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Abstract

The Cahn–Hilliard (CH) equation is a mathematical model of the process of phase separation in a binary
alloy [1].

Initially proposed in view of applications to mettalurgy and materials science to study phase separation
and coarsening in materials, such as binary alloys, polymers, and liquid crystals, also to study the growth
and morphology of thin films in material deposition processes, such as epitaxial growth. These applications
have been extended to various scientific fields, including spinodal decomposition in the context of statistical
mechanics, where it is used to describe the process in which a homogeneous mixture separates into two dis-
tinct phases [1,2], diblock copolymer, image inpainting, multiphase fluid flows where it can be used to model
the behavior of two immiscible fluids, like oil and water, and their interface dynamics, amongst others [3],
microstructures with elastic inhomogeneity [4], tumor growth simulation [5], and topology optimization [6].

In the Cahn-Hilliard equation, the evolution of concentration consists of two stages: Fast phase separation
where the energy decay happens quickly, i.e. on a small time scale, is followed by phase coarsening until the
two different phases obtain constant curvature. Fine-scaled phase regions separated by the interface form at
the end of the first stage, while the solution reaches an equilibrium state minimizing the energy functional
at the end of the second stage.

Numerical methods that are developed for the Cahn-Hilliard equation often should take into account
the nonlinearity in the system, the presence of the small parameter ε (thickness of the interface), and the
different time scales that characterise the concentration evolution. Resolution schemes require proper scaling
of numerical parameters, such as the spatial mesh size h and often adaptive time stepping techniques for the
time step size k, relative to the interaction length ε.

The aim of this thesis, is to present a range of the main numerical methods that have been applied to the
mixed finite element approximation of the solution to the Cahn-Hilliard equation problems. These numerical
schemes offer different orders of accuracy in time and vary also regarding their numerical stability and the
solvability of the time discrete equations that arise. Fundamental ideas like the convex splitting are also
illustrated, as their significance and versatillity has become central in the study of numerical schemes for the
Cahn Hilliard equation.
The implementation that has been developed for this work illustrates the effectiveness and the high accuracy
of the common Backward Euler numerical scheme arising from the standard conforming mixed finite element
formulation of this problem. For the approximation in space we employ the biquadratic shape functions
that are defined on the standard 9-node Lagrange quadrilateral reference element.The resulting nonlinear
algebraic system for every time step is then solved by a Newton-Raphson iteration procedure and during
each iteration, a linear system with the corresponding Jacobian has to be solved. For this linear system the
biconjugate gradient method (BiCGStab) method is employed. Two main cases for the boundary conditions
to close the problem are examined. The first is the periodic in one or two directions and the second refers to
the specified contact angle of the phase field with the boundary. The last chapter is concerned with certain
optimization directions that would allow for higher degrees of freedom approximations, thus a more realistic
simulation of the phase transition phenomena that occur.
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1 Introduction

The most attractive feature of the Cahn Hilliard equation is that it is used to describe a wide variety of
phenomena that exhibit phase transition ranging from nanoscale precipitation to the forming of galaxies in
the universe [7]. So the necessity to develop numerical schemes is interconnected with extracting valuable
information about the behavior of the solution that can be used to verify the theoretical considerations
about the evolution of phase transition processes and also can contribute to the development of a wide range
of industrial applications. The forementioned considerations constitute the author’s motives to study the
subject.

1.1 The basic framework of the Phase Field Model

In this chapter we present the essential considerations for the derivation of the phase field model for the sake
of completeness of the work to follow. For the interested reader the rigorous derivation of the phase-field
model can be found to: [8]. Also an instructive review of the main ways to derive the Cahn-Hilliard equation
can be found in [9].

The standard approach is to consider a binary fluid system consisting of two immiscible viscous flu-
ids,denoted as fluids 1 and 2 under constant temperature, completely occupying a bounded domain Ω in
R2 (for our work), with a sufficiently smooth boundary denoted as ∂Ω. The total density of the mixture is
defined as ρm = m

V is considered constant, m represents the total mass of the mixture in the volume of the
system V (i.e., m =

∫
Ω
ρmdV ). We assume that the two fluids possess different apparent densities defined as

ρ′i = mi
V also constants for i = 1, 2. We define the apparent densities as ρ′i. These are related to the actual

densities ρi = mi
Vi

through ρ′i = Vfiρi, where Vfi = Vi
V represent the volume fractions, and mi represents the

masses of the components in Ω, defined as:

mi =

∫
Ω

ρ′idV,

The total mass m is the sum of the masses of fluids 1 and 2:

ρm = ρ′1 + ρ′2

The interface between the two phases has a thin nonzero thickness characterized by a rapid and smooth
transition. The scalar function φ, known as the ”order parameter” is used to represent the two phases and
the transition in between.

φ =


1, in fluid 1,

−1, in fluid 2,

[−1, 1], in the interfacial region.

The origin of the spatial transition between the two materials is considered to be the local surface tension
(we assume constant temperature, incompressibility of the fluids and viscosity). Consequently, the total
amount of each fluid in Ω must remain constant and the principles of mass conservation and of the linear
momentum of continuum mechanics apply.
The function φ can be thought of as the difference in local mass fraction of the two fluids:

φ =
ρ′1 − ρ′2
ρ′1 + ρ′2

,

or equivalently,

φdmi = ρ′1dmidV − ρ′2dmidV

7



By further manipulation, we obtain

φρm = ρ′1ρ
′
2

We observe that φ ∈ [−1, 1]. When φ = 1 or φ = −1, only fluid 1 or 2 exists, respectively. Moreover,
recalling the definitions of ρ′1 and ρ′2, we find that∫

Ω

ρmφdV =

(∫
Ω

ρ′1dV

)(∫
Ω

ρ′2dV

)
= m1m2 = constant.

This demonstrates that the definition of φ ensures the conservation of the concentration difference between
the two fluids in Ω. The conservation of the mass of each component across the entire domain imposes the
constraint: ∫

Ω

ρmφ(x, t)dV = constant

The relaxation of the order parameter is driven by local minimization of the free energy subject to phase
field conservation and as a result, the interface layers do not deteriorate dynamically. The width of the in-
terfacial layer depends on a parameter ε appearing in the system, and as ε tends to zero, the diffuse interface
system converges to the corresponding sharp interface one. Initial ideas can be traced back to van der Waals
and form the foundation for the phase-field theory, for phase transition and critical phenomena. The phase
field motion is governed by a bulk field over the entire domain, and it inherits various interesting properties,
including the coupling with physical variables (e.g., velocity and pressure in fluids, temperature), through
the combined models with the Navier Stokes equations.

For our setting we consider the energy functional Eε(φ) to represent different interfacial energies associ-
ated with the phase field, given by (1):

Eε(φ) =

∫
Ω

(
1

2
|∇φ|2 +

1

ε2
W (φ)

)
dV (1)

where W (φ) is a double-well potential (typically expressed in the form of (2)), representing the system’s
tendency to have two different stable phases, and ε > 0 is the parameter related to the interface thickness.
Figure 1 describes the typical form of the double well potential.

W (φ) =
1

4
(φ2 − 1)2 and f(φ) = W ′(φ) = (φ2 − 1)φ. (2)

Figure 1: The typical form for the potential
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There are other possible choices for the double well potential, such as the logarithmic potential, but we
concentrate on the Ginzburg-Landau polynomial type potentials in this work.

The surface motion can be derived as the dissipation of a phase-field’s free energy functional. Here δE(φ)
δφ

in (3), represents the variational derivative in the L2(Ω) or H−1(Ω) norm for the Cahn-Hilliard equation.

δE(φ)

δφ
=

∫
Ω

(
−∆φ+

1

ε2
W

′
(φ)

)
dx (3)

Under the above considerations one can derive the solution of the Cahn-Hilliard equation as minimization
of the energy functional under the constraint of the constant mean concentration.

9



1.2 Statement of the problem

Under the laws of thermodynamics we need to ensure that the total ”free energy” of the mixture decreases
over time. For this purpose, we consider that the mixture cannot pass through the boundary of the domain.
This means that the outward normal derivatives of φ and ∆φ− f(φ) must vanish on ∂Ω.

Using the mass balance law:

∂φ

∂t
+ γ∇ · J = 0, (4)

In (4) the introduced γ > 0 often denotes a relaxation time constant and J is the phase flux defined as:

J = −M(φ)∇
(
∂E(φ)

∂φ

)
, (5)

M(φ) represents the mobility function.

For simplicity purposes and to illustrate the main ideas without unnecessary manipulations, we consider
a constant value for the mobility, M(φ) = 1.

Under these assumptions, the Cahn-Hilliard problem can be expressed as:

∂φ

∂t
= γ∇ ·

(
∇
(
−∇2φ+

1

ε2
W ′(φ)

))
in Ω× (0, T ), (6)

∂φ

∂n
= 0,

∂

∂n

(
−∇2φ+

1

ε2
W ′(φ)

)
= 0 on ∂Ω× (0, T ), (7)

φ|t=0 = φ0 in Ω. (8)

For this work we replace the zero flux conditions with the more general contact angle conditions that
are stated in a seperate chapter, as well as with the periodic conditions, in an effort to capture repeatedly
occuring patterns often encountered in materials modeling applications.
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1.3 The weak formulation

Formally, the Cahn-Hilliard equation is a fourth-order, nonlinear parabolic partial differential equation. A
convenient way to handle the fourth order derivative is to rewrite the problem using the chemical potential
µ as an auxiliary unknown:

∂φ

∂t
= γ∇ · ∇µ, (9)

µ = −∇2φ+
1

ε2
W ′(φ) in Ω× (0, T ), (10)

(11)

This manipulation is more than just a trick. It is an essential idea that enables the use of lower degree
polynomials to approximate the solution on the discretized element domain.

The weak formulation of this problem can be defined as follows: Find (ψ, η) such that ψ ∈ L∞(0, T ;H1(Ω)),
φt ∈ L2(0, T ; (H1(Ω))′), and η ∈ L2(0, T ;H1(Ω)) satisfying the following variational formulation:

∫
Ω

µη dx+

∫
∂Ω

η(∇φ · n) ds−
∫

Ω

∇φ · ∇η dx− 1

ε2

∫
Ω

W ′(φ)η = 0 (12)∫
Ω

∂φ

∂t
ψ dx−

∫
∂Ω

ψ(∇µ · n) ds+ γ

∫
Ω

∇µ · ∇ψ dx = 0 (13)

where n denotes the surface normal vector.

On a more compact notation we may use, (f, g) :=
∫

Ω
f(x)g(x)dx to represent the standard product in

the L2(Ω) space, and 〈φt, ψ〉 for the dual space product between (H1(Ω))′ and H1(Ω), respectively.

The total mass is conserved in time, i.e.,
∫

Ω
φ(t) remains constant in time, which can be realized by

testing with ψ = 1 in the weak formulation:

d

dt

∫
Ω

φ = 0, i.e.,

∫
Ω

φ(t) =

∫
Ω

φ0 ,∀t ≥ 0 (14)
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1.4 The finite element discretization

We consider our domain to be a rectangle in two dimensions and we opt for a subdivision of Ω into non-
overlapping rectangles such that no vertex of any rectangle lies on a side of another rectangle. We consider
9 nodal points on each element, as shown in Figure 2:

Let Q2(Ω) be the set of biquadratic functions on K, i.e.,

Q2(Ω) = {v : v(x) =

2∑
i=0,j=0

aijx
iyj , for x, y ∈ Ω, where aij ∈ R}

which can be thought as the product of the corresponding one dimensional quadratic functions on x, y. The
shape functions defined under the constraint to be 1 on the node they refer to and zero on every other node
of the element, that are used for the approximation on the reference element are depicted in Figure 3.

Figure 2: The domain decomposition on 9-node elements

Figure 3: The shape functions on the 9-node reference element
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1.5 The semi-discrete approximation

Next, consider h to represent the spacing of the nodes on a uniform configuration of a certain number of
elements, as shown in Figure 2 above. We compute the finite element approximation µh and φh, considering
{ψi}Ni=1 to be the biquadratic Lagrange polynomial functions. We can write the solution and the chemical
potential approximations as:

µh(t) =

N∑
j=1

µj(t)ψj (15)

φh(t) =

N∑
j=1

φj(t)ψj (16)

with 2N time-dependent unknowns µj(t), φj(t) for j = 1, 2, . . . , N to be found. We therefore approximate
the solution values for a fixed time. A rigorous proof to justify the good approximation properties of this
approach would refer to Bochner Spaces and to the relevant theory of the analysis of PDEs, but is out of
the scope of this work.

Inserting (15),(16) to (12),(13) we obtain:

∫
Ω

N∑
j=1

µj(t)ψjψi dx+

∫
∂Ω

ψi(∇(

N∑
j=1

φj(t) · n) ds−
∫

Ω

∇(

N∑
j=1

φj(t)ψj) · ∇ψi dx−
1

ε2

∫
Ω

W ′(

N∑
j=1

φj(t)ψj)ψi = 0

(17)∫
Ω

∂
∑N
j=1 φj(t)ψj

∂t
ψi dx−

∫
∂Ω

ψi(∇(

N∑
j=1

µj(t) · n) ds+ γ

∫
Ω

∇(

N∑
j=1

µj(t)ψj) · ∇ψi dx = 0

(18)
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1.6 The fully dicretized problem

Using the fact that the nodal coefficients µj(t), φj(t) for j = 1, 2, . . . , N have only temporal dependence
and since we can interchange the (finite) summation with the integral, we can deduce the form of the mass,
stiffness matrices and of the boundary and the non linear term respectively, that correspond to the fully
discretized version of the problem. These are:

Mij =

∫
Ω

ψiψj dx, for i, j = 1, 2, . . . , N (19)

Aij =

∫
Ω

∇ψi · ∇ψj dx, for i, j = 1, 2, . . . , N (20)

Pi(φ(t)) =

∫
∂Ω

ψi(∇(

N∑
j=1

φj(t) · n) ds (21)

W ′(φ(t))ij =

∫
Ω

W ′(

N∑
j=1

φj(t)ψj)ψi, for j = 1, 2, . . . , N (22)

Spatial discretization in vector-matrix notation reads as follows:

Find µj(t), φj(t) for j = 1, 2, . . . , N such that:

M~µ(t) + Pi(~φ)−A~φ(t)− 1

ε2
W ′(~φ(t)) = 0 (23)

M
d~φ(t)

dt
− Pi(~µ) + γA~µ(t) = 0 (24)

where t ∈ (0, T ].

The presence of the term arising from the double well potential, as well as the boundary integral term
account for the nonlinearity of the problem, if we choose a fully implicit time stepping scheme. Otherwise,
one may choose to consider the two terms calculated at the ”previous” time point, thus making the scheme
explicit. The following chapter illustrates in a more detailed manner these concepts.
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2 The temporal discretization

This chapter serves as a general outline of the available time schemes that can be applied to phase field
models and presents some of the critical bounds concerning the characteristic parameters of the modelling.
Here we follow [10]. In the consideration of time-discrete schemes, we are concerned with the following
properties:

1. the order of accuracy of the scheme,

2. the stability of the algorithm,

3. the solvability of the time-discrete equations.

In the context of linear problems, stability is associated with the decay of the time-discrete solution with
time, a feature also attained by the exact solution of stable linear problems. When the stability of the time
discrete solution is achieved independently of the time-step dt = τ , the time-integration scheme is said to be
unconditionally stable. If stability holds under some constraint (e.g., on the time-step size), then the scheme
is said to be conditionally stable. Explicit time integration algorithms are always conditionally stable, while
implicit schemes might be unconditionally stable.

For nonlinear problems, the situation is more complicated than for linear equations due to the several
notions of stability(Lyapunov, asymptotical, exponential) that may be defined for different problems and
due to the fact that unconditionally stable schemes is not, as in the linear case, identical to making the
algorithm implicit. Because of the energetic structure behind phase-field models, natural notions of stability
are those related to free-energy dissipation. In particular, a numerical scheme is said to be unconditionally
energy- (or gradient-, or nonlinearly) stable if:

E(φn+1)− E(φn) ≤ 0 for all n ≥ 0. (25)

In other words, the scheme preserves the energy-dissipative property of the underlying model, in the
sense that it dissipates energy at each time step. Analogously to the linear case, if (25) holds under some
constraint, then the scheme is said to be conditionally energetically stable.

In analyzing time-integration schemes for phase-field theories, one needs to be specific about the smooth-
ness of the particular chosen double well function W (φ). Two common assumptions are:

� (A1) W ∈ C0[a, b] ∩C2(a, b) with −∞ ≤ a < b ≤ ∞, and W ′′ is bounded below, i.e., W is continuous
on the bounded interval [a, b] and at least twice differentiable on the open interval (a, b), and there is
a constant κW > 0 such that

W ′′(φ) ≥ −κW for all φ ∈ (a, b). (26)

� (A2) W ∈ C2,1(R), i.e., W ′′ is globally Lipschitz continuous. This means that there is a constant
LW > 0 such that

|W ′′(φ)| ≤ LW for all φ ∈ R. (27)

Note that if W satisfies (A2), then it also satisfies (A1) (with a = −∞, b =∞, and κW = LW ), but not
vice versa. In particular, the classical quartic potential

W (φ) =
1

4
(1− φ2)2 (28)

satisfies (A1) with a = −∞ and b =∞, but it does not satisfy (A2). The logarithmic potential

W (φ) =
1

2

(
(1 + φ) log

(
1 +

φ

2

)
+ (1− φ) log

(
1− φ

2

)
+ θ(1− φ2)

)
(29)

satisfies (A1) with a = −1 and b = 1, and it also does not satisfy (A2). On the other hand, the truncated
quartic potential

W (φ) =


(φ+ 1)2 if φ < −1
1
4 (1− φ2)2 if φ ∈ [−1, 1]

(φ− 1)2 if φ > 1

(30)

satisfies (A1) (with a = −∞ and b =∞) and (A2).
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2.1 First-order accurate schemes

We now consider first-order schemes for the Cahn–Hilliard equation. All of the schemes are implicit in some
sense, since explicit schemes for fourth-order parabolic problems are infeasible.

2.1.1 Backward Euler

The backward Euler method applied to the Cahn–Hilliard equation leads to the system:

φn+1 − φn
τ

= ∆µn+1 (31)

µn+1 = W ′(φn+1)− ε2∆φn+1 (32)

This method is nonlinearly implicit because it requires the solution of a nonlinear system for the pair
(φn+1, µn+1). Implicit schemes which are unconditionally linearly stable, such as the Backward Euler method,
are generally conditionally stable for nonlinear problems. To see this, consider the energy difference:

E(φn+1)− E(φn) =

∫
Ω

(
W (φn+1)−W (φn) +

1

2
ε2|∇φn+1|2 −

1

2
ε2|∇φn|2

)
dx (33)

Given two real numbers u and v that enclose ξ, we can use a Taylor’s series expansion to show that:

W (u)−W (v)−W ′(u)(u− v) = −1

2
W ′′(ξ)(u− v)2 ≤ κW

(u− v)2

2
(34)

where the inequality holds due to assumption (A1), which is valid for all the potentials W of interest.
One then obtains:

E(φn+1)− E(φn) ≤
∫

Ω

(
W ′(φn+1)(φn+1 − φn) +

κW
2

(φn+1 − φn)2 +
1

2
ε2|∇φn+1|2 −

1

2
ε2|∇φn|2

)
dx (35)

=

∫
Ω

(
µn+1(φn+1 − φn)− ε2

2
∇φn+1 · ∇(φn+1 − φn) +

κW
2

(φn+1 − φn)2

)
dx (36)

+

∫
Ω

(
1

2
ε2|∇φn+1|2 −

1

2
ε2|∇φn|2

)
dx (37)

= −τ‖∇µn+1‖2 +
κW
2
‖φn+1 − φn‖2 (38)

− 1

2
ε2 ‖∇(φn+1 − φn)‖2 (39)

Next, we bound ‖φn+1 − φn‖22 using the equation for φn+1:∫
Ω

(φn+1 − φn)2 dx = −τ
∫

Ω

∇µn+1 · ∇(φn+1 − φn) dx (40)

≤ τ 1

2δ

∫
Ω

|∇µn+1|2 dx+
τδ

2

∫
Ω

|∇(φn+1 − φn)|2 dx (41)

where the last inequality holds for any δ > 0. Finally, choosing δ = 2ε2

κW τ
gives:

E(φn+1)− E(φn) ≤ −τ
(

1− κ2
W τε

2

8

)∫
Ω

|∇µn+1|2 dx (42)

Therefore, if:

τ <
8ε2

κ2
W

(43)

then (25) holds. In other words, the backward Euler scheme is conditionally energy stable. Furthermore,
it can be shown that under the same time-step constraint, the nonlinear system (31)–(32) has a unique
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solution for (φn+1, µn+1) if condition (39) holds. The proof of this can be found in, for example, [8], and the
underlying concept of the proof is applicable to other schemes.

To prove the existence of a solution, one demonstrates that the system represents the necessary condition
(Euler-Lagrange equation) corresponding to a minimization problem for a convex functional. Subsequently,
to prove the uniqueness of a solution, one follows similar steps to those used in establishing the energy
stability mentioned earlier. It’s worth noting that, since ε is generally very small, condition (39) imposes a
severe constraint on the allowed time-step size.

2.1.2 First-order semi-implicit method

A popular scheme (Provatas and Elder, 2010) is the following first-order semi-implicit (or implicit/explicit)
method:

φn+1 − φn
τ

= ∆µn+1 (44)

µn+1 = W ′(φn)− ε2∆φn+1 (45)

Because it treats W ′ explicitly, it is a linear (or linearly-implicit) method requiring the solution of a linear
system at each time step. The system can be written abstractly as:

B

[
µn+1

φn+1

]
=

[
φn

−W ′(φn)

]
(46)

where B is the differential operator defined by:

B =

[
−τ∆ −I
−I −ε2∆

]
(47)

Here, I denotes the identity operator. The linear system of differential equations (46) has a unique
solution, independent of τ . This follows from the coercivity estimate:∫

Ω

[
µn+1

φn+1

]
·B
[
µn+1

φn+1

]
dx = τ‖∇µn+1‖2 + ε2‖∇φn+1‖2 (48)

as well as mass conservation
∫

Ω
(φn+1 − φn)dx = 0 and the condition

∫
Ω
µn+1dx =

∫
Ω
W ′(φn)dx.

However, as may be expected, the method is only conditionally energy stable. In fact, we can only show
conditional stability if W satisfies (A2). Let us assume that ξ is an undetermined point of the interval (0, 1).
Then,

E(φn+1)− E(φn) = −τ‖∇µn+1‖2 +
1

2

∫
Ω

W ′′(φn+ξ)(φn+1 − φn)2dx− 1

2
ε2‖∇(φn+1 − φn)‖2 (49)

≤ −τ‖∇µn+1‖2 +
LW
2
‖φn+1 − φn‖2 −

ε2

2
‖∇(φn+1 − φn)‖2 (50)

where φn+ξ ≈ φ(·, tn + ξτ). The inequality (50) is identical to (39) replacing κW with LW . Therefore,

following the same steps, leads to the similar constraint τ < 8ε2

L2W for energy stability.

2.1.3 Convex-Splitting Method

The stability issues for the backward Euler and semi-implicit methods originate from the nonconvexity of
W (φ). A groundbreaking idea, which goes back to [11] and was popularized by [12], is to split W into a
convex part and a concave part, i.e.,

W (φ) = W+(φ) +W−(φ) (51)

with W ′′+(φ) ≥ 0 and W ′′−(φ) ≤ 0. Then, we treat W+ implicitly and W− explicitly, as

17



φn+1 − φn
τ

= ∆µn+1 (52)

µn+1 = W ′+(φn+1) +W ′−(φn)− ε2∆φn+1 (53)

Using Taylor’s formulas, we have

W+(φn+1) = W+(φn) +W ′+(φn+1)(φn+1 − φn)− 1

2
W ′′+(φn+ξ)(φn+1 − φn)2 (54)

W−(φn+1) = W−(φn) +W−(φn)(φn+1 − φn) +
1

2
W ′′−(φn + ζ)(φn+1 − φn)2 (55)

where ξ, ζ ∈ (0, 1). The energy difference is now

E(φn+1)− E(φn) = −τ‖∇µn+1‖2 −
1

2

∫
Ω

(
W ′′+(φn+ξ)−W ′′−(φn+ζ)

)
(φn+1 − φn)2dx− 1

2
ε2‖∇(φn+1 − φn)‖2

(56)

≤ −τ |∇µn+1|2 −
ε2

2
|∇(φn+1 − φn)|2 (57)

which shows the unconditional stability of the method. If W satisfies (A1), then the above convex
splitting is non-unique, but it is always possible. For instance, defining

W−(φ) = −κW
φ2

2
(58)

and subsequently setting W+(φ) = W (φ) −W−(φ). Unique solvability of the system follows by equiv-
alence with a strictly-convex minimization problem. Hence, the convex-splitting scheme is both uncondi-
tionally stable and unconditionally solvable. If, in addition, (A2) applies, then a splitting is possible with
W+(φ) being a quadratic polynomial, i.e., defining

W+(φ) = L
W

2
φ2 (59)

and subsequently setting W−(φ) = W (φ)−W+(φ). In this case, the scheme becomes even linear.

2.2 Stability and Solvability Analysis for Second-order Schemes

2.2.1 Crank–Nicolson Method

The Crank–Nicolson method is defined as follows:

φn+1 − φn
τ

= ∆µn+ 1
2

(60)

µn+ 1
2

=
W ′(φn+1) +W ′(φn)

2
− ε2∆

φn+1 + φn
2

(61)

It requires the solution of a nonlinear system at each time step. Using the trapezoidal quadrature rule,
we have

W (v)−W (u) =

∫ v

u

W ′(s) ds =
W ′(u) +W ′(v)

12
(v − u)− 1

2
W ′′′(ξ)(v − u)3 (62)

where ξ is an unknown point that lies between u and v. Then, it can be shown that the energy difference
is given by:

E(φn+1)− E(φn) = −τ‖∇µn+1‖2 −
1

12

∫
Ω

W ′′′(ξ)(φn+1 − φn)3 dx (63)

The sign of the last term in (63) cannot be controlled, making the method generally not unconditionally
energy stable. Furthermore, the solvability of this method, corresponding to a nonconvex nonlinear system,
also suffers from a time-step constraint, τ ≤ Cε2/κ2

W , similar to the backward Euler scheme.
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2.2.2 Second-order Semi-implicit Method

The second-order semi-implicit method is defined as:

φn+1 − φn
τ

= ∆µn+ 1
2

(64)

µn+ 1
2

= W ′(φn) +
1

2
W ′′(φn)(φn+1 − φn)− ε2∆

φn+1 + φn
2

(65)

This method is linear and corresponds to the following system:

B

[
φn+1

µn+1

]
=

[
φn −W ′(φn) + 1

2W
′′(φn)φn − 1

2ε
2∆φn+1

φn

]
(66)

where Bn is the differential operator defined by

Bn :=

[
−τ∆ Id
−Id 1

2W
′′(φn)− 1

2ε
2∆

]
(67)

Because of the non-convexity of the potential, W ′′ can have an arbitrary sign. Therefore, the method is

conditionally uniquely solvable under a time-step constraint τ < Cε2

κ2 W .

2.2.3 Secant Method

The secant method, designed to mimic the energy dissipation, is defined as:

φn+1 − φn
τ

= ∆µn+ 1
2

(68)

µn+ 1
2

= DW (φn, φn+1)− ε2∆
φn+1 + φn

2
(69)

Here, DW (φ, ψ) is the discrete variational derivative defined as:

DW (φ, ψ) =

∫ 1

0

W ′(φ+ s(ψ − φ)) ds (70)

Alternatively, the discrete variational derivative can be expressed as:

DW (φn, φn+1) =

{
W (φn+1)−W (φn)

φn+1−φn if φn+1 6= φn

W ′(φn) if φn+1 = φn
(71)

This formulation explains the name of the method. By observing that

DW (φn, φn+1)(φn+1 − φn) = W (φn+1)−W (φn) (72)

it can be deduced that the method is unconditionally energy stable, as indicated by the relation

E(φn+1)− E(φn) = −τ‖∇µn+1‖2. (73)

However, due to the non-convex nature of W , the nonlinear system (69)–(70) is only conditionally solv-
able (Elliott, 1989). The operator DW finds extensive use in the development of exact energy-preserving
schemes. This method is unconditionally energy stable, but the solvability of the nonlinear system (68)–(69)
is conditional. Several variants that avoid constructing the secant while maintaining stability are as follows:

1. Implicit Taylor Method:

DW (φn, φn+1) = W ′(φn+1)− 1

2
W ′′(φn+1)(φn+1 − φn)

+
1

3!
W ′′′(φn+1)(φn+1 − φn)2 (75)
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2. Method by Gomez and Hughes (2011):

DW (φn, φn+1) =
1

2
(W ′(φn) +W ′(φn+1))− 1

12
W ′′′(φn)(φn+1 − φn)2 (76)

These methods lead to the following energy change:

E(φn+1)− E(φn) = −τ‖∇µn+1‖2 −
1

24

∫
Ω

W ′′′′(φn+ξ)(φn+1 − φn)4 dΩ, ξ ∈ (0, 1) (77)

The last term is negative or zero if W ′′′′ ≥ 0. This inequality holds for all potential functions. If the
potential W does not satisfy the condition W ′′′′ ≥ 0, Gomez and Hughes (2011) [13] propose a splitting of
W that achieves second-order accuracy and unconditional stability. Considering that the methods described
in this section correspond to non-convex nonlinear systems, their solvability is conditional.

2.2.4 Second-order Convex Splitting

In an effort to achieve both unconditional stability and solvability, a second-order time-accurate convex-
splitting scheme was proposed by Hu et al. (2009). The method is described by the following equations:

φn+1 − φn
τ

= ∆µn+ 1
2

(74)

µn+ 1
2

= DW+(φn+1, φn) +DW−(φn, φn−1)− ε2

2
∆
φn+1 + φn

2
(78)

Where: - DW+(φn+1, φn) is defined as:

DW+(φn+1, φn) =

∫ 1

0

W ′(φn + s(φn+1 − φn)) ds (79)

- DW−(φn, φn−1) is defined as:

DW−(φn, φn−1) =
3

2
W ′−(φn)− 1

2
W ′−(φn−1) (80)

This method employs a secant treatment of the convex part and a two-step second-order backward
difference treatment of the concave part. While this method is unconditionally solvable, it does not meet
the criteria for unconditional stability. A less restrictive condition, referred to as weak energy stability (Hu
et al., 2009), may be established if W− is a quadratic polynomial, which holds for many potential functions.
An alternative approach is the multistep scheme proposed in (Guillén-González and Tierra, 2013), which,
however, is limited to quartic potentials. This alternative scheme is linear, unconditionally energy stable
(with a modified energy statement), and unconditionally uniquely solvable. The above and the following
references can be found in the main [10]

2.3 Stabilization

Most second-order linear schemes suffer from conditional stability and/or conditional solvability. As proposed
by Wu et al. (2014), these issues can be stabilized if W satisfies (A2). For example, the stabilized semi-
implicit scheme is given as follows:

φn+1 − φn
τ

= ∆µn+ 1
2

(75)

µn+ 1
2

= W ′(φn) +
1

2
W ′′(φn)(φn+1 − φn)− ε2

2
∆
φn+1 + φn

2
− βτ∆(φn+1 − φn) (82)

Here, β is the stabilization parameter. Such terms are also referred to as artificial viscosity and are useful
in many applications (see, e.g., Labovsky et al., 2009; Jansen et al., 2000). For a stabilization of the extended
Crank–Nicolson method, refer to Gomez and Hughes (2011).
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Using Taylor’s formula, it can be shown that:

E(φn+1)− E(φn) = −τ‖∇µn+1‖2 +
1

2

∫
Ω

(W ′′(ξ)−W ′′(φn)) (φn+1 − φn)2 dΩ

− βτ‖∇(φn+1 − φn)‖2
(76)

Then, assuming that W satisfies (A2):

E(φn+1)− E(φn) ≥ −τ‖∇µn+1‖2 + LW ‖φn+1 − φn‖2

− βτ‖∇(φn+1 − φn)‖2

≥ −τ
(

1− LW
2δ

)
‖∇µ‖2 − τ

(
β − LW δ

2

)
‖∇(φn+1 − φn)‖2 (by Young’s inequality with 0 < δ <

LW
2

).

(77)

Therefore, for β >
L2
W

4 , one has unconditional energy stability. It is worth noting that unconditional
solvability follows by mimicking the proof for the Backward Euler method, as described in the work of
Elliott [8].
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3 The Newton-Raphson procedure

In this section, we briefly discuss the simplest multidimensional root finding method, the Newton-Raphson
method. This method provides an efficient means of converging to a root when a sufficiently good initial
data is given but, when this is not feasible it can fail to converge, indicating, though not proving, that a
nearby root does not exist. For our implementation the initial guess has to be the combined solution of the
previous time step, which for the most cases will work well. For the contained description we do not pose
the following thoughts with a mathematical rigour but rather with the more intuitive approach.

We consider N functional relations that need to be set to zero and are represented as:

Fi(x1, x2, . . . , xN ) = 0, i = 1, 2, . . . , N.

In the neighborhood of vector x, each function Fi can be expanded using a Taylor series:

Fi(x+ δx) = Fi(x) +

N∑
j=1

∂Fi
∂xj

δxj +O(δx2).

The matrix J of partial derivatives appearing in the previous equation is the Jacobian matrix, with
entries:

Jij ≡
∂Fi
∂xj

.

In matrix notation we have:

F(x + δx) = F(x) + Jδx.

By neglecting terms of order δx2 and setting F(x + δx) = 0, we obtain a set of linear equations for the
corrections δx that simultaneously move each function closer to zero:

J · δx = −F.

The matrix equation is then solved and the corrections are then added to the solution vector:

xnew = xold + δx.

The process is iterated until convergence is achieved. In general, it is advisable to check the degree to
which both functions and variables have converged. Once either reaches machine accuracy, the other is
unlikely to change. In our problem the presence of the double well potential accounts for the non-linearity of
the Cahn-Hilliard model and of the arising discrete system of algebraic equations. Using a Taylor’s expansion
of the vector field of equations around the combined solution vector we achieve a linear approximation of
the system. At each (fixed) time step tn, we employ this iterative algorithm to solve it.

Let us consider that a standard backward Euler scheme is applied and let Sn = (~µn, ~φn) denote the combined
vector of unknowns. We state the relations (23),(24) as:

Fnvec(Sn) = 0. (78)

where the residual Fnvec is defined by:

Fnvec(Sn)i = M~µ(t) + Pi(~φ)−A~φ(t)− 1

ε2
W ′(~φ(t)) for i = 1, 2, . . . , N (79)

Fnvec(Sn)i = M
d~φ(t)

dt
− Pi(~µ) + γA~µ(t) for i = N + 1, . . . , 2N (80)

Assuming a reasonable initial guess Sn;0 of the solution Sn = (~µ,n~φn), we iteratively solve the linearized
equation and update the solution vector as follows:

J(Sn;s)∆Sn;s = −Fnvec(Xn;s), (81)

Sn;s+1 = Sn;s + ∆Sn;s, s = 0, 1, . . . (82)
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where the entries of the Jacobian matrix J are Ji,j(Sn) =
∂Fnveci
∂Snj

, i, j = 1, 2, . . . , 2N .

The iteration process is stopped below a certain tolerance (for instance, ||∆Sn||2 < ε).

For the calculation of the entries of the Jacobian matrix J , we differentiate the residual vector with
respect to the nodal unknowns of the current timestep and we have:

∂(M~µ(t) + Pi(~φ)−A~φ(t)− 1
ε2W

′(~φ(t))

∂µj
= Mij , (83)

∂(M~µ(t) + Pi(~φ)−A~φ(t)− 1
ε2W

′(~φ(t))

∂φj
=
∂Pi
∂φj

+Aij −
1

ε2
∂W ′(~φ)

∂φj
, (84)

∂(M d~φ(t)
dt − Pi(~µ) + γA~µ(t))

∂µj
= −∂Pi

∂µj
+ γAij , (85)

∂(M d~φ(t)
dt − Pi(~µ) + γA~µ(t))

∂φj
=

1

dt
Mij (86)

where Mij , Aij , represent the entries of the mass and stiffness matrices M , A, respectively.

For the derivative of the non-linear term W ′( ~φn), the dependence on the solution forces us to employ the
chain rule:

∂W ′(φn)i
∂φnj

=
∂W ′

∂φn

∂φn
∂φnj

= ((3(

N∑
l=1

φlψl)
2 − 1)ψi, ψj) (87)

Note, that for the time being we omit the calculation of the derivative of the boundary flux integral term,
as for the two cases of the boundary conditions that we will examine, the treatment has to be specific.

Provided that the Jacobian is invertible and Sn is sufficiently close to the exact solution S∗, the procedure
usually converges rapidly, namely, it holds:

||Sn+1 −X∗|| ≤ L||Sn − S∗||2 (88)
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4 The periodic problem

When considering periodic conditions in the context of the Cahn-Hilliard equation, it typically refers to
solving this equation in a domain with periodic boundaries. This means that the material or system under
investigation is assumed to exhibit periodic patterns of phase separation.This typically refers to a phe-
nomenon in materials science or physics where two or more phases or components of a material segregate
or separate from each other in a regular, repeating pattern. This can occur in various contexts, such as in
materials with a periodic structure, under specific temperature and pressure conditions, or in the presence
of external forces.

4.1 Statement of the problem

For this chapter we will consider that the unit cell in Ω = R2 is the characteristic domain of periodicity for
our solution. Following [8] we state the periodic problem for the Cahn-Hilliard equation as:

∂φ

∂t
= γ∇ ·

(
∇
(
−ε2∇2φ+W ′(φ)

))
in Ω× (0, T ), (89)

Djφ|x=0 = Djφ|x=1, for j = 0, . . . 3 on Ω× (0, T ), (90)

Djφ|y=0 = Djφ|y=1, for j = 0, . . . 3 on Ω× (0, T ), (91)

φ|t=0 = φ0 in Ω (92)

Considering the problem set on a rectangle (or a unit square) the periodicity condition (90)–(91) forces
the solution to attain the same values on opposite sides of the boundary:

φ(0, y, t) = φ(1, y, t), ∀y ∈ Ωy × (0, T ] (93)

φ(x, 0, t) = φ(x, 1, t), ∀x ∈ Ωx × (0, T ] (94)

These two relations will be used on the fully discrete scheme to impose explicitily the boundary conditions
and also to justify that for the finite dimensional approximation we technically use a subspace of periodic
basis functions.

4.2 The finite dimensional projection of the solution

We recall the previous definition of the weak formulation of our problem:
Find (ψ, η) such that ψ ∈ L∞(0, T ;H1(Ω)), φt ∈ L2(0, T ; (H1(Ω))′), and η ∈ L2(0, T ;H1(Ω)) satisfying the
following variational formulation:

∫
Ω

µη dx+

∫
∂Ω

η(∇φ · n) ds−
∫

Ω

∇φ · ∇η dx− 1

ε2

∫
Ω

W ′(φ)η = 0 (95)∫
Ω

∂φ

∂t
ψ dx−

∫
∂Ω

ψ(∇µ · n) ds+ γ

∫
Ω

∇µ · ∇ψ dx = 0 (96)
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where n denotes the surface normal vector.

We consider {ψi}Ni=1, the biquadratic Lagrange polynomial functions, or any other choice, for the ap-
proximation subspace. Seeking approximations for µ and φ so that they match at the nodal point with our
functions, we would once more begin with the following representations:

µh(t) =

N∑
j=1

µj(t)ψj (97)

φh(t) =

N∑
j=1

φj(t)ψj (98)

with 2N time-dependent unknowns µj(t), φj(t) for j = 1, 2, . . . , N to be found.

At this point, the periodic setting of the problem, forces the same nodal values on the nodes of the
opposing boundary sides, as we have identified the length of each dimension with the period length in the
horizontal and the vertical directions.

To define the local-global node connectivity list (i.e, how the local 1-9 reference numbering corresponds
to the global domain numbering) we shall now on opt for down to top and left to right scanning of the mesh,
as illustrated in Figure7. Namely if we have Ny nodes on x = 0, Nx nodes on y = 0 the ascending order of
the numbering is:

Nij = (j − 1)Ny + i, j = 1, . . . Ny i = 1, . . . Nx (99)

For the Nmax = N = NxNy grid the periodic conditions mean:

φi = φN−Ny+i, i = 1, . . . , Ny (100)

φ(j−1)Ny+1 = φjNy , j = 1, . . . , Nx (101)

And the same relations hold for µ as a consequence of (90)–(91).

Figure 4: Down-top and Left-right numbering
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The practical significance is that we now operate on a smaller number of unkowns, namely: N−Nx−Ny.
The general representations shown above can now take a more specific form:

µh(t) =

Ny∑
j=1

µj(ψj + ψN−Ny+j) +

Nx−1∑
i=2

µ(i−1)Ny+1(ψ(i−1)Ny+1 + ψiNy ) +
∑
inner

µjψj (102)

φh(t) =

Ny∑
j=1

φj(ψj + ψN−Ny+j) +

Nx−1∑
i=2

φ(i−1)Ny+1(ψ(i−1)Ny+1 + ψiNy ) +
∑
inner

φjψj (103)

The representations (102),(103) actually state that a different set of basis functions (and hence test functions
since we are on Galerkin methods territory) is best fit for the periodic setting.
We denote the new basis and test functions as:

ψj = (ψj + ψN−Ny+j), j = 1, . . . Ny, (104)

ψ(i−1)Ny+1 = (ψ(i−1)Ny+1 + ψiNy ), i = 2, . . . Nx − 1 (105)

ψl = ψl, l inner node (106)
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4.3 The system’s matrices

Based on the reduced (dimensionally) approximation of our functions and inserting relations (102)–(103) to
the weak form of the problem, we calculate the necessary modifications of the matrices of the problem, to
obtain the fully discrete scheme. To illustate these modifications, the mass matrix now becomes:

For l inner node and j left side node we have:

M lj =

∫
Ω

ψlψj dx (107)

=

∫
Ω

ψl(ψj + ψN−Ny+j) dx (108)

=

∫
Ω

ψlψj dx+

∫
Ω

ψlψN−Ny+j dx (109)

= Mlj +Ml;N−Ny+j (110)

For l inner node and m = (i− 1)Ny + 1 bottom side node we have:

M lm =

∫
Ω

ψlψ(i−1)Ny+1 dx (111)

=

∫
Ω

ψl(ψ(i−1)Ny+1 + ψiNy ) dx (112)

=

∫
Ω

ψlψ(i−1)Ny+1 dx+

∫
Ω

ψlψiNy dx (113)

= Ml(i−1)Ny+1 +Ml;iNy (114)

And the rest combinations follow in the same manner. These modifications apply also to the new stiffness
matrix A. Clearly the new matrices remain symmetric. The above modifications are inherited by the global
system matrix presented in the previous chapter, as the mass, stiffness and the derivative matrix of the
nonlinear term constitute the constructive blocks of the matrix.
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4.4 The nonlinear term

For the handling of the nonlinear term W ′(φh), we notice that it equals to:

∫
Ω

(

Ny∑
j=1

φjψj +

Nx−1∑
i=2

φ(i−1)Ny+1ψ(i−1)Ny+1 +
∑
inner

φjψj)
3 − (

Ny∑
j=1

φjψj −
Nx−1∑
i=2

φ(i−1)Ny+1ψ(i−1)Ny+1)ψi −
∑
inner

φjψj)

ψi dx

(115)

The following remarks are critical to give us the correct representation of the non-linear term with the
use of the modified basis:

1. The (real) inner product (integral) is linear in the second variable, so it can be split as a sum of
integrals over the components of the new basis function ψj (relations(104)–(105)). For instance we consider
a function given by (104) and we have:

(W ′(φh), ψj + ψN−Ny+j) = (W ′(φh), ψj) + (W ′(φh), ψN−Ny+j) (116)

2. Each of these integrals can be rewritten as a sum of integrals over the composing elements of our
domain. ∑

e

∫
Ωe

W ′(φh)(ψj + ψN−Ny+j) =
∑
e

∫
Ωe

W ′(φh)(ψj) +
∑
e

∫
Ωe

W ′(φh)(ψN−Ny+j) (117)

3. On each element only the shape functions with support on the specific element remain nonzero in W ′,
resulting exactly in the form (per element) we had for the original shape functions ψj .

4. Finally the new component is the sum of the ”periodically correspondent” components of the original
base representation of the nonlinear term.

For instance, if we take i = 1, · · ·Ny (i.e, horizontal periodicity) we have:

W ′(φ)i = W ′(φ)i +W ′(φ)N−Ny+i (118)
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4.5 The boundary flux matrix

The last term we should carefully handle is the boundary integral term of the weak formulation. This affects
the essential form of the weak formulation. We notice that for our simple rectangular domain we operate
under a known orientation and with a known normal vector, on each side. Considering a counter-clockwise
route of the boundary, we have:

∫
∂Ω

η(∇φ · n) ds =

∫
∂ΩB

η(∇φ · n) ds+

∫
∂ΩR

η(∇φ · n) ds+

∫
∂ΩT

η(∇φ · n) ds+

∫
∂ΩL

η(∇φ · n) ds (119)

= −
∫
∂ΩB

η
∂φ

∂y
ds+

∫
∂ΩR

η
∂φ

∂x
+

∫
∂ΩT

η
∂φ

∂y
−
∫
∂ΩL

η
∂φ

∂x
(120)

The last relation is a consequence of the simple form of the normal vector on each side of the rectangle.
For general domains more precice handling is needed. We would either opt for a polygonal approximation of
the domain, or for a parametric representation of curved parts or surfaces of the boundary. For our problem
we can insert in the last relation, the approximation of the solution along with the modified basis functions.

= −
∫
∂ΩB

ψi
∑
j

φj
∂ψj
∂y

ds+

∫
∂ΩR

ψi
∑
j

φj
∂ψj
∂x

ds+

∫
∂ΩT

ψi
∑
j

φj
∂ψj
∂y

ds−
∫
∂ΩL

ψi
∑
j

φj
∂ψj
∂x

ds (121)

=
∑
j

φj(−
∫
∂ΩB

ψi
∂ψj
∂y

ds+

∫
∂ΩR

ψi
∂ψj
∂x

ds+

∫
∂ΩT

ψi
∂ψj
∂y

ds−
∫
∂ΩL

ψi
∂ψj
∂x

ds) (122)

=
∑
j

φj ·Qij (123)

with Qij denoting from now on the boundary flux matrix.

The essential remark is that the boundary flux matrix is zero in the periodic setting. Consider for in-
stance a modified test function ψi supported on the bottom and on the top due to periodicity. Then we have:

−
∫
∂ΩB

ψi
∂ψj
∂y

ds+

∫
∂ΩT

ψi
∂ψj
∂y

ds = −
∫ 1

0

(ψi(s, 0)− ψi(s, 1))
∂ψj
∂y

ds = 0 (124)
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4.6 The algorithm for the periodic problem

In this chapter we present the main steps of the approach, to provide a better understanding of the imple-
mentation aspects, that will be presented in a seperate chapter. A contained description would constitute of
the following steps:

1. Generate the domain discretization for the rectangle Ω into 9-node elements, by choosing the desired
element number per direction (x,y).

2. Determine the local-global node connectivity identification.

3. Create a time grid 0 = t0 < t1 < t2 < . . . < tnmax = T on 0 < t < T with time steps ∆tn = tn − tn−1

for n = 1, 2, . . . , nmax. The time scheme is chosen to be a first order accurate, the Backward Euler or the
Provatas-Elder scheme.

4. Choose the initial condition for the coupled variables µ0 and φ0.

5. Start the time point loop. For tn = 1, 2, . . . , nmax do:

6. Choose the starting guess Sn;0 = (µn−1, φn−1) and a desired tolerance value tol for the Newton-
Raphson process.

8. Start the Newton iterative process. For iter = 1, 2, . . . , itermax do:

9. Assemble the nonlinear term W ′(φ), the N ×N Jacobian matrix J of the nonlinear term using now
the original biquadratic basis functions φ, with entries:

W ′(φn,q)i =

∫
Ω

((

N∑
l=1

φlψl)
3 −

N∑
l=1

φlψl)ψi dx, l, i = 1, 2, . . . , N

Jn,qij =

∫
Ω

((3(

N∑
l=1

φlψl)
2 − 1)ψi, ψj)dx, l = 1, 2, . . . , N

and the right handside vector Fnvec as defined by (79)–(80).

10. Assemble the global stiffness matrix with the inheritted modifications shown in (107)–(124) for the
stationary system of each Newton cycle:

Fjac =

[
M −J − ε2A

∆tA M

]
(125)

11. Solve with the biconjugate gradient method (BiCGStab) the system:

Fjac ·∆Sn,iter = −Fvec (126)
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12. Update the solution guess and recover the boundary values of the solution on the right and top side
(given that we have retained the left an bottom as main), as shown in relations (100)–(101):

Sn,iter+1 = Sn,iter + ∆Sn,iter (127)

13. If the norm is below the tolerance value stop.

||∆Sn,iter||2 < tol (128)

14. End the Newton iteration loop.

15. Set the solution vectors of the reduced dimension ~µn and ~φn, with entries µni = Sn,iter
N
i=1 and

φni = Sn,iter
2N
N+1 and extend back to the full dimension periodically.

16. End the time step loop in n.

17. Write the results.
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4.6.1 Experiments-Results

Spinodal decomposition is the separation of a mixture of two or more components to the bulk regions of
both. Bulk regions are defined as the regions purely occupied by one of the components. This decomposition
phenomena occurs when a high temperature mixture of two or more alloys is cooled rapidly(quenching). For
this experiment an initial condition with mean 0.4 was chosen which is perturbed under

φ0 = 0.4 + 0.02(0.5− r) (129)

with r being a random number in [0, 1]. Here dt = 5 × 10−9 constant throughout the simulation and
ε = 5×10−2. The phase portraits of Figure 5, depict the evolution of the initial state up to the latter stages
of the coarsening and the seperation of the two phases. Bulk regions are gradually formed untill they reach
a constant curvature profile.
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(a) t=0 (b) t=500dt

(c) t=1000dt (d) t=5000dt

Figure 5: Evolution of the phase field on a 441-node domain. The phase portraits (a)–(e) illustrate the formation
of the bulk regions from an initial mixture, along 3 time scales. Periodic conditions on both spatial directions have
been assumed.
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5 Phase-field model for wetting phenomena

5.1 Statement of the problem

Wetting phenomena typically involve a fluid-fluid interface advancing or receding on a solid substrate and a
contact line formed at the intersection between the interface and the substrate. The wetting properties of the
substrate determine to a large extent the behaviour of the fluids in the contact-line region. To account for
wetting phenomena and contact lines on solid boundaries, the CH equation can be coupled to a wall boundary
condition. Such models find applications in various situations, including microfluidic devices flow in porous
media, rheological systems , and patterning of thin polymer films and others. Many of these applications are
characterised by the presence of chemically heterogeneous substrates and complex geometries, which make
their numerical simulation challenging. Throughout this chapter, Ω ⊂ R2 corresponds to a 2-dimensional
rectangular domain, ∂Ω denotes its boundary with outward unit normal vector n, S is the solid substrate,
and G = ∂Ω \ S. The CH system we use to describe the dynamics of two immiscible fluids in contact with a
solid substrate is a free-energy-based model. We consider systems with a free energy given by

E(φ) := Em(φ) + Ew(φ) (130)

where the two terms, Em and Ew, represent the mixing and wall components of the free energy, respectively.
Here Fm(φ) = 1

4 (φ2 − 1)2, and Fw represents the energy cost or energy gain associated with the presence
of a solid wall or substrate in contact with a liquid phase. This energy term accounts for the interactions
between the fluid and the solid surface.

The specific wall free energy is a material property and depends on the nature of the solid-liquid interface.
It is typically expressed in terms of surface tension or interfacial energy. It plays a crucial role in determining
the wetting behavior of the liquid on the solid surface. When the specific wall free energy is lower than the
bulk free energy of the system, the liquid tends to wet or spread on the surface. In contrast, when the
specific wall free energy is higher than the bulk free energy, the liquid may not wet the surface, resulting in
non-wetting behavior. It is taken to be a cubic polynomial:

Fw(φ) =

√
2

2
cos θ(x)

(
φ3

3
− φ

)
(131)

where θ = θ(x) is the equilibrium contact angle, which can depend on the spatial position x. From the
expression of the free energy, we calculate that, for a sufficiently smooth function ψ : Ω→ R:

d

dα
E(φ+ αψ)

∣∣∣∣
α=0

=

∫
Ω

(
1

ε
fm(φ)− εφ

)
ψdΩ +

∫
∂Ω

(fw(φ) + ε∇φ · n)ψdσ (132)

with fm = F ′m and fw = F ′w, so the chemical potential is equal to

µ :=
δE

δφ
=

1

ε
fm(φ)− εφ (133)

and the natural boundary condition associated with the surface energy is

ε∇φ · n = −fw(φ) =

√
2

2
cos θ(x)(1− φ2) (134)

We assume that the dynamics of the system is governed by the CH equation,

∂φ

∂t
= ∇ · (b(x)∇µ) (135)

where b(x) is a mobility parameter, assumed to be equal to one. The mass-conservation property holds:

d

dt
M(φ) :=

d

dt

∫
Ω

φdΩ =

∫
∂Ω

∇µ · ndσ (136)
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The mass flux at the boundary can be specified enforcing certain condition on ∇µ · . In particular, we will
set ∇µ = 0 at the solid boundary, S. The system becomes:

∂φ

∂t
= ∇ · (∇µ) (137)

µ =
1

ε
fm(φ)− ε∆φ, x ∈ Ω, t ∈ (0, T ] (138)

ε∇φ · n = −fw(φ) (139)

∇µ · n = 0, x ∈ ∂Ω, t ∈ (0, T ] (140)

5.2 The weak formulation

The weak formulation of equations (141) to (145) is as follows: find (φ, µ) such that

φ ∈ L∞(0, T ;H1(Ω)),

∂φ

∂t
∈ L2(0, T ; (H1(Ω))′),

µ ∈ L2(0, T ;H1(Ω)),

(141)

and the following variational formulation is satisfied:

〈∂φ
∂t
, ψ〉+ (∇µ,∇ψ) = 0, ∀ψ ∈ H1(Ω) and almost everywhere for t in (0, T ], (142)

(µ, η) = ε(∇φ,∇η) +
1

ε
(fm(φ), η) + (fw(φ), η)∂Ω, ∀η ∈ H1(Ω) and almost everywhere for t in (0, T ]

(143)

5.3 The temporal discretization and the algorithm

For the problem of this chapter we opt again for a standard backward Euler scheme that can be combined
with some convex splitting scheme for the potential term to ensure unconditionall stability and convergence
as shown in the first chapter. For a more recent review of new numerical schemes proposed for the wetting
phenomena that arise in the context of the Cahn Hilliard equation we refer to [14]. As shown in the previous
chapter we have to handle a nonlinear system of equations on each timepoint using the Newton-Raphson
method. One difference of the implementation aspect of the problem has to do with the boundary integral
term: ∫

∂Ω

η(1− φ2)ds (144)

arising from the wall energy. For the cases we examine we have a simple form for this term as our domain
is a rectangle and we know explicitly the normal vector on each side. This new term has to be added to the
residual vector and is calculated as a sum of contibutions of four integral terms each one representing the
integration on the corresponding boundary line (bottom,right,top,left):∫

∂Ω

η(1− φ2)ds =

∫
∂Ωb

η(1− φ2)ds+

∫
∂Ωr

η(1− φ2)ds+

∫
∂Ωt

η(1− φ2)ds+

∫
∂Ωl

η(1− φ2)ds (145)

Each of these four integrals is calculated as a sum over the elements whose one side intersects the corre-
sponding boundary line:∫

∂Ωl

η(1− φ2)ds =
∑
e

∫
∂Ωe

η(1− φ2)ds, where ∂Ωe ∩ l 6= ∅ (146)
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5.3.1 Experiments-Results

Here, we study the coalescence of two adjacent sessile droplets as they spread on a flat substrate. For the
simulation, we used the initial condition:

φ(x, y, 0) = 1− tanh

(√
(x− x1)2 + y2 − r2

√
2ε

)
− tanh

(√
(x− x2)2 + y2 − r2

√
2ε

)
in the domain [0, 2] × [0, 0.5], with x1 = 0.65, x2 = 1.35, r = 0.25, and at the boundary, we imposed a

uniform contact angle, θ = π/4 and θ = 3π/4 respectively, using the wall energy. Figures 10 and 11 depict
the evolution of the phase field during the simulation for the two cases. Here e = 10−1 and the timestep was
considered fixed dt = 5× 10−7 and 104 steps where applied.
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(a) t=0 (b) t=1000dt

(c) t=3000dt (d) t=6000dt

(e) t=8000dt (f) t=10000dt

Figure 6: Evolution of phase field for θ = π/4. The red region represents the region where the phase variable is
equal to 1 and the blue the region where it equals −1. The hydrophillic setting illustrates the gradual merging of the
two droplets as a result of surface tension.
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(a) t=1000dt (b) t=000dt

(c) t=6000dt (d) t=10000dt

Figure 7: Evolution of phase field for θ = 3π/4
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6 Conclusions and future directions for the development of the
code

The numerical methods for phase transition problems is a rich subject whose perspectives can be reflected
on the future development directions of the current implementation. Contemporary methods besides the use
of the standard finite element methods, as well as error analysis and convergence estimates can be found
in the articles presented in references [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26] . In this
work we used a standard backward Euler scheme along with the mixed finite element formulation of the
Cahn-Hilliard equation, with periodic conditions. We also employ the same standard approach in the effort
to capture the dynamics of the wetting phenomena that are described on the relevant chapter. The basic
implementation that is presented in the appendix, is not optimized by any means and it only serves as a
general solving tool that can easily be adapted to facilitate the higher accuracy, and better overall second
order schemes that we briefly reviewed. The results that are depicted on the corresponding chapters aim to
justify only that the certain implementation can produce valid results on small meshes(i.e with few nodes),
that capture the essential stages of phase seperation, and the rate of the energy decay etc. We stress that
this implementation is not meanted to be used for serious applications, where a more optimized design would
be mandatory. However we can outline the main directions, over which a future development-research effort
should focus.
The main effort should focus on exploitting the second order schemes for the higher accuracy and for the
better stability and solvability properties they present. Secondly one has to take into account that the
different stages of the morphological evolution of the phase field occur at different time scales, indicating
the need of an adaptive time step approach. For example, in the spinodal decomposition simulation, an
initial random perturbation evolves on a fast time scale and later coarsening evolves on a very slow time
scale. Therefore, if a uniform small time step is used to capture the fast dynamics, the computation is very
costly. On the other hand, if a uniform large time step is used, fast time evolutions may be overlooked.
Hence, it is essential to use an adaptive time step method to simulate phenomena with multiple time scales.
Thirdly one has to take into account that ”stiff” systems may occur and for these cases a wide range of
preconditioning strategies can be employed to reduce the condition number of the system that has to be
solved on each Newton cycle. For these strategies we refer to [27] Along with these aspects, crucial would be
the modification of the classical Newton-Raphson procedure, to an inexact iterative scheme or to a globally
convergent process like the line search or the multidimensional secant method (Broyden’s Method, etc). To
improve the performance it would be mandatory to exploit techniques of the sparse matrix formulations
replacing costly computations with more efficient matrix to vector action when needed. For instance, one
can exploit the computational gains that the Compressed Row Storage (CRS) format of the globall stiffness
matrix would provide. Paired with these should be the appropriate modifications of the Linear System Solvers
that one can use. The easiest effort would be to modify an incomplete LU factorization process and solver, to
factorize and solve (CRS) systems. This direct-solver approach can become efficient when handling ”small”
systems, but for serious applications a suitable modification of a more advanced iterative solver like GMRES
would be obligatory. A very useful library written in FORTRAN for ideas like the above can be found in
Y.Saad’s work, the open SPARSKIT library. Finally of a more contemporary significance would be the effort
to couple these modifications with the flow equations, to develop a tool for the Cahn-Hilliard-Navier-Stokes
problem. We illustrate briefly some notes for these directions.

6.0.1 Adaptive time stepping

For the general outline of the techniques presented in this chapter we follow [28] and the references therein.
A proposed adaptive time-stepping method using a criterion related to a residual of the discrete energy law

dE(ϕ)

dt
= −

∫
Ω

|∇µ(x, t)|2 dx. (147)

is the following:
Given ϕn, ϕn−1, 1/tn, 1/tn−1, and a parameter θ > 1, chosen to be θ = 1.1, the method is as follows:
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Step 1. Compute ϕn+1 and obtain

Rn+1 := E(ϕn+1)− E(ϕn)
1

tn
+

∫
Ω

|∇µn+1|2 dx.(7) (148)

Step 2. If |Rn+1| > resmax, take 1/tn = 1/tn/θ and go to Step 1.
Step 3. If |Rn+1| < resmin, take 1/tn+1 = θ · 1/tn.
Here, a trial and error choice of resmax and resmin was used.

An adaptive time-stepping method using the time derivative of the total energy was considered in [?];
that is,

∆t = max(∆tmin,
∆tmax√(

1 + α |E′(t)|2
) ), (8) (149)

where the constant α is chosen to regulate the adaptivity. A large value of |E′(t)| leads to a small time step,
whereas a small |E′(t)| value yields a large time step.

The following adaptive time-stepping technique was developed in [?]:

Step 1. Calculate e =
‖ϕBE

n+1−ϕ
α
n+1‖α

‖ϕαn+1‖α
, where ϕBE

n+1 and ϕαn+1 are the numerical solutions using the

backward Euler method and a second-order generalized-α method with ∆tn, respectively.

Step 2. If e > tol, then reset the time step size ∆tn = ρ
√

tol
e ·∆t

n and return to Step 1, where ρ = 0.9

and tol = 10−3 are used. Otherwise, set ∆tn+1 = ρ
√

tol
e ·∆t

n.

To equally distribute the locally computable discretization error, the authors in [?] proposed the following
algorithm:

Step 1. The global relative time discretization error estimate is defined by

e =
‖ϕn+1 − ϕ̂n+1}∆tn

max (‖ϕn+1‖ , ‖ϕ̂n+1‖)
, (150)

where ϕn+1 and ϕ̂n+1 are the numerical solutions obtained by taking two time steps of size ∆tn/2 and a
single time step of size ∆tn from ϕn, respectively.

Step 2. If e < eMAX, then set

∆tn+1 = ∆tn
(etol

e

)1/p

, (151)

where eMAX is a target error tolerance and p is the global convergence rate of the time-stepping algorithm
being used. If e ≥ eMAX, then that time step is rejected and go to Step 1, and recalculated with halving,
i.e., ∆tn = ∆tn/2.

Also the authors in [?] suggest an adaptive time-stepping scheme based on the convergence behavior of
Newton–Raphson iterations.

6.0.2 Broyden’s Method

One drawback of the classical Newton’s method is that the Jacobian matrix calculations in many problems
is expensive, or even not feasible. For this reason a series of methods under the general name of secant
methods provide cheap approximations to the Jacobian. The most popular of these methods is Broyden’s
method.

Let us denote the approximate Jacobian by B. Then the ith quasi-Newton step δxi is the solution of:

Bi · δxi = −Fi
where δxi = xi+1 − xi (cf. equation 9.7.3). The quasi-Newton or secant condition is that Bi+1 satisfies:

Bi+1 · δxi = δFi
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where δFi = Fi+1 − Fi. This is a generalization of the one-dimensional secant approximation to the
derivative, δF/δx. However, the previous equation does not determine Bi+1 uniquely in more than one
dimension.

Many different auxiliary conditions to pin down Bi+1 have been explored, but the best-performing al-
gorithm in practice results from Broyden’s formula. This formula is based on the idea of getting Bi+1 by
making the least change to Bi consistent with the secant equation. Broyden showed that the resulting
formula is:

Bi+1 = Bi +
δFi −Bi · δxi
δxi · δxi

δxi ⊗ δxi · δxi

Early implementations of Broyden’s method used the Sherman-Morrison formula, to invert the last
equation analytically:

B−1
i+1 = B−1

i +
(δxi −B−1

i · δFi)⊗ δxi ·B
−1
i

δxi ·B−1
i · δFi

Then instead of solving exactly , for example, LU decomposition may be employed, to determine δxi =
−B−1

i · Fi by matrix multiplication in O(N2) operations.
Since B is not the exact Jacobian, we are not guaranteed that δx is a descent search direction. Thus,

the line search algorithm can fail to return a suitable step if B wanders far from the true Jacobian. In this
case, we reinitialize B. Like the secant method in one dimension, Broyden’s method converges superlinearly
once you get close enough to the root. Embedded in a global strategy, it is almost as robust as Newton’s
method and often needs far fewer function evaluations to determine a zero. Note that the final value of B is
not always close to the true Jacobian at the root, even when the method converges.
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A The implementation

This chapter is devoted to the implementation aspects for the boundary value problems examined in the
previous sections. The source code is written in FORTRAN, and it implements a backward Euler method
with minor modifications, like convex splitting, or midpoint approximation of the chemical potential, and/or
modifications on the standard Ginzburg-Landau potential for some runs. We opt for a fixed timepoint
approach that has to be chosen accordingly to the remarks made for the stability/unique-solvabitlity and
convergence that are noted in the temporal dicretization section of this work. For the better presentation
of the implementation aspects, we consider two main programs named respectively: PERIODIC.f90 and
CONTACTANGLE.f90 .

A.1 Dependencies

The PERIODIC/CONTACTANGLE programs relie on the following dependencies:

� iso fortran env: Intrinsic module providing essential Fortran environment parameters.

� BiCGStab mod: A custom module containing the BiCGStab solver implementation.

� PARAMETERS PERIODIC/CONTACTANGLE.inc: An included configuration file that sets program parame-
ters.

A.2 Program Components

The PERIODIC/CONTACTANGLE programs consist of various components, including:

A.3 Space and Time Coordinates

The program initializes space coordinates x and y for the simulation. These coordinates define the spatial
domain over which the problem is solved. Additionally, it sets up time coordinates t to track the simulation’s
progression.

A.4 Local to Global Node Numbering

The nop array represents local to global node connectivity list, allowing for the mapping of local node indices
to global node indices. This mapping is crucial for assembling the system of equations.

A.5 Order Parameter Variables

The program handles the order parameter, denoted as u, which corresponds to the Cahn-Hilliard equation’s
primary variable. It manages both u new and u old variables for tracking the solution’s evolution over time.

A.6 Chemical Potential Variables

An auxiliary variable, denoted as w, represents the chemical potential. Similar to the order parameter, it
manages both w new and w old variables.

A.7 Newton Tolerance Parameters

The program defines tolerance parameters for the Newton-Raphson method, including tolS for the conver-
gence tolerance, ntrial for the maximum number of Newton iterations, and max iter for the maximum
number of iterations allowed in the BiCGStab solver.
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A.8 Stationary System of Newton Cycle

The fvec and fjac arrays represent the equation systems used in the Newton-Raphson iterations. These
arrays contain the system’s right-hand side (RHS) and the Jacobian matrix. To improve computational
efficiency, the arrays are divided into four components: fjac1, fjac2, fjac3, and fjac4.

A.9 Local Contributions

Local contributions from each element are accumulated into fjac1, fjac2, fjac3, and fjac4. Similarly,
fvec1 and fvec2 store the local contributions to the right-hand side of the equation system.

A.10 Newton Solution Vector

The dSol array represents the correction vector obtained from the Newton-Raphson iterations. It is added
to the solution vector Sol to update the solution.

A.11 Loop Variables

The program uses various loop variables, including element, timepoint, trial, n, m, and L. These variables
control the program’s flow and iteration.

A.12 Convergence Check

A boolean variable, CONVERGENT, is used to check for convergence within the Newton-Raphson loop. The
program stops iterating when convergence is achieved or after reaching the maximum number of iterations.

A.13 File Handling

The program reads and writes data to files. The OPEN, WRITE, and CLOSE statements are used for file handling.

A.14 Program Execution

The execution of the PERIODIC/CONTACTANGLE programs involves several steps:

1. Import the required dependencies, including iso fortran env, BiCGStab mod, and PARAMETERS PERIODIC/CONTACTANGLE.inc.

2. Initialize space and time coordinates (x, y, and t).

3. Perform local-to-global node numbering (nop).

4. Set the initial conditions for the order parameter (u old and u new) and the chemical potential (w old

and w new).

5. Enter a time loop to simulate the problem at various time points.

6. For each time point, perform a Newton-Raphson iteration to improve the solution.

7. Check for convergence within the Newton-Raphson loop.

8. Write results to output files at specified intervals.
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A.15 Space Discretization

SUBROUTINE SpaceDiscretization(x,y)

use, intrinsic :: iso_fortran_env

IMPLICIT NONE

INCLUDE ’PARAMETERS_.inc’

!> Space coordinates

REAL(real64) x(NNmax),y(NNmax)

REAL(real64) xorigin,yorigin,xlast,ylast

REAL(real64) dx,dy

INTEGER i,j,NNode

x=0.0_real64

y=0.0_real64

xorigin=0.0_real64

xlast=1.0_real64

dx=(xlast-xorigin)/real(2*NELx)

yorigin=0.0_real64

ylast=1.0_real64

dy=(ylast-yorigin)/real(2*NELy)

!> Setting the coordinates of each node

x(1)=xorigin

y(1)=yorigin

DO i=1,NNx

NNode = (i-1)*NNy + 1 ! Ascending node numbering from bottom left up to right

x(NNode) = x(1) + (i-1)*dx

y(NNode) = y(1)

DO j=2,NNy

x(NNode+j-1)=x(NNode)

y(NNode+j-1)=y(NNode)+(j-1)*dy

ENDDO

ENDDO

END SUBROUTINE SpaceDiscretization

A.16 Global Node Numbering

SUBROUTINE GlobalNodeNumbering(nop)

use, intrinsic :: iso_fortran_env

IMPLICIT NONE

INCLUDE ’PARAMETERS_.inc’

!> Local to global space numbering

INTEGER nop(NELmax,NNref)

INTEGER i,j,k,l,NEL

NEL=0

DO i=1,NELx

DO j=1,NELy

NEL=NEL+1

DO k=1,3
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l=3*k-2

nop(nel,l)=nny*(2*i+k-3)+2*j-1

nop(nel,l+1)=nop(nel,l)+1

nop(nel,l+2)=nop(nel,l)+2

ENDDO

ENDDO

ENDDO

END SUBROUTINE GlobalNodeNumbering

A.17 Time Discretization

SUBROUTINE TimeDiscretization(t)

use, intrinsic :: iso_fortran_env

IMPLICIT NONE

INCLUDE ’PARAMETERS_.inc’

!> Time coordinates

REAL(real64) t(Tmax)

REAL(real64) Tinit

INTEGER j

Tinit=0.0_real64

t(1)=Tinit

DO j=2,Tmax

t(j) = (j-1)*dt

ENDDO

END SUBROUTINE TimeDiscretization

A.18 Initial Conditions

SUBROUTINE InitialConditions(x, y, u_old,u_new,w_old,w_new)

use, intrinsic :: iso_fortran_env

IMPLICIT NONE

INCLUDE ’PARAMETERS_.inc’

!> Space coordinates

REAL(real64), DIMENSION(NNmax) :: x, y

!> Order parameter - c - of the Cahn Hilliard Equation

REAL(real64), DIMENSION(NNmax) :: u_old

REAL(real64), DIMENSION(NNmax) :: u_new

!> Auxiliary variable - w - the chemical potential

REAL(real64), DIMENSION(NNmax) :: w_old

REAL(real64), DIMENSION(NNmax) :: w_new

INTEGER :: i,n,m
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DO i = 1, NNmax

CALL RANDOM_NUMBER(u_old(i))

!u_old(i) = 0.63_real64 + 0.02_real64*(0.5_real64-u_old(i))

u_old(i) = 2.0_real64*u_old(i)-1.0_real64

w_old(i) = 0.0_real64

ENDDO

END SUBROUTINE InitialConditions

A.19 The system of each Newton cycle

This subroutine assembles the stationary system that is to be solved on every Newton iteration. Some
different options for the potential and for the numerical scheme that are contained in comments, could be
inserted in a parametric form in a more refined version of the code.

SUBROUTINE AssembleSystem(x,y,element,nop,u_old,u_new,w_new,w_old,fjac1,fjac2,fjac3,fjac4,fvec1,fvec2)

use, intrinsic :: iso_fortran_env

IMPLICIT NONE

INCLUDE ’PARAMETERS_.inc’

!> Space coordinates !xpt,ypt

REAL(real64), INTENT(IN) :: x(NNmax),y(NNmax)

!> Current element

INTEGER element

!> Local to global space numbering

INTEGER nop(NELmax,NNref)

INTEGER ngl(NNref)

!> Order parameter - c - of the Cahn Hilliard Equation

REAL(real64) u_new(NNmax)

REAL(real64) u_old(NNmax)

REAL(real64) w_new(NNmax)

REAL(real64) w_old(NNmax)

!> Local contributions

REAL(real64) fjac1(NNmax,NNmax)

REAL(real64) fjac2(NNmax,NNmax)

REAL(real64) fjac3(NNmax,NNmax)

REAL(real64) fjac4(NNmax,NNmax)

REAL(real64) fvec1(NNmax)

REAL(real64) fvec2(NNmax)
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REAL(real64) phi(NNref), tphx(NNref), tphy(NNref),phic(NNref),phie(NNref)

REAL(real64) gp(3), gw(3)

REAL(real64) Xdomain,Xc,Xe,Ydomain,Yc,Ye,dett

REAL(real64) u0i,ui,ux,uy,wi,wx,w0x,wy,w0y

INTEGER i,r,k,l,m,n

gw =(/0.27777777777778, 0.444444444444, 0.27777777777778/)

gp =(/0.1127016654 , 0.5 , 0.8872983346 /)

DO i = 1,NNref

ngl(i) = nop(element,i)

ENDDO

! Loop over qauss points

DO r = 1,3

DO k = 1,3

call TestFunctions(gp(r),gp(k),phi,phic,phie)

! Defines the domain domain coordinates and the 2-dimensional Jacobian dett

Xdomain=0.0_real64

Xc=0.0_real64

Xe=0.0_real64

Ydomain=0.0_real64

Yc=0.0_real64

Ye=0.0_real64

DO n=1,NNref

Xdomain= Xdomain + x(ngl(n)) * phi(n)

Xc= Xc + x(ngl(n)) * phic(n)

Xe= Xe + x(ngl(n)) * phie(n)

Ydomain= Ydomain + y(ngl(n)) * phi(n)

Yc= Yc + y(ngl(n)) * phic(n)

Ye= Ye + y(ngl(n)) * phie(n)

ENDDO

dett=Xc*Ye-Xe*Yc

DO i=1,NNref

tphx(i)=(Ye*phic(i)-Yc*phie(i))/dett

tphy(i)=(Xc*phie(i)-Xe*phic(i))/dett

ENDDO

u0i = 0.0_real64

ui = 0.0_real64

ux = 0.0_real64

uy = 0.0_real64

wi = 0.0_real64

wx = 0.0_real64

w0x = 0.0_real64

wy = 0.0_real64
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w0y = 0.0_real64

DO i=1,NNref

u0i = u0i + u_old(ngl(i))*phi(i)

ui = ui + u_new(ngl(i))*phi(i)

ux = ux + u_new(ngl(i))*tphx(i)

uy = uy + u_new(ngl(i))*tphy(i)

ENDDO

DO i=1,NNref

wi = wi + w_new(ngl(i))*phi(i)

wx = wx + w_new(ngl(i))*tphx(i)

w0x = w0x + w_old(ngl(i))*tphx(i)

wy = wy + w_new(ngl(i))*tphy(i)

w0y = w0y + w_old(ngl(i))*tphy(i)

ENDDO

!*********************************

!W = 100c**2(1-c)**2 FENICS

!*********************************

! DO l=1,NNref

! f(ngl(l)) = f(ngl(l)) + gw(r)*gw(k)*dett*(100.0)*(ui**2)*(( 1.0 - ui)**2)*phi(l)

! DO m=1,NNref

! J(ngl(l),ngl(m)) = J(ngl(l),ngl(m)) + gw(r)*gw(k)*dett*(200.0)*(ui*(1.0-ui)*(1.0-2.0*ui))*phi(l)*phi(m)

! ENDDO

! ENDDO

!***************************************************

!W = 0.25(c**2-1)**2 ginzburg landau

!***************************************************

! DO l=1,NNref

! f(ngl(l)) = f(ngl(l)) + gw(r)*gw(k)*dett*(ui**3 - ui)*phi(l)

! DO m=1,NNref

! J(ngl(l),ngl(m)) = J(ngl(l),ngl(m)) + gw(r)*gw(k)*dett*((3.0_real64)*(ui**2) - 1.0_real64)*phi(l)*phi(m)

! ENDDO

! ENDDO

!****************************************************

!W = 0.25(c**2-1)**2 ginzburg landau & convex splitting

!****************************************************

! DO l=1,NNref

! f(ngl(l)) = f(ngl(l)) + gw(r)*gw(k)*dett*(ui**3)*phi(l)

! DO m=1,NNref

! J(ngl(l),ngl(m)) = J(ngl(l),ngl(m)) + gw(r)*gw(k)*dett*((3.0_real64)*(ui**2))*phi(l)*phi(m)

! ENDDO

! ENDDO

DO l=1,NNref

fvec1(ngl(l)) = fvec1(ngl(l)) + gw(r)*gw(k)*dett*wi*phi(l) -gw(r)*gw(k)*dett*(100.0_real64)*(2.0_real64*ui - 6.0_real64*ui**2 + 4.0_real64*ui**3 )*phi(l) &

-(e)**2*gw(r)*gw(k)*dett*(ux*tphx(l)+uy*tphy(l))

fvec2(ngl(l)) = fvec2(ngl(l)) + gw(r)*gw(k)*dett*ui*phi(l) - gw(r)*gw(k)*dett*u0i*phi(l) &

+ 0.5*(dt)*gw(r)*gw(k)*dett*(wx*tphx(l)+wy*tphy(l)) + 0.5*(dt)*gw(r)*gw(k)*dett*(w0x*tphx(l)+w0y*tphy(l)) !theta fenics
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DO m=1,NNref

fjac1(ngl(l),ngl(m)) = fjac1(ngl(l),ngl(m)) + gw(r)*gw(k)*dett*phi(l)*phi(m)

fjac2(ngl(l),ngl(m)) = fjac2(ngl(l),ngl(m)) -(e)**2*gw(r)*gw(k)*dett*(tphx(l)*tphx(m)+tphy(l)*tphy(m)) &

- gw(r)*gw(k)*dett*(100.0_real64)*((2.0_real64 - 12.0_real64*ui+ 12.0_real64*ui**2))*phi(l)*phi(m)

fjac3(ngl(l),ngl(m)) = fjac3(ngl(l),ngl(m)) + (dt)*gw(r)*gw(k)*dett*(tphx(l)*tphx(m)+tphy(l)*tphy(m))

fjac4(ngl(l),ngl(m)) = fjac4(ngl(l),ngl(m)) + gw(r)*gw(k)*dett*phi(l)*phi(m)

ENDDO

ENDDO

ENDDO

ENDDO

END SUBROUTINE AssembleSystem

A.20 The test functions

SUBROUTINE TestFunctions(x,y,phi,phic,phie)

use, intrinsic :: iso_fortran_env

IMPLICIT NONE

INCLUDE ’PARAMETERS_.inc’

!> Point at which to form the test functions

REAL(real64),DIMENSION(NNref):: phi,phic,phie

REAL(real64), INTENT(IN) :: x,y

REAL(real64) :: l1x, l2x, l3x, l1y, l2y, l3y

REAL(real64) :: dl1x,dl2x,dl3x, dl1y, dl2y, dl3y

!*** One Statement Functions ***

l1x=2.*x**2-3.*x+1.

l2x=-4.*x**2+4.*x

l3x=2.*x**2-x

dl1x=4.*x-3.

dl2x=-8.*x+4.

dl3x=4.*x-1.

l1y=2.*y**2-3.*y+1.

l2y=-4.*y**2+4.*y

l3y=2.*y**2-y

dl1y=4.*y-3.

dl2y=-8.*y+4.

dl3y=4.*y-1.

!*******************************

phi(1)=l1x*l1y

phi(2)=l1x*l2y

phi(3)=l1x*l3y

phi(4)=l2x*l1y

phi(5)=l2x*l2y
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phi(6)=l2x*l3y

phi(7)=l3x*l1y

phi(8)=l3x*l2y

phi(9)=l3x*l3y

phic(1)=l1y*dl1x

phic(2)=l2y*dl1x

phic(3)=l3y*dl1x

phic(4)=l1y*dl2x

phic(5)=l2y*dl2x

phic(6)=l3y*dl2x

phic(7)=l1y*dl3x

phic(8)=l2y*dl3x

phic(9)=l3y*dl3x

phie(1)=l1x*dl1y

phie(2)=l1x*dl2y

phie(3)=l1x*dl3y

phie(4)=l2x*dl1y

phie(5)=l2x*dl2y

phie(6)=l2x*dl3y

phie(7)=l3x*dl1y

phie(8)=l3x*dl2y

phie(9)=l3x*dl3y

END SUBROUTINE TestFunctions

B PERIODIC.f90

For the implementation of the periodic conditions we show only the essential modifications that the systems
matrices/vectors undergo when we impose the conditions under the analysis stated in the relevant chapter
of this work. After the system is assembled, the corresponding left-right and top-bottom node lines/rows
of the system matrices are added, setting zero the residual on the right and top nodes and setting one to
the systems Jacobian. Also a recovery of the boundary values for the right and top nodes follows after each
iteration.

program PERIODIC

use, intrinsic :: iso_fortran_env

USE BiCGStab_mod

IMPLICIT NONE

INCLUDE ’PARAMETERS_PERIODIC.inc’

!> Space coordinates

REAL(real64) x(NNmax),y(NNmax)

!> Time coordinates

REAL(real64) t(Tmax)

!> Local to global node numbering

INTEGER nop(NELmax,NNref)

!> Order parameter - u - of the Cahn Hilliard Equation

REAL(real64) u_new(NNmax)

REAL(real64) u_old(NNmax)
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!> Auxiliary variable - w - the chemical potential

REAL(real64) w_new(NNmax)

REAL(real64) w_old(NNmax)

!> Newton tolerance parameters

REAL(real64),PARAMETER:: tolS=1.0E-5_real64

INTEGER, PARAMETER :: ntrial = 100

INTEGER, PARAMETER :: max_iter = 1000

!> Stationary system of Newton cycle

REAL(real64) fvec(2*NNmax)

REAL(real64) fjac(2*NNmax,2*NNmax)

!> Local contributions

REAL(real64) fjac1(NNmax,NNmax)

REAL(real64) fjac2(NNmax,NNmax)

REAL(real64) fjac3(NNmax,NNmax)

REAL(real64) fjac4(NNmax,NNmax)

REAL(real64) fvec1(NNmax)

REAL(real64) fvec2(NNmax)

!> Newton solution vector

REAL(real64) dSol(2*NNmax)

REAL(real64) Sol(2*NNmax)

INTEGER element,timepoint,trial,n,m,l

LOGICAL CONVERGENT

CHARACTER(10) :: timepoint_str

OPEN(unit=1,file=’initial_PERIODIC.dat’)

WRITE(*,’(25x,A)’) ’Results c(n,t)’

CALL SpaceDiscretization(x,y)

CALL GlobalNodeNumbering(nop)

!> Set time grid

t=0.0_real64

CALL TimeDiscretization(t)

!>****************************************************************

!> Set the initial conditions for the c,w variables of the problem

!> For timepoint = 1

!>*****************************************************************

u_old=0.0_real64

u_new=0.0_real64

w_old=0.0_real64

w_new=0.0_real64

CALL InitialConditions(x,y,u_old,u_new,w_old,w_new)

DO n=1,NNx
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WRITE(1,*) (u_old((n-1)*NNy+m),m=1,NNy)

ENDDO

CLOSE(1)

!>***********************************************************************************

!> Given an initial guess x for a root in n dimensions, take ntrial Newton-Raphson

!> steps to improve the root. Stop if the root converges in either summed absolute

!> variable increments tolx or summed absolute function values tolf.

!>***********************************************************************************

!> Time loop to attain the solution at every timepoint

DO timepoint=2,Tmax

print *, "Time point: ", timepoint

trial=0

CONVERGENT=.false.

Sol=0.0_real64

!> Choose the initial guess for the first newton iteration

Sol(1:NNmax) = w_old(:)

Sol(NNmax+1:2*NNmax) = u_old(:)

!> Start the Newton iteration loop

DO WHILE (.NOT.CONVERGENT .AND. trial < ntrial)

dSol=0.0_real64

!>******************************************************************

!> Set the Stationary System to be solved at every Newton iteration

!> ___________________Fjac.dx = -Fvec_______________________________

!>******************************************************************

fvec=0.0_real64

fjac=0.0_real64

fjac1=0.0_real64

fjac2=0.0_real64

fjac3=0.0_real64

fjac4=0.0_real64

fvec1=0.0_real64

fvec2=0.0_real64

!> Local contributions

DO element=1,NELmax

CALL AssembleSystem(x,y,element,nop,u_old,u_new,w_new,fjac1,fjac2,fjac3,fjac4,fvec1,fvec2)

ENDDO

!> Global system

fvec(1:NNmax) = fvec1(:)

fvec(NNmax+1:2*NNmax) = fvec2(:)

fjac(1:NNmax,1:NNmax) = fjac1(:,:)
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fjac(1:NNmax,NNmax+1:2*NNmax) = fjac2(:,:)

fjac(NNmax+1:2*NNmax,1:NNmax) = fjac3(:,:)

fjac(NNmax+1:2*NNmax,NNmax+1:2*NNmax) = fjac4(:,:)

!> Imposing the periodic conditions

DO l=1,NNy

fvec(l) = fvec(l) + fvec(NNmax-NNy+l)

fvec(NNmax-NNy+l) = 0.0_real64

fjac(l,:) = fjac(l,:) + fjac(NNmax-NNy+l,:)

fjac(:,l) = fjac(:,l) + fjac(:,NNmax-NNy+l)

fjac(NNmax-NNy+l,:) = 0.0_real64

fjac(:,NNmax-NNy+l) = 0.0_real64

fjac(NNmax-NNy+l,NNmax-NNy+l) = 1.0_real64

ENDDO

DO l=2,NNx-1

fvec((l-1)*NNy+1) = fvec((l-1)*NNy+1) + fvec(l*NNy)

fvec(l*NNy) = 0.0_real64

fjac((l-1)*NNy+1,:) = fjac((l-1)*NNy+1,:) + fjac(l*NNy,:)

fjac(:,(l-1)*NNy+1) = fjac(:,(l-1)*NNy+1) + fjac(:,l*NNy)

fjac(l*NNy,:) = 0.0_real64

fjac(:,l*NNy) = 0.0_real64

fjac(l*NNy,l*NNy) = 1.0_real64

ENDDO

!> Solve the system - find the correction dSol

fvec = -fvec

dSol = BiCGStab(fjac,fvec)

!> Recover the right boundary nodes

DO l=1,NNy

dSol(NNmax-NNy+l) = dSol(l)

dsol(2*NNmax-NNy+l) = dSol(NNmax+l)

ENDDO

!> Recover the top nodes

DO l=2,NNx-1

dSol(l*NNy) = dSol((l-1)*NNy+1)

dsol(NNmax+l*NNy) = dSol(NNmax+(l-1)*NNy+1)

ENDDO

!> Update the solution

Sol(:) = Sol(:) + dSol(:)

DO l=1,2*NNmax

IF (Sol(l) <= - 0.9999) THEN

Sol(l) = - 0.9999

ELSEIF (Sol(l) >= 0.9999) THEN

Sol(l) = 0.9999

ENDIF

ENDDO

!> Check for convergence

CONVERGENT = (NORM2(dSol) < tolS)
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print*,"CONVERGENCE", CONVERGENT

trial = trial + 1

w_new(:) = Sol(1:NNmax)

u_new(:) = Sol(NNmax+1:2*NNmax)

ENDDO !> Newton trial loop

IF (CONVERGENT) THEN

u_old(:) = u_new(:)

w_old(:) = w_new(:)

write(*,*) ’Newton-Raphson converged in’, trial, ’iterations’

IF ((timepoint<=100 .and. MOD(timepoint,10)==0).or.MOD(timepoint, 500) == 0) THEN

WRITE(timepoint_str, ’(I0)’) timepoint ! Convert the integer to a string

OPEN(UNIT=2, FILE=TRIM(ADJUSTL(timepoint_str)) // ’_PERIODIC.dat’)

DO n = 1, NNx

WRITE(2, *) (u_new((n - 1) * NNy + m), m = 1, NNy)

ENDDO

CLOSE(2)

ENDIF

ELSE

write(*,*) ’Newton-Raphson did not converge within’, ntrial, ’iterations’

ENDIF

ENDDO !> Time loop

END program PERIODIC

C CONTACTANGLE.f90

For the wetted wall conditions to be examined in this program the essential modifications concern the
AssembleSystem subroutine, to take into account the wall energy term. For this purpose the first lines of
this subroutine are modified to calculate the boundary integral term arising from the weak formulation.

SUBROUTINE AssembleSystem(x,y,element,BoundaryElement,BottomElement,RightElement,TopElement,LeftElement,nop,&

u_old,u_new,w_new,fjac1,fjac2,fjac3,fjac4,fvec1,fvec2,flux,dflux)

use, intrinsic :: iso_fortran_env

IMPLICIT NONE

INCLUDE ’PARAMETERS_CONTACT.inc’

!> Space coordinates !xpt,ypt

56



REAL(real64), INTENT(IN) :: x(NNmax),y(NNmax)

!> Current element

INTEGER element

!> Location indices to check for Boundary Elements

INTEGER BottomElement(NELmax)

INTEGER RightElement(NELmax)

INTEGER TopElement(NELmax)

INTEGER LeftElement(NELmax)

!> Boundary element control index

INTEGER BoundaryElement(NELmax)

!> Local to global space numbering

INTEGER nop(NELmax,NNref)

INTEGER ngl(NNref)

!> Order parameter - c - of the Cahn Hilliard Equation

REAL(real64) u_new(NNmax)

REAL(real64) u_old(NNmax)

REAL(real64) w_new(NNmax)

!> Local contributions

REAL(real64) fjac1(NNmax,NNmax)

REAL(real64) fjac2(NNmax,NNmax)

REAL(real64) fjac3(NNmax,NNmax)

REAL(real64) fjac4(NNmax,NNmax)

REAL(real64) fvec1(NNmax)

REAL(real64) fvec2(NNmax)

REAL(real64) flux(NNmax)

REAL(real64) fluxb(NNmax)

REAL(real64) fluxr(NNmax)

REAL(real64) fluxt(NNmax)

REAL(real64) fluxl(NNmax)

REAL(real64) Dflux(NNmax,NNmax)

REAL(real64) Dfluxb(NNmax,NNmax)

REAL(real64) Dfluxr(NNmax,NNmax)

REAL(real64) Dfluxt(NNmax,NNmax)

REAL(real64) Dfluxl(NNmax,NNmax)

REAL(real64) phi(NNref), tphx(NNref), tphy(NNref),phic(NNref),phie(NNref)

REAL(real64) gp(3), gw(3)

REAL(real64) Xdomain,Xc,Xe,Ydomain,Yc,Ye,dett

REAL(real64) u0i,ui,ux,uy,wi,wx,wy

INTEGER i,j,r,k,l,m,n
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gw =(/0.27777777777778, 0.444444444444, 0.27777777777778/)

gp =(/0.1127016654 , 0.5 , 0.8872983346 /)

DO i = 1,NNref

ngl(i) = nop(element,i)

ENDDO

fluxb=0.0_real64

fluxr=0.0_real64

fluxt=0.0_real64

fluxl=0.0_real64

Dfluxb=0.0_real64

Dfluxr=0.0_real64

Dfluxt=0.0_real64

Dfluxl=0.0_real64

IF (BoundaryElement(element)==1) THEN

!> check which side of the boundary the element belongs to

IF (BottomElement(element)==1)THEN

DO j=1,3

CALL TestFunctions(gp(j),0.0_real64,phi, phic, phie)

Xdomain=0.0_real64

Xc=0.0_real64

Xe=0.0_real64

Ydomain=0.0_real64

Yc=0.0_real64

Ye=0.0_real64

DO n=1,NNref

Xdomain= Xdomain + x(ngl(n)) * phi(n)

Xc= Xc + x(ngl(n)) * phic(n)

Xe= Xe + x(ngl(n)) * phie(n)

Ydomain= Ydomain + y(ngl(n)) * phi(n)

Yc= Yc + y(ngl(n)) * phic(n)

Ye= Ye + y(ngl(n)) * phie(n)

ENDDO

dett=Xc*Ye-Xe*Yc

DO i=1,NNref

tphx(i)=(Ye*phic(i)-Yc*phie(i))/dett

tphy(i)=(Xc*phie(i)-Xe*phic(i))/dett

ENDDO

ui = 0.0_real64

ux = 0.0_real64

uy = 0.0_real64

DO i=1,NNref

ui = ui + u_new(ngl(i))*phi(i)

ux = ux + u_new(ngl(i))*tphx(i)
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uy = uy + u_new(ngl(i))*tphy(i)

ENDDO

DO m=1,7,3

fluxb(ngl(m)) = fluxb(ngl(m)) + gw(j)*dett*(1.0_real64-ui**2)*phi(m)

ENDDO

DO l=1,7,3

DO m=1,7,3

Dfluxb(ngl(l),ngl(m)) = Dfluxb(ngl(l),ngl(m)) +gw(j)*dett*(- 2.0_real64*ui*phi(m))*phi(l)

ENDDO

ENDDO

ENDDO

IF (RightElement(element)==1)THEN

DO j=1,3

CALL TestFunctions(1.0_real64,gp(j),phi, phic, phie)

Xdomain=0.0_real64

Xc=0.0_real64

Xe=0.0_real64

Ydomain=0.0_real64

Yc=0.0_real64

Ye=0.0_real64

DO n=1,NNref

Xdomain= Xdomain + x(ngl(n)) * phi(n)

Xc= Xc + x(ngl(n)) * phic(n)

Xe= Xe + x(ngl(n)) * phie(n)

Ydomain= Ydomain + y(ngl(n)) * phi(n)

Yc= Yc + y(ngl(n)) * phic(n)

Ye= Ye + y(ngl(n)) * phie(n)

ENDDO

dett=Xc*Ye-Xe*Yc

DO i=1,NNref

tphx(i)=(Ye*phic(i)-Yc*phie(i))/dett

tphy(i)=(Xc*phie(i)-Xe*phic(i))/dett

ENDDO

ui = 0.0_real64

ux = 0.0_real64

uy = 0.0_real64

DO i=1,NNref

ui = ui + u_new(ngl(i))*phi(i)

ux = ux + u_new(ngl(i))*tphx(i)

uy = uy + u_new(ngl(i))*tphy(i)

ENDDO

DO m=7,9

fluxr(ngl(m)) = fluxr(ngl(m)) +gw(j)*dett*(1.0_real64-ui**2)*phi(m)

ENDDO
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DO l=7,9

DO m=7,9

Dfluxr(ngl(l),ngl(m)) = Dfluxr(ngl(l),ngl(m)) + gw(j)*dett*(- 2.0_real64*ui*phi(m))*phi(l)

ENDDO

ENDDO

ENDDO

ELSEIF (TopElement(element)==1)THEN

DO j=1,3

CALL TestFunctions(gp(j),1.0_real64,phi, phic, phie)

Xdomain=0.0_real64

Xc=0.0_real64

Xe=0.0_real64

Ydomain=0.0_real64

Yc=0.0_real64

Ye=0.0_real64

DO n=1,NNref

Xdomain= Xdomain + x(ngl(n)) * phi(n)

Xc= Xc + x(ngl(n)) * phic(n)

Xe= Xe + x(ngl(n)) * phie(n)

Ydomain= Ydomain + y(ngl(n)) * phi(n)

Yc= Yc + y(ngl(n)) * phic(n)

Ye= Ye + y(ngl(n)) * phie(n)

ENDDO

dett=Xc*Ye-Xe*Yc

DO i=1,NNref

tphx(i)=(Ye*phic(i)-Yc*phie(i))/dett

tphy(i)=(Xc*phie(i)-Xe*phic(i))/dett

ENDDO

ui = 0.0_real64

ux = 0.0_real64

uy = 0.0_real64

DO i=1,NNref

ui = ui + u_new(ngl(i))*phi(i)

ux = ux + u_new(ngl(i))*tphx(i)

uy = uy + u_new(ngl(i))*tphy(i)

ENDDO

DO m=3,9,3

fluxt(ngl(m)) = fluxt(ngl(m)) + gw(j)*dett*(1.0_real64-ui**2)*phi(m)

ENDDO

DO l=3,9,3

DO m=3,9,3

Dfluxt(ngl(l),ngl(m)) = Dfluxt(ngl(l),ngl(m)) + gw(j)*dett*(- 2.0_real64*ui*phi(m))*phi(l)

ENDDO

ENDDO

ENDDO

ELSEIF (LeftElement(element)==1)THEN
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DO j=1,3

CALL TestFunctions(0.0_real64,gp(j),phi, phic, phie)

Xdomain=0.0_real64

Xc=0.0_real64

Xe=0.0_real64

Ydomain=0.0_real64

Yc=0.0_real64

Ye=0.0_real64

DO n=1,NNref

Xdomain= Xdomain + x(ngl(n)) * phi(n)

Xc= Xc + x(ngl(n)) * phic(n)

Xe= Xe + x(ngl(n)) * phie(n)

Ydomain= Ydomain + y(ngl(n)) * phi(n)

Yc= Yc + y(ngl(n)) * phic(n)

Ye= Ye + y(ngl(n)) * phie(n)

ENDDO

dett=Xc*Ye-Xe*Yc

DO i=1,NNref

tphx(i)=(Ye*phic(i)-Yc*phie(i))/dett

tphy(i)=(Xc*phie(i)-Xe*phic(i))/dett

ENDDO

ui = 0.0_real64

ux = 0.0_real64

uy = 0.0_real64

DO i=1,NNref

ui = ui + u_new(ngl(i))*phi(i)

ux = ux + u_new(ngl(i))*tphx(i)

uy = uy + u_new(ngl(i))*tphy(i)

ENDDO

DO m=1,3

fluxl(ngl(m)) = fluxl(ngl(m)) + gw(j)*dett*(1.0_real64-ui**2)*phi(m)

ENDDO

DO l=1,3

DO m=1,3

Dfluxl(ngl(l),ngl(m)) = Dfluxl(ngl(l),ngl(m)) + gw(j)*dett*(- 2.0_real64*ui*phi(m))*phi(l)

ENDDO

ENDDO

ENDDO

ENDIF

ENDIF

!> Summation of the components to the total FLUX

DO l=1,NNref

flux(ngl(l)) = fluxb(ngl(l)) + fluxr(ngl(l)) + fluxt(ngl(l)) + fluxl(ngl(l))

DO m=1,NNref

Dflux(ngl(l),ngl(m)) = Dflux(ngl(l),ngl(m)) &
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+ Dfluxb(ngl(l),ngl(m)) + Dfluxr(ngl(l),ngl(m)) + Dfluxt(ngl(l),ngl(m)) + Dfluxl(ngl(l),ngl(m))

ENDDO

ENDDO

! Loop over qauss points

ENDIF

! Loop over qauss points

DO r = 1,3

DO k = 1,3

call TestFunctions(gp(r),gp(k),phi,phic,phie)

! Defines the domain domain coordinates and the 2-dimensional Jacobian dett

Xdomain=0.0_real64

Xc=0.0_real64

Xe=0.0_real64

Ydomain=0.0_real64

Yc=0.0_real64

Ye=0.0_real64

DO n=1,NNref

Xdomain= Xdomain + x(ngl(n)) * phi(n)

Xc= Xc + x(ngl(n)) * phic(n)

Xe= Xe + x(ngl(n)) * phie(n)

Ydomain= Ydomain + y(ngl(n)) * phi(n)

Yc= Yc + y(ngl(n)) * phic(n)

Ye= Ye + y(ngl(n)) * phie(n)

ENDDO

dett=Xc*Ye-Xe*Yc

DO i=1,NNref

tphx(i)=(Ye*phic(i)-Yc*phie(i))/dett

tphy(i)=(Xc*phie(i)-Xe*phic(i))/dett

ENDDO

u0i = 0.0_real64

ui = 0.0_real64

ux = 0.0_real64

uy = 0.0_real64

wi = 0.0_real64

wx = 0.0_real64

wy = 0.0_real64

DO i=1,NNref

u0i = u0i + u_old(ngl(i))*phi(i)

ui = ui + u_new(ngl(i))*phi(i)

ux = ux + u_new(ngl(i))*tphx(i)

uy = uy + u_new(ngl(i))*tphy(i)

ENDDO

DO i=1,NNref

wi = wi + w_new(ngl(i))*phi(i)

wx = wx + w_new(ngl(i))*tphx(i)

wy = wy + w_new(ngl(i))*tphy(i)

ENDDO
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!*********************************

!W = 100c**2(1-c)**2 FENICS

!*********************************

! DO l=1,NNref

! f(ngl(l)) = f(ngl(l)) + gw(r)*gw(k)*dett*(100.0)*(ui**2)*(( 1.0 - ui)**2)*phi(l)

! DO m=1,NNref

! J(ngl(l),ngl(m)) = J(ngl(l),ngl(m)) + gw(r)*gw(k)*dett*(200.0)*(ui*(1.0-ui)*(1.0-2.0*ui))*phi(l)*phi(m)

! ENDDO

! ENDDO

!***************************************************

!W = 0.25(c**2-1)**2 ginzburg landau

!***************************************************

! DO l=1,NNref

! f(ngl(l)) = f(ngl(l)) + gw(r)*gw(k)*dett*(ui**3 - ui)*phi(l)

! DO m=1,NNref

! J(ngl(l),ngl(m)) = J(ngl(l),ngl(m)) + gw(r)*gw(k)*dett*((3.0_real64)*(ui**2) - 1.0_real64)*phi(l)*phi(m)

! ENDDO

! ENDDO

!****************************************************

!W = 0.25(c**2-1)**2 ginzburg landau & convex splitting

!****************************************************

! DO l=1,NNref

! f(ngl(l)) = f(ngl(l)) + gw(r)*gw(k)*dett*(ui**3)*phi(l)

! DO m=1,NNref

! J(ngl(l),ngl(m)) = J(ngl(l),ngl(m)) + gw(r)*gw(k)*dett*((3.0_real64)*(ui**2))*phi(l)*phi(m)

! ENDDO

! ENDDO

DO l=1,NNref

fvec1(ngl(l)) = fvec1(ngl(l)) + gw(r)*gw(k)*dett*wi*phi(l) -(1.0_real64/e)*gw(r)*gw(k)*dett*(ui**3 - ui)*phi(l) &

-(e)*gw(r)*gw(k)*dett*(ux*tphx(l)+uy*tphy(l)) +(sqrt(2.0_real64)/2.0_real64)*cos(theta)*flux(ngl(l))

fvec2(ngl(l)) = fvec2(ngl(l)) + gw(r)*gw(k)*dett*ui*phi(l) - gw(r)*gw(k)*dett*u0i*phi(l) &

+ (dt)*gw(r)*gw(k)*dett*(wx*tphx(l)+wy*tphy(l))

DO m=1,NNref

fjac1(ngl(l),ngl(m)) = fjac1(ngl(l),ngl(m)) + gw(r)*gw(k)*dett*phi(l)*phi(m)

fjac2(ngl(l),ngl(m)) = fjac2(ngl(l),ngl(m)) -(e)*gw(r)*gw(k)*dett*(tphx(l)*tphx(m)+tphy(l)*tphy(m)) &

-(1.0_real64/e)* gw(r)*gw(k)*dett*((3.0_real64)*(ui**2) - 1.0_real64)*phi(l)*phi(m) +(sqrt(2.0_real64)/2.0_real64)*cos(theta)*Dflux(ngl(l),ngl(m))

fjac3(ngl(l),ngl(m)) = fjac3(ngl(l),ngl(m)) + (dt)*gw(r)*gw(k)*dett*(tphx(l)*tphx(m)+tphy(l)*tphy(m))

fjac4(ngl(l),ngl(m)) = fjac4(ngl(l),ngl(m)) + gw(r)*gw(k)*dett*phi(l)*phi(m)

ENDDO

ENDDO

ENDDO

ENDDO
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END SUBROUTINE AssembleSystem
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