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Abstract

Song identification is one of oldest and perhaps one of the most popular Music Information
Retrieval tasks. It has received a lot of attention in both academic research and the industry. One of
the most well-known commercial applications for song identification is Shazam. Shazam’s algo-
rithm is based on a technique called audio fingerprinting. It extracts a compact representation by
hashing the spectral peaks on the spectrogram of the audio fragments. This way, Shazam achieves
a representation that is robust to noise distortions that may occur in realistic scenarios where music
is captured from portable devices. A non-exhaustive technique based on inverted lists allows for
fast and efficient retrievals. However, recently, Google launched a totally different music recog-
nition by utilizing the pioneering ideas of deep learning. Instead of inventing sophisticated audio
representations, they trained a deep neural network to automatically extract robust and meaningful
audio representations.

In this thesis, we present how these two music recognition systems can be implemented, both
theoretically and practically. We compare these two approaches in terms of their performance,
storage requirements, and scalability. In the case of the deep learning approach, we introduce
a novel data augmentation pipeline that further improves the performance of the overall system
prior to already existing systems employing the same approach. This way, our system is ideal
for real time applications. The thesis focuses on both the theoretical and practical aspects of
audio signal processing. We begin from the fundamental concept of the Fourier Transform and
we develop the theory by introducing the most important techniques and features used in audio
signal processing nowadays. We explain how the algorithm of Shazam works, and we implement
a music recognition using an open source library. In the last chapters, we turn our attention to deep
learning. We introduce the basic concepts of deep learning and we develop a music recognition
system by training a neural network with contrastive loss. Finally, we experimentally test the
performance of these systems. This thesis was meant to be as self-contained as possible. Our code
is publicly available (https://github.com/ChrisNick92/deep-audio-fingerprinting).

Keywords

Song identification, Music Information Retrieval, Audio Signal Processing, Deep Learning,
Contrastive Learning.
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Chapter 1

Synopsis

1.1 Ελληνικά

Σε αυτό το πρώτο κεφαλαίο δίνουμε μια σύντομη περιγραφή της παρούσας διπλωματικής

εργασίας. Σκοπός αυτού του κεφαλαίου είναι να αποτελέσει ένα πρώτο ανάγνωσμα της

εργασίας παρουσιάζοντας συνοπτικά τη δομή, τα περιοχόμενα και τα αποτελέσματα του

κάθε κεφαλαίου.

Στο Κεφάλαιο 2 παρουσιάζουμε τον μετασχηματισμό Fourier, το βασικό εργαλείο για

τη μελέτη και την επεξεργασία σήματος και αναπτύσσουμε τις βασικές του ιδιότητες. Πιο

συγκεκριμένα, η μέλετη ξεκινάμε τηνπερίπτωση τωνπεριοδικώνσυναρτήσεων (ήπεριοδικών

σημάτων) f : R→ R. Δηλαδή, των συναρτήσεων για τις οποίες υπάρχει T ∈ R τέτοιος ώστε

f (x + T ) = f (x),

για κάθε x ∈ R. Σε αυτό το πλαίσιο εντάσσονται και οι συναρτήσεις της μορφής sin(π(nt−φn)),
που αποτελούν τα δομικά στοιχεία της θεωρίας. Ο αριθμός n είναι η συχνότητα του σήματος

και μετράται σε Hertz ενώ ο αριθμός φn αντιστοιχεί στη φάση του σήματος. Η σπουδαιότητα

των συναρτήσεων αυτής της μορφής, έγκειται στο γεγονός ότι υπό ορισμένες προϋποθέσεις,

κάθε περιοδική συνάρτηση f : R → R μπορεί να προσεγγίστεί από ένα, ενδεχομένως και

άπειρο άθροισμα
∞∑

n=1
An sin(2π(nt − φn)), (1.1.1)

τέτοιων συναρτήσεων. Με την αναπαράσταση της (1.1.1) μπορούμε να δούμε τη συνεισφορά

κάθε συχνότητας n στο περιοδικό σήμα. 'Ετσι, στην παράγραφο 2.1 παρουσιάζουμε με

αποδείξεις (όπου αυτό είναι εφικτό), πώς και υπόποιες προύποθέσεις μπορούμε ναπετύχουμε

αυτή την αναπαράσταση. Στην παράγραφο 2.2 επεκτείνουμε τη θεωρία για σήματα f : R→ R
που δεν είναι κατ' ανάγκη περιοδικά. Η ανάγκη αυτής της γενίκευσης οφείλεται στο ότι τα

περισσότερα ηχητικά σήματα που συναντάμε στην πράξη είναι μη περιοδικά. 'Ετσι, κρίνεται

απαραίτητο να εξετάσει κανείς πώς και με ποιό τρόπο μπορεί κανείς από την κυματομορφή

του σήματος να εξάγει την συχνοτική συμπεριφορά του σήματος. Δηλαδή, να διακρίνει ποιες

συχνότητες συνεισφέρουν στο σήμα και ποιες όχι. Σε αυτή την περίπτωση, το βασικό εργαλείο
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είναι ο μετασχηματισμός Fourier

F f (s) =
∫ ∞

−∞

f (t)e−2πist dt. (1.1.2)

'Ετσι, σε αυτή την παράγραφο, παρουσιάζουμε πώς μπορούμε να επεκτείνουμε την έννοια του

μετασχηματισμού Fourier για μη περιοδικές συναρτήσεις. Επίσης, εισάγουμε τον αντίστροφο

μετασχηματισμό Fourier

F −1g(t) =
∫ ∞

−∞

g(s)e2πist ds, (1.1.3)

ο οποίος παίζει τον ρόλο της αντίστροφης απεικόνισης της (1.1.2) που περιγράφεται μέσω

των σχέσεων

F
(
F −1f

)
(t) = f (t), F −1 (F f ) (s) = f (s). (1.1.4)

Η χρησιμότητα των σχέσεων της (1.1.4) γίνεται εμφανής όταν συνδυάζονται με το θέωρημα

της συνέλιξης που μας λέει ότι ο μετασχηματισμός Fourier που προκύπτει από τη συνέλιξη

(f ∗ g)(t) =
∫ ∞

−∞

f (t − x)g(x) dx, (1.1.5)

δύο σημάτων f, g ισούται με το γινόμενο

F (f ∗ g)(s) = F f (s) · F g(s), (1.1.6)

των μετασχηματισμών Fourier F f,F g των f, g. Ο τρόπος με τον οποίο χρησιμοποιούνται οι

δύο παραπάνω σχέσεις είναι όταν θέλουμε να εφαρμόσουμε κάποιον μετασχηματισμό σε ένα

δοσμένο σήμα f : R→ R. Για παράδειγμα, αν θέλουμε να ¨περικόψουμε¨ τις συχνότητες του

σήματος πάνω από ένα κατώφλι νC > 0, αρκεί να πολλαπλασιάσουμε τον μετασχηματισμό

Fourier F f (s) με τη συνάρτηση

H(s) =

1, |s| < νc

0, |s| ≥ νc

.

Γνωρίζοντας ότι h(t) = F −1H(t) = 2νCsinc(2νCt) και χρησιμοποιώντας τον αντίστροφο μετα-
σχηματισμό μπορούμε να προσδιορίσουμε τον τύπο y(t) = (f ∗ h)(t) του ζητούμενου σήματος.
Στην παράγραφο αυτή παρουσιάζουμε και άλλες μορφές μετασχηματισμών που εφαρμόζο-

νται αρκετά στην επεξεργασία σήματος. Η θεωρία αυτή μας βοηθάει να κατανοήσουμε

καλύτερα το πως εφαρμόζονται αυτοί οι μετασχηματισμοί, τους οποίους θα χρησιμοποιήσου-

με εκτενώς για να εκπαιδεύσουμε ένα νευρωνικό δίκτυο για να εξάγουμε πληροφορία από

μικρά ηχητικά αποσπάσματα διαφόρων τραγουδιών. Στις παραγράφους 2.3 & 2.4 επικε-

ντρωνόμαστε στη διακριτή περίπτωση του μετασχηματισμού Fourier που χρησιμοποιείται

στην πράξη από τους υπολογιστές για την επεξεργασία σημάτων. Αυτό συμβαίνει διότι ο

υπολογιστής μπορεί να διαχειριστεί μόνο ένα πεπερασμένο πλήθος τιμών. Ο τρόπος με τον

οποιό περνά κανείς από τη συνεχή περίπτωση του μετασχηματισμού της (1.1.2) στη διακριτή

περίπτωση είναι ο εξής: Αρχικά το αναλογικό σήμα f : R→ R μετατρέπεται σε ένα διακριτό
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1.1 Ελληνικά

σήμα x : Z→ R μέσω της

x(n) = f (n · T ), n ∈ Z,

Ο αριθμός T > 0 αντιστοιχεί στην περίοδο δειγματοληψίας, ενώ αντίστροφος αριθμός Fs =

1/T στον ρυθμό δειγματοληψίας που μετράται σε Hertz. Η διαδικασία αυτή αναπαρίσταται

γραφικά στο Σχήμα 1.1.

0.05

0.00

0.05

0.10

A4 Piano

0 2 4 6 8 10
Time [ms]

0.05

0.00

0.05

0.10

Figure 1.1. Δειγματοληψία του σήματος που αντιστοιχεί στο Α4 του πιάνο με ρυθμούς δειγμα-

τοληψίας 4kHz (πάνω γράφημα) και 8kHz (κάτω γράφημα).

Εν συνεχεία, με τη βοήθεια των αθροισμάτων Riemann, ο μετασχηματισμός της (1.1.2) παίρνει
τη μορφή ∫ ∞

−∞

f (t)e−2πist dt ≈ T ·
∞∑

n=−∞

f (nT )e−2πisnT . (1.1.7)

Εν γένει, για ένα διακριτό σήμα x : Z→ R, ο μετασχησματισμός Fourier δίνεται μέσω της

x̂(s) =
∞∑

n=−∞

x(n)e−2πisn. (1.1.8)

Σε αυτή την περίπτωση, η συχνότητα x̂(s) συνδέεται με την συχνότητα του αναλογικού

σήματος μέσω της

x̂(s) =
1
T

F
( s

T

)
, (1.1.9)

όπου F ο μετασχηματισμός Fourier του αναλογικού σήματος f : R → R, με x(n) = f (nT ).
Τώρα, το πρόβλημα με την (1.1.8) είναι το άθροισμα που εμφανίζεται έχει άπειρους όρους

και ότι η συχνότητα s ∈ R διατρέχει όλους τους πραγματικούς αριθμούς. 'Ετσι, αφού στην

πράξη κάθε σήμα x : Z → R είναι πεπερασμένης διάρκειας, αυτό αναπαρίσταται από N

τιμές x(0), . . . , x(N − 1) στον υπολογιστή. Σε επίπεδο υπολογιστών, η (1.1.8) αντικαθίσταται

από την

X (k) = x̂(k/N) =
N−1∑
n=0

x(n)e−2πikn/N , (1.1.10)

για k = 0, . . . , N − 1. Με βάση την (1.1.9) η σχέση μεταξύ του k-οστού συντελεστή Fourier

Diploma Thesis 11
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X (k) και της συχνότητας του αναλογικού σήματος f : R→ R δίνεται μέσω της

X (k) = x̂(k/N) ≈
1
T

F
( k

NT

)
. (1.1.11)

Τώρα, η σχέση στην (1.1.11) μας δίνει πληροφορία για τη συνεισφορά των συχνοτήτων k/NT

για όλη τη διάρκεια του σήματος. 'Ετσι, με αυτόν τον τρόπο, η χρονική άφιξη αυτών των

συχνοτήτων παραμένει κρυφή. Γι' αυτό τον λόγο, εισάγεται η έννοια του βραχυπρόθεσμου

μετασχηματισμού Fourier, όπου εφαρμόζεται ο μετασχηματισμός της (1.1.11) σε μικρά πα-

ράθυρα του σήματος. Δηλαδή, για δοσμένο μήκος παραθύρου N , που αντιστοιχεί στο πλήθος

των δειγμάτων, και για ένα άλμα (hop length) H , εφαρμόζεται ο μετασχηματισμός

X(m, k) =
N−1∑
n=0

x(n +mH)w(n)e−2πink/N , (1.1.12)

για m ∈ Z και k = 0, . . . , N − 1. Με αυτόν τον τρόπο, καταλήγουμε σε μια δισδιάστατη

αναπαράσταση X(m, k) ενός αναλογικού σήματος f : R → R η οποία μας δίνει πληροφορία

για τις συχνότητες του σήματος, καθώς και σε ποιές χρονικές στιγμές αυτές εμφανίζονται.

Δηλαδή, η ποσότητα X(m, k) περιέχει την πληροφορία για το μέγεθος και τη φάση της συ-

χνότητας k/NT τη χρονική στιγμή mH/Fs, όπου Fs ο ρυθμός δειγματοληψίας του αναλογικού

σήματος f : R → R. Μέσω της (1.1.12) ορίζεται ή έννοια του φασματογράμματος, ενός

από τα πιο διαδεδομένα χαρακτηριστικά που χρησιμοποιούνται στην επεξεργασία ήχου. Το

φασματόγραμμα δίνεται από το μέτρο των μιγαδικών αριθμών |X(m, k)|2, μέσω του οποίου

μπορούμε να διακρίνουμε την ενέργεια των συχνοτήτων k/NT τις χρονικές στιγμές mH/Fs.

Στο Σχήμα 1.2 φαίνεται η κυματομορφή του σήματος που προκύπτει από το πλήκτρο Α4

στο πιάνο (μετά από δειγματοληψία) και το αντίστοιχο φασματόγραμμα. 'Οπως φαίνεται

και στο σχήμα η περισσότερη ενέργεια συσσωρεύεται στη συχνότητα 440 Hz που είναι και η

συχνότητα αυτής της νότας.
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Figure 1.2. Η κυματομορφή της νότας Α4 στο πιάνο και το αντίστοιχο φασματόγραμμα.

'Εχοντας αναπτύξει τα απαραίτητα εργαλεία γύρω από τον μετασχηματισμό Fourier, στο Κε-
φάλαιο 3κάνουμε την εισαγωγήστην επεξεργασίαήχου. Στηνπαράγραφο3.1παρουσιάζουμε

τους διάφορους τρόπους με τους οποίους μπορεί να αναπαρασταθεί η μουσική πληροφορία.

Στη δική μας περίπτωση, η σημαντικότερη αναπαράσταση είναι αυτή που περιγραφεί ένα

ηχητικό σήμα ως μια συνάρτηση f : [0,∞) → R η οποία για μια δεδομένη χρονική στιγμή
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t > 0 μετρά τη πίεση του αέρα σε ένα δεδομένο σημείο. Με αυτόν τον τρόπο, βλέποντας τα

ηχητικά σήματα ως συναρτήσεις f : R→ R μπορούμε να εκμεταλλευτούμε τη θεωρία του 2ου

κεφαλαίου. Στην παράγραφο 3.3 παρουσιάζουμε τα σημαντικότερα χαρακτηριστικά που ε-

ξάγονται με χρήση του διακριτού μετασχηματισμού Fourier στην επεξεργασία ήχου. Μια από

τις σημαντικότερες αναπαραστάσεις πάνω στην οποία βασιζόμαστε για την ανάπτυξη των

μοντέλων βαθιάς μάθησης είναι του mel-φασματογράμματος που παρουσιάζεται στην 3.3.3.

Η διαφορά με το φασματόγραμμα είναι ότι αυτή η αναπαράσταση μετατρέπει τον άξονα των

συχνοτήτων σε λογαριθμική κλίμακα που εκφράζεται μέσω της σχέσης

m = 2595 · log10

(
1 +

f

700

)
. (1.1.13)

Στην υποπαράγραφο αυτή, παρουσιάζουμε αναλυτικά τα βήματα του πώς μπορεί κανείς

να περάσει από το φασματόγραμμα στην αναπαράσταση του mel-φασματογράμματος. Ο

λόγος για τον οποίο γίνεται αυτή η μετατροπή στον άξονα των συχνοτήτων είναι διότι έχει

αποδειχθεί, μέσω ακουστικών πειραμάτων, ότι ο άνθρωπος αντιλαμβάνεται τις συχνότητες

λογαριθμικά και όχι γραμμικά. Αυτό αιτιολογεί και το γεγονός ότι οι νότες του πιάνο που

απέχουν μεταξύ τους ακριβώς μια οκτάβα έχουν το ίδιο «χρώμα» ακούσματος. Στο Σχήμα 1.3

βλέπετε το mel-φασματόγραμμα που αντιστοιχεί στις νότες C2, C4, G6 και A6 στο πιάνο.
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Figure 1.3. Οι νότες C2, C4, G6, και A6 στο πιάνο.

Εν συνεχεία, στην παράγραφο 3.4 παρουσιάζουμε και περιγράφουμε μια σειρά από μετα-

σχηματισμούς που χρησιμοποιούνται στην ανάλυση ήχου, όπως για παράδειγμα η προσθήκη

θορύβου, η αντήχηση αλλά και το «κλιπάρισμα» συγκεκριμένων συχνοτήτων. Ο λόγος που

εστιάζουμε σε αυτούς τους μετασχηματισμούς και προσπαθούμε να τους καταλάβουμε είναι

διότι τέτοιες παραμορφώσεις προκαλούνται αρκετά στα ηχητικά σήματα που καταγράφονται

από φορητές συσκευές. 'Ετσι, εάν θέλουμε να αναπτύξουμε ένα αποδοτικό σύστημα ανα-

γνώρισης μουσικής που να λειτουργεί σε πραγματικές συνθήκες θα πρέπει να αναπτύξουμε

εργαλεία που να εξουδετερώνουν αυτές τις παραμορφώσεις. Με αυτόν τον τρόπο θα εκπαι-

δεύσουμε και το μοντέλο βαθιάς μάθησης στο Κεφάλαιο 5. Στην τελευταία παράγραφο αυτού
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Chapter 1. Synopsis

του κεφαλαίου κάνουμε την εισαγωγή στο πρόβλημα της αναγνώρισης μουσικής (song identi-
fication). Αφού παρουσιάσουμε το βασικό πρόβλημα καθώς και τις προκλήσεις που πρέπει να

αντιμετωπιστούν κατά τη σχεδίαση ενός συστήματος αναγνωρίσης μουσικής, παρουσιάζουμε

αναλυτικά τη μέθοδο που χρησιμοποιεί ο αλγόριθμος του Shazam για την αναγνώριση των

κομματιών. Η ιδέα εισήχθη από τους Wang et al. [1] και βασίζεται στην εξαγωγή μουσικής

πληροφορίας η οποία είναι όσο το δυνατόν πιο ανθεκτική στις παραμορφώσεις που μπορεί

να εμφανιστούν σε ένα πραγματικό σενάριο. Η ιδέα είναι κανείς να εστιάσει στα τοπικά μέγι-

στα του φασματογράμματος ενός μικρού ηχητικού αποσπάσματος με την ελπίδα ότι αυτές οι

τοπικές τιμές θα διατηρηθούν ακόμα και να επέλθουν έντονες παραμορφώσεις. Τα τοπικά

μέγιστα είναι γνωστά ως ηχητικά αποσπάσματα (audio fingerprints) και αποτελούν το κύριο

συστατικό της ηχητικής αναπαράστασης αυτής της μεθόδου. Στο Σχήμα 1.4 βλέπετε το φα-

σματόγραμμα και τα τοπικά μέγιστα σε ένα απόσπασμα των Τεσσάρων Εποχών - 'Ανοιξη του

Vivaldi χωρίς παραμορφώσεις. 'Οπως φαίνεται και από το σχήμα, ενώ τα φασματογράμματα

παρουσιάζουν μεγάλη απόκλιση, από την άλλη, τα περισσότερα τοπικά μέγιστα εμφανίζονται

στις ίδιες θέσεις.
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Figure 1.4. Τα τοπικά μέγιστα απο ένα ηχητικό απόσπασμα των Τεσσάρων Εποχών - 'Ανοιξη

του Vivaldi. Στα αριστερά είναι το φασματόγραμμα και τα τοπικά μέγιστα του καθαρού σή-

ματος, ενώ στα δεξιά βλέπουμε το αντίστοιχο φασματόγραμμα για το ίδιο απόσπασμα με

προσθήκη θορύβου με 0 SNR (dB).

Το πρώτο βήμα για την εξαγωγή αυτής της αναπαράστασης είναι η εξαγωγή των τοπι-

κών μεγίστων. Προς τούτο, επιλέγονται δύο σταθερές k0, τ0 > 0 που ορίζουν την περιοχή

[−k0, k0] × [−τ0, τ0]. 'Ετσι, ένα σημείο (k∗, m∗) του φασματογράμματος είναι τοπικό μέγιστο

αν και μόνο αν ∣∣∣X(k∗, m∗)
∣∣∣ > |X(k, m)| , (1.1.14)

για κάθε (k, m) ∈ [k∗ − k0, k∗ + k0] × [m∗ − τ0, m∗ + τ0]. Τώρα, σε αφαιρετικό επίπεδο,

μπορούμε να σκεφτόμαστε τη βάση σε αυτό το πρώτο στάδιο έχοντας τοποθετήσει όλα τα

φασματογράμματα που αντιστοιχούν στα διαφορετικά κομμάτια το ένα μετά το άλλο σε ένα

μεγάλο ενιαίο φασματόγραμμα. Σε αυτή την αναπαράσταση, σε μια δεύτερη δομή μπορούμε

να κρατάμε τα χρονικά πλαίσια που τελειώνει το κάθε κομμάτι και αρχίζει το επόμενο. 'Ετσι,
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ακολουθώντας τον συμβολισμό του [2], αν συμβολίσουμε μεD το σύνολο των κομματιών και

μεC(D) το σύνολο των σημείων (k, m) που αντιστοιχούν στα τοπικά μέγιστα αυτού του ενιαίου

φασματογράμματος, μπορούμε σε αυτό το σημείο να περιγράψουμε μια αφελής προσέγγιση

για την αναγνώριση ενός ηχητικού αποσπάσματος Q, δοθέντος τωνD, και C(D). Στο πρώτο

βήμα, υπολογίζονται τα τοπικά μέγιστα C(Q) που αντιστοιχούν στο φασματόγραμμα του

παραδείγματος (Query). Μια αφελής προσέγγιση για να βρούμε το κομμάτι της βάσης με τη

μεγαλύτερη ομοιότητα είναι να θεωρήσουμε τις χρονικές μετατοπίσεις

m + C(Q) = {(k, m + n) : (k, n) ∈ C(Q)} . (1.1.15)

Τότε, το χρονικό κομμάτι m∗ της βάσης μπορεί να προσδιοριστεί μέσω της

m∗ = arg max
m∈N

∆Q(m) = arg max
m∈N

|(m + C(Q)) ∩ C(D)|
|C(Q|

, (1.1.16)

όπου με |C(Q)| συμβολίζουμε τον πληθάριθμο του συνόλου C(Q), αντίστοιχα και για το σύνολο

(m + C(Q)) ∩ C(D). Με άλλα λόγια, η (1.1.16) μας λέει ότι το κομμάτι της βάσης που έχει τη

μεγαλύτερη ομοιότητα με το ηχητικό απόσπασμα είναι αυτό που συμφωνεί στα περισσότερα

τοπικά μέγιστα του αντίστοιχου φασματογράμματος. Χρησιμοποιώντας τη δεύτερη δομή,

έχοντας το βέλτιστο χρονικό σημείο m∗, μπορούμε να βρούμε το κομμάτι που αντιστοιχεί σε

αυτό το σημείοm∗, και κατ' επέκταση ναανακτήσουμε και την πληροφορία για τον καλλιτέχνη

του κομματιού. Παρ' όλα αυτά, η προσέγγιση αυτή δεν είναι αποτελεσματική για εφαρμογές

πραγματικού χρόνου γιατί ο χρόνος αναζήτησης αυξάνεται γραμμικά με το μέγεθος της

βάσης, με αποτέλεσμα η ανάκτηση της πληροφορίας να είναι αργή για βάσεις που περιέχουν

χιλιάδες κομμάτια. 'Ετσι, στην πράξη υλοποιούνται μη εξαντλητικές μέθοδοι αναζήτησης

που μειώνουν τον χώρο αναζήτησης επιλέγοντας να ελέγξουν μόνο κάποια συγκεκριμένα

«μέρη» της βάσης και όχι όλη τη βάση. Στη περίπτωση του αλγορίθμου του Shazam, η

αναζήτηση βασίζεται στις ανεστραμμένες λίστες (inverted lists). Στην υποπαράγραφο 3.5.3

παρουσιάζουμε αυτή την τεχνική καθώς και τη μέθοδο των Wang et al. για να βελτιώσουν

περαιτέρω την απόδοση του συστήματος.

Στο κεφάλαιο 4 κάνουμε την εισαγωγή στη βαθιά μάθηση. Σκοπός αυτού του κεφαλαίου

είναι να παρουσιάσουμε τις βασικότερες έννοιες που θα χρησιμοποιηθούν για την ανάπτυξη

ενός συστήματος αναγνώρισης μουσικής που χρησιμοποιεί ένα νευρωνικό δίκτυο για την

εξαγωγή της ηχητικής πληροφορίας. 'Ετσι, στην παράγραφο 4.1.1 παρουσιάζουμε τη βασική

αρχιτεκτονική νευρωνικών δικτύων, τα feed forward neural networks. Σε αφαιρετικό επίπεδο
κάθε τέτοιο δίκτυο είναι μια συνάρτηση f : RK → RN

. Η γενική της μορφή εκφράζεται ως

μια σύνθεση συναρτήσεων της μορφής

f = f (n) ◦ f (n−1) · · · ◦ f (1), (1.1.17)

όπου κάθε f (i) = σi ◦ Ti , με Ti : RKi → RKi+1 είναι μια γραμμική απεικονίση και σi : R → R
είναι μια μη γραμμική συνάρτηση ενεργοποίησης. Εφόσον κάθε συνάρτηση Ti : RKi → RKi+1

είναι γραμμική, τότε θα γράφεται στη μορφή Ti(x) = Wi ·x , για κάποιον πίνακα Wi ∈ R
Ki+1×Ki .

Οι τιμές των πινάκων Wi συμβολίζονται με θθθ και αποτελούν τις παραμέτρους του μοντέλου.
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'Ετσι, για να δηλώσουμε την εξάρτηση του δικτύου γράφουμε συνήθως f (· ; θ)θ)θ) αντί για f (·).
Στην ενότητα 4.2, αφού παρουσιάσουμε τα διάφορα είδη προβλημάτων που εμφανίζονται

στη βαθιά μάθηση, όπως την επιβλεπόμενη, τη μη επιβλεπόμενη και την ήμι-επιβλεπόμενη

μάθηση, εισάγουμε το βασικό θεωρητικό πλαίσιο που βασίζεται η εκπαίδευση των νευρωνι-

κών δικτύων. Στόχος σε κάθε πρόβλημα βαθιάς μάθησης είναι δεδομένου μιας συνάρτησης

κόστους J , να βρεθούν οι κατάλληλοι παράμετροι του μοντέλου θθθ που ελαχιστοποιούν τη

J . Για παράδειγμα, στα προβλήματα επιβλεπόμενης μάθησης μας δίνεται ένα σύνολο δε-

δομένων {(x1, y1), . . . , (xn, yn)}, όπου κάθε δείγμα xi ανήκει σε μια από τις K κατηγορίες.

Στόχος είναι προσδιορίσουμε τις παραμέτρους θθθ∗ ώστε f (xi ;θθθ∗) = yi . Σε αυτή την περίπτωση

η συνάρτηση J που επιλέγεται είναι η cross entropy που δίνεται μέσω της

J(f (x), yx ) = −
K∑

i=1
log

ezi∑K
j=1 ezj

· 1i=yx , (1.1.18)

όπου f (x) = (z1, . . . , zn) και yx ∈ {1, . . . , K}. Τώρα, η εύρεση των κατάλληλων παραμέτρων

γίνεται μέσω των αλγορίθμων που βασίζονται στη κατάβαση κλίσης (gradient based algo-
rithms). Η ιδέα όλων αυτών των αλγορίθμων βασίζεται στην επαναληπτική ανανεώση των

βαρώνπρος τηναντίθετηκατεύθυνση τηςκλίσης∇θθθJ . Οπιο βασικόςαλγόριθμοςπου εμπίπτει

σε αυτή την κατηγορία είναι ο αλγόριθμος στοχαστικής κατάβασης (stochastic gradient de-
scent). Σε αυτόν τον αλγόριθμο τα δείγματα (xi , yi) εξετάζονται ένα-ένα και για κάθε τέτοιο

ζευγάρι έχουμε μια ανανέωση των παραμέτρων. 'Ετσι, σε αυτή την περίπτωση η ανανέωση

των παραμετρών περιγράφεται από την εξίσωση

θθθ(i+1) = θθθ(i) − η · ∇θθθJ
(
f (x (i);θθθ(i)), y(i)

)
. (1.1.19)

Τώρα, στην πράξη χρησιμοποιούνται παραλλαγές της στοχαστικής κατάβασης κλίσης που

επιτυγχάνουν καλύτερα αποτελέσματα. Στην ενότητα 4.3 εξετάζουμε κάποιες από αυτές

τις παραλαγγές παρουσιάζοντας τα πλεονεκτήματα και μειονεκτήματά τους. Στην ενότη-

τα 4.4 παρουσιάζουμε τη βασική δομή των Συνελικτικών Νευρωνικών Δικτύων (Convolu-
tional Neural Networks), τα οποία χρησιμοποιούνται εκτενώς στην επεξεργασία δεδομένων

που προέρχονται από εικόνες και ήχο. Η βασική πράξη που χαρακτηρίζει αυτά τα δίκτυα

είναι αυτή της συνέλιξης που παρουσιάζεται στην παράγραφο 4.4.2. Μέσω της συνέλιξης τα

δίκτυα αυτά έχουν τη δυνατότητα να εξάγουν χρήσιμη τοπική πληροφορία από δισδιάστατα

αντικείμενα, όπως π.χ. εικόνες, φασματογράμματα, κτλ, μειώνοντας συγχρόνως και τις δια-

στάσεις τους. Στη δική μας περίπτωση, βασιζόμαστε σε αυτή την αρχιτεκτονική αυτή για να

εξάγουμε μια συμπαγή αναπαράσταση από τα ηχητικά αποσπάσματα των τραγουδιών που

θα χρησιμοποιήσουμε για το σύστημα αναγνώρισης.

Στο κεφάλαιο 5 παρουσιάζουμε το σύστημα αναγνωρίσης μουσικής που βασίζεται στις

ιδέες της βαθιάς μάθησης. Η βασική διαφορά σε σχέση με το σύστημα που ακολουθεί τη προ-

σέγγιση του Shazam, είναι ότι σε αυτή την περίπτωση εκπαιδεύουμε ένα νευρωνικό δίκτυο το

οποίο αναλαμβάνει στη συνέχεια την εξαγωγή των χαρακτηριστικών από τα τραγούδια. Με

αυτόν τον τρόπο, η προσοχή στρέφεται από την εύρεση εξειδικευμένων αλγορίθμων εξαγωγής

χαρακτηριστικών στην εύρεση αποτελεσματικών αλγορίθμων και τεχνικών εκπαίδευσης. Στη

συγκεκριμένη περίπτωση, η εκπαίδευση του δικτύου γίνεται μέσω της τεχνικής του contrastive
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learning. Η ιδέα αυτής της τεχνικής είναι να αναπαραστήσει τα παραμορφωμένα ηχητικά

αποσπάσματα από το ίδιο κομμάτι όσον το δυνατόν πλησιέστερα στα πραγματικά ηχητι-

κά αποσπάσματα σε έναν Ευκλείδειο χώρο χαμηλότερης διάστασης από τον χώρο εισόδου

των δεδομένων. Για αν επιτευγχθεί αυτό, απαραίτητη προϋπόθεση είναι η επιλογή κατάλ-

ληλων τεχνικών παραμορφώσης που ανταποκρίνονται σε ρεαλιστικά σενάρια. 'Ετσι, αφού

παρουσιάσουμε την αρχιτεκτονική του συνελικτικού δικτύου στην παράγραφο 5.2.1, στην

παράγραφο 5.2.2 κάνουμε την εισαγωγή στη μέθοδο του contrastive learning. Ιδιαίτερη ση-

μασία έχει η επιλογή των μεθόδων εμπλουτισμού (data augmentation) που επιλέγονται για την

εκπαίδευση του δικτύου, όπως η προσθήκη θορύβου με διάφορα SNR, η αντήχηση, η χρονική
μετατόπιση αλλά και το «κλιπάρισμα» των χαμηλών/υψηλών συχνότητων. Ο συνδυασμός

αυτών των παραμορφώσεων οδηγεί στην ανάπτυξη ενός μοντέλου ικανού να πραγματοποιεί

ιδιαίτερα ακριβείς προβλέψεις και σε περιπτώσεις που ο ήχος καταγράφεται από μικρόφω-

να φορητών συσκευών. Σε μαθηματικό επίπεδο, το νευρωνικό δίκτυο αποτελείται από δύο

σκέλη: α) τον κωδικοποιητή (encoder) f : R256×32 → R1024
, οποίος είναι ουσιαστικά ένα

συνελικτικό δίκτυο που δρα σε mel-φασματογράμματα διαστάσεων R256×32
απεικονίζοντάς

τα σε διανύσματα διαστάσεων 1024, και (β) τη συνάρτηση προβολής g : R1024 → Sd−1
, η

οποία είναι ένα feed forward νευρωνικό δίκτυο που απεικονίζει τα διανύσματα εισόδου πάνω

στη μοναδιαία σφαίρα

Sd−1 =
{
z ∈ Rd : ∥z∥2 = 1

}
,

στον Rd. Στην περίπτωσή μας, οι διαστάσεις R256×32
που προκύπτουν από την εφαρμογή του

βραχυπρόθεσμου μετασχηματισμού Fourier αντιστοιχούν σε 1 δευτερόλεπτο ηχητικού απο-

σπάσματος. Επίσης, η διάσταση προβολής είναι ίση με d = 128. 'Ετσι, σε αδρές γραμμές, το

νευρωνικό δίκτυο g ◦ f απεικονίζει ηχητικά αποσπάσματα του ενός δευτερολέπτου σε δια-

νύσματα 128 διαστάσεων. Κατ' αναλογία με την περίπτωση του κλασικού fingerprinting, κάθε
διάνυσμα g ◦ f (x) καλείται αποτύπωμα (fingerprint) του x ∈ R256×32. Τώρα, συμβολίζοντας με

M(x) το δείγμα που αντιστοιχεί στο φασματόγραμμα x αφού έχει υποστεί τις προαναφερθε-

ίσες παραμορφώσεις, τότε η ιδέα κατά τη διάρκεια εκπαίδευσης είναι φέρουμε όσο το δυνατό

πιο κοντά το παραμορφωμένο δείγμαM(x) με το x , μεγιστοποιώντας τη μεταξύ τους γωνία

⟨g ◦ f (M(x)), g ◦ f (x)⟩,

στον Ευκλείδειο χώρο R128. Πιο τυπικά, αυτό επιτυγχάνεται μέσω του contrastive loss που ο-

ρίζεται ως εξής: 'Εστω το δείγμα {x1, . . . , xN } που αποτελείται από τα καθαρά φασματογράμ-

ματα από N διαφορετικά τραγούδια. Θεωρούμε το σύνολο {xN+1, . . . , x2N } που αντιστοιχεί

στα παραμορφωμένα δείγματά τους. Δηλαδή, xi+N = M(xi), i = 1, . . . , N. Η ποσότητα που

μετρά πόσο κοντά είναι το xi στο xj στον χώρο εμφύτευσης S
d−1

δίνεται από την

ℓ(i, j) = − log
e⟨g◦f (xi ),g◦f (xj)⟩/T∑2N

k=1 1k,i · e⟨g◦f (xi ),g◦f (xk )⟩/T
, (1.1.20)

όπου T > 0 η υπερπαράμετρος θερμοκρασίας. Με βάση την (1.1.20) το contrastive loss δίνεται
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μέσω της

L =
1

2N

N∑
k=1

[ℓ(k, N + k) + ℓ(N + k, k)]. (1.1.21)

'Εχοντας εκπαιδεύσει το δίκτυο με αυτόν τον τρόπο, στην παράγραφο 5.3 χρησιμοποιούμε

το δίκτυο για να εξάγουμε τα fingerprints από τα 26016 κομμάτια που χρησιμοποιήσαμε και

στην περίπτωση της dejavu και εξηγούμε πώς μπορούμε να φτιάξουμε τη βάση με τέτοιο

τρόπο ώστε να είναι η εφικτή η γρήγορη ανάκτηση των αποτελεσμάτων. Η εξαγωγή των

fingerprints γίνεται για κάθε ένα δευτερόλεπτο των τραγουδιών και με άλμα εξαγωγής που

αντιστοιχεί σε 0.5 ms. 'Ετσι, για παράδεγμα, ένα κομμάτι διάρκειας 180 δευτερολέπτων

μας δίνει 359 αποτυπώματα. Εν συνεχεία, για να μειώσουμε τη χωρητικότητα της βάσης,

χρησιμοποιούμε τη μέθοδο του product quantization οδηγώντας μας σε μια αναπαράσταση που

καταλαμβάνει μόλις 400 ΜΒ, σε αντίθεση με την dejavu των 6 GB. 'Οπως και στην περίπτωση
της dejavu, χρησιμοποιούμε μια μη εξαντλητική μέθοδο αναζήτησης για τη γρήγορη ανάκτηση

των αποτελεσμάτων. Οι τεχνικές αυτές παρουσιάζονται αναλυτικά στην πάραγραφο 5.3.

Στο Κεφάλαιο 6 παρουσιάζουμε τις λεπτομέρειες που αφορόυν το πειραματικό μέρος της

εργασίας. Πιο συγκεκριμένα, στην ενότητα 6.1 παρουσιάζουμε το σύνολο δεδομένων που

αναπτύχθηκε για τις ανάγκες των πειραμάτων. Στην ενότητα 6.2 παρουσιάζουμε δύο διαφο-

ρετικά πειράματα που σχεδιάστηκαν για την αξιολόγηση και σύγκριση των δύο συστημάτων.

Στην πρώτη περίπτωση εξετάζουμε την απόδοση των συστημάτων προσθέτοντας θόρυβο σε

17 τραγούδια με συγκεκριμένο SNR από το σύνολο {0, 5, 10, 15} (σε dB). Επίσης, εξετάζουμε
και πως η χρονική διάρκεια του ηχητικού αποσπάσματος προς αναγνώριση επηρεάζει την

απόδοση των συστημάτων. Η μετρική που χρησιμοποιούμε για την αξιολόγηση σε αυτή την

περίπτωση είναι τοTop-1-hit-rate, μετρική με την οποία μας ενδιαφέρει η σωστή πρόβλεψη του

τραγουδιού αλλά συγχρόνως και η χρονική πρόβλεψη σε σχέση με το πραγματικό κομμάτι με

ένα όριο ανοχής αντίστοιχο των ±500 ms. Ο λόγος για τον οποίο διεξάγεται αυτό το πείραμα

είναι για να μπορούμε να αξιολογήσουμε την ανοχή της κάθε προσέγγισης ως προς το SNR.
Παρ' όλα αυτά, σε ένα πραγματικό σενάριο, το ηχητικό σήμα υποκείται και σε μια σειρά από

άλλες παραμορφώσεις. Γι' αυτόν τον λόγο, στην παράγραφο 6.2.2 παρουσιάζουμε ένα πείρα-

μα που προσομοιάζει καλύτερα αυτές τις συνθήκες. Πιο συγκεκριμένα, σε αυτό το πείραμα

15 τραγούδια παίζονται το ένα μετά το άλλο από τα ηχεία ενός φορητού υπολογιστή. Από

ένα άλλο ηχείο παίζεται ένα ηχητικό απόσπασμα που περιέχει θόρυβο (ομιλίες σε εξωτερικό

χώρο). Η διαφορά με το πρώτο πείραμα είναι ότι η καταγραφή γίνεται από το μικρόφωνο του

φορητού υπολογιστή αντικατοπτρίζοντας με αυτόν τον τρόπο ένα πραγματικό σενάριο όπου

οι χρήστες χρησιμοποιούν τις φορητές τους συσκευές για την ηχογράφηση των ηχητικών απο-

σπασμάτων προς αναγνώριση. 'Ετσι, με αυτόν τον τρόπο παράγουμε 3 διαφορετικά αρχεία

(low.wav, mid.wav, high.wav) ηχογραφήσεων ανάλογα με την απόσταση του ηχείου θορύβου

από το μικρόφωνο του φορητή υπολογιστή. Το αρχείο low.wav αντιστοιχεί στην μεγαλύτερη

απόσταση (άρα και στον λιγότερο θόρυβο) ενώ το αρχείο high.wav στη μικρότερη απόσταση

(περισσότερος θόρυβος).

Εν συνεχεία, στην ενότητα 6.3, χρησιμοποιώντας τη βιβλιοθήκη ανοικτού κώδικα dejavu1

υλοποιούμε το σύστημα αναγνώρισης μουσικής που αξιοποιεί τις ιδέες του αλγορίθμου του

1https://github.com/worldveil/dejavu
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Shazam. Αφού παρουσιάσουμε μερικές τεχνικές λεπτομέρειες που αφορούν τη βιβλιοθήκη

στην ενότητα 6.3.1, στην ενότητα 6.3.2 παρουσιάζουμε τα αποτελέσματα αυτής της προσέγγι-

σης στο πείραμα που ο θόρυβος προστίθεται με συγκεκριμένο SNR. Στον πίνακα 1.1 βλέπουμε

τα αποτελέσματα αυτής της προσέγγισης για όλους τους συνδυασμούς SNR και διάρκειας

του ηχητικού αποσπάσματος.

Table 1.1. Απόδοση της dejavu.

Metrics Query length (s) 0 dB 5 dB 10 dB 15 dB

Accuracy 3.91% 5.91% 7.84 % 8.87 %
F1 score 1 6.86% 11.01% 14.12% 15.92%

Top-1 hit rate 3.39% 4.72% 6.89% 7.30%
Accuracy 28.06% 36.66% 42.45% 48.23&
F1 score 2 41.05% 52.94% 59.06% 64.61%

Top-1 hit rate 24.27% 33.32% 38.48% 44.02%
Accuracy 41.38% 60.70% 68.10% 73.78&
F1 score 3 57.36% 74.53% 80.50% 84.54%

Top-1 hit rate 38.65% 56.82% 63.79% 69.32%
Accuracy 52.06% 71.91% 81.30% 86.77&
F1 score 4 66.22% 82.83% 89.19% 92.79%

Top-1 hit rate 48.32% 67.11% 75.84% 81.59%
Accuracy 60.02% 79.83% 87.52% 91.60&
F1 score 5 73.31% 88.38% 93.23% 95.39%

Top-1 hit rate 55.22% 75.15% 82.11% 86.55%
Accuracy 82.85% 94.69% 98.07% 98.79&
F1 score 10 90.08% 97.25% 99.05% 99.40%

Top-1 hit rate 77.78% 90.34% 93.48% 94.44%

Στην ενότητα 6.4 συγκρίνουμε τις δύο μεθόδους. Πιο αναλυτικά, στην παράγραφο 6.4.1

επικεντρωνόμαστε στην πρόσεγγιση που αξιοποιεί τις ιδέες της βαθιάς μάθησης. Αφού

παρουσιάσουμε μερικές τεχνικές λεπτομέρειες σχετικά με την υλοποίηση της μεθόδου, στη

συνέχεια εξετάζουμε την απόδοση του συστήματος στο πείραμα με το σταθερό SNR θορύβου.

Στον πίνακα 1.2 φαίνονται τα αποτελέσματα αυτού του πειράματος. Συγκρίνοντας τους

πίνακες 1.1, 1.2 βλέπουμε ότι η πρόσεγγιση της βαθιάς μάθησης υπερτερεί της κλασικής

μεθόδου για μικρά ηχητικά αποσπάσματα (< 10 sec), κάνοντάς την έτσι κατάλληλη για ε-

φαρμογές με απαιτήσεις πραγματικού χρόνου. Στην παράγραφο 6.4.2 παρουσιάζουμε και

τα αποτελέσματα του πειράματος όπου η ηχογράφηση γίνεται από το μικρόφωνο φορητού

υπολογιστή. Επίσης, εξετάζουμε και πόσο οι παραμορφώσεις που αφορούν το «κλιπάρισμα»

των χαμηλών/υψηλών συχνοτήτων βοηθούν στην ανοχή του μοντέλουως προς τον θόρυβο. Τα

αποτελέσματα γι' αυτό το πείραμαφαίνονται στον πίνακα 1.3. Τέλος, στο κεφάλαιο 7 κλείνου-

με αναφέροντας κάποια συμπεράσματα αλλά και πιθανές μελλοντικές κατευθύνσεις έρευνας

για το πρόβλημα αναπάπτυξης αποτελεσματικών συστημάτων αναγνώρισης μουσικής.
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Table 1.2. Απόδοση του deep fingerprinting.

Metrics Query length (s) 0 dB 5 dB 10 dB 15 dB

Accuracy 56.80% 81.19% 91.73 % 94.78 %
F1 score 1 70.79% 88.73% 95.10% 96.84%

Top-1 hit rate 45.30% 66.52% 78.33% 84.48%
Accuracy 78.11% 92.54 % 97.56 % 98.61 &
F1 score 2 86.80 % 95.54 % 98.43 % 99.06 %

Top-1 hit rate 63.77 % 78.35 % 87.09 % 89.63 %
Accuracy 83.41 % 96.12 % 98.49 % 99.07 &
F1 score 3 90.25 % 97.55 % 99.04 % 99.33 %

Top-1 hit rate 69.25 % 83.41 % 89.44 % 92.82 %
Accuracy 87.73 % 97.32 % 98.75 % 98.95 &
F1 score 4 92.92 % 98.39 % 99.20 % 99.29 %

Top-1 hit rate 73.44 % 85.52 % 91.75 % 92.62 %
Accuracy 89.32 % 97.48 % 98.56 % 99.16 &
F1 score 5 93.58 % 98.35 % 99.07 % 99.39 %

Top-1 hit rate 75.99 % 85.52 % 89.68 % 93.88 %
Accuracy 95.65 % 98.07 % 98.55 % 98.31 &
F1 score 10 97.27 % 98.86 % 99.06 % 98.97 %

Top-1 hit rate 78.50 % 84.30 4% 88.89 % 92.51 %

Table 1.3. Επίδοση των συστημάτων αναγνώρισης σε καταγραφή από μικρόφωνο.

Metrics Query length (s) low mid high

Deep Audio 85.03% 62.65% 41.92%
Deep Audio (No Filters) 2 67.22% 49.02% 19.47%

Dejavu 12.63% 6.50% 10.73%

Deep Audio 92.66% 80.06% 62.52%
Deep Audio (No Filters) 5 80.38% 65.39% 31.10%

Dejavu 59.21% 40.94% 47.24%

Deep Audio 94.52% 90.32% 74.19%
Deep Audio (No Filters) 10 84.19% 78.39% 41.29%

Dejavu 83.60% 70.98% 71.29%

Deep Audio 97.56% 90.24% 80.98%
Deep Audio (No Filters) 15 86.34% 80.98% 48.29%

Dejavu 93.33% 77.14% 83.33%
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1.2 English

In this opening chapter, we offer a brief overview of the present dissertation. The aim of this
chapter is to provide a first look into the contents of the thesis, by presenting the basic structure,
the goals and the outcomes of each chapter.

In Chapter 2, we introduce the Fourier Transform, which is the fundamental tool for studying
and processing signals. We delve into its basic properties. Specifically, our exploration begins
with the case of periodic functions (or periodic signals) f : R→ R. These are functions for which
there exists T ∈ R such that

f (x + T ) = f (x),

for every x ∈ R. This framework includes also the functions of the form sin(π(nt − φn)), called
sinusoids, which are the building blocks of the theory. The number n represents the frequency of
the signal, measured in Hertz, while the number φn corresponds to the phase of the signal. The
significance of functions of this form lies in the fact that under certain conditions, every periodic
function f : R→ R can be approximated by a, possibly infinite, sum

∞∑
n=1

An sin(2π(nt − φn)), (1.2.1)

of such functions. Using the representation in Eq. (1.2.1), we can discern the contribution of
each frequency n to the periodic signal. Thus, in Section 2.1, we present with proofs (where
feasible) how and under which conditions we can achieve this representation. In Section 2.2, we
extend the theory to signals f : R → R that are not necessarily periodic. This generalization
is necessary because most audio signals encountered in practice are non-periodic. Therefore, it
becomes essential to examine how we can deduce the frequency behavior of a signal from its
waveform. In this case, the key tool is the Fourier Transform

F f (s) =
∫ ∞

−∞

f (t)e−2πist dt. (1.2.2)

Hence, in this section, we demonstrate how we can extend the concept of the Fourier Transform
to non-periodic functions. Additionally, we introduce the inverse Fourier Transform

F −1g(t) =
∫ ∞

−∞

g(s)e2πist ds, (1.2.3)

which acts as the inverse mapping of Eq. (1.2.2) and is related through the relationships

F
(
F −1f

)
(t) = f (t), F −1 (F f ) (s) = f (s). (1.2.4)

The utility of the relationships in Eq. (1.1.4) becomes evident when combined with the convolution
theorem, which states that the Fourier Transform resulting from the convolution

(f ∗ g)(t) =
∫ ∞

−∞

f (t − x)g(x) dx, (1.2.5)
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of two signals f, g is equal to the product

F (f ∗ g)(s) = F f (s) · F g(s), (1.2.6)

of the Fourier Transforms F f,F g of f, g. These relationships come into play when we wish to
apply a transformation to a given signal f : R → R. For instance, if we want to "filter out"
frequencies in the signal above a certain threshold νC > 0, we can achieve this by multiplying the
Fourier Transform F f (s) with the function

H(s) =

1, |s| < νc

0, |s| ≥ νc

.

Knowing that h(t) = F −1H(t) = 2νCsinc(2νCt), and utilizing the inverse transform, we can
determine the formula y(t) = (f ∗ h)(t) for the desired signal. In this section, we also present
various other forms of transformations widely applied in signal processing. This theory helps us
better understand how these transformations are applied, which will be extensively employed in
training a neural network to extract information from short audio excerpts of different songs. In
Sections 2.3% 2.4, we focus on the discrete case of the Fourier Transform which is utilized by
computer machines processing audio signals. This occurs because a computer can only handle a
finite number of values. The process of transitioning from the continuous case of the transform in
Eq. (1.1.2) to the discrete case is as follows: Initially, the analog signal f : R → R is transformed
into a discrete signal x : Z→ R through

x(n) = f (n · T ), n ∈ Z,

via sampling. The value T > 0 corresponds to the sampling period, while its inverse Fs = 1/T

represents the sampling rate measured in Hertz. This process is graphically represented in Fig-
ure 1.5.
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Figure 1.5. Equidistant sampling of Piano A4 with sampling rates 4KHz (top) and 8KHz (bottom).
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Next, with the aid of Riemann sums, the transformation in Eq. (1.2.2) takes the form∫ ∞

−∞

f (t)e−2πist dt ≈ T ·
∞∑

n=−∞

f (nT )e−2πisnT . (1.2.7)

In general, for a discrete signal x : Z→ R, the Fourier Transform is given by

x̂(s) =
∞∑

n=−∞

x(n)e−2πisn. (1.2.8)

In this case, the frequency x̂(s) is related to the frequency of the analog signal through

x̂(s) =
1
T

F
( s

T

)
, (1.2.9)

where F is the Fourier Transform of the analog signal f : R → R, with x(n) = f (nT ). However,
the issue with Eq.(1.2.8) is that the sum involved has an infinite number of terms, and the frequency
s ∈ R spans all real numbers. Therefore, in practice, each signal x : Z → R is of finite duration,
and it is represented by N values x(0), . . . , x(N − 1) on the computer. Thus, on a computational
level, Eq.(1.2.8) is replaced by

X (k) = x̂(k/N) =
N−1∑
n=0

x(n)e−2πikn/N , (1.2.10)

for k = 0, . . . , N − 1. Based on Eq. (1.1.9), the relationship between the kth Fourier coefficient
X (k) and the frequency of the analog signal f : R→ R is given by

X (k) = x̂(k/N) ≈
1
T

F
( k

NT

)
. (1.2.11)

The relation in Eq.(1.2.11) provides us with information about the contribution of frequencies
k/NT over the entire duration of the signal. Thus, in this manner, the temporal occurrence of
these frequencies remains hidden. For this reason, the concept of the short-time Fourier Transform
is introduced, where the transformation of Eq.(1.2.11) is applied to small windows of the signal.
Specifically, for a given window length N , corresponding to the number of samples, and a hop
length H , the transformation is applied as

X(m, k) =
N−1∑
n=0

x(n +mH)w(n)e−2πink/N , (1.2.12)

for m ∈ Z and k = 0, . . . , N − 1. In this way, we arrive at a two-dimensional representation
X(m, k) of an analog signal f : R→ R, which provides us with information about the frequencies
in the signal as well as the time instants at which they appear. In other words, the quantity X(m, k)
encompasses information about the magnitude and phase of the frequency k/NT at the time instant
mH/Fs, where Fs is the sampling rate of the analog signal f : R → R. The concept of the spec-
trogram is defined through Eq.(1.2.12), which is one of the most commonly used features in audio
signal processing. The spectrogram is given by the magnitude of the complex numbers |X(m, k)|2,
allowing us to discern the energy of frequencies k/NT at time instants mH/Fs. Figure1.6 displays
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the waveform of the signal resulting from pressing the A4 key on a piano (after sampling) and
its corresponding spectrogram. As shown in the figure, most of the energy is concentrated at the
frequency of 440 Hz, which is the frequency of this note.
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Figure 1.6. The waveform of A4 key along with its spectrogram representation. The A4 played on
piano contains a high degree of the frequency component corresponding to 440 Hz. The other con-
tributions visible in the spectrogram correspond to the harmonics of this fundamental frequency,
which are integer multiples of 440 Hz (i.e., 880 Hz, 1320 Hz, etc.).

Having developed the necessary tools around the Fourier Transform, in Chapter 3, we dwelve into
the theory of audio signal processing. In Section 3.1, we present various ways in which musical
information can be represented. In our case, the most important representation is the one that
describes an audio signal as a function f : [0,∞) → R, which, for a given time instant t > 0,
measures the air pressure at a given point. In this way, by viewing audio signals as functions
f : R → R, we can leverage the theory from Chapter 2. In Section 3.3, we present the most
important audio features extracted using the discrete Fourier Transform in audio signal processing.
One of the most critical representations on which we rely for the development of deep learning
models is the mel-spectrogram, presented in 3.3.3. The difference from the spectrogram is that this
representation converts the frequency axis into a logarithmic scale expressed through the equation

m = 2595 · log10

(
1 +

f

700

)
. (1.2.13)

In this paragraph, we cover in detail all the processing steps required to transition from the spec-
trogram to the representation of the mel-spectrogram. The reason behind this frequency axis con-
version is because it has been shown, through psychoacoustic experiments, that humans perceive
frequencies logarithmically rather than linearly. This also explains why piano notes that are exactly
an octave apart have the same tonal "color." In Figure 1.7, you can observe the mel-spectrogram
corresponding to the piano notes C2, C4, G6, and A6.
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Figure 1.7. Mel spectrogram of the notes C2, C4, G6, and A6 with 20 frequency bins.

In Section 3.4, we present and describe a series of transformations used in audio signal processing,
such as adding background noise, simulating reverbaration effects, and clipping specific frequen-
cies. The reason we focus on these transformations and strive to understand them is that such
distortions are often encountered in audio signals recorded by portable devices. Therefore, if we
aim to develop an efficient music recognition system that operates under real-world conditions,
we need to develop tools that counteract these distortions. This approach will also be applied to
training the deep learning model in Chapter 5. In the last paragraph of this chapter, we introduce
the problem of music recognition (song identification). After presenting the core problem and
the challenges that must be addressed when designing a music recognition system, we provide a
detailed overview of the method used by the Shazam algorithm for song identification. The idea
was introduced by Wang et al. [1] and is based on extracting music information that is as robust
as possible against the distortions that can occur in a real scenario. The concept is to focus on the
local maxima of the spectrogram of a small audio fragment, with the hope that these local values
will be preserved even in the presence of significant distortions. These local maxima are known as
audio fingerprints and constitute the main ingredient of this method. In Figure 1.8, you can see the
spectrogram and the local maxima in a segment of Vivaldi’s "Four Seasons - Spring" without dis-
tortions. As it is evident from the figure, while the spectrograms exhibit significant variation, most
of the local maxima appear in the same positions. The first step in extracting this representation
is to find the local maxima. To do this, we select two constants k0 and τ0, both greater than zero,
which define the region [−k0, k0]× [−τ0, τ0]. Consequently, a point (k∗, m∗) in the spectrogram is
a local maximum if and only if ∣∣∣X(k∗, m∗)

∣∣∣ > |X(k, m)| , (1.2.14)

for all (k, m) ∈ [k∗ − k0, k∗ + k0] × [m∗ − τ0, m∗ + τ0]. At an abstract level, we can think of the
basis at this stage as having placed all the spectrograms corresponding to different segments one
after the other in a large unified spectrogram.
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Figure 1.8. Spectrograms corresponding to 30-sec audio fragment from The Four Seasons - Spring
of Vivaldi. On the left is the clean audio, and on the left is the distorted signal with background
noise added (SNR = 0 in dB).

In this representation, we can maintain the temporal frames that mark the end of each segment and
the beginning of the next one. Thus, following the notation of [2], if we denote by D the set of
segments and by C(D) the set of points (k, m) corresponding to the local maxima of this unified
spectrogram, we can describe a naive approach for recognizing an audio fragment Q , given D
and C(D). In the first step, we calculate the local maxima C(Q) corresponding to the spectrogram
of the query example. A straightforward approach to find the database segment with the highest
similarity is to consider the temporal shifts

m + C(Q) = {(k, m + n) : (k, n) ∈ C(Q)} . (1.2.15)

Then, the temporal segment m∗ of the database can be determined using

m∗ = arg max
m∈N

∆Q(m) = arg max
m∈N

|(m + C(Q)) ∩ C(D)|
|C(Q|

, (1.2.16)

where |C(Q)| denotes the cardinality of the set C(Q), and likewise for the set (m+C(Q))∩C(D). In
other words, Eq. (1.2.16) tells us that the database segment with the highest similarity to the audio
snippet is the one that matches the most local maxima of the corresponding spectrogram. Utilizing
the second structure, with the optimal temporal point m∗, we can find the segment corresponding
to this point m∗ and consequently retrieve information about the artist of the segment. However,
this approach is not efficient for real-time applications, as the search time increases linearly with
the size of the database, making information retrieval slow for databases containing thousands of
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segments. Thus, in practice, alternative approaches are adopted that use non-exhaustive search
techniques, which reduce the search space by examining only specific "parts" of the database
rather than the entire database. In the case of the Shazam algorithm, the non-exhaustive technique
is based on inverted lists. In paragraph 3.5.3, we present this technique as well as the method
introduced by Wang et al. to further enhance the system’s performance.

In Chapter 4, we introduce deep learning. The purpose of this chapter is to present the fundamental
concepts that will be used in the subsequent chapters. In paragraph 4.1.1, we introduce the basic
architecture of neural networks, the feed-forward neural networks. In an abstract sense, each such
network is a function f : RK → RN . Its general form can be expressed as a composition of
functions:

f = f (n) ◦ f (n−1) · · · ◦ f (1), (1.2.17)

where each f (i) = σi ◦ Ti , with Ti : RKi → RKi+1 being a linear transformation and σi : R → R a
nonlinear activation function. Since each function Ti : RKi → RKi+1 is linear, it can be written as
Ti(x) = Wi ·x , where Wi ∈ R

Ki+1×Ki is a matrix. The values of matrices Wi are represented by θθθ and
constitute the model’s parameters. Thus, to denote the dependency on the network’s parameters,
we typically write f (·;θθθ) instead of f (·). In Section 4.2, after presenting the various problem types
in deep learning, such as supervised, unsupervised, and semi-supervised learning, we introduce
the basic theoretical framework underlying the training of neural networks. The goal in each deep
learning problem is to find the suitable model parameters θθθ that minimize a cost function J . For
instance, in supervised learning problems, we are given a dataset (x1, y1), . . . , (xn, yn), where
each sample xi belongs to one of K categories. The objective is to find the parameters θθθ∗ such that
f (xi ;θθθ) = yi . In this case, the chosen function J is the cross-entropy, defined as follows:

J(f (x), yx ) = −
K∑

i=1
log

ezi∑K
j=1 ezj

· 1i=yx , (1.2.18)

where f (x) = (z1, . . . , zn) and yx ∈ 1, . . . , K . The search for appropriate parameters is carried
out by gradient-based algorithms. The central idea of these algorithms is to iteratively update the
weights in the opposite direction of the gradient ∇θθθJ . The fundamental algorithm in this category
is the stochastic gradient descent (SGD). In this algorithm, the samples (xi , yi) are examined one
by one, and for each such pair, the parameters are updated according to the equation:

θθθ(i+1) = θθθ(i) − η · ∇θθθJ
(
f (x (i);θθθ(i)), y(i)

)
. (1.2.19)

In practice, variations of stochastic gradient descent are often used, achieving better results. In
Section 4.3, we examine some of these variations, presenting their advantages and disadvantages.
In section 4.4, we introduce the basic structure of Convolutional Neural Networks (CNNs), exten-
sively used in processing data originate from images and audio signals. The fundamental operation
characterizing CNNs is convolution, which is presented in paragraph 4.4.2. Through convolution,
these networks are capable of extracting useful local information from two-dimensional objects,
such as images, spectrograms, etc., while simultaneously reducing their dimensions. In our case,
we rely on this architecture to extract a compact representation from the audio fragments of songs,
which will be used for the recognition system.
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In Chapter 5, we present the music recognition system based on the deep learning concepts. The
main difference compared to the approach followed by Shazam is that in this case, we train a
neural network that takes over the feature extraction from the songs. This way, the focus shifts
from finding sophisticated feature extraction algorithms to finding effective training algorithms
and techniques. In this case, the network training is done by utilizing the contrastive learning
framework. The idea behind this technique is to map the distorted audio fragments as close as
possible to the actual audio fragments in a lower-dimensional Euclidean space compared to the
input data space. To achieve this, a prerequisite is to select suitable distortion techniques that
correspond to realistic scenarios. After presenting the architecture of the convolutional network
in paragraph 5.2.1, we introduce the contrastive learning method in paragraph 5.2.2. The choice
of data augmentation methods is crucial for the training of the network, including adding noise
with different SNR, reverberation, time shifting, and low/high-frequency clipping. The combina-
tion of these distortions leads to the development of a model capable of making highly accurate
predictions even in cases where the audio is captured by microphones of portable devices. Math-
ematically, the neural network consists of two parts: (a) the encoder f : R256×32 → R1024, which
is essentially a convolutional network that operates on mel-spectrograms of dimensions R256×32,
mapping them to vectors of dimensions 1024, and (b) the projection function g : R1024 → Sd−1,
which is a feedforward neural network that maps input vectors onto the unit sphere

Sd−1 =
{
z ∈ Rd : ∥z∥2 = 1

}
,

in Rd . In our case, the dimensions R256×32 resulting from applying the short-time Fourier Trans-
form correspond to 1 second of audio segment. Also, the projection dimension is d = 128. Thus,
in broad terms, the neural network g ◦ f maps audio fragments of one second into vectors of 128
dimensions. Analogous to the classical fingerprinting approach, each vector g ◦ f (x) is called a
fingerprint of x ∈ R256×32. During training, the goal is to bring the distorted sampleM(x) as close
as possible to x , maximizing their cosine similarity

ℓ(i, j) = − log
e⟨g◦f (xi ),g◦f (xj)⟩/T∑2N

k=1 1k,i · e⟨g◦f (xi ),g◦f (xk )⟩/T
, (1.2.20)

in the Euclidean space R128. This is achieved through the contrastive loss, which is defined by
comparing each clean sample to its corresponding distorted version. After training the network
this way, in Section 5.3, we use the network to extract fingerprints from the 26016 songs we used
and explain how to build the database allowing for fast and efficient retrievals. The extraction is
done for every one-second segment of the songs with a step size corresponding to 0.5 milliseconds.
To reduce the capacity of the database, the product quantization method is employed, resulting in a
representation occupying only 400 MB, in contrast to dejavu’s 6 GB. Similarly to the dejavu case,
a non-exhaustive search method is utilized for fast result retrieval. These techniques are discussed
in detail in Section 5.3.

In Chapter 6, we present the details related to the experimental part of the thesis. More specifically,
in Section 6.1, we introduce the dataset developed for the experiments’ needs. In Section 6.2, we
present two different experiments designed for the evaluation and comparison of the two systems.
In the first case, we examine the performance of the systems by adding noise to 17 songs with
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specific SNR values from the set {0, 5, 10, 15} (in dB). Additionally, we investigate how the du-
ration of the audio fragment for recognition affects the systems’ performance. The metric we use
for evaluation in this case is the Top-1-hit-rate, a metric that measures both correct song predic-
tion and temporal alignment with respect to the original song allowing a tolerance of ±500 ms.
This experiment is conducted to assess the tolerance of each approach with respect to SNR. How-
ever, in a real scenario, the audio signal is subject to various other distortions. For this reason,
in paragraph 6.2.2, we present an experiment that better simulates these conditions. Specifically,
in this experiment, 15 songs are played sequentially from the speakers of a laptop. From another
speaker, an audio excerpt containing noise (speech in an outdoor environment) is played. The
difference from the first experiment is that the recording is done through the laptop’s microphone,
thus mimicking a real scenario where users use their portable devices to record audio fragments
for recognition. In this way, we generate three different audio files (low.wav, mid.wav, high.wav)
based on the distance of the noise source from the laptop’s microphone, with ’low.wav’ corre-
sponding to the farthest distance (thus less noise) and ’high.wav’ to the closest distance (more
noise).

Subsequently, in Section 6.3, using the open-source library dejavu2, we implement the music
recognition system that incorporates the ideas of the Shazam algorithm. After presenting some
technical details regarding the library in Section 6.3.1, in Section 6.3.2, we present the results of
this approach in the experiment where noise is added with specific SNR. In Table 1.1, we see the
results of this approach for all combinations of SNR and audio query duration.

Table 1.4. Performance of dejavu.

Metrics Query length (s) 0 dB 5 dB 10 dB 15 dB

Accuracy 3.91% 5.91% 7.84 % 8.87 %
F1 score 1 6.86% 11.01% 14.12% 15.92%

Top-1 hit rate 3.39% 4.72% 6.89% 7.30%
Accuracy 28.06% 36.66% 42.45% 48.23&
F1 score 2 41.05% 52.94% 59.06% 64.61%

Top-1 hit rate 24.27% 33.32% 38.48% 44.02%
Accuracy 41.38% 60.70% 68.10% 73.78&
F1 score 3 57.36% 74.53% 80.50% 84.54%

Top-1 hit rate 38.65% 56.82% 63.79% 69.32%
Accuracy 52.06% 71.91% 81.30% 86.77&
F1 score 4 66.22% 82.83% 89.19% 92.79%

Top-1 hit rate 48.32% 67.11% 75.84% 81.59%
Accuracy 60.02% 79.83% 87.52% 91.60&
F1 score 5 73.31% 88.38% 93.23% 95.39%

Top-1 hit rate 55.22% 75.15% 82.11% 86.55%
Accuracy 82.85% 94.69% 98.07% 98.79&
F1 score 10 90.08% 97.25% 99.05% 99.40%

Top-1 hit rate 77.78% 90.34% 93.48% 94.44%

2https://github.com/worldveil/dejavu
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In Section 6.4, we compare the two methods. More specifically, in paragraph 6.4.1, we focus
on the approach that utilizes deep learning concepts. After presenting some technical details re-
garding the implementation of this method, we then examine the system’s performance in the
experiment with constant SNR noise. The results of this experiment are shown in Table 1.2. Com-
paring Tables 1.4 and 1.5, we observe that the deep learning approach outperforms the classical
method for short audio excerpts (< 10 seconds), making it suitable for real-time applications. In
paragraph 6.4.2, we present the results of the experiment where the recording is done through the
laptop’s microphone. Additionally, we investigate how distortions related to ’clipping’ of low/high
frequencies contribute to the model’s tolerance to noise. The results for this experiment are shown
in Table 1.6. Finally, in Chapter 7, we conclude by summarizing some findings and suggest-
ing potential future research directions for the problem of developing effective music recognition
systems.

Table 1.5. Performance of Deep Audio Fingerprinting System.

Metrics Query length (s) 0 dB 5 dB 10 dB 15 dB

Accuracy 56.80% 81.19% 91.73 % 94.78 %
F1 score 1 70.79% 88.73% 95.10% 96.84%

Top-1 hit rate 45.30% 66.52% 78.33% 84.48%
Accuracy 78.11% 92.54 % 97.56 % 98.61 &
F1 score 2 86.80 % 95.54 % 98.43 % 99.06 %

Top-1 hit rate 63.77 % 78.35 % 87.09 % 89.63 %
Accuracy 83.41 % 96.12 % 98.49 % 99.07 &
F1 score 3 90.25 % 97.55 % 99.04 % 99.33 %

Top-1 hit rate 69.25 % 83.41 % 89.44 % 92.82 %
Accuracy 87.73 % 97.32 % 98.75 % 98.95 &
F1 score 4 92.92 % 98.39 % 99.20 % 99.29 %

Top-1 hit rate 73.44 % 85.52 % 91.75 % 92.62 %
Accuracy 89.32 % 97.48 % 98.56 % 99.16 &
F1 score 5 93.58 % 98.35 % 99.07 % 99.39 %

Top-1 hit rate 75.99 % 85.52 % 89.68 % 93.88 %
Accuracy 95.65 % 98.07 % 98.55 % 98.31 &
F1 score 10 97.27 % 98.86 % 99.06 % 98.97 %

Top-1 hit rate 78.50 % 84.30 4% 88.89 % 92.51 %
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Table 1.6. Performance (Accuracy) of the Music Recognition Systems on Microphone Experiment.

Metrics Query length (s) low mid high

Deep Audio 85.03% 62.65% 41.92%
Deep Audio (No Filters) 2 67.22% 49.02% 19.47%

Dejavu 12.63% 6.50% 10.73%

Deep Audio 92.66% 80.06% 62.52%
Deep Audio (No Filters) 5 80.38% 65.39% 31.10%

Dejavu 59.21% 40.94% 47.24%

Deep Audio 94.52% 90.32% 74.19%
Deep Audio (No Filters) 10 84.19% 78.39% 41.29%

Dejavu 83.60% 70.98% 71.29%

Deep Audio 97.56% 90.24% 80.98%
Deep Audio (No Filters) 15 86.34% 80.98% 48.29%

Dejavu 93.33% 77.14% 83.33%
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Chapter 2

Elements of Fourier Analysis

The purpose of this chapter is to develop all the necessary theoretical tools used in audio signal
processing. We introduce one of the most important concepts, the Fourier Transform and develop
some basic properties and theorems. Much of the content in this chapter is based on the mathe-
matical area of Fourier analysis. However, it should be noted that the exposition in this chapter is
not meant to cover all aspects and concepts of the theory in depth, but rather to serve as a building
block for developing and explaining the features used in audio signal processing in Chapter 3. For
more comprehensive expositions of the theory, readers may refer to [3, 4, 5].

As we will see in Chapter 3, an audio signal can be represented as a real function of one
independent variable. The horizontal axis corresponds to the time elapsed from the first pulse of
the audio signal, while the vertical axis measures the difference of air pressure from its average
value at a certain point. Therefore, an audio signal can be represented by a pressure-time plot, also
referred to as the waveform of the sound. Figure 2.1 shows a waveform representation of the first
10 seconds from the song "Someone Like you" by Adele1.
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Figure 2.1. The Waveform of the first 10 seconds of Someone Like You by Adele.

By looking at the waveform in Figure 2.1 we can see that some peeks are arriving at equally spaced
time intervals. As we shall shortly see, the number of repetitions of a certain peek at some fixed

1You can hear in: https://www.youtube.com/watch?v=z7GCiVTlv04.
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Chapter 2. Elements of Fourier Analysis

time interval constitutes an important feature of a function, and in particular, of an audio signal.
The tool that is used to determine the "energy" presence of each of these repetitions is the Fourier
Transform. In the next section, we start by developing the theory for periodic functions, and we
extend these ideas to the non-periodic case as well.

2.1 Fourier Series

We say that a function f : R→ R is periodic if there exists T ∈ R such that

f (x + T ) = f (x), (2.1)

for all x ∈ R. Any T satisfying (2.1) is a period of f . The smallest possible number for which (2.1)
is satisfied is called the fundamental period of the function f. The reciprocal of the fundamental
period is the fundamental frequency and it is measured in Hertz (Hz). The fundamental frequency
is the number of oscillations in a time interval of length T . The most simple, and perhaps the
most important family of periodic functions are the sinusoids. Mathematically, a sinusoid can be
described by a function f : R → R such that f (t) = A · sin(2π(ft − φ)) for t ∈ R. The parameter
A corresponds to the amplitude, the parameter f to the frequency, and the parameter φ to the
phase (measured in normalized radians with 1 corresponding to an angle of 360◦). Figure 2.2
shows the waveform of the sinusoids 2 sin(2π · 5t), 1.2 sin(2π · 2t) as well as the superposition
2 sin(2π · 5t) + 1.2 sin(2π · 2t).
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Figure 2.2. Sinusoids of 5 Hz and 2 Hz.
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2.1.1 The Building Blocks

The sinusoids are the building blocks of Fourier analysis. The idea is to describe any periodic
function f : R→ R of period 12 as a superposition of sinusoids of the form

N∑
n=1

An sin(2π(nt − φn)). (2.1.1)

To accomplish this, one needs to define a measure of similarity between functions. This measure
will be used to compare the periodic function f : R → R with a sinusoid sin(π(nt − φn)) of
fixed frequency and phase. Higher values of the measure would imply higher similarity with the
sinusoid sin(π(nt − φn)). The individual terms in (2.1.1) are called harmonics, terminology that
comes from the mathematical representation of musical pitch (see chapter 3). This form of a
general trigonometric sum has the advantage of displaying explicitly the amplitude and phase of
each harmonic, but in theory, for calculation purposes as well as for the ability of generalization
to complex functions an alternative form is used by using the trigonometric identity

sin(α − �) = sin α cos � − cos α sin �, (2.1.2)

and the complex exponentials
eint = cos(nt) + i sin(nt). (2.1.3)

Letting un = 2πφn we can write (2.1.1) as
∑N

n=1 An sin(2πnt − un). Now, by (2.1.2), (2.1.3) we
have that

N∑
n=1

An sin(2πnt − un) =
N∑

n=1

−An sin un︸       ︷︷       ︸
αn

cos(2πnt) + An cos un︸     ︷︷     ︸
�n

sin(2πnt)


=

N∑
n=1

(αn cos(2πnt) + �n sin(2πnt)) ,

and, if we include a constant term (corresponding to n = 0) the trigonometric sum in (2.1.1)
becomes

α0

2
+

N∑
n=1

(αn cos(2πnt) + �n sin(2πnt)) . (2.1.4)

Now, it is easy to verify that

cos t =
eit + e−it

2
, sin t =

eit − e−it

2i
.

Hence

cos(2πnt) =
e2πint + e−2πint

2
, sin(2πnt) =

e2πint − e−2πint

2i
.

2For the moment we restrict to the case of period 1. The generalization to other periods poses no difficulty.
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Using this, we have that

α0

2
+

N∑
n=1

(αn cos(2πnt) + �n sin(2πnt)) =
α0

2
+

N∑
n=1

(
αn ·

e2πint + e−2πint

2
+ �n ·

e2πint − e−2πint

2i

)

=
α0

2
+

N∑
n=1

(
αn ·

e2πint + e−2πint

2
− i�n ·

e2πint − e−2πint

2

)

=
α0

2
+

N∑
n=1

(αn − i�n

2

)
· e2πint +

N∑
n=1

(αn + i�n

2

)
· e−2πint .

Now, for c0 =
α0
2 , cn =

αn−i�n
2 and c−n =

αn+i�n
2 , we conclude that (2.1.4) can be written equiva-

lently as
N∑

n=−N

cne2πint . (2.1.5)

Therefore, the goal is to approximate a function f : R → R of period 1 by a trigonometric sum
N∑

n=−N
cne2πint ,for appropriate cn ∈ C and N ∈ N ∪ {∞} 3. At this point, two problems arise:

(i) How one can determine the complex coefficients cn ?

(ii) How one can define a similarity measure for two functions f, g ?

Luckily, for the first problem we can hack the solution with reverse engineering: Assuming that
the function f can be written as

f (t) =
∞∑

n=−∞

cne2πint , (2.1.6)

and ignoring matters of convergence, if we fix a k ∈ Z and multiply (2.1.6) by e−2πikt we get that

f (t)e−2πikt =

∞∑
n=−∞

cne2πint · e−2πikt

=

∞∑
n=−∞

cne2πi(n−k)t .

Integrating on the interval [−1, 1] and taking a creative detour around the math police for the
second time (changing the order of integration with summation), we get∫ 1

0
f (t)e−2πikt dt =

∞∑
n=−∞

cn

∫ 1

0
e2πi(n−k)t dt. (2.1.7)

Now for k , n we have that∫ 1

0
e2πi(n−k)t dt =

∫ 1

0

[
e2πi(n−k)t

2πi(n − k)

]′
dt =

e2πi(n−k)t

2πi(n − k)

∣∣∣∣∣1
0

=
1

2πi(n − k)

(
e2πi(n−k) − e0

)
=

1
2πi(n − k)

(1 − 1) = 0,

3We will see that in some cases the sum is an infinite series.
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since n − k , 0 and n − k ∈ Z. For k = n we get that∫ 1

0
e2πi(n−k)t = 1.

Hence, we conclude that ∫ 1

0
e2πi(n−k)t =

1, n = k

0, n , k
.

Using this in (2.1.7) we get

cn =

∫ 1

0
f (t)e−2πint dt, (2.1.8)

for n ∈ Z. The coefficients in (2.1.8) are the Fourier coefficients of f . What we have achieved so
far is that if we assume that the function f can be represented as a sum of trigonometric functions,

then the coefficients cn must be given by the integral
1∫

0
f (t)e−2πint dt. What is left open is when

and how, or in what sense a periodic function f : R → R can be represented by such a sum. This
question requires more sophisticated mathematical tools, such as the Lebesgue integral, which is a
part of measure theory. While we will not use any terms from measure theory, we will state some
important results that are relevant to Fourier analysis. Some good references on measure theory
are [6, 7, 5, 8]. Before we address the second problem mentioned before, we treat the case where
the function f : R→ R has period T , 1.

2.1.2 The Case of Period T , 1

Suppose that the function f : R → R is periodic with fundamental period T , 1. Then, the
function g : R→ R given by g(t) = f (tT ) is periodic with period 1 since for every t ∈ R we have

g(t + 1) = f ((t + 1)T ) = f (tT + T ) = f (tT ) = g(t).

The Fourier coefficients of g are given by

cn =

∫ 1

0
g(t)e−2πint dt.

Using g(t) = f (tT ) and the substitution u = tT we get that

cn =

∫ 1

0
g(t)e−2πint dt =

∫ 1

0
f (tT )e−2πint dt =

1
T

∫ T

0
f (u)e−2πinu/T du.

Therefore, if g can be expressed as
∞∑

n=−∞
cne2πint , then f would be equal to

∑∞
n=−∞ cne2πint/T ,

where cn =
1
T

∫ T

0 f (t)e−2πint/T . These observations allow us to restrict to the case where the period
of the function is equal to 1. Summarizing all the above we formulate the following definition.
Additionally, we allow complex functions and include sufficient conditions for the existence of the
Fourier coefficients.

Definition 2.1 (Fourier coefficients). Let f : R → C be a periodic function with fundamental
period T ∈ R such that

∫ T

0 |f (t)|dt < ∞. Then, the Fourier coefficients of f are the complex
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numbers given by

f̂ (n) =
1
T

∫ T

0
f (t)e−2πint/T dt, n ∈ Z

A useful observation is that the coefficients f̂ (n) can be calculated by integrating the function f in
any interval of length T . To see this, let α ∈ R. Then,

∂

∂α

(
1
T

∫ α+T

α
f (t)e−2πint/T dt

)
=

1
T

(
f (α + T )e−2πin(α+T )/T − f (α)e−2πinα/T

)
,

but since f (α + T ) = f (α) and e−2πin(α+T )/T = e−2πinα/T we get that

∂

∂α

(
1
T

∫ α+T

α
f (t)e−2πint/T dt

)
= 0,

and since for α = 0 the integral is equal to f̂ (n) we conclude that

f̂ (n) =
1
T

∫ α+T

α
f (t)e−2πint dt, α ∈ R.

An approach to define a measure of similarity between functions is to extend the notion of the usual
inner product between vectors in Rn to more general spaces, where the space may be infinite-
dimensional and the elements in that space may be functions. These spaces are called Hilbert
spaces.

2.1.3 Hilbert Spaces

For two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) in Rn the inner product is given by

⟨x, y⟩ = x1y1 + · · · + xnyn. (2.1.9)

The inner product is closely linked to the angle between the vectors x, y. In R2 and R3 this comes
from the formula ⟨x, y⟩ = ∥x∥2 · ∥y∥2 · cos θ, where θ is the angle between x, y. The generalization
to dimensions n ≥ 4 comes from the Cauchy-Schwarz inequality:

|⟨x, y⟩| ≤ ∥x∥2 ∥y∥2 . (2.1.10)

The fact that −1 ≤ ⟨x,y⟩
∥x∥2∥y∥2

≤ 1 allows us to define cos θ = ⟨x,y⟩
∥x∥2∥y∥2

. Perpendicularity (or or-
thogonality) can be expressed with the inner product via the relation ⟨x, y⟩ = 0. Observe that this
implies that cos θ = 0 which is equivalent to θ = 0 or θ = 3π/2 for θ ∈ [0, 2π). The inner product
does more than identifying orthogonal vectors, however. When it’s nonzero it tells us how much
of one vector is in the direction of another. That is, the vector

⟨x, y⟩

∥y∥2

y

∥y∥2
,

is the projection of x onto the unit vector y/ ∥y∥2. An alternative approach would be to think of
the inner product as measuring how much one vector "similar" is to the other. Below we list some
important properties of the inner product:
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1. ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 ⇐⇒ x = 0 (positive definiteness)

2. ⟨x, y⟩ = ⟨y, x⟩ (symmetry)

3. ⟨αx, y⟩ = α⟨x, y⟩ for any scalar α (homogeneity)

4. ⟨x +w, y⟩ = ⟨x, y⟩ + ⟨w, y⟩ (additivity)

These properties allow us to define the inner product in a more general setting. Moreover, by
allowing the inner product to take complex values, we can incorporate both the magnitude and
phase information of the projection. Specifically, since any complex number c ∈ C can be ex-
pressed in polar form as c = |c|eiθ, where |c| represents the magnitude and θ represents the phase
angle, we can incorporate both pieces of information into the inner product. Therefore, we have
the following definition:

Definition 2.2 (Inner product). Let H be a vector space over C. An inner product is any function
⟨·, ·⟩ : H × H → R satisfying the properties:

1. For all x ∈ H , ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 ⇐⇒ x = 0 (positive definiteness).

2. For all x, y ∈ H , ⟨x, y⟩ = ⟨y, x⟩.

3. For all x, y, z ∈ H , ⟨x + z, y⟩ = ⟨x, y⟩ + ⟨z, y⟩ and ⟨x, z + y⟩ = ⟨x, z⟩ + ⟨x, y⟩.

4. For all x, y ∈ H and t ∈ C, ⟨tx, y⟩ = t⟨x, y⟩ and ⟨x, ty⟩ = t⟨x, y⟩.

An inner product on a vector space naturally defines the notion of a norm, which in turn allows to
define the distance between pair of points in the vector space.

Definition 2.3 (norm). Let H be a vector space over C. A norm is a function ∥·∥ : H → R such
that

1. ∥x∥ ≥ 0 and ∥x∥ = 0 ⇐⇒ x = 0 for all x ∈ H .

2. ∥tx∥ = |t | ∥x∥ for all t ∈ C and x ∈ H.

3. ∥x + y∥ ≤ ∥x∥ + ∥y∥ for x, y ∈ H (triangle inequality).

It is easy to verify that ∥x∥ = ⟨x, x⟩1/2 is a norm on H. Now, the distance between any points
x, y ∈ H can be defined by d(x, y) = ∥x − y∥ . As the notion of the inner product allows us to
define distance, angle measurements, and calculate projections it is easy to generalize the notion
of the orthonormal sequence.

Definition 2.4 (orthonomal sequence). Let H be a vector space over C and ⟨·, ·⟩ an inner product.
An orthonormal sequence on H is a sequence of vectors {ei}

∞
i=1 such that ∥ei∥ = 1 for all i and

⟨ei , ej⟩ = 0 for every i , j.

Dealing with finite-dimensional spaces is simpler than dealing with infinite-dimensional spaces
because in the finite case, there are fewer things to consider. For instance, given a vector x =
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(x1, . . . , xn), the closest point in the subspace generated by the first k < n orthonormal vectors
e1, . . . , ek is

k∑
i=1
⟨x, ei⟩ei .

This follows from the fact that ⟨x, ei⟩ is the projection of x onto ei , since ∥ei∥2 = 1. In the
infinite-dimensional case, if {ei}

∞
i=1 is an orthonormal sequence, the closest point in the subspace

generated by the vectors {ek :, k ≥ 2} would be
∞∑

k=2
⟨x, ek⟩ek . However, to ensure that the element

∞∑
k=2
⟨x, ek⟩ek is well-defined, the sequence of partial sums sn =

∑n
k=2⟨x, ek⟩ must converge. The

notion of completeness is essential for ensuring the convergence of such sequences.

Definition 2.5 (Cauchy sequence). Let H be a vector space over C and ⟨·, ·⟩ an inner product on
H . We say the sequence {xn}

∞
n=1 is a Cauchy sequence if for every ϸ > 0 there exists an index

n0 ∈ N such that ∥xn − xm∥ < ϸ for every n, m ≥ n0.

In general, we say that a normed space X is complete4 if every cauchy sequence {xn}
∞
n=1 is con-

vergent, i.e. if there exists a point x ∈ H such that for every ϸ > 0 there exists n0 ∈ N such that
∥xn − x∥ < ϸ for every n ≥ n0. Summarizing all the above we have the following definition.

Definition 2.6 (Hilbert space). Let H be a vector space over C and ⟨·, ·⟩ an inner product on H . We
say that H is a Hilbert space if the norm ∥x∥ = ⟨x, x⟩1/2 induced by the inner product is complete.
Equivalently, every Cauchy sequence with respect to ⟨x, x⟩1/2 is convergent.

In the case of the Rn , every vector x ∈ Rn can be uniquely expressed as a linear combination of
the standard basis vectors {ei}

n
i=1, where ei is a vector whose i-th component is 1 and all other

components are 0. Similarly, we say that an orthonormal sequence {ei}
∞
i=1 is an orthonormal basis

for H if every element x ∈ H can be uniquely expressed as an infinite linear combination of the

basis vectors, i.e., x =
n∑

i=1
⟨x, ei⟩ei . This is equivalent to saying that the sequence of partial sums

sn =
n∑

i=1
⟨x, ei⟩ei converges to x in H .

All this theory was presented in order to introduce the space of square-integrable functionsL2 ([0, 1])
on the closed interval [0, 1], which is the most important example of a Hilbert space for Fourier
analysis. To this end, we let

L2 ([0, 1]) =
{

f : [0, 1]→ C : f integrable and
∫ 1

0
|f (t)|2 dt < ∞

}
, (2.1.11)

The integral in 2.1.11 is with respect to the Lebesgue measure (notion from measure theory).
However, in the upcoming examples, we will only restrict to functions that are also integrable in
the standard Riemann sense. Of course, it is still left to show that L2 ([0, 1]) is a Hilbert space.
The easy part is to show that L2 ([0, 1]) is a vector space. To see this, let f, g ∈ L2 ([0, 1]) and

4These spaces are called Banach spaces.
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observe that since 2|f (t)| · |g(t)| ≤ |f (t)|2 + |g(t)|2 we have that

|f (t) + g(t)|2 ≤ (|f (t)| + |g(t)|)2

= |f (t)|2 + |g(t)|2 + 2|f (t)||g(t)|

≤ 2|f (t)|2 + 2|g(t)|2.

Therefore, if f, g ∈ L2 ([0, 1]) then∫ 1

0
|f (t) + g(t)|2 dt ≤ 2

∫ 1

0
|f (t)|2 dt + 2

∫ 1

0
|g(t)|2 dt < ∞,

which implies that f + g ∈ L2 ([0, 1]) . Similarly, it easily verified that αf ∈ L2 ([0, 1]) for every
f ∈ L2 ([0, 1]) and α ∈ C. The inner product that is defined on L2 ([0, 1]) is given by

⟨f, g⟩ =

∫ 1

0
f (t)g(t) dt, (2.1.12)

for every f, g ∈ L2 ([0, 1]) . The properties listed in Definition 2.2 can be verified by a straightfor-
ward calculation. The hardest part that requires additional theory is to prove that

∥f ∥2 =

(∫ 1

0
|f (t)|2 dt

)1/2

is a norm and the space L2 ([0, 1]) is complete. We take that for granted as well as that the
complex exponentials {e2πint}∞n=1 form an orthonormal basis of L2 ([0, 1]). For example, to see
that the complex exponentials are an orthonormal sequence for k , m, write

⟨e2πikt , e2πimt⟩ =

∫ 1

0
e2πikteimt dt =

∫ 1

0
e2πikte−2πimt dt

=

∫ 1

0
e2πi(k−m)t dt =

1
2πi(k −m)

e2πi(k−m)t
∣∣∣∣∣1
0

=
1

2πi(k −m)

(
e2πi(k−m) − 1

)
= 0,

since e2πi(k−m) = 1. Now, for k = m since e2πikte−2πikt = 1 it follows that ⟨e2πikt , e2πikt⟩ = 1.

Therefore,

⟨e2πikt , e2πimt⟩ =

1, k = m

0, k , m
.

Having in mind the meaning of the inner product in Rn , similarly, in this case, we may ask what
is the component of a function f (t) "in the direction" en(t) = e2πnt? By analogy to the Euclidean
case, it is given by the inner product

⟨f, en⟩ =

∫ 1

0
f (t)en(t) dt =

∫ 1

0
f (t)e−2πint dt,
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which is precisely the n-th Fourier coefficient f̂ (n). Thus writing the Fourier series

f (t) =
∞∑

n=−∞

f̂ (n)e2πint ,

as we did in (2.1.6), is exactly like the decomposition in terms of an orthonormal basis and the
associated inner product:

f =
∞∑

n=−∞

⟨f, en⟩en. (2.1.13)

This is exactly the equation resulting from the fact that the complex exponentials are an orthonor-
mal basis. However, the above equation is with respect to theL2-norm. This is formally expressed
as ∥∥∥∥∥∥∥f −

N∑
n=−N

⟨f, en⟩en

∥∥∥∥∥∥∥
2

=

∫ 1

0

∣∣∣f (t) −
N∑

n=−N

⟨f, en⟩en(t)
∣∣∣2 dt

1/2

−→ 0,

as N → ∞. Of course, the interesting part is when (2.1.13) holds in the pointwise sence, i.e.

f (t) =
∞∑

n=−∞

⟨f, en⟩ · e
2πint ,

for every t ∈ R. We take a break from the theoretical results and postpone this question for
Subsection 2.1.6.

2.1.4 Sinusoids and Fourier Coefficients - The Role of Phase

While introducing complex numbers enables us to elegantly handle algebraic operations, it can
also detract from our original objective of representing a periodic function f : R → R with
fundamental period 1 as a sum of sinusoids of the form An sin(2π(nt −φn)). In this paragraph, we
explain the relation between the Fourier coefficients

cn =

∫ 1

0
f (t)e−2πint dt,

and the sinusoids An sin(2π(nt − φn)) as well as the role of phase φn , and its relation with the
polar angle arg(cn) of the complex number cn = |cn |ei arg cn .

To begin with, we remind that any complex number z = α + i� can be expressed in polar form
as z = |z|eiarg(z) (see Figure (2.3)), where arg(z) ∈ [0, 2π) is the angle of the vector (α, �) with the
unit vector e1 = (1, 0). Furthermore, for a complex function f : R → C, and any real numbers
α < � we have that (by definition)∫ �

α
f (t) dt =

∫ �

α
Re(f (t)) dt + i

∫ �

α
Im(f (t)) dt.

Therefore, since the function f (t)e−2πnt takes complex values the number cn is a complex number,
and as such it has a polar form |cn |eiarg(cn).
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Figure 2.3. Polar representation of complex numbers.

In Subsection (2.1.3) we saw that every f ∈ L ([0, 1]) can be expressed as

f =
∞∑

n=−∞

⟨f, en⟩en,

in the L2-sense, where en(t) = e2πint . Suppose now that f : R → R is periodic with fundamental
period equal to 1 such that ∫ α+1

α
|f (t)|2 dt < ∞,

for some α ∈ R. By letting g(t) = f (t + α) for t ∈ [0, 1] we obtain a function in L2 ([0, 1]).
Conversely, if f ∈ L2 ([0, 1]) we can extend this function to a periodic function f̃ : R → R of
fundamental period 1 by letting f̃ (t) = f (t − [t]). 5 In other words, there is a one to one and onto
correspondence between the functions in L2 ([0, 1]) and the periodic functions of fundamental
period 1 which are square integrable in some interval of length 1. Summarizing, we obtain the
following theorem.

Theorem 2.1 (Convergence of the Fourier series in L2). Let f : R → R be a periodic function
with fundamental period equal to 1 such that

∫ α+1
α
|f (t)|2 dt < ∞ for some α ∈ R. Then if

fα(t) = f (t + α),∥∥∥∥∥∥∥fα −
N∑

n=−N

⟨fα, en⟩en

∥∥∥∥∥∥∥
2

=

∫ 1

0

∣∣∣f (t + α) −
N∑

n=−N

⟨fα, en⟩en(t)
∣∣∣2 dt

1/2

−→ 0, (2.1.14)

as N → ∞.

The preceding theorem provides insight into how a periodic function f : R→ R can be expressed
as a trigonometric sum. Our original objective, however, was to identify the An and φn values that
would enable us to construct the sum

N∑
n=1

An sin(2π(nt − φn))

that best approximates f . The relative information about the optimal An and φn values are hidden
in the Fourier coefficients f̂ (n) and f̂ (−n). Indeed, in (2.1.4) we saw that An sin(2π(nt−φn) can be
written as αn cos(2πnt) + �n sin(2πnt), where αn = −An sin un, �n = An cos un , and un = 2πφn .

5[t] is the integer part of t ∈ R.

Diploma Thesis 43



Chapter 2. Elements of Fourier Analysis

To obtain (2.1.5) we saw that f̂ (n) = αn−i�n
2 and f̂ (−n) = αn+i�n

2 . Therefore, we have that

f̂ (n) = −
An

2
(sin un − i cos un) .

Using the identities cos(un −
π
2 ) = sin un and sin(un −

π
2 ) = − cos un we get

f̂ (n) = −
An

2

(
cos(un −

π

2
) + i sin(un −

π

2
)
)
= −

An

2
ei(un−

π
2 ).

From the above identity, we see that the magnitude An is given by 2|f̂ (n)|. For the phase we have
that

un −
π

2
= arg(f̂ (n)) ⇐⇒

2πφn −
π

2
= arg(f̂ (n)) ⇐⇒

φn =
arg(f̂ (n))

2π
+

1
4

.

The magnitude An indicates the amplitude of the sinusoid An sin(2π(nt − φn)) in the original
function f , while the phase φn corresponds to the horizontal shift of the sinusoid that best aligns
with the function f . To better understand the role of phase consider as an example the waveform
of the first 1 second of a A4 note played on piano in Figure 2.4.
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Figure 2.4. The waveform of A4 on piano.

Since we are analyzing the waveform of A4 over an interval of length 1, we can assume that the
function f representing the waveform is periodic with period 1 by simply repeating the function
for values |t | > 1. Our objective is to determine which exponential function e2πint contributes
the most to the projection of f . As we have seen, we can obtain the projections using the inner
product:

⟨f, e2πint⟩ · en(t) =
(∫ 1

0
f (t)e2πint dt

)
· en(t) = f̂ (n) · en(t).

This can be expressed as the product of the Fourier coefficient of f with the exponential function
e2πint , i.e., f̂ (n) · e2πint . By examining the magnitudes of the Fourier coefficients |f̂ (n)|, we can
identify the value of n that corresponds to the exponential function e2πint that provides the highest
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contribution to f . The value of n determines the sinusoid An sin(2π(nt−φn) that best approximates
f , or equivalently, the harmonic with the highest contribution to f . To determine the harmonic with
the highest contribution to f in the waveform of A4, we zoom in to the waveform in an interval
corresponding to 10 ms. By looking at Figure 2.5 we can see that in 10 ms there are approximately
4.5 crests. This corresponds to the sinusoid with fundamental frequency of 450 Hz. As we will
see in chapter 3, each piano note is determined by its fundamental frequency. In the case of the
A4 piano key, this frequency is 440 Hz, which is very close to what we see in the figure!
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Figure 2.5. The waveform of A4 on piano zoomed in 1ms.

Hence, the index of the harmonic contributing the most is n = 440. In Figure 2.6 we see the A4
piano plotted with the sinusoid sin(2π(440t)). For simplicity, we have rescaled the waves to have
the same amplitudes.
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Figure 2.6. The A4 piano note corresponding to 440 Hz and the sinusoid sin(2π · 440t).

It is apparent that the sinusoid sin(2π ·440t) closely matches the waveform of A4 within that time
interval. Nevertheless, we can improve the fit by adjusting the phase parameter φ accordingly. By
Figure 2.6 we see that we need to shift the sinusoid to the right. This corresponds to sin(2π(440t−

φ)). In Figure 2.7 we see the same graph for φ = 0.218, which is calculated numerically by

φ∗ = arg min
φ∈[0,1)

∫ 1

0
|f (t) − sin(2π(440t − φ))|2 dt.
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Figure 2.7. The A4 piano note and the sinusoid sin(2π · (440t − 0.218)).

2.1.5 The Spectrum

The reason why the approximation in Figure 2.7 is not perfect, is because we need more harmonics
to accurately approximate the waveform of the A4 note. This is due to the fact that the A4 key it is
synthesized from many harmonics and not just once. This means that there are also n , 440 such
that f̂ (n) , 0. In the preceding paragraphs, we have often used the more geometric term period
instead of the more natural term frequency. It’s natural to talk about the period for a Fourier series
representation of f (t),

f (t) =
∞∑

n=−∞

f̂ (n)e2πint .

The period is 1. However, each exponential e2πint is periodic with period 1 and 1/n at the same
time. Therefore, the function f is synthesized from many harmonics, many frequencies, positive
and negative, and perhaps an infinite number. The set of frequencies present in a given periodic
signal is the spectrum of the signal. Graphically the spectrum is represented as shown in Figure 2.8.

Figure 2.8. The spectrum of a periodic function.

In Figure 2.8, it is important to note that the magnitudes |f̂ (0)|2, |f̂ (±1)|2, |f̂ (±2)|2, . . . , are de-
picted, rather than the coefficients themselves, f̂ (0), f̂ (±1), f̂ (±2), . . . . These square magnitudes,
|f̂ (n)|2, represent the energy of the (positive and negative) harmonics e±2πint , and together they
form the sequence of squared magnitudes |f̂ (0)|2, |f̂ (±1)|2, |f̂ (±2)|2, . . . , known as the power spec-
trum or energy spectrum.
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2.1.6 Pointwise convergence and examples

In the previous subsections we proved that any integrable periodic f : R → R can be expressed
as a sum of trigonometric functions in the L2-sense. However, there is an analog theorem in the
pointwise sense:

Theorem 2.2 (Pointwise convergence). Suppose that f is continuous with a continuous derivative
except at perhaps a finite number of points (in a period). Then, for each α ∈ [0, 1],

N∑
n=−N

f̂ (n)e2πinα −→
1
2

(
lim

t→α−
f (t) + lim

t→α+
f (t)

)
, (2.1.15)

as N → ∞.

In the case where f is continuous at α, since lim
t→α−

f (t) = lim
t→α+

f (t) we simply have that the Fourier
series of f coincides with f . This is a powerful result which we illustrate with the following
examples: Consider the function

f (t) =


1
2 + t, −1

2 ≤ t ≤ 0
1
2 − t, 0 ≤ t ≤ 1

2

,

We can extend f to a periodic function f̃ : R → R with period 1 by repeating f . The general
formula of f̃ is then given by

f̃ (t) =


1
2 − (t − [t]), 0 ≤ t − [t] ≤ 1

2

t − [t] − 1
2 , 1

2 < t − [t] ≤ 1
.

Since f is an even function we can easily calculate the Fourier coefficients as follows:

f̂ (n) =
∫ 1/2

−1/2
f (t)e−2πint dt = 2

∫ 1/2

0

(1
2
− t

)
cos(2πnt) dt

=
�����������:0

2
2πn

f (t) sin(2πnt)
∣∣∣∣∣1/2

0
+

1
πn

∫ 1/2

0
sin(2πnt) dt

= −
1

2(πn)2 cos(2πnt)
∣∣∣∣∣1/2

0
=

1
2(πn)2 (1 − cos(πn)) .

Since for every n = 2k we have that cos(πn) = 1 we conclude that

f̂ (k) =


1

(πn)2 , n = 2k + 1

0, n = 2k
.

Furthermore, for n = 0 we have that

f̂ (0) =
∫ 1/2

−1/2
f (t) dt = 2

∫ 1/2

0

(1
2
− t

)
dt =

1
2
− t2

∣∣∣∣∣1/2

0
=

1
2
−

1
4
=

1
4

.
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Since f̂ (n) = f̂ (−n) we conclude that the fourier series of f is given by

∞∑
n=−∞

f̂ (n)e2πint =
1
4
+

∞∑
n=1

f̂ (n)
(
e2πint + e−2πint

)
=

1
4
+

∞∑
n=1

2
π2(2n + 1)2 cos(2π(2n + 1)t).

By the continuity of f and Theorem 2.2, it follows that

f (t) =
1
4
+

∞∑
n=1

2
π2(2n + 1)2 cos(2π(2n + 1)t), (2.1.16)

for every −1
2 ≤ t ≤ 1

2 . As we can see the function f has infinitely many harmonics despite that
the function is continuous. This is due the fact of the discontinuity of the derivative. Now, an

interesting byproduct of (2.1.16) is that we can calculate the infinite sum
∞∑

n=1

1
n2 . Indeed, plugging

t = 0 we get that

1
2
=

1
4
+

∞∑
n=1

2
π2(2n + 1)2 ⇐⇒

π2

8
=

∞∑
n=1

1
(2n + 1)2 .

On the other hand,

∞∑
n=1

1
n2 =

∞∑
n=1

1
(2n)2 +

∞∑
n=1

1
(2n + 1)2 ⇐⇒

∞∑
n=1

1
n2 =

1
4

∞∑
n=1

1
n2 +

π2

8
⇐⇒

3
4

∞∑
n=1

1
n2 =

π2

8
,

where we deduce that
∞∑

n=1

1
n2 =

π2

6 . We conclude this paragraph with an example from which the

pointwise convergence fails at exactly one point. To this end, consider the function f (t) = 1, for
0 ≤ t < 1/2, and f (t) = −1, for 1/2 ≤ t < 1. Figure 2.9 shows the graph of this function. Now,
since f is odd, we conclude that f̂ (0) = 0. For n , 0 we have that

f̂ (n) =
∫ 1/2

−1/2
f (t)e−2πint dt

=

∫ 0

−1/2
e−2πint dt +

∫ 1/2

0
e2πint dt

= −
1

2πin
e−2πint

∣∣∣∣∣1/2

0
+

1
2πin

e−2πint
∣∣∣∣∣1
1/2
=

1
πin

(
1 − e−πin) .
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2 1 0 1 2

The graph of the function f(t)

Figure 2.9. The graph of function f (t) on the interval [−2.25, 2.25]

2 1 0 1 2

The graph of the function f(t)

f(t)
N = 8

Figure 2.10. The graph of function f (t) and its fourier series up to the 8th frequency.

Therefore, the Fourier series of f is ∑
n,0

1
πin

(
1 − e−πin) e2πint .

Using the relation

1 − e−πin =

0, n even

2, n odd
,

the series becomes ∑
n odd

2
2πin

e2πint .

Combining the positive and negative terms together with the identity

e2πint − e−2πint = 2i sin 2πnt,

we get the following simplified form of the Fourier series:

4
π

∞∑
k=0

1
2k + 1

sin (2π(2k + 1)t) .
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Now, by Theorem 2.2 we know that

f (t) =
4
π

∞∑
k=0

1
2k + 1

sin (2π(2k + 1)t) ,

every −1
2 ≤ t ≤ 1

2 with t , 0. Figure 2.10 shows the graph of the function f along with its fourier
series up to the 8th frequency.

2.2 The Fourier Transform

2.2.1 Motivation and Definition

In the previous subsection we focused on periodic functions f : R→ R. We saw that apart from its
fundamental frequency 1/T , these functions may have other frequencies as well, corresponding
to multiples ±n/T , for n ∈ Z. These frequencies are referred to as the harmonics of f . However,
having a theory that only relies on periodic functions is restrictive. For instance, when we ana-
lyzed the waveform of the A4 piano in Figure 2.4 we had to zoom in the order of milliseconds in
order to observe its periodic nature. Until now, the way that we tackled the problem was to use
periodization. To this end, since any audio signal will have a finite duration we assumed that is a
periodic function by defining it on the whole R by repeating the signal on the rest of the intervals.
We encountered this approach also in the two examples presented in paragraph 2.1.6. However,
this approach is restrictive in audio signal processing where we want to analyze different audio
signals for a specific task at the same time. These signals may have different duration, and as such,
we would have to periodize with the maximum period of these signals, an approach which may
lead to artifacts. To better understand the dependency of the period T let us consider the following
example inspired by [4]. Consider the "rect" function ("rect" for "rectangle") defined by

Π(t) =

1, |t | < 1/2

0, |t | ≥ 1/2
.

This function is not periodic but we make the assumption that all its information lies on the interval
[−1/2, 1/2], corresponding to its non-zero part, and use periodization to make it periodic. Let’s
assume that Π(t) is periodic with period T > 1. In this case, the function will be zero on the
intervals (−T

2 ,−1
2 ] ∪ [1

2 , T
2 ). In Figure 2.11 you can see the graph of the periodized rect function.

Figure 2.11. Periodization of the rect function with fundamental period T .
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We denote by fT the periodization of Π and calculate its Fourier coefficients. Since fT is even we
have that f̂T (0) = 1. Now, again by using the fact that fT is even, for any n , 0 we have that

f̂T (n) =
1
T

∫ T
2

− T
2

fT (t)e−2πint/T dt =
2
T

∫ T
2

0
cos(2πnt/T ) dt

=
2
T

∫ 1/2

0
cos(2πnt/T ) dt =

sin(2πnt/T )
πn

∣∣∣∣∣ 1
2

0
=

sin(πn/T )
πn

.

Therefore, the Fourier series of fT is given by

∞∑
n=−∞

f̂T (n)e2πint/T =

∞∑
n=−∞

sin(πn/T )
πn

e2πint/T .

In Figures 2.12, 2.13, 2.14 we see the Fourier coefficients corresponding for T = 2, 6, 166.

4 2 0 2 4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fourier coefficients of fT(t) for T=2
sin(n /16)

n /16

Figure 2.12. Normalized Fourier coefficients of fT for T = 2.

4 2 0 2 4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fourier coefficients of fT(t) for T=6
sin(n /16)

n /16

Figure 2.13. Normalized Fourier coefficients of fT for T = 6.

6Actually these are the normalized coefficients sin(πnT )
nπ/T .
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4 2 0 2 4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fourier coefficients of fT(t) for T=16
sin(n /16)

n /16

Figure 2.14. Normalized Fourier coefficients of fT for T = 16.

The previous figures show that as T grows large then the graph of the mapping n/T 7→ sin(nπ/T )
nπ/T

tends to a function defined on the whole R. This reflects the fact that the harmonics n/T are
inversely proportional to the fundamental period T , and as T approaches infinity these harmonics
are getting closer and closer. Therefore, if we wanted to burden ourselves from the imposed
period T an idea is to view the function Π(t) as the limit of fT (t) for T → ∞. Then, in this case
the function Π(t) will have a "harmonic" for each variable s ∈ R for which s ≈ n/T , for large
values of T . The value of the Fourier coefficient for s will be equal to sin(πs)

πs , which is exactly the
graph of the function that sin(nπ/T )

nπ/T approaches as T grows large. To obtain a formula to calculate
the contribution of the frequency s ∈ R to the function Π we may start from the definition for the
Fourier coefficient of fT for the frequency s ≈ n/T . This is given by

f̂ (n/T ) = f̂T (n) =
1
T

∫ T
2

− T
2

fT (t)e−2πint/T dt. (2.2.1)

Provided that the integral on the right-hand side of (2.2.1) is well defined for every T > 0 we can
use Riemann’s sums to see what is happening when T → ∞. To this end, we partition the interval
[−T

2 , T
2 ] to equally space subintervals of length 1/T . For simplicity, to avoid any remainders

that may occur during the partition of the interval
[
−T

2 , T
2

]
we assume that T2 divisible by n.

Mathematically, the partition can be described as the union

[
−

T

2
,

T

2

]
=

T2
n −1⋃
k=0

[
−

T

2
+ k ·

n

T
, −

T

2
+ (k + 1) ·

n

T

]
. (2.2.2)

If we denote by In the intervals on the right hand side of (2.2.2) and let cn ∈ In be the middle point,
the integral on (2.2.1) can be approximated by the sum

∫ T
2

− T
2

fT (t)e−2πint/T dt ≈
n

T

T2
n −1∑
n=1

fT (cn)e−2πincn/T . (2.2.3)
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Now, if we let s = n
T we can view the right-hand side of (2.2.3) again as a Riemann sum of the

integral of the function fT (t)e−2πist on the interval
[
−T

2 , T
2

]
, i.e.

∫ T/2

−T/2
fT (t)e−2πist dt ≈

n

T

T2
n −1∑
n=1

fT (cn)e−2πincn/T . (2.2.4)

Since for large values of T we have that∫ T/2

−T/2
fT (t)e−2πist dt ≈

∫ ∞

−∞

Π(t)e−2πist dt

we can define the continuous analog of the coefficient f̂t(n) for the non periodic function Π : R→
R on the point s ∈ R to be

Π̂(s) =
∫ ∞

−∞

Π(t)e−2πist dt. (2.2.5)

Solving the above integral we get Π̂(s) = sin(πs)
πs . The equation (2.2.5) is exactly the Fourier Trans-

form (FT) of Π(t) at s and is denoted by F (Π) (s). As in the case of the periodic functions, below
we state the formal definition along with the sufficient condition for the existence of the Fourier
Transform.

Definition 2.7 (Fourier Transform). Let f : R→ R be a function such that
∫ ∞
−∞
|f (t)|dt < ∞. The

Fourier Transform of f is the function F (f ) : R→ R given by

F f (s) =
∫ ∞

−∞

f (t)e−2πist dt, (2.2.6)

for s ∈ R.

As opposed to the case of periodic functions where the spectrum was the discrete set {n/T : n ∈

Z}, in the continuous case one has to deal with the continuous spectrum {s : s ∈ R}. The set
{|F f (s)|2 : s ∈ R} is referred to as the power spectrum of f . In engineering and especially in
signal processing they usually say that the original signal (function) f (t) is defined on the time
domain and the Fourier Transform F (f ) is defined on the frequency domain . We will say more
about signals and in particular audio signals in Chapter 3. For our purposes, it is beneficial to think
of the theory of the Fourier Transform in the context of signals. In engineering an analog signal
is simply the same entity as a function f : R → R. A digital signal is a sequence x : Z → R. We
will use these terms (mathematical and engineering) interchangeably throughout the rest of this
chapter.

The theory of the Fourier Transform is quite extensive with important mathematical implica-
tions. However, since we are interested in audio signal processing, there is no need to develop the
theory in great detail, as we will work mainly with digital signals. In this case, we use the discrete
analog of the Fourier Transform, the Discrete Fourier Transform (DFT). Therefore, in the follow-
ing paragraphs, we present without any proofs the most important results and concepts related to
audio signal processing.
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2.2.2 The Inverse Fourier Transform

There is a one-to-one and onto correspondence between the function f and its Fourier Transform
F f . This means, that the knowledge of F F allows us to retrieve f and vice versa. To introduce
the Inverse Fourier Transform (IFT) we follow a heuristic approach with reverse engineering by
avoiding the mathematical formality. To this end, suppose that f is zero outside some interval. We
can periodize f to have period T in such a way that the interval

[
−T/2, T/2

]
contains the interval

where f is non-zero. In this case, f will have a Fourier series expansion

f (t) =
∞∑

n=−∞

cne2πint/T , (2.2.7)

where the coefficients are given by

cn =
1
T

∫ T/2

−T/2
f (t)e−2πint/T dt.

Comparing the previous integral and the integral in (2.2.6) we get that

1
T
F f (n/T ) = cn.

Substituting this equation in (2.2.7) we get that

f (t) =
∞∑

n=−∞

1
T
F f (n/T )e2πint/T .

The previous sum can be viewed as a Riemann sum of the integral
∫ T/2
−T/2 F f (s)e2πist ds. Therefore,

using the fact that f is zero outside the interval
[
−T/2, T/2

]
we conclude that

f (t) =
∞∑

n=−∞

1
T
F f (n/T )e2πint/T

≈

∫ T/2

−T/2
F f (s)e2πist ds

=

∫ ∞

−∞

F f (s)e2πist ds.

Since any function f : R → R can be approximated by a periodic function (possibly with large
period T ) on the limit we expect to have

f (t) =
∫ ∞

−∞

F f (s)e2πist ds,

for non-periodic functions as well. The previous formula defines the Inverse Fourier Transform
which is summarized in the following definition.
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Definition 2.8 (Inverse Fourier Transform). Let g : R→ R be a function such that
∫ ∞
−∞
|g(t)|dt <

∞. The Inverse Fourier Transform of g is the function F −1 : R→ R given by

F −1g(t) =
∫ ∞

−∞

g(s)e2πist ds, (2.2.8)

for every t ∈ R.

F f and F −1f are closely related through the following identities referred to as the Fourier Inver-
sion Theorem :

F
(
F −1f

)
(t) = f (t), F −1 (F f ) (s) = f (s). (2.2.9)

We conclude this paragraph by stating Parseval’s identity which relates the energy of the signal in
the time domain and the energy spectrum in the frequency domain. Parseval’s identity says that
these two are equal. In other words,∫ ∞

−∞

|f (t)|2 dt =

∫ ∞

−∞

|F f (s)|2 ds. (2.2.10)

2.2.3 Examples

In this paragraph we calculate the Fourier Transform of some basic functions used in signal pro-
cessing.

The Rect function

We have already seen that the Fourier Transform of the rect function given by

Π(t) =

1, |t | ≤ 1/2

0, |t | > 1/2
,

is FΠ(s) = sin(πs)/πs.

The Triangle function

The Triangle function is defined by

Λ(t) =

1 − |t |, |t | ≤ 1

0, |t | > 1
.

In Figure 2.15 you can see the graph of this function.
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The graph of the Triangle function
(t)

Figure 2.15. The graph of the Triangle function on the interval [−5, 5].

Since Λ is even we can easily calculate the Fourier Transform as follows:

FΛ(s) =
∫ ∞

−∞

Λ(t)e−2πist dt =

∫ 1

−1
(1 − |t |) e−2πist dt

= 2
∫ 1

0
(1 − t) cos(2πst) dt

=
������������:0

2
2πs

[
(1 − t) sin(2πst)

]1
0
+

1
πs

∫ 1

0
sin(2πst) dt

=
1

2(πs)2

[
− cos(2πst)

]1
0
=

1
(πs)2

(1 − cos(2πs))
2

.

Using the identity 1−cos(2πs)
2 = sin2(πs) we conclude that

FΛ(s) =
1

(πs)2 sin2(πs).

Usually sin(πs)/πs is denoted as sinc(s). With this notation, we can write

FΠ(s) = sinc(s), FΛ(s) = sinc2(s),

for the Fourier Transform of the rect and triangle function, respectively. In Figure 2.16 you can
see the graph of sinc2(s).

Exponential decay

The Exponential decay is defined by

f (t) =

e−αt , t > 0

0, t ≤ 0
,
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The Fourier Transform of the Triangle function
sin2 ( s)

( s)2

Figure 2.16. The Fourier Transform of the Triangle function.

for α > 0. In Figure 2.17 you can see the graph of the Exponential decay for α = 0.25, 0.5, 1, 2.

As we can see large values for α result in a more rapid decrease as t tends to infinity. To calculate
the Fourier Transform we have that

F f (s) =
∫ ∞

−∞

e−αte−2πist dt =

∫ ∞

0
e−(α+2πis)t dt

−
1

α + 2πis

[
e−(α+2πis)t

]∞
0
=

1
α + 2πis

.

We observe that in this case, the valuesF f (s) are complex for s , 0. In Figure 2.18 we graphically
present the power spectrum |F f (s)|2 = 1

α2+4π2s2 of f for each α = 0.25, 0.5, 1, 2.
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Exponential Decay
e 0.25t

e 0.5t

e t

e 2t

Figure 2.17. The graph of the Exponential decay for α = 0.25, 0.5, 1, 2.
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The Power spectrum of the Exponential decay
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Figure 2.18. The Power spectrum of the Exponential decay for α = 0.25, 0.5, 1, 2.

2.2.4 Properties and Convolution

In this paragraph we introduce some basic properties of the Fourier Transform as well as the notion
of convolution which is extensively used in signal processing.

Duality

The first property is referred to as the duality of the Fourier Transform. To this end, calculating
the Fourier Transform on −s we get that

F f (−s) =
∫ ∞

−∞

f (t)e−2πi(−s)t dt =

∫ ∞

−∞

f (t)e2πist dt.

The last integral is exactly the Inverse Fourier Transform of f on s, i.e. F f (−s) = F −1f (s).
Similarly, calculating the Inverse Fourier Transform of f at −t we get that

F −1f (−t) =
∫ ∞

−∞

f (s)e2πis(−t) ds =

∫ ∞

−∞

f (s)e−2πist ds.

Since the last integral is equal to F f (t) we conclude that F −1f (−t) = F f (t). Summarizing the
above equations we get the duality of the Fourier Transform:

F f (−s) = F −1f (s), F −1f (−t) = F f (t). (2.2.11)

The duality is a useful property that can be used in some cases to determine the Fourier Transform.
For instance, we know that FΠ = sinc, and hence F −1sinc = Π. By duality we have that

F sinc(t) = F −1sinc(−t) = Π(−t).

Since Π(−t) = Π(t) we get that F sinc = Π. The next property involves the reversed f −(t) = f (−t)
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signal of f . Its Fourier Transform is given by

F f −(s) =
∫ ∞

−∞

f −(t)e−2πist dt =

∫ ∞

−∞

f (−t)e−2πist dt
u=−t
=

∫ ∞

−∞

f (u)e2πisu du.

But since the last integral is equal to F −1f (s) we get that F f −(s) = F −1f (s).

Shifting and stretching

The next two properties involve the behavior of the Fourier Transform with respect to shifting
and stretching operations on a function. For α ∈ R, we consider the translation fα of f given
by fα(t) = f (t + α). Stretching f by α corresponds to the function f α(t) = f (αt). The Fourier
Transform of fα is given by

F fα(s) =
∫ ∞

−∞

fα(t)e−2πist dt =

∫ ∞

−∞

f (t + α)e−2πist dt.

Substituting u = t + α we can write∫ ∞

−∞

f (t + α)e−2πist dt =

∫ ∞

−∞

f (u)e−2πis(u−α) du = e2πiαs
∫ ∞

−∞

f (u)e−2πius du.

Observing that the last integral is the Fourier Transform of f at s we get that

F fα(s) = e2πiαsF f (s). (2.2.12)

To calculate the Fourier Transform of f α(t) = f (αt) we first assume that α > 0 and use the
substitution u = αt. Therefore, we have that

F f α(s) =
∫ ∞

−∞

f α(t)e−2πist dt =

∫ ∞

−∞

f (αt)e−2πist dt

=
1
α

∫ ∞

−∞

f (u)e−2πisu/α du =
1
α
F f

(u

α

)
.

For α < 0 we get

F f α(s) =
∫ ∞

−∞

f α(t)e−2πist dt =
1
α

∫ −∞

∞

f (u)e−2πisu/α du

= −
1
α

∫ ∞

−∞

f (u)e−2πiu/α du =
1
|α|
F f

(u

α

)
.

Merging the two cases into one equation, we conclude that for every α ∈ R

F f α(s) =
1
|α|
F f

(u

α

)
. (2.2.13)

Linearity

Another way to view the Fourier Transform is as an operator acting on the space of functions f :
R→ R for which

∫ ∞
−∞
|f (t)|dt < ∞. That is, for each f the operator F maps f to the function F f.

An important property of this operator is that is linear, i.e. for every integrable pair f, g : R → R
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and α, � ∈ R we have that
F (αf + �g) = αF f + �F g. (2.2.14)

To verify (2.2.14) we let s ∈ R and write

F (αf + �g) (s) =
∫ ∞

−∞

(αf (t) + �g(t)) e−2πist dt

= α

∫ ∞

−∞

f (t)e−2πist dt + �

∫ ∞

−∞

g(t)e−2πist dt

= αF f (s) + �F g(s).

In a similar manner, it easily verified that the Inverse Fourier Transform is also linear, i.e. F −1 (αf + �g) =
αF −1f + �F −1g, for every f, g : R → R and α, � ∈ R. The way that linearity is used in signal
processing is when one needs to denoise a signal. A noisy signal h(t) can be represented as the
sum of the signals f (t), g(t), where f (t) corresponds to the clean signal and g(t) to the noisy one.
The goal is to denoise the signal h(t) = f (t) + g(t) by removing the part g(t) consisting of the
noisy signal. Applying the Fourier Transform and using the linearity we get that

F h(s) = F (f + g) (s) = F f (s) + F g(s).

Therefore, the problem of reducing the noise of the signal h(t) corresponds to removing the fre-
quencies F g(s) on the frequency domain.

Convolution and convolution theorem

As we have seen so far, the previous properties allow us to modify a signal by using another signal.
For instance, if we want to add some frequencies to a signal f (t) described by the function g(s) we
can define h(s) = F f (s)+ g(s), and by taking the Inverse Fourier Transform F −1h we can end up
with the desired modified signal. The convolution operation involves the scaling of the harmonics
F f (s) by a varying function F g(s). In other words, we are interested in determining the operation
between the signals f (t), g(t) on the time domain for which the Fourier Transform of the resulting
signal is F f (s) · F g(s). To this end, we can proceed with reverse engineering by starting from the
Fourier Transform F f (s) · F g(s) and using Fubini’s theorem to change the order of the integrals:

F f (s) · F g(s) =
(∫ ∞

−∞

f (t)e−2πist dt

)
·

(∫ ∞

−∞

g(x)e−2πixs dx

)
=

∫ ∞

−∞

∫ ∞

−∞

f (t)g(x)e−2πis(x+t) dt dx

=

∫ ∞

−∞

(∫ ∞

−∞

f (t)e−2πis(x+t) dt

)
g(x) dx

Now, using the substitution u = x + t we can write∫ ∞

−∞

(∫ ∞

−∞

f (t)e−2πis(x+t) dt

)
g(x) dx =

∫ ∞

−∞

(∫ ∞

−∞

f (u − x)e−2πisu du

)
g(x) dx

=

∫ ∞

−∞

(∫ ∞

−∞

f (u − x)g(x) dx

)
e−2πisu du.
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If we define h(u) =
∞∫
−∞

f (u − x)g(x) dx we observe that the last integral is exactly the Fourier

Transform of h at s. Therefore, if we want to somehow combine the two signals f (t), g(t) on the
time domain to obtain a signal h(t) for which F h(s) = F f (s) · F g(s) we are bound to define

h(t) =
∫ ∞

−∞

f (t − x)g(x) dx.

The previous operation is the convolution of f with g. Below we state the formal definition.

Definition 2.9 (Convolution). Let f, g : R→ R be two functions for which
∞∫
−∞

|f (t)|dt < ∞,
∞∫
−∞

|g(t)| <

dt < ∞. The convolution of f, g is the function f ∗ g given by

(f ∗ g) (t) =
∫ ∞

−∞

f (t − x)g(x) dx. (2.2.15)

Based on the upon definition the Convolution theorem is summarized as follows:

Theorem 2.3 (Convolution Theorem). Let f, g : R → R be two functions such that
∞∫
−∞

|f (t)|dt <

∞,
∫ ∞
−∞
|g(t)|dt < ∞. Then,

F (f ∗ g) (s) = F f (s) · F g(s),

for s ∈ R.

2.2.5 Filtering

Filtering is a generic term used in signal processing when one needs to apply a transformation to
a signal to modify it. For instance, one may want to eliminate some frequencies of the signal to
reduce its noisy parts and keep the clean signal. In this paragraph, with the help of the Fourier
Transform, we present some of the most essential filters used in signal processing. Following the
conventions used in courses on signals and systems, we denote the Fourier Transform of a function
f by its corresponding capital letter F .

Lowpass filters

The goal of a lowpass filter is to discard all of the frequencies of a signal that exceed a threshold
νc > 0. On the frequency domain, this corresponds to the multiplication of the Fourier Transform
F of the original signal f by the function H given by

H(s) =

1, |s| < νc

0, |s| ≥ νc

. (2.2.16)

In Figure 2.19 you can see the graph of H(s). By using the Inverse Fourier Transform we can
determine the signal h that needs to be convolved with the original signal f to get the desired
output signal that contains no frequencies higher than νc. To this end, observe that H is a stretched
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rect function by a factor of 1/2νc. To see this, write

Π(s/2νc) =

1, |s|
2νc

< 1
2

0, |s|
2νc
≥ 1

2

=

1, |s| < νc

0, |s| ≥ νc

= H(s).

Now, using the stretching property in (2.2.13) and the linearity of the Fourier Transform (it’s
Inverse actually) we get that

F −1H = F −1Π (·/2νc) = 2νcF
−1Π(2νct) = 2νcsinc (2νct) .

Therefore, the desired output signal is given by y(t) = (f ∗ h) (t), where h(t) = 2νcsinc (2νct) .

Figure 2.19. Lowpass Filter.

Bandpass filters

The Bandpass filters allow a particular band of frequencies to pass without any modification by
eliminating all the others. This is described by the multiplication of the Fourier Transform F of
the original signal f with the function

B(s) =

1, ν0 − νc < |s| < ν0 + νc

0, otherwise
. (2.2.17)

The graph of B(s) is shown in 2.20. To find the Inverse Fourier Transform we can express B(s) as
a function of the rect function Π. It is easily verified that B(s) = Π

(
s+ν0
2νc

)
+ Π

(
s−ν0
2νc

)
. Therefore,

F −1B(t) = F −1Π
1/2νc
ν0 (t) + F −1Π

1/2νc
−ν0

(t)

= 2νc · e
2πiν0t · F −1Π(t) + 2νc · e

−2πiν0 · F −1Π(t)

= 4νc cos(2πν0t)sinc(2νct). (2.2.18)

Therefore, to apply the bandpass filter to the signal f we need to convolve f with the Inverse
Fourier Transform of B in (2.2.18). In Figure 2.21 we can see the graph of the Inverse Fourier
Transform of B for ν0 = 10 and νc = 2.
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Figure 2.20. Bandpass Filter.
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Figure 2.21. The Inverse Fourier Transform of B(s) for ν0 = 10, νc = 2.

Highpass filters

As opposed to the lowpass filters the highpass filters pass only the frequencies above a certain
threshold while discarding the others. The function describing this family of filters on the fre-
quency domain is given by

High(s) = 1 − Π
(

s

2νc

)
, (2.2.19)

where νc is the cutoff frequency. Figure 2.22 shows the graph of High(s).

Figure 2.22. The Highpass filter.
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The calculation of the Inverse Fourier Transform involves the calculation of the Inverse Fourier
Transform of the constant function 1. With the theory we have presented so far we can’t calculate
the Inverse Fourier Transform of this function since it is not integrable. One needs to extend
the notion of the Fourier Transform to include such functions. The proper way to achieve this
is by defining the Fourier Transform on a proper class of functions. This class is known as the
Schwartz functions S. Then, the notion of the Fourier Transform is extended to the space of linear
functionals T : S → R. We will not cover this approach in this thesis as in the upcoming sections
of this chapter we will focus on the "discretized" theory of the Fourier Transform which is what is
used by computer machines to process a signal. The reader may refer to [4] for a nice exposition
of this approach. With this extension of the definition one has

F 1 = δ, F δ = 1,

where δ is the linear functional δ : S → R for which δ (f ) = f (0), for f ∈ S. In engineering
courses the linear functional δ is introduced as a function δ : R→ R for which

δ(t) =

+∞, t = 0

0, t , 0
,

and
∫ ∞
−∞

δ(t) dt = 1. In this context, δ is referred to as the unit impulse or Dirac delta function.
One important property of δ is that∫ ∞

−∞

f (t − x)δ(x) dx = f (t), (2.2.20)

for every f ∈ S and t ∈ R. In other words, (f ∗ δ) (t) = (δ ∗ f ) (t) = f (t). The identity in (2.2.20)
is just a conventional notation that results from the fact that the extended Fourier Transform is first
defined for the linear functionals T : S → R for which

T (f ) =
∫ ∞

−∞

f (x)g(x) dx, (2.2.21)

for some g ∈ S. It is not true that every linear function can be expressed in the form of (2.2.21), δ

is one of these. However, introducing δ as a function allows us to think of δ as the linear functional
δ : S → R for which

δ(f ) =
∫ ∞

−∞

f (x)δ(x) dx,

for every f ∈ S. In this case, the relation δf = f (0) can be equivalently expressed as (f ∗ δ) (0) =
f (0). By considering translations of δ one also has (2.2.20). With these definitions, we have that

F −1High(t) = δ(t) − 2νcsinc (2πνct) . (2.2.22)

Therefore, the output signal for which all frequencies in [−νc, νc] have been discarded is given by
f ∗(δ − h) = f ∗δ−f ∗h = f −f ∗h, where f is the original input signal and h(t) = 2νcsinc (2πνct) .
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2.3 The Discrete Fourier Transform

In this section we introduce the discrete analog of Fourier’s theory which is used by computer
machines to process a signal. This is necessary since computers can only store a finite number
of values. The first step is to find an appropriate way to represent a function, or equivalently a
Continuous-Time Signal (CT) f : R→ R in a form that can be processed by a computer machine.
To this end, the technique that is used is known as equidistant sampling : Given an analog signal
f : R→ R and a period T > 0 measured in seconds, one considers the Discrete Time Signal (DT)
x : Z→ R given by

x(n) = f (nT ), n ∈ Z. (2.3.1)

The reciprocal Fs = 1/T is the sampling rate and corresponds to the number of equally-spaced
samples obtained from f in a period of 1 second. Larger values of the sampling rate correspond
to a higher resolution. Figure 2.23 shows an equidistant sampling for the signal obtained from
a piano A4 key. The first figure corresponds to a sampling of 4000 Hz while the second to a
sampling of 8000 Hz.

0.05

0.00

0.05

0.10

A4 Piano

0 2 4 6 8 10
Time [ms]

0.05

0.00

0.05

0.10

Figure 2.23. Equidistant sampling of Piano A4 with sampling rates 4KHz (top) and 8KHz (bot-
tom).

Once we have a discrete analog of the original signal the next step is to define the discrete analog
of the Fourier Transform. By looking at the definition in (2.2.6) the problem boils down on how
to handle the integration. The approach used in this case is again an approximation via Riemann
sums. To this end, since the equidistant sampling partition’s the real numbers R as

R =
∞⋃

n=−∞

[nT, (n + 1)T ] ,

we can approximate the integral in (2.2.6) as∫ ∞

−∞

f (t)e−2πist dt ≈ T ·
∞∑

n=−∞

f (nT )e−2πisnT . (2.3.2)
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Therefore, instead of calculating the Fourier Transform F f (s) by integration we can use the
approximation in (2.3.2). One defines a discrete version of the Fourier Transform for a given
Discrete-Time Signal x : Z→ R by setting

x̂(s) =
∞∑

n=−∞

x(n)e−2πisn. (2.3.3)

In this definition, where a simple 1-sampling of the exponential function is used, one does not
assume that one knows the relation between x and the original signal f . In reality, the computer
stores an array consisting of the values {x(n) : n ∈ Z}7 and then the Fourier Transform is cal-
culated via (2.3.3). If one needs to know the relation between X (s) and F (s), where F (s) is the
Fourier Transform of the original analog signal f at s, then one needs to know the sampling period
T . By (2.3.2), (2.3.3) we see that

x̂(s) ≈
1
T

F
( s

T

)
. (2.3.4)

Therefore, the complex number X (s) is an approximation of the Fourier Transform of the original
signal f corresponding to the frequency s/T scaled by a factor of T . At this point, it should
be obvious that the approach we have adopted so far is an approximation to the original Fourier
Transform. How well is the approximation, is reflected through the sampling period T > 0. The
smaller the better. However, we have not mentioned anything yet about which T is the suitable
one. To this end, an answer is provided by the sampling theorem which says that if the signal
does not contain any frequencies higher than Ω = Fs/2 = 1/(2T )8 Hz, then the signal f can be
reconstructed perfectly from its sampled version x : Z → R given by (2.3.1). Formally, we have
the following theorem.

Theorem 2.4 (Sampling Theorem). Let f : R→ R be an Ω-bandlimited CT signal. I.e., F (s) = 0
for every |s| > Ω, where F : R→ C is the Fourier Transform of f . Furthermore, suppose that f is
square integrable ∫ ∞

−∞

|f (t)|2 dt < ∞.

Let x : Z → R be the T -sampled version of f with T = 1/(2Ω), i.e. x(n) = f (nT ), n ∈ Z. Then f

can be reconstructed from x by

f (t) =
∞∑

n=−∞

x(n) · sinc
( t − nT

T

)
=

∞∑
n=−∞

f
( n

2Ω

)
· sinc (2Ωt − n) , (2.3.5)

for every t ∈ R. In other words, the CT-signal f can be perfectly reconstructed from the DT-signal
obtained by equidistant sampling if the bandlimit is no greater than half the sampling rate.

Proof. First note that we may assume without loss of generality that Ω = 1/2 by considering the
scaled function t 7→ f (t/2Ω) . In this case, the Fourier Transform F : R → C is zero outside
the interval [−1/2, 1/2]. Therefore, we can extend F to a periodic function g : R → R with
fundamental period 1/2. Since f is square integrable by Parserval’s identity in (2.2.10), g would

7At this point we let n ∈ Z but soon we will restrict to a finite number of samples which what the computer stores.
8We also say that f is an Ω-bandlimited signal.
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be in L2
([
−1

2 , 1
2

])
. Hence, we can express g through its Fourier series by

g(s) =
∞∑

n=−∞

ĝ(n)e2πins. (2.3.6)

Also, by Fourier inversion theorem we have that

f (t) =
∫ ∞

−∞

F (s)e2πist ds =

∫ 1/2

−1/2
F (s)e2πist ds. (2.3.7)

Now, for the Fourier coefficient ĝ(n) we have that

ĝ(n) =
∫ 1/2

−1/2
g(s)e−2πins ds =

∫ 1/2

−1/2
F (s)e−2πins ds. (2.3.8)

Combining (2.3.7) and (2.3.8) we see that ĝ(n) = f (−n) for every n ∈ Z. Now write

f (t) =
∫ 1/2

−1/2
F (s)e2πist ds =

∫ 1/2

−1/2

 ∞∑
n=−∞

ĝ(n)e2πins

 · e2πist ds

=

∞∑
n=−∞

∫ 1/2

−1/2
f (n)e−2πin(s−t) ds =

∞∑
n=−∞

x(n)
∫ ∞

−∞

Π(s)e−2πis(n−t) ds.

Observing that the last integral is the Fourier Transform of the rect function Π at (n − t) we may
write

f (t) =
∞∑

n=−∞

x(n)FΠ (n − t).

Now, since FΠ(n − t) = sinc (n − t) = sinc(t − n) we conclude that

f (t) =
∞∑

n=−∞

x(n)sinc (t − n) =
∞∑

n=−∞

f (n)sinc (t − n) ,

which exactly the desired relation in (2.3.5) for T = 1. □

Assuming that we have some prior knowledge of the original signal’s spectrum, the sampling the-
orem gives us a lower bound on the sampling rate to be used, i.e., if the signal does not contain any
frequencies higher than Ω then any sampling rate Fs ≥ 2Ω would suffice to perfectly reconstruct
the original signal f by its sampled version x(n) = f (nT ). For a sampling rate Fs the lower bound
Fs/2 is referred to as the Nyquist frequency. In case f contains higher frequencies, sampling may
cause artifacts referred to as aliasing.

Now, there are still two problems concerning the formula in (2.3.3). The first one is the infinite
sum, and the second one is that the parameter s corresponding to the frequency values is a contin-
uous parameter. For the first problem, in practice one deals with signals of finite duration. Hence,
in a computer machine, a signal is stored as a finite sequence of points x(0), x(1), . . . , x(N − 1).
Regarding the second problem, one computes the Fourier Transform for only a finite number of
frequencies M . Similarly to the discretization of the x-axis the frequencies s/M are considered for
every s = 0, 1 . . . , M − 1. In practice, M is equal to N which leads to the definition of Discrete
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Fourier Transform (DFT) which is calculated by digital machines:

X (k) = x̂ (k/N) =
N−1∑
n=0

x(n)e−2πikn/N , (2.3.9)

for every k = 0, . . . , N − 1. By (2.3.4) we see that

X (k) = x̂ (k/N) ≈
1
T

F
( k

NT

)
. (2.3.10)

In other words, the k-th Fourier coefficient of the DT-signal x corresponds to the k/NT -th fre-
quency of the original signal f scaled by a factor of T. Now, in signal processing we are interested
in the power spectrum {|X (k)|2 : k = 0, 1 . . . , N − 1} of the sampled signal and we omit the in-
formation about the phase. Since for real-valued signals we have that X (k) = X (N − k) for every
k = 0, . . . , N −1 we only need to consider the coefficients for k = 0, . . . , [N/2]. To see this, write

X (N − k) = x̂
(N − k

N

)
=

N−1∑
n=0

x(n)e−2πin(N−k)/N

=

N−1∑
n=0

x(n) · e−2πin · e2πink/N

=

N−1∑
n=0

x(n) ·���*
1

e2πin · e−2πink/N .

Now, since X (k) =
N−1∑
n=0

x(n)e−2πink/N we conclude that X (k) = X (n − k) for every k = 0, . . . , N−

1. Observe that if N is divisible by 2 then k = N/2 corresponds to the Nyquist frequency 1/2T.

2.4 Short-Time Fourier Transform

In the previous section , we introduced the discrete version of the Fourier Transform, which is used
by digital machines to process a signal. The DFT yields frequency information that is averaged
over the entire time domain of the input signal. However, the information about when these
frequencies occur is hidden. In 1946 Dennis Gabor introduced the Short-Time Fourier Transform
(STFT) to recover this hidden information. The idea is simple. We apply the DFT in short-time
windows and slide these windows until we get every part of the signal. One decides the length
N of the window function referred to as the window size and the length H of the sliding window
referred to as the hop length. There are many choices for the window function and its choice has
its effects on the signal. One choice is the rectangular window w : [0, N − 1]→ R given by

w(n) =

1, n ∈ [0, N − 1]

0, n < [0, N − 1]
.

68 Diploma Thesis



2.4 Short-Time Fourier Transform

Then, given a DT-signal x : Z → R the discrete Short-Time Fourier Transform X of the signal x

is given by

X(m, k) =
N−1∑
n=0

x(n +mH)w(n)e−2πink/N , (2.4.1)

for m ∈ Z, and k = 0, . . . , N − 1. Observe that the STFT has two variables, the m corresponding
to the time frame and k to the k-th Fourier coefficient for that time frame. If x is obtained by an
equidistant sampling from a CT-signal f with a sampling rate Fs then the m-th frame corresponds
to the physical time position mH/Fs given in seconds. Small values of hop length H result in
a dense sequence of spectral vectors which corresponds to a huge increase in data volume and
redundancy. For these reasons, one usually relates the hop length H to the window size N . Com-
mon values are H = N/2 or H = N/4, depending on the nature of the application. Figure 2.24
illustrates this idea with a concrete example. In the first figure we see the waveform of the signal
f (t) = 10≤t<5 · sin(2πt) + 15≤t≤10 · sin(10πt). The first 5 seconds the signal f is equal to a sinu-
soid with fundamental frequency of 1 Hz, while in the last 5 seconds it is equal to sinusoid with
associated frequency of 5 Hz. A window size corresponding to a duration of 4 seconds is applied,
with a hop size of 2 seconds. As we can see in the second figure which focuses on the part of the
signal corresponding to the time interval [1, 5], we observe that the frequency exhibiting the high-
est energy is indeed the one corresponding to 1 Hz. In the third figure where both frequencies are
contained in the window segment, we see on the figure of the power spectrum that this is reflected
since the highest values occur for the frequencies corresponding to 1 Hz and 5 Hz. Finally, in the
last figure, we see that only the frequency corresponding to 5 Hz is present since the segment does
not contain the part of the sinusoid with the fundamental frequency of 1 Hz.
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Figure 2.24. Signal and Fourier Transform consisting of two subsequent sinusoids of frequency 1
Hz and 5 Hz. The first figure shows the original signal. The second figure shows the windowed
signal centered at t = 3. The third figure shows the windowed signal centered at t = 5. The last
figure shows the windowed signal centered at t = 7. The example is borrowed from [2].
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One may ask where the rest of the ripples in Figure 2.24 apart from the frequencies corresponding
to 1 and 5 Hz come from. These ripples reflect the effect of the rectangular window on the original
signal and as such, rather than being part of the original signal f, these frequency components come
from the properties of the rectangular window. The design of a proper window function boils down
to eliminating these ripples. To this end, a window often used in signal processing is the Hann
window (also known as the Hanning window). The Hann window g is given by

g(u) =


1
L cos2

(
πu
L

)
, −L

2 ≤ u ≤ L
2

0, |u| > L
2

. (2.4.2)

In Figure 2.25 we see the effect of the Hann window on the signal shown in Figure 2.24. As is
evident from the third figure the ripples are discarded resulting in a smoother representation of the
power spectrum.
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Figure 2.25. Signal and Fourier Transform consisting of two subsequent sinusoids of frequency 1
Hz and 5 Hz. The STFT is calculated using the Hann window leading to a smoother representation
of the power spectrum.

At this point, with the theory we have developed so far we can introduce the concept of a spectro-
gramY, perhaps the most important feature used in audio signal processing. Its richness lies in the
fact that it combines the temporal and spectral aspects of a signal at the same time. Furthermore, it
can be processed as an image by Convolutional Neural Networks (CNN), a powerful architecture
that thrives in image processing nowadays. We will say more about this type of architecture in the
subsequent chapters as is the main architecture that we will use for our song identification task.
Below we formally define the spectrogram of a DT-signal.

Definition 2.10 (Spectrogram). Let x : Z→ R be a DT-signal and let X denote the discrete Short-
Time Fourier Transform of the signal x for a given window length N and a hop length H . The
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2.4 Short-Time Fourier Transform

spectrogram Y of the DT-signal x is the set

Y =
{
|X(m, k)|2 : m ∈ Z, k = 0, . . . , N − 1

}
. (2.4.3)

We conclude this section with two concrete examples. In Figure 2.4 we see the waveform of an
A4 key played on a piano. As we will see in the next chapter, there is a one-to-one correspon-
dence between frequencies and musical pitches. An A4 key corresponds to a pure sinusoid with a
fundamental frequency of 440 Hz. This is reflected by the high energy in that frequency in Fig-
ure 2.26, where the spectrogram of this waveform is shown. As we can see there is a high energy
in multiples of the fundamental frequency 440 Hz corresponding to the harmonics.
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Figure 2.26. The waveform of A4 key along with its spectrogram representation. The A4 played on
piano contains a high degree of the frequency component corresponding to 440 Hz. The other con-
tributions visible in the spectrogram correspond to the harmonics of this fundamental frequency,
which are integer multiples of 440 Hz (i.e., 880 Hz, 1320 Hz, etc.).

0 1 2 3 4 5 6
Time [s]

0.2

0.1

0.0

0.1

0.2

0.3

Am
pl

itu
de

 (A
ir 

pr
es

su
re

)

Waveform of C Major Scale

0 1 2 3 4 5
Time

0

64

128

256

512

1024

2048

Hz

Spectrogram of C Major Scale

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

Figure 2.27. Waveform and spectrogram representation of a C4 major scale played on a Piano.
The first note is C3 corresponding to a fundamental frequency of 130 Hz.
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The color bar in Figure 2.26 is shown in a decibel scale with reference point the maximum am-
plitude present in this spectrogram. This means that 0 dB corresponds to the highest energy.
Mathematically this is expressed by the following formula:

dB (X(m, k)) = 20 · log10

(
|X(m, k)|
X∗

)
,

where X∗ = max
{
|X(m, k)|2 : m ∈ Z, k = 0, . . . , N − 1

}
. Figure 2.27 shows the waveform and

the spectrogram of a C4 major scale played on a piano. By looking at the spectrogram we can
deduce that exactly 15 notes were played, something which cannot be seen from the waveform
representation.
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Chapter 3

Audio Signal Processing

In this chapter, we shift from the mathematical theory of Fourier’s transform and focus on the most
common techniques used in audio signal processing nowadays. We introduce the most important
features extracted from the raw audio signals and used in many applications. Much of the content
in this chapter is inspired by Müller’s well-written book, Fundamentals of Music Processing:
Audio, Analysis, Algorithms, Applications [2].

3.1 Music Representations

Music can be represented in different ways and formats. In this section, we introduce three differ-
ent categories of representing a piece of music, or equivalently, a musical sound. These categories
are 1) sheet music, 2) symbolic, and 3) audio representations. We start by describing these cate-
gories and giving some examples. We mainly focus on the audio representation of music, which
allows us to apply mathematical operations and take advantage of the mathematical concepts in-
troduced in the previous chapter.

Sheet Music: A music composition may be written down by a composer in the form of a musical
score. In a score, musical symbols are used to visually encode notes and how these notes should
be played by a musician. This representation of music is referred to as sheet music. The original
medium of this representation is paper and constitutes a human-readable representation of music
that musicians can share, and by following the symbolic conventions can reproduce a musical
composition. In Figure 3.1 you can see an example of a music score corresponding to a part of
Beethoven’s Moonlight Sonata.

Symbolic music representations: The term symbolic refers to any machine-readable data format
that explicitly represents musical entities. Some of the most common symbolic representations of
music are the Musical Instrument Digital Interface (MIDI) protocol, Piano-Roll representations,
and various file formats such as MusicXML. An important and challenging task involving sym-
bolic representations is the Optical Music Recognition (OMR) (e.g. [9, 10, 11]), which can be
thought of as the equivalent of Optical Character Recognition (OCR) in the text domain. As in
the case of OCR where the goal is to convert scanned images of printed text into machine-encoded
text, the goal of OMR is to convert digital images of sheet music into symbolic music representa-
tions such as MIDI or MusicXML.
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Audio representations: For our purposes, the most important representation of music is what we
call the audio representation. This representation corresponds to the interpretation of a musical
sound as an acoustic wave, which is transmitted through the air as pressure oscillations. In this
way, one can view a musical sound as an audio signal corresponding to the change in air pressure
at any given location as a function of time. Since we can view a musical sound as a signal we can
take advantage of Fourier’s theory and extract valuable information to solve challenging music
information retrieval tasks.

Figure 3.1. Sheet Score of Beethoven’s Moonlight Sonata.

In definition 2.10 we introduced the concept of a spectrogram. As we will see, variants of this
spectral-temporal representation of a musical sound will be used extensively throughout this thesis
for the song identification task presented in the upcoming chapters. The most common file formats
storing this audio representation of music are Wav and Mp3 files. It is important to stress out at
this point that the importance of the audio representation lies in how and when these pressure
oscillations occur. In practice, a Wav or an Mp3, when loaded into a computer machine it is
stored as an array of finite values x(0), x(1), . . . , x(N). Typically, these values are represented by
a 16-bit integer corresponding to the air pressure at a certain location and time. As discussed in
Section 2.3 if one needs to know the time occurrence of x(n) with respect to x(0) one needs to
know the sampling rate of the sampling procedure. Typical values of the sampling rate are 8000
Hz, 22050 Hz, and 44100 Hz. In Figures 2.1, 2.4, and 2.27 you can see the waveform of three
different audio signals.

3.2 Audio characteristics

3.2.1 Musical Notes, Pitches, and Frequencies

In music, the term note is not strict. It may refer to either a musical symbol (when referring to the
score representation of music) or a pitched sound (when talking about audio representations). The

74 Diploma Thesis



3.2.1 Musical Notes, Pitches, and Frequencies

notion of pitch is a subjective concept and refers to a perceptual property that allows a listener to
order a sound on a frequency-related scale. Playing a note on an instrument more or less results
in a periodic sound of a certain fundamental pitch of note. For example, playing the note A4 on
a piano results in a sound with a fundamental frequency of 440 Hz. Psychoacoustic experiments
have shown that any two notes with fundamental frequencies in a ratio equal to any power of two
are perceived as very similar. Because of this perceptual property, one can group the notes into
different pitch classes: Given a fundamental frequency of f0 Hz, its pitch class can be described as
the set

PC(f0) =
{
f0 · 2k : k ∈ Z

}
.

This observation leads to the fundamental notion of an octave, which is defined to be the interval
between one musical note and another with half or double its fundamental frequency. Since in
practice one deals with only a finite number of musical symbols, one needs to discretize the set of
all possible pitches. This leads to the notion of a musical scale which can be thought of as a finite
set of representative pitches. In other words, a musical scale consists of a finite partition of an
octave’s interval. Many different scales have been suggested and used, however, the predominant
tuning system of Western music is the twelve-tone equal-tempered scale , where an octave is
partitioned into twelve scale steps. The twelve points in an octave are all equally spaced on
a logarithmic scale, with a ratio equal to the 12th root of 2 (21/12 ≈ 1.05946). The smallest
possible interval in this scale is called a semitone, and it is the difference between the fundamental
frequencies of two subsequent scale steps.

In the twelve-tone equal-tempered scale, there are twelve pitch classes. In Western music
notation, these pitch classes are denoted by combining a letter name and accidentals. Seven of the
pitch classes are denoted by the letters C, D, E, F, G, A, and B. These pitch classes correspond to
the white keys of a piano keyboard as shown in Figure 3.2.

Figure 3.2. Section of a piano keyboard with keys ranging from C3 to C5.

The remaining five pitch classes correspond to the black keys of a piano keyboard and are denoted
by a combination of a letter and an accidental (♯, ♭). A sharp (♯) raises a note by a semitone, i.e.
multiplying the given frequency by 21/12, and a flat (♭) lowers it by a semitone, i.e. dividing the
frequency by 21/12. The accidentals are written after the note name. For example, D♯ represents
D-sharp and D♭ represents D-flat. In the equal-tempered scale, the remaining five pitches can
be either denoted by C♯, D♯, F ♯, G♯, A♯ or by D♭, E♭, G♭, A♭, B♭. This means, that C♯ and D♭

represent the same pitch class. The number next to the letters corresponds to the octave that each
note belongs to. For example, the A4 means that the musical note A belongs to the 4th octave.
The A4 is determined to have a fundamental frequency of 440 Hz. Since subsequent octaves
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correspond to a multiplication or division by a factor of two we see that A1 has a fundamental
frequency of 440 · 1

23 = 55 Hz, and A0 a fundamental frequency of 27.5 Hz. The lowest note
C0 in this notation has a fundamental frequency in the region of 16 Hz, which is already below
what a human can acoustically perceive. Ordering all notes of the equal-tempered scale according
to their pitches, one obtains an equal-tempered chromatic scale , where all notes of the scale
are equally spaced. In the music context, the term "chroma" is equivalent to the notion of pitch
class. This means, for example, that both D3 and D4 have the same chroma since they belong
to the same pitch class. As opposed to the piano keyboard, where more or less each piano key
can be associated with a periodic wave of fixed frequency, equivalently a pure tone, in real-world
situations, sounds are far from being a simple pure tone with a well-defined frequency. Playing
a single note on an instrument may result in a complex sound that contains a mixture of different
frequencies changing over time. To analyze such sounds, one uses the Fourier theory presented
in Chapter 2. In this way, one expresses the complex sound as a superposition of pure tones or
sinusoids, each with its own frequency of vibration, amplitude, and phase.

3.2.2 Intensity and Loudness

By now it should be clear that pitch is a subjective notion corresponding to an objective measure,
i.e. the notion of frequency. The subjectiveness comes from the fact that each person may perceive
a musical sound differently. However, the pure tones used to produce the sound are well-defined
since they have a fixed fundamental frequency, amplitude, and phase. Similarly, loudness is an-
other subjective measure that correlates to the objective measures of sound intensity and sound
power . Loudness tries to order the musical sounds on a scale extending from quiet to loud. For-
mally, sound power is the rate at which sound energy is emitted, reflected, transmitted, or received,
per unit of time and it is measured in watts (W). Then, sound intensity represents the sound power
per unit area, and it is measured in watts per square meter (W/m2). Human beings are capable of
realizing sounds with extremely low values of power and intensity. For example, the threshold of
hearing (TOH), which is the minimum sound intensity of a pure tone a human can hear, is roughly
equal to

ITOH = 10−12W/m2. (3.2.1)

On the other hand, the upper bound on the intensities a human can perceive is equal to ITOP =

10W/m2 referred to as the threhsold of pain (TOP). It is customary to switch to a logarithmic
scale to express power and intensity. More precisely, one uses a decibel (dB) scale , which is a
logarithmic unit expressing the ratio between two values. Then, the intensity measured in dB is
defined as

dB(I) = 10 · log10

(
I

ITOH

)
. (3.2.2)

From (3.2.2) we see that db(ITOH ) = 0, and doubling the intensity results in an increase of roughly
3 dB since

dB(2 · I) = 10 · log10(2) + dB(I) ≈ 3 + dB(I).

Table 3.1 shows the intensity values of some typical sounds.
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Table 3.1. Typical intensity values given in W/m2. Table borrowed from [2]

Source Intensity Intensity level ×TOH

Threshold of hearing (TOH) 10−12 0 dB 1
Whisper 10−10 20 dB 102

Pianissimo 10−8 40 dB 104

Normal conversation 10−6 60 dB 1010

Fortissimo 10−2 100 dB 1010

Threshold of pain 10 130 dB 1013

Jet take-off 102 140 dB 1014

Instant perforation of eardrum 104 160 dB 1016

3.3 Audio features

3.3.1 Spectrograms

In Definition 2.10 we introduced the concept of a spectrogram, which constitutes, perhaps, the
most important audio feature used in audio signal processing. The reason for this is that it serves
as the building block for extracting the log-power mel-spectrograms and chromagrams. These
audio features are used extensively nowadays in many music information retrieval tasks. In our
case, the log-power mel-spectrograms will be the primary audio features that we will use for the
song identification task.

At this point, let us remind you how one can extract the spectrogram from a digital signal
x : [0, M] → R, resulting from an analog signal f : R → R with equidistant sampling with
a sample rate equal to Fs ∈ N. With this reminder we also make a comment on the number
of frequency bins that are selected in practice when someone performs the STFT on any audio
signal processing library, such as in librosa [12]1 for instance. First, one assumes that the analog
signal f : R → R is of finite duration. Mathematically, this means that there exists an interval
Iα = [0, α], α > 0 such that f (t) = 0 for every t < Iα. The equidistant sampling with a sample rate
equal to Fs yields a DT signal x : [0, M]→ R

x(n) = f (n · T ), T = 1/Fs. (3.3.1)

Then, one determines the length N of the window size and the hop length H to use before applying
the STFT. The Fourier Transform of the m th frame is then given by

X(m, k) =
N−1∑
n=0

x(n +mH)w(n)e−2πikn/N . (3.3.2)

The crucial part at this point is to determine the bounds for the time frames m and the number
of frequency bins k. To determine the number of time frames m one needs to find how many
sections of N points with a shift of H points can fit into the section with M points. To be more

1https://librosa.org/doc/latest/index.html
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Chapter 3. Audio Signal Processing

concrete, we illustrate this with an example. Assume that an audio signal f : R→ R has a duration
corresponding to 5 sec. Furthermore, assume that the equidistant sampling has a sample rate equal
to 8 kHz. Then, the digital signal will have 40000 points in total. Some typical values for the
window size N and the hop length H are N = 1024 and H = N/2 = 512. In this case, one needs
to determine the lower and upper bound for m such that

0 ≤ n +mH ≤ 40000, 0 ≤ n ≤ 1023. (3.3.3)

The lower bound is obviously m = 0. For the upper bound, solving for m in (3.3.3) one obtains

n +mH ≤ 40000 ⇐⇒ m ≤
40000 − n

H

⇐⇒ m ≤
40000 − n

N/2

where 0 ≤ n ≤ 1023 = N − 1. Since the minimum on the left-hand side is achieved when
n = N − 1 we get that

m ≤
80000

N
− 2 +

2
N

=
80000
1024

− 2 +
1

512
≈ 76.12.

Therefore, we conclude that the upper bound is equal to 76, and hence we have 77 time frames
in total.2 To determine the ideal number of frequency bins one refers to the Sampling Theorem
in 2.4. First, observe that for fixed m the point mH corresponds to the physical time of mH/Fs

seconds of the original audio signal. By (2.3.10) the kth Fourier coefficient in (3.3.2) corresponds
to the frequency kFs/N. As shown at the end of paragraph 2.3, for every k we have that

X(m, k) = X(m, n − k),

for every k = 0, . . . N−1. Since we are only interested in the magnitudes of the Fourier coefficients
we only need to consider the frequency bins corresponding to k = 0, . . . N/2. Observe that the
N/2th frequency bin corresponds to the physical frequency Fs/2, which is the Nyquist frequency.
Therefore, we have N/2 + 1 frequency bins in total. In our example, the application of the STFT
yields a complex matrix C513×77. Then, the spectrogram Y of the audio signal is defined as

Y =

{
|X(m, k)|2 : 0 ≤ m ≤

[M − N

H

]
, 0 ≤ k ≤ N/2

}
, (3.3.4)

where M is the number of points that make up the sampled version of the original signal, N is
the window size, and H is the hop length of the STFT. In Figures 2.26 & 2.27 shows the (log-
amplitude) spectrograms of the A4 piano key and the C major scale. Below you can see the
spectrogram obtained from the notes C2, C4, G6, and A6, played in that order. The fundamental
frequencies of these notes are 65, 262, 1568, and 1760 Hz, respectively.

Observe that indeed we see a high energy content in the frequency of 65 Hz for the 1st second, in

2Results may differ from library to library depending on how they treat the remaining part of the signal. For example,
librosa calculates 79 time frames in total.
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Figure 3.3. Spectrogram of the notes C2, C4, G6, and A6.

the frequency of 262 Hz for the 2nd second, and in the frequencies of 1568 Hz and 1760 Hz for
the 3rd and 4th seconds, respectively, indicating that indeed the signal corresponds to the notes
C2, C4, G6, and A6.

3.3.2 Log Amplitude Spectrograms

Now, a common practice is to convert the square magnitudes |X(m, k)|2 of the Fourier coefficients
obtained from the STFT in a scale which is more perceptual-relevant to the human’s ears. In 3.2.2
we introduced the decibel (dB) scale, and in Table 3.1 we presented some typical sounds and their
respective intensity decibel levels with respect to the Threshold of Hearing (TOH). In the case of
spectrograms, it is customary to use as a reference the maximum or minimum value among all
values of the square amplitudes contained in the given spectrogram. Mathematically, this can be
expressed as follows: Suppose that we have a spectrogram Y ∈ RK×M 3, where K is the number of
frequency bins and M is the number of time frames. Then, the log-amplitude spectrogram dB(Y)
with respect to the maximum value Y∗ is given by

dB (Y) (k, m) = 10 · log10

(
|Y(k, m)|

Y ∗

)
, (3.3.5)

for every k = 0, . . . , K − 1, m = 0, . . . M − 1. Observe that the maximum values of dB (Y)
in (3.3.5) is 0. In Figure 3.4 you can see the log-amplitude spectrogram obtained from the signal
corresponding to the notes C2, C4, G6, and A6, played sequentially.

3Here we consider the transpose Y T of Y defined in (3.3.4). Throughout we will represent the spectrogram by Y,
and YT interchangeably, without distinguishing these two representations.
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Figure 3.4. Log-amplitude spectrogram of the notes C2, C4, G6, and A6.

3.3.3 Mel Spectrograms

Mel-spectrograms is another audio feature that is extracted from spectrograms. As in the case of
log-amplitude spectrograms where the idea was to convert the magnitudes of the Fourier coeffi-
cients to a more perceptual-relevant scale, i.e. the decibel scale, in the case of mel-spectrograms,
the idea is to represent the y-axis corresponding to the spectral dimension in a more perceptual-
relevant scale to the human ears. The need to convert the spectral dimension arises from psychoa-
coustic experiments indicating that the human perception of pitch is not linear but logarithmic. A
quick way to see this is by hearing the pitches of the notes C2, C4, G6, and A6 in Figure 3.4. These
notes have fundamental frequencies equal to 65, 262, 1568, and 1760, respectively. Observe that
the distances between the pitches with frequencies 262 - 65, and 1760 - 1568 are almost the same
(around 200 Hz). However, if we were to hear these pitches played sequentially we would observe
that the pitch distance (difference) between the pair of notes corresponding to G6 and A6 sounds
as if were the same as opposed to the pair of notes corresponding to C2 and C4. This indicates that
the human perception of pitch varies in a non-linear fashion. From psychoacoustic experiments,
it has been observed that the relation that best describes the human perception of pitch is given by
the following formula

m = 2595 · log10

(
1 +

f

700

)
. (3.3.6)

One speaks about mel frequencies and the mel scale when referring to the conversion from the
standard Hz scale to the scale described by (3.3.6). For example, the Mel frequencies of C2, C4,
G6, and A6 are 100, 358, 1324, and 1416 Mel Hz, respectively. Observe now that the difference
between C4 and C2 is 258 Mel Hz, and the difference between A6 and G6 is 90 Mel Hz. Figure 3.5
shows the graph of the function defined by (3.3.6).
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Figure 3.5. Relation between Hz and Mel Hz.

The transition from spectrograms to mel-spectrograms requires a few more steps than just convert-
ing the frequencies from the standard Hz scale to the mel scale in one-to-one correspondence and
then writing down the amplitudes of these frequencies. In practice, one determines the number
of frequencies bins to keep after the transformation of a log-amplitude spectrogram to a mel-
spectrogram in the mel scale. Then, the amplitudes of these selected frequencies are calculated
by applying triangular filters in the amplitudes of the frequencies in the original log-amplitude
spectrogram. This process can be divided into the following three steps:

(i) Choose the number of mel bands (the frequency bins).

(ii) Construct the mel filter banks (The matrix obtained from the triangular filters).

(iii) Apply mel filter banks to the log-amplitude spectrogram to obtain the mel-spectrogram (ma-
trix multiplication).

We explain these three steps both by presenting the general methodology and by illustrating it with
the conversion of the log-amplitude spectrogram, corresponding to the notes C2, C4, G6, and A6
in Figure 3.4, to their respective mel-spectrogram representation. In the general case, suppose we
have a log-amplitude spectrogramY ∈ RF×T , where F denotes the number of frequency bins in the
original Hz scale, and T to the number of time frames obtained after the application of the STFT
to the original raw audio signal. Having chosen a number of frequency bins M , the construction
of the mel filter banks can be summarized in the following steps:

(i) Convert lowest (L′) and highest (H ′) standard frequency to Mel by (3.3.6) to obtain two
ending points L < H .

(ii) Create M number of equally spaced points in the interval [L, H].
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(iii) Convert the equally spaced points from the mel scale back to the standard Hz scale.

(iv) Create M triangular filters to obtain a matrixM ∈ RM×F (mel filter banks).

Then, the mel-spectrogram S ∈ RM×T is calculated via the multiplication S =M·Y. In detail, the
process of constructing the mel filter banksM is the following: The M equally-spaced number of
points {m1, . . . , mM } in the interval [L, H] are given by

mj = L + j ·
H − L

M + 1
, j = 1, . . . , M. (3.3.7)

Then, we convert these mj equally-spaced points back to standard Hz scale using the inverse
of (3.3.6) given by

fj = 700 ·
(
10mj/2595 − 1

)
, j = 1, . . . , M − 1. (3.3.8)

Create M triangular filters Tj with base determined by the points fj−1, fj+1 and the third point being
the mj, where f0 = L′, fM+1 = H ′. The triangles are scaled to have a height of 1. These triangular
filters are given by

Tj(x) =
(
1 − 2Aj |x − aj |

)
· 1|x |≤ 1

2Aj
(x), j = 1, . . . , M, (3.3.9)

where Aj = fj+1 − fj−1, αj = fj, and

1|x |≤ 1
2Aj

(x) =

1, |x | ≤ 1
2Aj

0, |x | > 1
2Aj

.

To obtain the mel filter banks M ∈ RM×F one applies the triangular filters Tj to the frequencies
s1, . . . , sF corresponding to the F frequency bins of the spectrogram Y ∈ RF×T . For example, in
the case where the window of the STFT is equal to N = 1024 and the sampling rate of the signal is
Fs = 8000, then we have F = N/2+ 1 = 513 frequency bins in total, where the lowest frequency
is 0 and the highest is Fs/2 = 4000 Hz. Formally, the matrixM can be calculated by

M =


T1(s1) . . . T1(sF )

...
. . .

...

TM (s1) . . . TM (sF )

 . (3.3.10)

The mel-spectrogram representation of Y is S = M · Y. To demonstrate this transition consider
the log-amplitude spectrogram in 3.4. In this case, the sampling rate is equal to Fs = 8000, the
window length is equal to N = 1024, and the hop length is equal to H = 512. The total duration of
the signal is 4 seconds. Therefore, the size of the log-amplitude spectrogramY in 3.4 has F = 513
and T = 63. Choosing M = 20 Mel frequency bins we obtain the following triangular filters shown
in Figure 3.6. In Figures 3.7, 3.8 you can see the corresponding mel-spectrograms of the notes
C2, C4, G6, and A6, with 20, and 256 frequency bins, respectively. The number of frequency bins
is a tuning parameter and depends on the task at hand. Common choices are 40, 60, 90, 128, and
256. The Mel-spectrograms, are perhaps the most widely used audio features nowadays. Their
importance lies in the fact that they can reduce the dimensions of the initial spectrogram while at
the same time keeping all the interesting information. They have been extensively used in many
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song identification tasks [13, 14, 15] and will also serve as the main audio feature in our song
identification task.
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Figure 3.6. Visualization of the triangular filters.
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Figure 3.7. Mel spectrogram of the notes C2, C4, G6, and A6 with 20 frequency bins.

3.3.4 Continuous Q Transform (CQT)

As we mentioned in 3.2.1, in Western music, every two neighboring points in the twelve-tone
equal-tempered scale have a pitch ratio equal to the 12th root of 2, i.e. 21/12 ≈ 1.05946. The
application of the STFT on a raw DT signal yields a linear frequency resolution. To see this,
assume that the DT signal x has a sampling period equal to T = 1/Fs and the window length
of the STFT is N . Then, by (2.3.10) the kth frequency bin obtained by the STFT corresponds to
the physical frequency k/NT of the original CT signal. This shows that the obtained frequencies
from the STFT are linearly spaced with each other as shown in Figure 3.9. However, when we
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Figure 3.8. Mel spectrogram of the notes C2, C4, G6, and A6 with 256 frequency bins.

deal with audio signals corresponding to some piece of music it would be beneficial to have a
frequency resolution that each two neighboring points will have a pitch ratio equal to 21/12. When
we introduced the mel-spectrograms we mapped the frequency scale obtained from the STFT to
the mel scale, following a log scale. But, also in this case the frequency bins that we obtain at the
end, may not have a one-to-one correspondence to the notes used in Western music.

Figure 3.9. The frequency bins obtained from the STFT.

For that reason, a variant of the STFT known as Continuous Q Transform (CQT) has been devel-
oped [16]. In this section, we describe the basic principles underlying this transformation and we
visualize the resulting spectrograms. The resulting features from the CQT are called CQT-features
and have been used as input features to deep learning models in Cover Song Identification tasks
(CSI) [17, 18]. A comparison of the performance of the various audio features in an environmental
classification task using Convolutional Neural Networks can be found in [19].

In the Continuous Q Transform one fixes a minimum frequency fmin and requires the rest of the
frequencies fk to satisfy

fk+1

fk
= 21/b. (3.3.11)

In practice fmin is equal to the pitch of C1 which is 32.70 Hz, and b = 12, corresponding to the
semi-tone resolution. With this setting, we require

Q = fk/δfk =
fk

0.059fk
= 17, (3.3.12)
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where
δfk = fk+1 − fk = 21/12fk − fk = fk(1 − 21/12), (3.3.13)

is the resolution bandwidth and Q is known as the quality factor Q. Now, in order for the ratio of
frequency to bandwidth to be a constant (constant Q) the window size must vary inversely with
frequency. To this end, assuming a DT signal x with sampling rate Fs, the length of the window
in samples at frequency fk should be equal to

N(k) = Fs/δfk =
Fs

fk
Q. (3.3.14)

To see why this should happen, observe that the resolution bandwidth in the STFT is

δfk = fk+1 − fk = (k + 1)
Fs

N
− k

Fs

N
= Fs/N, (3.3.15)

where N is the window length. For the neighboring frequencies to satisfy (3.3.11), one should also
have that δfk = fk/Q. Therefore, we obtain

N = Fs/δfk =
Fs

fk
Q. (3.3.16)

The expression for the kth spectral component in the case of the DFT is

X (k) =
N−1∑
n=0

x(n)w(n)e−2πjkn/N , (3.3.17)

where w(n) is the Hann window. In this expression, the digital frequency is 2πk/N . In the case
of the constant Q transform, in order to take account of the constraints of Eqs. (3.3.11),(3.3.12),
and (3.3.14), the digital frequency of the kth component should be 2πQ/N(k). This is because the
ratio for two neighboring points will satisfy

2πQ/N(k + 1)
2πQ/N(k)

=
N(k)

N(k + 1)
=

fk+1

fk
= 21/12,

as desired. Furthermore, the window function should have the same shape for each component,
but since its length is determined by N(k), it should be a function of k as well as n. Therefore,
taking into account the fact that the number of terms varies with k, by normalizing with N(k), the
constant Q transform is given by

X (k) =
1

N(k)

N(k)−1∑
n=0

W (k, n)x(n)e−2πjQn/N(k), (3.3.18)

where the maximum k is chosen such that the digital frequency fk not exceeds the Nyquist fre-
quency Fs/2. Formally, by (3.3.17) we get

fk <
Fs

2
⇐⇒

Fs

N(k)
Q <

Fs

2

⇐⇒ N(k) > 2Q.
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Therefore, the maximum k is determined by

k∗ = max {k ∈ N : N(k) > 2Q} . (3.3.19)

Finally, the Hann window in (3.3.18) is given by

W (k, n) = α + (1 − α) cos (2πn/N(k)) ,

where α = 25/46 and 0 ≤ n ≤ N(k) − 1. The CQT representation of the DT signal x is then
given by

Ycqt =
{
|X (k, m)|2 : 0 ≤ k ≤ k∗, m ∈ Z

}
, (3.3.20)

where X (k, m) is derived by application of the constant Q transform in (3.3.18) in short-time
segments of the original signal. For example, in the case of the audio signal of the notes C2, C4,
G6, and A6 with a sampling rate equal to Fs = 8000, a hop length H = 512, and a frequency
resolution corresponding to the semi-tone resolution we get a 83 × 63 2D representation. The
maximum number (83) of frequency bins is determined by

k∗ = max
{
k ∈ N : f k/12

min = (32.7)k/12 < Fs/2 = 4000
}
,

assuming that the lowest pitch note is C1. Figure 3.10 shows the corresponding representation
obtained from the continuous Q transform. In this representation, it is far from evident when and
which notes were played.
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Figure 3.10. CQT representation of the audio signal corresponding to C2, C4, G6, and A6.

3.3.5 Chroma Features

Chroma features or chromagrams are yet another important audio feature that is extensively used
in several MIR (Music Information Retrieval) tasks. In short, they are constructed by first grouping
all pitches that belong to the same pitch class (i.e. their ratio is a power of 2) and then summing
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their amplitudes. In the case of the C2, C4, G6, and A6 pattern in 3.10 where a semitone resolution
is used, the spectral dimension of the chroma representation is 12. In Figure 3.11 we can see the
chroma representation of the audio signal corresponding to the four aforementioned notes.
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Figure 3.11. Chroma representation of the audio signal corresponding to C2, C4, G6, and A6.

3.4 Audio Augmentations

As we shall shortly see, one of the main challenges in designing music information retrieval ap-
plications that are used by the users in real-time, is that the audio fragments are captured in noisy
environments, and as such, the audio signals arriving on the server are distorted. To this end, one
needs to understand these types of distortions that may arise before designing such systems. In
the upcoming sections, we will apply on purpose such distortions to the original signals in or-
der to train a deep-learning model to suppress these distortions and output a feature vector that
would be as close as possible (with respect to a distance measure) to the feature representation
corresponding to the original signal.

3.4.1 Background Noise

One of the most common distortions encountered when recording audio fragments from mobile
devices is the presence of background noise, such as people talking, car engines, and other ambient
sounds. In the upcoming section, where our focus is on the song identification task, we will explore
how this particular type of distortion has driven established applications like Shazam to develop
sophisticated algorithms and robust feature representations, aiming to enhance their performance.
In this paragraph, we define the term Signal to Noise Ratio which determines the "amount" of
noise to be added to a clean audio signal, and explain mathematically how one can output an audio
signal that is the result of a clean audio with added background noise. We first start with some
basic definitions from signal processing:
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Definition 3.11 (Energy and Power of a DT signal). Given a DT signal x : Z → R, the energy of
the signal is given by

Ex =

∞∑
n=−∞

|x(n)|2, (3.4.1)

, and its power by

Px = lim
N→∞

1
2N + 1

N∑
n=−N

|x(n)|2. (3.4.2)

In signal processing, Signal-to-noise ratio (SNR) is a measure that compares the level of a desired
signal to the level of background noise. SNR is defined as the ratio of signal power to noise
power. A ratio higher than 1 indicates more signal than noise while a ratio lower than 1 indicates
more signal than noise. More formally, suppose that y is the original signal, and b the signal
corresponding to some ambient noise. Then, the SNR is given by

SNR =
Py

Pb
=

Ey

Eb
. (3.4.3)

It is customary to express the above ratio in decibels by using the logarithm:

SNRdB = 10 log10

(
Py

Pb

)
. (3.4.4)

This is equivalent to
Py,dB = SNRdB + Pb,dB, (3.4.5)

where Py,dB = 10 log10(Py), Pb,dB = 10 log10(Pb), the power of y, and b, in decibel scale. Below
we provide an algorithm that outputs a distorted signal z, corresponding to the addition of some
ambient noise b to a clean signal y with fixed SNR.

Algorithm 3.1: Adding Background Noise

Input: Clean audio y, Noise signal b, SNR in dB
1: SNR ←− 10SNR/10

2: Ey ←−
∑∞

n=−∞ |y(n)|2.
3: Eb ←−

∑∞
n=−∞ |b(n)|2.

4: z ←−
√

Eb
Ey

SNR · y + b.
Output: z

3.4.2 Reverberation - Impulse Response

Reverberation, often referred to as reverb, is a phenomenon that occurs in acoustic environments
when sound waves reflect off surfaces and create a persistence of sound after the original sound
source has stopped. It is the collection of reflections that continue to bounce around in a room or
space before fading away. When sound waves encounter surfaces such as walls, floors, and objects,
they bounce off these surfaces and travel back to our ears. This creates a series of reflections that
blend with the direct sound from the source. These reflections give a sense of spaciousness, depth,
and ambiance to the sound. To add the reverberation effect from a physical environment, such as
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a theater, a train station, a street, etc., to a clean audio signal to make it sound as if were played
in this environment, one needs an impulse response produced in the environment and the discrete
convolution

(y ∗ x)(n) =
∞∑

m=−∞

y(m)x(n −m), n ∈ Z

of the DT signals y, x.

3.4.3 High and Low Pass Filters with Decaying Energy

The energy decay of low and high frequencies is a common distortion when the audio stream is
captured through a microphone in noisy environments. Therefore, any efficient music recognition
system must exhibit robust behavior against such distortions. To develop a system capable of
disregarding these distortions, we first need to understand how to introduce these distortions to a
clean audio signal. In paragraph 2.2.5, we showed how one can completely remove frequencies
below/above certain thresholds using the properties of the Fourier Transform. However, these
transformations are extreme cases that rarely arise in realistic scenarios. In practice, it is more
common for some frequencies below/above a certain threshold to experience a decay in terms of
their energy. We refer to these transformations as low/high pass filters with decaying energy. For
example, in the case of the low pass filter, octaves above a certain threshold usually experience a
decay with constant decreasing factors. Similarly, in the high pass filter, octaves below a certain
threshold experience a similar decay. In this paragraph, we address the case where the energy
of frequencies above a certain threshold is reduced by a fixed number of decibels. It is not hard
to extend this idea to the case where the frequencies of each octave are scaled down by different
factors. Furthermore, the case of the high pass filter is handled in a similar manner.

Suppose now that we have a clean audio signal f : R → R and we want to reduce all the frequen-
cies of f above a threshold νC by α decibels. The goal is to determine the function g : R→ R that
when convolved with f yields the desired result. Using the Fourier Transform in 2.2.6 and taking
the square magnitudes we obtain the power spectrum of f{

|F f (s)|2 : s ∈ R
}
. (3.4.6)

The next step is to find the factor � such that the product � · |F f (s)|2 corresponds to a reduction of
α decibels. To this end, we convert the square magnitudes to the decibel scale by

20 · log10

(
|F f (s)|

F ∗

)
,

where F ∗ = maxs |F f (s)|2. Then, we need to find � such that

20 · log10

(
� · |F f (s)|

F ∗

)
= 20 · log10

(
|F f (s)|

F ∗

)
− α. (3.4.7)

Solving 3.4.7 for �, we obtain � = 10−α/20. Therefore, the Fourier Transform of g must be equal
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to

F g(s) =

1, |s| < νC

10−α/20, |s| ≥ νC.

Or equivalently, using the high pass and low pass filters in 2.2.5,

F g(s) = 10−α/20 ·

(
1 − Π

(
s

2νC

))
+ Π(s/2νC). (3.4.8)

Hence, by the inverse Fourier Transform we conclude that

g(t) = 10−α/20 · δ(t) − 2 · 10−α/20νCsinc(2πνCt) + 2νCsinc(2νCt).

In practice, these operations are handled by their discrete analog using the theory in section 2.3.
This means that, instead of the continuous Fourier Transform the discrete version is used to obtain
the discrete power spectrum

{|x̂(s)|2 : s = 0, . . . , N/2},

where N is the length of the sampled version of f . Then, the frequencies satisfying s · Fs/N > νc

are multiplied by 10−α/10. The inverse discrete Fourier Transform is used to yield the transformed
audio signal.

3.5 Song Identification

At this point, using the theoretical tools and the audio features that we introduced in the previous
sections, we can design sophisticated music information retrieval systems. In this section, we
focus on one of the most popular tasks: song identification, which will serve as our main task for
applying our theory. In short, in the audio identification task, one is interested in retrieving content
information, such as the artist’s name, album name, release date, etc., about a short segment of a
song that is played and recorded through a device.

Throughout this thesis, we will present two different approaches for the song identification
task: the classic method corresponding to the audio fingerprinting technique that many well-known
commercial systems utilize, such as Shazam, and the modern approach via deep learning and con-
trastive learning. In this section, we focus on the classic method, where we introduce the concept
of an audio fingerprint and present the basic principles underlying the algorithms that these sys-
tems use to index and query large databases consisting of audio fingerprints from millions of songs.
The exposition with regard to the audio identification presented in this section is again based on
Müller’s book Fundamentals of Music Processing [2]. Here, we only provide a quick overview of
the classic approach as we mainly focus on the deep learning approach in the upcoming sections.

3.5.1 Problem and Challenges

The goal of an audio identification system is simple: assume you hear a song in a restaurant,
shopping mall, or car, and you want to learn more about it. Then, you record a short audio
fragment with a mobile device, which is then converted into a compact and descriptive fingerprint
representation. This fingerprint representation is transmitted through the network to a server and
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compared to the audio fingerprints in the server’s database using a similarity measure. When this
similarity measure exceeds a certain threshold with the best matching part of the database, the user
receives all the metadata linked to this part of the database (e.g., song name, artist name, release
date, album, genre, etc.). This high-level description of an audio identification system following
the client-server approach is depicted in Figure 3.12.

Audio
Fragment

User (client) Fingerprint
Extraction Audio Fingerprints

of Query

Fingerprint
database

Send fingerprints
to database

Run a matching
algorithm and

output the result

Metadata
Database

Send
Metadata

back to User

Service (server)

Figure 3.12. A high-level representation of an audio identification system.

These music recognition systems need to be robust and computationally efficient, which leads to
a number of technical challenges that need to be solved. To begin with, the fingerprint representa-
tion of the audio fragments must be as descriptive as possible in order to be correctly identified and
matched among millions or even billions of other fingerprints, while also being in a compressed
form to reduce the storage footprint. The main challenge in these systems is that the discrimination
requirement is undermined by the fact that the recorded audio fragments are exposed to many dif-
ferent distortions. For instance, the user may capture the audio fragment in a noisy and reverberant
environment where people talking in the background or other ambient noise is present. Therefore,
the audio fingerprint representation must also be robust to such degradations. Additionally, when
the query arrives at the database, the searching algorithm should be computationally efficient in
order to retrieve the result within a reasonable amount of time for real-time applications. The ex-
haustive approach in a database with millions or billions of entries is prohibitive, and one needs to
design or choose an algorithm that utilizes suboptimal searches to reduce the response time. It is
worth noting at this point that the audio identification system described above falls into the broader
category of recommendation and similarity search systems. For example, in another scenario, one
may be interested in retrieving all relevant documents in a database with a query document. The
pattern, in this case, is the same: one extracts a feature representation (in vector form) of the
documents and utilizes similarity search techniques to query the database. To illustrate the afore-
mentioned challenges in designing an effective audio identification system we first adopt a naive
solution that reveals the difficulties one has to face when designing such systems. The first step is
to extract a feature representation of the songs to be stored in the database. An ideal feature that
captures both the spectral information and the time presence of this information is the spectrogram
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representation of the audio introduced in 3.3.1. Assuming we choose this feature representation
for our audio tracks, and use a 32-bit floating point precision, we can easily see that the size of the
database is roughly

O
(
4K ·

(M − N

H

)
·

N

2

)
, (3.5.1)

bytes, where K is the number of total songs in the database, N is the window length of the STFT,
H is the hop size, and M = T/F is the average number of samples for every song, with T being the
average duration in seconds, and F the sampling rate. Table 3.2 shows how the size of the database
varies with respect to the parameters in (3.5.1). Observe that in the case of a database consisting
of 1 million songs the size is more than 15 TB, which is already a huge amount of space.

Table 3.2. Database size with spectrograms as feature representations.

K T (sec) F N H Total size
100000 180 8000 1024 512 575 GB
1000000 180 8000 1024 512 5, 7 TB
100000 180 22050 1024 512 1, 5 TB
100000 180 22050 2048 1024 1, 5 TB
1000000 180 22050 1024 512 15, 8 TB
1000000 180 22050 2048 512 31, 7 TB

The size requirements in Table 3.2 indicate that the feature representation must be as compact
as possible while at the same time retain all the relative information of the audio segment to be
correctly matched. Another issue is how to index the database to allow for fast retrieval operations.
To see this, in the approach with the spectrogram representation, assuming a query spectrogram
SQ of size TQ × F , and TB × F (TB >> TQ), a naive solution would be to slide over the query
spectrogram SQ over the spectrograms in the database and perform a time-wise cosine similarity
to output the part of the database that best matches the query. However, this approach has a
computational complexity that is linearly dependent on the size of the database K , and as such, it
would be impractical for real-time scenarios. In the following sections, we address these issues
and present the main ideas adopted by Wang [1] that are used in Shazam’s audio identification
system.

3.5.2 Audio Fingerprints

The prevalent feature representations that were used (and still used), before the rapid expansion of
deep learning, are the audio fingerprints. These features can be thought of as a compressed form
of spectrograms while at the same time keeping all the spectral information that is more likely to
survive if the audio is captured in a noisy environment. The idea is simple: instead of keeping all
the points in the spectrogram, one only chooses to keep the points that have higher magnitude than
all their neighbors within a region around the respective points. In detail, given an audio signal in
the form of sampled waveform, the first step in deriving the fingerprints consists of computing an
STFT X as in (2.4.1). Then, one obtains a spectral-temporal representation X(n, k) of the signal,
where k ∈ [0, K] is referred to as the frequency stamp, and n ∈ Z as the time stamp.
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In the second step, one determines the neighborhood to extract the local maximums in the repre-
sentationX. This neighborhood is determined by two parameters, n0, and k0, corresponding to the
time domain, and the frequency domain, respectively. For a point (n, k), these parameters define
a small rectangular described by

Rn0,k0(n, k) = [n − n0, n + n0] × [k − k0, k + k0] ⊆ Z × K. (3.5.2)

Then, the point (n, k) is a local maximum on the rectangular Rn0,k0(n, k) if and only if

|X(n, k)| >
∣∣∣X(n′, k′)

∣∣∣ , (3.5.3)

for every (n′, k′) ∈ Rn0,k0(n, k). Figure 3.13 shows the local maximum points in the spectrogram
corresponding to 30 seconds of "The Four Seasons - Spring" by Vivaldi4, as well as the local
maximum points in the resulting spectrogram when background noise with people talking has
been added with an SNR of 0 dB.
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Figure 3.13. Spectrograms corresponding to 30-sec audio fragment from The Four Seasons -
Spring of Vivaldi. On the left is the clean audio, and on the left is the distorted signal with
background noise added (SNR = 0 in dB).

As you can see, the spectrograms in the first row are quite different, but they agree on most of their
local maximums, as indicated by the second row. At this point, we can define a similarity measure
to evaluate the local maximum preservation between pairs of spectrograms. As before, suppose
that the query spectrogram SQ has size TQ × F , and the concatenation of the spectrograms in the
database yields a large spectrogram of size TB × F , with TB >> TQ. Denote by C(SQ) the points

4Hear it in: https://www.youtube.com/watch?v=t2cIUu-sS7w
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(n, k) where the local maximums occur on SQ for fixed n0, k0. Formally, C(SQ) is described as

C(SQ) =
{
(n, k) ∈ TQ × F : |SQ(n, k)| > |SQ(n′, k′)|, (n′, k′) ∈ Rn0,k0(n, k)

}
. (3.5.4)

Similarly, C(SB) represents the points where the local maximums occur in the concatenated spec-
trogram of the database. We define the shifted local maximums m + C(SQ) of C(SQ) to be the
set

m + C(SQ) =
{
(n +m, k) ∈ TQ × F : (n, k) ∈ SQ

}
, (3.5.5)

for m ∈ N. Now, for every m we define the confidence measure ∆ : N→ R by

∆(m) =

∣∣∣(m + C(SQ)) ∩ C(SB)
∣∣∣∣∣∣C(SQ)

∣∣∣ . (3.5.6)

Then, the part of the database with the highest confidence measure ∆ can be determined by the
optimal integer m∗, where

m∗ = arg max
m∈N

∆(m).

In Figure 3.14 you can see how the confidence ∆(m∗) varies with respect to the amount (SNR) of
noise added to the query of the 30-sec audio fragment of Vivaldi’s Four Seasons - Spring. You can
see that even in very low SNRs (0 dB) we have that ∆(m∗) > 0.5.
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Figure 3.14. SNR vs Match Score
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3.5.3 Indexing with Inverted Lists

As we have already mentioned, the computational complexity of the previous approach where we
slide the feature representation C(Q) of the query Q over the entire database to find the optimal
m∗, is linearly dependent on the size of the database. This is prohibitive for real-time applications
where the client expects the answer in a few seconds. To this end, efficient search strategies typi-
cally use indexing techniques, which optimize the speed performance by cutting down the search
space through suitable look-up operations. In this section, we introduce a general indexing and
retrieval framework based on inverted lists. It should be noted that this framework is not restricted
only to the song identification case, and can be applied to any system that stores data items (e.g.
documents, audio, text, etc) in the form of a specific feature representation on a database, and re-
quires efficient and fast retrievals. To formalize this framework, we assume that the data items to be
indexed consist of a time stamp n ∈ Z, and a hash h ∈ H , whereH denotes the set of all possible
hash values. In information retrieval, the notion of a hash is used to refer to a fixed length identifier
(e.g. a binary string consisting of a fixed number of bits). Furthermore, we assume that the data
items D are stored on the database in the form F (D) ⊆ Z × H , referred to as the feature repre-
sentation of D. Now, for every h ∈ H , we consider the inverted list L(h), consisting of all time
stamps n ∈ Z, in increasing order, for which (n, h) ∈ F (D). I.e. L(h) = {n ∈ Z : (n, h) ∈ F (D)}.

Now, we show how the inverted lists L(h) can be used to accelerate the retrieval process. Denote by
Q a query data item and C(Q) ⊆ Z×H it’s feature representation. Let ∆ : Z→ R be the similarity
measure in (3.5.6). Our goal is to find m∗ = arg max

m∈Z
∆(m). Observe that a point (n, h) ∈ F (Q)

contributes to ∆(m) if and only if

m + (n, h) ∈ F (D) ⇐⇒ (m + n, h) ∈ F (D)

⇐⇒ m + n ∈ L(h)

⇐⇒ m ∈ L(h) − n.

This equivalence shows that in order to find m∗, one needs to consider the lists L(h) − n, and find
the m that most frequently occurs in the sets L(h) − n, for all (n, h) ∈ F (Q). This also gives an
alternative expression of ∆ via the indicator functions:

∆Q(m) =
∑

(n,h)∈C(Q) 1L(h)−n(m)
|C(Q)|

. (3.5.7)

Now let us analyze the complexity of processing a query Q, using the inverted list method. Denote
by N = |F (D)| the number of database items, and by M = |F (Q)|, the number of query items. In
practice, M is negligible compared to N . Let L = |H| the number of inverted lists. Assuming that
the hash function uniformly distributes the database items to the inverted lists, each of the L lists
contains roughly N/L elements. Since on the query time only M of the inverted lists need to be
processed, we conclude that the complexity in processing a query is linear in

M · N

L
. (3.5.8)

Observe that this is still linear in the database size N , but it is reduced by a factor of L when
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compared to the exhaustive approach which requires M · N operations. In our case, the set of
frequency bins [0 : K], obtained from the STFT corresponds to the set of possible hashes H .
Therefore, if for example the window length of the Fourier Transform is 2048 samples, then L =

1024. This means that the retrieval process will be reduced by a factor of 1024 when compared
to the brute-force approach. However, for large databases containing millions of recordings, much
larger speed-up factors are needed to capture the necessities of a real-time scenario. One idea to
further reduce the query time would be to increase the window of the STFT in order to increase
L as well. This, however, would drastically reduce the overall performance of the system, since
higher frequency resolution would increase the probability of a peak point (n, h) to move to a
neighboring point (n, h′), when the query audio fragment is distorted with ambient noise.

An alternative approach adopted by Wang [1] in Shazam’s audio identification system is to
enlarge the set of hashes H by considering pairs of peaks instead of individual peaks. To this
end, one fixes a point (n0, k0) ∈ C(D), called the anchor point, and a rectangular region T(n0,k0) ⊆

Z × [0 : K] around that point. Then, instead of taking the single point corresponding to the
frequency stamp, one considers all triplets of the form

(k0, k1, n1 − n0), (3.5.9)

for every (n1, k1) ∈ T(n0,k0) ∩ C(D) and hashes these three values. Assuming that the peak co-
ordinates are uniformly distributed on the spectrogram of an audio clip, the number of points in
every region T(n0,k0) will be roughly the same. This number is called the fan-out and it is denoted
by F . To compare this triplet-hash approach with the single-hash approach we suppose that each
of the three numbers k0, k1, n1 − n0 is represented by B bits. Then, the single-hash approach has
2B hashes, whereas the triplet-hash approach has 2B · 2B · 2B = 23B hashes in total. As before,
let N = |F (D)| be the number of database items, M = |F (Q| the number of peak coordinates of
a query Q, and L = 2B the number of hashes of the single-value approach. If we assume that the
database items are evenly distributed on the inverted lists, in the triplet-hash approach, each list
will roughly contain N/L3 items. On the other hand, the number of triplets on the query Q are
F ·M . Therefore, we deduce that complexity of the retrieval time is linear in

F

L2 ·
M · N

L
. (3.5.10)

This shows, that by considering three values for hashing instead of one, reduces the search time
on the database to find the best match by a factor of L2/F . For example, if F = 10 and we use
10 bits to represent each value, then the response time is reduced by a factor 220/10 ≈ 10000
when compared to the single-hash approach. In Chapter 6, we present an experimental use-case
of an audio fingerprinting system that utilizes these ideas by taking advantage of the abundance of
free software on the Web. Furthermore, we set up two different evaluation protocols to measure
the performance of the system, and compare it with the approach that leverages the ideas of deep
learning, as presented in the upcoming chapters.
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Deep Learning

Deep learning has emerged as a revolutionary approach to artificial intelligence (AI) and has
gained immense popularity over the last decade. It has revolutionized numerous fields, includ-
ing computer vision, natural language processing, music recognition, and many others. A con-
crete example is ChatGPT (Chat Generative Pre-Trained Transformer), an artificial intelligence
chat bot released by OpenAI on November 30, 2022 that can engage in insightful and meaningful
conversations in an unprecedented manner.

One of the key reasons for the popularity of deep learning is its ability to learn and extract complex
patterns and representations from vast amounts of data. Traditional machine learning algorithms
often rely on handcrafted features, which can be time-consuming and challenging to design. Deep
learning, on the other hand, uses neural networks with multiple layers, known as deep neural
networks, to automatically learn these features directly from the raw data. In other words, deep
learning models relieve humans from the burden of having to come up with meaningful data repre-
sentations in order to train and develop a model for a given task. The core theme of deep learning
is to make the model to discover not only the mapping from representation to output, but also
to discover the representation itself. We can loosely say that deep learning is the hack to many
problems that require subjective and intuitive reasoning in order to make a machine to behave in
an intelligent way. Before the advent of deep learning, these problems required an immense intel-
lectual effort from humans to coin sophisticated algorithms and procedures for efficient solutions.
In addition, these solutions were difficult, if not impossible, to transfer to different areas and do-
mains. Deep learning has surpassed by a huge margin these approaches in many cases with only
a few simple rules and by leveraging the advances in computational processing power, which is
usually taken for granted nowadays.

The purpose of this chapter is to provide a quick overview of deep learning and motivate the
methodology of deep audio fingerprinting adopted in the next chapter for the song identification
task. We present the basic principles underlying the theory of deep learning, and introduce the
type of architectures that we will use in the next sections. For a more comprehensive exposition
on the subject, the reader may refer to [20].
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4.1 Deep Feedforward Networks

4.1.1 The Architecture

Deep feedfoward networks, also called feedfoward neural networks, or multilayer perceptrons
(MLPs), form the most fundamental class of deep learning models. The goal of these models
is to approximate a target function f ∗, by employing linear mappings with activation functions.
Formally, a feedforward neural network can be represented by a function f : RK → RN , mapping
points from the Euclidean space RK to RN . The function f can be expressed as the composition

f = f (n) ◦ f (n−1) ◦ · · · ◦ f (1), (4.1.1)

where each f (i) : RKi → RKi+1 is a linear mapping Ti : RKi → RKi+1 followed by the elementwise
composition with a non-linear mapping σi : R → R. We denote this operation by σi ⊗ Ti . Since
every linear mapping Ti : RKi → RKi+1 can by expressed by as T (x) = Wi ·x , where Wi ∈ R

Ki+1×Ki ,
we can write (σi ⊗ Ti) (x) = σ(Wi · x), where for a vector Wi · x = (v1, . . . , vKi+1) ∈ RKi+1 we have
that

σ(Wi · x) =
(
σ(v1), . . . , σ(vKi+1)

)
.

In (4.1.1), f1 is called the first layer, or input layer, f2, the second layer, and so on. The last
layer is called the output layer. The overall length of the chain defines the depth of the model.
The matrices W1, . . . , Wn are the weights of the model and their entries constitute the learnable
parameters of the model. These parameters are collectively denoted by θθθ, and the value of f at
a point x by f (x;θθθ) . In practice, one adds a bias weight bi to the linear mapping Ti to allow
to capture regions in RN that not necessarily centered at the origin. Therefore, the mappings Ti

correspond to affine transformations of the form Ti(x) = Wi ·x +bi . The main goal is to determine
the parameters θθθ such that for every point x , f (x;θθθ) would be close to the target function f ∗. In
practice, a finite set of observations {x1, . . . , xn} are given, accompanied by the labels {y1, . . . , yn},
serving as approximate examples of y1 ≈ f ∗(x1), . . . , yn ≈ f ∗(xn). The set {(x1, y1), . . . , (xn, yn)}
is called the training set, and specifies what the output layer must do at each point xi ; it must
produce a value close to yi . To this end, the learning algorithm must decide how to adjust the
parameters θθθ of the model to produce the desired output. Since the behavior of the other layers is
not directly specified by the training data, but rather depending on the learning algorithm, these
layers are called hidden layers. The dimensionality of these hidden layers determines the width
of the model. Inspired by neuroscience, hence the name neural, these networks are graphically
depicted as a direct acyclic graph as in Figure 4.1. The vertices are called units or neurons, and
represent the elements of the vectors in each of the linear mappings comprising the network. The
edges correspond to the weights of each linear mapping. For instance, in Figure 4.1 the first two
layers correspond to a linear mapping T : R3 → R4. The edges are the entries of the matrix
W ∈ R4 × R3 of the linear mapping T for which T (x) = W · x , for every x ∈ R3.
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Input Layer Hidden Layers Output Layer

Figure 4.1. Graphical Representation of a FeedForward Neural Network.

The parallelism with neuroscience comes from the fact that the neurons in the network loosely
resemble the organization of neurons in the brain. In the brain, information typically flows in a
forward direction from sensory receptors to high-level processing areas. Each neuron receives
inputs from other neurons, performs a computation, and transmits the result to other neurons. In
our case, we will treat neural networks as pure mathematical entities, i.e., as functions that map
low-level features extracted from raw data (audio data in our case) to discriminative high-level
features that capture the essential parts of the raw information in a compressed form.

4.1.2 Activation functions

The key feature of neural networks that discriminates them from the linear models are the acti-
vation functions, employed after each linear transformation. These activation functions are non-
linear and are important for several reasons:

1) Non-linearity: Non-linear activation functions introduce non-linearity into the neural net-
work. Without non-linear activation functions, a neural network would simply be a linear
combination of its inputs, and it would not be able to learn and represent complex, non-linear
relationships in the data. Non-linear activation functions enable neural networks to model
and approximate complex functions, making them capable of capturing intricate patterns
and relationships in the data.

2) Representation power: Non-linear activation functions significantly enhance the represen-
tation power of neural networks. By introducing non-linear transformations, neural net-
works can model complex mappings between inputs and outputs. This allows them to learn
and represent highly non-linear and abstract concepts, enabling more powerful and flexible
modeling of real-world phenomena.

3) Gradient propagation: During the training process, neural networks rely on gradient-based
optimization algorithms, such as backpropagation, to update their weights and biases. Non-
linear activation functions ensure that the gradients can flow backward through the network
and propagate the error signal effectively. If only linear activation functions were used, the
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gradients would simply be scaled versions of the input, leading to limited learning capability
and inefficient training.

4) Decision boundaries: Non-linear activation functions enable neural networks to learn deci-
sion boundaries that are not constrained to linear separations. By introducing non-linearities,
neural networks can learn complex decision boundaries that can separate data points of
different classes more effectively. This is particularly important in tasks such as image
recognition, natural language processing, and other tasks where the data exhibits complex
relationships.

In this paragraph we introduce some of the most well-known activation functions that are used in
many deep learning applications. The choice of activation function depends on the specific task
at hand. Changing the activation function of a neural network can drastically affect the overall
performance. Many surveys have been conducted [21, 22] comparing the most frequently used
activation functions in various applications and different types of networks.

Sigmoid Function

The sigmoid activation function, referred to as the logistic function or squashing function, is given
by

S(x) =
1

1 + e−x
=

ex

1 + ex
. (4.1.2)

It is easily seen that S is everywhere differentiable with derivative

S′(x) =
e−x

(1 + e−x )2 = S(x) · (1 − S(x)).

Since lim
x→∞

S(x) = 1, lim
x→−∞

S(x) = 0, and S(x) > 0, it follows that the range of S is the open
interval (0, 1). Figure 4.2 shows the graph of the sigmoid function and its derivative. The sigmoid
function appears in the output layers of the DL architectures, and it is used for predicting prob-
ability based output. A one-layer feedforward neural network, followed by a sigmoid activation
function defines the logistic regression

f (x) =
1

1 + e−(b0+b1x+...bnxn) , (4.1.3)

one of the most widely used machine learning models in medical literature [23]. However, while
the sigmoid function might be a good choice for shallow networks, it falls short when the depth
of the network grows larger. This is because all of the learning algorithms update the model’s
parameters θθθ by taking steps towards the negative of the gradient ∇θθθJ , for a cost function J , in
order to minimize it. Since the derivative of the sigmoid function vanishes for large values, this
may stop the training procedure from finding better parameters θθθ. This problem is known as the
vanishing gradients problem in DL.

100 Diploma Thesis



4.1.2 Activation functions
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Figure 4.2. The sigmoid function and its derivative.

Hyperborlic Tangent Function

The hyperbolic tangent function is another type of activation function used in DL. The hyperbolic
function, denoted by tanh, is a smooth, zero-centered function with range in (−1, 1). It is given by

tanh x =
ex − e−x

ex + e−x
. (4.1.4)

Figure 4.3 shows the graph of tanh. Compared to the sigmoid function, tanh has steeper gradients,
especially around the origin. This can lead to stronger gradients and faster learning, particularly
in the first stages of training. However, similar to the sigmoid function, tanh is prone to saturation,
especially for input values far from zero. Apart from that, tanh maps input values to the range
(−1, 1). While this range may be suitable for certain tasks, it might not be ideal for others. Finally,
tanh is computationally expensive as it involves more complex operations compared to other acti-
vations. The exponentiations in 4.1.4 can be computationally expensive, particularly when dealing
with large-scale neural networks or real-time applications.

Softmax Function

Softmax is the multi-dimensional analog of the sigmoid function. It is commonly used in the
output layer of neural networks to map a vector x = (x1, . . . , xn) to a probability vector. It is given
by

Softmax(x) =
(

ex1∑n
i=1 exi

, . . . ,
exn∑n
i=1 exi

)
, (4.1.5)

for every x = (x1, . . . , xn) ∈ Rn. The softmax function is well-suited for multiclass classification
problems where there are more than two classes. It assigns probabilities to each class, providing
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a way to rank and compare multiple classes simultaneously. Moreover, the softmax function is
differentiable, which is crucial for backpropagation and gradient-based optimization algorithms.
The gradients of the softmax function can be efficiently calculated, allowing for efficient training
of the neural network.
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Figure 4.3. The graph of tanh.

Rectified Linear Unit (ReLU) Function

The rectified linear unit (ReLU) activation function was proposed by Nair and Hinton in 2010 [24],
and ever since, has been the most widely used activation function for deep learning applications.
It is given by

ReLU(x) =

x, x ≥ 0

0, x < 0
. (4.1.6)

ReLU is simple and efficient. It involves only a comparison and a linear function, making it com-
putationally efficient compared to other activation functions that involve more complex operations.
As opposed to the sigmoid and tanh, ReLU helps alleviate the vanishing gradient problem, which
can occur when training deep neural networks. The derivative of ReLU is either 0, or 1, which
means it doesn’t suffer from saturation issues like sigmoid or tanh. This allows the gradient to flow
more effectively, facilitating better gradient-based optimization and avoiding the problem of van-
ishing gradients. Furthermore, ReLU encourages sparsity in the activations of the neural network.
Since ReLU outputs 0 for negative values, it results in a more sparse representation where only
a subset of neurons is activated. This sparsity can help in reducing the computational load and
overfitting, as fewer neurons need to be computed and updated during training. On the contrary,
the zero part of ReLU can lead to "dead" neurons that are non-responsive and never activate. If a
ReLU neuron gets stuck in the negative region and consistently outputs 0, it effectively becomes a
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dead neuron and does not contribute to the learning process. Dead neurons can hinder the learning
capacity of the network. Another drawback, is that ReLU is not bounded above, which means
it can produce very large activations. In some cases, unbounded activations can lead to numeri-
cal instability or exploding gradients during training. Despite these disadvantages, the simplicity,
non-linearity, and effectiveness of ReLU have made it popular choice in many deep learning appli-
cations. Below we see some variations of ReLU that researchers have developed to address some
of its drawbacks.

Leaky ReLU (LReLU)

The Leaky Rectified Linear function (LReLU), introduced in [25], was applied to an acoustic
model, exhibiting improved results compared to ReLU. It is given by

LReLU(x) =

x, x > 0
x
α , x ≤ 0

, (4.1.7)

where α is a fixed parameter in the range (1,+∞). In [25] the authors suggest to set α to a large
number like 100. The parameter α was introduced to address the problem of "dead" neurons in
ReLU, and can lead to faster convergence during training compared to ReLU. Other variants of
rectified activations exists, such as Parametric Rectified Linear Unit (PReLU) and Randomized
Leaky Rectified Linear Unit (RReLU). In [26] you can see an experimental comparison of these
activations in an image classification task. Figure 4.4 shows the graph of ReLU and Leaky ReLU
for different values of the parameter α.
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Figure 4.4. ReLU and Leaky ReLU activation functions.

Exponential Linear Unit (ELU)

The exponential linear units (ELUs) is another type of activation function introduced in [27], and
they are used to speed up the training of deep neural networks. ELU also introduces a small slope
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for negative input values but goes a step further by using an exponential function for negative
values. The main advantage of ELUs is that they can alleviate the vanishing gradient. It is given
by

ELU(x) =

x, x > 0

α · exp(x) − 1, x ≤ 0
. (4.1.8)

Figure 4.5 shows the graph of ELU for α = 1, along with the graph of ReLU.
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Figure 4.5. The graph of ELU and ReLU.

4.2 The Learning Paradigm

4.2.1 Supervised, Unsupervised, and Self-Supervised Learning

As we have already stated, the core theme of DL is to approximate a target function f ∗ through a
parametric class of functions (neural networks) {f (x;θ)θ)θ)) : θθθ ∈ RN } defines the parametric space
of the model. To this end, one needs to adopt an appropriate loss function J(x;θθθ), and a learning
algorithm in order to find the optimal parameters θθθ∗ such that f (x;θθθ) ≈ f ∗(x) for all x . All
learning algorithms are variations of the gradient descent algorithm, and they are called gradient
based algorithms. However, the choice of loss function is dependent at the specific task at hand.
In DL, and in Machine Learning in general, there are three fundamental types of problems:

1) Supervised learning is the most well-known and widely used paradigm, it involves training a
model on labeled data, where each example is associated with a known target or a class label. Su-
pervised learning encompasses tasks such as classification, where the goal is to assign predefined
labels to new data, and regression, which involves predicting continuous values. Formally, in a
classification task, we are given a set of observations {(x1, y1), . . . , (xn, yn)}, where xi is a feature
vector in a high-dimensional Euclidean space, extracted from the raw data, and yi ∈ [0 : K − 1] is
the class label indicating in which class the observation xi belongs to. A standard assumption in
this context is that the features are generated by a distributionD. Given a class of neural networks
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f (·;θθθ) : RM → RK , and a loss function J(x, y), the goal is to find the parameters θθθ ∈ RN that
minimize the expected generalization loss

arg min
θθθ

Ex∼D [J (f (x;θθθ), y)] . (4.2.1)

Given the estimated parameters θθθ∗ obtained from the learning algorithm, the model f (· ;θθθ∗) can
be used to make predictions to unseen data x ∼ D and categorize the sample x to one of the K

classes. In the multiclass case (K > 2), the most widely used loss function is the Cross Entropy
Loss function . The model is designed in such a way that the last output layer corresponds to a
linear mapping to K dimensions. Therefore, f (x)1 is a vector (z1, . . . , zK ) in RK . If yx ∈ [1, K] is
the label of x , the cross entropy loss function is given by

J(f (x), yx ) = −
K∑

i=1
log

ezi∑K
j=1 ezj

· 1i=yx . (4.2.2)

Observe that the cross entropy loss applies a softmax activation function to map the output of
the last layer (z1, . . . , zK ) to a probability vector. In this way, during the prediction phase, for a
sampled data point x ∼ D, the model assigns the samples to the class determined by

arg max
1≤i≤K

ezi∑n
j=1 ezj

, (4.2.3)

where f (x) = (z1, . . . , zn) is the output of the model’s last layer. On the other hand, in a regression
task, the target function f ∗ takes real values and the goal to find the best possible parameters θθθ such
that f (x;θθθ) ≈ f ∗(x), for all x ∈ RM . In this case, the set of observations {(x1, y1), . . . , (xn, yn)}
contains tuples (xi , yi), where xi is the feature representation obtained from the raw data, and
yi ∈ R is the target value associated with xi , i.e. f ∗(xi) = yi . A standard loss function in this setup
is the Mean Squared Error (MSE)

MSE =
1
n

n∑
i=1

(ŷi − yi)2 , (4.2.4)

where ŷi = f (xi ;θθθ). This also referred to as the L2-loss. Another common choice is the Mean
Absolute Error (MAE) or L1-loss

MAE =
1
n

n∑
i=1

(ŷi − yi) . (4.2.5)

In general, one defines the Lp-loss for every p > 1 by

Lp-loss =
1
n

n∑
i=1

(ŷi − yi)p . (4.2.6)

2) Unsupervised learning on the contrary deals with observations {x1, . . . , xn} without having
any information about the class labels of the feature vectors xi . In this type of problem, the goal

1For simplicity we omit the parameters θθθ.
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is to unravel the underlying similarities and cluster (group) "similar" vectors together [28]. These
clusters must be as compact as possible and the instances in different clusters must be different as
much as possible. There is an extensive research literature around clustering. Some of the main
challenges are to define appropriate similarity or dissimilarity measures, and efficient algorithms
of low complexity. In this thesis, we focus on the supervised and self-supervised aspects of deep
learning. The reader may refer to [29] for a quick introduction to clustering and its challenges.

3) Self-supervised learning, a prominent deep learning technique, is poised to overcome the chal-
lenges associated with the heavy reliance on labeled data in supervised settings. Training a neural
network effectively demands a vast amount of training data. However, in the supervised setting,
this data needs to be preprocessed and labeled, which requires laborious work. This process is
not always feasible, and it can also introduce errors, thereby deteriorating the data quality due to
human fallibility. The goal of supervised learning is to alleviate these problems by utilizing the
raw data, and extract feature representations that can be used to downstream tasks. In the upcom-
ing chapter, we will introduce the contrastive learning framework, a prominent self-supervised
technique that has gained a lot of attention recently, achieving state-of-the-art performance when
applied to the downstream task of image classification [30]. In our case, we will make use of
this framework to extract robust feature representations of the audio fragments in order to set up a
completely different song identification system from the one we presented in Section 3.5.

4.2.2 Gradient Based Algorithms

In the previous sections, we introduced a specific class of neural networks, the feedforward neu-
ral networks. As we have already stated, in any deep learning task, whether is a supervised or
self-supervised task, the goal is to find the parameters θθθ that minimize the generalization error
in (4.2.1), for a loss function J . As opposed to convex optimization where we aim for the global
minimum of J , in deep learning we are happy with local minimums as well, provided that the
empirical loss

1
n

n∑
i=1

J
(
f (x (i);θθθ), y(i)

)
, (4.2.7)

is sufficiently low, on a training set {(x (1), y1), . . . , (x (n), yn)}. In this section, we introduce the
stochastic gradient descent and some of its most widely used variants utilized nowadays by the
community to train deep neural networks.

Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a fundamental machine learning algorithm and one of the
most important ones. It is widely used due to its simplicity and effectiveness. Many learning
algorithms used nowadays are variations built upon the SGD algorithm. The idea of SGD is
simple: Given a class of neural networks f (x;θθθ), a training set of examples {(x1, y1), . . . , (xn, yn)},
and a loss function J (f (x;θθθ), y), one examines one-by-one the samples (xi , yi) and updates the
parameters of the neural network by taking small steps towards to the opposite direction of the
gradient:

θθθ(i+1) = θθθ(i) − η · ∇θθθJ
(
f (x (i);θθθ(i)), y(i)

)
. (4.2.8)
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The parameter η is called the learning rate and determines the size of each step. The gradient ∇θθθ

shows the direction where the function J experiences the most rapid increase in an infinitesimal
region. By analogy, the negative of the gradient shows the direction of the most rapid decrease.
This version of SGD is also referred to as online SGD, since it processes the examples one-by-one.
In practice, when training a deep neural network one iterates over all the examples of the training
set {(x1, y1), . . . , (xn, yn)}2, and updates the parameters at each example. Once the training set
is exhausted, the examples are shuffled and the process is repeated until a predetermined number
of epochs or a termination criterion is met. A complete pass over the training set defines an
epoch. To define the termination criterion and to evaluate the generalization performance of the
obtained model at the end of the SGD, one partitions the set of examples {(x1, y1), . . . , (xn, yn)}
into three subsets; the training set Strain, the validation set Sval, and the test set Stest. The validation
set determines the termination criterion; at the end of each epoch this set is used to evaluate the
empirical validation loss

Val Loss =
1
|Sval|

∑
(x,y)∈Sval

J (f (x;θθθ), y) . (4.2.9)

A criterion commonly used in this case is called early stopping, which is a form of regularization.
In early stopping, one defines a maximum number of epochs N , and a number of epochs P, called
the patience. At the end of each epoch 1 ≤ K < N , the minimum value of (4.2.9) across the epochs
1, . . . , K is tracked. If this value has not changed for j = P consecutive epochs the training stops.
Otherwise, if this value changes at epoch K , then j is set to 0. If the validation loss decreases
before reaching P consecutive epochs without a change the training stops at the end of the N-th
epoch. At the end, the model scoring the lowest validation loss during the training stage is the
final model. Then, to measure the generalization performance the test set Stest is used; the loss

Test Loss =
1
|Stest|

∑
(x,y)∈Sval

J (f (x;θθθ), y) , (4.2.10)

is an indicator on how well the final model generalizes to new unseen data. While the update rule
in (4.2.8) is the most fundamental one; it is rarely used in practice. Processing the examples one-
by-one makes the training procedure very sensitive to unrepresentative data points that might not
reflect intrinsic characteristics of the data, leading to unstable convergence. Another issue is that
this approach limits the potential for parallelization resulting to long training times. A common
approach to eliminate this problem is to process the training example in mini-batches of fixed size
M . In this setting the training set is split into |Strain|/M-groups of size M and the network process
each batch one-by-one instead of the individual examples. The update rule in this case is

θθθ(k+1) = θθθ(k) − η ·
1
M

M∑
j=1
∇θθθ(k)J

(
f (x (kj);θθθ(k)), y(kj)

)
, (4.2.11)

where k corresponds to the kth batch {xk1, . . . , xkM } ⊆ Strain. The update rule in (4.2.11) defines
the mini-batch stochastic gradient descent which is the predominate approach to train deep neu-

2For the moment, we only discuss the supervised setting. Later on, we will also focus on self-supervised tasks. The
theory doesn’t change that much since these problems reduce to the supervised case.
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ral networks nowadays. In 4.2.11 we described the mini-batch SGD using a fixed learning rate.
However, a common practice is to gradually decrease the learning rate at the end of each epoch by
adopting a specific learning rate schedule. From now on, we denote the learning rate at epoch k

as ηk . Algorithm 4.1 describes the training procedure using the mini-batch approach.

Algorithm 4.1: Mini Batch Stochastic Gradient Descent

Input: Number of epochs N , batch size M .
Input: Initial parameters θθθ(0).
Input: Starting learning rate η0 with a learning rate schedule ηn .
Input: Training set Strain = {(x (1), y(1)), . . . , (x (n), y(n))}.

for all n = 0, . . . , N − 1 do
Shuffle and group the training set Strain =

⋃K−1
k=0 {xk1, . . . , xkM }, where K = |Strain|/M.

for all k = 0, . . . , K − 1 do
θθθ(old) ← θθθ(n+k)

Compute gradient estimate: Ĵ ← 1
M

∑M
j=1 ∇θθθ(old)J

(
f (x (kj);θθθ(k)), y(kj)

)
Apply update rule: θθθ(new) ← θθθ(old) − ηn Ĵ

4.3 Optimizers

In this section we present variants of the SGD algorithms that are used to overcome some the
drawbacks posed by the vanilla SGD. These variants are known as optimizers and play a vital
role in deep learning as they contribute to the efficiency and effectiveness of the training process.
A study comparing the performance of some of these optimizers in deep learning can be found
in [31].

4.3.1 SGD with momentum

While stochastic gradient descent remains a popular optimization strategy, learning with it can
sometimes be slow. The method of momentum [32] is designed to accelerate learning. The mo-
mentum algorithm accumulates an exponentially decaying moving average of past gradients and
continues to move in their direction [20]. The momentum algorithm introduces a variable vvv, con-
taining the information of the direction of all past gradients. A hyperparameter α ∈ [0, 1) controls
the amount of contribution of vvv on the calculation of the new direction. Formally, assuming θθθ(0)

are the starting parameters of the model, then vvv is calculated by the update rule:

vvv(new) ← αvvv(old) − η
1
M

M∑
j=1
∇θθθ(old)J

(
f (x (kj);θθθ(k)), y(kj)

)
(4.3.1)

The new parameters θθθ(new) are given by θθθ(new) ← θθθ(old) + vvv(new). The goal of momentum is to
mitigate the problem of variance that might occur in vanilla SGD. Some updates in SGD might
lead the parameters away from low values of the loss function J due to the high variance in the
data. For example, if a batch sample consists of unrepresentative samples, then the SGD might
completely change the direction. On the other hand, the parameter vvv controls this behavior by
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always adding a component towards the average of the past directions. Algorithm 4.2 summarizes
the SGD with momentum.

Algorithm 4.2: Stochastic Gradient Descent with Momentum

Input: Number of epochs N , batch size M .
Input: Initial parameters θθθ(0).
Input: Starting learning rate η0 with a learning rate schedule ηn .
Input: Momentum parameter α ∈ [0, 1).
Input: Training set Strain = {(x (1), y(1)), . . . , (x (n), y(n))}.

vvv(old) ← 0.
for all n = 0, . . . , N − 1 do

Shuffle and group the training set Strain =
⋃K−1

k=0 {xk1, . . . , xkM }, where K = |Strain|/M.
for all k = 0, . . . , K − 1 do

Update the velocity vvv(new) ← αvvv(old) − ηn
1
M

∑M
j=1 ∇θθθ(old)J

(
f (x (kj);θθθ(k)), y(kj)

)
Apply update rule: θθθ(new) ← θθθ(old) + vvv(new).

4.3.2 AdaGrad

Experiments have shown that the learning rate is one of the most crucial parameters for training
deep neural networks. Apart from various learning rate schedules that have been developed to
gradually decrease the learning rate at the end of each training epoch, several optimization algo-
rithms have been introduced that adapt the learning rates of model parameters. The first algorithm
that we introduce and falls into this category is AdaGrad. The AdaGrad algorithm individually
adapts the learning rates of all model parameters by scaling them inversely proportional to the
square root of the sum of squared values of the past gradients. In Algorithm 4.3 you can see the
update rule of AdaGrad.

Algorithm 4.3: AdaGrad Algorithm

Input: Number of epochs N , batch size M .
Input: Initial parameters θθθ(0).
Input: Starting learning rate η0 with a learning rate schedule ηn .
Input: Small constant δ ≈ 10−7, for numerical stability.
Input: Training set Strain = {(x (1), y(1)), . . . , (x (n), y(n))}.

Initialize gradient accumulation variable rrr(old) = 0.
for all n = 0, . . . , N − 1 do

Shuffle and group the training set Strain =
⋃K−1

k=0 {xk1, . . . , xkM }, where K = |Strain|/M.
for all k = 0, . . . , K − 1 do

Compute gradient estimate: Ĵ ← 1
M

∑M
j=1 ∇θθθ(old)J

(
f (x (kj);θθθ(k)), y(kj)

)
.

Accumulate squared gradient: rrr(new) ← rrr(old) + ⟨Ĵ , Ĵ⟩.
Compute update: ∆θθθ← − ηn

δ+
√

rrr(new)
· Ĵ .

Apply update: θθθ(new) ← θθθ(new) + ∆θθθ.
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4.3.3 RMSProp

The RMSProp modifies the AdaGrad optimization algorithm by changing the accumulation into
an exponentially weighted moving average. A parameter p ∈ (0, 1) is initialized at the beginning
of the algorithm, determining the rate of the decay. In this case, the update of the accumulation
variable is given by the convex combination

prrr(old) + (1 − p)⟨Ĵ , Ĵ⟩,

of the past accumulation variable rrr(old), and the new accumulation gradients ⟨Ĵ , Ĵ⟩. In 4.4 we
summarize the RMSProp algorithm.

Algorithm 4.4: RMSProp Algorithm

Input: Number of epochs N , batch size M .
Input: Initial parameters θθθ(0).
Input: Starting learning rate η0 with a learning rate schedule ηn .
Input: Small constant δ ≈ 10−7, for numerical stability.
Input: Training set Strain = {(x (1), y(1)), . . . , (x (n), y(n))}.

Initialize gradient accumulation variable rrr(old) = 0.
for all n = 0, . . . , N − 1 do

Shuffle and group the training set Strain =
⋃K−1

k=0 {xk1, . . . , xkM }, where K = |Strain|/M.
for all k = 0, . . . , K − 1 do

Compute gradient estimate: Ĵ ← 1
M

∑M
j=1 ∇θθθ(old)J

(
f (x (kj);θθθ(k)), y(kj)

)
.

Accumulate squared gradient: rrr(new) ← rrr(old) + ⟨Ĵ , Ĵ⟩.
Compute update: ∆θθθ← − ηn

δ+
√

rrr(new)
· Ĵ .

Apply update: θθθ(new) ← θθθ(new) + ∆θθθ.

4.3.4 Adam

Adam [33] is one of the most popular adaptive learning rate optimization algorithms and is pre-
sented in 4.5. The method computes individual adaptive learning rates for different parameters
from estimates of first and second moments of the gradients; the name Adam is derived from
adaptive moment estimation. It combines the advantages of Adagrad 4.3, which works well with
sparse gradients, and RMSProp 4.4, which works well in on-line and non-stationary settings.

4.3.5 LAMB

LAMB [34] is one the latest layerwise adaptive optimization algorithms designed to efficiently
train deep neural networks by employing large batch sizes without degrading the performance.
With the advent of large scale datasets, training deep neural networks, even using computationally
efficient optimization algorithms like the variants of SGD presented in the previous paragraphs, has
become particularly challenging. For instance, as reported in [34], training state-of-the-art deep
learning models like BERT and ResNet-50 takes 3 days on 16 TPUv3 chips and 29 hours on 8
Tesla P100 GPUs respectively. These training times have lead to the development of optimization
algorithms that scale to large batch sizes, by significantly reducing the training time of deep neural
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networks. The authors in [34] managed to train BERT in 76 minutes by maintaining the same gen-
eralization performance. The term layerwise is derived from the fact that the weights of the deep
neural network are updated for each layer separately. To formulate this procedure mathematically,
suppose that the deep neural network f : RK → RN has h-layers. Let J be a loss function as
in (4.2.8). Let I be the d ×d identity matrix, and let I = [I1, I2, . . . , Ih] be its decomposition into
column submatrices. For x ∈ Rd , let x (i) be the block of variables corresponding to the columns
of Ii , i.e., x (i) = IT

i x ∈ Rdi , for i ∈ {1, 2, . . . , h}. Furthermore, let φ(z) = min {max{z, γl}, γu} for
some constants γl , γu ∈ R. The update rule of LAMB is the same with ADAM but in its layerwise
version; i.e.,

θθθ(i)
(new) ← θθθ(i)

(old) − η
φ

(∥∥∥∥θθθ(i)
(old)

∥∥∥∥
2

)
∥∥∥∥r(i)

(new)

∥∥∥∥
2

·
σσσ(i)

(new)
√

ρρρ(new) + δ︸         ︷︷         ︸
r(i)
(new)

, (4.3.2)

where σσσ(new), ρρρ(new) are calculated as in 4.5, and θθθ(i)
(new) refers to the block of variables corresponding

to the i-th layer of neural network for i ∈ {1, . . . , h}.

Algorithm 4.5: Adam Algorithm

Input: Number of epochs N , batch size M .
Input: Exponential decay rates for moment estimates, ρ1 and ρ2 in [0, 1).
Input: Small constant δ used for numerical stabilization (Suggested value ∼ 10−8).
Input: Initial parameters θθθ(0).
Input: Starting learning rate η0 with a learning rate schedule ηn .
Input: Training set Strain = {(x (1), y(1)), . . . , (x (n), y(n))}.

Initialize 1st and 2nd moment variables σ(old) = 0, ρρρ(old) = 0.
for all n = 0, . . . , N − 1 do

Shuffle and group the training set Strain =
⋃K−1

k=0 {xk1, . . . , xkM }, where K = |Strain|/M.
for all k = 0, . . . , K − 1 do

Compute gradient estimate: Ĵ ← 1
M

∑M
j=1 ∇θθθ(old)J

(
f (x (kj);θθθ(k)), y(kj)

)
.

Update biased first moment estimate: σ(new) ← ρ1σ
(old) + (1 − ρ1)Ĵ .

Update biased second moment estimate: ρρρ← ρ2ρρρ(old) + (1 − ρ2) · Ĵ ⊙ Ĵ .
Correct bias in first moment: σ̂(new) ← σ

(new)

1−ρk+n+1
1

.

Correct bias in second moment: ρρρ(new) ←
ρρρ(new)

1−ρk+n+1
2

.

Compute update: ∆θθθ = −ηn ·
σ

(new)
√

ρρρ(new)+δ
.

Apply update: θθθ(new) ← θθθ(old) + ∆θθθ.

4.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep learning models specifically designed
for processing structured grid-like data, such as images, audio spectrograms, and 1D sequences.
They are widely used for various tasks in computer vision including image classification [35], ob-
ject detection [36], image segmentation [37], and more. Initially introduced by LeCun et al. [38],
CNNs have revolutionized the field of image analysis achieving unprecedented success. The key
idea behind CNNs is to leverage the local spatial correlations present in the input data by using
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convolutional layers. In this section we present the architecture of CNNs and describe mathemat-
ically the basic operations employed by these networks. Much of the content presented in this
section is inspired by a nice paper by Jianxin Wu [39]. The core operation of CNNs is the con-
volutional operation which acts usually on 2D objects. In our case, we will leverage the power of
CNNs for the song identification task in order to map the 2D spectrogram representations corre-
sponding to 1 sec audio fragments to a compact 1D representation that can be further indexed and
processed efficiently, as opposed to the 2D spectrogram representation.

4.4.1 The Architecture in a Nutshell

As we have already mentioned, CNNs operate on images. In the simplest case, a CNN maps
an image into a 1D feature vector. Mathematically, a CNN can be represented by a function
f : RH×W×C → Rd , where H is the height, W is the width, and C the number of channels of the
input feature. In the case of images, C = 3, where each channel corresponds to red, green, and blue
colors. In the case of spectrograms, C = 1. Therefore, the input is a 3D matrix x ∈ RH×W×C. The
input sequentially goes through a series of processing until it gets to its final vector form in Rd .
One processing step is usually called a layer, which could be a convolution layer, a pooling layer,
a normalization layer or a fully connected layer. We will introduce these concepts in more detail in
the next subsections . For the moment, let us give an abstract description of how the forward pass
works in the case of CNNs. We can think of the structure of a CNN with the following equation

x1 → ω1 → x2 → · · · → xL−1 → ωL−1 → xL → ωL → z ∈ Rd. (4.4.1)

Equation (4.4.1) illustrates how a CNN runs layer by layer in a forward pass. The input is x1,
which is usually a 3D matrix of size H ×W × C. It goes through the processing in the first layer,
which is denoted by ω1. The processing operation usually translates to a matrix operation between
the input and another matrix with parameters denoted by ω1. The output of the first layer is x2,
which also acts as the input to the second processing layer. This processing proceeds until all layers
in the CNN have been exhausted, which outputs xL . One additional layer, however, is added for
backward error propagation, i.e., the calculation of the gradients of the model’s parameters. For
instance, in an image classification task, a common strategy is to output xL as a K-dimensional
vector, whose i th entry encodes the prediction (posterior probability of x1 comes from the i th

class, which could be a certain object depicted in the image). As in the case of a classification task
with MLPs, the standard way is to use the softmax function in (4.1.5). In detail, if we denote by
xL−1

i , i ∈ {1, . . . , K − 1} the output of the L − 1 layer; then

xL
i = softmax

(
xL−1

i

)
=

exp(xL−1
i )∑K−1

j=1 exp
(
xL−1

j

) . (4.4.2)

The calculation of the loss and the update of the parameters follow the same principles with MLPs;
i.e., an optimization algorithm is chosen, like the ones presented in section 4.3, and the calculation
of the gradients is done via the back propagation algorithm [40].
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4.4.2 The Convolution Layer

Convolution is perhaps the most notable operation in CNNs. It usually acts on 2D or 3D objects,
like RGB or grayscale images. Its goal is to extract relevant information from local positions
on the image by gradually reducing the size of the image until it becomes 1D. You can think of
the convolution layer as the linear layer in MLPs but instead of acting on 1D vectors it acts on
objects of higher dimensions. To introduce the operation we first consider the simplest case where
the input on the convolution layer is a 2D matrix x ∈ RH×W×1. Then, one decides the size of
convolution kernel, which is usually a square matrix K ∈ RK×K×1, with K < min{H, W }. In the
case where the number of channels on the input are C, the dimensions of the kernel are K ×K ×C.
Then, we overlap the convolution kernel K on top of the input image and we compute the product
between the numbers at the same location in the kernel and the input. The output is a single
number resulting by summing these products together. Figure 4.6 illustrates this operation with a
concrete example where a 2 × 2 kernel acts on a 3 × 4 matrix.

1 1

11

3 4 3 2

1 5 6 7

1 2 6 1

13 18 18

9 19 20

Figure 4.6. The convolution operation in CNNs. A 2 × 2 kernel acts on a 3 × 4 2D matrix. The
output is a 2 × 3 matrix.

In Figure 4.6, if we overlap the kernel with the top left region in the input, the convolution result
at that spatial location is: 1×3+1×4+1×1+1×5 = 13. We then slide the kernel one pixel on
the right and get the next convolution result as 1× 4+ 1× 3+ 1× 5+ 1× 6 = 18. This procedure
repeats until all possible locations for the kernel’s starting position have been exhausted.

Now the case where the input is a 3D object of size H ×W × C the convolution operation is
defined similarly. To this end, suppose that the input in the l-th layer is an order 3 matrix with size
H l ×W l × Cl . In this case, the convolution kernel is also an order 3 matrix with size H ×W × Dl .
When we overlap the kernel on top of the input tensor at the spatial location (0, 0, 0), we compute
the products of the corresponding elements in all the Dl channels and sum the HWDl products
to get the convolution result at this spatial location. Then, we move the kernel from left to right
and from top to bottom to complete the convolution. In a convolution layer, multiple convolution
kernels are usually used. Assuming D kernels are used and each of the kernel is of spatial span
H × W , then each of this kernels act on the input in the same manner to give the output result
which is of size (H l −H + 1) × (W l −W + 1) ×D. As we can see, the output of this operation has
been reduced by H − 1 pixels on height, and by W − 1 pixels on width, respectively. To retain the
spatial dimensions, a technique called padding is used. With padding if one inserts

⌊
H−1

2

⌋
rows

above the first row and
⌊

H
2

⌋
rows below the last row, and pad

⌊
W−1

2

⌋
columns to the left of the first
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column and
⌊

W
2

⌋
columns to the right of the last column of the input, the convolution output will

be H l ×W l × D in size, which is the same as the input dimensions. The elements of the padded
rows and columns are usually set to 0, but other values can be used.

Stride is another important concept in convolution. In Figure 4.6 we convolve the kernel input
at every possible spatial location, which corresponds to the stride s = 1. If we use s > 1, then,
every movement of the kernel skip s − 1 pixel locations (i.e., the convolution is performed once
every s pixels both horizontally and vertically. Assuming that the parameters pH , pW control the
amount padding on the vertical and horizontal side, respectively (i.e., pH = 1 adds one column
on the left and one on the right), and the parameters sH , sW the vertical and horizontal stride,
respectively. For an input object of size H l × ×W l × Dl and D kernels of size H × W × Dl , the
output of the l−th layer is a 3D object with size H l+1 ×W l+1 × D, where

H l+1 =

⌊
H l + 2pH − H

sH
+ 1

⌋
, (4.4.3)

and

W l+1 =

⌊
W l + 2pW −W

sW
+ 1

⌋
. (4.4.4)

4.4.3 Normalization Layers

A common practice when training deep learning models is to use normalization techniques along
with the usual operations (linear operation in MLPs, convolution in CNNs). In this paragraph we
introduce two of the most common normalization techniques; Batch Normalization [41] and Layer
Normalization [42]. Normalization was introduced to address the challenges associated with train-
ing deep neural networks effectively. Some of the advantages of normalization are summarized
below.

1. Adressing Internal Covariate Shift: As neural networks become deeper, the distribution of
inputs to each layer (referred to as internal covariate shift) can change significantly during training,
which can slow down training and make convergence difficult. Batch Normalization and Layer
Normalization help stabilize and normalize the activations, mitigating this issue and leading to
faster convergence.

2. Accelerating Training: By normalizing the activations in each layer, Batch Normalization
and Layer Normalization can lead to faster training times. Normalized activations allow for more
stable gradient propagation through the network, reducing the vanishing and exploding gradient
problems. This results in quicker convergence and allows for the use of higher learning rates.

3. Reducing Sensitivity to Initialization: Traditional weight initialization methods might not
work optimally for very deep networks. Batch Normalization and Layer Normalization help make
networks less sensitive to the choice of initial weights, making training more robust and less
dependent on careful initialization.

4. Regularization Effect: Batch Normalization and Layer Normalization introduce a form of
regularization by adding noise to the activations during training. This has a similar effect to
dropout [43], which can help prevent overfitting and improve the generalization ability of the
network.
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5. Improved Gradient Flow: Normalizing activations helps maintain a more consistent range
of values throughout the network, which improves the flow of gradients during backpropagation.
This, in turn, leads to more stable and efficient training.

6. Enabling Higher Learning Rates: The normalized activations reduce the likelihood of ex-
treme values, which allows for the use of higher learning rates during optimization. Higher learn-
ing rates can help escape local minima and converge to better solutions.

As their name suggests, batch normalization involves a normalization operation along the batch
dimension whereas layer normalization involves a normalization operation for each layer input,
independently of the batch. In this paragraph we present the 2D versions of these normalization
operations, the reader may refer to the original papers [41, 42] for the 1D case. Formally, suppose
that we train a CNN with batch size M . Then, the input to the l-th layer will be a 4D object x ∈

RB×H×W×C. Denote by x(b, h, w, c) the entries of x , where 0 ≤ b < B, 0 ≤ h < H, 0 ≤ w < W ,
and 0 ≤ c < C. Then, in this case, batch normalization proceeds as follows: We first compute the
mean and standard deviation across the batch dimension for each channel separately:

µc =
1

BHW

B−1∑
b=0

H−1∑
h=0

W−1∑
w=0

x(b, h, w, c), (4.4.5)

and

σ2
c =

1
BHW

B−1∑
b=0

H−1∑
h=0

W−1∑
w=0

(x(b, h, w, c) − µc)2 , (4.4.6)

c ∈ {0, . . . , C − 1}. Then, we normalize each channel dimension by considering

y(b, h, w, c) =
x(b, h, w, c) − µc√

σ2
c + ϸ

, (4.4.7)

where ϸ > 0 is a small constant used for numerical stability. A set of learnable parameters
(γc)C−1

c=0 , (�c)C−1
c=0 are used to allow representations that are not centered around 0 with unit standard

deviation. Therefore, the output of a batch normalization layer in the case of CNNs is a 4D object
ŷ ∈ RB×H×W×C, where

ŷ(b, h, w, c) = γc ·
(x(b, h, w, c) − µc)√

σ2
c + ϸ

+ �c. (4.4.8)

Now, in the case of CNNs, layer normalization calculates the same statistics (mean and standard
deviation) for each feature map independently. In detail, for every fixed 0 ≤ b < B−1 we calculate
µb, σb by

µb =
1

HWC

H−1∑
h=0

W−1∑
w=0

C−1∑
c=0

x(b, h, w, c), (4.4.9)

σ2
b =

1
HWC

H−1∑
h=0

W−1∑
w=0

C−1∑
c=0

(x(b, h, w, c) − µb)2 . (4.4.10)

As in the case of batch normalization, two learnable matrices γ, � ∈ R ∈ RH×W×C are considered.
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The output of the layer normalization is a 4D object ŷ ∈ RB×H×W×C given by

ŷ(b, h, w, c) = γ(h, w, c) ·
x(b, h, w, c) − µb√

σ2
b + ϸ

+ �(h, w, c). (4.4.11)

4.4.4 The Pooling Layer

The purpose of pooling layers in CNNs is to reduce the dimensions of the input. In a typical
scenario, the height and width of the input feature map are halved while the channel dimension re-
mains the same. Two are the most common pooling operations; max pooling and average pooling.
As in the case of the convolution layer, one decides the size of the kernel to be used in the pooling
operations. These layers do not contain any learnable parameters and they are used to extract a
compact representation from local regions in the input feature map by reducing its size at the same
time. In detail, suppose that the input feature map is a 3D object x ∈ RH×W×C and the kernel has
size KH × KW × C. Then, both max and average pooling are performed by sliding the kernel on
the input feature map in a non-overlapping fashion and either computing the maximum or average
value, respectively, from the entries on the input feature map where the kernel is placed. Note that
the aggregations operations are performed for each channel independently. Therefore, the output
of a pooling layer is a 3D object of size H ′ ×W ′ × C where

H ′ =

⌊
H + 2pH − KH

KH
+ 1

⌋
,

and
W ′ =

⌊
W + 2pW − KW

KW
+ 1

⌋
,

where pH , pW corresponds to the number of columns/rows (padding) added on the sides of the
feature map. To halve the dimensions of the input feature map one chooses a kernel with size
2 × 2 × C with no padding. Figure 4.7 demonstrates the max pooling operation with a kernel size
of 2 × 2.

Figure 4.7. Max pooling operation. A kernel of size 2 × 2 acts on a 4 × 6 matrix. The input is
halved, resulting to an output of size 2 × 3.
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Chapter 5

Methodology: Deep Audio
Fingerprinting

In this chapter, we adopt an alternative approach to the song identification problem presented in
Section 3.5. We leverage the theory we have developed so far, spanning from the classic theory
of the Fourier Transform to the pioneering ideas of deep learning to establish an efficient music
recognition system that is entirely distinct from the one we introduced in 3.5. At an abstract level,
both of these systems exhibit similar functionality; they both extract compact representations from
the raw audio signals at the level of seconds, store these representations in a database, and during
query time, employ non-exhaustive searching techniques to retrieve the most similar segment from
the database relative to the query audio fragment. The key difference between these two systems is
that in the deep audio approach, we develop a deep neural network and train it in order to learn by
itself the latent representations of the audio fragments. This approach relieve us from the burden
of crafting sophisticated ideas to extract relevant information from the raw audio signals, instead,
we let the model to discover this representation. These ideas were first introduced by Google’s
research team in [13] where they launched an app called Now Playing, which is available on their
Google Pixel smartphone devices. Later on, these ideas were refined in [30] where the authors
used an alternative technique based on contrastive learning to train the deep neural network.

In the upcoming paragraphs we explain how one can set up a music recognition system based
on these ideas. Furthermore, we introduce the contrastive learning framework and train a CNN
neural network with the contrastive loss in order to learn compact feature representations from the
raw audio signals. We create a database with the learned representations and use techniques such
as product quantization to compress the feature representations. As in the case of dejavu, on query
time, non-exhaustive searching algorithms are employed for fast and efficient retrieval. At the end,
we compare these two music recognition systems with respect to the accuracy, time retrieval, the
size of the database, and in view of scalability.

5.1 An Overview of the Music Recognition System

In this section we provide a high level overview of the music recognition system based on the
deep audio fingerprinting approach. This section will serve as the building block for the upcoming
sections where we delve into the design details of the system. The whole process of designing
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such a system can be divided into three parts: (a) The development and training of the model,
(b) the extraction of the feature representations from the raw audio signals, and c) the creation of
the database. In Section 5.2 we explain in detail how to approach (a) and (b), and in Section 5.3
we create the database consisting of the latent representations and provide an efficient and fast
retrieval pipeline.

On an abstract level, the model is a simple CNN that maps 2D mel-spectrograms 3.3.3, ex-
tracted from the raw audio signals to 1D vectors. Mathematically, this is represented by a function
f : RF×T → RD, where F corresponds to the number of mel-frequency bins, and T to the num-
ber of time frames on the mel-spectrogram representation. As we will see, in our case we pick
F = 256, and T = 32, resulting from the use of the STFT on audio fragments corresponding to
1 sec of total duration. Therefore, the time resolution of our seconds is of the order of 1 sec. In
addition, a normalization layer g : RD → SD−1 is added on top of f that maps the vectors in RD to
the unit sphere

SD−1 =
{
z ∈ RD : ∥z∥2 = 1

}
.

Therefore, the final model is g ◦ f : RF×T → SD−1. Figure 5.1 illustrates the sequence of trans-
formations from the raw audio signal to the final feature vector. The model is trained in such a
way that the feature vectors in RD exhibit robustness to high distortions. This means that the fea-
ture representation of a distorted signal is close to the original clean audio signal with respect to
cosine similarity. This is achieved by training the model using the contrastive learning framework
presented in 5.2.2. Once the model has been trained it is used to extract the feature representations
from the songs that will be added to the database. Suppose that the database consists of N songs
in total. Then, for every song i ∈ {1, . . . , N} we extract a feature representation xi,j ∈ R

D for
each second with an overlap corresponding to 500ms. Therefore, if the i th song has Di seconds
duration, we extract di = 2Di − 1 feature vectors in total. Hence, the database B consists of the
feature representations

B =

N⋃
i=1
{xi1, . . . , xidi }.

Also, a second structure tracks the indices where each song’s feature vectors start and end on
the database. This structure is utilized on retrieval time to return all the metadata related to the
matched song. In Figure 5.2 you can see a visual representation of the database after the feature
extraction.

STFT

Raw Waveform Mel Spectrogram

Figure 5.1. The sequence of processing steps from the raw audio signal corresponding to 1 sec
duration to the final feature vector in SD−1.
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5.1 An Overview of the Music Recognition System

Songs Database Vectors

Song 1

Song 2

Figure 5.2. A representation of the database consisting of the feature representations from the
audio segments of 1 second. A second structure (on the left) keeps track of first and last index of
each song’s representations.

Input Audio Stream

Figure 5.3. A high level overview of the deep audio fingerprinting system during the retrieval
process.

Once we have established the database consisting of the feature representations and all the relevant
metadata for the songs we can use the vast theory of searching algorithms to obtain efficient and
fast retrieval capabilities. A naive approach for the retrieval process would work as follows: Sup-
pose we capture from the microphone a query audio signal of D seconds in duration. Then, we use
the STFT to extract the corresponding mel spectrogram representations {s1, . . . , s2D−1} ⊆ R

F×T .
We use the trained model g ◦ f to obtain the query representations {y1, . . . , y2D−1} ⊆ R

D. In the
naive case, we can run an exhaustive search for each of the query segments yi , 1 ≤ i ≤ 2D −1 and
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extract the best match according to the highest cosine similarity value. Therefore, for each query
segment yi we obtain the best matching index on the database by

ji = arg max
x∈B

⟨yi , x⟩. (5.1.1)

Utilizing the structural correspondence between the song names and the database indexes, we
convert the set of best-matching indexes {j1, . . . , j2D−1} to the corresponding song names. The
final output of the system is the song with the most occurrences. In Figure 5.3, you can see a
high-level overview of the retrieval process. While this approach is simple and effective for small
databases, it becomes prohibitive for databases containing thousands or even millions of songs.
This is due to the fact that the exhaustive search slows down the retrieval process. We encountered
a similar problem in paragraph 3.5.1, where we adopted alternative searching techniques. In this
case, we will leverage the vast theory known as Approximate Nearest Neighbor (ANN) Search. We
introduce Product Quantization [44], a technique that compresses the feature vectors significantly,
reducing the overall memory footprint of the database. The non-exhaustive search through the
inverted file index allows us to achieve database look-ups in the order of milliseconds.

5.2 Training the Model

5.2.1 The Architecture

In this paragraph we describe the architecture of the CNN that we will train for the purposes
of the music recognition system. The operations handled by the model are similar to the ones
presented in 4.4 with slight modifications; i.e., we use separable convolutions instead of the full
convolutional operation to reduce the number of model’s parameters and gain some inference
speed. The architecture is essentially the same as in [14, 13] where it has been shown to perform
relatively well on the song identification task.

Following the notation in [14] we denote by Co←i
k∗s convolution operation with input channel

i, output channel o, kernel size 1 × k, and stride 1 × s. The k′ and s′ denote rotation as k × 1
and s × 1. In any of the operations Co←i

k∗s or Co←i
k′∗s′ we assume a padding equal to 0 × 1, 1 × 0 is

used, respectively. Therefore, Co←i
k∗s acts on 3D objects of shape H ×W × i by mapping them to

3D objects of shape H ′ ×W ′ × o, where H ′ = H and

W ′ =

⌊W + 2 − k

s
+ 1

⌋
. (5.2.1)

Similarly, Co←i
k′∗s′ acts on 3D objects of shape H ×W × i by mapping them to 3D objects of shape

H ′ ×W ′ × o, where W ′ = W and

H ′ =
⌊H + 2 − k

s
+ 1

⌋
. (5.2.2)

Now, if we denote by ReLU the layer that applies the ReLU activation elementwise on the input,
and by LN the layer normalization as presented in 4.4.3, the separable convolution is the mapping
given by

SCo←i
k∗s (·) = ReLU ◦ LN ◦ Co←i

k′∗s′ ◦ ReLU ◦ LN ◦ Co←i
k∗s (·) (5.2.3)
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With these notations, we can express the encoder part f of the model as

f (·) = SCh←h
3∗2 ◦SCh←4d

3∗2 ◦SC4d←4d
3∗2 ◦SC4d←2d

3∗2 ◦SC2d←2d
3∗2 ◦SC2d←d

3∗2 ◦SCd←d
3∗2 ◦SCd←1

3∗2 (·), (5.2.4)

where h is the encoder’s embedding dimension, and d the final output dimension. Hence, the
encoder part f of the final model g ◦ f takes as input a log power mel spectrogram S ∈ RF×T and
outputs an h-dimension vector. In practice, we choose h to be a multiple of d. Now, the projection
head g is a mapping g : Rh → Sd−1. To map the h-dimensional vector onto the unit sphere Sd−1

we first split the vector into m = h/d subsequent subvectors v1, . . . , vm ∈ R
d . Then, these vectors

are inserted as columns to form a 2D matrix of size 1 × 128 ×m. We denote this transformation
by Splith/d . With this notation, g can be expressed as

g(·) = L2 ◦ C1←32
1∗1 ◦ ELU ◦ C32←m

1∗1 ◦ Splith/d(·), (5.2.5)

where ELU is the ELU activation function 4.1.2, and L2 denotes the L2-normalization given by
z 7→ z/ ∥z∥2, for z ∈ Rd . The input spectrogram is derived by 1 sec audio segments. We use a
samping rate equal to Fs = 8000 Hz. The STFT window N is equal to 1024 with a hop length
H corresponding to 256 samples. These parameters yield a spectrogram S of size 512 × 32
(frequency bins × time stamps). 256 mel frequency bins have been adopted resulting to the log
power mel spectrogram of size 256 × 32. The embedding dimension for the encoder is equal to
h = 1048, and the final output dimension of g is 128. Table 5.1 summarizes the forward pass
through the network g ◦ f .

Table 5.1. The Forward Pass through the Network g ◦ f .

Operation Input Output
SCd←1

3∗2 256 × 32 × 1 128 × 16 × 128
SCd←d

3∗2 128 × 16 × 128 64 × 8 × 128
SC2d←d

3∗2 64 × 8 × 128 32 × 4 × 256
SC2d←2d

3∗2 32 × 4 × 256 16 × 2 × 256
SC4d←2d

3∗2 16 × 2 × 256 8 × 1 × 512
SC4d←4d

3∗2 8 × 1 × 512 4 × 1 × 1024
SC4d←4d

3∗2 4 × 1 × 1024 2 × 1 × 1024
SCh←4d

3∗2 2 × 1 × 1024 1 × 1 × 1024
SCh←h

3∗2 2 × 1 × 1024 1 × 1 × 1024
Splith/d 1 × 1 × 1024 1 × 128 × 8
C32←m

1∗1 1 × 128 × 8 1 × 128 × 32
ELU 1 × 128 × 32 1 × 128 × 32

C1←32
1∗1 1 × 128 × 32 1 × 128 × 1

5.2.2 The Contrastive Learning Framework

In this paragraph, we introduce the concept of Contrastive Learning, which serves as the frame-
work for training the CNN presented in the previous paragraph. One of the most well-known
papers about contrastive loss is [30], in which the authors introduce the concept of contrastive

Diploma Thesis 121



Chapter 5. Methodology: Deep Audio Fingerprinting

learning – a promising self-supervised technique that facilitates the learning of discriminative vi-
sual representations. By leveraging this framework they manage to achieve state-of-the-art perfor-
mance in image classification. One of the most significant advantages of the contrastive learning
framework is that it does not require labeled data; rather, it only necessitates raw data inputs to
develop a model capable of mapping high-dimensional data points (e.g., images or spectrograms)
to low-dimensional and discriminative feature vectors in the latent space. The main idea is sim-
ple: Assuming a training dataset, whether it be images or audio fragments, we apply a series of
augmentations to the clean samples and train the model in such a way that it maps the distorted
samples as closely as possible to the clean samples in the latent space. This is achieved via the
contrastive loss. The crucial factor for learning effective representations is the choice of a series
of data augmentations. In our case, we aim for our CNN to model all the audio distortions that
may arise in a realistic scenario, where audio fragments are captured through a microphone in
reverberant and noisy environments. To achieve this, we introduce a novel augmentation pipeline
that effectively models all kinds of distortions that can arise in various environments where music
is playing in the background. Compared to the existing literature [13, 14], our approach improves
the overall performance of the system by a huge margin when music is captured through the micro-
phone, making it possible to develop promising applications. Therefore, we adopt the following
augmentations:

Background Noise: We distort the clean audio fragment of 1 second with background noise with
varying SNR (see 3.4.1) in dB. In particular, with probability p = 1/2 we add noise with an SNR
chosen uniformly from [0, 5] dB. With p = 0.3 with an SNR ∼ U ([5, 10]), and with p = 0.2 with
an SNR ∼ U ([10, 15]). The probability of applying the background noise transformation is 0.8.

Impulse Response: To simulate the effect of diverse spatial and microphone environments, mi-
crophone and room impulse responses are sequentially applied using the convolution operation as
in 3.4.2. Impulse response is added with probability equal to 1.

Time offset modulation: As we have already mentioned, the fingerprints (representations) are
extracted for each 1 sec audio segment duration with a hop size of 500ms. However, in a realistic
scenario the captured audio stream may be shifted. To this end, we shift the audio fragment with
an offset of up to 200 ms with probability p = 0.3.

Low/High Pass Filters with Decaying Energy: Low and high pass filters as introduced in 3.4.3
are utilized to model the degradation of certain frequencies when the audio is captured through
the microphone. We apply both low and high pass filters with decaying energy with probability
p = 0.4. In the low filter case, we randomly choose a threshold νc ∈ [2000, 3000] Hz and we
decay the frequencies of each octave above that threshold with increasing fixed decibel numbers
α ∈ {6k : k = 2, . . . 6}. Similarly, in the high pass filter, we randomly choose a threshold
νc ∈ [500, 1000] Hz and we decay the frequencies below that threshold in the same manner as
in case of the low pass filter. As we will see, these kind of transformations increased by a huge
margin the performance of the overall system on the microphone test.

We denote the above transformations byM(·). By this notation,M(x) corresponds to the output
of the clean audio sample x when distorted with the aforementioned transformations. The idea
of the contrastive loss is to bring as closely as possible the distorted audio sample M(x) to the
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original sample x in the latent space. This is achieved by maximizing the inner product

⟨g ◦ f (M(x)) , g ◦ f (x)⟩.

More formally, the contrastive loss is defined as follows: Let a sample {x1, . . . , xN } of clean audio
spectrograms corresponding to 1 sec and let {xN+1, . . . , x2N } their corresponding transformations,
i.e., xi+N =M(xi), i = 1, . . . , N. Then, the loss that measures how close is xi to xj on the embed-
ding space Sd−1 is given by

ℓ(i, j) = − log
e⟨g◦f (xi ),g◦f (xj)⟩/T∑2N

k=1 1k,i · e⟨g◦f (xi ),g◦f (xk )⟩/T
, (5.2.6)

where T > 0 is a hyperparameter called the temperature. Observe that ℓ is not symmetric, i.e.,
ℓ(i, j) , ℓ(j, i). The contrastive loss is then given by

L =
1

2N

N∑
k=1

[ℓ(k, N + k) + ℓ(N + k, k)]. (5.2.7)

Algorithm 5.1 provides a high level overview of the training pipeline with the contrastive loss. We
use the custom dataset as described in section 6.1 comprising of 26016 audio clips in total. 17
songs are hand-picked to serve as the test songs to evaluate the performance of the deep audio fin-
gerprinting approach. The results are presented in paragraph 6.3.1. We train the model according
to algorithm 5.1 for a maximum of 120 epochs. We use a large batch size equal to N = 500 since
the contrastive loss benefits from large batch sizes. We use LAMB( 4.3.5) as an optimizer since it
performs better for large batch size values. The learning rate is equal to 10−3 · N/640 and decays
with a cosine function reaching a minimum of 10−7 at epoch 120. The temperature parameter
is T = 0.05. Figure 5.4 shows the training and validation curves for each training epoch. The
minimum validation loss occurred at epoch 68 reaching a value of 0.2670. Early stopping was
used with a patience corresponding to 15 epochs. The next step is to use the best model to extract
the representations (fingerprints) for the 26016 songs. We extract the audio fingerprints corre-
sponding to 1 sec duration with a hop length equal to 500 ms. This results to a total of 1973384
128-dimensional fingerprints.

Algorithm 5.1: Training of the CNN with Contrastive Loss

Input: Even number of batch size N , temperature T > 0, transformationsM(·).
for each sampled mini-batch {xk}

N/2
k=1.

for all k ∈ {1, . . . , N/2} do
compute the transformed samples xN/2+k =M(xk).
zk ← g ◦ f (xk).
zN/2+k ← g ◦ f (xN/2+k).

Create the set {z1, . . . , zN/2, zN/2+1, . . . , zN }.
for all k ∈ {1, . . . , N/2}

Compute ℓ(k, N/2 + k), ℓ(N/2 + k, k).
Compute L = 1

N

∑N/2
k=1[ℓ(k, N/2 + k) + ℓ(N/2 + k, k)].

Update the parameters of g ◦ f to minimize L.
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One way to verify that the model has learned useful representations is to plot the fingerprints for
two different songs. In Figure 5.5 you can see the fingerprints of two different songs: 1) "Sorry"
by Madonna, and 2) "Queen of the Night Aria" by Wolfgang Amadeus Mozart projected in the
2D plane using PCA. A 5-sec audio fragment from the Queen of the Night Aria has been distorted
with background noise to produce 9 query fingerprints.

0 20 40 60 80
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Min Val Loss: 0.2670

Train Loss
Val Loss

Figure 5.4. Train and validation loss curves.
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Figure 5.5. Fingerprints of the songs "Sorry" (blue) by Madonna and "Queen of the Night Aria"
(orange) by Wolfgang Amadeus Mozart project in 2D with PCA. The green dots correspond to
fingerprints of a 5-sec audio fragment of the Queen of the Night distorted with background noise
with 0 SNR in dB.
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5.3 Creating the Database

In this section, we describe how to set up the database of fingerprints to allow for fast and effi-
cient retrievals. As stated in the previous section, 26,016 songs yield a total of 1,973,384 128-
dimensional fingerprints. Each entry of the feature vector is stored as a 32-bit floating point, re-
sulting in a total of 1.1 GB. However, approximately 25,000 of the songs correspond to 30-second
audio fragments. In a realistic scenario, assuming each song lasts about 3 minutes on average
(i.e., 180 seconds), the database will contain approximately 9 million fingerprints, with a total size
of 5 GB. Considering scalability, these numbers are prohibitive for applications that will run on
small devices requiring fast retrievals. In the next paragraph, we introduce the concept of product
quantization, a technique which significantly reduces the memory footprint of the database. To
address the challenge of searching in large databases with millions of fingerprints, we employ a
non-exhaustive search technique based on inverted file indexing. The synergy between these two
techniques enables us to establish a highly efficient recognition system capable of operating on
small devices.

5.3.1 Indexing the Database

Computing Euclidean distances, as well as other metric quantities, between high-dimensional vec-
tors is a fundamental requirement in many applications. Just like in our case, numerous recom-
mendation systems need to search for similar items represented as vectors in the database. This
paradigm it is known as nearest neighbor (NN) search. Nearest neighbor search is inherently ex-
pensive due to the curse of dimensionality [45, 46]. Our goal in NN search in Rd is to find the
element NN(x), in a finite set B ⊆ Rd of n vectors, minimizing the distance to the query vector
x ∈ Rd:

NN(x) = arg min
y∈B

d(x, y). (5.3.1)

An obvious way to address this problem is by employing an exhaustive search on the database,
i.e., search one by one the items y ∈ B. However, this approach is not effective when the cardinal
number of B is large. A lot of algorithms [47, 48, 49] have been invented to address this issue by
performing approximate nearest neighbor (ANN) search. On the other hand, vector quantization
methods aim to reduce the cardinality of the representation space and, thus, reduce the memory
footprint of the fingerprints to be stored in the database. A survey on quantization methods can be
found in [50]. In this paragraph, we focus on the methods presented in [44], where product quan-
tization is combined with an inverted file indexing technique to simultaneously reduce retrieval
time and the total memory footprint of the database.

Product Quantization

Quantization methods reduce the cardinality of the representations through quantizers. Formally,
a quantizer is a function q mapping a d-dimensional vector x ∈ Rd to a vector

q(x) ∈ C = {ci : i ∈ I},
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where I is a finite index set, e.g., I = {0, . . . , k − 1}. The reproduction values ci are called
centroids. The set of reproduction values C is the codebook of size k. The set Vi of vectors
mapped to a given index i is referred to as a (Voronoi) cell, and defined as

Vi = {x ∈ R
d : q(x) = ci} (5.3.2)

The k cells of a quantizers form a partition of Rd , i.e. Rd =
⋃k

i=1 Vi , and Vi ∩ Vj = ∅ for i , j.
In the context of product quantization, the approach differs: instead of quantizing the entire vector
x ∈ Rd , we partition the vector into m subvectors uj of dimension d∗ = d/m, where d is a multiple
of m, and apply separate quantization to each resulting subvector. Therefore, a given vector x is
mapped as follows:

x1, . . . , xd∗︸       ︷︷       ︸
u1(x)

, . . . , xd−d∗+1, . . . , xd︸              ︷︷              ︸
um (x)

7→ q1(u1(x)), . . . , qm(um(x)), (5.3.3)

where qj is a low-complexity quantizer associated with the j-th subvector. With the subquantizer qj

we associate the index Ij, the codebook Cj and the corresponding reproduction values (centroids)
cji . A reproduction value of the product quantizer is identified by an element of the product index
set I = I1 × · · · × Im . The codebook is therefore defined as the cartesian product

C = C1 × · · · × Cm ,

and a centroid of this set is the concatenation of centroids of the m subquantizers. From now on,
we assume that all subquantizers have the same finite number k∗ of reproduction values. In that
case, the total number of centroids is given by k = (k∗)m . Then, each subvector uj is associated
with a unique centroid cji . The key part of this correspondence is that we only need to store each
centroid cji once, and for each subjector uj we only need to store the index i ∈ Ij associated with
the centroid cji . Figure 5.6 illustrates this idea with a simple example where a 16-dimensional
vector is mapped to a 4-dimensional vector with integer values. The centroids cji are learned at a
preprocessing step via the K-means algorithm. In this way, the complexity of learning the quan-
tizer is m times the complexity of performing K-means clustering with k∗ centroids of dimension
d∗.

Figure 5.6. Illustration of product quantization. A 16-dimensional vector is mapped to 4-
dimensional integer valued vector, where each entry corresponds to the index of the associated
centroid.
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To calculate the space savings achieved by this representation, we first note that since each index
set Ij contains at most k∗ integers, its space requirement is O(log2 k∗). With m index sets Ij, the
complexity of representing a single data item is m · log2 k∗, referred to as the code length of the
quantizer. Additionally, we need to store the mk∗ centroids cji as 32 bit floating point numbers.
Therefore, the memory footpring for a database of size n is 32mk∗d+nm log2 k∗ bits. In practice,
k∗ is often chosen to be a power of 2, with k∗ = 256 = 28 being a reasonable choice. Table 5.2
displays the space requirements of product quantization for various values of m and the number of
songs in the database. The trade-off lies between the number of subquantizers m and the system’s
performance. Smaller values for m correspond to higher compression at the cost of accuracy in
retrieval time.

Table 5.2. Space requirements in Product Quantization (d = 128)

Songs Fingerprints (N) m n (k∗ = 2n) Database Size
2.7 K ∼ 1 M 64 8 97 MB
2.7 K ∼ 1 M 32 8 67 MB
5.5 K ∼ 2 M 64 8 136 MB
27 K ∼ 10 M 64 8 648 MB
140 K ∼ 50 M 64 8 3.2 GB
140 K ∼ 50M 8 8 400 MB

Now, on query time, the distance calculation between a query vector x ∈ Rd and the quantized
database vectors q(y) = (q1(u1), . . . , qm(um)) proceeds as follows: Denote by d(x, y) the distance
between x, y in Rd , where d is the Euclidean distance. Then, d(x, y) is approximated by the
distance d̃(x, y) = d(x, q(y)), which is computed using the decomposition

d̃(x, q(y)) = d(x, q(y)) =

√√ m∑
j=1

d
(
uj(x), qj(uj(y))

)2
, (5.3.4)

where the squared distances d(uj(x), cji)2, for j = 1, . . . , m, i = 1, . . . , k∗, are computed prior
to the search. However, searching with product quantization still examines all elements of the
database, which can lead to a time overhead during the retrieval process. Below, we present the
inverted file index that addresses this issue.

Inverted File Index

Inverted file index introduces another quantizer qc, referred to as coarse quantizer, that associates
the database items to a predetermined number of centroids cj, for j = 1, . . . , k′. The number of
centroids associated with qc typically ranges from k′ = 1, 000 to k′ = 1, 000, 000. Then, for
each item y ∈ Rd in the database, the product quantizer qp is used to encode the residual vector

r(y) = q − qc(y), (5.3.5)
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corresponding to the offset in the Voronoi cell. In this representation the vector y ∈ Rd is approx-
imated by

ŷ = qc(y) + qp(y − qc(y)). (5.3.6)

In this case, the estimator of d(x, y), where x is the query and y the database vector, is computed
as the distance d̂(x, y) between x and ŷ:

d̂(x, y) = d
(
x − qc(y), qp (y − qc(y))

)
. (5.3.7)

Denoting by qpj the j-th subquantizer, 5.3.7 can be calculated via

d̂(x, y)2 =

m∑
j=1

d
(
uj(x − qc(y)), qpj

(
uj(y − qc(y)

))2
. (5.3.8)

Similar to the case of the product quantizer strategy, for each subquantizer qpj the distances be-
tween the partial residual vector uj(x − qc(y)) and all centroids cji of qpj are preliminary computed
and stored. The product quantizer is learned on a set of residual vectors collected from a learning
set. In detail, the construction of the inverted file index system along with the product quantization
on residuals is the following: Suppose we have a finite set of database items B = {y1, . . . , yN }, a
coarse quantizer qc with k′ centroids, and a product quantizer qp. We first cluster each database
vector according to qc using K-means. This clustering yields k′ inverted lists L1, . . . ,Lk′ , where
each list Li stores the indexes of the database items associated with the centroid ci . Formally, Li

can be expressed as
Li = {1 ≤ i ≤ N : qc(yi) = ci}. (5.3.9)

Then, a single product quantizer qp is produced by the residuals yi−qc(yi), 1 ≤ i ≤ N . As opposed
to the product quantization (without the inverted file index) an additional storage of 32dk′ bits is
needed to store the k′ centroids produced by the coarse quantizer qc. On query time, the vector
x is assigned to the closest centroid ci according to the encoding qc(x), and only the inverted list
Li corresponding to qc(x) is scanned. However, x and its nearest neighbor are often not quantized
to the same centroid, but to nearby ones. To address this problem, a technique called probing
is used. The query x is assigned to ω indexes instead of only one, which correspond to the ω

nearest neighbors of x in the codebook of qc. Algorithms 5.2, 5.3 (as presented in [44]) describe
the indexing, and searching process in the inverted file system with product quantization.

Algorithm 5.2: Indexing a vector y

Input: Database items B, trained coarse quantizer qc, trained product quantizer qp

1. quantize y to qc(y)
2. compute residual r(y) = y − qc(y)
3. quantize r(y) to qp(r(y)), which, for the product quantizer, amounts to assigning uj(y) to
qj(uj(y)), for j = 1, . . . m.
4. add a new entry to the inverted list corresponding to qc(y). It contains the vector identifier and
the binary code (the product’s quantizer’s indexes).
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Algorithm 5.3: Searching on the database

Input: Database items B, trained coarse quantizer qc, trained product quantizer qp

Input: query vector x

1. quantize x to its ω nearest neighbors in the codebook qc. Denote by r(x) the residuals associated
with these ω assignments. The following steps are applied to all ω assignments.
2. compute the squared distance d(uj(r(x)), cji)2 for each subquantizer j and each of its centroids
cji

3. compute the squared distance between r(x) and all the indexed vectors of the inverted list.
Using the subvector-to-centroid distances computed in the previous step, this consists in summing
up m looked-up values.
4. select the K nearest neighbors of x based on the estimated distances. This is implemented
efficiently by maintaining a Maxheap structure of fixed capacity, that stores the K smallest values
seen so far. After each distance calculation, the point identifier is added to the structure only if its
distance is below the largest distance in the Maxheap.

Assuming that the database items are uniformly distributed to the centroids produced by the coarse
quantizer, the time complexity is reduced by a factor of k′ in case the probing is equal to 1. In
case where ω lists have to be scanned, about n × ω/k′ entries have to be parsed, which is again
significantly lower compared to the exhaustive approach.
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Chapter 6

Datasets and Experiments

In this chapter we present the experiments conducted for the purposes of the thesis. We first
begin by introducing the dataset that we used for setting up the database for both approaches,
and to train the deep neural network as well. In Section 6.2 we introduce two experiments for
evaluation the perfomance of both music recognition system. In Section 6.3 we implement by
using an open source library a music recognition system based on the ideas of Shazam’s algorithm
as described in 3.5. We evaluate the performance of this system in two different scenarios. Next, in
paragraph 6.4.1 we present the implementation details for the deep audio fingerprinting approach
and the results in the off-line evaluation. We conclude this chapter in paragraph 6.4.2 where we
compare the performance of these two system in a realistic scenario where the audio fragments
are captured through the microphone of a portable device. Furthermore, we evaluate the impact of
the augmentations on training the CNN. The results show that the music recognition system based
on the ideas of deep learning exhibits superior performance when compared to the classic method.

6.1 Dataset

For the purposes of the experiments we constructed a custom dataset consisting of 26,016 songs.
24,985 songs were obtained from the well-known FMA dataset [51]. In particular, these 24,985
audio clips correspond to 30-sec audio fragments from various music genres. Furthermore, 1,031
songs (full-length) were downloaded from YouTube with yt-dlp API1 to resemble as closely as
possible a realistic scenario where the songs cannot be easily distinguished according to their
genre. Two collections of 17 songs, and 15 songs, out of the 1,031 were hand-picked accord-
ing to the author’s personal preferences to serve as the test songs to measure, and compare the
performance of the music recognition systems in the off-line evaluation, and in the microphone
evaluation protocols, respectively (see 6.2). In Tables 6.1, 6.2 you can see these songs and some
general information such as the artist’s name, duration, and genre. All songs where downsampled
to 8KHz in a mono format with FFmpeg2 resulting to 16GB of total size. In addition, 100 audio
clips with various ambient noises like cars, train stations, and people talking in various places
(bars, clubs, cafeterias, etc.) were collected to simulate the background noise that these music
recognition systems may encounter in a real scenario. The total duration of the background noises

1https://github.com/yt-dlp/yt-dlp
2https://ffmpeg.org/documentation.html
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is 20 hours, 42 minutes, and 8 seconds. Finally, to train the deep neural network to exhibit ro-
bustness against the reverbaration effects that may arise in a realistic scenario, 292 audio clips of
impulse responses were hand picked according to the quality to simulate these distortions3.

6.2 Evaluation Protocols

To evaluate and compare the performance of the two music recognition systems we introduce two
different evaluation protocols:

(i) An off-line evaluation protocol where the 17 test songs are distorted in an off-line manner
with background noise of fixed SNR. By an off-line manner we mean that the clean audio
signals are distorted with background noise as described in Algorithm 3.1. With this test we
are able to measure the robustness of the systems for fixed SNRs.

(ii) In a realistic scenario more distortions than the background noise arise. For that reason, we
developed an evaluation protocol that aims to capture these distortions as well.

Below we give more details about these two protocols.

6.2.1 Off-line Evaluation

In the off-line evaluation we used the songs 17 songs listed in Table 6.1. For both systems, we
performed the experiment by varing the query duration and the SNR of the background noise
relative to the clean audio fragment. We examined the performance of both systems by considering
all possible combinations of SNRs and query durations from the sets {0, 5, 10, 15} (in dB) and
{1, 2, 3, 4, 5, 10} (in seconds) for the SNR, and query duration, respectively. Usually in these
tasks, one is not only interested in determining which song is being played, but also finding the
exact time position of the query with respect to the original audio recording. To this end, one
introduces the Top-1 hit rate (%), which is equivalent to recall with the extra requirement that the
true positives not only correspond to the correct identification of the query audio fragment but also
determining the time position within an acceptance tolerance corresponding to 500 ms. Formally,
Top-1 hit rate is defined as follows: Suppose we have a finite sequence of queries Q1, . . . , QM , and
the respective output predictions P1, . . . , PM of the system. Furthermore, denote by q1, . . . , qm the
time position relative to the original audio fragment of the queries Q1, . . . QM , and by p1, . . . , pM ,
the respective time positions of the output predictions P1, . . . , PM . Then, Top-1 hit rate is given by

100 ×
M∑

j=1

1Qj=Pj · 1|qj−pj |<0.5

M
, (6.2.1)

where 1A is the indicator function on the set A.

6.2.2 Microphone Evaluation

For the microphone evaluation experiment4, 15 songs from various genres were carefully selected
to simulate a diverse range of audio sounds. These songs were normalized to achieve equal energy

3see [52] and https://micirp.blogspot.com
4Many thanks to Antonia, the creator of this experiment. GitHub: https://github.com/apetrogianni.
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levels and then concatenated to create a single audio recording lasting 52 minutes. Similarly, an
audio recording of the same duration, containing a variety of background noises, was generated.
Subsequently, the recording containing the clean songs was played through a laptop device.

Meanwhile, a smartphone was connected to a bluetooth speaker, with the noisy recording
starting to play alongside the query recording. The resulting sound was captured by the laptop’s
microphone. The speaker was positioned in three different locations relative to the laptop’s po-
sition. As a result, three recordings (namely, low.wav, mid.wav, high.wav) were obtained, each
exhibiting increasing distortions based on the position of the speaker. The high.wav recording
corresponds to the closest position of the speaker, while the low.wav recording corresponds to the
farthest position. We evaluate the performance of both systems by varying the query duration in
the set {2, 5, 10, 15}. We report the accuracy of each system and evaluate the importance of ap-
plying the low/high pass filters on the neural network. As it is evident from the results presented
in the upcoming sections, this augmentation improves the performance of the deep audio system
by a huge margin, making it ideal for real-time applications.

Table 6.1. Test Songs in Off-line Evaluation

Song Artist Duration Genre
Buffalo Soldier Bob Marley 4:21 Reggae

Bad Like Jesse James John Lee Hooker 5:21 Blues
On Melancholy Hill Gorillaz 4:13 New wave, Synth-pop

The Promide You Made Cock Robin 3:52 Jazz
Girls Like You Maroon 5 3:52 Pop
Blinding Lights The Weeknd 3:19 New wave, Synth-pop

Sorry Madonna 4:41 Pop
Neglect Mr. Kitty 3:35 Synth-pop, Darkwave

Running Up That Hill Kate Bush 4:53 New Wave, Synth-pop
Set Fire to the Rain Adele 4:02 Pop
'Οταν σε είδα ξανά Ταφ Λάθος 4:50 Greek Hip-Hop

Φίλα Με Σταμάτης Κραουνάκης 3:10 Greek Entechno
Σβήσε το Φεγγάρι Δημήτρης Μητροπάνος 4:01 Greek Laiko
Συγχαρητήρια 'Αννα Βίσση 5:09 Greek Laiko, Entechno

Φίλε έλα απόψε που πονάω Γιάννης Πουλόπουλος 3:21 Greek Laiko
Ανισόπεδη Ντίσκο Pan Pan 4:06 Electro-pop

Queen of the Night Aria Wolfgang Amadeus Mozart 3:10 Classical
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Table 6.2. Test Songs in Microphone Evaluation

Song Artist Duration Genre
Viva La Vida Coldplay 4:02 Baroque Pop

Lookin Out My Back Door Creedence Clearwater Revival 2:35 Country Rock
We Danced Brad Paisley 3:46 Country

How Do You Sleep? Sam Smith 3:22 Pop
The Four Seasons - Spring- Allegro Antonio Vivaldi 3:15 Classical

It Must Have Been Love Roxette 4:15 Pop
Love of a Lifetime Fireouse 4:47 Glam metal

I’ve got you under my skin Frank Sinatra 3:46 Jazz
You and your hand Pink 3:33 Pop

Rude boy Rihanna 3:44 Pop
Sweet Nothin’s Brenda Lee 2:20 Country

I don’t wanna live without your love Chicago 3:57 Soft Rock
A bird in the hand Ice Cube 2:20 Hip-hop/rap
Summer is crazy Alexia 4:21 Eurodance

Bad guy Billie Eilish 3:14 electro-pop

6.3 dejavu: An Open Source Library for Shazam’s Algorithm

In this section, we set up a music recognition system that make use of the fingerprinting method
described in Section 3.5 to recognize short audio fragments captured in noisy and reverberant
environments. To implement the audio fingerprinting system we use dejavu5, an open source
library which is written in Python. The code including all the experiments conducted for the
purposes of the thesis is available on a public GitHub repository.6

6.3.1 Creating the Database

To setup the database we used the 26,016 songs as discussed in 6.1. These songs yielded a total
of 58,659,291 fingerprints. The database corresponding to the audio fingerprints is represented by
two MySQL tables. The first table, named SONGS, is created to keep track of all the necessary
metadata related to the songs in the database, and the second table, named FINGERPRINTS, keeps
the fingerprint hashes of the songs. Below, we describe these two tables in more detail.

(i) SONGS: The first table keeps track of all the relative metadata of the songs in database.
The fields of this table are:

(1) song_id: A unique non-negative integer value serving as the primary key of the table..

(2) song_name: A string representing the name of the song.

5https://github.com/worldveil/dejavu
6https://github.com/ChrisNick92/deep-audio-fingerprinting
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(3) file_sha1: A 10-byte binary string, represented in hexadecimal form, indicating the
hash value of the file from which the fingerprints are extracted for the song.

(4) total_hashes: A non-negative integer value representing the total number of hashes
stored in the database for the song..

(5) date_created: A date indicating when the song was added to the database.

(6) date_modified: A date indicating the most recent modification date for the song.

(ii) FINGERPRINTS: The second table corresponds to the audio representation of the database.
It stores all the hashes that are extracted from the songs. Dejavu follows the method of Wang
described in 3.5.3, where the hashes are generated by the triplets (k0, k1, n1−n0) as defined
in (3.5.9). The table consists of the following fields:

(1) hash: A 10-byte binary string represented in hexadecimal form, corresponding to the
hash resulting from the triplet (k0, k1, n1 − n0).

(2) song_id: A non-negative integer value corresponding to the foreign key resulting from
a one-to-many relationship with the SONGS table.

(3) offset: A non-negative integer corresponding to the time frame on the spectrogram
in which the triplet (k0, k1, n1 − n0) belongs. This index is important since we can
retrieve the time stamp of the query, i.e., the time offset of the query.

(4) data_created: A date indicating when the fingerprint was added to the database.

(5) date_modified: A date indicating the most recent modification date for the fingerprint.

Figure 6.1 provides a graphical representation of Dejavu’s database schema, and Table 6.3 the
hyperparameters used to create the database with Dejavu.

dejavu database

1. song id
2. song name
3. file sha1
4. total hases
5. data created
6. data modified

Songs

1. hash
2. song id
3. offset
4. data created
5. data modified

Fingerprints

Figure 6.1. Dejavu Database Schema.
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Table 6.3. Hyperparameters and Statistics of Dejavu Database.

Sampling Rate Fs = 8000
Window length N = 4096

Hop length H = 2048 (50%)
Size of local maximum neighborhood 10 × 10 (cell)

Fan value F = 5
Number of songs 26016

Number of fingerprints 58659291
Database size 6786.7 (MB)

As we can see from Table 6.3, the requirements of Dejavu with respect to required storage space
are quite expensive since the size of the database is 6,7 GB for a total audio duration of 275
hours, 36 minutes, and 26 seconds. This requirement is not easily scalable to larger databases, and
the implementation of such systems requires moving from a single device to multiple devices by
setting up large clusters on the cloud. Tables 6.4 & 6.6 show some rows from these two MySql
tables.

Table 6.4. Table FINGERPRINTS.

hash sond_id offset
0x0000FB78C9A4DBF91A15 1 1
0x07B98A2AF4E0B0E92045 1 1
0x08DBA50D5FB57DB14077 1 1
0x0BB512C2AD06356FEBE8 1 1
0x0C9BFDB024CC4EAE4C4F 1 1
0x0DFA37209D0902C33E85 1 1
0x0F81A32E220163D9EF73 1 1

Table 6.5. Table SONGS.

song_id song_name total_hashes
1 Kool & The Gang - Tonight (12’) 14550
2 New Kids On The Block - I’ll Be Loving You 13678
3 Levert - Casanova 13966
4 Teena Marie - Lover Girl 20606
5 Bob Seger - Fire Lake 11646
6 Cyndi Lauper - Time After Time 12854
7 Hall & Oates - You’ve Lost That Lovin’ Feelin’ 14422
8 Tina Turner - Better Be Good To Me 12898
9 Rick Springfield - Don’t Talk To Strangers 10330
10 Wham - Careless Whisper 19306
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6.3.2 Performance in the Off-line scenario

To evaluate the performance of the music recognition system based on dejavu we perform the off-
line evaluation as described in subsection 6.2.1. The best matching part of the database is the one
with the highest score in ∆Q(m) as defined in (3.5.7). Dejavu uses the term "input confidence" for
∆Q(m). Figure 6.2 shows how the input confidence varies with respect to the background noise
with fixed SNR.
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Figure 6.2. Input confidence vs SNR in Dejavu. The query corresponds to 10 sec from the chorus
of Blinding Lights by The Weeknd. Green dots correspond to correct predictions, and red dots to
false predictions.

As we can see, Dejavu is quite robust to high signal distortions as it correctly matches the audio
fragment even in SNRs below 0. We can see that Dejavu correctly classified 34/40 queries, yield-
ing a total of 85% accuracy in the song identification. However, usually in these tasks, one is not
only interested in determining which song is being played, but also finding the exact time position
of the query with respect to the original audio recording. To this end, we use Top-1-hit-rate as
defined in 6.2.1 to evaluate the performance in the off-line scenario. Table 6.6 summarizes the
results.
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Table 6.6. Performance of dejavu in the Off-line Evaluation.

Metrics Query length (s) 0 dB 5 dB 10 dB 15 dB

Accuracy 3.91% 5.91% 7.84 % 8.87 %
F1 score 1 6.86% 11.01% 14.12% 15.92%

Top-1 hit rate 3.39% 4.72% 6.89% 7.30%
Accuracy 28.06% 36.66% 42.45% 48.23&
F1 score 2 41.05% 52.94% 59.06% 64.61%

Top-1 hit rate 24.27% 33.32% 38.48% 44.02%
Accuracy 41.38% 60.70% 68.10% 73.78&
F1 score 3 57.36% 74.53% 80.50% 84.54%

Top-1 hit rate 38.65% 56.82% 63.79% 69.32%
Accuracy 52.06% 71.91% 81.30% 86.77&
F1 score 4 66.22% 82.83% 89.19% 92.79%

Top-1 hit rate 48.32% 67.11% 75.84% 81.59%
Accuracy 60.02% 79.83% 87.52% 91.60&
F1 score 5 73.31% 88.38% 93.23% 95.39%

Top-1 hit rate 55.22% 75.15% 82.11% 86.55%
Accuracy 82.85% 94.69% 98.07% 98.79&
F1 score 10 90.08% 97.25% 99.05% 99.40%

Top-1 hit rate 77.78% 90.34% 93.48% 94.44%

Table 6.6 shows that dejavu is quite sensitive to short queries (less than 4 seconds), scoring less
than 50% for low SNRs. However, for 10-second queries, we observe that dejavu exhibits robust
performance with a score of 77% even at 0 SNR. As the query duration increases, dejavu’s perfor-
mance undergoes dramatic changes, achieving very high scores. However, these long queries are
impractical for real-time applications, where users expect results in just a few seconds.

6.4 Comparing the Music Recognition Systems

In this section, we compare the two music recognition systems in terms of their performance and
scalability. We first present the results of the deep audio fingerprinting approach in the off-line
evaluation, along with some implementation details. In the last subsection, we compare dejavu
with the deep audio fingerprinting approach in the microphone evaluation, a test that better sim-
ulates real-world conditions. Additionally, we demonstrate that augmentations related to low and
high pass filters are crucial for the deep neural network to achieve robust performance in scenarios
where users capture the audio fragments from their portable devices.

6.4.1 Deep Audio Fingerprinting Performance in the Off-line Evaluation

The code that was produced for the purposes of this thesis is publicly available on GitHub7. The
code is written in Python, and the deep learning framework that we used for the deep audio finger-

7https://github.com/ChrisNick92/deep-audio-fingerprinting
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printing approach is PyTorch8. For the training part, we used the custom dataset as presented in
Section 6.1. We split the dataset in 80-20 manner for the training, and validation sets, respectively.
The 17 songs used for the off-line evaluation protocol (see 6.2.1) are excluded from these sets. For
the data augmentations, Audiomentations9 API was used. To create of the database of fingerprints
based on the inverted file structured along with the product quantization we used faiss10, an open
source library developed by Meta AI. In detail, we create an IVFPQ (inverted file + product quanti-
zation) index as described in paragraph 5.3.1. The number of coarse centroids is equal to k′ = 20,
and the number of subquantizers is equal to m = 64. A total of 28 = 256 centroids is chosen for
each subquantizer. We extract a total of 1,973,384 fingerprints. For each song, we extract 1 finger-
print for each second with a hop size equal to 500 ms. This yield a total of 1,973,384 fingerprints.
The database size is 137 MB. Furthermore, an additional structure represented as a Python dictio-
nary keeps track of the correspondence between song names and their corresponding fingerprints
in the faiss index. The size of this dictionary is 556 KB. Therefore, the size requirement of this
approach is roughly 137 MB, significantly lower compared to dejavu, where the database size was
6.7 GB for the same dataset comprising 26,016 songs. Table 6.7 summarizes some of the most
important hyperparameters and some statistics of the resulting database.

Table 6.7. Hyperparameters and statistics in the deep audio fingerprinting approach

Parameter Value (N)
Sampling Rate 8000

STFT window function Hann

STFT window and hop 1024, 256
STFT spectrogram size F × T 512 × T (T = 32)

low-power Mel-spectrogram size F ′ × T 256 × T (T = 32)
Fingerprint {window length, hop} {1s, 0.5s}

Fingerprint dimension d 128
Network parameter embedding size h 1024

Batch Size 512
Number of songs 26, 016

Number of Fingerprints 1,973,384
Number of subquantizers m 64
Number coarse centroids k′ 20

Number of bits n 8

At query time, the first 5 coarse centroids out of 20 are scanned and first 4 nearest neighbors are
returned. We measure the distance based on the inner product. This means, that higher distance
values correspond to points closest to the query. We employ the same searching technique as
introduced in [14], referred to as sequence search to determine the starting position of the query
audio fragment with a time tolerance of ±500 ms. More formally, for a query sequence {xi}

L
i=0

consisting of L consecutive segments: We first gather the top k segment-level search results indices

8https://pytorch.org
9https://github.com/iver56/audiomentations

10https://github.com/facebookresearch/faiss
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Ii from the database, for each query segment xi . The offset is then compensated by I ′i = Ii − i. The
set of candidates indices c ∈ C is determined by taking unique elements of

⋃L
i=0 I ′i . The sequence-

level similarity score is the sum of all segment-level similarities from the segment index range
[c, c + L], and the index with the highest score is the output of the system. The name of song is
returned using the python dictionary. To test the performance, we use the 17 songs from Table 6.1.
In Table 6.8 you can see the performance of the system for varying SNR values and query lengths.

Table 6.8. Performance of Deep Audio Fingerprinting System.

Metrics Query length (s) 0 dB 5 dB 10 dB 15 dB

Accuracy 56.80% 81.19% 91.73 % 94.78 %
F1 score 1 70.79% 88.73% 95.10% 96.84%

Top-1 hit rate 45.30% 66.52% 78.33% 84.48%
Accuracy 78.11% 92.54 % 97.56 % 98.61 &
F1 score 2 86.80 % 95.54 % 98.43 % 99.06 %

Top-1 hit rate 63.77 % 78.35 % 87.09 % 89.63 %
Accuracy 83.41 % 96.12 % 98.49 % 99.07 &
F1 score 3 90.25 % 97.55 % 99.04 % 99.33 %

Top-1 hit rate 69.25 % 83.41 % 89.44 % 92.82 %
Accuracy 87.73 % 97.32 % 98.75 % 98.95 &
F1 score 4 92.92 % 98.39 % 99.20 % 99.29 %

Top-1 hit rate 73.44 % 85.52 % 91.75 % 92.62 %
Accuracy 89.32 % 97.48 % 98.56 % 99.16 &
F1 score 5 93.58 % 98.35 % 99.07 % 99.39 %

Top-1 hit rate 75.99 % 85.52 % 89.68 % 93.88 %
Accuracy 95.65 % 98.07 % 98.55 % 98.31 &
F1 score 10 97.27 % 98.86 % 99.06 % 98.97 %

Top-1 hit rate 78.50 % 84.30 % 88.89 % 92.51 %

As we can observe, the deep audio approach surpasses dejavu by a substantial margin, particularly
for short queries of length less than 10 seconds. As the query length increases, the performance
of dejavu significantly improves compared to the deep audio fingerprinting system. However, this
becomes impractical for real-time applications where the retrieval process needs to be as fast as
possible. Table 6.9 shows the inference time through the model, the query time to search on the
database for the best matching index, and the total time required to return the output.

Table 6.9. Inference, Query, and Total time

Query length (sec) 1 2 3 4 5 10
Inference time (ms) 138.13 185.38 226.59 262.43 300.15 502.24

Query time (ms) 3.85 5.07 8.18 10.39 13.05 24.11
Total retrieval time (ms) 141.98 190.46 234.77 272.83 313.20 526.35
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6.4.2 Deep Audio vs. Dejavu in Microphone Evaluation

Up to this point, we have evaluated the performance of the music recognition systems by intro-
ducing background noise to the clean audio signals. However, in a realistic scenario where the
query signal is captured in noisy environments, additional distortions may also occur. Further-
more, these music recognition systems typically operate on portable devices, meaning that query
audio fragments are captured through the devices’ microphones. Therefore, it is necessary to test
the performance of both systems in conditions that reflect these real-world scenarios. To accom-
plish this, in this subsection, we compare the performance of the music recognition systems using
the microphone evaluation, as presented in 6.2.2. Additionally, we test the performance of the
deep audio approach, and examine whether the augmentations with regard to the high/low pass
filters improve the accuracy of the model. Table 6.10 summarizes the results of the experiment.

Table 6.10. Performance (Accuracy) of the Music Recognition Systems on Microphone Experi-
ment.

Metrics Query length (s) low mid high

Deep Audio 85.03% 62.65% 41.92%
Deep Audio (No Filters) 2 67.22% 49.02% 19.47%

Dejavu 12.63% 6.50% 10.73%

Deep Audio 92.66% 80.06% 62.52%
Deep Audio (No Filters) 5 80.38% 65.39% 31.10%

Dejavu 59.21% 40.94% 47.24%

Deep Audio 94.52% 90.32% 74.19%
Deep Audio (No Filters) 10 84.19% 78.39% 41.29%

Dejavu 83.60% 70.98% 71.29%

Deep Audio 97.56% 90.24% 80.98%
Deep Audio (No Filters) 15 86.34% 80.98% 48.29%

Dejavu 93.33% 77.14% 83.33%
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Chapter 7

Conclusions

In this thesis, we have presented the basic theory and techniques used in audio signal process-
ing. We focused on the task of song identification and developed two different music recognition
systems. The first music recognition system is based on the well-established Shazam’s algorithm,
representing the traditional approach to song identification. In contrast, the second approach lever-
ages recent advances in deep learning by training a deep neural network to exhibit robust perfor-
mance against signal distortions.

We presented the underlying theory of each system and compared their performance through
a series of experiments. One major drawback of the classic fingerprinting approach is the rapid
expansion of the database as more songs are added to the system. Specifically, we found that
the database size of dejavu was 6.7 GB for a total of 26,016 songs. In the case of the deep
audio fingerprinting approach, we achieved a database size of 137 MB for the same number of
songs by employing product quantization techniques. This reduction is possible because the vector
representation extracted from the raw audio signals by the model benefits from the extensive theory
of Approximate Nearest Neighbor search.

Furthermore, we observed that by applying suitable augmentations to the model, the deep
audio approach can outperform the classic approach, especially for short queries, making it well-
suited for real-time applications. On the positive side, music recognition systems using the classic
fingerprinting approach maintain consistent performance regardless of the distortions that may
be present. In contrast, if the model is not specifically trained to handle certain distortions, its
performance can significantly deteriorate when those distortions are encountered in a real-world
scenario.

However, with the growth in computational power and advancements in deep learning, ap-
proaches that leverage these aspects tend to outperform classic methods by a substantial margin
in various domains, including music information retrieval. For future directions in the song iden-
tification task, an interesting paper to consider is Self-supervised Product Quantization for Deep
Unsupervised Image Retrieval [53], in which the authors present an end-to-end system that jointly
trains a deep neural network to learn both the latent feature representations of images and the bi-
nary codes of product quantization. In their paper, they develop an efficient image retrieval system
that achieves state-of-the-art performance when compared to existing systems.
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BPF Band Pass Filter
Hz Hertz
FT Fourier Transform
IFT Inverse Fourier Transform
DFT Discrete Fourier Transform
DT Discrete Time Signal
CT Continuous Time Signal
STFT Short-Time Fourier Transform
CNN Convolutional Neural Network
OCR Optical Character Recognition
OMR Optical Music Recognition
TOH Threshold of Hearing
TOP Threshold of Pain
CQT Continuous Q Transform
CSI Cover Song Identification
MIR Music Information Retrieval
SNR Signal to Noise Ratio
AI Artificial Intelligence
MLP Multi Layer Perceptron
DL Deep Learning
MSE Mean Squared Error
MAE Mean Absolute Error
SGD Stochastic Gradient Descent
ANN Approximate Nearest Neighbor
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