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ITepiAndn

Yy mapoloa dimAwpotiny epyocia eetdloupe xat avantdocouue alyopiduoue Xuvolo-
Yewpnuxhc HHohuvdido tatne Kiwwdxwong xou yelwong dotatixotnrac. Eotidlouue o olyo-
eldpoug Tou PTOPOUY VoL ATAOTIOLAGOUY DEBOUEVOL UE TOAUTAOXT XAl U1 YEOUULXT douT|, €ToL
OoTe vou Yivouy xalUTEpa avTIANTTES amd Tov dvdpnwno xa var amoxahipouy mdavég cuoyeti-
oelg METAEY TWVY OEBOPEVLY.

H ouvelogopd tne dimhwyotinic anoteheiton and 6Vo yépn. XTo TE®OTO UEp0g TG BITAL-
HaTXG BEATIOTOTOOUUE Lol EMEXTUOT, TNG XAACIXHAC UEVOBOU TOAUBICTATNG HALUAXWDONS
(Multidimensional Scaling) yenouylomouwdvtog teyvixée Behtiotonoinone ywelc mopoydyous.
H o&ohdynon tou ahyoplduou yoc €yive oe cUVIETING o TEOYUATIXG OEGOUEVA XU TO
ouumépaoua Yog etvar 6TL 0 ahyopriuog umopel vo exTunoel pe axplfBela TNV YEWUETPlA TwV
OEBOUEVOY IOV EIVAL EVOWUXTWUEVY OE YWEOUE HE LYNAEC Blac TIOELC.

Y10 deltepo Uépog, opiloupe to TEOBANua Tou Set-MDS émou 1 WbiontepdTnTa Elvon 6TL
To Oedopéval pog amoTeAoUvVTaL and cUVOAX onueiwy xat Oyl and Uepwvopéva onuelo, xat
oTNV CLVEYEL TEOTEIVOLUE Wla TPOCEYYLoTXY AUoT U€cw Tou alyopliuou COSMOS. Agol

avaAUGOUUE TOV ahyOpLdlO, ToEOLCLALOUNE TA ATOTEAEGUATO TOV TEWUUATODV UOC.

Agleic KAelowk

Meiwon Awoctatixotnrag, Mnyovix Mddnorn, Alyoprduor Tlodudido totatng Khyudoe-
ong
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Abstract

In this thesis, we explore and develop Manifold Learning and Dimensionality Reduction
algorithms. We focus on algorithms capable of simplifying data with complex and non-
linear structures to make them more comprehensible for humans and to reveal possible
correlations among the data.

The contribution of this thesis consists of two parts. In the first part, we optimize an
extension of the classical Multidimensional Scaling (MDS) method using derivative-free
optimization techniques. We evaluate our algorithm on synthetic and real-world data, and
our conclusion is that the algorithm accurately estimates the geometry of data embedded
in high-dimensional spaces.

In the second part, we define the Set-MDS problem, where the peculiarity is that our
data consists of sets of points rather than individual points. Subsequently, we propose an
approximate solution through the COSMOS algorithm. After analyzing the algorithm, we

present the results of our experiments.

Keywords

Dimensionality Reduction, Manifold Learning, Multidimensional Scaling, Set-MDS,
Non-linear Algorithms, Knot theory
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Euyoegiotisg

[pwto and dha Yo Hleha Vo expedom TNV EVYVWHOCHVY oL GTOV EMBAETOVTL XNy NTH
aUTAC NS Oimhwpatxrc Tov x. A. Ilotouidvo, o omolog pou €dwae Ty euxoupior Vo aoyoAnde
X0l VO TTROYHOTOTIOLOW auTHY TNV gpyacia mou ftav mpdxinon yio epéva. Kopie Hotauidve,
CUG EUYOQLOTE.

Axopa o fideha vo evyaploTiow Yepud tov utodrplo diddxtopa, I'iwpyo Hapaoxeudnovio
YLoL TNV CUVERYAGTA JOG, XU XURIKS Yo TNV UTOUOVY|, TNV UTOCTHRLEH Xal TI¢ CURBOUAES Tou.
O T'wpyog, mépa amd dploTog unyavixog, sivon tdvta tpéduuog va Bonifoet, va Aooel anopieg
X0l VO JOLROGTEL TIC YVWOELS TOU.

Emmiéov, ToA) peydhn euyvwpocivn viekde yio tov Mavorln Bhatdxn-I'xapoyxoivn, tov
omnoto arcVdvopon UEvtopa, cuveRYdTY, @llo. Elvar Tiun pov mou cuvepydotnxa pall tou. H
oY) TOU YLoL TNV €PEUVIL ATOTEAETE TNYY| EUTVELOTS Ylol Uéva xou énanie xadoploTixd pdho
07O Vo ETEVL PEYEL TENOUS G UTAY OLTAWUNTIXT.

OEhw Vo T €va UEYEAO EUYOQLOTH GTOUS QIAOUC MOV, UE TOUS OToloug TEEACA TLC O
OUOPYES OTIYUES 0T POLTNTIXS oL yeovia. Mall Toug polpdotnxa auétentes oTypES YEALOU,
Eeyvolaotdg oAAG xou atehelwtee wpeg Swfdouatog xou oxinenc dovlewds. To tagldl autd,
Tou AoV @TdveL 6To TéAOG ToL, OEV Vo YTay TO (BLo Ywpelg auTolg.

Keivovtag tnv AMota euyaploTicyy, dev Yo umopolco Vo unv avapépe Toug YOVE(S Jou, oL

7 14 7 7 /7 /7
omotot mdvta eivon dimAa HOU GE OTIONTOTE X0 oV EMAEEW.

Athens, October 2023

LENA K.FOTAKI
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Extetouevn EAAnvixy] Teplindmn

0.1 Ewcoywyn

Ye wa emoyn 6mou meptBuAlopacTe and UTEPBOAXE TOAOTAOXA ol TOAUBLACTATO Oe-
dopéva, eivon LoTxng onuaclog va T ATAOTOLOVUE WOTE VoL ECAYOUNE TIC TANPOPORIES Xou Vol
TIC YPNOWOTO0UE €0XONA. XTNV ToEoLoa BITAWUATIXT EQYACIN A0 ONOVUACTE UE TEYVIXES
Tou dlvouv AUom e auTd TO TEOBANUN ot aVUTTUGGOUNE ahyoplduoug YuvoholewenTinic
[ToAudidotatng Khudxwong xou pelwong diao tatixdTnTog, oL 0Tolol EMTUY Y EVoUY Vo ATAOTOL -
coUV BEGOUEVA UE TOAOTAOXY) Bou.

H ocuveiogopd tne BimAouotindc anoteAelton and 600 pépr. XTo Te®To PEEOC, ETLYELROVUE
va BeEATIOc0UUE TNV ToAUTAOXOTNTA ToL ahyopluou Pattern Search MDS, énwe meprypdipe-
tou 670 [1] yenowonowwvtag ty pédodo twv Landmark Points 6nwe neprypdgetan ota [2, 3.
Ta amoteAéoUoTa Lo UEWDVOLY SRUUATIXG TOV YeOVO EXTEAECTC TOU olyopliuou, ywelc va
UELOYOLY TNV TOLOTNTA TOU anoTeEAéoUATos. 2To delTepo Yépog, opiloupe To TEOBANUL TOU
Set-MDS xou aoyololpacte ye v avdntuén tou alyoprduou COSMOS mou Siver uio evplo-
T Ao oTo TEofhnua auTO, xou oL YAALoTA XAveL yeron Tou alyopiduou Pattern Search
MDS nou avaAbouye oTo TpwTto pépoc. EdG 1 SiutepdtnTa elvon 6Tt Tar dedouéva pog Bploxov-
TaL O sets xat 0 YOEog lval Un HETEWOS, XIS GTIC AMOCTAGEL aVIUESH OE sets onuelwy

TopodleTon 1 TELY WVIXT) avloOTNTOL.

0.2 Landmarks Pattern Seach MDS - (LPS-MDS)

ITio avohuTxd, Yl TO TEOTO UEPOS TNG OIMAWUATIXAC BEATIOTOTOLO0UE WUIdl EMEXTACT) TNG
xhoowxrc pedddou mohudidotatne xhudxwone (Multidimensional Scaling) yenowonowwvtog
TeyVixéc Beltiotonolinong ywelc mapaydyous. H afiohdynom tou akyoplduou pag €ylve oe
SLVIETIXG XoU TEOYUOTIXG. BEBOUEVA X0 TO CUUTEPACUA Hag Efvan OTL 0 ahyopLduog uropel vo
exTnoeL Ue axpifeio TNV YEWUETEIO TWVY BEBOUEVKDY TOU E(VOL EVOWUATWUEVA OE YOEOUG UE

uPnAég Bl TAOELS.

0.2.1 Xyetuxr] BiBAtoypopio

Y10 dpdpo [1] neprypdpeton ) enéxtaon tne xAaoxhc LEVEB0L TOAUBIAGTATNG XAUEXWONC
(Multidimensional Scaling) yenoylonoudsvtog ey vixéc BeAtiotonoinone ywelic mapoydyous.
H pédodoc nou mpotelver n gpyaoio Pacileton oe moavy xivnon xdide onueiov mdvew oe plo
ogatpo otadepric axtivog.

H eloodoc otov aryoprduo etvan évag N x N nivoxag o omolog mepiéyel tig emuuntéc

Ié 4 4 7 7 z 4 4 7
AmOCTACELS avdueoa ota onuela. Xtdyoc tou akyopiduou eivor v mapdiel Tov (Blo apriud

Diploma Thesis



Extetopévn Eninvued Ilepiindm

ONUElWY OF WXPOTERES OLUGTACELS, TEECPREVOVTAC TAVTA TIC (BIEC AMOCTAOELS OV Efyory UTEL
otV apyY Touv oAyopiduou. Autd mou meTuyalvouue pe GAAa Aoy, elvon oTny €£080 TOU
ahyopiduou va €youps BEBOPEVO UE UXPOTEPEC DLICTACELS, TO OTOlo BLATNEOUV TLC OPYIXES
AmOOCTACELS PETOUED TWV OTUElwY.

H dwduxaocio apyixonoinong tou aiyoplduou nepthapBdvel to e€hc Bruoto:

o Anuoupyio N tuyaiev onuelnv 0TOV EVOWUATOUEVO YOEO UE TI¢ TeEAES -emiduunTég
L dwotdoec. X© = [x&o), :z:éo), ...,mg\?)] e RVxL

7 7z Ié 7 4 4 0 z
e Trmoloylopog Tou Tivaxo anooTdoEWwY PETALY Twv onuciwyv. To otouyelo dl(-j) elvon )

7 7 7 4 0 O
Euxdeldeia amdotact YeTadl ToV SLavUCUATOY azg ) v xg ) 200 X©

o Troloyioude Tou apyxol opdhuatoc mpocéyyione e = ||A — DJ|%, émou to e
AVTITPOOWTEVEL TO o@dAUa péoou TeTpaywvixol o@dlpatoc (MSE) petald twv 8o
mvdxwyv. H ouvdptnon otéyouv mou Pertiotonoweiton yio 6ha T PSMDS gaiveton

ToEOX AT o ebvan 1 cuvdpTnon Tdong yia To MDS:

N N
f(A7D) = HA - D||%‘ = ZZ(&U — di]’)Q, omou A, D € RNXN (])
i=1 j—1

Ye ouvéyela Twv Briuateny apyixotoinong, oe xde enoyn, Aaudvouue o Ty empdveLo
wog ogaibpag axtivag  yOpw amd xdde onueio xl(k). Yxomdg elvan to xdde onpeio vo xivniel
oe plo and Tic miavég xatevdivoelg avalhnone ol Beioxoviol oty empdvela aUTAS NG
oalpag xatd uixog TN optoyoviag Bdong Tou yweou. o mapddetypa, otny TepinTtwon Tou
3-0doTATOU YMEOL XATd T xuTeVVUVoEG £, £y, 2z otn ogaipa Tou alvetan 6To Ly. 1.
Auté dnuoupyel Tov mivaxa xateutivoewy avalitnong S xon nepthopfdveton otov Ahy. 3.3.

O ahyodpriuog oe xdie emoyn e€etdlel dheg Tic xateVHOVOELS XU ETAEYEL VAL UETAXLVTOEL
To xade onuelo mpog exelvn TNV xaTeLVUVOY TOU TAUPAYEL TO EAAYLOTO CQIAUN. XXOTOC
AhoLToV elvon Vo UTOAOYLOTEL TO TEAMXO erTor €* EAUYIOTOTOWWVTAS TNV CUVAPTNCT CPANIATOS
1, e(k) = f(T,D(k)), yiu xdde onueilo o xde enoyy. Eav 1 yelwon tou opdhyatoc @tdoet
oe éva Thatod, To omolo Yo plo cuyxexpwévn ToAD wixer otadepd € > 0 exgpdletan g,
ek) —e* < e e®) téte pewbvouye TV oxtiva avalATNoNg 670 Wob xon cuvey{{ouuE TNV
enopevn emoyn. H Swadixacio tehind Yo otapatiost 6tav 1 oxtiva 1 yivel TohD uixer|, onAadt

r < 6 6mou § elvan uior uixet| otadepd, omng gaivetar otov Ahyoprduo 2.

0.2.2 Ilpotewvopevn MéDodog Beltiotonoinong IToAunAoxdtnTtag

H 8¢ v onueiov Landmark [2, 3] @dvnxe nohd unooyduevn 6tav npootadolooue vo
Beolue TedTOLS Yol VoL BEATUOGOVUE TNV TOAUTAOXO TN T TOL ahyopituou PSMDS. H xevtpu
Wéa tng wedodou Landmarks elvon 6ti dev elvan amapaitnto var unoloyllovye AmocTAcELS
HeTaZl OAwY TV onueiwy otov Tivoxo anoctdoewy. Touvkdyiotov n > L+ 1 onueia (onueia
Landmark) elvou enapxn, omd to onoio Unopolue vor UTONOYICOUYE TIC ATOCTACELS YOS oo
Oha Tar dhhar omueto.

Edv yvopeilouye Tic 9€oeic twv onuelwyv Landmark, t6te 6ha 1o undhoina onueia unopody

va tototetniody Lovadixd 6To yOEo o oyEan Ue auTd. AuTOC O LoYUPIOUOC Elval avahoYog

m Diploma Thesis



0.2.2 Ilpotewvopevn Médodoc Behtiotonoinong IoAumhoxdtnrog

pe ™ u€dodo GPS, omou yio va Peodue v axeiBy) Oéom evdg onuelou, elvon opxetd va
yYvwetloupe Ty andoTact| Tou and €vay nencpacuévo apldud onuelwv. Ta onuela Landmark
umopolv va ebvor tuyada 660 o apriude Toug elvon peyahitepog and to L+ 1 (émou L etvoun 1
O8O TAUON TNG EVOWUATOONG).

Yy eloodo tou MDS (Multidimensional Scaling), éyouue tov nivaxa anoctdoewy N x
N ue g anootdoeg xde onueiov and oA ta dAha.  Kotd tn didpxeia tou akyoplduou,
npoonadolue va Bpolue dlaviouata Sdotaong L étol wote o tehixde mivoxag anoctdoswy
N x N vo elvor 660 10 BUVITOV T x0VTA GToV aEyx6. O mivaxag aroctdoewy yiveton n x N,
omou n K N.

Yy apyt), exterolpe to MDS xovovixd cav va umfpyoav povo to onuela Landmark,
To ool Yar TonoVeTnoly XAVOVIXd GTNY YOEO UE UELWUEVES DLUCTACELS. XTY) CUVEYELD, To
unérowma onuelar N — n Yo Tonodetniodv otov yweo e Bdor T amocTdoElS Toug and auTd
ta onuelor Landmark.H Swapopd otov ahydprduo eivor 6ti o mivoxog arootdoewy etob6douv P
xat o mivaxog anootdoewy D, éyouv didotacn N x n avtl yia N x N, 6mov n < N. Autd
ewdwd 6tav to N elvon Tohd peydhro.

H dwaduxacto apyixoroinong tou alyoplduou nepthauBdvel to e€rc Briuoto:

o Anuovpylo n tuyolwy onuelov ye Tig tehxéc emduuntéc dlotdoeg L. x =

:Ugo), xgo), vy :L‘%O)] € R™L. Qc n avagepduocte otov apriuéd tov onueiov Landmarks.

e Trohoylouog tou mivoxa anoctdoewy petoll Twv onueinwv Landmark. To otouyeio

(0) WOl :c(»o) TOu X(O)

©) _, / , / /
d;;" etvan 1 Evxdeldera ombotaon petold tov davuopdtoy ; a

e Troloyiopde tou apyxol cedhpatoc tpocéyyione e®) = ||P — DI||F?, émou 10 e
AVTLTPOOWTEVEL TO UECO TeETpaywvixd opdhua (MSE) avd otouyeio petalld twv 8o
mvaxwyv. H cuvdptnon otéyou mou Bektiotonoteiton yio ha T PSMDS mapoucialeton

TP AT o efvon 1) ouvdpTtnon stress yia To MDS:

n n
f(P,D) = ||[P - DI|F? = ZZ(tij - dij)Q, ;6mou; P, D € R (2)
i=1 j=1

Ye ouvéyela Twv Briuatwy apyxonoinong, o akyoprduog LPS-MDS, énwe xoaw o PSMDS,
oe xde emoyn e€eTdlel OAeC TIC *ATEVVUVOELS xou EMAEYEL VoL HETAXLVATEL TO xdde onueio Tpog
eXElVN TNV xATEVVUVOT) TOU TOEAYEL TO EASYLOTO GPIAA. XxOTOG hotmdy elvon vor utoAoytoTel
TO TEMXO erTor e* EAUyLoTOTOWVTOS TNV cuvdptnon ogdhuatoc 1, e(k) = f(T, D(k)), yw
x&de onuelo oe xde enoyr). Eav n uelwon tou opdhyatoc @tdoel oe éva TAATO, TO 0TOlo Yid

wlo oLy xexpévn TOA) pixpr otadepd € > 0 exppdletor we, elf) —e* < e-elk)

TOTE UELDVOUUE
v oxtivo avalftnong oto wod xou cuveyiCoupe otny enduevn enoyr. H Sducacio tehxd
Yo otopatioet otay 1 oxtivo 7 yivel ToAD wixer, Snhadh r < 6 dmou 4§ elvon wior uxpey| otardepd,
omwe gaiveton otov Ahyopriuo 2.

Tdpa dha ta onpeia Landmark X (@) éyouv torodetisl otov evowpatwuévo yopo. Oa
enavardBouue Vv Bia Sladixacio e ta undroina onueta N — n. Topa 6Aeg oL anocTdoelC

Yo yivovtar avdyeoo oto n Landmarks xou N — n vnohoinéueva ornueio.
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Extetopévn Eninvued Ilepiindm

0.2.3 Arnoteréopata

e auTAY TNV LUTOEVOTNTA TUEAETOUNE XATOLX ATt TA AMOTEAECUITA TWYV TELUUATOV UUS.

0.2.3.1 Xuvietixd dcdoueva

Ye auth) TNV TEWUUATIXY) DIATOE T TEOYUATOTOWOUUE U1 YROUUIXY UEWOT) BIUO TATIXOTNTAS
oe éva 3D Swissroll (énwe gaivetar oto Lyfua 1a) yenowwonowdvtag to Landmarks MDS. H
unodeon €0 etvor 6Tt Tar dedoPEva Bploxovtan e Evay TOAUTOTIOUO Tou elvon ToTuxd Euxiel-
010¢ xat €TOL OL YEWDBESIXES amoo Tdoelg Yo Slatneodoay TNy oaknivy) Boun Twv Se80UEVLY XoTd
v extéleon tou MDS. ¥to Eyrua 1b gaiveton to EetOhyua tou Swissroll oe 2 dotdoele,

xadwe xan Tor landmarks mou €yel emhé€el o alydpripoc.

10.000 points with 300 Landmarks
30

Swissroll 10.000 points

20

0.8 4

0.6 4

0.4+

0.2 1

) 10 (b) Eertiyua tov Swissroll o€ 2 dotdoeag ue
xpnjon tov LPS-MDS. Ta padpa onueia eivar ta
(a) Hpwtdrurmo tpiodidotato Swissroll Landmarks

Figure 1. Anlomnoinon tov tpiodidotatov Swissroll oe dvo duaotdoegs

Yta oxorouda ypapruata, Topouctdlouue uLo cuyxeLtixr avdhuor uetagd Tou Landmarks
MDS xau tou Pattern Search MDS écov agopd tov Xpdvo xar o Lgdhua yio oOvoho de-
douévmy pe dtaopetind aptdud onueiwy (2500, 5000, 7500, 10000, 12500, xou 15000). Ot
TOEUTNENOELS UAS AMOXOADTTOUY OTL TO GPdAUe Tapopével atadepd Yetald Twv dV0 aAyo-
eliuwy, detyvovtog mapduoLd TOLOTNTY ATOTEAEOUATWY. Onmg ATUY AVUUEVOUEVO, UTERYOUV
ONUAVTIXESC BEATUOOELS GTOUS YpOVOUC EXTEREONC OTay YenowonotoUue To Landmarks MDS,
Wradtepa xadde to péyedog Tou cuvorou dedouévwy avédvetar. H npocéyyion tou Landmark
MDS Beiyver cuveyme Tayltepn oOYXALOT), UEWWVOVTAUS TOV ATAULTOVUEVO YPOVO YOl VO ETL-
teuy Yol Tta emuuntd anoteAéopota. Autd Ta evpruaTa TOVICOUY TNV ATOTEAECUATIXOTNTO
xar Ty anddoon tou Landmarks MDS ot Soyelpion yeyolltepwy cuvOAmY BeBOUEVLY,

(MO TOVTAC TO L UTOGYOUEVY] ETLAOYT] Yol EQYACIEC UEIWONE Lo TATIXOTNTOG.
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0.2.3 Anoteréopata

Time comparison Error comparison

—e— PSMDS 50000 8~ PSMDS e
500 Landmarkds MDS 500 Landmarkds MDS ==
—A 300 Landmarkds MDS —&- 300 Landmarkds MDS

40000

30000

Total Time(sec)
Total Error

20000

10000
i

—

0 -—— — e = e W mnmn=n = =

2000 4000 6000 8000 10000 12000 14000 2000 4000 6000 8000 10000 12000 14000
Number of points Number of points

(a) Xoykpion otov xpdvo. (b) XVykpion oto opdipa.

Figure 2. YVykpioes avdpeoa otovs adyopipovs PSMDS ka1 LPS-MDS. To LPS-MDS
éxel efaipetikd amoteAéopata o€ OA€S TIS TEPITTWOOEIS Kat Yia peydlo apiud onpeiwy

0.2.3.2 DMNIST X0volo Acdopévwy

To clhvoho Aedouéverv MNIST, etvon wa Bdon Sedouévev yeipdypapny ¢nelny mou €xel
yenowonowndel evpéwe Yoo exnaidevon xar doxipaciar oTov TOYEd TG UNYaVIXNE uddnong.
Emié€ape ouyxexpylévo va epyacToOUE UE €val UTOGUVOLO YEWOYpupwY Pnplwy, Tteplopilov-
TAG TNV EMAOYT Uag o téacepa and Ta 0éxa drdéowa dnpla: 0, 1, 4, 8. And autég Tig
téoocplc xotnyopleg, emhé€aue tuyala 1000 exdveg yio v avdiuvon wac. To apyxd upog
Briwo tepiAduPBave Tov uTtohoyloud Tou Tivaxa Euxieldeiwy aroctdocwy, o onolog anexovilet
TIC OUABIXEC AMOOTACELC UETOED OAWY TWV EXOVKOY OTOV Ywpeo Twv pixel. Katémy, mpory-
HATOTIONOOUE PEIWOT) BLUCTATIXOTNTOG, UE OTOYO TNV UTELXOVIOT] TOV OEBOUEVWY GE BUO OL-
actdoelc. Xenowwomotoope xou to dVo akyoptduoue, to Pattern Search MDS xou to MDS
ue Opdonua yio autd T0 €pyo. Edoupetind, xou ot 600 alyoprduol TETuyay TopoUoto eninedo
axplBelag, 6mme delyvouy T opdiyata Stress Toug. o va foriricouue otny ontixomoinom
TOV ATOTEAECUATWY UAS, avaTiIEcaUe BLoXELTE YEOUATA GTLS DLUPOPETIXEC XATTYORIES YELRO-
Yeapwy Ynplwy, avtiotoryiCovtag ta 0, 1, 4, 8 oTar x6xxvo, TopTOXOAL, xiTetvo, uef avtio-
Totya. Ot TpoxONTOUCES EVOWUATMOELS amoxdiupay €va evilapépoy anotéreoua. Ot ahyodpl-
Yot MDS Biatnpoloay emTUYOS TIC YEWUETEIXES OYETELS HETAEY TWV YEWROYRUPLY Ynplwy.
Ewwotepa, to dnepio mou avixay otnv Bl xatnyopio elyoy TNy Tdon Vo cUGCWEEHOVTIL
uall oe ouumayeic urtoywpeoug 2D Euxeidelog, topouoldlovtog Ty anoTEAECUATIXOTNTA TNG

TREOCEYYLIONG HaC.
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Extetopévn Eninvued Ilepiindm

Mnist Digits - 100 Landmarks MDS Total Time: 0.38 sec

Figure 3. Landmark MDS

INo va ouveyloouye, yenowonoloue €vo utocUvolo and 3000 eixdVe XL TEAYUATOTOLOVUE
yYeouuxn pelworn ddotaong yenowonowwviag to Pattern Search MDS xou to Landmark
PSMDS pe 100 o 300 onueta avapopds yia vo AdBouue evowuatooelg 10 dwotdoeny. [a
v a€loAoYNoT NG amodoone Twv ahyoplduwy, exteieiton Tagivounon K-Nearest Neighbor
(KNN) yenotponowdvtag Slapopexée TopauéTpous xovivdtepny Yertovwy. Eriong, dieldyw
tagwounon KNN otov apyind ydpo ywelc va mporyuatonowd onodnnote peiwon dido toong
Yl Vo amoxThow xohdTepr emontela Tng axp{Belac. Xpnowonototvton 2700 exdveg wg oOvoro
exnatdevone xar 300 we alvoro doxwne. O ypedvog extéheonc BeATiOVETAL YE To onueia
avapoedc, eve 1 yenon 300 onueiwy avagopdc avtt yio 100 odnyel oe xahbtepeg Paduoroyieg
axp{Belog.

IMot vae epPotdvouue mepoutépw otV avdAuoy| yag, doukédaue pe éva UTOGOVORO TOU
amotelelton and 3000 exdveg xan mpaypatomothoaue pelnon didotaong oe 10 SlacTdoelc ue
xan Tig 000 TEYVIXEG. 2T Sladwacta afloAdYNong Uoc, yenolonotiooue Ty tokvounorn K-
Nearest Neighbor (KNN), neipopotiloyevor pe Sidpopec pUIIOES XOVTIVOTER®Y YELTOVWY.
Emuniéoyv, die€dyope tovounon KNN oto apyixd dedoyéva, TopaxduUmTovIaS OmoldnnoTe
uelwon didotaong. Autr 1 tpocéyylon nopelye TOMITWES TANPOPORIES OYETXS UE TNV axpifeia
TV anoTeAeopdtoy yoc. [ o mewpduoatd o, ywpelooue Tto dedouéva o 2700 edveg yia
exnaidevon xou 300 ewxdvee yio Soxaoctixolg oxomols. Eiva aoonueiwto 6t 1 yeron
onuelwy avapopds Behtinoe onuavtxd Tov yeovo extéreons. Emmiéov, n yerion 300 onueiwy
avapopds, avti yio 100, 0drynoe oe xahbtepes Poduoroyies axpiBelog, unoypouuilovtag tnv

ATOTEAECUATIXOTNTA TN UeVodohoyiog pag.
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0.3 IIpoBinua Set-MDS

Method Dimensions Time(sec) K=3 K=5 K=7 K=9
Initial 784 - 090 0.89 091 0.92
PSMDS 10 140.54 090 0.87 0.89 0.89
100LandmarksPSMDS 10 11.53 0.83 086 082 0.81
300LandmarksPSMDS 10 19.55 0.89 0.89 0.88 0.86

Table 1. YXUykpion texvikdv ueiwons daotatikotnas yia to oUvolo dedopévwy MNIST
pe oudotaon evowudtwons ion ue 10. I'a wnv ta&wdunon, xpnoonoeitar o akydpiduog
KNN e dapopetiké apidud mAnoiéotepwr yertdvwr (napdpetpos K). H othiin "Xpdvog”
kaOopiler To xpoviké didotnua mov ypeidotnke kdle uébodog ya va vmoloyioer 6Aa ta 61
avtouata evowudtwons. To "Apxiké" avtiotoiel otnr extédeon tou KNN oto apyiko
owvioua viPnAng daotatikotnTas xwpls kapia peiwon daotatikoTnras.

0.3 IIeoBAnua Set-MDS

Y70 6eUTEPO PEPOG TNG OIMAWUATIXAC, OiVOUUE TOV Optoud Tou TeoPAfuatos Set-MDS xou
TpooTodolue Vo Brooue ula TpooeY Yo Tixy) Abon avantiocovtag Tov alyoprduo COSMOS.
To npofAnua mou tpootadolue va emhloouye etvar topduoto pe To MDS, ouwe twpo o de-
douéva etvon opyavwuéva oe abvora. O ywpeoc pog TAEoy Bev elvon UETEIXOC, xoKC Ol Anoo-
TdoELg avduesa o€ alvoha GNUELY ToEoBtdlouy TNV Terywvixy) aviootnta. Acdouévou Aottdv
EVOG PETEWOD YOEOU Xal EVOC Tivoxa amooTdoewy cUVORWY A, o omolog 0ev elvon amopolTrnTa
HETEXOC, xatooxeudloupe Evay mivaxo avomapdotaone X ue onueio L- Sloaotdoewy, xoog
xan o Slakpeon Twv onueiwy oe chvola, WoTe o Tivaxag Tivaxag Tou TpoxdnTel and To X va
elvar 660 TO BuVaTOV TO xOVTd 0TO A.

To npdBAnua Set-MDS, 6nwg opiletan, amoTteAel yiar UTOAOYLO TiXT) TEOXANCT XIS XATATAC-
oetar ot npoPAfuata NP-complete. Amotehel mpoAnua Beitiotonoinong 6mov o otdy0C
elvor vo ehaylotontotndel 1 Sopopd ueTal evOC SOOUEVOL TVOXOL ATOC TAGEWY XOL TOU TiVaXaL
OMOC TACEWY TOU TROXVTTEL A6 Lol TEOTEWVOUEVY] OVATUEAC TAGT|, oNuelwy. AuTh 1 Slodixacta
elvow meplmhoxm xan 0dnyel o€ Evay TepdoTio Yweo avalhTNone AUGEWY Ue TOAAG SUVNTIXE TOT-
wd ehdytota. Emmhéov, 1 opydvwon tov onueiwy ot Eexywplotéc opddes (obvola) tpooiétel
évay emmAéov Badud ToALTAOXOTNTIS, XAVDS O APLIUOS TWV TPOTMY YL VAL YIVEL O BloELo-
HOC auTOC UEAVETOL YRTYORA UE TEPLOCOTEPX OTUELaL.

O olyoprdpoc COSMOS ebvar, yio v oxp{Bela, plor enéxtaon tTou oiyoplduou Pattern
Search MDS xou €yet oyedloo el ldxd Yior vor AELTOURYEL UE GUVORXL OVTIXEWEVWY 1| ONUElwY
0edoPEVLY, avTl yio uEPoVeUEVa onueia, Tpoxewévou va emthioel To TeoBAnua Set-MDS.
Auth ) eupno T mEocéyyioT €xel oyYedloTEl Yo Vo TapEyEl amodexTéC AUOEIC UE EUXONaL

EVTOC TOALWVUULXOU YEOVOU, [Lol SLOmio TwoT) Tou eMBEBoUMVETOL oo To TELQOUATING oG EU-
e
0.3.1 Ilpotewvdéuevn MéBodog - O aryoéprdpnoc COSMOS

H eicodoc otov ahyodprdud eivar évoc mivaxoc andctdoewy A, o onolog TEQIEYEL anoo-
Tdoelg avdyeoa o sets, 1 OldoTaon L tou yweou xodoe xar o apiduds Twv dlaondoewy k.

O olyopripog Eexwvder mapdywvtag onueio dtaotdoewy L xan tpéyovtoac tov LPS-MDS ai-
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YopLUOo €TOL WOTE VAL AMOXTACEL Uiol XAADTERT) OPYIXOTIOINGT] TWV OMUElWY. XTNV CUVEYELXL O

aryopriuog Va apyioel vo dlond k onuela.

e Bpeeilte ) véa dwidpeor dnuouvpyoviag 2 * L tuyalor onueio ye dlactdoeic L oTtov
EVOWUATOUEVO YOEO XL ovodéTovtog xadéva amd autd oe éva abvoro. Emiélte Tov
oLYOLACUO TOU OTNUEOL XL TOU GUVOAOU TOU EAAYLOTOTOLEL TO GYAAUA TEPLOGOTEQRO.

To X éyel Twpa €va axdun onueto.

e Troloyiote tic Euxheldeiec anootdoeic petall tou veoouotadévtog onueiou dalpeoncg
xaL OAWV TV GAAWY onuelomv. 3T cUVEYEl, TEOCVECTE Uiol VEO YEOoUUY Xat GTAAN
otoV mtivoxa Dpoints, 0 onotog anotnxelel Tic Euxieldeieg anootdoeig Yetald OAwY TwV
onuelwy. Autdg o mivaxag amotehel T Bdomn yiot TNV XATAOXEUT] TOU Tivoxa amdoTaoNg
OLVOAWY, Tou GUUBOMLET WC Diers, OTOU TO GTOLYEID d;j AVTITPOCKTEVEL TNV KOV

an6oTACT) CLVOALY, OTws xadopileta otny E&lowon 5.1.

e Metwaviote xdlde onuelo x; og évav opalpa axtivac r yOew and to onueio x;, OTwe
oto Yyfua 3.1. EméEte v xateduvon mou ehaylotonolel To GQaAUa TEPLOCOTERO.
To opdhua eivor 1 axdroudn e&lowaon: 6Tou To e AVTITPOCWTEVEL TO UECO TETEAYWVLXO
o@dhpo (MSE) otouyeio mpog otoryeio uetoll tomv 800 TVeXmY anooTIoEwY GUVOLLY.
H ouvdptnon otédyou elvan mopdpota ye tn ouvdptnon MDS Stress, oAl to mivoxeg

Topa elvan Tivaxeg GUVORWY.

fD,A)=|D-A|F? =) "i=1") (dij —p;)’, ;6mou; A, DR (3)
Jj=1

0.3.2 Amnoteiéopata

Y€ QUTHY TNV UTOEVOTNTO CUYXEVTROVOUUE ATOTEAEGHUTA TWV TELRUUATMY LOE TOU 0PopoVY

otnv a&lohbdynon tou akyopituou COSMOS.

0.3.3 Xvuvdetixd dcdopéEva

Io ) dnurovpyio Ty Luvdetixdv Acdopévwy yio autd to melpopa, Eextviooue T Oi-
adtxacto dnutoveyOvTag 1 Tuyala onueia, xodévo ue L Sl TEoELS, OTOU OL TWES XUUAVOVTOL
a6 —1 €wg 1. X1n ouvéyela, autd To p onuelor avotédnxay tuyaia o v cbdvolra. To
amotéheoua tepthauBdver évay mivaxa amoctdoewy, Tov A € RY*Y | xou évoy mivoxo Setxty,
Tou GUPBOALETH ©C Mers € RPXE, AettovpydvToc ©¢ aviiotolyion uetofh Tov dlavuopdtony
TOL ToEAYOLY ToV A %o TwV ¥ cLVoAwy. H npocdoxio pog eivon 611 0 akyodpripuog COSMOS,
dedouévou tou Tivoxa A xou Tou aptiuol k otny elcodo, Yo ondoet axpBde To cwoTd onueia.

Ytov mivoxa 2 mopoxdtey cuvoilovtar To amoTEAECUTA TOAATAGY TElpoudToY. Al
evepYroae melpdpota e Sidpopo aptiud onueiwy (1000, 500, 100) xou Sidgpopo aptdud Oi-
apéoewyv k (1, 5, 10, 20, 50, 100, 150, 200, 300, 400, 500), TEaYUATOTOLOVIAUS TUUTOYEOVA
uelwon dlaoTatxdTNTag and 3 dlaotdoelc o 2. Ltdyog pog eivon va olohOYCOUUE €AV O

aryopripoc COSMOS emAéyel vo xAVeL TIC OWOTEC DLUPECELS. LUYXEIVOUUE TA OVOUEVOUEVAL
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0.3.4 Opoiotnra Aé€ewy -

Men & Simlex

TeEAXd 0Ovord Mers TOU TEOXOTTOLY Amd Tot GUVIETIXG BEGOUEVAL UE TNV €£000 TOU AAYO-

elipov. To anmoteréopata detyvouv OtL 0 ahyodprluog COSMOS unopel vo avayvwploet ue

106001t dve Tou 65% Tic crwoTéS Slpéoelc.

, Awigtonic |1 g | 90 | 50 | 100 | 150 | 200 | 300 | 400 | Méooc Opoc
Ynuela
1000 1.00 | 0.80 | 0.75 | 0.72 | 0.64 | 0.65 | 0.65 | 0.65 | 0.62 0.70
500 1.00 | 0.80 | 0.65 | 0.68 | 0.60 | 0.71 | 0.58 | 0.62 | 0.62 0.66
100 1.00 | 0.60 | 0.60 | 0.70 0.67

Table 2. O rnivaxas ovvoyiler ta aroteAéopata ToAdamAdv nepapudtwy. Aelyvel to Tooooto
emruxynuévwy Oaipéoewy o€ mepduata ue owdgpopo aprud onueiowv p ka1 owipéoes k

0.3.4 Opoiotnta Aé€ewy - Men & Simlex

[Mo autd to melpaya ypnowonototue ta oOvola dedopévewy MEN xa SimLex-999. Ko

Tor 800 cUVoAa BeGouEvwy amoteloOVTOL amd Aloteg (euvyapldv AéZewy, 6mou xdide Ceuydpl

ouoyetiCeton ye €va Padud oyoldtntac. Autdg o Paduodg utohoyicTnxe TalEVOVTIS TOV UEGO

OPO TV OUOLOTHTWY Tou Tapelyay avipmnivol aglohoynTéc.

Yo melpopa yenowwomowolue ta 300-idotata dravdoupata GloVe, wg elcodo otov oh-

yYoprdpo. Melvoude Tn SLac TATIXOTNTA TWV BLAVUOUATOY 6TNy emduunty| odotacn L xau

umohoyilouye T0 cuVTEAETTH CUGYETIONG Spearman YeToll TwV avipOTVE TUPEYOUEVWY XKoL

7 4 7 ’ 4 7 4
TOV QUTOPATO UTOAOYIOPEVWY Bordudy opototntac. To aroteréoyota cuvoldilovtor otov mi-

voxa 2 v L = 10. IHapatneotuye 61Tt oo PSMDS xou Landmark PSMDS napdyouv ta

xohOtepa anoteréopato yio 1o MEN, n UMAP eivon omoteleopotiny yioo to SimLex-999,

evey 0 ahyopriuog COSMOS éyel eniong xahd amotehéouoTa.

Meédodoc Awotdoeic  MEN  SimLex-999
- 300 0.74 0.37
PSMDS 10 0.68 0.30
300 Landmark PSMDS 10 0.67 0.23
100 Landmark PSMDS 10 0.61 0.21
SMACOF 10 0.56 0.23
UMAP 10 0.29 0.44
COSMOS(2 drupéoeic) 10 0.59 0.25
COSMOS(20 droupéoeic) 10 - 0.25

Table 3. XUykpion texvikwv peiwons owaotdoewy o€ opoidtnta Aéfewv e xpnon twy
ouwvodwy dedopévwy MEN ka1 SimLex-999.
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Chapter

Introduction

1.1 Motivation

In a time when we’re surrounded by more data than ever before, it’s crucial to be
able to simplify complicated information into something we can easily understand and
use. Data visualization turns data into graphics, helping people make sense of it. It’s like
building a bridge from a sea of numbers to our human minds. From the days of Florence
Nightingale, who used diagrams to show why soldiers were dying in the Crimean War, to
today’s dynamic charts that help with important business choices, the skill of turning data
into visuals has evolved greatly.

Data visualization relies critically on the process of dimensionality reduction, especially
in today’s era where data is exceedingly complex and multidimensional. To effectively vi-
sualize and interpret this data, it’s crucial to distill it down to its most significant aspects.
Numerous established techniques are employed across various fields to achieve this, en-
abling the extraction of key insights from the high-dimensional data. These methods not
only simplify the data for analysis but also uncover underlying patterns and relationships,
making complex information accessible and comprehensible. For example, Uniform Mani-
fold Approximation and Projection (UMAP) is used in medical data analysis to visualize
patient data based on various health metrics. This can help in identifying subgroups
of patients with similar health profiles or responses to treatment. Also, researchers use
Isomap in the analysis of brain imaging data to uncover patterns related to brain activity,
connectivity, and neurological diseases.

In this thesis we are having a insight to Multidimensional Scaling (MDS) that is used
across various fields to analyze and visualize complex, high-dimensional data. In psychol-
ogy, MDS helps in understanding human perception by visualizing how individuals perceive
similarities or differences among various stimuli. It’s used in areas like psychometrics to
analyze questionnaire data. In genomics, MDS is used to visualize genetic distance or
similarity among different species or individuals. This is crucial for understanding genetic
relationships, evolution, and population genetics. In health sciences, MDS can help visu-
alize patient data, similarities in symptoms or diseases, and other medical data for better
understanding of health patterns and diagnosis. MDS assists in exploring linguistic data,
such as phonetic data, to uncover patterns and relationships in languages and dialects.

Furthermore in this thesis, we explore a very interesting phenomenon that we are facing
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Chapter 1. Introduction

in multiple fields in our world; the violation of triangle inequality across the data. We are
going to give an example in word embeddings, and more specifically we have worked on
the phenomenon of ’'semantic ambiguity’ or 'polysemy’ of the words. We have developed
an innovative algorithm as an extension of MDS that identifies the dual meaning of the
word ’book’ and visualizes it two times; once close to 'travel’ and once close to ’library’.
These two words are semantically far away from each other, and this phenomenon violates
the triangle inequality.

Beyond the realm of linguistics, similar complexities are observed in various fields. For
instance, in social network analysis, a person may have different types of relationships
with others —friends, colleagues, family— each representing different social contexts.
Similarly, in recommender systems, a single item (like a movie or product) may bridge
disparate user groups with unique tastes, lacking mutual resemblance. In genomics, a
gene’s involvement across multiple biological pathways or diseases illustrates its proximity
to diverse gene clusters, which may not exhibit a close relationship amongst themselves.
The healthcare sector presents another example, wherein a symptom could signify various
diseases, each proximate in the symptom-disease matrix, yet the diseases themselves remain
unalike. Lastly, in robotics, a robot’s action may serve multiple tasks, such as 'grabbing’,
which is relevant to both ’cooking’ and ’assembly’, despite these tasks diverging in the

context of a robot’s operational paradigm.

1.2 Thesis Contributions

The contribution of this thesis consists of two parts. In the first part, we attempt to
improve the complexity of the Pattern Search MDS algorithm, as described in [1], using
the Landmark Points method as outlined in |2, 3]. Pattern Search MDS is an innovative
algorithm that is an extension to classical MDS and uses derivative-free techniques, so
no gradient descent is applied. In addition to this approach, in this thesis we are using
the Landmark Points in order to improve the complexity of the algorithm. Our results
are exceptional and they dramatically reduce the execution time of the algorithm without
compromising the quality of the outcome.

In the second part of our thesis, we are developing an extension of MDS, the COSMOS
(COmmon Sense Multidimensional Optimization Splitter) algorithm, a heuristic algorithm
that is trying to solve the Set-MDS problem. Below we will give an informal definition of
the Set-MDS Problem:

Informal Definition of Set-MDS Problem

Given a metric space X C R"™ and v, u,d € Ny such that v < p and a dissimilarity
matrix (non- necessarily metric) Dy, of v-sets of u points, construct a representation
matrix X,,.4 and a separation of y points S = {S1,---,8,} : S;NSj=¢ and | JS; |=p
such that the induced dissimilarity matrix of X is as much as possible close to D.

The Set-MDS problem, as defined, presents a computational challenge indicative of
NP-complete problems. Primarily, it involves an optimization task where the goal is to
minimize the discrepancy between a given dissimilarity matrix and the induced dissim-

ilarity matrix of a proposed representation. This task is complicated by its non-linear
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and non-convex nature, leading to a vast search space with many potential local minima.
Additionally, organizing points into separate groups (sets) adds another layer of complex-
ity, as the number of ways to do this increases rapidly with more points. The problem’s
involvement with high-dimensional spaces further adds to its complexity.

COSMOS algorithm, is in fact an extension of the Pattern Search MDS and is specif-
ically designed to work with sets of objects or data points, rather than individual points,
in order to solve the Set-MDS problem. This heuristic approach is engineered to effi-
ciently provide approximate solutions within polynomial time, a claim substantiated by

our experimental findings.

1.3 Chapter Outline

The thesis is structured as follows:

Chapter 2 provides an overview of machine learning fundamentals and the process of
dimensionality reduction. Initially, the first chapters cover key ideas in machine learning,
such as Supervised, Semi-Supervised, Reinforcement, and Unsupervised learning. This
thesis focuses on the application of unsupervised learning, specifically using the PSMDS
and COSMOS algorithms. Later parts of the chapter discuss briefly the importance of
dimensionality reduction, introduce manifold learning, and present some widely recognized
algorithms from existing literature.

Chapter 3 focuses solely on one dimensionality reduction method, MultiDimensional
Scaling (MDS). We choose to discuss MDS separately, as it is central to our research. We
start by discussing the established versions: Classical, Metric, and non-Metric MDS, as
found in existing literature. Section 3.4 introduces a new method called Pattern Search
MDS (PSMDS). We briefly explain this method as it is prior to our work. This innovative
technique approaches nonlinear manifold learning without relying on gradient descent op-
timization. It builds on Classical MDS, aiming to optimize the placement of data points
in a new space. Rather than using gradients, it uses 'moves’ within a set radius to assess
and adjust the positions of these points.

Chapter 4 discusses an improvement to the PSMDS algorithm by incorporating Land-
mark points. We highlight this addition as a significant contribution of the thesis, noting
its role in increasing the complexity of the algorithm and yielding notable results in our
experiments.

Chapter 5 introduces our proposed COSMOS algorithm. We start by mathematically
defining the Set-MDS problem and then briefly explain the development process of our
algorithm. The chapter concludes with a presentation of some experimental results.

Finally, Chapter 6 includes conclusions inferred from the thesis and provides an outlook

into the future.
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Chapter

Machine Learning and Dimensionality Reduction

2.1 Defining Machine Learning and Artificial Intelligence

Artificial Intelligence (AI) and Machine Learning (ML) are two different yet closely
related terms that are often mistakenly used interchangeably. While all machine learning
is a form of AI, not all Al relies on machine learning. Together, both Al and ML are

reshaping industries by offering data-driven solutions and augmenting human capabilities.

2.1.1 Unraveling Artificial Intelligence (AI)

Artificial Intelligence refers to the simulation of human intelligence in machines that are
programmed to think and act like humans. It encompasses a broad range of technologies
and methods that allow machines to perform tasks that typically require human cognitive
functions, such as problem-solving, pattern recognition, understanding natural language,
and decision-making. Al can be rule-based, where it operates under a set of explicit
instructions, or it can use machine learning algorithms to adapt to data and improve its
operations over time. The ultimate goal of Al research is to create systems that can perform
tasks that, when done by humans, are considered to require intelligence. This includes tasks
like visual perception, speech recognition, strategic planning, and even artistic endeavors.
AT applications are pervasive in today’s world, impacting sectors from healthcare to finance

to entertainment.

2.1.2 The Role of Machine Learning (ML)

Machine learning is a subfield of Al that plays a pivotal role in realizing the AI dream.
ML focuses on developing algorithms that allow computers to learn from and make decisions
based on data. Instead of being explicitly programmed to perform a task, a machine
learning model uses patterns and inference to improve its performance over time. The
learning process involves feeding large amounts of data to the algorithm and allowing
it to adjust its internal parameters to make accurate predictions or classifications. ML
encompasses various techniques including supervised learning, where the model is trained
with labeled data; unsupervised learning, where the data isn’t labeled; and reinforcement
learning, where an agent learns by interacting with its environment and receiving rewards

or penalties for its actions. Machine learning applications are diverse and range from email
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filtering and recommendation systems to image recognition and autonomous driving.

2.2 Types of Machine Learning

Machine Learning methods are typically segmented into three main categories based
on the type of feedback provided to the learning algorithm: Supervised, Unsupervised, and
Reinforcement Learning. Additionally, some systems employ a combination of methods,
as seen in Semi-supervised Learning that combines both Supervised and Unsupervised
methods.

2.2.1 Supervised Learning

In supervised learning, the objective is to derive a function based on provided input-
output pairs. The system receives sample inputs alongside their corresponding desired
outputs, known as labeled training data, provided by an instructor. The goal is to learn a
mapping or a function that can successfully associate inputs with outputs. By examining
the labeled data, a supervised learning technique can deduce a function. Ideally, this

function will accurately predict outputs for new, previously unseen input examples.

2.2.2 Unsupervised Learning

Unsupervised Learning deals with unlabeled data, where there are no predefined output
labels. The algorithm tries to find inherent patterns or structures in the data. Also known
as self-organization, unsupervised learning allows for modeling of probability densities over
inputs. Clustering and dimensionality reduction are common tasks in unsupervised learn-

ing.

2.2.3 Semi-Supervised Learning

Semi-supervised Learning approach combines elements of both unsupervised learning
(without labeled training data) and supervised learning (exclusively using labeled training
data). Utilizing unlabeled data alongside a limited set of labeled data can enhance the
learning outcome. Gathering labeled data is a costly procedure usually demands expertise
or specific experiments. For this reason fully labeled datasets can be often impractical. In
contrast, procuring unlabeled data is more cost-effective, making semi-supervised learning

highly beneficial in practical scenarios.

2.2.4 Reinforcement Learning

In Reinforcement Learning approach an agent learns how to behave in an environment
by taking actions and receiving rewards or penalties in return. Instead of being explicitly
taught, the agent learns from trial and error, aiming to discover the best strategy, called a
policy, to obtain the maximum cumulative reward over time. Unlike supervised learning,
it doesn’t require labeled input/output pairs and doesn’t demand immediate corrections

for actions that aren’t optimal. The problem framework is often expressed using a Markov
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decision process. Many reinforcement learning strategies employ dynamic programming
methods. However, these algorithms stand apart from traditional dynamic programming
techniques as they don’t rely on a precise mathematical model of the Markov decision

process and are tailored for scenarios where exact methods are unfeasible.

2.3 Dimensionality Reduction & Manifold learning

Dimensionality reduction is a technique used in machine learning and statistics to
reduce the number of input variables or features in a dataset without losing essential
information. It aims to capture the most important information contained in the data
using fewer features, making the data more manageable, reducing computation time, and
potentially improving model performance.

Perhaps the most obvious usage of dimensionality reduction is visualization. By re-
ducing dimensions, data that lies in a high dimensional space can be visualized in 2D or
3D spaces, helping in understanding patterns, clusters, or relationships within the data.
Beyond visualization, dimensionality reduction enhances storage since less space is needed
when data dimensions are reduced. It also optimizes computational performance, as pro-
cessing lower-dimensional data is faster and allows many algorithms to converge more
quickly on simplified data. Furthermore, it can lead to better model performance as keep-
ing the most important information can be equivalent with removing noise or redundant
features.

For example, a field that Bioinformatics. The whole human genome consists of around
3 billion base pairs. When we consider sequencing data from thousands of individuals for
genome-wide association studies, the datasets become massive. By applying dimensionality
reduction techniques, researchers can pinpoint the specific regions of the genome (or specific
Single Nucleotide Polymorphisms, SNPs) that are of interest and store only that reduced
data. This significantly cuts down on the storage requirements, allowing for efficient use of
storage resources and faster data retrieval. Consider a surveillance system that processes
video feeds to detect unauthorized intruders. The raw video data is high-dimensional,
consisting of pixel values for each frame. If we were to process this high-dimensional data
in real-time, it would require immense computational power and might not deliver results
quickly enough. By using dimensionality reduction techniques, the system can focus on the
essential features of the video feed that pertain to object detection, drastically reducing
the computational burden. This enables the system to process video feeds faster, making
real-time detection feasible and more responsive.

Numerous dimensionality reduction strategies exist, all stemming from different as-
sumptions and contexts. We're interested in a specific approach that identifies high-
dimensional data as potentially being simpler than it seems. Often, a dataset with many
features might have several that all relate to a single root cause. This is common, for
instance, in videos taken of an object from multiple viewpoints at once. Such datasets
might have redundant information, and it would be beneficial to have a more streamlined
version that corresponds to the primary elements guiding the data. This concept is struc-

tured around the idea of a "manifold", suggesting that data exists on a low-dimensional
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surface within a high-dimensional space. This low-dimensional space mirrors the primary
elements, while the high-dimensional one represents feature space. The process to discover

this structure is called manifold learning.

2.4 Manifolds

A manifold is a fundamental concept in mathematics, particularly in geometry and
topology. In intuitive terms, a manifold is a space that is "locally" similar to Euclidean
space. That means that if you zoom in closely enough to any point on a manifold, it will
look like a flat, n-dimensional space. A manifold is a topological space that, for every
point, has a neighborhood that is homeomorphic (i.e., topologically equivalent) to an open

subset of Euclidean space R™ for some n.

Consider the curve shown in figure 2.1 Note that the curve is in R3, yet it has zero
volume, and in fact zero area. The extrinsic dimensionality — three — is some-what mis-
leading since the curve can be parameterized by a single variable. One way of formalizing
this intuition is via the idea of a manifold: the curve is a one-dimensional manifold because
it locally “looks like” a copy of R'. Another good example of manifold is the earth. A
good example of a manifold is the Earth (Figure 2.2). Locally, at each point on the surface
of the Earth, we have a 3-D coordinate system: two for location and the last one for the

altitude. Globally, it is a 2-D sphere in a 3-D space.

Figure 2.1. A one-dimensional manifold embedded in three dimensions.
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Figure 2.2. Earth is an example of a manifold.
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2.5 Dimensionality Reduction Algorithms

In the ever-expanding landscape of data-driven research, the burgeoning volume and
complexity of high-dimensional datasets pose formidable challenges. As datasets grow in
dimensions, so does the intricacy of analysis and interpretation. The field of dimensionality
reduction algorithms emerges as a pivotal player in this narrative, seeking to distill the
essence of data by transforming it into a more manageable form without sacrificing critical
information. Through the lens of these algorithms, the pursuit of meaningful patterns and
relationships within vast datasets becomes an attainable endeavor. This thesis navigates
the realms of dimensionality reduction, with a primary focus on the venerable Multidi-
mensional Scaling (MDS) technique and its extended variant designed to accommodate
non-metric distance matrices. By unraveling the complexities of high-dimensional spaces,
this research endeavors to contribute to the foundational understanding of dimensionality
reduction and its far-reaching implications in diverse scientific and practical domains.

High-dimensional datasets can be very difficult to visualize. While data in two or
three dimensions can be plotted to show the inherent structure of the data, equivalent
high-dimensional plots are much less intuitive. To aid visualization of the structure of a
dataset, the dimension must be reduced in some way. The simplest way to accomplish
this dimensionality reduction is by taking a random projection of the data. Though this
allows some degree of visualization of the data structure, the randomness of the choice
leaves much to be desired. In a random projection, it is likely that the more interesting
structure within the data will be lost.

As explained from [4] a manifold is a topological space that locally resembles a Eu-
clidean space. The purpose of Multidimensional Scaling (MDS) is to infer data represen-
tations on a low-dimensional manifold while simultaneously preserving the distances of
the high-dimensional data points. When data lies on or close to a linear subspace, low-
dimensional representations of data can be obtained using linear dimensionality reduction
techniques like Principle Components Analysis (PCA) [5] and classical MDS. In real data
applications, such a linearity assumption may be too strong and can lead to meaningless
results. Thus a significant effort has been made by the machine learning community to ap-
ply manifold learning in non-linear domains. Representative manifold learning algorithms
include Isometric Feature Mapping (ISOMAP) [6, 7, 8, 9, 10], Landmark ISOMAP |[3],
[11],Locally Linear Embedding (LLE) [12, 13, 14, 15, 16], Modified LLE [17] Hessian LLE
[18, 19|, Semidefinite Embedding [20, 21, 22, 23] Laplacian Eigenmaps (LE) [12, 16, 17],
Local Tangent Space Alignment (LTSA) [18],etc.

ISOMAP uses a geodesic distance to measure the geometric information within a man-
ifold. LLE assumes that a manifold can be approximated in a Euclidean space and the
reconstruction coefficients of neighbors can be preserved in the low-dimensional space. LE
uses an undirected weighted graph to preserve local neighbor relationships. Hessian LLE
obtains low- dimensional representations through applying eigenanalysis on a Hessian coef-
ficient matrix. LTSA utilizes local tangent information to represent the manifold geometry
and extends this to global coordinates. Finally, SDE attempts to maximize the distance be-

tween points that don’t belong in a local neighborhood. Also, a common nonlinear method
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for dimensionality reduction is the kernel extension of PCA [24]. A wide class of derivative-
free algorithms for nonlinear optimization has been studied and analyzed in [25] and [26].
GPS methods consist a subset of the aforementioned algorithms which do not require the
explicit computation of the gradient in each iteration-step. Some GPS algorithms are: the
original Hooke and Jeeves pattern search algorithm [27], the evolutionary operation by
utilizing factorial design [28] and the multi-directional search algorithm [29], [30]. In [31],
a unified theoretical formulation of GPS algorithms under a common notation model has
been presented as well as an extensive analysis of their global convergence properties. Local
convergence properties have been studied later by [32]. Notably, the theoretical framework
as well as the convergence properties of GPS methods have been extended in cases with

linear constrains [33], boundary constrains [34] and general Lagrangian formulation [35].

2.6 Linear Methods

Linear dimensionality reduction is a technique used in data analysis and machine learn-
ing to reduce the dimensionality of a dataset while preserving relevant information and
relationships among the data points. It operates under the assumption that the most im-
portant patterns in the data can be captured through linear combinations of the original

features.

The key characteristics and principles of linear dimensionality reduction are:

e Linearity: Linear dimensionality reduction methods assume that relationships be-
tween variables are linear. This means that the new features created during the

dimensionality reduction process are linear combinations of the original features.

e Preservation of Variance: Linear dimensionality reduction techniques aim to retain
as much of the variance in the data as possible while reducing the dimensionality.

High-variance directions in the data are considered to be the most informative.

e Orthogonality: Principal components or linear combinations created by these meth-
ods are orthogonal to each other. This means they are uncorrelated, which can

simplify further analysis.

e Eigenvalue Decomposition: Many linear dimensionality reduction techniques rely on
eigenvalue decomposition of the covariance matrix of the data. This decomposition
yields eigenvectors (principal components) and eigenvalues, where the eigenvectors
represent the directions in which the data varies the most and the eigenvalues repre-

sent the amount of variance explained by each component.

e Feature Ranking: These techniques often involve selecting a subset of the principal
components or linear combinations based on their corresponding eigenvalues. Com-

ponents with higher eigenvalues are considered more important.
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2.6.1 SVD

Singular Value Decomposition (SVD) is one of the fundamental techniques in linear
algebra and data analysis. It is a powerful matrix factorization technique that decomposes
a given matrix into three matrices. These matrices provide insights into the underlying
structure and essential characteristics of the original matrix. SVD has applications in
numerous fields, including data analysis, image compression, natural language processing,
and recommendation systems.

As described in [36] SV D of an m x n matrix A expresses the matrix as the product

of three “simple” matrices:
-
A=UxvT = Zaiuiv? (2.1)

i=1
where
e A is the original matrix of dimension m x n
e U is an m x m orthogonal matrix containing the left singular vectors
e Vis an n x n orthogonal matrix containing the right singular vectors

e Y is an m x n diagonal matrix with nonnegative entries, and with the diagonal entries

sorted from high to low.

The singular values in ¥ are non-negative and represent the magnitude or importance
of the corresponding singular vectors in U and V7. They are typically ordered in de-
creasing order, which allows us to capture the most significant patterns and reduce the

dimensionality of the data.

d n d d
_ d .
n T on n H

A U S vT

Figure 2.3. The Singular Value Decomposition

Consider each row of an n X d matrix A as a point in d-dimensional space. The SVD finds
the best-fitting k-dimensional subspace for £ = 1,2,3,--- , for the set of n data points.
Here, “best” means minimizing the sum of the squares of the perpendicular distances of
the points to the subspace, or equivalently, maximizing the sum of squares of the lengths
of the projections of the points onto this subspace.

As described in [37] Let A be an n x d matrix and think of the rows of A as n points

in d-dimensional space. Let
T
A= Z ol (2.2)
=1
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be the SVD of A. For {k€1,2,---,r}, let

k
A = Zmuw? (2.3)
i=1

be the truncated after k terms. It is clear that A has rank k. We show that Ay
is the best rank k approximation to A, where, error is measured in the Frobenius norm.
Geometrically, this says that vy, - - - , v define the k-dimensional space minimizing the sum

of squared distances of the points to the space. To see why, we need the following lemma.

Lemma The rows of Ay are the projections of the rows of A onto the subspace Vi

spanned by the first k singular vectors of A.

Proof Let a be an arbitrary row vector. Since the v; are orthonormal, the projection
of the vector a onto Vj, is given by Zle(a -v;)v]. Thus, the matrix whose rows are the
projections of the rows of A onto Vj is given by Zle Avvl. This last expression simplifies

to

k k
Z AviviT = Z UiuiviT = A (2.4)
i=1 i=1

1. Dimensionality Reduction: By truncating the singular values and their correspond-
ing singular vectors, SVD can be used to reduce the dimensionality of data while retaining
the most important information. This is particularly useful in data compression and feature

selection.

2. Image Compression: In image processing, SVD is used to compress images efficiently.
By retaining only the most significant singular values and their associated vectors, one can

reconstruct images with minimal loss of quality.

3. Collaborative Filtering: In recommendation systems, SVD is applied to user-item
matrices to uncover latent factors that explain user preferences and item characteristics.

This information is then used to make personalized recommendations.

4. Natural Language Processing: SVD plays a crucial role in techniques like Latent
Semantic Analysis (LSA), which is used for text and document analysis. It helps discover

the underlying semantic structure of textual data.

5. Principal Component Analysis (PCA): SVD is at the core of PCA, a popular tech-
nique for data analysis and visualization. It helps find the principal components that

capture the most variation in high-dimensional data.

Solving SVD numerically can be computationally intensive, especially for large matri-
ces. Various algorithms, such as the Golub-Reinsch algorithm and randomized SVD, have
been developed to make the computation more efficient. These methods are essential for

practical applications of SVD.

Singular Value Decomposition is a versatile mathematical tool with a wide range of
applications in data analysis, signal processing, and machine learning. Understanding its
principles and applications is invaluable for researchers and practitioners seeking to gain

insights from data, reduce dimensionality, and make more informed decisions.
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2.6.2 PCA

PCA stands for Principal Component Analysis, and it is a widely used linear dimen-
sionality reduction technique in data analysis and machine learning. Its primary purpose
is to reduce the dimensionality of a dataset while preserving as much of the relevant infor-
mation as possible. PCA achieves this by transforming the original features into a new set
of uncorrelated variables called principal components.

The definition of the method is, for a given data set and parameter k, to compute the
k-dimensional subspace(through the origin) that minimizes the average squared distance
between the points and the subspace, or equivalently that maximizes the variance of the

projections of the data points onto the subspace, as in shown in the Figure 3.1.

]
‘/M:ximize variance Minimize residuals
(squared distance) (squared distance)
of red dots in in this direction

this direction

Figure 2.4. PCA minimizes the sum of squared perpendicular distances or mazimizes the
variance of the projections of the data

As described in [38] the goal of PCA is to approximately express each of m n-dimensional
vectors 1, ..., T, € R™ as linear combinations of k-dimensional vectors vq,...,v € R™ so
that

k
T, = Zai]‘?}j (25)
j=1

The vectors vy, ..., v € R™ are computed in order to maximize the sum of squared projec-
tion length.
1 m k
EZZ < x4,v) > (2.6)
=1 j5=1
The resulting k orthonormal vectors are called the top k principal components of the data.

Before using PCA, it’s important to pre-process the data.

e Data Centering: PCA starts by centering the data, which means subtracting the
mean of each feature from the data points x1,--- ,x,,. This is easy to enforce by
subtracting (i.e., shifting) each point by the “sample mean” z = % Yoty ;. This

ensures that the new coordinate system is centered at the origin.

Covariance Matrix: Next, PCA computes the covariance matrix of the centered data.
The covariance matrix describes how the features in the dataset vary together. It contains

information about the relationships between the features.
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Eigenvalue Decomposition: PCA then performs an eigenvalue decomposition of the
covariance matrix. This decomposition results in a set of eigenvalues and corresponding
eigenvectors. The eigenvectors represent the directions (principal components) along which
the data varies the most, and the eigenvalues represent the amount of variance explained
by each principal component.

Selecting Principal Components: To reduce dimensionality, you can choose a subset
of the principal components that explains a sufficiently high percentage of the total vari-
ance. Typically, you rank the eigenvalues in decreasing order, and the top 'k’ eigenvectors
(principal components) are selected.

Projection: Finally, the original data is projected onto the selected principal compo-
nents to obtain the lower-dimensional representation. This transformation results in a new
dataset where each data point is described using only the selected principal components.

PCA is often used for the following purposes:

Dimensionality Reduction: By selecting a smaller number of principal components, you
can reduce the dimensionality of your data while retaining most of the information.

Data Visualization: PCA can be used to visualize high-dimensional data in two or three
dimensions by plotting data points along the first few principal components. In order to
do so, the top few principal components (k is 1,2 or 3) can be used as a new coordinate
axis and plot the projections of all of the data points in this new coordinate system.

Noise Reduction: In some cases, PCA can help in reducing noise and improving the
signal-to-noise ratio in data.

Feature Engineering: PCA can be used as a feature engineering technique to create
new features that capture the most important patterns in the data.

PCA technique is a linear technique, which means it’s most effective at capturing
linear relationships between variables. Non-linear relationships may not be well-preserved
by PCA, and for such cases, non-linear dimensionality reduction techniques like t-SNE or
Isomap may be more appropriate.

Lastly, the PCA has some weaknesses. It can get tricked by high-variance noise, and
the orthogonality constraints on the principal components mean that principal components
after the first few can be difficult to interpret. Lastly, as PCA is a linear technique, it fails to
discover nonlinear structure. For such cases non-linear dimensionality reduction techniques
like Isomap may be more appropriate. Some non-linear algorithms will be explained in the

next chapters.

2.7 Non Linear Algorithms - Manifold Learning Technique

Non-linear algorithms in ML are designed to handle data that doesn’t adhere to a
linear relationship, meaning the relationship between input and output is more intricate
and multifaceted. Unlike linear algorithms, which might plot a straight line when trying
to make predictions, non-linear algorithms can curve, twist, and turn to adjust to more
complex patterns in the data.

The algorithms that try to solve the problem of nonlinear dimensionality reduction have

many approaches, some of them are local - they present the local geometry of the data
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(nearby points to nearby points), and some of them are global- they preserve geometry at
all scales(nearby points to nearby points and faraway points to faraway points). Global
approaches give more faithful representation of the data’s global structure, but they are

not as computational efficient as local approaches.

2.7.1 Isometric Feauture Mapping (Isomap)

Isomap was one of the first algorithms introduced for manifold learning. The algorithm
is perhaps the best known and most applied among the multitude of procedures now
available for the problem at hand. It may be viewed as an extension to Multidimensional
Scaling (MDS), a classical method for embedding dissimilarity information into Euclidean
space, that will be explained extensively in the next Chapter. Isomap has a global approach
of solving the problem of nonlinear dimensionality reduction and it consists of three stages

as descripted in [8]:

1. Determine a neighbourhood graph G of the observed data x; in a suitable way. For
example, G might contain x;x; iff ; is one of the k nearest neighbours of z; (and
vice versa). Alternatively, G' might contain the edge x;x; iff |z; — x| < e, for some

€.

2. Estimate the geodesic distances by computing shortest paths in the graph for all
pairs of data points. Each edge z;z; in the graph is weighted by its Euclidean length
|z; — x|, or by some other useful metric. The shortest path can be computed via a

shortest-path al- gorithm (Dijkstra’s or Floyd’s).

3. Apply MDS to the resulting shortest-path distance matrix D to find a new embedding

of the data in Euclidean space.

The problem that Isomap tries to addresses is as follows: when provided with a matrix
D € RVX representing dissimilarities, the goal is to create a group of points whose mutual
Euclidean distances align closely with those in D. Multiple cost functions exist for this
purpose, along with several algorithms to reduce these costs. Our attention is centered on
classical MDS (cMDS) because it’s the technique employed by Isomap. Classical MDS is

extensively explained in Chapter 4.

2.7.2 Isomap with landmark points

In the paper [2]|, two main computational challenges associated with the Isomap algo-
rithm are highlighted. The initial challenge revolves around the calculation of the N x N
shortest-paths distance matrix, denoted Dy. Although Floyd’s method results in a com-
plexity of O(N?3), adopting Dijkstra’s algorithm with Fibonacci heaps can refine it to
O(kN?log N), where k stands for the neighbourhood size. The subsequent challenge is
the MDS eigenvalue computation which deals with a full N x N matrix, bringing along a
complexity of O(N?).

L-Isomap offers solutions to both these computational constraints. Some of the the

data points are defined as landmark points, where n << N. Rather than determining D,,,
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the algorithm computes the n x N matrix, D,, n, representing distances from every data
point exclusively to the landmark points. Using a new procedure LMDS (Landmark MDS),
we find a Euclidean embedding of the data using D,, ny instead of Dy . This leads to an
enormous savings when is much less than , since D, y can be computed using Dijkstra in
O(knN log N) time, and LMDS runs in O(n?N) .

LMDS is feasible precisely because we expect the data to have a low-dimensional embed-
ding. The initial step involves applying classical MDS exclusively to the landmark points,
allowing their accurate embedding in R<. Subsequent data points are then positioned in
R<, leveraging their known distances from the landmark points as guiding constraints.
This approach mirrors the methodology used in the Global Positioning System, where a
limited set of distance measurements are utilized to pinpoint a specific geographical po-
sition. As long as n/gegl + 1 and the landmarks maintain a general position, sufficient
constraints are available to distinctly determine x. The selection of landmark points can
be random, with the stipulation that the number of landmarks should exceed the minimum

of [ + 1 to guarantee stability.

2.7.3 LLE

Locally Linear Embedding (LLE) is a dimensionality reduction technique and is an
unsupervised algorithm that aims to preserve the local linear structures within the data.

LLE is based on the assumption that the relationships between data points are locally
linear. In other words, for each data point, there exists a set of its nearest neighbors for

which it can be linearly represented as a weighted sum of those neighbors.

e Step 1: Constructing the Neighborhood Graph: LLE begins by constructing a neigh-
borhood graph, where each data point is connected to its k nearest neighbors. The
choice of k is a hyperparameter that determines the local neighborhood size. Com-

mon distance metrics, such as Euclidean distance, can be used to define proximity.

e Step 2: Weight Matrix Calculation: For each data point, LLE finds the optimal
weights that best approximate it as a linear combination of its neighbors. These
weights are computed in such a way that minimizes the reconstruction error. This
can be formulated as a minimization problem with constraints. The weights are

typically found by solving a system of linear equations.

e Step 3: Constructing the Lower-Dimensional Embedding: After determining the
weights for each data point, LLE creates a lower-dimensional representation of the
data by minimizing the reconstruction error. This is done by finding a set of coor-
dinates for each data point in the lower-dimensional space that preserves the pair-
wise linear relationships between points in the high-dimensional space. The lower-
dimensional coordinates are optimized using techniques like eigenvalue decomposi-

tion.

Locally Linear Embedding (LLE) stands out as a valuable tool for dimensionality re-

duction and data visualization, particularly in scenarios characterized by nonlinear data
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structures. Its versatility extends across various domains, including image processing, com-
puter vision, and biology, providing a robust means to analyze high-dimensional datasets
and unveil meaningful patterns.

The effectiveness of Locally Linear Smoothing (LLS) lies in its adeptness at capturing
the intrinsic structure of data, rendering it invaluable for tasks such as manifold learn-
ing and the preservation of local distances. Its capability to handle complex, nonlinear
relationships between data points further enhances its utility.

However, it is essential to acknowledge certain limitations. LLE’s performance can
exhibit sensitivity to the choice of the neighborhood size (k), necessitating meticulous
tuning for optimal results. Additionally, challenges may arise when dealing with data
featuring gaps or disconnected components, as LLE heavily relies on local neighborhood
relationships for its computations. These considerations highlight the need for thoughtful
parameter selection and the recognition of specific data characteristics to maximize the

efficacy of LLE in diverse applications. LLE is summarized by [39]

e Compute the k nearest neighbors of each point X;.

e Compute the weights W;; of a convex combination of the k nearest neighbors that

best represent the point X;.

e Find a low-dimensional projection Y; such that the above local representations are

best preserved.

Diploma Thesis






Chapter

Multidimensional Scaling (MDS)

3.1 Classical MDS

The concept of Classical Multidimensional Scaling (MDS) was initially introduced by
Torgerson in [40]. MDS can be formally defined as follows: Given the matrix A containing
pairwise distances or dissimilarities {d;;}1<i j<n between N points in a high-dimensional
space, the objective is to determine a set of points {xl-}fil that reside on a manifold
M € RE while preserving the given dissimilarities {d;;}1<; j<n as faithfully as possible.
Here, XT € RL*N represents the data array containing all points x; € RY, 1 <i < N as
its columns.

The ultimate goal is to obtain an embedding dimension L that is as small as possible in
order to reduce the dimensionality of the resulting manifold M while minimizing deviation
from the given dissimilarities d;;. Typically, Euclidean distances are utilized as d;;(X) =
l|xi — x|z = \/Zézl(xzk — xji)? in the embedded space R”.

Classical MDS incorporates a centering matrix H = Iy — %1%1 ~, which effectively

subtracts the mean of the columns and rows for each element. Here, 1y = [1,1,...,1] is
a vector of ones in RN space. Applying double centering to the Hadamard product of the

given dissimilarities yields the construction of the Gram matrix B as follows:

B— —%HT(AQA)H (3.1)

As Chapter 12 in [41] illustrates, Classical MDS aims to minimize the Strain algebraic

criterion, denoted as:

IXX" - B|[% (3.2)

The matrix B can be factorized as B = VAV where A is a symmetric matrix.The
embedded points in R” are given by the first L positive eigenvalues of A, namely X = V.
As mentioned in [42], it is worth noting that the solution to Classical MDS yields the
same results as Principal Component Analysis (PCA) when PCA is applied in the high-
dimensional space.

Originally, Classical MDS was designed for dissimilarity matrices A that can be closely
approximated in a low-dimensional Euclidean space, as is considered in this study. Nev-

ertheless, matrices that correspond to various spaces, such as Euclidean sub-spaces [43],
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Poincare disks [44], and constant-curvature Riemannian spaces [45], have also been subject

to investigation.

3.2 Metric MDS

Metric MDS describes contains Classical MDS. Shepard has introduced heuristic meth-
ods to enable transformations of the given dissimilarities d;; [46], [47] but did not provide
any loss function in order to model them [48]. Kruskal in [49] and [50] formalized the met-
ric MDS as a least squares optimization problem of minimizing the non-convex Stress-1

function defined below:

Yo Y0 (diy — di(X)
Y YR d(X)

51(X,D) = (3.3)

where matrix D with elements d;-j represents all the pairs of the transformed dissimilarities
d;j that are used to fit the embedded distance pairs d;;(X).
A weighted MDS raw Stress function is defined as:

N N
2 e 2 2
070X, D) = > > " wi(diy — di (X)) (3.4)
i=1 j=1
where the weights w;; are restricted to be non-negative; for missing data the weights are
set equal to zero. In our work, we consider always w;; = 1,V1 <14, j < N where we assume

an equal contribution to the Metric-MDS solution for all the elements.

3.3 Non-metric MDS

In non-metric MDS, rather than using a distance metric, dy(x;,x;), for the distances
between point sin the embedding space, we use f(dy(z;,2;)) where f(.), is a non-parametric
monotonic function. In other words, only the order of dissimilarities is important rathen
than the amount of dissimilarities.

dy(xi,xj) < dy(yr, y1), for the distances between points in the embedding space, we use
f(dy(xi , xj )) where f(.) is a nonparametric monotonic function. In other words, only the
order of dissimilarities is important rather than the amount of dissimilarities (Agarwal et
al., 2007; Jung, 2013):

3.4 Pattern Search MDS

In this section, we provide an overview of nonlinear manifold learning using derivative-
free optimization techniques. Specifically, the Classical MDS algorithm is extended in a
way that no gradient descent is applied. Instead, the points are evaluated in the embedded
space by considering possible "moves" within a fixed-radius sphere. We can establish a

fixed-point convergence guarantee by formulating the proposed algorithm as an instance of
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the General Pattern Search (GPS) framework. Additionally, we illustrate the significance
of Landmark points, which can greatly enhance algorithm complexity and yield impressive
results. The contribution of the thesis focuses on the extension of the MDS algorithm with
the inclusion of these Landmark points, and we support our findings with experimental

results.

3.4.1 General Pattern Search (GPS) methods

A broad range of derivative-free optimization techniques for nonlinear problems has
been extensively investigated and discussed in [51] and [52]. Within this category, there
exists a subset known as GPS methods, which distinguish themselves by not requiring the
explicit calculation of gradients during each iteration. Notable GPS algorithms include the
original Hooke and Jeeves direct coordinate search approach [53], an approach involving
evolutionary operations through factorial design [54] and the multi-directional search al-
gorithm [55], [56]. Furthermore, in [57], a comprehensive theoretical framework unifying
GPS algorithms using a standardized notation model was introduced, accompanied by an
extensive analysis of their overall convergence properties.

Next we present a short description of iterative GPS minimization as described in [4].

First we have to define the following components:

e A basis matrix that could be any nonsingular matrix B € R"*"

e A matrix C*) for generating all the possible moves for the kth iteration of the

minimization algorithm

c®) = [ M® — (O L®) = [T®R k) (3.5)

where the columns of M®*) € Z"*" form a positive span of R” and L*) contains at

least the zero column of the search space R"™.

e A pattern matrix P*) defined as
P® = pc® = | BMW® — M) BLK)] (3.6)

where the submatrix BM ) forms a basis R”.

In each iteration k, the set of steps {sgk) i, are generated by the pattern matrix Pk

st = Abp® p® — p{®), ph] € R (37)

(2

(k)

where p;" is the 7th column of defines the direction of the new step, while A®) configures

the length towards this direction. If pattern matrix P®) contains m columns, then m >

n -+ 1 in order to positively span the search space R™. A new trial point of GPS algorithm
(k+1)

would be x; = x() 4+ sgk) where we evaluate the value of the function f which we

seek to minimize. A successful step would mean a further minimization of the objective
function would mean f, i.e., f(x®*) —i—sgk)) > f(x*+D). A pseudo-code for all GPS methods

is presented in Algorithm 3.1.
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AvcorituM 3.1: General Pattern Search (GPS)

1: procedure GPS_SOLVER(x(?), A® c© B)

2 k=-1

3 while

4: dok=k+1

5: s(®) = EXPLORE_MOVES(BC®), x(®) Ak))

6: k) = f(x(k) + S(k)) — f(x(k))

7 if p*) < 0 then

8 x(b+1) — x (k) 4 g(k) > Successful iteration
9 else

10: x(k+1) = x(k) > Unsuccessful iteration
11: end if

12: A+ cl+1) — UPDATE(C®) |, AK) | (k)

13: end whileconvergence criterion is not met

14: end procedure

Initially, we select x(©) € R™ and a positive step length parameter A > (. In each
iteration k, we explore a set of possible steps defined by the EXPLORE_MOVES() subroutine
at line 5 of the algorithm. Pattern search methods mainly differ on the heuristics used
for the selection of exploratory moves that they evaluate the function f on. If a new
exploratory point lowers the value of the function f, iteration k is considered successful
and the starting point of the next iteration is updated x*+1) = x*) 4-s(*)  Otherwise, if at
a certain iteration we cannot obtain any successful step then the algorithm can produce the
zero-step point. The step length parameter A®) is modified by the UPDATE() subroutine.
For successful iterations, i.e., p*) < 0, the step length is forced to increase in a way that

can be described as follows:

AFFD — AWAR) AR e A = {7wr | 7wial}

(3.8)
T>1, {wl,...,ww} C N, ‘A’ < 400

where 7 and w; are predefined constants that are used for the ith successive successful
iteration. For unsuccessful iterations the step length parameter is decreased, i.e., A*+D <
A®) a5 follows:

AFHD = gAR) g = 70 751wy <0, (3.9)

where 7 and the negative integer wg determine the fixed ratio of step reduction. Generating
matrix C**1) could be also updated for unsuccessful /successful iterations in order to

contain more/less search directions, respectively.

3.4.2 GPS Convergence

Important convergence properties have been shown in [57, 58, 59, 33, 60| for any GPS
method that can be described by the previously defined framework. -|Weak Hypothesis on
Exploratory Moves| The subroutine EXPLORE_MOVES() as defined in Algorithm 3.1, line 5

guarantees the following:
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e The exploratory step direction for iteration k is selected from the columns of the
pattern matrix P%*) as defined in Equation 3.7 and the exploratory step length is
A®) as defined in Equations 3.8, 3.9.

e If among the exploratory moves al®) at iteration k selected from the columns of the
matrix A®)B[M®*) —M®)] exist at least one move that leads to a successful iteration,
ie., f(x® +a) < f(x), then the EXPLORE_MOVES() subroutine will return a move
s() such that f(x®) 4 s®)) < f(x*)).

Hypothesis 3.4.2 enforces some mild constraints on how the exploratory moves would be
produced by Algorithm 3.1, line 5. Essentially, the suggested step s*) must be derived from
the pattern matrix P®*). Moreover, the algorithm needs to provide a simple decrease for
the objective function f at every step. Specifically, the only way to accept an unsuccessful
iteration would be if none of the steps from the columns of the matrix A®B[M®) — M *)]
lead to a decrease of the objective function f.

Based on the aforementioned Hypothesis, a GPS method can enjoy some theoretical

convergence guarantees which are stated rigorously in Theorem. 1 as follows:

Theorem 1. Let L(x(0) = {x : f(x) < f(xO)} be closed and bounded and f continu-
ously differentiable on a neighborhood of L(X(O)), namely on the union of the open balls

U B(a,n) wheren > 0. If a GPS method is formulated as described in Section 3.4./
aeL(x<0))
and Hypothesis 3.4.2 holds then for the sequence of iterations {x(k)} produced by Algo-
rithm 5.1

Jim it [V =0

For the proof of this Theorem we refer the reader to [57].
However, as shown in [61] one can construct a continuously differentiable objective
function and a GPS method with infinite many limit points with non-zero gradients and

thus even Theorem. 1 holds, the convergence of ||V f(x())|| is not assured.

3.4.3 The PSMDS algorithm

As introduced by [1]|, the primary concept underlying the PSMDS algorithm is to
approach Multidimensional Scaling (MDS) as a problem that doesn’t rely on derivatives.
Instead, it employs a modified version of general pattern search optimization to minimize a
loss function. The PSMDS algorithm takes as input an NV x N target dissimilarity matrix
denoted as T and the desired target dimension L for the embedding space. An overview
of the algorithm is presented in Algorithm 3.2.

The algorithm’s initialization process includes the following steps:

e Generate N random points in the embedded space with the final -desired L dimen-
sions. X(©@ = [:Ego),méo), ...,xg\(,))] € RVXL X = [z1, 29, ..., x| € RVXL

e Compute the distance matrix between points. The element d is the Buclidean

]
distance between vectors acgo) and xg-o) of X(©
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e Calculate the initial approximation error e(®) = ||A — D||2, where e represents the
element-wise mean squared error (MSE) between the two matrices. The objective
function which is optimized for all PSMDS is shown below and is the stress function
for MDS:

N N
f(A,D) =[|A=DI% =Y (6 — dij)*, where A, D € RNV (3.10)
i=1 j=1

ALGORITHM 3.2: Pattern Search MDS

1: procedure PSMDS(A, L, r©)
2: k<+0 > k is the number of epochs
3 X® « UNIFORM(N x L)
4. DW « DISTANCE MATRIX(X®)
50 e« [|A-D|3
6 e  4oo

7 rk) — (0

g8  while r®) > § do

9 if ev=1) — ek < ¢.¢e(®) then

10: rk) %

11: end if

12: S + SEARCH COORDINATES((*), L)

13: for all z € X*) do

14: X*, e* < OPTIMAL MOVE(D®) X®) g S )
15: e(k_l) < e(k)

16: ek) « e*

17: X (k) X

18: D) « UPDATE DISTANCE MATRIX (X*)
19: end for

20: k=k+1

21: end while

22: end procedure

Following the initialization steps, in each epoch (iteration), we consider the surface of

a hypersphere of radius r around each point :ng). The possible search directions lie on
the surface of a hypersphere along the orthogonal basis of the space, e.g., in the case of
3-dimensional space along the directions +z, &y, +2z on the sphere shown in Fig. 1. This

creates the search directions matrix S and is summarized in Alg. 3.3
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(%)

Figure 3.1. Sphere of radius v around point x,

and possible search directions

ALGORITHM 3.3: Define search directions

1: function SEARCH COORDINATES(r, L)
2 St —r. I,

3 ST« —r-Ig

4 S [

5 return S

6: end function

Each point is moved greedily along the dimension that produces the minimum error.
At this stage we only consider moves that yield a monotonic decrease in the error function.
Alg. 3.4 finds the optimal move that minimizes e(k) = f(T, D(k)) for each new point x
and moves X in that direction. Note that when writing s € S, the matrix S is considered

to be a set of row vectors.

ALGORITHM 3.4: Find optimal move for a point

1: function OPTIMAL MOVE(D® X®#) gz S, e*)

2. X« X®

3 e* ek

4 for all s € § do

5: X « X(z)+s > Update z row of X with the new step
6 D « DISTANCE MATRIX(X)

7 ¢ |IT—DI2

8 if € < e* then > If step s produces lower error then update
9 X* X
10: e* e
11: end if
12: end for
13: return X*, e*

14: end function

The resulting error e is computed after performing the optimal move for each point in
X(k). If the error decrease hits a plateau, we halve the search radius and proceed to the

next epoch. This is expressed as e(k)e < e (k), where is a small positive constant, namely
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the error decrease becomes very small in relation to e (k). The process stops when the
search radius r becomes very small, namely r < 8, where 8 is a small constant, as shown
in Alg. 3.2.

3.4.4 GPS Formulation of PSMDS

PSMDS can be expressed by using the unified GPS formulation introduced in Section
3.4.2. Next, we express our proposed algorithm and associated objective function under

this formalism.

To begin with, the problem of MDS is restated in a vectorized form which spans all the
possible coordinates considered for all points. We use matrix A with elements {0;;}1<i j<n
as the dissimilarities between N points in the high dimensional space. The set of points
{x;}¥, lie on the low dimensional manifold M € R¥ and form the column set of matrix
XT. The embedded data matrix X € RV*X will be now vectorized as an one column
vector as shown next:

X = |z, ..., zip)T € RE1<i<N

. . (3.11)
VAR UGC(X ) = [1‘11, veesy L1Ly ooy TN1y ...,I‘NL]

Now our new variable z lies in the search space RV'L. The distance between any two points
x; and x; of the manifold M remains the same but is now expressed as a function of the
vectorized variable z. Namely, d;;(X) = ||x; — x,|| = \/Eﬁ:ﬂxzk — ;)% = dij(z). The

equivalent objective function to minimize g is the MSE between the given dissimilarities

0;; and the euclidean distances d;; in the low dimensional manifold M as defined next:

N N
9(z) = D, — A7 = ZZ(dij(Z) —6;)% zeRNE (3.12)
i=1 j—1

Consequently, the initial MDS is now expressed as an unconstrained non-convex optimiza-
tion problem which that tries to mimize the objective function g over the search space of
RN-L (Equation 3.13). Thus, the degrees of freedom for our solution are L-N corresponding

to the L coordinates for all N points on the manifold M.

z" = min ¢(z 3.13
in, g(2) (3.13)
CSMDS is now expressed in an equivalent way by utilizing the auxiliary variable z. Next,
we match each epoch of our initial algorithm with an iteration of a GPS method. Therefore,
the steps which are produced by CSMDS would form a sequence of points {z(k)} in the new
search space RV'L. Moreover, we define the matrices B, C*®), P(*) for the general frame-
work of CSMDS in an equivalent way to Equations 3.5, 3.6. The choice of our basis matrix
B is the corresponding identity matrix of our search space as shown in Equation 3.15.

e =10, 1 ,.,0",1<i<N-L (3.14)
—~—

index 1
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B =1Iyx.r=lel,...,en1] (3.15)

While the identity matrix is non singular and its columns span positively the search
space RVE | we also define M®) as the identity matrix. In Eq. 3.16 matrix F(k)) represents
the movement alongside the unit coordinate vectors of R™V¥. Nevertheless, our generating
matrix C also comprises of all the remaining possible directions which are generated by the
set {-1, 0, 1}. In total, we have 3 —2N L extra direction vectors inside the corresponding

matrix LK) as it is shown in Eq. 3.17.

M(k) — M _ INL 6 ZNLXNL
r® =T = [M - M| (3.16)
S={-1,0,1}

L& =L

i— (3.17)

=g

IﬂESX”-Xg/\fL¢€1,...,€NL
—_——
NL

According to Egs. 3.16, 3.17, we construct the full pattern matrix P*) in Eq. 3.18 in a
similar way to Eq. 3.6. For our algorithm the pattern matrix is is equal to our generating
matrix C®) = C which is also fixed for all iterations. Conceptually, the generating matrix
C contains all the possible exploratory moves while a heuristic is utilized for evaluating

the objective function g only for a subset of them.

(3.18)

Finally, we configure the updates of the step length parameter for each class of both
successful and unsuccessful iterations as they were previously described in Eqgs. 3.8,3.9
respectively.

A short description of our algorithm as a GPS method for solving the problem stated
in Eq. 3.13 follows: In each iteration, we fix the optimal coordinate direction for each one
of the points lying on the low dimensional manifold z; € M,1 < i < N. For each internal
iteration of Alg. 3.4, if the optimal direction produces a lower value for our objective
function g we accumulate this direction and move alongside this coordinate of the RN L.
Otherwise, we remain at the same position. As a result, the exploration of coordinates for
the new point x;11 begins from this temporary position. This greedy approach provides a
potential one-hot vector as described in Eq. 3.14 if the iterate is successful or otherwise,
the zero vector 0 € Ryy. The final direction vector §%) for kth iteration is computed
by summing these one-hot or zero vectors. At the kth iteration, the movement would be
given by a scalar multiplication of the step length parameter A®*) with the final direction

vector in a similar way as defined in Eq.3.7. This provides a simple decrease for the
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objective function g or in the worst case represent a zero movement in the search space
Rn1. Regarding the movement across 5, it is trivial to show that this reduction of the
objective function g is an associative operation. In other words, accumulating all best
coordinate steps for each point xiij\il and performing the movement at the end of the kth
iteration (as GPS method formulation requires) produces the same result as taking each
coordinate step individually. Finally, pattern search MDS terminates when the step length

parameter A®*) becomes smaller than a predefined threshold.

3.4.5 Updating the Current Dissimilarity Matrix

In line 6 of Algorithm 3.4 we observe that we recompute the dissimilarity matrix after

we make a move for each point. This can be avoided because each move modifies only one

( (%) )

point xik) , therefore only the row d;’ of the dissimilarity matrix D®*) are

(k)

7

and column d(lj
affected. Furthermore only one dimension [ of the vector x;"’ is modified by the move, i.e.,

only element xi’? of matrix X*). In detail, the element d; ; that stores the dissimilarity

between points x; and x; should be updated as follows for the move from :z:,fﬁ) to $§§+1)
for ¢ # j:
k41 k)N 2 k k)N 2 k41 k41)y 2 .
dz(,j )= \/(dg,j)) - (9”1(',1) - x;,l)) + (9”51 ) - 3«“5-,; )) (3.19)

3.4.6 Complexity

For each epoch we search across 2L dimensions for N points. In each search we also
need O(N) operations to update the distance matrix. Thus, the per epoch computational
complexity of the algorithm is O(N2L).
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4.1 The LPS-MDS Algorithm

The idea of Landmark points [2, 3] sounded very promising when trying to find ways
to improve the algorithm complexity of PSMDS algorithm, as described in Chapter 4. The
key idea of Landmarks method is that it is unnecessary to compute distances between all
points in the distance matrix. At least n > L + 1 points (Landmark points) are sufficient,
from which we can calculate our distances from all the other points.

If we know the positions of the Landmark points, then all the remaining points can be
uniquely placed in space relative to them. This claim is analogous to the GPS method,
where to find the exact location of a point, it is enough to know its distance from a finite
number of points. The Landmark points can be random as long as their number is greater
than L 4+ 1 (where L is the dimension of the embedding).

In the entrance of the MDS (Multidimensional Scaling), we have the distance matrix
N x N with the distances of each point from all the others. During the algorithm, we try
to find vectors of dimension L such that the final distance matrix N x N is as close as
possible to the original one. The distance matrix becomes n x N, where n < N.

At the beginning, we execute MDS normally as if only the Landmark points existed,
which will be placed normally in the embedding. Then, the remaining N — n points will
be placed in the embedding based on their distances from these Landmark points. The
difference in the algorithm is that the input distance matrix P and the distance matrix D,
dimension is N X n instead of N x N, where n < N. It is not so computationally heavy.

The algorithm’s initialization process includes the following steps:

e Generate n random points in the embedded space with the final -desired L dimen-
) _ [x(O) (0)
=1

sions. XC(LO y Ty x%o)] € R™%. As n we refer in the number of Landmarks.

e Compute the distance matrix between landmark points. The element dz(?) is the

Euclidean distance between vectors %(0) and x§0) of XC(LO).

e Calculate the initial approximation error ¢(’) = ||A — D||2, where e represents the
element-wise mean squared error (MSE) between the two matrices. The objective

function which is optimized for all PSMDS is shown below and is the stress function

Diploma Thesis



Chapter 4. Pattern Search MDS with Landmarks (LPS-MDS)

for MDS:

f(AD)=|lA - DHF—ZZ i — dij)?, where A, D € R™" (4.1)
i=1 j=1

Now all the landmark X (@ points have been positioned in the embedded space. We

will repeat the same procedure with the rest N — n points.

e Generate N n random points in the embedded space with the final -desired L dimen-

sions. X = |z fg)rl, n0+2, ...,acg\?)] e RW=m)xL " The total points of the embedded

space are X(© = X, U XISO) e RIN)xL

Compute the distance matrix between X, and X lgk). The element dg.)) is the Euclidean

distance between vectors ngo) and x§0) of X0,

Calculate the initial approximation error e(®) = ||A — DJ|%, where e represents the
element-wise mean squared error (MSE) between the two matrices. The objective
function which is optimized for all PSMDS is shown below and is the stress function
for MDS:

f(A,D)=||A -DIf} = ZZ i —dij)?, where A,D € R™" (1.2

i=n j=n

ALGORITHM 4.1: Pattern Search MDS with Landmarks

Input: The matrix A € RV*Y with proximities, the dimension L and the number of
landmark points n.

Output: The matrix X € R¥*N with the coordinates of the N objects, in the new
space of M dimensions.

1: procedure LANDMARK-PSMDS(A, L, () n)

2:

10:
11:
12:
13:
14:
15:

k+0 > k is the number of epochs

X () « UNIFORM(n x M)

D®) « DISTANCE MATRIX(X*)) > D € RV

e« ||A,xn — D% > First n rows in A are considered as distances between
Landmarks

e 400

r(k) (0

e X" +— MDS(r(k),X(k),e(k_l),e(k),]\/[) > positioning only the landmark points

kE<+0

X )« X*U [ UNIFORM((N —n) x M) |

D®*) « DISTANCE FROM_LANDMARKS MATRIX(X®) n) o DeRN*?

e® « ||A(N_pn)xn — DI||% +e*

e 400

r(k) (0

LXE) o MDS(r®) XF) [ 2 N e k) M)

16: end procedure
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ALGORITHM 4.2: MDS - positioning points

1: function MDS(r(¥) X *) e(k=1) (k) pr)

2 while %) > § do

3 if eh=1) —¢(k) < ¢. k) then

4 rk) #

5: end if

6 S < SEARCH COORDINATES((*), L)

7 for all z € X*) do

8 X*, e* < OPTIMAL MOVE(D®) X®*) 2 8, )
9: e(k_l) — e(k)

10: elk) « e

11: X (k) X

12: D) « UPDATE DISTANCE MATRIX (X*)
13: end for

14: k=k+1

15: end while

16: return e®) X %)

17: end function

The functions SEARCH COORDINATES() and OPTIMAL MOV E() are sim-
ilar as descripted in Pattern Search MDS, as in Algorithms 3.3 and 3.4 correspondingly.

4.1.1 Complexity

For each epoch we search across 2L dimensions for N points. In each search we also
need O(n) operations to update the distance matrix. Thus, the per epoch computational

complexity of the algorithm is O(nN L), where n < N.

4.2 Experiments with Synthetic Dataset

In this experimental setup we perform non-linear dimensionality reduction on a 3D
Swissroll (as in Figure 4.1) using Landmarks MDS. The assumption here is that data lie
on a manifold which is locally Euclidean and thus geodesic distances would preserve the

true structure of the data when performing MDS.
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Swissroll 10.000 points

10—

0.8

0.6

0.4 1

0.2 4

0.0

0.0 1.0

Figure 4.1. Original Swissroll in 3D

In our initial experiment, our goal was to identify the ideal number of landmarks
necessary to effectively unroll the Swissroll in two dimensions, all while maintaining a
consistent level of error comparable to the results obtained without the use of landmarks.
Remarkably, we found that utilizing only 300 landmarks proves to be more than sufficient
for this purpose. Our experimentation was carried out on Swissroll datasets consisting of
1,000, 10,000, and 20,000 data points, each examined with varying quantities of landmarks.
Notably, across all scenarios, the employment of landmarks consistently yielded highly
satisfactory results. This is further substantiated by the data presented in 4.1, where it
is evident that with 300 landmarks, we achieved a deviation of less than 1.5% from the

original error.

Landmarks 1000 points 10000 points 20000 points
- error - %relative change  error - %relative change error - %relative change
10 3532380.7 (64424,85%)  22347409.89 (81626,62%) 1796591175.21 (3606595,19%)
100 5642.89 (3,08%) 28561.27 (4,45%) 129743825.55 (260363,50%)
200 5607.63 (2,43%) 28399.87 (3,85%) 50749.89 (1,88%)
300 5550.87 (1,40%) 27626.71(1,03%) 50489.65 (1,36%)
500 5508.3 (0,62%) 27533.46 (0,69%) 50169.29 (0,72%)
1000 5474.45 (0,00%) 27435.7 (0,33%) 49952.37 (0,28%)
5000 - 27357.04 (0,05%) 49826.26 (0,03%)
10000 - 27344.1 (0,00%) 49811.5 (0,00%)
15000 - - 49829.69 (0,03%)
20000 - - 49812.67(0,00%)

Table 4.1. In this table, we display results from experiments using the Swissroll dataset of
1,000 to 20,000 points with varying numbers of landmarks. It is shown that 300 landmarks
resulted in less than a 1.5% deviation from the original error, in all cases.

To continue with, in Table 4.2, we provide a summary of the results when unrolling a
10,000 points Swissroll, with Pattern Search MDS and MDS with Landmarks. Firstly, we
calculate the execution time in seconds. Notably, the standard MDS algorithm takes 171.21
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seconds to complete, whereas the MDS with 300 landmark points significantly reduces the

runtime to just 3.58 seconds.

Moreover, it’s evident that, with a sufficient number of

landmarks (at least 300), the algorithm requires fewer epochs to converge. Lastly, we

have calculated the RAM usage in gigabytes (GB), and as expected, the Landmark-based

approach consumes less memory. A Visual Swissroll unrolling in 2 dimensions is given in

Figures 4.2.
Algorithm Time(Sec) Epochs Final Error RAM(GB)
MDS 171.21 245 27344.1 1.15
100 Landmarks MDS 4.04 202 28561.27 0.67
300 Landmarks MDS 3.58 96 27626.71 0.86
1000 Landmarks MDS 8.53 94 27435.7 0.92

Table 4.2. Results from experiment with 10.000 Swissroll. MDS with Landmarks executes
in less time, with fewer epochs and less memory.

MDS with 1000 Landmarks - Total time: 9.13 sec

0.8 4

0.6 1

0.4

0.2 1

0.0

1.0

0.8 +

0.6

0.4 1

0.2 4

0.0

Pattern Search MDS - Total time: 175.39 sec

0.0

(a) Pattern Search MDS

1.0

0.8 4

0.6

0.4

0.2 4

1.0

MDS with 100 Landmarks - Total time: 3.63 sec

0.04
0.02
0.00
0.02
-0.04

0.0

(b) MDS with 1000 Landmarks

0.2

0.8

0.0

0.4 0.6 0.8 L0

(c) MDS with 100 Landmarks

Figure 4.2. Visual Swissroll unrolling in 2 dimensions

In all the above executions of the algorithm, the landmark are chosen randomly. In the

following graph you may see with black color the 300 Landmark points in a 10.000 points

experiment.
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» 10.000 points with 300 Landmarks

204

Figure 4.3. Original Swissroll in 2D, with Landmarks

In the following graphs, we present a comparative analysis between Landmarks MDS
and Pattern Search MDS in terms of Time, Error, and Epochs for datasets with varying
numbers of points (2500, 5000, 7500, 10000, 12500, and 15000). This experiment provides
valuable insights into the performance of these algorithms across different data sizes.
Notably, our observations reveal that the error remains consistent between the two algo-
rithms, indicating similar quality of results. However, there are significant improvements
in terms of computation time when using Landmarks MDS, especially as the dataset size
increases. The Landmark MDS approach consistently demonstrates quicker convergence,
reducing the time required to achieve the desired results.

These findings highlight the efficiency and effectiveness of Landmarks MDS in handling
larger datasets, making it a promising choice for dimensionality reduction tasks. Overall,
the graphical comparisons offer valuable insights into the performance trade-offs between

these two approaches across various data sizes.
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Time comparison

—e— PSMDS
#- 500 Landmarkds MDS
—A- 300 Landmarkds MDS

Total Time(sec)

e ==l

2000 4000 6000 8000 10000 12000 14000
Number of points

(a) Time comparison

Error comparison Epochs comparison

50000 —@— PSMDS _=h —e— PSMDS
- 500 Landmarkds MDS = 500 Landmarkds MDS
—A- 300 Landmarkds MDS 7 —- 300 Landmarkds MDS

40000

30000

Total Error
Total Epochs
I
5

A

2000 4000 6000 8000 10000 12000 14000 2000 4000 6000 8000 10000 12000 14000
Number of points Number of points

(b) Error comparison (¢) Epochs comparison

Figure 4.4. Comparison between PSMDS and LPS-MDS. LPS-MDS has remarkable re-
sults in all cases

4.2.1 Mnist Dataset

In this experimental setup we perform dimensionality reduction using as target dissim-
ilarity matrices the Euclidean ones from the high-dimensional pixel space R™* of MNIST
dataset [62].

4.2.1.1 Visualizing Linear Embeddings

We specifically chose to work with a subset of handwritten digits, limiting our selection
to four out of the ten available digits: 0, 1, 4, 8. From these four classes, we randomly
selected 1000 images for our analysis. Our initial step involved computing the Euclidean
distance matrix, which captures the pairwise distances between all the images in the pixel
space. Following this, we performed dimensionality reduction, aiming to represent the data
in two dimensions. We employed both Pattern Search MDS and MDS with Landmarks for
this task. Remarkably, both algorithms achieved a similar level of accuracy, as indicated
by their Stress errors. To aid in visualizing our results, we assigned distinct colors to the
different handwritten digit classes, mapping 0, 1, 4, 8 to red, orange, yellow, purple respec-
tively. The resulting embeddings revealed a compelling outcome. The MDS algorithms
successfully preserved the geometric relationships among the handwritten digits. Notably,
digits belonging to the same class exhibited a tendency to cluster together in compact 2D

Euclidean subspaces, showcasing the effectiveness of our approach.
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Mnist Digits - MDS Total Time: 1.8 sec

“ :Ili: 'Illl‘flllll'::l:.'p: #III:I.'II:. Illlll I:II.Illl' | ;II; .!;!II ) I
P s

(a) Pattern Search MDS

Mnist Digits - 100 Landmarks MDS Total Time: 0.38 sec

(b) Landmark MDS

4.2.1.2 Image Classification on the Low-Dimensional Space

To continue with, we use a subset of 3000 images and we perform linear-dimensionality
reduction using Pattern Search MDS and Landmark PSMDS with 100 and 300 landmark
points in order to obtain 10-dimensional embeddings. To evaluate the performance of the
algorithms, K-Nearest Neighbor (KNN) classification is performed using different param-
eters of nearest neighbors. I also perform KNN on the original space without performing
any dimensionality reduction in order to get a better insight of the accuracy. 2700 images
are used as training set and 300 as test set. The execution time is improved with landmark
points, while using 300 landmark points instead of 100 leads to better accuracy scores.

To further our analysis, we worked with a subset comprising 3000 images, and we per-
formed dimensionality reduction to 10 dimensions with both techniques. In our evaluation
process, we utilized K-Nearest Neighbor (KNN) classification, experimenting with various
nearest neighbor parameter settings. Additionally, we conducted KNN classification on

the original data space, bypassing any dimensionality reduction. This approach provided
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valuable insights into the accuracy of our results. For our experiments, we partitioned the
data into 2700 images for training and 300 images for testing purposes. Notably, our use
of landmark points significantly improved execution time. Furthermore, employing 300
landmark points, as opposed to 100, resulted in enhanced accuracy scores, underlining the

effectiveness of our methodology.

Method Dimensions Time(sec) K=3 K=5 K=7 K=9

Initial 784 - 090 0.89 091 0.92
PSMDS 10 140.54 090 0.87 0.89 0.89
100LandmarksPSMDS 10 11.53 083 0.86 0.82 0.81
300LandmarksPSMDS 10 19.55 0.89 0.89 0.88 0.86

Table 4.3. Comparison of dimensionality reduction techniques for the MNIST dataset with
embedding dimension equal to 10. For the classification KNN algorithm is with different
number of nearest neighbors (parameter K) is used. “Time" column specifies the amount
of time that each method took to compute all embedding vectors. “Initial” corresponds to
performing KNN on the original high-dimensional pizel without any dimensionality reduc-
tion.

4.2.2 Classification on Microbiome Data Set

The microbiome dataset of Turnbaugh [63] refers to a collection of data generated
by researchers that characterizes the microbial communities present in various biological
samples. These samples were collected from different sources within the human or mouse
gastrointestinal tract, and possibly other locations, to study the composition and diversity
of microorganisms in those environments. Within this dataset, we find 675 unique donors,
each of which is characterized by 6,686 Operational Taxonomic Units (OTUs).! Each
donor in this dataset is further categorized across five distinct attributes, each possessing

varying values, as descripted below:

1. Sex: Male, Female
2. Diet: LFPP, Western, CARBR, FATR, Suckling, Human

3. Source: Cecuml, Cecum?2, Colonl, Colon2, ,SI1, SI13, SI15, SI2, SI5, SI9, Stomach,

Cecum
4. Donor: HMouseLFPP, CONVR, Human, Fresh, Frozen, HMouseWestern, CONVD

5. CollectionMet: Contents,Scraping

In our research, we conducted dimensionality reduction from the original 6,686 di-

mensions down to only 3 dimensions. For the classification process we utilized K-Nearest

In the realm of microbiology and microbial ecology, an OTU signifies a cluster of closely related
microorganisms, such as bacteria or archaea. OTUs are typically defined based on the sequence similarity
of specific genes, such as the 16S ribosomal RNA (rRNA) gene for bacteria or the 185 rRNA gene for
eukaryotic microorganisms.
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Neighbor (KNN) classification with K=9. To facilitate classification, we employed the
K-Nearest Neighbor (KNN) classification technique with a parameter value of K=9. Ad-
ditionally, we conducted KNN classification on the initial dataset, prior to dimensionality
reduction, for comparative purposes. We run the K-Nearest Neighbor multiple times to
find independently the accuracy score for Sex, Diet, Source, Donor and CollectionMet.
The results revealed that categories with only two distinct values, such as Sex and Col-
lectionMet, exhibited impressive performance, with KNN achieving classification accuracy
scores nearing 90%. Diet and Source also yielded promising results, demonstrating con-
sistent scores across various methodologies. Notably, the challenge emerged in classifying
Donor, with low accuracy rates around 30%. This suggests that certain microorganisms
are shared between animals and humans, making them indistinguishable through any al-

gorithmic means.

Method Dimensions Diet Source Donor CollectionMet Sex
Initial 6686 0.79 0.64 0.29 0.85 0.9
PSMDS 3 0.78 0.63 0.29 0.85 0.9
100LandmarksPSMDS 3 0.74 0.64 0.23 0.85 0.9
300LandmarksPSMDS 3 0.81 0.64 0.28 0.85 0.9

Table 4.4. Comparison of dimensionality reduction techniques for the Micro-biame Data
Set with embedding dimension equal to 3. For the classification KNN algorithm with K=9
1s used. “Initial” corresponds to performing KNN on the original high-dimensional pizel
without any dimensionality reduction. The columns Diet, Source, Donor, CollectionMet,
Sex are the different categories of the classification.
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Chapter

The COSMOS Algorithm

5.1 Notation

Let Ml C R” represent the ambient space for our manifold, where v denotes the total
number of sets, p denotes the number of points, and L signifies the dimension of the
embedded space. Each point of the collection of points & = {x1,--- ,z,} corresponds to a
row of the matrix X € R**%. Also, we index the sets S = {S1,---,5,}. Notably, each set
S; may include one or more elements from the collection Z, ensuring that S; N S; = ¢ and
| US; |= p. We also denote a mapping matrix Mses € N'*# that maps the p points into
the sets S.

Additionally, we denote the function Dpoints(2s, ;) as the euclidean distance between
two points and the function De(Ss,S;) as the common sense (equation 5.1) distance
between sets in (pseudo)-metric space. The set distance matrix A is induced by set of

points with dimension M, where M > L.
For any 51,53 € S the common sense set distance is defined as:

Dsets<Sl7S2) = xveg?ixn'eSg d(wiuxj) (5'1)
1 sl g

5.1.1 The definition of Set-MDS Problem

The Set-MDS problem is defined in a given metric space M and v, i, L. € N such that
v < p and a dissimilarity matrix A, of v-sets of u M-dimensional points, the output is
the matrix X € R”*% and the sets S such that the objective function:

fD,A)=|D - AF =) (dij — 6;)?, where A, D € R (5.2)
i=1 j=1

is minimized, where D = d;; is the induced set distance matrix from the X and the function
Dsets .
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S1 = {x1,x2}
D sets\g\\g%\

D sets\g\wgl\ T4

Sg = {X4}

T3
Se = {x3}

Figure 5.1. Ezxample of non metric power set space

5.1.2 The violation of triangle inequality in Power Sets

Consider a finite metric space (M, L) and the power set of M, P(M), which is also
finite. It is easy to see from the figure 5.1 that we may find triplets S, S, S3 € P(M)
where the triangle inequality does not hold.

Thus, under the “common sense” set distance the power set space P(M) is not met-
ric, and (M, L) is not a metric space, hence, the nice convergence properties of metric
spaces and the resulting notion of neighborhood are not satisfied. Although these no-
tions might not exist globally in the power set space, they are satisfied locally under some
assumptions. For instance, if M has n elements, x1, o, ..., Ty, then the set space Q =
{{z1}, {z2}, ..., {zn}} € P(M) is a metric space under Diges.

To demonstrate that the power set space, (P(M), Dgets), is not metric in general,
consider the set Y £ {{z1, 72}, {z3},...,{zn}} C P(M), ie., Y consists of a single set
with two elements A = {1,292} and the single element sets of all the remaining members
of M, i.e., {z3},{za},...,{zn}. Then, the triangle inequality is satisfied for all triplets of
elements of Y, with the possible exception of triplets containing set A, where it may not
holds.

For instance, an illustrative example is depicted in Fig. 5.1 with n = 4, 4 = {x1, 22},

B = x3, and C' = x4, where we have:
Dsets(527 SS) > Dsets(sla S2) + Dsets(Sh S3) (53)

The probability of violating the triangle inequality is higher when the two members of
S are far away in the underlying metric space (M, L), i.e., Dpoints(21,22) > 20 and in
addition, z3 and x4 are in the d-neighborhood of 1 and x5 , respectively (or vice versa),
ie., Dpomts(xl,xg) < 6 and Dpomts(l'g, :L’4) < 4.

In the context of word semantics, we are going to give an example. Let’s assume that in
the Fig 5.1 let the word Wy, represented by the set S, consisting of just two word senses,
x1 and x2, while words Wg, and Wg,, two monosemous words with a single word sense
each, x3 and x4, respectively. For example, let the polysemous word Wg, =’book’ with
corresponding word senses x1 =’book with the sense of reservation’ and xo =’book with

the sense of reading’ and the monosemous words Wg,="travel’ and Wg,=’author’. Then,
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apparently the triangle inequality is violated for the pair (‘travel’’author’).
The above example reveals that the space W = (W, 1 — Sy) does not form a metric

space because triangle inequality is not satisfied.

5.2 The COSMOS Algorithm

In this section, the COSMOS (COmmon Sense Multidimensional Optimization Splitter)
algorithm is described. COSMOS is a dimensionality reduction algorithm that projects a
set of 1 objects into a vector space of L dimensions, and gives a heuristic solution to the
Set-MDS problem. In this thesis, the algorithm is tested in words, but the algorithm could
easily be applied to an arbitrary set of objects.

The inputs to the algorithm are the dissimilarity or semantic distance matrix A € R¥*¥
where each element A(i,j) encodes the degree of dissimilarity between points ¢; and &;,
the projection dimension L and the number of splits k. The output of the algorithm is the
matrix X € R#*L with u = v+ k points in the embedded L-dimensional space, the v sets
and the k splits.

COSMOS algorithm starts by generating p random points and running the LPS-MDS,
as described in Chapter 4. This preliminary step is crucial for ensuring a better starting
point before the points, X € R¥*F start to split in sets. After the initialization process, we
start splitting the k points. The algorithm is structured to execute exactly k iterations,
during each of which a new point (split) is generated.

Below, we provide a detailed explanation of these iterations:

e Find the new split by generating 2 *x L random points with L dimensions in the
embedded space and assign each one of them in a set. Choose the combination of

the point and the set that minimizes the error most. X now has one more point.

e (Calculate the Euclidean distances between the newly introduced split point and all
other points. Subsequently, we append a new row and column to the D,4nss matrix,
which stores the Euclidean distances among all points. This matrix forms the basis
for constructing the set distance matrix, denoted as Dgess, Where the element d;;

represents the common set distance, as defined in Equation 5.1.

e Move each point x; in a sphere of radius r around the point x;, as in figure 3.1. Choose
the direction that minimizes the error most. The error is the following equation:
where e represents the element-wise mean squared error (MSE) between the two
set distance matrices. The objective function which is similar with the MDS Stress

function, but the matrices now are set matrices.

fD,A) =D - A7 =Y (dij — 6;;)>, where A, D € R (5.4)
i=1 j=1
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ALGORITHM 5.1: COSMOS(COmmon Sense Multidimensional Optimization Splitter)

Input: The matrix A € R”*” with dissimilarities and the dimension L.
Output: The matrix X € RA*F with the coordinates of the g elements in
L—dimensional space, where u = v + k, and a list of sets S.

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

procedure SET - MDS(A, L, r(0)
x1 to x,,D = MDS(A) > As described in Chapter 3
for j=1,....,k do > k is the number of splits
G = GENERATE RANDOM POINTS(2L)
for all g € G do

D}yints = COMPUTE_TEMP_ Dpoints_ MATRIX(g, X)
for all z € X, do
S* = split_set(z,g); > x, g are in the same set
D;.;s = COMPUTE_TEMP_Dsets  MATRIX(S*,D}it5)
e = COMPUTE ERROR(A, D}..)
Save error e for combination g and x;
end for
end for
Choose the combination of g and x that minimizes the error most;
S« S*
DPOi”tS A D;Oints
Dsets < D:ets
k<« 0

while %) > § do
if eb=1) —¢(k) < ¢.¢e(k) then
rk)
S < SEARCH COORDINATES(r*), 21)
end if
for all x € 1 to x,,4; do
X*, st,¢* + OPTIMAL_MOVE(X®, z, S, e()
elb=1) . o(k)
k)  e*
X k) X
D,oints < UPDATE_Dpoints_ MATRIX(X*)
Dgets < UPDATE Dsets . MATRIX(Dypoints, S)
end for
k=k+1
end while
end for
end procedure
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5.2.1 Runtime Complexity

Firstly, we execute the LPS-MDS whose complexity for v points and n landmarks and
L dimensions is O(nvL?) per round. We execute k epochs, one for every split of the
following . We generate 2L random points, and we assign each generated point to all v
sets and we compute the error for all possible combinations of random points and sets.
To compute the error we need O(uL) time. Until now the complexity of the algorithm is
O(2LkuL) = O(2L%kp).

Then apply a variation of MDS and we start moving all the points p in 2L possible
dimensions, and we need to choose the best possible step. The time for this is O(2Lu).
Then we need O(p) time to update the Dpyines and O(p) to update the Dges. So for
updating the distance matrices we need O(u + p)=02u)

The final complexity is O(2L%ku2Lu2p) = O(4kL3p3)

5.2.2 Experiments

First, we will present the algorithm’s performance on a synthetic dataset that we have
constructed. Subsequently, we will provide some results tested on semantic similarity

between words.

5.2.2.1 Synthetic Dataset

To generate the Synthetic Dataset for this experiment, we initiated the process by
creating p random points, each with L dimensions, where the values range from —1 to 1.
Subsequently, these ;1 points were randomly assigned to v sets. The outcome comprises a
distance matrix, denoted as A € R**¥, and an index matrix, designated as Mes € R1¥#,
serving as a mapping between the vectors from A to the v sets. Our expectation is that
the COSMOS algorithm, given the matrix A and the number £ as input, will accurately

split the correct points.

The following routines show in detail our techniques.

Avcoritum 5.2: Synthetic Dataset Creation

Input: The number of sets v, the number of splits £ and the number of dimensions L.
Output: The distance matrix A € R”*” with the distances between sets.

1: procedure SYNTHETIC DATASET CREATION(u,k,L)

2 g < generate_random __points(u,L,-1,1)

3: Dyoints < Distance_matriz_between_points(g)

4 Dgetrs + Generate _random__integers(v)

5 Dyets < Distance_matrixz_between _sets(Dpoints)
return Dg.s, S

6: end procedure
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In the table 5.1 below the results of multiple experiments are summarized. We executed
experiments with different number of points (1000,500,100) with different number of splits
k (1,5,10,20,50,100,150,200,300,400,500), while performing dimensionality reduction from
3 dimensions to 2. Our goal is to evaluate whether the COSMOS algorithm chooses to
make the correct splits. We compare the expected final sets generated from the synthetic
dataset, with the output of the algorithm. The results show that COSMOS algorithm can

recognize with percentage above 65% the correct splits.

. Splits 1 5 10 20 50 | 100 | 150 | 200 | 300 | 400 | 500 | Average
Points
1000 1.00 | 0.80 | 0.80 | 0.75 | 0.72 | 0.64 | 0.65 | 0.65 | 0.65 | 0.62 | 0.63 0.70
500 1.00 | 0.60 | 0.80 | 0.65 | 0.68 | 0.60 | 0.71 | 0.58 | 0.62 | 0.62 0.66
100 1.00 | 0.60 | 0.60 | 0.60 | 0.70 0.67

Table 5.1. The table summarizes the results of multiple experiments. Is shows the per-
centage of successful splits in experiments with different number of points p and splits k

5.2.3 Semantic Similarity - MEN & SimLex-999

For this experiment we use MEN and SimLex-999 semantic datasets as ground truth.
Both datasets are provided in the form of lists of word pairs, where each pair is asso-
ciated with a similarity score. This score was computed by averaging the similarities
provided by human annotators. As the high-dimensional semantic word vectors, we use
the 300-dimensional GloVe vectors. We reduce the dimensionality of the vectors to the
target dimension L and calculate the Spearman correlation coefficient between the human
provided and the automatically computed similarity scores. Results are summarized in
Table 5.2 for L = 10. We observe PSMDS and Landmark PSMDS with 300 landmark
points yields the best results for MEN, UMAP performs best SimLex-999, while COSMOS

algorithm has also good results.

Method Dimensions MEN SimLex-999
- 300 0.74 0.37
PSMDS 10 0.68 0.30
300 Landamark PSMDS 10 0.67 0.23
100 Landamark PSMDS 10 0.61 0.21
SMACOF 10 0.56 0.23
UMAP 10 0.29 0.44
COSMOS(2splits) 10 0.59 0.25
COSMOS(20splits) 10 - 0.25

Table 5.2. Comparison of dimensionality reduction techniques for the semantic similarity
task for MEN and SimLex-999 datasets.
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5.2.4 Semantic Similarity - Wordnet

For the following experiment, we use the Wordnet hierarchy. As explained in [64]
WordNet is a large lexical database of English words, where nouns, verbs, adjectives and
adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct
concept. In Fig.5.2 a toy example of hierarchy structure provided by WordNet is depicted.
Actually, it corresponds to a tree-like structure where the top category of everything is the
‘entity’ and thereafter the tree expands to lower levels into other sub categories and words.
For example, in the figure two sub-categories are the 'physical entity’ and ’abstract entity’
which are also expanded to lower levels. Note that, ambiguous words will be assigned to
different parts (or and different levels) of the tree structure for example the word ‘state’ is

mapped under the ‘region’ and also under the ‘attribute’.

physical abstract
entity entity
thing H relation physiological

— F'ObJeCt | attribute feature

part |

whole Iocat|on part of H cognition

natural state H
region

ObJECt g $ ability

artifact
body

body state
part

situation

matter

Figure 5.2. Ezample of the structure of WordNet hierarchy.

We firstly asked ChatGPT 3.5, to generate bags of words that they share one common
word, but the other words in each bag have different meanings. We give an example of the
output of chatGPT in Figure 5.3.
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Chapter 5. The COSMOS Algorithm

Certainly! Here are a few more examples of word bags where they share one common

word but the other words in each bag have differing meanings:

Bag_1={apple, fruit, orchard}
Bag_2 = {apple, computer, technology}

Bag_1={mouse, computer, keyboard}

Bag_2 = {mouse, cheese, trap}

Figure 5.3. ChatGPT example usage

Subsequently, we use WordNet Similarity in order to construct the input matrix A
in the COSMOS algorithm. As described in [65] WordNet::Similarity is a freely available
software package that makes it possible to measure the semantic similarity and relatedness
between a pair of concepts (or synsets). The measures take as input two concepts, and
return a numeric value that represents the degree to which they are similar or related.

We use the NLP | WuPalmer — WordNet Similarity [66] that it calculates relatedness
by considering the depths of the two synsets in the WordNet taxonomies, along with the
depth of the LCS (Least Common Subsumer).

depth(les(xzy,x2))

S =2
(w1, 2) depth(z1) + depth(z?)

(5.5)

The score can be 0 < score <= 1. The score can never be zero because the depth of the
LCS is never zero (the depth of the root of taxonomy is one). It calculates the similarity
based on how similar the word senses are and where the Synsets occur relative to each
other in the hypernym tree.

Since the COSMOS algorithm uses as input a dissimilarity or semantic distance matrix,
the pairwise word similarity matrix W € R¥*¥ is transformed to a semantic distance (or

dissimilarity) matrix Ay € RY*" as:
Ap(iyf) = ¢y - em2 0 (5.6)

where c1,co € R are constants and the i, j indexes run from 1 to n. In this work, we
experimentally chosen ¢; = co = 0.1. The transformation defined by 5.6 was selected in
order to non-linearly scale and increase the relative distance of dissimilar words compared
to similar ones. Except from the exponential nonlinear scaling function from similarity to
distance, similar function can be found in the literature, e.g., [41]

as the Logarithmic Scaling:

Ag(i, ) = —c-10g(5(i, ) (5.7)
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and the Inverse Scaling:

In our experiments the equation 5.6 seemed to have the best results. The below graphics
prove that COSMOS algorithm choose to split the correct points and position them in a

correct place.

Ilbré\ry

re‘a d

traalel

b%)k
o

hoJeI

b%)k

Figure 5.4. The algorithm correctly splits the word "book" and selects positions close to
"read" and "hotel”, proving both meanings.
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:he.ese
trgp
mo&:se
keytpa rd
MOoUusE
com guter 5'

Figure 5.5. The algorithm correctly splits the word "mouse” and selects positions close
to "trap” and close to "computer”, proving both meanings.
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rega
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(a) Time comparison

Figure 5.6. This graph is a combination of the previous words. We ask the algorithm to
execute two splits, and it splits correctly the words "mouse” and "book".
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Chapter E

Conclusions

The dimensionality reduction and data visualization of complex and high-dimensional
data is a challenging problem with multiple real-world applications. There are a lot of
dimensionality reduction techniques that achieve effectively to embed the data in a lower-
dimensional space while simultaneously preserving the relationship between them.

This thesis concentrates on Multi-Dimensional Scaling (MDS), specifically introduc-
ing an extension of Classical MDS known as Pattern Search MDS (PSMDS), employing
derivative-free optimization techniques. Our aim was to enhance the complexity of the
existing PSMDS algorithm, which, in addressing the MDS problem, computes distances
between all points to establish the distance matrix in the embedded space. The proposed
Landmark Pattern Search algorithm introduces "Landmark" points, calculating distances
only from these points instead of between all points.

Our experimental findings with LPS-MDS demonstrate a significant improvement in
algorithmic complexity when employing Landmark points, while maintaining result quality
comparable to the initial PSMDS algorithm. We conducted multiple experiments using
synthetic datasets, the Mnist Dataset featuring images of integers, and the Microbiome
Data Set containing genes from diverse biological samples. Across all experiments, LPS-
MDS consistently delivered outstanding results.

To continue with, in the second part of the thesis we propose another extension of MDS,
that we call COSMOS(COmmon Sense Multidimensional Optimization Splitter) algorithm.
The COSMOS algorithm, has all the characteristics of the MDS algorithm, so it preserves
the distances between objects and applies stress minimization during the dimensionality
reduction process. A noteworthy feature of the COSMOS algorithm is its adaptation to
operate on sets of points, rather than individual sets. This is the unique characteristic of
our algorithm that adds one more level of complexity in the classical MDS and it gives the
flexibility of understanding ambiguity in objects.

In order to evaluate the performance of our algorithm, we firstly executed experiments
on synthetic datasets, yielding promising results. Subsequently, we devised a semantic
similarity task, specifically addressing word ambiguity, where a single word may have
multiple meanings. Our objective was to examine the algorithm’s capability to resolve
such ambiguity. For the semantic similarity task, we utilized word pairs from MEN and
SimLex, employing Glove as our word vectors. Our experimental outcomes prove that

the COSMOS algorithm adeptly captures word ambiguity. The algorithm demonstrates
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Chapter 6. Conclusions

highly encouraging results, underscoring its potential for practical applications and further

exploration within NLP-related contexts.

6.1 Future Work

Our COSMOS algorithm is taking its first steps to solve the Set-MDS problem, helping
untangle data that looks like knots. As future work we plan to further refine the algorithm,
to optimize its computational efficiency and scalability, ensuring its applicability to larger
datasets.

Another very interesting research is the integration with real-world applications. Cur-
rently the proposed representation has been only tested in semantic similarity, in order to
capture the ambiguity of the words, but there are so much more we can explore. In fact
there are a lot of fields that the data is ambiguous or its structure contains knots, like in
genes or medical images.

Taking the gene ambiguity as an example, when working with genomic data, the same
genes can do different things depending on the context. It becomes crucial to disambiguate
between genes, ensuring that their unique functions are appropriately considered in the
analysis. Furthermore, in the medical image processing field, the interpretation of medical
imaging results, such as X-rays or MRIs, can be complex. Radiological findings may have
multiple possible explanations, requiring collaboration between clinicians and radiologists
to arrive at accurate diagnoses.

The examples discussed earlier revolve around our key areas of interest in biology
and medicine, but someone could find applications in other fields such as Social Media,

Economy, Art or Recommendation Systems.
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