) 3
§‘?

5

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
ScHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DivisioN oF COMPUTER SCIENCE

"1,\\
| Fot
2

v

Bl

%

[e\

7 npomHOE

A=
nVvp$opo

COMPUTING SYSTEMS LABORATORY

,
3

Horizontal Scalability in cloud environments

orchestrated by Kubernetes

DIPLOMA THESIS

of

NEFELI PANAGIOTA TZAVARA

Supervisor: Nectarios Koziris

Professor, NTUA

Athens, November 2023

National Technical University of Athens
School of Electrical and Computer Engineering
Division of Computer Science

Computing Systems Laboratory

Horizontal Scalability in cloud environments

orchestrated by Kubernetes

DIPLOMA THESIS
of

NEFELI PANAGIOTA TZAVARA

Supervisor: Nectarios Koziris
Professor, NTUA

Approved by the examination committee on 2nd of November 2023.

(Signature) (Signature) (Signature)

Nectarios Koziris Dimitrios Tsoumakos Toannis Konstantinou
Professor, NTUA Associate Professor, NTUA Assistant Professor, UTh

Athens, November 2023

National Technical University of Athens
School of Electrical and Computer Engineering
Division of Computer Science

Computing Systems Laboratory

2l
VP goro

/Y,
2e)
)
2

e T508
Al :“ /\;,
W
L\ v
7 nromuoEys
=

WA

) —

(Signature)

Nefeli Panagiota Tzavara

Electrical and Computer
Engineer, M.Eng. NTUA

Copyright (C) Nefeli Panagiota Tzavara 2023.
All rights reserved.

This work is copyright and may not be reproduced, stored nor distributed in whole or in part for
commercial purposes. Permission is hereby granted to reproduce, store and distribute this work

for non-profit, educational and research purposes, provided that this work and its corresponding

publications are acknowledged. Enquiries regarding use for profit should be directed to the author.

The views and conclusions contained in this document are those of the author and should not

be interpreted as representing the official policies, either expressed or implied, of the National
Technical University of Athens.

[Tepirndgn

Mehetohvtag oe Bddog ta yapaxtneio Tixd Tou 210U Ve, UTOPOUUE Vo TOEATNEHICOUUE TO YEYOVOS
6Tl 0 6YXOC TV BEBOUEVKV TIOU TapdyovTal ALEAVETAL CUVEYQDC, TeplocsTepo and ntoté. O npdoga-
e TeVohoyég e€ellEelc oTNY EMOTHUY NG TANPOPOPLXNC Xl OTIC UTNEESIEC TNE €YOLY XUTAC THOEL
Théov BuvaTd ToV EE AMOCTAGEWS UTONOYIOWO HEYEA®Y BEBOUEVLY GE XaTAVEUNUEVO CLC TAYNTA oL /T
oe vnnpeoiec vépoug. O €€ anoctdoews LTOAOYIOWOS, o auTd to Thaiota, xodiototon duvatde Ue
N Xehon microservices mou unopolv va extelolvton aveldptnto ot dopéc Teplext®y (containers),
ol omoleg €youv eniong yivel moAs dnuogihelc. H opydvmon 1 aAAde "evopy o Tewor’ TwV TEPIEXTMOY
yiveton amd Toug AEYOUEVOUS EVORYNOTEWTES, UE To dnuo@lh To Kubernetes , to omoio eivon hoyt-
opxd avouxtol x@dixa. To Kubernetes elvon uneduvo yio Tov ypovompoypopuatioud twv pods ot
BrapopeTinole xouPoug wog ouotddoc (cluster) xou emlong yio) Mn anogdoewy oyetind pe v
xApoxa tou cluster. To pods elvar povddec Tou evowpat®dvouy cUAOYES containers xou extehoUVTAL
uéoa oe x6pfouc. H »hpoxa e ouvotddag nofler xodoplotind poho, xadde oL AmUTACELS TWY LT~
pECLOY UeTOBdANoVTOL Xou 1) cLGTAdY TEémel va elvon oe Véom va avté€el Tic BlapopeTixéc cuvirixeg
yerone (A.y. dnuiovpyia mohkéY pods and avnuévo pdpto xivnong oe évav server). Etol, 1 anote-
AeoUaTiX HAUAXWOY EYXELTOL OTNY ATOTEAEGUATIXNT Yol €yXouen TPOBAedn oyeTixd ue To TéoOL Xl
notol épot Vo dlatedolv o oplouéveg Blepyaoles, HOTE Vo amo@edYETAL 1) amoTuYio ToU GUGTHUTOC
%L VoL EAAYLOTOTIOLE(TOL 1) adPAVELL TKV TOP®Y. LTV mopoloo DIMAOUNTIXY, EEXWVEUE YE TN UENETT
e apyttextovixic Tou Kubernetes xou twv Stopdpwyv evvoldy xAudxwong Ue éugoon otny oplloviia
YAPExwon, dnAadY Ty xAudxwaon émou tpononoleitan o aptiudg Twv xOUPwy cuotddag. T Tic
Boxipéc yag, peretdue T Ypnon tne eéepyaotinnc toyboc CPU oe uio cuctdda mou evopyno tpveTtal
ané 1o Kubernetes. Yuyxexpiuéva, yehetdue avidvupa dedouéva mou culEydnxay entl 15 nuépec and
évay Bloxoplo T mopaywyhe oto vatitovto CERN o mepiéyouv dedopéva yerione e CPU pe v
Tépodo tou Ypbvou. Ipaypatomololue SlepeuvNTIXT) AVAAUGCT) BEBOUEVGY YIX TNV TEQUTERH XATAVOTOT
TWYV OEBOUEVWY QUTWY XAl ETELTA, TEOYWEAUE OTNY avAnTUEN LOVTEAY TEOBAedNE Yior TNy TedfBhedn
e yerone e CPU . Téhog, avantiocouye évay mpdxtopa EVIoYUTIXAC HAdNoNg Ue TOMTIXY EAd-
yrotonoinone g xehone CPU e Bdon tv opldvtia xhpgdxwon e cuotddas. Andtepoc otoy0g
pag ebvar v mpoteivoupe €vav mpoopatind custom resource allocator mou umopel va evowyoatwiel og
pot cuatdda Tou Kubernetes , étol dote ol anogdoelg xhudxwong va Bacilovtar otny medfBiedn tne

xerone e CPU xou ouvendd otny yeror tou andpaitntou aptduol xoufwy.

AéZeic Khedid
Badid Méinor, Kubernetes, Deep Q Learning, Reinforcement Learning, LSTM, OpWlévtia xhua-
AWOWOTNTA, TEOPBAEYN Ypovooelpdc

Abstract

Taking a look into the 21st century’s distinctive features, it is prevalent that the volume of
data produced is constantly rising, more than ever. Recent technological innovations in computer
science and services have now made possible the remote computation of large data in distributed
systems and/or cloud services. The remote computation in these frameworks is made possible
by the use of microservices that can run independently in containers who have also become very
popular. The organising, or more commonly, the "orchestration" of containers is done by the so
called orchestrators, the most popular one being Kubernetes, which is an open-source software.
Kubernetes is responsible for scheduling pods in the different nodes of a cluster and also for making
decisions about the scale of the cluster. Pods are units that encapsulate collections of containers
and are excetuted inside nodes. The scale of the cluster plays a crucial role, as the computational
needs of different services are variant and the cluster must be able to withstand the different
usage scenarios (e.g. large traffic in a server) . Thus, efficient scaling lies in making efficient and
timely predictions about how many and which resources will be allocated to certain processes,
so that system failure is avoided and idleness of the resources is minimized. In this thesis, we
begin by studying the Kubernetes architecture and the different scaling concepts with a focus on
horizontal scaling, meaning the scaling where the number cluster nodes is modified. For our tests,
we study the CPU usage in a cluster orchestrated by Kubernetes. Namely, we study anonymized
data collected over 15 days from a production server in CERN that contain CPU usage data over
time. We perform exploratory data analysis to further understand the data and proceed to develop
forecasting models for CPU usage predictions. At last, we develop a reinforcement learning agent
with a policy of minimizing CPU usage based on horizontal scaling of the cluster. Our ultimate
goal is to propose a proactive custom resource allocator that can be integrated into a Kubernetes
cluster, so that the scaling decisions are based on CPU usage prediction and thus a provision of

the necessary number of nodes.

Keywords

Deep Learning, Kubernetes, Deep Q Learning, Reinforcement Learning, LSTM, Horizontal
Scaling, Time series forecasting

To My Parents

Euyopiotieg

H napotoo dimhwpotiny anotehel xatdpdwpo Teocwmixd xar GUANOYO XxaddS 1 ohoxhipwaon Tne
napovoag dev Yo urnopoloe va elye emtyteuydel ywpelc TV cuvSpour TOAATADY TEOCOTWY.

O el vo euyoploThow tov unedBuvo xadnyntr Nextdoio Kolbpn yia tnv mpodupio xar tnyv
QEWYYH TOU TEOG TNV EXTOVNOY NS Topolods SIMAWUTIXAC, xadoe xou To wéhn tou CSLab mou
napelyav Pordela xou toug amapaltnToug TOPoLg Yio TNV eEoelwon pe ta epyareio. Emmiéov da
Uelo Vo ELYOPLOTHOW TOV BLduxTopXd portnTh Kwvotavtivo Mnitadxo, n cuvdpour tou onolou ftav
xadoplo TN YLl TNV Topelal AUTAC TNS EPYAOLOC UE TIC YVAOOELS Xal TIS SLUUBOUAES o TPOGEPERE.

Axbun, Yo Rdeha va evyaptoTiow Toug Gihoug Lo, Toug e€ anootdoens xau da Ldomng Tou otodepd
ue unoothpllav o GAEC KoL T OTIOLdES xat Tov adeppd pou tov I'dvvo mou anotedel oThpLyUa Yot
péva oe xde xatdotoor. Télog, Yo Hieha va euyapiotion Toug Yoveic pou, Ocddnpo xan Mapyapita
Tou Ywelc TNV éumveucT ahAd xou T oTHELEN oL pou Edwaoay Bev Yo unopoloo va elyol xatapépeL va
Eexwviow ahAaL XL VoL ONOXATIPWOW AUTES TIG OTOUDEC.

Negéhn Havarywwta TCaBdpa

Adva, NoéuPBeneg 2023

Contents

ITepirndm

Abstract
Evyapiotieg
List of Figures

0 Extetopévn EAAnvixy Ilepiindn

0.1 TIepihndm . . . o e
0.2 Oewpntxd YToBalpoo
0.3 TMewpopatixd Mépoc o oL
0.4 Xulhmon xon Medovtey AoUAEId Lo

1 Thesis Outline

2 Theoretical Background

2.1 Containers e
2.2 Dockero e
2.3 Kubernetes e
2.3.1 Cluster Architecture
2.3.2 Kubernetes Componentso
2.3.3 Kubernetes Networking Lo oo
2.3.4 Kubernetes Scaling L
2.4 Monitoring Tools
2.4.1 Prometheus e

3 Machine Learning & Reinforcement Learning

3.1 Machine Learning Lo
3.1.1 Supervised Learning L
3.1.2 Unsupervised Learning L o oo
3.1.3 Reinforcement Learning L L oo

3.2 Recurrent Neural Networks o

3.3 Long-Short Term Memory Models
3.3.1 Applications in Time Series Prediction

3.4 Reinforcement Learning L Lo
341 Q-Learning
3.4.2 Deep Q-Learning
3.4.3 Applications in Scaling L

10
14
22

24

25
25
25
25
26
27
29
31
33
34

35
35
35
35
36
36
37
37
38
38
40
42

CONTENTS

4 Exploratory Data Analysis
4.1 Outlineof the EDA

4.2 Observations e

5 Model Development

5.1 LSTM for Time series prediction
5.2 Reinforcement Learning Agent L L oL
5.2.1 Environment and Q Network L.
5.2.2 Training Parameters L Lo
5.3 Results. e

6 Future Work and Extensions
6.1 Discussion
6.2 Future Work

Bibliography

Bibliography

List of Abbreviations

43
43
49

50
50
53
53
95
o7

61
61
62

63

66

67

List of Figures

© 00 N O U = W N

e e e e
T W NN = O

16
17
18
19

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

H eowtepuer| apyttextoviny) tou Kubernetes00 11
Stpatnyy optlovTiag xan XGVETNG XNPEIHWONG .+ o o v o o o 11
H Boowxn Sour; tou RNN xou 1 avahutin| "Eedmhwuévn’ meplypoph Tou 12
O dopuxée Swapopéc petald) RNN & LSTMo o .. 13
H ypovooepd ypriong eneepyaotixig tox00o 15
H xatovouy| yerioneg ene€epyaotixic lox00C oo 15
H nuepriota ypron enelepyaotixic lox00C L 16
H nuephiota xatavour yefione eneepyaotxhc toyboc oo L. 16
H nueprota xatavour yefione eneepyaotxhc toyboc 17
H enoywdtnta, n tdomn xo oL EXTONES TYWES YLoL (Lot XAONUEPWVY .+ 18
H enoywdtnta, n tdomn xou oL Extoneg TWES Yot To Loffoatoxdeloxo 18
H cuvdptnon amwAeldv xatd Ty eXmoldeuot)o 19
Ta opdipata oTo SedoPEVA EXTAUBEVONS XU EMXVEWONEG « « « « o v v v v v e o . 19
Or npofBAédelc ool BEBOMEVAL ETUHVPWONG « « « o v v v v v v e e 20
Ioptoxahi: Ov npoPédeic ota dedouéva exnaidevone. Ilpdowvo: ol mpoPiédec ota
BEBQOUEVA ETUNVRWOTG « v v v v v v e e e e 20
H ouvomnom amwAeldy o oL 21
H ouvlomnom ®€pBoug L Lo 21
Ou npofBiédec pe History Window =60 22
O npofBiédeig pe History Window = 12 22
The Kubernetes Cluster Architecture 26
Scheduling Framework L L 29
Container-to-container & Pod-to-Pod communication 30
Pod-to-Service communication L0000 0oL 30
Vertical vs Horizontal Scaling Strategies 32
The standard RNN and the unfolded version 36
Abstract differences between RNN & LSTM 38
Structual differences between RNN & LSTM 38
CPU Usage over time it 44
Pandas DataFrame o 44
CPU Usage over time - Overall Statistics 45
CPU Usage over time - Distribution 45
CPU Usage foreach day 46
Histogram of daily CPU Usage 46
Histogram Curve of daily CPU Usage 47
Seasonality, Trend and Residuals for a weekday 48
Seasonality, Trend and Residuals for a weekend 48
Correlations over days L 49

LIST OF FIGURES

4.11

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

Top correlations L 49
Our LSTM Architecture for CPU forecasting 51
Train Logs from the LSTM Model training 51
Loss function during training oL oL oo 52
Root Mean Square Error on the train and test set 52
Prediction Sequence on the test set, . 52
Orange: Prediction on the train set. Green: Predictions on the test set 53
Train Logs from the Agent’s training 58
Loss Function of the Agent 58
Reward Function of the Agent 59
Predictions of the Agent, History Window =60 59
Predictions of the Agent, History Window = 12 60

Chapter 0

Extetouevn EAAnvixy Ieplindmn

To nopdv xe@dhoto €xel wC oxOT6 TNV AVATTUEN TWV EVVOLOV ot HEYEBWY NG Topoloos diThw-

MATIXAC OTA EAANVIXG JE TTEQLANTTING TEOTO, BLOTNEOVTAG OUWS TN XEVTEXT ouaia.

0.1 Ilepiindn

H napotoa dimhwyuatinn agopoloe pehétn tou Kubernetes xan tng xhigaxnmonc tou. Buyxexpléva,
MEAETHOUUE TOUC TEOTIOUES PE TOUC OTOLOUE TPAY LU TOTIOLELTAL 1) XALUAXWOT TV THPWYV MOTE T0 CUGTNUA
va Sltnerioel xdmoleg otadepéc emduuntéc cuviixeg. Ntdyog HTay N HEAETN TwV Brudtwy, OoTe Vo
oyedotel évag resource allocator ue yerion Deep Q Learning yioa) Behtiworn twv anopdoewmy
HAUAXODONC.

To xiviteo vl T mapodoa BimAwyatixy Eexivnoe and To yeyovdg 6Tl To TeEAeuTala YEOVIAL OL
UTIOAOYLOTXEC ovayXeS €xouv auEnlel xou auTO €xel CUVTERETEL OTN BNUOTIXOTNTA TG XOTAVEUNUEVNC
ene€epyaoiog, xadde mTAéov mdpo mToAEC umneecieg uetapépovton otor unohoyioTxd végn. IIiéov,
Ol EQUPUOYES TEEYOLY OE HOE®PY| microservices oto UTOAOYIOTIXE VEQPT], ToL OTolal UE TN OELRE TOUG
xatopepilouv To microservices oe meptéxteg N oAAdG containers, plo dour| mou divel avtovoyuion oTtny
EXTEAEOT XU TNV OWOTYH Aettovpyla Twv ev Adyw epapuoyny. To mo dnuoguiéc epyalelo yio TNy
evopyfoTewat, dnAady TNy autopatonoinoy g diadasiag Tou deployment, Tng ¥Audxwong xaL g
eMTAPNONG TNS OWOTAS AetToupyiog ATty Twv Topwv eivar To Kubernetes, 1o onolo, av xou Eexivnoe
wc eowtepd mpdtlext tng Google, elvon mAéov avolytol xwdo xou TOAL mpdoveto hoylowxd
QAVOTTOGOETOL ET AUTOU.

Qotéo0, 10 dixd poc xivntpo €yxeitan 0T TapaThENoT OTL N TeoemAoyY Tou Kubernetes mepl-
of3dvel pn amodotnt| xhudxwon, xodwe Bacileton oe ouvirixeg xatwehionomong. H un anodotixn
HAPAXOOUOTNTA EYEL PUEYAAO aviixTumo oty Yeror enclepydoTinic toyboc xot uviung, to omolo
exToC and xoxy| anbédoon €xel xon tepBaAlovTind x6cToC.

To npdBinua, hoindy, SLUTUTOUEVO elvon 1) HEAETT xan oyedlaon evdg resource allocator, o onolog
Yo unopoloe vo evonuotndel ot pa cuaTdda evopynoTenuévn and to Kubernetes yia vo fehtidoet
) yeron ene€epyacuxnc 1oydog, xpotdvTag TN Yopw and uia emtuunt tiwh. Ihio ouyxexpyéva,
Bdoel wag ypovooelpds yenong encepyaoTixdy mopwy Yo meénel va teofAénouye Tov aptiud Twv
pods mou npénel va Slatedolv 0To GUGTNUA XPATOVTAS XETOLOUS TEPLOPLOUOVE.

Ta Sedouéva mou ypnoiwonooope elvor Wiot xotorypapr] dedouévwy enelepyaotixnc toy0og and
TpoyUaTey yerion egapuoyoy oto otitouto CERN, to onola elvan Sardéoyua yio e€wtepinn ypnon.
Ou yetprioeig éyvay oe Bidpxeta 15 nuepdy avd 5 Aentd.

H 8uad poc mpotevouevn oyediaon nepthopfdvel Tnv avdmtun evog Ipdxtopa evioyutixhc uddn-
onc. Omnwg elvar yvwoto, maéov 1 Mnyavue) Mddnon €xel e@apuoyéc oe moAolg xAddoug Tng
EMOTAUNG UTOAOYLO TGV, xau dev amoteel xauia egalpeon o xAddog g TEdPAedNe YPOVOTELRWY %ol
n M anogdoewyv oe noAumapoueTexd TepBdAlovta 6mwe To dixd poc. O mpdxtopag, dmwe Yo

avoAooLUEe xou Topaxdtw, Yo otneiletar oe Deep Q Learning, pa teyvixn Baciogévn otov Suvouixd

9

Chapter 0. Extetopévn EAAnvixd Tepiindn

Tpoypoppationd, xadog xan og povtéha LSTM mou eivon yvwotd ot Bihoypopla yior TNy XoTaAAT-
Kot o8 TEOBAEdT YPOVOCELEWMY.

0.2 Oceswpntxd YroBadeo

Yy nopodoa unoevotnta Yo napouctdoouye TG anapoltntee Yewpntinés Yvwoelg yio vo Yeye-
AOoovpe T0 UTOPoatpo NG BIMAOUATIXAC. ZEXVOVTISC ond EVVOolEG OTWS EVOL Ol TEQLEXTES XL TO
Kubernetes, Ya mpoywperioouue e€nydvtag Bacixéc €vvoleg Tng EVioYUTIXAS HdInong xat TG eQopuo-
YéC TOuC.

Kubernetes

IMpoywewvtac oto anapaitnto vndéBodpo Yo avahboouUE GUVOTTTIXG Tr Bour| xaL AELToLEYIOL HLoC
ovotddac Kubernetes xou cuyxexpiuéva ta medio Tou mou pog evilapépouy TEpleodTERO.

Kdélde ouotdda éxel évav () xou nepiocbtepouc) master nodes pe tov pdho tou control plane xou
ouvidwg n > 2 worker nodes , WoTE va TeEYOLY TO PopTio.

Y7o control plane umdpyouv ta e&Xc uéen:

e O apiserver mou ewol ouclaoTtixd to front end mou emxowvwvel e to Kubernetes API, to
onofo duyelplleton To configuration twv pods, services xou dAA®Y uepwv Tou cuoThuatog. Exel

avrixouv xat ot scalers mou Yo doVue mopoxdtw, énwe o HPA.

e O controller manager, mou ouclacTixd amotehel Evay atéppovo Bedyyo unehBuvo yia TNV CLVEYY

EMTAENON TNS XATACTAONG TNE CUCTABOE Xal To CLYXEXPEVA Tou kube-apiserver.

e O Kubernetes Scheduler anotehel onuoavtind yépog tou cuotipatoc. Méow tou Spogoloynt
autol ypovonpoypauuotilovtoa ol diepyaoieg ota xatdhinia pods. O tpdmog Aettovpylag Tou
Scheduler e mepimhoxog xou Baociletar oe W oplopévn axohoudlaxt| dwobixacia otny onola
apy s yiveTtar €va PUATEdpLOUN TV BLESUWY TOPWY WE TEOS TNV XUTUAANAOTNTA TOuC ol

Uotepa Baduoloyolvton xou emAéyovton Yl dpodordynon.

o H uvAun eted, 6mou o d npoépyeton and to distributed, dmou dnhady| anodnxedovtor xevipnd

oL Thnpogopleg Yo To xotaveunuévo cluster kote vo unapyel €va xowd apyelo UE GUVETELA.

And v @Ay, o worker nodes amoptiCovton and :

e 70 kubelet, to onolo evdlvetar yioo Ty emixowvwyvio ue Tov master xan umdpyel évag oe xdve
%x6pfo

e 10 kubeproxy, 1o onolo eniong undpyel oe xdie x6uPo xou emuereiton ta endpoints Twv eop-

poywv mou elvon oe Aertovpyia evidg g cuoTddaC.

Ta mapandve @aivovtar oty Eudva 1.

Ipoywedue ot wa and Tig Paoxdtepe WI6TNTEC Tou Kubernetes,) xhipaxwolpdtnta.

Tuyxexpéva, ol unyaviopol xhpoxwotuotnrog ywellovton oe 3 Boowxée xatnyopiec , v opl-
Covua, TNy xddetn xo TN xMUdxnaon ot eninedo cuoTAdaG.

o XtV optlOVTIa XAWAXGOOLUOTNTA Teax Tixd ahAdlouy ot xéufol xat o ntéco pods dlopotpdlovto

evtde TNS CoLOTAdAC, ATL Tou EMNEEdlEl AUECH TNV YENHOT ENEEERYUOTN XU UVAUNS.

o Y xddetn xhoxwoiwdTntor adAdlouv tor yopoxtneloTixd xdde xéuBou, dnhadn xdde unyo-
viatog, 6mwce etvor oL uviueg xou o enelepyao e, Ue anotéAeopa vo tpocdpudlovtol YeToBAT-
TéQ, 0TS To OO VAN) wéxpt Tt enelepyao x| .oyl urnopel va datedel yio Ty extéheon g

10

0.2 Oewpntind YrdBadpo

CLUSTER

CONTROL PLANE

cloud-controller- T S SRR I
manager

Node 1 Node 2

kube-
kube-proxy kubelet proxy
Controller I

Manager B ﬂ

kube-api-server

scheduler

Figure 1. H eowtepikr) apyitektorikn tov Kubernetes

Vertical
Scaling

)

Ad1l |budget @ @ @ @ @; Horizontal

s e 5' Scaling

Ad1 Ad2 Clone Clone Clone
Ad1 Ad1 Ad2

Figure 2. Ytpatnyikn) opildvniag kar kdletng kAiudkwons

EXAC TOTE EQUPUOYTC. LTIC TEQIOCOTERES MEQLTTAOOELS AUTO CUVETAYETOL TNV ONXY Enavexxivno
NG OLCTABAG xan Vo avaotavopy) Twv tépwy. Elvon évag 8Ooypenotog unyoviouds, diott uéypt

oTiyung vhoToLe(Tol HEGW TOU TEQUATIONOD Xou Emavexxivnong Twv pods.

o XN xhudxwon oe eninedo cuoTtddog npocuppoletal To uéyedog tng Blag TS cuoTadag duvo-
uxd, ouvidwe péow xdmoloas unneecioc VEQoug Tou SLEUXOADVEL T BEGUELOY) XL ATOBEGUELOT)
UMY OVNUATOV.

O eotdooupe otNy 0pllovTo XAUIXWoT| xaL ouyxexpyéva otov Horizontal Pod Autoscaler,
v omnola mpayyotonolel auTépATA EVOWUATWUEVOS péoa oTov metrics server tou Kubernetes. Ou
petpwée mou mapaxoloudel o HPA eivan cuvidwe 1 yprion enelepyaoth xow uvhung, wotéco umopel
va emextadel xou oe custom petpixéc. Ol amopdoelc Tou, GUwe, TEPLYPAPOVTAL OTd XATKPALOTOMOT.
Kodog ou emdooeic tou dev elvan emopxelc Yo ToAholg YpnoTeg, xou ool UTdpyEL YEYEAT open
source xowo6tnta, Tohhol yerioteg vAomololv custom scaling policies. Tétolec unopel va elvon Bdoet

XAUTWPAIOL, UE dlopopeTnéc eTAOYES xatwphiov, Bootopéva ot queing [1] [2] [3], control theory[4],

11

Chapter 0. Extetopévn EAAnvixd Tepiindn

°00

,: he: \/"W)) _) Ho _, JACCI , hf) \
Unfold = ‘-/
v Tv v
X x (1) x ® x(’*l)

Figure 3. H Baowij dourj tov RNN ka1 n avadvuiki) “EedimAwpérn’ neprypagny tov

historical performace [5], ahhd xou reinforcement learning [6] [7] [8], énwe o dixde poc.

Eb¢ Baowxd elvan vor avapépoupe dTL oL custom mohtixéc pnopolv va evowpatwdolyv oe Kuber-
netes cluster yéow oyediaong custom controller. Ot custom controllers eivou ave&dotnTnta péen mou
oM&louv TV cuunepipopd tou control plane xotd to doxolv, pe T eMYUUNTEC TEOBLOYPUPES Kol
nohtwée. Ebvan aveEdptnree Siepyaociec mou emxowmvolv pe to Kubernetes APL Xty Suad pog
neplntwon, o custom controller Yo pecorafBrioel péow tou control plane xou tou mpdxTopa EVicyU-
TWHAC HAONONE, YEPUEWVOVTASC TIC TERITAOXEC AMOPACELS YLl TNV XAUOXWOWOTNTA OE TEGEELS Tou
Kubernetes.

Mnyavixry MdOnon

H Mnyovixp Médnon mepihauBdver €va tepdotio €0pog HOVTEA®Y, GTOY0C TwV onoiwy elvon 7
auTOPATY EXUdINOT TwV YoTiBwy xou tpéBiedn twv Aboewy evog npoPifuatog. ‘Eyel anoxthioel ye-
YEAT OnpoTxdTNTAL 6TO TEDLO TNE EMO TAUNG TWV LTOAOYIOTOV Yio TAElG TEC EQappoYES o TEoBAuaTa
xatnyoplononong, tedBAedne x.a.

Xowpiletan o 3 Baocwég xatnyopleg: v EmPrenoduevn Mdadnon, v Mn EmBienduevn Mdidnon
xan TV Evioyutue] Mdadnor. Etn napolvoa epyasctia Yo yenowonoioouue emPBrenduevy uddnon yio
™ mpoPhedn yerong eneepyaoTtixng oy vog xou eVioyuTiX wdinon Y Tic Tehixéc npofBiédeic Tdve
otV cuoTdda xouBwy. To yoviého emPBienopevng pdinong mou Vo yenoiwonoticouye eivor to Long
Short Term Memory Model (LSTM).

To yovtéha LSTM elvon yio yetaryevéotepn exboyn twv woviélnv avatpogoddtnone RNN. Ev
ouvtopia, To RNN egopuélouy avatpopoddtnom tou evdidueoou otpwuato hidden layer utohoylopot
Ty Bapdv, dnuovpydvtoae wa e&dptnon petadd eloddou xou e€6dou Tou x&de xehol (Bh. Ewdva
3), dnhodn WibtnTa uviAune. Qotéoo, napoucidlouy Bacixd npoBAfuato UTOAOYIOUOU, xadds xdmotlol
nopduetpol eite eZogpavilotay otov ypévo cite napousiolav tepdotiec Twéc (vanishing gradients,
exploding gradients). To povtéha LSTM élvoav to nopandve tpoBhiucta eladyovtog wio doyr tou
gatvetar oty Ewdva 4. To véo xell utohoyiopod diadétel 3 nhhec, yio unedduvn yio Ty elcodo, pla
yioe Ty €€080 xou TNV o onuavTixf: TV TUAN Tou 0p{lel o €8 xou TG0 To Yovtého Vo Yupdtar Ti
nponyolpeves e£6doug.

Adyw authic Tng Sounc, WVNUoveLOUV XOVTLIVES TEC 0AAE xou Boditepa pot{Bo uéoa otov ypbdvo,
xou €tol €youv ypnowonomdel oe mhelotes epapuoyéc[9][10], dnwe eivon N mpdBredn xotavdhwong
evépyetag [11][12] xou to yenuotiotheto[13][14]

Evioyvtixr MdOnon

H Evioyutueh; pédnorn (Reinforcement Learning) etvon nedio tne Mnyavixric Médnone népoav tne
xhaoowrc Enontevdyevne xou Mn Enontevduevne Mddnong.
H Boow déa tne evioyutixfc uddnone cupnuxvoveto oto e€fic oevdplo: évag Ipdxtopac (Agent)

npaypatonoel Apdoeic (Actions) oe éva HepiBdhhov, (Environment) to onolo tou emotpégper Képdn

12

0.2 BOewpenuxd YrdBadpo

he) Forget gate g ht)

(¥ Input gate Outpu:t gate
RNN LSTM

Figure 4. O1 dopikés drapopés petaéd RNN € LSTM

(Rewards). YXtéyoq tou Ilpdntopa elvon 1 peyiotonoinon twv Kepdov mou tou emotpépovian yior Tic
Apdoelc tou. Opllouye:

® 5 TNV TMAPOLCU XATACTACT

e 5" tnv enbuevn xatdotaon

o a TNy mpdén petdBaong

o Q(s,a) tov mivaxa PE TOL AVEUEVOUEVD CUYXEVTRPOTIXG %EpdN Yia x&Ve Lebyoc s, a

® 7y Tov nopdyovta o opilel T0 Tocoatd 6o onolo Va Exel poho 1 péhhouoa enBpdfeuvon, dTou
v =0 xowdéhov, v = 1 oA

o R(s,a,s") mn ocuvdptnomn x€pdoug petdBaone and Wio XUTdoTooT OF [iot GhA

O TTpdxtopac padaiver tny mdavétnto petdfoone otny enduevn xatdotacn s and v ohknie-
nidpaon e to IepBddhov. To @ — Learning slvon wia omd T BACIKOTERES TEYVIXEC TNG EVIOYUTIXAC
uddnong, mou yenowlonoleiton (OoTE €vag TEdxTopoC Vo ddel wa Bértiotn todtx| mx JH ouvdptnon
nepypdget Ty Ilpdén a mou mpayuatonoel o Hlpdxtopac otn xatdotaocy s, 1 onola Tov @épvel oTNY
xotdotoon s’ bmov Swhéyel Ty BéATioTn npdin a’ mou peyiotonotel to Q — Value .Autd unopel vo

neptypapel and Tic YeUehddEC CUVAPTHOELS:
Qisi(s,0) =) P(s|s,a)(R(s,a,8) + ymaxa'Qu(s', a')) (1)

target(s') = R(s,a,s’) +ymaxa'Qx(s',a’) (2)

Do va ebvon e@uet) 1 odyxhion tou TedxTopa TEog uio BEATIOTN TOMTIXY, deyWd XBavToTololue
g TAVEC XATUCTACELS METHBUONGS OE €Vl BLUXEITO YPO XATACTAGEWY X0 ETUTAEOV ELGEYOUUE TNV
évvola Tou @ — Network.'Etot, 0 xhpog twv miovey xaTaoTIoEmY HELDVETOL oNuavTixd ot uéyedog
XolL UE TN YPHON VELPWIIXOY BIXTOWY AofBEvoupe TpooeyYloTixée Tée otic Tiée Tou mibvoxa Q(S, a),
DOTE VoL UNV UTEEY0UV avEEEREDVITEC XATACTACELS TOU VoL ETNREACOLY onpavTixd tov Hpdxtopa.

H vhomoinomn twv mopandve o autd mou elval ohuepd YVWoTd wg evioyutixy) uddnon fede ue
v ewoaywyh tou Deep Q Network (DQN), evéc adyoplduouv mou enavactdtnoe 6tov xhpo ne
Evioyvtxic Mddnone vionowbdviac to “playing Atari with Deep RL” [15]. Exel eicdyovton 800 véeg
evétntes : 1o Target Network xou o Experience Replay Buffer.

To Target Network amotelel éva véo vevpwvixd @', axpéc avtiypago tou Q. To Q' éxel
Topapétpous @ ol omoleg npocoupudlovton avd xdnota opopévn cuyvotnta C pe Tic 6. Autd emhbe

T0 TEOBANHAL TOU XWVOVUEVOU 6TOY0U Tou Topoucialay péyet tote ol ohyoprduol Q) — Learning.

13

Chapter 0. Extetopévn ENnvixd Ilepiindn

O Experience Replay Buffer amotelel pia pviun twv mponyoluevey xotootdoeny, yall e Tig
npdEeig xou v emPpdBeuon nou €pepav TNy véa xatdotacn. Tuyaio delypota entAéyovton and Tov
Replay Buffer yio tnv exnaidevorn tou Hpdxtopa.

0.3 Ilepapatixd MeEgpog

Yy npdogoty BiMoypaplo tapatneolue adénon e €pEuvag OYETIXA UE CYEDLIOUS TOROUETEO-
nonuévey scalers. Autd mpoxOnTEL and TV UOT TWV SLUPOPETIXDY EQPUPUOYMY TOU UTOEOLY Vo
€youv mowlhec anautoel o VAT, enelepyaoTixt| BUVOUN xot dAAoug Tépouc. dotdoo, 1 xlpta Su-
oxoMa oToug onpeptvols autoscalers etvon 6tL Bacilovton oe dedouéves Téc o dev npocopudlovton
BUVOULXE, (YOTE VO ATOBMCOLY GTNV TAUPOVGO XATHGC TACT] OMAUTHOEWY. LUVETE, UTEOYEL avayXT) YLo
avdmtuén npovonTnmy mpaxtopwy (Proactive Agents), dnhady) mpdntopes mou nafpvouv unddn Lo To-
P& Bedopéva TS UG TEBAS YIa VoL TEEOUY amoPdoels xhdoxwoudtntoag. Mo Proactive mpooéyyion
ota Tapandve anotehel xou évac Deep Q Network ITpdxtopac.

YuveyiCoupe pe wor abvtoun mepypoapy) tne pedodoroyiog otnv omolo atnelydnxe n perétn yoc.
Topaxdtes Yo Eexvicouue eENy@OVTOC To BEGOUEVA TTIOU YENOULOTIOLCUUE KoL TN BLEEEVVHTLXT] AVIAUGT)
7oL TpoyUaToToNoaUE Tdve oe autd, Tor wovtéha LSTM nou avoartd&oye yia tn npdPBiedn yerone
ene€epyaoTxhc oY 00C Xou TEAOG, TOUC TELPUUATIONOVS WO PE TOoV mpdxtopo Baldeldc evioyutnhc

HAdNoNEC XL T AMOTEAEGUATE TOU OTY XAWAXWOT).

AtgpevvnTixry AvdAiuvor Acdopévoyv

Xx0mo¢ TNE dlepeuVNTIXAC avdALOTC BEBOUEVWY elval 1) XahDTERPY XUTAVONOT TWV DEBOUEVLY UECH)
uedodwy mapatrhenone xou wehétng touc. Mia tétola uédodog eivon o xadaploudc TV XoXWY XATOY -
PHOEWY T.Y. XEVA TEdiN TOL dNuLoupYolV acuVEnEes oty enelepyaoio. Enerta, 1 pehétn enextelveton
oTNY QPavépwaT Twv LoTBwy Twv dedouévev. Ltny nogoloa nepintwon Tou dldétoue Ypovooelpec,
UTOPOVUE VO TORUTNENCOUPE TIC TACELS Xl TNV EMOYXOTNT Tov mopouatdlouy. Méoa oty AEA
nepthaufBdvetar xan 1 ontixonoino, énou Yo napatnendolv yotifa mou owg vo un goatvovtol oTtny
pordnuatxr ypovooeipd. To dedoyéva mou aflonotioaye etvar dnuocing npocBdoiud, TEoEpyOUEVIL o-
T ot oo TAdY EvopyNo Tpwpévrn and to Kubernetes, 1 onola étpeye o€ Sloaxouio T mapaywyng oto
wotitovto CERN. Aexddeg yihiddec yprioteg xahody xodnuepvd v unneecia Single Sign On, o-
n6te too API calls etvon mielota xon avopévoupe potifa o tpee, epydotues nuépeg xa dpec aryunc. H
Ypovooelpd nepleddufave cuvohxd 4435 ornueia nou xataypdenoay pe napepBoréc 5 Aentdv. [16][17]

IMpoywpe®vTac OTIC OTTIXOTOACELS TWV OedoUEVWY, BAETOLYE TNV TIAAEY], YPOVOOELRH XOL TY| XO-
Tavour) ™e. Amo Tic ouvidelg ouvaptioeic g BiBhodrxne Pandas BAémoupe, eniong, ta Poaoixd
OTUTIOTIXG GTOLYEld OTWC 1) Yo, PEYLOTN Xat eENAYLO TN T ot ta tocootiofa dtaothuota. Tlapa-
neolpe 6Tl 1 wéomn A etvon 0.3486, mohd o xdtw and T PEYIETN T, xodde xou 6Tt o 75% TV
oY ebvar xovtd og authv T T xou Oyl xovtd oto 2.056. Autd poc UTOBEXVVEL TS UTHPYOLY
amoToue UETHBONES xatd Tic omoleg 1) ene€epyaoTiny| loyUe malpvel peydheg Téc. Autd unopolue
VoL T0 ETOANUEVGOUUE XAl OO TN XATAVOUY), OTIOU OL TieplocdTepes TiéS elvor oTo didotnua 0.02 - 0.5.
Ano 0.5 xon mhvew YTopoUUE UE ao(EAELN Vo cuUTEEdVOLUE OTL efval ol TWéS pe LPmAY ypron. And

v T 1.25 xan méve punopolue vo Yewprioouue Théov dtL 1 T elvon ampoodoxnTo UPNAT.

14

0.3 Tlewpopatixd Mépog

CPU Usage

CPU Usage over time

2.00 4

1754

1.50 1

1254

1.00

0.754

0.50 1

0.25

0.00

2022-01-11 2022-01-13 2022-01-15 2022-01-17 2022-01-19 2022-01-21 2022-01-23
Time

Figure 5. H xpovooeipd xprions ene€epyaotikiis 1000

CPU Usage distribution

2022-01-25

800 A

600

Count

400

2001

100 125 150 175 2.00
value

Figure 6. H katavoun xpnons eneéepyaotiknig 1oxvog

15

Chapter 0. Extetapévn ENnvucd Tepiindn

16

150

100

Count

:
3

150

100

Count

i

150

100

Count

-
-
:

150

100

Count

:

150

100

Count

r

10th of January 11th of January 12th of January
20
15
10
05
00
13th of January 14th of January 15th of January
20
15
10
05
00
16th of January 17th of January 18th of January
20
15
10
05
00
19th of January 20th of January 21th of January
20
15
10
X
00
22th of January 23rd of January 24th of January
20
15
10
05
00

Figure 7. H nuepnowa xpnon eneéepyaotixnig 1oxvos

10th of January

11th of January

12th of January

13th of January

14th of January

r

15th of January

16th of January

17th of January

18th of January

19th of January

20th of January

21th of January

22th of January

]

23rd of January

-

24th of January

r

!

Figure 8. H nuepnow katavour) xpnong eneéepyaotikris 0y o

0.3 Tlewpopatind Mépog

10th of January 11th of January 12th of January

Density
e o kB B N
5 a ©o 0 o

13th of January 14th of January 15th of January

Density
o o 1 &
S & o

16th of January 17th of January 18th of January

Density
e o k B N
S & o 0 o

19th of January 20th of January 21th of January

Density
o o £ B N
S & o n o

22th of January 23rd of January 24th of January

Density
o o = B N
5 & o G o

Figure 9. H nuepnowa xatavoun xpnons eneéepyaotiknig 10xvos

Dot T xaAOTERT XATAVONOT] TWV BEBOUEVODY TPOYWEGHE OE AVAAUGT] Ve UEEX, OTIOU UTOROVUE VOl
TAPATNEHOOVUE Dlapopée oTiC xatavoues To MaBBatoxlptaxa. Exel, ol xatavoués mepimou yetd tnv

T 1.25 nou Yéoaue mpwv elvon mo eninedeg and dhheg Uépeg.

OTnTXOTOLOVTAC TN YPEOVOCELpd Topatneolue, eniong, wo avewpaiia v 177 Iavouvopiou, 6mou

unipEe dlaxomn pedpaTog Yior xdnoto Sdotnue, ondTe dev €yvay xhfoec oto APL

Emnmiéov, unohoyiloupe tn cuoyétion Yetalld v Nuepdy yio va 8olue Tuy6v Yotifo uetald Toug.
‘Oha ta Lebym Ye YeYdAn cuoyEtion elvan SlapopeTinég Nuépeg tne efdopddag, ahhd BAénoupe o o
Nuépeg 22,23,24, Snhadr ol 3 teleutaleg elvon loyupd cucyetilloueves pe tig 12,10 xou 11 avtiotouya.
Avutéd pag diver éva évauopa vo un doxiudooupe o Loviého Ue dedopéva emxbpwong Hévo and Tic

tehevtalec 3 pépec, xadme da €xel HoN del To (Blo potifo otic 3 mpdteg uépec.

T Ty avdAuon e tdone xot TS ETOYLXOTNTAC DIOAEYOUPE [LOL EQYAOLUN KoL ULl U] ERYAOLUN
uépa. Iopatnpolue dtu n tdon avidvetan Tic EQYAOIIES WPEC TNV ERYACULY HEPOL XL UETE UELDVETAL,
eved otV Un epydown diatneel o oyetixd otadepr younin tur. oty enoyudtnta Brénoupe
EUPAVOS 2 XOPUPACELS oV TNV Gpa. XTig €xToneg TWé, enlong, napatneolue TOAD TEQLOCOTEPES

TWES TNV epYdor) UépaL.

17

Chapter 0. Extetopévn ENnvixd Ilepiindn

Value

Seasonal
o o
o N
38 o

|
°
o

900 950 1000 1050 1100 1150

Figure 10. H enoyixdtnta, n tdon kai o1 éktones Tipués yia pa kadnuepvn

Value

1450 1500 1550 1600

1650 1700

Figure 11. H enoyixdtnza, n tdon kai o1 éktomne§ Tipés yia to LapBatokvpiaxo

Yuvohxd, hownéy, ané v AEA eZdyoupe 6Tt mapoatnpolviar potifa yerone enelepyaotinhc
woyvoc. Iapatnpolye moARée Zapvixéc XOPUPDCELC TOU TREOXAUAOUY TNV oVAYXN YLt XAUEXWOT).
Enlong, mapotnpolue wetala enoyixdtnta, PE T XOPUPHOGCELS Vo guufBaivouy Tapduoles wpeg xdie
nuépa. Autéc epunveboviar and tov avtopato cuyypeoviopd tou CERN (m.y. vy permissions oe
authorization groups).

Movtéla IIp6BAedne Xpovooeipds

"Exovtag Théov yvoon Twv BedoUéveY Tou Yo avaAUCOUUE, TROYWEAUE GTNV AVAIAUGT] X0 XUTAOXELY
povTéAwY yia TN meoBAiedm e yerong e enclepyactinic loybog. Xenowonooope T YAOooo
Python, oto nepi3dhov Kaggle xou tic Biphodixec TensorFlow xou Keras [18] oe dhec tic nopoxdtw
Sonyéc.

18

0.3 Tewpopoatixé Mépog

Aoxdoope éva eupl OET TUPUUETEWY YLOL TNV OPYLTEXTOVIXY TOU WOVTEAOU Xau TNV exmoddevon
TOU, CUYXEXPULEVAL

LSTM units = [16, 32, 64, 128]
LSTM Layers = [1, 2]
sequence length = [4, 6, 12, 144, 287]

epochs: [20,40,60,75,100]
learning rate: [0.00001, 0.0001 , 0.001]

loss= [’mean squared error’, ’'huber loss function’|
optimizer="adam’

Bhémouye nopoxdtey T Sour xou TLC cLVAPTHoELS EXTTUBELOTC TOL XAhUTEPOL HoVTEAOU TEdBAeC.

Sequence=12 - Model Loss

—— ftrain
0.05
0.04 A
w
w
9
0.03 A
0.02 A
T T T T T T T T T
0 5 10 15 20 25 30 35 40

Epoch

Figure 12. H ouvdptnon atwlcikyv katd tny exnaidevon

print('Train Score: %5f RMSE' % (trainScore_1))
print('Test Score: %5f RMSE' % (testScore_1))

Train Score: 0.187494 RMSE
Test Score: 0.198198 RMSE

Figure 13. Ta opdApata ota dedopéva exmaidevons kar emkipwons

‘Onwe oy avogevouevo, ol emdocele Htay xalbTepec ota dedopéva exnaldevone. Iapatneolue
TOEOXATE L0l IXOVOTIOLTIXT TPOCEYYLON TNS YPOVOTELRAC.

19

Chapter 0. Extetapévn ENnvucd Tepiindn

Time-Series Prediction on the test set

o 200 400 600 800 1000 1200

Figure 14. O1 mpofAéers ota dedopéva emlpwons

(1]

L]

0.2

L] 5 L] ™ L] 15 189 s 200

Figure 15. Iloptokadi: Or mpoPépes ota dedopéva exnaidevong. Ipdowo: or mpoPAépes ota
dedopéva emkUpwans

ITgdxtopag Badeidg Evioyvtixng Mddnong

Thomowdvrog, tehxd, Tov Hpdxtopa €youue xavomomtinég emdooeis atig tpoPiédelc. Hapotnpodue
TUEOXATE WG 1) CUVERTNON OMWAELDY HELOVETIL XAWE TEOYWEJEL 1) EXTABEVGT) xou YIvETHL 1) EXPaUNoT
TOV oTBwY xAaXwoudTnTaS, xadde eniong xon 0Tl 1 GLVAETNOT *eEBKY Exel adEouca topela, BLOTL
To X€EOT| UEYLOTOTOLOUVTAL.

20

0.3 Tewpopoatixé Mépog

le7

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5

Figure 16. H ouvdptnon anwleidy

2250 4

2000 4

1750 A

1500 ~

1250 A

1000 -

750 A

500 A

250 A

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Figure 17. H ovvdptnon képdouvs

Meletodvtoag Ti¢ emdooel; cuyxplvoupe PETOED 800 PaoIAOV BLUPOPETIXDY XATAC TACEWY. X TNV
Ewdvo 18 elyope oploel history window = 60, eved oty Ewdva 19 history window = 12. E&dyou-
UE TS OTNY TEOTY TERITTWOY 0 TEEXTOPOC XAVEL o cLVTNENTXES TEOPBAEELS, xpaTdVTUG OYETUS
otadepd Tov apliud Twv xOUPwY, Yvwellovtag and Ty eumelpio twg N avgnuévn yenon Yo enavokn-
piel. Avtidétwe, ot deltepn neplntwor novu 1 dodeloa eunelpla elvon wxpdteen, N xAudxwon eivar

AMOTOUN X0l EVOEYOUEVIWC OXOUOL XOL Y1) EPIXTY| OE TEAYUAUTIXG CEVAQLOL YEOVOTROYQUUUATIOUOU.

21

Chapter 0. Extetopévn EMnvuch Tepiindm

Figure 18. O1 npofAépeis pe History Window = 60

17.5

15.0

12.5

10.0

7.5 4

5.0 4

2.5 4

0.0 -

U

0

50 100 150 200 250 300 350

Figure 19. O1 mpofAépers ue History Window = 12

0.4 XulAtnon xow MeAloviixry AovAeld

Yyohdlovtog tor dveydt, TEETeL Vo YiVouY XATOLES ETIONUAVOELS Yio TOUG TERLOpLoRoUE TNG Topolcog

epyootag, xadoe xou yia tic miavég uélhovoeg Peltidoelc.

Apywnd, npénel vo onuetwel twe n TNy Twv dedopévwy dev eivon Eexddapn oyxeTixd ye dha To Yo
PAUXTNELOTIXE TNG UG TABAG Xol GUVETKG BEV YVWEIlOoUUE TOV TRy aTind dpyixd apidud twv xOuPuv
e oLoTABdoC 0UTE GANEC HETEIXEC TOL TNV Teplypdgpouy. Enopévee, nepoplouacte ot npofiédeic
povo PBdoel yprong tou enelepyacty. Emmiéov, mpénel va avagpeplel twe, topd Tic npootdieiec cul-
hoyTc Sedopévwy oe mporyUaTix cuaTdda xOuPBwy oto CSLab, dev unopécoue Vo TEay LATOTOLCOVUE
owo 6 internal network xou avdxtnom Twv YETEM®Y and Te0T avioyhg Tou cuoThuatoc. Ouolwg, ol

22

400

0.4 SulAtnon xou Mehhovtiny Aovield

npoonddeleg dev oy ixavomounTixég 00Te 6 LG TAdA oL VAoTotooue oto Vépog Okeanos Knossos.
Téhog, ta povtéha LSTM xou o Ipdxtopoc Yitav emppencic oe overfitting xau eivon movd vo técope
oe ToTxd ENAYIOTO Xou Oyl ONXO, OTOTE BeV €YOUUE OlYoupeuTel Yol TN TEAYUATIXY) om6d0on xal
hertoupyia tou Ilpdxtopa. Ilepiocdtepa layers xou opyitextovinée mpénel va doxipactody 100 oTa
LSTM 660 xou otny exnaidevon tou Ipdxtopa.

Ytn ueAovtiny) Soukeld mpénel var cuumepA el GUANOYY| BEBOUEVLY amd TEAYHATIXE TECT AVTO-
Yh< o€ duad wag cuaTdda, 1 onola vor cuVOUALeL TOANATAG £(87) dedouévwy and TNV eupela YxdUa TOV
unootnpe{louv ta epyodeia culhoytc [19]. Emnhéov, npénet va nporypatonomndel nepoutépn avdmtuin
Tou x®owxa Tou Ilpdxtopa xou evowpdtwor tou oe Custom Controller. Kotohnxtixd, Yo neénet va
doxpactoly véa Q Networks yir tov Ilpdxtopo m.y. Bidirectional LSTMs xan va yivel ex véou

emxdpwon Yl Ty evoucdnoia tou Hpdxtopa oTic SlapopeTiNéS TUPAUETEOUE KOl OPYLTEXTOVIXES.

23

Chapter 1

Thesis Outline

Chapter 2: Theoretical Background, provides the necessary background knowledge for the
technical background of the thesis. Starting from elementary technologies such as Containers and
Docker we proceed to elaborate on the Kubernetes architecture and further into monitoring tools

for metrics collection and most importantly the default scaling policies.

Chapter 3: Machine Learning & Reinforcement Learning, gives an introduction Machine Learn-
ing and dives deeper into Reinforcement Learning which is used in this thesis. Also, an overview
of the machine learning methods that are being used in scheduling is given. A focus on Deep Q

Learning is noted.

Chapter 4: Exploratory Data Analysis, is dedicated to the exploratory data analysis on the
CPU usage data acquired. The data is analysed and notes are made on the patterns of the usage
and the metrics produced. Then, the time series prediction models are developed with the use of
LSTM models. The results of training and validating these models are predicted and compared.

Chapter 5: Model Development, is dedicated to the reinforcement agent that is developed on
the previous results. The choices for the agent’s environment, rewards, actions and parameters are

explained. The training and validation are presented as well.

Chapter 6: Future Work and Extensions, contains our conclusion, summarizing our findings

and providing an outlook into the future work.

24

Chapter 2

Theoretical Background

2.1 Containers

A container image is defined as “a ready-to-run software package containing everything needed
to run an application: the code and any run-time it requires, application and system libraries, and
default values for any essential settings” [20]. It has been developed and popularized in the latest
years to serve the needs of modern applications that are being based on big data centers and severs.
The significant change in needs of computation, resilience and efficiency has mitigated the focus
of engineers towards Cloud Computing [21], which requires a type of virtualization that container
images satisfy . Container images are lightweight and isolate the software that runs inside from its
surroundings. They contain their code, libraries, system tools and settings separately and can be
run as a stand-alone software. These characteristics have popularized containers as they minimize

conflicts and can be efficient for software development on the same infrastructure.

2.2 Docker

Docker [22] is a specific containerization platform that popularized and standardized the use of
containers in the software industry. Docker was popularized because it provided an easy platform
to create, deploy and run applications. It introduced a standard format for container images and
a set of tools for building, distributing, and running containers, making it an industry standard.
Through the Docker Engine component, one can run and manage containers on the host system,
utilising the same available hardware. By efliciently utilizing available hardware,the performance
is significantly boosted and the application size is reduced. While Docker played a pivotal role
in the containerization revolution, the technology has evolved, and many more platforms are now

available.

2.3 Kubernetes

Kubernetes [23], also known as K8s, is a portable, extensible, open source platform for au-
tomating deployment, scaling, and management of containerized applications. The most widely
known run-time in these applications is Docker, however more are supported such as cri-o [24] and
containerd [25]. Kubernetes originated as an internal project by Google but announced in 2014 and
released in 2015 as an open source project. It was easily popularized as it offered the decoupling
the application containers from the details of the computing systems on which they are executed,
through orchestration and management of containers. K8s also became an industry-standard as it

had many benefits in large scale production environments such as

e Orchestration of containers among multiple hosts

25

Chapter 2. Theoretical Background

CLUSTER

CONTROL PLANE

cloud-controller-
manager

e ¢ IR 0UD PROVIDER AP}

Node 1 Node 2

kube-
kube-proxy kubelet proxy
Controller I

Manager

kube-api-server

scheduler

Figure 2.1. The Kubernetes Cluster Architecture

e Resource utilization and load balancing

Automation of operation tasks and application deployments

Scalability of services, applications and clusters

Self-healing via health checks, auto-start, auto replication and auto-placement

Declarative Configuration
e Abstraction of infrastructure

Upon deploying Kubernetes, a cluster is formed which consists of worker machines, called
Nodes, that run containerized applications. The application workload is distributed between the
worker nodes in "building blocks" called Pods. The control plane manages the worker nodes and
the Pods in the cluster. The Kubernetes architecture outline can be seen in Figure 2.1 [26] and
will be explained in detail below.

We can examine the Kubernetes architecture in the following structural sections:

2.3.1 Cluster Architecture

1. Nodes

All servers that are participating in the K8s cluster can be referred to as "Nodes". Nodes
can be generally categorized into one or multiple "master" nodes, also known as "control
plane" and usually multiple "worker" nodes. Worker nodes run the actual workloads that
are appointed to them and are networked to communicate with the master components.
They require few configurations for networking, only joining the cluster in a private network
manner and they run independently from one another. In each node there are 2 important
components: the kubelet, an on-machine agent and the cadvisor that analyzes the resource

usage of each node and monitors different performance characteristics.

2. Pods

26

2.3.2 Kubernetes Components

A pod serves as the fundamental component of Kubernetes, constituting the smallest and
most basic unit within the Kubernetes object model that can be instantiated or launched.
It signifies an active process within the cluster, encompassing an application container (or,
in specific scenarios, multiple containers), storage assets, a distinct network IP, and configu-
rations that dictate the behavior of these containers. Essentially, a Pod represents a deploy-
ment entity that can be a solitary instance of an application in Kubernetes. This instance
can comprise either a lone container or a compact group of containers closely interconnected

and jointly utilizing resources.

3. Services

In a cluster environment, Pods can be terminated or restarted unexpectedly, their IPs are
constantly changing and therefore not reliable. Services provide a stable IP address to connect
to Pods. Each Service is associated with a group of Pods. When traffic reaches the Service,
it is redirected to the back-end Pods accordingly.

All in all, Services serve as an abstraction layer that provides a stable network endpoint
for a set of pods, allowing them to be accessed consistently despite their dynamic nature.
Kubernetes services are categorized into various types, each tailored to specific use cases:
ClusterIP, NodePort, LoadBalancer and more.

e ClusterIP that enable internal network communication within the cluster

e NodePort that expose applications externally by binding a port on each node’s IP

e LoadBalancer that integrate with cloud providers to distribute external traffic with

public TP

These service types collectively empower Kubernetes to efficiently manage networking and
ensure applications are accessible and resilient within the cluster.
4. Deployments

Deployments are the standard way of running applications in a cluster, and they represent
the final stage where the application is running on the cluster. In a certain Deployment any
Pod is replacable and thus can be changed at any moment, ensuring the good management

of the application.

2.3.2 Kubernetes Components

Control Plane

1. API Server

The API Server or kube-apiserver [27] is the front end of the control plane node and is
the component that communicates with the Kubernetes API. The Kubernetes (REST) API

manages the configuration of pods, services and other components and validates the data.

2. Controller Manager

The Controller Manager or kube-controller-manager is a daemon responsible for the con-
troller’s smooth operation. The controller is overlooking the state of the cluster and making
the necessary actions to reach a stable wanted state through a control loop that is non-

terminating and monitors the apiserver.
3. Scheduler

27

Chapter 2. Theoretical Background

28

The default Scheduler in K8s is responsible for selecting the target Node for a Pod. It
examines the available Nodes and filters them on a multi-criteria basis such as the available
memory and then assigns a score value calculated on a set of rules [28][29][30]. The filtering
and scoring modules are defining the suitability for each Node in order to run the desirable
Pod. Going into more detail about the filtering and scoring we can examine each variable:

e queueSort — sorts all the Pods in the queued state. A queue sort plugin essentially
provides a Less(Podl, Pod2) function.

e preFilter — pre-processes the information Pods and checks certain conditions that the
Pod must satisfy

e filter — filters the Nodes that are unsuitable to run the Pod. The filters will be looped
across all Nodes and if a Node throws an infeasibility error then is aborted from the

rest of the loop.
e postFilter — is called if only none Node was feasible for the Pod. A typical PostFilter

implementation is preemption, which tries to make the pod schedulable by preempting
other Pods.

e preScore — generates a shareable state for scoring

e score — ranks the Nodes that have been deemed suitable after filtering. A well defined
range of integers representing the minimum and maximum scores is returned which
passed through a normalising function before the scheduler combines node scores from

all plugins according to the configured plugin weights

e reserve — notifies when resources on a node are being reserved and unreserved for a

given Pod. The reserve is split into two methods, called Reserve and Unreserve.

e permit — does one of three things: "approve", "deny", "wait". The "approve" method
approves the Pod and sends it for binding to a Node. The "deny" denies the Pods and
returns it to the queue. The "wait" keeps the Pod in an internal "waiting" Pods list,
and the binding cycle of this Pod starts but directly blocks until it gets approved. If
a timeout occurs, wait becomes deny and the Pod is returned to the scheduling queue,

triggering the Unreserve phase.
e preBind — pre-processes the networks requirements for Pod binding
e bind — binds the Pod to the Node after all preBind plugins are completed

e postBind — is called after a successful bind to signal the end of the binding cycle

multiPoint — sets the plugin preferation based on the user needs

In the scheduling terms above, the reason we refer to these containers as Pods is that con-
tainers, although they run on the nodes, they are not themselves the schedulable entities.
The smallest schedulable entity is a Pod, which provides an environment where one or more
containers run. However, as is usually the case, Pods are used as a wrapper for single con-
tainers. Therefore, we consider the Pod to be of the most common type, the singleton Pod
31]

. eted

The etcd space [32], [33] is the storage where all cluster data is stored. The "d" in etcd stands
for "distributed" and is meant to showcase that the distributed manner of the K8s needs to
a data storage system that provides a consistent and trustworthy data source with all the
information about the clusters. To be more precise, etcd contains all the configuration data,

state data, and metadata for all the clusters, pods, services etc.

2.3.3 Kubernetes Networking

D ceoniverer
:’" 71 ntemal AP
Pod Scheduling Context
(= Y4 I
Pick a Pod from Reserve a
scheduling Node for the
queue Pod in Cache
R >
s E
= e k] rS]
\ |2 NN "E | |Ee §ll=l|lis2 H
c 5 8 =, 8 = 7}
g £ [E £118 153 |2 |5 21|82
o — ==
5 8
New pods gated c|isi !
lew pods gate: \ I fﬂﬂj Scheduling Cycle / Binding Cycle

Figure 2.2. Scheduling Framework

Worker Nodes

1. kubelet

The kubelet component is a part of every node in a cluster. In node-level it manages the
communication between the control plane and the individual node, ensuring the effective

deployment and execution of containerized applications throughout the entire cluster.

2. kubeproxy

The kube-proxy component is also integrated in node-level. It is responsible for monitoring
the changes in the deployed Services and their endpoints.

2.3.3 Kubernetes Networking

The Kubernetes Networking [34] is a complex multi-level network that ensures consistency
between Pods, Nodes, Services and endpoints in a given cluster. Networking in a cluster is a
challenge since many components change constantly, Services are deployed, Pods are failing, and
Scaling is often needed so the IPs constantly change. The basic communication levels are showcased

below:

1. Container-to-Container & Pod-to-Pod communication

In any K8s cluster, containers communicate with each other within a Pod through a Pod
network "namespace." This namespace gives each Pod its own network environment that’s
separate from the rest of the system. Inside a Pod, all the containers share the same IP
address and ports. They can communicate with each other using "localhost" because they’re
all part of this same network environment. The Pod-to-Pod communication is showcased in
Figure 2.3

For Pod communication it is crucial to note that every node has a designated CIDR range of
IPs for Pods. This ensures that every Pod receives a unique IP address that other Pods in the
cluster can see. When a new Pod is created, the IP addresses never overlap. Unlike container-
to-container networking, Pod-to-Pod communication happens using real IPs, whether you
deploy the Pod on the same node or a different node in the cluster. As seen in Figure 2.3 for
the exact communication a connection between the Pod namespace and the Root namespace
is needed, which is possible through a virtual network bridge connects these virtual interfaces,
allowing traffic to flow between them using the Address Resolution Protocol (ARP).

2. Pod to Service

29

Chapter 2. Theoretical Background

Pod 1 Network

namespace =
Container 1 | Container 2 |
L Localhost J

Pod 2 Nﬂwor@

namespace g

Virtual

Bridge
@
Root Network Namespace -
etho
node
Container-to-Container & Pod-to-Pod Networking Node 1

Figure 2.3. Container-to-container & Pod-to-Pod communication

eth0
Node 2

—-—[Cluster Network]7

Figure 2.4. Pod-to-Service communication

eth0

2

node

30

2.3.4 Kubernetes Scaling

The Pod-to-Service communication is In Kubernetes, the Service function addresses commu-

nication challenges in the following ways:

e Static Virtual IP: Services assign a fixed virtual IP address that acts as a consistent
entry point for connecting to any associated back-end Pods. This virtual IP simplifies

the process of reaching the right destination.

e Load-Balancing: Traffic directed to the virtual IP of a Service is efficiently load-balanced
across the group of back-end Pods. This ensures even distribution of requests and
prevents overloading of a specific Pod.

e [P Tracking: Services keep track of the IP addresses of Pods. Even if a Pod’s IP address
changes (which can happen due to various reasons), clients can still reliably connect
to the Pod because they interact with the stable virtual IP address provided by the

Service.

In-cluster load balancing is handled in two ways:

e IPTABLES:
In this mode, kube-proxy continuously monitors the API Server for changes. For each
new Service, it configures iptables rules to capture traffic to the Service’s clusterIP and
port, then redirects it to one of the back-end Pods. Pod selection is random. This
method is reliable and has lower system overhead as it leverages Linux Netfilter for

efficient traffic management.

e [PVS: IPVS, built on Netfilter, implements transport-layer load balancing. It operates
in the kernel space and offers lower-latency, higher-throughput, and better performance
compared to iptables. Kube-proxy in IPVS mode efficiently directs traffic within the

cluster.

This system ensures that requests to Services are efficiently managed and load-balanced
across the relevant Pods, maintaining the reliability and performance of the cluster as seen

in Figure 2.4

2.3.4 Kubernetes Scaling

One of the most important features of Kubernetes is the scaling mechanisms. Kubernetes
scaling helps manage and optimize the allocation of computing resources. In the dynamic realm of
modern cloud-native environments, the ability to scale applications both horizontally and vertically
has become crucial. The scaling mechanisms can be categorised into the following concepts and

strategies:

Scaling Concepts

1. Horizontal Scaling, is the scaling behind which you can adjust metrics like CPU usage or
memory usage. Scaling horizontally means meaning modifying the resources of an existing

cluster by adding new nodes or pods to it (Horizontal Pod Autoscaler).

2. Vertical Scaling, is the scaling for adjusting metrics such as resource requests and limits per
pod. In most cases, this means creating an entirely new node pool using machines that have

different hardware configurations (Vertical Pod Autoscaler).

3. Cluster Scaling, is the scaling concept where the cluster itself is resized to accomodate the
varying workloads. A common application of cluster scaling is through an interface with the

chosen cloud provider so that it can request and deallocate nodes seamlessly as needed.

31

Chapter 2. Theoretical Background

Vertical
Scaling

|

Ad1 |budget @ @ @ @ @‘ Horizontal

B B8 5 /& Sale

Ad1 Ad2 Clone Clone Clone
Ad1 Ad1 Ad2

Figure 2.5. Vertical vs Horizontal Scaling Strategies

Scaling Strategies

1. Horizontal Pod Autoscaler

The Horizontal Pod Autoscaler (HPA) [35] [36] uses and autoscaling algorithm to scale the
number of pods a replication controller, deployment or replica set based on observed CPU
utilization. The metrics, as mentioned are usually CPU and memory usage but it must be
noted that upon customisation it can also observe and make decisions based on application-
provided metrics. The HPA is implemented as a resource of the Kubernetes API and as a
controller, where the resource constantly checks the metrics collected from the metrics-server
and provides them to the controller who periodically makes decisions. These decisions are
made to match the observed CPU utilization to the desired defined by the user and are by
definition threshold-based. In case of custom metrics, the cluster needs to be linked to a
time-series database holding the desired metrics from where the information will be used for

the scaling purposes.

As this diploma thesis is focused on autoscaling by adding or substracting pods, we will go

into more detail about how the HPA works and its’ limitations.

As we mentioned, by default the HPA takes into account CPU utilization measurements.
The HPA periodically fetches monitoring data from the system, and takes a decision on how

many Pods the cluster should have. This period is called a scaling interval.

We define :

Cmin and Cpee the minimum and maximum allowed Pods

1e[0, 1]is the user desired CPU over all Pods

(a
(b
(c
(

d

)
)
) scaling interval is a R*-long time window, the end of which signals the scalind decision
) se[0,1] is the scaling tolerance

)

(e) dis the downscale stabilization which can represent the interval between two downscales

And we get the limits:
u;

-1 >s (2.1)

which represents the scaling decision in an interval ¢ and the number of Pods in an interval

i+ 1 is recursively yielded as:
W
L= lei— 2.2
C’LJrl ’VC ﬁ—l ()

32

2.4 Monitoring Tools

With the limits, we can describe the pod count as

C:+1 if Cmin S C;F+1 S Cmax
’

Ci+1 = Cmin lf C;+1 < Cmin (23)

M *
Cmaz if €11 > Cnac

However, as mentioned, HPA will not perform downscale operation if there was another one

in the previous time window of length d.

c; if c',_H <ciand diyp =1
CGir1=9, (2.4)
iy else

The higher the d value, the more resources the application uses, because it scales out without

such stabilization, but scaling in is slower compared to applying a low d

2. Vertical Pod Autoscaler
The Vertical Pod Autoscaler (VPA) [37] is different from the HPA in many ways as its’ goal

is to assign more resources, usually memory or CPU internally, namely in the Pods that
are already running the workload. The challenge of this mechanism has put the VPA in
the beta version of Kubernetes for years, as the main issue it can currently only scale by
terminating and restarting the application Pods [38], which is inefficient and many times
unwanted by the user. In the last years, attempts to solve these challenges have been made
as extensions to Kubernetes, but have not been officially integrated. As the interest is much

as the development is still active, an official version of the VPA is expected in the future

3. Custom Scaling Policies and Controllers

Since Kubernetes is an open-source framework, customisation and most definitely scaling
policies are being customised commonly. Some of the common strategies used for custom
schedulers are: Threshold-based [39] [40], Queuing model-based [1] [2] [3], Control-theory
based [4], Reinforcement Learning based [6] [7] [8] , Performance prediction based [5] and

more.

In this thesis we are focused on Reinforcement Learning methods. More on this will be
elaborated in Section 3.4.

In order to extend and customize the behavior of the Kubernetes control plane to to manage
resources according to specific requirements or policies custom controllers can be imple-
mented. Custom controllers are implemented as independent processes that interact with
the Kubernetes API server. The custom controller in our case can serve as an intermediary
between our Reinforcement Learning agent and the Kubernetes control plane, in the sense
that it can bridge the gap between the agent’s high-level scaling decisions and the actual

Kubernetes operations required to modify the cluster.

In that sense, we are proposing a Node autoscaler, a custom controller that may manage
the scaling of nodes based on the RL agent’s decisions. It can create or delete nodes in the
cluster to accommodate workload changes.

2.4 Monitoring Tools

When managing a K8s cluster, it is vitally important to have monitoring tools deployed inside

the cluster with the purpose of exporting metrics, alerts and monitoring the load, behavior and

33

Chapter 2. Theoretical Background

usage of the cluster. One of the most common monitoring tools is Prometheus [19].

2.4.1 Prometheus

The Prometheus monitoring tool is a powerful open source monitoring and alerting platform
released in 2016. It has become widely popular as it provides a multi-dimension data model by
collecting time-series data at a parameterised set of intervals. The time series data are then stored
locally in key-value pairs that make processing easier. Prometheus provides a Dashboard in an
HTTP endpoint from inside the K8s cluster to visualize and to collect the real-time metrics in a
time series database in an understandable way. Furthermore, it utilizes PromQL [41], a easy SQL-
like language that enables flexible queries and real-time alerting. The fundamental components of

Prometheus are listed below:

e Prometheus Server — scrapes the metrics and record the numeric time series

Client Libraries — matches the application language

Alertmanager — manages the alert notifications and forwards them (email notifications,etc)

Exporters — for disseminating existing metrics from the third-party systems

Grafana — connects to the Prometheus endpoint for graphics visualisations

34

Chapter 3

Machine Learning & Reinforcement Learning

3.1 Machine Learning

Machine Learning (ML) is a now widely known field of Computer Science, vastly popularized in
the latest years due its significant breakthroughs in multiple applications and research topics. The
ML field consists of different kinds of models that are being developed with a variety of algorithms
that automate predictions, decision making, labeling and more. To be more presice, the machine
learning algorithms create a mathematical model that is based on data - either real or synthetic
- that are commonly called "training data". The algorithm then "trains" on the data in various
ways, such that the underlying patters and mathematical curves that describe them are estimated.
The convergence process, the evaluation and the way that each model learns can vary a lot on the
type of the model and the type of the data. The three basic categories of Machine Learning are:

e Supervised Learning
e Unsupervised Learning

e Reinforcement Learning

Each of them is described below:

3.1.1 Supervised Learning

Supervised learning is a machine learning paradigm where algorithms learn from labeled data.
It involves a clear relationship between input data and corresponding output, allowing the model
to make predictions or classifications. In this approach, the algorithm is trained on a dataset where
each example is paired with its correct answer. It learns to generalize patterns and relationships
within the data, making it capable of making accurate predictions on new, unseen data. Com-
mon Supervised Learning tasks are classification tasks, Regression Tasks, Bayes Classifier, Linear

Regression, Support Vector Machines, Desicion Trees

3.1.2 Unsupervised Learning

Unsupervised Learning: Unsupervised learning, in contrast, operates without labeled data or
explicit output. It focuses on discovering patterns, structures, or relationships within a dataset.
Algorithms in unsupervised learning aim to group or cluster data based on inherent similarities or
to reduce the dimensionality of data. Common techniques include clustering and dimensionality
reduction. Unsupervised learning is often used for tasks like customer segmentation, anomaly

detection, and data compression.

35

Chapter 3. Machine Learning & Reinforcement Learning

4) ‘V ‘V |V
4 4 W

- N\

h ,’, jA Vol Ly pe 2y pew ____,’, B)
W >\ J 5 4
Unfold ===~ =
T v Tv v
X x (1) x ® x(’*‘l)

Figure 3.1. The standard RNN and the unfolded version

3.1.3 Reinforcement Learning

Reinforcement learning is a learning paradigm where agents interact with an environment and
learn to make sequential decisions to maximize a cumulative reward. It is akin to training a virtual
agent to navigate and make choices in an environment. The agent receives feedback in the form of
rewards or penalties based on its actions, allowing it to adapt and improve its decision-making over
time. Reinforcement learning is used in applications such as game playing, autonomous robotics,
and recommendation systems, where an agent learns to optimize its actions based on feedback

from the environment. Reinforcement Learning will be explained in more detail below.

3.2 Recurrent Neural Networks

In order to get a deep understanding of Long-Short Term Memory Models, their use for time
series prediction and their integration into a reinforcement learning agent, we have to introduce
the Recurrent Neural Networks (RNNs). RNNs are a greater family of models, including LSTMS
and GRUs (Gated Recurrent Unit) that are based on the same basic concept: the reccurency of
the hidden layer. They are feed-forward neural networks that have integrated memory, designed
to handle sequential data such as natural language texts or time series.

The RNN architecture can been seen in Figure 3.1, in both raveled and unraveled form that
showcases their novelty. The input sequence is represented as 2 and the output sequence as o(®).
The novelty relies on the information flow, where in contrast to standard to neural network, the
inputs and outputs are not independent of one another thus creating a memory of the previous
items in the sequence. The component that remembers the previous sequences is the internal
state of the RNN which is called the hidden state of the unit. This hidden state signifies the past
knowledge that the network currently holds at a given time step. This hidden state is updated
at every time step to signify the change in the knowledge of the network about the past. The

equations that describe the above relations can be summed as:

a® =by + WhtY Uz® (3.1)
hY = g (a®) (3.2)
o™ = by + Vhlt) (3.3)

where by and bs are bias vectors, U, V, W are the weighting matrices of the input-to-hidden
connection, hidden-to-output connection and hidden-to-hidden connection respectively. As o we
denote the activation function that can usually be an non linear function, for example a sigmoid
o(2) = (1+e 7)1

36

3.3 Long-Short Term Memory Models

3.3 Long-Short Term Memory Models

The Long-Short Term Memory Models, as said are a part of the RNN family of models, and
where introduced by Hochreiter and Schmidhuber [42] to tackle the gradient vanishing problem
and exploding problem in RNNs [43]. These problems are solved by upgrading the RNN cell, in
particular replacing the hidden layer with a memory cell ¢, and introducing three gates, the forget
gate f, the input gate i and the output gate o as seen in Figure 3.3. The forget gate is used to
forget the current cell, the input gate to read input input and the output gate to output the new
cell value. Each of these gates effects to one layer. If the gate is 1, LSTM keeps the value of
corresponding layer, and if the gate is 0, it sets this value to zero. The definitions of all gates, cell

update and output at time ¢ are given as follows:

i) = o(b; + Uiz + W;p(1) (3.4)

FO = ooy + Usa® + Wpht=D (3.5)

o) = o (b, + Upz' + W,h71) (3.6)

e = f0 @ =D i) G o (b + Uz® + WhED) (3.7)
hY = o & tanh(c®) (3.8)

The aforementioned mechanisms allow LSTMs (and GRUs [44]) to selectively update and forget
information from the past. LSTMs, beside the reccurency of their nodes also hold an internal state
that is used as a long term memory space. This feature allows for information retrieval over many
time steps. The results of the calculations of the input, output and internal state are not only
used to produce the output of the node but also to update the internal cell state that represents

the long-term memory.

As seen in Figure 3.3, and through the equations we can deduct that the operations and activa-
tions in the relationships between the gates are used to selectively recall or discard information. In
particular, the forget gate computes the ratio of the information that should be retained from the
previous state, the input gate allows the influx of new information and the output gate determines
how much impact the current cell and hidden states have on giving an output on the current time

step.

As is evident, the LSTM models are designed to train on sequences and learn patterns that
are in the short realm of history but also on deeper patterns that get preserved through time. For

that reason exactly they have been used extensively in applications of time series prediction.

3.3.1 Applications in Time Series Prediction

Multiple surveys [9] [10] have studied the applications of LSTMs in a wide range of domains
focusing on time series forecasting. Applications include energy consumption forecasting [11] [12],
stock prices forecasting [13] [14] and more. The field of LSTM for forecasting was spawned by
mainly the finance field, where accurate predictions of stock prices can yield a large sum of money
to traders. Since then, the applications have broadened as recent advances in deep learning tech-
nologies have led to a significant increase in the accuracy and performance of forecasting all kinds
of time series. As these models can capture complex temporal patterns and dependencies, we
explore the forecasting of CPU usage in order to efficiently scale a computing system with heavy

usage.

37

Chapter 3. Machine Learning & Reinforcement Learning

Output Output
i

Long-term

q Memory A

4 :\?_\ =
)| vs 3
RNN) LSTM J
- ' =
Working Working
Memory Memory

| L
| .

Figure 3.2. Abstract differences between RNN & LSTM

'\rlt) Forget gate '\rlt)

-

@ Input‘gate Output gate
RNN LSTM

Figure 3.3. Structual differences between RNN & LSTM

3.4 Reinforcement Learning

As previously mentioned, Reinforcement Learning is a field of Machine Learning. The idea
behind it is that an Agent is taking Actions in an Environment which returns rewards, with the
ultimate goal of maximizing the sum of total rewards that are returned for it’s actions. The En-
vironment is modeled as a Markov Decision Process (MDP), whose solutions are often being met
in dynamic programming. The fundamental difference between dynamic programming and Rein-
forcement Learning is that the latter is utilising large MDPs, where classing dynamic programming
methods could not apply. Also, RL is used where the P-function or the Reward function are not

known.

3.4.1 Q-Learning

Q-Learning is one of the most fundamental Reinforcement Learning Techniques, which can be
used to learn an optimal policy m* where dynamic programming cannot apply.

We first define a new function Q(s,a), also known as Q Value function, in which the Agent
starts from an initial state s, selects and action a and the choice is considered optimal. Thus, the

function Q(s,a) is computes the quality of the (s,a) pair as follows:
Q*(s,a) = Z P(s|s,a)(R(s,a,s") + ymaxad'Q*(s',a")) (3.9)

According to the previous equation, when an Agent is on the state s and selects the action a,
that leads him to the state s’ and the subsequent action a’ that maximizes the Q-Value.

38

3.4.1 Q-Learning

Iterating through the values we get the Q-Value Iteration so that we can compute the array of

Q-Values as follows:

Qiigr(s,a) = Z P(s'|s,a)(R(s,a,s) +ymaxa' Qx(s',a’)) (3.10)

The solution to the above is crucial so that all the possible transitions are known from one
state s to another state s’, as well as the possibilities of the respective occurrences. However, in
many situations these values are not known ad-hoc, but are computed using the expected value as

follows:

Qis1(s,0) = Egp(s)s,)[(R(s,a,8") + ymaxa’' Qi (s',a)] (3.11)

Subsequently, because the Agent does not know the possibility of the transition to s’, he will
attain knowledge from the constant interaction with the Environment. In that way, the Q-Values

will be computed. The target is estimated after every interaction as

target(s') = R(s,a,s") +ymaxa' Qg (s',a’) (3.12)

where the R(s,a,s’) value is the reward for the estimation, which is then considered optimal

and proceeds to compute the Q-Values as
Qis1(s,a) = (1 — a)Qxk(s, a) + altarget(s')] (3.13)
Summarizing the above, the algorithm can be summarized as:

AvcoriTaM 3.1: @Q-Learning Algorithm

Start with Qo(s,a) for all s,a
Get initial state s
for k in 1,2,... until convergence do:
Sample action a: get next state s’
if s’ is terminal then
target = R(s,a,s’)
Sample new initial state s’
else
target = R(s,a,s’) +ymaxa' Qk(s', a’)
end if
Qis1(5,a) (1 - a)Qu(s,) + altarget(s")]
s+ s
end for

As the algorithm shows, the agent needs to store the Q-Values in a table to be used in next
iterations. That means that the state space is vast and needs a large memory space to be store
which also makes the algorithm significantly less efficient and impractical, often times impossible
to use. Furthermore, the table needs to be initialized correctly as the non explored fields would
confuse the agent.

The solutions to the above impracticalities rely on the use of neural networks and the use of
quantization. As the state space needs to be significantly reduced in size, quantization helps to
store the Q-Values in a practical way in order for the algorithm to converge more easily. The
use of neural networks on the other hand, helps on approximating the Q(s,a) function for every
(s,a) pair, so that there are no unexpected values in the unexplored space. The network that

approximates the above will be explained below

39

Chapter 3. Machine Learning & Reinforcement Learning

Q Network

Instead of iteratively changing the Q table with new Q-Values we can define the Q(s, a) function

as:

target(s') = R(s,a,s") + ymazxa' Qor(s',a’) (3.14)

Now, using Gradient Descent the 6 values can be iteratively updated instead of the table using

the equation:
Ori1 =0k — aVo By p(s)s,a)[(Qocs.a) — target(s'))?]o=ox] (3.15)
The algorithm is now shaped as:

Avcoritam 3.2: Q-Network Algorithm

Start with Qq(s,a) for all s,a
Get initial state s
for k in 1,2,... until convergence do:
Sample action a: get next state s’
if s is terminal then
target = R(s,a,s’)
Sample new initial state s’
else
target = R(s,a,s") + ymaxa'Qy(s',a’)
end if
9k+1 =0 — O‘v@Es/NP(s’\s,a)[(Q@(s,a) - target(s’))z]\gz%]
s s
end for

The agent chooses the action a with the biggest possible value of Q(s,a). Every action a in a
current state s is considered optimal.

However, there are problems to be faced with the above algorithm, namely:

e As the 0 parameters are updated for the target approximation, the Q-Values for the state s,
where the action a was taken, are updated in accordance to the other actions in the same
state. That means that the target is changing. That can lead to problems in the convergence,

as traditional neural networks have a well defined target

e As the agent’s actions are inputs to the computation of the next state, the inputs of the
neural networks are directly correlated. That can also lead to convergence problems as the

network may converge in local maxima

In order to overcome the above and create a Q Learning agent with Deep Learning we use Deep

Q-Learning as explained below.

3.4.2 Deep Q-Learning

The Deep Q-Network (DQN) was first introduced by Mnih et al. [15] and proposed a ground-
breaking algorithm that combined Q-Learning with deep neural networks for reinforcement learning
tasks. It became widely popular for its impressive ability to learn optimal policies in complex envi-
ronments and many papers have been published since. In a Deep Q Network two more components
are introduced: a second neural network called TargetNetwork@' and new inputs in form of a

shuffle memory called FxprerienceReplay

40

3.4.2 Deep Q-Learning

Target Network

The Target Network tackles the moving target problem that traditional Q-Learning poses. A
new neural Network Q' is used, an exact copy of the prediction network) with parameters ¢’. The
target is now computed by using the Target Network and applying the Gradient Descent algorithm
with parameters 6 between the prediction of the prediction network) with parameters 6 and the
target acquired by the target network @’ with parameters 6’. The equations can now be described
as:

target(s') = R(s,a,s’) + ymaxa'Q'(s',d’,0) (3.16)
Ok+1 = O — aVo[(Qp(s.a) — target(s'))*]|o=on] (3.17)

We also define a frequency C' which describes a time period after which the 6’ parameters of
the Target Network are updated from the 6 parameters of the Prediction Network.

Experience Replay Buffer

Since the moving target problem is now solved, we proceed to explain the solution to the input
correlation for the neural network. This is solved by introducing new experiences for the agent,
independent from one another, which will include the outcomes from each action of the agent.
Every experience will be comprised from a state s, the taken action a from that state, the new
state s’ which the agent was lead to and the reward r that was given for that action to the new
state. Thus, the experiences will be pairs of < s,a,r,s" >.

There experiences will be stored in an array and in each iteration will be randomly sampled in
batches to train the neural network. In parallel, since new experiences will be added to the replay
buffer in every iteration, the old ones will be removed.

Integrating the above, the DQN algorithm is shaped as follows:

Avcoritam 3.3: Deep Q-Network Algorithm with FExperience Replay

Initialize replay memory D to capacity N
Initialize action-value Q with random weights 6
Initialize target-action-value function @’ with weights 8’ = 6
for episode = 1, M do:
Initialize sequence s1 = {x1} and pre-processed sequence ¢1 = ¢(s1)
for t=1,T do
With probability e select a random action ay
otherwise select a; = aQ(d(s¢), a; 0)
Execute action a; in emulator and observe reward r and image z,
Set $¢11 = S, at, x411 and pre-process ¢ri1 = P(S¢41)
Store transition (¢¢, ag, r¢, ¢¢q1) in D
Sample random mini-batch of transitions ¢;,a;,r;, $j+1 from D
if episode terminates at step j + 1 then

Set y; =7;
else

Set y; =1; + ymaxa'Q'(¢;+1,4a",6)
end if

Perform a gradient descent step on ((y; — Q(¢;,a;,0))? with respect to the network
parameters 6
Every C steps reset Q' = Q
end for
end for

41

Chapter 3. Machine Learning & Reinforcement Learning

Exploration vs Exploitation

On terms of optimizing even more the Agent’s performance and ensuring better convergence
we give the Agent an e probability which dictates whether the Agent takes a completely random
action. That strategy, also referred to as "Exploration" gives the Agent the ability to experience
states that may have never been accessible through the standard knowledge path. The e quantity
is usually chosen so that it is of great significance in the first iterations and less significant (close

to 0) as the episodes go by. [45]

3.4.3 Applications in Scaling

In recent times, significant attention has been directed toward the concept of automatic scaling.
This has garnered interest due to the appeal of having a flexible system that can effectively manage
peak traffic loads. Balla et al. [46] have highlighted a major drawback in contemporary Kubernetes
auto-scalers, which stems from their reliance on fixed measurements that fail to adjust to the current
usage patterns of the system. On the end of Chapter 2 we touched on different methods that are
commonly used for custom scaling policies. Toka et al. [36] stress the need of a more dynamic
approach to scaling, as the scaling provided in Kubernetes is often reactive rather than proactive.
In their study, they propose an LSTM solution, however on data that were not collected from a
real production server.

In that essence and to be more clear, a proactive Agent is different from a reactive Agent in a
very crucial feature. The reactive Agents make the decision depending on the current state while
a proactive Agent is also based on historical data. In the next chapters, we propose an LSTM to
learn the patterns from the historical sequential data and then develop the DQN Agent that will

be proactive.

42

Chapter 4

Exploratory Data Analysis

We proceed our study with an Exploratory Data Analysis (EDA). The EDA is a standard
practice amongst data scientists in order to have a better understanding of the dataset. It involves
practices of statistical computation, observation and visualization amongst others, as it differs for
each type of data

The dataset [16] used in this thesis is publicly available [17] on Github and consists of CPU
usage metrics collected over 15 days, between the 10th of January 2022 and the 25th of January
2022.

The cluster was running in a production server and served a running API service being called
by the European Laboratory for Nuclear Physics (CERN) Single Sign On service and other clients.
The API is called by tens of thousand of users daily and thus we can expect patterns in the context
of hours, days, rush hours etc.

The data was queried with the use of PromQL, from the Prometheus Monitoring tool as seen

below:

Listing 4.1: The PromQL query used for data collection

sum(rate (
process cpu_seconds total{
kubernetes namespace = ~

"api—process" }[5m]|

)

The set interval was set at 5 minutes, yielding a sequence of total length 4435 points over 15

days. The query returned data in a json file, an example is given below:

Listing 4.2: Example of data returned by the query

{ "resultType": "matrix" |,
"result": |
("metric": (),
"values": |

[1641773100,"0.08205714228572106"]
1

4.1 Outline of the EDA

For the EDA we used the Kaggle notebook service and the languages/libraries Python, Pandas,

Numpy that are commonly used for such purposes.

43

Chapter 4. Exploratory Data Analysis

Data Cleaning

The first step in the EDA process is to clean the data, pinpoint inconsistencies, missing data

and in general technical difficulties that could make our computation faulty.

We load the data using the prom — parser.py code provided in [17] and saving the sequence
in a Pandas DataFrame. We study the data using built-in Pandas function and original scripts to

find that there is no missing data, and a general description of the data is shown in 77 77.

The data is collected with 5 minute intervals which equals to 12 measurements each hour, or

287 measurements per day.

We proceed to better analyse the data.

CPU Usage over time

2.004

CPU Usage

0.50 1

2022-01-11 2022-01-13 2022-01-15 2022-01-17 2022-01-19

Time

Figure 4.1. CPU Usage over time

4430

4431

4432

4433

4434

Time

2022-01-10 00:05:00

2022-01-10 00:10:00

2022-01-10 00:15:00

2022-01-10 00:20:00

2022-01-10 00:25:00

2022-01-25 09:15:00

2022-01-25 09:20:00

2022-01-25 09:25:00

2022-01-25 09:30:00

2022-01-25 09:35:00

4435 rows * 2 columns

Value

0.082057

0.312971

0.712057

0.246171

0.875086

1.1185914

0.263428

0.443143

(0.688686

0.328229

Figure 4.2. Pandas DataFrame

44

2022-01-21

4.1 Outline of the EDA

Visualisations

Count

800 A

600

400 4

2001

count 4435. 000000

mean B.348625
std B.379217
min B.020857
25% 0. 094286
50% B,.192229
75% @.379229
max 2.056800

Mame: Value, dtype: floate4d

Figure 4.3. CPU Usage over time - QOverall Statistics

CPU Usage distribution

(

T T T T T
0.00 0.25 0.50 0.75 100 125 150 175 2.00
Value

Figure 4.4. CPU Usage over time - Distribution

By visualising the data we can see the drop in usage in 4.6 and 4.7 over the weekends (18th-19th

of January, 22nd-23rd of January). We also notice the power outage on the 17th of January that

leads to idleness.

45

Chapter 4. Exploratory Data Analysis

46

Count

:

Count

i

Count

-

—

Count

:

Count

3
i

150

100

150

100

150

100

150

100

150

100

10th of January 11th of January 12th of January
20
15
10
05
00
13th of January 14th of January 15th of January
20
15
10
05
00
16th of January 17th of January 18th of January
20
15
10
05
00
19th of January 20th of January 21th of January
20
15
10
X
00
22th of January 23rd of January 24th of January
20
15
10
05
00

Figure 4.5. CPU Usage for each day

10th of January

11th of January

12th of January

13th of January

14th of January

15th of January

16th of January

F_

17th of January

18th of January

19th of January

20th of January

21th of January

22th of January

b

23rd of January

-

24th of January

b

Figure 4.6. Histogram of daily CPU Usage

4.1 Outline of the EDA

10th of January 11th of January 12th of January

Density
e o kB B N
5 a ©o 0 o

13th of January 14th of January 15th of January

Density
o o 1 &
S & o

16th of January 17th of January 18th of January

Density
e o k B N
S & o 0 o

19th of January 20th of January 21th of January

Density
o o £ B N
S & o n o

22th of January 23rd of January 24th of January

Density
o o = B N
5 & o G o

Figure 4.7. Histogram Curve of daily CPU Usage

Trends, Seasonality, Residuals

Using the Statsmodels Python library we can see more in depth the daily patterns. We randomly
select a weekday and a weekend day and decompose the data into Trend, Seasonality and Residuals.

e Trend shows whether the data are increasing or decreasing in the long term

e Seasonality shows if certain periodic changes occur in the data and can be spotted by remov-

ing the other pieces of data

e Residuals show the noise in the data which can be represented in this case by ad-hoc users

of the API which cause some load on the system or other anomalies

Comparing the results from Figure 4.8 and Figure 4.9 we can extract many observations. In
terms of Trend, we can see an evident higher Trend on the weekdays between 9:00 and 17:00 and
an obvious drop after 17:00 which leads only to automated processes. In terms of seasonality, we
can observe 2 spikes every hour in a very repetitive and identical manner. These spikes are caused
by automated processes that periodically process data e.g. synchronising data. For example, one

account at CERN may belong to plenty authorisation groups and thus there must be consistency.

47

Chapter 4. Exploratory Data Analysis

Value

Trend

Seasonal

o o o
o N o
38 & 3

|
°
o

900 950 1000 1050 1100 1150

Figure 4.8. Seasonality, Trend and Residuals for a weekday

Value

1450 1500 1550 1600 1650

Figure 4.9. Seasonality, Trend and Residuals for a weekend

Correlation and Other Statistics

We study the correlation between the different days. The correlation table can be seen below

in Figures 4.10 4.11as well as the highest correlated days with a correlation coefficient over 0.4.

48

4.2 Observations

10th of 11th of 12th of 13th of 14th of 15th of 16th of 17th of 18th of 19th of 20th of 21th of 22th of 23rd of 24th of

January January January January January January January January January January January January January January January

J::::‘:?; 1.000000 0.070783 0.308123 -0.127576 -0.316888 -0.344624 -0.347604 -0.157039 -0.220141 0.216126 0.183092 0.160463 0.722673 -0.023649 0.289026
J::‘Iuh":; 0.070783 1.000000 0.082387 0.255063 -0.091248 -0.252693 -0.323870 -0.199082 -0.261455 -D.164181 0.195848 0.285543 0.179454 0.713543 0.039391
J:ill:llr“; 0.308123 0.062387 1.000000 0.014703 0.143253 -0.026900 -0.223762 -0.213357 -0.314990 -0.248199 -0.156410 0.063592 0.249764 0.140993 0.850965
J::::‘;?; -0.127576 0.255063 0.014703 1.000000 0.169391 0.149078 0.060848 -0.002970 -0.238601 -0.268927 -0.232490 -0.227432 0.029591 0.153654 0.000371
J::Iuh-:l; -0.318889 -0.0912486 0.143253 0.169391 1.000000 0.131550 0.282450 0.054579 -0.183754 -0.308205 -0.298491 -0.313219 -0.228916 0.095353 0.252586
J:::‘;ruyr -0.344624 -0.252693 -0.026900 0.149078 0.131550 1.000000 0.094705 0.220736 0.001881 -0.212128 -0.332229 -0.335324 -0.277067 -0.192946 -0.021882
J:z:‘:?; -0.347604 -0.323870 -0.223762 0.060848 0.282450 0.094705 1.000000 0.000911 0.285755 -0.054988 -0.223837 -0.315573 -0.341931 -0.317503 -0.233021
J:;Iuh":; -0.157039 -0.199082 -0.213357 -0.002970 0.054579 0.220736 0.000911 1.000000 0.094385 0.163114 0.050814 -0.140994 -0.203182 -0.274902 -0.157582
J::ll:llr“; -0.220141 -0.261455 -0.314930 -0.238601 -0.183754 0.001881 0.285755 0.094385 1.000000 -0.034119 0.207106 0.039151 -0.259343 -0.325354 -0.333905
J::::‘;?; 0.216126 -0.164181 -0.248199 -0.268927 -0.308205 -0.212128 -0.054988 0.163114 -0.034119 1.000000 0.123471 0.103065 0.166451 -0.215724 -0.240395
J::Iuh-:l; 0.183092 0.195848 -0.156410 -0.232490 -0.296491 -0.332229 -0.223837 0.050814 0.207108 0.123471 1.000000 0.275980 0.103039 0.162591 -0.182727
Ji:‘::"ru; 0.160463 0.285543 0.063592 -0.227432 -0.313219 -0.335324 -0.315573 -0.140994 0.039151 0.103065 0.275980 1.000000 0.010120 0.253174 0.014169
Ji:::‘:?; 0.722673 0.179454 0.249764 0.029591 -0.228916 -0.277067 -0.341931 -0.203162 -0.259343 0.166451 0.103039 0.010120 1.000000 0.010478 0.210766
J:::‘rud":; -0.0236849 0.713543 0.140993 0.153654 0.095353 -0.192948 -0.317503 -0.274902 -0.325354 -0.215724 0.162591 0.253174 0.010478 1.000000 0.178275
J::ll:llr“; 0.289026 0.039391 0.850965 0.000371 0.252586 -0.021882 -0.233021 -0.157582 -0.333905 -0.240395 -0.182727 0.014169 0.210766 0.176275 1.000000

Variable 1 | Variable 2

Figure 4.10. Correlations over days

12th of January |
22th of January |
11th of January |

4.2 Observations

24th of January
1eth of January
23rd of January

| Correlation Coefficient |

0.8509654354907864 |
0.7226725455548325 |
8.7135434812678866 |

Figure 4.11. Top correlations

We can notice plenty of patterns from the EDA. Overall,

The CPU Usage is spiking in many cases, calling for need of proper scaling

On the 17th of January half the day is idle due to a power outage

Hourly seasonality shows spikes that happen in similar hours each day

Weekday traffic is significantly higher that weekends

After 5 o’ clock - the standard shift hours - the usage drops

Every hour 2 identical spikes happen

49

Chapter 54

Model Development

5.1 LSTM for Time series prediction

Data preparation

In order to prepare the data series we introduce the functions "data generator" and "get -

window" that produce a label y for a data sequence x; with length i = seq_length as follows:

Listing 5.1: Data generator fucntions
def get windows(data, seq length, pred length=2):

x =]

y = [l

for i in range(len(data)—seq length—pred length+1):
x = data[i:(i+seq_length)]
np.stack (data|i+seq length:i+seq length+pred length], axis=1)][0]

x.append (_x)
y -append (_y)

return np.array (x),np.array(y)
def data generator(raw_values, seq length=4, pred seq len=1, normalize=True):

if (normalize=—True):
sc = MinMaxScaler ()

training data = sc.fit_ transform (raw_values)
else:

sc = None

training data = raw_values

x, y = get _windows(training data, seq length, pred seq len)

return x, y , sc

Using the above functions, we can experiment with "different" dataset modalities and explore
which sequence length is better for predicting the next value.
Training and Validation

For the LSTM model we used the language Python alongside the TensorFlow [18] library and
Keras back-end, in a Kaggle notebook.

We experimented with various parameters, namely:

50

5.1 LSTM for Time series prediction

LSTM units — [16, 32, 64, 128]
LSTM Layers = [1, 2]
sequence length = [4, 6, 12, 144, 287]

epochs: [20,40,60,75,100]
learning rate: [0.00001, 0.0001 , 0.001]
loss= [’mean_ squared error’, 'huber loss function’]

optimizer="adam’

Our best model’s summary is printed in Figure 5.1

Layer (type) Output Shape Param #
lstm 11 (LSTM) (1, 12, 128) 66560
lstm_12 (LSTM) (1, 64) 49408
dense 6 (Dense) (1, 64) 4160
dense_7 (Dense) (1, 1) 65

Total params: 120,193
Trainable params: 120,193
Nen-trainable params: ©

Figure 5.1. Our LSTM Architecture for CPU forecasting

We trained the model over 40 epochs in order to avoid overfitting. The phenomenon of over-
fitting refers to the model learning the data by heart and not memorizing the patterns behind it.
Underfitting on the other hand is the phenomenon where the model is not trained enough to learn

any patterns.

Results

Epoch 1/40

3100/3100 - 10s - loss: 0.0610 - 1@s/epoch - 3ms/step
Epoch 2/40

3100/3100 - 9s - loss: ©.0507 - 9s/epoch - 3ms/step
Epoch 3/40

3100/3100 - 95 - loss: ©.0438 - 9s/epoch - 3ms/step
Epoch 4/40

3100/3100 - 85 - loss: ©.8464 - 8s/epoch - 3ms/step
Epoch 5/40

3100/3100 - 8s - loss: ©.0416 - 8s/epoch - 3ms/step
Epoch 6/40

3100/3100 - 95 - loss: 0.0384 - 9s/epoch - 3ms/step
Epoch 7/40

3100/3100 - 85 - loss: ©.8367 - 8s/epoch - 3ms/step
Epoch 8/40

3100/3100 - 8s - loss: ©.0356 - 8s/epoch - 3ms/step
Epoch 9/4@

3100/3100 - 95 - loss: ©.0333 - 9s/epoch - 3ms/step
Epoch 10/40
3100/3100 - 85 - loss: ©.8311 - 8s/epoch - 3ms/step
Epoch 11/40
3100/3100 - 8s - loss: ©.0287 - 8s/epoch - 3ms/step
Epoch 12/48
3100/3100 - 85 - loss: 0.0278 - Bs/epoch - 3ms/step
Epoch 13/40
3100/3180 - 95 - loss: ©.8268 - 9s/epoch - 3ms/step
Epoch 14/40
3100/31060 - 9s - loss: ©.0267 - 9s/epoch - 3ms/step
Epoch 15/48
3100/3100 - 85 - loss: ©.0259 - Bs/epoch - 3ms/step

Figure 5.2. Train Logs from the LSTM Model training

The results of our model can be seen below in Figure 5.3 and Figure 5.4

51

Chapter 5. Model Development

Sequence=12 - Model Loss

—— ftrain

0.05 -

0.04 4
b
g

0.03 A

0.02 4

0 5 10 15 20 25 30 35 40

Epoch

Figure 5.3. Loss function during training

print('Train Score: %5f RMSE' % (trainScore_1))
print('Test Score: %5f RMSE' % (testScore_1))

Train Score: 0.187494 RMSE
Test Score: 0.198198 RMSE

Figure 5.4. Root Mean Square Error on the train and test set

As expected, our model had better performance on the train set and slightly worse on the test
set. When we visualise the predictions we can see a good pattern forecasting.

Time-Series Prediction on the test set

----- A W W VR YWy L

o 200 400 600 800 1000 1200

Figure 5.5. Prediction Sequence on the test set

52

5.2 Reinforcement Learning Agent

on

(1]

0.z

|
J

oo

L] 5 = ™ L] 125] s 200

Figure 5.6. Orange: Prediction on the train set. Green: Predictions on the test set

5.2 Reinforcement Learning Agent

We can now proceed to introducing a Reinforcement Learning agent that takes into considera-

tion the above forecasting model predictions in the Q-Network.

5.2.1 Environment and Q Network

We define the agent’s environment called the KubernetesEnv as follows. The environment
contains information about the cluster state, computes the reward and returns the observations of

the agent. The Q Network follows the architecture explained in Section 5.1.

class KubernetesEnv:

def init (self ,data,num actions,history window):
super (ClusterEnvironment , self). init ()
#HHSTATE
self.cluster state #initial Cpu usage — State representation

self . max cluster state # mazimum cpu usage we want to reach

self . min cluster state # idle state

###ACTIONS
self .nodes #current number of nodes in the cluster
self .max nodes #mazrimum nodes we can have

self.action set #scaling actions, e.g. ["None","Up","Down"]
self.action space = np.arange(num _actions)
self .observation space = []

self . history window=history window
self.history = [0 for i in range(self.history window)]

53

Chapter 5. Model Development

self.data = data
self.current t = 0
self .done=False
self.profits=0
self.reset ()

def reset(self):
#resets the environment to it’s original values

def step(self, action):
reward = 0

if action — 0:
#NO action

elif action — 1:

#Scale Up
self .nodes = min(self.nodes+1,self.max nodes)
reward += int(self.max cluster state—
(self.data.iloc[self.current t—1]["Value"]
—self.data.iloc[self.current t]["Value"])x100)
if(self.current t==0):

reward += int(self.max cluster state

—(self.data.iloc[self.current t]["Value"])*100)
self.profits += reward

elif action ==2:
#Scale Down
self .nodes = max(self.nodes—1,1)
reward += int(self.max cluster state
— (self.data.iloc[self.current t—1]["Value"]
— self.data.iloc|[self.current t]["Value"])%x100)
if (self.current t==0):
reward += int(self.max cluster state
—(self.data.iloc[self.current t]["Value"])*100)
self.profits += reward
self.current t 4= 1
self.position value = self.data.iloc[self.current t]["Value"]
self.history.pop(0)
self.history.append(self.data.iloc[self.current t — 1]["Value"])

if self.current t — len(self.data) — 1:
done = True
return self.history , reward, self.done , self.nodes

class Q_Network(nn.Module):
def init (self ,input_ size=6 ,hidden size=32, actions=3):

54

5.2.2 Training Parameters

super (Q_Network, self). init ()

self . hidden size = hidden size

self .lstm = nn.LSTM(input size=input_ size,
hidden size=hidden size,
num layers=2,
batch first=True)

self.fc = nn.Linear (128, 64)

self.fc2 = nn.Linear (64, actions)

def forward(self, x):
#Pass through the model
o, = self.lstm(a)
f = self.fc(o)
out = self.fc2(f)

return out

The Target Network is created by simply copying the Q Network with the fuction deepcopy to
avoid any correlations of the variables.

Q_b = copy.deepcopy (Q)

5.2.2 Training Parameters

We define the criterion for the loss function of our Q-Network as well as the optimizer. For
the loss function we experimented both with the nn.MSE() function that represents the Mean
Squared Error. However, the MSE function did not lead to proper convergence and the loss was
not sufficiently minimized. That phenomenon is caused due to the fact that the computation
of the MSE accumulates big values caused by the outliers, which we have plenty of. A better
approach to the loss minimization is the Huber Loss function[47]. Concerning the optimizer,
we used the Adam() optimizer [48] which has proven suitable for most optimization in Machine

Learning models.

criterion = nn.HuberLoss ()

optimizer = optim.Adam(list (Q.parameters()),learning rate=0.00001)

When selecting the specific parameters we defined the ones stated below, experimenting mostly
with the first set. The number of epochs greatly impacts the total training time, but it is not always
beneficial to train for a long time. We experimented with a set of 20,50,100 epochs, ultimately
settling for the 20. Another critical set of parameters was the size of the Memory Replay Buffer,

defined by mem__size as well as the batch _size used for sampling and training.

epochs =

step_max = len (env.data) — 1
mem _size =

batch size =

gamma =

memory = []
total step = 0
total rewards = []

total losses = []

55

Chapter 5. Model Development

#exploration

epsilon 1.0

epsilon min = 0.1

epsilon decrease = le—3
start reduce epsilon = 200

#network updates
update q_freq =

Learning Rate

The learning rate defines in which degree the acquired knowledge for the Q(s, a) will overpower
older information. A value of zero will lead the Agent to discarding the new knowledge and only
using the old one, while on the other hand a value of one will not take into consideration the old
information at all. In a deterministic environment the learning rate would always be one. However
in a stochastic problem, convergence requires prior information otherwise it is not possible. For
that reason, the learning rate is set close to zero. We experimented with values 0.001, 0.0001 and
0.00001, ultimately deciding that a slow learning rate, 0.00001, is more beneficial for the training
of our model.

The v factor

The ~ factor defines the value of the future rewards. If we select v = 0, then the Agent is
not taking into consideration any value of future rewards. In contrast, a factor of v = 1 will
lead the Agent to look forward to bigger future rewards continuously which will make convergance
impossible. In practice, the values used are close to zero but not equal to, such that the algorithm
converges [49]. In our case we selected v = 0.97

Experience Replay Buffer and Random Sampling

As explained in Section 3.4.2 the Replay Buffer stores the experiences of the agent in a tuple
of < s,a,r,s’ >, with the purpose of random sampling and training. In our code, two more
variables are stored in each tuple, the done parameter that signals the end of the episode and the
n parameter that stores the number of nodes in the state. By extending the memory we can store
more experiences and sample a more statistically random sample from the buffer. We experimented
with sizes ranging from 10 to 1000 for the memory and 2 to 50 for the size of the random batch.
Before selecting the random batch, the memory is shuffled.

memory . append ([pobs, pact, reward, obs, done, n])
if len(memory) > mem _size:

memory . pop (0)

if len(memory) =— mem _size:
if (total step+1) % train_ freq = O0:
shuffled memory

np.random . permutation (memory)

memory idx = range(len (shuffled memory))

56

5.3 Results

Computation of Q-Values
When iterating the batch, we extract the tuple elements < s,a,r,s’,done,n > in different

variables and compute the Q-Values for each state s and the target values for each s’

for i in memory idx[:: batch size]:
batch = np.array (shuffled memory[i:i + batch size])

[..]
qa=Q(...)

q =QDb(...)
maxq = np.max(q_.data.numpy(),axis=1) #Get the max value from the Q table

copy . deepcopy (q.data)

target —

Training
Following the equation explained in Section 3.4.2 we compute the new cumulative expected

reward for each state. Backpropagation computes the weights for each value and adds to the total
loss. Afterwards we check the frequency and when reached, we update the Target Network as well.

for j in range(batch size):
target|[j] = b_reward|j]| + gamma * maxq|j]| * (not b_done|j])
Q.zero_grad ()

optimizer.zero grad()
criterion (q, target)

loss =

#Backpropagation
loss . backward (retain _graph=True)

total loss += loss.item ()

optimizer.step ()

if total step % update q freq =— O0:
Q_b = copy.deepcopy (Q)

Exploration vs Exploitation
We also utilise the feature of Exploration by selecting a random action more frequently for the

smaller € values. At the end of each epoch we update to a higher € value.

np.random. randint (3) #random action

pact =

if np.random.rand() > epsilon:
#Select random action

5.3 Results

Concluding, we evaluated our Agents performance, keeping the best ones

Chapter 5. Model Development

Epoch 1

Total Rewards -46
Epoch 2

Total Rewards -318
Epoch 3

Total Rewards 730
Epoch 4

Total Rewards 665
5 ©.0999999999999992 4885 286.4 9868253.511032429 6734.7453409884033
Epoch 5

Total Rewards -27
Epoch 6

Total Rewards 838
Epoch 7

Total Rewards 488

Figure 5.7. Train Logs from the Agent’s training

We can observe the loss function declining as the Agent learns the patterns for scaling as well

as the reward function having a rising curve as the Agent maximizes the rewards.

le7

T T T T T T

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Figure 5.8. Loss Function of the Agent

58

5.3 Results

2250 4

2000 4

1750 A

1500 ~

1250 A

1000 -

750 A

500 A

250 A

T T T T T T

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Figure 5.9. Reward Function of the Agent

When we study the Agents performance we can see and compare between two different cases. In
Figure 5.10, we defined history window = 60 and in Figure 5.11 we defined historywindow = 12.
We can notice that on the first case the Agent makes more conservative scaling decisions, by not
decreasing the node number significantly as the experience calls for a recurring requirement around
9 nodes. On the second case, the Agent takes into account a shorter sequence in the experiences,
thus makes more reactive scaling decisions that may even be non practical in the real scheduling
world.

Figure 5.10. Predictions of the Agent, History Window = 60

59

Chapter 5. Model Development

17.5 1

15.0

12.5

10.0 -

7.5

5.0 4

2.5 1

0.0 -

NN

|

60

0 50 100 150 200 250 300

350

400

Figure 5.11. Predictions of the Agent, History Window = 12

Chapter 6

Future Work and Extensions

6.1 Discussion

Through these experiments we acquired a sense of scaling and how these high level components
can be designed. However, there is need for further discussion on our resources, our methodology

and, ultimately, our decisions.

Data Acquisition

Concerning our data, there are a lot of improvements to be made. Our data source is very
restricted on every aspect as it does not include basic information about the cluster such as the
number of nodes in the said cluster. Without knowing the number of nodes, we can only arbitrarily
assume a number for the nodes, the minimum and the maximum. Most importantly, however, this
gap affects our analysis in the sense that we cannot know the effect that our speculative scaling
has on the future CPU usage. This fact alone can defy the pro-activeness of the Agent. If the
number of nodes, and its variance, was known alongside the usage we could approximate a ratio
of the scaling effect on the cluster.

Moreover, we cannot overlook the fact that the CPU usage is just one metric and many more
can be acquired through PromQL queries in order to have the bigger picture of the cluster. Metrics
such as the memory usage, the SLA violations and more could be of great usage.

Extending this conversation, there can even be doubt for the usability of the data we proposed
data. There have been works that sufficiently predict the scalabitily of a cluster based solely on

seasonality and trend.

Methodology

On the discussion about our methodology there are various points to be made. Our original
motivation included the creation of our own cluster. The Computer Systems Laboratory (CSLab)
generously provided resources on their servers. However, there were plenty of networking problems
mainly in the internal Kubernetes network that exposed the endpoints. On our first mitigation
we utilized the available resources on the Okeanos Knossos cloud in GRNET’s cloud service [50],
where the creation of the internal network is more user friendly and fail proof. Unfortunately, in
this case the efforts to load-test the cluster in order to obtain the metrics were futile and resulted
in empty files or missing values across all tests. Our methodology in this effort included creating
various scenarios with the Kube-burner tool [51] which offered little detail in the documentation
and few usage examples in local clusters.

Continuing with our plan C, we utilized the only available open source CPU usage dataset
online. However, our current methodology still needs to be discussed. Throughout our tests, even

though many parameters were tested, the LSTM models and the Agent were prone to overfitting

61

Chapter 6. Future Work and Extensions

and it is probable that we have reached a local minima and the values are not optimal. As a result,
we cannot be sure about the Agent’s performance and more parameters need to be tested and

aggregated into a complete review.

6.2 Future Work

Extending the above into possibilities for feature work we can suggest the following.

Data Acquisition

Data collection is very important for this task, as our point stands: Every application is different
and designing an Agent for an open source dataset with little to none information on the cluster
can be vastly different from one that can perform and be tested on our specific needs. Future
work needs to be implemented on a local or directly customised cluster that can run load testing
scenarios with many parameters and well defined limitations. Moreover, there need to be included
many more metrics, and the exploratory data analysis can then study their significance. The

PromQL queries can expose a huge number of complicated monitoring metrics.

Methodology

Besides the methodology that needs to be followed in order to acquire a working cluster that
can be tested, we need to stress the need for further development of the Python code for both the
Agent and the LSTM models. That includes defining a more complicated reward system in the
Agent’s environment as well as different LSTM models in the Q Network, such as bidirectional
LSTMs that can capture the information from both sides of the time sequence.

Last but not least, the Agent needs to be integrated into a custom controller and evaluated in
a real usage scenario and be compared to different approaches such as naive scheduling methods

based on mean value but also more complicated ones from the relevant literature available.

62

Bibliography

[1]

2]

3]

4]

5]

[6]

7]

8]

19]

[10]

[11]

Andrei Gurtov xou Vladimir Mazalov. Queueing System with On-Demand Number of Servers.
Mathematica Applicanda, 40(2), 2012.

M.A. Kaboudan. A dynamic-server queuing simulation. Computers €amp Operations Re-
search, 25(6):431-439, 1998.

Yanhe Jia, Lixin Tang, Zhe George Zhang xou Xiaofeng Chen. MMPP/M/C queue with
congestion-based staffing policy and applications in operations of steel industry. Journal of
Iron and Steel Research International, 26(7):659-668, 2018.

Qian Zhu xov Gagan Agrawal. Resource Provisioning with Budget Constraints for Adaptive
Applications in Cloud Environments. IEEE Transactions on Services Computing, 5(4):497—
511, 2012.

Muhammad Wajahat, Anshul Gandhi, Alexei Karve xoau Andrzej Kochut. Using machine learn-
ing for black-box autoscaling. 2016 Seventh International Green and Sustainable Computing
Conference (IGSC), oeNidec 1-8, 2016.

Hamid Arabnejad, Claus Pahl, Pooyan Jamshidi xouw Giovani Estrada. A Comparison of
Reinforcement Learning Techniques for Fuzzy Cloud Auto-Scaling. 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID), ce\idec 6473,
2017.

Shay Horovitz xou Yair Arian. Efficient Cloud Auto-Scaling with SLA Objective Using Q-
Learning. 2018 IEEFE 6th International Conference on Future Internet of Things and Cloud
(FiCloud), cehidec 85-92, 2018.

Fabiana Rossi, Matteo Nardelli xou Valeria Cardellini. Horizontal and Vertical Scaling of
Container-Based Applications Using Reinforcement Learning. 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD), cehdec 329-338, 2019.

Bryan Lim xou Stefan Zohren. Time-series forecasting with deep learning: a survey. Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
379(2194):20200209, 2021.

Sardar M N Islam, Narina Thakur, Kanishka Garg xouw Akash Gupta. A Recent Survey on
LSTM Techniques for Time-Series Data Forecasting. Applications of Artificial Intelligence,
Big Data and Internet of Things in Sustainable Development, cehideg 123-132. CRC Press,
2022.

Jian Zheng, Cencen Xu, Ziang Zhang xou Xiaohua Li. FElectric load forecasting in smart
grids using Long-Short-Term-Memory based Recurrent Neural Network. 2017 51st Annual
Conference on Information Sciences and Systems (CISS). IEEE, 2017.

63

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

64

Nédra Mellouli, Mahdjouba Akerma, Minh Hoang, Denis Leducq xou Anthony Delahaye. Mul-
tivariate Time Series Forecasting with Deep Learning Proceedings in Energy Consumption.
Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management. SCITEPRESS - Science and Technology Publica-
tions, 2019.

Saurav Kumar xot Dhruba Ningombam. Short-Term Forecasting of Stock Prices Using Long
Short Term Memory. 2018 International Conference on Information Technology (ICIT).
IEEE, 2018.

Shashank Tripathi. Can stock prices be predicted? Comparative study of LSTM and SVR for

financial market forecast. 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra xou Martin Riedmiller. Playing Atari with Deep Reinforcement Learning, 2013.

Marius Cioca xou Ioan Cristian Schuszter. A System for Sustainable Usage of Computing

Resources Leveraging Deep Learning Predictions. Applied Sciences, 12(17):8411, 2022.

saibot94. Anonymized CPU wusage dataset - Github [Online]. Available:
https://github.com /saibot94 /cpu-dataset-prometheus.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu xou Xiaoqgiang Zheng.
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, 2015. Software avail-

able from tensorflow.org.

Prometheus - Monitoring System and Time Series Database [Online]. Available:
https://prometheus.io/.

Kubernetes Documentation: Containers hitps://kubernetes.io/docs/concepts/containers,.

David Bernstein. Containers and Cloud: From LXC to Docker to Kubernetes. IEEE Cloud
Computing, 1(3):81-84, 2014.

Docker [Online]. Available: https://www.docker.com/.

The Kubernetes authors. Kubernetes: Production-Grade Container Orchestration [Online].
Awailable: http://kubernetes.io/, 2022.

cri-o Lightweight Container Runtime for Kubernetes [Online]. Available: https://cri-o.i0/.

Containerd An industry-standard container runtime with an emphasis on simplicity, robust-
ness and portability [Online]. Available: https://containerd.io/.

Cluster Architecture - Kubernetes [Online]. Available:https://kubernetes.io/docs/concepts/architecture/.

The Kubernetes API - Kubernetes [Online]. Awailable:
https://kubernetes.io/docs/concepts/overview/kubernetes-api/.

BIBLIOGRAPHY

[28]

[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Scheduling Framework - Kubernetes [Online]. Available:
https: //kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/.

Kubernetes Scheduler - Kubernetes [Online]. Available: https://kubernetes.io/docs/concepts/scheduling-

eviction/kube-scheduler.

Scheduling Framework - Kubernetes [Online]. Available:
https://kubernetes.io/docs/reference/scheduling/config/.

Pods - Kubernetes [Online]. Available: https://kubernetes.io/docs/concepts/workloads/pods/.

eted [Online]. Available: Documentation hittps://github.com/eted- io/etcd/blob/master/Docu-

mentation/docs.md.
What is etcd? - IBM [Online]. Available: https://www.ibm.com /topics/etcd.

Cluster Networking - Kubernetes [Online[. Available: https://kubernetes.io/docs/concepts/cluster-

administration/networking/.

Horizontal Pod Autoscaling- Kubernetes [Online]. Available:
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/.

Laszlo Toka, Gergely Dobreff, Balazs Fodor xow Balazs Sonkoly. Machine Learning-Based Scal-
ing Management for Kubernetes Edge Clusters. IEEE Transactions on Network and Service
Management, 18(1):958-972, 2021.

Vertical ~ Pod Autoscaling, Google Kubernetes Engine [Online]. Available:
https://cloud.google.com/ kubernetes-engine/docs/concepts /verticalpodautoscaler, 2021.

Huawei-Cloudnative /Kubernetes. Vertical-Scaling. [Online]. Awvailable:
https: //github. com/huawei-cloudnative /kubernetes /tree /vertical-scaling.

Gourav Rattihalli, Madhusudhan Govindaraju, Hui Lu xow Devesh Tiwari. Exploring Potential
for Non-Disruptive Vertical Auto Scaling and Resource Estimation in Kubernetes. 2019 IEEE
12th International Conference on Cloud Computing (CLOUD). IEEE, 2019.

Hamzeh Khazaei, Rajsimman Ravichandiran, Byungchul Park, Hadi Bannazadeh, Ali
Tizghadam xou Alberto Leon-Garcia. FElascale: Autoscaling and Monitoring as a Service,
2017.

Prometheus Query Language - PromQL [Online]. Available:
https://prometheus.io/docs/prometheus/latest/querying /basics/.

Sepp Hochreiter xou Jiirgen Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1735-1780, 1997.

Y. Bengio, P. Simard xow P. Frasconi. Learning long-term dependencies with gradient descent
is difficult. IEEE Transactions on Neural Networks, 5(2):157-166, 1994.

Kyunghyun Cho, Bartvan Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk xot Yoshua Bengio. Learning Phrase Representations using RNN En-
coder—Decoder for Statistical Machine Translation. Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, 2014.

65

BIBLIOGRAPHY

[45]

[46]

[47]

(48]

[49]

[50]

[51]

66

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage xot Anil Anthony Bharath. Deep
Reinforcement Learning: A Brief Survey. IEEE Signal Processing Magazine, 34(6):26-38,
2017.

David Balla, Csaba Simon xou Markosz Maliosz. Adaptive scaling of Kubernetes pods. NOMS
2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2020.

Peter J. Huber. Robust Estimation of a Location Parameter. The Annals of Mathematical
Statistics, 35(1):73-101, 1964.

Diederik P. Kingma xou Jimmy Ba. Adam: A Method for Stochastic Optimization, 2017.

Vincent Frang ois-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare xou Joelle
Pineau. An Introduction to Deep Reinforcement Learning. Foundations and Trends®) in
Machine Learning, 11(3-4):219-354, 2018.

Home | okeanos-knossos [Online]. Available: hitps://okeanos-knossos.grnet.gr/home/.

Kube-burner Documentation [Online]. Available: hitps://cloud-bulldozer.github.io/kube-
burner/v1.7.10/.

List of Abbreviations

Al
ML
CPU
MLP
K8s
HPA
VPA
PromQL
API
EDA
DL
LSTM
MDP
RL
DQN

Artificial Intelligence
Machine Learning

Central Processing Unit
Multilayer Perceptron
Kubernetes

Horizontal Pod Autoscaler
Vertical Pod Autoscaler
Prometheus Query Language
Application Program Interface
Exploratory Data Analysis
Deep Learning

Long-Short Term Memory
Markov Desicion Process
Reinforcement Learning
Deep Q Network

67

	Περίληψη
	Abstract
	Ευχαριστίες
	List of Figures
	Εκτεταμένη Ελληνική Περίληψη
	Περίληψη
	Θεωρητικό Υπόβαθρο
	Πειραματικό Μέρος
	Συζήτηση και Μελλοντική Δουλειά

	Thesis Outline
	Theoretical Background
	Containers
	Docker
	Kubernetes
	Cluster Architecture
	Kubernetes Components
	Kubernetes Networking
	Kubernetes Scaling

	Monitoring Tools
	Prometheus

	 Machine Learning & Reinforcement Learning
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Recurrent Neural Networks
	Long-Short Term Memory Models
	Applications in Time Series Prediction

	Reinforcement Learning
	Q-Learning
	Deep Q-Learning
	Applications in Scaling

	Exploratory Data Analysis
	Outline of the EDA
	Observations

	Model Development
	LSTM for Time series prediction
	Reinforcement Learning Agent
	Environment and Q Network
	Training Parameters

	Results

	Future Work and Extensions
	Discussion
	Future Work

	Bibliography
	Bibliography
	List of Abbreviations

