NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ggs S glAs.rl ON

MSc DATA SCIENCE & MACHINE LEARNING

Accelerating SIVIA (Set Inversion via Interval
Analysis). An Interval Set Membership
Technique to Evaluate the Generalization of

Neural Classifiers.

DipLoMA THESIS

of

KONSTANTINOS NASIOTIS

Supervisor: Dimitrios Soudris
Professor, NTUA

Athens, October 2023

NATIONAL TECHNICAL UNIVERSITY OF ATHENS ON As S|s
ScHooOL OF ELECTRICAL AND COMPUTER ENGINEERING FOUN D ATION

MSc DATA SCIENCE & MACHINE LEARNING

Accelerating SIVIA (Set Inversion via Interval
Analysis). An Interval Set Membership Technique to

Evaluate the Generalization of Neural Classifiers.

DipLoMA THESIS
of

KONSTANTINOS NASIOTIS

Supervisor: Dimitrios Soudris
Professor, NTUA

Approved by the examination committee on 02/11/2023.

(Signature) (Signature) (Signature)

Dimitrios Soudris Sotirios Xydis Adam Stavros
Professor, NTUA Assistant Professor, NTUA Assistant Professor, UOI

Athens, October 2023

NATIONAL TECHNICAL UNIVERSITY OF ATHENS ON As SIS
SCcHOOL OF ELECTRICAL AND COMPUTER ENGINEERING FOUN D ATION

MSc DATA SCIENCE & MACHINE LEARNING

Copyright (C) - All rights reserved.

Konstantinos Nasiotis, 2023.

The copying, storage and distribution of this diploma thesis, exall or part of it, is prohibited
for commercial purposes. Reprinting, storage and distribution for non - profit, educational
or of a research nature is allowed, provided that the source is indicated and that this

message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work
/ contributions of third parties for which the permission of the authors / beneficiaries is
required and are not a product of partial or complete plagiarism, while the sources used
are limited to the bibliographic references only and meet the rules of scientific citing. The
points where I have used ideas, text, files and / or sources of other authors are clearly
mentioned in the text with the appropriate citation and the relevant complete reference
is included in the bibliographic references section. I fully, individually and personally
undertake all legal and administrative consequences that may arise in the event that it is
proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

(Signature)

Konstantinos Nasiotis
19/10/23

Abstract

Set Inversion via Interval Analysis (SIVIA) is a mathematically rigorous Branch-and-
Bound technique, capable of deterministically providing guaranteed inner and outer ap-
proximations, given a bounded output interval and an inclusion function. Neural Net-
works (NNs), when performing a forward pass, in their most basic form are described by
addition, multiplication and trigonometric operations. This means that a neural network
can be quite portable to develop and should theoretically be easy to combine with other
algorithms and hardware. In a classification context, using a Neural Network with SIVIA
can provide us with guaranteed approximations of the input space recognized by a given
class. This is useful in the visual sense, similarly to the way a fitted line is visualized in a
Linear Regression problem, as measures like R? do not constitute an absolute indicator
of the quality of the fit. In addition, this information can be used to extract new metrics
to help us understand the quality of a Network’s training, such as its generalization per-
formance. Combining SIVIA with NNs, however, results in a very demanding problem,
as both large input spaces and computationally intensive functions (if the NN is large
enough) are required to obtain a solution. This is why a parallel approach is proposed in
this thesis, utilizing the massive amount of threads embedded into Graphical Processing
Units, is proposed. The effectiveness of the proposed parallel algorithm is demonstrated
on three different problems, with different hardware configurations and different data
management strategies. Results indicate performance ranging from slowdowns to 8000
times the speedup compared to the sequential algorithm for the test problems and prob-
lem sizes used. Analysis shows that the GPU accelerated implementation is very sensitive
to memory transfer and synchronization operations. It is concluded that for problems
with large computational intensity, given sufficient available memory and proper mem-
ory management, use of the method presented has the potential of yielding significant

speedups.

Diploma Thesis ﬂ

IlepiAnypn

H Avtiotpodr Zuvodou péom Avaduong Atactnpdiev (Set Inversion Via Interval Analysis-
SIVIA) eivatl pia anmattntiky pabnpatikin TeXVIKG Mou ouvhO®g XPnotpomoleital og mpo-
BAnnata PeAtotornoinong kat avayetat otg exvikeg Branch-and-Bound, pia katnyopia
aAyopiBumv rmou xpnotpornolovy otpatnyiky Awaipet kat Baoideue pe otdxo v e§epevvnon -
oUVNOKG APKETA NEYAADV- XDPKDV £10060U. AUTH 1] TEXVIKT £XEL TNV Suvatdtnta va rpoodEpet
£CA0PAAOPEVEG EOMTEPIKEG KAL EERTEPIKEG TIPOOEYYIOELS £vOg ediou oplopou, debopévav -
vog draotrjpatog tou nediou TpeV Kal plag ouvaptnong eykAeiopou. Ta Nevpovika Aiktua,
Katd 1o ePrpoodio meEpaocpa, arnotedouvidl ano Ipoobeoelg, moAdarndaciacpoug Kat tpt-
YWVOUETPIKEG OUVAPTIOELS. AUTO onpaivel MG Ye@pnTika 1 XPHon Kal 1 Petadopd evog
NeupovikoUy AIKTUOU e AAAEG TEXVIKEG KA1 UTOAOY10TIKOUG £GOTTAIO0UG eivat eUKO0Ar. [pa-
KTIKA, Og TIPoBATjIata Katnyoptlornoinong, n xpnon evog Neupwvikoy Aktuou oe cuviuaocpid
pe) texvikn SIVIA purnopei va rpoodépet £§aopaliopéveg MPOOEYYiong ToU XOPOU £10080U
6edopévng plag katnyopiag. Autd eivatl Xprjotpo and Ty OITIKI] OKOId, OMKG AVIioTol-
xa oe mipoBAnpata Fpappikng ITadvdpdpnong xpetddetal va OmTiKOIOCOUHE TV YPaun
naAvdpounong Kadog PETPIKES Orwg 1o R? 8ev armotedouv andAutr évbei€n moldtntag mpo-
oappoyrg. EmmnpooBeta, n mAnpodopia rmou rmapdyeral HEO® aUtng g TEXVIKLNG PITopet va
XpnotporonOel yia v Snpioupyia vE@v PEIPIKGOV O1 OTT0iEG PITOPOUV va cupBAAAouv otV
Babutepn katavonorn g pdbnong evog veupmvikou Siktuou. O ouvduaopog g TEXVIKNG
SIVIA pe éva Neupwvikd AlKtuo propel va anotedéoel éva apKeTd anattnuko npoBAnpa,
KaBwg xperadovial UTTOAOY10TIKA ATIAlTTIKOT UTTOAOY10[01 (OTrv MEPIntor Xp1jong evog pe-
yaAou 61ktuou) oe cuvduaoo PE TEPACTIOUS XWPOUG £10080U yid TV EUPEOT) AUONG. ZUVETRG,
oe auty 1) Simdepatk) epyacia npoteivetal pia mapdAAnAn mpoocEyyior), eKPETAAAEUOIEVT)
TOV yiyavtiaio apiOpo vnpdtev mou spnepiéxovial o pia povada eneepyaciag ypapikov
(GPU). H amodotikotnta g mpotevopevng napdAAnAng npooeyylong napouoiadetatl o ipia
Sragopetikda poBAfjata, oe §1aPOPETIKA UTIOAOYIOTIKA CUCTHATA KAl §1adOpETIKEG oTpa-
mykng daxeipiong dedopévov. Ta anotedéopata aveéde§av ermddooeilg anod ermBpaduvoeig
péxpt erutayxuvon kata 8000 gopég. H mepattépw avdAuon aveébeile mmg 1 mpotelvopevn
napdAAndn vldornoinon sivat evuaiodnin oug petapopig Sebopévov KaBOG KAl 0TovV oUYXPOo-
Viopo pe v Kevipikr povdada enefepyaoiag (CPU). Zuprnepaocpatkd, yia rnpoBArpata pe
UYPNAEG UTTOAOY10TIKEG artattijoelg, dedopévou enapkroug S1abéoing pPvnpng Kat KatdAAnAng

Sdlaxeiplong, n xpnon g pebodou £Xel TV TIPOOITTIKI] Y1 MEPATEP® EMMTAXUVOELS.

Diploma Thesis E

To the person reading this.

Acknowledgements

I would like to express my sincere gratitude to Professors Dimitrios Soudris and
Stavros Adam for their supervision and mentorship. Continuing on, I am extremely
grateful to the ONASSIS Foundation for providing me with a scholarship for postgraduate
studies, a valuable resource which allowed me to remain a full-time student. I would
also like to express my gratitude towards Dr. Dimosthenis Masouros for his valuable
suggestions and comments during this whole year as well as Dr. Georgios Zervakis and
Professor Panagiotis Hadjidoukas for granting me access to expensive high-performant
graphical computational hardware. Finally, I want to thank my network of friends and
family that supported me throughout this whole year, emotionally and materially. Things

would be way harder without everyone’s encouragement.

Athens, October 2023

Konstantinos Nasiotis

Diploma Thesis

Contents

Abstract

Mepidnyn

Acknowledgements

List of Abbreviations

1 Introduction

1.1 English e
1.2 EAANVIRA . . o v vttt e et e e e e e e e e e e e e e e e e

2 Theoretical Background

2.1 Interval Analysis
2.1.1 Motivation oo e
2.1.2 History« . . e e e e
2.1.3 BasicConcepts o e e e
2.1.4 Set Inversion via Interval Analysis

2.2 Neural Networks e
2.2.1 OVErview
2.2.2 Modelizing Neuronso
2.2.3 Supervised Learning Lo oo
2.2.4 Multilayer Perceptrono
2.2.5 Training Techniques

2.3 Parallel Computingo
2.3.1 Overview e e e
2.3.2 Parallel Design Paradigms
2.3.3 Instruction-level Parallelism
2.3.4 Hardware Multithreading
2.3.5 Classifications of Parallel Computers
2.3.6 Parallel Computing on CUDAGPUs
2.3.7 CUDAWAIPS o v v v ittt
2.3.8 CUDA Memory Architecture
2.3.9 Memory Coalescing e

2.4 Discussion e e e e e e e e e

Diploma Thesis

17

19
19
20

CONTENTS

3 Implementation 49
3.1 Branch & Bound Algorithms 49
3.2 GPU Parallelization of the Parameter Estimation problem 50

3.2.1 Previous Work L e 51
3.3 Parallelization Proposalo 52
3.3.1 Parallel Bisection 52
3.3.2 Parallel Evaluation 0oL 53
3.3.3 Parallel Reduction oL 54
3.3.4 Single and Multiple GPU(s) 55
3.4 Problems e e e e e e e 57
3.4.1 Problems 1 & 2: 2D Torus and Griewank functions 57
3.4.2 Problem 3: Estimating the Generalization Performance of a Neural
Classifier e 57
3.5 Test Environment e 59
3.6 Results e e 60
3.6.1 CPU Implementation, 60
3.6.2 Problemsize e 61
3.6.3 Speedupo e e e e e e e e 62
3.6.4 Throughput 62
3.6.5 Numberof Runs, 63
3.6.6 Profiling 63
3.7 Discussion e e e e e e e e e e 63

4 Closing Words 75
4.1 Reproducibilityo 75
4.2 Conclusion e e e e e 75
4.3 Future Work e e e 76

Bibliography 80

A A more detailed look on Problem 3 81

B Detailed Results 85

List of Abbreviations 89

m Diploma Thesis

List of Figures

2.1
2.2
2.3

2.4
2.5
2.6
2.7
2.8
2.9

12
13
14
15
16

3.2

3.3

3.4

Abox [x] of IR", withn=2and [x] = [x1] X2l 28
Regular paving of a box. The boxes in grey form a regular subpaving. . . . 29

Bracketing of the set S = {()}, y) | x2 +y? €[1,2]}. The frame corresponds to

the box [-2, 2] X [-2, 2]; precision increases from left to right. 29
Tree associated with the regular subpaving of Figure2.2 30
Four situations encountered by SIVIA. 31
Nonlinear model of aneuron., 35
Affine transformation produced by the presence of a bias. 35
A threshold activation function. 36
A sigmoid activation function.00 oo 36
A multilayer perceptron with multiple hidden layers and outputs. 38
Instruction Level Parallelism, I F/D/E stand for Instruction Fetch/Decode/Ex-

ecute, Mem stands for Memory Access and WB for register Write-Back. . . 40
Flynn’s Taxonomy of Computer Architectures. 41
A Collection of Parallel Systems. 42
A Simplified block diagramofa GPU. 43
Simplified block diagram of a HOSTand a DEVICE. 44

An example of a kernel call. partialBisect happens to be the name of the
device function to be executed. L0000 45
A simplified schematic of Grid, Block, Thread and Memory hierarchies of a
DEVICE and the interconnection with the HOST. 47

A Binary Tree split by 4 time periods. Each node is a subproblem or a box.
Each time period represents a Bisection operation (or the result of one). Ty
is dependent on T3, T3 is dependent on T, etc. Boxes of the same level are
independent problems which can be solved very easily in parallel. 53
A benchmark comparing the Bisection operation processing time between
a sequential implementation on a core i7 5820k and a parallel one with an
RTX 3060Ti. At 1024/2048 boxes (red square area) the GPU is faster. The
GPU used is from my home setup; jitter is produced as the DEVICE is also
being utilized by the OS and can be noticed in 1 and 8192 boxes. 54
A sequential code snippet using the Ibex C++ library. Some parts have been
removed for simplicity.o L Lo L 55
A code snippet from the CUDA C++ Parallel proposed implementation. fxy

has a different value for every thread., 55

Diploma Thesis m

LIST OF FIGURES

3.5

3.6

3.7

3.8

3.9

3.14

3.20

3.21

3.22

3.23
3.24
3.25
3.26
3.27

Conflict-free sequential addressing parallel reduction which guarantees co-

alesced MEmMOIy aCCESSES.« . .t ot e e 56
The Input space of the 2D Torus function produced by the sequential SIVIA
algorithm. The boxes have different sizes because of a dynamic tree expan-
sion strategy. L. e 57
The Input space of the 2D Torus function produced by the proposed parallel
algorithm. Smaller epsilon values provide more accurate approximations. . 58
The Input space of the 2D Griewank function produced by the proposed
parallel algorithm. Smaller epsilon values provide more accurate approxi-
mations. L e e 59
Problems 1 & 2: Number of Boxes Generated (Figure 3.9a). Rate of Box
Generation (Figure 3.9b). L 61
Problems 1 & 2: Number of Boxes Generated (Figure 3.9a). Rate of Box
Generation (Figure 3.9b).o 61
The speedup plot of the Torus inclusion function using float variables. € =
[Ile—2,1e—=5] @ e e e e e 62
The speedup plot of the Torus inclusion function using half variables. € =
[Ile—2,1e—5] e e e e e 63
The speedup plot of the Griewank inclusion function using float variables.
e=[le—2,1e—=5] e e 64
The speedup plot of the Griewank inclusion function using half variables.
e=[le—2,1e—5] e e e e e e 65
The speedup plot of the Gy partial sum inclusion function using float
variables. € = [0.1,0.06] 65
The speedup plot of the Gy partial sum inclusion function using half vari-
ables. € = [0.1,0.06] e e e 66
The throughput plot of the Torus inclusion function using float variables.
e=[le—2,1e—=5] e e e e 66
The throughput plot of the Torus inclusion function using half variables.
e=[le—2,1e—=5] e e e e e 67
The throughput plot of the Griewank inclusion function using float vari-
ables. e=[le—2,1e—=5]. e 67
The throughput plot of the Griewank inclusion function using half variables.
e=[le—2,1e—=5] e e e e 68
The throughput plot of the Gy partial sum inclusion function using float
variables. € = [0.1,0.03] 68
The throughput plot of the Gy partial sum inclusion function using half
variables. € = [0.1,0.03] 69
Problem 1: Number of Kernelruns. 70
Problem 2: Number of Kernelruns. 71
Problem 3: Number of Kernelruns. 72
Problem 1: The profiler output withe=1e—-4. 72
Problem 2: The profiler output withe=1e-3. 73
Diploma Thesis

LIST OF FIGURES

3.28 Problem 3: The profiler output with e =0.06. 73
A.1 An artificial dataset of twoclasses. 82
A.2 Depiction of the 8 cut affecting the domain of validity. 82

A.3 Depiction of training affecting the domain of validity using the same S value. 83

Diploma Thesis m

List of Tables

3.1 A summary of the configurations used in the benchmarks.
B.1 Problem 1: GPU Execution time(ms) using FP32 Floating-point variables.
B.2 Problem 1: GPU Execution time(ms) using FP16 Floating-point variables.
B.3 Problem 2: GPU Execution time(ms) using FP32 Floating-point variables.
B.4 Problem 2: GPU Execution time(ms) using FP16 Floating-point variables.
B.5 Problem 1 & 2 : CPU Execution time(ms) using the sequential algorithm. .
B.6 Problem 3: GPU Execution time(ms) using FP32 Floating-point variables.
B.7 Problem 3: GPU Execution time(ms) using FP16 Floating-point variables.
B.8 Problem 3: CPU Execution time(ms) of the sequential algorithm.
B.9 Problem 1: Number of kernel executions using FP32 Floating-point variables.
B.10 Problem 1: Number of kernel executions using FP16 Floating-point variables.
B.11 Problem 2: Number of kernel executions using FP32 Floating-point variables.
B.12 Problem 2: Number of kernel executions using FP16 Floating-point variables.
B.13 Problem 3: Number of kernel executions using FP32 Floating-point variables.
B.14 Problem 3: Number of kernel executions using FP16 Floating-point variables.
Diploma Thesis

85
85
85
86
86
86
86
86
87
87
87
87
88
88

List of Abbreviations

Al

API

BB
CPU
CU

DL
GPGPU
GPU
GUI

ILP
MIMD
MISD
MLP
ML
MP
NN
NUMA
SIMD
SIMT
SISD
SIVIA
SM
SP
TLP
UMA
VRAM

Diploma Thesis

Artificial Intelligence

Application Programming Interface
Branch and Bound

Central Processing Unit

Compute Unit

Deep Learning

General Purpose Graphical Processing Units
Graphical Processing Unit
Graphical User Interface

Interval Arithmetic
Instruction-Level Parallelism
Multiple Instructions Multiple Data
Multiple Instructions Single Data
Multilayer Perceptron

Machine Learning

Multiprocessor

Neural Network

Non-Uniform Memory Access
Single Instruction Multiple Data
Single Instruction Multiple Threads
Single Instruction Single Data

Set Inversion Via Interval Analysis
Streaming Multiprocessor
Streaming Processor

Thread-Level Parallelism

Uniform Memory Access

Video Random Access Memory

Chapter E

Introduction

1.1 English

At the core of many engineering problems is the solution of sets of equations and
inequalities, and the optimization of cost functions. Unfortunately, except in special
cases, such as when a set of equations is linear in its unknowns or when a convex
cost function has to be minimized under convex constraints, the results obtained by
conventional numerical methods are only local and cannot be guaranteed. This means,
for example, that the actual global minimum of a cost function may not be reached, or
that some global minimizers of this cost function may escape detection. By contrast,
Interval Analysis makes it possible to obtain guaranteed approximations of the set of all
the actual solutions of the problem being considered[1]. One IA technique to achieve this
is Set Inversion via Interval Analysis (or SIVIA) which was introduced by Luc Jaulin and
Eric Walter in 1993[2], where an initial Bounded Space gets divided into smaller spaces or
subpavings until a threshold € is reached. This threshold exists because otherwise this
algorithm would bisect the input infinitely. The input space can be multidimensional,
and is called a box when that is the case, whereas the threshold represents the width
of a box, generally its largest dimension. The only pieces missing from this explanation,
are the Interval Inclusion Function and the Solution Set, where the inclusion(meaning
that the inclusion function belongs entirely into the solution set) of the two result in the
aforementioned guaranteed solution approximations. The input space is formed by a finite
set of boxes that are classified into the solution set after their evaluation of an Interval
Inclusion Function. Depending on the e threshold and the width of the initial input space,
the problem size (number of boxes) can grow exponentially large and consequently become
extremely time consuming or even impossible to compute. When using this technique
for optimization, we have the privilege of existing bounds, which imply a prioritization
sequence of the problems to be explored. When trying to solve a different problem where
bounds are missing, as is the case in this thesis, exhaustive search of the input space is
required. This is where mass parallelization, commonly found in GPU devices, can help
reduce the time needed to explore these very large problem spaces.

A GPU is a device which was initially created to accelerate computer graphics. Since
2006, however, NVIDIA provides the CUDA parallel computational platform and program-

ming model, enabling the expansion of the aforementioned parallelization benefits to

Diploma Thesis m

Chapter 1. Introduction

applications beyond computer graphics[3]. Today, CUDA software is used to accelerate
problems such as Simulations, Deep Learning models, Image Recognition, Reinforcement
Learning and is also being used in Large Language Models with platforms like ChatGPT
appearing and becoming the center of public attention. A GPU consists of many Stream-
ing Multiprocessors(SMs) or Compute Units(CUs) which are capable to run hundreds if
not thousands of threads in parallel, the specific configuration depending on the GPU
hardware architecture. This very characteristic is what made these devices so valuable
and is the reason so many ML applications managed to grow so much in scale.

This thesis explores and exploits the capabilities by accelerating SIVIA using single
and multiple GPUs, enabling the exploration of larger input spaces, for more precise
approximations and to challenge larger problems in the future. The main focus is on
a recent development, which uses SIVIA to estimate the generalization performance of
Neural Networks in a deterministic manner, without requiring a train/test split of the
data[4]. The model used is a Multi-Layer Perceptron provided by the author of that paper.
This technique when deployed with a sequential algorithm requires days of execution
time, therefore it could really benefit from an alternative parallel technique. The parallel
algorithm proposed is a coarse-grained approach, meaning that it parallelizes operations

on the data.

1.2 EAAnpvira

Ztov ruprjva moAA®v mpoBANuAtev PUnXavikng eUoews Ppioketal n Auon ouvodev egi-
OMOE®V KAl AVIOMOE®V, KAO®MG KAl 1] BEATIOTONOINOT CUVAPTIOE®V KOOTOUG. AUCTUX®G, Ta
aroteAéopata rou e§ayoviatl arno TUIikeg aplopnukeg pebddoug eivat 110vo torukda 1 propet
Kdl va pnv urapyxouv. Auto onpaivet, yla napadeiypa, nmeg n npaypatik BEAtiotn eAdyion
TP Plag ouvaptnong KOotoug Propet va pnv Bpebet, 1 ot kanowot kabBoAikoi BeAtiotonot-
NG AUTHG TG OUVAPTNONG KOOTOUG UITOPEL va PNV TNV eviomicouv Kabodou. AviOEIwg, 1)
AvdAuor AlaotpAtev KAVel QKT TV §a0PpaAlOPév] IIPOCEYYIOT TOU OUVOAOU OAGV TRV
mbavev Avcewv yia kabe ipoBAnpa. Mia texvikn Avaluong Alaotnpdtev Imou Pnopet va
EMPEPEL TETO1A amoteAéopata ivatl 1 Avtiotpodr] ZuvoAdou péom Avaiuong Alaotnpatev (Set
Inversion Via Interval Analysis-SIVIA) tov Luc Jaulin & Eric Walter(1993), 6mou évag ap-
X1KOG 0p100eTn£VOg XWwP0og Slatpeital 08 PIKPOTEPOUG EMIPIEPOUG XWPOUG PEXPL va Semepaotet
pia Tipn e. Autrn n T UITAPXEL ®OTE 0 aAyoplOpog va pnv diatpet tov Xopo £10060U €1G T0
arnepo. Autdg 0 X®OPOog £10660U PIopel va eivatl moAudiaotatog, Kat avadEPETdl @G KOUTi o
auty T MEPINTRon Kat 1) T € apopd 10 €UPOG TOU KOUTIOU, IO OUYKEKPIHIEVA TO €UPOG
g peyadutepng tou didotaong. To pdvo mou Aeimel ano avt) nmeptypadn, eivat n ou-
vaptnorn eykAeiopou daotnpatev kat 1o nedio tpov. H ekywpnon tewv §vo, evvomviag tnv
AN PN CUPIEPIANYD TOU §1a0TATOg TG CUVAPTNONG EYKAEIONOU 01O £UPOG TOU Tediou Ti-
Bov, 0dnyet oty dSnuioupyia g e§aoPpaliopévng rPoogyylong rou ermvet 1o rpdBAnpa. O
X®pPog €10080uU artotedeital aro £va Menepaopévo mAH00g KOUTIRV, Ta OIoia KAtnyoploItolo-
uvial g Auoelg (epmepiEéxovial oto oUVvoAo AUcE®V) adpotou ekTipnBouv anod pia ouvaptnon
eyrAelopou Slaotnpdtov. AsSopévou pag Oplakhg TIHNG € KAl EVOg €UPOUG TOU APXIKOU

X®wpou €10060u, 10 P€yeB0g Tou TPoBATIaTog (ap18110G KOUTI®V) PIopel va 11eyaA®oet eKOeTL-

m Diploma Thesis

1.2 EAAnvika

KA €£X0VIag WG OUVEIELA TO VA ATtatteital MoAUG PEYAAOG UTIOAOYIOTIKOG XPOVOG 1] AKOI Kat
va eivat aduvato va ekupnOei. ‘Otav xpnotporoleital auty 1 1eXVike oe rpoBAnpata PeAti-
otornoinong, UITApXel T0 MPOTEPNA TOU vad UITAPXOUV avetdld Kdl KAt)tdld opld, Td oroia
ouvrBwg 06nyouv o€ KATOI0 KAVOVA TIPOTEPAIOTNTAG OXETIKA HE TO IOl UTo-TIpoBArjpata
9a mpotpnOouv mpog eriduor. IIpoorabwviag va XpnotHonow)CoULE Tr TEXVIKI] o¢ dtado-
peUKA TPoBATjIata, X@PIg TV UIAPLh TET0RV opiev, aratteital n §aviAntiky avadninon
TOU Xwpou e100dou. Qg ouverela, xperadoviat TeEXViKeS padilkng rnapaiindoroinong, Iou ou-
v10wg Xapaktnpidouv ouokeuig enedepyaoiag ypadpikmv (1] kowag Kapteg F'papikaov-GPUS),
01 OIT0ieg PIOPOUV va oUPBAAAOUV OV PEI®OT TOU ATTAITOUIIEVOU XPOVOU UTTOAOYIOHO0U Kat
Va EMMIPEWPOUV TV €EEPEVVIOT KON PEYAAUTEPOV XOPWV £10060U.

Mia kapta ypadikev eival pia ouokeur) n onoia eixe dnpioupynbei apxikd ya v er-
TAXUVON TOU TOV YPAPIKOV 0TOUG NAEKTPOVIKOUG urtoAoyiotés. H NVIDIA, wotoco, to 2006
avérrtuge v CUDA mdatgpoppa rapddAndng enefepyaoiag, €rmrpenoviag my xXpron v
1810 oxupwv duvatottov rapaAAnAiopou yia epapuoyEg mépa aro ta ypapikd nAeKIpo-
VIKQOV UTIOAOY10T®V. Zrpepd, Aoylopika Baociopéva otnv CUDA é£xouv avartuxBei yua v
ermayuvon spappoyev Ipooopowwong, Babidg Mdabnong, Avayvopiong Ewkovag, Evioxuti-
kg Mdabnong. Emunpdobeta, £xel xpnoporomnOet yia epappoyég Meyddev IM'Awooikev Mo-
VIEA®V, e anotédeopa v idpuon miatpoppev onwg to chatGPT, ot omnoieg Bpiokoviat oto
KEVIPO g ermkapotnrag. Mia kdpta ypagikov arotedeital arod roAuveneiepyaotég(Stream-
ing Multiprocessors-SMs) 1 untoAoyiotikeég povadeg (CUs) ot omoieg £xouv) Suvatotta va
eKTEAE00UV eravioviadeg av oxX1 X1Atadeg enefepyaotikd vipata rapdiinia, v oroiov o
ap1Buog e€aptdrat and v eKACTOTE APXITEKTOVIKT). AUTO XAPAKTINEIOTIKO ATOTEAEL KAl TOV
BaockoteEPO AGYO0 IOU AUTEG 01 CUOKEUEG £ival TO00 TTOAUTIIEG KAOW®G EMETPEYE TV AVATITULT
epappoyov Mnxavikng Mabnong (ML) peydAng kAipaxag.

e auty)) Suddepatkn gpyacia egegpeuvouvial ol npoavapepOeiosg duvartodtnteg, er-
Tayuvovtag 1 1exviki SIVIA xpnoipomnoloviag pia 1 rmeploootepeg KAPTES YPAPIKAV PEPOG
510 POPEUKGV UTTIOAOYIOTIKOV CUOCTNHATOV. LTOX0G TV OIMOi0V 1 EMITEUET TaXUTEP®V XPOVOV
enegepyaoiag npoopépoviag) Suvatotna va e§epeuvnBouv peyadutepa rpoBAnpata oto
péAdov. O KUp1og 0TOX0G G epyaciag eivat oe pia oxeukd npéogatr e&€An, 1 onoia Xpn-
owpornotel tnv texvikn SIVIA yia v eKtipnorn g kavotntag yevikeuong evog Neupwvikou
AIKTUOU € VIETEPPIVIOTIKO TPOTIO, XMPIG va aratteital 1ax®p1iopog ouvolou eknaibeuong
Kat enalnBesvong ota Sedopéva. To poviedo mou Ypnowporoteital ivat éva moAverinedo
Perceptron 1o o1oio 10 rapeiyxe mpo-eKnAbeUEVo 0 ouyypadEag g MP®IOTUING Epyaociag.
Autr 1 TeEXVIK 0tav eKtedeital oelplakd xpetaletal NUEPES UTTOAOYIOHOU Yld va EIMOTPEYEL
TV AUOoT), OUVEN®S da PMOPOoUce va Kepdioel aro pia evaAAaktikn rapdAAndn texvikr. O
rapdAAndog aAdyopiBpiog mou mpoteivetal 0 AUtV TV gpyacia anotedel pia mpoogyyion
«XovBpou-KOKKOU» (coarse-grained), evvowviag tnv napaiAndomnoinon tev Siadikaciov ota

bdedopéva.

Diploma Thesis m

Chapter E

Theoretical Background

2.1 Interval Analysis

2.1.1 Motivation

In elementary mathematics, a problem is “solved” when we write down an exact solu-
tion. We solve the equation
X +x-6=0

by factoring and obtaining the roots x; = —3 and x = +2. Few high school algebra
teachers would be satisfied with an answer of the form “One root lies between -4 and
-2, while the other lies between 1 and 3”. We need not look far, however, to find even
elementary problems where answers of precisely this form are appropriate. The quadratic
equation

x*-2=0

has the positive solution V2. The number it designates cannot be represented exactly with
a finite number of digits. Indeed, the notion of irrational number entails some process of
approximation from above and below. Archimedes (287-212 BCE) was able to bracket ©
by taking a circle and considering inscribed and circumscribed polygons. Increasing the
numbers of polygonal sides, he obtained both an increasing sequence of lower bounds
and a decreasing sequence of upper bounds for this irrational number. Aside from irra-
tional numbers, many situations involve quantities that are not exactly representable. In
machine computation, representable lower and upper bounds are requires to describe a
solution rigorously. The need to enclose a number also arises in the physical sciences.
Since an experimentally measured quantity will be known with only limited accuracy, any

calculation involving this quantity must begin with inexact initial data. Newton’s law
F=ma

permits us to solve for the acceleration a of a body exactly only when the force F and
mass m are known exactly. If the latter quantities are known only to lie in certain ranges
like

Fo—AF < F < Fy + AF

Diploma Thesis m

Chapter 2. Theoretical Background

mg—Am<m<mg+Am

then a can only be bounded above and below:
aas<ay

It is easy to determine how @; and a,, depend on Fy, my, AF, and Am. For more complicated
relations ordinary algebra can be cumbersome. In Interval Analysis, we phrase inequality
statements in terms of closed intervals on the real line. We think of an interval as a set

of numbers, which are commonly represented as an ordered pair. Instead of a, we write
a€la, aul

The interval [aq;, a,] is called an enclosure of a. The essence is that we would like to know
F and m exactly so that we can get a exactly. In other circumstances, however, we might
wish to treat F and m as paremeters and intentionally vary them to see how a varies.
The act of merely enclosing a solution might seems rather weak, since it fails to yield the
solution itself. While this is true, the degree of satisfaction involved in enclosing a solution
can depend strongly on the tightness of the enclosure obtained. Returning to the initial

example, we might be more satisfied with answers of the form
x; € [-3.001, -2.999], x € [1.999,2.001]
In addition, if we obtain something like
x € [0.66666, 0.66667]

then we do know x to four decimal places. There are times where we can and should
be satisfied with rather loose bounds on a solution. It might be better to know that
y € [59, 62] rigorously than to have an “answer” of the form y ~ 60 with no idea of how
much error might be present. If we can compute an interval [a, b] containing an exact
solution x to some problem, then we can take a midpoint m = (a + b)/2 of the interval as
an approximation to x and have |x—m| £ w/2, where w = b—a is the width of the interval.

Hence we obtain both an approximate solution and error bounds on the approximation.

2.1.2 History

The story of IA methods begin in 1962 by Moore, who presented his doctorate on the
use of intervals to analyze and control numerical errors[5]. His next step was to publish
his first book Interval Analysis in 1966, which remains a reference to this day and is
also the reference which was used in the previous section of this thesis[6]. During the
same period, Hansen studied interval manipulation in linear algebra[7], and a group of
German researches including Alefeld, Krawczyk and Nickel developed many aspects of
computer implementation[1]. During the first twenty years, the spreading of the interval

methodology remained relatively confined to the periphery of the initial seeds, notably in

m Diploma Thesis

2.1.3 Basic Concepts

Germany within Karlsruhe University.[8] Among the new adepts who brought important
advances, one of the most significant ones were Neumaier on the solution of sets of linear
and non-linear equations (1985), Ratschek and Rokne (1984) as well as Kearfott(1989)
on optimization. During the 1990s, interval analysis has recruited a larger community.
It now has its own journal Interval Computations, created in 1991 and renamed Reliable
Computing in 1995 as well as other regular international conferences, one of which is
SWIM (Summer Workshop on Interval Methods), where I also participated in 2019[9].

2.1.3 Basic Concepts

As the title of this section denotes, many IA definitions and operations will follow. It
should be noted that only the most important concepts concerning later sections will be
described. This is an intentional move to avoid distracting the reader from the focus of
this thesis. The problem IA methods will be applied to in this thesis requires a bounded-
error set estimation technique. Hence, more details on open-ended unbounded Intervals
and the process that resulted in the following definitions can be found in [1] as well as
[10].

Intervals

First and foremost, an interval real [x] is a connected subset of R. The lower bound

Ib([x]) of an interval [x], also denoted by x, is defined as

x = Ib([x]) £ sup{a € RU {—o00, 00} | Vx € [x], a < x}. 2.1)
Its upper bound ub([x]), also denoted by X, is defined as

x = ub([x]) £ inf{b e RU{—o00,00} | ¥x € [x], x < b}. (2.2)

For instance, if [x] =] — 3,7] then x = -3 and x = 7; if [x] =] — 00, o[then x = —oo0 and
X = oo,

The width of any non-empty interval [x] is
w([x]) = x - x, (2.3)

so w(]3, co[) = co. The midpoint or center of any bounded and non-empty interval [x] is

defined as

X+X
7

We should also define the set-theoretic operations which can be applied to intervals. The

mid([x]) = (2.4)

intersection of two intervals [x] and [y], defined by
[x]IN[yl2{zeR|z€[x] and z € [y]}, (2.5)

Diploma Thesis m

Chapter 2. Theoretical Background

is always an interval, This is not the case for their union
(x]U[yl 2{zeR|z€[x]orze[y]} (2.6)

To make the set of intervals closed with respect to union, an interval hull of a subset X
of R is defined as the smallest interval [X] that contains it ([1] p.16). For instance, the
interval hull of]2, 3]U[5, 7] is the interval]2, 7]. The interval union or [x] and [y], denoted
by [x] U [y] is defined as the interval hull of [x] U [y], i.e.,

[x] U [yl = [[x] U [y]]. (2.7)

In the same manner,

[x] (\] Tyl = [[x] \ [yl] = [{x € [x] | x ¢ [yl}] (2.8)

The Cartesian product of two intervals is not an interval but a box of R?

Closed Intervals

Denote by IR the set of closed intervals, since R and @ are both open and closed, they
both belong to IR and any element of IR can be written in one of the following forms:
[a,b],] — o, al],[a, oo[,] — o0, 0[or @, where a and b are real numbers such that a < b.
Any [x] of IR can be specified in a unique way by its lower bound x and its upper bound
x. It will be notated from now on as [x] = [x,X] even if bounds are infinite. Thus, [0, o]
should be interpreted as [0, oo[. Intervals may be viewed as sets or as couples of elements
of R on which arithmetic can be built. Couples of the form [co, 0], [-c0, —c0] and [a, b]
with a > b do not correspond to intervals. When x and x are equal, the interval [x] is said
to be punctual (or degenerate). Any real number could thus be represented as a punctual

interval and vice versa.

Interval Operations of Closed Intervals
The interval union of two non-empty closed intervals [x] and [y] satisfies
V[x] € IR, Y[y] € IR, [x] U [y] =[min{x. y}, max(%. 5}- (2.9)
The intersection of two non-empty closed intervals [x] and [y] satisfies

[x] N [y] =|max{x., y}, min{%, g} | if max{x,y} < min{x, 5}, 010
= @ otherwise .

If a is a real number and [x] a non-empty interval, then the interval
alx] £ {ax | x € [x]} (2.11)

m Diploma Thesis

2.1.3 Basic Concepts

is given by

alx] = [ax,ax] if a>0
(2.12)
= [ax, ax] if a < 0.

For non-empty closed intervals, we can perform addition(+), subtraction(—), multiplication(x)
and division(/) as follows

[x]+ [yl = [x+y.x+T7l. (2.13)

[x]-[yl=[x-y. x-yl (2.14)

[x] * [y] = [min{xy, Xy, Xy. Xy}, max{xy. xy, Xy, xy}]. (2.15)
1/lyl =2 ifly]l = [0.0].

=[1/y,1/y] i0¢ [yl,
=[1/y, o0[ify=0and y > O,
(2.16)
=]-o00,1/y] ify<Oandy=0,
=] — o0, o[ify <Oandy> 0,
and [x]/[y] = [x] = (1/[yD.
The product of two intervals can be denoted indifferently by [x] * [y] or [x][y]. When
applied to punctual intervals [x] and [y], the previous rules simplify into the usual rules
of real arithmetic, which is why interval arithmetic can claim to be an extension of the

latter.
Elementary interval functions can also be expressed in terms of bounds. For any non-
empty [x],

[exp]([x]) = [exp(x), exp(x)]. (2.17)

However, for non-monotonic functions things are different. [sin]([0, r]) = [0, 1] differs
from the interval [sin(0), sin(r)] = (0,0). Specific algorithms have been built for those
cases. An example algorithm is given by [1]:

ALGORITHM 2.1: sin(in: [x]; out:[r])

1: if Ak € Z | 2kr — n/2 € [x] then
2: r=-1;

3: else

4: I = min(sinx, sinx);

5: end if

6: if Ak € Z | 2kn + n/2 € [x] then
7: r=1;

8: else

9: T = min(sinx, sinx);
10: end if

Diploma Thesis

Chapter 2. Theoretical Background

Interval Vectors

An interval real vector [x] is a subset of R™ that can be defined as the Cartesian product
of n closed intervals. When there is no ambiguity, [x] is be called an interval vector, or a

box. It is written as

[x] = D1l X Dl X ... X [xnl, with [x:] = [@Z] fori=1,...,n (2.18)

Its ith interval component [y;] is the projection of [x] onto the ith axis. The empty set
of R" should be written as @ X ... X @ because all of its interval components are empty.
Expressions such as [x] = @ X [0, 1] are prohibited, because [0, 1] is not the projection
of [x] onto the second axis. This guarantees the uniqueness of notation of a given box.
The set of all n-dimensional boxes will be denoted by IR". Non-empty boxes are n-

dimensional axis-aligned parallelepeds. Many of the aforementioned notions described in

=2 .

Ly Ly Iy

Figure 2.1: A box [x] of IR", with n = 2 and [x] = [x1] X [xz]

previous sections apply to boxes. For instance, a box will be said to be punctual if all its
interval components are. From the list of box-wide operations, only one is needed in its
purest sense (meaning that it performs the operation given a box as the input instead of

an interval), which is the width of a box given by
w([x]) = maxi<i<cnw(lx:i))- (2.19)

The rest of the proper definitions, which are extensions of the ones provided in previous

sections, can be found in [1].

Inclusion Functions

Consider a function f from R™ to

A regular subpaving can also be represented as a binary tree. A binary tree contains
a finite set of nodes. This set may be empty, may contain a single node, the root of the
tree, or may contain two binary trees with an empty intersection, namely the left and

right subtrees. Thus, we can describe Figure 2.2 as the binary tree of Figure 2.4. On this

m Diploma Thesis

2.1.4 Set Inversion via Interval Analysis

0

Figure 2.2: Regular paving of a box. The boxes in grey form a regular subpaving

il L
i Y ' A
X "‘m _ mj 5‘»%_ __ﬂ_ef!
111

Figure 2.3: Bracketing of the set S = {(x. y) | x*> + y® € [1,2]}. The frame corresponds to the
box [-2,2] X [-2, 2]; precision increases from left to right.

figure, A is the root of the tree, B and C are respectively its left and right children. They are
siblings as they have the same parent node A. A has a left subtree and a right subtree, the
right subtree of B is empty. Finally D has no subtree and it is colled a degenerate node of
leaf. The growth of a binary tree’s branches is defgined by how the initial box [xp], which
corresponds to the root of the tree, is bisected. Any leaf indicates that the box it stands
for belongs to the subpaving. The depth of a box is the number of bisections necessary
to get it from the root box. Notice the recursiveness of this structure. We can perform 4
basic operations on regular subpavings. We can unite sibling subpavings, take the union,
intersect and test whether a box is included in a subpaving. In this thesis, operations
occur on an interval basis, therefore describing those operations on the subpaving level
is beyond the required scope. If it is of interest, the reader can find more on pages 52-54
of [1].

2.1.4 Set Inversion via Interval Analysis

First introduced by Jaulin and Walter in 1993[2]. This algorithm utilizes all the
aforementioned definitions to compute an unknown input set, using the known image
[Y] and an inclusion function [f]([x]). It is formally described as:

Let f be a possibly non-linear function from R" to R™ and let Y be a subset of R™ (it can

Diploma Thesis m

Chapter 2. Theoretical Background

Figure 2.4: Tree associated with the regular subpaving of Figure 2.2

be a subpaving). Set inversion is the characterization of
X={xeR"|f(x)eY}=f 1(Y). (2.20)

For any Y ¢ R™ and for any function f admitting a convergent inclusion function [f](.),
two regular subpavings X and X that satisfy XcXc X can be obtained with the SIVIA
algorithm[2]. SIVIA requires a search box Xy to which X is guaranteed to belong. This
nice figure 2.5 from page 57 of [1] describes the basic steps of this algorithm quite well,
assuming that Y is a regular subpaving. To facilitate the steps to perform this algorithm

we must first list the four cases which can be encountered.

o If [f]([x]) has a non-empty intersection with Y, but is not entirely in Y, then [x] may
contain a part of the solution set (Figure 2.5a). When this is the case [x] is said to be
undertermined. If it has a width greater than an arbitrary (usually small) precision
parameter e, then it should be bisected, creating two or more offspring boxes out of

[x]. Then, the test is recursively applied to these newly generated boxes.

e If [f](x) has an empty intersection with Y, then [x] does not belong to X and can be

cut off from the solution tree (Figure 2.5b).

o If [f]([x]) is entirely in Y, then [x] belongs to the solution subpaving X, and is stored
in X and X (Figure 2.5c).

e If the box is considered undertermined and its width is lower than e, then it is

deemed too small and is stored in the outer approximation X of X (Figure 2.5d).

To sum up, the SIVIA algorithm starts with an initial box Xp, is then sent to an inclusion
function [f]([x]) which can be non-linear, the aforementioned tests are performed to the
resulting [y] and the solution set is progressively created until all generated [x] boxes
have been evaluated. The predefined e threshold is set since the algorithm would run
infinitely otherwise. Algorithm 2.2 demonstrates the above.

The boxes that remain undetermined at the end of an algorithm execution comprise the

uncertainty layer.

m Diploma Thesis

2.1.4 Set Inversion via Interval Analysis

Outer subpaving X T - space Y - space

@ 4 [x] 4

(a)

(®)

(c) P@\

(d) /Q/%D
3 ¢
#

Figure 2.5: Four situations encountered by SIVIA.

Applications

SIVIA can be applied to any problem that requires the discovery of an input(or vali-
dation) set. Given that it can work with non-linear functions, this means that its usage
extends to any problem which was previously deemed unsolveable. The technique is de-
terministic and guarantees a solution, proving extremely useful in many engineering and
optimization problems. And this is exactly the case as [11],[12],[13],[14] use this algo-
rithm for robotics-related problems, such as inverse kinematics and path planning. While
it has been traditionally used for global optimization problems [15],[16],[17] and [18], the
technique does not shy away from being useful to an even bigger variety of problems.

Here [19] it is used for the estimation of electrochemical parameters and here [20] it was

Diploma Thesis m

Chapter 2. Theoretical Background

Avcorrtam 2.2: SIVIA(in: f, Y, [x], €; in/out:X, X)

if [f1([x]) N Y = @ then return;
end if
if [f1([x]) C Y then {
X « XU [x];
X« XU [x];
return; }
end if
if w([x]) < € then {
X « XU [x];
return; }
: end if
. SIVIA(f, Y, L[x]. &. X, X);
. SIVIA(f, Y, R[x]. e, X, X);

—
o Y ™ N g RN

— =
w N

used among other problems for the colorimetric determination of formaldehyde. Finally,
closer to the topic of this thesis, S.P. Adam uses this technique for the inversion of Neural
Networks, for purposes such as bounding the search space of parameters[21], estimation
of the generalization capability of a NN[4] or simply for the input space mapping of a
classifier[22].

2.2 Neural Networks

2.2.1 Overview

Work on artificial neural networks, commonly referred to as “neural networks,” has
been motivated right from its inception by the recognition that the human brain com-
putes in an entirely different way from the conventional digital computer. The brain is
a highly complex, nonlinear, and parallel computer. It has the capability to organize its
structural constituents, known as neurons, so as to perform certain computations (e.g.,
pattern recognition, perception, and motor control) many times faster than the fastest
digital computer in existence today. A neural network is a massively parallel distributed
processor made up of simple processing units that has a natural propensity for storing
experiential knowledge and making it available for use. It resembles the brain in two re-
spects, one being that knowledge is acquired via a learning process and that interneuron
synaptic weights are used to store the acquired that knowledge. The procedure used to
perform the learning process is called a learning algorithm, and it is a function that is
used to modify the synaptic weights of the network in an orderly fashion in order to attain
a desired design objective. What is very important for a neural network is its capacity
to generalize, meaning the production of reasonable outputs for inputs not encountered
during training (learning). This should not imply that a neural network has the ability
to generalize each and every problem, in practice, a complex problem requires multiple
simple solutions, in a system engineering fashion. A neural network offers the following

useful properties and capabilities:

m Diploma Thesis

2.2.1 Overview

e Nonlinearity. An artificial neuron can be linear or nonlinear. A neural network,
made up of an interconnection of nonlinear neurons, is itself nonlinear. Moreover,
the nonlinearity is of a special kind in the sense that it is distributed throughout the

network. This property is very important if the input signal is inherently nonlinear.

e Input-Output Mapping. A popular paradigm of learning, called supervised learning,
involves modification of the synaptic weights of a neural network by applying a set
of labeled training examples. Each example consists of a unique input signal and a
corresponding desired (target) response.The network is presented with an example
picked at random from the set, and the synaptic weight of the network are modified
to minimize the difference between the desired response and the actual response
of the network produced by the input signal in accordance with an appropriate
statistical criterion. The training of the network is repeated for many examples in the
set, until the network reaches a steady state where there are no further significant
changes in the synaptic weights.The previously applied training examples may be
reapplied during the training session, but in a different order. Thus the network
learns from the examples by constructing an input-output mapping for the problem
at hand.

e Adaptivity. Neural networks have a built-in capability to adapt their synaptic
weights to changes in the surrounding environment. In particular, a neural network
trained to operate in a specific environment can be easily retrained to deal with
minor changes in the operating environmental conditions. Moreover, when it is
operating in a nonstationary environment (i.e., one where statistics change with
time), a neural network may be designed to change its synaptic weights in real
time.The natural architecture of a neural network for pattern classification, signal
processing, and control applications, coupled with the adaptive capability of the
network, makes it a useful tool in adaptive pattern classification, adaptive signal

processing, and adaptive control.

o Evidential Response. In the context of pattern classification, a neural network
can be designed to provide information not only about which particular pattern to
select, but also about the confidence in the decision made.This latter information
may be used to reject ambiguous patterns, should they arise, and thereby improve

the classification performance of the network.

e Contextual Information. Knowledge is represented by the very structure and acti-
vation state of a neural network. Every neuron in the network is potentially affected
by the global activity of all other neurons in the network. Consequently, contextual

information is dealt with naturally by a neural network.

e Uniformity of Analysis and Design. neural networks enjoy universality as infor-
mation processors.We say this in the sense that the same notation is used in all
domains involving the application of neural networks. Neurons, in one form or other

represent an ingredient common to all neural networks. This commonality makes it

Diploma Thesis m

Chapter 2. Theoretical Background

possible to share theories and learning algorithms in different applications of neural
networks. Therefore, modular networks can be built through a seamless integration

of modules.

More information about those properties can be found in [23].

2.2.2 Modelizing Neurons

A neuron is an information-processing unit that is fundamental to the operation of a

neural network. The three basic elements of a neural model are

1. A set of synapses, or connecting links, each of which is characterized by a weight

or strength of its own.

2. An adder for summing the input signals, weighted by the respective synaptic strengths

of the neuron.

3. An activation function for limiting the amplitude of the output of a neuron.The
activation function is also referred to as a squashing function, in that it squashes

(limits) the permissible amplitude range of the output signal to some finite value.

In mathematical terms, we can describe the model by a set of equations (Figure 2.7).

U = Z Wigx; (2.21)
Jj=1
Yk = @(we + b) (2.22)

X1, Xs, ..., Xy are the input signals, wy1, wy2, ..., Wi, are the synaptic weights of the neu-
ron k, vy is the linear combiner, by is the bias, ¢(-) is the activation function and yj is
the output signal of the neuron. The use of the bias by has the effect of applying an affine

transformation to the output wy of the linear combiner as shown by Figure 2.6.

U = U + by (2.23)

Activation functions

The activation function, denoted by ¢(v), defines the output of a neuron in terms of the

induced local field v. In what follows, we identify two basic types of activation functions:

e Threshold Function. (Figure 2.8) This type of function is described by

) {lifUZO 2.24)
v) = .
? 0 ifv<oO
1 ifo>0
Ui =) (2.25)
0 lka<0

m Diploma Thesis

2.2.2 Modelizing Neurons

Bias
b,
~ 'k
X
Activation
function
X O—> .
In Output
put o(+) >
signals Yk
Summing
junction
'\AJH
-
Synaptic
weights

Figure 2.6: Nonlinear model of a neuron.

Induced
local
field v,

Bias by =0

L bp=0

/ /’ Linear combiner
// output iy
#

Figure 2.7: Affine transformation produced by the presence of a bias.

m
Ve = Z WyX; + by (2.26)
=1

e Sigmoid Function.(Figure 2.9) The sigmoid function, whose graph is “S”-shaped,
is by far the most common form of activation function used in the construction
of neural networks. It is defined as a strictly increasing function that exhibits a
graceful balance between linear and nonlinear behavior. An example of the sigmoid

function is the logistic function, defined by:

1

S — (2.27)
1 + exp(—av)

where a is the slope parameter. By varying this parameter we can obtain sigmoid

Diploma Thesis m

Chapter 2. Theoretical Background

o(v)

Figure 2.8: A threshold activation function.

functions of different slopes. as the slope parameter approaches infinity, the sigmoid
function becomes simply a threshold function. In addition, it is sometimes desirable
to have activation functions range from -1 to +1. This is commonly referred to as

the signum function:
1ifv>0

o(v) = 0 ifv=0 (2.28)
-1 ifv<O
For the corresponding form of a sigmoid function, we may use the hyperbolic tangent

function, defined by
¢(v) = tanh(v) (2.29)

- ¢(v)

Increasing

-10 -8 -6 —4 -2 0 2 4 6 8§ 10

Figure 2.9: A sigmoid activation function.

2.2.3 Supervised Learning

In supervised learning, knowledge is represented by sets of input-output examples.
We, as the supervisor or the teacher, can provide the neural network with a desired re-
sponse for a given training vector. Then, the network parameters are adjusted under the
combined influence of the training vector and an error signal, which is defined as the
difference between the desired response and the actual response of the network. This
adjustment is carried out iteratively in a step-by-step fashion with the aim of eventually
making the neural network emulate the teacher. In this way, knowledge of the environ-

ment available to the teacher is transferred to the neural network through training and

m Diploma Thesis

2.2.4 Multilayer Perceptron

stored in the form of “fixed” synaptic weights, representing long-term memory.When this
condition is reached, we may then dispense with the teacher and let the neural network
deal with the environment completely by itself. As a performance measure for the system,
we may think in terms of the mean square error, or the sum of squared errors over the
training sample, defined as a function of the free parameters (i.e., synaptic weights) of
the system. This function may be visualized as a multidimensional error-performance
surface, or simply error surface, with the free parameters as coordinates. For the system
to improve performance over time and therefore learn from the teacher, the operating
point has to move down successively toward a minimum point of the error surface; the
minimum point may be a local minimum or a global minimum. A supervised learning
system is able to do this with the useful information it has about the gradient of the error
surface corresponding to the current behavior of the system. Reading this section, given
the aforementioned description of SIVIA (Section 2.1.4), should give interesting ideas to
the reader, as SIVIA is used to provide guaranteed approximations given a parameter
space. Perhaps this algorithm could be useful during the training of Neural Networks.
Unfortunately, this is not the topic explored in this thesis, but the interested reader can
refer to [21].

2.2.4 Multilayer Perceptron

Before we move to explain the multilayer part of the title, we have to begin with the
basics. The Perceptron was the first algorithmically described neural network, first pro-
posed by Rosenblatt in 1958. It is basically a single-layer neural network and it is limited
to the classification of linearly separable patterns. To overcome this limitation a neural
network structure called a multilayer perceptron was proposed. The basic characteristics

of this structure are:

e The model of each neuron in the network includes a nonlinear activation function
that is differentiable.

e The network contains one or more layers that are hidden from both the input and

output nodes.

e The network exhibits a high degree of connectivity, the extent of which is determined
by synaptic weights of the network.

A popular method for the training of multilayer perceptrons is the back-propagation

algorithm. The training proceeds in two phases:

1. The forward phase, in which the synaptic weights of the network are fixed and the
input signal is propagated through the network, layer by layer, until it reaches the
output. Thus, in this phase, changes are confined to the activation potentials and

outputs of the neurons in the network.

2. The backward phase, where an error signal is produced by comparing the output of

the network with a desired response.The resulting error signal is propagated through

Diploma Thesis

Chapter 2. Theoretical Background

Input
signal)

First
hidden

Second
hidden

Output
layer

. Output
signal

laver layer

Figure 2.10: A multilayer perceptron with multiple hidden layers and outputs.

the network, again layer by layer, but this time the propagation is performed in the
backward direction. In this second phase, successive adjustments are made to the

synaptic weights of the network.

2.2.5 Training Techniques

The essence of back-propagation learning is to encode an input-output mapping
(represented by a set of labeled examples) into the synaptic weights and thresholds
of a multilayer perceptron. The hope is that the network becomes well trained so
that it learns enough about the past to generalize to the future. More precisely, gen-
eralization refers to the network’s ability to produce correct outputs, given inputs
which were not provided during the training process. From such a perspective, the
learning process amounts to a choice of network parameterization for a given set of
data. We may view the network selection problem as choosing, within a set of can-
didate model structures (parameterizations), the “best” one according to a certain
criterion. One way to do that is to split the data set into a training set and a vali-
dation set, the later serves the purpose of validating the generalization capabilities
of the network. However, if the categories represented by the data are not split in
a uniform manner, the model will adapt to this artificial bias. In addition, the data
size may be very small to be able to afford this fair split. To counter this, we utilize
a statistical technique, called cross-validation[24]. The data is partitioned into a
training and a test set. Then, the training set is further partitioned into two disjoint
subsets, an estimation subset, used to select the model and a validation subset to
test or validate this model. Thus, it is possible to validate the models during train-
ing. To guard against overfitting, the model is finally verified by the initial test set. In
some cases, this test set is merged into the validation splits of the training sample.
This is generally not a good practice if the purpose is to maximize the generalization
capability of the model. However, many problems are not accompanied by large data
sets and each decision is ultimately made based on those material circumstances.
There is another method for evaluating generalization proposed recently[4] which

claims to enable the usage of the whole data set during training, without instilling

Diploma Thesis

2.3 Parallel Computing

bias into the model. This thesis explores an accelerated revision of this proposition.

2.3 Parallel Computing

2.3.1 Overview

Until a bit over decade ago, people held the notion that the more they waited before
purchasing new computational hardware, the more performance they would gain. This
was true because between 1986 to 2003, the performance of microprocessors increased,
on average, more than 50% per year. From 2003 and onwards this performance increase
started to decline to the point that between 2015 to 2017, the increase was on average
less than 4% per year[25]. This difference in performance increase has been associated
with a dramatic change in processor design. By 2005, most of the major manufacturers
of microprocessors had decided that the road to rapidly increasing performance lay in the
direction of parallelism. Rather than trying to continue to develop ever-faster monolithic
processors, manufacturers started putting multiple complete processors on a single inte-
grated circuit. That lead software developers to re-examine their methods as their serial

programs would not see any performance improvement throughout the years by itself.

2.3.2 Parallel Design Paradigms

The two most widely used approaches to parallelism[26] are:

e Task Parallelism. A task required to solve a problem is partitioned among the

pI‘OCCSSOl"’S cores.

e Data Parallelism. The data required to solve a problem is partitioned and thus

each core carries the same operations but on a part of the data.

In reality, it is very common for a mixed parallelization strategy to be used. Depending

on the problem, the partitioning of a task is not exclusionary to partitioning the data.

2.3.3 Instruction-level Parallelism

Instruction-level parallelism (or ILP) attempts to improve processor performance by
having multiple processor components to simultaneously execute instructions. One can
imagine this level of parallelism as a factory assembly line. Imagine the production of a
mechanical keyboard; it requires a control board, a casing (or shell), switches, keycaps
and a cable. Let’s assume that each machine can only produce one type of component
and that all of the required machines are located in the same factory. Since each compo-
nent assembly is independent from the production done on other machines, to produce
a keyboard we would assign a worker to a machine so that the production would be per-
formed in parallel. The factory of our example is the processor and the machines are
the individual components inside it, arithmetic & logic units, control units, registers etc.

Figure 2.11 depicts this process.

Diploma Thesis E

Chapter 2. Theoretical Background

Instr. No. Pipeline Stage
1 IF | ID | EX |MEM WB
2 IF | ID | EX |[MEM WB
3 IF | ID | EX [MEM| WB
4 IF | ID | EX MEM
5 IF | ID | EX
E;"c?'é 1/2|3|8|5]|6]|7

Figure 2.11: Instruction Level Parallelism, I F/D/E stand for Instruction Fetch/Decode/Ex-
ecute, Mem stands for Memory Access and WB for register Write-Bacl.

2.3.4 Hardware Multithreading

ILP requires that the statements are independent between one another, and unfortu-
nately that is not always the case. This is where Thread-level parallelism (or TLP) plays
its hand. A thread is a mechanism provided to programmers, that offers the ability to
divide a program into smaller independent tasks, with the property that when one thread
is blocked, another can be run. In addition, the switch between threads happens faster
than in processes, as threads are contained within the same process, therefore avoiding
the performance hit of unnecessary system calls. TLP attempts to provide parallelism
through the simultaneous execution of different threads, providing a coarser-grained
parallelism than ILP. This means that the program units, that are simultaneously exe-
cuted, are larger (or coarser) than the finer-grained individual instructions. Hardware
multithreading provides a means for systems to continue doing useful work when the task
being currently executed has stalled—for example, if the current task has to wait for data
to be loaded from memory. Instead of looking for parallelism in the currently executing

thread, it may make sense to simply run another thread.

2.3.5 Classifications of Parallel Computers

Two important independent classifications of parallel computers is Flynn’s taxon-
omy[27] and the distinction between shared memory and distributed memory systems.
Flynn’s taxonomy works by classifying a parallel computer according to the number of
instruction streams and the number of data streams it can simultaneously manage.

Flynn’s Taxonomy

The categories in bold are the most commonly found parallel systems[26]:

1. SISD. A classical von Neumann system is an example of a Single Instruction, Single
Data stream as it executed a single instruction at a time and, computes a single

data value at a time.
2. SIMD. Single Instruction, Multiple Data systems are parallel systems. As the name

m Diploma Thesis

2.3.5 Classifications of Parallel Computers

suggests, SIMD systems operate on multiple data streams by applying the same
instruction to multiple data items. An example SIMD system is a GPU, however it

is not a pure one.

3. MISD. Multiple Instructions operate on a Single Data stream. This is an uncommon

architecture.

4. MIMD. Multiple Instruction, Multiple Data systems support multiple simultaneous
instruction streams operating on multiple data streams. They usually consist of
a collection of fully independent processing units (or cores), each of which has its
own control unit and its own datapath. Unlike SIMD systems, MIMD systems are
usually asynchronous, meaning that the processors can operate at their own pace.
There is usually no global clock and there may be no relation between the system
times of two different processors. At any given time two processors may be executing

different statements, even if they were given the same sequence of instructions.

SlSDl Instruction Pool | M|5D| Instruction Pool I

Processor

Processor

Data Pool
Data Pool

Processor

MIMD[
SIMD

Instruction Pool]
oy

Instruction Pool

v

Processar

Processor
Processor

Processor
_

Figure 2.12: Flynn’s Taxonomy of Computer Architectures.

A 4

Processor

|

Data Pool
Data Pool

Processor

Frocessor

v

Shared-Memory Systems

A shared-memory system is a collection of autonomous processors that is connected
to a memory system via an interconnection network, and each processor can access each
memory location. In a shared-memory system, the processors usually communicate im-
plicitly by accessing shared data structures. The most widely available shared-memory
systems use one or more multicore processors. In shared-memory systems with multiple
multicore processors, the interconnect can either connect all the processors directly to
main memory, or each processor can have a direct connection to a block of main mem-

ory, and the processors can access each other’s blocks of main memory through special

Diploma Thesis m

Chapter 2. Theoretical Background

hardware built into the processors. This constitutes another sub-categorization of these

systems:

e UMA. In Uniform Memory Access shared-memory systems each processor has direct

access to all available memory.

e NUMA. In Non-Uniform Memory Access systems each processor access its own mem-

ory. If the system enables the memory access of another processor (usually via a

BUS), it is generally slower to do so.

UMA systems are usually easier to program, since the programmer doesn’t need to worry

about different access times for different memory locations. This advantage can be offset

by the faster access to the directly connected memory in NUMA systems. Furthermore,

NUMA systems have the potential to use larger amounts of memory than UMA systems.

Distributed-Memory Systems

In a distributed-memory system, each processor is paired with its own private mem-

ory, and the processor-memory pairs communicate over an interconnection network. In

distributed-memory systems, the processors usually communicate explicitly by sending

messages or by using special functions that provide access to the memory of another

processor.

Shared memory (UMA)

B

-

Distributed memory

Memory Memory

Netvsork

Shared memory (NUMA)

Memory Memory

Bus interconnect

Memory Memory

Hybrid memory

Memory Memory

Network

2.3.6 Parallel Computing on CUDA GPUs

History

Memory Memory

Memory Memory

Figure 2.13: A Collection of Parallel Systems.

During the late 90s, video games started becoming popular and players were de-

manding more realistic graphics. The computer industry responsed to that demand by

developing extremely powerful graphics processing units, or as we know them, GPUs.

Diploma Thesis

2.3.6 Parallel Computing on CUDA GPUs

These processors, as their name suggests, are designed to improve the performance of
programs that need to render many detailed images. The existence of this computational
power was a temptation to programmers who didn’t specialize in computer graphics, and
by the early 2000s they were trying to apply the power of GPUs to solving general compu-
tational problems, problems such as searching and sorting, rather than graphics. This
became known as General Purpose computing on GPUs or GPGPU. One of the biggest
difficulties faced by the early developers of GPGPU was that the GPUs of the time could
only be programmed using computer graphics APIs, such as Direct3D and OpenGL. So
programmers needed to reformulate algorithms for general computational problems so
that they used graphics concepts, such as vertices, triangles, and pixels. This added
considerable complexity to the development of early GPGPU programs, and it wasn'’t long
before several groups started work on developing languages and compilers that allowed
programmers to implement general algorithms for GPUs in APIs that more closely resem-
bled conventional, high-level languages for CPUs. Currently the most widely used APIs
are CUDA and OpenCL. CUDA was developed for use on Nvidia GPUs. OpenCL, on the
other hand, was designed to be highly portable.

SM SM
[Control | | Control | [Control | | Control |
SP | SP| SP| SP SP | SP| SP| SP
SP | SP| SP| SP SP | SP| SP| SP
SP| SP| SP| SP SP|SP| SP| SP
SP | SP| SP| SP SP [SP| SP| SP
Shared Shared
Memory Memory
L2 Cache
Global
Memory

Figure 2.14: A Simplified block diagram of a GPU.

GPU Architectures

A typical GPU can be thought of as being composed of one or more SIMD processors.
Nvidia GPUs are composed of Streaming Multiprocessors or SMs. One SM can have
several control units and many more Streaming Processors or SPs. So an SM can be
thought of as consisting of one or more SIMD processors. In addition, the SMs operate

asynchronously. To put things into perspective, my current desktop GPU, namely the

Diploma Thesis m

Chapter 2. Theoretical Background

RTX 3060 Ti has 38 SMs and each SM has 128 SPs! for a total of 4864 SPs. It is
noteworthy to mention that Nvidia uses the term SIMT instead of SIMD. SIMT stands for
Single Instruction Multiple Thread, and the term is used because threads on an SM that
are executing the same instruction may not execute simultaneously. Some threads may
block while memory is accessed and other threads, that have already accessed the data,
may proceed with execution. This is done to hide memory access latency. Each SM has
a relatively small block of memory that is shared among its SPs. This memory can be
accessed very quickly by the SPs. All of the SMs on a single chip also have access to a
much larger block of memory that is shared among all the SPs. Accessing this memory is
relatively slow (Figure 2.14).

In Nvidia documentation, the CPU together with its associated memory is often called
the HOST, and the GPU together with its memory is called the DEVICE (Figure 2.15).
In earlier systems the physical separation of host and device memories required that
data was usually explicitly transferred between CPU memory and GPU memory. That is,
a function was called that would transfer a block of data from host memory to device
memory or vice versa. However, in more recent Nvidia systems (Compute Capability
> 3.0), the explicit transfers in the source code aren’t needed for correctness, although

they may be able to improve overall performance.

Host Device

CPU SM SM

Main Global
Memory Memory

Figure 2.15: Simplified block diagram of a HOST and a DEVICE.

Heterogeneous Computing

Writing a program that runs on a GPU is an example of heterogeneous computing. The
reason is that the programs make use of both a host processor, meaning a conventional
CPU, and a device processor, namely a GPU. The two processors have different archi-
tectures. This means that the program will have functions for intended for conventional
CPUs as well as functions explicitly defined to run on GPUs. Heterogeneous computing
has become much more important in recent years[26]. Programmers are leaving no stone

unturned in their search for ways to bolster performance, and one possibility is to make

!The Ampere architecture of the RTX 3060 Ti mentions SPs as Multiprocessors or CUDA Cores.

m Diploma Thesis

2.3.6 Parallel Computing on CUDA GPUs

use of other types of processors, processors other than CPUs. Other possibilities for het-
erogeneous computing include Field Programmable Gate Arrays or FPGAs, and Digital
Signal Processors or DSPs. FPGAs contain programmable logic blocks and interconnects
that can be configured prior to program execution. DSPs contain special circuitry for

manipulating (e.g., compressing, filtering) signals, especially real-world analog signals.

CUDA Grids, Blocks and Threads

An Nvidia GPU consists of a collection of streaming multiprocessors (SMs), and each
streaming multiprocessor consists of a collection of streaming processors (SPs). When a
CUDA kernel runs, each individual thread will execute its code on an SP. CUDA organizes
threads into blocks and grids. A thread block (or simply block) is a collection of threads
that run on a single SM. In a kernel call the first value in the angle brackets specifies the
number of thread blocks. The second value is the number of threads in each thread block
(Figure 2.16). When the kernel is started, each block is assigned to an SM, and the threads
in the block are then run on that SM. A grid is the collection of thread blocks started
by a kernel. So a thread block is composed of threads, and a grid is composed of thread

blocks. There are several built-in variables that a thread can use to get information on

partialBisect<<<blocks, threads>>>(d boxes, i, eps, dims);
CHECKED_ CALL(cudaGetLastError());

CHECKED_CALL (cudaDeviceSynchronize()) ;

Figure 2.16: An example of a kernel call. partialBisect happens to be the name of the device
Jfunction to be executed.

the grid started by the kernel. The following four variables are structs that are initialized

in each thread’s memory when a kernel begins execution:
e threadIdx: The rank or index of the thread in its thread block
e blockDim: The dimensions, shape, or size of the thread blocks.
e blockIdx: The rank or index of the block within the grid.
e gridDim: The dimensions, shape, or size of the grid.

These structs have three fields x, y, z and are declared as unsigned integers. The fields
are often convenient for applications. For example, an application that uses graphics
may find it convenient to assign a thread to a point in a 2 or 3-dimensional space, and
the fields in threadldx can be used to indicate the point’s position. An application that
makes extensive use of matrices may find it convenient to assign a thread to an element
of a matrix, and the fields in threadldx can be used to indicate the column and row of
the element. Finally, all the blocks must have the same dimensions. More importantly,
CUDA requires that thread blocks be independent. So one thread block must be able
to complete its execution, regardless of the states of the other thread blocks: the thread

blocks can be executed sequentially in any order, or they can be executed in parallel. This

Diploma Thesis m

Chapter 2. Theoretical Background

ensures that the GPU can schedule a block to execute solely on the basis of the state of
that block: it doesn’t need to check on the state of any other block.

2.3.7 CUDA Warps

In CUDA a warp is a set of threads with consecutive ranks belonging to a thread
block. The number of threads in a warp is currently 32, although Nvidia has stated that
this could change[26]. The threads in a warp operate in a SIMD fashion. Threads in
different warps can execute different statements with no penalty, while threads within the
same warp must execute the same statement. When the threads within a warp attempt
to execute different statements, the threads are said to have diverged. When divergent
threads finish executing different statements, and start executing the same statement,

they are said to have converged.

2.3.8 CUDA Memory Architecture

We can think of the GPU memory as a hierarchy with three levels. At the bottom, is
the slowest but larger, global memory. In the middle is the shared memory, which is of
smaller size but faster than the global memory. At the top are the fastest, of even smaller
size, the registers. All threads of a SM have access to the shared and global memory, but
threads individually only have access to their respective registers. In Compute Capability
> 3 there are functions called warp shuffles which allow threads of a block to access
variables stored by other threads in the warp. It takes on the order of 1 cycle to copy a
4-byte int from one register to another. Depending on the system it can take up to an
order of magnitude more time to copy from one shared memory location to another, and it
can take from two to three orders of magnitude more time to copy from one global memory
location to another. Depending on the GPU architecture, there are usually three levels
of cache to minimize the latency penalties induced by reading and writing to the slowest

memories.
2.3.9 Memory Coalescing

CUDA Best Practices

The performance guidelines and best practices described in [28] and [29] apply to all
CUDA-capable GPU architectures. Programmers must primarily focus on following those
recommendations to achieve the best performance[30]. The high-priority recommenda-

tions from those guides are as follows:
e Find ways to parallelize sequential code.

e Minimize data transfers between the host and the device.

Adjust kernel launch configuration to maximize device utilization.

Ensure global memory accesses are coalesced.

e Minimize redundant accesses to global memory whenever possible.

m Diploma Thesis

2.4 Discussion

Grid

Block (0,0) Block (0,0)

Shared Memaory Shared Memory

Registers Registers Registers Registers

Thread Thread Thread Thread
(0.0) (1.0) (0.0} (1.0)

«—— % Global memory

Host

F Y

Constant Memaory

Figure 2.17: A simplified schematic of Grid, Block, Thread and Memory hierarchies of a
DEVICE and the interconnection with the HOST.

e Avoid long sequences of diverged execution by threads within the same warp.

2.4 Discussion

This chapter was about Interval Arithmetic, Neural Networks, Parallelization methods
and hardware. Interval Analysis is a field of mathematics which was initially designed to
help with engineering problems that require calculations with the inclusion of an error,
as the physical world is not always forgiving. In addition, these techniques are shown
to be very similar to operations on scalars and the benefits of a technique named Set
Inversion via Interval Analysis was showcased. SIVIA is able to provide, in a deterministic
notion, a guaranteed approximation for non-linear functions, namely, inclusion functions.
IA methods are also very reliant on set operations. Afterwards, an overview of neural
networks was provided, with the focus being on multilayer perceptrons for their utility in
classification problems, and, finally, an overview in parallel computing was provided. This
included types of parallel hardware, parallelization strategies with the spotlight aimed at
CUDA GPGPU software design and the best practices for that purpose. The next chapter is
directly related to the implementation of this thesis, background work on other attempts
are explored and will be followed with the design choices of the proposed parallelization

attempt.

Diploma Thesis

Chapter B

Implementation

3.1 Branch & Bound Algorithms

Branch-and-bound (BB) methods are well-known algorithmic tools for solving NP-
hard optimization problems. For many of these inherently difficult problems, only small
instances can be solved in a reasonable amount of time on sequential computers[31].
Consequently, the use of parallelism to speed up the execution of BB algorithms has
emerged as a way to solve larger problem instances. BB methods are more commonly
deployed in optimization problems where a problem is not tractable and a divide-and-
conquer approach may be required for its solution. As the name suggests, this method
consists of a branching and a bounding operation. Branch refers to the decomposition
of a problem while Bound refers to operations aimed at eliminating resulting subprob-
lems. Therefore we can describe these methods as the process of building a tree. The
root of this tree is the original problem while the leaves are the subproblems obtained
through the decomposition of the root. Now let’s replace problems and subproblems with
pavings and subpavings, branching with bisection and Bounding with the set evaluation
of subpavings. SIVIA of section 2.1.4 now seems like a BB technique and it is in fact the
case. However, there is an important distinction to be made; most applications of SIVIA
have been applied to optimization problems and not on neural networks as you will see
further in this chapter. Contrary to those problems, where a tree is branched out based
on an upper bound and a lower bound test, in our case the tree is branched whenever a
subproblem cannot provide a definitive answer and results in what is called exhaustive
search as the criteria to prevent the branching of a subproblem (besides a minimum
threshold €) are missing. The similarity of SIVIA to BB algorithms is important because
parallel work done on the latter can be seen as a template for the parallelization of the

former. We can now proceed with the classification of parallel BB algorithms[31]:

e Type 1. Introduces parallelism when performing the operations on generated sub-
problems. It consists, for example, of executing the bounding operation in parallel

for each subproblem to accelerate the execution.

e Type 2. Consists of building the BB tree in parallel by performing operations on

several subproblems simultaneously.

e Type 3. Several BB Trees are built in parallel.

Diploma Thesis m

Chapter 3. Implementation

Furthermore, Type 2 parallel algorithms are further classified on the existence of syn-
chronization between processes and the number of work pools. A work pool is the data
structure that contains the subproblems that are waiting to be examined, its properties

rely on the implementation. The classification goes:
e Synchronous Single Pool.
e Asynchronous Single Pool.
e Synchronous Multiple Pool.
e Asynchronous Multiple Pool.

Gendron concluded that the type 2 parallelization scheme is only suitable on SIMD archi-
tectures if the operations performed in each iteration are trivial and run in constant time.
On MIMD architectures, for which type 2 parallelism is better suited, the approaches used
when implementing it are classified by two parameters: whether they use synchronous
or asynchronous parallelism and whether they use a single work pool or have multiple
pools. For SSP and SMP, it is important that the processing needed for each sub-problem
is approximately equal to avoid idle time. ASP is concluded to be suited only for "problems
with a nontrivial bounding operation, and parallel architectures having a relatively small
number of processors". For AMP strategies it is concluded that a dynamic load balancing

must be deployed in order to achieve high efficiency.

3.2 GPU Parallelization of the Parameter Estimation problem

[20] contains a very good summary of the parallelization schemes in a CUDA GPGPU
context. The CUDA GPU architecture is two-layered, with a SIMD architecture on the
lower (SM) level and a MIMD architecture on the upper layer (Stream). Therefore a par-
allelization strategy designed exclusively for either MIMD or SIMD is not a perfect fit for
a CUDA GPU. Given the fact, these are some of the main options when designing parallel

software:

e The interval arithmetic operation level (Type 1): Parallelization on this level
consists of parallelizing inner operations of the individual interval arithmetic opera-
tions. For example, an interval multiplication can be performed by doing 8 parallel
floating point multiplications followed by 4 parallel comparisons in turn followed by
two parallel comparisons. The comparisons require synchronization of the threads
and communication via shared memory. Relative to the amount of computations
being performed, the amount of communication and synchronization between the
threads is large. Further, as the steps in the example use a decreasing number
of threads and because of the SIMD architecture of each CUDA SM, a number of

threads remain idle in the second and third step. A fine-grained scheme.

e Inner iteration level (Type 1): This generally means parallelizing the inclusion

function mentioned in section 2.1.3. These functions generally involve vectors,

m Diploma Thesis

3.2.1 Previous Work

therefore a thread can be allocated to each element. This is also a fine-grained

scheme.

e Outer iteration level (Type 2/3): Each interval box in the work queue can be
processed independently in parallel. CUDA streams, each with 1 or more controlling
threads on the CPU, can be used as asynchronous worker nodes. In order to
share information, and distribute boxes to be processed, this type of parallelization
introduces a communication overhead between the CUDA streams, through the

controlling CPU threads. This scheme is coarse-grained.

It is generally considered that resources are more easily and efficiently used by introducing
parallelism on the inner iteration level, where less communication and synchronization is
required and less idle time is introduced. This also has the benefit to minimize the search
tree, or the input space area, which makes the approach very memory efficient. Most
research on the Parallel BB algorithms has been on MIMD systems, in single or multiple
CPU settings and for a good reason as, most of the time, the inner iterations are not so
expensive to include a GPU architecture. Even most SIMD research was not performed in
a GPGPU context. In the recent years however, GPUs have become more massively parallel
than ever! thanks to the Al boom? and to experimenting with breadth-first approaches

sounds plausible.

3.2.1 Previous Work

Most parallelization research of BB methods on SIMD architectures has been done
in combinatorial or global optimization problems[32]. On the other hand, research in a
GPGPU context is sparse[20]. Work done on SIMD architectures is usually of Type-1 with
fine-grained interval arithmetic operations[33][34][35][36]. These approaches are gener-
ally implemented using a mixed MIMD approach where the the BB tree is managed on
the CPU-level(usually MIMD implementations) and only the processing functions (Type-1)
(bounding, interval-newton etc.) are parallelized[20][37]. Of the exclusively MIMD ap-
proaches, very notable is the work of Casado at al.[38], where it is showcased that ASP
and AMP approaches are almost equally fast. In addition, all of the aforementioned ap-
proaches are not relevant to the task at hand and this matters because the existence of
bounds can is generally used to direct the prioritization of the box processing. That is
not the case in Section 3.4.2. Work with breadth-first approaches is even more sparse,
which is understandable, as the general notion is to minimize the search tree in order to
avoid redundant operations and save on memory utilization. Lastly, in my undergraduate
years, as part of my ERASMUS+ internship and undergraduate thesis, I tried to solve this
problem by implementing Casado’s AMP algorithm using the C-XSC C++ library[39] but

due to time constraints I was not able introduce a neural network in the design, thus

1h‘ctps://www. forensicfocus.com/news/the-new-nvidia- rtx-3080-has-double-the-number-of-cuda-cores-but-
is-there-a-2x-performance-gain/

2h‘ctps://www. reuters.com/technology/nvidia- shares-rise-ai-boom-1ifts-hopes-another-strong- revenue-
forecast-2023-08-22/

Diploma Thesis m

https://www.forensicfocus.com/news/the-new-nvidia-rtx-3080-has-double-the-number-of-cuda-cores-but-is-there-a-2x-performance-gain/
https://www.forensicfocus.com/news/the-new-nvidia-rtx-3080-has-double-the-number-of-cuda-cores-but-is-there-a-2x-performance-gain/
https://www.reuters.com/technology/nvidia-shares-rise-ai-boom-lifts-hopes-another-strong-revenue-forecast-2023-08-22/
https://www.reuters.com/technology/nvidia-shares-rise-ai-boom-lifts-hopes-another-strong-revenue-forecast-2023-08-22/

Chapter 3. Implementation

the problems solved were of trivial nature. My work, however, validated the algorithm’s

scaling capabilities[9][40].

3.3 Parallelization Proposal

The base code for this implementation was provided by NVIDIA via the open-source
Cuda Samples Github repository[41]. This repository provides a CUDA GPGPU IA im-
plementation based on the design of the C++ Boost Library. This library provides a few
basic operations (+, —, %, /) which are designed for float, double and integer variables
as well as the calculation of the width of an interval and some other functions beyond
the scope of this thesis. My implementation provides additional features such as set
operators (subset,disjoint, intersection) trigonometric operations and extending all the
pre-included operations to 16bit half-variables. The implementation on the design level
consists of three parts, two of which are required for problems 1&2 and all three of them
are required for problem 3, which is also the main focus of the thesis. The proposed
implementation inverts the sequence of operations. Instead of bisecting a box when it
cannot provide a solution to a problem and its width is greater than epsilon, the bisection
occurs indiscriminately at the beginning of the algorithm, expanding the tree in regards

to the epsilon threshold value. The total amount of boxes that will be generated is given

by
N ceil (1092(711;.21:11([)(011)))
Number of Boxes = l_l 2 ‘ , (3.1)

i=1
with N as the number of dimensions [Xp]. Depending on the input space, meaning the
size of the width of each dimension as well as the number of dimensions, expanding
the tree aggressively might require large amounts of available memory. However, this
also results in a very predictable problem structure that can be easily parallelized in a
grid-stride manner, as work is evenly distributed between threads and coalesced global
memory accesses are guaranteed. The slight exception is the Bisection operation itself as
each level of the binary BB tree is characterized by the bisection performed on the previous
one, meaning that some sort of synchronization is required. The proposed implementation
overall, can be categorized as an SSP algorithm in the sense that the GPU is used as a
slave with a single work pool, while the multi-GPU variation can be described as an AMP
as multiple CPU threads own a GPU, from the thread’s perspective the algorithm is ASP.
Thus, the multi-GPU implementation is AMP/SSP.

3.3.1 Parallel Bisection

Most (if not all) SIVIA implementations bisect a box at the final step of a loop, after
the inclusion function and the set operations that determine whether the box is part of
the solution. It is assumed in this implementation that only 1 split occurs in a given box.
The boxes on a given BB tree level are considered independent problems (Figure 3.1). The
main idea for the parallelization of the bisection operation is inspired from the amount of

GPU threads available in the recent years. Using the CPU as a master (or primary) node

m Diploma Thesis

3.3.2 Parallel Evaluation

and the GPU as a slave (or secondary in that manner) we can send commands to the
GPU to bisect all boxes of a given tree level. This means that the first commands do not
utilize all available resources as the number of boxes is very small, however theoretically
there is a certain level where the GPU is faster than the CPU as the number of boxes for
bisection is large enough. Notice this very idea on Figure 3.2 where that certain number
of boxes exists and acts as a threshold in which a GPU starts to perform better than the
CPU. There was also the idea to pre-bisect the boxes on the CPU before the GPU takes
over but that would include memory transfer latency and there was not any significant
benefit in implementing the bisection that way. The number of Bisection commands the
HOST will send to the DEVICE is trivially given by

Bisection Commands = loge(Number of Boxes) (3.2)
T 1 ———— e =
T2 2 ———— Bisection 3 —————
T ———— 4 ——-———- 5 -——Zt2l_(§ ——————- -
T /\ /\ Bisection /\ /\
Ta—— 8 —- 9 —-10 —— 11 === 12 -—- 13 ——— 14 -— 15

Figure 3.1: A Binary Tree split by 4 time periods. Each node is a subproblem or a box.
Each time period represents a Bisection operation (or the result of one). T, is dependent on
T3, T is dependent on T, etc. Boxes of the same level are independent problems which can
be solved very easily in parallel.

3.3.2 Parallel Evaluation

This is as straightforward as it sounds. In a coarse-grained algorithmic design, a
vector of boxes is generated by the previous -bisection- phase and each box is processed

in parallel. The evaluation here includes two phases:
1. The interval inclusion function
2. The subset,intersection and epsilon check

The first phase can be simply described as sending a box to a function and return another

box or a simple interval. This function as will be mentioned further here can be in the form

Diploma Thesis m

Chapter 3. Implementation

> GPU Device has Compute Capabilities SM

Bisection Benchmark
Initial Box ([-1.500000,1.580000],[-1.500000,1.500000])
Epsilon: 8.801 Dimensions: 2

Problem size:

Boxes:
Boxes:
Boxes:
Boxes:

1
2
1
8

| cPU Duration:
| cPU Duration:
| cPU Duration:
| CPU Duration:

16777216 boxes

Bus
Bus
Bus
Bus

GPU Duration:
GPU Duration:
GPU Duration:
GPU Duration:

230us
beus
43us
tous

Boxes:
Boxes:
Boxes:
Boxes:
Boxes:
Boxes:
Boxes:
Boxes:
Boxes:
Boxes:
Boxes:
Boxes:
Boxes:
Boxes:
Boxes:
Boxes:
Boxes:
Boxes:
Boxes:

16 | CPU Duration: fus GPU Duration: uuus

32 | CPU Duration: 1lus GPU Duration: #43us

64 | CPU Duration: 2us GPU Duration: 5dus

128 | CPU Duration: 5us GPU Duration: U47us

256 | CPU Duration: 9us GPU Duration: 75us

512 | CPU Duration: 19us GPU Duration: 48us

10824 | CPU Duration: 39us GPU Duration: u43us

20u8 | CPU Duration: 77us GPU Duration: u48us

496 | CPU Duration: 216us GPU Duration: u4Bus

8192 | CPU Duration: 451us GPU Duration: 127us

16384 | CPU Duration: 916us GPU Duration: 43us

32768 | CPU Duration: 1693us GPU Duration: 43us
65536 | CPU Duration: 3398us GPU Duration: 46us
131872 | CPU Duration: 6843us GPU Duration: 56us
262144 | CPU Duration: 1376lus GPU Duration: 201lus
524288 | CPU Duration: 28239%9us GPU Duration: 236us
1648576 | CPU Duration: 55536us GPU Duration: 387us
2897152 | CPU Duration: 111522us GPU Duration: 433us
giogq3ed | CPU Duration: 225368us GPU Duration: 688us

Figure 3.2: A benchmark comparing the Bisection operation processing time between a
sequential implementation on a core i7 5820k and a parallel one with an RTX 3060Ti. At
1024/2048 boxes (red square area) the GPU is faster. The GPU used is from my home
setup; jitter is produced as the DEVICE is also being utilized by the OS and can be noticed
in 1 and 8192 boxes.

of a neural network. In the latter case, it is simply a forward pass. The second phase is
usually split into a three-if clause that determines whether the resulting interval(or box) is
part of the solution. If the second phase is left the way it is usually implemented it would
create warp divergence in the GPU and that would be a performance hit. The solution
proposed for efficient parallelization calculates the inclusion with boolean operations,
thus every GPU thread in a warp perform the same operation at any given time and no
warp rescheduling is needed. Figures 3.3 and 3.4 illustrate a code comparison for the
box set evaluation between a sequential algorithm with the Ibex C++ Interval Library[42]
and a parallel non divergent one. fxy represents an interval object which was returned

by an inclusion function.

3.3.3 Parallel Reduction

The main ideas for the parallel reduction are derived from Mark Harris’s Optimizing
Parallel Reduction in CUDA presentation[43]. This step is required only by the 3rd problem
described in Section 3.4.2. The implementation was provided by the CUDA Samples

repository[41], more precisely, of the eight variations provided, the third one was picked

Diploma Thesis

3.3.4 Single and Multiple GPU(s)

if (fxy.is_subset(Ybox[@])

lfxy.intersects(Ybox[8])

box.max_diam()<=eps

i=box.extr diam_index 5
pair<IntervalVector, IntervalVector> p=box.bisect(i);

Figure 3.3: A sequential code snippet using the Ibex C++ library. Some parts have been
removed for simplicity.

labels[i]= (!Hxy.is subset(yb) + !fxy.intersects(yb));

Figure 3.4: A code snippet from the CUDA C++ Parallel proposed implementation. fxy has
a different value for every thread.

for its efficiency and simplicity of the code structure. The other variations did not provide
any significant improvement given the vector size needed for the problem. To explain
more, the 3rd problem requires the calculation of a sum and each CUDA thread calculates
and stores its own partial sum. For the parallel reduction technique to function properly,
the vector that holds the summations has to be of size n that is a power of 2. Since a
CUDA GPU does not (yet) contain threads by a factor of millions, the vector is not large
enough to benefit from more complex techniques. A simple reduction algorithm is good

enough. Figure 3.5 depicts the parallel algorithm deployed given a vector with size n = 16.

3.3.4 Single and Multiple GPU(s)

One important detail of the proposed implementation is that it is designed to work with
both single and multiple GPU setups. This is possible because of the strategy deployed
for sending work (boxes) towards the GPU(s). Two limitations are involved when sending
work; the first involves the memory transfer times to and from the selected GPU DEVICE.
To minimize transfer times one only needs to send a single box to the DEVICE at the
beginning of the algorithm. Problems 1&2 of Section 3.4.1 require all generated boxes
to be transferred back to the CPU. Unfortunately this part has not been implemented
more efficiently and the performance hit is visible on Section 3.6.3; On the other hand,
Problem 3 of Section 3.4.2 does not require that transfer operation. The other limitation
is the memory capacity of the GPU. This has been mitigated by pre-bisecting the initial
box on the HOST until the problem can fit in the global memory of the DEVICE. The

Diploma Thesis m

Chapter 3. Implementation

Values (shared memory) [10 7 [v [+ [¢ |25 [[2[3]z] 7[o[n]o] 7]

Step 1 Thread
Stride 8 IDs

Values

Step 2 Thread
Stride 4 IDs

Values

Step 3 Thread
Stride 2 IDs 0 o

Values (2120|1313 0o 9|37 |2]3|2 |7 0 [1n|o]2]

Step 4 Thread
Stride 1 IDs

Values [41 |20 [13[13[0o 3|7 |2|af2][7]0[n|o]2]

Figure 3.5: Conflict-free sequential addressing parallel reduction which guarantees coa-
lesced memory accesses.

time needed for this pre-bisection is trivial since only a small number of boxes need to
be generated. This results in multiple GPU executions. The same idea can be applied
to multiple GPU devices. There are two ways to handle a multi-GPU implementation. A
single or multiple CPU threads can be used to handle the communication between the
HOST and the DEVICES; the latter is used in this thesis. The initial box is pre-bisected
until the number of boxes is equal or greater to the number of threads (usually no more
than 8). Then they are evenly distributed between threads and the algorithm functions
in a MIMD fashion. If the number of available GPU devices is a multiple of 2 then work
can be easily evenly distributed, otherwise boxes are distributed in a round-robin manner
resulting in some threads to process more work. Using Equation 3.3, we can calculate
the number of pre-bisections -and executions on the GPU- required so that the problem

fits a GPU’s global memory.

Number of Boxes
+ 1) (3.3)

Number of PreBisections = ceil logg(-
GPU Capacity

It should be noted that the GPU Capacity in this context is the amount of available global

memory in boxes. To calculate it we need amount of available global memory in bytes

which is returned by the CUDA context. The amount of memory required by a box in bytes

is calculated by multiplying the amount of memory each variable requires times 2 (as an

interval is defined by two variables) times the number of dimensions N of the interval

vector. Equation 3.4 demonstrates this notion using 4-Byte floating point variables.
GPU Capacity(Bytes)

GPU Capacity(Boxes) = 3.4
pacity() 2+ 4(bytes) * N 6.4

m Diploma Thesis

3.4 Problems

3.4 Problems

3.4.1 Problems 1 & 2: 2D Torus and Griewank functions

The first two problems are very trivial (they require a very few execution cycles per
box) and were used mainly for benchmarking purposes during the development of this
algorithm. For them to be of essence however, both problems will be considered solved
when all generated boxes are labeled and transferred back to the HOST. That way it
is verifiable that the program returned valid results. Notice that in Figures 3.7 & 3.8
the boxes are of equal size compared to Figure 3.6. The 2-dimensional Torus interval

inclusion function is described by

10D = [x]? + [y)? (3.5)

and the initial box X is bound between [xg] = [-1.5, 1.5],[—1.5, 1.5]. The solution set Y
was set [y] = [1, 2] and different € values were tested. Continuing on, the 2-dimensional

Griewank interval inclusion function is defined as

RN xli), | -
[f]([X])—; 4000—]:1[cos(\H,)+ (3.6)

U U

and the bounded input space X; was set in [xg] = [-10, 10],[-10, 10]. Y was set between
[y] = [1.5,3] and, as with the Torus function, different e thresholds were tested. The
figures of this section were created with the VIBES GUI toolkit[44].

(a) 2D Torus (b) 2D Griewanlk

Figure 3.6: The Input space of the 2D Torus function produced by the sequential SIVIA
algorithm. The boxes have different sizes because of a dynamic tree expansion strategy.

3.4.2 Problem 3: Estimating the Generalization Performance of a Neural
Classifier

As we saw in Section 2.2.5, the generalization of a network architecture is measured
by estimating the error of classification on previously unseen data. A very common

technique used for its estimation is cross-validation. Adam et al.[22][45][4] claim that

Diploma Thesis

Chapter 3. Implementation

(a) e=0.1 (b) e = 0.01

Figure 3.7: The Input space of the 2D Torus function produced by the proposed parallel
algorithm. Smaller epsilon values provide more accurate approximations.

despite the fact that attempts have been made to prove that cross-validation results
in a consistent estimator of the learning algorithm’s generalization, it seems that this
approach does not sufficiently define generalization. Several causes for this problem
are related to the difference of the distribution generating test patterns during cross-
validation from the distribution of the off-training set defined by real-world processes.
Another reason for questioning the efficiency and unbiasedness of cross-validation is
the stochastic splitting into folds, while, to a lesser extent, one may consider that cross-
validation is computationally intensive since it requires the training process to be repeated
several times. They instead propose an alternative solution using IA methods, mainly
SIVIA. The proposal was in the form of a sequential algorithm (as SIVIA is traditionally
implemented) and this means that it either required large amounts of execution times
or lower-quality approximations (high e values) had to be generated. [4] introduces three
metrics, namely Gner, Ener and My The latter of the three is a combination of the first two.
In this thesis only Gy is used as the purpose is the demonstration of a parallel alternative
for its calculation. The thought behind Gy, is the assumption that the larger the domain
of validity of a classifier, the bigger its volume and so the higher the probability for some
unknown pattern to be in this area and be classified. Hence, the necessary condition
for some unknown pattern to be classified by the network is to lie within the domain of

validity of its respective class. It is computed with the following equations:

V, l
Gret = net -, (3.7)
Vinput p

where [is the number of misclassified or unclassified patterns and P is the total number

of patterns. The volume of the solution set for all classes C is given by

M
Viet =), Vi 3.8)
i=1

m Diploma Thesis

3.5 Test Environment

(b) e=0.2

Figure 3.8: The Input space of the 2D Griewanlk _function produced by the proposed parallel
algorithm. Smaller epsilon values provide more accurate approximations.

with V; as the partial volume of the set of boxes that classified into class C; (part of the
solution set), given an output interval Y; = [1 — 3, 1]. B is an arbitrary scalar usually set
between [0.1, 0.2] (should not be confused with intervals). Vi, is the volume of the Xp
hyperbox. Given a classification problem it can be described with the size of each feature

of the training data.

N
Vinput = | | g™ = x™™ (3.9
i

Given all the above, to test the performance and scalability of the parallel proposal
one only needs to calculate a partial sum V; as it is the only variable in the equation
directly dependent on the generated boxes. Vi, only needs to be computed once for a
given NN; the same goes for Tl). Finally, the Neural Network used as the inclusion is a
pre-trained 6-30-2 MLP, using the Levenberg-Marquardt algorithm with early stopping,
in the Vertebral Column® dataset[46] and was provided by Professor Adam himself. The
B value used is 0.2, resulting in a window Y = [0.8, 1]. More details of the model can be

found in Section 5.1.5 of [4].

3.5 Test Environment

For the performance tests, 4 different systems have been deployed, provided by differ-
ent entities. Reading Table 3.1 from top to bottom; The first system is my home desktop
setup, the second, namely the DaVinci system, was provided by Microlab of ECE-NTUA;
the 3rd is owned by the Laboratory for Computing of the CEID department at the Uni-

versity of Patras. The final setup is a multi-configuration system part of the Google

3The biomedical data of 310 patients are used for two possible classification tasks. The second task was
retained, where the categories Disk Hernia and Spondylolisthesis of the first task are merged into a single
category labeled as abnormal. So, this task consists in classifying patients as belonging to class Normal (100
patients) or Abnormal (210 patients).

Diploma Thesis m

Chapter 3. Implementation

Collaboratory’s subscription service.

CPU Memory GPU
Intel Core i7 5820K @ 4.3Ghz (OC) 30GiB DDR4 | NVIDIA RTX 3060 Ti PCle 8GB
2x Intel Xeon Gold 5218R @ 2.10Ghz | 128GiB DDR4 | NVIDIA Tesla V100 PCle 32GB
2x AMD EPYC 7742 @ 2.25Ghz 1026GiB DDR4 | 8x NVIDIA A100 PCle 32GB

NVIDIA Tesla V100 PCle 16GB
Unknown (depends on the session) > GPU Memory csla ©

NVIDIA A100 PCIe 32GB

Table 3.1: A summary of the configurations used in the benchmarks.

3.6 Results

The comparison is made between intervals of FP32 (float) and CUDA FP16 (half) vari-
ables. The Epsilon values for problem 1 and 2 range between le — 2 and le — 4, while
for problem 3 it ranges between [0.1, 0.03]. The smallest possible number a half variable
can store is 5.96 x 108 and is way smaller than the € values used in the tests. Thus, even
if some accuracy is missing from some operations, the approximations will still become
more accurate as € decreases. In addition, the primary purpose of problem 3 was to use
the method to compare different neural networks, so all of them would get rated with the

same accuracy. The tests measure the speedup.
Speedup = Ts /T, , (3.10)
where Ty is the real execution time, in seconds, of the sequential algorithm and T, of the

parallel one; the throughput, which in our case will be given by

Boxes Processed
Throughput = - - , (3.11)
Execution Time

and finally various causes will be explored using the profiler of the NVIDIA Nsight Compute
suite* in order to explain the behavior of the proposed parallel algorithm in all three
problems. While the general good practice is to perform multiple executions and average
the measured time, intensive tests were run instead so that delays attributed to system
calls and synchronization take a trivial percentage of the execution time, far from reducing
the integrity of the measurements. The plots were created using the Seaborn® Python

module.

3.6.1 CPU Implementation

The sequential implementation used on the CPU has been written with the Ibex Nu-
merical and Interval Arithmetic C++ library[42]. This implementation uses double pre-
cision variables for the intervals and is written to perform well in a sequential context.

The BB tree is expanding dynamically, depth-first, as only boxes with width > e which

4https://developer.nvidia.com/nsight—compute
5https://seaborn.pydata.org/

m Diploma Thesis

https://developer.nvidia.com/nsight-compute
https://seaborn.pydata.org/

3.6.2 Problem size

are not part of the inner/outer approximation are bisected. So the problem sizes between

implementations will be vastly different.

3.6.2 Problem size

Figures 3.9, 3.10 showcase the amount of boxes generated as well as the rate of

increase by each inclusion function as € decreases. There are missing values in Figures

3.10a, 3.10b because the CPU execution did not exit successfully due to time constraints.

As the nature of the sequential implementation the dynamic generation of the BB tree,

it is not possible (to my knowledge) to mathematically calculate the number of boxes a

priori. However, a very similar trend can be noticed when compared to Figures 3.9a and

3.10b.
1e12 Boxes Generated
Problem
4 —— Griewank
Torus
Device
—e— CPU
8 -w- GPU
0
2
82

01 0.01 0.001

Epsilon

(a)

0.0001

/ 8

/ 6

Boxes

1e-05

Figure 3.9: Problems 1 & 2: Number of Boxes

Generation (Figure 3.9b).

1e12 Boxes Generated

Problem
4 —— Gnet
Device
—e— CPU
-n- GPU
3
w
@
3
@2
/
y
s
/
/
)
1 4
/
7
/
/
s
7
0 $———m——————————o—= o
0.1 0.06
Epsilon

(a)

Figure 3.10: Problems 1 & 2:
Generation (Figure 3.9b).

Diploma Thesis

£ 35

s 3.0

/ 25

20

Boxes

05

00

0.03

Rate of Input Space Expansion (Logarithmic Scale)

Problem ¥
—— Griewank -
Torus -
Device -
—e— CPU e
-u- GPU -7

i /.
0.1 0.01 0.001 0.0001 1e-05
Epsilon
(b)

Generated (Figure 3.9a). Rate of Box
Rate of Input Space Expansion (Logarithmic Scale)
Problem R

—— Gnet vt
Device ,/’
—e— CPU /’
-n- GPU d
-
J’/
//
t”
/,x
e
e
L
L
—r>
,,’ .
O
/”
t’,
0.1 0.06 0.03
Epsilon
(b)

Number of Boxes Generated (Figure 3.9a). Rate of Box

Chapter 3. Implementation

3.6.3 Speedup

The speedup figures of Problems 1 and 2 show a very disheartening result, depicting
slowdowns (Figures 3.11, 3.12, 3.13 & 3.14) . We can notice, however, an instance where
the parallel algorithm initially performs better (Figure 3.12). Problem 3 on the other
hand shows a completely different picture (Figures 3.15 and 3.16) with speedup values
by a factor of thousands including cases where the performance ceiling has not been
reached (4x & 8x A100). GPU models with less than 40GB of VRAM seem to have reached
that performance ceiling. This might, however, be a consequence of the implementation
and not a property of the respective architectures. One more test was conducted on
Problem 3 with ¢ = 0.03 but the sequential algorithm execution required more than
270 hours. Including this measurement without the program exiting properly would
hinder the reliability of the results. That test, using 8 A100 GPUs required approximately
4 minutes, therefore we can be sure that the speedup value would not vary by a lot

compared to the already depicted outcomes.

Problem 1: Speedup vs 5820K(1 Core) FP32

1.0 : GPU Configuration
\ —e— 3060 Ti 8GB
\ A100 40GB

0.8 --m--- A100 40GB x2

-+-- A100 40GB x4
\ =& A100 40GB x8
0.6 \ -+- V100 16GB

j= N
= V100 32GB
[45]
o]
o
D 04

0.2

0.0 *

0.01 0.001 0.0001 1e-05
Epsilon

Figure 3.11: The speedup plot of the Torus inclusion function using float variables.
e=[le—-2,1le—-5]

3.6.4 Throughput

Contrary to the worst scenarios depicted on the speedup figures, the throughput,
meaning the boxes evaluated compared to the total time required, shows that performance
improvements in fact do exist. Increases might seem marginal in many cases due to
the figures being in logarithmic scale. Figures 3.21, 3.22 lack the ¢ = 0.03 CPU time

measurement. Multi-GPU executions display an overhead with smaller problem sizes.

m Diploma Thesis

3.6.5 Number of Runs

Problem 1: Speedup vs 5820K(1 Core) FP16

3.0 : GPU Configuration
| —e— 3060 Ti 8GB
25 A100 40GB
' ~-m- A100 40GB x2
\ -=-- A100 40GB x4
20 —4#—- A100 40GB x8
o -+- V100 16GB
a2 V100 32GB
o 15
[+}]
o
73]
1.0
0.5
0.0 *
0.01 0.001 0.0001 1e-05
Epsilon

Figure 3.12: The speedup plot of the Torus inclusion function using half variables.
e=[le—-2,1e—- 5]

3.6.5 Number of Runs

In this section the amount of GPU executions required per problem and per variable
are depicted. The main trend all figures depict is that the more memory available -by a
multiple of 2- the lesser the amount of DEVICE executions required. This is in line with
the bisection strategy deployed. Using half variables twice as many boxes can fit into the
Global Memory.

3.6.6 Profiling

The final step to expose the culprit for the slowdowns encountered in Problems 1 & 2
is to use a profiler. We can finally determine (Figures 3.23a, 3.24a) that memory transfer
bottlenecks is what caused the slowdowns (Figures 3.26, 3.27) as cudaMemcpy takes
more than 85% of the total execution time. Problem 3, on the other hand, is bottlenecked
by host-device synchronizations, but as we saw previously (Figures 3.15 & 3.16) the

performance improvements are enormous.

3.7 Discussion

In this chapter, we noticed how SIVIA can be categorized as a Branch-and-Bound al-
gorithm due to the way it generates and explores subproblems. We saw how the problems
of this thesis do not provide any information that can lead to processing prioritization,

resulting in the exhaustive search of the input space. General methods of parallelization

Diploma Thesis m

Chapter 3. Implementation

Problem 2: Speedup vs 5820K(1 Core) FP32

GPU Configuration
—e— 3060 Ti 8GB
0.04 A100 40GB
--m- A100 40GB x2
-+- A100 40GB x4

0.02 —& A100 40GB x8
-+ V100 16GB
= V100 32GB
D 000
D
=)
W
-0.02
-0.04
0.01 0.001 0.0001 1e-05
Epsilon

Figure 3.13: The speedup plot of the Griewanlk inclusion function using float variables.
e=[le—2,1e—- 5]

followed, with GPUs as the primary focus and related background literature was explored.
Finally, the parallelization structure proposed of this thesis was unveiled, using three dif-
ferent inclusion functions. The first two problems included intensive memory operations
that resulted in slowdowns but excluding them on the 3rd problem resulted to executions
more than eight thousand times faster when compared to the sequential algorithm. In
the discussion several other figures and metrics were introduced, including the problem
size and its rate of expansion, the throughput of each configuration as well as results

from an execution profiling software which exposed the aforementioned bottlenecks.

m Diploma Thesis

3.7 Discussion

1.0

0.8

0.6

Speedup

0.2

0.0

Problem 2: Speedup vs 5820K(1 Core) FP16

4 GPU Configuration

—e— 3060 Ti 8GB
—#- A100 40GB
~-m- A100 40GB x2
-=-- A100 40GB x4
—4 A100 40GB x8
-+- V100 16GB
—&-- V100 32GB

0.0001 1e-05

Epsilon

Figure 3.14: The speedup plot of the Griewanlk inclusion function using half variables.
e=[le—-2,1e—- 5]

5000

4000

Speedup

2000

1000

Problem 3: Speedup vs 5820K(1 Core) FP32

GPU Configuration |
—e— 3060 Ti 8GB e
—w- A100 40GB e
—m- A100 40GB x2 -
-+- A100 40GB x4 e
—e— A100 40GB x8 ,--"’
-4 V100 16GB e =
—a- V100 32GB e e
r,..” '-‘-"--
- -
- ="
R - .
u i -
ansmam -fu‘---l‘,-f T LTI
K =T]
e
e T,
e < T ..
:‘:-_- _'__l:-_.-:_:-_-:I:-_.:___':_.::_-._.:-____-_._- T I
0.06

0.1
Epsilon

Figure 3.15: The speedup plot of the Gne partial sum inclusion function using float vari-
ables. € = [0.1,0.06]

Diploma Thesis

Chapter 3. Implementation

Problem 3: Speedup vs 5820K(1 Core) FP16

8000 GPU Configuration Y
—e— 3060 Ti 8GB o
7000 -m=- A100 40GB P
~-m- A100 40GB x2 ,f,
6000 -4- A100 40GB x4 e
—e— A100 40GB x8 P L
o 5000 -+ V100 16GB P e
3 —4- V100 32GB ,_.w" e
@ s -
@ 4000 e L
7] P et
g L
1401 S ———— .
e T
““““ ?%’-4“-'_____
2000 e e
T = ———
-F",./ =%
1000 :.-r‘—---»---‘._.___________ S
01 0.06
Epsilon

Figure 3.16: The speedup plot of the Gy.; partial sum inclusion function using half variables.
€ =[0.1,0.06]

Problem 1: Throughput FP32 (Logarithmic Scale)

10
GPU Configuration
—e— 3060 Ti 8GB
—=#u- V100 16GB
g T V100 32GB
==- A100 40GB
—&— A100 40GB x2
—--4-- A100 40GB x4
—- A100 40GB x8
. 6 _—w=- cPu 2
=3
(=%
)
[=1]
=3
2
= 4
2
0
0.01 0.001 0.0001 1e-05
Epsilon

Figure 3.17: The throughput plot of the Torus inclusion function using float variables.
e=[le—-2,1le—-5]

m Diploma Thesis

3.7 Discussion

Problem 1: Throughput FP16 (Logarithmic Scale)

GPU Configuration
—e— 3060 Ti 8GB
—-u- V100 16GB
~-m- V100 32GB
-<- A100 40GB
—&— A100 40GB x2
-4 A100 40GB x4
—#- A100 40GB x8
g H==="cpl

10

Throughput

0.01 0.001 0.0001 1e-05
Epsilon

Figure 3.18: The throughput plot of the Torus inclusion function using half variables.
e=[le—-2,1e—- 5]

0 Problem 2: Throughput FP32 (Logarithmic Scale)

GPU Configuration
—o— 3060 Ti 8GB

-»- V100 16GB
g | V100 32GB
--+- A100 40GB
—o— A100 40GB x2
=<4 A100 40GB x4
—#-- A100 40GB x8
6
5
[=8
-
o
=
=
= 4
2
0
0.01 0.001 0.0001 1e-05
Epsilon

Figure 3.19: The throughput plot of the Griewank inclusion function using float variables.
e=[le—2,1e—-5]

Diploma Thesis

Chapter 3. Implementation

Problem 2: Throughput FP16 (Logarithmic Scale)

10
GPU Configuration
—&— 3060 Ti 8GB
—-u- V100 16GB
--m-- 100 32GB
8 -4-. A100 40GB
—o— A100 40GB x2
-4- A100 40GB x4
—4-= A100 40GB x8
g ~® CPU e asansusiSl)
3 g
s B T e e S T
[=1] v
= e
e . -
E -‘-‘_‘.--‘
4 M
+° ,"/
2
0
0.01 0.001 0.0001 1e-05
Epsilon

Figure 3.20: The throughput plot of the Griewank inclusion function using half variables.
e=[le-2,1le—-5]

Problem 3: Throughput FP32 (Logarithmic Scale)

10
8
ST B 07 ity
£ . T T
=3 GPU Configuration
g —e— 3060 Ti 8GB
=4 -®- V100 16GB
@ V100 32GB
-4+- A100 40GB
p e —e— A100 40GB x2
------------- -4- A100 40GB x4
—4~ A100 40GB x8
-%- CPU
0
0.1 0.06 0.03

Epsilon

Figure 3.21: The throughput plot of the Gne partial sum inclusion function using float
variables. € = [0.1,0.03]

m Diploma Thesis

3.7 Discussion

10

Problem 3: Throughput FP16 (Logarithmic Scale)

5] o

T
e e e e e e e — o

by

Throughput

0.1

—

————
et
-

0.06
Epsilon

GPU Configuration

3060 Ti 8GB
V100 16GB
V100 32GB

-+ A100 40GB
-+ A100 40GB x2
- A100 40GB x4

A100 40GB x8
CPU

0.03

Figure 3.22: The throughput plot of the Gpne partial sum inclusion function using half

variables. € = [0.1, 0.03]

Diploma Thesis

Chapter 3. Implementation

3060 Ti 8GB

V100 16GB

|
]
]
V100 32GB
8 || Epsilon
S A100 40GB = 1e05
a mem 00001
- 0001
A100 40GB x2 ——T
[]
A100 40GB x4
[|
A100 40GB x8
0 200 400 600 800 1000
Runs
(a) Float FP32 variables.
|
3060 Ti 8GB
|
V100 16GB
]
V100 32GB
9 —— Epsilon
= A100 40GB . 1e-05
3 e 0.0001
- = 0.001
A100 40GB x2 — 0.01
||
A100 40GB x4
|
A100 40GB x8
0 100 200 300 400 500
Runs
(b) Half FP16 variables.
Figure 3.23: Problem 1: Number of Kernel runs.
Diploma Thesis

3.7 Discussion

-]
3060 Ti 868 "
|
V100 16GB |
]
V100 32GB
Q [] Epsilon
S A100 40GB - 1e-05
a mm 0.0001
] m 0.001
A100 40GB x2 - 0.0
]
A100 40GB x4
]
A100 40GB x8
0 2000 4000 6000 8000 10000 12000 14000 16000
Runs
(a) Float FP32 variables.
|
3060 TisGB "
|
V100 16GB !
|
V100 32GB
g I Epsilon
'S A100 40GB - 1e-05
8 e 0.0001
- W 0.001
A100 40GB x2 - 001
||
A100 40GB x4
1

A100 40GB x8

0 1000 2000 3000 4000 5000 6000 7YOOO 8000
Runs
(b) Half FP16 variables.

Figure 3.24: Problem 2: Number of Kernel runs.

Diploma Thesis

Chapter 3. Implementation

]
3060 Ti8GB |
]
V100 16GB |
]
V100 32GB
b] :
o Epsilon
é A100 40GB 0.03
— 008
A100 40GB x2 = 01
||
A100 40GB x4
|
A100 40GB x8
0 5000 10000 15000 20000 25000 30000
Runs
(a) Float FP32 variables.
|
3060 Ti8GB |
|
V100 16GB
]
V100 32GB
@] ;
S A100 40GB Epsilon
2 == 003
008
]
A100 40GB x2 = 01
[|
A100 40GB x4
| |

A100 40GB x8

[=]

2000 4000 6000 8000 10000 12000 14000 16000
Runs
(b) Half FP16 variables.

Figure 3.25: Problem 3: Number of Kernel runs.

Med (ns)

19768397867 2196488651. 83987300. 61800 18054353560 5957089058. cudaMemcpy

7185788082 710578802. 710578802. 7105788082 710578802 a. cudaMallocHost
302196801 5036613. 63350. 5300 77571200 13790215. cudaDeviceSynchronize
180500301 60166767 . 54629700 473800 125396801 62645298, cudaMalloc

49644000 16548000. 4892800. 299300 44451900 2427U385. cudaFree

Figure 3.26: Problem 1: The profiler output with e = 1le — 4

Diploma Thesis

3.7 Discussion

Time (%) Total Time (ns) Num Calls

5697886176
722301100
168768499

43053000

Avg (ns)

9 633098464
1 722301100

60
2l

2812808.

14351000

Med (ns)

.0 104344400,
.0 722301100.
] 43000.

Min (ns)

56500
722301100
20200
293300

Max (ns)

3964895784
722301100
51632499
37851300

StdDev (ns)

1317343026.
Q.

9549282,
20482257 .

cudaMemcpy
cudaMallocHost
cudaDeviceSynchronize
cudaFree

42401600

3

14133866

.0 4o08400.
.7 11234500.

550600

30616500

15241205.

Figure 3.27: Problem 2: The profiler output with e = le — 3

*% CUDA API Summary (cuda_api_sum):

Time (%) Total Time (ns) Num Calls

114912155468
684587990
217664907

58488800
44n60599

7681
1
7680
10
ue

Avg (ns)

14960572,
68U4587990.
28341.
5848880.
1111515.

Med (ns)

54200.
68U4587990.
12800.
3500.
2050.

Min (ns)
2600

684587990
6300
2100
1600

Max (ns)
374076197
684587990

4600899
58446300
43923599

StdDev (ns)
59393960.
0.
62991.
18480850.
6943062 .

cudaMalloc

cudaDeviceSynchronize
cudaMallocHost
cudalaunchKernel
cudaFree

cudaMalloc

24409100

549

qyuel .

40600.

9500

317700

34166.

Figure 3.28: Problem 3: The profiler output with € = 0.06

Diploma Thesis

cudaMemcpy

Chapter

Closing Words

4.1 Reproducibility

The code that produced all the plots and the pre-trained models that was used, is
widely available at this GitHub repository. The code provided includes the basic structure
of the parallelization for both single and multiple GPU configurations with only the Neural
Network missing as it is not my intellectual property. Keep in mind that if the sequential
algorithm is ever re-tested, my i7 5820k was overclocked at 4.3GHz and my memory
was tuned at 2666MHz with CAS timing 15 at the time of writing this thesis, that would

explain some variation between my tests and others.

4.2 Conclusion

This thesis proposes a new parallel Interval Arithmetic algorithm. Contrary to previ-
ous work on Branch-and-Bound and other IA implementations, this algorithm is based
on a breadth-first approach, resulting in the aggressive expansion of the input space.
The IA technique accelerated is named SIVIA and, when combined with a neural network,
has the ability to deterministically compute its domain of validity, providing guaranteed
approximations. The parallel approach requires large amounts of memory, however, with
the massive parallelization GPGPU developments of the recent years, particularly thanks
to NVIDIAs contributions, it seems that when there are no intensive memory transfer or
synchronization operations the performance improvements are quite significant. It is of
importance to mention that the memory bottlenecks introduced in the first two problems
were a subjective requirement to demonstrate the performance changes between the two
cases. If the storage of the boxes is indeed a requirement, the issue could be mitigated by
moving all processing to the DEVICE (e.g. by writing an OpenGL visualization software).
In addition, another very recent development was showcased for evaluating and compar-
ing the generalization performance of Neural Networks as a response to flaws surrounding
cross-validation statistical methods. That technique initially required weeks of sequential
computational time, however, using a modest GPU cluster reduced the runtime to just
four minutes, an eight thousand-fold improvement. It is interesting that when this tech-
nique is used with lower precision variables, the results are not of lesser quality due to the

enormous execution time required to reach that limit. The way a network’s generalization

Diploma Thesis

https://github.com/knasiotis/postgraduate_thesis.git

Chapter 4. Closing Words

was estimated comply with commonly known theoretical considerations (e.g. Occam’s
razor) although it is not without its flaws as it is considered a macroscopic measure of the
validity domain, lacking the ability to provided any qualitative characteristics. Initially
two more metrics were proposed to circumvent this issue, however, retrofitting the algo-
rithm to accommodate them constitutes an open issue for future study. The performance
results presented comply with all previous theoretical knowledge of parallel computing
as well as NVIDIAs best practices guidelines. Using SIVIA with large scale neural models
still remains a challenge due to the exhaustive search required in very large input spaces.
Thus, if we want to broaden our knowledge of neural networks, additional mathematical

techniques should accompany parallelization efforts.

4.3 Future Work

Research on B&B techniques and SIVIA is far from exhausted. Beyond comparing the
results presented here with previous MIMD or finer-grained CUDA approaches, there are
many other ways to move on from this work. This thesis, for instance, set the requirement
for the storage of the resulting boxes of the first two problems for visualization and, conse-
quently, verification purposes. The problem of the costly memory transfers, in this case,
could be easily mitigated by implementing a visualizing tool using common graphics APIs
such as OpenGL. Another interesting idea would be to combine past MIMD parallelization
methods with the one proposed here. This is far from new, however, as many interval
GPU implementations of the past utilized the DEVICE with multiple execution streams to
perform finer-grained inclusion function passes, but none of those propositions included
a parallel bisection method. This parallel bisection method could be used to generate
larger problem sizes efficiently, ideally not as large as the current implementation which
brutally expands the BB tree, for equal workload distribution and benefit from smaller
problem sizes at the same time, further increasing speedups. Another idea would be to
consider a method after the box evaluation that would result in a vector containing only
the boxes that require further bisection, shortening the search window with every itera-
tion, minimizing the search tree (in a more lax definition). Finally, modern technologies
such as Julia could be explored and compare its efficiency to current implementations.
Of course, this is not suggested in a vacuum, as in the SWIM 2023 conference there was

a presentation regarding Interval Arithmetic in GPUs using the Julia language[47].

Diploma Thesis

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

(14]

L. Jaulin, M. Kieffer, O. Didrit, E. Walter, L. Jaulin, M. Kieffer, O. Didrit, and E. Wal-
ter, Applied Interval analysis. Springer, 2001.

L. Jaulin and E. Walter, “Set inversion via interval analysis for nonlinear bounded-

error estimation,” Automatica, vol. 29, no. 4, pp. 1053-1064, 1993.
“Cuda faq.” https://developer.nvidia.com/cuda- faq. Accessed: 2023-09-12.

S. P. Adam, A. C. Likas, and M. N. Vrahatis, “Evaluating generalization through
interval-based neural network inversion,” Neural Computing and Applications,
vol. 31, no. 12, pp. 9241-9260, 2019.

R. E. Moore, Interval arithmetic and automatic error analysis in digital computing.
PhD thesis, Department of Mathematics, Stanford University, 1962.

R. E. Moore, Interval analysis, vol. 4. Prentice-Hall Englewood Cliffs, 1966.

E. Hansen, “Interval arithmetic in matrix computations, part i,” Journal of the Society
Jor Industrial and Applied Mathematics, Series B: Numerical Analysis, vol. 2, no. 2,
pp- 308-320, 1965.

U. W. Kulisch and W. L. Miranker, Computer arithmetic in theory and practice. Aca-
demic press, 2014.

K. Nasiotis, D. Lopez, S. Adam, and L. Casado, “Set inversion via interval analysis a

study on parallel processing implementation,” 2019.

R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to interval analysis. SIAM,
2009.

R. Rao, A. Asaithambi, and S. Agrawal, “Inverse kinematic solution of robot manip-

ulators using interval analysis,” 1998.

M. Kieffer, L. Jaulin, E. Walter, and D. Meizel, “Robust autonomous robot localization

using interval analysis,” Reliable computing, vol. 6, no. 3, pp. 337-362, 2000.

L. Jaulin, “Path planning using intervals and graphs,” Reliable computing, vol. 7,
no. 1, pp. 1-15, 2001.

A. Piazzi and A. Visioli, “Global minimum-time trajectory planning of mechanical
manipulators using interval analysis,” International journal of Control, vol. 71, no. 4,
pp. 631-652, 1998.

Diploma Thesis

https://developer.nvidia.com/cuda-faq

BIBLIOGRAPHY

[15] E. Hansen and G. W. Walster, Global optimization using interval analysis: revised
and expanded, vol. 264. CRC Press, 2003.

[16] P. Xu, “A hybrid global optimization method: the multi-dimensional case,” Journal

of computational and applied mathematics, vol. 155, no. 2, pp. 423-446, 2003.

[17] E. Hansen, “Global optimization using interval analysis—the multi-dimensional
case,” Numerische Mathematik, vol. 34, no. 3, pp. 247-270, 1980.

[18] A. Piazzi and A. Visioli, “A global optimization approach to trajectory planning for
industrial robots,” in Proceedings of the 1997 IEEE/RSJ International Conference
on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications.
IROS’97, vol. 3, pp. 1553-1559, IEEE, 1997.

[19] I. Braems, F. Berthier, L. Jaulin, M. Kieffer, and E. Walter, “Guaranteed estimation
of electrochemical parameters by set inversion using interval analysis,” Journal of

Electroanalytical Chemistry, vol. 495, no. 1, pp. 1-9, 2000.

[20] M. B. Eriksen and S. Rasmussen, “Gpu accelerated parameter estimation by global

optimization using interval analysis,” 2013.

[21] S. P. Adam, G. D. Magoulas, D. A. Karras, and M. N. Vrahatis, “Bounding the search
space for global optimization of neural networks learning error: an interval analysis

approach,” Journal of Machine Learning Research, vol. 17, pp. 1-40, 2016.

[22] S. P. Adam, D. A. Karras, G. D. Magoulas, and M. N. Vrahatis, “Reliable estimation
of a neural network’s domain of validity through interval analysis based inversion,”
in 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1-8, 2015.

[23] S. Haykin, Neural Networks and Learning Machines. Pearson India, 2008.

[24] M. Stone, “Cross-validatory choice and assessment of statistical predictions,” Journal
of the royal statistical society: Series B (Methodological), vol. 36, no. 2, pp. 111-133,
1974.

[25] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth Edition: A Quantita-
tive Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 6th ed.,
2017.

[26] P. Pacheco and M. Malensek, An introduction to parallel programming. Morgan Kauf-

mann, 2021.

[27] M. d. Flynn, “Very high-speed computing systems,” Proceedings of the IEEE, vol. 54,
no. 12, pp. 1901-1909, 1966.

[28] “Cuda c++ programming guide.” https://docs.nvidia.com/cuda/cuda-c-programming-
guide/. Accessed: 2023-10-06.

[29] “Cuda ct++ best practices guide.” https://docs.nvidia.com/cuda/cuda-c-best-
practices-guide/. Accessed: 2023-10-06.

Diploma Thesis

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

BIBLIOGRAPHY

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

“Ampere turing guide.” https://docs.nvidia.com/cuda/ampere-tuning-guide/index.
html. Accessed: 2023-10-06.

B. Gendron and T. G. Crainic, “Parallel branch-and-branch algorithms: Survey and

synthesis,” Operations research, vol. 42, no. 6, pp. 1042-1066, 1994.

G. A. P. Kindervater and H. W. J. M. Trienekens, “Experiments with parallel al-
gorithms for combinatorial problems,” European Journal of Operational Research,
vol. 33, no. 1, pp. 65-81, 1988.

F. Goualard, “Fast and correct simd algorithms for interval arithmetic,” in PARA’08,
Springer, 2008.

F. Dehne, A. G. Ferreira, and A. Rau-Chaplin, “Parallel branch and bound on fine-
grained hypercube multiprocessors,” in IEEE International Workshop on Tools for
Artificial Intelligence, pp. 616-617, IEEE Computer Society, 1989.

C. Collange, J. Flérez, and D. Defour, “A gpu interval library based on boost. interval,”

in 8th conference on real numbers and computers, pp. 61-71, 2008.

Z. Bagoczki and B. Banhelyi, “A parallel interval arithmetic-based reliable computing
method on a gpu,” Acta Cybernetica, vol. 23, pp. 491-501, Jan. 2017.

B. Chrétien, A. Escande, and A. Kheddar, “Gpu robot motion planning using semi-
infinite nonlinear programming,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 27, no. 10, pp. 2926-2939, 2016.

L. G. Casado, J. Martinez, I. Garcia, and E. M. Hendrix, “Branch-and-bound interval
global optimization on shared memory multiprocessors,” Optimization Methods &
Software, vol. 23, no. 5, pp. 689-701, 2008.

“C-xsc - a c++ class library for extended scientific computing.” https://www2.math.uni-

wuppertal.de/wrswt/xsc/cxsc/apidoc/html/index.html. Accessed: 2023-10-14.

K. Naoidtng, “YAomoinon texvikdv kadoikng SeAtiotonoinong (branch and bound)
oe mepaiiov tapaiining eneepyaociag. epapuoyn os vevpwtika diktva.,” 2020.

“Cuda samples.” https://github.com/NVIDIA/cuda-samples. Accessed: 2023-10-14.

“Ibex is a c++ library for constraint processing over real numbers..” https://github.
com/ibex-team/ibex-1ib. Accessed: 2023-10-14.

M. Harris et al., “Optimizing parallel reduction in cuda,” Nvidia developer technology,
vol. 2, no. 4, p. 70, 2007.

“Visualizer for intervals and boxes.” https://github.com/ENSTABretagneRobotics/VIBES.
Accessed: 2023-10-15.

Diploma Thesis

https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html
https://docs.nvidia.com/cuda/ampere-tuning-guide/index.html
https://www2.math.uni-wuppertal.de/wrswt/xsc/cxsc/apidoc/html/index.html
https://www2.math.uni-wuppertal.de/wrswt/xsc/cxsc/apidoc/html/index.html
https://github.com/NVIDIA/cuda-samples
https://github.com/ibex-team/ibex-lib
https://github.com/ibex-team/ibex-lib
https://github.com/ENSTABretagneRobotics/VIBES

BIBLIOGRAPHY

[45] S. P. Adam, A. C. Likas, and M. N. Vrahatis, “Interval analysis based neural network
inversion: a means for evaluating generalization,” in Engineering Applications of
Neural Networks: 18th International Conference, EANN 2017, Athens, Greece, August
25-27, 2017, Proceedings, pp. 314-326, Springer, 2017.

[46] G. Barreto and A. Neto, “Vertebral Column.” UCI Machine Learning Repository, 2011.
DOI: https://doi.org/10.24432/C5K89B.

[47] L. Gillner and E. Auer, “Interval methods for the gpu,” SWIM 2023.

m Diploma Thesis

Appendix

A more detailed look on Problem 3

The technique mentioned in Section 3.4.2 is only one of the three metrics of the orig-
inal paper[4]. The Gpe Which was discussed is considered a macroscopic measure as it
is based on the whole volume of the validity domain and the total number of misclassi-
fied/unclassified patterns. This is not a problem when under-training a model as this
can be detected simply by looking at the training error, but it is very tricky when con-
sidering over-training. So a second measure namely E,.; was proposed which takes into
account local information of the domain of validity, as it considers for each valid box both
its volume and its performance. The performance in this case means the evaluation of
training patterns inside a box, whether they are correctly classified or not. It is important
to mention that it would potentially require a different parallelization strategy, therefore
accelerating this measurement is a subject of a potential future study. This measure
tends to consider hyper-boxes based on the density of correctly classified patterns and

results in the following effects:
e It deals with overlapping between classes.

e It rejects regions of the domain of validity that do not contain any pattern. These
areas are taken into account by Gy but they do not contribute to the local behavior

of the decision surface between classes.
e [t favors the volume of hyper-boxes with classification performance.

The third bullet point means that E,.; provides lower values in the case of over-training.
Consequently, E,e; acts as a complementary metric to Gpet.
The third metric is named M., with the purpose of effectively combining both Gy and
Epet. It is computed by
Mpet = Grettanh(Enet).

The hyperbolic tangent is used to transform E,.; into the interval [—-1, 1] so that they are
of the same scale as the Gye:. In the case where Ep et is negative, wrong classifications are
expected to be higher than correct ones, thus the network is poorly trained. This results
in negative My, values and is indicative of an unacceptable network.

The original paper has some very interesting figures, visualizing the formation domain
of validity in different cases. Consider an artificial dataset of two classes (Figure A.1).

Different MLP configurations were trained in this dataset, using logistic sigmoid activation

Diploma Thesis m

Appendix A. A more detailed look on Problem 3

functions. Figure A.2 illustrates the ways the domain of validity is formed when adjusting
the 3 value of the output interval [1 — 3, 1]. Regions in red are regions categorized in one
of the two classes. Figure A.3 depicts the formation of the domain of validity in regards
to the quality of a network’s training. We can conclude that the 8 value should be chosen

carefully, otherwise we would end up with a skewed perception of the input space.

1.5 w
. x
o o
* * -]
x ®
* . . 0 & s © *
Q x =
x x "
% %
1— = ") %o &) o E PR * om i
x ®
= ® o 0° R * * .
o
o o x
x x
"
oL x =) |
D * o x
o
= o
o "
o o
o o
o x " o 9© s
a = ® o= ©
o ©g° o * o @ o
0 : . I
00 [+] ° * - Dc @
o
° s ® o x % ox ®
P o o &
o ® o B
o
0.5 :
=]
o "
ot
Pl T o P ° . .
= o o -
* x .. o 99 o x
*
1 " * oo o * o~ |
® o @ 0 o
= o . =
* a0 o *
"
" e 0 =
o *
_15 I I I | x |

-0.5

-1.5 ; 15 .
“1s -1 05 0 0.5 1 15 205 - —05 0 05) 15
(a) When the output interval is [0.999, 1] (b) When the output interval is [0.9, 1]

Figure A.2: Depiction of the f3 cut affecting the domain of validity.

m Diploma Thesis

15

05

-1

=15
-1.5 -1 -0.5 0 0.5 1 15

(a) Domain of validity resulting from successfully training a 2-4-2 MLP.
15

-1.5
-1.5 -1 -0.5 0 0.5 1 15

(b) Domain of validity resulting from under-training a 2-2-2 MLP.
15

05

-1

-1.5
-1.5 -1 -05 0 0.5 1 15

(c) Domain of validity resulting from over-training a 2-25-2 MLP.

Figure A.3: Depiction of training affecting the domain of validity using the same S value.

Diploma Thesis m

Appendix B

Detailed Results

DEVICE | Epsilon | le-2 | 1le-3 le-4 le-5

RTX 3060 Ti 8GB 6 799 | 4461 | 383811
TESLA V100 16GB 3 144 | 5241 | 372590
TESLA V100 32GB 2 128 | 8338 | 375094

A100 40GB 2 136 8616 | 376657
A100 40GB x2 236 540 8483 | 429352
A100 40GB x4 800 | 1107 | 8808 | 346272
A100 40GB x8 1971 | 2376 | 10730 | 321001

Table B.1: Problem 1: GPU Execution time(ms) using FP32 Floating-point variables.

DEVICE | Epsilon | le-2 | 1le-3 | le-4 | le-5
RTX 3060 Ti 8GB 4 67 | 3303 | 204567
TESLA V100 16GB 1 76 5142 | 200305
TESLA V100 32GB 1 67 | 4309 | 204084
A100 40GB 1 73 4561 | 208053
A100 40GB x2 403 349 | 7261 | 227864
A100 40GB x4 731 | 1054 | 4965 | 175196
A100 40GB x8 2173 | 2250 | 7475 | 319831

Table B.2: Problem 1: GPU Execution time(ms) using FP16 Floating-point variables.

DEVICE | Epsilon | le-2 le-3 le-4 le-5

RTX 3060 Ti 8GB 37 3625 | 103437 | 6463740
TESLA V100 16GB | 39 5373 | 98936 | 6071450
TESLA V100 32GB | 39 8174 | 101878 | 6070690

A100 40GB 35 8661 | 107348 | 5940950
A100 40GB x2 430 | 10120 | 103124 | 6964450
A100 40GB x4 760 | 11784 | 105390 | 3635880
A100 40GB x8 2172 | 12447 | 204537 | 4227760

Table B.3: Problem 2: GPU Execution time(ms) using FP32 Floating-point variables.

Diploma Thesis m

Appendix B. Detailed Results

DEVICE | Epsilon | 1le-2 | 1le-3 le-4 le-5

RTX 3060 Ti 8GB 19 | 3132 | 57052 | 3499940
TESLA V100 16GB | 22 | 4842 | 55501 | 3290443
TESLA V100 32GB 17 | 4298 | 58348 | 3271100
A100 40GB 19 | 4594 | 64817 | 3177030
A100 40GB x2 292 | 5616 | 57560 | 3605100
A100 40GB x4 853 | 5420 | 82124 | 1905760
A100 40GB x8 2100 | 7401 | 156883 | 2217960

Table B.4: Problem 2: GPU Execution time(ms) using FP16 Floating-point variables.

DEVICE & Problem | Epsilon | le-2

le-3 | le-4 | 1le-5

CPU Torus

3

26 208 3546

CPU Griewank

29

468 | 3818

30732

Table B.5: Problem 1 & 2 : CPU Execution time(ms) using the sequential algorithm.

DEVICE | Epsilon 0.1 0.06 0.03
RTX 3060 Ti 8GB | 3424 | 211982 | 13148015
TESLA V100 16GB | 1725 | 108296 | 6900080
TESLA V100 32GB | 1864 | 116637 | 7374800
A100 40GB 1032 | 62783 | 3939303
A100 40GB x2 860 | 31260 1972117
A100 40GB x4 1393 | 16471 10179
A100 40GB x8 2180 | 10179 494029

Table B.6: Problem 3: GPU Execution time(ms) using FP32 Floating-point variables.

DEVICE | Epsilon 0.1 0.06 0.03

RTX 3060 Ti 8GB | 2041 | 114540 | 7463943
TESLA V100 16GB | 1599 | 99614 | 6373648
TESLA V100 32GB | 1618 | 100648 | 6441754
A100 40GB 641 36130 | 2274617
A100 40GB x2 587 18030 | 1123189
A100 40GB x4 1254 | 9854 561906
A100 40GB x8 2073 | 6772 282741

Table B.7: Problem 3: GPU Execution time(ms) using FP16 Floating-point variables.

DEVICE | Epsilon

0.1 0.06 0.03

CPU

1710086

54028750

Table B.8: Problem 3: CPU Execution time(ms) of the sequential algorithm.

Diploma Thesis

DEVICE | Epsilon | le-2 | 1e-3 | 1le-4 | le-5
RTX 3060 Ti 1 1 4 1024
TESLA V100 16GB 1 1 2 512
TESLA V100 32GB 1 1 1 256
A100 40GB 1 1 1 128
A100 40GB x2 1 1 1 64
A100 40GB x4 1 1 1 32
A100 40GB x8 1 1 1 16

Table B.9: Problem 1: Number of kernel executions using FP32 Floating-point variables.

DEVICE | Epsilon | le-2 | 1e-3 | le-4 | le-5
RTX 3060 Ti 1 1 2 512
TESLA V100 16GB 1 1 1 256
TESLA V100 32GB 1 1 1 128
A100 40GB 1 1 1 64
A100 40GB x2 1 1 1 32
A100 40GB x4 1 1 1 16
A100 40GB x8 1 1 1 8

Table B.10: Problem 1: Number of kernel executions using FP16 Floating-point variables.

DEVICE | Epsilon | le-2 | 1e-3 | le-4 | le-5
RTX 3060 Ti 1 4 256 | 16384
TESLA V100 16GB 1 1 128 | 8192
TESLA V100 32GB 1 1 64 | 4096
A100 40GB 1 1 32 | 2048
A100 40GB x2 1 1 16 | 1024
A100 40GB x4 1 1 8 512
A100 40GB x8 1 1 4 256

Table B.11: Problem 2: Number of kernel executions using FP32 Floating-point variables.

DEVICE | Epsilon | le-2 | 1e-3 | 1le-4 | le-5
RTX 3060 Ti 1 2 128 | 8192
TESLA V100 16GB 1 1 64 | 4096
TESLA V100 32GB 1 1 32 | 2048
A100 40GB 1 1 16 | 1024
A100 40GB x2 1 1 8 512
A100 40GB x4 1 1 4 256
A100 40GB x8 1 1 2 128

Table B.12: Problem 2: Number of kernel executions using FP16 Floating-point variables.

Diploma Thesis

Appendix B. Detailed Results

DEVICE | Epsilon | 0.1 | 0.06 | 0.03
RTX 3060 Ti 8 512 | 32768
TESLA V100 16GB | 4 | 256 | 16384
TESLA V100 32GB | 2 128 | 8192
A100 40GB 2 128 | 8192
A100 40GB x2 1 64 4096
A100 40GB x4 1 32 2048
A100 40GB x8 1 16 1024

Table B.13: Problem 3: Number of kernel executions using FP32 Floating-point variables.

DEVICE | Epsilon | 0.1 | 0.06 | 0.03
RTX 3060 Ti 4 | 256 | 16384
TESLA V100 16GB | 2 128 | 8192
TESLA V100 32GB | 1 64 4096

1

1

1

1

A100 40GB 64 4096
A100 40GB x2 32 2048
A100 40GB x4 16 1024
A100 40GB x8 8 512

Table B.14: Problem 3: Number of kernel executions using FP16 Floating-point variables.

Diploma Thesis

List of Abbreviations

Al

API

BB
CPU
CU

DL
GPGPU
GPU
GUI

ILP
MIMD
MISD
MLP
ML
MP
NN
NUMA
SIMD
SIMT
SISD
SIVIA
SM
SP
TLP
UMA
VRAM

Diploma Thesis

Artificial Intelligence

Application Programming Interface
Branch and Bound

Central Processing Unit

Compute Unit

Deep Learning

General Purpose Graphical Processing Units
Graphical Processing Unit
Graphical User Interface

Interval Arithmetic
Instruction-Level Parallelism
Multiple Instructions Multiple Data
Multiple Instructions Single Data
Multilayer Perceptron

Machine Learning

Multiprocessor

Neural Network

Non-Uniform Memory Access
Single Instruction Multiple Data
Single Instruction Multiple Threads
Single Instruction Single Data

Set Inversion Via Interval Analysis
Streaming Multiprocessor
Streaming Processor

Thread-Level Parallelism

Uniform Memory Access

Video Random Access Memory

	Abstract
	Περίληψη
	Acknowledgements
	List of Abbreviations
	Introduction
	English
	Ελληνικά

	Theoretical Background
	Interval Analysis
	Motivation
	History
	Basic Concepts
	Set Inversion via Interval Analysis

	Neural Networks
	Overview
	Modelizing Neurons
	Supervised Learning
	Multilayer Perceptron
	Training Techniques

	Parallel Computing
	Overview
	Parallel Design Paradigms
	Instruction-level Parallelism
	Hardware Multithreading
	Classifications of Parallel Computers
	Parallel Computing on CUDA GPUs
	CUDA Warps
	CUDA Memory Architecture
	Memory Coalescing

	Discussion

	Implementation
	Branch & Bound Algorithms
	GPU Parallelization of the Parameter Estimation problem
	Previous Work

	Parallelization Proposal
	Parallel Bisection
	Parallel Evaluation
	Parallel Reduction
	Single and Multiple GPU(s)

	Problems
	Problems 1 & 2: 2D Torus and Griewank functions
	Problem 3: Estimating the Generalization Performance of a Neural Classifier

	Test Environment
	Results
	CPU Implementation
	Problem size
	Speedup
	Throughput
	Number of Runs
	Profiling

	Discussion

	Closing Words
	Reproducibility
	Conclusion
	Future Work

	Bibliography
	A more detailed look on Problem 3
	Detailed Results
	List of Abbreviations

