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Abstract

Set Inversion via Interval Analysis (SIVIA) is a mathematically rigorous Branch-and-

Bound technique, capable of deterministically providing guaranteed inner and outer ap-

proximations, given a bounded output interval and an inclusion function. Neural Net-

works (NNs), when performing a forward pass, in their most basic form are described by

addition, multiplication and trigonometric operations. This means that a neural network

can be quite portable to develop and should theoretically be easy to combine with other

algorithms and hardware. In a classification context, using a Neural Network with SIVIA

can provide us with guaranteed approximations of the input space recognized by a given

class. This is useful in the visual sense, similarly to the way a fitted line is visualized in a

Linear Regression problem, as measures like R2
do not constitute an absolute indicator

of the quality of the fit. In addition, this information can be used to extract new metrics

to help us understand the quality of a Network’s training, such as its generalization per-

formance. Combining SIVIA with NNs, however, results in a very demanding problem,

as both large input spaces and computationally intensive functions (if the NN is large

enough) are required to obtain a solution. This is why a parallel approach is proposed in

this thesis, utilizing the massive amount of threads embedded into Graphical Processing

Units, is proposed. The effectiveness of the proposed parallel algorithm is demonstrated

on three different problems, with different hardware configurations and different data

management strategies. Results indicate performance ranging from slowdowns to 8000

times the speedup compared to the sequential algorithm for the test problems and prob-

lem sizes used. Analysis shows that the GPU accelerated implementation is very sensitive

to memory transfer and synchronization operations. It is concluded that for problems

with large computational intensity, given sufficient available memory and proper mem-

ory management, use of the method presented has the potential of yielding significant

speedups.

Diploma Thesis 1





Περίληψη

Η Αντιστροφή Συνόλου µέσω Ανάλυσης ∆ιαστηµάτων (Set Inversion Via Interval Analysis-

SIVIA) είναι µία απαιτητική µαθηµατική τεχνική που συνήθως χρησιµοποιείται σε προ-

ϐλήµατα ϐελτιστοποίησης και ανάγεται στις τεχνικές Branch-and-Bound, µία κατηγορία

αλγορίθµων που χρησιµοποιούν στρατηγική ∆ιαίρει και Βασίλευε µε στόχο την εξερεύνηση -

συνήθως αρκετά µεγάλων- χώρων εισόδου. Αυτή η τεχνική έχει την δυνατότητα να προσφέρει

εξασφαλισµένες εσωτερικές και εξωτερικές προσεγγίσεις ενός πεδίου ορισµού, δεδοµένων ε-

νός διαστήµατος του πεδίου τιµών και µιας συνάρτησης εγκλεισµού. Τα Νευρωνικά ∆ίκτυα,

κατά το εµπρόσθιο πέρασµα, αποτελούνται από προσθέσεις, πολλαπλασιασµούς και τρι-

γωνοµετρικές συναρτήσεις. Αυτό σηµαίνει πως ϑεωρητικά η χρήση και η µεταφορά ενός

Νευρωνικού ∆ικτύου µε άλλες τεχνικές και υπολογιστικούς εξοπλισµούς είναι εύκολη. Πρα-

κτικά, σε προβλήµατα κατηγοριοποίησης, η χρήση ενός Νευρωνικού ∆ικτύου σε συνδυασµό

µε τη τεχνική SIVIA µπορεί να προσφέρει εξασφαλισµένες προσεγγίσης του χώρου εισόδου

δεδοµένης µιας κατηγορίας. Αυτό είναι χρήσιµο από την οπτική σκοπιά, όπως αντίστοι-

χα σε προβλήµατα Γραµµικής Παλινδρόµησης χρειάζεται να οπτικοποιήσουµε την γραµµή

παλινδρόµησης καθώς µετρικές όπως το R2
δεν αποτελούν απόλυτη ένδειξη ποιότητας προ-

σαρµογής. Επιπρόσθετα, η πληροφορία που παράγεται µέσω αυτής της τεχνικής µπορεί να

χρησιµοποιηθεί για την δηµιουργία νέων µετρικών οι οποίες µπορούν να συµβάλλουν στην

ϐαθύτερη κατανόηση της µάθησης ενός νευρωνικού δικτύου. Ο συνδυασµός της τεχνικής

SIVIA µε ένα Νευρωνικό ∆ίκτυο µπορεί να αποτελέσει ένα αρκετά απαιτητικό πρόβληµα,

καθώς χρειάζονται υπολογιστικά απαιτητικοί υπολογισµοί (στην περίπτωση χρήσης ενός µε-

γάλου δικτύου) σε συνδυασµό µε τεράστιους χώρους εισόδου για την εύρεση λύσης. Συνεπώς,

σε αυτή τη διπλωµατική εργασία προτείνεται µία παράλληλη προσέγγιση, εκµεταλλευόµενη

τον γιγαντιαίο αριθµό νηµάτων που εµπεριέχονται σε µία µονάδα επεξεργασίας γραφικών

(GPU). Η αποδοτικότητα της προτεινόµενης παράλληλης προσέγγισης παρουσιάζεται σε τρία

διαφορετικά προβλήµατα, σε διαφορετικά υπολογιστικά συστήµατα και διαφορετικές στρα-

τηγικής διαχείρισης δεδοµένων. Τα αποτελέσµατα ανέδειξαν επιδόσεις από επιβραδύνσεις

µέχρι επιτάχυνση κατά 8000 ϕορές. Η περαιτέρω ανάλυση ανέδειξε πως η προτεινόµενη

παράλληλη υλοποίηση είναι ευαίσθητη στις µεταφορές δεδοµένων καθώς και στον συγχρο-

νισµό µε την κεντρική µονάδα επεξεργασίας (CPU). Συµπερασµατικά, για προβλήµατα µε

υψηλές υπολογιστικές απαιτήσεις, δεδοµένου επαρκούς διαθέσιµης µνήµης και κατάλληλης

διαχείρισης, η χρήση της µεθόδου έχει την προοπτική για περαιτέρω επιταχύνσεις.
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Chapter 1

Introduction

1.1 English

At the core of many engineering problems is the solution of sets of equations and

inequalities, and the optimization of cost functions. Unfortunately, except in special

cases, such as when a set of equations is linear in its unknowns or when a convex

cost function has to be minimized under convex constraints, the results obtained by

conventional numerical methods are only local and cannot be guaranteed. This means,

for example, that the actual global minimum of a cost function may not be reached, or

that some global minimizers of this cost function may escape detection. By contrast,

Interval Analysis makes it possible to obtain guaranteed approximations of the set of all

the actual solutions of the problem being considered[1]. One IA technique to achieve this

is Set Inversion via Interval Analysis (or SIVIA) which was introduced by Luc Jaulin and

Eric Walter in 1993[2], where an initial Bounded Space gets divided into smaller spaces or

subpavings until a threshold ϸ is reached. This threshold exists because otherwise this

algorithm would bisect the input infinitely. The input space can be multidimensional,

and is called a box when that is the case, whereas the threshold represents the width

of a box, generally its largest dimension. The only pieces missing from this explanation,

are the Interval Inclusion Function and the Solution Set, where the inclusion(meaning

that the inclusion function belongs entirely into the solution set) of the two result in the

aforementioned guaranteed solution approximations. The input space is formed by a finite

set of boxes that are classified into the solution set after their evaluation of an Interval

Inclusion Function. Depending on the ϸ threshold and the width of the initial input space,

the problem size (number of boxes) can grow exponentially large and consequently become

extremely time consuming or even impossible to compute. When using this technique

for optimization, we have the privilege of existing bounds, which imply a prioritization

sequence of the problems to be explored. When trying to solve a different problem where

bounds are missing, as is the case in this thesis, exhaustive search of the input space is

required. This is where mass parallelization, commonly found in GPU devices, can help

reduce the time needed to explore these very large problem spaces.

A GPU is a device which was initially created to accelerate computer graphics. Since

2006, however, NVIDIA provides the CUDA parallel computational platform and program-

ming model, enabling the expansion of the aforementioned parallelization benefits to
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applications beyond computer graphics[3]. Today, CUDA software is used to accelerate

problems such as Simulations, Deep Learning models, Image Recognition, Reinforcement

Learning and is also being used in Large Language Models with platforms like ChatGPT

appearing and becoming the center of public attention. A GPU consists of many Stream-

ing Multiprocessors(SMs) or Compute Units(CUs) which are capable to run hundreds if

not thousands of threads in parallel, the specific configuration depending on the GPU

hardware architecture. This very characteristic is what made these devices so valuable

and is the reason so many ML applications managed to grow so much in scale.

This thesis explores and exploits the capabilities by accelerating SIVIA using single

and multiple GPUs, enabling the exploration of larger input spaces, for more precise

approximations and to challenge larger problems in the future. The main focus is on

a recent development, which uses SIVIA to estimate the generalization performance of

Neural Networks in a deterministic manner, without requiring a train/test split of the

data[4]. The model used is a Multi-Layer Perceptron provided by the author of that paper.

This technique when deployed with a sequential algorithm requires days of execution

time, therefore it could really benefit from an alternative parallel technique. The parallel

algorithm proposed is a coarse-grained approach, meaning that it parallelizes operations

on the data.

1.2 Ελληνικά

Στον πυρήνα πολλών προβληµάτων µηχανικής ϕύσεως ϐρίσκεται η λύση συνόλων εξι-

σώσεων και ανισώσεων, καθώς και η ϐελτιστοποίηση συναρτήσεων κόστους. ∆υστυχώς, τα

αποτελέσµατα που εξάγονται από τυπικές αριθµητικές µεθόδους είναι µόνο τοπικά ή µπορεί

και να µην υπάρχουν. Αυτό σηµαίνει, για παράδειγµα, πως η πραγµατική ϐέλτιστη ελάχιστη

τιµή µιας συνάρτησης κόστους µπορεί να µην ϐρεθεί, ή ότι κάποιοι καθολικοί ϐελτιστοποι-

ητές αυτής της συνάρτησης κόστους µπορεί να µην την εντοπίσουν καθόλου. Αντιθέτως, η

Ανάλυση ∆ιαστηµάτων κάνει εφικτή την εξασφαλισµένη προσέγγιση του συνόλου όλων των

πιθανών λύσεων για κάθε πρόβληµα. Μία τεχνική Ανάλυσης ∆ιαστηµάτων που µπορεί να

επιφέρει τέτοια αποτελέσµατα είναι η Αντιστροφή Συνόλου µέσω Ανάλυσης ∆ιαστηµάτων (Set

Inversion Via Interval Analysis-SIVIA) των Luc Jaulin & Eric Walter(1993), όπου ένας αρ-

χικός οριοθετηµένος χώρος διαιρείται σε µικρότερους επιµέρους χώρους µέχρι να ξεπεραστεί

µία τιµή ϸ. Αυτή η τιµή υπάρχει ώστε ο αλγόριθµος να µην διαιρεί τον χώρο εισόδου εις το

άπειρο. Αυτός ο χώρος εισόδου µπορεί να είναι πολυδιάστατος, και αναφέρεται ως κουτί σε

αυτή τη περίπτωση και η τιµή ϸ αφορά το εύρος του κουτιού, πιο συγκεκριµένα το εύρος

της µεγαλύτερής του διάστασης. Το µόνο που λείπει από αυτή τη περιγραφή, είναι η συ-

νάρτηση εγκλεισµού διαστηµάτων και το πεδίο τιµών. Η εκχώρηση των δύο, εννοώντας την

πλήρη συµπερίληψη του διαστήµατος της συνάρτησης εγκλεισµού στο εύρος του πεδίου τι-

µών, οδηγεί στην δηµιουργία της εξασφαλισµένης προσέγγισης που επιλύει το πρόβληµα. Ο

χώρος εισόδου αποτελείται από ένα πεπερασµένο πλήθος κουτιών, τα οποία κατηγοριοποιο-

ύνται ως λύσεις (εµπεριέχονται στο σύνολο λύσεων) αφότου εκτιµηθούν από µία συνάρτηση

εγκλεισµού διαστηµάτων. ∆εδοµένου µιας οριακής τιµής ϸ και ενός εύρους του αρχικού

χώρου εισόδου, το µέγεθος του προβλήµατος (αριθµός κουτιών) µπορεί να µεγαλώσει εκθετι-
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κά έχοντας ως συνέπεια το να απαιτείται πολύς µεγάλος υπολογιστικός χρόνος ή ακόµη και

να είναι αδύνατο να εκτιµηθεί. ΄Οταν χρησιµοποιείται αυτή η τεχνική σε προβλήµατα ϐελτι-

στοποίησης, υπάρχει το προτέρηµα του να υπάρχουν ανώτατα και κατώτατα όρια, τα οποία

συνήθως οδηγούν σε κάποιο κανόνα προτεραιότητας σχετικά µε το ποια υπο-προβλήµατα

ϑα προτιµηθούν προς επίλυση. Προσπαθώντας να χρησιµοποιήσουµε τη τεχνική σε διαφο-

ϱετικά προβλήµατα, χωρίς την ύπαρξη τέτοιων ορίων, απαιτείται η εξαντλητική αναζήτηση

του χώρου εισόδου. Ως συνέπεια, χρειάζονται τεχνικές µαζικής παραλληλοποίησης, που συ-

νήθως χαρακτηρίζουν συσκευές επεξεργασίας γραφικών (ή κοινώς Κάρτες Γραφικών-GPUs),

οι οποίες µπορούν να συµβάλλουν στην µείωση του απαιτούµενου χρόνου υπολογισµού και

να επιτρέψουν την εξερεύνηση ακόµη µεγαλύτερων χώρων εισόδου.

Μία κάρτα γραφικών είναι µία συσκευή η οποία είχε δηµιουργηθεί αρχικά για την επι-

τάχυνση του των γραφικών στους ηλεκτρονικούς υπολογιστές. Η NVIDIA, ωστόσο, το 2006

ανέπτυξε την CUDA πλατφόρµα παράλληλης επεξεργασίας, επιτρέποντας την χρήση των

ήδη ισχυρών δυνατοτήτων παραλληλισµού για εφαρµογές πέρα από τα γραφικά ηλεκτρο-

νικών υπολογιστών. Σήµερα, λογισµικά ϐασισµένα στην CUDA έχουν αναπτυχθεί για την

επιτάχυνση εφαρµογών Προσοµοιώσης, Βαθιάς Μάθησης, Αναγνώρισης Εικόνας, Ενισχυτι-

κής Μάθησης. Επιπρόσθετα, έχει χρησιµοποιηθεί για εφαρµογές Μεγάλων Γλωσσικών Μο-

ντέλων, µε αποτέλεσµα την ίδρυση πλατφόρµων όπως το chatGPT, οι οποίες ϐρίσκονται στο

κέντρο της επικαιρότητας. Μία κάρτα γραφικών αποτελείται από πολυεπεξεργαστές(Stream-

ing Multiprocessors-SMs) ή υπολογιστικές µονάδες (CUs) οι οποίες έχουν τη δυνατότητα να

εκτελέσουν εκαντοντάδες αν όχι χιλιάδες επεξεργαστικά νήµατα παράλληλα, των οποίων ο

αριθµός εξαρτάται από την εκάστοτε αρχιτεκτονική. Αυτό χαρακτηριστικό αποτελεί και τον

ϐασικότερο λόγο που αυτές οι συσκευές είναι τόσο πολύτιµες καθώς επέτρεψε την ανάπτυξη

εφαρµογών Μηχανικής Μάθησης (ML) µεγάλης κλίµακας.

Σε αυτή τη διπλωµατική εργασία εξερευνούνται οι προαναφερθείσες δυνατότητες, επι-

ταχύνοντας τη τεχνική SIVIA χρησιµοποιώντας µία ή περισσότερες κάρτες γραφικών µέρος

διαφορετικών υπολογιστικών συστηµάτων. Στόχος των οποίων η επίτευξη ταχύτερων χρόνων

επεξεργασίας προσφέροντας τη δυνατότητα να εξερευνηθούν µεγαλύτερα προβλήµατα στο

µέλλον. Ο κύριος στόχος της εργασίας είναι σε µία σχετικά πρόσφατη εξέλιξη, η οποία χρη-

σιµοποιεί την τεχνική SIVIA για την εκτίµηση της ικανότητας γενίκευσης ενός Νευρωνικού

∆ικτύου µε ντετερµινιστικό τρόπο, χωρίς να απαιτείται διαχωρισµός συνόλου εκπαίδευσης

και επαλήθευσης στα δεδοµένα. Το µοντέλο που χρησιµοποιείται είναι ένα πολυεπίπεδο

Perceptron το οποίο το παρείχε προ-εκπαιδευµένο ο συγγραφέας της πρωτότυπης εργασίας.

Αυτή η τεχνική όταν εκτελείται σειριακά χρειάζεται ηµέρες υπολογισµού για να επιστρέψει

την λύση, συνεπώς ϑα µπορούσε να κερδίσει από µια εναλλακτική παράλληλη τεχνική. Ο

παράλληλος αλγόριθµος που προτείνεται σε αυτήν την εργασία αποτελεί µία προσέγγιση

«χονδρού-κόκκου» (coarse-grained), εννοώντας την παραλληλοποίηση των διαδικασιών στα

δεδοµένα.
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Chapter 2

Theoretical Background

2.1 Interval Analysis

2.1.1 Motivation

In elementary mathematics, a problem is “solved” when we write down an exact solu-

tion. We solve the equation

x2 + x − 6 = 0

by factoring and obtaining the roots x1 = −3 and x2 = +2. Few high school algebra

teachers would be satisfied with an answer of the form “One root lies between -4 and

-2, while the other lies between 1 and 3”. We need not look far, however, to find even

elementary problems where answers of precisely this form are appropriate. The quadratic

equation

x2 − 2 = 0

has the positive solution

√
2. The number it designates cannot be represented exactly with

a finite number of digits. Indeed, the notion of irrational number entails some process of

approximation from above and below. Archimedes (287-212 BCE) was able to bracket π

by taking a circle and considering inscribed and circumscribed polygons. Increasing the

numbers of polygonal sides, he obtained both an increasing sequence of lower bounds

and a decreasing sequence of upper bounds for this irrational number. Aside from irra-

tional numbers, many situations involve quantities that are not exactly representable. In

machine computation, representable lower and upper bounds are requires to describe a

solution rigorously. The need to enclose a number also arises in the physical sciences.

Since an experimentally measured quantity will be known with only limited accuracy, any

calculation involving this quantity must begin with inexact initial data. Newton’s law

F = mα

permits us to solve for the acceleration α of a body exactly only when the force F and

mass m are known exactly. If the latter quantities are known only to lie in certain ranges

like

F0 − ∆F ≤ F ≤ F0 + ∆F
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m0 − ∆m ≤ m ≤ m0 + ∆m

then α can only be bounded above and below:

αl ≤ α ≤ αu

It is easy to determine how αl and αu depend on F0, m0, ∆F , and ∆m. For more complicated

relations ordinary algebra can be cumbersome. In Interval Analysis, we phrase inequality

statements in terms of closed intervals on the real line. We think of an interval as a set

of numbers, which are commonly represented as an ordered pair. Instead of α, we write

α ∈ [αl , αu]

The interval [αl , αu] is called an enclosure of α. The essence is that we would like to know

F and m exactly so that we can get α exactly. In other circumstances, however, we might

wish to treat F and m as paremeters and intentionally vary them to see how α varies.

The act of merely enclosing a solution might seems rather weak, since it fails to yield the

solution itself. While this is true, the degree of satisfaction involved in enclosing a solution

can depend strongly on the tightness of the enclosure obtained. Returning to the initial

example, we might be more satisfied with answers of the form

x1 ∈ [−3.001,−2.999], x2 ∈ [1.999, 2.001]

In addition, if we obtain something like

x ∈ [0.66666, 0.66667]

then we do know x to four decimal places. There are times where we can and should

be satisfied with rather loose bounds on a solution. It might be better to know that

y ∈ [59, 62] rigorously than to have an “answer” of the form y ≈ 60 with no idea of how

much error might be present. If we can compute an interval [α, b] containing an exact

solution x to some problem, then we can take a midpoint m = (α + b)/2 of the interval as

an approximation to x and have |x−m | ≤ w/2, where w = b−α is the width of the interval.

Hence we obtain both an approximate solution and error bounds on the approximation.

2.1.2 History

The story of IA methods begin in 1962 by Moore, who presented his doctorate on the

use of intervals to analyze and control numerical errors[5]. His next step was to publish

his first book Interval Analysis in 1966, which remains a reference to this day and is

also the reference which was used in the previous section of this thesis[6]. During the

same period, Hansen studied interval manipulation in linear algebra[7], and a group of

German researches including Alefeld, Krawczyk and Nickel developed many aspects of

computer implementation[1]. During the first twenty years, the spreading of the interval

methodology remained relatively confined to the periphery of the initial seeds, notably in
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Germany within Karlsruhe University.[8] Among the new adepts who brought important

advances, one of the most significant ones were Neumaier on the solution of sets of linear

and non-linear equations (1985), Ratschek and Rokne (1984) as well as Kearfott(1989)

on optimization. During the 1990s, interval analysis has recruited a larger community.

It now has its own journal Interval Computations, created in 1991 and renamed Reliable

Computing in 1995 as well as other regular international conferences, one of which is

SWIM (Summer Workshop on Interval Methods), where I also participated in 2019[9].

2.1.3 Basic Concepts

As the title of this section denotes, many IA definitions and operations will follow. It

should be noted that only the most important concepts concerning later sections will be

described. This is an intentional move to avoid distracting the reader from the focus of

this thesis. The problem IA methods will be applied to in this thesis requires a bounded-

error set estimation technique. Hence, more details on open-ended unbounded Intervals

and the process that resulted in the following definitions can be found in [1] as well as

[10].

Intervals

First and foremost, an interval real [x] is a connected subset of R. The lower bound

lb([x]) of an interval [x], also denoted by x, is defined as

x = lb([x]) ≜ sup{α ∈ R ∪ {−∞,∞} | ∀x ∈ [x], α ≤ x}. (2.1)

Its upper bound ub([x]), also denoted by x, is defined as

x = ub([x]) ≜ inf {b ∈ R ∪ {−∞,∞} | ∀x ∈ [x], x ≤ b}. (2.2)

For instance, if [x] =] − 3, 7] then x = −3 and x = 7; if [x] =] − ∞,∞[ then x = −∞ and

x = ∞.

The width of any non-empty interval [x] is

w([x]) ≜ x − x, (2.3)

so w(]3,∞[) = ∞. The midpoint or center of any bounded and non-empty interval [x] is

defined as

mid([x]) ≜
x + x

2
. (2.4)

We should also define the set-theoretic operations which can be applied to intervals. The

intersection of two intervals [x] and [y], defined by

[x] ∩ [y] ≜ {z ∈ R | z ∈ [x] and z ∈ [y]}, (2.5)
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is always an interval, This is not the case for their union

[x] ∪ [y] ≜ {z ∈ R | z ∈ [x] or z ∈ [y]}. (2.6)

To make the set of intervals closed with respect to union, an interval hull of a subset X

of R is defined as the smallest interval [X] that contains it ([1] p.16). For instance, the

interval hull of ]2, 3]∪ [5, 7] is the interval ]2, 7]. The interval union or [x] and [y], denoted

by [x] ⊔ [y] is defined as the interval hull of [x] ∪ [y], i.e.,

[x] ⊔ [y] ≜ [[x] ∪ [y]]. (2.7)

In the same manner,

[x] [\] [y] = [[x] \ [y]] = [{x ∈ [x] | x < [y]}] (2.8)

The Cartesian product of two intervals is not an interval but a box of R2

Closed Intervals

Denote by IR the set of closed intervals, since R and ∅ are both open and closed, they

both belong to IR and any element of IR can be written in one of the following forms:

[α, b], ] − ∞, α], [α,∞[, ] − ∞,∞[or ∅, where α and b are real numbers such that a ≤ b.

Any [x] of IR can be specified in a unique way by its lower bound x and its upper bound

x. It will be notated from now on as [x] = [x, x] even if bounds are infinite. Thus, [0,∞]
should be interpreted as [0,∞[. Intervals may be viewed as sets or as couples of elements

of R on which arithmetic can be built. Couples of the form [∞,∞], [−∞,−∞] and [α, b]
with α > b do not correspond to intervals. When x and x are equal, the interval [x] is said

to be punctual (or degenerate). Any real number could thus be represented as a punctual

interval and vice versa.

Interval Operations of Closed Intervals

The interval union of two non-empty closed intervals [x] and [y] satisfies

∀[x] ∈ IR,∀[y] ∈ IR, [x] ⊔ [y] =
[
min{x, y}, max{x, y}

]
. (2.9)

The intersection of two non-empty closed intervals [x] and [y] satisfies

[x] ∩ [y] =
[
max{x, y}, min{x, y}

]
if max{x, y} ≤ min{x, y},

= ∅ otherwise
(2.10)

If α is a real number and [x] a non-empty interval, then the interval

α[x] ≜ {αx | x ∈ [x]} (2.11)
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is given by

α[x] = [αx, αx] if α ≥ 0

= [αx, αx] if α < 0.
(2.12)

For non-empty closed intervals, we can perform addition(+), subtraction(−), multiplication(∗)

and division(/) as follows

[x] + [y] = [x + y, x + y], (2.13)

[x] − [y] = [x − y, x − y] (2.14)

[x] ∗ [y] = [min{xy, xy, xy.xy}, max{xy, xy, xy, xy}]. (2.15)

1/[y] = ∅ if [y] = [0, 0],

= [1/y, 1/y] if 0 < [y],

= [1/y,∞[ if y = 0 and y > 0,

=] −∞, 1/y] if y < 0 and y = 0,

=] −∞,∞[ if y < 0 and y > 0,

and [x]/[y] = [x] ∗ (1/[y]).

(2.16)

The product of two intervals can be denoted indifferently by [x] ∗ [y] or [x][y]. When

applied to punctual intervals [x] and [y], the previous rules simplify into the usual rules

of real arithmetic, which is why interval arithmetic can claim to be an extension of the

latter.

Elementary interval functions can also be expressed in terms of bounds. For any non-

empty [x],

[exp]([x]) = [exp(x), exp(x)]. (2.17)

However, for non-monotonic functions things are different. [sin]([0, π]) = [0, 1] differs

from the interval [sin(0), sin(π)] = (0, 0). Specific algorithms have been built for those

cases. An example algorithm is given by [1]:

Algorithm 2.1: sin(in: [x]; out:[r])

1: if ∃k ∈ Z | 2kπ − π/2 ∈ [x] then

2: r = −1;

3: else

4: r = min(sinx, sinx);
5: end if

6: if ∃k ∈ Z | 2kπ + π/2 ∈ [x] then

7: r = 1;

8: else

9: r = min(sinx, sinx);
10: end if
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Interval Vectors

An interval real vector [x] is a subset of Rn
that can be defined as the Cartesian product

of n closed intervals. When there is no ambiguity, [x] is be called an interval vector, or a

box. It is written as

[x] = [χ1] × [χ2] × ... × [χn], with [χi] = [χi , χi] for i = 1, ..., n. (2.18)

Its ith interval component [χi] is the projection of [x] onto the ith axis. The empty set

of Rn
should be written as ∅ × ... × ∅ because all of its interval components are empty.

Expressions such as [x] = ∅ × [0, 1] are prohibited, because [0, 1] is not the projection

of [x] onto the second axis. This guarantees the uniqueness of notation of a given box.

The set of all n-dimensional boxes will be denoted by IRn
. Non-empty boxes are n-

dimensional axis-aligned parallelepeds. Many of the aforementioned notions described in

Figure 2.1: A box [x] of IRn, with n = 2 and [x] = [χ1] × [χ2]

previous sections apply to boxes. For instance, a box will be said to be punctual if all its

interval components are. From the list of box-wide operations, only one is needed in its

purest sense (meaning that it performs the operation given a box as the input instead of

an interval), which is the width of a box given by

w([x]) ≜ max1≤i≤nw([χi]). (2.19)

The rest of the proper definitions, which are extensions of the ones provided in previous

sections, can be found in [1].

Inclusion Functions

Consider a function f from Rn
to

A regular subpaving can also be represented as a binary tree. A binary tree contains

a finite set of nodes. This set may be empty, may contain a single node, the root of the

tree, or may contain two binary trees with an empty intersection, namely the left and

right subtrees. Thus, we can describe Figure 2.2 as the binary tree of Figure 2.4. On this
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Figure 2.2: Regular paving of a box. The boxes in grey form a regular subpaving

Figure 2.3: Bracketing of the set S = {(χ, y) | χ2 +y2 ∈ [1, 2]}. The frame corresponds to the
box [−2, 2] × [−2, 2]; precision increases from left to right.

figure, A is the root of the tree, B and C are respectively its left and right children. They are

siblings as they have the same parent node A. A has a left subtree and a right subtree, the

right subtree of B is empty. Finally D has no subtree and it is colled a degenerate node of

leaf. The growth of a binary tree’s branches is defgined by how the initial box [x0], which

corresponds to the root of the tree, is bisected. Any leaf indicates that the box it stands

for belongs to the subpaving. The depth of a box is the number of bisections necessary

to get it from the root box. Notice the recursiveness of this structure. We can perform 4

basic operations on regular subpavings. We can unite sibling subpavings, take the union,

intersect and test whether a box is included in a subpaving. In this thesis, operations

occur on an interval basis, therefore describing those operations on the subpaving level

is beyond the required scope. If it is of interest, the reader can find more on pages 52-54

of [1].

2.1.4 Set Inversion via Interval Analysis

First introduced by Jaulin and Walter in 1993[2]. This algorithm utilizes all the

aforementioned definitions to compute an unknown input set, using the known image

[Y ] and an inclusion function [f ]([x]). It is formally described as:

Let f be a possibly non-linear function from Rn
to Rm

and let Y be a subset of Rm
(it can

Diploma Thesis 29



Chapter 2. Theoretical Background

Figure 2.4: Tree associated with the regular subpaving of Figure 2.2

be a subpaving). Set inversion is the characterization of

X = {x ∈ Rn | f (x) ∈ Y} = f −1(Y). (2.20)

For any Y ⊂ Rm
and for any function f admitting a convergent inclusion function [f ](.),

two regular subpavings X and X that satisfy X ⊂ X ⊂ X can be obtained with the SIVIA

algorithm[2]. SIVIA requires a search box X0 to which X is guaranteed to belong. This

nice figure 2.5 from page 57 of [1] describes the basic steps of this algorithm quite well,

assuming that Y is a regular subpaving. To facilitate the steps to perform this algorithm

we must first list the four cases which can be encountered.

• If [f ]([x]) has a non-empty intersection with Y, but is not entirely in Y, then [x] may

contain a part of the solution set (Figure 2.5a). When this is the case [x] is said to be

undertermined. If it has a width greater than an arbitrary (usually small) precision

parameter ϸ, then it should be bisected, creating two or more offspring boxes out of

[x]. Then, the test is recursively applied to these newly generated boxes.

• If [f ](x) has an empty intersection with Y, then [x] does not belong to X and can be

cut off from the solution tree (Figure 2.5b).

• If [f ]([x]) is entirely in Y, then [x] belongs to the solution subpaving X, and is stored

in X and X (Figure 2.5c).

• If the box is considered undertermined and its width is lower than ϸ, then it is

deemed too small and is stored in the outer approximation X of X (Figure 2.5d).

To sum up, the SIVIA algorithm starts with an initial box X0, is then sent to an inclusion

function [f ]([x]) which can be non-linear, the aforementioned tests are performed to the

resulting [y] and the solution set is progressively created until all generated [x] boxes

have been evaluated. The predefined ϸ threshold is set since the algorithm would run

infinitely otherwise. Algorithm 2.2 demonstrates the above.

The boxes that remain undetermined at the end of an algorithm execution comprise the

uncertainty layer.
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2.1.4 Set Inversion via Interval Analysis

Figure 2.5: Four situations encountered by SIVIA.

Applications

SIVIA can be applied to any problem that requires the discovery of an input(or vali-

dation) set. Given that it can work with non-linear functions, this means that its usage

extends to any problem which was previously deemed unsolveable. The technique is de-

terministic and guarantees a solution, proving extremely useful in many engineering and

optimization problems. And this is exactly the case as [11],[12],[13],[14] use this algo-

rithm for robotics-related problems, such as inverse kinematics and path planning. While

it has been traditionally used for global optimization problems [15],[16],[17] and [18], the

technique does not shy away from being useful to an even bigger variety of problems.

Here [19] it is used for the estimation of electrochemical parameters and here [20] it was
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Algorithm 2.2: SIVIA(in: f,Y, [x], ϸ; in/out:X,X)

1: if [f ]([x]) ∩ Y = ∅ then return;

2: end if

3: if [f ]([x]) ⊂ Y then {

4: X← X ∪ [x];
5: X← X ∪ [x];
6: return; }
7: end if

8: if w([x]) < ϸ then {

9: X← X ∪ [x];
10: return; }
11: end if

12: SIVIA(f,Y, L[x], ϸ,X,X);
13: SIVIA(f,Y, R[x], ϸ,X,X);

used among other problems for the colorimetric determination of formaldehyde. Finally,

closer to the topic of this thesis, S.P. Adam uses this technique for the inversion of Neural

Networks, for purposes such as bounding the search space of parameters[21], estimation

of the generalization capability of a NN[4] or simply for the input space mapping of a

classifier[22].

2.2 Neural Networks

2.2.1 Overview

Work on artificial neural networks, commonly referred to as “neural networks,” has

been motivated right from its inception by the recognition that the human brain com-

putes in an entirely different way from the conventional digital computer. The brain is

a highly complex, nonlinear, and parallel computer. It has the capability to organize its

structural constituents, known as neurons, so as to perform certain computations (e.g.,

pattern recognition, perception, and motor control) many times faster than the fastest

digital computer in existence today. A neural network is a massively parallel distributed

processor made up of simple processing units that has a natural propensity for storing

experiential knowledge and making it available for use. It resembles the brain in two re-

spects, one being that knowledge is acquired via a learning process and that interneuron

synaptic weights are used to store the acquired that knowledge. The procedure used to

perform the learning process is called a learning algorithm, and it is a function that is

used to modify the synaptic weights of the network in an orderly fashion in order to attain

a desired design objective. What is very important for a neural network is its capacity

to generalize, meaning the production of reasonable outputs for inputs not encountered

during training (learning). This should not imply that a neural network has the ability

to generalize each and every problem, in practice, a complex problem requires multiple

simple solutions, in a system engineering fashion. A neural network offers the following

useful properties and capabilities:
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• Nonlinearity. An artificial neuron can be linear or nonlinear. A neural network,

made up of an interconnection of nonlinear neurons, is itself nonlinear. Moreover,

the nonlinearity is of a special kind in the sense that it is distributed throughout the

network. This property is very important if the input signal is inherently nonlinear.

• Input-Output Mapping. A popular paradigm of learning, called supervised learning,

involves modification of the synaptic weights of a neural network by applying a set

of labeled training examples. Each example consists of a unique input signal and a

corresponding desired (target) response.The network is presented with an example

picked at random from the set, and the synaptic weight of the network are modified

to minimize the difference between the desired response and the actual response

of the network produced by the input signal in accordance with an appropriate

statistical criterion. The training of the network is repeated for many examples in the

set, until the network reaches a steady state where there are no further significant

changes in the synaptic weights.The previously applied training examples may be

reapplied during the training session, but in a different order. Thus the network

learns from the examples by constructing an input–output mapping for the problem

at hand.

• Adaptivity. Neural networks have a built-in capability to adapt their synaptic

weights to changes in the surrounding environment. In particular, a neural network

trained to operate in a specific environment can be easily retrained to deal with

minor changes in the operating environmental conditions. Moreover, when it is

operating in a nonstationary environment (i.e., one where statistics change with

time), a neural network may be designed to change its synaptic weights in real

time.The natural architecture of a neural network for pattern classification, signal

processing, and control applications, coupled with the adaptive capability of the

network, makes it a useful tool in adaptive pattern classification, adaptive signal

processing, and adaptive control.

• Evidential Response. In the context of pattern classification, a neural network

can be designed to provide information not only about which particular pattern to

select, but also about the confidence in the decision made.This latter information

may be used to reject ambiguous patterns, should they arise, and thereby improve

the classification performance of the network.

• Contextual Information. Knowledge is represented by the very structure and acti-

vation state of a neural network. Every neuron in the network is potentially affected

by the global activity of all other neurons in the network. Consequently, contextual

information is dealt with naturally by a neural network.

• Uniformity of Analysis and Design. neural networks enjoy universality as infor-

mation processors.We say this in the sense that the same notation is used in all

domains involving the application of neural networks. Neurons, in one form or other

represent an ingredient common to all neural networks. This commonality makes it
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possible to share theories and learning algorithms in different applications of neural

networks. Therefore, modular networks can be built through a seamless integration

of modules.

More information about those properties can be found in [23].

2.2.2 Modelizing Neurons

A neuron is an information-processing unit that is fundamental to the operation of a

neural network. The three basic elements of a neural model are

1. A set of synapses, or connecting links, each of which is characterized by a weight

or strength of its own.

2. An adder for summing the input signals, weighted by the respective synaptic strengths

of the neuron.

3. An activation function for limiting the amplitude of the output of a neuron.The

activation function is also referred to as a squashing function, in that it squashes

(limits) the permissible amplitude range of the output signal to some finite value.

In mathematical terms, we can describe the model by a set of equations (Figure 2.7).

uk =

m∑
j=1

wkjxj (2.21)

yk = φ(uk + bk) (2.22)

x1, x2, ..., xm are the input signals, wk1, wk2, ..., wkm are the synaptic weights of the neu-

ron k, vk is the linear combiner, bk is the bias, φ(·) is the activation function and yk is

the output signal of the neuron. The use of the bias bk has the effect of applying an affine

transformation to the output uk of the linear combiner as shown by Figure 2.6.

vk = uk + bk (2.23)

Activation functions

The activation function, denoted by φ(v), defines the output of a neuron in terms of the

induced local field v. In what follows, we identify two basic types of activation functions:

• Threshold Function. (Figure 2.8) This type of function is described by

φ(v) =
{

1 if v ≥ 0

0 if v < 0
(2.24)

yk =

{
1 if vk ≥ 0

0 if vk < 0
(2.25)

34 Diploma Thesis



2.2.2 Modelizing Neurons

Figure 2.6: Nonlinear model of a neuron.

Figure 2.7: Affine transformation produced by the presence of a bias.

vk =

m∑
j=1

wkjxj + bk (2.26)

• Sigmoid Function.(Figure 2.9) The sigmoid function, whose graph is “S”-shaped,

is by far the most common form of activation function used in the construction

of neural networks. It is defined as a strictly increasing function that exhibits a

graceful balance between linear and nonlinear behavior. An example of the sigmoid

function is the logistic function, defined by:

1

1 + exp(−αv)
(2.27)

where α is the slope parameter. By varying this parameter we can obtain sigmoid
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Figure 2.8: A threshold activation function.

functions of different slopes. as the slope parameter approaches infinity, the sigmoid

function becomes simply a threshold function. In addition, it is sometimes desirable

to have activation functions range from -1 to +1. This is commonly referred to as

the signum function:

φ(v) =


1 if v > 0

0 if v = 0

−1 if v < 0

(2.28)

For the corresponding form of a sigmoid function, we may use the hyperbolic tangent

function, defined by

φ(v) = tanh(v) (2.29)

Figure 2.9: A sigmoid activation function.

2.2.3 Supervised Learning

In supervised learning, knowledge is represented by sets of input-output examples.

We, as the supervisor or the teacher, can provide the neural network with a desired re-

sponse for a given training vector. Then, the network parameters are adjusted under the

combined influence of the training vector and an error signal, which is defined as the

difference between the desired response and the actual response of the network. This

adjustment is carried out iteratively in a step-by-step fashion with the aim of eventually

making the neural network emulate the teacher. In this way, knowledge of the environ-

ment available to the teacher is transferred to the neural network through training and
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stored in the form of “fixed” synaptic weights, representing long-term memory.When this

condition is reached, we may then dispense with the teacher and let the neural network

deal with the environment completely by itself. As a performance measure for the system,

we may think in terms of the mean square error, or the sum of squared errors over the

training sample, defined as a function of the free parameters (i.e., synaptic weights) of

the system. This function may be visualized as a multidimensional error-performance

surface, or simply error surface, with the free parameters as coordinates. For the system

to improve performance over time and therefore learn from the teacher, the operating

point has to move down successively toward a minimum point of the error surface; the

minimum point may be a local minimum or a global minimum. A supervised learning

system is able to do this with the useful information it has about the gradient of the error

surface corresponding to the current behavior of the system. Reading this section, given

the aforementioned description of SIVIA (Section 2.1.4), should give interesting ideas to

the reader, as SIVIA is used to provide guaranteed approximations given a parameter

space. Perhaps this algorithm could be useful during the training of Neural Networks.

Unfortunately, this is not the topic explored in this thesis, but the interested reader can

refer to [21].

2.2.4 Multilayer Perceptron

Before we move to explain the multilayer part of the title, we have to begin with the

basics. The Perceptron was the first algorithmically described neural network, first pro-

posed by Rosenblatt in 1958. It is basically a single-layer neural network and it is limited

to the classification of linearly separable patterns. To overcome this limitation a neural

network structure called a multilayer perceptron was proposed. The basic characteristics

of this structure are:

• The model of each neuron in the network includes a nonlinear activation function

that is differentiable.

• The network contains one or more layers that are hidden from both the input and

output nodes.

• The network exhibits a high degree of connectivity, the extent of which is determined

by synaptic weights of the network.

A popular method for the training of multilayer perceptrons is the back-propagation

algorithm. The training proceeds in two phases:

1. The forward phase, in which the synaptic weights of the network are fixed and the

input signal is propagated through the network, layer by layer, until it reaches the

output. Thus, in this phase, changes are confined to the activation potentials and

outputs of the neurons in the network.

2. The backward phase, where an error signal is produced by comparing the output of

the network with a desired response.The resulting error signal is propagated through
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Figure 2.10: A multilayer perceptron with multiple hidden layers and outputs.

the network, again layer by layer, but this time the propagation is performed in the

backward direction. In this second phase, successive adjustments are made to the

synaptic weights of the network.

2.2.5 Training Techniques

The essence of back-propagation learning is to encode an input–output mapping

(represented by a set of labeled examples) into the synaptic weights and thresholds

of a multilayer perceptron. The hope is that the network becomes well trained so

that it learns enough about the past to generalize to the future. More precisely, gen-

eralization refers to the network’s ability to produce correct outputs, given inputs

which were not provided during the training process. From such a perspective, the

learning process amounts to a choice of network parameterization for a given set of

data. We may view the network selection problem as choosing, within a set of can-

didate model structures (parameterizations), the “best” one according to a certain

criterion. One way to do that is to split the data set into a training set and a vali-

dation set, the later serves the purpose of validating the generalization capabilities

of the network. However, if the categories represented by the data are not split in

a uniform manner, the model will adapt to this artificial bias. In addition, the data

size may be very small to be able to afford this fair split. To counter this, we utilize

a statistical technique, called cross-validation[24]. The data is partitioned into a

training and a test set. Then, the training set is further partitioned into two disjoint

subsets, an estimation subset, used to select the model and a validation subset to

test or validate this model. Thus, it is possible to validate the models during train-

ing. To guard against overfitting, the model is finally verified by the initial test set. In

some cases, this test set is merged into the validation splits of the training sample.

This is generally not a good practice if the purpose is to maximize the generalization

capability of the model. However, many problems are not accompanied by large data

sets and each decision is ultimately made based on those material circumstances.

There is another method for evaluating generalization proposed recently[4] which

claims to enable the usage of the whole data set during training, without instilling

38 Diploma Thesis



2.3 Parallel Computing

bias into the model. This thesis explores an accelerated revision of this proposition.

2.3 Parallel Computing

2.3.1 Overview

Until a bit over decade ago, people held the notion that the more they waited before

purchasing new computational hardware, the more performance they would gain. This

was true because between 1986 to 2003, the performance of microprocessors increased,

on average, more than 50% per year. From 2003 and onwards this performance increase

started to decline to the point that between 2015 to 2017, the increase was on average

less than 4% per year[25]. This difference in performance increase has been associated

with a dramatic change in processor design. By 2005, most of the major manufacturers

of microprocessors had decided that the road to rapidly increasing performance lay in the

direction of parallelism. Rather than trying to continue to develop ever-faster monolithic

processors, manufacturers started putting multiple complete processors on a single inte-

grated circuit. That lead software developers to re-examine their methods as their serial

programs would not see any performance improvement throughout the years by itself.

2.3.2 Parallel Design Paradigms

The two most widely used approaches to parallelism[26] are:

• Task Parallelism. A task required to solve a problem is partitioned among the

processor’s cores.

• Data Parallelism. The data required to solve a problem is partitioned and thus

each core carries the same operations but on a part of the data.

In reality, it is very common for a mixed parallelization strategy to be used. Depending

on the problem, the partitioning of a task is not exclusionary to partitioning the data.

2.3.3 Instruction-level Parallelism

Instruction-level parallelism (or ILP) attempts to improve processor performance by

having multiple processor components to simultaneously execute instructions. One can

imagine this level of parallelism as a factory assembly line. Imagine the production of a

mechanical keyboard; it requires a control board, a casing (or shell), switches, keycaps

and a cable. Let’s assume that each machine can only produce one type of component

and that all of the required machines are located in the same factory. Since each compo-

nent assembly is independent from the production done on other machines, to produce

a keyboard we would assign a worker to a machine so that the production would be per-

formed in parallel. The factory of our example is the processor and the machines are

the individual components inside it, arithmetic & logic units, control units, registers etc.

Figure 2.11 depicts this process.
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Figure 2.11: Instruction Level Parallelism, I F/D/E stand for Instruction Fetch/Decode/Ex-
ecute, Mem stands for Memory Access and WB for register Write-Back.

2.3.4 Hardware Multithreading

ILP requires that the statements are independent between one another, and unfortu-

nately that is not always the case. This is where Thread-level parallelism (or TLP) plays

its hand. A thread is a mechanism provided to programmers, that offers the ability to

divide a program into smaller independent tasks, with the property that when one thread

is blocked, another can be run. In addition, the switch between threads happens faster

than in processes, as threads are contained within the same process, therefore avoiding

the performance hit of unnecessary system calls. TLP attempts to provide parallelism

through the simultaneous execution of different threads, providing a coarser-grained

parallelism than ILP. This means that the program units, that are simultaneously exe-

cuted, are larger (or coarser) than the finer-grained individual instructions. Hardware

multithreading provides a means for systems to continue doing useful work when the task

being currently executed has stalled—for example, if the current task has to wait for data

to be loaded from memory. Instead of looking for parallelism in the currently executing

thread, it may make sense to simply run another thread.

2.3.5 Classifications of Parallel Computers

Two important independent classifications of parallel computers is Flynn’s taxon-

omy[27] and the distinction between shared memory and distributed memory systems.

Flynn’s taxonomy works by classifying a parallel computer according to the number of

instruction streams and the number of data streams it can simultaneously manage.

Flynn’s Taxonomy

The categories in bold are the most commonly found parallel systems[26]:

1. SISD. A classical von Neumann system is an example of a Single Instruction, Single

Data stream as it executed a single instruction at a time and, computes a single

data value at a time.

2. SIMD. Single Instruction, Multiple Data systems are parallel systems. As the name

40 Diploma Thesis



2.3.5 Classifications of Parallel Computers

suggests, SIMD systems operate on multiple data streams by applying the same

instruction to multiple data items. An example SIMD system is a GPU, however it

is not a pure one.

3. MISD. Multiple Instructions operate on a Single Data stream. This is an uncommon

architecture.

4. MIMD. Multiple Instruction, Multiple Data systems support multiple simultaneous

instruction streams operating on multiple data streams. They usually consist of

a collection of fully independent processing units (or cores), each of which has its

own control unit and its own datapath. Unlike SIMD systems, MIMD systems are

usually asynchronous, meaning that the processors can operate at their own pace.

There is usually no global clock and there may be no relation between the system

times of two different processors. At any given time two processors may be executing

different statements, even if they were given the same sequence of instructions.

Figure 2.12: Flynn’s Taxonomy of Computer Architectures.

Shared-Memory Systems

A shared-memory system is a collection of autonomous processors that is connected

to a memory system via an interconnection network, and each processor can access each

memory location. In a shared-memory system, the processors usually communicate im-

plicitly by accessing shared data structures. The most widely available shared-memory

systems use one or more multicore processors. In shared-memory systems with multiple

multicore processors, the interconnect can either connect all the processors directly to

main memory, or each processor can have a direct connection to a block of main mem-

ory, and the processors can access each other’s blocks of main memory through special
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hardware built into the processors. This constitutes another sub-categorization of these

systems:

• UMA. In Uniform Memory Access shared-memory systems each processor has direct

access to all available memory.

• NUMA. In Non-Uniform Memory Access systems each processor access its own mem-

ory. If the system enables the memory access of another processor (usually via a

BUS), it is generally slower to do so.

UMA systems are usually easier to program, since the programmer doesn’t need to worry

about different access times for different memory locations. This advantage can be offset

by the faster access to the directly connected memory in NUMA systems. Furthermore,

NUMA systems have the potential to use larger amounts of memory than UMA systems.

Distributed-Memory Systems

In a distributed-memory system, each processor is paired with its own private mem-

ory, and the processor-memory pairs communicate over an interconnection network. In

distributed-memory systems, the processors usually communicate explicitly by sending

messages or by using special functions that provide access to the memory of another

processor.

Figure 2.13: A Collection of Parallel Systems.

2.3.6 Parallel Computing on CUDA GPUs

History

During the late 90s, video games started becoming popular and players were de-

manding more realistic graphics. The computer industry responsed to that demand by

developing extremely powerful graphics processing units, or as we know them, GPUs.
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These processors, as their name suggests, are designed to improve the performance of

programs that need to render many detailed images. The existence of this computational

power was a temptation to programmers who didn’t specialize in computer graphics, and

by the early 2000s they were trying to apply the power of GPUs to solving general compu-

tational problems, problems such as searching and sorting, rather than graphics. This

became known as General Purpose computing on GPUs or GPGPU. One of the biggest

difficulties faced by the early developers of GPGPU was that the GPUs of the time could

only be programmed using computer graphics APIs, such as Direct3D and OpenGL. So

programmers needed to reformulate algorithms for general computational problems so

that they used graphics concepts, such as vertices, triangles, and pixels. This added

considerable complexity to the development of early GPGPU programs, and it wasn’t long

before several groups started work on developing languages and compilers that allowed

programmers to implement general algorithms for GPUs in APIs that more closely resem-

bled conventional, high-level languages for CPUs. Currently the most widely used APIs

are CUDA and OpenCL. CUDA was developed for use on Nvidia GPUs. OpenCL, on the

other hand, was designed to be highly portable.

Figure 2.14: A Simplified block diagram of a GPU.

GPU Architectures

A typical GPU can be thought of as being composed of one or more SIMD processors.

Nvidia GPUs are composed of Streaming Multiprocessors or SMs. One SM can have

several control units and many more Streaming Processors or SPs. So an SM can be

thought of as consisting of one or more SIMD processors. In addition, the SMs operate

asynchronously. To put things into perspective, my current desktop GPU, namely the
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RTX 3060 Ti has 38 SMs and each SM has 128 SPs
1

for a total of 4864 SPs. It is

noteworthy to mention that Nvidia uses the term SIMT instead of SIMD. SIMT stands for

Single Instruction Multiple Thread, and the term is used because threads on an SM that

are executing the same instruction may not execute simultaneously. Some threads may

block while memory is accessed and other threads, that have already accessed the data,

may proceed with execution. This is done to hide memory access latency. Each SM has

a relatively small block of memory that is shared among its SPs. This memory can be

accessed very quickly by the SPs. All of the SMs on a single chip also have access to a

much larger block of memory that is shared among all the SPs. Accessing this memory is

relatively slow (Figure 2.14).

In Nvidia documentation, the CPU together with its associated memory is often called

the HOST, and the GPU together with its memory is called the DEVICE (Figure 2.15).

In earlier systems the physical separation of host and device memories required that

data was usually explicitly transferred between CPU memory and GPU memory. That is,

a function was called that would transfer a block of data from host memory to device

memory or vice versa. However, in more recent Nvidia systems (Compute Capability

≥ 3.0), the explicit transfers in the source code aren’t needed for correctness, although

they may be able to improve overall performance.

Figure 2.15: Simplified block diagram of a HOST and a DEVICE.

Heterogeneous Computing

Writing a program that runs on a GPU is an example of heterogeneous computing. The

reason is that the programs make use of both a host processor, meaning a conventional

CPU, and a device processor, namely a GPU. The two processors have different archi-

tectures. This means that the program will have functions for intended for conventional

CPUs as well as functions explicitly defined to run on GPUs. Heterogeneous computing

has become much more important in recent years[26]. Programmers are leaving no stone

unturned in their search for ways to bolster performance, and one possibility is to make

1
The Ampere architecture of the RTX 3060 Ti mentions SPs as Multiprocessors or CUDA Cores.
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use of other types of processors, processors other than CPUs. Other possibilities for het-

erogeneous computing include Field Programmable Gate Arrays or FPGAs, and Digital

Signal Processors or DSPs. FPGAs contain programmable logic blocks and interconnects

that can be configured prior to program execution. DSPs contain special circuitry for

manipulating (e.g., compressing, filtering) signals, especially real-world analog signals.

CUDA Grids, Blocks and Threads

An Nvidia GPU consists of a collection of streaming multiprocessors (SMs), and each

streaming multiprocessor consists of a collection of streaming processors (SPs). When a

CUDA kernel runs, each individual thread will execute its code on an SP. CUDA organizes

threads into blocks and grids. A thread block (or simply block) is a collection of threads

that run on a single SM. In a kernel call the first value in the angle brackets specifies the

number of thread blocks. The second value is the number of threads in each thread block

(Figure 2.16). When the kernel is started, each block is assigned to an SM, and the threads

in the block are then run on that SM. A grid is the collection of thread blocks started

by a kernel. So a thread block is composed of threads, and a grid is composed of thread

blocks. There are several built-in variables that a thread can use to get information on

Figure 2.16: An example of a kernel call. partialBisect happens to be the name of the device
function to be executed.

the grid started by the kernel. The following four variables are structs that are initialized

in each thread’s memory when a kernel begins execution:

• threadIdx: The rank or index of the thread in its thread block

• blockDim: The dimensions, shape, or size of the thread blocks.

• blockIdx: The rank or index of the block within the grid.

• gridDim: The dimensions, shape, or size of the grid.

These structs have three fields x, y, z and are declared as unsigned integers. The fields

are often convenient for applications. For example, an application that uses graphics

may find it convenient to assign a thread to a point in a 2 or 3-dimensional space, and

the fields in threadIdx can be used to indicate the point’s position. An application that

makes extensive use of matrices may find it convenient to assign a thread to an element

of a matrix, and the fields in threadIdx can be used to indicate the column and row of

the element. Finally, all the blocks must have the same dimensions. More importantly,

CUDA requires that thread blocks be independent. So one thread block must be able

to complete its execution, regardless of the states of the other thread blocks: the thread

blocks can be executed sequentially in any order, or they can be executed in parallel. This
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ensures that the GPU can schedule a block to execute solely on the basis of the state of

that block: it doesn’t need to check on the state of any other block.

2.3.7 CUDA Warps

In CUDA a warp is a set of threads with consecutive ranks belonging to a thread

block. The number of threads in a warp is currently 32, although Nvidia has stated that

this could change[26]. The threads in a warp operate in a SIMD fashion. Threads in

different warps can execute different statements with no penalty, while threads within the

same warp must execute the same statement. When the threads within a warp attempt

to execute different statements, the threads are said to have diverged. When divergent

threads finish executing different statements, and start executing the same statement,

they are said to have converged.

2.3.8 CUDA Memory Architecture

We can think of the GPU memory as a hierarchy with three levels. At the bottom, is

the slowest but larger, global memory. In the middle is the shared memory, which is of

smaller size but faster than the global memory. At the top are the fastest, of even smaller

size, the registers. All threads of a SM have access to the shared and global memory, but

threads individually only have access to their respective registers. In Compute Capability

≥ 3 there are functions called warp shuffles which allow threads of a block to access

variables stored by other threads in the warp. It takes on the order of 1 cycle to copy a

4-byte int from one register to another. Depending on the system it can take up to an

order of magnitude more time to copy from one shared memory location to another, and it

can take from two to three orders of magnitude more time to copy from one global memory

location to another. Depending on the GPU architecture, there are usually three levels

of cache to minimize the latency penalties induced by reading and writing to the slowest

memories.

2.3.9 Memory Coalescing

CUDA Best Practices

The performance guidelines and best practices described in [28] and [29] apply to all

CUDA-capable GPU architectures. Programmers must primarily focus on following those

recommendations to achieve the best performance[30]. The high-priority recommenda-

tions from those guides are as follows:

• Find ways to parallelize sequential code.

• Minimize data transfers between the host and the device.

• Adjust kernel launch configuration to maximize device utilization.

• Ensure global memory accesses are coalesced.

• Minimize redundant accesses to global memory whenever possible.
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Figure 2.17: A simplified schematic of Grid, Block, Thread and Memory hierarchies of a
DEVICE and the interconnection with the HOST.

• Avoid long sequences of diverged execution by threads within the same warp.

2.4 Discussion

This chapter was about Interval Arithmetic, Neural Networks, Parallelization methods

and hardware. Interval Analysis is a field of mathematics which was initially designed to

help with engineering problems that require calculations with the inclusion of an error,

as the physical world is not always forgiving. In addition, these techniques are shown

to be very similar to operations on scalars and the benefits of a technique named Set

Inversion via Interval Analysis was showcased. SIVIA is able to provide, in a deterministic

notion, a guaranteed approximation for non-linear functions, namely, inclusion functions.

IA methods are also very reliant on set operations. Afterwards, an overview of neural

networks was provided, with the focus being on multilayer perceptrons for their utility in

classification problems, and, finally, an overview in parallel computing was provided. This

included types of parallel hardware, parallelization strategies with the spotlight aimed at

CUDA GPGPU software design and the best practices for that purpose. The next chapter is

directly related to the implementation of this thesis, background work on other attempts

are explored and will be followed with the design choices of the proposed parallelization

attempt.
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Implementation

3.1 Branch & Bound Algorithms

Branch-and-bound (BB) methods are well-known algorithmic tools for solving NP-

hard optimization problems. For many of these inherently difficult problems, only small

instances can be solved in a reasonable amount of time on sequential computers[31].

Consequently, the use of parallelism to speed up the execution of BB algorithms has

emerged as a way to solve larger problem instances. BB methods are more commonly

deployed in optimization problems where a problem is not tractable and a divide-and-

conquer approach may be required for its solution. As the name suggests, this method

consists of a branching and a bounding operation. Branch refers to the decomposition

of a problem while Bound refers to operations aimed at eliminating resulting subprob-

lems. Therefore we can describe these methods as the process of building a tree. The

root of this tree is the original problem while the leaves are the subproblems obtained

through the decomposition of the root. Now let’s replace problems and subproblems with

pavings and subpavings, branching with bisection and Bounding with the set evaluation

of subpavings. SIVIA of section 2.1.4 now seems like a BB technique and it is in fact the

case. However, there is an important distinction to be made; most applications of SIVIA

have been applied to optimization problems and not on neural networks as you will see

further in this chapter. Contrary to those problems, where a tree is branched out based

on an upper bound and a lower bound test, in our case the tree is branched whenever a

subproblem cannot provide a definitive answer and results in what is called exhaustive

search as the criteria to prevent the branching of a subproblem (besides a minimum

threshold ϸ) are missing. The similarity of SIVIA to BB algorithms is important because

parallel work done on the latter can be seen as a template for the parallelization of the

former. We can now proceed with the classification of parallel BB algorithms[31]:

• Type 1. Introduces parallelism when performing the operations on generated sub-

problems. It consists, for example, of executing the bounding operation in parallel

for each subproblem to accelerate the execution.

• Type 2. Consists of building the BB tree in parallel by performing operations on

several subproblems simultaneously.

• Type 3. Several BB Trees are built in parallel.
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Furthermore, Type 2 parallel algorithms are further classified on the existence of syn-

chronization between processes and the number of work pools. A work pool is the data

structure that contains the subproblems that are waiting to be examined, its properties

rely on the implementation. The classification goes:

• Synchronous Single Pool.

• Asynchronous Single Pool.

• Synchronous Multiple Pool.

• Asynchronous Multiple Pool.

Gendron concluded that the type 2 parallelization scheme is only suitable on SIMD archi-

tectures if the operations performed in each iteration are trivial and run in constant time.

On MIMD architectures, for which type 2 parallelism is better suited, the approaches used

when implementing it are classified by two parameters: whether they use synchronous

or asynchronous parallelism and whether they use a single work pool or have multiple

pools. For SSP and SMP, it is important that the processing needed for each sub-problem

is approximately equal to avoid idle time. ASP is concluded to be suited only for "problems

with a nontrivial bounding operation, and parallel architectures having a relatively small

number of processors". For AMP strategies it is concluded that a dynamic load balancing

must be deployed in order to achieve high efficiency.

3.2 GPU Parallelization of the Parameter Estimation problem

[20] contains a very good summary of the parallelization schemes in a CUDA GPGPU

context. The CUDA GPU architecture is two-layered, with a SIMD architecture on the

lower (SM) level and a MIMD architecture on the upper layer (Stream). Therefore a par-

allelization strategy designed exclusively for either MIMD or SIMD is not a perfect fit for

a CUDA GPU. Given the fact, these are some of the main options when designing parallel

software:

• The interval arithmetic operation level (Type 1): Parallelization on this level

consists of parallelizing inner operations of the individual interval arithmetic opera-

tions. For example, an interval multiplication can be performed by doing 8 parallel

floating point multiplications followed by 4 parallel comparisons in turn followed by

two parallel comparisons. The comparisons require synchronization of the threads

and communication via shared memory. Relative to the amount of computations

being performed, the amount of communication and synchronization between the

threads is large. Further, as the steps in the example use a decreasing number

of threads and because of the SIMD architecture of each CUDA SM, a number of

threads remain idle in the second and third step. A fine-grained scheme.

• Inner iteration level (Type 1): This generally means parallelizing the inclusion

function mentioned in section 2.1.3. These functions generally involve vectors,
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therefore a thread can be allocated to each element. This is also a fine-grained

scheme.

• Outer iteration level (Type 2/3): Each interval box in the work queue can be

processed independently in parallel. CUDA streams, each with 1 or more controlling

threads on the CPU, can be used as asynchronous worker nodes. In order to

share information, and distribute boxes to be processed, this type of parallelization

introduces a communication overhead between the CUDA streams, through the

controlling CPU threads. This scheme is coarse-grained.

It is generally considered that resources are more easily and efficiently used by introducing

parallelism on the inner iteration level, where less communication and synchronization is

required and less idle time is introduced. This also has the benefit to minimize the search

tree, or the input space area, which makes the approach very memory efficient. Most

research on the Parallel BB algorithms has been on MIMD systems, in single or multiple

CPU settings and for a good reason as, most of the time, the inner iterations are not so

expensive to include a GPU architecture. Even most SIMD research was not performed in

a GPGPU context. In the recent years however, GPUs have become more massively parallel

than ever
1

thanks to the AI boom
2

and to experimenting with breadth-first approaches

sounds plausible.

3.2.1 Previous Work

Most parallelization research of BB methods on SIMD architectures has been done

in combinatorial or global optimization problems[32]. On the other hand, research in a

GPGPU context is sparse[20]. Work done on SIMD architectures is usually of Type-1 with

fine-grained interval arithmetic operations[33][34][35][36]. These approaches are gener-

ally implemented using a mixed MIMD approach where the the BB tree is managed on

the CPU-level(usually MIMD implementations) and only the processing functions (Type-1)

(bounding, interval-newton etc.) are parallelized[20][37]. Of the exclusively MIMD ap-

proaches, very notable is the work of Casado at al.[38], where it is showcased that ASP

and AMP approaches are almost equally fast. In addition, all of the aforementioned ap-

proaches are not relevant to the task at hand and this matters because the existence of

bounds can is generally used to direct the prioritization of the box processing. That is

not the case in Section 3.4.2. Work with breadth-first approaches is even more sparse,

which is understandable, as the general notion is to minimize the search tree in order to

avoid redundant operations and save on memory utilization. Lastly, in my undergraduate

years, as part of my ERASMUS+ internship and undergraduate thesis, I tried to solve this

problem by implementing Casado’s AMP algorithm using the C-XSC C++ library[39] but

due to time constraints I was not able introduce a neural network in the design, thus

1https://www.forensicfocus.com/news/the-new-nvidia-rtx-3080-has-double-the-number-of-cuda-cores-but-

is-there-a-2x-performance-gain/
2https://www.reuters.com/technology/nvidia-shares-rise-ai-boom-lifts-hopes-another-strong-revenue-

forecast-2023-08-22/
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the problems solved were of trivial nature. My work, however, validated the algorithm’s

scaling capabilities[9][40].

3.3 Parallelization Proposal

The base code for this implementation was provided by NVIDIA via the open-source

Cuda Samples Github repository[41]. This repository provides a CUDA GPGPU IA im-

plementation based on the design of the C++ Boost Library. This library provides a few

basic operations (+,−, ∗, /) which are designed for float, double and integer variables

as well as the calculation of the width of an interval and some other functions beyond

the scope of this thesis. My implementation provides additional features such as set

operators (subset,disjoint, intersection) trigonometric operations and extending all the

pre-included operations to 16bit half-variables. The implementation on the design level

consists of three parts, two of which are required for problems 1&2 and all three of them

are required for problem 3, which is also the main focus of the thesis. The proposed

implementation inverts the sequence of operations. Instead of bisecting a box when it

cannot provide a solution to a problem and its width is greater than epsilon, the bisection

occurs indiscriminately at the beginning of the algorithm, expanding the tree in regards

to the epsilon threshold value. The total amount of boxes that will be generated is given

by

Number of Boxes =
N∏

i=1

2

ceil

(
log2

(
width([X0]i )

ϸ

))
, (3.1)

with N as the number of dimensions [X0]. Depending on the input space, meaning the

size of the width of each dimension as well as the number of dimensions, expanding

the tree aggressively might require large amounts of available memory. However, this

also results in a very predictable problem structure that can be easily parallelized in a

grid-stride manner, as work is evenly distributed between threads and coalesced global

memory accesses are guaranteed. The slight exception is the Bisection operation itself as

each level of the binary BB tree is characterized by the bisection performed on the previous

one, meaning that some sort of synchronization is required. The proposed implementation

overall, can be categorized as an SSP algorithm in the sense that the GPU is used as a

slave with a single work pool, while the multi-GPU variation can be described as an AMP

as multiple CPU threads own a GPU, from the thread’s perspective the algorithm is ASP.

Thus, the multi-GPU implementation is AMP/SSP.

3.3.1 Parallel Bisection

Most (if not all) SIVIA implementations bisect a box at the final step of a loop, after

the inclusion function and the set operations that determine whether the box is part of

the solution. It is assumed in this implementation that only 1 split occurs in a given box.

The boxes on a given BB tree level are considered independent problems (Figure 3.1). The

main idea for the parallelization of the bisection operation is inspired from the amount of

GPU threads available in the recent years. Using the CPU as a master (or primary) node
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and the GPU as a slave (or secondary in that manner) we can send commands to the

GPU to bisect all boxes of a given tree level. This means that the first commands do not

utilize all available resources as the number of boxes is very small, however theoretically

there is a certain level where the GPU is faster than the CPU as the number of boxes for

bisection is large enough. Notice this very idea on Figure 3.2 where that certain number

of boxes exists and acts as a threshold in which a GPU starts to perform better than the

CPU. There was also the idea to pre-bisect the boxes on the CPU before the GPU takes

over but that would include memory transfer latency and there was not any significant

benefit in implementing the bisection that way. The number of Bisection commands the

HOST will send to the DEVICE is trivially given by

Bisection Commands = log2(Number of Boxes) (3.2)

Figure 3.1: A Binary Tree split by 4 time periods. Each node is a subproblem or a box.
Each time period represents a Bisection operation (or the result of one). T4 is dependent on
T3, T3 is dependent on T2 etc. Boxes of the same level are independent problems which can
be solved very easily in parallel.

3.3.2 Parallel Evaluation

This is as straightforward as it sounds. In a coarse-grained algorithmic design, a

vector of boxes is generated by the previous -bisection- phase and each box is processed

in parallel. The evaluation here includes two phases:

1. The interval inclusion function

2. The subset,intersection and epsilon check

The first phase can be simply described as sending a box to a function and return another

box or a simple interval. This function as will be mentioned further here can be in the form
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Figure 3.2: A benchmark comparing the Bisection operation processing time between a
sequential implementation on a core i7 5820k and a parallel one with an RTX 3060Ti. At
1024/2048 boxes (red square area) the GPU is faster. The GPU used is from my home
setup; jitter is produced as the DEVICE is also being utilized by the OS and can be noticed
in 1 and 8192 boxes.

of a neural network. In the latter case, it is simply a forward pass. The second phase is

usually split into a three-if clause that determines whether the resulting interval(or box) is

part of the solution. If the second phase is left the way it is usually implemented it would

create warp divergence in the GPU and that would be a performance hit. The solution

proposed for efficient parallelization calculates the inclusion with boolean operations,

thus every GPU thread in a warp perform the same operation at any given time and no

warp rescheduling is needed. Figures 3.3 and 3.4 illustrate a code comparison for the

box set evaluation between a sequential algorithm with the Ibex C++ Interval Library[42]

and a parallel non divergent one. fxy represents an interval object which was returned

by an inclusion function.

3.3.3 Parallel Reduction

The main ideas for the parallel reduction are derived from Mark Harris’s Optimizing

Parallel Reduction in CUDA presentation[43]. This step is required only by the 3rd problem

described in Section 3.4.2. The implementation was provided by the CUDA Samples

repository[41], more precisely, of the eight variations provided, the third one was picked
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Figure 3.3: A sequential code snippet using the Ibex C++ library. Some parts have been
removed for simplicity.

Figure 3.4: A code snippet from the CUDA C++ Parallel proposed implementation. fxy has
a different value for every thread.

for its efficiency and simplicity of the code structure. The other variations did not provide

any significant improvement given the vector size needed for the problem. To explain

more, the 3rd problem requires the calculation of a sum and each CUDA thread calculates

and stores its own partial sum. For the parallel reduction technique to function properly,

the vector that holds the summations has to be of size n that is a power of 2. Since a

CUDA GPU does not (yet) contain threads by a factor of millions, the vector is not large

enough to benefit from more complex techniques. A simple reduction algorithm is good

enough. Figure 3.5 depicts the parallel algorithm deployed given a vector with size n = 16.

3.3.4 Single and Multiple GPU(s)

One important detail of the proposed implementation is that it is designed to work with

both single and multiple GPU setups. This is possible because of the strategy deployed

for sending work (boxes) towards the GPU(s). Two limitations are involved when sending

work; the first involves the memory transfer times to and from the selected GPU DEVICE.

To minimize transfer times one only needs to send a single box to the DEVICE at the

beginning of the algorithm. Problems 1&2 of Section 3.4.1 require all generated boxes

to be transferred back to the CPU. Unfortunately this part has not been implemented

more efficiently and the performance hit is visible on Section 3.6.3; On the other hand,

Problem 3 of Section 3.4.2 does not require that transfer operation. The other limitation

is the memory capacity of the GPU. This has been mitigated by pre-bisecting the initial

box on the HOST until the problem can fit in the global memory of the DEVICE. The
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Figure 3.5: Conflict-free sequential addressing parallel reduction which guarantees coa-
lesced memory accesses.

time needed for this pre-bisection is trivial since only a small number of boxes need to

be generated. This results in multiple GPU executions. The same idea can be applied

to multiple GPU devices. There are two ways to handle a multi-GPU implementation. A

single or multiple CPU threads can be used to handle the communication between the

HOST and the DEVICES; the latter is used in this thesis. The initial box is pre-bisected

until the number of boxes is equal or greater to the number of threads (usually no more

than 8). Then they are evenly distributed between threads and the algorithm functions

in a MIMD fashion. If the number of available GPU devices is a multiple of 2 then work

can be easily evenly distributed, otherwise boxes are distributed in a round-robin manner

resulting in some threads to process more work. Using Equation 3.3, we can calculate

the number of pre-bisections -and executions on the GPU- required so that the problem

fits a GPU’s global memory.

Number of PreBisections = ceil

(
log2

(Number of Boxes

GPU Capacity
+ 1

))
(3.3)

It should be noted that the GPU Capacity in this context is the amount of available global

memory in boxes. To calculate it we need amount of available global memory in bytes

which is returned by the CUDA context. The amount of memory required by a box in bytes

is calculated by multiplying the amount of memory each variable requires times 2 (as an

interval is defined by two variables) times the number of dimensions N of the interval

vector. Equation 3.4 demonstrates this notion using 4-Byte floating point variables.

GPU Capacity(Boxes) =
GPU Capacity(Bytes)

2 ∗ 4(bytes) ∗ N
(3.4)
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3.4 Problems

3.4.1 Problems 1 & 2: 2D Torus and Griewank functions

The first two problems are very trivial (they require a very few execution cycles per

box) and were used mainly for benchmarking purposes during the development of this

algorithm. For them to be of essence however, both problems will be considered solved

when all generated boxes are labeled and transferred back to the HOST. That way it

is verifiable that the program returned valid results. Notice that in Figures 3.7 & 3.8

the boxes are of equal size compared to Figure 3.6. The 2-dimensional Torus interval

inclusion function is described by

[f ]([x]) = [x]2 + [y]2
(3.5)

and the initial box X0 is bound between [x0] = [−1.5, 1.5], [−1.5, 1.5]. The solution set Y

was set [y] = [1, 2] and different ϸ values were tested. Continuing on, the 2-dimensional

Griewank interval inclusion function is defined as

[f ]([x]) =
2∑

i=1

[x]2

i

4000
−

2∏
i=1

cos

(
[x]i
√

i

)
+1 (3.6)

and the bounded input space X0 was set in [x0] = [−10, 10], [−10, 10]. Y was set between

[y] = [1.5, 3] and, as with the Torus function, different ϸ thresholds were tested. The

figures of this section were created with the VIBES GUI toolkit[44].

(a) 2D Torus (b) 2D Griewank

Figure 3.6: The Input space of the 2D Torus function produced by the sequential SIVIA
algorithm. The boxes have different sizes because of a dynamic tree expansion strategy.

3.4.2 Problem 3: Estimating the Generalization Performance of a Neural

Classifier

As we saw in Section 2.2.5, the generalization of a network architecture is measured

by estimating the error of classification on previously unseen data. A very common

technique used for its estimation is cross-validation. Adam et al.[22][45][4] claim that
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(a) ϸ = 0.1 (b) ϸ = 0.01

Figure 3.7: The Input space of the 2D Torus function produced by the proposed parallel
algorithm. Smaller epsilon values provide more accurate approximations.

despite the fact that attempts have been made to prove that cross-validation results

in a consistent estimator of the learning algorithm’s generalization, it seems that this

approach does not sufficiently define generalization. Several causes for this problem

are related to the difference of the distribution generating test patterns during cross-

validation from the distribution of the off-training set defined by real-world processes.

Another reason for questioning the efficiency and unbiasedness of cross-validation is

the stochastic splitting into folds, while, to a lesser extent, one may consider that cross-

validation is computationally intensive since it requires the training process to be repeated

several times. They instead propose an alternative solution using IA methods, mainly

SIVIA. The proposal was in the form of a sequential algorithm (as SIVIA is traditionally

implemented) and this means that it either required large amounts of execution times

or lower-quality approximations (high ϸ values) had to be generated. [4] introduces three

metrics, namely Gnet , Enet and Mnet . The latter of the three is a combination of the first two.

In this thesis only Gnet is used as the purpose is the demonstration of a parallel alternative

for its calculation. The thought behind Gnet is the assumption that the larger the domain

of validity of a classifier, the bigger its volume and so the higher the probability for some

unknown pattern to be in this area and be classified. Hence, the necessary condition

for some unknown pattern to be classified by the network is to lie within the domain of

validity of its respective class. It is computed with the following equations:

Gnet =
Vnet

Vinput
−

l

P
, (3.7)

where l is the number of misclassified or unclassified patterns and P is the total number

of patterns. The volume of the solution set for all classes C is given by

Vnet =

M∑
i=1

Vi , (3.8)
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(a) ϸ = 0.4 (b) ϸ = 0.2

Figure 3.8: The Input space of the 2D Griewank function produced by the proposed parallel
algorithm. Smaller epsilon values provide more accurate approximations.

with Vi as the partial volume of the set of boxes that classified into class Ci (part of the

solution set), given an output interval Yi = [1 − �, 1]. � is an arbitrary scalar usually set

between [0.1, 0.2] (should not be confused with intervals). Vinput is the volume of the X0

hyperbox. Given a classification problem it can be described with the size of each feature

of the training data.

Vinput =

N∏
i

|xmax
i − xmin

i | (3.9)

Given all the above, to test the performance and scalability of the parallel proposal

one only needs to calculate a partial sum Vi as it is the only variable in the equation

directly dependent on the generated boxes. Vinput only needs to be computed once for a

given NN; the same goes for
l
P . Finally, the Neural Network used as the inclusion is a

pre-trained 6-30-2 MLP, using the Levenberg-Marquardt algorithm with early stopping,

in the Vertebral Column
3

dataset[46] and was provided by Professor Adam himself. The

� value used is 0.2, resulting in a window Y = [0.8, 1]. More details of the model can be

found in Section 5.1.5 of [4].

3.5 Test Environment

For the performance tests, 4 different systems have been deployed, provided by differ-

ent entities. Reading Table 3.1 from top to bottom; The first system is my home desktop

setup, the second, namely the DaVinci system, was provided by Microlab of ECE-NTUA;

the 3rd is owned by the Laboratory for Computing of the CEID department at the Uni-

versity of Patras. The final setup is a multi-configuration system part of the Google

3
The biomedical data of 310 patients are used for two possible classification tasks. The second task was

retained, where the categories Disk Hernia and Spondylolisthesis of the first task are merged into a single

category labeled as abnormal. So, this task consists in classifying patients as belonging to class Normal (100

patients) or Abnormal (210 patients).
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Collaboratory’s subscription service.

CPU Memory GPU

Intel Core i7 5820K @ 4.3Ghz (OC) 30GiB DDR4 NVIDIA RTX 3060 Ti PCIe 8GB

2x Intel Xeon Gold 5218R @ 2.10Ghz 128GiB DDR4 NVIDIA Tesla V100 PCIe 32GB

2x AMD EPYC 7742 @ 2.25Ghz 1026GiB DDR4 8x NVIDIA A100 PCIe 32GB

Unknown (depends on the session) ≥ GPU Memory
NVIDIA Tesla V100 PCIe 16GB

NVIDIA A100 PCIe 32GB

Table 3.1: A summary of the configurations used in the benchmarks.

3.6 Results

The comparison is made between intervals of FP32 (float) and CUDA FP16 (half) vari-

ables. The Epsilon values for problem 1 and 2 range between 1e − 2 and 1e − 4, while

for problem 3 it ranges between [0.1, 0.03]. The smallest possible number a half variable

can store is 5.96×10
8

and is way smaller than the ϸ values used in the tests. Thus, even

if some accuracy is missing from some operations, the approximations will still become

more accurate as ϸ decreases. In addition, the primary purpose of problem 3 was to use

the method to compare different neural networks, so all of them would get rated with the

same accuracy. The tests measure the speedup.

Speedup = Ts/Tp , (3.10)

where Ts is the real execution time, in seconds, of the sequential algorithm and Tp of the

parallel one; the throughput, which in our case will be given by

Throughput =
Boxes Processed

Execution Time
, (3.11)

and finally various causes will be explored using the profiler of the NVIDIA Nsight Compute

suite
4

in order to explain the behavior of the proposed parallel algorithm in all three

problems. While the general good practice is to perform multiple executions and average

the measured time, intensive tests were run instead so that delays attributed to system

calls and synchronization take a trivial percentage of the execution time, far from reducing

the integrity of the measurements. The plots were created using the Seaborn
5

Python

module.

3.6.1 CPU Implementation

The sequential implementation used on the CPU has been written with the Ibex Nu-

merical and Interval Arithmetic C++ library[42]. This implementation uses double pre-

cision variables for the intervals and is written to perform well in a sequential context.

The BB tree is expanding dynamically, depth-first, as only boxes with width > ϸ which

4https://developer.nvidia.com/nsight-compute
5https://seaborn.pydata.org/
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are not part of the inner/outer approximation are bisected. So the problem sizes between

implementations will be vastly different.

3.6.2 Problem size

Figures 3.9, 3.10 showcase the amount of boxes generated as well as the rate of

increase by each inclusion function as ϸ decreases. There are missing values in Figures

3.10a, 3.10b because the CPU execution did not exit successfully due to time constraints.

As the nature of the sequential implementation the dynamic generation of the BB tree,

it is not possible (to my knowledge) to mathematically calculate the number of boxes a

priori. However, a very similar trend can be noticed when compared to Figures 3.9a and

3.10b.

(a) (b)

Figure 3.9: Problems 1 & 2: Number of Boxes Generated (Figure 3.9a). Rate of Box
Generation (Figure 3.9b).

(a) (b)

Figure 3.10: Problems 1 & 2: Number of Boxes Generated (Figure 3.9a). Rate of Box
Generation (Figure 3.9b).
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3.6.3 Speedup

The speedup figures of Problems 1 and 2 show a very disheartening result, depicting

slowdowns (Figures 3.11, 3.12, 3.13 & 3.14) . We can notice, however, an instance where

the parallel algorithm initially performs better (Figure 3.12). Problem 3 on the other

hand shows a completely different picture (Figures 3.15 and 3.16) with speedup values

by a factor of thousands including cases where the performance ceiling has not been

reached (4x & 8x A100). GPU models with less than 40GB of VRAM seem to have reached

that performance ceiling. This might, however, be a consequence of the implementation

and not a property of the respective architectures. One more test was conducted on

Problem 3 with ϸ = 0.03 but the sequential algorithm execution required more than

270 hours. Including this measurement without the program exiting properly would

hinder the reliability of the results. That test, using 8 A100 GPUs required approximately

4 minutes, therefore we can be sure that the speedup value would not vary by a lot

compared to the already depicted outcomes.

Figure 3.11: The speedup plot of the Torus inclusion function using float variables.
ϸ = [1e − 2, 1e − 5]

3.6.4 Throughput

Contrary to the worst scenarios depicted on the speedup figures, the throughput,

meaning the boxes evaluated compared to the total time required, shows that performance

improvements in fact do exist. Increases might seem marginal in many cases due to

the figures being in logarithmic scale. Figures 3.21, 3.22 lack the ϸ = 0.03 CPU time

measurement. Multi-GPU executions display an overhead with smaller problem sizes.
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Figure 3.12: The speedup plot of the Torus inclusion function using half variables.
ϸ = [1e − 2, 1e − 5]

3.6.5 Number of Runs

In this section the amount of GPU executions required per problem and per variable

are depicted. The main trend all figures depict is that the more memory available -by a

multiple of 2- the lesser the amount of DEVICE executions required. This is in line with

the bisection strategy deployed. Using half variables twice as many boxes can fit into the

Global Memory.

3.6.6 Profiling

The final step to expose the culprit for the slowdowns encountered in Problems 1 & 2

is to use a profiler. We can finally determine (Figures 3.23a, 3.24a) that memory transfer

bottlenecks is what caused the slowdowns (Figures 3.26, 3.27) as cudaMemcpy takes

more than 85% of the total execution time. Problem 3, on the other hand, is bottlenecked

by host-device synchronizations, but as we saw previously (Figures 3.15 & 3.16) the

performance improvements are enormous.

3.7 Discussion

In this chapter, we noticed how SIVIA can be categorized as a Branch-and-Bound al-

gorithm due to the way it generates and explores subproblems. We saw how the problems

of this thesis do not provide any information that can lead to processing prioritization,

resulting in the exhaustive search of the input space. General methods of parallelization
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Figure 3.13: The speedup plot of the Griewank inclusion function using float variables.
ϸ = [1e − 2, 1e − 5]

followed, with GPUs as the primary focus and related background literature was explored.

Finally, the parallelization structure proposed of this thesis was unveiled, using three dif-

ferent inclusion functions. The first two problems included intensive memory operations

that resulted in slowdowns but excluding them on the 3rd problem resulted to executions

more than eight thousand times faster when compared to the sequential algorithm. In

the discussion several other figures and metrics were introduced, including the problem

size and its rate of expansion, the throughput of each configuration as well as results

from an execution profiling software which exposed the aforementioned bottlenecks.
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Figure 3.14: The speedup plot of the Griewank inclusion function using half variables.
ϸ = [1e − 2, 1e − 5]

Figure 3.15: The speedup plot of the Gnet partial sum inclusion function using float vari-
ables. ϸ = [0.1, 0.06]
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Figure 3.16: The speedup plot of the Gnet partial sum inclusion function using half variables.
ϸ = [0.1, 0.06]

Figure 3.17: The throughput plot of the Torus inclusion function using float variables.
ϸ = [1e − 2, 1e − 5]
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Figure 3.18: The throughput plot of the Torus inclusion function using half variables.
ϸ = [1e − 2, 1e − 5]

Figure 3.19: The throughput plot of the Griewank inclusion function using float variables.
ϸ = [1e − 2, 1e − 5]
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Figure 3.20: The throughput plot of the Griewank inclusion function using half variables.
ϸ = [1e − 2, 1e − 5]

Figure 3.21: The throughput plot of the Gnet partial sum inclusion function using float
variables. ϸ = [0.1, 0.03]
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Figure 3.22: The throughput plot of the Gnet partial sum inclusion function using half
variables. ϸ = [0.1, 0.03]
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(a) Float FP32 variables.

(b) Half FP16 variables.

Figure 3.23: Problem 1: Number of Kernel runs.
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3.7 Discussion

(a) Float FP32 variables.

(b) Half FP16 variables.

Figure 3.24: Problem 2: Number of Kernel runs.

Diploma Thesis 71



Chapter 3. Implementation

(a) Float FP32 variables.

(b) Half FP16 variables.

Figure 3.25: Problem 3: Number of Kernel runs.

Figure 3.26: Problem 1: The profiler output with ϸ = 1e − 4
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Figure 3.27: Problem 2: The profiler output with ϸ = 1e − 3

Figure 3.28: Problem 3: The profiler output with ϸ = 0.06
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Chapter 4

Closing Words

4.1 Reproducibility

The code that produced all the plots and the pre-trained models that was used, is

widely available at this GitHub repository. The code provided includes the basic structure

of the parallelization for both single and multiple GPU configurations with only the Neural

Network missing as it is not my intellectual property. Keep in mind that if the sequential

algorithm is ever re-tested, my i7 5820k was overclocked at 4.3GHz and my memory

was tuned at 2666MHz with CAS timing 15 at the time of writing this thesis, that would

explain some variation between my tests and others.

4.2 Conclusion

This thesis proposes a new parallel Interval Arithmetic algorithm. Contrary to previ-

ous work on Branch-and-Bound and other IA implementations, this algorithm is based

on a breadth-first approach, resulting in the aggressive expansion of the input space.

The IA technique accelerated is named SIVIA and, when combined with a neural network,

has the ability to deterministically compute its domain of validity, providing guaranteed

approximations. The parallel approach requires large amounts of memory, however, with

the massive parallelization GPGPU developments of the recent years, particularly thanks

to NVIDIA’s contributions, it seems that when there are no intensive memory transfer or

synchronization operations the performance improvements are quite significant. It is of

importance to mention that the memory bottlenecks introduced in the first two problems

were a subjective requirement to demonstrate the performance changes between the two

cases. If the storage of the boxes is indeed a requirement, the issue could be mitigated by

moving all processing to the DEVICE (e.g. by writing an OpenGL visualization software).

In addition, another very recent development was showcased for evaluating and compar-

ing the generalization performance of Neural Networks as a response to flaws surrounding

cross-validation statistical methods. That technique initially required weeks of sequential

computational time, however, using a modest GPU cluster reduced the runtime to just

four minutes, an eight thousand-fold improvement. It is interesting that when this tech-

nique is used with lower precision variables, the results are not of lesser quality due to the

enormous execution time required to reach that limit. The way a network’s generalization

Diploma Thesis 75

https://github.com/knasiotis/postgraduate_thesis.git


Chapter 4. Closing Words

was estimated comply with commonly known theoretical considerations (e.g. Occam’s

razor) although it is not without its flaws as it is considered a macroscopic measure of the

validity domain, lacking the ability to provided any qualitative characteristics. Initially

two more metrics were proposed to circumvent this issue, however, retrofitting the algo-

rithm to accommodate them constitutes an open issue for future study. The performance

results presented comply with all previous theoretical knowledge of parallel computing

as well as NVIDIA’s best practices guidelines. Using SIVIA with large scale neural models

still remains a challenge due to the exhaustive search required in very large input spaces.

Thus, if we want to broaden our knowledge of neural networks, additional mathematical

techniques should accompany parallelization efforts.

4.3 Future Work

Research on B&B techniques and SIVIA is far from exhausted. Beyond comparing the

results presented here with previous MIMD or finer-grained CUDA approaches, there are

many other ways to move on from this work. This thesis, for instance, set the requirement

for the storage of the resulting boxes of the first two problems for visualization and, conse-

quently, verification purposes. The problem of the costly memory transfers, in this case,

could be easily mitigated by implementing a visualizing tool using common graphics APIs

such as OpenGL. Another interesting idea would be to combine past MIMD parallelization

methods with the one proposed here. This is far from new, however, as many interval

GPU implementations of the past utilized the DEVICE with multiple execution streams to

perform finer-grained inclusion function passes, but none of those propositions included

a parallel bisection method. This parallel bisection method could be used to generate

larger problem sizes efficiently, ideally not as large as the current implementation which

brutally expands the BB tree, for equal workload distribution and benefit from smaller

problem sizes at the same time, further increasing speedups. Another idea would be to

consider a method after the box evaluation that would result in a vector containing only

the boxes that require further bisection, shortening the search window with every itera-

tion, minimizing the search tree (in a more lax definition). Finally, modern technologies

such as Julia could be explored and compare its efficiency to current implementations.

Of course, this is not suggested in a vacuum, as in the SWIM 2023 conference there was

a presentation regarding Interval Arithmetic in GPUs using the Julia language[47].
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Appendix A

A more detailed look on Problem 3

The technique mentioned in Section 3.4.2 is only one of the three metrics of the orig-

inal paper[4]. The Gnet which was discussed is considered a macroscopic measure as it

is based on the whole volume of the validity domain and the total number of misclassi-

fied/unclassified patterns. This is not a problem when under-training a model as this

can be detected simply by looking at the training error, but it is very tricky when con-

sidering over-training. So a second measure namely Enet was proposed which takes into

account local information of the domain of validity, as it considers for each valid box both

its volume and its performance. The performance in this case means the evaluation of

training patterns inside a box, whether they are correctly classified or not. It is important

to mention that it would potentially require a different parallelization strategy, therefore

accelerating this measurement is a subject of a potential future study. This measure

tends to consider hyper-boxes based on the density of correctly classified patterns and

results in the following effects:

• It deals with overlapping between classes.

• It rejects regions of the domain of validity that do not contain any pattern. These

areas are taken into account by Gnet but they do not contribute to the local behavior

of the decision surface between classes.

• It favors the volume of hyper-boxes with classification performance.

The third bullet point means that Enet provides lower values in the case of over-training.

Consequently, Enet acts as a complementary metric to Gnet .

The third metric is named Mnet with the purpose of effectively combining both Gnet and

Enet . It is computed by

Mnet = Gnet tanh(Enet).

The hyperbolic tangent is used to transform Enet into the interval [−1, 1] so that they are

of the same scale as the Gnet . In the case where Enet is negative, wrong classifications are

expected to be higher than correct ones, thus the network is poorly trained. This results

in negative Mnet values and is indicative of an unacceptable network.

The original paper has some very interesting figures, visualizing the formation domain

of validity in different cases. Consider an artificial dataset of two classes (Figure A.1).

Different MLP configurations were trained in this dataset, using logistic sigmoid activation
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functions. Figure A.2 illustrates the ways the domain of validity is formed when adjusting

the � value of the output interval [1 − �, 1]. Regions in red are regions categorized in one

of the two classes. Figure A.3 depicts the formation of the domain of validity in regards

to the quality of a network’s training. We can conclude that the � value should be chosen

carefully, otherwise we would end up with a skewed perception of the input space.

Figure A.1: An artificial dataset of two classes.

(a) When the output interval is [0.999, 1] (b) When the output interval is [0.9, 1]

Figure A.2: Depiction of the � cut affecting the domain of validity.
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(a) Domain of validity resulting from successfully training a 2-4-2 MLP.

(b) Domain of validity resulting from under-training a 2-2-2 MLP.

(c) Domain of validity resulting from over-training a 2-25-2 MLP.

Figure A.3: Depiction of training affecting the domain of validity using the same � value.
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Detailed Results

DEVICE | Epsilon 1e-2 1e-3 1e-4 1e-5

RTX 3060 Ti 8GB 6 799 4461 383811

TESLA V100 16GB 3 144 5241 372590

TESLA V100 32GB 2 128 8338 375094

A100 40GB 2 136 8616 376657

A100 40GB x2 236 540 8483 429352

A100 40GB x4 800 1107 8808 346272

A100 40GB x8 1971 2376 10730 321001

Table B.1: Problem 1: GPU Execution time(ms) using FP32 Floating-point variables.

DEVICE | Epsilon 1e-2 1e-3 1e-4 1e-5

RTX 3060 Ti 8GB 4 67 3303 204567

TESLA V100 16GB 1 76 5142 200305

TESLA V100 32GB 1 67 4309 204084

A100 40GB 1 73 4561 208053

A100 40GB x2 403 349 7261 227864

A100 40GB x4 731 1054 4965 175196

A100 40GB x8 2173 2250 7475 319831

Table B.2: Problem 1: GPU Execution time(ms) using FP16 Floating-point variables.

DEVICE | Epsilon 1e-2 1e-3 1e-4 1e-5

RTX 3060 Ti 8GB 37 3625 103437 6463740

TESLA V100 16GB 39 5373 98936 6071450

TESLA V100 32GB 39 8174 101878 6070690

A100 40GB 35 8661 107348 5940950

A100 40GB x2 430 10120 103124 6964450

A100 40GB x4 760 11784 105390 3635880

A100 40GB x8 2172 12447 204537 4227760

Table B.3: Problem 2: GPU Execution time(ms) using FP32 Floating-point variables.
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DEVICE | Epsilon 1e-2 1e-3 1e-4 1e-5

RTX 3060 Ti 8GB 19 3132 57052 3499940

TESLA V100 16GB 22 4842 55501 3290443

TESLA V100 32GB 17 4298 58348 3271100

A100 40GB 19 4594 64817 3177030

A100 40GB x2 292 5616 57560 3605100

A100 40GB x4 853 5420 82124 1905760

A100 40GB x8 2100 7401 156883 2217960

Table B.4: Problem 2: GPU Execution time(ms) using FP16 Floating-point variables.

DEVICE & Problem | Epsilon 1e-2 1e-3 1e-4 1e-5

CPU Torus 3 26 208 3546

CPU Griewank 29 468 3818 30732

Table B.5: Problem 1 & 2 : CPU Execution time(ms) using the sequential algorithm.

DEVICE | Epsilon 0.1 0.06 0.03

RTX 3060 Ti 8GB 3424 211982 13148015

TESLA V100 16GB 1725 108296 6900080

TESLA V100 32GB 1864 116637 7374800

A100 40GB 1032 62783 3939303

A100 40GB x2 860 31260 1972117

A100 40GB x4 1393 16471 10179

A100 40GB x8 2180 10179 494029

Table B.6: Problem 3: GPU Execution time(ms) using FP32 Floating-point variables.

DEVICE | Epsilon 0.1 0.06 0.03

RTX 3060 Ti 8GB 2041 114540 7463943

TESLA V100 16GB 1599 99614 6373648

TESLA V100 32GB 1618 100648 6441754

A100 40GB 641 36130 2274617

A100 40GB x2 587 18030 1123189

A100 40GB x4 1254 9854 561906

A100 40GB x8 2073 6772 282741

Table B.7: Problem 3: GPU Execution time(ms) using FP16 Floating-point variables.

DEVICE | Epsilon 0.1 0.06 0.03

CPU 1710086 54028750 


Table B.8: Problem 3: CPU Execution time(ms) of the sequential algorithm.
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DEVICE | Epsilon 1e-2 1e-3 1e-4 1e-5

RTX 3060 Ti 1 1 4 1024

TESLA V100 16GB 1 1 2 512

TESLA V100 32GB 1 1 1 256

A100 40GB 1 1 1 128

A100 40GB x2 1 1 1 64

A100 40GB x4 1 1 1 32

A100 40GB x8 1 1 1 16

Table B.9: Problem 1: Number of kernel executions using FP32 Floating-point variables.

DEVICE | Epsilon 1e-2 1e-3 1e-4 1e-5

RTX 3060 Ti 1 1 2 512

TESLA V100 16GB 1 1 1 256

TESLA V100 32GB 1 1 1 128

A100 40GB 1 1 1 64

A100 40GB x2 1 1 1 32

A100 40GB x4 1 1 1 16

A100 40GB x8 1 1 1 8

Table B.10: Problem 1: Number of kernel executions using FP16 Floating-point variables.

DEVICE | Epsilon 1e-2 1e-3 1e-4 1e-5

RTX 3060 Ti 1 4 256 16384

TESLA V100 16GB 1 1 128 8192

TESLA V100 32GB 1 1 64 4096

A100 40GB 1 1 32 2048

A100 40GB x2 1 1 16 1024

A100 40GB x4 1 1 8 512

A100 40GB x8 1 1 4 256

Table B.11: Problem 2: Number of kernel executions using FP32 Floating-point variables.

DEVICE | Epsilon 1e-2 1e-3 1e-4 1e-5

RTX 3060 Ti 1 2 128 8192

TESLA V100 16GB 1 1 64 4096

TESLA V100 32GB 1 1 32 2048

A100 40GB 1 1 16 1024

A100 40GB x2 1 1 8 512

A100 40GB x4 1 1 4 256

A100 40GB x8 1 1 2 128

Table B.12: Problem 2: Number of kernel executions using FP16 Floating-point variables.
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Appendix B. Detailed Results

DEVICE | Epsilon 0.1 0.06 0.03

RTX 3060 Ti 8 512 32768

TESLA V100 16GB 4 256 16384

TESLA V100 32GB 2 128 8192

A100 40GB 2 128 8192

A100 40GB x2 1 64 4096

A100 40GB x4 1 32 2048

A100 40GB x8 1 16 1024

Table B.13: Problem 3: Number of kernel executions using FP32 Floating-point variables.

DEVICE | Epsilon 0.1 0.06 0.03

RTX 3060 Ti 4 256 16384

TESLA V100 16GB 2 128 8192

TESLA V100 32GB 1 64 4096

A100 40GB 1 64 4096

A100 40GB x2 1 32 2048

A100 40GB x4 1 16 1024

A100 40GB x8 1 8 512

Table B.14: Problem 3: Number of kernel executions using FP16 Floating-point variables.
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List of Abbreviations

AI Artificial Intelligence

API Application Programming Interface

BB Branch and Bound

CPU Central Processing Unit

CU Compute Unit

DL Deep Learning

GPGPU General Purpose Graphical Processing Units

GPU Graphical Processing Unit

GUI Graphical User Interface

IA Interval Arithmetic

ILP Instruction-Level Parallelism

MIMD Multiple Instructions Multiple Data

MISD Multiple Instructions Single Data

MLP Multilayer Perceptron

ML Machine Learning

MP Multiprocessor

NN Neural Network

NUMA Non-Uniform Memory Access

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Threads

SISD Single Instruction Single Data

SIVIA Set Inversion Via Interval Analysis

SM Streaming Multiprocessor

SP Streaming Processor

TLP Thread-Level Parallelism

UMA Uniform Memory Access

VRAM Video Random Access Memory
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