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Abstract

In an era where data is often described as the new oil, the control and monetization of
personal data have largely been in the hands of centralized entities. This thesis presents
a decentralized data marketplace built on the Cardano blockchain, leveraging smart con-
tracts to automate the process of data exchange between buyers and sellers. Utilizing
Haskell and Plutus for smart contract development, and a browser extension for data
collection, the system aims to return control of personal data to the individual.

Utilizing Cardano’s Extended UTXO (EUTxO) model and smart contracts, the market-
place enables users to tokenize their data, thereby converting it into tradable assets. The
system incorporates a browser extension for data collection, IPFS for decentralized data
storage, and cryptographic techniques for secure data transmission and identity verifi-
cation. Two primary workflows, "Ask" and "Bid", are elaborated to demonstrate the data
sale and purchase mechanisms.

This diploma thesis aims to indicate the potential of blockchain technology and smart
contracts in automating complex processes, thereby offering a versatile solution to the
universal problem of data ownership and monetization. This work serves as a stepping
stone for further research in leveraging blockchain technology for practical, secure, and

transparent data management solutions.

Keywords

Blockchain, Smart Contracts, Cardano, Decentrilized Data Marketplace, Data Own-
ership, Haskell, Plutus, IPFS
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Preface

In the digital age, data has become one of the most valuable commodities. Yet, the
individuals who generate this data often have little control over how it is used, monetized,
or even secured. This imbalance of power between data generators and data controllers
has led to countless of ethical and privacy concerns that are becoming increasingly diffi-
cult to ignore. At the same time, the rise of blockchain technology has shown promise in
removing central authorities and empowering individuals, offering a potential solution to
this pressing issue.

My journey into the world of blockchain technology was furtherly motivated by a fasci-
nation with the capabilities of smart contracts to automate and secure complex processes.
While data privacy is an important aspect, the primary aim of this thesis is to showcase
how smart contracts can be practically applied to solve universal problems—in this case,
the issue of data ownership and monetization.

As you go through the pages that follow, you will find a comprehensive exploration
of a decentralized data marketplace built on the Cardano blockchain. This marketplace
leverages smart contracts to give individuals greater control over their personal data, al-
lowing them to monetize it on their terms, while also automating the data transaction
process and enhancing security. Although the implementation is specific to the Car-
dano ecosystem, the principles and methodologies can be adapted to other blockchain
platforms, offering a versatile solution to a universal problem.

I hope this work serves as an inspiration for further research and development in lever-
aging smart contracts for practical solutions. Whether you’re a student, a researcher, or
simply someone intrigued by the transformative potential of smart contracts to automate
and secure a wide range of applications, I believe this thesis has valuable insights to offer
you.

Thank you for taking the time to engage with this work. I look forward to the discus-

sions and developments that it may spark.






Chapter “

Introduction

In the modern era, data has become one of the most valuable commodities. It drives
decision-making in various sectors, from healthcare and finance to marketing and pub-
lic policy. However, the current models of data collection and monetization often leave
individual users with little control over their personal information. This centralized ap-
proach has led to growing concerns about data privacy, security, and ownership. The
rise of blockchain technology and smart contracts offers a transformative solution to
these challenges, enabling a decentralized, transparent, and secure framework for data
management.

While existing systems offer some level of data protection, they often rely on central-
ized intermediaries, making them susceptible to security risks and limiting user control.
Moreover, users rarely receive tangible benefits for contributing their data, creating an
imbalance in the data economy.

The primary aim of this thesis is to explore the potential of blockchain technology,
specifically through the use of smart contracts on the Cardano network, to create a

decentralized data marketplace. This marketplace aims to:

1. Empower users by giving them control over their data through smart contract au-

tomation.

2. Provide a transparent and equitable system for data exchange, eliminating the need

for centralized intermediaries.

3. Ensure security by leveraging the cryptographic features of blockchain technology.

Research Questions

1. How can blockchain technology be leveraged to create a decentralized data market-

place?

2. What are the technical challenges and solutions in implementing such a market-

place?
3. How can smart contracts ensure data privacy and security?

This thesis focuses on the design and implementation of a decentralized data market-

place using Cardano’s smart contract platform, Plutus. It covers the technical aspects,
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including front-end and back-end development, smart contract implementation, and data

storage solutions. Additionally, it explores the ethical considerations surrounding data

privacy and ownership in a blockchain-enabled environment.

Thesis Outline

1.

5.

6.

Introduction: Provides an overview of the project, including the problem statement,

objectives, research questions, and scope of the study.

. Background: Explores the theoretical foundations of the project, including blockchain

technology, smart contracts, and decentralized applications.

Methodology and Implementation: Details the system architecture and development

process.

Results and Discussion: Analyzes the technical achievements, challenges, and fu-

ture directions.
Ethical Considerations: Explores the ethical implications of the project.

Epilogue: Reflects on the broader impact and potential for future work.

By addressing the challenges and opportunities in creating a decentralized data mar-

ketplace, this thesis aims to contribute to the ongoing discourse on data privacy, security,

and ownership. It serves as a stepping stone towards a future where blockchain tech-

nology and smart contracts empower individuals with greater control over their personal

data, thereby fostering a more transparent and equitable data economy.
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The Theoretical Background







Chapter a

Literature Review

2.1 Blockchain Technology

Blockchain has emerged as a groundbreaking technology, in both the academic and
the business world , fundamentally altering the way we perceive digital transactions and
data storage. It gained initial prominence through its first application in cryptocurrencies
like Bitcoin [1]. The technology is characterized by its decentralization, transparency and
robust security mechanisms [2].

However Blockchain technology has found applications far beyond cryptocurrencies,
extending into sectors like healthcare, supply chain management and governance [3]. In
healthcare for example blockchain is employed to ensure data privacy and security, espe-
cially when it comes to sensitive patient data [3]. The decentralized storage mechanism
of blockchain ensures that data is not only secure but also easily verifiable, which adds
an extra layer of trust and accountability.

Blockchain, at its core functions as a ledger whose purpose is to record transactions
across a network of distributed computing systems. This unique architecture provides
security, transparency and data integrity. To achieve this transactions are grouped into
blocks, then connected in a sequential manner to create a chain like structure called
"blockchain." Unlike ordinary systems, blockchain doesn’t rely on a central authority for
control, making it more democratic. The authenticity of transactions is verified by network
nodes using cryptographic techniques and consensus algorithms which strengthens the

network against changes and ensures its reliability.

2.1.1 The UTXO model

Bitcoin, the crown jewel of cryptocurrencies, operates on a ledger model that is funda-
mentally rooted in the concept of Unspent Transaction Outputs (UTxOs) [4]. In this model,
individual transactions are not mere linear events; they are complex entities consisting
of both inputs and outputs. These outputs serve as value placeholders, representing
specific cryptocurrency amounts that stand ready to be utilized in future transactions.

It is important to note that each output is destined to be linked to precisely one input in
a subsequent transaction. It’s a meticulously structured system, with no cycles allowed,
and no double spendings. This ensures that the transactions form a Directed Acyclic

Graph (DAG), a graph of financial interactions where each transaction—characterized by
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‘m’ inputs and 'n’ outputs—manifests as a unique node, complete with its own set of in-
bound and outbound edges. An output can then serve as a potential input for subsequent
transactions, thus contributing to the continuous construction of the blockchain.

The model also enforces a law of conservation, akin to the physical laws that govern
our universe. The total value absorbed by the inputs of a transaction must be in perfect
equilibrium with the total value emitted by its outputs. In essence, value is neither created
nor destroyed; it is meticulously conserved.

An important detail to note is: each output is a one-time-use entity. Once an output
is used as an input in a subsequent transaction, it transitions from being "unspent" to
"spent." This means it can no longer be reused as an input for any future transactions.
This one-time-use nature of outputs is what gives them the label "Unspent Transaction
Outputs” until they are actually spent. It’s a built-in security feature that prevents double-

spending and ensures the integrity of the transaction history.

2.2 Smart Contracts

2.2.1 The Extended UTXO Model

Cardano’s ledger model is the EUTxO [5].The Extended UTxO model (EUTxO) is an
extension of Bitcoin’s UTXO model that supports a more expressive form of validation
scripts. In this extended model, an output can be spent, used as input of a subsequent
transaction, only if it satisfies a function v. This function is known as the output’s
validator. Here comes the concept of the redeemer. A transaction proves its eligibility to
spend an output by providing a redeemer value p, such that v(p) = true.

Let’s examine the simplest possible case, where a wallet owner tries to spend one of
their own UTXOs. In a basic UTXO model, one can conceptualize the redeemer being the
cryptographic hash of the spending transaction signed by that wallet’s private key and
the validator function as a fixed script that verifies, if this hash is signed by the owner of
the transaction’s inputs.

On the other hand, in the Extended UTxO (EUTxO) model, the concept of a redeemer
is not confined to a specific value; it can essentially be any value, chosen and dispatched
by the transaction aiming to spend the UTXO. Moreover, the validator function v is not set
in stone; it can be substituted with any smart contract logic that suits the application’s
needs.

To capture and maintain the state of the machine, the EUTxO model elevates the
traditional UTxO output from a mere pair of a validator v and a cryptocurrency value to
a more intricate triple—(v, value, §). Here, 6 is a datum that holds contract-specific data,
adding another layer of complexity and utility to the model.

But that’s not all! In Cardano’s implementation, smart contracts are also aware of the
entire context of the spending transaction that is attempting to consume the UTXO. This
comprehensive access empowers validators to enforce contract continuity seamlessly.
Multiple validators can be coordinated to create complex systems. To sum it up, for

an input with a redeemer p that is part of the transaction tx, the system verifies its
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entitlement to spend an output (v, value, 6) by ensuring that
v(value, 6, p, tx) = true.

In an attempt to summarize the essence of the Extended UTxO (EUTxO) model and its

role in Cardano’s smart contracts, let’s synopsize its core components:

e Datum: This is not just any piece of data; it’s a payload carried within a transac-
tion output. Set in stone by the transaction that births the output, the datum is
immutable. When an output is about to transition into a "spent" state, this datum
is passed along to the validator function, which then decides whether to greenlight
its spending. This mechanism provides each locked output with a certain degree of

statefulness.

e Context: The validator isn’t operating in a vacuum,; it receives rich information con-
cerning the spending transaction. This includes all of the transaction’s inputs and,
crucially, access to all of its outputs. This opens the door to interesting scenarios
where multiple validators can work in coordination to orchestrate complex logical

operations.

e Redeemer: This is the wildcard value passed to the validator by the spending trans-
action. It’s a versatile tool, especially when multiple actors wish to invoke the same
validator. The validator can apply distinct rules to each actor, or even allow a single

actor to execute varied operations.

2.2.2 Cardano and Plutus

Cardano employs Plutus as its native programming language for smart contracts, a
powerful tool based on Haskell, which makes good use of Haskell’s strong type system
and functional programming paradigms. In practice, smart contracts are developed in
Haskell, which is then compiled into Plutus Core using the Plutus Tx GHC plug-in. Un-
like Etherium’s Solidity, Plutus places great priority into security. This section dives
into Plutus’ strengths and some of its advantages over Solidity, as highlighted in the
paper "UTxO- vs account-based smart contract blockchain programming paradigms" by
Briinjes, Gabbay, and others (Briinjes et al., 2020) [6].

Enhanced Programmability Plutus places a higher burden on programmers but com-
pensates with robust mathematical properties that enhance programmability, like Mon-
ads [6]. This mathematical emphasis provides a strong foundation for developing more

complex and secure smart contracts.

User control - Determinism One of the standout features of Plutus is the level of control
it offers to users. In Plutus, the consumer of a contract can create a transaction and
determine its inputs and outputs in advance. This allows users to guard against potential

errors or attacks independently of the contract’s designer [6]. Whenever a transaction is
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accepted, it will have predictable effects on the state of the Ledger. By making sure
a script will always terminate(see Halting Problem [7]) and that it will return the same
result if applied the same arguments, like a pure function, deterministic script evaluation
is provided. Consumers can run locally their potential transaction, and predict how much
the fees will cost, if the transaction will be accepted and the impact it will have on the
Ledger. Thus, users acting in good faith will have no unexpected side effects and will

never lose any collateral by accident.

Mission-Critical Impact Mission-Critical Impact The paper points out that Ethereum’s
can be “arguably buggy”, a phenomenon stemming from the underlying programming
paradigm of Solidity. Plutus avoids such risks, making it a more reliable for mission-
critical applications [6].

In addition to its mathematical rigor and user-centered design, Plutus also inherits
Haskell’s focus on immutability. This feature is not just a theoretical nicety, but a prac-
tical feature that enhances the security and robustness of smart contracts. Immutability
removes a wide range of bugs related to mutable state, making it easier to reason about
the behavior or smart contracts while developing them, and ensuring that once deployed
the contract’s rules will behave as expected. This aligns well with blockchain technology’s

immutable nature, a key feature responsible for its security and trustiness.

2.2.3 Validators and Minting Policies

So far we have discussed Validator smart contracts, and we mentioned that whenever
a UTxO locked by a validator smart contract address is attempted to be spent, the cor-
responding validator smart contract will run, with 3 inputs, the Datum(from UTxO), the
Redeemer(from input) and the Transaction Context.

However a smart contract apart from having a Validator purpose, it can also have
a Minting Policy purpose. These smart contracts are called Minting Policies, and they
give the ability to mint native Cardano tokens, which can serve multiple purposes in the
blockchain ecosystem.

Tokens can be used to represent specific roles for users interacting with smart con-
tracts [8]. For instance, a token could represent the role of a creditor in an interest-based
contract. Since a token can have a unique identifier, smart contract datums can point
to them, creating complex role based conditions, without requiring a hard-coded list of
assets inside the contract itself. Since tokens are themselves resources on the ledger,
they can be traded, effectively allowing for the swapping of roles [8]. For instance, a buyer
could acquire a seller token, as will be demonstrated in the upcoming implementation.
Tokens can ensure that all participants in an agreement, such as initial coin offering,
have been involved. By issuing participation tokens, the right to participate becomes a
tradable asset, ensuring that no participant can be unfairly omitted [8].

Concerning their execution context, Minting Policies run whenever someone tries to
mint or burn a token(Currency symbol) they have defined. They receive 2 inputs, the

Redeemer and the Transaction Context. They are not validating the unlocking of some
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UTxO, so there’s no Datum, in contrast to Validator scripts.

2.2.4 Parameterized scripts

So far we have discussed smart contract validators, which have a validator address
and lock UTxOs sent at their address.Instead of defining one script, with a single script
address, with all UTxOs sitting at the same address, we can define a family of scripts that
are parameterized by a given parameter [9]. These are called parameterized scripts. A
parameterized script, once passed actual concrete parameter values, can obtain its ad-
dress like simple un-parameterized validator scripts do. This ability, raises the question,
whether we should sometimes put a piece of state we want into the datum or into a script’s
params.

When we add the data in the datum, and stick with non-parameterized script, we have
1 script address. So all UTxOs and Datums for a non-parameterized script sit at the same
script address, meaning they are easily discoverable.

On the other end, if we use a parameterized script, for each different choice of param-
eters, we get a different script, with a completely different hash and therefore a completely
different address. As a result they are much harder to find for someone who would want
to discover them. They would need to know which params to look for in order to compute
the script’s address. So overall choosing between the two can depend on the following

factors:

1. Type of Data: If the data youre dealing with is dynamic and expected to change
frequently during the contract’s operation, then it may be more suitable to store this
data in the Datum. The Datum is designed to hold the state of the contract at any
given time, and so it is well-suited for frequently changing data. On the other hand,
if the data is more static and set when the contract is first deployed(like a specific
ratio for a decentralized exchange), then it may be better to use a parameterized

script.

2. Contract Flexibility: Parameterized contracts offer greater flexibility. They can be-
have differently based on the parameters they are instantiated with. If you want to
reuse the contract logic across different instances with slightly different behaviors,
then a parameterized contract can be a good choice. However, if your logic is tightly
coupled with the state of the contract and the state changes frequently, using the

Datum to store state might be a better approach.

3. Size and Complexity: The complexity and size of your data can also influence this
decision. If your data is large or complex, storing it in the Datum might be more

manageable and efficient.

In general, these decisions will often be made based on the specific requirements of
the smart contract, and there’s no one-size-fits-all answer. Understanding the contract’s

domain, as well the differences and trade-offs of each option is vital to guide your decision.
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Minting Policies make great use of parameterized scripts. By parameterizing a minting
policy with the id of a user’s specific UTxO, and then demanding that any transaction
using that minting policy must consume as input that UTxO, truly unique tokens can be
minted. A UTxO can only be spent once, based on the UTXO model, so this ensures that
only the owner of the UTxO parameter will be able to mint the token, and do that only
once. This approach ingeniously enables the creation of authentic non-fungible tokens

(NFTs) within the Cardano ecosystem.

2.2.5 Off-chain vs On-chain code

Plutus Core code operates in two distinct realms: the on-chain and off-chain environ-
ments, each with its own set of rules and objectives.

When we talk about on-chain code, we’re referring to the computational logic that val-
idates transactions directly on the blockchain. This code runs every time a transaction is
proposed, assuring its validity. If the transaction passes, it’s highly likely to be incorpo-
rated on the blockchain. But this computational validation isn’t free, transaction fees are
levied to deter malicious actors from flooding the network and unnecessarily occupying
the blockchain nodes [10], thereby safeguarding the blockchain’s operational integrity.

On the flip side, off-chain code has a different mission. It serves as the architect of
transactions, crafting them for submission to the blockchain. Imagine you’re engrossed
in an online auction hosted on Cardano. To place a bid, you'll need to dispatch specific
data to the auction’s smart contract—like an ID and your Ada offer. Here, off-chain code
takes the reins, constructing the transaction, running preliminary validations to avoid fee
wastage, and calculating the transaction fees before sending it off into the blockchain.

Firstly, consider a user locking a UTXO under a specific validator address. When the
moment arrives to spend this UTXO, the spending validator is invoked. But here’s the
catch: this validation process initially occurs off-chain. Why? To mitigate the compu-
tational burden on the blockchain nodes. This off-chain validation serves as an initial
filter, ensuring that only transactions with a high likelihood of success proceed to the
on-chain validation stage. It’s a resource-efficient mechanism that prevents the network
from being overwhelmed with failing transactions.

In the event that a transaction bypasses the off-chain checks—perhaps due to a rogue
actor attempting to abuse the system—they won’t be able to bypass the on-chain vali-
dations. Each transaction involving smart contract validation is required to include a
collateral UTxO [11]. Should the transaction fail the on-chain validation, this collateral
UTxO is forfeited. It’s a financial safeguard that adds another layer of security, ensur-
ing that malicious actors think twice before attempting to flood the network with invalid

transactions.

Smart Contract Deployement When interacting with smart contracts, there are two
options: either embed the entire smart contract within each transaction or deploy it
once and reference it in subsequent transactions, using a reference input UTxO. The

latter approach, akin to a software design pattern, minimizes redundancy by storing
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the validator script once on the blockchain and then referencing it as needed. While
this demands an initial cost for deployment, it yields long-term savings in computational
resources and storage, making it the preferred strategy for frequently used contracts. On
the other hand, Minting Polcies that are meant to be run only once can be embedded
in the transaction that mints the token, and then discarded, since they are not needed
anymore.

In summary, the Extended UTxO model offers a robust framework for transaction
validation, smart contract deployment, and token minting, optimizing for both compu-
tational efficiency and storage. It’s a paradigm that aligns well with the principles of

scalable, secure, and efficient blockchain systems.

2.3 Decentralized Applications

What are dApps? Decentralized applications, commonly known as dApps, are a ground-
breaking form of software systems empowered by blockchain technology. Unlike tradi-
tional applications that run on centralized servers, dApps operate on a peer-to-peer (P2P)
network. This decentralization is not merely a technical shift, it’s a way that redefines
how applications are structured and function. The immutability feature of blockchain is
fundamental to these applications. This immutability ensures that once data is recorded,
it cannot be altered without altering all subsequent blocks, thereby providing a robust
layer of security.

While the initial killer application of blockchain was, undoubtedly, cryptocurrencies,
the true potential of blockchain technology lies far beyond just digital coins. Decen-
tralized applications offer a more secure, transparent, and open-source environment for
users. They serve multiple purposes, from financial transactions and smart contracts to
decentralized autonomous organizations (DAOs) and beyond.

One should note that decentrilized applications also come with their own challenges
and vulnerabilities. One such issue includes the Byzantine Generals’ Problem, a data syn-
chronization issue in distributed systems [12], when tryint to achieve consensus among
potentially unreliable or malicious network nodes. It should be noted, however, that most
blockchain protocols implement consensus algorithms designed to mitigate this very is-

sSue.

2.4 IPFS Protocol

As more and more dApps immerse, the need for off-chain data storage is a recurring
theme. While blockchain excels in ensuring data integrity through its immutability prin-
ciple and establishing trust, it is not a suitable place for storing large volumes of data.
This is where the InterPlanetary File System (IPFS) [13] comes into play, offering a robust
solution that aligns well with the decentralized nature of blockchain.

Conceived by Juan Benet, IPFS is a peer-to-peer (P2P) distributed file system that
aims to connect all computing devices under a unified, versioned file system. Unlike the

familiar HTTP protocol, where a domain name essentially maps to a specific IP address
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hosting the desired content, making it location centric, IPFS adopts a content centric
approach. In IPFS users search for a unique content identifier, commonly abbreviated
as CID, which essentially is a hash of the content in question. Rather than pointing
to a specific address, the content is decentralized and distributed across the network’s
peers. Each network member maintains a distributed hash table(DHT), that lists the
accessible locations for each CID. These hyperlinks (CIDs) and the data they point to form
a Merkle DAG, a data structure that allows for efficient storage and retrieval of data in a
decentralized network [13].

Why is IPFS used in dApps? IPFS (InterPlanetary File System) is more than just a
system for distributing files across multiple computers, it combines several advanced
features to create a robust and versatile platform for decentralized data storage and
retrieval. Its components ensure that IPFS is resilient to single points of failure and
eliminate the need for nodes to trust each other. It’s a robust system that has already

found applications in various domains, including blockchain technology [14].
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3.1 Book.io: Tokenizing Digital Books for True Ownership

Book.io presents a compelling case study in the application of blockchain technology
to digital asset ownership, specifically in the realm of digital books (eBooks and Au-
diobooks) [15]. Unlike traditional digital book platforms, where consumers purchase a
"license to access content" rather than owning the actual content, Book.io introduces the
concept of Decentralized Encrypted Assets (DEAs). These DEAs grant genuine ownership
of digital books to consumers, allowing them to sell, lend, or give away their digital books.

Their platform employs a two-tiered technological architecture:

e The Decetralized Encrypted Asset (DEA), which represents the actual encrypted
digital book.

e The $BOOK Token, serving as the ecosystem’s utility and loyalty token.

The DEAs are a significant advancement over traditional Non-Fungible Tokens (NFTs).
Unlike basic NFTs that merely link to an image or file, DEAs in Book.io are fully encrypted
and stored in decentralized storage, ensuring that only the owner can access the content.
This feature aligns closely with the data ownership and encryption aspects of our data
sale marketplace, although applied in a different domain.

Furthermore, Book.io introduces a native $BOOK token to incentivize reading, offering
a unique perspective on how tokens can drive user engagement and add value to digital
assets. This token-based incentive mechanism could offer insights into enhancing user
participation in data sale marketplaces.

In summary, Book.io serves as an instructive example of how blockchain technology
can revolutionize digital asset ownership and user engagement, and provide immutable
and trustless record-keeping. Its innovative use of DEAs and token-based incentives
provides valuable lessons for the development and refinement of blockchain-based data

sale marketplaces.

3.2 JPG Store

JPG Store emerges as a pioneering marketplace for Non-Fungible Tokens (NFTs) on

the Cardano blockchain, introducing innovative features that gamify user interactions
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and transactions. The platform is an ecosystem covering a wide range of digital artworks
and creations, that rewards active participation through Experience Points (XP) and its
native $JPG token.

The $JPG token serves multiple purposes within the ecosystem. It acts as a reward
for loyal users and offers various benefits, such as reduced trading fees and priority
minting. This multi-utility token could provide insights into how a similar token could be
implemented in a data sale marketplace for incentivizing data providers and consumers.

JPG Store has undergone multiple smart contract upgrades to enhance user experi-
ence and security. The most recent upgrade focuses on performance, allowing for bulk
purchases of up to 52 assets in a single transaction. This is particularly relevant to our
data sale marketplace, where efficient and secure transactions are crucial.

JPG Store aslo employs a dual validator system for handling "asks" and "bids," terms
borrowed from traditional finance. The dual validator system in JPG Store is designed to
optimize transaction efficiency and security. This technology could offer valuable insights
for our marketplace, where similar challenges around transaction speed and security
exist.

In summary, its innovative features and mechanisms provide valuable insights that
could be applied to enhance user engagement and transaction efficiency in blockchain-

based data sale marketplaces.
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Methodology and System Architecture

The architecture of this project is an orchestration of several components: a browser
extension, a Next.js dApp with both front-end and back-end capabilities, and three Plutus
smart contracts—two for validation and another for minting policies. Additionally, the
InterPlanetary File System (IPFS) is employed for data storage, and a key-value storage
system is utilized by the back-end.

4.1 Overview of the dApp

Broadly speaking, the system accommodates two types of actors: Sellers and Buyers.
A Seller is an individual who aims to monetize their browsing and personal data by selling
it. On the other hand, a Buyer is an entity or individual interested in purchasing such
data for analytics or other purposes.

In the architecture of this decentralized marketplace, there are two primary transac-
tional mechanisms that facilitate the exchange between a seller and a buyer: the "Ask"
and the "Bid" flows.

1. Ask Flow: In this model, the seller takes the initiative by locking a specific token
in a smart contract. The token is essentially "listed" with a predetermined price tag
inside its Datum. This sets the stage for buyers to meet this price in order to unlock
and acquire the token. The DataListing validator smart contract ensures that the
token is securely held until the asking price is met, at which point the token is

transferred to the buyer and the agreed-upon sum is sent to the seller.

2. Bid Flow: Contrary to the Ask flow, the Bid model is buyer-centric. Here, buyers
can place bids on tokens they are interested in. The bid consists of a certain amount
of ADA that the buyer is willing to pay for the token. Sellers can browse these bids
made on their tokens and choose to accept any that meet their valuation of the
token. Upon acceptance, the smart contract facilitates the immediate exchange of

the token and the bid amount between the seller and the buyer.

Both flows offer unique advantages and appeal to different trading preferences, thereby
creating a versatile and dynamic marketplace.

Components of the System:
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1. Browser Extension: Used by the Seller, this extension captures the user’s browsing
data. The user inputs their wallet address and selects the duration for which they
want to capture their browsing history. Currently, the data captured is limited to
direct visits—URLs explicitly entered by the user. However, the Chrome API offers

the flexibility to capture a richer set of data in the future.

2. Smart Contracts: Developed in Plutus (a Haskell-based language), the system em-
ploys three smart contracts. The first is a minting policy for generating unique
“DataToken” tokens. The second and third are validator smart contracts, one for
handling Asks(DataListing) and the other for Bids. These contracts ensure secure
and fair transactions between Sellers and Buyers and also include a "Cancel" mech-

anism for both parties.

3. Back-end Server: Written in TypeScript(NodeJS), the back-end server of the mar-
ketplace is built using Next.js’s API. It encrypts the data received from the extension
and stores it on the IPFS network. It also handles token metadata, which is crucial

for data retrieval and decryption for the Buyer.

4. Also written in TypeScript, the User Interface is developed using Next.js and styled
with Tailwind CSS. It serves as the hub for all off-chain code, handling transactions,
locating necessary UTXOs and tokens, and submitting transactions to the network.
The lucid-cardano library is used to facilitate these operations. The interface is
divided into 2 primary views, one designed for the Seller and the other for the

Buyer.

By integrating these components, the system offers a comprehensive solution for the

secure and efficient buying and selling of user data.

4.2 Browser Extension

A browser extension is essentially written using the same web technologies used to
create a web application such as HTML, CSS, and JavaScript. However, what sets it apart
is its ability to have access into specialized Browser APIs, like Chrome’s API for Google
Chrome extension.

Additionally, the Content Security Policy (CSP) in browser extensions adds an extra
layer of complexity compared to traditional web development [16]. For instance, the
default CSP restricts extensions to only load local scripts and objects, disallowing inline
JavaScript and the evaluation of strings as executable code. This means that common
JavaScript functionalities like eval() are off-limits, and the same goes for any libraries that
rely on such features. These limitations are designed to enhance security but can pose
challenges during development, requiring a more cautious approach to script inclusion
and execution.

The most key components of a browser extension [17, 18] are:

1. The manifest: The cornerstone of any extension is its manifest file, conveniently

named manifest.json. Situated in the root directory, this file serves as the blueprint
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for the extension, detailing its metadata, permissions, and the files it needs to run
both in the background and on web pages. It is basically a configuration file defining

an extension’s architecture and components.

2. Service Worker: Acting as the extension’s event manager, the service worker listens
for various browser events, such as tab creation or bookmark removal. While it can
leverage all Chrome APIs, it can’t directly manipulate web page content; that’s the

job of content scripts.

3. Content scripts: These scripts execute JavaScript within the context of any visited
web page, allowing them to read and modify the DOM. Although they can only use a
subset of Chrome APIs, they can still indirectly access the full range by exchanging

messages with the service worker.

4. Popup and Other HTML Pages: Extensions can include a variety of HTML files, like
popups or options pages. These serve as the primary user interface for interacting

with the extension and can access Chrome APIs.

Manifest V3 Manifest V3 serves as the most up-to-date framework for Chrome exten-
sions, offering improvements in security, privacy, and performance. It also enables the
use of modern web technologies like service workers and promises. The manifest file
is pivotal as it outlines the extension’s capabilities and required permissions, which are
presented to the user upon installation. Extensions operate in a sandboxed environment,

restricting access to only the necessary resources.

The popup component acts as the primary user interface, appearing when the exten-
sion icon is clicked. It’s limited in that it can’t engage with the web page’s DOM or interact

with other extensions.

On the other hand, the content script has the ability to manipulate a web page’s

content but lacks access to Chrome’s API.

Service workers function as background scripts, orchestrating various extension ac-
tivities and responding to browser events. While they can’t interact with the DOM, they
serve as the extension’s event manager, listening for occurrences like new tab creation,

bookmark additions, or extension icon clicks.

Each component within the extension comes with its own set of strengths and con-
straints. To fully leverage the extension’s capabilities and functionalities, these com-
ponents must engage in coordinated interactions with one another. This interaction is
orchestrated through message-passing, echoing the principles of an event-driven archi-
tecture. The popup, for instance, can capture an event triggered by the user and broadcast
a corresponding message. This message can then be intercepted by a service worker for

data storage purposes or by a content script to modify the webpage’s content.
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4.3 NextJS dApp

As the world of decentralized applications (dApps) continues to evolve, the need for ro-
bust and scalable frameworks becomes increasingly evident. Next.js, a leading server-side
rendering (SSR) framework for React that offers a compelling solution for dApp develop-

ment.

Unified Codebase One of the standout features of Next.js is its ability to house both
frontend and backend logic within the same codebase. This co-location simplifies de-
velopment workflows and enhances code maintainability. It allows developers to write
API routes and server-side functions alongside their React components, enhancing the

development process and reducing context switching.

Frontend Technologies The frontend of the dApp is built using React, a popular library
for building user interfaces. It is styled using Tailwind CSS, a utility-first CSS framework,
that provides out of the box css classes ready to be used. State management and context
are handled using React’s built-in Context API, ensuring efficient data flow and state

handling across components.

Backend API Routes The backend is structured as a set of API routes, each serving
a specific function. These routes have the capability to interact with various services,
including IPFS for decentralized storage and a key-value storage system for token meta-
data.

Authorization Mechanisms Security is a paramount concern, especially in the context
of dApps. The backend API routes employ various authorization mechanisms to validate
requests coming from the client side. This ensures that only authenticated users can

perform certain actions, adding an extra layer of security to the system.

Server-Side Rendering and React Next.js takes the power of React a step further by
offering server-side rendering out of the box. This feature enhances the performance and
SEO of web applications, a crucial aspect often overlooked in the realm of dApps. With
SSR, the initial HTML content is generated on the server, reducing the time to first paint

and improving the user experience.

TypeScript Support TypeScript, a superset of JavaScript, adds static types to the lan-
guage, making it easier to catch errors during development rather than at runtime. The
integration of TypeScript in a Next.js project is seamless, requiring just a simple configu-
ration file to get started.

By adopting this architecture, the Next.js dApp achieves a harmonious blend of scal-
ability, performance, and security, making it well-suited for modern decentralized appli-

cations.
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4.4 Plutus Smart Contracts

The smart contract architecture is designed with precision and purpose, encapsulating

the core logic and interactions taking place in the marketplace.

Data Token Minting Policy This is a parameterized minting policy smart contract,
which as type of smart contract suggests, is responsible for minting the “DataTokens”,
used to represent and later access a user’s stored browsing history data. Once parame-
terized with one of the Seller’s available UTxOs , the contract generates a specific minting
policy address, granting exclusive minting rights to that Seller. Importantly, this is a one-
time operation; after the initial minting, the UTXO becomes spent, rendering it unusable

for future minting.

DataListing Smart Contract The Datalisting validator smart contract implements the
’Ask’ flow in the marketplace’s bid-ask model. It defines a Datum structure that encap-
sulates the seller’s public key hash (PubKeyHash) and the asking price in lovelaces. The
contract also recognizes two redeemer values: 'Purchase’ and 'Redeem.’” The 'Purchase’
redeemer is meant to be used by interested potential Buyers, while 'Redeem’ allows Sell-
ers to withdraw their DataToken listing. The Datum’s PubKeyHash and price fields are
instrumental in validating the transaction’s integrity, ensuring the buyer has met the

payment requirements.

Bid Smart Contract The Bid validator smart contract is responsible for the 'Bid’ flow
and is parameterized by a token’s unique asset class. This design choice enhances dis-
coverability for both buyers and sellers by generating distinct smart contract addresses
for each token. It sidesteps the logistical complications that would arise from a monolithic
contract handling all possible bids for all tokens. The Datum in this contract contains the
buyer’s PubKeyHash, which is essential for verifying that the seller transfers the token
when claiming the bid. Similar to the DataListing contract, the Bid contract also has two
redeemers: ‘Sell’ and 'Redeem’. The ’Sell’ redeemer is exclusive to the token owner (the

Seller), while 'Redeem’ is reserved for the buyer.

Security Measures Each validator smart contract incorporates robust security mea-
sures, including signature verification, to ensure that transactions are authorized by the
appropriate parties. This adds the necessary layer of trust and reliability to the market-

place’s decentralized architecture.

4.5 Data Flow Diagrams

Data flow diagrams, became popular in the 70s, because they provide a straightfor-
ward way to visualize the flow of data through a system. On a DFD, there are four main

elements:
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e External Entity: Represented by a rectangle, this element refers to the source or
destination of data. In this system’s architecture, the external entities are the Seller

and the Buyer.

e Process: Represented by a circle, this element refers to an activity that transforms
incoming data flow(s) into outgoing data flow(s). Usually processes start from the
top left of the DFD and finish on the bottom right.

e Data Store: Represented by two parallel lines, this element refers to data that is
stored within the system. In this system architecture, the data store is the IPFS

network and the server’s key-value(KV) storage.

e Data flow: Represented by an arrow, this element refers to the movement of data be-
tween external entities, processes, and data stores. Labels describe the type of data
flowing. However, in many systems, especially those involving human interactions
like user interfaces, the "data" being transferred can also be an action or an event.
This is especially true for high-level DFDs (Level O or Level 1) where processes can

be more abstract.

Seller interaction with the Browser Extension In Figure 4.1 we represent a Seller’s
interaction with the Browser Extension and the Server, in order to store their browsing
history data on IPFS. The Seller’s wallet address is used as a key to store the CID of the
data on the Server’s KV(Key Value) Storage.

For both flows, the Seller then enters the dApp and creates a DataToken, which is
minted using the DataToken Minting Policy.

Ask Flow In the Ask Flow (Figure 4.2), the Seller then lists the DataToken for sale, by
locking it under the DataListing Smart Contract. The Buyer can browse through locked
tokens and purchase any that they are interested in. Upon purchase, the smart contract
facilitates the immediate exchange of the token and the asking price between the seller

and the buyer.

Bid Flow In the Bid Flow(Figure 4.3), the Buyer can make bids on tokens minted by
Sellers, by locking their ADA offer under the Bid Smart Contract. The Seller can browse
the bids made on their DataToken and accept any that meets their valuation of the token.
Upon acceptance, the smart contract facilitates the immediate exchange of the token
and the bid amount between the seller and the buyer. An important difference here is
that the token is never locked under the Smart Contract, it is contstantly in the Seller’s
possession, until the moment of the exchange.

One subtle detail not depicted in the diagrams, for the sake of not overcomplicating
them, is the creation of the off-chain metadata for each token upon the Token Minting,
on the server’s KV Storage. This metadata is crucial for the Buyer to be able to retrieve

and decrypt the data stored on IPFS, on the post-purchase phase.
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Figure 4.1. Data flow diagram of a Seller’s interaction with the Browser Extension.

Post-Purchase At both flows, the Buyer having purchased the token, can proceed to
download the data associated with this token.They need to send a digital signature to the
backend server, in order to verify their identity. The server then fetches the encrypted

data from IPFS, decrypts it and sends it to the Buyer. (Figure 4.4)
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Figure 4.2. Ask Flow process illustrating the listing and purchase of DataTokens via the
DatalListing Smart Contract.
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Figure 4.3. Bid Flow diagram showing the buyer’s bidding process, seller’s acceptance,
and the role of the Bid Smart Contract in exchanging DataTokens and ADA.
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Figure 4.4. Post-Purchase process depicting the buyer’s verification and data retrieval
steps following the acquisition of a DataToken.
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5.1 Front-end Development

At the heart of the front-end architecture lies the lucid-cardano library, a pivotal com-
ponent that facilitates wallet interactions. With user consent, this library can access
wallet information and execute transactions on behalf of the user. While the Nami wallet
serves as the primary wallet for this implementation, the system is designed to be com-
patible with any wallet that adheres to the CIP-0030 standard, such as Yoroi, Lace, or
Eternl.

In addition to wallet interactions, Blockfrost functions as the blockchain service
provider. It serves as a robust alternative to running a dedicated blockchain node, offer-
ing functionalities like transaction lookup, UTXO tracking, and wallet content retrieval.
Blockfrost also aids in transaction signing, thereby eliminating the need for constant
synchronization with the blockchain network.

The front-end is divided into two primary interfaces: the Seller Interface and the Buyer
Interface. Each interface is aimed to facilitate the two main transactional flows—’Ask’ and
‘Bid’—from the perspectives of the Seller and the Buyer, respectively. However, before
delving into these interfaces, it’s crucial to understand the role of the browser extension,

exclusively utilized by sellers.

5.1.1 Browser extension

Regarding the browser extension, it has been developed using Create React App and
Typescript. Given that browser extensions necessitate a build output comprising plain
HTML, CSS, and JavaScript files, Webpack is employed as the bundler to meet this
requirement. The extension is configured through a Manifest V3 JSON file, which outlines
various entry points. The most critical entry point for this specific use-case is the popup
component, with other components like contentScript, service-worker, and options page
not being actively used for the extension’s required functionality.

The popup component features a form with two input fields. The first field is desig-
nated for the user’s wallet address, which the seller must input to later retrieve and sell
their data. The second field specifies the time range, in days, for which the seller wishes to
collect browsing history data; the default setting for this is seven days. Upon clicking the

’Collect’ button, a method within the popup component invokes the chrome.history.search
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API to gather all direct links entered by the user within the specified timeframe. After
this data collection, the user can click "Submit,’ triggering the data’s encryption and

subsequent storage on the IPFS network.

5.1.2 dApp Ul
Token Generation

Upon entering the dApp, the Seller has the option to fetch any data associated with
their wallet that is stored on the IPFS network. If no data is found, a prompt advises
the Seller to first use the browser extension to capture data. Otherwise, the Seller can
proceed to mint their DataToken. This process also generates off-chain metadata on the
server, which includes the CID of the data on the IPFS network. Additional metadata
could be added in the future to provide more context to the Buyer, such as the type of
data and the number of days it covers.

To mint the DataToken, the Ul scans the user’s wallet for an available UTXO and uses
it to parameterize the Minting Policy. The resulting final minting policy is then used in a
new transaction to create a unique DataToken. Upon getting the finalPolicy, we can also
obtain its unique Policy ID using Tucid.utils.mintingPolicyTold(finalMintingPolicy);‘. This
is essentially the hash of the final parameterized minting policy. By concatenating the
Policy ID with the token’s name(‘DataToken’), we finally obtain the token’s Asset Class.
This unique Asset Class acts as an identifier for the generated token.

It’s worth noting that Plutus smart contracts are serialized into bytes (in hexadecimal

form) to be used in off-chain code and attached to transactions.

Ask Flow

Seller After minting their DataToken, the Seller can list it for sale by creating a trans-
action at the DatalListing contract address. The serialized DataListing smart contract is
stored in React’s context and its address is retrieved using lucid.utils. The Seller then
creates a transaction with a datum consisting of their public key hash and asking price,

locking their DataToken as the value.

Buyer The Buyer can view a table of all tokens locked under the DataListing address
using lucid’s utxosAt method. Since anyone can lock values with arbitrary datums at a
smart contract’s address, some UTxOs might be invalid. After filtering out invalid UTXOs,
only the ones which adhere to our actual smart contract’s Datum remain. The Buyer can
select a token from one of them and proceed with the purchase.

The UTxO contains the seller’'s PubKeyHash, which is used for validation reasons,
but we can easily obtain the Seller’s address by querying our Blockfrost provider, and by
using transaction hash that created the UTxO, find the address that created the UTxO
and matches this PubKeyHash. The transaction pays the required amount to the Seller’s

address while also collecting the locked token.
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When attempting to spend a UTXO that is locked by a validator, it’s essential to attach
the serialized validator to the transaction. This is done using the ‘attachSpendingValida-
tor‘ method. This off-chain check ensures that the validator will successfully unlock the
UTXO before the transaction is submitted to the blockchain network.

Once the transaction meets all the conditions, including paying the required amount
to the Seller, it will be successfully processed. This results in the Buyer gaining possession
of the DataToken and the Seller receiving the specified amount in ADA.

After the successful transaction, the Buyer can then request the data associated with
the DataToken from the server. To do this, the Buyer generates a digital signature using
the lucid.wallet.signMessage method. The server verifies this signature, decrypts the
corresponding data from IPFS, and returns it to the client for download.

This process ensures a secure and transparent transaction, allowing both the Buyer
and the Seller to achieve their objectives while maintaining the integrity of the associated
data.

Bid Flow

The Bid pattern addresses a common concern among users who are hesitant to tem-
porarily relinquish control of their tokens, as is required in the Ask pattern. In the
Bid pattern, the Seller retains possession of the token until the moment they are fully

compensated.

Buyer Assuming a Seller has already minted a DataToken, the Bid pattern is initiated
by the Buyer expressing interest in a specific token. Within the Buyer interface, all tokens
minted by Sellers can be viewed. It’s important to note that these tokens are still in the
Sellers’ wallets and are not locked under the DatalListing contract.

The Buyer selects the token they are interested in and places a bid. To do this, the Bid
smart contract is parameterized using the token’s asset class, generating a final serialized
form and, consequently, a unique smart contract address. The Buyer then locks a UTXO
under this address, setting the bid amount as the value. This amount represents what
the Seller will receive upon claiming the bid. The Buyer’s public key hash is set as the
datum to confirm later that the Buyer receives the token they bid for. The transaction is
then signed and submitted to the network.

In the same interface, the Buyer can view all active bids they’ve made that have not
yet been claimed by Sellers. This gives them the option to redeem their ADA if they choose
to withdraw their bid. To do this, a transaction is submitted to collect the UTXO, using
"Redeem" as the redeemer value. The spending validator of the Bid smart contract must
be attached to the transaction, and it must be signed to match the public key hash in the
datum, thereby releasing the locked ADA amount.

Seller If one or more Buyers have placed bids on a specific token, the Seller can choose
which bid to claim. To do this, the Seller parameterizes the final validator with their

token’s asset class, generating a unique smart contract address where they can view all
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bids made on their token. The Seller then selects the UTXO (bid) they wish to claim.
The validator is attached to the transaction, and "Sell" is used as the redeemer value. It’s
crucial that this transaction also transfers the DataToken to the Buyer’s wallet; otherwise,
the transaction will fail. If all conditions are met, the Seller receives the bid amount in
ADA, and the Buyer gains possession of the DataToken.

It’s worth noting that if a Seller attempts to claim multiple bids, the transaction will
fail. The smart contract ensures that each Buyer receives the specified token, and since
the Seller can only possess one unit of that specific token, multiple claims are not possible.

After the transaction, the Buyer can scan their wallet for new tokens using the Buyer
interface. Once the new token is detected, the Ul provides the option to download the
associated data. Similar to the Ask pattern, the Buyer signs the server request to validate
their ownership of the token. Upon validation, the data is decrypted and sent back to the
Buyer for download.

This Bid pattern offers an alternative transaction flow that addresses the concerns of
users who prefer to maintain control of their tokens until the moment of sale, ensuring a

secure and transparent process for both parties.

5.2 Smart Contract Development

5.2.1 DataToken Minting Policy

The DataToken Minting Policy is the first of three smart contracts utilized in this
decentralized application. Unlike standard smart contracts, a minting policy is specialized
to govern the creation of new tokens. By default, a minting policy receives the redeemer
and the transaction’s script context as arguments. However, this particular minting
policy is further parameterized with a user’s unique Unspent Transaction Output (UTxO),
represented by a TxOutRef argument.

Each blockchain transaction has a unique transaction ID, which is derived from its
hash. Additionally, each transaction can have multiple outputs, known as UTxOs, each
with a distinct output index. Therefore, a UTxO can be uniquely identified within the
blockchain using the format txHash#outputIndex.

Here’s the core code for this minting policy:

1 mkDataTokenPolicy :: TxOutRef —> TokenName —> () —> ScriptContext —> Bool

> mkDataTokenPolicy utxo th ) ctx = tracelfFalse "UTxO not consumed" consumesUtxo &&

3 tfracelfFalse "Wrong amount minted" mintsExactlyOneToken
4 where

5 info 1 TxInfo

6 info = scriptContexiTxInfo ctx

7

8 fransactionlnputs :: ( TxInInfo )

9 transactioninputs = txInfolnputs info

1 consumesUtxo :: Bool

12 consumesUtxo = any (\i —> txIninfoOutRef i == utxo) transactioninputs
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5.2.2 DataListing Smart Contract for the Ask Flow

valueMinted :: Value

valueMinted = txInfoMint info

mintsExactlyOneToken :: Bool
mintsExactlyOneToken = case flattenValue valueMinted of
—— we ignore currencySymbol
((_, In’, amb)) —> tn’ ==1n && amt ==
—> False

The DataToken Minting Policy is designed to enforce two critical rules:

1. UTxO Consumption: The minting policy verifies that the transaction consumes the
specific UTxO with which the policy was parameterized. This ensures that only the
owner of that UTxO can mint a new DataToken. This is crucial for maintaining the

integrity and uniqueness of each minted token.

2. Single Token Minting: The policy also checks that only one DataToken is minted
in the transaction. This is a domain-specific rule for the dApp, ensuring that each

DataToken represents a unique set of data and maintains its individual value.

5.2.2 DataListing Smart Contract for the Ask Flow

The DatalListing smart contract serves as the validator for the Ask flow, where a seller
locks their DataToken and sets an asking price for it. This smart contract is a Validator,

which means it takes three arguments: the redeemer, the script context, and the Datum.

data DatalistDatum = DatalListDatum
{
dataSeller :: PubKeyHash
, price it Integer

} deriving Prelude.Show

data DatalistingRedeemer = Redeem | Purchase

mkValidator :: DatalistDatum —> DatalistingRedeemer —> ScriptContext —> Bool
mkValidator dat r ctx = case r of
Purchase —> tracelfFalse "Amount required not paid to owner" buyerHasPaidSeller &&
fracelffFalse "You must consume only one utxo" consumesOnlyOneUtxo

Redeem —> tracelffalse "data seller’s signature missing" checkSignedBySeller
where

info 1 TxInfo

info = scriptContextTxInfo ctx

—— In lovelaces

dataPrice :: Integer
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dataPrice = price dat

valuePaidToSeller :: Value

valuePaidToSeller = valuePaidTo info (dataSeller dat)

pricePaidToSeller : Integer

pricePaidToSeller = valueOf valuePaidToSeller adaSymbol adaToken

buyerHasPaidSeller :: Bool

buyerHasPaidSeller = pricePaidToSeller >= dataPrice

consumesOnlyOneUtxo = length consumedinputsOfThisScript ==
where
scriptAddress :: ValidatorHash
scriptAddress = ownHash ctx

—— The credentials that are required to unlock each input, can be either PubKeyHash,

—— which means they belong to a user, and they unlock them by signing with their pk,

—— or ScriptCredentials, that require the script to be included, and validated
inputScriptCredentials :: (Credential)

inputScriptCredentials = map (addressCredential . txOutAddress . txIninfoResolved) $ txInfolnputs info

consumedinputsOfThisScript = filter protectedByThisScript  inputScriptCredentials
where
protectedByThisScript :: Credential —> Bool
protectedByThisScript ¢ = case c of
PubKeyCredential _ —> False
ScriptCredential vh —> vh == scriptAddress

checkSignedBySeller :: Bool
checkSignedBySeller = txSignedBy info $ dataSeller dat

Redeemer Capabilities The Datalisting smart contract is designed to accommodate

two different actors:
1. The Buyer: Who wishes to purchase the DataToken.
2. The Seller: Who may want to cancel the DataListing and retrieve their DataToken.
When the "Purchase" redeemer is invoked, the validator performs two critical checks:

1. Payment Verification: It verifies that the buyer has paid the seller the agreed-upon
amount, as specified in the Datum. This ensures that the transaction is fair and

aligns with the seller’s asking price.

2. Single Token Unlocking: It checks that the spending transaction attempts to un-
lock only one DataToken. This is a crucial security measure to prevent potential

vulnerabilities.
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e Security Implication: Without this check, a vulnerability could arise. Consider
a scenario where two DataTokens from the same seller are locked under this
smart contract, both requiring the same price (e.g., 40 ADA) in the Datum.
A malicious buyer could craft a transaction that pays the seller 40 ADA but

attempts to unlock both tokens. This check effectively mitigates such risks.

5.2.3 Bid Smart Contract for the Bid Flow

The Bid smart contract serves as the backbone for the Bid flow, where a buyer places a
bid on a DataToken. This is a parameterized validator, meaning it takes four arguments:
the token it has been parameterized with, the Datum, the Redeemer, and the Script
Context.

1 data BidParams = BidParams

2 {

3 dataTokenNFT :: AssetClass

a }

5

s data BidDatum = BidDatum

7 {

8 dataBuyer :: PubKeyHash

9 } deriving Prelude.Show

10

1

12 data BidRedeemer = Redeem | Sell

13

14 mkValidator :: BidParams —> BidDatum —> BidRedeemer —> ScriptContext —> Bool
15 mkValidator p dat r ctx = case r of

16 Sell —> tracelffalse "token not given to buyer" buyerGetsToken

17 Redeem —> tracelfFalse "buyer’s signature missing" checkSignedByBuyer

18

19 where
20 info 1 TxInfo
2n info = scriptContextTxInfo ctx

22
23 checkSignedByBuyer :: Bool
2 checkSignedByBuyer = txSignedBy info $ dataBuyer dat

25

2% valuePaidToBuyer :: Value

27 valuePaidToBuyer = valuePaidTo info $ dataBuyer dat
28

29 buyerGetsToken :: Bool

30 buyerGetsToken = assetClassValueOf valuePaidToBuyer (dataTokenNFT p) == 1

Checks and Constraints The Bid smart contract performs checks that are conceptually

similar to those in the DataListing contract, but with some minor differences:

1. No Double Spending: Since each DataToken can only be minted once, there’s no
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risk of double spending in this context. This simplifies the validation logic compared

to the DataListing contract.

2. Single Bid per Token: The contract is designed such that a buyer should not place
multiple bids on the same DataToken. If a buyer wishes to change their bid, they

should first redeem their existing bid before placing a new one.

e Security Note: If a scenario arises where placing multiple bids is desired, an
additional check could be implemented to ensure that only one UTxO is con-

sumed. This would help prevent any potential double-spending vulnerabilities.

This completes the overview of the three smart contracts powering the dApp: DataToken
Minting Policy, DataListing, and Bid. Each has its own set of checks and constraints to

ensure secure and fair transactions within the marketplace.

5.3 Back-end Development

The backend plays an important role in encrypting and storing the user’s data, and
also storing off-chain metadata for the tokens, which can then be later used by the buyers
to retrieve their purchased assets. It also has some validation mechanisms to validate
the requests and verify the token owners are making the requests. This ensures that only
the token holders can decrypt and download the browsing data. It also interacts with the

IPFS network, where the data is saved in an encrypted form.
5.3.1 API Routes

Route for Token & Data Association

saveHistory Route

Endpoint: /api/saveHistory

Purpose: This is the first route typically invoked in the user flow. It is triggered by the
browser extension and receives the user’s wallet address and browsing data in its

request body.

Functionality: The server encrypts the received browsing data and stores it on the IPFS
network. It then associates the returned CID (Content Identifier) with the user’s
wallet address. A key-value database is used for both authentication and token

metadata storage.

Validation: The server validates the request body to ensure it contains a valid wallet

address and browsing data.

The user then, when entering the dApp, which uses Lucid to connect to the user’s

wallet, makes a request to the server to retrieve any data associated with this wallet.
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retrieveHistory Route
Endpoint: /api/retrieveHistory

Purpose: This route is invoked when the user accesses the dApp, which connects to the

user’s wallet using the Lucid library.
Functionality: The server retrieves any data associated with the user’s wallet.

Validation: A digital signature is used to validate that the request is indeed being made

by the owner of the wallet.

associateDataWithToken Route
Endpoint: /api/associateDataWithToken

Purpose: This route is responsible for associating a newly generated token’s asset class
with the previously stored CID, effectively creating off-chain metadata for the token.

Functionality:

e Associates the CID with the new token’s asset class.

e Deletes the previous association of the CID with the user’s wallet.

e Creates a TokenListing for tokens that are available but not yet locked under

a DataListing.

Validation:

e Verifies that the token’s asset class and CID are valid.

e Ensures that the previous wallet owns the new token.

Routes for Updating Token Listings and Active Bids The backend architecture is
designed not only to manage the tokens and their associated data but also the listings
and active bids for these tokens. Below are the key routes and functionalities for managing
token listings and active bids:

Token Listings

Token listings are created for tokens that are available for purchase but have not been
locked under a Datalisting contract. Their functionality is to allow buyers to browse

through available tokens and place bids on the ones they are interested in.

fetchAll Route:
Endpoint: /api/tokenListing/fetchAll
Purpose: To retrieve all available token listings so that bidders can browse through them.

Functionality: Returns a list of all tokens that are available but not yet locked under a

DatalListing contract.
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deleteTokenListing Route:
Endpoint: /api/tokenListing/delete

Purpose: To remove a token listing once a bid has been approved, and the token is no

longer available for sale.

Functionality: Deletes the specific token listing based on its unique identifier.

Active Bids

Active bids are created when buyers place bids on available token listings. The back-

end manages these bids until they are either redeemed or fulfilled.

createActiveBid Route:
Endpoint: /api/activeBid/create
Purpose: To create a new active bid when a buyer places one.

Functionality: Adds a new entry to the collection of active bids, storing essential infor-

mation like transaction hash, amount, token asset class, and date.

deleteActiveBid Route:
Endpoint: /api/activeBid/delete
Purpose: To remove an active bid, typically when it has been redeemed or fulfilled.

Functionality: Deletes the specific active bid based on its unique identifier.

fetchActiveBidsByWallet Route:
Endpoint: /api/activeBid/fetchByWallet
Purpose: To retrieve all active bids associated with a specific wallet.

Functionality: Returns a list of all active bids tied to a particular wallet.

5.3.2 Data Management with IPFS

The InterPlanetary File System (IPFS) serves as the data storage layer for the dApp,
specifically for storing encrypted user browsing history. IPFS offers a decentralized ap-

proach to data storage, making it an ideal fit for this application.
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Using Blockfrost as an IPFS Gateway

While it’s possible to deploy and manage a custom IPFS node, leveraging a service
provider like Blockfrost simplifies the process. Blockfrost, already in use as a blockchain
provider, can also act as an IPFS gateway, handling the complexities of data storage and
retrieval.

Below is a simplified example of how this can be achieved in Nodejs using Typescript.

import { BlockFrostIPFS } from ’@blockfrost/blockfrost-js’;

3 const IPFS = new BlockFrostIPFS({

projectId: ipfsProjectlId,
)3

5 const added = await IPFS.add(tmpFilePath);

// Pin the data to ensure it remains accessible

9 const pinned = await IPFS.pin(added.ipfs_hash);

const cid = pinned.ipfs_hash;

Listing 5.1: Store data in IPFS using Blockfrost

Pinning Mechanism Pinning is a crucial feature in IPFS that ensures the persistent
storage of data objects. When data is first uploaded to IPFS via Blockfrost, it should be
pinned to ensure it remains accessible and isn’t subject to garbage collection. This needs
to be done frequently to avoid being garbage-collected. In a more advanced implementa-
tion, a cron job could be set up to regularly re-pin data, thereby ensuring its long-term
availability.

By integrating IPFS and using Blockfrost as a gateway, the backend architecture
achieves a robust, decentralized data storage solution. This setup not only aligns with
the decentralized nature of the dApp but also offers a scalable and secure way to manage
user data.

By employing these routes and their associated validation mechanisms, the backend

ensures secure and efficient management of tokens and their associated data.

5.4 Authorization Mechanisms

5.4.1 Digital Signature for Identity Verification

In the world of blockchain-based dApps, digital signatures are crucial for verifying
a user’s identity. This process employs asymmetric cryptography, where each user has
a pair of keys: a public key that is publicly shared, and a private key that remains
confidential. When a user wishes to send a message or conduct a transaction, they sign
it with their private key. This signature serves as a permanent immutable stamp of their

identity.

Signature Generation The user employs their private key to create a digital signature on

the data or message. This is usually done by taking a hash of the message and encrypting
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it using the private key. The digital signature is then appended to the message. In this

dApp, this is achieved client-side using the lucid-cardano library as follows:
const signature = lucid.wallet.signMessage(wallet, hexPayload);

Listing 5.2: Signature Generation

Signature Verification To verify the sender’s identity, the recipient uses the sender’s
public key to decrypt the attached digital signature. They then hash the received message
and compare it to the decrypted hash. If both hashes match, it confirms that the message
has not been tampered with and indeed originates from the owner of the public key. This

verification is done server-side, also using lucid-cardano library:
const signaturelIsValid = lucid.verifyMessage(wallet, hexPayload, signature);

Listing 5.3: Signature Verification

This mechanism ensures both the integrity and the origin of the message, serving as

a foundational element for secure and trustless communications within the dApp.

Time-Stamping in Digital Signatures Including a timestamp in a digital signature
is a common practice, this technique is known as "time-stamping" and serves multiple

purposes:

e Expiration: By including a timestamp, we can set an expiration time for the digital
signature, making it invalid after a certain period. This can be useful for temporary

authorizations or time-sensitive transactions.

e Non-repudiation: The timestamp provides additional evidence for the exact time
when the document was signed, which can be crucial in legal and financial appli-

cations.

e Security: If a private key is compromised, the timestamp can help limit the time
frame during which the compromised key was used to sign documents, aiding in

damage control.

5.4.2 Seller Authorization

Ask and Bid Flow The seller initiates the data collection process via a browser extension,
where they are required to input their Cardano wallet address. The collected data is then
sent to the backend, encrypted, and stored on IPFS.

Additionally, an association between the wallet address or token asset class to the
IPFS CID (Content Identifier) is stored in the server’s key-value database. This approach
is similar to attaching on-chain metadata on the token, by including metadata on the
transaction that minted the token.

Upon entering the Next.js dApp, the application connects to the seller’s wallet using
the lucid-cardano library. This method is compatible with any CIP-0030 compliant wallet,

such as Nami, Eternal, or Yoroi. The dApp then fetches any data associated with the
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seller’s wallet from the server, and proves the user’s identity by also sending a digital sig-
nature. The server verifies this signature and returns the data to the Seller for inspection

and token minting.

5.4.3 Buyer Authorization

The Buyer initiates a request to the server with the aim of decrypting and downloading
the data linked to a specific token they have purchased. To do this, the buyer sends both
the token’s asset class and their own wallet address. The server then proceeds on a

two-step verification process:

1. Identity Verification: Similar to the mechanism used for the Seller, the server first
confirms that the request is genuinely coming from the owner of the provided wallet

address. This is achieved through digital signature verification.

2. Token Ownership Verification: Utilizing the Blockfrost provider, the server checks
that the wallet in question indeed holds at least one UTxO associated with the

specified token asset class.

Security Implications of Skipping Verification If the server was to bypass these ver-
ification steps, it would open the door for potential security risks. Specifically, any user
who knows a token’s asset class could falsely claim ownership and request access to the

data. This would fundamentally undermine the trust and integrity of the entire system.

Authorization Mechanisms of TokenListings and ActiveBids

While wallet validation could also be used for these routes, an alternative and poten-
tially more efficient way to authorize these requests could be to send the corresponding
transaction hash related to each action. The server could then validate this using a
blockchain provider to ensure the input data is correct. For instance, an active bid cre-
ation request should send the txHash of the transaction that locked the UTxO under the
Bid’s address.

5.5 Testing in Plutus: Ensuring Smart Contract Integrity

In the realm of decentralized applications (dApps), the role of testing is not merely a
best practice but an imperative. Given the immutable nature of blockchain transactions,
errors and vulnerabilities can have irreversible consequences. This section mentiones
common testing methodologies employed in Plutus, to ensure the integrity and robustness

of smart contracts.

5.5.1 Unit Testing: The First Line of Defense

Unit testing is a software testing technique where individual units or components of a
software are tested in isolation to ensure that they function as intended, hence they are

very handy for testing smart contracts.
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The Plutus simple model library is specifically designed for unit testing, and it employs
state monads to simulate the blockchain environment. The state monad serves as a
wrapper around the blockchain state, allowing for a sequence of transactions to be tested
for validity. This is particularly useful for testing various spending scenarios, including

normal spending and double-spending attempts.

Here is a snippet from DataListing’s unit tests, that is designed to catch the double-

spending vulnerability discussed previously when analyzing the smart contracts:

—— This method tries to double spend, and runs successfully if the bad actor manages to double spend

—— If they fail to exploit, this method logs an error
doubleSpending :: Run
doubleSpending = do

(ul,u2) <— setupUsers

—— Lock 2 tokens utxos, asking for 400 each
let token = fakeValue scToken 1
spl <— spend ul token

submitTx ul $ lockingTx ul 400 sp1 token

sp2 <— spend ul token

submitTx ul $ lockingTx ul 400 sp2 token

—— Get the locked utxos

scriptsUtxos <— utxoAt datalistingScript

let ((refl, outl), (ref2, out2)) = scriptsUtxos

let buyerPaying = adaValue 400
u2_sp <— spend u2 buyerPaying

submitTx u2 $§ doubleConsumingTx u2 ul u2_sp buyerPaying (ref1.ref2) (txOutValue out1) (OnChain.DataListDatum u1 400)

(v1,v2) <— mapM valueAt (u1,u2)

—— Ifuser 1 has only 400, this succeeds(logError does not run), and since it’s a bad test, it will fail

unless (v1 == adaValue 400 &&
v2 == adaValue 600 <> fakeValue scToken 2)

$ logError $ "Error occured. Received values: " ++ show (fmap flattenValue (v1,v2))

In this test, the function doubleSpending is designed to simulate a scenario where a
cunning Buyer attempts to double-spend by purchasing 2 tokens, while paying only for
1. In this scenario the Seller(ul) has some tokens, and the Buyer(u2) has 1000 ADA. The
seller proceeds to list his 2 tokens for 400 ADA each. The abuser would try to consume
both for 400 ADA instead of 800, so if they succeed, they expect that Userl will have
400 ADA, while they will have 600 ADA and 2 tokens. So we write the method from the
abuser’s perspective, and later we define this test case as “bad”, expecting it to fail and

log an error, in order for our test to pass.

These kinds of tests ensure that the smart contract logic correctly identifies and pre-

vents this malicious activity, thereby safeguarding the integrity of the transactions.
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5.1 Unit Testing: The First Line of Defense

Property Testing: Beyond Unit Tests While unit tests are excellent for catching spe-
cific errors, they are not sufficient for proving the overall reliability of a smart contract.
Plutus also supports property testing through the Haskell library QuickCheck, which
automatically generates test cases to validate the properties of the smart contract. This
adds an additional layer of assurance that the contract behaves as expected under a wide
range of conditions.

Testing is an indispensable component in the development lifecycle of Plutus smart
contracts. Through a combination of unit tests and property tests, developers can ensure
that the smart contracts are both secure and functional, thereby fostering trust and

reliability in dApps built on the Cardano blockchain.
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Chapter E

Results and Discussion

6.1 The Transformative Potential of Smart Contracts

One of the most striking revelations during the course of this project was the the
remarkable flexibility and transformative potential of smart contracts. In traditional sys-
tems, the process of data exchange and financial transactions often relies on centralized
intermediaries, which can be both costly and less secure. Smart contracts, however, offer
a paradigm shift in how we can automate these processes in a decentralized, trustless
environment.

In the context of this project, smart contracts took control of the payout process,
effectively eliminating the need for a trusted third party to oversee transactions. This not
only reduces the risk of fraud but also streamlines the entire process, making it more
efficient and transparent.

The trustless nature of smart contracts is particularly revolutionary. By encoding
the rules of the transaction within the contract itself, we can create a self-executing and
self-enforcing agreement that neither party can tamper with once deployed. This has
profound implications for a wide range of applications beyond just data marketplaces,
from supply chain management to decentralized finance (DeFi).

This project serves as a testament to some of the capabilities of smart contracts,
and it opens the door to rethinking how we approach not just data transactions, but a
multitude of processes that can benefit from decentralization and automation without

sacrificing security.

6.1.1 Technical Achievements and Challenges

Mastery of Haskell and Plutus One of the most significant milestones in this project
was gaining proficiency in Haskell and Plutus. While I have a strong background in
functional programming languages like Standard ML (SML), Haskell presented unique
challenges, particularly in understanding advanced concepts like Monads. The Plutus
Pioneer Program from IOHK was instrumental in bridging this gap, providing essential
insights into developing on the Cardano Network. Resources like the book "Learn You
a Haskell for Great Good!", which i read at least twice, significantly aided in reducing

Haskell’s steep learning curve.
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Browser Extension Development My initial plan to encapsulate the entire marketplace
within a browser extension had to be revised due to its limitations. These limitations
became evident during development, as I gained a better understanding of the architecture
and security measures dictating browser extensions. The extension’s role was narrowed

down to data collection, making the system more robust and focused.

Smart Contract Security The implementation and testing of smart contracts were cru-
cial in ensuring the integrity of the marketplace. Catching vulnerabilities and confirming
their mitigation in live scenarios, such as the double-spending case, were significant

achievements.

6.1.2 Future Directions

Enhanced Data Collection The current data collection is a proof of concept and can be
significantly enriched. By integrating analytics libraries and obtaining user consent, the
system could capture more nuanced data like user navigation patterns and engagement

heat-maps.

Smart Contract Improvements Several improvements can be made to the smart con-
tracts, such as deploying reusable scripts to reduce costs and adding time-based condi-
tions for more complex interactions. Furthermore, the current implementation is limited
to a single data asset per transaction, which could be optimized to allow for multiple data

assets per transaction.

Real-Time Updates in dApp The dApp could be made more dynamic by incorporating

real-time updates through web sockets or server-sent events.

Client-Side Encryption Exploring client-side encryption of the collected data could
further decentralize the dApp. However, this poses challenges as storing secrets on the

blockchain is not advisable. This remains an area for future research.

Fee Optimization The current implementation could learn from JPG Store’s bid flow,
which allows for more asset transfers per transaction, optimizing the fee per data asset
paid.

This implementation has the potential to revolutionize how user data is captured and
valued on the web. Currently, users have little incentive to agree to cookie consents; this
system could provide them with tangible benefits, thereby changing the dynamics of data

consent and collection.
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Data privacy is a critical concern in the development and deployment of decentralized
applications (dApps), especially those that handle sensitive user information. This section
explores the ethical considerations surrounding data privacy in the context of dApps, with
a focus on this specific case of a dApp that stores and sells encrypted seller data on the
InterPlanetary File System (IPFS).

Informed Consent Before storing any seller data, it’s crucial to obtain informed consent
from the users. The browser extension would be the ideal place to obtain informed
consent, especially since it’s the point of interaction where the data is initially captured.
When the user installs the extension or when they first use the feature that captures
browser history, a clear and easily understandable consent form should pop up.

According to the General Data Protection Regulation (GDPR), consent is defined as
"any freely given, specific, informed and unambiguous indication of the data subject’s
wishes by which he or she, by a statement or by a clear affirmative action, signifies
agreement to the processing of personal data relating to him or her" [19]. This involves
clearly explaining what data will be stored, how it will be used, and who will have access
to it. Informed consent is not just an ethical requirement but also a legal one under
regulations like the GDPR.

Encryption Encrypting the data before storing it on IPFS adds an extra layer of security,
making it difficult for unauthorized users to access the information. However, encryption
is not a silver bullet and it should be part of a broader data protection strategy. Vulner-
abilities can arise from weak algorithms, poor key management, human error, and brute
force attacks [20].

Anonymization Whenever possible, storing the data anonymized on the IPFS network

is a good practice to protect the identity of the individuals involved.

Data Retention Policy A clear data retention policy should be in place, specifying how
long the data will be stored and what will happen to it after that period. This is particularly
important for complying with the "right to be forgotten" under GDPR’s Article 17.
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IPFS and Data Privacy Storing data on IPFS comes with its own set of challenges
and opportunities. On the one hand, IPFS’s decentralized nature eliminates the risks
associated with centralized data storage systems. On the other hand, once data is on
IPFS, it’s there permanently unless steps are taken to enable its removal. It’s worth
noting that data not regularly pinned can be subject to garbage collection as per IPFS
protocol. This means that if you want to ensure the longevity of your data, you must
actively manage its pinning. Instead, explicit unpinning can be a method to facilitate
data removal, although this doesn’t guarantee that other nodes haven'’t already replicated
the data.

Data privacy is a varied issue that requires a comprehensive approach, including
informed consent, encryption, anonymization, and a clear data retention policy. Special
considerations are needed when using technologies like IPF'S, which come with their own

sets of benefits and drawbacks.
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As I conclude this thesis, it’s worth taking a moment to reflect on the journey that
led to its completion. The process of developing a decentralized application for data
marketplace has been both challenging and enlightening, offering numerous lessons that
extend beyond the technical realm.

The work presented in this thesis is not just a technical exercise but a step towards
rethinking how we approach data privacy and ownership in the digital age. By leverag-
ing blockchain technology and smart contracts, we can envision a future where control
over personal data is returned to the individual, disrupting traditional models of data
monetization and consent.

The challenges encountered during this project, from mastering Haskell and Plutus
to navigating the complexities of decentralized systems, have been invaluable learning
experiences. They have not only honed my technical skills but also deepened my under-
standing of the ethical and societal dimensions of technology. As for what comes next,
whether it’s further academic research or diving into industry applications, I am excited

to continue exploring the transformative potential of blockchain technology.

Advice for Future Researchers

For anyone embarking on a similar journey, my advice would be to embrace the
challenges as opportunities for growth. The rapidly evolving landscape of blockchain
technology offers a fertile ground for innovation but also requires a willingness to adapt

and learn continuously.

Closing Thoughts

In a world increasingly driven by data, the need for secure, transparent, and just
systems for data exchange is more pressing than ever. This thesis serves as a testament
to the possibilities that emerge when technology is aligned with these principles. While
there is still much work to be done, both in refining the current system and exploring new

applications, the path forward is promising.






Source Code

The code can be accessed on GitHub at https://github.com/varagos/data-sail.


https://github.com/varagos/data-sail
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