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Hepiindn

Sy noapoloa dimhwpotixd epyacio, uehetdpe to npdfinua Label Ranking (LR), Htol to emPhendyevo
TEoBAnua exudinong woag cuvdptnong mou avTiototyilel maupadelyuota o8 XATATAEEC EVOC TENERACHUEVOL
ouvorou poxadopiopévey etixetdy. To LR xatéyel xalpia 9€on otnyv neptoyn) Tne expdinong npotiuoewy
X0l CUVLOTE aVTIXE(UEVO UEAVOUEVOU EVOLAPEROVTOC AOYW TNG EUTAOXNC TOU G Lol TANDMEA TOUEWY, OTWS
N oToYXELUEV Slopridion, 1 BlomAnpogopixy xan 1 peto-uddnorn. H cuvtpinted mieodmela twv epyoaoidy
yOpw and to LR, viodetel plo mpaxtiny) npocéyylon yia to ev Adyw mpolAnua, mpotelvovtag aiyopiduoug
o1 Bdomn nelpapatixic a€loAdynong xat Oyl Yewpnuxcv anoteheoudtwy. ¢ ex To0ToL, Uiot and TiC X0pLEC
npoxifoelc oty meploy) Tou LR agopd oty xataoxeur; odyoplduwy, ol omolot va unoctnpilovioar 1660
and oTatoTixée eYYLAOELS, dlaogarilovtac ixavétnta yevixeuone oe véa dedopéva, 660 xou and exéyyua
amodotixétnrag, egacpaiiloviag unohoyiotnt| dlayelplodtnta. O oxondg tne mopovoag epyaciog €xel
dVo mtuyéc. O mpdtog pag otdyoc oyetiletan ye tn Yewpnuxf perétn tou LR xou v enéxtaon oplopévev
UTEYOVTWY BIBMOYRUPIXOY ATOTEAECUGTWY. LUYHEXQLIEVA, ETUXEVIPWVOUAOTE oTr YeUeAlddT ¥AdoT TeV
Tooppinédv Talvopntixav Luvaptioewy (Linear Sorting Functions A LSFs), 1 onola avtiotouyel otn ypoy-
) exdoyh tou LR, xou, Baoilbuevor otn Sovkelo twv Fotakis et al. [2022b], napéyouyue évay anodotixd,
xavovixd (proper) olyoprdpo exuddnone LSFs xatd to yoviého PAC. O ahyberdude pog cuvodedeton and
EXEYYUO UTO TO XADECTMOC TWV LOOTPOTUXDY AoYptdxde x0lAwv xotavou®y miavotntac, we Teog Ty
anéotaoy Tau tou Kendall xar w¢ mpog yovtéha Yopiffou mou enexteivouy ta povtéha Yopifou duadenc
ta€vounone Massart xon Tsybakov oty neplntwor tou LR. O 8ebtepoc otdyog pag elvon vo Blepeuvicouue
TEoUATIXOS TNV eldoor LR ahyopliuwy Baciouévev ot ypaupxés ocuvapetiioeic o olyxelor ue ahyopld-
poug, ot omolot Booilovtar oe dévtpa ambdpacne xou tuyola 8dor, dedopévou, 6Tl ot teleutales pédodot
Yewpolvtan utepolYypoveg atny mepoy” Tou LR. H newpopotiny pag aglohdynon haufdvel yopa 1600 o
YopuPBwdrn clvoha exnaldevong npoepydueva and LSFs, 660 xou o tumixd cOvola avagopds yio to LR.
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Abstract

In this thesis, we study the problem of Label Ranking (LR), that is, the supervised task of learning a
hypothesis that maps instances to rankings over a finite set of predefined labels. LR holds a dominant
position in the field of preference learning and constitutes a topic of increasing attention due to its in-
volvement in a large number of areas, such as targeted advertising, bioinformatics and meta-learning.
The vast majority of works on LR adopt a practical approach to this problem, proposing algorithms on
the basis of experimental evaluation rather than theoretical results. Hence, one of the main challenges in
LR concerns the development of algorithms that are supported by both statistical guarantees, ensuring
generalization capability over new data, and efficiency assurances, guaranteeing computational tractabil-
ity. The purpose of this thesis is twofold. Our first goal is to address the theoretical aspects of LR and
extend some of the current literature results. In particular, we focus on the fundamental concept class
of Linear Sorting Functions (LSFs), which corresponds to the linear variant of LR, and, building upon
the work of Fotakis et al. [2022b], we provide an efficient algorithm that learns LSFs properly in the
distribution-dependent PAC model. Our algorithm is accompanied by guarantees under the regime of
isotropic logarithmically concave probability distributions, with respect to the Kendall’s Tau distance
and with respect to noise models that extend the Massart and Tsybakov binary classification noise mod-
els to the LR setting. Our second goal is to experimentally investigate the performance of LR algorithms
based on linear predictors against LR algorithms based on decision trees and random forests, given that
the latter constitute state-of-the-art techniques for LR. The evaluation we conduct is both on noisy data
sets originating from LSFs and on standard LR benchmarks.

Keywords

Label Ranking, Machine Learning, Statistical Learning, Learning Theory, PAC Learning, Learning from
Noisy Data, Halfspace, Linear Sorting Function
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Extetoapevn EAAnvixr| Ilepiindn

To Baowd oxéhog Tng auThC NG Simhwpatixhc epyaciog éyel anododel oty ayyAwr YAdooo. XTo napdv
XEPGAALO, Ol EVOTNTEC TOu omolou elvon oe mAfen avtiotolyla ye to umdloina xePdAaa, ToPOUCLELOUYE
CUVOTITIXOC TO TEPLEYOUEVS TG epyaciog, mapakeirovtag anodelel xan TeyVinés AenTOULpELES.

0.1 Ewcaywyn

To npbBinua Label Ranking (LR) (xatdtoaln etixetddv) anotehel évo aulaviuevo dnpopihéc avixeluevo
OTOV TOUEN TNG UNYavixhc Uddnomg pe xevtpixd pého otny meptoy) e pdinone npotufoewv (preference
learning) (Firnkranz and Hillermeier [2010]).  Etéyoc tou eivon 1 edpeon woc ouvdptnong, 1 onolo
vo avTioTtoly (el yopoxtneloTxd oe xotatdielc evdg menepaouévou cuvorou eTixet®v. To LR éyel AdBel
Widtepn mpocoy N Ta TEAEUTALA YEOVIA, XS avaXOTTEL OE Lot TANUME TEOXTIXWY EQapUOY®Y. Mia and
TIC TUO YOEAXTNELOTIXES EPAPHOYES TOU aPopolY OTNY oToV Topéd TNe otoyeupévne dogphutone (targeted
advertising) (Djuric et al. [2014]), émou {nrobuevo elvon 1 ebpeon piog xatdtaing evés cuvohou Slagnuicewy
yioe x&de ypnot, wote va Tou Teofindoly ol mo oyeTixég BAoEl TV EVOLIPEROVTWY ToU.

Ta tedevtala ypovia, éyouy undpiel onuavtxés dovielee Yipw and to LR nou npoteivouv xouvotdpoug
ahyopiduous. H ouvtpimting mhetodnpio autdv twv alyopliuwy cuvodeletar and nelpopatin) Toug adlo-
AOYNOM Tou avoadelxvOeEL TNV eNBOCT TOUC OE TEOXTIXO ETUMEDD, AAAS amd Ayoo TéC VewpnTXES EYYUNOELS.
Q¢ ex To0TOU, Piot amod TG UeYahlTERES TPOXANTELS oXeTWwd We To LR agopd otnv unoctipiln twv tpoo-
VoPePIEVTWY AMOTENEGUATWY OO GTUTIOTIXG Xl UTOAOYIoTIXd exéyyvua. Mia dAAN onuavtixy tpdxAnon
apopd oY xataoxeuy| ohyoplduwy yio To LR, ot onolot vo unopolv var SLoyelplo Toly TEpLITOOELS, OTwe
napadelypota exnaidevong pe xatatdéelc, ot onoleg dev elvan GAeC oL eTUNETEC TUPOVOES, XATATAEELS UE
wonahieg petald TV oToyElwy Toug N xatatdiels mou €youv ahhowwdel, Htol éyouv tpomonowiel, Aoy
YoplBou. O Baoinde otdyog authc Tne BmAwpatixic elvar vo emextelvouye xdmotar amd Tar undpyovta Ve-
wenTixd anoteléopato oY Yeuehdddn nepintworn Tou yeouuxold LR xar vo SlepeuvACOUNE TELRAUATIXGS
v enldoon alyoplituwy npocapuocuévwy otny Teplntwor tou yYeuuwxol LR cuyxpitinde e xdnotoug and
Toug o obYypovoug akyoplduouc Yo to yevixd LR nou éyouv npotadel otn Bifhioypagplo.

0.1.1 TIlpoyevéotepeg AovAclég ntdvw oto Label Ranking

Koatd v ndpodo twv yedvev, éyouv undeéel nowiiec npooeyyloelg yia to npoBinua Label Ranking, ou
TEPLOCOTERES EX TWV OTolwV Topouctdloviar cUAOYGOS ot dovketée twy Fiirnkranz and Hilllermeier
[2010], Vembu and Gértner [2011], Zhou et al. [2014a]. Ou npooeyyioeis autéc unopolv vo opodomondoldy
oTic axéhoudec xatnyoples.

Me8o8oL anocOvleong M and tic npwteg LR teyvixéc mou undyeton otic yedddoug anocivieonc
elvou ta&wdunon péow nepiopropdy (constraint classification) (Har-Peled et al. [2002]). O otdyoc tne elvou
vor BpeL ot ypouux ouvdptnom, 1 onola var avtioTolyilel SavOCUOTA YUPUXTNPLOTIXWY O XATATAEELS, TO
oTolo EMTUYYAVETHU UECK PETATYNUATIONOU TOU 0Pyl TEOBANUATOC Ot €va TeOBANUN EDPECTC OUOYEVHY
nudlaotnudteyv (homogeneous halfspaces) evide evéc ydpou peyahitepns dloototixdtnTog.

Muat dhhn tey v amocUvieong etvor auth Twv Aoyapduikds ypaupikdy povtédwy (log-linear models)
(Dekel et al. [2003]), 1 onola emexteivel Ty nponyoluevn pédodo, und tnv évvour, ott emyelpel vo pddet
CUVIPTACELC TTOL OMOTEAOUY YROULXG GUVBLAOUS EVEC GUVONOL CUVIPTACEWY Bdong.

Mua yevixdtepn tey vt yio to LR etvon n auth e amootvdeons katd {edyn (pairwise decomposition) ¥,
oS, TN katdtaéng péow avd {ebyn mpotiurjoewy (ranking by pairwise preferences 4 RPC) (Fiirnkranz
and Hiillermeier [2003], Hiillermeier et al. [2008]). H Baow Béa elvon vor ywploouvue to mpdfinuo LR
og TohAamAd mpofhiuata duadixhc Ttagivounone, éva Yo xdie {ebyog eTixeT®Y, oto onolo otdyog elvan 7
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npoBAedn e oelpde npotiunong yia to cuyxexpwévo Ledyoc. Ta anoteléopata Twv enpépouc TpoBAédewy
UTOPOUY VoL GUYYWVELTOVY GE ULl TEMXT| XATATAEY) UECW BlaPdemY TEOTWY Tou Yo avaALYoUY GTr GUVEYELA.

Abo afroonpelntec dovhelee ndvw ot auth tn wéYodo elvon autéc twv Vogel and Clémencon [2020] xou
Fotakis et al. [2022a]. H mpdtn Topéyel oTATIOUXES EYYUAOELS, OTNY TEPINT®ON o o ohydprduoc €xel
npocPoon Uévo otny medTn etxéta xdie xatdtaing, evéd N dedtepn mupEyEL TUPOUOLES EYYUNOELS Yiol [l
YEVIXOTERN TERINTWOT EAMTOY Slotdéemy UTO optopévee Topadoyés. Emmiéov, aupdtepa to anotehéopota
toybouy umd TNV mopoucia YoplBou. Mo GAAY onuoavTix dovkela oe ot TV xatedBuvor elvon auty
twv Fotakis et al. [2022b] yio tv mepintwon tou ypopuxol LR. Zuyxexpwéva, ol Fotakis et al. [2022D]
€deLZay, OTL 1 *AGOT TWY YPUUUIXMY TaSVOUNTIXGY cuvapTthoewy (linear sorting functions) eivar anodotinde
PAC expodfowun xotd xovovixd (proper) tpémo otnv neplntwon e moAudldotatne TUmxic xavovixnig
XAUTAVOUNC, WS TPog 000 dnpogikelc yia xatatdéelc ouvaptroelc xou ud TNy moapovcia YopiBou. Tehixe,
emonuaivoupe, 6Tl €youv mpotaldel xau mo mepimhoxec pédodol anoctivieone avd Levyn (Gurrieri et al.
[2014]) mou haPdvouy, enione, VTOPLy TN CUCYETION UETAEY ETIXETHOV.

Q¢ evodhaxtixry ot pédodo anocivieone xatd Lebyn, ow Cheng et al. [2013], Cheng and Hitllermeier
[2013] mpbdtewvay v pédodo tne amoovrieons katd etikétes (labelwise decomposition), 1 omoio ywpilet
10 npofBinua LR oe moAhamAd unonpolifuota, auth TN @opd, €va yio xdle etxéta, 6To onolo oTOY0g
elvon M mpdPredne e Yone e oty tehue xotdtaln. Mo onuovtin oyetixr] dovlela elval auTH TV
Fotakis et al. [2022a], v onolo apeiye toug mpdtouc LR akyopiduouc ye eyyuiselc anodouxdtnrac 6o
PAC povtého yia ) xehon dévipwy andpaong.

MeéOodol Baociopéveg o oTiyptoTURA M onuavTixy Teyvixy Tou cuyvd Yenolwonoleltal we
tuAua Label Ranking ahyopiduwv (Cheng and Hilllermeier [2008], Cheng et al. [2009, 2010], Cheng
and Hiillermeier [2013]) etvon 0 teyvixd) pdonong mov Baoiletar oe orypudruna (instance-based learning)
instance-based learning (Brinker and Hillermeier [2006]). H Poowef tne WBéa givan, 6TL 1 tpdPredm tne
xhdong evog Bolévtog otiypotinou otnplleton oe Tomxr| TAnpoopla, HTOL GTIC XAACELS YEITOVIXWY GTLY-
wotinwy. O amholotepog TpdémOC Yior var mparypatonowndel autd elvar péow tou yYvwotol aiyopiduou k-
XOVTLVOTEPWY YELTOVLDY (k-NN).

ITvdavotixeg weBodor  'Evag dhhog dnuogilrc tpénog avtyetoniong tou Label Ranking mpofAfuartoc
elvon vor avomtvoupe pedddouc tpdPBredne Paclouéves oe GTATIOTXE HOVTERA TEVL OE XATUTAEELS, OTWC
o povtého Mallows (Mallows [1957]) o to povtého Plackett-Luce (Plackett [1975]), ¥ dhha povtéla
omwe povtéha wigne I'xoovoavév (Gaussian Mixture Models). "Eyouv undplet apxetéc dovleies mdve oe
authy TNy xatevduver (Cheng and Hiillermeier [2008], Cheng et al. [2009, 2010, 2012], Cheng and Hiiller-
meier [2012], Grbovic et al. [2012], Zhou et al. [2014b]), ot neplocdtepee ex Twv onolwv TepthauBdvouy
éva instance-based otddlo xan vioVetoly pedddouc dnwe extiunon uéyiotne mdavopdvetog (maximum li-
kelihood estimation) ¥} yeyiotonoinorn avauevéuevne tyic (expectation-maximization) yio npocdiopioud
TOEUUETEWV.

Meé9odol Baciopéveg oe devipa andpaonse H ypron Label Ranking ahyoplduwy mou eivorn Bo-
olopévol oe dévtpa andpaone (decision trees) amotehel oxdpo plor xuvoTOUO TEYVIXT, 1 OTOlY, OTWS X0
TadEVOETAL OO TELPOUATIXG amoTeAéouotd, eivon LPNAL avtaywvioTixy o oxéon Ue Tic Tpoavagepleioeg
pedodous. Mepuée and tig mo ofloonuelwtes Boukeleg oe autAv TNV xotebBuvor tepthopfdvouy Tpocoe-
poy" dévtpwy andgacne (Cheng et al. [2009]), tuyaio 8don (random forests) (Zhou and Qiu [2016]) xou
oOvoha dévtpwy andgaorc (decision tree ensembles) (de Sa et al. [2015], de Sa et al. [2017], Aledo et al.
[2017]). Emnpoocdétnc, dnwe npoavagpépope, 1 dovkelo twv Fotakis et al. [2022a], mou Baociletoan otny
ey Vi) anocUvieone Bdoel eTXeTAOY, HTAV 1 TEMTN ToL UTooTHEIEE TN YeHon Bévipwy andgaone oto LR
ue Yewpntixée eyyuloeis tépay nelpapatixic allohdynong.

"AN\ec pédodor  Mia xouvotéuog dovkela mou dev undyetar 0TI AV TéP xotNnyopieg elvar autr Twv
Korba et al. [2018], 1 onolot oxohoudel yrot dopnuévn tpocéyyion npdPredme tou anotelelton omd d0o Bruata.
To npddro Prua eivon éva Bripa makvdpdunong oe évay ydeo Hilbert, 6mou ov xatatdelc avamopio tavta omd
Bravhopato péow xatdAAniov cuvopthoewy (embeddings). To dedtepo Bua eivon Eva Ao amoxwdLxono-
inong, to omnolo Bondd otnv avixtnon wog xatdtaéng and xdde tedPiedn tou xeltou ot évav yopo Hilbert.
H ev AMovyow doulkela utootnpiletar xou amd Yewpntixés eyyuioelc yio oplogévee emhoyéc and embeddings.

Ev xotodeidi, vndpyouv emnhéov npooeyyioeic yio to LR nov Paoilovton o uérpa opodtnrag (simi-
larity measures) (Aiguzhinov et al. [2010], de Sa et al. [2011], Ribeiro et al. [2012]), pe8édovs Paoiopéves
o€ kavdves (rule-based methods) (Gurrieri et al. [2012]) 4 emiPAenduern ovotadonoinon (supervised clu-
stering) (Grbovic et al. [2013]).
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0.1.2 H 3uvuBoiq Mog

Ot Baowég oLVElGPopES AUTAC NG DIMAWUATIXNAG EYXEWVTAUL OTNV OmOXOULOT), EVOC VEOU VewpnTxol amo-
tehéopotoc oty meployh) Tou ypopuxol LR xou otn dieloywyr woe newpapotinic aflohdynone LR oh-
yvoplduwy. Syetxd ue to Jewenuxd pépog, otnplduacte ot doulela twy Fotakis et al. [2022b] xou
enextelvouue €vol amd To AMOTEAEGUOTA TOUG YLd (Lol EVPUTERY) OLXOYEVELN XATAVOUMY TidavdtnToc. Juyxe-
npuéva, delyvoupe, 6Tl N wAdoT TV YpapwxdY Tadvountxdv cuvopthoewy (LSFS) eivon anodotind xou
xavovixd (properly) expadfowun xatd to poviého PAC we npoc v andéotaon 7 tou Kendall und tny
Topousia 0pLoPévey LovTEAWY YoplfBou xat UTS TNV Tapadoy Y| L0OTEOTUXOY Aoyaptduxde xolhwy (isotropic
log-concave) xotovouody miovétnrog.

'‘Ocov agopd to netpapatind pépoc, ouyxpivoupe €€ LR ahyopluoug, cupnepthapBovouévmy ahyopldunmy
Tou potddnxay and toug Fotakis et al. [2022b], Fotakis et al. [2022a] w¢ mpog tny xavdtnta yevixeuorc
TOUG %o WS TEOG TNV aviexTiXOTNTa Toug oe VopuBndy dedouéva. XTdyog YaC VoL Vo ATOXOULCOUUE Wil
eodva oo Ty enidoon LR odyoplduwy Bocioyévwy o yoouuixés GUVUPTACELS OE OYEDT UE OPLOPEVOUC
state-of-the-art LR alyopiduoug yevixol oxonol nou Bacilovtar oe dévtpa andpoong xat tuyaio ddon.

0.2 Oewpla Mdinonc

To yevxd mhaioto evog mpoPfAfpoatos unyovixhic uddnone mepthouBdvel ta e€nc.

o 'Evav ydpo mapaderyudrov (instance space) X, dnhoady| éva cOVORO avTXEWEVWY ot ontola YEAovUE
vor omodtcoude wa eTixéta. Lo mopdderypa, oe éva mpdfBinua to€ivéunone oxdiwy Bdoel tng pdtoog
toug, T0 oUvoro X Yo TawTt{OTaAY PE TO GUVOAO OAWV TWV OXVAWY.

o 'Evav xdpo eticetdv (label space) ), dnhoady| éva ohvoro nou avtiotouyel otic etikéteg (labels) mou
uropolv va avtiotolyndolyv oe xdde aviixelyevo tou ywpou mapaderyudtowy. I'a mopddelryyo, oto
npoavapepdey TedBAnua ta€ivounone oxlAwy, to cbvoro Y da towtillbdtay Ye T0 GUVOAO GAWY TWV
patowyv. H nepintwon mou to Y nepthapfdver pdvo 300 etixétes, émou ouvidwe emhéyetan Y = {0,1}
RY = {—1, 1}, avtiotouyel otn Yepehiddn xatnyopla twv npofinudtwy duaduic tadivéunone (binary
classification).

e Yuvapthoelc h: X — Y nou xoholvtoaw vnoBéoers (hypotheses) xou ou onolec avtiotoryilouv Ta
oToLYElD TOL YOPOL TUPABELYUSTOV OF ETIXETEC TOL YMpoL ETXETOV. ‘Eva cOvolro utodécewv H C Y¥
xoheltan kAdon vrodéoewr (hypothesis class).

o Alyopifuovs expdOnong (learning algorithms v learners), ot omolot hofdvouv we elcodo éva meme-
paopévo olvolo exmaibevong ue orotyela (z,y) € X x Y xou emotpépouy wa utddeon evtoe Tou Y.
YupPohilouue ye Ay y 10 GUVORO QUTWY TwV ahyopiiumy.

‘Ocov agopd ta dedouéva exnaidevong, dewpolye, 6Tl UTdPYEL XATOLL &Y VWO TN XoTavour] tdavoTntoc
D, ané v omolo Ta mapdyovton Tor dedouéva.  Emmiéov, dewpolye, 6Tl yia xdde cbvoro exnaidevong
S ta otouyela Tou anotelolv aveldptnTa xou Tawtéonue xataveunuévee (independently and identically
distributed 7 i.i.d.) tuyaiec petafintéc Tou axohoudoly v D, o onolo cuuPBoiileton we S ~ D™, bnovu
m o TAnddprduog Tou S.

Avenlonuo, o otdyoc evoc alyopituou expdinone elvon vo emoteédel pio unddeon, tne omolog oL Tpo-
Bréeg telvouy va etvon opdtéc. T var emonuonoiooupe Ty €vvola e emtuyiag evog alyopiduou ex-
wdimong, yeewdleton v oploouue mpdTa wo cuvdpTnom ogdhuatoc (loss function) £: Y2 — Rsq, n onola
Yo Tocotxonotel n6co anéyel wa TpdBAedn and wor T avapopds. Lo tpoBhiuata tadvéunone (classifi-
cation), n mo cuvAdne xou anhy emhoy elvon i 0 — 1 andhete, o opileton we bo—1 (7,y) = 1{y # y}. T«
npofMiuarta tahvdpounone (regression), yio xotohnhétepn emthoyy| Yo Aty to opdipa b (49, y) = |5 — y| 1
10 Ly (§,y) = (§ — y)°, cwbo0v Ta teEReuTola amodidouy xehlTEpa TV AnboTaoN Woc TedBAedne omb xdnow
T avopopde.

‘Eyovtag xadopioel gl xatd@AAnkn cuvdptnon anwhelog £ yia to npoBAnud uoc, opllovye to opdApa
(error) wac unédeone h e mpoc ™Y xotovouh D we Lp ¢(h) £ E, ) op [((h(x), )], Ao, g v avaye-
VOUEVT] ATOAELN WE TEOS TNV XaTtovour] Twv dedopévwy. Emmiéoyv, yio Ti¢ TEQINTOOES, OTOU UTHEYEL Uial
ouvdptnon otoyog f, v omolo Yéhovye va npooeyyicouue, opiloupe to o@dhpa e b we Tpoc D xou f
wc Lp, 1.0(h) £ Epup, [l(h(z), f())], 610V D, 1 teprddpta xotavopn tne D otov X. Téte, mo enionua,
0 6T6Y0¢ evog ahyopldpou expdinong etvan va emoTeédel wa unddeon mou edoylotonoiel to Lp s ) Lp, v
(avahby e ToL EXEOTOTE TPOBAAUATOC).

Téhog, éva axdun yerowo Wwétpo o@dhpatog elvon 1 eumelpixd o@dlpo mov opiletal ©¢ i&g(h) =
m= LY 0 (h(2®) ,y®), émov S = ((zM,yD) ..., (2™, y(™)) € (Xx V)™ éva clvolo exnaidevornc.
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0.2.1 To poviéro expddnong PAC

Axoholvdue, tapoustdlovpe To poviého tne mbarvds TpooeyyioTikds opins exudinong (Probably Appro-
ximately Correct § PAC learning model) nou etofydn and tov Valiant [1984] xou nou anotelel évav tpéno
emonuononone g évvolog e expadnowédtnrag (learnability). T tn ouvéyewa e avdiuong, Yewpo-
OuE vy Yhpo oTIYoTOTOY X, évay YMpo eTXeTOV Y, wa xhdon utodéoewy H C V7, wa ocuvdptnon
amehetdv £: Y? — Rsg %o évay ahydprduo expddnone A € Ay y.

Ynyv napoloa evétnra, TeplopllSUAcTE 6Ty anholotepy mpayuatorotijoiun (realizable) éxdoon tou
povtéhou expdinone PAC, émou Yewpeiton mwe undpyel ot cLVEETNOT 0TOYOG TOU ETLPEPEL UNBEVIXG G-
pa g mpog v D oty xAdom unovécewv H und pekétn. O otdyog yog elvon vo Bpodue wa utddeo,
omola, ue PeYIAN THovoOTNTAL, VoL ETLTUYYXEVEL GQANUAL XOVTE GTO UNJEV.

Ogtopbg 0.2.1 (Ipaypatonomopdtnta). Mia katavouri mdavdtntas D otov X X ) kadeftar mpayapa-
toromjoiun (realizable) ané tnv H, av vrdpyel kdrowa viédeon h € H, térowa, dote Lp e(h) = 0.

Opiowodg 0.2.2 (Ipoypatonooiun Aeryportixt| ITodvmhoxdtnta evoe Ahyopiduou Exuddnone). H mpay-
patorowrjoiun Oerypatikyy moAvmAokdtnta (realizable sample complexity) tov A wg mpog H kar £ elvar n
ouvdptnon ml 5, 4: (0,00)? = N rov opiletar ws eéng: Ta kdde €,6 > 0, To M’y 4,.0(€,0) tavtiletar pe
tov eddxi0to axépaio, yia tov omolo, yia kdle arxépaio m > m'y 4 ,(€,6) xar kdOe kavavour] miavétntag D
otov X X Y mov eivar mpaypatoromjoiun and tny H, wyde

Pr [Lp(A(S)) >¢€ <§
S~Dm
Ia kdO¢ €,0 > 0, térowa, ote n avwtépw aviodtnta va punv wavonoeitar and kdroov axépaio, opilove
T J—
mA)H’Z(e, J) = 0.

Ogtopbg 0.2.3 (Tlpaypatorofown PAC Expadnowdtnta). H H Aéyetar PAC expatiioun xatd mnpay-
pazomoujoijio tpdno e Tov A g mpos £, av mly 4, (€,6) < oo ya kdde €,6 > 0.

H ropdyetpoc € (rapduetpoc opddtntoc) otoug avntépw optopolc xadopilel To téco peydho urnopel
vo. yiver To o@dhga pac vdédeone tou emotpEgeTan and tov ahyoptdpo A (xou avtiotouyel oto “approxi-
mately” xoppdtt touv PAC). H napdpetpoc 6 (nopduetpoc epmotocivng) oyetiletan pe tny mdovotnto va
oy VEL TO Tapamdvw, dnAadh To o@dhua va ppdooeTton dve and €, (xau avtiototyel oto “probably” xoppdTt
tou PAC). Tuyxexpwéva, n nopduetpoc 0 anodidel tnv e€dptnon tne dwduacioc tne exnaidevone oto ou-
YrEXEIEVO GUVOAO exmaldeuone S mou yenowonodnxe. E@bdcov to S eivan nenepacuévo, undpyel tdviote
wor mdaveTnTa To S o Uy elvol avTITEocWwTELTIXS TS D, xotd TpOTO MO VoL UV UTOREL VoL BLAoQUAo TEL,
OTL TO oQdhua lvol UxpdTERO amd €.

Kavovixr xow Mn Kavovixh PAC Exuddnorn Xtov avetépw optoud e PAC expadnowdtnroc
woc xAdone H, omoloodrnote aryoprduog {ntelton vo emioteédel wa unddeon h evidc tou V¥, G oL
amopatthTwe evtéc Tou H. Autdc o tonog pdidnorne xoheltow un kavorvikds (improper). Qotdoo, xdnoleg
popéc elvor TpoTdTEPO N LTEVEST TOV ETUGTEEPETAL Vo avixeL oty xAdon H (.. Yo UTONOYLOTIXOUC
Aoyouc). Av emiBdhoupe évac alyoplduoc vo enloTpépel unovécelc evioc tne H, Tote, o avtioTolyog THnog
uddnone xahelton kavovicds (proper).

Anodotixr) PAC Exuddnorn O npoavagepieic opiopdc tne PAC expadnowodtnrag €xel auiyodg oto-
TIOTIXO YOPUXTAEO Xol DEV CUUTEPLAIUPBAVEL TIC UTOAOYIO TES TTUYEC TNE EXUOINOLOTNTOG. LUYAEXQLIEVA,
XOTA TV XATAOXEVT] oAyoplduwy exudinong, npénel enione va gpovticovye tdéc0 1 anoxdulon ulug utdde-
ong, 660 xou N XeHoM TS Yiot TNV TEOBAEPN TNE eTéTag EVOC VEOL TaPABElYHATOS Vol YIVOVTOL UE AmoBoTIXG
tpémo. ol mopddetypa, oy e mepintwon TV TeoBinudtey duadixic teiwéunone, étou X = R4,
ocuVAdwe, amaltoVUe 1 SelyUoTin) TOAUTAOXOTNTY, O YEdvog extéheonc evoc alyopituou xou o yedvoc
TpOPRedNS Yrog eTIXETOC YioL OTOLOBNTOTE VEO OTiYUtoTUTTO amd TNy unddeon Tou emoTEEPEL 0 ahybpriuoc
Vo (pedocovTol and €va TOAUOYUUO oTr BidoTacT d Twv oTYWoTOTwWY, 0T0 YEYedog avanapdoTaong Twy
ouypotinwy xou otic PAC nopapétpoue 1/e xan 1/5. Ltnv nepintwon nou to npdBinua pog yopoxtneileto
%ol and EMNPOCVETEC TUPAUETEOVS, EMPVUOVUE To OVWTERW UEYEDT VO PEACCOVTOL TONUWYUULIXME X0l oTto
aUTES.

E&aptdpuevn and tnv Katavoury PAC Expddnomn To tumixd yoviélo Tng mpoyUatonoioyng

PAC exudidnone avagépetar ouvidwe we avedptnto tng katavourjs (distribution-independent), Si6tt dev
UTBpYEL XATOLOC TEPLOPLOHOE Yo TNV TepLidpLol xotavoun Dy tne D otov X. Ltny npdr), av dev emfBdhouye
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neptoplogole ot Dy, té1e pmopel vo xotaoctel 8Goxolo vo anodeléouvpe v PAC exyadnopodtnta twv
XAIoEWY, EWBXE UTS TNV ntapoucia YopdBou. I'at auTd, oE dEXETEC TEPITTWOELS, OTREPOUICTE OTO AEYOUEVO
povtého PAC exudidnone pe ekdptnon and tny katavourj (distribution-dependent), to onoio emBéiier 7
Dy VoL OVAXEL OF JLOL CUYXEXPLIEVT] olxoYEvela F xatavoumy mdavotntag otov X.

0.2.2 Movtéla OoplBou yia Avadixry Tagivounon

To mptTo %o amhoUGTEPO €X TV YoVTEALY VYoplBou mou Yo nopouctdcouye, elvar 1o poviélo tuyaiov
YoptBov ta&ivdunong (random classification noise ¥y RCN) (Angluin and Laird [1988]).

Opiowodg 0.2.4 (Tuyaioc ObpuBoc Talwéunone). Mia xatavour mavétnrag D otov X x {£1} wkavo-
rotel tn ovvdrkn tuyaiov JopvPov ta&wvdunons, av vrdpye kdrow (povabixn) ouvdptnon f: X — {£1}
ka1 kdmoto n € [0,1/2), éror, dote yua rkie x € X, va wxdea Pryp, [y # f(z) | z] =n. Tére, n D
kaketta, enions, (1, f)-RCN katavour).

To povtého RON unopel va epunveudel Stoucinuixide g e€ic: Awdétoupe éva olvolo exmaidevong
diywe VopuBo, To omolo, dNAadY, nepyel Topadelyuata Twv onoiwy ol eTxéteg xodopilovTon VIETEPUIVL-
ouxd and pa ouvdptnon f, xou xdnolog avtinahoc (adversary) ahhdler tnv etxéta xdde napadelypotog
aveldptnta pe mdavétnta n € [0,1/2).

‘Eva petovéxtnua tou povtéhou RCN elvon, 6t viodetel ) un peahiotinr) unddeon, ot n mbavdtnta
Pry.p, [y # f(z) | 2] o aviitadoc va ehhd€er tnv eTinéta xdmolou mapodeiypatoc eivon 1 (Bia yior 6Aa tor
napadelypota. Xe éva mparypatixd oevdplo, o avtinaiog Yo unopoloe va ahhdlel ue Siapopetiny mdavotnta
v etiéta xdde mopadelypatog. Autéd armotekel xivntpo yio TNV HEAETY TOU YEVIXGTEPOL LovTENOL YoplfBou
Massart (Massart and Nédélec [2006]).

Optop6g 0.2.5 (O6puPoc Massart). Mia katavourj mbavétntas D otov X x{£1} wcavonoiel tn ovviiixn
Oop¥Pov Massart, av vrdpxer kdrow (uovadikri) ovvdptnon f: X — {£1} xai kdrowo n € [0,1/2), ézo,
dote yu kdle x € X, va wyve Pryp, [y # f(v) | 2] <n. Tére, n D kakeirar, eriong, (n, f)-Massart
katavour.

To povtého Massart pnopel vo epunveudel danodntinde we e€hc: Aldétouye €va olvolo exnaldevonc
dlywe B6pufBo, to omolo, dnhadh, mepiéyel mopadelypata Twv omolwv ol etxéteg xadopllovton VIeTEpUIvL-
ouxd and pa cuvdptnor f, xou xdrolog avtitahoc (adversary) odhdlel tnv etxéta xdde nopadelypotog
avedptnta pe mdovdtnta to ToAd 1 € [0,1/2). Tuvende, 6To TEEYOV HoVTEND ENPBEAOUPE HOVO Evar Gve
pedypa oty mdavotnTo ahhayhic TG ETéTag Tou xdie delypatog and tov avtinaho xou dev tpocdlopilouue
enaxpBK¢ TNV T TNe, 6w 6to poviého RCON.

ITopého mou to poviého Massart anotedel onuovr yevixevon tou yovtéhou RCN, to yeyovéde, 6t
Vétel éva v @pdypa oty mdavotnTa ahhayric TNS ETXETAS Tou xde delyuatog and tov aviinaio e&axo-
houdel va elvan meploptoTid. T'a mapddetypa, to wovtého Massart amotuyydvel va anodooel To pEAAO TIX
OEVAPLO, 0TO OT0l0 1) avWTEPW TdavoThTa unopel var gtdoet audoupétne xovid oto 1/2 yio xdnowa oTotye-
la Tou ypov mapadelypdtwy. ¢ ex touTou, xadloToTon avayxala N UEAETNH Xou eVOC axdun YEVIXOTEROU
povtélou, tou povtérou Tsybakov (Mammen and Tsybakov [1999], Tsybakov [2004]).

Opgtop6¢ 0.2.6. Mia katavoun miavétntas D otov X x {£1} wcavonoiel tn ovvdrikn JopPouv Tsybakov,
av vrdpxel kdnowe ovvdpTnon f: X — {£1} ka1 kdnow o € [0,1) ka1 B > 1, €zo1, dbote ya kdde t > 0,
va wxte Pryp, [Pryop, [y # f(z) | 2] > 1/2—1/2] < BtT°s . Téte, n D kaAefrar, eniong, (a, B, f)-
Tsybakov katavourn.

¥to povtédo Tsybakov, n nocétnra Pry.p, [y # f(z) | 2] propel vo MPel tyuéc avdaipeta xovtd oto
1/2, odh& awté oupPoivel pe mdavdtnta tou teivel oto undéy, oo neplocdiepo TAnoldlovye oto 1/2.

AxohoOdng npocapudlovue to PAC povtédo vy tny mepintwon tou YopdBou Massart. Katd evieiode
avéhoyo 1pémo autd unopel var yiver xou yio o poviéla RCN xou Tsybakov (BA. Kegddowo 2). Eotw X
évac yopog mapaderypdtwy, H C {1}, F wa oxoyévewn xatavopdy otov X xan A € Ay (113

Opiowodg 0.2.7 (Aevypatnd Ilohvnhoxdtnra Massart). H derypatikr nodvmdokétnta Massart tov A wg
mpos H ka1 F efvar n ovvdptnon m%ﬁsﬁ}rt: (0,00) x (0,00) x [0,1/2) = N rov opiletar ws e&rjg: Ta kdOe
€,6 >0 a1 n € [0,1/2), To mN35% (¢, 6,n) ravtilerar pe Tov eAdyioto axépao, ya Tov omolo, ya Kkdle
aépmo m > myEE (e,6,1), f € H xar (n, f)-Massart katavourj, tng orotas n repidopia katavour D,
atov X aviker oty F, wylet :

JPr (Lo, gy (A(Sahls,) > ] <6

ISupBorilovye A (Sz, hls,) = A(S), énou S = ((z1, h(z1)), - -, (Tm, h(zm))) xou Se = (z1,...,Zm).
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Ia kdOe €,6 > 0 karn € [0,1/2), ya ta orofa n avwtépw aviodtnta bev ikavornoieitar and kdnoov aképaio,

opiouvpe mh3F4t (e, 6, 1) = oo.

Optop6g 0.2.8 (PAC Expadnowoétnra pe Massart ©6pufo). H H Aépetar PAC exuatioun pe tov A

Massart

wg mpos F uré tnr mapovaia Massart Joptpou, av m %75  (€,9,m) < oo ya kdde €,6 > 0 karn € [0,1/2).

0.3 Middnon I'eapuixwy Yuvaptiocewy Katw@iiou

Optopo6g 0.3.1 (Fpoppxn Suvdptnon Katwehiov). 2¢ nuididotnua (halfspace) 1 ypapxr ovvdptnon
katwgliov (linear threshold function) otov ydpo R? opilerar onowadrimote ouvdptnon hayp: R — {£1}
™S 1op1iS hay () = sign((w, x) +b), drov w € R? ka1 b € R.

‘Evot nudléotnuot hqy p Aéyeton opoyevée, av b = 0, dnhadh av to unepeninedo nou opllel mepéyel v
apy ) TV 0EOVLY, 6TOU YENOULOTOLOUUE TOV GUUBOMOUS Hay = hay 0. SupPohiloupe pe Hirp (aviiotoiyoe
HE 1 rp) TNV xWEom TV udleotpdtov (avTioTolywe ogoyevdy nudleotnudtoy) otov RY.

0.3.1 Modnon 'eappixwy Xuvaptricewy Katwgpiiov yweic Odpufo

AmodeevieTon, 6L 1) XAOT TV YPOUUUXAOY GUYVaPTAoEWY xatw@hiou otov R ebvon amodotixde PAC expo-
oy xatd nporypatonofoio teémo (dnhadh otny amousio YopUBou) we mpog fy—1. Eotw évo clvoho
exnaldevone S = ((w(l),y(l)) ,...,(w(m),y(m))) ue delypata otov RY x {+1}. Oewpolue 10 axdroudo
Yoo mpdypeauua, to onofo cuyfoiilouue pe LP1:

Find weRY beR

subject to  y) ((w,z®) +b) >1 Vt € [m]

Mrnopotpe gdxoha Vo BLamo TOCOVUE, OTL XdTw and TNy LNOVEST NG TEAYUATOTONCWOTNTAS, TO To-
PATEVE YROUIXO TEoYeauuo elvan oyYedov Befoiwe eputo xou onoadrinote Aior tou e€acpolilel undevixd
o@dhpo 6To cUvoho exmaldevone S. Tlapddinia, unopotue vo del€ovue (Ocpenuo 0.3.1), btu yenowuonot-
Gvtog évay emopxt] aptdpd deryudtov exnaidevong, emtuyydveton 1 {ntoduevn (€, 0)-PAC eyyinon,.

ANyobprdpoc 1 Mddnon Ieapuinav Yuvoptioewy Katwehiov ye Toopuixd Hpoyeauuotiond
Eicobdog: Yivoho exnaldevong S = ((:c(l), y(l)) ey (:I:(m), y(m)))
'E€080¢: LTF hyp: RY — {£1}
1: Kataoxebaoe to LP1 and 10 S
2: (w,b) < ELLIPSOID(LP1) > BA. Appendix B
3: return

Oedpnpo 0.3.1. H kAdon Hirp efvar PAC expadionn katd kavoriké kar mpaypatonomjonjio tpémo jie
Tov ANydpidpo 1 (ws mpos Lo—1) e derypatikn modvrdoxdtnta O ((dlog(1/€) 4 log(1/0)) /€) ka1 moAvwvu-
MIKG xpovo ekTéleans ws mpos tn didotaon d, tov apidud twy deryudtwv kar to puéyelos avanapdotaong
TOWY TPAYUATIKOY apiOudy.

0.3.2 Madnon l'eapuixey Xuvaptrocewy Katwgiiov pue O@opuo Massart

To npdto yovtého YoplPou petald twv RCN, Massart xau Tsybakov, yio to onolo Beédnuay dewpntixéc
eyyunoels oyetxd pe tn pddnon nudlaotnudtey Atav to RCN. Zuyxexpéva, €yel anodeiydel, 6TL 1)
AAAOT) TWV NUBLICTNUATOVY elvan amoBoTndS Xt Xovovixde expodfoiun xatd to PAC povtého ye RCN xou
aveapThTWS xaTtovopnc. ApEone HETE wE TEOg TN BUGXOAN aTOXTNONE VEWENTIXWY EYYUHOEWY, EQYETAL TO
povtého Massart, yio o onolo dhec ol oyetxéc ot BiBhoypapia dovkelec cuvodelovton and nopadoyéc,
OTWE TEPLOPLOUO OE OUOYEVH NUBLUCTAULITA 1) OF CUYXEXPUUEVES OLXOYEVELES XATAVOUMV.

Yy nopoloa epyasia, epfadivouue otn dovlela twy Diakonikolas et al. [2020a], ou onofol napelyov
évay amodoTind oAyoeLIUO YLot TNV XovoViXY| EXdadncT) oloyYevey Nudlaotnudtey e Massart 96puo xatd
10 PAC povtého, xdtw and pla eupelar otxoyEVELR XATAVORDY TIoVOTNTOC TOU TEPLEYEL XAl TIC LOOTPOTUXES
hoyoprduxde xothee xatavopée. Xdptv anhdtntoc, To avtiotouyo Yedpnua (Ocmenuo 0.3.2) Yo napatedel
YL TV TEpInTWoN TN XAEONC TV LGOTEOTIXMY MoYUpIIUXAOC XOIAGY XATAVOUGOV?.

2Me fﬁlc oupBoiioupe TNV xAdom TV LoOTEOTIXGY hoyapiduxde xohowv xatavoudhy tdavétntac otov RY.
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H rpocéyyion twv Diakonikolas et al. [2020a] Boacileton otnv axdhoudn éa. Ta v Bpolue xdmowo w
nou ehatotonotel 10 Lo, 1oy 1 (Raw), Hlat QUCIONOYIXTH TpOCEYYLON EIVOL VO ETUYEIPHOOUUE VoL ENXYLO TOTOL-
fioovue 10 Lp g, (he), yenowomouwdsvtog Seiypota and v YopuPnddn xatavour D. T var to nethyouye
auTo, apxel vo ehayiotonotooupe ) ouvdptnon By yup [I{—y(w, z)/||w]|2} > 0]. Qotdco, eivar dhoxo-
O VO ENUYIO TOTIOLACOUUE AmOBOTIXG Wit TETOLL U1 xUPTH cuvdptnon. Avtl autol, ou Diakonikolas et al.
[2020a] evromilouv éva un xuptd (nonconvex), ahhd opord (smooth) unoxaTdoTUTO TNE AVKOTERW CLVEE-
NONC YE TNV 1BOTNTA, OTL XA TPOCEYYLIOTIXWS GTACHIO ONUEio aUTOY TOU UTOXUTAC TATOU AvVTIoToLEL OE
XEmOL0 NUIBLAC TN TTOU €Vl XOVTE OTO NUBLACTNHA GTOYO. LUYXEXPLUEVD, TORUXIVOUUEVOL OO TO YEYO-
voe, 6T N ouvdpTtnon S, (t) = ﬁ’ 6nov o > 0, anotehel wa xohf) npooeyyon e 1{t > 0} 6tav
o — 0, YPNOWOTOoOUY WE UTOXATACTATO T1 GUVAETNOT

Lo(w) = E(:c,y)~D 90 (2, y),w)] ,

6mou gy ((2,y), w) = S, (—y(w, z)/||lw|2).

Aryoprdpocg 2 Ipoforidpevn Etoyootnd KatdBaon Auvapixod vty Eoplg(z, w)]

Eloodog: Zuvdptnon g(z, w), otvoro exnaidevone S = (2D, ..., 2T)) xou Brua B
"E€080c¢: ITheddo and T Savboyota oTov Sd-1

1: procedure PSGD(g, S, )

2. w® « (1,0,...,0)

3 fort=1,...,T do

4 v® — wt=D — gV, g (z(t),w(tfl))
5 w® — v®/ Hv(t) H2

6: end for

7 return (w®,... w®)

8: end procedure

‘Eneita, ouveyilovue extehdvtog [lpofodlduevn Ytoyoounh KatdBaon Avvauxod (Projected Stocha-
stic Gradient Descent # PSGD) ndvew otn ouvdptnon L,, ge mpofold otny povaduda ogaipo S471) ue
0160 va Peolue €va mpooeyYloTixwe otdowo onuelo. H PSGD emotpéger o cuhloyy dlavuoudtoy
Bopy, TOL EYYUNUEVE TEPLEYOUY XETOLO TPOCEY YO WS OTdoLo ornueio (dnhadt éva Sidvuoua w, T€ToLo,
Gote 10 ||V Lly(w)]l2 va éxer wxpn tpn). Lo vo Beodue 1o xahdTepo Sldvucuo oTny avemTépe GUARO-
v1, apxel vo aglohoyfooupe xdde unodrplo didvuoua oe évay wxpd aptdud aveldotntov detypdtov e D
YENOWOTOLOVTAC TNV EUTELpXT] ExBoyY) Tou Lp ¢, ,. Amodeixvietol, 6Tl autd endpxel Ylol VoL AmOoXOpcOUUE
o emdupntéd PAC anotédespa (Bh. Ocdpnua 0.3.2). Ta avertépn BAuata TeplypdpovTon AeTTOUERHS OTOV
Adyoprduo 3.

ANyobprdpoc 3 Kavovixr) Mdadnon Opoyevdy Ioappixdv Yuvoaptioewy Katweghiov ye ©opufo Massart

Input: Sovoro exnaidevone S = ((z,yM) ..., (D, y™)), 0 >0, T’ € [T] xou Bipo B> 0
Output: Opoyevic LTF hy: R — {1}

t: (wh, ..., w?)) « PSGD(g,, 51, B) > BA. Ipoodiopevn Ltoyacti KatdBaon Auvvepixol
2 L+ (wh, .. w®, —w® . —w®) > LOvoro urodhAgLev Slavuopdtwy
3 8 ((@V,y0),.., (a),yT))

4: W argminweLﬁsggoil(hw)

5: return hqg

Ocwpnua 0.3.2 (Diakonikolas et al. [2020a]). Eorw n € [0,1/2), €,§ € (0,1) xa w* € R4\ {0}
éva dudvvopa otéyos. Eotw, enions, D pia (0, hy-)-Massart katavoun, térowa, édote Dy € Fig. O

ANyopiOuog 3 éxea tnv axdéhovdn eyyinon enidoong: Me eicodo T € © (kf((fi#ﬁ)) (d+log(1/5))>

— /
ave&dptnta Oelypata ané tny D, 0 € © (%)7 T € © (%) ka1 Brjpa B € © (%),
tepuatilear oe xpévo O(TG + dTT'), dnov G éva dvw gpdyua o€ kdde vroloyoud tov gradient, kai
emotpépe éva Bdvvoua w € ST, térowo, dote, ne mdavétnra tovddyiotor 14, Loy byt (hep) < €.
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0.4 Label ranking

Tevixae, wa katdraén (ranking) névew oe évo Tenepaouévo cOVORO S avopEpeTol GE W aUoTNEY HeEIXN
Bidtaln > mdve oto S. Av o xatdtaln > elvon auotneR ol Sdtadn, téte Yo Méyeton mAreng (complete),
elddANwC AT (incomplete) Kéde nhipne xatdraln ndve oto [k], 6mov k > 1, unopel va poviehonotndel
oov pla petddeon T € S?, tétola, wote To m(i) vo dider T Véom e eTxéTac i 0TV xatdTady yio xdde
i € [k] xou, xotd ouvénewr, To 7w 1(i) vo didel To otouelo Tou [k] mou Beloxeton otV i-ooth Véon Tne
xatdrodne yo xdde i € [k].

Opiopdg npofAiuatoc 'Eotw S éva nenepacpévo alvoro k > 2 eTixetdy, X évac Ympog mapadety-
wdtov (cuvidoe X C RY, émou d > 1), Y 10 6Uvoho TV auoTnedY pepxdy dlatdiewy méve oto S xon )’
T0 GUVONO TWV AUGTNEMY OMXGY Jlatdiewy Téve oto S. To npéBinua Label Ranking (xatdtodn etixetav)
elvon éva emPBhendpevo mpoBinua tpdBiedng mou agopd TN yeNon eveg cuvohou exmaldeuong Ue oTolyel
eviéc tou X x Y mpog ebpeon uiag unddeong and to X oto Y. 0O ot6y0c evoc LR ayopiduou elvan va
e€aopahloet, 6Tl 1 utddeon o emo TEEPEL EAyLo TOTOLEL XdTOLOL EVVoLla GPIARATOC, oyeT{OUEVT UE Xdmola
ouvdptnon amdhetoc £: Y? — Ro.

EgeZhic, 9ewpolue 6Tl 10 cUvoho twv etxetdv tavtiletar e S = [k] yowplc PAEBN e yevindnrag.
YN meptnToelc mov PeTayElplloUaoTe TAfpels xatatdielc, TOTE auTé Yol LOVIEAOTOLOUVTAL (¢ oToLyEla
Tou Sp.

AvonopdoTooT TEOTIUACEWY LECK CLUVIAETNCEWY XeNolrotnIag Onwg éxel avageplel oe
wa Thndapa Sovkewdy (Har-Peled et al. [2002], Dekel et al. [2003], Hitllermeier et al. [2008], Fotakis et al.
[2022a,b]), évag QuodE TEOTOC AVATUPACTUOTE TEOTACENY YETUE) Kk ETIXETHOV elvon Yéow wag ouvdptn-
ons xpnoyétnag (utility A score function) m: X — R¥, n onola ofiohoyel xdde etinéta avodétovtdc e
pa . ‘Oco peyoldtepn elvon auty| 1 T, 1060 YeyoAbTepn elvon Xou 1) TEOTUNOY YLol TN CUYXEXEWEVN
eTéta xou T60o vdmidtepn elvar n Véon tng etétag oty unoxelpevn xatdtaly. BNuyxexpyéva, xdde
BLdvuoPA YeNoWoTHTWY avTioToyileton ot wa xotdtoln péow tne ouvdptnone &: RF — Sk, 1 omola dpa
oc eghic. AapBdver e eloodo éva dildvuopa v = (v1,...,vx) € R¥, Tou onolou 10 i-0516 Grotyelo anotehet
™Y TWH YeNowoTNTaS TS (-00ThC eTXéTaS, Xou EMOTEEPEL TNV (Hovadxh) petddeon m = S(v) € S, v
v omnola yio xdde 1 <@ < j < kwoylel m(4) < w(j) av xou wévo av v; > v;.

Juvoptroelg anwAietac yio To Label Ranking Axololdwe, mopadétovpe opioyéves and Tic mo
eVPEWC YEMOLLOTOVUEVES CUVOPTAHOELS amwAetlas oto npolAinua Label Ranking yia tnv neplntwon twv
TAfpwy xatatdlewy. M ond autée eivan 1 andotaon 7 tou Kendall (KT distance), n onola opileton yia
onowdhnote T, 0 € Sy we dy(T,0) = Pa<icj<r L{(m(@) = 7(5)) (0(i) — o(4)) < 0}. Anhadt|, n andotoon
KT petpd to mAfdog twv {euydv eTixetédv mou 1 petadd Toug Sudtaln etvar Sapopetint) oTig 800 xatatdEels.
H anéotaon KT oyetileton dueoa pe Tov ouvterea T cuoyétiong xatatdiewy tou Kendall (KT correlation
coefficient) mou op{letan we 7(m,0) = 1— 4:(15”10)) X0l 1) OTOlal TOGOTIXOTOLEL TNV OUOLOTNTA VO XATATAEEWY
p€ow TOU OELIUOU TWV GUUPOVGY ol dcOUPOVLY (euy®y etxetdyv. Avo dAleg e&icou cuyvd yenotuo-

Tololpeve pétpa andoTaone vl xatatdielc eivar to di(m,0) £ Zle |7(i) — o(i)] (Spearman’s footrule)

xou do(m,0) £ Zle (7(i) — (i) (Spearman’s distance). Yto Kegpdhowo 4, mopatidevron pepuéc oxdyun

onpogLieic ouvapThoEg anwhetag yia To LR.

SuuBoiopol Eoto (i,j) € [k]? ye i # j xon éotw D o xotavour otov X x Si. T xdde 7 € Sy,
opiouye 7;; = sign (w(j) — 7(7)). Emniéov, yioxdde o : X — Sy, opilouye tn ouvdptnon o;;: X — {£1},
i Ty ormola U”( ) = sign (o(x)(j) — o(x)(9)) v xdde x € X. Téhog, oupPoliloupe pe D;; v amd
%0voL xortavopt| tou Ledyous (z, m;;), 6nou (z,m) ~ D.

0.4.1 Movtéla OoplBou yia Label Ranking

Ev cuveyeio opiCouye xdmolec Label Ranking xatavopés, dniadn xotavouéc mioavétntac otov X X S, ot
omnoleg mocotxomololy Ty Untoegn Yoplfou.

Optopdg 0.4.1 (Kotavour Mallows (Mallows [1957])). Eotw ¢ € (0,1], mo € Sy, ka1 d: S7 — Rsg. H
katavouny Mallows Mupai(d, ¢, mo) pe kevzoun) katdtaén mo ka1 mapduetpo e€dmdwons ¢ eivar éva uétpo

3Me S, ouuBoiilouye T0 Ghvoro Gy Twv petadéoewy Tou [k].
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mOavétntag otov Sy ue ovvdptnon pdlas mbavdéTnras:

¢d(7f7770)

Pr Tl= ——————
WNMMal(d,(j),'frg)[ } ZUGSk ¢d(0’fﬂ'0)

H rpdtn xatavoury LR nou da opioouvye, Booiletan oto yovtého Mallows, to onolo anotehel éva and
ol SNUOPLAEGTEPA HOVTEND OE TTPOBAAUATO UE XATATAEELS. DUYXEXPWEVA, W QUOLXY TeocEYYLom Vo fitay
VO HOVTEAOTIOLGOUPE TNV UTO GUVUNXT] XOTAVOUT| TWV XATATAEEWY BeBOoUEVoU EVOC oTiyulotutou & € X
we o xatavopr; Mallows pe xevtpind xotdtadn o*(z), énou o*: X — Sy wa cuvdptnon otdyoc. Autd,
dlononTnd, e€aocpaiilel, 6T, v xdde z € X, 1 ouyvotepa mapatneoluevn xatdtaln Yo elvar 1 “opdn”
xotdraln o*(x).

Opiopéde 0.4.2 (Kotavopr Label Ranking pe ©6pufo Mallows). Eotw ¢ € (0,1], d: S; — R ka1
o: X — Sg. Mia katavour) mavitnrag D otov X XSy, Aéyetar (¢, d, 0)-LR xatavourj pe 9épvBo Mallows,
av Dyjp = Mual(d, ¢, 0(x)) ya kdle v € X.

Axohovlel pior SN owcoyévelo xatovouwy, N omola ewofydn and toug Fotakis et al. [2022b] xou 0
omnofa enextelvel To wovtého Massart otnyv nepintworn tou LR. Anodewvieton 8, 6TL %dtw and moAd Ameg
napadoyée, cupnepthauBavel xou TNV avwtépw oxoyéveta twv LR xatavoumv pe Hépupo Mallows, to onolo
vonuotodotel TN yeron e otnv nepintwor tou LR.

Opiowds 0.4.3 (Label Ranking Kotavopt, pe Massart ©6puPo). Mia katavourj mavétntas D otov
X X Sy Aéyetar LR katavoun ue Massart 96pufo, av uvndpyer kdnowa (novadixiy) ovvdptnon o: X — Sy
ka1 kdmwow 1 € [0,1/2), évor dote n katavoun D;j va amotedel (n,0;;)-Massart katavour) ya kdle

(i,7) € [k]? pei# j. Tére, n D kakefrar, eniong, (n,o)-LR katavoun pe Massart 96pufo.

Emonuaivouye, étu xou to povtého Tsybakov unopel va yevixeutel oty nepintwon tou LR ye evteioe
avéhoyo tpomo (BA. Kegdhowo 4).

‘Onwe npoavagpépaue, xdlde ouvdptnon LR (and to X oto S) unopel va cuoyetiotel ye wo (dneipeg yio
v axp{Betar) cuvdpTnom yenowotHtey. Autd anotelel xivTpo Yo va opicovye Evo axdun 8o xaTavoudy
LR, oto onolo o ¥épuPoc npootidetan aneuldeloc oe xdde didvuouo YenolwoThTwy TeLy T dnutovpyio plog
xoTdTolng.

Opgtop6g 0.4.4 (Label Ranking Kotavouy e Hpoodetind OdpuPo). Eotw £ pa katavour mdavdtntag
otor R* ka1 m: X — R* e ovvdptnon ypnowdtnras. Mia xatavoury mdavétnras D otov X x Sy
Aéyetar (m, E)-LR kavavourj ue mpoodeticé 96puvfo, av ya kdde (x,7) ~ D, wyva m = &(m(x) + £),
émov ta x ka1 § elvar aveEdptnta ka1 § ~ E.

0.4.2 Teyvixég yia Label Ranking
ArnocOvieon Katd Zebyn

M ané Tic dnuoguréotepes texvixés oto LR elvan 1 teyvinf) e amootvleons katd {edyn (pairwise
decomposition) #, edhide, e katdtaéng péow avd {evyn mpotiurjoewy (ranking by pairwise preferences
A RPC). H xevtpw 1Béa éyxeitoan otnyv anocvvieon tou mpolifuatoc ot (g) umonpoBAruato Suadhc
Tadvéunone, éva v xdde (un dwtetoryuévo) Levyos (7, ) etixetdv, émou otdyog eivan 1 mpdfBiedn e
peTagl Toug oelpdc EVTOC NG XaTdTalnc. AuTéd emTUYYAVETAL, XENOLOTOLOVTAS évay olybptduo duadinhc
to€vépnone yia xdie unomEdBANUL, TOV 0Tolo TEEYOVUE TV GE ULl TPOCUPUOGHEVT EXBOY Y] TV BEBOPEVLY
exnaldevong, omwe goafvetar axohotdneg (Alyopduog 4).

‘Eva Baocwd mheovéxtnuo tng pedddou anoctvieone xotd Ledyn elvon, 6Tl unopel vo dayelptotel me-
PITTWOELS EANMTOV XATATEEEWY, EQPOTOV xdle UTOTPOBANUA apopd Eva GUYXEXELIEVO (VYOS ETIXETAOV %ol
éyeL undevixr e€dptnon and Tic undrownes. QoTtéo0, 1 avedoTnTn HeToyElplon TV UTOTEOBANUATWY EYEL
70 petovéxtnua, 6Tt oL avéd Ledyn mpofiédelc unopel va efvan YeTo€d Toug avtipoTinés (dnhady, ot avd Le-
OYN TEOTWNAOELC Vo UNy ixavomololy T petaBatixy iétntar), xortd Teémo mou va Uny elvat ety 1 dueon
amoxouon pag xatdtaine. Q¢ ex toltou, elvon avaryxaio 1 edpeor pedddwy cuvddpotone (aggregation), ot
omolec va a€lonoloby Ty mAnpogopla Twv avd (edyn tpolAiédewy, xatd TEdTO TOU Vo UTopel Vo XaTAo TEl
et 1 e€orywyY) plag xatdTodng.

"Evog and toug anholotepoue TpOToUE Yol va YIVEL auTd, elvol Vo YeNoLLoToloouPE éva oy fua dneopo-
plag, To onolo pudpilel tn Véomn wog etixétag oty TEMX xatdtoly avdioyo ue 1o TAdog twv avd {evyn
Yy (Adhydprduoc 5). T xdde etinéa, oo peyohdtepo elvan to nthidoc twv Levydy ota onolo auth
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ANyoprdpog 4 Label Ranking péow Anocivieong xatd Zebyn

Eilcodog: Yivoho exmaidevone T'C X x YV, ahyodprdpoc duadixrfic talvopnone A € Ax (413
"EE080¢: Tnddeon h: X — S
: procedure PAIRWISEDECOMPOSITION(T), A)

—_

2: for 1<i<j<k do

3: Tij — I

4: for (z,~)eT do

5: if ¢> 7 then

6: T‘ij <_T‘ij U((E,l)
7 end if

8: if j > i then

9: sz <—T¢jU(I,—1)
10: end if

11: end for

12: Gij < A(TZJ)

13: end for

14: return (g;;)1<i<j<k

15: end procedure

—_
=}

: C < PAIRWISEDECOMPOSITION(T, A)
return ESTIMATEAGGREGATION(C') > Bi. ouvdldpoion péow bnpogoplac xa péow yeaphuatoc

._.
]

ANyopripoc 5 Luvddpolon uéow Unpogoplios oty Anocivieon xatd Zebyn

Eico8og: Yuhhovt and duadixolc Tolvountés (gij)i<i<j<k
"EE080¢: Tnddeon h: X — Sy,

1: procedure VOTINGAGGREGATION((gi;)1<i<j<k)

2: for 1 <i<kdo

3 si(@) < 1+ 3 e oy Wi (@) = -1}
4 end for

5: 8 (S1y...,8k)

6 return argsort o argsort o s

7: end procedure

CUPHETEYEL Xat Tponyelton TN GG etétag tou Lebyoug, 1600 udmidtepn Yo elvon xan 1 Yo e oty
el xotdtol.

ANyobprdpog 6 Tuvdldpolon uéow Ioagruatog otnv Anocivieon xatd Zedyn

Eico8og: Yuhhoyt and duodixolc Ta&vountés (gij)i<i<j<k, dhyéprduoc A v uetatpons; thipous xo-
TeEVHUVOUEVOU YRUPHUATOS OE OXUXAIXO
"E€odog: Tnddeon h: X — Sy
1: procedure TOURNAMENTAGGREGATION((¢;)1<i<j<k, A)
2: V « [k]
4 G, + (V,Ey)
5 G, + A(Gy)
6: ‘Eotw 6(z) n xatdtaln nov endyetan and to G,
7: return 6(+)
8: end procedure

‘Evag dhhog tpémoc cuvddpolone twv emuépouc mpoBAédeny, elvor Vo XATAOXEUGCOUUE €vor TATpES
%xaTeVYUVOUEVO YRAPNUA, 1) XATEVVLVET TV oxu®Y Tou omolou Yo elvon Bdoel Twv avd Lebyn teoAédewy
yioo xéde véo otiypdtuno (Alybpwuoc 6). M guow) mpocéyyion do Hrav vo agpaupécouue 660 TO
BUVATOV AYOTEPES AUUES, (DOTE VAL XATAGTHOOUPE TO YRAPNUOL OXUXAXO, XL, EV CLVEYELX, Vo ETLoTEEPOUUE
™V xotdtady mou aviioTolyel oty Tomoloyixh SETadn TwV xopLEMY Tou. AUTO PAC TUEATEUTEL GTO
TpdPAnua ebpeong evée eddyiotov ourdlov avddpaons tééwy (minimum feedback arc set). To tehevtoio
neoPinuo eivoar NP-hard, odhd vndpyouv anodotixol npoceyylotixol alydprduol oToug onoloug urnopolue
Vo OTEOPOUYE.
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ArnocOvieon Katd Etixéteg

M G e&ioov dnuoguiic texvixh oto LR elvon n teyvixh tne anootvieons katd etikétes (labelwise
decomposition). H xevtpu| 1déa éyxettan oty anochvieor tou mpoPfiiuatoc oe k unompofBAfuoTa, €va
yioo xde etxéta, 6mou otoyog elvan n mEOPAedn tng Véong tng evtdc g xotdtodng.  Ltnv mopolod
dimhopatixd, viodetoldue v mpocéyylon twv Fotakis et al. [2022a], énov xdde unonpdPBinua arotehel
éva TEOPBANUY TaAvdEdunong, oto omnolo, dnhadn, ol mpofAédelc unopolv va AdBouv TpoyUaTIXES TIUEC.
Kotd avuotouyla ye v mepintwon e avd Ledyn todivounong, yia xdde unompdBAnue yenotlonolotue
évay aAydplduo moklydpéunong, Tov omolo TEEYOUUE TV GE WULol TEOCURUOCUEVY], eEXBOYT TV DEBOUEVWLV
exnaidevone. Ev mpoxewwévw, o mo mpogavic tpdénog cuvdiipolong twv emuépous TeoPBAédewy elval va
xatatd€ouye Tic eTixéteg xatd ad&ovoa oelpd npoPBienduevne Yéonc. H avwtépn Sabixacio meplypdpeton
emoxp3oe napaxdte (Alyoprduoc 7).

ANyobprOpoc 7 Label Ranking péow AnoocOvieone xotd Etixéteg

Eicodog: Xivoho exnaldevone T' C X X Sy, ahyoprdpoc A € Ax r
"EEo0dog: Tnddeon h: X = Sy,

1: procedure LABELWISEDECOMPOSITION(T, A)

2: for 1<i<k do

3: T, <@

4: for (z,7)eT do

5: T; FTZ‘U(QT,TF(iw
6: end for

7: g9i + A(Ty)

8: end for

9: return (g1,...,0%)

10: end procedure
11: g < LABELWISEDECOMPOSITION(T, A)
12: return argsort o argsort o g

Emonuaivouue, 6Tt aupdtepeg oL teyvinés tne xotd Lebyn xou tng xotd eTiéteg anoclvieong cuvode-
Oovtat and oTATo TIKES EYYUNOELS UTO oplopéves opadoyéc, ol onoleg avahbovto oto Kepdhaio 4.

0.5 Midinon I'eappixwy Tagivountixwy JuvagTHoswy

Yty napoloa evotnTa, UTO¥ETOUNE, OTL Ol XUTATAEEC TUPAYOVTAL OO XETOL YROUULXY] CUVAETNOY XeT-
owétnToc, Ty onola emdugodue vo pddouue. e authv TNy neplntwor, 1 uroxelpevn xAdor urtodéoewy
Tautileton Ye TNV XNEom TV Yooy tadvountxdy cuvapthoewy (LSEs), 1 onola ewofydn and toug
Har-Peled et al. [2002]. Auth n eldin tepintwon tou LR avagépeton xou we ypopupxd LR (Fotakis et al.
[2022D]). Mo onpovted WBiotnta v LSFs elvar, 611 cuvdéovton otevd ye Ty xAdom Tev Nudlas Tudtoy,
YEYOVOC TO OTO(0 oG EMUTEENEL Vol anoxouicouue Yewpntixd anoteréopata yio To yeauuxd LR téco otnv
npaypatonotowun tepintwon (Siywe 96pufo), 660 xou ud TV Tapousio YoplBou.

Optopobg 0.5.1 (Tpoppixdy Talvountiy Luvdptnon). 2 ypaupuxn ta&wvountixyy ovvdptnon (linear
sorting function 1y LSF) otov R? pe k > 2 etikéres opiletar omowdnirore avvdptnon ow p: RY — Sy e
tino ow p(x) = &(Wa +b), érov W € RF*? ka1 b € R*.

Mo LSFE ow p Aéyeton opoyevic, av b = 0, oty omola nepintwon ouufoliletar we ow . LupBoiilovye
e Hg’SkF (avTioTolywe ’HI‘%SF) v xhdom tev LSFs (aviiotolywe ogoyevdv LSFs) otov RY ue k etinérec.

Iopatneodye, 6t Yoo K = 2, undpyel tooduvapio ueta€d e xAdong twv LSFs xou tng xhdong twv
nudlaotnudtey otov RY. Emnpoodétenc, v xédde ow p € ’Hi’SkF, N ouvdptnon (JWJ,)Z.]. TOU EUTAEXETOU
oto unonpOBANUe Tou agopd To Ledyog eTxeTdy (4, §) yiot xdde 1 < i < j < k, unopel va ypogel we

(ow b);; () = sign (ow b (j) (@) — ow b (i) () = sign ((w; — wj,®) + b; — bj) = A, —w, b;—b,(T) ,
yio xdde € RY. Anhodi, oamotehel éva nuididotnue Tou TopaueteonolelTon and To Siévuoua Bopdy w; —w)

%ot Tov 6p0 by —b;. Auth nwdtoTnTa pag xadodnyel tpog T wédodo anocivieong xotd Lebyn Yo TNy eniAuon
Tou ypouuxol LR, émou xdde empépouc mpdfBinuo Yo apopd T uddnon evog nuidlacTHUATOS.
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0.5.1 Modnon I'eoppixwdy Tadivountixwy Xuvaptioeswy yweic @dpufo

AnodexvieTton, 6Tl 1 XAAOT TOV YPOUUXGY TOEWVOPNTIXGY cuvapTAcewy otov RY ue k etixétec ebvon o-
nodotixwe PAC expodviown xatd mpoypoatonotfioldo teéno we npoc dr. ‘Eotw éva clvolo exnaidevone
S = ((m(l), w(l)) e (w(m)7 w(m))) pe delypata otov RY xSy, Oewpoiue T0 0x6houdo ypopuixd Teéyeoy.-
o, to onofo cuyPoriloupe pe LP2:

Bpeec¢ o W c RF*d pc RF
étoL hote WS) ((w; —wj, D) +b; b)) >1 V1<i<j<k, te[m]
Axorouddvrac g mapdpota Swodixacior e aut 0Ty TERInTWoT T KEINoNne NUBLIC TNUATLY HECE YR~
X0U TPOYPAUUUATIOOU, Utopolue vo delfoupe (Oedpnua 0.5.1), 6T ypnoyomoudvtag évay emopxt| oprdud
detyudtwy exnaldevone, emtuyydveta 1 {ntolpevn (€, 0)-PAC eyyinon.

Alyoprdpog 8 Kavovue Expdidnon LSFs yéow Ipopuixol Hpoypopuationol

Eicodog: Yivoho exnaldevone S = ((a:(l), 7r(1)) sy (a:(m),w(m)))

"E€o80¢: LSF ow p: RY = S,
1: Kataoxebaoe to LP2 ané to S
2: (W,b) « ELLIPSOID(LP2) > BA. Appendix B
3: return ow p

Oeswenua 0.5.1. H kAdon ’HCLlSkF etvar PAC expalnionun katd kavoviké kai mpaypHatomoijoijo tpdno pe
tov Adydpiijo 8 wg mpos tny andotacn KT e detypatik nodvmdoxdtnra O ((dlog(k/e) + log(k/d))k? /€)
Ka1 TOAVWVUULKO XpOvo ekTédeons ws mpos tn didotaon d, to mAfog twy etiketdv k, tov apiud twvy dety-
pdtov ka1 to uéyefos avanapdotaons twy TPAYHATIKOY apidudy.

0.5.2 Mdnorn Oupoyevov I'ooppixwy Toafivountixwy XuvapThoswy WUE
®dbpufo

Axohotdec, delyvouue 6TL 1 xhdon Twv opoyevey LSFs otov RY elvon anodotinde o xavovixd PAC
expodfiown we mpoc dr xon Fio, uné v napousio LR-Massart Yoptfou. O alydprdpoc poc axoroudet
v wédodo g anocivieong avd {edyn eTtxeT®dy, oAAd Ypnotonotel o evolhoxtixy| wédodo cuvdipolong
TV empépous Todvountoy, Baotlopevn oty doukeio Twv Fotakis et al. [2022b], dote n npoxintouca
unédeon va efvon xavovix.

Suyxexpéva, éotw W* € RF¥4 6nou w} # w; v xde 1 <4 < j <k, o nivoxag mou avtiotouyel
ot ouvdpTnon otdYo ow, xu Dy € Fio. O ohybprdude poc Eexvd epoppéloviac Tne dladxacio
amocUvieong xatd Lebyn yenowonoldvTag ot xde urnompdBinuo évay proper olyopwduo A exudidnone
opoYevVhY NUBLcTEdTWY, 0 onolog wavornolel TN cuvifxn PAC expodnowdtntoag pe Massart 96pufo we
npoc Fio. Kotd ouvénewa, yio xdde 6,8 > 0, unopolue va amoxopicoupe (2) dloavbopota v;; (tor omola
Yewpolpe povadiada ywpeic BAEN tne yevixdtntog), tétowa, wote v 1 < i < j <k, va woylel

mlj’gm [sign ((w; — w}‘,m)) # sign ((vij, )] <€
pe mdavétnTa TouAdytoTov 1 — 4.

O otby0c pog elvor vor expeTahheUTOUUE TNV TANEOPORid TTOL TOEEYETAL ANt6 TN GUANOYY TWV SLVUOUTWY
v;j, GoTE Vo anoxoploovue évav mivoxo W€ RF*4) tétoi0, Bote 10 0@dhue Lp, gy .d. (Ow) v glvon
uxpd.  Alnodntind, autd emtuyydvetar, av 8 (w; — wj,v;;) ~ 0 xow w; # w; o xdde 1 < i < j < k.
Avutéc ol cuviixec umopolv va Statutwtolv o enionuo WEow Tou axéhoutou xupTo) TEOYEGUUATOS, TO
omnoio ouuBoiilouvue pe CP1:

Bpeeg évav W e Rkxd
¢toL Gote  (w; — wj,vi;) > max{{, (1 —¢) |lw; —w;|,} VI<i<j<k
Wir <1

Ou otadepéc ¢ € [0,1) xaw € > 0 o670 avetépn xuptd mpdyeaupo xehlovy xadopiopod. ArodewcvieTto
(Bh. Ocdprpo 0.5.2), 6TL 1) XAOT TV OUOYEVOV YRULUXGY TAEVOUNTXGOY cuvapThoewy otov RY elvon
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Alyopripog 9 Kavovir Exudidnon Ouoyevav oopuixadv Togivountixady Xuvapticewy ue ©6puo

Eicodog: J0volo exnaidevone S C R xSy, odhybprduoc xoavovixhc expdinonc opoyevey nudlacthudtey
A, pe€(0,1) v & >0
"E€080¢: Opoyevic LSF ow : R = S,
1: (h,,ij)1<i<j<]C <+ PAIRWISEDECOMPOSITION(S, A)
2. Kotaoxetooe 1o CP1 péow twv ¢, & xou (Vij)i<ici<n
3: W « ELLIPSOID(CP1) - > BA. Appendix B
4: return ow

amodotixde PAC expadfon xatd xavovixd 1610 ¢ npoc dr xon Fiy, uné tnv nopousic YopiBouv LR~
Massart.

Ocwpnua 0.5.2. FEotw n € [0,1/2), €,§ > 0 ka1 W* € RF*? 6rnov w} # w; ya kdfe 1 <i < j<k.
‘Boto D a (n,ow~)-LR xatavoun pe Massart 9épupo, térowa, dote Dy, € Fln. Fotw A omowodrimote
akydpipog mov padaivel, kardé to PAC povtédo, tmy kddon Hiy e katd kavoviké tpémo ws mpos tnv
KAdon Fio vné ty rapovoia JoptBov Massart kar éxel moAvwrupks ws mpos d kai ws Tpos to TAHdog T
detyudtwy exmaidevons xpovo extéeons. O Alydpiduos 9 éxe tny axddovdn eyyinon enidoons: Me

elogodo A, ¢ € O(e?), & = 27PW(R1/) yeq1 m > m%f;_sé?;,fgc (6/0(762)75/ (’5),77) avegdpTnta defypata

ané v D, tpéyer ae xpdévo poly(m) ka1 emotpéper évay tivaka W € R¥*4 téroro, dote, pe mavérnra
touvddytotov 1 — 0, va wxvel Lp, 5. a4, (ow) < €.

0.6 Ilsipopotind AmoteAEouaTo

Yto televtalo pépog awthg g epyaciouc die€dyoupe wa telpapatint| aflohdynorn LR alyoplduwy. Xtdyoc
pog elvan va Blepeuviiooupe v enidoor alyoplduwy tpocupuoouévey oty teplntworn Tou yeouuixod LR
oe oyéom ue state-of-the-art alyoplduouc, ot onolot €youv npotadel yia to yevixd LR, xou, cuyxexpiuéva,
olyopidpoue nou Basilovton oe dévtpa andgacne (decision trees) xon tuyoio ddon (random forests). H
o€LoAOYNOY o Aopfdver yhpa 1600 Tdve ot cuvieTixd dedouéva, ta onola €xouv mopoydel yooUUXdS,
Arol péow pog yeopuxc tagivountixic ouvdptnong, xou oto onola éxel npootedel V6puBoc, 660 o e
NULOLVIETIXG Xo TPy HorTiXd BEBOPEVD avapopds, Ta onola €xouy yenoulorololvTal cuyvd otn PiBhloyeapla
tou LR. Ou aAyéprduol mou cuyxplvoupe eivor ol e€ng:

e H uédodoc anocivieone xotd Ledyr o cuVBLAGHS e Tov ahydprluo uddnonc opoyYeEVMY NULLIGTN-
pétev twv Diakonikolas et al. [2020a] xou v pédodo cuvddpolone mpoBrédewy péow ypaphuatoc.
YuuPoiilovye autév Tov alydprduo pe PWHH.

H pétodoc anocivieonc xatd Lebyrn o cuvBUAOHO UE TAELVOUNOT| UECK BEVTPWY AmMOPUCTC Xl TNV
uédodo ouvdpoione mpofrédewv péow yeapruatoc. Luyfoiilovue autdv Tov ahydperipo ue PWDT.

o H uévodoc amocivieone xatd Lebyn oe ouvduaopd Ue Tadlvounon péow tuyaiwy dacwv xou TNy
uédodo cuvdipotone mpoliédewy péow ypaphuatos. Suuoiilovue autdv tov olyoprduo ue PWRF.

e H pédodoc anocivieone xoutd etixétec o ouvduaoud Ue yeoppxr moAwvdpounon. LupPohrilouvue
aUTOV Tov ohyoprdpo pe LWLR.

o H uétodoc anocivieonc xatd eTXETEC OE CUVOUAOUO UE TOALVOROUNOT UECK BEVIPMV ATOPACTC.
YupPohiCoupe autov tov ahydprdpo ye LWDT.

o H uévodoc anocivieons xutd eTXETEC OE GUVBUACUS UE TOAVIEOUNOT HECW TUY ALY BacKY. Muyu-
BoAilouye autév tov alyoprduo ye LWRF.

‘Ooov agopd 11 dnovpyio Twv cuVIETIXWOY JEBOUEVLV EXTUUBEVOTC, OUTE XUTAOXEVAC TNXAY HECE ULOG
Yeoumc TagvopnTtixig cuvdetnong xon ahhowddnxay Bdoel Twv Tpoavagepdéviwy LR yovtéhwy YoplBou
Mallows (Optopdc 0.4.2) %o mpocsdetinod Yoplfou (Optoudc 0.4.4). Tt tnv nocotxonoinon tou Yoplfou
ota ouvietnd dedouéva exnaldevong yenowonolotue T axdrouleg €vvolec Sloo TEEBwong, oL onoleg yern-
owonoidnxoay xat otny netpopatiny| afloddynon twv Fotakis et al. [2022a].

Opiopdg 0.6.1. Eva ovvolo exmaibevong S C R x Sy, kavonoret:
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e v 16idtnTa a-aovvéreiag, av ﬁ P@mes L{o* (@) # 7} =a €[0,1] xar
e v ibidtnta B-KT dukévov, av ﬁ P@mesT (0% (x),m) =B € [-1,1].

H en{door xdde aryopiduou amotiwdton Bdoet tou yécou KT cuvtekeoth| cuoyétiong ndve oe €va o-
V6puBo alvolo allohdynong, To omolo €xel xaTaoXeLUCTEL amd TNV (Bio Ypopuxr) TalvounTiny cuvdeTno
HE auTY Twv dedopévwy exmaldeuonc. Evdextinde, napadétouye tor TEOXONTOVTA ATOTENECUATO GTNY TE-
pintwon tou YopiBou Mallows yia tTnv neplntwon didotaong d = 10 xou TARdoug etixetwdv k = 5.

1.0 1
0.8 1 j
=
8 0.6 1
L
5
8
E 0.4
x
g — LWLR
= 0.2 LWDT
—— LWRF
—— PWHH
007 — pwDT
—— PWRF
T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10
a B

Eyhua 1: A&ohdynon o npog Tov péoo cuvteleoty| cucyétione KT oe dedoyéva ue $6puBo Mallows

Emnnmiéov, mopotétoupe evdextixd anoteAéopata yior TNV aloAGYNnon Ty avetépn ahyoplduny ot nut-

ouvieTind dedopéva LR.

Dataset LWRF PWRF LWDT PWDT LWLR PWHH
authorship | 0.926 +£0.018 0.936 £0.014 0.871+0.026 0.870£0.022 0.940+0.012 0.472 £+ 0.060
bodyfat 0.191 £0.068 0.188+£0.053 0.108 £0.072 0.105+0.066 0.283 £ 0.054 0.136 +0.073
calhousing | 0.491 +0.010 0.486 +0.010 0.351 £0.011 0.356 +0.010 0.235+0.009 0.169 £ 0.011
cpu-small | 0.513+0.011 0.518 £0.011 0.372+0.014 0.369 +0.015 0.424+£0.012 0.402 £+ 0.010
elevators | 0.779 £0.005 0.803 £0.006 0.675+0.007 0.694 +0.007 0.702 £0.005 0.576 +0.011
fried 0.985£0.001 0.991+£0.001 0.964 +£0.001 0.987 +£0.001 0.995+ 0.001 0.975 £ 0.001
glass 0.906 +0.032 0.905£0.039 0.872+0.043 0.865+0.040 0.815+0.052 0.759 £ 0.072
housing | 0.833 £0.025 0.825+0.028 0.783+£0.028 0.769 £0.030 0.583 £0.036 0.581 £ 0.035
iris 0.959 £0.043 0.968 £0.041 0.962 +0.047 0.946 £0.051 0.799 £ 0.085 0.476 £+ 0.149
pendigits | 0.976 £ 0.001 0.975+0.001 0.957 £0.001 0.959 +£0.002 0.855+0.002 0.664 £ 0.007
segment 0.976 £0.004 0.977 £0.004 0.964 £0.005 0.968 £0.005 0.877 £ 0.008 0.847 £ 0.010
stock 0.922 £0.011 0.924£0.011 0.902+0.014 0.898 £0.015 0.685+0.021 0.495 £+ 0.027
vehicle 0.886 +£0.017 0.884+0.022 0.837+0.030 0.824£0.026 0.804=+0.031 0.745+0.034
vowel 0.892 £0.014 0.908 +£0.014 0.834+0.020 0.831+0.019 0.596 £0.026 0.484 +0.034
wine 0.925 £0.065 0.956 +£0.042 0.888 £0.069 0.898 +£0.065 0.950+£0.046 0.213 +0.133
wisconsin | 0.552+0.034 0.524 £0.036 0.415+0.039 0.4114+0.045 0.619 £ 0.029 0.287 +0.061

Iivoxag 1: A&loddynon we mpog tov Yéco cuvteeotr) cuoyétiong KT oe nuicuvietind dedopéva

Ta mhien anoteréopota xaL 0 oyoMaouds autev topatidevton oto Kegpdhato 6.
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Chapter 1

Introduction

Label Ranking (LR) is an increasingly popular topic in the machine learning literature, with an un-
doubtedly principal role in the area of preference learning (Fiirnkranz and Hillermeier [2010]). Its goal
is to find a mapping from an instance space to rankings over a finite set of predefined labels. The Label
Ranking problem has received a lot of attention in recent years, since it arises in a plethora of real-world
tasks. Omne of its most characteristic applications is in the area of targeted advertising (Djuric et al.
[2014]), where we want to identify a ranking over ads for each individual user and present them with
the most relevant based on their interests, with the aim of maximizing the advertisers’ revenue. Other
applications, where Label Ranking emerges, include: in bioinformatics (Balasubramaniyan et al. [2005],
Hestilow et al. [2009]), ranking a set of genes according to their expression level based on the features
of each phylogenetic profile; in meta-learning (Aiguzhinov et al. [2010], Brazdil et al. [2003]), ranking a
set of available algorithms according to their appropriateness based on the characteristics of each data
set; in sentiment analysis (Wang et al. [2011]), ranking a set of social emotions manifested by individuals
when exposed to news articles; in document categorization (Jindal and Shweta [2015]), ranking a set of
class labels for each particular text document.

Over the years, there have been several seminal works, which are discussed in the following section,
proposing state-of-the-art algorithms for the Label Ranking problem. The overriding majority of these
algorithms is supported by experimental evaluation indicating their practical performance, but comes
with few to none theoretical assurances. Thus, one of the biggest challenges in Label Ranking concerns
supporting these results on the basis of statistical and computational guarantees. Another major chal-
lenge is whether a Label Ranking algorithm can handle the existence of rankings with missing labels,
rankings with ties among their elements or rankings that have been corrupted, i.e. altered, by noise.
The main goal of this thesis is to extend some of the existing theoretical results in the noisy linear Label
Ranking setting and to experimentally investigate the performance of algorithms customized to the linear
Label Ranking setting, against some of the state-of-the-art general Label Ranking algorithms that have
been proposed in literature.

1.1 Prior Work

There are multiple approaches to the Label Ranking problem, most of which are collectively presented
in the works of Fiirnkranz and Hiillermeier [2010], Vembu and Gartner [2011], Zhou et al. [2014a]. These
works can be roughly grouped in the following categories.

Decomposition methods One of the first Label Ranking techniques to be proposed that can fall
under the umbrella of decomposition methods is the constraint classification technique (Har-Peled et al.
[2002]). Tts goal is to find a linear utility function for each label that maps feature vectors to score values.
Given the score value of each label for some specific feature vector, the construction of a ranking comes
naturally by sorting the labels by decreasing score value, so that labels with higher score are ranked higher
and vice versa. As for how to obtain the linear utility functions, the constraint classification technique
transforms the original Label Ranking problem with d-dimensional instances into a single homogeneous
halfspace learning problem in an expanded kd-dimensional space, where k is the number of labels.
Another decomposition technique is that of log-linear models, proposed in the work of Dekel et al.
[2003]. This method extends the constraint classification technique, in the sense that it attempts to learn
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utility functions, which are expressed as a linear combination of a set of general base functions. Algorith-
mically, though, the estimation of the model’s parameters is accomplished by means of a boosting-based
algorithm, which seeks to minimize a generalized ranking error iteratively.

A more general technique that models preferences directly instead of attempting to construct utility
functions is the pairwise decomposition technique, more commonly known as ranking by pairwise com-
parison (RPC) (Fiirnkranz and Hiillermeier [2003], Hiillermeier et al. [2008]). The main idea is to split
the Label Ranking problem into multiple binary classification subproblems, one for each pair of labels,
which concerns finding a model that predicts the preference order for that specific pair of labels given a
new instance. The results of the individual pairwise models can be aggregated into a single ranking in
multiple ways, which will be analyzed in the following chapters. Two remarkable works that are based
on this pairwise approach are those of Vogel and Clémencon [2020] and Fotakis et al. [2022a]. The first
one provides statistical guarantees, when the learner observes only the top label of each ranking, while
the second provides similar guarantees for the more general case of incomplete rankings under specific
assumptions. Moreover, both results hold in the presence of noise. Another noteworthy result based
on the pairwise approach was given by Fotakis et al. [2022h] for the linear Label Ranking setting and,
specifically, for the concept class of Linear Sorting Functions (Har-Peled et al. [2002]) (which essentially
comprises linear utility functions as the ones mentioned in the constraint classification technique). In
particular, Fotakis et al. [2022b] showed that the concept class of Linear Sorting Functions is efficiently
and properly learnable in the distribution-dependent PAC model (specifically, under the standard multi-
variate normal distribution), with respect to the well-known Kendall’s Tau and top-r ranking distances
under a customized for rankings noise model that extends the Massart model (Massart and Nédélec
[2006]). Lastly, we remark that more complex pairwise decomposition techniques have been proposed by
Gurrieri et al. [2014], which take into account label correlation as well.

As an alternative to pairwise decomposition, Cheng et al. [2013], Cheng and Hiillermeier [2013]
proposed a labelwise decomposition technique, that splits the Label Ranking problem into multiple sub-
problems in a different manner. Each subproblem concerns a specific label and we seek to find a model
that predicts its position in the final ranking. Like in the pairwise decomposition method, one has to
aggregate the labelwise estimates in an appropriate way to get a final ranking, which will be analyzed
later in this thesis. An important work in this direction is that of Fotakis et al. [2022a], which provided
the first LR algorithm using decision trees in a black box manner with efficiency guarantees in the PAC
model.

Instance-based methods A crucial technique that is often used as part of Label Ranking algorithms
(Cheng and Hiillermeier [2008], Cheng et al. [2009, 2010], Cheng and Hiillermeier [2013]) is instance-based
learning (Brinker and Hiillermeier [2006]). Its main idea is to predict the class for a given instance based
on local information, that is, the classes of neighboring rankings. The arguably simplest way to do that is
using the well-known k-nearest neighbor algorithm (k-NN), assuming that the instance space is endowed
with a distance metric. While in the standard classification setting, k-NN sets each new instance’s class
to be the most frequent class among its k nearest neighbors, in the context of Label Ranking, it is
preferable that the structured nature of rankings be incorporated into the prediction process. Namely,
we have to devise an appropriate method of aggregating the rankings corresponding to the k£ nearest
neighbors into a single ranking, which is closely related to the ranking aggregation problem (IKorba et al.
[2017], Clémencon et al. [2018]).

Probabilistic methods A highly popular way to tackle the Label Ranking problem is to develop
predictive methods on the basis of statistical models on rankings such as the Mallows model (Mallows
[1957]) and the Plackett-Luce model (Plackett [1975]) or other models such as Gaussian Mixture Models
(GMMSs). There have been several works in this direction (Cheng and Hiillermeier [2008], Cheng et al.
[2009, 2010, 2012], Cheng and Hiillermeier [2012], Grbovic et al. [2012], Zhou et al. [2014b]), most of
which embody an instance-based approach and adopt methods such as maximum likelihood estimation
(MLE), expectation-maximization (EM) or majorization-minimization (MM) for estimating the distri-
bution parameters.

Decision tree methods The use of decision tree based Label Ranking algorithms constitutes another
novel Label Ranking technique, which turns out to be highly competitive to the aforementioned methods,
as experimental evaluation has indicated. Some of the most notable works in this area include adaptation
of decision trees (Cheng et al. [2009]), random forests (Zhou and Qiu [2016]), ensembles of decision trees
(de Sa et al. [2015], de Sa et al. [2017]) and bagging weak tree-based learners (Aledo et al. [2017]).
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Moreover, as mentioned above, the work of Fotakis et al. [2022a], which is based on the labelwise
decomposition method, was the first to support the use of decision trees in Label Ranking with theoretical
guarantees rather than solely with an experimental evaluation.

Other methods A novel work that does not pertain to the aforementioned categories is that of Korba
et al. [2018], which follows a structured prediction approach constituting of two steps. The first step is
a regression step in a Hilbert space, where rankings are represented by vectors through an appropriate
embedding. The second step is a decoding step helping to retrieve a ranking from each prediction that
lies in the Hilbert space. This work is also supported by theoretical guarantees for several embedding
choices.

Finally, there are additional works that adapt existing machine learning methods based on similarity
measures (Aiguzhinov et al. [2010], de Sa et al. [2011], Ribeiro et al. [2012]) and works that focus on
rule-based methods (Gurrieri et al. [2012]) or supervised clustering (Grbovic et al. [2013]).

1.2 Our Contributions

The main contributions of this thesis lie in the acquirement of a new theoretical result concerning the
linear Label Ranking setting and in an experimental evaluation of Label Ranking algorithms. Regarding
the theoretical part, we build upon the work of Fotakis et al. [2022b] and extend one of their results,
which applies to the case of the multivariate standard normal distribution, to the broader family of
isotropic logarithmically concave probability distributions. In particular, we show that the concept class
of Linear Sorting Functions is efficiently and properly learnable in the PAC model under isotropic log-
concave marginals, with respect to the Kendall’s Tau distance and with respect to two noise models
that constitute extensions of the fundamental Massart and Tsybakov binary classification noise models
respectively to the Label Ranking setting.

As for the experimental part, we compare six LR algorithms, including those proposed in Fotakis
et al. [2022b], Fotakis et al. [2022a] in terms of their generalization capability and their robustness in the
presence of noise. Our goal is to get an understanding of how LR algorithms based on linear predictors
perform against some of the state-of-the-art general-purpose LR algorithms based on decision trees and
random forests. The comparison takes place on synthetic data sets and on semi-synthetic and real data
sets that constitute standard LR benchmarks.

1.3 Organization

In Chapter 2, we provide some of the theoretical foundations of learning theory, centering on the funda-
mental category of prediction problems. Specifically, we focus on the popular PAC learning framework,
which will be extensively used in the next chapters to quantify the notion of learnability and to obtain
theoretical guarantees. Moreover, we define some basic noise models that will be used, when we consider
the learnability of classes in noisy settings.

In Chapter 3, we focus on the fundamental concept class of halfspaces. We begin by providing some
well-known algorithms concerning the learnability of halfspaces in the noiseless setting and proceed by
studying their learnability in the more challenging noisy setting and, specifically, in the presence of
Massart noise. In particular, we present the work of Diakonikolas et al. [2020a] that provides an efficient
halfspace learning algorithm, tolerant in the existence of Massart noise.

In Chapter 4, we address the main topic of this thesis, that is, the Label Ranking problem. Initially,
we provide a formal definition of LR, discuss its association with other learning settings such as binary,
multiclass and multilabel classification and present some of the most popular loss functions used in LR.
Afterwards, we present several noise models for LR, some of which stem from well-known probability
distributions on rankings. Finally, we expand on some of the most popular label ranking techniques
proposed in literature, while discussing the theoretical guarantees they are associated with.

In Chapter 5, we concentrate on the concept class of Linear Sorting Functions, a specialization of the
Label Ranking problem under a linear setting, whose learnability is studied both in the noiseless and
the noisy setting. In the noisy setting, we present the first main contribution of this thesis, that is, the
aforementioned theoretical result that extends the work of Fotakis et al. [2022b].

In Chapter 6, we present the second main contribution of this thesis, that is, the experimental
evaluation that was discussed before.
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1.4 Notation

We will use Pr[€] to denote the probability of an event £ and E[X] to denote the expected value of a
random variable X. For any event &, we let 1{&} = 1 if £ occurs, otherwise 0. Moreover, we define
sign(z) = 1{z > 0} — 1{z < 0}.

For any n € Zso, let [n] = {1,...,n}. We will use small boldface italic characters for vectors and
capital boldface italic characters for matrices. Fix any n,m € Zsq. For any * € R™, we denote by z;
the i-th element of @, where i € [n]. For any @,y € R", we denote by (z,y) = > .., x;y; the Euclidean
inner product between x and y. For any € R™, we denote by ||z||2 = \/(x, ) the Euclidean norm of
@. For any nonzero x,y € R", let f(x,y) = arccos % € [0, 7], that is the angle between @ and y.
For any r € R>, let B"(r) = {& € R™ : ||x||2 < r}, that is, the d-dimensional unit ball centered at the
origin. Moreover, let S"7!(r) = {z € R" : ||z||z = r}, that is, the boundary of B"(r). We also define
B™ = B"(1) and S"~! = §"~!(1). For any A € R™*" we denote by a;; the element in the i-th row and
j-th column of A and we denote by a; the vector corresponding to the i-the row of A, where i € [m)]

and j € [n]. The Frobenius norm of A is defined as ||Al|r = \/Zz.;l doiny laig 2.
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Chapter 2

Learning Theory

The term machine learning (or simply learning) refers to the automated detection of meaningful patterns
in data (Shalev-Shwartz and Ben-David [2022]). The area of learning has received significant attention
over the last decades, due to its substantial contribution in tasks associated with the extraction of
information from large data sets and the consequent enhancement of numerous scientific and financial
applications. The importance of learning stems from the need to develop adaptive mechanisms with the
capability of constant improvement and transformation of their experience into expertise, as opposed to
the rigidity of standard methods.

In this chapter, we focus on the fundamental category of prediction problems, where our goal is to
learn how to make correct predictions on the basis of some predefined context. We begin by defining
the basic entities and notions related to a prediction problem. Afterwards, we present the PAC learning
model, a well-known framework that formalizes the notion of learning, and cover some of the theoretical
fundaments associated with it. Lastly, we discuss the learnability in the presence of noise, which is
related to the modern challenge that concerns the development of robust learning algorithms that can
handle the existence of corrupted data.

2.1 The Statistical Learning Framework

Domain set A domain set (also called instance space or input space), usually denoted as X, is a set,
which represents the set of objects, which we want to label. It is often the case that these objects are
represented through vectors of features related to them. This is why we also refer to X' as feature space.
For example, suppose that we are studying the problem of classifying dogs according to their breed.
In such a scenario, X would correspond to the set of all dogs and could possibly contain vectors with
features such as the height, the weight and the skin color of a dog.

Label set A label set (also called label space or output space), usually denoted as )Y, is a set, which
represents the labels each element of the domain set can be assigned to. In our dogs example, ) would
be the set of all dog breeds. The case when there exist only two labels, corresponds to the fundamental
setting of binary classification. In that case, we usually choose Y = {0,1} or ¥ = {—1,1}. A more
general case that extends binary classification is that of multiclass classification, where ) is a finite set
with |Y| > 2. Another setting is that of regression problems, where the output can take any real value
within a specific range.

Hypothesis A hypothesis (also called classifier, predictor or prediction rule) is a function h: X — Y
that maps elements of the instance space to the label space, namely predicts the label of the element it
is given as input. Moreover, a set H of hypotheses in V¥ is referred to as a hypothesis class or concept
class.

Learning algorithm A learning algorithm or learner is an algorithm that takes a tuple of labeled
examples S € UZO:O (X x V)", called a training set, as input and returns a hypothesis from X" to ), that
should be capable of predicting the label of any new instance in X'. In that sense, a learner can be thought
of as some function A: [J7— (X x V)" — Y*. We denote by Ax y the set of all learning algorithms of
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the aforementioned form. We also denote A (S,, hlg,) = A(S), where S = ((x1,h(z1)), ..., (Tm, h(zm)))
and S; = (z1,...,%m).

Data generation As far as the training data are concerned, we assume that there is some underlying
probability distribution D on X x ), which they are generated from. It is often useful to decompose D
into two parts: the distribution D,, which denotes the marginal of D on X, and D,,, which denotes
the conditional distribution of D on Y given x € X. Observe, that each x € X is not deterministically
labeled, but is assigned each label with some probability dictated by D,,. Namely, the labels are not
required to be fully determined by the features describing the elements of X. In our dogs example, this
can be interpreted as the features chosen to describe a dog, being inadequate to uniquely determine its
breed.

Nevertheless, as we will later see, it is sometimes assumed that D, is degenerate for all z € X, that
is, there exists a target labeling function f: X — Y such that y = f(z) almost surely, where (z,y) ~ D.
Moreover, we will be assuming that the elements of any training set S given as input to a learner are
independently and identically distributed (i.i.d.), which assumption will be denoted as S ~ D™! | where
m is the size of S.

Success criteria Informally, the goal of a learner is to return a hypothesis, whose predictions tend to
be correct. For instance, in our dogs example, a learner is successful, if it is able to classify an unlabeled
dog example to the breed category it actually belongs. To formalize the notion of success, we first need
to define a loss function £: Y? — Rs>q that quantifies how successful is a prediction with respect to some
ground truth value. For binary and multiclass classification problems, the most natural choice is the
0 — 1 loss, defined as £y_1 (§,y) = 1 {§ # y}, which simply says that we have zero loss, if the predicted
label is the correct one, otherwise one. For regression problems, where ) C R, more appropriate choices
would be the absolute loss ¢1 (§,y) £ |§ — y| or the squared loss £ (7,y) = (9 — y)2, which are able to
reflect the dependence of the loss on some sort of distance between the prediction and the ground truth
value.

Having determined some appropriate loss £ for our learning problem, we define the error of a hypoth-
esis with respect to D as

Lodh) 2 E_[h().0)]

that is, the expected loss over the data distribution?. Additionally, for cases, where there exists some
target function f we want to approximate, we define the error of a hypothesis with respect to D, and f
as

Lo, o) 2 B [(h(z), f)]

Then, in a more formal manner, the goal of a learning algorithm is to output a hypothesis that minimizes
Lpy or Lp, ¢¢ (depending on the context of the learning problem). A useful property that relates the
aforementioned errors is as follows.

Proposition 2.1.1. If ¢ satisfies the triangle inequality, then
[Lp,e(h) = Lo, 1.e(h)] < Lp o (f)
for any h, f € Y.

Bayes predictor It can be shown that any hypothesis h* € Y%, where

h*(z) € argmin  E  [¢(g,y) | 2] ,
gey  v~Dyjs

minimizes Lp, among all hypotheses in Y*. Such a hypothesis is said to be a Bayes predictor. For
instance, if ) is discrete and the loss is the 0 — 1 loss, we can show that any hypothesis

h*(z) € argmax Pr [y=g9 |z
gey  ¥~Dya

is a Bayes predictor.

D™ denotes the probability distribution over m-tuples on (X x »)™ induced by drawing each element of the tuple
from D, independently of the other members of the tuple.

2Since the loss £ is treated as a random variable, we require that the function gp: X x ¥ — Rx(, where g (z,y) =
¢(h(z),y), is measurable for all h € H. -
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Remark. We stress that any learner is assumed to have no knowledge of the data distribution D, but
only of the specific training set that was given as input to it. Had D been known, we would be able to
calculate a Bayes predictor and minimize Lp o with any learning procedure being unnecessary.

2.2 Empirical Risk Minimization

As mentioned before, a learning algorithm receives a training set sampled according to D and outputs a
hypothesis from X to Y that should minimize the error with respect to D. To this end, it is vital that
the learning algorithm has the ability to calculate some measure of error, through which it will be able to
distinguish good from bad hypotheses during the learning process. Since the learner has no knowledge
of D, it is incapable of using Lp ¢ to evaluate hypotheses. This leads us to introducing the training error
(also called empirical error or empirical risk) that is defined as

Ls(h) & %ie (h (xm) ,yw) ,
t=1

where S = ((z®,yM) ..., (2™, y(™)) € (X x Y)™, with m > 1, is the training set. The process
of finding a hypothesis that minimizes the training error corresponds to the learning paradigm that is
referred to as Empirical Risk Minimization (ERM). The intuition behind the ERM paradigm is that if
some hypothesis h achieves a small training error on a training set S, which is a proxy of the unknown
data distribution D, then we can hope that h will also achieve a small error with respect to D, which is
our actual goal.

However natural this approach might seem, we can show that it may perform poorly, if applied
without any further restrictions. In particular, one can construct hypotheses that ensure zero training
error on S, but fail to minimize the error with respect D, namely fail to generalize over new data, which is
known as the owverfitting phenomenon. To solve this problem, we restrict the search space of hypotheses
to a specific hypothesis class H, whose choice should be due to some prior knowledge about the learning
problem in consideration. This procedure is called inductive bias.

Definition 2.2.1. A learning algorithm A € Ax y is an ERM learner for a hypothesis class H C Y%
with respect to a loss ¢, if A(S) € argmin, 4 Lg¢(h) for any training set S € | J,— (X x Y)™.

We denote by ERMy, ¢ the set of all ERM learners for H with respect to £. In a few sections, we will
formulate some conditions a hypothesis class should satisfy so that an ERM learner is guaranteed not to
overfit in the binary classification setting.

2.3 The PAC Learning Model

In the previous section, we described the context of a learning problem, but did not give a precise
definition of learnability. We now present the Probably Approximately Correct (PAC) learning model,
first introduced by Valiant [1984], which formalizes the notion of learnability. Specifically, we use its
adjusted form to prediction problems and general loss functions, following the notation of Daniely et al.
[2014], Hopkins et al. [2023] and Shalev-Shwartz and Ben-David [2022]. In what follows, we let X be a
domain space, ) be a label space, H C Y¥ be a hypothesis class, £: Y2 — R>¢ be a loss function and
A € Ax.y be a learning algorithm.

2.3.1 Realizable PAC Learning

We first consider the simplest realizable version of PAC learning, where a target function that incurs
zero expected loss on D is assumed to exist in the hypothesis class H into consideration. Our goal is to
find a hypothesis that, with high probability, achieves error close to zero.

Definition 2.3.1 (Realizability Assumption). A probability distribution D on X x Y is said to be real-
izable by H, if there exists some h € H such that Lp 4(h) = 0.

Definition 2.3.2 (Realizable Sample Complexity of a Learning Algorithm). The realizable sample com-
plexity of A with respect to H and £ is the function m’y 4, ,: (0,00)2 — N defined as follows: For every
€,0 >0, mly 4 ,(€,0) is the minimal integer such that for every
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e integer m > mY 4 ,(¢,6) and
e probability distribution D on X x Y that is realizable by H, it holds:

sf)zgm [Lpe(A(S)) >¢€ <6

For every €,5 > 0 such that no integer satisfies the above inequality, we define mgﬂl(e, J) = 0.

Remark. If ¢ satisfies the (reasonable for a loss function) property {(z,y) = 0 <= {(z,z) = {(z,y)
(which will always be the case for the loss functions considered in this thesis), then the second sentence in
the above definition can be restated as follows: For everye,d > 0, mg’%z(e, 0) is the minimal integer such
that for every integer m > m'y 4, ,(¢,9), every probability distribution D, on X and every f € {£1}%, it
holds

STE%W [pr)f’g (A (Sw, h‘S;)) > 6} <é.

This equivalent statement is often preferred in literature when dealing with binary classification problems,
as it makes explicit the existence of a target function.

Definition 2.3.3 (Realizable Sample Complexity of a Hypothesis Class). The realizable sample com-
plexity of H with respect to £ is the function mpyc 3 4 (0,00)2 — N defined as

mITPAC,H,Z(e’ §) = Ei ’ m?x;;—t,e(@ )

Ae
for all e,6 > 0.

Namely, the realizable sample complexity of H is the best (lowest) realizable sample complexity that
an algorithm can achieve.

Definition 2.3.4 (Realizable PAC learnability). H is said to be realizably PAC learnable with respect to
¢, if it holds that mpac 4 4(€,0) < oo for all €,0 > 0. Moreover, H is said to be realizably PAC learnable
with A with respect to £, if it holds that m’y 5, ,(€,6) < oo for all €,6 > 0.

Some comments are in order. The parameter e (accuracy parameter) in the above definitions deter-
mines how much the error of the hypothesis returned by A can exceed its optimal value (which is zero,
due to the realizability assumption) and corresponds to the “approximately” part of PAC. The parameter
d (confidence parameter) is related to the probability that the aforementioned approximation condition
is satisfied and corresponds to the “probably” part of PAC. In particular, § captures the dependence of
the training procedure on the specific training set S that was used. Since S is finite, it could be the case
that S is nonrepresentative of D, in a way that the we would be unable to guarantee the approximation
condition for the error.

Definition 2.3.5 (Realizable ERM sample complexity). The realizable ERM sample complexity of H
with respect to £ is the function mygpy 34 4° (0,00)2 = N defined as

mERM,H,Z(eu(S): sup mfa&,y,@(ﬁvf;)
AEERMH,Z

for all e,6 > 0.

Namely, the realizable ERM sample complexity of H is the realizable sample complexity that can
be guaranteed for any ERM learner. Obviously, we have that mpac 4 4(€,6) < mpgyp 4 0(€,0) for any
€,6 > 0.

2.3.2 Agnostic PAC Learning

We now consider the more general agnostic version of PAC Learning (Haussler [1992], Kearns et al.
[1992]), in which the realizablity assumption is waived. Here, the goal is to find a hypothesis that,
with arbitrarily high probability, achieves error arbitrarily close to the minimum one achieved by any
hypothesis in H.

Definition 2.3.6 (Agnostic Sample Complexity of a Learning Algorithm). The agnostic sample com-
plexity of a A with respect to H and { is the function m% 4, ,: (0,00)2 — N defined as follows: For every
€,0 >0, mY 4 ,(€,0) is the minimal integer such that for every
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e integer m > mY 4 ,(¢,6) and

e probability distribution D on X x )Y, it holds:

i <
SFgm L’D,Z (A(S)) > }}Iel?f_[ L’D,Z(h) +e| <6

For every €,d > 0 such that no integer satisfies the above inequality, we define m%ﬂ,g(e, J) = 0.

Definition 2.3.7 (Agnostic Sample Complexity of a Hypothesis Class). The agnostic sample complezity
of H with respect to { is the function mpac 4, 4+ (0, 00)? = N defined as

a 5 —
mPAC,H,@(Ev ) Ac

Ei ’ mi&,?—[,é(ea )

for all €,6 > 0.

Definition 2.3.8 (Agnostic PAC learnability). H is said to be agnostically PAC learnable with respect
to ¢, if it holds that m%AC’H’Z(e,(S) < oo for all €,6 > 0. Moreover, H is said to be agnostically PAC
learnable with A with respect to £, if it holds that m¢% 4, ,(¢,9) < co for all €,6 > 0.

Definition 2.3.9 (Agnostic ERM sample complexity). The agnostic ERM sample complexity of H with
respect to £ is the function mgyg 4¢.0° (0,00)* = N defined as

maERM,H,é(Ea5): sup mﬁx,y,z(@(S)
AEERM'HJ

for all e, 6 > 0.

2.3.3 Extensions of the PAC Model

We now discuss some variations of the standard realizable and agnostic PAC models, which are more
often than not considered with an eye to making the acquirement of theoretical guarantees easier or
ensuring computational efficiency.

Proper versus Improper PAC Learning Notice that in the preceding definitions of PAC learnabil-
ity of a class H, any learner is required to output a hypothesis h € Y%, but not necessarily within . Such
a choice is justified, if our mere goal is to minimize the expected loss irrespective of the representation
of the output hypothesis. This type of learning is referred to as improper or representation-independent.
Nevertheless, as it will become more clear afterwards, it is sometimes preferable that h € H for compu-
tational reasons, i.e. in order to ensure smaller representation size of h and smaller time to compute the
output of h. If we require that h € H, then the corresponding learning type is referred to as proper or
representation-dependent.

Efficient PAC Learning The aforementioned definitions of PAC learnability focus on the sample
complexity to carry out a learning task, which covers the statistical aspects of learning. When it comes
to creating learning algorithms, one has to take the computational aspects of learning into consideration
as well. Namely, it is crucial that both obtaining a hypothesis from a training set and predicting labels
with that hypothesis can be done in an efficient manner. To this end, it is critical that we define
some efficiency criterion, which should naturally be related to the parameters of the learning task, and
extend the standard definitions of PAC learnability accordingly. For instance, in the special case of
binary classification problems with X = R, we normally require that the sample and computational
complexity of learning algorithms be bounded by a polynomial in the dimension d of the instances, in the
bit complexity of the examples and in 1/e and 1/§, where €, > 0 are the accuracy and confidence PAC
parameters respectively. If our learning problem happens to be associated with more parameters (as in the
presence of noise that will be studied later), it is desirable that the sample and computational complexity
has a polynomial dependence on them as well. Additionally, it is critical that the time a learner’s output
hypothesis takes to label a new instance is also polynomially bounded by the aforementioned parameters
(which constitutes an indication of the importance of proper learning). For a more general and rigorous
quantification of the notion of efficiency in the PAC learning model we refer to Kearns and Vazirani
[1994] and Shalev-Shwartz and Ben-David [2022].
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Distribution-dependent PAC Learning The standard realizable and agnostic PAC learning mod-
els are often referred to as distribution-independent or distribution-free since no assumption about the
marginal distribution D, of D on & is made. In practice, though, the distributions on instances tend to
manifest “nice” concentration properties that make algorithms outperform the worst-case generalization
bounds provided by the standard PAC learning models. Furthermore, imposing no restrictions on D,
might make it difficult to obtain efficiency guarantees, especially in the presence of noise, as we will see
later. This is why we often consider a variant of the standard PAC model, the distribution-dependent or
distribution-specific model, which requires D, to belong to a specific family F of probability distributions
on X.

Relaxation of the standard PAC guarantees Finally, another way, besides the distribution-
dependent PAC model, to overcome arising difficulties in the acquirement of generalization bounds,
is to compromise on weaker guarantees than the ones required by the standard realizable and ag-
nostic PAC models. Such an example is the c-agnostic PAC model, where we require that for any
€,0 > 0 the learner outputs a hypothesis ¢ € Y% such that, with probability at least 1 — §, it holds
Lpy(g) < cinfrey Lp ¢(h) + €, where ¢ > 1 is a constant.

2.4 The No-Free-Lunch Theorem

Notice that PAC learnability has been defined with respect to some hypothesis class. Moreover, we
have seen that the ERM rule might fail, if not applied within some specific hypothesis class (ideally
one we believe is appropriate for our learning problem). A natural arising question is whether such a
restriction is necessary. In other words, does there exist some universal learner that can perform well
in all learning tasks, without restriction within any hypothesis class, or rather ensure arbitrarily small
error with arbitrarily high probability, with respect to any distribution, using finite training samples?
The answer to this question is negative, as the following theorem suggests.

Theorem 2.4.1 (No-Free-Lunch (Shalev-Shwartz and Ben-David [2022])). For any learning algorithm
A€ Ay 111y and m < |X|/2, there exist a distribution D on X x {£1} and a hypothesis h € {£1}*
such that Lp ¢, ,(h) =0 and

SNP'EM I:LD,ZO—I (A(S)) > 1/8] > 1/7
Intuitively, the No-Free-Lunch theorem states that for each learner there exists some learning task
(distribution) in which it fails, whereas there exists some other learner that succeeds in the same task. A
direct corollary is that if X is an infinite domain, then {£1}¥ is not PAC learnable with respect to £y_1,
which justifies in a more formal manner the necessity of restricting our attention to specific hypothesis
classes, if we hope of obtaining any PAC learnability guarantees.

2.5 VC Dimension

We now focus our attention on binary classification problems with the loss function being the 0 — 1 loss.
We study the conditions under which classes are PAC learnable and try to quantify how easy it is to
learn a hypothesis class in terms of the required sample complexity. To this end, we define the Vapnik-
Chervonenkis dimension (VC dimension), a combinatorial notion that characterizes the learnability of
classes. Then, we state the fundamental theorem of statistical learning theory, which relates the VC
dimension of a class with the sample complexity of learning it.

We assume, without loss of generality, that our binary label space is the set {1} and proceed by
defining some prerequisite notions, before providing the definition of the VC dimension.

Definition 2.5.1 (Restriction of H to C). Let H C {£1}* be a hypothesis class and let C C X be a
finite set. The restriction of H to C is the set H|c = {h|c : h € H}, that is, the set of functions from C
to {£1} that can be derived from H.

Definition 2.5.2 (Shattering). Let H C {£1}* be a hypothesis class and let C C X be a finite set. We
say that H shatters C, if H|c = {£1}, that is, the restriction of H to C is the set of all functions from
C to {£1}.
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To understand the usefulness of the above definitions, we need to get some deeper insight into the
No-Free-Lunch theorem. A more detailed statement of it (according to the proof of Shalev-Shwartz
and Ben-David [2022]) would be that for any learning algorithm A € Ay (41} and any subset C =
{x1,..., 22} of X of size 2m, there exist a hypothesis h € {0,1}¢ and a uniform distribution D on
{(z1,h(z1)),..., (x2m, h(z2m))} such that Prg.pm [Lp, , (A(S)) >1/8] >1/7.

Corollary 2.5.1. Let H C {0,1}*. If there exists a set C C X of size 2m that is shattered by H, then
for any learning algorithm A € Ay 413, there exist a distribution D on X x {1} and a hypothesis
h € H such that LD7gO_1(h) =0 and Prg.pm [LD,Zo—l (A(S)) > 1/8] > 1/7

Intuitively, this means that the larger the maximal size of a set that 7 can shatter becomes, the
larger becomes the lower bound on samples required to learn some hypothesis that can achieve the PAC
learning guarantee. This fact naturally leads to the following definition.

Definition 2.5.3 (VC Dimension). The VC dimension of a hypothesis class H C {&1}*, denoted
VC(H), is the mazimal size of a finite set C C X that can be shattered by H. If H can shatter sets of
arbitrarily large size, we define VC(H) = oo.

A direct corollary of the definition of shattering is that if H shatters a finite set C, then it also
shatters all subsets of C. Contrapositively, if every set of size d > 1 is not shattered by #H, then every
set of size greater than d is also not shattered by H. Therefore, to show that VC(H) = d, we need to
show that

1. There exists a set C C X with |C| = d that is shattered by H.
2. Every set C C X with |C| =d + 1 is not shattered by H.

We remark that any nonempty class H trivially shatters a set of size zero, so VC(H) > 0. Moreover,
the condition VC(H) = 0 holds, if and only if H contains a single hypothesis, a constant function.

Lemma 2.5.1. If VC(H) = oo, then H is not PAC learnable with respect to £o_1.

Proof. Since VC(H) = oo, there exists a set of arbitrarily large size shattered by H. Hence, from
Corollary 1, we get that for any 0 < e < 1/8 and 0 < § < 1/7, it holds that m/, 4, ,(¢,d) = oo, which
means that H is not realizably PAC learnable (and therefore neither agnostically PAC learnable) with
respect to fo_1. O

2.6 The Fundamental Theorem of Statistical Learning

The following theorems relate the VC dimension of classes with their learnability in the PAC learning
model.

Theorem 2.6.1 (The Fundamental Theorem of Statistical Learning). Let H be a hypothesis class of
functions from a domain set X to {£1}. Then, the following are equivalent.

1. H has finite VC dimension.
H is realizably PAC learnable with respect to £y_1.
H is agnostically PAC learnable with respect to £y_1.

e e

H is realizably PAC learnable with any A € ERMy ¢, , with respect to £y_;.
5. H is agnostically PAC learnable with any A € ERMy ¢, , with respect to £y_;.

Theorem 2.6.2 (The Fundamental Theorem of Statistical Learning - Quantitative Version). Let H be
a hypothesis class of functions from a domain set X to {£1}. There exist universal constants Cy,Cy > 0
such that

VC(H) +1n(1/0 - - VC(H)In(1/e) +1In(1/6
Gy (1) c 1/9) < mPAC,H,Zo_l(Gvé) < mERM,H,eO_1(6a5) <Cy (3)In é ) 1/9)
wnd VC(H) + In(1/6) VC(H) + In(1/6)
+In a a +In
Ch 5 < MPAC .01 (60) < MERM 31,0, (€,6) < Co 5

€
for all e,6 € (0,1).

€
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2.7 Noise Models in Binary Classification

The arguably simplest starting point when studying the learnability of a hypothesis class in the binary
classification setting, is to consider the realizable case, where all instances are assumed to be labeled
by some target function within the class. This setting is also referred to as noiseless, in the sense that
there is no corrupting factor that could modify the ground truth labels (the ones dictated by the target
function). However, in real world applications, it is often the case that the learner has access to examples,
which might contain noise, namely, there might be some portion of the examples consisting of instances
accompanied by a wrong label. This is the motivation for formalizing the presence of noise in the data,
namely making distributional assumptions that extend the realizable case so as to capture more general
scenarios. In this section, we present three noise models in ascending order of generality that will be
used throughout the thesis.

2.7.1 The Random Classification Noise Model

The first and simplest among the noise models we will present, is the random classification noise (RCN)
model, which was introduced by Angluin and Laird [1988].

Definition 2.7.1 (Random Classification Noise). A probability distribution D on X x {1} is said
to satisfy the random classification noise (RCN) condition, if there exists some n € [0,1/2) such that
min {PryNDyll,[y =1]z],Pryup, [y #1]| z]} =n forallz € X.

Proposition 2.7.1. A probability distribution D on X x {1} satisfies the random classification noise
condition, if and only if there exists some (unique) function f: X — {£1} and some n € [0,1/2) such
that for all x € X, it holds that Pry.p, [y # f(z) | x| =n. Then, we also say that D is an (n, f)-RCN
distribution.

This alternative definition, which is in fact the original given by Angluin and Laird [1988], leads to
interpreting the RCN model as having some noiseless dataset, where all samples are deterministically
labeled by f, and an adversary flips each label independently with some constant probability n € [0,1/2).
The constraint 7 € [0, 1/2) is due to the fact that if n = 1/2, then we have zero information about which
class each point belongs to, so every learning procedure should be expected to fail. Furthermore, if
1 > 1/2, then we can simply flip every label and reduce the problem to the case with flipping probability
1—n<1/2.

The following lemma relates Lp, rp, , (error with respect to the target function) with Lp g, , (mis-
classification error). Its proof can be found in Appendix C.

Lemma 2.7.1. Let D be an (n, f)-RCN distribution, where n € [0,1/2) and f € {£1}*. For any
h € {£1}*, it holds that

Lpy_,(h)—n
Lp, fu_,(h) = 51—27]

and f is a minimizer of Lp g, , .

We now adjust the PAC model to the distribution dependent setting in the presence of random
classification noise. Our objective is to minimize the expected 0 — 1 loss with respect to D, and the
function, with respect to which an RCN distribution is defined. In what follows, we let X be a domain
space, H C {£1}* be a hypothesis class, A € Ay (11} be a learning algorithm and F be a family of
probability distributions on X.

Definition 2.7.2 (Distribution-dependent RCN Sample Complexity). The distribution-dependent RCN
sample complezity of A with respect to H and F is the function m%?ﬁ;: (0,00) x (0,00) x [0,1/2) - N
defined as follows: For every e,6 > 0 and n € [0,1/2), mlx}%ﬁ}-(e,é, n) is the minimal integer such that
for every

e integer m > mﬁ?ﬁ;(e, 0,m),
o target function f € H and
e (n, f)-RCN probability distribution with D, € F, it holds:
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S E%m [L’Dz,f’eo—l (A (Sx, h|sz)) > 6} <94

For every ¢,0 > 0 and n € [0,1/2) such that no integer satisfies the above inequality, we define
RCN

m 3,7 (€,0,m) = o0.
Definition 2.7.3 (Distribution-dependent PAC Learnability with RCN). H is said to be PAC learnable
with A with respect to F in the presence of RCN, if it holds that m%%_ll\{}-(e, 0,m) < oo for alle,d >0 and

n€10,1/2).

2.7.2 The Massart Noise Model

A drawback of the RCN model is that its assumption is too strong to be realistic, in the sense that in a
real case scenario, Pry.p, [y # f(z) | 2] would probably not have the same value for all points z of the
feature space. This is the motivation for studying a much more general model, the Massart noise model,
introduced by Massart and Nédélec [2006], which is defined below.

Definition 2.7.4 (Massart Noise). A probability distribution D on X x{+1} is said to satisfy the Massart
(or bounded) noise condition, if there exists some B > 0 such that |Pry~DW[y =1|z]— 1/2| > B for
allz € X.

Proposition 2.7.2. A probability distribution D on X x {+1} satisfies the Massart noise condition,
if and only if there exists some (unique) function f: X — {£1} and some n € [0,1/2) such that for
all z € X, it holds that Pry.p, [y # f(z) | x] < n. Then, we also say that D is an (n, f)-Massart
distribution.

This alternative definition leads to interpreting the Massart noise model as having some noiseless
dataset, where all samples are deterministically labeled by f, and an adversary flips each label indepen-
dently with probability at most n € [0,1/2). Obviously, since the Massart noise model imposes only
an upper bound on the flipping probability rather than a constant value, it constitutes a significant
generalization of the RCN model.

The following lemma relates Lp_ fp, , (error with respect to the target function) with Lp g, , (mis-
classification error). Its proof can be found in Appendix C.

Lemma 2.7.2. Let D be an (n, f)-Massart distribution, where n € [0,1/2) and f € {0,1}*. For any
h € {0,1}*, it holds that
Lpyg,_, (h) —Lpye, (f)

L h) <
’Dzvaeo—l( ) > 1-2y

and f is a minimizer of Lp g, , .

Definition 2.7.5 (Distribution-dependent Massart Sample Complexity). The distribution-dependent
Massart sample complezity of A with respect to H and F is the function m%%ﬁb‘}_ft (0,00) x (0,00) X
0,1/2) — N defined as follows: For every e,6 > 0 and n € [0,1/2), m}47% (¢,8,n) is the minimal
integer such that for every

o integer m > mNaSAt (¢, 6, n),

e target function f € H and
o (n, f)-Massart probability distribution with D,, € F, it holds:

S E%m [L’Dz,f’eo—l (A (Sx, h|sz)) > 6} <94

For every ¢,0 > 0 and n € [0,1/2) such that no integer satisfies the above inequality, we define

M (e,8,m) = oo.

Definition 2.7.6 (Distribution-dependent PAC Learnability with Massart Noise). H is said to be PAC
Massart

learnable with A with respect to F in the presence of Massart noise, if it holds that my 5% (e,0,m) < o0
for all €,6 >0 and n € [0,1/2).
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2.7.3 The Tsybakov Noise Model

The Massart noise model generalizes the RCN model to a large extent, but still fails to capture scenarios,
where the flipping probability can be arbitrarily close to 1/2 for some points of the instance space. This is
the motivation for defining the even more general Tsybakov noise model, which was originally proposed
by Mammen and Tsybakov [1999] and later refined by Tsybakov [2004].

Definition 2.7.7 (Tsybakov Noise). A probability distribution D on X x {£1} is said to satisfy the
Tsybakov noise condition, if there exist some « € [0,1) and B > 1 such that

z~Dy y~Dy|

|

Pr [y:1|x]—1/2‘ <t/2] < BtTs

for allt > 0.

Proposition 2.7.3. A probability distribution D on X x {£1} satisfies the Tsybakov noise condition,
if and only if there exists some function f: X — {£1} and some o € [0,1) and B > 1 such that for all
t >0, it holds that Pry~p, [Pryp, [y # f(z) | 2] > 1/2—1/2] < BtTs . Then, we also say that D is
an (a, B, f)-Tsybakov distribution.

The intuition behind the Tsybakov noise model is as follows. While in Massart case there exists
some universal 7 € [0,1/2) such that the event Pr,.p [y # f(z) | 2] > n can never occur, here
Pry.p, [y # f(z) | x| can get arbitrarily close to 1/2 for some instances, but the probability of
observing the corresponding regions decays to zero, as we get closer to 1/2. The aforementioned decay is
controlled by the parameter . In particular, when « tends to 1 we observe a more intense decay, while
values of a close to zero, correspond to a slower decay, yielding a noisier distribution overall.

Definition 2.7.8 (Distribution-dependent Tsybakov Sample Complexity of a Learning Algorithm). The

distribution-dependent Tsybakov sample complexity of a learning algorithm A € Ay y with respect to H

and F is the function mif{ka;ov: (0,00) x (0,00) x [0,1) x [1,00) — N defined as follows: For every

€,0>0,a€l0,1) and B> 1, mi?’f%ov(e, d, a, B) is the minimal integer such that for every
e integer m > mif’ﬁf%‘w(e, 5, a, B),
e target function f € H and
e (a, B, f)-Tsybakov probability distribution with D, € F, it holds:
P (D (A(Sehls)) > ] <6

For every e,6 > 0, a € [0,1) and B > 1 such that no integer satisfies the above inequality, we define
Tsybakov o
MA 3 F (e,0,a, B) = o0.

Definition 2.7.9 (Distribution-dependent PAC Learnability with Tsybakov Noise). H is said to be PAC
learnable with A with respect to F in the presence of Tsybakov noise, if it holds that mi?’_}j’a}kov(e, d,a, B) <
oo for all e,6 >0, « €[0,1) and B > 1.
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Chapter 3

Learning Halfspaces

In this chapter, we study the hypothesis class of halfspaces or linear threshold functions. This is one of
the most fundamental concept classes within the binary classification setting and has been vastly used
over the years either standalone, or as part of more sophisticated structures such as Support Vector
Machines (SVMs) or Neural Networks. The extensive use of halfspaces in learning tasks is due to the
capability to learn them efficiently, whilst maintaining simplicity and intuition. We begin by providing
some basic definitions and finding the VC dimension of the class of halfspaces. Then, we study algorithms
for learning halfspaces both in the noiseless and the noisy PAC setting.

Definition 3.0.1 (Halfspace). A halfspace or linear threshold function (LTF) in R is any function
hap: RT — {£1} of the form
hapb(x) = sign({(w, ) + b) ,

where w € RY is a weight vector, b € R is a bias term.

A halfspace hq p is said to be homogeneous if b = 0, namely if the hyperplane that defines it contains
the origin and we denote it as hy = heyo. We denote by Hirp (resp. Hiprp) the class of halfspaces
(resp. homogeneous halfspaces) in R<.

~ .TQ

N e

Figure 3.1: Visualization of a homogeneous halfspace in R?

Definition 3.0.2 (Linear separability). A set S C R x {—1,1} is said to be linearly separable, if there
exist some w € R? and b € R such that y({(w,z) +b) > 0 for all (x,y) € S.

Remark. Notice that each halfspace hy p(x) = sign ((w, z) + b) in R? can be rewritten as hyy (z') =
sign ((w', x’)), where w' = (wq,...,wq,b) and & = (x1,...,24,1). Namely, it can be expressed as
a homogeneous halfspace in R4 applied over the transformation that appends the constant 1 to each
input vector. This reduction is very useful and can sometimes (when the aforementioned transformation
complies with distributional or other assumptions made about the instances) be applied to maintain
simplicity.
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Theorem 3.0.1. The VC dimension of the class of homogeneous halfspaces in R? is d.

Proof. First, we will show that VC (’H%LTF) > d. Consider the set C' = {e1,...,eq}, where e; € R? is
the vector, whose i-th element is 1 and the rest 0, for ¢ € [d]. For any labeling 41, ..., yq of the elements
of C, if we set w = (y1,...,Y4), then sign ((w, e;)) = y; for all ¢ € [d], namely the labeling can be derived
from H%LTF.

Next, we will show that VC (Hfrp) < d+ 1. Let C" = {@1,...,@q41} be any set of d + 1 vectors

in R?. Then, there exist real numbers A1, ..., Ad+1, not all of them zero, such that Zf:ll Nix; = 0. Let

P={ie[d:\>0}and N ={i € [d] : \; < 0}. At least one of P and N is nonempty and it holds that
Y iep NiTi = Yoy |Ailzi. Suppose that HE v shatters C’. Then, there must exist some w; € R? such
that (w1, z;) > 0, if and only if i € P, and some wy € R? such that (wo,x;) > 0, if and only if i € N. If
N is nonempty, we get that 0 < >, p \i(w, ;) = >, n |Ail (w, ;) < 0, which leads to a contradiction.
Similarly, if P is nonempty, we get that 0 < > .\ [Ni[{w, x;) = >, p Ai{w, z;) < 0, which leads again
to a contradiction. Hence, HﬂLTF cannot shatter C’, which concludes the proof. O

Theorem 3.0.2. The VC dimension of the class of (nonhomogeneous) halfspaces in R? is d + 1.

Proof. First, we will show that VC (HﬁTF) > d+1. Consider the set C = {ey, ..., e4,0}. For any labeling
Y1y .- Yd+1 of the elements of C, if we set w = (y1,...,yq) and b = yg11/2, then sign ((w, e;) +b) = y;
for all i € [d + 1], namely the labeling can be derived from H{1p.

Next, we will show that VC (H{1p) < d+2. Let C' = {@1,..., @42} be any set of d+2 vectors in R%.
Suppose that Hip shatters C’. Then, applying the aforementioned reduction from nonhomogeneous to
homogeneous halfspaces, it follows that the set C” = {(z1,...,24,1) : (21,...,24) € C} is shattered by
Hi e, which leads to contradiction since VC (Hifp) = d + 1 and [C”| = d + 2. Hence, H{1p cannot
shatter C’, which concludes the proof. O

3.1 Learning Halfspaces in the noiseless setting

In this section, we consider the learnability of halfspaces in the noiseless setting. This the realizable
case, where the learner is given access to instances (almost surely) labeled by some target halfspace.
We provide two well-known algorithms for learning halfspaces in the realizable case, showing that the
hypothesis class of halfspaces is properly and efficiently realizably PAC learnable (with respect to £g_1).

3.1.1 Learning Halfspaces using Linear Programming

In Chapter 2, we have seen that any hypothesis class of finite VC dimension is realizably PAC learnable
with any ERM learner with respect to the 0—1 loss. We will show that an efficient ERM learner for H{1p
can be implemented through linear programming. In particular, let S = ((ac(l), y(l)) ey (ac(m), y(m)))
be any training set of samples from R? x {+1}. Consider the following linear program, which we denote
by LP1':

Find weRY beR

subject to  y) ((w,z®) +b) >1 Vt € [m]

In Theorem 3.1.1, we show that LP1 combined with the Ellipsoid method (Algorithm 1) yields a proper
and efficient realizable PAC learner for the class of LTFs.

Algorithm 1 Properly Learning Halfspaces with Linear Programming

Input: Training set S = ((w(l),y(l)) ey (a:(m),y(m)))

Output: LTF Ay p: R — {1}
1: Construct LP1 from S
2: (w,b) < ELLIPSOID(LP1) > See Appendix B
3: return

Theorem 3.1.1. H{ . is properly realizably PAC learnable with Algorithm 1 (with respect to the 0-1
loss) with sample complexity O ((dlog(1/e) +log(1/6)) /e) and polynomial runtime in d, in the number
of samples and in the representation size of real numbers.

ILP1 can be typically formulated by arranging the unknown variables in a (d + 1)-dimensional vector.
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Proof. Fix any €, € (0,1) and let D be any probability distribution on R? x {£1} that is realizable by
Hipp. Let S = ((@®,yW) ..., (2™, y(™)) be any training set of i.i.d. samples from D. Since we are
in the realizable case, the linear program LP1 constructed from S as above, is almost surely feasible (due
to linear separability) and any solution of it, obviously, corresponds to an ERM learner, since it ensures
zero empirical error on S.

Since VC (K1) = d+1, we have that m € O ((dlog(1/€) + log(1/6)) /€) samples suffice (due to the
realizable ERM sample complexity of Hérp (see Theorem 2.6.2)) to get the (e, §)-realizable PAC learning
guarantee with respect to D. Moreover, LP1 can be efficiently solved, namely in time polynomial in m, d
and in the representation size of real numbers using the Ellipsoid method. Finally, the properness comes
trivially from the fact that LP1 returns a weight vector and a bias term, which define an LTF. These
facts conclude the proof.

O

3.1.2 Learning Halfspaces using the Perceptron Algorithm

Another way to implement the ERM rule is the well-known Perceptron algorithm (Rosenblatt [1957,
1958]). The Perceptron is an iterative algorithm that starts with w = 0, updates w in each iteration
using an update rule based on the misclassified examples and terminates when all training examples are
correctly classified.

Algorithm 2 Perceptron
Input: Training set S = ((w(l),y(l)) ey (w(m),y(m)))
Output: Homogeneous LTF hy,: R — {41}
1+ 0
w® 0
while Ji € [m] : @ (w®,2() <0 do
t—t+1
w® w1 4 4 gD
end while
return h

aw(t)

We remark that the Perceptron algorithm in the formulation above is adjusted for homogeneous
halfspaces, but it can perfectly be used to learn general halfspaces, if we use the aforementioned reduction
from general to homogeneous halfspaces (by transformation of the instances). As for the intuition behind
the Perceptron’s update rule, notice that it can be derived from the update rule of subgradient descent
on the loss {(w) = Y"1 | max {0, —y® <w, w(’i)>} (using only one example for the update). Moreover, if
x(?) is the instance used for the update at the ¢-th iteration, we have
2

>0
2

’

y® <w<t>, :c<i>> —y® <w<t*1>, 96(z‘>> _ Hmm

which is an indication of Perceptron tending to adjust the current halfspace so that x; is no longer mis-
classified. The following theorem guarantees that, under the realizable setting, the Perceptron algorithm
is able to find a vector corresponding to a halfspace that classifies all samples correctly, being, therefore,
a successful ERM learner.

Theorem 3.1.2 (Shalev-Shwartz and Ben-David [2022]). Let S = ((z,y®), ..., (2™, y™)) be a
linearly separable training set, let R = maX;c(y, Hac(i)HQ and let B = min{||w|s : w € RY A Vi €
[m], y® <'w,a:(i)> > 1}. Then, the Perceptron algorithm, after at most |(RB)?| iterations, returns a
vector w such that y (w, ) >0 for all i € [m].

The arguments concerning the sample complexity required needed to get the (e, d) realizable PAC
learning guarantee are of course the same as in the linear programming case. However, Theorem 3.1.2
provides no efficiency guarantee in terms of runtime since L(RB)QJ might be exponentially large in d.
This means that however practical and simple in implementation the Perceptron might be, one has to
resort to the linear programming implementation of the ERM rule (Algorithm 1), if efficiency must be
ensured.
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3.2 Learning Halfspaces in the noisy setting

While learning halfspaces in the noiseless setting can be achieved using the aforementioned methods
(Linear Programming and Perceptron), as mentioned in the Chapter 2, the zero noise assumption could
be considered unrealistic. This motivates us to study the learnability of halfspaces in the presence of
noise. In that case, the training set becomes not linearly separable, which makes the previous methods
to fail, since they rely on the linear separability assumption. Hence, it becomes challenging to study the
learnability of halfspaces in noisy settings both statistically and computationally.

In this section, we begin by making a brief reference on literature results concerning the learnability
of halfspaces in the PAC model with RCN, Massart and Tsybakov noise, as defined in Chapter 2, and
proceed by elaborating on the Massart case.

3.2.1 Prior Work on Halfspace Learning with Noise

The first noise model among the aforementioned (RCN, Massart and Tsybakov), which efficiency guaran-
tees were obtained for, was the RCN model. In particular, it has been shown (Cohen [1997], Vempala et al.
[1996]) that the class of halfspaces is properly learnable in the distribution-independent PAC model with
RCN (Definition 2.7.3), with sample complexity O (poly (d, 1/¢,log(1/5),1/(1 — 2n),b)), where €,5 > 0
are the PAC accuracy and confidence parameters respectively, 7 € [0,1/2) is the noise rate of the RCN
model and b is the bit complexity of the examples, and runtime polynomial in d and in the number of
training samples.

The next noise model for which the first efficiency guarantees were obtained, was the Massart model.
Recall that in the RCN model, we have some constant flipping probability n for each instance’s label,
whereas in the Massart noise model, the parameter 7 transforms into an upper bound on the flipping
probability, which implies a less noisy distribution overall. In that sense, one would justifiably expect
that acquiring guarantees for the learnability of halfspaces under Massart noise should be easier than the
RCN case. Unfortunately, this is not case. In fact, the ignorance of the exact flipping probability for each
instance’s label in the Massart model raises technical difficulties, that make it harder to design efficient
algorithms, without making compromises such restriction to homogeneous halfspaces, restriction to the
distribution-dependent setting, acquirement of weaker PAC guarantees or improper hypotheses. There
are many relevant recent works (Awasthi et al. [2015, 2016], Yan and Zhang [2017], Zhang et al. [2017,
2020], Zhang and Li [2021], Diakonikolas et al. [2019, 2020a, 2021a, 2022, 2023]) that provide halfspace
learning algorithms with Massart noise, each involving a trade-off between the aforementioned criteria.
Indicatively, the works of Zhang et al. [2020], Diakonikolas et al. [2020a] provide efficient homogeneous
halfspace learners in the distribution dependent PAC model (under isotropic log-concave marginals)
with Massart noise (Definition 2.7.6), with O (poly (d, 1/¢,log(1/6),1/(1 — 2n))) sample complexity and
runtime polynomial in d and in the number of training samples.

As for the Tsybakov model, the fact that it generalizes the Massart noise model makes it even harder
to obtain efficiency guarantees, which is indicated by the smaller number and the recency of relative
works (Diakonikolas et al. [2020b, 2021b], Zhang and Li [2021]). Indicatively, Diakonikolas et al. [2021b]
showed that the class of homogeneous halfspaces is properly learnable in the distribution-dependent PAC
model (specifically, assuming isotropic log-concave marginals) with Tsybakov noise (Definition 2.7.9),

QZ
with sample complexity O (poly(d) (%)O(l/ )1og(1/5)), where o € [0,1) and B > 1 are the Tsybakov

noise parameters, and runtime polynomial in d and in the number of training samples.

3.2.2 Learning Halfspaces with Massart Noise

We now focus on the problem of learning halfspaces with Massart noise and, specifically, on the algo-
rithm proposed in the relative work of Diakonikolas et al. [2020a]. In this work, an extremely simple
optimization approach of some appropriate function related to the actual objective, namely the expected
0 — 1 loss, is adopted. Since part of the experimental section in Chapter 6 is based on the algorithm
of Diakonikolas et al. [2020a], we proceed by explaining the main aspects of the aforementioned work,
including a few technical details.

In the work of Diakonikolas et al. [2020a], it was shown that the class of homogeneous halfspaces
is properly and efficiently learnable in the distribution-dependent PAC model with Massart noise (see
Definition 2.7.6). Specifically, their result holds for the family of bounded probability distributions,
which subsumes the general family of isotropic log-concave probability distributions.
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Fix any n € [0,1/2), ¢,6 € (0,1), U,R > 0, t: Ry — R> and nonzero target vector w* € R?. Let D
be any (1, hqyy+)-Massart distribution such that D, is (U, R, t)-bounded. The approach of Diakonikolas
et al. [2020a] is based on the following idea. In order to find some w that minimizes our actual objective
Lp, 4, ,(hw), a natural approach (since f is unknown) would be attempting to minimize Lp ¢, , (haw),
using samples from the noisy distribution D. To achieve that, it is sufficient to minimize the function
E(z)~p [I{—y{w,z)/|[w|]2 > 0}]. However, it is unclear how to efficiently optimize such a nonconvex
objective. This obstacle is overcome in the aforementioned work by finding a nonconvex, but smooth
surrogate with the property that any approximate stationary of that surrogate, corresponds to a halfspace

A i

close to the target one. Specifically, motivated by the fact that the logistic function S, (t) = Trei7)

1.0 1
0.5 1
— 1{t >0}
So.a(t)
— Soa(?t)
0.0 — Soos(t)
1 ('] 1

Figure 3.2: The step function and the logistic function

where o > 0, seems to be a good approximation of the step function 1{¢t > 0} when o — 0 (see Figure
3.2), they introduce the surrogate loss

Lo(w) = By [SU ( y<w,w>>} _

[[wll

For simplification of the notation, we denote g, ((z,y), w) = S, (—y(w, z)/||w||2). It can be shown
that Vw»ca(w) = E(m,y)N’D [ngcr ((:B, y)a w)]v where

1 y(w, z) y
Vue (.0)010) = 2o (@00, 0) (1 g (2)v0) (M - Pa ).

A crucial property of this surrogate loss is that for any € > 0 and for any unit vector w, whose angle
with w* and —w* is greater than ¢, there exists a sufficiently small choice of o (dependent on €), such
that the norm of the gradient of £ at w is sufficiently large. Contrapositively, for any € > 0, setting o
sufficiently small (dependent on €), we can ensure that all points with sufficiently small gradient norm
have angle at most € with w* or —w?*. In other words, as long as this surrogate loss approximates the
step function to a sufficient extent, the norm of its gradient can indicate whether a point is close in terms
of angle to w* or not. The following lemma formalizes the above claim.

Lemma 3.2.1 (Diakonikolas et al. [2020a]). For any 6 € (0,7/2) and w € S~ such that 0(w,w*) €

(0,7 —0), if o < & /T—2qsin(h), we have that |V Lo(w)||2 > £ (1 - 20).

Then, we can proceed by Projected Stochastic Gradient Descent (PSGD) for L, with projection
on the unit sphere S?~1, with a view to finding an approximate stationary point, namely a point w
such that ||V L, (w)]|2 is sufficiently small. To guarantee that, we will use the following lemma, which
concerns the convergence of PSGD for L, .

Lemma 3.2.2 (Diakonikolas et al. [2020a]). For any €, > 0, running PSGD for the function L, for at
least T € © (%()i/é)) iterations, using step size 5 € © (%), yields an output (w(l), e ,'w(T)) of
unit vectors such that, with probability at least 1 — 4§, it holds minge[7)||Vw Loy (’w(t)) 2 <e.
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Algorithm 3 Projected Stochastic Gradient Descent for E, .p[g(z, w)]

Input: Function g(z,w), training set S = (z(l), e z(T)) and step size 8 > 0
Output: Tuple of T" vectors in S¢~!

1: procedure PSGD(g, S, )

2 w® « (1,0,...,0)

3 fort=1,...,7 do

4 v® — w1 — gV, g (z(t)’w(t—l))
5. w® — v/ ||v(t) ||2

6 end for

7 return (w(l), e ,w(T))

8: end procedure

The PSGD algorithm returns a collection of weight vectors, which is guaranteed (assuming a sufficient
number of steps and an appropriate step size) to contain a vector that is an approximate stationary point.
To get the best vector w®") (or rather find some w®") such that the value of ||V Lo (w®)) |5 is close
to minye 7| Vw Lo (w(t)) |l2 with high probability) within the aforementioned collection, we can evaluate
all candidate hypotheses on a small number of samples drawn from D using the empirical version of
Lp g, ,. It turns out that this is adequate to get the desired PAC result (see Theorem 3.2.1). The above
steps are encapsulated in Algorithm 4.

Algorithm 4 Properly Learning Homogeneous Halfspaces with Massart Noise

Input: Training set S = ((z,yW),..., (D, yD)), 0 > 0, T’ € [T] and step size 5 > 0

Output: Homogeneous LTF hg: R — {41}
1: (w(l) ,wT) ) + PSGD(g,, 5, B) > See Projected Stochastic Gradient Descent
2: L+ ('w(l), cw D —w® (D) > Set of candidate vectors

3 8 ((@W,y0) .., (&T,y™))

4: W argminweLIiS/,go_l(hw)
5: return hg

Theorem 3.2.1 (Diakonikolas et al. [2020a]). Fiz anyn € [0,1/2), ¢,6 € (0,1), U,R >0, t: Rsg — R>g

and nonzero target vector w* € Re. Let D be any (1, hay+ )-Massart distribution such that Dy is (U, R, t)-
Re(1—2n)3/2

U2t(e(1—2n)/4)2>’

Te®© ((];2)41((11—22?773)/30) (d+log(1/5))> i.i.d. samples drawn from D, T' € © (M) and step size

bounded. Algorithm 4 has the following performance guarantee: If given as input o € © (

€2(1-2n)?

RS @( ), it runs in O(TG + dTT’) time, where G is an upper bound on the time of each gra-
dient evaluatzon, and outputs a vector w € S such that, with probability at least 1 — §, it holds
LDmvhw*véofl(h’w) <e
Proof. From Lemma 3.2.3, we have that with 7' € © ((d + log(1/0)) U*/ (R®(1 — 2n)*¢*)) iterations and
step size § € © (F) PSGD yields an output (w(l) ..,w(T)) of unit vectors such that, with proba-
bility at least 1 — 4, it holds minye(r] || Vw Lo (w®) ||2 < 535 R?(1—2n) for any 6 € (0,1). Assuming that
the last holds, the contrapositive of Lemma 3.2.2 implies that, for any (sufficiently small) angle 6, if o €
O(ORU /T —27n), then we have minger 0(w,w*) < 0, where L = ('w(l), cnw D —w® (D)),
Hence, from Lemma A.0.5, we get that minger, Lp, .60, (hw) < Ut(r)*0 +r for any r > 0.

If S’ is a tuple of T” independent samples drawn from D, then, from Hoeffding’s inequality, we have

Pr His,,gofl(hw) _ Lp,gofl(hw)‘ > t} < 921

S!'~DT!

for all w € L and t > 0. By agpplication of the union bound we get that, for all ¢ > 0, with
probability at least 1 — 2|Lle™27"*" it holds Lpy, ,(he) < 2t + minger Lp g, , (hw), where W €
argmin,, [A/Sz’goil(hw). Therefore, from Lemma 2.7.2 and Proposition 2.1.1, we have that

2t + minger, Lo, f.00 1 (Maw) < Ut(r)?0 +r + 2t
1—-2n - 1—-2n

L’Dwvfl()—I (hﬁl) <
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Consequently, for any (sufficiently small) ¢ > 0 and 6 € (0,1), if we set » = ¢t = ¢(1 — 2n), § =
e(1 = 2n)/ (Ut(e(1 —2n))?) and T' = [In(47/6) / (2€2(1 — 2n)?)], we have that, with probability at

—on)3/
least 1 — 20, it holds Lp, p,. ¢ _,(hw) < 4e. The above choices, impose that o € © (%)

and T € © (G200 (4 +10g(1/9)) ). Finally, the runtime of the algorithm is due to the 7 PSGD
iterations and the ©(dT'T’) time needed to find the best among the candidate vector set L. O
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Chapter 4

Label Ranking

In this chapter, we address the main topic of this thesis, namely the Label Ranking problem. We begin
by providing a formal definition for Label Ranking. Afterwards, we present several noise models for LR,
some of them stemming from well-known probability distributions on rankings and others constituting
extensions of the binary classification Massart and Tsybakov noise models. Finally, we expand on the two
basic pairwise and labelwise decomposition techniques for Label Ranking, which were briefly discussed in
Chapter 1, and elaborate on some of the learnability aspects associated with them, both in the noiseless
and the noisy PAC model.

4.1 About Rankings

Before formally defining the Label Ranking problem, we provide some important definitions and notation
about rankings.

Definition 4.1.1 (Binary relation). A binary relation R from a set X to a set'Y is a subset of X x Y.

For any (z,y) € X x Y, the statement (z,y) € R is denoted by xRy. The relation RT from Y to X
defined as RT = {(y,z) € Y x X : (z,9) € R} is the converse or transpose relation of R. Moreover, if
X =Y, the binary relation R is said to be a homogeneous relation on X.

Definition 4.1.2 (Strict partial order). A strict partial order on a set S is a homogeneous relation <
on S such that the following are satisfied for all a,b,c € S':

1. Not a < a (irreflexivity).
2. If a < b, then not b < a (asymmetry).

3. Ifa<bandb <c, then a < ¢ (transitivity).

Definition 4.1.3 (Strict total order). A strict total order on a set S is a strict partial order on S such
that for all a,b € S, if a # b, then a < b orb < a.

Definition 4.1.4 (Permutation). A permutation of a set S is a bijection from S to itself.

In general, a ranking over a finite set S refers to a strict partial order = on S'. If a ranking > is
a strict total order, then it will be referred to as complete, otherwise incomplete. For any a,b € S, the
interpretation of the condition a > b (resp. a < b) is that a is ranked higher (resp. lower) than b in the
ranking, with < denoting the converse relation of >.

There exists a one-to-one correspondence between the set of complete rankings over S and the set of
permutations of S, which motivates us to model complete rankings through permutations. In particular,
any complete ranking over [k], where k > 1, can be conveniently modeled as a permutation 7 € S;?, such
that 7(i) is the position of element i in the ranking for all i € [k] and, consequently, 7—1(4) is the element
of [k] in the i-th position of the ranking for all ¢ € [k]. For example, if k& = 4, the complete ranking
4 > 1> 3 > 2 corresponds to the permutation 7, with 7(1) = 2, 7(2) =4, 7(3) = 3 and n(4) = 1, which

is also denoted by
(1 2 3 4
Tm\2 4 3 1)

I Another case of interest is that of partial rankings, where ties among their elements are allowed, but will not be studied
in this thesis.
2Sj, denotes the set of permutations of [k].
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4.2 The Label Ranking Problem

Problem statement Let S be a finite set of & > 2 labels®, let X’ be an instance space (usually X C R%,
where d > 1), let ) be the set of strict partial orders on .S and let )’ be the set of strict total orders on
S. The Label Ranking problem is a supervised prediction problem that concerns using a training set of
examples in X x ) to find a hypothesis from X to ). The goal of a label ranking algorithm is to ensure
that its output hypothesis minimizes some notion of error, related to some loss function £: Y? — Rxo.

Remark. We emphasize that, unlike the classic setting of prediction problems, a hypothesis acquired by
a label ranking algorithm is required to output predictions that belong to a proper subset )’ (strict total
orders) of the original output space Y (strict partial orders).

For the rest of this thesis, we assume that the set of labels is S = [k] without loss of generality.
Moreover, in most parts of this chapter, we will focus on the case, where a label ranking algorithm is
given as input only examples that are promised to contain only complete rankings (in which case, as
mentioned before, rankings may be modeled as elements of Sy,).

The more general case, where the learner’s input might also consist of incomplete rankings, the
underlying examples’ distribution can be generally modeled through a randomized mechanism that acts
on examples drawn from a distribution over X' x Sy (with complete rankings) and transforms them to
examples consisting of possibly incomplete rankings (see Fotakis et al. [2022a], Vogel and Clémencon
[2020]).

Notation Let (i,7) € [k]? with i # j and let any probability distribution D over X x Si. We denote by
D, the marginal of D on &’ and by Dy, the conditional distribution of D on Sy given z € X'. For every
7 € Sk, we define m;; = sign (w(j) — 7(i)). Moreover, for every label ranking function o: X — Sj, we
define the function o;;: X — {£1}, which satisfies that o;;(x) = sign (o(z)(j) — o(z)(?)) for all x € X.
We let D;; denote the joint distribution on (z,7;;) and D; denote the joint distribution on (x, (7)),
where (z,7) ~ D. For all H C S}, we define H;; = {0;; : 0 € H}.

Relation to multiclass and multilabel classification It is interesting to examine the association
of Label Ranking with some other fundamental supervised learning problems, such as multiclass classi-
fication and multilabel classification.

Firstly, one can easily see that when dealing only with complete rankings, Label Ranking can be
thought of as a standard multiclass classification problem with k! = |Sy| classes. Conversely, as observed
by Hiillermeier et al. [2008], a multiclass classification problem may by formulated as a Label Ranking
problem as well. In particular, consider a multiclass classification problem with input and output spaces
X and )Y respectively. Any training example (x,i) € X x ) of this multiclass classification implicitly
defines the label ranking example (z,>), where == {(i,7) : j € Y\ {i¢}}. Using the aforementioned
reduction to solve a multiclass classification problem by means of a label ranking algorithm would require
that each output ranking be projected to a class of ). A natural and reasonable way to do that is to
output the top element of the ranking.

Similarly, consider a multilabel classification problem with input space X and set of labels L. Here,
the output space is the powerset of L, that is, each instance is mapped to any subset of labels in £
that are considered relevant. Any training example (2, L) € X x 2% of this multilabel classification
problem implicitly defines the label ranking example (x,>), where == {(i,j):¢ € LAje€ L\ {L}}.
Now, though, it is not so obvious how to accomplish the projection from a ranking to a subset of £ or
rather how many of a ranking’s top elements to keep. A solution to this was proposed by Fiirnkranz
et al. [2008], where a slight modification of the aforementioned reduction was considered.

Representing preferences through utility functions As mentioned in several works (Har-Peled
et al. [2002], Dekel et al. [2003], Hiillermeier et al. [2008], Fotakis et al. [2022a,b]), a natural way to
represent preferences among k labels is to use a wutility or score function m: X — R* that evaluates
alternatives by assigning score values to them. The greater the score value for some alternative is, the
higher is the preference for that alternative and so does its rank in the underlying ranking. Specifically,
score vectors are mapped to rankings through the function &: R¥ — S, that works as follows. It takes
as input a score vector v = (v1,...,v) € R¥, whose i-th element contains a score value for the i-th label,

3The term label here is different from what was defined as a label (or class) in the general setting of prediction problems
and should not be confused.
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and outputs the unique permutation 7 = &(v) € S with the property that, for all 1 < i < j <k, it
holds 7 (i) < w(j) if and only if v; > v;. Namely, & sorts the elements of v in decreasing score order to
obtain an ordering (i1,...,) of the alternatives such that v;, > --- > v;,, and outputs the permutation
associated with the ranking iy > - -+ > 4.

It is straightforward to see that for every ranking function o: X — S, there exists some score function
(infinitely many actually) m: X — R¥ such that 0 = & o m. We remark that if the training data offer
the score values directly, then the Label Ranking problem is reduced to a standard regression problem.
However, this is a too strong condition that can rarely be assumed. One of the simplest types of utility
functions for X C RY, is a linear utility function, namely one assigning a score to each label, which is
a linear combinations of the features. This is the linear Label Ranking setting that will be studied in
Chapter 5.

Loss functions in Label Ranking We now refer to some of the most commonly used loss functions
for Label Ranking, that are defined for complete rankings. One of the most post popular loss functions
for rankings is the Kendall’s 7 (KT) distance, which is defined for any 7,0 € S as

dr(mo) & Y {(n(i) = 7)) (0(i) = a(j)) < O} .

1<i<j<k

Namely, the KT distance measures the number of discordant pairs of labels in the rankings 7 and o, i.e.
the number of pairs of labels, whose (pairwise) ordering is not the same in the two rankings. The KT
distance is directly related to the Kendall’s rank correlation coefficient or Kendall’'s 7 (KT) coefficient
defined as

4d, (7, 0)

k(k—1)"
which quantifies the similarity between two rankings through the number of concordant and discordant
pairs. It is straightforward to see that d,(7,0) = 0 (minimum d,) and 7(7,0) = 1 (maximum 7), if and
only if 7 = 0. Moreover, d.(m, o) = (g) (maximum d,) and 7(7,0) = —1 (minimum 7), if and only if
is the reverse ranking of 7, that is, o (i) + 7(i) = k4 1 for all ¢ € [k]. Two other equally used measures
are the Spearman’s footrule

m(mo) =1

k
di(m, ) £ |n(i) — o (i)
i=1
and the Spearman’s distance
k
ds(m,0) £ (7(i) — o(i))?
i=1

that are reminiscent of the standard [; and [o distances respectively, thinking of = and o as vectors.
The Spearman’s distance is associated with another important similarity measure between rankings, the
Spearman’s rank correlation coefficient, defined as

6da(m, o)

p(ﬂ',o)él—m.

Like in the case of the KT distance, we have that da(7,0) = 0 (minimum ds) and p(7,c) = 1 (maximum
2
p), if and only if 7 = 0. Moreover, ds(m, o) = @ (maximum ds) and p(7,0) = —1 (minimum p), if

and only if o is the reverse ranking of 7. Another useful distance measure is the Hamming distance

k
ia(m,0) £ 31 {m(i) # (i)}

that measures the number of elements in which 7w and ¢ disagree. Finally, another important measure is
the top-r disagreement, where r € [k], defined as

dopr(m.0) 2 1= [[ 1 {r () =07 (0)} .

Namely, the top-r disagreement is zero if and only if the elements of the two rankings are identical (the
same elements and in the same order) in the top r positions. Notice that in the extreme case where
r = k, we get the top-k disagreement that is equivalent to the 0 — 1 loss.
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The aforementioned loss functions are prevalent in the evaluation of label ranking algorithms due
to them being simple and intuitively interpretable. Nonetheless, as observed by Zhou et al. [2014a],
when it comes to real world applications, one might need to resort to more sophisticated and ad hoc loss
functions. For instance, there might be cases where emphasis should be laid on predicting the position
of high-importance labels. Similarly, there might be positions (e.g. the top part of ranking) of higher
importance, where errors should be costlier. For such generalizations of the standard ranking distance
measures, we refer to Kumar and Vassilvitskii [2010].

4.3 Noise Models in Label Ranking

4.3.1 Ranking Probability Distributions

We begin by defining two popular probability models on rankings, the Mallows model and the Bradley-
Terry-Mallows model, introduced by Mallows [1957].

Definition 4.3.1 (Mallows distribution (Mallows [1957])). Fiz some ¢ € (0,1], mo € S and a ranking
distance d: Si — R>q. The Mallows distribution Mia(d, ¢, o) with central ranking mo and spread
parameter ¢ is a probability measure over Sy with probability mass function:

¢d(7r,7ro)

Pr T==———+—"——
WNMMal(d7¢7TFU)[ } ZUESk ¢d(a,7ro)

If the ranking distance is the KT distance, which is the only case that will be considered in this

thesis, it can be shown that
qzjulf(ﬁ,ﬂo)

e Y A
[y 35— @
namely the partition function is independent of the central ranking, and that my is the mode of the

distribution. Moreover, as ¢ — 1 the Mallows distribution tends to become uniform, while as ¢ — 0 the
mass of the distribution tends to concentrate around mg.

[]

Pr
m~Mmal (dr,¢,m0)

Definition 4.3.2 (Bradley-Terry-Mallows distribution (Mallows [1957])). Fiz some w € R and a
ranking distance d: Si — Rso. The Bradley-Terry-Mallows distribution Mgty (w) is a probability
measure over Sy with probability mass function:

ry<ri) witw;

r T =
w;
T~ Mprm(w) ZO’ESk Ha(i)<o(j) witw;

Intuitively, for any i # j, the larger their score difference is in aid of 4, the higher becomes the
probability of observing rankings where ¢ is ranked higher than j. Assuming that w has k distinct
values, it can be shown that the mode of the distribution is G(w) (we remind that this is the ranking
induced by sorting the elements of w in decreasing order).

We finally present another probability model on rankings, proposed by Fotakis et al. [2022b], which
subsumes the aforementioned models under some very mild assumptions (see Proposition 2 and Propo-
sition 3).

Definition 4.3.3 (Noisy Ranking Distribution (Fotakis et al. [2022b])). Let M be a probability measure
over Si with the following property: There exists some (unique) ™ € Sg and n € [0,1/2) such that for
any (i,7) € [k]? with 7 (i) < 7*(j), it holds that Prap [7(i) > 7(j)] < 0. Then, M is said to be an
n-noisy ranking distribution with ground truth ranking m*.

Proposition 4.3.1 (Fotakis et al. [2022b]). For all ¢ € (0,1) and w9 € S, Mna(d:, d,70) is an
%—noisy ranking distribution with ground truth ranking mg.

Proposition 4.3.2 (Fotakis et al. [2022b]). For all w € RE ) with k distinct values, there exists some
n € [0,1/2) such that Mprm(w) is an n-noisy ranking distribution with ground truth ranking &(w).
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4.3.2 Label Ranking Probability Distributions

We now define some Label Ranking distributions, namely distributions over X x Sy, that quantify the
presence of noise. A natural approach, also adopted by Fotakis et al. [2022a,b], would be to model
the conditional distribution of rankings given an instance x € X as one of the aforementioned ranking
distributions, choosing the central ranking to be the ground truth ranking for = (intuitively, we set the
most often appearing ranking to be the ground truth one). According to that principle, we define the
following Label Ranking distributions.

Definition 4.3.4 (Label Ranking Distribution with Mallows Noise). Let ¢ € (0,1], let d: S — Rxg
and let 0: X — Si be a target label ranking function. A probability distribution D on X X Sy is said to
be a (¢,d,0)-LR distribution with Mallows noise, if Dy, = Mwal(d, ¢,0(x)) for all v € X.

Definition 4.3.5 (Label Ranking Distribution with Bradley-Terry-Mallows Noise). Let m: X — R%
be a target score function. A probability distribution D on X X Sy is said to be an m-LR distribution
with Bradley-Terry-Mallows noise, if Dy, = Mprm(m(x)) for all v € X.

Another family of label ranking distributions, introduced by Fotakis et al. [2022b], which extends the
Massart condition to the LR setting, is as follows.

Definition 4.3.6 (Label Ranking Distribution with Massart Noise). A probability distribution D on
X XSy, is said to be a label ranking distribution with Massart noise, if there exists some (unique) function
o: X — S and some n € [0,1/2) such that D;; is an (n,0:;)-Massart distribution for all (i,j) € [k]?
with @ # j. Then, we also say that D is an (n,0)-LR distribution with Massart noise.

Lemma 4.3.1. D is an (n,0)-LR distribution with Massart noise, if and only if Dy, is an n-noisy
ranking distribution with ground truth ranking o(x) for all x € X.

Proof. If D is an n-noisy ranking distribution with ground truth ranking o(x) for all z € X, then for all
(i,7) € [k]* with i # j and for all z € X it holds,

Br [w(0) > 7() Ao(@)i) < 0(@)() V 7(0) < 7() Aol@)(i) > o)) | 2] <n =
Pr [sign(n(j) — (i) # sign (o(2)(j) — () (i) | 2] <1

T~Dioy |
Pr [y#ox) |z <n,
y~(Dij)y|z[ #oij(z) | 2] <n

namely D;; is an (1, 0,;)-Massart distribution. O

Lemma 4.3.2. Let ¢ € (0,1) and let 0: X — Sk be a target label ranking function. Any (¢,d,,o)-LR

distribution with Mallows noise is a (%,U) -LR distribution with Massart noise.
Proof. Tt is a direct implication of Lemma 4.3.1 and Proposition 4.3.1. O

The above lemma indicates that the family of LR distributions with Massart noise captures any LR
distribution D with Mallows noise under the extremely mild assumption that Dy, is not uniform for
any x € X. One can show as well that a large subset of the family of LR distributions with Bradley-
Terry-Mallows noise falls under the umbrella of LR distributions with Massart noise. In particular, some
assumptions concerning the underlying target score function (see Definition 4.3.5 and Proposition 4.3.2)
need to be made.

The motivation for defining the family of LR distributions with Massart noise is as follows. As
observed by Fotakis et al. [2022b], if we assume that the data distribution is an LR distribution with
Massart noise, then, using the pairwise decomposition method for LR (which we will be defined afterwards
formally), the individual subproblems are binary classification problems in the presence of Massart noise.
As we will shortly see, one can leverage this property and obtain theoretical guarantees for LR in the
presence of noise. For this reason and to facilitate the forthcoming analysis, we adjust the PAC model
to the aforementioned family of distributions.

In what follows, we let X be a domain set, H C S be a hypothesis class, F be a family of probability
distributions on X, £: S — R> be a loss function and A € Ay s, be a learning algorithm.

Definition 4.3.7 (Distribution-dependent LR-Massart Sample Complexity of a Learning Algorithm).
The distribution-dependent LR-Massart sample complexity of A with respect to H, F and £ is the function
miRﬁl\f/_[afsart: (0,00) x (0,00) x [0,1/2) — N defined as follows: For every €, > 0 and n € [0,1/2),

maRgl\jﬁafsart (e,0,m) is the minimal integer such that for every
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e integer m > milfg}\]/_{?“éssart (e,9,1m),

e target function o € H and

e (n,0)-LR distribution with Massart noise D with D,, € F, it holds:
5 B8 EDro (A(S2,0ls,)) > € <6

For every €, > 0 and n € [0,1/2) such that no integer satisfies the above inequality, we define

LR—Massart —
MA 3 F 0 (e,0,m) = oo.

Definition 4.3.8 (Distribution-dependent PAC Learnability with LR-Massart Noise). H is said to be

PAC learnable with A with respect to F and £ in the presence of LR-Massart noise, if it holds that
miﬁg’hﬁj}ssart(e,é, n) < oo for all €,6 >0 and n € [0,1/2).

In the same vein, one can consider the even more general family of LR distributions, based on the
Tsybakov noise condition, which is defined below.

Definition 4.3.9 (Label Ranking Distribution with Tsybakov Noise). A probability distribution D on
X x Sy is said to be a label ranking distribution with Tsybakov Noise, if there exists some function
o: X = S and some a € [0,1) and B > 1 such that D;; is an (o, B, 045)-Tsybakov distribution for all
(i,) € [k]? with i # j. Then, we also say that D is an («, B,o)-LR distribution with Tsybakov noise.

Definition 4.3.10 (Distribution-dependent LR-Tsybakov Sample Complexity of a Learning Algorithm).
The distribution-dependent LR-Tsybakov sample complexity of A with respect to H, F and £ is the
function miﬁi?%bakov: (0,00) x (0,00) x [0,1) x [1,00) — N defined as follows: For every ¢,§ > 0,

a€l0,1) and B > 1, miqu}SZbakov(e,é,a, B) is the minimal integer such that for every
e integer m > miﬁg’?%bakov(@ d,a, B),
o target function o € H and

e (a,B,0)-LR distribution with Tsybakov noise D with D, € F, it holds:
PI‘m [Lp, o0 (A(Sy,0ls,)) >€¢ <o

z~D]

For every ¢,6 > 0, a € [0,1) and B > 1 such that no integer satisfies the above inequality, we define

LR—Tsybakov _
M . F L (e,9,a, B) = 0.

Definition 4.3.11 (Distribution-dependent PAC Learnability with LR-Tsybakov Noise). H is said to
be PAC learnable with A with respect to F and £ in the presence of LR-Tsybakov noise, if it holds that

m 2PV (e,6,0, B) < 00 for all ,6 >0, a € [0,1) and B > 1.

Finally, recall that for every target ranking function o: X — Sy, there exists some score function
m: X — RF such that o(z) = &(m(x)) for all z € X. This is the motivation for proposing an additional
way of modeling the presence of noise. We assume that the noise affects the score values, which the final
ranking is induced from, in an additive way. This approach, which was also considered by Fotakis et al.
[2022a], is described formally below.

Definition 4.3.12 (Label Ranking Distribution with Additive Noise). Let & be a probability distribution
on RE and let m: X — R be a target utility function. A probability distribution D on X x Sy is
said to be an (m,E)-label Ranking distribution with additive noise, if for any (x,7) ~ D, it holds that
7 =6(m(x)+ &), where x and & are independent and € ~ £.

The noise model above will be used along with the Mallows model for LR (Definition 4.3.4) in the
experimental section of Chapter 6.

4.4 Label Ranking Techniques

According to what was discussed before, a straightforward idea in the case of complete rankings would
be to address the LR problem as a standard multiclass classification problem with k! classes using the
0 — 1 loss. However, as pointed out in several works, this approach might rise computational issues
due to the massive number of classes. Furthermore, such an approach fails to leverage the structure of
Sk, since the inherent relation between classes (permutations) is untapped. In this section, we expand
on the general pairwise decomposition and labelwise decomposition techniques and discuss some of the
theoretical guarantees associated with them.
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4.4.1 Label Ranking by Pairwise Decomposition

The pairwise decomposition technique (Fiirnkranz and Hiillermeier [2003], Hiillermeier et al. [2008]) is a
Label Ranking technique that extends the pairwise classification technique (Hastie and Tibshirani [1997],
Allwein et al. [2000], Firnkranz [2002]). Essentially, it constitutes a One-Versus-One (OVO) approach
that reduces the LR problem to multiple and presumably simpler binary classification subproblems. In
particular, we decompose the LR problem into (g) subproblems, one for each (unordered) pair of labels
(4,7), where we aim to learn the order of the labels in that specific pair, namely which label among i and
7 is preferred for each instance in X'. This is achieved by using a binary classification algorithm for each

subproblem and running it on some adjusted version of the training data that is constructed as follows.

Algorithm 5 Label Ranking by Pairwise Decomposition

Input: Training set 7' C X x Y, binary classification algorithm A € Ax (41}
Output: Hypothesis h: X — Sy,

1: procedure PAIRWISEDECOMPOSITION(T, A)
2 for 1<i<j<k do

3 Tij — g

4 for (z,-)eT do

5: if ¢>j then

6 Tij = Tij U (x,1)

7 end if

8 if j >4 then

9: Tl‘j — Tij U (m, —1)
10: end if

11: end for

12: Gij < A(TZJ)

13: end for

14: return (gij)1§i<j§k

15: end procedure
16: C < PAIRWISEDECOMPOSITION(T', A)
17: return ESTIMATEAGGREGATION(C) > See voting and tournament aggregation

Pairwise decomposition stage Let T be a training set with elements in X x ). Forall 1 <i < j <k,
we assign the training set

Ty ={(z,1): (z,=) e TANi>j}U{(x,—-1): (z,>) € TAj»1i}

to the subproblem concerning the label pair (7, j) and run an algorithm A € AX,{:tl}4 on Tj; to obtain a
binary classifier g;; : X — {—1, 1} that is hopefully able to predict correctly the pairwise order between
i and j°. In the case of having a training set 7' in X x S;, (namely, assuming examples with complete
rankings), each subproblem’s training set can be alternatively expressed as T;; = {(z,m;;) : (z,7) € T'}.

As the above suggests, a major advantage of the pairwise decomposition technique is that it can
handle the case of observing incomplete rankings, since each subproblem focuses on some specific pair
of labels and has zero dependence on the rest of them. Unfortunately, though, treating each subproblem
independently comes at the cost of the pairwise predictions being potentially conflicting. Namely, there
might be cases where the pairwise orders induce preferential cycles, rendering a direct induction of a
ranking impossible, since the transitivity property is violated. To overcome this obstacle, we have to use
some aggregation method that leverages the information provided by the pairwise predictions in a way
that a valid ranking can occur.

Voting aggregation One of the simplest and most commonly used aggregation techniques is a voting
scheme, which we refer to as voting aggregation, that works as follows. Given an instance z € X, for
each pairwise duel, we cast a vote for the label ranked lower. Obviously, higher number of votes for a

4Here, we assume for the sake of simplicity that the same binary classification algorithm is used for each subproblem,
but one could use a different algorithm for each subproblem.
5For convenience, we also define gji = —gij forall 1 <i<j <k

59



label implies that the label should be ranked lower in the final ranking. Therefore, for each label i € [k],
its position in the ranking is estimated as

si(@) =1+ Y Igi(x) = -1}
ENG!

The final ranking &(x) results from sorting the estimations for every label, breaking ties arbitrarily (e.g.
in alphabetical order), namely &(z) should satisfy that s;(z) < s;(z) = 6(z)(?) < 6(z)(j) for all i # j.
The latter can be expressed through the operation & = argsort o argsort o s°, where s = (s1,...,sk).

Algorithm 6 Voting Aggregation for Pairwise Decomposition

Input: Collection of binary classifiers (g;;)1<i<j<k
Output: Hypothesis h: X — S

1: procedure VOTINGAGGREGATION((gij)1<i<j<k)

2 for 1 <i<kdo

3 5i(1) = 1+ 35 cp iy Hgis () = -1}

4: end for

5 S (S1y...,8k)

6 return argsort o argsort o s

7: end procedure

We now make a brief reference to wherein the pairwise decomposition method combined with the
voting aggregation technique can provide statistical guarantees.

Definition 4.4.1 (Stochastic Transitivity). Let D be any probability distribution on X X Sy and let
pij(x) = Prowp  [w(i) < n(j) | ] for all z € X and (i,j) € [k]>. Dgj, is said to be stochastically
transitive, if for any x € X and (i, j,1) € [k], it holds that p;j(x) > 1/2Apj(z) > 1/2 = py(z) > 1/2.
Definition 4.4.2 (Strict Stochastic Transitivity). Let D be any probability distribution on X XSy and let
pij(x) = Proop , [7(i) <7(j) | 2] for allz € X and (i, ) € [k]*. Dq|, is said to be strictly stochastically
transitive, if it is stochastically transitive and for any x € X and (i, j) € [k]?, it holds that p;;(z) # 1/2.

Lemma 4.4.1 (Korba et al. [2017]). Let D be any probability distribution on X x Sy and let p;;(x) =
Prrp, , [7(i) < 7(j) | z] for all z € X and (i, j) € [k]*. If Dx|, is strictly stochastically transitive, then
the minimizer of Lp q. is almost surely unique and given by c* : X — Sy, where

ot ()(@) =1+ > I{py(x) <1/2}
JER\{i}

for alli € [k].

Lemma 4.4.2. Let D be any probability distribution on X xSy. Moreover, for all (i,j) € [k]?* with i # j,
let gj;: X — {£1} be any Bayes optimal classifier for the binary classification task of predicting the
pairwise order for the label pair (i,7). Let (gij)1<i<j<k be any collection of classifiers from X to {—1,1}.
Assume that Dy, is strictly stochastically transitive and let o be a minimizer of Lp 4, . Running the
voting aggregation algorithm with (g;;)1<i<j<k as input, yields a hypothesis 6 : X — Sy such that

Pr @A@Y Pr o) Agja)]
1<i<j<k
Proof. Let 6*: X — Sk be the hypothesis generated by aggregating the classifiers {g;j}(i,j)e[k]z using the
voting aggregation algorithm. It holds that
ﬂ {zeX:gya)=g)} c{reX:o(x)=05"(x)},
1<i<j<k

or, equivalently,

{reX:6(x)#£6"(x)} C U {reX:gyx)# 9:;(37)} )

1<i<j<k

6The function argsort : R¥ — S, takes as input a vector v = (v1,...,v%) € R* and outputs the unique permutation
o~ €S, with the property that, for all 1 < i < j < k, it holds i > j if and only if v; < vj.
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which implies, by an application of the union bound, that

Pr [5(z) #6" (@) < ) Fr 93 () # g3;(2)] -

z~Dy T
1<i<j<k

Since the strict stochastic transitivity assumption holds, Lemma 4.4.2 implies that

of(@)(i) =1+ Y 1{g(z) = -1} = 6" (x)(i) .
jElRN)

for all x € X and ¢ € [k] almost surely, which concludes the proof. O

The aforementioned lemma indicates that to bound the error probability against the median hypoth-
esis 0" € argmin, cgx Lp 4, (o), it is sufficient to focus our attention on each binary subproblem, where
one can use standard tools to obtain generalization bounds (see Bousquet et al. [2004], Boucheron et al.
[2005]). Such an approach has been adopted by Vogel and Clémencon [2020] and Fotakis et al. [2022a]
to provide (under some additional distributional assumptions) statistical guarantees for the LR problem
given incomplete rankings and using empirical risk minimization as the binary classification algorithm
for each subproblem.

Tournament aggregation Another way of aggregating the pairwise predictions into a ranking is by
creating a tournament (complete directed graph) that indicates the pairwise preferences (Algorithm 7).
In particular, for each instance z € X, we construct a tournament G, = (V, E,) with vertices V' = [k]
and edges E, = {(i,j) € [k]*:i #j A gi;(z) = 1}. That is, for each pair of labels (i, j), the direction
of the corresponding edge in G is from ¢ to j, if and only if for the instance z, label ¢ is preferred over
label j, according to the binary classifier gij7.

Algorithm 7 Tournament Aggregation for Pairwise Decomposition

Input: Collection of binary classifiers (g;j)1<i<j<k, algorithm A that converts a tournament to a DAG
Output: Hypothesis h: X — Sy,

1: procedure TOURNAMENTAGGREGATION((g4j)1<i<j<k;A)
2: V « [k]

3 E, « {(i,j) €[k :i#j A gij(z) =1}
4 Gy (VEy)

5: Gl +— A(G:)

6 Let 6(x) be the ranking induced by G/,
7: return (-

8: end procedure

If G, is acyclic, then we can obtain a ranking by its topological order in a straightforward way, since
the transitivity property holds. If G, contains cycles, a natural approach would be to flip (or remove)
as few edges as possible to render G, acyclic and then proceed as before, which is equivalent to finding
a minimum feedback arc set (MFAS) in G,. The latter problem is NP-hard, but there exist efficient
approximation algorithms which we can turn to. Such an algorithm, is the KwikSORT algorithm (Ailon
et al. [2008]), which is a randomized MFAS algorithm for tournaments with expected approximation
ratio 3 and O(n?) runtime, where n is the number of vertices. Moreover, as shown by van Zuylen et al.
[2007], there exists a deterministic algorithm, based on KWIKSORT, with the same approximation ratio
and runtime, which we denote by MFAS3.

The following lemma, which constitutes a slight generalization of a result shown by Fotakis et al.
[2022b], opens the way for acquiring a series of PAC guarantees for the pairwise decomposition method
combined with the tournament aggregation technique.

Lemma 4.4.3. Let (gi;j)1<i<;j<k be any collection of classifiers from X to {—1,1}. Running the tourna-
ment aggregation algorithm with (gij)i1<i<j<k and MFAS3 as input, yields a hypothesis 6: X — Sy such
that

LD,dT ((3') <4 Z L'Dij,[()—l (g’ij) .
1<i<j<k

"Notice that the estimation of the position of each label in the previously mentioned voting scheme can also be expressed
through Gy as §,(i) = 1+ X5, 1{(j,9) € Ex}
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Proof. Let (x,m) ~ D. If all edges of G, have the correct direction (with respect to the direction
dictated by ), then G, is a DAG, whose topological ordering yields the desired ranking. However, with
probability at most »2, ;< Pr( m~p [9ij(x) # mij], there exist edges having wrong direction, which
could cause G, to have cycles. In particular, the expected number of edges having wrong direction (with
respect to m) is

W = Z Pr [gl](l’) 7£ '/Tij] .

L (@,m)~D
1<i<j<k

Flipping those edges (which are of course unknown) would give a DAG, which we can obtain the desired
ranking from as before. Instead, we will use the deterministic 3-approximation algorithm MFAS3 to
make the graph acyclic at the cost of getting an upper bound on the expected KT distance, which is a
multiple of W. Specifically, if we denote by M the expected minimum number of edges, whose removal
(or flipping) would render the graph acyclic, we infer that M < W. Running MFAS3 on G, results in
an acyclic graph that gives a ranking &(z), corresponding to a hypothesis 6: R? — Sy, such that

[dr (6(z), )] SW +3M <4 Y Pr[g;(x) #ml,

(z,m)~D \<ici<k (z,m)~D

which concludes the proof. O
Algorithm 8 KwikSort
Input: Tournament G
Output: Topological order of G’s vertices

1: procedure KWIKSORT(G)

2: (V,E)«+ G

3 if V =2 then

4: return () > empty tuple

5: end if

6 Vi, + @

7 Ve @

8 Select random pivot v € V

9: for u e V' \ {v} do

10: if (u,v) € E then

11: Vi < Vi U {u} > place u on the left of v
12: else

13: Vi < Ve U {u} > place u on the right of v
14: end if

15: end for

16: Gr + G[Vi] > tournament induced in G by Vg,
17: Gr < G[Vg] > tournament induced in G by V,
18: return (KwikSORT(GL), v, KWIKSORT(GR)) > concatenation of vertices

19: end procedure

Henceforth, we let PWT3(A) denote the pairwise decomposition algorithm combined the binary
classification algorithm A and with the tournament aggregation method, with the latter using MFAS3
as MFAS algorithm. Lemma 4.4.3 has the following implications.

Lemma 4.4.4. For every hypothesis class H € S, every family of structured probability distributions
F on X X S, and every binary classifier A € Ax (41}, it holds

L mpyrraa) aa, (6 0) < MaXi<ici<k M 3y, 0, (4(’5) ’ é)

LR—Massart Massart o)
2. MpwT3(A)y a0, 7,d, (€0:1) S maxicicj<k MY F (4(€k)’ (k)777>
’ 2 2

LR—Tsybakov Tsybakov £}
3. MpWT3(A) M. d, (6,0, 0, B) < maxi<i<j<k My (4(1) 7 m,m B>
2 2

foralle,6 >0,n€]0,1/2), a €[0,1) and B > 1.
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Proof. Fix any €,6 > 0 and let D be any probability distribution that is realizable by #. For all
1 <i<j <k if Ais given m > m7A7Hij,£0—l (6,9) i.i.d. samples from D;;, it returns a hypothesis
gij: X — {£1} such that, with probability at least 1 — §, it holds

R

LDij,‘go—l (gij) <e.
Then, from the union bound, we get that, with probability at least 1 — 5(’;), it holds

Lp,. i) <e.

1;?3]?;,6 ’D”»ZO—I(gZ]) > €

Therefore, Lemma 4.4.3 implies that PWT3 outputs a hypothesis ¢ such that, with probability at least
1—4(%), it holds

I () <45 ).

which proves the first point. The proof for the rest points is nearly identical. O

4.4.2 Label Ranking by Labelwise Decomposition

We now present another the labelwise decomposition technique (Cheng et al. [2013], Cheng and Hiiller-
meier [2013]), whose main idea is to reduce the LR problem into multiple problems, each concerning a
particular label. Specifically, we decompose the LR problem into k& subproblems, one for each label 1,
where we aim to predict the position of ¢ in the ranking independently.

Originally, Cheng et al. [2013] assumed that a probabilistic approach is used to train each labelwise
predictor, in which the learner predicts a conditional probability distribution M;|, on the set [k] of
possible ranks for each label i € [k]. Namely, for each instance € A’ and for all i € [k], M,|, gives
the occupation probabilities of each position in x’s ranking by label i. Cheng et al. [2013] showed that
the minimization of the expected loss with respect to the aforementioned distributions, for any labelwise
decomposable loss (such as the Spearman’s footrule d; and the Spearman’s distance d3) can be reduced
to an assignment problem, which can be solved by means of the Hungarian algorithm in O(k3) time.

Here, we focus on the more abstract regression approach of Fotakis et al. [2022a], where each sub-
problem yields a hypothesis, whose predictions lie in a real-valued output space.

Algorithm 9 Label Ranking by Labelwise Decomposition
Input: Training set 7' C X x Sy, algorithm A € Ax g
Output: Hypothesis h: X — S

1: procedure LABELWISEDECOMPOSITION(T, A)
2 for 1<i<k do

3 T, +— @

4 for (z,7)eT do

5: T, T, U (z,7(3))

6 end for

7 gi + A(Ty)

8 end for

9: return (g1,...,0%)

10: end procedure
11: g ¢ LABELWISEDECOMPOSITION(T), A)
12: return argsort o argsort o g

Labelwise decomposition stage Let T be a training set with elements of the form (z,7), where
(z,m) € X x Sg. For all 1 <i <k, we assign the training set

T, ={(z,7(4)) : (z,7) € T}

to the subproblem concerning label i and run an algorithm A € Ay g® on T; to obtain a predictor
gi: X — R that is hopefully able to yield a good estimate for the position of label 7.

8Like in the pairwise decomposition method, we assume that the same binary classification algorithm is used for each
subproblem, but one could use a different algorithm for each subproblem.
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Aggregation stage As for the aggregation of the labels’ position estimates into a single ranking, the
most intuitive choice would be to rank the labels by increasing estimated position order, breaking ties
arbitrarily. Namely, the final ranking 6(z) should satisfy that g;(x) < g;(z) = &(x)(i) < &(z)(j) for
all i #£ j.

Observe that the labelwise decomposition algorithm was defined assuming examples with complete
only rankings. This is due to the fact that, unlike the pairwise decomposition case, the labelwise decom-
position method should be expected to work only in the case where the training data consist of complete
rankings. Indeed, the position of a label within a ranking provides a meaningful result only when all
other labels are present in the ranking as well. To extend this labelwise approach to incomplete rankings,
one would need to make additional assumptions about the way incomplete rankings are generated.

Lemma 4.4.5 (Fotakis et al. [2022a]). Let (g;);cix) be any collection of predictors from X to R obtained
by the labelwise decomposition algorithm. The hypothesis 6: X — Sy returned by the said algorithm
satisfies that:

Lp.a,(6) €0 (k max Lop, 1, (!h'))

The above lemma, which is implicitly stated in the work of Fotakis et al. [2022a], shows that to bound
the expected Spearman’s distance with respect to D, it suffices to focus our attention on each label’s
subproblem and bound the expected squared loss with respect to D; for all i € [k]. As a corollary, we can
obtain PAC results, similar to the ones that were previously mentioned in the pairwise decomposition
section.
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Chapter 5

Learning Linear Sorting Functions

In this chapter, we assume that the learner observes rankings that are produced by some target linear
score function, which we aim to learn. Then, the underlying hypothesis class coincides with the class of
linear sorting functions, introduced by Har-Peled et al. [2002]. This variant of LR is also referred to as
linear LR (Fotakis et al. [2022b]). As we will see, the class of linear sorting functions is tightly connected
to that of halfspaces, which will enable us to acquire similar results to those of halfspaces for linear LR,
both in the noiseless and the noisy setting.

Definition 5.0.1 (Linear Sorting Function). A linear sorting function (LSF) in R® with k > 2 labels is
any function ow p: R? — Sy, parameterized by a matriz W € R¥*? and a vector b € R* that is defined
as ow p(x) = S(Wx +b).

A linear sorting function ow p is said to be homogeneous if b = 0, in which case we simply denote
it as ow. We denote by ’Hﬁ’sk’F (resp. ’HﬁfSF) the class of LSFs (resp. homogeneous LSFs) in RY with
k > 2 labels.

Remark. Like in the case of halfspaces, each LSF ow p(z) = S(Wx + b) in R? can be rewritten as
ow (@) = S(W'x’), where W' = [W b] and ' = (z1,...,24,1). Namely, it can be expressed as a
homogeneous LSF in R4t applied over the transformation that appends the constant 1 to each input
vector.

1>2%3
S e ol
w3 — W A ¥ ,."
III ;'- 1 >- 3 >_ 2
3-2-1 F k
/I w3 — Wp
,'I 3-1%>2

Figure 5.1: Visualization of a homogeneous linear sorting function in R? with 3 labels

Notice that for £ = 2, there is an equivalence between the concept class of LSFs and the concept
class of halfspaces on R%. Moreover, for any ow p € Hi’skﬁ the function (ow p),; that is involved in the

3
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pairwise problem concerning the label pair (i, j), can be written as
(UW,b)ij (m) = sign (UW,b(])(m) - UW,b(i)("B)) = sign (<w2 - wy, CC> +0bi — b]) = hwi—wj,bi—bj (:I)) )

forallz e R and 1 < i < j < k. Namely, it is a halfspace with weight vector w; — w; and bias
term b; — b;. This means that the order between ¢ and j in o(xz) is determined by which side of the
hyperplane corresponding t0 fay, —w, b;—p; the point @ lies in. This property is very crucial as it guides
us towards a pairwise decomposition approach for the linear LR problem, concerning binary halfspace
learning subproblems, whose learnability has been excessively studied both in the noiseless and the noisy
setting.

5.1 Learning Linear Sorting Functions in the Noiseless Setting

Concerning the learnability of LSFs in the noiseless (realizable) setting, we begin by observing that
Lemma 4.4.4 has the following implication.

Corollary 5.1.1. For every binary classifier A € Ax (+1y, it holds

. 5) < m e 6
mPWT3(A),Hi:SkF,dT(E’ ) S Mg b 4(5)’@

for all €,0 > 0.

In Chapter 4, we have seen that the class of halfspaces is efficiently realizably PAC learnable using
linear programming (Algorithm 1). Therefore, Corollary 5.1.1 implies that PWT3(A), choosing Algorithm
1 as the binary classification algorithm A, is an efficient realizable PAC learner for ’Hi’SkF with respect to
the KT distance.

A disadvantage of PWT3(A) is that it constitutes an improper learner, whose output hypothesis
requires:

e O(dk?®) memory to store the (g) pairwise weight vectors,

e O(dk? + k3) runtime (evaluating (g) inner products, constructing a preference graph and running
MFAS3 to break its cycles) to output a ranking for each fresh instance.

On the contrary, a proper learner outputs a hypothesis that requires:
e O(dk) memory to store the matrix and vector that define an LSF,

e O(dk + klogk) steps (evaluating a score vector and sorting its elements) to output a ranking for
each fresh instance.

In fact, by a more prudent application of linear programming, we can derive a proper and efficient
realizable PAC learner for the class of LSFs with respect to the KT distance. The main idea is to leverage
the fact that the linear programs used in each subproblem can be merged into a single linear program.
In particular, let S = ((:B(l), w(l)) R, (w(m), ﬂ(m))) be any training set of samples in R? x S;,. Consider
the following linear program, which we denote by LP2':

Find W e RF*d pecRF
subject to 7r§;-) ((w; —wj, D) +b;—b;)) >1 V1I<i<j<k, t€[m]
In Theorem 5.1.1, we show that LP2 combined with the Ellipsoid method (Algorithm 10) yields a proper
and efficient realizable PAC learner for the class of LSFs.

Theorem 5.1.1. Hi’SkF 18 properly realizably PAC learnable with Algorithm 10 with respect to the KT
distance with sample complezity O ((dlog(k/e) + log(k/8))k?/€) and polynomial runtime in d, in k, in
the number of samples and in the representation size of real numbers.

ILP2 can be typically formulated by arranging the unknown variables in a k(d + 1)-dimensional vector.
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Algorithm 10 Properly Learning Linear Sorting Functions with Linear Programming

Input: Training set S C RY x S,

Output: LSF ow p: RY — S,
1: Construct LP2 from S
2: (W,b) «+ ELLIPSOID(LP2) > See Appendix B
3: return ow

Proof. Fix any ¢,6 € (0,1) and let D be any probability distribution on R% x S;, that is realizable by
some o* € Hg’SkF. Let S = ((w(l),w(l)) ,...,(CL’(m),TF(m))) be any training set of i.i.d. samples from
D. Since we are in the realizable case, the linear program LP2 constructed from S as above, is almost
surely feasible (due to linear separability per pairwise subproblem) and any solution of it, obviously,
corresponds to an ERM learner since it ensures zero empirical error on S.

For any 1 <7 < j < k, consider the set L;; of linear constraints 71'2(]) ((w; —wj, ) +b; —bj) > 1
for all ¢ € [m]. Then, LP2 consists of the constraints in L = (J,_; Lij. Observe that for all 1 <
1 < j < k, the set of constraints L;; constitutes a linear programming ERM learner for a halfspace
learning task with o7; being the target halfspace. In the previous chapter, we have seen that providing
O ((dlog(1/e) +1og(1/8))/€) samples to this learner suffices to get the (e,0) realizable PAC learning
guarantee. Thus, constructing L using m € O ((dlog(1/e) +log(1/6))/e) ii.d. samples from D and
solving the resultant linear program LP2, yields a matrix W € R¥*¢ and a vector b € R* such that for
all1<i<j <k

ng'm [mfgm [h’wi*wpbi*bj (CL') # O‘:}(CL')] > 6:| <9.

By application of the union bound, we get that with probability at least 1 — (5)5 , it holds

*
225, B, B @) 2 o) <« =
€ —
1<i<j<k

E Y L{lows(@)(i) — ow (@) () (07 () (i) — o™ ()(j) < 0} <

x~Dy
1<i<j<k

]
Pr [, 10, () # 07 ()] < (k
(o) =

B, i (owsla).o"@)] < (4):

x~Dy

Therefore, constructing the aforementioned LP using m € O ((dlog(k/e) + log(k/d))k? /€) i.i.d. sam-
ples suffices to get a matrix W € R¥*? and a vector b € R¥ such that

Pr E [d; (owp(x),m)] >€| <.

S~D™ | (z,m)~D

Moreover, the linear program above can be efficiently solved, i.e. in time polynomial in m, d, k and in the
representation size of real numbers using the Ellipsoid method. Finally, the properness comes trivially
from the fact that LP2 returns a matrix and a vector, which define an LSF. These facts conclude the
proof. O

5.2 Learning Homogeneous Linear Sorting Functions in the Noisy
Setting

We now study the learnability of LSFs in the presence of noise. Initially, we observe that Lemma 4.4.4
has the following implication.

Corollary 5.2.1. For every family of structured probability distributions F on X X Sy and every binary
classifier A € Ay q+1y, it holds

LR— Massart Massart € o)
m €,0 <m —ov
PWT3(A),Hil o p  F dr (€,8,7m) < LN L ——a (4(’;)’ ’;)’77>




LR—Tsybakov B) < Tsybakov € 5 B
2 M) g 7, (6O O B) Sl G T

foralle,6>0,n€0,1/2), a€0,1) and B > 1.

In Chapter 3, we saw that there exist efficient homogeneous halfspace learners in the distribution-
dependent PAC model with Massart (e.g. the algorithm of Diakonikolas et al. [2020a] for isotropic log-
concave marginals) and Tsybakov noise (e.g. the algorithm of Diakonikolas et al. [2021D] for isotropic
log-concave marginals). Therefore, like in the noiseless case, Corollary 5.2.1, implies that PWT3(A),
choosing A to be one of the aforementioned halfspace learners, is an improper efficient PAC learner for
'H%’]ESF with respect to the KT distance and }"ﬁlcg, in the presence of LR-Massart and LR-Tsybakov
noise.

As it has already been discussed though, such an improper learner has the downside of producing
hypotheses with increased runtime and storage requirements, in comparison to a proper learner. In what
follows, we show that the class of homogeneous LSFs in R is properly and efficiently PAC learnable, with
respect to the KT distance and ffc, in the presence of LR-Massart and LR-Tsybakov noise. Of course
the proper Algorithm 10 fails to work in this case, since the linear separability property per halfspace
subproblem does not hold anymore. Instead, we resort to the pairwise decomposition method and use
a different aggregation method that ensures properness. Our approach extends the work of Fotakis
et al. [2022b], which proves the aforementioned results for the specific case of the standard d-dimensional
normal distribution Ay, and is based on similar techniques.

Let W* € R**4 where w} # w; for all 1 <@ < j <k, be the ground truth matrix associated with
the target LSF ow -« and let D, € f]‘fc. Our algorithm begins by applying the pairwise decomposition
method using a proper homogeneous halfspace learner A that satisfies the PAC learnability guarantee
in the presence of Massart (resp. Tsybakov noise) with respect to Fi (such as Algorithm 4 for the
Massart case). As a result, for all €,§ > 0, we can obtain (g) vectors v;; such that for all 1 <¢ < j <k,
it holds

P, lsen (1] — wj, ) #sien (v, )] <

with probability at least 1 — ¢. Moreover, without loss of generality, we assume that |lv;||, = 1 for all
1<i<j<k.

Our goal is to exploit the information provided by the collection of pairwise vectors v;;, to obtain
a matrix W € R**? such that Lp, ou-.d. (ow) is small. Due to the form of the KT distance, as we
will show afterwards, this can be achieved, if the angle between w; — w; and w; — wj is small for
all 1 <@ < j < k. Since v;; is our only proxy for w; — w7, a natural approach is trying to ensure
that the angle between w; — w; and v;; is small or, equivalently (w; — wj,vi;) ~ |lw; — w;|, for all
1 < i < j < k. The latter desideratum can be formalized through the second order conic constraint
(w; —wj,vi;) > (1 — @) [|[w; — wj||, for ¢ = 0. Additionally, it must hold that w; # wj;, in accordance
to the fact that w} # w; for all 1 <i < j < k. Notice that, had there been a solution with w; = w; for
some i # j, it would yield a constant value for Pryp, [sign ((w; — wj,x)) # sign ((w; — w3, x))] and,
consequently, we would be unable to make the expected loss arbitrarily small. The condition w; # w;
can be achieved by imposing the linear constraint (w; — wj, v;;) > £ for some & > 0.

The above facts lead us to the formulation of the following convex (second-order cone) program,

which we denote by CP1%:
Find W € Rkxd

subject to  (w; — wj,v;;) > max {(1 — ¢) lw; —w,|,,.&} V1<i<j<k

Wir <1

In the above formulation, the constants ¢ € [0,1) and & > 0 are to be determined. The additional
constraint ||[W || < 1 bounds the feasible region of the convex program, which contributes into rendering
the computation of W efficient, as we will later analyze more rigorously. Moreover, it is crucial that this
constraint does not conflict with the previous constraints, since LSFs are invariant to multiplying their
underlying matrix by a constant.

Having provided the intuition behind the formulation of the aforementioned convex program, we
proceed by proving that it is indeed feasible, that any solution of it achieves arbitrarily small loss in

2]-'1‘%0 denotes the class of isotropic log-concave distributions on R%
3CP1 can be typically formulated by arranging the unknown variables in a kd-dimensional vector.
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Algorithm 11 Properly Learning Homogeneous LSFs with Noise

Input: Training set S C R? x Sy, proper homogeneous LTF learner A4, ¢ € (0,1) and £ > 0
Output: Homogeneous LSF oy : R — S,

1: (h”ij)1<i<j<k + PAIRWISEDECOMPOSITION(S, A)
2: Construct CP1 using ¢, ¢ and (Uij)1§i<j§k
3: W « ELLIPSOID(CP1) > See Appendix B
4: return ow

expectation and that it can be efficiently solved. We will need the following auxiliary lemma, whose
proof can be found in Appendix C.

Lemma 5.2.1. Let U € R**? where w; # w; for all i # j, and Dy be an isotropic log-concave
distribution on R?. There exists a polynomial Q: R® — R such that the following holds. For any € > 0,
there exists a matriz V. € RF* with the properties:

1. max <1<k Prop, [sign (u; — ug,)) # sian (v, — v;,2))] < e
2. ming << j< ||v; — v, > 27Qdk1/0)
3 Vlle <1

The main idea of the above lemma is that for any matrix U with unequal rows, there exists a matrix
V' within the unit ball (with respect to the Frobenius norm), yielding an expected loss close to that of
U, while enjoying the auxiliary property that the norm of the difference between any pair of its rows is
sufficiently large. This property plays a decisive role in the capability of rendering the solution of CP1
by means of the Ellipsoid method efficient, as we will later explain. We now state and prove our main
lemma.

Lemma 5.2.2. There exist universal constants o, 3 > 0 and a polynomial P: R® — R such that the

following holds. For any € > 0, if maxi<i<j<i LDy by e to_1 (Poy) < € ¢ = ae® and § = 9 Pldk.1/e)
i J

then the following properties hold.

1. CP1 is feasible.

2. For any solution W of CP1, it holds that Lp, oy, . 4. (ow) < ,8(];)6. If, additionally, Dy = Ny, it
holds that L, oy dioy—. (0w ) < BEr/log(kr)e for all v € [k].

3. The feasible set of CP1 contains a ball of radius 2= F(@*1/€) and is contained in a ball of radius 1.
Both balls are with respect to the Frobenius norm.

4. CP1 can be solved in poly(d, k,1/¢) time using the Ellipsoid method.

Proof. By Lemma A.0.4, the exist universal constants c1,cy > 0 for which it holds

c; ' 0(u,v) < Pr [sign ((u,x)) # sign (v, z))] < c20(u, v)

x~Dy

for any u,v € R%\ {0}. Moreover, by Lemma 5.2.1, there exists a polynomial Q: R* — R such that the
following holds. For any € > 0, there exists a matrix W* € RF¥*? with the properties:

1. maxi<icj<i Prz~p, [sign (<w;k — 'w;,:c>) = sign (<15j — 15;‘7 :B>)] <e

2. minlSKjSk ||'Iﬁ;< — 17)3‘”2 > Q*Q(d,k,l/e)

<1

3. Hﬁ?
F

Fix an arbitrary real constant v > 1 and let 0 < e < 1/ (01 \/2v). We will show that by choosing
¢* = 2cie?

P =24 Gunae
1+ (y—1)cie?

properties 1, 2, 3 and 4 are satisfied.
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Proof of property 1 We will show that for ¢ = ¢* and £ = £*, the matrix W* matrix belongs to the
feasible region of the convex program. It holds that

L, Pr fsen (@7 - @,@))  sion (]~} 2))] < e
and

1§rz1<a]x§k m{’gz [sign ((w] — w}, x)) # sign ((vy;, x))] <e.

Therefore, using the triangle inequality, we get that

1g1?3jxgkmggm [sign ((w] — w},x)) # sign ((vy;, x))| < 2 = 1;1.[13]?(99 (W] — w},vy) < 2cie.

Using the fact that cos(z) > 1 — x2/2 for all z € R, we get that

H(ﬁ*—ﬁ* ruu)2
COS(Q(’(E%"—qE%k vij))Zlf i 2]7 ij

2 2
7 >1—2cje”,

which implies that

(W) —w},vi;) > (1 - 2c7€) ||w) — w)

) Z (1 _ 20?62) 2—Q(d,k,1/€)

for all 1 < ¢ < j < k. Therefore, for 0 < € < 1/ (01\/5), if we set Pmin(e) < ¢ < 1l and 0 < £ <

(1 = dmin(e€)) 27K/ yhere i (€) = 2¢2€2, then the “well-conditioned” matrix W* satisfies every
constraint of the convex program, so it belongs to its feasible region. These constraints for ¢ and &, are
satisfied by ¢* and &*, which concludes the proof.

Proof of property 2 Using the fact that 1 — > cos (my/x/2) for all 0 < z < 1, we get that for
0< ¢ <1and¢ >0, any solution W of the convex program satisfies that w; # w; and

(wi —wj, vi5) >
cos (f(w; — wj,v;;)) >

— ¢ —
cos (f(w; — wj,v;;)) > cos (7“;&) =
H(U)Z ’w]',’l),]) < ﬂ\/a -

JPr [sign ((wi — wj, )) # sign ({vy, 2))] < —5

for all 1 <14 < j < k. Combining the above with the fact that
1;113;;]6 m{’gm [sign ((w; — w},x)) # sign ((vy, z))| <e,

we get (using the triangle inequality) that
. : A comy/
 Jnax | mfzgz [sign ((w; — wj, x)) # sign ((w] —w;,z))] <e+ —

Therefore, it holds that

k
E [d; (ow(x),ow~(x))] = . Z Pr [sign ((w; — w;,x)) # sign ((w] — w?,w))]

1<i<j<k @~Dg

<e + 627;\/&) .

];) max  Pr [sign ((w; — wj, x)) # sign ((w] — w},z))]
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Lemma 5.2.3 (Fotakis et al. [2022b]). There exists a universal constant ¢ > 0 such that

LB, [dionr (ou(@),ov(@))] < chry/log(kr) | max  Pr. [sign (u; = w;,2)) # sign (v; — v;, @)

for any r € [k] and U,V € R¥*4,
Additionally, if Dy = Ny, Lemma 5.2.3 implies that

B [+ (ow (2).ow- ()] < chr/Iog(i) e+ 25/

z~Ny

for any r € [k], where ¢ is the universal constant of Lemma 5.2.3. Choosing ¢ = ¢* and £ = £*, we get
the desired results.

Proof of property 3 The constraint |[W||g < 1 directly implies that the feasible region of the convex
program is contained in a ball of radius 1. We will now show that the feasible set of the convex program
contains a ball of radius r = 27P°W(dk1/€) centered at the aforementioned “well-conditioned” matrix

W, Namely, we will show that for ¢ = ¢* and € = £*, if HW - ﬁv/*‘ . < r for a sufficiently small radius

r and of order 27 PO (d:k:1/€) “then W belongs to the feasible region of the convex program.
Initially, suppose that HW — W*|| < r,thatis, W belongs to the ball (with respect to the Frobenius
F

norm) of radius 7 centered at W*. This implies that ||w; — w; ||, < r for all ¢ € [k]. Moreover, we have
that

(W] — W}, vi5) = (W; —w;,vi5) + (wj — W], vi5) + (w; — wj, viz)
< Nlwi — @f (|, + |Jw; — @] ||, + (wi —wj, i)

< (w; —wj,v45) + 2,

[w; —w;ll, = |lwi — @] + w; — W} +w; —w;,

*

< |lwi — w} ||, + ||w; — @; ;

2+2r

2+§ij_1E 2

S

and, similarly, ||w; —@;HQ < lw; —wjll, +2r forall 1 < i < j <k For0<e<1/(c1v2) and
dmin(€) < ¢ < 1, we get that any W in the above ball satisfies that
(w; —wj,vi) > (W] —wj,

>(1-¢)||w; —w}
> (1= ¢) (|lw; —wjl, —2r) = 2r

> (1= ¢) wi —wjll, —4r

vij> —2r

2—27"

for all 1 <i < j < k. Hence, we get that for any ¢min(e) < ¢ < 1

(w; —wj,vij) 1 = dmin(€)) [wi — wj[, — 4r

(

(1= 9) lwi —wjlly + (¢ = Gminle)) |[ws — wjll, — 4r

(1= 0) [lw; — wjly + (¢ — Pmin(€)) (H’le - 15;‘”2 - 27") —dr
(1—

1= ¢) lw; — wjlly + (¢ — Pmin(€)) (Z‘Q(d’k’l/e) - 2r) —4r

>
>

Y

Y

for all 1 <i < j <k. Setting
r< ¢ — Pmin(€) 9—Q(dk,1/¢)
442 (¢ — Pmin(e))

the right hand side term (¢ — ¢min(€)) (Q’Q(dvk’l/ﬁ) — 2r) — 4r becomes nonnegative, implying that

2(1—
<w—umwﬁ20—¢ww—ﬂM522%;qﬁQ@TMMMQ-
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Therefore, choosing ¢ = ¢* and £ = £*, we get that W belongs to the feasible region of the convex
program. Hence, the feasible region contains a ball of radius

¢ — Pmin(€) —Q(dk,1/€) —poly(d,k,1
r= 2@k ¢ @ (gmrel (k1))
4+2(¢7¢min(6))

which concludes the proof.

Proof of property 4 Combining Lemma C.0.2 with property 3 implies that the Ellipsoid method will
return a point within the region of our convex program in poly(d, k, 1/€) time®*.
O

The desired results on the learnability of LSFs are a direct consequence of Lemma 5.2.2 and are
stated below.

Theorem 5.2.1. Fiz any n € [0,1/2), €,6 > 0 and W* € RF*? where w} # w; foralll <i<j<k.
Let D be any (n,ow~)-LR distribution with Massart noise such that Dy € ffj’c. Let A be any proper
PAC learner for Hi g in the presence of Massart noise with respect to Fiq that has polynomial runtime
in d and in the number of training samples. Algorithm 11 has the following performance guarantee: If

given as input A, ¢ € O(e2), € = 27PW(dE1/) 4nd m > m%a;i%a;;,fgc (6/0(k2)7 6/ (g):n) i.i.d. samples

drawn from D, it runs in poly(m) time and outputs a matric W € RF*? such that, with probability at
least 1 — 6, it holds Lp, sy 4, (ow) < €.
Proof. By definition of A, we get that for all 1 <1i < j <k, if A is given m > mMassart (e,0,m) i.i.d.

AHE e Tl
samples from D;;, it returns a unit vector v;; such that, with probability at least 1 — ¢, it holds

Pr [sign ((w] — w},@)) # sign ((v;;,@))] <.

x~Dy
Then, from the union bound, we get that, with probability at least 1 — 6(12“), it holds

1§rlnéajx§k mljgm [sign ((w] — w},x)) # sign ((vy;, x))] <e.
Therefore, Lemma 5.2.2, implies that Algorithm 11 outputs a matrix W € R¥*¢ such that, with proba-
bility at least 1 — 5(’2“), it holds

k
Lp, ope.d.(ow) < B (2> €

for some universal constant § > 0. This concludes the proof. O

Theorem 5.2.2. Fiz any o € [0,1),B > 1, ¢,§ > 0 and W* € R¥*9 where w} # w} forall 1 <i <
j <k. Let D be any («, B, ow~)-LR distribution with Tsybakov noise such that Dy € Flq. Let A be any
proper PAC learner for H&  rp in the presence of Tsybakov noise with respect to ]:flc that has polynomial
runtime in d and in the number of training samples. Algorithm 11 has the following performance guar-

antee: If given as input A, ¢ € O(e?), &€ = 27PW(dR1/) gng m > mi?’%ik:}gc <€/O(k2),5/(g)70¢73)

i.i.d. samples drawn from D, it runs in poly(m) time and outputs a matriz W € R¥*? such that, with
probability at least 1 — §, it holds Lp, gy .d, (ow) < €.

Proof. The proof is nearly identical to that of Theorem 5.2.1. O

Finally, we cite two similar theorems, based on the work of Fotakis et al. [2022b], that yield a
better sample complexity bound for the case of diop—r With respect to the multivariate standard normal
distribution.

Theorem 5.2.3 (Fotakis et al. [2022b]). Fiz any n € [0,1/2), €,6 > 0 and W* € R¥*9 where
w; # wj foralll < i < j <k. LetD be any (n,ow~)-LR distribution with Massart noise such
that Dy = Ng. Let A be any proper PAC learner for H&rp in the presence of Massart noise with
respect to Ny that has polynomial runtime in d and in the number of training samples. Algorithm
11 has the following performance guarantee: If given as input A, ¢ € O(e?), & = 2P (dk1/9) gnq

m > m%ﬁ?ﬁﬁ’j\/rz (e/O (kr\/log(kr)) ,5/(’;),77> i.i.d. samples drawn from D, it runs in poly(m) time
and outputs a matric W € REX such that, with probability at least 1—6, it holds Lnyovw e diop—r (OW) < €.

4We also have to assume that there exists a separation oracle for CP1 with runtime Tyep = O(poly(d, 1/¢,log(1/£))).
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Proof. The proof is nearly identical to that of Theorem 5.2.1. O

Theorem 5.2.4 (Fotakis et al. [2022b]). Fiz any o € [0,1),B > 1, €,6 > 0 and W* € R*¥*? where
wi # w; for alll < i < j < k. LetD be any (o, B,ow~)-LR distribution with Tsybakov noise
such that Dy = Ny. Let A be any proper PAC learner for Hiwp in the presence of Tsybakov noise
with respect to Ny that has polynomial runtime in d and in the number of training samples. Algorithm

11 has the following performance guarantee: If given as input A, ¢ € O(e?), & = 2-Poly(d:k,1/€) g d
Tsybakov

m > My N (6/0 (kr log(kr)) ,0/ (’;),a, B) i.i.d. samples drawn from D, it runs in poly(m) time
and outputs a matriz W € RF¥*? such that, with probability at least 1—6, it holds Lr, oy deop_r (OW) < €.

Proof. The proof is nearly identical to that of Theorem 5.2.1. O
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Chapter 6

Experimental Results

In this chapter, we carry out an experimental evaluation of label ranking algorithms, based on the
pairwise and labelwise decomposition frameworks that were discussed in Chapter 4 and focusing on the
case of complete rankings. Our goal is to find out how algorithms adjusted to the linear LR setting
perform against some of the state-of-the-art general-purpose LR algorithms based on decision trees and
random forests. To this end, we evaluate our algorithms both on synthetic data sets, whose construction
is based on the linear setting, and on standard LR data sets beyond the linear setting. Additionally, in
the case of synthetic data sets, we aim to acquire an understanding of how different noise types, based
on the LR noise models of Chapter 4, affect the performance of our algorithms.

6.1 Label Ranking Algorithms under Comparison

We compare six algorithms, all based on the pairwise and labelwise decomposition methods of Chapter
4. The difference of these algorithms lies in the choice of the binary classification (for the pairwise case)
or regression (for the labelwise case) algorithm used for each subproblem. In particular, for each of these
two decomposition methods, we implement three algorithms: an algorithm based on random forests, an
algorithm based on decision trees and algorithm based on linear predictors.

Before citing explicitly our algorithms, we provide a very brief background on decision trees, random
forests and linear regression, which were used in a black box manner, and include references for further
details.

Linear Regression Linear regression constitutes a common statistical tool for modeling the relation-
ship between “explanatory” variables and some real valued outcome. Cast as a learning problem, the
instance space is X C R? and the output space is ) = R. Our goal is to learn a linear function h: R — R,
where h(x) = (w, ) + b with w € R, b € R, that reflects the relationship between our task’s variables
in the best possible way, which is usually formalized through the requirement that squared loss {5 or
absolute loss ¢1 on the training data is minimized. It can be easily shown an efficient ERM learner for the
hypothesis class of linear regression predictors with respect to ¢2 (resp. ¢1) can be obtained through the
least squares method (resp. linear programming) (Shalev-Shwartz and Ben-David [2022]). We emphasize
that, since linear regression is not a binary prediction task, its sample complexity cannot be analyzed
using the VC dimension and the acquirement of generalization bounds becomes more challenging.

Decision Trees and Random Forests A decision tree is a predictor that maps each instance to a
label by following a decision path from a root node of a tree to a leaf. At each node of the aforementioned
path, the successor child is chosen on the basis of a splitting of the input space. Usually, the splitting
is based on a specific feature of the input feature vector or on a predefined set of splitting rules. The
end of a decision path is a leaf that always contains a specific label, which constitutes the output pre-
diction. It can be shown that decision trees of arbitrary size can lead to overfitting. A way to mitigate
this phenomenon is through the use of random forests. A random forest is a predictor consisting of a
collection of decision trees. The prediction of a random forest is acquired by a majority vote over the
predictions of the individual trees. In general, random forests tend to outperform decision trees. For
a detailed exposition of decision trees and random forests, we refer to Breiman et al. [1984], Breiman
[2001], Shalev-Shwartz and Ben-David [2022].
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Analytically, the six algorithms implemented and compared in our experimental evaluation are as
follows.

e The pairwise decomposition method using the homogeneous halfspace learning algorithm of Di-
akonikolas et al. [2020a] as binary classification algorithm and KwWIKSORT for aggregation of the
pairwise predictions. We denote this algorithm by PWHH.

e The pairwise decomposition method, using the scikit-learn implementation for decision tree clas-
sification (sklearn.tree.DecisionTreeClassifier) as binary classification algorithm and Kwik-
SORT for aggregation of the pairwise predictions. We denote this algorithm by PWDT.

e The pairwise decomposition method, using the scikit-learn implementation for random for-
est classification (sklearn.ensemble.RandomForestClassifier) as binary classification algorithm
and KWIKSORT for aggregation of the pairwise predictions. We denote this algorithm by PWRF.

e The labelwise decomposition method, using the scikit-learn implementation for linear regres-
sion (sklearn.linear_model.LinearRegression) as labels’ position predictor. We denote this
algorithm by LWLR.

e The labelwise decomposition method, using the scikit-learn implementation for decision tree
regression (sklearn.tree.DecisionTreeRegressor) as labels’ position predictor. We denote this
algorithm by LWDT.

e The labelwise decomposition method, using the scikit-learn implementation for random forest
regression (sklearn.ensemble.RandomForestRegressor) as labels’ position predictor. We denote
this algorithm by LWRF.

The implementation of the aforementioned algorithms was in Python and the code to reproduce our
results is available here.

6.2 Results on Synthetic Data Sets

Synthetic data sets For the experiments, two instance sets were constructed, each consisting of
10000 feature vectors, drawn independently from the standard Gaussian distribution of dimension d =
10 and d = 100 respectively. We refer to the two sets as SFN (Small Features Number) and LFN
(Small Features Number) respectively. For each feature size (d = 10 and d = 100), a random matrix
W* € RF*4_ associated with the target score function m*(x) = W*z and the target homogeneous LSF
o* = ow~ = 6 om™*, was constructed. Moreover, we chose the number of labels to be k = 5.

As for the addition of noise in the data, we corrupt the noiseless rankings (as they are produced by
m™*) by means of the previously defined label ranking distribution with Mallows noise (Definition 4.3.4)
and label ranking distribution with additive noise (Definition 4.3.12) models (using o* and m* as target
functions respectively). For the Mallows-based model, we consider only the KT distance and create 50
noisy versions of the original noiseless dataset (the one labeled by *), each with a different value for the
spread parameter ¢. Similarly, for the additive noise model, we create 50 noisy versions of the original
noiseless dataset such that the noise vector & added to the score vector m*(x) is sampled from a zero
mean k-dimensional Gaussian distribution with a different variance value for each noisy dataset.

To quantify the presence of noise in the training data in a common and comprehensible way for the
noise models in consideration, we adopt the following notions of distortion used in the experimental
evaluation of Fotakis et al. [2022a].

Definition 6.2.1. A training set S C R% x Sy satisfies:

e the a-inconsistency property, if ﬁ > @myes L{o*(x) # 7} = a €[0,1] and

e the B-KT gap property, if \%I Z(w,ﬂ')EST (o*(x),7) =B € [-1,1].

The a-inconsistency property is an indication of the probability that the observed ranking is different
from the ground truth one. As mentioned in the previous chapter, the 0 — 1 loss fails to capture the
structured nature of rankings, in the sense that there might exist unequal rankings, yet very similar. In
this regard, we use supplementally the S-KT gap property so as to obtain a more rounded view of the
existence of noise in the training data. Obviously, the cases a = 0 and 8 = 1 correspond to the noiseless
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setting. Finally, the performance of the algorithms is measured in terms of mean KT coeflicient over a
noiseless test set (labeled by o*). Namely, for each test example we calculate the KT coefficient between
the trained model’s output ranking and the example’s ranking, and, then, we take the mean over all test
examples.

Mean KT coefficient

Figure 6.1: Evaluation in terms of mean KT coefficient on SFN datasets with Mallows noise

Concerning the results on SFN datasets with Mallows noise (Figure 6.1), we remark the following.
First of all, we observe that PWHH and LWLR achieve the best performance among all algorithms, which
is intuitively anticipated, due to them being customized to the linear nature of the data, as distinct from
the four the tree-based algorithms. Moreover, the mean KT correlation for PWHH and LWLR manifests
the lowest decay rate (up to a point), as the plot in terms of 3 indicates. The dominance of PWHH is in
accordance with the fact that PWHH is the only algorithm to be supported by statistical guarantees in
this specific experimental setting. Interestingly, though, as 8 — 0, LWLR seems to outperform PWHH,
in spite of not coming with any theoretical assurances. Among the tree-based algorithms, we can see
that the random-forest-based algorithms (PWRF and LWRF) achieve a significantly higher performance
than the decision-tree-based algorithms (PWDT and LWDT). Finally, it is remarkable that PWRF and
LWRF (resp. PWDT and LWDT) achieve almost the same performance regardless of the decomposition
method (pairwise or labelwise) used.

Mean KT coefficient

Figure 6.2: Evaluation in terms of mean KT coefficient on LFN datasets with Mallows noise

As for the results on LFN datasets with Mallows noise (Figure 6.2), a performance decay is observed
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for all algorithms, with the four tree-based algorithms (PWRF, LWRF, PWDT and LWDT) experiencing
the largest performance decay. Intuitively, this can be explained from the fact that the sample complexity
is usually proportional to the dimensionality of the instances; the dimensionality in the LFN case is ten
times larger than in the SFN case, while the number of samples remains constant. The best performance
is achieved by LWLR for all values of «, 8 and its performance drop in comparison to the SFN case is
negligible. Moreover, LWRF seems to be superior to PWRF, unlike the SEN case, where their performance
difference is indiscernible.
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Figure 6.3: Evaluation in terms of mean KT coefficient on SFN datasets with Gaussian additive noise
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Figure 6.4: Evaluation in terms of mean KT coefficient on LFN datasets with Gaussian additive noise

Regarding the datasets with Gaussian additive noise (Figure 6.3 and Figure 6.4), we deduce roughly
the same conclusions as in the case of Mallows noise. Namely, the way noise is added to the rankings
seems to have a negligible effect on how the algorithms’ performances are ranked.

Nevertheless, when it comes to examining the performance of each algorithm in an absolute manner,
we observe that two data sets sharing the same value of « or 8, but being corrupted by different types of
noise, might yield a different mean KT correlation for the same algorithm. In particular, we observe that
for a common noise rate in the training set, the performance is achieved by the majority of algorithms
is slightly inferior in the Mallows case (see Figure 6.5, Figure 6.5, Figure 6.6, Figure 6.7, Figure 6.8,
Figure 6.9 and Figure 6.10). The only exception is PWHH in the SFN case, where the opposite happens.
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This indicates that neither a-inconsistency nor 5-KT gap can be totally correlated to the algorithms’
generalization capability, as observed by Fotakis et al. [2022a].
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Figure 6.7: Evaluation of LWRF in terms of mean KT coefficient
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Figure 6.9: Evaluation of PWDT in terms of mean KT coefficient
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6.3 Results on Semi-synthetic and Real-world Data Sets

In this section, we evaluate our algorithms on several standard LR data sets, for which, unlike the
previous section, no underlying linear score function is assumed to exist. Thus, it is interesting to
examine whether the bias incurred by the linear nature of PWHH and LWLR yields a performance drop
in comparison to the rest of the algorithms, which are expected to be more flexible, since they are based
on decision trees and random forests.

Semi-synthetic and real-world data sets The semi-synthetic and real-world data sets we used,
were originally proposed in the works of iillermeier et al. [2008], Cheng et al. [2009] and are regarded as
standard LR benchmarks ever since. The real-world datasets originate from bioinformatics fields, where
ranking-related data can be quite frequently found. The semi-synthetic data sets were created from the
transformation of multiclass (type A) and regression (type B) data sets from UCI repository and the
Statlog collection into LR data (see Hiillermeier et al. [2008], Cheng et al. [2009, 2010, 2013], Fotakis
et al. [2022a]). A summary of the aforementioned data sets and their characteristics is given in Table
6.1 and Table 6.2 respectively.

Dataset Type Number of examples Number of features Number of labels
authorship A 841 70 4
bodyfat B 4522 7 7
calhousing B 37152 4 4
cpu-small B 14744 6 )
elevators B 29871 9 9
fried B 73376 9 5
glass A 214 9 6
housing B 906 6 6
iris A 150 4 3
pendigits A 10992 16 10
segment A 2310 18 7
stock B 1710 5 5
vehicle B 846 18 14
vowel A 528 10 11
wine A 178 13 3
wisconsin B 346 16 16

Table 6.1: Semi-synthetic datasets

Dataset | Number of examples Number of features Number of labels
cold 2465 24 4
diau 2465 24 7
dtt 2465 24 4
heat 2465 24 6
Spo 2465 24 11

Table 6.2: Real-world datasets

For each data set, we run five repetitions of a ten-fold cross-validation process, which is a common
practice in many experimental LR works (Cheng and Hiillermeier [2008], Cheng et al. [2009, 2010, 2013],
Fotakis et al. [2022a]). Namely, each data set is randomly divided into ten folds five times. For every split,
we repeat the following process: every fold is used exactly one time as the validation set, while the rest are
used as the training set (i.e. ten iterations for every repetition of the ten-fold cross-validation process).
Finally, like before, we compute the mean and standard deviation of the KT correlation coefficient over
every split’s results.

As shown in Table 6.3 and Table 6.4, the random forest based algorithms LWRF and PWRF achieve
the best performance in the overwhelming majority of the benchmarks. Moreover, we can see that
LWRF and PWRF, which are both based on random forests, achieve almost the same performance for
all benchmarks like in the case of synthetic datasets. The same holds for LWDT and PWDT, which
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Dataset LWRF PWRF LWDT PWDT LWLR PWHH
authorship | 0.926 +£0.018 0.936 +0.014 0.871+0.026 0.870£0.022 0.940+0.012 0.472 £+ 0.060
bodyfat 0.191 £0.068 0.188+£0.053 0.108 £0.072 0.105+0.066 0.283 £ 0.054 0.136 +0.073
calhousing | 0.491 +0.010 0.486 +0.010 0.351 £0.011 0.356 +0.010 0.235+0.009 0.169 £ 0.011
cpu-small | 0.513+0.011 0.518 £0.011 0.372+0.014 0.369 £0.015 0.424£0.012 0.402 £+ 0.010
elevators | 0.779 £0.005 0.803 £0.006 0.675+0.007 0.694 +0.007 0.702 £0.005 0.576 +0.011
fried 0.985£0.001 0.991+£0.001 0.964 £0.001 0.987 £0.001 0.995+ 0.001 0.975 £ 0.001
glass 0.906 +0.032 0.905£0.039 0.872+0.043 0.865+0.040 0.815+0.052 0.759 +0.072
housing | 0.833 +£0.025 0.825+0.028 0.783+£0.028 0.769 £0.030 0.583 £0.036 0.581 £ 0.035
iris 0.959 £0.043 0.968 £0.041 0.962 +0.047 0.946 £0.051 0.799 £ 0.085 0.476 = 0.149
pendigits | 0.976 £0.001 0.975+0.001 0.957 £0.001 0.959 +£0.002 0.855+0.002 0.664 £ 0.007
segment 0.976 £0.004 0.977+£0.004 0.964 +£0.005 0.968 £0.005 0.877 £ 0.008 0.847 £+ 0.010
stock 0.922 £0.011 0.924£0.011 0.902+0.014 0.898 £0.015 0.685+0.021 0.495 £+ 0.027
vehicle 0.886 +0.017 0.884 £0.022 0.837+0.030 0.824 £0.026 0.804 +0.031 0.745 +0.034
vowel 0.892+£0.014 0.908 +£0.014 0.834+0.020 0.831+0.019 0.596 £0.026 0.484 +0.034
wine 0.925 £0.065 0.956 £0.042 0.888 £0.069 0.898 £0.065 0.950+£0.046 0.213 +0.133
wisconsin | 0.552+0.034 0.524 £0.036 0.415=£0.039 0.411+£0.045 0.619 £0.029 0.287 +0.061

Table 6.3: Evaluation in terms of mean KT coefficient on semi-synthetic datasets

Dataset LWRF PWRF LWDT PWDT LWLR PWHH
cold 0.105+0.032 0.108 £0.038 0.050+0.031 0.053 £0.038 0.085+£0.031 0.070 £ 0.042
diau 0.211 £0.026  0.209 £0.025 0.121 £0.025 0.107 £0.020 0.220 £ 0.026 0.191 +0.024
dtt 0.141 +£0.028 0.130£0.031 0.091 £0.034 0.080£0.033 0.1354+0.029 0.111 £ 0.024
heat |0.067 £0.024 0.066 +0.021 0.036 £0.023 0.036 £0.022 0.049 +£0.025 0.052 £ 0.024
Spo 0.132£0.018 0.127£0.017 0.054 £0.012 0.056 £0.015 0.137 £0.016 0.121 +0.010

are both based on decision trees. Surprisingly, LWLR seems to achieve the best performance for several
benchmarks, not being notably superior, though, than the two random forest algorithms. As for the
halfspace-based algorithm PWHH, it seems to perform poorly and significantly worse than LWLR in the
majority of the benchmarks, as distinct from the case of synthetic datasets, where their performance was

comparable.
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Appendix A

Logarithmically Concave Probability
Distributions

Definition A.0.1 (Logarithmically Concave Function). A nonnegative function f: C — R, where C
is a convez set, is logarithmically concave (log-concave), if it satisfies the inequality

fOw+ (1= Ny) > f@) )
forallz,y € C and A € (0,1).

Definition A.0.2 (Isotropic Probability Distribution). A probability distribution D on R? is isotropic,
if it holds Egplx] = 0 and Vargp[x| = I, where I is the identity matriz.

Definition A.0.3 (Logarithmically Concave Probability Distribution). A probability distribution D on
RY is log-concave, if it has a log-concave probability density function f: R? — Rsq.

It can be shown that the family of log-concave distributions captures many well-known parametric
distribution families such as

e the uniform distribution over any convex set,

the multivariate normal distribution,

the exponential distribution,

the logistic distribution,

e the chi distribution,

the hyperbolic secant distribution,

the Laplace distribution and
e the Gamma distribution I'(a, §) with shape parameter a > 1.

Lemma A.0.1 (Dharmadhikari and Joag-dev [1988]). If a random vector @ follows a log-concave prob-
ability distribution on R, then, for any nonzero matriz A € R™*? Ax follows a log-concave probability
distribution on R™.

Lemma A.0.2 (Lovdsz and Vempala [2007], Klivans et al. [2009]). Let D be an isotropic log-concave
probability distribution on R with log-concave probability density function f: R* — Rsq. The following
properties hold.

1. For all x € RY with |||y < 1/9, it holds f(x) > 2-742=%=lz (anti-anti-concentration,).
2. If d = 1, then for all x € R, it holds that f(x) < 1. If d > 2, then for all z € R?, it holds

that f(m) S ﬁl(d)eiﬂﬂd)”w‘b; where ﬂl(d) £ 28ddd/26 and ﬂQ(d) £ Q(dfl)(g()Q(;lidl))(d—l)/Z (anti_
concentration,).

3. For any R > 0, it holds that Pryp [|z]2 > R] < e!~%/Va (concentration,).
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Lemma A.0.3. For any isotropic log-concave probability distribution D on R%, it holds

277 < Pr [|[(v,z)] < € < 2
x~D

for any v € S and € > 0.

Proof. Let D’ be the distribution of (v, x) = vTax, where £ ~ D. From Lemma A.0.1, we have that D’
is log-concave on R. Moreover, we have

E [z2]=v" E [2] =0
a~D’ @~D

and

T

Var,.p[z] = v' Vargp[zlv =v'v =1

)

namely D’ is isotropic. Let f: R — Rs( be the isotropic log-concave probability density function
corresponding to D’. Therefore, we have that

€

Pr[(v,2) <= Pr-c<a<d=[ fz)dr.

Using property 2 (anti-concentration) of Lemma A.0.2, we get that

6f(:z:) d:z:g/6 dz = 2e.

—€ —€
Using property 1 (anti-anti-concentration) of Lemma A.0.2, we get that

min{e,1/9} min{e,1/9}

lf(w) ar> [

f(x) da > 27 T2~ 9min{e1/9} / de >278 de =2""e.
—min{e,1/9}

—min{e,1/9} —€
The facts above conclude the proof. O
Lemma A.0.4. For any isotropic log-concave probability distribution D on R%, it holds

81.712169(1;,'0) < mlir;) [sign((u, x)) # sign((v, x))] < 5 - 2°%f(u,v)

for all u,v € R%\ {0}.

Proof. First, assume that u and v are parallel (which is always the case when d = 1). Then, it holds that
either Pry.p [sign({u, x)) # sign({v,z))] = 0 and 0(u,v) = 0 or Pry.p [sign({u, z)) # sign((v,x))] =1
and 6(u,v) = 7. In both cases, the inequality holds.

Now, assume that w and v are not parallel (so d > 2). Let V be the linear subspace of R? spanned
by u and v (we have dim(V) = 2) and let Q € RY*2 be a matrix, whose columns are the vectors of an
orthonormal basis of V. Let D’ be the distribution of Q"x, where  ~ D. From Lemma A.0.1, we have
that D’ is log-concave on R?. Moreover, we have

mNED’[w] - QT m]r\ia]D[w] =0

and
Var,p[z] = Q"Var, p[z]Q=Q'Q =1

(since @ is semi-orthogonal), namely D’ is isotropic. It can be easily shown that (u,z) = (QTu, Q" x)
and (v,z) = (QTv, Q" x). Therefore, we have that

Pr [sign((u, z)) # sign((v, 2))] = Pr [€(z)],

where &(x) denotes the event that sign((QTu, x)) # sign((Q"v, z)) for any & € R2. Furthermore, it can
be shown that 0(QTu, QTv) = 0(u,v). Let f: R? — R>q be the isotropic log-concave probability density
function corresponding to D’. For the following, we assume without loss of generality that QTu = (0, 1)
and Qv = (—sin (6(u,v)),cos (0(u, v))).
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We proceed by proving the left part of the inequality. Using property 1 (anti-anti-concentration) of
Lemma A.0.2, we get that

2% (1/9
Pr [E(z)] > /0 /0 r1{E (rcos(d),rsin(0))} f (rcos(),rsin(d)) drdd

x~D’
1 O(u,v) p1/9 T+0(u,v) p1/9
T / / r drdf + / / r drdf
2 0 0 Ly 0

1
= We(uav) )

Next, we prove the left part of the inequality, applying a similar technique used in Theorem 4 of
Balcan and Long [2013]. Using property 2 (anti-concentration) of Lemma A.0.2, we get that for any
v > 0, it holds that

Py (@) =3 [ 1{E(x.9)} f(z,y) dady
o i=0 / B2((H)M\B2 (i)

s 27 p(i+1)y

= Z/ / r1{E (rcos(8),rsin(0))} f (rcos(),rsin(d)) drdd
i=0 Y0 Jiy
o ] O(u,v) p>i+1)y +0(uw,v) p>i+1)y

< Bi(2)e 2 / / r drdf + / / r drdf
i=0 0 iy ™ i

iy
= Z Br(2)e™Diq% (2 + 1)0(u, v)
i=0

14 e P22y

_ 2
=A2n (1— e P2207)?

O(u,v),

where the functions (1, 82 are defined as in Lemma A.0.2. Therefore,

Pr (£ < Au(2)0 oo LHeBOn
wN{),[ (x)] < B1(2) (uyv)}g(ﬂ m

1 —B2(2)y
= (1(2)0(u, v) lim 72"‘6—2
¥—0 (1 _ e*ﬁg(Q)"y)

O(u,v)
=5-2%0(u,v).
O

We now define a more general family of distributions, proposed by Diakonikolas et al. [2020a], that
subsumes the family of isotropic log-concave distributions.

Definition A.0.4 (Bounded Probability Distribution). Let U,R > 0 and t: Rsg — R>q. An isotropic
probability distribution D on R? is called (U, R,t)-bounded, if, for any projection Dy of D onto a 2-
dimensional subspace V, Dy has a probability density function vy : R — R>q that satisfies the following
properties:

1. yv(x) > U for allz € V such that ||z||2 < R (anti-anti-concentration).
2. yw(x) <U for all x € V (anti-concentration,).
3. Prypy, [||x|l2 > t(e)] <€ for all e € (0,1) (concentration).

Lemma A.0.5 (Diakonikolas et al. [2020a]). Let U, R > 0, let t: Rsg — R>q and let Dy be a (U, R, t)-
bounded distribution on R®. It holds that

R2U'0(u,v) € Pr [hy(x) # ho(x)] < Ut(€)*0(u,v) + €

x~Dy

for any u,v € R?\ {0} and € > 0.
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Lemma A.0.6. Any isotropic log-concave distribution on R is (U, R, t)-bounded with U = 2'7e, R = 1/9
and t(e) = Vd +VdIn(1/€) for all € > 0.

Proof. Tt is a direct implication of Lemma A.0.2. O
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Appendix B

The Ellipsoid Method

We now make a brief reference to the Ellipsoid method that has been used as part of several algorithms
in this thesis. The Ellipsoid method constitutes an iterative method for minimizing convex functions. Its
main idea is to construct a sequence of decreasing volume ellipsoids that enclose a minimizer of a convex
function, which is to be minimized. Here, we focus on the most basic version of the Ellipsoid method
that concerns feasibility problems.

Definition B.0.1 (Positive Definite Matrix). A symmetric matric A € R™™ is said to be positive
definite, if & Ax > 0 for all nonzero x € R".

Definition B.0.2 (Ellipsoid). A set of vectors of the form
E(z,D)={zeR*: (x—2)'D Yz —2)} <1},
where z € R™ and D € R™ ™ is a positive definite matriz, is said to be an ellipsoid in R™ with center z.

Proposition B.0.1. The volume of an ellipsoid E(z, D) in R™ is
vol (E(z, D)) = det (D1/2) vol (B™) .

Definition B.0.3 (Separation Oracle). A separation oracle for a convex set P C R™ works as follows.
Given any point z € R™,

o if z € P, it answers YES,
o if z ¢ P, it answers NO and outputs a vector a € R™ such that {(a,x) < (a, z) for all x € P.

Lemma B.0.1 (Vishnoi [2021]). Let E(z, D) be any ellipsoid in R"™ and let a € R™ be any nonzero
vector. Consider the ellipsoid E(z', D'), where

J 1 Da
B n+1+vaTDa
n? (D 2 DaaTD) .

D = -
n?2 —1 n+1 a"Da

1t holds that
e E(z,D)N{x eR": (a,z) <(a,z)} C E(z',D’) and
o vol (E(2/, D)) < e~ 2=0vol (E(z, D)).

Moreover, the minimum volume ellipsoid that contains E(z, D) N {x € R": (a,x) < (a, z)} is unique
and given by E(z', D").

Lemma B.0.2 (Vishnoi [2021]). Let P C R™, where n > 1, be a convez set that is contained in a
n-dimensional Fuclidean ball of radius R > 0 and contains a n-dimensional Fuclidean ball of radius
r > 0. Then, the Ellipsoid method outputs a point & € P after O(n?log(R/r)) iterations. Moreover,
every iteration can be implemented in O(n? + Tsep) time, where Tyep, is the time required to answer a
single query by the separation oracle.
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We remark that Lemma B.0.2 assumes that all calculations are executed in infinite precision and
constant time, which is not the case in reality. This is, because the computation of the ellipsoids involves
taking square roots, which cannot always be exactly performed. Therefore, one has to make some slight
adjustments to the basic ellipsoid algorithm for the case of a predetermined representation size, so that
its theoretical guarantees are not affected. For more details on this issue, we refer to Vishnoi [2021].

Algorithm 12 Ellipsoid Method
Input:

e A separation oracle for a convex set P C R™
e An ellipsoid E(xg, Dg) in R™ such that P C E(xq, Dg) and V = vol (E(xq, Dy)).

e A parameter v € R+.
Output:

e YES and a point in P, which is always the case when vol(P) > v.

e NO, in which case it is guaranteed that vol(P) < v.

: T+ [2(n+1)In(V/v)]
:fort=20,...,7 do
Query the separation oracle for P on x;.
if x; € P then

return YES, x;
else

Let a; be the vector returned by the separation oracle.

Let E(x¢41, Dit1) be the minimum volume ellipsoid such that: > See Lemma B.0.1

@ N DG W

E(xy, D) N{z € R" : (at,x) < (at,x¢)} C E(xi41, Diy1)

9: end if
10: end for
11: return NO

94



Appendix C

Omitted Proofs

C.1 The Proof of Lemma 2.7.1

Lemma C.1.1. Let D be an (n, f)-RCN distribution, where n € [0,1/2) and f € {£1}*. For any
h € {£1}*, it holds that

Lp, () —n
Lo, e, (h) = 51—27]

and f is a minimizer of Lpg,_, .

Proof. We have that

Lot (h) = Br [h(z)#y]

ylz

— B | Br ) 2] x]}

= E |H{h(z) = f(2)} Pr [y# f(2)|2]+1{h(x) # f2)} Pr [y=[f(z)] fv]}

e~D; y~Dya y~Dya
=B |(1-2,Br W# f@)14]) 1) £ f)| + B | Pr W fe)4]
= E [(1—2n) 1{h(x) # f(2)}] + (w};{:p [y # f(z)]
= (1 - 2n)LDz7fse()71(h) +n,
and Lp g, ,(f) = n, that is, f minimizes Lp g, _,. O

C.2 The Proof of Lemma 2.7.2

Lemma C.2.1. Let D be an (1, f)-Massart distribution, where n € [0,1/2) and f € {0,1}*. For any
h € {0,1}%*, it holds that
L'D,Zofl(h‘) - L,D,EU—I (f)

L h) <
Dy frto—r (B) < =21

and f is a minimizer of Lp g, ., .

Proof. Following the same procedure as in Lemma C.1.1, we get that

Loss) = B (12, Br W7 f)|a]) 100w) £ f@)] + B, | Pr b 1(a) |l

z~D, ~Dyla e |[Y~Dy|a
[y # f(z)]

> B (- 20) MA@ £ [@H+ Pr
= (1 - 277)LD17f,13071 (h‘) + LDIofl (f) :

and if h = f, the above holds with equality, that is, f minimizes Lp g, ,. O
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C.3 The Proof of Lemma 5.2.1

Lemma C.3.1. Let U € RF*? where u; # u; for all i # j, and Dy be an isotropic log-concave
distribution on R%. There exists a polynomial P: R® — R such that the following holds. For any e > 0,
there exists a matriz V. € R¥*? with the properties:

1. maxi<icj<k Pronp, [sign ((ui —uj,@)) # sign (v — v;,@))] < ¢
2. miny<icj<i ||vi — vjl, > 9—P(d,k,1/€)

3. IV]le <1

Proof. To prove the existence of a matrix with the aforementioned properties, we will construct a linear
program, whose output satisfies the desired properties with positive probability.

Let D be any probability distribution on R? x Sy, that is realizable by ory and whose marginal on R?
is D,. We have seen that LSFs are properly and efficiently PAC learnable in the noiseless setting with
respect to the KT distance. Here, we will adopt the same linear programming approach, except that
the samples drawn from D will now be rounded before constructing the LP’s constraints. As we will
shortly see, rounding the samples is necessary to bound the bit complexity of the LP’s output, so that
the second and third property of the lemma can simultaneously hold.

Let ¢, R > 0. Let C be any finite subset of B%(R) with the property that

max min|ly —xl|ls <e. 1
Lmax minly — o, (1)

We define the rounding function »: R?\ {0} — C, which takes a feature vector & # 0 as input, projects
it on S9~!(R), which corresponds to the point Rz/||z||2, and returns the closest point to Rz/||z||2 that
is in C. Namely,

Rz

r(x) € argmin —
E[P

yel

y—

2
Let T = ((a:(t), W(t)))te[N] be a training set of N independent samples drawn from D,. Consider the
following linear program, which we denote by LP3:

Find V € Rkxd

subject to 7T(]) ((vi —vj,r () >1 V1I<i<j<k, te[m]
We previously showed that replacing the rounded feature vectors with the original ones in the above
constraints, renders the linear program almost surely feasible with AU, for some sufficiently large A,
being a solution. We will now show that LP3 is also feasible with high probability. To this end, it
suffices, to upper bound the probability of the event that there exist some 4, j, ¢, such that the rounding
procedure places x; on the wrong (opposite) side of the hyperplane corresponding to u; —u;. We denote
this event by &;.

By definition of 7, we infer that for any a € S¢~! and x # 0, if & and r(x) do not lie in the same side
of the hyperplane defined by a, then the distance from Rx/|x|2 to that hyperplane must be at most e.
This implies that

Pr [z e R(a)] < Pr [[(a, Ra/|lz|,)| <c|z #0],
x~Dy x~Dy

where R(a) £ {x € R? : sign({a, r(x))) # sign({a,z))}. Using Lemma A.0.3 and property 3 of Lemma
A.0.2 (concentratlon) we get that, for any a € S9!, it holds

Py [zcR(a) < Pr [l Ra/|l) < <] @0

x~Dy

L e, Bx/|lzll2)| <eAllzlls < B2 # 0]+ Pr {lz]. 2 Rz # 0]

| A\

gg [{a,2)| < ellzl2/RAllz]2/R < 1]+ Pr [|z]: > E]
Pr [[{a,z)| <el+ Pr [[]2 = E]
x~Dy

| A

<%+ elfR/ﬁ.
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Using the above fact and applying the union bound, we get that

Pr[&] < Pr S UR i —uy)| < N(;) (2€+€1—R/\/3) .

1<J

Suppose that £ does not occur. Then, the rounded points used to construct LP3 can be thought of
independent samples drawn from the distribution D.,, which is the conditional distribution of 7(x), where
x ~ Dy, given that sign ((u; — u;, x)) = sign ((u; — u;, r(x))) for all ¢ # j. The distribution D, satisfies
the property

Pr [x €S| = Pr r(x) €S

x~D., x~D,

z ¢ | R(u; —uy) (2)

i<j
for all measurable S C R<.

We fix any ¢,6 € (0,1). Following the same procedure as in Section 5.1, we deduce that using
N € O ((dlog(k/e) + log(k/d)) k?/€) training samples and solving LP3, yields a matrix V' such that,
with probability at least 1 — ¢, it holds

P < Al o v <e€.
| Jpax Pr [sign ((u; — uy, x)) # sign ((v; — v;,@))] < €

From (2), we infer that, with probability at least 1 — ¢, it holds that

Pr |[sign ((u; —u;,7(x))) # sign ((v; —v;, 7 ‘ ¢ U Ru; —u;)| <e =
@~ D i<j
Pr |sign ((u; —u;, ) # sign ((v; — v, 7( ‘ ¢ UR i—uj)| <e =
@~ De i<j

Pr [sign ((ui —uj, @) # sign ((v; —vj, 7(@)))] < e+ Pr z € | JR(ui —uy)

x~Dy x~Dy
i<j

for all 1 <14 < j < k. Moreover, we have that

Pr [sign ((v; —v;,x)) # sign ((v; —vj,r(x)))] = Pr [z € R(v; —v;)] .

x~Dy x~Dy

for all 1 < i < j < k. Therefore, by application of the triangle inequality, we get that, with probability
at least 1 — ¢, it holds

1<i<j<k &~Dy

mane Py fsign (us—uy.) 7 sign (o~ 0] < e () 1) (2070

We denote the complement of the above event by &£. Taking a union bound over & and &£ N & we
finally conclude that the above procedure, with probability at least

1-Prl&U(EfN&) =21-0- N(l;) (25 + el_R/ﬂ> )
yields a matrix V such that

max  Pr [sign ((u; — u;,x)) # sign ((v; — v;,x))] < e + ((g) +1) (25+61—RW) .

1<i<j <k @~Dy
Choosing ¢ < 1/2 and setting
min{e, d}
S N
AN (3)
and
26]\]( )

R>Vdn (e 3]
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we get that, with probability at least 1 — 26 > 0, it holds

i g i AP <
Lmax Py [sign ((ui — u;,@)) # sign (v, — v;,2))] < 2.
which proves property 1 of the lemma.
To prove properties 2 and 3, we leverage the fact that LP3 is constructed using rounded samples.

Specifically, let G4(y) = {...,—2v,—7,0,7,27,... }¢. Choosing C = G¢ (5/\/&) N BY(R), we get that C
satisfies (1). Moreover, given the aforementioned constraints for ¢ and R (see (3) and (4)), we deduce

that the elements of C can be represented using poly(d, k, 1/€) bits. Also, recall that 71'1(;) € {£1} for all

1<i< j<kandt e [N]. Hence, we infer that the constraints of LP3 can take the form Ax < b, where
k k .

A€ ZN(2)Xkd, be ZN(Z) and = contains the unknown variables'.

Lemma C.3.2 (Schrijver [1980]). Fiz any A € Z™*", b € Z™ and ¢ € Z™ and consider the linear

program min(c, x) subject to Az < b. Let U be the mazimum size of a;;,b;,c;, where i € [m] and

j € [n]. The output of the linear program has size O(mnU + mnlogn) bits.

Using the above facts and Lemma C.3.2, we get that any solution of LP3 is a matrix V' with elements
with minimum nonzero absolute value 2-P°¥(4:£:1/€) and maximum absolute value 2P°W(4:+:1/€) Without
loss of generality we assume that |[V|p < 1 (we can always divide V' by its Frobenius norm and
the resultant matrix will still satisfy property 1 of the lemma and will still consist of elements with
minimum nonzero absolute value 2-P°(4:k.1/€)) * Then, using the fact that v; # v; (as the constraints
of LP3 demand) for i # j, we get that min<;<j< |[|v; — vj||, > 27PW(4k1/€) These facts conclude the
proof. O

1Strictly speaking, the elements of A, b and c are rational numbers, but can easily be converted to integers (by
multiplying every constraint’s coefficients with the least common multiple of the their denominators).
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