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Nonlinear State Estimation for Small Unmanned Aircraft

by

Dimitrios Stylianos Parsinas Pylorof

Abstract

This thesis is concerned with the nonlinear state estimation problem for small unmanned
aircraft. State estimation is an integral part of any unmanned aircraft's flight control
system. The quantities required for flight control, like attitude, 3D position and velocity,
are not usually measured directly or they are not available at the frequency required; they
have to be derived or extrapolated, respectively, from the available sensor measurements.
Furthermore, due to size and cost, small unmanned aircraft carry rather noisy and even

biased microelectromechanical sensors, complicating the problem even further.

The usual sensor payload for the aircraft class of interest is an Inertial Measurement Unit
(IMU), containing three accelerometers and gyroscopes that measure accelerations and
angular velocities, respectively, in the inertial body frame. The aircraft's velocity, position
and attitude can be obtained through integrations at the IMU output rate. Due to the
IMU's output noise and bias though, a trivial integration is not enough as there will be an
ever growing drifting error. A Global Navigation Satellite System (GNSS) receiver is used
to provide a direct measurement of the aircraft's position and velocity at a much lower
frequency but with bounded error characteristics. The measurements from the IMU and
the GNSS receiver should be fused in a state estimation framework, to filter out the sensor

noise, compensate for bias and provide the best possible state estimate.

A solution to the small unmanned aircraft state estimation problem is presented here,
using a modified version of the nonlinear Unscented Kalman Filter (UKF). The original

Kalman Filter has been the de facto solution for real time estimation problems since its



inception, however it cannot be used in aircraft state estimation as the underlying
kinematic and measurement equations are nonlinear; its nonlinear extension also, namely
the Extended Kalman Filter (EKF) is ruled out because it can exhibit numerical issues and
even divergence. The UKF is one of the most promising nonlinear state estimation
algorithms for use in real time applications; it is based on a deterministic sampling
principle which avoids linearizations and calculation of Jacobian matrices, in direct
contrast with the derivative based EKF. In the solution presented here, the singularity free
attitude quaternion is used for the representation of the aircraft's attitude. The quaternion,
however, is a constrained quantity and that imposes several modifications to the UKF
algorithm. As far as the aircraft's 3D kinematics are concerned, minimal assumptions are
made in the derivation of the respective estimator models; the Earth's ellipsoidal model is

used, allowing almost global operation of the aircraft with no modifications.

A numerically efficient version of the algorithm that requires the least possible number of
function evaluations per cycle is derived. The results are presented and verified through a
simulation example. Although this thesis has been developed to provide a solution to the
state estimation problem of the small unmanned helicopter built by the NTUA Control
Systems Lab, the resulting algorithms can be readily used onboard any small unmanned

aircraft with similar sensor payload, either fixed wing or rotorcraft.
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M-y et x?] EXTINOY KATACTACNG UIXEWY Y] ENAVOILWUEVEOV
UEROOCHAP WV

Tou Anurtetou Ltulavol Hapowvd ITuidewe

ITepiAndm

H nopoloa dinhwpatixny] epyooio TeayatedeTol TN UN-YEOUUUMXT EXTIUNOT XATACTACNG UXPWY
un enavopwuévey acpooxapny. H extiunon xatdotaong elvar avayxaio cuctotind otouyelo
TOU CUCTAUATOS AUTOUATOU EAEYYOU TNE TTHONS OLOUBHTOTE U1 EMAVOLOUEVOU AEQCOCHAPOUS.
To yeyédy mou amattolVToL Ylol TOV EAEYYO TN TTHONG, OTWS O TEOCAUVATOACUOS, 1 VEon xau
1 TaYOTNTO OTIC TEELS BLICTAoELS, CUVHDWS OV UETEWVTAL GUECH 1| OV elvan dladéoiua oty
emtduunTH cUYVOTNTA, EMOUEVMC TRETEL VO LTOAOYLGVOUY antd Tic Onoleg dlodéoiues UeTPNOELS.
Eniong, AMoyw xb60T0oUC %ou Bdpoug, Tor Uxpd U] ETAVOpWUEVA AEROTXAPT PEEOUY aUcUNTHEES
tomou MEMS rnou mapouctdlouv Wiaitepa auinuévo Y6pufo oTic YETPNOELS TOUS, UXOUOL KoL

bias, mepimAéxovTac TEpaUTERK TO TEOBANUAL.

O Baowdg awodInthipac mou @épetar and Tar agpooxdpn nou e€etdlovton €6 elvan éva Inertial
Measurement Unit (IMU) pe tpla emtoyuvolbpetpa xou tpla yupooxomia to omolo HETEOUV
eTLTOY OVOELS X0 YWVIOXESG TayUTNTES avTioTolya 0T0 adpavelaxd choTnua avapopds. H déor,
N TaydTNTAL XL O TEOCUVAUTOAOUOC TOU  OEPOOXAPOLE WUmopoLY  va  mpoxLgouy €&
OhOXANPGOEWS, 6ToTE LTdpy oLV YeTproelc and to IMU. Qotdoo, Aoyw tne Unopéng YoplBou
OTIC METENOELS AhAG xou bias, uia amhf  oAoxhYjpwor Bev elvon apxetr xodog Yo uTdpyet Eva
dlopxde aEavOUEVo o@diua oTa anoteréopata. o o Adyo autd, évoc BEXTNS Yo xdmoLo
Ty x6omo  dopugopxd ovotnuo mhofynone (GNSS) yenowonoeiton emixovpxd wote va
TapEyEL Wo dueon pétenon e Véong xou g TayOTNTUC TOU OEPOCAAPOUS, OE TOAU
wxpdtepn ocuyvotnta and to IMU ohhd ye gpaypévo xou yvewotd o@diuo ywelc bias. O
ueteroec and to IMU xan to GNSS npénel vo cuvdvacVoly xatdhAnha, wote vo anoppelpiel

o Voépufocg xou var TeoxUPEL 1 xoADTERT BUVITY EXTIUNGCT] TNG XATAGTACNC TOU OEROCHAPOUC.
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M Aoon oTto avetépn TEOPANUa NG eXTUNONG XATACTUONG YLl MLXEA 1Y) ETUVOPWUEVA
aepooXdPT TapoLCLIlETAL €D, YenowonowdvTas o mopalioyr Tou Unscented Kalman
Filter (UKF). O mnpwtétunoc olybdprdpoc tou Kalman Filter elvar n tumxd Aon yi
TAnUdea TEOBANUATWY exTiUNoNG *aTdoTAONS And TN OTLYUN TOU TEOTAUNXE ToEEYOVTUS TN
Bértiotn extiynon xatdotaong xou Aoufdvovtac umogn To duvouxd povTENO NG TEOC
extiunon depyaoiag, wotéco dev unopel va yenowonoindel yioo TNV exTiunon xaTdoTAoNC
EVOC 0EPOCHAPOUS XM Ol XVNUATIXEG EELOMOELS TTOU OLETOLY TNV TELoOLoTATN X(VNon Tou
X0 1) CUCYETION TWY UETENOEWY UE TO DLAVUOUN XUTACTACNG elvon Un Yeouuxd cuothuata. H
un yeouux enéxtaoy tou, to Extended Kalman Filter (EKF) éyer coPoapd yetovextiuata
¢ Moon xadng umopel va tpoxAndolv aprduntixés aotdieieg ohhd oxdua xan amOXALCT TNG
extiunone. To UKF elvar {owg o mo unooyduevog alydpnduog extiunong xotdotaong ylo
XeNoM OE €QUpUOYES TRAYHATIXOU Yeodvou. Ntnpileton ot o pedodoloyla VIETEPUVIOTIXAC
deiypotorndiog 1 omolo amOPelYEL EVIEADSC TIC YPUUUXOTOLACELS XAl TO OYNUATIONO
ToxwBlaveyv  unteddv, oe avtideon pe to EKF. ¥t Adon mnou mnopoucidletar €dw,
yenowornoleltow  To  quaternion ylwr TNV AVATOEACTUCY,  TOU  TEOCAUVATOMOUO)  TOU
AEPOOAAPOUGS, ETLTEETOVTOS XAVE xivnon / meploTtpo@n ool Bev UTEEYOUV Ol TEPLOPLOUOL TwWY
yoviwv Euler. To quaternion wotdco, emedy) 0ev elvar didvuoua ohAd o TocHTNTA
neploptopévn oto SO(3), emPBdher ddgpopes petaforéc ot eElooels tou akyopldpou Tou
UKF. 'Ocov agopd otnv TELodlEoTUTY XIVNUATIXY TOU OEPOCXAPOUS, YivovTol Ol EAAYLOTES
TPABOYES OTNY AVATTUEYN TwV EELCOCEWY TOU XIVNUOTIX0) LoVTEAOU ool Aoudveton unodn
To TApEC EANELPOELOES LOVTEND TNG YNC Xat Gpa elvon BuvaTh 1 oYedOV TaryxOopLo AeLToupyia

Tou akyoplduou ywpelc TpomonoloelS.

Y10 xelyevo mou axolovdel avantiooeton o aptduntind BeATLUéVr eEXB0YY| TOU OYETIXOU
ahyoplduou, n omola amoutel TIC ALYOTEPES DUVATEG EXTEAECELS TWV HOVTEAWY Olepyaoiog xou
uetpioewy avd emavdhndy. To anoteréopata mapoucidlovtar xan emBefoncdyvovton yéoo amd
npocoyoiwor. Iapdtt 1 nopoloo epyacioa avantiydnxe wote vo mopéyel wo Adorn oTo
TEAXTIXO TEOBANUA TNG EXTIUNONG XATACTACTS TOU WXEOU WY EMAVOLWUEVOL EALXOTITEQOU TOU
Epyoaotneiov Autoudtou Eréyyou tou EMII, o npoxintovieg ahydprduol xan Ta oYETIXA

ouvunepdopata unopoly va aflomoindody TAVw OE OTOLOONTMOTE UiXEd U1 ETMUVOPWUEVO
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AEQOCAHAPOS UE TOROUOLOUS UV THRES, €lTE agpoTAdVO, elte EAXOTTEQO.

Evyapioticg

Oa Rieha va cuyoaplothiow mOAD tov Kadnynthy Kwota I. Kupiaxdémouvio yia
ocuveyh) otheln xou emiBred) Tou xad' OAn TN Bdpxel TV OTOULBWY UOU CTN LYOM
Mnyavordywy Mnyovixcdyv tou Edvixod Metodfou Ilohuteyveiou, xadodg xou yior tnv
eumoToolVN Tou €0ele 0TO TPOCWTO YOV TREOCPEPOVTAS UOU TN DUVATOTNTA VO EQYUCTH WG
EPEUVNTNAC OTO €pYAOTAPLO TOU Mo TNV opy” Tou 30U Pou €TOUC OTYN OYOAY) To MenTéUPBpELo

Tou 2008.

Eniong Yo Hieha va evyopiotion 1o Ap. I'iweyo Koappd xou tov Yrod. Awddxtopa
ITdvo MoagdvTto v Tic ougfoulés, tn BoRdeia xou v Ty xadodhynor Toug xatd Tnv

avamTUEY TNE ToEOVCIS EQYICIOC.

Ynueimwon

Aoyw e mAnddpoc dpwv g Vewplog BUVOUIXMOY CUCTNUATWY, CUTOURTOU EAEYYOU Xl
UEQOVOUTINYIXWY OPWY, TOU BUCTUYMS OEV TUYYAYOUV ETUTUYNUEVNS ATODOCTS OTA EAANVLXG
ARG EX TWV TEAYUATWY EUTEQLEYOVTAL OTNY Topoloa epyacia, To xeluevo mou axohoulel efvon

oTNV Ay YA YAWOOA.
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Chapter 1

Preliminaries

In this chapter the small unmanned aircraft state estimation problem is described and a
discussion of the various estimated quantities follows. The chapter concludes with a review
of the typical sensors used in small unmanned aircraft, namely Inertial Measurement Units

(IMUs) and Global Navigation Satellite System (GNSS) receivers.

1.1 Estimator requirements

Any flight control system, regardless of the underlying theory that makes it work (PID,
Model Predictive Control, Adaptive Control, etc.), requires an accurate estimate of the

aircraft's kinematic state at the beginning of every control iteration [1].

aircraft’s

—_— controller actuators . .
flight dynamics

state feedback

A

state estimation
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As there is no set of sensors that can provide the quantities of interest at the required
frequency and with acceptable measurement noise characteristics, they have to be
estimated from the available measurements, making, thus, state estimation an integral part
of the system's feedback loop. Given that an aircraft can move in 6 degrees of freedom, the

state vector to be estimated is comprised of:

* the aircraft's position on Earth
* the aircraft's three dimensional velocity

* the aircraft's attitude with respect to the Earth's North, East and Down axes

There are many ways to represent and propagate the above quantities. To allow for the
greatest possible maneuverability, the attitude quaternion [13] has been chosen for the
representation of attitude in the estimation algorithm developed here, as it provides a
singularity free attitude representation solution and also features a rather convenient linear
time propagation model. The attitude quaternion is further discussed in section 1.3. The
aircraft's position is represented and propagated using curvilinear coordinates in the ECEF
frame [2], [3], [4]. As far as the velocity is concerned, it can be either represented in the
body frame or in the local frame axes with similar formulation, results and accuracy; here

the local frame approach is chosen.

The accuracy of the resulting state estimate is of great importance for the success of the
aircraft's mission. An accurate estimate of the state vector means that the aircraft can
perform well even in demanding scenarios, like formation flight, flight near obstacles,
automatic takeoff and landing, etc. On the other hand, a decrease in estimation accuracy
can severely hinder the aircraft's capabilities. The estimate's accuracy is determined by the
sensors present and operating at any moment, their noise characteristics and the

estimation algorithm.

As a new state estimate must be computed before the beginning of each control iteration

and since these control iterations can happen at 50 ms or at even more frequent intervals
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in the flight control systems of small unmanned aircraft, the estimation process itself
should last as less time as possible. Of course this imposes some performance requirements
on the sensors as well, but the estimation software's computational cost is the main

concern here

1.2 Coordinate frames

Coordinate frames consist of a center and axes that are used to describe the motion of a
body, its position and its orientation. The discussion of coordinate frames is of great
importance in the aircraft state estimation problem, since the quantities that have to be
estimated and the ones that are measured are described in different frames (position /
velocity / acceleration) or they involve the orientation of one frame with respect to another

(attitude).

In this section the various frames of interest, namely the Earth Centered Inertial (ECI),
the Earth Center Earth Fixed (ECEF), the local frame and the body frame, are described.
Subsequently, the aircraft kinematic model that will be used later in the state estimator's
formulation is derived. This section follows the development of the topic found in [2] and

3]

1.2.1 Earth Centered Inertial

The Earth Centered Inertial frame (ECI) is
centered at the Earth's center of mass. The 2°

axis is parallel to the Earth's polar axis of

rotation, while the x* axis points in the direction

of vernal equinox. Finally, the y’ axis points 90°
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degrees ahead (taken in the direction of Earth's rotation) of the x* axis, positioned in such

a way to make the (z'y’2?) system a right-handed orthogonal set.

The ECI frame can be considered inertial for all small unmanned aircraft applications,
ignoring the Earth's acceleration in its elliptic orbit around the Sun. This is the frame with

respect to which the inertial sensors (accelerometers and gyroscopes) make measurements.

It should be noted that the Earth rotates with respect to the ECI system with angular

velocity wie.

1.2.2 Earth Centered Earth Fixed

The Earth Centered Earth Fixed frame
(ECEF) is centered at the Earth's center of
mass. The z¢ axis is parallel to the Earth's
polar axis of rotation, like in the ECI frame.
The x¢ axis points to the intersection of the
equator and the prime meridian. The y°
axis precedes the z¢ axis by 90° degrees in
the direction of Earth's rotation, making

the ECEF frame a right-handed orthogonal

set. As a result, the axes of the ECEF
frame are fixed with respect to the Earth
and they rotate with respect to the ECI

frame.

The ECEF is the frame in which the position of the aircraft is represented. Position in the
ECEF frame can be represented using either rectangular coordinates (z€, y¢,2¢) or

curvilinear coordinates (¢, A, h) which will be discussed in the earth modeling section 1.4.
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1.2.3 Local navigation frame (NED)

The local frame (abbreviated n or NED for North-East-Down) is centered at the vehicle's
center of mass. Its 2™ axis is normal to the reference ellipsoid (see section 1.4) and that
direction is known as “Down”. The z" axis (“North”) points to the Earth's North pole and
the y™ axis (“East”) completes the right-handed orthogonal set. The NED frame makes a
flat earth approximation for the point of interest and it is of great importance as it is used

to define the aircraft's attitude.

1.2.4 Body frame

The body frame is centered at the vehicle's center of mass. Axis x° points forward, axis z°

down and axis y’ points to the right, completing the orthogonal set. Although the
definition of forward, down, etc. takes into account the usual direction of movement, this is

rather obvious for the type of vehicles considered in this text.

NED frame

i

.3_‘

[

Y

i

(7]

A ||

[y
v.
o

e

S

—

v!
A

S
T

S

Y
Y,
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1.2.5 Frame notation for vectors

The notation used in [3] is followed here to allow for the maximum possible clarity in all

the vector operations / transformations presented.

Vectors are denoted by x¢,, where the right subscript b refers to the frame whose motion is
described, the left subscript a is the frame with respect to which this motion is described
and the superscript c is the frame in whose axes system this motion is described (resolving

frame).

The left subscript (reference frame) may be omitted in the upcoming chapters when the

reference frame is obvious.

1.2.6 Transformation matrices

The coordinate transformation matrices are used to transform the resolving axes of a

vector to another set. They are denoted by C’jﬁ‘;om, where the subscript refers the original

frame and the superscript to the resulting frame.

For example,

z’ = Cba® (1.1)

Coordinate transformation matrices have the following properties for all frames a and b:

a) (C)T = (€)™ = ¢ (orthogonality) (1.2)

b) COf =T (1.3)
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c)detCl =1 (1.4)

1.3 Attitude & attitude kinematics

The aircraft's attitude can now be defined as the orientation of the body frame with
respect to the NED frame. There are various attitude representations, namely Euler angles,
Rodriguez parameters, quaternions, etc. [13]. Each of these representations can be used to
assemble the rotation matrix which is defined as the transformation matrix R% p. The
rotation matrix is unique and global, meaning that there is only one rotation matrix for

any two given frames and it is defined for any possible attitude.

In the two next sections, the Euler angles and the attitude quaternion will be presented
respectively. The Euler angles provide a very simple and intuitive attitude representation,
which exhibits, though, non uniqueness and non globality. The quaternion is an efficient
global attitude representation and will be used in the estimator equations in the upcoming

chapters.

1.3.1 Euler angles

The Euler angles attitude representation is based on three successive rotations that, if
taken with the right order, will eventually align the NED frame with the body frame [2],
[13].
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Yaw rotation

First of all, the NED system is rotated by ¢ radians around its Down axis until the original
North axis coincides with the projection of the z® axis on the local frame. The resulting

frame will be called the intermediate frame I;. The corresponding transformation matrix is

cosy siny 0
Ripp=| —sing cosy 0 (1.5)
0 0 1

Pitch rotation

Secondly, the I frame is rotated by # radians around its “East” axis, until its original North

axis coincides with 2. For convenience, this frame will be called I5. The rotation matrix is

cosf 0 —sinf
Rp=| 0 1 0 (1.6)
sinf 0 cos@

Roll rotation

b

Finally, the I5 frame is rotated around the common “North” — x” axes by ¢ radians until it

fully aligns with the body frame. The roll rotation matrix is

1 0 0
Ry =| 0 cos¢ sing (1.7)
0 —sing cos¢
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Rotation matrix assembly

Multiplying the transformation matrices in the above given order yields the rotation

matrix from the local to the body frame,
R?VED = R?ZRﬁRJI\}ED (1.8)

After substituting equations (5) (6) and (7) into (8) we get

cos ) cos 6 sin ¢ sin 6 —sind
R?VED: —siny cos¢ + cosyPsinfsing  cosycose +sinysinfsing  cosfsin @
siny sing + cosyYsinfcos¢p  —cosysing + sinysinfcos¢ cos b cos ¢
(1.9)
The inverse transformation matrix is given by the transpose,
RYFP = (R%pp)" (1.10)

The set (¢, 0,1) are called the roll, pitch and yaw angles respectively and they constitute

the Euler angles attitude representation.

Time propagation

Given the angular rates about the body axes w = [ Wy Wy W, ]T, the time propagation

of the Euler angles is described by the nonlinear system

42:5 1 singtanf cos¢tanf Wy
0 |=|0 cos ¢ —sin ¢ Wy (1.11)
" 0 singsecl cospsech W,
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Issues

Apart from the obvious angle periodicity issue which can be solved in a practical manner
(some limits must be imposed on the angles to avoid overlapping), the Euler angles

attitude representation exhibits two major drawbacks.

e There is a singularity at +90° pitch, where the roll and yaw angles cannot be
defined; thus, the Euler angles is not a global attitude representation. Furthermore,
at the same attitude at £90° pitch, the two terms of the time propagation system
(1.11) that involve secf become infinite. If the vehicle approaches +90° pitch, this
can lead to numerical issues or even to a software crash unless it is taken care of

beforehand.

* The continuous system (1.11) is highly nonlinear and that causes large errors in the
discretization process, which is necessary in order to use the time propagation

equation in a Kalman Filter (see Chapter 2).

The above drawbacks limit the use of Euler angles to applications where the vehicle in
question doesn't operate near the +£90° pitch range (to avoid the singularity points) and to
scenarios where the attitude changes slowly over time (to alleviate the discretization

errors).

1.3.2 Quaternion attitude representation

The quaternion is a singularity-free attitude representation that allows for much more
accurate and robust attitude mechanization in a state estimation framework in comparison

with Euler angles.
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Definition and operations

A quaternion ¢ consists of a scalar part, ¢o, and a three dimensional vector part

w=[a @ @],

qo
q0 q1
= = 1.12
1 |: Qv :| a2 ( )
q3

An abstract rotation of ||¢|| radians around axis @ can be represented by the quaternion,

o]l
o 056
COS .
¢=| o :[M ] (1.13)
a2 el
g3

If the quaternion is used to represent attitude, the rotation vector ¢ aligns the local frame
with the body frame. However, the use of the quaternion is not restricted to the attitude

case as it can represent any rotation.

It is easy to notice that, due to its definition, the quaternion has a unit length constraint,

lall =1 (1.14)

The inverse quaternion is obtained by taking the negative of the vector part, as
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qo

-1 qo —q1
= = 1.15
1 |: —qv :| —q2 ( )

—qs

The quaternion multiplication between two quaternions a and b is given by [2]

ap —ap —az —ag bo
ai apg —as a b
a®b= 2 ! (1.16)
az a3 ay —ai by
ag —az ar  a b3

Successive rotations can be conveniently defined through quaternion multiplication, as

4 =aRq (1.17)

where the subscript and the superscript in each case refer to the original and the resulting

frame of the rotation that each quaternion represents.

As the quaternion is not a vector quantity (due to the unity length constraint), quaternions
cannot be added or subtracted, since the constraint will be violated. The quaternion

multiplication operation should be used instead.

Rotation matrix assembly

The rotation matrix from the local frame to the body frame is
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i B+aE—d—a  2(qe2 + 903) 2(q193 — 90q2)
Ryep=| 2@e2—qoa3) @ —ai+a—a3 2(qoq1 + q2q3) (1.18)
2(qoq2 + ¢1q3) 2(q2q3 — 90q1) G — @G — G+ 4

and the rotation matrix from the body to the local frame is the transpose of (1.18),

RNPP = (Rbup)" (1.19)

Time propagation

The kinematic propagation of the attitude quaternion, when the angular rates about the

T L
body frame axes w = [ Wy Wy W ] are known, is given by

(1.20)

Equation (1.20) is linear in terms of ¢, providing thus a significant advantage over the
equivalent propagation equation of the Fuler angles (1.11). However, despite the more
robust mathematical formulation of the attitude quaternion, it is not as intuitive to
humans as the Euler angles. For that reason, the quaternion is usually transformed into the

equivalent Euler angles for the purpose of visualization.



1.4 Earth modeling, position representation & propagation 27

1.4 Earth modeling, position representation & propagation

In the WGS 84 model [23] followed in this text, the Earth's surface' is approximated by an
oblate spheroid. The oblate spheroid is an ellipsoid shape with rotational symmetry whose
minor axis is the axis of rotation of the Earth, z°. The ellipsoid's semi major axis is the

Earth's equatorial radius Ry and the semi major axis is the Earth's polar radius R,,.

The eccentricity is given by

R?
_ P
€ = — Rig (121)
and the flattening by
. Ro—R,
= 1.22
== (122)

The values of the above parameters are given in [23].

Any point on or near the surface of the Earth can be described by its geodetic latitude pg,
its longitude py and its height h.

e The geodetic latitude ps is the angle formed by the normal to the ellipsoid
originating from the center of the body frame and the equatorial plane.

* The longitude p, is the angle between the prime meridian plane and the plane
formed by the Earth's 2¢ axis and the point of interest.

* The ellipsoidal height h is the distance of the point to the ellipsoid's surface.

1 The term surface here corresponds to the approximate sea level.
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More details on the curvilinear coordinates can be found in more detailed texts, [3], [2].
On any point on the ellipsoid's surface, two radii of curvature are defined,

* The meridian radius of curvature Ry(¢), which is related to the rate of change of

the latitude along a meridian [3],

R
Ry(¢) = — (1.23)
" (1—e? sin? ¢)?

* The transverse radius of curvature Rg(¢), which is related to the rate of change of

latitude on the surface normal to a meridian [3],

Rp(¢) = ——20 (1.24)

V1 —e2sin? ¢

The rectangular and the curvilinear coordinates of a point on the ECEF frame are related

by

+ h) cos ¢ cos A
x¢ = (Re(¢) + h) cos psin A (25)
(1 —€e*)Rp(4) + h]sing

Using the chain rule, the velocity of a point in the rectangular coordinates of the ECEF

frame is

ve_3$6%+3w6@+0566@_ 8z°  0z°  Oa°
€ 99 Ot ONOt Oh ot L 9 9A  Oh

(1.26)

Calculating the partial derivatives of x° yields
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. . . Ry (o) +h 0 0
88x¢> 883:/\ %mh =R, 0 (Rg(¢) + h) cos ¢ 0 (1.27)
0 0 -1

where R, is the coordinate transformation matrix from the local to the ECEF frame (see

[2])-

The North — East — Down velocity is now obtained by ([2],[3])

UN (BN () +h)o
vNED =V, = R{vg = | vg | = | cos¢(Rp(d) + h)A (1.28)
Up —h

Inverting equation (1.28) gives the propagation equation of the curvilinear ECEF

coordinates as a function of the NED velocity,

ggﬁ RNi()gH-h

— VE
A (R () +h)cos @ (1.29)
h —UD

1.5 Typical small UAV sensors

Depending on the aircraft's mission, an unmanned aircraft may carry many different
sensors. However, any UAV must be able to sustain itself in the air and fly over specific
waypoints, as required for each mission objective; there is a requirement, thus, for the
aircraft to know its position, attitude and velocity at any time, regardless of the mission.
Separating the various sensors usually found on small UAVs to sensors directly related to

the UAV's flight and to sensors related to specific missions, all UAVs carry the following
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minimum sensor payload, to enable automatic flight and increase their autonomy level:

* Inertial Measurement Unit (IMU)

* Global Navigation Satellite System (GNSS) receiver for UAVs that operate outdoors
* Radio altimeter or range finder

* (Cameras used for navigation

*  Compass

As this thesis focuses on small UAVs that operate outdoors, we will not discuss further the
use of cameras or any other positioning service that is tailored for indoors use or, in

general, for use in GNSS denied environments.

1.5.1 Inertial Measurement Unit (IMU)

Inertial Measurement Units (IMUs) contain accelerometers and gyroscopes, measuring

accelerations and angular velocities respectively in the inertial body frame.

IMU operation

Ideally, integration of the IMU output could provide the quantities required for control
(attitude, velocity and position). However this is not the case, as the IMU output is rather
noisy and therefore there would be an ever growing navigation error. A position / velocity
sensor with bounded error must be used to contain the IMU growing drifting errors. This is
the purpose of state estimation for small UAVs — to augment the IMU measurements with
a lower bandwidth / bounded error sensor, like the GNSS receiver. Standalone IMU
navigation (also called dead — reckoning) is still used in some applications, as in submarine
navigation, where there is no easy way to compensate for the IMU errors, in indoors UAVs

where there is no GNSS coverage and in commercial aircraft where very accurate IMUs are
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used and still there in a drift of a couple of kilometers per hour in the position output. In
UAV applications, due to the performance and error characteristics of the IMUs used,

standalone IMU operation is not an option.

IMUs used in small UAVs are usually of MEMS (microelectromechanical systems) type and
they feature a strapdown configuration. Strapdown IMUs have three accelerometers and
three gyroscopes fixed in an orthogonal set of axes. The combination of the strapdown
configuration and the MEMS type sensors results in very low size (few centimeters), weight

(few grams) and cost IMUs and that is their reason for success in the small UAV sector.

IMU errors

This particular combination, however, can also cause many accuracy issues. First of all, the
three strapdown axes never actually form a truly orthogonal set; there is always some
misalignment that may need to be taken care of [2]. Secondly, the MEMS nature of the
sensors themselves can cause very poor results in the sensor output, particularly in terms
of growing biases, scale factors, excessive noise, etc. Axes misalignment, biases and scale
factors can be dealt with during factory calibration of the IMU and also — in some units —
during operation using a closed loop system with temperature control. These error sources
can be dealt with in the state estimation algorithm as well, while noise can be filtered out
only in a state estimation framework, utilizing kinematic models of the vehicle of interest

and some related measurements with bounded error characteristics.

Measurable quantities

As noted above, an IMU's gyroscope measures the angular velocities of the body frame
with respect to the inertial frame. Although the measurements are made around the
sensor's sensitive axes and not the actual vehicle's body axes, it is reasonable to assume

that with careful placement of the IMU, the measurements made correspond to the angular
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velocities around the body frame axes,

Wg1 Wy

[
Wg2 = Wy (130)
Wg3 Wz

We ignore the rotation of the Earth and the curvilinear motion of the origin of the body
frame [3], as these quantities are too small when compared with the noise characteristics of

MEMS gyroscopes.

As far as acceleration is concerned, it should be noted that the IMU's accelerometers do
not measure the acceleration itself aj, but the specific force f5 along the instrument's

sensitive axes instead,

ibb = a?b - g’i)b (1-31)

where g% is the gravitational force along the body axes that can be calculated as a function

of curvilinear position using the WGS84 model [23].
Apart from sensor noise, the IMU output can exhibit significant biases [3]. The
accelerometer bias b, and the gyroscope bias b, can be modeled using slowly time varying
white noise processes, as ([17], [18])

i)a = Nabp (132)

by = Ngpp (1.33)

where n4,, and ngp, are Gaussian random variables with zero mean and covariance @,
'Y gop abp

and @y, respectively.
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1.5.2 Global Navigation Satellite System (GNSS)

Global Navigation Satellite Systems provide positioning and timing service for targets on

or near Earth. They consist of three segments, namely,

* the space segment, which refers to a constellation of satellites orbiting the earth in
geosynchronous orbits. Each satellite transmits a message containing, among others,
its position and the time of transmission. The number and the orbits of satellites is
chosen such as there is continuous global coverage and positioning service for all

points on Earth.

* the user segment, which refers to receiver devices that receive and decode the
signals transmitted by GNSS satellites. A GNSS receivers is able to process the
information contained in the GNSS messages and eventually calculate its position on
earth and the current time, by solving a nonlinear system of equations (described

bellow).

* the control segment that is operated by the owner of each GNSS constellation
and is concerned with maintaining the system's fidelity and uninterrupted operation

of the system.

GNSS operation

The GNSS receiver acquires and decodes the signals transmitted by each satellite, in order
to obtain the time of signal transmission ts, the carrier signal frequency f., and the

Doppler frequency shift Af.,. The signals also contain information about the satellite's
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orbit, so its position at the time of signal transmission, ps(ts;), can be calculated.

Given the above data, the pseudorange for the j*" satellite, which is related to the distance

the signal has traveled from the satellite to the receiver's antenna, can be defined as

pj = c(lsa = tst,5) (1.34)
where ¢ is the speed of sound and t, is the time of signal arrival (which is unknown, yet).

Furthermore, the pseudorange rate, which is related to the receiver's and the satellite's

relative velocity is

C

pj = ~7 ~Afca, (1.35)
ca,)

The receiver's position p¢, in the ECEF frame is now related to the above measurable

quantities using the nonlinear equation

T
Pj = \/[Oej (tst,j )pgs,_j (tst,j) — Pea (tsa)} [Cér (tst,j )pgaj (tst,j) — Peq (tsa)} + 5Prc + 5pr,j (1-36)

where dp,. is the receiver's clock offset and dp, ; is a residual error. In the above equation,
the satellite's position p¢, is calculated using the transmission time ¢, and the known orbit

characteristics.

The transformation matrix C! is used to compensate for the Earth's rotation during the

signal transmission from the satellite to the receiver.

Similarly, the pseudorange rate is related to receiver's velocity v¢, in the ECEF frame

through
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pj - ucels,jT [Cé (tStJ) (U:S,j (tStJ + Q'?esz,j (tSt,j)) - (v:a (tsa) + Qfepza(tsa))} + 5p7’(3 + 6107’7j (137)

where ug ; is the unit vector from the j!" satellite to the receiver's antenna and the €, is

used to compensate for the Earth's rotation.

In equation (1.36) there are four unknowns, the three dimensional position p¢, and the
time of signal arrival ts,. Therefore, in order to solve it, at least data from four satellites

are needed. The same is true for the velocity equation (1.37).

GNSS and IMU integration

There are two ways in literature to handle GNSS equations (1.36) and (1.37) is a state
estimation framework where inertial sensors are utilized as well [4], [3]. The first is referred
to as “tight integration” and it involves using equations (1.36) and (1.37) inside a Kalman
Filter (Chapter 2) that estimates all the above unknowns, along with all the other
kinematic quantities of interest. The second approach or the “loose integration” scheme lets
the GNSS receiver do this job and utilizes the computed position and velocity output.
Tight integration can provide better performance but complicates the estimation algorithm
very much and increases its computational cost considerably. Loose integration can provide
results with acceptable accuracy for most small UAV applications, especially when used in
an augmented GNSS environment (section 1.5.2.2) and this is the approach used in this

text.

GNSS errors

Many error sources that contribute to GNSS positioning and velocity errors, of which the

most prominent are [4]

* signal propagation delays, which result in local perturbation in the ionosphere and
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the atmosphere that cause delays in the transmission of the GNSS signals

* clock errors, which refer to inconsistencies in the clocks used onboard the GNSS
satellites

* receiver errors, which arise from the hardware used in GNSS receivers and are more
common in lower cost receiver solutions

* multipath, which is caused by the local environment of the GNSS receiver that may
reflect or degrade the GNSS signals coming from the satellite constellation

* selective availability, which consists of random errors in the GNSS system imported
deliberately by the operating authority to hinder the use of the GNSS positioning
service. Selective availability was used in the initial years of the GPS but it was

disabled later in the 2000s.

GNSS today

Currently, two GNSS systems are fully operational, providing global coverage; the Global
Positioning System (GPS), operated by the United States, and the GLODbal NAvigation
Satellite System (GLONASS), operated by the Russian Federation. Due to the difference in
the Earth models and the time used in the two systems, they are not interoperable with
each other as each system will calculate a different position for the same point on Earth.
This text will only deal with the Global Positioning System and WGS84 Earth modeling.
Dual GNSS implementations are, though, possible and rather interesting from a safety and
redundancy point of view, however the appropriate transformation from each datum and

vice versa must be taken care of, as well as the time difference, in the integration software

13].

1.5.2.1 Global Positioning System (GPS)

The Global Positioning System (GPS) is the most widely used GNSS service worldwide. It
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is designed and operated by the United States.

The accuracy of GPS for positioning is in the range of a couple of meters for the majority
of scenarios (with selective availability turned off). Receivers with quality hardware in
standalone operation (without augmentation) can achieve a 3 to 5 meters 95% positioning

accuracy.

1.5.2.2 GPS augmentation

The performance of any GNSS system can be greatly enhanced if used together with a
GNSS augmentation service. GNSS augmentation refers to various methods that attempt
to compensate for the GNSS errors on a local basis. All error sources listed previously can
be compensated with the various GNSS compensation schemes, except for receiver errors
and multipath. GNSS augmentation can increase the accuracy of GNSS positioning to

about one meter or even more.

Some GNSS augmentation schemes are tailored to cover a large area and they operate
through satellites or ground stations that broadcast correction messages that contain
information about the errors for each satellite (in particular, they contain corrections for
each pseudorange for the visible / usable satellites). The rest of the GNSS augmentation
techniques cover smaller areas of interest. In any case, the GNSS receiver used must be

able to import and decode the correction messages send by the augmentation stations.

A GNSS augmentation technique which is suitable for the operation of small UAVs is
Differential GPS (DGPS). DGPS, which is a local augmentation technique for GPS is
based on the principle of one or more special stationary receivers that given their known
position, they solve the inverse of equation (1.36) in order to obtain the pseudorange and
clock residuals. At each iteration, the results are transmitted to the DGPS capable moving

receivers that incorporate them to their calculations. DGPS offers the maximum possible
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accuracy for positioning (in the decimeter range) and one station can cover an area of a
couple of kilometers around it (of course, there is a need for an equally capable
communication link to transmit the correction results to the nearby nonstationary GPS

receivers).

DGPS corrections
—

. DGPS enabled aircraft
DGPS static base

1.5.3 Compass — Magnetometer

A compass measures the aircraft's magnetic heading. The magnetic heading ., is different
from the true heading 1 (also referred to as yaw) which is the bearing to the Earth's North
pole and is the quantity of interest for use in navigation. The difference between the true
and the magnetic heading is the magnetic declination §, and it is heavily influenced from

local fluctuations in the Earth's magnetic field.

The World Magnetic Model [24] provides a global approximation of the Earth's magnetic
field components and other relevant quantities, including the magnetic declination, as a

function of position and time (the date, actually), d(p, t).
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Using the convention that the magnetic declination is positive when the direction to which
the compass points (the magnetic North) is west of the true North, the true heading is

given by

Y =Y +6(p, 1) (1.38)

If a three axis magnetometer is used instead of a compass, as it is the case in many small
UAVs that include a magnetometer inside the Inertial Measurement Unit, the magnetic

heading is given by

Yy, = arctan 2(M,, M) (1.39)

where M, and M, are the magnetic field measurements along the body frame's y and x
axes respectively (we assume that the magnetometer's axes are aligned with the respective

body frame axes).

The magnetic heading output, if obtained as described bellow, should not be used in cases
when the roll and / or pitch angle exceeds a value of about 20° as the Down component of
the Earth's magnetic field will be accounted for in the measurements along the body frame

axes r and y, degrading the result.
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Chapter 2

State Estimation Theory Review

This chapter is concerned with the mathematical theory of state estimation. The objective
of state estimation is to approximate the state of a dynamical system, taking into account
the modeled system dynamics, known system inputs and any available noisy
measurements. State estimation for linear systems is considered in section 2.2 where the
linear Kalman Filter is described. In Section 2.3 nonlinear systems are discussed; the
Extended Kalman Filter and the Unscented Kalman Filter are presented in sections 2.3.1

and 2.3.2 respectively.

2.1 System description

Due to the fact that state estimation algorithms are almost always implemented in real
time as an integral part of digital control systems, here we only refer to their discrete time

formulation.

Let zj be an (n x 1) state vector to be estimated, with its dynamics given by the nonlinear

system fr,

T = fr—1(Tr—1, Up—1, Wp_1) (2.1)
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where wuy is a (p x 1) vector of known system inputs and wy is a (r x 1) white Gaussian
noise vector with covariance @ accounting for process noise. In most state estimation
solutions, the process noise accounts for unmodeled system dynamics. Equation (2.1) is

referred to as the process model, in the state estimation context.

We suppose that a set of measurements are available that are related to the system's state

through the nonlinear measurement equation

2l = hk(xk,vk) (22)

where z;, is an (I x 1) measurement vector and v is an (I x 1) vector of white Gaussian

noise with covariance Rj accounting for sensor noise.

State estimation algorithms provide an estimate of the state vector, noted Iy, using the
available measurements z; and taking into account the systems dynamics fx, as given by
(2.1). As [5] points out, this estimate should be unbiased (E[#j] should equal E[zy]), of
minimum error variance (min [E[7%] — (E[%x])?| where & is the error) and consistent
(converging to the true value with more measurements). In the case of linear systems, the
above three requirements can be fulfilled through an optimality criterion, yielding the
optimal Kalman Filter. In nonlinear systems, there is no way to come up with an optimal
estimator as the statistics a random variable undergoing nonlinear transformations cannot

be approximated by its mean and covariance only; we rely on certain approximations

instead.

2.2 Linear state estimation — the Kalman Filter

The Kalman Filter has been proposed by R.E. Kalman in 1960 in [9]. Other references are
[5], [6] and [10]. The development of this section follows the Kalman Filter derivation as
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presented in [5].

Equations

In the special case where the process and measurement models are linear, they can be

written respectively as
Ty = Fr_ 171+ L _1up—1 + wi—1 (2.3)
and
2 = Hiyxp + vg (2.4)

where Fj,_; is an (n x n) matrix, L,_; is an (n X p) input coupling matrix and Hj is an

(I X n) measurement matrix.

A basic assumption of the Kalman filter is that the process and the measurement noise are

uncorrelated,
Elwiv]]=0,Vk,j €N (2.5)

In order for the estimation process to be viable given the time and memory restrictions

imposed by real time applications, a solution of linear recursive form is sought, namely

A

T (+) = Kpog (=) + Kizy, (2.6)

where K, and K} are matrices to be determined. The a priori (—) symbol refers the value
of the respective quantity (here the state vector) before a measurement is taken, while a

posteriori (+) is used to refer to the value after a measurement has been taken and
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processed. It should be noted that equation (2.6) is a linear combination of the a priori
state and the newest measurement — there is no need to store and process past states and
measurements.

The state estimate can be written as a sum of the real value and an error term,

T = T + Tk (27)
Using (2.6), equation (2.7) becomes

() + Tr(+) = K (21(=) + Z1(—)) + Kizp (2.8)

Now, incorporating the measurement model (2.4) we get an expression for the estimation

error,

Tp(+) = (Kj, + KiHy, — Doy + K2,(—) + Ko, (2.9)

Due to the requirement for an unbiased estimate, E[Zx(4)] =0 and E[Zx(—)] = 0. Since

also E[vg] = 0 (due to the definition of vy as white Gaussian noise), we get

K]/C—f—Kka—I:O (2.10)

The estimate and its error become, respectively,

Tp(+) = 2u(—) + Ki(zr — Hydp(—)) (2.11)

9~3k(+) = (I — Kka)i‘k(—) + K (2.12)

Defining the covariance of the estimate as the expected value of the estimation error,

Py(+) = E[z),(+) T (+)] (2.13)
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we obtain the following expression for the a posteriori covariance

Pi(+) =E{(I — K Hp)in(—)[#e(—)" (I — KpHi)" + v K[|
+ Kpop(@ ()T (I = KpeHy)" + 0l K — k7)) (2.14)

Taking into account that the estimation error and the measurement noise are uncorrelated,

Ez(—)vi] = Elvgix(—)"] = 0 (2.15)

The optimal Kalman gain matrix K} is obtained through the minimization of the cost

function
Jy = tr(Py(+) (2.16)
Setting
g_}?; ~0 (2.17)
yields
Ky, = Pu(—)H} [HiPo(—)H] + Ry.)™! (2.18)
The a posteriori mean is
E(+) = 2(—) + Kilzr, — HpZp(—)] (2.19)

An alternative, simpler form for Ky, is suggested by [5],
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Ky = Py(+)HER,! (2.20)
Using the above expression for Ky, the a posteriori covariance is given by
Py(+) = (I = K Hy)Pyp(—) (2.21)

Finally, by using the process model (2.1) it is possible to obtain the a priori (predicted)

state and covariance,
Trp(—=) = Fr—1Zp-1(+) + Lr—1ur—1 (2.22)

Pi(=) = Fro1Peoa(H) B 4+ Qia (2.23)

Summary

Summarizing, the Kalman Filtering process for the optimal state estimation of linear
systems can be broken up in two parts, prediction and correction. For a Gaussian
distribution, the mean and the covariance uniquely determine the distribution itself. The
Kalman Filter provides a way to transform the distribution using the linear process and
measurement models; due to the linearity of the equations, the distribution remains

Gaussian and the state estimation solution is optimal and unique.

%y (+) % (-)

—— > state prediction —————
Pa(v) L R()

measurement
update

P (+)

In the prediction step, the process model is used to propagate the state vector Zj_1(4) into
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time yielding #(—), using the known system dynamics Fj,_; and the deterministic inputs
up—_1- Its covariance Pjy(—) is also calculated, using the previous covariance value Py_1(+),
the system dynamics Fj,_; and the known process noise covariance matrix Qj_;. The
prediction step can be repeated as many times as a prediction of the state is needed,
although in any practical application the presence of process noise will render the

prediction highly inaccurate in a number of iterations if no measurements are available.

The measurement update step, which is invoked after the prediction step and whenever
there are measurements zj available, involves the computation of the Kalman gain matrix
K, which is subsequently used to correct the predicted state estimate and covariance,

yielding & (+) and Py (+).

2.3 Nonlinear state estimation

In the nonlinear case, the system is described as in section 2.1. Now the probability
distribution of the state vector is not always Gaussian, thus it cannot be described fully by
its first two moments (mean and covariance). Higher order moments may have significant
effects on the distribution. Furthermore, the process and measurement models are not
necessarily in closed form, so they may have to be approximated to be used in a state
estimation framework. In any case, there is no unique, optimal solution to the nonlinear

state estimation problem.

Two solutions for nonlinear state estimation are presented here. The Extended Kalman
Filter, which is a derivative based method that linearizes the process and measurement
models, attempting to approximate the respective nonlinear transformations, and the
Unscented Kalman Filter, which follows a different approach by approximating the
probability distribution function before and after the nonlinear transformations, applying

the nonlinear models in a black box way.



2.3 Nonlinear state estimation 47

2.3.1 Extended Kalman Filter

This section follows the Extended Kalman Filter (EKF) presentation found in [5] and [7].

We consider a system with process and measurement models of the form
xp = fr—1(Tp—1) + wr_1 (2.24)
2, = hi(zr) + vk (2.25)

where fi and hj are nonlinear functions of the system's state, while wy and v are white

Gaussian noise vectors with covariance Q) and Ry respectively.

Note that the system formulation used here to present the EKF doesn't include known
inputs. Inclusion of known inputs wuj; will be covered in the next section discussing the

Unscented Kalman Filter.

The prediction step of EKF involves propagating the state using the nonlinear process

model,
p(—) = fe—1(Zr-1(+)) (2.26)
and predicting the measurement that would correspond to the propagated state & (—),
2k = hi(2r(-)) (2.27)
The nonlinear process model now is linearized around the previous estimate,

1] _ Ok
FIE—]l = By |e=tko1 () (2.28)
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The superscript in F1£1_]1 indicates the order of the linearization. It is also possible to derive

the EKF using higher order linearizations as in [5].
The a priori covariance can now be calculated, concluding the prediction step,
Pe(=) = F P (0 FM T + Qi (2.29)

If measurements are available, the measurement model is similarly linearized around the a

priori state mean, yielding the Jacobian matrix

Hi' = 2 Jomin (o) (2.30)
in order to calculate the Kalman gain
Ky, = Po(—)HMNT[HY Py (—) HWT 4 Ry, ! (2.31)

It should be noted here that the Kalman gain equation is rather similar to that of the
linear Kalman Filter (2.18), as the Jacobian of the measurement model H ,[CH takes the place

of the measurement matrix H;.

Again, in a similar way with the Kalman Filter, the a posteriori mean and covariance are

given by

fk(-l-) .’f?k(—) + Kk(zk — é’k) (2.32)

Pu(+) = (I — K HY)Pyo(—) (2.33)
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2.3.2 Unscented Kalman Filter

In contrast to the EKF, the Unscented Kalman Filter (UKF) attempts to approximate the
statistics of the random variable before and after the nonlinear transformation, instead of
approximating the nonlinear transformations themselves through linearizations. It is a
derivative free method, as no calculation of Jacobian matrices is required. The most

comprehensive reference for the UKF is the review [11] prepared by its original authors.

2.3.2.1 State prediction

The UKF is based on a deterministic sampling principle that utilizes a Cholesky
decomposition of the state covariance matrix. Taking the state vector with mean z; and
covariance P,., a set of weighted state vectors called sigma points are generated around Zj
so that they have mean Zj and covariance P,,. Each of the sigma points is then propagated
in time using the nonlinear process model fi and subsequently the a priori mean and
covariance are calculated. This procedure, which concludes the prediction step, is known as
the Unscented Transform (UT). The UT offers second order accuracy in the calculation of
the state vector first moment (mean) and first order accuracy in the second order moment
(covariance). According to [11], some information about the random variable's higher
moments can be captured under specific distribution assumptions and appropriate sigma

point weighting, however we will not elaborate further on that.

2.3.2.2 Measurement update

In the measurement update step, which is invoked whenever there are measurements
available, the sigma points are used similarly in an Unscented Transform sense but with
the nonlinear measurement model hj; this time, in order to predict the mean and the

covariance of the upcoming measurements. After the calculation of the system's cross
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covariance matrix, the Kalman gain is obtained as a function of the cross covariance and
the measurement covariance matrices. The a posteriori state update is given by an
equation similar to that of the original Kalman Filter and the Extended Kalman Filter;
however the predicted measurement is replaced by the weighted mean of the predicted

measurements set.

2.3.2.3 Computational cost considerations

The most computationally intensive elements of the UKF algorithm in comparison with the
linear Kalman Filter and the Extended Kalman Filter are the process and measurement
models function evaluations required during the Unscented Transforms and the Cholesky
decomposition involved in the sigma point generation. However, as the sigma points are
sampled in a deterministic way and not in random (as would be the case in particle
filtering) their number is eventually low (n 42 or 2n 4 2, where n is the state vector's
length), keeping thus the number of process model and measurement model function
evaluations required low enough not to prohibit real time implementation. In navigation
applications, like the aircraft state estimation problem addressed here, the UKF's
computational cost is considered to be of the same order of magnitude with that of the

EKF [18].

2.3.2.4 Implementation equations

Since the UKF algorithm was first presented, various improvements have been proposed by
the two original authors. A complete discussion on the UKF and all the available options
can be found in [11]. The most suitable version for the aircraft state estimation problem
addressed later is chosen and presented here. In particular, two sigma point selection
strategies are presented, a scaled symmetric sigma point selection scheme [11] and a

simplex sigma point selection scheme [11], [12]| that produces almost half the sigma points
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than the former but still captures the first two moments of the random variable, offering a
great computational advantage for real time implementation. Secondly, an augmented state
vector approach is used, incorporating the process and measurement noise into the state
vector. That way it is possible to compensate much better care for noise, even in the

system's inputs.
The system is described by the process model
Tk = fr—1(Th—1,Up—1,Wr—1) (2.34)
and the measurement model
2, = hi(2k, vk) (2.35)
It should be noted here that the process and measurement noise vectors need not be
additive as in the linear Kalman Filter of Extended Kalman Filter equations; this UKF

model formulation allows for multiplicative noise to be treated as well.

For this purpose, we define the augmented state vector

T L,
xf = { Tk } = | wy (2.36)

where z7 is the state vector to be estimated and whose dynamics are given by (2.34) and

T . . .. .
Ty = [ wkT v,f } is the noise part, containing the zero mean Gaussian process and

measurement noise.
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As mentioned before, the UKF is based on a deterministic sampling of “sigma points”. The
sigma points can be thought of as a set of disturbed state vectors that have the given mean

and covariance.

Symmetric sigma points

Given the previous state estimate Zf_,(+) and its covariance Py, , ,(+), the symmetric
sigma point set consists of (2n® + 1) weighted “state vectors” scattered around the zeroth

sigma point ¢, (4), where n® is the length of the augmented state vector,
Xioi(H) = | Z5_ () &, () + 7P§x,kf1(+)|i L1 (+) — ’Ypfa:,kq("')‘i }(2-37)

The weight Wy of the zeroth sigma point can be adjusted to tune the algorithm, while the

weight of the other sigma points is

1—-Wy

2na

Wi = Wipe — (2.38)

The scalar factor 7 is given by

1 1 _n
W 2Wigpe 1 — W

y (2.39)
In (2.37), /vPy, x_1(+)]; refers to the i'" column of the matrix square-root, as this is

given by the lower Cholesky factorization of the form P = LL”. If the upper Cholesky
factorization is used, namely P = UTU, the i'" row of the matrix square-root is taken

instead.

The weights can be any real number, however,
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2n
> Wi=0 (2.40)
1=0

must hold for an unbiased estimate [11].

Spherical simplex sigma points
The spherical simplex sigma points selection algorithm offers an alternative way to
generate sigma points that produces only (n 4+ 2) sigma points, greatly reducing the

computational cost of the upcoming estimation operations. The spherical simplex points lie

on a hypersphere centered around the zeroth point. The have been proposed in [12].
Without loss of generality, we consider a system with mean x = 0 and covariance P,, = I.
The weight of the zeroth point is chosen in the [0, 1] range,

0<Wp <1 (2.41)

Using Wy, the weights for the rest of the sigma points are calculated,

_1—WO
Yope 41

(2.42)

For the purpose of deriving the spherical sigma points, a special notation will be used in
this section only: sigma points will be denoted as Xf , where the superscript j refers to the

system's size (it equals n®), while the subscript ¢ runs from 0 to (5 + 1).

Three points are defined as
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xp=[0].x1=| s |. X3 = | /o | (2.43)

The sigma points are then expanded as follows for j = 2,...,n®

( T 7—1
X% for =0
X it
X7 — S for i=1,..,7 2 44
B B v/ 7= ] 24
0j—1 o
j for i=j5+1
\ L \/](]+1)W2

The sigma points set generated here for the zero mean case is transformed for the case

with arbitrary mean z and covariance P, using

7} = 2 +/P..X] (2.45)

State prediction

After generating the sigma points with any of the available selection algorithms, we apply

the process model to every sigma point, yielding

Xi(Di = fra (XE_1 ()]s ur—1) (2.46)

Using the propagated sigma point set Xj’(—) the a priori mean is calculated
B(=) = D WiXi (=)l (2.47)

while the a priori covariance is given by
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n®+1
Prai(=) = Y WilXF(=)li — #5()IXE(=)] — 25(-)]" (2.48)
1=0

The state prediction procedure, as well as all the next UKF operations are independent of
the sigma point generation algorithm used. The only thing that differs according to the
generation algorithm selected is the summation index limit in all equations involving
summations (like (2.47) and 2.48)). Here, without loss of generality, we assume that the

spherical simplex sigma point algorithm has been selected, so i = 0...(n* + 1).

Measurement update

Since the process model yields only the unaugmented state vector part, the predicted

augmented sigma point set is assembled manually as

Xi(=) = { )ﬁé_‘f } (2.49)

The measurement model is used on each propagated sigma point to produce a set of

predicted measurements,
Zkli = hie(XE (=) (2.50)

Now the predicted measurement mean and covariance can be similarly calculated,

2n®
=Y WiZyl; (2.51)
i=0
2n®
Pk = Z Wi(Zili — 26)(Zrli — 21)" (2.52)
i=0

The cross covariance is given by
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Py = Z WilXE (=)l = 28 (=) (Zili — )"

and it is used to calculate the Kalman gain,
Ky = PP}

Finally, the state and the covariance are updated using the familiar equations

and

Pfrit’k('i') = Pa::c,k:(—) — Kszng

(2.53)

(2.54)

(2.55)

(2.56)
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Chapter 3

Mathematical Problem Statement

After reviewing the general requirements of state estimation for small unmanned aircraft
and the mathematical fundamentals and interrelations of the estimated quantities (Chapter
1), as well as the main state estimation solutions for linear and nonlinear systems (Chapter

2), we are now in a position to define the state estimation problem in a more rigorous way.

The quantities that should be estimated are the aircraft's attitude quaternion g, its

curvilinear position pg x ; and its NED velocity vy gp. Thus, the state vector of interest is

UNED

Equation (1.20) is the continuous time propagation equation for the quaternion, while
(1.29) is the continuous time propagation equation for curvilinear position. The time

propagation of the NED velocity is given by

dnEDp = anep = Ry PP (q)ab, (3.2)
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where RYEP (q) is a function of the attitude g, as given by equation (1.19).

Equations (1.20) (1.29) and (3.2) will be used to derive the discretized estimator's
nonlinear process model, which will use as inputs the gyro measurements of body frame
angular velocity w and acceleration a. However, the measurements of the gyro and the
accelerometer are both noisy and biased (section 1.5.1) so we must compensate for these

two effects before using the measurements as inputs to the process model.

The measurements that can be used in the measurement update step are the magnetic
heading as given by the compass or the magnetometer (section 1.5.3) and the position and
the velocity given by the GNSS receiver (section 1.5.2). If the compass / magnetometer is
embedded into the IMU containing the gyros and the accelerometers, its output will be
available concurrently with the estimator's inputs, so at every cycle the compass
measurement model will be invoked. GNSS receivers typically produce output at a much
lower frequency than IMUs (5-10 Hz for GNSS vs. 100 Hz for IMUs), so the GNSS

measurement model will be invoked at more infrequent intervals.

As mentioned previously in Chapter 1, one can integrate the IMU and the GNSS in the
“tight” way, using the GNSS receiver's pseudoranges to solve the respective equations
(section 1.5.3) in a state estimation framework. The alternative approach, or “loose”
integration is to use the position and the velocity computed by the GNSS receiver, without

interfering with the internal GNSS operations. The latter approach is followed here.

The small aircraft state estimation problem is highly nonlinear (there are nonlinearities
both in the process and the measurement models) and a solution using the Unscented
Kalman Filter will be described next. However, as the state vector contains both
constrained quantities (¢) and vector quantities (py xn, vnep) the Unscented Kalman
Filter has to be modified for this particular problem. The quaternion part of the state
vector will be updated in a multiplicative manner, while its covariance will be expressed in

terms of a rotation vector, using one less dimension; the non quaternion part of the state
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vector will be treated normally, as in the equations of Chapter 2. It should be emphasized
here that although the two parts of the state vector are treated differently, this happens
concurrently and the attitude estimation is not decoupled from the estimation of position
and velocity. To allow for a better and more intuitive presentation of the separation of
constrained and vector quantities, the attitude estimation case will be considered first in
Chapter 4. The full state estimation case with the state vector (3.1) will be presented next

in Chapter 5, building on the method presented in Chapter 4.

More details on the implementation of the Chapter 5 algorithm follows in Chapter 6, along

with simulation results and a discussion.
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Chapter 4

Attitude Estimation

This chapter deals with the estimation of the aircraft's attitude in an Unscented Kalman
Filtering framework. First of all, the shortcomings of the standard UKF formulation that
result from the attitude quaternion representation and from the presence of circular
measurements are discussed and the respective solutions are presented. In the next
sections, the process and measurement models used are described. Figures presenting the

attitude estimation results are provided in Chapter 6.

4.1 Estimation strategy

The quantity to be estimated is the attitude quaternion g = [ G @1 92 g3 }T, thus it
will be included in the state vector x. However, since in all small unmanned aircraft
applications the measurements are obtained from MEMS gyros, the gyro biases (section

1.5.1) have to be estimated as well. The state vector will therefore be

z=[q" ") =[q @ @ a4 by by bg | (4.1)

Since we will use a kinematic process model, the inputs of the estimator are the gyro

measurements, namely
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U = Wy2 (42)

which are considered a Gaussian random variable with covariance corresponding to the
gyro noise. The subscripts g1, ¢2, g3 correspond to the three sensitive axes of the gyro
around which the rotational rates are measured. As pointed out in section 1.5.1, in general
these axes do not precisely correspond to the axes of the body frame; however since the

deviation is very small we ignore it for our application. Thus, we assume that

Wg1 Wy
= oy
u=| wge | = | wy (4.3)
Wg3 Wz

In section 4.4 the state vector x will be augmented to account for the gyro input noise as

well, in accordance with the UKF formulation presented in section 2.3.2.

As far as measurements are concerned, there are two approaches followed in literature and
in practice. The first one uses a 3D magnetometer or, equivalently, a compass in order to
obtain the magnetic heading. The true heading (yaw) can be calculated subsequently from
the magnetic heading after accounting for the magnetic declination through the World
Magnetic Model [24], as in section 1.5.3. The second approach deals with vector matching
[19], [20]. Vector matching uses measurements and reference values of the magnetic field
and the gravitational field of the Earth to provide measurement equations for use in the
UKF framework. The gravitational field measurements are obtained through the
accelerometers' specific force output, after filtering out the acceleration by velocity
differentiation. Here a significant issue arises, as in highly dynamic conditions, it is
impossible to sufficiently isolate the gravity terms in the accelerometer measurement;

resulting in poor attitude estimation.
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To avoid imposing any limits in the vehicle's maneuverability, it has been decided to follow
the compass approach, relying only on the magnetic heading measurement. The results

presented in Chapter 6 show that this successfully bounds the attitude estimation error.

4.2 Handling the attitude quaternion

Reviewing the UKF algorithm, one can easily see that many of the operations involved,
like the calculation of the a priori mean and covariance, the state update, etc. involve
summations and subtractions that are only valid for a vector space. Although this may be
the case for the vast majority of state estimation applications, like in the estimation of
range or velocity of targets, it doesn't hold for the attitude estimation case; the attitude
quaternion is not a vector quantity since it is constrained (unity norm constraint) in the
Special Orthogonal group (3) — SO(3) as it is shown in section 1.3.2. As a result, the
various operations of the UKF cannot be applied when the attitude quaternion is the

estimator's state vector or part of it.

By referring to the definition of the attitude quaternion (section 1.3.2), we note that
although it consists of four parameters, it obeys a normalization constraint, limiting thus
its degrees of freedom. The attitude quaternion has three degrees of freedom, as many as

the three components of the rotation vector ¢ in equation (1.13).

Following a similar approach to [15], [16] and [17], and taking into account the limited
degrees of freedom of the quaternion that actually correspond to a rotation vector, the

following modifications are made to the UKF algorithm in order to handle the quaternion:

* The covariance of the quaternion is expressed in terms of a rotation vector ¢, using
three parameters. Thus, the covariance matrix for a quaternion random variable has

dimension (3 x 3).
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* The quaternion update is facilitated in a multiplicative manner, through quaternion
premultiplication with a correction quaternion term that corresponds to a correction
rotation vector ¢y (+) calculated using the standard Kalman gain equations.

* If the state vector consists of both a quaternion and other terms that are vector
quantities, each part is handled separately; the quaternion part is updated using the
special method outlined above, while the vector part is treated in the usual UKF

way.

The quaternion treatment is presented in detail in section 4.4.

4.3 Handling magnetic heading measurements

The heading angle is a circular quantity with obvious periodicity (for example 10° equals
370° etc.). Therefore, first of all there is a need to define the range to work with heading.
Here we choose [—180°, 180°).

Regardless of the chosen heading range, the averaging operation of the UKF (section
2.3.2.4) can easily fail, as for example the mean of 179° and —179° is —180°, while the usual
averaging equation would produce a totally incorrect result, as 179° 4+ (—179)° = 0°. The
same condition can be observed around 0° if the [0°,360°) heading range is chosen.

Similarly, the covariance calculation also fails around certain points.
For the above reasons, the mean and the covariance of the heading measurement cannot be
calculated using the standard UKF formulas; methods from circular statistics [8] are

required.

The mean of n samples of a circular quantity a; is given by
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1 1
i—atan2 | =S sing;, = . 4.4
a = atan (nZsma anosa) (4.4)

For the weighted mean case, with weights W; such that >, W; = 1, the above equation is

transformed into

1o I
a=atan2 | — > Wsina;, — Y  Wicosa; 4.5
a = atan (n sina;, — cosa) (4.5)

Equations (4.4) and (4.5) resolve almost all periodicity issues. There is only one case in
which they provide an ambiguous result, when there are two measurements that are 180°
apart. However, for the purposes of UKF state estimation where the averaging takes place
in small area around the mean this is impossible to happen, because it would require a
very big value for the covariance matrix entries to scatter predicted heading measurements
that far apart and that covariance matrix would have already rendered the system

inoperable.

Circular statistics provide only dimensionless measures of dispersion, so a custom solution
for the covariance calculation is needed, obtained through subtraction and expressed in
degrees or radians. Equation (2.52) of the UKF requires the calculation of the distance of
each sigma point Y from the mean y. As far as the heading is concerned, this distance is

given by
d=Y —g (4.6)

Depending on the resulting value of d, a correction is made to resolve the periodicity issue

and provide a result in the [—180°,180°) range,

e ifd < —180° then d + d + 360°
e« ifd > 180° then d « d — 360°
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4.4 Process model

The augmented state vector is

[ q(4x1) ]
b
% g(3x1)
7% = [ %7><1) ] — Ng(3x1)
33(7><1) N,
| Tgbp(3x1)

Ngbp,
Ngbpsy

| Mgbps |

(4.7)

T . . . ..
where 2" = | n, n n is the zero mean Gaussian noise part containing the gyro
g m gbp

and the magnetometer noise components, as well as the gyro bias parameter ng,,, and z*

corresponds to the state vector that it is of interest to be estimated, as given in equation

(4.1).

The process model has the form 27 = f(z¢_,), as the noise terms are not propagated.
3 k—1

The quaternion propagation equation in continuous time is given in section 1.3.2. Its

discrete time equivalent is

10, 4T
qr = ez g

where T is the discretization interval with

(4.8)
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0 —Wg—1,2 ~—Wk—1,y ~—Wk—1,z
Wk—1,z 0 Wk—1,2 —Wk—1,
Qg = 0 v (4.9)
Wre—1,y —Wk—1,z Wk—1,x
Wg—1,> Wk—1,y ~—Wk—1,z 0
where
Wy = wgyk — ng,k — bg,k (410)

in order to compensate for the gyro measurement noise.

Equation (4.8) utilizes the exponential matrix; a more numerically efficient implementation

that makes use of the special form of Qy, is given in [2].

The gyro biases are propagated according to

bg.k = bgk—1+ Ngbp 1T (4.11)

This concludes the process model for the attitude estimation case, which consists of

equations (4.8) and (4.11).

4.5 Measurement model

The measurement model has the form z = h(z®) and relates the system's state to the
magnetic heading, as the magnetic compass is the only sensor used in the measurement

update of the attitude estimation case.

So,
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2k = Vm k (4.12)

with

U = arctan 2 (2(qoxqsk + q1pG2,k)s 1 — 2B, + Bi)) — 6(pk) + e (4.13)

where d(py) is the magnetic declination, obtained from the World Magnetic Model [24].
The magnetic declination is a function of the vehicle's position pg, however in the attitude
estimation case examined in this chapter the aircraft's position is not included in the state
vector and thus it is not estimated. As the magnetic declination is a slowly changing
quantity (taking into account the usual speed range for the aircraft class considered here)
we can assume that a low frequency, noisy position measurement from a GPS receiver
(with few meters accuracy) is more than sufficient for the calculation of §(pg). In the more
complete, full state estimator presented in the next chapter this issue is solved by including
the position in the estimator's state vector. If there is no GPS receiver available at all and
an attitude estimate is still needed, d(px) can be obtained offline from the World Magnetic
Model beforehand, assuming it to be constant for the duration of the flight.

4.6 Attitude estimator equations

Here the complete Unscented Kalman Filter attitude estimation algorithm is presented.
The spherical simplex sigma point selection algorithm is used to reduce the computational
cost. For better clarity of the special treatment of the quaternion part of the state vector,

we will use the notation
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z?
xi = x%‘”l) (4.14)
kix1)

separating the quaternion z;? from the vector part z{ of the state vector.

4.6.1 Spherical sigma points generation

Given the (7 x 1) vector %7 ,(4) containing the previous estimate and its (6 x 6)
covariance matrix PJ ,(+4) (the quaternion covariance is expressed in terms of a rotation
vector, hence the reduced dimension covariance matrix) the spherical simplex sigma points

are generated as follows:

The augmented covariance matrix is assembled, using the known measurement and process

noise covariance terms,
a 0
Py (+) = { 0 R } (4.15)

where the (7 x 7) R matrix corresponds to the process, measurement and input noise

covariance.

We calculate the lower Cholesky factor C' of the augmented covariance, through the lower

Cholesky decomposition,

Py (+)=cC” (4.16)
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The zero mean / unit covariance spherical sigma points Y are generated as described in

section 2.3.2.4 for n = n® — 1 =14 — 1 = 13 (equations (2.41)-(2.44)).

T
Then, to get the sigma points set that have mean #¢_,(+) = | Z5_;(+)7 0(T1X7) ] and

covariance P | (+), for each i*" column (i = 1....(n +2) = 1...15) of the zero mean / unit

covariance spherical sigma points set Y (calculated by the algorithm given in section

2.3.2.4) we do the following:

We calculate the term

Prh—1,i(5%1)

T,=CY|i=| ¢ (4.17)

TUk—1,i(3x1)

J

Mk—1,i(7x1)

where

L) 3o, 18 a rotation vector that corresponds to a quaternion ga, calculated using

equation (1.13)

*  Ozu,_,,; is a sigma point “scattering” term that corresponds to the vector part z** of

the system's state vector

* Ony,_,, is related to the noise part of the augmented state vector

The " sigma point's part corresponding to the quaternion is now updated as

X = qn, @ 237, (+) (4.18)
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The above operation rotates the mean quaternion around each of the deterministically

sampled rotation vectors 6 .
¢k —1,7

The vector part is treated using the typical UKF equations, as

va|1 = "’i‘igl + 613Uk_17i (4.19)
and

X", =6 (4.20)

Nk—1,i

The weights W; of the sigma points X; are given by equation 2.42.

4.6.2 State prediction

Using now the process model of section 4.5 on each sigma point 7 yields the predicted

sigma points set,

X2 = o1 (XP_1 ()i uk—1) (4.21)

where u is the input vector containing the measured angular rates.

The mean of the predicted sigma points is calculated separately for the quaternion and the

vector parts. The mean quaternion according to [17] is given by
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SR WL X ()]

~Tq
1, (—) = —=s - (22)
13250 Wi (X ()1
while the mean for the vector part of the state vector is
n+2
B(=) =) Wil XE ()] (4.23)
i=1

For the calculation of the covariance, we have to reduce the sigma point quaternions to
rotation vectors. We find the quaternion dg; ; which corresponds to the rotation between

the i'" sigma point quaternion and the mean predicted quaternion g (—),

O = X ()l @2 (=)™ (4.24)

where —1 refers to the quaternion inversion operation as given by equation (1.15).

Using equation (1.13) we find the rotation vector d§; = that corresponds to the dqy

quaternion.

Now, as far as the non quaternion part of the sigma points set is concerned, we find its

difference from the previously calculated predicted mean 7" (—),

Ovy, = X" ()i — 23,7 (—) (4.25)

Combining the calculated difference terms in one vector,
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0d, .
O, = { 50 ] (4.26)
TV,
the covariance matrix is given by
n+2
Pi(=) =) Wibsy 05 (4.27)
i=1

4.6.3 Measurement prediction

As the noise part of the sigma points is not propagated, but it is used in the measurement
prediction step, we manually assemble the new augmented sigma point set, containing the
propagated part X (—) and the previously generated noise part X' ,(4), as in equation

(2.49),

Xp (=)= { X)Zﬁi(—l) } (4.28)

The measurement model of section 4.5 is used on each predicted sigma point Xj(—)|; to

yield the corresponding predicted measurement vector Zi(—)|;,

Zr(—)|i = ha(Xg (—)]4) (4.29)
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Here there is only one measurement (heading), however in general Zi(—)|; is a vector, as
will be the case in the next Chapter where multiple sensors may produce output in the

same measurement update cycle.

According to section 4.3, the mean and the covariance of the heading are calculated using

equations (4.5) and (4.6).

Therefore the mean is

n+2 n+2
1 1
2e(—) = atan2 (n—+2 Zl Wi (sinZy (<)1), Zl Wi (cosZk(—)|i)> (4.30)
and the covariance
n+2
Pzz = Z Wzdzléz;‘F (431)
i=1

where the difference ¢z; is the angular difference of the i*" predicted measurement from the

mean measurement prediction, as given by equation (4.6) to resolve the periodicity issues.

4.6.4 Cross covariance calculation

The cross covariance is given by
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n+4-2
Pp. = Wibs 2] (4.32)
=1

where 0,0 s the difference of the i'" sigma point from the predicted mean, as given by

equation (4.26) and dz; is the difference of the i*" predicted measurement from the

predicted measurement mean, as given by (4.6).

4.6.5 Kalman gain and state update

The Kalman gain is
K, = P,. P} (4.33)

The state update is facilitated separately for the quaternion and the vector part of the

state vector.

The Kalman gain can be divided in two parts, K. ? that corresponds to the quaternion part

and K}V that corresponds to the rest of the state vector,

K
K, = Fx) (4.34)
Kk'(3><1)

As far as the quaternion is concerned, a correction rotation vector is calculated using the

Kalman gain and the actual measurement vector zy,

or(+) = K (2 — 2(-)) (4.35)
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The angle subtraction above must be facilitated as in section 4.3 due to the heading angle

periodicity issues. This rotation vector corresponds to a quaternion dqx(+) given by

equation (1.13). Now the quaternion part of the predicted mean state vector is updated in

a multiplicative manner,

30 (4) = dqr(+) ® ()

The rest of the state vector is updated using the standard UKF equation,

where again the angle subtraction must follow section 4.3.

4.6.6 Covariance update

The covariance is updated by

(4.36)

(4.37)

(4.38)
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Chapter 5

Full State Estimation

This chapter deals with the estimation of the aircraft's position and velocity, in addition to
its attitude, using accelerometers and gyroscopes as inputs, and GNSS and compass output
as measurements in an Unscented Kalman Filtering estimation framework. Since
accelerometers and gyroscopes can exhibit significant biases, these biases will be part of the
estimated state vector in order to be subtracted from the measured values before they are

used as an input to the estimator.

The development of this chapter and the respective algorithm follows a similar approach to
the previous chapter dealing with attitude estimation and the special treatment of the
quaternion part of the state vector remains the same. It was chosen to present the attitude
on its own in a separate chapter, to emphasize the quaternion handling in that more simple

case.
The (16 x 1) state vector to be estimated in the full state estimation case is

a® = | q" pg,,\,h UNED bf ba }T (5.1)
To compensate for noise, we define the (19 x 1) noise state vector,

T
2" =[ng ng Ny ”gpsp n&ps, Moy Mabp | (5.2)
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where each term is Gaussian white noise with mean 0 and the respective covariance.

Again, the state vector x” is split into the quaternion part z*? and the vector part z*° to

allow for separate treatment of the attitude quaternion.

5.1 Process model for full state estimation

The discrete process model for the curvilinear position pg x p is

¢ 4 RN(m,]iZ)_ihk_l

— CErll
A N A + (Re(dr—1)+hr_1)cosdr_1 T (53)
h k h k—1 —UpDk—1

where T'is the discretization interval. Equation (5.3) is a first order discretization of (1.29).

The NED velocity is propagated according to

UN UN
VE = | vg + RéVED(Qk—l)(ffM_l —Na k-1 —bar—1+39Dpan, )| T (4.4)
UD |} UD |4

where f5 is the accelerometer measurement and g is the gravity vector calculated using the

WGS84 model [23].

The accelerometer biases are propagated as the gyro biases in section 4.4. The attitude

quaternion is also propagated as in section 4.4.
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5.2 Measurement model for UKF full state estimation

In the full state estimation case the sensors used are the compass (as in Chapter 4) and the

GNSS / GPS receiver that provides measurements of the aircraft's position and velocity.

The compass measurement model has been discussed in section 4.5.

The GNSS measurement model for position and velocity is

GPS NED
z, U =Pe e Ry T TUraps +ngps, (5.5)

GPS, _ NED, b
2, = VNED, + By " wipy X raps + naps, (5.6)

where rgpgs is the GPS antenna lever arm in body frame axes (this should be taken into
account when the lever arm is large compared to the specific GNSS configuration

accuracy).

Depending on the measurements available at every instance, the appropriate combination

of models is used to assemble the predicted measurements vector.

5.3 Full state estimation algorithm

The estimation algorithm for the full state case is identical to the one presented in section
4.6 for the attitude case, if the appropriate full state process model and the appropriate

measurement models are used, of course.

Care must be taken to correctly distinguish the quaternion and the vector parts of the
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state vector and the sigma points set.

5.4 A note on curvilinear position periodicity

Since the latitude and the longitude are circular quantities, they exhibit periodicity issues

near the limits of their definition interval.

Longitude periodicity issues occur near the 180° East / West longitude area. In the unlike
event that the unmanned aircraft in question operates near that meridian line, the UKF
algorithm may fail as the respective covariance values will increase dramatically. If flying in
this area is of interest to the algorithm's designer, the method of section 3.5 could be used

at every operation involving the longitude to avoid any issues.

A similar problem is encountered near the poles, where averaging and subtracting

curvilinear coordinates may again cause a failure of the UKF algorithm.
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Chapter 6

Implementation — Discussion

This chapter presents a modular implementation of the full state estimation algorithm
developed in Chapter 5. In section 6.1 the various components and their interdependence
are presented. Next, the initialization of the estimator is dealt with in section 6.2.
Simulation results are provided in section 6.3 to verify the proposed estimator's accuracy.
A discussion of the results and suggestions for further research follows, concluding the

chapter.

6.1 Algorithm

The state estimation solutions presented in this text are of a recursive form, since only the
mean and the covariance of the previous estimate are required at the beginning of every
estimator iteration. A block diagram that shows the estimator's loop is provided next. All
the blocks correspond to the respective equations found in Chapters 4 and 5, except for the
algorithm's initialization which is discussed in the next section. The MATLAB function
prototypes of the major components shown here are given in Appendix A. The source code
files for the simulation example are included in the accompanying CD; alternatively, they

can be obtained by contacting the author.
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6.2 Initialization

At the first iteration, the algorithm requires an initial value of the estimated quantities.
This chapter presents some practical solutions to the initialization problem, for both

attitude and position.

6.2.1 Attitude initialization

For attitude initialization, usually averaging of the compass output for a couple of minutes
is enough, since for most stationary aircraft, the roll and pitch angles are 0. Alternatively,
if a three axis magnetometer is present, one of the attitude matching algorithms in [19] or
[20] may be used, to solve the dual vector field attitude matching problem, given the
magnetic field measurement and the accelerometer's specific force output (which for a
stationary or a slowly / steadily moving vehicle equals the gravity field components) and
the known reference values (using the gravity [23] and magnetic field [24] models with the

curvilinear position as input).

6.2.2 Position and velocity initialization

Position can be initialized by averaging the output of a GNSS receiver over a couple of
minutes. The initialization period depends on the accuracy of the GNSS positioning output
(Differential GPS systems, for example, already have a couple of decimeters accuracy so no

lengthy averaging is necessary).

As far as the velocity is concerned, this can be also averaged from the GNSS velocity

output, although almost always the aircraft remains stationary during the estimator's
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initialization, so the North — East — Down velocity is 0.

6.2.3 In-flight restarts

In the event of a software / hardware malfunction, the estimator may have to be restarted
in flight. For that purpose, it is sufficient to provide the last estimated quantities as initial
values if the duration of the downtime hasn't been too long. UKF based estimators are

robust in terms of initialization uncertainty [18].

6.3 Results

The following results correspond to the simulated flight of a small aircraft, using the full
state estimation algorithm of Chapter 5. The estimator runs at a frequency of 50 Hz, or
equivalently whenever there are measurements from the IMU. GPS measurements are

available every 5 cycles (at 10 Hz).

The noise characteristics for the IMU inputs correspond to a very small, light and cheap
MEMS IMU, with standard deviations o4y, = 0.0087rad/s and o4c. = 0.02m/s? The

magnetic compass noise is Geompass = 0.7° and its measurements are available at 50 Hz.

As far as the GPS receiver is concerned, a Differential GPS setup is simulated, with

Tposy» = 0.2m and 005, = 3 X 0pos, 5
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6.3.1 Attitude estimation results

We note that with the exception of the moments when the vehicle first starts to move, the
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estimate's error seems to behave well, being sufficiently close to zero.
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6.3.2 Position estimation results
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6.3.3 Velocity estimation results
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6.4 Discussion

In this text, a solution to the state estimation problem for small unnamed aircraft is
presented and verified through a simulation example. The algorithm is based on a version
of the Unscented Kalman Filter, modified appropriately to handle the attitude quaternion
and heading measurements. The state vector is split in two parts, one that corresponds to
the quaternion and the other that contains vector quantities. The quaternion is
transformed into a rotation vector in order to express its covariance, while a rotation
vector is again used to update the quaternion part of the state, after the calculation of the
Kalman gain. The vector part of the state vector is treated in the usual UKF way. The
algorithm is simple and robust, retaining all the benefits of the quaternion attitude

representation.

Suggestions for further research include:

e comparison of this estimator's performance with an Extended Kalman Filter
solution, in terms of accuracy and computational requirements

* comparative development of a Central Differences based Kalman Filter ([21], [22])
which bears many similarities to the UKF but offers greater accuracy in the
estimation of covariance

* derivation of safety limits for GPS denied operation

* verification of the estimator's performance through actual flight experiments
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Function Prototypes

The prototypes of the proposed algorithm's implementation functions are given here. The
complete source code is included in the accompanying CD, or alternatively can be obtained

by contacting the author.

These functions are called from the main loop (UKF FG estimator.m) to perform

various operations described previously in this text.

[y] = process _model full( x)

Full (attitude, position and velocity) kinematic and bias (gyros and accelerometers) process
model for the augmented state vector. The inputs are the gyro and accelerometer output,
which are a global variable in MATLAB for the purpose of this simulation, hence they are
not provided as input to the function.

[Z,W,Wc|] = QuatVSphericalSimplexSigmaPoints(x,P,W0)

Generates the Spherical Simplex Sigma Point set for noise augmented state vector x with
covariance P. The first four elements of the state vector correspond to an attitude
quaternion. WO is a free tuning parameter (see section 2.3.2.4) without noticeable effects in
the results of the estimation algorithm, though.
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[Y mean,Y,P,dx| = Unscented TransformQuatV (X,{f,Wm,Wc)

Propagates the sigma point set X with weights Wm (for mean) and Wc (for covariance),
using the process model function handle f. Returns the propagated sigma point set Y and
its mean Y mean, their covariance and the difference dx of each sigma point from the
mean (to calculate the cross covariance matrix later)

[yaw pred mean,yaw pred,P,diff| = Unscented TransformM Yaw (X, {,Wm, Wc)

Predicts the magnetic heading measurements and the difference from their mean to assist
in the cross covariance calculation later. The measurement model handle f is used.

[meas pred mean,meas pred,P,diff| = Unscented TransformMFull(X,f,Wm,Wc)

Predicts the full measurement set (magnetic heading, GPS position and velocity),
according to the measurement model handle f.

[pred _meas| = measurement model full(x)

Measurement model for the compass + GPS measurement case, taking an augmented
vector as input.

[pred _meas| = measurement model MH(x)

Measurement model for the compass case, taking an augmented vector as input.

[ a_avrg | = angle avrg( a,W )

Calculates the weighted (W) average of a vector of angles (a)
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| a | = angle diff( al,a2)

Calculates the difference in rad between 2 angles taking into consideration the angle
periodicity on a circle

|R|=Rbn(q)

Quaternion rotation matrix (body to NED)

[ f] = quat findrotation custom( q)

Finds the rotation vector corresponding to the given quaternion

| dq | = quat_rotation custom( f)

Finds the quaternion corresponding to the given rotation vector

| g | = quatinv__custom( q )

Finds the inverse quaternion for the given quaternion q

[ p ] = quatmult_custom( qar )

Performs the quaternion multiplication operation for two given quaternions q,r

|[RE| = WGS_RE(L)

Calculates the transverse radius of curvature of the Earth given the geodetic latitude

[RN] = WGS_RN(L)

Calculates the meridian radius of curvature of the Earth given the geodetic latitude

MATLAB's built in functions wrldmagm and gravitywgs84 are used as well to calculate
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the magnetic declination and the gravity as a function of position (and time for the

magnetic model case).

The quaternion related functions include the word “custom” in their name in order to

distinguish them from the MATLAB built in equivalent functions.
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