
National Technical University of Athens

M.Sc. in Applied Mathematical Sciences

M.Sc. Thesis

Analytic Fourier-Domain Models for the Post-Merger Gravitational Wave

Signal in Binary Neutron Star Mergers

Author
Anna Marinitsi

Supervisor
Prof. Nikolaos Stergioulas

October 30, 2023

2

3

Abstract

Gravitational-wave astronomy is a rapidly emerging new field with great potential to expand
our knowledge of the Universe. An anticipated new source of gravitational waves is the post-
merger phase of binary neutron star mergers. If detected, it will allow us to constrain the
equation of state of high-density matter at finite temperatures. Successful detection requires
highly accurate analytical templates that describe the gravitational wave emission of the
post-merger remnants. To date, only simple templates exist in the frequency domain. In
this thesis, we compute analytic templates in the frequency domain that agree exactly with
their corresponding time-domain representations. The most advanced model includes a time-
evolving dominant post-merger frequency. Using nonlinear least-squares fits to synthetic
data, we show that our new frequency-domain models have advantages over previous, simpler
expressions used in the literature. Our models are thus useful for detection and parameter
estimation of the post-merger phase in binary neutron star mergers.

4

Acknowledgements

I am immensely grateful to the people who supported me throughout the entire journey of
preparing this thesis. I would like to thank my supervisor, Prof. Nikolaos Stergioulas, for his
trust and support, my family and the people close to me that have been a constant source of
encouragement and motivation. Finally, I owe a special debt of gratitude to Evi and Labis
for their unwavering support and inspiration. You are the best!

Contents

1 Introduction 7
Differential Geometry . 7

Manifolds . 7
Tensors . 8
Covariant Derivative . 9
Geodesic Curves . 10

General Relativity . 11
Riemannian Spacetimes . 11
Christoffel Symbols . 12
Geodesic curves in GR . 12
Riemann, Ricci, and Einstein tensors . 12
Field Equations . 13

Gravitational Waves . 14
The Linearization of General Relativity . 14
Vacuum Spacetime . 17
Generation of Gravitational Waves . 18
Interaction of GWs with a Detector . 21

Neutron Stars . 25
Merger Stages . 26
The post-merger gravitational wave spectrum 27
Origin and interpretation of peaks in postmerger gravitational-wave spectra . 28

2 Post-Merger Models in the Frequency Domain 31
Waveform Models . 31
Fourier analysis . 32

Continuous Fourier Transform . 32
Discrete Fourier Transform . 33
Convolution . 33

Analytic Waveform Models in the Time Domain 34
Computational Workflow . 35
Analytic Waveform Models in the Frequency Domain 35

Single damped oscillator without window function 35
Single damped oscillator with window function 36
Multiple damped oscillators with window function 38
Multiple damped oscillators with time-dependent 𝑓peak and window function . 44
Conversion to Python library . 46
Nonlinear Least-Squares Fit . 49

Conclusions . 51

5

6 CONTENTS

3 Appendix 53
Appendix A: Numerical codes for single damped oscillator 53
Appendix B: Four simple oscillators . 57
Appendix C: Four oscillators, of which one with time-dependent frequency . . 64
Appendix D: Python - Nonlinear Least-Squares Fit 70

Chapter 1

Introduction

In this Chapter, we will summarize the main results of the General Theory or Relativity,
that lead to the description of gravitational waves, and we will give a summary of relevant
background knowledge on neutron stars and binary neutron star mergers.

Differential Geometry

For this and the next Section, we will follow mainly the books by B. F. Schutz [21] and R.
d’ Inverno [13].

Manifolds

The Theory of General Relativity is based on a four-dimensional manifold. In an 𝑛− dimen-
sional manifold, each point of the manifold M is described by 𝑛 real numbers, 𝑥1, 𝑥2, ..., 𝑥𝑛.
This allows for a one-to-one correspondence between the manifold and an 𝑛− dimensional
Euclidean space. There are multiple coordinate systems that cover different regions of M,
and when two of these coordinate systems overlap, there is a set of equations that can be
used to convert the coordinates of a point from one system to the other. For example, if
the coordinates 𝑥` cover a region 𝑈 and the coordinates 𝑥 ′` cover a region 𝑈 ′ and there is a
common region of 𝑈 and 𝑈 ′, then the coordinates of a point 𝑃 in the common region can be
expressed as:

𝑥`
′
= 𝑥`

′
(
𝑥1, 𝑥2, ..., 𝑥𝑛

)
, for `′ = 1, ..., 𝑛, (1.1)

and the inverse equations are as follows:

𝑥` = 𝑥`
(
𝑥1

′
, 𝑥2

′
, ..., 𝑥𝑛

′
)
, for ` = 1, ..., 𝑛. (1.2)

If the equations are differentiable, meaning that the partial derivatives

𝜕𝑥`
′

𝜕𝑥a
and

𝜕𝑥a

𝜕𝑥`
′ (1.3)

exist, this indicates that the manifold 𝑀 is a differentiable manifold so the Jacobian matrix
can be calculated. The 𝑛 × 𝑛 matrix 𝐴

`′
a = 𝜕𝑥`

′/𝜕𝑥a is the Jacobian matrix of the transfor-
mation (1.1).

7

8 CHAPTER 1. INTRODUCTION

Tensors

A curve that passes through a point 𝐴 in an 𝑛−dimensional manifold is determined by 𝑛

functions and can be expressed as a function of a scalar parameter _:

𝑥` = 𝑧` (_) . (1.4)

At a close point 𝐴′, the value of the parameter _ will be _ +𝑑_. The tangent vector 𝑣` at the
point 𝐴 is given by equation:

𝑣` =
𝑑𝑥`

𝑑_
. (1.5)

This tangent vector 𝑣` is called a contravariant vector.

The transformation of a coordinate system 𝑥` to another 𝑥` , is defined by 𝑛 equations:

𝑥` = 𝑓 ` (𝑥a), `, a = 0, 1, ..., 𝑛 − 1. (1.6)

The inverse transformation is given by:

𝑥` = 𝑔` (𝑥a), `, a = 0, 1, ..., 𝑛 − 1, (1.7)

with 𝑔(𝑥a) = 𝑓 −1(𝑥a). Transformations between two systems are valid only if the Jacobians
of the transformations are different than zero,

det

���� 𝜕𝑥`𝜕𝑥a

���� ≠ 0 and det

���� 𝜕𝑥`𝜕𝑥a

���� ≠ 0. (1.8)

An infinitely small vector 𝑑𝑥a of a system 𝑥` will be transformed into a system 𝑥` as follows:

𝑑𝑥` =
∑︁
a

𝜕𝑥`

𝜕𝑥a
𝑑𝑥a =

∑︁
a

𝜕𝑓 `

𝜕𝑥a
𝑑𝑥a for a = 0, 1, ..., 𝑛 − 1. (1.9)

The components of the contravariant vector 𝑣` in a different coordinate system 𝑥` can be
determined by transformations

𝑣` =
∑︁
a

𝜕𝑥`

𝜕𝑥a
𝑣a . (1.10)

This is because the scalar parameter _ is invariant under a coordinate transformation.

If 𝜙 (𝑥) is a scalar function in a coordinate system 𝑥` , its partial derivatives 𝑛 𝜕𝜙/𝜕𝑥` can
be transformed into a different coordinate system 𝑥` as follows:

𝜕𝜙

𝜕𝑥`
=

∑︁
a

𝜕𝜙

𝜕𝑥a
𝜕𝑥a

𝜕𝑥`
. (1.11)

The set of 𝑛 quantities 𝑏` = {𝑏0, 𝑏1, ..., 𝑏𝑛−1} is transformed in the same way as the partial
derivatives of a scalar function and is called a covariant vector. These transformations, based
on Ea. (1.11), are expressed as follows:

𝑏` =
∑︁
a

𝜕𝑥a

𝜕𝑥`
𝑏a . (1.12)

Scalars and vectors (covariant and contravariant) are examples of a more general type of
geometric quantity known as tensors. The scalars are zero-rank tensors, and the vectors are

DIFFERENTIAL GEOMETRY 9

first-rank tensors. Here, we define the second-rank contravariant tensor in an 𝑛− dimensional
space, 𝑇 `a , which has 𝑛2 components that transform according to the equation:

𝑇𝛼𝛽 =
𝜕𝑥𝛼

𝜕𝑥`
𝜕𝑥𝛽

𝜕𝑥a
𝑇 `a . (1.13)

We can define the second-rank covariant tensor 𝑇`a and the mixed tensor 𝑇
`
a in a similar

way, as follows:

𝑇𝛼
𝛽
=

𝜕𝑥𝛼

𝜕𝑥`
𝜕𝑥a

𝜕𝑥𝛽
𝑇
`
a and 𝑇

𝛼𝛽
=

𝜕𝑥`

𝜕𝑥𝛼
𝜕𝑥a

𝜕𝑥𝛽
𝑇`a . (1.14)

This process can be repeated indefinitely, allowing us to construct third-rank, fourth-rank,
and higher-order tensors.

𝑇
𝛾𝛿...

𝛼𝛽...
=

(
𝜕𝑥𝜖

𝜕𝑥𝛼

) (
𝜕𝑥Z

𝜕𝑥𝛽

)
· · ·

(
𝜕𝑥𝛾

𝜕𝑥[

) (
𝜕𝑥𝛿

𝜕𝑥\

)
· · ·𝑇 [\ ...

𝜖Z ...
. (1.15)

Covariant Derivative

If we assign a vector to each point in a space, then we have created a vector field. Similarly,
if we assign an 𝑛 -rank tensor to each point, we have created a tensor field. The partial
derivative of a scalar field 𝜙 = 𝜙 (𝑥𝛼) (zero rank tensor) produces a rank one tensor field Eq.
(1.11) as shown in the equation:

𝜕𝜙

𝜕𝑥𝛼
=

𝜕𝑥_

𝜕𝑥𝛼
𝜕𝜙

𝜕𝑥_
. (1.16)

The partial derivative of a contravariant vector field, 𝐴_ (𝑥`), is expressed as:

𝜕𝐴_

𝜕𝑥^
≡ 𝜕^𝐴

_ ≡ 𝐴_
,^ . (1.17)

When this is transformed into a new coordinate system 𝑥^ , the following equation is obtained:

𝐴
`
,^ =

𝜕

𝜕𝑥𝛼

(
𝜕𝑥`

𝜕𝑥a𝐴a

)
=

𝜕𝑥𝜌

𝜕𝑥𝛼
𝜕

𝜕𝑥𝜌

(
𝜕𝑥`

𝜕𝑥a
𝐴a

)
=

𝜕2𝑥`

𝜕𝑥a𝜕𝑥𝜌
𝜕𝑥𝜌

𝜕𝑥𝛼
𝐴a + 𝜕𝑥`

𝜕𝑥a
𝜕𝑥𝜌

𝜕𝑥𝛼
𝜕𝐴a

𝜕𝑥𝜌
.

(1.18)

This results in a second-order tensor only in the case of a linear transformation (the first term
of the expression is equal to zero). To achieve this, we construct the covariant derivative in
such a way that the troublesome terms are eliminated.

∇𝑎𝐴
` = 𝐴

`
;𝛼 = 𝐴

`
,𝛼 + Γ

`

𝛼_
𝐴_ = 𝜕𝛼𝐴

` + Γ
`

𝛼_
𝐴_ . (1.19)

The quantity Γ
`

𝛼_
is known as the connection and is expressed as:

Γ̃_𝜌a =
𝜕2𝑥`

𝜕𝑥a𝜕𝑥𝜌
𝜕𝑥_

𝜕𝑥`
+ 𝜕𝑥^

𝜕𝑥𝜌
𝜕𝑥𝜎

𝜕𝑥a
𝜕𝑥_

𝜕𝑥`
Γ
`
^𝜎 . (1.20)

This connection is not a tensor itself, but rather a quantity that can be used to convert a
non-tensor quantity into a second-order tensor.

10 CHAPTER 1. INTRODUCTION

Geodesic Curves

A geodesic is a curve in which the velocity of a particle is tangent to the curve and is
determined by a parallel transport. The curve 𝑥𝑎 = 𝑥𝑎 (𝑠), with 𝑠 being a physical parameter,
is a geodesic if the tangent vector meets the requirement that 𝐷 (𝑑𝑥𝑎/𝑑𝑠)/𝐷𝑠 = 0 . This can
be expressed by using the definition of the absolute derivative (𝐷𝑢

𝑎

𝐷_
= 𝑑𝑢𝑎

𝑑_
+ Γ𝑎

𝑐𝑏
𝑑𝑥𝑏

𝑑_
𝑢𝑐), which

results in equation 𝑑2𝑥𝑎

𝑑𝑠2
+ Γ𝑎

𝑐𝑏
𝑑𝑥𝑏

𝑑𝑠
𝑑𝑥𝑐

𝑑𝑠
= 0.

𝑑2𝑥𝑎

𝑑𝑠2
+ Γ𝑎

𝑏𝑐

𝑑𝑥𝑏

𝑑𝑠

𝑑𝑥𝑐

𝑑𝑠
= 0. (1.21)

This equation is the differential equation of the geodesic curve, which is a generalization of
the straight line in spaces with Γ𝑎

𝑏𝑐
≠ 0.

GENERAL RELATIVITY 11

General Relativity

Riemannian Spacetimes

The metric tensor is a fundamental mathematical construct that establishes rules to calculate
the distances between two points within a specified spatial context. It plays a central role
in precisely characterizing the geometry of the defined space. In a 3D Euclidean space, in
Cartesian coordinates, the shortest distance between two nearby points (𝑥,𝑦, 𝑧) and (𝑥 +
𝑑𝑥,𝑦 + 𝑑𝑦, 𝑧 + 𝑑𝑧) is given by:

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2. (1.22)

In 4-dimensional Minkowski spacetime, used in special relativity, nearby distances are defined
by the Minkowski metric, which accounts for both space and time. Given two points with
coordinates (𝑡, 𝑥,𝑦, 𝑧) and (𝑡 + 𝑑𝑡, 𝑥 + 𝑑𝑥,𝑦 + 𝑑𝑦, 𝑧 + 𝑑𝑧) the distance (space-time separation)
between them is given by:

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2, (1.23)

where c represents the speed of light. In general, for an 𝑛−dimensional spacetime, the
distance between two close events is:

𝑑𝑠2 = 𝑔
𝑎𝑏
𝑑𝑥𝑎𝑑𝑥𝑏 =

𝑛∑︁
𝑎,𝑏=1

𝑔
𝑎𝑏
𝑑𝑥𝑎𝑑𝑥𝑏, (1.24)

where 𝑔
𝑎𝑏

is the metric tensor.
The metric tensor matrix of the 3-dimensional Euclidean space is:

𝑔
𝛼𝛽

= 𝜖
𝑎𝑏

≡

1 0 0
0 1 0
0 0 1

 = diag| [1, 1, 1] (1.25)

where 𝛼, 𝛽 = 1, 2, 3 The Minkowskian metric tensor is:

𝑔
𝛼𝛽

= [
𝑎𝑏

≡

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = diag[−1, 1, 1, 1], (1.26)

where 𝑎, 𝑏 = 0, 1, 2, 3 In Riemannian geometry, the metric tensor is symmetric, so the form of
the metric is a 𝑛 × 𝑛 matrix:

𝑔𝑎𝑏 =

𝑔11 𝑔12 . . . 𝑔1𝑛
𝑔21 𝑔22 . . . 𝑔2𝑛
...

...
. . .

...

𝑔𝑛1 𝑔𝑛2 . . . 𝑔𝑛𝑛

. (1.27)

Matrices are second-order tensors. If det[𝑔𝑎𝑏] ≠ 0, then the 𝑔𝑎𝑏 matrix is invertible. Since
𝑔𝑎𝑏 is symmetric, the inverse matrix, if it exists, is also a symmetric second-order tensor.

𝑔𝑎𝑐𝑔
𝑐𝑏 = 𝛿𝑏𝑎 , (1.28)

where 𝛿𝑏𝑎 is the Kronecker 𝛿.
In the cases where the metric is diagonal, with components 𝑔𝑖𝑖 for 𝑖 = 1, 2, ..., 𝑛, it follows

that 𝑔𝑖𝑖 = 1/𝑔𝑖𝑖 . This diagonal matrix allows for the conversion of contravariant and covariant

12 CHAPTER 1. INTRODUCTION

indices using the metric tensor. For example, when working with a contravariant vector 𝑢𝑎,
one can transform it into a covariant vector 𝑢𝑎 by contracting it with the metric tensor:
𝑢𝑎 = 𝑔𝑎𝑏𝑢

𝑏 . The scalar quantity 𝑢2, defined as 𝑢2 ≡ 𝑔𝑎𝑏𝑢
𝑎𝑢𝑏 = 𝑔𝑎𝑏𝑢𝑎𝑢𝑏 = 𝑢𝑎𝑢

𝑎, serves as a
measure of the vector’s length or magnitude squared. In the context of relativity, vectors are
categorized based on the value of 𝑢2: A vector is described as timelike if 𝑢𝑎𝑢

𝑎 < 0, spacelike
if 𝑢𝑎𝑢

𝑎 > 0 and lightlike (or null) if 𝑢𝑎𝑢
𝑎 = 0.

Christoffel Symbols

The covariant derivative of a tensor gives rise to the definition of the connection, as seen in
Eq. (1.21). Christoffel symbols, which originate from the metric tensor, constitute a set of
numerical coefficients that define the connection in a manifold. They play a fundamental
role in the context of differentiating and parallel transporting vectors along curves within
the manifold. In Riemann spaces, the Christoffel symbols are given by:

Γ𝑎
𝑏𝑐

=
1

2
𝑔𝑎𝑑 (𝜕𝑐𝑔𝑑𝑏 + 𝜕𝑏𝑔𝑑𝑐 − 𝜕𝑑𝑔𝑏𝑐) . (1.29)

Due to the symmetry of the metric tensor, they satisfy:

Γ𝑎
𝑏𝑐

= Γ𝑎
𝑐𝑏
. (1.30)

This implies that in Riemannian spaces, torsion is absent.

Geodesic curves in GR

Within the four-dimensional spacetime of General Relativity, the preferred fundamental
measure along a curve is the proper length. However, as an alternative to the proper length,
we can introduce another fundamental parameter, denoted as proper time (𝜏).

𝑑𝜏2 = −𝑔𝑎𝑏𝑑𝑥𝑎𝑑𝑥𝑏 . (1.31)

If a curve in spacetime, described by the parametric equations 𝑥𝑎 = 𝑥𝑎 (𝜏) , is a geodesic, and
the tangent vector (𝑢𝑎 = 𝑑𝑥𝑎/𝑑𝜏) satisfies the condition 𝑢𝑎𝑢

𝑎 = −1, then the curve follows a
path of extremal length with respect to proper time, so:

𝑑2𝑥𝑎

𝑑𝜏2
+ Γ𝑎

𝑏𝑐

𝑑𝑥𝑏

𝑑𝜏

𝑑𝑥𝑐

𝑑𝜏
= 0. (1.32)

Riemann, Ricci, and Einstein tensors

Tensors are essential for describing the curvature of spacetime and are the basis for formulat-
ing Einstein’s field equations, which govern the gravitational dynamics of matter and energy.
The Riemann (or curvature) tensor is:

𝑅𝑎𝑏𝑐𝑑 = −𝜕𝑑Γ𝑎𝑏𝑐 + 𝜕𝑐Γ
𝑎
𝑏𝑑

− Γ𝑒
𝑏𝑐
Γ𝑎
𝑒𝑑

+ Γ𝑒
𝑏𝑑
Γ𝑎𝑒𝑐 . (1.33)

The Ricci tensor is defined by contracting the Riemann tensor and by the further contraction
over the Ricci tensor one obtains the Ricci scalar, which provides a measure of the ”average”
curvature of Riemannian space. So, the Ricci tensor and the Ricci scalar are, respectively:

𝑅
𝑎𝑏

≡ 𝑅𝑐
𝑎𝑐𝑏

and 𝑅 ≡ 𝑅𝑎
𝑎 = 𝑔𝑎𝑏𝑅

𝑎𝑏 . (1.34)

GENERAL RELATIVITY 13

In General Relativity, the Bianchi identity is:

∇𝑎𝑅
𝑎
𝑏𝑐𝑑 + ∇𝑏𝑅

𝑎
𝑐𝑎𝑑 + ∇𝑐𝑅

𝑎
𝑎𝑏𝑑 = 0,

𝑔𝑐𝑑 (−∇𝑎𝑅
𝑏𝑐𝑎𝑑

+ ∇𝑏𝑅𝑐𝑑 − ∇𝑐𝑅𝑏𝑑) = 0,

−∇𝑎𝑅
𝑏𝑎

+ ∇𝑏𝑅 − ∇𝑑𝑅
𝑏𝑑

= 0,

−2∇𝑎

(
𝑅𝑎𝑏 −

1

2
𝑔𝑎𝑏𝑅

)
= 0.

(1.35)

For the previous steps, contraction and Riemann tensor symmetries were used. For exam-
ple: 𝑅𝑎𝑎𝑏𝑑 = −𝑅𝑎𝑏𝑎𝑑 = 𝑅

𝑏𝑑
and −𝑔𝑐𝑑∇𝑎𝑅

𝑏𝑐𝑎𝑑
= −∇𝑎𝑔𝑐𝑑𝑅

𝑏𝑐𝑎𝑑
= −∇𝑎𝑅

𝑏𝑎
. The expression in

parentheses represents the Einstein tensor.

𝐺
𝑎𝑏

≡ 𝑅
𝑎𝑏

− 1

2
𝑔𝑎𝑏𝑅. (1.36)

Field Equations

The equation that extends the Poisson equation for gravity (∇2Φ = 4𝜋𝐺𝜌) to the framework
of General Relativity is expressed as follows:

𝐺𝑎𝑏 =
8𝜋𝐺

𝑐4
𝑇𝑎𝑏 . (1.37)

The left side of the equation is relevant to the geometry of the space and the right side includes
any form of energy density in the energy momentum tensor 𝑇𝑎𝑏 . The above equation can be
justified in the following way: One can attempt to generalize Poisson’s equation as

𝑅𝑎𝑏 + _𝑔𝑎𝑏𝑅 = ^𝑇𝑎𝑏, (1.38)

where _ and ^ are constants. To ensure the conservation of energy and momentum in the
context of general relativity, one can impose the condition ∇𝑏𝑇

𝑎𝑏 = 0, which is a generalization
of the corresponding law in special relativity. Then, also

∇𝑏 (𝑅𝑎𝑏 + _𝑔𝑎𝑏𝑅 = 0) . (1.39)

But, from the Bianchi identity Eq. (1.35):

∇𝑏 (𝑅𝑎𝑏 + _𝑔𝑎𝑏𝑅) = 0. (1.40)

For this to be true, _ should be equal to _ = −1
2 . When gravitational effects are weak and

velocities are much lower than the speed of light (the Newtonian limit), the field equations
should reduce to the familiar Poisson equation. This happens when the parameter ^ tahashe
value of ^ = 8𝜋𝐺

𝑐4
. As a result, Eq. (1.37) is obtained.

The field equations can be further generalized, by taking advantage of the fact that the
metric tensor is invariant under covariant transformations (∇𝑐𝑔𝑎𝑏 = 0) and introducing an
additional term that is proportional to the metric tensor:

𝑅𝑎𝑏 −
1

2
𝑔𝑎𝑏𝑅 + Λ𝑔𝑎𝑏 =

8𝜋𝐺

𝑐4
𝑇𝑎𝑏 , (1.41)

where Λ is called the cosmological constant. If that term is moved to the right side of the
equation:

𝑅𝑎𝑏 −
1

2
𝑔𝑎𝑏𝑅 = 8𝜋

(
𝑇𝑎𝑏 −

Λ

8𝜋
𝑔𝑎𝑏

)
, (1.42)

where we set 𝐺 = 𝑐 = 1. The term − Λ
8𝜋 has been interpreted as the energy density of

vacuum, although the value calculated from theory does not agree with Λ as obtained from
cosmological observations.

14 CHAPTER 1. INTRODUCTION

Gravitational Waves

In this Section we will be adhering to the same format as Maggiore’s book on gravitational
waves [18] and Flanagan’s introduction to them [15].

General Relativity is a highly nonlinear theory, thus we in general consider wave solutions
that are nonlinear. However, it is important to note that linear approximations can be made
in specific situations, where the gravitational field is weak and the spacetime curvature is
only slightly perturbed from flat (Minkowski) spacetime. These approximations occur by
applying perturbation theory to the metric tensor and neglecting second-order terms. This
simplification leads to a linear wave equation that accurately describes the propagation of
gravitational waves, especially when considering their behavior far from an astrophysical
source. Near a source, the linear approximation may not be precise and higher-order correc-
tions or a full nonlinear solution may be required.

The Linearization of General Relativity

Linearized gravity is essentially a perturbation theory applied to Minkowski spacetime. This
means that we start with the assumption of a flat Minkowski metric as the background
spacetime, and then we introduce small perturbations to describe deviations from this flat
spacetime metric. So, the metric becomes

𝑔
𝑎𝑏

= [
𝑎𝑏

+ ℎ
𝑎𝑏

, (1.43)

where | |ℎ`a | | << 1 and [`a = diag[−1, 1, 1, 1] the Minkowskian metric tenor. For | |ℎ`a | | << 1
to occur, the gravitational field must be weak. In linearized gravity, the perturbation is
assumed to be small, so only terms that are linear in [`a are kept, while higher-order terms
are ignored. We can utilize the metric tensor [`a to raise and lower the indices. Spatial
ones can be expressed in either the ”up” or ”down” position without altering the quantity’s
value, i.e., 𝑓 𝑥 = 𝑓𝑥 . However, when it comes to time indices, the sign changes when raised or
lowered: 𝑓 𝑡 = −𝑓𝑡 .

The linearized Christoffel symbols are

𝛿Γ
`

𝑎𝑏
=
1

2
[`a

(
𝜕𝑏ℎa𝑎 + 𝜕𝑎ℎ𝑏a − 𝜕aℎ𝑎𝑏

)
⇒

𝛿Γ
`

𝑎𝑏
=
1

2

(
𝜕𝑏ℎ

`
𝑎 + 𝜕𝑎ℎ

`

𝑏
− 𝜕`ℎ

𝑎𝑏

)
⇒

𝛿Γ
`

𝑎𝑏
=
1

2

(
ℎ
`

𝑎,𝑏
+ ℎ`

𝑏,𝑎
− ℎ

,`

𝑎𝑏

)
. (1.44)

The linearized Riemann tensor (1.33) becomes:

𝛿𝑅𝑎
𝑏𝑐𝑑

=
1

2
𝜕𝑐

(
𝜕𝑑ℎ

𝑎
𝑏
+ 𝜕𝑑ℎ

𝑎
𝑑
− 𝜕𝑎ℎ

𝑏𝑑

)
− 1

2
𝜕𝑑

(
𝜕𝑐ℎ

𝑎
𝑏
+ 𝜕𝑏ℎ

𝑎
𝑐 − 𝜕𝑎ℎ

𝑏𝑐

)
,⇒

𝛿𝑅𝑎
𝑏𝑐𝑑

=
1

2

(
𝜕𝑐𝜕𝑏ℎ

𝑎
𝑑
− 𝜕𝑐𝜕

𝑎ℎ
𝑏𝑑

− 𝜕𝑑𝜕𝑏ℎ
𝑎
𝑐 + 𝜕𝑑𝜕

𝑎ℎ
𝑏𝑐

)
(1.45)

and

𝛿𝑅
𝑎`a𝑏

=
1

2

(
𝜕𝑏𝜕`ℎ𝑎a + 𝜕a𝜕𝑎ℎ`𝑏 − 𝜕𝑏𝜕𝑎ℎ`a − 𝜕a𝜕`ℎ𝑎𝑏

)
⇒

𝛿𝑅
𝑎`a𝑏

=
1

2

(
ℎ
𝑎a,𝑏`

+ ℎ
`𝑏,a𝑎

− ℎ
`a,𝑏𝑎

− ℎ
𝑎𝑏,a`

)
. (1.46)

GRAVITATIONAL WAVES 15

The linearized Ricci tensor (1.34) is created by contracting the Riemann tensor:

𝛿𝑅`a = [𝑎𝑏𝑅
𝑎`𝑏a

=
1

2
[𝑎𝑏

(
ℎ
𝑎a,𝑏`

+ ℎ
`𝑏,a𝑎

− ℎ
`a,𝑏𝑎

− ℎ
𝑎𝑏,a`

)
=

1

2

(
ℎ𝑏

a,`𝑏
− ℎ,`a + ℎ 𝑎

` ,𝑎a − ℎ 𝑎
`a,𝑎

)
⇒

𝛿𝑅`a =
1

2

(
ℎ𝑎a,`𝑎 − ℎ,`a + ℎ 𝑎

` ,𝑎a − ℎ 𝑎
`a,𝑎

)
. (1.47)

By contracting again, the linearized Ricci scalar (1.34) is formed:

𝛿𝑅 = [`a𝑅`a =
1

2
[`a

(
ℎ𝑎a,`𝑎 − ℎ,`a + ℎ 𝑎

` ,𝑎a − ℎ 𝑎
`a,𝑎

)
⇒

𝛿𝑅 =
1

2

(
ℎ
𝑎`

,𝑎` − [`aℎ,`a + ℎa𝑎,𝑎a − ℎ 𝑎
,𝑎

)
⇒

𝛿𝑅 = ℎ
𝑎`

,𝑎` − ℎ 𝑎
,𝑎 . (1.48)

Then, from the Ricci tensor Eq. (1.47) and Ricci scalar Eq. (1.48) in linear gravity, the
linearized Einstein tensor is formed:

𝛿𝐺`a =
1

2

(
ℎ𝑎a,`𝑎 − ℎ,`a + ℎ 𝑎

` ,𝑎a − ℎ 𝑎
`a,𝑎

)
− 1

2
[`a

(
ℎ
𝑎`

,𝑎` − ℎ 𝑎
,𝑎

)
. (1.49)

Finally, the linearized field equations are:

ℎ𝑎a,`𝑎 − ℎ,`a + ℎ 𝑎
` ,𝑎a − ℎ 𝑎

`a,𝑎 − [`a
(
ℎ
𝑎`

,𝑎` − ℎ 𝑎
,𝑎

)
= 16𝜋𝛿𝑇`a , (1.50)

where 𝐺 = 𝑐 = 1.
The linearized field equations describe the propagation of gravitational waves. This is

more apparent when working with a modified metric tensor ℎ𝑎𝑏 of the metric perturbation
tensor ℎ

𝑎𝑏
introduced earlier. This tensor is known as the trace-reversed perturbation and

is defined as: ℎ𝑎𝑏 = ℎ
𝑎𝑏

− 1
2[𝑎𝑏ℎ ⇒ ℎ

𝑎𝑏
= ℎ𝑎𝑏 + 1

2[𝑎𝑏ℎ, where ℎ is the trace, for which ℎ = −ℎ.
By replacing ℎ

𝑎𝑏
with ℎ𝑎𝑏 + 1

2[𝑎𝑏ℎ one obtains:

ℎ
,𝑎

`𝑎 a+
1

2
[,𝑎
`𝑎 a+ℎ

,𝑎

a𝑎 `+
1

2
[a𝑎ℎ

,𝑎
`−ℎ

,𝑎

`a 𝑎−
1

2
[`aℎ

,𝑎
𝑎−ℎ,`a−[`a

(
ℎ

,𝑎`

𝑎` − 1

2
[𝑎`ℎ

,𝑎` + ℎ 𝑎
,𝑎

)
= 16𝜋𝛿𝑇`a .

(1.51)
The Laplace operator in the Minkowski space or else known as the d’Alembertian operator
is □ = 𝜕𝑎𝜕

𝑎 = ∇2 − 𝜕2𝑡 . By using this operator, the previous expression can be written as:

−[`aℎ
𝑎`

𝑎`, + ℎ 𝑎

`𝑎, a − □ℎ`a + ℎ
𝑎

a𝑎, ` = 16𝜋𝛿𝑇`a . (1.52)

To simplify this expression, one can select a suitable coordinate system or gauge. Suppose
that we perform a general infinitesimal coordinate transformation of the form 𝑥𝑎

′
= 𝑥𝑎 + b𝑎,

where b𝑎 (𝑥𝑏) an infinitesimal displacement. The transformed metric is:

𝑔′`a (𝑥 ′) =
𝜕𝑥𝑎

𝜕𝑥 ′`
𝜕𝑥𝑏

𝜕𝑥 ′a
𝑔
𝑎𝑏
(𝑥) . (1.53)

and one obtains

ℎ′`a = ℎ`a − 𝑔a𝜌b
𝜌
,` − 𝑔𝜌`b

𝜌
,a − b𝜌𝑔`a,𝜌 + O(b2), (1.54)

16 CHAPTER 1. INTRODUCTION

The tilde symbol is used to denote the background metric. Also:

𝑔𝜌a ∇̄`b
𝜌 + 𝑔𝜌` ∇̄ab

𝜌 = 𝑔𝜌ab
𝜌
,` + 𝑔𝜌`b

𝜌
,a −

1

2
(𝑔a`,^ + 𝑔a^,` − 𝑔`^,a)b^ − 1

2
(𝑔`a,^ + 𝑔`^,a − 𝑔a^,`)b^

= 𝑔𝜌ab
𝜌
,` + 𝑔𝜌`b

𝜌
,a − 𝑔`a,^b

^ . (1.55)

So eventually,

ℎ′`a = ℎ`a − 2∇̄(`ba) . (1.56)

In a flat background spacetime, the metric is

ℎ′`a = ℎ`a − 2𝜕(`ba) , (1.57)

and the trace-reversed metric becomes

ℎ̄′`a = ℎ′`a −
1

2
[`aℎ

′ = ℎ̄`a − 2𝜕(ab`) + [`a𝜕𝑎b𝑎 . (1.58)

A gauge that is commonly used, is the Lorentz gauge ℎ̄𝑎𝑏
,𝑎 = 0. Then

ℎ̄′𝑎𝑏
,𝑎 = ℎ̄𝑎𝑏

,𝑎 − b𝑎,𝑏
,𝑎 − □b𝑏 + b𝑎,𝑏

,𝑎 = ℎ̄𝑎𝑏
,𝑎 − □b𝑏 . (1.59)

In this case the infinitesimal coordinate transformation must be

□b𝑏 = ℎ̄𝑎𝑏
,𝑎 . (1.60)

But, the initial metric perturbation fulfills the Lorentz gauge, which means that

□b𝑏 = 0. (1.61)

From Eq. (1.52) it is obvious that

𝛿𝐺`a =
1

2
(ℎ̄`,𝑎a𝑎 + ℎ̄a𝑎,` ,𝑎 − □ℎ̄`a − [`aℎ̄𝑏,𝑎

𝑎,𝑏). (1.62)

By applying the Lorentz, one obtains

𝛿𝐺`a = −1
2
□ℎ̄`a . (1.63)

Therefore, the linearized field equations (1.52) become

□ℎ̄𝑎𝑏 = −16𝜋𝛿𝑇𝑎𝑏 . (1.64)

In vacuum, this becomes

□ℎ̄`a = 0. (1.65)

Hence, in vacuum, the metric perturbations travel in the form of gravitational waves.

GRAVITATIONAL WAVES 17

Vacuum Spacetime

The general homogeneous solution to the wave-like equation, based on the superposition
principle for linear systems, can be written as

ℎ̄`a (x, 𝑡) = 𝑅𝑒

∫
𝑑3𝑘𝐴`a (k)𝑒𝑖 (k·x−𝜔𝑡)𝑑3𝑘, (1.66)

where, ℎ̄`a represents the metric perturbation tensor and describes how spacetime is deformed
by the presence of gravitational waves, 𝜔 = |k| is the angular frequency, 𝐴`a (k) are the
complex coefficients that determine the amplitude and phase of the gravitational wave at
each wave-vector k.

These solutions are subject to the constraint 𝑘` (𝜔,k)𝐴`a = 0 which arises from the
Lorentz gauge condition. The solutions represented by ℎ̄`a (x, 𝑡) are gravitational waves.
However, they also encompass a significant number of non-radiative degrees of freedom.
Since, these degrees of freedom do not contribute to the physical effects of the propagating
gravitational waves they can be removed. In this direction, it is important to consider
some key spacetime conditions. Firstly, the global vacuum, where the energy-momentum
tensor 𝑇`a = 0 throughout spacetime and secondly the asymptotic flatness of spacetime,
where the metric perturbation ℎ`a approaches zero as 𝑟 tends towards infinity. Attention
falls to a specific subset of solutions, those that belong to the category of homogeneous,
asymptotically flat solutions of the linearized Einstein equation (1.64). Within this subset,
additional gauge specializations are possible, including the choice of the Lorentz gauge. By
employing these gauge choices, the metric perturbation can have an exclusively spatial and
traceless character. So,

ℎ𝑡𝑡 = ℎ𝑡𝑖 = 0, (1.67)

and
ℎ = ℎ𝑖

𝑖 = 0. (1.68)

For the spatial perturbation, the Lorentz gauge implies that it is transverse, as a result of:

ℎ
,𝑖

𝑖 𝑗
= 𝜕𝑖ℎ𝑖 𝑗 = 0. (1.69)

Condition (1.69) is known as the transverse-traceless or (TT) gauge, which results in
the determination of the gauge for the metric perturbation with only the essential physical
information. Initially, there was a symmetric tensor with 10 degrees of freedom due to its
4-dimensional nature. However, the application of the TT gauge conditions introduced 8
constraints, effectively reducing the degrees of freedom to just 2. Furthermore, within the
TT gauge, there exists a close mathematical relationship linking the linearized Riemann
tensor (1.45) and the metric perturbation, by:

𝑅𝑖𝑡 𝑗𝑡 = −1
2
¥ℎ𝑇𝑇𝑖 𝑗 . (1.70)

The two degrees of freedom left within the metric perturbation give rise to two polarization
components.

To illustrate this concept, consider a gravitational wave propagating in the z-direction,
expressed as: ℎ𝑇𝑇𝑖 𝑗 = ℎ𝑇𝑇𝑖 𝑗 (𝑡 − 𝑧). The Lorentz gauge condition, ℎ𝑇𝑇𝑧 𝑗,𝑧 = 𝜕𝑧ℎ

𝑇𝑇
𝑧 𝑗,𝑧 = 0 implies that

ℎ𝑇𝑇𝑧 𝑗 must remain constant. In order to maintain asymptotic flatness of spacetime (ℎ`a → 0

when 𝑟 → ∞), this constant must be zero. As a result, only the components ℎ𝑇𝑇𝑥𝑥 , ℎ
𝑇𝑇
𝑥𝑦 , ℎ

𝑇𝑇
𝑦𝑦 , ℎ

𝑇𝑇
𝑦𝑥

endure. Due to their inherent symmetry and adherence to the trace-free condition, it becomes

18 CHAPTER 1. INTRODUCTION

apparent that only two of these components are truly independent. The two independent
waveforms of the gravitational waves are:

ℎ𝑇𝑇𝑥𝑥 = −ℎ𝑇𝑇𝑦𝑦 ≡ ℎ+(𝑡 − 𝑧), (1.71)

ℎ𝑇𝑇𝑥𝑦 = ℎ𝑇𝑇𝑦𝑥 ≡ ℎ× (𝑡 − 𝑧) . (1.72)

In matrix form, the transverse-traceless metric perturbation can be expressed as:

ℎ 𝑇𝑇
𝑖 𝑗 =

©«
ℎ+ ℎ𝑥 0
ℎ𝑥 −ℎ+ 0
0 0 0

ª®¬𝑖 𝑗 𝑐𝑜𝑠 [𝜔 (𝑡 − 𝑧/𝑐)],

where ℎ+ and ℎ× represent the two distinct polarizations of the plane wave: the plus polar-
ization and the cross polarization. Or, in a more simple way:

ℎ 𝑇𝑇
𝑎𝑏

=

(
ℎ+ ℎ𝑥
ℎ𝑥 −ℎ+

)
𝑎𝑏

𝑐𝑜𝑠 [𝜔 (𝑡 − 𝑧/𝑐)] .

Consequently, the spacetime interval 𝑑𝑠2 can be described by:

𝑑𝑠2 = −𝑐2𝑑𝑡2+𝑑𝑧2+[1+ℎ+𝑐𝑜𝑠 [𝜔 (𝑡−𝑧/𝑐)]]𝑑𝑥2+[1+ℎ−𝑐𝑜𝑠 [𝜔 (𝑡−𝑧/𝑐)]]𝑑𝑦2+2ℎ×𝑐𝑜𝑠 [𝜔 (𝑡−𝑧/𝑐)]𝑑𝑥𝑑𝑦.

Generation of Gravitational Waves

Up to now, the description and effects of the gravitational waves corresponded to the far
field regions, which are regions far away from any potential source where the amplitude of
the wave is really small. To fully understand how gravitational waves are produced, it is
crucial to consider the surrounding area of the source, often referred to as the ”near field” or
”near zone.” In this area, the metric perturbation might be significant, and consequently, the
linearized approximation described earlier might lose its revelance. In these cases, gravita-
tional waves can carry important amounts of energy and momentum away from their sources,
influencing the motion of these sources in what’s termed backreaction. In such situations, a
complete description requires the use of full nonlinear general relativity (GR) equations or
nonlinear corrections.

The linearized Einstein equations (1.62), always have solutions. This is because the
d’Alembertian operator is invertible.

ℎ̄𝑎𝑏 (𝑥) = 16𝜋

∫
𝑑4𝑥 ′𝐺 (𝑥 − 𝑥 ′)𝑇𝑎𝑏 . (1.73)

Similarly, drawing an analogy to electromagnetism, the suitable solution, given that we are
addressing a radiation problem, is the retarded Green’s function:

𝐺 (𝑥 − 𝑥 ′) = − 1

4𝜋 | ®𝑥 − ®𝑥 ′ |𝛿 (𝑐𝑡ret − 𝑥𝑡 ′), (1.74)

so that

□𝑥𝐺 (𝑥 − 𝑥 ′) = 𝛿4(𝑥 − 𝑥 ′),

where

𝑡ret ≡ 𝑡 − |®𝑥 − ®𝑥 ′ |
𝑐

, (1.75)

GRAVITATIONAL WAVES 19

where 𝑡ret is the retarded time. By using the above on the solution Eq. (1.74),

ℎ̄𝑎𝑏 =
4𝜋

𝑐4

∫
𝑑3𝑥 ′

1

| ®𝑥 − ®𝑥 ′ |𝑇𝑎𝑏
(
𝑡 − |®𝑥 − ®𝑥 ′ |

𝑥
, ®𝑥 ′

)
. (1.76)

The spatial projector normal to a unit direction 𝑛 is defined as

𝑃𝑖 𝑗 (𝑛) = 𝛿𝑖 𝑗 − 𝑛𝑖𝑛 𝑗 , (1.77)

and one can form

Λ𝑖 𝑗,𝑘𝑙 (𝑛) = 𝑃𝑖𝑘𝑃 𝑗𝑙 −
1

2
𝑃𝑖 𝑗𝑃𝑘𝑙 . (1.78)

Then,
ℎ𝑇𝑇𝑖 𝑗 = Λ𝑖 𝑗,𝑘𝑙ℎ𝑘𝑙 . (1.79)

The solution then is,

ℎ𝑇𝑇𝑖 𝑗 =
4𝐺

𝑐4
Λ𝑖 𝑗,𝑘𝑙

∫
𝑑3®𝑥 1

| ®𝑥 − ®𝑥 ′ |𝑇𝑘𝑙
(
𝑡 − |®𝑥 − ®𝑥 ′ |

𝑐
, ®𝑥 ′

)
. (1.80)

At significant distances 𝑟 ≡ |𝑥 | from a source that is much larger in size 𝑑 ≪ 𝑟 , | ®𝑥 − ®𝑥 ′ | ≃
𝑟 − ®𝑥 ′ · 𝑛 + O

(
𝑑2

𝑟

)
while disregarding higher-order terms of r,

ℎ𝑇𝑇𝑖 𝑗 (𝑡, ®𝑥) ≃ 4𝐺

𝑐4
Λ𝑖 𝑗,𝑘𝑙 (𝑛)

∫
𝑇𝑘𝑙

(
𝑡 − 𝑟

𝑐
+ ®𝑥 ′ · 𝑛

𝑐
, ®𝑥 ′

)
𝑑3®𝑥 . (1.81)

When dealing with a source in motion with non-relativistic velocities over a spatial scale 𝑑

and a time scale 1/𝜔𝑠 then 𝑢 ∼ 𝜔𝑠𝑑 ≪ 𝑐 . The emitted frequency of the gravitational wave is
𝜔 ∼ 𝜔𝑠 and so the wavelength _/2𝜋 = 𝑐/𝜔 ∼ 𝑑 (𝑐/𝜔) ≫ 𝑑.

Looking at the Fourier transform of the stress-energy tensor denoted as 𝑇𝑘𝑙 :

𝑇𝑘𝑙

(
𝑡 − 𝑟

𝑐
−

®𝑥 ′ · 𝑛
𝑐

, ®𝑥 ′
)
=

∫
𝑑4𝑘

(2𝜋)4𝑇𝑘𝑙 (𝜔,
®𝑘)𝑒−𝑖𝜔 (𝑡−𝑟/𝑐+®𝑥 ′ ·𝑛/𝑐)+𝑖 ®𝑘 · ®𝑥 ′

. (1.82)

The exponential term of this expression can be expanded as follows:

𝑒−𝑖𝜔 (𝑡−𝑟/𝑐+®𝑥 ′ ·𝑛/𝑐)+𝑖 ®𝑘 · ®𝑥 ′
= 𝑒−𝑖𝜔 (𝑡−𝑟/𝑐) ×

[
1 − 𝑖

𝜔

𝑐
𝑥 ′𝑖𝑛𝑖 + 1

2

(
−𝑖 𝜔

𝑐

)2
𝑥 ′𝑖𝑥 ′𝑗𝑛𝑖𝑛 𝑗 + ...

]
. (1.83)

This expansion can be equivalently represented as an expansion in the time domain:

𝑇𝑘𝑙

(
𝑡 − 𝑟

𝑐
−

®𝑥 ′ · 𝑛
𝑐

, ®𝑥 ′
)
= 𝑇𝑘𝑙

(
𝑡 − 𝑟

𝑐
, ®𝑥 ′

)
+ 𝑥 ′𝑖𝑛𝑖

𝑐
𝜕0𝑇𝑘𝑙 +

1

2𝑐2
𝑥 ′𝑖𝑥 ′𝑗𝑛𝑖𝑛 𝑗 𝜕20𝑇𝑘𝑙 + (1.84)

In this expansion, all the derivatives are estimated at the point (𝑡 − 𝑟/𝑐, ®𝑥 ′).
This expansion can also be expressed more concisely by utilizing multipole moments of

𝑇 𝑖 𝑗

𝑆𝑖 𝑗 (𝑡) =
∫

𝑑3𝑥𝑇 𝑖 𝑗 (𝑡, ®𝑥) → monopole,

𝑆𝑖 𝑗,𝑘 (𝑡) =
∫

𝑑3𝑥𝑇 𝑖 𝑗 (𝑡, ®𝑥)𝑥𝑘 → dipole,

𝑆𝑖 𝑗,𝑘𝑙 (𝑡) =
∫

𝑑3𝑥𝑇 𝑖 𝑗 (𝑡, ®𝑥)𝑥𝑘𝑥𝑙 → quadrupole.

(1.85)

20 CHAPTER 1. INTRODUCTION

In this notation, the comma distinguishes between the spatial indices derived from the stress-
energy tensor and those arising from 𝑥𝑖1, ..., 𝑥𝑖𝑁 . By inserting this expansion and substituting
the multipole moments in (1.81), the following is obtained:

ℎTT
𝑖 𝑗 (𝑡, ®𝑥) = 4𝐺

𝑟𝑐4
Λ𝑖 𝑗,𝑘𝑙 (𝑛)

[
𝑆𝑘𝑙 + 1

𝑐
𝑛𝑚 ¤𝑆𝑘𝑙,𝑚 + 1

2𝑐2
𝑛𝑚𝑛𝑝 ¥𝑆𝑘𝑙,𝑚𝑝 + . . .

]
ret

. (1.86)

Here, each factor of 𝑥𝑘 in the spatial integral contributes a factor of order 𝑑 and every
time derivative brings a factor of order 𝜔𝑠 . Therefore, this is effectively an expansion in
𝜔𝑠𝑑/𝑐 ∼ 𝑢/𝑐.
The significance of the introduced momenta becomes apparent when considering the mo-
menta of the energy density 𝑇 00 and linear momentum 𝑇 0𝑖 . These momenta are defined
as:

𝑀 =
1

𝑐2

∫
𝑑3𝑥𝑇 00(𝑡, ®𝑥),

𝑀𝑖 =
1

𝑐2

∫
𝑑3𝑥𝑇 00(𝑡, ®𝑥)𝑥𝑖 ,

𝑀𝑖 𝑗 =
1

𝑐2

∫
𝑑3𝑥𝑇 00(𝑡, ®𝑥)𝑥𝑖𝑥 𝑗 ,

𝑀𝑖 𝑗𝑘 =
1

𝑐2

∫
𝑑3𝑥𝑇 00(𝑡, ®𝑥)𝑥𝑖𝑥 𝑗𝑥𝑘 .

(1.87)

Similarly, the momenta of 𝑇 0𝑖

𝑐
are defined as:

𝑃𝑖 =
1

𝑐

∫
𝑑3𝑥𝑇 0𝑖 (𝑡, ®𝑥),

𝑃𝑖, 𝑗 =
1

𝑐

∫
𝑑3𝑥𝑇 0𝑖 (𝑡, ®𝑥)𝑥 𝑗 ,

𝑃𝑖, 𝑗𝑘 =
1

𝑐

∫
𝑑3𝑥𝑇 0𝑖 (𝑡, ®𝑥)𝑥 𝑗𝑥𝑘 .

(1.88)

From the conservation law of the stress-energy tensor:

¤𝑀 = 0,

¤𝑀𝑖 = 𝑃𝑖 ,

¤𝑀𝑖 𝑗 = 𝑃𝑖, 𝑗 + 𝑃 𝑗,𝑖 ,

¤𝑀𝑖 𝑗𝑘 = 𝑃𝑖, 𝑗𝑘 + 𝑃 𝑗,𝑘𝑖 + 𝑃𝑘,𝑖 𝑗 .

(1.89)

and
¤𝑃𝑖 = 0,

¤𝑃𝑖, 𝑗 = 𝑆𝑖 𝑗 ,

¤𝑃𝑖, 𝑗𝑘 = 𝑆𝑖 𝑗,𝑘 .

(1.90)

The equations ¤𝑀 = 0 and ¤𝑃𝑖 = 0 represent the principles of mass conservation and total
momentum conservation for the source, respectively. In addition, the identity ¤𝑃𝑖, 𝑗 − ¤𝑃 𝑗,𝑖 =

𝑆𝑖 𝑗 − 𝑆 𝑗𝑖 = 0 reflects the conservation of angular momentum for the source.
The momenta of the multipole expansion can now be expressed by using the momenta

of energy-density and linear momentum:

𝑆𝑖 𝑗 =
1

2
¥𝑀𝑖 𝑗 , (1.91)

GRAVITATIONAL WAVES 21

¤𝑆𝑖 𝑗, 𝑗 = 1

6
𝑀𝑖 𝑗𝑘 + 1

3

(
¥𝑃𝑖, 𝑗𝑘 + ¥𝑃 𝑗,𝑘𝑖 + ¥𝑃𝑘,𝑖 𝑗

)
. (1.92)

Similar relationships hold for higher-order momenta.
Using Eq. (1.91) in Eq. (1.86) and retaining the main term gives:[

ℎTT
𝑖 𝑗 (𝑡, ®𝑥)

]
quad

=
2𝐺

𝑟𝑐4
Λ𝑖 𝑗,𝑘𝑙 (𝑛) ¥𝑀𝑘𝑙 (𝑡 − 𝑟/𝑐) . (1.93)

The reduced quadrupole moment tensor is:

𝑄𝑖 𝑗 ≡ 𝑀𝑖 𝑗 − 𝛿𝑖 𝑗𝑀𝑘𝑘 ,

=

∫ (
𝑥𝑖𝑥 𝑗 − 1

3
𝑟2𝛿𝑖 𝑗

)
𝜌 (𝑡, ®𝑥)𝑑3𝑥 .

(1.94)

where 𝜌 = 𝑇 00/𝑐2, is the mass density. By Substituting in the last expression,[
ℎTT
𝑖 𝑗 (𝑡, ®𝑥)

]
quad

=
2𝐺

𝑟𝑐4
Λ𝑖 𝑗,𝑘𝑙 (𝑛) ¥𝑄𝑘𝑙 (𝑡 − 𝑟/𝑐),

≡ 2𝐺

𝑟𝑐4
¥𝑄TT
𝑖 𝑗 (𝑡 − 𝑟/𝑐) .

(1.95)

This equation is known as the quadrupole formula for gravitational wave radiation.
When considering the direction of wave propagation along the 𝑧-axis, the expression

becomes:

Λ𝑖 𝑗,𝑘𝑙 (ẑ) ¥𝑀𝑘𝑙 =
©«

1
2

(¥𝑀11 − ¥𝑀22
) ¥𝑀12 0

¥𝑀21 −1
2

(¥𝑀11 − ¥𝑀22
)

0
0 0 0

ª®¬ . (1.96)

The ”+”and”×” polarization amplitudes are given by:

ℎ+ =
1

𝑟

𝐺

𝑐4
(¥𝑀11 − ¥𝑀22)

ℎ× =
2

𝑟

𝐺

𝑐4
¥𝑀12

(1.97)

These quantities are computed in retarded time 𝑡 − 𝑟/𝑐.

Interaction of GWs with a Detector

In General Relativity, the idea of a ”gravitational force” as described by Newtonian gravity
is replaced by the concept that objects that are not being restrained in spacetime follow
curved lines, the geodesics. Thus, the motion of objects in general relativity is described
by geodesic equations, which dictate how the coordinates of these objects evolve in curved
spacetime. The geodesic equations can be expressed in terms of the proper time experienced
by the particle 𝜏 or the coordinate time 𝑡 , depending on the context. By substituting the
derivatives into the geodesic equations (1.32) with the coordinate time 𝑡 and using 𝑎 = 𝑡 with
the spatial equations 𝑎 = 𝑗 , the coordinate acceleration of a free falling body is

d2𝑥𝑖

d𝑡2
= −

(
Γ𝑖𝑡𝑡 + 2Γ𝑖𝑡 𝑗𝑣

𝑗 + Γ𝑖
𝑗𝑘
𝑣 𝑗𝑣𝑘

)
+ 𝑣𝑖

(
Γ𝑡𝑡𝑡 + 2Γ𝑡𝑡 𝑗𝑣

𝑗 + Γ𝑡
𝑗𝑘
𝑣 𝑗𝑣𝑘

)
, (1.98)

where 𝑢𝑖 = 𝑑𝑥𝑖/𝑑𝑡 is the coordinate velocity of the object along the spatial direction 𝑗 .
In linearized gravity, where the non-flat part of the metric is primarily influenced by a

22 CHAPTER 1. INTRODUCTION

gravitational wave in the transverse-traceless (TT) gauge, and under the assumption of non-
relativistic motion for a test body (𝑢𝑖 ≪ 1), we can simplify the equations of motion as
follows:

𝑑2𝑥𝑖

𝑑𝑡2
+ Γ𝑖𝑡𝑡 = 0. (1.99)

Within the TT gauge,

Γ𝑖𝑡𝑡 = Γ𝑖𝑡𝑡 =
1

2
(2𝜕𝑡ℎ𝑇𝑇𝑗𝑡 − 𝜕𝑗ℎ

𝑇𝑇
𝑡𝑡) = 0. (1.100)

Here ℎ𝑇𝑇𝑎𝑡 = 0. Substituting the simplified Christoffel symbols into the equation of motion,
𝑑2𝑥𝑖/𝑑𝑡2 = 0. This equation suggests that, in the context of linearized gravity and TT gauge,
the test body follows Newton’s first law of motion, which states that an object that is not
being acted upon by an outside force will remain in its current state of rest or motion. In
the transverse-traceless gauge of general relativity, the coordinates describing the position
of a slowly moving, freely falling body are not affected directly by the gravitational wave.
However, even though the objects themselves remain stationary, the coordinates are distorted
by the GWs. Therefore, in the context of general relativity, it is essential to emphasize the
importance of coordinate-invariant observables, in other words quantities that do not depend
on the specific choice of coordinates, and that provide a more reliable way to describe physical
phenomena.

For example, consider the case where there are two freely falling particles, at 𝑧 = 0, at
a distance 𝐿𝑐 between them on the 𝑥-axis. If a gravitational wave propagates in the TT
gauge along the 𝑧-axis, denoted by ℎ𝑇𝑇𝑡,𝑧 , the proper distance 𝐿 between these two particles is
affected by the spacetime curvature caused by the GW. The proper distance 𝐿 is given by:

𝐿 =

∫ 𝐿𝑐

0
d𝑥

√
𝑔𝑥𝑥 =

∫ 𝐿𝑐

0
d𝑥

√︃
1 + ℎTT

𝑥𝑥 (𝑡, 𝑧 = 0)

≃
∫ 𝐿𝑐

0
d𝑥

[
1 + 1

2
ℎTT
𝑥𝑥 (𝑡, 𝑧 = 0)

]
= 𝐿𝑐

[
1 + 1

2
ℎTT
𝑥𝑥 (𝑡, 𝑧 = 0)

]
.

(1.101)

In the TT gauge, where the coordinates of each particle remain fixed, it is worth noting
that if a different gauge were used where the two particles are allowed to move relative to
the coordinates, the limits of integration in Equation (1.101) would need to be adjusted
accordingly. The equation of proper distance reveals that the proper separation between the
two particles oscillates, leading to a fractional length change 𝛿𝐿/𝐿. This fractional change in
proper distance is approximately given by

𝛿𝐿

𝐿
≃ 1

2
ℎ𝑇𝑇𝑥𝑥 (𝑡, 𝑧 = 0) . (1.102)

Here ℎ𝑇𝑇𝑥𝑥 is the amplitude of the gravitational wave component in the 𝑥 direction at 𝑧 = 0.
Although the TT gauge is used, it is important to note that the result obtained is not
gauge-dependent. The wave strain ℎ, is the amolitude of a gravitational wave.

In laser interferometric observatories designed to detect gravitational waves, the proper
distance 𝐿 is of great significance, because of its direct correlation with the accumulation
of phase information. The accumulated phase change, denoted 𝛿𝜙 , occurs when a photon
traverses the arm of a laser interferometer in the presence of a gravitational wave. The dif-
ference in phase 𝛿𝜙 signifies a shift in the phase of the laser light within the interferometer.
This phase change is mathematically expressed as 𝛿𝜙 = 4𝜋𝛿𝐿/_, where _ denotes the wave-
length of the laser light utilized in the interferometer and 𝛿𝐿 corresponds to the alteration in

GRAVITATIONAL WAVES 23

the length of one of the interferometer arms caused by the gravitational wave. Gravitational
waves propagate, stretch, and squeeze spacetime, resulting in minute alterations in distances,
including the length of the interferometer’s arms.

The geodesic deviation equations describe how the separation 𝐿 between geodesics changes
over time due to the curvature of spacetime. Thus, these equations explore how nearby parti-
cles or objects, that are moving along geodesics, experience changes in their relative positions
due to gravitational waves. Taking into account two separate but close paths in spacetime
given by 𝑥𝑎 = 𝑧𝑎 (𝜏) with velocity 𝑢𝑎 (𝜏) = 𝑑𝑧/𝑑𝜏 and 𝑥𝑎 (𝜏) = 𝑧𝑎 (𝜏) + 𝐿𝑎 (𝜏), where 𝐿𝑎 (𝜏) is a
small displacement vector, the displacement vector can be written as ®𝐿 = 𝐿𝑎𝜕𝑎 and describes
the motion from one point on a path to a nearby point on the same path. The behavior of
this separation vector ®𝐿 is mathematically described by the geodesic deviation equation:

𝑢𝑏∇𝑏 (𝑢𝑐∇𝑐𝐿
𝑎) = −𝑅𝑎𝑏𝑐𝑑 [®𝑧 (𝜏)]𝑢𝑏𝐿𝑐𝑢𝑑 . (1.103)

Here, 𝑅𝑎𝑏𝑐𝑑 [®𝑧 (𝜏)] are the components of the Riemann curvature tensor at the position of
the geodesics described by the path ®𝑧 (𝜏) at a specific proper time 𝜏 . The equation essen-
tially describes how the change in the separation vector 𝐿𝑎 between two nearby geodesics is
influenced by the curvature. This equation is valid up to the linear order in 𝐿𝑎.

In the context of a local proper reference frame, the geodesic deviation equation (1.103)
is valid, and its implications are as follows

𝑧𝑖 (𝜏) = 0, 𝑔𝑎𝑏 (𝜏, 0) = [𝑎𝑏, Γ𝑎
𝑏𝑐

= 0. (1.104)

This suggests that the metric has the form

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑥2 + O
(
𝑥2

𝑅2

)
. (1.105)

The radius of curvature of spacetime, denoted by 𝑅, is given by 𝑅−2 ∼ ||𝑅𝑎𝑏𝑐𝑑 | |. The proper
distance between two geodesics located at 𝑥𝑖 = 0 and 𝑥𝑖 = 𝐿𝑖 (𝑡) is L =

√
𝐿𝑖𝐿𝑖 , with fractional

corrections of the order 𝐿2/𝑅2. The curvature of spacetime due to a gravitational wave (GW)
of amplitude ℎ and wavelength _ is 𝑅−2 ∼ ℎ/_2, so the fractional errors are ∼ ℎ𝐿2/_2.of the
detectors. Since the detectors have a separation much smaller than the wavelength of the
gravitational wave, the errors caused by this are much smaller than the fractional distance
changes of approximately ℎ due to the GW. Therefore, the separation of the detectors is
considered appropriate.

In the coordinates of the local proper reference frame Eq. (1.104), the equation for the
geodesic deviation (1.103) can be expressed as

d2𝐿𝑖 (𝑡)
d𝑡2

= −𝑅𝑖𝑡 𝑗𝑡 (𝑡, 0)𝐿 𝑗 (𝑡) . (1.106)

The covariant time-derivative operator 𝑢𝑎∇𝑎 is replaced with 𝜕/𝜕𝑡 , ®𝑢 = 𝜕𝑡 , and 𝐿𝑎 = (0, 𝐿𝑖) is
used. The quantity 𝑅𝑖𝑡 𝑗𝑡 is invariant in linearized theory, so any suitable coordinate system
can be used to calculate it. Using the expression (1.70) for the Riemann tensor in terms of
the metric perturbation ℎ𝑇𝑇𝑖 𝑗 in the TT gauge, it follows that

d2𝐿𝑖

d𝑡2
=
1

2

d2ℎTT
𝑖 𝑗

d𝑡2
𝐿 𝑗 . (1.107)

Integrating this equation with 𝐿𝑖 (𝑡) = 𝐿𝑖0 + 𝛿𝐿𝑖 (𝑡) and 𝛿𝐿 ≪ ®𝐿0 gives

𝛿𝐿𝑖 (𝑡) = 1

2
ℎ𝑇𝑇𝑖 𝑗 (𝑡)𝐿 𝑗

0. (1.108)

24 CHAPTER 1. INTRODUCTION

If one chooses Cartesian coordinates such that the two arms of the interferometer lie along
the 𝑥-axis and 𝑦-axis, with the beam splitter at the origin and the propagation of GW along
the 𝑧 -axis, the only nonzero components of the metric perturbations are ℎ𝑇𝑇𝑥𝑥 = −ℎ𝑇𝑇𝑦𝑦 = ℎ+ and

ℎ𝑇𝑇𝑥𝑦 = ℎ𝑇𝑇𝑦𝑥 = ℎ×. These two polarization components, ℎ+(𝑡 − 𝑧) and ℎ× (𝑡 − 𝑧), were obtained
in equations (1.72) and (1.71). Taking the beam splitter at ®𝑥 = 0 and the end mirror as the
two nearby geodesics, Eq. (1.108) can be used to calculate the relative change in the length
of the two arms, where 𝐿 = | ®𝐿 |,

𝛿𝐿𝑥

𝐿
=
1

2
ℎ+,

𝛿𝐿𝑦

𝐿
= −1

2
ℎ+. (1.109)

where 𝑥 and 𝑦 refer to two distinct arms.
Gravitational waves (GWs) act in a tidal manner, compressing along one axis and stretch-

ing along the other. In this setup, the detector is only sensitive to the + polarization of the
GW. The × polarization has a similar effect, except that it compresses and stretches along
axes that are rotated 45𝑜 relative to the 𝑥 and 𝑦 axes. Figure 1.1 shows the force lines for
the two different polarizations.

Figure 1.1: Gravitational waves can be characterized by two distinct transverse polariza-
tions: left-handed (plus) and right-handed (cross). This illustration shows a gravitational
wave propagating along the z-axis and impacting the (x, y) plane. Figure from [9].

NEUTRON STARS 25

Neutron Stars

Stars have intense gravitational pressure in their cores that allows them to fuse hydrogen into
helium through a series of nuclear reactions. For stars more massive than the Sun, as the star
ages, it continues to fuse heavier elements in its core, including helium into carbon, carbon
into oxygen, and so on. Eventually, when the core of the star becomes mostly composed of
iron, iron fusion, instead of releasing energy, consumes it. The iron core becomes unstable
as it accumulates more mass and is unable to support itself against the force of gravity.
When the core reaches a critical mass, it rapidly collapses under its own weight. This core
collapse triggers an extremely violent explosion known as a supernova. The outer layers of
the star are blasted into space at tremendous velocities, releasing an immense amount of
energy in the process. Depending on the mass of the collapsing core, one of two outcomes
can occur. A neutron star or a black hole. If a star has a mass between 1 and 2 solar
masses(𝑀⊙) then what remains of its collapsed core becomes a neutron star. Neutron stars
have a radius of about 12km (with a current uncertainty of about one km), they can spin
very fast, and are the densest objects known. Neutron stars provide a unique opportunity
to gain knowledge about matter, gravity, and the extreme conditions of the universe. They
are a perfect astrophysical laboratory for gaining valuable insights [22, 17].

In the fall of 2015 a groundbreaking discovery occurred, as the first direct observation
of gravitational waves was made from the merging of a binary black hole system by the
LIGO interferometer [1]. This marked the first-ever direct observation of gravitational waves,
confirming a key prediction of Albert Einstein’s theory of General Relativity. Two years
later, in August 2017, the LIGO and Virgo collaboration successfully detected the first
gravitational waves originating from a binary neutron star (NS) merger [3]. The observation
of this coalescence has advanced the understanding of the merging process and provided
some initial insights into the properties of neutron stars.

The characteristics of extremely dense matter, and in particular the Equation of State
(EoS), continue to be a subject of incomplete understanding, especially when considering
densities at or beyond nuclear saturation. Nuclear saturation density represents the equi-
librium density of the atomic nuclei and serves as a reference point for the study of matter
under extreme conditions [22]. This difficulty in understanding is primarily due to the
complex behaviors and interactions of numerous nuclear particles, commonly known as the
nuclear many-body problem. Furthermore, it is unclear whether extra exotic particles, such
as hyperons, exist in higher densities or even if a phase transition to deconfined quark matter
occurs in neutron stars. Quarks, as elementary constituents of matter, are known to form
protons, neutrons, and various hadrons through a strong nuclear force. However, when tem-
peratures and pressures are extremely high, it is proposed that quarks can be released from
their confinement and become free particles, mainly interacting through the strong force [17].

Moreover, in the case of nonrotating neutron stars, the structural properties are uniquely
determined by the equation of state (EoS) and are mathematically described by the Tolman-
Oppenheimer-Volkoff equations. These equations account for relativistic hydrostatic equi-
librium. The relationship between mass and radius of a neutron star, the deformability due
to tidal forces, and the upper limit of mass for nonrotating neutron stars still have consid-
erable uncertainties. The goal is to establish a connection between the observable aspects
of the gravitational wave signal and the properties of the equations of state, with a specific
focus on the post-merger phase. Neutron stars, which are extremely dense and are primarily
composed of neutrons, are essential for investigating these challenges [16].

26 CHAPTER 1. INTRODUCTION

Merger Stages

In chronological order, the three phases of the coalesence are the inspiral, the merger, and the
ringdown, which involves the remnant object settling into a stable state. At the beginning
of the inspiral phase, the relative velocity and gravitational field are notably low. As they
revolve around one another, gravitational waves are released, resulting in a decrease in the
orbital energy of the system. This causes the objects to gradually move inwards in a spiral
motion. As they get closer to each other, they experience a stronger gravitational attraction,
leading to the release of gravitational potential energy [16]. According to the law of energy
conservation, this lost potential energy is transformed into kinetic energy, causing the orbits
of the compact objects to accelerate, which in turn results in the emission of even more
powerful gravitational waves. Consequently, the objects lose more orbital energy, pulling
them even closer, and this cycle continues. Ultimately, this gradual loss of energy in the
form of gravitational waves leads to the merger of the two celestial objects. The gravitational
wave signal is mainly determined by the orbital motion, resulting in a characteristic chirping
signal with increasing amplitude and frequency. The duration 𝜏 of the inspiral phase is
significantly dependent on the masses of the binary components and is highly sensitive to
the starting orbital separation, 𝛼 , where 𝜏 ∝ 𝛼4. A gravitational wave signal from a binary
system of neutron stars will reach a frequency of approximately 10 Hz in the gravitational
wave spectrum only a few tens of seconds prior to merging. At this point, the frequency of
the emitted gravitational waves falls within the sensitivity window ground-based detectors,
which spans a range from about 10 Hz to 𝑂 (1kHz) for the current generation of detectors
[18].

In a compact binary system, the individual masses can be determined with some accuracy,
but a certain combination, called the chirp mass, can be obtained very accurately. This is
defined as

𝑀chirp =
(𝑀1𝑀2)3/5

(𝑀1 +𝑀2)1/5
, (1.110)

where 𝑀1, 𝑀2 are the individual masses. The impact of the mass ratio 𝑞 = 𝑀2/𝑀1 is less
prominent in the earlier stages of the inspiral, but becomes increasingly significant as the
inspiral phase approaches its conclusion [12]. The chirp mass alone can only provide an
estimate of the total mass if the mass ratio is not well defined. The determination of the
individual masses of the binary system has good accuracy only for mergers that have a high
signal-to-noise ratio (SNR).

When the orbital period reaches 1 millisecond and the merger of the binary approaches,
there is a pronounced tidal distortion in the binary system. The level of this distortion
depends on the masses of the stars and the equation of state (EoS) of the neutron star
matter. Due to the significant orbital angular momentum, the stars merge with a high
impact parameter. The final result of this merger is based on the combined mass of the
binary and the EoS. For higher masses, the remnant star cannot resist the gravitational
forces acting upon it and collapses into a black hole in less than 1 millisecond (“prompt
collapse”). In the case of a lower total mass, the remnant of the merger can also form a
neutron star. Whether the merger remnant will collapse into a black hole or form a heavier
neutron star depends on the matter properties of the NS. In the event of a collapse, some
matter may be ejected from the remnant, resulting in the formation of a torus encircling the
central black hole [16].

If the merger generates a neutron star, the resulting remnant is initially a rapidly rotating
and highly distorted structure that is subject to intense oscillations. Because the remnant
is spinning rapidly, it has the potential to resist gravitational collapse, even when its total

NEUTRON STARS 27

mass exceeds the maximum mass limit for nonrotating neutron stars. Redistribution of an-
gular momentum, coupled with losses from gravitational waves, mass ejection, and neutrino
cooling, may lead to a ”delayed collapse” of the remnant on a timescale of tens of hundreds
of milliseconds. In the case of very low-mass components and depending on the EoS, even a
stable remnant may be formed [16].

The post-merger gravitational wave spectrum

The main target is to create methods for extracting previously unknown characteristics of
neutron stars and high-density matter, by analyzing observable data and specifically the
gravitational wave signals emitted during neutron star mergers [7]. The concept is that the
equation of state has a direct impact on the dynamics of a merger, consequently leaving a
mark on the gravitational wave signal during the post-merger phase. A likely result of a
binary neutron star merger is a meta-stable remnant consisting of a differentially rotating
neutron star. Three different representative post-merger spectra for such a scenario are shown
in Fig. (1.2). The lower frequency segment of the spectrum is mainly produced in the inspiral

Figure 1.2: Post-merger GW spectra for three different cases, using the DD2 (black), NL3
(blue) and LS220 (red) EOSs (cross polarization along the polar axis at a reference distance
of 20 Mpc). The dashed lines show the anticipated sensitivity curves of Advanced LIGO [2]
(red) and of the Einstein Telescope [20]. Figure from [6].

phase. As the amplitude grows and the binary system approaches the merger phase, the
gravitational wave frequency increases to around 1 kHz. Within the post-merger spectrum,
multiple visible peaks appear with 𝑂 (kHz) frequencies. These peaks are linked to specific
oscillation modes and dynamic characteristics of the post-merger remnant [24, 6]. There is a
main oscillation frequency 𝑓peak, which is consistently present in all merger simulations that
do not immediately collapse into a BH. From an observational perspective, this peak is the
most significant as it can be detected with the highest SNR [11].

28 CHAPTER 1. INTRODUCTION

Origin and interpretation of peaks in postmerger gravitational-wave spectra

The post-merger phase of a neutron star merger produces a frequency spectrum with many
distinct peaks. To effectively detect and interpret these post-merger GW signals, it is essen-
tial to understand the underlying physical processes responsible for generating the different
features of the spectrum. It is therefore important to gain a deeper understanding of the
origins of the components within the post-merger GW spectrum. Exploring the sources
and interconnections among these various components holds significant potential to uncover
more information about the incompletely understood equation of state of high-density matter
beyond what can be determined from the measurement of the main peak.

The characteristics of the primary peak, 𝑓peak, provide insight into the origins of the
two most distinct secondary peaks at lower frequencies, referred to as 𝑓2−0 and 𝑓spiral [7].
In observations, for frequencies lower than 𝑓𝑝𝑒𝑎𝑘 , only secondary peaks are of importance,
as the sensitivity of ground-based gravitational wave detectors drops significantly at higher
frequencies. An effective method for examining the oscillation modes in rotating stars in-
volves the extraction of their eigenfunctions through Fourier analysis of simulation data [23].
The eigenfunction extraction process is as follows: The process is initiated by performing a
Fourier analysis on the pressure evolution on a grid of fixed points that covers the equato-
rial plane (a two-dimensional plane perpendicular to the star’s axis of rotation, effectively
dividing it into two equal halves). From the results of the Fourier spectra, the next step is
to determine the dominant frequency 𝑓peak. This frequency is found consistently throughout
the entire star. The Fourier amplitude is extracted at all points in the equatorial plane, and
specifically at the discrete frequency 𝑓peak. The outcome of this process is a two-dimensional
distribution of the amplitude, which represents the eigenfunction of the oscillation mode
under examination. It is important to note that the overall scaling is not significant, since
the eigenfunctions are strictly defined as linear perturbations.

As an illustrative example, Figure 1.3 provides a color-coded representation of this eigen-
function. This particular example exhibits a distinct quadrupolar structure (characterized
by an azimuthal mode number “𝑚 = 2”) with radial nodal lines [24]. This analysis thus offers
evidence that the primary peak in the gravitational wave (GW) spectrum originates from
the fundamental quadrupolar fluid mode.

The dynamics of the merger process suggest that the fundamental quasi-radial mode of
the remnant is likely to be activated at a specific frequency denoted as 𝑓0. This mode is nearly
spherically symmetric and produces only weak gravitational wave emission. Nevertheless, a
non-linear interaction between the quasi-radial oscillation and the quadrupolar mode leads
to the emission of strong GWs, providing an explanation for some of the secondary peaks.
The combination of the two modes results in the emergence of quasi-linear combination fre-
quencies, specifically 𝑓2±0 = 𝑓𝑝𝑒𝑎𝑘 ± 𝑓0 [24]. To link specific characteristics in the gravitational
wave spectrum with this mechanism, it is important to identify the quasi-radial mode 𝑓0
through the hydrodynamical evolution, utilizing the Fourier technique described above. Af-
ter determining 𝑓0 and 𝑓𝑝𝑒𝑎𝑘 , the secondary peaks in the GW spectrum can be identified,
which can be interpreted as quasi-linear combination frequencies 𝑓2±0.

In several cases, it is evident that there is at least one additional secondary peak at
frequencies lower than 𝑓𝑝𝑒𝑎𝑘 . In [6], it was shown that this secondary peak is created by
the orbital motion of two bulges that form immediately after the merger, appearing on the
surface of the remnant, see Fig. (1.4).

During the merging process, the stars become strongly distorted due to tidal forces. The
material at the outer edges of the stars that have been stretched by the tidal force cannot

NEUTRON STARS 29

Figure 1.3: Eigenfunction corresponding to the pressure oscillation at the frequency 𝑓 = 𝑓peak
within the equatorial plane. The merger is of a binary neutron star system with masses 1.35-
1.35 𝑀⊙, using the Shen EoS. Figure from [24].

keep up with the faster rotation of the cores of the original stars that make up the inner
part of the remnant. This results in the formation of two bulges at opposite sides of the
central remnant, which orbit it at a slower rate. These bulges orbit the central remnant
at a reduced orbital frequency and typically disintegrate in a matter of milliseconds. This
distinctive feature in the gravitational wave spectrum is referred to as 𝑓spiral [6]. Interestingly,
it has been observed that the 𝑓spiral feature is more intense in mergers with low total binary
masses and stiff equations of state (EoSs). This is understandable, since lower total binary
masses (𝑀tot) and stiffer equations of state (EoSs) indicate stars that are less tightly bound
to each other. This, in turn, promotes the formation of larger tidal bulges. The gap between
the frequencies, 𝑓peak − 𝑓spiral, corresponds to a frequency that is present in the temporal
development of the central lapse function but does not match the frequency of the primary
quasi-radial mode. This modulation at low frequencies becomes prominent in the case of
low-mass neutron star mergers with rather stiff equations of state (EoS). The cause of this
modulation can be attributed to the orientation of the bulges with respect to the pattern of
quadrupolar deformation within the core. This orientation influences the overall compactness
of the system, which is reflected in the evolution of the lapse function [6].

30 CHAPTER 1. INTRODUCTION

Figure 1.4: The evolution of rest-mass density in the equatorial plane is illustrated here.
The black and white dots indicate the positions of chosen fluid elements of the antipodal
bulges. The orbital motion of this spiral deformation pattern produces a new peak in the
gravitational wave spectrum, 𝑓spiral. Figure from [6].

Chapter 2

Post-Merger Models in the
Frequency Domain

Waveform Models

Gravitational waves offer a unique view of the Universe. To date, a significant number of
gravitational wave events have been observed. Up until the previous (O3) observational
run of the LIGO-Virgo-KAGRA (LVK) Collaboration, nearly 90 observations of merging
compact objects were made [4]. Periodically, gravitational-wave detectors undergo upgrades
aimed at improving their sensitivity and precision. These enhancements are crucial for
detecting gravitational waves originating from sources located at greater distances within
space. After the latest upgdrades, the O4 science run is currently ongoing. In the coming
years, new gravitational wave observatories, including ground-based detectors such as the
Einstein Telescope [20] and Cosmic Explorer [14], are planned to enhance our observational
capabilities. Additionally, the Laser Interferometer Space Antenna (LISA) [5] is scheduled
for launch in the second half of the 2030’s, which will further expand our ability to detect
gravitational waves from sources emitting at lower frequencies.

Solving Einstein’s field equations directly is a complex task due to the highly nonlin-
ear nature of the equations and their dependence on numerous variables. There are ten
independent components in Einstein’s field equations, making them a set of ten partial dif-
ferential equations. While it is theoretically possible to solve these equations analytically
for specific, simplified scenarios, solutions are extremely challenging for more complex sys-
tems, such as binary black hole or binary neutron star mergers. Therefore, waveform models
are required to facilitate the detection and sky localization of gravitational waves, estimate
source parameters, and validate Einstein’s theory of general relativity.

These models are developed using a variety of approaches, including analytical meth-
ods, numerical simulations, or hybrid methods that combine multiple techniques. Analytical
methods involve applying mathematical principles and solving differential equations to de-
scribe the behavior of astrophysical systems. At the other end of the spectrum, Numerical
Relativity (NR) directly solves Einstein’s equations through high-performance computing,
delivering precise predictions for the strong-field dynamics of merging binaries. Some ana-
lytical methods [10] are as follows :

• Post-Newtonian (PN) expansions: provide approximate solutions to Einstein’s field
equations for the metric tensor in the inspiral phase. These expansions use small
parameters (such as 1/𝑐2) to quantify deviations from Newton’s gravity, making them

31

32 CHAPTER 2. POST-MERGER MODELS IN THE FREQUENCY DOMAIN

suitable for weak field scenarios. While higher-order terms can enhance accuracy, in
strong-field situations numerical terms are typically used.

• Perturbation theory: is a mathematical approach used to study small deviations from
known solutions. In this technique, the problem is split into a known part, which could
be a non-rotating black hole, and a small perturbation. It finds extensive use during
the linearized phase of gravitational wave modeling, particularly in scenarios with weak
gravitational fields where deviations from a flat spacetime background are small. Such
conditions are often encountered during the early inspiral phase of binary systems,
where the gravitational interaction is relatively weak, or when the two involved objects
significantly differ in mass, leading to a more predictable perturbative response. It
is also used in the ring-down phase of binary black hole mergers, assuming that the
emitted gravitational waves are a combination of quasi-normal models of the final black
hole.

• Effective One Body (EOB) techniques blend analytical approximations with numeri-
cal methods to comprehensively model binary systems, offering insights into inspiral,
merger, and ringdown phases. This technique translates the two-body problem into
that of a single particle in an effective metric [8].

These models provide valuable insights into properties such as the stars’ masses, radii, and
equations of state, which are challenging to obtain through alternative methods.

By comparing observed waveforms to those predicted by General Relativity (GR) and
identifying deviations, one could probe the fundamental nature of gravity itself. The fre-
quency evolution of GWs allows us to infer the masses of the objects involved, while the
amplitude of the signals, combined with knowledge of the source masses, provides an esti-
mate of the distance to the system. Moreover, through careful analysis of the time of arrival,
amplitude, and phase of GW signals at multiple detectors, we can constrain the sky location
of the source. The modulations of amplitude and phase also offer insights into properties
such as spins and eccentricity of the binary system.

Fourier analysis

Continuous Fourier Transform

The Fourier transform is an integral transformation that converts functions from the time
or space domains into a form that describes the frequencies present in the original function.
The result of the transform is a complex valued function of frequency and is used to analyze
and interpret the signal in the frequency domain. In the context of gravitational waves, the
Fourier transform plays a crucial role in characterizing and understanding the waveforms
emitted by astrophysical sources, enabling us to extract valuable insights from the data.
The continuous Fourier transform of a time series ℎ(𝑡) is given by:

ℎ̃(𝑓) =
∫ ∞

−∞
ℎ(𝑡)𝑒−𝑖2𝜋 𝑓 𝑡 𝑑𝑡, (2.1)

where 𝑓 is frequency.

FOURIER ANALYSIS 33

Discrete Fourier Transform

The transition from the Continuous Fourier Transform (CFT) to the Discrete Fourier Trans-
form (DFT) is a process that involves converting continuous data into a discrete represen-
tation that enables the examination of the signal within the discrete domain. This process
uses the trapezoidal rule, a numerical integration method that approximates the integral of
a function by dividing the area under the curve into a series of trapezoids. The accuracy of
this method increases with a greater number of subintervals.

To achieve this transformation, the continuous signal of interest is discretized by selecting
𝑁 +1 specific time points that are uniformly separated by an interval Δ𝑡 . These distinct time
points, 𝑡𝑛, correspond to the values ℎ𝑛 for 𝑛 = −𝑁

2 ,..., 𝑁
2 . We assume that the signal starts

at time 0 and its total duration is 𝑇 . The integral in the definition of the Fourier transform
is then converted to a sum of discrete parts :

ℎ̃(𝑓𝑘) =
∫ 𝑇

0
ℎ(𝑡)𝑒−𝑖2𝜋 𝑓𝑘𝑡 𝑑𝑡

≃
𝑁 /2−1∑︁
𝑛=−𝑁 /2

(
ℎ𝑛𝑒

−𝑖2𝜋 𝑓𝑘𝑡𝑛 + ℎ𝑛+1𝑒−𝑖2𝜋 𝑓𝑘𝑡𝑛+1
)

=

(
ℎ−𝑁 /2𝑒

−𝑖2𝜋 𝑓𝑘𝑡−𝑁 /2 + 2ℎ−𝑁 /2+1𝑒
−𝑖2𝜋 𝑓𝑘𝑡−𝑁 /2+1 + ... + ℎ𝑁 /2−1𝑒

−𝑖2𝜋 𝑓𝑘𝑡𝑁 /2−1 + ℎ𝑁 /2𝑒
−𝑖2𝜋 𝑓𝑘𝑡𝑁 /2

) Δ𝑡

2
.

We further assume that the signal is periodic (a fundamental assumption in Fourier theory),
so that ℎ−𝑁 /2 = ℎ𝑁 /2. Then,

ℎ̃(𝑓𝑘) ≃
𝑁 /2−1∑︁
𝑛=−𝑁 /2

ℎ𝑛𝑒
−𝑖2𝜋 𝑓𝑘𝑡𝑛Δ𝑡

= Δ𝑡
𝑁 /2−1∑︁
𝑛=−𝑁 /2

ℎ𝑛𝑒
−𝑖 (2𝜋𝑘/𝑁)𝑛

= Δ𝑡𝐻𝑘 ,

(2.2)

where

𝐻𝑘 =

𝑁 /2−1∑︁
𝑛=−𝑁 /2

ℎ𝑛𝑒
−𝑖 2𝑘𝜋

𝑁
𝑛, (2.3)

defines the discrete Fourier transform (DFT).
Both the discrete signal and the DFT are periodic, so the samples of the discrete signal

and the DFT can be rearranged by moving them forward for half a cycle. This will cause
samples to be labeled 𝑛 = 0 ,...,𝑁 −1. As a result, the discrete Fourier transform of a function
ℎ(𝑡) becomes:

𝐻𝑘 =

𝑁−1∑︁
𝑛=0

ℎ𝑛𝑒
−𝑖 2𝑘𝜋

𝑁
𝑛, (2.4)

which is a more common convention in the literature.

Convolution

The continuous Fourier transform of a product of two functions is the continuous convolution
of the two individual Fourier transforms. So, given two functions ℎ(𝑡) and 𝑔(𝑡) and their

34 CHAPTER 2. POST-MERGER MODELS IN THE FREQUENCY DOMAIN

Fourier transforms ℎ̃(𝑓), 𝑔(𝑓), the convolution of ℎ and 𝑔, denoted as (ℎ̃ ∗𝑔) (𝑓), is expressed
as:

(ℎ̃ ∗ 𝑔) (𝑓) =
∫ ∞

−∞
ℎ̃(𝑓 ′)𝑔(𝑓 − 𝑓 ′) 𝑑 𝑓 ′, (2.5)

and coincides with the Fourier transfor of the product ℎ(𝑡)𝑔(𝑡).

Analytic Waveform Models in the Time Domain

Most analytical waveform models for the post-merger phase of binary neutron star mergers
have been defined in the time domain. This includes models that use physical parameters
(amplitude, frequency, frequency drift, damping time and phase), based on the oscillation
properties of a perturbed star, as well as models that a purely phenomenological, using a
large number of parameters with no immediately physical interpretation. A specific example
of a time-domain model with physical parameters, which we are going to use in this work,
models the post-merger signal as a sum of damped oscillators. It is written as

ℎ(𝑡) =
𝑁∑︁
𝑖=0

𝐴𝑖𝑒
−(𝑡−𝑡merger)/𝜏𝑖 sin(2𝜋 𝑓𝑖 (𝑡 − 𝑡merger) + 𝜙𝑖), (2.6)

where,

• 𝑁 is the number of dampled oscillators participating in the model,

• 𝑡merger is the time at which the amplitude of the gravitational wave becomes maximum,
indicating the onset of merger. It is typically expressed in seconds (s).

• ℎ(𝑡) is the strain of the wave at a given time; a dimensionless quantity that measures
the relative stretching and squeezing of lengths in a spacetime through which the
gravitational wave travels.

• 𝐴𝑖 represents the dimensionless amplitude of each damped oscillator.

• 𝜏𝑖 : This parameter characterizes the timescale at which the amplitude of each compo-
nent decays over time due to damping. It is also measured in seconds.

• 𝑓𝑖 : Is the frequency of the 𝑖−th component and represents the number of oscillations
per unit of time. The frequency 𝑓 is measured in Hertz (Hz) and its inverse, the period
𝑇 , is measured in seconds (s).

• 𝜙𝑖 : is the phase angle of the 𝑖−th component. This parameter determines the initial
phase of each damped oscillator in the waveform model. It is measured in radians.

In parameter estimation computations, using, for example, Bayesian methods, a large
number of computations of the waveform model is required. However, the criterion for com-
paring the model to data is formulated in the frequency domain. Hence, for each individual
evaluation, one needs to perform a numerical DFT of the analytic model, which increases the
computational cost. It is, therefore, desirable to formulate post-merger waveform models di-
rectly in the frequency domain. In this work, we are going to transform analytic time-domain
models to corresponding frequency-domain models using the continuous Fourier transform.

We used Mathematica to find the continuous Fourier transform of analytic time-domain
models. Our results were then directly compared to the numerical DFT of the same models,
with the same parameters, to validate the correctness of our results.

COMPUTATIONAL WORKFLOW 35

Computational Workflow

The computational part of this work was performed in a Linux environment. Continu-
ous transforms were obtained in Mathematica 11.0 and discrete transforms were obtained
in Python 3.10. The libraries employed in Python were NumPy 1.24.3, SciPy 1.8.1,
Matplotlib 3.5.3 and SymPy 1.12. For DFT, we used the fftpack module of SciPy.
For the more advanced waveform model, we also computed convolutions. Once a waveform
model was obtained in Mathematica, we first exported the resulting expression to C using
the CForm[] command and then transformed it to a Python library using SWIG, a software
development tool that links programs written in C and C++ to a variety of high-level pro-
gramming languages. Certain special functions (Erfi(𝑧)) were included in the C code using
the Faddeeva package. The resulting workflow is shown schematically in Fig. 2.1.

Figure 2.1: Workflow for transforming an analytic expression obtained initially in
Mathematica to a Python library.

Analytic Waveform Models in the Frequency Domain

Below, we discuss several waveform models, starting from the simplest case of a single
dampled oscillator, continuing with a sum of damped oscillators and arriving at the more
advanced model that includes a time-evolving dominant frequency.

Single damped oscillator without window function

Our simplest example is a single damped oscillator, which is defined as follows in the time
domain:

ℎ(𝑡) = 𝐴1𝑒
−(𝑡−𝑡merger)/𝜏1 sin

(
2𝜋 𝑓1(𝑡 − 𝑡merger) + 𝜙1

)
. (2.7)

The continuous Fourier transform in Mathematica is found with the following command:

FourierTransform[A1 ∗ Exp[−(𝑡 − tmerger)/𝜏1] ∗ Sin[2 ∗ Pi ∗ f1 ∗ (𝑡 − tmerger) + 𝜙1],
𝑡, 2 ∗ Pi ∗ f, FourierParameters− > {1,−1}], (2.8)

with the result

ℎ̃(𝑓) = 𝑖𝜋𝐴1

[
𝑒2𝑖𝜋𝑡merger 𝑓1+𝑡merger/𝜏1−𝑖𝜙1𝛿

(
2𝑓 𝜋 + 2𝜋 𝑓1 −

𝑖

𝜏1

)
−𝑒−2𝑖𝜋𝑡merger 𝑓1+𝑡merger/𝜏1+𝑖𝜙1𝛿

(
−2𝑓 𝜋 + 2𝜋 𝑓1 +

𝑖

𝜏1

)]
. (2.9)

The result of this transform contains Dirac Delta functions, 𝛿 (𝑧) with complex arguments.
Note that Mathematica does not produce a valid numerical computation for 𝛿 (𝑧), even in a
simple scenario, such as evaluating 𝛿 (1 + 𝑖).

When computing the distinct Fourier transforms of the functions

ℎ1(𝑡) = 𝐴1𝑒
−(𝑡−𝑡merger)/𝜏1, (2.10)

36 CHAPTER 2. POST-MERGER MODELS IN THE FREQUENCY DOMAIN

and
ℎ2(𝑡) = sin

(
2𝜋 𝑓1

(
𝑡 − 𝑡merger

)
+ 𝜙1

)
(2.11)

to perform a convolution, the same problem appears, since the Fourier transform of Eq.
(2.10) is

ℎ̃1(𝑓) = 2𝐴1𝑒
𝑡merger/𝜏1𝜋𝛿 (−2𝑓 𝜋 + 𝑖/𝜏1) (2.12)

which again contains the Dirac delta function with a complex argument. The problem
originates from the fact that the time-domain model of Eq. (2.7) does not represent a finite
duration of the signal, i.e. it goes back to an infinite amplitude as 𝑡 → −∞}, which results
in the 𝛿 functions when it is transformed to the frequency domain. Therefore, although this
model can be used in applications in the time domain, it is not appropriate for applications
in the frequency domain.

Single damped oscillator with window function

We resolved the problem identified in the previous section, by multiplying the time-domain
model with an appropriate window function, to effectively enforce a finite duration 𝐷 of the
signal. To achieve this, we use the rectangular window function Π[𝑡/𝐷], but with a starting
time 𝑡 = 𝑡merger and end time 𝑡 = 𝑡merger + 𝐷, i.e.

Π[(𝑡 − 𝑡merger)/𝐷] =
{
1 for 𝑡merger ≤ 𝑡 ≤ 𝑡merger + 𝐷

0 otherwise
(2.13)

We construct this window function in Mathematica as the difference between two Heaviside
step functions. The latter is defined as

\ (𝑡) =
{
1 for 𝑡 ≥ 0

0 for 𝑡 < 0.
(2.14)

Hence, we write

Π[(𝑡 − 𝑡merger)/𝐷] = \ (𝑡 − 𝑡merger) − \ (𝑡 − 𝑡merger − 𝐷), (2.15)

and multiply the time-domain model of Eq. (2.7) by this window function, resulting in a
time-domain model with a finite duration:

ℎ𝐷 (𝑡) = Π[(𝑡 − 𝑡merger)/𝐷] · 𝐴1𝑒
−(𝑡−𝑡merger)/𝜏1 sin

(
2𝜋 𝑓1(𝑡 − 𝑡merger) + 𝜙1

)
. (2.16)

In Fig. 2.2 we show a particular example of a single damped oscillator, without the window
function (black line) and with the window function (blue line). We obtained the analytic
Fourier transform of Eq. (2.16) using Mathematica,

FourierTransform[A1 ∗ Π[𝑡] ∗ Exp[−(𝑡 − tmerger)/𝜏1] ∗ Sin[2 ∗ Pi ∗ f1 ∗ (𝑡 − tmerger) + 𝜙1],
𝑡, 2 ∗ Pi ∗ f, FourierParameters− > {1,−1}] . (2.17)

ANALYTIC WAVEFORM MODELS IN THE FREQUENCY DOMAIN 37

However, the result still contained 𝛿 functions with complex arguments:

ℎ̃𝐷 (𝑓) =
𝐴1

4

[
2𝑖𝜏1

𝑖 − 2𝜋 (𝑓 + 𝑓1)𝜏1
+ 2𝜋𝛿 (2𝜋 (𝑓 + 𝑓1) − 𝑖/𝜏1)

]
𝑖𝑒−𝑖 (𝜙1+2𝑓 𝜋𝑡merger)

+𝐴1

4
𝑒−𝐷/𝜏1

[
2𝑖𝜏1

𝑖 − 2𝜋 (𝑓 − 𝑓1)𝜏1
+ 2𝜋𝛿 (2𝜋 (𝑓 + 𝑓1) − 𝑖/𝜏1)

]
𝑖𝑒𝑖 (𝜙1−2𝜋𝐷 (𝑓 −𝑓1)−2𝜋 𝑓 𝑡merger)

+𝐴1

4
𝑒−𝐷/𝜏1

[
2𝑖𝜏1

𝑖 − 2𝜋 (𝑓 + 𝑓1)𝜏1
+ 2𝜋𝛿 (2𝜋 (𝑓 + 𝑓1) − 𝑖/𝜏1)

]
𝑖𝑒−𝑖 (𝜙1+2𝜋𝐷 (𝑓 +𝑓1)+2𝑓 𝜋𝑡merger)

(2.18)

We managed to obtain a different expression, that does not involve 𝛿 functions, deriv-
ing the Fourier transform of Eq. (2.16) using convolution of the Fourier transform of its
individual terms. Specifically, we split Eq. (2.16) into the product of two terms:

ℎ𝐷 (𝑡) = ℎ1(𝑡) · ℎ2(𝑡), (2.19)

where
ℎ1(𝑡) = Π[(𝑡 − 𝑡merger)/𝐷] · 𝐴1𝑒

−(𝑡−𝑡merger)/𝜏1, (2.20)

and
ℎ2(𝑡) = sin

(
2𝜋 𝑓1(𝑡 − 𝑡merger) + 𝜙1

)
. (2.21)

We find the individual analytic Fourier transforms as

ℎ̃1(𝑓) =
𝐴1𝜏1(1 − 𝑖2𝜋 𝑓 𝜏1)

1 + 4𝜋2 𝑓 2𝜏21

(
𝑒𝑖2𝜋𝐷𝑓 − 𝑒−𝐷/𝜏1

)
𝑒−𝑖2𝜋 𝑓 (𝐷+𝑡merger)

−𝑒 (1+𝑖2𝜋 𝑓 𝜏1) (𝐷+𝑡merger)/𝜏1 \ (−𝐷 − 𝑡merger)
+𝑒 (1+𝑖2𝜋 𝑓 𝜏1) (𝐷+𝑡merger)/𝜏1 \ (−𝑡merger), (2.22)

and

ℎ̃2(𝑓) = −1
2
𝑖𝑒−𝑖 (2𝜋 𝑓1𝑡merger−𝜙1)𝛿 (−𝑓 + 𝑓1) +

1

2
𝑖𝑒𝑖 (2𝜋 𝑓1𝑡merger−𝜙1)𝛿 (𝑓 + 𝑓1). (2.23)

Then, the Fourier transform of ℎ𝐷 (𝑡) is the convolution of ℎ̃1(𝑓) and ℎ̃2(𝑓). That is

ℎ̃𝐷 (𝑓) =
∫ +∞

−∞
ℎ̃1(𝑓 ′)ℎ̃2(𝑓 − 𝑓 ′)𝑑 𝑓 ′. (2.24)

38 CHAPTER 2. POST-MERGER MODELS IN THE FREQUENCY DOMAIN

The result is

ℎ̃𝐷 (𝑓) =
1

2
𝐴1𝑒

−𝑖𝜙1𝜏1

{
𝑒−𝐷 [2𝑖𝜋 (𝑓 +𝑓1)+1/𝜏1]−2𝑖 𝑓 𝜋𝑡merger

[
[𝑖 − 2𝜋 (𝑓 − 𝑓1)𝜏1]

+ 𝑒2𝑖𝜙1+𝐷 [2𝑖 (𝑓 +𝑓1)𝜋+1/𝜏1] [𝑖 − 2𝜋 (𝑓 + 𝑓1)𝜏1]
+ 𝑒𝐷 [2𝑖 (𝑓 +𝑓1)𝜋+1/𝜏1] [−𝑖 + 2𝜋 (𝑓 − 𝑓1)𝜏1]

+ 𝑒2𝑖 (𝜙1+2𝐷𝑓1𝜋) [−𝑖 + 2𝜋 (𝑓 + 𝑓1)𝜏1]
]}
/

[−𝑖 + 2𝜋 (𝑓 − 𝑓1)𝜏1] [−𝑖 + 2𝜋 (𝑓 + 𝑓1)𝜏1]

+ 𝑖

[
𝑒2𝑖𝜙1−2𝑖 𝑓1𝜋𝑡merger+𝑡merger/𝜏1

1 + 4𝜋2𝜏21 (𝑓 − 𝑓1)2
− 𝑒 (2𝑖 𝑓1𝜋+1/𝜏1)𝑡merger

1 + 4𝜋2𝜏21 (𝑓 + 𝑓1)2

]
\ (−𝐷 − 𝑡merger)

+
[
−𝑖𝑒

2𝑖𝜙1−2𝑖 𝑓1𝜋𝑡merger+𝑡merger/𝜏1

1 + 4𝜋2𝜏21 (𝑓 − 𝑓1)2
) + 𝑖𝑒 (2𝑖 𝑓1𝜋+1/𝜏1)𝑡merger

1 + 4𝜋2𝜏21 (𝑓 + 𝑓1)2

]
\ (−𝑡merger) (2.25)

and it is free from complex arguments in 𝛿 functions.
Fig. 2.3 shows the continuous Fourier transform of Eq. (2.25) for the representative

case of the single damped oscillator with the orthogonal window function in Fig. 2.2. We
compare our result to the corresponding numerical DFT of the time series. We find excellent
agreement between our analytic Fourier transform and the numerical DFT of the time series.
The small oscillations seen in the analytic Fourier transform and due to the phenomenon
of spectral leakage, caused by the finite duration 𝐷 of the orthogonal window function. The
numerical DFT coincides with the analytic result at the local minima of these oscillations.
To verify that the oscillations are entirely due to the spectral leakage, we repeat the above
comparison in Fig. 2.4, but this time for a significantly increased duration of 𝐷 = 0.125. For
such large duration, the oscillations due to spectral leakage are no longer visible.

The numerical codes for producing the comparisons in Figs. 2.2, 2.3, and 2.4 are presented
in Appendix A.

Multiple damped oscillators with window function

As a second example, we consider the sum of four damped oscillators, which is a more
realistic description of the post-merger GW emission in binary neutron star mergers. In this
case, the analytic model in the time domain is

ℎ(𝑡) = Π[(𝑡 − 𝑡merger)/𝐷] ·[
𝐴1𝑒

−(𝑡−𝑡𝑚𝑒𝑟𝑔𝑒𝑟)/𝜏1 sin
(
2𝜋 𝑓1(𝑡 − 𝑡merger) + 𝜙1

)
+ 𝐴2𝑒

−(𝑡−𝑡𝑚𝑒𝑟𝑔𝑒𝑟)/𝜏2 sin
(
2𝜋 𝑓2(𝑡 − 𝑡merger) + 𝜙2

)
+ 𝐴3𝑒

−(𝑡−𝑡𝑚𝑒𝑟𝑔𝑒𝑟)/𝜏3 sin
(
2𝜋 𝑓3(𝑡 − 𝑡merger) + 𝜙3

)
+ 𝐴4𝑒

−(𝑡−𝑡𝑚𝑒𝑟𝑔𝑒𝑟)/𝜏4 sin
(
2𝜋 𝑓4(𝑡 − 𝑡merger) + 𝜙4

)]
. (2.26)

A fundamental property of Fourier analysis is that the Fourier transform of a sum of functions
is equivalent to the sum of the Fourier transforms of those functions. Thus, in the case of a
four-oscillator sum in Eq. (2.26), we can compute the Fourier transform of each oscillator and
then sum them up. As previously demonstrated, trying to compute the Fourier transform
for the single damped oscillator of Eq. (2.7) without multiplying with a window function

ANALYTIC WAVEFORM MODELS IN THE FREQUENCY DOMAIN 39

0.01 0.00 0.01 0.02 0.03 0.04
t

6

4

2

0

2

4

6

h(
t)

1e 23
without window
with window

Figure 2.2: Representative example of a single dampled oscillator in the time domain, without
a window function (black line) and with the rectangular window function (blue line). The
values used are 𝐷 = 0.03, 𝑡merger = 0, 𝐴1 = 10−22.5, 𝜏1 = 2.5 × 10−2.25, 𝜙1 = −𝜋/2, 𝑓1 = 3100
(dimensionless units).

0 1000 2000 3000 4000 5000
f

10 29

10 28

10 27

10 26

10 25

10 24

h(
f)

discrete
continuous

Figure 2.3: Comparison of the analytic continuous Fourier transform to the numerical DFT
for the particular model of a single damped oscillator with a rectangular window funtion
shown in Fig. 2.2.

40 CHAPTER 2. POST-MERGER MODELS IN THE FREQUENCY DOMAIN

0 1000 2000 3000 4000 5000
f

10 29

10 28

10 27

10 26

10 25

10 24

h(
f)

discrete
continuous

Figure 2.4: Same as Fig. 2.3, but for a significantly longer signal duration.

to enforce a finite duration, becomes impractical due to the presence of 𝛿 functions with
complex arguments. Therefore, the use of an orthogonal window function is essential and
we apply the same one to each of the four oscillators participating in Eq. (2.26).

Following the same process as earlier the sum of the convolution is:

ℎ̃𝐷 (𝑓) =
1

2
𝐴1𝑒

−𝑖𝜙1𝜏1

{
𝑒−𝐷 [2𝑖𝜋 (𝑓 +𝑓1)+1/𝜏1]−2𝑖 𝑓 𝜋𝑡merger

[
[𝑖 − 2𝜋 (𝑓 − 𝑓1)𝜏1]

+ 𝑒2𝑖𝜙1+𝐷 [2𝑖 (𝑓 +𝑓1)𝜋+1/𝜏1] [𝑖 − 2𝜋 (𝑓 + 𝑓1)𝜏1]
+ 𝑒𝐷 [2𝑖 (𝑓 +𝑓1)𝜋+1/𝜏1] [−𝑖 + 2𝜋 (𝑓 − 𝑓1)𝜏1]

+ 𝑒2𝑖 (𝜙1+2𝐷𝑓1𝜋) [−𝑖 + 2𝜋 (𝑓 + 𝑓1)𝜏1]
]}
/

[−𝑖 + 2𝜋 (𝑓 − 𝑓1)𝜏1] [−𝑖 + 2𝜋 (𝑓 + 𝑓1)𝜏1]

+ 𝑖

[
𝑒2𝑖𝜙1−2𝑖 𝑓1𝜋𝑡merger+𝑡merger/𝜏1

1 + 4𝜋2𝜏21 (𝑓 − 𝑓1)2
− 𝑒 (2𝑖 𝑓1𝜋+1/𝜏1)𝑡merger

1 + 4𝜋2𝜏21 (𝑓 + 𝑓1)2

]
\ (−𝐷 − 𝑡merger)

+
[
−𝑖𝑒

2𝑖𝜙1−2𝑖 𝑓1𝜋𝑡merger+𝑡merger/𝜏1

1 + 4𝜋2𝜏21 (𝑓 − 𝑓1)2
) + 𝑖𝑒 (2𝑖 𝑓1𝜋+1/𝜏1)𝑡merger

1 + 4𝜋2𝜏21 (𝑓 + 𝑓1)2

]
\ (−𝑡merger)

+ 1

2
𝐴2𝑒

−𝑖𝜙2𝜏2

{
𝑒−𝐷 [2𝑖𝜋 (𝑓 +𝑓2)+1/𝜏2]−2𝑖 𝑓 𝜋𝑡merger

[
[𝑖 − 2𝜋 (𝑓 − 𝑓2)𝜏2]

+ 𝑒2𝑖𝜙2+𝐷 [2𝑖 (𝑓 +𝑓2)𝜋+1/𝜏2] [𝑖 − 2𝜋 (𝑓 + 𝑓2)𝜏2]
+ 𝑒𝐷 [2𝑖 (𝑓 +𝑓2)𝜋+1/𝜏2] [−𝑖 + 2𝜋 (𝑓 − 𝑓2)𝜏2]

+ 𝑒2𝑖 (𝜙2+2𝐷𝑓2𝜋) [−𝑖 + 2𝜋 (𝑓 + 𝑓2)𝜏2]
]}
/

[−𝑖 + 2𝜋 (𝑓 − 𝑓2)𝜏2] [−𝑖 + 2𝜋 (𝑓 + 𝑓2)𝜏2]

ANALYTIC WAVEFORM MODELS IN THE FREQUENCY DOMAIN 41

+ 𝑖

[
𝑒2𝑖𝜙2−2𝑖 𝑓2𝜋𝑡merger+𝑡merger/𝜏2

1 + 4𝜋2𝜏22 (𝑓 − 𝑓2)2
− 𝑒 (2𝑖 𝑓2𝜋+1/𝜏2)𝑡merger

1 + 4𝜋2𝜏22 (𝑓 + 𝑓2)2

]
\ (−𝐷 − 𝑡merger)

+
[
−𝑖𝑒

2𝑖𝜙2−2𝑖 𝑓2𝜋𝑡merger+𝑡merger/𝜏2

1 + 4𝜋2𝜏22 (𝑓 − 𝑓2)2
) + 𝑖𝑒 (2𝑖 𝑓2𝜋+1/𝜏2)𝑡merger

1 + 4𝜋2𝜏22 (𝑓 + 𝑓2)2

]
\ (−𝑡merger)

+ 1

2
𝐴3𝑒

−𝑖𝜙3𝜏3

{
𝑒−𝐷 [2𝑖𝜋 (𝑓 +𝑓3)+1/𝜏3]−2𝑖 𝑓 𝜋𝑡merger

[
[𝑖 − 2𝜋 (𝑓 − 𝑓3)𝜏3]

+ 𝑒2𝑖𝜙3+𝐷 [2𝑖 (𝑓 +𝑓3)𝜋+1/𝜏3] [𝑖 − 2𝜋 (𝑓 + 𝑓3)𝜏3]
+ 𝑒𝐷 [2𝑖 (𝑓 +𝑓3)𝜋+1/𝜏3] [−𝑖 + 2𝜋 (𝑓 − 𝑓3)𝜏3]

+ 𝑒2𝑖 (𝜙3+2𝐷𝑓3𝜋) [−𝑖 + 2𝜋 (𝑓 + 𝑓3)𝜏3]
]}
/

[−𝑖 + 2𝜋 (𝑓 − 𝑓3)𝜏3] [−𝑖 + 2𝜋 (𝑓 + 𝑓3)𝜏3]

+ 𝑖

[
𝑒2𝑖𝜙3−2𝑖 𝑓3𝜋𝑡merger+𝑡merger/𝜏3

1 + 4𝜋2𝜏23 (𝑓 − 𝑓3)2
− 𝑒 (2𝑖 𝑓3𝜋+1/𝜏3)𝑡merger

1 + 4𝜋2𝜏23 (𝑓 + 𝑓3)2

]
\ (−𝐷 − 𝑡merger)

+
[
−𝑖𝑒

2𝑖𝜙3−2𝑖 𝑓3𝜋𝑡merger+𝑡merger/𝜏3

1 + 4𝜋2𝜏23 (𝑓 − 𝑓3)2
) + 𝑖𝑒 (2𝑖 𝑓3𝜋+1/𝜏3)𝑡merger

1 + 4𝜋2𝜏23 (𝑓 + 𝑓3)2

]
\ (−𝑡merger)

+ 1

2
𝐴4𝑒

−𝑖𝜙4𝜏4

{
𝑒−𝐷 [2𝑖𝜋 (𝑓 +𝑓4)+1/𝜏4]−2𝑖 𝑓 𝜋𝑡merger

[
[𝑖 − 2𝜋 (𝑓 − 𝑓4)𝜏4]

+ 𝑒2𝑖𝜙4+𝐷 [2𝑖 (𝑓 +𝑓4)𝜋+1/𝜏4] [𝑖 − 2𝜋 (𝑓 + 𝑓4)𝜏4]
+ 𝑒𝐷 [2𝑖 (𝑓 +𝑓4)𝜋+1/𝜏4] [−𝑖 + 2𝜋 (𝑓 − 𝑓4)𝜏4]

+ 𝑒2𝑖 (𝜙4+2𝐷𝑓4𝜋) [−𝑖 + 2𝜋 (𝑓 + 𝑓4)𝜏4]
]}
/

[−𝑖 + 2𝜋 (𝑓 − 𝑓4)𝜏4] [−𝑖 + 2𝜋 (𝑓 + 𝑓4)𝜏4]

+ 𝑖

[
𝑒2𝑖𝜙4−2𝑖 𝑓4𝜋𝑡merger+𝑡merger/𝜏4

1 + 4𝜋2𝜏24 (𝑓 − 𝑓4)2
− 𝑒 (2𝑖 𝑓4𝜋+1/𝜏4)𝑡merger

1 + 4𝜋2𝜏24 (𝑓 + 𝑓4)2

]
\ (−𝐷 − 𝑡merger)

+
[
−𝑖𝑒

2𝑖𝜙4−2𝑖 𝑓4𝜋𝑡merger+𝑡merger/𝜏4

1 + 4𝜋2𝜏24 (𝑓 − 𝑓4)2
) + 𝑖𝑒 (2𝑖 𝑓4𝜋+1/𝜏4)𝑡merger

1 + 4𝜋2𝜏24 (𝑓 + 𝑓4)2

]
\ (−𝑡merger) (2.27)

Fig. (2.5) shows a representative example of a waveform in the time domain, described
by the sum of four damped oscillators with an orthogonal window function of Eq. (2.26).
In Fig. (2.6), we also show the time evolution of the individual oscillators participating in
the model, for the same case as in Fig. (2.5). The analytic Fourier transform of this time
evolution is displayed in Fig. (2.7) and compared to the corresponding numerical DFT. We
find excellent agreement between the analytic and numerical results.

42 CHAPTER 2. POST-MERGER MODELS IN THE FREQUENCY DOMAIN

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
t

1.0

0.5

0.0

0.5

1.0

h(
t)

1e 22

Figure 2.5: A representative case of an analytic post-merger waveform model in the time
domain, consisting of the sum of four damped oscillators of Eq. (2.26). The duration is
𝐷 = 0.125, and the merger time is 𝑡merger = 0. The parameters of the individual oscillators
are 𝐴1 = 10−22.5, 𝐴2 = 10−22.3, 𝐴3 = 10−22.3, 𝐴4 = 10−22.3, 𝜏1 = 10−2.25, 𝜏2 = 10−2.8, 𝜏3 =

10−2.8, 𝜏4 = 10−2.8, 𝜙1 = −𝜋/2, 𝜙2 = 𝜋/2, 𝜙3 = −𝜋/2, 𝜙4 = −𝜋/2, 𝑓1 = 3100, 𝑓2 = 2750, 𝑓3 =

2460, 𝑓1 = 3640, (dimensionless units).

ANALYTIC WAVEFORM MODELS IN THE FREQUENCY DOMAIN 43

0.000 0.005 0.010 0.015 0.020 0.025 0.030
t

3

2

1

0

1

2

3

h(
t)

1e 23
Model1
Model2
Model3
Model4

Figure 2.6: Same as Fig. 2.5, but only the individual oscillators (Model1 - Model4) partici-
pating in the sum of Eq. (2.26) are shown.

0 1000 2000 3000 4000 5000
f

10 27

10 26

10 25

h(
f)

discrete
continuous

Figure 2.7: Comparison of the analytic continuous Fourier transform and the numerical
DFT for the particular model comprising four damped oscillators with a rectangular window
function shown in Figs. 2.5 and 2.6. An excellent agreement is observed.

44 CHAPTER 2. POST-MERGER MODELS IN THE FREQUENCY DOMAIN

Figure 2.8: A spectrogram of the post-merger gravitational wave emission from a particular
binary neutron star merger simulation is shown. The dominant oscillation frequency, 𝑓peak,
changes over the first 5ms after merger and then remains constant. This time evolution
can be modelled with a piecewise analytic fit (as indicated by the lines). The purple star
marks the point at which the frequency becomes constant. The dashed lines represent other
post-merger frequencies. Figure from [25].

Multiple damped oscillators with time-dependent 𝑓peak and window function

In [25] an analytical time domain model was introduced for the GW emission in the post-
merger phase of a binary neutron star system that includes four damped oscillators, but
with a time-dependent frequency for the dominant peak. The motivation for introducing the
time dependence in the dominant oscillator was the observation that in many simulations
the dominant frequency 𝑓peak was observed to have a strong time dependence for a few mil-
liseconds after merger. A particular example is shown in the spectrogram of Fig. 2.8, which
focuses on the time evolution of 𝑓peak. In [25], this particular time dependence was modeled
as a piecewise function consisting of two linear pieces. The first piece describes a linearly
varying frequency from 𝑡merger up to a time 𝑡∗, whereas the second piece corresponds to a
constant frequency.

The model introduced in [25] can be written as:

ℎ(𝑡) = 𝐴1𝑒
−(𝑡−𝑡merger)/𝜏1sin

[
2𝜋 𝑓1(𝑡 − 𝑡merger) + 𝜙1

]
+ 𝐴2𝑒

−(𝑡−𝑡merger)/𝜏2sin
[
2𝜋 𝑓2(𝑡 − 𝑡merger) + 𝜙2

]
+ 𝐴3𝑒

−(𝑡−𝑡merger)/𝜏3sin
[
2𝜋 𝑓3(𝑡 − 𝑡merger) + 𝜙3

]

ANALYTIC WAVEFORM MODELS IN THE FREQUENCY DOMAIN 45

+ 𝐴peak(𝑡), (2.28)

where

𝐴peak(𝑡) =

𝐴peak𝑒

−(𝑡−𝑡merger)/𝜏peak sin
[
2𝜋

(
𝑓peak,0 + Zdrift

(𝑡−𝑡merger)
2

)]
+(𝑡 − 𝑡merger) + 𝜙peak,0 if 𝑡 ≤ 𝑡∗

𝐴peak 𝑒−(𝑡−𝑡merger)/𝜏peak sin
[
2𝜋 𝑓peak(𝑡∗) (𝑡 − 𝑡∗)

]
+ 𝜙peak(𝑡∗) if 𝑡 > 𝑡∗

(2.29)

and

𝑓peak(𝑡∗) = 𝑓peak,0 + Zdrift
(𝑡∗ − 𝑡merger)

2
,

𝜙peak(𝑡∗) = 2𝜋

(
𝑓peak,0 + Zdrift

(𝑡∗ − 𝑡merger)
2

)
(𝑡∗ − 𝑡merger) + 𝜙peak,0,

𝑡 = 𝑡∗ is the time after which the frequency remains constant,

𝑡 = 𝑡merger is the time at which |ℎ(𝑡) | =
√︃
ℎ2+(𝑡) + ℎ2× (𝑡) reaches maximum.

The time domain model can be transformed into a frequency domain model if it is first
multiplied with an orthogonal unit window function. In this case, we choose a window
function with a total width of𝑇 that extends from −𝑇 /2 to𝑇 /2 and then obtain the continuous
Fourier transform with Mathematica, as described in the previous sections. However, this
example has three oscillators in the form [2.16] and a fourth one that is time dependent.
Once again, the Fourier transform of the sum is the sum of the Fourier transforms. For the
first three oscillators, we use a Fourier transform corresponding to Eq. (2.25), but for the
new orthogonal window function.

We define the fourth oscillator in Mathematica as a piecewise function multiplied by an
orthogonal window function

ℎpeak(𝑡) = (HeavisideTheta [𝑡 +𝑇 /2] − HeavisideTheta [𝑡 −𝑇 /2]) ∗
Piecewise[{{𝐴peak ∗ Exp

[
−(𝑡 − 𝑡merger)/𝜏peak

]
∗

Sin
[
2 ∗ Pi ∗

(
𝑓𝑝𝑒𝑎𝑘,0 + Z𝑑𝑟𝑖 𝑓 𝑡 ∗

(
𝑡 − 𝑡merger

)
/2

)
∗(𝑡 − 𝑡merger) + 𝜙peak,0

]
, 𝑡 < 𝑡∗,

{𝐴peak ∗ Exp
[
−(𝑡 − 𝑡merger)/𝜏peak

]
∗

Sin
[
2 ∗ Pi ∗ (𝑓peak,0 + Zdrift ∗ (𝑡∗ − 𝑡merger)/2)

∗(𝑡 − 𝑡merger) + 𝜙peak,0

]
𝑡 >= 𝑡∗}, {0, True}}] . (2.30)

The continuous transform of [2.30], ℎ̃peak(𝑓), is calculated in Mathematica, resulting in a
very large expression (even you using the Simplify command, and hence we do not display
the result here.

After the continuous Fourier transforms for each oscillator were computed individually,
we found the transform of the complete model of Eq. (2.28), after it is multiplied with the
orthogonal window funtion, by adding the individual contributions:

ℎ̃(𝑓) =
3∑︁
𝑖

ℎ̃𝑖 (𝑓) + ℎ̃𝑝𝑒𝑎𝑘 (𝑓) . (2.31)

46 CHAPTER 2. POST-MERGER MODELS IN THE FREQUENCY DOMAIN

In Fig. (2.9) we show a particular example of the complete model of Eq. (2.28), with
time-evolving 𝑓peak in the time domain (we used dimensionless units, with the convention of
1ms = 1). The corresponding continuous Fourier transform that we obtained for this model
is shown in Fig. (2.10) and we compare it to the numerical DFT of the same time series.
Apart from the expected spectral leakage for such a short-duration signal, we find excellent
agreement between the continuous Fourier transform and the numerical DFT, confirming
the validity of our obtained analytic expression. To confirm that that the small oscillations
present in the continuous transform are only due to spectral leakage, we show a magnification
of Fig. (2.10) in the frequency range 0 ≤ 𝑓 ≤ 1 in Fig. (2.11). The discrete values of the
numerical DFT coincide with the minima of the spectral-leakage-induced oscillation in the
continuous transform, as expected.

20 15 10 5 0 5 10 15 20

3

2

1

0

1

2

3

Figure 2.9: Time evolution of model [2.28] for 𝐴peak = 10/exp(2), 𝑡∗ = −15, 𝑓peak,0 =

3, 𝑡merger = −20, 𝜙𝑝𝑒𝑎𝑘,0 = 0, 𝜏peak = 30, Zdrift = −0.15, 𝑇 = 40, 𝑓1 = 2.4, 𝑓2 = 2, 𝑓3 =

4, 𝜏1 = 3, 𝜏2 = 3, 𝜏3 = 3, 𝐴1 = 10/exp(2), 𝐴2 = 10/exp(2), 𝐴3 = 10/exp(2), 𝜙1 = 𝜋/2, 𝜙2 =

−𝜋/2, 𝜙3 = −𝜋/2

Conversion to Python library

In order to make full use of the continuous Fourier transforms we obtained in this worked,
we converted their expressions to Python libraries. This will enable their usage in different
applications, such as Bayesian parameter estimation codes, which are written in this pro-
gramming language. To achieve this conversion, we had to solve several issues. Below, we
give explicit details of how this conversion was achieved.

As a first step, we exported the final Mathematica expression to C using the built-in
CForm[] command. However, we found that this built-in conversion is not free of issues,
which we had to resolve manually. Specifically, we had to replace

ANALYTIC WAVEFORM MODELS IN THE FREQUENCY DOMAIN 47

0 1 2 3 4 5 6
f

10 2

10 1

100

101
h(

f)
discrete
continuous

Figure 2.10: Comparison of the analytic continuous Fourier transform and the numerical
DFT for the particular model comprising four damped oscillators, with a time-dependent
dominant peak and with a rectangular window function shown in Fig. 2.9. An excellent
agreement is observed.

• Power(E, ...) with cexp(),

• Complex(0,−1) with −I,

• Complex(0, 2) with 2I,

• Pi with M PI.

In the C code, it was also essential to manually create and include necessary header files,
declare variables with their respective data types, and define functions, for example those
that were defined in the original Mathematica code, but were not defined in the C code.
For example, the HeavisideTheta step function had to be created within the C code. The
specific C code for the single oscillator is shown in Appendix A2.

The next step was to convert the to C code Python. This involved generating an interface
(a text file with an .i extension), containing a list of C/C++ functions, along with directives
and declarations that were created to specify how the code should be adapted and made
accessible within Python. The extension file includes information about functions, classes,
data types, and other elements to be exposed in Python. In this process, SWIG (Simplified
Wrapper and Interface Generator) read and interpreted the interface file to generate the
necessary wrapper code, allowing Python and C to communicate without any issues.

The transition from C to Python also involved the following steps: Initially, the C source
code was compiled into an object file with the GCC compiler. To maximize the performance of
the code, we employed the -O3 compiler flag. This flag activates a high level of optimization.
The interface acts as a connection between the C and Python environments, allowing us to

48 CHAPTER 2. POST-MERGER MODELS IN THE FREQUENCY DOMAIN

0.0 0.2 0.4 0.6 0.8 1.0
f

10 2

10 1

100

101

h(
f)

discrete
continuous

Figure 2.11: A magnification of Fig. (2.10) in the frequency range 0 ≤ 𝑓 ≤ 1, demonstrating
that the observed oscillations in the continuous Fourier transform are due to spectral leakage.

define how C functions and data types could be accessed and used in Python. Following this,
SWIG was employed with the -python option to generate Python bindings for the functions
defined in the interface. This produced a Python wrapper file that serves as a connection
between Python and the C code. Both the original C source code and the newly created
wrapper code were then compiled into object files using GCC, using the -O3 and -fPIC flags,
which produced a position-independent code. Here we also specified the include directory
for Python headers. Finally, these object files were linked together to form a shared library,
using the -O3 and -shared flag, which creates a shared library with a .so extension. The
shared library includes the compiled C code and SWIG-generated wrapper code and enables
Python to interact with the C code.

The discrete Fourier transform was computed directly in Python, using the fftpack

module. The code is given in Appendix C5.
Having completed both transformations, our next step was to import the required li-

braries, including the .so library for the continuous transform into a Python code.
In the model [2.28], the steps followed were in general the same. In this case, there is

another function within the result called the imaginary error function, written as Erfi. The
error function, denoted as Erf, is a well-known mathematical function used to describe the
cumulative distribution of a Gaussian or normal distribution. Erfi is a extension of Erf for
compex values. For 𝑧 ∈ C

Erf(𝑧) = 2
√
𝜋

∫ 𝑧

0
𝑒−𝑡

2
𝑑𝑡, (2.32)

and

Erfi(𝑧) = −𝑖Erf(𝑖𝑧) = 2
√
𝜋

=

∫ 𝑧

0
𝑒𝑡

2
𝑑𝑡 . (2.33)

Erfi(𝑧) is recognized and readily available in software environments such as Mathematica
and Python’s SciPy library. Although Erfi(𝑧) is supported both in Mathematica and in
Python, it is not a built-in function in C. Therefore, when working with mathematical al-
gorithms that involve Erfi(𝑧), appropriate implementations or external libraries are used to

ANALYTIC WAVEFORM MODELS IN THE FREQUENCY DOMAIN 49

facilitate the transition from C to Python. In this work, we have employed the Faddeeva

package, a free/open-source C++ code with wrappers for several languages, including C and
Python. The Faddeeva package, developed by Steven G. Johnson, provides a C code to cal-
culate various error functions of arbitrary complex arguments, including the Erfi(𝑧) function.
After downloading the Faddeeva.c, Faddeeva.cc codes and their corresponding header files,
Faddeeva.h and Faddeeva.hh, we compiled Faddeeva.c and our code with the GCC compiler
and Faddeeva.cc with the g++ compiler. Then, according to the steps described above, we
generated a Python wrapper with an interface and the SWIG command and then we com-
bined all the object files that were produced into a shared library file with a .so extension.
This shared library could now be used to link and access Python functions. The Faddeeva.h
header file is also included in the interface and the C code, and an Erfi(𝑧) function was
constructed in C, based on the Faddeeva erfi complex function of Faddeeva.

Nonlinear Least-Squares Fit

The LMFIT package offers simple Python tools that help create complex fitting models for
nonlinear least-squares problems and use these models to analyze actual data. LMFIT offers
a number of useful features such as: handling parameter objects instead of simple floats as
variables, easy changing of fitting algorithms and improved estimation of confidence intervals
and also many built-in models for common line shapes that are ready-to-use.

In our case, we used the ExpressionModel class of LMFIT. It is the primary tool for
defining custom models using mathematical expressions and performing curve fitting so that
we can create and fit models to our data. In order to do a non-linear least-squares fit of a
model to data, the main task is to write an objective function that takes the values of the
fitting variables and calculates either values that are to be minimized. Practically, this is
achieved by using the fit() function on the analytical expression of our oscillators.

We first imported the ExpressionModel class from the LMFIT library into Python. Then,
we inserted our analytic expression, Eq. (2.25), of the continuous Fourier transform for the
case of a single damped oscillator with an orthogonal window function. We added some
random noise, to simulate real data, and performed a discrete Fourier transform. This
represented the target data 𝑦 (𝑥) (retaining only positive frequencies), which we then tried
to fit, using the absolute value of the analytic expression (we were fitting for the magnitude
of the Fourier transform). Then we used the ExpressionModel class on the absolute value
of our analytic expression, converted to string type, as required by LMFIT. Lastly, we applied
the fit, starting from appropriate initial values.

In Fig. 2.12, we show the fit obtain for our analytic model of Eq. (2.25) to the data
generated with the same model, but with added noise. The fit is faithful to the data,
achieving a high 𝑅2 = 0.962. It also correctly describes the noisy part of the spectrum. In
addition, we performed a second fit, but this time using a different analytic expression, that
of a Lorentzian, which has been used in other works (see, e.g. [19]). The explicit form of the
Lorentzian (which is the Fourier transform of a damped oscillator) is

ℎ̃(𝑓) = 𝑐0𝑐2√︃
(𝑓 − 𝑐1)2 + 𝑐22

𝑒
−𝑖 arctan

(
𝑓 −𝑐1
𝑐2

)
, (2.34)

where 𝑐0 corresponds to the maximum value, 𝑐1 to the main emission frequency, and 𝑐2 to
the inverse of the damping time, which sets the Lorentzian’s width. With the Lorentzian,
we find a smaller 𝑅2 = 0.913 and large deviations in the noisy parts of the spectrum.

50 CHAPTER 2. POST-MERGER MODELS IN THE FREQUENCY DOMAIN

0.0 0.5 1.0 1.5 2.0 2.5
f

10 1

100

101
|h|

numerical
best fit (Lorentzian)
best fit (this work)

Figure 2.12: A representative case of nonlinear least-squares fitting of our analytical Fourier
transform and a simpler Lorentzian expression to data generated for a single damped os-
cillator with values 𝐴noise = 0.02, 𝑡merger = 0, 𝐷 = 80, 𝐴 = 1, 𝑓0 = 0.5, 𝜏 = 40, 𝜙1 = −3𝜋/2
(dimensionless units). The Lorentzian achieves 𝑅2 = 0.913, whereas our expression reaches
𝑅2 = 0.962.

This comparison demonstrates, that our new, analytic expression of Eq. (2.25) describes
the data better than the simpler Lorentzian of Eq. (2.34). This is because the Lorentzian
has no information on the actual duration of the signal. In contrast, our new expression
of Eq. (2.25) has been constructed explicitly for a signal of specific duration 𝐷. Moreover,
in the case of multiple oscillators, these can be combined in a linear sum having arbitrary
phases. However, in contrast to our Eq. (2.25), the Lorentzian of (2.34) does not model the
phase of the signal, which does not allow it to model faithfully multiple oscillators combined
with arbitrary phases. Hence, our new expression is more versatile and accurate, and we
expect that it will find application in realistic detection strategies and parameter estimation
algorithms for the post-merger phase of binary neutron star mergers.

CONCLUSIONS 51

Conclusions

Gravitational-wave astronomy is a rapidly expanding field, that has the potential to signif-
icantly broaden our understanding of the cosmos. It is expected that binary neutron star
mergers will produce gravitational waves in their post-merger phase. If these waves can be
detected, it will give us the opportunity to determine the equation of state of high-density
matter at different temperatures. In order to be successful in detecting gravitational waves
for such sources, highly precise analytical models must be created that describe the grav-
itational wave emission of the post-merger remnants. Currently, only basic templates are
available in the frequency domain. In this thesis, we calculated analytic templates in the
frequency domain that precisely match their time-domain counterparts.

We started deriving the continuous Fourier transform for a single damped oscillator and
included an orthogonal time window, to restrict the oscillator to a finite duration in time.
This allowed us to obtain an expression that does not include 𝛿 functions, as was the case for
infinite duration. To arrive at this expression, we utilized convolutions. Next, we generalized
this expression to the case of multiple damped oscillators, and, finally, we found the expres-
sion for the case when the dominant post-merger frequency is evolving in time (according
to a specific piecewise function). In all cases, we demonstrated excellent agreement between
the obtained continuous Fourier transforms and the corresponding numerical discrete Fourier
transform, confirming the validity of our results.

To test the usefulness of our new expressions, we performed a linear fit of our expression
for a single damped oscillator to synthetic data with noise and found that it is more versatile
and accurate than the simpler Lorentzian expression used in the literature. We anticipate
that our new expressions will prove especially valuable in cases of multiple post-merger
peaks that are superimposed with arbitrary phases, as well as in cases where the dominant
frequency is evolving in time.

In future work, we plan to use the new analytic expressions in detection and Bayesian
parameter estimation algorithms of the post-merger phase of binary neutron star mergers.
The higher accuracy of our expressions will increase the accuracy of the estimation of physical
parameters of post-merger remnants, allowing for new physics to be probed, such as the
influence of finite temperatures on the equation of state, the presence of magnetic fields, or
the development of late-time rotational instabilities.

52 CHAPTER 2. POST-MERGER MODELS IN THE FREQUENCY DOMAIN

Chapter 3

Appendix

Appendix A: Numerical codes for single damped oscillator

A1: Python - Time Domain for a single oscillator

Below is the Python code for a single oscillator in the time domain, with and without the
window function.

#Imported libraries

import numpy as np

from numpy import exp ,pi,sin

import sympy as sp

from sympy import symbols, Function

from sympy import *

import matplotlib as mpl

import matplotlib.pyplot as plt

#Plot-related configurations

mpl.rcParams['mathtext.fontset'] = 'stix'

mpl.rcParams['font.family'] = 'STIXGeneral'

mpl.rcParams['font.size'] = 18

mpl.rc('xtick', labelsize=16) ; mpl.rc('ytick', labelsize=16)

plt.rcParams['figure.figsize']=(8 , 5); plt.rcParams['legend.fontsize']=16

#Set variables

duration=0.03; tmerger = 0

A1 = 10**(-22.5); tau1 = 2.5*10**(-2.25); phi1 = -np.pi/2; f1 = 3100

num=2500

t_n = np.linspace (0-0.01, duration+0.01, num)

dt = t_n[1] - t_n[0]

values_with_window = np.zeros(num)

#Definition of window function

class rect(Function):

@classmethod

def eval(cls, arg):

53

54 CHAPTER 3. APPENDIX

return Heaviside(arg -tmerger) - Heaviside(arg -tmerger-duration)

#Calculation of strain h(t)

values_without_window = A1 * np.exp(-(t_n - tmerger) / tau1) *

np.sin(2 * np.pi * f1 * (t_n - tmerger) + phi1)

for i in range(num):

values_with_window[i]= rect(t_n[i])*(A1 * np.exp(-(t_n[i] - tmerger) /

tau1) *↩→

np.sin(2 * np.pi * f1 * (t_n[i] - tmerger) + phi1))

#Plot

plt.plot(t_n, values_without_window,color='black', label=r'without

window')↩→

plt.plot(t_n, values_with_window,color='cyan', label=r'with window')

plt.xlabel(r't'); plt.ylabel(r'$h(t)$')

plt.axis([0-0.01 ,duration+0.01 ,-10**(-22.2) , 10**(-22.2)])

plt.axhline(y=0,color='grey',linestyle="--")

plt.axvline(x=0,color='grey',linestyle="--")

plt.legend()

plt.show()

A2: C - Fourier Transform implementation from Mathematica

When obtaining the continuous Fourier transform representation in Mathematica, we proceed
to implement it in C:

//include header files

#include <stdio.h>

#include <math.h>

#include <complex.h>

//Define variables and their types

float A1, tau1, duration, f1, tmerger, phi1;

// Define a function to calculate the Heaviside step function

float HeavisideTheta (float y) {

float HeavisideTheta_result;

HeavisideTheta_result = copysignf(0.5,y) + 0.5;

return HeavisideTheta_result;

}

//Calculate Fourier transformation with specified parameters.

double complex fourier(float f, float A1, float tau1, float duration,

float f1, float tmerger, float phi1) {

// Complex variable to store the result

double complex result;

//here we inserted the C code

result =

55

(A1*tau1*((cexp(-(duration*(2*I*f*M_PI + 2*I*f1*M_PI + 1/tau1)) -

2*I*f*M_PI*tmerger)*(I - 2*f*M_PI*tau1 + 2*f1*M_PI*tau1 + cexp(2*I*phi1

+ duration*(2*I*f*M_PI + 2*I*f1*M_PI + 1/tau1))*(I - 2*f*M_PI*tau1 -

2*f1*M_PI*tau1) + cexp(duration*(2*I*f*M_PI + 2*I*f1*M_PI + 1/tau1))*(-I

+ 2*f*M_PI*tau1 - 2*f1*M_PI*tau1) + cexp(2*I*(phi1 +

2*duration*f1*M_PI))*(-I + 2*f*M_PI*tau1 + 2*f1*M_PI*tau1)))/((-I +

2*f*M_PI*tau1 - 2*f1*M_PI*tau1)*(-I + 2*f*M_PI*tau1 + 2*f1*M_PI*tau1)) +

I*(cexp(2*I*phi1 - 2*I*f1*M_PI*tmerger + tmerger/tau1)/(1 +

4*cpow(f,2)*cpow(M_PI,2)*cpow(tau1,2) - 8*f*f1*cpow(M_PI,2)*cpow(tau1,2)

+ 4*cpow(f1,2)*cpow(M_PI,2)*cpow(tau1,2)) - cexp((2*I*f1*M_PI +

1/tau1)*tmerger)/(1 + 4*cpow(f,2)*cpow(M_PI,2)*cpow(tau1,2) +

8*f*f1*cpow(M_PI,2)*cpow(tau1,2) +

4*cpow(f1,2)*cpow(M_PI,2)*cpow(tau1,2)))*HeavisideTheta(-duration -

tmerger) + ((-I*cexp(2*I*phi1 - 2*I*f1*M_PI*tmerger + tmerger/tau1))/(1

+ 4*cpow(f,2)*cpow(M_PI,2)*cpow(tau1,2) -

8*f*f1*cpow(M_PI,2)*cpow(tau1,2) +

4*cpow(f1,2)*cpow(M_PI,2)*cpow(tau1,2)) + (I*cexp((2*I*f1*M_PI +

1/tau1)*tmerger))/(1 + 4*cpow(f,2)*cpow(M_PI,2)*cpow(tau1,2) +

8*f*f1*cpow(M_PI,2)*cpow(tau1,2) +

4*cpow(f1,2)*cpow(M_PI,2)*cpow(tau1,2)))*HeavisideTheta(-tmerger)))/(2.*cexp(I*phi1));

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

return result;

A3: C - Interface for Python implementation

The interface of the above C code is:

//the name of the module we are creating.

%module python_name

//C code that includes the <complex.h> header and declares the variables

%{

#include <complex.h>

extern float A1, tau1, duration, f1, tmerger, phi1;

%}

//This specifies that the variables declared earlier should be treated

//as input parameters.

%apply float& {A1, tau1, duration, f1, tmerger, phi1};

// C/C++ functions are declared to be included in the SWIG interface.

%{

extern float HeavisideTheta(float y);

extern double complex fourier(float f, float A1, float tau1, float

duration,↩→

float f1, float tmerger, float phi1);

%}

%include <complex.i>

56 CHAPTER 3. APPENDIX

//These lines specify the parts of the SWIG interface that can be

//called from Python.

extern float HeavisideTheta(float y);

extern double complex fourier(float f, float A1, float tau1, float duration,

float f1, float tmerger, float phi1);

[0.5cm]

A4: Terminal Commands

• swig −python interface name.i → this creates an interface name wrapper.c file

• gcc −O3 −c −fPIC c code.c interface name wrapper.c −I/path of python header files→
this creates an interface name wrapper.o and a c code.o file.

• gcc −O3 −shared c code.o interface name wrapper.o -o python name.so→ This
produces the .so extention we can import in Python.

A5: Python - Fourier Transform and Plots

#Import the .so file

import _python_name

#Import the libraries

import numpy as np

from numpy import exp ,pi

import matplotlib as mpl

import matplotlib.pyplot as plt

import scipy

from scipy import fftpack

from sympy import *

#Plot-related configurations

mpl.rcParams['mathtext.fontset'] = 'stix'

mpl.rcParams['font.family'] = 'STIXGeneral'

mpl.rcParams['font.size'] = 18

mpl.rc('xtick', labelsize=16) ; mpl.rc('ytick', labelsize=16)

plt.rcParams['figure.figsize']=(8.5, 5.5);

plt.rcParams['legend.fontsize']=16↩→

#Set variables

duration=0.03 ;tmerger = 0

A1 = 10**(-22.5); tau1 = 2.5*10**(-2.25) ;phi1 = -np.pi/2 ;f1 = 3100

#points for analytical Fourier

f_min = 0

f_max = 5000

num_points = 800

f_values = np.linspace(f_min, f_max, num_points)

57

result_values = np.array([_python_name.fourier(f , A1, tau1, duration, f1,

tmerger, phi1) for f in f_values])↩→

real_values = np.real(result_values)

imag_values = np.imag(result_values)

#points for numerical Fourier

num=40000

t_n = np.linspace (tmerger, tmerger +duration, num)

dt = t_n[1] - t_n[0]

h_n =np.zeros(num)

for i in range (num):

h_n[i] = A1 * np.exp(-(t_n[i] - tmerger) / tau1) * np.sin(2 * np.pi * f1 *

(t_n[i] - tmerger) + phi1)↩→

#numerical Fourier

H_k = fftpack.fft(h_n)

H_k_shift = fftpack.fftshift(H_k)

f_k = fftpack.fftfreq(h_n.size, d = dt)

f_shift = fftpack.fftshift(f_k)

A=np.abs(H_k_shift)

#Plot of numerical Fourier

plt.plot(f_shift, A*dt, 'co', markersize=2, label=r'$discrete$')

#Plot of analytical Fourier

plt.plot(f_values, np.sqrt(real_values**2+imag_values**2), color='magenta',

linewidth=1.0, label=r'$continuous$')↩→

#Plot Parameters

plt.xlabel(r'f') ; plt.ylabel(r"$\~h(f)$")

plt.axis([0,5000,1*10**(-29) , 1*10**(-24)])

plt.yscale("log")

plt.legend()

plt.show()

Appendix B: Four simple oscillators

B1: Python - Contribution of each oscillator in the time domain

import numpy as np

from numpy import exp ,pi,sin

import matplotlib as mpl

import matplotlib.pyplot as plt

import matplotlib.colors as mcolors

mpl.rcParams['mathtext.fontset'] = 'stix'

mpl.rcParams['font.family'] = 'STIXGeneral'

mpl.rcParams['font.size'] = 18

mpl.rc('xtick', labelsize=16) ; mpl.rc('ytick', labelsize=16)

58 CHAPTER 3. APPENDIX

plt.rcParams['figure.figsize']=(8.5,5.5) ;

plt.rcParams['legend.fontsize']=16↩→

#Set variables

duration=0.125

tmerger = 0

A1 = 10**(-22.5); tau1 = 10**(-2.25); f1 = 3100; phi1 = -np.pi/2

A2 = 10**(-22.3); tau2 = 10**(-2.8); f2 = 2750; phi2 = np.pi/2

A3 = 10**(-22.3); tau3 = 10**(-2.8); f3 = 2460; phi3 = -np.pi/2

A4 = 10**(-22.3); tau4 = 10**(-2.8); f4 = 3640; phi4 = -np.pi/4

#Time steps

num=1500

t_n = np.linspace (0, duration, num)

dt = t_n[1] - t_n[0]

#Defining each model

Model1 = np.zeros(num)

Model2 = np.zeros(num)

Model3 = np.zeros(num)

Model4 = np.zeros(num)

for i in range(num):

Model1[i] = (A1 * np.exp(-(t_n[i] - tmerger) / tau1)) * np.sin(2 * np.pi *

f1 * (t_n[i] - tmerger) + phi1)↩→

Model2[i]=(A2 * np.exp(-(t_n[i] - tmerger) / tau2)) * np.sin(2 * np.pi *

f2 * (t_n[i] - tmerger) + phi2)↩→

Model3[i] = A3 * np.exp(-(t_n[i] - tmerger) / tau3) * np.sin(2 * np.pi *

f3 * (t_n[i] - tmerger) + phi3)↩→

Model4[i] = A4 * np.exp(-(t_n[i] - tmerger) / tau4) * np.sin(2 * np.pi *

f4 * (t_n[i] - tmerger) + phi4)↩→

#Plot

plt.plot(t_n, Model1,color='blueviolet', label=r'Model1')

plt.plot(t_n, Model2,color= 'yellow', label=r'Model2')

plt.plot(t_n, Model3,color='mediumaquamarine', label=r'Model3')

plt.plot(t_n, Model4,color='indianred', label=r'Model4')

plt.xlabel(r't')

plt.ylabel(r'$h(t)$')

plt.axis([0 ,0.03,-3/5*10**(-22.2) , 3/5*10**(-22.2)])

plt.axhline(y=0,color='grey',linestyle="--")

plt.axvline(x=0,color='grey',linestyle="--")

plt.legend()

plt.show()

59

B2: Python - Time Domain for four oscillators

import numpy as np

from numpy import exp ,pi,sin

import matplotlib as mpl

import matplotlib.pyplot as plt

mpl.rcParams['mathtext.fontset'] = 'stix'

mpl.rcParams['font.family'] = 'STIXGeneral'

mpl.rcParams['font.size'] = 18

mpl.rc('xtick', labelsize=16) ; mpl.rc('ytick', labelsize=16)

plt.rcParams['figure.figsize']=(8.5,5.5) ;

plt.rcParams['legend.fontsize']=16↩→

#Set variables

duration=0.125

tmerger = 0

A1 = 10**(-22.5); tau1 = 10**(-2.25); f1 = 3100; phi1 = -np.pi/2

A2 = 10**(-22.3); tau2 = 10**(-2.8); f2 = 2750; phi2 = np.pi/2

A3 = 10**(-22.3); tau3 = 10**(-2.8); f3 = 2460; phi3 = -np.pi/2

A4 = 10**(-22.3); tau4 = 10**(-2.8); f4 = 3640; phi4 = -np.pi/4

#Time step

num=2500

t_n = np.linspace (0, duration, num)

dt = t_n[1] - t_n[0]

sum = np.zeros(num)

for i in range(num):

sum[i]= A1 * np.exp(-(t_n[i] -tmerger) / tau1) * np.sin(2 * np.pi * f1 *

(t_n[i] - tmerger) + phi1) +A2 * np.exp(-(t_n[i] - tmerger) / tau2) *

np.sin(2*np.pi*f2*(t_n[i] - tmerger) + phi2)+ A3 * np.exp(-(t_n[i] -

tmerger) / tau3) * np.sin(2 * np.pi * f3 * (t_n[i] - tmerger) + phi3)

+ A4 * np.exp(-(t_n[i] - tmerger) / tau4) * np.sin(2 * np.pi * f4 *

(t_n[i] - tmerger) + phi4)

↩→

↩→

↩→

↩→

↩→

#Plot

plt.plot(t_n, sum,color='cyan')

plt.xlabel(r't')

plt.ylabel(r'$h(t)$')

plt.axis([0 ,0.02 ,-10**(-22) ,10**(-22)])

plt.axhline(y=0,color='grey',linestyle="--")

plt.axvline(x=0,color='grey',linestyle="--")

plt.show()

B3: C - Fourier Transform implementation from Mathematica

When obtaining the continuous Fourier transform representation in Mathematica, we proceed
to implement it in C:

60 CHAPTER 3. APPENDIX

//Add header files

#include <stdio.h>

#include <math.h>

#include <complex.h>

//Define variables and their types

float A1, phi1, f1, tmerger, tau1, duration, A2, phi2, f2, tau2, A3, phi3,

f3, tau3, A4, phi4, f4, tau4;↩→

// Define a function to calculate the Heaviside step function

float HeavisideTheta (float y) {

float HeavisideTheta_result;

HeavisideTheta_result = copysignf(0.5,y) + 0.5;

return HeavisideTheta_result;

}

//Calculate Fourier transformation with specified parameters

double complex fourier(float f, float A1, float phi1, float f1, float

tmerger, float tau1, float duration, float A2, float phi2, float f2,

float tau2, float A3, float phi3, float f3, float tau3, float A4, float

phi4, float f4, float tau4) {

↩→

↩→

↩→

// Complex variable to store the result (Here insert C code)

double complex result;

61

result =(A1*tau1*((cexp(-(duration*(2*I*f*M_PI + 2*I*f1*M_PI + 1/tau1))

- 2*I*f*M_PI*tmerger)*(I - 2*f*M_PI*tau1 + 2*f1*M_PI*tau1 +

cexp(2*I*phi1 + duration*(2*I*f*M_PI + 2*I*f1*M_PI + 1/tau1))*(I -

2*f*M_PI*tau1 - 2*f1*M_PI*tau1) + cexp(duration*(2*I*f*M_PI +

2*I*f1*M_PI + 1/tau1))*(-I + 2*f*M_PI*tau1 - 2*f1*M_PI*tau1) +

cexp(2*I*(phi1 + 2*duration*f1*M_PI))*(-I + 2*f*M_PI*tau1 +

2*f1*M_PI*tau1)))/((-I + 2*f*M_PI*tau1 - 2*f1*M_PI*tau1)*(-I +

2*f*M_PI*tau1 + 2*f1*M_PI*tau1)) + I*(cexp(2*I*phi1 -

2*I*f1*M_PI*tmerger + tmerger/tau1)/(1 +

4*cpow(f,2)*cpow(M_PI,2)*cpow(tau1,2) - 8*f*f1*cpow(M_PI,2)*cpow(tau1,2)

+ 4*cpow(f1,2)*cpow(M_PI,2)*cpow(tau1,2)) - cexp((2*I*f1*M_PI +

1/tau1)*tmerger)/(1 + 4*cpow(f,2)*cpow(M_PI,2)*cpow(tau1,2) +

8*f*f1*cpow(M_PI,2)*cpow(tau1,2) +

4*cpow(f1,2)*cpow(M_PI,2)*cpow(tau1,2)))*HeavisideTheta(-duration -

tmerger) + ((-I*cexp(2*I*phi1 - 2*I*f1*M_PI*tmerger + tmerger/tau1))/(1

+ 4*cpow(f,2)*cpow(M_PI,2)*cpow(tau1,2) -

8*f*f1*cpow(M_PI,2)*cpow(tau1,2) +

4*cpow(f1,2)*cpow(M_PI,2)*cpow(tau1,2)) + (I*cexp((2*I*f1*M_PI +

1/tau1)*tmerger))/(1 + 4*cpow(f,2)*cpow(M_PI,2)*cpow(tau1,2) +

8*f*f1*cpow(M_PI,2)*cpow(tau1,2) +

4*cpow(f1,2)*cpow(M_PI,2)*cpow(tau1,2)))*HeavisideTheta(-tmerger)))/(2.*cexp(I*phi1))

+ (A2*tau2*((cexp(-(duration*(2*I*f*M_PI + 2*I*f2*M_PI + 1/tau2)) -

2*I*f*M_PI*tmerger)*(I - 2*f*M_PI*tau2 + 2*f2*M_PI*tau2 + cexp(2*I*phi2

+ duration*(2*I*f*M_PI + 2*I*f2*M_PI + 1/tau2))*(I - 2*f*M_PI*tau2 -

2*f2*M_PI*tau2) + cexp(duration*(2*I*f*M_PI + 2*I*f2*M_PI + 1/tau2))*(-I

+ 2*f*M_PI*tau2 - 2*f2*M_PI*tau2) + cexp(2*I*(phi2 +

2*duration*f2*M_PI))*(-I + 2*f*M_PI*tau2 + 2*f2*M_PI*tau2)))/((-I +

2*f*M_PI*tau2 - 2*f2*M_PI*tau2)*(-I + 2*f*M_PI*tau2 + 2*f2*M_PI*tau2)) +

I*(cexp(2*I*phi2 - 2*I*f2*M_PI*tmerger + tmerger/tau2)/(1 +

4*cpow(f,2)*cpow(M_PI,2)*cpow(tau2,2) - 8*f*f2*cpow(M_PI,2)*cpow(tau2,2)

+ 4*cpow(f2,2)*cpow(M_PI,2)*cpow(tau2,2)) - cexp((2*I*f2*M_PI +

1/tau2)*tmerger)/(1 + 4*cpow(f,2)*cpow(M_PI,2)*cpow(tau2,2) +

8*f*f2*cpow(M_PI,2)*cpow(tau2,2) +

4*cpow(f2,2)*cpow(M_PI,2)*cpow(tau2,2)))*HeavisideTheta(-duration -

tmerger) + ((-I*cexp(2*I*phi2 - 2*I*f2*M_PI*tmerger + tmerger/tau2))/(1

+ 4*cpow(f,2)*cpow(M_PI,2)*cpow(tau2,2) -

8*f*f2*cpow(M_PI,2)*cpow(tau2,2) +

4*cpow(f2,2)*cpow(M_PI,2)*cpow(tau2,2)) + (I*cexp((2*I*f2*M_PI +

1/tau2)*tmerger))/(1 + 4*cpow(f,2)*cpow(M_PI,2)*cpow(tau2,2) +

8*f*f2*cpow(M_PI,2)*cpow(tau2,2) +

4*cpow(f2,2)*cpow(M_PI,2)*cpow(tau2,2)))*HeavisideTheta(-tmerger)))/(2.*cexp(I*phi2))

+ (A3*tau3*((cexp(-(duration*(2*I*f*M_PI + 2*I*f3*M_PI + 1/tau3)) -

2*I*f*M_PI*tmerger)*(I - 2*f*M_PI*tau3 + 2*f3*M_PI*tau3 + cexp(2*I*phi3

+ duration*(2*I*f*M_PI + 2*I*f3*M_PI + 1/tau3))*(I - 2*f*M_PI*tau3 -

2*f3*M_PI*tau3) + cexp(duration*(2*I*f*M_PI + 2*I*f3*M_PI + 1/tau3))*(-I

+ 2*f*M_PI*tau3 - 2*f3*M_PI*tau3) + cexp(2*I*(phi3 +

2*duration*f3*M_PI))*(-I + 2*f*M_PI*tau3 + 2*f3*M_PI*tau3)))/((-I +

2*f*M_PI*tau3 - 2*f3*M_PI*tau3)*(-I + 2*f*M_PI*tau3 + 2*f3*M_PI*tau3)) +

I*(cexp(2*I*phi3 - 2*I*f3*M_PI*tmerger + tmerger/tau3)/(1 +

4*cpow(f,2)*cpow(M_PI,2)*cpow(tau3,2) - 8*f*f3*cpow(M_PI,2)*cpow(tau3,2)

+ 4*cpow(f3,2)*cpow(M_PI,2)*cpow(tau3,2)) - cexp((2*I*f3*M_PI +

1/tau3)*tmerger)/(1 + 4*cpow(f,2)*cpow(M_PI,2)*cpow(tau3,2) +

8*f*f3*cpow(M_PI,2)*cpow(tau3,2) +

4*cpow(f3,2)*cpow(M_PI,2)*cpow(tau3,2)))*HeavisideTheta(-duration -

tmerger) + ((-I*cexp(2*I*phi3 - 2*I*f3*M_PI*tmerger + tmerger/tau3))/(1

+ 4*cpow(f,2)*cpow(M_PI,2)*cpow(tau3,2) -

8*f*f3*cpow(M_PI,2)*cpow(tau3,2) +

4*cpow(f3,2)*cpow(M_PI,2)*cpow(tau3,2)) + (I*cexp((2*I*f3*M_PI +

1/tau3)*tmerger))/(1 + 4*cpow(f,2)*cpow(M_PI,2)*cpow(tau3,2) +

8*f*f3*cpow(M_PI,2)*cpow(tau3,2) +

4*cpow(f3,2)*cpow(M_PI,2)*cpow(tau3,2)))*HeavisideTheta(-tmerger)))/(2.*cexp(I*phi3))

+ (A4*tau4*((cexp(-(duration*(2*I*f*M_PI + 2*I*f4*M_PI + 1/tau4)) -

2*I*f*M_PI*tmerger)*(I - 2*f*M_PI*tau4 + 2*f4*M_PI*tau4 + cexp(2*I*phi4

+ duration*(2*I*f*M_PI + 2*I*f4*M_PI + 1/tau4))*(I - 2*f*M_PI*tau4 -

2*f4*M_PI*tau4) + cexp(duration*(2*I*f*M_PI + 2*I*f4*M_PI + 1/tau4))*(-I

+ 2*f*M_PI*tau4 - 2*f4*M_PI*tau4) + cexp(2*I*(phi4 +

2*duration*f4*M_PI))*(-I + 2*f*M_PI*tau4 + 2*f4*M_PI*tau4)))/((-I +

2*f*M_PI*tau4 - 2*f4*M_PI*tau4)*(-I + 2*f*M_PI*tau4 + 2*f4*M_PI*tau4)) +

I*(cexp(2*I*phi4 - 2*I*f4*M_PI*tmerger + tmerger/tau4)/(1 +

4*cpow(f,2)*cpow(M_PI,2)*cpow(tau4,2) - 8*f*f4*cpow(M_PI,2)*cpow(tau4,2)

+ 4*cpow(f4,2)*cpow(M_PI,2)*cpow(tau4,2)) - cexp((2*I*f4*M_PI +

1/tau4)*tmerger)/(1 + 4*cpow(f,2)*cpow(M_PI,2)*cpow(tau4,2) +

8*f*f4*cpow(M_PI,2)*cpow(tau4,2) +

4*cpow(f4,2)*cpow(M_PI,2)*cpow(tau4,2)))*HeavisideTheta(-duration -

tmerger) + ((-I*cexp(2*I*phi4 - 2*I*f4*M_PI*tmerger + tmerger/tau4))/(1

+ 4*cpow(f,2)*cpow(M_PI,2)*cpow(tau4,2) -

8*f*f4*cpow(M_PI,2)*cpow(tau4,2) +

4*cpow(f4,2)*cpow(M_PI,2)*cpow(tau4,2)) + (I*cexp((2*I*f4*M_PI +

1/tau4)*tmerger))/(1 + 4*cpow(f,2)*cpow(M_PI,2)*cpow(tau4,2) +

8*f*f4*cpow(M_PI,2)*cpow(tau4,2) +

4*cpow(f4,2)*cpow(M_PI,2)*cpow(tau4,2)))*HeavisideTheta(-tmerger)))/(2.*cexp(I*phi4));

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

62 CHAPTER 3. APPENDIX

return result;

}

B4: C - Interface for Python implementation

//the name of the module we are creating.

%module python_name

//C code that includes the <complex.h> header and declares the variables

%{

#include <complex.h>

extern float A1, phi1, f1, tmerger, tau1, duration, A2, phi2, f2, tau2, A3,

phi3, f3, tau3, A4, phi4, f4, tau4;↩→

%}

//This specifies that the variables declared earlier should be treated

//as input parameters.

%apply float& {A1, phi1, f1, tmerger, tau1, duration, A2, phi2, f2, tau2,

A3, phi3, f3, tau3, A4, phi4, f4, tau4};↩→

// C/C++ functions are declared to be included in the SWIG interface

%{

extern float HeavisideTheta(float y);

extern double complex fourier(float f, float A1, float phi1, float f1, float

tmerger, float tau1, float duration, float A2, float phi2, float f2,

float tau2, float A3, float phi3, float f3, float tau3, float A4, float

phi4, float f4, float tau4);

↩→

↩→

↩→

%}

%include <complex.i>

//These lines specify the parts of the SWIG interface that can be

//called from Python.

extern float HeavisideTheta(float y);

extern double complex fourier(float f, float A1, float phi1, float f1, float

tmerger, float tau1, float duration, float A2, float phi2, float f2,

float tau2, float A3, float phi3, float f3, float tau3, float A4, float

phi4, float f4, float tau4);

↩→

↩→

↩→

B5: Terminal Commands

• swig −python interface name.i → this creates an interface name wrapper.c file

• gcc −O3 −c −fPIC c code.c interface name wrapper.c −I/path of python header files→
this creates an interface name wrapper.o and a c code.o file.

• gcc −O3 −shared c code.o interface name wrapper.o −o python name.so→ This
produces the .so extention we can import in Python.

63

B6: Python - Fourier Transform and Plots

#Import libraries

import _python_name

import numpy as np

from numpy import exp ,pi

import matplotlib as mpl

import matplotlib.pyplot as plt

import scipy

from scipy import fftpack

mpl.rcParams['mathtext.fontset'] = 'stix'

mpl.rcParams['font.family'] = 'STIXGeneral'

mpl.rcParams['font.size'] = 18

mpl.rc('xtick', labelsize=16) ; mpl.rc('ytick', labelsize=16)

plt.rcParams['figure.figsize']=(8.5,5.5) ;

plt.rcParams['legend.fontsize']=16↩→

#Set variables

duration=0.125

tmerger = 0

A1 = 10**(-22.5); tau1 = 10**(-2.25); f1 = 3100; phi1 = -np.pi/2

A2 = 10**(-22.3); tau2 = 10**(-2.8); f2 = 2750; phi2 = np.pi/2

A3 = 10**(-22.3); tau3 = 10**(-2.8); f3 = 2460; phi3 = -np.pi/2

A4 = 10**(-22.3); tau4 = 10**(-2.8); f4 = 3640; phi4 = -np.pi/4

#points for discrete Fourier steps

num=100000

t_n = np.linspace (0, duration, num)

dt = t_n[1] - t_n[0]

#Continuous Fourier

f_min = 0

f_max = 5000

num_points = 2500

f_values = np.linspace(f_min, f_max, num_points)

result_values = np.array([_simple4.fourier(f , A1, phi1, f1, tmerger, tau1,

duration, A2, phi2, f2, tau2 , A3, phi3, f3, tau3, A4, phi4, f4, tau4)

for f in f_values])

↩→

↩→

real_values = np.real(result_values)

imag_values = np.imag(result_values)

#Discrete Fourier

h_n =np.zeros(num)

for i in range (num):

64 CHAPTER 3. APPENDIX

h_n[i] = A1 * np.exp(-(t_n[i] - tmerger) / tau1) * np.sin(2 * np.pi * f1 *

(t_n[i] - tmerger) + phi1) + A2 * np.exp(-(t_n[i] - tmerger) / tau2) *

np.sin(2 * np.pi * f2 * (t_n[i] - tmerger) + phi2) + A3 *

np.exp(-(t_n[i] - tmerger) / tau3) * np.sin(2 * np.pi * f3 * (t_n[i] -

tmerger) + phi3) + A4 * np.exp(-(t_n[i] - tmerger) / tau4) * np.sin(2

* np.pi * f4 * (t_n[i] - tmerger) + phi4)

↩→

↩→

↩→

↩→

↩→

H_k = fftpack.fft(h_n)

H_k_shift = fftpack.fftshift(H_k)

f_k = fftpack.fftfreq(h_n.size, d = dt)

f_shift = fftpack.fftshift(f_k)

A=np.abs(H_k_shift)

#Plots

plt.plot(f_shift, A*dt, 'co', markersize=1, label=r'$discrete$')

plt.plot(f_values,np.sqrt(real_values**2+imag_values**2), color='magenta',

linewidth=1.0, label=r'$continuous$')↩→

plt.xlabel(r'f') ; plt.ylabel(r"$\~h(f)$")

plt.axis([0,5000,1*10**(-27.5) , 1*10**(-25)])

plt.yscale("log")

plt.legend()

plt.show()

Appendix C: Four oscillators, of which one with time-dependent frequency

C1: Python - Time domain for four oscillators.

This code presents a time domain model for the gravitational wave strain that features four
oscillators, one of which incorporates a time-dependent frequency.

import numpy as np

from numpy import exp ,pi

import matplotlib as mpl

import matplotlib.pyplot as plt

from scipy import fftpack

mpl.rcParams['mathtext.fontset'] = 'stix'

mpl.rcParams['font.family'] = 'STIXGeneral'

mpl.rcParams['font.size'] = 18

mpl.rc('xtick', labelsize=16) ; mpl.rc('ytick', labelsize=16)

plt.rcParams['figure.figsize']=(8.5,5.5)

plt.rcParams['legend.fontsize']=16

#Set variables

Apeak = 10/exp(2)

tstar = -15

fpeak0 = 3

tmerger = -20

taupeak = 30

65

zdrift = -0.15

phipeak0 = 0

T = 40

A1 = 10/exp(2); tau1 = 3; f1 = 2.4; phi1 = pi/2

A2 = 10/exp(2); tau2 = 3; f2 = 2; phi2 = -np.pi/2

A3 = 10/exp(2); tau3 = 3; f3 = 4; phi3 = -np.pi/2

phipeaktstar = 2 * np.pi * (fpeak0 + zdrift * (tstar - tmerger) / 2) *

(tstar - tmerger) + phipeak0↩→

fpeaktstar = fpeak0 + zdrift * (tstar - tmerger) / 2

num=1500

t_n = np.linspace (-20, 20, num)

dt = t_n[1] - t_n[0]

y_n =np.zeros(num)

h_n =np.zeros(num)

#Strain of Apeak

for i in range(num):

if t_n[i] <= tstar:

y_n[i] = Apeak * np.exp(-(t_n[i] - tmerger) / taupeak) * np.sin(2 *

np.pi * (fpeak0 + zdrift * (t_n[i] - tmerger) / 2) * (t_n[i] -

tmerger) + phipeak0)

↩→

↩→

else:

y_n[i] = Apeak * np.exp(-(t_n[i] - tmerger) / taupeak) * np.sin(2 *

np.pi * fpeaktstar * (t_n[i] - tstar) + phipeaktstar)↩→

#Total strain

for i in range (num):

h_n[i] = A1 * np.exp(-(t_n[i] - tmerger) / tau1) * np.sin(2 * np.pi * f1

* (t_n[i] - tmerger) + phi1) + A2 * np.exp(-(t_n[i] - tmerger) /

tau2) * np.sin(2 * np.pi* f2 * (t_n[i] - tmerger) + phi2) + A3 *

np.exp(-(t_n[i] - tmerger) / tau3) * np.sin(2 * np.pi * f3 * (t_n[i]

- tmerger) + phi3) + y_n[i]

↩→

↩→

↩→

↩→

#Plot

plt.plot(t_n, h_n)

plt.plot(t_n, h_n,color='cyan')

plt.xlabel(r't')

plt.ylabel(r'$h(t)$')

plt.axhline(y=0,color='grey',linestyle="--")

plt.show()

C2: C - Fourier Transform implementation from Mathematica

Steps are in general as before, except that the Erfi function is defined. The expression is
too long in this case, so it will not be added here.

66 CHAPTER 3. APPENDIX

//Add header files

#include <stdio.h>

#include "Faddeeva.h"

#include <math.h>

#include <complex.h>

//Define variables and their types

float Apeak, tstar, fpeak0, tmerger, taupeak, zdrift, phipeak0, T, f1, f2,

f3, tau1, tau2, tau3, A1, A2, A3, phi1, phi2, phi3;↩→

// Define a function to calculate the Erfi function

double complex Erfi(double complex z) {

double complex result = Faddeeva_erfi(z, 1e-12);

return result;

}

// Define a function to calculate the Heaviside step function

float HeavisideTheta (float y) {

float HeavisideTheta_result;

HeavisideTheta_result = copysignf(0.5,y) + 0.5;

return HeavisideTheta_result;

}

//Calculate Fourier transformation with specified parameters

double complex fourier(float f, float Apeak, float tstar, float fpeak0,

float tmerger, float taupeak, float zdrift, float phipeak0, float T,

float f1, float f2, float f3, float tau1, float tau2, float tau3, float

A1, float A2, float A3, float phi1, float phi2, float phi3) {

↩→

↩→

↩→

// Complex variable to store the result (here insert C code)

double complex f_result;

f_result =

return result;

}

C3: C - Interface for Python implementation

//the name of the module we are creating.

%module python_name

//Includes the <complex.h> header and declares the variables

%{

extern float Apeak, tstar, fpeak0, tmerger, taupeak, zdrift, phipeak0, T,

f1, f2, f3, tau1, tau2, tau3, A1, A2, A3, phi1, phi2, phi3;↩→

%}

67

//This specifies that the variables declared earlier should be treated

//as input parameters.

%apply float& { Apeak, tstar, fpeak0, tmerger, taupeak, zdrift, phipeak0,

T, f1, f2, f3, tau1, tau2, tau3, A1, A2, A3, phi1, phi2, phi3 };↩→

// C/C++ functions are declared to be included in the SWIG interface

%{

#include "Faddeeva.h"

extern double complex Erfi(double complex z);

extern float HeavisideTheta(float y);

extern double complex fourier(float f, float Apeak, float tstar, float

fpeak0, float tmerger, float taupeak, float zdrift, float phipeak0,

float T, float f1, float f2, float f3, float tau1, float tau2, float

tau3, float A1, float A2, float A3, float phi1, float phi2, float phi3);

↩→

↩→

↩→

%}

%include <complex.i>

%include "Faddeeva.h"

//These lines specify the parts of the SWIG interface that can be

//called from Python.

extern double complex Faddeeva_w(double complex z, double relerr);

extern double Faddeeva_w_im(double x);

extern double complex Faddeeva_erfcx(double complex z, double relerr);

extern double Faddeeva_erfcx_re(double x);

extern double complex Faddeeva_erf(double complex z, double relerr);

extern double Faddeeva_erf_re(double x);

extern double complex Faddeeva_erfi(double complex z, double relerr);

extern double Faddeeva_erfi_re(double x);

extern double complex Faddeeva_erfc(double complex z, double relerr);

extern double Faddeeva_erfc_re(double x);

extern double complex Faddeeva_Dawson(double complex z, double relerr);

extern double Faddeeva_Dawson_re(double x);

extern double complex Erfi(double complex z);

extern float HeavisideTheta(float y);

extern double complex fourier(float f, float Apeak, float tstar, float

fpeak0, float tmerger, float taupeak, float zdrift, float phipeak0,

float T, float f1, float f2, float f3, float tau1, float tau2, float

tau3, float A1, float A2, float A3, float phi1, float phi2, float phi3);

↩→

↩→

↩→

68 CHAPTER 3. APPENDIX

C4: Terminal Commands

• gcc −std=c99 −c −fPIC Faddeeva.c −o Faddeeva c.o −lm → creates an object
file.

• g++ −c −fPIC Faddeeva.cc −o Faddeeva cc.o −lm → creates an object file.

• gcc −c −fPIC c code.c −I/path of python header files/include/python3.10

• swig −python interface name.i → this creates an interface wrapper.c file

• gcc −O3 −c −fPIC c code.c interface name wrapper.c −I/path of python header files→
this creates an interface name wrapper.o and a c code.o object file.

• gcc −shared c code.o interface name wrapper.o Faddeeva cc.o Faddeeva c.o −o
python name.so −L/usr/lib/𝑥8664−linux−gnu−I/path of python header files/include/python3.10

−lstdc++ −lm→ this creates an python name.so library file.

Now that we have the continuous Fourier transform as a library with a .so extention,
we can import it into Python.

C5: Python - Fourier Transform and Plots

#Import libraries and make the plot-related configurations

import _python_name

import numpy as np

from numpy import exp ,pi

import matplotlib as mpl

import matplotlib.pyplot as plt

from scipy import fftpack

mpl.rcParams['mathtext.fontset'] = 'stix'

mpl.rcParams['font.family'] = 'STIXGeneral'

mpl.rcParams['font.size'] = 18

mpl.rc('xtick', labelsize=16) ; mpl.rc('ytick', labelsize=16)

plt.rcParams['figure.figsize']=(8.5,5.5) ;

plt.rcParams['legend.fontsize']=16↩→

#Set values

Apeak = 10/exp(2); fpeak0 = 3; taupeak = 30 ;phipeak0 = 0

tstar = -15

tmerger = -20

zdrift = -0.15

T = 40

A1 = 10/exp(2); tau1 = 3; f1 = 2.4; phi1 = pi/2

A2 = 10/exp(2); tau2 = 3; f2 = 2; phi2 = -np.pi/2

A3 = 10/exp(2); tau3 = 3; f3 = 4; phi3 = -np.pi/2

phipeaktstar = 2 * np.pi * (fpeak0 + zdrift * (tstar - tmerger) / 2) *

(tstar - tmerger) + phipeak0↩→

fpeaktstar = fpeak0 + zdrift * (tstar - tmerger) / 2

69

f_min = 0

f_max = 6

num_points = 10000

f_values = np.linspace(f_min, f_max, num_points)

result_values = np.array([_test.fourier(f , Apeak, tstar, fpeak0, tmerger,

taupeak, zdrift, phipeak0 , T, f1, f2, f3, tau1, tau2, tau3, A1, A2, A3,

phi1, phi2, phi3) for f in f_values])

↩→

↩→

real_values = np.real(result_values)

imag_values = np.imag(result_values)

#Definition of strain and Discrete Fourier

num=10000

t_n = np.linspace (-20, 20, num)

dt = t_n[1] - t_n[0]

y_n =np.zeros(num)

h_n =np.zeros(num)

for i in range(num):

if t_n[i] <= tstar:

y_n[i] = Apeak * np.exp(-(t_n[i] - tmerger) / taupeak) * np.sin(2 *

np.pi * (fpeak0 + zdrift * (t_n[i] - tmerger) / 2) * (t_n[i] -

tmerger) + phipeak0)

↩→

↩→

else:

y_n[i] = Apeak * np.exp(-(t_n[i] - tmerger) / taupeak) * np.sin(2 *

np.pi * fpeaktstar * (t_n[i] - tstar) + phipeaktstar)↩→

for i in range (num):

h_n[i] = A1 * np.exp(-(t_n[i] - tmerger) / tau1) * np.sin(2 * np.pi * f1

* (t_n[i] - tmerger) + phi1) + A2 * np.exp(-(t_n[i] - tmerger) /

tau2) * np.sin(2 * np.pi* f2 * (t_n[i] - tmerger) + phi2) + A3 *

np.exp(-(t_n[i] - tmerger) / tau3) * np.sin(2 * np.pi * f3 * (t_n[i]

- tmerger) + phi3) + y_n[i]

↩→

↩→

↩→

↩→

#Discrete Fourier Transform

H_k = fftpack.fft(h_n)

H_k_shift = fftpack.fftshift(H_k)

f_k = fftpack.fftfreq(h_n.size, d = dt)

f_shift = fftpack.fftshift(f_k)

A = np.abs(H_k_shift)

plt.plot(f_shift, A*dt, 'co',label=r'$discrete$')

plt.plot(f_values, np.sqrt(real_values**2+imag_values**2), 'm',

label=r'$continuous$')↩→

plt.xlabel(r'f') ; plt.ylabel(r"$\~h(f)$")

plt.xlim(0,6)

plt.ylim(1*10**(-2),100)

70 CHAPTER 3. APPENDIX

plt.yscale('log')

plt.legend()

plt.show()

Appendix D: Python - Nonlinear Least-Squares Fit

Curve fitting code for the analytical and Lorentzian models to data.

import numpy as np

from numpy import pi,exp,sin, heaviside

from scipy import fftpack

import random

import matplotlib as mpl

import matplotlib.pyplot as plt

%matplotlib inline

import sys

import warnings

if not sys.warnoptions: warnings.simplefilter("ignore")

!pip install lmfit

from lmfit.models import ExpressionModel

mpl.rcParams['mathtext.fontset'] = 'stix'

mpl.rcParams['font.family'] = 'STIXGeneral'

mpl.rcParams['font.size'] = 18

mpl.rc('xtick', labelsize=16) ; mpl.rc('ytick', labelsize=16)

plt.rcParams['figure.figsize']=8,4 ; plt.rcParams['legend.fontsize']=16

##Single frequency damped sinusoid with some noise

tmerger=0

tau1 = 40

phi1 = -3*np.pi/2

f1 = 0.5

A1 = 1

Anoise = 0.02

duration=80

num=401

t_n = np.linspace(0,duration, num) # linearly space time array

dt= t_n[1] - t_n[0] # increment between times in time array

h_n = A1* np.exp(-(t_n - tmerger) / tau1) * np.sin(2*np.pi*f1*(t_n -

tmerger) + phi1)↩→

for i in range(0,num): # add noise

h_n[i] += Anoise*random.randint(-10,10)

H_k= fftpack.fft(h_n)

H_k_shift = fftpack.fftshift(H_k)

71

f_k = fftpack.fftfreq(h_n.size, d = dt)

f_shift= fftpack.fftshift(f_k)

A = np.abs(H_k_shift)

#Create an array y(x) of the numerical Fourier transform for positive

frequencies only.↩→

halflen = int((len(f_shift)-1)/2)

x = f_shift[halflen:]

y = A[halflen:]*dt

#Now use the analytic model to do the fit, starting with the trial values

expr = ("abs(0.5 * A1 * exp(-1j * phi1) * tau1 * ("

"((exp(-80 * (2j * x* pi + 2j * f1 * pi + 1 / tau1)) - 2j * x* pi * 0) *

("↩→

"1j - 2 * x* pi * tau1 + 2 * f1 * pi * tau1 + exp(2j * phi1 + 80 * (2j *

x* pi + 2j * f1 * pi + 1 / tau1)) * ("↩→

"1j - 2 * x* pi * tau1 - 2 * f1 * pi * tau1) + exp(80 * (2j * x* pi + 2j

* f1 * pi + 1 / tau1)) * (-1j + 2 * x* pi * tau1 - 2 * f1 * pi *

tau1) + exp(2j * (phi1 + 2 * 80 * f1 * pi)) * (-1j + 2 * x* pi *

tau1 + 2 * f1 * pi * tau1))"

↩→

↩→

↩→

") / ("

"(-1j + 2 * x* pi * tau1 - 2 * f1 * pi * tau1) * (-1j + 2 * x* pi * tau1

+ 2 * f1 * pi * tau1)"↩→

") + 1j * ("

"exp(2j * phi1 - 2j * f1 * pi * 0 + 0 / tau1) / (1 + 4 * (x* pi)**2 *

tau1**2 - 8 * x* f1 * (pi)**2 * tau1**2 + 4 * (f1 * pi)**2 *

tau1**2) - exp((2j * f1 * pi + 1 / tau1) * 0) / (1 + 4 * (x* pi)**2

* tau1**2 + 8 * x* f1 * (pi)**2 * tau1**2 + 4 * (f1 * pi)**2 *

tau1**2)))"

↩→

↩→

↩→

↩→

" * (80 + 0 >= 0) * (0 >= 0))"

)

gmod_analytic = ExpressionModel(expr)

result = gmod_analytic.fit(y, x=x, tau1 = 40, f1 = 0.5, A1 = 1,

phi1=-3*np.pi/2)↩→

print(result.fit_report())

#Now use the Lorentzian model to do the fit, starting with the trial values

gmod_lorentzian = ExpressionModel("abs(c0*c2/sqrt((x-c1)**2 + c2**2) *

exp(-1j*arctan((x-c1)/c2)))")↩→

result_lorentzian = gmod_lorentzian.fit(y, x=x, c0 = 17.5, c1 = 0.5, c2 =

1/200)↩→

print(result_lorentzian.fit_report())

#Plot the best fit against the data

plt.plot(x, y, label="numerical")

plt.plot(x, result_lorentzian.best_fit, '-', label='best fit (Lorentzian)')

72 CHAPTER 3. APPENDIX

plt.plot(x, result.best_fit, '-', label='best fit (this work)')

plt.xlabel(r'f')

plt.ylabel(r'$|\tilde h|$')

plt.yscale("log", nonpositive='clip')

plt.legend()

plt.show()

Bibliography

[1] Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett.,
116:061102, Feb 2016.

[2] J. Aasi et al. Advanced LIGO. Class. Quant. Grav., 32:074001, 2015.

[3] B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams,
P. Addesso, R.X. Adhikari, V.B. Adya, and et al. Analytic models of the spectral
properties of gravitational waves from neutron star merge remnants. Physical Review
Letters, 105(16), Oct 2017.

[4] R. Abbott et al. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo
During the Second Part of the Third Observing Run. 11 2021.

[5] Amaro-Seoane P., et al. Laser interferometer space antenna, 2017.

[6] A. Bauswein and N. Stergioulas. Unified picture of the post-merger dynamics and
gravitational wave emission in neutron star mergers. Phys. Rev. D, 91:124056, Jun
2015.

[7] Andreas Bauswein, Nikolaos Stergioulas, and Hans-Thomas Janka. Exploring properties
of high-density matter through remnants of neutron-star mergers. European Physical
Journal A, 52:56, March 2016.

[8] A. Buonanno and T. Damour. Effective one-body approach to general relativistic two-
body dynamics. Phys. Rev. D, 59:084006, Mar 1999.

[9] Alessandra Buonanno. Gravitational waves. In Les Houches Summer School - Session
86: Particle Physics and Cosmology: The Fabric of Spacetime, 9 2007.

[10] Alessandra Buonanno and B. S. Sathyaprakash. Sources of Gravitational Waves: Theory
and Observations. 10 2014.

[11] J. A. Clark, A. Bauswein, N. Stergioulas, and D. Shoemaker. Observing gravitational
waves from the post-merger phase of binary neutron star coalescence. Classical and
Quantum Gravity, 33(8):085003, April 2016.

[12] Thibault Damour and Alessandro Nagar. Effective one body description of tidal effects
in inspiralling compact binaries. Physical Review D, 81(8), Apr 2010.

[13] R. A. D’Inverno. Introducing Einstein’s relativity. 1992.

[14] Matthew Evans et al. A Horizon Study for Cosmic Explorer: Science, Observatories,
and Community. 9 2021.

73

74 BIBLIOGRAPHY

[15] Éanna É Flanagan and Scott A Hughes. The basics of gravitational wave theory. New
Journal of Physics, 7:204–204, Sep 2005.

[16] John L. Friedman and Nikolaos Stergioulas. Astrophysical implications of neutron star
inspiral and coalescence. International Journal of Modern Physics D, 29(11):2041015–
632, January 2020.

[17] James M. Lattimer. Neutron stars are gold mines. International Journal of Modern
Physics E, 26:1740014, January 2017.

[18] Michele Maggiore. Gravitational Waves. Vol. 1: Theory and Experiments. Oxford
Master Series in Physics. Oxford University Press, 2007.

[19] Anna Puecher, Tim Dietrich, Ka Wa Tsang, Chinmay Kalaghatgi, Soumen Roy, Yosh-
inta Setyawati, and Chris Van Den Broeck. Unraveling information about supranuclear-
dense matter from the complete binary neutron star coalescence process using future
gravitational-wave detector networks. Phys. Rev. D, 107(12):124009, 2023.

[20] Punturo M., et al. The einstein telescope: a third-generation gravitational wave obser-
vatory. Classical and Quantum Gravity, 27(19):194002, sep 2010.

[21] Bernard Schutz. A First Course in General Relativity. 2009.

[22] Stuart L. Shapiro and Saul A. Teukolsky. Black Holes, White Dwarfs and Neutron
Stars: The Physics of Compact Objects. 1986.

[23] Nikolaos Stergioulas, Theocharis A. Apostolatos, and José A. Font. Non-linear pul-
sations in differentially rotating neutron stars: mass-shedding-induced damping and
splitting of the fundamental mode. Monthly Notices of the Royal Astronomical Society,
352(4):1089–1101, Aug 2004.

[24] Nikolaos Stergioulas, Andreas Bauswein, Kimon Zagkouris, and Hans-Thomas Janka.
Gravitational waves and non-axisymmetric oscillation modes in mergers of compact
object binaries. Monthly Notices of the Royal Astronomical Society, 418(1):427–436,
Sep 2011.

[25] Andreas Bauswein Theodoros Soultanis and Nikolaos Stergioulas. Analytic models of
the spectral properties of gravitational waves from neutron star merger remnants. Phys.
Rev. D, 105(4):043020, February 2022.

	Introduction
	Differential Geometry
	Manifolds
	Tensors
	Covariant Derivative
	Geodesic Curves

	General Relativity
	Riemannian Spacetimes
	Christoffel Symbols
	Geodesic curves in GR
	Riemann, Ricci, and Einstein tensors
	Field Equations

	Gravitational Waves
	The Linearization of General Relativity
	Vacuum Spacetime
	Generation of Gravitational Waves
	Interaction of GWs with a Detector

	Neutron Stars
	Merger Stages
	The post-merger gravitational wave spectrum
	Origin and interpretation of peaks in postmerger gravitational-wave spectra

	Post-Merger Models in the Frequency Domain
	Waveform Models
	Fourier analysis
	Continuous Fourier Transform
	Discrete Fourier Transform
	Convolution

	Analytic Waveform Models in the Time Domain
	Computational Workflow
	Analytic Waveform Models in the Frequency Domain
	Single damped oscillator without window function
	Single damped oscillator with window function
	Multiple damped oscillators with window function
	Multiple damped oscillators with time-dependent fpeak and window function
	Conversion to Python library
	Nonlinear Least-Squares Fit

	Conclusions

	Appendix
	Appendix A: Numerical codes for single damped oscillator
	Appendix B: Four simple oscillators
	Appendix C: Four oscillators, of which one with time-dependent frequency
	Appendix D: Python - Nonlinear Least-Squares Fit

