NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF SIGNALS, CONTROL AND ROBOTICS

Effective Methods for Deep Neural Network
Sparsification

DIPLOMA THESIS

of

Athanasios Glentis Georgoulakis

Supervisor: Petros Maragos
Professor NTUA

Co-supervisor: Georgios Retsinas
Postdoctoral Researcher NTUA

COMPUTER VISION, SPEECH COMMUNICATION AND SIGNAL PROCESSING GROUP
Athens, October 2023

National Technical University of Athens

School of Electrical and Computer Engineering

Division of Signals, Control and Robotics

Computer Vision, Speech Communication and Signal Processing Group

Effective Methods for Deep Neural Network
Sparsification

DIPLOMA THESIS

of

Athanasios Glentis Georgoulakis

Supervisor: Petros Maragos
Professor NTUA

Co-supervisor: Georgios Retsinas
Postdoctoral Researcher NTUA

Approved by the Examining Committee on 20" October, 2023.

Petros Maragos Athanasios Rontogiannis Gerasimos Potamianos
Professor NTUA Associate Professor NTUA Associate Professor UTH

Athens, October 2023

ATHANASIOS GLENTIS GEORGOULAKIS
Graduate of Electrical and Computer Engineering NTUA

Copyright (©) — All rights reserved Athanasios Glentis Georgoulakis, 2023.

It is prohibited to copy, store and distribute this work, in whole or in part, for commercial purposes. Repro-
duction, storage and distribution for a non-profit, educational or research nature are permitted, provided the
source of origin is indicated and the present message maintained. Enquiries regarding use for profit should
be directed to the author.

The views and conclusions contained in this document are those of the author and should not be construed
as representing the official positions of the National Technical University of Athens.

Abstract

In recent years, Deep Neural Networks (DNNs) have significantly advanced the state-of-the-art in numerous
machine learning tasks. Unfortunately, most compact devices that rely on embedded computing systems
with limited resources cannot support the deployment of such powerful DNNs. This has driven considerable
research efforts towards creating compact and efficient versions of these models. A prominent method among
the model compression literature is neural network pruning, involving the removal of unimportant network
elements with the goal of obtaining compressed, yet highly effective models. In this thesis, we focus on remov-
ing individual weights based on their magnitudes encompassing the sparsification process during the standard
course of training (sparse training), therefore avoiding multi-cycle training and fine-tuning procedures. In the
first part of the thesis we propose a pruning solution that tackles the problem of sparsity allocation over the
different layers of the DNN. Modeling the distributions of the weights per-layer in a novel way as Gaussian
or Laplace enables the method to learn the pruning thresholds through the optimization process, resulting
in an effective non-uniform sparsity allocation for a requested overall sparsity target. In the second part of
this work, recognizing that the Straight-Through Estimator is a crucial component of the aforementioned
method and of sparse training in general, we devote our efforts into improving its effectiveness. This leads
to the introduction of Feather, a novel sparse training module utilizing the powerful Straight-Through Es-
timator as its core, coupled with a new thresholding operator and a gradient scaling technique that enable
robust state-of-the-art sparsification performance. More specifically, the thresholding operator balances the
currently used ones, namely the hard and soft operators, combining their advantages, while gradient scaling
controls the sparsity pattern variations, leading to a more stable training procedure. Both proposed methods
are tested on the CIFAR and ImageNet datasets for image classification using various architectures, resulting
into state-of-the-art performances. In particular, Feather achieves Top-1 validation accuracies on ImageNet
using the ResNet-50 architecture that surpass those obtained from existing methods, including more complex
and computationally demanding ones, by a considerable margin.

Keywords — DNN-compression, sparsification, weight-pruning, unstructured-pruning, sparse-training,
efficient-vision

ITepiindm

To tehevtaio ypdvia, ta Badid Nevpwvixd Aixtua (Deep Neural Networks - DNNs) €youv Bedtidoet onuavtixd
Ti¢ emBOOELC TOMNADY CUCTNUATWY uUnyavixrc wdinone. Auctuyog, ol teplocdtepes cuoxevéc mou PBooilovton
OF EVOWUUTWUEVA UTOAOYLOTIXA CUC THUATO UE TEQLOPLOREVOUS TOPOUC BEV Unopolv vo utoaTnel&ouy Ty avdm-
TUEN TOOO LoYLEWY HOVTEAWY. AuTé €xel 0dNnyNoEL oE onpavTixés epeuvnTixés TpooTdielee Yo T dnuovpyia
CUUTIOY MV Xl AmOB0TIXWY EXBOCEMY aUTOY TwV Yovtéhwy. Mia e&éyouvoa uédodog yia 0 cuprieon poviéwy
elvor T XAEBEUA TWV VEUPWVIXMDY BIXTO®Y, oL TEPLAPPBAVEL TNV AQUlpEST) U CNUAVTIXOY GTOLYEWY TOU dix-
TUOU UE GTOYO TNV ANOXTNOY) CUUTLECUEVGY, OARS LOLAETEQ ATOTEREOUATIXGDY LOVTEAWY. X TNV Tapoloa epyaatia,
eoTidlovye otnv agolpecy) ueEPOVOUEVWY Bapmv ye Bdon to Yétpo Toug, mepthouBdvovtag T Sodixaction xhodé-
portog xotd T ddpxela Tne Tutuxic mopelac exnaidevone (apard exnaidevon), anogedyovtog €tol dadixaoies
exmaidevone TOAGY HUXAWY Xl TPOCUPUOYQY. 2TO TE®TO YEpoc Tne epyaciog mpotelvouue uia Ao xAodé-
HOTOg TOU oV TIETOTICEL TO TREOBANUA TNG XATAVOUNE TNG opatdTNTOG oTal Sldpopa eninedo Tou duetbou. H pov-
TEAOTIOINOT) TWY XATAVOUOY TeV Bapy avd enlnedo ue vy xavoTtouo 1poémo wg Gaussian 1) Laplace emitpénel ot
uédodo va pordolvel tor xotd@Ao xAadEpatog uéow e dladixactag BeAtioTonolinong, Ue amoTéAecua Uid onoTe-
AeoUaTXT UY) OUOLOUOP®T XAUTAVOUT| EoOTNTOC Yial vy {NTOVUEVO GUVOANXS GTOYO UNBEVIGUEVELV TUPUUETEWY.
Yto Beltepo époc authc e epyaoiog, avayvwpeilovtae 6t o Straight-Through Estimator anotelel xplowo
cuoTaTIXG NG mpoavagepdeioag pedodou xon Tng apourc exXTAUBEUONG YEVIXOTEQW, QPIEQWVOUYE TIC TPOOTS:-
Yelég pog otn Bertinon g anoteAeoyotixotntds Touv. Autd odnyel oty eloaywyy tou Feather, wag véog
povddag apattic exmnaideuong, mou yenowonolel tov toyued Straight-Through Estimator w¢ muphva tng, oe
cuvdLaoUd e Evay VEO TEAECTY XATWPAMWONSG xon pLor TEX VXY XApdxwong Twy gradients mou emitpémouvy elp-
WwoTEC Xou xopugaies emddoelc apatomoinone. Ilo cuyxexpyéva, o teheothc xotwPhinwone elloopponel Toug
dVo mou ypnolomolovvtal orjuepa oty TEGEY, dnhadt tov hard xo soft teheotr, cuvdudlovtoc Tar TAEOVEXTH-
HOLTd TOUE, eV 1M XAUdxwon twy gradients eréyyel tig ueTaBoréc Twv LoTiBrv apudTnTaC, 0BNYWVTIC GE WL
mo otadepn Swodixacio exnaidevonc. Ko ol 0o mpotewvdpeves uédodol doxipdlovion oto cUvoha dedopévwy
CIFAR xaw ImageNet yio xotnyoptonolnom exévwy yenoulomoudvTas JAPOPES HPYLITEXTOVIXES, YE OTOTENECHUA
Vo eTTUY YdvovTar xopugaieg emdooelc. Ewdudtepa, to Feather emituyydver Top-1 axp{Beiec emxdpwone oto
ImageNet yenowwonowdvtoe v apyitextovixt] ResNet-50 nou Eenepvolv exelvec mou emtuyydvovton and Tig
urdpyovoeg ueddoUS, CUUTERLAIUBAVOUEVGDY TWV TLO GUVUETWY XAl UTOAOYLOTIXA AMOLTNTIXGY, UE CNUAVTIXT
dlapopd.

AgZeig Khewdid — ouunieon-DNN, apatonolnom, xAddepo-Lopody, un-8ounuévo-xAddepa, opour-extaldeuon,
AnOdOTIX-6poT

vii

Acknowledgments

To begin with, I would like to thank Professor Petros Maragos for giving me the opportunity to conduct my
Diploma thesis in the Computer Vision, Speech Communication and Signal Processing Laboratory. Through
his teaching of undergraduate courses at the National Technical University of Athens and his research work
he inspired me to actively pursue this research path in the fields of Machine Learning and Computer Vision.
Moreover, throughout my thesis he provided me with valuable guidance and advice that contributed to its
successful completion.

Also, T would like to thank Dr. Georgios Retsinas, Postdoctoral Researcher at the National Technical Uni-
versity of Athens, for our constructive collaboration. The continuous support he offered me both in research
and technical issues played a crucial role in the completion of my thesis.

I am particularly excited that in parallel with my Diploma thesis I published my first research paper in an
international conference with co-authors Dr. Georgios Retsinas and Prof. Petros Maragos.

Finally, I would like to thank my family for their understanding and support throughout my studies and my
friends for the great experiences we had and for our constructive discussions about scientific issues.

Athanasios Glentis Georgoulakis
October 2023

ix

Euyaplotieg

Apywd, Yo fdeha va euyaplotiow tov Kadnynt) x. IIétpo Mopayxd nou pou €dwaoe Ty euxoupio vo exmtoviow
™ Awmhwpatixd gou epyacia oto Epyaostiplo ‘Opaone Trohoyiotdv, Enxowvwviag Adyou xou EneZepyaciog
Ynudtev. Méoa and T SBAoHOA TWV TEOTTLUYLIXWY Tou padnudtwy oto Edvixd Metodfio Iloluteyvelo
oA o amd TO EQEUVNTIXG TOU €pYO0 UE EVEMVEUSE VO ax0hoLINOW EVERYE TN CUYXEXPWEVY EpELVNTIXT Tope(a
otoug Touelc g Mnyavieic Mddnong xow Opaong Troloyiotwy. Emmhéov, xod” 6hn 1 Sidpexela avtod
Tou gpeuyNTXOV Hou €pyou Uou mopelye moAlTY xododrynon xal cLUBoVAEC Tou cuVEBUAAY OTNY ETLTUYY
dlexmnepaiwon tou.

Y ouvéyewa, Yo Rieha vo evyopiotion tov Ap. Iedeyio Petowd, petadbaxtopxd epeuvnt tou Edvixold
Metodpiou Houteyvelou, yia Ty enowodountixy| cuvepyacio pog. H ouveyrc unoothpin mou you npocépepe
1600 o€ EpELVITIXG 600 xal ot TEY VXS {nThAuoTa énagay xodoploTind POAo GTNY OMOXAHEWST TNE ALTAOUATIXAC
pou epyaoioc.

Eipou Braitepa eviiouoiaoyévog mou napdhhnia ye T Atmhwpatixs pou epyacio dnpocievoa oe dedvéc cuvédplo
TNV TEWTN You epeuvnTXY gpyacio ue cuv-cuyypageic Tov Ap. I'edpylo Petowd xou tov Kadnynt x. Ilétpo
Moparyxo.

Téhog, euyaELOTE TNV OWXOYEVELS UOU YLd TNV XOTAVONCT| XoL TNV UTOoTHeEY mou You npocégepay xad’ OAn
TN OLIEXELD TWV GTIOLUBWY UOU, OAAE ot TOUG QIAOUC HOU Yid T WeleC eUnelple TOU MEPACOUE Yol Yol TG
ETOXOBOUNTIXES CUINTHOELS YOS OVOPOELXEL UE ETLOTNLOVIXG {NTAOTA.

Adavdotoc IMevtic T'ewpyouldxnne
OxtoPerog 2023

xi

Contents

Contents

List of Figures

List of Tables

1 Exztetopévn Ilepiindn ota EAANviIxd

1.1 Ewoywyh oo
1.2 Mnyovued Médmon .. . o oo
1.2.1 'Evvoiec Mnyovixric Mddnong
1.3 Badw Mddnony L.
1.3.1 Feedforward Neupwvixd Alxtuo . . .
1.4 Yuunieon Baddov Nevpwvixddv Axtiwy . . .
141 KBavtion
1.4.2 AnociOvdeon Tovuotdv.
143 Anéotoén voone
1.4.4 Xyediaoude Xopnoydv Moviéhwy . .
1.45 Khddeyoo
1.5
1.5.1 TIlpotewépyevn Médodoc
1.5.2 Ablation Mehétec.
1.5.3 Ileplopiopol xou Mehhovtixéc Ilpoextdoeic
1.5.4 SUuUmERdoHATO
1.6
1.6.1 Ilpotewvodpevn Médoboc
1.6.2 Egoapuoyr oe YvotAuata Khadéuatog
1.6.3 Ilewapater a&ordynon
1.64 Xiyxponue o SoA
1.6.5 YuumepdopaTor. v ov v e e

Ipocopuootind Khddepa Métpou uéowy Moviehomoinong twv avé-eninedo Katovouwy

Feather: Muot Koudny Abon yia Anoteheopatinty Apaiwon Nevpwvixddv Awxtiwy

2 Introduction

2.1 Motivation
2.2 Contributions
2.3 Thesis Outline

3 Theoretical Background

3.1 Machine Learning
3.1.1 Machine Learning Paradigms
3.1.2 Machine Learning Concepts

3.2 Deep Learning
3.2.1 Deep Learning Architectures
3.2.2 Deep Learning Training

xiii

XV

xvi

00 O OO UL Ut i W W W N -

23
24
24
25

Contents

4 Compression of Deep Neural Networks

4.1 Introduction e e e
4.2 Related Compression Approaches L L e
4.2.1 Quantization L. L e
4.2.2 Tensor Decomposition Lo e
4.2.3 Knowledge Distillation e
4.2.4 Compact Model Design
4.3 Pruning - Sparse Neural Networks
4.3.1 Introduction L L L e
4.3.2 Pruning Criteria L
4.3.3 Granularity of Sparsified Elements 0oL
4.3.4 Timeframe of Sparsificationo Lo o e

5 Adaptive Magnitude Pruning via Layer-wise Weight Distribution Modeling

5.1
5.2
5.3

5.4

3.5

5.6
5.7

Abstract o e
Introduction L. e
Proposed Method o e e e e
5.3.1 Pruning Criterion L
5.3.2 Learning the Thresholds o
5.3.3 Modeling Weight Distributions oL,
5.3.4 Straight-Through Estimator
5.3.5 Switching Distributions
5.3.6 Sparsity Scheduling and Sparsity Fine-tuning Phase
Experimental Evaluation oL
5.4.1 CIFAR-100 e e
5.4.2 ImageNet e
Ablation Studies e e e e
5.5.1 Impact of Scaling the Sparsity Loss. o
5.5.2 Impact of Using Both Distributions
5.5.3 Comparison with ASL
5.5.4 Per-Layer Sparsity Distribution Lo L oo oo
Limitations and Future Work L
Conclusions o e e e e e e

6 Feather: An Elegant Solution to Effective DNN Sparsification

6.1
6.2
6.3

6.4
6.5

6.6
6.7

Abstract
Introduction
Proposed Method

6.3.1 Preliminaries: Sparse Training oo
6.3.2 Proposed Sparse Training Module
Application on Pruning Frameworks L o

Experimental Evaluation
6.5.1 Ablation Studies

6.5.2 Comparison to SOA

Conclusions L e
Appendix L e
6.7.1 Training Hyperparameters Lo
6.7.2 Impact of Threshold’s p-value e
6.7.3 Stability of the Sparsity Mask vs. Gradient Scaling
6.7.4 Feather Improves Pruning Backbones
6.7.5 MobileNetV1 on ImageNet
6.7.6 Accuracy vs. FLOP Measurements e

7 Conclusion and Future Work

7.1

Conclusion
7.2 Thoughts on Future Work

List of Figures

1.3.1 Tpapuxt avomopdotoot evog TARPOUC GUVBEBEUEVOL VEUPWVIXOY BixTtlou. AT [6]. 4
1.3.2 Mo amewxdvion tne apyrtextovixic evoc poviehov CNNL ARG [80]. o o o o o o oL . 5
1.4.1 Mot ametxdvion e TeooEYYIoNS UE TO HOVTENO SAOXGAOU-UodNTH Yiot TNV anOCTaEN TNS YVMOTG.

AmG [26]. . . o o e 6

1.4.2 Zyxplon tov potifey apoudtntag Tou npoxaholvTol and un-dounuévn apondtnta (apto teph tpddTn
embvar) xou didpopous TUTOUS Bounuévne apoudtntag, oe éva cbvoho dVo @iktpwy CNN nou to
xodéva el tplokernels 3 x 3. Ané [63].o 8

1.5.1 TTopdderypa emnédou pe Bdon xotaveunuéve xatd Gauss (o) xon pe Bdpn xotaveunuéva xotd
Laplacian (). O xotavopés mpoépyovton and ta enineda layer2.0.conv2 xou layer2.1.convl tou
ResNetd0. o o o e 11

1.5.2 Awdrypappo LETEBooNe XoTaoTdoEWY 60U Ot XoTao TdoeLls elvat ot 800 urodiplec xatavoués Hov-
tehonoinone (G: Gaussian, L: Laplace) yio 1o eninedo [. Ot petafdoei yivovton obugwva ye
TOUG TEPLYPAPOUEVOUS XAVOVES 0To TéAog xdlde emoync. Ymodétouue 6Tl Gha Ta enineda etvou

apyxd (otny enoyh 1) poviehonomnuéva Ye puat xotovopy Gauss. L. L 12
1.5.3 AxpiBeta tou ResNet20, nou éyel xhadeutel ye tn duer) pag uédodo xou tnv ASL oto CIFAR-100
0 SLPOPETIXOUE AOYOUC OROULOTNTOG. + « « « « o o v v e et e e e e e e e e 14

1.5.4 Avodoylec apadtnroc avd eninedo (%) yio povtého Tou exXToUBelTNXAY GTO GUVOAO JEBOUEVHV
CIFAR-100. Awpopetind enineda to dixtbou (1.y. conv, fc) onueihvovton ye Slapopetind ypmuato. 14
1.5.5 Hopadelypota tewv xotavouny Bapov avd eninedo mou mpoéxudoy xotd TNy exnoideucr oTo
oUvoho dedopévwy CIFAR-100 pe) yeron tne wedodou pag. Opiouéva enineda poviehonotovvto
HONOTEPAL OO GANOL . . o v o o i i e e e e 15
1.6.1 (o) H mpotewvbuevn yoviddo apatfc exmoddeuons, mou yenotuonolel to véo teheoth xotwehinong
xou TN phoxa xhpdxwone tov gradients () H mpotetvduevn oxoyévela TENEoTOV XaTwPAinong
yia moixiheg Tiwée Tou p. YTiodetolye p = 3, ye anotéheoua TV looppotia ueTadd Tev 6V0 dxpwy,

hard xou soft xatw@ilov avtiotoyo. oL 18
1.6.2 Mehétn tng enldpaong Tou teheoth xutweiinong oy axpeifBeta Tou tTeEAo) apatod YovVTENOL.
To mpotewvéuevo xatwdehl uneptepel otadepd évavtt Twv hard xou soft tehectodv. 20

1.6.3 Mehétn tne enidpoaone tng xhpdxwone twv gradients. Yo cuvinentiny tehxy| opondtnta, 10
0 xovtd otn wovada eivar TEOTIWOTERO, eVE dTay oToyebOLUE o€ LYNAA apordTNTA, ToL HOVTEAD
ENWPEAOVVTAL AO TO O XOVTE OTN HEOT TOU EVPOUC TOU. « .« w « o v v v v v v e oo e 20
1.6.4 H »pdxwon twv gradients Behtidver tnv tehny) axpifeia oe uPnhy apondtnta, aveldotnta and
TOV TEAEOTH HATWPAIWONE, EVE 1) UEYLGTY) ATOBOCY) ETUTUYYAVETOL OV GUVOLAOTEL UE TO TROTEWVO-

MEVO XOTOPAL v v vt ot e i i e e e e e e e e e 21
3.1.1 Nlustration of overfitting and underfitting for classification and regression. From [65].. 31
3.2.1 A neuron (a) and some common activation functions (b). (a) from [39]. 32
3.2.2 Graphical representation of a Fully Connected Neural Network. From [6]. 33
3.2.3 An illustration of the architecture of a CNN model. From [80]. 34
3.2.4 An illustration of a convolutional operation for the case of 2D input. From [15]. 35
3.2.5 An illustration of the pooling operation. From [1]. 35
3.2.6 Example of flattening a 2D activation map that is feed as input to a series of FC layers. From

[A5]. o 36

List of Figures

3.2.7 An example illustration of convergence process using the SGD with and without momentum.

From [T6]. o 38
4.2.1 An illustration of the quantization-aware training process (forward and backward pass) using

an example array of 4 weights. From [23]. o o L. 43
4.2.2 Ilustration of a weight sharing scheme. From [28]. 44
4.2.3 (a) typical CNN layer acting on single channel input. (b) and (c) approximating the layer’s

filters based on the two proposed schemes by Jaderberg et al. From [43]. 44
4.2.4 An illustration of the teacher-student model approach for knowledge distillation. From [26]. . 45
4.2.5 The knowledge distillation framework by Hinton et al. From [32]. 46

4.3.1 Comparison of the sparsity patterns induced by unstructured (or fine-grained) sparsity (left
first image) and various types of structured sparsity, on a set of two CNN filters each having
three 3 x 3 kernels. From [63].. 49
4.3.2 Examples of pruning schedulers used to gradually reach a 90% pruning rate at epoch 120. . . 50

5.3.1 Example of a layer with Gaussian-like distributed weights (a) and one with Laplacian-like
distributed (b). The distributions are from layers layer2.0.conv2 and layer2.1.conv1 of ResNet50. 57
5.3.2 State transition diagram where states are the two candidate modeling distributions (G: Gaus-
sian, L: Laplace) for layer . The transitions happen according to the described rules at the
end of each epoch. We assume that all layers are initially (at epoch 1) best modeled with a
Gaussian distribution. e e e e e e 57
5.5.1 The estimated sparsity at each epoch, S’i, closely follows the requested one, S;. Without
adaptively scaling the sparsity loss fails to grow and (S”i, no scaling) deviates from S;. Plot

values from training ResNet20 on CIFAR-100. 61
5.5.2 Total sparsity estimation error per epoch, es = S({r;}) — S({r;}) (both quantities in es repre-

sent sparsity ratios in %), for the adaptive part of training ResNet20 to 95%. 61
5.5.3 Accuracy of ResNet20, pruned using our method and ASL on CIFAR-100 at varying sparsity

Tatios. L 62
5.5.4 Per-layer sparsity ratios (%) for models trained on the CIFAR-100 dataset. Different modules

(e.g., conv, fc) are marked with different colors. Lo Lo oo 62
5.6.1 Examples of per-layer weight distributions obtained during training on the CIFAR-100 dataset

using our pruning method. Some layers are modeled better than others. 63

6.3.1 (a) The proposed sparse training block, utilizing the new thresholding operator and the gradi-
ent scaling mask (b) The proposed family of thresholding operators for varying values of p. We
adopt p = 3, resulting to a fine balance between the two extremes, hard and soft thresholding

respectively. e 68
6.5.1 Study of the effect of the thresholding operator on the final sparse model accuracy. The

proposed threshold steadily outperforms the hard and soft operators. 70
6.5.3 Gradient scaling improves the final accuracy at high sparsity, regardless the thresholding op-

erator, while maximum performance is achieved if combined with the proposed threshold. . . 71

6.5.2 Study of the effect of gradient scaling. Under conservative final sparsity, 6 near unity is
preferable, while when targeting high sparsity, models benefit from 6 near the middle of its
TANZE. . . v vt e e e e e e e e e e e e e e e e 71

6.7.1 A study of the effect of the p value of the proposed family of thresholds on the final sparse
model accuracy. Results from ResNet-20 trained on CIFAR-100 (a) and the corresponding
thresholds used (b). e 73

6.7.2 Plot of Pearson correlation coefficients between the sparsity mask obtained at the end of each
epoch and the mask at the end of training, for varying values of the gradient scaling parameter
0. Results from ResNet-20 trained on CIFAR-100. 74

6.7.3 Feather improves the accuracy of common sparse training backbones: (a) GMP, a uniform
layer-wise sparsity pruning backbone (b) the ASL+ framework. Results from ResNet-20 trained
on CIFAR-100. o o o e e 75

6.7.4 Top-1 accuracy vs. FLOPs of ResNet-50 on ImageNet. 76

xvi

List of Tables

1.1

1.2
1.3
14

5.1
5.2

5.3

6.1
6.2
6.3
6.4

AxpiBeio twv ResNet20, MobileNetV1 xou DenseNet40-24 oto CIFAR-100 oe Sagopetixoic
hoyoug apodtnroc. Avagépeton emlone N apyixr oxplBel TOU TUXVOD POVTEAOU Yiol AOYOUS
OGUYXPLONG: + v o o o e i e e e e e e e e e e e e
Axpifeio tou ResNet50 oto ImageNet.o oo o
Yoyxpion e axplPeag Top-1 oto CIFAR-100.
Y0yxplon e axelBetac Top-1 oto ImageNet. Lo

Training Hyperparameters used for all our experiments on CIFAR-100 and ImageNet datasets.

Accuracy of ResNet20, MobileNetV1 and DenseNet40-24 on CIFAR-100 at varying sparsity
ratios. The initial accuracy of the dense model is also reported for comparison.
Accuracy of ResNet50 on ImageNet. L

Comparison of Top-1 accuracy on CIFAR-100.
Comparison of Top-1 accuracy on ImageNet.,
Training hyperparameters used for all our experiments on CIFAR-100 and ImageNet datasets.
Top-1 accuracy of MobileNetV1 on ImageNet.

xvii

12
13
22
22

99

59
60

72
72
73

List of Tables

xviii

Chapter 1

Extetoapevn Ilepiindn oto EAAN VX

1 R) v 2 L o T 2
1.2 Mnyovix MEONoM .« v v v o o i it e e e e e e e e e e e e e e 2
1.2.1 "Evvoiec Mnyovixdic Mddnone o o o o oo 3
1.3 Boadtd MAONOT . . o o o it e e e e e e e e e e e e e 3
1.3.1 Feedforward Nevpwvixd Alxtuor oo oo 3
1.4 Svprnicon Badidv Nevpowvixdy AXTOWV . o v v v v v v v i e v v i e e e v n o 4
141 KBAvTon . . . o e 5
1.4.2 AnocOvieon TavuoTtodv o o e 5
1.4.3 Anbotadn Ividone oo o 6
1.44 Xyedoopdc Xoumoy®wy Movtehowv . . . o o oL 6
145 KAEBEU . . o o o oo e 6

1.5 IIpoocapuooctixd KAddepua Meétpouv pécw Movielomoinong twv avdé-
eTINESO KATAVOUMY v v v v v i i i e e e et e e e e e e e e e 8
1.5.1 Ilpotewvouevn MéBoBog.o 9
1.5.2 Ablation MehéTec. e 13
1.5.3 Ilepiopiopol xou Mehhovtixég Ilpoextdoelc 15
154 BUUREESOUUTA . . v v v v i e 15

1.6 Feather: Mo Koudhi AdVom yio Anotelecpatixry Apailworn Nevpwvixoyv
AN 1 2 16
1.6.1 TIlpotewduevn MEVOBOC. o v v oo 16
1.6.2 Egappoyr o Luothuata Khadépatog o o oo oo 19
1.6.3 Iewpopot) a€LOAOYNON © o v v v v v i e 19
1.6.4 XOyxplon e T0 SOA . . L Lo 21
1.6.5 DUUREEACUOTO + v v v v v v o v e e e e e e e e 21

Chapter 1. Extetauévn Hepiindm ota EXnvixd

1.1 Ewayowyn

To Bardid Nevpwvixd Aixtuo €youv emdellel eviunwaolaxés ixavotntes otny enthuot dlapdpwy chvietwy TeoB-
MUty punyovixic wdinong, Pe Tic emBOCELS TOUS Vo BEATLOVOVTAL CUVEYNDS YdEY| OTIC TPOOTAIEIES TN EPEVY-
nTxhc xowdtnrog [33, 48, 25]. T var emiteuydel autd, Tor LOVTENR VELPEVIXWY STV EYouV Yivel yeyahltepa,
BordOtepa oL O TOAUTAOXA XUl CUVETME AMALTOUY ONUOVTIX0VS ToeoUg Yia TNy exmaidevon xou tnyv eay-
WYY CUUTERAUOUITWY, CUUTERLAUBAVOUEVWY UEYHAMY TOCOTATOV UVAKUNG CUC TAULATOS Yia TNV anotixeuon Twv
TOEOUETEWY XOL TV EVOLIUESWY UTOAOYLOUOY, CNUAVTIXAS UTOAOYIO TN Lo 00C TROXEWEVOL VoL DLATNEOUVTAL
Noywol ypdvor enelepyoaoiog, xodde xan dpdovn napoyn evépyeta ota eumhexdueva cuotiuata [14].

AvoTuy g, 1 paydoia adEnomn Twy anuthoewy ot tépoug Twv DNNs teheutalag teyvohoylag dev £xetl xohugpiel
ond avtiotoyn npdodo 6To UAXG (eNeEepyao TEC Xou UVAPES) TOU YPNOWOTOLO0V OL POPNTEC CUGKEVES, OL OTOlES
neptopilovtan and to wxpd péyedoc xou Tic youniéc evepyetaxéc anoutiioels [14]. Katd ouvéneio, Todég epap-
HOYEC TOU TEAYUATIXOU XOOUOU, OTWE OTN popmoTixy, ota éEunva wearables, ota avtoxivnto pe autdvoun
odnynon xau otig eEunveg moAelg, Yetadd dhhwy, tou Bacilovtal oe cuo THUATA Uy avixAc Hdinomng Tou Aettoup-
yoUv 6€ GUOXEVES UE TEPLOPLOMEVOUE THPOUE, BEV Umopoly va enw@eAndoly and Tic BeATiwpéves duvatdtnteg
ATAOV TWV SXTOWV.

Q¢ amdvtnon, Ta tehevtalor ypovia €yel xatofAndel yeydhn mpoomddeio yio TN Snuiovpylol CUUTOYWY XaL
anodotixtv (dnhadr cugmieopévenv) exdooewy auvtidy twv DNNs [14, 57, 26]. Metald twv moludprduwny npoo-
eyyioewv oupnieone povtéhwy, 1o xA\&depa [54, 21, 57| éxer pyehetnlel eupéwe xou Exel deilel mohb eAmBogpdpa
anotehéopata [21, 73, 97, 84]. Ilepuhayufdvel v agoipeon ototyeiwy touv dtlou (dnwe pepovouévo Bden 1
ohoxhnpar gihtpar o xovdhia) ou Yewpolvton TEpLTTd xou €xouv wxet 1 xaddhou eniBpoaon oty el Tou
an6doon. Hapado&we, éyet napatnendel dti tar apyixd peydha TLXVE LOVTENS TTOL €Y0LV YIVEL apond UETL XhodE-
HATOC UTERTEPOUY EVAVTL TWV WXEOTEQKY TUXVMY LOVTEANY TIOU €Y0ULY TOV (BLo aptlud U UNBEVIXDY THPAUETEWY,
Topouctdlovtog ouy Ve xodhou anmhetes axpifelac Ewe xou Yétploug Adyoue ouurnicone [98, 73]. Ltnv ouoia,
AUTO TO PUVOUEVO, oV Xol OEV EYEL OXOUT] WLlol EUTERLO TATWUEVY TewenTiny) xaTavono), anodideton yevixd otnv
enidpoom ToL €xEL N UTEPTUPAUUETEOTOINGY, OTY| BUVITOTNTA ATOTEAECUATIXOTERPNG exmaibevong péow Stochas-
tic Gradient Decent [94, 7], xodd¢ xou otoug emmiéov Badpolc eheuvdeplac Tou ewwdyovion 600V opopd TNV
xatovopn e apondtntac [67, 84].

Ipbogata, unhpge Wialtepo evbiapépov otny xowvdtnta cupnieons twv DNNs yia v avdntuén uetddnv nou
exteENOUY amoTeheopatind o xA&depa evtde e tumxic opelag exmoidevone [73, 44, 84, 86], dnhadr| ywelc
Y avdyxn yia Tepoutépe YUpoug emavexmaldevone xou xhadéuatoc. Mtnv moapoloa Aimhwuatixf Epyaocio,
otnElOUEVOL GTO GUVONO EQELVNTIXWY €pYWY TNE TEPLOYNS QUTAS, €0TIECOUUE OTNV OPUiPEST) UEHOVOUEVLY
Boapdv ue Bdon to ueyédn toug xatd tny exnaideuon.

1.2 Mnyovixry Mddnon

Me tov 6po pnyavixn péinon [66, 4] avagpepduacte oe €va exTeTapévo Paopo UedbEdmV TOU YENOHLIOTOLOUVTAL Yidt
TOV TPOYPUUUITIOUS UTOAOYLO TV WGTE Vo avoxahOTTouy wotifo xou var hauBdvouy anogdoelg Bdoet dedouévwy.
Avuty| 1) mpocéyyion pe Bdor to dedouéva Exel emtTpédel GTOUC LTOAOYIGTEC Vo Blampédouy e BLdpopou Toyels,
OTwE oTNY 6paot), Tou Vo ATAY AVEPIXTO VO TEOYROUUATIOTOUY ENTA Yol VO AELTOUEYNCOUV UE ToV emiduuntd
teémo. Lo v enthuon prag epyactiog ye) xenon wog pedddou unyovixhc pddnone anatelton évot cOvolo de-
dopévwv. Autd to oUvolo dedouévwy Umopel Vo Tapouclac tel 6ToV UTOAOYLOTH PE SLdPopouc TPOTOUE, avaAoYa
HE TNV EQapUOYT|, 0dnyhvtac xuplwe ot tela Sapopetind mopadelyuato unyoavixhc pdinong, Ty emBienduevn
pddnom, t un emPBAenouevn pdinom xon tnv evioyutixny udinon.

EmBAenopevn MdOnon

Moxpdv 1 mo cuvnhouévn Teocéyyiorn ot unyovixy pdinon ovoudleton pdinon ue eniBiedn. Xopaxtnpileton
and TN YEHoN EMOTNUACUEVEDY GUVOALY Bedouévwy, btou 1 emduunty| éZodoc (euxéta) avtiototyileton e xdide
avtioTolyo Belypa dedouévwy. AUTEC oL ETIXETES YENOWOTOOVVTOL GTY GUVEYEL Yid VoL “BiddEouy” X var “emt-
Brédouv” to cloTnua Vo eTLOTREPEL T 0Wo TS €€600U¢ YLo dedopéva Tou déyetan we eloodo. ITo cuyxexpéva,
évag alyoprduog udinong e enifredn otoyebel otny exudinon uog aviiotolylong Yeto€l TV ELOdWY T TOU
TpoPAMuatog xou Ty eE63wY Yy, Tou TopEyovton Pe Evar olbvolo dedouévey, {(z1,vy1), ..., (TN, YN)}, UE T; xou
y; v gfva 1o 10016 delypa €lo6Bou (Tou cUVATWC OVAPEPETOL (S DLAVUCHO YOPUXTNEIOTIXOY) X0 1) i-00TH

2

1.3. Bohd Mddnon

¢€odoc N mpdPAedn, avtiotorya. To mpoPBAfuata pdinone ue eniBredn diaxplvovion mepoutépw oe mpoPAfuaTa
TaEvopnong dv ol €€odol y elvan Soxpltéc 1 ot Tpofiruata Takvdpounong edv ol é€odol AauBdvouy cuveyeic
TIES.

1.2.1 ‘Evvoiec Mrnyavixnig Mdadnong
Yuvdptnorn Lpdiuatog

Ou tumxol ahydprduor unyovixic uddnone yenowomoloty dwdixooiec Pedtiotonoinone pe Bdon v xhion [75]
TPOXEWEVOL VOl TTPOCUPUOTOLY TLE TORUUETEOUS TOU LOVTEAOU 8, BOTE VoL avomapaoTAGoLY xoATepa Tor Sedouéva.
Auté emtuyydveton ye v elaytotonoinon wog Paduwthc cuvdptnone L() (oyedév navtod) Swgpoplowns we
TPOC TIC TMORUUETEOUS, YVWOTYH WG CUVARTNOT CQAIAUATOS, 1) OTolol HETPA TO CQIAUN TOU UOVTEANOU GE €V
olOvoho BeBouévwv pe BAon T amdoTIoN TWY ETIXETOY Y Xou TwV E63wY Tou poviéhou § = fa(z). Avédroya
HE TNV €QUPUOYY), UTdEYOLY TOAUGELIUEC TUPUOTACELS TN CUVARTNONG OPAUAUNTOC, OTKS 1) cuvdptnon Méoou
Tetpaywvixod Sgdipoatoc (MSE) xau 1 cuvdptnon Méoouv Andiutov Zgdhpotoc (MAE) yio mohivdpdunon xau
7 ouvdptnon Awctavpwuévne Evtponiag (Cross Entropy) yio talivouno, Letall GAAwy.

Merpixeg a&lohdynong

Mo ouvdptnon mou yerowonoteiton yia TNy oElOAGYNoT TNS anOd0oNe EVOS HOVTEAOU unyovixhc udinong,
elte oe éva evdidueco PBriua Bektiotonoinong eite yetd tn Swdixacio exnoideuone, ovoudleton petph. Av
%ol OTOLONTOTE CUVAPTNOY GpdApaToC Utopel va yenowonoindel w¢ YeTEwr, 1) SLaQOPLOLUOTNTA TWV UETEIXWY
CLVHPTACEWY (WS TPOS TIC TAPAUETPOUS TOU HOVTENOL) dev amotelel amaitnom, xadde dev ypnotponotovvio
dueoca vl T Bedtiotonolnoy tou yovtélou. Emouévwe, avdhoya pe 0 @bom tou mpofiuotoc, umopel vo
emAeyel pat LEYEAT TOLUALL GUVOPTHACE®Y Yot TO 6X0T6 TNG AELOAOYNONE TOU HOVTENOU.

1.3 Babid Mdidnon

"Eyovtog xolUet ta aoixd otovyeio tng unyovixnic udinone, 9o eTIECOUVUE TP TNV TEOCOY T UoC 0T LOVTERY
xou i ped6douc Badde pdinone [53, 25], xadode autd elvor To xVplo TEdLO EPapUOYHS TWV BLaPOEWY TEXVIXGDVY
oupnieong wovtélwy, cuunepiopfavouévou tou xhadéuatoc. To onNuavtiedTepo TAEOVEXTNUL TwV UeP6dwy
Bodidic wddnome elvan 6t umopolv vor hopfdvouy g eloodo axatépyoaota dedouéva (.. TWES EXOVOTTOLYEIWY
EOVAC) X0 VOL ETLTUYYEVOUY EVTUTIWOLOXE, AMOTENEGHOTA, ETULTPENOVTUS TN XPHoN TNG pnyavixic wddnone yio
EQUPUOYES TIOU 1) YEpoXNTN e€ay YN YopaxTnetoTixy Yo fjtay 80OXOAT xou TOAD AySTEQO ANMOTEAEGUATIXY).
Auté épyetar oe avtideon pe Tic napadooionée puedddouc unyavixic wdidnong, ot onoles anartolooy TEHOTA T
YELLOXIVNTN UETATEOTY TWV AXATERYUCTWY BEDOUEVLV OE YUPUXTNELOTIXA IOV TO GOOTNUO UTOPOVCE VoL YELPLOTEL
anoteheopatixd. O tpémog Ye Tov onolo ta wovtéha Padide udinong, mou ovoudlovtar Bonhd Nevpwvind Abctua
(DNNs), eneepydlovrton pe emtuyio Tor oaxotépyaota dedouéva ELOB0U Elval EXTERMVTIC QUTOUATA TO €pY0 NG
EEUYWYNC YUPOXTNELOTIXOY XUTd TNV EXTOUdELUSY) TOUS Ot peydha ovvola Bedouévwy (cuvhlwe ToAD peyahlTtepa
amd LT TOL AmATOUVTOL YL TLC Tapadootaxée Yedddoue unyovixic pdidinonc), évtac oe Yo va pardaivouy
YOEUXTNELOTIXA PE BlapopeTind enineda apalpeong AOYw TOU TEOTOU XATACHEVHC TOUG.

1.3.1 Feedforward Nevpwvixd AixTtua

Towe 1o o dnuopihfy povtéda Podide uddnone ebvar ta Feedforward Nevpwvixd Aixtua (FFNN), ue tov
6po feedforward vo unmodniddvel 6Tl ta orjato péouv amd TO CTEOUA ELGOGBOL GTO OTEWUA €E6B0L, UEow
TWV EVOLIUECWY XPUPRDY CTEWUATOY, Ywelc TN yefon cuvdéoewy avatpopoddtnone. Madnuotixd, éva FFNN
unopel vo dewendel we pa suvdptnon f(x, W) nov, dedopévou Tou ofuatog el06d0L & xou evoc Tivaxo Bopddv
mpog uddnorn, W, nopdyel wia €080 y. Avo mold cuvnhouévol tonor FFNNs eivor ta I pwe Xuvdedeuéva
Nevpwvixd Aixtua (FCNN) xou ta Suvehixuxd Nevpwvixd Aixtuo (CNNs), ta onolo avolbovion cuvortixd
axohovVwC.

IIhpee Xuvdedeuéva Nevpwvind Abetua

Avoagépovrtan xou we ITohvenineda Perceptrons (MLPs), eivar ot anhobotepol tonot FENNs xou anotehodvton omd
évay optdud TANEEOS CLVBEBEUEVWY CTPWUATKY, OTOU XGUE VELPOVIS OE EVal GTEMUO CUVBEET e xdE vELupD VL
Tou endpevou otpdpatoc. O aptdudc twv VELPGVWLY EVOC OTPOUATOC 0VOUALeTol TAGTOS, EVE DLAPOPETIXG

3

Chapter 1. Extetauévn Hepiindm ota EXnvixd

OTPOHATY UTopoVY Vo €Y0UV BlAPOEETIXG TAATOC, UE TO TAGTOS TWV OTpWUATWY elo6dou xat €600V va elvon
puUOLXS (G0 UE TIC BLIOTACELS TWY DAVUCHETLY EL56d0L xau e€HB0U, avtioToiya. Ano Ty dhhn Thevpd, o aptiudc
TOV OTEOUATLY eVHE povtéhou opileton w¢ to Bddoc Tou. Mio yeapixy| avomapdotaoy evog Thipws cLVIEdEUEVOL
duxtbou anewoviletar oto Lyfua 1.3.1.

Input layer : Hidden layers i Output layer
i h, h, h, 0

Input 1 }\‘ "/{ } "‘/{
Input 2 <X N ‘(‘y’
A0

V/

O
NS
el .“\

Output 1

Output n

Syupa 1.3.1: Tpagunf avoanopdotacy evée nhipouc cuvdedeuévou veupwvixod dxtbou. Ané [6].

Suvehtnd Nevpwvind Alxtua:

To Zuvehitnd Nevpwvind Alxtuo (CNNs) avixouv oty uroxatnyopia twv feedforward vevpwvindyv dixtionv
mou ebvar eWdixd Bedtiotonomuéva yia v eneepyacio Sedouévmv tou €youy Tonoloyia mou poldlet ue TAéyua,
omwe oL exodvec. ‘Omwe xou to TAfpwe ouvdedepéva dixtua, amoteholvtar eniong amd TOAATAOVS VEURGDVES
ol omolot amoteholvTal and exnadeloues Topauétpous. AauBdvouv we eicodo axatépyacta dedopéva Tou el
vou cuvAdwe eixovootolyela xan Topdyouy Ta anoteAéouato TEOBAedne we €€odo. Kobdng oyedidlovton pe
Bdon v unddeor bt Toug mopEyovton entd ewdves we eloodot, Ta CNN umopolv va e€dyouy ywelxd yapax-
TNELO TG Xall VoL ovory Vwpllouy xplolgo Souixd TedTUTIOL TNE L0630V TOUC. §2¢ CUVETELX TN OMOTEAEOUATIXAS
AOOXOTOMNONG CNUAVTIXGY IBLOTATWY NS EXOVOS, UTOPOUV Vo VAOTOINJ0UV MO AMOTEAECUATIXG YO TNV €X-
TéAeoT) TOU eUmPOoNOU TEPAGHUATOS, EVE ANALTOUY eEUPETIXY UELWUEVO apliud Tapopétewy, o alYXEIoN HE TA
TUTUXE. VELPWVIXGE. BlxTUAL

Suviidoc n apyrtextovixr evéc CNN amoteheiton and morhamhd otpdpota cuvENENG, pooling xat eveyopévee
%o oTpwUdTwy batch normalization, axohouvdoluevwy amd évay apriud TAYPwS CUVOEDBEUEVWY OTEOUATOY.
Yto Yynfua 1.3.2 nopodétoupe évo mapdderypo apyttextovixic CNN nou anoteleltan and ta npoavapepdéva
OTEOUATOL.

1.4 Xvunicon Badiwwv Nevpovixov Auxtdwy

To teheutodo ypbvia, ta Bardid vevpwvixd dixtua éyouv yivel i mAéov alyypovn npocéyyion (SoA) oty av-
TWETOTLOYN TOAGY TOAOTAOXWY TEOPBANUATOY unyovixic pdidnone, oe Toyelc 6w 1 6paoT UTONOYIGTOY, N
enelepyacio puowic YAOooas, 1 enclepyasion ophiog xou fiyouv xau 1 pounotxn [33, 33, 48]. Av xa 1) epop-
poyn twv DNNs oe npofifuata twv mpoavapepdéviny nedlwy unopel vo odnynoet oe dpapatixéc BeATidoelg
TWV EMBOCEWY O GUYXELOT UE TN YPV 0N TapABOCLOXOY UETOBOY Unyovixhc uddnong, autd éyel wg x60Tog T
oNUoYTX: avENoT NG UTOAOYLo NG ToAuthoxotntoc. Autd anodideton oty tdomn twv DNNs va Bocilovton
oty UToeEn TOAD UEYHA®MY CUVOALY ToEoETewY Tpo¢ uddnon, mou cuyvd aptduoly 8exddec 1 exatovtddeg
eXUTOUOPLA, X0l CUVETWE AmotTolV TERIOTI TOOH UVAUNG XAl UTOAOYLO TIXWY TOp®Y XuTd TNV exnaideuon xou
7o inference [14]. Tétolec peydheg anatroeic oe népoug eunodilouvy T xeRon Twv cusTudTey Tou Bacilovia
ot Podid pdinom oe cuoxEVEC UE TEPLOPLOUEVOUG TOPOUS, OIS XVNTE TNAEPWVO, POPNTEG GUOXEVES, EEuTval

4

1.4. Yvynieon Baddv Nevpwvixav Awxtiwy

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 ReLU activation
Convolution Convolution A
(5x5) kernel Max-Pooling (5 x5) kernel Max-Pooling (with
valid padding (2x2) valid padding (2x2) Q \dropout)

INPUT nlchannels nl channels n2 channels n2 channels \| E) 5. 9
(28x28x1) (24 x24 xnl) (12x12 xnl) (8x8xn2) (4x4xn2)

. ' OUTPUT

n3 units

Eyfuo 1.3.2: Mia amewdvion tne apyrttextovixiic evoc poviéhov CNN. Ané [80].

poundT xou TOARES dhheg EEuTveS QopNTEC GUOXEVES Tou Bactlovial 68 EVOWUATWHUEVH UTOAOYIC TIXE GUC THHAT
HE TEpLoplopévoug Topoug enedepyasiac, Uviung xou Loy docg.

Avayvewpllovtag tig peydheg mpoontnée g avdmtuing povtélwy Badide udinone oe @opntéc cUoxEVES, TA
teheutaior ypdvio Exel avgniel to epeuvnTnd evBlopépoy Yo T ouunieon xan TNy emtdyuvorn twv DNNs ye)
xenon dpdpwy teyvixdv [14, 57, 26]. Me 1 yprion ocuunieouévwy povtéhwv DNNs, uropolv va emiteuydoiv
OPLOUEVIL ONUOVTLXE TAEOVEXTHUOTA, ToL oTtolal 0dnyolv Tpog Ty xotebtuvon g Yenone twv DNNs oe nepi3dh-
AOVTa UE TIEPLOPLOUEVOUC TTOPOUC, UEPLXE OO TOL TILO ONUAVTIXG VoL ElVOL Ol UELWUEVES ANMATHOELS UVAUNG Yid TG
BLAPOPES TAPUUETEOUS TOU WOVTEAOL, oL younhdtepee ananthoelc oe FLOPs xatd tn Sudpxela Tou inference xou
7 e€owovéunon evépyelog. M ToAD Snuogilrc teyxviny oupnieong mou €yel uehetniel extevde ta Teheutola
xeovio elvon to xhddepar [5], N omola ebvor 1 Bradixacio agalpeone mopauétewy tou dixtdou ue Bdorn xdmolo
%xplThpLo, UE 6TOY0 TN pelwon tou peyédous Tou Sixtiou (dnhadh Tou cuVOXO) apELdHol TKWVY TaPUPETEWY TOL),
BLATNEAOVTOC ToEdAANAA TNV amdAEL anddoong 660 To duvatdv younhotepn. H npocéyyion auty, mou anotelel
To enixevipo g mapovoas epyooioc, Yo e&nyndel avohutxdtepa otny Evétnra 1.4.5, 6mou Yo avaludoldv
oL didpopeg xatnyopleg xhadéuatog. Emmiéov, Yo nopouciacTtody ev cuvtopio didgopes dnuogihelc pédodol
ouunieone, ol omoleg ebvon 1 xBdvtion [57], N amocvvieon tavuotwy [43, 68], n andotaln yvoone [26] xa o
oyedlaoude ouunaydy HoviéAwy [14], €Tol HOoTeE 0 avay VAo TNG Vo €EL ot EUPUTEPT XOTAVONOT TV dlapdpmv
npooeyylocwv ouunicone.

1.4.1 KpdvTion

H xBévtion elvar 1 Stadixaoio avanopdotaong Tev TGV EVOE GUVEXOUS OHUATOS YPTOWOTOLOVTAS Vol Uixpd
oUVORO BloxpLtwy cLUBOALY 1 axépaiwy Twwy. Xto DNNs, ta xBoavtiouéva otouyela avtiotoryolv cuvidng
oe Bdpn xou biases, TWéc Twv cuvapTHoEwy evepyomoinong N Tywég tou gradient. O teyvinég xfBdvtiong yio
ovpnieon twv DNNs urnopolv va ywelotolv oe yevixég ypouués oe 8o xatnyoplec, Ty apuduntixy xBdavtion
Younhév bit [89, 81] xan Tic teyvixéc pepxic xBdvtione mou Pacilovtan xuplnwe ot xpron xowvdy Bapdy Tou
urohoyilovion péon texvixmv opadonoinong [28].

1.4.2 AmnoocUvOeorn Tavuotov

H egappoyn texvixdv anoctvieons Tavuotdy (CUUTERLAUBOVOUEVLY X0l TLVAX®Y) GTOUS TAVUOTES TV Baptv
€xel yehetniel extevdde w¢ évag TpoTog oupnieong xou EMTAYLVONG LOVTEAOY VEUPOVIXGY dxtinv. Tétoleg
uédodol amocuVIETOUY TOUG TOAUBLAG TOTOUC TAVUOTES Poptdv o TPooeYYIoelc YaunAne Tééng, ue otdyo v
oUpollpEDT) MEPITTWV TUPUUETPWY Xo TNV EZ0XOVOUNGCT UTOAOYLETOU Ypedvou. TTohhamhéc teyvixée xou olydpl-
Yot anocivieong €youv yenotwomoindel Yol To 0TOYO QUTO, UE UERIXEC amd TIC MO dNUOPLielc oTn oyeTX

5

Chapter 1. Extetauévn Hepiindm ota EXnvixd

BPhoypapia va etvon 1 Singular Value Decomposition (SVD) [62, 68], n Canonical Polyadic (CP) decomposi-
tion [52, 83] A n exuddnon Aelixayv [74].

1.4.3 Amndoralrn I'vorong

Teacher Model
Knowledge Transfer Student Model
___________ FETmm——m—_—_——_————N
[|
o |
5 | |
= Transfer|< I
= —’)
3 19y |
e 1o O I
® (| |
__________) N\ _____w____2
Data

Eyua 1.4.1: Mo aneixovion tng Teoc€yyiong Ue T0 HOVTENO SAGHANOU-UordnTT] Yiot THY omdGTAgN TNS YVWONC.
Arné [26].

M tpocéyyion ouunieone Loviéhwy mou mepthauBdvel T Sdaoxaiio evog xpol Yovtéhou, To onolo ovoudle-
Tou Hovtélo padntrc, v vo extehéoel wa epyaota (my. tadwdunon exdvov) pe Bdon tic anavticeg ()
YVOOT) EVOC PEYANITEPOU TPO-EXTIAUBEUPEVOL LOVTEROL (1 EVOC GUVONOU LOVTEAWY), TO 0Ttolo ovopdleTtal Uov-
wého ddoxahog, eivon Yvwoth we Andotaln I'vaone (Knowledge Distillation - KD). To yevix6 oyfue KD
anewoviletan ypapwd oto Lyfua 1.4.1. H 18¢a npotddnxe apyixd and toug Bucilud et al. [8] xou yevixeltnxe
Tepoutépw and to €pyo Twv Hinton et al. [32], 6nov npotddnxe éva cvotnpo KD to onolo mopdyet cuunayn
HOVTENOL TTOL UTERTEPOVY EVAVTL UTCOVY oL exntaudetovton and to undév (ywelc KD).

1.4.4 Xyediaocpmog Xvunaywyv MovitéAwy

Av xou Bev TEOXELTOL YLl TEYVIXY) CUUTESNC UOVTEAWY PE TNV AUOTNET EVVOLX, O OYEBIIOUOC CUUTOYMOY UOV-
TENWY oMo TO UNdEV Tou ETTUYYAVOLY amodexTr axpifeia elvon €vag amAdg TEOTOE YLl VoL XATaoTEL TEPUUTEPW
duvaty 1 yeron g Podidc uddnong oe xVNTEC CUOKEVES Xl EQUPUOYES UE TEPLOPIOPEVOUS Topous. Bupéwg
YENOWOTOLOVUEVES HPYLTEXTOVIXEC CLUTIAYWY LoVTEAWY TepthauBdvouy to MobileNet [35], to SqueezeNet [38]
xat to DenseNet [36], petad dAwv.

1.4.5 KAddepa

To x\ddeya (pruning) eivon pa omd ¢ mo dnuogirelc teyvixée i) Spootind elwon tou peyédou xou TV
emtdyuvon tou inference twv povtéiwy Baddc pdinone. Baolletoaw oty dwmictwon 6t to DNNs telvouv va
elvan oe peydho Podud uNER-TOPUUETEOTONUEVA Xl €TGL OL UY) ONUAVTIXEG TURGUETEOL TOU BIXTOOU UTOPOVY VA
aponpettoly, ue Bdon xdnoto xplthiplo xoTdTtadng, e wxpn €we undevixt] enldpaon otny anddocy) Tou HOVTIEAOU.
H pédodoc ypovohoyeiton and to 1990 xou mpiv, pe mpwtonoplaxéc epyaoieg onwe autéc twv LeCun et al
[54] xou Hassibi xou Stork [30] xou éyer xepdioel peydhn epeuvnuxy| mpocoyh To TEAELTUN YPOVLA W €V
TPOTIOC XATATOMEUNONG TOL GLVEY WS awEavouevou Ueyédous Twy veupwvixdy dxtiwy [14]. H yedodoloyia
xhadéuatog, n onola €yel egehydel ye o ypovia, umopel va xatnyoplonoinlel o YEVIXES YPUUUES WS TPOG
NV Souf| TwV GTOLYEIWY TOU SIXTUOU TOU CEOLVOVTOL, TO XELTHELO XAUBEUATOC TOU Yenoulonotelton yiot TNy
XOUTATOEN TNG ONUAVTIXOTNTAS TV OTOLYElWY Tou elvon uToPhpLa YLor XAdDBepa xou Pe BAoT To Ypovixd dldoTrua
TOU 1) apoLdTNTA ElodyeTon 6T0 povtého. Ot mpoavagepieioeg xatnyoplee ¥Aadéuatog avahlovTol 0TS ETOUEVES
EVOTNTES.

1.4. Yvynieon Baddv Nevpwvixav Awxtiwy

Ketthpia KAadépoatog

K\&depa pe Bdon to Métpo

‘Eval ToA) amhd xot EUpEWS OmOdEXTO EUPETINO XELTHELO Yo TOV TPOGOLOPLoUS NS onuaciog twv Bapdy tou
duxtou Baoileton otic Tywée Tou pétpou Toug [57]. Axolovddviag autd To xpLthplo, To Pden pe pxpd péton
Yewpolvton Alydtepo onuavtxd yio Ty €€080 Tou BXTVOU amd aUTE Ye UeYdAa péTtpa. MOUPOVA UE aUTd TO
OXETTXG, YIOL TNY TEP(MTWOT IOV Tal GToLYElR TOL aporMVOVToL elvor pepovwuéva Bder (un dopnuévo xhddeya), to
Béen mou Beloxovton xdtw and xdmota T xotwgilov yétpou, T', aporpodvtol and To 8iXTUO, EVE To UTOAOLTN

OLaTNEOOY Wiat Y1) UNBEVIXH) TYH.

K\&depa Baowlopevo otov Ecotavd Iivaxoa

H yprion napoydywy debtepne t8éne (Ecowavéc nivaxac) tne cuvdptnone o@dhuato (6¢ npog Tie TopauéTpous
Tou dxT0OoL) Yl TOV TPoodLoplopd TNe onuacioc xdde napauétpou éxel diepeuvnidel extevoe, KN and To 1990.
Av xou ot pédodol xhadéuatoc pe Bdon tov Ecoavéd mivaxo mpotdinxay téte we yia mo axpPric tpocéyyion
XAODEUATOC OO TO HAADEUN UETEOV, EPUOUOCTNHOY OF TEOUIES UPYLTEXTOVIXES VEUROVIXGY BixTOWY Tou HTay
TOAD TILO PMYEQ XOl PE OMUAVTXE ALy oTepec TapopéTpoug and ta onueptvd DNNs. E€outlac autol, o utohoylopoe
tou Ecotavou nivoxa yio ta teplocdtepa DNNs nou yernotponololvton orjuepa dev elval e@uxtog, Ye anotéheoya
oL o mpbopateg udodol xhadéuatog ye Bdor tov Eoolavéd nivaxa va BaciCovtar oe teyvixéc mpooéyylong
Yopnhol xéotoug [88, 78, 92].

K\&depa pe Bdon tnv e€opdhuvon

To 800 Tponyolueva xpLthpla XAUBERNTOS GTOYELAY GTNY GuEST) aEloAGYNOT TNG onuavTxdTnTag xdde uTodnpiou
otolyelov mpoc agaipeoy. Avtideta, oployévec epyasies EGEYOLY TNV dpAUdOTNTA UE TO EUUECO TEOTO Yenol-
HOTIOLOVTOG TEXVIXES Xavovixomoinone. Idavixd, 1 (un-dopnuévr) droduxacion xhadépotoc unopel va HovTENOTOL-
nel ue) yefon Lo xavovixomoinong, dnhady ewodyovtog évay 6po Ry (w) =), Ifw; # 0] otn cuvdptnon
o@dhuatog, mou tpowdel T uelwon TV un-undevixdy topauétewy. AuvcTuyxde, 1 dueon ehaytoTotolnon e
CUVEETNONEG GPAAUUTOC UE ToV 6p0 Lo efvan duceniluty, xadde autde o dpog elvon pn dlapoploylog xou emitpénel
21"l Buaxpitéc xataotdoec Tou daviopatoc w. AbYe TV Tpoavapepléviny Teofhnudtev e vopuac Lo,
oL TEpLoaOTEPEC epyooies elte mpoonadoly Vo ETUVITUPUUETEOTIOLCOUY TIG TOPOHUETEOUS TOU OVTEAOU XoL Vol
emtpéPouv Ty anoteheopatixy) Bedtiotonoinoy, elte yenowonowly ™ vopua Ly 1 omolo Yewpeiton yior xohn
UPTH TPOCEYYIoN NS Voppac L.

Aopr Twv Ytoixeinv tpog Apaiwon

Me Bdom to moia otouyela apancdyvovton, ot SLdpopeg TEOoEYYIoES XAADEUATOC UTORPOVY VL YWEIGTOUY GE YEVIXES
yooupée oe dUo xatnyopleg, un-dounuévee 1N dounuéveg. Ou un-dopnuéveg uédodol agrivouv Tov alyoprduo
xhodépartog eheddepo vo xhadédel Tic mopopétpous aveldptnTa and to mod avAxouv péod oTo Yovtého. Amnd
TNV AN TAeLpd, ol Bounuéves uéVodol XAABEUATOC OPoLEOLY OUMDESC TOPOHUETRPWY XA, CUVETKOC, UTopolY Vo
YOPOXTNELOTOVY TEPOUTERE OO TOV TUTO TV OUddwY Tou xhadevoviar (m.y. dvdopata, kernels ¥ oAdxinpa
piktpa). TMapodelypata TwY SLPopeTXMY THTWY HoTIRwY apoundtnTog Tou Aopdvovton Ye un-Sounuévo ¥ doun-
uévo xA&depa ametxoviCovton oto Lyrua 1.4.2.

Xeovixd IThaloro tng Apalwong

H pedodohoylo xhadépatog umopel va xatnyoplomoindel nepoutépw ue Bdorn to mote yiveton 1 agaipeon twv
Boapv. Buyxexpwéva, 1 apalwon uropel vo tpaypatoroindel petd o téhog g Tumixg Sadixaciog exmaldeuong
Tou TuxvoD BixthoL, xatd TN Sidpxelo TNg TUTUXAC exntaddeuvong X Tty amd TNV Evapdn tne exnaidevone. Ot dbo
TEWTES TEQLTTWOELS AVAPEPOVTOL GLY VA S TUXVY TIPOC apant| exmtaldevo, xodog éva Thifpwe Tuxvéd DNN ¢tdvet
070 emtduunTo e{NEdO apAtdTNTUC 0TO TEAOC NG EXTAUBEUOTNC, EVE 1) TEAELTA{A TTPOGEYYLOT, 1| ool EEXtvd TNV
exnadevon pe éva Adn apatd LOVTELD, avapépeTal S apart Tpog apoul exaideuon [50].

7

Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Irregular » Regular

Fine-grained Vector-level Kernel-level Filter-level
Sparsity(0-D) Sparsity(1-D) Sparsity(2-D) Sparsity(3-D)

Tyfua 1.4.2: Zoyxpion twv potiuy apudtntag nou npoxaholvtol ond un-dounuévn apadtnto (aplotepy
TEWTN exéva) xou Bidpopous TOTOUS dopunuévne apatdtnTog, oe évo abvoho 800 @iktpwv CNN mou to xaldéva
€yet tplo kernels 3 x 3. Ané [63].

1.5 Ilpoocopupoctind KAddeua Métpou péow Moviehonolnong
TwV avéd-eninedo Katavouoy

Avaryvepilovtac 6t ta DNNs efvon oe yeydho Padud unep-nopapetponomuéva [82], 1o xAddepa Twv Topopétony
toug (mou eZetdleton hentouepme oty Evétnta 1.4.5) éyel pehetniel extevdde to teleutala ypdvia wg €vog
Tp6TOC BpaoTinic Pelwomne Tou HEYEDOUC TMV LOVTEAWY X0l TWV LTOAOYLOTIXOY TouS anuuthoeny [11, 14, 57, 34].
H undpyovoa pedodoroyia av xan avagépeton 6Tl emTuy)dvel ToAG utooydueva anoteréopata, (o) cuvidwg
amoutel exTETOPEVOUG YPOVOUS exTaldEVoNg, €lte UE TN Wop@r) TOAAAMAWY Ylpwv emavexmaldeuong xou fine-
tunning [72] eite npoxahdvtac pn aueintéa utoloyotxy emPdpuvon [84, 97], (B) e€aptdton and tnv edpeo
nepinhoxwv puduioewy uteprapouéTewy TEOXEWEVOL va xatodhiel oto emdupntol peyédouc povtého [50] A
(v) Bev éxel TpooUPUOCTIXOTNTA OTNY EQUPUOYT UE TILO TEPITAOXES UPYLTEXTOVIXES HOVTEAWY, Wit ot udmnhol
AOYOUC apotdTNTOC, UE OMOTEAECUN AOUVETELES 0TV ambdoar [98].

e autd To xEPIAALO, TEOTEIVOUUE EVary TOAD amodoTiNd ohydptduo Un-0ounuEVou XAUBEUATOS, TOU EMLTUY Y AVEL
anotehéoparto SOA, evdd Bev eupavilel to tpoavapeplévTa UetoveExTAUATAL.

O npotewvéuevog ahydpLiuoc apatdvel T Bden Temv STOmY PECK XUTWEALOTOINONG TwV Paptv xoTd TN SidpxeLa
e exnaddeuong (xwelic TNV avdyxm emniéov enoymy enavexnaideuonc). O xiploc 6tdyoc authc TS TPOTEYYLoNS
A

elvan 1 anoteheopatn] “exuddnomn” TOANUTAGDY XATIAANAWY TEOGUPUOCTIXMY XATWPAIWY YIoL TNV EQUEUOYY TOUS
EeywploTd avd eninedo tou dixthou.

SUYREXPWEVD, axohoLTOVTOC TNV TEOCEYYLON Tou [73], yior TV eT{TEVEN EVOC CUYXEXELUEVOLU CUVORXOD AOYOU
apatdéToc S (Tov onolo auZdvouue mpoodeutind xatd TN didpxela e Sadixaoiog exnaldevone) Vewpolue Ta
xotphiar avd eninedo {r;} (Bdoel twv omolwy mpoyuatonoeitan 0 xAEBeUA) EXTUBEVOIUES TOEAUETPOUC Ol

onolec tepthopPdvovtar oe évay npbdodeto dpo opdhpatoc, Ly({r;}) = [S - S’({m})] , 6mou S({r}) elvon wat

extiunon e apadTag Tou Yovtélou mou utohoyileton pe Bdon Tic UTOBETELS YL TIC XATAVOUES TV Bapdv
avd entinedo.

I va Slotneriooupe To S({r}) dlaopliolwo, xou e Bdon npornyolueves Tapatneroels, utodétouue 6Tt Ta Bden
xdde emmédou amoxtolv xatavopéc xovtd oto va elvar Gaussian ¥ Laplace, ye tov cuyxexpyévo tOmo va
anogaciletar avtopata avd eninedo xatd T didpxela g exmaldevong, dote va ehayiotonomdel To opdhua
extiunone e apoubétnrag. To Ly({r;}) mpootidetor otn cuvéyela xotdhinia oto Tumixd o@dhupo exnaidevong,
€T0L OOTE To XATOPALAL VoL BEATIO TOTOLOOVTAL XoTd T SLdpxelar TNE exntafdeucng, Ye anotéheoua vor dodaivetan pia
un opoldpoppn apondtnta. ‘OAn 1 TeonyoUUevn avdAuon yivetal Yo Vo Loy Vel XaTd To xAddeua Tou BixTOou Ye
T xefion tou Straight-Through Estimator [3] yio Ty evnuépwon tou nuxvod cuvdlou twv Bopmy. Q¢ tehxd
Briua, v va emtiyouue To axplBéc xadopiopévo eninedo opatdtNnToc TEOCUEUOLOUUE ENPEMS TO XOTWOMAL
Tou Beédnxov Uepnéc emoyéc mplv amd To Téhog Tne exmaldevonc, urohoyilovtog THpa Tal AXEER XATOGMA UE

8

1.5. Tlpoocappooctnd Kiddepa Métpou péow Movtehonoinong twv avd-eninedo Katavouoy

TaEvéunoT Twv Bapdv avd eniredo.

Ot ouvelogopéc autic tne epyaotog elvon ol e€nic:

e H pédodog nou npotelvouye, ywelc oyedov xapla emniéov emBdouvon tne exnaldevone xou ywpelc Ty
avdyxr yio Tov xodoploud tpdotetnv unepTopouéTewY, UToREl VoL dpalddoeL Eval LOVTEND U€ypL €var oxplBéc
eninedo mou opilel o ypPHoTNG, BloTnEdVTG Eval ATOTENEGUATIXG, U1 OUOLOULOPPO apliud TapoéTEmY ovd
eninedo.

o Aciyvouyue 6Tl 1) povtelonoinot Tewv xatavouoy Popny avé eninedo we Gaussian xou Laplace elvan emopxric
yio TNV eEXPEINoT TV XATEAANALY XoUTO@AIWY 0vd eTiTedO Yior TO YAGDEUA VLot BLOUPOPETIHES UPYLTEXTOVIXES
HOVTEAWY, axdun xou yio VPNAES dpaldTNTES.

o Extetopéva mepdpata t60o 610 cuvolo dedopévev CIFAR [47] 600 xou oto ImageNet [13] xatadetnviouy
ot n péYodog pog emtuyydver SOA axpifela Eemepvivtac mo olvietes xou un anodotxéc pedodoug.

1.5.1 IIpotewvopevn Médodog
Kewtrero Khadepatog

Axohoudolpe v mpocéyylor xhodépatoc Ue Bdon to pétpo 6mou éva Bdpoc datnpeiton w6vVo av To UETEO
Tou Eemepvd wor T xotw@iiov . Autd To amhéd xeithplo, mou xplvel TN onuocio evog Bdpoug pe Bdon to
ué€tpo tou, elvon amodotind oTov unohoyiopd xou éyel Beedel oL elvon amoteheopatixd oty Pihloypapla yio To
xhddepa Sixtiwy, emTuyYdvovtac VPnhoic Adyouc apaudtnToc pe eENdytoTn andAela anédoong [29, 21]. To xbeto
{htnuo elvan 6L auTd TO xUTOEAL TEETeL var emheyOel xatdAAnha yio xdde eninedo, npoxeiuévou va emteuvydel
o {nroluevoc ANOYOC apaudTNTAC. LNMUELDVOUUE OTL OXOUT] XaL OV OXOTEVOUME Vol BLTNeicoulde Tov (Blo Adyo
apotdTNTAC Yo OAa ToL ETUTEdA, TO T MEETEL VoL UTOAOYLOTE! Eeywplotd yia xdde eninedo, xodode to peyédn twv
Bopdv dlapépouy UETAED TwV BlapopeTXwY oTpwUdTtwy. TIoAAéc npooeyyioelg Tagivouoly ta Bdpr yio vo fpouy
TAL XOTATATA OpLa-0TOYOUE Yo xdle Briua exmaidevong [86, 98], Yeyovic mou unopel va odnyfioet oe emPdpuvon
e exnafdevong, ewdnd yia peyohitepa dixtua. H pédodoc uoc, dedopévou evoc {ntoluevou Aéyou apondtntag
Tou BixThou, Beloxel To XATOPALL ATOTEAECUATIXG Xat 0dNYEl OE W) ooldpop@n apadTNnTa Yo BeEATiIoToNOMUEVT
an6doon (Bh. Evéotnta 1.5.1).

Mdadnon twv Katweiiny

Mo mpocéyyion yua Ty enitevdn npocopuooTixfc apondtnTac avd eninedo elvon va Yewpfoouue tor xaTd QAo
71, YL x8e otedpa I, eXToudedoES TUPUUETPOUG. LT CUVEYELY, XENOWOTOWVTG Wl XUTIAANAY Siagopioun
ouvdptnom, §i(r;) € [0,1], mou extd Tov Adyo apoudtntac xdde emmédou I, Sedouévou tou xoutwehiov 7, N
GUVOAXT] EXTULOUEVT] dEolOTNTA TOU JOoVTEROU unopel Vo oploTel w¢ e€hc:

N
S{r}) = asi(n), (1.5.1)
I

6mou ¢ = % elvon 1 ouVELGPOEE ToL ETUTESOL | OTIC GUVOAIXES TIoEOUETEOUS TOL BixTOOU.

Edv unopéooupe vo exgppdoouye Ty apoudtnTo avd eninedo §;(r;) w¢ ovahuTixd] cLVEETNOT OE OYEom WE TO
XATOPAL 7 Vot UmopoVUE VoL €YOUPE €Val TAHPWS EXTUOEUCLHO GOGTNUA TOU UTOREl Vo TPOGUpHOTEL UTOUOTA
Vv apadTnTa avd eninedo cUppova e éva €€tpo 6po o@dhpatoc péow tne EE. 1.5.1. Ta to oxond autd, [73]
Yewpninxe oti, yio xdde eninedo, ta Bden unopody vo nEoceyyYLoToLY and o xotovour Gauss. LOp@wvo Ue
T TNV eunelp| Tapadoyy|, uropel xovels mpdyoTt Vo YpdPEL THY opotdTNTA TOU ETUTESOU WG (Lol AVOAUTLIXN
CUVEETNOT WE TEOS EVAL XATOPAL, 0XOAOUIOVTAC ULt AoYLxY) BlaoTNUATWY eumoToolyne. Enextelvoupe auth
™ dlatdnwon yio v cuprepthdPBoupe enione xatavopés Laplace yio Behtiwpévn extiunon e apadétnroc (BA.
Evétnto 1.5.1 yio neplocbtepec AenTOUERELES).

Tot Ty mpo@inom evic cuyxexpluévou Aoyou apaudtnac Tou poviéhou, S € (0, 1), urnopel xavelc va opioet éva
o@dhuo apandtntog Le({r}) we edic:
2

Lo({n}) = [= $({n})] (15.2)

9

Chapter 1. Extetauévn Hepiindm ota EXnvixd

Avuth 7 Swotimwon emBdihet éva otody0 apondtnTac mou xoopileton and Tov YeRoTN Yo TEAXTIXES EQUPUOYEC.
To Ly({r1}) ehayiotonoteitan dtav o xatdpha 77 éxouv AfBer tpée mou odnyoldy oe S = S({r;}). Auté 1o
odhpo uropel otn cuvéyela va npoctedel oto TuTKG cEdhpa exnaidevone L({W}, {ri}) vy vo npoxdier ot
GUVEETNCT GQINLUTOC TOMNNATAGY EQYAUCLEDY

LW} {nr}) + AsLs({ri}). (1.5.3)

Opilovtac T0 GUVORLXG GPAAUN OTKC THPATAVLY XAl EAXYLOTOTOLOVTAS OE GYECT UE Tot 600 GhVOAA ToRoUETRWY,
{W} xou {r1}, ot bpolL tnc ouvumepupépovion Ue avtaywoTxd tpdéno, dnhadi 1 L ehayiotonolelton euxohdtepa
av To YoVTERO Tapaueivel TuXVO, GUVETDS 1 Ly mopopével xovtd otn wéylotn Tun e, Enopéveg, amouteiton
XAMOLOC GUVTEAECTNG XAUAXWONG As Yid VoL OTOVWGTEL 1) GUVELGPOEA TOu L.

To yeyovic 6Tt ol TéS TwV xatw@hiwy Yo podaivovton uéow tne dwdasioc Bertiotonoinone (xou cuvende dev
Yot elvon amhdde Tuyala 1 evpetind Pactopéva xatdgha tou divouv T {ntoduevn GUVolixy apondTnTa) LTOdELXVUEL
o Beloxetan puor Wradtepo anoteheopatix? avd eninedo xotavour| opadtnrac (BA. Evénra 1.5.2).

Téhog, yio vo hettovpyroet autr 1 dadaoia, n yeron tou Straight-Through Estimator yio back-propagation
elvan emBeBANUEYN YLoL TN BLATHENOT LOVOTROTIXY XUTAVOUMY Xal BIEUXOAUVOVTAG ETOL T1) YE1ioN EVOS AVOAUTIXOD
TUTIOV YLl TNV TEOCEYYLOY) TOU CQAALITOS UPAULOTNTOC.

Yy ouyxexpiévn epyacio, SAMICTOOUUE OTL TO GQANIL OPUOTNTAS, EWBWE Yo UPNAES TYES TNE oPAOTNTAS
otoyou S, Vo mpémel va elvan uPNAd otaduiouévo pe Bdpog mpoxewévou va elvon onuoavtixd oe uéyetog xa,
CUVETWCE, Vo eEhaytoToroleiton and T dadixacto fehtiotonomong. T vo To emTOYOUUE AUTO, TO HAYUOXDOVOUUE
TP TéP®L TPOGUPLOGTIXG LE TO avTioTpopo Tou TeTpaywvixol budget B2 = (1—5)?, pe anotéheoua Ty TeAxd
ouvoliny e€lowaon opdlpatoc Tou yenouonoleltal ot YEYodd yag

LUW), (n)) + 25 L)) (154

H npoavagepieion xhudxnmon elvan mo xplown yio) pédodd poc, xadoe, oe avtideon ye my [73], avidvouue
Tov Moo apadTnTog Tou oTdyou otadloxd xatd Ty exnaldeuot) (6nwe teprypdpetan oty Evétnta 5.3.6) yio ot
o opoh) HETEPBaom amd €val Tuxvd GE €va opatd HOVTERO Xat ETOUEVKS €va otoepd Bdpoc Ay mou xodopileton
amd Tov Yerotn dev Yo fitay xatdAinio. Me autd 1o TEYVAGHN XAWANWONE, TO Ay ElVOL OYESOV ACHUAVTO XOoU
unopel vo €yel xdmowa otadepr Tumxh Twh (v oplooue oe A; = 10) aveZdptnto and tov {ntoluevo A6yo
aEAUOTNTAS %ot TO TElpoua.

Movztelonoinon Katavoudy Bagov

Ocwpivtag to Bdpn avd eninedo {W; € W} w¢ tuyalec petoPintéc w; mou axohoudoly Lol GUUUETELXT
xatavoun, 0 Aéyog apatdtnrog s;(ry) yia par dedopévn Tiuh xatwehiou rp extydton ¢ N mdovéThTa TO Wy Vot

eunintel oo evpoc [—ry, 1] we g€
T

i(r) = fi(wy)dw; (1.5.5)

—r
pe to fi(wy) va avuimpoownedel) cuvdptnon nuxvétntog mdavdtntog Tou otolyelou wy 6To l-06T6 eninedo.
To Bden telvouv vo amoxthoouy xatavopés avd eninedo mou elvon mapduoles pe Tig xotavouée Gaussian 1

Laplace. Me Bdon auth v unéddeon pnopolue va vroloylcovue v 5;(r;) yéow e e&lowone (1.5.5) mou
odnyel oe exgpdoeic xheloThC pop@rc we e€ng

3 (1) = erf (7’ /o \/§) , av w; ~ N(0,07)
r) = { 1- eicp (1—7‘1/51)7 av wi ~ L(075ll) (1.5.6)

xT

1 e
= —-—].- .
= e~ dt (1.5.7)

onou erf(x)

To mheovéxtnua e LIOTETNONS AVTAOY TV UTOYAPLLY HoVTENWY xatavouic Bapdv elvon dtt To §;(r;) unopel
VO UTOANOYLOTEL AMOTEAEGUATING Xall TOROUEVEL BLopopiollo.

10

1.5. Tlpoocappooctnd Kiddepa Métpou péow Movtehonoinong twv avd-eninedo Katavouoy

Enuewdvouye 6Tl €youpe urtoBéoel xatavopés Bapdy Ye Undevixt| péon Tyh avd eninedo, ahkd 1 TEOCEYYLOY Hog
unopel €0XOAA Vo TPOGUPHOCTEL OGTE Vo Loy Vel yiot Pn undevixn péon . Enlong, oty npdén extipolue tic
TOUPOPETPOUS XUTAVOURC 0F %ot B TwV Bupdy YeNoIOTOLOVTAS TS EXTINACELS BéYLotng Tdavopdvelog

1 & 1 &
52 — 2 3 = — -
0" = ;:1 Wii xau B I ;:1 | Wil

Y wédodd pac dev meplopiloupe Tic xatavoués poviehonoinone oe évav ouyxexpiwévo tono (Gaussian 7
Laplace) émwe yiveton oe mpornyoluevee epyaoiec [73, 41]. O tinoc tne xatavourc ovd eninedo emhéyeton
BuvVOXE xord” 6N T BldpEXELX TN EXTIOBEVONS UE OXOTO TNV EAUYLOTOTONGCT, TOU GPIAUATOS HOVTENOTIOMOTS.
Avuté elvon onpovtixd, xodde dagpopetind enineda (1 axdun xou to (Bio eninedo oe diopopeTinés enoyéc) hoyPBd-
VoLV %aTavoUES Bopv Tou elvor TOAD o xovTd oe évay and Toug Vo Timoug yovielomoinong and Tov dAlo
(m.y. 6nwg gabveton oto Eyfua 1.5.1).

-0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2
() (b)

SyAua 1.5.1: Topdderypo emnédou pe Bdpn xataveunuévo xatd Gauss (o) o pe Bdpn xataveunuéva xatd
Laplacian (8). Ou xatovopéc npoépyovtar and to enineda layer2.0.conv2 xou layer2.1.convl tou ResNet50.

AXN&Lovroag Katavoueg

H xotavour) yovtehonoinong mou anodideton oe xdmoio eninedo ! enaveéetdleton 610 TEAOC *de emoync ex-
nadevong k pe Bdon amAd Ty elayioTonoinon Tou o@dlpaTog exTiunone g apardTNTS, To onolo oplleTal we
egnc

esZ(ry) = 158 (1) — si(r))] (1.5.8)

est (r1) = |87 (1) — su(r1)] (1.5.9)

6moL 1 elvar To xaTOPAL oL hapBdveTton 670 Téhog Tne emoyic k, 8 (ry) xou 8F (r;) elvon oL Tipéc apondTNHTAC TOU
npooeyyilovton pe TN yprion woe xatavopric Gaussian xon pog xotavopric Laplace avtiotoiyo, e anotéheoya
o opdhuoata extiunone es (1) xa esk(r;). Enopévac, edv n xatavour) Tou otpduatoc otny enoyh = k eivoy
Gaussian xou esf (1) < esf(r;) petaPaivouue ot yefion e xatavoprhc Laplace yio vo poviehomotficouue to
Bdion Tou emnédou yio Ty enbpevn enoyh k+1. Avtiotouya av est (1) < est (1)) xou n xoavour poviehonoinone
elvow n Laplace petafaivouye oty Gaussian. Auty 1 otpatnynt| ancixovileton og éva SLaypapo XOTAoTAGEWY
o710 Yynfua 1.5.2.

Xeovonpoypaupatiomods xo TeAixr Awdpdwon ApaidtnTog

O axbérovdoc ypovompoypappatiotic apudtntag, Paciopévoc oto [98] yenopwonoteiton yia T otadioxt adénom
Tou AOYOU apadTNTOSC GTOHYOU

.\ 3
S; =S, [1 - <1 - ;)] ,fori=1,2,..,n (1.5.10)

11

Chapter 1. Extetauévn Hepiindm ota EXnvixd

G L L G
es;” < es; est < es® es; < es;

start

es < est

Syfuoer 1.5.2: Audrypoppor UETHBAUONEC XATACTIOEWY OTOU OL XATAGTACELS elvon oL 800 uoPAPLES xoTavoUES
povtehonoinone (G: Gaussian, L: Laplace) v to eninedo 1. O pyetofdoeic yivovion olupmve e toug
TEPLYPAUPOPEVOLC XavdVES 010 TENOC xdle enoyic. Trolétoupe Gt dha o eninedo elvan apynd (otnv enoy” 1)
povtehonoinuéva ue wo xatovopr Gauss.

omou ¢ elvon éva Briua exnaldevong, n o cuvohixog apliude Twv Brudtewy xhadéuatog, S; o Aoyoc apandTnTaC
0T6)0L 6T0 Bua i xou Sy 0 TEAXOS AOYOC OPULOTNTAS GTOYOV. XTA MEWIUATY Hog oploaue To 1 (00 UE TOV
aprdud Ty Brudtwy extoideuone wéyel o 80% Twy enoydv exnaidevone. Kotd t Sidpxeio authc tne teptédou
TOL XOTOPALL xAadEUaTOC pordalvovton 6mwe TepLypdpetal oty Evétnra 1.5.1.

Iopdho mou 1 exTlunom NG dEAOTNTAC UE TN XEHON TWV XaTovouny Bopny elvar apxetd axe3c, o TeAxde Aoyog
apaoTNTAC Propel va anoxAlvel ehappng and to {ntovuevo. Edv to Sy emtuyydvetan oto Bripa m < n, o Adyog
apondTNTAC Xdde EMNEBOL, §;, UELOVETAL YEUUUXE VLo HEELXES EMAVAAAPELS DOTE VoL PTACEL GTNY TEALXY) TOU TWH.
Edv oto Bhua n 1 yetpoduevn apondtnta S, elvor wxpdtepn and tnv Sy, yia To enduevo 10% twv emoydy ol
Aovou apoudTnTog auEdvovTon Yeouxd péyet TNy Tehxh Toug Tiwr. Mévo xotd tn Sidpxela autrc TN @done tne
ped6dou oL axpiBelc Tiwés xatwehiov vnoloyilovta Péow NS TAELVOUNONG TV Bapty xdie otpouatos. Agpod 7
apadTNTA PTdoel 6To Sy Swtneelton otadepn Yo o utdhoima Briuato exTaldeuong. Xnueidvoude 6Tl cuvidng
51 & 8] Aol TO oPIAU EXTIUNONG TNS EALOTNTAS AVOEVETOL VoL ELVal OPXETE. YoUNAS.

IMewpopotinry AZiohdynon

CIFAR-100
[Ratio [90% [95% [98% |
ResNet-20 (1.096M Params): 73.59 +0.44
GMP [98] | 70.34 £0.33 | 69.38 +0.20 | 64.46 +0.36
ST-3 [86] | 72.86 +0.20 | 71.95 +0.12 | 67.73 +o0.10
[Ours | 73.18 x0.11 | 72.30 +0.22 | 66.69 +0.24 |
MobileNetV1 (3.315M Params): 71.15 +o0.17
GMP [98] | 61.82 +0.18 52.87 +0.33 32.72 +1.09
ST-3 [86] | 71.02 +0.09 | 70.50 +0.08 | 69.18 +0.34
| Ours | 71.11 o012 | 70.37 £0.14 | 67.53 x0.22 |
DenseNet40-24 (0.714M Params): 74.70 +0.51
GMP [98] | 70.72 +0.29 68.29 +0.37 | 61.56 +o0.19
ST-3 [86] | 72.82 +0.43 | 71.66 +0.38 | 65.99 +0.38
| Ours | 74.00 +030 | 71.63 +0.32 | 63.20 +0.31 |

ITivocag 1.1: Axp{Beta Twv ResNet20, MobileNetV1 xou DenseNet40-24 oto CIFAR-100 oe Slagpopetinoi
Aoyoug apanotnTag. Avagépeton enlong 1 apyuxr axplBela Tou Tuxvod LovTélou yiot AGYoug cUYXpELoNS.

O TIivaxoac 1.1 mopéyel to anoteréopata nov npoéxudoay oto CIFAR-100 pe 1 yprion twv GMP [98], ST-3 [86]
X0 TNG LETVOBOU HaC OE TEELS DLUPORETIXES AP LTEXTOVLXES xou Tplal DlopopeTind enineda apondtntac. Ta anoteréo-
pato xotapyde detyvouv Ty evpwaoTia Xo TNV TEOCUPUOC TIXOTNTA NS TEOCEYYIONG HAS YPNOWOTOLOVTAS TG
xatavopés Gaussian xou Laplace vy tn govtehonolnon twv Baptdv ovd GTpMUN TELOV BLUPORETIXGY LOVTEAWY
o€ dlapopeTixols Aoyous xhadépatos, EemepvivTag elxoha To anotehéopata tou Aopfdvovtor and to GMP (to
omolo ayvoel tn onpocio tne edpeone evéc un opotbuoppou budget apoudtnrog avd oTepoud). e cOYXPION UE To
ST-3, mopatneolye Behtiwuévn anddoon v tov Adyo apadtntac 90%, napduol anddoor yio tov Aéyo 95%,
evo 1) TpooéY Yo pog utoleltetar ehappdc otov Aoyo 98% (BA. Evétnta 1.5.3). Ohouye vo tovicovue 4t 1)

12

1.5. Tlpoocappooctnd Kiddepa Métpou péow Movtehonoinong twv avd-eninedo Katavouoy

ST-3, av xou pmopel vo topé et amoteréopato SoA, elvan mo domoavner untohoyloTind arnd tn wédodd yag Adyw tou
YEYOVOTOC OTL TIRETEL Vo THEVOURoEL Ohat Tt e Tpoxeévou va Beet To xatdgAL ot xdlde Briua g exmaldevong.
H pédodde pog, mou eivon 1 mo ¢uhix mpog Tov unohoyloud Yetoll 6Awv tov egetalduevmy pedodwy, Beloxel
oL XAt Ywpelc TN Yehion Tadvéunone Yo To PeYahOTEPO pEpog Tne exntaldeuone (amantodvial u6vo GTATIo-
Tixd otouyeio TedTNE xon devTepne TAENE, T omolo Umopoly Vo UTOAOYLOTOOY OE Ypouixd ypdvo oe oyéon
pe Tov aprdud twv Bapdv avd enitedo) xa tadwvouel to Bden avd eninedo wévo xatd Tic teEleutaiec emoyEc.
Moapdhor autd, damotdvetar 6TL €xel TNy xohitepn anédoon Y tov Aéyo opadtntag 90% ue anotélecpo va
emTuyYdvovTon oxpifeieg ywplc oyeddv xauio ntdon oe oyéon pe auTég Tou TEOXVUTTOUY and To TUXVE dixTud.
Avuté elvon duvatd AOYw TWV AMOTEAECUATIXWY AOYWV apondtntoc avd eninedo mou Bploxovto autéuota xotd
TN Sudpxelo Tne exntoddevong, 6w neptypdpetal oty Evéotnta 5.3.2. Autd availetar nepoutépw oty Evotnta
1.5.2.

ImageNet
[Ratio | 90% [95% | 98% |
ResNet-50 (25.6M Params): 77.10

GMP [98] 73.91 | 70.59 | 57.90
STR [50] 74.31 | 70.40 | 61.46
ProbMask [97] | 74.68 | 71.50 | 66.83
ST-3 [86] 76.03 | 74.46 | 70.46

| Spartan [84] | 7617 | 74.68 | - |
Ours 76.27 | 74.27 | 67.83

IMivoxac 1.2: AxpiBeia Tou ResNet50 oto ImageNet.

Ioe vae avodet€oupe Tig eovdtnteg yevixeuone e pedodou pag xon Ty txavotnTtd e vo otadel anévavtt oe
dMheg, To axplBéc uTohoYIo TXd xal EEUPTMOUEVES 0o TLC UTERTORAETEOUS SOA uedodoug, die€dyouyue nelpduota
oto ImageNet pe 1o ResNet50. Extdc and ta anoteréopata and 1i¢ GMP xaw ST-3, oe auty) tny evotnta nepuh-
opPévouye anoteréopata ond Tic uedédouc STR [50], ProbMask [97] xow Spartan [84], ot onoieg etvon mpdopoteg
pédodol un-Sounuévou xhadépatoc. H STR yenowonoiel évav teheoty| soft xotwehiou yio var xatodhEel oe un
ouolbpopen apoudtnTa, N onola eAéyyeTon éuueco and tny weight decay mopdpetpo. Autd xadiotd tn uédodd
oauth Tohh dloxolo va metdyel évay xadoplouévo Aoyo apoudtnrag. H Probmask npoceyyilel to npdBinua
YAUBEUATOC YENOWOTOLOVTAC Wiot THVOTIXT UAoXA 1) OOl UETATEENETAL OE WLol VIETEQUVIO TLXT] Suadlxr] Udoxa
yenowonoudvtag delypota and pio xatavour; Gumbel. H cuyxexpiévn tpocéyyion anoutel toAlamholc yipoug
derypotohnlag pe unoloylopd gradients mou awEdvouv onuavtixd to ypovo exmaidevone. Télog, n Spartan
padabvel plo soft top-k udoxa ypnowonowwvtag éva regularized optimal transportation mpdBAnua, amoteAdvTog
étol eniong wa utohoyloTixd Poaplteen uédodo amd T dixr| Hag.

Me Bédon ta anoteAéopota mou mopéyovion otov Iivaxa 1.2, n uédodog pog emtuyydvel xopugaieg emdooelc
oe nocootd 90% xou 95%, Eenepvivtac t1ic GMP, STR xou ProbMask xou @tévoviac tor anoTtehéopota Tev
ST-3 xou Spartan. Xto Aoyo 98% Eenepvd eniong Tic tpeic mpdtes pedddouc xou épyeton dedtepn petd v ST-
3. Xe autd to onuelo TEETEL VO ONUELWCOUPE OTL YENOUWOTOCOHE TLC (BIEC, TPOETAEYUEVES UTEPTOLOUETEOUS
exmafBeuone xou Yot Toug TEElg Adyoug apandtntog, eved otnv ST-3 to weight decay pewdveton mpoodeutixd
xadde avgdvovtal ol Adyol apadtnTog - Sev €yive xouia Blepelvnom OYETXE UE TNV OVAYXUOTNTOL WIog TETOLOG
emhoync Aentouepole phdutonc. Emhé€ape vo del€ouue 6TL 1 uédodoc poc elvon oe Héon vo amodwoel tohh xaAd
aveEdpTnTa and TIC YENOULOTOLOVUEVES UTERTUPUUETEOUC XAl UE TN YOUNAOTERY) UToAOYLOTXTY emPBdpuvoT) UETAED
TWV AVTAYOWLOTXOY Pedddwv. O toyvplouds auvtdc unootneiletar and to anoteréopato nou npoéxuay, T6o0
oto CIFAR-100 600 xow oto ImageNet.

1.5.2 Ablation MeAézec
YVyxpion pe tnv ASL

Ye auto To unoxepdhaio cuyxplvouue dueca TN u€Yod6 Woc e TN oTEVE ouvdedepévn mpocéyyion Adaptive
Sparsity Loss (ASL) ané to [73] v vo avodeifouye nepantépw TNV oUENUEVY] OTOTEAECHATIXOTATA TWV TEO-
Tewvduevey tpononoioewy. H ASL, dedopévou éti anotelel to apyixd xivnteo yio v epyooio pag, Baotleto
eniong oty WEa TG EVPEONS TWYV XUTWPAWY Y€ow NS exnaideuone, ypnotonolwvtos to opdhua tne E€lowong
1.5.2, 0dA& ypnowdomouwdvtag povo Gaussian xatovoués yio) goviehonoinon twv Popndv. Emmiéov, oty ASL

13

Chapter 1. Extetauévn Hepiindm ota EXnvixd

74 1

72 1

70 1

68 1

66 1

64 1

Accuracy (%)

62 1

60 1

58 1

80.0 825 850 875 900 925 950 975
Sparsity (%)

Syhua 1.5.3: Axpifeta Tou ResNet20, mou €yel xhadeutel pe) dixr| pog uédodo xou v ASL oto CIFAR-100
o€ dLapopeT00g AOYOUS 0paOTNTIC.

N dpondTNTOL ElodyETAL amdTop and TV apy” TNG exmaideuong, xoddg BEV YEMOUOTOLEITAL YPOVOTPOYPUUO-
Tio g apadtnTag. Emlong, Sev undpyel gdon ddplwong tng dpatdTnTog, ETOUEVKS 1) TEAXY apandTnTa Unopel
vo. Sapépet amd TNy {ntolpevy), éva ToAl cuvndiouévo mpdBAnua otay eZetdlovtar UPmMAd enineda apondTNTAC.
Yo Lyua 1.5.3 nopoucidlovye anoteréopato and tnv exnaideuon tou ResNet20 oto CIFAR-100 vy mok-
hamholg Adyoug apatdTnTaG Yenolponoldvas Tt (Bieg puduioelc 6nwe ota tetpduota g Evétnrog 1.5.1. Adyw
TOu YeEYOVOTOG OTL To opdiua dpondtntag tng ASL Sev %MUOXOVETOL TEOCUPUOCTIXG, TRENEL Vo AUEHCOUUE
xewpoxtvnta tov ouvtereo T Popdntdc g As (tou multi-task o@diuyatoc e ASL) xadde avidvouue) {n-
TOUUEVY] TEAXY| OEOUOTNTA, TEOXEWWEVOU VoL AnoPUYOUUE UeYdheg anoxhioeic oty emtteuydelon apoudtnTa xou vo
Topéyoupe ovolaoTixés ouyxploes. Ta anoteléopata napovoidlovtal oe Ypdpnua, dedogévou 6Tt ASL Sev
unopovoe va mapdyel Ty axelfr {ntoduevn apondtnta. And 1o yedgnua elvar copéc 6Tl 1 uEVodoC poc, extde
Tou 6T Ymopel va emitdyel Ty axpeiPn) {nroduevn apoudtnTa, 0dnyel oe xohiTepeg axplBeiee, Wing yia Shoxoieg
avaroyieg apadtnTog, OTOU N PEATILWUEVN EXTUNOTN TNG AEOOTATAG XoU 1 CTUOLOXY EICAYWYT TNG OEALOTNTOC
anoxToLV Wialtepn onuacta.

Katavoun ApawdtnToag Avd-eninedo

100
« pointwise

X depthwise
o fc

80

60

Sparsity (%)
Sparsity (%)

40

60 . conv . conv
X transitional

e fc

X downsample
e fc

0 3 6 9 12 15 18 0 5 10 15 20 0 5 10 15 20 25 30 35
Layer Index Layer Index Layer Index

(a) ResNet20, 95% opoud. (b) MobileNetV1, 95% opod (¢) DenseNet40-24, 95% opoud

Ty 1.5.4: Avahoyiec apardtntoc avd eninedo (%) yia povtéha nov extoudedtnxay 6to cOvolo Jedopévev
CIFAR-100. Awgopetixd eninedo to dixtdou (m.y. conv, fc) onueidvovton pe SpopeTind Yol

O xatavopée apandtTnTag avd eninedo mou mpoéxuay and TNy extaldeuor twv poviéhwyv ResNet20, MobileNet V1
xou DenseNet40-24 oto CIFAR-100 pe tehur apoudtnta 95% nopovoidlovton oto Lyfua 1.5.4. T to ResNet20
1 L€V0d6¢ Yag auEavel Tov AoYo apatdTNTOC oTadLOS A Tot TR TA TEOG Tat TEAeLTalo entineda, ue e€aipeon ta do
eninedo unodelypatolndlog xan To TARprC cuVdedePévo eninedo oTa omolo avatidevtal onuavTixd yaunidtepol
royou apandtnTag. o tny mepintworn tou MobileNet V1, 7 xotavour) tng apondtntag avédveton eniong otadlaxd,
ahhd oe BlaopeTiny) xh{poxa yio Toug dUo TOnoug emmédwy, To pointwise xou ta depthwise, pe ta teAeutala va
avatievton Tohd yaunhotepol Adyor apadtntac. Téhog, n apawdtnTa avd eninedo tou DenseNet40-24 delyvel
OTL 07O MEWTO o T TeAeLTALo eTinedo avartideTtan TOAD UixpdTERT oEAdTNTO Omd ToL UTOAOLTIAL, Tal OOl (alveTon

14

1.5. Tlpoocappooctnd Kiddepa Métpou péow Movtehonoinong twv avd-eninedo Katavouoy

VoL €Y 0LV évar xupavouevo wotifo apardtntog (ev uépel pe Bdomn to uéyedoc toug). AZiler va onuewwdel L ota
0V0 petaPBoutixd eninedo amodlBeton uxpdTEEN dpadTNTA ANtd TA TEPLOCHTERA YELTOVIXA TOUG GTROUITA, TUpd TO
YEYOVOC OTL €Y 0LV TEPLEOOTERES TopaéTeous. AuTy 1) teheutala topotienon delyvel 6Tl 1 uéYodOC Log XATOVEUEL
Ny apondTTa Gyl pévo pe Bdon Tov aptdud Tev napaéTeny avd eninedo (OTwe XAVoUY oL TEPLECOTERES EUPETINES
pédodot), oAhd xou pe Bdon tn Aettovpyixdtnta xdde eninedou, pe anotéhecya va elvon oe Yéomn va evionilel ta
bottleneck emnimeda xou var to Sortnpel emapxdc TUXVE Yo vor anogedyeton 1) uofdduloT TN ambdooYC.

1.5.3 IIepropiopol xaw MerAhovtixég Ilpoextdoeig

O x0pLoc Teptoplopds TG TPOTEVOPEVNS UeY6d0U apopd TNy anaitnom Tohd LVPNAGY dpotoTHTWY (YEVIXA TévVw
and 98%) and oyetnd wixpd povtéla. Ia tétolec mepintdoele, eved eCaxohoudel va elvan oe Véom va Topéyet
povtéla pe oxpifBeia xahbtepn and Tig teplocdtepe YEVHBOUE, UTOAEITETAL TV TOAD Tpdopatev SoA pedodwv
(Bh. Iivaxec 1.1, 1.2). Autéd elvon avayevouevo, xadoe 1 LOVIEAOTOMGOT TV XATAVOUOY TwV Baptv, ov xou
TOAD axEIBhC YioL TIC TEPLOOOTEPES TERLTTAOOELS, dev elvan amdluta axplBhc (Onwe paiveton oto Lyfue 1.5.5 (b) -
ONUELDVOLYUE 1WOTHoO GTL TOAAS eTtinedo eZoxohoudoly va Blatnpoly xotavopés Bopmy xovtd otic eZeTalOUEVES).
Anoteléopata 6mwe autd tou LyAuatoc 1.5.5 (b) elvor o ocuyvd xadde wdodue Ty araitnom apoudTnrac oe
eZoupeTind LPNAG Tocootd (> 98%). Enopévee, axdun xou pa pixpr andxiiorn and tov oTé)o TN opadTnTag
unopel vou OBNYHOEL GE ONUAVTIXY omOXALoT) omd To avtictolyo budget xou dpa meémel vor Blop¥wdel and v
tehevtala pdon e pedddou (Evotnra 1.5.1).

ResNet20: layer3.1.conv2 ResNet20: layer3.0.downsample.0

MobileNetV1: convl.1l.pointwise.0 DenseNet: fc

Syfua 1.5.5: Topadelypato twv xatavouoy Bopody avd eninedo nou npoéxuday xatd v extaldeuor oto
oUvolo dedopévwy CIFAR-100 pe) yerion e pedddou pac. Opiopévo enineda poviehomololvton xahltepa
ané Ghha.

1.5.4 Xvuncpdopato

Ynv nopovioa gpyaoio TEoTEVETOL Uiot UTOAOYIO TUXA anmoBoTIXn Xt anoTeAEoHATIXY) HEV0B0C XAABEUATOS, OTIWC
xatodetevieTon and extetopéva telpduata ota aivoha dedouévev CIFAR xou ImageNet, 6nou Eenepvd ot anod-
doom mo eZelntnuéveg uedodoug mou empépouy auEnuévo xéotoc exnaidevone. Emmiéov, 1 emtuylo tne un-
odeviEL OTL 1) U1 OUOLOHOEYY dpaldTNTA TwV eTTESwWY Ynopel va padeutel anoteleopatnd xadopilovtog Eva
emmAéov 6po opdhyatog mou BacileTton GTNY HOVIEAOTOMNOT TMV XATAVOUWY TwV Bopdy, e Tic xatavopés Gaus-
sian »xou Laplace vo xpivovton emopxelc, axdun xat yio oyetind vdnid tococtd dpoudTnTag.

15

Chapter 1. Extetauévn Hepiindm ota EXnvixd

1.6 Feather: Mix Kopdry Aborn vy Anoteiecpatiny Apalwaon
Nevpwvixodv AuxtOwy

Mo mpbopaty tdon ot PiBAoypapio Yo To XAGDEUN VELEWVIXDY SIXTUGY Elval Vo Tpoty HoTOToLElToL TO X AdBeUaL
xatd TN Sidpxela Tne TuTfc exnaideuome (apour| exntaldeuct) ywelc TV avdyxn yia tpdodetouc xOxhoUC ETUVEX-
naidevone. Oplopévec epyaoiec [73, 44, 84, 86] ot omoiec Pacilovton otov Straight-Through Estimator (STE)
[3] éxouv BelZel 6T umopovv va emiteuy Vol anoteléopoto SOA Ue TN Yprion authc g mpooéyylone. H opay
exnaldevon pe tov STE exteleiton ye tov unoloyiopd tou eunpdotiov TepdoUATOC YENOULOTOLOVTAC TNV XUTWPAL-
uévn (xhadepévn) Exdoom TwY Pupdy, EVE EVPERGOVEL Ta TUXVE Bdpn xatd T Sidpxel Tou oniotou nepdopatoc,
avTeTonilovtag T cuvVdpTNoT XoTwehinone (Tou extehel To XAEBeU) WS TNV TAUTOTLX.

Ye autd to xe@dhato, ectidloupe ot Bedtiwon tng aparc extaldevone pe tov STE, avtipetwnilovtoc oplouéveg
aduvopies e puedddou, dnuovpydvTas Tehxd pla véa povéda xhadéuatoc. Ipoteivouye (i) wo véa cuvdptnom
xatw@Alov Tou yenowlomotelton yior To xA&deua e Bdom to uétpo xou (ii) évav amhd tpdmo eEAEYYOU TS POHS TV
gradients twv xhadeuévwy Papdv. Ihio ouyxexpéva, avti va yenowonotolue hard 1 soft xatwehinon [18], tic
omoieg yenouomololy xuplwg ol tpoyevéotepeg pédodol mou Pacilovton otov STE, npoteivoupe wa owoyévela
cLVIPTACEWY XATwPAwone Tou Beloxovtor uetadd Twv 800 tpoavaPeptEVTOY Xxat GUVBLALOUY ToL TAEOVEXTAUATY
Toug, ONAadY Yelwuévo bias YETOED TV XATWPMWUEVLDY BoptV XL TWV TUXVOY OUOAOYWY TOUC X0l ULd OUOAT
TepLoy Y| METABAONS XOVTE OTO XATOPAL. LUUTANEWUATING YE TNV TEOTEWVOUEVTY TEOGEYYIOT XUTWPAlOV, TEOTE-
VOUPE TNV xApdxwon twy gradients mou anodidovton otic xhadepéves mopauétpous pe pio mopdueteo 6 € (0, 1),
pe otoyo T Pehtiwon tne otadepdTog TG pdoxag xAadéuatog, évag mapdyoviag mou Yewpolue OTL elvou
xplowog dtav otoyebouue oe TOAD LPNAOVLE AdYoLS aEALOTNTAC.

Emudevioupe tny omoTeEAEOUOTIXOTNTO TNE TROCEYYLIONE YA Yiow apant] exnofdeucn otay egapuodleton o8 GUCTH-
portar un-dopnuévou xhadéuatog we Bdomn to uétpo, Ta omola ETTUYYEVOLY Evay TeoXadoploUEvo and Tov XeNoT
AOYO0 dpotdTNTOG UE O TABLOKG XAADEUA TOU B TUOU XaTd Tn) Bidpxela TNe exmaldevone. Avolutixdtepd, EXTENOVUE
EXTETOUEVY TELRGUAT 1000 6T0 6UVORO dedopéviv CIFAR [47] 600 xou oto ImageNet [13] ypnowonoudvtog o
TOAY amhoiny) Sladixocior ¥AadEUATOE YE xotoAMX T XATWOPAWST we Bdon xou eMTAEOY UE EVa TEOCPAUT TROTEWVO-
pevo obotnuo xhadéuatog avd eninedo [73]. H Sudr pag npocéyyion apafic exnaidevons Zenepvd toug (yevixd
o Samavneole UTooYLoTd) Teéxovtes SOA alyoplduous un-Sounuévou xhadépotos, BEATIOVOVTIS oTUAVTIXS
T Tponyouuévwe emtevydeioe axplBeleg yevixeuong TV dpaldY LOVTEAWY.

Yuvolxd, 1 ouuPoln tne epyaciag pog pnopel vo cuvodiotel wg e€ng:

e Ilupoucidlouye to Feather, pio euéhixtn povada aponfic exnaideuons nou unopel vo ypnoytonomdel yio Ty
amOBOTLXY) Xl ATOTEAECUATIXY ATOXOTY] VEURPWVIXWY BIxTOWY Uéypet xaL o oxpala eminedo apadTnTog. H
TPOTELVOUEVT] LOoVAda aglohoyHUNXE GE BlapopeTixd CUCTANTA XAABEUATOS Xal TETUYE cuveyelc BelTidoelg
oe oyéon Ue To TpEYov SoA.

o Toviouue ™ onpacio plag xahd oyedlacuévng cuvdetnone xatwgiiov mou Beloxel wio AenTy| Lloopporia
peTal Twy BVo TUTXGY, dnhadY) Twy hard xo twv soft tTeAecTdy.

o Emonpaivouue) cuoyétion peto€d tne xhgdxwone twy gradients twv xhadepévev Popcdv xow tou {n-
TOUUEVOU AOYOU opotOTNTAG: Ol GTOYOL UYNANG opatdTNTOG TEETEL Vol GUVOBEVOVTOL OO YOUNAOTERES TUIEQ
HAPEHWONS Yo TNV ROy XAAOEUEVWY LOVTENDY LYNAYC anddoong.

1.6.1 IIpotewvopevry Meédodog

Ye auth) Ty epyaoio, avantiloue uio véo Lovado xAadéuatog, tou ovopdotnxe Feather. To dvoupa cupforilel
™y avdhagen @Oon e, TNV xoudpdtnTa pe TNV onolo EMTUY YAVEL TN cEatdTNTA, XS XL TNV EAAPEOTNTA TOV
TEOXUTTOVTODVY XAaBeUEVKDV dixtOwy. Mmopel va yenowonowndel oe didpopa oyfuato xhadéuatoc Ye Bdomn to
HETEO, CUUTECLAUUPBAVOUEVLV GTRUTNYIXWY OOV TO XAGBeUo Unopel va extehectel xadohxd 1 xatd o TeduaTa.
Mog eviiopépetl to xAddeua Ye Bdorn to pétpo, dmou éva Bdpog Batneeiton wdvo edv to pétpo Tou umepPoivel
piar T xateehiov T', xou axohoudeiton pior aponr) Sradaoior exmaidevone (dnA. exteleiton 1 Sadixooio xhodé-
HoTog xatd TV Tt Ttopeio Tne exnaidevong), dnwe yiveta ota neplocbtepa cuoTiuata SOA. Ltnyv ovola,
0&LOTIOLOUPE TNV AMOTEAECUATIXOTNTA TWV GUYYPOVWY Tpoceyyioewy nou Bacilovtan oe STE, avtiwetwnilovtog
mpocexTxd To miavd Toug mpofliuarta. And mAeupds Lhonoinong, N TEoTeEWdEVN Hovida epappoleTal oe xdie

16

1.6. Feather: Mw Koudr Abon yio Anotedeopatinf Apoiwon Nevpwvixdv Auctdwy

eninedo, aviixadoTdvTag W Tumxr) Aettoupyia xhadépatos, ennpedloviac 1600 T0 eUnEdoVo 6CO0 X GTO
onicHio Prua g exnaidevone.

Y11 ouvéyela, apyxd TapEYOLUE TIC OmAPAlTNTEC AENTOYEPELEC OYETIXA Ue TNV oponr) exnaideuon pe tov STE xou
EMELTA TIEPLYPAPOLPE TNV TEOTELVOUEVY uéVodo, divovtac EupaoT) oTlC TPOTONONGELS T600 aTo eunpdcto 660
xat 610 oniotho Brua xou toviovtag Ta xivntea Tou TNV BLémouy.

Eicaywywxd: Apowy exnaldcsuon

Ye auth) TNV avdAivor e€eTtdlouUe TOV TEOTO UE TOV Omolo exTEAE(TAUL TO XAADEU Xou 1) ETAXONOLVT) EVIUERLON
TV Papdv (xatd) Sudpxelo plag enaviindne extaidevone) oe éva pbvo eninedo oto mhaioo tou STE.

Apyixd, ag Jewprioouye évav TeheaTr) xatw@hiou, Tov Tupva TV tpoceyyicewy xhadéuatog ye Bdor To uétpo,
©¢ ot ouvdpetnon Py (z) mou extehel To xhddeua dedopévng wag g xatwghiov T Kotd yevixd xavéva 1
ouvdptnon auth Tadpvel undevixéc tpée 6tav || < T xou pn undevixée twée dropopetind. Tumixée viotooelg
auThC NS ouvdpTtnong etvan o hard xou o soft teheatic xotweiiov.

Mo mpddytn npocéyyion elvan va yivel ameudelog omioBodidboor Tou tehecTthc xatw@iiwong. Me autdv Tov tpdno,
ta gradients mou avixouv ota xhodepéva Bden undevilovtan amoxielovtde ta €Tl and o Brua evnuépnong.
AvcTuy K, Moy Twy apouwy gradients tou tpoxinTouy, aUTH 1) TEOCEYYLoN PTopel Vo 08N yRoel oe avemdiunto
decay Popmv xou ot apyr| e€epedivnon Ty mdavdy wotiBwy apudtntac [44, 84].

Tehevtaio, yio v apoxappdoiy to tpoavagpeptévta nuiyata, v thilog peddduwy xhadépotoc [73, 44, 84, 86]
€youv emtUyel anoteléopata SOA pe Bdor tov Straight-Through Estimator [3]. Me Ayo Adya, ye olupwva
pe v datinwon tou STE, ol e€iohoeic evnuépnwong Popdv xaw xatw@hiov anocuvdéovtal TAéoV oe:

wy = P(T)(wk) (1.6.1)
W1 = wg — 1 VL(Wy),

omou w elvan ta Bdpn Tou emnEdOL o Yoppt| dlaviopatog, W Ta xAadepéva Bden UETE TNV eQapUOYY| TNG
xatwehiwone, L(w) n cuvdptnon oedhpatos xa 1 to péyedoc Bruatoc. Ot avapepdUEVES OYECELS AVTLOTOLYOVY
otV k-ooTh enavdindn wog arhoixfic vhortoinong tou Gradient Descent yia va toviotel 1 enldpoon tou STE.
H (S Sodixaoto enextelveton Ye teTplpuévo Tpono e 0molodY|noTe BEATIOTOTONTY AmouTelTol.

H Boowr 6o elvon var Yewpndel o teheotric xatwgilov we 1 TaUToTiX cLUVAETNOY XAt TNV oo YodLEBOoT) XaL
vo evnuepwdoly t6c0 To xAadepéva 660 xan o un xhadeuéva Bden ue Bdon to gradients tou c@dipatog we
TEO¢ TO dpatd GUVORO Bapy. oT600, xTd TN BidpXEld TOU EUTEOGUIOU TERAOUATOC, YENOWOTOLOUVTOL U6VO
ToL apond Bdpm, €ToL OGTE TO BIXTUO Vo EXTToUdEVETAL UTO TOV TEpLoplond e apardtntac. To Booind mheovéxtnuo
e apauhc exnaideuong ue tov STE elvan 611 emitpénel oto xhadepéva Bdpn va yivouv xau ndAL evepyd, dv oe
xdmolo onuelo xatd tn Sidpxelo TNE EXTTUBEVOTE AMOXTHCOUY dEXETA YeYdho pétpo. H Sobixaocio autr npowidel
enopévwg T e€epelivnom BlapopeTix®y LoTiBwy apatdtntoac xat €yel Bpedel 6Tl 0dnyel oe xohlTepeg emdooELS
apondv dixtvwy [44, 84].

IMpotewvouevn Movdda Apauric Exnaldsvong

H mpoavagepdeioo povteronoinorn ue Bdon tov STE anotéhece to évouoyo Ylo TNV TROTEWVOUEVY LOVEDY; O
TEWTUPYXOC HoC GTOYOC HTOV VO DLUTNEHOOVUE TNV AMAOTNTA TNG OpYIXAC WOEAS oL, S EX TOVTOV, ETUXEVTE-
oOxope ot Bertiwon 800 VeueMwd)Y oToLyElwY: TOU TEAEOTH XATOPAWONE xaTd To eunpdotio Brua xou Tou
Yepouol Twv gradients xatd to Bruc omioVodiddoong. XUVOAXd, oL TPEOTEWVOUEVES BEATIOOE AMOOKOTOUY
otnv unoforiinon tng Swdixaciag exnaldevong, tpowddviag T clYXMOT o€ AIGEC UE XUAEC ETIBOCELS UANG %Ol
peydhn apondtnta. H Aettovpywdtnta tou Feather, tng npotewvouevne povddoc, cuvodiletar oto Xyrua 1.6.1a,
omou Ta anexovi{opeva ototyelo Yo TEpLYpaPoUY AETTOUERNOS OTN GUVEYELA.

STE Tekeotrc Katwehiou

Ectdlovtoag otov TeheaTth| xatw@Ainong mou yenouylomolelton xatd tn Sidpxela Tou eunpdodlou nepdouatog, o
O OmAGC TEOTOC Yl TOV oploud evde Briwatoc xhadéuatog ye Bdor to yétpo elvan uéow tne hard cuvdptnone
xoatwehlnong, 1 onolo elvon acuveync otny TN xotweiiov. Autr 1 acuvéyeta uropel va 0dnyroel oe aotdiela
e exmaldevone 6tav Ta Bdpn mMEpVoLY amd XAAOEUEVEC OF EVERYEC XUTAOTACELS xan avTioTpoga, xoldde To
gradient mou déyovtar umopel vor unv duconoroyel Ty T PETA TV xoTwEAlnon. Ta v avietdmon autod

17

Chapter 1. Extetauévn Hepiindm ota EXnvixd

control params: I pruning threshold 7' | I target sparsity S |
J 1.0 15

- ==—-2E .{ _______________ | = Hard Th. 9
Iforward s \ —— Proposed Th. (p=3)
| W gy Py = | SO YIWE =T] > T o 081 — sotTn. 6
1 0, otherwise 1
1 - ! 0.6 3
1 gradient 1 o
1 _) Liwl>T scale & ! s 2 5
! m= {19, otherwise : & 041 E
N B S U N s g
__________________________________ 0.2 4
1| backward 1
1 1
| MOVL(W) VL(W)! o0
1 1
B e o ————] - —— o 1

-0.2 T T T T T
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Feather Module w

(a) (b)

Eyua 1.6.1: (o) H mpotetvéuevn povddo aparfic extoldeuons, mou Yenollomolel To vEo TENEOTH XATWPAWONS
xou TN wdoxa xhpdxwone tov gradients (3) H mpotetvouevn oxoyévela TehesTOV Xotwehinons yio Touihes
Tipég tou p. Twoletolpe p = 3, pe amotéreopa TNy oopponia petald Twv dVo dxpwy, hard xau soft xatweiiou
avticTtoLya.

Tou {nthpatog, wo npdogaty uédodoc [86] medtewve 6TL 0 soft TeheoThc xatw@Mwong eivar TpoTdTEPOS 01O
mhofoto tou STE, evdd 1 soft xotwehinon eivar wa xowh emhoyy| oe mpooeyyioeig xhadéuoros yevixd [50].
H soft xotwehioon, av xou xataotéhel Ty acuvéyela, npoxakel éva otadepd bias (ue tun lon pe auth tou
XxaTwPAiov) HeTadl TV EVERYOV BopiV XL TWV TUXVOV OHOAOY®WY TOUG, TOU EVAUEROVOVTOL XATY TN SLdpXELd
e pdone omododiddoone tou STE. Xnueiddvoupe 6Tt amd 1 @bon tou o STE ewodyet o acuvénelo peta€d Tou
eunpooou xou Tou omloViou TEPdoUATOS, XS XUTA T BIdEXELN TOU TEWTOU YENCHLOTOLE(TAL TO dpatd GUVOANO
Bapdv, eved xatd T Sidpxelo Tou delTEPOL YenoLuoTololvTaL Tor utoloyiouéva gradients yio v evuépwor) Twv
TUXVOY Bapdv.

Iopaxvoiyevol and epyaoie oTov Touéa TnNC TaAVdEOUNONG, UE 0ToY0 TNV €UPEST] TEAEOTAOV XATOPAIWONS TOU
Beloxovton petall soft xou hard xatwehinone [58, 27], npoteivouue v axdroudn oixoyéveian TENEGTOY Yia Vot
Yo yenotwonomdoiv ye tov STE:

[sign(w) - (JwP = TP)VP, av |w| > T
Py (w) = { 0, dLapopeTind

H ocuuneplpopd tou P(T) anewoviletan oto Uyrjpa 1.6.1b, yia mowikec tée e mapapétpou dovaune p. Al
oo OnTid, xodae avgdveton To p amoxhivouye ond tov soft (p = 1) o mAnotdlouvye tov hard teleoth xatw@iiov.
Tré auth v onuxy| yovia, o mtpotewouevog tekeotrc unopel va Yewenldel yevixeuorn tov 80o unapyoVTWY.
ENUEWDOTE OTL 1) TEOTEWVOUEVY GLUVAETNOT), OTAY ATOPEVLYEL axpaieg EMAOYES Yio TO P, TpooTadel Vo LOOPEOTHOEL
peTol TwV 00 TpoavapepUEVTLY WIOTHTWY: NG cLVEyELas xou Tou bias. Me Bdorn autd, mpotelvouye Ty Ty
p =3 wc évay hoyixd cuufifoacud mou avtipetwnrilel emopxde xon to d0o {nThHTA.

(1.6.3)

Ye wo tedeutalo onuelwor, YéNouye var TOVICOUPE OTL O TPOTELVOUEVOC TEAEGTAC XATWPAWONG, EXTOHC TOL OTL
éyer o Sttt e€fynon vy Ty npoximTovon BeATwpévn anddoon (nwe aflohoyelton EUTELPXE GTNV
Evétnta 1.6.3), Aoyw e anhdtntde Tou, Teaxtixd dev emPBopivel Ty exntaideuon xou unopel va yenoonoundel
aneudeiog oe cuoThuaTa xAadéuatog oe cuvduaoud pe tov STE.

STE xouw Khpdxwon twv Gradients

To x0plo xivnteo nlow and tov STE elvon va emitponel 1 pon) twv gradients ota xhodepéva Bden xou €tol va
xotaotel Buvaty| 1) e€epelvnor) TOAATAGY poTBwy apondtnTog xatd T Sidexela Tng apauic exmaldevone. ‘Onwg
avapePUNXE TEONYOUUEVLS, OUTO ETLTUYYAVETOL YE TN YEWENoT TN CUVERTNONE XATOPALOL ¢ TNV TOUTOTIXH
%xotd TNV omoYodlddoon. (201600, O OPLOUEVES TEQINTWOEL Umopel va elval enw@eréc va TepLoploTolyY Ol
petoforéc tng pdoxag xou vo euvondel éva mo otadepd pwotlBo apondtnTac. AlmoTOVOUUE OTL €vag udhhov
anhog, aAAG xou BlonoUNTindS TEOTOC EAEYY oL NS oTadepdTNnTaC TN Udoxas elval 1 XAUIXWoT TV xAloewv
TV XhoBEPEVLV Popmy pe wo otadepd T 6 € [0, 1], tpononoudvtog ovolaotid to Briuc evpépnone tne EC.
1.6.2 oe:

Wht1 = Wi — 1 - My, © VL(Wy), (1.6.4)

18

1.6. Feather: Mw Koudr Abon yio Anotedeopatinf Apoiwon Nevpwvixdv Auctdwy

omov my, € {0,1}N étoL dote mip =1 av wy g > T xon my g = 60 BLPOPETING, PE O VoL FNAGVEL TO YLVOUEVO
otolyelo mpog oTotyelo.

Ytig 8Vo axpaieg Tiwée, 8 = 0 xou § = 1, 1 uédodog evduypoppileton ye tig Tpooeyyioewc un-STE xau tny Tumxy
STE. T evdidyeoes tée tou 0, to xhadepéva Bdpn ouveyiCouv va hayBdvouy gradients, ohld pe pelwyéva
HeYEDM, xou emopéves, ot xdnoto Podud, mpowdodvton va Yivouv avevepyd, ue anotéleoua pia o otodepn (ahhd
Oy eviehns otadept]) pdoxa.

Yt newpdpotd pog (Evétna 1.6.3) Swmotdoope Tt 1 xhpdxwon twy gradients yiveton enwgelic 6tav oto-
YeVvoue oe TN udmhole Aoyoug apandtntag (.. 98% xou Tévw), 6mou, Adyw e Urapéne TOAD Aywy evepydv
Bapdv, oL Tohb cuyvée petoBoréc T pudoxag gaivetal va anoc TadeponotoLy to dixtuo. T mo cuvtnenTxole
Aoyoug apandtntag, N xenomn 6 < 1 dev gaiveton va Bedtichvel tor anoteréopata xou pdhioto odnyel ot pxen
uetwon e axp{Beloc oe oplouéveg TEQITTHOOELC.

I to oxomd autd, Pacloyevol oe TElpopaTixd oTotyela, Tou ouctaoTixd otnpilovial oe Wa TPocéYYLon pro-
filing, op{Couye évav “autdpoto” tedmo yia Tov xadopioud tou §. Avoduvtixdtepa, emhéyoupe § = g(S) we wa
oA Brwatind ouvdptnon, 6mou 8 = 0.5 edv 1 el apadtnta otdyou S elvan téve and 95% xa § = 1.0 6tov
S < 95%. H Ty tou 0 emhéyeton oty apy tne exnaidevone xou mapapéver otodeph xad’ hn 1 Sidpxeia
e Sodixaciog exnaidevong. Eivou evbiagpépov 6TL dev mapatnerinxay x€pdy anddoong Ye TNy LVIVETNOoT Lo
SOVIETOV TAXTNMV YPOVOTEOYEUUUATIONOD (T.)Y. Ue oTadlaxy| opoly) uetdBoaon and to § and to 1 o wa youn-
otepn) xortd T Sidpxela T exnaidevone. Enueidvoupe bt avind Yo unopovioe v oplo el pa o ovvien
ouvdptnon dedouevng Wwag eavthnuxic ddactiag profiling, ahhd Jewprioaue 6Tl Tétoleg Wéeg Bev euninTouy
o7o nedlo eappoyrc Tne moapolous epyociog.

1.6.2 Egoppoyn oe Yvothipata KAadeuatog

H mpotewvduevn povdda apoufc exnaidevong elvon suéhixtn xou dev meplopileton o €vo cUYXEXEWEVO GUCTNU
xhadéuatoc. Oo emdelloupe TNV AMOTENECUATIXOTNTA TNS YPNOLLOTOLOVTOG VO BLaPORETIXE UG THUOTA, TOCO
éva ue xodoAxd xaTOPA 660 xou €vor GUCTNUO XAAOEUATOS TOU AELTOVEYEL Ue xaTweha avd eninedo. To mpdto
xenowonotel xadohixy| xatwehlnon, ye v évvola 0Tt emAéyeTon éva eviodo xatweil T yia 6ha T enineda, TO
omnolo unohoy(letan pe To€vounon 6Awy TV Bapmv, Teoxeyévou va xAadédel to dixtuo péyel évay xadoplouévo
Moyo apandtnroc. To teleutaio, Paoileton oto clotnua ASL, Bedtiwuévo dnwe e&nyRinxe nponyoupévwe, To
omnolo tpo ovoudleton ASL+. Kou ot 800 npooeyyioeic ypnotlonolody €vay ypovonpoypouaTlo T opatdTnToS
TopdpoLo pe tov [98], 6mou To dixtuo exnadedetar TUXVE Yior Evay wxed aptdud eToy v TeoYEpuavong, axohou-
Yoluevo amd wa xuPx adénon Tou AoYou apondTnTaC, UEYEL VoL PTEcEL 6TOV TEMXO AdYOo-0TdY0, 0 oTolog ot
ouvéyela dlatnpeitoan otodepde yia T unéhotnee enoyéc exnaidevong.

1.6.3 Ileipapotixr afloAoyrnon
Ablation MeAétec

Ou peréteg ablation mpaypatonominxay oto clvoho dedouévwyv CIFAR-100, ypnowonowwvtag to cloTha
xhadépatog xardohxol xatwerlov we tn Bdon yio T povddag xhadéuatog Feather. Ynueidvoupe 6Tl nopduoteg
ouumeplpopéc mapatnednxay e t yeron tou Feather oe cuvduaoué pe to ASL+. ‘Oha ta onpelo Tou oyhpotog
OVTITPOCWTEVOLY HEGOUE 60U 3 EXTEAECEMY X0l OL avTioTOLYES TUTLXES amoXAloELS euQavi{ovTal (¢ OXLUCUEVES
TEploYEC.

Enntaoeic tov Tedeoth) Katwghinone: H anotelecpanuxdinto tne mpoTevdpevne ouvdptnone xatwgiiov (e
p = 3) ofohoyeiton eunelpind xon cuyxplvetan e exeivn twv hard xou soft cuvapticewy xatwehiov oto Lyhua
1.6.2, eveh dev €ytve xhpdxwon tov gradients yia avtd to melpapa (yenowonoticoue tov tutixd STE). To npo-
TEWOUEVO XATOPAL ETUTEENEL TNV EXTIUBEVGT] AXEIBECTERMVY apoIMY BXTUWY, Wlwg ot LPNiéc avaroyieg xAadéuo-
10¢ (95% o dvw). AZilel var onuewwdel 6L) tpocéyyion tou hard xatweiiou emiTuyydver onuavTixd younid
anoteAéopata pe to dixtuo MobileNetV1, evéd to soft xatddpAt pe to Ao d0o. Yuvodikd, n mpooéyyion) pag
0dnyel otalepd o€ kalUtepa exnaidevpéva diktva, aveEdpTnta ané Ty aPXITEKTOVIKT) Kal ToY AdYo apaidTnTas,
vnootnpilovtas tous 10X UpIooUs pas 6t ouvvdudlovue anotedeopatikd ta mAcovektipata téoo Tng soft doo
kat tns hard katweAinong.

19

Chapter 1. Extetauévn Hepiindm ota EXnvixd

ResNet-20 MobileNetV1 DenseNet40-24
75 721
701 T
70
> 651
e 68 -
S 601
o
[9)
< 554 66 1
50 64 50 -
90 92.5 95 96.5 98 99 90 92.5 95 96.5 98 99 90 92.5 95 96.5 98 99
Sparsity Ratio (%)
—»— Hard Th. Soft Th. —4— Proposed Th.

Syuo 1.6.2: Merétn tng enldpaone tou TeAeoTh xatw@hinwong otnyv axplBelo Tou Ao apotod HovTENOL.
To mpoteivouevo xatdehl uteptepel otaepd évavtt Twv hard xo soft teheatddv.

Emuntdoeig e Khpdxwong twv Gradients: Xto Xyrua 1.6.3 diepeuvdtoan 1 oyéon petold tng TWAC g
nopapéteou 8 € [0,1], n onola xhpoxdver to gradients twv xhadepévev Bapddv, xou e teMxic axpiBetog
TOU LOVTEAOU Yot SLopdeoug AGYOUS 0patdTNTAC. LNUELDOTE OTL 1) tepinTwor unoanddoong pe 6§ = 0 elvar 1lood0-
von pe o topodhay un-STE. Ye dda ta efetaldueva povtéda, umnopel va mapatnpndel uia capng tdon -
otav oToyeloupe g€ Yaunldtepa emineda apaidtntas, ta KaAUtepa anotedéouata emTuyxdvovtal [e TIUES TOU
0 xovtd otn povdda, evd o€ mo akpaia Tooootd apaidtntag (6nws 98% ka1 99%) o PédtioTes Tés Tov O
paivetar va petaronifortal mpog§ To UETO TOU €UPOUS TOU.

Avth) 1 napatnpoluevn e€dptnom elvar o xivnteo mow amd wio autdpaTn emAoy Tou 6, dnwe mepLypdpeTon
oty Evétnra 1.6.1, 6mov 6 = 0.5 yie S > 95% xou 6 = 1 Sopopetixd. Lnuetdote Tt auth 1 emhoyy| anhds
evduypopuiletar e TV avagpepouevn tdon xou dev elvon BEATIOTN Yio xdie mepintwon mou avagpépetar. Ilopd
TO YEYOVOG OTL TEOXELTAL YLt Uidt TOAD “y0ovdpoeldy” Aoy, elval TOAD AMOTEAEOUATIXY, OTWS UTOBNAWMYOUY
oL emepyoueveg melpapatiéc aflohoyroelg. Ilap’ dha autd, to cuumépacua auTob Tou TElRduaTOC BV elvan plot
omAY} GUVAPTNOY, ahhd 1) avddelln auThc TNe oxéong oto mpooxrvio. Me Bdorn aut tnv mopatAenor, avolyouue
70 8pOUO TPOG O GUVUETEC GUVAPTAHCELS 1}, TO TO EVOLAPEPOY, TPo¢ TNV xatediuvan Tne UnapEng SLaPOoPETIXDY
XAdxwy avd eninedo, Bacilouevol ot apoundtnta avd eninedo xou oyt otn cuvolixy apoudtnto. H teheutala
Wea, wo mdavr ueAhovtinn xatevduvon ye mpoxtix| a&io, SNADVEL AmAdg Tl T o TUXVA ETTEDA PTOPOVY VAL
elvor o evéhxta oTIC PeTABOAES TV TEOTUTWY apandTnTas and To UTepBOoAXd XhadeUévaL.

90% Sparsity 95% Sparsity 98% Sparsity 99% Sparsity
74 T
74 70 \ 68 A
68 1 64
72+
2721 //\\
5 66 60
3 701
< 70 64 1 561
. 68 1 62 1 52 1
0 025 05 075 1.0 0 025 05 075 1.0 0 025 05 075 1.0 0 025 05 075 1.0
2]
—— ResNet-20 —o— MobileNetV1 —4&— DenseNet40-24

Syfua 1.6.3: Mehétn g enidpoone tng xAudxwong twyv gradients. Yo cuvinenuixy tehxn cpatdtnta, to 0
XOVTE 6T HoVEda elval TROTIOTERO, EVE 6TAY GTOYXEVOVUE G LYNAY apondTnTa, Ta LoVTEAA ENWPeE OVVTAL oo
T0 6 xovtd ot uéomn tou £dpoug Tou.

Khdxwon twv Gradients uné Awogpopetinég Yuvaptioeic Katwghinong: Téhog, ouyxeivoupe tov avtixtumo
e xAdnwone twv gradients ypnollonoldvTac Toug Teelc dlapopeTixols TOnouc Tekeatdv xatwgiiov. To
Tyfuo 1.6.4 Setyver dti, aveldptnto and Ty emhoy) tou TehesTh, 1 xprion xhipaxac 8 o70(0,1) eivon enwperic
yioo ™y TeEA) axpBeta oo xadeotdTa LPNATC apoudtnTac. Ilopdho autd, N cuvdptnom xatwEiinong mou
Tpoteivouye dlatneel To Tpofddioua oty anddoor oe cUYXELoT UE TIC 500 TUTIXES.

20

1.6. Feather: Mw Koudr Abon yio Anotedeopatinf Apoiwon Nevpwvixdv Auctdwy

ResNet-20 MobileNetV1 DenseNet40-24
98% Sparsity 99% Sparsity 98% Sparsity 99% Sparsity 98% Sparsity 99% Sparsity
70 65 | 701
- ‘_\X 68
] 65 1)l
.. 68 o /A/\\Q . 60
:_‘é 66 66
3 55 66 | 60 1 6] 55 -
1)
< 641
50 1 64 1] 621 50 1
62 55
0 0250507510 0 025050751.0 0 0250507510 0 0250507510 0 025050.751.0 0 0.250.50.751.0
0
—»— Hard Th. Soft Th. —4— Proposed Th.

Yyfuo 1.6.4: H »hpdxwon tov gradients Bedticdver tny tednn] axpifelo o vPnin apoudtnta, aveEdptnta ond
TOV TEAEOTH XATWPAWOTNG, EV® 1 UEYLOTY andBOCT) EMLTUYYAVETOL AV CUVOUAGTEL UE TO TPOTELVOUEVO XATW@AL.

1.6.4 30Oyxpiomn pe To SoA

CIFAR-100: T autd to TEWpdUoTa, cLYXpIVOUUE dUECH To AMOTEAECHOTA Hoc P auTd Twv ST-3 [86] xou
Spartan [84], mou eivon ot 0o To Tpdoputes o pE Tic xahdTEPES ETBOOELS TpooEYYioels apouic exnaidevornc.
Ot pédodol elvan xan ot 800 alyopriuol xhadéuatog Baciopévol oe xotohnd xaTEAL HETEOL, oL OToloL ELGAYOLY
oTodlaxd apatdTNTA Xatd TN SLdexela TS exnaldeuone, ypnolpotoldvtos nopahhayéc Tou STE. Tuyxexpéva, 1
ST-3 violetel soft xatwEAwon xou plat TEYVIXT AvaTEOcUproY TS BApouc TapoUoLd UE aUTYH IOV Ypnotuonoleito
and to dropout [79], eved n Spartan vnoloyilel o soft top-k pdoxo emhibovtac éva regularized Optimal
Transportation npbéBAnua, etouévng elvon mo Samovney) UTOAOYLIOTIXE and TNV TEOGEYYLoN oG,

Yuyxexpyéva, o Ilivaxac 1.3 mopéyer to amoteréopata nou mpoéxuvav oto CIFAR-100 pe tn yperon twv
TpoavapepIEVTOV UEVEBOV OE TEELS BLUPOPETIXES APYLITEXTOVIXEC XOL TECOEQRO DLPOPETIXS emineda cpatdTNTAC.
Ta avopepoueva amoTEAECUTA AVTIGTOLYOVUY 68 HECOUC OPOUC 3 EXTEAECEWY UE TIC AVTIGTOLYEC TUTUXES AMOX-
Moeic. To anoteréopota xatadeevbouy 6Tl 1 apanry exmaldeuoy pe to Feather anodider otodepd axpBéotepa
povTéla oe cUYXpELoM UE TG 800 SOA uedddoug, eite yENoWOTOLOVTAS TNV ATA| TEOGEYYLoN xadohxol xaTtwgAiou
(Feather-Global) eite oe ouvbuaopéd pe to ASL+. AZilel va onpewwdel bti 1 dagpopd otny axplPeta yetald g
TEOGEYYLONE Yag Xt TNG Auéowe xohoTepNG uedodou awddveton éwg xat 4% btav e€etdlovton tot 99% apoud uov-
téha ResNet-20 xou DenseNet40-24. Mia g1 evBiagépouoa napatfionor etvar 6Tt to Feather punopel vor odnyrioet
oe 90% apoud povtéha ResNet-20 xon MobileNetV1 pe ehagppddc xahltepes axpiPeiec yevixeuone and exeiveg
TOV TUXVOY aVTIo TOLY WY LOVTEAWY, TOU EXTUOEVOVTHL UE TOV (Blo optdud emoydyv. H teheutala mapatipnon un-
odMAVeL OTL Uit xahd oyedlacpévn puédodog apouric exnaidevong unopel axdun xan va eivon ETWPEATc, Oyl uévo
YI0L TV TUEAYWYT) CUUTOY MV LOVTERWY, aAAd xou yior TN Beltinon twv embddoewy yevixeuong, dtav hauBdvovTto
unodn oyeTnd cuvtneNTXol AOYOL dEUdTNTUC. LNUEWOVOUUE OTL TUEATNEOUVTAL THPOUOLY onoTEAEcUOT SOA
pe T yefon xo twv dvo eletaldpevev cuotnudtwy Bdone (Global xaw ASL+), éva onueio mou emxupdvel
Tepattépw TNy evelEio tou Feather.

ImageNet: I'ia ta nelpdpota oto ImageNet cuunepihopufBdvouue anotehéopota and tn BiAloypapio and évov
exteTopévo aptipd peddduwv xhadéuatoc tov emtedydnxay yenowwonowdvas tov o aptdud enoydv (100) xou
enadZnone dedouévmv. Tuyxexpuuéva, anoteréopota and tic oxetxéc petddouc GMP [98], DNW [91], STR [50],
ProbMask [97], OptG [95], ST-3 [86] xou Spartan [84] nopouctdlovtan otov Ilivaxa 1.4. Me Bdon ta anotehéo-
pator mou moapéyovtar otov Ilivaxa 1.4, n puédodoc opanrc exmaldeuchc Log, YENOULOTOWVTAS THY TEOCEYYLoN
xoYOAXOU XATwPALOU, UTopEl VoL TopéyEL ONUAVTIXG XOAUTERO ATOTEAECUOTA ANt EXEIVAL TV TEONYOUUEVLY SOA
uedodwy, eldxd Yo TOAD amattnTixole Adyouc apaudtntac. ©éhouue va Tovicouue 6Tl ol BedTiwpévee embdoelg
ue to Feather dev épyovtou pe x60T0C 0TO YEdVO exmaidevong 1 Ty avdyxr yia neplnioxec puduioelg unep-
ToPOUETEWY, ot avtideon ye Tohég and Tic undpyovoes pedddouc. Avtileta, Ta tpoximtovta x€pd ot axp{Bela
umopolV v amodovoly TNV AmAT|, AAAS TEOCEXTIXE DLUTUTWUEVT] TPOTIOTOLNUEVT] TROCEYYLOT) apou|C EXTUBEVOTC
ue mupriva tov STE.

1.6.5 Xvuncpdopato

Avuth 1 epyaocio npoteivel to Feather, wa anoteheopoting xou amodotix povéde apouic extaideuons mtou unopel
edxoha Vo eqopuooTel oe Bildpopa cUCTAUNT ¥AodEpaTog. Ewddtepa, 6mwe anodeixvieTol and eXTETUUEVL

21

Chapter 1. Extetauévn Hepiindm ota EXnvixd

[Ratio | 90% [9% | 98% | 9% |
ResNet-20 (1.096M Params): 73.59 +0.44
ST-3 [86] 72.81 +0.13 71.72 +0.20 | 67.53 +0.53 58.32 +0.17
Spartan [84] 72.56 +0.35 71.60 +0.40 67.27 +0.31 61.70 +o0.21
| Feather-Global | 73.74 x0.17 | 72.53 +0.32 | 69.83 £0.14 | 65.55 +0.25 |
Feather-ASL+ 72.86 +0.10 72.42 +o0.17 69.76 +0.09 64.95 +0.47
MobileNetV1 (3.315M Params): 71.15 +0.17
ST-3 [86] 70.94 +0.25 70.44 +0.23 | 69.40 +0.06 66.63 +0.15
Spartan [84] 70.52 +0.51 69.01 +o.11 65.52 +0.24 60.65 +0.22
| Feather-Global | 71.55 £0.30 | 71.03 020 | 69.44 £0.29 | 67.64 £0.45 |
Feather-ASL+ 71.10 +0.31 71.26 +0.10 | 69.42 +0.12 | 67.86 +0.03
DenseNet40-24 (0.714M Params): 74.70 +o0.51
ST-3 [86] 72.56 +0.31 71.21 +0.35 | 65.48 +0.18 | 56.18 +0.60
Spartan [84] 73.13 +0.25 71.61 +0.04 65.94 +0.07 58.64 +0.18
| Feather-Global | 73.75 +0.36 | 72.36 £0.21 | 69.06 +0.23 | 63.40 +0.44 |
Feather-ASL+ | 73.92 +0.19 | 72.47 +0.12 | 69.08 +0.19 | 62.94 +0.14

ITivoxcag 1.3: Loyxpion e axpiBetag Top-1 oto CIFAR-100.

[Ratio [90% [95% | 98% [99% |
ResNet-50 (25.6M Params): 77.10

GMP [98] 73.91 | 70.59 | 57.90 | 44.78
DNW [91] 74.00 | 68.30 | 58.20 -
STR [50] 74.31 | 70.40 | 61.46 | 51.82
ProbMask [97] | 74.68 | 71.50 | 66.83 | 61.07
OptG [95] 74.28 | 7245 | 67.20 | 62.10
ST-3 [86] 76.03 | 74.46 | 70.46 | 63.88
Spartan [84] 76.17 | 7468 | - 63.87

| Feather-Global | 76.93 | 75.27 | 72.92 | 68.85 |

IMivoxag 1.4: X0yxplon e axpeifBetac Top-1 oto ImageNet.

newpdparto ota oUvola dedopévwy CIFAR xou ImageNet, ypnowonoudvtog tdéoo wa xadolxr) 660 xou yior ovd
eninedo mpooéyylon xatwehwone, odnyel oe Bedtinon Twv SoA amoteleopdtwy, Wiwe o udmiods Adyoug
xhadéuatog. Emnhéoy, n emituyla tng uedodou yag umodeeviel Tig UEYAAES TROOTTIXES TNE OWOTAS XATAVONGNG
xalL, XoTd cLVETELD, TNE Behtiwong Tng apauhic exnaideuong Ye T yerion plag tpocéyyiong Pactopévng otov STE,
1 omolo Toed TNV AMAGTNTA TG AMOBEVVETOL LBLOLTEPN ATOTEAECUOTIXY).

22

Chapter 2

Introduction
2.1 Motivation . . . @ i i i i i i it e 24
2.2 Contributions i i i it e 24
2.3 Thesis Outline i @ i i i i i i i i e e e e e e e et et e e e e e 25

23

Chapter 2. Introduction

2.1 Motivation

Deep Neural Networks have shown impressive capabilities in solving various complex machine learning prob-
lems, with their performance being continuously enhanced thanks to the efforts of the research community
[33, 48, 25]. To achieve that, the neural network models have been made larger, deeper and more complex
and thus require significant resources for training and inference, including large amounts of system memory
to store the parameters and intermediate calculations, considerable computing power in order to maintain
reasonable processing times as well as ample of energy supply to the involved systems [14]. Unfortunately,
the rapid growth in resource demands of the state-of-the-art DNNs has not been met by an equivalent ad-
vancement in the hardware (processors and memories) utilized by compact devices, which is limited by small
size and low energy requirements [14]. As a consequence, many real-world applications, such as in robotics,
smart wearables, self driving cars and smart cities, among others, that rely on machine learning systems
running on resource-limited devices cannot benefit from the enhanced capabilities of such networks.

As a response, a lot of effort has been devoted in recent years towards creating compact and efficient (i.e.
compressed) versions of these DNNs [14, 57, 26]. Among the numerous model compression approaches,
DNN pruning [54, 21, 57| has been widely studied and has shown very promising results [21, 73, 97, 84]. It
involves the removal of network elements (such as individual weights or entire filters and channels) that are
considered unnecessary and have minor or no effect to its final performance. Surprisingly, it has been observed
that originally large dense models that have been made sparse via pruning consistently outperform smaller
dense models that have the same number of non-zero parameters, often exhibiting no losses in accuracy up
to moderate compression ratios [98, 73]. In essence, this phenomenon, although still lacking a thorough
theoretical understanding, is generally attributed to the effect overparameterization has on enabling a more
effective training with stochastic gradient decent [94, 7], as well as to the extra degrees of freedom introduced
in terms of the allocation of sparsity [67, 84].

2.2 Contributions

Recently, there has been particular interest within the DNN compression community for the development
of methods that perform the pruning efficiently within the standard course of training [73, 44, 84, 86], i.e.
without the need for further retraining and pruning rounds. In this thesis, we build upon this body of work,
focusing on removing individual weights based on their magnitudes during training. Our main contributions
are as follows:

e In the first main part of the thesis (Chapter 5), we propose a layer-wise pruning framework which, with
almost no extra training overhead and without the need for setting additional hyperparameters, can
sparsify a model during training up to an exact user-defined level while keeping an effective non-uniform
per-layer budget.

e Additionally, we provide evidence that the per-layer weights can be effectively modeled by probabil-
ity distributions, in particular the Gaussian and the Laplace, in order for the appropriate per-layer
thresholds for magnitude based pruning to be learned, even at high sparsity regimes.

e Subsequently, we introduce Feather (Chapter 6), a novel sparse training module that utilizes an en-
hanced version of the Straight-Through Estimator [3], based on a new thresholding operator and a
gradient scaling technique.

e Through numerous ablation studies we highlight the importance Feather’s well-crafted thresholding
function that finds a fine balance between the two standard ones, namely hard and soft operators.
Additionally, we showcase the correlation between scaling the gradients of the pruned weights and the
targeted sparsity ratio. We find that high sparsity targets should be accompanied with lower scaling
values to provide high performing pruned models.

e All our findings are supported by extensive experiments on CIFAR [47] and ImageNet [13] datasets. Our
layer-wise pruning framework can perform on par with most recent methods, while utilizing the Feather
module to common frameworks (including ours) results to considerably improving the state-of-the-art
in terms of Top-1 validation accuracy, particularly at very challenging sparsities.

24

2.3. Thesis Outline

Part of our work has been accepted as an Oral paper [24] in the 34th British Machine Vision Conference
(BMVC 2023), with the authors being Athanasios Glentis Georgoulakis, George Retsinas and Petros Maragos.

2.3

Thesis Outline

The rest of this thesis is divided into 5 chapters, as described below:

Chapter 3 provides an overview of the machine learning and deep learning theoretical concepts that are
relevant to this work.

Chapter 4 briefly introduces related DNN compression techniques and provides a more in depth analysis
of the various pruning approaches.

Chapter 5 presents a framework that trains accurate sparse networks without prolonging the training
time, using adaptive weight distribution modeling for finding the layer-wise pruning thresholds.

Chapter 6 deals with enhancing the Straight-Through Estimator based sparse training approach by
introducing a novel pruning module, Feather, that based on extensive experimentation surpasses state-
of-the-art methods, producing more accurate sparse models.

Chapter 7 provides a summary of the thesis and its contributions and briefly discuses potential future
directions.

25

Chapter 2. Introduction

26

Chapter 3

Theoretical Background

3.1 Machine Learning« ¢t v v v i i i vt it e e e e e e e e e e e e 28
3.1.1 Machine Learning Paradigms 0oL 28
3.1.2 Machine Learning Concepts 28

3.2 Deep Learning v v v i i it bt e e e e e e e e e e e e e e e e e 32
3.2.1 Deep Learning Architectures o 32
3.2.2 Deep Learning Training oL Lo 37

27

Chapter 3. Theoretical Background

3.1 Machine Learning

This section is intended to provide the reader with an overview of the necessary theoretical background on
the field of machine learning [66, 4]. By the term machine learning we refer to an extensive range of methods
used to program computers to uncover patterns and make decisions based on data. This data-driven approach
has enabled computers to excel at various fields, such as in vision, that would have been unfeasible to be
explicitly programmed to perform the desired way. In the following sections the main machine learning
categories, based on the task and the data at hand, will be analyzed while a number of key concepts of the
field will be described.

3.1.1 Machine Learning Paradigms

In order to solve a task using a machine learning method a set of data, the dataset, is needed. This dataset
can be presented to the computer in a number of ways, depending on the application, leading to mainly
to three different machine learning paradigms, supervised leaning, unsupervised Learning and reinforcement
learning. The details of each paradigm will be discussed in the next paragraphs.

Supervised Leaning

By far the most common approach in machine learning is called supervised learning. It is characterized by
the use of labeled datasets, where the desired output (label) is paired with each corresponding data sample.
Those labels are then used to “teach” or “supervise” the system to return the correct outputs given seen or
(most importantly) unseen data samples. More specifically, a supervised learning algorithm aims at learning a
mapping between the problem’s inputs x and the outputs y, provided with a dataset, {(z1,v1), ..., (zn,yn)},
with z; and y; being the i-th input sample (commonly referred as a feature vector) and the i-th output or
prediction, respectively. Supervised learning problems are further divided into classification if the outputs y
are discrete or regression if the outputs take continuous values.

Unsupervised Learning

As the name suggests, unsupervised learning methods lack “supervision”, meaning that the system is opti-
mized using unlabeled data. The objectives of such methods can vary, with some prominent examples being
clustering, density estimation and dimensionality reduction. Clustering is defined as the task of grouping
input samples that are similar to each other to the same groups and thus discovering the hidden clusters
of the dataset. Density estimation, another popular unsupervised learning application, refers to computing
an estimate of the unobservable distribution of the input data. Finally, dimensionality reduction aims at
projecting the input data, which are usually high dimensional, into a lower dimensional space, in such a way
that meaningful properties of the original data are preserved or better revealed.

Reinforcement learning

A third category of machine learning is reinforcement learning, commonly used in Robotics and game playing,
where autonomous agents learn to take sequences of actions in their environment. In contrast to supervised
or unsupervised learning, the notion of dataset does not apply for this type of learning. Instead, the data are
obtained progressively from the environment as the agent interacts with it, makes observations and receives
rewards. The aim of reinforcement learning is to teach the agent to take actions given the state it is in and its
past experiences, i.e. to find a policy. Typically to goal is to learn a policy that results to the maximization
of the rewards that correspond to the observations made, through trial and error, using feedback.

3.1.2 Machine Learning Concepts
Loss function

Typical machine learning algorithms use gradient-based optimization procedures [75] in order to adjust the
model’s parameters 6, to best represent the data. This is achieved by minimizing a scalar function L(6)
(almost everywhere) differentiable w.r.t. the parameters, known as the loss function, that measures the loss
of the model on a given dataset as a notion of the distance between the labels y and the model’s outputs

28

3.1. Machine Learning

g = fo(x). Depending on the application, there exist numerous instantiations of the loss function. Some
common ones for regression and classification are explained as follows:

Regression Losses:

e Mean Squared Error (MSE): A wildly used loss function for regression problems, known also as the
L2 loss, that measures the average squared difference (error) of the labels y and the model’s outputs §.
Due to the use of squared differences, large errors are penalized more than small ones. Mathematically
is defined as:

1 & o
Luise(0) = 5 (v —) (3.1.1)

i=1

e Mean Absolute Error (MAE): Measures the mean of the absolute prediction errors and is defined
as:

N
1 R
Luap(0) = 5 D lvi — il (3.1.2)
=1

Note that this loss is not differentiable at zero, i.e. when y; = ¥;, although when handled appropriately
this does not causes problems to the optimization.

Classification Losses:

e Cross-Entropy Loss: By far the most common loss function for classification, is based on the definition
of cross-entropy between two probability distributions. For discrete probability distributions p and g
(with the same support X) the cross-entropy is defined as:

H(p,q) = - > p(x)logq() (3.1.3)
reX

For the case of binary classification, assuming labels y € {0,1} and predictions as probability values,
the Binary Cross-Entropy loss over a dataset of N samples is defined as:

N

LBCE(Q) = [yz log 9; + (1 — yz) log(l — :l),)] (314)

N

=1
The above loss increases as the predicted probabilities g; differ from the labels y;, with confident incor-
rect predictions being penalized the most. This type of loss can be extended to multi-class classification

problems, resulting to the Categorical Cross-Entropy loss:

N M
1 .
Locr(0) = N E E Yik 1og(Ji k) (3.1.5)
=1 k=1

where M is the number of classes, §; , represents the probability that the i-th data sample belongs to
the class k and y; , = 1 only if the i-th sample belongs to the k-th class, otherwise y; ;, = 0.

e Kullback-Leibler Divergence Loss: A loss similar to the cross-entropy one, which is based on the
Kullback-Leibler divergence between two probability distributions p and g. It quantifies the difference
between the distribution p from the reference one, ¢q. For the discrete case (with p, ¢ having the same
support X) is defined as:

Dicslolle) = - ploion (2 (316

= q(x)

Evaluation Metrics

A function which is used to evaluate the performance of a machine learning model, either at an intermediate
optimization step or after the training process, is called a metric. Although any loss function can be used
as a metric, differentiability of metric functions (w.r.t. the model’s parameters) is not a requirement since

29

Chapter 3. Theoretical Background

they are not used directly for optimizing the model. Therefore, depending on the nature of the task, a wide
variety of functions can be chosen. Specifically for the task of classification, some popular metrics are listed
bellow:

e Accuracy: Is the fraction of the correct classified samples. That is, it is defined as the ratio of the
number of correct predictions to the total number of samples of the dataset.

e Precision: Is the fraction of the number of true positive (TP) samples of a class to the total number
of samples predicted to belong to that class, i.e. true positive and false positive (FP).

TP

recision = ————
P TP + FP
It is preferred as a metric for tasks that prioritize the false positive errors to be avoided.

e Recall: Is the fraction of the number of true positive samples of a class to the total number of samples
of that class, i.e. true positive and false negative (FN).

TP

Il = ——
reca TP 1 FN

It is usually used as a metric for tasks that is important to minimize false negatives that are consider
more “costly” errors.

e Fl-score: Combines the two previous metrics using their harmonic mean:

precision - recall

fl-score = 2 - —
precision + recall

Train-Validation-Test Sets

In order for a model to be capable of performing a classification or a regression task it first needs a set of
data to be used for the optimization of its parameters. This procedure of fitting the parameters of the model
to the dataset is called training while the dataset used for this purpose is called the training set. Since the
goal is for the model to be used on unseen data in the real world, evaluating it (using evaluation metrics)
on the same set it was trained on is not suited for providing an estimate of its expected performance. For
that reason a separate dataset is used, which is called the test set, comprising of samples that were not used
for the optimization of the parameters (unseen samples). Finally, for models and training algorithms that
have additional controlling parameters, called hyperparameters, which influence the learning process and the
values of the trainable model parameters, a third type of dataset is used. This is the validation set and is
used to determine the values of the hyperparameters.

Generalization - Underfitting - Overfitting

For any machine learning model to have practical value for real world applications it needs to be able to
handle well not only training data but also previously unseen inputs. This desired ability of a model to
process new data successfully is called generalization. As previously mentioned, there is a specific dataset for
evaluating the model’s performance on unseen inputs (i.e. the generalization performance), the test set. In
addition, comparing the train set performance with the test set one can provide us information about how
to improve the later. A common case is when the algorithm performs accurately on the training data but
poorly on unseen test set data. This is a clear indication that the involved parameters have obtained values
that fit the training data too closely, resulting to falsely modeling the contained noise and data irregularities.
This behavior is called overfitting and needs to be addressed in order for the generalization performance to
increase. A number of methods may be used to combat overfitting, such as lowering the complexity of the
model, training with more data or using regularization techniques (discussed in the following section). The
opposite to overfitting is called underfitting and occurs when the model is unable to achieve an adequately
good fit of the training data, due to reasons such as performing an inadequate number of training iterations
or having a model with insufficient complexity.

30

3.1. Machine Learning

Regularization

A very popular way to avoid overfitting is called regularization [9]. Generally the term regularization in
machine learning refers to any kind of alterations to the learning algorithm that aim at improving the
model’s generalization performance by preventing overfitting during training. One common way to explicitly
introduce regularization involves adding an extra term to the loss function, the regularization or penalty
term, that promotes simpler solutions by penalizing parameters with large magnitudes. Denoting this new
term as R(6), the loss function is now written as:

Ly(0) = L(6) + AR(6), (3.1.7)

where L(0) is some loss term (such as the ones previously described) and A a hyperparameter that determines
the strength of the regularization imposed. A very small A\ value may result to being inadequate to prevent
overfitting, while a very high one may lead an underfitted model. The two most frequently used regularization
terms, namely the L; and L2 are briefly discussed as follows.

e L, regularization: Sometimes also called Ridge regression or weight decay, is based on using the
Lo-norm on the parameters 6, resulting to the following form of the term R:

Ri,(0) = |loll2 = 367 (3.1.8)

The use of this squared parameter sum term results to large weights being penalized and thus gives
rise to simpler solutions, that tend to model the data more accurately avoiding overfitting.

e L, regularization: Also known as LASSO, now the term R is defined as the Li-norm of the parameters

0:
R, (0) = 6]l = Z 0] (3.1.9)

This regularizer tends to shrink the parameters to zero, promoting sparse solutions that consist of many
zeroed parameters. Therefore, apart from the purpose of improving the generalization, it can also be
used as a feature selection mechanism since zeroing a subset of parameters results to not using the
corresponding input features.

Certainly, apart from adding an extra term to the loss function, there exist many other ways of to regularize
the learning process. Some popular ones include early stopping, which refers to terminating the training

sooner by monitoring the validation performance in order to avoid overfitting or dropout [79], a method
designed for neural networks that randomly selects neurons to be dropped during training.

Overfitting Right Fit Underfitting

Classification

Regression o o i

Figure 3.1.1: Tllustration of overfitting and underfitting for classification and regression. From [65].

31

Chapter 3. Theoretical Background

— o(x)
RelLU(z)
1 — tanh(x)

o(x)
o

(a) (b)

Figure 3.2.1: A neuron (a) and some common activation functions (b). (a) from [39].

3.2 Deep Learning

Having covered the basics of machine learning, we will now focus our attention on deep learning models and
methods [53, 25], since this is the main filed of application of the various model compression techniques,
including pruning. Deep learning methods’ most prominent advantage is that they can receive raw data (e.g.
image pixel values) as input and still reach impressive levels of performance, enabling the use of machine
learning for applications that manual feature extraction was difficult and much less effective. This is in con-
trast to traditional machine learning methods, which required the raw data to be first manually transformed
into features that the system could effectively handle. The way deep learning models, called Deep Neural
Networks (DNNs), process raw input data successfully is by automatically performing the feature extraction
task during their training on large datasets (usually much larger than the ones needed for traditional ML
methods), being able to learn features with different abstraction levels due to the way they are constructed.
In the following sections we will explain in more detail how the most common DNN models work and will
briefly discuss the various methods involved in deep learning training.

3.2.1 Deep Learning Architectures

Artificial Neural Networks (ANNs) are an important category of machine learning models, being loosely
designed based on their biological counterparts. Their key structural elements are units (or nodes) called
artificial neurons. Those units typically receive a number of input values, multiply them with weights and
finally pass the sum of the resulting products (plus a bias term) through a non-linearity, called the activation
function, in order to produce their final output. Mathematically, the output y of a neuron can be written as:

N
y=0¢ (Z w;x; + b) , (3.2.1)
i=0

where @ = {x;} is the input of the neuron, w = {w;} the weights, b a bias term and ¢() the activation
function. A graphical depiction is also shown in Figure 3.2.1.

Common instantiations of the activation function include the Sigmoid function, the Rectified Linear Unit or
ReLU and the hyperbolic tangent or Tanh:
z

1 e~
o(2) = 7= (322) ReLU(z) =max(0,z) (3.23) tanh(z) = ZJriZ—

In short, the use of non-linear activation functions is essential in order for ANNs, comprising of multiple
neurons, to be able to produce complex, non-linear decision boundaries using non-linear combinations of
inputs and weights. Neurons are typically structured in layers, with the one closer to the input being called

(3.2.4)

32

3.2. Deep Learning

the input layer, the last called the output layer and the intermediate ones the hidden layers. Information
passes from the input to the output layer through the hidden layers, possibly with feedback. Usually ANNs
are referred as deep when having two or more hidden layers.

Feedforward Neural Networks

Perhaps the most popular deep learning models are the Feedforward Neural Networks (FFNN), with the
term feedforward implying that signals flow from the input to the output layer, through the intermediate
hidden layers, without the use of feedback connections. Mathematically, an FFNN can be considered as a
function f(x, W) that, given the input signal & and a matrix of learnable weights W, produces an output y.
Two very common types of FFNNs are the Fully Connected Neural Networks (FCNN) and the Convolutional
Neural Networks (CNNs), which are covered as follows.

Fully Connected Neural Networks:

Also referred as Multilayer Perceptrons (MLPs), are the simplest types of FFNNs and consist of a number of
fully connected layers, where every neuron in one layer is connected to every neuron of the next layer. The
number of neurons of a layer is called its width, while different layers can have different widths, with the
widths of the input and the output layers being of course equal to the dimensions of the input and output
vectors, respectively. On the other hand, the number of layers of a model is called its depth. A graphical
representation of a fully connected network is depicted in Figure 3.2.2.

Input layer Hidden layers . Output layer

Figure 3.2.2: Graphical representation of a Fully Connected Neural Network. From [6].

The use of multiple hidden layers, which the reason this models are called deep, enable FCNNs (and other
types of networks in general) to effectively extract feature representations of increasingly complex and more
abstract nature, as the information is being processed from lower layer (closer to the input) to higher ones
(closer to the output).

FCNNs are build in a way to be general enough to accept various types of inputs, i.e. there is no need to
make restricting assumptions about the structure of the input. Although this property of FCNNs makes
them effective for a wide variety of applications, for some tasks it tend to be very beneficial to use more
specialized versions of neural networks that exploit the structural properties of the input they are intended for.

33

Chapter 3. Theoretical Background

Convolutional Neural Networks:

Convolutional Neural Networks (CNNs) belong to subclass of feedforward neural networks that are specifically
optimized for processing data that have a grid-like topology, such as images. As with the fully connected
networks, they are also made up of multiple neurons which consist of learnable parameters. They receive as
input raw data which are usually image pixels and produce the prediction scores as output. Being designed
based on the assumption that they are provided explicitly with images as inputs, CNNs can extract spatial
features and identify crucial structural patterns of their input. As a consequence of effectively encoding
important image properties, they can be more efficiently implemented to perform the forward pass while
requiring highly reduced numbers of parameters, compared to typical neural networks.

Typically a CNN’s architecture consists of multiple instances of convolutional, pooling and possibly batch
normalization layers, followed by a number of fully connected layers. In Figure 3.2.3 we provide an example
of a CNN architecture that is build up from the aforementioned layers.

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelLU activation
Convolution Convolution | /—M
(5 x 5) kerr_lel Max-Pooling 5 x 5) ke"_'EI Max-Pooling (with
valid padding 2x2) valid padding (2x2) y O

\\.dropout)

[

INPUT n1 channels nl channels n2 channels n2 channels \

(28x28x1) (24 x24 xn1) (12x12xnl) (8x8xn2) (4x4xn2) |

» X

OUTPUT

n3 units

Figure 3.2.3: An illustration of the architecture of a CNN model. From [80].

The functionality of each CNN layer is explained as follows:

Convolutional Layer: Convolutional layers (or conv layers in short) are the fundamental building blocks
of CNNs that handle the feature extraction task and perform most of the network’s required computations.
They receive as input 3D volumes and transform them to output 3D volumes. For the case of the first
convolutional layer, the input volume is usually an image of dimensions w X h x d, where w denotes the
width, h the height and d the color channel depth of the image.

The conv layer processes the input volume using a set of K filters with learnable parameters. Those filters
have small spatial dimensions (common dimensions being 3 x 3 or 5x 5) but cover the entire depth of the input
volume. Convolving each filter across the input volume’s width and height and computing the dot products
between the filters’ weights the corresponding input values, results to a 2D output called an activation map.
For the 2D case an illustration of this process is provided in Figure 3.2.4. Stacking the different activation
maps generated by the K filters will produce the final output 3D volume of depth K.

The spatial dimensions of this volume depend on two additional parameters, the step size with which each
filter is slided across the spatial dimensions input volume, called the stride and the amount of zero padding
P on input’s borders. Therefore, given an input volume of dimensions W, x H;, X D;,, K filters of size
Fyy X Fp, X Dy, stride S and P amount of zero padding, the output width will be W,y = (W;, — F,, +2P)/S+1
and the output height H,,y = (H;, — Fp + 2P)/S + 1 while the output depth is D, = K, as previously
mentioned.

34

3.2. Deep Learning

Source pixel

\=\=\=\=ho\ o)
A=\ A= Yo\~ AR -\

\o\=\F\> \EA =\ o\
\o\\o \JEYo\ w) o

\=\BHE Xo W\ ~\ o\

\e\e XA \o \ s\e\o\

\2Xo AR ~ Yo \ o

e s o SRS,

Convolution filter

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2) +
(-1x2)+(0x4)+(1x1) =-3

Destination pixel

ANV VLV

AR

AN

ANV

AN

Figure 3.2.4: An illustration of a convolutional operation for the case of 2D input. From [15].

Pooling Layer: The pooling layers, which are regularly inserted between the conv layers of the model, are
responsible for reducing the spatial size of the activation maps and thus limit the total number of learnable
parameters of the network. This results to making the architectures more efficient, while at the same time
it protects from overfitting to the training set data. Moreover, by performing this downsampling operation
on the input volume, this layers tend to introduce the property of translation invariance, up to some extent.
The pooling layer performs this process by sliding a 2D filter spatially on each activation map, producing an
output volume of the same depth as the input volume but of reduced width and height.

The pooling type is characterized based on the type of operation the filter performs, with the two types of

pooling mainly used in practice being the following:

e Average pooling: Tis pooling type uses an average filter is used to perform the spatial downsampling
operation. As a result, it has a smoothing effect to the resulting activation maps of the output volume.

e Max pooling: The max pooling type uses a max filter which returns the maximum value being under
the patch of the 2D activation map it covers. This results to most prominent features being preserved.

An example of the two types of pooling on a 2D array is shown in Figure 3.2.5 bellow.

12 (30| 0 | 12
25| 81 2|5
35| 0 |25 4
100| 25| 15 | 12

30 | 12
100 | 25
19 5
40 | 14

Max
Pooling

Average
Pooling

Figure 3.2.5: An illustration of the pooling operation. From [1].

35

Chapter 3. Theoretical Background

Batch Normalization Layer: The Batch Normalization (BN) layer [40] has the role of normalizing its
input by performing a technique known as Batch Normalization. This procedure is used to make the training
process faster (by allowing the use of a higher learning rate) and more stable. More specifically, it applies a
transformation to the input which keeps the output mean and standard deviation close to 0 and 1, respectively.

Assuming input values @ of a mini-batch (i.e. a fixed number of training samples, with its use in training

explained in the next section), during training the BN layer generates its output y based on the following
equations:

1 n
p=- > (3.2.5)
=1

1 n
o2 = - ;(;pi —p)? (3.2.6)
. Ty — M
G = _ 3.2.7
o (3:2.7)
yi=7y-Li+p8 (3.2.8)

The parameters 5 and ~ of the last equation are learned during the training and perform a shift and a scale
operation to the normalized values x;, respectively. This way, the outputs y; are not restricted to being
strictly of zero mean and unit standard deviation. Therefore, the expressive power of the network is not
affected, while at the same time the first and second order statistics of y; are decoupled from interactions
with previous layers and depend only on those two learnable parameters.

During inference, since the model needs to work with individual samples as inputs, the calculation of new
input statistics is usually not feasible. Instead, the BN layer normalizes its output using a moving average
of the statistics calculated from the mini-batches it received during the training.

Fully Connected Layer: The last layers of the CNN architecture usually consist of FC layer that are
responsible for predicting the final outputs of the network. For example, regarding the case of image classi-
fication, those outputs are the probabilities of each class. As the fully connected layers receive 1D vectors as
inputs, the activation maps of the last output 3D volume of the CNN have to be converted into an 1D vector
by a process known as flattening, illustrated in Figure 3.2.6.

-

{lattening

€Ully-conmected layers

Figure 3.2.6: Example of flattening a 2D activation map that is feed as input to a series of FC layers. From
[45].

36

3.2. Deep Learning

3.2.2 Deep Learning Training

In the previous section we analyzed two important types of deep learning models, in particular the fully
connected and the convolutional neural networks. As mentioned, both network architectures (and DNNs in
general) consist of numerous learnable parameters. Those parameters, which, depending on the network’s
type and the intended application, can range from a few thousands to hundreds of million, have to be
appropriately adjusted during the training process in order for the network’s predictions to training inputs to
begin matching the corresponding input labels. The similarity of the predictions to the labels is measured by a
loss function (such as the ones described in Section 3.1.2). With the aim of minimizing this loss measurement,
an optimizer modifies the parameters’ values iteratively through the training, using a gradient decent based
process that relies its efficiency on a technique called backpropagation [77]. In the following paragraphs,
after briefly explaining important concept of backpropagation, we will cover the fundamental gradient decent
optimization algorithm and two of its most popular extensions, the Stochastic Gradient Decent or SGD and
the Adaptive Moment Estimation or Adam.

Backpropagation

The various gradient decent based optimization algorithms require the calculation of the gradient of the
loss function with respect to the network’s parameters at every training iteration. Due to neural networks
having large numbers of parameters arranged at multiple layers, this procedure needs to be implemented in
an efficient manner. In practice, this is performed using the famous backpropagation algorithm, which is
considered to have two execution stages, the Forward Pass (also known as Forward Propagation) and the
Backward Pass (also known as Backward Propagation), as briefly explained bellow:

e Forward Pass: It refers to feeding the neural network with some input sample vector and performing
all the necessary calculations (and storing their results) in a successive way, starting from the input layer,
computing the hidden layers’ output and finally the output of the last layer. For all the calculations
the current weight values are used.

e Backward Pass At this stage, the direction of the data flow is the opposite of the forward pass. In
particular, after calculating the error at the output layer, this error is distributed within the network in
reverse order, until it reaches the input layer. During the error back-propagation, the partial derivatives
of the loss function with respect to the several model’s parameters are calculated. This is done in an
efficient way that avoids redundant computations and is based on the application of a mathematical
formula, used for finding the derivatives of composite functions, known as the chain rule [64].

Gradient Decent

Gradient decent is an iterative optimization algorithm that is used for finding a local minimum of a differ-
entiable function. Given a differentiable function f(x) to be minimized, at each optimization step it relies
on moving « towards the direction of the negative gradient of the function f at point x (i.e. the direction of
the steepest decent), defined as —V f(x). In the concept of neural network training, the parameter update
equation from step k to k + 1 can be written as:

W1 = wi — NV L(wy), (3.2.9)

where w are the vectorized parameters, L(w) the loss function to be minimized and 7 a hyperparameter
called step size or learning rate that determines the rate of the learning process. Regarding the learning rate,
there is a trade-off between the speed of convergence and the stability of the training process. Setting the
learning rate to a very small value can substantially prolong the optimization or lead to the model getting
stuck to a suboptimal local minimum (i.e. one far from the global minimum). On the other hand, setting a
too high learning rate may result to non convergence due to overshooting the local minima.

The above formulation of gradient decent, also known as the vanilla gradient decent, computes the gradient
used to update the weights by averaging the gradients of the loss derived from each sample of the training
set. As deep learning models usually have thousands or millions of parameters and are trained on very
large datasets, it is to be expected that using the entire dataset for a single update step is computationally
prohibiting. This is the main reason that variants of the vanilla gradient decent are used in practice, such as
its stochastic version described next.

37

Chapter 3. Theoretical Background

U=

(a) SGD without momentum (b) [SGD with momentum

Figure 3.2.7: An example illustration of convergence process using the SGD with and without momentum.
From [76].

Stochastic Gradient Decent

Gradient decent in its stochastic form, known as Stochastic Gradient Decent or SGD in short, instead of
using the full amount of training data to compute the gradient of the loss, it relies on sampling individual
samples {x;,y;} from the dataset, which are then used in the following update formula:

W1 = wy — NV L(wg; x;, ;) (3.2.10)

Therefore, as the above equation suggests, the parameters are updated at every iteration based on an estimate
of the gradient of the loss, calculated using single sampled training sample.

As described above, the SGD algorithm is much less computationally demanding than the vanilla one. Despite
that, using a single sample for the gradient estimation tends to result to large fluctuations of the loss function
(e.g. if one sample is not descriptive enough of the distribution of the dataset) and thus can negatively influence
the convergence of the model.

Mini-Batch SGD: A popular variant of the SGD that aims at mitigating both computational and
convergence issues is the Mini-Batch SGD that uses a small subset of datasets samples for estimating the
gradient, known as the mini-batch (often also referred simply as batch). In practice, in the context of
training deep neural networks, the use of an SGD optimizer refers to this particular version, with the term
mini-batch omitted by convention.

SGD with Momentum: An extension of the SGD, known as SGD with momentum, is widely used in
order to improve the convergence speed and avoid undesirable local minima, especially in the presence of high
curvature or noisy gradients. More specifically, the momentum SGD optimizer uses the following parameter
update rule:

v = Bog_1 + nVL(wk; x4, i)
Wil = Wy — Vg

In the above equations, the term wy, that is used to update the current parameter vector wjy, consists of
the loss term 7V L(wy;x;,y;) also used in the original SGD algorithm combined with the previous update
term vy _1, weighted by a hyperparameter § € (0,1). This formulation, which can be considered as including
an exponentially decaying moving average of the past gradients the the current update term, creates a
momentum-like effect that helps at increasing the convergence stability and speed, as depicted in Figure
3.2.7.

Adaptive Moment Estimation (Adam)

Adaptive Moment Estimation or Adam [46] is an extension to the SGD optimization algorithm that is the
optimizer of choice for many deep learning training scenarios. It combines the advantages of two SGD
based algorithms, the Adaptive Gradient Algorithm (AdaGrad) and the Root Mean Square Propagation
(RMSProp). Specifically, Adam calculates exponential moving averages of the gradient and the gradient

38

3.2. Deep Learning

squared controlling the decay rates using two hyperparameters, 5; and (2, as formulated by the equations
below:

my = fimyg_1 + (1 — B1)VL(wy) (3.2.11)
Sk = Basp_1 + (1 — B2) (VL(wy))?, (3.2.12)

where vectors my, and s correspond estimates of the gradient’s first and second moments (mean and variance)
respectively, while the hyperparameters 81, 32 € (0,1) take default values in popular deep learning frameworks
51 = 0.9 and B = 0.999. This vectors are initialized as 0, resulting to zero-biased moment estimates. Due
to this reason, their bias-corrected versions have been proposed:

. my
my = (3.2.13)
1-pF
N Sk
Sp = —r (3.2.14)
1-pk

Using the above bias-corrected estimates, the final parameter update equation can be written as:

Wiyl = Wy — 7?:+ GThiw (3.2.15)

where 7 is the learning rate hyperparameter, as usual.

39

Chapter 3. Theoretical Background

40

Chapter 4

Compression of Deep Neural Networks

4.1 Introduction i @ i i i i ittt e e e e e e e e e e e 42
4.2 Related Compression Approaches it ittt ittt 42
4.2.1 Quantization e e e e e 42
4.2.2 Tensor Decomposition L e 43
4.2.3 Knowledge Distillationo oL 45
4.2.4 Compact Model Design L 46
4.3 Pruning - Sparse Neural Networks 47
4.3.1 Introduction L 47
4.3.2 Pruning Criteria e 47
4.3.3 Granularity of Sparsified Elements L. 48
4.3.4 Timeframe of Sparsification 0 Lo 49

41

Chapter 4. Compression of Deep Neural Networks

4.1 Introduction

In recent years, deep neural networks have become the state-of-the-art (SoA) approach at tackling many
complex machine learning problems, in fields such as computer vision, natural language processing, speech and
audio processing and robotics [33, 33, 48]. While the application of DNNs to problems of the aforementioned
fields can result to dramatic performance improvements compared to using traditional machine learning
methods, this comes at the cost of significant increases in computational complexity. This is attributed to
the tendency of DNNs to rely upon having very large sets of learnable parameters, often numbering in tens
or hundreds of millions, and therefore demand huge amounts of memory and computational resources during
training and inference [14]. Such large resource requirements hinder the adaptation of the SoA deep learning
based systems to resource-constrained devices, such as mobile phones, wearables, intelligent robots and many
other smart portable devices that rely on embedded computing systems with limited processing, memory and
power resources.

Recognizing the large potential of deploying deep learning models to compact devices, there has been increased
research interest over the recent years in compressing and accelerating DNNs using various techniques [14,
57, 26]. By using compressed DNN models, a number of important advantages can be achieved, leading
towards enabling the use of DNNs to compact environments, some of the most prominent being the reduced
storage demands for the various model parameters, lower FLOPs requirements during inference and energy
consumption savings. One very popular compression technique which has been studied extensively over the
recent years is network pruning [5], which is the process of removing network parameters based on some
criterion, with the aim of reducing the network’s size (i.e. its total number of parameters) while keeping
the performance loss as low as possible. This approach, being the focus of this thesis, will be explained in
detail in Section 4.3 , where the various categories of pruning will be analyzed. Before covering the pruning
methodologies, in Section 4.2 a number of different popular compression methods will be briefly introduced,
those being quantization [57], tensor decomposition [43, 68], knowledge distillation [26] and compact model
design [14], so that the reader can have a broader understanding of the various compression approaches.

4.2 Related Compression Approaches

4.2.1 Quantization

Quantization is the process of representing the values of a continuous signal using a small set of discrete
symbols or integer values. In DNNs, the quantized elements usually correspond to weights and biases,
activations or gradient values. Quantization techniques for compressing DNNs can be broadly divided into
two categories, numerical low-bit quantization [89, 81] and partial quantization techniques that are mainly
based on weight sharing via clustering [28].

Numerical Low-bit Quantization

This is the most straightforward type of DNN quantization, where the network’s parameter values are repre-
sented using lower-precision arithmetic. More specifically, while DNN values are typically stored using 32-bit
or 16-bit floating point (FP) numbers, the values of quantized DNNs are represented using integer precision
arithmetic, such as INT-8, INT-4, INT-2 or even INT-1, being a special case of quantization that produces
models known as binarized neural networks [37]. In practice, one can obtain a network with low-precision
parameters in two ways:

1. Post-training quantization
2. Quantization-aware training

Post-training quantization [81] refers to quantizing a neural network after it has been trained using standard
floating point arithmetic. By down-scaling parameter values from floating point to low integer values (usually
INT-8 or INT-4), the network’s storage requirements can be reduced, while at the same time it can benefit
from inference time acceleration, with the exact speedup being dependent on the hardware and inference
optimizer used. For example, using the NVIDIA TensorRT model inference framework [71], 2—4 x acceleration
can be achieved (depending on the batch size used) using INT-8 quantized DNNs over FP-32 ones. As
expected, the aforementioned memory and inference speed advantages come at the cost of accuracy drops

42

4.2. Related Compression Approaches

over the original, unquantized network, due to the approximation errors introduced by the quantization
process, which can become substantial if very low precision is used, e.g. INT-2 or INT-1 [57].

Quantization-aware training (QAT) [42] is aimed at simulating the quantization effects during training and
therefore compensating the various approximation errors introduced. This is achieved by using the quantized
version of the network parameters during the forward pass, while treating the quantizing operation as the
identity function during the backward pass, thus avoiding the zeroing of the gradients that backpropagating
through the quantizing function would have otherwise caused [12]. The gradient values found are then used to
update the unquantized versions of the parameters, which are retained during the entire training process. This
process is known as training using the Straight-Through Estimator (STE), originally introduced by Hinton
et al. [3]. The QAT process is illustrated via an example in Figure 4.2.1. After training, the weights are
replaced with their low-precision versions, allowing faster inference and memory saving, at reduced accuracy
drops compared to post-training quantization [57].

Weigh r Quantized Weight @
(FP) Quantizer r (INT)
11 | 2.2 1 2
Forward Pass
-1.7 | 36 2 2 | 2
01 | -0.1 01 | -0.1
3 Backward Pass
-0.2 | 0.2 -0.2 | 0.2
Gradient dL/dr Gradient dL/dQ
(FP) (FP)

Figure 4.2.1: An illustration of the quantization-aware training process (forward and backward pass) using
an example array of 4 weights. From [23].

Weight Sharing

As an alternative DNN quantization approach, weight sharing [28, 10] can be considered. Weight sharing
refers to reducing the number of unique weights values that appear within the network. This is usually
achieved using some clustering algorithm such as k-means to identify the weight clusters, making weights
that belong to the same cluster to share a common weight value, the cluster’s centroid. Although the storage
demands of the model compressed using weight sharing can be reduced (since for each weight only a small
index to a centroid needs to be stored), the inference speed remains mostly unaffected, as during inference
the weights are assigned their shared values (based on some lookup table) which are typically still represented
by the original FP precision.

As an example implementation of weight sharing, Han et al. [28] use the scheme illustrated in Figure 4.2.2.
Assuming a model with 4 input and output neurons (16 weights in total), the weights are made to share
4 centroids, which are found via k-means clustering. In this particular weight sharing implementation, the
centroids are further fine-tuned by grouping and then summing the gradients based on the clustering of the
weights and using the produced values to update the corresponding centroids (as illustrated by the bottom
part of Figure 4.2.2).

4.2.2 Tensor Decomposition

Applying tensor (including matrix) decomposition techniques on weight tensors has been extensively studied
as a way for compressing and accelerating neural network models. Such methods decompose the multi-
dimensional weight tensors into low rank approximations, aiming at removing redundant parameters and

43

Chapter 4. Compression of Deep Neural Networks

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids

3 0 2 1

cluster 1 1 0 3

=

-0.01| -0.02 | -0.01 | 0.01

Figure 4.2.2: Tllustration of a weight sharing scheme. From [28].

saving computational time. Multiple decomposition techniques and algorithms have been utilized for this
task, with some of the most popular among related literature being the Singular Value Decomposition (SVD)
[62, 68], Canonical Polyadic (CP) decomposition [52, 83] or dictionary learning [74].

For instance, Rigamonti et al. [74] introduced the idea of separable 1D filter learning for reducing the compu-
tation in CNNs. Their approach was based on dictionary learning. A subsequent work by Jaderberg et al. [43]
proposed to approximate CNN filters using a low-rank basis of spatially separable filters, as demonstrated in
Figure 4.2.3. Their approach showed up to 4.5x speedup with 1% accuracy drop in standard text recognition
benchmarks. A more recent work by Yu et al. [93] suggested that due to the tendency of weight filters to be
both low rank and sparse, it is beneficial to combine sparse and low rank decompositions to the compression
process. They reported high compression rates for popular CNN architectures such as AlexNet and VGG-16.

As a final note, although applying tensor decomposition techniques to DNNs’ weights is a straightforward
way for achieving compression, implementing the decomposition process can be computationally expensive.
Furthermore, in most methods the decompositions are performed layer by layer. To compensate for the
inevitable accuracy losses, after decomposing a layer’s parameters, the following layers need to be fine-tuned.
This procedure can result to large training overheads, especially when considering applying the methods to
very large models.

dxdx1 dxIxl Ixdxl I1xIxM dxIx1

— dx1xK
P A ; T =
z * w - § =|| ’ z - I]v: <I5h
| T4 gu g
W N = M I Ko™y
Sum vk hy
(a) (b) ()

Figure 4.2.3: (a) typical CNN layer acting on single channel input. (b) and (c) approximating the layer’s
filters based on the two proposed schemes by Jaderberg et al. From [43].

44

4.2. Related Compression Approaches

4.2.3 Knowledge Distillation

Teacher Model

Figure 4.2.4: An illustration of the teacher-student model approach for knowledge distillation. From [26].

A model compression approach that involves teaching a small model, called the student model, to perform
perform a task (e.g. image classification) based on the responses (or knowledge) of a larger pre-trained model
(or an ensemble of model), called the teacher model, is known as Knowledge Distillation (KD). The general
KD scheme is depicted graphically in Figure 4.2.4. The idea was pioneered by Bucilud et al. [8] and further
generalized by the work of Hinton et al. [32], where a KD framework was introduced, producing compact
models outperforming the ones training from scratch (without KD).

More specifically, in [32] a student model is trained on some transfer set using a loss function featuring
two terms, the student loss and the distillation loss terms. The student loss is standard cross entropy loss
between the labels of the data samples y and the corresponding student’s predictions (class probabilities).
The distillation loss is an additional cross entropy loss term between the soften versions of the student’s and
teacher’s predictions. By defining the logits (i.e. the outputs of the layer prior to the softmax) of the student
and teacher network for class ¢ as z; and v;, respectively, the soften version of the predicted class probabilities
of the student and teacher networks are:

(4.2.1)

where T is a temperature parameter for the softmax function o. As this temperature parameter T" becomes
larger, the prediction probabilities that the softmax function outputs become softer, thus can potentially
provide more knowledge to the student model, as opposed to having a distribution where the most likely
class has very high probability while the rest close to zero.

Based on the above, the loss function for the knowledge distillation compression method is written as:

Lgp=a1-Leg(y,0(z;,T=1))4+az - Leg (o(z;T =7),0(v;T =71)) (4.2.2)

where L¢ g is the cross entropy loss function and a1, a are two hyperparameters that control the contribution
of each loss term to the overall loss function. This framework for knowledge distillation is illustrated in Figure
4.2.5.

In the knowledge distillation formulation described above, the knowledge is dubbed as response-based knowl-
edge, since it comes from the teacher model’s output layer’s predictions. Other types of knowledge that can
be extracted from the teacher network for the purpose of assisting the training of a student model include
feature-based knowledge and relation-based knowledge, where the knowledge is distiled from intermediate
layers and between the feature maps, respectively [26].

45

Chapter 4. Compression of Deep Neural Networks

__________ .____ - T |
| Teacher Model (pre-trained) Knowledge] |r Distillation |
] _ o, Softmax Soft
—+l— ' .J—"' T
= ~~ _==_ _ ____"=Z —_——_——— Distillation |
Transfer I Loss
Data Set |
—————————————— Softmax I > Soft |
| Student Model (to be trained) [T=t | Targets |
t- _ ! ________ I | Softmax Soft Student Ground
T=1 d B Truth Label

Figure 4.2.5: The knowledge distillation framework by Hinton et al. From [32].

4.2.4 Compact Model Design

Although not a model compression technique in the strict sense, designing compact models from scratch that
achieve acceptable accuracy is a straightforward way to further enable the use of deep learning to mobile
and resource constrained applications. Widely used compact model architectures include MobileNet [35],
SqueezeNet [38] and DenseNet [36] and are briefly explained bellow.

MobileNet

Proposed by Howard et al. MobileNets are a family of efficient CNN models targeted for resource limited
computer vision applications. Those networks are based on using depthwise separable convolutions, a fac-
torized version of the standard convolution operation. More specifically, a depth-wise separable convolution
consists of a depthwise convolution followed by a 1 x 1 pointwise convolution. During the depthwise convolu-
tion, a single filter is applied to each input channel. The outputs of depthwise convolution are then combined
using the pointwise convolutions. Furthermore, the trade off between accuracy and latency can be controlled
by two global hyperparameters. The particular architecture, compared to much larger networks achieved
similar accuracy on the ImageNet dataset [13].

SqueezeNet

SqueezeNet is a small CNN architecture designed by Iandola et al. [38] that was able to reach accuracy scores
on ImageNet similar to the 50x larger in parameters AlexNet [48]. To achieve a compact yet well performing
model, three main strategies are employed. Many 3 x 3 filters are replaced by 1 x 1 ones, calling layers
comprising only of 1 x 1 squeeze layers. Also, the number of input channels to 3 x 3 is decreased in order
to keep the total parameters to a minimum. This is achieved by placing squeeze layers having relatively few
filters before the expand layers that have a mixture of 1 x 1 and 3 x 3 filters. The combination of the squeeze
and expand layers was dubbed the fire module which is the building block of the SqueezeNet architecture.
Finally, to maximize accuracy given a constrained parameter budget, downsampling is performed late in the
architecture in order to retain large activation maps.

DenseNet

DenseNets are a class of CNN models proposed by Huang et al. [36] that obtained high performance of popular
object recognition databases, although having less parameters and computation than many standard CNN
models. The main idea is to divide the network into multiple dense blocks where within each block each layer
takes all the previous feature maps as input, resulting in % direct connections for a block with L layers.
In between dense blocks transition layers are utilized to change the feature map sizes using convolution and
pooling. Due to their design using dense connections, DenseNets can address the vanishing gradient problem
while the reuse of feature maps allows them to work well with low numbers of total parameters. Despite
that, it needs to be noted that DenseNets, due to the particular way that are designed, can be more memory
and compute intensive to run that other compact DNNs.

46

4.3. Pruning - Sparse Neural Networks

4.3 Pruning - Sparse Neural Networks

4.3.1 Introduction

Pruning is one of the most popular techniques for drastically reducing the size and accelerating the inference
of deep learning models. It is based on the realization that DNNs tend to be heavily over-parameterized and
thus unimportant network parameters can be removed, based on some ranking criterion, with little to no effect
on the model’s performance. The method dates back to 1990 and before, with pioneering works such those
of LeCun et al. [54] and Hassibi and Stork [30] and has gained much research attention in the recent years
as a way of combating the continuously growing size of SoA neural networks [14]. The pruning methodology,
which has evolved over the years of its study, can be broadly categorized in terms of the granularity of the
network’s elements being sparsified, the pruning criterion being used to rank the importance of the elements
candidate for pruning and based on the timeframe the sparsity introduced to the model. The aforementioned
categories of pruning are analyzed in detail in the following sections, highlighting the various popular methods
and important considerations for each scheme.

4.3.2 Pruning Criteria
Magnitude-based pruning

A very straightforward and widely accepted heuristic criterion to determine the importance of network
weights is based on their magnitude values [57]. Following this criterion, weights with small magnitudes are
considered less important to the network’s output than the ones with large magnitudes. According to this
reasoning, for the case where the elements sparsified are individual weights (unstructured pruning), weights
that lie below some magnitude threshold value T' are removed from the network, while the others retain a
non-zero value. This operation is known as thresholding and assuming a threshold operator Pr(z) and an
network weight w, it is written as:

fw), if|w|>T

w = Pr(w) = { 0, otherwise (4.3.1)

The instantiation of the function f(w) defines the type of threshold operator used. The most common
operators in the magnitude pruning literature are the Hard and the Soft [18] threshold operators, where for
each case f is defined as:

w-=T, ifw>T
fhard(w) =w, fsoft(w) = { w4 T, ifw< T (432)

Pruning of groups of weights (including entire channels or filters) can also be based on the magnitude criterion.
In this case, the magnitudes of the individual weights of each group are usually aggregated using some norm
(such as Ly or Lg) and the groups with the smallest resulting norms are removed. As an example, Hao Li et
al. [56] prune CNN filters with the smallest L; norm values, achieving reduced inference costs for common
architectures on CIFAR-10 and using retraining to regain accuracies near those of the unpruned networks.

Hessian-based pruning

The use of second order derivatives (Hessian matrix) of the objective function (w.r.t. the network parameters)
to determine the importance of each parameter has been explored extensively, dating as far back as 1990.

The seminal work of LeCun et al. [54] following this approach, proposes a method called Optimal Brain Dam-
age (OBD) for pruning parameters from a trained network, one at a time. OBD introduced some simplifying
approximations. More specifically, it was assumed that (i) the objective function is nearly quadratic, (ii) the
parameters are pruned after the convergence of the network and (iii) the change JL to the objective function
L caused by pruning multiple parameters is equal to the sum of the § L’s, each attributed to pruning a param-
eter individually (diagonal assumption for the Hessian). Using OBD, the authors pruned a 2600-parameter
network used for handwritten digit recognition by a factor of four, reporting a slight increase in accuracy.

47

Chapter 4. Compression of Deep Neural Networks

An extension to the OBD, Optimal Brain Surgeon (OBS) [30], utilized a similar Hessian-based pruning
approach but preserved the off diagonal values of the Hessian matrix, arguing that the Hessian is non-
diagonal for most applications used. The OBS method, which requires the calculation of the inverse Hessian,
relies on a recursion relation to calculate it from the training data and structural information of the network.
It is reported to improve the OBD method, achieving up to 90% parameter reduction for XOR networks.

Although the aforementioned Hessian-based pruning methods were proposed at that time as a more precise
pruning approach than magnitude pruning, they were applied to early neural network architectures that
were much shallower and with significantly less parameters than current DNNs. Due to that, calculating the
Hessian for most DNNs used today is not feasible, making most recent Hessian-based pruning methods to
rely on low-cost approximation techniques [88, 78, 92].

Regularization-based pruning

The two previous pruning criteria aimed at directly evaluating the importance of each candidate element for
removal. In contrast, a number of works introduce sparsity zeroing parameters in a more indirect way using
regularization techniques. Ideally, the (unstructured) pruning task can be modeled by using L, regularization,
i.e. by introducing a term Ry, (w) =), Ifw; # 0] to the loss function, explicitly penalizing the number of
non-zero parameters. Unfortunately, directly minimizing the loss function with the Ly regularization term is
intractable since this penalty is non-differentiable and allows 2/*! discrete states of the vector w. Due to the
aforementioned issues of the Ly norm, most works either attempt to reparametrize the model’s parameters
and enable efficient optimization or utilize the L; norm which is considered a good convex approximation of
the Lo norm.

Louizos et al. [61] propose a method for efficient Ly regularization aimed at pruning DNNs during train-
ing. They address the non-differentiability of the Ly norm by reparametrizing the network’s weights as the
product of a weight and a non-negative stochastic gate variable which determines if the weight should be
set to zero. They propose the hard-concrete distribution as a suitable sampling distribution for the gates,
having parameters that can be optimized together with the model’s parameters during training. Using this
formulation, the value of the CDF of the stochastic gate evaluated at zero can be used to find the expected
Lo norm.

Regularization-based approaches have also been adopted for structured pruning. For instance, the authors
of [51] propose the use of a group sparsity regularizer on the CNN filters in order to prune the elements of
their kernels in a group-wise manner. The use of structured sparsity regularization was also employed in [90]
to penalize various structures of DNNs such as filters or channels.

4.3.3 Granularity of Sparsified Elements

Based on granularity of the sparsified elements the various pruning approaches can be broadly divided into
two categories, unstructured or structured. Unstructured methods leave the pruning algorithm free to prune
parameters regardless where they belong within the model. On the other hand, structured pruning methods
remove groups of parameters and thus can be further characterized by the type of groups being pruned (e.g.
vectors, kernels or entire filters). Examples of the different types of sparsity patterns obtained by unstructured
or structured pruning are illustrated in Figure 4.3.1. Bellow we will discuss in more detail the two types
sparsity, highlighting the trade-offs of each approach.

Unstructured pruning

In unstructured pruning, the least important weights are removed according to the pruning criterion, irre-
spectively of where they are within the network. This pruning procedure results to irregular distributions
of the non-zero parameters in the DNN’s tensors. Due to the unconstrained nature of the induced sparsity,
the unstructured pruning algorithms typically achieve superior performance compared to structured ones,
obtaining better accuracies at the same sparsity levels (acting as a form of upper bound regarding the best
obtainable accuracies) and in addition being able to sparsify networks to extreme extents while still retaining
acceptable levels of performance [21]. On the negative side, the irregular type of sparsity patterns means
that it is typically less suitable to be utilized by commodity hardware for computational gains. Despite

48

4.3. Pruning - Sparse Neural Networks

Irregular > Regular

i EHE
(BRI B

Fine-grained Vector-level Kernel-level Filter-level
Sparsity(0-D) Sparsity(1-D) Sparsity(2-D) Sparsity(3-D)

Figure 4.3.1: Comparison of the sparsity patterns induced by unstructured (or fine-grained) sparsity (left
first image) and various types of structured sparsity, on a set of two CNN filters each having three 3 x 3
kernels. From [63].

that, extensive research efforts are being devoted to improve the hardware and software support for unstruc-
tured sparsity, with recent solutions such as the libraries NVIDIA cuSPARSE [70] and Sputnik [22] or the
NVIDIA Ampere Architecture [69] that supports fine-grained 2:4 sparsity patterns, a sparsity type in between
structured and unstructured that suitable for inference acceleration while retaining the dense performance
[96].

Structured pruning

Structured pruning methods on the other hand remove entire groups of parameters and thus produce neural
networks that can more easily be accelerated by every-day hardware. The types of groups considered vary,
with some of the most frequently selected being parameter blocks [16], neurons [59], kernels, filters or channels
[51, 90] or N:M structured sparsity [96]. The filter or channel pruning in particular, produces networks that
are practically equivalent to smaller dense networks, therefore their acceleration at inference is straightforward
and without overheads. The other types of structured sparsity patterns (e.g. parameter block pruning or
N:M structured sparsity) tend to favor the final performance (although it is generally still lower than that
form unstructured pruning) at the cost of requiring more specialized hardware to utilize the induced sparsity
for speedups.

4.3.4 Timeframe of Sparsification

Pruning methodology can be further categorized based on when the removal of weights occurs. Specifically,
the sparsification can be performed after the end of the standard training procedure of the dense network
post-training pruning, along the course of the standard training (pruning along training) or before the training
has started (pruning at initialization). The first two cases are often refereed as dense-to-sparse training, since
the a fully dense DNN reaches the desired sparsity level at the end of training, while the last approach, which
starts training with an already sparse model, is refereed as sparse to sparse training [50]. Below each case of
pruning will be briefly analyzed.

Post-training pruning

Early pruning methods [54, 30] as well as more recent approaches [29, 56] work by pruning an already trained
network, typically following a three-stage pipeline [60]:

1. Train a dense model until convergence (or use a pretrained model if available)

2. Prune the trained model based on the selected criterion

49

Chapter 4. Compression of Deep Neural Networks

100 100

80 80+
9 3
¥ 607 5 601
g e
j=)) o
£ <
5 401 S 401
Q o

201 204

0 : ‘ : ‘ : 0 . : . : .

0 20 40 60 80 100 120 0 20 40 60 80 100 120
epochs epochs
(a) Ramp scheduler (b) Non-linear scheduler

Figure 4.3.2: Examples of pruning schedulers used to gradually reach a 90% pruning rate at epoch 120.

3. Retrain the pruned model to recover the lost accuracy

During the retraining stage, the pruned elements stay inactive and a fine-tuning process is usually followed
to train the remaining parameters. Note that the last two steps, pruning and retraining can be repeated for
multiple rounds, incrementally increasing the pruning ratio, in order to obtain a better final accuracy [29].
Although this type of pruning procedure is straight forward to implement since the pruning is performed
statically at the end of training (and therefore it does not directly interfere with the training procedure),
methods of this kind usually require prolonged training times due to the multiple pruning and fine-tuning
rounds [60].

Pruning along training

A recent trend in the pruning literature is to perform the pruning process throughout the standard training
procedure [98, 50, 97, 86, 84]. Usually this involves pruning the network in a gradual manner, using some
pruning scheduler that pre-defines the pruning rate at each training iteration or epoch. This scheduler can
be as simple as a ramp function, starting for 0% pruning rate at the first iteration and linearly increasing
until it reaches the final pruning rate. The final pruning rate may be reached at the last iteration, although
usually a phase with the final pruning rate kept constant for a number of iterations is present, in order to
allow the network to better adjust for the desired sparsity ratio before the end of training. More sophisticated
schedulers have been proposed, such as one following a cubical increase of sparsity [98] that aims at pruning
the network more aggressively at the beginning of the training. The two types of schedulers mentioned are
depicted in Figure 4.3.2.

A further consideration regarding pruning along training methods is how to handle backpropagating through
the thresholding function that performs the pruning operation. A first approach is to directly back-propagate
through it, as done in early methods such as [98], resulting to zeroing the gradients of the pruned weights,
thus excluding them from being updated. Unfortunately, this approach is reported to lead to an undesired
decay of immaturely trained parameters and a slow exploration of the possible sparsity patterns [44, 84]. A
more recent technique is to incorporate the Straight-Through Estimator in a similar way as in quantization-
aware training, mentioned in Section 4.2, now considering the thresholding function as the identity during
the backpropagation step and updating both pruned and unpruned weights based on the gradients of the loss
w.r.t. the sparse set of weights. However, during the forward pass only the sparse weights are used so that the
network is trained under the sparsity constrain. By allowing gradient flow to the pruned weights, it becomes
possible for them to become active again if they get large enough magnitude. This way the exploration
of different sparsity patterns is promoted, something found to be beneficial to the final performance of the
sparse networks [44, 84]. Although the vanilla STE as explained above was an important step towards
improving pruning along training methods, further improvements can be made by carefully combining the
STE with new components (i.e. a new thresholding operator and a gradient scaling technique), this being a
main contribution of this thesis and is explored in detail in Chapter 6.

50

4.3. Pruning - Sparse Neural Networks

Pruning at initialization

A final class of pruning algorithms seeks to use sparsity not only to increase inference speeds but to also
benefit from decreased training times by training an already sparse network. A key motivation leading
research towards pruning at initialization are the financial and environmental benefits that come along with
reducing the training times required (which for many current SoA networks can be substantial) [20]. Popular
methods of this kind include SNIP [55], a method that prunes the models before training using a data-
dependent way based on a saliency criterion that identifies important connections, GraSP [87], also an
pruning at initialization approach based on a pruning criterion aimed at preserving the gradient flow through
the network and SynFlow [85], a data-independent pruning at initialization algorithm that targets at avoiding
layer-collapse (pruning of an entire layer that results to untrainable networks) by removing weights having
the lowest “synaptic strengths”. It needs to be noted that many of the recent pruning algorithms of this
class have been influenced by the Lottery Ticket Hypothesis of Frankle and Carbin [19], stating that in dense
randomly-initialized networks exist subnetworks (winning tickets) that are able to reach accuracy similar to
that of the dense network, when trained at isolation given the same training budget.

51

Chapter 4. Compression of Deep Neural Networks

52

Chapter 5

Adaptive Magnitude Pruning via
Layer-wise Weight Distribution Modeling

5.1 Abstract i i e 54
5.2 Introduction i i i i i ittt e e e e e e e e e e e e e e e e 54
5.3 Proposed Method i it e e 55
5.3.1 Pruning Criterion L 55
5.3.2 Learning the Thresholds, 55
5.3.3 Modeling Weight Distributions 56
5.3.4 Straight-Through Estimator 56
5.3.5 Switching Distributions oL 57
5.3.6 Sparsity Scheduling and Sparsity Fine-tuning Phase 58
5.4 Experimental Evaluation 0000 0o e i e e 59
541 CIFAR-100 o e 59
5.4.2 TImageNet 60
5.5 Ablation Studies L. e e e e e e e e e e e e e e e e e 60
5.5.1 Impact of Scaling the Sparsity Loss 60
5.5.2 Impact of Using Both Distributions 61
5.5.3 Comparison with ASL 61
5.5.4 Per-Layer Sparsity Distribution Lo oL 62
5.6 Limitations and Future Work i ii e 63
5.7 Conclusions . . . v v v v i it it e e e e e e e e e e e e e e e e e 64

53

Chapter 5. Adaptive Magnitude Pruning via Layer-wise Weight Distribution Modeling

5.1 Abstract

Neural Network pruning is an increasingly popular way for producing compact and efficient models, suitable
for resource-limited environments, while preserving high performance. Existing methods that can produce
acceptable results generally rely on heavy hyperparameter tuning and introduce non-negligible training over-
heads. To address that, in this chapter of the thesis we propose a method that can achieve robust, out-of-box
performance with minimal computational overhead during training. By modeling the distributions of the
weights per-layer in a novel way as Gaussian or Laplace it is able to learn the pruning thresholds accurately
through the optimization process, resulting in an effective non-uniform sparsity for a requested sparsity
target. Our method’s effectiveness and adaptability is demonstrated using various architectures on the CI-
FAR dataset, while on ImageNet it achieves state-of-the-art Top-1 accuracy using the ResNet50 architecture,
surpassing more complex and computationally heavy methods.

5.2 Introduction

Recognizing that DNNs are heavily over-parametrized [82], network pruning (surveyed in detail in Section
4.3) has been studied extensively in the recent years as a way of drastically reducing the model’s size and
computational footprint [11, 14, 57, 34]|. Existing methodology while reported to achieve promising results,
(a) usually requires extended training times, either in the form of multiple retraining and fine-tuning rounds
[72] or by inducing non-negligible computational overhead [84, 97], (b) depends on finding complicated hy-
perparameter settings in order to result to the desired sized model [50] or (c) lacks adaptability in working
with more complicated model architectures, especially at high sparsity ratios, resulting in performance in-
consistencies [98].

In this chapter, we propose a very efficient unstructured pruning algorithm, reaching state-of-the-art results
while not displaying the aforementioned disadvantages. The proposed algorithm sparsifies the networks’
weights through a threshold operation during training (without the need of extra retraining epochs). The
main goal of this approach is to effectively “learn” multiple appropriate adaptive thresholds for applying
distinct per-layer thresholding operations. Specifically, following the approach of [73], to reach a specified
total sparsity ratio S (which we progressively increase throughout the training process) we consider the
per-layer thresholds {r;} (based on which magnitude pruning is performed) trainable parameters which are

~ 2 A
included in an additional loss term, Ls({r;}) = [S - S({rl})} , where S({r;}) is an estimate of the model

sparsity calculated based on assumptions for the per-layer distributions. To keep S ({r1}) differentiable,
and based on previous observations, we assume that the weights of each layer obtain distributions close
to being Gaussian or Laplace, with the specific type being automatically decided per-layer throughout the
course of training, in order to minimize the sparsity estimation error. Lq({r;}) is then appropriately added
to the typical training loss so that the thresholds are optimized during training, resulting into a learned
non-uniform sparsity. All the previous analysis is made to hold while pruning the network by using the
Straight-Through Estimator [3] for updating the dense set of the weights. As a final step, to achieve the
exact specified level of sparsity we slightly adjust the found thresholds a few epochs before the end of
training, now calculating the exact thresholds by sorting the weights per-layer.

The overall contributions of this work are as follows:

e The presented method, with almost no extra training overhead and without the need for setting addi-
tional hyperparameters, can sparsify a model up to an exact user-defined level while keeping an effective
non-uniform per-layer budget.

e We first show that modeling per-layer weight distributions as Gaussian and Laplace is sufficient to learn
appropriate per-layer thresholds for magnitude based pruning for different model architectures, even at
high sparsity rations.

e Extensive experiments on both CIFAR [47] and ImageNet [13] datasets demonstrate that our method
achieves state-of-the-art accuracy surpassing more complex and inefficient methods.

54

5.3. Proposed Method

5.3 Proposed Method

5.3.1 Pruning Criterion

We follow the magnitude pruning approach where a weight is kept only if its magnitude surpasses a threshold
value r. This simple criterion, judging a weight’s importance based on its magnitude, is efficient to compute
and is found to be effective in the pruning literature, achieving high sparsity ratios with minimal performance
loss [29, 21]. The main issue is that this threshold needs to be selected appropriately for each layer in order
for the target sparsity ratio to be obtained. Note that even if we intend to keep the same sparsity ratio for all
layers, r needs to be calculated individually for every layer since the magnitudes of the weights vary between
different layers. Many approaches sort the weights to find the target thresholds for every training step [86,
98], which can lead to training overhead, especially for larger networks. Our method, given a total target
sparsity ratio, finds the thresholds efficiently and leads to a non uniform sparsity for optimized performance
(see Section 5.3.2).

5.3.2 Learning the Thresholds

One approach to obtain layer-wise adaptive sparsity is to consider the thresholds r;, for each layer [, trainable
parameters. Then, using a suitable differentiable function, §;(r;) € [0,1], that estimates the sparsity ratio of
each layer [, given threshold r;, the total estimated sparsity of the model can be defined as

N
S{r}) = chél(rl)v (5.3.1)
l

#W,

LA is the contribution of layer [to the total network parameters.

where ¢; =

If we can cast the per-layer sparsity §;(r;) as an analytical formulation with respect to the threshold r,
we can have a fully trainable pipeline that can automatically adjust the per-layer sparsity according to a
sparsity-oriented loss through Eq. 5.3.1. To this end, [73] considered that, for each layer, the weights can
be approximated by a Gaussian distribution. According to this empirical assumption, one can indeed write
the sparsity of the layer as an analytical function w.r.t. a threshold, following a confidence interval rationale.
We extend this formulation to also include Laplace distributions for improved estimation of sparsity (see
Section 5.3.3 for more details).

To promote a specific model sparsity ratio, S € (0,1), one can define a sparsity loss Ls({r;}) as:

. 2

Lo({n}) = [s = $(tn})] (5.3.2)

This formulation enforces a user-specified sparsity target for practical applications. Ls({r;}) is minimized
when the thresholds r; have obtained values that result to S = S({r;}).

This loss can then be added to the typical training loss L({W}, {r;}) to result to an overall multi-task loss

LW} {r}) + AsLs({ri}). (5.3.3)

Defining the overall loss as above and minimizing with respect to both parameter sets, {W;} and {r;}, its
terms behave in a competitive way, i.e. L is more easily minimized if the model is left dense, hence L, stays
near its maximum value. Therefore some scaling factor A is needed to weight the contribution of L.

The fact that the values of the thresholds will be learned through the optimization process (and thus will
not be just random or heuristic based thresholds that give the requested total sparsity) should indicate that
a highly effective per-layer budget allocation is found (see Section 5.5.4).

Finally, for this process to work, the use of Straight-Through Estimator for back-propagation is imperative
to retain unimodal distributions (see Section 5.3.4) and thus facilitating the use of an analytical formula for
the sparsity loss approximation.

In our work, we found that the sparsity loss, especially for high values of the target sparsity S, should be
highly weighted in order to be substantial and thus minimized by the optimization process. To achieve that,

55

Chapter 5. Adaptive Magnitude Pruning via Layer-wise Weight Distribution Modeling

we further scale it adaptively with the inverse of the squared budget B = (1 — S)2, resulting into the final
overall loss equation used in our method

LUW), {rh) + 5 La((n)) (53.4)

The aforementioned scaling is more crucial to our method since, in contrast to [73], we increase the target
sparsity ratio gradually through training (as described in Section 5.3.6) for a more smooth transition from a
dense to a sparse model and therefore a constant user-defined weight A4 is not suitable (as shown in Section
5.5.1). With this scaling trick, A is almost unimportant and can have some constant typical value (we set it
to As = 10) regardless the requested sparsity ratio and the experiment.

The key to the above strategy is choosing a function §;() that obtains low sparsity estimation error es;(r;) =
[31(r) — 8i(r;)|, where 5;(r;) is the measured (actual) sparsity ratio. Otherwise, if the estimation error is
significant, the resulting sparsity will differ from the requested, which may lead to sparser models with lower
accuracy or denser ones with unacceptably high memory requirements or flops for the intended application.
Our choice of §;() functions, motivated by the observed distributions of the per-layer weights, is described in
the following section.

5.3.3 Modeling Weight Distributions

Considering the per-layer weights {WW; € W} as random variables w; that follow a symmetrical distribution,
the sparsity ratio s;(r;) at a given threshold value r; is estimated as the probability that w; falls in the range

[—7, 7] as
ry

Si(ry) = fi(wy)dwy (5.3.5)

-7y

with f;(w;) representing the probability density function of the element w; at the I — th layer.

The weights tend to obtain per-layer distributions that are similar to the Gaussian or Laplace Distributions.
Based on that assumption we can compute §;(r;) by Equation (5.3.5) resulting to closed form expressions as

A _ | ef(rn/oV?2), if w; ~ N(0,0%)
o ={ TL . it 20 5 (36
where erf(z) = iﬂ_ ' e dt (5.3.7)

—T

The benefit of adopting those candidate weight distribution models is that $;(r;) can be computed efficiently
and remains differentiable. We note that we have assumed zero-mean per-layer weight distributions but
our approach can be easily adjusted to hold for non-zero mean weights. Also, in practice we estimate the
distribution parameters o7 and 3, of the weights using their Maximum Likelihood estimates

N

N
1 A 1

L2 2 _

0= '5—1 Wi; and 8 = N 2_1 Wi

In our method we do not restrict the modeling distributions to one particular type (Gaussian or Laplace) as
done in previews works [73, 41]. The type of the per-layer distribution is selected dynamically throughout
the training in order to minimize the modeling error. This is important since different layers (or even the
same layer at different epochs) obtain weight distributions that are much closer to one of the two modeling
types than the other (e.g. see Figure 5.3.1).

5.3.4 Straight-Through Estimator

For the analysis of the previous section to hold, the distributions of the weights during sparse training need
to preserve their Gaussian or Laplacian attributes. At the same time the network has to be optimized for the
given sparsity ratio. Only updating the active weights, as done in many pruning algorithms [29, 98], is not
a suitable approach since this will create non-unimodal distributions [73]. To circumvent this effect caused

56

5.3. Proposed Method

-0.2 -0.1 0.0 0.1 0.2 -0.2 -0.1 0.0 0.1 0.2
(a) (b)

Figure 5.3.1: Example of a layer with Gaussian-like distributed weights (a) and one with Laplacian-like
distributed (b). The distributions are from layers layer2.0.conv2 and layer2.1.conv1 of ResNet50.

by zeroing the gradients of the pruned weights, we employ the idea of training with a Straight-Through
Estimator (STE). STE was originally introduced by Hinton et al. [3] and has been successfully utilized in
the context of quantized neural networks [12, 17, 2] and more recently in sparse training techniques [73, 86].
As the name suggests, the operation of thresholding the weights is circumvented during the backward pass,
allowing all the weights to be updated based on the gradients computed from loss with respect to the sparse
subset of weights. Besides preserving the distributions, sparse training using this scheme has the added
advantage of enabling weight reuse. That is, if at some point during the training a weight that has been
pruned gets magnitude large enough to pass the pruning threshold, it can safely return to being active due
to the fact that is has revived gradient updates throughout the training process.

5.3.5 Switching Distributions

The modeling distribution attributed to some layer [is reconsidered at the end of every training epoch k
based simply on minimizing the sparsity estimation error, which is defined as

est’ (r1) = |37 (r1) — si(r1)]| (5.3.8)

esi (r) = |51 (r1) — su(r)| (5.3.9)

where 7, is the threshold obtained at the end of epoch k, 87 (r;) and 3F(r;) are the sparsities approximated
using a Gaussian and a Laplace distribution respectively, resulting to the estimation errors eslG(rl) and
est(r;). Therefore if the layer’s distribution at epoch=F is Gaussian and esf(r;) < es{(r;) switch to using
the Laplace distribution to model the layer’s weights for the next epoch k+1. Respectively if es® (r;) < esf(r;)
and the modeling distribution is the Laplace switch to the Gaussian. We note that we keep r; unchanged
regardless if a new distribution is chosen to ensure its continuity. The optimization process should smoothly
adjust the thresholds during the next epochs to account for the change of distributions. This strategy is
depicted in a state diagram in Figure 5.3.2.

G L L G
es;” < es; est < esC esy < es;

start

es < est

Figure 5.3.2: State transition diagram where states are the two candidate modeling distributions (G-
Gaussian, L: Laplace) for layer {. The transitions happen according to the described rules at the end of
each epoch. We assume that all layers are initially (at epoch 1) best modeled with a Gaussian distribution.

o7

Chapter 5. Adaptive Magnitude Pruning via Layer-wise Weight Distribution Modeling

As an additional method for choosing the distributions we can follow a Ratio of Maximum Likelihood based
approach [49]. Assume a sample wy, ..., w, generated from either the Gaussian N(uy,o?) or the Laplace
L(ur, B) distribution. The likelihood functions of N(un,0?) and L(uz,3) are

In(un,0) = [fn(wi; pw, 0), (5.3.10)
=1

(e, B) = [[fo(wss e, B) (5.3.11)
=1

and the logarithm of the ratio of the two likelihoods is equal to

R=In (lN(”NO)> (5.3.12)
ZL(MALa 5)

where (fin,6) and (fir, 3) are the MLEs of (juy,0) and (i, 8) respectively. R can be written as
R= g(1+1n2—1nw)+n(1n3—1n&), (5.3.13)

where iy = %Z:—L:l w;, 62 = %Z?:l(wi — fiin)?, i = median(wy, ..., w,) and B = %Z?:l |w; — fip]. One

can then choose the Gaussian distribution if R > 0, otherwise the Laplace distribution to represent the given
data. In our case the data samples are the per-layer weights and based on R we can decide the type of
distribution being the more appropriate.

For the main experiments we use the error based method as we find it being simpler while giving similar
estimates (as demonstrated in Section 5.5.2).

5.3.6 Sparsity Scheduling and Sparsity Fine-tuning Phase

The following sparsity scheduler, based on [98] is used to gradually increase the target sparsity ratio

.\ 3
S; =5, l1 - (1 - :L)] fori=1,2,...n (5.3.14)

where 7 is one training step, n the total number of pruning steps, S; the target sparsity ratio at step ¢ and S
the final target sparsity ratio. In our experiments we set n equal to the number of training steps upto 80% of
the training epochs. During that time the pruning thresholds are learned as described in Section 5.3.2. We
call this the adaptive phase of our method.

Although the sparsity estimation using the weight distributions is rather accurate, the final sparsity ratio
might deviate slightly from the requested. If Sy is reached at step m < n, the sparsity ratio of each layer,
51, is linearly decreased for a few iterations to reach its final value. If at step n the measured sparsity S, is
lower that Sy, for the next 10% of the epochs the sparsity ratios are linearly increased up to their final values.
During only that phase of the method the exact threshold values are calculated via sorting the weights of
each layer. For each case the final values of the sparsity ratios (which guarantee that the sparsity becomes
exactly Sy) are

1— _
1— *?f(1—sl), if S, < S
s=4 g L5 i (5.3.15)
g—fsl, if m <nand S, >S5,

After the sparsity reaches Sy it is kept constant for the remaining of the training steps. Note that usually
s; & s; since the sparsity estimation error is expected to be quite low.

58

5.4. Experimental Evaluation

5.4 Experimental Evaluation

The present section provides the experimental results of our method as well as comparison with relevant
baselines and SoA unstructured pruning algorithms. In the first part of the section we experiment with
modern compact architectures ResNet20 [31], MobileNetV1 [35] and DenseNet40-24 [36] on CIFAR-100!
[47]. We directly compare our results with the ones of GMP [98] and ST-3 [86] generated on the same
settings in our environment. Both GMP and ST-3 are dense-to-sparse, magnitude based pruning algorithms
which gradually introduce sparsity during training. GMP allocates uniform sparsity across the different
layers while ST-3 follows an STE approach with global magnitude threshold. The second part of the section
further verifies that our method is state-of-the-art based on ResNet50 [31] experiments on ImageNet [13].
For those experiments we include results from literature (as is standard practice) from an extended number
of pruning methods achieved using the same number of epochs (100) and data augmentation. For all models
we find most insightful to experiment on sparsity levels 90%,95% and 98%, since that range of sparsity is
challenging but at the same time methods still have a chance to provide models with acceptable accuracy
for real-world deployments. All our results are obtained using the same training hyperparameteres (typically
used in literature), as shown in Table 5.1.

\ Dataset \ CIFAR-100 \ ImageNet \
Epochs 160 100
Batch Size 128 256
Weight Decay oe-4 oe-5
Optimizer SGD SGD
LR 0.1 0.2
LR-Scheduler Cosine Cosine+Warmup
Momentum 0.9 0.9
Label Smoothing - 0.1

Table 5.1: Training Hyperparameters used for all our experiments on CIFAR-100 and ImageNet datasets.

5.4.1 CIFAR-100

[Ratio [90% [95% | 98% |

ResNet-20 (1.096M Params): 73.59 +0.44
GMP [98] | 70.34 £0.33 | 69.38 +0.20 | 64.46 +0.36
ST-3 [86] | 72.86 +0.20 71.95 +0.12 | 67.73 +0.10
[Ours | 73.18 +011 | 72.30 +0.22 | 66.69 +0.24 |
MobileNetV1 (3.315M Params): 71.15 +o0.17
GMP [98] | 61.82 +0.18 | 52.87 +0.33 | 32.72 +1.09
ST-3 [86] | 71.02 +0.09 | 70.50 +0.08 | 69.18 +0.34
| Ours [71.11 +012 | 70.37 +014 | 67.53 +0.22 |
DenseNet40-24 (0.714M Params): 74.70 +0.51
GMP [98] | 70.72 +o0.29 68.29 +0.37 | 61.56 +o.19
ST-3 [86] | 72.82 +0.43 | 71.66 +0.38 | 65.99 +0.38

Ours 74.00 +0.30 71.63 +0.32 63.20 +0.31

Table 5.2: Accuracy of ResNet20, MobileNetV1 and DenseNet40-24 on CIFAR-100 at varying sparsity
ratios. The initial accuracy of the dense model is also reported for comparison.

Table 5.2 provides the results obtained on CIFAR-100 using GMP, ST-3 and our method over three different
architectures and three different levels of sparsity. The results first indicate the robustness and adaptability
of our approach using the Gaussian and Laplace distributions for modeling the per-layer weights of three
different compact models at varying pruning ratios, easily surpassing the results obtained from GMP (which
ignores the importance of finding a per-layer non-uniform budget). Compared to ST-3, we observe improved
performance for the 90% sparsity ratio, similar performance for the 95% ratio, while our approach slightly

IThe channels of ResNet20 are doubled for the experiments on CIFAR, as also done in [97, 87]. Also for CIFAR. we do not
prune layers with under 1000 parameters as we consider those having negligible overall contribution to the total budget.

59

Chapter 5. Adaptive Magnitude Pruning via Layer-wise Weight Distribution Modeling

under-performs at the 98% ratio (see Section 5.6). We want to emphasize that ST-3, although can provide
SoA results, is more computationally expensive than our method due to the fact that it needs to sort all the
weights (which are stacked together in a tensor) in order to find the global threshold at every update step.
Our method, being the most compute friendly among all considered baselines, finds the thresholds without
the use of sorting for the most part of the training (only first and second-order statistics are required, which
can be calculated in linear time with respect to the number of the per-layer weights) and only sorts the
per-layer weights without aggregating them (thus still more efficient) for the last epochs. Still, it is found to
be the best performing for the 90% sparsity ratio resulting in accuracies with almost no degradation from
the ones obtained from dense training. This is possible due to the effective per-layer sparsity ratios that are
found automatically during training as described in Section 5.3.2. This is further analyzed in Section 5.5.4.

5.4.2 ImageNet

[Ratio | 90% [95% | 98% |
ResNet-50 (25.6M Params): 77.10
GMP [98] 73.91 | 70.59 | 57.90
STR [50] 74.31 | 70.40 | 61.46
ProbMask [97] | 74.68 | 71.50 | 66.83
ST-3 [86] 76.03 | 74.46 | 70.46

Spartan [84] 76.17 | 74.68 -
[Ours | 76.27 | 74.27 | 67.83 |

Table 5.3: Accuracy of ResNet50 on ITmageNet.

To prove the generalization abilities of our method and its ability to stand against other, more computationally
expensive and hyperparameter dependent SoA methods, we conduct experiments on ImageNet with ResNet50.
In addition to results from GMP and ST-3, in this section we include results from methods STR [50],
ProbMask [97] and Spartan [84], all being recent SoA dense-to-sparse unstructured pruning methods. STR
uses a soft-threshold operator to obtain learned non-uniform sparsity which is controlled indirectly by the
weight decay parameter. This makes their method very hard to obtain a specified sparsity ratio. Probmask
approximates the pruning problem using a probabilistic mask which is transformed into a deterministic binary
mask using samples from a Gumbel distribution. The particular approach requires multiple sampling rounds
with gradient computation which significantly increase the training time. Finally, Spartan learns a soft top-k
mask using a regularized optimal transportation problem, thus being also a computational heavier method
than ours.

Based on the results provided in Table 5.3, our method reaches top performances at 90% and 95% ratios,
surpassing GMP, STR. and ProbMask and matching in results of ST-3 and Spartan. At the 98% ratio it also
surpasses the first three methods and comes second to ST-3. At this point we have to note that we used
the same, default training hyperparameters for all three sparsity ratios while in ST-3 the weight decay is
progressively decreased as the sparsity ratios are increased - no exploration was provided on the necessity of
such fine-tuning choice. We opted to show that our method is able to perform very well independently of the
hyperparameters used and with the lowest overhead among the competing methods. This claim is supported
by the obtained results, both on CIFAR-100 and on ImageNet.

5.5 Ablation Studies

In this section we explore various aspects of our approach, highlight the effectiveness of the proposed com-
ponents and provide an in-depth analysis of the sparsity distribution across different layers.

5.5.1 Impact of Scaling the Sparsity Loss

Compared to typical gradual magnitude pruning approaches, where only the target sparsity is increased, in
our work we also need to consider the gradual amplification of the sprasity loss. Specifically, the sparsity
loss Ls({r;}) is adaptively scaled by the inverse of the squared training budget before it gets added to the
overall loss (Equation 5.3.4). This is found to be necessary in order to force the threshold parameters to grow

60

5.5. Ablation Studies

100
— 5
—-
80 F R i N S A ——. =
—-- §;, no scaling R
-
/'/
—~ 60 - -
2 7
2 4
s 4
= 40~ :
20 A
0 20 40 60 80 100 120 140

Epochs

Figure 5.5.1: The estimated sparsity at each epoch, 5'1-, closely follows the requested one, S;. Without
adaptively scaling the sparsity loss fails to grow and (S;, no scaling) deviates from S;. Plot values from
training ResNet20 on CIFAR-100.

(and hence sparsify the model) as the sparsity scheduler progresses. Otherwise after some point in training,
the sparsity loss, which works in a competitive way with the task-related loss (e.g., Cross Entropy for the
explored classification tasks), will not be high enough to be considered resulting in a severe deviation of the
estimated sparsity from the requested (Figure 5.5.1).

5.5.2 Impact of Using Both Distributions

3.0 1

—— Gaussian only
—— MLE Based
—— Error Based

Sparsity Estimation Error (%)

0.5

0 20 40 60 80 100 120
Epochs

Figure 5.5.2: Total sparsity estimation error per epoch, es = S({r;}) — S({r;}) (both quantities in es
represent sparsity ratios in %), for the adaptive part of training ResNet20 to 95%.

To better understand the importance of using both the Gaussian and the Laplace distributions, we display
the total sparsity estimation error per epoch, es = S({r;}) — S({r;}), where §({r;}) is the measured (actual)
sparsity and S ({r;}) is the sparsity estimated by the distributions. It is clear that the addition of the Laplace
distribution as potential model for the weights of some layers results to lowering the estimation error for a
good portion of the training epochs, until the last few ones when the distributions are observed to converge
to more Gaussian-like (at least for the particular experiment). We also observe that the two approaches
described in Section 5.3.5 (Error and MLE based) for the selection of the per-layer distributions result to
similar error plots.

5.5.3 Comparison with ASL

In this subsection we directly compare our method to the closely-related adaptive sparsity loss (ASL) approach
from [73] to further highlight the enhanced effectiveness of the proposed modifications. ASL, since being the

61

Chapter 5. Adaptive Magnitude Pruning via Layer-wise Weight Distribution Modeling

Accuracy (%)
(=)}
(=]

[2)]
N
L

[=2]
o

[%)
@
L

80.0 825 850 875 90.0 925 950 97.5
Sparsity (%)
Figure 5.5.3: Accuracy of ResNet20, pruned using our method and ASL on CIFAR-100 at varying sparsity
ratios.

initial motivation for our work, is also based on the idea of finding the thresholds through training, using the
sparsity loss of Equation 5.3.2, but only using Gaussian distributions for modeling the weights. Moreover in
ASL the sparsity is introduced abruptly from the beginning of the training since no sparsity scheduler is used.
Also there is no sparsity fine-tuning phase thus the final sparsity can vary from the requested, a very common
problem when considering high sparsity levels. In Figure 5.5.3 we present results from training ResNet20 on
CIFAR-100 for multiple sparsity ratios using the same settings as in the experiments in Section 5.4.1. Due to
the fact that the sparsity loss of ASL is not adaptively scaled we need to manually increase its weight factor
As (of the ASL muilti-task loss) as we increase the requested final sparsity in order to avoid large deviations
in obtained sparsity and provide meaningful comparisons. The results are presented in a graph since ASL
could not produce the exact requested sparsity. It is clear from the graph that our method, apart from being
able to achieve the exact requested sparsity, results in better accuracies, especially for challenging sparsity

ratios, where the improved (as shown is Section 5.5.2) sparsity estimation and the gradual introduction of
sparsity become especially important.

5.5.4 Per-Layer Sparsity Distribution

100

© pointwise
X depthwise

® fc
80

«
3

60

3

Sparsity (%)
Sparsity (%)

40

60 * conv
X downsample
o f

. conv
X transitional
® fc

20

0 3 6 9 12 15 18 0 5 10 15 20 0 5 0 15 20 5 30 3
Layer Index Layer Index Layer Index

(a) ResNet20, 95% sparse. (b) MobileNetV1, 95% sparse (c) DenseNet40-24, 95% sparse

Figure 5.5.4: Per-layer sparsity ratios (%) for models trained on the CIFAR-100 dataset. Different modules
(e.g., conv, fc) are marked with different colors.

The per-layer sparsity distributions obtained from training the models ResNet20, MobileNetV1 and
DenseNet40-24 on CIFAR-100 at a 95% final sparsity are shown in Figure 5.5.4. For ResNet20 our method
increases the sparsity ratio gradually from the first to the last layers, with the exception of the two down-
sampling layers and the fully connected layer which are assigned considerably lower sparsity ratios. For the
case of MobileNetV1, the sparsity allocation also increases gradualy but at a different level for the two types
of layers, pointwise and depthwise, with the latter being assigned much lower sparsity ratios. Finally the
per-layer sparsity of the DenseNet40-24 shows that the first and last layers are assigned much less sparsity
than the rest, which appear to have a fluctuating sparsity pattern (partially based on their size). Notably,

62

5.6. Limitations and Future Work

the two transition layers are assigned lower sparsity than most of their neighboring layers despite having
more parameters. This last observation indicates that our method allocates sparsity not only based on the
per-layer number of parameters (as done by most heuristic methods) but also based on the functionality of
each layer, thus is able to detect bottleneck layers and keep them adequately dense to avoid performance
degradation.

5.6 Limitations and Future Work

The main limitation of the proposed method concerns requesting very high sparsities (generally above 98%)
from relatively small models. For such cases, while still able to provide models with accuracy better than
most baselines, it falls behind very recent SoA methods (see Tables 5.2, 5.3). This is to be expected as the
modeling of the distributions of weights, although surprisingly accurate for most cases, is not exact (as shown
in Figure 5.6.1 (b) - note however that many layers still retain a shape closely to the considered distributions).
Effects like that of Figure 5.6.1 (b) are more frequent as we push the sparsity requirement to extremely high
percentages (> 98%). Therefore even a slight deviation from the sparsity target can result in a considerable
deviation from the respective budget, and has to be corrected by the last phase of the method (Section 5.3.6).

Working towards making the sparsity estimation even more accurate is a possible future direction. This could
be done by enforcing the distributions in some way to resemble even more one of the two used modeling types,
or by considering more modeling distribution types. Following the first approach one has to be careful not
to affect the model accuracy by imposing restrictions on the weights or influencing the learning process. For
the second approach the difficulty is identifying appropriate models for the weights’ distributions which are
accurate but at the same time simple enough to be differentiable in order for the sparsity ratios to be learned
by the optimization process.

ResNet20: layer3.1.conv2 ResNet20: layer3.0.downsample.0

MobileNetV1: convl.l.pointwise.0 DenseNet: fc

Figure 5.6.1: Examples of per-layer weight distributions obtained during training on the CIFAR-100 dataset
using our pruning method. Some layers are modeled better than others.

63

Chapter 5. Adaptive Magnitude Pruning via Layer-wise Weight Distribution Modeling

5.7 Conclusions

This work proposes a computationally efficient and SoA performing pruning method, as demonstrated by
extensive experiments on CIFAR and ImageNet datasets, where it surpasses more sophisticated methods with
increased training overheads. Furthermore, its success indicates that non-uniform layer-wise sparsity can be
effectively learned defining a extra loss based on a weight distribution modeling way, with the Gaussian and
Laplace distributions being adequate, even for relatively high sparsity ratios.

64

Chapter 6

Feather: An Elegant Solution to
Effective DNN Sparsification

6.1 Abstract i e e e e e e e e e e e e e e e e e e e 66
6.2 Introduction i i i i i it e e e e e e e e e e e e e e e e e 66
6.3 Proposed Method i i it e 67
6.3.1 Preliminaries: Sparse Training 0oL 67
6.3.2 Proposed Sparse Training Module 67
6.4 Application on Pruning Frameworks 0000000 69
6.5 Experimental Evaluation 000 e i e 70
6.5.1 Ablation Studies 70
6.5.2 Comparison to SOA 71
6.6 Conclusions 0 i i i i e e e e e e e e e e e e e e 73
6.7 Appendix i i it e e e e e e e e e e e e e e e e e e 73
6.7.1 Training Hyperparameters oo 73
6.7.2 Impact of Threshold’s p-value 73
6.7.3 Stability of the Sparsity Mask vs. Gradient Scaling 74
6.7.4 Feather Improves Pruning Backbones 75
6.7.5 MobileNetV1 on ImageNet L oo 75
6.7.6 Accuracy vs. FLOP Measurements 76

65

Chapter 6. Feather: An Elegant Solution to Effective DNN Sparsification

6.1 Abstract

Neural Network pruning has attracted a lot of attention in the recent years due to its ability to produce highly
compressed, yet accurate models, enabling their use to resource-constrained environments. While the pruning
can be performed using a multi-cycle training and fine-tuning process, the recent trend is to encompass
the sparsification process during the standard course of training. To this end, we introduce Feather, an
efficient sparse training module utilizing the powerful Straight-Through Estimator as its core, coupled with
a new thresholding operator and a gradient scaling technique, enabling robust, out-of-the-box sparsification
performance. Feather’s effectiveness and adaptability is demonstrated using various architectures on the
CIFAR dataset, while on ImageNet it achieves state-of-the-art Top-1 validation accuracy using the ResNet-
50 architecture, surpassing existing methods, including more complex and computationally heavy ones, by a
considerable margin.

6.2 Introduction

A recent trend in the pruning literature is to perform the pruning along the normal course of training (sparse
training) without the need for additional retraining cycles. A number of works [73, 44, 84, 86] which are built
around the concept of the Straight-Through Estimator (STE) [3] have demonstrated that SoA results can
be achieved using this approach. Sparse training with the STE is performed by computing the forward pass
using the thresholded (pruned) version of the weights while updating the dense weights during the backward
pass, treating the thresholding function (that performs the pruning) as the identity.

In this chapter, we focus on improving sparse training with the STE by addressing a number of overlooked
shortcomings of the method, eventually introducing a novel pruning module. We propose (i) a new thresh-
olding function used for magnitude pruning and (ii) a straightforward way to control gradient flow of the
pruned weights. More specifically, instead of using hard or soft thresholding [18], which previous STE based
methods mostly use, we propose a family of thresholding functions that lie in between the aforementioned
two and combine their advantages, namely reduced bias between the thresholded weights and their dense
counterparts and a smooth transition region near the threshold. Complementary to the proposed threshold-
ing approach, we suggest scaling the gradients attributed to pruned parameters by a parameter § € (0,1),
aiming on improving the stability of the pruning mask, a factor that we find to be crucial when targeting
very high sparsity ratios.

We demonstrate the effectiveness of our sparse training approach when applied to magnitude based unstruc-
tured pruning frameworks, which reach a user-specified sparsity ratio by incrementally pruning the network
during training. In more detail, we perform extensive experiments on both CIFAR [47] and ImageNet [13]
datasets using a very simplistic global thresholding pruning procedure as a backbone and additionally with a
recently proposed layer-wise pruning framework [73]. Our sparse training approach surpasses the (generally
more computationally expensive) current SoA unstructured pruning algorithms, significantly improving the
previously achieved generalization accuracies of the resulting sparse models.

Overall, the contributions of our work can be summarized as follows:

e We introduce Feather, a versatile sparse training module that can be used to efficiently and effectively
prune neural networks up to extreme sparsity levels. The proposed module was evaluated on different
magnitude pruning backbones and achieved consistent improvements over the prior state-of-the-art.

e We highlight the importance of a well-crafted thresholding function that finds a fine balance between
the two standard ones, namely hard and soft operators.

e We highlight the correlation between scaling the gradients of the pruned weights and the targeted
sparsity ratio: high sparsity targets should be accompanied with lower scaling values to provide high
performing pruned models.

66

6.3. Proposed Method

6.3 Proposed Method

In this work, we developed a novel pruning module, dubbed as Feather. The name symbolizes its lightweight
nature, the elegance with which it achieves sparsity, as well as the lightness of the resulting pruned networks.
It can be utilized in various magnitude pruning schemes, including strategies where pruning can be performed
globally or in a layer-wise fashion. The setting of interest is magnitude pruning, where a weight is kept only
if its magnitude surpasses a threshold value T', and a sparse training process is followed (i.e., perform the
pruning procedure along the standard course of training), as done in most of the SoA systems. In essence,
we capitalize on the effectiveness of modern STE-based approaches, carefully addressing potential issues.
Implementation-wise, the proposed module is applied at each layer, replacing a typical pruning operation,
affecting both the forward and the backward step.

In what follows, we first provide the necessary prerequisites for sparse training with STE and then we describe
the proposed module, emphasizing on the proposed modifications on both the forward and the backward steps
and highlighting the underlying motivations.

6.3.1 Preliminaries: Sparse Training

In this analysis we examine how the pruning and the subsequent weight update is performed (during a
training iteration) on a single layer under the STE framework.

First, let us consider a thresholding operator, the core of the magnitude pruning approaches, as a function
Pr)(z) that performs the pruning given a threshold value T'. As a general rule this function takes zero values
when |z| < T and non-zero values otherwise. Typical instantiations of this function are the hard and the soft
thresholding operators.

A first approach is to directly back-propagate through the thresholding operator. By doing so, the gradients
belonging to the pruned weights will be zeroed thus excluding them from the update step. Regrettably, due
to the resulting sparse gradient, this approach may lead to unwanted decay of immaturely trained weights
and a slow exploration of the possible sparsity patterns [44, 84].

Lately, to circumvent the aforementioned issues, a number of pruning methods [73, 44, 84, 86| have achieved
SoA results relying on the concept of a Straight-Through Estimator [3] training approach. In a nutshell, with
the STE formulation, the weight update and thresholding equations are now decoupled into:

wy = P(T)(wk) (6.3.1)
W1 = wg — 1 VL(Wy),

where w are the vectorized layer weights, w the pruned weights after applying the thresholding operation,
L(w) the loss function and 7 the step size. The reported expressions correspond to k-th iteration of a
Gradient Descent formulation to highlight the effect of STE. The same procedure is trivially extended to any
optimizer required.

The main idea is to consider the thresholding operator as the identity function during back-propagation and
update both pruned and unpruned weights based on the gradients of the loss w.r.t. the sparse set of weights.
During the forward pass however, only the sparse weights are used so that the network is trained under the
sparsity constrain. The key benefit of sparse training with the STE is that it allows for pruned weights to
become active again, if at some point during the training they get a large enough magnitude. This process
therefore promotes the exploration of different sparsity patterns and is found to result to better performing
sparse networks [44, 84].

6.3.2 Proposed Sparse Training Module

The aforementioned STE pipeline was a stimulus for the proposed module; our primary goal was to maintain
the simplicity of the original idea, and thus we concentrated on enhancing two fundamental elements: the
thresholding operator during the forward step and the gradient manipulation during the backpropagation
step. Overall the proposed enhancements aim to assist the training process by promoting convergence to well-
performing yet highly sparse solutions. The functionality of Feather, the proposed module, is summarized in
Figure 6.3.1a, where the depicted components will be described in detail in what follows.

67

Chapter 6. Feather: An Elegant Solution to Effective DNN Sparsification

control params: I pruning threshold 7' I I target sparsity S I
- 1.0 15

| e -! ——————————————— | = Hard Th. 9
Iforward s \ —— Proposed Th. (p=3)
ow Py = signw)y|wl3 =T3 ,|w| > T w ! 0.8 17— soft Th. 6
1 0, otherwise 1
1 ; ! 0.6 3
I gradient 1 o
1 _) Liwl>T scale & ! s 2 5
! m= {19, otherwise : & 041 E
I— ———————————————————————————————— o g
__________________________________ 0.2 1
1 backward 1
1 1
| MOVL(W) VL(W)! o0
1 1
B e o ————] - —— o 1

-0.2 T T T T T
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Feather Module w

(a) (b)

Figure 6.3.1: (a) The proposed sparse training block, utilizing the new thresholding operator and the
gradient scaling mask (b) The proposed family of thresholding operators for varying values of p. We adopt
p = 3, resulting to a fine balance between the two extremes, hard and soft thresholding respectively.

STE Thresholding Operator

Focusing on the thresholding operator used during the forward pass, the most straightforward way to define
a magnitude pruning step is through the hard thresholding function, which is discontinuous at the threshold
value. This discontinuity might result to training instabilities when weights pass from pruned to active states
and vice versa, since the gradient received might not justify the value after thresholding. To addressing this
matter, a recent method [86] suggested that the soft thresholding operator is preferable in the context of
STE, while soft thresholding is a common choice in pruning approaches in general [50]. Soft thresholding,
although suppressing the discontinuity, induces a constant bias (equal to the threshold value) between the
active weights and their dense counterparts, updated during the STE back-propagation phase. Note that by
its nature the STE introduces an inconsistency between the forward and the backward pass, since during the
former the sparse set of weights is used whereas during the later the computed gradients are used to update
the dense weights.

Motivated by works in the area of sparse regression, aiming on finding thresholding operators that lie in
between hard and soft thresholding [58, 27], we propose the following family of operators to be used with

STE: /
_ [sign(w) - (jwlp — TP, it fu] > T
Pir)(w) = { 0, otherwise (6.3.3)

The behavior of P(r) is depicted in Figure 6.3.1b, for varying values of the power parameter p. Intuitively,
as p grows we deviate from the soft (p = 1) and approach the hard thresholding operator. Under that
point of view, the proposed operator can be considered a generalization of the existing two. Note that the
proposed function, when avoiding extreme selections for p, tries to balance between the two aforementioned
properties: continuity and bias. Based on that, we suggest a value of p = 3 being a reasonable compromise
that adequately addresses both issues. We provide further validating experiments in the appendix.

In a final note, we want to emphasize that our proposed thresholding operator, apart from having an intuitive
explanation for the resulting improved performance (as empirically evaluated in Section 6.5), due to its
simplicity it practically imposes no training overhead and can be used off-the-self in pruning frameworks in
conjunction with the STE.

STE and Gradient Scaling

The main motivation behind the STE is to allow gradient flow to pruned weights and thus enable the
exploration of multiple sparsity patterns during sparse training. As stated before, this is achieved by treating
the thresholding function as the identity during the back-propagation. However, in certain cases it might
be beneficial to limit the variations of the mask and favor a more stable sparsity pattern. We find that a
rather straightforward, yet intuitive way to control the mask’s stability is to scale the gradients of the pruned

68

6.4. Application on Pruning Frameworks

weights by a constant value 6 € [0, 1], effectively modifying the update step of Eq. 6.3.2 into:
W1 = Wi — 1My © VL(Wg), (6.3.4)

where m;, € {6,1}" such that m; = 1if w; p, > T and m; j, = 0 otherwise, with ® denoting element-wise
product.

At the two extreme points, § = 0 and 6 = 1, the method aligns with the non-STE and the standard STE
approaches. For in-between values of 0, pruned weights continue to receive gradient updates but with scaled
down magnitudes, and therefore are, to some extent, promoted to decay, resulting to a more stable (but not
completely fixed) mask.

In our experiments (Section 6.5.1) we find that scaling the gradients becomes beneficial when targeting very
high sparsity ratios (e.g. 98% and above) where, due to having very few active weights, too frequent mask
variations appear to destabilize the network. For more conservative ratios, using # < 1 appears not to improve
the results and even lead to a small decline in accuracy at some cases.

To this end, based on experimental evidence, essentially relying on a profiling approach, we define an “au-
tomatic” way to set . In more detail, we select § = g(S) as a simple step function, where § = 0.5 if the
final target sparsity S is over 95% and 6 = 1 when S < 95%. The value of 0 is selected at the beginning
of training and remains constant throughout the training process. Interestingly, no performance gains were
observed by adopting more complex scheduling tactics (e.g. having a gradual smooth transition over 6 from
1 to a lower value) during training. Note that ideally a more complex function could be defined given an
exhaustive profiling procedure, but we considered such ideas out of scope for this work.

6.4 Application on Pruning Frameworks

Our proposed sparse training module is versatile and not restricted to a particular pruning framework. We
will demonstrate its effectiveness using two distinct frameworks, both a global and a layer-wise magnitude
pruning backbone, as described bellow.

Global Magnitude Pruning: Most pruning methods that utilize the STE (or some variant of it) use
global thresholding, in the sense that a single threshold T is selected for all layers, computed by sorting
all weights, in order to prune the network up-to a specified sparsity ratio [44, 86, 84]. Common practice is
to incrementally increase the requested ratio throughout the training process, thus giving the network time
to adjust to different sparsity levels [98, 50]. A popular sparsity schedule was proposed in [98], where the
network is trained densely for a small number of warm up epochs followed by a cubical increase of the sparsity
ratio, until it reaches the final target ratio, which is then kept constant for the rest of the training epochs.
For simplicity and since the exact sparsity schedule is not the focus of this work, we reach the final target
ratio at 50% of the epochs, without having a densely training warm up phase which we found not to have an
effect to the final performance.

Layer-wise Magnitude Pruning: To further reveal the efficacy of Feather, we adopted a considerably
different pruning framework and pair it with the proposed module. We considered the Adaptive Sparsity Loss
framework (ASL) [73], which tackles the magnitude pruning problem in an explicit layer-wise formulation.
In particular, we employ our enhanced version of the framework, as presented in Chapter 5. As explained in
detail in the aforementioned part of this work, ASL considers the per-layer pruning thresholds as trainable
parameters which are included in an additional loss term (Sparsity Loss), constructed based on assumptions
for the per-layer distributions. The thresholds are consequently learned during training by minimizing the
extra loss term, resulting into a learned non-uniform per-layer sparsity. The overall sparsity of the DNN is
constrained, via the loss, to a specific target sparsity. It should be noted that STE is also a core element
of this approach. In addition to the improvements proposed in Chapter 5, to correct any deviations of the
measured (actual) sparsity $({r;}) from the estimated one, §({r;}) , we corrected the per-layer trained r; by
adding a non differentiable term d; to it, such that 5(r; +d;) = §(r;). We compute d; by sorting the per-layer
weights. This additional step, although generally has a very minor effect to the final results of the method,

69

Chapter 6. Feather: An Elegant Solution to Effective DNN Sparsification

alleviates the need for the sparsity fine-tuning phase of Section 5.3.6. We refer to this version of the method
as ASL+.

6.5 Experimental Evaluation

The present section provides the experimental validation of the proposed method’s effectiveness. First,
we perform ablation studies to showcase the efficacy of each element of our approach. Then, we provide
comparisons with relevant baselines and SoA unstructured pruning algorithms. Specifically, we experiment
with modern compact architectures ResNet-20 [31], MobileNetV1 [35] and DenseNet40-24 [36] on CIFAR-
100! [47]. Furthermore, we provide large-scale experiments on the ImageNet[13] dataset using the ResNet50
[31] architecture in order to further verify the generalization abilities of our method and its performance edge
over the current SoA. The reported results are obtained using SGD optimizer along with a Cosine Annealing
scheduler, while the training hyperparameters are the typically used in literature for such settings (described
in detail in the appendix).

6.5.1 Ablation Studies

The ablation studies were performed on the CIFAR-100 dataset, using the global magnitude pruning frame-
work as the backbone to the Feather pruning module. We note that similar behaviors were observed using
the Feather in conjunction with the layer-wise ASL+ framework. All figure data points represent averages of
3 runs and the corresponding standard deviations are shown as shaded regions.

Impact of Thresholding Operator: The effectiveness of the proposed thresholding function (with p = 3) is
empirically evaluated and compared against that of the hard and soft threshold functions in Figure 6.5.1, while
no gradient scaling was considered for this experiment (we used typical STE). The proposed threshold enables
the training of more accurate sparse networks, especially at high pruning ratios (above 95%). Notably, the
hard thresholding approach achieves considerably low results with the MobileNetV1 network, while the soft
threshold with the other two. Querall, our approach consistently leads to better trained networks, regardless
the architecture and the sparsity ratio, supporting our claims of effectively combining the strengths of both
soft and hard thresholding.

ResNet-20 MobileNetV1 DenseNet40-24
75 72 -
701
70

> 651
e 68 1
S 60
o
O
< 551 66

50 64 50 -

90 92.5 95 96.5 98 99 90 92.5 95 96.5 98 99 90 92.5 95 96.5 98 99
Sparsity Ratio (%)
—»— Hard Th. Soft Th. —4— Proposed Th.

Figure 6.5.1: Study of the effect of the thresholding operator on the final sparse model accuracy. The
proposed threshold steadily outperforms the hard and soft operators.

Impact of Gradient Scaling: In Figure 6.5.2 we investigate the relation between the value of the parameter
0 € [0,1], that scales the gradient of the pruned weights, and the final model accuracy when requesting
different sparsity ratios. Note that the under-performing case of # = 0 is equivalent to a non-STE variant.
Across all considered models, a clear trend can be seen; When targeting lower sparsity levels, best results are
achieved with values of 6 close to unity, whereas at more extreme sparsity ratios (such as 98% and 99%) the
optimal values of 6 seem to shift towards the middle of its range.

IThe channels of ResNet-20 are doubled for the experiments on CIFAR, as also done in [97, 87].

70

6.5. Experimental Evaluation

ResNet-20 MobileNetV1 DenseNet40-24
98% Sparsity 99% Sparsity 98% Sparsity 99% Sparsity 98% Sparsity 99% Sparsity
70 654 70
- ‘_\X P 68 1
i y 65 i
.. 68 60 //\\Q 68 1 60
§ 66 66
3 551 66 1 60 o o\ |55
1)
< 641 ‘
50 1 64 s 1 62 50 A
62 \ ‘ = ‘ .
0 0250507510 0 025050751.0 0 0250507510 0 0250507510 0 025050.751.0 0 0.250.50.751.0
6
—»— Hard Th. —o— Soft Th. —4— Proposed Th.

Figure 6.5.3: Gradient scaling improves the final accuracy at high sparsity, regardless the thresholding
operator, while maximum performance is achieved if combined with the proposed threshold.

This observed dependency is the motivation behind an automatic selection of 6, as described in Section 6.3.2,
where # = 0.5 for S > 95% and 6 = 1 otherwise. Note that this selection just aligns with the reported trend
and is not optimal for every case reported. Despite this being a very “crude” selection, it is very effective, as
the forthcoming experimental evaluations hint. Nonetheless the takeaway of this experiment is not a simple
function of two modes, but bringing this relation to the spotlight. Based on this observation, we pave the way
towards more complex functions or, more interestingly, towards having different scales per layer, relying on
the per-layer sparsity rather than the overall sparsity. The later idea, a possible future direction of practical
value, simply states that under-pruned layers can be more flexible to sparsity pattern variations than the
overly pruned ones.

90% Sparsity 95% Sparsity 98% Sparsity 99% Sparsity
74 I
744 70 \ 68 ‘
721 68 64
§72—
5 66 60 A
) 70
<70 641 56
o1 68 621 521
0 025 05 075 1.0 0 0.25 05 0.75 1.0 0 025 05 075 1.0 0 0.25 05 0.75 1.0
]
—*— ResNet-20 MobileNetV1 —4— DenseNet40-24

Figure 6.5.2: Study of the effect of gradient scaling. Under conservative final sparsity, 6 near unity is
preferable, while when targeting high sparsity, models benefit from 6 near the middle of its range.

Gradient Scaling under different Thresholding Functions: Finally, we compare the impact of gradient
scaling using the three different types of thresholding operators. Figure 6.5.3 shows that, regardless the choice
of operator, using a scale § € (0,1) is beneficial to the final accuracy at the high sparsity regimes. Nevertheless,
our threshold maintains the lead in performance compared to the two standard ones.

6.5.2 Comparison to SoA

CIFAR-100: For these experiments, we directly compare our results with the ones of ST-3 [86] and Spartan
[84], being the two most recent and best performing sparse training approaches. The methods are both dense-
to-sparse, global magnitude based pruning algorithms, which gradually introduce sparsity during training,
utilizing variants of the STE. Specifically, ST-3 adopts soft thresholding and a weight rescaling technique
similar to the one used by dropout [79], while Spartan computes a soft top-k mask by solving a regularized
Optimal Transportation problem, therefore is more computationally expensive than our approach.

In particular, Table 6.1 provides the results obtained on CIFAR-100 using the aforementioned methods over
three different architectures and four different levels of sparsity. The reported results correspond to averages

71

Chapter 6. Feather: An Elegant Solution to Effective DNN Sparsification

[Ratio | 90% [9% | 98% | 9% |
ResNet-20 (1.096M Params): 73.59 +0.44
ST-3 [86] 72.81 +0.13 71.72 +0.20 | 67.53 +0.53 58.32 +0.17
Spartan [84] 72.56 +0.35 71.60 +0.40 67.27 +0.31 61.70 +o0.21
| Feather-Global | 73.74 x0.17 | 72.53 +0.32 | 69.83 £0.14 | 65.55 +0.25 |
Feather-ASL+ 72.86 +0.10 72.42 +o0.17 69.76 +0.09 64.95 +0.47
MobileNetV1 (3.315M Params): 71.15 +0.17
ST-3 [86] 70.94 +0.25 70.44 +0.23 | 69.40 +0.06 66.63 +0.15
Spartan [84] 70.52 +0.51 69.01 +o.11 65.52 +0.24 60.65 +0.22
| Feather-Global | 71.55 £0.30 | 71.03 020 | 69.44 £0.29 | 67.64 £0.45 |
Feather-ASL+ 71.10 +0.31 71.26 +0.10 | 69.42 +0.12 | 67.86 +0.03
DenseNet40-24 (0.714M Params): 74.70 +o0.51
ST-3 [86] 72.56 +0.31 71.21 +0.35 | 65.48 +0.18 | 56.18 +0.60
Spartan [84] 73.13 +0.25 71.61 +0.04 65.94 +0.07 58.64 +0.18
| Feather-Global | 73.75 +0.36 | 72.36 £0.21 | 69.06 +0.23 | 63.40 +0.44 |
Feather-ASL+ | 73.92 +0.19 | 72.47 +0.12 | 69.08 +0.19 | 62.94 +0.14

Table 6.1: Comparison of Top-1 accuracy on CIFAR-100.

| Ratio | 90% | 95% | 98% | 99% |
ResNet-50 (25.6M Params): 77.10

GMP [98] 73.91 [70.59 [57.90 | 44.78
DNW [91] 74.00 | 68.30 | 58.20 -
STR [50] 74.31 | 70.40 | 61.46 | 51.82
ProbMask [97] | 74.68 | 71.50 | 66.83 | 61.07
OptG [95] 74.28 | 7245 | 67.20 | 62.10
ST-3 [86] 76.03 | 74.46 | 70.46 | 63.88
Spartan [84] 76.17 | 74.68 - 63.87

| Feather-Global | 76.93 | 75.27 | 72.92 | 68.85 |

Table 6.2: Comparison of Top-1 accuracy on ImageNet.

of 3 runs with the corresponding standard deviations. The results demonstrate that sparse training with
Feather yields steadily more accurate models compared to both SoA methods, either using the simple global
pruning approach or combined with ASL+. Notably, the gap in accuracy between our approach and that of the
next best performing baseline grows up to 4% when considering the 99% sparse ResNet-20 and DenseNet40-
24 models. Another interesting remark is that Feather can result to 90% sparse ResNet-20 and MobileNetV1
models with slightly better generalization accuracies that those of their dense counterparts, trained using
the same number of epochs. The last remark hints that a well designed sparse training method can even be
beneficial, not only for producing compact models, but also for improving the generalization performances,
when considering relatively conservative sparsity ratios. Note that similar SoA results are observed using
both tested backbones, a point that further validates Feather’s versatility.

ImageNet: For the ImageNet experiments we include results from literature from an extended number of
pruning methods achieved using the same number of epochs (100) and data augmentation. In particular,
results from the relevant methods GMP [98], DNW [91], STR [50], ProbMask [97], OptG [95], ST-3 [86] and
Spartan [84] are presented in Table 6.2. We adopt the global pruning scheme combined with Feather module,
being conceptually the simplest approach, in order to highlight our method’s effectiveness compared to more
sophisticated baselines. As we can see, it provides considerably better results than those from previous
SoA, especially at very challenging pruning ratios over 98%. We want to emphasize that the improved
performance with Feather does not come at the cost of higher training overheads or the need for complicated
hyperparameter settings, in contrast to certain baselines (e.g. [50, 97]). Instead, the resulting accuracy gains
can be attributed to the simple, yet carefully formulated modifications of the proposed module that fully
utilizes the STE-based sparse training approach.

72

6.6. Conclusions

6.6 Conclusions

This work proposes Feather, an effective and efficient sparse training module that can be easily applied to
pruning frameworks. In particular, as demonstrated by extensive experiments on CIFAR and ImageNet
datasets, using both a global and a layer-wise approach, it results to improving the previous SoA results,
especially at high pruning ratios. Furthermore, ours method’s success indicates the large potential of properly
understanding and consequently improving the sparse training dynamics using an STE based approach, that
despite its simplicity is shown to be highly effective.

6.7 Appendix

6.7.1 Training Hyperparameters

| Dataset | CIFAR-100 | ImageNet
Epochs 160 100
Batch Size 128 256
Weight Decay 5e-4 5e-5
Optimizer SGD SGD
LR 0.1 0.2
LR-Scheduler Cosine Cosine+Warmup
Momentum 0.9 0.9
Label Smoothing - 0.1

Table 6.3: Training hyperparameters used for all our experiments on CIFAR-100 and ImageNet datasets.

Table 6.3 summarizes the training hyperparameters used for our experiments on CIFAR-100 [47] and Ima-
geNet [13] datasets. The chosen hyperparameters are selected based on standard practices for the particular
datasets and are kept the same regardless the network architecture or the target sparsity ratio (in contrast
to e.g. [50, 86] where the Weight Decay is adjusted among different runs, based on the target sparsity ratio).
By adopting commonly used hyperparameters and keeping them unchanged among all our experiments we
opted to show that our method is able to achieve SoA results without the need of fine-tuning and complicated
training configurations.

6.7.2 TImpact of Threshold’s p-value

1.0

0.8 1

0.6 1

Pr(w)

0.4+

Accuracy
(=)}
o

f

Soft Th. 0.2
p=2Th.
Proposed Th. (p=3)
1 -4 p=4Th.
—— Hard Th.

%]
v

t

0.0

%
o

-0.2 T T T T T
90 91 92 93 94 95 96 97 98 99 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sparsity Ratio (%) w

(a) (b)

Figure 6.7.1: A study of the effect of the p value of the proposed family of thresholds on the final sparse
model accuracy. Results from ResNet-20 trained on CIFAR-100 (a) and the corresponding thresholds used

(b).

The proposed threshold with p = 3 is compared with the ones with p = 2 and p = 4 in Figure 6.7.1. We

73

Chapter 6. Feather: An Elegant Solution to Effective DNN Sparsification

observe that p = 3 is preferable to p = 2 based on the resulting final accuracy while p = 4 results to no further
improvement (Figure 6.7.1a). Due to that, p = 3 is chosen to give a fine balanced threshold between the two
extremes, Hard and Soft thresholds respectively, although, as shown, good results are obtainable even with
values of p near 3. A reasonable explanation for the slight under-performance using p = 2 is that the resulting
threshold still leads to a considerable amount of shrinkage (Figure 6.7.1b), thus induces more bias between
the thresholded weights and their dense counterparts. Notably, even for p = 2 the results are favorable
compared to those obtained by using the Hard and Soft Thresholds, further validating the robustness of our
family of threshold operators.

6.7.3 Stability of the Sparsity Mask vs. Gradient Scaling

Pearson correlation

0 20 40 60 80 100 120 140 160

Epoch

Figure 6.7.2: Plot of Pearson correlation coefficients between the sparsity mask obtained at the end of each
epoch and the mask at the end of training, for varying values of the gradient scaling parameter 6. Results
from ResNet-20 trained on CIFAR-100.

Figure 6.7.2 empirically validates that the gradient scaling parameter 6 € [0, 1] influences the stability of the
sparsity mask, i.e. the mask that indicates which parameters are pruned and which are active during sparse
training. Specifically, for each experiment, using a specified (constant) value for 4, the Pearson correlation
coefficients between the mask at the end of every training epoch and the final mask, obtained at the end of
training, are shown. Experiments with € near zero result to curves that converge to 1 more rapidly, compared
to the ones from experiments with 6 close to unity. This indicates that when using 6 near zero (or at the
extreme case 6 = 0) the sparsity mask (and thus the sparsity pattern) is stabilized earlier during the training
process, compared to when using larger values of . Based on our empirical analysis, the suitable amount of
stability for the sparsity mask relates to the sparsity target; The higher the requested final sparsity the more
beneficial is to keep the mask more stable (up to a reasonable extent) to avoid destabilizing the highly pruned
network. We note that the mask’s stability is also studied in [84], where a soft top-k mask is computed by
solving a regularized Optimal Transportation problem in order to regulate its stability, although our approach
using gradient scaling (combined with the proposed threshold operator) is considerably less computationally
expensive while resulting to favorable final accuracies.

74

6.7. Appendix

6.7.4 Feather Improves Pruning Backbones

70 70
68

5% >
ol © 66
< < 64

o
=)

o

N

v
©

| —% Feather-GMP
GMP

—»— Feather-ASL+
ASL+

v
v

91 92 93 94 95 96 97 98 99 % 91 92 93 94 95 96 97 98 99
Sparsity Ratio (%) Sparsity Ratio (%)

(a) (b)

o
o

Figure 6.7.3: Feather improves the accuracy of common sparse training backbones: (a) GMP, a uniform
layer-wise sparsity pruning backbone (b) the ASL+ framework. Results from ResNet-20 trained on
CIFAR-100.

Combining the Feather module with existing backbones results to more accurate networks, as shown in Figure
6.7.3. In 6.7.3a Feather is used to improve the accuracy of GMP [98], a layer-wise magnitude pruning backbone
that prunes all layers® to the same (uniform) amount of sparsity, gradually increasing the pruning ratio. Our
module significantly improves the resulting accuracy when combined with the very simplistic GMP backbone.
Furthermore, in 6.7.3b we compare the accuracy of the sparse models obtained with Feather combined with
ASL+ [73] and the ones using only ASL+, showing that our module leads to accuracy improvements for the
challenging sparsity ratios (95% and above).

6.7.5 MobileNetV1 on ImageNet

[Ratio | 89% | 941% |
MobileNetV1 (4.21M Params): 71.95
GMP [98] 61.80 -
STR [50] 62.10 -
ProbMask [97] | 65.19 60.10
ST-3 [86] 66.67 61.19

| Feather-Global | 68.13 | 63.63 |

Table 6.4: Top-1 accuracy of MobileNetV1 on ImageNet.

In Table 6.4 we provide additional experiments on ImageNet [13] using the MobileNetV1 [35] architecture.
More specifically, we compare the accuracies obtained by using Feather combined with the global pruning
backbone with the ones from GMP [98], STR [50], ProbMask [97] and ST-3 [86] which report results for the
89% and 94.1% sparsity ratios, using the same number of epochs (100) and data augmentation as in our
experiments. Our approach surpasses the previous SoA by 1.46% and 2.44% Top-1 accuracy at the 89% and
94.1% sparsity ratios respectively, a result that further validates Feather’s effectiveness and generalization
abilities on large datasets with different model architectures.

2With the exception of the first convolutional layer, which was left dense when using GMP in our experiments due to having
a very small number of parameters.

75

Chapter 6. Feather: An Elegant Solution to Effective DNN Sparsification

6.7.6 Accuracy vs. FLOP Measurements

75 1
70 4
g
E 65 7
3 -o— GMP
2 60 —eo— DNW
a —¥— STR
L 55 4 —A— Probmask
—— OptG
50 4 —&— ST-3
Spartan
45 - —>& Feather-Global
50 100 150 200 300 500 800

MFLOPs

Figure 6.7.4: Top-1 accuracy vs. FLOPs of ResNet-50 on ImageNet.

The Feather module, combined with the global pruning backbone, leads to favorable Top-1 accuracy results
over the ones from the baselines under similar FLOPs requirements of the sparsified ResNet-50 [31], as shown
by the frontier curve in Figure 6.7.4. We note that the per-layer sparsity distribution obtained by the global
pruning backbone by default does not prioritize FLOPs reduction, while layer-wise methods such as GMP
[98] and STR [50] tend to result to sparse models with minimum FLOPs for a given sparsity ratio, although
at a cost of considerable accuracy drops.

While extended analysis on optimizing FLOPs for a given sparsity target is not the scope of this work,
to further showcase the efficacy of Feather we experimented with biasing the global pruning backbone to-
wards pruning earlier layers more aggressively, as suggested in [86]. With the FLOPs-biased global pruning
backbone, training the ResNet-50 on ImageNet at 99% sparsity, Feather resulted in a model with 67.2%
Top-1 accuracy, now requiring only 42MFLOPs. Therefore, the superior accuracy of our sparse model
was greatly preserved, still achieving the best accuracy (by a 3.3% margin) among the baselines at the 99%
ratio, now for considerably fewer FLOP requirements, matching those of GMP (41MFLOPs), the baseline
resulting to the fewer FLOPs, although having accuracy more than 20% higher. Having showcased Feather’s
great potential at obtaining models with superior accuracy and FLOPs, we leave further experimentation
(possibly with more sophisticated backbones) as future work.

76

Chapter 7

Conclusion and Future Work

7.1 Conclusion @ i i i i i e e e e e e e e e e e
7.2 Thoughts on Future Work 0 i ittt

7

Chapter 7. Conclusion and Future Work

7.1 Conclusion

In this thesis, we address the problem of compressing deep neural networks, following the weight pruning
approach. In order to gain a thorough understanding over the existing compression approaches and eventually
introduce novel pruning schemes, after summarizing the required background knowledge on machine learning
in Chapter 3, we covered the relevant literature in Chapter 4. Our aim was the development of methods that
minimize the memory and computational requirements of DNN models by inducing unstructured sparsity
on their weight tensors, while preserving as much of the original accuracy as possible. Key requirement for
our methods was to impose minimal computational overheads and to be able to perform the sparsification
process within the normal course of training.

To this end, in Chapter 5 we experimented with performing the weight pruning in a layer-wise fashion,
modeling the weights per-layer using differentiable probability distribution functions in order to automatically
learn the pruning thresholds through the optimization process. Specifically, we showcased that the combined
use of the Gaussian and Laplace distributions is adequate for this purpose, resulting into effective non-uniform
layer-wise sparsity budgets, as demonstrated by extensive experiments on the CIFAR and ImageNet datasets.

Subsequently, in Chapter 6, motivated by the recent popularity of the Straight-Through Estimator in the
context of sparse training, we focused our attention on improving its two main components, i.e. the thresh-
olding operator and the gradient manipulation during the forward and backward training steps, respectively.
We introduced a family of thresholding operators for the STE, bridging the popular Hard and Soft operators.
Moreover, gradient scaling was proposed as a way to control the stability of the pruning procedure. The
resulting module, Feather, thoroughly tested on CIFAR and ImageNet, improved the prior state-of-the-art
results, by a considerable margin especially at high sparsity regimes.

7.2 Thoughts on Future Work

Towards further improving the schemes proposed in this thesis, a number of areas of future work have been
highlighted, which are briefly summarized bellow:

e Enhancing the sparsity estimation accuracy of our layer-wise pruning approach. As dis-
cussed in Section 5.6, there is still room for reducing the modeling error of the per-layer weight distribu-
tions, either by enforcing them to resemble more one of the two modeling types used, or by considering
additional distribution types.

e Gaining a deeper understanding of the STE sparse training dynamics. Motivated by the
success of the Feather module, an intriguing research direction would be to further shed light into
the theory behind the application of the STE and its variants for the purpose of DNN sparsification,
focusing on mathematically explaining the effectiveness of the proposed thresholding approach (Section
5.3.2).

e Developing more sophisticated gradient scaling schemes. Despite effectiveness of the current
simplistic approach, an adaptive algorithm for selecting # dynamically at each training iteration step
could be developed, as hinted in Section 6.5.1, with the purpose of providing a fully automated solution
for every model and sparsity scenario considered.

78

Bibliography

1]
2]
3]
[4]
[5]
[6]
7]

8]
[9]
[10]
[11]

[12]

[13]
[14]

[15]

[16]

[17]
[18]

[19]

Deem Alsaleh and Souad Larabi-Marie-Sainte. “Arabic text classification using convolutional neural
network and genetic algorithms”. IEEE Access 9 (2021), pp. 91670-91685.

Yu Bai, Yu-Xiang Wang, and Edo Liberty. “Proxquant: Quantized neural networks via proximal oper-
ators”. arXiv preprint arXiv:1810.00861 (2018).

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. “Estimating or Propagating Gradients Through
Stochastic Neurons for Conditional Computation”. arXiv preprint arXiv:1308.3432 (2013).
Christopher M Bishop and Nasser M Nasrabadi. Pattern Recognition and Machine Learning. Springer,
2006.

Davis Blalock et al. “What is the State of Neural Network Pruning?” In: Proceedings of Machine
Learning and Systems (MLSys). 2020.

Facundo Bre, Juan M Gimenez, and Victor D Fachinotti. “Prediction of wind pressure coefficients on
building surfaces using artificial neural networks”. Energy and Buildings 158 (2018), pp. 1429-1441.
Alon Brutzkus et al. “SGD Learns Over-parameterized Networks that Provably Generalize on Linearly
Separable Data”. In: Proceedings of the International Conference on Learning Representations (ICLR).
2018.

Cristian Bucilud, Rich Caruana, and Alexandru Niculescu-Mizil. “Model Compression”. In: Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2006.
Peter Bithlmann and Sara Van De Geer. Statistics for High-Dimensional Data: Methods, Theory and
Applications. Springer Science & Business Media, 2011.

Wenlin Chen et al. “Compressing Neural Networks with the Hashing Trick”. In: Proceedings of the
International Conference on Machine Learning (ICML). 2015.

Yu Cheng et al. “Model Compression and Acceleration for Deep Neural Networks: The Principles,
Progress, and Challenges”. IEEE Signal Processing Magazine 35.1 (2018), pp. 126-136.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “Binaryconnect: Training deep neural
networks with binary weights during propagations”. In: Advances in Neural Information Processing
Systems. 2015.

Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2009.

Lei Deng et al. “Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive
Survey”. Proceedings of the IEEE 108.4 (2020), pp. 485-532.

Arden Dertat. Applied Deep Learning - Part 4: Convolutional Neural Networks. URL:
https://towardsdatascience.com /applied-deep-learning-part-4-convolutional-neural-networks-
584bc134cle2.

Caiwen Ding et al. “CirCNN: Accelerating and Compressing Deep Neural Networks Using Block-
Circulant Weight Matrices”. In: Proceedings of the IEEE/ACM International Symposium on Microar-
chitecture. 2017.

Tim Dockhorn et al. “Demystifying and Generalizing BinaryConnect”. In: Advances in Neural Infor-
mation Processing Systems. 2021.

David L Donoho. “De-noising by soft-thresholding”. IEEE Transactions on Information Theory 41.3
(1995), pp. 613-627.

Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hypothesis: Finding Sparse, Trainable
Neural Networks”. In: Proceedings of the International Conference on Learning Representations (ICLR).
2018.

79

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Bibliography

120]
21]
[22]
23]
[24]
23]
126]
[27]
28]
120]
[30]
31]
1321
3]
341
351
36]
137]
[38]
139]

[40]

[41]

[42]

[43]

[44]

Jonathan Frankle et al. “Pruning Neural Networks at Initialization: Why Are We Missing the Mark?”
In: Proceedings of the International Conference on Learning Representations (ICLR). 2020.

Trevor Gale, Erich Elsen, and Sara Hooker. “The State of Sparsity in Deep Neural Networks”. arXiv
preprint arXiv:1902.09574 (2019).

Trevor Gale et al. “Sparse GPU Kernels for Deep Learning”. In: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis. 2020.

Amir Gholami et al. “A Survey of Quantization Methods for Efficient Neural Network Inference”. In:
Low-Power Computer Vision. Chapman and Hall/CRC, 2022, pp. 291-326.

Athanasios Glentis Georgoulakis, George Retsinas, and Petros Maragos. “Feather: An Elegant Solution
to Effective DNN Sparsification”. In: Proceedings of the British Machine Vision Conference (BMVC).
2023.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.

J Gou et al. “Knowledge Distillation: A Survey”. International Journal of Computer Vision 129 (2021),
pp. 1789-1819.

Katsuyuki Hagiwara. “Bridging between Soft and Hard Thresholding by Scaling”. IFICE Transactions
on Information and Systems 105.9 (2022), pp. 1529-1536.

Song Han, Huizi Mao, and William J Dally. “Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding”. arXiv preprint arXiv:1510.00149 (2015).
Song Han et al. “Learning both weights and connections for efficient neural network”. In: Advances in
Neural Information Processing Systems. 2015.

Babak Hassibi and David Stork. “Second order derivatives for network pruning: Optimal brain surgeon”.
In: Advances in Neural Information Processing Systems. 1992.

Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural network”. arXiv
preprint arXiv:1503.02531 (2015).

Geoffrey Hinton et al. “Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared
Views of Four Research Groups”. IEEE Signal Processing Magazine 29.6 (2012), pp. 82-97.

Torsten Hoefler et al. “Sparsity in deep learning: Pruning and growth for efficient inference and training
in neural networks”. The Journal of Machine Learning Research 22.1 (2021), pp. 10882-11005.
Andrew G Howard et al. “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications”. arXiv preprint arXiv:1704.04861 (2017).

Gao Huang et al. “Densely Connected Convolutional Networks”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2017.

Itay Hubara et al. “Binarized Neural Networks”. In: Advances in Neural Information Processing Systems.
2016.

Forrest N Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB
model size”. arXiv preprint arXiv:1602.07360 (2016).

Yani Andrew Ioannou. “Structural Priors in Deep Neural Networks”. PhD thesis. University of Cam-
bridge, UK, 2018.

Sergey loffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network Training by Re-
ducing Internal Covariate Shift”. In: Proceedings of the International Conference on Machine Learning
(ICML). 2015.

Berivan Isik, Tsachy Weissman, and Albert No. “An Information-Theoretic Justification for Model
Pruning”. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (AIS-
TATS). 2022.

Benoit Jacob et al. “Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-
Only Inference”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2018.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. “Speeding up Convolutional Neural Networks
with Low Rank Expansions”. arXiv preprint arXiv:1405.3866 (2014).

Siddhant Jayakumar et al. “Top-KAST: Top-K Always Sparse Training”. In: Advances in Neural Infor-
mation Processing Systems. 2020.

80

Bibliography

[45]

[46]
[47]
48]
[49]
501
51]
[52]
53]
[54]
[55]

[56]
[57]

[58]
[59]
[60]

[61]

[62]

[63]

[64]
[65]
|66]
[67]

[68]

[69]

[70]
[71]

Jiwon Jeong. The Most Intuitive and Easiest Guide for Convolutional Neural Network. URL:
https:/ /towardsdatascience.com /the-most-intuitive-and-easiest-guide-for-convolutional-neural-
network-3607be47480.

Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In: Proceedings
of the International Conference on Learning Representations (ICLR). 2015.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Master’s thesis. Department
of Computer Science, University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet, Classification with Deep Convolu-
tional Neural Networks”. In: Advances in Neural Information Processing Systems. 2012.

Debasis Kundu. “Discriminating between normal and Laplace distributions”. Advances in Ranking and
Selection, Multiple Comparisons, and Reliability: Methodology and Applications (2005), pp. 65-79.
Aditya Kusupati et al. “Soft Threshold Weight Reparameterization for Learnable Sparsity”. In: Pro-
ceedings of the International Conference on Machine Learning (ICML). 2020.

Vadim Lebedev and Victor Lempitsky. “Fast ConvNets Using Group-wise Brain Damage”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

Vadim Lebedev et al. “Speeding-up convolutional neural networks using fine-tuned cp-decomposition”.
arXiv preprint arXiv:1412.6553 (2014).

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. Nature 521.7553 (2015), pp. 436—
444.

Yann LeCun, John Denker, and Sara Solla. “Optimal Brain Damage”. In: Advances in Neural Informa-
tion Processing Systems. 1989.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. “Snip: Single-shot network pruning based
on connection sensitivity”. arXiv preprint arXiv:1810.02340 (2018).

Hao Li et al. “Pruning Filters for Efficient ConvNets”. arXiv preprint arXiv:1608.08710 (2016).

Tailin Liang et al. “Pruning and quantization for deep neural network acceleration: A survey”. Neuro-
computing 461 (2021), pp. 370-403.

Haoyang Liu and Rina Foygel Barber. “Between hard and soft thresholding: optimal iterative thresh-
olding algorithms”. Information and Inference: A Journal of the IMA 9.4 (2020), pp. 899-933.
Zhuang Liu et al. “Learning Efficient Convolutional Networks through Network Slimming”. In: Proceed-
ings of the IEEE International Conference on Computer Vision (CVPR). 2017.

Zhuang Liu et al. “Rethinking the Value of Network Pruning”. In: Proceedings of the International
Conference on Learning Representations (ICLR). 2018.

Christos Louizos, Max Welling, and Diederik P Kingma. “Learning Sparse Neural Networks through
L 0 Regularization”. In: Proceedings of the International Conference on Learning Representations
(ICLR). 2018.

Yongxi Lu et al. “Fully-adaptive Feature Sharing in Multi-Task Networks with Applications in Person
Attribute Classification”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2017.

Huizi Mao et al. “Exploring the Granularity of Sparsity in Convolutional Neural Networks”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
2017.

Jerrold E Marsden and Anthony Tromba. Vector calculus. Macmillan, 2003.

MathWorks: Overfitting. URL: https://www.mathworks.com/discovery/overfitting.html.

Tom M Mitchell. Machine Learning. McGraw-Hill Education, 1997.

Hesham Mostafa and Xin Wang. “Parameter Efficient Training of Deep Convolutional Neural Networks
by Dynamic Sparse Reparameterization”. In: Proceedings of the International Conference on Machine
Learning (ICML). 2019.

Alexander Novikov et al. “Tensorizing Neural Networks”. In: Advances in Neural Information Processing
Systems. 2015.

NVIDIA A100 Tensor Core GPU Architecture. URL: https://images.nvidia.com/aem-dam /en-
zz/Solutions/data-center /nvidia-ampere-architecture-whitepaper.pdf.

NVIDIA ¢uSPARSE Library. URL: https://docs.nvidia.com /cuda/pdf/CUSPARSE _ Library.pdf.
NVIDIA TensorRT. URL: https://docs.nvidia.com/deeplearning/tensorrt /pdf/ TensorRT-Developer-
Guide.pdf.

81

https://towardsdatascience.com/the-most-intuitive-and-easiest-guide-for-convolutional-neural-network-3607be47480
https://towardsdatascience.com/the-most-intuitive-and-easiest-guide-for-convolutional-neural-network-3607be47480
https://www.mathworks.com/discovery/overfitting.html
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/pdf/CUSPARSE_Library.pdf
https://docs.nvidia.com/deeplearning/tensorrt/pdf/TensorRT-Developer-Guide.pdf
https://docs.nvidia.com/deeplearning/tensorrt/pdf/TensorRT-Developer-Guide.pdf

Bibliography

72]
73]
[74]
73]
[76]
[77]
78]
[79)

[80]

[81]
[82]
[83]
[84]
[85]

|86]

[87]

[88]
[89]
[90]
[91]
[92]
193]
[94]
[95]
[96]

[97]

Alex Renda, Jonathan Frankle, and Michael Carbin. “Comparing Rewinding and Fine-tuning in Neural
Network Pruning”. arXiv preprint arXiv:2003.02389 (2020).

George Retsinas et al. “Online Weight Pruning Via Adaptive Sparsity Loss”. In: Proceedings of the
IEEE International Conference on Image Processing (ICIP). 2021.

Roberto Rigamonti et al. “Learning Separable Filters”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2013.

Sebastian Ruder. “An overview of gradient descent optimization algorithms”. arXiv preprint
arXiv:1609.04747 (2016).

Sebastian Ruder. An overview of gradient descent optimization algorithms. URL:
https://www.ruder.io/optimizing-gradient-descent.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representations by back-
propagating errors”. Nature 323.6088 (1986), pp. 533—536.

Sidak Pal Singh and Dan Alistarh. “Woodfisher: Efficient second-order approximation for neural network
compression”. In: Advances in Neural Information Processing Systems. 2020.

Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks From Overfitting”. The
Journal of Machine Learning Research 15.1 (2014), pp. 1929-1958.

Saha Sumit. A comprehensive quide to convolutional neural networks - the eli5 way. URL:
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-
way-3bd2b1164a53.

Wonyong Sung, Sungho Shin, and Kyuyeon Hwang. “Resiliency of Deep Neural Networks under Quan-
tization”. arXiv preprint arXiv:1511.06488 (2015).

Vivienne Sze et al. “Efficient Processing of Deep Neural Networks: A Tutorial and Survey”. Proceedings
of the IEEE 105.12 (2017), pp. 2295-2329.

Cheng Tai et al. “Convolutional neural networks with low-rank regularization”. arXiv preprint
arXiv:1511.06067 (2015).

Kai Sheng Tai, Taipeng Tian, and Ser Nam Lim. “Spartan: Differentiable Sparsity via Regularized
Transportation”. In: Advances in Neural Information Processing Systems. 2022.

Hidenori Tanaka et al. “Pruning neural networks without any data by iteratively conserving synaptic
flow”. In: Advances in Neural Information Processing Systems. 2020.

Antoine Vanderschueren and Christophe De Vleeschouwer. “Are Straight-Through gradients and Soft-
Thresholding all you need for Sparse Training?” In: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV). 2023.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. “Picking Winning Tickets Before Training by Pre-
serving Gradient Flow”. In: Proceedings of the International Conference on Learning Representations
(ICLR). 2020.

Chaoqgi Wang et al. “EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis”. In:
Proceedings of the International Conference on Machine Learning (ICML). 2019.

Peisong Wang et al. “Two-Step Quantization for Low-Bit Neural Networks”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2018.

Wei Wen et al. “Learning Structured Sparsity in Deep Neural Networks”. In: Advances in Neural In-
formation Processing Systems. 2016.

Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. “Discovering Neural Wirings”. In: Advances
in Neural Information Processing Systems. 2019.

Shixing Yu et al. “Hessian-Aware Pruning and Optimal Neural Implant”. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 2022.

Xiyu Yu et al. “On Compressing Deep Models by Low Rank and Sparse Decomposition”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.

Chiyuan Zhang et al. “Understanding deep learning (still) requires rethinking generalization”. Commu-
nications of the ACM 64.3 (2021), pp. 107-115.

Yuxin Zhang et al. “OptG: Optimizing Gradient-driven Criteria in Network Sparsity”. arXiv preprint
arXiv:2201.12826 (2022).

Aojun Zhou et al. “Learning N: M Fine-grained Structured Sparse Neural Networks From Scratch”. In:
Proceedings of the International Conference on Learning Representations (ICLR). 2020.

Xiao Zhou et al. “Effective Sparsification of Neural Networks with Global Sparsity Constraint”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021.

82

https://www.ruder.io/optimizing-gradient-descent
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Bibliography

[98] Michael Zhu and Suyog Gupta. “To prune, or not to prune: exploring the efficacy of pruning for model
compression”. arXiv preprint arXiv:1710.01878 (2017).

83

	Contents
	List of Figures
	List of Tables
	Εκτεταμένη Περίληψη στα Ελληνικά
	Εισαγωγή
	Μηχανική Μάθηση
	Έννοιες Μηχανικής Μάθησης

	Βαθιά Μάθηση
	Feedforward Νευρωνικά Δίκτυα

	Συμπίεση Βαθιών Νευρωνικών Δικτύων
	Κβάντιση
	Αποσύνθεση Τανυστών
	Απόσταξη Γνώσης
	Σχεδιασμός Συμπαγών Μοντέλων
	Κλάδεμα

	Προσαρμοστικό Κλάδεμα Μέτρου μέσω Μοντελοποίησης των ανά-επίπεδο Κατανομών
	Προτεινόμενη Μέθοδος
	Ablation Μελέτες
	Περιορισμοί και Μελλοντικές Προεκτάσεις
	Συμπεράσματα

	Feather: Μια Κομψή Λύση για Αποτελεσματική Αραίωση Νευρωνικών Δικτύων
	Προτεινόμενη Μέθοδος
	Εφαρμογή σε Συστήματα Κλαδέματος
	Πειραματική αξιολόγηση
	Σύγκριση με το SoA
	Συμπεράσματα

	Introduction
	Motivation
	Contributions
	Thesis Outline

	Theoretical Background
	Machine Learning
	Machine Learning Paradigms
	Machine Learning Concepts

	Deep Learning
	Deep Learning Architectures
	Deep Learning Training

	Compression of Deep Neural Networks
	Introduction
	Related Compression Approaches
	Quantization
	Tensor Decomposition
	Knowledge Distillation
	Compact Model Design

	Pruning - Sparse Neural Networks
	Introduction
	Pruning Criteria
	Granularity of Sparsified Elements
	Timeframe of Sparsification

	Adaptive Magnitude Pruning via Layer-wise Weight Distribution Modeling
	Abstract
	Introduction
	Proposed Method
	Pruning Criterion
	Learning the Thresholds
	Modeling Weight Distributions
	Straight-Through Estimator
	Switching Distributions
	Sparsity Scheduling and Sparsity Fine-tuning Phase

	Experimental Evaluation
	CIFAR-100
	ImageNet

	Ablation Studies
	Impact of Scaling the Sparsity Loss
	Impact of Using Both Distributions
	Comparison with ASL
	Per-Layer Sparsity Distribution

	Limitations and Future Work
	Conclusions

	Feather: An Elegant Solution to Effective DNN Sparsification
	Abstract
	Introduction
	Proposed Method
	Preliminaries: Sparse Training
	Proposed Sparse Training Module

	Application on Pruning Frameworks
	Experimental Evaluation
	Ablation Studies
	Comparison to SoA

	Conclusions
	Appendix
	Training Hyperparameters
	Impact of Threshold's p-value
	Stability of the Sparsity Mask vs. Gradient Scaling
	Feather Improves Pruning Backbones
	MobileNetV1 on ImageNet
	Accuracy vs. FLOP Measurements

	Conclusion and Future Work
	Conclusion
	Thoughts on Future Work

