1 — a¢)/(1 — o/ —1), the forward process becomes marko-
vian, which means that DDPM training is suitable for generating samples, while, when o; = 0 the process
becomes deterministic and the new model an implicit probabilistic model [107]. The latter models are named
Denoising Diffusion Implicit Models by Song, Meng and Ermon [68]. Following the formulation of PNDMs
[69], if we define ¢() as:

Vai—s (Qy—s — ) (4.2.2)

¢(xta6tat7t_6> = — Tt — €t
Vo Var (¢(1 —ay_s) + /(1 — @t)dtﬂs)

DDIM sampling can be summarised in the following algorithm:

Algorithm 13: DDIMs. From [69]

1. xp ~ N(O,I)

2. fort=T-1,...,1,0 do

3z = P(xeyr1,80(Tep1, t + 1), 6+ 1,8)
4: end for

5:

6: return xg

4.2.3 PNDM Sampling

Liu, Ren, Lin and Zhao [69] provide further sampling improvements by introducing PNDMs, which are
proved to be more general than DDIMs (DDIMs are a special case of PNDMs). More specifically, two similar
algorithms, namely, f-PNDM and s-PNDM, are proposed, which are based on numerical methods.

Both algorithms consider the denoising process as the Ordinary Differential Equation (ODE) presented in
equation 2.3.20 of Section 2.3.4, but use different numerical methods to solve it.

f-PNDM

In the case of -PNDM, the proposed solution is the linear multi-step method [108], which is defined as:

)
th+§ = Tt + ﬂ (55ft — 59ft—5 + 37.ft—25 — gft_g(;) 3 ft = f(.l?t, t) (423)

Likewise the sampling becomes:

ey = 69(.’Et, t)
e} = 55 (55e; — 59e;—s + 3Tes—25 — Yey—35) (4.2.4)
Ti4s = d)(xta e:&a t7t + 6)

where ¢() is the equation 4.2.2.

Since, this numerical method requires the results of the first three sampling timesteps, another numerical
method is used, the Runge-Kutta [108]:
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4.2. Extensions in the WordStylist model

s-PNDM

ef = 0(xy,t)

"E% = (b(xtve%atvt—’_ g)

e? = 0(x},t+ %)

z} = ¢(ar €}, t,t + 5)

e} =0(z2,t+3)

x} = p(ag, €3, t,t +0)

et = 0(xt,t+9)

e) = %(e% +2e2 + 2e3 + e})
Ty = P(wy, €9, t,t + )

(4.2.5)

On the other hand, s-PNDM sampling is performed by using the improved Euler method [108] in equa-

tion 4.2.6:

6% = 9(.’13t7t)
xf = ¢(xy, €1, t,t+0)

and the second-order linear multi-step method [108] in equation 4.2.7:

Following the proposed abbreviation:

e? = 0(z},t+9) (4.2.6)
= 4let +¢2)

Tirs = P(wy, ef,t,t + )

€y = 0(:1:1»7t)

e = 1(3e; — e1—s) (4.2.7)

.’17t+5 = ¢($t7 6?,t,t+ 6)

e Pseudo Linear Multi-Step method: PLMS
e Pseudo Runge-Kutta method: PRK
e Pseudo Second-Order Linear Multi-Step method: PLMS’

e Pseudo Improved Euler method: PIE

the two sampling algorithms can be summarized in the following tables:

Algorithm 14: {-PNDMs. From [69]

Algorithm 15: s-PNDMs. From [69]

1. xp ~ N(0,1) 1. xp ~ N(0,1)

2. fort=T-1,T-2,T—-3do 2: fort=T—1do

3: T, €t = PRK(Z’t+1,t + 1,t) 3: T, €4 = PIE(Z’t+1,t+ ].,t)

4: end for 4: end for

5. fort=T—4,...,1,0 do 5. fort=T-2,...,1,0 do

6: Ty, € = PLMS($t+1, {€p}p>t, t+1, t) 6: Ty, € = PLMSI(Z‘t+1, {ep}p>t, t+1, t)
7: end for 7: end for

8: return z 8: return z

85



Chapter 4. Proposed Method

4.3 Morphological Diffusion for Handwritten-Text Generation

In this subsection, we will use the proposed diffusion process of morphological dilation steps to further
improve the efficiency of the standard latent diffusion framework used in WordStylist [31]. In particular,
after encoding the original images to the latent space through a pretrained Autoencoder, we will use 30
dilation steps to degrade them. The Autoencoder which is used is the same as the one of the WordStylist
work from the Hugging Face repository.

Similarly to Section 4.1, a flat 3 x 3 square will be used as a structuring element for the each step. A closer
examination of the latent representations reveals a composition of four distinct channels. Each channel is
imbued with a representation that, while bearing resemblance, is distinctively different from the initial image.
A downsampling process by a factor of 8 is applied to each dimension, a reduction resulting in a marked
contraction of the initial pixel space’s dimensionality from (3, 64, 256) to a more compact and manageable
(4, 8, 32) within the latent space.

Figure 4.3.1 illustrates some original IAM samples, while Figures 4.3.2 and 4.3.3 depict the latent repre-
sentations of these images and their degraded form after 30 dilation steps, respectively.
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Figure 4.3.1: Original preprocessed IAM samples.
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Figure 4.3.2: The 4 channels of the latent representations of TAM samples.
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Figure 4.3.3: The 4 channels of the dilated latent representations of TAM samples.
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Chapter 5. Experimental Results

5.1 Datasets

The datasets which are going to be used in our experiments are the following:
e MNIST [62]
e CIFAR-10 [64]
o TAM [63]

5.1.1 MNIST

The MNIST dataset [62] is a collection of handwritten digits that has become a standard for evaluating image
processing and machine learning algorithms. Originating from the Modified National Institute of Standards
and Technology, MNIST comprises 60,000 training and 10,000 testing grayscale images, all sized at 28 x 28
pixels. Given its simplicity and established reputation, it often serves as an entry point for those venturing
into the field of machine learning, especially in the domain of image classification.

Figure 5.1.1: MNIST instances

5.1.2 CIFAR-10

The CIFAR-10 dataset [64], developed by the Canadian Institute For Advanced Research, is a cornerstone
for the evaluation of machine learning models dedicated to object recognition. It consists of 60,000 colored
images that are divided into 10 distinct classes, such as airplanes, birds, and cars, each class containing 6,000
images. These images, with a resolution of 32 x 32 pixels, offer a more challenging classification task than
MNIST due to their complexity and diversity.
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Figure 5.1.2: CIFAR-10 instances

5.1.3 TAM

The IAM Handwriting Database [63] stands as a pivotal resource for tasks linked to handwriting. It offers a
rich array of handwritten English text penned down by over 600 unique writers. The diversity and depth of
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this dataset, which totals 1,657 scanned pages of varied content, make it apt for Handwritten Text Recognition
(HTR) and writer identification research

In our case, similarly to [31] we will the Aachen split train set with the length of the words ranging from 2 to
10 characters, resulting in 44,412 images with 339 writing styles. We will also adopt the same preprocessing
procedure as proposed in [31], in order to resize the images to a fixed image size 64 x 256.
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Figure 5.1.3: TAM preprocessed instances

5.2 Evaluation Metrics

In this section, the evaluation metrics of the experiments will be presented, which are the following:
e Fréchet Inception Distance [70]
e Structural Similarity [72]

e Root Mean Square Error

5.2.1 Fréchet Inception Distance

Fréchet Inception Distance (FID) [70] is a metric initially proposed to evaluate GANs [6]. However, recently,
FID score is widely used in the fields of Computer Vision and Generative Al, in order to evaluate the quality
of generated images. FID is presented as an improvement to Inception Score [71], since its calculation requires
both real world and synthetic samples. In particular, first, an Inception model (Inception V3 [106] in our
case) is used to perform a feature extraction for the real and synthetic images. Next, assuming that these
distributions both follow a multidimensional Gaussian with different mean and variance, their distance can
be computed by Fréchet Distance [109] (also known as Wassertein-2 distance [110]) as follows:

& ((m, C), (M, Cw)) = [lm — ma]|2 + Tt (c FCy—2 ccw) (5.2.1)
where m, m,, are the means and C, C,, are the variances of the Gaussians.

5.2.2 Structural Similarity

Structural Similarity (SSIM) was introduced by Wang, Bovik, Sheikh and Simoncelli [72] as an improvement of
Universal Quality Index (UQI) [111, 112]. SSIM has been a significant measure for image quality assessment,
although in the last few years it is not used as frequently as in the past, due to rise of new, more powerful
metrics like FID. It is defined as:

(2,Uz,“y + Cl)(QUry + Cs)

SSIM(z,y) =
(@,9) (12 + p2 + Cr) (02 + 02 + Ca)

(5.2.2)

where x,y are the images, iz, ity are the means of the images, 0., o, are the variances of the images, 0.y
is the cross-correlation of the images and Cy, C3 two variables to avoid instabilities in the denominator
(C1 = Cy =0 leads to the UQI).
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5.2.3 Root Mean Square Error

Finally, we will also use the Root Mean Square Error (RMSE) for our experiments which is formulated as:

RMSE(T:, 1) = || 115 D D (Ta(iog) = 16 ))? (5.2.3)

where I1(4, ), I2(i,j) are the pixel values at the location (i,7) and M x N is the image size.

5.3 Implementation

5.3.1 Morphological Diffusion

Image Reconstruction

For our Image Reconstruction models for both MNIST [62] and CIFAR-10 [64] the implementation details
are the same, since we resize MNIST samples to 32 x 32 (the same size as CIFAR-10 samples), similar to
[33]. More precisely, we performed a training of 500 epochs and batch size 32 using Adam optimizer [73] with
learning rate 2 x 107°. Regarding the diffusion process, each image is dilated 8 times with a 3 x 3 square
structuring element.

The model which is used for denoising is a U-net [60], while the final model we use for sampling is an
Exponential Moving Average of the trained model (decay rate 0.995) in order to increase the stability of our
model’s convergence. The backbone of the U-net is the same with the proposed one of [33] for contistency
purposes in terms of the experimental results.

The architecture of the U-net is shown in Figure 5.3.1

Conditional Generation

For our conditional model for MNIST [62], the implementation details are the following: We performed a
training of 100 epochs and batch size 128 using AdamW optimizer [74] with learning rate 10~*. Regarding
the diffusion process, each image is dilated 11 times with a 3 x 3 square structuring element.

The model which is used for denoising is a U-net [60], while the final model we use for sampling is again an
Exponential Moving Average of the trained model (decay rate 0.995) in order to increase the stability of our
model’s convergence. The backbone of the U-net is the same with the proposed one of [31] for contistency
purposes in terms of the experimental results. The class conditions of the MNIST dataset are passed to the
model through a cross attention [61] component after a simple embedding layer.

As has already been discussed, the first stage of the sampling procedure is a simple conditional GAN [75].
Its training lasted 50 epochs with batch size 128 and Adam optimizer [73] with learning rate 10=*. The
conditions were simply transformed to one-hot encoding and then concatenated to the starting noise given
to the Generator.

The architectures of the U-net and the GAN are shown in Figure 5.3.2 and Figure 5.3.3, respectively.
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Block Group # of Blocks Type of Block
ConvNeXt Block
ConvNeXt Block
Down Blocks 4 x

Attention Block + Normalization + Residual

Downsampling

ConvNeXt Block

Attention Block + Normalization + Residual

Middle Blocks 1x
ConvNeXt Block
Concatenation + ConvNeXt Block
ConvNeXt Block
Up Blocks 4x Attention Block + Normalization + Residual
Upsampling
ConvNeXt Block
Final Layer 1x

2D Convolution

Figure 5.3.1: The architecture of the U-net used for Image Reconstruction.
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Block Group # of Blocks Type of Block

Residual Block

Spatial Transformer Block *
Down Blocks 4 x

Downsampling

Residual Block

Middle Blocks 1x Spatial Transformer Block

Residual Block

Concatenation + Residual Block

Spatial Transformer Block *

Up Blocks 4 x
Upsampling

Normalization

SiLU Activation
Final Layer 1x

2D Convolution

Figure 5.3.2: The architecture of the U-net used for Conditional Generation. * Spatial Transformer Blocks
were only in the first Block group for Up and Down Blocks.

Block Group # of Blocks Type of Block

Concatenation of input noise and one hot
Initial Block 1x label encodings

2D Transposed Convolution

Middle Blocks 3y 2D Batch Normalization

RelLU Activation

2D Transposed Convolution

Output Block 1x
Tanh Activation

Figure 5.3.3: The architecture of the GAN used for generating the initial masks.

94



5.4. Results

In Figure 5.3.1, ConvNeXt Blocks correspond to the proposed blocks in [113], Attention Blocks are simple
self-Attention components [61], Residual is a residual connection [77], while Downsampling and Upsampling
are performed with 2D convolutions and 2D transposed convolutions, respetively.

On the other hand, in Figure 5.3.2, Residual Blocks are the blocks proposed in [77], Spatial Tranformer
Blocks correspond to the blocks proposed in [61], while Downsampling and Upsampling are performed with
a 2D convolution and an nearest-neighbor interpolation followed by a 2D convolution, respetively.

5.3.2 Extensions in the WordStylist model

This section concerns the application of DDIM [68], {-PNDM [69] and s-PNDM [69] sampling algorithms, so
there is no training procedure that was implemented. In order to perform the sampling experiments we used
the weights of the trained WordStylist [31] model from here.

5.3.3 Morphological Diffusion for Handwritten-Text Generation

For our conditional model for IAM [63] dataset, most implementation details regarding the training procedure
and the hyperparameters are the same as in the respective model for MNIST. In our adaptation of the
conditional model for the IAM dataset [63], we maintained most of the training and hyperparameter settings
from the model originally developed for MNIST. However, we made a modification in the conditioning
mechanism to cater to the textual content and writing style unique to the IAM dataset. Additionally, we
transitioned from using the Ly loss function to Ly loss. This change was prompted by the latent space value
range in our model. Specifically, the latent representations were within a range of -4 to 4. Utilizing the Lo
loss in this context resulted in excessively high losses, leading to substantial gradient steps and consequent
overfitting. The adoption of the Ly loss function mitigated this issue, promoting a more stable and effective
training process.

The conditioning mechanism that we follower is the one proposed in Wordstylist [31], which consists of the
following stages.

e Character-level tokenization
e Embedding layer
e Positional Encoding

o Self-Attention [61]

5.4 Results

5.4.1 Morphological Diffusion
Qualitative Results

In the following section, we will provide the qualitative results for the models described in section 4.1. More
specifically, we will initially display the reconstruction results for the MNIST [62] and CIFAR-10 [64] datasets.
More specifically, we will present 50 samples of each dataset in total, which contain 5 samples of each class in
every row. Likewise, we will also visualize the results for the two-stage approach described again in section
4.1.

As can be seen, from Figures 5.4.1, 5.4.2, 5.4.3, these results indicate that the model has learnt the
distributions of both datasets, while it is also able to further generalize by getting a random image generated
from a conditional Geneartive Adversarial Network and producing decent results.
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5.4. Results

Figure 5.4.2: Image Reconstruction Results for CIFAR-10.
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5.4. Results

Quantitative Results

In this section, we will perform our quantitative analysis of the results of our previous models. For the
reconstruction models, we will compare their results for MNIST [62] and CIFAR-10 [64] datasets with the
respective results of [33].

Table 5.1: Comparison of Metrics for the Proposed Diffusions of [33] and ours for MNIST [62].

Degradation Degraded Sampled

FID SSIM RMSE FID SSIM RMSE
Gaussian blur 438.59 0.287 0.287 4.69 0.718 0.154
Inpainting 108.48 0.490 0.262 1.61 0.941 0.068
Downsampling 368.56 0.178 0.231 433 0.820 0.115

Dilation (our approach) 314.87 0.005 0.78 246  0.96 0.05

Table 5.2: Comparison of Metrics for the Proposed Diffusions of [33] and ours for CIFAR-10 [64].

Degradation Degraded Sampled

FID SSIM RMSE FID SSIM RMSE
Gaussian blur 298.60 0.315 0.136  80.08 0.773  0.075
Inpainting 40.83 0.615  0.143 8.92  0.859 0.068
Downsampling 358.99 0.279 0.146 152.76 0.411 0.155

Dilation (our approach) 217.81 0.11 0.39 5242  0.63 0.11

As can be seen from Tables 5.1 and 5.2, our approach achieves superior results to the other trained mod-
els of [33] except from the one which was trained for the inpainting task. However, this was expected,
since the inpainting degradation has a significantly lower impact to the initial compared with gaussian blur,
downsampling and dilation.

This is also illustrated in the metrics of the degraded images of the two datasets. For instance, regarding the
MNIST dataset, we can see that inpainted images are characterized by an FID of 108.48, which is almost the
% of the minimum FID of the other three degradations. In the CIFAR-10 dataset, the impact of the inpainting
degradation is even lower, as the inpainted images have an FID, which is less than the reconstructed results
from all the other transformations.

The next table shows the quantitative results for the conditional generation task for the MNIST dataset.
Since, there is still no other approach which concerns generalized, deterministic diffusion for class conditional
generation, the results of our experiments will be compared with those of standard gaussian diffusion models,
which share some similarities with our approach, regarding the complexity of the training and sampling
process.

More specifically, we will first train a diffusion model with 10 timesteps and measure its FID with the original
dataset, while the other gaussian diffusion models will be trained for 100 steps but sampled with 10 steps,
using DDIM [68], -PNDM [69] and s-PNDM [69] sampling methods. As can be seen from the table, all these
methods clearly fail to generate decent samples, due to the small number of timesteps. On the contrary, our
morphological diffusion based approach seems to produce results which are much better as shown by the FID
scores.

Additionally, these scores also indicate the effect of the GAN masks and the morphological closing, since
they lead toa substantially reduced FID score compared with not only, the one acheived with dilated noise
as input, but also the one that used only the GAN masks.
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Table 5.3: Comparison of Metrics for Different Conditional Generation Models with 10 sampling steps for

MNIST [62].
Model FID
Gaussian Diffusion (100 steps) 4.31
Gaussian Diffusion (100 steps) with 10 DDIM [68] sampling steps 163.90
Gaussian Diffusion (100 steps) with 10 ~PNDM [69] sampling steps 293.76
Gaussian Diffusion (100 steps) with 10 s-PNDM [69] sampling steps 226.02
Gaussian Diffusion (10 steps) 123.31
Morphological Diffusion (10 steps) with dilated noise 41.30
Morphological Diffusion (10 steps) with GAN masks 19.45

Morphological Diffusion (10 steps) with GAN masks after morphological closing 15.53

5.4.2 Extensions in the WordStylist model

In this section we will present the qualitative results after using the DDIM [68], -PNDM [69] and s-PNDM
[69] sampling methods to the WordStylist model [31]. Figures 5.4.4, 5.4.6 and 5.4.5 illustrate these results
for a number of timestes that varies from 20 to 200. We can clearly see that by introducing these algorithms
we can radically reduce the need of many sampling steps, since even 50 steps can be adequate to maintain
the quality of the generated images. Using less than 50 sampling steps has a negative effect on the sampling
quality though, as shown in the first row of the results for the 3 sampling methods.

Hence, we address one the main limitations of the WordStylist model concerning its computational complexity,

since the 600 sampling steps which were needed for generation are no longer needed and the quality of results
remains almost the same.

e\ hotibl o \au A e L biak V Wl ad #
wha! | whot | Wt | Adba/| wKod
whd | hat wld W o] what

M whi | 247 | Sak | whte?

Figure 5.4.4: WordStylist Results with DDIM Sampling. Each row contains 5 results of the same word
("what’) generated with 5 random writing styles with different number sampling steps a) with 20 sampling
steps, b) with 50 sampling steps, ¢) with 100 sampling steps, d) with 200 sampling steps.

Wtk oad Wi iva A ol ad LS \| whal -
whot (Ao wher | whal | ohal
wlak | ghad | WNST | pha’ | what

whbet | o/ whel | wlad

Figure 5.4.5: WordStylist Results with PNDM Sampling. Each row contains 5 results of the same word
("what’) generated with 5 random writing styles with different number sampling steps a) with 20 sampling
steps, b) with 50 sampling steps, ¢) with 100 sampling steps, d) with 200 sampling steps.
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Figure 5.4.6: WordStylist Results with s-PNDM Sampling. Each row contains 5 results of the same word
("what’) generated with 5 random writing styles with different number sampling steps a) with 20 sampling
steps, b) with 50 sampling steps, ¢) with 100 sampling steps, d) with 200 sampling steps.

Additionally, Figure 5.4.7 illustrates the sampled images with 100 steps with default sampling (top row) and
the 3 sampling methods (bottom 3 rows) and indicates the impact that these algorithms make, since default
sampling with 100 steps leads to almost pure noise.

SN -,mif,&ﬁ"": 9%/ ,{’ ANS; g"‘ :‘*xﬁvsﬂéﬁ:’d@
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Figure 5.4.7: Comparison of WordStylist Sampling Results with 100 steps. Each row contains 5 results of
the same word ('what’) generated with 5 random writing styles with different sampling algorithm a) with
default sampling, b) with DDIM sampling, ¢) with £PNDM sampling, d) with s-PNDM sampling.

5.4.3 Morphological Diffusion for Handwritten-Text Generation
Qualitative Results

In this section, we delve into a comprehensive examination of the qualitative results derived from our ex-
periments. Beyond the quantitative metrics and statistical analyses, it’s pivotal to assess the quality and
characteristics of the outcomes in a more descriptive and interpretative manner.

We initiate this examination by presenting visually reconstructed samples extracted from the IAM dataset.
Figure 5.4.8 clearly illustrates the model’s adeptness at encapsulating both the text conditions and the
individual writing styles associated with each handwritten word. Despite being trained for a mere 250 epochs
and 30 timesteps, the model exhibits commendable performance across a diverse array of writing styles and
words, underscoring its versatility and effectiveness.
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Figure 5.4.8: Qualitative results for reconstructed IAM samples.
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Subsequently, to provide a more nuanced assessment of our model’s capabilities, we will showcase examples
of images generated for Out-Of-Vocabulary (OOV) words. This aims to demonstrate the model’s proficiency
in grasping the dataset’s distribution without being explicitly attuned to the specific instances of the TAM
dataset.

Unlike the aforementioned reconstruction task, we are not starting with a degraded image for the sampling
process in this instance. To circumvent this challenge, we introduce a random degraded sample from the
original IAM dataset as the initial image for each case. This addition infuses an element of randomization
into the sampling process, enhancing the evaluation’s comprehensiveness.

Figures 5.4.9, 5.4.10, 5.4.11 depict qualitative results for the OOV words "dance", "troll", and "waist". In
each figure, six images are displayed: the first three (on the left) represent the initial images, the degraded
instances of which, are used as the starting point for sampling, and the latter three (on the right) represent
the model’s generated images for the corresponding OOV words, maintaining consistency in style.

Adauce

” et
Wl dauce

Figure 5.4.9: Out-Of-Vocabulary results for "dance"

by Al
5(/1‘71 e/

Figure 5.4.10: Out-Of-Vocabulary results for "troll"
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Figure 5.4.11: Out-Of-Vocabulary results for "waist"
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While our model has demonstrated commendable performance in many instances, including out-of-vocabulary
words, there are certain scenarios where its output is not as robust, attributable to the intricacies of Hand-
writing Text Generation (HTG) and inherent constraints in our methodology. Figure 5.4.12 provides visual
insights into such cases, featuring examples of the words "dance" (first row), "troll" (second row), and "waist"
(third row) that are not up to the quality of previously showcased results.

The broad spectrum of writing styles (339 in total) and the existing imbalance within the TAM dataset
concerning these styles occasionally result in suboptimal performance for specific styles. Despite this, it’s
noteworthy that the model still manages to encapsulate textual information effectively, indicating a degree
of resilience and capability even amid these challenges.

Q/Knuﬁ éZL/’ dW(L( ‘
il Gl
A \" (l 0—4/ /'L ‘

Figure 5.4.12: Out-Of-Vocabulary results of lower quality

r“l\

Our concluding segment of qualitative results focuses on illustrating the style adaptation capabilities of
our model. In Figure 5.4.13, we present outcomes for eight randomly selected styles applied to the in-
vocabulary word "what". The results evidently highlight the model’s proficiency in distinctly capturing
and replicating each style. Despite each generated image representing the same word, there is a noticeable
variance in appearance attributed to the diverse writing styles, underscoring the model’s effectiveness in style
adaptation.

It is essential to note that, akin to the previous tests with out-of-vocabulary words, we employed random
degraded samples from the IAM dataset as the starting points for the image sampling process in these style

whet  Asha/ |
/a///a/ L/L'H[
what | whot

Figure 5.4.13: Results for different styles of "what"

Quantitative Results

We now turn our attention to the quantitative assessment of our model, complementing the earlier qualitative
analysis. The initial focus of this evaluation is a comprehensive comparison of Fréchet Inception Distance
(FID) scores to provide a numerical measure of the quality and diversity of images generated by our model.
These scores will offer an objective basis for evaluating the realism and diversity of the generated handwriting
images in a statistical context, establishing a foundation for further detailed analysis and insights.

Table 5.4 presents a comparison of the FID score of our model against three contemporary state-of-the-art
methods: GANWriting [51], SmartPatch [30], and WordStylist [31]. Our model records an FID score of 27.85,
showcasing its competitiveness when compared with the performance metrics of the models mentioned above.
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Model FID |

GANWriting [51]  29.94
SmartPatch [30] 22.55
WordStylist [31] 22.74
Ours 27.85

Table 5.4: FID score comparison for our model with state-of-the-art.

As mentioned in [31], although FID is a commonly employed metric for assessing generative models, its
suitability can be questioned for tasks that don’t deal with natural images akin to those in ImageNet [76],
the dataset on which the network was originally trained.

Due to the aforementioned limitation of the FID metric, we extend our evaluation to assess the writing style
adaptation of our model, employing the assessment framework outlined in [31]. Specifically, we will utilize
a ResNet18 CNN [77] to categorize the handwriting styles of our generated samples. Given that our chosen
classifier is pretrained on ImageNet [76], a preliminary fine-tuning on the TAM dataset will be conducted
before proceeding with the classification. The outcomes of this analysis are detailed in table 5.5.

Test Set Accuracy (%) t
GANWriting [51] 4.81
SmartPatch [30] 4.09
WordStylist [31] 70.6
Ours 26.7

Table 5.5: Style Adaptation comparison for our model with state-of-the-art.

The table reveals that our model’s generated samples achieve an accuracy of 26.7%, significantly surpassing
GANwriting [51] and SmartPatch [30], though falling short of the performance exhibited by WordStylist
[31]. While 26.7% might initially appear modest, it is indicative of a commendable performance in emulating
writing styles, especially considering the presence of 339 distinct styles and the notable imbalance in the IAM
dataset concerning the representation of each specific style.
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6.1 Conclusion

In this thesis, we addressed the problem of Handwritten Text Generation using a latent morphological
diffusion model. We initially presented the theoretical background in which our approach is founded in
chapter 2, as well as the related work which constituted the inspiration for the architecture, the training
and the functionalities of our models including cold diffusion for generalized diffusion processes [33], latent
diffusion [32] and the state-of-the-art architectures for Handwritten Text Generation [31, 51, 30].

We addressed a wide variety of problems related to our proposed morphological diffusion process, which
provided many limitations to our implementation. To begin with, this is one of the first, if not the first,
attempt to define a non-linear diffusion process, which is considerably restrictive, since the properties of the
dilation operation allowed a very specific number of timesteps depending on the image size. Additionally,
the fully degraded images of both MNIST [62] and TAM [63] datasets (which were the main datasets we
experimented with) tended to be an entirely "white" image, thus influecing negatively the diversity of our
models’ generated samples. Furthemore, contrary to other works with generalized deterministic diffusions, we
provided an approach for conditional generation using deterministic degradations by training a conditional
Generative Adversarial Network to transform pure noise to an image which matches the degraded images’
distribution.

After experimenting in MNIST and CIFAR-10 datasets and comparing our results with the cold diffusion
work [33], we performed our main experiments with the TAM dataset for the task of Handwrittem Text
Generation. We originally provided some optimizations regarding the sampling process of the WordStylist
model [31], using the sampling methods of Denoising Diffusion Implicit Models [68] and Pseudo Numerical
methods for Diffusion Models [69], resulting in a substantial decrease of the sampling time needed, as we
maintained a similar quality of generated images after reducing the sampling steps from 600 to just 50 (12x
speed-up). This way, we addressed one of the main limitations of this work without affecting the quality and
the divresity of the generated samples.

Using the morphological diffusion framework described above, we intended to further reduce the computa-
tional needs for the task of Handwritten Text Generation by introducing a model which is trained for 30
sampling steps. Since, in this case, both training and sampling require 30 steps (contrary to the previous
method which required 50 sampling steps but the training was conducted for 1000 steps), hence reducing not
only the time and resources needed for efficient sampling but also for adequate training (250 epochs). As
discussed in chapter 5, our model achieved decent results and was able to even generalize, as it was capable of
generating out-of-vocabulary words. Even though its performance did not reach the level of WordStylist [31],
we provided a proof-of-concept that, considering the recent advancements on generalized diffusions, selecting
and adjusting a suitable diffusion process to a dataset may have a positive impact on the performance of the
model. In our case, this impact was a trade-off between image quality and sampling complexity, but, since it
is a newly discovered area of research, further investigation on such types of diffusion processes may lead to
even better results.

6.2 Future Work

Despite demonstrating a promising performance, there are still various limitations to our approach which may
force future research on the area of generalized diffusions and Handwritten Text Generation. The following
bullets present some possible future areas of research to address the current limitations of our approach.

e Diffusion Process: During our tests, a morphological diffusion method was applied where degra-
dation at each timestep was consistent, unaffected by the timestep’s sequence. We utilized a 3 x 3
square structuring element to dilate image batches at each phase. This led to an intense diffusion
process, compromising the model’s data distribution capture efficacy. In contrast to this, conventional
diffusion methods intensify the degradation with each increasing timestep. Adapting and optimizing a
refined degradation schedule that suits non-linear degradation functions stands as a potential area for
development.

e Sampling Algorithm: As evident from the study [33], the sampling algorithm employed in our
research is grounded in the characteristics of linear degradation functions. Consequently, an area for
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subsequent research involves enhancing this algorithm to accommodate non-linear degradation functions
effectively.

Adding a pix2pix model to improve the quality of the results: Following the reduced quality
of our generated samples, one prospective enhancement could involve the incorporation of a pix2pix
model [57]. This model could be configured to refine the output images from our diffusion model,
enhancing their quality. This approach would mirror the methodology delineated in section chapter 4,
with a focus not on generating initial image samples but on applying a super-resolution task to the
images already produced. Given that pix2pix employs a u-net for generator, its integration would be
seamless, requiring an additional step in the sampling process to substantially improve the quality of
the generated images.
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