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ITepiAndn

H napoloa dimhwyotiny spyooio anooxonel vo cuyBdiker oty avdntuln evdc cUCTARATOC
AUTOVOUNC OBHYNONG AYWVIo TX0) LOVOYESLOU OYHATOC GTO TAAICLO TOU POLTNTIXOD Blory WVIOUOU
Formula Student. H xatnyopla avtévoune odhynone (Driverless) npootédnxe otoug gortntixolc
dlaywviopole oyedioone aywviotixody povoldesiovv Formula Student to 2017. Axololdwe, to
2022, o xuptdtepog dlaywvioude Formula Student, avtdg tng I'eppaviog, eiofiyoye tnv anoaitnon
and OAeC TIC CUPUETEYOUCES OUABES Vol GUUTERIAGBOUY SUVATOTNTO AUTOVOUNG 0B YNONG OTAL oy-
WO TIXG hovodéatd Toug.

H rapotoa epyaocio nepiypdpet T oyedloom Tne ouvokixrg apyttextovixnic, evog TAfeoug pipeline,
Yo TO TEWTO AUTOVOUO aywVIoTixd povoléaio tne gortnuixnc opddac PROM Racing tou EMIL
Emuniéov, diepeuvel oe Bddoc Yéuata viomolnong xou aflohdynong twv povédny "Avtiingng"
(Perception) xou "Tavtdypovne Xwpodétnone-Xaptoypdenone" (SLAM) xa napouotdlet plo véa
TROGEYYIoT UTOAOYLOUOU andoTooNS EYNOdLa Tou Bev Eyel yenotwomoindel and dAAN ouddo For-
mula Student. Emnpoctétne, nopoucidler apyixée doxiés evalhoxtxddv pedddny "Eyedaopod
Kivnone" (Motion Planning) nou unopel vo anotehécouv 1) Bdon yio peANoVTL €peuval xodmg
2oL YLl TEQALTER® AVATTUEYN TOU OYHUATOG.

H wovétnra tou oyAuatog var eXTUACEL TNV ando TaoH Tou and To dpta TN Tiotag (dmwe autd
0plo¥ETOUVTOL OTNY TPOXEWEVT TEPITTWOT ANO CUYXEXPUEVOUS xVous) e€etdletan o€ €val olvolo
486 puwToypapidy Ye 2745 xwvoug ot YVwotég anoctdoelg. H ixavétnta tne povddag SLAM va
TopdEetL To ydpTn tTne ToTog adloloyeltal Thve oto Oy nua xode xvelton og tioteg Timov Formula
Student. Téhoc, ol evahhaxtixol Motion Planners mtou vhonotidnxay doxwdlovtat oTov Tpocoyuot-
ot Tou oyfuatog. H véa pédodog extiunong anoctdoewy netuyalvel peiwon Y€cou TeTpaywvixoL
OPIANIATOC, ETUTEENOVTAS TNV OELOTUOTY EVOWUATKOY xal TANpo@opioc oYETILOUEVNC UE XWDVOUS
guploxduevoug oe peyahbtepec anootdoelc. Me 1 yeron autng g pevddou, 1 povddo SLAM
onuetdver recall xou precision e t8&ne Tov 96.5% xou 100%, avtiotouya. Télog, napoucidlovto
A0l ATOTEAECUOTA TEOCOUOLCEWY YL TN HEAETY) TN ENBOONE TWV evOhhaxTixwy pedédwy Motion
Planning nou Soxudovnxay, delyvovtog tn duvatdtnta LVETNONE AYWVIOTIXAS YROUUHAS omd TOo
HovoUEsio Ue TauTdYpovr amoguyT e£650L amd TV ToTa.

Keywords

Avtovoun odiynon Formula Student, Aywviotnd Movodéoio, povopdahuxn extiunon Bddoug,
YOLO, ®irtpo Kalman, graph SLAM, Pure-Pursuit, MPC






Abstract

This diploma thesis aims at contributing towards the development of an autonomous race
car driving system in the frames of Formula Student competitions. Formula Student constitutes
a set of race car design competitions addressing university teams. The new Driverless class
in Formula Student competitions was introduced in 2017. Subsequently, in 2022, the most
prominent Formula Student competition, that of Germany, introduced the requirement for all
competing race cars to have autonomous driving capabilities, with non-compliance resulting in
significant point reductions.

This diploma thesis lays out the comprehensive conceptual design of the autonomous system
pipeline for the first Driverless race car of the NTUA PROM Racing Formula Student team.
Furthermore, it explores in-depth issues related to the implementation and testing of the “Per-
ception” and “Simultaneous Localization & Mapping” (SLAM) modules and proposes a new
approach for detecting distance from obstacles which, to the best of the author’s knowledge,
has not been previously used by other teams in the Formula Student Driverless community.
Finally, it describes the implementation and initial testing of different Motion Planners, which
can constitute the basis for future research and further developments on the Driverless race car.

The goal of the Perception module is to detect the limits of the race track, which are in this
case outlined by means of specific cones. The goal of the Perception module is, thus, to detect
those cones, recognize their color and calculate the vehicle’s distance to them. For testing the
performance of this module, a dataset of 486 images containing 2745 cones at known distances
is used. Furthermore, the performance of the SLAM module is evaluated based on its capacity
to map a circuit and is tested on the actual vehicle while being driven on Formula Student
style tracks. Finally, different motion planning approaches are implemented and tested on a
simulator. The new perception approach achieves a reduction of Root Mean Squared Error
(RMSE), enabling the reliable integration in the system of information associated with a larger
set of cones situated at greater distances from the vehicle. Using this method, the SLAM
module achieves a recall rate of 96.5% and a precision rate of 100% on the test tracks. Lastly,
this thesis presents results from the implementation of different motion planning approaches
tested in simulation, depicting the capacity of the vehicle to adopt a racing line while always
remaining within the track limits.

Keywords

Driverless, Formula Student, Race car, monocular depth estimation, YOLO, Kalman filters,
graph SLAM, Pure-Pursuit, MPC, knowledge distillation
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Euyaplotieg

H oloxipwon authc tne Bimhwyatixic epyaoioc onpatodotel to népac tne (oltnong you
oty Xyxor Hiextpohdywv Mnyoavixdv xou Mnyovixdv Troloyiotdv tov E.M.IL Oa fideha va
ELYAPLOTACL TOLG aVP®TOUE TOL GUVEBNAAY OE AUTHV TNV TopEld.

Apyxd, tov emPBAénovta xadnynth e epyaoiog pou, tov x. Kdota Tlapéota. Log evyaplotd
YL TNV EUmioToolVn Tou wou Bel€ate xou TNV eAeudepio Tou wou drcate vor SLoAEEw TNV xatevuvon
NG €pEUVC.

Ou ek enlong va euydploTiow TNV owoyéveld pov. Toug yovele povu, Twdvvn xou Eiprjvy,
mou otnellouy xdde Brua pou xou Tov adepod pov, AréEavdpo, mou PBeioxeton TdvTa 6To TAELES
HouL.

Téhog, Yo filela vo euyoplothion Oha ta uEAn e poltnuixic ouddag PROM Racing ye ta
omola lyot TNV TOYN VO CUVERYAOTE OTA B00 UOU YEOVIOL GTNY OUdd Xou WBLnTERKS To Anuriten,
to Nixo, To Mdvo, to BaclAn xou tov Ildpen.
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Chapter 1

Extevnc neplindmn

1.1 Ewcaywyn

H napoloa epyacio neptypdgel 0 oyediooy evéc mApoug pipeline yia to medto autdvouo
ayovoTixd povodéoio e gortntixrc opddag PROM Racing. Emmiéov, diepeuvel oe Balog O¢-
pator vhomoinone xar aflohdynone Twv tunudtewy Perception xow SLAM xow mapovoidlel plor véa
TEOGEYYIOT UTOAOYIOUOD OmOCTAONG and eUmodlor Tou dev €xel yenowonomdel and dAAY oudda
Formula Student. Eminpoc¥étwe, éyouv cuunepiingel Soxuée evorhaxtindyv Motion Planners
mou unopel vo anoteAéoouy T Bdom yia HEAAOVTLIXY €peuvaL.

To 2022, o xupLdtepOC dlarywviopog Formula Student, autdg tne Iepuaviog, Eexivnoe vo amontel
and OAeC TIC CUPUETEYOUCES OUABES VoL CUUTERIAGBOUY BUVATOTNTO AUTOVOUNG OB YNONG OTAL oy-
Vo TIXd povovéald toug. H eyxatdotaon evog autdVOUOU CUCTAUAUTOS EYLVE OVOYXAULOTNTA XolL
QUTO ATOTEAEGE TO EVOUGHA YL TNV TTAEOVCA EQYUGCIAL.

O otdyoc fray v oyediaotel xou vor vhomolndel éva autévopo cloTNU oL Juo YEYLETOTOL00GE
Y mdavoTNTA TOU OYNUUTOC VO ONOXANPOOCEL OAAL Tol BUVOIXE oy WVIOUOTA TV BLoryWVLOUWY
Formula Student Driverless. I'w auté tov oxond, €yel dovel Eupoor oTNY amAdTNTA Xou OTNY
a€lomiotia, pe Vv en{doon va épyeton o deltepn uolpa. Emmiéov, ol ouxovopxée duvotdtnteg
¢ PROM Racing elvou neploplopéveg oe oOYXpLON UE TIC TEPLOGOTERES OUGDES TWV DLy WVIGUWY,
EQLOTAOVTOC omopafTnTy plal OLXoVoUIXY) TROGEYYLON GTIC EMAOYES aoUNTHPWY XAl UTOAOYLOTIXOU
GLCTHUOTOC.

Metd o mépac tne 0eldv Tou 2023 XATEGTN EPPAVEC TS O XVELOG TEPLOPLOTIXOS TOEAY OVTAS
TOU oUTOVOUOU cuoThuatog Htav to Perception xan cuyxexpiuéva n Suoxoiio mou avtyetomle
070 Vo eXTACEL TNV axplB3T) omocTACT] TOoU and eunddla. Autd yévvnoe TNy avdyxrn oavdntuing
evoc véou govtéhou Perception pe Betiwpévec duvatdtnteg extiunone Badouc.

"Hon and v nopdevinr| oelov tov dlaywvioudv Formula Student Driverless, ouddec dnpoacieu-
oav To epeuvnTXd Toug €pyo. To mo xadopiotind épyo eivon to [19], oto omolo 1 oudda tou ETH
TopoLGLELEL TO TARPES AVTOVORO GUOTNHUA TOU oyWVLOTIXOU Toug povodeoiov. H (S opdda éyet
enlong dnpoaotedoet dpdpa mou e€eTdloUV AETTOUEPDC XaL ELGEYOUY TEPUUTEPL BEATIOCELS GTA dLd-
(popa oTolyela Tou anaptilouv To mpoavapepléy clotnua. Autéc ol epyaoieg neplhopfdvouy évay
Velocity Estimator nov ypnowonotel otouyeio unyavixhc pddnone(35], éva uBewdixé EKF-Graph
SLAM vy yaptoypdgnon xo eviomopd dong tou povodesiov otny niota[3], évay epapyixd Mo-
tion Planner[40], xou évav MPC nov ypnowonowel otouyeior pnyovixic pédnonc[18]. Xto [36]
nopoustdletar wia mpocéyylon Tou npofiiuatoc tou Perception pe plo xduepo mou avamtdydnxe
and pla ouddo amoteholuevn amd gortntés tou MIT xau tou Delft. Téhog, oo [25] yiveta olyxp-
ton pyeto€b EKF SLAM o GraphSLAM oto aywviotuxd povodéoio tou KIT.
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1.2 T'evixég nAnpogopicg

Ou dlarywwviopol Formula Student omoteholv Sorywviogolc oYedLoUol Yl QoLTnTéS ToU Op-
yavévovton and o Awedvh Lovdeopo Mnyavoréywv Manyoavixdv (SAE) ond to 1980. Ouddec
QOLTNTWV XAAOVVTOL VO GYEBIACOUY XAl VO XATUOXEVACOUY Yy WVLOTIXE JovoUéata Ue To omola ev
Téhel Braywvilovtar oto téhog xdlde oeldv. Ou dlaywviopol yweilovtar ot tpelc Pooixée xatnyoples:
Oyfpata Ecwtepufic Kavone (CV) (cuprephapBavopévey TPewbixav Oyxnudtwy (HY)), Hiex-
Towd Oyfuoro (EV) xon Autévopa Oyfuata (DV). Etnv xatnyopio DV ta oyfucte oywviovto
TOCO GE YVWOTEC OGO XL OE AYVWOTEC TUOTEC.

H PROM Racing NTUA eivor pioe opddo Formula Student mou exmpoownel to Edvixd Met-
o6Po Ilohuteyvelo. ISpUdnxe to 2008 xou aywviotnxe o TpdTn Qopd otnv xatnyopla CV 1o
2011. To 2021 mpaypatonoinoe tn petdPBacn oty EV xatnyopla, émou €yive 1 mpdtn eAAnvixy
oudda mou xepdiletl enlonuo darywvioud Formula Student. ‘Eretta and avtd v emtuyla, Eexivnoe
éva BleTég mAdvo yia var ayoviotel to 2023 otny xatnyopla DV.

To P23 elvau 1o aywviotind yovodéoio tne PROM Racing yia ) oeldv touv 2023. Awodétel
nhextewxd xuvntrhea 120 kW otov mlow d€ova, éva UETATpOTEN Yia TOV EAEYYO TOU XLYNTAR Xl
wo pratopta 9.1 kWh yia v tpogodoosia tou cuothpatog. H pdduion tne petddoong e xivnong
otov ntlow d€ova emTLYYdvETOL Yo VS dlapopinol Teptoplopévnc oModnone. To aepoduvaund
noxéto metuyaivel ouvteheoth lift -7.3 pe toug avepotrpeg ground effect xan -5.5 ywplc avtolg,
xodog xou Aoyo lift mpog drag -3.48 xau 3.05, avtiotoiya. Téhog, yenoidomoiodvron eAooTixd
Hoosier R20 16.0x7.5 xou otoug 8o déovec.

To autdvopo clotnua Tou P23 anotehelton amd Toug unyaviogols ToU THIOVIOU ol PEEVou,
Toug aroUnTipes xivnone xow avtidndng, xodode xou to unoloylouxd cvotnua. Ou arovnTipes
xivnone tou P23 nepihopBdvouv évav IMU, éva GPS/INS xou téooepic awodntripes toydtnroc
Twv Teoywyv. To P23 Swrdétel 800 xduepec mou Aettoupyolv aveldptnta 1 o omd Ty GAAT,
onuerdvovtac évo cuvohxd medio Yéaone e TéEne twv 105°. Téhog, To utoloylouxd choTNHUA
anoptileton and évay eneepyaoty Intel 17-12700, évay emtoyuvt TPU, plo RAM twv 32GB xou
plo SSD Tou 1TB.

To autdvouo clotnua tou P23 amotekelton and téoocepa cuotatxd ototyeio: v "Avtiindn"
(Perception), tov "Extunth Taytmrac" (Velocity Estimation), tnv "Tautdypovn Xwpodétnon-
Xaptoypdpnon" ( SLAM) xo 1o "Eyedioousd Kivnone" (Motion Planning). To Perception elvou
UTELTYUVO YlaL TNV OVOLY VRO TWV XWVKWY TOU AELTOURYOLUY w¢ dpta TN TioTtag xou TNy extiunon
TOU YPWUATOG XL TNG andotactc Toug and To oynue. To Velocity Estimation elvon uretduvo yio
™V eEXTUNOT TWV TAYLTATEOVY XAl TEV ETITUYUVOEWY TOU OYAUATOS. X YVwoTég Tlotee, to SLAM
aoyoheiton WOHVO UE TOV EVTOTIOHO TOU GE QUTES, EVE OE AYVWOTeS TioTeS, empoptiletar emnhéoy
xou Ye Tt dnuloupyio Tou ydetn touc. Téhoc, to Motion Planning unohoyilel tnv tpoyid mou
npénel vo axohoviioel To dymuo xoddg Xl TIC AVTIOTOLYEC EVIOAES TIOU TEEMEL VoL OTAAOVY GTOUC
UNYOVLOUOUS TOU TWoVioU, Tou @eévou xot Tou yxalol. H pof twv mhnpogoptdy oto cbhotnu
nopouctdleton oto oyfue 1.1.

. Velocity Estimation '
SLAM [ . .
‘ et Plan"mg -

~

Perception

Figure 1.1: To mAfjpeg autdvouo obotnua Tou P23.
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1.3 Extiuntng Toaydtnrtog

O ot6y0¢ Tou Velocity Estimation eivou va ouyywvedoel tAnpogopieg and dAoug Toug aucintiipeg
xVNong TEOXEWEVOU VoL TAPEYEL GUVEYME Wil EXTIUNOT TS T UTNTOS TOU OYAUATOC (Ug, Uy, W).
‘Eva Baowxé epyaheio yio tny eniteuén autod tou oxomou etvar to @litpo Kalman. I Tic mepin-

TWOELS, WOTOC0, IOV To GUGTNUA BeV elvon Ypopuwxd yenowonoteitor To Extended Kalman ¢iiteo.
Tt ouyxexpuyévn eqopuoyy) ot e€lotoels Tou Teptypdpouy Ty eEEMEN Tou cuoTiuaTog efvou:

Uy = Az + W * Uy + Wy,
Uy = Ay — Wk Uy + Wy,

Wy = 0, + Wy,

Gz = Waq,
(y = W,
O, = We,

AvtioTolya, ol e€lo®oelc Tou eptypdpouy T TpoPAemoUeveS TS and Toug auodntrpeg elvou:

_ ug*cos(8)+(uy+wexry)*sin(d)
zwfrontf’wheel - Ruheel

“+ v,

Wfront—wheel

z = Ug v,
Wrear—wheel Reuheel Wrear—wheel

zo = Rot(a+w X (wxr)+axr)—g+uv,
zw = Rot(w) + v,
zy = Rot(u+w X 1) 4+ vy

O nivaxoc cuvblaxdyavong yia Tig peterioelc tne IMU nporle and to eyyepldio Tou avaintrpa.
To GPS/INS tpéyel ecwtepd évo INS Kalman gidtpo xou mopéyel 1o cuvodevduevo mivaxa
ocuvdlaxtpoavang. Téhog, Yo Toug awodnThpes uéTENomg TayOTNTUC TV TEPOYXOV XAl YL TO UOVTENO
Tou cuoTAATOC XoopioTnxay Bdon Soxuwy.

1.4 Avziindn

O otdyoc tou Perception elvon n aviyveuon twv xdvwy, 1 ovayvoelon Tou Ye@patdc Toug
X0l O UTOAOYLOUOC TN OmOCTAGNC TOU oyNfuatog and autols. Xto miololo authg g epyaoiog
BlaoppdUINXY TEELS EVUANIXTIXES TPOCEYYIOELS.

H npdytn mpocéyyion Baoiletan oto yeyYovos 6Tl oL axplBelc SlooTAOELS TwY XWVKV elval YVo-
OTEC EX TWV TPOTEPWYV. LUYXEXPUIEVA, TEOYHATOTOLE(TAL 1) UTOTUEDT) TS OL BLIG TAGELS TOU XWVOU
ot puwToypapia aexoly yio va extiundel n andotaon tne xducpag amd autdy. T'a Tov eviomioud
TOU XWVOU TNV PuToYpapla yenoiponoleitol To veupwvixd dixtuo YOLOvVSN, 1o onolo onueudvel
opYoydvio ool AnhOYpopua Tou TEpBdihouy xdde xwvo ot gwtoypaplo. Me yeron Tou yov-
TéhoL OomAC Yol TNV Xdepa, oynuatilovto Yo, xutd TEOGEYYIOT), OUOLES TUPOUIDES OTWS (alveTal
xou 6to oo 1.2. H andotaon tou x@vou and tny xduepa elvon (o ye to uixog tou euduypdy-
HOU TUAUATOS TIOU EVEVEL TNV X0pLEY TNG TLEAULdS HE TO x€VTEO NG BAong Tou xK)Vou, To omolo
unohoy({letar yewpeTpxd.
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image plane

3D world

Figure 1.2: Ou 800, xatd npocéyylon, dpotec ntupop{dec mou oynuatiovran.

H 8eltepn npocéyyion nepthaBEVeEL TOV EVIOTIOUS ENTA YAUPAXTNELOTIXOY oNuElwY Tévw oToV
xwvo. Beloxovtag ) %éom toug ndve oty putoypapla, Yvwpeiloviac tn oyetint| Toug ¥éon otov
TELOOLAOTATO Y WEO amd TO XEVTEO TNE BACTEC TOU XOVOU Xl £XYOVTAC TG TORUUETEOUS TN XSUERUC
%Ol TOL PaxoV xahOTTOoVTOL OAEC oL Tpolno¥éoels yia Tn Blatdnwon evdg tpoflAfuatoc Perspective-
n-Point. Yuyxexpiéva, 1o xévtpo g Bdong tou xkdvou opiletal »¢ To XEVTPO TOU XOCUOU UE
oxomno6 1 enthuor tou mpoPAfuatoc Perspective-n-Point vo dwoel Ty andctaon uetadld xduepog
%o xOvou. Tt ToV EVIOTOUS TWV ETTA YOEUXTNELCTIXWY ONUEIWY YENOLLOTOLELTOL £VOL VELPWVIXS
dixtuo Baolouévo otnv apyttextovixr) ResNet.

H <pltn npocéyyion ytilel tévew otny Sebtepn. Luyxexpuyléva Ypnotuonolel To o@diua enovanpoBoifc
TWV ENTA oNuelwy Tdvw oTNy exova Yo va arnogaviel xatd néco €xel mpoxlel o@dhua xotd
TOV EVIOTUOO Touc. Av To opdlua enovanpoBolfic Eemepvdel éva XAt TOTE TO TEOBANUA
Perspective-n-Point Aoveton Eovd, authv T Qopd yiow Avydtepa onuela.

Yto Sdypappo 1.3 arotunmvovton ol pileg TV YECWY TETPAYWVIXOY CQUAUGTWY TWV TELOY
uedddwy Yoo xwvoug mou Beioxoviol e BLdPopES AMOGTACELS AN TNV XAUEQROL.

3,5

0

3

i
!
Ja
Ln

(=]
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Ln

Range RMSE [m
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=
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[=]
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g Pipeline 1 Pipeline 2A Pipeline 2B

Figure 1.3: Ou pllec TV péowV TETPAYWVIXOY GHOIAATOV TV Telwy uedddwy. H tpocéyyion twv
ENTA oNUElwV TETUYOLVEL XUAUTERY ATOTEAECUOTA A0 TNV TEOGEYYLOT] TWV OUOLWY TUEAUdKY udvo
v xovTvdTepoug xwvouc. H mpocéyyion tou o@dhuatoc enavanpoBohic onuewdvel To xahdTepa
ATOTEAEGHATA YEVIXG.
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1.5 Toautdypovn XweoVétnon-Xaptoyedypnon

O otoyoc tou SLAM elvon v xatooxeudoet to ydetn g mlotog otny onola TeEyEL To dymnua,
oty auTog dev elvon dlardéotpog, xadde xou vo topéyel cuveyelc extiunoelc Tne déone Tou oyfuatog
oe autov. Ou nioteg Formula Student elvon oyetnd eninedeg xou tar udvo avtixelpeva Tov UndEy oLV
o€ AUTEC €lvall Ol XGVOL ToU LUTOBELXVOOUY Tal Gpla. LUVETAGS, Ypnolpomoleiton évag Blodldotoatog
YdeTNG, UE TOUG XWVoUS amewmovi{opevous we onueia oto eminedo. Io v enlluon avtod Tou
eldoug mpofinudrtwy, undpyouv 8Vo xlplec uédodou: to filter xou to graph SLAMI1].

Yy npoxewévn neplntwon yenowdonoteiton o ahydprdpoc ISAM2[20], Tou avixel oY XoTr-
yopla twv alyoprduwy graph SLAM. O akyderduoc iISAM2 yenoiwonolel tn Sour| factor graph yio
var meptypdel To ydetn e miotac. Ta factor graphs eivou Suepy| ypdgor pe 800 eldn xopupndv:
to variable nodes mou anaptilovian and Tic VEOEC TV XMVKLY Xou Tou oyuatoc xou to factor
nodes mou meplypdpouy Tig oyéoelg petafl Twv variable nodes, 6nwe avtés mpoxdmToLY ANd TO
Perception xou to Velocity Estimation.

To SLAM hopfdver extigfoels Toy TS (Uy, Uy, w) poll e Tov avtiotolyo mivoxo cuvdlaxd-
povone pe ouyvétnta 50Hz. Avtiotouyo, AapBdvel o Aota and napatnendévies xdvous (Yedua,
anb6oToor, Yovia) pe cuyvotnta 10Hz. O rnivaxoc cuvdlaxdyavone oe auth tny nepintworn €yel
exTiunel Bdoel TEUUATIXGY BEBOUEVKV xou Elvor CLUVAETNOT TNE AMOGTACTC TOU XWVOU and To
Oy npa.

Yty nepintwon mou 1 mlota Bev elvor YVWO T ex Twv Tpotépwy, To factor graph nepilopfBdvel
dVo eddv factor nodes: factor nodes oSoyetplag xou factor nodes avtiindme. Edd o&ilel va onuet-
wdel twg To Velocity Estimation nopéyel extiunon toydtntoc xan oyt yetatémong. H petdBaon
and Ty TaydTNTA ot pETUTOMLOY Tpaypatonoeltar pe tn wédodo Euler, n omola elvon apxetd
axpiBhic apol to Brigo ohoxhfipwong ebvon (oo e uéhic 1/50 tou Seuteporéntou. Aedouévou 6T 1
vhomoinom tou iISAM2 ot Bifhodrnn gtsam amoutel and TN UETATOMLON VL EVAL EXPRACHUEVT] OTIG
OUVTETAYUEVES TOU OYAUATOS, 1) TeoxUTTOUo UeTatomon divetar and tov TOmo: (ugdt, u,dt, wdt).
Autéd onualvel Twg o mivoxag cuvBloncduavong Tou mapéyeta and to Velocity Estimation meénet
v petaoynuatiotel oe: (dt x I)T Py(dt = I).

Yy mepintwon mou N nlota elvol YVWoTH EX TV TPOTERWY, Ol VESELS TWV XWVWY OTO YdpTN
mpEneL vo mapopévouy aueTtdBinteg. Me dhha Adya, ta factor nodes avtidndng npénel va elvou
oLVOETACELS TV YECEWY TOU OYAUATOG, 0ANE Oyl Twv Yéoewv Twv xwvwy. o autd to oxond
oyedidotnxe plo ewdnr xAdor factor node ye ta epyoielo tou napéyet 1 BiBAotxn gtsam.

I ) ouoyétion petadd mopatnendéviwy XOVKOY UE xOVOUS Tou LTEEYoLY BTN oTov YdpTn
yenotponoteiton o ahydprduog Nearest Neighbor (NN). Av o xovuvétepog xdvog tou ydetn elvou
og anooTAoT YeyoAlTepn Tou 1.5 pétpou amd Tov mapatnendEy XOVO TOTE ELGAYETAUL VEOG XWVOG
oTov YdeTn otn Yéon tou mapatnendEvtoc.

e pla Eeywplot) dopn dedouévev dlatnpolvton otolyeia yia xdde xdvo Tou Ydetr, 6nwe To
XEWUA TOU xou TO TOoEC Popég Exel eviomotel. Il v amogevydel 1 anocTtoly ydetn mou va tep-
€yet augiforoug xwvoug oto Motion Planning, o ydptng mou anoctéAAeton TEpLEYEL AMOXAELT TIXG
AWVOUG TIOU €Y0LV EVIOTLO TEL TOUASYIOTOV TEVTE QOPEC.

To x0pLo petovéxtnua tou cuyxexptuévou SLAM elvon 6Tl 0 UTOAOYLE TIXOC POETOC TNE EVIUEPW-
one tou factor graph auw&dveton e 1o Xpdvo xau Y Tpocdixn véwy petpioenv|[25]. Edv ohdxhnen
n diepyooioa Tou SLAM étpeye oe éva uovo VAU, Uiat xoaduc Tepnuévn evnuépwon Yo umopoloe va
anoTEéPEL TOo GUGTNUN Ad TO VoL XPNOLLOTOATEL VEEC HETEHOELS YLOL VOl EXTIUHOEL TNV TeAeuTaio TOL
Yéon oty mlota avgdvovtac tov xivduvo opdhuatoc. o va avtigetwniotel autd, yenoonoteita
€val 0e0TERO VUL AMOXAELT TIXG Yo TIC EVNUepnaelS Tou factor graph.

Y1c dyvwotee mlotee mou doxdotnxe, To SLAM xotaoxebooe ydptec pe 94.7% recall xou
97.3% precision. "Evoc and autolc touc ydetec ancixoviletor oo didypopupa 1.4.
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Figure 1.4: O ydptne mou npoxintet and to SLAM. Addn otn yaptoypdpnon éxouy onueiwiel pe
HOUALVOUC HOUAOUC.

1.6 Xyediaocpoc Kivnong

To Motion Planning eivou unedduvo téoo vy t ydpaln emduunthic teoyldc 660 xou yio TOv
UTOAOYIOUS TOV EVERYELDY TOU Yol XpATHOOLY TO oYU Ve oe authy. Aedouévou 6Tt ol Tloteg
Formula Student etvar otevée, n oxpifeia tov yoptdv mou xataoxeudlet To SLAM younhn, xou 7
nowvt] e€680u and v mlota uPnAy, to Motion Planning emxevipdveton oty e€oywyn TN XeEV-
TeLMC Yeaupune e miotac évavtt wag Behtiotonomuévng Teoytds. ‘Emeita, urtohoyileton Bdomn tne
BUVOIXTIC TOU OYUATOS TO TEOPIA ToYUTATWY Yo TNV XevTewt| Yeouur. Téhog, yenowonoteitan
éva Lelyoc eheyxtodv PID xou Pure Pursuit mou otoyebouv 6to va Swtneicouv to oxnua méve
oty emduunty| Teo)Ld.

oty e€aywyh TN xevTpung Yeouurs, 0 BloBIAcTATOS YWEOS apyLxd SloxplTonolelTal Ue T
xeron e teltywvonoinong Delaunay, 6mou ol Héoelc TwV xOVWY AELTOLVRYOUY WE XOPUPES TWV
TELYOVWY. ‘Ol ToL LECO TV TAEVPMV TV TRLYOVKY TOU TEoXOTTOLY avTeTwTilovia we mdovd
onpeio e xevtpic yeopuhe. Ta va xadoplotel mow and avtd medypott etvor, oyedidleton évag
Yedpog ue xopu@éc tor umodipla onuelar xou T VECYN TOU OYAUNTOS X0 UXUES TIOU EVHVOUV TG
X0pLUYPEC TOL avixouy oTo (Blo Tplywvo. "Eva 8évipo mdavdv yovomatudv ovomticoeTal Xotd
TAdTOC o€ AUTOV To YEdo ue agetneia TN B€on tou oyuatoc. ‘Eva xAadl tou Sévtpou madel va
avantiooeTal €lte 6Ty dev undpyel oL xopuPY| vo tpootedel o autd, TEdypo Tou cuuBaivel
oTa 6pLa TOU xLETOL TepBAUaToC TNnE ToTag, elte 6tav €xel pTdoet oe éva Tpoxadopiopévo Badoc.
Ta yovorndtiot Tou dévtpou aflohoyolvtar 6To TéAo¢ BEor NG UTAXONC TOUC GTOV YpWHATIXO
OO TOV XOVWY Xl TV UEYLOTWY XAOE®OY Toug Yo var tpoxOel 1 xevtpwr yeouun. Télog,
plot xuPr| omhiva ntpocapudéleton néve oe autd Tar onuelo.

I Ty e€aywyn Tou Tpoglh ToyLTATWY 1) XEVTEWXT YeouuY detydotoAnmteital xou oto onuela
Tou TPOXUTTOLY eopuéleton 1 uédodoc mou meplypdgeton oto [37], mpocupuoouévn Yo Tic dVo
dlaotdoelc. Auth 1) Stadixacio tepthapBdver tov xadoplopd tne Yewpntinic uéylotne TaydtnTac o
e onuelo xou EMELTA TNV TPOCUPUOYT| 0TI BUVATOTNTES ETUTAYUVOTNE-EMPBEADUVOTS TOU oY AUAUTOS
dlavbovtag ) dradpoun) pla @opd tpog TV opt xatedduvar (emitdyuveon) xoun pio Tpog TV avdmodn
(emPpdduvomn). TTOTOVTAC TIC SUVHLELS TTOL UTOPODY VO TIPOGIMOOLY To ENACTIXE UTOPOUY Vot
BlaoppeBolV TEOPIN ToyLTATWY UE AVTIOTOLYOUC CUVTEAECTESC AOQPUAELNC.

Agébtou emheyel n emduunth mopela xou 1 emduunt TayTNTA TV O AUTHY, 0 EAEYXTAC
PID xadopiler tnv mocdtnta yxallod/ppévou tou mpénel va e@appootel xou o ahydpripoc Pure
Pursuit xadopilel 1o néco npénel va atpidel to Twdv. O PID détel cav taydtnto-otdyo authy
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mov opilel 1o mEOPIA TAYLTATKY Yld TO XOVTIVOTERO BelyUd NG XEVTPXC YPoUUNS OTO oYU
O Pure Pursuit eméyel éva onuelo-otoyo and v emduunty mopela o xadoplouévn andotaom
and To OYMUO XoL OTEAVEL TNV XUTAAANAT EVIOAY 6TO TWOVL OOTE Vo TEPdoEL and auTod To onueio-
otéyo. H andotaon otnyv omola avalnteiton to onuelo-ctdyoc elvan cuvdptnom tne Teéyoucac
ToUTNTUG-0TOY 0V, WOTE Vo elvan UeYEAT oTic euldelec anoPelyovTag THAAVTWOELS XAl PXQT OTIC
oTPoWES amoPedyovTaS TOV %{vduvo va xomel xdnola oTEoEN.

Y10 mhadolo authg g gpyaciog Soxudotnxay xou dAAeg tpoceyyioel oto mEdBinue tou Mo-
tion Planning. H mpdtn npocéyyion nepthaufdvel tnv yprion xvntixov-duvouixod Probabilis-
tic Roadmap (PRM). H 3e0tepn npocéyyion nepthaufdver tnv xerion Model Predictive Control
(MPCQ). Xe avth v ntepintwon, o xadoplolde Tpoxlde %ot 0 EAEYY0SC TOU OYAUATOC GUYYWVEVOY-
Ton oe dio eviafor Stadixaota. T tig Suvauixés e€lotoelc Tou oy AUATOC YENoLLoToLE(ToL TO LOVTEAOD
nodnidtou. Ou meploplopol tidevton ye tétolo teémo Wote va eEaoParilovy Twg To dynua UEVel
eVTog ToTag, EVTOS 0plwV TEOCPUOTNE TWV EAACTIXMY TOU X0l EVTOC TV 0pleY TOU Unyaviogo’ Tou
Twoviol. Téhog, 1 ouvdptnon x6ctoug exedlel ToV YPOVo ToL TalpveEL GTO Oy Nua v daoyloet
éva xodoplouévo xopudtt tne niotoac. Etol ntpoxdntouv ol xatdhAniec evioléc mpog To yxdll, TO
(QEEVO Xal TO TWOVL OOTE Vo Blaoyioel oTov eAdyLoTo BUVITS YEOVO TO XHOPLOUEVO XOUUATL TNS
nlotoc. H teheuvtola mpocéyylon nepthayufBdvel Tnv aviixatdotact tou (ebyouc PID - Pure Pursuit
ané MPC, dutnpewvtog tnv (Bla dour) ye to undpyov Motion Planning péyetl exelvo to onuelo.

H npotn npocéyyion €xel mohd peydhec analtioel WVAUNG YLol VoL UTORECEL VoL EQUPUOCTEL OE
autévouo yovodéaio. Ané tny iAn, To TEOBANU EAEYYOU GTO OTolo XATEANYAY Ol TpoceYYioELS
nou ypnowonotovoay MPC elte 8ev cuvéxhive oe xdmolo hoon elte xaduotepoloe va emhuvdel.

1.7 Neéa npocéyyion Avtiindng

Metd 1o népoc g 0elov tou 2023 xatéotn epavéc Twe 0 xVPLOC TEPLOPLOTIXOS TUEAYOVTOS
TOU AVTOVOUOL cuoTthuatoc fitav to Perception xou cuyxexpuéva 1 duoxohio mou avtietodnle
OTO VoL EXTNoEL TNV axpl3r] andoTaor] Tou amd eunodia. Lo avtd To oxomnd avantiydInxe pio véo
uédodog mou Bactleton oty apyttextovixy) Tou YOLOVSn. Luyxexpiuéva, tpomonolel Ty xe@uiy
TOU VELPWVIXOU BIXTUOUL Yl VoL EXPETOMNEUTEL TOV eydho Gyxo and features mou e€dyel o xopude
tou YOLOv8n xou, énetta, ta aftonolel yio var unoloyloel TNy andotaoy and Toug EVIOTGUEVOUS
AWOVOUC.

o v exnaddevon tou tpomomoiuévou vevpwvixol Yenowonotobvton ol TpoPAédels evoc
Loy LEOTEROL HOVTELOL Ve oe 5000+ QuwTtoypaplec Tou €youv cuYxeEVTPWUEl XaTd TIC doXIUES
tou P23. To toyupd povtého polpdletar Ty (Blar dour| ye Tt tpoavapepdévta wovtéha Perception.
Awpépouy wotdoo we pog exdoyr tou YOLO mou yenoworowody (YOLOvSm6 avti YOLOv5n)
%o S TPOC UEYEVOC TOL VELPWYLXOU OV EXTIUE TN Vé€on TwV eNTd ONUEIWY GTOV XOVO.

H xegorr Tou YOLOvV8n anotehelton and 500 GUVEAXTIXG VELPOVIXE BiXTUA TELWOY GTEWOEWY
ue xow elcodo. To éva exTiud Ty xAJoT TOU OVTLXELEVOU Xl TO GAAO TO 0pUoYMVIO TAUPAAAT-
Aoypoppo mou to meplBdiiel. Axohoudodvtag Ty Bla Aoy, tpootideton éva tplto cuvelxTind
VELPWVIXS BiXTUO TECTdpwY GTPWoEWY, 0To onolo avatidetal 0 UTONOYIOUOS TNS UNOCTACTG And
To avTixelpevo.

To YOLOv8n apyixd exnoudeeton ota (Bia dedopéva mou elye exnoudeutel xou To YOLOvVSN.
Apywonoudvrog pe Bdon autd to Bder Tou xou apdTou Yivouy ot amopodtnTeg ahhaYES OTNV XEQUNA,
exnoudedeton ot TPoBAEYELS TOU Loy UPGTEPOL HOVTEAOU.

H axpiBeia tne véoc pedddou otnyv extiunon anoctdoewy eivon Yeyohltepn and outh TS Toh-
g pedodou, eldxd yio xwvoug oe andéotact 15-20 uétpa and v xduepa. H oOyxpion twv 5o
©eV68LY xadie X Tou LOVTEAOU-BaoxdAou amoTuTVovTaL oto ddypoypa 1.5. Egloou evtunmot-
ooy ebvan o 1 adZnom tou recall ond 68.3% oe 94.4%.
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Figure 1.5: Ou pilec TwV HECWY TETROYWVIXWY GPAAUITWY TOU UTOAOYLOUOV OOGTAUCTC A XVOUG
yior T véa pédodo, TNy TaALd xaL TO LOVTEAO-OAOUANO.

H Bektiwon tou Perception petagppdleton xou oe Beitiwon otn dbixacio Tng Y apToypdepnong
e niotag 6nwe gaiveton xou oto ddypoppa 1.6. To recall avePoiver and 94.7% oe 96.5% xou to
precision anéd 97.3% o 100%.

Figure 1.6: O ydptne mov mpoxUnTeL Ye T Yeron tne molde uedddou Perception (opiotepd) xou
e véog pedodou (Be€id). Addn oTn yapTOYPdPNoT ONUELDVOVTIL HE XOXXIVOUS XUXNOUC.
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Chapter 2

Introduction

This work lays out the comprehensive conceptual design of the autonomous system pipeline
of PROM Racing’s first Formula Student Driverless race car. Furthermore, it discusses the
implementation and testing of the perception and SLAM modules. Finally, it presents a novel
perception and motion planning approach which, to the best of the author’s knowledge, have
not been used by any other team in the Formula Student Driverless community.

2.1 Motivation and Goals

In 2022, the most prominent Formula Student competition, that of Germany, began requiring
of all competing race cars to have autonomous driving capabilities, with non-compliance resulting
in significant point reductions. Setting up an autonomous system became a necessity, which is
what prompted this work.

The goal is to design and implement an autonomous system pipeline that would maximize
the car’s probability of completing all Formula Student Driverless dynamic disciplines. This
meant that the focus is on simplicity and reliability rather than performance. Furthermore,
PROM Racing’s budget is several times smaller than that of the competing teams, providing an
additional objective of staying economical with the choices in sensors and computer hardware.

With the 2023 season coming to a close, it has become obvious that the main bottleneck
of the original autonomous system is the perception pipeline, and specifically, its inaccurate
depth estimation. This creates the need for a revised perception module that would offer more
accurate depth estimation than the original one.

2.2 Related work

Since the inaugural season of Formula Student Driverless competitions in 2017, several
teams have published their work on the field.

The most prominent piece of work is [19], in which ETH’s team presents the full autonomous
system pipeline of their race car. The same team has also published papers delving into
the details and discussing further improvements on the individual components comprising the
aforementioned pipeline. These works include an end-to-end velocity estimator[35], an EKF-
Graph SLAM hybrid for localization and mapping[3], an optimization-based hierarchical motion
planner|[40], and a learning-based Model Predictive Controller[18]. In [36], the monocular per-
ception pipeline employed by a joint team from MIT and Delft is presented. Lastly, in [25], an
EKF SLAM and a GraphSLAM approach are compared on the Formula Student race car of
KIT.
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Given that Formula Student Driverless competitions fall under the broad category of au-
tonomous driving and the even broader one of robotics and automation, there is plenty more
related work. However, the choice has been made for it to be mentioned in each chapter sepa-
rately.

2.3 Contents

In chapter 3, background information regarding Formula Student competitions, PROM
Racing NTUA, and the proposed pipeline are provided. In chapter 4, the velocity estimation
module is presented. In chapter 5, the perception pipeline of P23 is discussed. In chapter 6, the
SLAM and localization functionalities are described. In chapter 7, the motion planning process
is outlined. Finally, in chapter 8, the novel perception approach is presented.
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Chapter 3

(General information

3.1 Formula Student competitions

The Formula Student competitions are student design competitions organized by the In-
ternational Society of Automotive Engineers (SAE) since 1980. Teams of university students
are challenged to conceive, design, fabricate, develop, and compete with small, formula style,
race cars. The competitions are split into three main classes: Internal Combustion Engine Ve-
hicle (CV) (including Combustion Hybrid Vehicle (HY)), Electric Vehicle (EV), and Driverless
Vehicle (DV).

In the DV class, which is the main focus of this work, teams compete in four dynamic events:
Acceleration, Skidpad, Autocross, and Trackdrive. In all dynamic disciplines, the boundaries of
the circuit are denoted by a specified set of cones, with the left boundary denoted by blue cones
with a white stripe and the right by yellow cones with a black stripe. The Acceleration event
track is a 7bm straight line, where the cones’ positions are known in advance. Similarly, the
map of the Skidpad track is known a priori and consists of two pairs of concentric circles in an
8-figure pattern. On the other hand, the Autocross and Trackdrive events share the same track,
whose map is not provided beforehand. It is a closed loop circuit consisting of straights of up
to 80m, constant turns with a diameter of up to 50m, hairpin turns with an outside diameter
of at least of 9m, chicanes, multiple turns, decreasing radius turns etc. The length of one lap
is approximately 200m to 500m. For the Autocross and Trackdrive events, one and ten laps of
the aforementioned track have to be completed, respectively.

Start

Figure 3.1: The Acceleration track layout (left), the Skidpad track layout (right).
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Figure 3.2: An example of an Autocross/Trackdrive track layout.

Points are awarded based on the time it took each team to complete the discipline. Regardless
of the recorded time, every team that completed the discipline is awarded a small amount of
points. Naturally, penalties are imposed for dropping cones or exiting the track.

A
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Figure 3.3: The cones used in Formula Student competitions.

3.2 PROM Racing NTUA

PROM Racing NTUA is a Formula Student team representing the National Technical Uni-
versity of Athens. It was founded in 2008 and competed in the CV class for the first time in
2011. It transitioned to the EV class and competed in 2021, becoming the first team in Greece
to win an official Formula Student competition. Following that, a two year plan to compete in
2023 in the DV class commenced.

P23 is PROM Racing’s race car for the 2023 season. It features an electric powertrain that
includes a single 120kW motor on the rear axle, an inverter for controlling the motor, and an
9.1kWh accumulator to power the system. A limited slip differential handles the transmission on
the rear axle. P23 is equipped with a heave-roll decoupled, push-rod actuated double wishbone
suspension concept on the front axle, and a push-rod actuated spring-damper assembly featuring
an anti-roll bar on the rear axle. Its aerodynamic package achieves a lift coefficient (CyA) of -7.3
with the ground-effect fans on and -5.5 without them and a lift to drag ratio of -3.48 and 3.05,
respectively. Finally, Hoosier R20 16.0x7.5 tires are used in both axles, data for which were
obtained from the FSAE Tire Test Consortium, a volunteer-managed organization of member
schools who pool their financial resources to obtain high quality tire force and moment data
targeted for Formula SAE and Formula Student competitions.
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Figure 3.4: P23, PROM Racing’s race car for the 2023 season.

The autonomous system of P23 consists of the steering and braking actuators, the motion
and perception sensors, and the computing system. The motion sensors used in P23 are an IMU,
a GPS/INS, and four wheel speed sensors, one per wheel. Optical and RADAR ground speed
sensors were considered, but their cost vastly exceeded the budget of the entire autonomous
system. The perception sensors featured on P23 are two monocular cameras that work in-
dependently for a combined horizontal field-of-view of 105°. RADAR sensors were considered,
however, their inability to detect low dielectric constant objects, like the Formula Student cones,
rendered them useless for the application. 3D LiDAR sensors were more enticing candidates but,
again, their cost exceeded the team’s autonomous system budget. Finally, commercial stereo
cameras could have been used, but given the nature of the task, a more customizable approach
is selected which has, so far, proven to be more accurate. For the computing system, an Intel
i7-12700 CPU is used along with a TPU accelerator, a 32GB RAM, and a 1TB SSD.

Figure 3.5: The motherboard (left), the CPU (center), and the TPU accelerator (right) of P23’s
computing system.

Figure 3.6: The cameras and the lenses of P23.

3.3 Autonomous system software pipeline
The autonomous system software pipeline consists of four modules: perception, velocity

estimation, SLAM, and motion planning. The perception module is responsible for identifying
cones that act as track boundaries and estimate their color and their distance to the vehicle. The
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velocity estimation module is tasked with estimating the velocities and the accelerations of the
vehicle. In known circuits, the SLAM module is responsible for locating the vehicle on the track
map. In unknown circuits, it is also, simultaneously, building a map of the track. Finally, the
motion planning module computes a trajectory to follow as well as the corresponding commands
to be sent to the actuators. The flow of information in the pipeline is depicted in figure 3.7.

» Velocity Estimation .
SLAM / . .
= e -

~

Perception

Figure 3.7: The autonomous system software pipeline.
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Chapter 4

Velocity estimation

The goal of the velocity estimation pipeline is to fuse information from different motion
sensors in order to continuously provide an estimate of the vehicle’s velocity (ug,uy,w). As
mentioned in the introduction, P23 is equipped with four Hall-effect wheel speed sensors, at-
tached to each of the four wheels, an IMU, and a separate GPS-Aided Inertial Navigation System
(GPS/INS). The measurements of these sensors are fused with the help of an Extended Kalman
Filter (EKF). In this chapter, the theory behind the EKF will be presented, followed by the
discussion of its implementation on P23’s software pipeline.

4.1 Theoretical background

4.1.1 Kalman filter

The Kalman filter[43] addresses the general problem of estimating the state of a discrete-
time controlled process x € R™ that is described by the following linear stochastic difference
equation:

xy = Ayxy 1 + Byug + wy

with measurements z € R™:

Zt = Htﬂft + vt

where wy, v; represent the process and measurement noise, respectively. Crucially, these are
assumed to be independent random variables described by normal distributions of zero mean.
A; is a nxn matrix relating the previous to the next state, B; is a nxm matrix relating the input
to the state, and H; is a mxm matrix relating the state to the measurements.

From here on, z;_is defined as the a priori state estimate at time step t, given knowledge
of the process prior to time step t, and ), as the a posteriori state estimate at time step t, given

measurement z;. Furthermore, the a priori and a posteriori estimate errors and their respective
covariances are defined as:

Ctlt—1 = Tt — Tt|t—1
Ctlt = Tt — Tyt

Pt|t71 = E(et|t71€£t,1)
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Py = E(et\teat)

The Kalman filter can be broken down into two steps: predict and update. Specifically, in
the predict step the new a priori estimate is produced based on the theoretic model z;;_; =
Agxi_q)4—1 + Bruy and its covariance is calculated to be Py,_; = AtPt,”t,lAtT + @y, with
)¢ being the covariance matrix of the process noise, w;. In the update step, the goal is to
calculate the a posteriori estimate that corresponds to the minimum covariance by combining
the a priori estimate with the sensor measurements. The first thing to be calculated is the
innovation or pre-fit residual, which describes the difference between the measurement and its
anticipated value from the a priori state estimate, along with its covariance: y; = 2y — Hywyp—y
and S; = HtPt‘t_lHtT + R;, with R; being the covariance matrix of the measurement noise, v;.
Based on the innovation, the a posteriori estimate is updated to xy; = 4,1 + Ky, while the
covariance is updated to P,y = (I — K¢H;)P,;—;. The matrix K; is called optimal gain and
needs to be set to a value that leads to the minimization of the a posteriori estimate’s covariance.
Intuitively, that is equivalent to minimizing the uncertainty around the estimate of the state by
utilizing information from both a theoretic model of the system and sensor measurements. It
can be proven that the value that achieves that is K; = Pt|t_1HtT(HtPt‘t_1HtT + Ry L.

In practice, both @, R; can often be determined prior to using the filter. That is particularly
true for the measurement covariance as it is usually feasible to gather some offline sample
measurements to estimate its value. When it comes to the parameter Q);, the selection process is
often less straightforward. @ is frequently employed to account for the uncertainty in the process
model. On occasions, even when the process model is notably deficient, it can be compensated
for by introducing a substantial amount of uncertainty through the choice of @);. Naturally, in
such cases, it is imperative that the sensor measurements are dependable. Whether or not there
is a rational basis for choosing the values of @, R, often times superior filter performance can
be obtained by tuning them off-line.

4.1.2 Extended Kalman filter

The Kalman filter works only if the measurement and the state transition model are both
linear. In case one of these conditions does not hold true, an Extended Kalman filter (EKF)[43]
may be used instead. The basic principle of the EKF is that it uses linearization around the
current mean and covariance, but otherwise goes through the exact same steps as the linear
Kalman filter.

This time the process is described by:

ry = f(24—1,us, W)

with measurements:

Zt = h(l‘h Ut)

Once again, x,;_,is defined as the a priori state estimate at time step t, given knowledge of
the process prior to time step t, and x;; as the a posteriori state estimate at time step t, given
measurement z;. The a priori and a posteriori estimate errors and their respective covariances
are defined as:

Ctjt—1 = Tt — Ti|t—1

Ctjt = Tt — Tyt

Pt\t—l = E(€t|t—1€£t_1)
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Pt|t = E(et‘te;ﬁt)

Just like the Kalman filter, the EKF can be broken down into two steps: predict and update.
Specifically, in the predict step the new a priori estimate is produced based on the theoretic model
Typ—1 = f(T4—1}4—1,u¢), while its covariance is calculated to be Py,_; = FtPt_l‘t_lFtT + Qq,
where F} is the Jacobian of the process function, f, evaluated for x = x,_;,—; and u = wuy.
For the update step, the first thing to be calculated is the innovation or pre-fit residual, which
describes the difference between the measurement and its anticipated value from the a priori
state estimate, along with its covariance: y; = z; — h(24;—1) and S; = HtPﬂt,lHtT + R;, where
Hy is the Jacobian of the process function, h, evaluated for x = x;;_;. Based on the innovation,
the a posteriori estimate is updated to zy; = x4;—1 + Ky while the covariance is updated to
Py, = (I — K¢H;)Py;—1. The matrix K; is set to a value that leads to the minimization of the
a posteriori estimate’s covariance in the linearized space, making it potentially sub-optimal. It
can be proven that the value that achieves that is K; = Pt|t,1Hf(HtPt‘t,1Hg1 + Ry)~ L

4.2 Implementation

The state vector in the case of the velocity estimation EKF contains the longitudinal velocity
U, the lateral velocity u,, the angular velocity w,, the longitudinal acceleration a, the lateral
acceleration a,, and the angular acceleration o.

4.2.1 Process model

The model used to describe the process x; = f(x¢—1,us, w;) is a kinematic bicycle model
with constant accelerations and angular velocity. The equations are as follows:

Uy = Qp + W * Uy + Wy,
uy:ay—w*uachwuy

Wy = 0 + Wy,

Gy = Wa,
Ay = way
Ay = Wq,

Figure 4.1: The bicycle model.

33



4.2.2 Sensor measurements

As previously mentioned there are 3 types of motion sensors on P23: wheel speed sensors,
IMU, and GPS/INS.

Since a bicycle model is being used, the measurements of the wheel speed sensors on each
axis must be concatenated into a single measurement, namely the mean of the two values. As
a result, there are two measurements:

_ ug*xcos(8)+(uytwexry)xsin(d)
warontfwheel - Ruheel + ,Uwf'rontfwhcel

— Uy
Zwreur—wheel T Ruwheel + vwrearf'wheel

where ¢ is the steering angle, 7, is the distance between the point at which the velocity is
estimated and the center of the front axis, and R nee is the radius of the wheels. It is worth
noting that the slip ratio is assumed to be zero at all times, which is fairly accurate for the low
accelerations expected in this case.

From the IMU, the lateral and longitudinal acceleration and the angular velocity measure-
ments are being utilized:

2o = Rot(a+w X (wxr)+axr)—g+uv,
zw = Rot(w) + v,

where r represents the distance vector from the point at which the velocity is estimated to
the position of the IMU, Rot represents the, assumed to be constant, rotation matrix from the
vehicle frame to the IMU frame, and ¢ represents the acceleration due to gravity. It is worth
noting that the angular velocities w,,w,, the acceleration a., and the angular accelerations
0y, oy are considered to be negligible. Although this is not always the case, this choice helps
retain the size of the state vector small and the computational load of the process low.

From the GPS/INS, the longitudinal and lateral velocity estimates are being utilized:

2y = Rot(u+w x 1)+ v,

where r represents the distance vector from the point at which the velocity is estimated to
the position of the GPS/INS, and Rot represents the, assumed to be constant, rotation matrix
from the vehicle frame to the GPS/INS frame.

4.2.3 Process and measurement covariances

The IMU measurement covariances are determined by the sensor’s datasheet and validated
by taking measurements on rest. The GPS/INS has a built-in microprocessor that runs a robust
INS Kalman Filter and apart from the measurements, it additionally provides their covariance
matrix. Things are not as straightforward with the wheel speed sensors and the process model, as
both of them have to be fine-tuned off-line. In order to conduct any form of fine-tuning, ground
truth data must be obtained. If there was a more accurate sensor that had measurements that
could be used as the ground truth for velocity estimation, then there would be no need for a
Kalman filter and said sensor would be used instead. Instead, the vehicle is driven on a mapped
narrow circuit and the covariance matrices are fine-tuned so that the integral of the velocity
estimates matches the shape of the circuit.
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Chapter 5

Perception

The goal of the perception pipeline is to detect cones, recognize their color, and calculate
the vehicle’s distance to them. The most commonly used sensor in Formula Student for this
type of task is LIDAR. It is capable of computing distances to obstacles by targeting them with
laser beams and measuring the time it takes for the reflected light to return to the receiver. It
offers outstanding accuracy in depth estimation (typically less than 5cm error), but no color
information. As a result, it is often used in a sensor fusion setup alongside cameras, which
contribute the, otherwise missing, cone color information. The main drawback, however, of
the LiDAR sensor is its high cost, rendering it prohibitive for smaller Formula Student teams.
That, along with recent developments in real-time object detection, tipped the scale towards a
camera-only perception approach for the team’s first iteration of an autonomous car. Specifically,
two monocular cameras are used for a combined field-of-view of 105°. In this chapter, the
theory behind object detection networks and the Perspective-n-Point problem will be presented,
followed by the discussion of three alternative solutions to the aforementioned problem and their
results.

5.1 Theoretical background

5.1.1 Object detection

Generic object detection aims at locating and classifying existing objects in any one image,
labeling them with rectangular bounding boxes and providing confidence scores. The methodolo-
gies employed in generic object detection can generally be classified into two primary categories.
One approach adheres to the conventional object detection workflow, commencing with the
generation of region proposals before proceeding to classify each proposal into distinct object
categories. In contrast, the second approach treats object detection as either a regression or
classification problem, adopting an integrated framework to directly attain the final outcomes,
which encompass object categories and their respective spatial locations.

Region proposal-based methods encompass a variety of techniques; however, since they are
outside the scope of this work only the core method, R-CNN][16], will be discussed. R-CNN
partly mimics the human brain’s attention mechanism: it begins with a broad scan of the en-
tire scene and then focuses on regions of interest (Rols). Although R-CNN is agnostic to the
particular region proposal method, selective search was used in the original paper, generating ap-
proximately 2000 region proposals for each image. Each region proposal is subsequently warped
to a 227x227 resolution and is forward propagated through a CNN to get a 4096-dimensional
feature map. Then, each extracted feature vector is scored using a SVM pretrained for each
class. Finally, a greedy non-maximum suppression is applied, for each class independently, based
on the intersection-over-union (IoU) overlap with higher scoring regions.
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Region proposal-based frameworks consist of several interconnected phases, encompassing
region proposal generation, CNN-based feature extraction, classification, and bounding box re-
gression. Typically, these components are trained separately. Even in modern end-to-end models
like Faster R-CNNJ33], there is still a need for separate training to acquire shared convolutional
parameters between the Region Proposal Network (RPN) and the detection network. Conse-
quently, the time required to manage these distinct components becomes a limiting factor in
real-time applications.

In contrast, one-step frameworks that employ global regression and classification techniques,
directly mapping from image pixels to bounding box coordinates and class probabilities, can
significantly reduce the computational time. Among the various object detection algorithms
that employ the aforementioned techniques, the YOLO (You Only Look Once)[38] framework
has stood out for its remarkable balance of speed and accuracy.

The first version of YOLO[30] unified the object detection steps by detecting all the bounding
boxes simultaneously. To achieve this, it divides the input image into an S x S grid and predicts
B bounding boxes, all of the same class, along with their confidence scores for C distinct classes
within each grid cell. Each bounding box prediction comprises five values: Pc, bx, by, bh,
and bw. Here, Pc signifies the confidence score, indicating the model’s confidence in the box
containing an object and its accuracy. The coordinates bx and by represent the box’s center
relative to the grid cell, while bh and bw represent the box’s height and width relative to the
entire image. The result of YOLOv1 is a tensor of dimensions S x S x (B x 5 + C), with the
option of applying non-maximum suppression to eliminate redundant detections.

Its architecture comprises 24 convolutional layers followed by two fully-connected layers that
predict the bounding box coordinates and probabilities. All layers use leaky rectified linear unit
activation except for the last one that uses a linear activation function. The first 20 layers are
pre-trained at a resolution of 224 x 224 using the ImageNet dataset, leaving the last four layers
to be fine-tuned for any given dataset.

YOLOv1’s straightforward architecture, coupled with its innovative one-shot regression for
the entire image, significantly boosted its speed, enabling real-time performance—a feat un-
matched by contemporary object detectors. Nevertheless, despite its impressive speed, it ex-
hibited a larger localization error compared to state-of-the-art methods like Fast R-CNN[15].
This limitation stemmed from three primary factors. Firstly, it had a restriction in detecting a
maximum of B (equal to 2 in the original paper) objects of the same class within a grid cell,
limiting its ability to predict objects in proximity. Secondly, it encountered difficulties in pre-
dicting objects with aspect ratios not encountered during training. Thirdly, it relied on coarse
object features due to the effects of down-sampling layers in its architecture.

Later versions tackled these problems by adding new features. YOLOv2’s[31] inclusion of
batch normalization improved convergence and reduced overfitting. Pre-training the model on a
higher (448x448) resolution led to improvements in performance in higher resolution inputs. The
shift to a fully convolutional architecture drastically reduced the memory size of the network.
The introduction of anchor boxes, boxes with predefined shapes used to match prototypical
shapes of objects, led to predicting bounding boxes more accurately.

In YOLOV3[32] residual connections were added to the network architecture which tackled
the vanishing/exploding gradient problem. In addition to its expanded architecture, YOLOv3
incorporated multi-scale predictions, in other words predictions at various grid sizes. This
innovation proved instrumental in achieving finer, more detailed bounding boxes and marked
a significant enhancement in the accurate prediction of smaller objects—a notable weakness in
the earlier iterations of YOLO. Later variants of YOLOv3 employed spatial pyramid pooling, a
type of pooling that concatenates multiple max pooling outputs without subsampling (stride =
1), each with a different kernel size k x k (k = 1, 5, 9, 13), increasing the receptive field without
affecting the inference speed.

YOLOv4[7] added cross-stage partial connections to the network architecture which reduced
the computation load of the model while retaining the same accuracy. Most of the advance-
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ments in this version, however, were a result of new training methods. In addition to standard
augmentations like random adjustments to brightness, contrast, scaling, cropping, flipping, and
rotation, the authors introduced mosaic augmentation. This technique merges four images into
a single composite image, enabling object detection even when objects are positioned beyond
their typical context. This helps mitigate the necessity for a large mini-batch size when using
batch normalization. Additionally, self-adversarial training and hyperparameter optimization
with genetic algorithms were also employed.

YOLOv5[38]| integrates an algorithm referred to as AutoAnchor. This pre-training tool exam-
ines and refines anchor boxes to ensure their suitability for the dataset and training parameters,
including image size. Initially, it employs a k-means function on the dataset labels to estab-
lish initial conditions for a Genetic Evolution (GE) algorithm. The GE algorithm subsequently
evolves these anchors through a default of 1000 generations, utilizing the CloU loss and Best
Possible Recall as its fitness function.

5.1.2 Perspective-n-Point

Perspective-n-Point is the problem of estimating the pose of a calibrated camera given a
set of n 3D points in the world, their corresponding 2D projections in the image, as well as the
intrinsic parameters of the camera. The camera pose consists of 6 degrees-of-freedom (DOF)
which are made up of the rotation (roll, pitch, and yaw) and 3D translation of the camera with
respect to the world.

The projection of 3D points in the world on to the image can be described by the following
equation:

SPe = K[RlT]pw

where p,, is the homogeneous world point, p. is the corresponding homogeneous image point,
K is the matrix of intrinsic camera parameters, s is a scale factor for the image point, and R
and T are the desired 3D rotation and 3D translation of the camera (extrinsic parameters) that
are being calculated.

Consequently, for each world 3D point the following set of equations holds true:

U fo v uol| [r1 T2 T3 4
sfv| =10 fy wol| [r21 7T22 723 t2
1 0 O 1 T3] T32 T33 U3

S I SRS

where f, and f, are the scaled focal lengths, vy is the skew parameter which is sometimes
assumed to be 0, and (ug,vg) is the principal point.

There are multiple methods of solving this equation for the extrinsic parameters of the
camera. In this work, Infinitesimal Plane-Based Pose Estimation (IPPE)[10] is being used since
the 3D world points lie on the same plane. This method capitalizes on the observation that
when dealing with a noisy homography, it tends to provide a more accurate estimation of the
transformation between the model plane and the image in certain regions of the plane compared
to others. It, therefore, revolves around identifying a point where this transformation is most
accurately estimated and utilizing only the local transformation at that point to constrain the
pose. Because IPPE is analytic it is extremely fast.

5.2 Perception pipeline

Each version of the perception pipeline has to leverage the available information regarding
the cone dimensions to deliver high precision and recall measurements to the SLAM module.
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In this work, three versions will be discussed. The first version only uses the bounding box
dimensions from YOLO to calculate the distance to the cone, the second one utilizes a keypoint
detection neural network on each YOLO bounding box to turn the original problem into a geo-
metric (PnP) one, and the third version adds a PnP recalculation module, based on reprojection
erTor.

5.2.1 Bounding box only version

Due to the fact that the exact dimensions of the cones are known a priori, it would be rea-
sonable to assume that the dimensions of the YOLO bounding boxes contain all the information
required for an accurate distance estimation.

The first step of the pipeline is to forward propagate the image through the YOLO network.
Specifically, the YOLOv5n variant is used as the TPU can only fit 8MB of model parameter data
in its SRAM and, therefore, any larger YOLO variant would not fit, making the inference time
critically higher. The YOLOv5n network is originally trained on the MS COCO dataset[27] and
fine tuned on the FSOCO dataset[41]. As a result of the fine tuning, it is capable of detecting
the four classes of cones featured in the Formula Student competitions with a mAP of 56.7%.

Using a pinhole camera model and the resulting bounding box for each cone, two approxi-
mately similar pyramids can be drawn (see figure 5.1). The first one features the bounding box
on the image plane as its base and the pinhole as its apex, while the second one features the
face of the cone in the 3D world as its base and shares the same apex. The distance between
the midpoint of the cone base and the camera is equal to the median of the triangle formed by
the lower end of the cone face and the apex. The length of the corresponding line segment on
the image side, that connects the apex to the midpoint of the cone’s depicted lower end, can
easily be calculated using the Pythagorean theorem. The ratio between the two is equal to the
square root of the ratio between the areas of the two pyramid bases. Using that, the distance
between the midpoint of the cone base and the camera can finally be calculated.

i

image plane

3D world

Figure 5.1: The two approximately similar pyramids formed by the face of the cone on the 3D
world, the pinhole, and the projection of the bounding box on the image plane.

5.2.2 Keypoint detection version

The previous method is the result of certain costly simplifications. One important omission
is that the base corresponding to the face of the cone in the 3D world has an area that is a
function of the relative angle between the camera and the cone as seen in figure 5.2. However,
because the content of the bounding box is not accounted for, there is no way of knowing the
aforementioned angle. Additionally, the bounding boxes often fail to fit the cone perfectly,
leading to them being smaller or larger than the intended size as seen in figure 5.2. For these
reasons a new method that analyzes the content of the bounding box is developed.
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Figure 5.2: Poor quality bounding boxes hamper quality (left image), but even if the bounding
boxes were perfect, cone orientation would still matter (middle and right images).

One can notice that the Formula Student cones feature certain distinguishable and orienta-
tion invariant local features. This new method entails measuring the distances of these corners
from the center of the cone’s base in the 3D world, finding the pixels at which they are depicted
on the bounding box, and solving the ensuing Perspective-n-Point problem assuming the center
of the cone’s base as the origin of the 3D world. The resulting translation vector is equal to the
distance between the origin of the 3D world, in this case the center of the cone’s base, and the
camera.

The first challenge with this method is finding the distinguishable and orientation invariant
local features on each cone. Traditional computer vision approaches to finding local features,
such as SURF[6], SIFT[23], and HOGJ11], are not fit for the task since matching the results to
predetermined 3D world points would be highly inconsistent. Instead, the approach of [36] was
adopted. A convolutional neural network, containing convolutional, batch normalization, and
ReLU/Sigmoid activation layers as well as residual blocks, was designed to detect the position
of seven keypoints as shown in figure 5.3. The network receives as input the cropped image
corresponding to each YOLO bounding box, expanded by a couple of pixels on each side, and
resized to a standard size of 64x48 pixels. The output consists of seven heatmaps, one for
each keypoint, where the maximum element of the heatmap corresponds to the position of said
keypoint on the bounding box image.

The keypoint network was trained on a custom dataset. The dataset originally contained
3835 images of cropped cones, but after augmentation that included jittering, cropping, blur-
ring, randomly applying gamma correction to certain parts of the image to mimic shade or
overexposure, and randomly setting the colour of certain parts of the image to mimic obstacles,
it was expanded to almost 8000 images. The loss function that was used was MSE loss.

With the coordinates of the keypoints on the original image and their 3D positions relative to
the center of each cone’s base known, a Perspective-7-Points problem can be set up. OpenCV’s[§]
solvePnP function is then used to derive the translation vectors connecting the camera to the
center of each cone’s base. Specifically, the IPPE method is used to solve the problem since the
3D world keypoints lie on the same plane.

yellow_cone 0.91

Figure 5.3: The perception pipeline with the keypoint network added.
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5.2.3 Reprojection error version

Although the previous method tackled many of the problems the first one faced, it still has
its weaknesses. It achieves a significant improvement on nearby cones where the cone orientation
really comes into play, however, for more distant cones the accuracy actually deteriorates. This
can attributed to the fact that cones further away appear blurred, making it especially hard to
detect corners. The less common mistakes made on cones in a closer range can be attributed to
multiple keypoints being assigned to the same corner or illumination messing with the placement
of keypoints, both shown in figure 5.4.

Figure 5.4: On the left image two keypoints are assigned to the same corner, whilst on the right,
the reflection of the sun leads to the misplacement of the bottom left keypoint.

One way of dealing with this issue is by allowing a solution of the PnP problem for less
than seven keypoints when some of the keypoints are misplaced. The best way of deciding if a
keypoint detection has failed is via the reprojection error. As previously mentioned, every time
a PnP problem is solved a rotation-translation matrix is calculated that describes the pose of
the camera in the 3D world frame. Using this as the extrinsic camera parameter matrix, the
keypoints’ 3D positions are projected on the image plane. If there is a significant difference
between where they were reprojected and where they were inferred to be on the first place then
one or more keypoints were misplaced.

Testing has shown that the best strategy is switching to P(n-1)P whenever PnP could not
produce a result with reprojection error below a threshold. The best results occur when the
least amount of points used for PnP is 6.

5.3 Results

For the testing of the methods described above, a dataset was created that contained images
of cones along with their distance to the camera. In total, the testing set contains 486 images
and 2745 cones.

For each method, the range Root Mean Squared Error (RMSE) is measured. Since the RMSE
varies significantly based on the distance of the cones, 4 values are computed for ranges of 0-5m,
5-10m, 10-15m, and 15-20m. Omne parameter that directly affects the results of each method
is the confidence threshold applied at the YOLOv5n non-max suppression. It is constantly set
equal to 0.75 for the purposes of this experiment leading to a recall rate of 68.3%.

The results from the bounding-box only (#1), keypoint detection (#2A), and reprojection
error (#2B) pipelines are presented in figure 5.5.
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Figure 5.5: Range RMSE of the 3 pipelines. The keypoint detection approach beats the
bounding-box only approach for closer cones and the reprojection error variant is the best
option overall.

5.3.1 Runtimes

YOLOv5n inference on the TPU typically lasts 25ms per image. The keypoint network
inference on the iGPU typically lasts 2ms per bounding box. Solving each PnP problem takes
less than 1ms. As a result, it is possible to run YOLOv5n, the keypoint network, and the
reprojection error module for two cameras at 10Hz.
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Chapter 6

SLAM

The goal of the SLAM module is to construct a map of the circuit and to provide continuous
estimates of the vehicle’s position in it. Formula Student tracks are relatively flat and the only
objects present are the cones that denote the boundaries. Consequently, a 2D map with the
cones depicted as data points is used. To solve this kind of problem, there are two prevalent
methods: filter and graph SLAM][1]|. In this chapter, the theory behind these methods will be
presented, followed by the discussion of the iISAM2-based implementation and its results.

6.1 Theoretical background
6.1.1 Filter SLAM

Filtering techniques involve two primary stages: a predictive phase and an updating phase.
They are generally regarded as a Maximum A Posteriori (MAP) method, wherein data from
the velocity estimation module are employed to estimate the robot’s initial pose distribution.
These estimates are then combined with data obtained from the perception module to establish
the likelihood distribution.

The most widespread filtering SLAM is the EKF SLAM][5|, which works in roughly the same
manner as the EKF that is described in the velocity estimation chapter. The only difference
is that the state vector is expanded to include the pose (x, y, ¥) of the vehicle as well as the
positions of the mapped cones (x, y) in cases where the track is unknown. The added types of
measurements are the range, theta measurements from the perception pipeline, which based on
the predicted state have a value of \/(:r — Zeone)? + (Y — Yeone)? and arctan((y — Yeone)/(z —
Zeone)) — 0, respectively.

6.1.2 Graph SLAM

Graph SLAM techniques aim to compute the complete robot trajectory by analyzing the
entire set of inputs from velocity estimation and perception. This is viewed as an advantage
when compared to filtering processes in terms of accuracy. However, one major drawback of
graph-based SLAM is the substantial memory consumption it entails, as it incorporates all pose
estimations within the computation process|1].

Graph SLAM’s primary objective is to create a graph based on the provided control inputs
and measurements, formulate an optimization problem, and ultimately determine the configu-
ration that minimizes the cost function. The graph used to represent the SLAM problem is a
weighted, directional graph consisting of two types of edges and two types of vertices, like the
one in figure 6.1. Each vehicle pose is represented by a pose vertex and each mapped landmark is
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represented by a landmark vertex. Consecutive pose vertices are connected via odometry edges.
Landmark vertices are connected to the corresponding vehicle poses using landmark edges.

Figure 6.1: The graph representing a simple SLAM problem.

The cost function of the optimization problem expresses the likelihood of the map having
a specific configuration and the vehicle being on a specific location based on the odometry
and perception inputs received so far. Consequently, for each new odometry measurement the
following factor is added to the cost function:

(2 — g(ug, 2-1))"Q (e — glug, w—1))
where x;_1 and z; are the landmark vertices at t-1 and t, respectively, u; is the velocity

estimate at t, and @; is the covariance matrix of the displacement. Similarly, for each new
perception measurement the following factor is added to the cost function:

(2,0 = h@e, 1)) T Ry (21,0 — B, 1))
where z; ; is the measured range, theta between the vehicle and the cone, I; is the associated

cone vertex, and R; is the covariance matrix of the perception measurement. In total the cost
function is equal to:

J = 200 w0 + X (w0 — glug, we—1)) " Qr (2 — g(ug, x4-1))

+ 3 (21 — M@, 1) Ry (201 — h(w, 1)

which leads to the following nonlinear least squares problem:

1% = argming; 3 (xr — g(ug, v0-1)) 7 QM (ws — glug, x4—1))

+ 30 (210 — hl@e, 1) R (20 — hl@e, 1)

or in the case of a known track:

ot = argming Y (x; — g(ug, 14-1))"Q (e — g(us, 24-1))

+ 30 (210 — hlwe, 1) Ry (200 — hl@e, 1))

When dealing with nonlinear process models, g, and nonlinear measurement functions, h,

particularly in cases where a suitable linearization point is not readily accessible, nonlinear
optimization techniques come into play. Examples of such techniques include the Gauss-Newton
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method and the Levenberg-Marquardt algorithm|[21]. These methods work by iteratively solving
a series of linear approximations of the equation to progressively approach its minimum. In this
case, each iteration involves linearization around the previous estimate of x,1 and solving for the
increment that will be added to it:

A = argmina(AA + b)T(AA +b)

One way to deal with this problem is by applying QR factorization:

(AA +b)T(AA +b) =

o[ £]s-wre[ -

@e|y |a-emrere|

Lo Je-[eprda]e-

(RA —d)T(RA —d) +eTe

where [ d e ]T = QTb. This becomes minimal iff RA = d.

6.1.3 iSAM2

iSAM2[20] is an algorithm that solves the above problems efficiently, enabling real-time
graph SLAM. In iSAM2, instead of the type of graph typically used in graph SLAM approaches,
factor graphs are utilized instead. A factor graph is a bipartite graph G = (F, ©, E) with two
node types: factor nodes f; € F and variable nodes 6; € © (© contains both vehicle and cone
poses), like the one in figure 6.2. Edges e; € E are always between factor nodes and variables
nodes. When assuming Gaussian measurement noise:

Figure 6.2: The factor graph representing the same simple SLAM problem.

fi oc exp(—5(hi(©:) = z) 27 (hi(©4) — z1)
A factor graph G defines the factorization of a function f(0) as

f(©) =11/:(©:)

and optimizing it would be equivalent to:
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©* = argmaze f(O)

Just like with the original graph an iterative method is employed, linearizing the above
formula around the previous estimate and subsequently updating it. However, since maximizing
the product of the factors is hard, the logarithm of it is chosen instead, leading to:

argmine(—log(f(©)) = argmine (5 Y (hi(©:) — z:)TS;  (hi(©:) — 2))
which upon linearization looks like this:
argmina(—log(f(A)) = argmina((AA — b)T(AA — b))

leading to the exact same problem as before. Then, the way it offloads most of the compu-
tational burden is through incremental variable re-ordering and fluid relinearization.

6.1.4 Data association

Another important aspect of any SLAM algorithm is the data association, which consists of
matching measurements to their corresponding landmark. The most common method of con-
ducting data association is the Nearest Neighbor (NN) algorithm. NN assigns each measurement
to the closest predicted landmark measurement. If the best match is at a distance that exceeds
a predetermined threshold, a new landmark is inserted into the map. The metric used for dis-
tance measuring can either be Euclidean or Mahalanobis distance. Employment of Mahalanobis
distance constitutes the maximum likelihood solution to the data association problem.

6.2 Implementation

The SLAM module receives velocity estimates (g, uy,w) from the velocity estimation mod-
ule along with the corresponding covariance matrix at a 50Hz frequency. It also receives a list
of cones, specifically their color, their distance to the vehicle, and the angle at which they were
observed, from the perception module at a 10Hz frequency. The covariance of the perception
measurements is computed based on experimental data and is a function of the distance of the
cone to the vehicle.

The factor graph in the case of an unknown circuit consists of two types of factors: odometry
and perception factors. Adding perception factors is pretty straightforward, however, this is not
the case with odometry factors. Velocity estimation provides velocity instead of displacement
estimates. The transition from velocity to displacement is performed by the Euler method,
which is adequately accurate since the integration step is equal to 1/50 of a second. Since the
implementation of iISAM2 in the gtsam library[12] requires the displacement to be expressed on
the vehicle coordinates, the resulting displacement is: (uy * dt,u, * dt,w * dt). That means the
covariance matrix provided by the EKF must change to: (dt * I)T Py(dt = I).

In the case of a circuit that is known in advance, the positions of the cones on the map
should not be subject to change. In other words, the perception factors, f;, should be a function
of vehicle poses but not of cone poses: f;(©) = f;(x). That is achieved by setting up a custom
class of factors in gtsam.

For data association, the Nearest Neighbor (NN) algorithm is used. NN assigns each expected
cone pose, based on the perception measurement, to the closest mapped cone that shares the
same color. If the best match is at a distance that exceeds a threshold of 1.5m, a new landmark
is inserted into the map. The threshold is determined based on simulations run on data collected
from the vehicle.
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A separate data structure is maintained that contains information about each cone on the
factor graph, including its color and its estimated pose, but also how many times it has been ob-
served. To prevent false positives from affecting the path planning procedure, the map published
by the SLAM module only contains cones that have been observed 5 times or more. Likewise,
this threshold is determined based on simulations run on data collected from the vehicle. The
eventual map published is limited to a region around the vehicle, since parts that have been
crossed in the distant past are of no interest to the motion planner.

The main drawback of using graph SLAM is the fact that the computational load of updating
the factor graph increases over time with new measurements being added|25]. If the entire SLAM
module is running on a single thread, a delayed update might prevent the vehicle from utilizing
new measurements to estimate its latest position on the track, which in turn increases the risk
of failing to complete the discipline or, even worse, of crashing. To tackle that, a second thread
is used for updates exclusively. A deep copy of the data structure containing the new factors
and initial estimates is created and used for the update, while the original is emptied and ready
to receive new measurements at the same time that the update is executed.

6.3 Results

On the unknown tracks that the module is tested on, it achieves a 94.7% recall and 97.3%
precision rate in terms of cone detection. A common theme on these tracks, however, is that
the minimum distance between cones is larger than the one expected to be found in a typical
Formula Student autocross track. That would normally require lower distance thresholds for
introducing new cones to the map, which would in turn hamper the precision score. A map
produced for an unknown test track is shown in figure 6.3.

Figure 6.3: SLAM produced map of an unknown test track. The false positives and negatives
are denoted using red circles.
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Chapter 7

Motion planning

The motion planning module is responsible for both trajectory generation and path tracking.
Given that Formula Student race tracks are narrow, the accuracy of the self-generated maps
low, and the penalty for exiting the track higher than the reward for adopting a race line, the
trajectory generator is tasked with extracting the track centerline instead of calculating a more
optimized trajectory. Subsequently, the velocity profile of the centerline is calculated by taking
the dynamics of the vehicle into consideration. Finally, the trajectory tracking problem is solved
by combining a PID controller for longitudinal control and a Pure Pursuit controller of variable
look-ahead distance for lateral control. In this chapter, each of the three aforementioned steps
will be analyzed.

7.1 Centerline extraction

A commonly used technique for extracting the centerline of tracks is 2D shape skeletization[34].
However, to perform the skeletization the boundaries of the track need to be known in advance.
Instead, a simpler, less computationally demanding approach[19] is adopted that leverages the
strict structure of Formula Student circuits. The centerline extraction algorithm consists of
four steps: first, the search space is discretized using a triangulation algorithm, second, a tree
of possible paths is grown through the discretized space, third, the aforementioned paths are
based on a plausibility metric, and finally, a spline is interpolated over the most likely path.

The triangulation algorithm used in this work is the Delaunay triangulation algorithm|[26],
which subdivides the xy space into connected triangles whose vertices are the positions of the
cones on the 2D map. The centerline crosses through points equidistant from the boundaries,
or in this case, cones, making all midpoints of the triangulation edges potential waypoints. It is
worth noting that not all midpoints are good waypoints; there is no guarantee that midpoints
between distant cones even lie within the track limits. Consequently, sliver triangles should
be avoided, which is exactly what Delaunay triangulation manages to do by maximizing the
minimum of all the angles of the resulting triangles. The result of running Delaunay triangulation
on a past Formula Student circuit can be seen in figure 7.1.
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Figure 7.1: Example of running Delaunay triangulation on a Formula Student circuit.

The tree of possible paths is grown in a breadth-first manner. If a midpoint on the borders
of the convex hull of the circuit is reached then there are no midpoints to be added to the tree.
On the contrary, when the midpoint is not on the boundary then there are two midpoints from
the neighboring edges to be added as children of the first midpoint. The tree is allowed to grow
up to a certain depth as the map is innately less accurate on the borders of the perception range.
The root of the tree is the current position of the vehicle which constitutes a separate case, as
there are three midpoints on neighboring edges to be added to the tree.

To rank the possible paths, two facts about Formula Student circuits have to be taken
into consideration. Firstly, the cones on each side of the track have a distinctive color that
can accurately be identified by the perception pipeline. As a result, crossing edges of same
colored cones is penalized. Secondly, large angle changes from one path segment to the next
are unlikely because even in sharp corners, multiple cones are used, leading to more gradual
changes. Consequently, large maximum angle changes are penalized accordingly. To limit the
search domain without sacrificing the optimality of the final result, a penalty threshold is set
for pruning branches with low potential of leading to a correct path.

In the end, a cubic spline is interpolated over the waypoints of the top ranked path. The
resulting trajectory is continuous and differentiable, its first and second order derivatives are
continuous and differentiable, and its curvature is continuous, too.

7.2 Velocity profile

For the calculation of the velocity profile, a bicycle model of the vehicle is used. The
equations describing the position, the velocity, and the acceleration of the vehicle’s center of
gravity on the inertial frame are:

rr=a(s)i+y(s)]

_duds) | dyds;
ur=gsaitt asal

254 2y rde’ 2
ar =V3(94Ei+ Z—ng) + V(9% + %])
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Figure 7.2: The bicycle model.

where s,V are the distance and the speed along the path, respectively.
The equations describing linear motion on the vehicle (body) frame can be summed up to:

> Fp=mxap =m* Rot(I - B) xa; <

Fur + Fay — 3pCaAV? = [m x Rot(I — B)  (V2(%xi + L4j) + V(2] 4 djyy,
Fyp+ Fyp = [mx Rot(I — B) « (V2(551 + $4)) + V(% + L)),
F,+F.s+mg— %pC’lAV2 =0

where Rot(I — B) is the rotation matrix from the inertial frame to the vehicle frame,
% pCqAV? is the force applied to the vehicle due to aerodynamic resistance, and % pC1AV? is
the downforce applied to the vehicle.

Similarly, the equations describing rotational motion on the vehicle frame can be summed
up to:

S Mp = Ipop = IO

Fypla — Fyely = Ip(49V + 29772

where O is the orientation in space of the vehicle and of the vector tangent to the path, I'p
is the moment of inertia of the vehicle on the z axis and [, [, are the distances of the CoG from
the front and the rear axle, respectively.

With v denoting the percentage of the total drive or braking force allocated to the front
axle and ¢ denoting the percentage of the total downforce allocated to the front axle, the above
equations can be solved for Fy,, Fpr, Fyr, Fyp, Fur, Fry:

Fup = ~y(mV + 1pCyAV?)
Fpr = (L=7)(mV + 5pC4AV?)

_ lLym d*yy,2 1 d?e 1,2 dor,
Fyr = To+1, ds2 Vet Tatls (Is ds? Vet 1Ip ds V)

Fyr — lam @V2_ 1 (IBdZGVQ'i‘IB%V)

Tatl, ds? Totl, \* B ds?
F.p= _lib-:;bg + ﬁ(Fxr + Fup) + ((5pC1AV?)
Fop = =209 — o (Fur + Fup) + (1= Q)(3pC1AV?)

where / is the height of the vehicle’s CoG and load transfer between the front and the rear
axle is taken into consideration.
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To determine the velocity profile of the vehicle, the capabilities of the tires to generate forces
must be translated into acceleration limits for the vehicle and then into maximum safe speeds.
Using a friction circle model for the tires, the constraints are given by:

F121+Fy22 < (Min)2§i=f77"

The theoretical maximum speed at each point in the trajectory can be calculated by solving
for V2, while assuming that the tires produce the maximum amount of force (Fz; + Fp; =
(1F.3)%;i = f,r) and that there is no acceleration taking place (V = 0). These calculations,
however, only take into consideration the local curvature at each point while neglecting the
maximum acceleration/deceleration that can take place between two points. To address that,
the forward-backward pass technique described in [37] is adopted.

In the forward pass, the new speed upper limits are updated in the following manner:

V2 =V2 |+ 2Vpao(Vi_1)ds

Note that me(Vn_l) is a function of V,,_1, as it is calculated by solving the above equations
for V, while assuming that the tires produce the maximum amount of force (F2 + FZ =
(uF.;)%i = f,r) and that the current speed is equal to V,,_.

Similarly, in the backward pass, the new speed upper limits are updated in the following
manner:

V2 | =V2 = 2Vin(Vy)ds

It is worth noting that whenever the equations are solved for either V or V2, there arise two
solutions, one for each axle. To ensure safety, the minimum (in terms of absolute value) of the
two values is selected. Additionally, in the case of unknown circuits, the terminal velocity over
a path is set to be equal to 0 so that no matter what lies on the edge of the map, there will be
sufficient time for the vehicle to slow down, or even, stop.

In the end, the minimum speed upper limit from the two passes is kept for each point on
the trajectory, thereby formulating a velocity profile that can be used for trajectory tracking.
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Figure 7.3: The velocity profile of the first 40m of a Formula Student circuit. The blue dashed
line is the upper limit based on curvature, the orange dashed line is the upper limit based on
the forward pass, the green dashed line is the upper limit based on the backward pass, and the
red line is the final velocity profile.

7.3 'Trajectory tracking

As previously mentioned, a decoupled approach is adopted for the control of the vehicle.
A PID and a Pure Pursuit controller have been implemented for the longitudinal and lateral
control of the vehicle, respectively.

The PID controller regulates the vehicle’s velocity. The target speed is imposed by the
velocity profile that is described above. The integral, derivative, and proportional constants are
tuned using the Ziegler-Nichols method[4]. Provided that the PID controller does not take the
dynamics into consideration, there is a chance that the torque commands it outputs lead to loss
of traction. To address that, a minor check is added before the command gets published. Since
both the drive and braking take place at the rear axle, this should be the only axle to check
for loss of traction. The information coming out of the velocity estimation module is sufficient
to calculate the longitudinal acceleration of the vehicle and the slip angle of the rear tires and,
subsequently, the lateral and normal forces acting on said tires. Using the same tire friction
model as above, the maximum longitudinal force that the tires can produce can be calculated
in order to act as the upper limit of the requested drive or brake torque.

The Pure Pursuit controller sets up targets along the designed trajectory and calculates
the steering angle that will allow the vehicle to reach them. One important parameter of any
Pure Pursuit controller is the look-ahead distance, which is the distance between the vehicle
and the target. Large look-ahead distances lead to smoother trajectories but also increase the
probability of a corner being cut, making them ideal for straights. On the other hand, small
look-ahead distances often lead to excessive oscillations around the designed trajectory but they
are less likely to cut through corners, making them ideal for turns. Given that Formula Student
circuits combine straights and turns, a variable look-ahead distance would solve the problem.
The look-ahead distance is set to be a function of the target velocity at the vehicle’s current
position. High target velocities indicate that there is no need for braking and, therefore, turning
in the immediate future, while low target velocities indicate that a braking zone and, therefore,
turn is impending even if the vehicle is currently passing through a straight. This makes it a
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more ideal quantity to parameterize the look-ahead distance on instead of other quantities like
the local track curvature. Similarly to the PID controller, a check for loss of friction is added
before the command gets published.

7.4 Known tracks

In the case of known tracks much of the work is completed offline to reduce the computational
burden. Specifically, the centerline of the circuit is extracted offline as well as its velocity profile.
That leaves trajectory tracking as the sole process to be running online on known tracks.

7.5 Other approaches and future work

Dampening the drive, braking, or steering commands whenever a loss of traction is detected
prevents the vehicle from reaching the target, jeopardizing the run in the process. This can be
avoided by combining path planning and control into a single process.

7.5.1 Probabilistic Roadmap

One way to achieve this is by employing a kinodynamic Probabilistic Roadmap (PRM)[22].
The PRM initially samples the circuit and then uses a steering function to connect the samples,
thereby forming a graph of potential paths. To include dynamics in this method, the samples
have to contain not only z,y coordinates, but also the orientation of the vehicle, 6, and the
velocities of the vehicle, u,,u,,w. Efforts to sample on the six dimensional space, however,
revealed that the memory capacity required is immense and that the graph size becomes so
large that it becomes computationally impossible to run searches for paths in real time. Guided
sampling or sample dimensionality reduction may make this method feasible, though.

7.5.2 Model Predictive Control

The most common way of combining path planning and control into a single process is
through the use of Model Predictive Control (MPC). Examples of this in Formula Student
settings can be found in [19] and [40].

Similar to the time optimal control problem solved offline in [40], a MPC on the space domain
is used, which constitutes the time-optimal formulation of the problem.

Instead of the usual coordinates x,y, 0, the curvilinear states s,n,u are employed for de-
scribing the location of the vehicle on the circuit. State s describes the progress (arc-length)
along the centerline, state n expresses the orthogonal deviation from the centerline, and state u
is the local heading angle. In the time domain, the dynamic equations are based on a dynamic
bicycle model and are as follows:

Uz cos(p) —uysin(p)
1—nr(s)

G =
n = uzsin(p) + uycos(p)
f=w—r(s)s$

Uiy = =(F, — Fy psin(8) + muyw)

Uy = L(Fy r+ Fy rcos(8) — mugyw)

w= i(Fy’placos(é) — F, rly)
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The lateral forces are calculated based on the Pacejka tire formula[28]. Data from the FSAE
Tire Test Consortium are utilized for the parameter fitting. Assuming no slip, the longitudinal
force is set to be the sum of the drive force due to the motor torque, the tires’ rolling resistance,
and the drag force.

Since the change in motor torque can be considered instantaneous there is no need to include
its rate of change in the state vector. On the other hand, the steering angle can change at a
significantly lower pace. Therefore, its rate of change is included in the state vector so that it
can be used on the constraints of the MPC problem.

To formulate the time-optimal problem a transformation to the space-domain is required.
This transformation can be performed using the following reformulation:

o fow
%% = f(ac,u)

&= 16w

As a result, the dynamic equations become:

dn _ 1 (uasin(u)tuycos())
I 1-—nk

L= L(w—K$)

Qe = 1 L(F, — F, psin(6) + muyw)
d;‘: 1L(Fy g+ F, pcos(6) — mu,w)
‘;—‘;’ = %i(Fy,Flacos((S) — F, rly)
TN

Three types of hard constraints are utilized in this formulation. The first one requires the
forces on each tire to not surpass the limits based on the friction ellipse. The second one ensures
that the orthogonal deviation from the centerline remains below a threshold to avoid exiting
the track. The last type of constraints is the result of the steering actuator’s mechanical limits,
keeping the required changes in steering angle feasible.

With the time interval between two consecutive steps being equal to %, time optimality
can be achieved by including the sum of time intervals in the cost function.

Convergence on the FORCES NLP solver[45] has not been achieved on a steady basis. Scaling
of the state vector and conversion of hard constraints to soft ones were introduced, but the issue
persisted. However, convergence has been achieved on the CasADi[2] solver. The resulting
trajectory on an oval circuit is demonstrated in figure 7.4. The issue with the CasADi solver,
however, is that it cannot be used online as solving the MPC problem takes more than 1 second.
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Figure 7.4: Time-optimal MPC’s computed trajectory on an oval track.

Finally, there is a way for path planning and control to remain decoupled while keeping the
risk of runs resulting in failure low. For the trajectory planning, the same methods as above
can be used to set the target velocities at several samples of the centerline. Then a MPC on
the space domain can be used for trajectory tracking. Similarly to the previous MPC approach,
any efforts have failed to achieve convergence so far.

o6



Chapter 8
New perception pipeline

While testing the vehicle for the 2023 season it became obvious that the existing perception
pipeline acted as the bottleneck of the entire autonomous system. With the range RMSE
exploding after the first 10 meters and the SLAM allowing only cones that were observed several
times to enter the map, running at high speeds remains prohibitive even when the regulations
require it. Additionally, the keypoints approaches overly relied on the cones adhering to a
specific design. In other competitions, where the cones are of a slightly different design, or even
in the scenario where the competition’s cone supplier changed, these methods run a high risk of
simply ceasing to work.

To tackle the aforementioned issues, a novel perception pipeline is proposed that is based on
the YOLOvVS architecture. To take advantage of the features already extracted by the YOLOv8
backbone, an extra head is added to the structure with the sole purpose of calculating the
distance to the cone included in each bounding box. To train the augmented YOLOvS8[38]
network, response-based knowledge distillation is employed.

8.1 Theoretical background

8.1.1 YOLOvVS

YOLOVS was released in January 2023 by Ultralytics, the company that developed YOLOV5.
It shares a similar backbone with its predecessor, but it uses a decoupled head to independently
calculate class probabilities and bounding boxes. This configuration enables individual branches
to concentrate on their respective tasks, thereby enhancing the overall accuracy of the model.

In YOLOvVS8’s output layer, the activation function for the objectness score employs the
sigmoid function, indicating the likelihood that the bounding box encompasses an object. Ad-
ditionally, the softmax function is utilized for the class probabilities, reflecting the likelihood
of objects belonging to each potential class. YOLOvS8 uses CloU and DFL loss functions for
bounding box loss and binary cross-entropy for classification loss, boosting its object detection
performance, particularly in dealing with smaller objects.

The overall structure of YOLOvS8 can be seen in figure 8.1.
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Figure 8.1: YOLOvS architecture[38].

8.1.2 Multitask learning

In Single Task Learning (STL), each neural network is a function of the same inputs and has
one output serving the assigned task. Backpropagation is applied to these networks by training
each of them in isolation. Since they are not connected, it is not possible for knowledge acquired
by one network to be communicated to another.

In Multitask Learning (MTL)[9], a common neural network is used with outputs equal to
the total number of assigned tasks. Backpropagation is done in parallel on all the outputs
in the network. Because the outputs share a common hidden layer, it is possible for internal
representations that arise in the hidden layer for one task to be used by other tasks. Sharing what
is learned by different tasks while tasks are trained in parallel is the central idea in MTL. In other
words, MTL functions as an inductive transfer mechanism aimed at enhancing generalization
performance. The training signals from additional tasks act as an inductive bias, contributing
to improved generalization.

8.1.3 Knowledge distillation

To develop efficient deep neural networks, recent works usually focus on efficient building
blocks for deep models and on model compression and acceleration techniques. One such tech-
nique is Knowledge Distillation (KD)[17], which involves distilling knowledge from a larger deep
neural network into a small network.

One commonly used type of KD is response-based KD. In this case, the main idea is to
directly mimic the final prediction of a larger teacher model. Despite its simplicity, response-
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based KD is effective for model compression and has been widely used in different tasks and
applications.

Response-based knowledge distillation can be applied to diverse model prediction scenar-
ios. For instance, in object detection tasks, the response may encompass logits along with the
bounding box offset. In semantic landmark localization tasks, such as human pose estimation,
the teacher model’s response might involve heatmaps for each landmark. More recently, re-
searchers have delved deeper into response-based knowledge, extending its use to incorporate
ground-truth labels as conditional targets.
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Figure 8.2: The generic response-based knowledge distillation.

8.1.4 Related work

Modified YOLO networks that estimate the distance of the objects in the bounding boxes
have already been used. In [39], the authors extended the prediction vector of YOLOvV3 to
facilitate depth estimation. For training, they used data from the KITTI[14] 3D Object De-
tection Evaluation 2017 dataset, which consists of 7481 training images and 7518 test images
with corresponding point clouds and calibration matrices. Similarly in [44], the authors added
a head on the YOLOv4 architecture tasked with depth estimation and used the same dataset
for training it.

8.2 Implementation

8.2.1 Dataset

Unlike the case of regular YOLO, where there was a publicly available dataset with images
of cones alongside the respective ground truth bounding boxes and classes, there is no such
dataset that includes the distances to the cones. To tackle this issue there are three options: 1)
use a general purpose dataset with all the required information like KITTI, 2) set up a custom
dataset or 3) use the inferences of a teacher model as ground truth.

Regarding the first option, due to the popularity of the monocular depth estimation problem,
there are ample trained networks on these datasets that predict depth maps to experiment with.
One such network is MiDaS|[29] which was used to evaluate the potential of this option. Use
of the dpt-large-384 variant resulted in an RMSE of 1.05 and 1.63 meters for cones in 0-5m
and 5-10m, respectively. Since this is significantly outperformed by the current pipeline, this
approach was abandoned.

Adopting the second option brings a higher level of customization, which is very important
considering the specificity of the problem. However, at the same time, it entails going through
a gruesome process of creating a custom dataset. With the augmented YOLO having 3.3M
parameters, 1.1M of which belong to the Detect layer which cannot be frozen, the dataset needs
to contain thousands of pictures. Consequently, this approach was abandoned for practical
reasons.

Choosing the third option, the inferences of a teacher model on unlabeled images are used
as a form of response-based knowledge distillation. The teacher model shares the same overall
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structure with the best performing pipeline of chapter 5. To achieve superior performance
without taking inference time or memory footprint into consideration, YOLOv5n is swapped for
YOLOv5m6 and the keypoint detection network sees an increase in both layers and channels.
Its accuracy compared to the other pipelines can be seen in figure 8.3. Using this method, a
dataset of over 5000 images is created.

Range RMSE (m
=

0-5m 5-10m 10-15m 15-20m

Ground truth range (m)
Pipeline 2B =mge=Teacher

Figure 8.3: Comparison of the reprojection error pipeline (2B) and the teacher model in terms
of range RMSE.

8.2.2 YOLOv8 modification

Given the limited memory capacity of the TPU, the YOLOv8n variant is used. As shown
in figure 8.1, YOLOvS8n features two 3-layer-deep convolutional neural networks on the Detect
layer, the tip of its head, for computing class probabilities and bounding box coordinates.

Following the same pattern, a 4-layer-deep convolutional neural network is added in parallel
to the aforementioned two, sharing the same inputs from YOLOv8n’s neck. Similar to the
bounding box coordinates neural network, no activation function is applied to the final output
of the network. Apart from the last convolutional layer, each layer is followed by a batch
normalization layer and a SiLLU activation function.

The loss function is modified to include the depth estimation task. Mean Squared Error
(MSE) loss is chosen and, after applying a weight to it, it is simply added to the sum of all
pre-existing losses.

8.2.3 Training

YOLOvS8n is first trained on the FSOCO dataset[41]. Even after the head is modified,
the weights from the backbone and the neck of the network can still be transferred for future
trainings. Afterwards, the augmented YOLO is trained on the inference of the teacher model.

8.3 Results

The augmented YOLO is tested on the same dataset as the other perception pipelines. It
slightly outperforms the previous pipeline for cones within 15m, but the biggest gain is spotted
on cones 15-20m away from the camera. Its performance relative to that of the previous pipeline
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and the teacher model is depicted in figure 8.4. What is also impressive is that the recall rate
has risen from 68.3% to 94.4%.
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Ground truth ranges (m)

Pipeline 2B ==ge=Teacher ege=Augmented YOLO

Figure 8.4: Comparison of the augmented YOLO, the previous pipeline, and the teacher model
in terms of range RMSE.

The impact of the new perception pipeline is also evident on the results of SLAM. Recall
rises from 94.7% to 96.5% and precision rises from 97.3% to 100%. A comparison of the map
produced using the old and the new perception pipeline is shown in figure 8.5.

Figure 8.5: The map produced by the previous perception pipeline (left) and the map produced
by the new perception pipeline (right). False positives and negatives are noted with red circles.

Finally, the inference time of the entire pipeline amounts to 26ms per image. That constitutes
a massive improvement in comparison to the previous pipeline that took 25ms to run YOLOv5n
and roughly 3ms per cone detected.
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Chapter 9

Future Work

The design of the autonomous system of P23 focuses primarily on reliability. As the next
iterations will progressively shift their focus to performance, there are several alternative ap-
proaches to consider for each of the four modules.

9.1 Velocity Estimation

The Extended Kalman filter is characterized by particularly poor performance when the
state transition and observation models are highly non-linear. This is because the covariance
is propagated through linearization of the underlying nonlinear model. To tackle this issue, an
Unscented Kalman filter[42] or a particle filter[13] can be used in its place.

The Extended Kalman filter that is currently in use employs a kinematic model for the
prediction step. A dynamic, bicycle or two-track, model can be used instead. This will lead
to a significant improvement in accuracy, especially in cases where the accelerations are further
away from zero.

Finally, the current Velocity Estimator does not filter out any outlier measurements from the
sensors. Outlier rejection based on the chi-squared test is a potential solution to this problem
and has even been proposed for a similar setting[19].

9.2 Perception

In its current form, the augmented YOLO is trained solely on data from the camera setup
of P23. This means that the same process would have to be repeated should the position and/or
orientation of the cameras changed. Progressively, however, by alternating the camera’s place
on the vehicle, enough data can be gathered for the pipeline to work regardless of the camera
setup.

On a similar note, all the training data originate from the same camera-lens pairing, meaning
that a change of camera and/or lens might cause the pipeline to cease functioning properly. To
tackle that, a relative depth metric has to be adopted that is invariant to camera intrinsic
parameters, just like the one used in the depth maps of MiDaS[29].

The training dataset is the result of inferences stemming from a teacher model and, therefore,
is inherently as inaccurate as the teacher model itself. Given reliable odometry measurements,
the graph SLAM can refine the perception edges, leading to higher quality ground truth data
on the respective images. It is worth noting that the distances in this case will be between the
vehicle’s center of mass and the cone and, consequently, the transition from the camera to the
vehicle frame will no longer be required.
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9.3 SLAM

The main potential improvements on the SLAM module are related to the process of data
association. The Nearest Neighbor algorithm that is used allows for two observed cones to
be associated to the same cone on the map. To avoid this, the Joint Compatibility Branch
and Bound (JCBB) algorithm[25] can be used its place. Additionally, since the perception
measurements’ covariance matrix can be estimated, Euclidean distance can be exchanged for
Mahalanobis distance, which incorporates the uncertainty of the measurements when matching
observed with mapped cones.

9.4 Motion Planning

Moving forward, the Model Predictive Control approach needs to be adopted as it presents
a unified framework for optimal path calculation while taking into consideration the dynamic
model of the vehicle and other constraints. In its present form, it is an iterative process of
linearizing the system around the current solution and solving again. In case the system is highly
non-linear, this process will have a great difficulty converging to a single optimal solution. One
way to tackle this is by employing Koopman MPC|24] instead. The state vector, the constraints,
and the cost function will be encoded in such a way that the original non-linear MPC problem
will transform into a linear one. In the encoded space, the state transition will become a linear
process, while the constraints and the cost function will turn into linear functions of the encoded
state and its quadratic form, respectively. The resulting linear MPC will then have no issue
converging to a single optimal solution.
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