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“The significant problems we face cannot be solved
at the same level of thinking we were at when we
created them.”
- Albert Einstein

“We are what we repeatedly do.
Excellence, then, is not an act, but a habit.”
- Stephen R. Covey

“If a man does not face adversity in life, he cannot
develop a reliable and robust personality.”
- Yamamoto Tsunetomo
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for Aircraft-like Vehicles
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Athens, Greece
2012

ABSTRACT

This thesis is concerned with the performance aspect of a two-dimensional navigation

and collision avoidance problem. It considers both single and multiple vehicle settings.

In particular, the vehicles (agents) considered in this work are aircraft-like in the sense

of non-holonomic kinematics and bounded lower speed. Therefore agents are modeled

as unicycles to resemble the kinematics of an aircraft flying at constant altitude. By

performance we refer to task related criteria, like control effort, deviation from a nominal

speed or path, arrival time etc.

The proposed scheme combines the Navigation Functions (NFs) methodology with the

Model Predictive Control (MPC) framework. The motivation for this work was the fact

that a robot navigating by tracking an artificial potential field’s gradient direction cannot

choose one trajectory over another. The specifics change depending on the setting (single

or multi-agent navigation), but the main idea is to deviate from the direction of a NF’s

gradient. A NF-based (feedback) control law is used as reference and an added devia-

tion term is calculated by solving a Finite Horizon Optimal Control Problem (FHOCP).

The performance criteria are encoded in the FHOCP’s cost functional. The lower speed

bound is satisfied by an appropriate NF-based linear velocity control law. An important

advantage of the proposed scheme is that the navigation properties (convergence, collision

avoidance) of the NF-based control scheme are preserved.

Two settings are examined. In the single agent navigation setting, a single nonholonomic

agent navigating in a workspace that contains static obstacles is considered. The artificial

potential field used is an extension of the original NFs, a Dipolar NF. Dipolar NFs

allow convergence to a desired orientation in addition to target destination. It should

be noted that, in the single agent case, our contribution is only a minor extension of [2].

In the multi-agent setting, the case of N nonholonomic agents navigating in the same
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workspace is examined. The multi-agent extension of the NFs methodology, a (dipolar)

Decentralized Navigation Function (DNF), is used to generate the artificial potential.

Furthermore two cases in the multi-agent setting are explored. Centralized predictive

navigation and decentralized predictive navigation. The difference lies in the information

available to each agent’s predictive controller for the solution of the FHOCP. In the

decentralized case, each agent does not take into account the decisions of others in the

control law calculation (a form of uncertainty). Therefore we employ event-triggered

(E-T) recalculations of the FHOCP. An event occurs when the discrepancy between the

predicted an actual performance of the agent exceeds some limit.

To verify the efficacy of the proposed schemes, i.e., the improvement in performance

with regard to (wrt) the (D)NF-based control laws, various navigation scenarios were

simulated in MATLAB. Simulations also provide comparative results, demonstrating the

difference in performance between each instance of the scheme: DNF-based control law

(no deviation), Centralized predictive navigation, Decentralized predictive navigation (no

E-T) and Decentralized E-T predictive navigation.

Keywords: Nonholonomic vehicle, Navigation Functions, Model Predictive Control, Pre-

dictive Navigation, Multi–agent system, Decentralized navigation, Event-triggered navi-

gation, Air–Traffic Management
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An�ptuxh Mejodologi¸n Probleptik c Plo ghshc
gia Oq mata tÔpou Aeropl�nou

SpÔroc Maniatìpouloc

Sqol  Mhqanolìgwn Mhqanik¸n
Ejnikì Metsìbio PoluteqneÐo

Aj na, Ell�da
2012

EKTENHS PERILHYH 1

SÔnoyh

Aut  h Diplwmatik  ergasÐa asqoleÐtai me to z thma thc leitourgik c apìdoshc enìc

probl matoc dudi�stathc plo ghshc kai apofug c sugkroÔsewn. Ja melet soume tìso to

prìblhma enìc oq matoc, ìso kai autì twn poll¸n. Sugkekrimèna, ta oq mata (pr�ktorec)

eÐnai tÔpou aeropl�nou, upì thn ènnoia ìti montelopoioÔntai me mh-olonomik  kinhmatik 

kai kat¸tato ìrio sthn taqÔtht� touc. Me ton ìro apìdosh anaferìmaste se krit ria

sqetik� me to ek�stote sen�rio, ìpwc elaqistopoÐhsh thc enèrgeiac, apìklish apì k�poia

onomastik  taqÔthta   troqi� k.a.

To sq ma elègqou pou proteÐnoume sundu�zei th mèjodo twn Sunart sewn Plo ghshc

(SP) me aut  tou ProbleptikoÔ Elègqou (Parart mata A.1, A.2). To kÐnhtro gia aut 

th doulei� eÐnai to gegonìc ìti èna rompìt pou kineÐtai akolouj¸ntac thn klÐsh enìc

teqnhtoÔ dunamikoÔ pedÐou den mporeÐ na epilèxei thn troqi� tou. Opìte, h kentrik 

idèa eÐnai to ìqhma (pr�ktorac) na apoklÐnei apì thn kateÔjunsh pou orÐzei h klÐsh thc

Sun�rthshc Plo ghshc. 'Enac nìmoc an�drashc, basismènoc sth SP, qrhsimopoieÐtai

wc anafor�, kai se autìn prostÐjetai ènac ìroc apìklishc pou prokÔptei apì th lÔsh

enìc probl matoc beltÐstou elègqou me peperasmèno orÐzonta. Ta krit ria leitourgik c

apìdoshc kwdikopoioÔntai se èna sunarthsiakì, en¸ h apaÐthsh gia fragmènh kat¸terh

taqÔthta ikanopoioÔntai apì ton arqikì nìmo elègqou gia th grammik  taqÔthta. Basikì

1
Λόγω της πληθώρας όρων της θεωρίας συστημάτων, αυτομάτου ελέγχου και ρομποτικής, που δυσ-

τυχώς δεν τυγχάνουν επιτυχημένης μετάφρασης στα Ελληνικά, αλλά εκ των πραγμάτων εμπεριέχονται στην

παρούσα εργασία, το κυρίως μέρος αυτής είναι στην Αγγλική γλώσσα. Παρολαυτά, σε αυτή την ενότητα

παρέχεται μια εκτεταμμένη περίληψη στα Ελληνικά.

ix



pleonèkthma thc mejìdou eÐnai ìti, epiplèon, diathroÔntai oi majhmatikèc eggu seic pou

prosèfere to arqikì sq ma elègqou, basismèno ex' olokl rou se SP.

Sthn perÐptwsh tou enìc oq matoc, to teqnhtì dunamikì pedÐo eÐnai mia dipolik  Sun�rthsh

Plo ghshc (Par�rthma A.1.3), en¸ sto polupraktorikì sÔsthma qrhsimopoioÔntai dipo-

likèc Apokentrwmènec Sunart seic Plo ghshc (Par�rthma A.1.4). Sto polupraktorikì

sen�rio, proteÐnoume kai sugkentrwmèno kai apokentrwmèno sq ma probleptik c plo ghshc.

H diafor� ègkeitai sthn plhroforÐa pou èqei sth di�jes  tou o pr�ktorac ìtan lÔnei

to prìblhma beltÐstou elègqou. Sthn apokentrwmènh perÐptwsh, o k�je pr�ktorac

de lamb�nei upìyin tic apof�seic twn upoloÐpwn (miac morf c abebaiìthta). Opìte,

proteÐnoume thn ektèlesh twn upologism¸n b�sei sumb�ntwn (Par�rthma A.3), kai ìqi

apl� an� takt� qronik� diast mata. 'Ena sumb�n lamb�nei x¸ra ìtan h diafor� metaxÔ thc

problepìmenhc kai thc pragmatik c apìdoshc enìc pr�ktora uperbaÐnei k�poio ìrio.

Gia na epalhjeÔsoume thn apotelesmatikìthta tou proteinìmenou sq matoc elègqou, dhlad 

th beltÐwsh sth leitourgik  apìdosh se sxèsh me ton arqikì nìmo elègqou basismèno se

SP, prosomoi¸same poikÐla sen�ria sto MATLAB. Apì aut� ex�game sugkritik� apo-

telèsmata, tìso gia thn perÐptwsh tou enìc pr�ktora, ìso kai gia thn perÐptwsh tou

polupraktorikoÔ sust matoc (apokentrwmènou kai mh).

AkoloujeÐ mia ekten c perÐlhyh tou kurÐou mèrouc aut c thc ergasÐac sta Ellhnik�.

Lèxeic Kleidi�: Nonholonomic vehicles, Navigation Functions, Model Predictive Con-

trol (MPC), Predictive Navigation, Multi–agent system, Decentralized navigation, Event-

triggered navigation, Air–Traffic Management

Bibliografik  Anaskìphsh

Mia kl�sh mejìjwn pou èxoun protajeÐ gia to prìblhma tou programmatismou poreÐac eÐnai

ta teqnht� dunamik� pedÐa [3]. Sugkekrimèna, oi Apokentrwmènec Sunart seic Plo ghshc

(ASP) [4] eÐnai mia polupraktorik  epèktash twn Sunart sewn Plo ghshc [5]. 'Allec

proseggÐseic gia thn plo ghsh  /kai to suntonismì polupraktorik¸n susthm�twn qrhsi-

mopoioÔn Probleptikì 'Elegqo (p.q. [6, 7, 8, 9, 10]).

Oi douleièc pou sqetÐzontai perissìtero me thn paroÔsa ergasÐa eÐnai oi [7] kai [2]. Sthn

[7], proteÐnetai mia mèjodoc ìpou èna sq ma ProbleptikoÔ Elègqou par�gei endi�mesouc
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stìqouc gia mia ASP. Sthn [2], oi suggrafeÐc parousi�zoun èna plaÐsio gia thn plo ghsh

enìc rompot qrhsimopoi¸ntac epÐshc problèyeic. To prìblhma tou beltÐstou elègqou

peperasmènou orÐzonta antimetwpÐzetai me th qr sh Tuqaiopoihmènwn AlgorÐjmwn [11].

MejodologÐec ProbleptikoÔ Elègqou basismènwn se sumb�nta èqoun protajeÐ stic er-

gasÐec [12, 13, 14].

Prìblhma kai Prosèggish

MontelopoÐhsh

Ta upì melèth oq mata (eÐte èna, eÐte pollapl�) montelopoioÔntai wc monìkukla. Dhlad 

san kinhmatik� aerosk�fh pou kinoÔntai se stajerì Ôyoc.

q̇i =

[
ṗi

φ̇i

]
=

 ẋi

ẏi

φ̇i

 =

 vi cosφi

vi sinφi

ωi

 , (1)

ìpou pi h jèsh kai φi o prosanatolismìc tou oq matoc i. To di�nusma elègqou eÐnai:

ui = [vi ωi]
>

Ta oq mata jewroÔntai mh-shmeiak�. Sugkekrimèna, k�je èna brÐsketai sto eswterikì

enìc dÐskou, dhlad  thc prostateumènhc perioq c tou, ìpwc faÐnetai sto sq ma.

H onomastik  taqÔthta pt shc tou k�je oq matoc dÐnetai apì th sqèsh:

Ui =


Uid, ||pi − pid|| > r0

||pi − pid||
r0

· Uid, ||pi − pid|| ≤ r0

, (2)

ìpou r0 h aktÐna enìc kÔklou gÔrw apì ton proorismì qid tou ek�stote oq matoc.
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Prosèggish (Probleptik  Plo ghsh)

Ja qrhsimopoi soume wc anafor� ton parak�tw nìmo gia ton èlegqo tou enìc praktora

v = −sgn(P ) · U, (3a)

ω = −kφ(φ− φnh) + φ̇nh, (3b)
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ìpou

Φ(p) =
γd

(γkd +Hnh ·G · β0)1/k
, (4)

kai ton parak�tw gia k�je ìqhma tou polupraktorikoÔ susthmatoc:

vi =


−si · Ui,

∂Φi

∂t
≤ Ui(|Pi| − ε)

−si ·

∂Φi

∂t
+ εUi

|Pi|
,

∂Φi

∂t
> Ui(|Pi| − ε)

(5a)

ωi =− kφ(φi − φnhi) + φ̇nhi. (5b)

ìpou

Φi(pi) =
γdi + fi

((γdi + fi)k +Hnhi ·Gi · β0i)
1/k
, (6)

Ta krit ria leitourgik c apìdoshc kwdikopoioÔntai sto olokl rwma tou sunarthsiakoÔ

J(t,q,u, T ) =

∫ t+T

t

Λ(q(τ),u(τ))dτ + Φ(q(t+ T )), (7)

ìpou T eÐnai o qronikìc orÐzontac thc prìbleyhc, en¸ t o pragmatikìc qrìnoc.

Eis�goume mia apìklish θ apì thn kateÔjunsh pou orÐzei h klÐsh tou pediou φnh kai

upologÐzoume th bèltisth apìklish θ∗ lÔnontac to parak�tw prìblhma beltÐstou elègqou:

J(t,q,u, T ) =

∫ t+T

t

Λ(q(τ),u(τ))dτ + Φ(t+ T ), (8)

J∗(t,q, T ) = min
θ[t,t+T )

J(t,q,u, T ), (9)

θ∗[t, t+ T ) = arg J∗(t,q, T ), (10)

Opìte ta nèa sq mata probleptik c plo ghshc, gia ènan kai pollaploÔc pr�ktorec,

dÐnontai apì tic parak�tw sqèseic:

� 'Ena ìqhma/pr�ktorac:

v = −sgn(P )U, (11a)

ω = −kφ(φ− φnh − θ∗) + φ̇nh + θ̇∗. (11b)
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� Polupraktorikì sÔsthma, i ∈ N :

vi =


−si · Ui,

∂Φi

∂t
≤ Ui(|Pi| − ε)

−si ·

∂Φi

∂t
+ εUi

|Pi|
,

∂Φi

∂t
> Ui(|Pi| − ε)

(12a)

ωi =− kφ(φi − φnhi − θ∗i ) + φ̇nhi + θ̇∗i . (12b)

To prìblhma beltÐstou elègqou peperasmènou orÐzonta ja antimetwpisteÐ me th qr sh

Tuqaiopoihmènwn AlgorÐjmwn. Sugkekrimèna, mac endiafèrei to apotèlesma tou parak�tw

l mmatoc:

L mma 1: ApaitoÔmenoc arijmìc deigm�twn ([2],[11],[15]):

O arijmìc deigm�twn Ns pou eggu�tai ìti to J∗(·) eÐnai �pijanì kontinì el�qisto� tou J(·),
se epÐpedo α kai empistosÔnh 1− δ eÐnai:

Ns ≥
ln(1/δ)

ln( 1
1−α)

(13)

Se k�je stigm  upologismoÔ tk, k�je/o pr�ktorac ja ekteleÐ ton parak�tw algìrijmo:

Algìrijmoc: BeltistopoÐhsh Peperasmènou OrÐzonta

Par�metroi: α, δ, Θ, P(θ), T , J(tk,q,u, T )

1: Upolìgise ton epark  arijmì deigm�twn Ns apì to L mma 1.

2: DhmioÔrghse Ns tuxaÐa deÐgmata θm, m = 1, . . . , Ns,

apì èna sÔnolo Θ ⊂ (−π
2
,+π

2
), sÔmfwna me thn katanom  P(θ).

3: gia m = 1 : Ns

4: DhmioÔrghse mia upoy fia apìklish θm[tk, tk + T ) wc ex c:

θm[tk, tk + T ) = (1− τ

T
)θ∗(tk) + (

τ

T
)θm, ìpou τ ∈ [0, T ).

5: ProsomoÐwse to sÔsthma sto di�sthma [tk, tk +T ) qrhsimopoi¸ntac thn θm[tk, tk +T ).
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6: Upolìgise to Jm(tk,q,u, T ).

7: termatismìc brìgqou

8: Di�lexe θ∗[tk, tk + T ) = arg minθm[tk,tk+T ) J
m(tk,q,u, T ).

H sunolik  apìklish gia t > 0 dÐnetai apì thn allhlouqÐa

θ∗(t) , θ∗[0, t1)| . . . |θ∗[tk, tk+1)| . . . |θ∗[tf , tk+1)| . . . |θ∗(t ≥ tf ), (14)

ìpou tf eÐnai h qronik  stigm  pou ènac pr�ktorac eis lje sthn perioq  aktÐnac r0 gÔrw

apì ton proorismì tou.

Jewrhtik� Apotelèsmata kai Prosomoi¸seic

Majhmatikèc Eggu seic

Ta parak�tw majhmatik� sumper�smata jemeli¸noun thn proteinìmenh mèjodo. Oi apodeÐxeic

touc up�rxoun sto Pararthma A.5, sta Agglik�.

L mma 2: Suneq c kai Fragmènh Apìklish:

H apìklish apì thn klÐsh thc SP, ìpwc upologÐzetai apì ton parap�nw Algìrijmo, eÐnai

mia suneq c sun�rthsh tou qrìnou (kl�shc C0) kai ikanopoieÐ to ìrio

|θ∗(t)| < π

2

Je¸rhma 1: SÔnolo deigmatolhyÐac:

'Estw èna ìqhma pou kineÐtai me b�sh to proteinìmeno sq ma elègqou, kai ψ h gwnÐa metaxÔ

thc klÐshc thc SP kai tou prosanatolismoÔ tou oq matoc. Se k�je qrìno ektèleshc tk

tou AlgorÐjmou, to sÔnolo Θ ⊂ (−π
2
,+π

2
) ja dÐnetai apì th sqèsh

Θk = (−π
2

+ |ψi(tk)− θ∗i (tk)| ,+
π

2
− |ψ(tk)− θ∗(tk)|).
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Tìte e�n to |ψ| = |φ− φnh| eÐnai arqik� mikrìtero tou π
2
, ja parameÐnei gia p�nta sto

di�sthma [0, π
2
).

Pìrisma 1: Peperasmènh grammik  taqÔthta:

Ef' ìswn apì to Je¸rhma 1 |φ− φnh| ∈ [0, π
2
), h probol  thc klÐshc ∇Φ ston �xona tou

oq matoc, P , den eÐnai potè mhdenik  gia p 6= pd. Opìte, h grammik  taqÔthta v sto nèo

nìmo elègqou den p�ei potè sto �peiro.

Pìrisma 2: KateÔjunsh kÐnhshc:

To Je¸rhma 1 uponoeÐ ìti an èna ìqhma xekin sei ston upoq¸ro pÐsw apì ton proorismì

tou, me to arqikì di�nusma thc klÐshc na ton odhgei proc ta emprìc (P < 0), tìte ja

qrhsimopoihjeÐ mìno kÐnhsh proc ta emprìc gia plo ghsh kai apofug  sugkroÔsewn. Aut 

h sunj kh eÐnai aparaÐhth gia efarmog  se oq mata tÔpou aeropl�nou.

Je¸rhma 2: Apofug  sugkroÔsewn:

'Ena ìqhma pou kineÐtai me to proteinìmeno sq ma elègqou paramènei p�nta asfalèc,

dhlad , de sumbaÐnoun potè sugkroÔseic.

Je¸rhma 3: SÔgklish ston epijumhtì proorismì:

To èna ìqhma, kaj¸c kai to polupraktorikì sÔsthma, epidèxontai ton orismì miac suneqoÔc

sun�rthshc Luapunov , V . Epiplèon, k�je pr�ktorac sugklÐnei ston proorismì tou pd

me ton epijumhtì prosanatolismì φd.

Apotelèsmata Prosomoi¸sewn

Gia tic prosomoi¸seic qrhsimopoi jhkan stoiqeÐa apì to aerosk�foc Airbus A321 . Sug-

kekrimèna, gia pt sh se uyìmetro 33000 pìdia, h bèltisth taqÔthta pt shc eÐnai 454 kìmboi

[16]. 'Ara jètoume U = 454 gia k�je ìqhma. H prostateuìmenh z¸nh k�je oq matoc ja

einai ri = 2.5 nautik� mÐlia gia to polupraktorikì sÔsthma (opìte 2 · ri = 5), kai r = 5
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nautik� mÐlia gia to sen�rio me to èna ìqhma. Tèloc, r0 = 10 nautik� mÐlia se ìla ta

sen�ria.

ProsomoÐwsh: 'Ena ìqhma
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(α) Ελεγκτής με Συναρτήσεις Πλοήγησης μόνο.
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Chapter 1

Preface

1.1 Introduction

This work lies at the intersection of Robot Navigation, Multi-Agent Systems and Model-

Predictive Control (MPC), as depicted in Fig. 1.1. The ultimate objective is the design

of control schemes that can guarantee the convergence of one or more agents to their

goal configurations (destination plus desired orientation) along collision-free trajectories,

while taking into account task-specific performance criteria, e.g., minimum control effort.

Robot 
Navigation

Multi‐agent 
Systems

This ThesisModel‐
Predictive ControlPredictive Control

Figure 1.1: The approach proposed in this thesis employs tools from the topics of Robot
Navigation, Multi-Agent Systems and Model-Predictive Control.

The motivation for this work came from the emerging topic of automated Air Traffic

Control (ATC), which has attracted a lot of attention during the last years [19]. But,

automated ATC is just a subset of multi-agent navigation problems, that also include
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settings where multiple robotic vehicles (ground, underwater, aerial) operate in a shared

workspace. However, automated ATC favors the design of control schemes that tackle the

issue of performance, since aircrafts operate over time horizons long enough to allow for

the solution of optimization problems on-line. MPC is one such scheme, as it generally

involves computationallly costly optimization.

Robot navigation, in particular Path or Motion planning, is a fundamental problem in

the field of robotics. In simple terms, it involves finding a safe path from the initial to the

desired configuration. Safety means avoidance of collision with obstacles while using this

path. We make a distintion with regard to (w.r.t.) the term collision1. In the single agent

case, collision refers to static obstacles that lie in the agent’s configuration space (state

constraints). In particular, these constraints result from actual obstacles in the agent’s

workspace. One such obstacle is the boundary of the workspace. In the multi-agent case,

collision refers both to the intersection of two or more agents’ “protected zones” and to

the intersection of an agent’s protected zone with the workspace boundary. A multi-agent

setting with static obstacles is not examined in this work.

By the term agent, we refer to a physical entity, e.g., a robotic agent, equipped with

computing power, sensing capabilities, actuators and some form of control scheme. The

kinematics and dynamics of an agent are of particular interest to Robot navigation as

each level of complexity in modelling requires increasingly advanced control schemes. In

this work, we focus are attention to a particular type of agent, a kinematic aircraft-

like agent. As will be discussed in detail later, an aircraft-like agent is an oriented two

dimensional disk of radius equal to the protected zone of the aircraft it represents. Its

kinematics are those of the unicycle, i.e., it is underactuated. This means that the agent

has three states, its position in a coordinate reference frame, and its orientation relative

to this frame, but only two control inputs, linear velocity and angular velocity. This

underactuation introduces a type of constraint on the agent’s motion called nonholonomic.

Nonholonomic constraints will be discussed in detail in a later section. Apart from an

aircraft, the unicycle model is also an abstraction for vehicles with similar kinematics,

like a differential drive robot or a car. However, for aircrafts, a lower bound on its speed

is also required. Vehicle dynamics are not examined in this work. In addition, there

is no uncertainty, stochastic or otherwise, due to external disturbances or model-system

mismatch. However, it will become evident that in a decentralized setting, the lack of

1In ATC terminology, the terms conflict and loss of separation are used to describe what we refer to
as collision in this work. However, we will adopt the more general term collision, which is used in the
robot navigation literature. Likewise, collision avoidance substitutes the ATC term conflict resolution.
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information w.r.t. the decisions of other agents, is a form of uncertainty w.r.t. each

particular agent.

Finally, the term performance does not refer to an algorithm’s computational complexity

but rather to physical quantities which depend on the particular task. Examples of

such task-specific performance criteria include, but are not limited to, minimum control

effort criteria, such as minimum fuel consumption, minimum deviation from a nominal

speed, e.g., an aircraft’s cruising speed, or nominal path, and minimum arrival time.

These criteria are stated as mathematical expressions and encoded in a functional (the

performance measure). This cost functional is one of the building blocks of a Model-

Predictive Control scheme. It should be noted that, in this work, hard constraints, such

as collision avoidance and a lower bound on an aircraft’s speed, are part of the navigation

problem, not performance criteria to be optimized.

All of the terms introduced in the introductory passage are explicitly defined in Chapter

2, along with some additional terms and assumptions required in order to mathematically

describe the problem statement.

1.2 Literature Review

A class of methods used to solve path planning problems is artificial potential fields [3]. In

particular, Decentralized Navigation Functions (DNFs) [4] are a multi-agent extension of

Rimon’s and Koditschek’s Navigation Functions (NFs) methodology [5]. Dipolar DNFs

offer guaranteed collision avoidance and convergence to target destination with the desired

orientation. Other approaches to the multi-agent navigation or coordination problem

employ Model Predictive (MPC) or Receding Horizon Control (RHC) Examples include

[6, 7, 8, 9, 10].

A rough illustration of the literature related to our work is provided in Fig. 1.2. Most

relevant to this work are [7] and [2]. In [7], a distributed approach where MPC is used to

generate way-points for DNFs is proposed. At each iteration, each agent solves an opti-

mization problem and broadcasts its solution to others. The scheme is distributed since,

at each recalculation time, each agent solves an optimization problem and broadcasts its

solution to others. No theoretical guarantees were given on the convergence of the overall

scheme. In [2], the authors present a framework for the navigation of a single robot

that combines RHC and control Lyapunov functions. Control inputs are parametrized

using a perturbation on the direction of a potential field’s gradient. The Finite Horizon

3
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Figure 1.2: Rough illustration of the related literature.

Optimal Control Problem (FHOCP) is solved using randomized algorithms [11, 15] and

Lyapunov-like stability conditions are given in [20].

Event-triggered (E-T) nonlinear MPC appears in [13, 14]. In addition, event-triggered

strategies for model-predictive controllers have been proposed in [12]. In the above, events

are used to trigger a recalculation of a FHOCP when the system’s evolution differs from

the predicted one, due to external disturbances.

1.3 Contributions

The contributions of this work can be summarized as follows:

� Extension of the work in [2] for a single nonholonomic vehicle using dipolar NFs.

� Extension of the above scheme to multiple vehicles using dipolar DNFs.

� Improvements in order to make the scheme applicable to ATC scenarios.

� Decentralization of the new scheme using an event-triggered strategy.

� We offer hard, mathematical guarantees on the properties of the proposed schemes.
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However, the main contribution of this work is the Decentralized Event-Triggered Pre-

dictive Navigation scheme. Our results have already been published in [1]. Our paper [1]

and this thesis extend ideas from [2] to a decentralized multi-agent navigation setting by

employing Dipolar DNFs [4]. The aircraft-like vehicles considered here are modeled as

unicycles. The fact that agents navigating by tracking an artificial potential field’s gradi-

ent cannot choose one trajectory over another motivates us to introduce a deviation from

the direction of the DNF’s gradient. This deviation is calculated by solving a FHOCP,

using the randomized algorithms –based control design in [11] and [15]. The sampling set

is adjusted at each iteration such that the navigation properties of the original scheme

are preserved. Performance requirements are encoded in the cost functional. A DNF-

based controller guarantees that agents’ velocity is lower bounded. The overall scheme is

decentralized in the sense of [21], i.e., agents’ predictive controllers do not communicate

during navigation. The only additional information required, compared to the original

scheme using just DNFs, is the broadcast of each agent’s target configuration to other

agents at the beginning of the collision avoidance manoeuvre. This information exchange

is minimal compared to the broadcast of state and/or input trajectories. Decentralization

introduces uncertainty wrt each agent. This motivates us to use event-triggered recalcu-

lations of the FHOCP. An execution rule based on the discrepancy between the predicted

and actual performance of an agent generates the events. The inter-event times are lower

bounded in terms of the maximum values of the involved variables. Each agent derives

its own event times independently, in a decentralized and asynchronous manner.

1.4 Diploma Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 casts the problem statement in

a mathematical setting, presents the tools that will be employed in our approach, and

also outlines our approach. In Chapter 3, the Predictive Navigation scheme for a single

aircraft-like vehicle is presented along with simulation results. Chapter 4 includes the

main contributions of this work. In §4.1, we present the Centralized Predictive Naviga-

tion scheme for multiple aircraft-like vehicles, whereas the Decentralized Event-Triggered

scheme is presented in §4.2. Simulation results are provided in both sections, but §4.3

presents additional comparative2 simulations. Chapter 5 discusses our results, summarizes

our conclusions, and offers future research directions.

2The original DNF–based controller is compared to the proposed centralized and decentralized pre-
dictive navigation schemes in terms of a performance measure (§2.1.2).
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Finally, two appendices are provided. Appendix A provides details on mathematical

and control theoretic tools that are mentioned and/or employed throughout this work.

The mathematical proofs of various lemmas, corollaries and theorems, in particular, are

gathered in Appendix A.5. Appendix B elaborates on the MATLAB code developed for

simulations of our proposed scheme.
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Chapter 2

Problem Statement & Approach of
Solution

2.1 Technical Problem Statement

Regarding the accuracy of the model used to describe the motion of aircraft-like agents,

we are interested in the simplest abstraction. In particular, we want an agent model that

can capture three basic features of an aircraft:

� The lateral degree of freedom (d.o.f.) is not actuated;

� A volume of airspace surrounding an aircraft (protected zone) should not be in-

fringed upon by any another aircraft;

� Aircrafts cannot use zero-speed manoeuvres due to aerodynamic limitations such

as stalling.

These criteria are taken into account in §2.1.1, where an adequate agent model is pre-

sented. Briefly, the first criterion suggests the use of a nonholonomic model [22], the

second leads to modelling aircrafts as non-point agents and the third to lower bounding

agents’ speed.

Regarding the control objectives, we set three requirements:

� Convergence to the destination with the desired orientation;

� Safety, i.e., trajectories are collision-free;

� Improved performance wrt a performance measure.

The individual parts of our problem statement are introduced in the following sections.
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2.1.1 Agent Modelling

Aircraft-like vehicles (agents) navigating in a 2-dimensional workspace W ⊂ R2 are con-

sidered. In order to model the kinematics of an aircraft flying at constant altitude, each

agent is described by the unicycle model:

q̇i =

[
ṗi

φ̇i

]
=

 ẋi

ẏi

φ̇i

 =

 vi cosφi

vi sinφi

ωi

 , (2.1)

where i ∈ N = {1, . . . , N} and Ii , [cosφi sinφi]
> is a Jacobian matrix. The index i

will be omitted in the single agent scenario, whereas in the multi-agent setting N ∈ N
is the total number of agents. Also pi = [xi yi]

> is the position vector of agent i wrt

an earth fixed frame and φi ∈ (−π, π] its heading angle, i.e., the angle between agent i’s

longitudinal axis and the earth-fixed x-axis, as depicted in Figure 2.1. The configuration

of each agent is then qi ∈ Q = W × (−π, π]. The control vector consists of the linear

and the angular velocities as follows:

ui = [vi ωi]
>

Each aircraft-like agent is subject to one nonholonomic constraint [22] due to underactu-

ation in the lateral d.o.f. In Pfaffian form, this constraint is expressed as:

[− sinφi cosφi 0] q̇i = 0 (2.2)

Agents are considered non-point. Each one occupies a disk (its protected zone), of radius

ri, centered at pi ∈ W (see Figure 2.1). The agents’ workspace is assumed to be a

2D disk of radius Rw, centered at the origin of the earth-fixed frame. Its boundary

∂W is considered an obstacle. Furthermore, a destination pid and a desired orientation

φid, at pid, is assigned to each agent. Therefore, the desired configuration of agent i is

qid =
[
p>id φid

]>
.

Definition 2.1 (Collision). In the single agent case, the term collision will refer to the

intersection of an agent’s protected zone with the (static) obstacles that lie in W or with

the workspace boundary ∂W . In the multi-agent case, the term collision will refer to the

intersection of two or more agents’ protected zones or an agent’s protected zone with the

workspace boundary ∂W .
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Figure 2.1: Aircraft-like agent i and its protected zone (blue) of radius ri. The aircraft
sketch is not in scale wrt the protected zone.

Figure 2.2 illustrates the two different scenarios; single agent and multi-agent.
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Figure 2.2: Single agent (left) and multi-agent (right) scenarios. Blue is for agents, red

is for obstacles, and the orange arrows represent the goal configuration of each agent.
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Finally, since we want to approximately model the motion of an aircraft, agents’ speed

should be lower bounded. This is in contrast to a car-like vehicle which is allowed to stop

(zero speed) during a collision avoidance manoeuvre. Therefore, a nominal speed Ui is

assigned to each aircraft-like agent, as follows:

Ui =


Uid, ||pi − pid|| > r0

||pi − pid||
r0

· Uid, ||pi − pid|| ≤ r0

, (2.3)

where r0 is the radius of a circular region around each agent’s destination and Uid is the

desired absolute speed — constant or varying independently of the control scheme —,

that corresponds to an aircraft’s cruising speed. The switch in (2.3) is continuous; once

inside the region ||pi − pid|| ≤ r0, an agent’s speed is linearly reduced as a function of

the distance from the destination. A plot of equation (2.3) appears in Figure 2.3.
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Figure 2.3: Nominal speed Ui as a function of the distance from the destination

||pi − pid||, as defined in the continuous switch (2.3). In this example, r0 = 1 and Ui = 1.

Model used in Simulations

In the numerical examples and simulation results that we will present in Chapters 3 and

4, we will use realistic figures. Specifically, we will assume that all aircraft are of type

10



Airbus A321 (depicted in Fig. 2.4), flying at an altitude of 33000 ft, a typical cruising

altitude for commercial flights [7]. The airspeed at this altitude must belong to the range

[336, 540] knots (nm
h

), with a nominal value of 454 knots [16]. Thus, we set

Uid = 454 knots , ∀i ∈ N .

Figure 2.4: Picture of an Airbus A321.

Regarding the aircrafts’ protected regions, we will use r = 5 nm (nautical miles) for the

single agent case. This corresponds to a minimum distance of 5 nm between the vehicle

and the boundary of an obstacle (undesired region of the workspace-airspace). In the

multi-agent setting, we will use ri = 2.5 nm, ∀i ∈ N . Again, this corresponds to a

minimum distance (separation) of 2ri = 5 nm between any two vehicles. Finally, the

radius r0 of the neighbourhood around each agent’s destination pid is set to 2.5ri, for all

scenarios.

2.1.2 Performance Measure

We will now mathematically define the term performance. High-level requirements, such

as minimum fuel consumption, can be represented by a performance measure of the

following form: ∫ tf

t0

Λ(q(τ),u(τ))dτ, (2.4)

where [t0, tf ] is the time interval over which the performance of the system is quantified,

Λ(·, ·) is a convex, positive definite function of the state, q, and the control input, u, and
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τ ∈ [t0, tf ] is the integration variable. The exact structure of Λ(·, ·), which we will call the

running cost function, may be straightforwardly dictated by the task requirements or the

choice may be less obvious. In the latter case, it is up to the control designer to formulate

the running cost function such that is corresponds to the actual task requirements. Some

examples are provided below:

� A running cost function that quantifies a trajectory tracking specification would be

of the form Λ(q(τ)) = (q(τ)− r(τ))>Q(q(τ)− r(τ)), where r(t) is the desired tra-

jectory and Q is a square, symmetric, weighting matrix of appropriate dimensions.

� A running cost function that quantifies a minimum control effort specification would

be of the form Λ(u(τ)) = u(τ)>Ru(τ), where, likewise, R is a square, symmetric,

weighting matrix of appropriate dimensions.

� The individual performance requirements can be combined in one running cost

function by summation, e.g.,

Λ(q(τ),u(τ)) = (q(τ)− r(τ))>Q(q(τ)− r(τ)) + u(τ)>Ru(τ).

The functions in the examples provided above are quadratic and zero-mean attractive

cost functions. These functions penalize, i.e., assign higher values to, deviation from

the zero valued inputs, (q(τ) − r(τ)) = 0 and u(τ) = 0 respectively. A visualization of

such (quadratic) functions is given in Fig. 2.5 (right). It is not necessary for the cost

functions to be quadratic. However, quadratic functions have some welcomed properties.

If Q and R are chosen to be positive definite, as is the case in practice, then Λ(·, ·) is

strictly convex and there exists a unique global minimum [23]. Other cost functions that

may be used, depending on the task-specific performance requirements, include one-sided

attractive cost function, point-wise repulsive cost functions (see Fig. 2.6) and linearly

repulsive cost functions.
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Figure 2.5: Zero-mean attractive cost functions; they penalize deviation from the zero

valued inputs. Euclidean norm (left) and squared Euclidean norm (right).

Figure 2.6: A point-wise repulsive cost function.
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The integral in equation 2.4 is a special case of functional. The mathematical term

”functional” refers to a map from a space of functions into its underlying scalar field. In

our case, Eq. 2.4 assigns a positive scalar value to each pair of state and input trajectories

q(τ), u(τ), where τ ∈ [t0, tf ]. In the remainder of this thesis, we will refer to Eq. 2.4

as the performance measure, or running cost, and to Λ(q(τ),u(τ)) as the running cost

function. The term ”cost functional” will be introduced later.

2.1.3 Problem Statements

The three control objectives mentioned in §2.1 (convergence, safety, performance) are

integrated into the following problem statements. We describe both the original for-

mulations (convergence and safety only), and the ones including the performance re-

quirement. In the multi-agent case, we also make a distinction between centralized and

decentralized performance. In the former, there is one performance measure for the en-

tire multi-agent system. The corresponding running cost function is Λ(q(τ),u(τ)), where

q = [q>1 q>2 . . .q>N ]> and u = [u>1 u>2 . . .u>N ]>. In the case of decentralized performance,

each agent tries to minimize its own performance measure
∫ tf
t0

Λi(qi(τ),ui(τ))dτ .

Single agent

Problem 2.1 (Single agent Navigation (original)). Design a control law for an

agent, described by the kinematic model (2.1), that will steer the agent to its target des-

tination pd with the desired orientation φd, while avoiding collisions with static obstacles

and the workspace boundary ∂W .

Problem 2.2 (Single agent Navigation (performance)). Design a control law for an

agent, described by the kinematic model (2.1), such that the resulting state and input tra-

jectories, q(τ) and u(τ) respectively, minimize a performance measure
∫ tf
t0

Λ(q(τ),u(τ))dτ

and are also a solution to Problem 2.1.

Multi-agent

Problem 2.3 (Multi-agent Navigation (original)). Design a control law for each

agent i ∈ N , described by the kinematic model (2.1), that will steer the agent to its target

destination pid with the desired orientation φid, while avoiding collisions, as defined in

Definition 2.1.
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Problem 2.4 (Multi-agent Navigation (centralized performance)). Design a con-

trol law for each agent i ∈ N , described by the kinematic model (2.1), such that the result-

ing state and input trajectories of the multi-agent system, q and u respectively, minimize

a performance measure
∫ tf
t0

Λ(q(τ),u(τ))dτ , and is also a solution to Problem 2.3.

Problem 2.5 (Multi-agent Navigation (decentralized performance)). Design a

control law for each agent i ∈ N , described by the kinematic model (2.1), such that the

resulting state and input trajectories of each agent, qi and ui respectively, minimize each

performance measure
∫ tf
t0

Λi(qi(τ),ui(τ))dτ , and is also a solution to Problem 2.3.

It will become apparent that, in practice, the minimization requirement in Problems 2.2,

2.4 and 2.5 will have to be relaxed. That is, the resulting solutions will still take into

account the corresponding performance measure, but they will be suboptimal.

2.2 Approach of Solution

Briefly, the approach we take to tackling the problems in §2.1.3 employs three method-

ologies; Navigation Functions (NFs), Nonlinear Model Predictive Control (NMPC) and

Randomized Algorithms. Specifically, NFs and NMPC are combined to derive novel con-

trol laws and Randomized Algorithms are used to tackle the online Finite Horizon Optimal

Control Problem (FHOCP). Once again, in the single agent case, our contribution is only

a minor extension of [2]; nonholonomic kinematics instead of single integrator. In the

decentralized multi-agent setting, we also employ concepts from Event-Triggered (E-T)

control. The reasons will become apparent as we present the decentralized methodology.

2.2.1 Navigation Functions–based Schemes

In this section we provide a brief overview of navigation schemes based on the Navigation

Functions (NF) methodology. In particular, we start with the control law for a single,

nonholonomic agent based on Dipolar Navigation Functions (see Appendix A.1.3). Then

we present the control laws which this work will expand on. That is, control laws based

on Decentralized dipolar Navigation Functions (see Appendix A.1.4) for the navigation of

multiple nonholonomic agents. A introduction to the Navigation Functions methodology,

from Khatib’s artificial potential fields to Decentralized Navigation Functions (DNF), is

provided in Appendix A.1.
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Single nonholonomic agent

Given an agent, described by the kinematic model (2.1), a spherical workspace W , static

obstacles inW , and a desired configuration qd ∈ W× (−π, π] (see Fig. 2.2–left), one can

define a dipolar Navigation Function, based on [24] and [25], as follows:

Φ(p) =
γd

(γkd +Hnh ·G · β0)1/k
, (2.5)

where γd(p) = ||p− pd||2 is the distance from the destination, and the obstacle function G

is defined in Appendix A.1.2. Furthermore, the term β0i refers to the workspace bounding

obstacle, while Hnh corresponds to the artificial obstacle used to render the potential field

dipolar (see Appendix A.1.3 for figures and mathematical details). Finally, k > 0 is a

tuning parameter for this class of NFs.

Navigation for the nonholonomic agent is based on the projection of the dipolar NF’s

gradient ∇Φ = [Φx Φy]
> on the agent’s heading direction (longitudinal axis):

P = [cosφ sinφ] · ∇Φ. (2.6)

The projection is depicted in Figure 2.7. The sign of P , s = sgn(P ), determines the

direction of motion (forward/reverse). The sign function is defined as follows:

sgn(x) ,

+1, if x ≥ 0

−1, if x < 0.
(2.7)

Nonholonomic system cannot be stabilized by continuous, time-invariant, state feedback

control laws [26]. In [24], the authors propose a discontinuous feedback scheme. Control

laws u = [v ω]> are of the generic form:

v = −k1sgn(P ) · ||∇Φ|| , (2.8a)

ω = −k2(φ− φnh) + φ̇nh, (2.8b)

where the nonholonomic heading angle φnh, and the projection of the current position

vector with respect to the destination, on the direction of the desired orientation, d, are
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Figure 2.7: Projection of dipolar NF’s gradient ∇Φ on the agent’s heading direction.

given as follows:

φnh , atan2(sgn(d)Φy, sgn(d)Φx), (2.9)

d = [cosφd sinφd] · (p− pd). (2.10)

In practice, the time derivative φ̇nh is calculated numerically at each time step. The

two-argument function atan2(·, ·) is defined as:

atan2(y, x) , arg (x, y) , (x, y) ∈ C.

Therefore, sgn(d) is equal to 1 in front of the target configuration, and −1 behind the

target configuration. Finally, k1 and k2 are positive real gains. To ensure the continuity

of φnh on the destination, where the potential field’s gradient vanishes, ∇Φ = 0, we use

the following approximation scheme [27]:

φ̂nh ,


φnh, ρ > ε

φnh (−2ρ3 + 3ερ2) + φd
(
−2 (ε− ρ)3 + 3ε (ε− ρ)2)
ε3

, ρ ≤ ε
(2.11)

where ρ =
√

Φ2
x + Φ2

y and ε is a small positive constant. Thus, φ̂nh is continuous when
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ρ = 0, where p = pd:

φ̂nh(pd) = lim
p→pd

φ̂nh = lim
ρ→0

φ̂nh = φ̂nh

∣∣∣
ρ=0

= φd.

Control laws of the form (2.8) track the direction of a dipolar NF’s gradient. Using the

norm of ∇Φ to scale the linear velocity v is not mandatory. In an ATC-like scenario,

aircraft-like agents use their nominal speed U (see Eq. (2.3)), rather than ||∇Φ||. That

is, v = −sgn(P )U . The interested reader is also referred to [28] for an analysis of control

laws derived from gradient flows, including the discontinuous type, similar to (2.8a).

Multiple nonholonomic agents

Similarly, in a multi-agent setting (see Fig. 2.2–right), a dipolar Decentralized Navigation

Function (DNF) is defined for each aircraft-like agent i ∈ N , as it appears in [29]:

Φi(pi,p
′
) =

γdi + fi

((γdi + fi)k +Hnhi ·Gi · β0i)
1/k
, (2.12)

where p
′

refers to the current position of agent i and the current positions of all other

agents (since they appear in the “obstacle” function Gi):

p
′
= [p>1 . . . p>i−1 p>i+1 . . . p>N ]>.

Note that for the construction of Φi, no knowledge of agents’ j ∈ N , j 6= i, desired

configurations (or even destinations) qjq is required by agent i. The dependence of Φi on

p
′
, and even pi, will be dropped for the sake of notational brevity. Additional details on

the Multi-agent Navigation Functions methodology, including the construction of Gi and

fi, are provided in Appendix A.1.4, and in the following references: [18, 29, 30, 31].

Collision avoidance and convergence depend on a decreasing rate for potential Φi, whose

time derivative can be expanded to two terms:

Φ̇i =
∂Φi

∂t
+∇iΦi · ṗi =

∑
j 6=i

∇jΦ
>
i · Ijvj + Pivi. (2.13)

The second term is due to the motion of agent i, while the partial derivative
∂Φi

∂t
sums

the effect of all, but the ith, agents’ motion on Φi; j ∈ N , j 6= i. We remind the reader
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that Ii , [cosφi sinφi]
>, and that ∇Φi = [Φix Φiy]

>.

A DNF-based control law (similar to the one in [17]), that solves the multi-agent naviga-

tion and collision avoidance Problem 2.3, and is suitable for aircraft-like vehicles appears

below. The linear and angular velocities, vi and ωi respectively, are given by:

vi =


−si · Ui,

∂Φi

∂t
≤ Ui(|Pi| − ε)

−si ·

∂Φi

∂t
+ εUi

|Pi|
,

∂Φi

∂t
> Ui(|Pi| − ε)

(2.14a)

ωi =− kφ(φi − φnhi) + φ̇nhi, (2.14b)

where the nominal speed Ui is given by 2.3, si = sgn(Pi), kφ is a positive real gain, and ε

is a small positive constant. Similar to the single agent case, the nonholonomic heading

angle is defined as:

φnhi , atan2(sgn(di)Φiy, sgn(di)Φix),

di = [cosφid sinφid] · (pi − pid).

In the linear velocity control law (2.14a), the nominal speed Ui is applied as long as it can

guarantee the decrease of Φi, while the angular velocity control law (2.14b) is responsible

for tracking the direction of the dipolar DNF’s gradient, ∇Φi, by reducing the tracking

error, (φi − φnhi), between the agent’s orientation and the nonholonomic heading angle.

In Eq. (2.13), note that each agent is assumed to measure the position, orientation and

linear velocity of all other agents, but has no knowledge of their desired configurations.

2.2.2 Model-Predictive Navigation for Nonholonomic Agents

The inability of control laws (2.14a)–(2.14b) to handle performance criteria motivates

the use of Model-Predictive Control (MPC) methodologies. The term Model-Predictive

Navigation in particular was introduced by Piovesan and Tanner in [2]. Their approach,

along with the extensions developed in our work, is described below.

We introduce a performance measure (an extension of (2.4)) as follows:

J(t,q,u, T ) =

∫ t+T

t

Λ(q(τ),u(τ))dτ +M(q(t+ T )), (2.15)
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where Λ(q(τ),u(τ)) is the running cost function (see §2.1.2) that encodes the desired

performance criteria, and M(q(t + T )) is called the terminal cost and will be discussed

later. MPC is based on minimizing the functional (2.15), using iterative finite horizon

optimization, at each sampling time q(t), resulting in a feedback1 scheme. The finite

horizon is quantified by the prediction horizon T > 0. Then, the minimizing control

policy

u∗[t, t+ T ) = arg min
u
J(t,q,u, T ), (2.16)

derived during the prediction phase [t, t + T ), is applied to the actual system over the

time interval [t, t + Tc), where 0 < Tc < T is the (typically fixed) control horizon. Thus,

if t is the current sampling instant, the next one would be t + Tc. In our predictive

navigation framework, a Navigation Function will be used as the terminal cost in (2.15),

i.e., M(q(t+ T )) , Φ(q(t+ T )). This is because the value of a NF at t+ T can serve as

a heuristic or approximation of the cost-to-go from t+ T →∞. It will become apparent

that no special requirements need to apply for a NF to be used as a terminal cost. For

example, we do not require the dipolar NF to be a Control Lyapunov function (which it

is not).

The rest of this section will specifically refer to Model-Predictive Navigation, not MPC in

general. A brief, general overview of Optimal and Model-Predictive Control is provided

in Appendix A.2. Furthermore, in this section we will discuss the proposed approach

in general, and the specifics of single agent and multi-agent navigation problems, with

performance criteria, will be presented in detail in Chapters 3 and 4, respectively.

Agents using a feedback control law based solely on the negated gradient of a Navigation

Function, cannot choose one trajectory over another while navigating. Their trajectory

only depends on initial–final conditions and NF’s parameters which are set at priori and,

in addition, are not intuitive for tuning. To this end, we introduce a deviation θ(t)

from the direction of the dipolar NF’s (DNF’s in the multi-agent case) gradient, φnh.

This deviation is translated into a control input, for use during the prediction phase, as

follows:

ū(τ) ,

[
0

ω̄

]
=

[
0

kφθ + θ̇

]
, τ ∈ [t, t+ T ) (2.17)

where kφ is once again a positive gain. To simplify the notation, an existing NF–based

feedback control law will be denoted as “−k(q,∇Φ)”. The control input ū is incorporated

1Each optimization is performed in an open-loop fashion, but the resulting scheme is a feedback
control scheme since the system state is sampled, and the control policy/input is recalculated, at each
time instant. However, it is not a closed-loop feedback control scheme.
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into the original framework as follows:

u = u(q,∇Φ, θ) , −k(q,∇Φ) + ū(θ). (2.18)

We are now ready to establish the generic Model-Predictive Navigation framework for

nonholonomic vehicles. Consider the following Finite Horizon Optimal Control Problem

(FHOCP):

J(t,q,u, T ) =

∫ t+T

t

Λ(q(τ),u(τ))dτ + Φ(t+ T ), (2.19a)

J∗(t,q, T ) = min
θ[t,t+T )

J(t,q,u, T ), (2.19b)

θ∗[t, t+ T ) = arg J∗(t,q, T ), (2.19c)

where the term Φ(t + T ) is used to simplify the notation of Φ(q(t + T )), since this

differs depending on the scenario (single or multi-agent). At each sampling instant,

{. . . , tk, tk+1, tk+2, . . . } = {. . . , tk, tk + Tc, tk + 2Tc, . . . }, the FHOCP (2.19) is solved for

θ∗[t, t+ T ) and the resulting control input

u∗ = −k(q,∇Φ) + ū(θ∗)

is applied over the control horizon [tk, tk + Tc). By letting “−k(q,∇Φ)” be the control

laws for v and ω presented in the previous section (§2.2.1), we get for each case:

� Single agent setting

v = −sgn(P )U, (2.20a)

ω = −kφ(φ− φnh − θ∗) + φ̇nh + θ̇∗. (2.20b)

� Multi-agent setting, i ∈ N

vi =


−si · Ui,

∂Φi

∂t
≤ Ui(|Pi| − ε)

−si ·

∂Φi

∂t
+ εUi

|Pi|
,

∂Φi

∂t
> Ui(|Pi| − ε)

(2.21a)

ωi =− kφ(φi − φnhi − θ∗i ) + φ̇nhi + θ̇∗i . (2.21b)

All parameters involved have been defined in the previous section. The specifics of the
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calculation of θ∗, θ∗, and θ∗i , in the single, centralized multi-agent, and decentralized

multi-agent settings will be described in the corresponding chapters. Figure 2.8 illustrates

the deviation θ from the direction of the dipolar NF’s gradient.

p

φ

Φ

nhφ

( )θ t

Figure 2.8: Nonholonomic heading angle φnh and deviation θ.

The following section presents the theoretic background of the optimization tool that will

be employed to tackle the FHOCP (2.19), i.e., Randomized Algorithms. Their application

to our Predictive Navigation setting with be presented for each setting individually.

Randomized Algorithms

The optimization implied in (2.19) is computationally complex and requires the use of

specialized optimization algorithms. However by relaxing the need for optimality, a class

of randomized algorithms used in distribution-free statistical learning methods can be

used to solve the FHOCP. The basic idea is to generate a sufficient number of candidate

solutions by sampling a set (according to some probability distribution P), simulate the

system’s dynamics using each candidate, and select the one that performs best [2].

Using the notation is [2], we state the following definition and lemma from [11] and [15].

Let σ ∈ Σ be a decision vector and R : Σ → R a cost functional. One is interested in
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the decision parameter σ? that yields the best performance R? = inf σ ∈ ΣR(σ). Take

Ns independent and identically distributed (i.i.d.) random samples σi, i = 1 . . . Ns from

Σ according to a probability distribution P (σ). Then R∗ = miniR(σi) can approximate

R? [15].

Definition 2.2 (Probable near minimum [11]). Given R(σ), δ ∈ (0, 1), and α ∈
(0, 1), a number R∗ ∈ R is said to be a probable near minimum of R(σ) to level α and

confidence 1− δ, if there exists a set Σ̃ ⊆ Σ measuring P{Σ̃} ≤ α, such that

P{inf
Σ
R(σ) ≤ R∗ ≤ inf

Σ\Σ̃
R(σ)} ≥ 1− δ

.

Lemma 2.1 (Number of samples [2],[11],[15]). The number of samples Ns that guar-

antees R∗ is a “probable near minimum” of R(σ) to level α and confidence 1− δ satisfies:

Ns ≥
ln(1/δ)

ln( 1
1−α)

(2.22)
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Chapter 3

Single-agent Predictive Navigation

In this Chapter, we present a brief extension of the Model–Predictive Navigation scheme

in [2] to the case of nonholonomic (aircraft-like) agents. The analysis will be rather

superficial, since the main contribution of this work involves the multi-agent setting.

Therefore, additional discussion and mathematical details will be provided in Chapter 4.

3.1 Predictive Navigation for a Nonholonomic Agent

Consider an aircraft-like agent, described by the kinematic model (2.1), navigating in a

workspace (airspace)W . Undesired regions of the workspace will be modelled as obstacles

(see Figure 3.1). The performance criteria are encoded in a performance measure (cost

functional) as stated in Eq. (3.1).

J(t,q,u, T ) =

∫ t+T

t

Λ(q(τ),u(τ))dτ + Φ(p(t+ T )), (3.1)

where the running cost Λ(q(τ),u(τ)) is a function of the agent’s state and controls, that

encodes the performance criteria, and a dipolar Navigation Function (see Appendix A.1.3)

Φ is used as the terminal cost (see §2.2.2).

We are now ready to restate Problem 2.2, i.e., the predictive navigation problem for a

nonholonomic agent:

Problem 3.1 (Centralized Predictive Navigation). Given a dipolar DNF (2.12),

a running cost function Λ(q,u), and a prediction horizon T , derive, for each of the

prediction intervals [tk, tk + T ), the control strategies u∗[tk, tk + T ) that minimize (3.1)

for each interval, in such a way that their concatenation, applied over t ∈ [0,∞), is also

a solution to the original navigation Problem 2.1.
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Figure 3.1: An aircraft-like vehicle (blue disk) navigating a workspace with obstacles, i.e.
undesired regions (red disks). Its goal configuration qd is depicted with an orange arrow.

The optimal control problem to be solved for each prediction interval [tk, tk + T ) is:

J(tk,q,u, T ) =

∫ tk+T

tk

Λ(q(τ),u(τ))dτ + Φ(p(tk + T )), (3.2a)

J∗(tk,q, T ) = min
θ∗[tk,tk+T )

J(tk,q,u, T ), (3.2b)

θ∗[tk, tk + T ) = arg J∗(tk,q, T ), (3.2c)

where θ∗ is the optimum deviation from the direction of the dipolar NF’s negated gradient.

Then the resulting deviation θ∗[tk, tk + T ) is applied to the agent, according to (2.20),

over the control phase [tk, tk+1) = [tk, tk + Tc), and the FHOCP (3.2) is solved again for

the new system state q(tk+1).

Since deviations θ∗[tk, tk + T ) will be calculated in a finite horizon manner, denote as

θ∗(t) the concatenation of deviations over t ∈ [0,∞) as follows:

θ∗(t) , θ∗[0, t1)|θ∗[t1, t2)| . . . |θ∗[tk, tk+1) . . . , (3.3)

obtained iteratively by solving the FHOCP (3.2) at each recalculation time tk, and ap-

plying the resulting deviation θ∗[tk, tk + T ) only over the time interval [tk, tk+1), where
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tk+1 = tk + Tc. We set t0 = 0 and θ∗(0) , 0.

Randomized Finite Horizon Optimization (Single–agent)

The optimization in the FHOCP (3.2) will be tackled using Randomized Algorithms. We

restate Lemma 2.1 in the current setting:

Lemma 3.1 (Number of samples (Single–agent)). The number of samples Ns that

guarantees J∗(tk,q, T ) is a “probable near minimum” of J(tk,q,u, T ), to level α and

confidence 1− δ, satisfies:

Ns ≥
ln(1/δ)

ln( 1
1−α)

At each recalculation time tk, the centralized authority calculates a near optimum devi-

ation vector θ∗[tk, tk + T ) by executing Algorithm 1.

Algorithm 1: Single–agent Finite Horizon Optimization

Parameters: α, δ, Θ, P(θ), T , J(tk,q,u, T )

1: Calculate a sufficient number of samples Ns using Lemma 3.1.

2: Generate Ns i.i.d. random samples θm, m = 1, . . . , Ns,
from a set Θ ⊂ (−π

2
,+π

2
), according to the probability distribution P(θ).

3: for m = 1 : Ns

4: Generate a candidate deviation θm[tk, tk + T ) as:

θm[tk, tk + T ) = (1− τ

T
)θ∗(tk) + (

τ

T
)θm, where τ ∈ [0, T ) is a dummy time variable.

5: Simulate the agent’s dynamics over [tk, tk + T ) using θm[tk, tk + T ).

6: Calculate Jm(tk,q,u, T ).

7: end loop

8: Pick θ∗[tk, tk + T ) = arg minθm[tk,tk+T ) J
m(tk,q,u, T ).
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Each candidate deviation (Algorithm 1, Step 4) is a line segment (1st degree polynomial)

connecting the point (tk, θ
∗(tk)) with one of the Ns sampled points (tk + T, θm(tk + T ))

of Step 2. Higher degree polynomials would result in “smoother” deviations but the

condition |θ∗(t)| < π
2

(proven in Lemma 3.2) would not hold for any value of the involved

parameters (see Figure 3.2).
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(a) 1st degree polynomial (T = 400).
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(b) 2nd degree polynomial (T = 400).
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(c) 3rd degree polynomial (T = 400).
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(d) 2nd degree polynomial (T = 200).

Figure 3.2: Generation of candidate deviations θm[tk, tk + T ) — Step 4, Algorithm 1 —
using polynomials of increasing degree. Note that, despite the fact that samples θm ∈
Θ ⊂ (−π

2
,+π

2
), we cannot guarantee that θm[tk, tk + T ) ∈ Θ ⊂ (−π

2
,+π

2
) for polynomials

higher than 1st degree. This is influenced by the following parameters: θ(tk), θ̇(tk), T, θ
m.

Finally denote by tf = inf{t : ||p− pd|| ≤ r0} the time instant when the agent enters a

neighbourhood r0 of its destination pd. For t ≥ tf , θ will be given as a function of the

distance S = ||p− pd||:

θ(t ≥ tf ) = θ(S) = S2 · θ
∗(tf )

r0
2
.
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We could say that the predictive controller is “turned-off” for t ≥ tf . This deviation term

has the following mathematical properties:

i. θ(S = r0) = θ∗(tf ),

ii. θ(S = 0) = 0,

iii. θ̇(S = 0) =
dθ

dS
· dS
dp
· ṗ|S=0= 0.

Therefore θ∗(t) is restated as in (3.4)

θ∗(t) , θ∗[0, t1)| . . . |θ∗[tk, tk+1)| . . . |θ∗[tf , tk+1)| . . . |θ∗(t ≥ tf ). (3.4)

Lemma 3.2 (Continuity and Boundedness of deviations). The deviation (3.4),

where θ∗[tk, tk + T ) is calculated by Algorithm 1 and applied over the control phase

[tk, tk+1), is a continuous function of time (class C0) that satisfies the bound:

|θ∗(t)| < π

2

Proof. The proof of Lemma 3.2 can be found in Appendix A.5, Proof A.1.

Sampling Set Θ

The non-holonomic nature of the unicycle and the control law (2.20b) make it impossible

to accurately track a desired heading angle. A tracking error, (φ − φnh − θ∗), will be

present at all times. This means that the result of Lemma 3.2, i.e., |θ∗(t)| < π
2
, does not

guarantee that φ also satisfies |φ− φnh| < π
2
. Satisfaction of this condition is necessary

to preserve the navigation properties of the original DNF–based control law (2.14b). At

each recalculation time tk, the sampling set Θ ⊂ (−π
2
,+π

2
) has to be adjusted accordingly

in order to take into account the tracking error.

Theorem 3.1 (Sampling Set adjustment (Single agent)). Consider an agent de-

scribed by Eq. (2.1) under the control law (2.21b) and denote by ψ the angle between the
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field’s gradient and the agent’s longitudinal axis. At each recalculation time tk, let the

sampling set Θ ⊂ (−π
2
,+π

2
) in Algorithm 1 be

Θk = (−π
2

+ |ψi(tk)− θ∗i (tk)| ,+
π

2
− |ψ(tk)− θ∗(tk)|).

Then if |ψ| = |φ− φnh| is initially smaller than π
2
, it will always remain in [0, π

2
).

Proof. The proof of Theorem 3.1 can be found in Appendix A.5, Proof A.2.

3.2 Analysis of Navigation Properties

We will now demonstrate how the predictive navigation scheme preserves the naviga-

tion properties of the original, DNF–based controller (2.20). This will be accomplished

through a series of corollaries and theorems.

Corollary 3.1 (Finite linear velocity). Since, by Theorem 3.1, |φ− φnh| ∈ [0, π
2
), the

projection of the field’s gradient ∇Φ on an agent’s longitudinal axis, P , is never zero for

p 6= pd. Therefore the linear velocity v in (2.20a) does not go to infinity.

Proof. The proof of Corollary 3.1 can be found in Appendix A.5, Proof A.4.

Corollary 3.2 (Direction of motion). Theorem 3.1 implies that if an agent starts in

the subspace behind its target (d < 0 in §2.2.1), with the initial negated gradient vector

driving it forward (P < 0), only forward motion will be used for navigation and collision

avoidance. This is a necessary condition for application to aircraft-like vehicles.

Proof. The proof of Corollary 3.2 can be found in Appendix A.5, Proof A.5. The re-

quirements of Corollary 3.2 are mild and represent reasonable physical conditions.
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Theorem 3.2 (Collision Avoidance). An agent described by (2.1), navigating under

the control laws (2.20a)–(2.20b) remains always safe, i.e., no collisions occur at any time.

When the result of Theorem 3.2 is combined with that of Theorem 3.1 and Corollary

3.2, we get that the agent will avoid collisions without ever resorting to a change in the

direction of motion (from forward to reverse).

Proof. The proof of Theorem 3.2 can be found in Appendix A.5, Proof A.6.

Theorem 3.3 (Convergence of the multi–agent system). An agent described by

(2.1), navigating under the control laws (2.20a)–(2.20b), admits a continuous Lyapunov

function, V . In addition, the agent converges to its target destination pd with the desired

orientation φd.

Proof. The proof of Theorem 3.3 can be found in Appendix A.5, Proof A.8.

3.3 Simulation Results (Single agent)

The performance of the proposed scheme is verified via MATLAB simulations. The

agent parameters used in the simulation below are given in §2.1.1. In addition to those,

kφ = 3 · 10−3, and k = 7. The number of samples is calculated by Lemma 3.1. The cost

functional used is as follows:

J(tk,q,u, T ) =

∫ tk+T

tk

[(p− pd)
>Q(p− pd) +R · ω2]dτ + Φ(p(tk + T )). (3.5)

The linear velocity v does not appear in the cost functional as it is regulated independently

by Equations (2.20a)–(2.3). We used the uniform probability distribution for P(θ) in

Algorithm 1. Any parameters not provided, will appear in the caption of the respective

figure.
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(a) NF–based Controller.
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(b) Predictive Navigation scheme.
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(d) Lyapunov function V (see Proof A.8).

Figure 3.3: Scenario 1 – Parameters: T = 700 (sec), Tc = 300 (sec), Ns = 29.
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(b) Predictive Navigation scheme.
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(d) Lyapunov function V (see Proof A.8).

Figure 3.4: Scenario 2 – The NF-based controller forces the agent to make unnecessary
turns. Using the predictive navigation scheme results in an improved trajectory. Param-
eters: T = 500, Tc = 300, Ns = 29, Q = 1

4·R2
w
, R = 0.
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Chapter 4

Multi-agent Predictive Navigation

Throughout this chapter, we will use the notation initially introduced in Chapter 2. The

multi-agent navigation setting involves N aircraft-like agents navigating in a common

workspace, as already illustrated in Figure 2.2(right). Each agent i ∈ N = {1, 2, . . . , N}
is described by the kinematic model (2.1) and the additional properties described in §2.1.1.

In addition, a dipolar Decentralized Navigation Function (DNF) Φi (2.12) is defined for

each agent. Issues regarding the performance criteria differ between the centralized and

decentralized navigation settings. These will be described separately in §4.1 and §4.2

respectively. Finally, in §4.3, we present comparative simulation results.

4.1 Centralized Predictive Navigation

4.1.1 Centralized Predictive Control Scheme

This section provides the details and analysis of the approach presented in §2.2.2 that

are specific to a centralized multi-agent setting. Specifically, in this setting, there exists

a centralized authority that is responsible for deriving the deviation of all agents, i.e., the

decision (deviation) vector

θ∗ = [θ∗1, θ
∗
2, . . . , θ

∗
N ]>.

Since the centralized authority has access to the state qi, control inputs ui and deviation

θ∗i of all agents, we will use the following notation for the multi-agent system. The

system’s configuration, position and control vectors respectively are as follows:

q , [q>1 q>2 . . .q>N ]> ∈ QN ,

p , [p>1 p>2 . . .p>N ]> ∈ R2N ,

u , [u>1 u>2 . . .u>N ]> ∈ R2N .
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In the centralized setting, performance is encoded in a single performance measure which

is a function of the multi-agent system as a whole. That is,

J(t,q,u, T ) =

∫ t+T

t

Λ(q(τ),u(τ))dτ +
N∑
i=1

Φi(p(t+ T )), (4.1)

where the running cost Λ(q(τ),u(τ)) is a function of the multi-agent system’s state and

controls, that encodes the performance criteria, and the terminal cost is the sum of all

agents’ DNFs. The centralized predictive navigation scheme is depicted in Figure 4.1.

multi - agent system 

DNF-based 
Controller 

MPC 

1k k ct t T  
t

*[ , )k kt t Tθ
u

Figure 4.1: The centralized MPC scheme updates the deviation vector θ∗ at each recal-
culation time tk, and feeds it to the DNF–based controllers.

The DNF–based controllers, Eq. (2.21), provide inputs at each time instant t, whereas the

centralized authority (MPC scheme) updates the deviation vector θ∗ at each recalculation

time instant tk+1 = tk + Tc, where Tc is the control horizon (see §2.2.2), and k ∈ N.

We are now ready to restate Problem 2.4, i.e., the centralized multi-agent predictive

navigation problem:

Problem 4.1 (Centralized Predictive Navigation). For the multi-agent system,

given a dipolar DNF (2.12), a running cost function Λ(q,u), and a prediction horizon T ,

derive, for each of the prediction intervals [tk, tk +T ), the control strategies u∗[tk, tk +T )

that minimize (4.1) for each interval, in such a way that their concatenation, applied over

t ∈ [0,∞), is also a solution to the multi-agent navigation Problem 2.3.
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The optimal control problem to be solved for each prediction interval [tk, tk + T ) is:

J(tk,q,u, T ) =

∫ tk+T

tk

Λ(q(τ),u(τ))dτ +
N∑
i=1

Φi(p(tk + T )), (4.2a)

J∗(tk,q, T ) = min
θ∗[tk,tk+T )

J(tk,q,u, T ), (4.2b)

θ∗[tk, tk + T ) = arg J∗(tk,q, T ), (4.2c)

where θ∗ = [θ∗1, θ
∗
2, . . . , θ

∗
N ]>, as already mentioned. Then the resulting deviation vector

θ∗[tk, tk + T ) is applied to the multi-agent system, according to (2.21), over the control

phase [tk, tk+1) = [tk, tk + Tc), and the FHOCP (4.2) is solved again for the new system

state q(tk+1). Note that the recalculation instants, {. . . , tk, tk+1,...}, are common for all

agents, i.e., the recalculations are synchronous in the centralized setting1.

Since deviations θ∗ will be calculated in a finite horizon manner, denote as θ∗(t) the

concatenation of deviations over t ∈ [0,∞) as follows:

θ∗(t) , θ∗[0, t1)|θ∗[t1, t2)| . . . |θ∗[tk, tk+1) . . . , (4.3)

obtained iteratively by solving the FHOCP (4.2) at each recalculation time tk, and ap-

plying the resulting deviation θ∗[tk, tk + T ) only over the time interval [tk, tk+1). We set

t0 = 0 and θ∗(0) , 0.

Randomized Finite Horizon Optimization (Centralized)

In the centralized setting, we tackle the FHOCP (4.2) similarly to the single agent case.

Rather than solving for the deviation θ∗[tk, tk + T ), we solve for the deviation vector

θ∗[tk, tk + T ) = [θ∗1k[tk, tk + T ), θ∗2k[tk, tk + T ), . . . , θ∗Nk[tk, tk + T )]>. To simplify the

notation, if necessary, θ∗k will be used instead of θ∗[tk, tk + T ) to refer to the deviation

vector over the time interval [tk, tk + T ), and θ∗k(t
′) will be used to denote the value of

the deviation at a specific time instant t′ ∈ [tk, tk + T ).

We restate Lemma 2.1 in the current setting:

Lemma 4.1 (Number of samples (Centralized)). The number of samples Ns that

guarantees J∗(tk,q, T ) is a “probable near minimum” of J(tk,q,u, T ), to level α and

1This is in contrast to the Decentralized Event-Triggered scheme in §4.2.
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confidence 1− δ, satisfies:

Ns ≥
ln(1/δ)

ln( 1
1−α)

At each recalculation time tk, the centralized authority calculates a near optimum devi-

ation vector θ∗[tk, tk + T ) by executing Algorithm 2.

Algorithm 2: Centralized Finite Horizon Optimization

Parameters: α, δ, Θ, P(θ), T , J(tk,q,u, T )

1: Calculate a sufficient number of samples Ns using Lemma 4.1.

2: Generate Ns i.i.d. random samples θm, m = 1, . . . , Ns,
from a set Θ ⊂ (−π

2
,+π

2
)N, according to the probability distribution P(θ).

3: for m = 1 : Ns

4: Generate a candidate deviation vector θm[tk, tk + T ) as:

θm[tk, tk + T ) = (1− τ

T
)θ∗(tk) + (

τ

T
)θm, where τ ∈ [0, T ) is a dummy time variable.

5: Simulate the multi-agent system’s dynamics over [tk, tk + T ) using θm[tk, tk + T ).

6: Calculate Jm(tk,q,u, T ).

7: end loop

8: Pick θ∗[tk, tk + T ) = arg minθm[tk,tk+T ) J
m(tk,q,u, T ).

The ith row of the candidate deviation vector θm[tk, tk+T ) (Step 4, Algorithm 2) is a line

segment (1st degree polynomial) connecting the point (tk, θ
∗
i (tk)) with the ith element of

one of the Ns samples (tk + T, θmi (tk + T )) of Step 2, i ∈ N . Higher degree polynomials

would result in “smoother” deviations but the condition |θ∗i (t)| < π
2

(proven in Lemma [#

Chapter 3]) would not hold for any value of the involved parameters, (see Figure 3.2).

Finally denote by tif = inf{t : ||pi − pid|| ≤ r0} the time instant when agent i enters a

neighbourhood r0 of its destination pid. For t ≥ tif , θi will be given as a function of the
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distance Si = ||pi − pid||:

θi(t ≥ tif ) = θi(Si) = Si
2 ·
θ∗i (t

i
f )

r0
2
.

We could say that the centralized authority no longer calculates a deviation for this agent

for t ≥ tif . This deviation term has the following mathematical properties:

i. θi(Si = r0) = θ∗i (t
i
f ),

ii. θi(Si = 0) = 0,

iii. θ̇i(Si = 0) =
dθi
dSi
· dSi
dpi
· ṗi|Si=0= 0.

Therefore θ∗(t) is restated as in (4.4)

θ∗(t) , θ∗[0, t1)| . . . |θ∗[tk, tk+1)| . . . |θ∗[tif , tk+1)| . . . |θ∗(t ≥ tf ), (4.4)

where tif is the first time an agent (say, agent i) entered the neighbourhood of its desti-

nation, and tf the time instant the last agent did so.

Lemma 4.2 (Continuity and Boundedness of deviations). Each row of the devia-

tion vector (4.4), where each θ∗[tk, tk + T ) is calculated via Algorithm 2 and applied over

the control phases [tk, tk+1), 0 < tk+1 − tk < T , is a continuous function of time (class

C0), that satisfies the bound

|θ∗i (t)| <
π

2
, ∀i ∈ N .

Proof. The proof of Lemma 4.2 can be found in Appendix A.5, Proof A.1.

Sampling Set Θ

The non-holonomic nature of the unicycle and the control law (2.21b) make it impossible

to accurately track a desired heading angle. A tracking error, (φi − φnhi − θ∗i ), will be

present at all times. This means that the result of Lemma 4.2, i.e., |θ∗i (t)| < π
2
, does not

guarantee that φi also satisfies |φi − φnhi| < π
2
. Satisfaction of this condition is necessary

to preserve the navigation properties of the original DNF–based control law (2.14b). At
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each recalculation time tk, the sampling set Θ = Θ1 × Θ2 × · · · × ΘN ⊂ (−π
2
,+π

2
)N has

to be adjusted accordingly in order to take into account the tracking error.

Theorem 4.1 (Sampling Set adjustment (Centralized)). Consider the multi-agent

system, whose agents i ∈ N are described by Eq. (2.1) and navigate under the control law

(2.21b), and denote by ψi the angle between the field’s gradient and the agent’s longitudinal

axis. At each recalculation time tk, let the sampling set Θ in Algorithm 2 be

Θk = Θ1
k ×Θ2

k × · · · ×Θi
k × · · · ×ΘN

k ,

where

Θi
k = (−π

2
+ |ψi(tk)− θ∗i (tk)| ,+

π

2
− |ψi(tk)− θ∗i (tk)|).

Then if |ψi| = |φi − φnhi| is initially less than π
2
, it will always remain in [0, π

2
), ∀i ∈ N .

Proof. The proof of Theorem 4.1 is almost identical to that of the decentralized case

(Theorem 4.4), which can be found in Appendix A.5, Proof A.2. This proof discusses

only the sampling of one agent, i.e., Θi
k, a subset of Θk. The extension is straightforward.

4.1.2 Analysis of Navigation Properties

We will now demonstrate how the multi-agent predictive navigation scheme preserves the

navigation properties of the original, DNF–based controller. This will be accomplished

through a series of corollaries and theorems. The main objective of this section is to

mathematically verify the applicability of the proposed Centralized Predictive Navigation

scheme to aircraft-like vehicles.

Corollary 4.1 (Finite linear velocity). Since, by Theorem 4.1, |φi − φnhi| ∈ [0, π
2
),

∀i ∈ N , the projection of the field’s gradient ∇iΦi on each agent’s longitudinal axis, Pi, is

never zero for pi 6= pid. Therefore the linear velocity vi in (2.21a) does not go to infinity.

Proof. The proof of Corollary 4.1 is almost identical to that of the decentralized case

(Theorem 4.3), which can be found in Appendix A.5, Proof A.4.
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Corollary 4.2 (Direction of motion). Theorem 4.1 implies that if an agent starts in

the subspace behind its target (di < 0 in §2.2.1), with the initial negated gradient vector

driving it forward (Pi < 0), only forward motion will be used for navigation and collision

avoidance. This is a necessary condition for application to aircraft-like vehicles.

Proof. The proof of Corollary 4.2 is almost identical to that of the decentralized case

(Theorem 4.4), which can be found in Appendix A.5, Proof A.5. The requirements of

Corollary 4.2 are mild and represent reasonable physical conditions.

Theorem 4.2 (Collision Avoidance). A team of agents described by (2.1), navigating

under the control law (2.21a) for linear velocities remains always safe, i.e., no collisions

occur at any time.

Proof. The proof of Theorem 4.2 is identical to that of the decentralized case (Theorem

4.5) and that of the original DNF–based controller. It can be found in Appendix A.5,

Proof A.7.

Theorem 4.3 (Convergence of the multi–agent system). The multi-agent system

described by (2.1), navigating under the control laws (2.21a)–(2.21b), where the deviations

(4.4) are computed in a centralized manner, admits a continuous Lyapunov function, V .

In addition, each agent i converges to its target destination pid with the desired orientation

φid.

Proof. The proof of Theorem 4.3 is similar to that of the decentralized case (Theorem

4.6). A proof sketch is provided in Appendix A.5, Proof A.9, and the rest can be inferred

from Proof A.10.

4.1.3 Simulation Results (Centralized)

The performance of the centralized scheme is verified via MATLAB simulations. The

agents’ parameters used in the simulation below are given in §2.1.1. In addition to those,
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kφ = 5 · 10−4, and k = 10. The number of samples is calculated by Lemma 4.1. The cost

functional used is as follows:

Ji(t,qi,ui, T ) =

∫ t+T

t

[Q ||p− pd||2 +R1(v − Ui)2]dτ +
N∑
i=1

Φi(p(tk + T ), (4.5)

We used the uniform probability distribution for P(θ) in Algorithm 2. Any parameters

not provided, will appear in the caption of the respective figure.
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(a) Paths resulting from a run of the centralized
predictive navigation scheme.
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(b) Linear velocities were maintained at 454 knots.
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(c) Optimum deviations θ∗i (t).
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(d) Evolution of running cost in Eq. (4.5).

Figure 4.2: Parameters: T = 600 (10 min), Tc = 60 (1 min), Ns = 88.
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4.2 Decentralized Predictive Navigation

4.2.1 Decentralized Predictive Control Scheme

This section provides the details and analysis of the approach presented in §2.2.2, that

are specific to a decentralized multi-agent setting. Specifically, in this setting, each agent

is equipped with its own predictive controller, and is responsible for calculating its devi-

ation θ∗i from the direction of a dipolar DNF, Φi, in a decentralized manner. However,

since an agent now solves a Finite Horizon Optimal Control Problem with limited in-

formation, discrepancies appear between its predicted state and actual state, over each

time interval [t, t+ Tc). Subsequently, there are also performance discrepancies, in terms

of the performance measure (cost functional). A simplified overview of the decentralized

predictive navigation scheme is given in Fig. 4.3.
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Figure 4.3: The decentralized MPC scheme on each agent updates the deviation θ∗i at each
recalculation time tk, and feeds it to the DNF–based controller C (2.21). Note that agent
i does not have knowledge other agents’ decisions, i.e., deviations θ∗j (t). The derivation
of recalculation time instants {. . . , tik, tik+1, . . . } is not depicted in this figure.

As we shall see, recalculations of the FHOCP, i.e., executions of Algorithm 3, are asyn-

chronous in general. They are derived implicitly by an execution rule (event generator).
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One additional piece of information that we will require in the decentralized approach is

knowledge of all other agents’ goal configurations by each agent i. This is accomplished

by a broadcasting of each agent’s goal configuration qid to others, at the beginning of

the collision avoidance manoeuvre, i.e., at t = t0 = 0. However, this is not mandatory

in order to guarantee safety and convergence. It is just a simplification to facilitate the

prediction phase, since the design of an estimator is beyond the scope of this work.

Similarly to the single agent and centralized multi-agent settings, we state the cost func-

tional, and the new, decentralized predictive navigation problem, Problem 4.2. For each

agent i ∈ N , the cost functional is given as follows:

Ji(t,qi,ui, T ) =

∫ t+T

t

Λi(qi(τ),ui(τ))dτ + Φi(t+ T ), (4.6)

where the running cost Λi(qi,ui) encodes the performance criteria of agent i only. The

terminal cost is the value of a dipolar DNF, Φi, at time t+ T .

Problem 4.2 (Decentralized Predictive Navigation). For each agent i ∈ N , given

a DNF (2.12), a running cost function Λi(qi,ui), and a prediction horizon T , derive,

for each of the prediction intervals [tik, t
i
k + T ), the control strategies u∗i [t

i
k, t

i
k + T ) that

minimize (4.6) for each interval, in such a way that their concatenation, applied over

t ∈ [0,∞), is also a solution to the multi-agent navigation Problem 2.3.

The FHOCP to be solved by each agent i, over a prediction interval [tik, t
i
k + T ) is:

Ji(t
i
k,qi,ui, T ) =

∫ tik+T

tik

Λi(qi(τ),ui(τ))dτ + Φi(t
i
k + T ), (4.7a)

J∗i (tik,qi, T ) = min
θi[tik,t

i
k+T )

Ji(t
i
k,qi,ui, T ), (4.7b)

θ∗i [t
i
k, t

i
k + T ) = arg J∗i (tik,qi, T ). (4.7c)

The resulting deviation θ∗i [t
i
k, t

i
k + T ) is applied to the multi-agent system, according to

(2.21), over the control phase [tik, t
i
k+1), and the FHOCP (4.2) is solved again for the new

system state q(tk+1). As mentioned already, in general, tik+1 6= tik+Tc in the decentralized

event-triggered scheme. However, we have that t10 = t20 = · · · = tN0 = t0 , 0.

Deviations θ∗i will be calculated in a finite horizon manner. Thus, denote by θ∗i (t) the

concatenation of agent i’s deviations over t ∈ [0,∞) as follows:

θ∗i (t) , θ∗i [0, t
i
1)|θ∗i [ti1, ti2)| . . . |θ∗i [tik, tik+1) . . . , (4.8)
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obtained iteratively by solving the FHOCP (4.7) at each recalculation time tik, and ap-

plying the resulting deviation θ∗i [t
i
k, t

i
k +T ) over the control phase, i.e., only over the time

interval [tik, t
i
k+1). We set θ∗i (0) , 0, ∀i ∈ N .

Randomized Finite Horizon Optimization (Decentralized)

We restate Lemma 2.1 in the current setting:

Lemma 4.3 (Number of samples (Decentralized)). The number of samples Ns that

guarantees J∗i (tik,q, T ) is a “probable near minimum” of Ji(t
i
k,q,u, T ), to level α and

confidence 1− δ, satisfies:

Ns ≥
ln(1/δ)

ln( 1
1−α)

At each recalculation time tik, agent i calculates a near optimum deviation θ∗i [t
i
k, t

i
k + T )

by executing Algorithm 3.

Each candidate deviation (Algorithm 3, Step 4) is a line segment (1st degree polynomial)

connecting the point (tik, θ
∗
i (t

i
k)) with one of the Ns sampled points (tik + T, θmi (tik + T ))

of Step 2. Higher degree polynomials would result in “smoother” deviations but the

condition |θ∗i (t)| < π
2

(proven in Lemma 4.4) would not hold for any value of the involved

parameters (see Figure 3.2).

Finally denote by tif = inf{t : ||pi − pid|| ≤ r0} the time instant when agent i enters a

neighbourhood r0 of its destination pid. For t ≥ tif , θi will be given as a function of the

distance Si = ||pi − pid||: θi(t ≥ tif ) = θi(Si) = Si
2 · θ∗i (tif )/r0

2. We could say that the

Predictive Controller is “turned-off”. This deviation term has the following properties:

i. θi(Si = r0) = θ∗i (t
i
f ),

ii. θi(Si = 0) = 0,

iii. θ̇i(Si = 0) = dθi/dSi · dSi/dpi · ṗi|Si=0= 0.

Therefore θ∗i (t) is restated as in (4.9) and depicted in Figure 4.4:

θ∗i (t) , θ∗i [0, t
i
1)| . . . |θ∗i [tik, tik+1)| . . . |θi(t ≥ tif ). (4.9)
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Algorithm 3: Decentralized Finite Horizon Optimization

Parameters: α, δ, Θ, P(θ), T , J(tik,q,u, T )

1: Calculate a sufficient number of samples Ns using Lemma 4.3.

2: Generate Ns i.i.d. random samples θmi , m = 1, . . . , Ns,
from a set Θ ⊂ (−π

2
,+π

2
)N, according to the probability distribution P(θ).

3: for m = 1 : Ns

4: Generate a candidate deviation vector θmi [tik, t
i
k + T ) as:

θmi [tik, t
i
k + T ) = (1− τ

T
)θ∗i (t

i
k) + (

τ

T
)θmi , where τ ∈ [0, T ) is a dummy time variable.

5: Simulate the multi-agent system’s dynamics over [tik, t
i
k + T ) using θmi [tik, t

i
k + T ).

6: Calculate Jm(tik,q,u, T ).

7: end loop

8: Pick θ∗i [t
i
k, t

i
k + T ) = arg minθm[tik,t

i
k+T ) J

m(tik,q,u, T ).

t

θi*(t)

+π/2

-π/2

0 t1i T t1i+T

t2i

tfi
0

Figure 4.4: Concatenation of deviations as a function of time, Eq. (4.9), for agent i.

Stars denote the time instants a new deviation is calculated (either tik or tif ).
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Lemma 4.4 (Continuity and Boundedness of deviations). The deviation (4.9),

where each θ∗i [t
i
k, t

i
k + T ) is calculated by Algorithm 3 and applied over the control phases

[tik, t
i
k+1), 0 < tik+1− tik < T , is a continuous function of time (class C0) that satisfies the

bound

|θ∗i (t)| <
π

2
, ∀i ∈ N .

Proof. The proof of Lemma 4.4 can be found in Appendix A.5, Proof A.1.

Sampling Set Θ

The non-holonomic nature of the unicycle and the control law (2.21b) make it impossible

to accurately track a desired heading angle. A tracking error, (φi − φnhi − θ∗i ), will be

present at all times. This means that the result of Lemma 4.2, i.e., |θ∗i (t)| < π
2
, does not

guarantee that φi also satisfies |φi − φnhi| < π
2
. Satisfaction of this condition is necessary

to preserve the navigation properties of the original DNF–based control law (2.14b). At

each recalculation time tik, the sampling set Θ ⊂ (−π
2
,+π

2
) has to be adjusted accordingly

in order to take into account the tracking error.

Theorem 4.4 (Sampling Set adjustment (Decentralized)). Consider an agent de-

scribed by Eq. (2.1) under the control law (2.21b) and denote by ψi the angle between the

field’s gradient and the agent’s longitudinal axis. At each recalculation time tik, let the

sampling set Θ in Algorithm 3 be

Θi
k = (−π

2
+
∣∣ψi(tik)− θ∗i (tik)∣∣ ,+π2 − ∣∣ψi(tik)− θ∗i (tik)∣∣).

Then if |ψi| = |φi − φnhi| is initially smaller than π
2
, it will always remain in [0, π

2
).

Proof. The proof of Theorem 4.4 can be found in Appendix A.5, Proof A.2.

Nominal multi–agent System

In the centralized setting (central authority with perfect information) and in the absence

of uncertainty (external disturbances, model-system mismatch etc.), the solution of Al-
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gorithm 2 for each horizon [tk, tk + T ) would also be (a probable near) optimum for the

actual evolution of agent i (over the control phase). In a decentralized setting however,

limited information is a source of uncertainty wrt each agent’s predictions. That is, each

agent i does not have the information necessary to execute Step 5 of Algorithm 3. First

let us state the assumptions wrt information available:

I. Each agent can measure the configuration (position & orientation, qi) of all other

agents at each time instant.

II. Each agent can measure the speed (linear velocity vi) of all other agents at each

time instant. However, it has no knowledge of their nominal speed Ui.

III. Agents broadcast their target configuration qid to all other agents at t = ti0 = 0.

IV. Agents’ predictive controllers do not exchange any information regarding their de-

cisions (future state or input trajectories and deviation trajectory).

Assumptions I, II are present in similar settings, i.e., when DNFs are used for the naviga-

tion of nonholonomic agents [4]. The information exchange in Assumption III is minimal

compared to the broadcasting of state/input trajectories. Assumption IV is what differ-

entiates our decentralized scheme from a distributed [32] or cooperative approach [9].

Definition 4.1 (Nominal multi–agent System). We define as nominal multi-agent

system, wrt agent i ∈ N , the one whose agents j ∈ N are described by (2.1) and navigate

under the control laws (2.21a)–(2.21b) with:

θj[t
i
k, t

i
k + T ) =

θmi [tik, t
i
k + T ), j = i

0, j 6= i
, (4.10a)

Ûjd =

Uid, j = i

vj(t
i
k), j 6= i

, i, j ∈ N . (4.10b)

Deviations θmi [tik, t
i
k+T ) correspond to the samples generated by Algorithm 3. Regarding

the prediction phase of agent i, it starts at the initial conditions: q̂j(t
i
k) = qj(t

i
k) and

v̂j(t
i
k) = vj(t

i
k), ∀j ∈ N , i.e., the predicted trajectories at τ = tik are equal to the

measurements made by agent i at t = tik. The rest of the predicted trajectories are

derived by calculating the direction of −∇jΦj and applying control laws (2.21a)–(2.21b),

as stated above, over [tik, t
i
k +T ), ∀j ∈ N . Therefore uncertainty enters the system since,
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at each tik, agent i solves the FHOCP (4.7) by simulating the dynamics of the nominal

multi-agent system (Def. 4.1), i.e., without taking into account the future decisions of

other agents (deviation from −∇jΦj, j 6= i) and their actual desired absolute speed, Ujd.

In other words, agent i’s prediction is based on the nominal system’s assumptions (4.10),

not the actual evolution of the multi-agent system.

4.2.2 Event-Triggered Executions

We introduce event-triggered execution of the predictive navigation scheme (indepen-

dently on each agent), in order to tackle the deterioration in performance, caused by the

uncertainty described in the previous subsection. For each agent i, denote by

Ĉi(τ) =

∫ τ

tik

Λi(q̂i(τ), û∗i (τ))dt, τ ∈ [tik, t
i
k + T ), (4.11a)

Ci(τ) =

∫ τ

tik

Λi(qi(τ),u∗i (τ))dt, τ ∈ [tik, t
i
k + T ) (4.11b)

the predicted and real running costs respectively, where q̂i, û
∗
i ,qi,u

∗
i correspond to the

predicted and real state and input trajectories of agent i while applying the optimum (wrt

the nominal system) deviation θ∗i [t
i
k, t

i
k + T ) = arg J∗i (tik,qi, T ). Due to the uncertainty

caused by decentralization, there will be a discrepancy between the predicted and actual

running costs. An execution rule will be introduced to derive the recalculation times

(events times) {ti1, ti2, . . . , tik, . . . }. Its goal will be to maintain the discrepancy below

some bound. Consider the inequality: Ci(τ) ≥ Ĉi(τ) + cε, where cε > 0 is the cost

discrepancy bound.

Then an appropriate execution rule for the event times is:

tik+1 =

τc, τc := inf{τ : Ci(τ) ≥ Ĉi(τ) + cε}

tik + Tc, if Ci(t
i
k + Tc) < Ĉi(t

i
k + Tc) + cε

(4.12)

where Tc < T is the (maximum) control horizon. Execution rule (4.12) requires the

storing of the predicted cost Ĉi(τ), corresponding to θ∗i [t
i
k, t

i
k +T ), and monitoring of the

above inequality over the time interval [tik, t
i
k + T ).

Let the running cost function Λi(·) be of the general form:

Λi(·) = (qi − qid)
>Q(qi − qid) +R1(|vi| − Ui)2 +R2ω

2
i , (4.13)
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where Q is a matrix of constant coefficients and R1, R2 are constant parameters, used

for weighting purposes.

Lemma 4.5. For Λi(·) of the form (4.13) and a bound cε, the recalculation times

{ti1, . . . , tik, . . . }, implicitly defined by the execution rule (4.12) satisfy

0 <
cε

Λmax
Zi,k

≤ tik+1 − tik < T,

where

Λmax
Zi,k ≥ Λi(·)− Λi(̂·), τ ∈ [tik, t

i
k + T ), ∀k ∈ N and i ∈ N .

Proof. The proof of Lemma 4.5 can be found in Appendix A.5, Proof A.3.

4.2.3 Analysis of Navigation Properties

We will now demonstrate how the multi-agent predictive navigation scheme preserves the

navigation properties of the original, DNF–based controller. This will be accomplished

through a series of corollaries and theorems. The main objective of this section is to

mathematically verify the applicability of the proposed Decentralized Event-triggered

Predictive Navigation scheme to aircraft-like vehicles.

Corollary 4.3 (Finite linear velocity). Since, by Theorem 4.4, |φi − φnhi| ∈ [0, π
2
),

∀i ∈ N , the projection of the field’s gradient ∇iΦi on an agent’s longitudinal axis, Pi, is

never zero for pi 6= pid. Therefore the linear velocity vi in (2.21a) does not go to infinity.

Proof. The proof of Corollary 4.3 can be found in Appendix A.5, Proof A.4.

Corollary 4.4 (Direction of motion). Theorem 4.4 implies that if an agent starts in

the subspace behind its target (di < 0 in §2.2.1), with the initial negated gradient vector

driving it forward (Pi < 0), only forward motion will be used for navigation and collision

avoidance. This is a necessary condition for application to aircraft-like vehicles.
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Proof. The proof of Corollary 4.4 can be found in Appendix A.5, Proof A.5. The re-

quirements of Corollary 4.4 are mild and represent reasonable physical conditions.

Theorem 4.5 (Collision Avoidance). A team of agents described by (2.1), navigating

under the control law (2.21a) for linear velocities remains always safe, i.e., no collisions

occur at any time.

Proof. The proof of Theorem 4.5 is identical to that of the original DNF–based controller.

It can be found in Appendix A.5, Proof A.7.

Theorem 4.6 (Convergence of the multi–agent system). The multi-agent system

described by (2.1), under the control laws (2.21a)–(2.21b), where the deviations (4.9)

are computed in a decentralized event-triggered manner, admits a continuous Lyapunov

function, V . In addition, each agent i converges to its target destination pid with the

desired orientation φid.

Proof. The proof of Theorem 4.6 can be found in Appendix A.5, Proof A.10.

4.2.4 Simulation Results (Decentralized Event-Triggered)

The performance of the centralized scheme is verified via MATLAB simulations. The

agents’ parameters used in the simulation below are given in §2.1.1. In addition to those,

kφ = 5 · 10−4, and k = 10. The number of samples is calculated by Lemma 4.1. The cost

functional used is as follows:

Ji(t,qi,ui, T ) =

∫ t+T

t

[Q ||pi − pid||2 +R1(vi − Ui)2]dτ + Φi(tk + T ), (4.14)

We used the uniform probability distribution for P(θ) in Algorithm 2. Any parameters

not provided, will appear in the caption of the respective figure. The incremental cost

in (4.14) penalizes time spent away from the destination as well as any deviation from

the nominal speed, Ui. The performance discrepancy bound is set at each iteration to

cε = 1
Tc
· Ĉi(tik + Tc).

51



-100 -80 -60 -40 -20 0 20 40 60 80 100
-80

-60

-40

-20

0

20

40

60

80

x [nm]

y 
[n

m
]

1

1
d

2

2
d

3

3
d

4

4
d

(a) Paths resulting from a run of the decentralized
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(b) Evolution of running cost in Eq. (4.5).

Figure 4.5: Parameters: T = 600 (10 min), Tc = 60 (1 min), Ns = 22.

4.3 Comparative Simulation Results

In order to demonstrate the improvement in performance achieved by the proposed

scheme, we present (normalized) comparative results for the following multi-agent navi-

gation scenario involving N = 4 agents. The agents’s initial and target configurations are

depicted in Fig. 4.6 by the first and last triangle of each trajectory. The desired absolute

speed Uid is set to 1 · 10−3 for all agents. Finally, Rw = 4, r0 = 0.3 (purple circles),

ri = 0.05, ∀i ∈ N , kφ = 5 · 10−4 and k = 10.

For the Predictive Navigation scheme (corresponding to Fig. 4.6(b)) we use for all agents

the same cost functional:

Ji(t,qi,ui, T ) =

∫ t+T

t

[Q ||pi − pid||2 +R1(|vi| − Ui)2]dτ + Φi(t+ T ), (4.15)

where T = 1200, Q = 10−4

4·R2
w

and R1 = 1 · 105. Finally, α = 0.10, δ = 0.10 (resulting in

Ns = 22) and P is the uniform distribution. The incremental cost in (4.15) penalizes

time spent away from the destination as well as any deviation from the nominal speed,

Ui. The performance discrepancy bound is set at each iteration to cε = 1
Tc
· Ĉi(tik + Tc)

and Tc = 400.

The convergence and collision avoidance properties of the proposed scheme are verified

by Figures 4.6(b) and 4.8 respectively. The improvement in the linear velocities used by
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each agent is depicted in Fig. 4.7. Finally, Fig. 4.9 shows the deviation trajectories θ∗i (t)

of each agent and Fig. 4.10 illustrates the effect of Theorem 4.4.
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(a) Original DNF-based control scheme,
(2.14a)-(2.14b).
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(b) Decentralized Event-triggered Predictive
Navigation, (2.21a) - (2.21b).

Figure 4.6: A multi-agent navigation scenario involving 4 agents. The trajectories result-
ing from the application of the original and the proposed schemes are depicted in 4.6(a)
and 4.6(b) respectively. The red triangles, representing agent position and orientation,
are not to scale.

In order to quantitatively demonstrate the efficacy of the proposed scheme, the original

DNF-based approach (2.14a)-(2.14b) is compared with three instances of our scheme.

These are:

i. Centralized Predictive Navigation (PN),

ii. Decentralized Predictive Navigation,

iii. Decentralized Event-triggered (E-T) Pred. Navigation.

The navigation scenario is the same as above. In each case, the overall performance, in

terms of the incremental cost of (4.15), is calculated along each agent’s trajectory and

the mean values for 10 runs are presented in Table 4.1 for comparison.
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Figure 4.7: Linear velocities used during navigation. Left: DNF-based control law. The
spike around t = 4500 corresponds to agent 2. Right: Proposed scheme. In accordance
with the cost functional (4.15), the linear velocity was maintained equal to the nominal
speed, Ui. Note that agents also converge to their destinations faster using the proposed
scheme.
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Figure 4.8: Distance between each pair of agents during the above navigation scenario.
The dashed line represents the minimum safety distance, 2 · ri.
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Figure 4.9: Deviation from the direction of the DNF’s gradient, θ∗i (t). Only agents 1
(blue) and 2 (green) recalculated due to performance discrepancies.
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Figure 4.10: Deviation (black), angle between the field’s gradient and the agent’s longi-
tudinal axis (red) and sampling set adjustments (blue) for agent i = 1. As the tracking
error decreases, the sampling set tends to (−π

2
,+π

2
).

Table 4.1: Comparative results for 10 runs per instance of scheme

Total Running Cost

Agent DNF law Centrl. PN Decntrl. PN Decntrl. E-T PN
#1 0.1869 0.1829 0.1859 0.1830
#2 0.3175 0.2045 0.2372 0.2047
#3 0.1860 0.1860 0.1864 0.1863
#4 0.1862 0.1857 0.1859 0.1857

Sum 0.8767 0.7591 0.7954 0.7597
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Chapter 5

Conclusions and Future Work

5.1 Discussion

We proposed three schemes, for the navigation or a single agent, a centralized multi-agent,

and a decentralized multi-agent systems, that consider the issue of operating performance.

Our main contribution, the Decentralized Event-triggered Predictive Navigation scheme,

employs MPC to calculate deviations from the direction of a dipolar DNF’s gradient.

Randomized algorithms are used to find a probable near minimizer of the cost functional.

The sampling set involved is adjusted at each iteration to take into account the agents’

nonholonomic nature. Event-triggered recalculation of the deviation trajectories is used

to tackle the discrepancy between the expected and actual performance, caused by the

limited exchange of information between agents. The approach focuses on aircraft-like

agents but can be reformulated to address scenarios involving other multiple robotic ve-

hicles (wheeled, underwater). It is proven that the proposed scheme preserves the naviga-

tion properties of the original DNF-based approach. Simulations are used to demonstrate

the performance improvement wrt previous methods and verify the collision avoidance

and convergence properties of the scheme.

Major issues that demand our attention are the computational cost of predicting the

evolution of the multi-agent system (Algorithm 3, Step 5), and the scalability of our

scheme. Possbile solutions are proposed in the following section.

5.2 Future Work

Future research directions are towards the extension of the proposed scheme to a 3D

navigation setting while avoiding an explosion in computational cost. To this end,

further decentralization could be employed. Specifically, one could use a limited sens-

ing/communication range for each aircraft-like vehicle of the multi-agent system. This
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will reduce the computational burden of predicting the motion of N agents over the pre-

diction horizon. It will also render the overall scheme scalable, since additional agents

will not necessarily increase the number of agents in one’s sensing range, and thus opti-

mization time (execution time of Algorithm 3, Step 5).

In addition, it is possible to remove the requirement of broadcasting each agent’s goal

configuration information to other agents. We propose that a “motion estimator” can be

designed. This module will be used to facilitate the prediction process in Algorithm 3 (see

§4.2.1) in two ways. First of all, it will lift the aforementioned requirement, effectively re-

moving the need for communication between agents (they will still need to sense/measure

the configuration and linear velocity though). Second of all, it could reduce the computa-

tional cost of simulating the multi-agent system’s dynamics over the prediction horizon.

This could be achieved by using an abstraction of the multi-agent system for prediction

purposes.

Furthermore, finding a problem-specific, but computationally efficient, method to tackle

the finite-horizon optimization (4.7) is also of interest. However, there is another random-

ized optimization that could be used; the variant of Simulated Annealing in [33], which

offers finite-time guarantees. It remains to be seen if it can out-perform the Randomized

Algorithms [11, 15] employed in our work.

Finally, we would like to consider more complex (dynamic) aircraft models, as well as the

effects of external, bounded or stochastic, disturbances (wind) on the discrepancy between

prediction and actual performance. Our scheme will probably need to be “robustified” if

it is to account for such disturbances.
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Appendix A

Mathematical Tools and Proofs

A.1 Note on Navigation Functions

A.1.1 Artificial Potential Fields

The idea of tackling the robot navigation (motion planning) problem using artificial

potential fields came from Oussama Khatib [3]. The proposed potential function consisted

of two terms, an attractive and a repulsive potential:

U(q) = Uatt(q) + Urep(q). (A.1)

The attractive potential does not depend on the obstacles while the repulsive potential

does not depend on the desired configuration (destination).

The robot (agent) is driven by an artificial force, which is based on the vector field

generated by the gradient of the artificial potential:

~F (q) = −∇qU(q) (A.2)

However, this approach is prone to local minima, i.e., ∃q 6= qd s.t. ~F (q) = 0. These local

minima can “trap” the agent and prevent successful convergence to the destination (goal

configuration).

A.1.2 Rimon-Koditschek Navigation Functions

Navigation Functions (NFs) are a class of scalar valued analytic maps on analytic mani-

folds with boundary, in particular sphere worlds [34]. This class is invariant under com-

position with analytic diffeomorphisms and the existence of a smooth NF is guaranteed
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on any smooth manifold. The gradient vector field of a NF, if integrated, produces curves

to the destination point that never leave the free space.

Briefly, a sphere world is a compact connected subset of Euclidean n-space En whose

boundary is formed from the disjoint union of a finite number, M + 1, of (n− 1)-spheres.

Thus, the workspace (largest sphere) is defined as

W , {q ∈ En : ||q||2 ≤ ρ2
0} (A.3)

and the remaining M spheres bound the obstacles

Oj , {q ∈ En : ||q − qj||2 < ρ2
j}, j = 1 . . .M (A.4)

Note that for simplicity, the workspace is centered at the origin of the coordinate system.

The free space (configuration space) is the result of removing all obstacles from W :

F ,W −
M⋃
j=1

Oj (A.5)



∂ ∂



i

Figure A.1: Workspace W (blue), free space F (green) and obstacles (red) in E2.

This sphere world (see Fig. A.1) is just a “model space”; a valid diffeomorphism to any

manifold preserves the navigation properties of a NF, which are stated in the following.
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Definition A.1 (Navigation Function [34]). Let F ⊂ En be a compact connected

analytic manifold with boundary. A map ϕ : F → [0, 1], is a navigation function if it is:

1. Analytic on F (locally convergent power series exists);

2. Polar on F , with unique minimum at qd ∈ F̊ (interior of F);

3. Morse on F (all critical points are non-degenerate);

4. Admissible on F (uniformly maximal on ∂F).

Intuitively, ϕ takes the value of “1” at the boundary of F and the value of “0” only at

the desired configuration qd. The navigation function proposed in [34] is a composition

of three functions, used to obtain all of the desired properties (Definition A.1):

ϕ , σd ◦ σ ◦ ϕ̂ =
γd

(γkd + β)1/k

where

ϕ̂ =
γ

β
=
γkd
β
, σ(x) =

x

1 + x
, σd(x) = (x)1/k, k ∈ N

The target and obstacle functions, γd and β respectively, are defined as follows:

γd(q) , ||q − qd||2 ≥ 0, β(q) ,
M∏
j=0

βj(q) ≥ 0, ∀q ∈ F

The control law

q̇(t) = −∇qϕ(q(t)),

where ϕ is a navigation function, applied to a holonomic agent, whose state is q, solves

the motion planning problem for this agent. This method can be applied to any spherical

agent moving in a workspace with obstacles, whose configuration space connected com-

ponents are sphere worlds. In the case of a non-point agent, the Minkowski sum of agent

with obstacles leads to the configuration space.

Finally, it should be noted that, even though a sufficiently large k guarantees that the

destination is the only minimum (no local minima), the manifestation of saddle points

(unstable equilibria) is unavoidable. However, the set of initial conditions that will result
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in the agent getting trapped by a saddle constitute a set of Lebesgue measure zero. There-

fore, in real applications, finite computation arithmetic renders it practically impossible

for an agent to remain in a measure zero set.

A.1.3 Dipolar Navigation Functions

Conventional Navigation Functions are not suitable for the control of a non-holonomic

vehicle, as they do not take into account the kinematic constraints that apply on such a

vehicle. Use of the original Navigation Function as introduced by Rimon and Koditschek

in [34], [5] with a feedback law for the control of a nonholonomic vehicle can lead to

undesired behavior, like having the vehicle rotate in place. In order to overcome this

difficulty Dipolar Navigation Functions have been developed [35], that offer a significant

advantage: the integral lines of the resulting potential field are all tangent to the desired

orientation at the origin, eliminating the need for in-place rotation at the origin, as the

vehicle is driven there with the desired orientation. This is achieved by using the plane

whose normal vector is parallel to the desired orientation, and includes the origin, as an

additional artificial obstacle (see Fig. A.2).

Figure A.2: [17] A Dipolar Navigation Function in a 2D workspace with two obstacles.
Left: Level sets and artificial obstacle H. Right: Potential field over the workspace.

We briefly elaborate on dipolar Navigation Functions, as they appeared in [36]:

Φ(p) =
γd

(γkd +Hnh ·G · β0)1/k
, (A.6)

where γd(p) = ||p− pd||2 is the distance from the destination (only position, not orienta-
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tion) and the obstacle function is as in §A.1.2:

G =
M∏
i=1

gi (A.7a)

gi = ||p− pi||2 − (r + ri)
2, i = 1 . . .M (A.7b)

with r, p, ri being the radius of the vehicle, and the position and radius of obstacle i,

respectively, and M is the number of obstacles. As the workspace is considered spherical

with radius rworld, the workspace bounding obstacle is1 β0 = (rworld − r)2 − ||p||2.

The factor Hnh is what makes the potential field dipolar. As explained before it is

responsible for the repulsive potential created by the artificial obstacle used to align the

trajectories at the origin with the desired orientation φd (either roll-pitch-yaw or just

heading angle):

Hnh = εnh + pnh (A.8a)

pnh =
∣∣∣∣J>d · (p− pd)∣∣∣∣2 (A.8b)

Jd = J(φd) (A.8c)

where εnh is a small positive constant and J(·) is the transformation matrix between

body-fixed and earth-fixed velocities2. Finally, k is again a positive tuning parameter.

Navigation Function (A.6) provides almost global convergence to the agent’s destination,

along with guaranteed collision avoidance [25]. The potential of such a Navigation Func-

tion in a 2D workspace with two obstacles O1, O2 is shown in Figure A.2. The target

is with orientation φd = 0 and the corresponding nonholonomic obstacle H is the line

x = 7.

A.1.4 Multi-agent Navigation Functions

The Centralized Approach

Rimon-Koditschek Navigation Functions are not suitable for the navigation of multi-

ple robots (agents), without proper modifications. Multi-Robot Navigation Functions

(MRNFs) were introduced, in a centralized setting, in [18]. A central authority was as-

1Corrected wrt [36].
2See this thesis, §2.1.1, for the 2D case and [36] for the detailed, 3D case.
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sumed to have knowledge of each agent’s goal configuration (destination). The resulting

potential function has the same form as in §A.1.2:

ϕ , σd ◦ σ ◦ ϕ̂ =
γd

(γkd +G)1/k
,

but the obstacle function, G, is calculated differently. In particular, besides the distance

between agents, it also encodes the possible collision schemes, termed relations, (see Fig.

A.3 for an illustration). The set of relations between the members of a set can be defined

as the set of all possible collision schemes between the members. A binary relation is a

relation between two robots. Any relation can be expressed as a set of binary relations.

A “relation tree” is the set of robots-obstacles that form a linked team. The number of

binary relations in a relation is called the relation level (see Figures A.3 and A.4).

Figure A.3: [18] I, II are level-3; IV, V are level-4 and III is a level-5 relation.

In the definition of G (see [18] for details) three functions are used. Namely, the Robot

Proximity Function measures the distance between two robots, the Relation Proximity

Function provides a measure of the distance between the robots involved in a relation

and the Relation Verification Function is zero if a relation holds, while no other relation

from the same level holds.

The four properties of a NF, §A.1, are proven to hold for the new formulation.

Decentralized Navigation Functions

The centralized multiple robot navigation function [18] was extended to a decentralized

navigation setting in [30] and [31]. In contrast to the centralized case, each agent plans

its actions without knowing the destinations of the other agents. Asymptotic stability is

guaranteed by the existence of a global Lyapunov function for the whole system, which

is actually the sum of the separate NFs.
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Figure A.4: [18] Part (a) represents a level-1, and part (b) a level-3 relation wrt agent R.

A Decentralized Navigation Function (DNF) is defined for each agent i:

ϕi(q) =
γdi + fi

((γdi + fi)k +Gi)
1/k
, i ∈ N (A.9)

where N = {1 . . . N}, where N is the total number of agents, and q = [q1 q2 . . . qN ]>.

The key difference of the decentralized method with respect to the centralized is that the

control law of each agent ignores the destinations of the others. The function fi is added

to the goal function γdi so that the cost function ϕi attains positive values in proximity

situations even when agent i has already reached its destination. It was proven in [31]

that, the destination point is a non-degenerate local minimum of ϕi. The construction of

Gi and fi is explained in great detail also in [31].

Figure A.5 shows a contour plot of a DNF of an agent in an environment of 3 (other)

agents denoted by Ai, [31]. The destination (goal) is also depicted.

The potential function (A.9) contains a time-varying element which corresponds to the

movement in time of all the other agents apart from i. The time derivative of ϕi(q) is

given by:

ϕ̇i =
∂ϕi
∂qi

q̇i +
∂ϕi
∂t

=
∂ϕi
∂qi

q̇i +
∑
j 6=i

∂ϕi
∂qj

q̇j
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Figure A.5: Contour graph of a DNF as an agent moves amongst other agents.

The term
∂ϕi
∂t

does not appear in the case of only static obstacles, as in the single agent

case, §A.1.2. In the decentralized multi-agent case, it cannot be neglected in the stability

analysis of the system.

Finally, DNFs have been combined with Dipolar NFs in [29] to tackle the distributed

navigation and collision avoidance problem for nonholonomic, aircraft-like vehicles. In

this case, the resulting potential is the one that is used throughout this thesis:

Φi(q) =
γdi + fi

((γdi + fi)k +Hnhi ·Gi · β0i)
1/k
, i ∈ N (A.10)

A.2 Note on Optimal and Model-Predictive Control

A.2.1 Optimal Control

Optimal Control theory is aimed at solving the following problem:

Problem A.1 (Optimal Control Problem [37]). Find an admissible control u∗ ∈ U
which causes the system

ẋ(t) = f(x(t), u(t), t), x(t0) = x0
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to follow an admissible trajectory x∗ ∈ X that minimizes the performance measure

J := h(x(tf ), tf ) +

∫ tf

t0

Λ(x(t), u(t), t)dt,

where tf is the final time, x(tf ) is the final state and Λ is a given function (the running

cost). Then, u∗ is called an optimal control and x∗ an optimal trajectory.

If a relationship of the form:

u∗(t) = g(x(t), t)

can be found for the optimal control at time t, then the function g(x(t), t) is called the

optimal control law, or the optimal policy.

In a particular problem, either g or h may be missing. Furthermore, the Optimal Control

Problem (OCP) is subject to one of the following boundary conditions [37]:

� Problems with Fixed Final Time:

i. Final state specified;

ii. Final state free;

iii. Final state lying on a surface;

� Problem with Free Final Time:

i. Final state fixed;

ii. Final state free;

iii. Final state lies on a moving point;

iv. Final state lying on a surface;

v. Final state lying on a moving surface;

The performance measure Λ(x(t), u(t), t) quantitatively evaluates the performance of the

system and is selected by the control designer. In certain cases the problem statement

may clearly indicate what to select for a performance measure, whereas in other problems

the selection is a subjective matter. Optimal Control Problems include, but are not

limited to, minimum-time problems, terminal control problems, minimum-control-effort

problems, tracking problems and regulation problems.
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A.2.2 Model-Predictive Control

The optimal feedback control system could be derived by solving the Hamilton-Jacobi-

Bellman (HJB) partial differential equation (PDE), for a given cost functional. For the

linear system with quadratic cost, the HJB equation recuces to an ordinary differen-

tial equation, i.e., the Riccati equation, [37]. However, this PDE is generally hard and

usually impossible to solve for the nonlinear system, in that the nonlinearity results in

non-convexity on the control system [38]. In addition, most control systems have hard

constraints on the states and control inputs. These include, but are not limited to, safe

operation limits (state) and actuator saturation constraints (input). These remarks mo-

tivate the development and application of Model-Predictive Control (MPC) schemes.

MPC is a feedback control scheme that generates the control inputs based on iterative,

open-loop optimization, over a finite horizon. For each iteration, the measured state

acts as an initial condition. In particular, at a calculation time t, the current system

state x(t) is sampled and a cost minimizing control law is computed for a relatively short

time horizon [t, t + T ). That is, one aims at minimizing a cost functional (performance

measure) of the form

J(t, x, u, T ) =

∫ t+T

t

Λ(x(τ), u(τ))dτ +M(x(t+ T )), (A.11)

which consists of an incremental cost (also called running cost) and a terminal cost. The

functional J(·) quantifies the cost of flowing along a system trajectory x[t, t+T ), with x(t)

the initial condition, under the control law u[t, t + T ). In the above, t denotes (current)

time, T is the (fixed) prediction horizon and Λ(x, u) is a positive definite function of x and

u (running cost function). The function V (·) is an approximation of the infinite horizon

cost-to-go from t+T →∞. A practical way of incorporating state and input constraints is

through exterior penalty function ([38]) which, in general, implies a relaxation of the hard

constraints. Stability and robustness require additional constraints and/or tightening of

the existing constraints.

Definition A.2 (Nonlinear Model-Predictive Control scheme). Consider the non-

linear dynamical system ẋ = f(x, u), where x ∈ Rn is the state of the system and

u ∈ U ⊆ Rm is the control input and f satisfies the standard local Lipschitz continu-

ity conditions. Then, given a performance measure (A.11), the Finite Horizon Optimal
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Control Problem (FHOCP) at time t is to determine the optimal control input:

u∗[t, t+ T ) , arg min
u
J(t, x, u, T ),

s.t. ẋ = f(x, u), x ∈ X ⊂ Rn, u ∈ U ,

where X is the admissible region of the state space. This control law is then applied over

the interval [t, t+ Tc), the control phase, where 0 < Tc < T is the (typically fixed) control

horizon3 and the FHOCP is solved again for the updated system state x(t+ Tc).

This process is then repeated (iterated) until the control objectives have been met.

A.3 Note on Event-Triggered Control

A.3.1 Event-Triggered Real-Time Scheduling

Event-triggered control was introduced by Tabuada [39] as a means of scheduling stabi-

lizing control tasks on embedded processors, in real-time. This approach is based on the

notion of Input-to-State Stability (ISS) [40]. A short overview of event-triggered control

is presented in the following.

Consider a generic nonlinear system

ẋ = f(x, u) (A.12)

and a feedback controller u = k(x). Typically, sensor measurements and actuator updates

are performed in a time-triggered fashion. That is, the system’s state is sampled at

time instants t0, t1, t2, t3 . . . , the control input is computed as u(ti) = k(x(ti)) and the

actuator values are updated. The term “time-triggered” simply means that ti+1− ti = τs,

where τs > 0 is the sampling or update period. In [39], the case of event-triggered

executions is considered. The sequence t0, t1, t2, t3 . . . of time instants is neither periodic

nor pre-specified, but rather implicitly defined by an execution (triggering) rule, which is

a function of the system’s state. A measurement error e is introduced:

t ∈ [ti, ti+1)⇒ e(t) = x(ti)− x(t) (A.13)

3In an instantaneous MPC scheme, Tc is equal to one timestep of the discrete implementation.
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The feedback controller has been designed as to render the closed-loop system

ẋ = f(x, k(x+ e)) (A.14)

ISS with respect to the measurement error e, (A.13).

Definition A.3 (ISS Lyapunov function [39]). A smooth function V : Rn → R+
0 is

said to be an ISS Lyapunov function for the closed loop system (A.14), if there exist class

K∞ functions α, α, α and γ satisfying:

α(|x|) ≤ V (x) ≤ α(|x|) (A.15a)

∂V

∂x
f(x, k(x+ e)) ≤ −α(|x|) + γ(|e|) (A.15b)

Then, by executing the control task when

γ(|e|) = σα(|x|), 0 < σ < 1 (A.16)

there exists an ISS Lyapunov function for (A.12) and it is guaranteed to be decreasing.

Note that, at execution time ti, we have e(ti) = x(ti)− x(ti) = 0 and γ(|e(ti)|) = 0. The

execution rule (A.16) guarantees global asymptotic stability by construction. In [39], it

is proven that this rule does not result in an accumulation point (Zeno behavior), [41].

A.3.2 Event-Triggered Model-Predictive Control

Execution of a Nonlinear MPC (NMPC) scheme in an event-triggered fashion has been

explored, amongst others, in [14], [13] for a single plant and in [12] in a decentralized

setting. We shall use [13] as a reference point to state the basic principles behind event-

triggered NMPC strategies.

Consider a nonlinear continuous time system with additive perturbation w(t) (may rep-

resent modelling errors, external disturbances, other forms of uncertainty):

ẋ(t) = f(x(t), u(t)) + w(t), (A.17)

where the additive term is bounded, w(t) ∈ W ⊂ Rn.
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The nominal system is defined as (A.17) without the additive perturbation term:

ẋ(t) = f(x(t), u(t)). (A.18)

The plant is controlled by a nonlinear Model-Predictive Controller (NMPC), as in §A.2.2.

In [13], the FHOCP also includes a terminal state constraint, x(ti +T ) ∈ Ef ⊂ Rn, and a

tightened constraint set Xt−ti , instead of X , for robustness purposes, where ti is a state

measurement time (which is also a FHOCP recalculation time).

The goal of an event-triggered strategy is to enlarge, as much as possible, the inter-

calculation period, ti+1 − ti, for the system (A.17). The enlargement of the inter-

calculation period results in the overall reduction of control updates which is desirable in

numerous occasions, e.g., energy consumption reasons. By denoting as x̂(ti+τ, u(·), x(ti))

the predicted state of the nominal system (A.18) at time ti + τ , based on a measurement

of the actual state at time ti, while applying a control trajectory u(·;x(ti)), an error

e is defined, as in the previous section (A.13). However, in the event-triggered NMPC

scheme, this “prediction” error represents the discrepancy (mismatch) between the actual

state trajectory of the system and the one predicted during the solution of the FHOCP.

This discrepancy is due to the perturbation w(t). The prediction error is defined as:

e(ti + τ) = ||x(ti + τ)− x̂(ti + τ, u(·), x(ti))|| , τ ≥ 0

Note that x̂(ti, u(·), x(ti)) ≡ x(ti). Given some assumptions, the prediction error defined

above can be shown to be upper bounded by a function of time and system parameters.

Instead of measuring the system’s state at the next time instant and solving the FHOCP

for this new measurement, a triggering rule dictates the recalculation time ti+1. In order to

guarantee convergence, the optimal cost functional J∗(·) is used as a Lyapunov function.

The need to have J∗(·) decreasing, provides with the sufficient conditions for triggering

(see [13] for details).

A.4 Elements from Nonsmooth Analysis and Discon-

tinuous Feedback

We review some elements from nonsmooth analysis, discontinuous feedback and Lyapunov

theory for nonsmooth dynamical systems that have been used in the stability (conver-
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gence) analysis of the proposed schemes. The interested reader can refer to [42], [43],

[44], [45] and [46] for additional details on the topic of nonsmooth analysis from a control

theoretic perspective.

We consider the vector differential equation with discontinuous right-hand side:

ẋ = f(x), (A.19)

where f : Rn → Rn is measurable and essentially locally bounded. In such case, the

classical concept of “solution” of a differential equation is inappropriate. We will adopt

Filippov’s solution concept in this work. Other alternatives include Caratheodory solu-

tions and Sample-and-hold solutions (see [46] for a detailed overview).

Definition A.4 (Filippov Solution [47]). In the case when n is finite, the vector

function x(·) is called a solution of (A.19) in [t0, t1] if it is absolutely continuous on

[t0, t1] and there exists Nf ⊂ Rn, µ(Nf ) = 0, such that for all N ⊂ Rn, µ(N) = 0 and for

almost all t ∈ [t0, t1] we have:

ẋ ∈ K[f ](x) ≡ co{ lim
xi→x

f(xi)|xi /∈ Nf ∪N} (A.20)

Here, co denotes the closed “convex hull” and the set K[f ](x) is called the Filippov

set. Another way to state Filippov solutions is via differential inclusions (multi-valued

differential equations), as presented in [44]. The above definition of a solution, along with

the assumption that f is measurable, guarantees the uniqueness of solutions of (A.19).

In the following, we shall need the definition of Lipschitz continuity.

Definition A.5 (Lipschitz Property [44]). A function f : Rn → R is said to be

Lipschitz on a set S ⊂ Rn if there exists K ≥ 0 such that, for all x, y ∈ S,

|f(y)− f(x) ≤ K|y − x|.

We say that f is locally Lipschitz on S if each point z ∈ S admits a radius r > 0

and a constant K (both depending on z) such that the Lipschitz condition holds for all

x, y ∈ B(, r). This is equivalent to requiring that the Lipschitz condition hold on any

bounded subset S ′ of S (for some K depending on S ′) [44]. The Lipschitz property is

closed under many operations, such as sums, lower or upper envelopes, compositions, etc.

It is a fundamental result in analysis that a function which is Lipschitz on an open set in

Rn is differentiable almost everywhere in the set (Rademacher’s Theorem).
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Lyapunov stability theorems have been extended to nonsmooth dynamical systems in

[45]. There, the authors use the concept of generalized gradient which, for the case of

finite-dimensional spaces is given by the following definition:

Definition A.6 (Generalized Gradient [43]). Let V : Rn → R be a locally Lipschitz

function. The generalized gradient ∂CV (x) of V at x is given by:

∂CV (x) = co{ lim
xi→x
∇V (xi)|xi /∈ ΩV }, (A.21)

where ΩV is the set of points in Rn where V fails to be differentiable.

See [44] for some properties in the calculus of generalized gradients.

Stability theorems for nonsmooth systems require the Lyapunov function to be regular.

Regularity is based on the concept of generalized derivative which was defined by Francis

Clarke as follows:

Definition A.7 (Generalized directional Derivative [43]). Let f be Lipschitz near

x and v be a vector in Rn. The generalized directional derivative of f at x in the direction

v is defined as:

f 0(x; v) = lim
y→x

sup
t↓0

f(y + tv)− f(y)

t
, (A.22)

which should not be confused with the Dini derivate.

Regularity of a function can now be defined as follows:

Definition A.8 (Regular function [43]). The function f : Rn → R is called regular if

i. ∀v, the usual one-sided directional derivative f ′(x; v) exists and

ii. ∀v, f ′(x; v) = f 0(x; v).

The following chain rule provides a calculus for the time derivative of the Lyapunov

function in the nonsmooth case:

Theorem A.1 ([45]). Let x be a Filippov solution to ẋ = f(x) on an interval containing

t and V : Rn → R be a Lipschitz and regular function. Then V (x(t)) is absolutely

continuous, d
dt
V (x(t)) exists almost everywhere (a.e.) and

d

dt
V (x(t)) ∈a.e. ˙̃V (x) :=

⋂
ξ∈∂V (x(t))

ξ>K[f ](x(t))
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We shall use the following, nonsmooth, version of LaSalle’s invariance principle to prove

the convergence of the prescribed system:

Theorem A.2 ([45]). Let Ω be a compact set such that every Filippov solution to the

autonomous system ẋ = f(x), x(0) = x(t0) starting in Ω is unique and reamins in Ω for

all t ≥ 0. Let V : Ω → R be a time independent regular function, s.t. v ≤ 0 ∀v ∈ ˙̃V (x)

(if ˙̃V (x) is the empty set then this is trivially satisfied). Define S = {x ∈ Ω|0 ∈ ˙̃V (x)}.
Then every trajectory in Ω converges to the largest invariant set, M , in the closure of S.

A.5 Mathematical Proofs

Proofs of all lemmas, corollaries and theorems presented in this work have been collected

here for easy reference. Since the three settings (single agent, centralized and decentral-

ized multi-agent) have many similarities, many proofs are only presented once, for the

sake of brevity. In this case, any noteworthy differences in the derivation of the proof are

highlighted beneath the respective lemma, corollary or theorem.

Proof A.1 (Proof of Lemmas 3.2, 4.2, and 4.4 | Continuity and Boundedness).

The continuity part is a direct result of Algorithms 1,2,3, respectively (Step 4) and the

definition of θi(t ≥ tif ). Consider a recalculation time tik. Then

θ∗i (t
i−
k ) = θ∗i,[tik−1,t

i
k−1+T )(t

i
k) and θ∗i (t

i+
k ) = θi,[tik,tik+T )(t

i
k) = θ∗i (t

i−
k ),

because of Algorithms 1,2,3 respectively, (Step 4) for τ = 0 (dummy variable). Now

consider the time instant at which agent i’s predictive controller is “turned-off”, tif . Then

θi(t
i+
f ) = θi(Si = r0) = θ∗i (t

i−
f ) by construction. Thus, θ∗i (t) is a continuous function of

time.

We have −π
2
< θ∗i [0, t

i
1)|θ∗i [ti1, ti2)| . . . |θ∗i [tik, tik+1)| · · · < π

2
since θ∗i (0) , 0, each θ∗i (t

i
k+T ) ∈

Θ ⊂ (−π
2
,+π

2
) and each pair θ∗i (t

i
k), θ

∗
i (t

i
k+1) is connected by a line segment, ∀k ∈ N.

Finally
∣∣θi(t ≥ tif )

∣∣ < ∣∣θ∗i (ti−f )
∣∣ < π

2
since θi(t

i
f ) = θ∗i (t

i−
f ), θi(Si = 0) = 0 and the only
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critical point of θi(t ≥ tif ) in Si ∈ [0, r0] is at Si = 0 by construction:

θ̇i(Si = 0) =
dθi
dSi
· dSi
dpi
· ṗi|Si=0= 0.

Thus, deviations also satisfy the boundedness condition |θ∗i (t)| <
π

2
. �

Proof A.2 (Proof of Theorems 3.1, 4.1, and 4.4 | Sampling Set).

At a recalculation time tk (or tik in the decentralized case), consider the dynamics of the

term [ψi − θ∗i ] (which is continuous because of Lemmas 3.2, 4.2, 4.4 respectively) over a

time interval spanned by τ ∈ [0, T ):

d[ψi − θ∗i ]
dt

= ψ̇i − θ̇∗i = φ̇i − φ̇nhi − θ̇∗i = ωi − φ̇nhi − θ̇∗i =

= −kφ(φi − φnhi − θ∗i ) + φ̇nhi + θ̇∗i − φ̇nhi − θ̇∗i = −kφ(ψi − θ∗i )⇒

⇒ ψ̇i = −kφ(ψi − θ∗i ) + θ̇∗i ⇒ ψi(τ) = [ψi(0)− θ∗i (0)]e−kφτ + θ∗i (τ).

Therefore: |ψi(τ)| ≤ |ψi(0)− θ∗i (0)| e−kφτ + |θ∗i (τ)| ≤ |ψi(0)− θ∗i (0)| + |θ∗i (τ)|. From

Algorithms 1,2,3, note that θ∗i (T ) ∈ Θi
0 ⇒ |θ∗i (τ)| ∈ [0, π

2
− |ψi(0)− θ∗i (0)|). Thus:

|ψi(τ)| < |ψi(0)− θ∗i (0)| + π
2
− |ψi(0)− θ∗i (0)| ⇒ |ψi(τ)| < π

2
, τ ∈ [0, T ). This results in

|ψi(ti1)| < π
2

since ti1 ∈ [0, T ) and therefore |ψi(t)| < π
2
, ∀t > 0, by also employing the

following result of Lemmas 3.2, 4.2, 4.4 respectively:
∣∣θ∗i (tif )∣∣ < π

2
. �

Proof A.3 (Proof of Lemma 4.5 | Lower bound on recalculation times).

Denote as Z(τ) the cost discrepancy:

Zi(τ) , Ci(τ)− Ĉi(τ) =

∫ τ

tik

[Λi(·)− Λi(̂·)]dt ,
∫ τ

tik

ΛZi,k(τ),

where ΛZi,k(τ) , Λi(qi(τ),u∗i (τ))− Λi(q̂i(τ), û∗i (τ)).

The following conditions hold:

� ΛZi,k is continuous in qi, ui,

� qi is continuous in time,

� |vi| is continuous at all switching instants and

� ωi is continuous in [tik, t
i
k + T ).
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Therefore Zi(τ) is differentiable in [tik, t
i
k + T ), with: Żi(τ) = ΛZi,k(τ). Also note that

Zi(τ = tik) = 0, i.e. the discrepancy is zero at the beginning of the control phase. In

addition, let vmax = maxτ{|vi(τ)|}. Thus |vi| is upper bounded by vmax. It is proven

in Corollary 4.3 that |vi| 9 ∞ ⇒ vmax 9 ∞. The angular velocity ωi is bounded,

||pi − pid|| < 2Rw and φi ∈ (−π, π]. Thus ||qi − qid|| is also bounded. Therefore

∃Λmax
Zi,k ≥ ΛZi,k(τ), s.t. Żmax

i = Λmax
Zi,k .

Then the inter-event times satisfy 0 < cε/Λ
max
Zi,k ≤ tik+1 − tik. Finally, the tik+1 − tik < T

side is trivially satisfied by the execution rule (4.12), since Tc < T by default. �

Proof A.4 (Proof of Corollaries 3.1, 4.1, and 4.3 | Finite linear velocity).

The projection of the field’s gradient ∇iΦi on each agent’s longitudinal axis, Pi can be

written as |Pi| =
∣∣∇iΦ

>
i · Ii

∣∣ = ||∇iΦi|| · |cos (φi − φnhi)|. For ||∇iΦi|| = 0 to hold, agent

i must have arrived at its destination pi = pid [31]. For |cos (φi − φnhi)| = 0 to hold, the

agent’s longitudinal axis must be normal to the field’s gradient ∇iΦi, i.e., |φi − φnhi| = π
2
,

which contradicts |φi − φnhi| ∈ [0, π
2
). Therefore |Pi| 6= 0⇒ |vi|9∞ in (2.21a). �

Proof A.5 (Proof of Corollaries 3.2, 4.2, and 4.4 | Direction of motion).

The condition di < 0 substituted in the definition of φnhi results in:

φnhi = atan2(−Φiy,−Φix),

meaning that φnhi defines exactly the angle of −∇iΦi.

Initially, Pi < 0 therefore the agent’s heading, φi, is initially in the direction of −∇iΦi,

i.e., φi ∈ (φnhi− π
2
, φnhi+

π
2
). From Corollaries 3.1, 4.1, and 4.3, we have Pi 9 0. Thus Pi

remains negative and −si = −sgn(Pi) > 0 always holds. As a result the linear velocity

in (2.21a) is always positive (forward motion). �

The requirements of Corollaries 3.2, 4.2, and 4.4 are mild and represent reasonable phys-

ical conditions.

Proof A.6 (Proof of Theorem 3.2 | Single agent Collision Avoidance).

First of all, since the agent is considered spherical (disk), collisions can occur only by

translation. Second of all, by definition, a Navigation Function is uniformly maximum

on the boundary of obstacles, i.e., internal obstacles and the workspace boundary ∂W .

As a result, on the boundary of obstacles the negated gradient of a NF points away from
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them. Assuming that at t = 0, the agent is safe, i.e., not involved in a collision, then

Φ|t=0< 1. We will show that Φ̇ ≤ 0, ∀t ≥ 0, which in turns implies that Φ(p(t)) < 1,

∀t ≥ 0.

Φ̇ = ∇Φ> · ṗ = ∇Φ> ·

[
cosφ

sinφ

]
v = −P sgn(P )U = − |P |U ≤ 0

�

Proof A.7 (Proof of Theorems 4.2, and 4.5 | Collision Avoidance).

Since the agents are considered spherical (disks), collisions can occur only by translation.

Thus, to ensure collision avoidance, it suffices to show that each agent i uses its linear

velocity vi (2.21a) to stay away from its neighbours. By definition, a Navigation Function

is uniformly maximum on the boundary of obstacles, i.e., other agents and ∂W in the

multi-agent setting. As a result, on the boundary of other agents the negated gradient

of a DNF points away from them. It can be shown by (2.21a) that, for each agent i, the

inner product ∇iΦ
>
i · ṗi is non–positive. Specifically, we derive from (2.21a):

∇iΦ
>
i · ṗi = ∇iΦ

>
i ·

[
cosφi

sinφi

]
vi ≤ −PisiUi = − |Pi|Ui ≤ 0 (A.23)

Let us assume that a group of agents, which initially are sufficiently far apart from each

other so that Φi|t=0< 1, ∀i ∈ N , cause a collision. Since each Φi is continuous and

differentiable in space, this would mean that at least one colliding agent i moved towards

the direction of ∇iΦi causing the DNF Φi to attain its maximum value of 1. As shown

in Eq. (A.23), this cannot be true and therefore no collisions can occur between agents

under the control law (2.21a). �

Proof A.8 (Proof of Theorem 3.3 | Single agent Convergence).

Consider the finite, strictly increasing sequence of recalculation time instants:

π := {t0, t1, . . . , tk, tk+1, . . . , tf}, k ∈ N,

where tk denotes the time instant the agent executed Algorithm 1 (recalculation time),

tk+1 = tk + Tc, and t0 , 0. The last element in π, tf , denotes the time instant at which

the agent entered the neighbourhood r0 of its destination.

On each time interval [tk, tk+1), tk 6= tf , we employ the following Lyapunov function

candidate:

Vk = Φ +
1

2
(φ− φnh − θ∗[tk, tk+1))2. (A.24)
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We consider the extended system ẋs = f(xs):

xs =
[
p> φ φnh θ∗

]>
, (A.25)

f(xs) =
[
v · I> ω φ̇nh θ̇∗

]>
. (A.26)

We can now follow Proof A.10, modulo the summations over the N agents, to show that

V is strictly decreasing and that the agent converges to the singleton set:

{q : (p = pd) ∧ (φ = φd)},

i.e., the agent converges to its target destination with the desired orientation. �

Proof A.9 (Proof of Theorem 4.3 | Convergence of the multi–agent system).

Consider the finite, strictly increasing sequence of recalculation time instants:

π := {t0, t1, . . . , tk, tk+1, . . . , tf}, k ∈ N,

where tk denotes the time instant the centralized authority executed Algorithm 3 (recal-

culation time), tk+1 = tk + Tc, and t0 , 0. The last element in π, tf , denotes the time

instant at which the last agent entered the neighbourhood r0 of its destination.

On each time interval [tk, tk+1), tk 6= tf , we employ the following Lyapunov function

candidate:

Vk =
N∑
i=1

Vik, Vik = Φi +
1

2
(φi − φnhi − θ∗i [tk, tk+1))2. (A.27)

We consider the extended multi-agent system ẋ = f(x):

x = [ p>1 ... p>N φ1 ... φN φnh1 ... φnhN θ∗1 ... θ∗N ]>, (A.28)

f(x) = [ v1·I>1 ... vN ·I>N ω1 ... ωN φ̇nh1 ... φ̇nhN θ̇∗1 ... θ̇∗N ]> . (A.29)

We can now follow Proof A.10 to show that V is strictly decreasing and that the multi-

system converges to the singleton set:

{q : (pi = pid, ∀i ∈ N ) ∧ (φi = φid, ∀i ∈ N )},

i.e., all agents converge to their target destinations with the desired orientation. �
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Proof A.10 (Proof of Theorem 4.6 | Convergence of the multi–agent system).

Consider the finite, strictly increasing (because of Lemma 4.5) sequence of recalculation

time instants:

π := {t0, t1, . . . , tk, . . . , tf}, k ∈ N,

where tk denotes the time instant at least one agent triggered an execution of Algorithm

3 (recalculation time) or entered the neighbourhood r0 of its destination and t0 , 0.

The last element in π, tf , denotes the time instant at which the last agent entered the

neighbourhood r0 of its destination. The sequence of recalculation times of an agent

i ∈ N is a subset of π, {0, ti1, ..., tik, ..., tif} ⊆ π.

On each time interval [tk, tk+1), tk 6= tf , we employ the following Lyapunov function

candidate:

Vk =
N∑
i=1

Vik, Vik = Φi +
1

2
(φi − φnhi − θ∗i [tk, tk+1))2. (A.30)

We consider the extended multi-agent system ẋ = f(x):

x = [ p>1 ... p>N φ1 ... φN φnh1 ... φnhN θ∗1 ... θ∗N ]>, (A.31)

f(x) = [ v1·I>1 ... vN ·I>N ω1 ... ωN φ̇nh1 ... φ̇nhN θ̇∗1 ... θ̇∗N ]> . (A.32)

In order to apply the chain rule in [45] , we employ the Filippov set [47] K[f(x)] and the

generalized derivative [42] of Vk(x):

K[f ] =



K[v1]I1

...

K[vN ]IN

ω1

...

ωN

φ̇nh1

...

φ̇nhN

θ̇∗1
...

θ̇∗N



, ∂Vk =



∑
i∇1Φi

...∑
i∇NΦi

(φ1 − φnh1 − θ∗1)
...

(φN − φnhN − θ∗N)

−(φ1 − φnh1 − θ∗1)
...

−(φN − φnhN − θ∗N)

−(φ1 − φnh1 − θ∗1)
...

−(φN − φnhN − θ∗N)
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We calculate the generalized time derivative of Vk(x):

˙̃
V k =

⋂
ξ∈∂V

ξ>K[f ] =

=
N∑
i

N∑
j

K[vi]∇iΦ
>
j Ii +

N∑
i

ωi · (φi − φnhi − θ∗i )

−
N∑
i

φ̇nhi · (φi − φnhi − θ∗i )−
N∑
i

θ̇∗i · (φi − φnhi − θ∗i ) =

=
∑
i

K[vi]Pi +
∑
i

∑
j 6=i

K[vj]∇jΦ
>
i Ij +

∑
i

(φi − φnhi − θ∗i ) ·
(
ωi − φ̇nhi − θ̇∗i

)
=

=
∑
i

K[vi]Pi +
∑
i

∑
j 6=i

K[vj]∇jΦ
>
i Ij −

∑
i

kφ (φi − φnhi − θ∗i )
2,

We discriminate between the following two sets of agents:

N1 ,

{
i ∈ N

∣∣∣∣∂Φi

∂t
≤ Ui(|Pi| − ε)

}
N2 ,

{
i ∈ N

∣∣∣∣∂Φi

∂t
> Ui(|Pi| − ε)

}
,

with N1

⋃
N2 = N . By the control law (2.21a) we deduce:

K[vi] =


−K[si] · Ui, i ∈ N1

−K[si] ·
∂Φi
∂t

+ εUi

|Pi|
, i ∈ N2

We can now proceed with
˙̃
V k:

˙̃
V k =

∑
N1

{
−K[si]PiUi +

∂Φi

∂t

}
=

=
∑
N2

{
−K[si]Pi

Uiε+ ∂Φi
∂t

|Pi|
+
∂Φi

∂t

}
−
∑
N

kφ · (φi − φnhi − θ∗i )
2 =

=
∑
N1

{
− |Pi|Ui +

∂Φi

∂t

}
+
∑
N2

{
− |Pi|

Uiε+ ∂Φi
∂t

|Pi|
+
∂Φi

∂t

}
−
∑
N

kφ · (φi − φnhi − θ∗i )
2 =

= −
∑
N1

{
|Pi|Ui −

∂Φi

∂t

}
−
∑
N2

Uiε−
∑
N

kφ (φi − φnhi − θ∗i )
2 < 0
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We deduced that 0 /∈ ˙̃
V k because in N1, |Pi|Ui− ∂Φi

∂t
≥ Uiε, and for both N1,N2, we have

that
∑
N Ui > 0 because pi 6= pid holds for at least one agent since t < tf .

Now consider a recalculation time tk ∈ π. For the subset of agents j ∈ N that triggered

at t = tk = tjk, we have

θ∗j [t
j
k−1, t

j
k) = θ∗j [t

j
k, t

j
k+1)⇒ θ∗j [t

j
k−1, tk) = θ∗j [tk, t

j
k+1),

The same holds if tk = tjf , as proven in Lemma 4.4.

Using this result in Vk we get: Vk−1(tk) = Vk(tk), i.e., the multiple Lyapunov functions [41]

Vk are equal at t = tk. It is easy to show that the same also holds for t = tf . Finally, let

Vf =
∑N

i=1 Φi+
1
2
(φi−φnhi−θi(t ≥ tf ))

2. Using the same analysis, we deduce that 0 ∈ ˙̃
V f .

This is possible since for t > tf , all agents have entered the neighbourhoods r0 of pid,

making Ui = 0 possible ∀i ∈ N . Therefore the concatenation V = V0|V1| . . . |Vk| . . . |Vf is

a continuous, strictly decreasing Lyapunov function for the multi-agent system [41, p. 53].

Since each Vik, and consequently V , is regular and the level sets of V are compact, we

apply the nonsmooth version of LaSalle’s invariance principle. Thus the multi-agent

system converges to the largest invariant subset S : S ,
{[

p>, φ
]> | 0 ∈ ˙̃

V
}
. For

˙̃
V = 0

to hold, we get:

S = {q :(|Pi|Ui −
∂Φi

∂t
= 0, ∀i ∈ N1)∧

∧(Uiε = 0, ∀i ∈ N2) ∧ (φi − φnhi − θ∗i = 0, ∀i ∈ N )}.

Since |Pi|Ui − ∂Φi
∂t
≥ Uiε ≥ 0 (condition of N1), the equality Ui = 0 must hold inside

S, requiring pi = pid so that4 φnhi = φid and θ∗i = 0 (by construction), ∀i ∈ N . Thus

φi = φid ∀i ∈ N . Therefore S reduces to the singleton:

{q : (pi = pid, ∀i ∈ N ) ∧ (φi = φid, ∀i ∈ N )},

i.e., all agents converge to their target destinations with the desired orientation. �

The tools from Discontinuous Feedback and Nonsmooth Analysis used in the derivation

of this proof are provided in Appendix A.4.

4This is a property of dipolar DNFs; see §A.1.3.
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Appendix B

Software Structure

This Appendix elaborates on the implementation of the proposed predictive navigation

schemes in MATLAB simulations. For the sake of brevity, only the simulation code for

the Decentralized Event-Triggered Predictive Navigation scheme will be presented. The

single agent and centralized multi-agent cases are much simpler and can be derived by

simplifying the decentralized case.

Firstly, we provide some of the MATLAB variables and structures used in our simulations.

Secondly, we list all MATLAB scripts and functions employed. Finally, we provide the

structure of Main.m, which is the main routine of our code.

B.1 Definition of MATLAB Variables

We list the most important variables and structures used in our MATLAB simulations.

ragent, Rworld (variables): ri, Rw.

NFdata (struct): Contains all parameters required for the definition of a Navigation

Function (k, λ, h etc). For example, NFdata.k is the NF parameter k.

alpha, delta, Tpred, Tctrl, Ns (variables): α, δ, T, Tc, Ns.

Unom, kf, ro (variables): Uid, kφ, r0.

agents (struct): Contains all agents’ state vectors and other variables. For example,

agents(iagent).p is agent i’s position vector pi and agents(iagent).fi is agent i’s

orientation φi. In addition, agents().history(,) stores all agents’ state history q(t).

agents().Vq, dVdq, dfdt: Φi, ∇iΦi and
∂Φ

∂t
.

th-optimum(), th-dot(), fnh, fnh-dot (variables): θ∗i [tk + T ), θ̇i, φnh and φ̇nh.

u, omega (variables): Control input vector [u ω]>.

87



mpc (struct): Contains all agents’ predicted state and inputs trajectories over [tk, tk +T ).

Q, Ru, Rw, Li (variables): Q, R11, R22, and running cost Λ(·).

Jfunct, Mterm (variables): Cost functional J(·) and terminal cost M(t+T ) = Φi(t+T ).

trigger() (variable): Monitors the triggering condition in (4.12).

check (variable): Checks for convergence of the multi-agent system.

B.2 MATLAB Routines and Functions

B.2.1 List of Routines and Functions

Main.m (script)

The main MATLAB routine. This is the m–file that should be executed (Run). It

initializes most variables and structs, calls all other scripts (m-files) below, and also

contains the main prediction–control loop.

Data.m (script)

Contains all constant parameters, i.e., those used by NF.m, Prediction.m, and other

scripts and functions.

Agents.m (script)

Agents’ initial and goal configurations are set in this scripts.

Prediction.m (script)

This scripts executes Algorithm 3. It also calls PredNavigation.m to simulate the dy-

namics of the multi-agent system over [tk, tk + T ).

PredNavigation.m (script)

Performs Step 5 of Algorithm 3.

CtrlNavigation.m (script)

Applies the actual control inputs to each agent.

NF.m (function)

Calculates the dipolar DNF’s value Φi and its gradient ∇iΦi.

Lfunct.m (function)

Calculates the running cost.
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thita1.m (function)

Performs Step 4 of Algorithm 3, i.e., generates candidate deviations (1st degree polyno-

mials) over [tk, tk + T ).

Plots.m (script)

Uses the values stored in agents.history and other variables to generate all figures.

Kyklos.m, crtriangle.m (functions)

Called by Plots.m to create the circles and the red arrows (triangles) respectively.

B.2.2 Structure of Main.m

Without getting into unnecessary details, the structure of Main.m is summarized in the

following algorithm.

Main.m: Decentralized Event-Triggered Predictive Navigation

1: Call Data.m and Agents.m

2: Initialize (preallocate) all structures and vectors

3: while(check) % Start main loop

4: for i = 1:N % For each agent i ∈ N

5: Check triggering condition

6: Call Prediction.m % Execute Algorithm 3 over [tik, t
i
k + T )

7: Call CtrlNavigation.m % Apply control inputs over [tik, t
i
k+1)

8: end for loop

9: end while loop % if check= 0, exit main loop

10: Call Plots.m
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