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Nonlinear State Estimation for Small Unmanned Aircraft

by
Dimitrios Stylianos Parsinas Pylorof

Abstract

This thesis is concerned with the nonlinear state estimation problem for small unmanned 
aircraft.  State  estimation  is  an  integral  part  of  any unmanned aircraft's  flight  control 
system. The quantities required for flight control, like attitude, 3D position and velocity, 
are not usually measured directly or they are not available at the frequency required; they 
have to be derived or extrapolated, respectively, from the available sensor measurements. 
Furthermore, due to size and cost, small unmanned aircraft carry rather noisy and even 
biased microelectromechanical sensors, complicating the problem even further.

The usual sensor payload for the aircraft class of interest is an Inertial Measurement Unit 
(IMU),  containing three  accelerometers  and gyroscopes  that  measure accelerations and 
angular velocities, respectively, in the inertial body frame. The aircraft's velocity, position 
and attitude can be obtained through integrations at the IMU output rate. Due to the 
IMU's output noise and bias though, a trivial integration is not enough as there will be an 
ever growing drifting error. A Global Navigation Satellite System (GNSS) receiver is used 
to provide a direct measurement of the aircraft's position and velocity at a much lower 
frequency but with bounded error characteristics. The measurements from the IMU and 
the GNSS receiver should be fused in a state estimation framework, to filter out the sensor 
noise, compensate for bias and provide the best possible state estimate.

A solution to the small  unmanned aircraft state estimation problem is presented here, 
using a modified version of the nonlinear Unscented Kalman Filter (UKF). The original 
Kalman Filter has been the de facto solution for real time estimation problems since its 
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inception,  however  it  cannot  be  used  in  aircraft  state  estimation  as  the  underlying 
kinematic and measurement equations are nonlinear; its nonlinear extension also, namely 
the Extended Kalman Filter (EKF) is ruled out because it can exhibit numerical issues and 
even  divergence.  The  UKF  is  one  of  the  most  promising  nonlinear  state  estimation 
algorithms  for  use  in  real  time  applications;  it  is  based  on  a  deterministic  sampling 
principle  which  avoids  linearizations  and  calculation  of  Jacobian  matrices,  in  direct 
contrast with the derivative based EKF. In the solution presented here, the singularity free 
attitude quaternion is used for the representation of the aircraft's attitude. The quaternion, 
however, is  a constrained quantity and that imposes several modifications to the UKF 
algorithm. As far as the aircraft's 3D kinematics are concerned, minimal assumptions are 
made in the derivation of the respective estimator models; the Earth's ellipsoidal model is 
used, allowing almost global operation of the aircraft with no modifications.

A numerically efficient version of the algorithm that requires the least possible number of 
function evaluations per cycle is derived. The results are presented and verified through a 
simulation example. Although this thesis has been developed to provide a solution to the 
state estimation problem of the small unmanned helicopter built by the NTUA Control 
Systems Lab, the resulting algorithms can be readily used onboard any small unmanned 
aircraft with similar sensor payload, either fixed wing or rotorcraft.
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Μη-γραμμική εκτίμηση κατάστασης μικρών μη επανδρωμένων 
αεροσκαφών

του Δημήτριου Στυλιανού Παρσινά Πυλόρωφ

Περίληψη

Η παρούσα διπλωματική εργασία πραγματεύεται τη  μη-γραμμική εκτίμηση κατάστασης μικρών 
μη επανδρωμένων αεροσκαφών. Η εκτίμηση κατάστασης είναι αναγκαίο συστατικό στοιχείο 
του συστήματος αυτομάτου ελέγχου της πτήσης οιουδήποτε μη επανδρωμένου αεροσκάφους. 
Τα μεγέθη που απαιτούνται για τον έλεγχο της πτήσης, όπως ο προσανατολισμός, η θέση και 
η ταχύτητα στις τρεις διαστάσεις, συνήθως δεν μετρώνται άμεσα ή δεν είναι διαθέσιμα στην 
επιθυμητή συχνότητα, επομένως πρέπει να υπολογισθούν από τις όποιες διαθέσιμες μετρήσεις. 
Επίσης, λόγω κόστους και βάρους, τα μικρά μη επανδρωμένα αεροσκάφη φέρουν αισθητήρες 
τύπου MEMS που παρουσιάζουν ιδιαίτερα αυξημένο θόρυβο στις μετρήσεις τους, ακόμα και 
bias, περιπλέκοντας περαιτέρω το πρόβλημα.

Ο βασικός αισθητήρας που φέρεται από τα αεροσκάφη που εξετάζονται εδώ είναι ένα Inertial 
Measurement Unit (IMU) με τρία επιταχυνσιόμετρα και τρία γυροσκόπια τα οποία μετρούν 
επιταχύνσεις και γωνιακές ταχύτητες αντίστοιχα στο αδρανειακό σύστημα αναφοράς. Η θέση, 
η  ταχύτητα  και  ο  προσανατολισμός  του  αεροσκάφους  μπορούν  να  προκύψουν  εξ' 
ολοκληρώσεως, όποτε υπάρχουν μετρήσεις από το IMU. Ωστόσο, λόγω της ύπαρξης θορύβου 
στις μετρήσεις αλλά και bias, μια απλή  ολοκλήρωση δεν είναι αρκετή καθώς θα υπάρχει ένα 
διαρκώς αυξανόμενο σφάλμα στα αποτελέσματα. Για το λόγο αυτό, ένας δέκτης για κάποιο 
παγκόσμιο  δορυφορικό  σύστημα  πλοήγησης  (GNSS)  χρησιμοποιείται  επικουρικά  ώστε  να 
παρέχει  μια  άμεση  μέτρηση  της  θέσης  και  της  ταχύτητας  του  αεροσκάφους,  σε  πολύ 
μικρότερη συχνότητα από το  IMU  αλλά με φραγμένο και γνωστό σφάλμα χωρίς  bias.  Οι 
μετρήσεις από το IMU και το GNSS πρέπει να συνδυασθούν κατάλληλα, ώστε να απορριφθεί 
ο θόρυβος και να προκύψει η καλύτερη δυνατή εκτίμηση της κατάστασης του αεροσκάφους.
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Μια  λύση στο  ανωτέρω πρόβλημα  της  εκτίμησης  κατάστασης  για  μικρά  μη  επανδρωμένα 
αεροσκάφη  παρουσιάζεται  εδώ,  χρησιμοποιώντας  μια  παραλλαγή  του  Unscented  Kalman 
Filter  (UKF).  Ο  πρωτότυπος  αλγόριθμος  του  Kalman  Filter  είναι  η  τυπική  λύση  για 
πληθώρα προβλημάτων εκτίμησης κατάστασης από τη στιγμή που προτάθηκε παρέχοντας τη 
βέλτιστη  εκτίμηση  κατάστασης  και  λαμβάνοντας  υπόψη  το  δυναμικό  μοντέλο  της  προς 
εκτίμηση διεργασίας,  ωστόσο δεν μπορεί να χρησιμοποιηθεί για την εκτίμηση κατάστασης 
ενός αεροσκάφους καθώς οι κινηματικές εξισώσεις που διέπουν την τρισδιάστατη κίνησή του 
και η συσχέτιση των μετρήσεων με το διάνυσμα κατάστασης είναι μη γραμμικά συστήματα. Η 
μη γραμμική επέκτασή του, το Extended Kalman Filter (EKF) έχει σοβαρά μειονεκτήματα 
ως λύση καθώς μπορεί να προκληθούν αριθμητικές αστάθειες αλλά ακόμα και απόκλιση της 
εκτίμησης. Το  UKF  είναι ίσως ο πιο υποσχόμενος αλγόριθμος εκτίμησης κατάστασης για 
χρήση σε εφαρμογές πραγματικού χρόνου. Στηρίζεται σε μια μεθοδολογία ντετερμινιστικής 
δειγματοληψίας  η  οποία  αποφεύγει  εντελώς  τις  γραμμικοποιήσεις  και  το  σχηματισμό 
Ιακωβιανών  μητρών,  σε  αντίθεση  με  το  EKF.  Στη  λύση  που  παρουσιάζεται  εδώ, 
χρησιμοποιείται  το  quaternion  για  την  αναπαράσταση  του  προσανατολισμού  του 
αεροσκάφους, επιτρέποντας κάθε κίνηση / περιστροφή αφού δεν υπάρχουν οι περιορισμοί των 
γωνιών  Euler.  Το  quaternion  ωστόσο,  επειδή  δεν  είναι  διάνυσμα  αλλά  μια  ποσότητα 
περιορισμένη στο  SO(3),  επιβάλει διάφορες μεταβολές στις εξισώσεις του αλγορίθμου του 
UKF.  Όσον αφορά στην τρισδιάστατη κινηματική του αεροσκάφους, γίνονται οι ελάχιστες 
παραδοχές στην ανάπτυξη των εξισώσεων του κινηματικού μοντέλου αφού λαμβάνεται υπόψη 
το πλήρες ελλειψοειδές μοντέλο της γης και άρα είναι δυνατή η σχεδόν παγκόσμια λειτουργία 
του αλγορίθμου χωρίς τροποποιήσεις.

Στο κείμενο που ακολουθεί αναπτύσσεται μια αριθμητικά βελτιωμένη εκδοχή του σχετικού 
αλγορίθμου, η οποία απαιτεί τις λιγότερες δυνατές εκτελέσεις των μοντέλων διεργασίας και 
μετρήσεων ανά επανάληψη. Τα αποτελέσματα παρουσιάζονται και επιβεβαιώνονται μέσα από 
προσομοίωση.  Παρότι  η  παρούσα  εργασία  αναπτύχθηκε  ώστε  να  παρέχει  μια  λύση  στο 
πρακτικό πρόβλημα της εκτίμησης κατάστασης του μικρού μη επανδρωμένου ελικοπτέρου του 
Εργαστηρίου Αυτομάτου Ελέγχου του ΕΜΠ, οι προκύπτοντες αλγόριθμοι και τα σχετικά 
συμπεράσματα  μπορούν  να  αξιοποιηθούν  πάνω  σε  οποιοδήποτε  μικρό  μη  επανδρωμένο 
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αεροσκάφος με παρόμοιους αισθητήρες, είτε αεροπλάνο, είτε ελικόπτερο.
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Chapter 1

Preliminaries

In this chapter the small unmanned aircraft state estimation problem is described and a 
discussion of the various estimated quantities follows. The chapter concludes with a review 
of the typical sensors used in small unmanned aircraft, namely Inertial Measurement Units 
(IMUs) and Global Navigation Satellite System (GNSS) receivers.

1.1 Estimator requirements

Any flight control system, regardless of the underlying theory that makes it work (PID, 
Model Predictive Control, Adaptive Control, etc.), requires an accurate estimate of the 
aircraft's kinematic state at the beginning of every control iteration [1]. 
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As there is no set of sensors that can provide the quantities of interest at the required 
frequency  and  with  acceptable  measurement  noise  characteristics,  they  have  to  be 
estimated from the available measurements, making, thus, state estimation an integral part 
of the system's feedback loop. Given that an aircraft can move in 6 degrees of freedom, the 
state vector to be estimated is comprised of:

• the aircraft's position on Earth

• the aircraft's three dimensional velocity

• the aircraft's attitude with respect to the Earth's North, East and Down axes

There are many ways to represent and propagate the above quantities. To allow for the 
greatest  possible maneuverability,  the attitude quaternion [13] has been chosen for the 
representation of attitude in the estimation algorithm developed here,  as it  provides a 
singularity free attitude representation solution and also features a rather convenient linear 
time propagation model. The attitude quaternion is further discussed in section 1.3. The 
aircraft's position is represented and propagated using curvilinear coordinates in the ECEF 
frame [2], [3], [4]. As far as the velocity is concerned, it can be either represented in the 
body frame or in the local frame axes with similar formulation, results and accuracy; here 
the local frame approach is chosen.

The accuracy of the resulting state estimate is of great importance for the success of the 
aircraft's mission. An accurate estimate of the state vector means that the aircraft can 
perform well  even  in  demanding  scenarios,  like  formation  flight,  flight  near  obstacles, 
automatic takeoff and landing, etc. On the other hand, a decrease in estimation accuracy 
can severely hinder the aircraft's capabilities. The estimate's accuracy is determined by the 
sensors  present  and  operating  at  any  moment,  their  noise  characteristics  and  the 
estimation algorithm.

As a new state estimate must be computed before the beginning of each control iteration 
and since these control iterations can happen at 50 ms or at even more frequent intervals 
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in  the flight  control  systems of  small  unmanned aircraft,  the  estimation process  itself 
should last as less time as possible. Of course this imposes some performance requirements 
on the sensors as well, but the estimation software's  computational cost is the main 
concern here

1.2 Coordinate frames

Coordinate frames consist of a center and axes that are used to describe the motion of a 
body,  its  position  and its  orientation.  The discussion  of  coordinate frames  is  of  great 
importance in the aircraft state estimation problem, since the quantities that have to be 
estimated and the ones that are measured are described in different frames (position / 
velocity / acceleration) or they involve the orientation of one frame with respect to another 
(attitude). 

In this section the various frames of interest, namely the Earth Centered Inertial (ECI), 
the Earth Center Earth Fixed (ECEF), the local frame and the body frame, are described. 
Subsequently, the aircraft kinematic model that will be used later in the state estimator's 
formulation is derived. This section follows the development of the topic found in [2] and 
[3].

1.2.1 Earth Centered Inertial

The  Earth  Centered  Inertial  frame  (ECI)  is 
centered at  the Earth's  center  of  mass.  The   
axis  is  parallel  to  the  Earth's  polar  axis  of 
rotation, while the  axis points in the direction 
of vernal equinox. Finally, the   axis points   
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degrees ahead (taken in the direction of Earth's rotation) of the  axis, positioned in such 
a way to make the  system a right-handed orthogonal set.

The ECI frame can be considered inertial for all small unmanned aircraft applications, 
ignoring the Earth's acceleration in its elliptic orbit around the Sun. This is the frame with 
respect to which the inertial sensors (accelerometers and gyroscopes) make measurements. 

It should be noted that the Earth rotates with respect to the ECI system with angular 
velocity .

1.2.2 Earth Centered Earth Fixed

The  Earth  Centered  Earth  Fixed  frame 
(ECEF) is centered at the Earth's center of 
mass. The  axis is parallel to the Earth's 
polar axis of rotation, like in the ECI frame. 
The  axis points to the intersection of the 
equator  and  the  prime  meridian.  The   
axis precedes the   axis by   degrees in 
the  direction  of  Earth's  rotation,  making 
the ECEF frame a right-handed orthogonal 
set.  As  a  result,  the  axes  of  the  ECEF 
frame are fixed with respect to the Earth 
and  they  rotate  with  respect  to  the  ECI 
frame.

The ECEF is the frame in which the position of the aircraft is represented. Position in the 
ECEF  frame  can  be  represented  using  either  rectangular  coordinates   or 
curvilinear coordinates  which will be discussed in the earth modeling section 1.4.
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1.2.3 Local navigation frame (NED)

The local frame (abbreviated n or NED for North-East-Down) is centered at the vehicle's 
center of mass. Its   axis is normal to the reference ellipsoid (see section 1.4) and that 
direction is known as “Down”. The  axis (“North”) points to the Earth's North pole and 
the  axis (“East”) completes the right-handed orthogonal set. The NED frame makes a 
flat earth approximation for the point of interest and it is of great importance as it is used 
to define the aircraft's attitude.

1.2.4 Body frame

The body frame is centered at the vehicle's center of mass. Axis  points forward, axis  
down  and  axis   points  to  the  right,  completing  the  orthogonal  set.  Although  the 
definition of forward, down, etc. takes into account the usual direction of movement, this is 
rather obvious for the type of vehicles considered in this text.
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1.2.5 Frame notation for vectors

The notation used in [3] is followed here to allow for the maximum possible clarity in all  
the vector operations / transformations presented.

Vectors are denoted by , where the right subscript b refers to the frame whose motion is 
described, the left subscript a is the frame with respect to which this motion is described 
and the superscript c is the frame in whose axes system this motion is described (resolving 
frame).

The left subscript (reference frame) may be omitted in the upcoming chapters when the 
reference frame is obvious.

1.2.6 Transformation matrices

The coordinate  transformation matrices  are used to transform the resolving axes  of  a 

vector to another set. They are denoted by , where the subscript refers the original 

frame and the superscript to the resulting frame.

For example,

(1.1)

Coordinate transformation matrices have the following properties for all frames  and :

                                   a)  (orthogonality) (1.2)

                                   b)                                              (1.3)
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                                   c) (1.4)

1.3 Attitude & attitude kinematics

The aircraft's  attitude can now be defined as the orientation of  the body frame with 
respect to the NED frame. There are various attitude representations, namely Euler angles, 
Rodriguez parameters, quaternions, etc. [13]. Each of these representations can be used to 
assemble the rotation matrix which is defined as the transformation matrix  . The 
rotation matrix is unique and global, meaning that there is only one rotation matrix for 
any two given frames and it is defined for any possible attitude. 

In the two next sections, the Euler angles and the attitude quaternion will be presented 
respectively. The Euler angles provide a very simple and intuitive attitude representation, 
which exhibits, though, non uniqueness and non globality. The quaternion is an efficient 
global attitude representation and will be used in the estimator equations in the upcoming 
chapters.

1.3.1 Euler angles

The Euler angles attitude representation is based on three successive rotations that, if 
taken with the right order, will eventually align the NED frame with the body frame [2],
[13].
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Yaw rotation

First of all, the NED system is rotated by  radians around its Down axis until the original 
North axis coincides with the projection of the  axis on the local frame. The resulting 
frame will be called the intermediate frame . The corresponding transformation matrix is

(1.5)

Pitch rotation

Secondly, the  frame is rotated by  radians around its “East” axis, until its original North 
axis coincides with . For convenience, this frame will be called . The rotation matrix is

(1.6)

Roll rotation

Finally, the  frame is rotated around the common “North” –  axes by  radians until it 
fully aligns with the body frame. The roll rotation matrix is

(1.7)
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Rotation matrix assembly

Multiplying  the  transformation  matrices  in  the  above  given  order  yields  the  rotation 
matrix from the local to the body frame,

(1.8)

After substituting equations (5) (6) and (7) into (8) we get

(1.9)

The inverse transformation matrix is given by the transpose,

(1.10)

The set  are called the roll, pitch and yaw angles respectively and they constitute 
the Euler angles attitude representation.

Time propagation

Given the angular rates about the body axes , the time propagation 

of the Euler angles is described by the nonlinear system 

(1.11)
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Issues

Apart from the obvious angle periodicity issue which can be solved in a practical manner 
(some  limits  must  be  imposed  on  the  angles  to  avoid  overlapping),  the  Euler  angles 
attitude representation exhibits two major drawbacks.

• There  is  a  singularity  at   pitch,  where  the roll  and yaw angles  cannot  be 
defined; thus, the Euler angles is not a global attitude representation. Furthermore, 
at the same attitude at  pitch, the two terms of the time propagation system 
(1.11) that involve  become infinite. If the vehicle approaches  pitch, this 
can lead to numerical issues or even to a software crash unless it is taken care of 
beforehand.

• The continuous system (1.11) is highly nonlinear and that causes large errors in the 
discretization  process,  which  is  necessary  in  order  to  use  the  time  propagation 
equation in a Kalman Filter (see Chapter 2).

The above drawbacks limit the use of Euler angles to applications where the vehicle in 
question doesn't operate near the  pitch range (to avoid the singularity points) and to 
scenarios  where  the  attitude  changes  slowly  over  time  (to  alleviate  the  discretization 
errors).

1.3.2 Quaternion attitude representation

The quaternion is  a  singularity-free attitude representation that allows for  much more 
accurate and robust attitude mechanization in a state estimation framework in comparison 
with Euler angles. 
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Definition and operations

A quaternion   consists  of  a  scalar  part,  ,  and  a  three  dimensional  vector  part 

,

(1.12)

An abstract rotation of  radians around axis  can be represented by the quaternion, 

(1.13)

If the quaternion is used to represent attitude, the rotation vector  aligns the local frame 
with the body frame. However, the use of the quaternion is not restricted to the attitude 
case as it can represent any rotation.

It is easy to notice that, due to its definition, the quaternion has a unit length constraint, 

(1.14)

The inverse quaternion is obtained by taking the negative of the vector part, as 
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(1.15)

The quaternion multiplication between two quaternions  and  is given by [2]

(1.16)

Successive rotations can be conveniently defined through quaternion multiplication, as

(1.17)

where the subscript and the superscript in each case refer to the original and the resulting 
frame of the rotation that each quaternion represents.

As the quaternion is not a vector quantity (due to the unity length constraint), quaternions 
cannot  be  added  or  subtracted,  since  the  constraint  will  be  violated.  The  quaternion 
multiplication operation should be used instead.

Rotation matrix assembly

The rotation matrix from the local frame to the body frame is
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(1.18)

and the rotation matrix from the body to the local frame is the transpose of (1.18),

(1.19)

Time propagation

The kinematic propagation of the attitude quaternion, when the angular rates about the 

body frame axes   are known, is given by

(1.20)

Equation (1.20) is linear in terms of  , providing thus a significant advantage over the 
equivalent  propagation equation of  the Euler angles  (1.11).  However,  despite  the more 
robust  mathematical  formulation  of  the  attitude  quaternion,  it  is  not  as  intuitive  to 
humans as the Euler angles. For that reason, the quaternion is usually transformed into the 
equivalent Euler angles for the purpose of visualization.
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1.4 Earth modeling, position representation & propagation

In the WGS 84 model [23] followed in this text, the Earth's surface1 is approximated by an 
oblate spheroid. The oblate spheroid is an ellipsoid shape with rotational symmetry whose 
minor axis is the axis of rotation of the Earth, . The ellipsoid's semi major axis is the 
Earth's equatorial radius  and the semi major axis is the Earth's polar radius .

The eccentricity is given by

(1.21)

and the flattening by

(1.22)

The values of the above parameters are given in [23].

Any point on or near the surface of the Earth can be described by its geodetic latitude , 
its longitude  and its height .

• The  geodetic  latitude   is  the  angle  formed  by  the  normal  to  the  ellipsoid 
originating from the center of the body frame and the equatorial plane.

• The longitude   is  the angle  between the prime meridian plane and the plane 
formed by the Earth's  axis and the point of interest.

• The ellipsoidal height  is the distance of the point to the ellipsoid's surface.

1 The term surface here corresponds to the approximate sea level.
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More details on the curvilinear coordinates can be found in more detailed texts, [3], [2].

On any point on the ellipsoid's surface, two radii of curvature are defined,

• The meridian radius of curvature , which is related to the rate of change of 
the latitude along a meridian [3],

(1.23)

• The transverse radius of curvature , which is related to the rate of change of 
latitude on the surface normal to a meridian [3],

(1.24)

The rectangular and the curvilinear coordinates of a point on the ECEF frame are related 
by

(25)

Using the chain rule, the velocity of a point in the rectangular coordinates of the ECEF 
frame is

(1.26)

Calculating the partial derivatives of  yields
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(1.27)

where  is the coordinate transformation matrix from the local to the ECEF frame (see 
[2]).

The North – East – Down velocity is now obtained by ([2],[3])

(1.28)

Inverting  equation  (1.28)  gives  the  propagation  equation  of  the  curvilinear  ECEF 
coordinates as a function of the NED velocity,

(1.29)

1.5 Typical small UAV sensors

Depending  on  the  aircraft's  mission,  an  unmanned  aircraft  may carry  many different 
sensors. However, any UAV must be able to sustain itself in the air and fly over specific 
waypoints, as required for each mission objective; there is a requirement, thus, for the 
aircraft to know its position, attitude and velocity at any time, regardless of the mission. 
Separating the various sensors usually found on small UAVs to sensors directly related to 
the UAV's flight and to sensors related to specific missions, all UAVs carry the following 
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minimum sensor payload, to enable automatic flight and increase their autonomy level:

• Inertial Measurement Unit (IMU)

• Global Navigation Satellite System (GNSS) receiver for UAVs that operate outdoors

• Radio altimeter or range finder

• Cameras used for navigation

• Compass

As this thesis focuses on small UAVs that operate outdoors, we will not discuss further the 
use of cameras or any other positioning service that is tailored for indoors use or,  in 
general, for use in GNSS denied environments.

1.5.1 Inertial Measurement Unit (IMU)

Inertial  Measurement  Units  (IMUs)  contain  accelerometers  and  gyroscopes,  measuring 
accelerations and angular velocities respectively in the inertial body frame. 

IMU operation

Ideally, integration of the IMU output could provide the quantities required for control 
(attitude, velocity and position). However this is not the case, as the IMU output is rather 
noisy and therefore there would be an ever growing navigation error. A position / velocity 
sensor with bounded error must be used to contain the IMU growing drifting errors. This is 
the purpose of state estimation for small UAVs – to augment the IMU measurements with 
a lower bandwidth /  bounded error  sensor,  like the GNSS receiver.  Standalone  IMU 
navigation (also called dead – reckoning) is still used in some applications, as in submarine 
navigation, where there is no easy way to compensate for the IMU errors, in indoors UAVs 
where there is no GNSS coverage and in commercial aircraft where very accurate IMUs are 
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used and still there in a drift of a couple of kilometers per hour in the position output. In 
UAV applications,  due to the performance and error characteristics of the IMUs used, 
standalone IMU operation is not an option.

IMUs used in small UAVs are usually of MEMS (microelectromechanical systems) type and 
they feature a strapdown configuration. Strapdown IMUs have three accelerometers and 
three gyroscopes fixed in an orthogonal set of axes. The combination of the strapdown 
configuration and the MEMS type sensors results in very low size (few centimeters), weight 
(few grams) and cost IMUs and that is their reason for success in the small UAV sector. 

IMU errors

This particular combination, however, can also cause many accuracy issues. First of all, the 
three strapdown axes never actually form a truly orthogonal set;  there is  always some 
misalignment that may need to be taken care of [2]. Secondly, the MEMS nature of the 
sensors themselves can cause very poor results in the sensor output, particularly in terms 
of growing biases, scale factors, excessive noise, etc. Axes misalignment, biases and scale 
factors can be dealt with during factory calibration of the IMU and also – in some units – 
during operation using a closed loop system with temperature control. These error sources 
can be dealt with in the state estimation algorithm as well, while noise can be filtered out 
only in a state estimation framework, utilizing kinematic models of the vehicle of interest 
and some related measurements with bounded error characteristics.

Measurable quantities

As noted above, an IMU's gyroscope measures the angular velocities of the body frame 
with  respect  to  the  inertial  frame.  Although  the  measurements  are  made  around  the 
sensor's sensitive axes and not the actual vehicle's body axes, it is reasonable to assume 
that with careful placement of the IMU, the measurements made correspond to the angular 
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velocities around the body frame axes,

(1.30)

We ignore the rotation of the Earth and the curvilinear motion of the origin of the body 
frame [3], as these quantities are too small when compared with the noise characteristics of 
MEMS gyroscopes. 

As far as acceleration is concerned, it should be noted that the IMU's accelerometers do 
not measure the acceleration itself  ,  but the specific force   along the instrument's 
sensitive axes instead,

(1.31)

where  is the gravitational force along the body axes that can be calculated as a function 
of curvilinear position using the WGS84 model [23].

Apart  from  sensor  noise,  the  IMU  output  can  exhibit  significant  biases  [3].  The 
accelerometer bias  and the gyroscope bias  can be modeled using slowly time varying 
white noise processes, as ([17], [18])

(1.32)

(1.33)

where  and  are Gaussian random variables with zero mean and covariance 

and   respectively.
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1.5.2 Global Navigation Satellite System (GNSS)

Global Navigation Satellite Systems provide positioning and timing service for targets on 
or near Earth. They consist of three segments, namely,

• the space segment, which refers to a constellation of satellites orbiting the earth in 
geosynchronous orbits. Each satellite transmits a message containing, among others, 
its position and the time of transmission. The number and the orbits of satellites is 
chosen such as there is continuous global coverage and positioning service for all 
points on Earth.

• the  user segment,  which refers to receiver devices that receive and decode the 
signals transmitted by GNSS satellites.  A GNSS receivers is  able to process the 
information contained in the GNSS messages and eventually calculate its position on 
earth and the current time, by solving a nonlinear system of equations (described 
bellow).

• the  control segment that is operated by the owner of each GNSS constellation 
and is concerned with maintaining the system's fidelity and uninterrupted operation 
of the system.

GNSS operation

The GNSS receiver acquires and decodes the signals transmitted by each satellite, in order 
to  obtain  the time of  signal  transmission  ,  the carrier  signal  frequency   and the 
Doppler frequency shift  . The signals also contain information about the satellite's 
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orbit, so its position at the time of signal transmission, , can be calculated.

Given the above data, the pseudorange for the  satellite, which is related to the distance 
the signal has traveled from the satellite to the receiver's antenna, can be defined as

(1.34)

where  is the speed of sound and  is the time of signal arrival (which is unknown, yet).

Furthermore, the pseudorange rate, which is related to the receiver's and the satellite's 
relative velocity is

(1.35)

The receiver's position   in the ECEF frame is now related to the above measurable 
quantities using the nonlinear equation

(1.36)

where  is the receiver's clock offset and  is a residual error. In the above equation, 
the satellite's position  is calculated using the transmission time  and the known orbit 
characteristics. 

The transformation matrix   is used to compensate for the Earth's rotation during the 
signal transmission from the satellite to the receiver.

Similarly,  the pseudorange rate is related to receiver's velocity   in the ECEF frame 
through
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(1.37)

where  is the unit vector from the  satellite to the receiver's antenna and the  is 

used to compensate for the Earth's rotation.

In equation (1.36) there are four unknowns, the three dimensional position   and the 
time of signal arrival . Therefore, in order to solve it, at least data from four satellites 
are needed. The same is true for the velocity equation (1.37). 

GNSS and IMU integration

There are two ways in literature to handle GNSS equations (1.36) and (1.37) is a state 
estimation framework where inertial sensors are utilized as well [4], [3]. The first is referred 
to as “tight integration” and it involves using equations (1.36) and (1.37) inside a Kalman 
Filter  (Chapter  2)  that  estimates  all  the  above  unknowns,  along  with  all  the  other 
kinematic quantities of interest. The second approach or the “loose integration” scheme lets 
the GNSS receiver do this job and utilizes the computed position and velocity output. 
Tight integration can provide better performance but complicates the estimation algorithm 
very much and increases its computational cost considerably. Loose integration can provide 
results with acceptable accuracy for most small UAV applications, especially when used in 
an augmented GNSS environment (section 1.5.2.2) and this is the approach used in this 
text.

GNSS errors

Many error sources that contribute to GNSS positioning and velocity errors, of which the 
most prominent are [4]

• signal propagation delays, which result in local perturbation in the ionosphere and 
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the atmosphere that cause delays in the transmission of the GNSS signals

• clock errors, which refer to inconsistencies in the clocks used onboard the GNSS 
satellites

• receiver errors, which arise from the hardware used in GNSS receivers and are more 
common in lower cost receiver solutions

• multipath, which is caused by the local environment of the GNSS receiver that may 
reflect or degrade the GNSS signals coming from the satellite constellation

• selective availability, which consists of random errors in the GNSS system imported 
deliberately by the operating authority to hinder the use of the GNSS positioning 
service. Selective availability was used in the initial years of the GPS but it was 
disabled later in the 2000s.

GNSS today

Currently, two GNSS systems are fully operational, providing global coverage; the Global 
Positioning System (GPS), operated by the United States, and the GLObal NAvigation 
Satellite System (GLONASS), operated by the Russian Federation. Due to the difference in 
the Earth models and the time used in the two systems, they are not interoperable with 
each other as each system will calculate a different position for the same point on Earth. 
This text will only deal with the Global Positioning System and WGS84 Earth modeling. 
Dual GNSS implementations are, though, possible and rather interesting from a safety and 
redundancy point of view, however the appropriate transformation from each datum and 
vice versa must be taken care of, as well as the time difference, in the integration software 
[3].

1.5.2.1 Global Positioning System (GPS)

The Global Positioning System (GPS) is the most widely used GNSS service worldwide. It 
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is designed and operated by the United States.

The accuracy of GPS for positioning is in the range of a couple of meters for the majority  
of  scenarios (with selective availability turned off).  Receivers  with quality hardware in 
standalone operation (without augmentation) can achieve a 3 to 5 meters 95% positioning 
accuracy.

1.5.2.2 GPS augmentation

The performance of any GNSS system can be greatly enhanced if used together with a 
GNSS augmentation service. GNSS augmentation refers to various methods that attempt 
to compensate for the GNSS errors on a local basis. All error sources listed previously can 
be compensated with the various GNSS compensation schemes, except for receiver errors 
and multipath. GNSS augmentation can increase the accuracy of  GNSS positioning to 
about one meter or even more.

Some GNSS augmentation schemes are tailored to cover a large area and they operate 
through  satellites  or  ground  stations  that  broadcast  correction  messages  that  contain 
information about the errors for each satellite (in particular, they contain corrections for 
each pseudorange for the visible / usable satellites). The rest of the GNSS augmentation 
techniques cover smaller areas of interest. In any case, the GNSS receiver used must be 
able to import and decode the correction messages send by the augmentation stations.

A GNSS augmentation technique which is suitable for the operation of small  UAVs is 
Differential GPS  (DGPS). DGPS, which is a local augmentation technique for GPS is 
based on the principle of one or more special stationary receivers that given their known 
position, they solve the inverse of equation (1.36) in order to obtain the pseudorange and 
clock residuals. At each iteration, the results are transmitted to the DGPS capable moving 
receivers that incorporate them to their calculations. DGPS offers the maximum possible 
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accuracy for positioning (in the decimeter range) and one station can cover an area of a 
couple  of  kilometers  around  it  (of  course,  there  is  a  need  for  an  equally  capable 
communication link to transmit the correction results to the nearby nonstationary GPS 
receivers).

1.5.3 Compass – Magnetometer

A compass measures the aircraft's magnetic heading. The magnetic heading  is different 
from the true heading  (also referred to as yaw) which is the bearing to the Earth's North 
pole and is the quantity of interest for use in navigation. The difference between the true 
and the magnetic heading is the magnetic declination , and it is heavily influenced from 
local fluctuations in the Earth's magnetic field.

The World Magnetic Model [24] provides a global approximation of the Earth's magnetic 
field components and other relevant quantities, including the magnetic declination, as a 
function of position and time (the date, actually), .
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Using the convention that the magnetic declination is positive when the direction to which 
the compass points (the magnetic North) is west of the true North, the true heading is 
given by

(1.38)

If a three axis magnetometer is used instead of a compass, as it is the case in many small  
UAVs that include a magnetometer inside the Inertial Measurement Unit, the magnetic 
heading is given by

(1.39)

where   and   are the magnetic field measurements along the body frame's   and   
axes respectively (we assume that the magnetometer's axes are aligned with the respective 
body frame axes).

The magnetic heading output, if obtained as described bellow, should not be used in cases 
when the roll and / or pitch angle exceeds a value of about  as the Down component of 
the Earth's magnetic field will be accounted for in the measurements along the body frame 
axes  and , degrading the result.
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Chapter 2

State Estimation Theory Review

This chapter is concerned with the mathematical theory of state estimation. The objective 
of state estimation is to approximate the state of a dynamical system, taking into account 
the  modeled  system  dynamics,  known  system  inputs  and  any  available  noisy 
measurements. State estimation for linear systems is considered in section 2.2 where the 
linear  Kalman Filter  is  described.  In  Section  2.3  nonlinear  systems  are  discussed;  the 
Extended Kalman Filter and the Unscented Kalman Filter are presented in sections 2.3.1 
and 2.3.2 respectively. 

2.1 System description

Due to the fact that state estimation algorithms are almost always implemented in real 
time as an integral part of digital control systems, here we only refer to their discrete time 
formulation.

Let  be an  state vector to be estimated, with its dynamics given by the nonlinear 
system ,

(2.1)
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where   is a   vector of known system inputs and   is a   white Gaussian 
noise vector with covariance   accounting for process noise.  In most state estimation 
solutions, the process noise accounts for unmodeled system dynamics. Equation (2.1) is 
referred to as the process model, in the state estimation context.

We suppose that a set of measurements are available that are related to the system's state 
through the nonlinear measurement equation

(2.2)

where   is an   measurement vector and   is an   vector of white Gaussian 
noise with covariance  accounting for sensor noise.

State estimation algorithms provide an estimate of the state vector, noted  , using the 
available measurements  and taking into account the systems dynamics , as given by 
(2.1). As [5] points out, this estimate should be unbiased (  should equal  ), of 
minimum  error  variance  (  where   is  the  error)  and  consistent 

(converging to the true value with more measurements). In the case of linear systems, the 
above  three  requirements can be fulfilled  through an optimality  criterion,  yielding the 
optimal Kalman Filter. In nonlinear systems, there is no way to come up with an optimal 
estimator as the statistics a random variable undergoing nonlinear transformations cannot 
be approximated by its  mean and covariance only;  we rely on certain  approximations 
instead.    

2.2 Linear state estimation – the Kalman Filter

The Kalman Filter has been proposed by R.E. Kalman in 1960 in [9]. Other references are 
[5], [6] and [10]. The development of this section follows the Kalman Filter derivation as 
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presented in [5].

Equations

In the special case where the process and measurement models are linear, they can be 
written respectively as

(2.3)

and

(2.4)

where   is an   matrix,   is an   input coupling matrix and   is an 
 measurement matrix.

A basic assumption of the Kalman filter is that the process and the measurement noise are 
uncorrelated, 

(2.5)

In order for the estimation process to be viable given the time and memory restrictions 
imposed by real time applications, a solution of linear recursive form is sought, namely

(2.6)

where  and  are matrices to be determined. The a priori  symbol refers the value 
of the respective quantity (here the state vector) before a measurement is taken, while a 
posteriori   is  used  to  refer  to  the  value  after  a  measurement  has  been  taken  and 
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processed. It should be noted that equation (2.6) is a linear combination of the a priori 
state and the newest measurement – there is no need to store and process past states and 
measurements.

The state estimate can be written as a sum of the real value and an error term,

(2.7)
Using (2.6), equation (2.7) becomes

(2.8)

Now, incorporating the measurement model (2.4) we get an expression for the estimation 
error,

(2.9)

Due to the requirement for an unbiased estimate,   and  . Since 
also  (due to the definition of  as white Gaussian noise), we get

(2.10)

The estimate and its error become, respectively,

(2.11)

(2.12)

Defining the covariance of the estimate as the expected value of the estimation error, 

(2.13)
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we obtain the following expression for the a posteriori covariance

(2.14)

Taking into account that the estimation error and the measurement noise are uncorrelated,

(2.15)

The optimal Kalman gain matrix   is obtained through the minimization of the cost 
function

(2.16)

Setting

(2.17)

yields

(2.18)

The a posteriori mean is 

(2.19)

An alternative, simpler form for   is suggested by [5],
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(2.20)

Using the above expression for , the a posteriori covariance is given by

(2.21)

Finally, by using the process model (2.1) it is possible to obtain the a priori (predicted) 
state and covariance,

(2.22)

(2.23)

Summary

Summarizing,  the  Kalman  Filtering  process  for  the  optimal  state  estimation  of  linear 
systems  can  be  broken  up  in  two  parts,  prediction  and  correction.  For  a  Gaussian 
distribution, the mean and the covariance uniquely determine the distribution itself. The 
Kalman Filter provides a way to transform the distribution using the linear process and 
measurement  models;  due  to  the  linearity  of  the  equations,  the  distribution  remains 
Gaussian and the state estimation solution is optimal and unique.

In the prediction step, the process model is used to propagate the state vector  into 
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time yielding , using the known system dynamics  and the deterministic inputs 
. Its covariance  is also calculated, using the previous covariance value , 

the  system dynamics   and the  known process  noise  covariance  matrix  .  The 
prediction step can be repeated as many times as a prediction of the state is needed, 
although  in  any  practical  application  the  presence  of  process  noise  will  render  the 
prediction highly inaccurate in a number of iterations if no measurements are available.

The measurement update step, which is invoked after the prediction step and whenever 
there are measurements  available, involves the computation of the Kalman gain matrix 

 which is  subsequently used to correct  the predicted state estimate and covariance, 
yielding  and .

2.3 Nonlinear state estimation

In  the  nonlinear  case,  the  system is  described  as  in  section  2.1.  Now the  probability 
distribution of the state vector is not always Gaussian, thus it cannot be described fully by 
its first two moments (mean and covariance). Higher order moments may have significant 
effects  on the distribution.  Furthermore,  the process  and measurement models  are not 
necessarily in closed form, so they may have to be approximated to be used in a state 
estimation framework. In any case, there is no unique, optimal solution to the nonlinear 
state estimation problem.

Two solutions for nonlinear state estimation are presented here. The Extended Kalman 
Filter, which is a derivative based method that linearizes the process and measurement 
models,  attempting  to  approximate  the  respective  nonlinear  transformations,  and  the 
Unscented  Kalman  Filter,  which  follows  a  different  approach  by  approximating  the 
probability distribution function before and after the nonlinear transformations, applying 
the nonlinear models in a black box way.
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2.3.1 Extended Kalman Filter

This section follows the Extended Kalman Filter (EKF) presentation found in [5] and [7]. 
We consider a system with process and measurement models of the form

(2.24)

(2.25)

where  and  are nonlinear functions of the system's state, while   and  are white 
Gaussian noise vectors with covariance  and  respectively. 

Note that the system formulation used here to present the EKF doesn't include known 
inputs. Inclusion of known inputs   will be covered in the next section discussing the 
Unscented Kalman Filter.

The prediction step of EKF involves propagating the state using the nonlinear process 
model,

(2.26)

and predicting the measurement that would correspond to the propagated state ,

(2.27)

The nonlinear process model now is linearized around the previous estimate,

(2.28)
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The superscript in  indicates the order of the linearization. It is also possible to derive 

the EKF using higher order linearizations as in [5].

The a priori covariance can now be calculated, concluding the prediction step,

(2.29)

If measurements are available, the measurement model is similarly linearized around the a 
priori state mean, yielding the Jacobian matrix

(2.30)

in order to calculate the Kalman gain

(2.31)

It should be noted here that the Kalman gain equation is rather similar to that of the 

linear Kalman Filter (2.18), as the Jacobian of the measurement model  takes the place 
of the measurement matrix .

Again, in a similar way with the Kalman Filter, the a posteriori mean and covariance are 
given by

(2.32)

(2.33)
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2.3.2 Unscented Kalman Filter

In contrast to the EKF, the Unscented Kalman Filter (UKF) attempts to approximate the 
statistics of the random variable before and after the nonlinear transformation, instead of 
approximating  the  nonlinear  transformations  themselves  through  linearizations.  It  is  a 
derivative  free  method,  as  no  calculation  of  Jacobian  matrices  is  required.  The  most 
comprehensive reference for the UKF is the review [11] prepared by its original authors. 

2.3.2.1 State prediction

The  UKF  is  based  on  a  deterministic  sampling  principle  that  utilizes  a  Cholesky 
decomposition of the state covariance matrix. Taking the state vector with mean  and 
covariance , a set of weighted state vectors called sigma points are generated around  
so that they have mean  and covariance . Each of the sigma points is then propagated 
in time using the nonlinear process model   and subsequently the a priori  mean and 
covariance are calculated. This procedure, which concludes the prediction step, is known as 
the Unscented Transform (UT). The UT offers second order accuracy in the calculation of 
the state vector first moment (mean) and first order accuracy in the second order moment 
(covariance).  According  to  [11],  some  information  about  the  random variable's  higher 
moments can be captured under specific distribution assumptions and appropriate sigma 
point weighting, however we will not elaborate further on that.

2.3.2.2 Measurement update

In  the  measurement  update  step,  which  is  invoked  whenever  there  are  measurements 
available, the sigma points are used similarly in an Unscented Transform sense but with 
the nonlinear  measurement model   this  time,  in order  to predict  the mean and the 
covariance  of  the  upcoming measurements.  After  the  calculation  of  the  system's  cross 
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covariance matrix, the Kalman gain is obtained as a function of the cross covariance and 
the  measurement  covariance  matrices.  The  a  posteriori  state  update  is  given  by  an 
equation similar to that of the original Kalman Filter and the Extended Kalman Filter; 
however the predicted measurement is replaced by the weighted mean of the predicted 
measurements set.

2.3.2.3 Computational cost considerations

The most computationally intensive elements of the UKF algorithm in comparison with the 
linear Kalman Filter and the Extended Kalman Filter are the process and measurement 
models function evaluations required during the Unscented Transforms and the Cholesky 
decomposition involved in the sigma point generation. However, as the sigma points are 
sampled in  a deterministic  way and not  in  random (as would be the case  in  particle 
filtering) their number is eventually low (  or  , where   is the state vector's 
length),  keeping  thus  the  number  of  process  model  and  measurement  model  function 
evaluations required low enough not to prohibit real time implementation. In navigation 
applications,  like  the  aircraft  state  estimation  problem  addressed  here,  the  UKF's 
computational cost is considered to be of the same order of magnitude with that of the 
EKF [18]. 

2.3.2.4 Implementation equations

Since the UKF algorithm was first presented, various improvements have been proposed by 
the two original authors. A complete discussion on the UKF and all the available options 
can be found in [11]. The most suitable version for the aircraft state estimation problem 
addressed  later  is  chosen  and presented  here.  In  particular,  two sigma point  selection 
strategies  are  presented,  a  scaled  symmetric  sigma  point  selection  scheme  [11]  and  a 
simplex sigma point selection scheme [11], [12] that produces almost half the sigma points 
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than the former but still captures the first two moments of the random variable, offering a 
great computational advantage for real time implementation. Secondly, an augmented state 
vector approach is used, incorporating the process and measurement noise into the state 
vector. That way it is possible to compensate much better care for noise,  even in the 
system's inputs. 

The system is described by the process model

(2.34)

and the measurement model

(2.35)

It  should be noted here that the process  and measurement noise  vectors  need not be 
additive as in the linear Kalman Filter of Extended Kalman Filter equations; this UKF 
model formulation allows for multiplicative noise to be treated as well.

For this purpose, we define the augmented state vector

         (2.36)

where  is the state vector to be estimated and whose dynamics are given by (2.34) and 

 is  the  noise  part,  containing  the  zero  mean  Gaussian  process  and 

measurement noise.
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As mentioned before, the UKF is based on a deterministic sampling of “sigma points”. The 
sigma points can be thought of as a set of disturbed state vectors that have the given mean 
and covariance. 

Symmetric sigma points

Given the previous state estimate   and its covariance  , the symmetric 

sigma point set consists of   weighted “state vectors” scattered around the zeroth 
sigma point , where  is the length of the augmented state vector,

   (2.37)

The weight  of the zeroth sigma point can be adjusted to tune the algorithm, while the 
weight of the other sigma points is 

(2.38)

The scalar factor  is given by

(2.39)

In (2.37),    refers to the   column of the matrix square-root, as this is 

given by the lower Cholesky factorization of the form  . If the upper Cholesky 
factorization is used, namely  , the   row of the matrix square-root is  taken 
instead.

The weights can be any real number, however, 
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(2.40)

must hold for an unbiased estimate [11].

Spherical simplex sigma points

The  spherical  simplex  sigma  points  selection  algorithm  offers  an  alternative  way  to 
generate  sigma  points  that  produces  only   sigma  points,  greatly  reducing  the 
computational cost of the upcoming estimation operations. The spherical simplex points lie 
on a hypersphere centered around the zeroth point. The have been proposed in [12].

Without loss of generality, we consider a system with mean  and covariance .

The weight of the zeroth point is chosen in the  range,

(2.41)

Using , the weights for the rest of the sigma points are calculated,

(2.42)

For the purpose of deriving the spherical sigma points, a special notation will be used in 
this section only: sigma points will be denoted as , where the superscript  refers to the 
system's size (it equals ), while the subscript  runs from  to .

Three points are defined as
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(2.43)

The sigma points are then expanded as follows for 

(2.44)

The sigma points set generated here for the zero mean case is transformed for the case 
with arbitrary mean  and covariance  using

(2.45)

State prediction

After generating the sigma points with any of the available selection algorithms, we apply 
the process model to every sigma point, yielding

(2.46)

Using the propagated sigma point set  the a priori mean is calculated 

(2.47)

while the a priori covariance is given by
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(2.48)

The state prediction procedure, as well as all the next UKF operations are independent of  
the sigma point generation algorithm used. The only thing that differs according to the 
generation  algorithm selected  is  the  summation  index  limit  in  all  equations  involving 
summations (like (2.47) and 2.48)). Here, without loss of generality, we assume that the 
spherical simplex sigma point algorithm has been selected, so .

Measurement update

Since  the process  model  yields only the unaugmented state vector  part,  the predicted 
augmented sigma point set is assembled manually as

(2.49)

The measurement model  is  used on each propagated sigma point  to produce a set  of 
predicted measurements,

(2.50)

Now the predicted measurement mean and covariance can be similarly calculated,

(2.51)

(2.52)

The cross covariance is given by
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(2.53)

and it is used to calculate the Kalman gain, 

               (2.54)

Finally, the state and the covariance are updated using the familiar equations

(2.55)

and

(2.56)
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Chapter 3

Mathematical Problem Statement

After reviewing the general requirements of state estimation for small unmanned aircraft 
and the mathematical fundamentals and interrelations of the estimated quantities (Chapter 
1), as well as the main state estimation solutions for linear and nonlinear systems (Chapter 
2), we are now in a position to define the state estimation problem in a more rigorous way.

The  quantities  that  should  be  estimated  are  the  aircraft's  attitude  quaternion  ,  its 
curvilinear position  and its NED velocity . Thus, the state vector of interest is 

(3.1)

Equation (1.20)  is  the continuous time propagation equation for the quaternion,  while 
(1.29)  is  the  continuous  time  propagation  equation  for  curvilinear  position.  The  time 
propagation of the NED velocity is given by

(3.2)



58 Mathematical Problem Statement

where  is a function of the attitude , as given by equation (1.19).

Equations  (1.20)  (1.29)  and  (3.2)  will  be  used  to  derive  the  discretized  estimator's 
nonlinear process model, which will use as inputs the gyro measurements of body frame 
angular velocity   and acceleration  . However, the measurements of the gyro and the 
accelerometer are both noisy and biased (section 1.5.1) so we must compensate for these 
two effects before using the measurements as inputs to the process model.

The measurements that can be used in the measurement update step are the magnetic 
heading as given by the compass or the magnetometer (section 1.5.3) and the position and 
the velocity given by the GNSS receiver (section 1.5.2). If the compass / magnetometer is 
embedded into the IMU containing the gyros and the accelerometers, its output will be 
available  concurrently  with  the  estimator's  inputs,  so  at  every  cycle  the  compass 
measurement model will be invoked. GNSS receivers typically produce output at a much 
lower  frequency  than IMUs (5-10  Hz  for  GNSS vs.  100  Hz  for  IMUs),  so  the  GNSS 
measurement model will be invoked at more infrequent intervals.

As mentioned previously in Chapter 1, one can integrate the IMU and the GNSS in the 
“tight”  way,  using  the  GNSS receiver's  pseudoranges  to  solve  the  respective  equations 
(section  1.5.3)  in  a  state  estimation  framework.  The  alternative  approach,  or  “loose” 
integration is to use the position and the velocity computed by the GNSS receiver, without 
interfering with the internal GNSS operations. The latter approach is followed here.

The small aircraft state estimation problem is highly nonlinear (there are nonlinearities 
both in the process and the measurement models) and a solution using the Unscented 
Kalman  Filter  will  be  described  next.  However,  as  the  state  vector  contains  both 
constrained  quantities  ( )  and vector  quantities  ( ,  )  the  Unscented  Kalman 
Filter has to be modified for this particular problem. The quaternion part of the state 
vector will be updated in a multiplicative manner, while its covariance will be expressed in 
terms of a rotation vector, using one less dimension; the non quaternion part of the state 
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vector will be treated normally, as in the equations of Chapter 2. It should be emphasized 
here that although the two parts of the state vector are treated differently, this happens 
concurrently and the attitude estimation is not decoupled from the estimation of position 
and velocity. To allow for a better and more intuitive presentation of the separation of 
constrained and vector quantities, the attitude estimation case will be considered first in 
Chapter 4. The full state estimation case with the state vector (3.1) will be presented next 
in Chapter 5, building on the method presented in Chapter 4.

More details on the implementation of the Chapter 5 algorithm follows in Chapter 6, along 
with simulation results and a discussion.
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Chapter 4

Attitude Estimation

This chapter deals with the estimation of the aircraft's attitude in an Unscented Kalman 
Filtering framework. First of all, the shortcomings of the standard UKF formulation that 
result  from  the  attitude  quaternion  representation  and  from  the  presence  of  circular 
measurements  are  discussed  and  the  respective  solutions  are  presented.  In  the  next 
sections, the process and measurement models used are described. Figures presenting the 
attitude estimation results are provided in Chapter 6.

4.1 Estimation strategy

The quantity to be estimated is the attitude quaternion , thus it 

will  be included in  the state  vector  .  However,  since  in  all  small  unmanned aircraft 
applications the measurements are obtained from MEMS gyros, the gyro biases (section 
1.5.1) have to be estimated as well. The state vector will therefore be

(4.1)

Since we will  use a kinematic process model, the inputs of the estimator are the gyro 
measurements, namely
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(4.2)

which are considered a Gaussian random variable with covariance corresponding to the 
gyro noise. The subscripts  g1,  g2,  g3 correspond to the three sensitive axes of the gyro 
around which the rotational rates are measured. As pointed out in section 1.5.1, in general 
these axes do not precisely correspond to the axes of the body frame; however since the 
deviation is very small we ignore it for our application. Thus, we assume that

(4.3)

In section 4.4 the state vector  will be augmented to account for the gyro input noise as 
well, in accordance with the UKF formulation presented in section 2.3.2.

As far as measurements are concerned, there are two approaches followed in literature and 
in practice. The first one uses a 3D magnetometer or, equivalently, a compass in order to 
obtain the magnetic heading. The true heading (yaw) can be calculated subsequently from 
the magnetic heading after accounting for the magnetic declination through the World 
Magnetic Model [24], as in section 1.5.3. The second approach deals with vector matching 
[19], [20]. Vector matching uses measurements and reference values of the magnetic field 
and the gravitational field of the Earth to provide measurement equations for use in the 
UKF  framework.  The  gravitational  field  measurements  are  obtained  through  the 
accelerometers'  specific  force  output,  after  filtering  out  the  acceleration  by  velocity 
differentiation.  Here  a  significant  issue  arises,  as  in  highly  dynamic  conditions,  it  is 
impossible  to  sufficiently  isolate  the  gravity  terms  in  the  accelerometer  measurement; 
resulting in poor attitude estimation. 
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To avoid imposing any limits in the vehicle's maneuverability, it has been decided to follow 
the compass approach, relying only on the magnetic heading measurement. The results 
presented in Chapter 6 show that this successfully bounds the attitude estimation error.

4.2 Handling the attitude quaternion

Reviewing the UKF algorithm, one can easily see that many of the operations involved, 
like the calculation of the a priori mean and covariance, the state update, etc. involve 
summations and subtractions that are only valid for a vector space. Although this may be 
the case for the vast majority of state estimation applications, like in the estimation of 
range or velocity of targets, it doesn't hold for the attitude estimation case; the attitude 
quaternion is not a vector quantity since it is constrained (unity norm constraint) in the 
Special Orthogonal group (3) – SO(3) as it is shown in section 1.3.2. As a result, the 
various operations of  the UKF cannot be applied when the attitude quaternion is the 
estimator's state vector or part of it.

By referring to  the definition of  the attitude  quaternion  (section 1.3.2),  we note  that 
although it consists of four parameters, it obeys a normalization constraint, limiting thus 
its degrees of freedom.  The attitude quaternion has three degrees of freedom, as many as 
the three components of the rotation vector  in equation (1.13). 

Following a similar approach to [15], [16] and [17], and taking into account the limited 
degrees of freedom of the quaternion that actually correspond to a rotation vector, the 
following modifications are made to the UKF algorithm in order to handle the quaternion:

• The covariance of the quaternion is expressed in terms of a rotation vector , using 
three parameters. Thus, the covariance matrix for a quaternion random variable has 
dimension .
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• The quaternion update is facilitated in a multiplicative manner, through quaternion 
premultiplication with a correction quaternion term that corresponds to a correction 
rotation vector  calculated using the standard Kalman gain equations.

• If the state vector consists of both a quaternion and other terms that are vector 
quantities, each part is handled separately; the quaternion part is updated using the 
special method outlined above, while the vector part is treated in the usual UKF 
way.

The quaternion treatment is presented in detail in section 4.4.

4.3 Handling magnetic heading measurements

The heading angle is a circular quantity with obvious periodicity (for example  equals 
, etc.). Therefore, first of all there is a need to define the range to work with heading. 

Here we choose .

Regardless  of  the  chosen  heading  range,  the  averaging  operation  of  the  UKF (section 
2.3.2.4) can easily fail, as for example the mean of  and  is , while the usual 
averaging equation would produce a totally incorrect result, as  . The 
same  condition  can  be  observed  around   if  the   heading  range  is  chosen. 
Similarly, the covariance calculation also fails around certain points.

For the above reasons, the mean and the covariance of the heading measurement cannot be 
calculated  using  the  standard  UKF formulas;  methods  from circular  statistics  [8]  are 
required.

The mean of  samples of a circular quantity  is given by
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(4.4)

For the weighted mean case, with weights  such that , the above equation is 
transformed into

(4.5)

Equations (4.4) and (4.5) resolve almost all periodicity issues. There is only one case in 
which they provide an ambiguous result, when there are two measurements that are  
apart. However, for the purposes of UKF state estimation where the averaging takes place 
in small area around the mean this is impossible to happen, because it would require a 
very big value for the covariance matrix entries to scatter predicted heading measurements 
that  far  apart  and  that  covariance  matrix  would  have  already  rendered  the  system 
inoperable.

Circular statistics provide only dimensionless measures of dispersion, so a custom solution 
for the covariance calculation is needed, obtained through subtraction and expressed in 
degrees or radians. Equation (2.52) of the UKF requires the calculation of the distance of 
each sigma point  from the mean . As far as the heading is concerned, this distance is 
given by 

(4.6)

Depending on the resulting value of , a correction is made to resolve the periodicity issue 
and provide a result in the  range,

• if , then 

• if , then 
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4.4 Process model

The augmented state vector is

(4.7)

where  is the zero mean Gaussian noise part containing the gyro 

and the magnetometer noise components, as well as the gyro bias parameter , and  
corresponds to the state vector that it is of interest to be estimated, as given in equation 
(4.1).

The process model has the form , as the noise terms are not propagated.

The  quaternion  propagation  equation  in  continuous  time  is  given  in  section  1.3.2.  Its 
discrete time equivalent is

(4.8)

where  is the discretization interval with
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(4.9)

where
(4.10)

in order to compensate for the gyro measurement noise.

Equation (4.8) utilizes the exponential matrix; a more numerically efficient implementation 
that makes use of the special form of  is given in [2].

The gyro biases are propagated according to 

(4.11)

This  concludes  the  process  model  for  the  attitude  estimation  case,  which  consists  of 
equations (4.8) and (4.11).

4.5 Measurement model

The measurement model has the form   and relates  the system's state to the 
magnetic heading, as the magnetic compass is the only sensor used in the measurement 
update of the attitude estimation case.

So,



4.5 Measurement model 67

(4.12)

with

(4.13)

where   is the magnetic declination, obtained from the World Magnetic Model [24]. 
The magnetic declination is a function of the vehicle's position , however in the attitude 
estimation case examined in this chapter the aircraft's position is not included in the state 
vector and thus it  is  not estimated. As the magnetic declination is a slowly changing 
quantity (taking into account the usual speed range for the aircraft class considered here) 
we can assume that a low frequency, noisy position measurement from a GPS receiver 
(with few meters accuracy) is more than sufficient for the calculation of . In the more 
complete, full state estimator presented in the next chapter this issue is solved by including 
the position in the estimator's state vector. If there is no GPS receiver available at all and 
an attitude estimate is still needed,  can be obtained offline from the World Magnetic 
Model beforehand, assuming it to be constant for the duration of the flight.

4.6 Attitude estimator equations

Here the complete Unscented Kalman Filter attitude estimation algorithm is presented. 
The spherical simplex sigma point selection algorithm is used to reduce the computational 
cost. For better clarity of the special treatment of the quaternion part of the state vector, 
we will use the notation
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(4.14)

separating the quaternion  from the vector part  of the state vector.

4.6.1 Spherical sigma points generation

Given  the   vector   containing  the  previous  estimate  and  its   

covariance matrix  (the quaternion covariance is expressed in terms of a rotation 

vector, hence the reduced dimension covariance matrix) the spherical simplex sigma points 
are generated as follows:

The augmented covariance matrix is assembled, using the known measurement and process 
noise covariance terms,

(4.15)

where  the    matrix  corresponds  to  the  process,  measurement  and input  noise 
covariance.

We calculate the lower Cholesky factor  of the augmented covariance, through the lower 
Cholesky decomposition,

(4.16) 
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The zero mean / unit covariance spherical sigma points   are generated as described in 
section 2.3.2.4 for  (equations (2.41)-(2.44)).

Then, to get the sigma points set that have mean  and 

covariance , for each  column ( ) of the zero mean / unit 

covariance  spherical  sigma points  set   (calculated  by  the  algorithm given  in  section 
2.3.2.4) we do the following:

We calculate the term

(4.17)

where

•  is a rotation vector that corresponds to a quaternion   calculated using 

equation (1.13)

•  is a sigma point “scattering” term that corresponds to the vector part  of 

the system's state vector

•  is related to the noise part of the augmented state vector

The  sigma point's part corresponding to the quaternion is now updated as

(4.18)



70 Attitude Estimation

The above operation rotates the mean quaternion around each of  the deterministically 

sampled rotation vectors .

The vector part is treated using the typical UKF equations, as

(4.19)

and

(4.20)

The weights  of the sigma points  are given by equation 2.42.

4.6.2 State prediction

Using now the process model of section 4.5 on each sigma point   yields the predicted 
sigma points set,

(4.21)

where u is the input vector containing the measured angular rates.

The mean of the predicted sigma points is calculated separately for the quaternion and the 
vector parts. The mean quaternion according to [17] is given by
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(22)

while the mean for the vector part of the state vector is

(4.23)

For the calculation of the covariance, we have to reduce the sigma point quaternions to 
rotation vectors. We find the quaternion  which corresponds to the rotation between 
the  sigma point quaternion and the mean predicted quaternion ,

(4.24)

where  refers to the quaternion inversion operation as given by equation (1.15).

Using  equation  (1.13)  we  find  the  rotation  vector   that  corresponds  to  the   

quaternion.

Now, as far as the non quaternion part of the sigma points set is concerned, we find its 
difference from the previously calculated predicted mean ,

(4.25)

Combining the calculated difference terms in one vector,
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(4.26)

the covariance matrix is given by 

(4.27)

4.6.3 Measurement prediction

As the noise part of the sigma points is not propagated, but it is used in the measurement 
prediction step, we manually assemble the new augmented sigma point set, containing the 
propagated part   and the previously generated noise part  , as in equation 

(2.49),

(4.28)

The measurement model of section 4.5 is used on each predicted sigma point   to 
yield the corresponding predicted measurement vector ,

(4.29)
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Here there is only one measurement (heading), however in general  is a vector, as 
will be the case in the next Chapter where multiple sensors may produce output in the 
same measurement update cycle.

According to section 4.3, the mean and the covariance of the heading are calculated using 
equations (4.5) and (4.6).

Therefore the mean is

(4.30)

and the covariance

(4.31)

where the difference  is the angular difference of the  predicted measurement from the 
mean measurement prediction, as given by equation (4.6) to resolve the periodicity issues.

4.6.4 Cross covariance calculation

The cross covariance is given by
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(4.32)

where   is the difference of the   sigma point from the predicted mean, as given by 

equation  (4.26)  and   is  the  difference  of  the   predicted  measurement  from  the 
predicted measurement mean, as given by (4.6).

4.6.5 Kalman gain and state update

The Kalman gain is 

(4.33)

The state update is facilitated separately for the quaternion and the vector part of the 
state vector.

The Kalman gain can be divided in two parts,  that corresponds to the quaternion part 
and  that corresponds to the rest of the state vector,

(4.34)

As far as the quaternion is concerned, a correction rotation vector is calculated using the 
Kalman gain and the actual measurement vector ,

(4.35)
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The angle subtraction above must be facilitated as in section 4.3 due to the heading angle 
periodicity  issues.  This  rotation  vector  corresponds  to  a  quaternion   given  by 
equation (1.13). Now the quaternion part of the predicted mean state vector is updated in 
a multiplicative manner,

(4.36)

The rest of the state vector is updated using the standard UKF equation,

(4.37)

where again the angle subtraction must follow section 4.3.

4.6.6 Covariance update

The covariance is updated by

(4.38)
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Chapter 5

Full State Estimation

This chapter deals with the estimation of the aircraft's position and velocity, in addition to 
its attitude, using accelerometers and gyroscopes as inputs, and GNSS and compass output 
as  measurements  in  an  Unscented  Kalman  Filtering  estimation  framework.  Since 
accelerometers and gyroscopes can exhibit significant biases, these biases will be part of the 
estimated state vector in order to be subtracted from the measured values before they are 
used as an input to the estimator.

The development of this chapter and the respective algorithm follows a similar approach to 
the previous chapter dealing with attitude estimation and the special treatment of the 
quaternion part of the state vector remains the same. It was chosen to present the attitude 
on its own in a separate chapter, to emphasize the quaternion handling in that more simple 
case.

The  state vector to be estimated in the full state estimation case is

(5.1)

To compensate for noise, we define the  noise state vector,

(5.2)
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where each term is Gaussian white noise with mean 0 and the respective covariance.

Again, the state vector  is split into the quaternion part  and the vector part  to 
allow for separate treatment of the attitude quaternion.

5.1 Process model for full state estimation

The discrete process model for the curvilinear position  is

(5.3)

where T is the discretization interval. Equation (5.3) is a first order discretization of (1.29).

The NED velocity is propagated according to

(4.4)

where  is the accelerometer measurement and  is the gravity vector calculated using the 
WGS84 model [23].

The accelerometer biases are propagated as the gyro biases in section 4.4. The attitude 
quaternion is also propagated as in section 4.4.
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5.2 Measurement model for UKF full state estimation

In the full state estimation case the sensors used are the compass (as in Chapter 4) and the 
GNSS / GPS receiver that provides measurements of the aircraft's position and velocity. 

The compass measurement model has been discussed in section 4.5.

The GNSS measurement model for position and velocity is

(5.5)

(5.6)

where  is the GPS antenna lever arm in body frame axes (this should be taken into 
account  when  the  lever  arm  is  large  compared  to  the  specific  GNSS  configuration 
accuracy).

Depending on the measurements available at every instance, the appropriate combination 
of models is used to assemble the predicted measurements vector.

5.3 Full state estimation algorithm

The estimation algorithm for the full state case is identical to the one presented in section 
4.6 for the attitude case, if the appropriate full state process model and the appropriate 
measurement models are used, of course. 

Care must be taken to correctly distinguish the quaternion and the vector parts of the 
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state vector and the sigma points set.

5.4 A note on curvilinear position periodicity

Since the latitude and the longitude are circular quantities, they exhibit periodicity issues 
near the limits of their definition interval.

Longitude periodicity issues occur near the  East / West longitude area. In the unlike 
event that the unmanned aircraft in question operates near that meridian line, the UKF 
algorithm may fail as the respective covariance values will increase dramatically. If flying in 
this area is of interest to the algorithm's designer, the method of section 3.5 could be used 
at every operation involving the longitude to avoid any issues.

A  similar  problem  is  encountered  near  the  poles,  where  averaging  and  subtracting 
curvilinear coordinates may again cause a failure of the UKF algorithm. 
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Chapter 6

Implementation – Discussion

This chapter presents a modular implementation of the full state estimation algorithm 
developed in Chapter 5. In section 6.1 the various components and their interdependence 
are  presented.  Next,  the  initialization  of  the  estimator  is  dealt  with  in  section  6.2. 
Simulation results are provided in section 6.3 to verify the proposed estimator's accuracy. 
A discussion of the results and suggestions for further research follows, concluding the 
chapter.

6.1 Algorithm

The state estimation solutions presented in this text are of a recursive form, since only the 
mean and the covariance of the previous estimate are required at the beginning of every 
estimator iteration. A block diagram that shows the estimator's loop is provided next. All 
the blocks correspond to the respective equations found in Chapters 4 and 5, except for the 
algorithm's initialization which is discussed in the next section. The MATLAB function 
prototypes of the major components shown here are given in Appendix A. The source code 
files for the simulation example are included in the accompanying CD; alternatively, they 
can be obtained by contacting the author.
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6.2 Initialization

At the first iteration, the algorithm requires an initial value of the estimated quantities. 
This  chapter  presents  some  practical  solutions  to  the  initialization  problem,  for  both 
attitude and position.

6.2.1 Attitude initialization

For attitude initialization, usually averaging of the compass output for a couple of minutes 
is enough, since for most stationary aircraft, the roll and pitch angles are 0. Alternatively, 
if a three axis magnetometer is present, one of the attitude matching algorithms in [19] or 
[20] may be used, to solve the dual  vector field attitude matching problem, given the 
magnetic  field  measurement and the accelerometer's  specific  force output  (which for  a 
stationary or a slowly / steadily moving vehicle equals the gravity field components) and 
the known reference values (using the gravity [23] and magnetic field [24] models with the 
curvilinear position as input).

6.2.2 Position and velocity initialization

Position can be initialized by averaging the output of a GNSS receiver over a couple of 
minutes. The initialization period depends on the accuracy of the GNSS positioning output 
(Differential GPS systems, for example, already have a couple of decimeters accuracy so no 
lengthy averaging is necessary).

As far as the velocity is concerned, this can be also averaged from the GNSS velocity 
output,  although  almost  always  the  aircraft  remains  stationary  during  the  estimator's 
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initialization, so the North – East – Down velocity is 0.

6.2.3 In-flight restarts

In the event of a software / hardware malfunction, the estimator may have to be restarted 
in flight. For that purpose, it is sufficient to provide the last estimated quantities as initial  
values if the duration of the downtime hasn't been too long. UKF based estimators are 
robust in terms of initialization uncertainty [18].

6.3 Results

The following results correspond to the simulated flight of a small aircraft, using the full 
state estimation algorithm of Chapter 5.  The estimator runs at a frequency of 50 Hz, or 
equivalently  whenever  there  are  measurements  from the  IMU.  GPS measurements  are 
available every 5 cycles (at 10 Hz). 

The noise characteristics for the IMU inputs correspond to a very small, light and cheap 
MEMS  IMU,  with  standard  deviations   and  .  The 
magnetic compass noise is  and its measurements are available at 50 Hz.

As far  as  the  GPS receiver  is  concerned,  a  Differential  GPS setup is  simulated,  with 
 and .
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6.3.1 Attitude estimation results

We note that with the exception of the moments when the vehicle first starts to move, the 
estimate's error seems to behave well, being sufficiently close to zero.
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6.3.2 Position estimation results
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6.3.3 Velocity estimation results
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6.4 Discussion

In this  text,  a  solution to the state estimation problem for  small  unnamed aircraft  is 
presented and verified through a simulation example. The algorithm is based on a version 
of the Unscented Kalman Filter, modified appropriately to handle the attitude quaternion 
and heading measurements. The state vector is split in two parts, one that corresponds to 
the  quaternion  and  the  other  that  contains  vector  quantities.  The  quaternion  is 
transformed into a rotation vector  in  order to express  its  covariance,  while  a rotation 
vector is again used to update the quaternion part of the state, after the calculation of the 
Kalman gain. The vector part of the state vector is treated in the usual UKF way. The 
algorithm  is  simple  and  robust,  retaining  all  the  benefits  of  the  quaternion  attitude 
representation. 

Suggestions for further research include:

• comparison  of  this  estimator's  performance  with  an  Extended  Kalman  Filter 
solution, in terms of accuracy and computational requirements

• comparative development of a Central Differences based Kalman Filter ([21], [22]) 
which  bears  many  similarities  to  the  UKF  but  offers  greater  accuracy  in  the 
estimation of covariance

• derivation of safety limits for GPS denied operation

• verification of the estimator's performance through actual flight experiments
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Appendix A

Function Prototypes

The prototypes of the proposed algorithm's implementation functions are given here. The 
complete source code is included in the accompanying CD, or alternatively can be obtained 
by contacting the author.

These functions are called from the main loop (UKF_FG_estimator.m) to perform 
various operations described previously in this text.

[y] = process_model_full( x )

Full (attitude, position and velocity) kinematic and bias (gyros and accelerometers) process 
model for the augmented state vector. The inputs are the gyro and accelerometer output, 
which are a global variable in MATLAB for the purpose of this simulation, hence they are 
not provided as input to the function.

[Z,W,Wc] = QuatVSphericalSimplexSigmaPoints(x,P,W0)

Generates the Spherical Simplex Sigma Point set for noise augmented state vector x with 
covariance  P.  The  first  four  elements  of  the  state  vector  correspond  to  an  attitude 
quaternion. W0 is a free tuning parameter (see section 2.3.2.4) without noticeable effects in 
the results of the estimation algorithm, though.
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[Y_mean,Y,P,dx] = UnscentedTransformQuatV(X,f,Wm,Wc)

Propagates the sigma point set X with weights Wm (for mean) and Wc (for covariance), 
using the process model function handle f. Returns the propagated sigma point set Y and 
its mean Y_mean, their covariance and the difference dx of each sigma point from the 
mean (to calculate the cross covariance matrix later)

[yaw_pred_mean,yaw_pred,P,diff] = UnscentedTransformMYaw(X,f,Wm,Wc)

Predicts the magnetic heading measurements and the difference from their mean to assist 
in the cross covariance calculation later. The measurement model handle f is used.

[meas_pred_mean,meas_pred,P,diff] = UnscentedTransformMFull(X,f,Wm,Wc)

Predicts  the  full  measurement  set  (magnetic  heading,  GPS  position  and  velocity), 
according to the measurement model handle f.

[pred_meas] = measurement_model_full(x)

Measurement  model  for  the  compass  + GPS measurement case,  taking  an augmented 
vector as input.

[pred_meas] = measurement_model_MH(x)

Measurement model for the compass case, taking an augmented vector as input.

[ a_avrg ] = angle_avrg( a,W )

Calculates the weighted (W) average of a vector of  angles (a)
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[ a ] = angle_diff( a1,a2 )

Calculates  the  difference  in  rad  between  2  angles  taking  into  consideration  the  angle 
periodicity on a circle

[ R ] = Rbn( q )
 
Quaternion rotation matrix (body to NED)

[ f ] = quat_findrotation_custom( q )

Finds the rotation vector corresponding to the given quaternion

[ dq ] = quat_rotation_custom( f )
 
Finds the quaternion corresponding to the given rotation vector

[ q ] = quatinv_custom( q )
 
Finds the inverse quaternion for the given quaternion q

[ p ] = quatmult_custom( q,r )
 
Performs the quaternion multiplication operation for two given quaternions q,r

[ RE ] = WGS_RE( L )
 
Calculates the transverse radius of curvature of the Earth given the geodetic latitude

[ RN ] = WGS_RN( L )
 
Calculates the meridian radius of curvature of the Earth given the geodetic latitude

MATLAB's built in functions wrldmagm and gravitywgs84 are used as well to calculate 



Function Prototypes 91

the  magnetic  declination  and the  gravity  as  a  function  of  position  (and time for  the 
magnetic model case).

The quaternion related functions include the word “custom” in their  name in order to 
distinguish them from the MATLAB built in equivalent functions.
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