EoNIKO METTYOBIO ITOATTEXNEIO

Y XOAH HAEKTPOAOION MHXANIKON KAI MHXANIKON YIIOAOTISTON
EPrALTHPIO YYSTHMATON TEXNHTHY NOHMOSYNHY KAI MAGHIHE

Unsupervised Scene Graph Retrieval using Graph
Autoencoders

DIPLOMA THESIS
by

Nikolaos Chaidos

EnBAEnwv: Teapyiog Ltdpou
Kodnyntic E.M.IL

Adhva, OxtodBperoc 2023

P2
55

Edvixd Metodfio Iloruteyvelo

Yyon| Hhextpohdywv Mryavixddv xan Mnyoavixodv Troloylotdv
Touéac ITAnpogopixic

Eeyoaothplo Yuotnudtewy Teywntrig Nonuooivng xow Mddnong

9
=
AT IR A
X, T S
NI
v HE

¢
1 $=?
r

Unsupervised Scene Graph Retrieval using Graph
Autoencoders

DIPLOMA THESIS
by

Nikolaos Chaidos

EnBAenwv: Tedpyiog Stduou
Kodnyntic E.M.IL

Evyxpldnxe and v teiuels) e€etaotny| emitpony) Ty 26" OxtwfBplou, 2023.

Tempyloc Ltduou Adavdoioc Boulbédnuog
Kodnynthc E.M.IL En. Kadnyntic E.M.IL

Muydine Balipyidvyne
Kadnynthc Ecole Polytechnique

Adhva, OxtodBperoc 2023

NIKOAAOY XATAOX
Amhopotovyoc Hhextpordyoc Mryovinde
xaw Mnyovixog Trohoyiotov E.M.IIL

Copyright (©) — All rights reserved Nikolaos Chaidos, 2023.
Me em@OIaEn TOVTOS BLXAUDOUATOC.

Arnayopebeton n aviypagt, anodrixeuon xou Slovopr] Tne tapovoag epyactag, €€ oAoxhipou Y TUAUITOS AUTAS, Yid
eunopd oxond. Emtpéneton 1 avatinwot), amodixeuct) xou Siovour| Yol oxomd U xepdooxomuxd, EXTOUEVTIXAC
1) EEELYNTXAC PUOTC, UTO TNY TEoUTOVEST Vo avapépeTal 1) TYY) TPOEAEUOTC %ol VL BLTNEELTOL TO THPOV UAVUUAL.
Epwtiuata mou agopolv 1t yerion tne epyaociog yio xepdooxomxd oxond npénel vo aneudivoviol Teog Tov
CLUYYPAPEA.

Ou amderc xa o CUUTEPAOUATO TTOU TEPLEYOVTOL GE AUTO TO EYYRUPO EXPRELOUY TOV CUYYEAUPEX Xou EV TRETEL
va epunvevdel 6Tt avuinpoownedouy Ti¢ enionueg Yéocig Tou Edvixod Metodfiou IToduteyvelou.

ITepiindm

To Nevpwvind Alxtua Tpdgpov (NATY) €youv avoderylel we éva Paoxd povtého otov Topéo e unyavinhc
pddnong, Aoyw tng Lovadixhc Toug xavotnTag va yetpllovton dedouéva Sopnuéva we yoaphuata. Xe avtideon
HE TIC ToRoBOCLAXES AVATUPUO TAOELC BEBOUEVKV, OL YPAPOL ATOTUTVOUY TERITAOXEC OYECELS ou EEUPTHOELS
HETOEY TWY OVIOTHTWY, 4Tt Tou eviomiletal oLUYVE OE €va EUPD QPACUO TOPEWY, OTWC TA XOWWVIXA dixTud, N
poplaxt| ynuela, Ta cuoThuata cuotdoewy xon dhha. To NAI unepéyouv ot Hoviehonolnon auTeY TV TOAD-
Thoxwv oAnAemdpdoewy, emitpénoviag oaugnuévn axpifeio TedBAedng xan xahlTeRn XAUTAVONGT TWV BLaPOELY
dopwv. ‘Eva and ta mo onpavuxd xou nopadootaxd tpofifuate otny dewpla twv yedgpwy, eivar 1 Oupodtnta
Fpagnudtwy, dnhadr 1 ntocotxonoinon e obyxpone dVo yedpwy. Ta v enfivon autod Tou mEoPBAfua-
T0¢, Ypnotponolovvtal tpoceyyioTxol ahydprduol edpeone Andotaone Enelepyooioc Tpdpwv, ahhd xou mo
xhaoowxée pédodot, 6mwe Iuphvee Dpdgpwyv. Emmiéov, ta NAT uropolv va yenoiponomdolv yia Ty mopoyn
E&nynoenv péow Avunapodelypdtwy, cpunvedovtag €tol Tig BLlopopéc PETOED TWV XUTNYORIdY TOU GUVOAOU
dedouévev. Me touc avoxtniévies ypdgpoug, éyouue npdofBaon oto aviixelyevo mou avtitpoonrelel To x0plo
Avtunopddetypa, To onolo eivan o mpdtog avaxtnielc Ypdpoc mou dev avixel oty (Biat xAdor e Tov Ypdpo Tou
gpwTAUaToc. Me Tov Ypdpo AVTInopddelypd, UTOPOUUE Vo EEAYOUUE TIC OUCLUOTIXEC OANXYEC TTOU TEEMEL Vol
yivouv oTo Ypdpnua, TeoxeEvou va Beolue TIC EAGYLIOTES BAPORES TWV HAACEWY TV OVTLXELUEVLV.

e authv NV datelBr, Yo avtetwnicoupe to nedBinua tng Opotdtntag Foagpnudtwy, yenowonowwvtag Nevp-
ovd Aixtua pdgowv. To cuvokd dedouévev anoteieiton and I'edpoug Lxunvic, dnhady yedgpoug ol onolot
aneixovilouv onuoctohoyxd uia avtiotolyn edva. Kwduonowdvtag tic Sopée twv ypapnudtwy oe udn-
Mg Sudotaong evietinée avomapastdoelg, o NAI mtocotxonololy TNy opoldTnto YeTol TV YEUPNUAT®Y,
EMTEETOVTAC TNV ANOTEAECUATIXY OVTIOTOLYIOT YEUPNUATWY aAAd Xl YEVIXOTERES EpYaoiec ouaTadonolnong. H
VO TNTA Toug Vo TpocapUélovTon o Vo YEVIXEVOVTAL GE dLopopeTixols Topelc yedpwy xadhotd to NAT pa
EUEALXTY XL TOAAGL UTOGYOUEVT TROGEYYLON Yol TNV AVTIIETAOTIOYN Tou Tpofiruatoc tng Ouoldtnrag Fpopn-
HATOV, TEOCPEROVTAC VEEC LOEEC o AUCELC OE TOUEIC OTOU 1 XATOVONCT TWV UTOXE(UEVWY OYéoewy péoa oe
noAUTAoxo Sixtua elvon amapaltnTy. Xuyxexpwéva, Yo yenowwonowmiel uloa und-xatnyopla un-emPBrenduevey
NAT, ou Auto-xwdixonowntée I'pdpwy, oL omoiol €xouy we GXOT6 TNV EMTUYNAS OVAXUTATHELY) TV YEAPWY EIGOH-
80U, EVOLUATOVOVTAC TOUS OE YOpous LPNAGTEpwY dlaotdoewy. To x0plo TASOVEXTNHUA TV UPYITEXTOVIXOVY
mou PBooilovton oe Auto-xwdomoinTtég elvon 1 EMTAYUVON TNG EXTABEVONG TWV HOVTEAWY GE GUYXQLOT UE TIC
mpooeyyloeg mou vhonotoly EmPienouevn Mdinon. Aoxwpdlovton apxetég moporlayés tou Bacxol Auto-
xwduonont I'edpwv, xou cuyxplvovton pe Toug tévte emixpatéotepous Huprvee Ipdgpwy. O oxondg dhwv Twv
TOEATIAVE LOVTEALY Elvol VoL TpooeyYioouy ta anoteléopata Tou divel o ahybprdpoc ebpeone Andotaone Enelep-
yootoc [pdpwv, o onolog elvar opxetd BUoXOAOE GTOV UTOAOYLIOWUO, Xt TOAD Two YpovoPopoc. H afoldynon twy
anoteAeopdTwY Yivetar 1600 oe TocoTNd eNinedo, UE YPNOT) TEUOV UETEIXMY YLol TNV aZloAOYNON TNG avaXTNoNg
Yedpwy, 660 xou Ot TOWTIXG ETUNEDO, UE TNV ATEUOVIOT TWV EXOVLY TOU AVTIGTOLYOLY GTOUC YRAPOUS Tou
ocuvéhou dedopévwy. Ev téhet, ol Auto-xwdixonowntég I'pdgwy €youv tny xavétnta vo tpoceyyloouy xalbtepa
Tov ahyoprduo ebpeong Amdotaong Encéepyaocioc Ipagruatog, oe obyxpeion e toug Huprvee T'edpwv, evd
TOEEAANACL TOEYOUY Xou EVIETIXES AVATUPUC TICELS TWV YRAUPNUATWY, Ol 0Toleg Unopolv Vo YeNoeLoouY o
QEXETE aXOUA TEOBAUTA.

Ag&eig-xhetdid — Nevpwvid Aixtuo [pdgov, EEnyhoeic ye Avtinopadeiyuata, Opotdotnta I'eagpnudtev,
Avto-xwduonointéc I'edguwy, Iedgpor Xxnvig, Iuprveg I'edpwy

vii

Abstract

Graph Neural Networks (GNNs) have emerged as a key model in the field of machine learning because of their
unique ability to handle data structured as graphs. Unlike traditional data representations, graphs capture
complex relationships and dependencies between entities, which is often found in a wide range of fields
such as social networks, molecular chemistry, recommender systems and others. GNNs excel at modeling
these complex interactions, allowing for increased prediction accuracy and better understanding of various
structures. One of the most important and traditional problems in graph theory is Graph Similarity, i.e.,
quantifying the comparison of two graphs. To solve this problem, approximate algorithms for finding Graph
Edit Distance (GED) are used, as well as more classical methods such as Graph Kernels. Furthermore, GNNs
can be used to provide Counterfactual Explanations, therefore interpreting the differences among the several
classes of the dataset. With the retrieved graphs, we have access to the Counterfactual Object, which is
the first retrieved graph that doesn’t belong to the same class as the query graph. With the Counterfactual
Object, we can extract meaningful changes needed to be made to the graph, in order to find the minimum
differences of the object classes.

In this thesis, we will tackle the Graph Similarity problem using Graph Neural Networks. The dataset
consists of Scene Graphs, i.e., graphs which semantically represent a corresponding image. By encoding
graph structures into high-dimensional embeddings, GNNs allow quantifying the similarity between graphs,
enabling efficient graph matching and clustering tasks. Their ability to adapt and generalize to different
graph domains makes GNNs a flexible and promising approach to address the problem of Graph Similarity,
offering new insights and solutions in areas where understanding the underlying relationships within complex
networks is essential. In particular, we will use a sub-class of unsupervised GNNs, called Graph Auto-
encoders, which aim to successfully reconstruct input graphs by embedding them in higher dimensional
spaces. The main advantage of architectures based on Autoencoders, is the speed-up of the Training of the
models, when compared to supervised approaches. Several variants of the basic Graph Auto-encoder are
tested, and compared with the five predominant Graph Kernels. The purpose of all the above models is to
approximate the results given by the Graph Edit Distance algorithm, which is quite difficult to compute,
and much more time consuming. The results are evaluated both at quantitative level, using three metrics
to evaluate graph retrieval, and at qualitative level, by plotting the images corresponding to the graphs in
the dataset. Ultimately, Graph Auto-encoders have the ability to better approximate the GED algorithm,
compared to Graph Kernels, while also producing graph embeddings, which can be useful in several other
problems.

Keywords — Graph Neural Networks, Counterfactual Explanations, Graph Similarity, Graph Auto-
encoders, Scene Graphs, Graph Kernels

ix

Euyaplotieg

H nepdtwon tne ouyxexpluévng dtmhopoatinc epyaoctag Sev Yo tav duvaty ywelc tny Borlelo ToAAdY avipmdnwy.
Efgon evyvouwy otov emPBAénovid pou, x. I'edpyio Xtduou, tou onolou 1 xadodiynon xou 1 evidppuvon
ouvéBatay xadoploTixd otn dloaubdppwon authc TN épeuvag. Euyopliotdd dhoug toug urodrigloue Addxtopeg
Tou epyaotiplou AILS. Iwaitepa ouwe, euyoptoted and xapdide Tic Ayyeluwr) Anuntelou xou Mapio Avunepaiov.
H agocinwon toug otn Swc@dhion tng moldtntog e gpyaciog You, pe evénveuoay vo gpydloual oxAnedtepd
xon vor Bedtidvopar cuveyoe. Eniong, e€loou onuavtue] Arav xaw 1 Puyohoyiny| utoothpiln nou éhafa amd Toug
yoveic You, Tov aBeA@S6 Wou xan Toug Gihoug wou, xad’OAn TNV BLdEXEL TWV OTIOUBKOY Uou. AVapepOUEVOS GTOUC
teheutaloug, Ga fdeha va evyopiothiow Tov Iavayuwdtn, tov Nixo, tov IIétpo xaw tov Koota, pe toug onoloug
HOLRAO TN TLC YOPES O TIC TEOXANOELS, AAAG GTO TEAOC TETUYAUE TOUG OTOYOUS HAC.

Nwbdhaog Xdudoc, OxtodBene 2023

xi

Contents

Contents

List of Figures

1 Exztetopévn Ilepiindn ota EAANviIxd

1.1 Oewpnuxd Tréfodeo
1.1.1 Tedepor
1.1.2 Anéotaon Enegepyaotac I'odpoy . . .
1.1.3 TMuprvee I'edpoovo oL
1.1.4 Tedpot Zxnvic
1.1.5 Neupwwixd Alxtvo edgov
1.1.6 E&yAoec pe Avunopodelypato

1.2 Tlpotewvoyevo Movtéha
1.2.1 Yvoewogopd
1.2.2 Movtéha Auto-xwdixomomntéyv I'edpwy

1.3 Iewpopotind Mépog
1.3.1 X0voho AeBouévev L.
1.3.2 Boaow AMjdetor.o oL L
1.3.3 Metpuée
1.3.4 Aentouépeiec Movtéhwv
1.3.5 Amotedéopotar. L

1.4 Zupmepdopotol
1.4.1 Meihovixéc Kateudivoeie

2 Introduction

3 Machine Learning

3.1 Data Modalities
3.2 Machine Learning Types
3.3 Definitions oL
3.4 Deep Learning
3.5 Autoencoders
4 Graphs

4.1 Definitions oL
4.2 Graph Similarityo

4.2.1 Graph Edit Distance

4.2.2 Graph Kernels
4.3 Scene Graphs
4.4 Related Work Lo

5 Graph Neural Networks (GNN)
5.1 Imtroduction.

xiii

»
© O R W N NN <

[I N I R e e e S e
00 OO~ OO o

29

31
32
32
33
37
48

53
54
57
o8
59
64
66

69

Contents

5.2 Graph Convolution e 71
5.2.1 Spectral-Based Graph Convolution 71

5.2.2 Spatial-based Graph Convolution L o 72

5.3 Spatial-Based GNN Modules e 74
5.4 Graph Auto-encoders. e e e e 76

6 Counterfactual Explanations 79
6.1 Introduction L e e e 80
6.2 Definitions and Framework 80
6.2.1 Algorithmic Implementation o 0o 82

6.2.2 Enriching the Explanation Dataset 0. 83

6.2.3 Utilization of GNN Models o 83

6.3 Related Work e e 84

7 Proposal 87
7.1 Contributions L 87
7.2 Proposed Models e 87

8 Experiments 93
8.1 Preliminaries L e e e 94
8.1.1 Dataset e e e e e 94

8.1.2 Ground Truth. e 98

8.1.3 Evaluation Metricso 99

8.2 Training and Inference Details. oL 103
8.2.1 Graph Kernel Parameters 103

8.2.2 GNN Details and Hyperparameters 103

8.3 Results. o e e 107
8.3.1 Quantitative Analysis L 107

8.3.2 Qualitative Analysis 110

9 Conclusion 113
9.1 Reflecting on the Findings 113
9.2 Future Research e 114

10 Bibliography 117

Xiv

List of Figures

1.1.1 TTopdderypa evée un-xateuduvéuevou (apiotepd) xou evog xateuduvopevou (8e€id) ypdpou|67]
1.1.2 O Huprvee I'pdpwv, yetatpénouy ta yeaphuata o onpeio evog yweou Hilbert udmidtepng dido-
taong. Auto poC ETLTEETEL VAL YENOWOTOOUUE To Tapadoatoxd uétpa odoldtntos, ocuvnléotepa
TO EOWTEPXO YWOUEVO.[64] L
1.1.3 "Eva napddeiypa evog Lpdgpou Lxnvrc, pall pe v apyxr Tou exdve. Autdc 0 GUYREXPWEVOS
YOAPOC OUNVAG, TEPLEYEL AVTIXEIUEVA, OYECELS HOU YOPUXTNELOTIXG, AN TEémeL var onuelwdel ot
0eV UTTdEYEL XETOLOE AVGTNEOS 0PLOUOS TTOL VoL altalTeL GAOL oL YpdpoL oxnvig va axoloudoly éva
ouyxexpwévo yotiBo. Mévo 6tL mpénet €xouv T Lop®T| YRdPoL Xot OTL THPEY 0LV GNUACLOAOYIXES
TANPOPOP{ES Y1 TOL AVTIXEIUEVOL TNS ELXGOVOC XOL TIC OYEOELS METAED Touc.[122]
1.1.4 H Boowt, apyrtextovix) tou AKT, mou anotekeiton and éva Komduxomomnth xou évay Atoxwmdixomol-
oA [120] . L L
1.1.5 Apyrtextovixd Tou yoviéhou ARVGA, énwe tapovotdotne oto [84] oo L.
1.2.1 Xprion Auto-xwdixonomnteyv I'pdpwy yio tny @don e Exnaldevone.o
1.2.2 Xprion Auto-xwdixomontdyv I'edpwy yio tnv @dorn toug Luumepoogol. L.
1.2.3 Apywer apyrtextovixd Tov VGAEo Lo
1.2.4 Apyttextovixy tou ARVGA . . . o o oo o
1.2.5 Apywtextovint| Feature VAGE
1.2.6 Apyitextovixy Combined VGAE
1.2.7 Apyitextovixry Combined ARVGA e
1.2.8 Apyitextovixt) Combined ARVGA MLP
1.3.1 Hopdderypa evog Ipdpou Nunvic, woall ye tnv avtloTolyr eixéva Tou TEQLYRAPEL.
1.3.2 TTopodelypato DpopeTXdY EpWTNUdTLY (0ploTepd), Ye o 3 xopugaia omoteréopata (dedLd),
onwe avaxthdnoy and To xohltepo povtého NAL oo Lo oo
1.3.3 Ao nopadelypato epOTNUATWY, OTOU Ta 2 TEMTH OVTIXEUEVA TOU AVAXTMVTL o6 TO XOADTERO
povtého NAT (ndve) elvar ontixd o xovid oTny emdva Tou EpwTALATOS (0pLoTepd), ot cUYXpLom
pE Tor 2 TpdTor avTxelpevo Tou avoxtdvTon and tov xahltepo Muphva Tpagpnudteny (xdtw). . . .
1.3.4 TTopdderypa 6mou To gpdtnua (opLoTepd) xou To TEMTo avoxtTnIéy avtxelyevo (8edid) olupwva
pe to xahitepo povteho NAL, éyouv Sopuxd mopduoloug Yedpoug oxnvic, dAAG dEXETA AVOUOLES
EIXOVEC. © v v v v v i e e e e e

3.2.1 Machine Learning Types and common use Cases. o v v v v v v v v
3.3.1 Confusion Matrix for a Binary Classification Task
3.4.1 Single-Layer Neural Network which can only learn Linear functions [11]
3.4.2 Deep Neural Network, with multiple hidden layers, theoretically able to learn any function

defined on the network’s inputs [76] Lo
3.4.3 Most commonly used Activation Functions
3.4.4 Original LeNet Architecture [62] e
3.4.5 Convolution Operation in a CNN [17] o o o
3.4.6 RNN Unfolding process, which shows the way that sequential data are processed [46]
3.4.7LSTM Cell Architecture [26]
3.4.8 The original Transformer Architecture, as presented in [112]
3.5.1 Architecture of the Autoencoder Network [24] L. ...

XV

10
10
11
12
12
13
13
14
14

24

25

List of Figures

3.5.2 An example where the manifold hypothesis holds true. The data, although originally in a
3-dimensional space, can be successfully embedded in a 2-dimensional latent space, without

any loss of information. L L 50
4.1.1 Example of a Directed and an Undirected Graph [67] 54
4.1.2 Example of Construction of Adjacency Matrix from an Undirected Graph [124] 55
4.1.3 Example of a Path in a Weighted, Directed Graph [25] 56
4.1.4 Example of a Heterogeneous Graph, along with meta-paths defined on it [85] 57
4.2.1 An example where, using a kernel function, we are able to transform the data to a higher-

dimensional space, and convert the classification problem into a Linearly-Separable one[74] . 61

4.2.2 Graph Kernels, transform the graphs to data points, in a higher-dimensional Hilbert space.
This allows us to use the traditional similarity measures, most commonly the dot-product.[64] 62
4.3.1 Examples of the sparsity and variability of visual relationships. Being able to extract useful
semantic information from these relationships, can be immensely useful for all kinds of visual
tasks, that require a deeper understanding of the objects and their actions.[13] 64
4.3.2 An example of a Scene Graph, alongside its original image. This specific scene graph, contains
objects, relationships and attributes, but it should be noted that there is no strict definition
of a schema that all the Scene Graphs are required to follow. Only that they are in the form
of graph, and that they provide semantic information of the objects in the image, and the
relationships between them.[122] L 65

5.1.1 The structured nature of the data points on the left, allows us to treat it as data in a Euclidean
Space. On the contrary, in the case of the random graph on the right, we can’t define a distance
between the nodes, that allows us to obey the Euclidean Distance rules.[2] 70

5.2.1 Visualization of Spectral Graph Convolution[65] 72

5.3.1 On the left, we can see that the attention maps of GAT compute a global ranking of all
attention weights. On the right, GATv2 computes the correct attention weights, visualized
by the characteristic diagonal in the attention matrix (because every node should attend the

most with itself) [8] 75
5.4.1 The base architecture of a Graph Autoencoder, consisting of the Encoder and Decoder [120] . 78
5.4.2 Architecture of the ARVGA model, as presented in [84] 78
6.2.1 Framework Architecture for providing Counterfactual Explanations [29] 82
7.2.1 Graph Autoencoder utilization, for the Training phase. 88
7.2.2 Graph Autoencoder utilization, for the Inference phase. 88
7.2.3 Original architecture, for Variational Graph Autoencoder 89
7.2.4 Adversarially Reguralized Graph Autoencoder architecture 90
7.2.5 Feature Graph Autoencoder architecture 90
7.2.6 Combined VGAE architecture 91
7.2.7 Combined ARVGA architecture 91
7.2.8 Combined ARVGA MLP architecture, 92
8.1.1 An example of a Scene Graph, alongside its corresponding Image 94
8.1.2 Graph Statistics for the Random Subset o oL, 96
8.1.3 A Scene Graph alongside its corresponding Image, where the graph contains numerous isolated

NOAES. . . . o e e e 96
8.1.4 Graph Statistics for the Dense Subset o oo 97
8.1.5 Example of WordNet Noun Hypernym/Hyponym Hierarchy [59] 99
8.1.6 Final Relevance Scores for NDCG, computed by the Ground-Truth rankings of GED 101
8.3.1 Example where the query (left) and the first retrieved object (right) according to the best

GNN model, have structurally similar Scene Graphs, but quite dissimilar Images 110
8.3.2 Examples of different Queries (left), with the top-3 results (right), as retrieved by the best

GNN model o e 111

List of Figures

8.3.3 Two example queries, where the top-2 retrieved objects by the best GNN model (top) are
visually closer to the query image (left), compared to the top-2 retrieved objects by the best
Graph Kernel (bottom) e 112

xXvii

List of Figures

xviii

Chapter 1

Extetoapevn Ilepiindn oto EAAN VX

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.1 Oewentixd YTroBadeo

1.1.1 Tpdgpor

‘Evoc ypdpoc 1 Ypdenua, opiletar tumixd we pior pordnuartixd dour nov cupPoliletar ye G = (V, E), énov 10 V
AVTITPOOWTEVEL Evar GOVOAO TOU OTOlOU Tl OTOLYElN AVAPEPOVTAL WS XOPVYPES 1 xOufol, xou To F uTodnAGVeEL
éva oUvolo and Lelyn xopupdv, yoeaxtNElovTde To We AXUES, 1) UERIXEC POPES WG CUVBEGHOUS 1) YOEUUUES.

H 18&n evéc ypdpou tpoodiopiletar Tocotind and tov apldud Tewv xopu@pnv tou, tou cupfohileton we |V, eved
T0 péyedoc evde ypdpou xadopiletar and Tov aptdud Twv axuoy tou, tov cupgPoriletar we [E|. O Badwdg
pog xopuerc avtiotolyel oTov apllud TV oxU®Y Tou TpooTintouv oe avthv. Axuéc, 6mou xar to dVo dxpa
TOUC TPOOTUNTOLY GTOV (Blo xoufBo, dnuloupyoly évav Bedyo. Xe éva ypdenua tdEng n, o uéyiotog Podude
onolacdinoTe xopuptc dev unepPBaivel to 1 — 1 (§ 1o n+ 1 edv emtpénovtar oL Bpdyot) %ot To aveTaTo dpLo yia
n(n—1) /s n(n+1)
2

Tov aptiud Twv axudy elvan S5 (1 =5 — av emtpénovia ol Bpdyol).

Undirected graph Directed graph

Figure 1.1.1: TTopdderypa evic un-xateuduvépevou (aptotepd) xou evéc xateuduvopevou (de€id) ypdpou[67]

Ou oyéoeic petoll twv xOUPwy o €va Ypdgnua, UTopoly vo Teptypapoly Thipns we tov Iivaka I'atviaong.
Yy neplntwon twv anhdy Yedgoy, o mivaxas yertviaong A peyédoug n x n, éxel tur 1 oto otowyelo A;; av
UTdpyEL oY) ToU VoL GUVDEEL TO XOUPo 1 PE ToVv J, ahhidC €xel T 0. Xtoug pn-xateuduvopevoug Yedgoug,
autdg o mivoxag elvol CUPUETEIXOC, EVED TNV YEVIXY TERITTWON TV XATEVLIVUVOUEVLYV YRAPWY, 0 Tivoxac
A elvan un-ouupetpnog. Enlong évag ypdgog unopel va elvan BeBapnuévog, 6nov 1o otoiyelo A;; unopel va
TdpEL OOl TOTE optduUNTXY T,

Ernlone, éva eldoc ypdpwy mou elvar Wbialtepa onuoavtind eivor oo Etepoyeveic Tedgor. H xiplo dagpopd
TOUG ME TOUC amAolE YPdpoue, elvat Tt eTTEENOLY TNV LTIEETN BlaPdEKY TUTKWY/HAACEWY, TOCO YIo TIC XOPUPES
600 xou Yo Tic axpéc. Tétolol Ypdpot, Udc EMTEETOUY Vol VATUEAUCTHCOUUE Xal VO ENEEEQYAGTOVUE APXETS TLO
neplmhoxo xol pEdAoTIXG BeBOUEVA.

1.1.2 Arnéotaocr Ernelepyaciog I'pdpwy

H Ardotaon Enetepyaoiag Ipdpwy (AEL)[94] etvon pio petpinn opoldtntog petald 80o ypdpwy. H OpordtnTa
Fedpwyv sivoar éva nopadooctoxd mpélAnua oc autdy Tov YOEo, To omolo €xEL Vo XAVEL PE TNV OmAVINO
oy gpwtnon "Ildoo Sopuxd mapduoor eivar Vo ypdpor?". O alybdprduoc AEL diver tnv andvinorn oe
autd To gpdTNUY, unohoyilovtae to mAloc twv emelepyaotdy, Tou Vo UETULOpPOGOLY éva Ypdpo G, oe
XATOLOV LGOUOPPIXO Yo Tou Gj. XuyXexpWéva, Lol va €XeL VONua To anoTtéheoyud, UTohoY(lel Tig eAdylo-
tec eneepyaoiec mou mpedmt Vo Yivouv otov G, xol TO GUVONXG XOGTOC oUTAOV TV AANXYOY Vol TO TENXO
anotéreopa. O enelepyacies autée cuUEPAAUBAVOUY ELGUY YT/ Bty papr/ avTIATEOTIOY XOPUPHDY XA ELCAY-
Y/ Slarypapr/ v TIXATEOTAOT) AXUDY.

Avotuyde, éxel anodeydel 1L o axpBric urohoyiopde tne AETL elvan NP-Hard[125]. T autév tov Aéyo
€youv dnuovpyniel apxetéc mapalhayéc Tou apyxod alyoplduou, ol onoleg mpoooeyyilouv Ty BéATIoTN Alon
oe nouwvuuxd yedvo. H ouyxexpipévn napadhiay) mov Yo yenowonoindel ota nelpdpoto elvon o alydprduog
"Bipartite-Matching "[27], o onoloc Souvhelel tapduola pe Tov axplBh ahydprdpo AET, ahhd hoBdver unddm pévo

2

1.1. Bewpnuxd TndBadpo

Toug xouPoucg, urohoyilovtac v Béhtiotn AED petadd touc, xat Gotepa TEOoUETEL O AUTO TO AMOTENECU
xan g ene€epyaoieg mou mpEneL Vo Yivouv oTig opéc.

1.1.3 TITuvprveg I'pdpwv

H évvowr twv IMuphvev cva {otxhc onuaciac otn pnyavixr uddnor, wiwe vy epyaciec avayvodpiong
TeoTOTWY Xou avdiuong dedopévev. Ou TIuphveg elvon amapaltnTol Ylot TO UETACYNUATIONO TWV BEBOPEVGV,
BLEUXONOVOVTAC TNV AMOTEAEGUATIXOTNTA TwV oAYopiduwy udinone. O muprveg Aettovpyolv Ye THV EUUEDT) AVTL-
o tolylon BeBoUEVmv oE YWEoUC LYNAGTERKY BLAC TACEWY, amoxohinTovTag ToAUTAoXo wotiBa. Autodc o pyetaoyn-
HOTIOUOC ETLTEETEL GTOUG YEUUUXOUS oY opidous vor avTETwTI{OUV OmOTEAEGUOTIXG (U1 YEoUUIXS TpoBAAUaTAL.
To téyvaocua "Kernel Trick”, oxpoywviafoc Mo twv SVMs xou tov uedddwy mtuphvev, uroloyilel ecwtepind
Yvouevo onuelwy o€ YDhpoug LPNAGTEPWY BLICTACEWY Ywelg TOV ENTO UETACY NUATIORO TwV Bedouévwy. Anlady
UTOPOVUE VO EXUETUAAEUTOUUE TIC WBIOTNTES TOU YWPOoU LUPNAAC SlaoTatixdtnTag, ywel va ypeeiootel moté va
petafolue oe auTov. XNuyxexpidéva, pio ouvdptnon IupYva oplleton we:

k(x, x') =< ¢(x), ¢(x') >

6mou ¢ : X — V elvou 1 ouvdptnon nou anewovilel To apyxd X xou X' oTov Yo vPnhdtepwy Slctdoewy. Me
to Kernel Trick, ot Huprvec punopolv va yepllovton un yeouixdtnTee, evioydovTag TNy anoTEAECUATIXO TN T
TOV YRUUUXOY TOELVOUNT®Y, XUl TEOCHPEPOLY UTOAOYLOTIXY| ATOSOTIXOTNTO, ONOUTMVTNC HOVO UTOAOYLOUOUC
ouvapTAcEwY Tuphva avd LedyT.

______ | SO .
G, mﬁ__‘_ T T==-_-__ Hilbert Space
\‘-‘\.

6 (G,)
- ~4-_ 6 (G, 4o

G, ; T
- {’4&)—0 ¢(G,)® ¢ (G],v.
G S~ = >

-
“"-..._‘_ -
—— e —_— ——

Figure 1.1.2: Ou ITuprvec I'pdpwy, petatpénouvy ta ypagphuota oe onuelo evoc yweou Hilbert udmidtepng
dudotaone. Autd Hog ETLTEENEL VAL YENOWOTOLOUUE ToL TAEAdoctoxd HETEo OpoLOTNToC, cuviéaTepa TO
E0WTEPXO YIVOUEVO.[64]

Tuyxexpwéva, ol ITvphvee Tedpwy, elva pio vro-xatnyopio HupAvey, étou ta x xou x’ elvar ypdgol G;
xou Gj. O oxondg twv HMuphvwy Tedgov elvan va anetxovicouv toug G; xan G 0¢ dlaviopATo OE €V YWe0
Hilbert (otov onolo Gotepa, UTOPOVUE Vo EQUPUOCOUUE ECHTERIXS YIVOUEVO BLOVUGUETWY, X0l VO THPOUUE TO
TEAXG VOUEPO TIOL dMAGOVEL TNV opodTNTa Twv 300 yedewvy). O IMuphvee Tpdypwy anoteholv Topadoctoxd
v "yeryoen" Aon 6tav Bélouue va unoloyicouvye Opotdtnta I'edgpwy, ylautd éyouv yehetniel apxetd, xou
€youv mpotadel apxetol dlagopetixol ITuprvec. Oa mapoucidoouue toug mévte Tuprvee Ipdgwy, ol omolol Yo
yenowdonoindody vl oto melpapatind Yépog, wall pe TNV xevteixy| Wéa Tou xoevic:

3

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

e O Shortest Path Kernel[5], eivou évoc ITupfivac o onolog utohoyilet 6ha to edyLoto povomdria, petadd
oAV T0V x0UBwYv, xon otoug 800 yYedpoug. Totepa, Ye BAom To XOGTY) AUTMY TWY LOVOTATL)V, ONULOVpYEL
000 %AVOLUELOUS YEAPOUS, Xl SUYXEIVEL TIC OXUES TOUC YLA VO UTOAOYIOEL TO TEAXO AMOTEAECHUA

e O Weisfeiler-Lehman Kernel [101] Sovketel enavahnntixd oe tolhamhéc enavoliels, énou oe xdde
eMAVAANT CUYXEVTEMVEL TIC ETIXETEC XddE XOUBOUL Xl TV YELTOVWY ToL, Xau TI¢ ouutiélel oe uia xouvolptla
enwéta. YTotepa, ypnowonolel xdnolov deutepetov Iuprva, Tov onolo tov eapudlel GTOUS YRAPOUS UE
TLC XoUVOUPLEC ETIXETEC.

¢ O NeighborHood Hash Kernel[44] Soulelel pe apxetd mopbuoto tpéno pe tov Weisfeiler-Lehman
Kernel, ahhd avti yia etinétec ypnowdonolel €vay duadixd aptdud yia xdde xo6ufo, o yior Ty cluntuén
TOV ETXETOV yenolponoiel g duadixég cuvapthoelc XOR xou ROT.

¢ O Random Walk Kernel[31]| ypnownoiel tuyaioug nepinatous mdve otoug yedgous G xou G yiol va
oploel pla yewpetpwr oelpd, N omola elvan (o pe TNV TENXT] OPOLOTNT TV YEAPWY.

!

O Graphlet Sampling Kernel[88] npoonadel vo evtonicel Ty ouyvétnta edpeone "uikpdy ypdpwy”
(graphlets) otouc G; o G, xou petd vnoroyiler Ty opotdtntd Touc avdhoyo pe to graphlets mou
Begdnxav.

H »ipla Srapoponoinom petalld twv nopoandvey Huprvev Fedgov eivar 6t ov Graphlet-Sampling, Shortest-Path
xou Random-Walk Kernels, BaciCovtor oe mo xAoooxéc YETpXES xou douixd otolyela Twv Ypdpwy, evd ot
NeighborHood-Hash xon Weisfeiler-Lehman Kernels Bocilovtan oty teyvixi MetdBaone Mnvupdtwy
(Message Passing), 6nov 1 mAnpogopia tev xéuPuv "péel” enavahnmtind npoc Toug yeltovég Touc.

1.1.4 Tpdyol Xxnvig

O T'pdgor Lxnvng clvon SOUNUEVEC AVATUPAOTACELS OTTIXWY OXNVOV, TOU TROCPEEOLY TANEOQYOPlEC YLo
TIC OYEOELC XA TA YORUXTNELOTIXG TV avixewwévmy. Awadpopatilouy xevipixd pdho oe ddpopec epyaciec
UTOAOYLOTIXAC ORAONG, OTIWS 1) Vi VEUDT] OTITIXWY GYECEWY, 1) ATOB0CT) TITAWY ELXOVAC XAl 1) ATAVTNOT] OTTLXWY
epwTRoEwY. Xe avtieon pe Ti¢ napadoctaxéc Uedddoug aviyveuong avTIXEWEVKY, OL YRAPOL GXNVNG TOREYOUY UL
TLO BLOPOPOTONUEVY] XUTAVONOT| TWVY OTTIXWY GXNVAY, AELOTOLOVTAS TO ONUACLOh0YXO Tepleyduevo. Ol ypdpol
oUNVAE IOV TEOTEIMXAY YioL TR T Popd To 2015[48], avupetwnilouy Ty TEdxANoT TNe ANOTITWONE TOAITAOXMV
OYECEWY AVTIXEWEVWY OE PLol XNV, ATd TNV (Bpuot] Toug, EXO0UY CUYXEVTPMOEL ONUAVTIXY EPELYNTIXTY TTPOCOY),
eZehooodyevol ae évo {otnhc onuaciag epyolelo yio T BEATIWON TWV ERYUCIOY UTOAOYIOTIXAS 6pAoTC.

H nopoioa diateif3n yenowonolel cuyxexpuyléva to obvolo dedouévev Visual Genome, éva gnuiopévo ohvoro
dedopévmv ypdpwy oxnvhc mou napovotdotixe to 2016[58]. To Visual Genome dtoxpiveton divovtag mpo-
TEPOUOTNTOL OTIC OYECELS XOL TOL YAUEAXTNELOTIXE Yoll UE TIC ONUELDOELS OVTIXEWWEVWY, EVIOYVOVTOG TN GUVOMXT
XOTAVONOY TWV OTTIXWY oxNveyV. Me mepioodtepeg and 100.000 ewcdveg xou AETTOUERELS ETUOMUEIWDOELS, TO
oUVOLO Bedopévwy amotehel TOAITIHO ToPO Yl TNV exmaideucT xou Ty adlohdynon woviéhwy. H mpocéyyion
crowdsourcing, e€ac@allel éva eupl QAcUo epuNVELDdY, o Wwia Sladixacia xavovixotolnong evioy Vel TEpotTéR®
TNV TOLOTNTA TWV BEBOUEVKV. TNy mapoloa BlatplBt), ol Ypdpol axnvéy and to Visual Genome yenoiponotodv-
ToL Yl THY TocoTixy o€loAOYNoT HOVTEAWY, EVE OL AVTIOTOLYES EWOVES YENOWOTOUVTOL Yo TNV TOLOTLXN
a€lohoYNoT. LuvoAxd, 1 povadixy npocéyylon tou Visual Genome oty emonuelwon cUVEEL TN YAOGOR XL
Y 6paoT), Xarho TOVTAG TO Evay amapolTNTo TOEO Yia BldPopeS epyacice UTohoylo Tixrg dpaong xou enelepyaoiag
QUOXAC YAWMOGCUC.

1.1.5 Nevpwvixd Aixtua I'edpwv

Ta dedouéva yedpwy yivovion Ao xan o BLadedoueva o BLAPOPoUS TOUElC, OTWE T XOLVKWIXE BlxTua, 1
BlomAnpopopint| xaL ToL GUCTAPATH CUGTACEWY. {26T600, oL tapadoctoxol alydprduol unyavixic uddnong éyouv
oyediaotel yia vo yetpllovton dedopéva oTov cuxheldelo ywpo, o omolog dev elvar xatdhinhog yio dedouéva
Yedpwy, To omola Eyouv TOMNOTAOXES OYECELS Xou AAANAEEHPTAOELS UETAZ) TWV OVTIXEWEVKY, XATL TOU BEV
unopel va amotunwiel and Toug topadootaxolc oahyopldpouc. ¢ ex To0TOU, UTEEYEL avay XY YL EEELBIXEVUEVES

4

1.1. Oewpnuxd YTroBadpo

i . standing
- "’/9"1\ %Ionde

holding —

in front of long

___\ -pracket heavy
yellow
wide

- cone —= orange

(b) . fence barrettes

R i
/ mund‘flk;—:n hﬁ‘bﬂs:dﬂ bclow m
llllﬂ./ '\‘ﬁ 4

beside

! rl.'.bt
' 4 ‘m
beh.md white bes:dc bent 0|:| has ?ong heavy yellow wide, has above above
A e 7 N ¥
in fmntof benl black lined closed
| Legend: objects attributes relationships

(a)

Figure 1.1.3: "Eva nopdderyua evog Iedpou Munvig, pall ye v oy Tou exéva. Autds o cUYXEXRLUEVOS
YPAPOC OUNVAC, TEPLEYEL AVTIXEIUEVY, OYETELS X0 YOROXTNELOTIXG, 0AAS Tpénel vo onpelndel 6Tl dev umdpyel
%AMOLOG UG TNEOS OPLOUOS TOU VoL Aol Tel OAOL OL YRAPOL oxNVAg VoL axohouloly €va cuyxeXpLévo poTiBo.
Moévo 67T mpénel €youv TN Lop®T| YEAPOU ot OTL TUREYOUV CNUACLONOYIXEC TANPOPORIES Yiol Tol avTIXe(peva TN
EXOVOC XU TIC OYEOELC UETALD Touc.[122]

OPYLTEXTOVIXES IOV UTopoLY va eneepydlovTal anoteheouatind dedopéva Ypdpwy. Autéc elvon ol apyixéc Wéeg
nou 0dhynoay oty dnuovpyia 1wv Nevpwvixdyv AwxtOov I'edpwy (NAT).

H x0pta hertoupyio mou yenowonowlv ta NAL yia va eneepyactolyv xou vor avolboouv dedouéva oe Loph
yedpov, etvan) LuvérEn Tedipwv (Graph Convolution). Onwe utodnhdver xou to Gvopd g, etvon 1 avtio-
Touyn hertovpyia TNE ouVEMENG onudtwy (dnwe auth Tou egappdleton ot uvelxtxd Nevpovixd Alxtua yia
EOVES), OANGL UE TIC amapod THTES BLopOpOTOLOELS, (WOTE VoL UTopEl Vo EQUpUOCTEL GE YRAPOUC.

‘Onwe xan Ye v xhaooix) cLUVENEN, 1 LuvéMEn Tedpov unopel va pehetniel 160 oto Ywewd nedlo, 660 xaL
070 Qaopatixd tedlo. Lto gacpatixd medio, n avdhuon evoc NAT cupnepthopfdvel Tov oploud tne cuvdpetnong
nou e@appdlel, apol Yivel o xatdhiniog petaoynuatiopds Fourier (yio ty ouyvotixd uehétn). LTuyxexpyéva,
oty nepintwon twv cuvapthoeny ata NAL, autéc éyouv v e&ig popyn:

X kG 8 = UggUTx

omou gy eivan o "gidtpo” mou eapudler To NAT, x elvon ta apynd dedouéva oe poper yedpou, xou U eivou
o mivaxog Wlodlavuopdtwy Tou Aamhaciovol Tivaxa Tou apyixol Yedpou. Apa 6TNV TERTTWOT TG PUoUATIXAC

5

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

avéiuong, 1 uévr dagopd twv NAT, elvan o tpémoc pe tov omolo poviehonololv xot podofvouv to @iAteo gg.

Ity avdhuom oto ywewd tedio, Ta NAT expetarietovtan tny teyvin) MetdBaocng Mrnvoudtwy, oniadi
BLadidouv v TAnpogopia Tou €yel o xdde xépfog, oe Ghoug Toug Yeltovég tou. H podnuatien €xpeoon uiog
TEéTOlIC oLVdPTNONG ElvaL:

b = 0 (B0, 3 M (D B)
u€N (v)

6mou b = x,, Ui () xon My (+) elvon ouvopthioelc we padfoltes mopauéteous. Aol UTOAOYLOTOUY Ol XPUPES
OVUTOPAUCTATELS TWV UEHOVOUEVLY xOUPwy, Tou cupBoiilovTal we h{, unopoLy va tpowdndolv eite oe Eva
eninedo £Z680u yia epyaoiec nou mepthopfdvouy nedBAiedn oe eninedo x6uPou, elte oe et CLUVAETNOT
avayvwoneg Yl gpyooieg mou nepthaufdvouy npdPredn oe enlnedo ypapruatoc. H ouvdptnom avéyvworng
elvar uneBuvn Yo T dnpLoupyla pLog eVIETIXNC ovamoEdoTAoTG OAOXANEOU TOU YEAPOU AELOTOLOVTOS TLS XPUPES
QVOTOPAOTACELS TwV XOUPwy mou tov anoteholv. Ta nepiocdtepa ywewd NAT, unopolv vo ypapolv o o
TOEUAAAY Y] TNG TAUEATAVE UodNUaTIXhS EXPEAOTS.

Me v extevr) épeuva mou €xel yivel mdve ota NAI tor tedeutaio ypdvia, 1 EEELYNTIXNT XOWVOTNTA EYEL ETUXEV-

Tewdel yia opxetols Aoyoug ota ywewd NAT, xaddc tpocpépouy dpxetd TAEOVEXTAUATO, CUYXELTIXE UE T
gaopatxd NAT'. Ot téooepig povadec NAT nou Ga ypnowonomdoiy oe authv tnv dlateldr) etvar o e€xc:

e To Graph Convolution Network (GCN) npotdidnxe to 2016[55], xou elvon éval amd ta To onpavTd
NAT, xadde frav 0 Tp®To oL evomoinoe ta ywewxd xou ta goopatxd NAIL oe éva yovtého. Xuy-

xEXPWEVA, 1 Ywploxh e&lowon mou To mepypdyel (dnhad o cuVdpETNOT Yol TO hg,k)) etvau:
/ T i
x; =0 Z ——X;
jeN@U{i} 4/ d;d;

omou © elvon mivonag exmaudelolpwy tapauétewy. H avtiotoiyn gacuatiny e&lowon oe wopen mivdxwmvy
elvou:

Z =D

M\»—A

“2AD"2X0O

6mov X € RVXC 9 € RO 7 € RVXF s C elvan 1 Bidot00m 10V BLavuopdtey Te:v x0uPwv ele630U
o F' ebvou 1 Sidotoon tov Siavuoudtey tov x6ufov e£6dou. B3O, o nivaxec A xon D eiva apbuotol e
Toug apyxole ivaxes A (mivaac yertviaong) xow D (mivoxag Baduddv), apold Toug XAVOUUE ETOVAXAVOY-
wornoinon. To zpik emavaxavovikomoinong, eivar pio avTixatdoToon mou mEOTELVAY OL dnuiovpyYol Tou
GCN, ye oxond va ocrcocpsuxﬂouv aotédeteg one nocpocycoYoug TOU TEMXOU UOVTEAOU. TUYXEXQUIEVD,
yenolonomooy to D= 3AD™3 avii v Iy + D™ 2 AD~ z, 6Tou A=A+1Iyxu D= Z Alj

Acedouévou 6TL 1 mapomdve eglowon elvon yeauwixy), Teoxeuévou vo emhuioly xou un Yeouuxd TeoBAY-
porter, epopudéletan o cuvdptnon evepyonoinone (t.y. ReLU) ota dvdopata e£680u tou GCN.

e To NAT Graph Attention (GAT), npotddnxe to 2017 [113], xou 1 xOpror 18éat ATy 1) xpH\oT TOU UnNYavio-
pol Tpoooyfc, xon cuYXEXpYEVa Tou multi-head attention[112]. O pnyaviopds tpocoyfc yenolonoteitol
yioe var dnutovpyTioet to "Bdpn" mou anodider o xdie xéuPoc otoug yeltovég tou. H tedwr| e€ioworn tou
GAT eivou:

Xg = ai)i(‘)Xi + Z ai)j@X]‘
JEN(D)

omoL T a; 5 €lvon ta Bdpn mpooox s, xou vroroyilovtal we e€Rg:

6

1.1. Bewpnuxd TndBadpo

exp (LeakyReLU (a' [Ox; || ©x;]))
Ykeniyutiy ©xp (LeakyReLU (a'[©x; || ©xy]))

Qij =

6mou a xou O elvon exmoudelototl mapdpetpot. H apvnun xhion tou LeakyReLU opieton oe a = 0.2 xou
oty nepintwon tne Multi-Headed Attention, tnv egapuélouv e tov (Blo tpémo énwe oo [112].

o To GATv2[8] anotehel pio peteléhin touv GAT, xadde dopddvel éva and o npofhuata Tou elye oTov
pnyavioud mpocoyfc. Luyxexpiuéva, ol cuyypagpelc anédeillay 6t To GAT urnoloyilel otatiki} mpoooxn,
xoL oYL TNV VOEVOUEVY duvapikn) mpooox). Autd to éptiaay, oAdlovtos ToV TpOTO UTOAOYLOUOD TV
Baptv a;

exp (a' LeakyReLU (O[x; || x;]))
Zke/\/(i)u{i} exp (aT LeakyReLU (O[x; || xz]))

5 =

e Téloc o Graph Isomorphism Network (GIN)[121], eiodyet wa tpononoinon 6nov npocupudlel To
Bdpoc tou xevTeol x6UPou YENOULOTOLWVTAC Wiol EXTOUSEVOLUY TOPGUETEO €:

x,=he | (1+e€) - x;+ Z X,
JEN()

6mou he elvau pio omoadrnote Lhomoinom evie veupwvixol dxtbou. Trootneilouv eniong 6tt, Yétovtog
v adpototixn cuvdptnon Sum va elvar 1 cuvdptnon avdyvwong tou NAT, to GIN yevixebel to teoT
Weisfeiler-Lehman xon cuvendg emtuyydvel T uéylotrn dloxpltix] beovdtnto uetagd tewv NAT.

Avto-xwdixonowntég I'pdpwy

O Auto-xwdixonowmtéc I'edpwv (AKT) eivon wo vro-xotnyopic NAT' mou yenoulonoolvton yio -
emPBhendyevn udinon oe dedouéva yedpwy. O xlploc otéyoc evoc AKT elvan 1 expdinon yioc cupmieouévng
QVATOPEAC TAONS TOV YEdpou €le6dou, 1 omola unopel va yenowwomomdel yia didpopa mpofifuota. To AKI
anoteAolVToL amd dU0 xUplol CUCTUTIXA: €VaY XWOXOTONTH Xt évay amoxwdonont. O xwdixononthg av-
TioToly(lel TOV YpAPO EIGOBOL GE ULl GUUTLEGHEVY] AVATOPACTACT, EVEM O amoxwdxonointig aviiotory(lel
CUUTLECUEVY aVOTaEo TaoT Tiow GTOV apYLXs YEdPo.

Suyxexpiuéva, Yo nopouctdoouye Teelg Baoxéc apyttextovixég AKI, ol onolec anoteholy Yeyehuddn otoiyela
TV TLO TEPITAOXWY HOVTEAWY Tou Vo tpotelvouue o UeTd. AuTéc oL Tpelg dpylTEXTOVIXES elvan oL e€Nc:

e Ytov Variational Graph Autoencoder (VGAE)[54], o Kwdikoromtiis uropel va evon éva onotodfitote
NAT nou nopdyer eviéoeic yioa Toug xépPouc, xar o mpotewduevos Anokwdikoromntris eivoar o Inner-
Product Decoder (onoxwdixomontic ecwtepixod yivopévou). O tpbénoc pe tov omolo Aettoupyel o
Inner-Product Decoder etvon 611, e dedopévec Tic evidéoe x0uPwv Z € RV*E oto havidvovra ydeo
(6mou F eivan 1 didotaomn twv Aaviovousdv evieTindy avomopac tdoewy), Yo tpofiédet tov mivaxa yeit-
viaong A unoloyilovtag:

A =0 (22")

‘Etol unopotye va Sobue, éti "éuueca, 1o mpdBAnua 610 onolo EXTUUOEVETAUL O ATOXWOXOTONTAS Elvol
n HpbBredn Xuvdéouwy, ot axpés Tou Ypd@ou elob6dou. XTr cLVEYELY, dedouévou Tou opyLxol mivoxa
verrvioone A, 1 andiela Tou anhob GAE elvar Binary Cross-Entropy Loss yio to 9eTind xon tor apvntixd
delypato(axpéc). ‘Otav o ypdpoc elvar ToA aponde, elvar obvndec vor UTOBELYUATOANTTOOVTOL OL EVNTIXES
oxUéC, MOTE Vo uTdpyeEL (o TocdTnTa Setypdtwy xou Yo Tic 800 xhdoetc. o tov VGAE, tpootideton xou

7

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

7 anmieta tou unooyileton and v Andéklion Kullback-Leibler, petoll twv havidovouodv eviécewy, xou
wio mpdtepng xotavourc (ouvidne xavovixfc yxaouootavic N(0,1)).

Gconv Geconv

a| N&] wl [\ z z zT A
g 7 y :' ': :c: . -.l e) -
/4 [L _* e 00|* (P(‘-- . % -I . * v i
000 00 4 8a4| .8 na o 4 y
[] [] y A .' A, | [D . .}, "
X 9% . ‘,’,- ¥ 1
' Decoder
N N Y, . .
Encoder

Figure 1.1.4: H Baow opyitextovixr) tou AKT', mou anotehelton and éva Kwdixomounty xat évay
Anoxwdixonowmnty [120]

e O Adverarially Reguralized Variational Graph Autoencoder (ARVGA)[84], enextelvel nepattépw
tov apy6 VGAE, epopudlovtag 1déec Aviaywvio Tixng Mddnong. Zuyxexpwéva, yenoiuonoLeitol
évag Aleuxpvio e (Tou vhomotelton we éva amhd veupwvixd dixtuo), 1 omola haufdvel we eloodo to dety-
pato eV¥€cewy amd Tov Aavidvey Ywpeo xat delypato and Ty TedTeR XaTavouy. LTty o¢ elvol 1 EMTUY NG
Tagvounoct| toug we akni 1 Peudn delypara.

q(Z]4,X)
. y
A Z~q(2) z 7"
) i i z ™
- > > > > — — a(Sacl R)| -
e ses i
e e e — el -} A
a0 @
. .
seee
Encoder
Fake
Z'~p(Z) .
Real P e = 1 | Real
- a |a @ s (&
I— Input —_— @ > P > e > < Ll —
e €] L °] L
P 0 | Fake

Discriminator

Figure 1.1.5: Apyitextovixf tou povtélou ARVGA, énwe tapovsidotnne oto [84]

e O Graph Feature Autoencoder [42], Atav 10 npdto poviélo g owoyévewns twv AKT, tou yenot-
ponolnoe évav Amokwdikoromt XapaktnpioTikdy xa. Oyl €Voy onoXwOIXOTOMNTY CUVBECUWY. 2UY-
XEXPWEVX, Ypmoulonotoloay Tic eVIETELC XOUPwY TOU TUPHYAYE O XWBXOTONTAC Xl TLC TEEAUOAY OE €Val
amh6 veupwvixd dixtuo. O otdyog autol Tou dixtdou, elvor vor AOoel Eva TEOBANUA TAAVOEOUNONS, Yidl
TNV AVaXaTaoXELT TOL dpyxol Tvoxa yopuxtneotixdy X € RV X gné tov havidvovta nivaxa eviéoewmv
Z € RV*P. O tehixde bpog amdhetoe, mou mpootietor and autéy tov Anoxwdoromth Xopoxtnplo-
v, ebvan to Méoo Tetpaywricd DpdApa petofi tou X xon e e€680u X 10U anoxemdxonomnt.

1.2. TIpotewvdueva Movtéra

1.1.6 E&yroeic pe AvTinopadeiyuota

OLE&nyrHoeig ue Avtinapadeiypota eivor évag TOmog e€fiynong nov anooxonel otny amoxdiun tou Tt Yo
énpene va elye yivel SlopopeTind ot pia tepinTwaon yio var tapatnendel Eva Siapopetind anotéreoya. XTo TAaiolo
™S PNV udidnong, ol eEnyNoelc UE AVTIIUPOBEIYHATO YENOWOTOLOUVTOL Yiot Vo EENYNooUY TIC ANOPATELS
mou AauPdvovton and urn eppnvedolpous tadivountéc. Elvow WSialtepa noAbties eneldy) napéyouy allonotiolues
YVOOELG OYETXS e TO TOC Umopel vor ahhdEel 1) eloodog yia va emitevy el pla emduunty| é€o0d0c. Xuyxexpluéva,
umopolV va BOOoLY i andvtnon otny epwtnor, "1t Oa mpéner va aAddéer ya va tabivounlel kit ws X avtl
yie Y;". T mopdderypo, évog neddtng tpdmeloc otov omolo Exel amoppipiel éva ddvelo umopel vor AdPel wa
e€Aynomn He avTimopddelyuo Tou amoxoAUTTEL TL Yo umopoloe va elye xdvel dlapopeTixd Yo var eyxpldel n oltnoy
Tou.

To peyohitepo mheovéxtnuo tétolwy enednyfoewy, elvon 0Tl Bev amoutoldy xdmol ecwtepixy tpdoBacn oto
HOVTENO ToU VENOUV VoL EpUnVEUoOLY, dNnAadn To avtipeTwrilovy we pavpo xouti (Black-Box). Aedopévou
ot ot pédodol mopaywyhc Aviinopadelyudtwy dev yeeidlovtal ecwtepixf) Tpdcoor ot poviéha, dev ypeetdleTton
vor AapBdvoupe vrtddn ty EEnynowdtnto Tou LovtENou pag xotd TNy xataoxeur)/exnaideuon/allohdynon tou.
H pévn npobinddeon yio to wovtého, elvan vo Umopel var TaELVOURoEL Tot avTIXELUEVA ELGOBOL OTLS SLAPOPES HAJOELG.

Suyxexpyéva, to clotnuo-eneEnyntic mou Yo mopouctdoouye, Tpotdinxe and toug Puhavdpiavoc xa hoirol
[29], xou Pacileton oty moparywyh Aviinopadelypdtwy, péow Evvotohoyixdy Enegepyactdv. To Baoixd
oTolyelo aUTOU TOU CUGTANNTOC, elval 1) YproT evog Yurddov Aedouévwry Eneényroewy, dnhady éva ahvolo,
omou xdie delyua cuvodeleTan xau and €va cbvoro Evvoidr. Me v yeron twv ofiwudtwy tou TBox, Beloxel
Anootdoeis Evvoidy, xou Ti¢ Yevixelel o eNdylotec Anootdoeig Xuvodwy Evvoidy, ye tov alyberduo Karp.
Egboov 1o xdle delypa Tou apyxod cuvohou dedouévwy, avtiotolyiletal oe évo 6hvolo eVvoldy, THTE Unopolye
vor Utohoyiooude TNV evvolodoyikn anéotaon HETUED TV BELYUATWY, VO XATUOXEVECOUUE €VoL YRA(YOo YE aUTéS
TIC AMOCTAOELS, XU TEAOC Vo UTohoyicouue ehdytota povondtia ue tov ahyoptduo Dijkstra. 'Etol, av éyw to
oelypa x1 mou Tavoundnxe oty xAdon C;, to Avtimopdderypo Yo elvon to Belypa mou €xel TNV MO XOVTIVA
evvolohoyxh andotoon oto &1 el dev tadivouridnxe oty C; (Local Counterfactual Explanation). Eniong, n
Topamdve dladacia uropel v yevixeutel, yia vo topdyel e€nyfoelc yia o ohdxhnen xhdom 1) oudda delyudTwy,
xa Oyt yio éva wévo delypa (Global Counterfactual Explanation).

Y plo vedtepn éxdoom tou (Blov custhuatog [21], tpoteiveton 1 petatpon Twv Luvohwy Evvoidv, ot T'edpoug
I'védong (1o onolo avtwetwniletar we ABox). Anhodn xdde Selypa, Yo cuvodedton and évay T'pdgo Tvidong,
o omolog Yo divel pla evvolohoyixy| ene€nynon yio 1o cuyxexpiuévo delypo. H xOpia Slapopd, eivan 6t tdhpa
€youpe va unohoyioovue Andotaon Ipdpwy, xou dyL andoTaoy cUVOAWY evvolwy. ‘OTwg €xouue MO avapEpet,
autd to meoPAnua elvan NP-Hard, yloautd xou o cuyypagelc neplopilouv tnv mAnpogopio tou xdde xduBou
Hovo uéypl Toug duecoug yeltovéc Toug, Beloxovtag €tol pla mpooeyyiotxy) Aoon. ‘Aga, elvon €éuxolo va dolue
ot pmopolye vo aflomotioouvue to NAT yio vau xoatatdoupe outols Toug Yedpous ot Vo Beolue Toug Lo
nopédpoloug. Mdhiota, pe v yerion AKT, n 6An dwdixacio o elvon amoteheopatiny xou edxoln otny vAomolno,
eneldn) Sev ypedleton va unoroyloouue xdmoto dhko eldog petpxhc andotaonc/opoldTnTag, ool 1 exnaidevon
tou AKI elvan un-emfBAenduevn.

1.2 Ilgozewvéueva Movieia

1.2.1 3uvocesicpopd
O x0pleg ouvelogopég Tne moapoloog dlatplBric TeEpLypdpovToL TopaUXdTe:

o Xpnowonototye Avto-xwduonointéc I'edgwv, vyl va avtipetwnicovye to mopadootloxd meoBinua e
Ouoldtnrag Iedgpwyv. EE dowv yvwpilouye, 1 adlotoinon twv AKI yio tnv enlhuon autod tou mpoPif-
patog, Bev €yel TOYEL UEYIANS axodNUoixrc TPocoy S UEYPL OTLYUNS, OTOTE GTOYEUOUUE VoL DOCOUUE [Ldl
ONOXANPWUEVY) ETULOXOTINGT] TOU CLYXEXPWEVOL TEOBANUATOEC X0l TV UEVEBWY TOU YENOULOTOLOVUE YIol TNV
enthuoy| Tou.

o H yprion apyitextovix®y Paolopévey oe AUTO-XOOLXOTOINTES, LIS ETUTEENEL VoL EXTULOEOCOUUE TOL LOVTEN
e un-emPBAenduevo teomo, Ywelc TNV avdyxn utoloylopol tne Andotacns Enelepyaoioc I'pdpwy petald
oV detypdtwy. Emmnkéov, autéc ol apyitextovixée dev anautoby Lebyn ypopnudtwy yia Ty exnaideuot),

9

Chapter 1. Extetapévn Ieplindn oto EXAnvixd

petdvovToc mepantépw TN T4EN Twv detyudtov oe O(n), o olyxpion pe O(n?) v to povtéha ue emif-
hedm. Autég ou 800 Jeuehmdels mtuyég elvon o x0plog AGYOC Yo TNV EMTAYUVOY TNE EXTUBEVGNS TwWY
TEOTEWVOUEVDY LOVTEAWY.

o Ilpotelvouue didpopec Beltiotonoifoelc otoug Baoixotc AKI' mou mapouoidlovton otnv evétnta 1.1.5,
pall e ™ xOpla Wéa tlow and xdde emhoyy. A&ohoyolue enione Ty enidpoor twv Baocxdy cTolyeiny
TOV BLOUPOPETIXDY APYLTEXTOVIXWY, GUVOLALOVTAS Ta, ot ToPaIETOVTAS To TOCOTIXA AMOTEAECUATO OTNHY
Opototnra lpdpwv.

o To mpotetvopeva povtéha NAT, udg nopéyouy Baduoroyies opotdtnrag YeTadd OAWY TV YRdPwY oXNVAC.
Auté emitpénel 670 poviého va yenoulomoinVel tehixd pall pe éva mhoioto EERynone pe Avtinapadelypora,
TPOUOLO UE QUTO TOL TAPOLGLAcTNXE oTNY evotnta 1.1.6.

1.2.2 Movtéla Auto-xwdxonowntwy I'edpwy

; T . / Graph Autoencoder \ ; °

Input Graph

Reconstructed
Graph

Figure 1.2.1: XpYion Auto-xwdixormomtddyv I'edgwy yio Ty ¢gdon tne Exnaldevong.

; i ’ / Graph Autoencoder \
Input Graph ~
)

Poolin:] L5 Distance
. “zGl - sz”
Graph Embedding zg

Node Embeddings z,,

Figure 1.2.2: Xpron Avto-xwdixonomntedv I'edgwy yio Ty @don toug Yuunepacuou.

To apyxd, Baocxd poviéro ndvw oto onolo Yo yticoupe, eivan 1o VGAE[54]. H apyttextovixf Tou poviéhou
nopouctdleton oto oyfpa 1.2.3, 6mou ta xdxxiva opoywvia delyvouy toug tehixolg dpoug Yia to Loss Function,
Ta onola To povtéro Vo cuvdudoel xan Va chaylotonoioel. H Belteprn deueddng opyltextoviny elvan to
ARVGA[84], to onoio npocdétel Tov Atevkpiriotri oe 0AdxAnpo To poviého, 6nwe goivetar 6to Lyfuo 1.2.4.

To mpthto mpotewduevo povtého eivan to Feature VGAE, to onolo mpootétel évav Anoxwdixonomth Xopox-
TNELOTIXAY, TOPAAATAS e Tov apywd Amoxwduonont Axudv (6nwe gaivetar oto yAua 1.2.5), and v
aEY LX) OEYLTEXTOVLXH.

10

1.2. Ilpotewvbpeva Movtéla

To deltepo mpotewvduevo povtéro eivor to Combined VGAE (Eyfua 1.2.6), to onolo cuvdudlel évay Anox-
oduononT Axumy xou évay Anoxwdixoronth XapoxXtneto Tixdy, ahhd ot ol 800 YeNnotwomololy o LovEda
NAT pe exmaibevoipes napapérpovg. H xOplo 18€a yiot autd To poviého, elvan va mpoctedel éva eninedo ye
eEXTUBEVCIUES TopOETEOVS, Tiply and tov Inner Product Decoder, otov Anoxwdixormomnt Axucdyv. H dwaloidnon
Tlow and auTh TV andgaot, etvar va avoryxaoTel 0 Kwdxonon g vo eVowuatdoet T Souixy| YVeoT] Tou Yedpou,
pe évay mo mepinhoxo tpomo, and wa onhf tedén Ecwtepixol I'vouevou.

To tpito npotewopevo yovtéro eivar 1o Combined ARVGA, 1o onolo npoc¥étel tn povddo tou Aleuxplv-
woth, oty apyttextovixyy Combined VGAE, 6nwe galveton oto Nynua 1.2.7. Iewpopauldyacte enlong e plo
napaiiayy) avtol, to Combined ARVGA MLP, émou 1 pévn Swpopd pe to Combined ARVGA eivan
6Tl oL ekmaidetoiues napdpetpor otov Anoxwdixonomnty Axudy, VAOTOWOVTAL HE EVal TopAdooLaxd VEURWVIXG
dixtuo (Lyrua 1.2.8), xou oyt ye wio povada NAT.

O BOCOVUE TWEO UEPIXEC AETTOUEREIES OYETIXY UE TLC UTIOUOVADES TWYV UPYLTEXTOVIXWY, Ol OTOlEC EQopUOloVTaL
oe ONoL ToL LOVTERN IOV OVAPEQUNHOLY THPATTEVE:

o Ou povddes NAI' nou Yo doxtgaotoly, elvar autéc mou mapovatdotnxoay otny evotnta 1.1.5, ot onoleg
elvaw oo GCN, GAT, GATv2 xu GIN.

e ‘Otav undpyouv meplocdtepeg amod pio povdda NAI' oe éva yovtého, tote T0 (Blo eldog wovddag yenot-
pornoteiton movtol. o mapddetypa, dev Yo yenowomoifooupe éva GCN yia Tov xwdomomnth xou €va
GAT vy tov anoxwdixomont. Autd BoxiudoTnxe oTa TEOTA TELRGUATA, OANS Tor anoteréouata Edeléay
yeryopa 6Tl dev oy wia Bidotun emhoyt) yia to povtéha. Mo mbavy) e€fjynon vy’ avtéd Yo unopodoe va
elvon 611 oL Bapopetixéc povades NATL, xwBixomolody xot omoxwdixomolody Toug Ypdpous Ye SLapopeTind
tpémo, eoTtidloviac oe dapopeTind yapauxtneoTixd. ‘Etot, 1 cuvepyosia toug, dev mapdyet amopoitnTa
AmOTEAEOUATA LGOBUVOUNG TOLOTNTOC.

o ' Tov cupmepaoud TV LOVTEAWY, Onwe BAémouue oto Nyfua 1.2.2, npénel va oploouue plor cUVEETNON
Global Pooling, n omoia cuyxevipdvel tic eviéoelg twv xopPwyv ot uio evviola evietixr avanapdo-
Taom oAGXANEoL Tou Yedpou. Aol doxiwwdooue T To dnuogiielc cuvaptroec yia To Global Pooling
(mean/max/min/sum), éyive yphyopo @avepd dTL 1 cuvdptnon Sum, elye ta xahOTERH ATOTEAECUATA,
ondTe G Tar TEMXE LovTéNa Yenowonoloty auty T ouvdpetnon. To Bio emyelpnua utooeileton eniong
amd Toue dnwovpyole tne GIN[121].

e ' T0 TeAxd OTABLO TOU CUUTEPAOUOU, YENOWOTOLOUHUE TNV andotaoy Lo Twv eviéoewy tov Yedowy,
TPOXEWEVOU Vo xatatdéoupe Tic Baduoroyieg opoldtnToag Peto€lh TOUC XL VoL ovaXTHOOUUE ToROUOLOUG
yedpoug. llewpopotiotinaue enlong pe ™y Opowdtnra Yvvnuitévov, ahhd 1 anddoon frav YewedTteen
oLYXELTXE PE TNV andotaoT) L.

/ .

GNN Module L_J 1 Edge Reconstruction
[| Loss

~ Encoder. Inner Product Decoder

Decoder

& | Graph AutoencodeJ

Kullback-Leibler
Divergence
(Variational GAE)

Figure 1.2.3: Apyu apyttextovixn tou VGAE

11

Chapter 1. Extetapévn Iepiindmn ota EXAnvixd

GNN Module

Encoder

[il

Inner Product Decoder

Decode

)

Discriminator

Edge Reconstruction

Loss

Discriminator Loss

Graph Autoencoder

(True samples from Gaussian
prior, Fake samples from
latent space z)

Kullback-Leibler

Figure 1.2.4: Apyitextovixr; tou ARVGA

GNN Module

Encoder

ek

Inner Product Decoder
Edge Decoder

GNN Module ‘

N

Divergence
(Variational GAE)

Edge Reconstruction

Loss

Feature Decoder

Graph AutoencodeJ

Feature Reconstruction Loss
(Mean Squared Error, compared to
original feature matrix)

Kullback-Leibler

Figure 1.2.5: Apyitextovur Feature VAGE

Divergence

(Variational GAE)

12

1.2. Tlpotewvépyeva Movtéha

GNN Module

Encoder

7 .
=l h.l!
Inner Product Decoder ‘
Edge Decoder /

GNN Module

Edge Reconstruction
Loss

Feature Reconstruction Loss

Feature Decode

Graph Autoencoder/

(Mean Squared Error, compared to
original feature matrix)

Kullback-Leibler

Figure 1.2.6: Apyitextovinry Combined VGAE

Divergence
(Variational GAE)

Edge Reconstruction
Loss

Feature Reconstruction Loss

(Mean Squared Error, compared to
original feature matrix)

Discriminator Loss

Edge Decoder
GNN Module
Encoder GNN Module
Feature Decoder’
= 1
=k
Discriminator
Graph Autoencoder

(True samples from Gaussian
prior, Fake samples from
latent space z)

Kullback-Leibler

Figure 1.2.7: Apyitextovinry Combined ARVGA

Divergence
(Variational GAE)

13

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

GNN Module

Encoder

\

Inner Product Decoder
Edge Decoder

Feature Reconstruction Loss

(Mean Squared Error, compared to
original feature matrix)

i 5
= > ol x Edge Reconstruction
= : Loss
MLP:!
— S
GNN Module
Feature Decoder
~ L]
I . (True samples from Gaussian|

Discriminator Loss

prior, Fake samples from

latent space z)
Discriminator
Graph Autoencoder

Kullback-Leibler
Divergence

(Variational GAE)

Figure 1.2.8: Apyitextovixry Combined ARVGA MLP

1.3 Ileipopotind Meépog

1.3.1 30Ovolo Acdopévwy

To clvoho dedopévmv tou Yo yenowonomdel, civor to Visual Genome[58], évo oloxhnpwpévo clvolo de-
Bopévey Yl TNV exoddeuaT) xou TN oLYXELTIXY aELOAGYNOT TNE ENOUEVNC YEVIAS LOVTEAWY UTOROYIO TIXN S 6paong,
TOU Yenolonooly Thnpogopiec dounuéves oe ypdpoug. Ilepiéyer 108.249 eixdveg and 1n dootadpwon Twv
cuvérwv dedopévewy YFCC100M[108] xor MS-COCO[68]. Kdde etxdva cuvodedeton and tov aviictowyo Ipdgpo
Yknris, 6nwe e&nyeitoan oty evotnta 1.1.4. ‘Eva napdderyua evéc Lebyoug Ewxdvac-T'pdgpou _ Exmvic gaivetou

oty ewdva 1.3.1.

25 line

e

wire «—eseve— road

'\Q\car

hyrdant\ﬂe*\ /

man

-

sidewalk

Figure 1.3.1: Tlopdderyua evog Iedpou Lunvie, poll ye tny avtiotolyn emdva mou neplypdpet.

14

1.3. Iewapotxd Mépoc

Y10 mhaiolo Ttou mpofAiuatoc tne Avixtnone IDnpogoploc oe ypdpouc oxnvic, 0 Slaweloog
Epwtrcewv-Anavinoswy cva anapoitnrog. e avtileon pe v napadooiony] emBAETOUEVY xou Wr-
emPBAenoOueV) unyovixt| wdimon, autde o Saywpouwde nepthopfdvetl éva alvolo Epwtnudtwy (Query Set) xou
éva oOvoho Amovtfoewy (Answer Set) and ypagphuata oxnvodv. To povtéla meénel va etiotpédouv pla tehxt
XxaTdTol) TV Yedpwy ATdvtnong, pe Bdon tny opotdTnTd Toug pe toug Yedgpous Epwtiuatoc. T tn Swoyeipion
Tou unohoytoTxol xdoToug, emhéydnxoay 1000 ypogpruota oxnvdy, ye 960 oto Answer Set xou 40 oto Query
Set. O olybprduoc elpeone Anbdotaone EneZepyooiog Iedgwy (AEL), mou yenoylonoteitor yio Tov UTOAOYIOWS
NG OUOLOTNTAG, EVAL UTOAOYLO TIXG BATovNEoS %ot XAMUAUXMVETOL TETEAYWVIXA YE ToV aptdud Twy Yedpwy (epb-
ooV v TéAeL, Tpénel Vo dnpoupyooupe duddec ypdpwy). H emhoyr auth anotpénet toug unepBohixolc ypdvoug
unohoylouol. Emniéov, éva pixedtepo advoro Epntnudtwy pe yeyokltepo clvoro Amavtrioewv e€acpaiilel
OLCLIO TIXES XATATEEELS Yiot TIC HETEWES 0lohdynone. Aeuxollvel enione Ty molotxr aflohdynon pe ™ xefion
avtloToy v exoOVwY, XaMoTOVTIC TNV TLO ATOTEAESUATIXY Yo TNV o&lOAGYNoT TNE AmbGd0GNC TOU LOVTEANOL OE
oUyxplon ue ta Tuyola VYT EPWTHCEMV-ATAVTACEWY.

It Ty xataoxevy) tou cuvérou Epwtnudtwy xou tou cuvérou Arnaviioewv ond to Visual Genome, opyixd
emAéydnxay 1000 Tuyalol Yedpol Ue EAGYLOTOUE TEQLOPLOUOUE OTOV 0ptdd TV XOUBMY XL TV aXUOY, WCTE Vo
amo@evyYoly ol utepBolund amhiol yedgol. 261600, autd 0dfynoe o8 TOANOUG YEAPOUG AE ATOUOVWAE-
voug xoufoug, teplopllovtag TN YENoWoTNTA TwV Lovtéhwy ntou Bactlovtal oe ypdpoug, 6nwg ol Huprvee
Fedpwv xou tor wovtéha NAT'. T vor avtigetoniotel autd, dnuovpyhinxe éva véo unocUvolo mou ovoudletol
"Dense Subset"” (ITuxvé Troolvoro). Autd To oOVONo TERINGUPAVE YPEPOUS UE QUG TNPGTEPOUS TEPLOPLOUOUG
oToV apliud TWV XOUPLV, TV oMY Xl TNE TUXVOeTHTAG, eEacpahilovtag xahiTepn a&lonoinom TwV SUVITOTHTLY
MetdBaons Mnvuudtor twv NATL. O Swywpoudéc Query-Answer Set mepiehduBove tyv emhoyy| 40 tuyodwv
yoapnudtwy yio to Query Set, eved ta unéhotna anotelodoay To Answer Set, téco oto Random 600 xau oto
Dense urocivoho.

H npoeneiepyacia twv I'pdpwyv xnvaodv yiveto oe 600 otddla. Xto mpddto o1ddio, epapudlovton o
TOEOXATL AELTOVEYIEC OE GAOUC TOUG YEAPOUGS:

o Aguaipeorn XapaxtneioTixwv: Ta yopoxtnelotixd mov meplypd(pouy Ta avTIXelUeva GTo opyLxo
ocOvoho dedopévawv ("attributes”) napadeinovton, ue oxond vo anogevy Vel 0 Theovaopde xou Vo amotpomnel
1 €0 TlOON OTA YUPUXTNEIO TIXE XoU O)L GTO ONUACIONOYIXS TEPLEYOUEVO XUTH TOV UTONOYIOHO OUOLOTNTOG
YodPpwy.

o Yyéoeig wg Axpég: Ouoyéoelc avomaplotovtal wg axUés xat Oyt we Eeywptotol x6ufol Tou cuvdéovtal
e vroxelyevo xou avtixeipeva, ue oxond va Swtnendel n cuvoyr, Aaufdvovtoc unddr Tic TpoxAfoelc xaTd
1 00YXELOT AVTIXEWEVWY Xl OYECEWY PE TN YeYon Tne epapyiag tou WordNet.

o Agaipeorn TOnwY Nyxéoeswv: Ev téhel, dev ypnoyonolodye toug TOmous/xhAcels oyéoewy oToug
0Py x00C YRAPOUS OXNVAY, XENOUOTOLOVTC avT’ oUT®Y xateuduvoueves axpéc (ywplc é€tpo Thnpogopia
yior TOmo/xhdoel) Yo vor petwdel o mAeovaopde, dedopévou 6T oL neplocdtepol TTuprivee Tpdpwy xou o
povadee NAT 8ev a€lonololy amoTENECUATING To Y UPUXTNELOTINGL AUV,

Y10 8eltepo GTEBLO, aVTETOTILETAUL 1 OVATUPACTACT] TWV YHUPUXTNELOTIXDY TV XOUPWY, UE AMOTEAECUI TNV
dnuLovpyia TpLOY CUVOALY BEBOPEVLV:

1. ZvuPorooceipéc yia Xapaxtneiotixd KouBwv: Ta youpaxtnplotind xéuPwv avaraplotavton ¢¢
amhéc ouvufoloaeipée (strings), xatdhinhes yia ITuphves Todguv, xoadde Aettoupyolv ye eTixétec xOUBwy
%o 8EV UnopolV VoL aELoToLCOUY ONOTEAECUATING JAAEC HOPPEC TANEOPORLOY.

2. EvOéoeig Aégeswv via Xapaxtnetotixd KouBwv: Oupovédec NAT anatoby aprduntind yopox-
ploTxd x6uBwy, otn uopet evée Iivaxo Xopaxtneiotixodv (Feature Matriz). Ou evdéoeic Aé&ewv
GloVe[86] yenowtomolobvton yior Tn UETATEOTY| GUUBOROGELRMY ot eVIETIXES avamapao Tdoels, Ye wéyedog
100, mouv yenowonolobvtal we eloodoc Yo tor ovtéha NAT.

3. Synsets yio Xopoaxtnetotixd Koupwv: Autd 1o chvolo dedouévwy allomotel tnyv tepapyio "is-a”

nov napéyeton and to WordNet[77] yio Tov unoroyiopd tne Boaoidc Alideloc pe tov ahybdprdpo edpeong
AET. H ouyxexpuévn epopyio emitpénel tn pétenom opotdtnrog Yetold Slopdpwy Evvoidy ("Synsets”),
OTOU GTO BUYXEXPWEVO GUVOAO BEBOUEVWY, AMOTEAODY TOUS XOUP0OUC TV YEdPWY.

15

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.3.2 Baowr, AApOesia

O Baduoroyiec opotdtnrag xou ol xatotdéelc tne Baowxre ANAOeiag vnoroyllovtar ye tov adydprduo
ebpeone Andotaone Enclepyacioc Tpdepwv (AEL), ue npotiunon otouc mpooeyylotxols olyopiduoue AET
AoYw Tng umoloyloTixg toug anddoons. O alyodprduog mou emiéydnxe yia v mopoloa datelBy elvan 1
nopodhoyy Bipartite Matching Tou AEI, n onola eotdlel xuplwe otic mhnpogoplec xouPwv, emituyydvovog
toopponia ueta€l LTOAOYLOTIXOV XOGTOUE Yol TOLOTNTAG TPOTEYYLoNG (mwe e&nyinxe xou oty Evétnta 1.1.2).

H Icpapyia "is-a" twv Ovoiactixwdy Tou WordNet elvar éva xplowo otolyeio otov utohoylopd Tou
AET. Auth n epapyia xadepdhver oyéoeic Trepwviuny/ Toviuony HeTall oUCLIoTIXMY, TPOCPEROVTIS EVaY
SouNUEVO TPOTO SUYXELONG AVTIXEWEVLY Xl TEOGDLOPLoUoY Twv opotoThAtwy touc. o v adlormoinon avtic
e epapyiac yenowonoweitar to nakéto NLTK tng Python [3], to onolo nopéyet évo APT yio to WordNet,
ovunepthauBavouévne e tepapyiog ovotaotxedv. H ouvdptnon path_similarity ané to NLTK unohoyilet
Badpohoylec ouyotdtnrog pe Bdon tn cuvtopdTteer dladpour) Tou cuvdEel Tig évvoleg oty tadivoplo "is-a'",
ETUTPETOVTOC TOV UTONOYLOWS Tou xbotoug eloaywyhc/daypapric/avtixatdotoons x6ufwy yia tov alydprduo
Bipartite Matching.

H diaduxaota tepthopfBdver tov utohoyiopd Boduoroyidv ogodtntog yio Gha tor midovd Lebyn xéuBwv and toug
yedpoug G xou G;7 ue) yeron e path_similarity xou otn cuvéyelo TN Ypnom auTedy Twv Baduoloyidy yia
™Y e€aywYT| TOL *XOGTOUC AVTIXATAC TOONG XOUBWY Yo T cuvdpTnon urtoioyiopod tou AEL. To xdoto¢ eloay-
wyhe xou dlorypapric xouPwv tpocdioplleton pe v edpeon tne ando oo HeTagd xdie xoufou xou tou xduBou
"Entity" ("ovtdtna”), o onoloc ypnowelel we xduPoc-pila e tepapyioc. H diadixacio auth enavohopBdveton
yia x&e mdoavéd Lebyoc petald tou Query Set xau tou Answer Set, 1600 Yo to unocivoho "Random" éco xau
yioe To "Dense", ye to anotéleoya va ebvon oL Twéc Kbotoug/Andotaone I'edgwv mou unoloyilet o olydprduog
AET. O ypdvoc extéheong yia to avoro dedopévewy "Random" efvan mepinou 5 ¢peg, eved 10 GUVOAO BEBOUEVLY
"Dense" ypeldletan nepinou 1 dpa yior var ohoxAnpwdet.

1.3.3 Metpuxég

Topo Yo Tapoucidcovyue Tig TeElG PeTEXES Tou Yo yenoiworotndoly yia Ty TocoTix a€loAdYNoN xou exTiUnon
e anddoone twv Huphvwy I'edgwy xou twv yovtéhwy NAL': NDCG, MAP xon MRR. ©a npénel va avopepel
OTL ol OL TEELG UETEXES, Elval e8NS OYEBLUCUEVES YId VO RETEHOOLY TNV AOB0CY EVOG JUCTHRATOS
Avdéxtnone IIhnepogopiac. Autéd onuaiver 6t ol eloodol mepthopfdvouy (Tovidytotov), e "Alndvy"
xortdraln xou o "IpoPrendpevn” xotdtaln, dedouévou tou (Blou avixeiwévou Epwtipatog. Xtnyv neplntwon
poc, 1 "AMVA" xortdtaln elvon ta tpddto 50 avuixelpevo Tou emotpégovar and tov ahydprduo AET (Boouxd,
Afder), xou 1 "TIpoPhenduevn" xatdtadn eivar Tor avTIXELUEVO TTOU ETUOTREPOVTOL ATS TO LOVTENO TOU VENOUUE
vo ehéyEoupe. Tuyxexpiuéva, a&loAoyoUUe 6ha to cuoThpata AauBdvovtog unddn ta npdta 10 avixeipeva tou
emoteépovtat. Ilopoxdtew nopouctdlovUe TO AETTOUEPMS TIC TEELS UETEIXES:

e Normalized Discounted Cumulative Gain (NDCG): H NDCG eivou piot evpéwe YpnoLhonoloVuev
petpr) mou o€lohoyel TNV TOLOTNTA TWV AnoTEAECUATOVY avalhtnong e xotdtalrn. Aaufdvel unddn t6c0
N ouvdgela 660 xon TN Y€on xaTdTadng TWY AVTIXEWEVLY TNy TehxT] TpoPBAenduevn xotdtaln. H NDCG
omodidel udmAdtepes Baduohoyiee ota avtixelyevo Tou eivor xow TOAD UV xou egpavilovtal GTNY %o-
pueY) tTng xatdtagng. H yetpudr houfBdver unodn tn gdivovoa anddoon tng cuvdgelag xadde yetaxivelote
TPOG TA XATC TN xATATOET), TapEyYoVTag Wa o peahlo Ty alohdynon tng xavoroinong tou xenotn. O
nuéc NDCG xupobvovton and 0 éwc 1, pe uvdmidtepeg Baduoroyieg va unodnidvouv xahbtepn anddoor.
Yuvohixd, n NDCG eivan 1 o avtinpoowneutixd peteixy yio cuotiato Avéxtnone IIknpogopiac, xadde
ouvunoroyilet tic Véom xan tic Baduoroyies cuvdgelag i Oha Tor avTixellevo oty TEOBAETOUEVT XaTd-
twgn. To povadd apvnuxd, elvan 0t dev elvan plar dueca epunvedoldrn Yetexy, Onwe ol dAieg 800 mou
xenowwonoovue. H NDCG vnohoyileton wg e€hc:

K
rely,
DCGQK = —_—
; loga (1 + k)
DCGQAQK
NDCGQK = TDCCaK

16

1.3. Iewapotxd Mépoc

omov rely, elvan ol Bodporoyleg suvdgelag, xaw IDCG eivon 1o Weatd DC'G oxop, av autd UTOAOYLOTH TNV
owoth xatdtaln (awtd vroloyileton, pe oxomd va eivar xavovixononuévo 1o NDCG). ‘Onwe avopépope
%o o youpévee, to K to ¥étoupe (oo pe 10 ota melpdyota.

Mean Average Precision (MAP): H MAP eivon por A1 onpavticd) petpued] yio Ty oloAdynor e
AVEXTNONS TANEOPOELOY, Wiwe ot cevdpla GToU UTEEYOUY TOANG GYETIXA AVTIXEUEVA VLol VAL EQWTNUAL.
Trohoyiler tn péon axpifeio (precision) yio xéde cpdtnua xou oty cuvéyea utoroyilel T péon TA
yior 6ha Tar epwtidoato. H axpelfelo yuetpd 10 10600t TV OYETIXGY OVTIXEWWEVLY GTO ATOTEAEGUATA TOU
Beloxovton oty xopuen e xatdtaing xou 1 MAP lopfdver unodn v axplBeia o mohhamhd onuela
e xatdrtadng, dlvovtag peyahbtepn Bopbtnta ot éyypagpa mov Peloxovian oe udmidtepeg Véoec. Ot
Tuéc MAP xupalvovton and 0 éwc 1, ye udmidtepeg Baduoroyiec va unodniwdvouy xahbtepn ambédoon
avéxtnone. Xe avtiveon pe v NDCG, n MAP eivon pla epunvedowun peteuy, agol Baociletou otov
oploud tou xhaowxoV Precision. H MAP vrnoloyyiletou we e€hc:

II\idoc cuvagpoy avixelwévwy oto top k
k

PrecisionQk =

Zszl (Precision@k x rely,)
TARB0C CUVAPEDY ATOTEAECUATODY

APQK =

Q
1
MAPQK = =Y APQK,
g 2

omou to rely elvon 1 av to avtixeipevo otny Yéon k elvon ocuvagée, adhng etvan 0, xan to @ elvar To
OLVOAXS TARYOC TV EPWTNUATWY.

Mean Reciprocal Rank (MRR): H MRR eivar o petpin| mou yenowonoteitar cuvidos yia epyooieg
OTWE 1) ATAVINON-EPWTHCEWY XAl O UTONOYLOUOC XaTdToly), Omou UTdpyel uévo wplo owoTyh amdvinon 1
avixelyevo. A&loloyel mdéco ypryopa To cbotnua avaxtd to mpwto oyetuxd anotéieopa. H MRR
unoroyilel v opotBaio xaTdTaE N TOU TEMTOU OYETIXOV OVTIXEWEVOU Yid XAUE EQMOTNUA Kol GTY) CUVEYELN
unohoyilet) péomn opoPBaior xatdradn v dha ta epwtAuata. O tiwée MRR xupaivovton and 0 e 1,
pe vdniotepeg Poduoroyieg vo utodnicdvouy xaihbtepn anédoon. H MRR eivon Wbioitepa yprown dtav
1N €ugaon dlvetan oty TaxlTNTA EVpEoNC OYETIXWY TANEoopldy. To tehixd oxop MRR elvar dueoca
gpunveLoLpo, xau utoloyletar we e&ng:

1
rank,

Q
MRRQK = 1 Z
Q=

omou o @ elvon To TARlog TWV EpOTNUATWY, xou To rank, elvor 1 V€oT TOL TEWTOU CUVAPONE AVTIXEWEVOU
otny mpoPhenduevn xoatdtaly. Edd, to QK elvan évag neploplopds, wote va e€etdlovion Hévo o TetTa
K avtixelpeva pe v vdniotepn xotdtadn.

1.3.4 Aerntopépeiec MoviéAwy

IMapduetpor ITupHvey IF'edpwy

Nopltepa, napoucidooye toug MévTe TUENVES Ypdpwy mou Yo yenowonondoly ylo To TeElpduaTta, we Pooixt
TEXVIXA YIOL TNV AVTWETOTION TNG OROLOTNTAC YRdPwy. Buyxexpiuéva, 1 BiBiiotixn Python GraKel[103], nep-
€yel Oheg Tig Lhomouroelg Twv Huprvev Iedpwy Tou yenowonowdnxay yia Ty nopodoa dlaten. XN cuvéyela
Yo mapardécouye Tic mapapéTpous yia xdde Evav and toug névte HupHveg mou ypnolwomordnxoy:

17

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

e Shortest Path Kernel: Autég o nuprvag dev Aopfdvel Guyxexplléve TopaUEéTEOoUS IOV VoL ENNEEGouY
TO OTEBLO TOU UTOROYLGUOU, EXTOC 0md TOV UToXe(pevo akydpiiuo mou Beloxel Ta GUVTOUOTEPA LOVOTHTLAL.
Avtéc o ahyopiyoc pnopel va opiotel oe "Dijkstra”, "Floyd- Warshall” ff "Auto" (anogooilel notog elvou
TaUTEPOC avdhoYa PE TOUS Ypdpous elcddou). Eueic to Yétovue o "Auto”.

o Weisfeiler-Lehman Kernel: E8¢, ot 800 onuoavtixée napduetpol elvat, o aptdudc twv enavaridpewy
tou Weisfeiler-Lehman Test Propagation xou o unoxelyevog muphvac ypdpwy mou epapudleton 6Toug
petaoynuatiopévous yedpous. Opiloupe tov apliud twv enavakripewy oe 20, o Tov uToXeluevo TUEHVA
yedowv oe Vertex Histogram.

e Neighborhood Hash Kernel: O 80o mapduetpor oe autr v nepintwon elvar, o péyiotog apidpoc
Neighborhood Hash (3niadr ot emavolfderc), xan to yéyedoc Byte towv Hashes twv xépfov. To mpodto
oplotnxe oe 3 xou To deltepo oF 2.

e Random Walk Kernel: I'ia autdv tov muphva, 1 xOpia Topdueteog elval 1 A, yia ToV unoloyioud tng
YEWUETPWNS Oelpdc, N onola oplotnxe o 0.1.

e Graphlet Sampling Kernel: I'ia autév tov mupriva, 1 x0pla topdueteog, elvan To Yéyloto péyedog Ty
Graphlets mou Yo yenowonomdoiv. To oplooue oe 5.

Transductive MdOnon

Yto mhaloo NG unyaviic wdinong oe ypdpoug, elvar onuoavtixd va daxpivouue BVo Baocwég mpooeyyioelg
uddnone/ovunepacuol: Transductive (Metaywyikn) xou Inductive(Enaywyikrj). H Inductive Médnon nepuh-
opfdvel Ty exmaldeuo evog povtéhou oe éva Train Set, tnv emixdpwon Tou Yo va arog@euy Vel 1 unep-exmaldevon
X1, oTr oLVEYEL, T Boxiun Tou oe éva atéato Test Set yio T dnwovpyio evée yevixeupévou povtélou. And
™V dAAn mheved, 1 Transductive MdaOnom emxevipdveton otny mporypatonoinon teoBiédewy yio éva ouy-
XEXPWEVO GUVONO BELYHAT®VY ERéY Y0V, Ywpelc Vo otoyelel otny e€aywyT| YEVIXEUUEVWY XOVOVKY. XE aUTH TNV
TROGEYYLON), TO LOVTENO Tpocapdlel Tic TEOBAEPELC TOU OTa LOVOBIXE XopUXTNELO TIXE TKVY DESOUEVWY EAEY YOV,
divovtag mpotepaldTNTA STV axp(Beld VLol AUTES TIC MEQITTWOELS.

H Transductive Mdinon elvon wiodtepa Sladedopévn otn pnyovinr udinorn oe ypdpouc AoYw TEoBANUdTLY
onwg N TaEvounon xouPuv xa 1 TeoBiedn cUVBECUWY, 6TOU Oha To oYETXXE Bedopéva elvan Blardéoia xorTd
v exnofdevon. ‘Evvoleg 6nwe 1 unep-exmaldeuot, 1 yevixeuon xou 1 emixdpwor) mou toybouv yia Ty Inductive
uddnon umopel va uny etvon 1600 oyetinéc oe Transductive mpofiiuota. e auty| T SiatelPn, n eotioon elvon
oTnv Tunomoinon tou TpoPAfuatoc tne Opodtntac I'eagnudtey we Transductive npdBinua, evduypauuilouevn
pe T xowvée mpaxtixée ot Mnyavixry Mddnon oe Tpagfuota. To povtéha NAT exnoudedovian 1600 610
olvoho epwthcewy (Query) éoo xat oto alvolo anavticewy (Answer) yia Ty onoterecpatixf fedtiotonoinon
TWV AVATAPACTAoEWY Yedpwy. H enéxtaon autic tng epyaciog oe Inductive elvan duvarty, ahkd Eepeldyel amd
To nedlo epapuoyhc Tng dlatenc, agrvovtds Ty we mavé nedio yio uelhovtixr epyaocio.

Yrepnapduetpor NAT

Ou unepropduetpol xou oL Aemtopépeles exmoldeuong/apoyfic oupmepaoudtwy Yo ta povtéha NAT unopolv
va ouvodiotolv wg e€fc. ‘Oha ta yoviéha yenoiwomoinocav tov Bektioctonomnt) AdamW pe mpoemiiey-
pévee pubuioee (81 = 0.9, B2 = 0.999, weight decay = 0.01). Ta poviéha pe Aleuxpioth yenouwonoin-
oav évav Eexwplotd Pehtiotonomty AdamW yia v andheto tou Aeuxpviot. To apyd Brpoata uddnone
oplotnxav apyixd oe 0.001 yia tor povtéra pe Atevxpvioth xou 0.01 yia tor undhotna. ‘Evoc ypovonpoypoppa-
TiloTAC Reduce_LR_On_Plateau ypnotponojdnxe mopdAinia Ue tov BEATIOTOTONTY, OTIC ApYLTEXTOVIXES Ywplc
Aeuxpioti. To péyedoc e noptidac (Batch Size) oplotnxe oe 16 yio Gha ot povTéha.

Kotd) Sidpxeia Tou oupnepaopod twv goviéhwy, xdde évag and toug 1000 yedpoug ato ghvola BeBOUEVLV
nepvoloe and tov Kwdixomomt, xau 1 tehixs) evietiny| avanapdo ooy Yedpou dnplovpyolvTay pe To dlpoloud
v eviéoewy xouPwv. H andotaon L emhéydnxe yio mn olyxpion twv Eviéoewv Ipdguwy, xodoe unepeiye
¢ Andotaons Luvnuitdovou, evieyouévwe AoYw e yenone e anwietac Mean Squared Error, 1 onola geudu-
yeouuiletar xaAbTEpR UE TNV EUXAEIDEL OTOCTUOY TWY YAUPUXTNELC TIXV.

Ou uneprapduetpotl, 6mwe ot Enoyég, tTo MéyeBog Evietixdv Avanopaoctdoewy xar ov Ke-
poarég ITpoocoxhe (v 1o GAT xou to GATV2) Siégepay UETUED TwY YOVTEAWY, Xou QUTES HTay oL x0pLES

18

1.3. Iewapotxd Mépoc

unEpnopdueTEoL Tou Ypeewdotnxe vo puluicouue. Ou Kegarée Tlpocoyhc pe twég 2, 4 xan 8 €dwoay yevixd
Ta xoAUTepa amotehéopata. To Méyedoc Evietincdv Avanapactdoeny eiye dioapopetinés BEATIOTES TWES YIdL
anhoVoTeEpA X0l o oUV¥ETO HOVTENX, UE Tal TEAEUTAld Vo amodidouy xahd pe yeyolitepeg dlaotdoelc. Ol emoyéc
xupabvovtay omd 10 éwg 200 xatd tn didpxela Tou cuvtoviouol. Hapuxdtw, otoug Ilivaxeg 1.1 o 1.2, mtapouotd-
Coupe OAREC TIC TEMXEC UTEPTUPUUETEOUC YLOL TO LOVTERA PE TNV xoAUTERT anddoot). Edd, ye tov bpo "xolltepn
anddoon", YeNCUWOTOCOUE TN HEOT TULT TWV TELOV PETEIXWDY

Enfong, Yo mpénel va onuewwdel 611 dev doxwwdoope xdde apyitextoviny NAI' oto cUvolo dedopévewy Dense,
dedopévou 6Tl 0 oxOTOG AUTOL TOU CUVOROU BEBOUEVWY BEV HTAV Vo CUYXEIVOUUE TG HETEWXEC HE TO OUVOAO
dedouévev Random, oAl va 6o0ue av ta poviéha NATL do Eenepdoouv toug Huprvee I'pdgpwv, dedopévou 6t
oL ypdgpot eivan o muxvol. TV avutd doxpdlovye uovo o d0o poviéda pe g xohitepes emddoelc (Combined-
ARVGA xou Combined-ARVGA-MLP), poali ye to VGAE xar ARVGA vy va a€lohoyficoupe to xépdoc amd-
8OO TOU €YEL VO TPOGPEREL 1) AVTAYWVLOTLXY) EXTIOUBEVOT), YE TAL TUXVOTEQRAL YEAUPHUNTA.

Model GNN Module Epochs Embedding Size Attention Heads
GCN 10 32 -
GAT 20 32 8
GAE GATv2 70 32 4
CIN 120 32 -
GCN 10 32 -
GAT 20 32 8
VGAE GATv2 70 32 1
GIN 120 32 N
GCN 40 32 -
GAT 170 32 4
Feature-VGAE CATY2 50 39 4
GIN 120 32 -
GCN 20 32)
. CAT 170 32 1
Combined CATv2 160 392 8
GIN 60 32 -
GCN 120 64)
GAT 20 32 4
ARVGA GATYV2 140 32 4
GIN 10 32 -
GCN 30 300 -
_ GAT 190 256 1
Combined-ARVGA GATY2 150 64 8
GIN 50 64 -
GCN 90 300 -
_ GAT 120 300 4
Combined-ARVGA-MLP GATv2 170 300 4
GIN 160 300 -

Table 1.1: Béitioteg YTrepnapdyetpor Twv poviédwv NAT, yio to Random Subset

1.3.5 AmoteAéopata
ITocotixh AvdAuor

Apywd, Yo mapovaidooupe Ty tehixy Baduoroyic MAP, MRR xou NDCG, nou emtetydnxe and toug Hupriveg
Fedpwv xon to povtéha NAT, oto Random Subset. Kdde ouyxexpyévo poviého NATL, avtictowyel oto
Béhtioto, e Tic unepnopauéTeous Tou mapouctdlovtar otov Iivaxa 1.1. O petpixéc allohéynone mopouctd-
Covtau otov mivaxa 1.3.

19

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Model GNN Module Epochs Embedding Size Attention Heads
GCN 80 300 -
GAT 60 300 4
VGAE GATv2 70 300 1
GIN 80 300 -
GCN 20 200 -
GAT 140 200 4
ARVGA GATV? 40 200 4
GIN 180 300 -
GCN 150 300 -
, GAT 160 300 4
Combined-ARVGA CATY2 0 300 4
GIN 40 300 -
GCN 150 300 -
_ GAT 130 300 4
Combined-ARVGA-MLP GATY2 160 300 4
GIN 10 300 -

Table 1.2: Béktioteg Trepnapdyetpol twv yoviéhwv NATL, yio to Dense Subset

To npwto npdypa mou mopatneolpe otoug ITupHveg T'edipwy, elvar 1 unepoyy) tou Weisfeiler-Lehman xou
tou Neighborhood Hash ITugrjva. Xuyxexpyéva, ol GANOL TEELC TUPHVESC TETUYAUVOUY UEXETE WXEOTERO OXOQ,
xou oTIC TEES PETPES. Autd pmopel va eényndel av to cuoyeticouue ye TV xOpla Wéo Tou xdde TupRva.
Yuyxexpuyéva, ot teeic Iuprves mou Bev elyav tdéoo xohéc emdooels, Poacilovtar dhol oe Yepehiddelg douixée
WBL6TNTES EVOC Ypdyou (cuvtopdTERR ovoTdTia, Tuyalol TepinaTol) o 6TV eupdvion TepwtoTinwy (graphlets).
Kou ta tplo autd, avauéveton var uny elvon emoipxde eq@oppooiyo otny nepintwon twv Scene Graphs, xot e18xd otnv
nepintwor touv Random Subset. Xuyxexpéva oto Random Subset, 1 1d4€n twv yedgpnv napouctdlel onuovtixn
droyavon. Auth n Swoacdpoavon, woli He T YEVIXE YoUnAs TUXVOTNTE TOUS, BEV TOREYEL YPHOWES TANROYOpleS
otoug IMuphvee nou Poaoilovton oe peydho Badud otn douh. Amd v dAAn mhevpd, ov muprivec Weisfeiler-
Lehman xou Neighborhood Hash, Basilovtat otig etixéteg twv ypopnudtwy %ot VAOTOLOUY o Sladuxacio emovo-
ETUONUEIWONE TV XOUBWV XAl EVIUERWONE TWY TANROPOELWY. AuTo Qaivetal vor amodevOETOL (Lol ETLTUYNUEV
1W0€a, 6Tay mpdxetton vor Angdolv unodrn 660 To BUVATOV TEPLOGOTERESC TANEOYORIES YPAPOU, TEOXEWEVOL Vol
ouyxerdoly Lebyn yedpwy xa vo e€aydel wo Baduoroyia opotdtntag. Enoyévee, unopolue v avayvepicouue
™Y exgeoacTixy d0voun tng texyvxrc Message-Passing, enedy) oi 800 muprvec mou mETUYAY Tar XUAUTEQY
AMOTEAEGUATA, OUCLAGTIXG LUAOTOLOUY plol Togohhayy) authg tng pedodou.

‘Ocov agopd Tt Movtéhae NAT, 1 apywr) nopatrienon eivon 6Tl or anhéc apyttextovxéc twv GAE xau
VGAE, dev enopxolyv yla va EEMEpAooLY TG eTBOOELS TwV Booixtdy TURHVEY YEdPwY, o€ xoplo and TG TEELS
peteés. Moévo ta anoteréopara yie 1o MRR eivar ouyxplowa, 6mouv 1o VGAE-GAT nétuye 1% younidtepn
Boduoroyia. O dhhec dVo petpixée eivan 3% xon 7% yopnhdtepes ouyxpltixa pe tov xahltepo tuprva. Enlong,
oe aut6 To onpeto, ofilel vo avapépouye, 6TL dev ouunephdBope dAkeg apyttextovixés ywelc to Variational
Loss oto havidvwy yopo, eneldn €yive ypriyopa gavepd, 6Tl eV Tophyaye XaAOTEQA ATOTEAEGUATAL.

Ipoywedvtag o mo cbvieteg apyitextovinée, BAénovye 6Tl 1 apyitextovixy Feature-VGAE xou 1 apyttex-
tovixfj; Combined (ou omolec elvon oL TpAOTEC TOU LAOTOLOOY X0 EVOY ATOXWILXOTIONTY YOPUXTNELOTIXADY),
TopEyouy RN wior ddnom xon otic tpelc YeTpéc. Luyxexpwuéva, eletdlovtoc Ty NDCG (v mo avunpoow-
TEVTIXY et uetol TeV TpLY), xat ol 800 elvon LPMAdTEPES o GlyXELoN He To BVo apyixd wovTéha. Axdun
xou oe oUyxptor pe 1o ARVGA, unopolue va dobue 6t tar povtéha ye tov Anoxwdonomtr] Xapax tnelo Tixoy
onpetdvouy xalvtepn Baduoroyio oto NDCG.

H peyoaldtepn ad&nomn tng anddoong napatneeiton oTig 600 TEAEUTALEG JPYITEXTOVIXES, OTOU N AVTAYWVIOTLXN
exnaldevon and 1o poviého ARVGA, cuvdudleton pe évav Anoxwdixonointy Xopoxtneto Tixdy xa évay Anox-
wduonomnt Axudv (tou yenowonowel o pio povéda NAT). Ou 8Vo apyrtextovixéc Combined-ARVGA
€youv Tic xohUTepe Paduoloyieg peta€d twv NAT, xou otic tpelc petpinéc. Luyxexpipéva, 1 éxdoon GCN e
Combined-ARVGA onueidver tnv xahitepn Badporoyic NDCG xow MAP e dha to povtéha NAT.

AMAG propolye axdpo v Sovye, 6t ol ITuprves I'pdprv e€oxohovdolv va elvon xahbtepol, dtav Tedxeital yio

20

1.3. Iewapotxd Mépoc

MAP@10 MRR NDCG@10

Shortest Path Kernel 0.4836 0.5377 0.2027
Random Walk Kernel 0.0147 0.0560 0.0012
Weisfeiler-Lehman Kernel 0.6264 0.7119 0.2790
Graphlet Sampling Kernel 0.1658 0.1741 0.0248
Neighborhood Hash Kernel 0.6257 0.7141 0.2956
GCN 0.5270 0.6878 0.2132

GAE GAT 0.4946 0.5747 0.1975
GATvV2 0.5343 0.6460 0.1907

GIN 0.4244 0.4623 0.1631

GCN 0.5302 0.6660 0.2177

GAT 0.5914 0.7061 0.2193

VGAE GATv2 0.5237 0.5859 0.1761
GIN 0.4275 0.5120 0.1876

GCN 0.5524 0.6567 0.2240

GAT 0.5646 0.6425 0.1994

Feature-VGAE GATv2 0.5958 0.6864 0.2327
GIN 0.5007 0.5762 0.1953

GCN 0.5676 0.7017 0.2287

Combined GAT 0.5405 0.6428 0.2350
GATv2 0.5598 0.6679 0.2446

GIN 0.4335 0.4828 0.1215

GCN 0.6104 0.7298 0.2287

GAT 0.5844 0.6680 0.2183

ARVGA GATv2 0.5436 0.6860 0.1998
GIN 0.5364 0.5935 0.2238

GCN 0.6353 0.7455 0.2796

. GAT 0.6137 0.7503 0.2662
Combined-ARVGA GATv2 0.6219 0.7454 0.2416
GIN 0.5320 0.6318 0.2448

GCN 0.6277 0.7162 0.2472

. GAT 0.6117 0.7533 0.2542
Combined-ARVGA-MLP | (1., 0.6107 0.7403 0.2606
GIN 0.5683 0.6423 0.2585

Table 1.3: Tehxéc Metpixée yia Toug ITupriveg I'edpwv xan to Béhtiota povtéha NATL, oto Random Subset.
To évtova Yeduuato UTOBNAGYOUY TO XUAITERO UTOTEAECUA YLol XEUE OPYLTEXTOVIXY.

NDCG. Suyxexpipéva, o nupfivac Neighborhood Hash onueidver nepinov 2% peyahitepo oxop oto NDCG
and 1o xoAUTepo povtého NAT, odAd ta ndel yewpdtepa 610 MAP xou 6to MRR. Av duundolye, 1 epunveio tou
MAP, elvon 611 pag Met néoa oyetind avuxelyeva €youpe otny tpoBAenouevn xotdtoln, xou To MRR AouBdver
umoYn povo Tt Véom Tou TEMToU oYETXOU avTixeluévou tou avoxthinxe. ‘Etol, av e€etdooupe autég tig dlo
ouyxexpévee ttuyéc e Aviaxtnone IIinpogoplac, téte ta mo cOvieta povtéha NAT elvar xahltepa and toug
IMupriveg I'edipwyv. AN and tnv dAAN TtAeupd, To NDCG elvon 1 wdvn yetpuxn mov, ouclootixd, AauBdvel urodn
Tor vt omd TV TEOBAENOPEVY xaTdTaly (T V€N TV AVTIXEWEVWY, TO OX0p GUVAPELIS TWV AVTIXEWEVWY,
av éva avtixeluevo elvon oyetxd i oyt xhn.) ‘Etol, av evdiogepduacte yior éva cuvolixd xahltepo cloTrua
Avéxtnone Iinpogopioc, tote o muprvac Neighborhood Hash e€oxohouviel va eivon 1 xahOtepn emhoyy.

‘Ocov agopd i cuyxexpévee wovddee NATL, to mo exmAnxuxd anotéheoya elvon 1 uno-anddooT TV Top-
alaywv GIN, oyedov oe xde apyitextovixr). To GIN Aoy yoxedv to govtého pe v xahltepn Yewpntixn
Yepehlnon yetoll Twv tecodpwy, ondte anotehel ExmAnEn to YeYovog 6Tl onueiwoe youniotepn Baduoroyio
and 1o GAAa, oyedov oe dheg Ti¢ mepintwoelc. Exelvo mou elye yevixd tig xahltepeg emdboelg tav 1o GCN,
pe o GATV2 va onuewdvel eniong e&loou vPnin Baduoroyia.

Tao anoteléopato amd AUTE To TEMTO TEWPHUATA Elvor oUTE TOU Uac 0dfyNnoay vo Tpaypatonoljooupe €€tpa

21

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

MAP@10 MRR NDCG@10

Shortest Path Kernel 0.3086 0.3747 0.0852
Random Walk Kernel 0.0532 0.0693 0.0177
Weisfeiler-Lehman Kernel 0.3372 0.4011 0.1102
Graphlet Sampling Kernel 0.1468 0.1770 0.0374
Neighborhood Hash Kernel 0.4449 0.5440 0.1568
GCN 0.4941 0.5873 0.1989

GAT 0.4972 0.5736 0.1851

VGAE GATv2 0.5020 0.6046 0.2030
GIN 0.5053 0.6067 0.1914

GCN 0.4678 0.5554 0.1757

GAT 0.4813 0.5540 0.1744

ARVGA GATv2 0.4956 0.5754 0.1911
GIN 0.5247 0.6325 0.2015

GCN 0.4828 0.5783 0.1907

. GAT 0.4757 0.6060 0.2236
Combined-ARVGA GATv2 0.5064 0.5915 0.2156
GIN 0.5441 0.6067 0.2254

GCN 0.5078 0.5874 0.1910

. GAT 0.5250 0.6115 0.2326
Combined-ARVGA-MLP | 1 0.5591 0.6580 0.2438
GIN 0.5099 0.5947 0.2299

Table 1.4: Tehuxéc Metpuxée yio toug Iuprvee I'pdpwv xon to BérTiota povtéha NAT, oto Dense Subset. Ta
EVTOVA YEGUUOTO UTOBNAWVOUY TO XUADTERO ATOTEAEGUA YIO XQUE OPYLTEXTOVIXH.

TELPHUOTA O TILO TUXVOUC YRdpoug xou va aflohoynooupe Tt ouunepipopd twv NAI xa o avtols. ‘Onwg
éxet MO avagpepdel, dev doxwdooue Eavd dhec Tic mdavéc apyltextovixéc oto Dense Subset, mopd pévo tig
mo Yepehddelc xa Tic o vrooyoueves: VGAE, ARVGA, Combined-ARVGA, Combined-ARVGA-MLP. Tu
anoteréopata oto Dense Subset nopovoidlovton otov mivoxa 1.4.

H onpoavtixg dlagopd 86, elvon 6tu tar povtéha NAIL uneptepolv évavtt ohwv tewv Iuphvev T'edgwy, xou
oTIC TEES peTpwES. Ko to emtuyydvouv autd, oxdun xou omd TNy TemTN deyltexTovixt, to anhé VGAE.
Ko 1o xoltepo yoviého NAT, n nopodiayr) GATv2 tou Combined-ARVGA-MLP emtuyydver 11.5%
udmiétepo MAP, 11% udmiétepo MRR xou 9% vnidtepo NDCG. 'Etot, unopolue vo nolue pe ac@ireia
OTL mpdxeLToL yior €val TOAD xah0Tepo cloTnua AvaxTnong amd Toug TUEHVES YRAP®Y Yia duTh TNy neplnTtwon.
Enione, mopatnpeobue 61t xou otic 300 nepintdoel (tuyodor xon Tuxvd ypagphiuota), 1 povéda tou Bondidnxe
neptoodtepo and v tpootixn MLP oty apyttextovixfy Combined-ARVGA, eivor ny GATv2.

Avuté anotehel enlong po copy) amdBelEy), TNg onuaciog TNE TOLOTNTOG TOU GUVOAOU BEBOUEVGY Lo OAX ToL LOVTERN
unyevaie pddnong. Idwitepa yio T NAT, elvan npogavég 6t 1 TTuxvéTnTR TV YRoPNUdTLY extaldeuong,
nailel onuoavtind pédro, enedn n uédodoc Message-Passing dev pnopel vo o&lomoiniel anoteheoyotind 6tay
umdpyouv moAlol amopovwuévol xépfol. Enlong, o meploptopdc tou peyédoug tou ypdpou énauie onpovTind
eoho, xoddg ol Tehixéc Eviéoeic I'pdgwyv elvan mo emapxmg ouyxploweg, dtoav ta peyédn Twv yedpwy eivon tTng
{Bloc TdEne.

Muat g1 onuoavtixn Sopopd eivar or Baduoroyieg twv napahhaydy GIN. Ye auth v neplntwon, elvon autég
TOU TPy oUV Tol XA TERPX ATOTEAEGUATA OTIC TEPLOCOTEPES MEQITTACELS, EVE 0TNy Tepintwor Tou Random Set
elyav apxetd xoxéc emdodoelc. Autd elvan éva oaxdurn otolyelo Tou UTooTNe(lEl TOV LoYUELOWS TTIOU BLUTUTIWOCUUE
TOEOTEVE, OTL 1 TuXVOTNTY TV Yeapnudtewy toilel xadoplotixd pdho GTo Vo Umopoly va o€LOTOGOUY TNV
EXPEACTIXH) TOUG BUVOUY Yol VoL WETIOUY CTUAVTIXG. YOQUXTNELOTIXG.

Oa napadécoupe eniong Toug XEOVOUC EXTEAEONS YLO TOUC TUPHVES YEAUPNUATKY, xadde Xal TOUS Ypovoug
exnadevong (training) xou cuunepacpol (inference) yio to povtého NAT, otov Iivaxa 1.5. To pévo onpavtind
TEAYUA TOU TEETEL VoL TOEATNEHOOUKE €0, elvor 6Tl 1 Exnaideuon twv yovtéhwv NAT, Swpxel and yepxd
deutepOAenTaL, Ewe xou Ueptxd Aentd. ‘Etot, o ouufiBacpods, petald Tou Ypbvou EXTENEGTC XOUL TWYV ATOTEAECUATODVY
TWV TUPTHVLY, Xt Tou ypdvou Exnaldevone xaw twv anoteieoudtwy twv NATL, afilel olyoupa tov %610, edixd

22

1.3. Iewapotxd Mépoc

Train Time Inference Time

Shortest Path Kernel - 117 ms
Random Walk Kernel - 16.5 sec
Weisfeiler-Lehman Kernel - 338 ms
Graphlet Sampling Kernel - 3.51 sec
Neighborhood Hash Kernel - 263 ms
GCN 1min 3sec 680 ms

GAT 54.1 sec 836 ms

VGAE GATv2 1min 13sec 899 ms
GIN 56 sec 275 ms

GCN 30 sec 649 ms

GAT 3min 41sec 855 ms

ARVGA GATvV2 1min 7sec 905 ms
GIN 4min 35sec 299 ms

GCN 4min 30sec 723 ms

. GAT 5min 23sec 888 ms
Combined-ARVGA GATv2 3 min 971 ms
GIN 1min 6sec 320 ms

GCN 4min 29sec 697 ms

. GAT 4min 16sec 916 ms
Combined-ARVGA-MLP GATv2 5min 48sec 964 ms
GIN 16 sec 327 ms

Table 1.5: Xpbvor Exnoidevone/Svunepoaouol tov Iuphvwy Fedpov xa tov poviéhwy NAT, oto Dense
Subset

oty mepintwon tou Dense Subset. Aev mpénet enlong va Eeyvdye, 6Tt to peyohltepo mheovéxtnuo twv NAT
évavtt Tv Hupvwy T'edpov, elvar 6t napéyouy Evietinéc Avanopaotdoeic yevixnc xenone, mouv unopoly vo
yenowornolndolyv yia Ty enlAUCT| OTOLOUBHTOTE HETAYEVESTEPOL TROBAAUATOC.

Yupunepoopotixd, unopolpe va dolpe 6t o NATL anodewviovton wior mparyatind xokry Aoon, dtav mpdxeitol
yioe TV eVpean Opordtntag I'edpwy, eldnd av £youue ot diddeot] yag uio SwBefoiwon yio TRy ToldTHTA
TWV Ypopnudtwy. ‘Ocov agopd to ypdvo exmaldevong, aviaywviovto eniong oha ta cuothiuata EmBienouevne
Ouolotnrag, to onola Yo ypeetdlovtay mohd neplocdTepo YEOVO Yiol VO EXTOUOELTOVY, ETEWDY| YPNOULOTOLOVY
Cebyn ypoapnudtwy we delypora xou oyt wovo ypagruoata (auidvovtog tetpaywvixd 1o TAfdoc twv Seryudtov
exnaidevone).

ITototixh AvdAuoT

INo v Iootxn aglohdynon twv poviéhwy, Jo YenoLLoTOICOUUE TIC EXOVEC TIOL OVTLOTOLYOUV GTOUG YEd-
poug oxmvng, ol omolol avoxtadvton and o NATL xou toug ITuprvee. Oa mapovoidooupe ti¢ Ewxdvec-Epwtiuota
(Queries) xon tic TEMOTES EWOVES TOU Vo THUMXAY, TOGO YioL TIC ENLTUYEIC GO0 X0 YLoL TIC AVETUTUYELS TEQLILTE-
oeig. Elvow onpovtind va Jupouacte e, 6Tt O TA LOVTEAX TOL AVAPERTNHAY KA SOXLUACTNHAY,
dev eiyav npocPBacn otic Euxdveg, napd wovo otoug avtictolyoug I'pdgoug Lxnvng. Autd
TEOPAVGLE 0dNYel oe TEpITTWOoELC OTou oL Euxdveg dev elvon dpoteg, aAld 1 opotdtnta Twv Ioagpnudtenv odnyel
To povtélo va Tic xatatdiel Pnid. Iopaxdte, napovoidlovue Lebyn Epwtioewv-Anavtioewy, tou arnoteholv
TapadelypaTa Twv cevaplwy mou e&nyRinxay Topandve.

23

Chapter 1. Extetopévn Iepihndn ota EAAnvid

i

N3

STV Ol

Figure 1.3.2: TTapodelyuata Slopopetixdy epwtnudteny (apiotepd), Le ta 3 xopugala arotehéopata (8eid),
omwg avaxthdnxay and to xahitepo yoviého NAD

24

1.3. Iewapotind Mépog

Figure 1.3.3: AUo mopodelypata EpnTNUAT®Y, OTOU To 2 TEEMTA AVTIXEUEVO TOU AVUXTMVTAU Ald TO XUAITEPO
; P
povieho NAT (ndvew) elvon ontixd o xovid otny emdva Tou epwThpatoc (aplotepd), oe cUYXELoN UE To 2
TpoTa ovTixelpevo Tou avoxtdvton and tov xahitepo Huphva Tpagpnudtenv (xdte).

25

Chapter 1. Extetopévn Ilepihndn ota EAAnvixd

person
person
person
person —————————— water \ person
airport
person
person

Figure 1.3.4: ITopdSerypa dmou to epdtnua (aplotepd) ot to Tpato avaxtniéy aviixeipevo (3edid) olupuva
pe 1o xahltepo yovtého NAT, éyouv dopixd mapduotous Yed@ous oxnviAc, ohhd dpXeTd avOUOLES EIXOVES.

1.4 >vunepdopata

Yy nopovoa datelr, avtipetwricoaue to teéBinua e Oupodtntoc I'edgwy, oto mhaiclo g xotaoxeuvic
cuotnudtoy Avédxtnorng IIAnpogoplac. Xuyxexpiéva, Yewproauue we Paower ahfdeio Ty ogoldTnTa
nou unohoyiletar and Tov ohybprduoAndotaons Erneéepyacias Tpdpwy (AET), tou onolou otdyoc eivar vo
petotpédel €va Sedouévo Ypdpo, ot Evay loopop@d xdmotou dAhou yYedpou. Auté éxel anodeyyVel 6t elvan NP-
Hard, ondte ypnowomnootvton cuvidwe didgpopes npooeyylotixés napahhayéc tou AET. E8®, yenowonooye
v moapodhoyn Bipartite Matching, n onolo npoceyyilel tn Béhtiotn andotoor enelepyasiog yedpwy, Aoy-
Bdvovtag unddn xuplne tic Thnpogopiec twv xouBwy xo T enelepyaoiec mou toug anodidovton. I'at To x60T0C
elooywYNe/darypaghc/avuxatdotaone v Yedewy oxnvic, evonuatdvouue tnv Iepapyic Evvoudy tov napéye-
tou and to WordNet, poli pe ahyoplduouc "ogoldtntag povoratadv" mou epopudélovion oe auth Ty Lepopyla.
TTapého mou ov mapadhayée tou AET pde mapéyouv ta mo axpfry anoteAéopato, 1 Aoy TEXVIXTH Yo TNV
QVTWUETWTLON TNS OPOLOTNTOG YAy elvan péow g yenong twv Muehvwy T'edpwyv. H peiwuévn vroro-
YIOTXY TOAUTAOXOTNTE TOUC, 1) IXAVOTNTA EPUNVEIDC TWV ATOTEAECHATWY X0 1) Blapxde LPNAY anddoocy| Toug,
Toug €Y0uY TOoTOVETAHOEL WG Wial BEAEATTIXY) ETUAOYY) EB6 xou TOMAG Ypovia. Emiéyoupe va afloloyriooupe tévie
dnuopuhy Iuprvee T'pdpwy, teeic and toug onoloug Pooilovton oe YepeMmddelc PeTEXES YRAPWY, EVEHD oL GAAOL
dvo Baotlovto otn SLdBocn TANEOPoElG UEGL TWY OXUMY.

H xevrpwn 0éo autric tng epyaoiog, elvar va avolboouue Bidpopes dpyitextovinée Mr-enmiBAEnOUEVE®Y
AvTto-xwdixonomntary I'edgwy, tpoxeipévou va afloloyricouue Bieodixd xat vor GuYXeVOUUE TIC ETIBOCELS
Toug Ue toug npoavageptéviee Iuprvee Ipdpwy. Ta NATL nou npotetvoupe xou netpapatildpacte, anotehodvia
amd didpopa douixd otouyeia, xodéva and ta onola eotdlel oe wa diapopetinh) Ttuyf e ExudOnons Avarapdo-
Taong SedoUEVwY. LUYXEXPWEVA, TO TENXO povtélo mou mpotelvouue, To Combined-ARVGA, anotehelton
and tplo Baocixd otouyelo:

26

1.4. Xuyurepdoporo

o O apywéc AKT, poli pe tov Inner Product Decoder, nou glvar uredhuvog yiol Tn Sopixr ovaxotooxeuy
TOU YRUPHUITOG.

e O Anoxwdixonomnthic XapaxTneloTixwy, utelTuVoC YLoL TNV AVAXOTAoXEVT] TNG TAnpogopiog
0TOUC XOUPoUS Tou YRAUPHUATOS.

e O AteuxpivioThig, unediuvog Yio TNV XaVoVIXOTONoY TeV EVIETIXDV AVITIPUCTICEWY TOU TORdYOVToL
omd Tov xwdwonointy, Yéow tng Avtaywviotixnc Exnoidevonc.

INo g mpaypoatinég povadee NAT nou yenowonolobvtan otoug tedixolc AKT, Soxdlovue téooeplc and toug
mo dnuoguielc: GCN, GAT, GATv2 xou GIN. ‘Ocov agopd Touc YpdPoUS ELGOBOUL, YENOWOTOWUHE TIC EV-
Yetxée avanopactdoelc AéEewv Tou GloVe xou apoupolue Tor YapaXTNEIG TIXA Xl TS TANPOQORIES oY and
TOUC apytX00¢ YPAPOUS OXNVEY, OmAOTOLOVTAS TEpalTépw TN Sour| Toug. Amoxtolpe enlong 800 uTtocUVoha TOU
Visual Genome, to Random unoctvolo xou 1o Dense vnocivolo, Tpoxeldévou va HeTpriooude TNy enldpaon
TNC TOLOTNTOC TOU GLUVOAOU BEBOUEVWY, oTNV Tehxn anddoon twv YoviéAwv. Lo 1 diadacio agloAdynong,
YENOWOTOACUUE TEELS A6 TS TO EVEEWS YPNOULOTOLOVUEVES UETEXES Yo TNV aELOAOYNON cLOTNUATWY AVdx-
mone IMnpogopioc: MAP (pétpnon tou precision e tehxfic xatdtaing), MRR (pétpnon e Yéone tou
TEMTOL avaxTNUEVTOS oyeTixol avtixeévou) xaw NDCG (1 mo yevixd yetpxd, 1 omolo Aaufdver unddn tig
Yéoeic xan g Poduoloyiec ouvdpeac).

Ané o mepduota oto Random unocivolo, unopolue va cuumepdvouue 6t to Combined-ARVGA vtav 7
apyrteEXToViX e Tig xahUTepe emdooels, pe o GON xow GATV2 va eivon ot o wavée povadee NAT. TTpory-
HOTOTOLVTOG it LENETY apadpeomne oTic Sudpopec apyttextovixés, unootnpilovue 6t 1 ypehon evéc Amox-
wdixonomnt XapaxtneitoTixoy poli pe pwa uédodo Aviaywvictixnc Kavovixornoinong, nai-
Couv mpwTopy X6 EOMO GTNY EXPAINGCT OUCLUC TIXWY AVATHPAUC TACEWY YLl TOUS XoUoug Tou Yedpou, oL omoleg
unopolv ebxoha vo enextortolv xou oTNY TapaywYY) EVIESEWY YLoL TIC AXUES, 1) AXOUT| XAl Yot OAOXATPO TOV YEdPo.
‘Ocov agopd toug Huprveg I'odpwv, 1 expeac i SOvaur tng uedodou Siddoone TAnpopoplac elvol eppavnc oto
TeMxd amotéheoya, xadde ol muprvee ypdpwv Weisfeiler-Lehman xow Neighborhood-Hash, Eenépacav toug
dAhoug mupriveg pe onuavtixy) Swpopd. ‘Otav cuyxelvoude tov xahltepo Tuphva Ue To xahltepo wovtého NAT,
dlomotavouue 6t to Combined-ARVGA GCN onueiwoe 1% vdmhétepn Baduoroyio oto MAP, 3% uin-
Motepn oto MRR, adhd 1,5% yopniétepn oto NDCG. To yeyovoc 6t o NAT Sev propoloay Vo GHUEUdcouy
600 VPN Baduoroyia 6co ol Iupriveg I'pdpwy oto NDCG, elvor autd mou yag odynoe vo TeaydTOTOLY-
COUUE Wla Lo EVOEAEY T avEAUGT) TOU TUY oL UTOGLYOAOU oL YenotloToinxe apyxd. Awmoteinxe dTt oL
yedpol oxnvic elyay apxeTd younin TuXVOTNTA, ONUAVTIXG oEUd ATOUOVWUEVKY (OUPwY, xoddC XoL UEYSEAN
ToutAiol HEYEVY YeapnudTwy, YEYOVOS Tou XxadoTéd 50ox0oAN TN obYXpELor Touc. ¢ ex ToUTOU, dNULOUEYTiCoUE
éva 8eltepo GUVOLO Bedopévwy, to Dense unocivolo, TEOXeWEVOL Vo EAEYEOUUE AV 1) TTOLOTNTOL TWV SEBOUEVWLV
umopel va ennpedoel apvnTxd TNy anddoor twv poviehwyv NAT, oe onueio mou ol Huprveg T'pdpov va ta
Eenepvoiv.

H unédeon auth enadniedtnxe 6ieodnd u€ow Twv tpdcletwy TElpopdTnyY Tou Teaypatotoliooue oto Dense
UToGUVOAO. Xuyxexpéva, ouyxpivoviag 1o Combined-ARVGA-MLP nou yenowonoiel) yovada GATv2
pe tov Iuphva Dedgpwy pe tic xohdtepee emddoelc, To NAT onuelwoe udpmhétepn Paduoroyio 11% oto MAP,
11% oto MRR xa 9% oto NDCG. 'Etot, unopolue vo cuunepdvoupe pe ao@drew 6t oo AKT urnopolv va
HEdoUY GNUAVTIXES AVOTUEUO TAOELS YRAUPNUATEV KoL VoL TIS YENOWOTOLAooLY i v Eenepdoouv toug Huphveg
I'edpwv oto mpdBinue tng Ouotdtnrog I'edpwy, dedouyévou 6T 1) TOLOTNTA TOU GUVOAOL SEBOPEVWLY ExEl avohudel
xan emixupeel. Extoc and autd, to onuaviixdtepo micovéxtnuo twv AKI, eivan 611 ol tehinéc Evidetinég Avo-
Tpac Tdoels Bev €youy exmoudeutel o xdmota YeTayeEVES TERT] EpYaoia, dANE uéVo yia exudinon avanopdo Taong
yevxol oxomol. AuTtéd og ETUTEENEL Vo YENOWOTOLCOUUE QUTA To EXTIUOEVUEVA LOVTEAN XOL VO EXTEAEGOUUE
ToEaBOCLOKES EpYATIEC OF ETUNEDD XOUPBWVY, UGV 1) YPdPwY, GTOUC YRdQOoUS Tou €youlue oTY) Biddeoy| pag.

Téhog, omwe avagépinxe otny Evétnta 1.1.6, 0 ancdTtepog oTtodY0¢ Yo TNV EXTABEVCT) AUTWY TWV YOVTEAWY
NAT xan v o€lohéynot| toug otny epyacia Avéxtnong IIinpogoplac, elvon xupiwe 1 vhomoinoy| Toug uéoa
oe évo mhaiolo E&nyfioewy pe Avtinapodeiypato (6nwe autd tou mpotelveta oto [21]), to onolo yenowonoiel
e€wTepn) YVHon Tou Tapeyel eénynoelc yio Ta delypata evog avdalpetou cuvorou Bedopévwy. Edv autrh
eZwTepr] YVOOY SlATUTOVETAL GE BoUéS YRdPwY, ToTE unopolv va aflomoindoly poviéha NAL, mopduolo e
QUTE TOU AVOADOVTAL OTNY TapPoUca dlaTel3Y], WOTE Vo TapEYOUV XAADTERT, AmOBOCT Xl YUUNAOTECOUS YPOVOUG
UTOAOYLOWOD.

27

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.4.1 MeArovtixéc Katsuddvoelc

Yy emdlwin g tpocdnong tou medlou Tou UTOAOYLOUOU TNG OHOLOTNTOC YRAUPNUATWY UE TN YeNoN AUTOX-
WOLXOTONTWY YRAPwY, N Tapoloa Swutelfn édeoe éva Jepehiddec mhaioto xa mopelye TONITIUES YVOOEC OYETIXG
HE TNV OMOTEAECHATIXOTNTA XU TIE SUVATOTNTEC TETOWWY UovTéAwY ot mpolAfuata Avdxtnone ITinpogoplag.
Qotéo0o, dnwe ouuPaivel e xdde emotnuovixy tpootddela, 1 e€epebivnomn autod Tou Topéa anéyel Tohd and To
vou efvor eEovTANTIX, oL TOAAG oY PTOYEAPNTA HOVOTATIOL XUAOUY VLol TEPAUTEPL EPEUVA. € OUTO TO XEQPIANLO,
euPodivoupe oTic TOAG UTOOYOUEVES XATEVTDUVOELS X0 TIC AVEXUETIANEUTES BUVITOTNTES YLol HEAAOVTIXY €pe-
uVa, PE 0TOYO0 va o€loTOLCOLUE TaL ELEYUoTa xou Ti¢ hetodohoyieg mou TapovsldoTnxay oTtny napoloa epyacio.
Suyxexpiuéva, ol Baocuxol Touelc €peuvag mou Tapouatdlouy Wiaitepo evBlapépoy elval ol axdhoudot:

o Ilpddta am’ Ao, T0 xatd TOGO 1) am6dOGT AVTRY TewV povtédwy NAT oe éva npéfinua Inductive A vdix-
tnone IIAnpogopiag civan txavn, elvon T0 To GNUAVTIXG ERWTNUN PHETE TNV gpyacio Tou tapouatdleTo
£06d. Alotunioope o teoBinua w¢ Transductive xan anodelEoue v utepoy TwWV AUTO-XWOLXOTONTHOY
Tedpwv évavtt twv Hupivev T'edpov, ahhd meénet vo undpel evieieyfic TelpauaTiondc xou agloAdYNoN
v va yiver o (Blog loyuplopde yio to Inductive Inference.

o H yphon twv Axeoctaxdv Movddwyv NAT, do npénel enione va e€etootel, enedy) enttpémouy o
TOAD THO EXPEACTIXY| AVATUEACTACT] YLOL TLC OXUES TOU GUVOROU DEBOUEVWV. LUYXEXQWEVA, TO LyYECLUX
NAT, Sltuntdvouy to Yedpnuo ELo6B0U WE €Val €TEPOYEVES Ypdpnua, 6Tou undpyouv Tohuderduol Tirol
oV, 0 xodévag ue éva wovadixd nivaxa yertvioone. H aglonolnon tétoiwy yoviéhwy, Yo uropoloe va
poc emtEédel var aAAGEOVUE TNV TPOETEEERYUOIN TWV YPAPWY, Xl VoL EXHETUAEUTOUUE TIg TANpOQoples
yio T Axpée.

e O Auto-xwduonointéc yevixodtepa, €youv yenoionowmiel extevig oe npoliiuata Yo ’cuvihxng
ITopaywync Asdopévwy, o ot Auto-xwdixorointéc I'pdpwy dev anoteholv e€aipeom. Ilapdho mou
dev euPatiovope otic duvatotnieg Iopaywyhc Twv AKI oe auth) dateiBy), Yo unopoloe va amodetyvel
éva loyupd epyoheio, eldwd oto mhaioo e E&nynowdtntog, 6mou o otdyoc TOAGDY TEOTELVOUEVKY
mhauoiev elvon 1 mapaywyh VEOY AVTITOpadElYUdTWY e OXOTO TNV ENEENYNOLLOTNTO TWV UOVTEAWY.

o Y10 mhalolo TG BLaTEBHC, MELROHATIO THXOME LOVO UE TI o dnuogikeic xou Jeuehwdelc Movdadeg NAT,
o ontoiec eivan T GCN, GAT, GATv2 xar GIN. ‘Eyouv npotadel apxetéc mo exhentuouéves exdooelc[32,
15], ot onolec npoosTadolv var avTeTwioouy To TedBAnua e unep-andofeone xotd 1 oTolBaln ToANGOY
emnédwv. H yprion autdv twv povédwy NAT, do urnopoloe vo emitpédel TNV eNEXTAGLLOTATA TWV HOV-
TEAWY TOU TEOTEVOVTOL £BC), TEOXEWEVOU Vo eTTELY YO0V xaAUTERES emBoEC o TpoBAAuaTa Exudinong
Avanapdo taong.

28

Chapter 2

Introduction

Recent developments in artificial intelligence (AI) have been nothing short of transformative. Al has found
applications in a wide range of fields, from healthcare and finance to transportation and entertainment. One
of the notable trends in AI has been the growing importance of Graph Neural Networks (GNNs). GNNs
are a specialized class of neural networks designed to work with graph data, which is particularly crucial in
modeling complex relationships and structures found in various domains. They have shown remarkable success
in tasks like social network analysis, recommendation systems, and even drug discovery, where understanding
the intricate connections between entities is essential.

The need for Graph Neural Networks arises from the limitations of traditional neural networks, which are
primarily designed for grid-like data, such as images or sequences. In contrast, many real-world problems
involve interconnected data points, such as social networks, transportation networks, or molecular structures.
GNNs excel in capturing and leveraging the rich, hierarchical relationships within such data. Their ability to
perform tasks like node classification, link prediction, and graph classification makes them invaluable tools
for tackling complex, interconnected problems.

The problem that we will tackle with this thesis, is the Graph Similarity problem. Given a query graph, we
want to rank all the possible "answer" graphs, based on their similarity to the query graph. Through the
years, a lot of solutions have been proposed to solve Graph Similarity, the most popular ones being Graph
Kernels. Graph Kernels are algorithmic methods that provide a quick way to compare graphs, using several
graph metrics and graph transformations. They are usually the preferred methods, because of their ease of
implementation, and their low computational cost. In this thesis, we will tackle this problem using Graph
Neural Networks. Specifically, we will use un-supervised Graph Autoencoders, since supervised approaches
have already been studied[129].

Another pressing concern in the Al community is the need for Explainable AI (XAI). As Al systems be-
come more integrated into our daily lives, their decisions impact critical areas like healthcare, finance, and
autonomous vehicles. However, the inherent opacity of some Al models, especially deep learning ones, raises
questions about their reliability and trustworthiness. That’s why the need for Black-Box Explainability
methods is become more important, as the complexity of the Al models is constantly rising. One of the
most reliable Black-Box Explanation methods, is through Counterfactual Explanations. This process in-
volves analyzing the differences between the Query Object (graph), and the Counterfactual Object, which is
the first retrieved graph that doesn’t belong to the same class as the Query Object. The importance of the
Counterfactual Object lies in the fact that it can provide us with the minimum changes needed to be made,
in order to move to a different class. We will follow the procedure and algorithm defined in [29] and [21].

The outline of this thesis:

e We will firstly set the theoretical ground for defining and applying all the methods and models we will
use for the experiments. This includes Graph theory, Deep Learning theory, Graph Kernel variants,
several Graph Neural Network architectures, and Graph Edit Distance approximations.

29

Chapter 2. Introduction

e We will then give a more detailed and formalistic definition of Counterfactual Explanations, and specif-
ically Conceptual Edits that can be used to provide Black-Box Explainability for the GNN models.

e Lastly, we will define the proposed GNN Auto-Encoder model used to tackle the Graph Similarity
model, with all the details on its architecture and training methods. We will also evaluate the different
GNN architectures, both in a quantitative and in a qualitative manner, and compare the results to the
more conventional methods (Graph Kernels), allowing us to draw conclusions and provide meaningful
insights on the advantages and disadvantages of the GNN models.

30

Chapter 3

Machine Learning

Machine learning is a subfield of artificial intelligence that focuses on developing algorithms and models
that allow computers to learn and make predictions or decisions from data. Its history can be traced back
to the mid-20*" century when researchers began exploring methods to enable computers to improve their
performance through experience. Early machine learning techniques were largely rule-based and relied on
expert knowledge to define decision-making processes.

One significant milestone in the history of machine learning was the development of decision trees and the
ID3 algorithm by Ross Quinlan in the 1980s[90]. These methods paved the way for automated decision-
making based on data, making it possible to create models that could learn from examples. Another crucial
development was the introduction of support vector machines (SVMs) in the 1990s[19, 7], which enabled the
classification of data points into different categories with high accuracy.

The evolution of machine learning into deep learning marked a transformative shift in the field. Deep
learning is a subset of machine learning that focuses on neural networks with multiple layers (deep neural
networks). Deep learning algorithms, such as convolutional neural networks (CNNs) for image recognition
and recurrent neural networks (RNNs) for sequential data, have achieved remarkable success in various
domains, including computer vision, natural language processing, and speech recognition. The deep
learning revolution was driven by advancements in hardware, such as graphics processing units (GPUs),
which accelerated the training of large neural networks, and the availability of vast datasets.

Contents
3.1 Data Modalities« 0 i i i i i it e e e e e e e e e e e e e e e e 32
3.2 Machine Learning Types ¢ v v v v i v vt v i bt ettt e et e e 32
3.3 Definitions. o . . i L e e e e e e e e e e e e e e e e e e e 33
3.4 Deep Learning o 0 i i i i e e e e e e e e e e e e e e e e e e 37
3.5 Autoencoders e 48

31

Chapter 3. Machine Learning

3.1 Data Modalities

Machine learning deals with a variety of data modalities, each with its own unique challenges and applications.
Several different architectures have been developed to tackle the problems presented in each modality. The
structure of the data, the way that the information is stored, and the semantic content of each modality are
a just a few things that define the Machine Learning approach for modality. Below, we present the most
popular modalities found in modern datasets.

Structured Data

This type of data is organized in tables or databases, typically with rows and columns, where each row
represents a distinct entity (e.g., a customer, transaction) and each column represents an attribute or feature
(e.g., age, income, product ID). Structured data is commonly used for tasks like regression, classification,
and database management.

Unstructured Text Data

Unstructured text data lacks a specific format and can include documents, emails, social media posts, and
more. Natural Language Processing (NLP) techniques are applied to analyze and extract information from
text data, enabling tasks such as sentiment analysis, text summarization, and language translation.

Image Data

Image data consists of visual information represented as pixel values. Machine learning models, particularly
Convolutional Neural Networks (CNNs), are used to process and analyze images. This modality is vital for
image classification, object detection, facial recognition, and medical image analysis.

Time-Series Data

Time-series data comprises sequential observations recorded at regular intervals. Common examples include
stock prices, temperature measurements, and sensor readings. Time-series analysis is vital for forecasting,
anomaly detection, and trend analysis.

Graph Data

Graph data represents entities (nodes) and their relationships (edges) in a network structure. Graph Neural
Networks (GNNs) are used for tasks such as social network analysis, recommendation systems, and knowledge
graph reasoning.

3.2 Machine Learning Types

In machine learning, various learning types and paradigms are used to train models based on different
approaches and objectives. The popularity of these learning types may vary depending on the problem, data,
and application. The key point that differentiates these approaches is Supervision, which implicitly defines
the learning goal of the machine learning model. The most popular learning types are presented below.

Supervised Learning

Supervised learning is one of the most widely used learning types. It involves training a model on labeled
data, where each input is associated with a corresponding output or target. The goal is to learn a mapping
from inputs to outputs, enabling the model to make predictions on unseen data. Common supervised learning
algorithms include linear regression, decision trees, support vector machines, and deep neural networks.

32

3.3. Definitions

Unsupervised Learning

Unsupervised learning deals with unlabeled data, where the model aims to discover patterns, structures,
or groupings within the data. Clustering and dimensionality reduction are common tasks in unsupervised
learning. Algorithms such as k-means clustering, hierarchical clustering, and principal component analysis
(PCA) fall into this category.

Semi-Supervised Learning

Semi-supervised learning combines elements of both supervised and unsupervised learning. It uses a small
amount of labeled data and a larger amount of unlabeled data to improve model performance. This approach
is useful when obtaining labeled data is costly or time-consuming. Tasks such as speech recognition, web
content classification and text document classification fall into this category.

Self-Supervised Learning

Self-supervised learning is a variation of unsupervised learning where the model generates its own labels from
the data. It’s often used in NLP and computer vision, where the model learns by solving pretext tasks, such
as predicting masked words in a sentence or generating context from an image.

Reinforcement Learning

Reinforcement learning is employed for tasks where an agent interacts with an environment and learns to
make a sequence of actions to maximize a reward signal. It is commonly used in robotics, gaming, autonomous
systems, and recommendation systems. Popular algorithms in reinforcement learning include Q-learning|[118]
and deep reinforcement learning methods like Deep Q-Networks (DQN)[79] and Proximal Policy Optimization
(PPO).

Machine Learning
Types

Reinforcement
Leaming

Supervised
Learning

Unsupervised
Learning

Self-Supervised
Leaming

Semi-Supervised
Leaming

B . K-means . Speech .
Classification Clustering Word Prediction Recognition Q-Learning
Rearession Hierarchical Motion Estimation Text Document Proximal Policy
9 Clustering Classification Optimization (PPO)

Figure 3.2.1: Machine Learning Types and common use cases.

3.3 Definitions

Machine learning is a subset of artificial intelligence (AI) that revolves around the fundamental idea of
enabling computers to learn from data and make predictions or decisions without explicit programming. At
its core, machine learning is built on several foundational concepts, the most important presented below.

33

Chapter 3. Machine Learning

Data is the cornerstone of machine learning. It serves as the raw material from which models learn patterns
and relationships. This data can come in various forms, including text, numbers, images, and more. The
quality and quantity of data significantly impact the effectiveness of machine learning models. A dataset,
which is a collection of n samples, is usually represented as D = {(x1,91), (X2,%2),- .-, (Xn,¥n)}, in the case
of supervised learning.

Features are specific characteristics or attributes within the data that the model uses to make predictions.
For example, in a spam email classification task, features could include the words used in the email, the
sender’s address, and the email’s length. The selection and engineering of relevant features are critical to the
model’s performance. In the above definition of data, x, represent the features of the dataset.

The process of Training a machine learning model involves exposing it to a dataset with known outcomes
(yn), often referred to as labeled data. During training, the model adjusts its internal parameters or weights
to learn patterns and correlations within the data. This allows it to make predictions or classifications when
presented with new, unseen data. The main goal of the training process is for the model to be able to predict
the labels y, given the input feature vectors x,. The way that this prediction affects the training process,
is through the Loss Functions. Loss Functions take as input the true label ¥, and the predicted label g,
and return the "Loss", which has to be minimized through the training process. The most popular Loss
Functions are the following;:

e Binary Cross-Entropy Loss is the most common Loss Function for Classification tasks, and especially
Binary Classification. The simplified Loss Function for the binary classification can be mathematically
expressed as followed:

m

L= —% Z (yi - log(9s) + (1 —y3) - log(1 — 95))

e Hinge Loss is another Loss Function for Classification tasks, which was mostly developed for Support
Vector Machine (SVM) model evaluation, and is formulated as followed:

L =max(0,1 —y* f(z))

e Mean Squared Error is the most commonly used Loss Function for Regression tasks, where the
model has to predict a numerical value, not a class. The mathematical formula for this loss is:

1. 5
L=-— Ui — Yi
- ; ()

e Mean Absolute Error is the also used for Regression tasks, and it is preferred to Mean Squared Error
when there are many outliers in the data. When dealing with outliers, Mean Squared Error will usually
produce a much larger Loss, compared to most samples from the dataset, thus rendering it less robust
to outliers than Mean Absolute Error. The formula of MAE is:

1.
L:E;m*yﬂ

e Huber Loss is a robust regression loss function that combines aspects of MSE and MAE, with a
controllable parameter for the threshold. The formula is:

34

3.3. Definitions

La(y,f(x))—{ Ly—f@)® forly—f(z)| <6

5|y f(z)| — 462 otherwise

e Kullback-Leibler Divergence measures the difference between two probability distributions, often
used in probabilistic models:

L(pllq) = Zp loy(2)

Hyperparameter tuning is a critical step in the machine learning model development process, which
usually takes place before, or during the model’s training. It involves finding the optimal values for various
hyperparameters that govern a model’s behavior, such as learning rates, the number of hidden layers in a
neural network, or the depth of a decision tree. Proper hyperparameter tuning can significantly improve
a model’s performance, making it essential whenever you aim to build a high-performing machine learning
model. It helps strike the right balance between model complexity and generalization, preventing issues like
overfitting or underfitting. To apply hyperparameter tuning effectively, one can use techniques like grid search,
random search, or Bayesian optimization to systematically explore different combinations of hyperparameter
values. These methods automate the search process and help identify the configuration that maximizes the
model’s predictive power, ensuring it performs well on unseen data and real-world applications.

Machine learning Algorithms are sets of mathematical rules and procedures that guide the learning process.
These algorithms come in various types, such as decision trees, neural networks, and support vector machines,
each suited to different types of data and tasks. The choice of algorithm depends on the problem at hand.
Years of research have shown that there is no definitive model to outperform every other machine learning
approach. So usually, the scientist has to choose the model based on the task at hand, the available resources,
the allowed model complexity, and most importantly, the accumulated experience of scientists and engineers
when solving that specific task.

Testing and evaluating a machine learning model is a crucial step in the development process, as it helps
assess how well the model generalizes to unseen data. After the training phase, you need to validate the
model’s performance on a separate dataset, typically called the validation set or test set. This evaluation
helps determine if the model is ready for real-world deployment. We will present the most commonly used
Evaluation Metrics in Classification Tasks, with respect to TP (True Positives), FP (Fulse Positives), TN
(True Negatives) and FN (False Negatives):

1. Accuracy measures the proportion of correctly classified instances in a classification problem. It’s a

simple and widely used metric but may not be suitable for imbalanced datasets:

TN +TP
TN+TP+FN+FP

Accuracy =

2. Precision measures the proportion of true positive predictions out of all positive predictions. It’s
useful when the cost of false positives is high:

TP

Precision = —————
recision TP T Fp

3. Recall measures the proportion of true positive predictions out of all actual positive instances. It’s
important when missing positive instances is costly:

35

Chapter 3. Machine Learning

TP

RCCG,” = m—m

4. F1 is the harmonic mean of precision and recall, providing a balance between the two metrics. It’s
especially useful when you want to balance precision and recall, and when dealing with imbalanced
data:

Precision x Recall

F1=2
* Precision + Recall

The samples representing True Positives, False Positives, True Negatives and False Negatives can also be
visualized as a matrix, the so-called Confusion Matriz, which depicts the predictions of the model, and
whether that prediction was correct or not. Below is the example of a textitConfusion Matrix for the case of
Binary Classification:

True Class

Positive Negative

v a
i
KL =
O3
O o
Q
)
= O
O =
U
— ap
O o

Z

Figure 3.3.1: Confusion Matrix for a Binary Classification Task !

Lastly, the most common challenges faced in machine learning that affect the performance and generalization
of models, are overfitting and underfitting. Overfitting occurs when a model learns to fit the training data
too closely, capturing noise and outliers rather than the underlying patterns. This results in poor performance
on unseen data as the model fails to generalize effectively. On the other hand, underfitting occurs when a
model is too simple to capture the underlying patterns in the data, resulting in subpar performance even on
the training data itself.

The most common ways to address overfitting include:

1. Regularization techniques like .1 and L2 regularization add penalty terms to the model’s loss function,
discouraging it from assigning excessive importance to certain features or parameters, thus preventing
overfitting.

2. Cross-validation helps in assessing a model’s generalization performance. By splitting the data into
multiple subsets and evaluating the model on different combinations of training and validation data,
you can detect overfitting and fine-tune the model accordingly.

Tmage from: TowardsDataScience

36

https://towardsdatascience.com/confusion-matrix-for-your-multi-class-machine-learning-model-ff9aa3bf7826

3.4. Deep Learning

3. Feature selection also plays an important role, by removing irrelevant or redundant features, which
can lead to a simpler model and reduced susceptibility to overfitting.

Additionally, in order to combat underfitting, we can:

1. Increase model complexity, which involves considering using more complex models with more pa-
rameters or layers, such as deep neural networks, to capture intricate patterns in the data.

2. Feature engineering, in order to create more informative features or transform existing ones to
provide the model with a better representation of the data.

3. Collect more data. A larger and more diverse dataset can help the model learn the underlying
patterns more effectively and mitigate underfitting.

Finding the right balance between overfitting and underfitting is often a delicate process and may require
multiple iterations of model development and evaluation. Regular monitoring and fine-tuning of hyperpa-
rameters and model architecture are essential to achieve the best possible performance while avoiding these
common pitfalls.

3.4 Deep Learning

The rise of Deep Learning in the field of artificial intelligence has been nothing short of revolutionary.
Deep learning is a subset of machine learning that has gained prominence due to its ability to automatically
learn and make decisions from large volumes of data. This breakthrough in AI has had a profound impact
on various industries, leading to advancements in technology, healthcare, finance, and more.

One of the key reasons for the importance of deep learning is its capacity to handle complex, unstructured data
like images, text, and audio. This capability has paved the way for remarkable advancements in computer
vision, natural language processing, and speech recognition. Deep learning models, such as convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), have demonstrated superhuman performance
in tasks like image classification, object detection, language translation, and speech synthesis.

In real-world applications, deep learning is now ubiquitous. In healthcare, deep learning models have shown
promise in diagnosing diseases from medical images, predicting patient outcomes, and even discovering new
drug candidates. In the financial sector, these models are used for fraud detection, algorithmic trading,
and risk assessment. In the automotive industry, self-driving cars rely on deep learning for perception and
decision-making, making them safer and more autonomous. Other examples include virtual assistants like
Siri and Alexa, recommendation systems on platforms like Netflix and Amazon, and the personalization
of content on social media platforms. Deep learning’s adaptability and versatility make it a cornerstone
technology in the modern AI landscape, with a profound impact on countless aspects of our daily lives.

Deep Neural Networks

The main idea in the field of Deep Learning, is to take traditional architectures, and scale them up, adding
more layers and more parameters. In the case of structured/tabular data, this would mean adding numer-
ous "hidden" layers to the pre-existing linear Neural Network ("shallow" network), along with non-linear
Activation Functions in between, so that the model can learn non-linear functions as well.

37

Chapter 3. Machine Learning

Wy

Output

M
> Zwixi =Ww-X
i=0

Wy

Figure 3.4.1: Single-Layer Neural Network which can only learn Linear functions [11]

Hidden layer 1 Hidden layer 2 Hidden layer 3

Input layer

3
A

AN
PN
7% S
L7

Figure 3.4.2: Deep Neural Network, with multiple hidden layers, theoretically able to learn any function
defined on the network’s inputs [76]

38

3.4. Deep Learning

The key point that enables Deep Neural Networks to learn any non-linear function, is the use of Activation
Functions. Activation Functions play an important role in the architecture of Neural Networks, because they
are the only module that adds non-linearity to the whole model. As shown in Figure 3.4.1, the connections
between neurons alone, only provides us with a linear mapping from input to output. That’s why we add
non-linear Activation Functions between each layer of the network. As far as the non-linear function that will
be used, many have been shown to work well with modern architectures, and there is no definitive answer,
as to which one is the best. The most commonly used ones are presented below.

e Sigmoid Activation Function:

1
Advantages: Sigmoid functions squash input values to a range between 0 and 1, making them suitable
for binary classification problems. They are differentiable, making them compatible with gradient-based
optimization techniques like backpropagation.

Disadvantages: Sigmoid functions can suffer from vanishing gradients, which can slow down training
in deep networks. They also tend to produce outputs close to 0 or 1 for large input values, leading to
saturation and slower learning.

Usage: Historically used in hidden layers of shallow networks and output layers for binary classification
tasks. Less common in deep neural networks due to vanishing gradient issues.

e Hyperbolic Tangent (Tanh) Activation Function:

et —e "

z) =tanh(zx) = ———
fla) = tanh(@) = S
Advantages: It has similar advantages to sigmoid but can be considered better due to being zero centred.
The output of tanh lies between -1 and 1. The zero center, also makes optimization easier.

Disadvantages: It also has the problem of vanishing gradient but the derivatives are steeper than that
of the sigmoid. Hence making the gradients stronger for tanh than sigmoid. Also, similarly to the
sigmoid, tanh is computationally expensive to compute.

Usage: Used in hidden layers of neural networks, especially in contexts where zero-centered activations
are desirable.

¢ Rectified Linear Unit (ReLU) Activation Function:

f(z) = max(0, x)

Advantages: ReLU functions are computationally efficient and have become the default choice for
many applications. They mitigate the vanishing gradient problem by providing a non-zero derivative
for positive inputs, leading to faster convergence.

Disadvantages: It suffers from the dying ReLLU problem. ReLU is always going to discard the negative
values (i.e. de-activates it by making it 0). Because of this, the gradient of these units will also become
0 and by now we all know that 0 gradient means no weight update during backpropagation. Simply
speaking, the neurons which will go to this state will stop responding to the deviation of input or the
error. This, as a result, hampers the ability of the model to fit the data properly.

Usage: Widely used in hidden layers of deep neural networks, especially in convolutional neural networks
(CNNs) for image processing.

e Leaky ReLU Activation Function:

f(z) = max(a * x, x) a>0

39

Chapter 3. Machine Learning

Advantages: It tries to remove the dying ReLU problem. Instead of making the negative input 0, which
was the case of ReLU, it makes the input value really small but proportional to the input. Because of
this, the gradient doesn’t saturate to 0. If the input is negative, the gradient will be a. As a result,
there will be learning for these units as well.

Disadvantages: The specific choice of the leaky slope parameter can be a hyperparameter that needs
tuning.

Usage: An alternative to ReLLU, commonly used in scenarios where avoiding dead neurons is critical.

¢ Exponential Linear Unit (ELU) [18] Activation Function:

) = {a(exx N s 8}

Advantages: ELU combines the advantages of ReLU and Leaky ReLU while mitigating the dying ReL.U
problem and producing smooth gradients. It can lead to faster convergence and better generalization.

Disadvantages: ELU functions are computationally more expensive due to the exponential computation,
and there is also the hyperparameter o which needs to be tuned.

Usage: ELU is gaining popularity in various neural network architectures as an alternative to ReLU
and Leaky ReLU.

e Scaled Exponential Linear Unit (SELU) [56] Activation Function:

@)= {m(?xx— D o - 8}

Advantages: SELU is designed to induce self-normalizing properties in deep networks, helping to main-
tain consistent activations and gradients during training. It can lead to highly stable and efficient
training.

Disadvantages: SELU works best in specific scenarios, and its hyperparameters require careful tuning.

Usage: SELU is used in architectures where self-normalization and stability are crucial, but it is a
relatively new activation function so it is not yet used widely in practice. ReLU stays as the preferred
option.

Each activation function has its strengths and weaknesses, making the choice of activation function an im-
portant consideration in neural network design, depending on the specific problem and network architecture.

40

3.4. Deep Learning

Sigmoid Function

(a) Sigmoid Activation Function

ReLU Function

0.8 1

0.6

0.4 4

0.2 4

0.0

10

(c) ReLU Activation Function

ELU Function

(e) ELU Activation Function

Tanh Function

1.0

1
1
1
1
|
i
i
0.5 4 i
:
1
[}
|

0.0 === e e e

0.5

T T T
-10.0 -75 =5.0 -2.5 0.0 2.5 5.0 7.5 10.0

(b) Hyperbolic Tangent Activation Function

Leaky RelLU Function
12

104

0.8

0.6

0.4 4

0.2 4

0.0 frmmmmmmmmmmmmm o mooo

(d) Leaky ReLU Activation Function

SELU Function

(f) SELU Activation Function

Figure 3.4.3: Most commonly used Activation Functions

Chapter 3. Machine Learning

Convolutional Neural Networks

Convolutional Neural Networks (CNNs), a class of deep learning models, have played a pivotal role in the
field of computer vision and have had a profound impact on various other domains as well. The history of
CNNs dates back to the late 1980s and early 1990s when Yann LeCun, along with his colleagues, developed
one of the earliest CNN architectures known as LeNet[62], as shown in Figure 3.4.4. LeNet was primarily
designed for handwritten digit recognition and was a breakthrough in its time. However, it wasn’t until
the mid-2010s that CNNs gained widespread recognition and adoption, thanks to advances in hardware, the
availability of large datasets, and improvements in training algorithms.

C3: 1. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
28x28

INPUT
@ 52 f. maps
6@14x14 | o

3aw32

|
| FullconAecuon | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Figure 3.4.4: Original LeNet Architecture [62]

The importance of CNNs lies in their ability to automatically learn hierarchical features from data, making
them particularly effective for tasks involving image and video analysis. CNNs employ convolutional layers
that perform localized and shared-weight filtering operations, which mimic the way the human visual system
processes information. This design makes CNNs adept at recognizing patterns and features in images, such
as edges, textures, and shapes, in a way that is invariant to translation, rotation, and scale. This remarkable
capability has revolutionized a wide range of applications, making CNNs a cornerstone of modern artificial
intelligence and machine learning.

The convolution operator in Convolutional Neural Networks (CNNs) is a fundamental building block
responsible for the network’s ability to automatically learn hierarchical features from input data, typically
used for image and spatial data processing. It is essential for tasks such as image recognition, object detection,
and segmentation. To understand the convolution operator, let’s break down its components and how it
operates:

1. Input Data and Filters:

e The input to a CNN is typically a multi-dimensional array, often referred to as an image or feature
map. FEach element in this array represents the value of a pixel or a feature at a specific location.

e CNNs use small, learnable filters (also called kernels or weights) that have smaller spatial dimen-
sions compared to the input. These filters are initialized with random values and are updated
through training.

2. Convolution Operation:

e The convolution operation involves sliding these filters over the input data, element by element,
and performing a mathematical operation called convolution at each step.

e At each position, the filter is aligned with a local patch of the input data, and an element-wise
multiplication is performed between the filter and this patch, as shown in Figure 3.4.5

e The results of these element-wise multiplications are then summed to produce a single value, which
forms a single element of the output feature map.

42

3.4. Deep Learning

. Strides and Padding:

e Convolutional layers can be configured with a "stride" parameter, which determines how much
the filter shifts (or strides) after each convolution operation. A larger stride reduces the output
size.

e To maintain the spatial dimensions of the input in the output, padding can be added to the input
data by adding zeros around its borders. This is known as "zero-padding".

. Feature Map Output:
e The result of the convolution operation forms one element of the output feature map.

e By repeating this process for each position of the filter over the input data, a new feature map
(also called a convolutional feature map) is generated. Each element in this map represents the
presence of a certain feature or pattern in the input data.

. Multiple Filters and Depth:

e A convolutional layer typically consists of multiple filters, each with its own set of learnable weights.
These filters capture different features or patterns.

e The depth of the output feature map is equal to the number of filters used in the convolution
layer.

. Non-linear Activation:

e After the convolution operation, a non-linear activation function (typically ReLU - Rectified Linear
Unit) is applied element-wise to the entire feature map. This introduces non-linearity into the
model, allowing it to learn complex patterns.

input convolution + poaoling fully output
nonlinear activation connected
———

] cat (0.06)

peppers (0.90)

[coococoooo000000]

—

car (0.03)
=l
|

I 1

2|00 ataetlol 1T E TR | 8

1/1]ofof2]0 1]01 457 8

1{ol1f2afo| * [o|1[o]|-=" [«Ta[s]s

11|23 to 1[0 |1 (3543

ojof1(00|1 -

olofofof1]0

X H X*+H

Figure 3.4.5: Convolution Operation in a CNN [17]

The key advantages of using convolution in CNNs are weight sharing and local connectivity. Weight
sharing means that the same set of filter weights is applied at different spatial locations, enabling the network
to recognize patterns regardless of their location in the input. Local connectivity means that each output
feature depends on a localized region of the input, which helps the network focus on local patterns and
reduces the number of parameters, making CNNs computationally efficient.

Through training, CNNs learn the optimal filter weights that allow them to detect relevant features or
patterns in the input data, ultimately leading to superior performance in tasks like image recognition, object
detection, and more.

43

Chapter 3. Machine Learning

In contemporary times, CNNs have found applications in numerous fields. In computer vision, they excel
in object recognition, image classification, and segmentation tasks, allowing for advancements in
autonomous vehicles, facial recognition, and medical image analysis. CNNs have also extended their reach
to natural language processing, where they are used for tasks like sentiment analysis and text classification.
In the healthcare sector, CNNs aid in diagnosing diseases from medical images, while in the finance industry,
they assist in fraud detection and stock market analysis. Additionally, CNNs are employed in robotics, remote
sensing, and even art generation, showcasing their versatility and adaptability across various domains. As
technology continues to evolve, the role of CNNs is expected to expand further, making them an integral
part of our modern digital landscape.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of artificial neural networks specifically designed to handle
sequential data and temporal dependencies. They have a rich history dating back to the 1980s when the
concept was first introduced. However, it wasn’t until the mid-1990s that RNNs gained significant attention,
primarily due to the introduction of the Long Short-Term Memory (LSTM) architecture [45], which
addressed the vanishing gradient problem that had plagued earlier RNN variants. LSTM allowed RNNs
to effectively capture long-range dependencies in data, making them a powerful tool for a wide range of
applications.

The importance of RNNs lies in their ability to model and process sequential data, which is prevalent
in various domains, including natural language processing, speech recognition, time series analysis, and
more. Unlike feed-forward neural networks, RNNs have recurrent connections that allow them to maintain a
memory of previous inputs, making them well-suited for tasks where past context is crucial for understanding
current data. This makes them indispensable in tasks such as language modeling, machine translation, and
sentiment analysis, where the order of words in a sentence or the context of previous words greatly influences
the meaning.

Specifically, RNNs operate by maintaining hidden states that capture information about past inputs. Unlike
feed-forward neural networks, which process input data in a one-way flow, RNNs have feedback connections
that allow them to maintain a hidden state vector h as they process each input element z; in a sequence. This
hidden state h; serves as a kind of memory that retains information from previous time steps and influences
the network’s output at the current time step. The that RNNs process sequential data can also be visualized
through "RNN unfolding", as shown in Figure 3.4.6

The key equations governing the operation of a simple RNN cell are as follows:

o Hidden State Update:
hy = tanh (Whh *hy_1 + Whe x 2 + bh)

e Output Computation:
Yt :Woy*ht+bo

Here, h; is the hidden state at time step ¢, x; is the input at time step ¢, tanh is the hyperbolic tangent
activation function, Wy and W, are weight matrices, by is the bias term for the hidden state, W, is the
weight matrix for the output, and b, is the bias term for the output. The tanh activation function helps in
controlling the information flow through the hidden state by squashing values between -1 and 1.

During training, RNNs use the BackPropagation Through Time (BPTT) algorithm to adjust their
weights and biases to minimize a loss function, typically associated with a specific task, such as sequence
prediction or classification.

However, standard RNNs have limitations, such as the vanishing gradient problem, which makes them
ineffective at capturing long-range dependencies in sequences. To address this issue, more advanced RNN

44

3.4. Deep Learning

Y Y, Yp

Unfold I T T
H, ——> H, —— H —— = —— H

Input Layer Output Layer Hidden Layer

Figure 3.4.6: RNN Unfolding process, which shows the way that sequential data are processed [46]

variants like the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) were introduced. These
architectures incorporate gating mechanisms that allow them to selectively retain and update information in
the hidden state, making them better at handling long sequences.

LSTM, for instance, uses three gates (input, forget, and output gates) to control the flow of information
and can capture long-term dependencies effectively, as shown in Figure 3.4.7. GRU, on the other hand, uses

two gates (reset and update gates) and is computationally less complex than LSTM while still achieving
comparable performance in many tasks.

Figure 3.4.7: LSTM Cell Architecture [26]

One of the most common applications of RNNs is in natural language processing. They have revolutionized

45

Chapter 3. Machine Learning

tasks like language generation, where they are used in text generation models like GPT (Generative Pre-
trained Transformer) and in machine translation systems like Google Translate. In addition to NLP, RNNs
find extensive use in speech recognition systems, enabling voice assistants like Siri and Alexa to understand
and respond to spoken language. RNNs are also widely applied in financial forecasting, where they can capture
intricate temporal patterns in stock prices or economic data. Furthermore, they excel in time series prediction
and analysis, which has applications in fields ranging from weather forecasting to medical diagnostics.

In summary, Recurrent Neural Networks have a long and evolving history, driven by their ability to model
sequential data and temporal dependencies. Their significance lies in their versatility across various domains
where sequence processing is essential, and their applications continue to grow as researchers develop more
advanced variants and architectures. RNNs have become a cornerstone of modern machine learning and
artificial intelligence, enabling groundbreaking advancements in fields such as natural language understanding,
speech recognition, and time series forecasting. In the last few years though, with the rise of Transformers and
abundance of computational resources, RNNs’ popularity has decreased, mostly when it comes to building
Language Models.

Transformers

The Transformer is a revolutionary machine learning model architecture that has had a profound impact on
the field of natural language processing (NLP) and beyond. It was introduced by Vaswani et al. in 2017[112]
and has since become a cornerstone in various Al applications. The Transformer architecture is known for
its ability to handle sequential data efficiently, thanks to its self-attention mechanism.

The core idea behind the Transformer is self-attention, which allows the model to weigh the importance of
different elements in a sequence when making predictions. This self-attention mechanism is often referred to
as scaled dot-product attention and is computed as follows:

ifife’mfZO’n Q [/ SO lfmtl.%‘ L
K

Here, @, K, and V are matrices representing queries, keys, and values derived from the input sequence. The
dot product of @ and K is scaled by v/dg to control the magnitude of the output, and the softmax function
is applied to obtain the attention weights. These weights are then used to linearly combine the values V' to
produce the final output.

Parallelism is a key feature of the Transformer architecture, and it plays a crucial role in its efficiency,
making it well-suited for training on modern hardware. In traditional recurrent neural networks (RNNs) or
convolutional neural networks (CNNs), processing sequential data involved sequential computation. Each
step in the sequence depended on the previous one, limiting the potential for parallelization.

In contrast, the Transformer’s architecture leverages parallelism in several ways:

1. Multi-Head Attention: One of the main components of the Transformer model is multi-head at-
tention. Instead of computing attention for a sequence one element at a time, the model splits the
attention mechanism into multiple heads, each of which independently computes attention for different
parts of the sequence. These heads operate in parallel, and their results are concatenated and linearly
transformed to produce the final output. This parallelism allows the model to capture different types
of relationships and dependencies in the data simultaneously.

2. Positional Encoding: Transformers don’t have built-in notions of position or order in the sequence.
To address this, positional encodings are added to the input embeddings. These encodings are designed
to convey the position information of each element in the sequence. Importantly, they are added
element-wise, so the computation of positional encodings is also parallelizable. This addition ensures
that the model can still capture the sequential order of the data.

46

3.4. Deep Learning

3. Batch Processing: Transformers are highly amenable to batch processing. Multiple input sequences
can be processed in parallel within a batch, which not only speeds up training but also allows for better
generalization as the model sees a variety of examples in each batch. Batch processing is a fundamental
technique used in deep learning to harness the computational power of GPUs and TPUs.

4. Model Parallelism: In cases where the model is extremely large and cannot fit on a single GPU or
TPU, model parallelism can be employed. This involves splitting the model into parts that can be
processed on separate devices, allowing for even greater parallelization.

Qutput
Probabilities

4 ™)
Feed
Forward
g ™\ Add & Norm
_ .
(elel & NBI Multi-Head
Feed Attention
Forward T ¥ Nx
~—
N [_Add & Norm Je=~
(—>| Add & Norm l Mosked
Multi-Head Multi-Head
Attention Attention
it it
O W, \ v,
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 3.4.8: The original Transformer Architecture, as presented in [112]

This parallelism is a key reason why Transformers have been able to handle much larger datasets and achieve
state-of-the-art results in NLP and other domains. It enables researchers and practitioners to train deep mod-
els on massive datasets efficiently, leading to breakthroughs in Al applications such as language translation,
sentiment analysis, and text generation, as well as in computer vision tasks and beyond.

The Transformer architecture has found applications far beyond NLP. It has been adapted for computer
vision tasks, such as image classification and object detection, under the name Vision Transformer (ViT)[23].
It has also been used in recommendation systems, speech recognition, and even in the field of reinforcement
learning. The versatility and effectiveness of the Transformer architecture have made it a cornerstone of
modern Al research and development, and it continues to drive innovation in various domains.

47

Chapter 3. Machine Learning

3.5 Autoencoders

Vanilla Autoencoders

Autoencoder models are a fundamental and versatile class of neural networks in the field of machine learning.
They are primarily used for unsupervised learning and dimensionality reduction tasks.

Autoencoders have a rich history dating back to the 1980s. They were initially proposed as a neural network
architecture for learning efficient representations of data. The idea behind autoencoders was inspired by the
need to reduce the dimensionality of data while preserving its essential information. Over the years, various
advancements in neural network research and the availability of large datasets have made autoencoders more
popular and powerful.

An autoencoder consists of an encoder and a decoder, both typically implemented as neural networks. The
encoder maps the input data into a lower-dimensional representation (latent space), and the decoder
reconstructs the original input from this representation. The core idea is that the encoder learns to cap-
ture essential features of the data, while the decoder learns to reconstruct the input from these features.
Mathematically, the encoder can be represented as:

z=f(z)

where x is the input data, z is the encoded representation, and f is the encoder function parameterized by
the neural network weights.

The decoder, on the other hand, aims to reconstruct the input data from the encoded representation:

where z is the reconstructed data, z is the encoded representation, and g is the decoder function parameterized
by its own set of weights.

The loss function used for training autoencoders is typically a reconstruction loss, such as Mean Squared
Error (MSE), which measures the difference between the input data and the reconstructed data:

L(z,2") = ||z - /||

Autoencoders are trained using an optimization algorithm like stochastic gradient descent (SGD) or its vari-
ants. The goal is to minimize the reconstruction loss by adjusting the weights of the encoder and
decoder. The training process involves feeding the input data through the encoder to obtain the encoded
representation and then passing this representation through the decoder to reconstruct the data. The gra-
dients of the reconstruction loss with respect to the network weights are computed and used to update the
weights through backpropagation.

The training process aims to encourage the encoder to learn meaningful and compact representations of the
data, which can capture its essential features while discarding noise and non-essential information.

During inference, autoencoders can be used for various tasks:

e Dimensionality Reduction: The encoder can be used to project high-dimensional data into a lower-
dimensional latent space, which can be useful for visualization, feature extraction, or downstream tasks.

e Anomaly Detection: Autoencoders can identify anomalies in data by comparing the reconstruction
loss of a sample with a predefined threshold. Samples with high reconstruction loss are considered
anomalies.

e Data Generation: By sampling from the latent space and passing the samples through the decoder,
autoencoders can generate new data samples that are similar to the training data.

48

3.5. Autoencoders

Encoder Decoder

Latent
Space,
z o
H‘ e 11} §
i
a sse cse ‘_:%
c
- a
(i)
o

Figure 3.5.1: Architecture of the Autoencoder Network [24]

Autoencoders and the Manifold Hypothesis

The manifold hypothesis is a fundamental concept in machine learning that posits that real-world high-
dimensional data lies on or near a lower-dimensional manifold embedded within that high-dimensional space.
In simpler terms, it suggests that complex data, such as images or natural language, can be effectively
represented in a lower-dimensional space that captures its essential features. This idea arises from the
observation that many real-world datasets exhibit a high degree of redundancy and structure, which can be
exploited for tasks like classification, clustering, and data generation.

Autoencoders have a close relationship with the manifold hypothesis. They are neural network architectures
explicitly designed to uncover and learn these lower-dimensional representations, also known as the latent
space, from high-dimensional data. By training an autoencoder, the model attempts to capture the under-
lying structure of the data and map it onto a lower-dimensional manifold. The encoder component of the
autoencoder learns to project the input data onto this manifold, while the decoder learns to reconstruct the
data from points on the manifold.

In essence, autoencoders aim to embody the manifold hypothesis by learning a compressed and meaningful
representation of the data in a lower-dimensional space. This representation can then be utilized for various
tasks, such as dimensionality reduction, data denoising, and even data generation. When the manifold hy-
pothesis holds true, autoencoders can provide effective solutions for understanding and manipulating complex
high-dimensional data.

Variational Autoencoders

A Variational Autoencoder (VAE) is a probabilistic generative model that builds upon the traditional
autoencoder architecture by adding a probabilistic interpretation to the latent space. VAEs are designed to
not only capture meaningful representations of data but also to generate new data samples that are similar to
the training data. They are particularly useful for generative tasks, such as image generation, text generation,
and data denoising.

49

Chapter 3. Machine Learning

A VAE consists of two main components, similar to a standard autoencoder: an encoder and a decoder.
However, in a VAE, the encoder doesn’t produce a deterministic latent representation but instead produces
a probability distribution over the latent space. The encoder maps the input data x to two vectors, the mean
(1) and the standard deviation (o), which parameterize a multivariate Gaussian distribution in the latent
space:

q(z|z) = N (u(x), 0())

Here, z represents the latent variables sampled from the Gaussian distribution. The decoder, like in a
standard autoencoder, takes samples from the latent space and reconstructs the data z’.

1.0+

0.8

0.6 4

0.4 1

0.2 A

0.0 1

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.5.2: An example where the manifold hypothesis holds true. The data, although originally in a
3-dimensional space, can be successfully embedded in a 2-dimensional latent space, without any loss of
information.

The training of a VAE involves two main objectives: reconstruction and regularization. The reconstruction
objective is similar to that of a standard autoencoder, aiming to minimize the reconstruction loss (e.g., mean
squared error) between the input = and the reconstructed z’.

The regularization objective encourages the latent space to follow a specific prior distribution, usually a
standard Gaussian N'(0,1). This regularization is achieved through the Kullback-Leibler (KL) divergence
term, which measures the difference between the learned distribution ¢(z|x) and the target Gaussian distri-
bution. The overall loss function for training a VAE is a combination of the reconstruction loss and the KL
divergence term:

50

3.5. Autoencoders

L(z,2', p,0) = ReconstructionLoss (x,2") + K LDivergence (q(z|z),N(0,1))

The KL divergence term encourages the encoder to produce latent representations that are close to the prior
distribution while still allowing for variation in the data.

During inference in a VAE, you can sample from the learned latent space distribution g(z|x) to generate new
data samples. To generate data samples, you sample a point z from the Gaussian distribution in the latent
space and pass it through the decoder to produce z’. By controlling the properties of the sampled z(e.g., its
mean and standard deviation), you can generate data samples with different characteristics.

VAEs are also used for various other tasks, including data imputation (replacing missing values in data),
data denoising (removing noise from data), and semi-supervised learning (combining labeled and unlabeled
data for classification tasks).

In summary, Variational Autoencoders are an extension of standard autoencoders that introduce probabilistic
modeling into the latent space. They are capable of both capturing meaningful data representations and
generating new data samples. Training involves minimizing a combination of a reconstruction loss and a
KL divergence term to encourage a specific prior distribution in the latent space. VAEs have found wide
applications in generative modeling, data generation, and various unsupervised learning tasks.

o1

Chapter 3. Machine Learning

52

Chapter 4

Graphs

In this chapter, we will delve into the field of Graph Theory. Firstly, we will explain all the necessary
fundamental definitions, in order to present one of the core concepts of this thesis, the task of Graph Similarity.
Specifically, we will thoroughly analyze proposed algorithms that compute Graph Edit Distance, and then
present some of the most popular Graph Kernels used to tackle this problem. Finally, we will introduce a
specific type of graphs, the Scene Graphs, which is the structure implemented in the main dataset that will
be used in the experiments.

Contents
4.1 Definitions. o L e e e e e e e e e e e e e e e 54
4.2 Graph Similarity oL L e e e e 57
4.2.1 Graph Edit Distance 58
4.2.2 Graph Kernels 59
4.3 Scene Graphs e e e e e e e e e e e e e e e 64
4.4 Related Work o o 0 i i i e e e e e e e e e e e e e 66

53

Chapter 4. Graphs

4.1 Definitions

Basic Graph Definition

A graph, in the context of graph theory, is formally defined as a mathematical structure denoted by G =
(V, E), where V represents a set whose constituents are referred to as vertices, and E signifies a set of paired
vertices, designating them as edges, or at times, as links or lines.

The vertices x and y within an edge z, y are denominated as the endpoints of the edge. This edge is deemed to
connect or join the vertices x and y, and is incident upon them. It should be noted that a vertex may remain
devoid of any edge association, in which case it remains unconnected to any other vertex. A multigraph
serves as a generalization allowing for the existence of multiple edges possessing the same pair of endpoints.
Some literature simplifies multigraphs by simply referring to them as graphs.

It is pertinent to mention that certain scenarios permit graphs to encompass loops, signifying edges that
connect a vertex to itself. In order to accommodate loops, the pairs of vertices within set F must permit
repetition of a vertex, resulting in the categorization of such generalized graphs as graphs with loops or, more
succinctly, as graphs when it becomes evident from the context that loops are permissible.

Primarily, the set of vertices V is presupposed to be finite, which, in turn, implies that the set of edges is
also finite. Although infinite graphs are occasionally contemplated, they are often construed as a specialized
form of binary relation. This classification stems from the fact that many results established for finite graphs
do not carry over to the infinite realm or necessitate distinct methodologies for proof.

Undirected graph Directed graph

Figure 4.1.1: Example of a Directed and an Undirected Graph [67]

An empty graph is characterized by an absence of vertices, consequently leading to an empty set of edges.
The order of a graph is quantified by its number of vertices, denoted as |V|. Meanwhile, the size of a graph is
determined by its number of edges, represented as |E|. Nonetheless, certain contexts, such as the expression
of algorithmic computational complexity, involve defining size as |V| + |E|; this adjustment ensures that a
non-empty graph is not erroneously deemed to possess a size of zero. The degree or valency of a vertex
corresponds to the count of edges that are incident upon it. In the presence of loops within a graph, each
loop contributes twice to the degree of its associated vertex.

Within a graph of order n, the maximum degree of any vertex does not exceed n — 1 (or n+ 1 if loops are
n(n—1) (OI‘ n(n+1)
2 2

permitted), and the upper limit for the number of edges is if loops are allowed).

The edges within a graph establish a symmetric relation among the vertices, which is termed the adjacency
relation. Specifically, two vertices, = and y, are considered adjacent if and only if x,y constitutes an edge.
It is worth noting that a graph may be fully characterized by its adjacency matrix A, a square matrix of
dimensions n x n. In this matrix, the entry A;; indicates the quantity of connections from vertex i to vertex
j.- In the case of a simple graph, A;; assumes either the value 0, signifying disconnection, or 1, signifying
connection. Furthermore, A;; is consistently set to 0, as an edge in a simple graph cannot originate and
terminate at the same vertex. Graphs that incorporate self-loops are identified by instances where some
or all A;; assume positive integer values, while multigraphs, featuring multiple edges linking vertices, are
characterized by situations where some or all A;; take on positive integer values. Notably, undirected

54

4.1. Definitions

graphs exhibit a symmetric adjacency matrix, reflecting the equality A;; = A;;, visualized as an example in
Figure 4.1.1.

Another important distinction in graphs,is the categorization between weighted and unweighted graphs.
The difference lies in the presence or absence of assigned values to the edges connecting nodes. In a weighted
graph, each edge is associated with a numerical weight or cost, often representing factors such as distance,
time, or cost, which quantifies the relationship between connected nodes. These weights introduce addi-
tional information and complexity, enabling more precise modeling of real-world scenarios. Conversely, in
an unweighted graph, all edges are considered equal, with no assigned numerical values, making it suit-
able for representing relationships where only connectivity matters without regard to specific magnitudes or
distinctions among connections.

Y.
(a) undirected graph (b) adjacency matrix

Figure 4.1.2: Example of Construction of Adjacency Matrix from an Undirected Graph [124]

Walks, Paths, Cycles and Trails

In graph theory, various terms are used to describe specific patterns or sequences of edges within a graph.
Four such terms are path, walk, cycle, and trail, each with distinct definitions and characteristics.

e Path: A path in a graph is a sequence of vertices where each vertex is connected to the next one by
an edge. In other words, it’s a series of nodes in which you can travel from one node to another by
following the edges, without revisiting any node. Paths can be of varying lengths, and they provide a
way to explore connections and routes within a graph. A path can be as short as a single edge (a direct
connection between two nodes) or extend through multiple edges.

e Walk: A walk is a more general concept than a path. It is also a sequence of vertices connected by
edges, but unlike a path, it allows for revisiting nodes and using the same edge multiple times. A walk
can represent any route through a graph, including backtracking and retracing steps. Walks are often
used to analyze the traversability of a graph or study specific sequences of movements.

e Cycle: A cycle is a special type of walk in which the starting and ending vertices are the same, and
there are no repetitions of other vertices (except for the first and last). In other words, it’s a closed
path where you return to the same vertex without revisiting any other vertices in between. Cycles are
essential in graph theory as they help identify structures like circuits or loops within a graph.

e Trail: A trail is similar to a walk but imposes two extra conditions. Firstly, the starting and ending
nodes must be different, and secondly, only vertices can be repeated, not the edges. Trails are often
used to explore graphs while keeping track of the specific edges used. They are useful for understanding
the flow and connectivity within a graph.

Paths, walks, cycles, and trails are fundamental concepts in graph theory that describe different types of
sequences of vertices and edges within a graph. They can be used to extract useful Graph Metrics, that will
be especially useful at defining some important Graph Kernels later on.

55

Chapter 4. Graphs

Figure 4.1.3: Example of a Path in a Weighted, Directed Graph [25]

Heterogeneous Graphs

Heterogeneous graphs are a specialized type of graph data structure that play a crucial role in representing
complex, diverse relationships and entities in various domains such as social networks, recommendation
systems, and knowledge graphs. Unlike homogeneous graphs, which model relationships between entities of
the same type (e.g., social networks where individuals connect with other individuals), heterogeneous graphs
allow connections between entities of different types. The formal definition of a heterogeneous graph involves
nodes and edges of distinct types, thereby capturing rich and diverse relationships in a single graph.

What distinguishes heterogeneous graphs from other types of graphs is their ability to represent and analyze
complex, multi-modal data. In a heterogeneous graph, nodes can represent different types of entities,
such as users, products, movies, or concepts, and edges can represent various types of relationships, such as
user-item interactions, actor-movie appearances, or concept-concept associations. This modeling flexibility
is invaluable for solving real-world problems where entities and their relationships are multifaceted.

Heterogeneous graphs find applications in a wide range of domains. They are commonly used in recom-
mendation systems to model user-item interactions of different types, enabling more accurate and diverse
recommendations. In biology, they are employed to represent diverse biological entities (genes, proteins,
diseases) and their complex interactions, aiding in the discovery of potential drug targets or understanding
disease mechanisms. Knowledge graphs, which store structured information about the world, are often repre-
sented as heterogeneous graphs to capture relationships between entities of various types, enhancing semantic
search and question answering.

Meta-paths are a fundamental concept in the context of heterogeneous graphs, especially when it comes to
analyzing and traversing the complex relationships that exist between different types of entities within such
graphs. A meta-path is essentially a high-level abstraction that defines a specific sequence of node types
and edge types in a heterogeneous graph. It provides a structured way to navigate through the graph while
specifying the types of nodes and relationships encountered along the path.

Here’s a breakdown of key elements in a meta-path:

e Node Types: In a meta-path, you specify the types of nodes you want to traverse. These node types
represent different entities in the graph. For example, in a movie recommendation system, node types
could be "User," "Movie," and "Genre."

e Edge Types: You also specify the types of edges that connect the nodes in the path. These edge types
represent the relationships or interactions between the entities. In the movie recommendation system,

56

4.2. Graph Similarity

edge types could be "User-Rated-Movie" and "Movie-Belongs-To-Genre."

By combining these node and edge types in a specific sequence, you define a meta-path that characterizes a
particular type of relationship or information flow within the heterogeneous graph. For example, a meta-path
in the movie recommendation system could be "User-Rated-Movie -> Movie-Belongs-To-Genre -> Movie-
Belongs-To-Genre," which signifies a path where a user rates a movie, and that movie belongs to two genres.

It should be noted, that, according to the specific heterogeneous graph that we want to define a meta-path
on, we don’t necessarily need to acknowledge both Node Types and Edge Types. For example, we might
have a graph that has distinguished types only on the nodes, not the edges. In that case, the meta-path will
be a sequence consisting purely of node types, as shown in Figure 4.1.4.

|
|
|
I
I
|
- |

- .\‘— 4 : r/ -\\‘ .f'/.- --\‘-. 4 b

) '\ / ! "\M : b D y M)

1 . o S
— [
(M} D) l

N L 1 B .

| . @O—a—®
[D! |
/ o |
A :
[M7 !
- 1
|

Example of IMDb Heterogeneous Graph Example of meta-paths

Figure 4.1.4: Example of a Heterogeneous Graph, along with meta-paths defined on it [85]

Processing heterogeneous graphs involves specialized algorithms and techniques. One key challenge is the het-
erogeneity of nodes and edges, which requires methods for handling different types of data and relationships.
This includes meta-path-based algorithms that define meaningful paths through the graph for specific tasks,
node embedding techniques like GraphSAGE[40] or node2vec|37] to learn representations of nodes, and
attention-based models that can capture dependencies between different types of entities and relationships.
Additionally, graph neural networks (GNNs) have gained popularity for their ability to propagate information
across heterogeneous graphs and perform tasks like node classification, link prediction, and recommendation.

4.2 Graph Similarity

The Graph Similarity problem involves assessing the structural resemblance between two graphs, typically
represented as networks of interconnected nodes and edges. It encompasses various applications, such as
biological network analysis, social network comparison, and recommendation systems. The problem’s history
can be traced back to the mid-20th century, with roots in graph theory and computational mathematics.
Over time, it has gained prominence due to the increasing importance of graph data in modern applications,
leading to the development of diverse algorithms and techniques for measuring graph similarity, including
graph kernels, graph edit distance, and spectral methods, each catering to specific use cases and data types.
The Graph Similarity problem remains an active area of research with broad practical implications in various
domains.

o7

Chapter 4. Graphs

Graph Edit Distance (GED) is a fundamental concept within the realm of the Graph Similarity problem,
playing a pivotal role in quantifying the dissimilarity between two graphs. GED measures the minimum
number of edit operations required to transform one graph into another, where edits can involve adding,
deleting, or modifying nodes and edges. This metric offers a comprehensive way to assess structural differences
between complex network representations, making it an invaluable tool in fields like pattern recognition, image
analysis, molecular biology, and social network comparison. The Graph Edit Distance provides a versatile
framework for capturing and quantifying the extent of structural dissimilarity between graphs, enabling
researchers and practitioners to gain insights into diverse data domains where graph data is prevalent.

4.2.1 Graph Edit Distance

Graph Edit Distance (GED), is a measure of similarity between two graphs, g1 and g». The fundamental
idea of graph edit distance, was first formalized by Alberto Sanfeliu and King-Sun Fu in 1983[94]. In order
to correctly formulate GED, we need to define a set of Graph Edit Operations. These, typically include:

e Vertex insertion to introduce a single new labeled vertex to a graph
e Vertex deletion to remove a single (often disconnected) vertex from a graph.

e Vertex substitution to change the label (or color) of a given vertex.

Edge insertion to introduce a new colored edge between a pair of vertices.

Edge deletion to remove a single edge between a pair of vertices.
e Edge substitution to change the label (or color) of a given edge.

When provided with both a source and a target graph, the objective is to eliminate certain vertices and edges
from the source graph, rename some of the remaining vertices and edges, and potentially add new vertices
and edges. This process is aimed at ultimately achieving the desired target graph. So now, the mathematical
formulation of the graph edit distance between two graphs ¢g; and go, is:

k
GED (g1,92) = min Zc(ei)

(e1,---,ex)EP(91,92) =1

where P(g1, g2) denotes the set of edit paths transforming g; into (a graph isomorphic to) go and ¢ (e;) > 0
is the cost of each graph edit operation e.

The most common process that practical algorithms use to find the Graph Edit Distance, is to view it as
an optimal-path-finding problem. That way, traditional algorithms such as A* are implemented to solve the
problem.

Graph Edit Distance Approximations

Even though Graph Edit Distance is a powerful tool in graph analysis and comparison, unfortunately it
has been proven that the problem of computing the exact Graph Edit Distance between graph g1 and g is
NP-hard[125].

In order to tackle this problem, we are going to present the four most common techniques and optimizations
that modern algorithms use to compute GED:

1. Bipartite Heuristic: This method was presented by Riesen et al. (2007)[92], and the contribution,
is a new heuristic function for the A* algorithm, speeding up the search for the target path. This
approach still provides an optimal solution, which means that this sped-up algorithm can’t solve the

58

4.2. Graph Similarity

problem deterministically in polynomial-time. It is rarely used, when the ezxactness of the similarity
measure between the two graphs is of great importance.

The proposed bipartite heuristic function works by estimating the future costs of transforming one
graph into another using a fast but suboptimal bipartite graph matching algorithm. This algorithm
assigns nodes and edges of the two graphs to each other in a way that minimizes the total cost of the
assignments. By summing up the costs of the minimum cost node and edge assignments, the algorithm
provides an approximation of the real future costs. Although this approximation does not consider any
structure preserving constraints, it provides a lower bound of the future costs, which is guaranteed to
return the exact graph edit distance of two given graphs. By using this heuristic function in an A*
implementation, the resulting procedure is guaranteed to return the optimal edit distance, and can
significantly speed up the computation of graph edit distance compared to a brute force algorithm or
a standard tree search approach.

. A* Beamsearch: This optimization by Neuhaus et al. (2006)[81] is the first in the list that tries finds
an approzrimate Edit Distance, therefore highly speeding up the process. The Beamsearch algorithm is
a modification of the standard A* algorithm that limits the number of nodes expanded in the search
tree. Instead of expanding all successor nodes in the search tree, only a fixed number of nodes are kept
in the un-discovered set at all times. Whenever a new partial edit path is added to the un-discovered
set, only the s partial edit paths with the lowest costs are kept, and the remaining partial edit paths
in the set are removed. This means that not the full search space is explored, but only those nodes are
expanded that belong to the most promising partial matches.

This optimization reduces the computational complexity of the algorithm, making it faster and more
efficient. However, because the algorithm is not exploring the full search space, it may not find the
optimal solution. Instead, it returns a suboptimal solution that is close to the optimal solution.

. Bipartite Matching: This approximate algorithm by Fankhauser et al. (2011)[27] finds a suboptimal
solution to the GED problem, by not taking edge information into account in the traditional way, when
computing edit distance. Specifically, it computes the exact edit distance when taking into account only
the nodes insertions/deletions/substitutions, and then through that, it infers the suboptimal graph edit
distance of the original graphs.

To achieve this, firstly the node-edit-distance problem is transformed to a Linear Sum Assignment
Problem (LSAP), and then it is solved in polynomial time using the Jonker-Volgerand algorithm[49].
Overall, it is the most widely used variation of the Graph Edit Distance algorithm, because of its
efficient approach, and satisfactory results.

. Hausdorff Matching: This algorithm proposed by Fischer et al. (2014)[30] works in a similar way
to the previous one, but it employs a quadratic-time approximation algorithm based on Hausdorff
Matching as a heuristic function to compute the graph edit distance. The proposed heuristic reduces
the search space and speeds up the runtime of the algorithm by one order of magnitude compared to
plain A* search.

The most commonly used variations of the original GED algorithm are the Bipartite Matching and Hausdorff
Matching, because they both offer a good trade-off between the accuracy of the final approximate solution
and the computational cost.

4.2.2 Graph Kernels

Kernels play a crucial role in various machine learning tasks, particularly in the domain of pattern recogni-
tion and data analysis. They are essential for transforming data into a suitable format for learning algorithms

59

Chapter 4. Graphs

to operate effectively. Kernels are often used in the context of Support Vector Machines (SVMs) and ker-
nel methods, but their applications extend to various other machine learning techniques, including kernel
principal component analysis (PCA) and kernelized clustering.

The importance of kernels lies in their ability to implicitly map data into higher-dimensional spaces, where
complex patterns and relationships become more apparent. This transformation enables linear algorithms to
work effectively on nonlinear problems, as it implicitly captures the similarity or dissimilarity between data
points. By using kernels, one can avoid the computational burden of explicitly mapping data to higher
dimensions while still benefiting from the enhanced representational power. This is also the main idea
behind the Kernel Trick.

The Kernel Trick is a fundamental concept in machine learning, especially in the context of SVMs and
kernel methods. It’s a clever mathematical technique that allows you to implicitly compute the dot product
between data points in a higher-dimensional feature space without actually having to explicitly transform
the data into that space. This is incredibly useful because it allows linear algorithms to work effectively on
nonlinear problems.

Here’s a more detailed explanation of the kernel trick:

1. Motivation: In many real-world problems, the data may not be linearly separable in its original
feature space. Linear classifiers like SVMs work well when data is linearly separable, but when it’s not,
they struggle. The kernel trick provides a way to handle these non-linearities by projecting the data
into a higher-dimensional space where it might become linearly separable.

2. The Kernel Function: At the core of the kernel trick is the kernel function, often denoted as K (z,y).
Given two data points, and y, the kernel function computes the dot product of these points in a
feature space, without explicitly calculating the coordinates of that space. Common kernel functions
include the linear kernel (K (z,y) = z - y), polynomial kernel (K(z,y) = (z -y + ¢)?), and Gaussian
(Radial Basis Function) kernel (K (z,y) = exp(—v||z — y||?)).

3. Implicit Mapping: Instead of mapping the data explicitly into a higher-dimensional space, which
can be computationally expensive and potentially infinite, the kernel trick computes the dot product
directly in the original feature space using the kernel function. So in the end, the kernel function is
formulated as followed:

k(x,x") =< ¢(x), ¢(x') >

Where ¢ : X — V is the function that maps the original x and x’ into the higher-dimensional space.
This allows linear classifiers, like SVMs, to operate in this implicit higher-dimensional space without
the need for the actual transformation ¢.

4. Kernel SVMs: In SVMs, the kernel trick is particularly powerful. When you apply a kernel function
in an SVM, you effectively transform the decision boundary into a more complex shape in the higher-
dimensional space. This enables SVMs to separate data that is not linearly separable in the original
space.

5. Computational Efficiency: One of the significant advantages of the kernel trick is its computational
efficiency. You only need to compute the kernel function for pairs of data points, which can be much
faster than explicitly mapping data into a high-dimensional space, especially when dealing with large
datasets.

Graph kernels, in particular, are specialized for handling structured data, such as graphs or networks.
Graph kernels are designed to measure the similarity between two graphs, which is a fundamental task in
applications like graph classification, clustering, and link prediction. The process of graph kernels involves
defining a function that quantifies the similarity between substructures of two graphs. This function works
the same way that we described above. That is, they implicitly compute the dot product of the input graphs
in a higher-dimensional Hilbert space (where the dot-product operation is well-defined). But for the case of

60

4.2. Graph Similarity

2D 3D

Kernel 10

0.0 7

05T —_ ==
—._,_,_‘___“__‘_‘_h —

1510 g5 ——— 10 -15
500 05 44 . s 10 05 00 0.5

5 1 %

Figure 4.2.1: An example where, using a kernel function, we are able to transform the data to a
higher-dimensional space, and convert the classification problem into a Linearly-Separable one[74]

Graphs, several graph metrics and other techniques are used, so that we never have to actually compute the
high-dimensional function or the transformed graphs. Common techniques for this include graphlet counts,
graph walks/paths, and message-propagation techniques.

Below, five common Graph Kernels are presented and explained. These are the kernels that will be used
later for the experiments, and compared to the Graph Neural Network models.

e Shortest Path Kernel: The Shortest-Path Kernel[5] involves a process of breaking down graphs into
their constituent shortest paths and subsequently comparing these paths based on their lengths and the
labels of the endpoints they connect. The initial phase of the shortest-path kernel entails converting
the given input graphs into graphs consisting of shortest paths. Given an input graph denoted as
G = (V,E), anew graph S = (V, E;) is constructed, referred to as the shortest-path graph. This newly
created shortest-path graph maintains an identical set of vertices as the original graph G. However,
its edge set is a larger set compared to that of G, as it contains edges connecting all vertices that are
connected by a path in the original graph G. To finalize this transformation, labels are assigned to all
edges within the shortest-path graph S. The label of each edge is determined by the shortest distance
between its connecting endpoints in the original graph G.

After the shortest-path graphs S; = (V;, E;),S; = (V;, E;) have been constructed from the original
G, G; graphs, then the shortest-path kernel is defined as:

K(SiS) =3 3 kS h(eie))

e;€E;e;€E;

where kful(zlk(ei, e;) is a positive semidefinite kernel on edge walks of length 1. The kernel kfjilk(ei, e;)

is usually defined using the dirac kernel, or more rarely the brownian bridge kernel.

In terms of runtime complexity, the shortest-path kernel is very expensive since its computation takes
O(n*) time.

e Weisfeiler-Lehman Kernel: The Weisfeiler-Lehman Kernel[101] is based on the existing Weisfeiler-
Lehman Isomorphism Test[119]. The key idea of the Weisfeiler-Lehman algorithm is to replace the
label of each vertex with a multiset label consisting of the original label of the vertex and the sorted
set of labels of its neighbors. The resultant multiset is then compressed into a new, short label. This
relabeling procedure is then repeated for h iterations. The Weisfeiler-Lehman sequence up to height h
of G consists of the Weisfeiler-Lehman graphs of G at heights from 0 to h, {Go, G1,...,Gr}. Then the
W L Kernel for graphs G and G’ is defined as:

61

Chapter 4. Graphs

—————— | WO
(;Em"_ " TT==-.__ Hilbert Space

A

¢ (Gy)

: (;_JAO):O—O ¢ (G, ® ¢(G],v'
G S~ = >

Figure 4.2.2: Graph Kernels, transform the graphs to data points, in a higher-dimensional Hilbert space.
This allows us to use the traditional similarity measures, most commonly the dot-product.[64]

kwi(G,G") = k(Go,Gy) + k(G1,GY) + ... + k(Gp, GY)

where k is any graph kernel, and G; are the graphs produced by the iterative Weisfeiler-Lehman test.
The kernel & is usually set to be the Vertex Histogram kernel[106], which is a linear-time kernel, and all
it does is compute the histogram vector f = (f1, fo,..., fa), where f; = [{v € V : label(v) = i}|. The
labels of the nodes, are the final compressed labels, as computed by the Weisfeiler-Lehman process.

e Neighborhood Hash Kernel: The Neighborhood Hash Kernel[44] works very similarly to the
Weisfeiler-Lehman Kernel, in that it also has an iterative process, where the node labels are updated,
according to the labels of their neighbors. The algorithm first transform each discrete node label to a
bit label. A bit label is a binary array consisting of d bits as:

8:{b17b2,...,bd}

where the constant d is sufficiently large, to cover all the nodes of the graphs. Then, using the binary
operations XOR and left cycle-rotation ROT, the label £(v) update process of node v is:

NH(v) = ROT({(v)) @ (£(ur) @ ... ® €(uq))

where N'(v) = {u1,...,uq} are the neighbor nodes of v. In order to define the final kernel formula, we
will use the sub-kernel k, defined as:

N C
SO = =

where ¢ is the number of labels the two graphs have in common. So now, given the graph se-
quence {Go,G1,...,Gp} and {G{,GY, ..., G} by updating the node labels h times according to the
Neighborhood-Hash iterative process, the final Neighborhood Hash Kernel is:

62

4.2. Graph Similarity

b\'—‘

h
Z (Gi, GY)

The computational complexity of the neighborhood hash kernel is O(dhnD) where n = |V| is the
number of vertices of the graphs and D is the average degree of their vertices.

Random Walk Kernel: The Random Walk Kernel, is one of the oldest and most studied family
of kernels. Kernels belonging to this family have concentrated mainly on counting matching walks in
the two input graphs. The most widely-used Random Walk kernel is the geometric random walk
kernel[31] which compares walks up to infinity assigning a weight A* (A < 1) to walks of length k
in order to ensure convergence of the corresponding geometric series. Specifically, given two graphs
G; = (Vi, E;) and G = (V}, E;), their product-graph G« is computed as followed:

Vi = {(vi,v5) 1 v; € Vi Avj € Vi Al(v;) = L(v;)} (4.2.1)

By = {{(vi,v5), (ui,uj)} {viywi} € By AMwj,u;} € Ej} (4.2.2)

Performing a random walk on G« is equivalent to performing a simultaneous random walk on G; and
Gj. Then, the geometric random walk kernel is defined as:

[V |

K2(Gy, Gy) Z[Z)\Al} = eT(I— Ay e (4.2.3)

p,g=1 1=0

where [is the identity matrix, e is the all-ones vector, and X is a positive, real-valued weight. The
geometric random walk kernel converges only if A < i where Ay is the largest eigenvalue of A, .

Direct computation of the kernel as defined above, requires O(n%) time, but further optimizations|115]
have managed to lower it to O(n?3).

Graphlet Sampling Kernel: The main idea of this kernel, as presented in [88], is the occurrence of
similar Graphlets in the two input graphs G; and G;. Specifically, Graphlets are small sub-graphs
with k nodes, where k is usually a small number (k € {3,4,5,...}).

The process, involves counting the frequency of occurrence, of graphlets
{graphlety, graphlets, ..., graphlet,}, and then, constructing the frequency vector for graphs G;
and G; as:

fa, = {#(graphlety C G;), #(graphlets C G;), ..., #(graphlet, C G;)}

fa; = {#(graphlet, T G;), #(graphlety C G;), ..., #(graphlet, E G;)}

Lastly, the final output of the kernel is:

k(Gi,Gy) = f&. fa,

The main problem with this kernel when it was presented, was the computational cost needed to find
the occurrences of all the graphlets. As we increase k to include a bigger variety of graphlets, the
computational time increases exponentially. It was later proposed in [100], that we don’t need to find
the occurrences of all (Z) size-k graphlets, because of a sampling theorem proved by Weissman et
al.[114].

63

Chapter 4. Graphs

This theorem affords us the ability to specify the desired level of precision in approximating the true
graphlet histogram by setting an upper bound on the L1-Distance between the actual graphlet frequency
distribution and the approximated counterpart. After manually setting this "level of precision", the
theorem can provide us with the exact number of samples from the distribution that we need to have,
in order to be close enough to the real distribution. In the case of the Graphlet Kernel, the number of
samples that we need to have, are the amount of graphlets that we need to compute.

As we can see, Graph Kernels approach the problem of Graph Similarity from different perspectives, and
they use a variety of tools. Specifically, what is important to remember here, is that the Shortest-Path Kernel
and the Random-Walk Kernel are based on more conventional graph metrics, the Graphlet-Sampling Kernel
is based on small common sub-structures found within the graphs, while the Neighborhood-Hash Kernel and
the Weisfeiler-Lehman Kernel are the only ones that use the Message-Passing technique, where each node
iteratively aggregates the information from their neighbors, and then propagates it further on. This is an
important distinction, something that will become clearer later, at the Experimentation and Results.

4.3 Scene Graphs

Scene graphs are structured representations of visual scenes that can help us understand the relationships
between objects. They contain information about the objects in a scene, as well as the attributes and
relationships between those objects. Scene graphs have been used in a variety of computer vision tasks,
including visual relationship detection, image captioning, and visual question answering. They are important
because they provide a more detailed and nuanced understanding of visual scenes than traditional object
detection and recognition methods, therefore allowing us to take advantage of the semantic content as well.

P e

1 Annotated public dataset

Figure 4.3.1: Examples of the sparsity and variability of visual relationships. Being able to extract useful
semantic information from these relationships, can be immensely useful for all kinds of visual tasks, that
require a deeper understanding of the objects and their actions.[13]

Scene graphs were first proposed in 2015[48], as a data structure that describes the object instances in a scene
and the relationships between these objects. The concept of scene graphs emerged as a solution to the problem
of capturing the relationships between objects in a scene, which is a higher-level visual understanding task
that goes beyond simple object detection and recognition. The idea of utilizing the visual features of different
objects contained in the image and the relationships between them was first introduced in 2015[48]. Since
then, scene graphs have attracted the attention of a large number of researchers, and related research is often
cross-modal, complex, and rapidly developing. Today, scene graphs are an important tool for understanding
visual scenes and improving the performance of computer vision tasks.

Specifically in this thesis, the dataset that will be used is Visual Genome, one of the most popular Scene
Graph datasets, that has been used in a variety of tasks. Presented in (2016)[58], Visual Genome is a
large-scale dataset that aims to provide a comprehensive understanding of the visual world by connecting
language and vision through crowdsourced dense image annotations. The dataset contains over 100,000
images, each with detailed annotations of objects, attributes, relationships, and region descriptions. What
distinguishes Visual Genome from other datasets is its prioritization of relationships and attributes as primary
components within the annotation space, in conjunction with the customary emphasis on objects. Recognition
of relationships and attributes is an important part of the complete understanding of the visual scene, and

64

4.3. Scene Graphs

in many cases, these elements are key to the story of a scene.

i) standing
== “‘/QQ\ %\blonde

holding —

in front of long
_ -} -racket &7 heavy
yellow

wide

- - cone — orange

™
black in butterflies
--------- bnh- ind l:ﬂr
L ¥

T
caring logo___swingi olding ™ | eyes
A i W r o :
round yellow on beside besidq below orange i brown
l.lllﬂ.a/ £ i 4

'\"ﬁ I
arm hands beside racket 1 on
I g, . R
behind white beside bent on has Fong heavy yellow wide: has above above
N / R A !4 1 +
arm handle net tennis court mouth
A + * +
in front of bent black lined closed
| Legend: objects attributes relationships

(a)

Figure 4.3.2: An example of a Scene Graph, alongside its original image. This specific scene graph, contains
objects, relationships and attributes, but it should be noted that there is no strict definition of a schema
that all the Scene Graphs are required to follow. Only that they are in the form of graph, and that they

provide semantic information of the objects in the image, and the relationships between them.[122]

The dataset is useful for a wide range of computer vision and natural language processing tasks, including
object recognition, scene understanding, image captioning, and visual question answering. The
annotations in Visual Genome provide a rich source of information for training and evaluating models that
aim to understand the visual world. For example, the region descriptions can be used to train models for
image captioning, while the relationships and attributes can be used to train models for scene understanding
and visual question answering.

Visual Genome is unique in its approach to annotation, which involves crowdsourcing dense annotations
from multiple annotators for each image. This approach allows for a more comprehensive understanding of
the visual world, as it captures the diversity of interpretations and perspectives that humans bring to the
task of image annotation. The dataset also includes a canonicalization pipeline that resolves inconsistencies
and errors in the annotations, ensuring that the dataset is of high quality and suitable for use in a wide range
of applications.

Overall, Visual Genome is an important and unique dataset that provides a comprehensive understanding
of the visual world by connecting language and vision through crowdsourced dense image annotations. The
dataset is useful for a wide range of computer vision and natural language processing tasks, and its approach
to annotation ensures that it captures the diversity of interpretations and perspectives that humans bring to

65

Chapter 4. Graphs

the task of image annotation. In this thesis, the scene graphs alone are going to be used for the Quantitative
Evaluation of the models, and the corresponding images of the scene graphs are going to be used for the
Qualitative Evaluation.

4.4 Related Work

Graph Kernels

In addition to the five families of kernels mentioned, there are several other popular and widely used families
of kernels in the field of graph kernels. These include the Subgraph Matching Kernel, the Edge Histogram
Kernel, the Pyramid Match Kernel, and the Treelet Kernel.

The Subgraph Matching Kernel (SMK)[57] is a family of kernels that compares the presence and frequency
of subgraphs in two graphs. The SMK is useful in applications where the presence of specific subgraphs is
important, such as in chemical compound classification and protein structure analysis.

The Edge Histogram Kernel (EHK) is a family of kernels that compares the distribution of edge labels
in two graphs. The EHK is useful in applications where the labels of edges are important, such as in social
network analysis and image classification.

The Pyramid Match Kernel (PMK)[36], compares the hierarchical structure of two graphs by computing
the similarity between their corresponding pyramids. The PMK is useful in applications where the hierarchical
structure of the graphs is important, such as in image classification and object recognition. The PMK has been
shown to outperform other graph kernels in certain applications, and its ability to capture the hierarchical
structure of graphs makes it a valuable tool for machine learning on graph data.

The Treelet Kernel (TK)[33] is a family of kernels that compares the frequency of small tree-like structures,
called treelets, in two graphs. The TK is useful in applications where the presence of specific tree-like
structures is important, such as in protein structure analysis and social network analysis.

Each of these families of kernels has its own strengths and weaknesses, and is suited to different types of
applications. By using a combination of these kernels, researchers can develop powerful machine learning
models for a wide range of graph-based problems.

Regarding the range of application, Graph Kernels has been successfully used in numerous fields. Tradi-
tionally, chemistry is one of the richest sources of graph-structured data. Graph kernels have been used
extensively for predicting the mutagenicity, toxicity and anti-cancer activity of small molecules [107, 91, 72,
12, 73, 104]. Bioinformatics is also one of the major application domains of graph representations and
therefore, of graph kernels. These include, their utilization in predicting the functional attributes of proteins
characterized by both known sequences and structures [4, 96], the identification of intricate interactions im-
plicated in the onset and progression of diseases [6], the examination of functional non-coding RNA sequences
[95], and many more. Graph kernels have also served as an effective tool for many computer vision tasks
such as for classifying images [41, 71|, for detecting objects represented as point clouds [1, 82|, for achieving
place recognition [105]. Further work can be found in the comprehensive survey by Nikolentzos et al.[83)].

Scene Graphs

Besides the task of Graph Similarity, scene graphs have been used in numerous other cases. First and foremost,
scene graphs have been used to generate images or layouts, based on the objects and relationships that
they encode [47, 78, 111, 128, 43, 110]. Cross-modal retrieval is also a common application in scene graph
research. Image-text retrieval is a classic multi-modal retrieval task. The key to image-text cross-modal
retrieval concerns learning a comprehensive and unified representation to represent multi-modal data. The
scene graph is a good choice in this context, and a substantial body of research has been dedicated to this

66

4.4. Related Work

domain[98, 89, 97, 14]. Besides retrieval, another popular multimodal task is Visual Question Answering.
Scene Graphs can capture the essential information of images in the form of graph structures, which helps
scene-graph-based VQA methods outperform traditional algorithms[126, 123, 34]. Further work can be found
in the comprehensive survey by Chang et al.[13].

67

Chapter 4. Graphs

68

Chapter 5

Graph Neural Networks (GININ)

Graph Neural Networks (GNNs) have emerged as a powerful class of machine learning models designed to
tackle data represented in graph structures. They have gained immense popularity due to their ability to
address a wide range of real-world problems, from social network analysis to drug discovery and recommen-
dation systems. The need for GNNs arises from the limitations of traditional deep learning methods when
applied to graph data.

One key reason for the rise of GNNs is that many real-world datasets can be naturally represented as graphs,
where entities (nodes) are connected by relationships (edges). Traditional deep learning methods, such as
convolutional neural networks (CNNs) and recurrent neural networks (RNNs), are primarily designed for grid-
like data, like images and sequences. They lack the capacity to capture the inherent structural information
and dependencies present in graph data. GNNs, on the other hand, are specifically tailored to process
graph-structured data, making them well-suited for tasks like node classification, link prediction, and graph
classification.

We will further explain the possible architectures of GNNs, and why the have come to be indispensable for
the machine learning community.

Contents
5.1 Introduction & i i i i it e e e e e e e e e e e e e 70
5.2 Graph Convolution i i it 71
5.2.1 Spectral-Based Graph Convolution 71
5.2.2 Spatial-based Graph Convolution 72
5.3 Spatial-Based GINN Modules i i i ittt vttt 74
5.4 Graph Auto-encoders ¢t v i ittt e e e e e e e e e e e e e e e e e e 76

69

Chapter 5. Graph Neural Networks (GNN)

5.1 Introduction

Graph data is becoming increasingly common in various domains, such as social networks, bioinformatics,
and recommendation systems. However, traditional machine learning algorithms are designed to handle data
in the Euclidean space, which is not suitable for graph data, which has complex relationships and inter-
dependencies between objects, something that cannot be captured by traditional algorithms. Therefore,
there is a need for specialized architectures that can process graph data effectively.

Graphs and Euclidean Space

Graphs cannot always be embedded into a Euclidean space without distortion or overlap. The primary
reason for this inability to embed all graphs into Euclidean space is that some graphs possess properties or
structures that make it impossible to represent them without certain distortions or overlaps.

In broad terms, non-Euclidean data is data whose underlying domain does not obey Euclidean distance as a
metric between points in the domain. For visualization simplicity, we can think of Z? instead, which can be
seen as a "grid" of integer-valued points separated by a distance of 1. We can easily "visualize" the distance
between the points of the domain.

Now let’s view the case of graphs, and specifically, the underlying domain of graphs. It’s a set of nodes V'
and a set of edges F. In the context of graph theory, it is essential to recognize that the concept of distance,
as understood within the context of Fuclidean geometry, does not directly apply to the nodes of a graph.
When posed with the query, "What is the distance between point A and point B within this graph?" the
response typically hinges upon a function that relies on the structural connectivity inherent to the graph, an
integral component of its domain. Consequently, it is crucial to acknowledge that this distance measure
may vary significantly for distinct pairs of nodes located within the graph.

Therefore, since graph metrics can’t be made to obey the fundamentals of a Euclidean Distance, graphs
don’t lie in a Euclidean Space.

Euclidean Space

.7 B Non-Euclidean Space

Figure 5.1.1: The structured nature of the data points on the left, allows us to treat it as data in a
Euclidean Space. On the contrary, in the case of the random graph on the right, we can’t define a distance
between the nodes, that allows us to obey the Euclidean Distance rules.|2]

Practical challenges with Graph Data

We will now present the main problems that we encounter when processing graph data, and briefly mention
the techniques that GNNs employ, in order to solve them.

70

5.2. Graph Convolution

One of the main challenges in processing graph data is the lack of a fixed structure. Unlike images or text,
graphs can have varying sizes and structures. This makes it difficult to apply traditional machine learning
algorithms, which require fixed-size inputs. GNNs can handle graphs of varying sizes and structures by using
message passing algorithms. In message passing, each node aggregates information from its neighbors and
updates its representation. This allows GNNs to handle graphs, without making any assumptions about the
number of nodes, or the relationships between them.

Another challenge in processing graph data is the lack of a natural ordering of nodes. In Euclidean
space, the ordering of dimensions is fixed, which allows traditional algorithms to process data efficiently.
However, in a graph, there is no natural ordering of nodes. GNNs can handle this challenge by using graph
convolutions, which are designed to be permutation invariant. This means that the order of nodes does not
affect the output of the convolution, allowing GNNs to process graph data efficiently.

In summary, GNNs are needed because traditional machine learning algorithms are unable to handle graph
data effectively. GNNs can handle the complex relationships and dependencies between objects in a graph
by using message passing algorithms and graph convolutions. In the next section, we will explain in detail
how these techniques are applied on graphs, along with the required theoretical background.

5.2 Graph Convolution

The main operation that GNNs employ in order to process and analyze graph data, is Graph Convolution.
As the name suggests, it is the equivalent operation of Signal Convolutional (as the one applied in CNNs for
images), but with the necessary differentiations, to be applicable on graph data.

Graph Convolution, and GNNs in general, can be viewed as a function that is applied on a graph signal. For
the explanation of GNNs, we can simply view a graph signal, as feature vectors for the nodes of the graph.
When we apply Graph Convolution on the graph signal, the result will be an updated signal.

Like all signal functions, Graph Convolution can be studied on the spatial domain, and on the spectral
domain. Below, we will present the theoretical background of each domain, along with a brief history of work
on this field.

5.2.1 Spectral-Based Graph Convolution

Spectral-based methods have a solid mathematical foundation in graph signal processing [102, 16, 93]. They
assume graphs to be undirected. At the heart of graph analysis in the spectral domain, is the Graph
Laplacian. The graph Laplacian matrix is a mathematical representation of an undirected graph, defined
as:

L=D-A

where D is the degree matrix, and A is the adjacency matrix of the graph. A vertex with a large degree,
also called a heavy mode, results in a large diagonal entry in the Laplacian matrix dominating the matrix
properties. Normalization is aimed to make the influence of such vertices more equal to that of other vertices,
by dividing the entries of the Laplacian matrix by the vertex degrees. That’s why the Normalized Graph
Laplacian is more commonly used, which is defined as:

The normalized graph Laplacian matrix possesses the property of being real symmetric positive semidefinite,
which means that we can factor L into:

L =UAU"T

71

Chapter 5. Graph Neural Networks (GNN)

where U = [ug,uy,...,un—1] € R™*™ is the matrix of eigenvectors ordered by eigenvalues and A is the
diagonal matrix of eigenvalues (spectrum).

In graph signal processing, a graph signal x € R" is a feature vector of all nodes of a graph where z; is the
value of the i*" node. The graph Fourier transform to a signal z is defined as F(z) = UTx, and the inverse
graph Fourier transform is defined as F~1(#) = UZ, where & represents the resulted signal from the
graph Fourier transform. So now, let’s also assume we have a filter g € R”, the convolution of graph signal
x (node feature vectors) with the filter g is defined as:

x*gg=F '(F(x)© F(g))

Further simplifying the equation, by denoting gy = diag (UTg)7 we get:

X kG 8 = UggUTx

From this point on, the only differentiation among the different Spectral Graph Convolution variations,
is the parameter gy, and what we set it to be. Specifically, Spectral-CNN[10] set gy equal to a set of
learnable parameters @Z(.Z). This generic approach, has three main disadvantages. First, any perturbation
to a graph results in a change of eigenbasis. Second, the learned filters are domain dependent, meaning
they cannot be applied to a graph with a different structure. Third, eigen-decomposition requires O(n?)
computational complexity. In order to tackle these problems, the main idea was to approximate gy by

using polynomials[20, 63]. Specifically, the filter is:

d
pw(L) =wol, +w1L + ’ngQ + -+ ded = ZwiLi
=0

These polynomials can be thought of as the equivalent of ‘filters’ in CNNs, and the coefficients w as the
weights of the ‘filters’.

Although Spectral-based Graph Convolutional Networks exhibit a strong mathematical foundation, modern
research has shifted in the later years to Spatial-based Graph Convolutional Networks, mostly because of the
simplicity and ease of further research.

Step 1

Graph Fourier Transform

Step 3

Graph Fourier Inverse Transform

spectral domain

y *x = UygU"x: — y

Step2 ‘ /
\ / - Convolution in o~ h]
» L
F - .

[convelution kernel)

Figure 5.2.1: Visualization of Spectral Graph Convolution[65]

5.2.2 Spatial-based Graph Convolution

Similar to how a traditional Convolutional Neural Network (CNN) performs convolution operations on an
image, spatial-based techniques define graph convolutions by considering the spatial relationships between
nodes. In this context, images can be viewed as a special type of graph, with individual pixels serving as

72

5.2. Graph Convolution

nodes. Each pixel maintains direct connections to its adjacent pixels, as depicted in Figure 5.2.1. To execute
a convolution, a filter is applied to a 3 x 3 patch, computing the weighted average of pixel values within the
central node and its neighboring nodes across all channels. Analogously, spatial-based graph convolutions
operate by convolving the representation of the central node with the representations of its neighboring nodes,
resulting in an updated representation for the central node, as depicted in Figure 5.2.1. This propagation of
node information along the graph’s edges, is more commonly known as Message Passing.

A general framework for Spatial-based Convolutional GNNs, was introduced with the Message Passing
Neural Network (MPNN)[35]. Within this framework, graph convolutions are viewed as a message-passing
procedure, allowing the exchange of information directly between nodes along their connecting edges. MPNN
executes a series of K-step message-passing iterations, enabling the gradual propagation of information across
the graph. The message passing function is defined as:

h{Y = U | b, Y Mi(h{* D h{Y x5,
ueN (v)

where h{) = x,, Ui(-) and My(-) are functions with learnable parameters. Once the hidden representations
of individual nodes, denoted as hS,K)7 have been computed, they can be forwarded either to an output layer
for tasks that involve predicting at the node level, or to a readout function for tasks that involve predicting
at the graph level. The readout function is responsible for creating a representation of the entire graph by
leveraging the hidden representations of its constituent nodes. Most existing Spatial-based ConvGNNs can

be seen as a variation of MPNN, by setting the corresponding Uy, M} and the readout function.

Spectral models find their theoretical basis in graph signal processing. By crafting novel graph signal filters,
one can construct new Convolutional Graph Neural Networks (GNNs). However, spatial models are preferred
over spectral models for the following reasons:

1. Firstly, spectral models exhibit lower efficiency compared to spatial models. Spectral models
necessitate either eigenvector calculations or the processing of the entire graph simultaneously. In
contrast, spatial models demonstrate superior scalability on large graphs by directly conducting convo-
lutions within the graph domain through information propagation. This computation can be executed
in batches of nodes rather than the entire graph.

2. Secondly, spectral models, which rely on a graph Fourier basis, struggle to generalize effec-
tively to new graphs. They assume a fixed graph structure, and any alterations to the graph would
result in a modification of the eigenbasis. In contrast, spatial-based models perform graph convolutions
locally on each node, allowing for easy weight sharing across various locations and graph structures.

3. Thirdly, spectral-based models are restricted to working with undirected graphs. Spatial-
based models exhibit greater flexibility in handling inputs from diverse sources, such as edge inputs,
directed graphs, signed graphs, and heterogeneous graphs. This flexibility arises from their ability to
seamlessly incorporate these types of graph inputs into the aggregation function.

It is common for all the Convolutional GNNs, to be stacked on multiple layers. The advantage of layer-
stacking, comes from Message Passing, which propagates the information further than the 1-hop neighbors.
Specifically, if we stack k-layers of Convolutional GNNs, the information of each node will have propagated
up to the k-hop neighbors.

However, Li et al.[66] have demonstrated a significant decrease in the effectiveness of a ConvGNN as the
number of graph convolutional layers increases. Since graph convolutions tend to bring the representations of
neighboring nodes closer together, it can be theoretically posited that an infinite number of graph convolu-
tional layers would ultimately cause all nodes’ representations to converge to a singular point. This prompts
an inquiry into whether pursuing greater depth remains a viable approach for the acquisition of knowledge
from graph data.

The three factors presented above, are the main causes for the domination of Spatial-based Convolutional
GNNs in research for the past few years. In the next section, we will present in detail, the most common
modern Spatial-based ConvGNNs, that will also be implemented and assessed as part of this thesis.

73

Chapter 5. Graph Neural Networks (GNN)

5.3 Spatial-Based GNN Modules

Most Spatial-based Convolutional GNNs, are formulated as a variant of the MPNN[35] module. Specifically,
the most common ones, that will be implemented at the Proposed Models, are the following:

e The Graph Convolutional Network (GCN) was proposed by Kipf et al.(2016)[55], and it is now
considered the baseline for most Spatial-based GNN modules. The GCN is based on the spectral
graph convolutional neural network (SGCNN) introduced by Bruna et al. (2014)[10]. It is the first
GNN module, that connected Spatial-based and Spectral-based approaches. The original equation for
applying a filter gy, on a graph signal x, is defined as:

x*c gy = UgpUTx

But, as we mentioned earlier, we can approximate gg(A) by using Chebyshev polynomials Ty (x) up to
K™ order:

K
g (M) =~ > 0,Ti(A)
k=0

where A is the rescaled A = ﬁA — In. So now, the graph convolution with the signal, becomes:

K

X*g 8y ~ Z Q;CTk(E)X
k=0

L — In. By using K" polynomials of the Laplacian, we are essentially constricting

where L = v
the dependency, to nodes that are at maximum K steps away from the central node (K*"-order neigh-
borhood). Here, the authors of the paper, propose two simplifications to the above equation. They set
K =1, and they approximate .. ~ 2. After these simplifications, we get the linear equation, defined

as:

x %G 8 ~ Oha + 0 (L — In)z ~ Oz + 0, D 2 AD 3z

In order to further minimize the number complexity, and the number of matrix multiplications, they
set the parameters to be equal (§ = 6 = —61), and the expression becomes:

X *xGg 8o ~ 0 (IN +D_%AD_%) xT

Here, it was noticed that the eigenvalues of Iy + D~2AD~2 fall in the range [0,2], so repeated ap-
plications of this operation can lead to instabilities, such as explodmg/vamshmg gradlents To solve
that, they introduced a renormalization trick, by using D=2 AD~% instead of Iy + D~ 2 AD™2 , where
A=A + Iy and D= Z

So the final equation of GCN in matrix form is:

Z=D":AD":X0

where X € RV*C¢ @ € RE*F, Z ¢ RV*F and C is the dimension of the input node vectors, and
F is the dimension of the output node vectors. Since the above equation is linear, in order to solve
non-linear problems as well, an activation function (e.g. ReLU) is applied to the output vectors of the
GCN.

Now, we have seen that the GCN is a simplified Spectral-based GNN, based on the SGCNN. But it
can also be written as a node-wise equation:

74

5.3. Spatial-Based GNN Modules

T Z €5 %
jeN@uliy \/d;d; ’

So we can see, that GCN is the bridge between Spectral-Based and Spatial-based approaches. Although,
since the Spatial-based formulation is much easier to understand and further extend, related work that
built on top of GCN, did so exclusively on the Spatial domain.

e The Graph Attention network (GAT), was proposed by Velickovi¢ et al.(2017) [113], and the main
idea was to use attention, and especially multi-headed attention[112]. The attention technique, was
used as a "weight-function", to compute the impact of the neighbor nodes, when updating the central
node. Specifically, the node-wise equation is defined as:

Xg = ai,i(-)xi + Z (l@j@Xj
JEN (D)

where a; ; are the attention weights, defined as:

exp (LeakyReLU (a'[Ox; || ©x;]))
> keniyugiy €xp (LeakyReLU (a'[©x; || ©xy]))

@ =

where a and ©® are learnable parameters. The negative slope of LeakyReLU is set to a = 0.2 and in
the case of Multi-Headed Attention, they implement it the same way as in [112]

kO k1 k2 k3 k4 k5 k6 k7 kB k9 kO k1 k2 k3 k4 k5 k6 k7 k8 k9

0.08 0.10 0.10 0.07 0.08 0.08 0.11 0.09 0.20 0.08 q[)-

0.05 0.10 0.10 0.04 0.04 0.04 0.13 0.06 [k} 0.04 ql 0.0

0.05 0.10 0.10 0.04 0.05 0.05 0.13 0.38 U5 q'z 0.00

0.08 0.10 0.10 0.07 0.08 0.08 0.10 0.09 0.24 0.08 q3

0.08 0.09 0. 07 0.07 0.10 0.08 [@2F 0.07 q4

0.09 0.11 0.11 0.08 0.09 0.08 0.11 0.10 0.16 0.09 Q'S 0

0.04 0.10 0.11 04 0 0.04 qﬁ 0.0

0.07 0.09 0.09 0 0.1 029 0.07 q? 0.04 0

0.04 0.11 0.11 O. 0.04 qB 0

0.07 0.09 0.09 07 0.07 0.11 0.08 0.07 qg 0.0
1.0
0.81
0.61
0.41
0.2 1
0.0. v

kO k1 k2 k3 k4 k5 k6 k7 k8 k9 kO k1 k2 k3 k4 k5 k6 k7 k8 k9

(a) Attention in standard GAT (Velickovic et al. (2018)) (b) Attention in GATv2, our fixed version of GAT

Figure 5.3.1: On the left, we can see that the attention maps of GAT compute a global ranking of all
attention weights. On the right, GATv2 computes the correct attention weights, visualized by the
characteristic diagonal in the attention matrix (because every node should attend the most with itself) [8]

75

Chapter 5. Graph Neural Networks (GNN)

e GATv2[8] is an upgrade to the original GAT that was previously presented. The authors claimed
that GAT computes a static attention among the nodes, and not dynamic attention, which means
that the GAT network doesn’t rank nodes’ attention score depending on the specific node
pair, but it produces global attention score rankings. In practice, this means that there is a node
v in the graph, that all the other nodes assign it the highest attention score. This is intuitively a
wrong implementation of the Attention Mechanism, because each node should attend the most to the
themselves (highest similarity), and they shouldn’t have the same ranking across all nodes’ attention
weights.

This can be proven by the equation of attention weights used in the GAT, if we set the learned parameter
a to be equal to a concatenation a = [a1|laz]. Then the weights a; ; are computed as:

exp (LeakyReLU (af ©x; + aj ©x;))
D keN(i)u{i} EXP (LeakyReLU (a ©x; + al©x;))

ij =

For a specific node ¢, the denominator is constant (not dependent to j), and for the numerator there
is a node j so that the expression exp (LeakyReLU (al ©x; + al©x;)) is maximized (since the term
al’®x; is constant, for a specific 7). So it is easy to see, that there is a j, that will maximize a;,; for
every 4, This is exactly the reason that GAT computes the static version of attention.

We can further understand this behavior, if we visualize the attention maps of GATv2 and GAT, as
shown in Figure 5.3.1.

The proposed function that computes attention weights a; ; in GATv2 (and leads to dynamic attention)
is:

exp (a'LeakyReLU (O[x; || x;]))
ZkeN(i)U{i} exp (aT LeakyReLU (O[x; || xx]))

Qij =

e Graph Isomorphism Network (GIN), was proposed by Xu et al.[121], where their investigation
revealed that prior MPNN-based approaches lacked the ability to differentiate between various graph
structures based on the graph embeddings they generated. To address this limitation, GIN introduces a
modification wherein it adapts the central node’s weight using a trainable parameter €. The node-wise
formula is:

x;=he | (1+e€) - x;+ Z X;
FEN()

where hg denotes any implementation of an MLP. They also argue that, setting the operation of Sum
to be the readout function of the GNN (as defined in Section 5.2.2), GIN generalizes the Weisfeiler-
Lehman test and hence achieves maximum discriminative power among GNNs.

5.4 Graph Auto-encoders

Graph Autoencoders (GAFs) are a class of Graph Neural Networks that are used for unsupervised learning
on graph data. The main objective of a GAFE is to learn a compressed representation of the input graph,
which can be used for various tasks, such as network embedding and graph generation. GAFs consist of
two main components: an encoder and a decoder. The encoder maps the input graph to a compressed
representation, while the decoder maps the compressed representation back to the original graph.

76

5.4. Graph Auto-encoders

GAFEs are important because they can learn a compressed representation of the input graph without the need
for labeled data. This makes them suitable for various applications where labeled data is scarce or expensive to
obtain (such as Graph Edit Distance). GAEs can also be used for network embedding, where the compressed
representation is employed for downstream tasks, such as node classification and link prediction. In addition,
GAFEs can be used for graph generation, where the compressed representation can guide the generation of
new graphs that are similar to the original graph.

Specifically, there are three main architectures that will be presented here. These are the models that will
be combined and used for the experiments later on.

1. The Variational Graph Autoencoder (VGAE)[54], is a framework for unsupervised learning on
graph-structured data. The model uses latent variables to learn compressed representations for
(un)directed graphs.

Both GAFE and VGAFE models, follow the basic architecture of the generic Auto-encoder, as presented
in Section 3.5. Therefore, the main components of the architecture is an FEncoder that maps the
input to a latent space, and a Decoder, whose task is to reconstruct the input, given the latent space
representation. Specifically, in the case of graph autoencoders, the Encoder, can be any Graph Neural
Network that produces embeddings for the nodes, and the proposed Decoder is an Inner-Product
Decoder. The way the Inner-Product Decoder works is that, given the node embeddings Z € RN *F
in the latent space (where F' is the dimension of the latent embeddings), it will predict the adjacency
matrix A by computing:

A=0(22")

So we can see, that "indirectly", the task of the decoder is Link Prediction, on the edges of the input
graph. Then, given the original adjacency matrix A, the loss of the simple GAE is Binary Cross-
Entropy Loss for the Positive and the Negative Samples(Edges). When the graph is too sparse, it is
common to sub-sample the Negative Edges, to have an equal amount of samples for both classes.

The difference of the Variational GAE is the extra term at the Loss function, to impose a prior
distribution on the latent embeddings (as described in Section 3.5). This prior distribution is almost
always set to be the Standard Normal distribution p (Z) = [[, p(z;) = [[; NV (z:[0,I). But, in order
to compute a Mean and a Standard Deviation, the VGAE model needs to have two outputs in the
latent space, not one (as in the case of GAF). Usually, these two GNNs that are used in a VGAE are
mentioned as GNN, and GNN,, the networkc that produce the Mean and the Standard Deviation
respectively. Then, using the reparameterization trick [53], the final latent embedding is:

Z = GNN,(A,X) +e*x GNN, (A, X)

where € is an arbitrary random variable, usually € ~ A/(0,1). And the second difference of VGAEFs,
is the loss function. As explained in Section 3.5, the Variational GAE, adds a second term to the
loss function (besides the reconstruction loss), which is the Kullback-Leibler Divergence between the
prior distribution (Standard Normal) and the approximated distribution (GNN, and GNN,, from the
encoder). Generally, VGAEs are preffered, when we want the final embeddings to follow a distribution,
somethinhg that is of great importance in teh Graph Similarity task, where the encoded embeddings
need to be regularized.

2. The Adversarially Regularized Variational Graph Autoencoder (ARVGA) proposed by Pan
et al.[84], further builds upon the original VGAE, by implementing ideas of Adversarial Training.
Specifically, a Discriminator Module is employed (implemented as an MLP), which receives as input,
the sample embeddings from the latent space, and samples from the prior distribution. The goal is to
successfully classify them as True or Fake samples.

This addition to the original VGAFE architecture proved to be quite important, because it helped
immensely to regularize the embedding and improve its quality. As a result, the final embedding space,
is much more interpretable and regularized, compared to the original architecture.

7

Chapter 5. Graph Neural Networks (GNN)

Gconv Geconv

a| N& | [\wg z z zZ -
A SN v [(\vd IR BNE ORI VAN AV
(] Le e Ty Y -i : gy 3 3
T y, L3000 L - -
X (A . l
. S)N Decoder
Encoder

Figure 5.4.1: The base architecture of a Graph Autoencoder, consisting of the Encoder and Decoder [120]

q(Z|A.X)
Ly — [A2l 2 KE y
A ey, e Z~q(Z) 7 27
> - - A i y e T
> > > > [— —
@ _S8s
e 8w R
Vel 1 L
. »
seee
Encoder
Fake
Z'~p(2) -
Real P~ - = 1 | Real
+ @ @ @ @ @
— > Input — -ODQP,.J"J"O —
~ 8 (g @ . @&
@ 0 | Fake

Discriminator

Figure 5.4.2: Architecture of the ARVGA model, as presented in [84]

3. The Graph Feature Autoencoder [42], was the first model in the GAE family, to employ a Feature-
Decoder, not an Edge-Decoder. Specifically, they used the node embeddings produced by the Encoder,
and propagated them through a MLP network. The goal of this MLP network, is a regression task,
to produce the original feature matrix X € RV>*¥ from the latent embedding matrix Z € RY*P. The
final loss term, added by this Feature Decoder, is the Mean Squared Error Loss between X and the
output X of the Feature Decoder.

The main advantage of adding this Feature Decoder to the architecture, is that now, the embeddings
will need to compress feature information as well. In the original architecture, the Decoder only
predicted the Adjacency Matrix, so there was no guarantee that the final embeddings had encoded
any information regarding their features. The paper argues that the addition of a Feature Decoder is
especially useful in biological interaction networks, such as genes or proteins.

The concepts introduced in the three aforementioned approaches will serve as the foundational elements for
devising novel Graph Autoencoder structures. These structures will subsequently undergo experimental
evaluation, through the task of Graph Similarity.

78

Chapter 6

Counterfactual Explanations

Explainable Artificial Intelligence (XAI) is a critical subfield within the realm of artificial intelligence
(AI) that aims to enhance the transparency and interpretability of AI systems. It addresses the fundamental
challenge of making Al algorithms and models more understandable and comprehensible to both experts and
non-experts. XAI seeks to bridge the gap between the black-box nature of many Al algorithms and the need
for human users to trust, verify, and explain the decisions made by these systems.

The need for XAl is driven by several factors. Firstly, as Al is increasingly integrated into various aspects of
our lives, including healthcare, finance, and autonomous vehicles, it becomes imperative to ensure that AlI-
driven decisions can be justified and explained. This is especially crucial in high-stakes applications
where incorrect or biased decisions can have significant consequences. Additionally, regulations and ethical
considerations, such as the General Data Protection Regulation (GDPR) in Europe, require organizations to
provide explanations for automated decisions affecting individuals. Moreover, XAl can aid in the debugging
and improvement of Al models, making them more robust and reliable.

XAI has a wide range of applications across industries. In healthcare, it can help doctors and medical
practitioners understand the rationale behind Al-generated diagnoses, leading to more informed treatment
decisions. In finance, XAI can be used to interpret the factors influencing algorithmic trading decisions,
enhancing market transparency. Furthermore, in autonomous vehicles, XAl can provide insights into why
a self-driving car made a specific driving maneuver, contributing to safer and more trustworthy autonomous
systems. Overall, Explainable Al is a critical development in the field of Al, fostering trust, accountability,
and responsible Al deployment across various domains.

In this thesis, we will focus on a specific XAT technique, the Counterfactual Explanations. In this chapter,
the necessary definitions, formulas and algorithms will be explained in detail, primarily in accordance with
the contributions [29] and [21].

Contents
6.1 Introduction @ i i i i i i i i i e e e e e e e e e e e e e e 80
6.2 Definitions and Framework 0 i 0 i it e e e e e e e e 80
6.2.1 Algorithmic Implementation 0oL 82
6.2.2 Enriching the Explanation Dataset 83
6.2.3 Utilization of GNN Models 83
6.3 Related Work o o o 0 v i i i e 84

79

Chapter 6. Counterfactual Explanations

6.1 Introduction

Counterfactual explanations are a type of explanation that aims to reveal what should have been different
in an instance to observe a different outcome. In the context of machine learning, counterfactual explanations
are used to explain the decisions made by uninterpretable classifiers. They are particularly valuable because
they provide actionable insights into how to change the input to achieve a desired output. Specifically, they
can provide an answer to the question "What would have to change for something to be classified as X instead
of Y?". For example, a bank customer who is denied a loan may receive a counterfactual explanation that
reveals what they could have done differently to be approved.

Counterfactual explanations have several advantages over other explainability methods in machine learning.
Here are some of the key advantages:

1. Actionability: Counterfactual explanations provide actionable insights into how to change the input
to achieve a desired output. This is particularly valuable in high-stakes applications, such as healthcare
and finance, where the decisions made by the model can have a significant impact on people’s lives. By
providing actionable insights, counterfactual explanations can help to ensure that the decisions made
by the model are fair and unbiased.

2. Individualized explanations: Counterfactual explanations provide individualized explanations for
each input. This is in contrast to other explainability methods, such as feature importance or partial
dependence plots, which provide global explanations that apply to all inputs. Individualized explana-
tions are important because they provide a way to understand why a particular decision was made for
a specific input.

3. Model-agnostic: Counterfactual explanations can be generated for a wide range of machine learning
models, including black-box models. This is in contrast to other explainability methods, such as decision
trees or linear models, which are specific to a particular type of model. Model-agnostic explanations
are important because they provide a way to understand the decisions made by any model, regardless
of its complexity.

4. Causal inference: Counterfactual explanations are based on the concept of counterfactuals, which
are statements about what would have happened if something had been different. This makes them
well-suited for causal inference, where the goal is to estimate the effect of an intervention. By generating
counterfactual explanations, it is possible to estimate the effect of changing the input on the output.

5. Fairness and robustness: Counterfactual explanations can be used to evaluate the fairness and
robustness of machine learning models. By generating counterfactual explanations for a large number
of inputs, it is possible to identify patterns in the model’s behavior and detect biases or vulnerabilities.
This can help to improve the model’s performance and ensure that it is fair and robust.

Overall, counterfactual explanations have several advantages over other explainability methods in machine
learning. They provide actionable insights, individualized explanations, are model-agnostic, well-suited for
causal inference, and can be used to evaluate the fairness and robustness of machine learning models. The
specific Counterfactual Explainer framework that we present here is proposed in [29], and a more refined
version of it in [21].

6.2 Definitions and Framework

The goal of the framework presented in [29], is to provide Counterfactual Explanations for a black-box
classification model, by specifying the optimal Counterfactual for a specific input sample. The Counterfactual
is an object, that is classified to a different class than the input sample (according to the black-box classifier),
and the modifications from the input sample are interpretable and understandable by humans.

The framework by Filalndrianos et al. [29] is based on Knowledge Bases, and specifically, it uses Description

80

6.2. Definitions and Framework

Logics to formulate the objects and the relationships between them. The first prerequisite, is a Black-Box
Classifier F': D — [0,1]¢, where ¢ is the number of classes, and D is the domain of inputs that the classifier
accepts. We only need to have a Black-Box access to this classifier, meaning that we can only provide an
input and observe the output (predicted class).

The key component of the proposed framework, is the utilization of an Explanation Dataset. Given the
domain D of the classifier, and a set of atomic concepts CN, an explanation dataset is a set of tuples {(z;,C;)}
where x; € D and C; C CN. For the atomic concepts CN, there also needs to be a TBoz, that provides us
with a hierarchy of these concepts. This Explanation Dataset, along with the TBox are able to provide us
with meaningful Counterfactual Explanations, using the idea of Conceptual Edit.

Using the T'Boz’s axioms, written in the form A C B, we can view it as a knowledge graph, where every axiom
is replaced with an edge. Also, in order to construct a connected graph, any concept C that isn’t included
in any other concept, is automatically included in the T concept, as in C' C T. Then, the Concept Distance
dr(A, B) between two concepts A and B is defined as the shortest path on the (undirected) final graph,
between these two concepts. To further expand this definition to include Sets of Concepts, the authors
propose the Concept Set Edit defined on a set A C CN, which consists of a combination of the three
following operations:

e Replacement of a concept A € A with a concept B ¢ A, written as ea—,p(A). The cost of this
operation is equal to dr(A, B).

e Deletion of a concept A € A, written as e4—,7(A). The cost of this operation is equal to dr(A, T).

e Insertion of a concept B ¢ A, written as e, 5(.A). The cost of this operation is equal to dr (T, B).

So now we can define the Concept Set Edit Distance between sets A, B C CN, which is the minimum cost
of a set of concept edits which transform A into B. This is of great importance, because now we basically
have a way of measuring the "conceptual” distance of any pair of samples in the Ezplanation Dataset. We
can further define the Significance of Transformation between two samples (z,,C,) and (xp,Cp) of the
explanation dataset as:

_ | F(za) = F(a)|
o(a,b) = Dr(CoCy)

After that, the main idea is to use these significance scores, to compute Local and Global counterfactual
explanations. This is done by building an intermediate weighted, directed graph, whose nodes are the
samples (z;,C;), and the edges between (z;,C;) and (x;,C;) has weight U(llJ). Now the Local and Global
counterfactual explanations can be defined as:

e For the Local Counterfactual Explanation, given an input sample (x;,C;), and a target class H
(different form the class attributed to z; by the classifier F'), the Local Counterfactual Explanation is
equal to the path of the intermediate graph, between the node (z;, C;) and any sample (z;, C;) where
F(z;) = H. 1If this path is the shortest path possible, then this is an Optimal Counterfactual
Explanation.

e For the Generalized Counterfactual Explanation (or Global Counterfactual Explanation), given
any subset Rg C D of the explanation dataset (e.g. the subset of all samples that are classified to
a specific class by the classifier), then Eg, is defined to be the multi set containing the labels of
optimal local counterfactual explanations from each element of Rg to the desired class H. Given a set
of concepts C C CN, a generalized counterfactual explanation is an assignment of importance to

{erceEng H-l{eom-cBng}|
[Rol

every concept C € C, where the importance of a concept C is defined as:
where x € CN.

81

Chapter 6. Counterfactual Explanations

Simply put, a Local Counterfactual Explanation provides with the minimum conceptual modifications, that
need to be applied to a specific input sample, in order to change the classification outcome. On the other
hand, Generalized Counterfactual Explanation, provides us with a significance for each concept, if we want to
transform from an original class, to a different target class. The framework can be visualized in the following
figure:

Explanation Dataset Features

Black Box

{laptop, computer.n.01,
person, mamal.n.01,
e) laptop, computer.n.01,
wi}

e {iaptop, computer.n.m.,

laptop, person, cat € mammal.n.01
|H\0 Ee:? person € mammal.n.01 I patrson. ma'::l""'ogi
laptop € computer.n.01 El s LR
teddy bear C plaything Ctoy -}
cat, teddy bear, {cat, mamal.n.01,
E bedh)‘: teddy bear, plaything,
toy, ...}
{bed, teddy bear} {bed, fumiture.n.01,
teddy bear, toy, ...} Target Image
k.
Local Counterfactual
7 Explanations
Conceptual Edit
ey — cat
Inputs Outputs

Figure 6.2.1: Framework Architecture for providing Counterfactual Explanations [29]

6.2.1 Algorithmic Implementation

Two fundamental algorithms are utilized in the framework, Dijkstra’s algorithm for finding the shortest path,
and Karp’s Algorithm for solving the bipartite matching problem. Specifically:

e Dijkstra’s algorithm is used in two steps of the framework: computing the shortest path between
two concepts in the TBox graph, and computing the shortest path between two data points in the
constructed graph.

To compute the shortest path between two concepts in the TBox graph, the framework first constructs
an undirected graph where each concept is a vertex and each subsumption relationship between concepts
is an edge. The weight of each edge is set to 1. Dijkstra’s algorithm is then used to find the shortest
path between the two concepts. The time complexity of this step is O(|CN|+ |T|log|CN|), where CN
is the set of concepts and T is the set of subsumption relationships.

Similarly, in order to compute Local Counterfactual Explanations, Dijkstra’s algorithm is used on the
constructed graph. On this graph, nodes represent data points of the explanation dataset, and the edges
between them have weight equal to the inverse of their Significance of Transformation. So in this case,
Djikstra’s algorithm is used to provide us with the Optimal Local Counterfactual Explanation.

The output of Dijkstra’s algorithm in both cases is the shortest path between two concepts or data

82

6.2. Definitions and Framework

points. This output is useful because it provides a quantitative measure of the distance between two
concepts or data points, which can be used to identify the most important concepts for a given prediction
and to generate meaningful counterfactual explanations.

e Karp’s algorithm|51] is used in the Concept Set Edit Distance computation step of the framework.
The Concept Set Edit Distance is a measure of the distance between two sets of concepts, and is used
to identify the minimal and meaningful "conceptual edits" that need to be made to a data point to
change the prediction of a black-box classifier to a desired class.

To compute the set distance between two sets of concepts, the framework first removes any common
elements from both sets. It then creates a bipartite graph where each element of the first set is
connected to all elements of the second set with an edge, and the weight of each edge corresponds to
the concept distance between the two elements. Karp’s algorithm is then used to compute the minimum
weight full matching of the bipartite graph.

Karp’s algorithm is a well-known algorithm for solving the assignment problem, which is a special
case of the bipartite matching problem. Specifically, for the implementation used in the framework,
computing the minimum weight full matching, has a time complexity of O(|.A||B|log|B|), where A and
B are the two sets of concepts being matched. This is because the algorithm is applied to a bipartite
graph with |A| vertices on one side and |B| vertices on the other side.

The output of Karp’s algorithm is the minimum weight full matching of the bipartite graph,
which corresponds to the minimal set of concept edits needed to transform one set of concepts into the
other. This means, that without any other transformations to the algorithm’s output, we are provided
with all the required edits (and their cost), needed for an optimal transformation of concept set A to
concept set B.

6.2.2 Enriching the Explanation Dataset

The authors, propose further enhancements to the above framework in Dervakos et al. (2023) [21]. The main
modification is the formulation of the Explanation Dataset. In the framework presented above, each data
point x;, was paired with a set of concepts C;, and this set of concepts was used for the computation of
Concept Set Edit Distance.

In the newer version [21], all the data points are included in a single ABox. This means, that each data point,
has a 1-1 correspondence with subgraph from the ABox, which is the connected component that includes
this data point. The main advantage of using this method of representation, is that the new C; of each data
point, is essentially a knowledge graph. This is a much more powerful representation, compared to using just
a set of concepts.

Though powerful, there is a new problem present with this modification. What was previously "Set Edit
Distance", is now "Graph Edit Distance", but as we have already explained in previous chapters, this problem
is NP-Complete. The way that the authors tackled this problem, was viewing the knowledge graphs, as sets
of Concepts and Roles, and only taking into account 1-hop neighbors of each concept. So the problem, is
again reduced to bipartite matching, with the addition of roles, as well as concepts. The only prerequisite,
is that the TBox provides us with a hierarchy of both concepts, and roles. That way, we can compute edit
distances between the roles as well.

6.2.3 Utilization of GNIN Models

The framework that uses knowledge graphs for information of each data point, computes a sub-optimal Edit
Distance, as we explained above, because it doesn’t implement the Graph Edit Distance algorithm. This is

83

Chapter 6. Counterfactual Explanations

where GNN retrieval models can prove to be a useful and efficient tool. Specifically in this thesis, the main
decisions for building the GNN models are the following:

e The GNN models that we construct and train, are evaluated on the Information Retrieval task.
This means that, given a Graph Query, they can successfully rank other graphs, according to their
similarity to the query.

e The specific architecture that we implement for the GNN, is the Graph Autoencoder. The two
main reasons for that, are the Train/Inference times of the model, and the fact that they don’t require
any labels for the training process (unsupervised). The second reason is especially useful in the Graph
Information Retrieval case, where the labels would mean computing the costly GED algorithm for every
pair

Taking those into account, we can easily see how they can be implemented in the Counterfactual-Explanations
Framework proposed by Dervakos et al.[21]. Specifically, since the information we have on the data points is
formulated as a graph, we can use GNNs to rank the data points, and find the most similar ones. Also, by
using Graph Autoencoders, the whole process will be efficient and easy to implement, because we don’t have
to compute any other kind of Distance/Similarity Metric.

6.3 Related Work

There have been several different taxonomies used to categorize Counterfactual Explanations methods,
based on the way that they are retrieved from the machine learning model, and the dataset. Here, we
will follow the work of Guidotti (2022)[38], as it is one of the most recent and comprehensive surveys on
Counterfactual Explanations. The author proposed a taxonomy to categorize counterfactual explainers into
four categories based on their approach to retrieving counterfactual explanations. These categories are:

1. Optimization-based explainers: These explainers define a loss function that accounts for desired
properties and adopt existing optimization algorithms to minimize it. They aim to find the counter-
factuals by solving an optimization problem that minimizes the distance between the original instance
and the counterfactual instance while satisfying certain constraints.

2. Heuristic search-based explainers: These explainers aim to find counterfactuals through local and
heuristic choices that, at each iteration, minimize a certain cost function. They use a search algorithm
to explore the space of possible counterfactuals and find the one that best satisfies the desired properties.

3. Instance-based explainers: These explainers retrieve counterfactuals by selecting the most similar
examples from a dataset. The idea behind IB explainers is to search into a reference population instances
to be used as counterfactuals, by using a distance metric to measure the similarity between instances.

4. Decision tree-based explainers: These explainers are a type of counterfactual explainer that ap-
proximates the behavior of a black-box model with a decision tree and then exploits the tree structure
to identify counterfactual explanations.

Among Optimization-Based explainers, one of the first and most important ones is WACH[117], a method
that aims to minimize the distance between the original instance and the counterfactual, while also maximiz-
ing the similarity with a prototype. CEM|22], on the other hand, generates counterfactuals by minimizing
the distance between the original instance and the counterfactual one, while also maximizing the probability
of the counterfactual instance belonging to the opposite class. MACE[50] maps the problem of counterfac-
tual search into a sequence of satisfiability (SAT) problems, while also formulating the necessary plausibility,
actionability, and diversity constraints. DICE[80] is a method that uses a genetic algorithm to generate di-
verse counterfactuals, while also allowing the user to specify mutable and immutable features. DECFE|[22] is a
method that uses an interactive framework, that provides counterfactual explanations through a visualization
system. Finally, CEGP[69] is a method that uses a prototype-based approach to generate counterfactuals,
while also minimizing the distance to the original instance.

In the field of counterfactual explanation methods utilizing Heuristic Search Strategies, several note-

84

6.3. Related Work

worthy approaches emerge. SEDC by Martens and Provost (2014)[75] stands as a model-agnostic heuristic
method specialized for textual data, employing a best-first search to iteratively refine explanations by se-
lecting word removals that maximize class changes. GIC introduced by Lash et al. (2017)[60] addresses the
Generalized Inverse Classification problem, offering three heuristic methods for tabular data, utilizing hill
climbing, genetic algorithms, or their combination. GSG by Laugel et al. (2018)[61] employs a generative ap-
proach to create synthetic instances around the input, designed for numerical data. POLARIS, proposed by
Zhang et al. (2018)[127], is a model-agnostic neural network explainer using heuristic search to select features
to modify, aiming to ensure stability and returning symbolic explanations. These methods showcase diverse
strategies for efficiently generating counterfactual explanations, encompassing text, tabular data, generative
techniques, and neural networks, aiding in the interpretation of machine learning models.

In the realm of Instance-Based counterfactual explanation methods, four significant approaches are no-
table. NNCE (Nearest-Neighbor Counterfactual Explainer)[99] selects instances most similar to the input
but with different labels to serve as counterfactuals, while CBCE (Case-Based Counterfactual Explainer)[52]
refines this by combining feature values from similar instances to mimic differences. FACE (Feasible and
Actionable Counterfactual Explanations)[87] focuses on generating "actionable" counterfactuals aligned with
data distribution by constructing a graph and applying a shortest path algorithm. NICE (Nearest Instance
Counterfactual Explanations)[9] offers versatile versions for categorical features, employing sparsity, diversity,
or plausibility criteria to generate counterfactuals. It should be noted, that the framework presented in the
previous section by Filandrianos et al. [29], belongs in this category as well.

In the domain of Decision-Tree-Based counterfactual explanation methods, several noteworthy approaches
stand out. TBCFE (Tree-Based Counterfactual Explainer) defines a generic strategy, which employs a surro-
gate decision tree trained on a reference dataset to approximate the black-box classifier’s behavior, generating
counterfactuals by examining leaf nodes with different predictions. FT (Feature Tweaking)[109] focuses on
actionable feature modification in tree-based ensembles, aiming to transform instances to a different class
while respecting multiple trees’ predictions. LORE (Local Rule-based Explainer)[39] provides rule-based
explanations and counterfactual rules by generating synthetic neighbors through a genetic algorithm and
extracting decision rules from a trained decision tree. FOILTREE[116] constructs local foil trees in the
neighborhood of a given instance to generate contrastive explanations, while RF-OCSE (Random Forest
Optimal Counterfactual Set Extractor)[28] converts a Random Forest into a single decision tree and extracts
counterfactual sets to highlight sub-regions where counterfactual conditions hold. These methods leverage de-
cision trees to unravel the logic of black-box classifiers, enabling the generation of counterfactual explanations
with various applications.

85

Chapter 6. Counterfactual Explanations

86

Chapter 7

Proposal

In this chapter, we propose the Graph Autoencoder models, that will be used for the Information Retrieval
task, on the Scene Graph dataset, Visual Genome. Specifically, all the optimizations on the original models
will be presented and explained thoroughly. In the following section, we will list all the contributions of this
thesis, and after that, present the proposed models.

7.1 Contributions

The main contributions of this thesis are outlined below:

e We employ Graph Autoencoders, to tackle the traditional problem of Graph Similarity. To our knowl-
edge, the utilization of Graph Autoencoders to solve this problem, hasn’t seen a lot of academic attention
so far, so we aim to provide a comprehensive overview of the problem at hand, and the methods we
employ to solve it.

e The utilization of Autoencoder-based architectures, allows us to train the models in an un-supervised
fashion, without the need to compute Graph Edit Distance between the graph samples. Additionally,
these architectures don’t require pairs of graphs for the training, further reducing the order of samples
to O(n), compared to O(n?) for the supervised models. These two fundamental aspects are the primary
reason for the accelerated training of the proposed models.

e We propose several optimizations to the basic Graph Autencoders presented in Section 5.4, along with
the intuition behind each one. We also evaluate the impact of the key components of the different
architectures, by combining them and assessing the quantitative results on the Graph Similarity task.

e The proposed GNN models, provide us with similarity scores between all the Scene Graphs. This allows
the model to be ultimately used alongside a Counterfactual Explainer Framework, similar to the one
presented in Chapter 6.

7.2 Proposed Models

The GNNs models that we propose, are based on the Graph Autoencoder architecture. This explicitly
determines the way that the models are trained and evaluated (inference):

e Training: Graph Autoencoders, receive as input a single graph, and the general goal is to reconstruct
it, using the Node Embeddings, produced by the encoder (as shown in Figure 7.2.1). This means that if
we obtain a dataset of N graphs, then we have N samples for training. In the case of Supervised-GNN
approaches, we use pairs of graphs from the original dataset. This simple property, massively reduces
the training time of the GNN model, from O(n?) to O(n), where n the number of samples (graphs).

87

Chapter 7. Proposal

Practically, the autoencoders need, at most, a few minutes to train on the dataset that we use, while
the equivalent Supervised approaches, would require hours on the same dataset.

e Inference: For the inference of the proposed GNN model, we use only the Encoder part of the au-
toencoder. Specifically, we pass the graph as input to the Encoder, and we receive the final Node
Embeddings (as shown in Figure 7.2.2). Then we use a Global Pooling method, to narrow down to
a single Graph-Level Embedding. This process doesn’t require any substantial computational power
(< 1sec for the inference of 1000 graphs). The most important advantage of most GNN approaches,
compared to Graph Kernels, lies in the Inference of GNNs. While graph kernels only provide a similar-
ity score between two graphs, GNN models can be used to solve most problems defined in graph-theory
(node/graph classification, link prediction, clustering etc.), and that’s due to the general-use Embed-
dings that they produce. These embeddings, obviously can help derive Edge Embeddings, Sub-graph
Embeddings, as well as global Graph Embeddings, allowing for their application on several tasks.

; i : / Graph Autoencoder \ ; *

Input Graph

Reconstructed
Graph

Figure 7.2.1: Graph Autoencoder utilization, for the Training phase.

m 4 Graph Autoencoder \
Input Graph ~ ‘
- 5 -

Bl]

Poolin L, Distance
Lt. ‘—L*G o 26, 2l
raph Embedding zg

Node Embeddings z,,

4

Figure 7.2.2: Graph Autoencoder utilization, for the Inference phase.

The original, base model that we will be building on top of, is the VGAFE[54]. The model architecture, as
explained in Section 5.4, is shown in Figure 7.2.3. The red rectangles, show the final Errors, that the model
will combine and minimize.

The second fundamental architecture is the ARVGA[84], which adds the Discriminator to the whole model,
in order to adversarially regulate the produced latent embeddings, as shown in Figure 7.2.4.

The first proposed model is the Feature VGAE, that adds a Feature Decoder, alongside the original Edge
Decoder (as shown in Figure 7.2.5), from the original architecture.

The second proposed model is the Combined VGAE (Figure 7.2.6), which combines an Edge Decoder and
a Feature Decoder, but they both employ a GNN module with learnable parameters. The main idea for this

88

7.2. Proposed Models

model, is to add a layer with learnable parameters, before the Inner Product Decoder, in the Edge Decoder.
The intuition behind this decision, is to enforce the Encoder to embed the structural knowledge of the graph,
in a more complicated and intricate way, than a simple Inner Product operation.

The third proposed model is the Combined ARVGA,, which adds the Discriminator module, to the Com-

bined

VGAE architecture, as shown in Figure 7.2.7. We also experiment with a variation of that, the Com-

bined ARVGA MLP, where the only difference with the Combined ARV GA is that learnable parameters
at the Edge Decoder, are implemented with a traditional MLP (Figure 7.2.8), not a GNN Module.

We will now provide a few details on the sub-modules of the architectures, that apply on all of the models
mentioned above:

The GNN Modules that will be tested, are the ones presented in Section 5.3, which are GCN, GAT,
GATv2 and GIN

When there are more than one GNN Modules in a model, then the same module is used in each one.
For example, we won’t use a GCN for the Encoder, and a GAT for the Decoder. This was tested
on early experiments, but the results quickly showed that it wasn’t a viable option for the models. A
possible explanation for that could be that different GNN Modules, encode and decode the graphs in
a different way, by focusing on different features. So their collaboration, does not necessarily produce
results of equivalent quality.

For the Inference of the models, as we see in Figure 7.2.2, we need to define a Global Pooling
function, that aggregates Node Embeddings to a single Graph Embedding. After trying the most
popular functions for global pooling (mean/max/min/sum), it was quickly evident, that the Sum
pooling function, had the best results, so all of the final models employ this function. This same
argument is also supported by the creators of GIN[121].

For the final stage of Inference, we use the Ly distance of Graph Embeddings, in order to rank the sim-
ilarity scores between them, and retrieve similar graphs. We also experimented with Cosine Distance,
but the performance was worse than with the Lo distance.

Specific hyperparameters and other choices (e.g. layers, latent size, epochs, batch size, optimizers etc.) of
each model, will be presented in the following chapter.

/

\ Graph Autoencoded

~

.))
|| I -
GNN Module o1 X Edge Reconstruction
[| Loss
\ Encoder’ Inner Product Decoder

Decoder

Kullback-Leibler
Divergence
(Variational GAE)

Figure 7.2.3: Original architecture, for Variational Graph Autoencoder

89

Chapter 7. Proposal

Z T
Z
I * x !!.! Edge Reconstruction
" Loss
Inner Product Decoder
Decoder
GNN Module
Encoder .' ° Discriminator Loss
[] .
(True samples from Gaussian
[] .
, prior, Fake samples from
latent space z)
Discriminator
Graph Autoencoder
Kullback-Leibler
Divergence

(Variational GAE)

Figure 7.2.4: Adversarially Reguralized Graph Autoencoder architecture

- ———
T ; x !!l! .| Edge Reconstruction
- Loss

Inner Product Decoder

Edge Decoder
GNN Module
‘ Feature Reconstruction Loss
Encoder GNN Module > (Mean Sq i Error, compared to
original feature matrix)

Feature Decoder

\ Graph AutoencodeJ

Kullback-Leibler
Divergence
(Variational GAE)

Figure 7.2.5: Feature Graph Autoencoder architecture

90

7.2. Proposed Models

o * X h..! Edge Reconstruction
- Loss

Inner Product Decoder
Edge Decoder

GNN Module

Feature Reconstruction Loss
(Mean Squared Error, compared to
original feature matrix)

Encoder

GNN Module

Feature Decode

K Graph Autoencoder/

Kullback-Leibler
Divergence
(Variational GAE)

Figure 7.2.6: Combined VGAE architecture

Edge Reconstruction
Loss

Edge Decoder

GNN Module

Feature Reconstruction Loss
GNN Module (Mean Sq Error, to
original feature matrix)

Encoder

Feature Decoder.

Discriminator Loss
(True samples from Gaussian
prior, Fake samples from
latent space z)

Graph Autoencoder

Kullback-Leibler
Divergence
(Variational GAE)

Figure 7.2.7: Combined ARVGA architecture

91

Chapter 7. Proposal

GNN Module

Encoder

z =

’ i) ﬂ
Inner Product Decoder ‘
Edge Decoder

GNN Module

Edge Reconstruction
Loss

Feature Decoder

Feature Reconstruction Loss
(Mean Squared Error, compared to
original feature matrix)

Discriminator Loss
(True samples from Gaussian

Discriminator
Graph Autoencoder

prior, Fake samples from
latent space z)

Figure 7.2.8: Combined ARVGA MLP architecture

Kullback-Leibler
Divergence
(Variational GAE)

92

Chapter 8

Experiments

In this chapter, we will explain in detail the Experiments that we carried out, in order to evaluate the proposed
models, and compare them to the baseline Graph Kernels. We will start with an overview of the dataset that
will be used, Visual Genome, along with the preprocessing procedure that was applied to the graphs. Then
we will show how Graph Edit Distance was utilized and implemented to obtain the Ground Truth rankings,

along with a comprehensive presentation of the Evaluation Metrics for the Information Retrieval task.

Following that, we will explain all the details for the Training and Inference of the GNN models, as well as
the parameters for the Graph Kernels. Finally, we will present the Quantitave and Qualitative results, and

compare the advantages and drawbacks of each model architecture.

Contents
8.1 Preliminaries i e e e e e e e e e e e e e e e e e e e 94
8.1.1 Dataset e 94
81.2 Ground Truth. e 98
8.1.3 Ewvaluation Metrics e 99
8.2 Training and Inference Details 103
8.2.1 Graph Kernel Parameters o 103
8.2.2 GNN Details and Hyperparameters 103
8.3 Results. o o i i i e e e e e e e e e e e e e e e e e e e 107
8.3.1 Quantitative Analysis 107
8.3.2 Qualitative Analysis 110

93

Chapter 8. Experiments

8.1 Preliminaries

8.1.1 Dataset

The dataset that will be used, is Visual Genome[58|, a comprehensive dataset for training and benchmarking
the next generation of computer vision models, that utilize graph-structured information. It contains 108,249
images from the intersection of the YFCC100M[108] and MS-COCO|68] datasets. Each image comes with
its corresponding Scene Graph, as explained in Section 4.3. An example of an Image-Scene Graph pair can
be seen in Figure 8.1.1.

= line

L

Wire e—=meve— road

e

car

hyrdant /
v\ﬂ%\

tree

sidewalk

Figure 8.1.1: An example of a Scene Graph, alongside its corresponding Image

As we can see, the Scene Graphs, are capable of capturing the conceptual content of an image, which is
represented by the objects and the interactions between them. Specifically, these objects are then transformed
to Graph Nodes, while the interactions assume the form of Graph Edges.

Query-Answer Split

The traditional tasks of Supervised and Un-supervised Machine Learning, involve splitting the dataset into
a Train Set and Test Set. For the Information Retrieval task on Scene Graphs, we need to have a Query
Set of graphs, and an Answer Set of graphs. Specifically, the models will be given a Query Graph, and they
have to rank all of the Answer Graphs, based on their similarity to the Query Graph. This will be repeated
for every graph in the Query Set.

We chose to keep 1000 scene graphs from the original dataset. Out of these, 960 will be used for the Answer
Set and 40 will be used for the Query Set. We narrowed down to these subset sizes for various reasons,
including:

e Ground Truth Computational Cost: The Ground Truth ranking, for each of the Query Graphs, will
be computed with the Graph Edit Distance algorithm. As it has already been mentioned (see Section
4.2.1), this is a really costly algorithm to compute. And, since the Graph Edit Distance computes the
similarity between pairs, for every Scene Graph we add from Visual Genome, the amount of times that
we have to compute GED, increases quadratically. This can quickly scale to prohibitive computation
times, even for the Approrimate GED algorithms. For example, in the Query-Answer split that was
described above, we have to compute GED a total of 960 x 40 = 38000 times, and for every query graph
that we add, we would have to compute GED another 960 times as well. So, it is easy to see, that the
main reason for not scaling these experiments to more graphs is the computational time required for
the GED algorithm.

e Ranking for the Evaluation: The first idea for the Query-Answer Set split, was to just select
random pairs for the final Evaluation. This technique, poses one major problem: there is no assurance,

94

8.1. Preliminaries

that there will be enough "Answer Graphs", in order to construct meaningful rankings, and evaluate
them. What we mean by that, is that the Information Retrieval evaluation metrics, operate on top
of a "correct" ranking and a "predicted" ranking (given a single query object). If we chose graph
pairs at random, there would be no guarantee that there would be a substantial amount of graphs,
that would be present in a substantial amount of graph pairs. And because there is no guarantee for
that, we would end up with "predicted" rankings, that include a very small amount of Answer Graphs.
Basically, we would have a very big Query Set, with a very small Answer Set for each of the query
graphs. The rankings produced by that type of Query-Answer Set split, are much worse for evaluating
the models, because all the Metrics do a much better job at representing the effectiveness of the model
if the "correct" and "predicted" rankings include a big enough Answer Set. That is the reason that we
opted for a small Query Set, and a much bigger Answer Set.

e Qualitative Results: For the Qualitative Evaluation of the models, we will use the corresponding
images of the Scene Graphs in the Query Set and Answer Set. By having a big enough Answer Set (and
therefore a big enough ranking for the query graphs), allows human evaluators, to better assess the
performance of the proposed models. This wouldn’t be as easy, if we had used random query-answer
pairs for the dataset. In that case, the Qualitative Evaluation would involve presenting two pairs of
random images, and comparing the two similarity scores between them that the models predicted. So in
this case, a human evaluator would have to judge if the similarity of the pair I'mage; — Inages is greater
than the similarity of the pair I'mages — I'mage,, with all four images being randomly selected from
Visual Genome. We don’t think that this would be a very effective way for a human evaluator to assess
the results. Instead, for the proposed Query-Answer Set split, there would be a single query image
Imagegq, and two rankings: {Imagei, Images, Images, ...} and {Image'l, Imageé,]mageé, ...}, and
a human evaluator would have to determine, which ranking is better, given the query Imageg. This
would basically be the question " Which is a better Search Engine system, for the query Imageq?",
which is a much more intuitive and easy way, for a human evaluator, to assess the performance of
Information Retrieval Systems.

Random-Dense Subsets

Now we will explain the process that we used to sample the graphs from Visual Genome to construct the
final Query Set and Answer Set.

Originally, we chose 1000 random graphs, with two trivial constraints: #Nodes > 6 and #Edges > 3. We
only set these constraints, in order to avoid graphs with minimal amount of objects and relations. We can
plot some basic statistics for these graphs, such as the histograms for density, number of nodes, and number
of edges, as shown in Figure 8.1.2.

The main problem here, is the Isolated Nodes Histogram. We can see that the majority of the graphs has
really low density, and if we take into account the Node Histogram as well, it is easy to understand that there
will be graphs, with a lot of isolated nodes. For example, a Scene Graph from the original " Random" subset,
along with its corresponding image, is depicted in Figure 8.1.3.

Unfortunately, most of the Scene Graphs from Visual Genome, have isolated nodes. We realized that the
process of human annotation used for the Scene Graphs, ended up detecting a lot of specific objects from
each image, but not necessarily any interactions with other objects.

All the Graph Kernels and the GNN Architectures, were made to operate on graph data. This means that
their main tool, is to utilize the connections between the nodes, and propagate the resulting information to
other nodes of the network. This powerful tool is neglected, when we decide to use graphs with as many
isolated nodes as shown above. This is what drove us to conduct further experiments on a new subset, that
we call "Dense” Set.

Specifically, the selection process that we implemented, to construct the Dense Set, is to sample Scene Graphs
from Visual Genome, with the following constraints: 3 < #Nodes < 15, #Edges > 3 and 0.1 < Density
< 1.0. The main difference here, is the addition of the constraint placed upon the Density of the graphs. This
is what will lead to greater utilization of the GNN Message-Passing ability. The upper limit on Density was
set in order to exclude some outliers in the Visual Genome that has the same edges multiple times. Finally,

95

Chapter 8. Experiments

Nodes Per Graph Edges Per Graph

200

100

175

80

150

125

60

100 4

40 51—
sol |

20 A
2514
0- 0l

o] 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
(a) Node Histogram for Random Subset (b) Edge Histogram for Random Subset
Density Per Graph Isolated Nodes Per Graph

160

140

00 01 02 03 04 05 06 07 08 09 o] 5 10 15 20 25 30

(c) Density Histogram for Random Subset (d) Isolated Nodes Histogram for Random Subset

Figure 8.1.2: Graph Statistics for the Random Subset

Figure 8.1.3: A Scene Graph alongside its corresponding Image, where the graph contains numerous
isolated nodes.

the upper and lower limit of the amount of nodes, was set so that the order of the graphs being compared,

96

8.1. Preliminaries

would belong to the same order. This does not hold in the Random Subset, as there are many graphs with
6 — 10 nodes, as well as with > 50 nodes. There are a few graphs from the original Random subset, that are
also in the Dense subset, because they fulfill the aforementioned prerequisites. The graph statistics for the
new Dense Set, are shown in Figure 8.1.4.

Nodes Per Graph Edges Per Graph

140 4 II 250 4

120

200 +

100 - -
4
AR
40 _ II

204

35

(a) Node Histogram for Dense Subset (b) Edge Histogram for Dense Subset

Density Per Graph Isolated Nodes Per Graph

200 +

400'
300I
200.
100 A .
-

|

T
00 01 02 03 04 05 06 07 08 09 0 5 10 15 20 25 30

1751

1501

1251

100 A

75 1

50

___=mn
3

25 1

%

(c) Density Histogram for Dense Subset (d) Isolated Nodes Histogram for Dense Subset

Figure 8.1.4: Graph Statistics for the Dense Subset

For the Query-Answer Set split, in both case (Random and Dense), we just select 40 random graphs to be
the Query Set, and the rest represent the Answer Set.

Graph Preprocessing

The preprocessing of the Scene Graphs, takes place in two stages. For the first stage, some specific operations
are applied on all of the graphs, regardless of their later use. These operations are the following:

e Attribute Removal: In the original Visual Genome dataset, each object might have some attributes
that describe it. In the end, we didn’t keep these attributes in the graphs of the final subsets, mainly
for two reasons. Firstly, we didn’t want to keep redundant information in the graph, that could prove
to be a hurdle in the Graph Similarity task. For example, if we had a node "Airplane”, that connected
to its attribute node "Green”, we would probably have gotten a graph that was really similar to it
because there is an object that is also Green. What this means, is that the GED algorithm, as well
as the Graph Kernels and GNN models, might have focused more on the existence of "Green”, rather
than the actual important semantic content of the image, which is the existence of "Airplane”. The

97

Chapter 8. Experiments

second reason that we didn’t keep the attributes, has to do with the WordNet Hierarchy[77], which
is fundamentally a hierarchy of Noun hypernyms and hyponyms. Even though it provides ways to
compare the similarity of synsets that are not of the same type (e.g. noun "Airplane" and adjective
"Green"), we have seen that it isn’t a reliable way to compute a similarity score between them, as they
don’t represent things in the same class.

¢ Relationships as Edges: We chose to formalize relationships as Edges, and not as a separate node
that is connected to the Subject and the Object. Again, the choice for this was mainly the WordNet
Hierarchy, which we can’t be reliably used to compare an Object (Noun), to a Relationship (Verb).

e Relationship Type Removal: Along with the Attributes, the original Scene Graphs from Visual
Genome, have numerous types of relationships, that connect pairs of objects. We didn’t keep these types,
and just used un-typed, directed edges for the final subset. This decision was made mainly because
most of the Graph Kernels and GNN modules used, don’t take into account Edge Attributes/Features.
And besides that, even the approximate algorithms of Graph Edit Distance, mostly take into account
the Node Information (as explained in 4.2.1). So if we ended up keeping this information, it would just
be redundant, and wouldn’t be utilized as much as we would want to.

The second stage of preprocessing, regards the representation of Node Features. Specifically, three datasets
were created, whose only difference was the Node Features representation:

1. Strings for Node Features: In this dataset, a node feature would be a simple string of the Object,
such as "Dog". This dataset is the one used by the Graph Kernels, because they usually can’t effectively
utilize any other form of information (such as an embedding), and they work with Node Labels.

2. Word Embeddings for Node Features: As we have already mentioned, GNN Modules, expect the
Node Features, to be in a numerical form, and specifically, a Feature Matrix. To implement this matrix,
we will use the GloVe Word Embeddings[86], because they have been used for many years in the field
of NLP, and they have proven their benefit numerous times. For the actual transformation, we just
take the Object Strings, and use the Look-Up table for GloVe, to extract the final embeddings. The
specific version that we used, are the GloVe embeddings with size 100. This dataset is used as input
for the GNN models.

3. Synsets for Node Features: For this dataset, we utilize the "is-a" hierarchy, provided by Word-
Net[77]. This dataset, is used as input to the GED algorithm, to compute the Ground Truth similarity
scores. This hierarchy, is basically a DAG, where there are edges pointing from a hypernym to a hy-
ponym, and it allows for Similarity Scores, to be defined and measured. The exact procedure will be
explained in the following section.

8.1.2 Ground Truth

For the Ground Truth similarity scores, and therefore Ground Truth rankings, we will use the Graph Edit
Distance algorithm. As mentioned in Section 4.2.1, the GED algorithm returns the edit cost, of transforming
graph G; to an isomorphic of graph G;. The disadvantage of this, is that the exact computation of the edit
cost can’t be done in polynomial time, that’s why almost everyone uses an approximate algorithm. The most
popular approximate GED algorithms were presented in Section 4.2.1.

For this thesis, we will use the Bipartite Matching variation of GED, who takes into consideration mostly
Node Information, when searching for possible edits. The choice for this approximate algorithm, was mostly
due to the fact that many real-world applications of GED, considered this variation a good trade-off between
computational cost, and approximation of the optimal solution.

WordNet played a key role in the computation of GED. WordNet was introduced in 1995 by George A.
Miller [77], and it provides a lexical database for English, for general-purpose use. Specifically, in this thesis,
we use a hierarchy constructed within the WordNet framework, the Noun "is-a” hierarchy. It is basically a
DAG, that defines hypernym/hyponym relations between nouns. An example of that can be seen in Figure
8.1.5.

98

8.1. Preliminaries

Animal Arifact
jﬁe Verlebrate Invellebrale Device M7h'"e\
Mammal Jelly Fish Mousgg, Car Aircraft
Human Mouse Sperm Whale Great White Shark

Optical Trackball
Mouse Mouse

Fieldmouse Mus Musculus

Figure 8.1.5: Example of WordNet Noun Hypernym/Hyponym Hierarchy [59]

We utilize this Hierarchy, because the Visual Genome annotations for the objects, already include the corre-
sponding Synset in the Hypernym/Hyponym Hierarchy. So all objects, are already matched with a Node in
the aforementioned DAG. This allows us to use distance metrics on this DAG, in order to compare objects,
and find their similarities.

Specifically, we use the NLTK python package [3], which provides an easy-to-use API for the WordNet
database, including the Noun Hierarchy. For the computation of GED, we utilize this API, to provide the Bi-
partite Matching algorithm, with the Node Insertion/Deletion/Substitution costs. The API, has implemented
the function path_similarity, which returns a score denoting how similar two word senses are, based on
the shortest path that connects the senses in the (undirected) is-a (hypernym/hypnoym) taxonomy. The
score is in the range 0 to 1. We can use this function, to find the similarity between a Noun sense and a Verb
sense, but in this case, it automatically creates a fake root node, in order to create a path between these
two nodes. That’s the main reason that we didn’t include Attributes and Relationship Types in the Scene
Graphs, because this solution didn’t seem to return reliable results.

Using the path_similarity, we then derive the similarity score between all possible of pairs of nodes from
graph G; and graph G;. We then parse the 1 — similarity_score to the GED function, as the Node
Substitution costs. For the Node Insertion and Deletion costs, we find the between of each Node, to the
Entity Node. This is basically the root node of the DAG, as it has no in-edges, so there isn’t any other Sense,
that is more generic than this one.

We repeat the procedure explained above, for every possible pair between the Query Set and the Answer Set,
for both the "Random" and the "Dense” datasets. In the end, we have the Edit Distance, between all the
graph pairs, as computed by the GED algorithm. For the "Random" dataset, the runtime was approximately
~ 5 hours, and for the "Dense” dataset, the runtime was approximately ~ 1 hour.

8.1.3 Evaluation Metrics

Now we will present the three metrics that will be used for the Quantitative Evaluation and Assessment
of the performance of the Graph Kernels, and the GNN Models: NDCG, MAP and MRR. It should be
mentioned that all three metrics, are specifically designed to measure the performance of an Information
Retrieval System. This means that the inputs include (at least), a "True" ranking and a "Predicted"
ranking, given the same Query object. In our case, the "True" ranking are the first 50 objects returned by
the GED algorithm, and the "Predicted" ranking are the objects returned by the model that we want to test.
Particularly, we evaluate all the systems by taking into account the first 10 returned objects.

The choice of the sizes 50 and 10 is mostly intuitive, because there is no standard way in selecting the final

99

Chapter 8. Experiments

length of the ranking. In our case, when choosing the length of the final "True" ranking, the following two
problems led us to the final decision:

e If we choose the "True" ranking to be really long, then a metric like MRR will almost always have a
really high value, even 1.0. This is because, almost every item in the "Predicted" ranking, ends up
being a correct item (in the sense that it belongs in the "True" ranking). So, as we keep increasing the
length of the "True" ranking, there will be no "incorrect" items in the "Predicted" ranking.

e On the other hand, if we choose the "True" ranking to be too short, then for the same reason, we will
have too many "incorrect" items in the "Predicted" ranking, therefore rendering useless some metrics,
like MRR

Through trial and error, we found out that setting the "True" ranking length to 50, and the "Predicted"
ranking to 10, will give us a sufficient trade-off between the two problems mentioned above, and enables us
to gain a thorough understanding of the models’ performance.

NDCG@10

NDCG, which stands for Normalized Discounted Cumulative Gain, is an evaluation metric commonly
used in Information Retrieval tasks to measure the quality and effectiveness of search engine rankings or
recommendation systems. It addresses the challenge of assessing the relevance of ranked items when there
are multiple items to consider, and it takes into account both the relevance and the position of items (order-
aware) in a ranked list. NDCG is particularly useful when dealing with scenarios where the relevance of
items can vary and where users tend to focus more on the top of the ranked list.

Here’s how NDCG is computed:

1. Discounted Cumulative Gain (DCG): DCG is a measure that assigns higher scores to items that
are not only relevant but also appear higher in the ranked list. It computes the cumulative gain of
items, with decreasing weights for items as their position in the list increases. The formula for DCG at
position K is:

K
rely
DCGQK = _—
; logs (1 + k)

where relj is the is the relevance score of the item at position k, and K is the total length of ranking
that is being considered (in our case it is 10). The logs denominator, acts as a penalty function for
lower-ranked items. In order to compute relevance scores for the "True" rankings computed by GED,
we take the inverse Edit Distance m of the first 50 items, and then we use a Min-Max Scaler, to

squash them in the range [0,10]. The first operation is done because the Fdit Distance as a concept
is inversely related to Similarity/Relevance Score. The second operation, is simply to avoid extreme
values. The Histogram of the final relevance values is shown in Figure 8.1.6

2. Ideal Discounted Cumulative Gain (IDCG): IDCG is the maximum possible DCG that can be
achieved for a given list of items, assuming they are optimally ranked according to their relevance.
IDCG is calculated in the same way as DCG, but considering the best possible order of items (the
"True" ranking). This is computed to solve the main problem with DCG, which is the fact that it
doesn’t have a maximum value, like Precision of MRR. We then use then use it compute the final
NDCG.

3. Normalized Discounted Cumulative Gain (NDCG): NDCG is the normalized version of DCG,
which takes into account the relative performance of a ranked list compared to the ideal scenario
(IDCG). It is calculated as the ratio of the DCG of the "Predicted" ranking, divided by the DCG of
the ideal ranking:

DCGaQK

NDCGQK = TDCGOK

100

8.1. Preliminaries

NDCG values range from 0 to 1, where 1 represents a perfect ranking that aligns with the ideal order
of items, and lower values indicate poorer rankings.

500 A i
400 A I

300 A

200 A .
100 1 I

0 2 4 6 8 10

Figure 8.1.6: Final Relevance Scores for NDCG, computed by the Ground-Truth rankings of GED

NDCG is especially valuable because it captures both the relevance of items and their position in the list.
This makes it suitable for evaluating search engine results, recommendation systems, and any scenario where
ranking matters. It offers a more comprehensive view of system performance than simpler metrics like
precision or recall, which focus solely on the presence or absence of relevant items. By considering the
ordering of items and their relevances, NDCG provides a nuanced assessment of the quality of ranked lists
in information retrieval tasks. Also, in the case where we have multiple queries and the corresponding
"Predicted" rankings (40 queries in our case), we simply take the mean of the NDCG score of each query.
Even though NDCG can capture and assess many aspects of the model that is being tested, the main
disadvantage is that it is not easily interpretable by humans. So for example, if we know that an Information
Retrieval system achieves NDCG score of 0.42, we don’t really know anything about the quality or the
performance of the model, and that is because of the logs terms, as well as the relevance scores. The only
actual interpretation of NDCG, is when we assess multiple systems, where we compare their final NDCG
values.

MAP@10

MAP, which stands for Mean Average Precision, is an important evaluation metric used in information
retrieval tasks to assess the quality of search engine rankings, recommendation systems, and other tasks
involving ranked lists of items. MAP takes into account both the precision and the average precision of a
ranked list, providing a comprehensive measure of the system’s effectiveness in retrieving relevant items.

Here’s how MAP is computed:

1. Precision: Precision at a given position & in the ranked list measures the proportion of relevant items
among the top k items. It is calculated as:

Number of relevant items among the top k
k

PrecisionQk =

Precision focuses on the correctness of the top k items but doesn’t consider the order beyond that
(order-unaware).

2. Average Precision (AP): Average Precision computes the average of precision values across all
positions where a relevant item is present in the ranked list. It takes into account both the precision

101

Chapter 8. Experiments

and the position of relevant items. For each relevant item at position k, the precision at that point is
calculated and then averaged over all relevant items. The formula for AP is:

Zszl (Precision@k x rely,)

APQK =
number of relevant results

Here, K is the total number of items in the list, and rel; is the Relevance at position &, but it is not
defined the same way as in NDCG. Here, rely is an indicator variable that is 1 if the item at position
k is relevant and 0 otherwise.

3. Mean Average Precision (MAP): MAP is the mean of Average Precision values across different
queries or datasets. It provides an overall measure of the system’s performance by considering the
average precision of individual ranked lists. The formula for MAP is:

Q
1
MAPQK = =Y APQK,
g 2, e

Here, @ represents the total number of queries, which is 40 in our case.

MAP is a robust evaluation metric because it rewards systems that not only retrieve relevant items but also
rank them higher in the list. It considers both precision and position, providing a balanced view of system
effectiveness. MAP is particularly useful when dealing with situations where there is a varying number of
relevant items per query or dataset. It is widely used in information retrieval tasks, such as web search,
recommendation systems, and document retrieval, to assess and compare the quality of different algorithms
or models.

MRR@10

Mean Reciprocal Rank (MRR) is yet another popular evaluation metric used to evaluate the performance
of information retrieval systems, that return a final ranking. MRR focuses on the position of the first relevant
item in the ranked list and provides a simple yet informative way to evaluate the quality of systems that
retrieve relevant items.

Here’s how MRR is computed:

1. Reciprocal Rank (RR): Reciprocal Rank for a query is the reciprocal of the position of the first
relevant item in the ranked list. In other words, if the first relevant item is at position k, then the
Reciprocal Rank is 1/k. If there are no relevant items in the list, the Reciprocal Rank is 0.

2. Mean Reciprocal Rank (MRR): MRR calculates the average Reciprocal Rank across different
queries. It provides a single value that represents the average quality of the ranked lists. The formula
for MRR is:

1

rank,

Q
MRRGK = © Z
Q=

Here, the addition of QK| is just a constraint, to only look at the first top K ranked objects, as returned
from the Information Retrieval system. So for example, if the first relevant item is at position K + 1,

then the M RRQK score will be 0, not ﬁ

MRR has a few key characteristics:

e Sensitivity to First Relevant Item: MRR is particularly useful when you’re interested in finding
the best possible relevant item. It emphasizes the importance of the first relevant item by taking the
reciprocal of its position. If the first relevant item is ranked higher, the MRR score will be higher.

102

8.2. Training and Inference Details

e Simplicity: MRR is straightforward to compute and interpret. It condenses the evaluation process to
a single value, making it easy to compare different systems or models, or even interpret the MRR score
of a single system.

e Ranking Quality: MRR provides a measure of ranking quality without considering the positions of
subsequent relevant items. This can be advantageous when the focus is on the initial interaction with
the user, such as in web search or recommendation scenarios.

However, MRR has limitations. It does not take into account the positions of subsequent relevant items
beyond the first one, and it treats all relevant items as equally important. That is why, it is commonly used
along other metrics as well, such as Average Precision or NDCG.

8.2 Training and Inference Details

8.2.1 Graph Kernel Parameters

Earlier, in Section 4.2.2, we presented the five Graph Kernels that will be used for the Experiments, as the
baseline technique for tackling graph similarity. Specifically, the Python library GraKel[103], contains all the
Graph Kernel implementations that were utilized for this thesis. We will now list the parameters for each of
the five Graph Kernels used:

e Shortest Path Kernel: This Kernel doesn’t receive any specific parameters that affect the computa-
tion stage, except for the underlying algorithm that finds the shortest paths. This algorithm can be set
to "Dijkstra", "Floyd-Warshall”, or "Auto" (decides which one is faster according to the input graphs).
We set this to "Auto”.

o Weisfeiler-Lehman Kernel: Here, the two important parameters are, the number of Iterations of
Weisfeiler-Lehman Test Propagation, and the underlying Graph Kernel that is applied to the trans-
formed graphs. We set the iteration number to 20, and the underlying Graph Kernel to Vertex His-
togram.

e Neighborhood Hash Kernel: The two parameters in this case are, the maximum number of Neigh-
borhood Hash (i.e. iterations), and the Byte size of the node Hashes. The former was set to 3 and the
latter to 2.

e Random Walk Kernel: For this Graph Kernel, the main parameter is A, as defined in Section 4.2.2,
which was set to 0.1.

e Graphlet Sampling Kernel: For this Kernel, the main parameter, is the maximum size of Graphlets
that will be used. We set this to 5.

8.2.2 GNN Details and Hyperparameters

Transductive Inference

Here we will explain an important aspect of the Information Retrieval task, regarding the training and testing
data. To do that, we must first clarify the differences between two fundamental concepts in machine learning:
Transductive and Inductive learning/inference:

e Inductive Learning is the more popular and well-understood method of training and evaluating a
machine learning. It involves training a model on a Training Set, possibly using a Validation Set to avoid
overfitting, and then testing the model’s performance on the un-seen Test Set. This is the standard
pipeline in order to create a machine learning model. The main goal here, is to create a model that can
induct, i.e. inferring general rules from specific data. This is basically the same as saying "we want the
model to generalize well”, therefore making sure that it hasn’t just memorized the training data, but

103

Chapter 8. Experiments

instead, it has learnt a meaningful function that can be applied to the underlying distribution of the
data.

e Transductive Learning is an approach where the primary goal is to make predictions specifically
for a given set of test instances without the intention of formulating generalized rules or principles. In
transductive learning, the model seeks to optimize its predictions based on the context and character-
istics of the test data itself, often tailoring its decisions to those specific instances. For example, in a
transductive learning scenario, a machine learning model may be trained to classify a set of medical
images into two categories: benign and malignant tumors. However, instead of aiming to establish gen-
eral principles of tumor classification, the model’s primary focus is to make highly accurate predictions
for the specific set of test images at hand, adapting its decision boundary based on the unique features
of these images.

Transductive Learning is especially popular in the field of Machine Learning on Graphs, because most of
the traditional problems fall into this category. For example, the Node Classification task of a single graph
structure, is a transductive task. This is due to the fact, that the GNN model doesn’t need to generalize or
make predictions about unseen data, because all the data, that we want to use the model for, is present in
the Training Set. Similarly, the task of Link Prediction is also a transductive task, because the graph that
we want to predict its links, is available at the training phase.

That is why, some of the fundamental concepts of Inductive machine learning, don’t apply in the case of
Transductive tasks. Some of them are: overfitting, generalization, validation and many more.

We formalize the Graph Similarity problem, that we will tackle in this thesis, as a Transductive Task, in
order to comply with the more popular tasks of Machine Learning on Graphs, as mentioned earlier. So in
practice, the GNN models that we use, are trained on both the Query Set and Answer Set, and the goal is
to learn the representations for these graphs as optimally and efficient as possible.

The extension of this task to an Inductive one, is also possible, but not covered within the scope of this thesis,
and is left as Future Work.

GNN Hyperparameters

For the Hyperparameters of the GNN models, we will first list the Training/Inference decisions that were
the same across all model variations. First of all, the optimizer used for the Training of the models is
AdamW/[70]. AdamW is a refined version of the well-known Adam optimization algorithm, whose main idea
is adaptive moments. Specifically, AdamW decouples the "weight decay" process from the optimizations steps,
therefore implementing a more efficient, and theoretically correct, version of Ly regularization. Regarding
the parameters, we used the default settings: 51 = 0.9, f2 = 0.999, weight decay = 0.01.

It should be noted, that every GNN model that uses a Discriminator, initializes two separate optimizers,
both with the AdamW algorithm, and the parameters mentioned above. The extra optimizer, is used for the
loss computed by the Discriminator, and it is used to update only the parameters of the Discriminator.

As for the Learning Rates, every GNN model that uses a Discriminator, has an initial Learning Rate value
of 0.001, for both optimizers. For the rest of the models, the initial Learning Rate is set to 0.01, and the
Reduce LR _On_ Plateau’ is also used alongside the optimizer.

For every model the Batch Size is set to 16. This is a setting that is applied to the data before the training
of the models takes place. The Batching technique in graph data is quite different than with structured
data (such as tabular or images), so we will briefly explain this procedure. Since there is no fixed-size data
structure to store the graphs (in order to stack them, and create batches), other techniques are used to
implement graph Batches. Specifically, the PyTorch Geometric library, combines all the graphs within a
Batch, into a new unique graph. The key idea here, is that all the initial graphs, will still be isolated to the
rest of the graphs in the batch, so the Message-Passing technique will yield the same results, but this time
it will compute everything as if it is one sample.

mplementation from the PyTorch library found here

104

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html

8.2. Training and Inference Details

For the final Inference of the models, as explained in Section 7.2, each graph of the 1000 present in the
datasets, is passed through the Encoder, and the final Graph Embedding is the result of adding the Node
Embeddings. After that, the distance that we selected for the comparison of Graph Embeddings is the Lo
Distance. The other one that we considered was Cosine Distance, but it ended up with inferior performance,
when compared to the former one. An explanation to that could be the Feature Decoder and the use of Mean
Squared Error loss function, which is much closer to the Euclidean distance of the Features, rather than the
Cosine distance.

Finally, the Hyperparameters of Epochs, Embedding Size and Attention Heads(for GAT and GATv2),
were the ones that were mostly different across the models. For the Attention Heads, the values 2, 4 and 8
were the ones that provided the most promising results, and the tuning was performed on these three values.
Regarding the Embedding Size, initially for the Random Set, we noticed that the simpler models didn’t
perform well when increasing the value above 32 and 64. But the more complex models, that combined all
the architectures, performed really well with larger latent embeddings, even surpassing the initial size of 100.
This could be due to the fact, that the more complicated models learn to embed the Nodes to a latent space
of size dy, and the final Graph embedding size will also be d; (sum of Node embeddings). But, intuitively,
the information contained within the whole graph, is more than the information contained within a node.
So it is natural that if we want to learn and store more complex information of the graph, we will probably
need the final latent embedding size to be larger than the initial size of the Node Features (100). Finally, for
the Epochs, we noticed that this parameter was the one with the most variety in the final results, that’s why
a lot of values were used for the tuning, starting from 10 up to 200, with a step of 10. Below, in Tables 8.1
and 8.2, we present all the final hyperparameters for the models with the best performance. Here, by "best
performance", we used the mean value of the three metrics.

Also, it should be noted, that we didn’t test every GNN architecture on the Dense dataset, since the point
of this dataset, was not to compare the metrics with the Random dataset, but to see if the GNN models
will out-perform the Graph Kernels, given that the graphs are more dense. That’s why we only test the two
best performing models (Combined-ARVGA and Combined-ARVGA-MLP), along with VGAE and ARVGA
to assess the performance gain that the Adversarial training has to offer, with the denser graphs.

105

Chapter 8. Experiments

Model GNN Module Epochs Embedding Size Attention Heads
GCN 10 32 -
GAT 20 32 8
GAE GATv2 70 32 4
GIN 120 32 -
GCN 10 32 -
GAT 20 32 8
VGAE GATV2 70 32 1
GIN 120 32 -
GCN 40 32)
GAT 170 32 4
Feature-VGAE CATY2 50 39 4
GIN 120 32 -
GCN 20 32)
, GAT 170 32 4
Combined GATV2 160 32 8
GIN 60 32 -
GCN 120 64)
GAT 20 32 4
ARVGA GATY2 140 32 4
GIN 10 32 -
GCN 30 300 -
_ GAT 190 256 4
Combined-ARVGA GATY2 150 64 8
GIN 50 64 -
GCN 90 300 -
. GAT 120 300 4
Combined-ARVGA-MLP GATY2 170 300 4
GIN 160 300 -
Table 8.1: GNN Models Optimal Hyperparameters, for Random Subset
Model GNN Module Epochs Embedding Size Attention Heads
GCN <0 300 -
GAT 60 300 4
VGAE GATv2 70 300 1
GIN 80 300 -
GCN 20 200 -
GAT 140 200 4
ARVGA GATv2 40 200 4
GIN 180 300 -
GCN 150 300 -
_ GAT 160 300 4
Combined-ARVGA GATv2 R0 300 4
GIN 40 300 -
GCN 150 300 -
_ GAT 130 300 4
Combined-ARVGA-MLP GATv2 160 300 4
GIN 10 300 -

Table 8.2: GNN Model Optimal Hyperparameters, for Dense Subset

106

8.3. Results

8.3 Results

8.3.1 Quantitative Analysis

Firstly, we will present the final MAP, MRR and NDCG score, achieved by the Graph Kernels and the
GNN Models, on the Random Subset. Each specific GNN model, corresponds to the Optimal one, with the
hyperparameters presented in Table 8.1. The Evaluation Metrics are shown in Table 8.3.

MAP@10 MRR NDCG@10

Shortest Path Kernel 0.4836 0.5377 0.2027
Random Walk Kernel 0.0147 0.0560 0.0012
Weisfeiler-Lehman Kernel 0.6264 0.7119 0.2790
Graphlet Sampling Kernel 0.1658 0.1741 0.0248
Neighborhood Hash Kernel 0.6257 0.7141 0.2956
GCN 0.5270 0.6878 0.2132

GAE GAT 0.4946 0.5747 0.1975
GATv2 0.5343 0.6460 0.1907

GIN 0.4244 0.4623 0.1631

GCN 0.5302 0.6660 0.2177

GAT 0.5914 0.7061 0.2193

VGAE GATv2 0.5237 0.5859 0.1761
GIN 0.4275 0.5120 0.1876

GCN 0.5524 0.6567 0.2240

GAT 0.5646 0.6425 0.1994

Feature-VGAE GATv2 0.5958 0.6864 0.2327
GIN 0.5007 0.5762 0.1953

GCN 0.5676 0.7017 0.2287

Combined GAT 0.5405 0.6428 0.2350
GATv2 0.5598 0.6679 0.2446

GIN 0.4335 0.4828 0.1215

GCN 0.6104 0.7298 0.2287

GAT 0.5844 0.6680 0.2183

ARVGA GATv2 0.5436 0.6860 0.1998
GIN 0.5364 0.5935 0.2238

GCN 0.6353 0.7455 0.2796

. GAT 0.6137 0.7503 0.2662
Combined-ARVGA GATv2 0.6219 0.7454 0.2416
GIN 0.5320 0.6318 0.2448

GCN 0.6277 0.7162 0.2472

. GAT 0.6117 0.7533 0.2542
Combined-ARVGA-MLP | 7.5 0.6107 0.7403 0.2606
GIN 0.5683 0.6423 0.2585

Table 8.3: Final Metric Scores for the Graph Kernels and the Optimal GNN models, on the Random
Subset. Bold denotes the best result for each architecture.

The first thing that we observe at the Graph Kernels, is the superiority of the Weisfeiler-Lehman and the
Neighborhood Hash Kernel. The other three Kernels, are heavily outperformed by the former ones, on all
three metrics. This can be explained if we correlate it to the main idea of each of the Kernels. Specifically,
the three Kernels that didn’t perform so well, they are all based on fundamental structural properties of a
graph (shortest paths, random walks), and on the appearance of prototypes (graphlets). All three of these,
are expected to not be sufficiently applicable in the case of Scene Graphs, and especially in the case of
the Random Subset. If we recall from Section 8.1.1, the order of the graphs in the Random Subset exhibits
significant variation. This variation, along with their generally low density, doesn’t provide useful information
for the heavily structure-based Graph Kernel. On the other hand, Weisfeiler-Lehman and Neighborhood Hash
Kernels, rely on the labels of Graphs, and implement a procedure of re-labeling the nodes, and updating the

107

Chapter 8. Experiments

information. This seems to prove a successful idea, when it comes to taking into consideration as much
graph information as possible, in order to compare pairs of Graphs, and extract a similarity scores. We can
therefore, acknowledge the expressive power of the Message-Passing technique, because the two kernels
that achieved the best results, basically implement a variation of that method.

Regarding the GINN models, the initial observation is that the simple architectures of GAE and VGAE,
are not sufficient enough to out-perform the baseline Graph Kernels, on any of the three metrics. Only the
results for MRR are comparable, where VGAE-GAT achieved 1% lower score. The other two metrics are
3% and 7% lower than the Graph Kernels. Also at this point, it is worth mentioning, that we didn’t include
any other architectures without the Variational Loss at the latent space, because it was quickly evident, that
it didn’t produce better results.

Moving on to more complex architectures, we see that the Feature-VGAE and the Combined architecture
(which are the first ones that implement a Feature decoder as well), already provide a boost across all three
metrics. Specifically, looking at NDCG (the most representative metric among the three), both are higher
when compared to the two initial models. Even compared to ARVGA, we can see that the models with the
Feature-Decoder score better at NDCG.

The biggest performance boost is given at the final two architectures, where the Adversarial Training from
ARVGA, is combined with a Feature Decoder and a GNN-based Edge Decoder. The two Combined-
ARVGA architectures have the best scores among the GNNSs, across all three metrics. Specifically, the GCN
version of Combined-ARVGA scores the best NDCG and MAP across all the GNN models.

MAP@10 MRR NDCG@10

Shortest Path Kernel 0.3086 0.3747 0.0852
Random Walk Kernel 0.0532 0.0693 0.0177
Weisfeiler-Lehman Kernel 0.3372 0.4011 0.1102
Graphlet Sampling Kernel 0.1468 0.1770 0.0374
Neighborhood Hash Kernel 0.4449 0.5440 0.1568
GCN 0.4941 0.5873 0.1989

GAT 0.4972 0.5736 0.1851

VGAE GATv2 0.5020 0.6046 0.2030
GIN 0.5053 0.6067 0.1914

GCN 0.4678 0.5554 0.1757

GAT 0.4813 0.5540 0.1744

ARVGA GATv2 0.4956 0.5754 0.1911
GIN 0.5247 0.6325 0.2015

GCN 0.4828 0.5783 0.1907

. GAT 0.4757 0.6060 0.2236
Combined-ARVGA GATv2 0.5064 0.5915 0.2156
GIN 0.5441 0.6067 0.2254

GCN 0.5078 0.5874 0.1910

. GAT 0.5250 0.6115 0.2326
Combined-ARVGA-MLP | (1 0.5591 0.6580 0.2438
GIN 0.5099 0.5947 0.2299

Table 8.4: Final Metric Scores for the Graph Kernels and the Optimal GNN models, on the Dense Subset.
Bold denotes the best result for each architecture.

But we can still see, that the Graph Kernels are still better, when it comes to NDCG. Specifically, the
Neighborhood Hash Kernel scores about 2% more on NDCG than the best GNN model, but it scores less
on MAP and MRR. If we recall, MAP’s interpretation, is that it tells us how many relevant objects we have
in the predicted ranking, and MRR only takes into account the position of the first relevant object retrieved.
So if we look at those two specific aspects of Information Retrieval, then the more complex GNN models are
better than the Kernels. But on the other hand, NDCG is the only metric that, basically, takes into account
everything from the predicted ranking (the position of the objects, the relevance score of the objects, if an
object is relevant or not etc.). So if we are interested in an all-around better Information Retrieval system,

108

8.3. Results

then the Neighborhood Hash Graph Kernel is still the better option.

As for the specific GNN modules, the most surprising result, is the under-performance of the GIN variants,
almost in every architecture. GIN was by far the model with the best theoretical foundation among the four,
so it comes as a surprise to score lower than the other, on almost all cases. The one that was generally the
best-performing was GCN, with GATV2 also scoring equally high as well.

The results from these first experiments is what led us to conduct experiments on more dense graphs, and
assess the GNNs’ behavior on these as well. As already mentioned, we didn’t test all the possible architectures
again on the Dense Set, only the most fundamental and the most promising ones: VGAE, ARVGA, Combined-
ARVGA, Combined-ARVGA-MLP. The results on the Dense Set are shown in Table 8.4.

Train Time Inference Time

Shortest Path Kernel - 117 ms
Random Walk Kernel - 16.5 sec
Weisfeiler-Lehman Kernel - 338 ms
Graphlet Sampling Kernel - 3.51 sec
Neighborhood Hash Kernel - 263 ms
GCN 1min 3sec 680 ms

GAT 54.1 sec 836 ms

VGAE GATv2 1min 13sec 899 ms
GIN 56 sec 275 ms

GCN 30 sec 649 ms

GAT 3min 41sec 855 ms

ARVGA GATv2 1min 7sec 905 ms
GIN 4min 35sec 299 ms

GCN 4min 30sec 723 ms

. GAT 5min 23sec 888 ms
Combined-ARVGA GATv2 3 min 971 ms
GIN 1min 6sec 320 ms

GCN 4min 29sec 697 ms

. GAT 4min 16sec 916 ms
Combined-ARVGA-MLP | (1. 5min 48sec 964 ms
GIN 16 sec 327 ms

Table 8.5: Train/Inference Times of Graph Kernels and GNN models, on Dense Subset

The major difference here, is that GNN models out-perform all the Graph Kernels, across all three metrics.
And they achieve that, even from the first architecture, the simple VGAE. And the best GNN model, the
GATV2 variation of the Combined-ARVGA-MLP achieves 11.5% higher MAP, 11% higher MRR. and 9%
higher NDCG. So we can safely say, that it is an all-around much better Retrieval system than the Graph
Kernels for this case. Also, we notice that in both cases (Random and Dense graphs), the module that was
most assisted by the MLP addition to the Combined-ARVGA architecture, is the GATv2.

This also a definite proof, of the importance of the Dataset quality for all the Machine Learning models.
Particularly for the GNNSs, it is evident that the Density of the training graphs, plays an important role,
because the Message-Passing method can’t be efficiently utilized when there are numerous isolated nodes.
Also the constraint of the graph size also played an important role, as the final Graph Embeddings are more
sufficiently comparable, when the graph sizes are of the same order.

Another major difference are the scores of the GIN variants. In this case, they are the ones that produce the
best results in most cases, while they performed quite poorly in the case of the Random Set. This is another
evidence that supports the claim we made above, that the Density of the graphs plays a key role in allowing
them to utilize their expressive power, and learn meaningful features.

We will also provide the runtimes for the Graph Kernels, as well as the Train and Test times for the GNN
models, in Table 8.5. The only important thing to notice here, is that the GNN models’ Training, takes from
a few seconds, up to a few minutes. So the trade-off, between the runtime and results of the Kernels, and

109

Chapter 8. Experiments

the Train time and results of the GNNs, is definitely worth it, especially in the case of the Dense Subset.
We also shouldn’t forget, that the biggest advantage of GNNs over Graph Kernels, is that they provide
general-purpose Embeddings, that can be used for any downstream task.

In conclusion, we can see that the GNNs prove to be a really good solution, when it comes to the Graph
Similarity task, especially if we have a reassurance of the quality of the graphs at our disposal. In terms
of Train time, they also compete with all the Supervised Similarity frameworks, which would take a much
longer time to train, because the use pairs of graphs as samples, and not just graphs (quadratically increasing
the amount of training samples).

8.3.2 Qualitative Analysis

For the Qualitative assessment of the frameworks, we will utilize the images that correspond to the Scene
Graphs, retrieved by the GNNs and Kernels. We will showcase Query Images, and the first few retrieved Im-
ages, both for successful and unsuccessful cases. It is important to remember here, that all the frameworks
mentioned and tested, didn’t have access to the Images, only to corresponding Scene Graphs.
This obviously leads to cases where the Images are not alike, but the Graphs’ similarity leads the model to
rank them high. Below, we present pairs of Query-Answers, exemplifying the scenarios explained above.

person
person
person
person ——— water \ person
airport
person
person

Figure 8.3.1: Example where the query (left) and the first retrieved object (right) according to the best
GNN model, have structurally similar Scene Graphs, but quite dissimilar Images

110

8.3. Results

L o
I |

b

a1 [111'S

)

7

STV Ol

Figure 8.3.2: Examples of different Queries (left), with the top-3 results (right), as retrieved by the best
GNN model

111

Chapter 8. Experiments

e |

Figure 8.3.3: Two example queries, where the top-2 retrieved objects by the best GNN model (top) are
visually closer to the query image (left), compared to the top-2 retrieved objects by the best Graph Kernel
(bottom)

112

Chapter 9

Conclusion

9.1 Reflecting on the Findings

In this thesis, we tackled the problem of Graph Similarity, under the purview of constructing Information
Retrieval systems. Specifically, we considered the Ground Truth to be the similarity computed by the
Graph Edit Distance (GED) algorithm, whose goal is to transform a given graph, into an isomorphic to
another graph. This has been proved to be NP-Complete, so various approximate variations of GED are
commonly used. Here, we use the Bipartite Matching variation, that approximates the optimal graph edit
distance, by taking into consideration mostly the node information, and the edits attributed to them. For the
insertion /deletion /substitution costs of the scene graphs, we incorporate the Concept Hierarchy provided by
WordNet, along with "path similarity" algorithms applied on this hierarchy. Even though variations of GED
provide us with the most accurate results, the classical technique for tackling Graph Similarity is through
the use of Graph Kernels. Their diminished computational complexity, capacity for result interpretability,
and sustained high performance have positioned them as an enticing choice for many years now. We choose
to evaluate five popular Graph Kernels, three of which are based on fundamental Graph metrics, and the
other two rely on information propagation.

The key point point of this work, is to analyze several Unsupervised Graph Autoencoder architectures,
in order to thoroughly assess and compare their performance to the aforementioned Graph Kernels. The
GNNs that we propose and experiment with, consist of several building blocks, each focusing on a different
aspect of representation learning. Specifically, the final model that propose, the Combined-ARVGA, is
based on three key components:

e The initial Graph Autoencoder, along with the Inner-Product Decoder, responsible for the structural
reconstruction of the graph

e The Feature Decoder, responsible for the Node Information reconstruction of the graph

e The Discriminator, responsible for regularizing the latent embeddings produced by the encoder,
through the process of adversarial training.

For the actual GNN modules used in the final Graph Autoencoders, we test four of the most popular ones:
GCN, GAT, GATv2 and GIN. Regarding the input graphs, we utilize the GloVe word embeddings, and
we remove the attributes and edge information from the original scene graphs, further simplifying their
structure. We also acquire two subsets of Visual Genome, the Random Subset and the Dense subset, in
order to measure the impact of the dataset’s quality, on the final performance of the models. For the evaluation
process, we used three of the most widely used metrics for assessing Information Retrieval systems: MAP
(measuring the Precision of the final ranking), MRR (measuring the position of the first retrieved relevant
object) and NDCG (the all-around order-aware metric, that takes into account positions, relevance scores).

From the experiments on the Random Subset, we can conclude that Combined-ARVGA was the best per-
forming architecture, with GCN and GATv2 being the most competent GNN modules. By conducting an

113

Chapter 9. Conclusion

ablation study on the several architectures, we argue that the use of a Feature Decoder alongside an Ad-
versarial Regularization method, play a paramount role in learning meaningful representations for graph
nodes, which can be easily extended to producing Edge and Graph Embeddings as well. As for the Graph
Kernels, the expressive power of the Information Propagation method is obvious in the final result, as the
Weisfeiler-Lehman and Neighborhood-Hash Graph Kernels, outperformed the other kernels by a substantial
margin. When comparing the best Kernel with the best GNN model, we find that Combined-ARVGA
GCN scored 1% higher in MAP, 3% higher in MRR, but 1.5% lower in NDCG. The fact that GNNs couldn’t
score as high as Graph Kernels at NDCG, is what led us to conduct a more thorough analysis of the Random
Subset that was originally used. It was found that the scene graphs had really low Density, a substantial
number of Isolated Nodes, as well as a wide variety of graph sizes, making them difficult to compare. There-
fore, we created a second dataset, the Dense Subset, in order to test whether the data quality can negatively
affect the performance of GNN models, to the point where Graph Kernels outperform them.

This hypothesis was thoroughly validated through the additional experiments we conducted on the Dense
Subset. Specifically, comparing the Combined-ARVGA-MLP that uses the GATv2 module to the best-
performing Graph Kernel, the GNN scored 11% higher on MAP, 11% higher on MRR, and 9% higher on
NDCG. So we can safely conclude that Graph Autoencoders can learn meaningful representations of Graphs,
and use them to out-perform Graph Kernels on the task of Graph Similarity, given that the quality of the
dataset has been analyzed and validated. Besides that, the major advantage of such Graph Autoencoders,
is that the final Embeddings have not been trained on any downstream task, but only for general-purpose
Representation Learning. This allows us to utilize these trained models, and perform traditional Node-Level,
Edge-Level or Graph-Level tasks, on the graphs that we have at our disposal.

Finally, as mentioned in Section 6.2.3, the ultimate goal for training these GNN models and evaluating
them on the Information Retrieval task, is mainly to implement them within a Counterfactual-Explanations
Framework (such as the one proposed in [21]), which utilizes external knowledge that provides explanations
for the samples of an arbitrary dataset. If this external knowledge is formulated in graph structures, then
GNN models, similar to the ones analyzed in this thesis, can be utilized to provide better performance and
lower computation times.

9.2 Future Research

In the pursuit of advancing the field of computing Graph Similarity using Graph Autoencoders, this thesis
has laid a foundational framework and provided valuable insights into the effectiveness and potential of such
models in Information Retrieval problems. However, as with any scientific endeavor, the exploration of this
domain is far from exhaustive, and numerous uncharted avenues beckon for further investigation. In this
chapter, we delve into the promising directions and untapped potential for future research, aiming to build
upon the findings and methodologies presented in this work. Specifically, the key areas of research that hold
particular interest are the following:

e First and foremost, whether the performance of these GNN models in an Inductive Information
Retrieval task is competent, is the most important follow-up question after the work presented here.
We formulated the problem as a Transductive one, and proved the superiority of Graph Autoencoders
to Graph Kernels, but there need to be thorough experimentation and evaluation to make the same
claim for Inductive inference.

e The use of Relational GNN Modules, should also be considered, because they allow for a much
more expressive representation for the Edges of the dataset. Specifically, Relational GNNs, formulate
the input graph as a heterogeneous graph, where there are numerous Edge Types, each with a unique
adjacency matrix. The utilization of such models, could allow us to change the preprocessing of the
graphs, and take advantage of the information on the Edges.

e Autoencoders in general, have been extensively used in Conditional Generation tasks, and Graph
Autoencoders are no exception. Even though we didn’t delve into the Generation capabilities of Graph
Autoencoders in this thesis, it could prove to be a powerful tool, especially in the context of Explain-
ability, where many proposed frameworks’ goal is to generate Counterfactual Explanations.

114

9.2. Future Research

e Within the scope of the thesis, we only experimented with the most popular and fundamental GNN
Modules, which are the GCN, GAT, GATv2 and GIN. Several more refined versions have been pro-
posed[32, 15], that try to tackle the problem of oversmoothing when stacking many layers. The use of
these GNN Modules, could allow for scalability of the models proposed here, in order to achieve better
performance in Representation Learning tasks.

115

Chapter 9. Conclusion

116

Chapter 10

Bibliography

1]
2]
3]
4]
[5]
[6]

17l

18]
19]
[10]
[11]

[12]

[13]

[14]

[15]
[16]

[17]

Bach, F. Graph kernels between point clouds. 2007. arXiv: 0712.3402 [cs.LG].

Bhatti, U. et al. “Deep Learning with Graph Convolutional Networks: An Overview and Latest Ap-
plications in Computational Intelligence”. In: International Journal of Intelligent Systems 2023 (Feb.
2023). DOL: 10.1155/2023/8342104.

Bird, S., Klein, E., and Loper, E. Natural language processing with Python: analyzing text with the
natural language toolkit. " O’Reilly Media, Inc.", 2009.

Borgwardt, K. M. et al. “Protein function prediction via graph kernels”. In: Bioinformatics 21.Suppl
1 (June 2005), pp. i47-i56. DOL: 10.1093/bioinformatics/bti1007. URL:

Borgwardt, K. and Kriegel, H. “Shortest-path kernels on graphs”. In: Fifth IEEE International Con-
ference on Data Mining (ICDM’05). 2005, 8 pp.-. DOL: 10.1109/ICDM.2005.132.

BORGWARDT, K. M. et al. “‘GRAPH KERNELS FOR DISEASE OUTCOME PREDICTION FROM
PROTEIN-PROTEIN INTERACTION NETWORKS”. In: Biocomputing 2007. WORLD SCIEN-
TIFIC, Dec. 2006. DOI: 10.1142/9789812772435_0002. URL:

Boser, B. E., Guyon, I. M., and Vapnik, V. N. “A Training Algorithm for Optimal Margin Clas-
sifiers”. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. COLT
'92. Pittsburgh, Pennsylvania, USA: Association for Computing Machinery, 1992, pp. 144-152. 1SBN:
089791497X. pOI: 10.1145/130385.130401. URL:

Brody, S., Alon, U., and Yahav, E. “How Attentive are Graph Attention Networks?” In: International
Conference on Learning Representations. 2022. URL:

Brughmans, D., Leyman, P., and Martens, D. “Nice: an algorithm for nearest instance counterfactual
explanations”. In: Data Mining and Knowledge Discovery (2023), pp. 1-39.

Bruna, J. et al. Spectral Networks and Locally Connected Networks on Graphs. 2014. arXiv: 1312.6203
[cs.LG].

Cao, Z. and Schmid, N. “Heterogeneous sharpness for cross-spectral face recognition”. In: May 2017,
102020Q. pOI: 10.1117/12.2261984.

Ceroni, A., Costa, F., and Frasconi, P. “Classification of small molecules by two- and three-dimensional
decomposition kernels”. In: Bioinformatics 23.16 (June 2007), pp. 2038-2045. por: 10 . 1093 /
bioinformatics/btm298. URL:

Chang, X. et al. “A Comprehensive Survey of Scene Graphs: Generation and Application”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 45.1 (Jan. 2023), pp. 1-26. DOI: 10.1109/
tpami.2021.3137605. URL:

Chen, L. et al. “Graph Edit Distance Reward: Learning to Edit Scene Graph”. In: (2020). arXiv:
2008.06651 [cs.CV].

Chen, M. et al. Simple and Deep Graph Convolutional Networks. 2020. arXiv: 2007.02133 [cs.LG].
Chen, S. et al. “Discrete Signal Processing on Graphs: Sampling Theory”. In: IEEE Transactions on
Signal Processing 63.24 (Dec. 2015), pp. 6510-6523. DOI: 10.1109/tsp.2015.2469645. URL:
Cheung, M. et al. “Graph Signal Processing and Deep Learning: Convolution, Pooling, and Topology”.
In: (July 2020).

117

https://arxiv.org/abs/0712.3402
https://doi.org/10.1155/2023/8342104
https://doi.org/10.1093/bioinformatics/bti1007
https://doi.org/10.1109/ICDM.2005.132
https://doi.org/10.1142/9789812772435_0002
https://doi.org/10.1145/130385.130401
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1312.6203
https://doi.org/10.1117/12.2261984
https://doi.org/10.1093/bioinformatics/btm298
https://doi.org/10.1093/bioinformatics/btm298
https://doi.org/10.1109/tpami.2021.3137605
https://doi.org/10.1109/tpami.2021.3137605
https://arxiv.org/abs/2008.06651
https://arxiv.org/abs/2007.02133
https://doi.org/10.1109/tsp.2015.2469645

Chapter 10. Bibliography

[18]
[19]
[20]
21]
22]
23]
[24]
[25]
[26]
27]
28]
[29]
[30]

[31]

32]
[33]
[34]

[35]
[36]

37]
38
[39]
[40]
[41]

42]

[43]

[44]

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. “Fast and Accurate Deep Network Learning by
Exponential Linear Units (ELUs)”. In: (2016). arXiv: 1511.07289 [cs.LG].

Cortes, C. and Vapnik, V. “Support-vector networks”. In: Machine Learning 20.3 (Sept. 1995), pp. 273~
297. DOI: 10.1007/b£00994018. URL:

Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional Neural Networks on Graphs with
Fast Localized Spectral Filtering. 2017. arXiv: 1606.09375 [cs.LG].

Dervakos, E. et al. “Choose your Data Wisely: A Framework for Semantic Counterfactuals”. In: (2023).
arXiv: 2305.17667 [cs.AI].

Dhurandhar, A. et al. Explanations based on the Missing: Towards Contrastive Explanations with
Pertinent Negatives. 2018. arXiv: 1802.07623 [cs.AI].

Dosovitskiy, A. et al. “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”.
In: (2021). arXiv: 2010.11929 [cs.CV].

Dutta, S. et al. “Data-driven reduced order modeling of environmental hydrodynamics using deep
autoencoders and neural ODEs”. In: (July 2021).

Eldawy, E. O. et al. “FraudMove: Fraud Drivers Discovery Using Real-Time Trajectory Outlier De-
tection”. In: International Journal of Geo-Information 10 (Nov. 2021). DOI: 10.3390/1jgi10110767.
Esmail, W., Stockmanns, T., and Ritman, J. “Machine Learning for Track Finding at PANDA”. In:
(Oct. 2019).

Fankhauser, S., Riesen, K., and Bunke, H. “Speeding Up Graph Edit Distance Computation through
Fast Bipartite Matching”. In: (2011), pp. 102-111. DOI: 10.1007/978-3-642-20844-7_11. URL:
Fernandez, R. R. et al. “Random forest explainability using counterfactual sets”. In: Information Fusion
63 (2020), pp. 196-207.

Filandrianos, G. et al. “Conceptual Edits as Counterfactual Explanations.” In: AAAI Spring Sympo-
stum: MAKE. 2022.

Fischer, A. et al. “A Hausdorff Heuristic for Efficient Computation of Graph Edit Distance”. In: (2014),
pp- 83-92. DOI: 10.1007/978-3-662-44415-3_9. URL:

Gartner, T., Flach, P., and Wrobel, S. “On Graph Kernels: Hardness Results and Efficient Alterna-
tives”. In: Learning Theory and Kernel Machines. Springer Berlin Heidelberg, 2003, pp. 129-143. DOL:
10.1007/978-3-540-45167-9_11. URL:

Gasteiger, J., Bojchevski, A., and Gilinnemann, S. Predict then Propagate: Graph Neural Networks
meet Personalized PageRank. 2022. arXiv: 1810.05997 [cs.LG].

Gaiizére, B., Brun, L., and Villemin, D. “Two New Graphs Kernels in Chemoinformatics”. In: Pattern
Recognition Letters 33 (Nov. 2012). DOI: 10.1016/j.patrec.2012.03.020.

Ghosh, S. et al. “Generating Natural Language Explanations for Visual Question Answering using
Scene Graphs and Visual Attention”. In: (2019). arXiv: 1902.05715 [cs.CL].

Gilmer, J. et al. Neural Message Passing for Quantum Chemistry. 2017. arXiv: 1704.01212 [cs.LG].
Grauman, K. and Darrell, T. “The Pyramid Match Kernel: Efficient Learning with Sets of Features”.
In: Journal of Machine Learning Research 8.26 (2007), pp. 725-760. URL:

Grover, A. and Leskovec, J. “node2vec: Scalable Feature Learning for Networks”. In: (2016). arXiv:
1607.00653 [cs.SI].

Guidotti, R. “Counterfactual explanations and how to find them: literature review and benchmarking”.
In: Data Mining and Knowledge Discovery (Apr. 2022). DOI: 10.1007/s10618-022-00831-6. URL:
Guidotti, R. et al. “Factual and counterfactual explanations for black box decision making”. In: IEEE
Intelligent Systems 34.6 (2019), pp. 14-23.

Hamilton, W. L., Ying, R., and Leskovec, J. “Inductive Representation Learning on Large Graphs”.
In: (2018). arXiv: 1706.02216 [cs.SI].

Harchaoui, Z. and Bach, F. “Image Classification with Segmentation Graph Kernels”. In: July 2007,
pp- 1-8. 1SBN: 1-4244-1180-7. DOI: 10.1109/CVPR.2007 . 383049.

Hasibi, R. and Michoel, T. “A Graph Feature Auto-Encoder for the prediction of unobserved node
features on biological networks”. In: BMC' Bioinformatics 22.1 (Oct. 2021). DOI: 10.1186/s12859-
021-04447-3. URL:

Herzig, R. et al. “Learning Canonical Representations for Scene Graph to Image Generation”. In:
(2020). arXiv: 1912.07414 [cs.CV].

Hido, S. and Kashima, H. “A Linear-Time Graph Kernel”. In: 2009 Ninth IEEFE International Con-
ference on Data Mining. 2009, pp. 179-188. DOI: 10.1109/ICDM.2009.30.

118

https://arxiv.org/abs/1511.07289
https://doi.org/10.1007/bf00994018
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/2305.17667
https://arxiv.org/abs/1802.07623
https://arxiv.org/abs/2010.11929
https://doi.org/10.3390/ijgi10110767
https://doi.org/10.1007/978-3-642-20844-7_11
https://doi.org/10.1007/978-3-662-44415-3_9
https://doi.org/10.1007/978-3-540-45167-9_11
https://arxiv.org/abs/1810.05997
https://doi.org/10.1016/j.patrec.2012.03.020
https://arxiv.org/abs/1902.05715
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1607.00653
https://doi.org/10.1007/s10618-022-00831-6
https://arxiv.org/abs/1706.02216
https://doi.org/10.1109/CVPR.2007.383049
https://doi.org/10.1186/s12859-021-04447-3
https://doi.org/10.1186/s12859-021-04447-3
https://arxiv.org/abs/1912.07414
https://doi.org/10.1109/ICDM.2009.30

[45]
[46]
[47]
(48]
[49]
[50]
[51]

[52]

[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
(63]

[64]

[65]

(6]
(67]

[68]
[69]

[70]

Hochreiter, S. and Schmidhuber, J. “Long Short-term Memory”. In: Neural computation 9 (Dec. 1997),
pp- 1735-80. DOI: 10.1162/neco.1997.9.8.1735.

Jiexia, Y. et al. “How to Build a Graph-Based Deep Learning Architecture in Traffic Domain: A
Survey”. In: (May 2020).

Johnson, J., Gupta, A., and Fei-Fei, L. “Image Generation from Scene Graphs”. In: (2018). arXiv:
1804.01622 [cs.CV].

Johnson, J. et al. “Image Retrieval Using Scene Graphs”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). June 2015.

Jonker, R. and Volgenant, A. “A shortest augmenting path algorithm for dense and sparse linear
assignment problems”. In: Computing 38.4 (Dec. 1987), pp. 325-340. DOI: 10.1007/b£02278710. URL:
Karimi, A.-H. et al. Model-Agnostic Counterfactual Ezxplanations for Consequential Decisions. 2020.
arXiv: 1905.11190 [cs.LG].

Karp, R. M. “An algorithm to solve the m x n assignment problem in expected timeO(mn logn)”. In:
Networks 10.2 (1980), pp. 143-152. DOI: 10.1002/net.3230100205. URL:

Keane, M. T. and Smyth, B. “Good counterfactuals and where to find them: A case-based tech-
nique for generating counterfactuals for explainable AT (XAI)”. In: Case-Based Reasoning Research
and Development: 28th International Conference, ICCBR 2020, Salamanca, Spain, June §-12, 2020,
Proceedings 28. Springer. 2020, pp. 163-178.

Kingma, D. P. and Welling, M. Auto-Encoding Variational Bayes. 2022. arXiv: 1312.6114 [stat.ML].
Kipf, T. N. and Welling, M. Variational Graph Auto-Encoders. 2016. arXiv: 1611.07308 [stat.ML].
Kipf, T. N. and Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. 2017.
arXiv: 1609.02907 [cs.LG].

Klambauer, G. et al. “Self-Normalizing Neural Networks”. In: (2017). arXiv: 1706.02515 [cs.LG].
Kriege, N. and Mutzel, P. “Subgraph Matching Kernels for Attributed Graphs”. In: Proceedings of the
29th International Coference on International Conference on Machine Learning. ICML’12. Edinburgh,
Scotland: Omnipress, 2012, pp. 291-298. 1SBN: 9781450312851.

Krishna, R. et al. Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image
Annotations. 2016. arXiv: 1602.07332 [cs.CV].

Kumaran, A. and Haritsa, J. “Multilingual Semantic Matching Operator in SQL”. In: (Sept. 2023).
Lash, M. T. et al. “Generalized Inverse Classification”. In: Proceedings of the 2017 SIAM International
Conference on Data Mining. Society for Industrial and Applied Mathematics, June 2017, pp. 162-170.
DOI: 10.1137/1.9781611974973.19. URL:

Laugel, T. et al. Inverse Classification for Comparison-based Interpretability in Machine Learning.
2017. arXiv: 1712.08443 [stat.ML].

Lecun, Y. et al. “Gradient-based learning applied to document recognition”. In: Proceedings of the
IEEE 86.11 (1998), pp. 2278-2324. pOI: 10.1109/5.726791.

Levie, R. et al. CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral
Filters. 2018. arXiv: 1705.07664 [cs.LG].

Li, J. et al. “LogKernel: A Threat Hunting Approach Based on Behaviour Provenance Graph and
Graph Kernel Clustering”. In: Security and Communication Networks 2022 (Sept. 2022), pp. 1-16.
DOI: 10.1155/2022/4577141.

Li, J. et al. “Predicting User Activity Intensity Using Geographic Interactions Based on Social Media
Check-In Data”. In: ISPRS International Journal of Geo-Information 10 (Aug. 2021), p. 555. DOI:
10.3390/1jgi110080555.

Li, Q., Han, Z., and Wu, X.-M. Deeper Insights into Graph Convolutional Networks for Semi-Supervised
Learning. 2018. arXiv: 1801.07606 [cs.LG].

Liao, J., Yang, C., and Yang, H. “Evaluation of Aircraft Environmental Control System Order Degree
and Component Centrality”. In: Aerospace 10 (May 2023), p. 438. DOI: 10.3390/aerospace10050438.
Lin, T.-Y. et al. Microsoft COCO: Common Objects in Context. 2015. arXiv: 1405.0312 [cs.CV].
Looveren, A. V. and Klaise, J. Interpretable Counterfactual Explanations Guided by Prototypes. 2020.
arXiv: 1907.02584 [cs.LG].

Loshchilov, I. and Hutter, F. Decoupled Weight Decay Regularization. 2019. arXiv: 1711 . 05101
[cs.LG].

119

https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1804.01622
https://doi.org/10.1007/bf02278710
https://arxiv.org/abs/1905.11190
https://doi.org/10.1002/net.3230100205
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1602.07332
https://doi.org/10.1137/1.9781611974973.19
https://arxiv.org/abs/1712.08443
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1705.07664
https://doi.org/10.1155/2022/4577141
https://doi.org/10.3390/ijgi10080555
https://arxiv.org/abs/1801.07606
https://doi.org/10.3390/aerospace10050438
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1907.02584
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101

Chapter 10. Bibliography

[71]

[72]
(73]
[74]
[75]
[76]
[77]
(78]
[79]

[80]

81]
[82]
[83]
[84]
[85]

[86]

[87]
[88]

[89]

90]
[91]

92]
193]

[94]

Mahboubi, A., Brun, L., and Dupé, F.-X. “Object classification based on graph kernels”. In: 2010
International Conference on High Performance Computing € Simulation. 2010, pp. 385-389. DOTI:
10.1109/HPCS.2010.5547109.

Mahé, P. and Vert, J.-P. “Graph kernels based on tree patterns for molecules”. In: Machine Learning
75 (Oct. 2006). DOIL: 10.1007/s10994-008-5086-2.

Mahé, P. and Vert, J.-P. “Graph kernels based on tree patterns for molecules”. In: Machine Learning
75.1 (Oct. 2008), pp. 3-35. DOL: 10.1007/s10994-008-5086-2. URL:

Mansour, M., Martens, J., and Blankenbach, J. “Hierarchical SVM for Semantic Segmentation of 3D
Point Clouds for Infrastructure Scenes”. In: (June 2023). DOI: 10.20944/preprints202306.2255.v1.
Martens, D. and Provost, F. “Explaining Data-Driven Document Classifications”. In: MIS Q. 38.1
(Mar. 2014), pp. 73-100. 1ssN: 0276-7783. DOI: 10.25300/MISQ/2014/38.1.04. URL:

Merenda, M., Porcaro, C., and Iero, D. “Edge Machine Learning for Al-Enabled IoT Devices: A
Review”. In: Sensors 20 (Apr. 2020), p. 2533. DOI: 10.3390/s20092533.

Miller, G. A. “WordNet: A Lexical Database for English”. In: Commun. ACM 38.11 (Nov. 1995),
pp- 39-41. 18sN: 0001-0782. po1: 10.1145/219717.219748. URL:

Mittal, G. et al. “Interactive Image Generation Using Scene Graphs”. In: (2019). arXiv: 1905.03743
[cs.CV].

Mnih, V. et al. “Human-level control through deep reinforcement learning”. In: Nature 518.7540 (Feb.
2015), pp. 529-533. DOL: 10.1038/nature14236. URL:

Mothilal, R. K., Sharma, A., and Tan, C. “Explaining machine learning classifiers through diverse
counterfactual explanations”. In: Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency. ACM, Jan. 2020. DOI: 10.1145/3351095.3372850. URL:

Neuhaus, M., Riesen, K., and Bunke, H. “Fast Suboptimal Algorithms for the Computation of Graph
Edit Distance”. In: (2006), pp. 163-172. DOI: 10.1007/11815921_17. URL:

Neumann, M. et al. “Graph Kernels for Object Category Prediction in Task-Dependent Robot Grasp-
ing”. In: Mining and Learning with Graphs. 2013. URL:

Nikolentzos, G., Siglidis, G., and Vazirgiannis, M. “Graph Kernels: A Survey”. In: Journal of Artificial
Intelligence Research 72 (Nov. 2021), pp. 943-1027. DOI: 10.1613/jair.1.13225. URL:

Pan, S. et al. Adversarially Regularized Graph Autoencoder for Graph Embedding. 2019. arXiv: 1802.
04407 [cs.LG].

Park, J. and Lim, S. “LEHAN: Link-feature Enhanced Heterogeneous Graph Attention Network”. In:
IEEE Access 10 (Jan. 2022), pp. 1-1. DOI: 10.1109/ACCESS.2022.3198941.

Pennington, J., Socher, R., and Manning, C. “GloVe: Global Vectors for Word Representation”. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1532-1543. DOI: 10.3115/
v1/D14-1162. URL:

Poyiadzi, R. et al. “FACE: feasible and actionable counterfactual explanations”. In: Proceedings of the
AAAI/ACM Conference on Al, Ethics, and Society. 2020, pp. 344-350.

Przulj, N. “Biological network comparison using graphlet degree distribution”. In: Bioinformatics 23.2
(Jan. 2007), e177-€183. DOI: 10.1093/bioinformatics/bt1301. URL:

Qi, M., Wang, Y., and Li, A. “Online Cross-Modal Scene Retrieval by Binary Representation and
Semantic Graph”. In: Proceedings of the 25th ACM International Conference on Multimedia. MM *17.
Mountain View, California, USA: Association for Computing Machinery, 2017, pp. 744-752. ISBN:
9781450349062. DOI: 10.1145/3123266.3123311. URL:

Quinlan, J. R. “Induction of Decision Trees”. In: Machine Learning 1 (1986), pp. 81-106.

Ralaivola, L. et al. “Graph kernels for chemical informatics”. In: Neural Networks 18.8 (2005). Neural
Networks and Kernel Methods for Structured Domains, pp. 1093-1110. 1sSN: 0893-6080. URL:
Riesen, K., Fankhauser, S., and Bunke, H. “Speeding Up Graph Edit Distance Computation with a
Bipartite Heuristic.” In: (Jan. 2007).

Sandryhaila, A. and Moura, J. M. F. “Discrete Signal Processing on Graphs”. In: IEEE Transactions
on Signal Processing 61.7 (Apr. 2013), pp. 1644-1656. DOI: 10.1109/tsp.2013.2238935. URL:
Sanfeliu, A. and Fu, K.-S. “A distance measure between attributed relational graphs for pattern
recognition”. In: IEEE Transactions on Systems, Man, and Cybernetics SMC-13.3 (1983), pp. 353~
362. DOI: 10.1109/TSMC. 1983.6313167.

120

https://doi.org/10.1109/HPCS.2010.5547109
https://doi.org/10.1007/s10994-008-5086-2
https://doi.org/10.1007/s10994-008-5086-2
https://doi.org/10.20944/preprints202306.2255.v1
https://doi.org/10.25300/MISQ/2014/38.1.04
https://doi.org/10.3390/s20092533
https://doi.org/10.1145/219717.219748
https://arxiv.org/abs/1905.03743
https://arxiv.org/abs/1905.03743
https://doi.org/10.1038/nature14236
https://doi.org/10.1145/3351095.3372850
https://doi.org/10.1007/11815921_17
https://doi.org/10.1613/jair.1.13225
https://arxiv.org/abs/1802.04407
https://arxiv.org/abs/1802.04407
https://doi.org/10.1109/ACCESS.2022.3198941
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1093/bioinformatics/btl301
https://doi.org/10.1145/3123266.3123311
https://doi.org/10.1109/tsp.2013.2238935
https://doi.org/10.1109/TSMC.1983.6313167

[95]

[96]
97]

98]

99]

[100]

[101]

[102]

[103]
[104]

[105]

[106]

[107]

Sato, K. et al. “Directed acyclic graph kernels for structural RNA analysis”. In: BMC Bioinformatics
9.1 (July 2008). pOI: 10.1186/1471-2105-9-318. URL:

Schietgat, L., Fannes, T., and Ramon, J. “Predicting Protein Function and Protein-Ligand Interaction
with the 3D Neighborhood Kernel”. In: Oct. 2015, pp. 221-235. 1SBN: 978-3-319-24281-1. DOI: 10.1007/
978-3-319-24282-8_19.

Schroeder, B. and Tripathi, S. “Structured Query-Based Image Retrieval Using Scene Graphs”. In:
(2020). arXiv: 2005.06653 [cs.CV].

Schuster, S. et al. “Generating Semantically Precise Scene Graphs from Textual Descriptions for Im-
proved Image Retrieval”. In: Proceedings of the Fourth Workshop on Vision and Language. Lisbon,
Portugal: Association for Computational Linguistics, Sept. 2015, pp. 70-80. DOI: 10.18653/v1/W15-
2812. URL:

Shakhnarovich, G., Darrell, T., and Indyk, P. “Nearest-neighbor methods in learning and vision”. In:
IEEE Trans. Neural Networks 19.2 (2008), p. 377.

Shervashidze, N. et al. “Efficient graphlet kernels for large graph comparison”. In: Proceedings of the
Twelth International Conference on Artificial Intelligence and Statistics. Ed. by D. van Dyk and
M. Welling. Vol. 5. Proceedings of Machine Learning Research. Hilton Clearwater Beach Resort,
Clearwater Beach, Florida USA: PMLR, 16-18 Apr 2009, pp. 488-495. URL:

Shervashidze, N. et al. “Weisfeiler-Lehman Graph Kernels”. In: Journal of Machine Learning Research
12.77 (2011), pp. 2539-2561. URL:

Shuman, D. I. et al. “The emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains”. In: IEEE Signal Processing Magazine 30.3
(2013), pp. 83-98. DOL: 10.1109/MSP.2012.2235192.

Siglidis, G. et al. GraKeL: A Graph Kernel Library in Python. 2020. arXiv: 1806.02193 [stat.ML].
SMALTER, A., HUAN, J., and LUSHINGTON, G. “GRAPH WAVELET ALIGNMENT KERNELS
FOR DRUG VIRTUAL SCREENING”. In: Journal of Bioinformatics and Computational Biology
07.03 (June 2009), pp. 473-497. DOL: 10.1142/50219720009004187. URL:

Stumm, E. et al. “Robust Visual Place Recognition with Graph Kernels”. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 4535-4544. DOI: 10.1109/CVPR.
2016.491.

Sugiyama, M. and Borgwardt, K. “Halting in Random Walk Kernels”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by C. Cortes et al. Vol. 28. Curran Associates, Inc., 2015. URL:
Swamidass, S. J. et al. “Kernels for small molecules and the prediction of mutagenicity, toxicity
and anti-cancer activity”. In: Bioinformatics 21.Suppl 1 (June 2005), pp. i359-1368. poIL: 10.1093/
bioinformatics/bti1055. URL:

Thomee, B. et al. “YFCC100M”. In: Communications of the ACM 59.2 (Jan. 2016), pp. 64-73. DOL:
10.1145/2812802. URL:

Tolomei, G. et al. “Interpretable predictions of tree-based ensembles via actionable feature tweaking”.
In: Proceedings of the 28rd ACM SIGKDD international conference on knowledge discovery and data
mining. 2017, pp. 465-474.

Tripathi, S. et al. “Compact Scene Graphs for Layout Composition and Patch Retrieval”. In: (2019).
arXiv: 1904.09348 [cs.CV].

Tripathi, S. et al. “Using Scene Graph Context to Improve Image Generation”. In: (Jan. 2019).
Vaswani, A. et al. “Attention is All you Need”. In: 30 (2017). Ed. by I. Guyon et al. URL:

Velickovi¢, P. et al. Graph Attention Networks. 2018. arXiv: 1710.10903 [stat.ML].

Verdu, S. and Weinberger, M. “Inequalities for the L1 Deviation of the Empirical Distribution”. In:
(Aug. 2003).

Vishwanathan, S. et al. “Graph Kernels”. In: Journal of Machine Learning Research 11.40 (2010),
pp. 1201-1242. URL:

Waa, J. v. d. et al. “Contrastive explanations with local foil trees”. In: (2018).

Wachter, S., Mittelstadt, B., and Russell, C. Counterfactual Ezxplanations without Opening the Black
Box: Automated Decisions and the GDPR. 2018. arXiv: 1711.00399 [cs.AI].

Watkins, C. J. C. H. and Dayan, P. “Q-learning”. In: Machine Learning 8.3-4 (May 1992), pp. 279-292.
DOI: 10.1007/b£00992698. URL:

Weisfeiler, B. and Leman, A. “The reduction of a graph to canonical form and the algebra which
appears therein”. In: NTI, Series 2.9 (1968), pp. 12-16.

121

https://doi.org/10.1186/1471-2105-9-318
https://doi.org/10.1007/978-3-319-24282-8_19
https://doi.org/10.1007/978-3-319-24282-8_19
https://arxiv.org/abs/2005.06653
https://doi.org/10.18653/v1/W15-2812
https://doi.org/10.18653/v1/W15-2812
https://doi.org/10.1109/MSP.2012.2235192
https://arxiv.org/abs/1806.02193
https://doi.org/10.1142/s0219720009004187
https://doi.org/10.1109/CVPR.2016.491
https://doi.org/10.1109/CVPR.2016.491
https://doi.org/10.1093/bioinformatics/bti1055
https://doi.org/10.1093/bioinformatics/bti1055
https://doi.org/10.1145/2812802
https://arxiv.org/abs/1904.09348
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1711.00399
https://doi.org/10.1007/bf00992698

Chapter 10. Bibliography

[120]

[121]
[122]

[123]

[124]

[125]
[126]
[127]

[128]
[129]

Wu, Z. et al. “A Comprehensive Survey on Graph Neural Networks”. In: IEEE Transactions on Neural
Networks and Learning Systems 32.1 (Jan. 2021), pp. 4-24. DOI: 10.1109/tnnls.2020.2978386. URL:
Xu, K. et al. How Powerful are Graph Neural Networks? 2019. arXiv: 1810.00826 [cs.LG].

xu, P. et al. “A Survey of Scene Graph: Generation and Application”. In: (Apr. 2020). DOI: 10.13140/
RG.2.2.11161.57446.

Yang, Z. et al. “Scene Graph Reasoning with Prior Visual Relationship for Visual Question Answering”.
In: (2019). arXiv: 1812.09681 [cs.MM].

Yuan, W. et al. “A new criterion for defining the failure of a fractured rock mass slope based on the
strength reduction method”. In: Geomatics, Natural Hazards and Risk 11 (Sept. 2020), pp. 1849-1863.
DOI: 10.1080/19475705.2020.1814428.

Zeng, Z. et al. “Comparing Stars: On Approximating Graph Edit Distance.” In: PVLDB 2 (Jan. 2009),
pp- 25-36.

Zhang, C., Chao, W.-L., and Xuan, D. “An Empirical Study on Leveraging Scene Graphs for Visual
Question Answering”. In: (2019). arXiv: 1907.12133 [cs.CV].

Zhang, X., Solar-Lezama, A., and Singh, R. Interpreting Neural Network Judgments via Minimal,
Stable, and Symbolic Corrections. 2018. arXiv: 1802.07384 [cs.LG].

Zhao, B. et al. “Image Generation from Layout”. In: (2019). arXiv: 1811.11389 [cs.CV].
Anuntelov, A. Scene Graph Retrieval for Counterfactual Explanation Using Graph Neural Networks.
Oct. 2022.

122

https://doi.org/10.1109/tnnls.2020.2978386
https://arxiv.org/abs/1810.00826
https://doi.org/10.13140/RG.2.2.11161.57446
https://doi.org/10.13140/RG.2.2.11161.57446
https://arxiv.org/abs/1812.09681
https://doi.org/10.1080/19475705.2020.1814428
https://arxiv.org/abs/1907.12133
https://arxiv.org/abs/1802.07384
https://arxiv.org/abs/1811.11389

	Contents
	List of Figures
	Εκτεταμένη Περίληψη στα Ελληνικά
	Θεωρητικό Υπόβαθρο
	Γράφοι
	Απόσταση Επεξεργασίας Γράφων
	Πυρήνες Γράφων
	Γράφοι Σκηνής
	Νευρωνικά Δίκτυα Γράφων
	Εξγήσεις με Αντιπαραδείγματα

	Προτεινόμενα Μοντέλα
	Συσεισφορά
	Μοντέλα Αυτο-κωδικοποιητών Γράφων

	Πειραματικό Μέρος
	Σύνολο Δεδομένων
	Βασική Αλήθεια
	Μετρικές
	Λεπτομέρειες Μοντέλων
	Αποτελέσματα

	Συμπεράσματα
	Μελλοντικές Κατευθύνσεις

	Introduction
	Machine Learning
	Data Modalities
	Machine Learning Types
	Definitions
	Deep Learning
	Autoencoders

	Graphs
	Definitions
	Graph Similarity
	Graph Edit Distance
	Graph Kernels

	Scene Graphs
	Related Work

	Graph Neural Networks (GNN)
	Introduction
	Graph Convolution
	Spectral-Based Graph Convolution
	Spatial-based Graph Convolution

	Spatial-Based GNN Modules
	Graph Auto-encoders

	Counterfactual Explanations
	Introduction
	Definitions and Framework
	Algorithmic Implementation
	Enriching the Explanation Dataset
	Utilization of GNN Models

	Related Work

	Proposal
	Contributions
	Proposed Models

	Experiments
	Preliminaries
	Dataset
	Ground Truth
	Evaluation Metrics

	Training and Inference Details
	Graph Kernel Parameters
	GNN Details and Hyperparameters

	Results
	Quantitative Analysis
	Qualitative Analysis

	Conclusion
	Reflecting on the Findings
	Future Research

	Bibliography

