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HeptAngm

e auth T BtmAopotiny, e€etdloupe to TedBinua tne Hohunpaxtopinric Evioyutrc Mdidnong
(MARL) névew og pepixs nopatnefiolto ouvepyotixd tepiBddiovia. Adyw tne xahfic Toug
enidoong oe mOAAG mepIBdANOVTA XL TG amodoTixOTNTAG TG on-policy ydinohc toug, ol
voupe éugaon oe alyoplduoug mohtxrc xhiong, émwe o akyderduoc Multi-Agent Actor-
Critic (MAA2C). Axoloudovtog tnv npdogpatn thndopo tpoceyyioewy nov gite (a) uio-
Yetolv 1o npdTuno Kevtpirc Exnaidevone - Anoxevipwpévne Extéleonc (CTDE), eite ()
YENOWOTOOLY TNV ETUXOVGVIN TRUXTORMY XAUTA T1) SLIEXELX TNG EXTEAEOTNC YLt BEATIWUEVT ETT-
oooT), 9€touue T0 axdrovdo cpw TN TWS Vo cuvdudoouue To tpdTuno CTDE ye ta opéin
TOV HEYOdLY EMXOVWVIG, Yiol TNV EXTUBELUCT TEUXTOPMY ToL efval txavol VoL AUvouv 80oxola
nepBdhhovta, cuumepthouBavouévwy autoy Ue apour) emPBedBevon. I Tov oxomd autd, oe
auth T Stmhwpotix mpoteivoupe tov Count-based Agent Modelling (CAM), éva mhaioto
MARL movu Bactleton 6tov MAA2C xou yenoylomolel TexVIx€C HOVIEAOTOINOTC TEOXTORWY,
HETOBAUAAOUEVT) OVATORAC TOOT| X0k AUTOETUBAETOUEVT UdUmom Yl Tr) Snutovpylo dlaoleaouol
TN TANEOYORING AVAUECH GTOUC TEUXTORES OE HOPYPY| XPUPEY VEUPWVIXMY AVATURAUC TUCEMY.
To CAM ypenotuomolel Tig ONULOVEYNUEVES OVITOQAGC TAGELS YIoL TNV ATOTEAECUATIXT EVIOYUOT
TWV TOAMTIXOV TOV TEUXTOPWY XAl Ylo CUVTOVICUEVT autovoun e€epedivnon Bactlopévn oe ev-
doyevr| xvnronoinon. Ielpopatind, delyvouue 6Tt to CAM uNERTEREL TWV TLO TEONYUEVGLY A~
yoptiuwv MARL oe dUoxoha mepBdhhovia and ta 6eT TEpBarhOVInY tpocouciwong Multi-
Agent Particle Environment (MPE) xou Level-based Foraging (LBF).
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Evioyutix Méinon, HHokunpaxtopin Médnon, MetaBarhouevn Avanapdo taor, Movtehomolnon
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Abstract

In this thesis, we consider the problem of Multi-Agent Reinforcement Learning (MARL) in
partially-observable cooperative tasks. Due to their good performance on multiple bench-
mark MARL testbeds and the efficiency of their on-policy learning, we emphasize on policy
gradient algorithms, such as the Multi-Agent Actor-Critic (MAA2C) algorithm. Following
the recent surge of approaches that either (a) adopt the Centralized-Training-Decentralized
Execution (CTDE) schema, or (b) utilize agent communication also during execution for
improved performance, we address the question of how to combine the CTDE schema with
the benefits of communication methods, in order to train agents able to perform better
in difficult tasks, including those with sparse reward settings. To this aim, in this thesis,
we propose Count-based Agent Modelling (CAM), a MARL framework, built on top of
MAA2C, that utilizes agent modelling techniques, variational inference and self-supervised
learning for generating information sharing among the agents as latent neural representa-
tions. CAM uses the generated information sharing representations for explicitly enhancing
the agents’ policies, and also for encouraging the agents towards coordinated exploration
based on intrinsic motivation. Experimentally, we show that CAM outperforms state-of-
the-art MARL algorithms on difficult tasks, with and without sparse rewards, from the
Multi-Agent Particle Environment (MPE) and Level-based Foraging (LBF) benchmark
testbeds.
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Chapter 1

Extetapevn Ilepiindn ota
EAANN VX

1.1 Ilohunpaxtopix?] Evioyutixry Mddnon

Y ouTY| TN OITAGUATLXY, GTOYEVOLUE OTNV AVTHIETOTLOT TOAITAOXWY TEQLOPLOUEVLY UEQIXOS
TUEATNENOWY TEQBUAAOVTOY TOAATAWY TEAXTOPWY TOU ATOUTOUY UTOTEAECUATIXNY CUVER-
yooto and toug TedxTopeg Teoxewévou va Avdolv. H cuvepyaoio umopel va exdniwiel o
CUVTOVIOUOC TN YVWONSG TV TROXTORMWY GYETIXA UE T1) OUVOULXT TOU TEPIBAAAOVTOC XAl TV
OHABIXWY TOUG OTOYWY. ATO 1 Sour| TWV TEPUBUAAOVTIXGDY TEROUATOY TOU AVTIUETWTILOUYE
OTA TEWAUATE pag, OhoL oL TEdxTopes AoyBdvouv To (Blo ohua avtaoBhc o xdle ypovixt
oYU TNS TPocopoinone Tou TeptBdAovtoc, To omolo TepLypdpeL Tov xowvd oTéyo(uc) TNe
opddac xatd urfixoc evoc mouyvidlol (my €dv ol taixteg elvan x0vtd o vixn Tou mouyvidlol 1
oV @Tdvouv oTa ayomnuéva Toug onuela avapopds). To Yewpntixd mhaiclo tou yovielonotel
T0o Topandve TeoBinua eivar to DecPOMDP. Emniéov, axohoudolue to oyfua Kevtpuxrg
Exnoidevone - Anoxevtpouévne Extéeonc (CTDE), to onolo éyel eupéne yenoytomouiel
YL Tov €Aeyyo Twv alyopiluwy Aroxevipwuévne Evioyutinic Mddnone (MARL) ot BiBAt-
oypapla. Me Bdon tn doun tou DecPOMDP xou tnyv évvota tou oyfuatoc CTDE, evtoniCoupe
Tat €€1C TEOPAAUOTA TOU UAC EVETVEUCAY EVTOVOL YIoL AUTAY T SITAWUATIXT.

O xowvég avtopolféc mou haufBdvouyv ol tedxtopeg ot éva DecPOMDP unopoiv vo mapa-
TAAVACOULY T1) BLAOXACTol EXTIUBEUCTC TWV TEAXTOPWY, XANCTOVTAS TOMES epyaoieg 0TO TAL-
oo Tou MARL noAd 80oxolec vo Avdoly. Aedouévou 6Tl 1600 oL dUECES AVTUUOLBES GGO ol
oL oUVOhXOL GTOYOL TNS opddag etvor xotvol, etvar BUOXOAO Yo xGUE TEEXTOPO VoL oVOrY Vel
OEL TN CUVELCPORA TNE BIXAC TOL TOMTIXNG OTIC avTaoBéC Tou Aopfdvet. Auth 1 duoxohio
umopel vou xohotd oplouévoug mpdxtopeg "adpaveic" otny amoteleopatiny| e&epedvnon Tou
TOTUXOU Y WEOU TURATAENONG TOUS, axOUn Xat oV 1 avToolf3n) T ouddag etvon oyeTnd uPnAt
AOY® NS UTaEENG XOADY TOMTIXOV GAAWY TEOXTOPWY. MUVETKC, Ol odPAVELS TEdXTOopES Yo
eTAEYOLY EVEQYEIEC TOU elvon Un BEATIOTES, EMEWDY| 1) EXTWOUEYY Toug o&la Yo etvon UeYAAT
%At u€co 6po. Me dAho Aoyia, auTd TO TEOBANUA UToEL Vo OBTYHOEL TOUG TRAXTOPES OE UT-

opéhtiota tpooeyyio Txd loopponio Nash, éva mpdfBinua mou €yel yapoxtneiotel we " Xyetiny
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16 Chapter 1. Extetouévn Ilepidnn ota EAAnvixa

Trepyevixevon" ot BBhoypapla tou MARL. To nopandve TedBAnuo emOeVmVETUL UTO THY
Umopgn puiuloewy apodv avTopolBy, 0TS 0TolEC Ol TEEXTOEES AoUBAVOUY XUAES AVTUUOLBES
HOVO OTAY PTACOLY GE XOAEC XATACTACELS, T.Y. OTOV EMAVOUV TAHEKS TO TEOPBANUa. e
TETOLEG TEQIMTWOELS, Ol TEAXTOPES TMEETEL VO TEOTEENOVTAL Vo LIOYETACOLY TLo €EEQEUVITIXES
TOMTIXES, UE XodEVaY OO AUTOUC VoL GTOYEVEL OTNY ATOTEAEOUATIXY €EEEEUVNOT TOU TOTLXOU
YWEOL TUPATAENCHEC TOU TOCO ATOUXA OGO KoL CUVERYOTIXA.

Yougwva pe to oyfuo CTDE, xatd tn doxiun, ol mpdxtope mpémel vo AOGouv TV €p-
yaota divovtag uévo Tig dixée Toug mapatnenoels (xome 1 extéleot) elvan amoxevipwuévn),
oV %0l UTOEOVY VoL YENOUYLOTOL00Y OTOLEGONTOTE TANPOQOPIES amtd TOUG GANOUE TEIXTORES Yo
GUVTOVIOHO XATE TNV EXUAINOT TV OTOUXOY TOMTIXOV TOUC XATE TNV XEVTELXT] EXTALOELOT).
201600, BeV Elvon TAVTA TEOPAVES TS OL TEAXTOPES VAL YPNOYLOTO|COLY TIE TANROQORIES TwWV
IAAWY TEOXTOPWY XATd TNV xevipinY| exntaldeuor). [lpdogata, undpyet Yeydho evolapépoy yia
uedod0ug emxovwViag, oL 0TolEC GTOYEVOUY VAl YENOYLOTIOOVUY ATOBOTIXY) XEVTPIXT] ETLXOLY-
oVvio HETAE) TOV TEAATOPWY UETK UNVURATOV X0k TRWTOXOMAWY TEOXEWEVOL VoL AOGOLY TOAU-
Thoxeg ouvepYaTég epyaoieg. Ou yédodol emxowvwviag avtyetonilovy o TpéfAnua tou
GUYTOVIOHOU TWV TRUXTOPWY EVOOUATMVOVTAS GTNY TOALTIXY XdUe TEdXTOpd XATOL0V TEOTO
X0LVOTOINoNE TANEOPOELOY (OTWS XOLVES ToRAUTNEHOELS Xou /1) EVERYELES) U€ow NG exudinong
£VOC BIXTOOU ETUXOVWVING TV TEAXTOPWY ToL BeTioTonolel TNV enidoon ohdxAnene Tne oud-
doc. Me autdv Tov TEoTO, AdE TEdXTOPUG pordalvel Uil BEATIOUEVT] TOATIXY TOU AduPBdvel
unddn eniong auTd TOL TUEATNEOVLY/XEVoUY oL GUVDESEUEVOL cuuTaixTeS Tou. QoTtdoo, autol
ol tpomot oev Bocilovton oto oyfua CTDE, 81611 8ev yenolonololy anoxevTpwuévn EXTEAETT),
EV OL TEAXTOPES YENOWOTOLOUY TEVTO XATOIEC TANEOPORIES Omd FANOUS TRAXTORES WS UEROS
TWV TOMTIXOV TOUC XATA TIC OOXLIEC.

‘Evo onuovtind epidTnua TOU EVOLUPEQOUACTE VO AVTWETWTICOUUE GE AUTAV T1) OLTAw-
wotix| etvon to €€c: MnopoUe va ovvdudoovue to oxnua CTDE e ta opéAn twy peldédwy
emkowwviag yia va eknaidelooupe TPAKTOpeS Tov elval o€ Déon va Opovy anoTeAeoUaTikoTepa
o€ 6vokoda mpoPAnuata; Emmiéov, haufBdvovtag utddn tny eviunwaotaxy enidoon twv uedodwy
emxowveviog oe doxoha TepBdAovTa aloAGYNONG, EVOLUPECOUACTE ETLONG VO AVTHIETOTI-
coupe to axohovdo epwtnua: Mropolue va eknaibeboovpe mpditopes vno to oxnuae CTDE
e PeAtiwpéves molitikés, dnAadn ekpetarrevdpevor kdnooy TUTo KOS KOWomoinong TAnpo-
POPIOY, KAl va XPNOILOTOIOOUUE aAUTHY TNV KOWOTOINON TANPOYOPIdY VA TUVTOVIOUEVT)

diepetivnon o€ dVokoda mpoPAnuata ue apaié§ avtapoyBEég;

1.2 CAM: Learning Variational Embeddings for Opponent
Modelling

Yty mpotewouevn uedodo, xdlde mpdxtopag uovetel cUOTNUN LOVTEAOTOINGNE TOU av-
TMGAOU, GTOYELOVTAS Vo TROBAEPEL TIC TUPATNENOELS TWV GAADY TRAXTOPWY OE EVA YPOVIXO
Brue, AowPavovtog unddn wévo Tic dixéc Tou mapatneroeic. Onwe oto [54], xdie npdxtopac

i LOVTEAOTIOLEL TIC TUPUTNEAOELS TWV GAAWY TEaxTdewY, Tou cupfoliloviar kg o) ', UEow Wiag

sowTtepic menoldnong, plo; " | of; 0;), mapauetponompévn amd Ty Tuyaia ueTaBANTH ©; ue
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Twég 0; € ©;. Auty n menolinon meplypdpel TOV TEOTO UE TOV OO0 O TEAXTOPUS AVTLA-
BdveTon Tar un opatd TUAUOTA TNG TANPOUS xoTdoTaon PactlOUEVOS OTIC BIXEC TOU PEPLXES
nopatnefioec. YTrodétoupe (o) p(6;) yio o 6, (B) v Vnapdn oplopévewv xpuPnY PeTaBA-
nTov 28 ot yopo Z xau (Y) 6T o8 %8 ypovind Brua t, oL xpupéc petalhntéc 2 nepLéyouy
TANEOYOPRIEC OYETXS UE TNV LOVTIEAOTOMNGT TOU AVTITIAOU OO TOV TEAXTOPY. .

T vor pddouye pior xohf avamoapdotaor (embedding) yi v xpugh YeTOBANTA HOV-
Tehomolnone Tou avTindhou 2%, YenotonollUE évay uetoBolxd xwdtxoromTh (pg,) - omox-
odonoimnth (gg,) Yot xdde maixtn ToU GTOYEVEL GTO Vo avTIAN@UEl TI TOPATNEACEL TwWY
GV Tty (0; ") 670 ypovind Brua t, dedouévey ubvo Twv dxdy Tou tapatneroswy (o}).
Hopddnha, oe x&de ypovind Brua t, eVioyloUUE TNV TOATXH Tou Taixtn T TpocdétovTac
v apye| eloodo tne mohtede (Snhady of) we to zi. Ou propolooue vo utodécouue HTL
Wovixd eAttiouue 6Tt 0 xwdixoToNTAG-amoxmdXoToNTAC Yo unopoloe vo TEoPBAEneL TéAEL
TIC TOPUTNPAOELS TV GAAGY TOUXTEMV, €101 OOTE TO 2} VoL Efval G0 TO BUVATHY TLO EVIUERWTING
OYETXA UE TO TL TopaTnEolY oL dhhot maixtec. 201600, Onwe Topatneinxe oc TEdCQUTY
épeuva [25], 1 yerion GhwY TwY TANPOPOELOY TNS XoTdG TaoNS (axdpo xat GTa YENOLUOTOLOUUE
Lot GUUTILEOPEVT AVOTORAO TOOT) Yot TNV eVIoYUOT TN TOMTIXTC TOU Ttalx Ty Oev auEdvel mévta
v entldoon AOYW TANPOPORLOY TNE XUTACTACTS TOU EVOL TEPLTTES YL TOV TAlXTY. MNUeLn-
VOUUE OTL TOPOUOLA ATOTEAECUOTO TUEATNPOVVTOL X0 0T MELRJUAUTE UAS OE EMOUEVO XEPANALO
QUTAC TNG OLTAWHUATIXAG.

Me otdyo v exuddnon onuovtixdy embeddings xotd TNV avomapdoToon TOV 2L, ov-
TeTOTlouPE TN YENON TEPLTTWY TANEOPORLOY XuTd TNV Teoonddeia TeoBiedng amd Tov
xwdomotNTh-anoxwdixoront) Tou oy \.  AvticTowa ye to [25], yenoonoolue emmhéov
™ wddnon Bopdy, w' = a(pw(0")), éxoviac éva Bhpoc vl xdde yopaxtneloTiXd Tou 0.
XpenowonoloUue €va TOAVETUTEDD VEUPWVIXG BIXTUO WG TN CUVAETNGCT Pyy XOL TN GLYUOELDN
CLVAETNOT EVERYOTOINONG T TEOXEWEVOL VoL BlaTNENCOLUE TNV Tn xdde cioédou Yetald

C Yo
Tov mopdyovTa i. o xdie mapdyovta 7, EXTUBEVOUUE EVAY XWOOLXOTOUNTH-ATOXWOIXOTONTH

[0,1]. Xtnv ouola, to w' aviimpoowneder ) onpooion xdde yopoxTnEIG X0 TOU 0~
ENAYLOTOTIOLOVTOG TNV 0XOAOUDT] AUTO-ETBAETOUEVT] CUVAPTNOT| AVUXATACHEVNS:

Lrec(eiy ¢i7 ¢2u) - (wl ' O_i - wi ' é_i)z (11)

Hopamdve, 7 uetoBANTA 6~ avTinpocwnelel Tic TPOBAETOUEVES TUPUTHENOELS TOU XOOKOTONTH-
ATOXOBHOTOLNTA, EVE 1 UeTeBANTH 6 ¢ avTioTolyel oTIC TRaYPaTXéC TopPUTHEROEIC OThYOU
TV v topayévtey. Ot petofintéc w! avtimpoowretouy ta npoBiendueva Béen pihtpou,
xat To oOuBolo - uTtodnhwvel Tov element-wise molhamiooctaoud. I vo otadepomoiioouye
Ty exmaldeuoT eV w', TUPGUOLY PE TIC TUTIKEC EVNPEPOOELS 0To Buadl evioyutind udinon,
émwe oto |51, 68], yenowomnowlpe Bdpn, cupBoriloviac T pe Wi, Yio Vo GLATEEPOUYE TIC
TEOBAETOUEVEC TUPATNEACELC GTOYOL 0~ ¢ PE TWEC TOU AVTLGTOLYOUY OTLC TRONYOUPEVES TLHéC
TV wh X Topauévouy aUETEBANTES xaTd TN BLdpxeld TNE evpépmone Tov w'.

H andieio avaxoatooxevric oty 4.1 YEVIXEVEL TNV TUTIXT ATOAELN AVOXATAOHEUTS EVOS
Metofolxol Autoxedixorointy (VAE) (8elte 3.31). Suyxexpwéve, €dv 1600 o w' 660

xan toe W' elvan (oo e Tov mivoxar TauTOTNTAG, TOTE AoPBAVOUUE axEBMC TOV 6RO ATWAELIS
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AVOXATAOXEVHC TOL 3.31. X1 yeviny| meplntwon, 1 amoAeio avoxataoxeunc Tou 4.1 Aoufdvel
uTbdn X0 To () amoTEAESUATIXA avaxaTaoxeur Tou 0! xau To (B) T uddnon Tou wt ue évoy
QU TO-EXTAUBEUTIXG TPOTO.

T v dracpoiicouye 6Tt ol Tiéc Tou w' dev eZagavilovior 670 undév oe Ghec Tic OL-
QO TEOELS (ONUEWDOTE GTL OE AUTAHY TNV TEPITTWOT), 1) AMWAEL avoxataoxeLic Vo fitay undév),

npoc¥éTouye emlong Tov axdroudo dpo anwhetag L2 xavovixonolnong:

Lnorm(qsgu) = _||wi||2 (1.2)

T vo e€acpohicoupe emmiéov 6L ot Tée Tou w' éyouv onuaocta ylo Ty enthuor Tne
0edoUEVNC EpYaOlog oL, CUVETMS, YLl TN PEYLOTOTOINCT TNg emdoong, TEOCUETOUUE TOV
TEAXATW 6p0 EUUULONG Yo TOV TEAXTOPW i, TREOEPYOUEVO OO TOV YOUEVO XELTIXOU TOU

Tumixol MAA2C.

Leritic(@ ki) = [re + Vie (81) — Vi, (80)]? (1.3)

omou 1y ebvon 1 Angleioa avtopol3) oto yeovixd Brua t, s; eivan 1 xaTdo TaoT) TOL TERUSAUA-
hovtog 6To yeovixo Briua t, Vi, elvar n xatdotoor o&lug mapoueToomoinuévn and Eva VEUpLVIXO
dixtuo ki, Vii(s) eivon 1 xatdotaon aliog tapopetporomuévn and éva dixtuo otdyo k'i xou
§r = 0y ® (W' - 0 ') ebvon N TpoBhenduevn xotdoTaoN TOU SruoupYEiton amd TNV Tenoldnon
Tou X TN 1, 670V B onuaivel dlavuouaTiny cLVEVKOT. Xnueidvoupe 6Tt to VEi(8) (xou, wg
ex toUtov, T0 VE'i(8)) Sev exnaudetetar we Pondntixd epyasia, pe v évvota 6t 0o Vk;(§)
yenowonotetton eniong we xevtpuxog critic tou MAA2C xou Sev e€aptdton amd TNV TEOYUATIXT
XATAC TACT S.

‘Onwe xou oto VAE [37], npootétoupe évav 6po pliuione mou otoyelel otny ehaytotonoinon
e KL andxhione petald tne yeteneiepyooiog (posterior) xou tne mpoteleotixic (prior)

xatavounc (1 omolor cuvidng utoléteTon WS 1 Xxovovixr xatavouy).

Lir(¢i) = Drr(gs,(2']0")]lpe, (') = N(0,1)) (1.4)

Yuvohixd, 1 cuvolixy| amwAelo Tou CAM yio Tn UdUNOT TEOUPETIXWY EVOWUATOOENDY YL

TOV TEAXTOEA 1, TOU ONUEWWVETUL PUE LroTAarL, elvon 1 axdhouin:

LTOTAL(Hi, ¢ia Qﬁw kl) = Lrec(9i7 Qbi, (biu) + Lnorm(gbiu) + Lcritic(gﬁiua kz) + LKL(sz) (15)

O xwdwonomthg-anoxwdxonontig xde TpdxTopa AUPBAVeEL TIC TUPAUTNPTNOELS TOU TEdX-
TopaL 1, o}, ot x&dE Ypovixd o t o oToyeleL 670 va pdiel yprotue embeddings oth popen
KPUPTC VATOPEG TUGTC, EXOVTAS (S OTHYO TIC TAPUTNEROELS TV GAAGY TpaXTEPWY, 0; ', TOA-
hamhaotaouéves (o€ oTolyelwdn Bdom) pe To Stavuopatind didvuopa Bapdv w', Tpoxelévou
vo emitpéel o€ xde TEAXTOPA VO EMIXEVTRMOVETIL UOVO OTIC TANPOGORIEC Tou unopel va etvat
ONUAVTIXEC. € oUTO TO onuelo, TEETEL Vo TOVIGOLUE TN ONUACio TOU BLYUOUITIXOU BLovUo-

wotog Bopyv, xodog ywelc autd, 0 GTOY0S TOU XWOXOTOUNTA-UTOXWOXOTOINTY) AUEEVETOL
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YOEUUUXE UE TOV LU0 TWV TEAXTOPWY %ok TN dlodwacta udinong 0ev avouéveTal vor ooy Y-
oel o€ yenown evowpdtwon. Télog, oe xdde ypovixd Brua t, xdde mpdxtopac i yenotLonoLel
ot Behtiwpévn moht (- | of, 2}) mou eaptdton T600 amd To o 660 x and TV TEOf-
AETOUEVY PETAUPRUPLATIXNT EVOLUATOON 21

[ot vor exondeuTolY Ol XWOOXOTONTEC-UTOXWBIXOTONTES THOV TEUXTOPWY e aveddpTnTa
(i.i.d) dedoyéva, otnv mpdln deryuatornnrovue petofdoeic and tic Angpldeioec nopeiec twv
TEOXTOPWY, TEOXEWEVOL va Bloaxdouue TV UPMAY cucyETion TwV PETABAoEWY EVIOC TWV
Buwv Tpoytdy. Lnueidvouue 6Tt To Pooixd poviého MAA2C pog exmoundeletal YpnoILOTOW)V-

T dedouéva evtde TohTixfc (on-policy).

1.3 CAM: Count-based Intrinsic Motivation

Ye authyv Vv evotnra, mopouctdlouue To devtepo pépog tou CAM, to omolo otoyelel
OTOV OYEDINOUO AMOTEAECUOTIXOY ETUTAEOV AVTAUOLBMY Yiol xaAUTepn e€epelvnon o ToAD-
Thoxa TROBAAUN UE apatég avTopolBéc. 0T000, OTwe cUINTACOUE TUEATAVE, Elval NUAVTIXG
Y10 TOUC TEAXTORES Vo GLVTOVICOUY TNV EEEPEUVNOT| TOUC UE ATOBOTIXG TEOTO, BEdOUEVOL OTL
oL Tuyaiec apyixéc TONTKES (TTOU opeihovtal 6TOV 60 TNG EVIPOTIUG OTNV ATOAELY noh‘umﬁg)
umopel vor uny efval eTTUYEIC GTOV EVTOTIOUO CTUAVTIXGY XATACTACEDY. AMNNGS, OL XATUC T
oelg unmArc aiog umopel vor amontoly Wiar axoAoudior XOLVOY EVERYELWMY OIO TOUC TRAXTORES
Tou efvar ToA) BUoxoho Vo Beelolv YECK TUY ALY ACUVTOVIOTWY TOALTIXMY.

[t vor evioyUooUUE TEPAULTER® TN GUVBLUC TIXY) TOMTIXY TWV TEAXTOPWY Yol TNV ETUTELEN,
xatooTdoewy LPNATC alag oe mepBdAhoVTa PE apoUéS aVTOHOBES, EXUETUAAEUOUACTE TNV
EXPPOCTL BUVOUT TWY TPOBAETOUEVLV 2°, TTOL éY0UV EVOWUATOOEL TNV TETOIINoN TOU TEdX-
TOPA § OYETIXA PE TN WEELXY| TOREATNENOWT TANRN XATAGTAOT Xl OYEDALOUUE EOWTEPIHES
avtopoBéc mou houfBdvouy Lo T6CO To atouikd 660 xal To Tuvepyatikéd 6gelog. Kadde
0 2 TephapPdvel Thnpogoplec GYETIXG e TO TL PAETOLY oL dANOL TUXTES, TPOTEIVOUPE VoL EV-
Yopplivoupe x4 TEdxXTOPN i VoL OTAUCEL OE TUPATNPACELC TOU 0dNYOUY OF Véa 2! xou, cuveradg,
va e€epeuviioel exBoyéc Tou ToTxoU YhEoL xatdo taong (tapathenor) mou oyetilovion ue did-
popa 2%, Y10 To aTopd Tou bgehoc. 6T600, UE AUTEV TOV TEOTO, O TEAXTOPAS i TPOXOEL
enlong BLopopeTixole GTOYOUC Yiol T LOVTEAOTIOMOT TwV GAADY TEaxTOpwY, —i dnhady, ol
GANOL TEAXTORES, —%, TMEETEL TWEA VO UdYoLY amd adEATOUC GTOYOUS HOVIEAOTONONS TTRUX-
TOpWY AOYW VEOVY Topatnenoemy Tou AauBdvouy and Tov TEAXTOP i. LUVETWS, O TEAXTORIS
i oavoryx et EUUECO TOUG JANOUC TRAXTORES, —1, VoL EEEQEUVHACOLY XAADTERO TOV Y MPO GTOY WY
Ne povtelonoinorc Toug, Boniddvtag Toug va BeATidcouV T Tenotdnoelc Toug, dnhadr to

Z*’L

, OYETIXA UE TOV TTAYEN YWOEO XATdoTaonS. Ao TNV GANY TAELEA, UE TO VoL XAVOLY XoL Ol
GANoL mpdxTOpES, —i, EEEPEVVACELS OE TEPLOYES TOU TOTUXOU Y(OEOU XATACTUONS TOU UTOREL
VoL 08NYAO0UY GE TO EVNPERWTIXG 2°, 1) TPOTEWGUEVN TPocéYYLon evioppivel odnhen(Bpoon
Yoo TNV owvToviouévn ebepelivnon Yo GUVERYATIXG OPENOC.

[N v e€oogaicouye Toug 6TdY0UE HAS, VOUETOVUE TO Oy LA AV TOUOLBYC EVOWUATWHUEVNS
CLVAETNONG XATAUETENONG UE Yenon Tou ahyoplduou SimHash mou mpotddnxe otnv epyacio
[66]. H neprypapt| tou ahyopiduou SimHash unopel vo Bpedel otov Alydprduo 8. Tevixd,
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Algorithm 1 Count-based exploration through static hashing, using SimHash
Define state preprocessor ¢ : S — RP
Initialize A € R**P with entries drawn i.i.d. from the standard Gaussian N'(0, 1)

Initialize a hash table with values n(-) =0

For each iteration j do
Collect a set of state-action samples {(sm, am)}_, with policy 7
Compute hash codes using SimHash, ¢(s,,) = sgn(Ag(sm))
Update the hash table counts Vm : 0 < m < M as n(H(sp)) < n(]\]z(sm)) +1

Update the policy n using rewards {r(sm,am) + (HB())} with any RL
n Sm
m=0

algorithm
End for

MLP
ol i wi RL part: optimize 1-""(\9-) instead of V'(s)
t Pu t where § = o, @ (w} - 0; %)
VAE
Oi ;i 8; wy 0,

) T k.
i 3 N
Zy B

—>m'—> MAA2C Algorithm
4% SimHuash }—b Count Based Intrinsic Reward ‘

a8 s i A
T RTED) ™=ritr

Figure 1.1: The Count-Based Agent Modelling (CAM) framework

TUPOUGLALOVUE TNV ETULOXOTNOY TOU TEOTEWVOUEVOU Thatctiou oto Lyfuo 4.1. O oiyderduog
SimHash Swaxpitonolel Tic avanopaoéoels (1 T0 YOpO XUTACTACEDY YEVIXE) YENOULOTOLOV-
Tag Yot oLVEETNoN xataxepuotiopol H 1S — Z. Xtn cuvéyela, évo umévoug eEEpelvnong
7S — R vnoloyileton we e€nc:

B
n(H(sm))

O 6poc B € Rx>p meplypdyer 10 GUVTEAEOTYH Undvous, eved oL apyixéc Uetproes n(-)

>
Il

(1.6)

optlovtan 6To UNdéV yio Gho Tto evpog tou H. Koatd tn didpxeio Tng exmaldeuong, yia xdde
emoxe@ieion evonudtnon o otn ypovixh otyuh ¢, to n(H(0})) avldveton xotd €va, xou
o maixtng ¢ exmoudeleton e avtopoBéc Ty = (rp + 7)), o6mou 1y elvon M apyix avtopolBn
Tou madxTn @ (mou elvan (Bror yiow Ghoug Toug TalxTeC oE cuvepyaTIXd TowyVidLa) xou 7y ebvon 1

eYYeEVAC avTapol3 Tou malxTr i.
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H enidoon tou ahyoptduou e€optdton oe yeydro Badud amd Ty eMAOYT TNg CUVAETNONG
xatoxepuotiopol H, n onola Yo €npeme Bovind VoL avTIo TOLYEL SLOPOPETIXG ATOUUXQUCUEVO em-
beddings xou vo cuyywvelel tapopota. H amdpaon Aoufdveton amd tov odyderdpo SimHash,
0 omolog YETEA TNV OPOLOTNTA UE BAOT TN YWVIAXT| ATOCTACT) YENOUOTOIWVTAS TNV axohoudn
cLVdETNO:

H(5m> = Sgn(Ag(Sm)) € {_17 l}kv (1'7)

omou g: S — RP amotehet wa ouvdpTtnor npoeneepyaciog xou to A elvon €vag mivaog
k x D ye aveZdptntec xotoywenoels and tnv xovovixh xatavour N (0, 1).

Emuié€aye tov ahyoprduo SimHash, o onolo otnv mpdén extehel Wi omhr wordnuatixy
UETAOYNUATION TNG ELGOBOL VTl YLoL Lol IO AETTOUERT| TROCEYYLOT), AOYW TNG AMAGTNTAC TOU
X0l TNS LXAVOTNTAS TOU VoL EMLTEETEL GE XOVTLVES ELGOBOUE VO UETATRETOVTOL GE XOVTLVES TUES
AATAXEQUATIONOV.

[ot Voo xatao THOOUPE TG E0WTEPES avToOoB3Ee o oTadepée xan vor xododnyricouue
amoteheoyotixd TNy e&epedvnon xad’ G T Sudpxelo Tng Sadixaciag exnaideuong Tou xdle
TEdXTOPA, TEETEL VoL XUTAO TACOUPE T0 2° To oTadepd. Anhady|, Ol TUPGUETEOL TV XWOLXOTOLNTOV-
ATOXWBXOTOLNTGY VoL Unv oAAGLoLY Spopatixd YeTaE) SLaboyIX®Y EMELTOB{Y EXTAUBEVOT.
INo tov o%0om6 auTod, EMAEYOLUE VO TEAYUUTOTIOLOVUE TEPLOOIXES EVIUERWOELS TV XWOXOTONTMV-
ATOXWOLXOTIOLNTAOV YPNOWOTOWVTAS EVal 6 ToERd UEYSRO 0ptdd eMELGODIWY EXTUBEUCTC 1
Teplodo evnuépwang, 1 ool amotelel yio uepTaEdueTEO Tou setting pog. Iopadétovye tnv

emoxdmnon tou akyoplduov CAM otov Ahyodprduo 9.
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Algorithm 2 CAM algorithm

Initialize n actor networks with random parameters 07, ..., 0]

Initialize n critic network with random parameters kq, ..., k,

Initialize n VAE networks with random parameters 601, ...,60, and ¢1, ..., ¢,
Initialize n weight networks with random parameters ¢L, ..., %

Collect environment observations of, ..., of

for time step t = 1,..., EpisodeHorizon do
for agent i =1,...,n do
Sample embedding z{ from variational encoder gy,
Sample actions a! from (a} | hi, 2{; 0F)
Execute actions and collect states s¢;1, observations o}, ; and rewards ;.
for time step t = 1,..., EpisodeHorizon do
for agent : =1,...,n do
Calculate the count-based intrinsic reward 7 based on algorithm 8
and use 7; = 7 + 7% as the reward of each agent
for agent i =1,...,n do
Update parameters 67 by minimizing the loss of the equation 3.8
Update parameters k; by minimizing the loss of the equation 4.3
for agent i =1,...,n do

Update parameters ¢!, 6;, ¢; by minimizing the loss of the equation 4.5

1.4 Ileipopoatind Meépog

Ye autd o xepdhono oulnrovue Ty a&lohdynon tou mpotevopevou miaciou (CAM)
yenotpornowwvtac (o) to multi-agent particle environment (MPE) mou npotdidnxe and to
[45], (B) to level-based Foraging (LBF) nou mpotdinxe and to [56]. Kou to 800 nepiBdihovta
TEPLAUBAVOUV CUVERYUTIXES XL OVTAYWVIOTIXE TEOBAAUATA, EVEK TO BEUTERO ToEEYEL ETloNg
TEOBAAUNTA YE apatés avTUUOBES. MToYEVOUNE Var XAVOUUE [lor cUYXELoT TNE ETB00TS TOu
CAM oe npofhiuata amd ta mpoavapepévta settings xou va cuyxpivouue v enidoot] Tou
Ue YvooTolg akyopiduoug Tou mediou.

Apyxd, Eexvdye ye tn oLl TNoT Tou TERoPATIXOL TEPY3dAAOVTOC Tou axoloutolue oTa
Telpduatd yoc. Xenouwlonotolue dUo doxipaoTixd mepBdihovio tou €youv yenowonowndel
eLPEWC Yl TNV a&loAdYNon NS emidoone Twv aAyoplduwy xa Twv TAacinv epyaciag ot
Hohumpaxtopinh Evioyutixsy Mnyovixry Mddnon (MARL). Xe bhec tic epyooiec twv 0o
BONYUC TIXWY TERYSAAAOVTWY, avTl YLot OTTIXEC TANEOYOR(ES, Ol TEdxToRES AauBdvouy uPnho
EMTEOOU YUPUXTNPLOTIXG WC TUPATNENOELS, To OTOla AEITOUPYOUY WC TOTUXES XUTUO TACELS.
Yty oucla, 1 TARENG XATACTACY AMOTEAE(TOL OO TNV GUVEVKOY TWV TORATNEHCEWY TWV
TEAXTOPWY, XAl XAVE TEAKTOPUC EYEL UEQIXT| TUPATNENOWOTNTA CYETIXA UE TNV TAY)EN XATAOC-

Taom.
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1.5 AmnoteAéopata

e autr TNV evOTNTO GULNTOVUE TA ATOTEAECUATA TOU TPOTEWOUEVOL TAUGIOU OTIC BOXUUES
MPE xou LBF MARL, otic onoleg xatapépaue vo emTOYOVUE XOAT ETIBOOT GE OYECT UE TIC
emAeypévee pedodoug avapopds. XtV axOAovdn TELROUATIX AVEAUCT), ETLOTUAIVOUUE TNV
enidoon Twv alohoynuévey aryopliuwy MARL ot napoxdte dtorypduuoto. e OAa Ta Blo-
Yedppota, o optldvTiog dEovag Bely Vel Tnyv mpdodo Tou ypdvou (ot timesteps) tng exnaldevong
TOV OAYORIUWY Xol O XATOXOPLPOS GEOVIC PETEA TO GUVORXO aVTAUUOLST| ETELCOBIOU OTIC
00xES ToU AauPBdveTon xatd T SLdpxELd EVOC GTAEROD YPOVIXOU BLAC THUATOS EXTUBEVOTG.
YUYAEXQWEVY, Yo TN UETENOT TNS oLUVOlXTS avTopolfric encicodiou, xdde 50000 timesteps
extipolue tov alyoprdyo MARL ce 10 mopdddnhec tuyolec mepUBUANOVTIXES TEQLTITWOELS
(OnAadry 10 mepBddhovta mou dnuiovpyolviar and 10 Tuyaioug omdpouc) xou houfBdvouue
TO PECOV GUVOAXO avTAUO3T| ETELC08{0U TTOU TEOXOTTEL AN TNV EXTEAECT) TNC TOATIXNS OE
ouTd Tar TepBdAlOVTaL X OAa Tor TEwpduaTa, optlouue Tov ypovixd opllovta exmaideuong
(Bnhadr Tov opllbvtio dEova xde dorypdupatoc) (oo pe 10 exatouudpla timesteps. Eniong,
epgaviCouue T0 HECOV GUVOAXO avTopOoLBY) ETELCOBIOL Ywpeic xauia xavovixonolnon, HoTe Ta

ATOTEAECUOTA VO UTOPOVY VoL avarmoporydoly eUXOAA.

1.5.1 Amroteléocpata oto MPE

Zexivovtag amd To TEpaUaTixd oOvoro doxuwy MPE, cuyxeivoupe tov CAM pe ta
oxorhouta avagopixd povtéha: COMA, MAA2C xou ATM (ta omoio Pocilovtoun dha oe
EVNUEPWOELS TOMTXAC Xhiome, OTwe Tapouctdlovtal 0To Xepdhono 2). Xenotuonololyue TEGoEPLS
puuioeic tepBalhovTindy YeTpnt®v we benchmark, o ocuyxexpévo to Spread (ue 1o N
va modpver Twée 3,4, 6) xou to SpeakerListener. Aebouévou 6t dha ta mepiBdAlovta dev
€youv puiuicelc apattdv avtapolB®y, dev yenoyomololue xoula ecwtept| xivitpa oto CAM
(BnAadn yenowornototue S = 0). Auté emiTpEneL piar dixonn oUYXELOTN HE TOL AVAPOEIXE LOVTEND,
To omolal 6eV yenotponoly ouTe oyfuata tou Boacilovtar otny e&epebvnon adkd Bacilovta
OTOUG OTOYOUS TNE MOATIXNG o GTY) GUVOAXY apyttextovxr] Touc. Opilouue Tov ypovixd
optlovta v g epyaoicg MPE oe 25 ypovixd Briucta, énwe optleton otny enlonun viomoinon.

Yto Eyfuo 1.2, eygavilouvuye tn olyxpion tou CAM ye to avopopind Uoviéra OTIG
pvuioeic Spread. Ilupatnpolue 6t to CAM (o x6xxivo) umeptepel oe dhar tar TepBah-
Aovta Spread oe oyéon pe to dAAa poviéha. To CAM xatopépvel GUVEYME VoL ETLTUY Y AVEL
UPNAOTEREC GUVORNXES OVOUOVES ETELCOBIWY GE OMUAVTIXG MYOTEQY YEoVixd Bruota. Xuy-
xEXPWEVA, exTog and 1o Spread-3 6mou to MAA2C xatagépver eniong va emitiyel avtio-
Totyo oxop ue 1o CAM, ypeeldotnxe neptocdTepa amd 5 exatouupta Briuato exmaideuong yio
VoL TO TETUYEL, VO o€ dMheg puduioeic Spread, to CAM uneptepel onuavtixd oe oyéon Ue Ta
avapoptxd ovtéha. Lnuetdvoude 6Tt 1o ATM eugavilel xahitepn enidoon and to MAA2C,
10 onolo anotekel ) Bdon tou (6mwe xar yioo to CAM) oto Spread-4 xou Spread-5, 6mou
0 MAA2C anotuyydvet eviehdg otny enlivon tne epyaciog. ‘Ocov agopd to COMA, aro-
TUYYAVEL ETloNg EVTIEAMS VoL ETALUCEL TNV epyaocio oe Oha Ta TtepBdihovta Spread. [Mopduoia

amotehéopata mopatneolue xau oto SpeakerListener (BA. Xyndua 5.5); To CAM ypedleton
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Figure 1.2: Anoteléopata oto Spread

nepinou 2 exotouplplo yeovixd Briwata yio va emAdoel Ty epyacio, eve to ATM xou to
MAA2C ypeidlovton nepiocdtepa and 4 exotouuiplo yeovixd Bruatoa. Kou mdit, to COMA
amoTUYYdveL va emAloel Ty gpyacio MPE, odld eugaviCetl xdmowa fehtiwon oe oyéon pe o

apy %6 Tou oruelo.

Emopévwe, dedopévou 6Tt 1o CAM eivan oe Véom va unteptepel oe autd Tar TEQBAAAOVTAL
oe oyéon Pe Oheg TIC dhheg adlohoynuéves uédodol TolMtxhc xAlong Baclouéves oe opadixt
evioyuor, evoéyetal emlong vor Umopel vor UGUEL AMOTEAECUATIXEG AVATORACTACELS AOYW TNG
wovtelomoinong tou moixtn, mou Bondoly ot Spapatiny| Bedtivwon tne enidoone tne Bdong
tou (MAA2C). Av xar to CAM 8ev avaxatooxeudlel TAREWS TIC TUPUTNEHOELS TWV GARWY
TUXTOV (AOY W TNE UEPIXAC TAPATNENOWOTNTAS TOU UTOXEMEVOU TEPIBAANOVTOC Xou TNS XeHoMS
TWYV QUTO-ETOTTEVOUEV®V PopV), xdde maixtng LovTe OTOLEl TOUG dAhOUG UE €vay OTUAVTIXG
TEOTO ToL EVIGYVEL TN GLUVOAXY| enidoom Tng opddog. ‘Onwe toviloupe otn YeAETN pag Yo
TIC AmOTOUNoELS, auTy 1) Bektiwon ogeiheton xuplwe 0N ¥EHON TOV AUTO-ETOTTEVOUEVKY EX-
udinone Popodv, Ta onola GTOYELOLUY GTNY AVIAOYIXT] ETLAOYY| TOLWY YAULAXTNELO TIXWDY TWV
GAAWY ToUX TGV Efvol TO ONUAVTIXG Yo TN Bleuxoluvon Tne dladixaciog exmaldeuong xdde

mabxTn xou yioe TV evioyuor g enidoong TG oudoas.
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Figure 1.3: Results on MPE: SpeakerListener

1.5.2 Amroteléopata oto LBF

Yuveylloupe Tt doxur) tou LBF, émou ouyxpivouue tov ahyoprduo CAM e tic mpo-
nyovpevee Bdoeic (baselines) xou enione pe tov MASER, éva miaicio mou Pacileton otny
eowtepixr e€epelivnon (intrinsic motivation) xau éyel xataypdder mohd xodéc emddoel o€ Bid-
popa TepBAANOVTA pE apauéc avtapolBéc. Aoxpdlouye autolg Toug alyopiluoug oe Téaoepa
nepiBdihovto LBF, ouyxexpwévo: (o) 7% 7,3p,2f, (B) 8 x 8,3p,2f, (y) 11 x 11,4p, 3 f xou
(8) 12x12,2p, 2 f, to omoio GAat amotehoVy TepBANovTa UE apoués ovTaoBES. LNUEWVOUUE
ot 1 enthuon evée mepiBdhhovioc LBE avtiotoiyel otny eniteudn cuvolixic enelcodluxihc
avtopotBrc tong ye 1. Enueidvoupe enlong OTL YENOWOTOWVUE TWEO TNV TANen EX000T TOL
CAM, ocuurepthaufovopévmy Tov ecwtepx@y aviopoBny. Opilouue tov ypovixd opllovta
yioe T MPE (Multi-Agent Partially Observable) xadfxovta ico pe 50 ypovixd Bruata, 6mwe
xadoplleton oty enionun vhonolno.

Y10 Eyfua 5.6, anewxoviCoupe Ty enidooT twv atohoyniéviny alyopiluwy 6Ta Teoavapep-
Yévta nepiBdihovia LBF. Iapatneoue 61t o CAM elvar oe ¥éon va emddoer dho T xo-
VAXOVTA, ETTUYYAVOVTOC TAVTOTE TNV BEATIOTN GUVOAIXY| ETElC00LXT avTauolB. Amd tnv
GAAT ThevEd, exToC amd To 8 X 8,3p, 2f, oo ATM xow MAA2C eygavilouv xdmowa Beitiwon
oe oyéorn pe tov COMA, o omnoloc anotuyydver mhfpwe va emAloel Ta mpoPBAfuata. O
MAA2C Mover ta 7 x 7,3p, 2f xou 12 x 12,2p, 2f (6w xou 0 ATM), ahhd ypeidotnxe mohd
neptocbtepa Ypovixd Bruata and tov CAM vy vo @tdoel oe oty v enidoon (o CAM
YPEWOTNIXE NYOTEPA O TO Wod Ypeovixd Bhuc Yo var cuyxAivel oe pior xahf ToAtixr). AZ-
toonuelwto etvon 6Tt 0 CAM xatdgepe emiong va emidoel To 8 X 8,3p,2f, to omolo eivon
70 o 60V0%0NO TEQIBAANOY TTOU BOXWACUUE, XIS OAOL Ol GANOL ahyOpLiUoL amoTOY Y avay
TAfewS Vo aLENCOLY TN cLVOXT eTElGOBLaxY) avtauol3) Toug. ‘Ocov agopd Tov MASER,
Tapopolo e tov COMA, amotdyyave TAEnC Vo auEHOEL TNV GUVORLXY| ETELGODLONY| AVTOOL3N
Tou. Auté T0 anodidoupe 6To Yeyovdc 6Tt o MASER eivon évac extde nohunrc (off-policy)
alyoprduoc mou Booiletar otov QMIX xou omoutel meplocdtepn exnaideuon yior TNy ebpeo

AAADY TONTIXOV o TWIoVKS OYEBLAoTNXE XVplkS Yiot TNV eTtAucn TEQIBAAAOVTOV UE dpaLég
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Figure 1.4: Results on LBF tasks

avtopoBéc oto SMAC setting.

1.6 Xvunecpdopata xou XLIATNON

Avuth) n SwtePn Cextvnoe wa ogoupix| e€epebivnon Slopdpwy alyoplluwy eVIoYUTIXAS
udinone modamimv npoxtépwy (Multi-Agent Reinforcement Learning - MARL) yio tnv av-
TIETOTIOT GUVERYATIXWY TEPYBOANOVTIXGDY Touy Vidtwy. H épeuva emixevtpdyinxe otny e&étaon
meonyuévey aryoplduwv MARL oto miaiclo tng emfAuong CUVERYOTIXDY OHABIXWY TakY Vi-
By, e éupaon ot dvo Baowxd otoryeio Tng dtadixactoc udinoneg: (o) 1 wavéTnTaL TWV k-
yoptduwv MARL va Sieuxolbvouy v pdidnon avanapdoTtaong, EMTEENOVTNS T dnutoupyio
EVVOLMYV BLUVUCUOTIXDY EQUNVELDY ToU UToxeluevou mepiBdihovtog. Autéc ol epunveieg mpod-
YOUV TOV OTOTEAEGUUTIXG GUVTOVIOHG UETAED TWV TROXTOpWY OTIG evépYelés Toug, xau ([B)
1 XUVOTNTO TWV TREOXTOPWY VO AvTIAAUBEVOVTOL %ol Vo SLUTUTIVOUY GMUAVTIXOUS GTOY0US
TEAXTOPWY, CUUBIANOVTOSC GTY) GUANOYIXT TROoTIUEL EVIGYUOTS TG GUVOMXTAC ETiBOOT.

And v pepld pog, elooydyope To xowvotouo miaicto tou Count-based Agent Modelling

(CAM), 1o onolo eivan egopudouo oe onoovdrnote ohydprduo MARL mou hertoupyet und to
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nopadextd napdderypo Kevtpuic Exnaldevong xow Anoxevipwuévne Extéleone (Centralized-
Training-Decentralized-Execution - CTDE). To CAM ocuvdudlel apyéc and tov Topéo Tng
HOVTEAOTIOINONC TEOXTOPWY UE TNV ECWTERPIXT ECEREDYNOT), ETULOLWOXOVTOS HVO BaoIoUE GTOYOUS.
Kotapydg, to CAM yenotwonolel VONUES, expadnolues avanopao Tdoels Yo vo xododnynoet
TOV GUVTOVIOUO TWV TEUXTOPMY X Vo EVIoYVoEL TIg TOAMTIXESG Toug.  AcUTEpoV, oUTEC oL
OVOITIOROLC TAGELS YENOWOTOLOUYTOL Yol VEO ECWTERIXT| €EEpEbVNOT, oy elvon Wiaktepa TOADTIUT
YL TNV AVTWETOTLOT TV TEOXANCEWY ToU Topouctdlouy oL epyacie Ue AlYeC avTopoiBEc.
Ale&ydnoay exTteToUéVES TEROUATIXES OVAAVOELS YPNOILOTIOWOVTAS 800 dnuoguielc TepBdh-
Aovta Soxuwy MARL, xon suyxexpipévo to Hohumpaxtoptoxd HepiBdihov Loyatdiswy (Multi-
Agent Particle Environment) xou to Level-based Foraging. To anoteléopota delyvouv 6t
10 CAM Zenepvdel toug aryopiduougc MARL dcov agopd tnv cuvolxr avtopen.

Téhog, auty 7 SwtePr mpoopépel wa emmiéov emPBefalwon NS xaAvOTNTIC TOU OA-
yopituou "actor-critic" evtég tou mhauclou CTDE otnv avtipetodmon oto MARL. Auté
emPBeBatdVeL TNV XATOAANAOTNTO XU TNV ATOTEAECUATIXOTNTO TOU oA Yopldou oe cuVERYATIXG
TEPBAANOVTO TOAAATADY TEAXTORWYV.

Yov cuunépacya, oauty 1 dtaten) ouvelo@épel oty TpooywyY Tou Tediou tou MARL ue
Vv TedTacn Tou mhatctov CAM, v avdAucT TV 0QEADY TOU UEGK QUGTNROY TELUUATLY
XL TOV EVNUEQMTIXO POTIOUO OYETIXE UE TNV AMOTEAECUATIXOTNTA Tou alyopiduou "actor-
critic" oe ouvepyatixd mepiBdAiovta. Méow authc tne €peuvag, TovileTtan 1 onuacio Tng
uddnong VOHUATOC avamapdoTacng Yol TNV EVioYUCT TOU GUVTOVIGUOD XL TG ETBOONE TWV
TEUXTOPWY OF TEPSAAAOVTO TOANATAGDY TEUXTOPWY.

MeMovtixd, oxoneboupe vo ouyxpivouue To CAM pe ahyopliduouc MARL nou Boasilovta
oTNV emxovevia, xoaddg xan Ye dhhoug Tapouoloug aryopiduoug MARL. Emniéov, oyedid-
Covye va dledyouye melpduata o dhha teptBdihovia doxiudy, 6nwg to SMAC xau to Google
Research Football. Télog, Yo a&lohoyrioouue to e€atopxeupéva Bden Tou TUpoUCLICUE OE
oauTAY TN SltelPr) 0To TAdicL0 TWV UEVOdWY ETUXOWVOVING UE OXOTO VO XATAC THOOUUE TNV
ETUXOWVWVIO TOV TEAXTOPWY TLO ATOSOTXY) 0G0V apopd TNV adEnon Tou aprluol TwV TEuX-

TOpWV.






Chapter 2

Introduction

2.1 General Discussion

In the contemporary landscape of technological advancements, the relationships be-
tween Artificial Intelligence (AI), Multi-Agent Systems (MAS), and Machine Learning
(ML) have emerged as pivotal constituents in shaping the development and application of
intelligent systems. This introductory chapter sets the stage for the exploration of these
intricate interplays and investigates their collaborative potential in addressing complex
challenges across various domains.

Artificial Intelligence represents the overarching concept that encompasses a spectrum
of methodologies aimed at creating machines with human-like intelligence. Through the
integration of techniques such as knowledge representation, natural language processing,
computer vision, and robotics, Al seeks to enable machines to perform tasks that tradition-
ally demand human cognitive abilities. Concurrently, Machine Learning has emerged as a
subset of Al focusing on the development of algorithms that allow systems to autonomously
learn patterns and insights from data, subsequently enabling informed decision-making and
predictions.

Multi-Agent Systems involve multiple autonomous agents collaborating or competing
to achieve specific objectives. Agents can be software entities, robots, or even humans,
and their interactions can encompass cooperative, competitive, or mixed scenarios. The
complexity of real-world scenarios often necessitates the use of MAS to model and solve
intricate problems that extend beyond the scope of single-agent approaches.

The integration of Machine Learning techniques within Al systems has been instru-
mental in creating adaptable and data-driven intelligent systems. ML enables AT models
to autonomously learn from datasets, adapt to dynamic environments, and enhance their
performance iteratively. Notably, AI applications such as self-driving cars |6, 12|, traffic
controllers [41, 39|, medical [48, 5] and web [62, 38| systems, have leveraged ML to achieve
unprecedented accuracy and reliability. The infusion of Al into Multi-Agent Systems intro-
duces novel capabilities to individual agents, enabling them to learn, adapt, and optimize

strategies. This amalgamation empowers agents within a MAS to dynamically respond

29
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to changing environments, ultimately enhancing the collective performance of the system.
For instance, Al techniques can empower agents in a supply chain optimization MAS to
make informed decisions based on historical data and real-time information.

The interplay among AI, ML, and MAS is exemplified in applications where these
domains converge to address intricate real-world challenges. Notable instances include
Al-driven chatbots, such as in [1, 20|, employing ML to comprehend and respond to user
queries. These chatbots, functioning as agents in a multi-agent environment, can seam-
lessly collaborate with other agents within the organization to resolve complex issues,
exemplifying the collaborative potential of these intertwined domains.

In the dynamic landscape of modern technology, the integration of Reinforcement
Learning (RL) within Multi-Agent Systems (MAS) has garnered significant attention as a
means to enhance the capabilities of autonomous entities. This introductory chapter sets
the stage for delving into the realm of reinforcement learning within the context of MAS,
highlighting its potential to revolutionize how agents collaborate and make decisions in
complex, interconnected environments.

Reinforcement Learning, a subfield of Machine Learning, offers a framework for en-
abling agents to learn optimal actions through interaction with an environment. Unlike
classical machine learning paradigms, RL systems learn from trial-and-error, where agents
receive feedback in the form of rewards or penalties based on their actions. This learning
process empowers agents to iteratively improve their decision-making strategies, adapt to
uncertainties, and make informed choices in dynamic environments.

The integration of Reinforcement Learning techniques within Multi-Agent Systems in-
troduces a new dimension to the collaborative dynamics of autonomous agents through an
highly emergent research field called Multi-Agent Reinforcement Learning (MARL). By
enabling agents to learn and adapt their behaviors based on both individual experiences
and interactions with other agents, RL-equipped MAS can lead to emergent behaviors
and sophisticated strategies that go beyond what traditional approaches can achieve. This
adaptive capability holds promise for addressing challenges that involve intricate coordi-

nation, competition, and resource allocation among multiple agents.

2.2 Thesis Scope and Our Contributions

The aim of this thesis is to explore different MARL approaches and algorithms for
solving cooperative benchmarking gaming environments. We are interested in studying
the state-of-the-art MARL algorithms of the literature in solving cooperative team games,
emphasizing more on the following two aspects of the learning process of such algorithms:
(a) the representation learning power of MARL algorithms for reaching meaningful vector
interpretations of the underlying environment which would encourage the agents to co-
ordinate their actions in an effective manner, and (b) the agents’ ability to perceive and
design meaningful agent goals that would help the whole team strive for a better overall

performance in the underlying task.
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The main contributions of this thesis are the following:

e We propose Count-based Agent Modelling (CAM), a novel MARL framework which
can be built upon any MARL algorithm, under the Centralized-Training-Decentralized-
Execution (CTDE) schema, and combines techniques from agent modelling with in-
trinsic exploration. CAM aims to (a) use meaningful learnable representations for
guiding the agents’ cooperation improving the agents’ policies, and also (b) to utilize
these representations for novel intrinsic exploration in solving difficult sparse rewards
tasks.

e We carry out extensive experimental analysis of the proposed framework in two
widely used MARL benchmarking testbeds, namely the MPE and LBF multi-agent
gaming environments, and show that CAM outperforms state-of-the-art MARL al-

gorithms in terms of total reward in these tasks.

e This thesis provides an additional proof-of-concept of the good performance of the

actor-critic algorithm under the CTDE schema in solving MARL tasks.

2.3 General Introduction to Multi-Agent Systems

Imagine a scenario where a group of independent agents must collaborate in a shared
environment to accomplish specific objectives [3]. These agents might share a common
goal, like a fleet of mobile robots working together to efficiently move goods within a large
warehouse, or they might have conflicting goals, such as agents engaged in a virtual market,
each striving to maximize their individual gains. In this setting, rather than instructing the
agents on how to interact, they are allowed to figure it out autonomously. They begin by
taking actions in the environment and gathering experiences about how the environment
changes as a consequence of their actions, as well as observing the behavior of other agents.
Over time, they acquire skills needed for their tasks and learn how to coordinate their
actions with other agents, even potentially developing a shared communication system.
Eventually, the agents become highly proficient, achieving expertise in optimal interaction
to achieve their goals.

The above description encapsulates the essence of multi-agent reinforcement learning
(MARL). MARL builds upon reinforcement learning (RL), a concept where agents learn
optimal decision-making policies by experimenting with different actions and receiving re-
wards. The ultimate objective is for agents to select actions that maximize their cumulative
rewards over time. While single-agent RL focuses on determining the optimal policy for an
individual agent, MARL is centered around discovering optimal policies for multiple agents
and addressing the unique challenges that arise in this multi-agent learning problems.

The general framework of a multi-agent system contains multiple decision-making
agents and an environment in which they interact to achieve a specified goal. A graphical
representation of a multi-agent system can be seen in Fig. 2.1 while the basic components

are analyzed bellow.
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Figure 2.1: General framework of a multi-agent system |[3]

Environment An environment(which might be physical or virtual), evolves over time and
is influenced by the decisions made by the agents within it. The environment outlines
the available actions agents can choose from and the observations each agent obtains re-
garding the environment’s state. The environment’s state can be described using discrete
or continuous values, or a combination of both. For instance, in a 2D maze, the state
might encompass agents’ integer positions and their continuous orientations in radians.
Actions in this environment can also be discrete or continuous, like navigating directions
(up/down/left /right) in the maze and rotating by a continuous angle. Multi-agent envi-
ronments typically stand out due to agents having a restricted and imperfect perspective
of the surroundings. This implies that agents may only perceive partial information about

the environment state, and the observations they receive could vary among agents.

Agents An agent is a entity that gains information about the state of the environment
and can opt for various actions to impact that state. Agents may possess diverse prior
knowledge about the environment, its potential states and how actions taken by agents
influence those states. It’s noteworthy that agents are driven by certain goals, meaning they
have specific objectives and make action choices towards them. These goals could involve
achieving a particular state within the environment or optimizing factors like financial
gains. In the context of multi-agent reinforcement learning (MARL), these objectives
are defined through reward functions, which outline numeric reward signals agents receive
upon executing specific actions within specific states. The term "policy" refers to a function
employed by the agent to pick actions (or assign probabilities to different actions) based

on the present state of the environment. When an agent can only partially observe the
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environment, the policy might be conditioned on the agent’s current and past observations.

A unique characteristic of multi-agent systems is that agents should coordinate their
actions by cooperate or compete with each other to achieve their objectives. In the co-
operative setting agents’ objectives are aligned and they collaborate to achieve a common
goal. On the other hand in the competitive setting agents have adverse goals and thus
they should compete with each other. A third setting might be the one between the two
extremes, where agents might have aligned goals in some parts and different in other, re-
quiring both cooperation and competition which can lead to highly complex multi-agent

interactions among them.

Research in multi-agent systems can span across different directions as [3] how to de-
sign algorithms that enables agents to act optimally towards their goals; how to design
environments that motivate agents to adopt specified long-term behaviors; how to com-
municate and propagate information among agents; and how norms, conventions and roles
may emerge in a collective of agents. However, in this thesis we will focus solely in utilize
RL algorithms to optimize agents’ policies to maximize their accumulated rewards over

time.

2.4 Intro to Multi-Agent Reinforcement Learning

Reinforcement Learning (RL) is a Machine Learning (ML) paradigm in which an ar-
tificial agent, or a group of artificial agents, aim to maximize the notion of a cumulative
reward overtime by interacting with an environment, where they operate in. RL agents
are not given explicit instructions on what actions to take; instead, they must discover the
most effective behaviors through a process of trial-and-error learning [73]. Since rewards
may be delayed, agents phase the dilemma of either exploiting the states that currently
offer the highest known rewards or explore other states that have the potential to provide
even higher rewards in the future. This trade-off between exploitation and exploration is
crucial for the agent to learn and make optimal decisions in the long run [§|. Although
RL algorithms can learn to make decisions without supervision or having complete models
of the environment their performance deteriorate due to the curse of dimensionality (e.g.
as the dimensions of the state-action space increase). Recently, this problem has been
alleviated by combining RL algorithms with Deep Learning techniques, as neural networks
can find find low-dimensional representations of high-dimensional data, enabling agents to
master a wide variety of complex decision making task such as the board game Go [60],
the card Game Poker [14], indoor robot navigation [79], trade execution [52] and cyber
security [32].

Given the recent breakthroughs in the field of single agent RL researchers started
investigating if those algorithms can also be applied in multi-agent systems. According to
the single agent case the policies are learned via trial-and-error with the aim to maximize

the agents’ cumulative rewards. The MARL training loop is depicted in Fig.2.2
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Figure 2.2: Training loop a multi-agent system |3|

More specifically, n agents chose their individual actions, which combination constitute
the joint action. The joint action alters the state of the environment according to its
dynamics, and the agents are receive their individual rewards based on this change as well
as their individual observations about the new state [3]. This loop is repeated until a
terminal condition is meet or indefinitely. A run which starts from the initial state and
ends at the terminal state is called episode. The trajectories collected from multiple such
episodes (e.g. observations, actions, rewards) are utilized to train the policies of the agents.

However although this process seams resonable, handling multiple agents is inherently
more intricate due to (a) the fact that future rewards are contingent on the collective
actions of several players and (b) the computational complexity rises as a consequence.
The primary distinction between multi-agent and single systems lies in the fact that in
the former, the dynamics of the environment are influenced not only by the uncertainty
already present but also by the combined actions of all agents within that environment.
Thus, when the environment becomes nonstationary, each agent encounters the challenge
of dealing with a moving-target problem. This means that the optimal policy for an agent
changes as the policies of other agents also change [15, 55|. Except for the stationarity
assumption (the dynamics and reward do not change overtime) that does not hold in the
multi-agent case, the curse of dimensionarity is even worse in those settings as the state-
action space increases exponentially with the number of agents. However, multi-agent
systems also provide the opportunity to agents to share knowledge, imitate or directly
learn from other agents [17] making the learning procedure more efficient.

As multi-agent settings come with a number of challenges compared to the single agent
ones, we analyze each of those in order to get a better sense of the problem formulation
before continuing with the discussion of the main approaches. Those challenges can be cat-
egorized into computational complexity, nonstationarity, partial observability, and credit

assignment. However, these challenges are not isolated but often co-occur, presenting a
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combination of issues to tackle simultaneously. For instance, all multi-agent problems
share the characteristic of high computational demands, which increase with the number
of agents involved, making these problems computationally intensive. Also, the problem of
nonstationarity arises when agents continuously adapt to the actions of the other agents,
leading to infinity loops. This issue becomes more pronounced when agents have partial
observability of the environment. With less information available, it becomes even more
challenging for agents to distinguish the effects of their own actions from those of the other
agents, complicating more the process of credit assignment. As a consequence, agents

struggle to determine their individual contributions to the team’s overall rewards.

2.4.1 Computational complexity

At present a major limitation of RL algorithms is their low sample efficiency, meaning
that agents should interact an enormous amount of time with the environment in order
to learn a useful policy [76]. For instance although humans can master the game of Pong
in dozen of trials, an RL algorithm may require at least thousands of samples [18]. By
studying computational complexity in RL we desire to examine how much computation
is required (in terms of time and memory requirements) to collect sufficient data samples
to output an approximation to the target [36]. The problem in RL is that the sample
complexity worsens when multiple interacting agents are learning simultaneously, thus
many studies focus on finding sample efficiency and scalability of algorithms to deal with

the computational complexity in RL.

2.4.2 Nonstationarity

In multi-agent environments the Markov assumption is no longer valid because the
state of the environment does not give sufficient information for optimal decision making,
which is problematic given that most RL algorithms assume stationary environments to
guarantee convergence. This nonstationarity can be naturally explained, since the new
state of the environment is dependent on the joint action of all agents instead of the
individual behaviors of the agents. Thus the agents may prefer to adapt to other agents’
changing policies.

The nonstationarity problem can be addressed in different ways by focusing on the
setting (e.g. cooperative [61], competitive [9]), the availability of opponents information
[13] or whether the execution is centralized 22| or decentralized [65]. Other more advanced
techniques may include learning as much as possible about the environment dynamics and
mechanisms; for example, using centralised training with decentralised execution, through

opponent modelling, and sharing information among the agents.

2.4.3 Partial observability

Under partial observability of the environment, the agents receive only local and in-

complete observations and cannot access the full state of the environment, and as a result
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the training process becomes a challenging procedure. In certain cases, the rewards and
actions of other agents are not observable and the agents cannot attribute a change in the
environment to their own actions. The most well-studied setting under partial observabilty
is the Dec-POMDP setting, where a group of agents maximises a team reward using a joint
policy. To deal with partially observability, approaches either adopt a centralised training
and decentralised execution paradigm, such as in [46, 45|, or use communication protocols

to share information among the agents about the environment, such as in [21, 49].

2.4.4 Credit assignment

The most important credit assignment problem in MARL is that agents are not able
to identify their contribution to the joint reward, because all agents act concurrently [50].
Thus, the problem of learning optimal policies becomes difficult, since agents cannot dis-
tinguish if changes in the global reward are due to their actions or to the other agents’
actions. A solution can be to provide local rewards to each agent instead of a global reward.
However, this approach, although it might increase the agents’ rewards, it can encourage
selfish behavior which may render challenging environments that require complex agent
collaboration. A more appropriate method is proposed in [53] where the agents instead
of receiving only the global reward, they also get an additional local reward to solve the

credit assignment problem.

The credit assignment problem can also take the form of designing a reward function
to promote effective collaborative behavior. However, such direction is difficult to follow
when there exist mixed incentives within the same environment. Lastly, in MARL the
“lazy” agent problem is also of great importance, because in the multi-agent setting with
simultaneous interactions, when one agent learns a good policy, the others may avoid

learning appropriate behaviors to not affect the performance of the former. [63].

2.5 Related Work

To address the above mentioned challenges different MARL algorithms have been de-
veloped and can be categized into the following groups: (1) centralised training and decen-
tralised execution, (2) opponent modelling, (3) communication, (4) efficient coordination
and (5) reward shaping. Fig. shows how those challenges relate to the different algorithms
2.3.
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Figure 2.3: MARL challenges and solutions

As the our research focuses on the centralized training and decentralized execution as
well as on the opponent modelling framework we will extensively analyze those sub fields.
2.5.1 Centralized Training and Decentralized Execution

Multi-agent systems can be trained under different schemes. The most common ones
are depicted in the Fig. 2.4.
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Figure 2.4: MARL training schemes

Starting from the simpler approach under the centralized scheme we can train multiple
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agents utilizing a centralized controller reducing the problem to a single-agent one. In that
case, all agents send their observations and policies to the centralized controller and the
controller decides the action for each individual one. Nevertheless, this approach does not
scale in large environments where the complexity increases exponentially. On the other
hand, one can train each agent independently; however, this is not an efficient approach
as each agent tries to find selfishly optimize its objective without aiming to collaborate in

order for the system to solve non-trivial multi-agent environments.

One good approach is through the centralized training decentralized execution (CTDE)
scheme [40]. In CTDE, during training the agents can access extra information, e.g. other
agents’ observations, rewards, gradients and parameters. Nevertheless, during execution
each agent should execute its policy based only on its local observations. Adopting that
framework mitigates nonstationarity and partial observability, as access to additional in-
formation during training stabilizes agents’ learning [73]. The CTDE scheme can also be
devided according to the adopted RL algorithm. If a value based method is used cooperat-
ing agents should optimize a joined value function, and studies investigate the best way to
decompose and optimize this value function. Regarding the policy-gradient methods, as in
the multi-agent setting, nonstationarity makes learning more challenging given that agents
update their policies simultaneously, commonly the actor-critic architecture is utilized, in

which a centralized critic is used to exchange extra information during training.

Value-based methods under the CTDE framework try to decompose centrally learned
value functions utilizing them for decentralized execution. Value Decomposition Networks
(VDN) [63] aim to decompose the centralized value function into a sum of linear individ-
ual value functions. Then the optimal policy is achieved by action greedily with respect
to the Q-value, as Q-values estimate the expected reward from a particular state and
action. An improved version of VDN is QMIX [58] which decomposes the joint value
function into a nonlinear combination of individual value functions with an additional
monotonic constraint to guarantee tractable optimization and consistency between the
centralized and decentralized policies. However the monotonic constrain can be problem-
atic in settings that require significant coordination [58]. Further extensions of QMIX
constitute Weighted QMIX [57] which extends QMIX algorithm to nonmonotonic envi-
ronments, adding a weighted scheme on joint actions with higher rewards and Attention
QMIX [33] which enhances QMIX algorithm with an attention mechanism (for each agent
a multi-head attention (MHA) layer is applied to summarize the information of the other
agents) to deal with an indefinite number of agents. QTRAN [61] proposes another factor-
ization method which escapes monotonicity and additivity constraints however it requires
specific regularizations which can add further computational requirements to the already
complex multi-agent system. The exploration problem that arise in QMIX is addressed in
MAVEN [46], which utilizes a combined value and policy gradient method by conditioning
value-based agents on the shared latent variable controlled by a hierarchical policy. The
proposed solution is committed exploration e.g. by coordinated exploratory actions over

extended time steps in dealing with environments that require long-term coordination.
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Policy gradient methods are based on the actor-critic algorithm by utilizing a central-
ized critic to train the decentralized actors. Counterfactual multi-agent (COMA) [22] uses
a centralized critic which has access to both the joint action taken by all agents and all
the relevant information about the current state of the environment. On the other hand,
each individual agent’s policy only relies on the sequence of actions and observations it
has experienced in the past. In addition it utilizes a counterfactual baseline to address the
credit assignment problem. Accordingly, multi-agent Deep Deterministic Policy Gradient
(MADDPG) [45] is an extension of the Actor-Critic algorithm, which enhances the training
process by providing the critic with additional information and restricting the actor’s access
to only local information. Contrary to COMA, MADDPG utilizes a centralised critic for
each agent to have different reward functions in competitive environments while it uses
continuous instead of discrete policies. Other extensions of MADDPG are R-MADDPG
[69] which is suited for partially observable environments utilizing recurrent actor and
critics to keep a history of previous observations, as well as M3DDPG [43] which performs
a minimax optimisation to learn robust policies against agents with changing strategies.
As above mentioned methods concatenate all observations in the critic side which might
be inefficient when dealing with large state spaces, Mean-Field Actor-Critic [75] aims to

provide a solution by factorizing the Q-function on mean-field theory.

2.5.2 Opponent modelling

Opponent modelling aim to construct models of the beliefs, behaviours, and goals of
other agents in the environment [4], which can used by the agents to augment their decision-
making capabilities. Opponent modelling methods try to predict the action probabilities
of the modelled opponent given a sequence of interaction as an input. Then agents can
learn their policy utilizing the model of their opponent, enabling them to discover their
intentions. Those algorithms are considered more data-efficient while they mitigate the
nonstationarity and partially observability problem especially in adversarial settings, as
agents collect historical observations to learn about the environment developing better
policies. The first Opponent modelling approaches assumed that opponents have a fixed
play and tried to find a Nash equilibrium in imperfect information games as Poker [29] by
keeping a record opponents’ historical behaviors in order to choose a best-response to their
average strategies. Other approaches to the fixed play assumption are Alphazero [60| which
is based on self-play and Monte Carlo Tree Search and has an excellent performance in the
games of Go, chess, and Shogi as well as MuZero [59] which achieves the same performance
by modelling only the value, policy and reward instead of the hole environment.

Later methods started modelling nonstationary environments and agents with changing
policies. Switching Agent Model (SAM) [19] learns opponent models from observed state-
action trajectories and utilizes a Bayes’ rule variant to assign probabilities to opponent’s
actions starting from a prior belief that is updated during training. Deep Reinforcement

Opponent Network (DRON) [28] uses two networks one to learn the Q-values and a second
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one to learn the opponents policies in parallel with an expert network that models different
opponent strategies. Deep Recurrent Policy Inference Q-Network (DRPIQN) [30] includes
policy features as a hidden vector into the deep Q-network to adapt to unknown oppo-
nents, while its recurrent network enables learning in partially observable environments.
In learning with Opponent-Learning Awareness (LOLA) 23] each agent shapes the antic-
ipated learning of the other agents, including a term to measure the impact of an agent’s

policy on the learning behavior of opponents.

2.5.3 Representation Learning

The approach of using representative embeddings aiming to train agents more effectively
derives from the single agent setting. [27] uses variational inference to learn different
robot skills embeddings. During testing, the policy remain fixed and a new embedder is
learned that interpolates between already learned skills. [16] learns an embedding utilizing
a VAE by encoding state trajectories and decoding states and actions. By framing their
problem as a hierarchical RL task the latent space aims to model low level skills which
can be controlled by a higher level policy. [77] learn a latent representation using learned
dynamics and reward modules and by conditioning the policy on the embedding show that
transfering the encoder to unseen environments helps learning.

In the multi-agent setting and closer to our approach [24] introduces an encoder-decoder
framework for modelling the agent’s policy. In particular the encoder learn a representation
of different agent trajectories, while the decoder reconstructs the modelled agent’s policy.
Accordingly [80] proposes a VAE for modelling agents in fully-observable settings. Local
Information Agent Modelling (LIAM) [54] uses an encoder-decoder architecture to learn
representations about the modeled agents conditioned only on the local observations of the
controlled agent. This representation is then used as an extra feature during the policy
learning. Our approach can be seen as a generalization of LIAM, which only has one
controlled agent and the other agents are considered modeled, to the more challenging
task of learning efficient representations when all agents participate in the training process
and try to model the others. [81] learn to adapt to different tasks, by training a VAE
conditioned on the observation, action, reward triplet of the controlled agent aiming to

learn a latent representations of the observation and reward functions.

2.5.4 Exploration and Intrinsic Motivation

In reinforcement learning, intrinsic motivation refer to the internal or self-generated
rewards that an agent receives during the learning process. Their goal is to encourage
the agent to explore the environment and learn more efficiently without relying solely
on extrinsic rewards aiming to mitigate the exploration-exploitation dilemma. Intrinsic
rewards differ from extrinsic rewards as they are not originated from the environment but
are designed based on curiosity-driven exploration, intrinsic motivation, and self-supervised

learning techniques. The most intuitive strategy for computing the intrinsic rewards is
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by counting observations, or observation-action pairs. In that case, and if we reward
the agents inverse proportionally to the count of encountered observations frequent states
will have a low intrinsic rewards (as the agent visits already seen states). Although this
approach is efficient for small and discrete state-spaces, it becomes problematic when
dealing with large and continuous state-spaces. Bellemare et al. [7| propose the use of
pseudo-counts for observation-state pairs. They are produced based on a density model
which predicts the recorded probabilities of the states. The authors in [66] compute hash-
values of observations to achieve generalization. The density model in that case is hash
tables of counts, while the agents are again rewarded inverse proportional to the counts.
The hash algorithm is SimHash which measures the angular distance based on the sign of
a randomized mapping making it computationally efficient and allowing similar inputs to

be mapped to similar hash values.

Lately, there is a surge of approaches studying exploration in MARL for solving sparse
reward tasks. MAVEN [47] employs a hierarchical control approach, wherein agent policies
are contingent upon the latent variable generated by a shared hierarchical policy. Bohmer
et al. [11] propose Independent centrally-assisted Q-learning (ICQL), an centralized agent
that stabilized the impact of the exploration. This agent is utilized exclusively during
the training phase and shares the replay buffer with decentralized IQL agents. The de-
centralized IQL agents are trained solely using extrinsic rewards. This framework allows
the avoidance of unreliable influences from potentially misleading intrinsic rewards while
still benefiting from the exploration incentives they provide. In the work of Wang et al.
[71], a pair of exploration techniques, namely EITI and EDTI, are introduced to stimulate
cooperative exploration by capturing the impact of one agent’s actions on the behaviors of
other agents. EITI evaluates the effects on state transition dynamics, while EDTT assesses
both the influences on transition dynamics and rewards. Nevertheless, their scalability is
limited due to the requirement of employing an approximation approach for gauging the
impact of numerous agents on a single agent. This reliance on approximation can lead to
potential failures in the methodology. SMMAE [78] pursues effective teamwork by dynami-
cally balancing individual exploration and collaborative cooperation. In SMMAE, distinct
exploration policies are developed for each agent, optimizing their personal state explo-
ration while adapting their exploration likelihood according to the overall team policy’s
stability.

ROMA [70] aims at naturally materializing agent roles, prompting agents with analo-
gous roles to collaborate in learning and to specialize in distinct sub-tasks. This is facil-
itated through the creation of a stochastic role embedding space, achieved via the intro-
duction of innovative regularizers, and the alignment of individual policies with designated
roles. Jiang et al. [35] propose Emergence of Individuality (EOI), which employs a prob-
abilistic classifier to anticipate agent identities based on observations. EOI establishes
intrinsic rewards for agents when their identities are accurately predicted by the classi-
fier, motivating agents to explore their distinctive observations and thereby enhancing

their recognizability through reinforcement learning. Li et al. [42] propose an innovative
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information-theoretical regularization strategy aimed at amplifying the mutual information
between agents’ identities and their trajectories. This encourages diverse individualized
behaviors and extensive exploration. Additionally, they enhance representation learning
by integrating agent-specific modules into a shared neural network architecture, effectively
fostering shared learning among agents through L1-norm regularization while maintaining
essential diversity. MASER [34] undertakes the task of automatically generating suitable
subgoals for multiple agents using information from the experience replay buffer. This pro-
cess integrates individual Q-values and total Q-values and is complemented by the design
of individual intrinsic rewards tailored to each agent. These rewards are grounded in ac-
tionable representations pertinent to Q-learning, fostering agents’ attainment of subgoals

while optimizing the collective action value.

2.6 Thesis Structure

The thesis is structured as follows: The introduction section (Chapter 1) provides
an initial discourse, outlining the scope and contributions of the research (Section 1.2),
and offering a broader perspective on Multi-Agent Systems (Section 1.3) and Multi-Agent
Reinforcement Learning (Section 1.4). The latter subsection further delves into aspects like
computational complexity, nonstationarity, partial observability, and credit assignment.
A survey of related work (Section 1.5) encompasses topics such as centralized training,
opponent modeling, representation learning, and exploration. The section culminates with
an overview of the thesis structure (Section 1.6). The theoretical framework (Chapter
2) commences by elucidating the fundamentals of Markov Decision Processes (Section
2.1) and then traverses the realm of Reinforcement Learning, discussing policy gradient
methods and actor-critic algorithms (Section 2.2). Multi-Agent Reinforcement Learning
(Section 2.3) is dissected, touching on problem representations, Dec-POMDPs, and various
MARL algorithms and frameworks, including Independent Policy Gradient, Multi-Agent
Policy Gradient, MAA2C, COMA, MADDPG, VDN, QMIX, ATM and MASER. The
chapter culminates with an exploration of Variational Autoencoders, spanning problem
formulation, variational lower bounds, and the reparameterization trick (Section 2.4). The
proposed framework, namely Count-based Agent Modelling (CAM), is described in Chapter
3 and unfurls with a presentation of the problem statement and motivation (Section 3.1),
followed by the full presentation of the proposed methodology in Sections 3.2 and 3.3.
The evaluation chapter (Chapter 4) embarks with an exposition of the experimental setup
(Section 4.1), involving the Multi-Agent Particle Environment (MPE) and Level-based
Foraging (LBF) testbeds. The subsequent sections showcase results, both on MPE and
LBF, and delve into an ablation study, including the visualization of embeddings (Section
4.2 and 4.3). Finally, the discussion and future work chapter (Chapter 5) concludes the
thesis by examining the implications of the findings and avenues for future research (Section

5).
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Theoretical Framework

3.1 Markov Decision Process

To begin discussing any RL algorithm we should first define the Markov Decision Pro-
cess (MDP) [31]; an appropriate framework which models sequential decision-making prob-
lems. An MDP is a tuple (S, A, P,r,v, u) |2] where:

e S is a finite set of states

A is a finite set of actions

P:SxA— A(S) is a transition function, where A(S) is the space of probability
distributions over S and describes the dynamics of the environment. In that way
P(s' | s,a) denotes the probability of reaching the state s’ given that the previous

state and action was (s’, a) accordingly.

e r:SxA—[0,1] is the reward function when an agent takes an action a at a state

S.

v € [0,1) is the discount factor and defines a horizon for the problem in continuous

tasks without a terminal state, balancing short- and long-term rewards

p € A(S) is the initial state distribution, which determines the initial state so. The

interaction of an agent with the environment in a MDP is illustrated in Figure 3.1.

state reward action
S, R, A

i RJ—'l [

_S.. | Environment J*l—

)
i L.

Figure 3.1: The agent—environment interaction in a Markov decision process|64]
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In particular, the agent starts at an initial state sy ~ p and at each time step ¢, selects an
action a; € A. After one time step, the agent receives the reward ;11 for the selected action
and observes a new state s;y1 ~ P(- | s¢, a;) based on the dynamics of environment P. This
consecutive interaction defines a trajectory 7 = sg,ag,r1,S1,...,St,at,7¢. The agent in
order to determine his decision-making strategy learns a stationary policy 7 : S — A(A),
where A(A) denotes the space of probability distributions over A, which allows him to
choose actions based on the current state e.g. a; ~ 7(- | s¢). If the policy is deterministic
and stationary it can be defined as 7 : S — A. The agent learns his policy in order to

maximize the expected discounted sum of future rewards Gy:
(o ¢]
Gr=rep+ 2+ s+ = Y e (3.1)
k=0

To solve an MDP we need to define the expected return from a particular state, which
for a fixed policy and a starting state sy = s can be defined as the state-value function
Ve:S—R:
Vﬂ—(S) = ]Eﬂ—[Gt | St = S]
=Er[rie1 +7Geq1 | St = $]
=Y wa ) S w50 [r 49 EelGrin | S =] (32)
a s/ r

— Zﬂ(a | 5) ZZp(s’,r | s,a) [r+Va(s)]

where the expectation is with respect to the randomness of the trajectory, and specifically
the randomness of the state transition and the stochastisity of . Also, by bounding the
r € [0, 1], it holds that 0 < V(s) < ﬁ . Having defined the state value function, given a
state s, the agent tries to find a policy 7 to maximize the value function; i.e max, V'(s).
We also define the expected return for a particular state-action pair as the action-value

function Q@ : S x A — R:
Qx(s,a) =Ex[Gy | St = s, Ay = a]

=" P(s,a,8)[r + 7 Va(s)] (3.3)

Sl
= Z P(s,a,s)[r +~ Z m(a'|s")Qr (s, a')]
s’ a’
where the expectation is again with respect to the randomness of the trajectory and

bounded by ﬁ .

3.2 Reinforcement Learning

3.2.1 Policy Gradient Methods

The most natural approach to find the optimal policy is to directly optimize the policy

using a gradient-based algorithm. This family of approaches is often labelled as policy
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gradient (PG) algorithms in the literature [64]. The distribution of a trajectory 7, given a
class of parametric policies {my | # € © C R%} and a starting distribution x can be defined
as:

Pri(t) = p(so)m(ao | s0)P(s1 | s0,a0)m(ay | s1)...

The total discounted reward for the trajectory 7 can be defined as 7(7) = Y72 v'r(s¢, at),
where the (s¢,a;) denote the trajectory’s state-action pairs. In that sense, we denote
the value function of the starting distribution under the policy mp by J(0) = V™ =
E_. o [r(7)]. Recalling now that the agent’s goal is to find a policy 7 to maximize the
value function, we have to calculate the gradient of the previous defined value function,
which is known as the policy gradient theorem. Before proceeding to the derivation of the
equation, we define the state value gradient in terms of an expectation under the trajectory

distribution as follows:

vV (1 vz T)Pr7e(r
= 2 T)Pr?(1)ViogPr’(T)

_z )i (r)Viog((so)m(ao | s0)P(st | so.ao)w(an [s1).-)  (3.4)

- Z T)Pr7e(r) (Z Viogmo(az | 5t)>

t=0
Py [Viogmg(T)r(T)]

Given the above derivation we introduce the REINFORCE algorithm. The pseudocode of
REINFORCE is presented in Algorithm 3.

=E

Algorithm 3 REINFORCE algorithm
While True (for each episode)

Generate an episode sg, ag,r1, . ..,S7—1,ar—1, rr following 7 (- | -; 0)

Loop for each step of the episode t =0,1,...,T —1:

G« Z{:t—‘rl ARy,
0 < 0 + ay'GVlogm(as | st;0)

REINFORCE constitutes the most primitive version of a PG algorithm; however it
suffers from a number of issues that deteriorate its performance. The most crucial issue is
that PG algorithms suffer from high variance, since policy gradients estimate the expected
gradient of the policy’s performance using samples collected from interactions with the
environment. The Monte Carlo estimation of the gradient involves sampling multiple
trajectories and computing their gradients. However, these trajectories are sampled based
on the current policy, which means that they are not independent and also can come up
with very different reward outcomes. This could lead gradient estimates to high variance.
Another contributing factor to the high variance problem is the high-dimensional action

spaces, in cases where the number of actions is large. In those cases, it becomes challenging
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for the agent to explore the action space effectively, leading to high variance in the gradient
estimates, as the agent may not have enough samples to accurately estimate the gradient
for each action.

To mitigate this problem a number of solutions have been proposed in the literature.
The simplest one is called Reward-to-Go and can be derived just by simple numerical

operations.

VVT () = ETNPT‘ZO [(ZVlogﬂ'g(at | st)> (Z r(st,at)>]

t

| X T T
== > [(ZVIog mo( @iz | Si,t)) <Z r(su,a@-’t))]
i=1

t=1 t=1

(3.5)

Writing the RL objective in the form of the equation 3.5, we can observe that by distribut-
ing the 327, 7(s¢, a;) term in the 3.1, Vlog mg(ais | si4) sum, we calculate the gradient of
log my at a given time step weighted by the sum of rewards of all time steps. However, this
should not be the case as it creates a causality problem given that policies at time ¢’ cannot
affect rewards at time ¢t when t < t. Therefore we can replace the sum Z;‘FZI r(Sit, Qi)
with the partial sum ZtT,:t (81, a;) and denote Qiﬁt by reward-to-go.

A more advanced technique to reduce the policy gradient variance is through the use
of the baselines. To understand the intuition behind this idea, we can think of the policy
gradient calculation as a weighted maximum likelihood procedure. In that sense, when we
optimize our algorithm with different trajectory samples, we aim to increase the probability
density of the trajectories that have a positive reward and reduce to probability density of
trajectories with negative reward. However, it might be the case that also bad trajectories
might have a positive but small reward. Therefore a more appropriate way to form our
optimization goal is to increase the probability density of trajectories that are better than
average and decrease the probability density of trajectories that are worse than average.
We also note that the optimal parameters 6 do not change if we add or subtract a constant
value from the rewards. Given that the equation is very sensitive on the choice of the
constant it will be beneficial to calculate its optimal value, so as to achieve minimum
variance and also not introduce a bias term in the gradient estimation. Firstly, we show
that the estimator is unbiased even despite the introduction of the baseline. In other words

we need to show that:
]ETNPTSQ [v log Uy [T(T) - b]] = ]ETNPT‘ZG [v log WGT(T)]
Using the linearity of expectations in order to split the terms we have that:

ETNPT'ZG [v IOg 7T9b] = / TV log TebdT
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Therefore we observe that subtracting a baseline is unbiased in expectation. We can now
focus on finding the optimal value for the baseline. The most natural choice would be
the average reward b = % Efi L 7(7) over all the sampled trajectories as in that case only
the probability density of better than average trajectories get increased. To derive the
lowest variance baseline we can minimize the policy gradient variance using the variance

definition Var[x] = E[z?] — E[z]2. Using the variance definition we have :

Var[VV™(u)] = IETNPT:@ [(Vlogmg[r(T) — b])?] — E ™ [V log mg[r(r) — b]]?

T~Pr

where the Eerr“’ [V log mp[r(7) — b])? reduces to E

fore, thus we can focus on only on the first term of the rlght hand side of the equation.

o[V log mer(7)]? as we proved be-

TNPT'

Calculating its derivative (and defining g(7) = Viogmy(7)) we have that:

d‘g;lr - %Emm;@ [g(T)*(r(7) — b)?]
= % (b l9(r)1(7)%] = 2B, _p, o [9(7)?r (7)) + D7, _p,a[9(7)?))

=0—2E_pm[g(r)*r(r)] + 2, _p,zol9(7)’]

and by setting the derivative equal to zero and solving for b we get:

E._p, 70 lg(r)2r(7)]

b=
E,_pyrolg(r)?)

So the optimal value for b is the expected reward re-weighted by the expected gradient

magnitudes.

3.2.2 Actor-Critic Algorithms

Actor critic algorithms are based on the policy gradient framework but they are also
augmented with learned value and action-value functions. To derive the actor-critic al-
gorithm we will begin by examining the policy gradient equation utilizing the reward to
go.

VV™(u

N T T
Z [(ZVlogwe @iyt | s”)> (Z (&,t@%t’))]

t'=t

] |
== Z [(ZV]ogwe(azt | Sm)) Qi,t]

Z\H

This Qi,t denotes an estimate of the expected reward if we take action a;; in the state s; ¢
and subsequently follow the policy until the end of the trajectory. However, if we visit the
same state action pair again we will end up with a different estimate as the policy and the
MDP contain randomness. Therefore to get a better estimate of the reward to go we can
calculate its full expectation e.g. the action-value function Q(s¢, a;) = Zz::t Er, [r(sy,ap) |

st, at]. The resulted modification leads to the calculation of the reward to go using many
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samples and as a result has much lower variance than using just one as in the case of
the reward to go approach. Following the logic of the policy gradients we can lower the
variance even more by subtracting a baseline. A common choice for the baseline is the
value function as in that case, the difference of the action value function and the value
function represents an estimate of how much better the action a;; is on average, than the
average action that one can take at the state s;;. This particular choice of baseline is

known as advantage, denoted by A(a; ¢, sit).

N T
1
YV () = = DD Viegmo(ai | sie) Alsi, aie) (3.6)
i=1 t=1

where A(sjs, a;t) = Q(Sit,air) — V(sit). In equation 3.6 in order to calculate the advan-
tage function we have to use a function approximator (such as a neural network) which
introduces some bias to the algorithm. However, the equation 3.6 achieves a huge decrease
in the variance of the estimation compared to the policy gradient with a baseline which
uses one sample estimates of the reward to go thus has very high variance.

In order to estimate the advantage function we have to approximate both the value
and the action value function. As this is an inefficient approach, we can perform some

assumptions. More specifically we can rewrite the action value function as:

T
Qs ar) = ZEW [r(ser, av) | st ai

t'=t

T
= 7(st,at) + Z Er (s, av) | st,ai]
t'=t+1
= T(*Sta at) + Est+1~p(st+1|st,at) [V(St-l-l)]

~ T(St, at) + V(St+1)

We can observe that by making the approximation Eg, < p(s,.1[si,a0) [V (St41)] = V(s141)
we can obtain the action value function just by adding the value of the next state to the
current reward. To approximate the value function we make use of a neural network that
takes as an input the current state and outputs the value of that state. The value function
can be expressed as (and by utilizing a neural network with parameters ¢ for the value

function):

T
Vi(sit) = ZEWQ [r(sesau) | sitl

Pt
T
=1(Sit, Qi) + Z Erplr(se,au) | sii+1]
Y—tt1
~ (i, ait) + V(sitr1)
~r(sig, aig) + Va(sie1)

Therefore, by using a neural network with parameters ¢ for the value function we can

approximate the target value by directly using the previous fitted value function. We can
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also train the neural network by minimizing the MSE loss between the predicted values

1 .
= 5 2 1Valsi) — il

where y; = (854, a@t)—l—Vd)(si,Hl). Given the above description we formalize the actor-critic

and the target values as:

algorithm in Algorithm 4.

Algorithm 4 Actor Critic algorithm
While True (for each episode)

sample {s;,a;} from mg(a | s)

fit V,(s) to sampled reward sums
evaluate A(s;, a;) = (s, a;) + Va(sh) — Vi(si)
VJ(0) =~ 3, Viegmg(a; | si)A(si, a;) 0 0+aVJ)

3.3 Multi-Agent Reinforcement Learning

3.3.1 Multi-Agent problem representations

To model multi-agent systems we need to advance our MDP framework given the
violation of the stationarity assumption as already discussed. A major difference in multi-
agent settings is that the definition of the problem is related to the nature of the interaction
between agents, namely cooperative, competitive or mixed, or even on whether agents take
their actions sequentially or simultaneously. A visualization of the different approaches can

be found in Figure 3.2.

(P
gent 1
|: Agent —4| u
S, Ry
2 Ry 2

Enwronment
Environment

MDP Markov Game

Environment

Dec-POMDP Extensive Form

Figure 3.2: Problem representation MARL

In more detail if agents have full observability of the whole state the problem can

be modelled as a Markov Game. If they also collaborate aiming to maximize a common
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reward then the problem can be defined as a team Markov Game. Otherwise, if the agents
have partial observability of the state as a partially observable Markov Game. On the
other hand, if the agents have partial observability and cooperate but execute actions in
a decentralized manner then the problem can be formulated as a decentralized POMDP
(Dec-POMDP). Lastly, if agents take actions sequentially instead of simultaneously, the

problem is represented as an extensive-form game.

3.3.2 Dec-POMDPs

We consider the fully cooperative multi-agent task as a Dec-POMDP, which is for-
mally denoted by a tuple G = (S, A, P,r, Z,0O, N,~). S is the state space. At each timestep
t, every agent i € A = {1,2,..., N} selects an action a’ € A which is a part of the joint
action a € A = AN, P(s' | 5,A) : S x A — [0,1] is the state transition function.
r(s,a) : S x A — R is the reward function which is shared by all agents and v € [0,1)
is the discount factor. We consider partial observability in our settings; each agent does
not have access to the state yet samples observations o € O according to the observation
function Z(s,7) : S x A — O. We also consider that at each timestep the full state is the
the union of the agents’ observations (in accordance to the dec-MDP definition in [10]).
The action-observation history for agent i is denoted by 78 € T' = (O x A)*, on which
the agent can condition its individual policy 7(a’ | 79) : T x A — [0,1]. For brevity,
we write a~! to be the joint action of all the agents other than i and also use a similar

convention for the policies 771,

The joint policy 7 characterizes the action-value func-
tion: Q™ (st,ar) = Egpypi00,a01:00 [ZZOZO Yeree | st,at]. The goal is to find the optimal
action-value function Q*.

Dec-POMDPs constitute a challenging framework in terms of computational complexity
as the are not solvable utilizing polynomial-time algorithms while optimal solution search

in the policy space is intractable [10].

3.3.3 Multi-Agent RL Algorithms

In order to solve multi-agent problems we should extend the single agent Reinforce-
ment Learning algorithms to the multi-agent case. Our analysis will be based on [3]. For
consistency we will use ¢ for the parameters of the learned value functions and 6 for the
policy functions parameters. As we will operate under the CTDE framework during train-
ing agents commonly utilize the joint observations but during execution they condition
only on their local observations. We will present the MARL algorithms using the nota-
tion for partially observable environments, denoting with h the histories of observations.

However, as in some cases the algorithms utilize the full state of the environment we will

highlight where the local observation history of agent hf = (0?,0},...,0!) of agent i, the
joint observation history h! = (0°,0',...,0) or the state s’ at timestep ¢ should be used.

Also, in partially observable environments where the full state is not accessible, it can

be approximated by the joint observation history s’ ~ h!. On the other hand, in fully
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observable environments agents can utilize the full state of the environment instead of the
individual or joint observation histories. To condition deep value functions and policies on
the history of observations we will utilize recurrent neural networks (RNN) as described
in [26]. As RNNs are able to represent the full history of observation as a hidden state
just by receiving one observation at a timestep we can also condition the value and policy

functions only on the most recent observation.

3.3.4 Independent Policy Gradient Method

The easiest way to approach the multi-agent problem is to allow multiple agents to act
and learn simultaneously in a shared environment. In that case agents perceive other agents
as part of the environment but the are trained using single-agent Reinforcement Learn-
ing algorithms, thus the are considered independent. Beginning with the REINFORCE
algorithm in multi-agent settings each agent has its own policy which is based on its own
observations, actions and rewards. Thus, agents follow their policy gradient by computing
the gradient of the expected return with respect to their own policy parameters.
1 Vr(aj | hﬁ;@)]

" m(ag | hi; 0:)
=E, [riViogn(a} | hi;0;)]

We again update the parameters of the policy in the direction in which the probability
of selecting an action increases (V(al | hf;6;)) proportional to the returns (R!), while
normalizing by the inverse of the probability of selecting an action under the current
policy w(a! | ht;6;). The independent REINFORCE algorithm is provided in algorithm 5

Algorithm 5 Independent REINFORCE algorithm

Initialise n actor networks with random parameters 64, ...,60,
Collect environment observations oY, ..., 02
for time step t =0,1,2,... do

for agent i =1,...,n do

~ ¢ t) ot 0,
Sample actions a; from 7(a; | 0}; 6;)
t+1

Execute actions and collect observations o, and rewards Tf.
for agent i =1,...,n do

Update parameters 6; by minimizing the loss of the equation 3.7

The described independent REINFORCE algorithm is an on-policy algorithm which
in multi-agent systems has an advantage over off policy algorithm as agents learn from
the most recent policies of the other agents. By on-policy we mean that gradients are
computed based on the most recent experiences of the agents, generated by their most
recent policies. As in multi-agent systems agents’ policies constantly evolve learning from
the latest policies of all other agents leads to more stable learning.

Following the same approach we can also generalize the A2C algorithm to the multi-

agent setting and apply it to each individual agent. As A2C runs in parallel environments,
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the environment trajectories and the multiple agents form high dimensional batches. To

illustrate that the observations of K environments for a given time step t are represented

as:
t,1 t,1

0, on
t,K t,K

0, on

One should note that actions and rewards form also respective matrices. Thus, the calcu-
lation of the A2C loss requires the iteration and summation over all the individual losses.

Focusing on the loss of a single agent from a specific environment k:
L0 | k) = —logm(al™ | nY¥50) (riF 4+ 4V (000 - VRS 6))  (39)
while the final loss of the policy is:
O = 33 L: | B (3.9)
ik
Accordingly to calculate the value loss we have:
L(¢i | k) = (V(hf-’k; 0;) — yi)2 (3.10)

where y; = rf’k + ny(hﬁH’k; ) The Independent A2C algorithm is shown in Algorithm 6

Algorithm 6 Independent A2C algorithm

Initialize n actor networks with random parameters 64, ...,0,
Initialize n critic networks with random parameters ¢1, ..., ¢,
Initialize K parallel environments
0,1 0,1
1 On
Build a batch of initial observations for each agent and environment: :
0,K 0,K
01 on
for time step t =0,1,2,... do
t,1 t,1
ay” ... ap
Sample actions | ¢ .. i | from policy m(al | of;6;)
t,K t,K
ay .. ay
41,1 i+1,1 t,1 t,1
01+ ’ 07;r ’ e T
Execute actions and observe : : and rewards | ) :
i+1,K t+1,K tK K
01+’ oohth rys L.y
for agent i =1,...,n do

Update parameters 6; by minimizing the loss of the equation 3.8 over the batch.

Update parameters ¢; by minimizing the loss of the equation 3.10 over the batch.

1a2cl2
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3.3.5 Multi-Agent Policy Gradient Method

Although independent execution of the RL algorithms can solve some multi-agent prob-
lems it suffers from the non-stationarity problem as agents perceive other agents (which
constantly change their behaviour) as part of the environment. Adapting the CTDE
paradigm can mitigate this problem, allowing agents to share information during train-
ing in order to stabilize training, while executing their policies in a decentralized manner.

The basis of all Policy Gradient Method is the policy gradient theorem which states

that the gradients of a policy can be calculated as:

VoJ(0) =Y Pr(s|m) Y _ Q7(s,a)Ven(a | s;6)
s€S acA (3.11)

— B, [Q(s,) Vs log (a | ;)]

The equation 3.11 can be extended to multi-agent settings by noting that the expected
returns of any agent’s policy in multi-agent RL are dependent on the polices of all agents.
Thus, the multi-agent version of the policy gradient theorem for agent ¢ with an expectation

over the policies of all agents can be definied as:
VoJ (i) = Ea;ompainm_; [QF (85 (@i, a—i)) Vo, log mi(ai | s;6;)] (3.12)

As in single-agent case we can apply multi-agent policy gradient theorem to derive dif-
ferent policy gradient update rules. For instance in independent learning policy gradient
algorithms, the expected return estimate of agent i, Q;(s, (a;,a—;)), is calculated utilizing
a value function conditioned only of the history of observations and actions of agent i, e.g.,
Qi(hi,a;) = Qi(s,{a;,a_;)). In the next section we will adopt the CTDE paradigm and

estimate the expected return conditioned on centralized information.

3.3.6 Multi-Agent Actor-Critic (MAA2C) Algorithm

To redefine the actor-critic algorithm under the CTDE paradigm, we should analyze
both the actor and the critic networks. Starting with the actor in independent case was de-
fined as w(h;6;). Therefore, the agent requires only its local observation history to choose
its actions. This property will ensure that the algorithm can be executed in a decentralized
manner and thus should not be altered or enriched with centralized information.

However, considering the critic network one can observe that it is utilized only during
training and it is discarded during execution. In that case, a centralized version of the critic
makes more sense as it provides further information to the training without affecting the
execution. The critic under the CTDE paradigm can be defined as V (s!; ¢;) conditioning
of the full state of the environment in order to approximate the agents’ ¢ state value.
The redefined algorithm has access to the full state during training which is of significant
importance especially in partially observable environments, as otherwise the critic would

lack valuable information for the estimation of state values. The centralized critic has
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access to other agents observations and thus can adopt to their changing behavior. We

should mention that the new value loss for the critic can be calculated as:
2
L(¢i) = (V(s"5 i) — vi) (3.13)

where y; = rt + 4V (s'™1; ¢;). The Centralized A2C algorithm is provided in Algorithm 7,

while the architecture of the centrilized critic can be found in Figure 3.3.

Algorithm 7 MAA2C algorithm

Initialize n actor networks with random parameters 64, ...,0,
Initialize n critic networks with random parameters ¢1, ..., ¢,
Collect environment observations o?, oo, 00
for time step t =0,1,2,... do

for agent i =1,...,n do

Sample actions a! from m(al | ht;6;)
t+

Execute actions and collect states s, observations o/*! and rewards r?.
for agent : =1,...,n do
Update parameters 6; by minimizing the loss of the equation 3.8

Update parameters ¢; by minimizing the loss of the equation 3.13

: V(s; i)

Figure 3.3: centralised state-value critic for agent ¢

In practice, the policy network is approximated by a Long short-term memory (LSTM)
network followed by an MLP, while the critic network by a simple MLP.

3.3.7 COMA

To describe the COMA algorithm we should first recall the MAA2C algorithm which
utilized a centralized state value function. Instead of the value function we can choose to
learn the action-value function as a critic. In that way the centralized training of the critic
Q; of agent 7 is conditioned not only on the full state but also on the actions of all agents.
The redefined loss is:

L(¢i) = (Q(s',a's i) — yi))
where y; = ! + YQ(s't1, a1t ¢;). We should note that in order to compute y; for agent 4

we used the next state and the actions of all agents based on the current policy. Also, the
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policy loss for agent i is:
L($:) = —logm(ag | hi, 0;)Q(s", a"; ¢;)
and the multi-agent policy gradient can be defined as:
Vo, J(0:) = Ex[Vp, logm(ag | hi, 0:)Q(s", a"; ¢;)] (3.14)

In general in the single agent setting the value based methods that optimize the action-
value function, such as DQN [51], are off-policy i.e. they do not use the current policy in
order to find the target y; and instead they use a max operator over the next actions from
batches or experiences sampled from a replay buffer. However this technique cannot be
utilized in the actor critic algorithm, because the expected returns in the policy gradient
theorem are calculated under the current policy of all agents. Thus, a replay buffer with
experiences created under different policies cannot be utilized for this purpose and the
method remains on-policy.

In the current version of our actor-critic we utilize the action value function to directly
quantify the impact of the selected action on the expected returns. As in the single agent
case, replacing the action value function with the advantage estimator can stabilize the
training process since we need to calculate how much better a certain action is than the
average action. However in the multi-agent case action-value functions can be utilized in
order to solve the credit assignment problem based on the concept of difference rewards
[72]. A suggested schema is through the difference rewards which aim to quantify the
difference between the received reward and the reward agent ¢ would have received if they

had chosen a different action a; [3]:
di = (s, {a;,a_;)) —r(s,(ai,a_;)) (3.15)

Action @; is known as the default action. A difference reward tries to calculate the reward
that agent ¢ would have received if she instead had selected the default action. This question
might be helpful in settings with common rewards as they quantify the contribution of each
agent to the received reward. Although difference rewards seam beneficial to the training
process, calculating them in practice is difficult as the selection of the default action for each
player is unclear and computing r(s, (@i, a—;)) requires access to the full reward function.

Counterfactual multi-agent policy gradient (COMA) [22] tries to solve this issue by
approximating the difference rewards utilizing a centralized action-value critic. The authors
introduce a counterfactual baseline which marginalizes out the action of agent i to estimate

the advantage of agent ¢ for selecting the action a; over following its current policy 7; [3]:
Adv;(s, hiya) = Q(s,a) — Z mi(al | hi)Q(s, {al,a_;)) (3.16)
a;eAi

A practical detail that it is worth noting regards the implementation of the centralized
action value critic. A naive approach would be to use a neural network that has the state

as input and outputs one action-value for each combination of action. However, in this
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approach the number of outputs grows exponentially with the number of agents. A more
efficient way to perform the same computation of the action-value function of agent 4 is to
use both the state and the actions of the other agents a_; as input the state and to output
an action-value for each the agent’s ¢ actions. This modeling approach is illustrated in
Figure 3.4.

LU Quls, (e, o)) )

a * ',_.'_..i.,_'..:--j-g‘i: 0 Qi(ss (aijasai)); i)

Figure 3.4: centralised action-value critic for agent ¢

3.3.8 MADDPG

Multi-agent deep deterministic policy gradient (MADDPG) [45] constitutes the multi-
agent extension of the deep deterministic policy gradient (DDPG) [44]. Although we
have not analyzed the DDPG algorithm, its main contribution is the introduction of a
deterministic policy that also handles continuous actions. The interesting reader can refer
to the corresponding paper for its details. MADDPG’s main architecture is depicted in
Figure 3.5.

training

execution

o

@4_
o%

Figure 3.5: MADDPG architecture [45]
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MADDPG can be also adapted to the CTDE schema, in order to allow the critic to use
extra information and to be conditioned on both the state and actions of all agents during
training.

The gradient of the expected return (J(0;) = E[R;]) for agent i, with policy m; and

parameters 0; is as follows:
VJ(HZ) = Eswp/‘,aiwm [V IOg Wi(ai | hi; GZ)QZF(S, aj, ... ,CLN)] (317)

where we utilize a centralized action-value function that receives as input the whole state
s = (o1,...,0n), as well as the actions of all agents (ay,...,ay) while it outputs the Q-
value for agent i. However, we note that the agent’s i policy receives as input only the
observations of agent 4, such that agent ¢ to select action a;.

Extending this idea by introducing continuous deterministic policies pp, or p; in short,

with parameters 6; for agent 7, the gradient takes the following form:

Vo, J (i) = Esann[Vo,pi(ai | hi; 0;)Q% (5,01, ., aN) laj=pi(ho)] (3.18)

However here, since the policies are deterministic, we introduce a replay buffer D which
contains tuples in the form (s, s',a1,...,an,71,...,rN) with the experiences of all agents.

The loss function of the centralized critic is defined as:

E(Qz) = Es,a,r,s’wD[(Qf(& ai, ... 7aN) - y)2] (319)

where y = r; + nyf/(s’,a’l, coaly) |a;:u;(hj)a with g/ denoting the set of target policies
with delayed parameters 6.

An advantage of the MADDPG algorithm is that by knowing the actions of the other
agents the environment becomes stationary even as the policy changes, because P(s’ |
s,ai,...,aN,m,...,7n) = P(s' | s,a1,...,an) = P(s' | s,a1,...,an,7],...,my) for any
7 # 7, which does not hold if we do not condition on the actions of other agents, like in

most traditional RL algorithms.

3.3.9 VDN and QMIX

Although until now we have utilized centralized action-value functions to train multi-
agent policy gradient methods, their direct learning (with Q-learning based algorithms) is
difficult due to the exponential growth of the joint action space with the number of agents.
Thus, one direction in MARL focuses on how to factorize action-value functions in order
to be effectively learned. Before discussing approaches that can effectively factorize the

action-value function we should remind that its centralized version can be written as:

Q(s',d';¢) =E

o0
Z’W_tr; | st,at] (3.20)
T=t

where r] represents the common rewards for all agents at time step 7.



58 Chapter 3. Theoretical Framework

The easiest way to solve the decomposition problem is to assume that the common

reward can be linearly decomposed into individual utilities for each agent:

A R (3.21)

where we define each individual utility of agent i at time step ¢ as 7%, while the bar denotes
that the utility is obtained by the decomposition and not by the environment itself. Then

the action-value function can be decomposed as:

Q(s',a";9) =

Z'YTtT|5 CL]

Z,YT—t (ZT;F> |st,at]
= iel

_ZE Z’YT tT|S CL]
iel

= Q(hl,al; ¢4)

el

(3.22)

The method was introduced as Value Decomposition Networks (VDN) [63] and provides
a computationally tractable method to optimize the individual utilities while allows for
learning individual policies. The algorithm runs off-policy learning, utilizing a replay buffer
D which contains the experiences of all agents and aims to optimize the loss of the equation

3.23, which approximates the centralized value function of all agents.

L(¢) = % Z (rf; + 7 max QA a;9) — Q(h',a'; ¢)>2 (3.23)

(ht at ri hi+1)EB

where

Latie) =Y Q(hl,al; 6

el

and

max QA a;6) = ) max Q(hi*, ai; 41)

el

The architecture of VDN is illustrated in Figure 3.6
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Figure 3.6: VDN architecture

Although VDN provides a solution to the decomposition problem, often the linearity
assumption does not hold and thus a non-linear approach might be more suitable. The
most well-known method to decompose the action-value functions non-linearly is QMIX
[58]. To introduce QMIX we consider the problem of decomposition as learning individual
action-value functions Q(h;,a;; ¢;) for each agent i conditioning only on the observation
history and action of each agent. However those functions are optimized to approximate
the centralized action-value function and not the individual expected return of each agent,
while the must also satisfy the so called individual-global-max (IGM) property with respect

to the centralized action-value function :

argmax,, Q(hi, 1; é1)

argmax Q(s',a;¢) = (3.24)

a=(a1,...,an) )

arg max,, Q(hy,,n; ¢n)

The introduction of IGM property ensures that by greedily following each agent its policy
with respect to its action-value function, all agents select greedily the joint action with
respect to the decomposed centralized action-value function. This also means that the
individual action value functions factorize the centralized action-value function [61]. The
QMIX algorithm satisfy the IGM property by requiring the monotonicity of the central-
ized action-value function with respect to the individual ones, e.g., the derivative of the
centralized action-value function with respect to agent action-value functions should be

non-negative:
9Q(s,a; 9)
0Q(hi, a;; ¢;) =0 (3:25)

which means that if an agent ¢ increases its value for a particular observation h; and action

Vie I,Vae A:

a; the centralized value for any joint actions a’ = (a’_;, a;) in which agent i applies action

a; should never be decreased.
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Similar to VDN, QMIX uses an individual action-value network (deep Q-network) for
each agent. For the monotonic decomposition, QMIX also defines a mixing feedforward
neural network f,;., which combines the individual functions to approximate the central-

ized action-value function:

Q(St7 at7 d’) = fmzx (Q(h)i (l)i, (Zsl)a .. 7Q(h£n a:w ¢n)a (z)mll’) (326)

The mixing network ensures that the constraint of equation 3.25 will be satisfied if the
weight matrices ¢y, take only positive values, a property that it is not required for the
bias vectors in ¢,,;;. To guarantee that the weights used in QMIX are always positive,
QMIX employs a distinct network referred to as the hypernetwork fhype,. This hypernet-
work is defined by a set of parameters ¢y, and takes the entire state s as input. Its
primary purpose is to generate the parameters ¢,,;, necessary for the mixing network.
Additionally, to maintain a monotonic relationship, the hypernetwork applies an absolute
value function to the outputs that pertain to the weight matrix of the mixing network fiiz.
This ensures that the weights remain non-decreasing. When the optimization requires the
computation of Q(s,a; @), the separate utility values Q(h1,a1;¢1),...,Q(hn,an; dn) are
calculated. These individual utilities are determined, and the mixing network parameters
¢miz are derived by inputting the state into the hypernetwork. These utilities are then
combined into Q(s, a; ¢) using the mixing network, which employs the parameters obtained
from the hypernetwork. During the optimization process, all the parameters ¢ of the de-
centralized action-value function are collectively optimized. This includes the parameters
of the individual utility networks ¢1, ..., ¢,, as well as the parameters of the hypernetwork

@hyper, achieved by minimizing the value loss:

Lo)=% X (A ramsQithed) - Qhate)  B21)

(st,at,rt,stt1)eB

where batch B is sampled from the replay buffer, while the centrilized action-value function
and its target value are given by equation 3.26 with parameters ¢ and ¢ respectively. The
optimization process for the parameters of the mixing network doesn’t involve gradient-
based techniques. Instead, these parameters are always generated as outputs from the
optimized hypernetwork. QMIX’s training procedure follows the same structure outlined
as the VDN algorithm. However, QMIX adds the initialization and optimization of both
the mixing network and the hypernetwork, while the value loss to be minimized is specified

in equation 3.27.

It is also important to mention that in QMIX, the replay buffer stores the complete state
s', which includes the individual observation histories (h, ..., hl) of each agent, extending
the approach used in VDN. This complete state is required in QMIX for calculating the
monotonic mixing behavior, as the hypernetwork function fy,ype, takes the full environment

state as a conditioning factor. The QMIX architecture is depicted in Figure 3.7.
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Figure 3.7: QMIX architecture

3.3.10 ATM

Agent Transformer Memory (ATM) [74] network with a transformer-based memory
aims to solve challenging multi-agent partial observable settings by considering that the
multiagent observation consists of a number of object entities or the action space shows

clear entity interactions. ATM network serves two main purposes:

1. Unified Processing: The transformer architecture is utilized to handle both the in-
dividual entities present in the environment and the memory component. This ap-

proach allows for a cohesive treatment of these different elements within the model.

2. Inspired by the human cognitive process of working memory—where a limited amount
of information is temporarily held to guide decision-making—the ATM network main-
tains a memory of fixed capacity. This memory is dynamically updated using a

schema akin to how humans update their working memory.

Furthermore, the ATM network takes into account the specific interactions between entities
in the environment for each agent’s actions. As each action performed by an agent involves
particular entities, the ATM network analyzes the action space to introduce a semantic
inductive bias. This is achieved by linking each action with its corresponding involved
entity, which aids in predicting the state-action value or logit. In other words, the ATM
network employs a mechanism to associate the actions an agent takes with the entities they
interact with, enhancing the model’s understanding of the context. The ATM framework

is illustrated in Figure 3.8.
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Figure 3.8: ATM architecture [74]

To handle partial observability in ATM, each agent has a slot-based memory where it
stores past key information in 7¢, which is updated by the working memory mechanism. It
also uses a fixed capacity memory buffer M in order not to apply the transformer on the
whole trajectories. Furthermore, the Agent Transformer Memory (ATM) network extends
its functionality by incorporating relative positional embeddings for both spatial entities
and memory slots, denoted as Tj,. These embeddings are then fed into the transformer
block for processing. Through this process, ATM generates spatio-temporal embeddings
labeled as T,,:. These embeddings encapsulate information about the spatial layout and

temporal dynamics of the environment.

With the spatio-temporal embeddings T,,: as input, the ATM network proceeds to
compute individual Q-values or policy logits. This computation involves the use of an
Entity-Bound Action Layer, where the unique entity embeddings contained in T,,; are
semantically linked to specific actions. In essence, this mechanism associates distinct entity
embeddings with corresponding actions, allowing the network to predict Q-values or policy
logits for each action in a contextually relevant manner. For more details about ATM
algorithm, Working Memory Updating Schema and the Entity-Bound Action Layer the

interested reader can refer to the original paper [74].



3.3.11 MASER

63

3.3.11 MASER

t=1 t=2 t=3 t=T, Trajectory
T | |Agentl |ofuj | 03, u} | o3, u} ‘ | of,.ut,
Episode 1 Tr.:jectqry ;
Episode 2 Agent N ol".ui"| off uf | off ,uff l IO{,.u’T",
I Episode 3 Local Utility Network
4
Aentl | 0F | @ [ & || o
AgentN QY | Qo | Q¥ | | Q%
| Episode K | | | |
Mixing Network
tot tot tot tot
I Episode Experience Replay | ks | & | % l % | l 012 l
Randomly gt = Qtet/N|  Sub-goal Selector
chosen episodes
al+ | a@i+ | @i+ | ... «Qr, +
: Agent 1’s sub-goal et |- oo =mei o - 0t A=l
: AgentN | %0 F | a@l+ | Q)+ g} +
: Agent N’s sub-goal (1 =a@)Q""|(1 - )05 (1 — @) Q5" (1-a)Q"

Figure 3.9: Diagram of subgoal determination from replay buffer. (Left) MASER chooses M
episodes randomly from the replay buffer and each episode of length equal to T, (Horizon)
has sequential sample information of action and observation of all agents and extrinsic
reward from ¢t = 1 to t = T,. (Right) The right side shows how to select a subgoal for each

agent based on the current Q-function estimate.

Multi- Agent reinforcement learning with Subgoals generated from Experience Replay
buffer (MASER) is a framework proposed by Jeon et al. [34] for cooperative multi-agent
reinforcement learning (MARL) in sparse reward settings. Given the prevalent hypothesis
of training centralization and decentralized execution, alongside a uniform Q-value decom-
position in Multi-Agent Reinforcement Learning (MARL), MASER employs an automated
process to derive suitable subgoals for multiple agents using the experience replay buffer.
This is achieved by taking into account both individual and total Q-values. Furthermore,
MASER formulates distinctive intrinsic rewards for each agent, utilizing actionable rep-
resentations pertinent to Q-learning. This approach aims to guide agents towards their

respective subgoals while concurrently optimizing the overall action value across the group.
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Figure 3.10: The MASER intrinsic motivation framework.
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In particular, MASER assumes a finite joint action space and makes use of off-policy
learning. Based on the previously mentioned Q-decomposition, MASER employs a block-
wise approach with a block length equivalent to the episode horizon. It incorporates three

core elements to effectively learn within environments characterized by sparse rewards:

e Subgoal generation and assignment: MASER identifies subgoals for agents using
the experience replay buffer, eliminating the need for pre-defined subgoals based on

domain expertise.

e Individual reward provision: MASER constructs unique rewards for local agents
to guide them toward their respective subgoals while concurrently maximizing the

collective return.

e Actionable distance informed by Q-learning: The intrinsic reward is determined by
the Euclidean distance, enabling a measure of intrinsic reward that aligns with the

principles of Q-learning (and thus it is based on QMIX).

The subgoal determination routine of MASER is depicted in Figure 3.9 and the high level
MASER framework is illustrated in Figure 3.10. For a more detailed analysis of MASER,

we encourage the interested reader to see the original work of Jeon et al. [34].

3.4 Variational Autoencoders

3.4.1 Problem Formulation

Let X = {x(i)}fil be a dataset containing N i.i.d samples of a continuous or discrete
variable x, which is generated by a random variable z. To obtain a sample 2* we first have
to generate a value 2 from a prior distribution pg(z) and then generate the value () for the
conditional distribution pg(x | z). We also make the assumption that the prior py(z) and
the likelihood pg(z | z) depend on the parameters 6 and that their PDFs are differentiable
almost everywhere w.r.t. both 6 and z. However both the true parameters 6 and the latent
variable 2 are unknown. Our goal is to be able to find the marginal likelihood p(x) in order
to generate new samples form X, we have to encounter intractability issues. One example
is that the computation of the integral pg(z) = [ pp(2)pg(z | z)dz is not feasible over all
values of z or that the posterior p(z | z) is unknown. We want to define an objective in
order to find a maximum likelihood estimate of the parameters 8 and approximate the

posterior distribution in order to represent the data efficiently.

3.4.2 Variational lower bound

As we are interested in calculated the py(z) we can start by applying the base rule:

_ po(z | 2)pe(2)

@) == T2
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We can assume a Gaussian prior for z e.g. pp(z) ~ N(u,0?), however we still cannot
calculate py(z) as the posterior is intractable. To mitigate this issue [37] propose to ap-
proximate the posterior distribution with an encoder network ¢, with parameters ¢ such
that:

q¢(z | z) ~ pe(z | x)

Taking the logarithm of the bayes rule and by performing simple calculations we have:

po(z | 2)p(2)
po(z | z)

po(x | 2)p(2)qe(z | x)
po(z | )qp(z | )

z
=logpg(z | 2) +10gL) + log
qe(2 | )

log pg(z) = log

= log

(3.28)

=logpy(z | z) — log 42| @) + log
p(2)

By taking the expectation on both sided of the equation 3.28 we have:

1ng9({L‘) = Ezwq(/)(z\x) [logpe(x)]

(2| =)

_ a9 (2 | 7)
= ]Ez~q¢(z\x) [logpg(x | Z)] — Ez~q¢(z|x) [log p(Z):| + Ez~q¢(z|a:) |:10g AL A

po(z | x)
=E.<qy(zln)llogpo(z | 2)] — Drcr(qp(2 | 2),p(2)) + Drr(ag(z | ), po(z | 2))
(3.29)

However the last KL-Divergence term is intractable, because the posterior is still unknown.
Since that the KL-Divergence is always non-negative, we optimize a lower-bound of the

previous equation:

logp9(x) < Ez~q¢(z\x)[logp9(x | Z)] - DKL(q¢(z ’ LL’),p(Z)) (330)

The above lower bound is known in the literature as Variarional Lower Bound, or Evidence
Lower Bound (ELBO). Therefore, we write the VAE loss, denoted by Lgrpo, that we aim

to minimize with respect to parameters 6 and ¢:

LELBO(ay(b;x) = EZqu)(z‘x)[lnge(af ‘ Z)] - DKL(qu)(Z ’ x),p(z)) (331)

Analyzing our optimization objective we observe that the first term constitutes a re-
construction term, measuring how efficient is the reconstruction performed by the decoder
while the second term functions as a regularizer pushing the approximate posterior closer to
the prior. As it is often the case that prior is the standard normal distribution. In practice,

both 6 and ¢ are approximated by deep neural networks, such as multilayer perceptrons

(MLPs).
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3.4.3 Reparameterization trick

To implement and optimize the variational lower bound we need to generate values for
the latent variable 2z in a way that is differentiable and allows us to perform stochastic
gradient descent. The proposed solution in [37] is as follows: first sample a noise variable
¢ from a simple distribution p(e) (e.g. the standard Normal distribution A(0,1)) € ~ p(e)
and then apply a deterministic transformation function g4(e, ) to map the random noise
into a more complex distribution, z = ge(e,z). In the case of Gaussian variables the

reparametrization trick can be a z = g, ,(€) = p + oe where ¢ ~ N(0,1) instead of

z~ uo(2) = N(p, 0).
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Proposed Framework

4.1 Problem Statement and Motivation

In this thesis, we aim to deal with complex partially-observable multi-agent environ-
ments that require effective cooperation from the agents in order to be solved. The coop-
eration may be found in terms of coordination of the agents’ knowledge about the environ-
ment dynamics and their team goals. From the structure of the game environments that
we tackle in our experiments, all agents receive the same reward signal at each timestep
of the simulating environment, which describes the shared team goal(s) along a single
game; e.g. whether the players are close to win the game, or arrive to their favourite land-
marks. As we discussed in the previous chapter, the theoretical framework that models the
above problem setting is the DecPOMDP. Moreover, we follow the Centralized-Training-
Decentralized-Execution (CTDE) schema which has been widely used for benchmarking
MARL algorithms in the literature. Based on the structure of the DecPOMDP and the
concept of the CTDE schema, we identify the following issues that strongly motivated us
for this thesis.

The shared reward signals that the agents receive in a DecPOMDP could mislead the
training process of the agents, rendering many MARL tasks to be very challenging to solve.
Since both the immediate rewards and the overall team goals are shared, it is difficult for
each agent to identify the contribution of their own policy to the received rewards. This
difficulty could make some agents be "lazy" to explore effectively their local observation
space even if the received team reward is relatively high due to existence of good policies of
some other agents. Therefore, the lazy agents would opt for actions that are suboptimal,
because their estimated value would be large on average. In other words, this issue could
lead agents to suboptimal approximate Nash equilibria, a problem that has been labelled
as Relative Overgeneralization in the MARL literature. The above issue is deteriorated
under the existence of sparse reward settings, in which the agents receive good rewards
only when they have reached some good states; e.g. when they solve the task entirely. In
such cases, the agents should be urged to adopt more exploratory policies, with each one

of them aiming at exploring effectively their local observation space in a both individual

67
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and cooperative manner.

Under the CTDE schema, in testing the agents should solve the task given only their
own observations (since execution is decentralized), although they can use any information
of the other agents for coordination when learning their individual policies during the
centralized training. Nevertheless, it is not straightforward how to use the information
of the other agents during the centralized training. Recently, there is a massive interest
in communication MARL methods, which aim to use efficient centralized communication
among agents via messages and protocols in order to solve complex cooperative tasks.
Communication methods address the problem of agent coordination by incorporating into
each agent’s policy some information sharing (such as shared observations and/or actions)
by learning a communication network of the agents that optimizes the performance of the
whole team. In this way, each agent learns an enhanced policy that also takes explicitly into
account what observations/actions their fellow connected players observe/take. However,
such methods are not built upon the CTDE schema, because they do not use decentralized
execution; the agents always use some information from some other agents as part of their

policies in testing.

One major question that we are interested in addressing in this thesis is the following:
Can we combine the CTDE schema with the benefits of the communication methods to
train agents able to perform better in difficult tasks? Moreover, considering the remarkable
performance of the communication methods in difficult benchmark environments, we are
also interested in addressing the following question: Can we train agents under the CTDE
schema with enhanced policies, i.e. exploiting some kind of information sharing, and use

this information sharing for coordinated exploration in difficult sparse reward tasks?

To address the aforementioned questions, in this thesis we propose Count-based Agent
Modelling (CAM), a novel agent modelling approach which utilizes (a) variational in-
ference and self-supervised learning for generating information sharing among the agents
through agent (opponent) modelling, and (b) a count-based intrinsic reward based on the
generated information sharing in order to allow agents to better explore difficult multi-
agent environments with/without sparse rewards. The proposed framework is built upon
MAA2C due to its remarkable performance in various benchmarks [56]. The overall frame-
work can be separated into two distinct parts. The first one involves learning the variational
embeddings that will be used in addition with the observations of each agent as an input
to their policy in order to provide an enriched representation of the game’s state and en-
able the agents to discover better policies. The second one involves the introduction of an
intrinsic reward based on the aforementioned embedding utilizing the Count-Based explo-
ration algorithm described in [66] which will act as an exploration bonus in sparse reward

settings.
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4.2 CAM: Learning Variational Embeddings for Opponent
Modelling

In the proposed method, each agent adopts systematic opponent modelling by aiming
to predict the observations of the other agents at a timestep given only the agent’s own
observations. As in [54], each agent ¢ models the observations of the other agents, denoted
by o, ¢ via an internal belief, plo; ‘ | of;6;), parameterized by the random variable ©; with
values 6; € ©;. This belief describes how the agent perceives her unseen parts of the full
state based on her own partial observability. We assume (a) a prior p(6;) over 6;, (b) the
existence of some latent variables z° in the space Z and (c) at each timestep ¢ the latent
variables z' contain information about the opponent modelling of agent i.

To learn a good representation (embedding) for the opponent modelling latent vari-
able 2%, we utilize a variational encoder (pp,)-decoder (qp,;) for each agent which aims to
capture the observations of the other agents (o, Z) at timestep ¢ given only the agent’s
own observations (o, z) In parallel, at each timestep ¢, we enhance the agent’s policy 7t
by concatenating the original policy input (i.e. o}) with z}. One could assume that we
ideally hope that the encoder-decoder could predict perfectly the observations of the other
agents, so that z! could be as much informative about what the other players observe, as
it could be. However, as it was noted by recent work [25], using the full information of the
state (even when utilizing a compressed embedding) to enhance the agent’s policy does
not always increase the performance due to abundant state information unnecessary to
the agent. We note that similar results can be also found in our experiments in the next
chapter of this thesis.

Aiming to learn meaningful latent embeddings for representing z{, we mitigate the
use of unnecessary state information by first filtering out the less informative features of
o; ", which the agent’s encoder-decoder tries to predict. Similar to [25], we make use of
additional learnable weights, w! = o (¢ (0')), one weight for each feature of o~%; we use
an MLP as ¢, and ¢ as the sigmoid activation function in order to keep the value of
each entry between [0, 1]. Intuitively, w’ represents the importance of each feature of o~
to agent 7. For each agent ¢, we train a variational encoder-decoder by minimizing the

following self-supervised reconstruction loss:

Lrec(eia (Z)Z'a Qﬁu) = (UN/L : O_i - wi : é_i)Q (41>

where 6~ are the predicted observations of the encoder-decoder (using the reparameteri-
zation trick), 6=¢ are the true target observations of the other agents, w’ are the predicted
weight filters and - means element-wise multiplication. To stabilize the training of w?,
similarly to standard deep RL updates, such as in [51, 68], we use target weights w' to
filter out the target observations 6~¢ with their values being assigned to previous values of
w® and remaining fixed during the update of w?’.

The reconstruction loss in 4.1 generalizes the standard reconstruction loss of a VAE
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(see 3.31). In particular, if both w’ and @' are equal to the identity matrix, then we
receive exactly the reconstruction loss term of 3.31. In the general case, the reconstruction
loss of 4.1 accounts for both (a) reconstructing effectively o~% and (b) learning w’ in a
self-supervised manner.

To ensure that the values of w® do not vanish to zero throughout all dimensions (note
that in such case the reconstruction loss would be zero), we also add the following L2

normalization loss term:

LnOTM(QbZ;) = _||wi||2 (4.2)

To further ensure that the values of w’ are meaningful for solving the given task, and

thus for maximizing the return, we add the following regularization term for agent i, derived

by the critic loss of the standard MAA2C:

Leritic(@ ki) = [re + Vie (81) — Vi, (80)]? (4.3)

where 7y is the received reward at timestep ¢, s; is the state of the environment at timestep
t, Vi, is the state value parameterized by a neural network k;, Vi (s) is the state value
parameterized by a target network ki and § = o @ (v’ - o) ) is the predicted state
generated by agent i’s belief, where @ means vector concatenation. We note that V, (3)
(and thus Vj,(3)) is not trained as an auxiliary task; in the sense that Vi, (3) is also utilized
as the centralized critic of MAA2C and is not conditioned on true state s.

As in VAE [37], we also add a regularization term which aims to minimize the KL
divergence between the posterior and the prior (which is typically assumed to be the

normal distribution), as it follows:

Lc1(¢1) = Drcr(as,(2'0")|lpe, (=) = N(0,1)) (4.4)

Overall, the total loss of CAM for learning variational embeddings for agent i, denoted

by Lrorar, is the following:

Lrorar(0i, ¢ ¢y ki) = Lrec(0i, ¢iy ) + Luorm(0ly) + Leritic(@ys ki) + Lirn(d:)  (4.5)

Each agent’s variational encoder-decoder receives the observations of the agent i, of,
at each timestep ¢ and aims to learn a meaningful latent embedding having as target the
observations of the other agents, o, ¢ multiplied (in an element-wise manner) with the
weight vector w?, in order to allow each agent to focus only on the information that might
be relevant. Here, we should highlight the importance of the weight vector, as if it did not
exist then the target of the encoder-decoder grows linearly with the number of agents and
the learning procedure is not expected to result in a meaningful embedding. Finally, at
each timestep ¢, each agent i uses an enhanced policy 7(- | o}, z) which is conditioned on

both o} and the predicted variational embedding 2.



4.3 CAM: Count-based Intrinsic Motivation 71

To train the agents’ encoder-decoders with i.i.d data, in practice we sample off-policy
transitions from the received trajectories of the agents, in order to break the high correlation
of the transitions within the same trajectories. We note that our base MAA2C model is

trained using on-policy data, as we discussed in the previous chapter of this thesis.

4.3 CAM: Count-based Intrinsic Motivation

In this section, we introduce the second part of CAM which aims at designing effective
intrinsic rewards for better exploration in complex sparse reward tasks. However, as we
discussed above, it is important for the agents to coordinate their exploration in an efficient
way, since the random initial policies (which are due to the entropy term in the PG loss)
could be unsuccessful to reach valuable states. In other words, the high value states
could require a sequence of joint actions that is very difficult to be found through random
independent policies.

To further empower the agents’ joint policy to reach high value states in sparse reward
settings, we exploit the expressive power of the predicted variational embeddings z*, which
capture the belief of agent ¢ about the partial observable full state, and design intrinsic
rewards which naturally account for both individual and cooperative benefit. Since 2° is
informative about what the other players observe, we propose to encourage each agent i
to reach observations that lead to novel z* and thus to explicitly explore different parts of
their own local state (observation) space, associated with different z¢, for their individual
benefit. However, by doing so, agent i also results in different targets of agent modelling
for the other agents, —i; i.e. the other agents, —i, now should learn from unseen agent
modelling targets due to novel observations received from agent i. Consequently, agent ¢
implicitly forces the other agents, —i, to better explore their agent modelling target space
helping them improve their beliefs, i.e. 2%, about the full state space. On the other hand,
by making the other agents, —i, as well, explore regions of their local state space that
could lead to more informative 2%, the proposed intrinsic motivation approach implicitly
encourages coordinated exploration for cooperative benefit.

To ensure such goals, we adopt the Count-Based hashing intrinsic reward schema which
uses the SimHash algorithm proposed in [66]. The description of the SimHash algorithm
can be found in Algorithm 8. Overall, we present the overview of the proposed framework
in Figure 4.1. The SimHash algorithm discretizes the embeddings (or the state space in
general) utilizing a hash function H : S — Z. Then an exploration bonus 7 : S — R is

calculated as follows:

fo— B (4.6)

n(H(sm))
and added to the reward function. The 8 € R>( term describes the bonus coefficient, while
the initial counts n(-) are set to zero for the whole range of H. During training, for every

visited embedding o} at timestep t, n(H(o})) is increased by one and agent i is trained
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Algorithm 8 Count-based exploration through static hashing, using SimHash

Define state preprocessor ¢ : S — RP
Initialize A € R**P with entries drawn i.i.d. from the standard Gaussian N'(0, 1)
Initialize a hash table with values n(-) =0
For each iteration j do
Collect a set of state-action samples {(sm, am)}_, with policy 7
Compute hash codes using SimHash, ¢(s,,) = sgn(Ag(sm))

Update the hash table counts Vm : 0 < m < M as n(H(sp)) < n(H(sm)) + 1

M
Update the policy n using rewards {r(sm, am) + (HB())} with any RL
" m=0

algorithm
End for

MLP

i 5 i
04 > Oy >y

where § = o, ® (wi- 0, ')

{ RL part: optimize V() instead of V()

VAE
of | ¢ 0 | wi o’
2 7, ki
ai{. |ol, z) MAA2C Algorithm
4% SimHash }—» Count Based Intrinsic Reward |
i = s =) 7

Figure 4.1: The Count-Based Agent Modelling (CAM) framework

with rewards 7 = (ri + 7%), where 7} is the original reward of agent i (which is the same
for all agents in cooperative games) and 7} is the intrinsic reward of agent i.

The performance of the algorithm is highly dependent on the choice of hash function
H, which should ideally count differently distant embeddings and merge similar ones. The
decision is made by the SimHash algorithm which measures similarity by angular distance

using the following function:
H(sm) = sgn(Ag(sm)) € {—1,1}F, (4.7)

where ¢g : S — RP constitutes a preprocessing function and A is a k x D matrix with i.i.d
entries from the standard Gaussian distribution A(0,1). We chose the SimHash algorithm
which in practice performs a simple mathematical transformation of the input instead of
a more elaborate approach, due to its simplicity and its ability to allow nearby inputs to

be transformed into nearby hash values.
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To make the intrinsic rewards be more stable and guide exploration effectively through-
out the training process of each agent, we should make z° more stable; i.e. the parameters
of the encoder-decoders to not change dramatically between successive training episodes.
To this aim, we opt for performing periodical hard updates of the encoder-decoders using
a fixed large number of training episodes as an update period, which is a hyperparameter

for a given task. We present the overview of the CAM algorithm in Algorithm 9.
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Algorithm 9 CAM algorithm

Initialize n actor networks with random parameters 07, ..., 0]

Initialize n critic network with random parameters kq, ..., k,

Initialize n VAE networks with random parameters 601, ...,60, and ¢1, ..., ¢,
Initialize n weight networks with random parameters ¢L, ..., %

Collect environment observations of, ..., of

for time step t = 1,..., EpisodeHorizon do
for agent i =1,...,n do
Sample embedding z{ from variational encoder gy,
Sample actions a! from (a} | hi, 2{; 0F)
Execute actions and collect states s¢;1, observations o}, ; and rewards ;.
for time step t = 1,..., EpisodeHorizon do
for agent : =1,...,n do
Calculate the count-based intrinsic reward 7 based on algorithm 8
and use 7; = 7 + 7% as the reward of each agent
for agent i =1,...,n do
Update parameters 67 by minimizing the loss of the equation 3.8
Update parameters k; by minimizing the loss of the equation 4.3
for agent i =1,...,n do

Update parameters ¢!, 6;, ¢; by minimizing the loss of the equation 4.5




Chapter 5

Evaluation

In this chapter we discuss the evaluation of the proposed framework (CAM) using
(a) the multi-agent particle environment (MPE) proposed by [45], (b) the Level-based
Foraging (LBF') proposed by [56]. Both environments include cooperative and competitive
tasks, while the latter one also offers tasks with sparse rewards. We aim to benchmark
CAM on tasks from the aforementioned testbeds and compare its performance to baseline

algorithms that we described in Chapter 2.

5.1 Experimental Setup

First, we start with the discussion of the experimental setup that we follow in our
experiments. We make use of two benchmarking testbeds that have been widely used
for evaluating the performance of MARL algorithms and frameworks. In all tasks of both
testbeds, instead of visual information, the agents receive high-level features as observations

about the current state of the task.

5.1.1 Multi-Agent Particle Environment (MPE)

The Multi-Agent Particle Environment (MPE) is one of the first environments designed
for benchmarking MARL algorithms. All different task environments, that are included
within MPE, entail landmarks in which the agents should reach for performing a certain
task. All MPE tasks require the agents to operate in a continuous two dimensional area.
Agents also receive rewards in every timestep that provide useful information for their

actions. Finally, the action space in all environments are discrete.

5.1.1.1 Spread: A Cooperative Navigation task

The cooperative navigation task involves an equal number (N) of moving agents and
static landmarks. The shared goal of the agents is to navigate to a landmark that is not
occupied by another agent while avoiding collisions with each other. The environment is

depicted in Figure 5.1.
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Figure 5.1: Spread: A Cooperative Navigation task

e Observation space: All agents receive their current velocity, position, and the

distance between landmarks and other agent positions as their input.

e Action space: The action space is discrete and involves 5 actions: standing still,

moving right, left, up and down.

e Reward: All agents receive the same reward, which includes the summed negative
minimum distance to any other agent. Additionally, the collisions between any two

agents are with a negative reward of -1.

In our experiments, we make use of N = {3,4, 6}, while we note that the default value,

as it is in the official github repository of MPE, for N equals 3.

5.1.1.2 Speaker Listener: A Cooperative Communication task

In this environment two agents (speaker and listener) should collaborate to identify a
goal among three possible landmarks and move towards it. The speaker agent does not
have the ability to move and only receives information about the goal, while the listening
agent should reach the specified communicated goal by listening to the speaker agent. The

environment is depicted in Figure 5.2.

e Observation Space: The speaker agent observes only the colour of the goal land-
mark which is represented as three numeric values. The listener agent receives as
observations its velocity, relative landmark positions as well as the communication

of the speaking agent.

e Action Space: Similar to other MAPE environments the listener’s action is space
is discrete and includes five actions: (standing still, moving right, left, up and down).
The speaker’s action space is also discrete however it includes three actions to com-

municate the goal to the listener.
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Figure 5.2: SpeakerListener: A Cooperative Communication task

e Reward: The reward is common for both agents and it is calculated as the nega-
tive square Euclidean distance between listener’s position and the goal landmark’s

position.

5.1.2 Level-based Foraging (LBF)

In this environment, agents navigate a grid world aiming at collecting food by coop-
erating or competing with other agents. In more detail, each agent has an assigned level,
while food is randomly positioned in the grid world, each one having a level on its own.
Agents navigate the grid world trying to collect food, which can be successfully accom-
plished only if the sum of the levels of the agents involved in loading is equal to or higher
than the level of the food. In that case, agents are rewarded with the level of the food they
collected, divided by their level. The main challenge of this environment is that rewards
can be sparse since the agents are rewarded only if they participate in the food collection.

The environment is depicted in Figure 5.3.
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Figure 5.3: Level-based Foraging

e Observation space: All agents receive triplets of the form (z,y, level) as observa-
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tions. The number of triples is equal to the sum of the number of foods and the
number of agents in the environment. The observations begin with the food triples
and are followed by the agents triples. Fach triplet contains the x and y coordinates

and level of each food item or agent.

e Action space: The action space is discrete and involves six actions: standing still,

move North, move South, move West, move East, pickup.

e Reward: In Level-Based Foraging environment agents are rewarded only when they
pick up food. This reward depends on booth the level of the collected food as well

as the level of each contributing agent and can be defined for the agent ¢ as

B FoodLevel * AgentLevel
~ Y FoodLevels 5" LoadingAgentsLevel

,r,’L

Also the rewards are normalized in order for the sum of all agent’s returns on a solved

episode to equal to one.

5.2 Results

In this section we discuss the results of the proposed framework on the MPE and
LBF MARL testbeds, in which we manage to achieve good performance over the selected
baseline methods. In the following experimental analysis, we illustrate the performance of
the evaluated MARL algorithms in the figures (plots) below. In all figures, the horizontal
axis shows the time progress (in timesteps) of the training process of the algorithms and
the vertical axis measures the total episodic reward in testing obtained during a fixed
training timestep. In particular, to measure the total episodic reward, every 50000 training
timesteps, we evaluate the MARL algorithm on 10 parallel random environment instances
(i.e. 10 environments generated from 10 random seeds) and take the mean total episodic
reward obtained by running the policy in these environments. In all experiments, we set the
time training horizon (i.e. the horizontal axis of each plot) equal to 10 million timesteps.
We also show the mean total episodic reward without any normalization, so that the results

to be easily replicated.

5.2.1 Results on MPE

Starting with the MPE testbed, we compare CAM to the following baselines: COMA,
MAA2C and ATM (all of which are based on policy gradient updates, presented in Chapter
2). We make use of four environmental benchmark settings, namely Spread (with N taking
values {3,4,6}) and SpeakerListener. Since all environments do not have sparse reward
settings, we do not use any intrinsic motivation in CAM (i.e. we utilize 5 = 0). This enables
a fair comparison with baselines which do not use either exploration-based schemas but
rely on the policy objectives and their overall neural architecture. We set the time horizon

for the MPE tasks equal to 25 timesteps, as it is defined in the official implementation.
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Figure 5.4: Results on MPE: Spread with number of agents being equal to 3 (top left), 4
(top right) and 6 (bottom)

In Figure 5.4, we illustrate the comparison of the proposed framework (CAM) with the
baselines in the Spread settings. We observe that CAM (in red) outperforms all baselines
in all Spread environments; CAM is able to consistently reach higher total episodic reward
in significantly less time steps. In particular, except for Spread-3 in which MAA2C also
is able to reach score similar to CAM, yet it needed more than 5 million training steps
to do so, in the other Spread settings, CAM significantly outperforms the baselines. It is
worth noting that ATM shows better performance than MAA2C, which is its backbone
(as it is for CAM as well) in Spread-4 and Spread-5, in which MAA2C totally fails to solve
the task. As for COMA, it also totally fails to solve the task in all Spread environments.
Similar results we obtain in SpeakerListener (see Figure 5.5) as well; CAM needs around 2
million timesteps to solve the task, whereas ATM and MAA2C need more than 4 million
timesteps. Again COMA fails to solve the MPE task, yet it shows some improvement with

respect to its starting point.

Therefore, since CAM is able to outperform all other evaluated policy gradient based

MARL methods in these environments, it may also be able to learn effective representa-
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Figure 5.5: Results on MPE: SpeakerListener

tions, due to agent modelling, that help to improve dramatically the performance of its
backbone (MAA2C). Although, CAM never fully reconstructs the observations of the other
agents (due to the partial observability of the underlying environment and the use of the
self-supervised weights), each agent models the others in a meaningful manner that boosts
the overall team performance. As we highlight in our ablation study next, this improve-
ment is also mainly attributed to the use of the self-supervised learnable weights, which
ailm to proportionally select which features of the other agents are more important for

facilitating the training process of each agent and also for boosting the team performance.

5.2.2 Results on LBF

We now proceed to the LBF testbed, where we compare CAM to the previous baselines
and also to MASER, an intrinsic motivation based framework that has achieved state-of-
the-art performance in various sparse reward settings. We benchmark these algorithms in
four LBF environments, namely: (a) 7 x 7,3p,2f, (b) 8 x 8,3p,2f, (¢) 11 x 11,4p, 3f and
(d) 12 x 12,2p,2f, all of which are sparse-reward tasks. We note that solving an LBF task
corresponds to achieving total episodic reward equal to 1. We note that we now use the full
version of CAM, that is including the use of the intrinsic rewards. We set the time horizon
for the MPE tasks equal to 50 timesteps, as it is defined in the official implementation.

In Figure 5.6, we illustrate the performance of the evaluated algorithms in the afore-
mentioned LBF tasks. We observe that CAM is able to consistently solve all tasks always
achieving optimal total episodic rewards. On the other hand, except for the 8 x 8,3p,2f
task, both ATM and MAA2C show some improvement over COMA, which fails completely
to solve the tasks. MAA2C solves the 7 x 7,3p,2f and 12 x 12,2p, 2f (similar to ATM as
well) tasks; however it needed much more timesteps than CAM to reach that performance
(CAM needed less than half the timesteps to converge to a good policy). Remarkably,
CAM also achieved to solve 8 x 8,3p,2f, which is the most challenging environment that

we evaluated, in the sense that all other algorithms completely failed to increase their total
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Figure 5.6: Results on LBF tasks

episodic reward. As for MASER, similar to COMA, it completely failed to increase the
total episodic reward. We attribute this to the fact that MASER is an off-policy algo-
rithm based on QMIX, and thus requires more training to find good policies, and was also

probably designed primarily for solving sparse reward tasks from the SMAC testbed.

5.3 Ablation Study

5.3.1 Justifying the design choices in CAM

In this section we perform an ablation study to justify the design choices in CAM’s
architecture and design. The experiments are based on the LBF environment as it requires
our full approach to be solved and specifically on its 8 x 8,3p,2f version, which is one
of the most challenging tasks. The ablated versions are (a) CAM without the use of the
weights w, and (b) CAM without neither the use of the weights w nor the intrinsic reward.
The results of the study are depicted in Figure 5.7. We observe that only the full approach
is able to solve the environment, while the ablated versions are unable to find even a

sub-optimal solution for the problem, retaining a near zero reward throughout the whole
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Figure 5.7: Ablation Study on LBF environment

5.3.2 CAM vs Full Communication

To further evaluate our approach, we perform another ablation study on the Spread (4
agents) of the MPE testbed. Having ensured that all parts of our algorithm are essential
for its functionality, we now compare its performance against a fully centralized version of
MAA2C which uses the full state information in both the actor and the critic networks.
This approach can be considered as a full communication approach because the agents
have exact knowledge of the full state during both training and execution. The results of
this experiment are illustrated in Figure 5.8. The results are crucial as they show that
allowing the agents to have full knowledge of the multi-agent state does not perform better
than our approach; an observation also observed in [25], though in different experimental
environments. This is because giving the full state to each individual agent policy is not
useful to the agent due to the abundancy of meaningless information, which is not useful for
their training, but also increases the input dimensionality of the policy networks linearly
with the number of agents. On the other hand, our approach provides embeddings of fixed
dimensionality, much lower than that of the full state, which allows the policy networks to
infer good representations that lead to good policies. Moreover, the embeddings generated
by the proposed framework are able to deliver a good performance without requiring any
sort of communication among the agents during execution, since the whole learning process

follows the CTDE schema and the communication has been replaced by agent modelling.
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Figure 5.8: Ablation Study on MPE environment

5.3.3 Embedding Visualization

At this point, our aim is to visually represent the embeddings generated by the Varia-
tional Encoder-Decoder for each individual agent. The intention behind this visualization
is to substantiate the meaningfulness and relevance of these embeddings. To achive that
we will utilize the t-SNE technique [67] which aims to visualize high-dimensional data by
giving each datapoint a location in a two or three-dimensional map. The 2D visualization
produced by t-SNE can reveal certain patterns and relationships in your high-dimensional
data that might be difficult to discern directly from the original data. While t-SNE is
primarily a tool for visualization and exploratory data analysis, it can provide insights into
the structure, clusters, and relative distances of your embeddings. Here’s what you can
gather from the 2D t-SNE visualization:

1. Clustering: Points that are close to each other in the t-SNE plot represent embeddings
that are similar in the original high-dimensional space. If embeddings belonging to
the same agent tend to cluster together, it indicates that the embeddings from each

agent have distinctive characteristics that allow them to be separated.

2. Agent Differentiation: The color-coded points help you distinguish embeddings from
different agents. If you see well-separated clusters of points with the same color, it
suggests that the embeddings from each agent are significantly different from each
other.

3. Embedding Variability: The spread or concentration of points in the t-SNE plot can
give you an idea of the variability within each agent’s embeddings. A tightly clustered
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t-SNE Visualization of Embeddings
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Figure 5.9: t-SNE visualization of the embedding representations for z (LBF: 8 x 8, 3p, 2f)

group of points might suggest that the embeddings for that agent are relatively

consistent, while a more scattered group could indicate greater variability.

. Local vs. Global Relationships: t-SNE tends to preserve local relationships better

than global ones. This means that embeddings that are close to each other in the
t-SNE plot are likely to be similar, but the overall structure of the plot might not

accurately reflect the true distances between all points in the high-dimensional space.

. Outliers: Outlying points in the t-SNE plot may represent unusual or distinct em-

beddings that stand out from the rest of the data. These outliers could potentially

hold valuable information about unique situations or scenarios.

. Patterns and Trends: By observing the overall arrangement of points and their col-

ors, you might identify trends, patterns, or correlations that were not immediately

apparent in the original data.

. Model Evaluation: The t-SNE visualization can also be used as an evaluation tool.

For example, if your VAE model is successful in producing embeddings that accu-
rately capture differences between agents, you should see clear separation between

the agent clusters.

It is important to note that while t-SNE is a powerful visualization tool, it is not a defini-

tive solution. Different t-SNE runs or parameter settings can lead to slightly different

visualizations.

The t-SNE visualization of the embedding representations for z of all agents in the

LBF 8 x 8, 3p, 2f task, at the 20th timestep of an episode, is illustrated in Figure 5.9. We

observe that each agent learns its own unique embeddings in order to model the behavior
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of the other and the embeddings seem to not overlap but to belong to identifiable clusters.
Moreover, they occupy a unique area in the 2D dimensional greed which further validates
that the learnt embedding representations are meaningful, in the sense that they allow
each agent to infer useful information about the observations of the others and thus they

could enhance their policies appropriately with such information.






Chapter 6

Conclusion and Future Work

This thesis embarked on a comprehensive exploration of various Multi-Agent Reinforce-
ment Learning (MARL) approaches and algorithms for tackling cooperative benchmarking
gaming environments. The investigation focused on examining state-of-the-art MARL al-
gorithms within the context of solving cooperative team games, with a specific emphasis
on two key aspects of the learning process: (a) the capacity of MARL algorithms to facil-
itate representation learning, enabling the creation of meaningful vector interpretations of
the underlying environment. These interpretations promote effective coordination among
agents in their actions, and (b) the agents’ aptitude for perceiving and formulating signifi-
cant agent goals, contributing to the collective endeavor of enhancing overall performance
in the given task.

Remarkably, we introduced the innovative framework of Count-based Agent Modelling
(CAM), which is applicable to any MARL algorithm operating under the Centralized-
Training-Decentralized-Execution (CTDE) paradigm. CAM amalgamates principles from
agent modelling with intrinsic exploration, pursuing two fundamental objectives. Firstly,
CAM utilizes meaningful, learnable representations to guide agent cooperation and en-
hance their policies. Secondly, these representations are harnessed for novel intrinsic ex-
ploration, especially valuable in addressing challenges posed by tasks with sparse rewards.
Extensive experimental analyses were conducted using two prevalent MARL benchmark-
ing testbeds, namely the Multi-Agent Particle Environment (MPE) and the Level-based
Foraging (LBF) multi-agent gaming environments. The outcomes demonstrate that CAM
surpasses state-of-the-art MARL algorithms in terms of total reward achieved across these
tasks, establishing its effectiveness in enhancing cooperative behavior and performance.
Last but not least, this thesis offers an additional confirmation of the actor-critic algo-
rithm’s competence within the CTDE framework when addressing MARL tasks. This
reaffirms the algorithm’s suitability and efficiency in navigating cooperative multi-agent
scenarios.

In conclusion, this thesis contributes to the advancement of the MARL field by propos-
ing the CAM framework, elucidating its benefits through rigorous experimentation, and

shedding light on the efficacy of the actor-critic algorithm in cooperative environments.
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Through this exploration, it underscores the significance of meaningful representation
learning and goal formulation in enhancing the cooperation and performance of agents
in multi-agent settings.

In future work, we aim to compare CAM with communication MARL algorithms, as
well as further MARL algorithms on the evaluated testbeds. Moreover, we plan to run
experiments on other testbeds, such as SMAC and Google Research Football. Last but
not least, we would evaluate the self-supervised learnable weights, that we introduced in
this thesis, on communication methods aiming to make the agent communication more

efficient as the number of agents increases.



Appendix A

Implementation Dependencies

The project was implemented in Python 3.9. For scientific computation the NumPy
version 1.23.4 library was utilized, while the deep neural networks were implemented in
PyTorch 1.12.1. Lastly Matplotlib was used for the generation of all plots in this thesis. A
full list of all such dependencies is shown in Table 6.1. The implementation of our proposed
methodology is publicly available on GitHub. Finally the training of the algorithms was
performed using an 11th Gen Intel(R) Core(TM) i9-11900 and an NVIDIA RTX 3080 Ti
GPU with 12 GB memory.

Name Description Version Source
Python programming language 3.9 https://www.python.org/
NumPy scientific computation library  1.23.4 https://numpy.org/
PyTorch deep learning platform 1.12.1 https://pytorch.org/
Matplotlib 2d plotting library 3.6.0 https://matplotlib.org/
OpenAl Gym RL environment toolkit 0.21.0 OpenAl Gym
EPyMARL MARL environment / EPyMARL

Table 6.1: Code Dependencies for Implementation
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Appendix B

Evaluation Parameterisation

In Table 6.2 we provide a full list of hyperparameters used for training and evaluating

our proposed algorithm as well as the respective baselines.

Name Description Value
Niimesteps total number of training timesteps 10,000,000
Ninaz—episode—length maximum length of an episode 25
Niup number of environment steps before optimisation 100
Np replay buffer capacity (for VAE training) 50,000
Nps replay buffer batch size 32
Ngp update Encoder-Decoder parameters every up wvae time steps 2000
Ny update filter parameters every up filter time steps 2000
Nutup update target filter parameters every tar up_filter time steps 50,000
Ir, learning rate for RL algorithm 0.0005
Iry, learning rate for weight calculation 0.00005
Irgp learning rate for VAE 0.0005
hidden dim hidden dimensionality of Actor and Critic NN 128
latent dim latent dimensionality of Encoder-Decoder 32
~y discount factor 0.99
AKL lambda coefficient for Lxr, 0.1
Anorm lambda coefficient for L,,orm, 0.0001
Nintr intrinsic reward coefficient 0.1
Neval freq number of time steps before evaluation 2500
Neval_eps number of episodes for each evaluation 5

Table 6.2: Implementation Details of CAM
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