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Abstract

In the current study two specimens were numerically examined. In the first test case a

two-dimensional two story frame structure was simulated with both Beam-Column

and non-linear 3D solid FE methods and then subjected into non-linear static

pushover analysis. In the second case both of the above simulation methods were

used in the non-linear static pushover analysis of a 3-dimensional two-story frame

structure.

The aim of the study is to determine the effect of FE simulation methods in fragility

analysis and risk assessment.
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1. Introduction

In the current diploma thesis two types of RC structures are analyzed (two-

dimensional and three-dimensional two-story frames) using 3D non-linear FE and

column-beam FE simulation in order to determine the effect of both simulation

methods on fragility analysis of such structures.

Fragility curves can be used in various ways as part of a seismic vulnerability analysis

for many a wide range of types of structures. The fragility analysis methodology

consists of the following steps:

 Simulation of the structure

 Non-linear static pushover

 Capacity curves

 Formation of Acceleration Displacement Response Spectrum (ADRS)

 Capacity spectrum method / Estimation of performance point

 Calculation of log-normal cumulative probability density equation

 Formation of fragility curves for four damage limit states

Chapter 2 represents Performance Based Design (PBD) and analyzes Static pushover

methods such as the Displacement Coefficient method (ASCE-41), the Capacity

Spectrum method (ATC-40) together with the N2 method (EC8).

The 3rd and the 4th Chapters refer to the beam-column and three-dimensional FE

simulation methods respectively, describing the formulation of the Finite Elements and

the constitutive laws that governs them. The FE methods and stress-strain laws

concern both structural concrete and reinforcement.

Chapter 5 introduces Fragility Analysis by analyzing the calculation of fragility curves

using the methodology proposed by FEMA/NIBS earthquake loss estimation

methodology, commonly known as HAZUS.

Chapter 6 contains the description of the numerical investigation performed. The

analysis of two types of structures executed using both FE simulation methods in order

to determine their effect on the fragility analysis of RC structures.

Finally, Chapter 7 summarizes the results taken by the analyses.
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2. Non linear static analysis

2.1 Performance Based Design
In the past, the requirements and provisions of the seismic design codes for buildings

have been based on the experience and they were periodically revised after

disastrous earthquakes. Most of the current seismic design codes define a single

design earthquake that it is used for assessing the structural performance against

earthquake hazard. These codes though have many inherent assumptions built in the

design procedure regarding the behaviour of the structure against earthquake

loading. Severe damages caused by recent earthquakes made the engineering

community to question the effectiveness of the current seismic design codes [1-3].

Given that the primary goal of contemporary seismic design is the protection of

human life it is evident that additional performance targets and earthquake

intensities should be considered in order to assess the structural performance in many

hazard levels. In the last decade the concept of Performance-Based Design (PBD) for

structures subjected to seismic loading conditions was introduced [4-6]. In PBD more

accurate but time consuming analysis procedures are employed based on nonlinear

structural response. The progress that took place in the last two decades in the fields

of computational mechanics as well as in hardware technology, made possible to

use performance-based seismic design procedures.

Most of the current seismic design codes belong to the category of the prescriptive

design procedures (or limit state design procedures), where if a number of checks,

expressed in terms of forces, are satisfied the structure is considered safe and that it

will not collapse. A typical limit state based design can be viewed as one (i.e.

ultimate strength) or two limit state approach (i.e. serviceability and ultimate

strength). All modern seismic design procedures are based on the principal that a

structure will avoid collapse if it is designed to absorb and dissipate the kinetic energy

that is imparted in it during the seismic excitation. Most of the modern seismic codes

express the ability of the structure to absorb energy through inelastic deformation

using the reduction or behaviour factor q. The capacity of a structure to resist seismic

actions in the nonlinear range generally permits their design for seismic loads smaller

than those corresponding to a linear elastic response. The seismic loads are reduced

using the behaviour factor q. The numerical confirmation of the behavior factor

became a subject of research work during the past decade [7,8] in order to check

the validity of design theory assumptions and to make structural performance more

predictable from engineering point of view.
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ATC-40 [4] and FEMA-273 [5] were the first guidelines for Performance-Based seismic

rehabilitation of existing buildings while in the report Vision 2000 [6] these ideas were

extended to the design process of new buildings. The main objective of this kind of

design procedures is to achieve more predictable and reliable levels of safety and

operability against natural hazards. According to PBD procedures, the structures

should be able to resist earthquakes in a quantifiable manner and to present target

performance levels of possible damages. PBD procedures are multi-level design

approaches where various levels of structural performance are considered. For

example FEMA-356 [9] suggests the following performance levels: operational level,

immediate occupancy, life safety and collapse prevention. For assessing the

structural performance the guidelines suggest the use of various types of analysis

methods: linear static, nonlinear static, linear dynamic and nonlinear dynamic. The

most commonly used approach is the nonlinear static analysis also called as

pushover analysis method. Pushover analysis allows for the direct evaluation of the

performance of the structure at each limit state as opposed to the prescriptive design

procedures, such as that of Eurocode 3 [10] where the structure is designed for the

ultimate strength limit state.

The European seismic design code (Eurocode 8) [11] and EC3 [10] that are used as a

basis for the parametric study performed in this work have the following features: (i)

the seismic load is imposed using a 10% in 50 years (475 years return period) elastic

response spectrum reduced by a behaviour factor q=4.0, (ii) the nominal material

strength is reduced by a factor γs=1.15 for steel reinforcement and by a factor γc=1.50

for concrete and (iii) the analysis procedure employed is either the simplified modal

or the multi-modal response spectrum analysis.

The majority of the seismic design codes belong to the category of the prescriptive

building design codes, which include: site selection and development of conceptual,

preliminary and final design stages. According to a prescriptive design code the

strength of the structure is evaluated at one limit state between life-safety and near

collapse using a response spectrum corresponding to one design earthquake [11]. In

addition, serviceability limit state is usually checked in order to ensure that the

structure will not deflect or vibrate excessively during its functioning. On the other

hand, PBD is a different approach for the seismic design which includes, apart from

the site selection and the development of the design stages, the construction and

maintenance of the building in order to ensure reliable and predictable seismic

performance over its life.
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Fig. 2.1 The Design Performances

2.2 Static pushover methods for seismic design
The purpose of the nonlinear static procedure is to assess structural performance in

terms of strength and deformation capacity globally as well as at the element level.

The structural model is “pushed” according to a predefined lateral load pattern. In

order to determine the target displacement in multiple hazard levels required by the

performance-based design framework, typically one of the following methods is

adopted: the Capacity Spectrum method of ATC-40 (1996), the Coefficient method

of ASCE-41 (2006) and the N2 method of EC8 (2004). According to ASCE-41, apart

from a first-mode based lateral load pattern the use of a uniform pattern is also

suggested. In the numerical results that follow only the first-mode pattern was taken

into consideration. For 3D structures the properties of the lateral load pattern have to

be extracted from the mode that refers to the direction under consideration.

2.2.1 The displacement coefficient method (ASCE-41)

When pushover analysis, or adopting the ASCE-41 terminology, the nonlinear static

procedure (NSP) is implemented, the target displacement, which is the displacement

during a given seismic event of a characteristic node on the top of a structure,

typically in the roof, is defined with the aid of the formula:

2

0 1 2 3 24
e

t a

T
d C C C C S g


 (2.1)

where C0, C1, C2 and C3 are modification factors, discussed in the FEMA-440 (2005)

guidelines and Te is the effective fundamental period of the building.
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2.2.2 The capacity spectrum method (ATC-40)

The Capacity Spectrum Method (CSM) was initially proposed by Freeman (1998). The

method compares the capacity of a structure to resist lateral forces to the demand

given by a response spectrum. The response spectrum represents the demand while

the pushover curve (or the ‘capacity curve’) represents the available capacity. The

steps of the method are briefly summarized as follows: (i) Perform pushover analysis

and determine the capacity curve in base shear (Vb) versus roof displacement of the

building (D). This diagram is then converted to acceleration-displacement terms (AD)

using an equivalent single degree of system (ESDOF). The conversion is performed

using the first mode participation factor C0 (D*=D/C0) and the modal mass (A=Vb/M).

(ii) Plot the capacity diagram on the same graph with the 5%-damped elastic

response spectrum that is also in AD format. (iii) Select a trial peak deformation

demand
*
td and determine the corresponding pseudo-acceleration A from the

capacity diagram, initially assuming ζ=5%. (iv) Compute ductility μ=D*/uy and

calculate the hysteretic damping ζh as ζh=2(μ-1)/πμ. The equivalent damping ratio is

evaluated from a relationship of the form: ζ =ζ +κζeq el h
, where κ is a damping

modification factor that depends on the hysteretic behavior of the system. Update

the estimate of
*
td using the elastic demand diagram for ζeq. (v) Check for

convergence the displacement
*
td . When convergence has been achieved the

target displacement of the MDOF system is equal to *
0t td C d .

2.2.3 The N2 method (EC8)

The N2 method was initially proposed by Fajfar (Fajfar and Fischinger (1988), Fajfar

and Gaspersic (1996)) and was later expressed in a displacement-acceleration

format (Fajfar (1999)). Recently, the method has been included in the Eurocode 8

(2004). Conceptually the method is a variation of Capacity Spectrum Method that

instead of highly damped spectra uses an R-μ-Τ relationship. The method, as

implemented in EC8, consists of the following steps: (i) Perform pushover analysis and

obtain the capacity curve in Vb-D terms, (ii) Convert the pushover curve of the MDOF

system to the capacity diagram of an ESDOF system and approximate the capacity

curve with an idealized elasto-perfectly plastic relationship to get the period Te of the

ESDOF, (iii) The target displacement is then calculated as:

2

* = ( )
2

e
et a e

T
d S T



 
 
 

(2.2)

where Sa(Te) is the elastic acceleration response spectrum at the period Te. To

determine the target displacement *
td , different expressions are suggested for the

short and the medium to long-period ranges:
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T* < TC (short period range): If * */m ( )y a eF S T , the response is elastic and thus * *=t etd d

and *
0t td C d . Otherwise the response is nonlinear and the ESDOF maximum

displacement is calculated as:

*
* *= 1 ( 1)et C
t u et

u e

d T
d q d

q T

 
   

 
(2.3)

where qu is the ratio between the acceleration in the structure with unlimited elastic

behavior Se(T*) times the modal mass m* over its yield force, or simply:

* *= ( )u a e yq S T m F .

T*≥ TC (medium and long period range): The target displacement of the inelastic

system is equal to that of an elastic structure, thus * *=t etd d . The displacement of the

MDOF system is always calculated as *
0t td C d .

Table 2.1 Characteristics of the 20 records

Record &

Station

R1

(km)

EpiD2

(km)

Duration

(sec)

PGAlong3

(g)

PGAtran4

(g)
Soil4

Fault
rupt5

Superstition Hills 1987 (B) (M=6.7)

1. El Centro Imp. Co Cent 18.5 35.83 40.00 0.36 0.26 A SS

2. Wildlife Liquefaction Array 24.1 29.41 44.00 0.18 0.21 A SS

Imperial Valley 1979, (M=6.5)

3. Chihuahua 8.4 18.88 40.00 0.27 0.25 A SS

4. Compuertas 15.3 24.43 36.00 0.19 0.15 A SS

5. Plaster City 31.1 54.26 18.75 0.04 0.06 A SS

6. El Centro Array #12
18.85 31.99

39.00 0.14 0.12 A SS

7. El Centro Array #13
22.83 35.95

39.50 0.12 0.14 A SS

San Fernando 1971 (M=6.6)

8. LA, Hollywood Stor. Lot 25.9 39.49 28.00 0.21 0.17 A RN

Northridge 1994 (M=6.7)

9. Leona Valley #2 37.2 51.88 32.00 0.09 0.06 A RN

10. LA, Baldwin Hills 29.9 28.20 40.00 0.24 0.17 C RN

11. Lake Hughes #1 89.67 93.22 32.00 0.09 0.08 A RN

12. LA, Hollywood Stor FF 114.62 118.26 40.00 0.23 0.36 A RN

13. LA, Centinela St. 31.53 32.72 30.00 0.46 0.32 A RN
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Loma Prieta 1989 (M=6.9)

14. Hollister Diff Array 24.8 45.10 39.64 0.27 0.28 A RO

15. WAHO 17.5 12.56 24.96 0.37 0.64 C RO

16. Halls Valley 30.5 36.31 39.95 0.13 0.10 B RO

17. Agnews State Hospital 24.6 40.12 40.00 0.17 0.16 A RO

18. Anderson Dam (Downstream) 4.4 16.67 39.61 0.24 0.24 B RO

19. Coyote Lake Dam
(Downstream)

20.8 30.89 39.95 0.16 0.18 B
RO

20. Hollister - South & Pine 27.93 48.24 60.00 0.37 0.18 A RO

1Campbell’s R Distance

2Distance from the recording site to epicentre

3Long: longitidunal direction

4Trans: transverse direction

5Campbell’s site classification: A (Form Soil), B (Very Firm Soil), C (Soft Rock)

6Fault rupture mechanism: SS (Strike Slip), RN (Reverse-Normal), RO (Reverse-Oblique)
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3. Simulation – Beam-Column Finite Elements

3.1 Introduction
In beam-column FE simulation each member is modelled with a single force-based,

fibre beam-column element. This element provides a good balance between

accuracy and computational cost. The modified Kent-Park model, where the

monotonic envelope of concrete in compression follows the model of Kent and Park

(1971) as extended by Scott et al. (1982), is employed for the simulation of the

concrete fibres. This model was chosen because it allows for an accurate prediction

of the demand for flexure-dominated RC members despite its relatively simple

formulation. The transient behaviour of the reinforcing bars was simulated with the

Menegotto-Pinto model (1973), while the effects of shear and bond-slip are

neglected. The effect of gravity loads and second-order effects are considered using

the complete geometric stiffness matrix.

3.2 Formulation of Beam-Column Element

3.2.1 Introduction

This paragraph the general formulation of a beam-column finite element based on

the flexibility method is presented. The presentation is cast in the more general form of

a mixed method for two reasons: (i) this approach illustrates better the state-

determination process used in the nonlinear analysis algorithm, and, (ii) it yields in a

direct way the flexibility dependent deformation shape functions of the element that

reduce the general mixed method formulation to the flexibility method used in this

study. In addition, the generality of the mixed method allows the exploration of

alternative deformation shape functions in future studies.

In order to consider the inelastic behaviour either the plastic-hinge or the fibre

approach can be adopted. Given that the plastic hinge approach has limitations in

terms of accuracy fibre beam-column elements are preferable (Fragiadakis and

Papadrakakis, 2008). According to the fibre approach each structural element is

discretized into a number of integration sections, and each section is divided into a

number of fibres (Fig. 3.1) with specific material properties (Afib, Efib), which are

restrained to beam kinematics. Each fibre in the section can be assigned concrete,

structural steel, or reinforcing bar material properties. The sections are located either

at the centre of the structural element or at its Gaussian integration points.
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Fig. 3.1 Modelling of the inelastic behaviour-the fibre approach

The main advantage of the fibre approach is that every fibre has a simple uniaxial

material model allowing an easy and efficient implementation of the inelastic

behaviour. This approach is considered to be suitable for inelastic beam-column

elements under dynamic loading and provides a reliable solution compared to other

formulations. However, it results to higher computational demands in terms of

memory storage and CPU time. When a displacement-based formulation is adopted

the discretization should be adaptive with a dense mesh at the joints and a single

elastic element for the remaining part of the member. On the other hand, force-

based fibre elements allow modelling a member with a single beam-column

element. Therefore, in this work each structural member is modelled with a single

force-based, fibre beam-column element.

In keeping with the generality of the presentation the force-deformation relation is

not specialized at the section level. This is deferred to the following chapter where the

section force-deformation relation is derived from a fiber discretization of the cross

section. A different approach which uses the theory of classical plasticity to derive a

hysteretic model of the section force-deformation relation is presented by Spacone

et al. (1992).

The proposed beam-column element is based on the assumption that deformations

are small and that plane sections remain plane during the loading history. The

formulation of the element is based on the mixed method: the description of the

force distribution within the element by interpolation functions that satisfy equilibrium

is the starting point of the formulation. Based on the concepts of the mixed method it

is shown that the selection of flexibility dependent shape functions for the

deformation field of the element results in considerable simplification of the final

equations. With this particular selection of deformation shape functions the general

mixed method reduces to the special case of the flexibility method. The mixed
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method formalism is, nonetheless, very useful in understanding the proposed

procedure for the element state determination.

The proposed formulation offers several advantages over previous models:

 Equilibrium and compatibility are always satisfied along the element:

equilibrium is satisfied by the selection of force interpolation functions and

compatibility is satisfied by integrating the section deformations to obtain the

corresponding element deformations and end displacements. An iterative

solution is then used to satisfy the nonlinear section force-deformation relation

within the specified tolerance.

 The softening response of reinforced concrete members, which are either

poorly reinforced or are subjected to high axial forces, can be described

without computational difficulties.

3.2.2 Definition of Generalized Forces and Deformations

Fig. 3.2 Generalized forces and deformations at the element and section level.

The beam-column finite element is schematically shown in Fig. 3.2. The reference

frame for the element is the local coordinate system x, y, z, while X, Y, Z denotes the

global reference system. The longitudinal axis x is the union of geometric centroids of

each section.
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The following convention is followed for the notation of forces, displacements and

deformations: forces are represented by uppercase letters and corresponding

deformations or displacements are denoted by the same letter in lowercase. Normal

letters denote scalar quantities, while boldface letters denote vectors and matrices.

Fig. 3.2 shows the element forces with the corresponding deformations. Rigid body

modes are not included in Fig. 3.2. Since the present formulation is based on linear

geometry, rigid body modes can be incorporated with a simple geometric

transformation. The element has 5 degrees of freedom: one axial extension, ,ହݍ and

two rotations relative to the chord at each end node, ଵݍ) , ଷݍ ) and ଶݍ) , ସݍ ),

respectively. For the sake of clarity these are called element generalized

deformations or simply element deformations in the following discussion. ܳଵ through

ܳହ indicate the corresponding generalized forces: one axial force, ܳହ , and two

bending moments at each end node ܳଵ , ܳଷ and ܳଶ , ܳସ, respectively. The end

rotations and corresponding moments refer to two arbitrary, orthogonal axes y and z.

The element generalized forces and deformations are grouped in the following

vectors:

Element force vector: ࡽ =

⎩
⎪
⎨

⎪
⎧
ܳଵ
ܳଶ
ܳଷ
ܳସ
ܳହ⎭

⎪
⎬

⎪
⎫

(3.1)

Element deformation vector:ࢗ� =

⎩
⎪
⎨

⎪
⎧
ଵݍ
ଶݍ
ଷݍ
ସݍ
⎭ହݍ

⎪
⎬

⎪
⎫

(3.2)

Fig. 3.2 also shows the generalized forces and deformations at a section of the

element. Section deformations are represented by three strain resultants: the axial

strain ε(x) along the longitudinal axis and two curvatures (ݔ)௭ݔ and (ݔ)௬ݔ about two

arbitrary, orthogonal axes z and y , respectively. The corresponding force resultants

are the axial force N(x) and two bending moments (ݔ)௭ܯ and (ݔ)௬ܯ . The section

generalized forces and deformations are grouped in the following vectors:

Section force vector: (ݔ)ࡰ = ቐ

(ݔ)௭ܯ

(ݔ)௬ܯ

(ݔ)ܰ

ቑ = ቐ

(ݔ)ଵܦ

(ݔ)ଶܦ

(ݔ)ଷܦ
ቑ (3.3)
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Section deformation vector: (ݔ)ࡰ = ቐ

(ݔ)௭ݔ

(ݔ)௬ݔ

(ݔ)ߝ

ቑ = ቐ
ଵ݀(ݔ)

ଶ݀(ݔ)

ଷ݀(ݔ)
ቑ (3.4)

The element formulation can be readily extended to include the torsional degrees of

freedom, as long as these are uncoupled from the present degrees of freedom and

are governed by linear elastic behavior. The focus of the present study is the element

in Fig. 3.2, which describes the nonlinear behavior of frame members under arbitrary

cyclic load histories of biaxial bending and axial load.

3.2.3 Beam-Column Element Formulation

In the following the mixed finite element method is used to formulate the beam-

column element. At this stage no reference is made to specific interpolation

functions. It is shown, however, that, if flexibility dependent deformation shape

functions are selected, then the mixed method simplifies to the flexibility method. The

nonlinear section force-deformation relation is also kept general.

The derivation follows the two-field mixed method which uses the integral form of

equilibrium and section force-deformation relations to derive the matrix relation

between element generalized forces and corresponding deformations. In order to

arrive at a linear relation, the section force-deformation relation is linearized about

the present state. An iterative algorithm is, then, used to satisfy the nonlinear section

force-deformation relation within the required tolerance.

In the two-field mixed method (Zienkiewicz and Taylor 1989) independent shape

functions are used for approximating the force and deformation fields along the

element. Denoting with Δ increments of the corresponding quantities, the two fields 

are written

(ݔ)௜ࢊ߂ = ௜ࢗ߂(ݔܽ) (3.5)

(ݔ)௜ࡰ = ௜ࡽ(ݔܾ) and (ݔ)௜ࡰ߂ = ௜ࡽ߂(ݔܽ) (3.6)

where matrices (ݔ)ࢇ and (ݔ)࢈ are the deformation and force interpolation matrices,

respectively. Superscript i indicates the i-th iteration of the Newton-Raphson (N-R)

iteration loop, which is performed at the structure degrees of freedom until

equilibrium between applied loads and internal resisting forces is satisfied (Zienkiewicz

and Taylor 1989). The use of the superscript in the element formulation becomes

necessary because of the special form of the deformation interpolation functions,

which are flexibility dependent.
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In the mixed method formulation the integral forms of equilibrium and section force

deformation relations are expressed first. These are then combined to obtain the

relation between element force and deformation increments.

The weighted integral form of the linearized section force-deformation relation is

∫ (ݔ)ఁࡰߜ ∙ (ݔ)௜ࢊ߂] − ௜ିࢌ ଵ(ݔ) ∙ =ݔ݀[(ݔ)௜ࡰ߂ 0
௅

଴
(3.7)

The section force-deformation relation appears in the flexibility form

(ݔ)௜ࢊ߂ = ௜ିࢌ ଵ(ݔ) ∙ (ݔ)௜ࡰ߂ (3.8)

so that the resulting element flexibility matrix is symmetric, as discussed by Zienkiewicz

and Taylor (1989). The superscript i-1 indicates that at the i-th Newton-Raphson

iteration the section flexibility at the end of the previous iteration is used. Substituting

Eqs. (3.5) and (3.6) in Eq. (3.7) results in

ఁࡽߜ ∫ (ݔ)ఁ࢈ ∙ (ݔ)௜ࢗ߂(ݔ)ࢇ] − ௜ିࢌ ଵ(ݔ) ∙ =ݔ݀[௜ࡽ߂(ݔ)࢈ 0
௅

଴
(3.9)

Since Eq. (3.9) must hold for any ఁࡽߜ , it follows that

ቂ∫ (ݔ)ఁ࢈ ∙ (ݔ)ࢇ ∙ ݔ݀
௅

଴
ቃࢗ߂௜− ቂ∫ (ݔ)ఁ࢈ ∙ ௜ିࢌ ଵ(ݔ) ∙ (ݔ)࢈ ∙ ݔ݀

௅

଴
ቃ∙ =௜ࡽ߂ 0 (3.10)

The expressions in square brackets represent the following matrices:

௜ିࡲ ଵ = ቂ∫ (ݔ)ఁ࢈ ∙ ௜ିࢌ ଵ(ݔ) ∙ (ݔ)࢈ ∙ ݔ݀
௅

଴
ቃ (3.11)

ࢀ = ቂ∫ (ݔ)ఁ࢈ ∙ (ݔ)ࢇ ∙ ݔ݀
௅

଴
ቃ (3.12)

where F is the element flexibility matrix and T is a matrix that only depends on the

interpolation function matrices. Using Eqs. (3.11) and (3.12) Eq. (3.10) can be written in

the form

−௜ࢗ߂ࢀ ௜ିࡲ ଵ ∙ =௜ࡽ߂ 0 (3.13)

or equivalently

=௜ࢗ߂ࢀ ௜ିࡲ ଵ ∙ ௜ࡽ߂ (3.14)

This is the matrix expression of the integral form of the linearized section force-

deformation relation.

In the next step the equilibrium of the beam element is satisfied. In the classical two-

field mixed method the integral form of the equilibrium equation is derived from the

virtual displacement principle

∫ (ݔ)ఁࢊߜ ∙ ࡰ] ௜ି ଵ(ݔ) + =ݔ݀[(ݔ)௜ࡰ߂ ఁࢗߜ ∙ ௜ࡼ
௅

଴
(3.15)
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where ௜ࡼ is the vector of applied loads that are in equilibrium with the internal forces

ࡰ ௜ି ଵ(ݔ) + .(ݔ)௜ࡰ߂ Eqs. (3.5) and (3.6) are substituted in Eq. (3.15) to yield

ఁࢗߜ ∫ (ݔ)ఁࢇ ∙ ௜ିܳ(ݔ)࢈] ଵ + =ݔ݀[௜ࡽ߂(ݔ)࢈ ఁࢗߜ ∙ ௜ࡼ
௅

଴
(3.16)

Observing that Eq. (3.16) must hold for arbitrary ఁࢗߜ , it follows that

ቂ∫ (ݔ)ఁ࢈ ∙ (ݔ)ࢇ ∙ ݔ݀
௅

଴
ቃ∙ ࡽ ௜ି ଵ + ቂ∫ (ݔ)ఁ࢈ ∙ (ݔ)ࢇ ∙ ݔ݀

௅

଴
ቃ∙ =௜ࡽ߂ ௜ࡼ (3.17)

If the notation introduced in Eq. (3.12) is used, Eq. (3.17) can be written in matrix form

ఁࢴ ∙ ࡽ ௜ି ଵ + ఁࢴ ∙ =௜ࡽ߂ ௜ࡼ (3.18)

This is the matrix expression of the integral form of the element equilibrium equations.

The rearrangement and combination of Eqs. (3.13) and (3.18) results in

൤−ࡲ
௜ି ଵ ࢴ

ఁࢴ ૙
൨∙ ቊ

௜ࡽ߂

௜ࢗ߂
ቋ= ൜

૙
−௜ࡼ ఁࢴ ∙ ࡽ ௜ି ଵൠ (3.19)

If the first equation in Eq. (3.19) is solved for ௜ࡽ߂ and the result is substituted in the

second equation, the following expression results

ఁࢴ ∙ ௜ିࡲ] ଵ]ିଵ ∙ ࢴ ∙ =௜ࢗ�߂ −௜ࡼ ఁࢴ ∙ ࡽ ௜ି ଵ (3.20)

So far, the specific selection of force and deformation interpolation functions (ݔ)࢈

and ,(ݔ)ࢇ respectively, has not been addressed. In keeping with the generality of the

formulation the selection of the force interpolation functions b(x) is deferred to the

following chapter. Even

though in a mixed finite element method the deformation interpolation functions

,(ݔ)ࢇ are completely independent of b(x), Eq. (3.12) reveals that a special choice of

the deformation shape functions ,(ݔ)ࢇ results in considerable simplification. With this

simplification in mind ,(ݔ)ࢇ are selected as flexibility dependent shape functions

according to the following expression

(ݔ)ࢇ = ௜ିࢌ ଵ(ݔ) ∙ (ݔ)࢈ ∙ ௜ିࡲ] ଵ]ିଵ (3.21)

These interpolation functions, thus, relate the section deformations with the

corresponding element deformations according to

(ݔ)௜ࢊ߂ = ௜ିࢌ ଵ(ݔ) ∙ (ݔ)࢈ ∙ ௜ିࡲ] ଵ]ିଵ ∙ ௜ࢗ߂ (3.22)

௜ିࡲ ଵ is the tangent element flexibility matrix at the end of the previous Newton-

Raphson iteration. This special selection of the deformation shape functions reduces

matrix T in Eq. (3.12) to a 3x3 identity matrix I. This can be readily proven by

substituting Eq. (3.21) in Eq. (3.12):

ࢀ = ቂ∫ (ݔ)ఁ࢈ ∙ (ݔ)ࢇ ∙ ݔ݀
௅

଴
ቃ= ቂ∫ (ݔ)ఁ࢈ ∙ ௜ିࢌ ଵ(ݔ) ∙ (ݔ)࢈ ∙ ݔ݀

௅

଴
ቃ∙ ௜ିࡲ] ଵ]ିଵ = ࢩ (3.23)
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With this choice of the deformation shape functions (ݔ)ࢇ Eq. (3.20) becomes

௜ିࡲ] ଵ]ିଵ ∙ =௜ࢗ߂ ࡼ − ࡽ ௜ି ଵ (3.24)

At the same time this choice of functions (ݔ)ࢇ reduces the general mixed method to

the flexibility method. The final matrix equation, Eq. (3.24), expresses the linearized

relation between the applied unbalanced forces ࡼ − ࡽ ௜ି ଵ and the corresponding

deformation increments ௜atࢗ߂ the element level. The element stiffness matrix is written

in the form ଵି[ܨ] to indicate that it is obtained by inverting the element flexibility

matrix. The linear equation system in Eq. (3.24) is different from that obtained by the

classical stiffness method in two respects: (a) the element stiffness matrix is obtained

by inverting the element flexibility matrix, as in the flexibility method, and, (b) the state

determination phase of the nonlinear analysis is different, as will be described in detail

in the following section.

Even though the classical flexibility method yields the same system of linearized

equations in Eq. (3.24), the above derivation was based on the two-field mixed

method for the following reasons: (a) the mixed method formulation yields directly the

expression for the flexibility dependent deformation shape functions (ݔ)ࢇ in Eq. (3.21),

(b) it reveals the consistent implementation of the state determination process, and,

(c) it is more general in scope allowing alternative deformation shape functions to be

explored in future studies.

Since (ݔ)ࢇ is not independent of (ݔ)࢈ and changes during the iterative solution

process, as is apparent from Eq. (3.21), the proposed method corresponds to the

classical flexibility method. Moreover, this procedure reduces to the stiffness method

for the case that the section constitutive relation is perfectly linear. In other words, the

independence between the two fields is not intrinsic in the definition of the shape

functions, but derives from the material nonlinearity of the section force-deformation

relation.

3.2.4 State Determination

Most studies to date concerned with the analysis of reinforced concrete frame

structures are based on finite element models that are derived with the stiffness

method. Recent studies have focused on the advantages of flexibility based models

(Zeris and Mahin 1988), but have failed to give a clear and consistent method of

calculating the resisting forces from the given element deformations. This problem

arises when the formulation of a finite element is based on the application of the

virtual force principle. While the element is flexibility-dependent, the computer
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program into which it is inserted is based on the direct stiffness method of analysis. In

this case the solution of the global equilibrium equations yields the displacements

of the structural degrees of freedom. During the phase of state determination the

resisting forces of all elements in the structure need to be determined. Since in a

flexibility based element there are no deformation shape functions to relate the

deformation field inside the element to the end displacements (or element

deformations) this process is not straightforward and is not well developed in flexibility

based models proposed to date. This fact has led to some confusion in the numerical

implementation of previous models. The description of the consistent state

determination process in this study benefits from the derivation of the governing

equations by the two-field mixed method.

In a nonlinear structural analysis program each load step corresponds to the

application of an external load increment to the structure. The corresponding

structural displacement increments are determined and the element deformations

are extracted for each element. The process of finding the resisting forces that

correspond to the given element deformations is known as state determination. The

state determination process is made up of two nested phases: a) the element state

determination, when the element resisting forces are determined for the given end

deformations, and b) the structure state determination, when the element resisting

forces are assembled to the structure resisting force vector. The resisting forces are

then compared with the total applied loads and the difference, if any, yields the

unbalanced forces which are then applied to the structure in an iterative solution

process until external loads and internal resisting forces agree within a specified

tolerance.
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Fig. 3.3 Schematic illustration of state determination at the structure, element and section level: k denotes

the load step, i the structure Newton-Raphson iteration and j the iteration for the element state

determination.

In the present study the nonlinear algorithm consists of three distinct nested

processes, which are illustrated in Fig. 3.3. The two outermost processes denoted by

indices k and i involve structural degrees of freedom and correspond to classical

nonlinear analysis procedures. The innermost process denoted by index j is applied

within each element and corresponds to the element state determination. Fig. 3.3

shows the evolution of the structure, element and section states during one load

increment ாࡼ߂
௞ that requires several Newton- Raphson iterations i.

In summary, the superscripts of the nested iterations are defined as follows:

k: denotes the applied load step. The external load is imposed in a sequence of load

increments ாࡼ
௞ . At load step k the total external load is equal to ாࡼ

௞ = ாࡼ
௞ିଵ + ாࡼ߂

௞ with

k=1,...,nstep andࡼா
଴=0 ;
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i: denotes the Newton-Raphson iteration scheme at the structure level, i.e. the

structure state determination process. This iteration loop yields the structural

displacements ௞࢖ that correspond to applied loads ாࡼ
௞;

j: denotes the iteration scheme at the element level, i.e. the element state

determination process. This iteration loop is necessary for the determination of the

element resisting forces that correspond to element deformations ௜ࢗ during the i-th

Newton-Raphson iteration.

The processes denoted by indices k and i are common in nonlinear analysis programs

and will not be discussed further. The iteration process denoted by the index j, on the

other hand, is special to the beam-column element formulation developed in this

study and will be described in detail. It should be pointed out that any suitable

nonlinear solution algorithm can be used for the iteration process denoted by index i.

In this study the Newton-Raphson method is used. The selection of this method for

iteration loop i does not affect the strategy for iteration loop j, which has as its goal

the determination of the element resisting forces for the given element deformations.

In a finite element that is based on the stiffness method of analysis the section

deformations are obtained directly from the element end deformations by

deformation interpolation functions. The corresponding section resisting forces are

determined subsequently from the section force-deformation relation. The weighted

integral of the section resisting forces over the element length yields the element

resisting forces and completes the process of element state determination.
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Fig. 3.4 Element and section state determination for flexibility-based element: computation of element

resisting forces ܳ௜corresponding to the element deformations .௜ݍ

In a flexibility-based finite element the first step is the determination of the element

forces from the current element deformations using the stiffness matrix at the end of

the last iteration. The force interpolation functions yield the forces along the element.

The first problem is, then, the determination of the section deformations from the

given section forces, since the nonlinear section force-deformation relation is

commonly expressed as an explicit function of section deformations. The second

problem arises from the fact that changes in the section stiffness produce a new

element stiffness matrix which, in turn, changes the element forces for the given

deformations.
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These problems are solved in the present study by a special nonlinear solution

method. In this method residual element deformations are determined at each

iteration. Deformation compatibility at the structural level requires that these residual

deformations be corrected. This is accomplished at the element level by applying

corrective element forces based on the current stiffness matrix. The corresponding

section forces are determined from the force interpolation functions so that

equilibrium is always satisfied along the element. These section forces cannot change

during the section state determination in order to maintain equilibrium along the

element. Consequently, the linear approximation of the section force-deformation

relation about the present state results in residual section deformations. These are

then integrated along the element to obtain new residual element deformations and

the whole process is repeated until convergence occurs. It is important to stress that

compatibility of element deformations and equilibrium along the element are always

satisfied in this process.

The nonlinear solution procedure for the element state determination is schematically

illustrated in Fig. 3.4 for one Newton-Raphson iteration i. In Fig. 3.4 convergence in

loop j is reached in three iterations. The consistent notation between Figs. 3.3 and 3.4

highlights the relation between the corresponding states of the structure, the element

and the section, which are denoted by uppercase Roman letters.

At the i-th Newton-Raphson iteration it is necessary to determine the element resisting

forces for the current element deformations

=௜ࢗ ௜ିࢗ ଵ + ௜ࢗ߂ (3.25)

To this end an iterative process denoted by index j is introduced inside the i-th

Newton-Raphson iteration. The first iteration corresponds to j=1. The initial state of the

element, represented by point A and j=0 in Fig. 3.4, corresponds to the state at the

end of the last iteration of loop j for the (i-1) Newton-Raphson iteration. With the initial

element tangent stiffness matrix

ଵି[௝ୀ଴ࡲ] = ௜ିࡲ] ଵ]ିଵ

and the given element deformation increments

௝ୀଵࢗ߂ = ௜ࢗ߂

the corresponding element force increments are:

௝ୀଵࡽ߂ = ଵି[௝ୀ଴ࡲ] ∙ ௝ୀଵࢗ߂
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The section force increments can now be determined from the force interpolation

functions:

(ݔ)௝ୀଵࡰ߂ = (ݔ)࢈ ∙ ௝ୀଵࡽ߂

With the section flexibility matrix at the end of the previous Newton-Raphson iteration

(ݔ)௝ୀ଴ࢌ = ௜ିࢌ ଵ(ݔ)

the linearization of the section force-deformation relation yields the section

deformation increments (ݔ)௝ୀଵࢊ߂ :

(ݔ)௝ୀଵࢊ߂ = (ݔ)௝ୀ଴ࢌ ∙ (ݔ)௝ୀଵࡰ߂

The section deformations are updated to the state that corresponds to point B in Fig.

3.4:

(ݔ)௝ୀଵࢊ = (ݔ)௝ୀ଴ࢊ + (ݔ)௝ୀଵࢊ߂

According to the section force-deformation relation, which is here assumed to be

explicitly known for simplicity's sake, section deformations (ݔ)௝ୀଵࢊ correspond to

resisting forces ோࡰ
௝ୀଵ

(ݔ) and a new tangent flexibility matrix (ݔ)௝ୀଵࢌ (Fig. 3.4). In a finite

element based on the stiffness method the section resisting forcesࡰ�ோ
௝ୀଵ

(ݔ) would be

directly transformed to element resisting forces ௝ୀଵࡽ thus violating the equilibrium

along the element in a strict sense. Since this is undesirable, a new nonlinear solution

method is proposed in this study. In this approach the section unbalanced forces are

first determined

௎ࡰ
௝ୀଵ(ݔ) = (ݔ)௝ୀଵࡰ߂ − ோࡰ

௝ୀଵ
(ݔ)

and are then transformed to residual section deformations ࢘௝ୀଵ(ݔ)

࢘௝ୀଵ(ݔ) = (ݔ)௝ୀଵࢌ ∙ ௎ࡰ
௝ୀଵ(ݔ)

The residual section deformations are thus the linear approximation to the

deformation error made in the linearization of the section force-deformation relation

(Fig. 3.4). While any suitable flexibility matrix can be used in calculating the residual

deformations, the tangent flexibility matrix used in this study offers the fastest

convergence rate.

The residual section deformations are integrated along the element based on the

virtual force principle to obtain the residual element deformations:

࢙௝ୀଵ = ∫ (ݔ)ఁ࢈ ∙ ࢘௝ୀଵ(ݔ) ∙ ݔ݀
௅

଴

At this point the first iteration j=1 of the corresponding iteration loop is complete. The

final element and section states for j=1 correspond to point B in Fig. 3.4. The residual
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section deformations ࢘௝ୀଵ(ݔ) and the residual element deformations ࢙௝ୀଵ are

determined in the first iteration, but the corresponding deformation vectors are not

updated. Instead, they are the starting point of the remaining steps within iteration

loop j. The presence of residual element deformations ࢙௝ୀଵ violates compatibility,

since elements sharing a common node would now have different end

displacements. In order to restore the inter-element compatibility corrective forces

equal to ଵି[�௝ୀଵࡲ]- ∙ ࢙௝ୀଵ must be applied at the ends of the element, where ௝ୀଵ�isࡲ the

updated element tangent flexibility matrix determined by integration of the section

flexibility matrices according to Eq. (3.11). A corresponding force increment

(ݔ)࢈- ∙ ଵି[�௝ୀଵࡲ] ∙ ࢙௝ୀଵ is applied at all control sections inducing a deformation

increment (ݔ)௝ୀଵࢌ- ∙ (ݔ)࢈ ∙ ଵି[�௝ୀଵࡲ] ∙ ࢙௝ୀଵ. Thus, in the second iteration j=2 the state of

the element and of the sections within the element change as follows: the element

forces are updated to the value

௝ୀଶࡽ = ௝ୀଵࡽ + ௝ୀଶࡽ߂

where ௝ୀଶࡽ߂ = ଵି[�௝ୀଵࡲ]− ∙ ࢙௝ୀଵ

and the section forces and deformations are updated to the values

(ݔ)௝ୀଶࡰ = (ݔ)௝ୀଵࡰ + (ݔ)௝ୀଶࡰ߂

and (ݔ)௝ୀଶࢊ = (ݔ)௝ୀଵࢊ + (ݔ)௝ୀଶࢊ߂

where (ݔ)௝ୀଶࡰ߂ = (ݔ)࢈− ∙ ଵି[�௝ୀଵࡲ] ∙ ࢙௝ୀଵ

(ݔ)௝ୀଶࢊ߂ = ࢘௝ୀଵ(ݔ) − (ݔ)௝ୀଵࢌ ∙ (ݔ)࢈ ∙ ଵି[�௝ୀଵࡲ] ∙ ࢙௝ୀଵ

The state of the element and the sections within the element at the end of the

second iteration j=2 corresponds to point C in Fig. 3.4. The new tangent flexibility

matrices (ݔ)௝ୀଶࢌ and the new residual section deformations

࢘௝ୀଶ(ݔ) = (ݔ)௝ୀଶࢌ ∙ ௎ࡰ
௝ୀଶ(ݔ)

are computed for all sections. The residual section deformations are then integrated

to obtain the residual element deformations ࢙௝ୀଶ and the new element tangent

flexibility matrix �௝ୀଶࡲ is determined by integration of the section flexibility matrices

(ݔ)௝ୀଶࢌ according to Eq. (3.11). This completes the second iteration within loop j.

The third and subsequent iterations follow exactly the same scheme. Convergence is

achieved when the selected convergence criterion is satisfied. With the conclusion of

iteration loop j the element resisting forces for the given deformations ௜ࢗ are

established, as represented by point D in Figs. 3.3 and 3.4. The Newton-Raphson

iteration process can now proceed with step i+1 .
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It is important to point out that during iteration loop j the element deformations ௜ࢗ do

not change except in the first iteration j=1, when increments ௝ୀଵࢗ߂ = ௜areࢗ߂ added to

the element deformations ௜ିࢗ ଵ at the end of the previous Newton-Raphson iteration.

These deformation increments result from the application of corrective loads ாࡼ߂
௜ at

the structural degrees of freedom during the Newton-Raphson iteration process. For

j>1 only the element forces change until the nonlinear solution procedure converges

to the element resisting forces ௜ࡽ which correspond to element deformations ௜ࢗ . This

is illustrated at the top of Fig. 3.4 where points B, C and D, which represent the state of

the element at the end of subsequent iterations in loop j, lie on the same vertical line,

while the corresponding points at the control sections of the element do not, as

shown in the bottom of Fig. 3.4. This feature of the proposed nonlinear solution

procedure ensures displacement compatibility at the element ends.

The proposed nonlinear analysis method offers several advantages. Equilibrium along

the element is always strictly satisfied, since section forces are derived from element

forces by the force interpolation functions according to Eq. (3.6). Compatibility is also

satisfied, not only at the element ends, but also along the element. In fact, in the

expression for the section deformation corrections

(ݔ)௝ࢊ߂ = ࢘௝ି ଵ(ݔ) − ௝ିࢌ ଵ(ݔ) ∙ (ݔ)࢈ ∙ ௝ିࡲ] ଵ�]ିଵ ∙ ࢙௝ି ଵ

the second term satisfies Eqs. (3.21) and (3.22), which express the relation between

section and element deformations by means of shape functions .(ݔ)ࢇ The residual

section deformations ࢘௝ି ଵ(ݔ), however, do not strictly satisfy this compatibility

condition. It is possible to satisfy this requirement by integrating the residual

deformations ࢘௝ି ଵ(ݔ) to obtain ࢙௝ି ଵ and then using the deformation shape functions

(ݔ)ࢇ to calculate the section deformation increments as ࢙�⋅(ݔ)ࢇ ௝ି ଵ . Since this is,

however, rather inefficient from a computational standpoint, the small compatibility

error in the calculation of residual section deformations ࢘௝ି ଵ(ݔ) is neglected in this

study.

While equilibrium and compatibility are satisfied along the element during each

iteration of loop j, the section force-deformation relation and, consequently, the

element force-deformation relation is only satisfied within a specified tolerance when

convergence is achieved at point D in Fig. 3.4. In other words, during subsequent

iterations the element forces approach the value that corresponds to the imposed

element deformations, while maintaining equilibrium and compatibility along the

element at all times. This approximation of the force-deformation relation in the

proposed nonlinear analysis method is preferable to the approximation of either the

equilibrium or the compatibility conditions of the element, particularly when



Study on the Effect of FE Simulation on Fragility Analysis of RC Structures

31

considering the uncertainty in the definition of constitutive relations for reinforced

concrete structures.

3.2.5 Summary of Nonlinear Solution Algorithm

After the description of the element state determination process in the previous

section a step-by-step summary of the computations is presented below. The

summary focuses on a single iteration i at the structural degrees of freedom, because

the innovative aspect of the present study is the process of element state

determination. The rest of the nonlinear solution algorithm follows well established

methods, such as the Newton-Raphson method selected in this study. Alternative

solution strategies can be implemented without additional effort, since these are

independent of the element state determination. The relation of the Newton-

Raphson iteration to the nonlinear solution of the entire structure is illustrated at the

top of Fig. 3.3, which also shows the relation between the overall solution strategy

and the element state determination process with corresponding states denoted by

uppercase Roman letters. Fig. 3.4 shows in detail the evolution of the state

determination process for an element and corresponds to steps (4) through (13) in

the following summary. The flow chart of computations for the entire solution

algorithm is shown in Fig. 3.5, while the flow chart of computations for the element

state determination is shown in Fig. 3.6.

The i-th Newton-Raphson iteration is organized as follows:

(1) Solve the global system of equations and update the structural displacements. At

the i-th Newton-Raphson iteration the structure stiffness matrix ௦ࡷ
௜ି ଵ at the end of the

previous iteration i-1 is used to compute the displacement increments ௜࢖߂ for the

given load increments ாࡼ߂
௜ which represent the unbalanced forces from the previous

iteration.

௦ࡷ
௜ି ଵ ∙ =௜࢖߂ ாࡼ߂

௜ (3.26)

=௜࢖ ௜ି࢖ ଵ + ௜࢖߂ (3.27)
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Fig. 3.5 Flow chart of structure state determination.

(2) Calculate the element deformation increments and update the element

deformations. Using matrix ,௘௟௘ࡸ which relates structural displacements with element

deformations, the element deformation increments ௜areࢗ߂ determined:

=௜ࢗ߂ ௘௟௘ࡸ ∙ ௜࢖߂ (3.28)

=௜ࢗ ௜ିࢗ ଵ + ௜ࢗ߂ (3.29)

Note that matrix ௘௟௘ࡸ is the combination of two transformations: in the first

transformation the element displacements in the global reference system p are

transformed to the displacements ഥࢗ in the element local reference system. In the
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second transformation the element displacements ഥࢗ are transformed to element

deformations q by elimination of the rigid-body modes.

As discussed in Section 2.2.4, the new element deformations ௜ࢗ do not change until

the following (i+1) Newton-Raphson iteration. The remaining operations of the

nonlinear solution algorithm make up the element state determination process which

establishes the element resisting forces for the given element deformations .௜ࢗ

(3) Start the element state determination. Loop over all elements in the structure. The

state determination of each element is performed in loop j. The index of the first

iteration is j=1.

(4) Determine the element force increments. The element force increments ௝ࡽ߂ are

determined with the element stiffness matrix ࡷ ௝ି ଵ at the end of the previous iteration

in loop j

௝ࡽ߂ = ࡷ ௝ି ଵ ∙ࢗ߂௝ (3.30)

When j=1, ଴ࡷ ࡷ= ௜ି ଵ and ଵࢗ߂ ௜ࢗ߂= where i-1 corresponds to the state of the element at

the end of the last Newton-Raphson iteration. When j>1 ௝ࢗ߂ is equal to the residual

element deformations of the previous iteration, as determined in Step (13).

(5) Update the element forces.

௝ࡽ = ࡽ ௝ି ଵ + ௝ࡽ߂ (3.31)

When j=1, ࡽ=଴ࡽ ௜ି ଵwhere i-1 corresponds to the state at the end of the last Newton-

Raphson iteration.

(6) Determine the section force increments. Steps (6) through (11) are performed for

all control sections (integration points) of the element.

The section force increments Δ۲୨(x) are determined from the force interpolation

functions .(ݔ)࢈ Subsequently, the section forces (ݔ)ࡰ are updated.

Δ۲୨(ݔ) = (ݔ)࢈ ∙ ௝ࡽ߂ (3.32)

۲୨(ݔ) = ۲୨ି ଵ(ݔ) + Δ۲୨(ݔ) (3.33)

(7) Determine the section deformation increments.

The section deformation increments (ݔ)௜ࢊ߂ are determined by adding the residual

section deformations from the previous iteration ࢘௝ି ଵ(ݔ) to the deformation

increments caused by the section force increments Δ۲୨(ݔ) . The latter are determined

with the section flexibility matrix ௝ିࢌ ଵ(ݔ) at the end of the previous iteration in loop j.

(ݔ)௝ࢊ߂ = ࢘௝ି ଵ(ݔ) + ௝ିࢌ ଵ(ݔ)ࡰ߂୨(ݔ) (3.34)
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(ݔ)௝ࢊ = ௝ିࢊ ଵ(ݔ) + (ݔ)௝ࢊ߂ (3.35)

when j=1,�࢘଴(ݔ) = 0

(8) Determine the tangent stiffness and flexibility matrices of the section.

Assuming for simplicity that the section force-deformation relation is known explicitly,

the tangent stiffness matrix ࢑௝(ݔ) is updated for the new section deformations .(ݔ)௝ࢊ

This stiffness matrix ࢑௝(ݔ) is then inverted to obtain the new tangent flexibility matrix

(ݔ)௝ࢌ of the section.

(ݔ)௝ࢌ = [࢑௝(ݔ) ]ିଵ (3.36)

(9) Determine the section resisting forces.

The resisting forces ோࡰ
௝

(ݔ) are determined for the current deformations (ݔ)௝ࢊ from the

section force-deformation relation.

(10) Determine the unbalanced forces at the section.

The section unbalanced forces ௎ࡰ
௝

(ݔ) are the difference between the applied forces

۲୨(ݔ) and the resisting forces ோࡰ
௝

.(ݔ)

௎ࡰ
௝(ݔ) = ۲୨(ݔ) − ோࡰ

௝
(ݔ) (3.37)

(11) Determine the residual section deformations.

The section unbalanced forces and the new section flexibility yield the residual

section deformations ࢘௝(ݔ)

࢘௝(ݔ) = ௎ࡰ(ݔ)௝ࢌ
௝(ݔ) (3.38)
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Fig. 3.6 Flow chart of structure state determination: the section.

(12) Determine the element flexibility and stiffness matrices.

The element flexibility matrix ௝ࡲ is formed by integration of the section flexibility

matrices .(ݔ)௝ࢌ This matrix is then inverted to obtain the element tangent stiffness

matrix .௝ࡷ

௝ࡲ = ቂ∫ (ݔ)ఁ࢈ ∙ (ݔ)௝ࢌ ∙ (ݔ)࢈ ∙ ݔ݀
௅

଴
ቃ� (3.39)

௝ࡷ = ௝ࡲ] ]ିଵ (3.40)
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(13) Check for element convergence.

a) If the unbalanced forces at all element sections are sufficiently small, the element

is considered to have converged. After setting ௝ࡽ=௜ࡽ and ௝ࡷ=௜ࡷ the process

continues with step (14).

b) If some sections have not converged, the residual element deformations ࢙௝ are

determined by integration of the residual section deformations ࢘௝(ݔ).

࢙௝ = ቂ∫ (ݔ)ఁ࢈ ∙ ࢘௝(ݔ) ∙ ݔ݀
௅

଴
ቃ (3.41)

At this point j is incremented to j+1 and a new iteration begins in loop j. In this case

௝ࢗ߂ in Eq. (3.30) is replaced with ௝ାଵࢗ߂  which is set equal to −࢙௝

௝ାଵࢗ߂ = −࢙௝ (3.42)

and steps (4) through (13) are repeated until convergence is achieved at all sections

of the element.

(14) Determine the resisting forces and the new stiffness matrix of the entire structure.

When all elements have converged, the i-th step of the Newton-Raphson iteration is

complete. The element force vectors are assembled to form the updated structure

resisting forces

ோࡼ
௜ = ∑ ௘௟௘ࡸ

࢔்
ୀ૚ࢋ࢒ࢋ ∙ ௘௟௘(࢏ࡽ) (3.43)

where n is the total number of beam-column elements in the structure and the

subscript ele is added as a summation index. The new structure stiffness matrix is

formed by assembling the current element stiffness matrices

௦ࡷ
௜ = ∑ ௘௟௘ࡸ

࢔்
ୀ૚ࢋ࢒ࢋ ∙ ௘௟௘(࢏ࡷ) ∙ ௘௟௘ࡸ (3.44)

At this point the structure resisting forces ோࡼ
௜ are compared with the total applied

loads. If the difference ௎ࡼ
௜ , which is the structure unbalanced force vector, is not

within the specified tolerance, i is incremented to i+1 and the next Newton-Raphson

iteration begins. Steps (1) through (14) are repeated after replacing ௲ࡼ߂
௜ with

௲ࡼ߂
௜ାଵ = ௎ࡼ߂

௜ until convergence takes place at the structure degrees of freedom.

A graphical overview of the entire nonlinear analysis procedure is presented in Figs.

3.5 and 3.6. Fig. 3.5 provides an overview of the entire process with the nesting of the

individual iteration loops and does not differ from conventional nonlinear analysis

schemes. The new features of the algorithm are introduced in the element state

determination phase, which is singled out for presentation in Fig. 3.6. Since all

integrations along the element in Eqs. (3.39) and (3.41) need to be performed
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numerically, an additional iteration loop over all control sections of the element is

introduced in this diagram.

3.3 Constitutive law for fibre beam-column elements
In the numerical test examples, all analyses have been performed using the

OpenSEES (McKenna and Fenves, 2001) platform. A bilinear material model with pure

kinematic hardening is adopted for the steel fibres, while geometric nonlinearity is

explicitly taken into consideration. For the simulation of the concrete fibres the

modified Kent-Park model, where the monotonic envelope of concrete in

compression follows the model of Kent and Park (1971) as extended by Scott et al.

(1982), is employed for the simulation of the concrete fibres. This model was chosen

because it allows for an accurate prediction of the demand for flexure-dominated

RC members despite its relatively simple formulation. The transient behaviour of the

reinforcing bars was simulated with the Menegotto-Pinto model 1973, while the

effects of shear and bond-slip are neglected. The effect of gravity loads and second-

order effects are considered using the geometric stiffness matrix.

3.3.1 Concrete Stress-Strain Relation

In order to compute the concrete stress in each layer, a material law describing the

concrete stress-strain relation under arbitrary cyclic strain histories is needed. There is

some uncertainty as to the influence of the concrete model on the overall behaviour

of RC members subjected to bending and small values of axial force. Some

investigators have concluded that a crude concrete model suffices to accurately

predict experimental results. This might be true in the case of monotonic loading and

cyclic loading that is restricted to small excitations. It is not true, however, in the case

of severe cyclic loading. The results of the study by Scott et al. (1982) indicated that

the strength deterioration of RC members under large cyclic excitations depends

largely on the capacity of confined concrete to sustain stresses in the strain range

beyond the maximum strength. This requires the use of a refined concrete model.

The monotonic envelope curve of concrete in compression follows the model of

Kent and Park (1971) that was later extended by Scott et al. (1982). Even though

more accurate and complete models have been published, the modified Kent and

Park model offers a good balance between simplicity and accuracy. In the modified

Kent and Park model the monotonic concrete stress-strain relation incompression is

described by three regions:

  
   
   

2

c c
c c

2ε ε
σ = Kf - c 0

0 0

for ε ε
ε ε

(3.45a)
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 ) 0.2    c c c cσ = Kf 1- Z(ε Kf0 0 c uε  for ε ε ε (3.45b)

 c c c uσ =0.2Kf   for ε ε (3.45c)

where ε0=0.002K while



 



c

s yh

c
s

c h

ρ f
K = 1+

f

and

0.5
Z =

3+0.29f h
+0.75ρ -0.002K

145f -1000 s

(3.46)

where ε0 is the concrete strain at maximum stress, K is a factor which accounts for the

strength increase due to confinement, Z is the strain softening slope, 
cf is the

concrete compressive cylinder strength in MPa, fyh is the yield strength of stirrups in

MPa, ρs is the ratio of the volume of hoop reinforcement to the volume of concrete

core measured to outside of stirrups, h’ is the width of concrete core measured to

outside of stirrups, and sh is the center to center spacing of stirrups or hoop sets.

Fig. 3.7 Modified Kent-Park model, stress-strain relation for confined and unconfined concrete

In the case of concrete confined by stirrup-ties, Scott et al. (1982) suggest that εu is

determined from the following expression:

z1

z2

0.2Kf’c

ε0 εu εc

σc

f’c
Kf’c

unconfined concrete
confined concrete
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300
u

yh

s

f
ε = 0.004 +0.9ρ (3.47)

To account for crushing of the concrete cover the strength in the cover layer is

reduced to 
c0.2f once the compressive strain exceeds the value of εu, which in this

study is set equal to 0.005. The following rules govern the hysteretic behaviour of the

concrete stress-strain relation (Fig. 3.7):

1. Unloading from a point on the envelope curve takes place along a straight

line connecting the point εr at which unloading starts to a point ερ on the strain

axis given by the expressions

2.0
   

   
   

u

2

r r r

0 0 0

ε ε ε
ε =0.145 +0.13 , for 

ε ε ε
(3.48a)

2.0 2.0
 

  
 

u
r r

0 0

ε ε
ε = 0.707 +0.834, for 

ε ε
(3.48b)

where ௢ߝ is the strain level corresponding to the maximum stress in

compression.

Fig. 3.8 Hysteric concrete stress-strain relation

The first part of the expression (Eq. (3.48a)) was proposed by Karsan and Jirsa

(1969) and relates the normalized strain on the envelope with the strains at the

completion of unloading through a quadratic formula. Eq. (3.48b) was added
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to the model since Eq. (3.48a) exhibits unreasonable behaviour under high

compressive strain conditions.

2. The concrete stress is equal to zero for strains smaller than the strain at

complete unloading since the tensile resistance is neglected.

3. On reloading in compression the stress is zero as long as the strain is smaller

than the strain at complete unloading. Once the concrete strain becomes

larger than that value, reloading continues along the previous unloading path

(Fig. 3.8).

3.3.2 Reinforcement Stress-Strain Laws

The steel reinforcement was modelled using a bilinear constitutive law. In a bilinear

material model (Fig. 3.9) the elastic behaviour of the material is determined by the

Hooke law, having the initial modulus of elasticity equal to E and yield point,

determined by the yield stress σy. The behaviour of the material after the yield point is

determined by a second inclined line whose slope is determined by the tangent

modulus of elasticity ET. The tangent modulus of elasticity ET is determined by means

of the initial modulus of elasticity through the hardening coefficient b by the

relationship:

TE = b E (3.49)

For a perfectly plastic material the hardening coefficient b is equal to zero. Apart

from the coefficient b, the hardening parameter H is often used, which connects the

stress σ with the plastic strain εPL through the relation:

 pl = H ε (3.50)
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Fig. 3.9 The multi-linear stress-strain law for reinforcement

The hardening parameter H, the tangent modulus of elasticity ET and the hardening

coefficient b are related through the following expression:

1
 

   
 

Τ

Τ

E
H =

1- b

or

E
E E

E - H

(3.51)

In the case of steel structures, where the yield strength in tension exceeds the yield

stress in compression, the yield strength at the next load loop will be different. This

phenomenon is known as the Bauschinger. The Bauschinger effect refers to a material

property, where the characteristics of stress - strain of the material changed as a

result of microscopic stress distribution in the material.
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4. Simulation – Three-Dimensional Solid Finite Element

Modeling with Embedded Reinforcement

4.1 Introduction
In three-dimensional (3D) nonlinear finite-element (FE) analysis of reinforced concrete

(RC) structures three methods available for the simulation of reinforcement are

smeared, discrete, and embedded (ASCE 1982). The smeared formulation is more

suitable to surface-type structures, where the distributed-reinforcing mesh permits

modeling each layer of reinforcement with a membrane layer of equal cross-

sectional area. For sparsely located (nonuniformly spaced) reinforcing bars, either the

discrete or embedded formulation is more appropriate. In the discrete formulation,

the rebars are often modeled with axial elements located at the boundaries of

concrete elements. An obvious restriction is then imposed by having to use a

concrete element mesh based on the rebar locations, rather than the need to

simulate the flow of stresses. Especially in 3D applications, this can lead to prohibitive

computational costs due to the use of many unnecessarily small elements and/or

inaccuracies caused by elements with undesirable-aspect ratios. To alleviate these

problems, some investigators have altered the actual arrangement of reinforcement

during FE modeling (Abdel-Halim and Abu-Lebdeh 1989; Gonzalez Vidosa et al 1990).

In order to remedy such shortcomings, embedded formulation is preferable. This

method, however, has mainly been used in two-dimensional (2D) FE analyses. The

original formulation by Phillips and Zienkiewicz (1976) was modified by Chang et al.

(1987) to allow for a straight-rebar segment to be placed at any angle with respect to

the local axes of isoparametric- concrete elements. Balakrishnan and Murray (1986)

introduced an embedded formulation with bond-slip capability between

reinforcement and concrete. Further improvements by Elwi and Hrudey (1989)

allowed for a more general embedded curved reinforcement formulation. EI-Mezaini

and Citipitioglu (1991) introduced isoparametric elements with movable nodes to

arrive at more efficient formulation when bond-slip is modeled.

The inherent requirement in the current embedded formulations is that the global

coordinates of the intersection points of individual reinforcement and concrete

elements should be provided by the analyst. While such data input in 2D models may

be manageable, the task of identifying such points, their correspondence with each

concrete element, and the manual input of coordinates for many such points in 3D

applications is formidable Fig. 4-1. These problems, and difficulties associated with

calculation of stiffness for arbitrary location of bar elements embedded in 3D meshes,
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have led to some restrictions, simplifications, and approximations in 3D FE analyses;

Isenberg and Levine (1985) restricted the embedded bars to pass through the centers

of hexahedral concrete elements, Cervera (1986) smeared a group of bars at a

given location and used them as embedded layers inside the concrete-solid

elements, and Zienkiewicz et al. (1972) and Bhatt et al. (1989) restricted the

embedded bars to being parallel to the local-isoparametric coordinates.

A systematic approach is presented to facilitate the use of embedded formulation in

3D FE analysis of concrete structures. With this procedure for each straight segment of

reinforcement, only the end point coordinates in the global axes need to be

provided by the analyst, which are then used to automatically map the entire

reinforcement cage in a mesh of solid isoparametric concrete elements. By applying

the principle of virtual work, the stiffness of each segment of reinforcement can be

computed and added to the corresponding concrete element stiffness.

Fig. 4.1 Embedded reinforcement in 3D Mesh of Concrete Elements
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4.2 Formulation
A procedure is presented to map a straight segment of reinforcement, ଵܲ ଶܲ Fig. 4.1,

into a given mesh of solid elements, and to incorporate the stiffness of each

embedded portion such as ଵܲ ௔ܲ, in the surrounding concrete element stiffness. It is

assumed that the concrete element connectivity data – nodal incidences and

coordinates – are available.

4.3 Origination/ Termination Point of Reinforcement Segment
Consider the coordinates (x, y, and z) of points ଵܲ and ଶܲ, defining a straight portion of

reinforcement, are given Fig. 4.1. It is required to identify the concrete elements

containing these points. A point such as ଵܲ is contained in a given concrete element

if its coordinates, ,௉భߦ ௉భߟ and ,௉భߩ in the element local axes satisfy

−1 ≤ ,௉భߟ�������,௉భߦ ௉భߩ ≤ 1 (4.1)

Starting from the first element, the global coordinates ௉భ(ݖ,ݕ,ݔ) of ଵܲ are mapped

back into the current element local coordinate system in order to examine (4.1). The

inverse mapping procedure, which is a 3D extension of the method proposed by Elwi

and Hrudey (1989), is used for this purpose. In the isoparametric formulation the

global coordinates (x, y, and z) of a generic point within a solid element are

expressed as

ቊ
ݔ
ݕ
ݖ
ቋ= ቎

〈߮〉 0 0

0 〈߮〉 0

0 0 〈߮〉
቏ቐ

{ }࢞

{࢟}

{ࢠ}
ቑ (4.2)

where { }࢞, {࢟}, and {ࢠ} = vectors of element nodal coordinates, and

[࣐] = [(ߩ,ߟ,ߦ)߮] = {߮}ఁ = [߮ଵ(ߩ,ߟ,ߦ),߮ଶ(ߩ,ߟ,ߦ),߮ଷ(ߩ,ߟ,ߦ)] (4.3)

represents the row vector of displacement-shape functions. It follows that

൝
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ݖ݀

ൡ= ்[ࡶ] ൝
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ൡ (4.4)

or
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ൡ= ்[ࡶ]

ିଵ
൝
ݔ݀
ݕ݀
ݖ݀

ൡ (4.5)

where [ࡶ] = the Jacobian matrix expressed as

[ࡶ] =
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From (4.2), the coordinates ௉భ(ߩ,ߟ,ߦ) are the roots of the following set of equations:

ቊ
ݔ
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௉భ

− ቎

〈߮〉 0 0

0 〈߮〉 0

0 0 〈߮〉
቏ቐ

{ }࢞

{࢟}

{ࢠ}
ቑ = {0} (4.7)

A Newton-Raphson iterative procedure has been used for solution. With an initial

estimate of

൝
ߦ
ߟ
ߩ
ൡ

௉భ

଴

= {0} (4.8)

the solution after n + 1 iterations is determined as
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where
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[࢔ࡶ] = [(௡ߩ,௡ߟ,௡ߦ)ࡶ] (4.10b)

[࢔࣐] = [(௡ߩ,௡ߟ,௡ߦ)࣐] (4.10c)

The preceding solution scheme has been found to converge rapidly. For the current

element if the converged values do not satisfy (4.1), the procedure is repeated using

the nodal coordinates of the next element until the element containing P1 is

identified.

4.4 Intersection of Reinforcement Segment with Boundaries of

Concrete Elements
Upon identification of the element containing an origination point ଵܲ of a straight

reinforcement segment ଵܲ ଶܲ (Fig. 4.1), the intersection points of ଵܲ ଶܲ ( ௔ܲ, e.g.) with the

face(s) of concrete-solid elements should be determined. For this purpose the

equation of line PIP: is written in a parametric form as

ቐ

)ݔ )ܵ
)ݕ )ܵ

)ݖ )ܵ
ቑ= ቊ

ݔ
ݕ
ݖ
ቋ

௉భ

+ ܵ቎ቊ
ݔ
ݕ
ݖ
ቋ

௉మ

− ቊ
ݔ
ݕ
ݖ
ቋ

௉భ

቏   0 ≤ S ≤ 1                                                        (4.11) 

For locating the intersection point of the preceding line with a face of the current

element, all six faces should be considered. The equation of a typical face of the

element may be written as
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ࡼ࢕ࡼ ∙ ࡺ = 0 (4.12)

where ࢕ࡼ = a corner node; ࡼ = a generic point on the surface; and ࡺ = normal to this

face. Eq. (4.12) defines a planar surface. Therefore, the procedure will be exact for 8-

noded linear solid isoparametric elements while introducing some approximation for

higher-order elements with curved surfaces.

The coordinates of the intersection point, Pa, is determined from (4.11), with S

determined as

ܵ=
ࡺ∙࢕ࡼ૚ࡼ

ࡺ∙૛ࡼ૚ࡼ
(4.13)

At this stage the length of the reinforcement segment contained in the current

element and the face number where the segment leaves the element are available.

The algorithm proceeds by shortening the line segment ଵܲ ଶܲ by an amount ଵܲ ௔ܲ and

shifting ଵܲ to ௔ܲ, (Fig. 4.1). Now the next element to be examined for intersection with

the remaining line segment is identified as the one that shares the face of the

element from which the line segment exited; this is accomplished by scanning

through the nodal incidences of the faces of all the remaining elements and picking

the match.

Following the foregoing procedure, each reinforcement line is divided into segments

contained in concrete elements. A concrete element may contain one or more

embedded-rebar segments with arbitrary orientations. In a special case where a

rebar segment lies on a face shared by adjacent elements, the very first element

identified to contain a point on the segment is registered to contain the entire

segment. Also, when a rebar segment passes through the element edges, then the

intersection point could belong to any of the adjoining elements; in such cases the

length of the segment is slightly decreased in order to identify a single element

containing that point.

4.5 Reinforced Concrete Element Stiffness
Depending on the order of displacement field for concrete elements, additional

nodes (e.g., Pc in Fig. 4.1) may be introduced between the end nodes of each bar

segment to satisfy compatibility in case of perfect bond assumption. The stiffness of

each reinforced concrete element may then be computed using numerical

integration in the element natural (ξ, η, ρ) coordinate system. The integration points of

each bar segment in its local axis (γ Fig. 4.1) are first located in the global (x, y, z)

system using the standard isoparametric transformations similar to (4.2). These points

are then mapped back to the corresponding-parent-element coordinates using the

aforementioned inverse mapping procedure.
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4.6 Constitutive law for 3D solid elements

4.6.1 Fracture-Plastic Constitutive Model

4.6.1.1 Introduction

Fracture-plastic model combines constitutive models for tensile (fracturing) and

compressive (plastic) behavior. The fracture model is based on the classical

orthotropic smeared crack formulation and crack band model. It employs Rankine

failure criterion, exponential softening, and it can be used as rotated or fixed crack

model. The hardening/softening plasticity model is based on Menetrey-Willam failure

surface. The model uses return mapping algorithm for the integration of constitutive

equations. Special attention is given to the development of an algorithm for the

combination of the two models. The combined algorithm is based on a recursive

substitution, and it allows for the two models to be developed and formulated

separately. The algorithm can handle cases when failure surfaces of both models are

active, but also when physical changes such as crack closure occur. The model can

be used to simulate concrete cracking, crushing under high confinement, and crack

closure due to crushing in other material directions.

Although many papers have been published on plasticity models for concrete (for

instance PRAMONO, WILLAM 1989, MENETREY et al 1997, FEENSTRA 1993, 1998 ETSE

1992) or smeared crack models (RASHID 1968, CERVENKA and GERSTLE 1971, BAZANT

and OH 1983, DE BORST 1986, ROTS 1989), there are not many descriptions of their

successful combination in the literature. OWEN et al. (1983) presented a combination

of cracking and visco-plasticity.

Comprehensive treatise of the problem was provided also by de BORST (1986), and

recently several works have been published on the combination of damage and

plasticity (SIMO and JU 1987, MESCHKE et al. (1998). The presented model differs from

the above formulations by ability to handle also physical changes like for instance

crack closure, and it is not restricted to any particular shape of hardening/softening

laws. Also within the proposed approach it is possible to formulate the two models

(i.e. plastic and fracture) entirely separately, and their combination can be provided

in a different algorithm or model. From programming point of view such approach is

well suited for object oriented programming.

The method of strain decomposition, as introduced by DE BORST (1986), is used to

combine fracture and plasticity models together. Both models are developed within

the framework of return mapping algorithm by WILKINS (1964). This approach

guarantees the solution for all magnitudes of strain increment. From an algorithmic
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point of view the problem is then transformed into finding an optimal return point on

the failure surface.

The combined algorithm must determine the separation of strains into plastic and

fracturing components, while it must preserve the stress equivalence in both models.

The proposed algorithm is based on a recursive iterative scheme. It can be shown

that such a recursive algorithm cannot reach convergence in certain cases such as,

for instance, softening and dilating materials. For this reason the recursive algorithm is

extended by a variation of the relaxation method to stabilize convergence.

4.6.1.2 Material Model Formulation

The material model formulation is based on the strain decomposition into elastic ௜௝ߝ
௘ ,

plastic ௜௝ߝ
௣

and fracturing ௜௝ߝ
௙

components (DE BORST 1986).

௜௝ߝ = ௜௝ߝ
௘ + ௜௝ߝ

௣
+ ௜௝ߝ

௙
(4.14)

The new stress state is then computed by the formula:

௜௝ߪ
௡ = ௜௝ߪ

௡ିଵ + −௞௟ߝ߂)௜௝௞௟߃ ௞௟ߝ߂
௣

− ௞௟ߝ߂
௙

) (4.15)

where the increments of plastic strain ௞௟ߝ߂
௣

and fracturing strain ௞௟ߝ߂
௙

must be

evaluated based on the used material models.

4.6.1.3 Rankine-Fracturing Model for Concrete Cracking

Rankine criterion is used for concrete cracking:

௜ܨ
௙

= ௜௜ߪ
ᇱ௧− ௧݂௜

ᇱ ≤ 0 (4.16)

It is assumed that strains and stresses are converted into the material directions, which

in case of rotated crack model correspond to the principal directions, and in case of

fixed crack model, are given by the principal directions at the onset of cracking.

Therefore, ௜௜ߪ
ᇱ௧ identifies the trial stress and ௧݂௜

ᇱ tensile strength in the material direction i.

Prime symbol denotes quantities in the material direction. The trial stress state is

computed by the elastic predictor.

௜௝ߪ
ᇱ௧ = ௜௝ߪ

ᇱ௡ିଵ + ௞௟ߝ߂௜௝௞௟߃
ᇱ (4.17)

If the trial stress does not satisfy (4.16), the increment of fracturing strain in direction

can be computed using the assumption that the final stress state must satisfy (4.17).

௜ܨ
௙

= ௜௜ߪ
ᇱ௧− ௧݂௜

ᇱ = ௜௜ߪ
ᇱ௧− ௞௟ߝ߂௜௝௞௟߃

ᇱ௙
− ௧݂௜

ᇱ = 0 (4.18)

This equation can be further simplified under the assumption that the increment of

fracturing strain is normal to the failure surface, and that always only one failure
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surface is being checked. For failure surface k , the fracturing strain increment has the

following form.

௜௝ߝ߂
ᇱ௙

= ௞ܨ߲ߣ߂
௙
௜௝ൗߪ߲ = ௜௞ߜߣ߂ (4.19)

After substitution into (4.18) a formula for the increment of the fracturing multiplier λ is

recovered.

=ߣ߂ ௞௞ߪ)
ᇱ௧ − ௧݂௞

ᇱ) ⁄௞௞௞௞߃ and ௞ݓ
௠ ௔௫ = Ƹ௞௞ߝ)௧ܮ

ᇱ௙
+ (ߣ߂ (4.20)

This equation must be solved by iterations since for softening materials the value of

current tensile strength ௧݂
ᇱ(ݓ௞

௠ ௔௫) is a function of the crack opening w , and is based on

Hordijk's formula:

Exponential Crack Opening Law.

Fig. 4.2 Exponential crack opening law

This function of crack opening was derived experimentally by HORDIJK (1991).
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௖ݓ = 5.14
ீ೑

௙೟
ᇲ೐೑

where w is the crack opening, wc is the crack opening at the complete release of

stress, σ is the normal stress in the crack (crack cohesion). Values of the constants are,

c1=3, c2=6.93. GF is the fracture energy needed to create a unit area of stress-free

crack,�݂௧
ᇱ௘௙

is the effective tensile strength derived from a failure function.

The crack opening w is computed from the total value of fracturing strain Ƹ௞௞ߝ
ᇱ௙

in

direction k, plus the current increment of fracturing strain Δλ, and this sum is multiplied 

by the characteristic length Lt. The characteristic length as a crack band size was

introduced by BAZANT and OH. Various methods were proposed for the crack band
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size calculation in the framework of finite element method. FEENSTRA (1993)

suggested a method based on integration point volume, which is not well suited for

distorted elements. A consistent and rather complex approach was proposed by

OLIVIER. In the presented work the crack band size Lt is calculated as a size of the

element projected into the crack direction, Fig. 4.3. CERVENKA V. et al. (1995)

showed that this approach is satisfactory for low order linear elements, which are

used throughout this study. They also proposed a modification, which accounts for

cracks that are not aligned with element edges.

Fig. 4.3 Tensile softening and characteristic length

Equation (4.20) can be solved by recursive substitutions. It is possible to show by

expanding ௧݂
ᇱ(ݓ௞

௠ ௔௫) into a Taylor series that this iteration scheme converges as long

as:

|−(߲݂ ௧
ᇱ(ݓ௞

௠ ௔௫) ⁄ݓ߲ )| < ௞௞௞௞߃) ⁄௧ܮ ) (4.21)

Equation (4.21) is violated for softening materials only when snap back is observed in

the stress-strain relationship, which can occur if large finite elements are used. In the

standard displacement based finite element method, the strain increment is given,

therefore, a snap back on the constitutive level cannot be captured. This means that

the critical region, with snap back on the softening curve, will be skipped in a real

calculation, which physically means, that the energy dissipated by the system will be

over estimated. This is of course undesirable, and finite elements smaller then

>ܮ ݇݇ܧ ݇݇ |߲݂ ௧
ᇱ(0) ⁄ݓ߲ |⁄ should be used, where ߲݂ ௧

ᇱ(0) ⁄ݓ߲ denotes the initial slope of the crack softening

curve.

It is important to distinguish between total fracturing strain Ƹ௜௝ߝ
ᇱ௙

, which corresponds to

the maximal fracturing strain reached during the loading process, and current

fracturing strain ௜௝ߝ
ᇱ௙

,
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which can be smaller due to crack closure, and is computed using (4.22) derived by

ROTS and BLAUWENDRAAD.

௞௟ߝ
ᇱ௙

= ൫݈݆݇݅ܧ + ݈݆݇݅ܧ
′ ൯ݎܿ

ିଵ
݈݇ܧ ݉ ௠ߝ݊ ௡

ᇱ and ݈݆݇݅ܧ
′ ݎܿ is defined by ௜௝ߪ

ᇱ = ݈݆݇݅ܧ
′ ݎܿ ௞௟ߝ

ᇱ௙
(4.22)

The fourth order crack tensor ௜௝௞௟ܧ
ᇱ௖௥ represents the cracking stiffness in the local

material directions.

In the current formulation, it is assumed, that there is no interaction between normal

and shear components. Thus, the crack tensor is given by the following formulas.

௜௝௞௟ܧ
ᇱ௖௥ = 0 for ݅≠ ݇and ݆≠ �݈ (4.23)

Mode I crack stiffness equals

௜௝௞௟ܧ
ᇱ௖௥ =

௙೟
ᇲ(௪ೖ

೘ ೌೣ)

ఌො
೔ೕ
ᇲ೑ (4.24)

and mode II and III crack stiffness is assumed as:

௜௝௜௝ܧ
ᇱ௖௥ = ி݉ݏ ݅݊ ൫ܧ௜௜௜௜

ᇱ௖௥,ܧ௝௝௝௝
ᇱ௖௥൯, (no summation of indices) (4.25)

where ݅≠ ,݆ and ிݏ is a shear factor coefficient that defines a relationship between

the normal and shear crack stiffness. The default value of ிݏ is 20.

Shear strength of a cracked concrete is calculated using the Modified Compression

Field Theory of VECHIO and COLLINS (1986).

௜௝ߪ ≤ 0.18ඥ ௖݂
ᇱ (0.31 + ݓ24 ( ௚ܽ + 16))⁄ൗ , ݅≠ ݆ (4.26)

Where ௖݂
ᇱ is the compressive strength in MPa, ௚ܽ is the maximum aggregate size in mm

and w is the maximum crack width in mm at the given location. This model is

activated by specifying the maximum aggregate size ௚ܽ otherwise the default

behavior is used where the shear stress on a crack surface cannot the tensile

strength.

The secant constitutive matrix in the material direction was formulated by ROTS and

BLAUWENDRAAD in the matrix format.

E 's = E - E(E 'cr + E)-1 E (4.27)

Strain vector transformation matrix Tε (i.e. global to local strain transformation matrix)

can be used to transform the local secant stiffness matrix to the global coordinate

system.

Es = TεT E 'sTε (4.28)

It is necessary to handle the special cases before the onset of cracking, when the

crack stiffness approaches infinity. Large penalty numbers are used for crack stiffness
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in these cases.

4.6.1.4 Plasticity Model for Concrete Crushing

New stress state in the plastic model is computed using the predictor-corrector

formula.

௜௝ߪ
௡ = ௜௝ߪ

௡ିଵ + −௞௟ߝ߂௜௝௞௟൫߃ ௞௟ߝ߂
௣
൯= ௜௝ߪ

௧ − ௞௟ߝ߂௜௝௞௟߃
௣

= ௜௝ߪ
௧ − ௜௝ߪ

௣
(4.29)

The plastic corrector ௜௝ߪ
௣

is computed directly from the yield function by return

mapping algorithm.

௜௝ߪ௉൫ܨ
௧ − ௜௝ߪ

௣
൯= ௜௝ߪ௉൫ܨ

௧ − ߣ݈߂ ௜௝൯= 0 (4.30)

The crucial aspect is the definition of the return direction ௜݈௝, which can be defined as

௜݈௝ = ܩ߲)௜௝௞௟߃
௉(ߪ௞௟

௧ ) ⁄௞௟ߪ߲ ) then ௜௝ߝ߂
௣

= ௞௟ߪ)௉ܩ߲)ߣ߂
௧ ) ⁄௞௟ߪ߲ ) (4.31)

Where (௞௟ߪ) is the plastic potential function, whose derivative is evaluated at the

predictor stress state ௞௟ߪ
௧ to determine the return direction.

The failure surface of MENETREY, WILLAM is used in the current version of the material

model.

ଷ௉ܨ
௣

= ߩ1.5ൣ√ ௖݂
ᇱ⁄ ൧
ଶ

+ ݉ ൫ൣߩ √6⁄ ௖݂
ᇱ൯ߠ)ݎ, )݁ + ߦ √3⁄ ௖݂

ᇱ൧− ܿ= 0 (4.32)

Where

݉ = 3(( ௖݂
ᇱଶ − ௧݂

ᇱଶ) ௖݂
ᇱ⁄ ௧݂

ᇱ)(݁ (݁+ 1)⁄ )

,ߠ)ݎ )݁ =
ସ൫ଵି௘మ൯௖௢௦మఏା(ଶ௘ିଵ)మ

ଶ(ଵି௘మ)௖௢௦ఏା(ଶ௘ିଵ)[ସ(ଵି௘మ)௖௢௦మఏାହ௘మିସ௘]భ/మ

In the above equations (ξ,ρ,θ) are Heigh-Vestergaard coordinates, ௖݂
ᇱ and�݂௧

ᇱ�is

compressive strength and tensile strength respectively. Parameter e ߳ (0.5, 1.0)

defines the roundness of the failure surface. The failure surface has sharp corners if e =

0.5, and is fully circular around the hydrostatic axis if e = 1.0.

The position of failure surfaces is not fixed but it can move depending on the value of

strain hardening/softening parameter. The strain hardening is based on the

equivalent plastic strain, which is calculated according to the following formula.

௘௤ߝ߂
௣

= min ௜௝ߝ߂)
௣

) (4.33)

For Menetrey-Willam surface the hardening/softening is controlled by the parameter

c ߳ (0,1), which evolves during the yielding/crushing process by the following

relationship:
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ܿ= ൫݂ ௖
ᇱ(ߝ௘௤

௣
) ௖݂

ᇱ⁄ ൯
ଶ

(4.34)

In the above two formulas the expression ௖݂
ᇱ൫ߝ௘௤

௣
൯�indicates the hardening/softening

law, which is based on the uniaxial compressive test. The law is shown in Fig. 4.4,

where the softening curve is linear and the elliptical ascending part is given by the

following formula:

ߪ = ௖݂௢ + ( ௖݂ − ௖݂௢)ට1 − ൫ߝ௖ − ௘௤ߝ
௣

⁄௖ߝ ൯
ଶ

(4.35)

Fig. 4.4 Compressive hardening/softening and compressive characteristic length – based on experimental

observations by VAN MIER

The law on the ascending branch is based on strains, while the descending branch is

based on displacements to introduce mesh objectivity into the finite element solution,

and its shape is based on the work of VAN MIER. The onset of nonlinear behavior ௖݂௢
ᇱ is

an input parameter as well as the value of plastic strain at compresive strength ௖ߝ
௣
.

The Fig. 4.3 shows typical values of these parameters. Especially the choice of the

parameter ௖݂௢
ᇱ should be selected with care, since it is important to ensure that the

fracture and plastic surfaces intersect each other in all material stages. On the

descending curve the equivalent plastic strain is transformed into displacements

through the length scale parameter Lc. This parameter is defined by analogy to the

crack band parameter in the fracture model in Sec. 4.1.1.3, and it corresponds to the

projection of element size into the direction of minimal principal stresses. The square in

(4.34) is due to the quadratic nature of the Menetry-Willam surface.

Return direction is given by the following plastic potential

=௜௝൯ߪ௣൫ܩ 1)ߚ √3)⁄ ଵ߇ + ඥ2ܬଶ (4.36)

where β determines the return direction. If β < 0 material is being compacted during

crushing, if β = 0 material volume is preserved, and if β > 0 material is dilating. In

general the plastic model is non-associated, since the plastic flow is not

perpendicular to the failure surface.
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The return mapping algorithm for the plastic model is based on predictor-corrector

approach as is shown in Fig. 4.5. During the corrector phase of the algorithm the

failure surface moves along the hydrostatic axis to simulate hardening and softening.

The final failure surface has the apex located at the origin of the Haigh-Vestergaard

coordinate system. Secant method based Algorithm 1 is used to determine the stress

on the surface, which satisfies the yield condition and also the hardening/softening

law.

Fig. 4.5 Plastic predictor-corrector algorithm

Fig. 4.6 Schematic description of the iterative process (4.38) – for clarity shown in two dimensions

Algorithm 1: (Input is ௜௝ߪ
௡ିଵ, ௜௝ߝ

௣௡ିଵ
, ௜௝ߝ߂

௡)

Elastic predictor:
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௜௝ߪ
௧ = ௜௝ߪ

௡ିଵ + ௞௟ߝ߂௜௝௞௟߃
௡ (4.37)

Evaluate failure criterion:

஺݂
௣

= ௣ܨ ቀߪ௜௝
௧,ߝ௜௝

௣௡ିଵ
ቁ, ௮ߣ߂ = 0 (4.38)

If failure criterion is violated i.e. ஺݂
௣

> 0

Evaluate return direction:

݉ ௜௝ = ௜௝ߪ௣൫ܩ߲
௧൯ ߲⁄ ௜௝ߪ (4.39)

Return mapping:

௣ܨ ቀߪ௜௝
௧ − ݉߃௯ߣ߂ ௜௝,ߝ௜௝

௣௡ିଵ
��ቁ= 0 ⇒ ௯ߣ߂��� (4.40)

Evaluate failure criterion:

஻݂
௣

= ௣ܨ ቀߪ௜௝
௧ − ݉߃௯ߣ߂ ௜௝,ߝ௜௝

௣௡ିଵ
+ ௯݉ߣ߂� ௜௝ቁ (4.41)

Secant iterations (i) as long as:

௮ߣ߂| − ௯ߣ߂ | > ݁ (4.42)

New plastic multiplier increment:

=ߣ߂ ௮ߣ߂ − ௮݂
௣ ௮ߣ߂) − (௯ߣ߂ ൫݂ ௯

௣
− ௮݂

௣
൯⁄ (4.43)

New return direction:

݉ ௜௝
(௜)

= ቀ߲ ௜௝ߪ௣൫ܩ
௧ − ݉߃௯ߣ߂ ௜௝

(௜ି ଵ)
൯ቁ/߲ߪ௜௝ (4.44)

Evaluate failure criterion:

݂௣ = ௣ܨ ቀߪ௜௝
௧ − ݉߃௯ߣ߂ ௜௝

(௜)
௜௝ߝ,

௣௡ିଵ
+ ௯݉ߣ߂� ௜௝

(௜)
ቁ (4.45)

New initial values for secant iterations:

஻݂
௣

< 0 ⇒ ஻݂
௣

= ݂௣, ௯ߣ߂ = ߣ߂ (4.46)

஻݂
௣

≥ 0 ⇒ �݂஺
௣

= ஻݂
௣

௮ߣ߂, = ௯ߣ߂ , ஻݂
௣

= ݂௣,ߣ߂௯ = ߣ߂ (4.47)

End of secant iteration loop

End of algorithm update stress and plastic strains.
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௜௝ߝ
௣௡

= ௜௝ߝ
௣௡ିଵ

+ ௯݉ߣ߂ ௜௝
(௜)

௜௝ߪ��,
௡ = ௜௝ߪ

௧ − ݉߃௯ߣ߂ ௜௝
(௜)

(4.48)

4.6.1.5 Combination of Plasticity and Fracture model

The objective is to combine the above models into a single model such that plasticity

is used for concrete crushing and the Rankine fracture model for cracking. This

problem can be generally stated as a simultaneous solution of the two following

inequalities.

௜௝ߪ௣൫ܨ
௡ିଵ + −௞௟ߝ߂)௜௝௞௟߃ ௞௟ߝ߂

௙
− ௞௟ߝ߂

௣
)൯≤ 0 solve forߝ߂�௞௟

௣
(4.49)

௜௝ߪ௙൫ܨ
௡ିଵ + −௞௟ߝ߂)௜௝௞௟߃ ௞௟ߝ߂

௣
− ௞௟ߝ߂

௙
)൯≤ 0 solve for ௞௟ߝ߂

௙
(4.50)

Each inequality depends on the output from the other one, therefore the following

iterative scheme is developed.

Algorithm 2:

Step 1: ௣ܨ ቀߪ௜௝
௡ିଵ + −௞௟ߝ߂)௜௝௞௟߃ ௞௟ߝ߂

௙(௜ି ଵ)
+ ௞௟ߝ߂ܾ

௖௢௥(௜ି ଵ)
− ௞௟ߝ߂

௣(௜)
)ቁ≤ 0 solve for ௞௟ߝ߂

௣(௜)

Step 2: ௜௝ߪ௙൫ܨ
௡ିଵ + −௞௟ߝ߂)௜௝௞௟߃ ௞௟ߝ߂

௣(௜)
− ௞௟ߝ߂

௙(௜)
)൯≤ 0 solve for ௞௟ߝ߂

௙(௜)

Step 3:

௜௝ߝ߂
௖௢௥(௜) = ௜௝ߝ߂

௙(௜)
− ௜௝ߝ߂

௙(௜ି ଵ)
(4.51)

Iterative correction of the strain norm between two subsequent iterations can be

expressed as

ฮߝ߂௜௝
௖௢௥(௜)ฮ= (1 − )ܾܽ௙ܽ௣ฮߝ߂௜௝

௖௢௥(௜ି ଵ)
ฮ������������������������������������������(4.52)

Where

ܽ௙ = ฮߝ߂௜௝
௙(௜)

− ௜௝ߝ߂
௙(௜ି ଵ)

ฮ ฮߝ߂௜௝
௣(௜)

− ௜௝ߝ߂
௣(௜ି ଵ)

ฮൗ

ܽ௣ = ฮߝ߂௜௝
௣(௜)

− ௜௝ߝ߂
௣(௜ି ଵ)

ฮ ฮߝ߂௜௝
௖௢௥ฮൗ

and b is an iteration correction or relaxation factor, which is introduced in order to

guarantee convergence. It is to be determined based on the run-time analysis of

ܽ௙and ܽ௣, such that the convergence of the iterative scheme can be assured. The

parameters ܽ௙and ܽ௣ characterize the mapping properties of each model (i.e. plastic

and fracture). It is possible to consider each model as an operator, which maps strain

increment on the input into a fracture or plastic strain increment on the output. The
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product of the two mappings must be contractive in order to obtain a convergence.

The necessary condition for the convergence is:

ห(1 − )ܾܽ௙ܽ௣ห< 1 (4.53)

If b equals 0, an iterative algorithm based on recursive substitution is obtained. The

convergence can be guaranteed only in two cases:

One of the models is not activated (i.e. implies af or ap = 0).

There is no softening in either of the two models and dilating material is not used in

the plastic part, which for the plastic potential in this work means β≤0 , (4.46). This is a

sufficient but not necessary condition to ensure that af and ap < 1.

It can be shown that the values of af and ap are directly proportional to the softening

rate in each model. Since the softening model remains usually constant for a material

model and finite element, their values do not change significantly between iterations.

It is possible to select the scalar b such that the inequality (4.53) is satisfied always at

the end of each iteration based on the current values of af and ap. There are three

possible scenarios, which must be handled, for the appropriate calculation of b :

หܽ ௙ܽ௣ห≤ x, where x is related to the requested convergence rate. For linear rate it can

be set to x = 1/2. In this case the convergence is satisfactory and b = 0.

>ݔ หܽ ௙ܽ௣ห< 1, then the convergence would be too slow. In this case b can be

estimated as ܾ= 1 − หܽ ௙ܽ௣ห ⁄ݔ , in order to icrease the convergence rate.

1 ≤ หܽ ௙ܽ௣ห, then the algorithm is diverging. In this case b should be calculated as

ܾ= 1 − ݔ หܽ ௙ܽ௣ห⁄ to stabilize tha iterations.

This approach guarantees convergence as long as the parameters ap, af do not

change drastically between the iterations, which should be satisfied for smooth and

correctly formulated models. The rate of convergence depends on material

brittleness, dilating parameter β and finite element size. It is advantageous to further

stabilize the algorithm by smoothing the parameter b during the iterative process:

b=(b(i)+b(i-1))/2 (4.54)

where the superscript i denotes values from two subsequent iterations. This will

eliminate problems due to the oscillation of the correction parameter b. Important

condition for the convergence of the above Algorithm 2 is that the failure surfaces of
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the two models are intersecting each other in all possible positions even during the

hardening or softening.

Additional constraints are used in the iterative algorithm. If the stress state at the end

of the first step violates the Rankine criterion, the order of the first two steps in

Algorithm 2 is reversed. Also in reality concrete crushing in one direction has an effect

on the cracking in other directions. It is assumed that after the plasticity yield criterion

is violated, the tensile strength in all material directions is set to zero.

On the structural level secant matrix is used in order to achieve a robust convergence

during the strain localization process.

The proposed algorithm for the combination of plastic and fracture models is

graphically shown in Fig. 4.6. When both surfaces are activated, the behavior is quite

similar to the multi-surface plasticity (SIMO et al. 1988). Contrary to the multi-surface

plasticity algorithm the proposed method is more general in the sense that it covers

all loading regimes including physical changes such as for instance crack closure.

Currently, it is developed only for two interacting models, and its extension to multiple

models is not straightforward.

There are additional interactions between the two models that need to be

considered in order to properly describe the behavior of a concrete material:

a) After concrete crushing the tensile strength should be decrease as well

b) According to the research work of Collins (VECHIO and COLLINS (1986)) and

coworkers it was established the also compressive strength should decrease when

cracking occurs in the perpendicular direction. This theory is called compression field

theory and it is used to explain the shear failure of concrete beams and walls.

The interaction (a) is resolved by adding the equivalent plastic strain to the maximal

fracturing strain in the fracture model to automatically increase the tensile damage

based on the compressive damage such that fracturing strains satisfies the following

condition:

Ƹ௞௞ߝ
ᇱ௙

≥
௙೟
ᇲ

௙೎
ᇲߝ௘௤

௣
(4.55)

The compressive strength reduction (b) is based on the following formula based

proposed by Collins:

௖ߪ = ௖ݎ ௖݂
ᇱ (4.56)



௖ݎ =
ଵ

଴Ǥ଼ ାଵ଻଴ఌభ
ǡ ௖ݎ

௟௜௠ ൑ ௖ݎ ≤ 1.0

Where 1ߝ is the tensile strain in the crack.

is used for 1ߝ and the compressive strength reduction is limited by

specified then no compression reduction is considered.

4.6.2 Tension stiffening effect

In heavily reinforced concrete structures the cracks cannot be fully developed and

concrete contributes to the steel stiffness. This effect is called tension stiffening and in

CC3DNonLinCementitious2 material it can be simulated by specifying a tension

stiffening factor cts. This factor represents the relative limiting value of tensile strength

in the tension softening diagram. The tensile stress cannot drop below the value given

by the product of ctsft (see Fig. 4.7). The recommended default value for

recommended by CEB-FIP Model Code 1990.

4.6.3 Localization Limiters

So-called localization limiter controls localization of deformations in the failure state. It

is a region (band) of material, which represents a discrete failure plane in the finite

element analysis. In tension it is a crack, in compression it is a plane o

reality these failure regions have some dimension. However, since according to the

experiments, the dimensions of the failure regions are independent on the structural

size, they are assumed as fictitious planes. In case of tensile cracks, t

known as rack the "crack band theory", BAZANT, OH (1983). Here is the same concept

used also for the compression failure. The purpose of the failure band is to eliminate

two deficiencies, which occur in connection with the application of th

model: element size effect and element orientation effect.
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is the tensile strain in the crack. In ATENA the largest maximal fracturing strain

and the compressive strength reduction is limited by ௖ݎ
௟௜௠

specified then no compression reduction is considered.

4.6.2 Tension stiffening effect

rced concrete structures the cracks cannot be fully developed and

concrete contributes to the steel stiffness. This effect is called tension stiffening and in

CC3DNonLinCementitious2 material it can be simulated by specifying a tension

This factor represents the relative limiting value of tensile strength

in the tension softening diagram. The tensile stress cannot drop below the value given

(see Fig. 4.7). The recommended default value for

FIP Model Code 1990.

Fig. 4.7 Tension stiffening effect

4.6.3 Localization Limiters

called localization limiter controls localization of deformations in the failure state. It

is a region (band) of material, which represents a discrete failure plane in the finite

element analysis. In tension it is a crack, in compression it is a plane o

reality these failure regions have some dimension. However, since according to the

experiments, the dimensions of the failure regions are independent on the structural

size, they are assumed as fictitious planes. In case of tensile cracks, t

known as rack the "crack band theory", BAZANT, OH (1983). Here is the same concept

used also for the compression failure. The purpose of the failure band is to eliminate

two deficiencies, which occur in connection with the application of the finite element

model: element size effect and element orientation effect.
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(4.57)

In ATENA the largest maximal fracturing strain

௟௜௠ . If ௖ݎ
௟௜௠ is not

rced concrete structures the cracks cannot be fully developed and

concrete contributes to the steel stiffness. This effect is called tension stiffening and in

CC3DNonLinCementitious2 material it can be simulated by specifying a tension

This factor represents the relative limiting value of tensile strength

in the tension softening diagram. The tensile stress cannot drop below the value given

(see Fig. 4.7). The recommended default value for cts is 0.4 as

called localization limiter controls localization of deformations in the failure state. It

is a region (band) of material, which represents a discrete failure plane in the finite

element analysis. In tension it is a crack, in compression it is a plane of crushing. In

reality these failure regions have some dimension. However, since according to the

experiments, the dimensions of the failure regions are independent on the structural

size, they are assumed as fictitious planes. In case of tensile cracks, this approach is

known as rack the "crack band theory", BAZANT, OH (1983). Here is the same concept

used also for the compression failure. The purpose of the failure band is to eliminate

e finite element
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Fig. 4.8 Definition of localization bands – four-noded element

4.6.3.1 Element size effect.

The direction of the failure planes is assumed to be normal to the principal stresses in

tension and compression, respectively. The failure bands (for tension Lt and for

compression Ld) are defined as projections of the finite element dimensions on the

failure planes as shown in Fig. 4.8.

4.6.3.2 Element orientation effect.

The element orientation effect is reduced, by further increasing of the failure band for

skew meshes, by the following formula (proposed by CERVENKA et al. 1995).

௧ܮ
ᇱ = ௗܮ,௧ܮߛ

ᇱ = ௗܮߛ

=ߛ 1 + ௠ߛ) ௔௫ − 1)
ఏ

ସହ
ߠ������, (߳0; 45) (4.58)

An angle θ is the minimal angle (min(θ1,θ2)) between the direction of the normal to

the failure plane and element sides. In case of a general quadrilateral element the

element sides directions are calculated as average side directions for the two

opposite edges. The above formula is a linear interpolation between the factor γ=1.0 

for the direction parallel with element sides, and γ=ߛ௠ ௔௫, for the direction inclined at

45o. The recommended (and default) value of ௠ߛ ௔௫ =1.5.

4.6.4 Crack spacing

In heavily reinforced concrete structures, or structures with large finite elements, when

many reinforcement bars are crossing each finite element, the crack band approach
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described in Section 3.1.3 will provide too conservative results, and the calculated

crack widths may be overestimated. This is the consequence of the fact that the

crack band approach assumes that the crack spacing is larger than a finite element

size. In heavily reinforced structures, or if large finite elements are used, it may occur

that the crack spacing will be smaller than finite element size. This is especially true if

shell/plate elements are used. In this case, typically large finite elements can be used,

and they usually contain significant reinforcement. In these cases, it is useful to

provide the crack spacing manually, since otherwise the program will overestimate

the cracking and due to that also larger deflections may be calculated.

4.6.5 Two Models of Smeared Cracks

The smeared crack approach for modeling of the cracks. Within the smeared

concept, two options are available for crack models: the fixed crack model and the

rotated crack model. In both models the crack is formed when the principal stress

exceeds the tensile strength. It is assumed that the cracks are uniformly distributed

within the material volume. This is reflected in the constitutive model by an

introduction of orthotropy.

4.6.5.1 Fixed Crack Model 45

In the fixed crack model (CERVENKA 1985, DARWIN 1974) the crack direction is given

by the principal stress direction at the moment of the crack initiation. During further

loading, this direction is fixed and represents the material axis of the orthotropy.

Fig. 4.9 Fixed-crack model, Stress and strain state

Τhe principal stress and strain directions coincide in the uncracked concrete, 

because of the assumption of isotropy in the concrete component. After cracking,

the orthotropy is introduced. The weak material axis m1 is normal to the crack

direction, the strong axis m2 is parallel with the cracks.
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In a general case the principal strain axes ε1 and ε2 rotate and need not to coincide

with the axes of the orthotropy m1 and m2. This produces a shear stress on the crack

face as shown in Fig. 4.9. The stress components σi1 and denote, respectively, the

stresses normal and parallel to the crack plane and, due to shear stress, they are not

the principal stresses.

2.6.5.2 Rotated Crack Model

In the rotated crack model (VECCHIO 1986, CRISFIELD 1989), the direction of the

principal stress coincides with the direction of the principal strain. Thus, no shear strain

occurs on the crack plane and only two normal stress components must be defined,

as shown in Fig. 4.10.

Fig. 4.10 Rotated crack model – Stress and strain state

If the principal strain axes rotate during the loading the direction of the cracks rotate,

too. In order to ensure the co-axiality of the principal strain axes with the material axes

the tangent shear modulus Gt is calculated according to CRISFIELD 1989 as

௧ܩ =
ఙ೎భିఙ೎మ

ଶ(ఌభିఌమ)
(4.59)

4.7 Reinforcement Stress-Strain Laws

4.7.1 Introduction

Reinforcement can be modeled in two distinct forms: discrete and smeared. Discrete

reinforcement is in form of reinforcing bars and is modeled by truss elements. The

smeared reinforcement is a component of composite material and can be

considered either as a single (only one-constituent) material in the element under

consideration or as one of the more such constituents. The former case can be a

special mesh element (layer), while the later can be an element with concrete

containing one or more reinforcements. In both cases the state of uniaxial stress is



assumed and the same formulation of stress

reinforcement.

4.7.2 Multi-line Law

The multi-linear law consists of four lines as shown in Fig. 4.11. This law allows modelin

all four stages of steel behavior: elastic state, yield plateau, hardening and fracture.

The multi-line is defined by four points, which can be specified by input.

Fig. 4.11 The multi

The above described stress

smeared reinforcement.
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5.Fragility analysis and Risk assessment

5.1 Introduction
Over the last decades the risk management of structural systems have gained the

attention of various economic and technical subjects in modern society. The optimal

allocation of the public resources for a sustainable economy entails the need of

rational tools for estimating the consequences of natural hazardous events on the

built environment. The risk management addresses this claim indicating the way for

optimal choices. Thus, the main purpose of the risk management process is to choose

among different options relying on technical and economic considerations. Risk

assessment and decision analysis are the main steps of the risk management

concept. It is therefore essential to establish a reliable procedure for assessing the

seismic risk of the structural systems. Seismic fragility analysis, which provides a

measure of the safety margin of the structural system above specified hazard levels, is

considered as the core of the risk assessment.

A number of methodologies for performing fragility analysis have been proposed in

the past which have been used for assessing the behaviour of structural systems.

Kennedy et al. [1] presented a methodology for determining the probability of

earthquake induced radioactive releases as a result of core melt. Kircher et al. [2]

described building damage functions that were developed for the FEMA/NIBS

earthquake loss estimation methodology [3]. Shinozuka et al. [4] presented a

statistical analysis procedure of structural fragility curves. The significance of inherent

randomness and modelling uncertainty in forecasting the building performance was

examined by Ellingwood [5] through fragility assessment of a steel frame. The

importance of fragility analysis in various stages of risk assessment, loss estimation, and

decision making in consequence based engineering to achieve the desirable long-

term objective in reduction of loss and consequence with the most efficient

intervention measures was indicated in [6]. A procedure to account for the

uncertainty in the characteristics of future ground motions during seismic response

assessment was presented in the work by Aslani and Mirand [7]. Fragility functions

were developed in [8] to identify the method of repair required for older reinforced

concrete beam-column joints damaged due to earthquake loading. A methodology

for the risk assessment of reinforced concrete and unreinforced masonry structures

was presented in [9]. Jeong and Elnashai [10] presented an approach where a set of

fragility relationships with known reliability is derived based on the fundamental

response quantities of stiffness, strength and ductility. A set of procedures for creating

fragility functions from various kinds of data was introduced in [11]. In the work by
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Shinozuka et al. [12] bridge fragility curves are developed in order to determine the

effect earthquakes have on the performance of transportation network systems.

The majority of the reinforced concrete (RC) buildings are constructed with masonry

infill walls. However, the combination of the masonry infills with the framed structure is

most often neglected during the design procedure, assuming that the contribution

on the structural performance is always positive. Such an assumption may lead to

substantial inaccuracy in predicting the lateral stiffness, strength and ductility of the

structure. In a number of works [13, 14] has been studied the effect of weak ground

storeys on the seismic performance of RC frames. On the other hand short columns at

the ground storey of the structures are prone to brittle shear failure which may result in

severe damages or even collapse because of the poor ductility during earthquakes

[15, 16].

All modern seismic design procedures are based on the principal that a structure will

avoid collapse if it is designed to absorb and dissipate the kinetic energy that is

imparted in it during the seismic excitation. Most of the modern seismic codes express

the ability of the structure to absorb energy through inelastic deformation using the

behaviour factor. The capacity of a structure to resist seismic actions in the nonlinear

range generally permits their design for seismic loads smaller than those

corresponding to a linear elastic response. The seismic loads are reduced using the

behaviour factor. The numerical confirmation of the behavior factor became a

subject of research work during the past decade [17,18] in order to check the validity

of design theory assumptions and to make structural performance more predictable

from engineering point of view.

The main objective of this study is to determine the effect of Finite Element simulation

on fragility analysis of Reinforced Concrete structures. Therefore, two types of FE

simulation are used (three-dimensional solid FE with embedded reinforcement and

beam FE) on two types of structures, in order to be compared with reference to the

limit-state fragilities developed in four drift based limit states. Finally mid annual

frequency of excedence was calculated for each fragility curve.

5.2 Risk Definition
The exact meaning of the word risk is often difficult and tricky to explain in a simple

way. In broad sense, risk is related to an unwanted event that can be seen as a

dangerous one. According to this general definition, any event or activity may or

may not be risky. However, this simple definition cannot be applied to actual

situations because a dangerous event cannot be excluded altogether. There is

always a margin of uncertainty and then the definition of risk must be formulated in
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probabilistic terms. In the last decades some definitions of risk have been given by

several researchers. Together with the risk definition, one must provide the definition

of other terms usually involved in risk analysis. Namely: the vulnerability, the natural

hazard, the exposure. Following the definitions of UNESCO / UNDRO (1982)

(Alexander, 2003) it can be said that:

 Natural hazard (H) is the probability of occurrence within a specified period

of time and within a given area of a potentially damaging phenomenon;

 Vulnerability (V) is the degree of loss to a given element or a group of

elements at risk resulting from the occurrence of a hazardous phenomenon

of a given magnitude. It is expressed on a scale from 0 (no damage) to 1

(total loss);

 Specific Risk (Rs) is the expected degree of loss due to a hazardous

phenomenon. It may be expressed by the convolution of Natural Hazard

times Vulnerability ;

 Elements at risk (E) (Exposure or Exposition) is the population, properties,

economic activities, including public services, etc., at risk in a given area;

 Total risk (Rt) is the expected number of lives lost and persons injured, and

amount of damage to property, or disruption of the economic activity

caused by a particular hazardous phenomenon. In other words is the

convolution of specific risk (Rs) and elements at risk (E).

Other broad definitions of risk have been proposed, such as the definition quoted by

Rackwitz et al. (2005): “The risk is the chance of an adverse outcome to human

health, the quality of life, or the quality of the environment”. The definitions reported

above can be specified and modified in order to fit them to a specific field, such as

Civil Engineering. In this field the risk is usually associated with physical damage of

structures or facilities. Following this concept, the risk could be defined as the

“absolute probability of a negative consequence (e.g. damage or collapse) due to

a potentially dangerous event” (Augusti et al., 2001). This probability is the

“convolution integral” of three terms, namely vulnerability, exposure and site hazard.

The reliability R is defined as the complement of risk (R = 1− risk). The site hazard is

usually identified through an intensity measure. A probability of occurrence in a given

time span is associated with each intensity measure. This relation is known as the

hazard curve and depends on the site under investigation or simply on the place

where the structure has been built. In a specific site there will be different hazard

curves, one (or more than one) for each natural event (e.g. earthquake, wind storm,

flood, fire, etc.). The exposure is defined as the probability of the presence of
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vulnerable facilities in the site. Typically, the increase of population and economic

activities in some areas usually causes an increase of exposition. The vulnerability is

the probability of attaining or exceeding a damage level conditioned to an event of

given intensity measure. Consequences of damage (e.g. losses) are usually measured

either in economic term (direct or indirect) or in term of casualties that is losses of

human life and injuries. Then the risk can be seen as a probabilistic measure of

economic and/or human life losses and injured. This aspect of risk estimation, namely

its economic interpretation, is usually used in connection to both decision making

theory and insurance.

5.3 Risk assessment
From the point of view of the reliability theory and structural engineering (Melchers,

1987), the risk is defined as the probability of “structural failure” (the unwanted event)

both from violation of predefined limit states (e.g. collapse, damage or serviceability)

and from other causes. At this point a question arises: “How the probability of

structural failure may be assessed?” Generally, the process of probabilistic assessment

of structural failure involves many random variables, such as resistance, action,

material behaviour, structural response, dimensions of structural elements, etc. These

variables are required for characterizing the behaviour of a structure, while they are

called as “basic” variables or random variables. The basic variables are usually

defined by the mean of their probability distribution and are assumed to be known or

given by experimental test or observations. If x is the vector of the random variables

of the problem, g(x) represents the limit state equation and fx(x) is the joint probability

density function of the random variables, the probability of exceeding a specified

limit state can be evaluated by using the convolution integral of fx(x) over the failure

domain represented by the condition g(x)<0 (Melchers, 1987):


  f x

G(X) 0
P = P[G( ) 0] = … f ( )dx x x (5.1)

In general, the random variables x are not independent. Conversely, if they are

independent the joint probability density function can be expressed as the product

of each probability density function for the random variable xi i=1,2,...,m, where m is

the number of random variables (Elishakoff, 1999). Besides the numerical difficulty in

carrying out the convolution integral, some other problems arise when one wants to

derive the probability of structural failure. In particular, the aspects related to human

factor, negligence, poor workmanship, neglected load, lack of knowledge about the

structural behaviour etc. should be taken into account during the risk assessment

process. Furthermore, some causes of failure cannot be foreseen as being

“unimaginable” (for instance an event of big magnitude never recorded before); this
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increases the level of uncertainty in estimating the risk. As far as the computational

aspects are concerned, it can be said that many techniques for evaluating the

integral of Eq. (5.1) have been proposed (Melchers, 1987). These techniques are

usually based on simplification either for the statistical distributions of each random

variable or for the expression of the limit state equation. A typical simplification is to

assume that the probability distribution of each random variable is represented by its

mean and standard deviation. This corresponds to assume a normal distribution for

each random variable involved in the convolution integral. The second simplification

is to assume that the limit state function can be approximated by a linear half-space.

These are the ingredients for the so-called first-order reliability-method, while second-

order reliability-method represents an improvement to FORM, in which the hypothesis

of variables normally distributed still holds, but the limit state function is approximated

by a hyper-paraboloid in the random variables space. So far the probability of failure

of a structure has been tackled disregarding both type of action and structural

typology. Considering the seismic action only, it may be said that recently a great

deal of effort has been devoted in order to provide a tool of structural design based

on the reliability theory. PBEE (Cornell and Krawinkler, 1999) represents one of these

tools.

This modern approach to seismic design is also adopted by some design codes such

as Vision 2000, FEMA 237, FEMA 356, ATC-32, ATC-40 and is based on the

accomplishment, in probabilistic terms, of a generic performance (e.g. no collapse,

life safety, operational, fully operational) at various levels of the seismic action. A

review of the performance definitions can be found in ATC-58-2 (2003). In other

words, the foundation of PBEE consists of assessing the adequacy of a structure or its

design by evaluating, in probabilistic way, a decision variable (DV) (in general a

vector of variables) (Cornell and Krawinkler, 2000). The decision variable can assume

different meanings, such as the earthquake loss, the exceeding of one or more limit

states (e.g. collapse, serviceability). Following the PBEE method, in order to assess the

probability of exceeding of DV (λ(DV)) some intermediate  variables must be 

introduced; namely EDP and IM. The methodology of PBEE is illustrated in Figure 5.1,

where D represents the location and design features of the structure. In Figure 5.1

p(x|y) refers to the probability density of x conditioned to y, and g(x) refers to the

occurrence rate of x (that is the negative first derivative of the frequency with which x

is exceeded).
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Fig. 5.1 PEER analysis framework, adapted from Porter (2003)

The mathematical meaning of Fig. 5.1 is reported in the following expression that

stems from the application of the total probability theorem (Porter, 2003).



    

  (DV | D) = p[DV | DM,D] p[DV | EDP,D]

p[EDP | IM,D] g[IM| D] dDM dEDP dIM

v
(5.2)

As can be seen in Fig. 5.1, the assessment of λ(DV|D) can be accomplished through 

four analysis steps:

 Hazard analysis. It is performed considering the seismic site (nearby faults, their

magnitude-frequency recurrence rates, mechanism, site distance, site conditions

etc.) and evaluating the seismic hazard at the facility location taking into

account all structural features (denoted by the design D). This analysis yields a

hazard curve which gives the annual frequency with which the seismic action,

described by the IM is exceeded. Various IMs have been studied (Giovenale,

2003) with the aim of selecting one of them (or more than one) as more

representative of the site hazard. Summarizing, the Hazard analysis provides an

answer to the following question: How likely is an event of intensity IM to happen,

for this location?

 Structural Analysis. Structural analysis is needed for estimating the uncertain

structural response, measured as a vector of EDP conditioned on a seismic IM and

design (D), p[EDP|IM,D]. A review of the most important EDP, for both structural

framing system and non-structural components, can be found in ATC-58-2 (task

2.2) (2004) and ATC-58-2 (task 2.3) (2004). EDP can contain indices related to

hysteretic response of structural elements, local or global deformations, maximum

floor accelerations and so on. Therefore the structural analysis is usually a

nonlinear time-history analysis carried out by using either deterministic finite

element models or finite element models with uncertain properties. In short, the

question which summarizes the structural analysis step is: What will be the
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engineering demands (force, deformation, etc.) to which this facility will be

subjected?

 Damage Analysis. It is also known as fragility analysis. In this step the results of

structural analysis (EDP) are used as input for computing the probability of

different levels of physical damage conditioned on structural response and

design, p[DM|EDP,D]. Thus fragility functions give the probability of various levels

of damage for individual beams, columns, non-structural components as

functions of various EDP. In other words, what will be the physical damage this

facility will experience?

 Loss Analysis. It is the last step and consists of determining the performance,

represented by the decision variable DV, conditioned on damage and design

terms p[DV|DM,D]. Decision variables measure the seismic performance of the

facility in terms of the main interest of stakeholders. This latter can be both a

private owner and a public administrator, so the performance can be measured

in terms of money, death, down time, etc. The final step provides an answer to

the following question: What will be the loss (economic, casualty, etc.) this facility

will experience?

5.4 Calculation of fragility curves

5.4.1 Hazus software

5.4.1.1 Scope and Background

The FEMA/NIBS earthquake loss estimation methodology, commonly known as HAZUS,

is acomplex collection of components that work together to estimate casualties, loss

of function andeconomic impacts on a region due to a scenario earthquake. The

methodology is documented in the HAZUS-MH Technical Manual. One of the main

components of the methodology estimates the probability of various states of

structural and nonstructural damage to buildings. Damage state probabilities are

used by other components of the methodology to estimate various types of building-

related loss. Typically, buildings are grouped by model building type and evaluated

on a census tract basis.

Currently, HAZUS includes building damage functions for 36 model building types

(and for various combinations of seismic design level and performance). Each model

building type represents a "generic" group of buildings that share a common type of

construction and a common seismic design level.
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Damage and loss functions for generic building types are considered to be reliable

predictors of earthquake effects for large groups of buildings that include both above

median and below median cases. They may not, however, be very good predictors

for a specific building or a particular type of building that is known to have a

weakness or earthquake vulnerability. Although the theory is applicable to an

individual building, buildingspecific damage and loss functions are not provided and

would need to be developed by the user. The complexity of the methods and

underlying seismological and engineering phenomena makes development of

building-specific functions challenging unless the user is an engineer experienced in

nonlinear seismic analysis (and seldom necessary for regional loss estimationstudies).

For mitigation purposes, it is desirable that users be able to create building-specific

damage and loss functions that could be used to assess losses for an individual

building (or group of similar buildings), both in their existing condition and after some

amount of seismic rehabilitation.

FEMA/NIBS projects in the area of earthquake hazard mitigation also include the

Building Seismic Safety Council's (BSSC's) development of the NEHRP Guidelines for

Seismic Rehabilitation of Buildings [FEMA, 1997], referred to simply as the NEHRP

Guidelines. Like HAZUS, the NEHRP Guidelines represent a major, multi-year effort. Also

like HAZUS, the NEHRP Guidelines use similar earth science theory and engineering

techniques. For the first time, earthquake loss estimation and building seismic analysis

are based on common concepts. For example, both the FEMA/NIBS methodology

and the NEHRP Guidelines (1) use the same characterization of ground shaking (i.e.,

response spectra, as defined by the USGS maps/theory) and (2) use the same

nonlinear (pushover) characterization of building response. The similarity of these

fundamental concepts permits interfacing the methods of the NEHRP Guidelines with

those of HAZUS for development of building-specific damage and loss models.

5.4.1.2 Purpose and Approach

The primary purpose of the AEBM is to support mitigation efforts by providing building-

specific loss estimation tools for use by experienced seismic/structural engineers. To

produce accurate results, the engineer must be capable of carrying out a relatively

sophisticated pushover analysis as described below. While the expertise and required

inputs may seem challenging, buildingspecific methods are intended for use by those

experts who have the requisite skills and desire to go beyond the default methods

and data of the more user-friendly “Level 1” or “Level 2” procedures of HAZUS.

The underlying approach of AEBM procedures is a combination of the nonlinear static
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(pushover) analysis methods of the NEHRP Guidelines (and other sources, namely the

ATC-40 document: Seismic Evaluation and Retrofit of Concrete Buildings, CSSC, 1996)

with HAZUS loss estimation methods. Seismic/structural engineers having performed a

detailed pushover analysis of a specific building are expected to have a much better

understanding of the building’s potential failure modes, overall response

characteristics, structural and nonstructural system performance, and the cost and

time required to repair damaged components. The NEHRP Guidelines provide a

logical and appropriate starting point for seismic evaluation of existing buildings and

provide state-of-the-art techniques, such as pushover analysis. The NEHRP Guidelines

also provide limit state criteria for elements and components of buildings that are

useful to engineers for determining building-specific damage states. Detailed

investigation of a specific building should also provide other important loss-related

information. For example, building owners would be expected to provide much more

reliable estimates of total replacement cost (value) of the building, the extent and

value of contents or inventory, and number of building occupants during different

times of the day. All these are critical data required for reliable estimates of

earthquake losses.

5.4.2 Calculation method of fragility curves

5.4.2.1 Introduction

Various methods on calculation of fragility curves have been internationally

proposed, either experimental or analytical. Variations of the analytical methods

concern:

 The analysis method (non linear static and non linear dynamic)

 The seismic parameter in regard of which the fragility curves are calculated

(ground acceleration, PGA, spectral displacement Sd or acceleration Sa)

 The means of determining the cumulative distribution function that describes

the fragility curves for each damage state

The following methodology is similar with the one of HAZUS software.

Fragility analysis steps

 Simulation of the structure

 Non-linear static pushover

 Capacity curves

 Formation of Acceleration Displacement Response Spectrum (ADRS)

 Capacity spectrum method / Estimation of performance point
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 Calculation of log-normal cumulative probability density equation

 Formation of fragility curves for four damage limit states

Based on the described methodology, the Fragility curve is a probabilistic distribution,

given by the following log-normal cumulative probability density equation:

≤�ܦ)ܨ (ܵ�|�௜ܫܦ = ߔ [
ଵ

ఉ೏ೞ
∙ ln൬

ௌ

ௌ೘ ೔

൰] (5.3)

Where Φ is the standard log-normal cumulative distribution 

S is the spectral acceleration amplitude (for a period of T = 1 sec)

Smi is the median (or expected value) spectral acceleration necessary to cause the ith

damage state to occur

βds is the normalized standard deviation which incorporates aspects of uncertainty

and randomness for both capacity and demand

Only Smi and βds parameters are needed to define a fragility curve.

5.4.2.2 Damage limit states

The choice of damage scale and measure is fundamental to the fragility curve

development. In the case of empirical curves it is essential that the damage scale

used is clearly defined in terms of the damage expected in the structural and the

non-structural elements of buildings with different lateral load resisting systems. Also, in

order to use the fragility curves in a performance-based framework, it is desirable that

they provide predictions for at least three damage limit states, corresponding to

serviceability, damage control and collapse prevention. In order to define a limit

state, different types of parameters are used; most of them, though, with lack of

reliability. It has been also proved that limit states have been defined more effectively

in terms of deformation exceedance rather than load exceedance.

Performance states defined by economic criteria (e.g. Algermissen et al 1978,

Miyakoshi et al. 1997) can preclude the curve application to locations other than

those considered. There is no simple relationship that can be drawn between

damage and monetary loss, and the latter definition of performance may introduce

a time dependency if the limit state values used are linked to the financial situation at

the location and the time of the curve derivation (Rossetto & Elnasai, 2003).

FEMA/NIBS earthquake loss estimation methodology, commonly known as HAZUS,

suggests that damage states are defined separately for structural and nonstructural

systems of a building. Damage is described by one of four discrete damage states:
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Slight, Moderate, Extensive or Complete, and Collapse as subset of Complete

structural damage. Of course, actual building damage varies as a continuous

function of earthquake demand. Ranges of damage are used to describe building

damage, since it is not practical to have a continuous scale, and damage states

provide the user with an understanding of the building’s physical condition. Loss

functions relate the physical condition of the building to various loss parameters (i.e.,

direct economic loss, casualties, and loss of function). For example, direct economic

loss due to Moderate damage is assumed to correspond to 10% replacement value

of structural and nonstructural components, on the average. The four damage states

of the FEMA/NIBS methodology are similar to the damage states defined in Expected

Seismic Performance of Buildings [EERI, 1994], except that damage descriptions vary

for each model building type based on the type of structural system and material.

Following Table provides structural damage states for W1 buildings (light frame wood)

typical of the conventional construction used for single-family homes.

Table 5.1 Example damage state – Light-frame wood buildings

The maximum interstory drift ratio was found to provide the optimum parameter for

describing the global damage observed in reinforced concrete buildings in reviews

of existing local and global energy, force and deformation-based structural response

parameters. This is due to its ability to detect both soft-storey and ductile modes of

failure, and due to its simplicity of evaluation from experimental tests. It is a fact that

the roof drift is a useful measure of the overall structural deformation, but it does not

reflect the distribution of damage along the height of the structure, and it does not

identify weak elements or soft stories. Instead, interstory drift can be directly

correlated with damage at a given story level. For existing non-ductile structures and
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poorly designed frames such as those with soft story, the maximum interstory drift of

the soft story may indicate collapse while the roof drift may still correspond to a lower

damage level.

According to HAZUS structures are categorized by their material and height in order

to determine the average inter-story drift ration Δds of structural Damage States the

maximum interstory drift ratio that corresponds to one of the damage states (Tables

5.2, 5.3).

Table 5.2 Model building types of HAZUS
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Table 5.3 HAZUS average inter-story drift ration Δds of structural Damage States 

5.4.2.3 Lognormal standard deviation β (beta) 

Lognormal standard deviation beta values describe the total variability of fragility-

curve damage states. Three primary sources contribute to the total variability of any

given state, namely, the variability associated with the capacity curve, βc, the

variability associated with the demand spectrum, βd, and the variability associated

with the discrete threshold of each damage state, βT,ds.

Lognormal standard deviation beta has been calibrated by Pekcan (1998), Dutta

and Mander (1998) and Dutta (1999) from a theoretical perspective, and validated

by Basöz and Mander (1999) against experiential fragility curves obtained from data
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gathered from the 1994 Northridge and 1989 Loma Prieta earthquakes by Basöz and

Kiremidjian (1998).

The slope of the fragility curve is controlled by the lognormal standard deviation

value (Beta). The smaller the value of Beta, the less variable the damage state, and

the steeper the fragility curve. The larger the value of Beta, the more variable the

damage state, and the flatter the fragility curve. Fig. 5.2 illustrates this trend for fragility

curves that share a common median (i.e., spectral displacement of 5 inches), but

have Beta values ranging from 0.4 to 1.2. This range of Beta values approximately

covers the range of Beta values that could be used for buildingspecific fragility

curves.

Fig. 5.2 Example Lognormal Fragility Curves (Beta = 0.4, 0.6, 0.8, 1.0, 1.2) and calculation of ± 1σ Spectral 

Displacement

The following equation describes the calculation of beta (HAZUS 2003):

  2 2
ds c D Τ,dsβ = (CONV β , β ) +(β )

(5.4)

Where bds is the lognormal standard deviation parameter that describes the total

variability of damage state, ds,

bC is the lognormal standard deviation parameter that describes the variability of the

capacity curve
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bD is the lognormal standard deviation parameter that describes the variability of the

demand spectrum (values of bD = 0.45 at short periods and bD = 0.50 at long periods

were used to develop Tables 5.5 – 5.7)

bT,ds is the lognormal standard deviation parameter that describes the variability

of the threshold of damage state, ds

Since the demand spectrum is dependent on building capacity, a convolution

process is required to combine their respective contributions to total variability. This is

referred to as “CONV” in Eq. (5.2). The third contributor to total variability, bT,ds, is

assumed mutually independent of the first two variables and is combined with the

results of the CONV process using the squareroot-sum-of-the squares (SRSS) method.

Additional background on the calculation of Damage-State Beta’s is provided in the

HAZUS-MH Technical Manual and the Earthquake Spectra paper “Development of

Building Damage Functions for Earthquake loss Estimation” [Kircher et al., 1997a]. The

variability of the demand spectrum (i.e., variability of ground shaking) is a key

parameter in the calculation of damage-state variability. The values of demand

variability, bD = 0.45 at short periods and bD = 0.50 at long periods, are the same as

those used to calculate the default fragility curves of the HAZUS-MH Technical

Manual. These value s are consistent with the variability (e.g., dispersion factor) of

ground shaking attenuation functions used by HAZUS to predict response spectra for

large-magnitude events in the Western United States (WUS). It may be noted that if

there were no variability of demand (response spectrum is known exactly), then Eq.

(5.4) would become:

βୢୱ = ටβୡ
ଶ + β୘,ୢୱ

ଶ (5.5)

This equation provides a lower-bound on the damage-state variability appropriate for

use in probabilistic calculations of damage and loss that are based on the integration

of the fragility with hazard functions that have already incorporated ground shaking

variability in the hazard calculations. Similarly, Eq. (5.5) also provides a lower-bound

on damage-state variability for calculation of damage and loss using a response

spectrum that is reasonably well known (i.e., response spectrum of recorded ground

shaking). Arguably, there would always be some amount variability (uncertainty) in

ground shaking demand, bD, but such can be ignored in the calculation of total

damage-state variability, bds, when substantially less than both capacity curve

variability, bC, and damage-state threshold variability, bT,ds.
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The convolution process involves a complex numerical calculation that would be

very difficult for most users to perform. To avoid this difficulty, sets of pre-calculated

values of Damage-State Beta’s have been compiled in Tables 5.5 through 5.7 from

which users may select appropriate values of variability for the structural system,

nonstructural drift-sensitive components and nonstructural acceleration-sensitive

components. The Beta values of these tables are a function of the following building

characteristics and criteria:

 Building Height Group - Low-Rise Buildings (Table 5.5), Mid-Rise Buildings (Table

5.6) and High-Rise Buildings (Table 5.7)

 Post-Yield Degradation of the Structural System – Minor, Major and Extreme

Degradation

 Damage-State Threshold Variability – Small, Moderate or Large Variability

Capacity Curve Variability – Very Small, Small, Moderate or Large Variability

The Beta values of the tables are applicable to all model building types. For example,

a low-rise concrete-frame building (C1L) would have the same set of Beta’s as a low-

rise braced steel frame building (S2L), provided the two buildings have the same

amount of capacity curve and damage-state threshold variability, and the same

amount of post-yield degradation of the structural system.

Post-yield degradation of the structural system is defined by a Kappa factor, which is

an direct measure of the effects of seismic design level and construction quality on

the variability of response. Buildings that are seismically designed and/or have

superior construction are less likely to degrade during post-yield earthquake shaking,

and therefore have more predictable response, than buildings that are not

seismically designed and/or have inferior construction.

To select a set of building-specific Damage-State Beta’s (i.e., a structural Beta, a

nonstructural drift-sensitive Beta and a nonstructural acceleration-sensitive Beta), it

must first be determined the building height group that best represents the specific

building of interest. The height groups are defined by the same criteria as those used

by HAZUS to define generic building types. For example, a 5-story, reinforced

concrete building would be classified as a mid-rise building as per the height criteria

of Table 5.2.

Tables 5.5 through 5.7 (referred to as the Beta tables) provide recommended sets of

Damage-State Beta’s for each of the three building height groups, respectively. In
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each of these tables, the Beta’s are based on 36 possible combinations of capacity

curve variability, damage threshold variability and the amount of post-yield

degradation expected for the structural system.

Estimation of structural system degradation (minimum or maximum) is made on the

basis of Kappa factors suggested by Table 5.4 (HAZUS Section 5.3.3) and the degree

of post-yield response expected for the damage state of interest. Kappa factors

decrease with increase in response level (and damage). Slight damage corresponds

to response between ½ yield and full yield; Moderate damage to response at or just

beyond yield; and Extensive and Complete damage correspond to post-yield

response for the duration of scenario earthquake shaking. Beta values are given in

Tables 5.5 through 5.7 for k ³ 0.9 (minor degradation), k = 0.5 (major degradation) and

k £ 0.1(extreme degradation) of the structural system; and linear interpolation may

used to establish Beta’s for other values of the Kappa factor.

Estimation of the variability of the capacity curve (bC) and the variability of the

threshold of the damage state (bT,ds) must be made by users on a judgmental basis

(with some guidance provided herein). To assist the user, the Beta tables express

capacity curve and damage threshold variability qualitatively (e.g., Small Variability)

and in term of the numerical value used to develop the Beta’s in the CONV process.

Numerical values of variability (bC and bT,ds) are lognormal standard deviation

parameters and may be used, to construct the distribution of capacity or damage

threshold that they represent.

The variability of capacity curves and the damage-state thresholds are influenced

by:

 Uncertainty in capacity curve properties and the thresholds of damage states

 Building population (i.e., individual building or group of buildings)

Relatively low variability of damage states would be expected for an individual

building with well known properties (e.g., complete set of as-built drawings, material

test data, etc.) and whose performance and failure modes are known with

confidence. The taller the building the greater the variability in damage state due to

uncertainty in the prediction of response and damage using pushover analysis.

Relatively high variability of damage states would be expected for a group of

buildings whose properties are not well known and for which the user has low

confidence in the results (of pushover analysis) that represent performance and

failure modes of all buildings of the group. The latter case essentially describes the
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original development of damage-state fragility curves for generic model building that

were based on capacity variability, bC = 0.3, and damagestate threshold variability,

bT,ds = 0.3 (Structure), bT,ds = 0.5 (NSD) and bT,ds = 0.6 (NSA). The generic model building

types represent large populations of buildings for which properties are not well

known.

Table 5.4 Suggested values of the degradation (Kappa) Factor
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Table 5.5 Low-rise building fragility Beta's
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Table 5.6 Mid-rise building fragility Beta's
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Table 5.7 High-rise building fragility Beta's

5.4.3 Calculation of Damage-State Probability

The fragility curves distribute damage among different damage states (for example

slight, moderate, extensive and complete recommendation of HAZUS, 2003). For any

given value of the response, discrete damage-state probabilities are calculated as

the difference of the cumulative probabilities of reaching, or exceeding, successive

damage states. The probabilities of a building reaching or exceeding the various

damage levels at a given response level sum to 100%.

Fragility curves define boundaries between damage limit states. Therefore, the

median value of the limit state of interest defines the threshold of damage, and this

state of damage is assumed to exist up to next state of damage. This description is

illustrated in Fig. 5.2, which includes an example of the fragility curves for slight,

moderate, extensive and complete structural damage. In this illustration, a region

between the green and the yellow curves illustrates the probability-response space

associated with slight damage. The boundary on the left of this region is defined by
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the fragility curve for slight (or greater) structural damage, and the boundary on the

right is defined by the fragility curve for moderate (or greater) damage. The

probability of slight damage at a given level of demand is calculated as the

difference of the probability of slight (or greater) damage less the probability of

moderate (or greater) damage – a probability of 0.50 at 3.0 m/sec2 of peak ground

acceleration in the example shown in Fig. 5.2.

Fig. 5.2 Example of fragility curves - Calculation of damage-state probability

Seismic design procedures

The majority of the seismic design codes belong to the category of the prescriptive

building design codes, which include: site selection and development of conceptual,

preliminary and final design stages. According to a prescriptive design code the

strength of the structure is evaluated at one limit state between life-safety and near

collapse using a response spectrum corresponding to one design earthquake [19,20].

In addition, serviceability limit state is checked in order to ensure that the structure will

not deflect or vibrate excessively during its functioning. The main principle of new

provisions, EAK 2000 [19] and Eurocode 8 [20] included, is to design structural systems

based on energy dissipation and on ductility in order to control the inelastic seismic

response. Designing a multistory RC building for energy dissipation comprises the

following features: (i) fulfillment of the strong column/weak beam rule, (ii) member

verification in terms of forces and resistances for the ultimate strength limit state under

the design earthquake (with return period of 475 years, probability of exceedance

10% in 50 years), with the elastic spectrum reduced by the behaviour factor, (iii)
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damage limitation for the serviceability limit state and (iv) capacity design of beams

and columns against shear failure.

According to the Greek national design codes and Eurocodes a number of

checks must be considered in order to ensure that the structure will meet the design

requirements. All EKOS 2000 [21] or Eurocode 2 [22] checks must be satisfied for the

gravity loads using the following load combination

1.35 " "1.50d kj kij i
S G Q   (3)

where “+” implies “to be combined with”, the summation symbol “Σ” implies “the 

combined effect of”, Gkj denotes the characteristic value “k” of the permanent

action j and Qki refers to the characteristic value “k” of the variable action i. If the

above constraints are satisfied, multi-modal response spectrum analysis is performed,

according to EAK 2000 [19] and Eurocode 8 [20], and earthquake loading is

considered using the following load combination

2" " " "d kj d i kij i
S G E Q    (4)

where Ed is the design value of the seismic action for the two components

(longitudinal and transverse) respectively and ψ2i is the combination coefficient for

the quasi-permanent action i, here taken equal to 0.30.
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[23] Dolšek, M., Fajfar, P. (2001), “Soft storey effects in uniformly infilled reinforced concrete

frames,” Journal of Earthquake Engineering; 5(1): 1-12.

[24] Ghobarah, A., Saatcioglu, M., Nistor, I. (2006), “The impact of the 26 December 2004

earthquake and tsunami on structures and infrastructure,” Engineering Structures; 28(2):

312-326.



Study on the Effect of FE Simulation on Fragility Analysis of RC Structures

92

[25] Chao, H.H., Yungting, A.T., Ruo, Y.H., (2006), “Nonlinear pushover analysis of infilled

concrete frames,” Earthquake Engineering and Engineering Vibration, 5(2):245-255.

[26] Mitchell, D., DeVall, R.H., Kobayashi, K., Tinawi, R., Tso, W.K. (1996), “Damage to concrete

structures due to the January 17, 1995, Hyogo-ken Nanbu (Kobe) earthquake,”

Canadian Journal of Civil Engineering; 23(3): 757-770.

[27] Somerville, P., Collins, N. (2002), “Ground motion time histories for the Humboldt bay

bridge,” Pasadena, CA, URS Corporation.

[28] Papazachos, B.C., Papaioannou, Ch.A., Theodulidis N.P. (1993), “Regionalization of

seismic hazard in Greece based on seismic sources,” Natural Hazards; 8(1): 1-18.

[29] Chintanapakdee, C., Chopra, A.K. (2003), “Evaluation of modal pushover analysis using

generic frames,” Earthquake Engineering and Structural Dynamics; 32(3): 417-442.

[30] McKenna, F., Fenves, G.L. (2001), The OpenSees Command Language Manual - Version

1.2, Pacific Earthquake Engineering Research Centre, University of California, Berkeley.

[31] Lagaros, N.D. (2007), “Life-cycle cost analysis of design practices for RC framed

structures,” Bulletin of Earthquake Engineering; 5(3):425-442.

[32] Perera, R., Gomez, S., Alarcon E. (2004), “Experimental and analytical study of masonry

infill reinforced concrete frames retrofitted with steel braces,” Journal of Structural

Engineering; 130(12): 2032-2039.

[33] Ghobarah, A., (2004), “On drift limits associated with different damage levels,”

International Workshop on Performance-Based Seismic Design, June 28-July 1.

[34] Lagaros, N.D., Fotis, A.D., Krikos, S.A. (2006), “Assessment of seismic design procedures

based on the total cost,” Earthquake Engineering and Structural Dynamics; 35(11):1381-

1401.

[35] Lagaros, N.D., Probabilistic Fragility Analysis: A tool for assessing design rules or RC

buildings



Study on the Effect of FE Simulation on Fragility Analysis of RC Structures

93

6.Numerical investigation

6.1 Introduction

This chapter describes the non-linear static and fragility analysis of two types of

structures:

 Two-dimensional two-story frame structure (Fig. 6.1)

 Three-dimensional two-story frame structure (Fig. 6.2)

The analyses were conducted using two different types of Finite Element simulation

 Beam-Column FE simulation method (OpenSees software)

 3D solid FE simulation with embedded reinforcement (ATENA 3D software)

Analyses results were intended to perform fragility analysis in order to decide the

effect of different FE simulation methods on the fragility curves figure.

6.2 Methodology

6.2.1 Definition of the structure

Fig. 6.1 and Fig. 6.2 demonstrate the form of the two frame structures.

Fig. 6.1, Fig 6.2 3-Dimensional, 2-Dimensional frame structures

6.2.2 Simulation

Beam-Column FE simulation
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This beam-column FE simulation was conducted using OpenSees software. Frame

structure input values referred in the longitudinal axis of symmetry of each entity

(beams and columns). Area dimensions were afterwards assigned to the linear

elements. Rigid offsets were used to simulate the beam-column unity. Finally, the

loading was applied including dead forces, external vertical loads (in

correspondence with codes of practice as well as prescribed deformation in order for

the displacement control Pushover analysis to be performed.

3D solid FE simulation with embedded reinforcement

Concrete material properties were assigned to macro-elements with the given

dimensions as well as steel material properties to reinforcement bars lying in advised

positions. External loading was applied on top o the columns in both stories.

Modal analyses performed for both types of structures.

6.2.3 Pushover analysis

Displacement control pushover analysis were performed using prescribed

deformation on top corners of the frame structures along x axis for 2-dimensional

frames and along x and y axes for 3-dimensional frames following the x+0.3y and

0.3x+y pattern. Thus, six analyses occurred, two for 2-dimensional frames with two

simulations, two for 3-dimensional frames with two simulations concerning x+0.3y

prescribed deformation and two for 3-dimensional frames with two simulations

concerning 0.3x+y prescribed deformation.

Analyses results include total base force and interstory drift percentage

 
  (%)

i j

ijH

Were i, j the number of story, δi, δj the relative displacement of two sequential stories

and Hij the distance between the stories.

6.2.4 Fragility curves

The methodology describe in the current paragraph was followed after each one of

the six analyses using the results that occurred.

N2 method was used for the calculation of displacements. The method demanded

the transformation of the capacity curve (force-deformation) in ADRS spectrum of

equivalent single-degree of freedom (SDOF) structure, in terms of Sa, Sd.
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Where, mtot total mass of the 2 story structure, V total base force, Δ deformation of 

the top, a total mass of the structure percentage participating in the dynamic

response and Γ participation coefficient. 
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m* is the mass of the equivalent system

φi mode for i-story

The stiffness of the equivalent SDOF structure and the original structure remains the

same as long as both forces and displacements follow the same transformation law.

Equivalent SDOF structure depends on the distribution of the load through the height

of the structure that is taken into account during the calculation of the capacity

curve. Triangular distribution was used.

The same transformation equations were uses to transform the elastic response

spectrum in Sa-Sd values. The new spectrum was scaled in order to define several

intersection points with the bilinear ADRS spectrum of the structure. PGA values were

noted in so to be used in the fragility curve equation.

≤�ܦ)ܨ (ܵ�|�௜ܫܦ = ߔ [
1

ௗ௦ߚ
∙ lnቆ

ܵ

௠ܵ ೔
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As described in 5.4.2.2 and according to HAZUS tables, interstory limit damage state

drift percentages for low raise buildings and moderate code-design (Table 5.3) are

0.5%, 0.9%, 2.3%, 6.0% for slight, moderate, extensive and complete damage states

respectively. Intersection points were used with linear interpolation, in defining the

PGA value that corresponds with the limit state drift percentages referred above.

Lognormal standard deviation β was calculated according to paragraph 5.4.2.3

using the HAZUS table (Table 5.5) for low-rise buildings. βds estimated as 0.76 for both

types of structures.
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With the gathered results (V base, D roof, Drift percentages of each story, Smi = PGA,

βds) fragility analysis was elaborated taking into account the values that indicated

disfavor in the behavior of the structure (comparing structures of the same type).

6.2.5 Risk assessment

The calculated fragility curves (all referring to the range between first and second

story beams) were combined with Hazard curves of a region through the following

equation:

   max   θ y ΙΜν P θ y IM x dλ x

Where v is the mean annual frequency of excedence of the limit state into which the

structure is subjected

IM = PGA

The Hazard curve taken into account is of the following diagram:

Fig. 7.1 Hazard curve used

The integral calculation was performed using Matlab software, the results of which

are presented in the tables in 6.3.3.
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6.3 Fragility analysis results

6.3.1 Two-dimensional frame structures

Fig. 7.2 fragility curves of 2-dimansional frame structure for Beam-Column and 3D solid FE simulation

methods for slight, moderate, extensive and complete damage states

Beam-Column FE simulation (opensees), 3D solid FE simulation (atena).

6.3.2 Three-dimensional frame structures

Fig. 7.3 fragility curves of 3-dimansional frame structure for Beam-Column and 3D solid FE simulation

methods for slight, moderate, extensive and complete damage states (X direction)
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Fig. 7.4 fragility curves of 3-dimansional frame structure for Beam-Column and 3D solid FE simulation

methods for slight, moderate, extensive and complete damage states (Y diection)

Beam-Column FE simulation (opensees), 3D solid FE simulation (atena).

6.3.3 Risk analysis results

X, Y directions refer to x direction for the X+0.3Y loading and y direction for the 0.3X+Y

loading respectively.
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7. Conclusions

Fragility curves are sensitive to several parameters concerning their shape. These

parameters can be the damage models and their thresholds are considered (both as

random and multidimensional), the analysis methods, FE simulation, input ground

motion, structural modelling and the structural parameters (damping ratio, stiffness

etc.), (Cimellaro et al., 2006). These parameters have been seen to cause significant

discrepancies in the derivation of empirical fragility curves by different authorities for

the same location, even in cases where the same structure and seismicity are

considered, (Priestley, 1998).

The development of the fragility curves for a class of buildings or for an individual

building is always related to the choice of the structural model, and the structural

parameters involved in the modelling of the structure which are inherently uncertain.

The uncertainty is both in the mechanical properties, such as yield strength and

stiffness, and geometric properties, such the modelling of the beam-column

connections, FE simulation and others. Damage models influence the form of a

fragility curve, according to the structural model and the seismic response system.

The structural model is related to the height of a building that can change

considerably the shape of a fragility curve. The difference in curve shape for building

to building can be explained by the fact that structures of different heights tend to

be built according to different building regulations and hence exhibit markedly

different seismic resistance. The different building regulations established by the

seismic codes become an additional influential factor affecting the shape of the

fragility curves. In buildings which are designed according to the pre-seismic codes

(HAZUS, 2003), the shape of the fragility curves is affected by the absence of

capacity design in structures, which results in their failure via predominantly soft story

modes under earthquake excitation. Failures of this type are associated with a rapid

transition between low-levels of damage and the collapse limit state that is reflected

in the vulnerability plot by a closer proximity of the curves.

The fragility curves are also affected by the lognormal standard deviation value (β) 

referring to its slope.  The smaller the value of β is, the less variable the damage state, 

and the steeper the fragility curve. The larger the value of beta (β) is, the more 

variable the damage state, and the better the fragility curve. Beta values usually

ranging from 0.4 to 1.2 (Rossetto & Elnasai, 2003).
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FE simulation is possible to cause diversion in the shape of fragility analysis due to

variable acceptances of softwares concerning total base force, mass calculation,

results recording methods, beam-column connections.


