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Abstract

Physiologically Based Kinetic models are mathematical models of differential equations
and are used to predict the processes of administration, distribution, metabolism and ex-
cretion (ADME) of pharmaceutical or toxic substances to which organisms are exposed.
PBK models incorporate details from the physiology of the examined organisms, such as
the mass of the organs and tissues, the blood flow rates of the organs etc. Therefore, PBK
models are often used along with biodistribution experimental data to estimate the value
of kinetic parameters that are difficult, or even infeasible to estimate experimentally. Con-
sequently, the estimation of these parameters using experimental data is an optimization
problem. This optimization process may present various obstacles, among which the most
common is overparameterization of the model. The redundant parameters usually provoke
identifiability issues to the model, meaning that the values of the estimated parameters
have no physical significance.

There are various approaches on how to estimate the parameters of a PBK model. A
recently proposed approach in optimization problems of dynamic systems involves the use
of Physics Informed Neural Networks (PINNs). This approach exploits the ability of the
artificial neural networks to perform very well as function approximators and combines
that with information directly derived from the differential equations that describe the
examined dynamic system. PINNs have been applied in two types of problems. In forward
problems, they are trained to predict the solution of the differential equations, and they
have proven to be very efficient in cases where the equations are difficult to solve using
numerical solvers. The second type of problems is the inverse problems where PINNs are
employed to estimate the unknown parameters of dynamic systems, using available data.

This diploma thesis will focus on the development of a PBK model that predicts the
biodistribution of five perfluoroalkyl substances (PFAS) in rainbow trout fish, which con-
sume food rich in PFAS. These chemicals consist a large class of synthetic chemicals that
contain carbon-fluorine bonds, which are one of the strongest chemical bonds and that
makes PFAS very resistant to degradation. To estimate the values of the model’s un-
known parameters, two different approaches will be tested. In the first approach, the
unknown parameters will be estimated by implementing an optimization workflow, aimed
at minimizing the value of an objective function that quantifies the agreement between the
model’s predictions and experimental data. The second approach will implement a PINN
to estimate the unknown parameters of the model. Moreover, identifiability analysis will
be performed using a workflow that exploits the profile likelihood method, to improve the
robustness of the development process. Finally, a comparison of the two approaches will be
provided, highlighting the advantages of each method. The efficiency of PINN workflows
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in the development of PBK models will be particularly discussed.

Keywords

PBK, PFAS, identifiability analysis, Physics Informed Neural Networks, PINN, ma-
chine learning
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Περίληψη

Τα κινητικά μοντέλα που βασίζονται στη φυσιολογία των οργανισμών είναι μαθηματικά

μοντέλα διαφορικών εξισώσεων που χρησιμοποιούνται για την πρόβλεψη και περιγραφή της

απορρόφησης, βιοκατανομής, μεταβολισμού και απέκκρισης φαρμακευτικών ή τοξικών ουσιών,

στις οποίες οι οργανισμοί εκτίθενται. Τα κινητικά μοντέλα φυσιολογίας εμπεριέχουν πληρο-

φορία και λεπτομέρειες από την φυσιολογία των οργανισμών, όπως οι μάζα των οργάνων

και των ιστών, οι ρυθμοί ροής αίματος στα όργανα κ.ά. Επομένως, τα κινητικά μοντέλα φυ-

σιολογίας χρησιμοποιούνται συχνά σε συνδυασμό με πειραματικά δεδομένα βιοκατανομής μίας

ουσίας στους ιστούς ενός οργανισμού, προκειμένου να εκτιμηθούν κινητικές παράμετροι, των

οποίων ο πειραματικός υπολογισμός είναι δύσκολος ή και ανέφικτος. Επομένως, η διαδικασία

εκτίμησης αυτών των παραμέτρων ανάγεται σε ένα κλασικό πρόβλημα βελτιστοποίησης. Η

διαδικασία βελτιστοποίησης μπορεί να παρουσιάσει πολλαπλά εμπόδια, με το συχνότερο από

αυτά να είναι η υπερ-παραμετροποίηση του μοντέλου. Οι πλεονάζουσες παράμετροι συχνά

προκαλούν προβλήματα ταυτοποιησιμότητας στο μοντέλο, που σημαίνει ότι οι εκτιμηθείσες

παράμετροι δεν έχουν καμία φυσική σημασία.

Για την εκτίμηση των παραμέτρων ενός μοντέλου υπάρχουν διάφορες προσεγγίσεις. Μία

μεθοδολογία που έχει προταθεί τα τελευταία χρόνια είναι η χρήση νευρωνικών δικτύων που

βασίζονται στη φυσική του συστήματος που μελετάται. Αυτή η μεθοδολογία εκμεταλλεύεται

την ικανότητα των τεχνητών νευρωνικών δικτύων να προσεγγίσουν οποιαδήποτε άγνωστη

συνάρτηση και τη συνδυάζει με πληροφορία που προέρχεται απευθείας από τις διαφορικές εξ-

ισώσεις, που περιγράφουν τη δυναμική του εκάστοτε συστήματος. Η μεθοδολογία αυτή έχει

χρησιμοποιηθεί σε δύο ειδών προβλήματα. Η πρώτη κατηγορία αφορά προβλήματα στα οποία

τα νευρωνικά δίκτυα εκπαιδεύονται ώστε να μάθουν να προβλέπουν τη λύση των διαφορικών

εξισώσεων κι εν τέλει να λειτουργήσουν ως εναλλακτική μέθοδος επίλυσης διαφορικών εξ-

ισώσεων. Η δεύτερη κατηγορία προβλημάτων είναι εκείνη στην οποία αυτές οι αρχιτεκτονικές

νευρωνικών δικτύων χρησιμοποιούνται για την εκτίμηση των άγνωστων παραμέτρων των δι-

αφορικών εξισώσεων ενός δυναμικού συστήματος, χρησιμοποιώντας διαθέσιμα πειραματικά

δεδομένα.

Η παρούσα διπλωματική εργασία πρόκειται να εστιάσει στην ανάπτυξη ενός κινητικού

μοντέλου φυσιολογίας που προβλέπει τη βιοκατανομή πέντε διαφορετικών υπερφθοριωμένων

αλκυλιωμένων ουσιών στο είδος ψαριού που ονομάζεται ιριδίζουσα πέστροφα, το οποίο έχει

εκτεθεί σε αυτές τις ουσίες μέσω της διατροφής. Ως υπερφθοριωμένες αλκυλιωμένες ουσίες

θεωρείται μία μεγάλη κατηγορία συνθετικών χημικών, τα οποία περιέχουν δεσμούς άνθρακα-

φθορίου, που τα καθιστούν ιδιαίτερα ανθεκτικά σε αποσύνθεση. Για την εκτίμηση των αγνώ-

στων παραμέτρων του μοντέλου θα χρησιμοποιηθούν δύο διαφορετικές προσεγγίσεις. Στην

πρώτη προσέγγιση, οι άγνωστες παράμετροι θα εκτιμηθούν υλοποιώντας έναν αλγόριθμο
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βελτιστοποίησης, ο οποίος θα ελαχιστοποιεί την τιμή μίας αντικειμενικής συνάρτησης, η οποία

θα υπολογίζει το πόσο καλά προβλέπει το μοντέλο τα πειραματικά δεδομένα. Η δεύτερη

προσέγγιση θα αφορά την υλοποίηση ενός τεχνητού νευρωνικού δικτύου ενισχυόμενο με

πληροφορία από τις διαφορικές εξισώσεις του μοντέλου, με σκοπό την εκτίμηση των αγνώστων

παραμέτρων. Επιπλέον, το ζήτημα της ταυτοποιησιμότητας των παραμέτρων θα προσεγγισ-

τεί αξιοποιώντας την μέθοδος υπολογισμού του προφίλ της πιθανοφάνειας των παραμέτρων,

ενισχύοντας έτσι την ευρωστία του μοντέλου. Καταλήγοντας, θα γίνει μία σύγκριση μεταξύ

των δύο μεθοδολογιών και θα παρουσιαστούν τα προτερήματα της καθεμιάς σε σχέση με την

άλλη.

Λέξεις Κλειδιά

κινητικά μοντέλα φυσιολογίας, τεχνητά νευρωνικά δίκτυα, υπερφθοριωμένες αλκυλιωμένες,

ανάλυση ταυτοποιησιμότητας, μηχανική μάθηση
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Chapter 1

Introduction

In recent years, the application of machine learning has blossomed in multiple scientific
fields, revolutionizing the way we approach complex problems and extract insights from
data. Two major factors have contributed to this progress. The first one is the increased
availability and accessibility to data through the internet. The other factor is the progress
made in the field of hardware, which facilitated more complex computations. Noteworthy
is the role of machine learning in the fields of medical science, chemistry and pharmaceuti-
cals. Especially artificial neural networks (ANNs), which are a branch of machine learning
techniques, have emerged as one of the most popular methods in addressing complex com-
putational problems across various domains. Their ability to learn patterns from extensive
datasets has driven significant advancements in fields such as computer vision, natural
language processing and robotics.

One of the most interesting applications of artificial neural networks in recent years
is the development of Physics Informed Neural Networks (PINNs). They represent an
innovative synergy between the traditional physics-based modeling and cutting-edge ma-
chine learning techniques. These networks leverage the capability of neural networks to
approximate any complex function while enforcing the fundamental laws of physics of the
examined dynamic system as constraints. PINNs consist of two structural units. The first
one is an artificial network, which is usually a feedforward network. The second struc-
tural unit consists of the differential equations that describe the physics of the examined
dynamic system. PINNs are capable of estimating the values of the derivatives using auto-
matic differentiation and comparing them with those provided by the differential equations.
Automatic differentiation is used to estimate the values of the derivatives of the output
with respect to the input of the neural network, exploiting the chain rule methodology.
Therefore, the learning algorithm aims to minimize the loss function, which is estimated
based on the discrepancy between the value of the derivative estimated from the automatic
differentiation process and the one estimated from the equations of the dynamic system.

As a result, PINNs can be applied to two different tasks. The first one involves solv-
ing the differential equations of a dynamic system. PINNs can be trained similarly to a
simple feedforward neural network to act as a function approximator. However, in the
case of PINNs, the physical laws of the physical system are incorporated into the network,
by satisfying the initial and the boundary conditions of the system. Consequently, the
PINN can provide an alternative way to solve differential equations instead of using classic
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numerical solvers. The second category of problems that utilize PINNs, is the estimation
of the unknown parameters of a dynamic system, using experimental data. PINNs are
trained using the experimental data, the initial and the boundary conditions and update
the values of the unknown parameters along with the weights and biases of the neural
network. Consequently, PINNs have garnered attention from various scientific fields and
are used for a wide range of problems.

This diploma thesis focuses on exploring the capabilities of PINNs to estimate the
unknown parameters of a Physiologically Based Kinetic (PBK) model, using relative ex-
perimental data. PBK models originate from the scientific field of pharmacokinetics and
pharmacodynamics. They are compartmental models that predict the administration,
distribution, metabolism and excretion (ADME) of pharmaceutical or toxic substances.
PBK models consist of first-order differential equations that take into account the mass
equilibrium of the examined substances. Moreover, PBK models incorporate important in-
formation regarding the physiological properties of the examined organism. The scientific
literature provides an extensive amount of data regarding the physiological properties of
both humans and animals. Therefore, incorporating physiological data into PBK models
becomes straightforward, enabling the inclusion of information such as accurate estima-
tions for the mass or blood flow rates of individual organs. Additionally, many PBK models
consider the growth of organisms, particularly in simulations covering extended periods,
utilizing relevant data on the organisms’ growth rates. Consequently, PBK models can
provide comprehensive physiological representation of the organisms when suitable exper-
imental data and a-priori knowledge about the kinetic and physiological parameters are
available.

This thesis develops a PBK model designed to predict the biodistribution of five distinct
perfluoroalkyl substances (PFAS) across the organs of rainbow trout. Rainbow trout is
a frequent subject in experimental studies, and numerous biodistribution studies exist
concerning PFAS exposure. The dataset employed for this PBK model relates to a 28-day
dietary exposure of rainbow trout to PFAS, followed by an equal duration of a depuration
phase. Besides data on PFAS concentrations in various organs, the study also provided
information on the fish’s total mass throughout the experiment. This information was
essential for accurately estimating the fish’s mass, thereby updating the organ-specific
physiological parameters (like mass and blood flows) at each simulation step. However, the
study didn’t include any PFAS measurements in the fish’s excreta. This omission presents
a challenge in PBK model development, as direct estimation of PFAS elimination rates
becomes complex, necessitating the sourcing of such kinetic parameters from analogous
models.

Another aspect that this diploma thesis focuses on, is the identifiability of the parame-
ters of the PBK model. Identifiability issues frequently arise in PBK models, primarily due
to factors, such as model overparameterization and the use of noisy or sparse data for pa-
rameter estimation. As a result, the development process needs to employ a tool that can
provide feedback on which parameters are non-identifiable. The methodology followed in
this thesis to address this problem is the profile likelihood method. Estimating the profile
likelihood of each estimated parameter of the model offers multiple advantages. Firstly, it is
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an easily applied methodology even in large models with numerous parameters. Moreover,
it provides feedback for each parameter, classifying them as structurally non-identifiable,
practically non-identifiable or identifiable. When a model is deemed structurally non-
identifiable, it suggests inherent issues within the model’s framework. Addressing this
requires changes to the model’s structure, as providing more or superior data won’t rectify
this intrinsic non-identifiability. On the other hand, practical non-identifiability pertains
to the data itself. For instance, data might be too noisy for precise parameter estimation
or may necessitate augmentation with supplementary measurements.

Taking all these into consideration, the first part of this diploma thesis provides a
detailed explanation of the differential equations of the PBK model, as well as its phys-
iological parameters. For the estimation of the unknown parameters of the model, two
different approaches are presented and tested. The first one, the optimization workflow,
exploits an optimization algorithm to minimize the value of an objective function that
estimates the discrepancy of the model’s predictions with the corresponding experimental
data. This workflow also employs the identifiability analysis tool described above to detect
the non-identifiable parameters of the model. The implementation of this workflow was
carried out using the statistical programming language R, which is a common choice for the
development of PBK models. Additionally, some parts of the code of this workflow, which
were used repeatedly, were organised into a custom R package to streamline the use of
these functions. For instance, the library contains various metric functions, some of which
are presented and used later in this diploma thesis. Additionally, the implementation of
the identifiability analysis tool and the profile likelihood are also included in this package.
This approach allows for easy use of the identifiability analysis tool in conjunction with
any analyzed dynamic system.

The second approach, the PINN workflow, exploits the capabilities of PINNs in solv-
ing inverse problems. It aims to determine the unknown parameters of a dynamic system
using limited experimental data. The training process of the PINN, especially the tuning
of hyperparameters, is elaborated in detail. The development of the PINN was imple-
mented using Python and a set of modules, specifically the DeepXDE module, which has
been specifically developed for training PINNs using libraries like PyTorch or Tensorflow,
among others. The final objective of this thesis is to compare the PINN workflow with the
conventional optimization workflow that is usually employed in the development of PBK
models. The advantages and disadvantages of the two methodologies are discussed, and
specific recommendations for when to use each methodology are provided. Finally, some
possible directions to extend the research in the application of PINNs in PBK development
are proposed, given the promising results this methodology has shown.
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Chapter 2

Artificial Neural Networks

2.1 Introduction

Artificial Neural Networks (ANNs) stand as a distinct subset within the expansive
realm of machine learning and they are tightly interwined with applications of artificial
intelligence. Over recent years, the field of machine learning, with a particular emphasis on
neural networks, has undergone a profound evolution. This revolution has been boosted
principally by the spread use of the internet, which increased the availability and the
sharing of enormous amount of data all around the world. Simultaneously, advances in
computer hardware have played a pivotal role in facilitating the computational demands
of complex neural network architectures. In this chapter, a short historical progression
of neural networks will be presented, tracing their development. This historical context
sets the stage for a comprehensive exploration of the theoretical background that enables
neural networks to exhibit such remarkable efficacy in diverse applications. The detailed
examination of their inner mechanisms will unravel how the artificial neural networks
achieve their remarkable capabilities.

2.2 Historical background

The name of the artificial neural networks derives from their structural resemblance to
biological neurons and their mode of operation. ANNs consist of multiple nodes, typically
referred to as neurons, that imitate the biological neurons. Biological neurons encompass
dendrites, soma, axon and synapses or (axon terminals), each with a distinct function.
The dendrites of the neurons are responsible for receiving signals from other neurons in
their close environment, while the soma processes the signal received from the dendrites.
Subsequently, the axon transmits the processed signal from the soma to the opposite end
of the neuron, called synapse. Finally, the synapse is connected to the dendrites of other
neurons to transmit the signal to them. McCullouch and Pitts in 1944 [6] influenced by the
biological neuron system, asserted that a net with thresholds and weights could perform
any function achievable by a digital computer.

However, the first trainable neural network architecture was introduced by Frank
Rosenblatt in 1957 [7], the Perceptron. It represents the simplest architecture of artificial
networks, which consists of a single layer of neurons and is suitable for binary classification
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Image 2.1: Illustration of a biological neuron [2]. The main parts of the neuron are the
dendrites, the soma, the axon and the synapses. The synergy of them lead facilitates
receiving signal from the environment, processing them and finally transmitting the output
of the transformation process. The artificial neural networks imitate the process of the
biological neurons.

problems, where the two classes are linearly separable. As depicted in image 2.2, the first
structural unit of Perceptron is a layer of n input nodes, which is called input layer, which
provides Perceptron with the input values. Subsequently, the sum of the input values,
each multiplied by its corresponding weight, is computed and forwarded to the activation
function. The activation function that was originally employed in Perceptron is the step
function, which is well-suited for binary classification problems. The step function returns
a value of 0 or 1 if the weighted sum of inputs is lower or higher of 0.5, respectively. Then,
the output variable Y , receives either 0 or 1 value and determines the class of the given
input. Despite the innovative nature of Perceptron’s concept, its limitations were evident
in its inability to tackle more complex problems. Nevertheless, the Perceptron’s concep-
tual foundation proved pivotal, serving as the precursor to the evolution of deep neural
networks.

2.3 Deep Neural Networks

The artificial neural networks have attained the interest of many scientific fields because
of their ability to solve a large variety of problems. The fundamental concept underlying
the operation of a neural network is its ability to approximate any function, denoted as
f(x). The complexity of these functions exhibit large variability. Some examples of simple
functions are those described by basic mathematical operators. On the other hand, ap-
proximating certain functions can be a challenging task, because they can not be described
precisely and step-by-step. For instance, the task of image recognition falls into this cat-
egory of functions. Although, recognising objects by their image is a straightforward task
for human beings, this process can not be described by a specific function f(x). Hence,
the neural networks are able to be trained or learn performing tasks of such operations,
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Image 2.2: Structural representation of Perceptron. It consists of an input layer with n
nodes, each one of them is multiplied with the corresponding weight w. The sum of all wixi
is provided as input to the activation function, which is the step function. The output of
the step function is either 0 or 1.

that are not easily described. Therefore the core concept of function approximation
by neural networks, is that any task can be represented by a function f(x; θ), where θ is
a vector of adjustable parameters. Therefore, the term of function approximation
describes the process of defining a function f(x, θ), as well as tuning the parameters θ in
order to perform approximately as the desired function f(x). The process of tuning of the
parameters θ is called learning algorithm [8].

The ability of artificial neural networks approximating any function is linked to the
arrangement of multiple layers of neuron and the interconnections of the neurons of different
layers. Consequently, neural networks exhibit various architectures differing on the number
of layers, the number of the nodes per layer and the activation function used. The layers
existing between the input and the output layer are called hidden layers. The artificial
neural networks can be classified into two classes, regarding the number of hidden layers.
The shallow neural networks consist of a single (or few) hidden layers, while deep neural
networks encompass those with multiple hidden layers.

2.3.1 Feedforward Networks

The most typical architecture of deep neural network is the multilayer perceptron
(MLP), which is built by stacking multiple layers of nodes. The inception of MLP was
driven by the need to address the limitations of the perceptron, particularly its inability to
solve non-linear problems. MLP comprises one or more hidden layers and operates exactly
like perceptron. The MLP are commonly referred to as Feedforward Neural Networks
(FFN), because they strictly propagate information from the input layer forward to the
hidden layers and there are no feedback connections in which outputs of the model are fed
back into itself. MLP are often termed as Fully-Connected Networks (FCN) since
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every neuron in a layer is connected with all neurons in the subsequent layer [8].

Image 2.3: Structural representation of a Feedforward Network (FFN). The input layer
consists of n nodes. There are k hidden layers that consist of m nodes each. Finally,
the output layer consists of l nodes. In feedforward networks, each node of any layer is
connected with all nodes of the next layer.

Feedforward neural networks are called networks because their architecture encompass
a directed acyclic graph that describes how the functions are composed together, For
instance, in case we have three different functionf (1), f (2) and f (3) creating a chain f(x) =

f (3)(f (2)(f (1)(x))). This kind of chained functions are commonly represented in neural
networks. In this example, f (1) represents the first layer of the network, f (2) the second
network, and so on. The total number of chained functions defines the depth of the neural
network. The final layer of a feedforward network is called output layer. The data used
for the training of a feedforward network consist of multiple data points x, accompanied by
a label y ≈ f∗(x), where f∗(x) is considered to be the output of the network. Therefore,
during the training of the network, each instance of the training dataset indicates directly
to the output layer that it must return a value that is as close as possible to y. However,
as the training data do not explicitly indicate the behavior of the rest layers, the learning
algorithm must decide how to use these layers to best implement an approximation of f∗.
That is the reason why the layers between the input and the output layer are called hidden
layers [9].

The other characteristic property of feedforward networks is its width. The width is
defined by the number of nodes (or neurons) consisted in each hidden layer. Each node
of the layers resembles a neuron, as it receives a vectorised input from many other nodes,
transforms it into a scalar and finally estimates its own activation value. Nevertheless,
the principal target of the feedforward network is not to operate identically as the neural
network of the brain. Instead, we should consider the feedforward networks as function
approximation machines used to achieve statistical generalization.
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Except FFN also exist other architectures of neural networks that perform better at
specific tasks. Thus, the second family of neural networks are the Convolutional Neural
Networks (CNN). CNNs are particularly suited for tasks involving image, speech, audio
recognition where they outperform FFNs. Another family are the Recurrent Neural
Networks (RNN) and they are linked with the processing of sequential data. RNNs are
networks specialized for processing a sequence of values x(1), ..., x(τ) because of the concept
of parameter sharing across employs only FFN architectures; therefore, the theoretical
exploration of CNNs and RNNs will not be further expanded upon [9].

2.3.2 Gradient Descent

The training process of the feedforward networks consists of the forward propagation
the backward pass and a learning algorithm that updates the parameters of the network.
The learning algorithm used to estimate the values of the parameters of a feedforward net-
work is actually an optimization algorithm. One of the most commonly used optimization
algorithms is the gradient descent. Suppose we have a function y = f(x) and the deriva-
tive is denoted as f ′(x) or dy

dx and it is equal to the slope of f(x) at the point x. In other
words, it indicates how to scale a small change in the input to obtain the corresponding
change in the output f(x + ϵ) ≈ f(x) + ϵf ′(x). The derivative here is useful because it
indicates how to change the value of x to achieve small improvements in y and minimize it.
Therefore, the process of reducing the value of f(x) by moving the value of x in small steps
with opposite sign of the derivative is called gradient descent. Consequently, the gradient
descent algorithm suggests that the new value of x is estimated as

x′ = x− ϵ∇xf(x) (2.1)

where ϵ is the learning rate. The algorithm terminates when every element of the gra-
dient is zero or lower than a user-defined threshold. However,the main limitation of the
gradient descent is that the algorithm is susceptible into detecting local minima instead of
global minimum. Consequently, the gradient descent is very effective algorithm in convex
problems, but the majority of the optimization problems are non-convex.

An important limitation of the gradient descent algorithm is the high computational
cost it has, when large training datasets are used. Generally, the cost functions used by a
feedforward network are actually sums of the differences between the networks predictions
and the output variables of the dataset. Therefore, using large training datasets explodes
the computational cost to perform one iteration of the gradient descent algorithm. When
implementing the gradient descent algorithm in the training of a neural network, we want
to minimize the value of loss function

J(θ) =
1

n

n∑
i=1

L(x(i), y(i),θ) (2.2)

where θ are the weights and the biases of the network. So the aim is to minimize find the
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optimal θ that minimize the gradient.

∇θJ(θ) =
1

n
∇θ

n∑
i=1

L(x(i), y(i),θ) (2.3)

2.3.3 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is an extension of the gradient descent algo-
rithm and is a very commonly used optimization algorithm in feedforward networks. In
SGD the gradient is not calculated based on all data points. Instead, the gradient is con-
sidered as an expectation and this is calculated based only on one data point. In other

words, instead of estimating the gradient
n∑

i=1
∇θLi, we estimate only ∇θLi of one data

point. Consequently the computational cost is significantly decreased.

Another alternative version of the SGD is the mini-batch gradient descent. In each
iteration of this algorithm, a small minibatch of examples B = x(1), ...,x(m′) is sampled
uniformly from the training set. Therefore, the estimation of the gradient is formed as

∇θJ(θ) =
1

m′∇θ

m′∑
i=1

L(x(i), y(i),θ). (2.4)

2.3.4 Back-Propagation

The training of the neural network is divided into two separate stages. The first one
is the forward propagation. During the forward propagation, the input x provides the
initial information and then propagates up to the hidden units at each hidden layer and
finally returns ŷ. Therefore, the input is transferred through the hidden layers to the
output layer and it is transformed into a scalar cost J(θ).

Then the back-propagation algorithm [10] is used to pass backward the information
from the cost function, in order to compute the gradient of the cost function with respect
to the parameters of the network, which is required from the learning algorithm. The
back-propagation algorithm is a simple procedure to estimate the gradients, employing
the concept of the chain rule to estimate the derivatives iteratively from the output layer
towards the input layer. This way, the computational cost remains at low levels, compared
to numerical evaluation of the gradients. The back-propagation algorithm is generally used
to estimate the derivatives of any given function and it is not explicitly used in the training
process of feedforward networks [9].

2.3.5 Activation Functions

The selection of the activation function used by the nodes is important for the operation
of a feedforward network, as they define if a node will be activated or not. Although there
are multiple functions that have been used as activation functions in the hidden units of
feedforward networks, there is nit a straightforward method to select the optimal function
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for each problem. The list of functions presented here is not exhaustive and contains only
the functions that were examined during the production of the results of this thesis.

Step function

The step function was previously referred as the activation function used in perceptron.
Although this function has historical significance due to perceptron, is never used in deep
neural networks. The step function is given by

σ(z) =

1, z ≥ 0

0, z < 0.
(2.5)

The input provided to step function is compared to a threshold value (usually it is 0). If
the input is greater than threshold then the node is activated and passes the information to
the following nodes, otherwise it is deactivated. The most important disadvantage of this
function is that its derivative is zero, so it cannot be employed along with backpropagation.

Sigmoid

The next is the Sigmoid (or Logistic) function given by

σ(z) =
1

1 + e−z
=

1

2
+

1

2
tanh

(
z

2

)
. (2.6)

This function takes as input and tranforms it into a value in the range of 0 to 1.
Consequently, the sigmoid function usually selected when the output of the model must
predict probabilities. The advantages of sigmoid function are that it is continuous and
preserves information around the region of z = 0. However, while z → +∞ then σ(z) = 1

and when z → −∞ then σ(z) = 0, so it becomes more like step activation function.
Therefore, the value of the gradients are very small. Very small values of gradients is
an obstacle during the training of the networks and this problem is commonly known as
vanishing gradient.

Hyperbolic Tangent

Hyperbolic tanget

σ(z) = tanh(z) =
ez − e−z

ez + e−z
=

e2z − 1

e2z + 1
(2.7)

is a very popular choice as activation function in deep neural networks. The tanh is actually
a shifted sigmoid function and has the important property of σ(0) = 0.

Hyperbolic tangent faces the same problem with sigmoid function, the vanishing gra-
dient problem. Functions that suppress a large input space into a smaller space, such as
sigmoid does between 0 and 1 or tanh between -1 and 1 are characterized by this problem.
Consequently, whenever the neuron takes a value close to the edge values of the output
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space, a large change in the input causes a small change on the output because the deriva-
tive has a small value. So the this effects the training of the model and the update of the
weights. This happens because during backpropagation multiple gradients with very small
values are multiplied, which causes very slow update of the weights close to the input layer.
The vanishing gradient effect is more common to neural networks with larger number of
hidden layers.

ReLU

The Rectified Linear Unit (ReLU) is a widely used activation function, especially in
CNNs, and the main advantage is the low coputational cost. Although it gives the impres-
sion that ReLU is a linear function, it is not true. Moreover, ReLU is a good choice to
face the problem of vanishing gradients (a problem linked with sigmoid and tanh). ReLU
ranges from 0 to infinite and is estimated as

σ(z) = max(0, z). (2.8)

Both ReLU and its derivative are monotonic functions. However, the main disadvantage
o ReLU is that for negative values of z, ReLU turns into zero, which affects the mapping
of negative values, in case the majority of neurons are negative. When the most neurons
have output zero, then the gradients fail to flow and the weights are not updated anymore
and the learning process is practically terminated. This effect is called Dying ReLU and
is usually tackled by using variants of ReLU, the Leaky RelU and GeLU.
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Physics - Infromed Neural Networks

3.1 Introduction

In recent years Physics Informed Neural Networks (PINN) have drawn attention
as an approach to solve a large variety of problems. PINNs were originally introduced by
Maziar Raissi in 2017 for forward [11, 12] and inverse [12, 13] problems involving nonlinear
differential equations. Compared to data-driven deep learning, PINNs leverage physics laws
to train the network, along with data. In fact, PINNs are designed to integrate scientific
computing equations, such as ordinary differential equations (ODE) or partial differential
equations (PDE), into the training of a deep learning network. The main difficulty that
PINNs are destined to tackle is that deep neural networks are not an effective method
to approximate the governing equations of a physical, biological or engineering system
because in most cases the availability of data is limited, thus the neural networks can not
be trained well enough and concerns about robustness of the models are risen.

The core concept behind the PINNs is that they encompass important information
about the dynamics of the studied system directly from the differential equations that
describe it. Therefore, they can effectively approximate the mapping between the input
and the output variables of a system even when the available data are sparse. So, PINNs
have been proven to be a good alternative choice to solve nonlinear differential equation
(forward problem), which tend to be difficult to solve in terms of computational cost, or to
estimate the unknown parameters of a model (inverse problem) as an alternative to classic
optimization techniques.

PINNs are actually ANNs, that after the training, they return an approximation of the
derivatives of the output with respect to the input of the network, for multiple points in
the integration domain (collocation points), as well as the approximated solution of the
differential equations. This part of the PINNs is commonly called surrogate network or
approximator. PINNs also use a residual network that encodes the differential equations
that govern the examined dynamic system. The residual network is used to estimate the
derivatives based on the differential equations of the system, given the output of the deep
learning network at each collocation point. Finally, the training of PINNs focuses on
minimizing the loss function of the estimated derivatives from the neural network and the
corresponding values estimated from the equations.

In this chapter a detailed theoretical overview of the PINNs will be provided. The focus
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will be on how the PINNs are used for solving inverse problems. This will clarify how this
methodology was used in later stages to estimate the parameters of the physiologically-
based kinetics model developed in this diploma thesis.

3.2 Problem setup

First, consider a set of nonlinear differential equations of the general form

ut +N [u;λ] = 0, x ∈ Ω, t ∈ [0, T ], (3.1)

where u(t, x) denotes the latent (hidden) solution, N [·;λ] is a nonlinear operator with
parameters λ and Ω is a subset of RD. Equation 3.1 represents a large variety of systems
described by a set of differential equations, as well as chemical reaction systems, fluid
dynamics problems and kinetic equations. Next we define the left hand side of of equation
3.1 as f(t, x)

f := ut +N [u], (3.2)

where u(t, x) are the values of the state variables of the system and are approximated by
a deep neural network. The estimation of u(t, x) by a deep neural network along with
equation 3.2 formulate a physics informed neural network f(t, x). In order to make this
structure work, it is necessary to use automatic differentiation and estimate the value of
the differential equations given the values of the output variables of the neural network
with respect to its input. The automatic differentiation leverages the chain rule method,
applied to the operations defined on the network nodes, to estimate the derivatives from
the surrogate network.

Therefore, the parameters λ of the PINN contain all the parameters (weights) of the
deep neural network that predicts the u(t, x) along with the unknown parameters of the
differential equations. The parameters λ can be estimated by minimizing the mean squared
error loss

MSE = MSEu +MSEf (3.3)

where

MSEu =
1

Nu

Nu∑
i=1

|u(tiu, xiu)− ui|2, (3.4)

and

MSEf =
1

Nf

Nf∑
i=1

|f(tif , xif )|2. (3.5)
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In equation 3.4, {tiu, xiu, ui}
Nu
i=1 denote the initial and boundary conditions as well as the

experimental data that may be available. In equation 3.5, the set of {tif , xif}
Nf

i=1 denote the
collocation points for f(t, x). Therefore, the minimization of MSEu enforces the model to
fit on the experimental data and the boundary conditions, while the minimization of the
MSEf enforces the model to follow the dynamics imposed by the differential equations of
the system at a finite set of collocation points. The minimization of the total loss MSE

leads to the estimation of both weights and biases of the deep neural network, as well the
unknown parameters of the differential equations. However, for specific problems, it is
possible to use weights to estimate the total loss MSE, thereby training the PINN more
efficiently. So, equation 3.3 is transformed into

MSE = ωuMSEu + ωfMSEf (3.6)

where ωu and ωf are extra hyperparameters that must be tuned.

3.3 Applications of PINNs

PINNs have already found applications in a wide range of computational problems,
serving as both solvers for differential equations and tools for estimating unknown param-
eters in dynamic systems. Initially, PINNs methodology was demonstrated on Burgers’
equation, which is used in various areas, such as fluid mechanincs, gas dynamics, acoustics
and traffic flow, as well as on the Schrödinger equation [11, 12, 13]. Furthermore, PINNs
have been applied to solve stiff differential equation arising from chemical kinetics problems
[14]. Epidemiological modeling has also adopted the PINN architecture, where PINNs were
leveraged to estimate model’s parameters using available epidemiological data. Another
field that has implemented the PINN architecture is the development of epidemiological
models [15]. In this work, the PINNs were exploited to estimate parameters of the model
using available epidemiological data. Another intriguing application of the PINN archi-
tecture lies in the estimation of blood pressure [16]. However, in this paper the surrogate
network was a CNN, exploiting the type of the available data that were in the form of
time-series.

Moreover, the medical field has witnessed numerous applications of PINNs. For in-
stance, in [17], PINNs were used to quantify kinetic parameters such as blood flow from
dynamic contrast-enhanced magnetic resonance images (MRI). The field of drug compart-
mental kinetic models has also started to explore the potential of PINNs [18], although
there are not many applications in this field. However, there is currently no published
article that investigates the application of PINNs in conjunction with PBK models. In
conclusion, PINNs hold promise in addressing challenges related to PBK development,
particularly when dealing with complex systems of differential equations that are typically
challenging to solve or when estimating model parameters presents significant obstacles.
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Chapter 4

Pharmacometrics

4.1 Introduction

Pharmacometrics is the field of science that quantifies drug, disease and trial in-
formation to aid efficient drug development and/or regulatory decisions, as defined by the
Food and Drug Administration (FDA) of United States [19]. It involves in the quantitative
analysis of pharmacological and clinical data using mathematical and statistical models.
It encompasses a multidisciplinary approach to quantify the interactions between drugs or
toxic substances, the living organisms, and diseases, by interlinking the biology, physiology,
and pharmacology with disease condition through mathematical models.

Pharmacometrics is a term to describe two different major families of models, which
are called Pharmacokinetic (PK) and Pharmacodynamic (PD) models. These models
fulfill diverse objectives, including the formulation of customised dosing plans for each drug
and patient, as well as providing support for regulatory and drug development decisions
[19]. PK models describe the absorption, distribution, metabolism, and excretion proper-
ties (ADME) of a drug from an organism during and after exposure, while the PD models
describe the organism’s response to this drug in terms of biochemical or molecular interac-
tions. Therefore, ensembles of PK and PD models are usually used to characterize a drug,
design successful dosing plans or to understand the concentrations-effects of a substance
and an organism.

4.2 Pharmacokinetic Models

Pharmacokinetics defines this sub-category of pharmacometric models that are used to
describe the ADME processes of a drug into an organism. These models present various
structural differences between them and therefore, they are divided in other classes.

The first one that should be referred are the Non-Compartmental (NC) models. The
NC models are usually used to estimate kinetic parameters from available concentration-
time profile data of a drug, when the kinetics follow a first order pattern. The advantage
of NC models is that they are based on the application of the trapezoidal rule in order
to estimate the Area Under the Curve (AUC) of the concentration versus time. This
feature makes them have minimal computational cost, rendering them accessible and easy
to use. For instance, a NC model could predict the concentration of a drug in the blood,
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when the metabolism processes of this drug follow first order kinetics. However, NC models
should be avoided to be used as predictive tools for kinetics processes of higher order and
cannot produce more detailed results such as concentration-time profiles for specific tissues
of the organism [20].

This gap is partially addressed by the compartmental analysis. The compartmental
models maintain a relatively simple structure, consisting of only a few compartments and
the equations that govern the whole system are of low complexity. To elaborate further,
compartmental models describe the fate of the drugs as they are distributed by the blood
flow at the organs, but the representation of the organs as compartments remains rudimen-
tary, such as the organ of interest could be modelled as a separated compartment and the
rest organs are represented by a common compartment. This category of models have been
proved to be useful in preliminary stages of the characterization of a drug and its kinetics.
A more detailed approach of the compartmental analysis is the Physiologically-Based
Kinetics (PBK) modelling.

4.3 Physiologically-Based Kinetics Models

Physiologically-based kinetic models form a distinct subset within compartmental mod-
els, that are characterized of elevated structural complexity and and integration of phys-
iological information. These models simulate the ADME processes of various substances,
whether they are drugs or possibly toxic compounds, across multiple organs and tissues
within organisms. The first reported attempt for the development of a PBK model is at-
tributed to Torsten Teorell in 1937 [21]. Since then, the development of PBK models has
gone through various stages. Nowadays, this field of science has made significant progress,
mainly because of the available and enhanced computational power and abundant avail-
ability of data accessible through the internet.

The term PBK is frequently encountered as PBPK, standing for physiologically-based
pharmacokinetics, when the substance of interest is a drug. Another usual alternative is
the PBTK, which stands for toxicokinetics when the substance is not a drug but possible
toxic compounds. It is apparent that while the PBK methodology was originally developed
for drugs applications, it has since found utility in a wider field of applications, such as
nanomaterials [22] or Per- and polyfluoroalkyl substances (PFAS) [23], among others.

PBK models consist of multiple compartments, with each one representing an organ
or tissue or a group of organs (e.g. the liver or the muscles or the gastrointestinal tract).
Each compartment has specific physiological properties, like mass and blood flow. The
primary goal of PBK models is to describe the ADME processes for the entire organism,
and predict the concentration-time profiles for the different compartments equally well.
While physiological parameters are usually available in literature [24, 25, 26] for a wide
range of organisms, the PBK modelling methodology is often used to approximate param-
eters that are difficult or impossible to estimate experimentally. Therefore, by exploiting
PBK models, researchers can leverage their predictive capabilities to gain insights into the
complex ADME processes.

The distribution dynamics of drugs in the blood can be modelled with various ways.
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Figure 4.1. Structural representation of the PBK developed in [1]. It is a model to sim-
ulate the dermal exposure of fish to various organic chemicals. The model consists of 7
compartments. The five of them (Fat, Liver, Kidney, Skin and Gills) are explicitly repre-
senting a unique organs, while the rest two compartments represent two different groups of
organs. The organs are separated into the two groups based on the level of blood perfusion
of the organ. The compartment of Gills is modelled with more details, as it is divided into
two sub-compartments to include both the respiration and the perfusion processes.

The two most common approaches to model the distribution in blood dynamics are the
flow-limited (also known as perfusion-limited) and the permeability-limited.

The flow-limited approach is used when the substance diffuses from the capillary blood
to the interstitial space and the only limiting factor is the blood flow in the capillaries
of the specific organ. That means that the membranes of the capillaries offer negligible
resistance at the diffusion of the substance from the blood into the interstitial space of the
organ. Therefore, the tissue concentration is controlled by a constant parameter, called
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tissue:blood partition coefficient [27].
The permeability-limited (or membrane-limited) approach is used when the limiting

factor of the dynamics processes is the resistance that the substances face to transfer from
the capillary blood. Moreover, there are differences at the level of the resistance between the
organs, due to the differences of the cell membrane properties of each organ. The resistance
to penetration of the substance is affected by multiple physicochemical properties [27].

The PBK models may differ in the number of the compartments and the structure of
them. Some models consist of compartments that represent an organ as a total, while
other models follow a more sophisticated design, where each compartment is divided into
more sub-compartments and simulates the processes inside the organ with more details.
Moreover, the group of organs represented into a PBK model is not standard. The selection
of the organs that will be represented is usually a selection of which organs present higher
interest for exposure at a specific drug or toxic compound. Another crucial factor in this
decision is the availability and the quality of available biodistribution data that facilitate
the inclusion of extra compartments. A frequent modelling decision is to group some organs
into one compartment. This happens due to lack of experimental data (to model each one
of these organs as a single compartment) and their biological processes are important to
understand the ADME of a substance, as for example the organs of the gastrointestinal
tract are often modelled as a single compartment because it is responsible for the fecal
elimination of the substances [1]. Figure 4.1 is the structural representation of the model
developed in [1] and includes some of the modelling approaches described above.
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Identifiability Analysis

5.1 Introduction

Mathematical modelling has evolved into a very powerful approach to simulate a large
variety of scientific issues in silico, such as biological processes, chemistry problems, as well
as pharmacokinetics modelling among others, and overcome the disadvantages of conduct-
ing experiments. However, biokinetics models, and notably PBK models, usually consist of
a large set of parameters, which could either be physiological parameters or rate constants
or partition coefficients that describe the kinetic of the substances. While physiological
parameters for the majority of the species can be readily found in the literature, the same
is not true for the kinetics parameters. These parameters tend to present high variability
from substance to substance, or from species to species, or even between sexes of the same
species. The values of these parameters are typically impractical to estimate experimen-
tally, but they can often be estimated in silico using appropriate data. PBK modelling
has proven to be an effective method for estimating these parameters with relatively low
computational cost, provided that a sufficient amount of high-quality experimental data
measured under specific experimental conditions is available.

However, throughout the process of PBK modeling, it is not always clear weather the
available experimental data are adequate, in terms of quality and quantity, to estimate the
entire set of unknown parameters in the model. Stated otherwise, given a biodistribution
dataset and a PBK structure, there exists a trade-off between the number of the parameters
that can be estimated using this dataset and the quality of the estimation of the parameters.
This is due to the common issue that not all parameters can be estimated unambiguously,
under specific circumstances. This issue is widely known as non-identifiability of the
parameters. Therefore, the concept of identifiability of parameters answers the question
whether all free parameters of a model can be uniquely derived from the available data,
given a specific model structure. If the free parameters of the model are non-identifiable
then the predictions of the model are not trustworthy and structural adjustments should
be applied on the model, to address this issue [28]. If the free parameters of the model
are non-identifiable then the predictions of the model are not trustworthy and structural
adjustments should be applied on the model, to address this issue. Evidently, the identifi-
ability of the parameters is a concern that should always be taken in consideration during
model development, and a methodology should be applied to illuminate this issue.
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Going deeper into the concept of identifiability, a definition should be given. In order
to present the terminology, an example of chemical reaction model will be used as example
model. Given a model M describing n species concentrations xi in a chemical reaction
network, described by a system o ordinary differential equations (ODE)

˙⃗x(t) = f(x⃗(t), u⃗(t), p⃗)

˙⃗y(t) = g(x⃗(t), s⃗) + ϵ⃗(t)
(5.1)

where x⃗(t) are the internal states of the model, u⃗(t) an externally given stimulus, p⃗
are the parameters of the model, g is an m-dimensional mapping of the internal states x⃗

to the observable variables y⃗(t) involving scaling and offset parameters s⃗. ϵ⃗(t) represents
noise of the measurements in the experimental dataset, that is assumed to be normally
distributed around the mean values of the measurements. Given the initial conditions of
the ODE system x⃗(0), then the set of parameters that fully describes the M model is

θ̂ = {p⃗, x⃗(0), s⃗} (5.2)

Then, consider a metric χ2(θ) function used to measure the agreement of the model
M output with the experimental data. This metric is Weighted Sum of Squared
Residuals (WSSR)

χ2(θ) =

m∑
k=1

d∑
l=1

(
yDkl − yk(θ, tl)

σD
kl

)2

(5.3)

where yDkl indicate the d data-points for each one observable output variable k, measured
at specific time points, tl. As σD

kl are noted the measurement errors, while yk(θ, tl) are the
model predictions for a given set of parameters θ, at specific time points tl. Therefore,
an optimization problem has been set up, where the values of the parametric set θ can be
estimated as

θ̂ = arg min
[
χ2(θ)

]
. (5.4)

In case of the noise of measurements is normally distributed, ϵ⃗ ∼ N(0, σ2) then equation
5.4 is equivalent to the maximum likelihood estimation (MLE) of θ:

χ2(θ) = const − 2 · logL(θ) (5.5)

where L(θ) is the likelihood of θ. Therefore, the value of the constant does not have any
impact on the values of θ̂, so the minimization of χ2(θ) is equivalent to the maximization
of the likelihood. For this reason the χ2 will be used as a placeholder for the likelihood
from now on.

Having set up all the necessary mathematical notations about the model M and its
parameters θ, as well as the optimized values θ̂, the definition of the identifiable parameter
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can be given. A parameter θi is identifiable, if the confidence interval [σ−
i , σ

+
i ] of its

estimate θ̂ is finite. Otherwise, two different types of non-identifiability can be detected
for any parameter θi; the structural non-identifiabity and the practical non-identifiabity
(practical or numerical).

Finally, as confidence interval [σ−
i , σ

+
i ] of a parameter θ̂i to a confidence interval α

indicates that the true value θ∗i is located within this interval with probability α. To
estimate the confidence intervals the method of finite sample confidence intervals was
applied, as presented in [29]. This methodology estimates the confidence intervals of the
parameters by applying a threshold on the likelihood. Thus, the confidence intervals are
estimated by defining the region

{θ|χ2(θ)− χ2(θ̂) < ∆α} with ∆α = χ2(α, df). (5.6)

The threshold ∆α indicates the α quantile of the χ2 distribution with df = 1 for pointwise
confidence intervals, that hold individually for each parameter or df = #θ for simultaneous
confidence intervals, that hold jointly for all parameters.

5.2 Structural non-identifiability

Following the definition given in [29], a parameter estimate θi is structural identifiable,
if a unique minimum χ2(θ) with respect to θi exists. The structural non-identifiability
issue arises from the over-parameterization of the model, which leads to a non-effective
mapping g between the internal state variables x⃗ to the observable output variables y⃗.
Consequently, the value of the metric χ2(θ) remains unchanged while the values of the
ambiguous parameters θsub ⊆ θ change. This means that there are multiple values of the
θ parameters that can be used in the M model and receive exactly the same output. This
situation indicates that there is high uncertainty on what is the true value of parameters θ,
as well as what are their confidence intervals. Practically, when a parameter is structural
non-identifiable then both confidence intervals are infinite [−∞,+∞]. Thus, the value of
the parameter cannot be estimated at all.

At this point, it is important to clarify that structural non-identifiability is an issue
derived exclusively from the mapping g between the internal state variable and the out-
put variables and is not affected by the quantity and quality of the experimental data.
Consequently, providing more data to estimate θ̂ would not aid to overcome the structural
non-identifiability. Instead, only the modification of the g mapping can lead to make all
the parameters structural identifiable. Modifying mapping g, could mean increasing the
number of observable output y variables, or group some of the abundant parameters under
a global parameter, decreasing this way the total number of parameters for estimation.

In the special case that the model M consists of only two parameters θ, then the χ2(θ)

can be visualized as a landscape. If the two parameters are structurally non-identifiable,
then the χ2(θ) is a totally flat valley infinitely extending in both directions of θ1 and θ2.
In figure, panel A 5.1 reveals the shape of χ2 and the functional relationship between the
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parameters θ1 and θ2, in case of structural non-identifiability.

5.3 Practical non-identifiability

Following the definition given in [29], a parameter estimatation θ̂i is practically non-
identifiable, if the likelihood confidence intervals region is infinitely extended in increasing
or decreasing direction of θi, although the likelihood has a unique minimum for this param-
eter. The meaning of this parameter is that the confidence of practically non-identifiable
are not both extended infinitely to both sides. Therefore, in the confidence interval [σ−

i , σ
+
i ]

either σ−
i = −∞ or σ+

i = +∞. In the case of practical non-identifiable parameters, ap-
plying perturbations (towards the direction of the infinite confidence interval) on them
results to negligible changes on the output variable of y⃗. In order to overcome practical
non-identifiability issues, increasing the amount and/or decreasing the noise of the (already
available) measurements can ultimately resolve these issues. Additionally, solving practical
identifiability issues can provide useful insight in the process of experimental planning.

In the case of a two paremeters model M that the parameters are practically non-
identifiable, the χ2 is visualized like the in the panel B of figure 5.1. The confidence
region of the parameters is infinitely extending to the direction of increasing parameters.
Therefore, in the confidence interval [σ−

i , σ
+
i ], the σ−

i is finite and the σ+
i is infinite.

Figure 5.1. Contour plots of χ2(θ) in case the parameter space of model M is two-
dimensional. The colouring from white to black reveals the change of the χ2 value from
higher to lower values respectively. The thick white lines represent the likelihood-based
confidence intervals. The white dashed line and the white asterisks represent the optimal
value of χ2. In panel A is represented the occasion that structural non-identifiability exists,
where the optimal value of χ2 infinitely extends, while the θ parameters increase and is
not restricted into a specific area of the parametric space, so the confidence intervals of
the parameters θ tend to infinite. Panel B illustrates the case of practical non-identifiable
parameters. The optimal value is restricted into a specific area of the parametric space,
but the likelihood-based confidence region is infinitely extended to one of the two directions.
Panel C illustrates the case that both parameters are structurally and practically identifiable.
The confidence region is finite for θ parameters into the parametric space.

5.4 Profile Likelihood

It is obvious that the non-identifiability of the parameters of a model raises crucial
trust concerns regarding the predictive ability of the model. Therefore, it is necessary to
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approach this issue and apply a methodology to perform identifiability analysis and detect
structural or practical non-identifiable parameters. For this purpose, the method that
is applied in this diploma thesis is a methodology that exploits the profile likelihood
method in order to perform the analysis, following the methodology published in [29]. The
concept of the profile likelihood method can be summarised with the following equation

χ2
PL(θi) = min

θj ̸=i

[
χ2(θ)

]
(5.7)

implying that the profile likelihood of a parameter θi is estimated by re-optimizing the x2(θ)
with respect to every θj ̸=i. This process needs to be repeated for various values of θi in the
parametric space around θ̂i. Using a profile likelihood as approach to perform identifiability
analysis has many advantages in terms of simplicity of the process and computational cost.
The detailed steps of the identifiability analysis proposed in [29] using profile likelihood
are the following:

1. Optimize the value of χ2(θ) and the optimal parameters θ̂

2. Define which θi parameter will be tested.

3. Estimate and apply θstep on decreasing or increasing direction of θi.

4. Re-optimize χ2(θ) with respect to any θj ̸=i.

5. Repeat steps 3-4 until any of the following conditions is satisfied:

• χ2
PL(θi) exceeded a threshold ∆α,

• Reached maximum number of iterations,

• The value of θi exceeded its user-defined bounds.

There are multiple ways to estimate the θstep of every iteration. The simpler one is
to set θstep to a constant value and take equal steps around θ̂i. However, this approach
does not take into consideration the steepness of the likelihood. In particular, θstep should
take higher values when exploring regions of θi at which the likelihood is flat. On the
contrary, the steps should be smaller in regions where the likelihood increases. This way,
the method does not spend computational sources to explore the area where the likelihood
is flat and heads faster to regions where the likelihood increases and reaches the threshold.
The alternative, suggested in [29], is to select the θstep in an adaptive manner in order
to accomplish what was previously described. Therefore, θstep should fulfill the following
equation

χ2(θlast + θstep)− χ2(θlast) = q ·∆α (5.8)

where θlast are the parameter values of the previous iteration and q takes a constant value
in the range [0, 1]. The meaning of q is that when testing an identifiable parameter there

Diploma Thesis 41



Chapter 5. Identifiability Analysis

will be required at least 1/q steps to exceed the threshold ∆α. Notably, larger values
on q force to larger steps. In order to estimate θstep of each iteration, it is necessary to
numerically minimize the value of the function

f(θstep) = χ2(θlast + θstep)− χ2(θlast)− q ·∆α. (5.9)

Finally, by following the profile likelihood approach, previously described, to perform
identifiability analysis on the parameters of any model, the method classifies the parameters
as:

• Structural non-identifiable: both σ−
i and σ+

i are infinite, or

• Practical non-identifiable: only on of the σ−
i and σ+

i is infinite, while the other’s
value has been estimated, or

• Identifiable: both σ−
i and σ+

i are finite and have been estimated.

In conclusion, there are some significant advantages to using profile the likelihood
method for conducting identifiability analysis. Firstly, the concept of the profile likelihood
and the steps to apply it are as simple as possible. Additionally, this method is feasible
to be applied even in cases of models with larger number of parameters, ensuring that the
computational runtime remains within reasonable bounds.
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Perfluoroalkyl and Polyfluoroalkyl Substances - PFAS

6.1 Introduction

Perfluoroalkyl and Polyfluoroalkyl (PFAS) substances are a group of organic
substances that have multiple fluorine atoms attached to an alkyl chain, creating very
strong C-F bonds, such so these compounds contain at least one moiety of CnF2n+1- or
-CF2- (fully fluorinated methyl or methylene carbon atom, without any H/Cl/Br/I atom
attached to it) [30]. The number of the fluorinated carbon atoms in PFAS varies from
4 to 17 for non-polymeric substances and have a great impact on their physicochemical
properties, bioaccumulation characteristics and their protein-binding processes.

6.2 Classification of PFAS - Properties & Applications

According to [31], PFAS can be classified into non-polymeric and polymeric. The
non-polymeric PFAS can be further divided into perfluoroalkyl and polyfluoroalkyl
substances. The perfluoroalkyl PFAS consist only of fully fluorinated carbon atoms,
whose chain is connected with a carboxylate (COO-) or a sulfonate (SO3

-) or a phos-
phate (OPO3

-). On the contrary the polyfluoroalkyl PFAS contain at least one carbon
(but not all) atom which is not fully fluorinated and its missing fluorine is replaced by an
oxygen or hydrogen atom.

Fluorinated polymers are defined as the polymers in which one or more of the monomer
units contains a fluorine atom. Therefore, not all fluorinated polymers belong to the
large family of PFAS. We consider as polymeric PFAS the fluoropolymers (substances
where the majority of the hydrogen atoms have been replaced by fluoride atoms), the
side-chain fluorinated polymers (substances on fluorinated carbons attached to poly- or
perfluoroalkylic side chains) and the perfluoropolyethers, where the carbon atoms of the
main chain are connected directly to oxygen and fluoride atoms [3, 31].

PFAS substances posses material properties that have led to their widespread use in
multiple applications [31]. Due to the strength of the C-F bond, the carbon-chain of the
PFAS are hydrophobic and lipophobic substances. Those properties cause a wide range of
PFAS substances to be highly effective surfactants, due to their ability to reduce the surface
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tension of water effectively [31, 32]. Additional properties of PFAS that resulted in using
them in a wide range of applications are the low reactivity, the good heat conductivity
and the non-flammability, among others. Consequently, the most prevalent applications
of PFAS substances include the production of fire-fighting foams, pesticide production,
and in the aerospace, aviation, and automotive industries. They are also used in the
paint, coating, and varnish industry, the medical field, the paper and packaging industry,
electronics and semiconductors production, as well as food processing. The complexity of
the PFAS have created a large group of different substances, which are employed in more
than 100 sectors of industrial or consumer’s products [3, 32].

Image 6.1: Example of non-polymeric perfluorinalkyl substance. They consist of two parts.
The first one is the fully fluorinated carbon-chain, which is of variable length, and the second
part which is a polar group, such as a carboxylate or a phosphate or a sulfonate group. The
fluorinated carbons formulate a hydrophobic tail, while the polar group is hydrophilic [3].

The extended use of PFAS in a large variety of applications has been a significant factor
for the existence of multiple sources of pollution in the environment. Notably, the indus-
trial production of fluoropolymers, the waste-water treatment plants and the remaining
industrial processes where PFAS are involved, have contributed to significant releases of
PFAS both in the atmosphere and the freshwater systems. Another major source of soil
and groundwater pollution are the industrial plants, which are responsible for the recycling
and the incineration of products that contain PFAS in their composition. Additionally,
PFAS have been detected in multiple freshwater ecosystems around the world. It’s clear
that contamination of freshwater sites with persistent and non-degradable substances like
PFAS raises concerns for the health of humans and animals. Those that consume water
from these ecosystems and are part of the same food chain are potentially at risk [3].

6.3 Concerns regarding Health and Environment

Among the numerous PFAS substances, the two most common PFAS substances used
in the industry and in the literature are the perfluorooctane sulfonic acid (PFOS) and
the perfluorooctanoic acid (PFOA) [31]. The extensive use of PFAS has raised concerns
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regarding potential negative effects on human health and the environment. Notably, the
abnormally high concentrations of carbon fluorochemicals spotted and measures in human
serum samples of non-industrially exposed individuals as early as 1970 [33] were attributed
to PFAS, as reported in a 2001 publication [34].

Following those publications, many researches have studied the effects of PFAS in hu-
man health. Significant associations between the exposure to long-chain PFAS (compounds
with more than 6 fluorinated carbons) and various human liver adverse effects have been
detecteed, such as hepatic fat infiltration [4, 35] (also known as metamorphosis or steato-
sis), a liver disease where excessive amount of triglycerides are accumulated within the
cytoplasm of the hepatocytes and is linked to obesity, diabetes mellitus and alcoholic liver
disease [36]. Additionally, PFAS are connected with hepatocellular adenomas and cancers,
the disruption of fatty acid trafficking, the induction of CYP P450 enzyme and hepatocyte
apoptosis [4, 37].

Another organ which is instantly affected by the exposure to PFAS is the kidney, as
PFOA and PFOS have been associated with the development of kidney toxicities. His-
tological experimental studies conducted on animals or human cell cultures have shown
that the most commonly observed adverse effects on the kidney are tubular epithelial hy-
pertrophy or even hyperplasia leading to increased kidney mass. Other observed effects
include papillary necrosis, glomerular changes and even kidney failure when the exposure
concentration was high [5].

Except the adverse effects regarding the kidney, it is important to refer to the PFAS
re-absorption mechanisms occurring in the kidneys due to binding with specific proteins.
Figure 6.2 illustrates the entire process of elimination and reabsoprtion of PFAS through
the kidneys and urine. The re-absorption mechanism is strongly associated with the high
half-life times of PFAS in organisms, leading to extended residence times and slower elimi-
nation processes. This re-absorption mechanism and the extended half-life times affect the
kinetics and as a result it is often considered in the development of PBK models [23, 38, 39].
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Image 6.2: Schematic representation of the elimination and re-absorption mechanisms. The
proteins responsible for the active transfer of PFAS from blood to the kidney tissue are the
Oat1 and Oat3 transporters. One part of the amount of PFAS is successfully filtrated and
excreted with the urine, while the rest of it is re-absorbed by binding to the Ost α/β proteins
and being transferred back to the blood (to be distributed to the rest organs). Notably,
the Oatp1a1 proteins are responsible for the re-absorption of PFAS from the urine back
to the interstitial fluid of the kidney. An intriguing observation within this mechanism
is the greater intensity of re-absorption observed in human males compared to females,
exemplifying a difference in kinetics between the genders[4, 5].
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Rainbow trout PBK

7.1 Introduction

In this chapter will present in detail the PBK model developed in this thesis, to predict
the tissue-distribution of various PFAS in Rainbow trout (Oncorhynchus mykiss) after
consumption of food spiked with these substances. The structure of the model is similar
to the structure of the PBK model presented in [40] ], albeit with some modifications. In
addition, the model reported in [39] was taken into consideration, to simulate the renal
excretion of PFAS. The experimental data used to estimate the kinetic parameters of the
model, have been extracted from an experimental biodistribution study on Rainbow trout
exposed to five different PFAS substances [41]. The first section of this chapter is about
the biodistribution experimental data that are used for the estimation of the parameters
of the model.

7.2 Biodistribution Data for Dietary Exposure of R.trout to
PFAS

The development and training of PBK models requires data that provide tissue-specific
concentration-time profiles. It is also important to provide detailed information about the
exposure conditions of the organisms. Additionally, it is necessary for the experiment to
have long enough duration to reveal the underlying kinetics of the ADME processes.

The biodistribution data that are used in this diploma thesis are published in [41].
The researchers examined the distribution of 5 different PFAS substances in the tissues
and blood of dietary exposed rainbow trout. The examined substances are perfluorobutane
sulfonic acid (PFBS), perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid
(PFOS), perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA). The fish were
exposed in parallel to those substances for a period of 28 days and they were fed daily with
food mass equal to the 2.6% of their mean weight. The concentration of PFAS in the food
was 500 μg/kg of food. The mean temperature of water was 15◦C. The exposure period was
followed by a depuration phase, which also lasted 28 days. Incorporating the depuration
period into the experiment is significant, because this way it is feasible to understand and
quantify the kinetics behind the clearance processes. Measurements for liver, muscle, skin,
gills, kidney blood and carcass were received at 7, 14, 28, 31, 35, 42 and 56 days from the
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beginning of the experiments. So, the dataset contains 3 data points during the exposure
period and 4 data points during the depuration. No data were available for the excretion
of PFAS, such as urine or fecal concentrations.

The data were available in plots and not in digital format. For this reason the digitiza-
tion of the plots was achieved using a free plot-digitizing software named Graph Grabber
(version 2.0.2) [42].

7.3 PBK Structure and ODEs

As previously documented, the main structure of the model is similar to the model
developed in [40] incorporating some important modifications in the modelling process.
The model consists of 7 compartments that represent the tissues of the fish, alongside
two extra compartments for the arterial and venous blood. The tissues that are modeled
as compartments are the Gills, Viscera, Liver, Kidney, Muscle, Skin and Carcass. The
viscera compartment refers to a group of organs, which includes stomach, intestine, pyloric
cecum and spleen. Although there was no biodistribution data for these compartments,
it was considered that they have a significant contribution in the distribution of PFAS
among the tissues, especially in scenarios involving PFAS exposure through dietary intake.
Finally, the Carcass compartment represents the remaining tissues of the fish that are not
explicitly represented as compartments. A detailed structural representation of the model
is presented in figure 7.1.

In the following differential equations both concentrations and absolute mass of PFAS
are estimated for each compartment of the model. The concentration of PFAS is estimated
as

Ci =
Mi

wi
(7.1)

where wi is the mass of the compartment i.

However, physiological parameters, like weights and the blood flows are not constant
in the model. Instead, the growth of the fish is taken into account by the model. The
aim behind this modelling decision is to estimate the concentrations based on the correct
tissues weights, as the biodistribution data span a long term, during which the fish are
increasing their mass significantly. As a result , the article containing the biodistribution
data [41], also reports the mean total weight of the fish at the beginning, middle and end
of the experiment. Assuming that the body mass growth of the fish is a linear process,
it was easy to estimate and update the fish body weight at each time of the simulation,
using linear interpolation. This way, the physiological parameters that are dependent on
the body weight are updated for each time point of the simulation.

Concerning the estimation of the total blood flow Qtotal, it is estimated as proposed
in [25] and [43] taking into consideration the effect of experimental temperature as an
additional factor, according to Arrhenius equation [44]. The Arrhenius equation is
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Figure 7.1. Schematic representation of the PBK model developed for Rainbow trout
exposed to PFAS through the food. The model consists of 8 compartments, including the
blood which is divided into two compartments for the arterial and the venous blood. The
compartment of viscera is used to model the stomach, intestine, pyloric cecum and spleen
as a group. The exposure to PFAS through the food consumption is considered to occur at
the Lumen 1 sub-compartment of viscera, by adding the amount of PFAS that is considered
to be eaten. This PBK models two elimination pathways; through the urine and the feces.
Moreover, reabsorption of PFAS from urine back to blood through the kidney is supposed to
occur. The enterohepatic circulation of PFAS has also been modeled. Finally, the Carcass
compartment represents the rest organs and tissues that have not been modeled explicitly.
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AT = exp
(TA

Tr
− TA

Texp

)
(7.2)

where Texp is the water temperature (°K), Tr is the reference temperature (°K) at which the
reference value of the total blood flow is measured and TA is the Arrhenius temperature
(°K). As a result, the total blood flow of the fish is estimated using the terms for the
temperature and mass correction through the equation

QTotal = QTotalref ×AT ×
(

BW

BWref

)−0.1

×BW × plasma (7.3)

where QTotalref is the total blood flow reference value, BW is the body weight of the fish,
BWref is the body weight at which the QTotalref is reported and plasma is the percentage
of the plasma volume to the total blood volume. Since the PFAS do not partition to red
blood cells, the distribution is assumed to be based only on the plasma flow through the
tissues, so we had to estimate the plasma flow rate instead of the total blood flow [40].

The equation that describes the distribution of PFAS in compartments that do not
have any uptake or any elimination is

dMi

dt
= Qi(Cart −

Ci

Pi
) (7.4)

where Mi is the mass of the PFAS in compartment i, Qi is the arterial plasma flow of
compartment i, Cart is the concentration of PFAS in arterial blood, Ci is the concentration
of PFAS in tissue i and Pi is the partition coefficient of compartment i. The compartments
of the model that are described from this equation are Muscle, Skin and Carcass.

As it was previously stated, the gastrointestinal tract of fish was modeled as a single
compartment, named Viscera, which represents the stomach, the intestine, the pyloric
cecum and the spleen. These organs contribute significantly in the absorption of PFAS from
food and they are recirculate and eliminate PFAS through the enterohepatic circulation
and the fecal elimination. This compartment is divided into 3 sub-compartments. The first
sub-compartment is used to model the amount of PFAS inside the lumen of the viscera.
This amount is considered to be the total amount of PFAS that become available for
absorption to the organism with the amount received from the food and the amount that
becomes available from the enterohepatic circulation. This amount is described as Lumen
1 in the model.

The second sub-compartment of the viscera represents the amount of PFAS which is
inside the bile flow and is unavailable for reabsorption. This sub-compartment is called
Lumen 2 inside the model and the equations. It is important to clarify that the fecal
elimination of PFAS takes part in both Lumen 1 and Lumen 2.

The third sub-compartment models the tissue of the viscera. It is an important sub-
compartment because through this the PFAS are absorbed from the food which is inside
the lumen and then are distributed to the other tissues and organs.
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The differential equation for Lumen 1 sub-compartment is

dMlumen1

dt
= freabhepQbileCliver −KuαMlumen1 − Clfeces(1− α)Mlumen1 (7.5)

where freabhep is the percentage of PFAS in bile (Qbile) which becomes available for re-
absorption, Ku is the uptake rate of PFAS from lumen to the tissue of the viscera, α is
the assimilation efficiency of PFAS from the food and Clfeces is the fecal elimination rate
constant of PFAS amount.

Considering that the Lumen 2 sub-compartment is used to model the amount of PFAS
from enterohepatic circulation that is not available for reabsorption and is eliminated
through the feces, the correspondent equation is the following

dMlumen2

dt
= (1− freabhep)QbileCliver − ClfecesMlumen2 . (7.6)

The last sub-compartment of viscera represents the tissues of the visceral organs and is
modelled with an equation similar to the general equation presented previously for muscle,
skin and carcass, but has an additional term describing the absorption of PFAS from food.
So the equation for the tissue of the viscera is

dMviscera

dt
= Qviscera(Cart −

Cviscera

Pviscera
) +KuMlumen1 . (7.7)

The next differential equation pertains to the Liver. This equation includes additional
terms: one for the incoming flow from the viscera and another for the outflow of PFAS
through the bile. Consequently, the equation for the liver is as followes:

dMliver

dt
= QliverCart +Qviscera

Cviscera

Pviscera
− (Qliver +Qviscera)

Cliver

Pliver
−QbileCliver (7.8)

where Qbile refers to bile flow, not the blood blood.

The following equation describes the kinetics of the kidney compartment.

dMkidney

dt
=QkidneyCart − (Qkidney + amuscleQmuscle + askinQskin)

Ckidney

Pkidney

+ amuscleQmuscle
Cmuscle

Pmuscle
+ askinQskin

Cskin

Pskin
− ClurineCLUcoefMkidney

+ freaburine
Mstorage

(7.9)

It’s worth noting that the kidney compartment receives two additional plasma flows apart
from the arterial flow, which come from the muscle and skin compartments. This is modeled
to reflect that a relatively high percentage of the venous blood (blood outflow) from these
compartments ultimately flows directly to the kidney [1, 44].
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The mean maximum volume of the urinary bladder is considered as storage. Therefore,
Mstorage is the amount of PFAS present in the urine the urinary bladder, which is available
either for excretion from the organism or for reabsorption back to the blood stream. Thus,
the differential equation for the storage compartment is as follows:

dMstorage

dt
= ClurineCLUcoefMkidney − freaburine

Mstorage −QurineCstorage (7.10)

where, CLurine is the urinary elimination rate, CLUcoef is a correction coefficient of the
CLurine, because its value was taken from another published article (more details in section
7.5), freaburine

is the reabsorption rate of PFAS from urine to the organism, Qurine is the
outflow of urine and Cstorage is the concentration of PFAS inside the urine contained in
the urinary bladder and it is calculated as

Cstorage =
Mstorage

Vstorage
(7.11)

where Vstorage is the maximum volume of the urinary bladder. The freaburine
is estimated

relying on a theoretical constant coefficient comparing the reabsorption rate to the elimi-
nation rate. So the relationship between the two rates is

Kurine =
CLUcoefClurine

freaburine

. (7.12)

Therefore, the ODE for the PFAS eliminated through the urine is

dMurine

dt
= QurineCstorage. (7.13)

The next differential equation is used to estimate the PFAS excreted with the feces. So
the total amount of PFAS excreted through the feces is

dMfeces

dt
= Clfeces((1− a)Mlumen1 +Mlumen2) (7.14)

which is actually the sum of the unavailable for absorption PFAS amount from the com-
partment Lumen 1 and the amount of the compartment Lumen 2, which is the amount of
PFAS in bile that is not available for reabsorption.

The last two remaining equations are to estimate the PFAS in arterial and venous
blood. As figure 7.1 indicates, the Venous Blood compartment feeds the gills compartment
with the total blood flow, while it receives blood flows from the Liver, Muscle, Kidney,
Skin and Carcass compartments. Therefore, the equation for the estimation of PFAS in
Venous Blood is
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dMvenous

dt
=−QtotalCvenous + (Qliver +Qviscera)

Cliver

Pliver
+

(Qkidney + amuscleQmuscle + askinQskin)
Ckidney

Pkidney
+

(1− amuscle)Qmuscle
Cmuscle

Pmuscle
+ (1− askin)Qskin

Cskin

Pskin
+

Qcarcass
Ccarcass

Pcarcass
.

(7.15)

In contrast, the Arterial blood compartment receives the total blood flow from the Gills
compartment and feed the rest organs, so the correspondent equation is

dMart

dt
= Qgills

Cgills

Pgills
−(Qviscera+Qliver+Qkidney+Qmuscle+Qskin+Qcarcass)Cart. (7.16)

Concluding, those were all the equations that the model consists of. Those equations
are in total agreement with the mass and the flow equilibrium of the problem, which is an
important condition to be satisfied in the development process of PBK models.

7.4 Physiological Parameters

The current PBK model consists of physiological parameters, which of course are in-
dependent of the substance of exposure. On the other hand, some of the parameters of
the model are PFAS-specific. Consequently, the value of these parameters are unique for
every PFAS substance. While the total of the physiological parameters were estimated
exclusively using the literature sources, this is not true for the PFAS-specific parameters
too. In this section a detailed description of the physiological parameters of the model will
be provided with their units.

A short description of each physiological parameter of the model, their symbols and
their units are given in the table 7.1. All parameters reported in this table are considered
to be independent of the substance of exposure.

The mass of each tissue i is estimated as

wi = fwi ×BW (7.17)

where fwi is the weight of tissue i as a fraction to the total body weight BW of the fish.
The correspondent blood flow is estimated as

Qi = fbi ×QTotal (7.18)

where fbi is the blood fraction of the blood flow of tissue i to the total blood flow Qtotal.
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Table 7.1. Definitions, symbols and units of the parameters used in the R. trout PBK
model.

Definition Parameter Unit

Body weight BW g
Body weight reference value BWref g
Total blood flow reference value QTotalref ml/h/g
Water temperature Texp °K
Arrhenius temperature TA °K
Reference temperature Tref °K
Tissue weight coefficients
(as fraction of total body weight) fwi -

Mass of compartment i wi g
Regional blood flow as fraction of total blood flow fbi -
Regional blood flow of compartment i Qi ml/h
Fraction of PFAS available for reabsorption
coming from enterohepatic circulation freabhep -

Fecal elimination rate Clfeces 1/h
Renal elimination to reabsorption ratio Kurine -
Urinary elimination rate Clurine 1/h
Correction factor of the urinary elimination rates CLUcoef -
Reabsorption rate of PFAS from urine freaburine

1/h
Urine flow rate coefficient Qurinecoef ml/g/h
Maximum urine volume coefficient inside urinary bladder Vurinecoef ml/g
Bile flow rate coefficient Qbilecoef ml/g/h
Fraction of skin blood flow that flows directly to kidney askin -
Fraction of muscle blood flow that flows directly to kidney amuscle -
Fraction of plasma volume to total blood volume plasma -
Uptake rate from lumen_1 to viscera tissue Ku 1/h
Partition coefficient of compartment i Pi -
Assimilation efficiency a -
Assumed density of blood and tissues = 1 ρ g/ml

Therefore, to estimate the plasma flow instead of blood flow, then the equation 7.18 must
be multiplied by the plasma fraction of blood and finally take

Qi = fbi ×QTotal × plasma. (7.19)

Finally, the weight of the Carcass compartment are estimated as the remaining mass of
the organism,

wcarcass =BW − (wblood + wliver+

wskin + wmuscle + wgills+

wkidney + wviscera + wlumen)

(7.20)

and the blood flow of the remaining organism is
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Table 7.2. Values and references of the physiological parameters values.

Parameter Value Reference

BWref 270.1 (for T=6 °C) [25]
296.4 (for T=12 °C) [25]
414.5 (for T=18 °C) [25]

QTotalref 1.188 (for T=6 °C) [25]
2.322 (for T=12 °C) [25]
3.750 (for T=18 °C) [25]

Texp 288 [41]
TA 6930 [44]
Tref 279 [44]

285 [44]
291 [44]

fbliver 0.0035 [40]
fbskin 0.073 [40]
fbmuscle

0.655 [40]
fbgill 0.0002 [40]
fbkidney

0.071 [40]
fbviscera 0.069 [40]
fwliver

0.012 [40]
fwblood

0.045 [40]
fwskin

0.064 [40]
fwmuscle

0.566 [40]
fwgill

0.02 [40]
fwkidney

0.016 [40]
fwviscera 0.051 [40]
fwlumen

0.012 [40]
Qbilecoef 0.000075 [45]
Qurinecoef 2.76 [46]
Vurinecoef 0.0022 [46]
askin 0.9 [1, 44]
amuscle 0.6 [1, 44]
plasma 0.7 [26, 47, 48]

Qcarcass =QTotal − (Qliver +Qskin+

Qmuscle +Qkidney +Qviscera).
(7.21)

The values of all physiological parameters as well as the reference source are provided in
table 7.2.

7.5 PFAS-Specific Parameters

In this section a detailed presentation of the PFAS-specific parameters will be provided.
The PFAS-specific parameters, refer to the special feature of these parameters that they

Diploma Thesis 55



Chapter 7. Rainbow trout PBK

have a distinct value for each one of the PFAS considered in this model. For some of
the PFAS-specific parameters it was feasible to find relative values in the literature. The
parameters that were given a constant value based on available literature were the assimi-
lation efficiency, a, the coefficient of the enterohepatic circulation, freabhep , the ratio of the
renal elimination/reabsorption rates, Kurine and the renal elimination rates Clurine. The
values of these parameters for each one of the PFAS as well as the reference literature are
provided in table 7.3.

Table 7.3. The values of the PFAS-Specific parameters and the corresponding literature
sources.

Parameter PFOA PFNA PFBS PFHxS PFOS Reference

α 0.138 0.522 0.0598 0.558 0.721 [49, 50]
freabhep 0.30 0.340 0.230 0.30 0.420 [51]
Kurine 2.080 1.350 10.410 5.880 1.350 [39, 50]
Clurine 104.40 180.0 82.80 82.80 180.0 [39, 50]

7.5.1 Assimilation Efficiency

The assimilation efficiency values were set to constant values, using the values given
in [49] in which the experimental conditions were very similar to those in the paper [41],
from which the experimental data used for the model presented in this thesis. Additionally,
those values were also used in food-web bioaccumulation model for fish [50]. As indicated in
equation 7.5, the assimilation efficiency is multiplied by the Ku and the Mlumen1 , in order
to describe the mass of PFAS transferred to the viscera tissue per time unit. Considering
that lack of available data for the concentration of PFAS into the viscera tissue, it was
clear that a modelling approach with using constant assimilation efficiency parameters
fixed using the literature, could lead to a feasible estimation of a Ku parameter which is
common for all PFAS substances. In other words, the assimilation efficiencies incorporate
all the differences that exist between the PFAS, regarding the kinetic processes during
their transfer from the lumen space to the viscera tissue. Finally, instead of estimating 5
different parameters (one for each PFAS substance) to describe the rate constant of transfer
of PFAS from lumen to tissue, only one common Ku needs to be estimated from the data.

7.5.2 Enterohepatic Circulation Coefficient

The freabhep describes the fraction of PFAS that becomes available for absorption due to
the enterohepatic circulation. The term of enterohepatic circulation refers to the secretion
of bile acids (acidic steroids formed from cholesterol in the liver) from the liver, via bile
flow into the intestine and some of them are reabsorbed by the blood and the liver [50,
52, 53]. The similarity of the PFAS and the bile acids was studied in [51] in the light
of enterohepatic circulation may affect the distribution of PFAS. The main reason is that
some PFAS can connect (as the bile acids do) to the key transport proteins that regulate
the enterohepatic circulation. Notably, the binding affinity of various PFAS with the
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transport proteins named apical sodium-dependent bile acid transporter (ASBT) and the
Na+ taurocholate transport polypeptide (NTCP) was estimated. These proteins were
selected as they play a key role for the secretion of bile acids at the enterohepatic circulation.
Then the estimated binding affinities of the PFAS were directly compared to the binding
affinity of taurocholic acid (TCA) with the two transporter proteins, which is the primary
component of bile acids and is known to be highly reabsorbed through the enterohepatic
circulation (up to 95%). Therefore, the coefficients of reabsorption were estimated by
making this comparison, considering the TCA as a "benchmark" substance that has freabhep
equal to 0.95. The values for the 5 PFAS are reported in table 7.3. Reading the given
values, it seems that the PFAS are connected to some extent to the transporter proteins
and there is a high possibility to be reabsorbed through the enterohepatic circulation. The
most likely to be reabsorbed is the PFOS, while the PFBS has the lower coefficient.

7.5.3 Renal Elimination-to-Reabsorption Coefficient

The reabsorption of PFAS from the urine back to the kidney tissue is a very common
mechanism for various organisms, especially for humans, increasing this way the half-life
(even to a range of years [5]) of the PFAS significantly. As it was previously described in
image 6.2, the elimination and the reabsorption of PFAS through the urine is a protein
regulated process and the transporter proteins with the higher impact are the Oat1 and
Oat3 on the clearance process and Oatp1a1 on the reabsorption process. The developers of
the PBK model published in [39] estimated first order urinary clearance and reabsorption
rates based on the uptake rates of the Oat1, Oat3 and Oatp1a1 proteins. Therefore, it
was feasible to estimate the elimination/reabsoprtion ratio, noted as Kurine in table 7.3.
Using those elimination/reabsorption coefficient values provides significant insight into the
protein facilitated reabsorption mechanism of PFAS, especially taking into account that
the dataset used to fit the parameters of the model did not include any data for PFAS
concentrations in urine.

7.5.4 Renal Elimination Rate Constants

The final group of PFAS-Specific parameters that were fixed to constant values are the
urinary elimination rate constants Clurine. As it was previously noted, the biodistribution
data did not contain any information about the elimination of PFAS, either fecal or uri-
nary. This obstacle led to search for already estimated renal elimination rates of PFAS in
fish. Therefore, the values for the urinary elimination rate constants were taken by [50],
considering that their model refers to rainbow trout.

7.6 Parameters Estimation - Optimization workflow

It has already been evident that deciding about which parameters to fit using the
biodistribution data is a complex task. It is necessary to keep a balance between the
number of parameters and the goodness of fit of the model. Overloading the model with
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excessive parameters to enhance its predictive ability can lead to significant identifiability
issues, as discussed in Chapter 5.

Therefore, the first step involved defining a set of free parameters that will be fitted
using the data. To estimate those parameters, the selection of an optimizing algorithm
and a fitness metric is required. For this task, a custom metric was developed . The metric
function is called Physiologically-Based Kinetics Objective Function or PBKOF
and is a modified version of the PBPK Index presented in [54]. Considering the PBK
models consist of multiple output variables that are fitted on the experimental dataset,
Ncomps is the number of compartments for which the data are available. Additionally Nobs

indicates the number of measurements available for any given compartment. Therefore,
the value of the PBKOF metric for any compartment j of interest is estimated as

Ij =

√√√√√√
Nobsj∑

i

(
yi−ŷi
yi

)2

Nobsj

+

√√√√√√
Nobsj∑

i

(
yi−ŷi
ŷi

)2

Nobsj

(7.22)

Finally, the overall goodness of fit of the model, regarding all the total compartments is
equal to

PBKOF =

Ncomps∑
j=1

Ij
Nj

NTotal
(7.23)

where NTotal is the sum of observations for all compartments, thus NTotal =
Ncomps∑
j=1

Nobsj .

The weighting factor Nj/NTotal is used in order to give more focus on compartments with
higher number of observations than others.

The next step of the workflow is to create a function that takes as input the values of
the free variables. These values will be used internally to solve the differential equations.
Subsequently, the results of the ODEs will serve as input to the PBKOF metric to evaluate
their alignment with the experimental data. Finally, the function will return the PBKOF
metric value. This function will be used from the optimizing algorithm to minimize the
PBKOF and estimate the values of the unknown parameters from the data.

The next part of the process is to perform identifiability analysis using the optimal
values of the parameters and detect any non-identifiable parameters. If non-identifiable
parameters exist, the model structure must be modified and repeat the whole process until
the parameters become identifiable and the goodness of fit is satisfactory.

The described workflow was implemented in R (version 4.3.1) [55]. For the solution
of the ODEs the deSolve [56] R package (version 1.36) was used, while the nloptr [57]
(version 2.0.3) was exploited for the optimization problem. Finally, an implementation of
the identifiability analysis concept was written in R code, exploiting the profile likelihood
method that was described in chapter 5.

Finally, during this diploma thesis a custom R package was created to automate the call
of functions that are used frequently. Notably, the package contains functions to estimate
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profile likelihood and perform identifiability analysis on any ODE model the user desires.
Moreover, the package contains a group of metrics, that were developed in colaboration
with Periklis Tsiros, PhD candidate. This metrics are used to evaluate the goodness of fit
of regression models (as well as PBK modelling). An implementation for local sensitivity
analysis has also been added in the package. The purpose of this package is to contain
various tools that are used in kinetics and PBK modelling. The name of the package is
PBKtools and is available on Github at https://github.com/ntua-unit-of-control-
and-informatics/PBK_modelling_tools.git

7.7 Parameters Estimation - PINN workflow

PINNs can easily be applied to estimate the unknown parameters of any nonlinear
dynamic system, such as the PBK model developed in this thesis. To evaluate the PINNs
as an alternative approach for parameters estimation, a new workflow using PINNs was set
up. Firstly, in this section it was considered that the common parameters Ku,CLUcoef

and CLfeces are constant and set equal to the values estimated using the optimization
workflow described in section 7.6. Additionally, the simple scenario of estimating the par-
tition coefficients only for the PFOS substance was considered. This decision was made to
test the ability of PINNs in estimating parameters on an easier to solve problem. Addi-
tionally it is more common estimating unknown parameters of a PBK model for a single
substance, than for multiple substances simultaneously. However, addressing this problem
as a subsequent step is highly interesting, because in these problems the computational
cost of the optimization workflow is increased. Consequently, a PINN was used to estimate
the partition coefficients Pliver, Pmuscle, Pkidney, Pskin, Pgills, Pcarcass and Pviscera only for
the PFOS experimental data.

The training of the PINN model was accomplished using the DeepXDE [58, 59],
a python library for solving computational problems, forward or inverse, using PINNs.
DeepXDE facilitates the coding of the PINNs and is suitable for both educational and
research purposes.

To estimate the parameters of the model, a PINN was structured using a feed forward
network. The decision to use this structure was based on various applications of PINNs in
other publications, that showed that FFN achieve satisfying results without the need to
use more complex networks in problems similar to this one. Training the PINN requires
tuning the neural network’s hyperparameters. After executing some preliminary tests, the
learning rate, the optimizer and the activation function were fixed to constant values that
provided satisfying results. Therefore, the parameters that needed tuning were the number
of the hidden layers (Nhidden), the number of nodes per layer (Nneurons), the number of
collocation points (Ncollocation), and the value of the weight ωu that is multiplied with the
MSEu term in equation 3.3.

The best set of hyperparameters was defined after applying the grid search technique.
However, the simultaneous grid search of four parameters would lead to a huge number of
FFN structures to be tested. For this reason, tuning was realised in two stages. At the
first stage only the Nhidden, Nneurons and Ncollocation were tuned. Notably, three values for
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Figure 7.2. Schematic representation of PINN used to estimate the partition coefficients
of the PBK model. The first part of the PINN is a feedforward network, which receives as
input only time. The output of the network are the predicted values of the state variables of
the PBK model M̂i Those values are used to estimate the agreement with the experimental
data as Lossu. The predictions are also provided to the residual network. The residual
network estimates the derivatives of each output of the FFN with respect to input t and
compares it with the corresponding values from the PBK model. The evaluation of this
difference (in terms of mean squared error) formulates the second loss term, the Lossf .
Finally, the two loss terms are scaled with the values ωf and ωu and they are summed to
calculate the total loss. The minimization of Lossu is achieved with respect to the weights
w and biases b of the FFN. Instead, the minimization of Lossf is achieved with respect to
the partition coefficients of the PBK model too.

each parameter were tested in the grid, so there were 27 possible networks to train. The
parameter values of the first stage of this tuning process are reported in table 7.4

The final selection of these parameters was determined through a grid search. The
tested values for these parameters are provided in table 7.4. With three values for each
hyperparameter, this resulted in a set of 27 different PINN models. It’s worth noting that
all these models were trained with ωu = 2. This value was selected based on the preliminary
tests, which indicated that a slightly increased weight on the data loss should be given.
The chosen PINN structure was ultimately determined by evaluating the goodness of fit
using the MSE score.

Table 7.4. Grid of the hyperaparameters used in the first stage of tuning for the PINN.

Parameters Values

Nhidden 2 5 10
Nneurons 10 20 30
Ncollocation 50 200 500

At the second stage only the tuning process only the values of the ωu were tested,
in order to investigate which ratio of loss weights can give the best results. Although it
is obvious that this parameter affects the results of the first stage tuning, it would be
inefficient to include it in the grid search. Thus, the five different values of ωu that have
been tested are [0.01, 0.1, 1, 2, 5, 10, 100]. Seven PINNs were retrained (using the already
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optimized weights and biases from the first tuning stage) with these values for ωu. However,
it was not possible to compare these models in terms of MSE score, as weighting the terms
of the loss function made the comparison infeasible. The estimated partition coefficients
of each model, were provided to the PBK model. Then, the PBK model was used to
provide predictions at the experimental time points. Consequently, those predictions were
compared to the experimental values to evaluate the goodness of fit. The metrics that were
selected for this task are the PBKOF described in equation 7.23, the absolute average
fold error (AAFE) and the root mean squared error (RMSE). The AAFE and the RMSE
metrics are estimated as

AAFE = 10
1
N

∑N
i=1 | log

(
ŷi
yi

)
| (7.24)

and

RMSE =

√∑N
i=1(ŷi − yi)2

N
(7.25)

respectively, where ŷi is the predicted value and yi is the observed value at time i. These
metric functions have been implemented in the PBKtools library.
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Chapter 8

Results and Discussion

8.1 Introduction

In this chapter, the outcomes resulting from implementing the modeling workflows
described in chapter 7 will be presented and discussed. We will start by addressing the
findings of the identifiability analysis, shedding light on which parameters can be freely
estimated from the data during the optimization workflow, without encountering identi-
fiability issues. We will proceed with presenting the results from the optimization workflow.
The values of the parameters will be reported in detail, as well as the relevant plots, which
illustrate how well the fitted model predicts the experimental data. In the following section,
the findings obtained from the PINN workflow will be reported. This section will include
results from the grid search hyperparameter tuning. Concluding this chapter, we will
compare the two workflows and discuss the advantages of each one.

8.2 Optimization Workflow: Results

The optimization workflow could be considered as a two-step process. The first step is
to minimize the value of the objective function, with regard to the free parameters of the
model, in order to estimate their optimal value. The second stage, is using these optimal
values to perform identifiability analysis to detect any identifiability issues. Of course,
this process is a trial and error process, as it is difficult to define a PBK structure from
the first try, whose unknown parameters are identifiable. Often, some parameters emerge
as non-identifiable, so we need to perform structural modifications to the model, in case
of structural non-identifiability, or increase the number of the available data, in case of
numerical non-identifiability. At the beginning of this model’s development, most of the
non-identifiable parameters were structurally non-identifiable. As a result, we needed to
adjust the model’s parameterization to tackle these issues. In the section, we will present
the final parameterization of the model, as well as the resulting plots of the identifiability
analysis for this modelling approach.

8.2.1 Estimated Parameters

The implementation of the optimization workflow, indicated that the optimal approach
is to assign common values to Ku, CLUcoef and Clfeces accross the different PFAS. This
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approach comes with certain assumptions. The first assumption is that the rate constant of
absorption of PFAS from the lumen contents through the stomach walls to blood remains
consistent across substances. The same assumption was made for Clfeces, as there was
no information about the amount of PFAS excreted through feces. As for CLUcoef , is
considered to be constant across all PFAS because it is a correction factor. CLUcoef is
used to correct the values of the Clurine rate constants, which are received directly from
the model of [50]. We decided on the need for this correction because these parameters
expressed the rate constant of urinary elimination with respect to the total body burden
of the fish, as it was used in [50], while in our model it expresses the same constant rate
with respect to the PFAS concentration in the kidney tissue.

Apart from these three parameters, which are the same across all PFAS, we esti-
mated the set of 7 partition coefficients, exclusively for each substance. The availability of
concentration-time profile data for gills, liver, muscle, kidney, skin and carcass allowed the
estimation of different partition coefficients for each compartment and PFAS. Additionally,
one partition coefficient (for every substance) was estimated for the viscera compartment.
Although there was no concentration data for this compartment, it was necessary to have an
estimation for this parameter, based on the rest of the experimental data, as this compart-
ment plays a significant role on the absorption and elimination of the PFAS. Considering
all these modelling decisions, the total number of estimated parameters was 38 (3 common
parameters for all PFAS, plus 7 partition coefficients for every PFAS).

The values of the three common parameters are presented in Table 8.1. Those values
are estimated from the simultaneous fit of the model to the experimental data of all PFAS
substances.

Table 8.1. Estimation of common parameters.

Ku CLUcoef Clfeces

1.4669 5.7190E-04 1.3065

Table 8.2. Estimation of partition coefficients for every PFAS.

Substances Pliver Pmuscle Pkidney Pskin Pgills Pcarcass Pviscera

PFOS 1.5685 0.1132 0.4399 0.2716 0.2292 0.1074 3.6991
PFOA 2.0036 0.0369 0.8512 0.3188 0.3428 0.18 0.5637
PFBS 1.7415 0.1387 0.7631 0.2242 0.2772 0.1161 1.0770E-05
PFHxS 1.6979 0.0434 0.3608 0.2935 0.1538 0.0412 8.8461E-06
PFNA 0.8033 0.0649 0.2461 0.2335 0.2204 0.1135 1.2747

The optimized values of the partition coefficients are reported in Table 8.2. Notably,
the values of the Pviscera across the PFAS substances has a large variability, relatively to
the other parameters. Additionally, the values of Pliver are larger for every PFAS (except
the PFOS where Pviscera > Pliver. This is something that can be justified, as the liver is
the organ that has the higher concentration of PFAS.
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8.2.2 Identifiability Analysis Results

Following the optimization workflow, the next step after estimating the parameters,
was performing identifiability analysis, by implementing the methodology described in
chapter 5. The three common parameters were excluded from the analysis. Including these
parameters in the identifiability process, would increase significantly the computational
cost. Additionally, given that these parameters are common for the five substances it was
considered that there is enough information in the experimental data to estimate them.
Therefore, the analysis was performed only on the seven partition coefficients of the model.
Moreover, only the experimental data and the partition coefficients of PFOS were needed
to perform identifiability analysis. That is true because using different set of values of
partition coefficients, is equivalent to having 5 different models, which are identical in
terms of structure and the only differences between them are the values of the parameters.
So, given that the amount of data for each PFAS is the same, we can perform identifiability
analysis only for the PBK and dataset for PFOS and then expand the results to the other
models too.

Table 8.3. Identifiability analysis results and likelihood-based confidence intervals σ±

derived from the profile likelihood method.

Parameters Non-Identifiability
Issue

Optimal
Value

Lower
Bound

Upper
Bound

Pliver Identifiable 1.5685 0.00312 558.183
Pmuscle Identifiable 0.1132 0.00028 31.506
Pkidney Identifiable 0.4399 0.0013 25.727
Pskin Identifiable 0.2716 0.00057 162.598
Pgills Identifiable 0.2292 0.00048 159.814
Pcarcass Identifiable 0.1074 0.00023 57.641
Pviscera Practical 3.6991 0 412.162

The conclusions from the identifiability analysis were derived from the profile likelihood
plots of the parameters. The plots for all partition coefficients are shown in figure 8.1.
Additionally, table 8.3 reports the upper and lower bounds of the parameters, determined
using the profile likelihood method, and highlights which parameters are non-identifiable.
These plots depict the estimated likelihood profiles, as detailed in chapter 5.

By observing the plots it is obvious that all parameters, except Pviscera, are identifi-
able. Meanwhile, the profile likelihood of Pviscera shows different curvature than the other
parameters. Notably, the profile likelihood exceeds the defined threshold only from the
right side of optimal value, while the left side of the profile reaches a plateau, for any
value of Pviscera. The curvature of this profile indicates that Pviscera is a practical non-
identifiable parameter. The fact that the experimental data used to fit the model contained
no data for concentration-time measurements inside the organs modeled through the vis-
cera compartment, comes in agreement with the fact that this parameter is not totally
identifiable and could be somehow predicted prior the optimization process. Pviscera being
practical non-identifiable means that feeding the optimization workflow with some exper-
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Figure 8.1. Identifiability analysis for the Partition coefficients of the model. The plots
show with black continuous lines the estimated profile likelihood of the parameters. The
horizontal blue line represents the minimized value of the objective function χ2(θ). The
red dashed line represents the user defined threshold, which defines if any parameter is
identifiable or not. The threshold is calculated as Threshold = χ2(θ̂) + ∆α, where ∆α

is the 95th quantile of the χ2 distribution with degree of freedom df = 1. The rhombus
symbol represents the optimal value of each parameter, after the optimization of the χ2(θ).
Notably, for all parameters the black line exceeds the threshold, so they can be considered
as identifiable. However, the black line of Pviscera exceeds the threshold only from the right
side, while χ2(θ) takes a constant (under the threshold) value while Pviscera extends to values
lower than the optimal. Consequently, Pviscera is practical non-identifiable parameter. The
values of the x-axis are in log scale.

imental data point of concentration of PFAS measured in the visceral organs, would turn
this parameter into totally identifiable. It was clear that obtaining additional experimental
data was not feasible. However, Pviscera was retained in the set of free parameters. The
primary reason was the inability to find a value for this parameter in the literature, which
would have allowed fixing the parameter to a constant value. Furthermore, this parameter
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is significant, as the dynamics of the viscera directly influence the dynamics of the other
compartments. Therefore, it was essential to keep this parameter adjustable to ensure a
better fit of the model.

8.2.3 Concentration - Time Profiles

After having completed the identifiability analysis, the next step was to evaluate the
goodness of fit of the model to the training experimental data. In figure 8.2, each plot
presents the predictions of the model versus the experimental measurements for all organs
and tissues. To produce the plots, the optimal values reported in tables 8.1 and 8.2 were
used in the PBK model. Then, the ODEs of the model (provided with the appropriate
initial conditions) were solved using an ODE solver library of R and the results of the
solution were plotted along with the experimental data of each substance.

Observing the concentration profiles across the different organs and across the different
PFAS substances, the model is aligned with the experimental data, with the curves con-
sistently mirroring the data trends. However, a notable disagreement emerges between the
model’s predictions for PFBS and its corresponding dataset. Notably, the model cannot
predict at a satisfying level the data especially for the blood compartment, during the
feeding phase (left of the vertical black line). Additionally, the model struggles to accu-
rately predict the kidney data in the case of PFNA, resulting in an underestimation of the
measurements. Nevertheless, even for those substances, the model captures the underly-
ing data dynamics, with any discrepancy of the model predictions from the data points
remaining at an acceptable level.

It remains uncertain whether the distinctions observed in the PFBS dynamics, rela-
tive to the other PFAS, stem from unaccounted biological mechanisms in the modelling
framework or from potential measurement errors. For instance, the third measurement of
blood for PFBS records an unexpected decline, despite the fact that the fish were being
fed daily up to that point. Therefore, we would expect the third measurement of blood
to be the highest, or at least at the same level with the first two measurements. Instead,
the data show a sharp decrease of the concentration after the second measurement, posing
intriguing questions regarding potential underlying factors.

Concluding, model predictions of the experimental data are satisfying, considering that
there are three important parameters with common values for all PFAS. For instance, the
Ku, that expresses the rate constant of PFAS transportation from the stomach to the blood
circulation, might not be the same for all PFAS, as different substances may bind with
different rates at specific proteins, responsible for the absorption of PFAS. It is sensible
that using a fixed value to model the different absorption kinetics may limit the predictive
ability of the model. For instance, in preliminary tests, where a different Ku was tested
for each substance, the model could predict the kidney data more efficiently. However, in
this modeling approach the identifiability analysis indicated that using different Ku values
for each substance, turned the Ku parameter into non-identifiable, thus the estimation of
these values was characterized with increased uncertainty.

The same could be said for the Clfeces parameter. This parameter was estimated
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Figure 8.2. Predictions of the concentration of PFAS in each compartment over time.
The lines correspond to the predicted concentrations, while the points are used for the
experimental measurements. Each plot features a vertical black line marking the time point
when the fish ceased being fed with PFAS-spiked food. Beyond this line, the fish were not
exposed to any amount of PFAS, indicating the depuration period.

without having available experimental data for the excreted PFAS amounts through the
feces. In case those data were available, the estimation of the Clfeces would have been
more accurate and they would improve the predictions of the model. However, this is an
advantage of the PBK models, as they enable the estimation of many unknown kinetic
parameters using a small number of sparse experimental data, exploiting the information
that stems from the physiology of the organism. Just like Ku, a different value for Clfeces

was estimated for each substance. Although this approach improved the concentration
plots, it created identifiability issues with this parameter. Therefore, using an increased
number of parameters in a PBK model is an easy method to improve its predictive ability,
but is not a good modelling practice, as it creates identifiability issues and the estimated

68 Diploma Thesis



8.3 PINN Workflow: Results

parameters are characterized by high uncertainty. At this point, the importance of a tool
for easily conducting identifiability tests during the model development process is evident,
as it helps avoid over-parameterization of the model.

8.3 PINN Workflow: Results

Utilizing PINNs to estimate the parameters of the differential equations in a dynamic
system offers numerous advantages. Considering this PBK model as a case study, it is
evident that even simple feedforward networks with a reasonably small number of layers
networks are sufficient to perform this task. During the simulation phase, it became
clear that this stage didn’t present significant challenges, and it was possible to achieve
satisfactory results within reasonable simulation durations and test counts. Therefore,
following the tuning two-stages strategy presented in section 7.7, a PINN network was
trained to estimate the parameters of the model.

8.3.1 Hyperparameters Tuning

The first stage involves selecting the number of hidden layers (Nhidden), the number
of neurons per layer (Nneurons) and the number of collocation points (Ncollocation). Af-
ter testing all possible parameter combinations, the complete set of different PINNs was
trained. The training results are documented in table 8.4, expressed in terms of MSE.
All the models reported in table 8.4 were trained for 400,000 iterations, with learning rate
lr = 0.001, using the tanh as activation function and the algorithm "Adam" as optimizer
to update the weights and the biases.

From the results of table 7.4, it turns out that that using five hidden layers is optimal.
The networks with two hidden layers did not manage to achieve a low loss value in most
cases. That leads to the conclusion that two hidden layers are not sufficient to model the
kinetics governed by the differential equations of the PBK model. On the other hand,
neither the PINNs with ten layers achieved low loss values. Considering that all the
networks were trained for 400,000 epochs, it is possible that the networks with ten hidden
layers needed more iterations to be trained. Therefore, using five hidden layers seems to
be the optimal selection for the FFN, as these networks consistently scored low loss values.

Considering the results of table 8.1, it is obvious that trying to train a PINN with
ten or more hidden layers for a larger number of iterations is not necessary, as the results
given from the networks are already satisfactory in terms of goodness of fit with respect to
the experimental data. Going deeper in the structures with five hidden layers, we observe
that the model with 30 neurons per layers and 500 collocation points achieved significantly
lower losses than the rest of the networks with five layers. Therefore, model 18 was selected
to proceed to the next level of tuning the weights of the loss function.

8.3.2 Tuning the Weights of the Loss Function

Model 18 from the previous stage was used in this stage to tune an additional parameter,
the weight value ωu of the loss, which refers to the experimental data in the loss function
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Table 8.4. Loss values for the PINNs structures tested during the first stage of the hyper-
parameters tuning.

Model id Nhidden Nneurons Ncollocation Loss

1

2

10
50 6.91

2 200 4.81
3 500 60.6
4

20
50 4.71

5 200 60.8
6 500 60.3
7

30
50 60.8

8 200 60.4
9 500 4.08
10

5

10
50 4.2

11 200 4.82
12 500 4.78
13

20
50 5

14 200 4.67
15 500 5
16

30
50 4.74

17 200 4.35
18 500 2.96
19

10

10
50 61.4

20 200 6.71
21 500 19
22

20
50 8.66

23 200 51.5
24 500 60.3
25

30
50 7.74

26 200 60.8
27 500 60.1

of the PINN. The effect of the relationship between the weights of the two terms in the
loss function was considered crucial to assess whether different weights are necessary. The
parameter ωu is of utmost importance, as it influences the training of the model, directing
the model’s focus either towards the experimental data or the information derived from
the differential equations. Using a high value for ωu might cause the PINN to overfit,
neglecting the valuable information provided by the equations. Conversely, a very low ωu

value might result in the PINN not being adequately trained to predict the experimental
data. Clearly, this parameter is essential in the hyperparameter calibration process.

As a result, model 18 was used to continue the training from the point it stopped in the
previous stage. So the already updated values of weights and partition coefficients were
loaded on a structure identical to this of model 18. As we want to examine the effect of the
ωu/ωf on the training of the PINN, there was no reason to change both parameters at each
test. Thus, at the following tests, the value of ωf was fixed at 1, in the first stage of tuning.
Consequently, the model was retrained for 200,000 iterations using 7 different values of ωu.
In these tests we included both cases where the ωu > ωf and the opposite. After training
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the models, the estimated values of the partition coefficients from each PINN were provided
to the PBK model to compute the model’s predictions and evaluate the goodness of fit,
using multiple metric functions. Therefore, the metrics used to evaluate the models are the
PBKOF, AAFE, RMSE and R2. Obviously, lower values of PBKOF, AAFE and RMSE
indicate better fit on the experimental data, while the opposite is true for R2. The results
stem from each model are reported in table 8.5.

Table 8.5. Scores of the PINNs trained with different values of ωu. The model was
retrained for 200,000 iterations, using the already updated network weights from the previous
hyperparameters tuning process. In all tests reported here ωf = 1.

ωu PBKOF AAFE RMSE R2

0.01 0.915 1.635 54.184 0.809
0.1 0.965 1.657 55.298 0.805
1.0 0.940 1.638 51.391 0.810
2.0 1.054 1.695 54.229 0.794
5.0 0.977 1.661 55.563 0.806
10.0 0.933 1.690 65.929 0.778
100.0 1.580 1.983 69.073 0.710

Observing the values of the metrics reported in table 8.5 it is obvious that the PINN
trained with ωu = 100.0 achieved the worst scores in all metrics. That means that the ωu

forced the PINN to strongly ignore the information provided by the PBK model and oper-
ated more like a simple feedforward network. Generally, increasing the value of the ωu/ωf

ratio, leads the PINN to increasingly ignore the information provided by the differential
equations of the dynamic system.

However, the rest of the models have similar scores. Going deeper into the results
reported in table 8.5, the predictions of the model whose parameters come from the PINN
with ωu = 0.01 have achieved the best score in terms PBKOF and AAFE, while it is
the second best score in terms of RMSE and R2. Giving more focus on the value of
the PBKOF is a reasonable choice. The PBKOF is a custom metric function, developed
especially for the validation of PBK models. So considering that the model of ωu provided
a parametric set that led to the best PBKOF score, we should consider this model as the
best. Additionally, even in terms of RMSE and R2, this model has achieved the second
best scores and the differences are not that significant, compared with the corresponding
best values (achieved by the model with ωu = 1.0). After considering all these details,
the conclusion is that the optimal value of ωu = 0.01. Finally, a common observation in
the generated plots in figure 8.3 is that all models could estimate the partition coefficients
sufficiently well. However, it’s essential to utilize the metric functions to draw conclusions,
as the plots alone do not highlight the differences between the models.
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Figure 8.3. Predicted concentrations of the PBK model and the experimental data. Each
plot refers to the predictions produced using the partition coefficients estimated by the PINN
that is trained using the corresponding value of ωu. The lines correspond to the predicted
concentrations, while points indicate experimental measurements. Each plot features a
vertical black line marking the time point when the fish ceased being fed with PFAS-spiked
food. Beyond this line, the fish were not exposed to any PFAS, marking the depuration
period.
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Conclusions

The development of PBK models has proven to be a useful tool in risk assessment
workflows. This thesis focused on the development of a PBK model and the estimation of its
unknown parameters using two different workflows. The first one estimated the parameters
by minimizing the value of an objective function. The second workflow implemented a
PINN to estimate the parameters.

Despite the small size of the dataset that was used to estimate the unknown parameters
of the PBK model, it was feasible to achieve satisfying predictions of the experimental data.
However, the quantity and the quality of the available experimental data both influenced
the structural development of the model. For instance, the dataset included experimental
measurements for 7 organs and tissues of the fish, but it did not contain any measurements
of the excreted PFAS. This limitation restricted the number of unknown parameters that
could be estimated through the data. Specifically, the lack of urine measurements resulted
in fixing the Clurine parameters to a constant value, found in literature, instead of esti-
mating the precise value of this parameter for each substance. Therefore, the development
of a PBK model involved maintaining a balance between achieving a good fit and avoiding
overparameterization of the model.

Avoiding model overparameterization was specifically addressed by building a workflow
that performs identifiability analysis on the model’s parameters based on the profile likeli-
hood method. The main benefits of this method, were simplicity of its implementation and
a reasonable computational cost. Identifiability analysis provided useful conclusions, not
only regarding which parameters were non-identifiable but also whether they were struc-
turally or practically non-identifiable. This classification indicated the steps that should
be followed to overcome the identifiability issues. For instance, when a parameter was
structurally non-identifiable, it was obvious that structural modifications to the model
were necessary to either eliminate the need for estimating this parameter or to set it to
a constant value. This approach led to fixing the Clurine to a constant value, as was
previously mentioned. Moreover, it indicated that using a different Ku for each substance
raised identifiability issues, since the experimental data were insufficient for estimating this
parameter. Consequently, we estimated a common value for the Ku parameter which falls
within the reasonable range defined by the data.

Regarding the optimization workflow, the selection of PBKOF as objective function
ensured that the concentration predictions matched the experimental data for all organs
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equally well, even when measurements varied in scale. Other metric functions, like the
root mean squared error did not provide good results, as this function focused more on
compartments with higher measured concentrations, as liver and blood. So this process,
indicated that using the PBKOF can significantly improve the optimization workflow,
yielding better predictions for all observable variables.

However, the optimization workflow exhibited some weaknesses. Firstly, in some op-
timization problems the numerical solution of the differential equations can be a compu-
tationally costly task. Even though the system of the differential equations used in this
model is relatively simple (as they are first order and linear) the computational cost in-
creases significantly with the number of times that PFAS are administered (through the
food). Notably, the current PBK modeled the daily dietary uptake of PFAS. Therefore,
every 24 hours, a specific state variable (Mlumen1 ) increased by a certain value. Imposing
such changes on a state variable repeatedly during the integration time frame impacts the
computational cost, and slows down the solution of the ODEs. Particularly, when the
solution of the ODEs is incorporated into an optimization workflow, like the one developed
in this thesis, and the ODEs are solved in each iteration, it is obvious that this makes the
whole process much slower.

Another limitation of the optimization algorithm is that it performs satisfactorily only
when estimating a reasonably small number of parameters (such five to ten). However,
the workflow for the PBK model that was developed in this thesis, required estimating the
three parameters considered common for all PFAS, and a set of seven partition coefficients
for each of the five examined substances. This amounted to a total of 38 parameters to
estimate. Together the aforementioned limitations resulted in long computational times
for minimizing the PBKOF value, which made difficult the experimentation with different
model structures, and addressing possible identifiability issues.

The limitations of the optimization workflow led us to explore PINNs as an alternative
approach for estimating the model’s unknown parameters. We implemented the PINNs
workflow using the DeepXDE module in Python. This library supports various backends,
including TensorFlow and PyTorch. The primary advantage of this module is its ability to
streamline the coding process for the entire workflow. With comprehensive documentation,
it provides all the essential functions and guidance needed for this specific task.

While training the PINN model, we conducted hyperparameter tuning to identify the
optimal number of hidden layers, neurons, and collocation points. Our grid search pin-
pointed the best parameter combination, with 5 hidden layers emerging as the most suit-
able. Networks with only 2 hidden layers failed to train properly, resulting in high loss
values. On the other hand, networks with 10 hidden layers faced challenges in training
effectively even after numerous iterations. Since networks with five hidden layers demon-
strated promising outcomes, we did not investigate deeper networks further. As for the
number of neurons per layer, we explored three different configurations, but the train-
ing loss did not display a consistent pattern, making it challenging to derive definitive
conclusions.

The final parameter we examined during the grid search was the number of colloca-
tion points. This parameter is intrinsically linked to the insights obtained from the PBK
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model’s governing equations. This parameter is important because it defined the sampled
time points in the time domain where one of the loss function’s terms is assessed. This
specific term aims to minimize the difference between the derivative values estimated via
automatic differentiation and those derived directly from the ODEs. It’s imperative to
choose a value for this parameter that ensures comprehensive representation across the
time domain. Based on established literature, we selected the number of 500 collocation
points as optimal for training the neural network. Notably, this is the sole parameter
during the initial tuning phase directly tied to the information from the PBK model’s dif-
ferential equations. Concluding this hyperparameter tuning stage, the best PINN structure
was found to comprise 5 hidden layers, each with 30 neurons, and utilized 500 collocation
points for training. During this phase, the ratio ωu/ωf was set at 2.0.

The second stage of tuning explored the ωu/ωf ratio, highlighting its significance and
the sensitivity of the PINN’s predictions to this parameter. We trained multiple PINN
models using various values of ωu, while keeping the ωf fixed to a constant value (ωf = 1).
The PBKOF metric was used to validate the models and the one with the lowest PBKOF
value was selected. The optimal value ωu = 0.01, indicated that during the PINN training,
more emphasis is given on the information provided by the dynamics of the model. This
helps the PINN to avoid overfitting to experimental data. In contrast, larger values of the
ωu/ωf values cause the PINN to overlook the differential equations, making it behave more
like a basic feedforward network trained solely on the experimental data.

In general, the PINN implementation for solving inverse problems provides an alter-
native approach with certain benefits over the optimization workflow. The modeling of
daily input of PFAS as an increment to a state variable was straightforward via a simple
function and did not affect the computational burden of the simulations. Thus, PINNs
effectively tackle an important problem that stems from the frequent forced changes on
state variables.

The implementation of the PINN successfully produced a model that closely matched
the experimental data while adhering to the differential equations of the PBK model. As
such, the PINN approach demonstrated its capability to achieve a satisfactory goodness of
fit for PBK models while keeping computational costs reasonable. However, it’s important
to highlight that the optimization workflow produced a superior goodness of fit compared
to the PINN method. A significant factor contributing to this difference was the use of
mean squared error as a loss function in PINNs. In contrast, the optimization workflow
employed the PBKOF, which has been empirically shown to be a more effective objective
function for training PBK models.

The main limitation of the PINN approach is the absence of an identifiability analysis
process. This omission can result in overparameterization of the models, with the esti-
mated parameter values lacking physical significance. Therefore, when choosing the PINN
workflow over the optimization method, it’s essential to supplement it with an identifi-
ability analysis tool. However, the PINN model might be a more efficient and suitable
method for tasks where identifiability analysis isn’t required. For example, when using
data similar to other PFAS not covered in this thesis, the PINN workflow can be used to
re-estimate the values of some kinetics parameters. Another example is interpolating the
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model to different species. In this case, the parameters of the model are updated using
new experimental data, that refer to the species of the interest.

Taking all these into consideration, this diploma thesis could be extended to multiple
directions. First of all, regarding the structure of the PBK model, it is suggested to
examine the inclusion of a gills compartment as an additional elimination pathway. It is
possible that a small amount of the PFAS is eliminated through the exhalation of the fish.
However, due to inadequacy of experimental data related to this process, in this work it
was considered that this amount is negligible. Moreover, the model could be extended
to take into account the simultaneous uptake of PFAS both from consumed food and the
water, through the inhalation process. Specifically, for this task the proposed approach
is to search for experimental studies which expose the fish to PFAS in both ways. One
more suggestion, is to re-estimate the parameters of the model which are related to the
fecal and urinary elimination if more experimental data become available about these two
elimination processes of PFAS. Having detailed concentration-time data of the PFAS into
the excreta of fish, would lead to more accurate estimation of the parameters Clurine and
Clfeces.

In relation to the PINN approach, a logical next step following this diploma thesis would
be to adapt the workflow to estimate the common parameters Ku, CLUcoef and Clfeces, as
well as all the partition coefficients for the five PFAS substances. If PINNs can efficiently
estimate such a comprehensive set of parameters and produce satisfactory results, they may
replace traditional optimization workflow for PBK development. Additionally, it’s highly
recommended to explore alternative loss functions such as PBKOF which can consider
the varying magnitudes of the model’s output variables.
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List of Abbreviations

AAFE Absolute Average Fold Error
ADME Administration, Distribution, Metabolism and Excretion
ANN Artificial Neural Networks
ASBT Apical Sodium-dependent Bile acid Transporter
AUC Area Under the Curve
CNN Convolutional Neural Network
CYP P450 enzyme Cytochrome P450 enzyme
e.g. exampli gratia
etc. et cetera
FCN Fully-Connected Network
FDA Food and Drug Administration
FFN Feedforward Network
GeLU Gaussian Error Linear Unit
MLP Multilayer Perceptron
MRI Magnetic Resonance Image
NC Non-compartmental
NTCP Na+ taurocholate cotransport polypeptide
ODE Ordinary Differential Equations
PBK Physiologically-Based Kinetics
PBKOF PBK Objective Function
PD Pharmacodynamics
PDE Partial Differential Equations
PINN Physics Informed Neural Network
PK Pharmacokinetics
PFAS per- and polyfluoroalkyl substances
PFBS perfluorobutane sulfonic acid
PFHxS perfluorohexane sulfonic acid
PFNA perfluorononanoic acid
PFOA perfluorooctanoic acid
PFOS perfluorooctane sulfonic acid
ReLU Rectified Linear Unit
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
TCA Taurocholic Acid
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List of Abbreviations

WSSR Weighted Sum of Squared Residuals
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