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Abstract

Computer vision is a field in computer science aiming to enhance visual perception of computers. With
numerous applications in different areas such as autopilot, medical imaging, security, agriculture etc.,
computer vision advancement is at the center of attention. Its tasks or goals are constantly getting more
demanding. It started from classification which classifies an image. Then object detection was tackled which
identifies all the objects in an image. Finally, semantic segmentation was introduced which requests for
classification of every pixel in an image. Semantic segmentation is crucial in real-world applications as it
would allow for complete environment perception.

The previous tasks were satisfactorily approached with convolutional models. Moving on to trans-
formers, object detection was further improved as it is more effective on detecting multi-scale objects. The
self-attention module of transformers was able to implement that requirement and introduce contextual
information that convolutions were not able to. However, unlike classification or even object detection,
semantic segmentation requires multiple scale recognition of objects’ shapes. Transformers were able
to perform this task, however, the architecture philosophy needed to be changed in order to scale up
performance in a more demanding task. Encoder-decoder architectures are remains from the classification
task as they transform information to a lower dimension producing the single class label. Later approaches
attempted to introduce multiple resolutions by using residual connections from encoder to decoder in
order to prevent this loss of information. This technique, though, still faces the problem of processing
information without loss and that is where multiple resolutions introduce a solution to the problem. After
the extended background research, multiple resolutions are dominating SOTA and improve their respective
single resolution models. Theoretically, multiple resolutions can only improve a model as they introduce
extra information than the information produced in the original model.

Mask2Former is a multi-purpose segmentation model that can be trained without changing architec-
ture in : semantic segmentation, instance segmentation, and panoptic segmentation. It is composed of a
pixel-level module, a transformer decoder, and a segmentation head. The pixel-level module in this model
can be any feature extraction model, however, up until now only encoder-decoder architectures have been
used. Thus, in this diploma research the goal is to introduce high resolution to the Mask2Former pixel-level
module in prospects of improving its performance in semantic segmentation. We achieved through the
multi-resolutional architecture an improvement of 0.3mlIoU to the original model’s performance in Cityscapes
and a 0.2mloU improvement in ADE20k.

Keywords — Computer vision, Semantic Segmentation , Machine Learning, Neural Networks, Transform-
ers, Multiple Resolutions, Encoder-Decoder, Cityscapes, Mask2Former, HRNET
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Extetopevn neplAndn ota EAAN VX

Eiwcaywyn

Katnyopieg Katdtunong Euxovev

H xoatdtunon emdvac obugpuve pe to [1] avogépetar otov Slymplopd woag exdvae oe éva oOVONo pn-
EMXAAVTITOUEVWY TEQLOY WV, 1) EVWOT| TV oTolwy anoTelel T cuvolxn exdva. AuTéC oL Teployég TRENEL vau:

o Elvau oyoloyeveic 600V apopd xdmolo yopoxTNeloTixd
o Eivon aniéc ywele xouid onn

o 'Eyouv onuavtixd SLopopeTXES TWES UE TIC YELTOWXEC TEPLOYES WS TPOS TO YUPUXTNELOTIXG Tou efval
ouoLoYeVvelc.

o No €y0uv ouold dplor xou VoL Unv €Y0uV TOAAS dvolyuoto

Apywd, autol ol otdyol embidydnxay vo emiteuydoldv pe didpopes teyvixés enelepyaoiog exdvac. Mio and
autée elvar 1 ouotadonoinom exévocs [2] [3] [4] mou ypnowonoleiton Ye aviyVEUST AXUGOY XL TEPLYPAUPEOY Kol
nepoutépw efehlooeton pe 1N poviehomoinon yenowonowdviac T dtadixacio Markov [5]. "Alkec npooeyyioeic
YENOUWOTO0VY o ToYpdupata, 6Ttwe N efaywyt yopoxtnewo iy HOG [6] xou SIFT [7], to onola eivar 1o toypdy-
HoTal TPOGUVATOMOUOU. §0TOG0, PETE TNV ECUYWYY) TV CUVEAIXTIXWY VEUPWVIXMY SIXTUWY, 1 CNUACIONOYLXN
XATATUNOY EXOVOC THPE GTEoYY) Teog TNy emBAenouevy pdinon. To chvoha dedopévev eyouy auindel onuav-
xd - Cityscapes [8], ImageNet [9], COCO [10] - xou ot anouthioeic yevixeuone ané g npofAédelc Tou poviéhou
xooToOY Aoywd va vodetnldel pia mo npocopudciur xon TtohdThoxn tpoceyyior. To vevpwvixd dlxtua elvan
wovd vau uddouy potiBo xon tor fordld vevpwvixd dixtua €youy TOARES ToEOUETEOUE TTOU UTOPOVY VO LOVTEAOTIOL-
oouv nohbmhoxeg ouvapthoels. H xatdtunon ewdvag elvan mo amoutnuixy and v tagwdunon emdvag, xadde
mpénel va avtyvedoel oyéoelc Petalld Twv pixel oe Sdpopec xhipoaxee, yi 'autd ypewdletan mo clvieteg Souéc
nou haBdvouv unddrn T6CO T CNUACLOAOYLXE GGO oL TO YWELXA YAEUXTNELO TIXA.

Ynuaocioroyix Katdtunon Ewuxdvag

O otéyoc autrc e xatnyoploc, mou elvon xou o xlplog otdyoc autic e epyaoioc, elvar vo dlaywpeloel Ty
ELXOVA ELGOBOU CUUPWVA UE TIC ONUACIOAOYIXEC TANPOpoplec xou vor TeoBAédel Tn onuoctoloyixy| xatnyoplo
& euxovoatolyelov and €va CUYXEXPWEVO GOVONO eTiXeTKOVY. Aev Blaxplvel avdueoa oe avtixelpeva tng (Blag
xatnyoplog ahhd to opadonotel. Lopgwva e tov Adelson [11], ) onuaclohoy| xatdtunor oyedidotnxe yio va
avayvepllet stuff mou eivan duoppeg neployéc pe napduola uen 1 VA6, H onuactoloyixn xatdtunon exodvog
EYElL TOMES eQopUOYES O xoinueptvd Tpofiruata. Xenolwonoleltal eupéwe aTNny LoTeLxy, OTwe 1) aviyveuon
EYXEPEAOL Xl O6YXWY [12] xou oy TopaxohovdNom LTEidy cLeXELGDY o1 XewoupYxr [13]. ‘ANkec epapuoyéc
Tepthopfdvouy Ty autdvoun odfynon [14], dmou éva autoxivnto propel va thonyndel oto nepBdhhov Tou ywelc
avipdmivn tapéufacn. H onuacioloyin| xatdtunon elvon xplowun oto mAalolo e@apuoydy autdvouns odnynong,
0oL 1) eV €YEL HOVO WG GTOYO Vo TOELVOUNTEL TO TERIEYOUEVO GTNV EXOVYL, UAAG X0 VoL ETLOTUGVEL TN VEom Xou
TO TEPLYPOHUUO TWV AVTIXEWEVWY OTNV TEUYUATIXY OXNV.

Optopéva olvola dedopévmv yio authy Ty xatnyopio elvar ta Cityscapes [8], PASCAL VOC [15] xou ADE20K
[16].
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Instance segmentation

To Instance Segmentation elvar évar mEoOBANUA TNG 6PAUOTC UTOAOYLOTWY TOU EUTAEXEL TNV AVAYVOELOT XoL
TOV BloyWPLoUS PEHOVOUEVLY avTixeWévwy(things) oe wa exdva, cUUTERLAUPBOVOUEVOLU TOU EVTOTULOUOY TLV
oplowv x&le avtuxewévou xou e avddeone povadixic etxétag oe xdde aviixelyevo. O otdyoc Tou instance
segmentation efvon vor mapdryel €vary ydeTn avd pixel onpatodoTnong tne exoévag, 6mou xdde pixel avtiotoyileton
OE €VOL CUYXEXPULEVO aVTIXELPEVO WLoC XAAoNG. BUVETE, elvol TOAD TopOUOLYL UE T ONUACIOAOYLXY XATATUNOT),
»woT660 oe auTh TNV epyacia To xdde avuxelyevo aviyvevetar EexwpELoTd.

Optopéva datasets yio authv v epyaocia eivon to Cityscapes [§8], COCO [10], xou ADE20K [16].

IMavornTixy xatdTunoy

H ravontixd onpatodétnon [17] evomotel tig dvo epyasies - onuactohoyixy xatdtunon xou instance segmentation
- aviyvevovtag to things xou ta stuff. Etot, 1o anotéheopo xdde pixel i elvon par etnéta xornyoploc(l;) xou
évaL avaryveeloTind aviixeiévou (z;) - (15, 2;) € L x N, émou L = L U L3t xou L N L5 = (). 'Otav éva pixel
emonuodvetan pe I; € L, 161e T0 avtioToyo avayveptotixd aviixeévou ayvoeito. Oplopéva pixel propet va
éyouv o el etixéta "xevé" (void label).

Optopéva mopadelypota onuatoddtnone tavontxic yio authv v epyacio nepthauBdvouv to Cityscapes [§],
COCO [10], Mapillary Vistas [18], xon ADE20K [16].

(a) image (b) semantic segmentation

(c) instance segmentation (d) panoptic segmentation

Figure 0.0.1: Katnyoplec xatdtunone emdvag: o) onuactohoyix xotdtunon: ta stuff dev ywellovron oe
avuxelpeva, B) instance segmentation: oviyvebovtow pévo ta avixelpevo(things) eved ta stuff énwe o
0UpaVOS, 0 BEOUOC, X.AT. TUPUBAETOVTOL, Y) TAVOTTIXH XatdTunon: aviyvebovtal ta stuff xou to things, pe o
stuff var nopopévouy avandonacto.




Y0Ovoha Acdopevwy Xnpactoloyixne Katdtunong
YVvolo Aedopévwyv Cityscapes

To clvohro dedouévmv Cityscapes [8] elvar évo civoro BeBouévwv mou dnuovpydnue eldnd yio e@apuoyéc
autdvoune odynong oe aotixd nepBdriovta. IlepthauPdvel euxdvee Tomiwy dpduou and 50 diapopeTixd xEvipa
TOAEWV %aTd T Bidpxelar Ohwv Twv 4 enoydv. Autéc ol emdve elvon Sladéoipec oe yaunAy avéhuor (8 bit) xou
vmiA avduon (16 bit). To civoho dedouévwy mepthoaufBdvel 1600 avoluTixéc emnédou pixel 6o xou avahuTixég
emnédou nepintwong (instance-level) emonudvoeie tou napéyovia ot 300 ouddes - Yovdpoetdeic xou hentopepeic
emonudvoelc. Ou Aentoyepelc emonudvoelc napéyovtal oe 5000 exxdveg amd 27 néAelc, 6mou dha Ta pixels €youv
emonuoviel ye tn dnutovpyio ToALYOVLY. Ol utdloLTES EXOVES TpoEpyoVTaL amd 23 TOAELS X YENOULOTOLOOVTOL
Ylot TL Y0VBpoeELdelg EmoNuUdvoELg, 6ToU Tat TOADY WV ETMAEYOVTAL TOAD TILO YPRHYOE, UELdVOVTaG TNV oxp(Bela Tng
emofavong. Suvolixd mepthauBdvovton 30 xatnyopieg, xan 19 and autéc ypnowwonolovvton 6Ty agloAoYNnom,
onwe galveton oty exdva 0.0.2.
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Figure 0.0.2: Kotnyopiec tou Cityscapes, exdévo and to [19]

Cityscapes

Model mloU
InternImage-H [20] 87

HRNetV2-OCR_ PSA [21] 86.93

InternImage-XL [20] 86.4

HRNet-OCR [22] 86.3

Vit-Adapter-L(Mask2Former, BEiT pretrain, Mapillary) [23] 85.8
OneFormer(ConvNetXt-XL, Mapillary, multiscale) [24] 85.8
SeMask(SeMask Swin-L Mask2Former) [25] 84.98

Sequential Ensemble (MiT-B5 + HRNet) [26] 84.8
OneFormer(ConvNetXt-XL, multi-scale) [24] 84.6
DiNAT-L(Mask2Former) [27] 84.5

Table 1: Iivoxog xatdraine SOTA onuactohoyixfc xatdtunone oto cityscapes val [28]

Y0volo Acdopévey ADE20K

To clUvoho dedouéviv ADE20K dnuiovpyhinxe YeTd TNy avory vodplon Tng avdyxng yio €va YEVixd clvolo Oe-
BOPEVLY TOU XANOTTEL WL TTOLXLALYL GXNVEY Xall XOLVKY avTxelévmy. Ta ohvola dedopévwy ntply and to ADE20K
elyov éva Teploploévo olvolo oxnvey, étwe to Cityscapes [8], ¥ xdhuntay Alya f achuavta avtixelyeva, 6mwe
o COCO[10] xou to Pascal [15]. ¥to ADE20K undpyouv 20,210 edvec oo chvoho exnaideuone, 2,000 exdvee
070 oUvoro emxlpwong xou 3,000 eixdveg 6to oUVoro eAéyyou. ‘ONeg oL EXdVES EXOLY AVOAUTIXES ETLOTUAVOELS
avielévoy. TTohhd avtixelpeva €youvy emlong avoAUTIXEC ETUOTUAVOELS TV UEPWY TOUS, OTWS QPAlVETOL GTNV
exova 0.0.3. T xdde avtixelyevo undpyel emmpdotetn Thnpogopla oyxeTxd Ue To av elvol eunodlopévo 1 xoy-
HéVo xou ko yapaxtnelo Tixd. Ol eixdvec 610 aOVOAO ETX0PWONS €YOUV AVUAUTIXEC ETUONUAVOELS TV HEPWY,
EVE OL ETUONUAVOELS TWV HEPWY BeV elval avIAUTIXES OTLC €LXOVES TOU GUVOAOL exmaidevone. Emmhéov, ta péen
unopel var €youv LTOUEEN TOU ETOELS ETUOTUAVOVTAL.
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Figure 0.0.3: Emonpdvoeic oto ADE20K. H Seitepn oelpd €xel emonudvoelg avTixelévewy xat 1 Teltn oelpd
EYEL EMONUAVOELS HERLV OVTIXELUEVEOV.

ADE20k

Model mloU

BEiT-3 [29] 62.8

EVA [30] 61.5
FD-SwinV2-G [31] 61.4
MaskDINO-SwinL[32] 60.8
OneFormer [24] 60.8
ViT-Adapter-L [23] 60.5
OneFormer [24] 58.6
ViT-Adapter-L [23] 58.4
OneFormer [24] 58.4
RSSeg-ViT-L [33] 58.4

Table 2: Iivaxag xotdtaine SOTA onpoactoloyixric xatdtunone oto ADE20k val [34]

Metpuxég oNACLONOYIXNAG XATATUNONG

‘Onowe avagépetar oo [35], 1 onuasctohoyinh xatdtunon etvon yla toAdThoxn Sadacia touv haufBdver unddn Tic
oyéoelc petald tov tavounuévemy pixel. Iopoxdtw 1 avagopd oe xhdoeig cuunepthopfdver xau Tic xotnyoples.
H axpi{Beia o eninedo pixel(pACC) elvon plo apyuxf, petpuxd yio nocotixonoinom tne enidoone:

k
ZZ‘:l Tig

k
i=1li

acc =

(0.0.1)

Omnol 15 elvan 0 aprdudg Twv pixel mou avixouv oty xAdor i xou emonudvinxay wg xAdon j, k elvar o cuvolrdg
apdude xhdoewy, xou t; = iy ny; elvan 0 cuvohxdg aprdude pixel Tng xhdong i.

Qot600, auth 1 petey elvar mapamhovnTiey xadde emtpéner UPNAéC apyxéc Tés oxpiBetag o cUvoAa Be-
BOUEVWV OTIOU UEYHIAES TEPLOYES EYOLV Lol XAJOY. Y€ QUTEC TIC TMEPIMTWOELS, TO WovTéAo €xel uddel udvo Tig
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ouyVéc eppovioelc xhACEWY 0 cLYXEXPWEVES VEoElC TNE emdvas. Autd To medBnue puropel va Avdel ye tic
axOhoVdeG UETEIXES:

kE ng;
i=1 %,

mACC H yéon axpifBewa etvan 1 péon Ty tng axpifetog ovd xhdom: + >

IoU O \oyoc e topic mpoc v évwon (IoU) [36] eivon wa adloddynorn avd xhdon oty emxdhudn tne
npofhenduevne onuoctohoyxhc emofuavons xou e oAnhivic emorfuavong, Slauperévn Pe Ty éveon (Yveot

%ot we petpr "intersection over union") e€oupoupévmv twv pixel tou uroonueldvovToL K¢ "xevd:

true pos

IoU (0.0.2)

~ true pos + false pos + false neg

‘Onou truepos, falsepos xan falseneg elvar tor MO twv mporypotixd Yetiny, Peudoy detxnwdvy xou Peudody
apVNTIXY pixel yio wiar cuyxexpévn xAdor avilotolya.

mlIoU H petpucr auth elvon o péoog dpog we mpog OAEC TIC XAJOELS TOU AOYOU TNE ToUNC TEOS TNV EVWOT) oV
xhdon(mloU).

nloU 7 fwloU Eivou yvwotéd 1 n yevien petein| IoU eivon npoxatetinuuévn mpog T ¥Adoeig mou xoAiTTouV
HEYSAN Teptoy ) TNE euxovag. e nepBdAlovTa ue évtovn UeTofoAr) TNG xAIUaXoS OTKC OTIC ACTIXEC OXNVES, VTS
unopel va oamoteréoel mpoBinua. Euwbixd yio toug nelole, mou anoteholy Tig xUpleg XaTnyopleg 6T CUYXEXEWEVN
nepintwon, otoyeboupe oto va aELoAOYNOOUUE OGO XUAd AVTITPOCWTEVOVTOL Ol UTOWUXEG TEPLITWOELS OTN
oxnvoyedpnor. I'o va avtwetwnicovye autd to TpoBAnua, a&loAoyolue ETLTAEOV TN ONUACLONOYLXTY XATATUNOT,
YENoHoToLOVTAS ot xavovixorotnuévn uetpw IoU, v nloU.

truepos

nloU = (0.0.3)

truepos + falsepos + falseneg

II&A, truepos, falsepos xou falseneg elvon tor TGN Twv mporypotixd Yetixwy, Peudndv Jetindv xon Peudnv
apvnTixay pixel yio o cuyxexpévn xAdor avtictolya. Qotéoo, oe avtideor ye v tumxy pyetewr| IoU, auty
7 peteuei Tolamhactdleton Ye To A, To omoio elvar €vac TapdyovTtag TNg oLy voTnTag auTthc TS XAdons. Autdc
o mopdyovtac eite mpoxadopileton and to benchmark eite unoloyileta we e€rc:

. (0.0.4)

k
nloU or fwloU = (Zti)_lz

%
i=1 o3t i+ D g

N5

€ [0,1]

iloU Auth n petpwen elvan 1 péon twwn tne nloU oe dAec Tig xhdoelg.

Y UVAETACELS ATWAELAG OTY] CNAACLOAOY LY XATATUNOT)

LT ONUACLONOYIXY XATATUNOY, YENOHLOTOWUVTAL ddpopes cUVaPTAOELS amdAelas [37] avdhoyo e Ta Yopax-
TNELOTIXE TOL GUVOAOU DEBOUEVWLV, ol YU auTO xaplor cUVAETNOY ONWAELNS deV ElvoL avTERT Omd TNV GAAT.
Optopéva mopoadelyuora:
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1. Avaduer; Yuvdptnon Cross Entropy

Lpce(y,9) = —(ylog(y) + (1 —y) log(1 — 9)

OTOU TO ¥ AVTITPOOWTEVEL TNV TEOYUATIXY T Xl TO § AVTITEOCKTEVEL TNV TEOBAETOUEVY) TIUY.

2. Avodu Xuvdptnon Cross Entropy e Bdpn

Lw_Bce(y,9) = —(Bylog(y) + (1 —y) log(1 — 7))

OTOU TO Y AVTUNPOCWTEVEL TNV TEOYUATIXY T oL TO § AVITPOCWTEVEL TNV TEOBAETOUEVY TiuY.
e auty) ™ petpur, ol Yetol dpol €youv Bden pe éva cuvteresth 3, o onolog unopel va emieyel elte
yioe T peloon Twy Peuddv apvicewy pe évay napdyovta B > 1, elte yio ) peion twy Peuddv Yetixdy
ue évav mopdyovia B < 1.

3. Iooppomnuévn Auvadixy) Xuvdptnon Cross Entropy

Lpor(y,9) = —(Bylog(g) + (1 = B)(1 —y)log(1 — 7))

Bl pe TNV mponyoluevn aAd epopudlel enlong éva Bdpog oTa dpvnTXdL.

4. Yuvdptnon anwhetag Dice

5) — 2yp+1
DL(y,p) =1- y+p+1

5. Yuvdptnon anwhetag Focal

FL(pt) = —a(1 — p;)” log(p:)
Omov

o, avy =1
b= 1—np, avdhoyo

omou Y 7y = 1 Aettovpyel 6w N ouvdptnor anwicwag Cross Entropy.

Ye un ooppomnuéva cUVolo BEBOUEVMY, Ol GUVIPTACELS AmWAEC Paciopéveg oty eotioor Aettoupyolv
XAADTERX, EVE OE LOOPEOTNUEVA GUVOAA BEBOUEVWY, 1) BUABIXT CUVERETNON TNE BLIC TAVEWONS EVAL TTLO XATEAANAT.
Y0voha SeBopévwy e YopoxTNElo T HeTadd Tewv 800 TOTWY TOU AVUPERUNMY TUEATAVE UTOPEL VoL ETWPEN-
ndolv neplocdTEPO amd TOV OpaAOVOUEVO 1) YEVixeuUEévo cuvteheo T Dice.

*

Ocwpnuixd ToBadpeo

Yuvehxtixd Nevpwvixd Aixtua(CNN)
To vevpdvio

Ta veupwwixd dixtua eunvéovtal and Tr SOPT TOU EYXEPIAOU KoL OTO T1| LOVADA XATACKEVHE TOU, TO VEURMVLO.
Suyxexpiéva, €vo veupwvixd dixtuo amotekeiton and enineda veup®vwy, N AetTovpyla TwV omoiwy Wwueltol T
hertoupyla evOC BLOAOYIXOU VELPWVA. LUYXEXPUEVA, O VEUPWVIC EVOS VEURWVIXOU BIXTUOU BEYETAL ELGOBOUS Kol
napdryel yiat €€odo.  Autéc ol eloodol mohhamhactdlovton pe Bden yia va ehéyEouv tny évtaon tng enidpoaoiic
Toug oTo anotéheopo. H €€odog nopdyeton and autd to otaduiopévo dfpolouo Twy EGOdWY PE TNV TEootxn
ploc mapopéteou bias xou TV egapuoyn uiog cuvdptnone evepyonoinone. Auth 1 cuvdpTtnon evepyomnoinong
epunvelel to anotéleoya xau o petapedlel. o napddelypa, uropel va mopdyel mdavoTntes 1 duadixr €€0d0.
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Figure 0.0.4: To veuvpvio

Yuvapthoelg evepyornoinone O cuvaptioels evepyomoinong elvon cuvapthoels tou egopudélovial 6To
EOWTEPIXO YIVOUEVO TWV ELGOBWY Ue Ta Bden Tou veuphva. Eiodyouv un yeauuxdtnta oTov unoloyioud tou
anotehéopatog. XLuvnhouévee ouvapThoelc evepyonoinong nepthopBdvouy:

1. Sigmoid Autr n cuvdgTnom evepyonolnong Yetateenel Ty elcodo ot midavétnta va avrxel oe pla and 500
xotnyopiec. ‘Etot, to anotéheopa avixer oto ddotnua [0, 1] , n mpdtn xatnyopla avatideto oto 0 xou 7
de0tepn oto 1. 'Eyet tov axéiovdo thno:

(0.0.1)

Qot600, €xel xdmolo avemdiUNTO YAEAXTNELOTIXG, OTIWS TO YEYOVOS OTL TTROXAAEL XOPESUS TNE TTAEAY Y OU
%o OV elvall XEVTPUPLOUEVT) OTO UNDEV.

2. Tanh H ypogpixr| avarapdotaoy tne ouvdptnone tanh elvor moAd mopdpola Ye tn cuvdptnomn olyuoedolg,
oAAG e Elval XEVTEAPLOUEVT GTO UNdEY, OTwe patvetan oTto oyfpa 0.0.5. H cuvdptnon tanh aneixovilet
v eloodo oto ddotnua [—1, 1] pe tov axdroudo tino:

tanh(z) = so(2z) — 1 (0.0.2)

Qot600, e€axohoviel vo unopel vor TpoxoAécel TNV ¥Alon TNS AMWAELNS VoL XOPECTEL.
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Figure 0.0.5: H ouvdptnon tanh elvar nopdpola ye tn ouvdptnor olyuoeldols, oAld elval xevTpaployévr ato
UNdEV, mpdypa mou xahoTd TNV TUEAXYWYO NG cuVAETNONG To oTadep.

ReLU H ocuvdptnon ReLU xotdghalel v elcodo ato undév:

f(z) = max(0, x) (0.0.3)

Avth 1 ouvdptnon elvar edxola LAoToWon xou e€ahelpel To TEOBANUA TNC XOPECUEVNS TORAYYOU.
Qo1600, unogel va 0dnyroel oe "Ydvato" veELpWVLY xoTd TN Sidexela TS exTUBEUCTC HE TO UNDBEVIGUO
TV Bapdy Toug xdTL Tou elvol PN avodudLuo Yo To UTOAOITO TG exToidEVCTNC.

3. Leaky-ReLU Avti va undeviler mhjpwe Tic apvnuxéc elo6doug, 1 leaky-ReLU tic mohhamhaoidlel e yia
pxeY) otadepd we e€ig:

f(z) =Kz < 0)(ax) + ¥(x > 0)(x) (0.0.4)

1 omolo €xel apPUAEYOUEVY ambédoor oe oyéon e tnv ReLU.

Nevpwvixd Aixtua

To Nevpwvixd Aixtua [38] anoteholvton and veupmveg tou dtadétouv exnandedoyta Béen xou tapauétpous. Kdle
veuphvae hapBdvel oplopéves eloddouc, Tpaypatornolel éva ecwtepixd yvépevo (dot product) xou mpoowpeTixnd
axohovlel Ty eqopuoyn evoc un-yeopuxod otolyeiov. Ta Nevpwvind Aixtuo hopBdvouv pio glcodo xou )
petooynpatilouy UEow Wog oelpde xpupey oTpwudtwy. Kdle xpupd otpwua anoteheiton and €va clvolo
VELPWVKY, 6oL xdde veuphvag elval TAHEWS CUVBEBEUEVOC e GAOUC TOUC VELPMVES GTO TPOTYOUUEVO GTPWUA,
%o OTOU Ol VEURWVES O XQUE GTEWUA AEITOUPYOUY eVIEADS aveEdptnTa X dev polpdlovton cuvdéoels. To
TeEheLTHo TApwe cuVBEdEUEVOD oTpdua ovoudletar "otpdpa e€680L" xan ot pudpioels TaEVOUNONC AVTLTPOCHL-
netel Tig mboavotntee xdle xotnyoplag. Xt cuvéyela, 1 é€odoc cuyxplveton pe Ty emtduunty é€odo - ground
truth - wg andAieia tov urtohoyiletan pe W ouvdptnon amwietag. O xhlon e anwAelog yenolponoleiton Yo va
EVIUEPGOOEL Ta BApN TWV OTPWUAT®Y ToL dxTOoL cluPva e Tov ahydprduo Tiow diddoone (backpropagation).

Yuvdetnon anwieiag H ouvdptnon andieiag cuyxelvel v mporyuatxy| €é€obo e v emuunty €€odo.
Me Bdom to anotéAecpd g, oL UTEPTAPAUETEOL EVOS LoVTEAOU TpoaupuolovTol XoTd TNV exXnaideuoT), TpoXelEé-
VOU VO T1) UELOGOLY. XENOWOTOLWVTAS JLoL GUVERTNOT ANWAELNS L Yol TOV UTOAOYIOUO TN AmOAELNC YeTaEl TNS
Tparypotixc €€600L xou e emduunTtAc, TOEEVOUPE TN CUVOAXY| an®AELd and Tov UEco 6po TV EEYMPLOTMV
ATWAELDY Yia xdde dedouévo Tou cuvdlou exmaldevong:
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1 m
J(w Ez LW,y (0.0.5)

omou w elvan T Béen, b 1 TOAwoT, M 0 GUVONXOC pLduoC TwY onueiwy dedouévwy Tou cuvelou exmtaldevong,
g elvan m mpoPBhedm xan y 1 emduunty é€odoc.

Behktiotonoinon - Khion KatdBoaong H cuvdptnor andAelas Yog EMTEETEL VO TOGOTIXOTOCOVUE TNV
TOLOTNTO OTOLGONTOTE CUYXEXPWEVNS opddas Papwy W. O otdyog g Bertiotonolnone etvan va Beet ta W
TIOL EAAYLOTOTOLOUY TN cLVAETNoN anwActag. Elvow duvatdév va unoloyicoupe tny xahbtepn xatedduvern xotd
v omolo To Sdvuoua Twv Bopndy Yo teénel vor aAAGEeL, 1 omolor pordnpatind eyyudton 6tL elvan 1 xatedduvon
e o andtopng xAiong. Auth 1 xatebduvon Ya oyetiCeton pe v xhion tne ouvdptnong andielog g e€AC:

(0.0.6)

6mou 1 givon 0 pudude pddnone. H xatdPoon xhione (Gradient Descent) eivon 1 Sioduixooio ebpeone tne xhiong
X0 OTY] CUVEYELL EXTEAEOTC EVIUEPWOTC TOEOUETEWY TTEOS ALTAY TNV XAlOT).

PUOuion (Regularization) O otéyoc evée veupmvinol dixtiou etvon va puddet wa avtiotolylon e eloé-
dou oty €€080 amd T dedouéva exmaldeuonc xol va TNV epapudoel ota dedopéva eléyyou. Emouévoe, eivon
onpovTixd vo umopet vou yevixelel ta Bdprn Tou xou Oyt vor pordofvel To cuyxexpluéva mopadelyuota Twv Sedopévev
exmaidevone. ‘Otav éva poviého taupldler téheto ota dedopéva exnaidevong, autd yopaxtneiletor dTL UTEpP-
npooappdletan (overfitting). H pOduion (Regularization) efvan pilar tey v eAéYy0U NG UTEE-TPOCUPUOYHE TLV
VEUPWVIXOY BIXTUMVY. MUYXEXPUEVA, TEOGUETEL €vay ETUTAEOY 6pO OTN GUVAPTNOT UTMAELNS TOU UTOTEENEL To
Bdipn amd To vor auEAvouy UTEEBOAIXG Xa, XAUTA CUVETELD, VO EVIUEROVOVTOL PE ALYOTEEY eVEME(aL.

1. L1 pvdmon (L1 Regularization) Xtnv L1 pOduion, yia xdde Bdpoc w npootétouye tov dpo A1|w| ot
ouvdptnom andietag. O vevpives pe L1 phduion xatahyouy va yenotdonololy Lovo €va apotd UTOGUVONO
TOV O ONUOVTLXGV ELoOBWY TOug Xat var Yivovtaw oyeddv aveldotntol and tic "dopuPddelc" eloddouc.
Enione xpoatdel 1o u€tpo teVv SlavuoudTenY pixed.

2. L2 pvduon (L2 Regularization) H L2 pOduion elvan {owe 1 mo cuvnhiopévn poper pddmone. Ta xdide
Bégoc o bpoc 3 w? mpootiVetan ot cuvdpTnon ammielac 6mou A ielvon N mopdyovTag e pudmone. O
TopdyovToS & yenoonoitan éTol MoTe N xhion Tou Gpou va elvon o amhd, dnhadh Adw. H L2 piduon
TOLVIXOTIOLEL €VTOVOL TOUC Topdyovieg [BApOUC TOU €YOUYV XOPUPES Xal TEOTIIE TLo eviafee TWWES oTOoug
napdyovteg Bdpoug. Autd €xel To mheovéxTnuo 6Tl eviappUvel To SIXTUO VoL YENOLUOTIOlEL LoOPROTNUEVA
¢ eto6doug Tou. Emmiéov, xatd tn Sidipxeia Tng evnuépmone Twy TapauéTewy e T wédodo tne xilong,
n L2 pOduion yetatonilet to xdde Bdpoc ypouwuxd mpog 1o undéy, dnhadh w+ = —X X w Tpog TO UNndEv.
Etvow duvatdy va ouvduaotet n L1 p0dwon ye Ty L2 pdduon: Aq|w| + Agw?.

Arnodpeidn (Dropout) H oandppudn (Dropout) [39] eivan pior teyvins| exnaidevone mou anoTpémel tny UTee-
npocopuoyn. H mdavotnto andppidme unodewviet tny miovdtnta ue tny onola €vol VELPOVAS TORUUEVEL EVERYOC
7 thdovton o Bdien Tou o pndevixéc Twée. Mnopel va Jewenidel xan we Serypatoindio evog veupwvixol dixtiou
EVIOC TOU TAHPOUC VEUPGVIXOU BIXTUOU UE eVIPEPWOT WOV TWV TUPUUETEWY TOU BELYUATOANTTAUEVOL BXTUOU.

Mévyedoc Aéourne (Batch Size)

To péyedog tng déoung elvon yio utepmopduetEog Tou xadopilel Tov aptipd Twv detypdtwy Tou egetdlovion TELY
evNuep POV Ol ECWTEPIXES TIOPGUETEOL TOU HOVTEROL. XTo Téhog Tne Béoung, ol mpoPrédelc cuyxplivovton ue
Tig avapevoueveg e€68oug xou utohoyileton éva o@dhua. Améd autd To o@dua, Yenoidomoleiton o alyopLtuog
evnuépwong v T Bedtivon Tou govtélou, T.y. xlvnomn xdtw xatd pfixoc e xAlong ogdiuatoc. Eva abvoro
exmaldevone umopel va dionpetel oe wla 1 neplocdTEPES BEOUES.
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Extetopévn nepihndn ota Exknvixd

YuvéhiEn (Convolution)

H ouvéngn [40] elvon wo pardnuotied npdén mou epopudleton oe 8o ouvapthoeis. H Soxpith Sucdidotatn
oLVENEN mepthopPBdvel SVo mivoxeg xou xadopileton amd Tov axdrouvdo tono:

k

(fxw)lzr, 2] = Y f(i,5) - wler —i 25 — j) (0.0.7)

m=—k

11 45 | 81 | 87

18| -1 194203215 @

11 A 164|116 (131

* = max(255, 657)

Kernerlr | Input Output

Figure 0.0.6: Ontixomnoinon tne cuvéhine [41]

Tevixd, 1 cuvéNEn opileton yio tivaxee ye to mpdTo dptopa (f) va avagpépeton ouvipdwe we 1 eloodog, evéd to
deltepo Gplopa (W) we o Tuprhvas. To anoTéheopo avapépetal WS YEETNS YUPOXTNELOTIXDV.

Avt) n Aertovpyia yenotwomoteiton ota CNN yia v eneepyocio Uiog eXOVAC XoL THY OVALYy VEOPLOT| OE AUTHY
CUYXEXPWEVWY YapaxTNEo Tixwy. Avtideta and éva xavovixd Nevpwvixd Alxtuo, ol otpwoeic evoc CNN éyouv
VEUPOVES BlateTarypévoug oe Tpels dlaotdoelc: mhdtog, Udoc, Bddoc. Ou veuptiveg o pa GTPWOT CLUVBEOVTOL
MOVO UE WOl xEY| TEQLOYT| TNG TEONYOUUEVNS OTEMONE, avTi Vo efva cUVDEDEUEVOL UE BAOUC TOUC VEUROVES UE
TApw¢ cuVdedeuévo tedmo. ‘Onwe meptypdpnxe topandvw, évo anhd CNN anotekeiton omd yio axoroudio ote-
woov, xal xdde otpdor evog CNN yetatpénel évav 6yxo evepyonolfoewy oe évay dAAO PHECW WLag BLapopLoLunc
ouvdptnong. Ou TinoL 6TpWoKY Tou Yenowlonototvtor yia vo dnuovpyniel 1 apyitextovinr evoc CNN nepth-
opPdvouv: Buvehxtn) Ltpwon, Ltpwon Buyxévipwone (Pooling Layer), xou IIMjpwe Zuvdedepévn Ltpdom
(Fully-Connected Layer).

Ytpdomn Tuyxévipwons (Pooling Layer)

O oTpoeic cuyxévipwong (pooling layers) eivon urediduvee yio Ty uoderypatohndio TV YLEOY dlacTdoENY
e etobédou. To péyedoc cuyxévtpwonge (pooling size) xadopilel to péyedoc Touv Thasiou pe to onolo ywplleton
7 eloodoc. T nopddelypa, N péyiotn cuyxévipwon (max pooling) diatneel o péyioto aprdud oto thaioto avtd
xou ovTixadhotd to mhaioto e autdv Tov aptdud. ‘Etol, npaypatonoteiton uoderypotoAndla xotd éva napdyovta
(oo pe to uéyedog tou mhauciou.

Kavovixonoinon Aéounc (Batch Normalization)

H xoavovixomoinon 8éounce (BN) yenottonoleiton yLot TNy XovovXoTono TV eleodmY GE ot SUYXEXPLIEVT,
otpton. Autd meplhauPdvel T Slaopdiion 6T 1 elcodog €xel p€oo Gpo PNBEY xat Stoncdpavon povdda. H otpdon
BN petaoynuotiler xdie eloodo otnv tpéyovoa déour apaipdvTac TOV LEGO 6p0 TNG ELGABOU Xat BLLEMVTIS TNV
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ue TV Tumer) andxhior. otéoo, dev Exel amodeiydel 6Tl Tar povtéha elvon xahOTERR UE UNBEVIXG PETO GPO XAl
dlaxOpavoT wovddag. Evdéyetar va amodidouy xalbtepa Ue dhho uéco 6po xou dlaxdpaver. Enouévewe, n otphon
BN eiodyel eniong 800 napopétpoue, To yéua (v) xou to Bhta (B), Tou mpocappdlovion xatd tny extoideuon.

Yrtpworn IIMpwe Xuvdedepévn (Fully Connected Layer)

Ou vevpivee ot wa Thipne cuvdedepévn otpmon (fully connected layer) €youv nhfpelc cuvdéoelc ye dhec TiC
EVEQYOTOW|OELS GTNY TEONYOVUEVT OTEWOT), OTWE OTA XAUVOVIXE VEUPWVIXE dixTua.

Mezaoynuatiotés (Transformers)
ApyrteExToViXn

O Metooynuatiotéc (Transformers) éyet oanodetydel 6L unepTepel TWY ANUCIEWTMOV XA CUVENXTIXMY LOVTEAGDY
oty eneepyacio QUOASC YADOGCOS, EVEH TUPOUGLELEL UiXPOTERT UTONOYIOTIXY TOAUTAOXOTNTA O, CUVETWC,
ToyUTERPO Yedvo exmaldeuons. Evdd ota CNNs omowtodvtor morhd ctooyuévo emineda yio TOV EVIOTIOUO
eEopThoEWY PEYAANG EUBEAELNC, OTOV UNYAVIOUO AUTO-TPOGOYNE TWV UETACYNUATIOTOV, aUTEC oL e€dpTHOELC
aviyvevovTal anoteheopatixd yio por Géom e€6dou umoloyilovtac mAnpogopiec mepteyouévou and xdide Véom
elwo6dou. H apyitextovinr] twv Metdoynuatiotdy, onwe galveton oto Lyuo 0.0.7, anotedelton omd évov
%xwBOTONTH Xou Evay anoxwdixomoth. O xwdonomntic anoteleiton and 6 cTtoPoyuéva enineda, to xordéva
OmOTENOVPEVO OTd VAl TONUXEPAALXS UTAOX auTo-Tpocoyfc xat éva dixtuo npominone(feed-forward network).
O anoxwdixonowmthc anoteheltan enlong amd ta 6 (B otoBaypéva enineda, ye évo mpdodeto TOAUXEPUALXS
MTAOX AUTO-TIPOGOYNE TOV Ypnotpornoteiton otny dpy xdde emmédou. To mohuxepahind PThox AUTO-TPOGOYNC
anoteAeltan and To 8 TEOAUVAUPEPOUEVA XEPUALNL AUTO-TPOCOY NS ToL epapudlovTon TapdhAnAa oTny €lcodo xou
€youv dlapopeTind exmoudetotua Bden. O oxondg Toug elvar vo SNUOUEYHOOLY BLapopETIES EXDOYEC OYETIXG
pe tic eCapthoelc ot Wwa axoloudor xou va Tic cLVBLAGOLY OE évay HOVo WEco Gpo eE6doL auto-Tpocoytic. H
aUTO-TPocoY Y| pdoxac meptop(lel TV euPélela TG AUTO-TPOGOY RS, WOTE TO UTOAOYLOUOS TwY eEH0WY Vo Unv
ennpedletan and ta "pehhovtixd" anoteAéopota ¥ HOTE Vo TEPLOpioEL TNV UTAOYIOTIXY) TOAUTAOXOTNTA.

Output
Probabilities

Add & Norm
Feed
Forward
| Add & Norm J+—

Multi-Head
Attention

Add & Norm

Nx

[Add & Norm ]
Masked

Multi-Head
Attention

Multi-Head
Attention

A, 4 A )
- —
Positional A Positional
Encoding 1 Encoding
| Input I I Output ]
Embedding Embedding
I !
Inputs Qutputs
(shifted right)

Figure 0.0.7: Transformer Architecture

Kéde eninedo éyel é€0d0 xou eloodo ye tc Biec daoTdoels dimoder- Emiong, Stodétel unolewpoatiny) olvdeon
(residual connection) xou povédda xavovixonoinong déounc (batch normalization) yetd oné xdde uno-eninedo.
Téhog, emTAéOV YapaXTNELOTIXA(OTIWE AMOTEAECUATA EQUPUOYHS TELYWVOUETPIXWY CUVOPTACEWY SLAPOPETIXDV
CUYVOTHTWY TNV E(00B0) EVOWUATOVOVTAL GTO BLEVUCHO ELGGBOL TPOXEWEVOL Vol HOVIEAOTIOIOUY YWEIXES 1
YEOoVXEC oyéoelc HETadD VEoewy xou VoL EYEL DUOTATELS dimodel- 10 dixTuo TpOdUNoNC (Feed-Forward) vhornoel
dvo yeauwxéc yetaoynupatioslg ue dvo evepyonoioelc ReLU petald toug:
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FF(Z) = max((), Wi + bl)WQ + b (008)

Avto-TIIpocoy?(Self-Attention)

Eexwvavtoe e tplo exnondelotpa daviopato: to didvuopa epdtnone (Q) xou to Lebyog xhewiot (K) - twrhc
(V), to uno-eninedo autéd-npocoyfc otoyevet vo utoloyioel Ty TR mou tpoxdnTel and To xAewdi mou eivar o
xovtd oty cpwtnon. Ilalpvovtag to eomtepd yivdpevo 0.0.9 petald tng epdtnong xal Tou XAEWBLOY Xl Yidl
ouvdptnom softmax, xatalfyoupe oe évay mivaxo mdavotritey oyoldtntag. Autdc o mivaxos yenotponoleltal wg
Bdpn yio Tov uToAoYiopd TNE TS and To oTodouévo ddpolopa Twy TV Tou mtivaxa 1oy, To eowtepnd
YWOUEVO PETAED TNG EPMOTNONG X0k TOU TH(VaXO XAELOLV XAUUXDVETO PE EVOLY TPy OVTAL \/%Tk (6mou dy; elvan 7
didoTaon Tou mivaxo XAEWBLOV) TEOXEWEVOL VoL anoTeanel To TPdBAnua TS exeNYVUUEVNS xhione Gtav €youpe
MEYSAES TUEC.

Attention(K,Q,V) = softmax(QVT
) i \/dik;

W (0.0.9)

YNy TOAUXEQOAXY) AUTO-TIPOGOY Y, UTEEYOLUY 8 XEQIALN aUTO-TEOCOY NS, XoUEva Ue Ta Bxd Tou eXTUBEVGLUA
Bdipn mou magéyouv éva BlagopeTixd yhpo avanapdotaonc. Ot e€ddol toug cuvevdvovTal we e&ng:

MH(Q,K,V) = Concat(hy, hy, ..., hp)W?

0.0.10
h; = Attention(QWiQ, KWE vwY) ( !

6mov ot mivaxee W elvar npofoléc mou gépvouv toug mtivoxee Q, K og Sidotaon dmoeder/h (6T0L 0 apriude tov
xeoahédv h=8) xau pépvouv 0 cuvevwuévn avanapdotoaon e€680u oe DAGTACT dmodel-

Ievixd, 1 auto-tpocoy elvoal To yerjyoen and to cuveAxTxd enlnedo we To (Blo nedlo ntpocoy e, xou ot yelptotn
Tepintwot, N daywelown cuvéhin(separable convolution) éyel v (Bt TOALTAOXSTNTA UE TNV AUTO-TPOCOYH.

Yxetxn BiBAoyeapio

To mpdfinua e onuactoloyixfic xatdtunone [42] npooeyyiotnre apywd ye ahyopiduous cuctadonoinomng
[43] mou yenowonotoly emnpdoldetec TAnpogoplec amd meplypoppata xar dxpec. Apydtepa e&epeuviiinxe 1
povtehonoinon pe Sodixooion Markov [5] xodde xon 1 cuvBuacuévn aviyVeEuoT TEPLYPUUUATOS OE Lol LEQUPYLXT
npocéyylon. Qotdoo, ofuepa ta xuplopya poviéha xatevdivoviow oe poviého mou Pacilovtar oe meployéc,
GUVENXTIXE VEUPWVIXE BIXTUA X0l UETUCY NUUTLOTES.

Movtéla nou Bacilovtal o nteployég

Ta povtéha mouv Pocilovion oe neptoyée ywpilovion oe 300 EexwpELoTd OTAd: TOV EVIOTUOUS TWV TEQLOY WV
o€ Uit exxdva xou TNV Taglvounoy| Toug aluQwva PE Tig Xatnyopleg mou opillovtal 6To GUVolo dedouévmy. Lta
ewxovootolyelo avatidevtal xhdoelg Yetd omd autd tor 0o oTddla, elte ue OAOUANEOTIXE eEXTTUSEVCLUO TPOTO elte
pE exmtoudelollo wovo T Vo TEdT oTEdL.

R-CNN

H dvodoc twv CNNs oty xotnyoptonoinon emdvey odhynoe otn dnuouvpyia tou R-CNN [44], to onofo eivor to
TpwTo povtého nou €detée 6Tt tat CNN uneptepoly oty aviyveuor aviixelyévoy. Apydtepa, Tpononoifinxe yio
va yenodonoiniel 6T oNPASoAOYX xaTtdTunoy. Ltny aviyveuon avixelpévwy, to R-CNN e&dyet nepimou 2000
TPOTACELS TEPLOYDY UE YPNoM TNe emhextixic avalhmnone. Autéc ol meployéc Uetatpénovion ot évo xadoplo-
pévou peyédouc ddvuoua YopaXTNEIo TGOV YenotworotdvTos éva yeydho CNN, to onolo xatémy todivopeiton
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oe x\doewg pe ypouwxd SVMs. Egapuéletan évag ahydprduog un péyiome xatdnviéne (Non Maximum Sup-
pression) ytor vor amoppidel pla meptoyf ov éyet yaunhotepn Baduoloyla and wa tepioyt mou tépveton poli tTne
pe Slopopd mhve amd €vo exnaudedolo XATWPAL  XTn onuoctohoyixh) xotdtunon, R-CNN yenowonotel plo
tpontontotuévr wopet, Tou O2P [45], to omolo e&dyer 150 neployéc pe to CPMC [46] xou Tic aflohoyel pe un-
oo thelén Swaviopatog omoBodpdunone (SVR). "Yotepa, T0 0tddio eaywyhc yapoxtnelo tixdy avuxadic taton
pe To CNN, nou eZepeuvd tpeic pedddouc: N mpotn unohoy(lel Ta yopoxTNEloTXd oto opYoyhvio xouTi Tou
TepAelel TNV eVIOTUOUEVY TEployY), N BeUTEEN UTOROYILEL Tol YUPAXTNEICTIXA UOVO GTNY TROGXNVIO Udoxd TNS
TEpLOYHE xan 1) TElTH oLy ywvelel Ta dlaviopaTta Twv B0 Topandve pedodny. H xolbtepn uédodog anddoong
HTOY 1) CUYYWVEUST] TV YUeaXTNELoTIXwY, delyvovtag 6Tt o mepBdihwy ywpoc elvar xplowoc ot dladixacto
To€VOUNONG YIS TIEQLOYTG.

R-CNN: Regions with CNN features

warped region lane? no,
| erpetE . A croplane? oo, |
k ; . oo ﬁ_..'- \\ =B person? yes. |
' N CNN'S :
m_lﬂ" d A tvmonitor? no. |
2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Figure 0.0.8: R-CNN [44] povtého aviyveuong avTixeyévou

Fast and Faster R-CNN

Fast R-CNN [47] eivou wa Behtiopévn éxdoorn tou R-CNN [44], 1 onola yenowwonoteiton otny aviyvevon av-
TXEWEVWY Xol EMNEEALEL apYOTEQO TIC OPYLTEXTOVIXEC OTI OMUACLOAOYLXY) XATETUNOT]. LUYXEXPWEVA, ELOAYEL
v Iepioyn EvBiogépovtoc (ROI), n onola Yo epopuootel o poviéha onuactohoyinic xatdtunons nov Pooi-
Covton o€ meployéc xan mpooapudlovar oe teptoyés ehetepne woppric. Elvar ypnyopdtepo and o R-CNN, 816t
TepthopBdvel exmaldeuct) o pio QAcT) UE ATOAELN TTOU CLUYYWVEVEL TOAATAES epYaoleg, eV 1) exnaidevon unopel
Vo evipepdoel oha tor enimedo Tou duxtvou. H Ileployh Eviagpépovtog e€dyel €var BIdvuoUa Yapox TNl Tixdy
and TA YAUPAXTNELO TLXE TTOU TAPAYEL TO GUVENXTIXS BIXTUO axt antd T cUVTETAYUEVES TNE Teptoy . Xwpellel tig
neployéc ot Womhiln utomeptoyés xon Xpatdel TNV PéYLoTy TY Toug nwe pio Ltphon Tuyywvevone(Pooling
layer) . Xe enépevn enéxtoaoy, To Faster R-CNN [48] emitayOvel tov ypdvo exnaldeucnc ypnotlotoudvTas 1o
{810 cuvEMXTIXS BiXTUO TGO GTNV CVALY VEPLOT| TERLOY DY OGO X0t GTNY TAEVOUNOCY) TOUC XOlL ETOPEVIEC TO LOVTERO
yievton exnoudeolwo and dxen o dxen.
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a) Fully Convolutional architecture

S = Pixcl
e i o Y Cgi i i e

Image Convolutional layers Fully comnected Deconvolutional Softmax.
layers layers

b) Modern region-based architecture (baseline model)

! Region

level
loss

Region
level
loss

Image Convolutional layers

Rectangular F
ROI pool layers

¢) Our architecture

Pixel
level

loss

Image Convolutional layers

Figure 0.0.9: 0yxplon tov tudv apyttextovixdv: a) IIpene Zuvehixtd Alxtuo otnyv onuactohoyixi
xoTdTunon elvan and dxer oe dxprn exnadeloldo ahAd avory veellouy Teployéc amd TETEEYWVOL ATOXOUUATA KOl
ouvende napdyouy avaxpBeic TpoPhédelc yio toAdThoxes teployéc. b) To povTého avoryvopLong TEPLOYMY YE

oLVEPTNON anmAelas Tou unohoyiletar 6To OTABO avaryvapELoNe Teptoy v ¢) To povtého avayvipeLong
TEPLOY WYV A6 GxpT| OE dxpEn EXTUBEVGLHO Aol UTONOYILEL THY CUVAETNON AMWAELNC TEVE GTAU ELXOVOCTOLYE(.

Ewéva and [49]

VGG-16 feature extractor classification head (removed)
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Figure 0.0.10: FCN apyttextoviny Bactopévn oto VGG-16 and to Keg.6 oto [51]

Convolutional Neural Networks
IIMApwe cuvehixTixd Nepuowvixd Aixtua(FCN)

To mhvipee ouvehxtind Nepuwvixd Aixtuva (FCN), énwe nepiypdpoviar oto [50], eivon dixtua mou 3éyovtan
el06d0u¢ omoloudhmote peyédoug xou mapdyouv e€6Boug Blou peyédoug. IephauBdvouv udvo cuvehixtixd
enimeda o unyaviopols unep /und-detyportohndloc. Exonde fitav 1 HeTaTEom Twv BuveMx Tty Axtiny doTte
vo yenowonomndoly oty xatdtunon ewdveyv. Autd frav Suvatd Pe TNV aVTIXATAC TACT TWY TAHEWS CUVS-
edeuévey emmédwy pe cuvehxtixd enineda muprva peyédoug 1 X 1, mapdyovtag €tot {oou yeyédoug e£6dou. To
apy6 péyedoc ng elcddou, To onolo UedveTon omd T LTo-BelyuatoAndla oTo dpyxd cuveAxTXd emineda,
unopel vo avoxtniel and unyaviopolc umep-derypatolndlac. O unyaviopods mou yenotponotidnxe Hrov 1 ov-
tlotpogn cuvéMEn, 1 omolo yenotpwomotel B % xou Bdpn mou umopolv vo extoudeutolyv. Emmiéov, yio va
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emtevydoly mo axpBelc mpoPBiédel, AauBdvovtag unddn o Toug mEploploUolS TNG UToBELYpatoAnlag oty
TedBAedn tou amoteréopatog, napouctdleTon 0 Unyaviopos Yetanidnong opyttextovixrc (skip architecture) mou
TPOGUETEL U1 YROUUXOTNTO OTO LOVTENO Xal EXTEAE! GTOLYEWOON TpdciecT Twv Tpofiédewy and nponyolueva
enineda oTic UTEEdELYUOTOANTTNUEVES TPOPAEDELC.

U-Net

U-Net H apyrtextovxt; U-Net [52] Baoileton oty apyrtextovixs; FCN ypnolgomodvtog v opyitextovixt
petanidnong xou T avtioTtpopeg cuvelielg, ahhd exmaudedeTal TOAD YENYOROTEQA XoU TURAYEL TO OoXEY3N
anoteréopata. H opyitextovinh potdlel pe éva U, xaddc xataoxeudlel CUUUETEIXE TOV XOOLXOTOMNTY Xal TOV
anoxwdixomonTy, 6nwe gaiveton oto 0.0.11. H tponomoinoy mou emtpénel xohltepr oxplBela elvor to peydho
TAAOC YOpaxXTNELO TIXWY GTNY TAEVEA TOL amoxwdixorointy, eved 6to FCN 1 mieupd tou "anoxwduonomty",
nou anotele(ton and Swdoyixée avtiotpopes ouvelielc xou tpoc¥éaels, éxel oTadepd apldud YoUPUXTNELETLXWY
oo ye tov oprdud Twv xatnyopldv. ‘Ocov apopd Tov xwdixomownty, anoteAeltar and 3 opddeg 2 BLaboy XY
oTpwUdTwY cuvehifewy axoloudoluevev and ReLUs xau pioa Ltpworn Xuyydvevone. Autd emavohoyuBdveton
CUHHETEXE GTNY TAEURE TOU AOXWOIXOTOMNTY, UE T LTPWOEL LUy ®veuang va avTixadiotavton and avtiotpo-
(pec oLVEAZeLS xou éva emmhéoy entinedo mpocUfxng vo mponyeitol xEUe EMTESOU UAOTOLOVTAS TNV 0PYLTEXTOVIXN
petoBBoong.

164 64

128 64 64 2

input
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tile

output
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map

¥

390x300 W
amax3ss ¥
388x388 ¥

392 x 392

572 x 572
570x 570
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' 128 128
256 128
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2822
2802

=1
o
o

256

' 256 256

512 t
I'Er:l'gl =» conv 3x3, RelLU
1 s 3 copy and crop
1024 512

1042

EE S ¥ max pool 2x2
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T — = conv 1x1

Figure 0.0.11: U-Net apyttextovixi and [52]
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Extetopévn nepihndn ota Exknvixd

DeepLab and Atrous Convolution

To DeepLab [53] Bacileton 6Tic TEONYOUUEVES OPYITEXTOVIXES EVOOUATMVOVTAG OTIC dpyitexTovixéc tou FCN
NV atrous cUVEAEN avTixaio TavTag TNV avtiotpoen cuvélEr. H atrous cuvéNEn ot o Sido toom nopouotdle-
tow oty eglowon 0.0.1, xou pmopel vo meplypagel and to yeEYOVOS 6Tl xdvel cUVEMEN pe €va piktpo Tou
€yel 1-1 undevind avdpeon otig TWES Tou 6tav o pududg dlatdoewy elivon . Autd emitpénel éva ueyahltepo
nedlo éaone, dlatnedvtoac tov Blo apriud mopauéTeny ol BlatnedvTag TNV avdAucT dtav yenotdomnoleito e
yéuoua(padding).

yli] =Y wli + rkw[k] (0.0.1)
k

Badid Tuvehixtixd Aixtua Ydniric Avdivone (HRNet)

To Badid Xuvehuetind Aixtua Tdninic Avdivong npoéxuday and tny nopatrencn 6t xavévae and to meonyol-
HEVaL LoVTENX BEV Blathipnoe poég LYNANC avdiuong oe 6ho To dixTuo, dAAG avtideta UTEEDELYUUTOAATTINGOY TNV
avdhuoT) omd T Younh avéduon [50], cuyydvevoay apyixdy emnédwy VPR avdluon ota TéAN Tou dixtdou [52],
dnuopynoay poéc pe yeoala avdhuon [53, 54|, f vhonolnoay apyltextovixéc xwdixonomti-anoxndxonomty [55,
52]. To HRNet [56] eiofyorye Tnv évvola Tov TopdAANA®Y potY TOAATAGY aVOAIGEWY TOU GLYYWVEDOVTIL GTO
Tého¢ x&de otadlov, 6nwe gaivetar otny 0.0.12. To dixtuo anotehelton and 4 otddio, xat oe xde 6Tddlo TEOC Ti-
Yetan mopdAAnAa par poYy yaunhotepne avdiuong. Xe xdlde otddio undpyouv 4 povddec oe xdlde avdhuom, ue
e povdda v amotelelton and dVo cuveli&elc muprva 3 x 3, xavovixonolnon déounc xou relu. Me e&aipeon
TO MPWTO OTAd 6oL Xdde povdda amoteheiton and éva bottleneck mAdtoug 64 xan o GUVENEY Tuerva 3 X 3.
H ot pon etvan avdhuong + xau éyer C xavéar xau xdide Slodoyind por xateBdler tnv avéhuom xou augdver
Ta xaveha xotd mapdyovia 2. H vroderypotohnla yiveton Suvaty pe gl cuvEMEN 3 X 3 ue Briua 2, evéd n unt-
epderypatohndio e drypopuixt| napepfolfi(bilinear interpolation) xou cuvéMEn mupfiva 1 x 1. To anotéheoyo tng
onpactohoyrc xotdtunong oto HRNetV2 npoxntel and 11 cuYYOVEUOT) TV TEGGERMY POWY GTNV TEWTT POT),
HeTd TV unepdetyatorndla Ty TELdY TEReUTUiLY POMY Xou TN XPVoN YaETHOY exTiunone xatdtunone (estimating
segmentation maps).

¢ | channel .

maps " blodk =

& ey
| L)
a

e g r— ’ o
Figure 0.0.12: HRNet apyitextovixs ané [50]
MetaoynuratioTtég

Mezaoynpatictic Metatonong Hoapadbeou (Swin Transformer)

To Swin Transformer [57] eivon wior apyLtextovixs mou otoyelel 6To va petatpéder Tov Metaoynuatioth and
éva epyaielo eneepyaoiac puowhc yYAdoooe (NLP) oe éva epyaheio dpoone. Qotdoo, yio va umopel vo ex-
petohheutel tar TAeovexThuata Tne auto-tpocoyfic (self-attention) oTic edvec ye amoteEleoUATIXOTATO EVE
TOPGAANACL Vou oy VeEL EEUPTHOELS TOMAMY XNMUdXwY, uhoTotel Ty Tpocoyy| petatonone mapodipou (shifted
window attention) xou tn ouyydveuor anoxouudtwy (patch merging). Lougwva pe auTthY TNV apyLTeXTovixy,
Lot etxova Stonpettar oe xopudtio peyédous 4 x 4 xou autd Tar xouudtia avixouv oe napddupa yeyédoug M x M.
To en{nedo ToOMATAGOY xeQahliv autd-tpocoyfic (multi-head self-attention) avtiodiototon omd TRy TOANNATAGY
xeQaNY Topadupouévn autd-npocoyr (W-MSA) otov xwdixonomth xoa xéde mpocoyt neptopiletoa pbvo ota
mhaiowa evoe mopotUpou. Ta napddupa, mou apyilouy va yweillovtow and TNV ENAVL-UPLGTERY| YWVid, HETUTOTI-
Covton xdted xan 8e€Ld oe xde eninedo npocoyfc otov amoxwdixoromth. To Swin Transformer enitpénet eniong
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ToV evToToUd e€opTRoEWY TOAATADY avahOoEWY PEGL TNS CUYYOVEVOTG ATOXOUUdTLY o8 xdle oTddlo, dmwe
gotveton oto 0.0.13. Auth n apyttextovixn yenowomnowel T GELU xou éva MLP 2 emnédwv petd ) povéda
npocoyfc. Emmiéov, éva eninedo xavovixonoinong tonoveteiton yetd and xdde povddo xai yenoilomololvTol
oLVOEELS UTIOAOITOU YETOED TV HoVAdwWY, 6Twe aiveton oto 0.0.13.

U pmen S S

H., W v H o W e H., W, oc
TR x2C 18 % 1g <4C Xy X8C

Stage 4

HxW=x3

Patch Merging
Patch Merging

Patch Partition

(a) Architecture (b) Two Successive Swin Transformer Blocks

Figure 0.0.13: swin Transformer apyttextovixd and [57]

Patch-merging To xoppdtio eivon peyédouc 4 x 4 xou oL daotdoec tou mapadipou opllovia we & x .
Kéde xoupdt éyet éva token Bdoet twv 4x4x3 = 48 yopaxtnelotiney toug. 2otdoo, To token yetatpéneton and
Eval Yoouuxd eVvoupatopévo otpoua (linear embedding layer) oe didotaon C xon To xopudtt xorevdiveton oTov
MeTaoyUaTioT!) OAOXANEMVOVTIC TO TE®TO GTABL0. 1T BelTEPO OTABLO, Eval EMINEDO GUYYWVEUCTIC XOUUATILV
ouyYwVeVEL 2 X 2 = 4 xoupdrtior o€ éval xouudtt pe 4C cuVEVWUEVO YopAXTNELOTIXG TOL Xou THAL HETATEETOVTOL
p€ow evog YRopUXo) EVonUaTwrévou atpwuatog ot 2C yapaxtneiotixd, opllovtag to péyedog tou mopadipou
[Als % X %. To deltepo otddlo ohoxhnpdveton pe éva Swin Transofmer pymhox. Opoiwe enelepydlovton Ta
YOeaXTNELOTIXd ot oTddlo 3 xou 4, émou Eavd 1o péyetog Tou mopalpou UELOVETAL OE % X % %ol 3—”; X %
avtloTolyo xou x&e xopudtt €xel Sidotaot yopaxtnetotxdy 4C xo 8C avtioTouya.

Meraténion napadipouv (Window shifting) H petatémorn noapadvpou epopudleton otov pnyaviowd
TOMNATAGV-XEPAUADY QUTO-TROGOY NS GTOV ATOXWOLXOTONTH, ENLTRETOVTAS TOV EVIOTLOUS EVRUTEPWY EEUPTATEWY.
To apyxé napddupo Tonodetelton GTNY APLOTERH-EMAVE Ywvio, xou To UTOAoLTa TotoveTodVToL BladoyLxd Ywelc
emuxdhudn. H enduevn dioaudppuwon dnpiovpyeital Ye tnv Slory@via HeTatdmion Twy napadlewy. Qotdoo, autod
€xeL ¢ anotéleopa TEPLoaOTEpA Tapdiupa and To apyixd e xdmola vo efval Pepxdc ohoxinpowuéva. H Abon
mou blvetan oe auTd To TEOPBANUA efvar 1) U€BoBog TNC HUXAXNC UETATOTLONG, OTOU TOL HEPLXWS ONOXATPOUEVA
Topdiupa amd THY ETEAVO-0PLOTERPY TAEUPE UETAXVOUVTOL OTNV XATe-0elld Ywvia xot cUVOEOVTOL UE Ta UEPIXMOC
ohoxAnpwpéva mapddupo exel, mpoxeévou va dnuovpyndoly xavovixd mapddupa.  XTn cuvéyel, 1 owTod-
TPOCOYY) TOLU EQPUPUOLETOL OE AUTA TA CUYYWVELUEVA Tapdidupa howfBdvel Lo aUTH TN PETUTOTLON, EQOp-
HOZoVToG plal HAoXO GTA YopaXTNELOTiXd Tou Topadlpou Tou Bev fTay YEITOVES TELY TN YETATOTLON.

Mask Transformer (MaskFormer, Mask2Former)

H Wéa niow and tov MaskFormer [19] Baciletor oty opodtnia tov Sldpopwy epyactiy ONuaclohoYhc
XOUTATUONNG XL GTNY AVAYVORLOT TNS AVAYXNG Yol TNV XATAOXEUT] L0 EVIALOG ORYLTEXTOVIXTC TOU UTopel Vo
exteréoel xou Ti¢ Tpelc epyaoiec. O otdyoc tou MaskFormer elvar va yenoiponojoel tnv teyvixy tne instance
segmentation, tnv ta€lvouNcT HOOXOY, GTNV ONUACLONOYIXY XUTATUNOT) EXOVAC, QUPLORNTMVTAC TNV EVVoLd TNS
Tagvounong avd pixel. Yuyxexpwéva, o MaskFormer npoBiénet éva ahvolo amd N Leuydipia xhdong xon pdoxog,
z=(Ci,Mi);_q N EXTENDVTOG XUT apyds TAEVOUNOT HEOXAS, XoU OTH CUVEYELN UETATEETEL TOL ATOTENEGHOTA
oe €€000 nocvon"uid]g, instance 1} onpacloloyxrc xotdtunong. ‘Eyel napduolo ToocEy Yo Ye TIS AP LTEXTOVIXES
R-CNN npwv petatpanoly oe povtéha exnoldeuong and dxpn oe dxprn xon CUUPWVEL UE TNV amouacio andAeLog o
eninedo pixel.

Architecture H oapyitextovixd awtod tou povtéhou talivounong pudoxag dapelton oe tpio uéen Omwe oiveton
oto Lyfua 0.0.14. H "povdda oe eninedo pixel" ypnowwonotel yio apyitextovixy tofivounone emnédouv pixel
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Extetopévn nepihndn ota Exknvixd

IOV TEWTA UTOBELYUAUTOANTTEL TNV EXOVA X0 GTH GUVEYELXL TNV aVaXATAOKEVACEL HE €vary amoxwdixoromth. Ta
YAUEUXTNELOTIXE YoNATE avdhuong mou e€dyovta amd to backbone npowdolvtar otny "uovdda yetacynuation
anoxwdixomoinonc", o omolog extelel éva query mdvw oe outd xou mapdyel to object queries. O mivoxoag Q
TOV UETAOYNUATIOTH auToL yodolveton xatd Ty Sidpxelor Tne exmaldeuone xou nepiéyel N ovanopaotdoels tou
YENOWOoTOoLOUVTAL YLl TNV avaryvadeton twv N pooxdv oty ewdva. H €€odoc tne "povddoc uetaoynpotiot
anoxwdixomoinong" etvon évag mivaxac Co x N xau nepvd oe éva MPL nou tov petatpénel oe évav mivoxo
dudotaong Cr x N. H é€odog nepvd enlong oe éva ypaupxd tadivountr xou €va softmax yio var dnuiovpyroet
Ti¢ TpofAédelc TwV ¥Adoewy TV N paox®y.

O anoxwdxonontrc eminédou pixel UTEEBELYUATOANTTEL T YOEOXTNELOTIXG YUUNANS AVAAUONE YO VO TUPAYEL
LPnic avdhuone avd pixel yopoxtnplotxd. Autd ta yopoxtnplotxd yeyédouve W x H x Cg nolomhaoidlovton
pe Ty é€odo tou MPL, dnwovpydvtog évo anotéieoyo yeyédoug W x H x N, to onolo nepiéyetl tny mdavotnta
NG pdoxag yio xdde pixel uetd v epoappoyt evog sigmoid.

transformer module segmentation module

dlassification loss

: semantic segmentation :
! inference only

semantic '
segmentation | :

KXHxW

pixel-level module

NxHxW

image features F per-pixel embeddings

Figure 0.0.14: Apyitextovix) MaskFormer ané [19]

Yuvende, umdpyouy 800 xAABOL CTUUCLOAOYIXNE XUTATUNONG: €Vag TOU TAEVOPE! HAOXES YPNOHLOTOWVTOS LOVO
To backbone xou Tov yetaoynuotio ] anoxwdixonolnong xou évay mou evtonilel TNV MEPLOY N TNG UAoXOC XeNOL-
HOTIOLWVTOC TO YIVOUEVO TWV YORUXTNEIC TIXWY TNG EXOVIEG ond ToV amoxwmdixonointy| oc eminedo pixel o to
YORAUXTNELO TIXG TWV HOOXWY OO TOV PETACYNUATIO T amoxwdixonolnone. H tehuny é€odog tng epyaoioc tal-
wounone pdoxae anoteAeiton omd Tig mpoPAédelc xhdone avd pdoxa xar T TEoPAédEls Tng pdoxac avéd pixel
(m;[h, w]el0, 1], mdavétnta 6L 1 i-001h udoxa mepiéyetl To pixel h, w). Ou d0o autée €€6Bot cuvdudlovron
yior Vo mapdryouv Ty €€080 TNG ONUUCIOAOYXNAG Xal TNG mavomTxAc xatdtunong. ‘Ocov ag@opd TN onpoot-
ohoyuxn} xatdtunom, n tagvouncn twv pixel vroloylleton ye avddeon tng xhdong mou mopdyel To LPNAGTEPO
ywvépevo g mdovdnrog e pdoxac xou g mavdTnToc TS XAAONG O ULt CUYXEXPWEVY pdoxa, Snhadn
arg maxeei,.. K vazl pi(e)m;lh, w]. Ln ouvéyela ouyywvedovta to pixel ye v Bilo xAdon. Evd, oty in-
stance segmentation Swtnpolye té6oo TV xNdon doo xou T wdoxa, dnhadh argmax;ei, .. n pi(c)milh, w],
6ToL ¢; = arg max, p;(€), CUYXEVTEOVOVTOS To pixel Tou avAxouy otny Bl pdoxa.

Yroloyiodg anwieiag O o@dhua xatnyopionoinong urtohoyiletor ye GUVBLAOUS TNG UMOAELNS XATNYOPL-
onolnong Udoxag xaL TNV anAelo e0peons udoxas. 26T600, Yia VoL UTOANOYLIOTEL 1) AMWAELDL, TEETEL VAL YIVEL AVTLO-
tolytomn petall twv M anotekeoudtov tov emduuntoy oanoteheopdtewy (ground truth) xou twv N anoteleoudtov
tou MaskFormer. To i1co{0ylo yetad twyv 800 cuvdrwy elvar Suvatd pe Ty eloaywyh N-M avtixewéveoyv "null".
‘Etot, pe dwept| avtiotoiyion (bipartite matching) eivon Suvath 1 avtiotolylon twv paoxdv-xhdoewy 1 tpog 1
XOL 1] UTOAOYLOUOC TNG UTOAELNC:

Mz

Linask— cls Z, Zg —log ps, ])( )+ 1 gtyﬁ(DLmaSk(mU(j)’m?t)H (002)

j:1

6mov z elvan To 6Ovoho Teofiédewy, 29t elvar To Givoro Twy emduunTdy Toy (ground truth) xow N = |z]. To
Linask elvon 1 andAeta tne pdoxag pe binary loss mou Aoyw g yehone e ouvdptnone deixty (indicator func-
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tion) w¢ napdyovia, unohoyiletar U6vo GTa 1) UEoxo TEOPAETEL EVOL CUYXEXPWEVO AVTIXELUEVO Wiog xaTryoplag.
O mpidtog dpog elvon 1 oAt ToEVOUNONG HACKOG YE Cross entropy.

Yrowxeio Tov ypnowronotiOnxayv H "uovdda ot eninedo pixel" anotehelton and évav nuphva (back-
bone) xou évay anoxwdxonownty ot eninedo pixel (pixel-decoder), nou unopov va vioromndoiy and onolodhnote
uTdipyov HovVTéAO Tou TopdyelanoteAéopaTA oNpactohoyYixg xatdtunong. Auth 1 Suvatdtnta onuaivel 6Tl To
MaskFormer propel vo petatpéet éva onotodhmote xuplopyo (SOTA) poviého o éva LoVTENO XaTNYopLloToinoTe
wdoxac (mask classification). "Eyet anodeuytel [19] ott Behtiddver tny andBooT) TwY HOVTEADY AUTMY.

Tuvidoc, we tuphvae (backbone) yenowwonoweiton to povtého ResNet 1 to povtého Swin-Transformer, eved o
anoxwdonointic ot eninedo pixel oyedidleta Paoilopevos oe mponyolueva povtéla 6w to FPN.

per-pixel transformer | per-pieel
loss I,/* decoder 4 loss
= ' Kxi
=
- H m \ &5
=
o
KxH=xW CxH =W KuxHxW

Figure 0.0.15: Metoatpony} evdc HOVTEAOU GNUACLONOYLXN A XATATUNONE OE LOVTEAO TAELVOUNONG HAoXAS, GTIOU
ue autdy Tov TP6éTo To Gpdpo [19] delyver dTu Behticdvetan 7 enidoon.

H "povéda petaoynuotioth anoxwdixonoinons” daveileton and to poviého DETR [58]. Ipoemheyuéva, epoppuod-
Covtan 6 eninedo "petacynuatioTédy anoxwdixonoinone” ye 100 epwthoeic xau 1) (Bio amdhera (loss) eqopudletan
HETA omd xdrde omoxmdLxoTonTY.

Mask2Former: ITpocoy® wdoxog

Ye wo evnuepouévn éxdoor tou MaskFormer, to Mask2Former [59], etodyetan 1 évvola tng npocoyfic pdoxo,
avuxadotdvroe 0.0.16 ) dotaupotuevn-tpocoyy| (cross-attention) otov UETAOYNUATIOTH AMOXWIXOTOMOTS
xou xadloTdVTAG TV apyltextovxy xopugaia (state of the art) otn onuaciohoyuxs|, mavortixf| xou instance
xatdtunon. H apyh dwdoaoio exnaidevone xou n vPniy molunhoxdétnta tou MaskFormer odfynoov otov
oYEBLAOUO TOU UNYavLopol TPoCOoY S HAoXAS, OOV 0L UTOAOYLOWOL TNE dlaoTaupolUEVNc-Tpocoyfic teptopilovTol
oty meofAenduevn meployy| NG pdoxag and To mpornyoluevo eninedo anoxwdixomointh. Ol mAnpogopleg Twv
ouupalouevwy (context) eZoxohoudoly va elval YEHOWES YLl THY XATNYORLOTOINOY TWV LACKOY, KOTEGO, N
BLIOTOUPOVUEVT-TPOCOYY) amAUTEL UEYAAO UEPOG TOU YPOVOU EXTABEVGTS Yial VO AELTOUPYOEL OIS OVOUEVETAL.
‘Etol, mpotudtal vo TeploplaTel 1 Tpocoy N Yiol VoL EOTIHOEL GTO TPOTELVOUEVA YOROXTNELOTIXG TNS UAOXOC XAl
dratneeiton To eninedo auTtod-TEocOY A Yio Vo eladiyel TAnpogopies and to cuppealdueve. H oelpd auto-npocoyric
%O TPOCOYNG Pdoxag evordooeTal o€ xdie eninedo.
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self-attention
Vi K Q

add & norm

masked attention
v " Q

|
[mask | b EEEg
image  query
features features

Figure 0.0.16: Mask2Former petacynuatiotic anoxndxonoinone [59]

Yt Swotavpwuevn-tpocoyr 0.0.3, yenoulonoodvial 6ToUE UTOAOYLIOUOUEC OAN TA YUPAXTNELO TIXY TWY EQWTN-
pdTtev oe 6Ao To Bldvuoua elo6dou. Xe xdde Briwa, TapdyovTon To EvnUepwEva YapaxTneloTixd toug. O deltepog
6p0¢ anoTeAEl TNV UTOAELTOUEYY) GOVOEST] TOV YOLUXTNELO TV ATd TO TEONYOUUEVO ETUTESO GTA VEX TPOBAETO-
peva yapaxtnetoTixd. O mpodtog 6pog anotehel To anotéAeoya softmax and tnv evepyonoinon twV epwTNUATWY
OTA YoEAXTNEOTIXA Yial Tar dedopéva xAewdid. H Siopopd tne Slac Taup®dUeVNe Teocoy i e TNV AUTO-TPOCOoY T
elvan ol eloodol oTov pnyovioud. Mtnv auto-tpocoy’| Yenowlonoteitar 1 (Bio lcodog Yol TOV UTOAOYIOUS TwWV
Q,K,V anoteheopdtonv eved oty oo towpduevn tpocoy yenotponoteiton plo elcodog yia Tov unohoyloud twv
K,V Blavuopdtonv xan glor SLpogeTixy| Ylol Tov UToAoYLowd tou Q Blaviopatoc. XNy cuyXeXoUEVT TeplnTtwon
N TETY €l0080¢ Elval TA YUPAXTNELOTIXA TOU THEAYOVTOL Om6 TOV AmOXWdXOTOWNTH avd pixel ot SlapopeTind
enineda avdhuone xou 1 dedtepn o exnoudedolpa query features.

X, = softmaX(QlKlT)Vl + X1
Qi = fo(Xi—1)

K = fie(D) (0.0.3)
= fv(I)

where I are the image features.

‘Onovu 1 elvon 1o eninedo anoxwdixomounty, X; € RV*C 1a N query features o7o eninedo 1, X eivon o apyind
exmoudetowa query features xou Kj, V; € REWIXC 4roy Hy, W) 1 avéhuon tne exévac oto dedopévo eminedo
avdhuong.

Y1 pdoxa-npocoyt (mask attention) 0.0.4, n diapopd elvar 6L npootideton To M’;_1 oTov dpo Tou softmax.
H mpotewépevrn pdoxa M;_1 elvon 1 avaxataoxevaouévn npoBiedn nou éyel duadixonomdel ye xatwdeil 0.5. To
M1 elvon —00 Yl Tal exXooToyEld IOV BEV avixouy TNy Udoxa xon 0 yio Ta exxovocTolyeio mou avixouv
oTNV Udoxa, OToU T ELXOVOCTOLYElX TNG HAOXOC avavEDVOVTAUL O XdUe eMiNEdO TOU UETAOYNUATIOTY OMOX-
wdwononone. Enopévng, ouolaotind 8ev yenoUulomolo0vTon To YopaX TNELC TiXd EXTOS HAOXIS GTNY TEOCOY Y YLo
Ta omofo Loylel to X; = Xj_1. e authy TV €xBoom, To YopaxTnelo Txd epwtidatog Qo elvar extoudedoyda.

X, = softmax(M’;_; +Q;K]) + X;_,

, 0 My(z,y) =1 (0.0.4)
Ml(x,y)z{ —00 el;((a &

O Mask2Former elodyel yopoxTneloTxd TOAATANG OVEAUGTC OTOV OTOXWOLXOTONTY UETACYNUATION OIS
avagpépdnre mapamdve. Xuyxexpyéva, mopouctdlovtar L cuveydueveg opddeg and 3 diadoyxd eminedo tou
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’ I Z ’ 7 ’ Z H W H w H w
AMOXWBLXOTOUTY peTaoYNUATIO T, OTou xde eninedo hopfdvel we eloodo avdhuon 35 X 55, 15 X 16 e g X g
avtioTtorya. Autéc or avalloelc Tpogpyovtal and Sudpopa oTEdLo ToL anoxwdononty ot eninedo pixel. Eva
rodamiic xhpoxoe enavanpocappolopevo eninedo mpocoyfic(multi-scale deformable attention) [16] yenot-

pomotelton we avaxtnTic emovostotyeinwy xa npoépyetar andé to DETR [58].

‘AMec tpornonoioelc andé tov MaskFormer nepthaufBdvouv: Tov UTOAOYLOUO TNC am@AELNS Ydoxag wbvo oe
BelyuoTa TN HAOKAC TTOU PELDVEL CNUAVTIXG TOV YPOVo exnaideuong, Tnv agaipeot Tou dropout xon Ty elcoywy
exmawdevoluwy query features.

Transformer
Decoder

Backbone

Figure 0.0.17: Mask2Former tolamh@v avahboewy apyttextovixf and avtiotoyo dedpeo [59]

ITebTaon

IToANatAEG AVAAVOELG OTNV CNAACLOAOY XY XATATATOT)

Am\étepee epyaoieg, 6mwe 1 ToEvOUNON OVTIXEWEVKDY, EXTENOUVTOY UE emituyio HE apyLTEXTOVIXES TOTOU
xwoxomonTR-amoxwdixonoth. Autd fTav duvatd AoYw TN QUoNG TOG0 TNE Epyaciog 6C0 XAl TNG UPYLITEX-
Tovxic Tou petétpene Ty elcodo oe uixpdtepn Bidotaoy. Qoto6c0, UeTd TV XadoploUEv TV o TOAOTAOXWY
EQPYOOLWY, OTWC O CNUACLOAOYIXOC EVIOTIOUOS, dTou 1) Bido ooy TN eloddou elvon o pe ) Sidotaon tne e€6-
dou, mpoéxue 1 avdyxn yia o TOAITAOXES apyttextovixés. Ebixdtepa, anarteiton vo enelepyactodye dedoyéva
o€ TOMNNUTAES XAUAXES XOU VOL OV VEVCOUPE Xatnyopiec oe moAamhéc xhipoxes. Auth 1 napathipnorn odfynoe
TEMXA OTNV ELCUY WYY TONU-AVOAUTIXGY povTédwy, 6nwe to HRNet [56], HRFormer [60], HRSTFormer [61]
Ta ontofa TopaTneUnxe 6Tl anodidouv xahldtepo and o avTio Tolya LOVO-oVIALTXE YovTEha. AuTd o wovTtéha
axoroutdolv 1 Boowxy Wéa tou elorydn ané to HRNet, 6nwe gaiveton oto oyfua 0.0.18. Yrdpyouv téooepeg
poéc avdiuong Tou npoatilevtal 6To HoVTEND oTadlaxd YeTS amd xdde oTddlo. Xe xdde poy), 1 avdiuoT Satrnpeel-
Ton otadepr| xotd TN didpxela TV otadiwy eneepyaciog e eloddov. Kdlde otddio axohoudeiton and wa Lovéda
oUYXALONG TOL AVTUAAICGEL TANEOYORIEC UETAED TWV BLOUPOPETIXWY OVAADGEWY.
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Figure 0.0.18: HRNet Architecture from [50]

Ewcaywy?h nrodAhanhoyv avalboewy otov Mask2Former

To MaskFormer [19] npofiénel éva shvoro N Leuydipior Tovounone xou wdoxos, 2 = (¢, m;);_; N EXTENDV-
T XATOEY S TOEVOUNOT UEOXAS XOL OTY| CUVEYELD UETUTEETEL Tol OUMOTEAECUOTA OE nocvomm']; fcepimwon 1
onuactoroyxf taEvéunon e€6dou. ‘Onwe gaivetar oto oyfue 0.0.19, anotekelton and éva xdpto tufua, €vay
ATOXWOLXOTOLNTY] UETAOYNUATIOTA Xot €val XEQAAL onuactoloyixic empépous enelepyacioc. O xbplog tuAuaToc
unopel vo avtatac tadel and onowadrinote apyttextovixy, dedouévou 6Tl o Pooixdg otdyoc tou Mask2Former
NTAY 1) YETATEOTY] BLPOPETIXWY UPYLTEXTOVIXOY TOUNG OE L0 TOAUCXOTUXT| AEYITEXTOVIXT Touhg Poaclouévn oe
udoxec. {loté6c0, o Mask2Former €yel yonoiwonoindel tpog 10 mapdy UbVO GE UPYLTEXTOVIXES LOVO-AVAAUOT,
onwe R-50, R101, Swin-T, Swin-S, SWin-B, Swin-L oto cUvoho dedopévwv Cityscapes, mou givor To cOvolo
dedouévev Tou eEetdloupe.

transformer module e T segmentation module
Q 1 [l e ML S e i m
transformer e N class predictions| | semantic segmentation !
decoder L LB BN BN BN inference only
F R S R 3 Nx(K +1) : :
i 1
N queries N.mask.emtgddln.gs i enantic i
pixel-level module £ [N binary r1Iask loss : segmentation :
! KxHxW |
|_| Epixei N mask predictions : E
LIF.'_-xHxlI-’ m 8 o&);
NxHxW

image features F per-pixel embeddings

Figure 0.0.19: MaskFormer Architecture from corresponding paper [19]

To Mask2Former pe Bdon to Swin Transformer (Swin-T) Swrdétel pia opyrtextovixt] 6nwe auth Tov Qaiveto
hentouepdc oto 0.0.20. Xuvdudleton Ue TO EVOTOINUEVO TOAAATADY XAUAX®Y UTOOANOIWONG EVOWUATWHUEVO OC
anoxwdixomomnth. H npotewvduevn apyrtextoviny| fdone, SwinHR, oxohoudel tn our) tecodipwy emnédwy tTng op-
Yhc apyrtextovixic fdong mou meplypdpnxe oty subsection 3.3.2 avanopdyovtag xdde eninedo o nopdAAnieg
poéc. T va Sratnenlel otadepr| 1 avdhuon, ou daxprtixol petaoynuatiopol e€oeipovton ota enineda. Em-
TAéov, PETE and xde GTABL0, Uit POT| ELGGYETOL UE TN BlaxplTxt| Uelwon Tng avdtepng ponc avdivang. H peiwon
avéluone mpaypatonoleltal Ye Tn YeNom HOVABWY CLUYYOVEUOTC TATowY OTwe e&nyeitol oty section 3.3.1.
Yuvohxd, umdpyouv Técoepa oTddLa, Ta omola efvar loodlvVopa Ue ToV apltud Twy powv. H tekn apyitextoviny
gatvetan 6to 0.0.21 xon 0.0.22, o omolo dlapépouv oTo onuelo and 6mou Aaufdvetor To ElCERYOUEVO OTOLYElD
TOU AMOXWOXOTONTY EUOVOV.
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Figure 0.0.20: Mask2Former Architecture

Yy apywer apyttextovixy tou Mask2former-Swin Transformer, to eloepyduevo ctolyeio tou anoxwdixomol-
Nt UETAOYNUATIO T Tpogpyetal and TNy €000 TOU AmOXWOXOTONTY eXbVwy. 201600, 1) Wéa tlow and
HETOPORE aUTO) TOU ELCEPYOUEVOU OTO VEO apyltexTovixd Bacileton oty autdvoun anddoor tou Tohudildo To-
Tou povtéhou. Autd 1o Véo povtélo tne Bdone dev amoutel anoxwdxononth, xadde aviixadiotd oAdxAneo
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Extetauévn meplindn oto EAAnvind

Tov xwdononTh-anoxwdixonont. {2oTdc0, 0 anoxwdxononThc dlatneeiton avorlholwtog, xodde Yo anox-
ododonoloetl ta ototyela avd pixel mou Yo cuyywveLTOOY e TNV €€000 TOU AMOXWOLXOTONTY| ELXOVWY.
‘Etot, 10 avadlapop@oUuevo TOAUSLIC TaTo eNinedo TEOCUPUOCTIXTE TEOCOY TG Blatneeitol 6To VEO UoVTENO.
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Figure 0.0.21: Mask2Former Multiple Resolutions Architecture
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Figure 0.0.22: Mask2Former Multiple Resolutions Architecture alternate design : Transformer decoder
input comes from the output of the pixel decoder

Swin Transformer

To Swin Transformer mpoomadel va pewdoer tov ypbdvo enelepyaciog evoc xavovixol PETACYNUATIOTH OTOV
unohoy({lel TRV auto-tpocoy” o pio exéva. Autd Yoy Buvatdv Slonp®dvTac TG exoveS oe Tapdiupa xan UT-
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ohoyilovtac Ty auto-npocoyn oe xde mapdiupo EexwELoTd, YVOOTH e aUTo-Tpocoy Y| ot topddupa. 2oTtdoo,
Tpoxewévou va dlaoyicovye Ta dptar Tou xoopilovton amd autd o Topddupo ota yeltovixd pixel, oe xdde
dladoywd eninedo Swin Transformer, to nopddupa ovtd petaxivovvton xar avaoynuatilovton. To apyixd
napddupo tonodeteltar oTNY aploTep-emdve Ywvia xou Tol UTOhoina TOTOVETOUVTOL GUVEYKDC OE Lol Bimhal, ur-
emuxohuntopevn didtadn. H enduevn dudtoln dnuovpyelton pe tn petatdmon twv mopadipny daydvia. (dotéc0,
aUTO EYEL S ATOTERECUO Ta apyixd Topddupa vor auEntolv xou vor uTtdpyouy opxetd aveldotnta Tapddupa. H
Aoom mou diveton oe autd Tto TEOPBANUe elvan 1 pedodoloyin Tng xuxhixrg petatémong, omou Tta aveldpTnTa
nopdidupo and TNV EMEVL APLOTERT TAELEA UETAXVOUVTOL TPOS TNV X4t Oelld ywvila xol cuvdéovton Ue To
ave&dptnta mapddupa exel yia vo Snutovpyndoly xavovixd togdtupa. ‘Eneita, 1 auto-npocoyr nou epopudle-
ToL O QT ToL oUVTETAYREVA Tapdiupo AauPBdvel uTOd aUTAY TN UETATOTIOY YE TOV TEOTO TOU YACHUPE To
YOEAUXTNELO TIXE OTO ToEdUEO oL BEV HTAV YELTOVXE Tpty and 1 petatomor. ‘Onwg gaivetow oto 0.0.23, 5o
dradoyixd tuhpata tou Swin Transformer cuvdéovton petald Toug xau To debtepo eapudlel Tor UETAXVNUEV
nopdiupa Tou meotou. Erniong, oe xdlde tudua undpyel wa urtolettovpyio oUvdeone (residual connection) xau
évo. molveninedo perceptron (MLP) petd tn povdda npocoyfc. Ipwv and xdlde tuhiuo epapudleton mpoc ta
eunpde M xavovixornoinon emnédou (layer normalization). H Swdaducacio tne népoomne wiog exévog elo6dou

2171 uéow 800 BLIBOYIXGOY TUNUETWY PETAOYNUATIOTH Swin neplypdpeton »¢ eEfc:

=W - MSA(LN(Z'71)) + 271
2 = MPL(LN(z})) + 2!

zlﬂ = SW — MSA(LN(2")) + 2!
= MLP(LN(z/11)) + zi%1

(0.0.1)

- — oy

-

. Fa N [
r’
B T T T T T T Y.

,___________________‘
L T Y T T T Y L

Figure 0.0.23: Two consecutive Swin Transformer modules

AmoteAéopaTa

YOvola Acdopévwy
Y0Ovolo Acsdouévewv Cityscapes

To olvolo dedouévwv Cityscapes [8] eivon éva cOvoho dedouévewv mou dnuovpyHinxe eldxd Yo EQopUOYES
autdvoune odhynong oe aotxd neptBdiiovta. IlepthapPdvel euxdvee Tomiwy dpduou and 50 Biapopetixd xévipa
TONEWY %xatd TN ddpxela Ghwy Ty 4 enoydv. Autéc ol emdvee eivon drdéoiuec oe younhy avélvon (8 bit)
xou UPnA avdhuon (16 bit). To olvolo Bedopévwv mepihopPdver 1600 avolutixée emmédou pixel 600 xou
avahutixée emnédou mepintwong (instance-level) emonudvoeic mou napéyovton oe 500 ouddes - yovpoeldelc xat
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hemtouepelc emonudvoeic. Ou Aentopepelc emonudvoelg tapéyovton oe 5000 exdves and 27 nolelg, dnou 6Aa To
pixels éyouv emonuaviel ye ) dnwovpyia TohuydveY. O uTohoimeg EOVES and 23 TOAELS YENOLLOTOLOUYTOL
yia Yovdpoeldelc emonudvoeLls, dTou T TOADYwVA ETAEYOVTAUL TOAD YR1YopoTERQ, UEdvovTas TNy oxplBela Tne
emonNuavong. Xuvold mepthauBdvovtar 30 xoatnyopleg, xar 19 and auvtéc yenotwomolodvion yio a€loAdY o),
onwe galveton otny ewdva 0.0.24.

pole group=
g
.

10° £ |

flat construction nature vehicle sky object human void

1010} T:i =4 = £ ! instance-level annotations are available
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= ] - - = =
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Figure 0.0.24: Kotnyopiec tou Cityscapes, exdva and to [19]

Auté 10 60voho Bedopévmv anetxovilel piot Tohd EVPVTEPYN AVTITPOCMTEUCT] TWV ECWTEPIXMY 00MY NG TOANG,
hoPdvovtag urddn TNV xuxAopopio xon TIC BLAPOEES HALPATIXES CUVINXES, UE Lol UEYEAT TOLALL XOTNYORLMY,
%8vovtag To Lovodixd 6Tov Touéa TS autévouns odhynonc. Alha olvola dedopévwy, dnwe to Kitti [62],
Topé YoV ExXOVEC amd 0d00c oS amtd TpodoTia, eved to CamVid [63] xon to DUS[64] mapéyouv Mydtepeg eixdveg
and uévo wo moAn. Emmiéov, doov agopd Tic avahutixég emonudvoele eminédou aviixeiévou, to Cityscapes
elvan T0 pévo oUvolo Bedopévewy aviesa o oUTE TOL TUPEYEL TEQITTWOOELS aVvUpWOTWY ot oY Nudtwy. To ubdvo
oOvVoho dedopévmv ou eivon o TAfipeg and to Cityscapes eivou 1o Mapillary Vistas Dataset [65], wotdoo, eivou
moh0 mo mholaolo and O,TL YpeeldleTar yiot aUTO TO €pYOo, Xt elvon TEVTE QPOpES YEYOAUTEPO amd TO GUVOlO
dedouévwv tou Cityscapes, nepihopfdvovtag 66 xatnyoplec ye edvec mou €youv Angldel and 6Ao Tov x6oUo Ue
dudpopec pedtodouc APng.

YVvoilo Acdopéveyv ADE20K

To obvoho dedopévwy ADE20K dnuoupydnxe petd v avoryvodplon tne avayxng yia éva yevixdé cOVolo Oe-
BOPEVKY TOU XONOTTEL Lot TTOLXLALGL GXNVEY %ot XOLVOY avTXEWWEVLY. Ta oivola dedopévwy mtpty and to ADE20K
elyav éva Teploplopévo olhvoho oxnvdy, 6mwe to Cityscapes [8], fj xdhuntay Aya A aohpovto aviixelpeve, onwe
0 COCO[10] xou to Pascal [15]. ¥to ADE20K undpyouv 20,210 euxdveg oo chvoho exnaldeuone, 2,000 edvee
670 obvoho emxbpwong xot 3,000 eixdvec 6To clvolo eréyyou. ‘Oleg oL edveg £YOUV AVUAUTIXES ETONUAVOELS
avielévev. TTohhd avtixelpeva €youv emlong oavoAUTIXEC ETUOMUAVOELS TV UERKY TOUS, OTWS QaivETOL GTNV
exova 0.0.3. T xdde avtixelyevo undpyet emmpdotetn Thnpogopia oxeTXd Ue TO av elvol eunodlopévo 1 xou-
pévo xan Ghha yopoxTnelo Tixd. Ol emdvee 6TO GUVORO ETXVPWONG EXOUY AVAAUTIXES ETUONUAVOELS TWV UEPGY,
EVE OL ETUONUAVOELS TWV HERWY BeV elval avUAUTIXEG OTLC €lXOVES TOU GUVOAOL exmaidevone. Emmiéov, ta péen
unopel va €youv eniong péen, xou autd emonuaivovtal enlong ue cuoyetioslc.

Merpwxég Enidoong

It ™ onuaoctohoyxd e€aywyr, 1 Tumxt| yeten ebvan 1 mIoU (péon Twi Intersection-over-Union) [36], wo
pete) avd pixel mou avtiotouyel aneuvdeiog oty Swtdnwon avd pixel tagwounong. Xenouylomowolye to VPn-
Motepo emiteuy ¥y anotéreopa mloU we tn petpun anddoong evoe poviéhou. Emnpodoiera, yia to Cityscapes
yenowonoteitoan to iloU (o taciax| emxdhudn cuvdioaxdpavone) emnédou napodeiypatoc. Ta to ADE20k
yenoonoovvta entong to fwloU (cuyvétnta Luyiou emxdhudne ocuvdaxiyavone), to mACC (uéor axpiPeia)
xou 10 pACC (mdavotixd| oxpifela). Autd xadopilovton dho 6Ty .

Baseline

H vlonoinot| pac Baoiletar otov nnyaio xddwa tou Mask2former [66], o onoloc yenowwonoiel to Detectron2
[67]. Ot newpopatiopol OV TEPLYPAPOVTOL TUPUXATE EMXEVTPMVOVTAL oTa oUvola dedopévwy Cityscapes [8] xou
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ADE20k [16].

Puduiceig exnaildesvong

H enionun viomoinon yenowonoince 8 yovadeg GPU xon péyedog naptidag 16. 261600, AoYw TEQLOPIOUEVNC
loyVog eneepyaociog, otnv vhomoinocy yac yenotwonotoope 4 povédeg GPU xou péyedoc noptidoc 4. H apynn
pudpion e exnaidevone Aray pe pudud pddnone 0.0001 xou anocivieon Bdpoue 0.05. To uno-povtého (back-
bone) apywconodnxe pe Bden and v talwvéunon exdvoe tou Swin-T [57] oto ImageNet-22k [9] xou €xet
puduotel modamhaotactxds pudude uddnone tou 0.1. Q¢ Bedniotonomtic yenotponoiinxe o AdamW [68],
XL ¢ ypovodidypapua exnaideuons yenowonotidnxe to Toluwvuuixd [69]. Adyw tne meplopiouévng Loyvog
eneepyaoiog, oe autd to melpopa exnadedoope to wovtého oto Cityscapes yia 180.000 enavoidelg, eved
oty enionun vionoinon extoudettnxe yio 90.000 emavarreic. T To obvoro dedopévwy ADE20k, xou ol 5o
vhomotroelg exnandedtnxay yior 160.000 emavahidels.

Y 0OY%ELOY ANOTEAECUATWY

EpgoaviCovtar otov mivaxa 3 xou otov mivaxa 4 ta anotehéopato mou emtedydnxay ge TNy exmaideucy Ttou
povtéhou Mask2Former ue toug dladéoiuoug ndpoug pog xou ta enlonua amoteréopato. H Swpopd otny anddoon
Beloxeton evtdg hoyuddv oplwv yio tn Slopopd otny Loy encéepyaoctog.

Cityscapes
Model Of ficial(mIoU) Of ficial(iterations) Ours(mIoU) Ours(iterations)
Mask2former (Swin-T) 82.3 90k 81.7 180k
Mask2former (Swin-B) 83.3 90k 83.18 180k

Table 3: Performance of Mask2Former on Cityscapes with official and replicated implementation

ADE20k

Model Of ficial(mIoU) Of ficial(iterations) Ours(mlIoU) Ours(iterations)

Mask2former (Swin-T) 47.7 160k 47.2 160k

Table 4: Performance of Mask2Former on ADE20k with official and replicated implementation

ITewpapatiopwods pe SwinHR backbone
Xowplc apyixonoinon

H apyrtextovixr; tou Mask2FormerHR, mou mepiypdgpetan oto , yenowonowdsvtag to SwinHR wg Bdon,
vhomotfinxe. Apyixd, xatd Ty exnaldevon ywelc apyixonoinoy twv Bopdy, To ATOTEAEGUATO BEV AV TATOXELVO-
AV OTNY apYXY) AEYITEXTOVIXY| Tou opyLxonolfinxe, onwe gatvetar oto 0.0.25. Aedouévou 6Tl 1 Bdon dev
opYXOTIOUNXE TNV aEYLTEXTOVIXY) TOMNNATADY aVOAUCEWY, 0 Tohhamhactao s e Bdone ahhdlel oe 1, dote
1 Bdon vo exmoudeleTon pe Tov (Blo pudud ue To uTdhoino UOVTENO.

28



Swin-T vs SwinHR
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Figure 0.0.25: Mask2Former with Swin-T initialized and SwinHR uninitialized backbone

Teyvixéc apyixonoinong

MeTagégovtag Swin-T Bden tagivounone Acdouévou 6Tl ol 80o Bdoeig, 1 Swin-T xou 1 SwinHR,
elvar o0 mapduoles, TpooTooluE Vo UeTaPEpOLUE Ta exToudeuuéva Bden tne Swin-T and to ImageNet. Autod
unopel va yivelr mapatnedvtoac 6Tt Ta Slorydvia péer Twv SwWinHR, 6nwe galvetow oto 0.0.26, elvar mapduola pe
awtd g Swin-T. "Evoc npotelvdyevog 1po6nog UETUPOEES ElVal VoL opYIXOTIOIGOUHE HOVO ToL dlaydvial uépm Tou
povtélou Swin-HR o vo agpriooupe to undrowna pépn tng Bdong avexnaudedTa.

IeapotioTixope ye SLdpopous TOANATAACLICTEC Tou learning rate (OOTE Vo TOYOOOUUE 1) VoL XPATHOOUUE TNV
exntafBeucT) TV oEYXOTOMNUEVLY HoVTE LY. Apyixd, oto 0.0.27, to apyixomomuéva pépn avatédnxay €vay
nolhamhactaoth expdinong 0.1 xau to exmoudevuévo povtéro taiptale oyeddv pe tnv anédoon tou emionpou
povtéhou. Xtn ouvéyew, oto 0.0.28, epappdotnre évag molhomhaciacthe puduwold pdinong 0,001 ota op-
yomounpéva péen xou 0,1 oty undhoinn Bdor. Téhog, oto 0.0.29, dev epapudo tnxe noAlamiaclac i puiuol
uddnong oe xavéva amd T P€ET Xal AUTA TUPAUUEVOUY VoL EXTIUDEUTOVY UE ToV (Blo pulud Ue To UTOAOLTO LOVTERO.
Iopatneolue OTL €GV aQCOUVUE TO HOVTEND VO EXTIULOEVTEL OUOLOUOPQPA, TOTE EYOUUE VOl XUAVTEQO AMOTEAECUL
mou touptdlel pe tnv entonun vhomnoinon. 26t600, N anddoor Touv YovTéAou OTIC TPKTES enavakriels elva TOD
YEWOTERT amd TNV apyixy anédoor) Tou enionuou woviéhou. ‘Etol, xotahiyouue 6To ouunépacpa OTL Lol GAAN
apyxomoinom unopel vo efval o XATEAANAY.

Swin-T vs SwinHR backbone
81707

— swinT
swinHR

miou

0 25000 50000 75000 100000 125000 150000 175000
terations

Figure 0.0.28: Weight transfer from Swin-T to SwinHR. No learning rate multiplier is applied.
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Extetauévn meplindn oto EAAnvind
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Figure 0.0.26: Weight transfer from Swin-T(top) to SwinHR (bottom). Module correspondence is shown

with colored rectangles.

Swin-T vs SwinHR backbone

81707

— swinT

0 25000 50000 75000 100000 125000 150000 175000
Rterations

Figure 0.0.27: Weight transfer from Swin-T to SwinHR. Learning rate multiplier of 0.001 for initialized
modules and 0.1 for the rest of the backbone.

Swin-T vs SwinHR backbone
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terations

Figure 0.0.29: Weight transfer from Swin-T to SwinHR. No learning rate multiplier is applied.
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Swin-T vs SwinHR on ADE20K
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Figure 0.0.30: Weight transfer from Swin-T to SwinHR trained on ADE20k. No learning rate multiplier is
applied.

MeTagépovtag Swin-T Bden xatdtunong: Cityscapes cOvoho Sedouévey  Ilopatnpobue 6Tt
gdv unopoloaue va Tdpovpe w¢ €€odo and TN Bdor tor (Blo anoteAéopota mou mopdyer to Swin-T, tote Vo
unopovooue vo Eextvicoupe Ue TNy (Bia amddoom Ye auty Tou apyol wovtélou. Autd Yo enétpene 0TO HOVTENO
voLemtOyeL Tov péyioto uéoo bpo IoU (mloU) tou apyixol povtéhou xou evdeyopévng va tov utepPel. AeSouévou
ot 1 Bdon Swin-T mopdyer wg €€odo Ty €€080 xde Slaydviou evotntag Tou Yovtélou SwinHR, emyeipobye
vau Bpolue uia apyixonoinon Bapwyv mou Ya yetapépel Ty €080 NG TROTNG povadac xdde porg avarlolwtn ato
Téhog NG pofc. Autd elvon duvatéd edv Gha Ta Bdpn TwV LTOAOITWY YOVABWY Tou PETAoYNHATIOTY TidevTal o
UNBEV xou, cUVETOS, 1 eloodoc elvar ton pe Ty €€odo. Erniong, ol otpioeic ouyyovevorng (fuse layers) mpémel vo
TpocVETOLY PNdeviopévoug xdeTeg and dAAeg poég ato onueio cuyydveVang TNE poric. Autd elvon duvatd amhéde
avodétovtae undeviouéva Bdpn OTIC OTPOOELS CUYYMVELONG Xol OTIC Hovadee extdg tne dlaywviou. Emlong,
0 apyo puUoS udinone meénel va tanpldlel ye tov pudud pdinong twv tehevtaiwy enavariPewy xatd T
didpxeta TNg exnaldeuong Tou enlonuou poviéhou. AlapopeTnd, 1 anddoor Yo anoxiivel Tohd ebxoha xou dev Yo
Tapdryel To emuunté anotéreopo. Ot apyIXOTOINUEVES OTEWOELS TNE BAong €youv €vay ToANATAACIACTY U TV
uddnong 0,01, evéd o undroinog g BAong xou N XEQUAT ONUACLOAOYIXAC CEYUEVTETIOV €XOUV TOAAATAUCIAOTH
puduol pdinone 1.

Weight transfer from Swin-T to SwinHR
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Figure 0.0.31: Metagopd Baptv and to Swin-T exnoudevuévo oto Cityscapes oto SwinHR ye undeviouéva
otouyelo.

Avth 1 teyvin) enétpede oto mohuddoTato poviého vo Eextvioel 6mwe umoalduacTtoy XovTd ot UEYLoT
am6d00T TOU LOVTENOL HoVHE avdhuong xou va tnv unepPBel xotd 0,1 mloU.

Iopatnpodye dtt ta undevioyéva Bder dev emttpénouy oTo dixtuo va pdiet, xododg xohhdve 6To UNndey, eldind otig
OTPWOEL cLYYWVELSTE Tou eptéyouv ReLUs. T'at 1o Aoyo autod, avolyoupe TIC 0TROOELS CUYYOVELCTIC Ontd TNV
apy ) avardétovtag Bden loa pe 1, hote va undpyel ouyydveuor. Eniong, ue evotixtddrn tpéno avadétouue Bden
loa ye 1 ota apywonomuéva Bdpn ye oxomd Ta (Bl amoteAéopato ahhd Ue xohltepeg mbavétntee uddnong.
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Téhog, xatapbyovye t600 Ta opyLxomonpéva Bden e Bdone oo xou o apyxomonuéva Bden e xe@oic
ONUOCLONOYIXAC GEYHEVTYTLOV, EVE 1) uTtOAoLTY TN¢ Bdong €xel toAharmiactactr pudpod udinong 1. H exnaldeuvon
yiveton og BLO (doeig:

1. Xpnoworowhvtoc otodepd pudud uddnone 1074
2. Xpnowonoldviac otadepd pudud udinong 1072

Weight transfer from Swin-T to SwinHR
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Figure 0.0.32: Metagopd Bopwv and to Swin-T exnadevuévo oto Cityscapes oto SwinHR pe poavdiaio
otouyelo.

Avth n teyvixn enétpede oto mohudidotato poviého va Eextvioel 6mwe voaldpacTtay YOpw ond TN UEYLOTN
am6d0GT TOU LOVTENOL HoVHG avdhuong xou va tnv unepPBel xotd 0,3 mloU.

MeTagégpovtag Swin-T Bden xatdtunons: ADE20k ocbOvolo dedouevmy

ADE20k XpnollomoidvTog TS Topomdve TEYVIXES, autd To cOvolo dedouévev Belyvel vo unepyelailet.
Emdiudydnxe va yiver wa mo mpooextiny| npocéyyion. Ta un apyixomoinuéva Bden apyxonolobvton Eexwelotd
pe Bdon Tt AertovpyidnTd Touc.  Apyixd, to eminedo cuyydVELONC TEPEYOLY ENinEdA CUVEMENGC, XAVOV-
iomoinong xau avdhoya pe Ty meplnTwon unepdelypatohndlag. To Bden tng cuvéMEng petddnxay oto 0.1 xadode
Topotneninxe 6Tl mpoxoioloay unepyelhion Yetd and xdmoieg emavorfdelc. To eninedo xoavovixonoinong op-
yxomoujinxe o undevixd p€co 6po ol UNdeVIXY| SLocdUAVe. X TLC HOVABES HETUC Y NUTIO TWY UTdpyouv oTolyela
MLP mou mepiéyouv ypouuixd enineda tne Loppng:

y=xAT +b (0.0.1)

Omovu A elvan to Sidvuopa Bdpouc xou b to Sidvuoua bias. Enouévec, apyixonolotue 1o A we povadiofo mivona xou
b w¢ éva mivoxa undevixcyv. Emmpdodeta, yio tov unyoaviopd npocoync apyixomoloipe ta Q,K,V we povadioio
nivoxa xou undevixd bias. Opolwe, yia xdie eninedo xavovixomoinong apylxonolotue ta Bden o povadlaioug
nivoxec xou To bias oe undevixole nivaxec. To emduevo ypdenua Selyvel v exnaidevon tou poviéhou Ue
Ty wUEVa 6Aa Ta emineda Twv omolwy Ta Bden mpoépyovtar and to Swin-T. Télog, yenowonoeitow otadepd
puduoe udinone twre 0.0001.

32



Weight transfer from Swin-T to SwinHR

—— mult_initialized=0.0 Ir=1e-4
50.12
50.0 4
Swin-T- 49 893mlal r\ '*
49.8
2 49.6
o
E
49.4 4
49.2
49.0
T T T T T T
o] 10000 20000 30000 40000 50000

Iterations

Figure 0.0.33: Metagopd Bapdv and to Swin-T exnoudevuévo oto Ade20k oto SwinHR e noywuéva otouyela.

To SwinHR Eemepvdel v enidoon tou Swin-T xatd 0.23mloU.
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Chapter 1. Introduction

1.1 Image Segmentation Categories

Image segmentation according to [1] is the partition of an image into a set of non-overlapping regions whose
union is the entire image. These resulting regions should :

e Be homogeneous in regards to some characteristic

e Be simple without any small holes

e Have significantly different values in regards to the characteristic they are uniform with adjacent regions.
e Have boundaries that are smooth and not have many holes

The above goals initially were attempted to be met with various image processing techniques. One of
them is clustering [2]| [3] [4] used with detection of edges and contours and further evolved with modelling
using the Markov process [5]. Other approaches use histograms such as HOG [6] and SIFT [7] feature
extraction which are orientation histograms. However, after the introduction of convolutional neural networks
image segmentation took a turn into supervised learning. Datasets have grown extensively - Cityscapes [§],
ImageNet [9], COCO [10]- and the generalization requirements from the model predictions make it reasonable
to adopt a more adaptable and complex approach. Neural Networks are capable of learning patterns and
deep neural networks have numerous parameters that can imitate complex functions. Image segmentation is
more demanding than image classification as it needs to detect relationships across various scales, thus, it
requires more sophisticated structures that take into account both semantics and location.

1.1.1 Semantic Image Segmentation

The goal of this category which is also the focus of this work, is to segment the input image according
to semantic information and predict the semantic category of each pixel from a given label set. It does
not distinguish between objects of the same class and rather groups them together. According to Adelson
[11], semantic segmentaton was designed to recognize stuff which are formless regions of similar texture or
material. Semantic image segmentation has a variety of applications in real-world problems. It is widely used
in medicine, such as brain and tumor detection [12] and discovering and tracking medical devices in surgery
[13]. Other applications include autonomous driving [14] where a car is able to navigate in its environment.
Semantic segmentation is crucial in the context of autonomous driving applications, where what semantic
segmentation has to do is not only to classify the content in the image but also to mark the location of the
target object in the actual scene.

Some example benchmarks for this task are Cityscapes [8], PASCAL VOC [15], and ADE20K [16].

1.1.2 Instance Image Segmentation

Instance Segmentation is a computer vision task that involves identifying and separating individual objects
within an image, including detecting the boundaries of each object and assigning a unique label to each object.
The goal of instance segmentation is to produce a pixel-wise segmentation map of the image, where each
pixel is assigned to a specific object instance. Thus, it is very similar to semantic segmentation except in this
task object instances are detected seperately. In contrast to semantic segmentation, instance segmentation
studies things. While seemingly related, the datasets, details, and metrics for these two visual recognition
tasks vary substantially.

Some example benchmarks for this task are Cityscapes [8], COCO[10], and ADE20K [16].
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1.2. Semantic Segmentation Datasets

1.1.3 Panoptic Image Segmentation

Panoptic segmentation [17] unifies the two tasks - semantic and instance segmentation - detecting both thing
and stuff. Therefore the output of every pixel i is a semantic label(l;) and an instance id(z;) - (I;,2i) € L x N
where L = L*" U L** and L' N L% = (). When a pixel is labeled with I; € L** then the corresponding id
is irrelevant. However, some pixels may have a special void label. This task thus comes up with a panoptic
quality metric that can quantify the performance of the model in this two-factor task.

Some example benchmarks for this task are Cityscapes [8], COCO[10] Mapillary Vistas [18], and ADE20K
[16].

(a) image (b) semantic segmentation

(c) instance segmentation (d) panoptic segmentation

Figure 1.1.1: Image segmentation categories: a) semantic segmentation: stuff are not divided into objects,
b)instance segmentation: only things are detected, stuff such as sky, road, etc. are ignored, c)panoptic
segmentation: both stuff and things are detected with stuff remaining inseparable

1.2 Semantic Segmentation Datasets

1.2.1 Cityscapes Dataset

The Cityscapes Dataset [8] is a dataset specifically designed for autonomous driving in urban environments
applications. It contains images of road scenery from 50 different city centers over all 4 seasons. These images
are available in low(8 bit) and high(16 bit) resolution. The dataset includes both pixel-level and instance
level annotations provided in two groups- coarse and fine annotations. Fine annotations are provided in 5000
images over 27 cities where all pixels have been labeled by creating polygons of instances. The rest of the
images taken in 23 cities are used in coarse annotations where the polygons were chosen much faster causing
lower accuracy labelling. In total 30 classes are included and 19 of them are used in evaluation as seen in
1.2.1.
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Figure 1.2.1: Cityscapes Classes, image from [19]

This dataset depicts much broader representation of inner city roads taking into account traffic and diverse
climatic conditions with a wide variety of classes making it unique in the area of autonomous vehicle driving.
Other datasets such as Kitti [62] provides images of roads but from suburban areas while CamVid [63] and
DUS|64] provide less images from only one city. Also concerning instance-level annotations Cityscapes is the
only dataset among these providing instances of people and vehicles. The only dataset more complete than
the Cityscapes one is the Mapillary Vistas Dataset [65], however, it is too complex for the purpose of this
project as it is five times the size of the Cityscapes dataset including 66 classes with images taken from all
over the world with different capturing means.

Cityscapes

Model mloU
InternImage-H [20] 87

HRNetV2-OCR_ PSA [21] 86.93

InternImage-XL [20] 86.4

HRNet-OCR [22] 86.3

Vit-Adapter-L(Mask2Former, BEiT pretrain, Mapillary) [23] 85.8
OneFormer(ConvNetXt-XL, Mapillary, multiscale) [24] 85.8
SeMask(SeMask Swin-L Mask2Former) [25] 84.98

Sequential Ensemble (MiT-B5 + HRNet) [26] 84.8
OneFormer(ConvNetXt-XL, multi-scale) [24] 84.6
DiNAT-L(Mask2Former) [27] 84.5

Table 1.1: Cityscapes val Semantic Segmentation Leaderboard from the official website [28§]

1.2.2 ADE20K Dataset

ADE20k was designed after recognizing the need for a general dataset covering a variety of scenes and
common objects. Datasets before ADE20k had a limited set of scenes such as Cityscapes [8] or covered few
or insignificant classes of objects such as COCOJ[10] and Pascal [15]. In ADE20k there are 20,210 images in
the training set, 2,000 images in the validation set, and 3,000 images in the testing set. All the images are
exhaustively annotated with objects. Many objects are also annotated with their parts as shown in 1.2.2.
For each object there is additional information about whether it is occluded or cropped, and other attributes.
The images in the validation set are exhaustively annotated with parts, while the part annotations are not
exhaustive over the images in the training set. Additionally, parts can have parts too, and these are labeled
with associations as well.

38



1.3. Metrics in semantic segmentation

Figure 1.2.2: Annotations in ADE20k. Second row has object annotations and third row has object parts

annotations.
ADE20k

Model mlIoU

BEiT-3 [29] 62.8

EVA [30] 61.5
FD-SwinV2-G [31] 61.4
MaskDINO-SwinL[32] 60.8
OneFormer [24] 60.8
ViT-Adapter-L [23] 60.5
OneFormer [24] 58.6
ViT-Adapter-L [23] 58.4
OneFormer [24] 58.4
RSSeg-ViT-L [33] 58.4

Table 1.2: ADE20k val Semantic Segmentation Leaderboard from [34]

1.3 Metrics in semantic segmentation

As mentioned in [35] semantic segmentation is a complex task that takes into account relationships be-
tween classified pixels. In the following, every reference to class is applicable to category. The pixel-wise
accuracy (pACC) is an initial metric to quantify performance :

k
iz i (1.3.1)

Where n;; is the number of pixels which belong to class i and were labeled as class j, k is the total number of

classes/categoried, and t; = Z?Zl n;; is the total number of pixels of class/category i. However, this metric
allows misleadingly for high initial accuracy rates in datasets where large regions have one class. In these
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cases the model has only learnt frequent appearances of stuff in specific locations of the image. This problem
can be solved with the following metrics:

Nii
t;

. k
mACC Mean accuracy is the mean accuracy across all classes: %Zi:l

IoU The metric IoU [36] is a per class assessment on the intersection of the inferred segmentation and the
ground truth, divided by the union (commonly referred to as the ‘intersection over union’ metric) excluding
pixels labelled as ’void’:

Tol truepos

" truepos + falsepos + falseneg (1.3.2)

mlIoU Mean intersection over union(mloU) is the mean across per class or per category IoU.

nloU It is well-known that the global IoU measure is biased toward object instances that cover a large
image area. In street scenes with their strong scale variation this can be problematic. Specifically for traffic
participants, which are the key classes in our scenario, we aim to evaluate how well the individual instances
in the scene are represented in the labeling. To address this, we additionally evaluate the semantic labeling
using an instance-level intersection-over-union metric normalized IoU(nloU) :

truepos
nloU = p

1.3.3
truepos + falsepos + falseneg ( )

Again truepos, falsepos, and falseneg denote the numbers of true positive, false positive, and false negative
pixels for a specific class, respectively. However, in contrast to the standard IoU measure, the metric is
multiplied with A which is a factor of frequency of this class. It is either predefined by the benchmark or
calculated as such:

k
A= )
i=1
X . - (1.3.4)
fwloU = (3> t;)~" c e [0,1]
P ot i

This is why this metric is also called frequency weighted IoU.

iloU This metric is the mean nloU across all classes.

1.4 Loss functions in semantic segmentation

In semantic segmentation, various loss functions are used [37] for different dataset characteristics and therefore
no loss function is superior to another. Some examples :
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1. Binary Cross Entropy

Lpcr(y,9) = —(ylog(g) + (1 —y) log(1 — 7))
where y is the ground truth value and ¢ is the predicted value

2. Weighted Binary Cross Entropy

Lw_Bore(y,9) = —(B*ylog(y) + (1 — y)log(1 — 7))

where y is the ground truth value and gy is the predicted value. In this metric, the positive ex-
amples are weighted by some coefficient § which can be selected to either reduce the false negatives by
setting 8 > 1 or to reduce the false positives by setting g < 1.

3. Balanced Cross Entropy
Lpop(y,9) = —(B+ylog(§) + (1 = 8) * (1 —y)log(1 — 7))

same as the previous but also applies a weight on the negatives.

4. Dice Loss

5. Focal Loss

FL(pt) = —a(1 — p;)” log(p:)
where

j22 ify=1
bt = . .
1—p, if otherwise

where for v = 1 it works just like Cross Entropy loss.

In imbalanced datasets focus based loss functions work better, while in balanced datasets binary-cross entropy
is more applicable. Datasets with characteristics in between the two types mentioned above may benefit more
from smoothed or generalized dice coefficient.

1.5 Transformers

There exist both CNN-based models and Transformer based models that approach the task of semantic
segmentation. Initially, CNNs were used for this problem. When transformers became the new state-of-
the-art in natural language processing (NLP) the Visual Transformer(ViT) [70] was developed. ViT showed
remarkable performance in semantic segmentation [71] [57], beating the performance of state-of-the-art CNNs.
A typical Transformer encoder consists of a multi-head self-attention (MSA) layer, a multi-layer perceptron
(MLP), and a layer norm (LN). Transformers introduced the need for very large datasets. It has been proved
[72] that they perform worse than CNNs in small datasets since their attention mechanisms need lots of
information to learn local relations.

1.5.1 Attention

Attention is a mechanism in transformers that helps to draw connections between any parts of the sequence,
so long-range dependencies are not a problem anymore. With transformers, long-range dependencies have
the same likelihood of being taken into account as any other short-range dependencies.
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Figure 1.5.1: Attention in ViT: (a) Shows original image. (b) Transparency attention heatmap. The
selected token (query) is highlighted with a green border. (c) Overlaid attention arrows. (d) Global
attention flow. Taken from AttentionViz [73].

A visual example of how attention detects relationships between pixels in an image is shown in 1.5.1. The
green box on 1.5.1.a is the query of the attention process. In 1.5.1.b transparency indicates the attention
weight between the selected image patch and other regions of the image. This is also shown in 1.5.1.b where
each arrow represents the strongest attention connection between a starting image patch and destination
patch. Further, in 1.5.1.d all connections are shown on the image that are above a specific threshold and
both opacity and line thickness are used to encode the strength of attention connections.
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Chapter 2. Theoretical Background

2.1 Convolutional Neural Networks

2.1.1 The neuron

Neural networks are inspired from the brain’s formation and from its building unit the neuron. Specifically
a neural network is made of layers of neurons whose operation imitates a biological neuron’s operation.
Specifically, a neural network’s neuron takes inputs and produces an output. These inputs are multiplied
with learnable weights in order to control their magnitude of influence in the result. The output is produced
by this weighted sum of inputs with an added learnable bias and an activation function applied on them. This
activation function interprets the result and presents it in a meaningful way. For example, it can produce
probabilities or binary output.

Ty wo

® synapse
axon from a neuron
woIo

cell body

f (Zﬂ-‘(ﬁj ) b)
Zwi:r:,- +b :

output axon

activation
function

Figure 2.1.1: The neuron

Activation functions

Activation functions are functions that are applied on the dot product of the input signals with the weights of
the neuron. They introduce a non-linearity to the computation of the result. Common activation functions
are:

Sigmoid This activation function transforms the input to a probability of belonging to one of two classes.

Thus the result belongs to [0, 1] and the first class is assigned to 0 and the second to 1. It has the following
formula:

(2.1.1)

However, it has some undesirable characteristics such as causing the gradient to saturate and not being
zero-centered.

Tanh The tanh graphical representation is very similar to the sigmoid but is now zero-centered as shown

in 2.1.2. Tanh maps input to the range [—1, 1] with this formula:

tanh(x) = so(2z) — 1 (2.1.2)

However, it still may cause the gradient to saturate.
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Figure 2.1.2: Tanh function is similar to the sigmoid but it is also zero-centered which makes gradient
descent more stable.

ReLU ReLu thresholds at zero by outputting:

f(z) = max(0, x) (2.1.3)

This function is easily implemented and eliminates the problem of the saturating gradient. However, they
can cause neurons to die during training by zeroing their weights and this is irreversible for the rest of the
training.

Leaky-ReLU Instead of completely zeroing negative inputs, leaky-ReL U multiplies them with a small
constant as such:

f(z) =Kz < 0)(ax) + ¥(x > 0)(x) (2.1.4)

which has a controvesial performance compared to ReLU.

2.1.2 Neural Networks

Neural Networks [38] are made up of neurons that have learnable weights and biases. Each neuron receives
some inputs, performs a dot product and optionally follows it with a non-linearity. Neural Networks receive
an input (a single vector), and transform it through a series of hidden layers. Each hidden layer is made
up of a set of neurons, where each neuron is fully connected to all neurons in the previous layer, and where
neurons in a single layer function completely independently and do not share any connections. The last
fully-connected layer is called the “output layer” and in classification settings it represents the class scores.
The output then is compared to the desired output-ground truth- as loss which is calculated with a loss
function. The gradient of the loss is used to update the weights of the network’s layers according to the
backpropagation algorithm.

Loss function

The loss function compares the output with the ground truth and based on that the hyperparameters of a
model during training are adjusted in order to minimize it. Using any case specific loss function L to calculate
the loss between one output and the ground truth, we obtain the total loss from the mean of the individual
losses for every instance of the training set:
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1 m
J(w Ez LD, yl (2.1.5)

where w are the weights, b the bias, m is the total number of training set data points, g is the prediction
and y is the ground truth.
Optimization - Gradient Descent

The loss function lets us quantify the quality of any particular set of weights W. The goal of optimization is to
find W that minimizes the loss function. It is possible to compute the best direction along which the weight
vector should be changed that is mathematically guaranteed to be the direction of the steepest descent. This
direction will be related to the gradient of the loss function as such:

(2.1.6)

where 7 is the learning rate. Gradient Descent is the procedure of repeatedly evaluating the gradient and
then performing a parameter update.

Backpropagation Algorithm

However, in large neural networks the relationship of some weights and the loss function is very hard to find.
The important contribution of the backpropagation technique [74] is in providing a computationally efficient
method for evaluating the complex derivatives. The fraction in the calculation of the mean loss is not requires
in the training process so starting from :

J(w) = ZLi(w) (2.1.7)

Li=3 > (wik — yir)® (2.1.8)

Which calculates error when we have a multidimensional output. The input z; in a unit is transformed into
an output a; of another unit from the dot product with the weight vector of the connection w;;. The sum is
then transformed by a non linear activation function h to give the activation z; of unit j:

(2.1.9)

Using the chain rule and 2.1.9 the derivative of J; with respect to a weight w;; can be obtained:
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3L¢ _ 8L1 5aj
awij o 6aj awij

(2.1.10)

where we define §; = g(‘l’f and from 2.1.9 fracOa;j0w;; = z;. For the final output units the gradient of the

loss function produces 6 = 9 — yr and for the hidden units, d; can be calculated from the output units
using the chain rule as such:

8L 8ak
i0
aaj Z Dar Da, " (2.1.11)
The steps of the algorithm can thus be summarized as follows:

1. Apply an input vector x,, to the network and forward propagate through the network using 2.1.9 to
find the activations of all the hidden and output units.

2. Evaluate the §; = yi — yi for all the output units
3. Backpropagate the § using 2.1.9 to obtain J; for each hidden unit in the network.

4. Use 5’9 uf = 0;2; to evaluate the required derivatives.
ij

The derivative of the total error J can then be obtained by repeating the above steps for each instance of the
training set set and then summing over:

oJ 0L,

Fur; = ; e (2.1.12)

Regularization

The goal of a neural network is to learn a correspondence of input to output from training data and apply it
on test data. Thus, it is important to be able to generalize its weights and not learn specifically the examples
from the training data. When a model fits perfectly the training data it is called overfitting. Regularization
is a technique of controlling the overfitting of Neural Networks. Specifically, it adds an extra component to
the loss function which prevents the weights from increasing excessively their magnitude and thus update in
a less flexible way.

L1 regularization In L1 regularization, for each weight w we add the term A\;|w| to the loss function. It
has the intriguing property that it leads the weight vectors to become sparse during optimization (i.e. very
close to exactly zero). In other words, neurons with L1 regularization end up using only a sparse subset of
their most important inputs and become nearly invariant to the “noisy” inputs. In practice, if you are not
concerned with explicit feature selection, L2 regularization can be expected to give superior performance over
L1.

L2 regularization L2 regularization is perhaps the most common form of regularization. It can be im-
plemented by penalizing the squared magnitude of all parameters directly in the loss function. That is, for
every weight w in the network, the term %)\wQ is added to the loss function where )\ is the regularization
strength. The factor of % is used so that the gradient of the term is simple Aw. The L2 regularization has the
intuitive interpretation of heavily penalizing peaky weight vectors and preferring diffuse weight vectors. This
has the appealing property of encouraging the network to use all of its inputs a little rather than some of its
inputs a lot. Additionally, during gradient descent parameter update, using the L2 regularization ultimately
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means that every weight is decayed linearly:w+ = —\ X w towards zero. It is possible to combine the L1
regularization with the L2 regularization: \;|w| + Aaw?.

Dropout Dropout [39] is a training technique that also prevents overfitting. The dropout probability
indicates the probability with which a neuron is kept active or is set to zero in the model. It can be thought
as sampling a Neural Network within the full Neural Network, and only updating the parameters of the
sampled network based on the input data.

Batch size

The batch size is a hyperparameter that defines the number of samples to work through before updating the
internal model parameters. A batch is the number of samples a for-loop iterates over making predictions. At
the end of the batch, the predictions are compared to the expected output variables and an error is calculated.
From this error, the update algorithm is used to improve the model, e.g. move down along the error gradient.
A training dataset can be divided into one or more batches. When all training samples are used to create
one batch, the learning algorithm is called batch gradient descent. When the batch is the size of one sample,
the learning algorithm is called stochastic gradient descent. When the batch size is more than one sample
and less than the size of the training dataset, the learning algorithm is called mini-batch gradient descent.

2.1.3 Convolution

Convolution [40] is a mathematical operation applied on two functions. Discrete 2-D convolution involves
two matrices and is defined by the following formula:

k

(f xw)lwr, wo] = Y £(5,4)  wlwy — i, 22 — 5) (2.1.13)
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Figure 2.1.3: Convolution visualization from [41]

In general, convolution is defined for any matrices and the first argument (f) is often referred to as the input,
and the second argument (w) as the kernel. The output is sometimes referred to as the feature map. This
operation is used in CNNs to process an image and recognize on it specific characteristics. Unlike a regular
Neural Network, the layers of a CNN have neurons arranged in 3 dimensions: width, height, depth. the
neurons in a layer will only be connected to a small region of the layer before it, instead of all of the neurons
in a fully-connected manner.As described above, a simple CNN is a sequence of layers, and every layer of a
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2.1. Convolutional Neural Networks

CNN transforms one volume of activations to another through a differentiable function. The types of layers
used to build a CNN architecture include: Convolutional Layer, Pooling Layer, and Fully-Connected Layer.
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Figure 2.1.4: CNNs architecture from [38]

Due to the large number of pixels in an image, every neuron has a receptive field and is applied only to the
corresponding layers. Therefore, it has w X h X ¢ number of weights where w x h is the receptive field and
c is the number of channels of the input image. That’s why convolutional neural networks do not detect as
sufficiently as attention mechanisms contextual information. The depth of the filter as seen in 2.1.4 indicates
that there are multiple neurons applied to the same patch of the input image. Therefore, the output image
is also 3-dimensional with a depth equal to the depth of the filter. The purpose of multiple stacked filters
is to detect multiple characteristics with one convolutional layer. Even though every neuron has a specific
receptive field, there is not need for multiple neurons for every patch of the input image. The neurons can
be simple shifted and compute the output for every patch using the same filter. The shifting is specified
by the stride of the filter which indicates how many pixels the filter is slided across the image before it is
reapplied. Lastly, zero-padding is also an important hyperparameter of a convolutional layer as it allows to
control further the dimensions of the output. Assuming the input image is a square(ignoring the channels)
and has one dimension W, the convolutional layer has one dimension of F, the stride is S, and the padding
used is P then the result dimension of the square output is equal to W + 1.

2.1.4 Pooling layer

The pool layers are in charge of downsampling the spatial dimensions of the input. The pooling size sets
the patch size by which the input is divided. Then in this patch, max pooling, for example, keeps the max
number and replaces the patch with that. Thus, it downsamples by a factor equal to the patch size.

2.1.5 Batch Normalization

BN is used to standardize the inputs to any particular layer. That entails the input to have zero mean and
unit variance. BN layer transforms each input in the current mini-batch by subtracting the input mean
in the current mini-batch and dividing it by the standard deviation. However, it is not proven that the
models performs better with zero mean and unit variance. It might perform better with some other mean
and variance. Hence the BN layer also introduces two learnable parameters y and  which adjust those
parameters.

2.1.6 Fully connected layer

Neurons in a fully connected layer have full connections to all activations in the previous layer, as seen in
regular Neural Networks. Their activations can hence be computed with a matrix multiplication followed by
a bias offset.

49



Chapter 2. Theoretical Background

2.2 Transformers

2.2.1 Architecture

Transformers [75] is a state of the art architecture in sequence transduction that has been shown to outperform
recurrent and convolutional models while depicting smaller computational complexity, thus faster training
time. When in CNNs many stacked layers are needed to detected long-range dependencies, in self-attention,
these long-range dependencies are detected by computing efficiently for an output position context information
from every input position. Transformers’ architecture depicted in Figure 2.2.1 is composed by an encoder and
a decoder. An encoder is made of 6 stacked layers each one composed of a multi-head self-attention module
and a position-wise feed-forward network. A decoder is also made of the same 6 stacked layers, with an
additional Masked Multi-Head Attention module at the start of each layer. Multi-Head attention is stacked
self-attention heads -8 mentioned in [75]- that are applied on the input in parallel and have different learnable
weights. Their purpose is to bring different perspectives on dependencies in a sequence and combine into a
single averaged attention output. Masked self-attention is the limitation of attention range in self-attention
so as computation of outputs is not affected from "future" outputs.

Output
Probabilities

(. '
Feed
Forward

7~ | ™\ | Add & Norm ;

(—*{_Add & Norm | Multi-Head

Feed Attention

Forward D) N x
| Add & Norm :

N
f_’l Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
t L
e J —,
Positional D Positional
Encoding @ Encoding
Input Qutput
Embedding Embedding
Inputs Qutputs

(shifted right)

Figure 2.2.1: Transformer Architecture

Every layer has output and input of the same dimension of 512 transformed from original input using
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learnt embeddings. It also has a residual connection and a batch normalization module after each sublayer.
Lastly, positional embeddings(such as cosine functions of different frequencies) are fused into the input
vector in order to model spatial or chronic relationships between positions. The Feed-Forward unit imple-
ments two linear transformations and two ReLLU activations in between them on each position independently :

FF(x) = maX(O, Wy + bl)WQ + by (221)

2.2.2 Self-Attention

Starting with three learnable vectors: query(Q) and key(K)-value(V) pair the attention sublayer intends to
calculate the value that results from the key closest to the query. By taking the inner product 2.2.2 between
the query and the key and a softmax function of it, we end up with a similarity probability matrix. This
matrix is used as weights to produce the value result from the weighted value matrix. The dot product
between the query and key matrix is scaled with a factor \/%Tk(dk is the dimension of the key matrix) in order
to prevent the problem of the exploding gradient when we have large values.

( Y ’ ) ( / l
Attentlon 1( Q L - b()ftlllax
k

W (2.2.2)

In multi-head self-attention, there are stacked 8 self-attention modules each one with its one learnable weights
providing a different representation subspace. Their outputs are concatenated as such:

MH(Q,K,V) = Concat(hy, hy, ..., hp)W?

2.2.3
h; = Attention(QW 2, KWK, vwY) (22:3)

where the W matrices are projections bringing the Q,K matrices to a dimension of d,,o4er/h(number of
heads h=8 ) and bringing the concatenated output representation to a dimension of d,,odei-

Self-attention computation time is faster than recurrent networks and constant considering the d di-
mension is larger than the size of the input n. In cases of long sequences, self-attention decreases the
attention span to a neighbourhood of size r with complexity of O(%). In general self-attention is faster than
convolutional layers with the same attention span and in the worst case, separable convolution has the same
complexity as self-attention.

2.2.3 Interlaced Sparse Self-Attention

Modern applications of self-attention require computation in high resolution streams of data. Since in self-
attention every position attends to every other position computational time is O(n?) which is very heavy
for large n. Interlaced sparse self-attention is introduced as a much lighter and just as efficient mechanism.
Specifically, it factorizes the dense affinity matrix A into two sparse matrices: one that represents long-range

o1



Chapter 2. Theoretical Background

dependencies(A”) and one that represents the short-range ones(A®). The input position are divided into Q
equal subsets of P positions. The long-range dependency matrix is calculated by creating P subsets including
only one position from every initial subset, known as interlacing. The short-range dependency matrix is
created by applying self-attention in each one of these initial subsets separately. The affinity matrix, A, is
the result of this equation:

= solItmax 70(X)¢(X)T
A = soft Vd (2.2.4)
Z = Ag(X)

The AY computation as described is equivalent to permutating the originally input matrix and dividing the
permutated version into P neighbouring subsets. The calculation of self-attention per p block is described
by these equations:

(X)X )"
v
Zy = Ay9(X;)

AII; = softmax

A0 .0 (2.2.5)
p 0 AF .. 0
0 0 AL

Z; = Ajg(X})
A0 .. 0 (2.2.6)
45— 0 A5 0
0 0 A%

This approach has been compared with various existing approaches and it has been shown that it achieves
competitive performance on various semantic segmentation datasets while being much more efficient compared
with the conventional self-attention mechanism.
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The semantic segmentation problem [42] was initially approached with clustering algorithms [43] used with
additional information from contours and edges. Later modelling with Markov process [5] was explored as
long as combining contour detection in a hierarchical approach. However, nowadays the prominent models
are directed to region-based models, Convolutional Neural Networks, and Transformers.

3.1 Region-based models

Region-based models are divided into to separate stages: identification of regions in an image and classification
according to dataset defined classes. Pixels are assigned classes after these two stages in some models in an
end-to-end trainable manner and in others training takes places only in the previous stages.

3.1.1 R-CNN

The rise of CNNs in image classification led to the creation of R-CNN [44] which is the first model to show
CNNs outperforming in object detection. It was later altered to be used in semantic segmentation. In object
detection, R-CNN extracts around 2000 bottom-up region proposals using selective search. These regions
are translated into a standard length vector of features using a large CNN which is then classified with class-
specific linear SVMs. A greedy non maximum suppression algorithm is applied to reject a region if it has a
lower score than a region it is intersected with larger than a learnt threshold. In semantic segmentation, it
alters O2P [45] which already extracts 150 regions with CPMC [46] and evaluates them with support vector
regression(SVR). Specifically, the feature extraction stage is replaced with CNNs exploring three methods:
the first computes features on the rectangular box that warps the detected region, the second computes
features only on the region’s foreground mask, and the third concatenates the two vectors of the methods
above. The best performing method was the concatenation of features showing that context is crucial in the
classification process of a region.

R-CNN: Regions with CNN features

warped region aeroplane? no,
i e
. EI =& person? ves, |
— =k CNN:A :
_fm_ﬂ" ~ 4 Ivmonitor? no, |
1. Input 2. Extract region 3. Compute 4. Classify
Image proposals (~2k) CNN features regions

Figure 3.1.1: R-CNN [44] object detection model structure
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3.1.2 Fast and Faster R-CNN

Fast R-CNN [47] is an optimization of R-CNN [44] used in object detection, later influencing architectures in
semantic segmentation. Specifically, it introduces Region of Interest(ROI) which will be applied in semantic
segmentation region-based models adapted for free form regions. It is faster than R-CNN since it includes
single-stage training with multi-task loss while training can update all network layers, and no disk storage
for feature caching is needed. The network first processes the whole image with several convolutional and
max pooling layers to produce a conv feature map. Then, for each object proposal a region of interest (Rol)
pooling layer extracts a fixed-length feature vector from the feature map. Each feature vector is fed into a
sequence of fully connected (fc) layers that finally branch into two sibling output layers: one that produces
softmax probability estimates over K object classes plus a catch-all “background” class and another layer
that outputs four real-valued numbers for each of the K object classes. Each set of 4 values encodes refined
bounding-box positions for one of the K classes.

Region of Interest(ROI)

The ROI pooling layer [76] extracts a feature vector from a feature map obtained from a Convolutional Neural
Network and from the coordinates of the region. The ROI layer divides the region into equal-sized sections
according to the dimension of the output and keeps the largest value in each region.

Further improvements

Faster R-CNN [48] further extends the concept of sharing the same CNN for accelerating training time by
sharing the same CNN in the stage of identifying object regions and in the stage of classifying them 3.1.2.
Additionally, it allows for an improved training procedure since it can be trained end-to-end.

classifier

proposals / : ;
Region Proposal Network,
feature maps

cony Ill}'(.‘l'ﬁ /

-7 77—

Figure 3.1.2: Faster R-CNN unified CNN model
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3.1.3 Mask R-CNN

3.1.4 Region-based method applied in semantic segmentation

Up until this method, two were the prominent paradigms in semantic segmentation: region-based models
and FCN models. The first one, produces pixel labelling separately from the main model not allowing for
end-to-end training. On the other hand, FCNs allow for end to end training as they produce pixel labels
immediately, however, the nature of convolutions which are performed with square patches doesn’t recognize
complex regions and doesn’t produce sharp boundaries. The idea behind this model [49] was to fuse the pros
of the previous models by converting the first paradigm into an end-to-end trainable model 3.1.3. The missing
model is therefore added which converts regions to pixels and classifies pixels instead of regions allowing for
calculation of per-pixel loss. It also adopts the ROI pooling layer as in Faster R-CNN [48] which produces
features from free-form regions. ROI is not a CNN thus it doesn’t need a bounding box to compute features,
it computes them only from the pixels included in the region. However, region context is important, thus,
ROI is also calculated on the region with its bounding box is also calculated and these two sets of features
are passed forward to the FCN. According to two versions of the method, either they are both passed to the
same FCN with the same tied weigths or to different FCNs with separate weights developing two different
classifiers.
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Figure 3.1.3: Summary of the three architectures: a) FCN in semantic segmentation are end-to-end
trainable but they recognize regions from square patches, thus producing imprecise predictions of complex
regions. b) The region-based model before pixel classification and therefore not end-to-end trainable. c)
Newest region-based model which applies the loss criterion on the pixels producing an end-to-end trainable
model. Insertions are highlights in orange. Image from [49]
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Pixel labelling

Previously, at train time there was no pixel labelling and the mapping from region classes to pixel classes
was done only at test time as such:

0p = arg max mat,s, softmax..S, . (3.1.1)
(&

Meaning that after obtaining the softmax of activations per region and class, the pixel is denoted with the
class that has the highest softmax from the regions that include the pixel. Since softmax is applied before
pixel classification, regions with low but highly varying activation scores are unsure about the class, but can
still yield high probabilities due to the softmax. This leads to such non-distinctive regions wrongly affecting
the final pixel prediction. Additionally, since max,s, occurs at test time, the pixel-wise evaluation criterion
at test time is different from the region-level optimization criterion at training time. This leads to training
with all regions and testing with most of them ignored.

The loss calculation equation was:

R
1
L=— Z = Z Yr.c logsoftmax. Sy . (3.1.2)
r=1

c

It calculates the cross-entropy log-loss on the regions, where R is the number of regions, S, is the region-level
score for class c, and y,. . is the binary indicator of whether the ground truth of region r is class c. Therefore,
pixels are ignored completely in the training procedure.

The alternate mapping from the classified region to the unclassified pixels proposed by this model is described
in this equation:

op = arg max softmax. max,spSr.c (3.1.3)
c

This approach classifies pixels before softmax and loss computation. Specifically it assigns a class to a pixel
by choosing the max activation on this pixel for a certain pair of region and class. Therefore the loss is
calculated on the assigned class of the pixel that is always the class with the highest activation on this pixel.
The new loss calculation equation is:

P
1
L=— Z B Z Yp,c logsoftmax. Sp . (3.1.4)

c p=1

It calculates the cross-entropy log-loss on the pixel, where P is the number of pixels, S, . is the pixel-level
score for class c, and yp, . is the binary indicator of whether the ground truth of pixel p is class c.

o7
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3.2 Convolutional Neural Networks

3.2.1 Fully Convolutional Neural Networks(FCN)

Fully Convolutional Networks(FCN) as described in [50] are networks that accept arbitrary size input and
produce same size output. They include only convolutional layers and up-sampling/down-sampling mecha-
nisms. In this paper, it is intended to transform state of the art classification CNNs so that they can be
applied to segmentation tasks while using their pre-trained weights and trained pixelwise end-to-end. This
was possible by replacing fully connected layers with 1 x 1 convolutional layers producing thus equal size of
output. The original size of input which was decreased by down-sampling occurring in previous convolutional
layers can be retained by up-sampling mechanisms. The one used in the paper is backwards convolution which
uses a stride of + and weights that can be learnt allowing for end-to-end learning in the model. Additionally,
in order to achieve finer predictions after taking into account the limits of down-sampling in the output
detail of prediction, a skip architecture is introduced. This architecture brings a non-linearity into the model
by performing an element-wise addition of predictions from previous layers to up-sampled predictions. The
FCN-8s, which performs best(FCN-32s and FCN-16s also exist), is composed as shown in Figure 3.2.1 by
a main-line of convolutional layers followed by maxpool layers and secondary lines that are added to this
main line after the output is upsampled with backwards convolution also known as transpose convolution.
The second row takes the output from the 4th convolutional-maxpool unit, performs a stride 1 convolution,
and adds it to the transpose convolution output of the first row. The third row takes the output from the
second convolutional-maxpool unitk, performs a stride 1 convolution, and adds the output to the output of
the second row performing again a transpose convolution to form an output of the desired size.
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Figure 3.2.1: FCN Architecture based on VGG-16 from ch.6 in [51]

3.2.2 U-Net

The U-Net architecture [52]| builds upon the FCN architecture using the skip architecture and the transpose
convolutions but is trained much faster and produces more precise results. The architecture resembles a U
as it symmetrically constructs the encoder and the decoder shown in 3.2.2. The modification that allows
for better precision is the large number of features on the decoder side whilst in FCN the "decoder" side
which is consisted by successive transpose convolutions and additions has a constant number of features
equal with the number of classes. As for the encoder, it consists of 3 groups of 2 successive convolution layers
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3.2. Convolutional Neural Networks

followed by ReLUs and a pooling layer. This is symmetrically repeated on the decoder side with the pooling
layers replaced by transpose convolutions and an addition module precedes every layer implementing the skip
architecture. An extension of the U-Net
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Figure 3.2.2: U-Net Architecture from [52]

3.2.3 DeepLab and Atrous Convolution

Deeplab [53] builds on the previous architectures incorporating in FCN architectures atrous convolution
replacing deconvolution. Atrous convolution in 1D is displayed in 3.2.1, and can be described by convolving
with a filter that has r-1 zeroes between its values when rate of dilation is r. It allows for a larger field of
view while keeping the same number of parameters and keeps the resolution when used with padding.

yli =Y wli + rkw[k] (3.2.1)

k

Deeplab also implements bilinear interpolation with fully connected Conditional Random Field(CRF) [77] to
get the the output stride from 8x to the original resolution and provide more detailed results. Lastly, Atrous
Spacial Pyramid Pooling(ASPP) is proposed which adds atrous convolutions in multiple rates allowing for
multi-resolutional processing. Extending this work Deeplabv3 [54] rejects CRFs and incorporates in ASPP
another component which is a pooled version of the original image. Additionally, batch normalization is used
after every atrous convolution. Deeplabv3+ [55] further improves this architecture by using the concept of
the encoder-decoder as the previous version could only produce results up to 8 output stride which is not the
expected resolution for semantic segmentation. Using the Deeplabv3 as the encoder with an output stride
of 16 and 256 features forwarded as input to the decoder after it is convolved by a 1 x 1 filter to reduce the
channels. Similarly the low-level layer of the FCN with the same resolution is convolved by a 1 x 1 filter to
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reduce its channels and then it is concatenated with the previous result as shown in. After the concatenated
vector is convolved by a 3 x 3 filter and produces the final result. Lastly, atrous convolution is replaced by
depthwise seperable atrous convolution which is a much faster process. Comparing the three architectures we
see that Deeplab processes the image in a higher resolutional level while U-Net[52] uses the encoder-decoder
to reconstruct from low resolution and Deeplabv3+ combines both to produce a precise result from an already

accurate result in the original resolution.
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Figure 3.2.3: Comparison of Deeplab, U-Net,

and Deeplabv3+ architectures from [55]
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Figure 3.2.4: Deeplabv3+ Architecture from [55]
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3.2.4 Deep High Resolution Convolutional Neural Networks (HRNet)

High resolution convolutional networks emerged from the observation that none of the architectures before
them kept high resolution streams across the network but rather upsampled from low resolution[50], fused low
level high resolution to the ending layers [52], created medium-resolution streams [53, 54], or implemented
encoder-decoder architectures [55, 52]. HRNet [56] introduced the concept of parallel multi-resolution net-
works that fuse on the end of every stage shown in 3.2.5. The network is made of 4 stages and on every stage
one lower resolution is added in parallel. On every stage there are 4 residual units at each resolution with
every unit composed by two 3 x 3 convolution, batch normalization, and relu except for the first stage where
every unit is made of a bottleneck with width 64 and a 3 x 3 convolution. The first stream is of resolution i
and has C channels and every consecutive one downsamples and increases the channels by a factor of 2. The
downsampling is possible with a 3 x 3 convolution of stride 2 while the upsampling with bilinear interpolation
followed by 1 x 1 convolution. The semantic segmentation result in HRNetV2 is taken by fusing the four
streams to the first stream after upsampling the last three and using estimating segmentation maps.
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Figure 3.2.5: HRNet Architecture from [50]
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3.3 Transformers

3.3.1 Shifted Window Transformer(Swin Transformer)

The Swin transformer [57] is an architecture that aims to convert the Transformer from an natural language
processing tool (NLP) tool [78] [79] [80] to a vision one. However, in order to be able to exploit the advantages
of self attention in images with efficiency while also detecting multi-scale dependencies it implements shifted
window attention and patch merging. According to this architecture an image is split into patches of size
4 x 4 and these patches belong to windows of size M x M. The multi-head self-attention layer which is now
replaced by Window multi-head self-attention(W-MSA) on the encoder and each self-attention computation
is restricted only within a window. The windows, originally split at the top-left corner, are shifted in
every attention head on the Shifted-Window multi-head self-attention(SW-MSA) in the decoder. The Swin
Transformer also allows for detection of multi-resolutional dependencies by sub-sampling input through patch
merging on every stage as shown in 3.3.1. This architecture uses GELU and a 2-layer MLP after the attention
unit. Additionally, a normalization layer is placed after every module and residual connections are used
between modules as depicted in 3.3.1.
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Figure 3.3.1: swin Transformer Architecture from [57]

Patch-merging

The patches are of size of 4 x 4 setting the window dimensions to % X %. Every patch has a token set based
on their 4 x 4 x 3 = 48 concatenated features. However, the token converted by a linear embedding to a
dimension C and the patch is directed to the Transformer completing there Stage 1. On Stage 2, a patch
merging layer merges 2 x 2 = 4 patches into 1 patch with 4C concatenated features which are again converted
by a linear embedding to 2C features setting window size to % X %. Stage 2 is completed with a Swin
Transformer Block. Further processing is applied on stage 3 and 4 in a similar way, where again window size

is reduced to ng X 1% and 3—”; X 3—H2 and every patch has a feature dimension of 4C and 8C respectively.

Window shifting

Window shifting is implemented on the multi-head self-attention part of the decoder allowing for detection of
broader dependencies. The initial window is placed on the left-top corner and the rest are placed consecutively
in an adjacent non-overlapping way. The next formation is created by shifting diagonally the windows.
However, this results in more windows than initially with some uncompleted. The solution given to this
problem is the cyclic-shifting method where uncompleted windows from the top left are moved to the bottom
right and connected with the uncompleted windows there to form regular windows. Afterwards, self-attention
applied in these concatenated windows takes into account this shift by masking features in the window that
weren’t neighbouring before the shift.
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High Resolution Swin Transformer (HRSTFormer)

The High Resolution Swin Transformer [61] borrows the logic of the HRNet [56] and applies it using Swin
transformers. Similarly to the HRNet it uses 4 parallel resolution streams 1.2.1 and after every stage which is
completed with one pass of every stream through a Swin Transformer Block it applies information exchange.
This is possible by using patch merging blocks and thus creating for every stream the one resolution lower
representation of the result. All of the results and their downsampled representations are forwarded to a
multi-resolution feature fusion block except for the last stream’s downsampled output which is used to create
the next lower resolution stream stream. The multi-resolution feature fusion block fuses the results of equal
resolution and outputs the same number of resolution streams as before. At the last stage, which is stage 4 for
HRSTNet-4, every resolution stream is upsampled(with a patch expanding block) and downsampled to the
rest of the resolutions so that we cam concatenate all the results in different resolutions. Every concatenate
block is followed by a residual multi-resolution feature fusion(MRFF) block used to convert the results
from 1D to 3D features and after upsampling to the main stream resolution all results are concatenated,
upsamppled to the original resolution, and passed through a convolutional filter.
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Figure 3.3.2: HRSTNet Architecture [61]

3.3.2 Mask Transformer (MaskFormer, Mask2Former)

The idea behind the MaskFormer [19] lies on the similarity of the different segmentation tasks and the
acknowledgement of the need to construct a unified architecture that can perform these tasks simultaneously.
The MaskFormer aims to use the instance segmentation technique, mask classification, in semantic image
segmentation questioning the notion of per pixel classification. Specifically, the MaskFormer predicts a set
of N pairs of class and mask, z = {(¢;, m;) }i=1,... N performing thus primarily mask classification and then
converts the results to panoptic, instance, or semantic segmentation output. It has similar approach to R-
CNN [48] [47] architectures before they were converted to end-to-end training models and agrees with their
absence of pixel-level loss.

Architecture

The architecture of this mask classification model is divided in three modules as shown in 3.3.3. The pixel-level
module uses a pixel-level classification architecture which first down-samples the image and then up-samples
it with a decoder. The low-resolution image features extracted from the backbone of the down-sampled
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image are forwarded to the transformer module which performs a query on them and produces the object
queries. The query matrix of the transformer module is learnt during the training process and contains N
representations used to identify the N masks on the image. The output of the transformer module is a matrix
Cg x N and is passed on to an MPL which converts it to a matrix of dimension C'r x N. The output is also
passed on to a linear classifier and a softmax to generate the N class predictions per mask. The pixel decoder
up-samples the low-resolution features to produce high resolution per-pixel embeddings. These embeddings
of size W x H x Cg are multiplied with the output of the MLP thus generating a result of size W x H x N
which contains the mask probability for every pixel after a sigmoid is applied on it.
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Figure 3.3.3: MaskFormer Architecture from corresponding paper [19]

Therefore, there are two segmentation branches: one that classifies masks using only the backbone and the
transformer decoder and one that finds the mask region using product of image features from pixel decoder
and mask embeddings from transformer decoder. The final output of the mask classification task is the class
predictions per mask and the per pixel mask predictions(m;[h, w]e[0, 1] probability the ith mask contains
the h,w pixel). The two outputs are combined to produce the output of the semantic segmentation and
the panoptic segmentation task. As for the semantic segmentation, the pixel classification is calculated by
assigning to each pixel the class that produces the highest product of mask probability and class probability
at the specific mask,ie. argmaxc.1, . x} Zf\]:l pi(c)m;[h,w]. Then pixels with the same class are merged.
Whereas, in instance segmentation we keep both class and mask, ie. argmax;.(1,... n} pi(ci)m; [h, w] where
¢; = arg max, p;(c) grouping pixels belonging to the same mask.

Loss Calculation

The classification error is a combination of mask classification loss calculated with cross entropy and binary
mask loss. However, in order to calculate loss a matching between the M ground truth results and the N
MaskFormer results must be made. The balance between the two sets is possible by introducing N-M null
objects. Thus with bipartile matching it is possible to perform one-to-one matching and calculate the loss:

N

Lmaskrfcls(zu th) = Z[_ logpa(j) (C?t) + ]]-Cj?t7g@Lmask(ma'(j)7 mgt)” (331)
=1

Where z is the prediction set, z9¢ is the ground truth set, and N is |z|. Lqsx is mask loss which due to the
indicator function used as a factor, it is calculated only when the mask predicts a certain object of a class.
The first term is a cross entropy classification loss of the masks.
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Modules used

The pixel-level module is consisted of a backbone and a pixel-decoder which together can be implemented
from any current per-pixel segmentation model. That is MaskFormer’s continuity, the fact that it can be
used to transform any SOTA model 3.3.4 into a mask-classification model, which is proved in this paper
[19] to improve performance of single-task oriented models. Usually used as backbone are ResNet [81] or
Swin-Transformer [57] models and as pixel-decoder one designed based on FPN [82].
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Figure 3.3.4: Conversion of a per-pixel segmentation model into a mask classification model shows in study
of [19] that the later produces improved results.

The transformer decoder module is borrowed from DETR [58]. It has N query embeddings initialized to
zero vectors, and every query is associated with a learnable positional encoding. By default, 6 Transformer
decoder layers with 100 queries and the same loss is applied after each decoder.

The segmentation module is made of a multi-layer perceptron (MLP) which has 2 hidden layers of 256
channels to predict the mask embeddings. Both per-pixel and mask embeddings have 256 channels.

Mask2Former: Masked Attention

In an updated version of the MaskFormer, Mask2Former [59], the concept of masked attention is introduced
replacing 3.3.5 cross-attention in the pixel decoder and making the architecture state of the art in semantic,
panoptic, and instance segmentation. The slow training process and the high complexity of the MaskFormer
led to the concept of mask attention where the calculation of cross attention in the transformer decoder limits
in the predicted area of the mask by the previous decoder layer. Context information are still usefull to the
classification of masks, however, cross-attention requires large part of training time to work as intended.
Thus, it is preferred to limit mask-attention to attend on proposed mask features and use self-attention to
introduce context information. The order of cross-attention and self-attention alternates in every layer.
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In cross attention 3.3.2, the whole input vector query features are used in calculations. At every step produces
their updated version. The second term is the residual connection of the features of the previous stage to the
newly predicted features. The first term is the soft max result of the activation of queries on features for the
specified keys. Then it is multiplied with the value vector that corresponds to those keys. The key and value
vectors are produced from the image features at every stage through the linear transformations fk, fv. The
difference between self-attention and cross-attention is the input. In self-attention the same input is used
in the calculation of the K,Q,V matrices but in cross-attention a different input is used for the calculation
of the K,V matrices and another for the calculation of the (Q matrix. In this instance, the first input is the
image features produced from the different resolution levels of the pixel decoder and the second input is the
second input is the trainable query features.

X, = softmax(Q, K Vi + X;_1

Q= fQ(Xl 1)
Fie(D) (3.3.2)
fv(I)

where I are the image features.

Where 1 is the decodel layer, X; € RVXC the N query features at layer 1, X, the initial trainable query
features, and K;,V; € mathbbRHWixC where H;, W, the resolution of the image in the specific resolution
level. In mask attention 3.3.3, the difference is that M’;_; is added in the softmax arguments. The proposed
mask M;_; is the resized prediction binarized on the threshold of 0.5. M’;_; is —oo for non-mask pixels and
0 for mask pixels where mask pixels are refreshed at every transformer decoder layer. Thus, it imitates not
using non-mask features in attention and causes X; = X;_; in pixels that don’t belong in the mask. In this
case, query features(X) are learnable.

X = softmax(M’l_l +Q1KlT) + X1
M l(xay) = { l( y)

—o00 else

As mentioned above, Mask2Former introduces multi-resolution features to the transformer decoder. Specif-
ically, it includes L consecutive groups of 3 consecutive transformer layers where every layer takes as input
?{{2 X g‘;, 1% X %, and % X % respectively. These resolutions come from different stages of the pixel decoder
with applied sinusoidal scale-level embedding. A multi-scale Deformable attention module [16] is used as a

pixel decoder which derives from DETR [58].
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Other modifications to the MaskFormer are: calculation of mask loss at sampled points of the mask reducing
significantly training time, removing dropout, and introduction of learnable query features.

Transformer
Decoder

Figure 3.3.6: Mask2Former Multi-Resolutional Architecture from corresponding paper [59]

Detection Transformer (DETR) The DEtection TRansformer [58] is an architecture created for object
detection. It was the first model designed to perform end-to-end object detection. Combining both CNNs and
transformers it performs parallel decoding of input. As shown in 3.3.7, the DETR contains a CNN backbone
which produces a lower resolution activation map from the input image. This map is then forwarded to
an encoder-decoder architecture composed of transformer modules.The input is combined with positional
embeddings since the transformer architecture is permutation invariant. The encoder transformer is made
of a multi-head self-attention module and a feed-forward network(FFN). It produces N embeddings which
are then processed by the transformer decoder which produces the output embeddings. The transformer
decoder uses multi-headed self and encoder-decoder attention mechanisms. The output embeddings are then
forwarded to the FFN layer which converts them to rectangle coordinates and class.

decoder :;rprediction heads !
h

transformer
decoder

...................................

Figure 3.3.7: DETR Architecture from corresponding paper [58]

However, this architecture showed disadvantages in performance compared to other architectures. These
included: it required much longer epochs than the existing object detection models and doesn’t perform well
in the detection of small models. Deformable DETR [16] was introduced as an improvement of DETR on the
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previous downsides. It introduced deformable attention inspired by deformable convolution which replaces
attention modules of the transformers. Deformable attention performs only on a small fixed set of sampling
points predicted from the feature of query elements. Therefore, DETR’s transformer encoder and decoder
attention modules are replaced by multi-scale deformable attention modules. The multi-scale deformable
attention module used in Mask2Former is very similar to the previous single-scale version, except that it
samples LK points from multi-scale feature maps instead of K points from single-scale feature maps.

3.3.3 High Resolution Transformer (HRFormer)

The HRFormer [60] is an implementation of the HRNet [56] using Transformers. This architecture preserves
the notion of the four parallel streams, their fusion after every stage, and the addition of a new stream after
every stage. Staring with one high resolution stream every stage consists of a number of consecutive modules
processing every stream independently and at the end of every stage every stream fuses its result with the
upsampled and downsampled results of every other stream. Lastly, a new stream is added by downsampling of
the lowest resolution stream at the end of every stage. Every module consists of a transformer which applies
multi-head self-attention and specifically interlaced sparse self-attention which is computationally faster and
equivalent to self-attention. However, to account for the locality of the results of the self-attention mechanism
on independent blocks and to also exchange information across non-overlapping windows, a 3 x 3 depth-wise
convolution is added on the FFN to introduce contextual information. The semantic segmentation result is
extracted by concatenating all the representations from every stream upsampled to the highest resolution
and then forwarded to a semantic segmentation head such as OCRNET [83].

Object Contextual Representation Network(OCRNET)

The OCRNET |[83] is a method that refines the segmentation map from coarse to fine. It is designed based
on the idea of the pixel classification depending on the contextual information of the image and the region
the pixel belongs to. Thus, it aims to augment the initial features of a pixel with the weighted features of the
regions surrounding it. Therefore, it requires a coarse prediction of the regions in an image used to describe
every pixel separately. That is obtained from any semantic segmentation backbone such as HRFormer [60],
HRNet [56] etc supervisely trained on a dataset. Then, the regions are described by a set of features extracted
from the pixels they contain. The pixels are again described by their initial features augmented from the
weighted addition of the new region features based on proximity. Similar previous methods have not taken
advantage of regions and have not differentiated relationships of pixels based on their class. Instead, they
weigh pixel relationships based on proximity. As mentioned, every pixel p; is assigned to a class K from a
backbone segmentor. Every region is then described from all the pixels with a weighted summation of their
features based on the degree of belonging to this specific region as such:

Je = Z Mpei T (3.3.4)

ieD

Where f} is the representation of the region, z; the representation of the pixel, and my; the spacial softmax
degree for pixel p; belonging to region k. The relationship between every pixel and every region is quantified
as seen in 3.3.5 inspired from self-attention.
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en(mivfk)

Wik = K

— 3.3.5
Zj:l er(@i,f) ( )

Where k(x;, fr,) = ¢(x)T(f) is the unnormalized relation function with ¢() and () two transformation
functions implemented by 1x1 conv — BN — ReLU. The object contextual representation y; of the pixel p;
is extracted from this equation:

K
yi = P(Z w0 (fx)) (3.3.6)

k=1

Finally, the representation of every pixel is the augmented representation of its initial features and its y;
features.

2 = g(lof yi'l) (3.3.7)

Where g is a transform used to fuse the two representations made of 1x1 conv — BN — ReLU. The above
procedure is summed in 3.3.8.
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Figure 3.3.8: OCRNET architecture from corresponding paper [83]

3.3.4 Segmentation Transformer (SETR)

Segmentation Transformer or SETR [71] attempts to replace the encoder-decoder FCN architecture that has
been used in semantic segmentation. The problem of information loss and dimension reduction is due to
repeated convolutions is its main focus. Additionally. it has been observed that convolutions do not detect
long range dependencies unless there is an extensive number of layers. After ViT [70], many architectures have
approached semantic segmentation with transformers and self attention revealing the superior characteristics
of the transformers architecture in image processing. SETR uses explicitly transformers and attempts to
proces the image in a sequential manner on patches. Because the number of pixels in an image is too large to
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be processed sequentially individually, it is divided into patches. These patches are mapped into a latent C-
dimensional embedding space using a linear embedding projection function. This results into a 1D sequence
of patch embeddings of size L = % To those embeddings e;, p; is added to encode positional enformation
resulting in a final input sequence E = {e; + p1,...,er, + pr}. A pure transformer encoder is utilized to learn
feature representations and has a global receptive field. It consists of L. layers each containing a multi-head
self-attention block and a multilayer perceptron module. Its input is a query, a key, and a value matrix

calculated from the input of the previous layer and learnable query Wq, key Wg, and value Wy matrices.

query = Z'" "W, key = Z' 7 Wi, value = Z'7 Wy, (3.3.8)

Then self-attention is calculated as mentioned in 2.2.2 and uses residual connections. Then the decoder
transforms the input to the final results of shape H x W before it first converts them to a 3D feature map
of shape % X % x C. There are 3 possible decoders used: a) Naive: uses a simple bilinear interpolation to
upsample b)Progressive UPsampling; alternates between upsampling layers and convolutional layers ¢)Multi-
Level feature Aggregation: uses multi-level feature aggregation similar to the feature pyramid network [84]

[82] to gradually upsample.

3.3.5 OneFormer

OneFormer [24] is a new multi-task universal image segmentation architecture that needs to be trained only
on one panoptic dataset and it can be used to output results on all image segmentation categories. Given a
sample image and a task input of the form "this task is a task", this model will output the result of semantic,
instance, or panoptic segmentation. The unification of the three tasks was attempted before but never in this
extend. Panoptic segmentation was introduced to unify the two tasks, however, introduced a new one and
did not manage to separate them. Later, Mask2former [59], MaskFormer [19], and K-Net [85] made a step
forward to unifying these tasks. They initiated the concept of a universal architecture, however, they still
required individual training on the different tasks. Inspired from Mask2Former’s architecture, OneFormer
adopted the encoder-decoder architecture and the transformer module but added a few extra transformer
modules to enhance processing with text description.

Input

As seen in 3.3.9 the input consists of the image in 3.3.9.a and a text Ti,sr of the form "the task is task" in
3.3.9.b. Then Ti4sk is tokenized and Qyqsk is extracted to condition OneFormer to the task. During training,
a text list Tj;4 is created from GT annotations and inputted to the module in 3.3.9.b.

Text queries

The ground truth for every task is different, so for every sample the task is selected uniformly and the ground
truth is extracted from the panoptic annotations. This text list (7};s:) contains the ground truth whose every
line corresponds to one binary mask. For every class(thing or stuff) a line is added to the text list of the
form "a photo with a {CLS}" where CLS is the class of the binary mask. A line of the form "a/an {task}
photo" is added for every null binary mask which is the padding text Tpqq. Tis: is inputted to a text mapper
to produce the Ny.,; embeddings which are concatenated with N, context embeddings and together they
form the text queries Qtext- Qtest is used to calculate the loss between that and the object queries Q.

Object queries

The image passes through the backbone and the pixel decoder in 3.3.9.a just like in Mask2Former. Multi-
resolutional outputs are produced from which the i resolution is forwarded to the 3.3.9.b. There it is processed
from a 2-layer transformer and updates the N-1 object queries. The object queries are initialized with N-1
repetitions of the task token before being updated. After being updated, Q:qsr is concatenated to them
creating N queries. They are then transferred to the transformer decoder along with the multi-resolutional
outputs to produce the final result similarly to Mask2former.
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Query-text constractive loss

A loss is calculated between Qierr and Q in 3.3.9.b. Pairs of object and text queries are formed and the
similarity is measured with their dot product. Two losses are calculated and summed: a) object-to-text
contrastive loss Lg—q,..,, b)text-to-object contrastive loss Lg,,.,—0
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Figure 3.3.9: OneFormer architecture from corresponding paper [24]. a)Encoder-decore module just like in
Mask2former[59], b) Task text(Tiqsk) is inputted along with task specific GT annotations formulated in a
text-list Tjist. Qrask and Qqest are produced and loss is calculated between text representation queries Qyest
and image representation queries Q. ¢)Output is produced from transformer decoder just like Mask2former.
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Figure 3.3.10: OneFormer architecture text input from corresponding paper [24]. Text input depending on
task is formulated in a text list T};s; where every line corresponds to a binary mask. The line contains a
phrase of the form: "a photo with a {CLS}" where CLS is the class of the binary mask or of "a/an {task}
photo" if the binary mask is null where {task} is the name of the task.
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4.1 Multiple resolutions in semantic segmentation

Simpler tasks such as object classification were successfully performed with encoder-decoder type architec-
tures. That was possible due to the nature of both the task and the architecture of transforming input into
a smaller dimension. However, after the designation of more complex tasks, such as semantic segmentation,
where the dimension of input is equal to the dimension of the output a need of more complex architectures
surfaced. Specifically, it is needed to process data in multiple scales and detect classes in multiple scales. This
observation eventually led to the introduction of multi-resolutional models such as HRNET [56], HRFormer
[60], HRSTFormer [61] which were observed to perform better than their corresponding single dimensional
models. These models follow the basic idea introduced by HRNET shown in 4.1.1. There are four resolution
streams which are added gradually to the model after every stage. In every stream the resolution is kept
constant throughout the processing stages of the input. Every stage is followed by a fusion module which
exchanges information between the different resolutions. Every stage mimics the single-resolutional network
by replicating its corresponding stage modules across all resolutions.
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Figure 4.1.1: HRNet Architecture from [50]

4.2 Introducing multiple resolutions to Mask2Former

The MaskFormer [19] predicts a set of N pairs of class and mask, z = {(¢;, m;)}i=1,... n performing thus
primarily mask classification and then converts the results to panoptic, instance, or semantic segmentation
output. As shown in 4.2.1, it is composed of a backbone, a transformer decoder, and a segmentation head.
The backbone can be replaced with any architecture as the Mask2Former’s main goal was to transform
different segmentation architectures into a multi-purpose segmentation architecture based on masks. The
Mask2Former, however, has currently been used only on single-resolutional backbones such as R-50, R101,
Swin-T, Swin-S, SWin-B, Swin-L in Cityscapes dataset which is our dataset of focus.
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Figure 4.2.1: MaskFormer Architecture from corresponding paper [19]

Mask2Former with Swin trasformer(Swin-T) backbone has an architecture as the one displayed in detail
in 4.2.2. It is paired with the Multi-Scale Deformable attention module [86] used as the decoder. The
proposed backbone architecture -SwinHR- follows the four layer structure of the initial backbone architecture
described in subsection 3.3.2 by replicating every layer in parallel streams. In order to keep the resolution
constant, the downsampling modules are eliminated in the layers. Additionally, after every stage one stream
is introduced by downsampling the lowest resolution stream. downsampling is done with patch merging
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modules as explained in section 3.3.1 . The stages are in total four which is equivalent to the number of
streams. The resulting architecture is shown in 4.2.3 and 4.2.4 which differ in the point where the input of
the pixel decoder is taken from the backbone.
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Figure 4.2.2: Mask2Former Architecture

In the original Mask2former-Swin Transformer architecture, input of the transformer decoder is taken from

75



Chapter 4. Proposal: Multiple resolution streams in Mask2Former

the output of the pixel decoder. However, the notion behind moving that input further back in the new
architecture is based on the stand-alone performance of the multi-dimensional model. This new backbone
model does not require a decoder as it is replacing the encoder-decoder as a whole. However, the decoder is
kept intact as it will decode the per pixel embeddings which will fuse with the pixel decoder output. Thus,
the Multi-Scale Deformable attention module [86] module is present in the new model.
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Figure 4.2.3: Mask2Former Multiple Resolutions Architecture
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4.2.1 Swin Transformer

The Swin Transformer attempts to scale down the processing time of a regular transformer when calculating
self-attention on an image. This was possible by dividing images in windows and calculating self-attention in
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every window separately also known as windowed self-attention. However, in order to cross boundaries defined
by those windows on neighbouring pixels, at every consecutive swin transformer layer those windows are
shifted and reformed. The initial window is placed on the left-top corner and the rest are placed consecutively
in an adjacent non-overlapping way. The next formation is created by shifting diagonally the windows.
However, this results in more windows than initially with some uncompleted. The solution given to this
problem is the cyclic-shifting method where uncompleted windows from the top left are moved to the bottom
right and connected with the uncompleted windows there to form regular windows. Afterwards, self-attention
applied in these concatenated windows takes into account this shift by masking features in the window
that weren’t neighbouring before the shift. As shown in 4.2.5, two consecutive swin transformer blocks are
connected and the second one applies the shifted windows of the first. Also, in every block there is a residual
connection and an MLP after the attention module. Before every module, layer normalization is applied.
The passing of an input image z'~* through two consecutive transformer blocks is described as such:

2h=W — MSA(LN(z71)) 4 21

( (4.2.1)
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Figure 4.2.5: Two consecutive Swin Transformer modules

Attention

In transformers, the attention mechanism attempts to match a query to the nearest key and retrieve the
corresponding value. The "nearest" quantity is calculated from a softmax layer after multiplying the query
matrix with the key matrix. In order to find the corresponding value , the value matrix is multiplied with
the previous probability matrix. Thus, the resulting value is a weighted sum of the values and the attention
process is shown in .

Attention(Q, K, V) = Softmaz(QKT /vVd+ B)V (4.2.2)

where Q, K,V € RM *xd are the query, key , and value matrices respectively, d is the query/key dimension,
M? is the number of patches in a window and window is of dimension M x M. The matrix B is the relative
position bias
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4.2.2 Fusion layers

After every stage the different streams fuse their outputs in order to exchange information. This fusion
occurs at the end of every stream and every other stream transforms their output to match the resolution
and channels of the target stream. The upsampling module depicted as a red arrow in 4.2.3 is composed of a
convolution that changes the number of channels with a kernel size 1 x 1 and a stride 1 x 1 and an upsampling
module of a scale factor 2 , 4 or 8 depending on the case as shown in 4.2.6. The downsampling module shown
in 4.2.7 is composed of replication of a base module that downsamples with a factor of two. This base module
is composed of two convolutions: one with stride 2 x 2 and kernel size 3 x 3 aiming to downsample with a
factor of 2, and one with stride 1 x 1 and kernel size 1 x 1 aiming to convert the number of channels. If there
are more than one replications of this base module, the second convolutional layer changes the number of
channels only on the last instance of this module and between two modules there is a ReLU layer.
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Figure 4.2.6: Upsample module

HxW=(Cy £ ® E ® Ol
2 2
> .—) Batch Morm -—+ Conv2d #|Batch Norm |
. stridel x 1
kefﬁgids%geéa 3 kernel size 1 % 1
Ci—=C C1 =G

Figure 4.2.7: Downsample module: stacking of these modules achieves higher downsampling factor

Supposedly there are 3 streams, their fusion is an addition of their transformed outputs at a specific resolution.
For O the ouput of stage s at resolution r after the fusion layers and for R} the representation of output at
stage s resolution r before the fusion layers we have:

Or =Y frn(RE)forr <s (4.2.3)
=1

Where f, is the transform function from resolution k to resolution r. The transform function as explained
above with modules is :

1. Ifr =k, fx(R) = R.

2. If r <k, frx(R) downsamples the input representation R through (r — s) stride 2 and 3 x 3 kernel size
convolutions and a 1 x 1 convolution for aligning the number of channels.
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3. If r >k, frx(R) upsamples the input representation R through the bilinear upsampling followed by a
1 x 1 convolution for aligning the number of channels.

4.2.3 Semantic Segmentation Head

The output of the transformer module is a matrix Cg x N and is passed on to an MPL which converts
it to a matrix of dimension C'r x N. The output is also passed on to a linear classifier and a softmax to
generate the N class predictions per mask. The pixel decoder produces high resolution per-pixel embeddings.
These embeddings of size W x H x Cg are multiplied with the output of the MLP thus generating a result
of size W x H x N which contains the mask probability for every pixel after a sigmoid is applied on it.
Therefore, there are two segmentation branches: one that classifies masks using only the backbone and the
transformer decoder and one that finds the mask region using product of image features from pixel decoder
and mask embeddings from transformer decoder. The final output of the mask classification task is the class
predictions per mask and the per pixel mask predictions(m;[h,w]e[0, 1] probability the ith mask contains
the h,w pixel). The two outputs are combined to produce the output of the semantic segmentation and
the panoptic segmentation task. As for the semantic segmentation, the pixel classification is calculated by
assigning to each pixel the class that produces the highest product of mask probability and class probability
at the specific mask,ie. argmaxcc(1,. i} Zivzl pi(e)m;[h,w]. Then pixels with the same class are merged.
Whereas, in instance segmentation we keep both class and mask, ie. argmax;c1,.. ny pi(ci)ms[h, w] where
¢; = arg max, p;(c) grouping pixels belonging to the same mask.

Loss Calculation

The classification error is a combination of mask classification loss calculated with cross entropy and binary
mask loss. However, in order to calculate loss a matching between the M ground truth results and the N
MaskFormer results must be made. The balance between the two sets is possible by introducing N-M null
objects. Thus with bipartile matching it is possible to perform one-to-one matching and calculate the loss:

Mz

Lpask— cls Z, Zg IngU t) =+ lc§*¢@Lma8k(ma(,j)am?t)}} (4'2'4)

j:1

Where z is the prediction set, 29¢ is the ground truth set, and N is |z|. L.,qsk is mask loss which due to the
indicator function used as a factor, it is calculated only when the mask predicts a certain object of a class.
The first term is a cross entropy classification loss of the masks.

4.2.4 Using OCRNet as Pixel Decoder

Looking at HRFormer [60], it is observed that it also converts the Swin Transformer into high resolution
streams based on HRNet architecture. The HRFormer performs semantic segmentation using OCR [83] as a
semantic segmentation head. Therefore, an alternate design of the previous proposed architectures that was
tested is shown in 4.2.8 and it replaces MsDeform attention module with OCR.
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Figure 4.2.8: Mask2Former with OCR pixel decoder
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5.1 Datasets

5.1.1 Cityscapes Dataset

The Cityscapes Dataset [8] is a dataset specifically designed for autonomous driving in urban environments
applications. It contains images of road scenery from 50 different city centers over all 4 seasons. These images
are available in low(8 bit) and high(16 bit) resolution. The dataset includes both pixel-level and instance
level annotations provided in two groups- coarse and fine annotations. Fine annotations are provided in 5000
images over 27 cities where all pixels have been labeled by creating polygons of instances. Te rest of the
images taken in 23 cities are used in coarse annotations where the polygons were chosen much faster causing
lower accuracy labelling. In total 30 classes are included and 19 of them are used in evaluation as seen in
5.1.1.
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Figure 5.1.1: Cityscapes Classes, image from [19]

This dataset depicts much broader representation of inner city roads taking into account traffic and diverse
climatic conditions with a wide variety of classes making it unique in the area of autonomous vehicle driving.
Other datasets such as Kitti provides images of roads but from suburban areas while CamVid and DUS
provide less images from only one city. Also concerning instance-level annotations Cityscapes is the only
dataset among these providing instances of people and vehicles. The only dataset more complete than the
Cityscapes one is the Mapillary Vistas Dataset [65], however, it is too complex for the purpose of this project
as it is five times the size of the Cityscapes dataset including 66 classes with images taken from all over the
world with different capturing means.

5.1.2 ADE20K Dataset

ADE20k was designed after recognizing the need for a general dataset covering a variety of scenes and
common objects. Datasets before ADE20k had a limited set of scenes such as Cityscapes [8] or covered few
or insignificant classes of objects such as COCOJ10] and Pascal [15]. In ADE20k there are 20,210 images
in the training set, 2,000 images in the validation set, and 3,000 images in the testing set. All the images
are exhaustively annotated with objects. Many objects are also annotated with their parts. For each object
there is additional information about whether it is occluded or cropped, and other attributes. The images in
the validation set are exhaustively annotated with parts, while the part annotations are not exhaustive over
the images in the training set. Additionally, parts can have parts too, and these are labeled with associations
as well.

5.2 Evaluation Metrics

For semantic segmentation the standard metric is mIoU (mean Intersection over Union) [36], a per-pixel metric
that directly corresponds to the per-pixel classification formulation. We use the highest achieved mloU result
as the metric of the performance of a model. Additionally, for Cityscapes iloU(instance-level intersection
over union) is used. For ADE20k fwloU(frequency weighted intersection over union), mACC(mean accuracy)
and pACC(probabilistic accuracy) are also used. These are all defined in 1.3.
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5.3 Replicating baseline results

Our implementation is based on Mask2former source code [66] which uses Detectron2 [67]. The focus of the
experiments below is on Cityscapes [8] and ADE20k [16] datasets.

5.3.1 Training settings

The official implementation used 8 GPUs and a batch size of 16. However, due to processing power limitations,
in our implementation we used 4 GPUs and batch size of 4. Initial learning rate is 0.0001 with weight decay
0.05. The backbone was initialized with weights from image classification of Swin-T [57] on ImageNet-22k
[9] and is assigned a learning rate multiplier of 0.1. AdamW [68] is used as an optimizer and poly [69] as a
scheduler. Due to the inferior processing capabilities, in this experiment we trained the model on Cityscapes
for 180k iterations while in the official implementation it was trained for 90k iterations. For ADE20k dataset
both implementations were trained for 160k

5.3.2 Result Comparison

Displayed on 5.1 and 5.2 are the results achieved by training the Mask2Former model with our resources
and the official results. The difference seen in performance is within reasonable limits for the difference in
processing power.

Cityscapes
Model Of ficial(mIoU) Of ficial(iterations) Ours(mIoU) Ours(iterations)
Mask2former (Swin-T) 82.3 90k 81.70 180k
Mask2former (Swin-B) 83.3 90k 83.18 180k

Table 5.1: Performance of Mask2Former on Cityscapes with official and replicated implementation

ADE20k

Model Of ficial(mIoU) Of ficial(iterations) Ours(mIoU) Ours(iterations)

Mask2former (Swin-T') 47.7 160k 49.89 320k

Table 5.2: Performance of Mask2Former on ADE20k with official and replicated implementation

The following experiments results are only compared to our implementation performance as the processing
power is identical.
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5.4 Experimenting with SwinHR backbone

5.4.1 Without initialization

The Mask2FormerHR, architecture described in 4.2 using SwinHR backbone was implemented. Initially
trained without weight initialization the results were not matching the initialized original architecture shown
in 5.4.1. Since the backbone was not initialized in the multiple resolutions architecture, the backbone multi-
plier is changed to 1 so that the backbone trains in the same rate as the rest of the model.

Swin-T vs SwinHR
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Figure 5.4.1: Mask2Former with Swin-T initialized and SwinHR uninitialized backbone

We observe that the model needs to be initialized for the results to compare to the official architecture.
However, there are no weights from the trained version of the SwinHR in classification datasets.
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5.4.2 Initialization techniques
Transferring Swin-T classification weights

Since the two backbones-Swin-T and SwinHR- are very similar, we attempt to transfer the trained weights
of Swin-T on ImageNet. This can be done by observing that the diagonal modules of SwinHR as depicted in
5.4.2 are similar to Swin-T. Therefore, one proposed transformation is to initialize only the diagonal of the
Swin-HR model and leave the rest of the backbone modules uninitialized.

input image S —
HxWx3 (H W)xss (F*g)x1e ({5 * g0 % %84 w

x 96 H W, — 3 cpd
/ : 7.z (u * 32))(768
H W

P = x5
N S SN Ly swint 4 swinT [ § {3 "swint (4! SwinT » 2 -t [“swinT [- s | ) swinT S N
patch embedt g Bock ) | mok | | § ok o || § oo 1 - 7| Soek )| Bioc

4 H W
D B Em

k]
=%

downsampl

downsampl
<
downsampk

Y
B x
=

input image
HxWx3

.
| " w
/ / o ”/
—{>| patch embed > — 1 | ” I
E
H

swinT
Block

4

—————> Patch Merginng

> Upsampie

‘ ] 1x1conv
stride-1

downsample

pre—
2
3
B
2

H W

<5 <
SwinT 5 SwinT !
Bock || Block

Figure 5.4.2: Weight transfer from Swin-T(top) to SwinHR(bottom). Module correspondence is shown with
colored rectangles.

We experimented with different learning rate multipliers so that we freeze or hold back training of the
initialized modules. First in 5.4.3, the initialized modules where assigned a 0.1 learning rate multiplier and
the trained model almost matched the performance of the official model. Then in 5.4.4, a learning rate
multiplier of 0.001 was applied to initialized modules and 0.1 to the rest of the backbone. Last in 5.4.5, no
learning rate multiplier was applied to any of the modules and they are left to train in the same pace as
the rest of the model. We observe, that leaving the model to train uniformly we obtain a better result that
matches the official implementation. However, the performance of the model in the first iterations is much

worse than the official model’s initial performance. So we conclude that another initialization may be more
fitting.
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Swin-T vs SwinHR backbone
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Figure 5.4.3: Weight transfer from Swin-T to SwinHR. Learning rate multiplier of 0.001 for initialized
modules and 0.1 for the rest of the backbone.
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Figure 5.4.4: Weight transfer from Swin-T to SwinHR. A learning rate multiplier of 0.001 was applied to
initialized modules and 0.1 to the rest of the backbone.
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Figure 5.4.5: Weight transfer from Swin-T to SwinHR. No learning rate multiplier is applied.

Transferring Swin-T segmentation weights

Cityscapes We observe that if we were able to take as output from the backbone the same outputs that
Swin-T produces, then we can start with the same performance of the original model. This would allow for
the model to hit at minimum the maximum mloU of the original model and possibly surpass it. Since the
Swin-T backbone produces as output the output of every diagonal module of the SwinHR model, we attempt
to find a weight initialization that would transfer the output of the first module of every stream intact to the
end of the stream. That’s possible if every weight of the rest of the transformer modules is zeroed and thus
the input equals the output. Also, the fuse layers should add to a streams fusing point zeroed maps from
other streams. This is possible by just assigning zeroed weights to the fuse layers and to the modules outside
of the diagonal. Also, the initial learning rate should match the learning rate of the last iterations during the
training of the official model. If not, the performance will diverge very easily and not produce the desired
result. The initialized backbone layers have a learning rate multiplier of 0.01, while the rest of the backbone
and the semantic segmentation head have a multiplier of 1.
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Weight transfer from Swin-T to SwinHR
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Figure 5.4.6: Weight transfer from Swin-T trained on Cityscapes to SwinHR with zeroed modules.

This technique allowed for the multiple resolutions model to start as suspected around the maximum perfor-
mance of the single-resolution model and surpass it by 0.1mIoU.

We observe that zeroed weights are not allowing the network to learn as they get stuck at zero specifically
at the fuse layers which have ReLUs. Therefore, we open the fuse layers from the start by assigning weights
equal to 1 so that we have fusion. Also, instictively we assign weights equal to 1 to the uninitialized weights
aiming for the same results but with a better chance at learning. Lastly, we freeze both the initialized
backbone weights and initialized semantic segmentation head weights, while the rest of the backbone has a
learning rate multiplier of 1. Training occurs in two phases:

1. Using constant learning rate of 10~4

2. Using constant learning rate of 10~°
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Weight transfer from Swin-T to SwinHR
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Figure 5.4.7: Weight transfer from Swin-T trained on Cityscapes to SwinHR with frozen modules.

This technique allowed for the multiple resolutions model to start as suspected around the maximum perfor-
mance of the single-resolution model and surpass it by 0.3mloU.

ADE20k This dataset seemed to overflow when training with the above mentioned techniques. A more
attentive approach was taken. The uninitialized weights were initialized individually depending on their
function. First, the fuse layers contain a Conv2D, a SyncBatchNorm, and depending on the case an Upsample
module. The conv2D weights were taken down to 0.1 since they caused overflow after a few iterations. The
SyncBatchNorm was initialized to 0 running mean and 0 running bias. For the Transformer modules we
notice that the linear layers of MLPs are of the form:

y=xAT +b (5.4.1)

Where A is the weight vector and b the bias vector. Therefore, we initialize A as a unit matrix and b as a
matrix of zeroes. Additionally, for the attention mechanism we assign a unit matrix for K, Q, and V weights
and zero bias. Similarly, for all normalization layers weight was initialized to 1 and bias to 0. The following
graph shows the training of the model with frozen all the layers whose weights have been transferred from
Swin-T. Also, a constant learning rate of 0.0001 is used.

90



5.5. Qualitative Results

Weight transfer from Swin-T to SwinHR

—— mult_initialized=0.0 Ir=1e-4
50.125
50.0
— Swin-T: 48.893mlol r\ '1
49.8 1
= 49.6 4
L=
=
49.4 4
49.2 4
49.0 4
T T T T T T
0 10000 20000 30000 40000 50000

lterations

Figure 5.4.8: Weight transfer from Swin-T trained on Ade20k to SwinHR with frozen modules.

Where SwinHR surpasses Swin-T by 0.233mloU.

5.5 Qualitative Results

5.5.1 Cityscapes

In the following results every region is color coded based on its category. Black pixels in ground truth image
are unlabeled pixels and therefore ignored in evaluation. Observing 5.5.1 we see that in some areas SwinHR
improves Swin-T results. These areas are marked with a blue rectangle on the Swin-T reference image. For
example, SwinHR recognizes better a traffic swin at the back. Also, the part of the bicycle that is falsely
assigned to the rider class, is smaller in SwinHR than in Swin-T. From 5.4 the fence class does indeed have
a higher score in SwinHR than in Swin-T. Observing 5.5.2 we see only one difference between SwinHR ad
Swin-T(excluding areas that are not used in evaluation). At the yellow rectangle we see that Swin-T falsely
allocates a small region of the person class for the traffic sign class, something that SWinHR doesn’t do.
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(a) High resolution model: SwinHR backbone.

(b) Single resolution model: Swin-T backbone.

(¢) Ground truth

Figure 5.5.1: Comparison of semantic segmentation results on val set image from Cityscapes
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(a) High resolution model: SwinHR backbone.

(b) Single resolution model: Swin-T backbone.

(¢) Ground truth

Figure 5.5.2: Comparison of semantic segmentation results on val set image from cityscapes

5.5.2 ADE20k

In the following results every region is color coded based on its category. Observing 5.5.3 we see that due to
the complexity of ADE20k, it is not possible to compare the results since both performances are very small.
The models seem to segment the regions satisfactorily but fail completely to classify them.
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(b) Single resolution model: Swin-T backbone.

Figure 5.5.3: Comparison of semantic segmentation results on val set image from ADE20K
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5.6 Comparison with Mask2Former

5.6.1 Cityscapes

In this section we compare with our best model which is 5.4.2. We observe that compared to the baseline it
improves by 0.1mlIoU the performance on the task of semantic segmentation on Cityscapes val set.

Cityscapes
Model  Backbobe mloU(class) iloU(class) IoU(category) iloU (category)
Mask2former ~ Swin-T 81.7069 64.9502 91.2996 80.9204
Mask2Former  SwinHR 82.0443 65.7998 91.3846 81.6433

Table 5.3: Performance of Mask2Former on Cityscapes with official and high resolution implementation

In the following tables, we compare per class and per category performance.

ToU

Class Swin —T SwinHR
road 98.3 98.4
sidewalk 86.6 87.1
building 93.7 93.8
wall 66.4 68.4
fence 68.8 69.3
pole 70.9 70.9
traffic light 76.1 76.2
traffic sign 82.4 83.5
vegetation 93.3 93.3
terrain 66.2 68.0
sky 95.4 95.3
person 85.6 85.8
rider 69.6 70.8
car 96.0 96.0
truck 87.3 85.9
bus 88.9 89.0
train 76.7 77.1
motorcycle 69.6 69.2
bicycle 80.6 80.8
Mean 81.7 82.0

Table 5.4: Per class performance of Mask2Former on Cityscapes with official and replicated implementation
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Per class performance: Swin-T vs SwinHR backbone
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Figure 5.6.1: Per class performance comparison with Swin-T vs SwinHR backbone on Cityscapes.

ToU

Category Swin —T SwinHR
flat 98.9 98.9
construction 94.1 94.1
object 76.1 76.5
nature 93.6 93.6
sky 95.4 95.3
human 86.4 86.4
vehicle 94.8 94.8
Mean 91.3 91.4

Table 5.5: Per category performance of Mask2Former on Cityscapes with official and replicated
implementation

We observe that out model performed slightly better in almost all of the categories and classes. From the
graph we observe that it imrpoves mostly the sidewalk, the wall, the fence, the traffic sign, the terrain, the
rider, and the train. It doesn’t improve that much classes that already perform really well. Also, on the
category performances table it is shown that our model only improves the object category. This could mean
that the object category can be benefitted from multiple resolutions as it contains multi scale items.

5.6.2 ADE20k

In this section we compare with our best model which is 5.4.2. We observe that compared to the baseline it
surpasses by 0.233mlIoU on ADE20k.
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Cityscapes
Model  Backbobe mloU  fwloU mACC pACC
Mask2former Swin-T 49.89 73.05 64.00 83.24
Mask2Former  SwinHR 50.13 73.14 63.65 83.36

Table 5.6: Performance of Mask2Former on ADE20k with official(replicated) and high resolution
implementation

Additionally, we observe that it performs better according to all metrics except for pACC.

In the following graph per class mIoU is compared between the two models. These are a sample of the total
of classes since there are in total 150 classes.
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Figure 5.6.2: Per class performance comparison with Swin-T vs SwinHR backbone on ADE20k.

We see an improvement in most of the classes but this is still a sample of the total dataset.

5.7 Conclusions

This experimental application of multiple resolutions in the backbone of Mask2Former managed to match
Mask2Former’s performance proving that it can only provide more information rather than impede its train-
ing. Therefore, we conclude that multiple resolutions can be useful in a model’s design and the choice of
incorporating them depends on the performance against training time trade off. The experiments on different
parts of the architecture couldn’t be exhaustive in the context of this diploma research as the complexity of
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this model introduces numerous parameters and the training time impedes chronically the collective tuning
of them. However, from multiple experiments on different parameters such as learning rate, weight initializa-
tion, and pixel decoder model we managed to improve performance of the model on Cityscapes by 0.3mlIoU
and on ADE20k by 0.2mloU.
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Conclusion

6.1 Conclusion
6.2 Future Work
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6.1 Conclusion

Semantic segmentation is an area in computer vision crucial in real-world applications. With the advance-
ment of computer vision techniques we deviate from simple task problems such as classification or object
detection. These tasks were satisfactorily approached with convolutional models. Moving on to transformers,
object detection was further improved as it required multi-scale object detection. The self-attention module
of transformers was able to implement that requirement and introduce contextual informations that con-
volutions were not able to. However, unlike classification or even object detection, semantic segmentation
requires multiple scale recognition of object shape. Transformers were able to perform this task, however, the
architecture philosophy needed to be changed in order to scale up performance in a more demanding task.
Encoder-decoder architectures suit classification tasks as they transform information to a lower dimension and
transform it to a class label. Later approaches attempted to introduce multiple resolutions by using residual
connections from encoder to decoder in order to prevent this loss of information. This technique though still
faces the problem of processing information without loss and that is where multiple resolutions introduce a
solution to the problem. After the extended background research, multiple resolutions are dominating SOTA
and improve their respective single resolution models. Theoretically, multiple resolutions can only improve
a model as they introduce extra information than the information produced in the original model. However,
the complexity of the model increases and that affects both training time and training curve.

In our implementation we observed that the Mask2Former backbone has an encoder-decoder style architec-
ture. Following the notion of multiple resolutions we converted this backbone to preserve high resolution
information. In this type of models, however, initialization is key. Due to the lack of a pre-existing SwinHR
model, different weight transfer techniques had to be implemented in order to exploit single resolution avail-
able weights. Initially, we matched the weights with the diagonal modules of the model and left the rest of
the modules uninitialized. Alternatively, we initialized the weights in such a way so that the model’s starting
performance is equal to the original model’s best performance. This technique proved the most successfull.
Different experiments were executed by changing learning rate values, and freezing layers. Lastly, we exper-
imented with two dfferent decoders : OCR and MsDefform attention. The results of this experimentation
proved that the multiple resolution model can match the performance of the original model and even improve
it. Specifically, in cityscapes an improvement of 0.3mloU was observed and in ADE20k an imrpovent of
0.2mloU.

6.2 Future Work

In future work, there are a few possible alternatives that would maybe alter the outcome of this experimen-
tation and prove more strongly our thesis. Some of those are:

1. Different initialization of weights that can be applied in all layers by properly transforming weights
between the different resolutions

2. The parameters we experimented with in 5.4 can be more exhaustively searched maybe provided that
we have in our disposal more processing resources and larger time frame.

3. Different pixel decoders can be tested. Also, the MsDefform attention decoder’s hyperparameters such
as number of transformer layers can be tuned to serve better the characteristics of the new backbone.

4. More frequent fuse layers can be added to the backbone so that information can be exchanged more
frequently.

5. Experiment with other origin of transformer decoder inputs.

6. The model’s functions could be further optimized to reduce training time and thus allow for faster
experimentation.

Additionally, other ways of expanding our research are :

1. Testing this implementation on panoptic and instance segmentation tasks as Mask2former is a multi-
purpose model. The performance of the Mask2former should be reflected equally successfully on all
tasks in order to preserve its purpose.
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2. Running multi-scale inference in order to compare with other architectures. Most architectures infer
on augmented version of the input image in order to reach a multiple scale result.

3. Experiment with pixel decoder to test whether it could work in a more simplified version so as to reduce
training time.

4. OneFormer is the new SOTA in all image segmentation categories and it is inspired by Mask2Former. It
is also superior since it needs be trained only on panoptic segmentation and output results on all three
categories. Similarly to Mask2former it contains the same pixel-level module with an encoder-decoder
architecture which we can replace with a high resolution architecture like the one developed in this
diploma thesis.
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