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Cognitively Motivated Machine Learning for Dimensionality
Reduction and Domain Adaptation of Speech and Language Models in
Resource-Constrained Settings

ABSTRACT

In the recent years, a dominant strategy has arised in machine learning, i.e., scaling-up model
capacity and training data, with impressive results. However, the development of techniques
for resource-limited settings can have a great economic, environmental, and research impact,
especially for digitally under-represented communities. In this thesis, which is split into two
major parts, we draw motivation from insights in the fields of cognitive sciences and neuro-
sciences to design efficient and effective machine learning algorithms for data representation
and model adaptation. First, we propose a novel algorithm for dimensionality reduction via
multi-dimensional scaling based on the global geometry of the input data. The proposed algo-
rithm, Pattern Search MDS is based on derivative-free direct search, and is able to capture the
geometry of complex “pseudo”-metric spaces. Reduction of the algorithm to the General Pat-
tern Search algorithmic family provides theoretical convergence guarantees, and an optimized
implementation is provided to the research community. The performance and convergence of
Pattern Search MDS is demonstrated on diverse tasks, i.e., manifold geometry, semantic sim-
ilarity, and speech emotion recognition. In the second part we shift our focus to the problem
of Unsupervised Domain Adaptation of speech and language models. To address the inher-
ent stability-plasticity dilemma in this problem we propose mixed self-supervision, a robust
and effective fine-tuning strategy, where the task is learned using annotated out-of-domain
data, while relevant in-domain knowledge from pretraining is maintained via self-supervision
on unlabeled in-domain data. We evaluate mixed self-supervision for text sentiment analysis
based on product reviews, and the adaptation of speech recognition systems to new domains
for Modern Greek. Particular emphasis is placed on the sample-efficiency of the proposed
fine-tuning strategy in our ablations, where we demonstrate that 500 in-domain reviews, or 3
hours of in-domain speech, are enough for successful adaptation.

Keyworps: Unsupervised Domain Adaptation, Dimensionality Reduction, Multi-dimensional
Scaling, Self-Supervised Learning, Deep Learning, Text Sentiment Analysis, Speech Emotion
Recognition, Speech Recognition



MéBodor Mnyoviknig Mabnong Baoiopéveg otn I'voorokn Emotiun
vy Meiwon Awactaticotntoag kot IlIpocappoyn peta€o ediwv
Movtédwv Povig kot T'Awooag oe [lepiparrovta pe Ilepropiopévoug
[T6povg

IIEPIAHWH

Ta TeAevTaior Xpovia, i Kuplopy CTPATNYIKY] £XEL TIPOKVPEL OTT) UNYXVIKT P&BN o™, SnAad) n
KALAKWOT) TNG XWPNTIKOTNTOC TOV LOVTEAOL KXL TWV SES0HEVWV EKTOBEVOTC, [LE EVTUTIWOLOKK ATTO-
TeEMopaTH. QoTO00, 1 XVATITUEN TEXVIKWOV VLA TIEPIBAAAOVTA L TIEPLOPLOPEVOVC TTOPOVG UTTOpEl Vi
€YEL LEYAAO OLKOVOLKO, TIEPLBAAAOVTIKG KOl EPEVVNTIKG AVTIKTUTIO, ELSIKA VLot PIIPLUKK VTTOEKTIPOCW-
TIODHEVEC KOWOTNTEG. L€ QUTH T1) SIXTpLP1, 1 0Toix YwpileTal o€ 800 KOPLX PEPT, AVTAOVHE KIVNTPX
A0 TOVG TOHEIC TWV YVWOLKKWY ETIOTNHWY KAL TWV VEVPOETIOTNLWY Yl VX oXeSLEGOVLE amtoS0-
TIKOUG KOl KTTOTEAETUATIKOVG OtAYOPLOLOVG UNYAVIKTC LEBNOTC VLot cvamopoTaoT] SES0EVWY Kot
TPOCKPUOYT] LOVTEAWV. TIpWTOV, TTPOTEIVOVHE VY VED arhydpLOpo ylx TN HelwoT) SIoTRoEWY HECW
TOAVSLAOTATNG KALUAKWONG e BAOT T1) CUVOALIKN YEWHETPIX TwV §e50pHEVV €l0dS0v. O TIPOTEWO-
pevog ahydpBpoc, Pattern Search MDS Baoiletot og dpeor) ovadtnon Ywpic moupaywyovs Kol eivat
o B€om va cLAAGPEL TN YewPETPIX GVUVOETWY “YEVSOPETPIKOV” XDPwV. H avarywyT) Tov aAyopiBpov
OTNV 0IKOYEVELX XAyopiBpwv General Pattern Search mapéyel OewpnTIKEG EYYUNOEL GUYKALOTC, EVX)
TIXPEXETAL Lo BEATIOTOTIOMLEVT) VAOTIO(N OGN 0TV EPEVYTIKT KOWATNTA. H amoSoom kot 1 cUykALon
Tov Pattern Search MDS emideikvietal o€ SLAPOPES EPYACIES, TL.Y., YEWUETPIOt TOAAXTIAOTITWV, OT)-
HLOGLOAOYIKT] OHOLOTITO KOL VXYVWPLOT) GUVXLGONUETWY Tt PwVT). LT0 S€VUTEPO PHEPOG OTPEPOVE
NV €0TiaoN PO 0TO TTPOBANUX TNG 1) EMPAETWUEVNG TIPOCHPUOYNC HOVTEAWY AGYOL KOL YAWGCAC
0€ VEOUG TOWEIG. Tl vor v TLLETWTIICOVLE TO €YYEVEG SIANUUA 0TXOEPOTNTAG-TAXCTIKOTNTOG OE AVTO
TO TPOPANHQ, TPOTEIVOVE HIKTY] VTO-EMIPAEYT), LK LOYVPN KXL XTTOTEAEOUATIKT GTPOTNYIKT TIPO-
OOPLOYTC, OTIOV 1) Epyaaior HaBAivETHL XPTOLLOTIOLWVTOS ETILONUELWHEVX SESOUEVA EKTOC TOHEX, EVW
OXETIKT] YVWOT] EVTOC TOPEX XTIO TNV TTpoeKTaiSevon Slxtnpeital péow avto-emifAeng oe SeSopéva
€VTOC TOpEX YWPIG eTIKETEG. AGLOAOYODIE 1) JUKTT) XVTO-ETHPAEYT) YLX TNV XVEAVCT) CLVXLGONLOTOG
Ao KEIPEVO e BAOT) KPITIKES TIPOIOVTWY KAL TNV TIPOCHPHOYT CUOTNUATWY voyvwpLong OLAlaG oe
VEOUG TOEIC ylx Tor Néat EAANvika. ISiaitepn €pgoaom Sivetan 0Ty AMOTEAECUATIKOTNTX TNG TIPO-
TEWOPEVNG OTPATNYIKNG TTPOCKPHOYNG Yo Ay Selypata, 0mov Seiyvovpe 0Tt 500 KPITIKEG 1) 3 WPES
X0V EVTOC TOUEX EIVXL APKETEC PLX EMUTUYNHLEVT) TIPOCAPHOYT).

AEZEIE-KAEIAIA: M) emiBAenopevn Ipooappoyr| Topéa, Meiwon Alaotdoewv, IToAvdidotatn KAL-
pékworn, Avto-emiBAendpevn Mabnor, BaBid Mdabnon, Keyevikn Avédvorn ZvvaoOnudtwv, Ava-
yvopLon ZuvatoOnpdtwy ®wvng, Avayvwplon Opiiog
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Evyaplotieg

Me 10 POV KEIPEVO OAOKANPWVETAL X TIOAVETTG TTOpEiX w¢ vTToYnPLog Sisdktopag oto E.M.IL,
KO KAEIVEL EVOX OTPUAVTIKO KEQPAAXLO TNG {W1C MOV, AVTE TA XPOVIX EYX TNV TUXY VX YVWPIow TOA-
Aovc a&ldloyoug avBpwTovg, 6ToVG 0TOloVG BEAW VA EKPPATW TNV EVYVWHOOUVT] OV YLK TIG EUTIEL-
pIEC TIOV HOLPUOTIKULE KOL TO XPOVO TIOV TEPKTOpE Pord.

Apyk&, 1 ovvepyaocia pe Tov AAEEavSpo IToTaI&VO e wpipaoe TOGO ooV PEVVNTY| 600 KOl GOV
GvBpwto. O ANEENVSPOC CLOTNUATIKK Aglorve TITUXEC Hov YpelddovTav Aeiovor, ahAd kot GUBAvve
TITUXEC oV TTOL XpeL&lovtay GppAvvor). Tov evyaploT® yla TNV TNV kaeBodnynaor kot Ty eve&ppuv-
o1 Vo YivopaL ouvexwg KaADTEPOC OAX VT T Xpovix. EmumAéov, evxaplot® Beppd Tov kabnyntn
[TéTpo Maparyko i TIG GOVTORES XAAK TTOADTILEC XAANAETIISPKOELG LG KOL TO OTWIKO TIOPESELYIK
TOV, KHBWC KOL TX VTTOAOUTX PEAN TG EMTAUEAOVG ETITPOTING OV YLX TIG CURPBOVAEG TOVG. Elpot Té-
AOG TIEPNPAVOG VX KATATROOW XVXIECK GTOVC XVOPWTIOVS IOV e £XOVV EUTIVEDTEL, KXl GLVEYI{OVY
Vo e EPMVEOLY, TOVG epeVVNTEC Baoidn Katoovpo, Bodwpn TovvakdémovAo kot N&oo Katoopdvn,
KO E(OL EVYVWOUWY YLK TV EUTILOTOCUVT] TOVEG KXL TNV GPOyT| CUVEPYAGIX [LOC.

Amd 10 2017 €0 KL OMPEPL, ElYQ TT) XAPK VX CUVEPYNOT® KAL e TIOAAODG GUVASEAPOVG (KOt
@iAoVG TTAE0V) Kal 0€ SL@OPETIKG TIEPIBAAAOVTA. [SLTEPWE B evXXPLOTHOW TOV EvBOuN T, e Tov
omoio mepdoaype o Tedevtaio 5 xpovix poli oto ypageio 2.1.2 (kotd kdopo Mdpvtop), To Oduo T,
Tov Kwotavtivo K. kat Tov @o8wp1| K. ylx TIg Snpiovpylkéc ovvepyaoieg pog, T Ndvov ZA. ylx Tig
ov{nTNoeLg pag, kabwg kot Tov Koopd K. ylx tn omdvix BeTikn evépyeta ov €xel gépel. EmumAéov Oa
EVYOPLOTIOW TIOALOVG KL VEOLG PIAOVG Kot ouvepydteg amo To E.MLIL., To E.K. ABnv&, Tnv Behavioral
Signals kot TV Amazon ylx TI¢ TTOAAEG Kol EVXAPLOTEG (EPYAOIIES KX LETHUECOVUKTIEG) WPEC TIOV
éyovpe mepdoet padil. El8ikd TéAog Ba euyopLloTi|ow GAOUC TOUC POLTNTEG KAL TLG (POLTITPLEG OL OTIo(OL
ovvepydoTnkov podl pov. MaBate amd epéva, oA & Epaba kot ey oo e0dcC.

Zuvi0we oTor aKASTHOIKE KEIPEV LVTLOVEDOVTAL KVPIWE ok Laikol kot oL TTAnoiot Toug. Niw-
Bw TNV XvAYKN VO EUYXPLOTIHOW KoL TO SLOKNTIKO TTPOOWTIKG, Kal el8IK& TN Aéomowa K. kat Tnv
EAévn T., oL omoleg €xouv K&veL eavEIANPEVR Ta SOOKOAX EDKOAX.

To ¥povia cvTX €V oNPASELOVTAL HOVO amd VEES, XAAX KL ATIO SLOrYPOVIKES QLAIES KOL GYEDELG.
Evyaplotw tovg Zmopo T., Ayyeho M., Aewvida M. kot Anprjtpn Z. yoti 0Ax Ta aotelo, avnovyieg,
Kol PLA0S0&leg IOV £Y0VE HOlPOOTEL. EEXWPLOTA EVYAPLOTW TN Bikv yla TN ek TN TN 0THPLEN TNC.

TENOG, OAX 0K €Y KOTUPEPEL WG oNpePR e Bo NTary Suvatd Ywpig T Slapkn) oTNPLEN Kot €v-
B&ppuvon aTo TNV OKOYEVELX PHov. XPpWOTAw TTOAAX 6TOVG Yovel§ pov, ITETpo kat Evyevia, kabwg
KoL 6TV adep@Y| pov Nwta, 6TOVG 0TOIOVE XPLEPWVETAL XVTO TO KELJEVO.

Twpyog IapookevdmTovAog,
ABMva, Iavovaplog 2024
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ZOykplon Tov akyopiBpov pattern search MDS pe GAAeg TEXVIKES pPelwong SlxoToTL-
kotnTag ylo petatporny): (o) 3D swissroll oe 2D eminedo, (§) 3D ocvot&Swv og 2D
ovoTASeC, Kol (V) 3D Topoidn EMKA 2D KOKAO . . . . v o e

Amoteléopota Ta&wopnong k-NN yla Tpia 0eT YopakpLoTikav oTig IEMOCAP ko
Emo-DB . . . . . . e

EMQa&veleq amo@ioemy LETHED TOUEWY UE HEIWOT] SLOTATIKOTNTAG 62D . . . . .
Meiwon Stkotaong og 2D ylo TO GLYXWVEVHEVO GET XAPOKTNPLOTIKWY 0Ty Emo-DB
ISOMAP y1o T) GUYYWVEVUEVA XXPOKTNPLOTIKE SV0 OpLANTWY TG IEMOCAP . . . .

() To BERT eivot ipoekmatSevpévo oty aryyAlkr| Bikutaudeio kot To BookCorpus pe
T1¢ epyaoieg MLM kot NSP. (b) Zvveyilovpe tnv mpoekmaidevon tov BERT oto Ui
ETLOTHELWLEVO GVVOAO SeSopévav aToYov pe MLM. (c) Ekmaidevovpe éva Taglvoun-
TN UE TX EMONUEIWHEVH SESOUEVX TOV TINYXIOV TOUEX, EVX YPTOLUOTIOIOVHE TX 1)
ETIOMNHELWUEVY SESOPEVX OTOYOV VIX TOMLM. . . . . . . . . . . . . ... .. ..
Méon oakpifelx yx StaxpopeTikny moodtnTa SLxBEotpmwy SeSopévwv otoyov ya: (1)
DPT BERT (2) DAT BERT kat (3) UDALM. . . . . . . . . . oo ottt
IIpocaPLOYT] OTOV OTOYEVHEVO TOLEX LECW NVTOETIIBAEYTC. 10 aploTEPd, PAETIOVLE
TO yeviko otddLo ipoekmaiSevong Tov XLSR-53 YpNOLYLOTIOLWVTXG TNV CVTOETLPAETO-
Hevn ouvvdptnon kootovg L. H yevikr) mpoekmaidevon Sie€dyetal og 56, 000 wpeg
NXNTKOV SeSopévmv o€ 53 yAwooeg. Zta Sefld, PAETOV|E TO TPOTEWVOHEVO GTESL0
TIPOCOPOYTC AETITNG ETILHOPPWOTG, OTIOV T EPYACIA crvoyvWPLoNG OpLAlaG pobaive-
TOL YPNOLLOTIOLVTHG SESOUEVH ATIO TOV TINYXI0 TOUEX HE HETOYPAPES, EV® 1) TIPO-
OOPOYY) OTOV OTOXEVHEVO TOUEX EKTEAEITOUL CUUTIEPLAXUPAVOVTOG TNV LTOETIPAE-
TIOHEVT] CLVAPTNOT] KOGTOVG O€ NYNTIKK SESOUEVH ATTO TOV TINYA{0 KX TOV GTOXEVLE-
VOTOMER. & v v v o v v v e e e e e e e e e e e e e e e e e e e e
Amo68oom Tov M2DS2 yix Ti¢ pvbpioelg LG — HP (umAe kOkAog) kot LG — CV (kitpt-
VO TETPAYWVO), OTAV LELWVOVHE TNV TTOCOTNTH TWV SLKBESUWY SELYHATWY GTOXOV
010 50%, 25%, kot 10% Tov apyKov oeT SeSopévav (0pllovTiog dEovag). H amdso-
o1 Tov SO ep@avileTal e TIC SLaKEKOPPEVES YPoppéS. Katakdpupog dEovag: WER,
0p6VTIOg ALovag: TT0600TS TN TIKOD VAoV oTtdyov (100% — 0%) . . . . . . ..

The trend in this graph shows an exponential increase of parameters in new
NLP models. This results in increased reasoning capabilities, but also the po-
tential forming of a new “Moore’s law” for NLP. (image credit: MIT HAN Lab)
The double-descent error curve consists of the classical bias-variance trade-off
regime and the modern interpolating regime. Predictors in the interpolating
regime have zero training risk (perfectly fit the training data), while the test
error can become arbitrarily small. (image credit: Daretal.'®) . . . . ... ..
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Extetapévn Iepiinyn

1.1 MEePoz I: O AATOPI®OMOZ PATTERN SEARCH MDS

ZT0 TPWTO HEPOG TNG SLTPIPTC TTAPOVCLALOVE HLX VEX OTITIKT] YLX TN 1] VPOHMKY] P&Bnon moA-
Aamhotntwv (manifold learning) xpnolponolwvTag TEXVIKEG BEATIOTOTOIMOTC XWPIC ToPAywYyouC.
LUYKEKPLUEVQ, TIPOTEIVOVLE LK EMEKTAOT) TNG KAXOLKTG TOAVSIAOTHTNG HeBdSov kAldkwong (MDS),
omov avTi va k&vovpe gradient descent, k&vovpe Setypatodmpio kot c€loroyovpe mOAVES “kivroelg”
o€ Ja oQaipa 0THOEPTC AKTIVAC YLX KAOE OTUEID TOV EVOWUATWHEVOL XWPOV. MIX €yyUT0T] GUYKAL-
o1MG oTaBEPOV oMEiOV PTTOPEL VX THPOVCIXGTEL SLATVTTOVOVTARG TOV TIPOTEWOHEVO XAyOPLOU0 ¢ TTo-
PASEYHA TOV TTAXLGIOV YEVIKNG orvadnTnong mpotumwy (GPS). H a&loAdynon 1600 o€ kabapd 660 Kot
oe BopuPwdn ovvBeTKd cVvoLa SeSOPEVWVY Selyvel OTL 0 TPOTVWEVOG arAyOpLOOG pattern search
MDS pmopel vor GUPTIEPAVEL e aKPIBELX TNV EYYEVT] YEWHETPIO TTOAAATIAOTI TV, EVOWUATWHEVHOV
og YWwPoug VYnAwv Slaotdoewv. EMUTALov, TIEPAUATX 08 TTPAYUATIKK SES0UEVQ, YL TTPOPANUXTA
TOELVOUNOTC EIKOVWV, OT)LOGLOAOYIKTC OLOLOTITHG, KAL (VXYVWPLOTIG CUVXIOONUATWY &TT0 QwvT), Si-
XVOUV OTL O TIPOTEWOHEVOC OAYOPLOLOC ATTOSISEL ATTOTEAEOPATH TEAEVTHING TEYVOAOYING, XKOUT KXt
KOTW a6 BopuPwsdelg oLVOTKEC.

1.1.1 BAZIKOX AATOPI®MOZ

H kVpLo 18¢a iow a1md TOV TTPOTEWOUEVO AXAYOPLOO EVAL VX XVTIHETWTTICOVE TO MDS w¢ €va TTpo-
BANpa BeATLoTOTOINONG XWPIG TTAPXYWYOLE, XPNOLLOTIOLWVTHG LK TIXPOAAXYY| TNG YEVIKNG ava{NTN-
on¢ potiBwv (GPS) yLo Tnv elorylotomoinom pag cuvdptnong anwielxg. H eicodog otnv avaldrjtnon
potifwv MDS eivar évag mivakag amootdoewv otdyo¢ N X N T kot 1 embupnt Sitotoom L Tov
EVOWHATWIEVOD XWPOV. MLa eTIOKOTNGT) TOV xAyopiBpov mapovotdletal otov AAy. 1.

H SixSikaoia apyikomoinong tov akyopiBpov amotedeiton amo: 1) tuyaia apyikomnoinon N on-

50), xgo), s xg\?)] e RNXL 9y
(0)

VTTOAOYIOHOC TOV TIVAKX XTTOOTROEWY TOV EVOWHATWHEVOV XWPOL D), émov 10 otouxeio dj;

50) Ko XJ(O) 100 X(9), kot 3) VTTOAOYLOPOG TOV ap-

HelwV 0TOV EVOWHATWHEVO XWPO KOL KXTHOKELT| TOV TTivaka X = [x
etva
1 EvkAeiSela amdotoon peTodd Twv SLvuopETwy X
XIKOU GQAUALXTOG TIPOGEYYLONG e = AT, D(O)), OTIOV e EVAL TO TETPAYWVIKO GPAXAPX MSE petad
TV 8V0 Makwv. H ouvéptnon fmov emsiokovpe Vo EAXYLOTOTIOCOVILE VAL TO KXVOVIKOTIOL-
HéVO TeTpdywvo TG vopua Frobenius tov mivaka T — D, éniady, AAT,D) = (1/N?*)||T — D||%
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Opoiwg, propel kaeig var ekPPAoeL To foToLELWSWE WG eENG:

N N
1
AT,D) = I Z Z(t’f — d;j)?, where T,D € RVN (1.1
i=1 j=1

Algorithm 1 Pattern Search MDS

1: procedure MDS(T, L, *%))

2: k<0 > k is the number of epochs
3 XK + UNIFORM(N x L)

4. D + DISTANCE_MATRIX(X(¥)

s o9 fT.Dk)
6
7
8
9

k—1)

el — +00

HE)  0)

while A% > §do

if ek) — ) < ¢. (k) then

10: b 2
11: S + SEARCH_DIRECTIONS( ), L)
12: for all x € X® do
13: X*, ¢* +— OPTIMAL_MOVEX (X x,$,¢(K))
14: elk=1) ¢ (k)
15: elh) ¢ e*
16: xR - x*
17 k=k+1

MeTd To Brjpate apykomoinong, oe k&Be emoyy| (emov&Anym), Aappdvovpe vmoyn v em@d-
VELX LG VTIEPOPAIPNG, HKTIVOC ryDpw Ao k&Be onpeio ng). O mBaveg katevBvvoelg avalnTnong
BpilokovTol 0TV EMPEVELX TNG VTIEPOPUIPAG KXTK UNKOG TNC opBoywvilag B&ong Tov Ywpov. Avtd
Snuovpyel Tov Tivaka katevBuvoewv avadTnong S kot cuvopiletal oTov Ady. 2.

Algorithm 2 Define search directions
1: function SEARCH_DIRECTIONS(r, L)
2: St r. I

3: ST+ —r-I;

4

5

s+ [
return S

K&Be onpeio petokeltol aminoto, Xwpic va Aappdvel viioyn dAla onpeia, Kot T SloToo
IOV TTXPXYEL TO EAKXLOTO GPAALX. L€ AUTO TO 0TAS10, AXPB&VOVE LTIOYN POVO KLVTOELS TTOV 081)-
yobv g€ HOVOTOVN] HEIWOT TNG CLVAPTNONG OPAAPaTOC. O Aly. 3 Bpiokel TNV 8aviKY| Kivnom Tov
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€AXXLOTOTIOLEL TO ek = AT, D(k)) ylx kéBe véo anpeio X ko PeETaKIVEL To X TIPOC AUTY| TNV KXTED-
Buvon. Enpelwote O0TL 0Tow ypdpovpe s € S, o mivakag S Bewpeltal wg 10 cHvoro SlavvopdTwy
VPOUHWY.

Algorithm 3 Find optimal move for a point

1: function OPTIMAL_MOVE(X(), x, S, ¢)
2 e e

3 for all s € Sdo

4 X4 x+s

5: X < UPDATE_POINT(X¥), x, %) > Update x point of X(¥) with x
6 D + DISTANCE_MATRIX(X)

7 2+ (T, D)

8 if ¢ < ¢* then

o: e <e

10: X* X

11:  return X*, ¢

To TPOKVTITOV 6QPGANX €* vTToAoyileTan peTd TNV ekTéAeoT) NG BEATLOTNG KIVONG YL KGOE oNei-
0 oto XM, E&v 1 Helwon ToV CPAAPATOC PTAOEL O€ VX TTANTO, LELWVOVHE TNV KTIVX v {1 Tnomng
0TO HLOO KOL TIPOXWPAUE 0TNV EMOUEVT) ETTOXY]. AVTO eKPPATETAL WG el — e < ¢ e® 6mov e giva
Juox pukp| BeTikn otaBep&, SnAad1) 1) HElwoT) TOL CERAPXTOC PIVETAL TTOAD [LIKPT] OE OXEOT |LE TO ek,
H StaSikaoio oTapatd 6Tow 1 ok Tive ocvaedTnomg ryivel ToAD pikpn), Sniadn r < 6, 0mov § eivat pia
JkpY) 0ToBepd, OTIWG QaiveTal oTov AAy. 1.

BEATIZTOIIOIHZEIZ

1. “Koakég” Kuwnoeerg: TpomomoloDpe ToV aAyoplOpo WoTe Vo EMITPEMETAL o€ k&Be onpeio va
KGvel TNV BEATIOTT KivnoT, akOUT KoL orv auTO TPOCWPIVE XVENCEL TO COAAPX, YEYOVOC TIOV
prtopel var 08Ny oeL o€ TaUTEPY] GUYKALOT) 08 KAADTEPEG AVCELS, TTAPOHOLX [LE TOV arAyOpLOLLO
simulated annealing.

2. Online YoAoytopog tov Iivako ATTOGTAGEWV: EVIILEPWVOVLE HOVO TNV eMNPENOHEVN
OELPX KOL OTNAT) OTOV TIVAKX ATIOCTHOEWY YLK KKAOE KivnoT, avTi v emavumtoAoyilovpe oAd-
KANPO TOV Tivako, oVp@wvo he Tnv EE. (1.2).

df0 = (@) = (0 B2 4 (kD) ka2 12

3. Emuloyn Bipatog kot Kivneng: YAomolodpe tuyaia Setypatoinpicc Kitevboiveewv otov
XWPO EVOWHRATWOTNG YL Vo ETILAEEOVE P “KOAT” KatevBuvo yLor o kivnom, ovti va ovodn-
TAPE TNV I8OVIKT), L€ OKOTIO T1) LElwaT) TNG TTOAVTTAOKOTI TG KOL TOV XPOVOU eKTEAEDT|C.
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4. MapaAinhomoinen: Xpnolomnolovpe TopdAANAovg VITOAOYLOPoDE, el8IKA TO poTiPo map-
reduce kot 11 BBALOOTKT OpenMP, ylor vo ETITAYVUVOVE TNV avadi|TNoT Lo BEATIOTES KLVT|-
OELG, TETUYXIVOVTHG ONUAVTIKEG BEATIWOELS OTOV XPOVO EKTEAEDTG.

AATOPI®MIKH IIOAYIIAOKOTHTA

Ta k&Be emoyn avalntovpe oe 2L Sixotdoelg yix N onpeio. Le kdBe avalijtnomn xpelalopoaoTe emi-
ong O(N) p&EELS yLa VX EVIHEPWOOVHLE TOV TIVOKA ATTOOTHOEWY, L€ XPT)0T) TOL online vTOAOYLGLOY.
"ET0L, 1) VTTOAOYLOTIKT TTOATIAOKOTNTA TOV athyopiBuov avé emoxi etvor O(N?L). Ot vméAowmeg mpo-
Tewopeveg BeXtlotomotnoelg 5ev dAAG{oVY TNV TOAVTIAOKOTNTA TOV CAYOpiBpOL orvd eTTOYY) HE TNV
a&loonpeiwtn efaipeon g PeATioTomoinong emAoyng kivnong: av ovti yix 2L Koelg avi emoymn
Bo Adppave vrtoyn povo 2K kwvnoelg (K < L). Ze quTi) TN TEPIMTMOT), 1) GUVOAIKY] TIOAVTTAOKO T T
avé emoy B oy O(N?K) vt yix O(NL). Qo1d00, 6Twg Bar SOUpE 0TA TEPHUATA IOV OKO-
AovBovv oL (vmtélolmeg) TPOTEWVOEVEG BEATIOTOTOWOELG BEATLOVOVY TNV TAYXVTINTA GUYKALONG, LE
ATTOTEAEOPA AMYOTEPEC ETIOXES EKTENEDTC.

1.1.2 TIEIPAMATA 'EQMETPIAYL [IOAAATIAOTHTQN

H Boaoikn vmoBeon ot pddnon moAAXTAOTNTWVY eival OTL Tor SeSopEva €l0OS0V BpiokovTal o€ pia
XOUUNANG SLAOTAONC, U1 YPOUUIKT) TOAAXTIAG TN TN, EVOWHATWHEVT) G £Vvary XWPo VYNNG SLEoTHOTG.
"ETOL, OL 1) YPXUKEG TEXVIKEG HEIWOTC SLKOTATIKOTNTAC OTOYEVOVY GTNV EE0YWYT] TNG XXUNANG SL&-
OTOONG TTOAAXTTAOTNTOG ATIO TOV XWPO LVPNANG StkoTorong. Tix vor amelkovicovpe ovtd Snpovpynoo-
L€ L TIOKIALX YEWHETPIKWV OYNUATWY TIOAAXTIAOTITWY KOl GUYKPIVALE TNV TIPOTEWVOLEVT] TEXVIKT
MDS pe GAAES, KXOLEPWEVES TEXVIKEC.

[pémel va onpelwdel dTL ot aAyoplBpot MDS e €l0080 Tivakeg EVKAEISELNG ATIOOTAOTC SEV PTTO-
POV VO EVTOTIIOOVY T1) YEWUETPIA TwV SESOPEVWV, £TOL XPELXIETHL VX TIPEYOVE WG €(0080 £vav
VKX PEWSATIKIIG AMO0THONG. AVTOC 0 TVOKOCG VTIOAOYIJETAL EKTEAWVTHG TOV atAydplOo Tov
Djikstra yio 11 ouvtopdTeEPT SLASPOLT) OTOV TIVOKX YEITVINONG TWV EL0XYOUEVWY SeSopévav. Ta
T TEPAPAT P SetypatoAnmtovpe 3000 onpeio og 11 3D oXMUOTA KAL TX LELWVOVHE O€ 2 SIKOTH-
OELG XPNOLLoToIWwVTeG TOV pattern search MDS, SMACOF, truncated SVD, ISOMAP, LLE, Hessian
LLE, Modified LLE kot LTSA.

H Ew. 1.1 Seiyvel melpdpoto yloe TNy HElwon SLaoTAoEWY TPLOV OXNUAT®WY TOAAXTTAOTITWVY. Al-
VOVTOL YEWSAUTIKOL TIivakeg amooTtdoewv otov pattern search MDS kot SMACOF. Koatayp&@ovpe
TOVG XPOVOUC TIOV XPEL&oTNKE K&OE LEBOSOG yLo var TpEEeL

To TPWTO oYU Tov e€eToVE eival TO KAAOIKO swissroll, 6mov éva 2D eminedo elvat “TUALY-
[évo” o 3D Xwpo Kal 0 6TOX0G elvot vox e€oryBel To apy ko 2D eminedo. T amoTEAESUATA TTIXPOVOLK-
{ovtat onv Ek. 1.1, ZT1 ovveyelx eEeTA{OVIE TTWG OL XAYOPLOpOL XEWPI{oVTAL ApAXLOVE TIIVOKES ATTO-
otdoewv. A qUTOVY TOV OKOTIO, STULOVPYOVE EVX GUVOAO SESOUEVWVY OO 3D 1) EMKXAVTITOUEVES
OMGSEC e PO PPOT] TIOV OUVSEEL TOr KEVTPOELST), OTIOV 1) paLdTNTA TOV TIVOKA ATIOGTHOEWY TIPO-
KOTITEL SLOTL 1) TTAELOYN @it TV ONpeiwVY SElypaTOANTTETOL TTOAD 0TEVE PEOX OTIG OPASEG. M KA
ameKOVIOT Ba pémel va Statnpel TN Sopr) TNG OpASag og XUpPNAOTEPEG SLoTROELG. £T0 EXNpHa 1.16°

26



BAémovpe Tar amoteAéopota. TéNOC, TaPovol&lovpe TTWG 0L XAYOpLOpoL artodidovy e PeTaPKaEL]
QTIO TIVKVEC 0€ OPUILEG TIEPLOXES E EVO OYT LA EALKOELSOVC TOPOELSOVCE 0TO ZyTua 1.1y

1.1.3 TIEIPAMATA “HMAZIOAOI'IKHEZ OMOIOTHTAX

H KoTaoKeLT) LOVTEAWY ONUACLOAOYIK®WY SIKTOWV GLVIOTHTAL OO TNV QVATIHPRGTHGT] EVVOLWY WG
Slovvopata og évav, TOovwg vpnrodidotato, ywpo R”. Ol oyéoelc HETHED TWV EVVOLKOV TTOGOTIKO-
TOLOVVTOL WE Ol KTTOCTACELS, 1) AVTICTPOPA OL OPOLOTITES TOV TITOVOV, HETAED TWV OTILXGLOAOYIKWY
StoxvvopdTwv. H epyacior TNG onpAclo oYK OHOOTNTHG GTOXEVEL 0TV ELOAGYTOT TNG CLUOYETL
O1C TWV OMOLOTNTWY PETOED EVVOLWV 0€ Vv SESOEVO ONUXGLOAOYIKO XWPO EVOVTL EVOG GUVOAOD
TILWOV OPOLOTNTAG TTOV TTHPEYOVTAL ATIO QXVOPWTIOUC.

H pelwon g SLaoTatikdTnTog mop€XeL vy TPOTIO yLal v PeLwBel To PéyeBog TwV SLvVopAT®Y
IOV 08N YEl 68 ONUAVTIKK KEPST 08 YPOVO VTTOAOYLGOV KA XWPO amobnkevonc. EmBuunto eivan évag
TPOTOG Pelwong TG SLAoTATIKOTNTHG Vo SLXTNpel TN SOLT) TOV KPXIKOD XWPOV, KOL GUYKEKPLLEVA TLG
QTIOOTHOELG LETAED TWV EVVOLWV.

A&loloyodpe TNY amé800n TWV TEYVIKWY HEIWONG SIKOTATIKOTNTAC TTIOV EPEVVTIONKAY KAl TNV
TIPOTYOVEVT] EVOTNTA YL TNV EPYRCIX ONUXGLOAOYIKTIG OUOLOTNTAC. XPTOLLOTIOLOV|E T ONLOGLONO-
yik& ovvoAa SeSopévwv MEN kot SimLex-999. Kot 1 §V0 cVvola 8E50EVWV TTHPEXOVTOL GTN) HLOp-
@1 MoTWV {evywv AéEewv, oV kdBe Levyog ouvdeeTal pe évav BaBpd opoldTnTag. Avtog o Badpog
VTIOAOY{OTNKE PECW TOV PEGOV OPOL TWV OLOLOTNTWY TIOL TIAPElYOY GvOpPwWTOL. Q¢ ONACIOAOYIKK
Slavvopata AEgewv vPNANC StkoTaoTC, XPNOotoTolovpe T 300-StdkoTata Stovdopata GloVe Tov Ka-
TOOKEVAOTNKOV XPTOLLOTIOLWVTHG Vo peydAo cwpa Twitter. Melwvovpe T SLovOopaTa 6TV emibv-
pnt1 Stéotaon L ko vitoAoyilovpe Tov ouvvTeAEOTY| GVOXETIONG Spearman Peto&d Twv PabpoAoylwv
OHOLOTN TG TIOV TTHPEIYOV Ol GVOPWTIOL KA GUTWVY TIOV VTTOAOYIOTNKAY QXVTOUATA. T XTTOTEAEGU-
Ta epthappévovtan otov Iivaka 1.1 yie L = 10. Hapotnpodpe 01t 1o LLE mopéyel Tor kahbTepa
amoteAéopata yoo To MEN, eve To pattern search MDS givat To kaxAvtepo ylo To SimLex-999. Emi-
TIA£0V, TOPOTTPOVHE OTL OL 1] YPXHLLKES TEXVIKEG HEWONG SLACTATIKOTN TG UTTOPOVV VO BEATLWOOVY
ONHAVTIKK TNV ATTOS00T] TWV OUXGLOAOYIKWY SIVOOHATWY 08 KATIOLEG TIEPUTTWOELC.

1.1.4 XYMIEPAXMATA

Ipoteivove To pattern Search MDS, vy vEo dAYOPLOHO YL [T YPOUKT) LElWOT SLoTATIKOTNTHC,
EUTTVEVOPEVOD aTTO PLEBOSOVC BeATioTOTOMN GG XWPIG X1 on kAlong. To Pattern Search MDS Stxtvnw-
VETAL WC VO TOPASELYLA TG EVPUTEPNG OLKOYEVELXG TV UEBGS WV GPS, TPOCPEPOVTAC DEWPNTIKES
€YYUNOELS OVYKALONG. EMutAéov BeXTioTomom0Elg BEATIOOVOUY TNV ATtOS00T] TOV 0AyopiBpov Hog wg
TIPOG TNV UTTOAOYLOTIKI ATOSOTIKOTNTA, TNV AVOEKTIKOTNTA KOL TNV TTOOTNTH NS Abong. H moto-
Tk o€loAdynom o€ oVYKpLon e GAAEG STHOPLAEIG TEXVIKEG HElWONG SLHOTATIKOTITOG YL KaBopE
Kol BOPUPBWSELC YEWUETPIES SLALOPPWHIEVWY XWPWVY Seiyvel 0TL To pattern Search MDS pmopel va
QVOKOXADPEL e OKPIBELX TNV EVEOYEVT] YEWHETPIO TWV TTOAAXTIAOTITWY TIOV €V EVOWUATWHEVES
og VYNA0SLEoTOTOVG XWPOovG. EmmpdobeTa, 1) 0UYKPLOT TWV XOPOKTNPLOTIKWY GUYKALONG OTEVX-
V1L 010 SMACOF 8eiyvet 0tL 10 pattern Search MDS ocvykAivel o€ AyOTEPEG ETIOXEG O TTXPOLLOLEG
N KoAVTEPEG AVoelg. TIelpdpaTo 08 TIPUYUOTIKG SESOHEVH TTAPRYOUV XTTOTEAEGUXTO CUYKPICLLA e
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Ewova 1.1: TOykpion tov ahyopiBpov pattern search MDS pe &AAeg TexVikég pelwong SLGTATIKOTNTOG YL HETATPOTLH:
(o) 3D swissroll o€ 2D eminedo, (B") 3D cvotddwv ot 2D cvotédeg, kan (Y) 3D topoidr] éAtka 2D kKo



Iivakcog 1.1: T0ykpion TEXVIKOV HEIWO NG SLG TATIKOTNTOG Yio TN o npactoAoyikh opotdtnta ota MEN kot Simlex-999.

Még6080¢ Aotéoelc | MEN | SimLex-999
- 300 0.635 0.177
Pattern search MDS 10 0.596 0.242
SMACOF 10 0.632 0.221
ISOMAP 10 0.625 0.132
Truncated SVD 10 0.562 0.140
LLE 10 0.657 0.172
Hessian LLE 10 0.157 0.004
Modified LLE 10 0.643 0.158
LTSA 10 0.154 0.004

TO KOPLPUX YL ONILKGLOAOYIKT] OOLOTNTX AeElAoyiov. AvolyTol KwSIKa VAOTIOMGELS Tov Pattern
Search MDS kal TG SLaSIKOGING ToHPAYWYNG SESOUEVWY TTXPEYXOVTAL PLX VA SLEVKOADVOLY TNV 0K~
THPAYWYT) TWV ATIOTEAECHATWY O,

1.1.5 ME®OAOI MEIQEZHE AIAXTATIKOTHTAY I'IA ANATNQPIZH ZYNAIZOHMATQN AIIO ®QNH

E&etdlovpie TN XP10T YPXUUIKOV KXL UT] YPAUUIKWY OXAYOPIOL®Y Pelwon SIXOTATIKOTNTAG YL TNV &-
Eaywyr) low-rank YapoKTnNpLOTIKWY YL TV KVOyV@PLOT) CUVALCOTUATWY &TIO PwVT). XP1OLLOTIOL0V-
VTt V0 CUVOAX XXPUKTTPLOTIKWY, Ve TTOV BacileTol 08 YOXPAKTNPLOTIKE YXUNAOD EMIMESOL KOL TIG
owaBpoioelg Tovg (IS10) Kot €var PovTEAOTIOLEL TA L] YPOUMIKE SUVOHIKE YOPOKTNPLOTIKA TNG OLL-
AMag (RQA), KaBwe Kot TN GVLYTNEN TOVG. AVAPEPOVIE ATIOTEAECHUAT AVOYVWOPLOTG CUVHLGONUATWY
optAiag (SER) ylx pobnpéveg avamapootdoelg oe 00 PAoEG SESOLEVWY YPTOLUOTIOLOVTOC SLX(POo-
PETIKEG PeBOSOoVG Tavounone. H TaEOUN o e XVaTTXPUOTAOELS XUUNAWY SINOTRGEWY KTTOPEPEL
BeAtiwon tn¢ amddoong o Sikpopeg pubuicelg. Avto LITOSAWVEL OTL 1] PelwoT SlxoTdoEWV eivat
£V0¢ ATOTEAECPATIKOG TPOTIOC YLX TNV KXTATIOAEUTOT] TNG KATEPAC TNC SLAUOTATIKOTITHG Yl TNV O-
VOYVWPLoT cVVKIGONUETWY omd @wvY). H OTTIKOTIOINGoT TWV YXPOKTINPLOTIKWY o€ 500 SIKoTROELS
TIXPEXEL LK EIKOVX PLX TIG SLOKPITIKEG IKAVOTTTEG TWV LELWHEVWY GUVOAWY YAPAKTTPLOTIKWV.

1.1.6 XAPAKTHPIZTIKA

XPNOLLOTIOLOVE TX TIAPAKATW GUVOAX XU POKTIPLOTIKWV:

IS10 o€T: To 0T XUpaKTNPLOTIKWV IS10 amoteAeitan amd 1582 yapaktnplotik&. To IS10 AapfaveToat
HETATPETIOVTNG TO OMX 0TOV XWPOo Fourier. Ta YOXPOKTNPLOTIKK AVTIOTOLXODY O€ 21 OTUTIOTIKEG AEl-
ToVPYIES (T.Y. TOCOOTH, CUVTEAEGTES YPUHIKTG TTXAWSPOUNONG) IOV eQappolovtan og 38 YapunAov

29



emmedov meptypageic (MFCCs, PCM évtaon K.ATL) kot T €At Toug. H e§orywyn mpoaypatomnoteitat
e TN Xp1on Tov epyaieiov openSMILE.

RQA oet: To 0eT YopakTnpLoTkOv RQA amoteAeital amo 432 YapokInpLoTIKK. AvTO TO OET YOXPX-
KTNPLOTIKOV AdpB&veTan avarhbovTag T Suvapliki TG OAMoG HECW TNG AVATOPAOTHOTG TOV P&-
OHOTOG XWPOV. O YWPOS PAOTC XVOKATXOKEVXIETHL PLECW TNG XPNONG KXOVOTEPTHEVWY EKSOCEWY
TOV QPYLKOV OTLOTOG KOL OTT) GUVEYELX LTIOAOYI{OVTOL TA SLOYPAPUXTH ETAVUATPEWY WG KATWPALW-
MEVEC HTOOTROELS LEVYWV ONUEIWY OTOV YWPO QP&ONC. To YAPAKTINPLIOTIKA EEXYOVTAL WG CUYKEVTPW-
TIKX HETPX RQA amto Tar SLrypdUATH ETOVOXATTPEWV.

ZUYXWVEVHEVO GET: ZUYYXWVEVOVHE TO XAPOKTNPLOTIKE oo IS10 kot RQA o€ i avamap&oToo
TV 2014 SL00TAOEWY, LOVTIEAOTIOLWVTHG TOGO TO TIEPLEXOIEVO CLUYXVOTNTAC TWV NYNTIKOV ONUETWY
000 KL TNV EMOVOANTITIKT SUVOLIKT).

1.1.7 XYNOAA AEAOMENQN

Emiong, Xp1OLLOTOLOV|E TX TTAPAKKT®W GUVOAX SESOUEVWIV:

Emo-DB: H Béon Sedopévwv tov Bepohivov ylax tnv Zvvonsdnparikr) Optiia (Emo-DB) meptéyet 535
OLVOLOONUTIKEG YEPLAVIKEG TIPOTHOELS, EKQPWVTEVES Ao 10 NBomolovg (5 dvdpeg kat 5 yuvaiked).
LuykekpLpéva, meptAappdvovtal 7 cuvaiobnparta, dniasdr 127 Bupog, 45 omdia, 70 @opog, 71 Yapd,
60 AVTY, 81 Bopepdpa kot 70 ovSETepa.

IEMOCAP: H Baon SeSopévwv IEMOCAP meptéyel 12 wpeg PvTE0oKOTNHEVWOV SESOUEV@Y e SLAAO-
youg mov €xovv ouvtayBel kot cvtooyedlaoTel, yoypa@névol amd 10 nbomolovg. Ot eKPwVNCELS
0PYOVOVOVTHL 08 5 cuvedpieg Svadikav alAnAemiSpioewv avpeca o {evydpla ndomolwv. T ta
mepdpotd pog Aappdvovpe vrtoyn 5531 ekpwvnoelg 4 cvvoodnpdtwv (1103 Bupwpéveg, 1636 yo-
povpevec, 1708 ovdetepeg kot 1084 AvTMPEVES), OTIOV CLYXWVEVOVHE TNV KXTNyopia NG evBovolw-
80VG CLUVALEOMPATIKTG KATROTKOTG OTNVY XXPA.

1.1.8 AIIOTEAEZMATA

Iy Ewoéva 1.2 ouvoilovpe T XmOTEAECUXTA TAEWOUTOTG CLVXICONUKTOG OTIO PWVT) HETK OO
pelwomn SLoTUTIKOTNTAS HECW TOV AAYOPIBHOV KOVTIVOTEPOL YEITOVX YLal T SLXPOPO OET XXPAKTY-
PLOTIKWY KAl 6VVOAX SeSOPEVWV.

ZTO XTMOTEAEOUOTA OrVOPEPOVE TNV afaxpr) akpifela (unweighted accuracy)évn LLE embekvo-
L EeYwpLoTY) ATOS00T 0T1) LEIWOT TWV XXPAKTNPLOTIKOV RQA, €181k& 0T SIXOTAOT) EVOWHATWONG
L = 50. TNa to Yoapoktnplotikd 1S10, ot akyoptBpolr MDS vreptepovv Twv vrtoAloinwv, Selyvovtag
OTL VT TX YXPAKTTPLOTIKK LOLA{OVY TIEPLOGOTEPO |LE VTIEPETIIMESO TIAPX |LE LUT)-YPOLILKT) TTOAAXTIAG-
mta. Ztnv IEMOCAP, apatnpovvtal mapopoleg Téoelg, pe 1 Tpomomompévn LLE kot TN Pattern
Search MDS va €youv KoAl] armo8oon yla Ta YXpokTNPLoTik& RQA kot IS10 avtiototye. H ovyyw-
VEVOT] CUVOAWVY XXPAKTNPLOTIKWV Seiyvel dTt ot MDS kot PCA €lvot oL IO XTTOTEAEOUATIKEG, UE TO
XOXPAKTNPLOTIKE IS10 var KuPLOPYOUY LETK TY] CUYYXWVEVOT).
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Ewova 1.2: Anoteréopata tafvopnong k-NN yuo tpia oet xapoktnpiotikov otig IEMOCAP kai Emo-DB

1.1.9 ONTIKOIIOIHZEIX

Ol OTITIKOTIOLOELS TWV XXPTWY XXPUKTNPLOTIKWY TIOV €X0UV HELWBEl e 800 SIHOTAOELC ATTOKOAD-
TITOUV KEVTPIKEG TTXPATNPNOELS. 10 ZxTua 1.3, 1 PCA e@appoopévn og éva Ttokilo chvolo SeSopié-
VWV OUALNC XTTOKOADTITEL SLOKPITEC KATHVORES GUVALOOTUATIKWY TREEWV. O BUPOC (UTTAE Kot yopio)
ep@avilel mapdpolx potifo SLcvopnG e T AOTIT Kot TN XoXp& 08 TOPEIG TOvIWV KL TNAEOTITIKWY OEL-
POV, OTWG QoiveTat 0To ZYNHa 1.3 kat 670 ZxNpa 1.3f". Qoto00, 0TI¢ ouvevTevEelg (Exnpa 1.3y), 1
TPWTEVOLOX SL&OTHOT) PCA Sev Starywpilel ca@mg To cuvotobTjparTa;, e Tov BUupd Ko T Xopd vor Sto-
KpivovTtal TIepLocdTEPO AT T1) SevTEPEVOVO SLAOTHOT. AVTO TO HOTIBO HOLXLEL HE TNV KVTIMPOCcW-
mievor Valence-Arousal, Selyvovtag Tnv evoobnoic Tov Topéa 0TV QVTOUATN Helwon Slaotdoewv
VLot TO CVVXLEONUATIKG TIEPLEXOLEVO.
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() Xerpég

(¥) Zvvevteltelg

Ewkova 1.3: Empdaveleg anogdocwy petaghd Topéwy pe peiwon diaotatikdtnrtog og 2D

(a’) Pattern Search MDS (B) LLE
® neutral B sadness ¥ anxiety/fear
* disgust ® anger 4 happiness
# boredom

Ewova 1.4: Meiwon Siotaong oe 2D ylo TO GUYXWVELHEVO GET XAPOKTNPLOTIKOV 6Ty Emo-DB
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* Ses01M angry

* Ses01M happy

* Ses01M neutral
Ses01M sad

® Ses02M angry

® Ses02M happy

® Ses02M neutral
Ses02M sad

Ewova 1.5: ISOMAP yua to cvyywvevpéva xapaktnpiotika 8bo opAntaov tng IEMOCAP

To Zxnpa 1.4a’ Seiyvel 1 Snuovpyia €vOg oNUOVTIKOD SIOSLAOTATOL YWPOoL amd T Pattern
Search MDS, 6mov cuvaloBMpata 6TWG 0 BVROC KL 1) AVTIT) KATAAXUBAVOUY SLOKPLTEG TIEPLOYEC, VTIO-
SNAwvovTag kpuPN kwdikomoinor arousal. H LLE, mop& 11 YOUNAT] dkpiBelx 0T GUVSVXOHEVD Y-
POKTNPLOTIKE, Staywpilel Ta cuvaeOfpaTa YaunAov omd avtd vpnAov arousal oto Zynpa 1.40". To
ZxNpa 1.5 moapovoldlel i evowpatwoel ISOMAP yia Vo optAntég oty IEMOCAP, mISekvOOVTHG
KOAUTEPY] SLAKPLOT) OLUANTWY, TIPOOPEPOVTAG LTIOSELEN Yl TNV TOAVT) X101 TOVG O SIAYwPLoUO
OMLANTWY BAOLOEVO OE YEWSAUTIKEG ATIOOTAOELG.

1.1.10 XYMIIEPAXMATA

Ze aquTr) TNV gpyaoia, eEEpeVVoVE TIG EMSPAOELG TNG 1) ETIRAETTOUEVNC YPXHUUIKYC KL LT) YPXHIKTC
HelWOoMNC SLOOTATIKOTN TG 08 KOPLPOIX YXPAKTNPLOTIKK OLALOG PLO TNV 0VXYVWPLOT) CUVALGOTUXTOG
amo @WVT. AELOAOYOVLE 0VTOVE TOUC XAYOPIOOVE YLX VEEXPTNTT) ATIO TOV OLLANTT) QXVAYVRPLOT| GL-
vaodnpatog amod @wvr) otnv IEMOCAP kot v Emo-DB. Ta melp&pata Selyvouv 0Tl 1) amdS001 Twv
QVOTIOPOOTAOEWY XXUNAOD BABLOV VAL AVTAYWVIOTIKY] GE OYEOT UE TIC APYIKEC OXVATIAPXOTROELS
VYPNANC StioToomG. YoBETOV|E OTL AUTO TO POUVOLLEVO TIPOKXAEITOL OTTO TNV KXTAPX TNC SLOOTATIKO-
NTHG, KXOWC 0 APLOPOC TWV SEYHATWY 0TK GUVOAX SESOUEVWY PLX TNV XVAYVOPLOT] CUVALOOTLATOC
amo @wvY) 6ev kxAvTTEL TOV VPNAOSLEoTATO YXWwpo. H epunveict Twv AmOTEAEOUATWY KoL 1] OTITIKO-
TI0(N0T) TWV CVUTTXPACTACEWY OF 2 SINOTAGELG TIPOCPEPEL EVOLXPEPOVTA CUUTEPKOUXTH OXETIKA |LE
TIc vpnrodidotateg Sopéc. H mpwtn Samiotwon eivan Tt o Yopaknptotik IS10 propovv va o-
TOSOUNO0VY HE TN XP1OT VPXUWKNG HEIWONG SLHOTATIKOTNTAG, TL.Y. HE TN XPN0T TV aAyopiBuwv
PCA 1) MDS. Aevtepov, 1 pelwon SLoTHTIKOTNTAS e TEXVIKEG TIOV SLTnpov amootdoelg pnopel va
KWSIKOTIOLTOEL OTHAVTIKEG SLOTAOELG, T1.Y. arousal.
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1.2 Mepoz II: MH EIIIBAEIIOMENH ITPOZAPMOT'H METAZEY IIEAIQN I'IA EGAPMOTEX TAQXYAY. KAI Q-
NHX

210 8eVTEPO PEPOG QVTIG TNG SLTPLPNG, OXESLEALOVIE OTPATNYIKEG EKTTOSEVOTC IOV SLEVKOAUVOUY
TNV U1 EMPAETIOUEVT] TPOCAPOYT] CUOTNHATWVY KEWWEVOL KOL OAKG 08 AYvwoTOVS TOHEC. EtSikn
€upaon Sivetal 6TV ToGHTNTA TWV SESOPEVMOV TTOV KTTXITOVVTOL YL ETILTVYTLEVT) TIPOGHPILOYT), KAL
ETPREPALOVOVIE TNV ATOTEAETUATIKOTITA TWV TIPOTEWOLEVWVY TEXVIKWY OGOV XPOP& T1) Xp1om Sety-
HETWVY HECK EKTETAUEVQV TTEIPXUATWV. EMIKUPpWVOVE TNV TTpoTEWOpEVT] HEB0SO ylx V0 Slaxpope-
TIKEG EQAPHOYEC, TNV TAEWVOLTON KELWLEVOV KAL TNV ovoyvwpLon optAiog. Ot TTpoTevopeveg pébodol
AELTOVPYOVY GE GLVSVAGHO e STOPLAT), KOPLPIK LOVTEAX, TO OTIOIX EKTIXISEVOVTAL L€ AVTOETILPAE-
TIOEVO TPOTIO: YLlot TO Kelpevo empPefalwvovpe TNy TPoogyylon pog pe To BERT kot yla v optAia
pe 10 XLSR-53.

1.2.1 ®OPMAAIZMOX

Tumikd, To TPORBANUA TN UN-ETIRAETOLEVNG TIPOCAPHOYNG HETHED TESIWV pmopel va oploTel w¢ e&ng.
Eotw X C R” évag MpoypaTIKOG XWPOG TILWV TIOV KTOTEAEITAL OO N-SLOTHGELG SLOVUOUKTWVY YO
POKTNPLOTIKAOV x € X, ko Y éva memepaopévo ohvoro eTiketwv y € Y, naadn, Y = {1,2,...,L}. E-
TUMAL0V, VTTOOETOVE SV0 SLAPOPETIKES KATAVOPEC, SNAXST), TNV Kartavopr| Tov Tiediov Tmyig S(x, y)
KalL TNV Katavopn) Tov mediov otoyov T (x, y), ot omoieg opilovtat 070 KapTeLavd ywopevo X X Y.

0 0ToY0C eival var eKTToISEVTEL Evar LOVTENO TTOV POBXIVEL I ATIEIKOVLOT] LETAED TWV SLVOGPA-
TOV YAPAKTNPLOTIKAOV X7 KOL TWV VTIOTOL(WVY ETIKETWVY TOVG Y7 yla Seiypata mov Aappdvovtot
T TV KaTawopr 6toyov (x7, y7) ~ 7.

Kot v eknaiSevon, éyovpe mpdoBaon oe Seiypora amd v karovopn) tmyng S(x, y) kot my
TEPLOWPLaKT Kaxtavopn) aToxov 7 (x), SnAadn, 8ev mapéyovtal eTikéTeg 0ToX0L. Opilovpie T0 VOO
Sedopévav ekmaidevonc D w¢ T1 GUYKEVTPWOT] TWV GUVOAWY EKTTXISEVOTC TINYNC Kot aTdYov, D =
(Ds, Dr). Tat Ds kot Dy 0piovton g akolovBieg amo mAeeSeg, Snhadn,

Ds = {(xi7 yi) | (xi> yi) ~ S(x7 Y)a 1<i< N}

(1.3)
Dr={(x,0) | x5~ T(x), 1 <j < M},

omov AapBdvovpe N Seiypata and 1o S(x, y) kot M Seiypata and 10 T (x). TéAog, evioybovpe
TIC TAELSeC oTo D pe o ovvaptnon Seiktn mediov:

D = {(xt, Y 1) [1 < k < N+ M}

if x ~ S(x),
if xp ~ T (x).

{ if xp ~ S(x),
if xp ~ T (x). (1.4)
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MH-ENIBAEIIOMENH AKOYXTIKH ITPOZAPMOTH I'lA AYTOMATH ANATNQPIZH ®QNHZ

O TPV OPLOUOG UTTOPEL VO ETIEKTAOE GPESK OTNY TEPITITWOT] TNC HVXYVWPLONG PWVNG, HE K&-
TIOLEG TPOTIOTIOLNOELG. ElSIKOTEPX, TPOTIOTIOLOV|LE TOV XWPO XXPAKTNPLOTIKWOV X, WOTE VI VAL TO 0V-
VOAO TV TEMEPACUEVMY XKOAODOLWV SIOVUCUATWY YUPXKTNPLOTIKWY (xm)mGIN\{oo} € XC (RM™.
EmutAéov, 0 XWPog ETIKETWV Y TPOTIOTIOLEITHL WOTE VX EVAL TO GUVOAO TWV AKOAOVBLWY ( Vn) neN\{oc}”
émovto Y = ({1,2,...,L})" mepiéyeL memepaopéves akolovBieg eméve og £va TEMEPAOPEVO AEEAD-
yto. Tt v ekmaievon CTC vroBétovpe 6Tt m > nywak&Oe Setypa (X, yn), SNAAST ot akoAovdieg
XXPAKTNPLOTIKWOV Vot HOKPVTEPES OO TIG XVTIOTOLYEG 0tkoAovBieg eTikeTwV. OL VTTOAOUTOL OPLGHOL
8¢ xpel&lovTalL TPOTIOTONELG.

MH-EIIIBAEIIOMENH TAQZXIKH [TPOXAPMOTH I'TA AYTOMATH ANATNQPIZH OQNHX

H mpooapuoyn ylo GUGTUXTA QUTOHATNG AVAYVWPLOTNG QWVNG UTTOPEL ETIONC VA EKTEAEOTEL GTO
eMimeSo TG YAWooaC, SNAAST TOV YWPOL TWV ETIKETWV. L& KUTN TN PUBLLOT, LTTOBETOVHE OTL T
Seiypora Tov oToXEVHEVOD TIES{OV TTPOEPYOVTAL XTI TNV TIEPLOWPLOTIOMpEVT) KaTavopr) aToxov T ().
TP T0 GTOXEVHEVO GVVOAO SeSopévwy D amoteAeitan amd Statetarypéva {evyn pe 0 popeny (0, yj),
6TI0V TO ; iva 1) akoAoVBix AEEEWV ETIKETOV (Vi) pep {00} VI TO j-00TO Seiypier.

AXOENQE ENIBAEIIOMENH ITPOZAPMOTH I'IA AYTOMATH ANATNQPIZH ©OQNHE

H televtaio pvBpion mov eEetdlovpe elvar 1) mepintwon omov Statibevton Selypata ammo Tov nynTL-
KO KOl YAWOOIKO TOREN, AAAG 1) XvTLOTOLYLOM HETHED TOVG €ival AyvwoTr). AvTn N Katdotaon prmopel
v oLV TNOEl 08 TPAYUXTIKEG PLOICELS, TI.Y. OTNV TIEPIMTWOT TIOV OL NYNTIKEG KOL KELLEVIKEG TIAN)-
po@opiec ovAAéyovtal aveEdptnTa. Tl ToUPASELYa, OKEPTEITE TNV MEPIMTWOT OTIOV GLAAEYOVTAL
NYNTIKX ATTOCTIAOPATH TG ELBTOE0YPAPIKEG EKTTIOUTIEG ol e ovyxpova e@nueptdikd dpbpa. ‘Eva
Ao Tapd&Selypa eival 1) TEPIMTWO OTIOL SLATIBEVTOL POKPOOKEAT] NYNTIKK XTTOCTIROUXTO Lol Pe
TIG LETAYPAPES TOVC, AAAX XWPIC AETITOPEPEIG YPOVIKES QrVTLOTOLYIOEIS™. Xe ouTY| TNV TIEPIMTWOT), TX
Selypata Tov 6TOXEVHEVOD TOPEX AapPdvovTot aveEdpTnTa ord TIC TEPLOWPLOTIOMUEVEG KATAVOLEG
T (x) kot T (y), kaxt To 0TOXELHEVO GHVOAO SeSopévwv Dt amoteeitan amd Satetoypéva {evymn pe

™ popei (x5, 0) ko (0, y)).

1.2.2 TIPOTEINOMENH ZTPATHTIKH ITPOZAPMOT'HZ

ITopOAO IOV GUYYPOVEG TEXVIKEG TIPOCKPHOYTC oV Bacilovtan o ovveyn mpoeknaidevon (CPT) ma-
PGyouY ONUOVTIKEG BEATIWOELS O TIOIKIAIX EPYACLOV, €V KOWO BEPX 0E QVTEG TIG EPYXOieC elvat
1 VIIOOEDN EKXTOVTASWV 1] XIALXS WY WPV SLABECILWY SeS0UEVWY EVTOG TOPEN, KUPIWC aTto SLodt-
KTUOKEG TINYEC, T.Y., YouTube. Avto pmopel va givat avé@ikto dtov e€eT&lovpe o eEeISIKEVIEVEC

*AV KoL e TAMPWG EMIBAETIOUEVT] ECWTEPLKT) OEP& SeSopévmv pmopel var SnpovpynOei oe avth TNV mepinTwaon xXpn-
OLLOTIOLWVTHG HEBOSOVG HAKPOXPOVLXG / EEXVAYKAGHEVTIG AVTLOTOIXLONG, qUTO SeV amoTeEAEl KEVTPWKS ompeio ylx To Telpa-
HOTIKG LEPOC QVTNG TN EPYATIOC.
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pLBicELS TTPOCAPHOYTG, 1) TIIOAVEG XVNOVYIES HTTOPPTITOV, TLY., TOCG Bt GVAAEYpe 1000 wpeg ouve-
SpLwv Yuyobepameiag otar EAMvikG; EmumAéov, ol mpooeyyioelg CPT Baocilovtot oTnv poekmaiSev-
o1 evTtdg Topén, 1 oToin elvat eVxioBNTN OTNY KATAGTPOPIKT AT|ON. MLot TEXVIKY) AVTIHETWTILONG TNG
KOTXOTPOPLKNG ANO1G, OXETIKT) e TNV TPOoEyyLon pog, To Elastic Weight Consolidation (EWC) avtt-
METWTTIEL TNV KATHOTPOPIKT ANON KOTA TNV EKPAOMOoN LG VEXC epyaciag B emPpadhvovTag Tn u&-
B1om o€ VELVPWVES TIOV Eival ONULOVTIKOL YL e Tponyovpévn epyacio A. To EWC otoyevel va Bpet
PNTE JIA LOOPPOTIIX 0TO SIANUUX 0THBEPOTNTAC-TTAXCTIKOTNTAS, TTEPIAXUBAVOVTAS Evav TTPOCBETO
opo regularization. Qotdo0, 1 &peon e@appoyr] Tov EWC og peydha povtéa umopel va givat vTto-
AOYLOTIKA AVEPIKTY), KABWCS 0 TTPOTEWAUEVOC OPOG PUOLLOTIKNG ATAUTEL TOV VTTOAOYIOHO TOV TIIVOKOL
mAnpoopiag Fisher kot Tov VTTOAOYIOHO LA KXVOVIKOTIOIMOTG TTAVW 08 OAES TIG TTHPXUETPOVS TOV
SkTOOoV B, 6Tw¢ Qaivetan amd Tov SevTtepo 6po otnv EE. (8.3). EmumAéov, TOAAXTAK avTiypa@a Twv
Boapwv Tov SiKTHOL TIPETEL VX SLTNPOVVTAL GTY) PV KATX TNV eEKPEON 0T TTIOAAXTIAWY EPYAOLWV.

A
L(0) = Lp(0) + Z EFi(ei - 927,') (1.5)

QG €k TOVTOV, ETIAEYOVHE VX BPOVUE EULECH LK LOOPPOTIIX LETAED 0TAOEPOTNTAG KOL TTAXGTIKO-
TNTOG, EKUETAAAEVOPEVOL TNV AUTOETIPBAEYT) EVTOG TOPERX YLA VA XVTIUETWTIIGOVUE TNV KATXOTPOPL-
K1 ANON yla TN PN-€MPBAETIOUEVT) TIPOCAPHOYT] LETOED TESiwV o€ éval TIEPIBAANOV |LE TIEPLOPLOUEV
Sebopéva. H Bacikn 18€u eivat vax EEKIVI|OOVHE KTIO VX TIPOEKTIALSEVEVO OVTENOD, EKTIXISEVUEVO JUE
pa cvtoemiBrendpevn amwAeta Lss. Katd 11 Stadikaoio peteknaibevong (fine-tuning), pabaivovple
TO V€O £pY0 A YPTOLUOTIOWVTOC TA ETOTUEIWHEVA EKTOC Topéa SeSopéva x5 ~ S, eve THP&AAAX
TPOCAPUOLOVIE GTOV OTOXO TOUEN YPY|OLLOTIOLOVTHG TX |UT) ETILOTUELWHNEVX, EVTOG TOHEN SESOPEVT
x7 ~ T pe v quToemBAETOUEVT] am@AEX. H GUVOAKY| XTIWALIX PETEKTIXISEVONG SIXTLTIOVETAL
otV E&. (1.6). AlATIOTWVOVE GTL 1] TPOTEWOLEVT] OTPATNYIKY| AETTYG PUOHLONG [LE PEIKTT) VTOETI-
BAeym etvor cvBekTIKY|, 08MYEl 0 ATOTEAEGUATIKT) TIPOCAPLOYY|, KOL UTTOPEL EDKOAX VX TIPOCKPUOGTEL
YL VO AELTOVPYTIOEL GE SLAPOPES EPAPLOYES.

L(xs,x7) = La(xs) + ALss(%7) (1.6)

1.2.3 MH ENIBAEIIOMENH IIPOXAPMOT'H METAZEY IIEAIQN MEXQ TAQEEIKHY MONTEAOIIOIHZHX

Ze aquTtnv TNV epyoacio efepevvodpe T PN emPAETOPEVT) TTpocappoyT petagd mediwv (UDA) mpoek-
TSEVUEVWY HOVTEAWY YAWOOAC Yo epyaaieg katavtn. Elo&yovpe To UDALM, pio StoSikaoio pe-
TEKTKISEVOTC TOV HOVTENOV, TIOV XPTOLLOTIOLEL L UIKTT) CUVAPTNOY] GQOAALATOC LA TNV ToEWOUTON
KOl TN YAWOOIKY] povtelomoinor pe paoka (MLM), mov Pmopel va TTPooapUOoTEl 0TIV KATXVOUN
TOV TOUEX-GTOYOV HE LoYUPN EMIS00N Kol ATOSOTIKK W TTPOC TNV TOGOTNTA SEYUATWV €l0680v. Ta
mepdpatd pog Seiyvouv GTL 1 AmO800T TWV HOVTEAWY TIOV €XOVV EKTIXISEVTEL e TNV TIPOTEWOLE-
V1] OTPATNYIKT KALXKWOVETAL JLE TNV TTOCOTNTX TWV SLKBECIUWY SESOUEVWOV EVTOC TOHEN, KAL OTL 1|
HEKTY] CLYVAPTNOY] KOOTOVG PTIOPEL VO XPTOLULOTIOOEL XTTOTEAECUATIKE WG KPLTTPLO SLOKOTING KO-
T& TN SLdpkela ¢ ekmaidevong UDA. EmumAéov, ou{ntépe T oxéon petakd e anootaong A kot
TOV CQPAAPXTOC OTOYOL KL SLEPEVVOVLE OPLOEVOVC TIEPLOPLOUOVG TNG TIPOCEYYLOTG AVTAYWVIOTIKYC
Exmaidevong Iediov (DAT). H pébodoc pog aklodoyeitan oe Swdeka {evyr TOpEWV TOV GLVOAOL Se-
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General Pretraining Domain Pretraining - Fine tuning

MLM | NSP |

[ Tas [T | Toax [T ] ]
BERT :‘
ECLS Ez me Ea | J "

ICLE5] Welcome [MASIQ Wikipedia [CLS] This movie is [MASK] watching

[CLS] This movie is [MASK] watching

English Wikipedia 2500M w.

Source Domain
BookCorpus 800M w. ~160K w.

() ®) o)

Ewova 1.6: (a) To BERT eivou mpoekmandevpévo otnv ayyAkn Bikioudeio ko to BookCorpus pe tig epyacieg MLM ko
NSP. (b) Zvveyifouvpe Tnv mpoekmaidevon tov BERT ot0 pn emonpetwpévo obvoro dedopévwy atdyov pe MLM. (c) Exkmton-
Sevovpe Eva TARELVOUNTH) HE TaL EMIONPELWREVE Sedopéva TOL TTrYaioL TOpED, EVK) XPNOLHOTOLODHE TO [N} ETLONHELWHEVOL
Sedopéva oTOX0L YL To MLM.

Sopévwv Amazon Reviews Sentiment, amodi§ovtag axpifeia 91.74%, 1 omola eivon pior artdAvT™
Betiwon 1.11% oe oxéomn pe TV teAevTaio AEEN TG TEXVOAOYIXS.

1.2.4 MEeeoaoz UDALM

H Ewk.1.6 mapovoi&lel To miaiolo UDALM, To omoio apyilel e TNV TPoTaiSevorn evog HOVTEAOD OE
yevikd keipeva (Ew.1.60). Avtn 1 @don mepthapfavel N xpron tov BERT, faciopévov oty op-
xttektovikY) Transformer, kot ekoSeVPEVOL PEGW TOV 6TOYOV MLM. IeptAapBdvel Tnv PoRAePn
KPLPWV SLOKPLTIKWOVY KAl TN Xp1or anwAetog IIpdpreyng Endpevng pdtaong (NSP). Av vidpyet Sia-
Béolo emonpelwpévo obvolo SeSopévwv, To BERT pmopel va BeXtiotomomn el oe emonpelwpévo
0€eT 6eSOPEVWV.

H emopevn @don (Ew. 1.6p") ovveyilel v mpoeknaiSevon Tov HOVTEAOV Oe CUYKEKPLUEVD Se50-
HEVA TOV TOMEX, XPTOLUOTIOLOVTOC TOV 0TOX0 MLM, TpocappdlovTag TO HOVTEAO GTOV OTOXEVHEVO
TOPEN YWPIC TNV VEYKY EMOTITEVOLEVWVY SESOUEV@V.

210 TeMKO e petekmaidevong (Ek. 1.6y), To HOVTEAO VTIOBAAAETHL OE ETIOTITEVOUEVT) HETEK-
nxidevorn oe §eSopéva TG, XPNOLOTIOWVTOG MWAELX TagVOUN oG, vy Slatnpel Tov oTdY0
MLM o¢ pun emonpelwpéva §edopéva otdyov wg Bondntikd kabnkov. O Taglvountig, BaoLoUEVOC
0TIV XVXTTHPKOTAOT] TOV SIOKPLTIKOV [CLS], meptAapfvel éva epumpocbio emimedo. Avtn 1 Stadiko-
olx epLAapPavel ekaiSevor o€ EMIONUEIWHEVH SESOPEVX TINYTG YL TAEWOUNOY] KXL GE 1) ETILOT)-
pelwpéva SeSopéva 6TAXOV yLa TN HOvTEAOTIOMOT KPLPY|C YAWooaG. H PIKTY) cuvépTnoT KOGTOVGg
Xpnotponotel TI§ anmwAeleg Ta&lvounong Lerr Kot YAwooknG povtehomoinong Ly

37



L(S7 t) = ALCLF(S) + (1 — A)LMLM(t) a.7)

IIEIPAMATA

A&loloyovpe 1o UDALM 070 00VvOAO 8€80UEVMV TTOAV-TORENRKTC 0tELOAGYTIONG OUVXICONUATWVY KPL-
TIKQV TNG Amazon, €va TTPOTLTIO GVVOAO SE80UEVWY YL TIPOCHPOYT) TOPEN. Ol KPLTIKES HE Eva 1
800 0OTEPLX ETILONUAVOVTOL WG PVNTIKEG, EVQ Ol KPITIKEG LLE TEOCEPX 1) TEVTE KOTEPLA ETLOTUIVO-
V1oL 0¢ OeTkEG. To oUVOAO SESOPEVWV TIEPLEXEL KPLTIKES YLt TECOEPLS TOWEIG TTpoldvTWV: BifAicr (B),
DVDs (D), Hrektpovikd (E) kot Zvokevég Kovlivag (K), Tapexovtag 12 6evipla Tpooapoyng ylx {ev-
Y1 TNYNG-0TOYO0V. AltiBevTon LooppoTnpéva oeT oo 2000 ETOTHELWLEVES KPLTIKES YLot KAXOE TOpEDL.
Xpnoponolovpe 20000 (Tuyoia EMIAEYHEVES) U1 ETIOTUELWIEVES KPITIKES Yl T (B), (D) kau (E). Tix
70 (K) elvar StxB€atpeg 17805 ) eMIONUELWHEVES KPITIKEG. Tl k&Be éva oo Tar 12 oev&pLo TIPOCKp-
HOYY|C XPY|OLLOTIOLOVHE TO 20 TWV EMIOTUEIWUEVWY SESOUEVWY TINYNG KOL TWV [UT) ETILONUELWHEVWV
8e80EVWV GTOYOV YL ETIKVPWAT), EVE TA ETILONHELWHLEVX SESOUEVH GTAXOV XPTOLLOTIOLOVVTOL (LTTO-
KAELOTIKX YLt SOKIES KL SEV €ival 0paT& KOTA TN SLAPKELA TNG EKTOISEVOTNG 1) TG EMIKVPWOT|C.

EmAéyovpe tpelg kopvpaiec pebddovg yix ovykplon amd ) Bpioypapia. Kdabe pia amd 116
ETILAEYUEVEC PEBASOVE AVTUTPOCMTIEVEL LL SLOPOPETIKY) YPOLLY] EPEVLVAG, CUYKEKPLLEVD T BdoEL -
VTOYWVILOTIKNG ouvdpTnong kéotovg BERT-DAAT, v avtoeknaidevon faoet XLM-R p+CFd kot 1
Bé&oet koppwv R-PERL.

EmmpdoeTa, cva@EPOvple ATOTEAEOUATN YLK TIG XKOAOVOEC puBpioelg e povTé o BERT:
Source-Only (SO0): IIpocappolovpe To BERT o€ MONUEIWPEVX SESOUEVX TOV TOHEN TINYTG, XWPIC
Vo YpnoLLomotovpe SeSopéva aTdyov.

Domain Pre-Training (DPT): XpnoULOTIOLOVE T 1) ETILONUELWHEVX SESOPEVX TOV TOHEN GTOXOV
ylx v ouveyioovpe TNy mpoekmaiSevon Tov BERT pe ouvéptron k6otovg MLM (6mwe oto Fig. 1.68°)
KOl 0TT) GUVEXELX TIPOCKPHOLOV|LE TO TPOKVTITOV OVTEAD OF ETILONUELWHEVX SESOLEVX TOV TOUEX TIT)-
VG-

Domain Adversarial Training (DAT): Zekivwvtog ond 1o BERT MPoeKTAISEVUEVO GTOV TOPEX
(6eitte Fig.1.6B"), 0tn ovvéxelx TPooxXprOlOVE TO HOVTENO HE AVTAYWVIOTIKY] p&Bnomn DAT. Tx éva
povtélo BERT pe mopop€tpoug 6, pe Lepr va eivat o GUv&PTon KOGTOUG Cross-entropy yloe v
TPOPAeYT emoNUElWUEVX gPYacing, Lapy va elval i ouv&pTNoT KOGTOVG Cross-entropy ylo tnv
TPOPRAeYN Topéa kot Ay va glvat évag mopdyovtag Bapovg, To DAT amoTeAeiTal oMo TO KPUIMpPLo
el\ayloTomoinong mov meptypd@eton otnv EE. 1.8.

mgn LCLF(& Ds) — AdLADV( 0; Ds, DT) (1.8)

UDALM: H mpoTevopevT PEB0S0g, 0Tov mPooapd{oviE TO HOVTEAD TIOV ST)ULOVPYNONKE 0TO BrHX
TIPOEKTIAEEVONG TOUEX XPTOLLOTIOLWVTOG T1) WKTH) GLVEPTNOT KOaTOVG 0Ty EE. 1.7.
IMapovoldlovpe amoteAopaTa ylx OAeg TIg 12 puBpioelg mpooappoyr¢ Topéa otov Iivaka 1.2.
Ta amoteAéopata yix T0 BERT SO, BERT DAT, BERT DPT kot UDALM eivat pécotl 6poL oo mEVTE
ekTeAéoelg kot TepLAapPdvovpe Tumikég amokAioelg. H tedevtaio ypappn tov IMivaka 1.2 mepléyet
TN péon akpifelo kot TI¢ amokAioelg yla dha tar Levym Topéwv. To UDALM vmeptepel OAwv Twv &A-
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Mivakcog 1.2: Akpifeia ta€vopnong yuo texvikég un emPAendpevng mposappoyng petagd nediwv ota dddeka fevydpra
Topéwv Tov Amazon Reviews.

R-PERL DAAT p+CFd| SO BERT DAT BERT DPT BERT UDALM
B—D 87.8 90.9 87.7 |89.51+£0.76 87.31+2.14 90.49 £ 0.38 90.97 + 0.22
B—E 87.2 88.9 913 |90.51+£0.51 86.91£2.71 90.38 +1.59 91.69 + 0.31
B—K 90.2 88.0 92,5 |91.75+£0.28 90.59 £1.17 92.66 + 0.43 93.21 + 0.22
D— B 85.6 89.7 91.5 [90.26 + 0.64 86.30 £3.10 91.02 £0.75 91.00 £ 0.42
D—E 89.3 90.1 91.6 |88.71+1.48 87.85+1.24 91.03+0.82 92.30 + 0.47
D— K 90.4 88.8 925 |91.22£0.69 89.95+£1.53 92.30 + 0.42 93.66 £ 0.37
E— B 90.2 89.6 887 |87.96+0.89 85.65+1.91 88.52+ 0.55 90.61 -+ 0.30
E—D 84.8 89.3 88.2 [87.37£0.64 83.99+1.31 87.85+0.47 88.83 £ 0.61
E— K 91.2 91.7 93.6 [93.30+0.50 92.45+1.35 94.39 +0.72 94.43 + 0.24
K—B 83.0 90.8 89.8 |88.15+0.64 85.07+1.03 88.83£0.81 90.29 + 0.51
K—D 85.6 90.5 87.8 [87.23+0.49 84.11+0.62 88.52£0.69 89.54 + 0.59
K—E 91.2 93.2 926 |93.23£0.34 92.07£0.24 93.42 + 0.40 94.34 £ 0.26
Méoog dpog| 87.50 90.12 90.63 | 89.93 £0.65 87.68 £1.53 90.78 £ 0.67 91.74 £ 0.38

AWV TEXVIKWY, ETITUYYXGVOVTHG amOAvTn Betinon 1.81% €vavtt Tov Baoikod BERT SO. T Sikoun
OVYKPLOT), GUYKPIVOUpE OVO pe neBdS0oVE PACIONEVES O TTIPOEKTIAUSEVUEVA LOVTEAX, KUpiwe BERT.
IMopoatnpovpe 0Tt To BERT 10V MTPOCKpUALETOL POVO E ETIIONUELWHEVH SESOUEVA TOV TOUEN TINYNC,
XWPIC Koot yvwor) Tov Topén aTOY0V, ATTOTEAEL £V XVTAYWVIOTIKG BAOIKO HOVTENOD. AVTO TO [LOVTE-
A0 TINYYC LOVO KOTAPEPVEL OKOPX v TIEPPEL KopuPaieg PeBOSoVC U EMIPBAETOPEVIC TIPOCUPHOYNS
TOPEX.

IMepoutépw SLEPEVYOVIE TNV ETIISPACT] TNG XP1OTG SLUPOPETIKOV OYKOUV LT) ETOTLEIWHEVWY S€80-
HEV@WY TOV TOUENX OTOYOV 0TIV XTTOS00T) TOV HOVTEAOV, YLK VO LEAETI|COVLE TNV ATOSOTIKOTN T SELy-
pé&twv tov UDALM. ITepapatilopacte pe pubpioeg 500, 2000, 6000, 10000 kot 14000 Serypdrwv,
mieplopifovtag Tuyaio Tov aplopd Twv §eS0HEVWY TOVL TOpEA 0TOXOVL. T k&Be pOBLON Setdyovpe
Tpia melpdpoata pe povtédx BERT: (1) DPT, (2) DAT kot (3) UDALM. 'OTtov 8gv vmépyovv StaxBéot-
po eSopéva aToYov, OAeg oL péBodoL elvar loodvvapeg pe éva BERT Tov €xeL TTPOCKPROOTEL LOVO
otV Ty". Emiong, 8ev mpooappolovpe TI§ vmepmapapETpous yia To DPT 1 o UDALM. To Fig. 1.7
Selyvel N péomn akpifela 0T wdeka GEVEPLY TTIPOCGUPILOYTC TOV HEAETNHEVOV GLUVOAOL SeSOPEVWV.
BAémovpe 611 To UDALM mop&yet otabepn) BeAtiowon ¢ amoSoong dTov mepLlopi{ovpe TOV OYKO TWV
Sedopévav otdyov, Selyvovtag 6Tt propel va xproLpLomoln el oe GevipLX [LE TIEPLOPLOLEVOVS TTOPOUC.
Qo1600, 1 eknaibevon Tov BERT e TPOTIO XVTAYWVIOTIKO 0TOV TOpER Selyvel aoTdOeLEC.

1.2.5 MH EIIBAEIIOMENH IIPOZAPMOT'H METAEY ITEAIQN I'IA ANAINQPIZH ®QNHZ ~TA NEA EAAHNIKA

Ta oUYYPOVA CUOTIHATH XVXYVWPLOTG OpLALaG TTxpovoL&lovv Taryeia vIToB&dpLon TNg amodoong o-
Tov 0 AAGLEL 0 TOPENRS EQUPHOYTC. AVTO To TN elvat 8Lxitepa SLabeSopévo oe ePIBAAAOVTH e
TIEPLOPLOPEV SESOEVH, OTIWG YAWOOEG [LE XAUNAODG TTOPOVE, OTIOL 1) TOKIAOHOPPIX TwV SeSOPEVWY
eKTIABEVONG EVOL TTIEPLOPLOEVT). Z€ LTIV TNV EPYaoia, TTPOTEVOVE TO M2DS2, JIX OTTAT) KXL (TTO-
S0TIKY] WG TIPOG TOV APLOPS SEYUATWY OTPUTNYIKT] LETEKTTXISEVONG YL HEYXAN TIPOEKTIXISEVEV
HOVTEAX OJALXG, TTOV BacileTal oty avTtoemiBAeyn pe peln §eSopévwy Tov TNyaiov TOPEN KoL TOV
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Ewkova 1.7: Méon akpifeia yio Stagopetikh) Toocodtnto Siabdécipwv dedopévwv otdyov yio: (1) DPT BERT (2) DAT BERT
kot (3) UDALM.

TOMEN OTOYOV. ALXTIIGTWVOVHE OTL 1] oupmePIANYT TG awToemiPAeYng pe SeSopéva Tov Topén -
V1¢ otaBepomolel TNV eEKTHISEVOT) KAL XTTOPEVYEL TNV KATAPPEVOT] TWV ECWTEPIKOV XVXTIXPAOTHOE-
@V TOV SIKTVOL Aettovpyiag. Tix a&loloynom, cuAléyovpe To HParl, £va 6OVOAO PHETOYEYYPOULEVWV
Sedopévav opthiog 120 wpwv o Toe eAANVIKd, TTov amoteeital amd ouvoSovg olopéelag g Bov-
Mc Twv EAMvwv. Zuyywvevovpe Tnv HParl pe §bo Snuo@ieic eAAnviké BAoelg SES0HEVOV yLx vor
Snovpynoovpe 1o GREC-MD, €va 60voA0 SOKLUNG YL TV a€loAGYNOT) TOAAWY TOHEWY TWV EANVL-
K@V CUOTNHATWV XVOYVOPLOTC OJAIXG. T TIEPHUATE POG, SIATIIOTWVOVHE OTL, £V GAAEC LEBOSOL
TIPOCOPHOYTC HETHED TOPEWY XwPIG emiBAeyn amoTuyXdvovy oe vt TO TIEPLPAALOV TTEPLOPLOPEVWY
TOPWV, T0 M2DS2 amo@EpeL ONUOVTIKEG BEATLWOELS YLX TNV TIPOCAPHOYT] HETKED TOLEWY, XKOUN Kol
0TV eivat SlaBEotpleg LOvo Ayec wPES 1YoV EVTAC TOPEN. ‘'OTOV YXAXPWVOVHE TO TPOPANLX OE TTPO-
BANpx aoBevolg emiBAEPNG, SLATIOTWVOVE OTL 1] AVEEAPTNTY TIPOCKPHOYY| T)XOU XPTOLLOTIOIWVTHG
M2DS2 kol yAwooaG XPTOLOTIOIWVTHG OTTAEC TEXVIKEG EMNVENOTC YAWOOIKWY HOVTEAWVY givat 8Lo-
TEPA ATIOTEAECHATIKT), KTTOSIEOVTOG TOGOOTH AEKTIKWOV AXO WV GUYKPIOUX [LE LOVTEAN EKTTOUSEVPLEV
pe mANnpEn emifAeyn.

ME®OAOZ

H E. 1.8 Tapovot&del TNy TPOTEWOUEVT] OTPOTNYIKY HeTekTaiSevong. H Baoikn SlaicBnon eivat Tt
B£AOVLE TO HOVTEAD VO LoD {VEL CUVEPYATIKA TNV €V AOY® Epyaaicr (OTNV TEPIMTWON LOG XVXYV®PLOT
OMIALXG) eV TTPOCHPUOLETHL OTOV OTOXEVHEVO TOHEN LECW AVTOETIPAEYP NG o8 SeSOPEVH EVTOG TOEX.
LT aplotepd, PAETOVE TO YeVIKO 0TGSL0 TpoekTaidevong Tov XLSR-53, To omoio mpoekmatdeveTal
oe 56K wpec MOAYAWOCIK®WY NYNTIKWY SES0UEVWY YPTOLLOTIOLIVTNG TOV XVTLOETIKO GTOXO OTNV
EZ. (1.9).

40



A

/ General Pretraining >> Finetuning >
Zs { Zere ][ ZLs }

: et
SR T N N L S B I B

’ Masked Transformer | ’ Masked Transformer |

A A A A A A
XLSR >@ XLSR ‘i

\_ % %

MLS, CommonVoice and BABEL
56.0000 of speech data from 53 languages

Source Domain ‘ Target Domain

Ewova 1.8: Mpocappoyr otov otoxevpévo topéa péow avtoemtifAePng. ta apiotepd, BAémovpe To yevikd 6tddio Tpo-
ekmaidevong tov XLSR-53 xpnoiponowdvtog tny avtoemPAenopevn ocvvaptnon kéotovg L. H yevikr mpoekmaidevon
SeEayetan oe 56,000 peg nxntikov dedopévwy oe 53 YAhooes. YXta de&idx, PAémovpe To TpotTELVOHEVO 0TS0 TTpO-
COPHOYNG AETITAG EMUOPPWANG, OTIOL N Epyacia avayvapiong opthiag pabaiveton xpnoipomotwvtoag dedopéva amd Tov
TNYoio TOpéQ e PETAYPOPEG, EVED 1) TIPOCAPHOYH GTOV OTOXEVHEVO TOPEX EKTEAEITOUL GUUTIEPLAQUPAVOVTAG TNV AUTOETL-
BAemopevn ouvaptnon kGoTovg o€ NYNTIKE dedopéva amd Tov Tyaio Ko ToV 6TOXEVHEVO TOpEQ.

Diversity Loss

G Vv
. es(zt:at) 1 — —
Ly = —10g2~~7g P ey _alz Zpg,vlog(Pg,V) (1.9)
%q/t_/ g=1 v=1
Contrastive Loss
L1 681, BAETTOVLE TO TIPOTEWVOHEVO OTASLO PETEKTIAUSEVONG, OTIOV SLPOPPWVOVE HLO HIKTY)
OLVAPTNOT KOGTOVG:

L = Lere(xs, ys) + aLs(xs) + PLs(xt), (1.10)

omov (xs, y5) ~ S(x,y), xr ~ T (x), Lere elvon nj owvdptnon kdotovg Connectionist Temporal
Classification (CTC), BeATIOTOTIOMPEVT] XPTOLULOTIOLOVTOC SESOUEV HETHYPAPNS TOV TINYXIOL TOHEX,
kot L glvat 1 avTiBe Tk ouvdptnor kootovg amo Ty EE. (1.9). KALAK®VOVE T1) GUVEIGQOP& K&BE
OpOV XPTOLLOTIOLWVTHG TIG VTIEP-TIXPXUETPOVE X KOL f3.

INHELOOTE OTL 0€ VTIOEDT) [LE TIPONYOVHEVEG EPYNOIEC, OL OTIOIEC YPNOLLOTIOOVY VO KUTOETT(-
BAeyr otov Topén 0TOXO, eEiG A&LOTIOLOVLE Kol SEYHLOTA KTIO TOV TINYA{0 KL TOV OTOYEVHEVO TOHEN
YL TN HUIKTY] QUTOEMIPBAEYT). ALXTILIOT@OVOVHE OTL HVTO EVAL OVOLWSEG GTNV TIEPITTWOT) HOC YL VX
aTToQUYOLpE To TPOPANUa mode collapse, SnNAadt), TO HOVTEAO VXX XPTOLLOTIOLEL LOVO LEPIKK OTTO T
SlaBgopa Stavvopata Stakpltov kwdika (codevectors). H tavtdypovr avtoemiBAeyr ota SeSopéva
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Iivakeg 1.3: To ocopa dedopévwv GREC-MD. Mropobpue va Sodpe tn Sudpketa k&be vtoovvOAoL o€ HopPr) WPEG : AETTA:
SeutepdAemta, kabwg kat Tov aptBpd Twv OpANTOV Yl K&Be éva amd T LTTOCWHATA.

ZUvolo 8eSopévwv Topéag OpuAntég Train Dev Test ZuvoAlwki] Sukpkera
HParl ANpP6610g (TTOATIKOC) Adyog 387  99:31:41 9:03:33 11:12:28 119:47:42

cv Opthic amd AnBomoplopod 325  12:16:17  1:57:44  1:59:19 16:13:20
Logotypografia Ewnoelg 125 51:58:45 9:08:35 8:59:22 70:06:42
Total - 713 163:46:43 20:09:52 22:11:44 206:08:19

TINYyNG kot 6TéYov apfAvvel 1o mode collapse ayKupwWVOVTAG TOV XWPO TWV SLHKPITWY KWSIKWY TOV
O0TOXOV VXX EXEL TTXPOLOLO SO L€ KVTOVC TOV TOUEX TINYY|C.

YYNOAA AEAOMENQN

Ta T MEPKPATA PO GUVOETOVIE EVX OWWUK OLALXG YLt TNV EAANVIKY] YAWOOX, TO 0TI0l0 €ivat Ko
TGAANAO Yl TOAV- Kat Sto-Topeak) aEloddynon. To owpo GREC-MD mepiéyet 206 Wpeg EAANVIKNC
optAiag. To NYNTIKO VAKG Slapeital o KTOIKEG EKPPAOELS Kot KGOE Ekppaat ouvSv&leTal e TNV
avTioToyn peToypagn te. O IMivakag 1.3 mepAappavel i cHvoPr] TV TEPIAXUBAVOLEVWY VTIO-
CWPATWV, KXOWS KAl TWV Slaipecewv eKTRiSEVONG, CrVATITVENC Kot SOKIUWVY. To oeT SeSopéVwY oYe-
SLAOTNKE e TPELG PAOIKEG APYES OTO PVXAD:

1. 'OyKkog AeSOPEVWV: ZUANEYOVHE TO LEYAADTEPO SNHOCLX SLAOECLO CAOPX AVXYVWPLONG OfLL-
AMOG yLoe TNV EAANVIKT YAWGOX, TIOV UTTOPEL Vot KALAKWOEL 08 EKATOVTRSES WPEC LETAYPAPNS
1ov.

2. Xpoviki) Ixetkotnta: H yAoooa cANGEel [le TOV KXLPO. ZTOXEVOVLE 08 EVA EVIEPWHEVO
oW IOV TIEPLAXPPAVEL TOVG TEAEVTA{OVG OPOVC Kot BEpaTa TIOV EPPaVIlovTaL 0TV KXONe-
pw1) opLAia.

3. IIoAv-Topeakt) A§todoynon: H afloldynon oe €va povo Topéa pmopel va o8nynoet oe mo-
POTIAQVNTIKEG EKTLUTOELG TG AVAUEVOUEVTC KTTOS00TG YL TX LOVTEAX QVAYVWPLOTG OJLALXC.
T TTAPASELYHA, TO KOPLPIX GTIV TEXVOAOYIX HOVTEAX XVXYVWPLOTIG OMLAING ETIITUYYGVOLY
k&tw oo 5% Word Error Rate (WER) ota oeT Sokipwv Tov Librispeech , aAA& avtd amote-
A&l VTIEPEKTIUNOT TNG TIPUYUATIKNG ATTOS00TC TOV GVOTNHATOC. AVTO EVTEVETAL OTOXV AXUP-
VOULE LTIOPT] SLAPOPETIKEC HKOVOTIKEG GUVOT|KEG 1) Opoloyix. OeWPOVIE TNV TTOAV-TOUENKY)
a&loAOy™M 0T 0VOLWST KUTA TNV AVATITUEN POVTEAWY TIOV Bor XPTCLLOTIOMBO0UV GE TIPXYHUATIKES
EQUPOYEG.

T VO IKXVOTIOLCOVE TA TTPWTA 800 onuela, GVAAEYOVpE SESOPEVA ATTO LA STLOCLY, GUVEXWG
eVNEPWHEVT) TINYN, SNAaSY| atd Tox IIpokTiké TG EAANVIKNG BOVATG, OTIOL OL NYOYPAPTIOELS TWV KOL-
VOPBOVAEVTIKOV GUVESPLACEWY OVEPNIVOUV TUKTIKA. AVOPEPOUXCTE € XVUTO TO CWHX SESOPEVWV WG
HParl (HP). Zvykekipéva, oto HParl cupmepilapfdvovpe ocvvedpieg oto Sikotnpua 2018-2022, 6Twg
@aivetat otov Iivaka 1.4. To TTAEOVEKTNO TNG XP1ONG QLTNG TN TNYNS €ivan 1) ArtAr) GuALOYY| EVOC
OLVEXWC XVEXVOUEVOV, LETAYEYYPUUUEVOD COUNTOC T)XOU IO TTOAAOUC OWANTEG TIOV €ivat VT
EVILEPWHEVOD, KABWG 0L KOWOPBOVAEVTIKEG CUINTTOELC TTEPLOTPEPOVTAL YUPW AT TPEYOVTX BEPTAL.
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Iivakog 1.4: Youvedpieg mov £xovv cvpmeptAngdei oto HParl. H otiAn “Qpeg” avagépeton otig wpeg fyov mpLv tnv
TUNpaTomoinon.

Apxuci) nuepopnvic  Telwci) nuepopnvia  #TvveSpliv  ‘Qpeg

15-02-2022 01-03-2022 10 55
18-01-2019 01-02-2019 10 52
28-03-2019 10-05-2019 20 108
10-12-2018 21-12-2018 10 88

T TNV ToAv-Topeak | a&lodoynon, cvvSvalovpe To HParl pe Svo Snpooia Stabéoipa ocwpaTa
dedopévav, Snhadn ) Logotypografia (LG) kot To CommonVoice (CV), ta omoia €yovv Stx@ope-
TIKEG IKOVOTIKEG KO YAWOOIKEG ISLOTNTEG. AVAPEPOUXTTE OTO GUYXWVEVIEVO, TTIOAV-TOLEXKO CWUX
Sedopévav wg GREC-MD.

[IEIPAMATA

ESw, a€loAoyovpe TNV ATMOTEAEOUATIKOTN T TOV M2DS2 yla U1 eMIBAETOUEVT] TTPOCUPUOYT) HETHED
TOPEWV. ZUYKPIVOVUE e TPELG PAOELG:

Mivakeg 1.5: H emiSoon tov M2DS2 yia pn emiPAendpevn mposappoy petofd twv HP, CV kou LG. To A — B dnAwvel 611
70 A giva o Tnyaiog topéag kat to B eivan o otoyevpévog topéag. (G) dnAwver amAnotn anokwdikonoinon. (LM) dnAdvel
avaldntnon déopng pe emavaPadpordynon and yAwooikd povtéro. Avagpépoupe to WER 610 o€t Sokip@v atoyou, kabog
kot o WRR (%) et tov SO, dnAadn tn oyxetikn PeAtiwon mavw and to PBoaoikd poviédo SO. WER: xapnAdtepo eivan
kaAbtepo. WRR: vfinAdtepo eivon kaAdtepo.

Mé60o8og | SO (G) CPT (G) PSL (G) M2DS2 (G) SO (LM) CPT (LM) PSL (LM) M2DS2 (LM)
Zevaplo WER | WER WRR | WER WRR | WER WRR WER WER  WRR | WER WRR | WER WRR

HP — CV | 55.90 | 54.80 4.1 | 53.48 9.1 5295 111 25.26 23.26 12.7 | 24.34 5.9 | 1835 43.9
HP — LG | 48.65 | 47.99 4.0 | 51.75 —18.6 | 46.47 12.5 30.34 33.88 —91.0 | 31.92 —40.6 | 29.56 20.1
LG—CV | 59.57 | 60.81 —4.1| 63.28 —12.3 | 51.31 27.3 25.96 29.10 —19.1 | 23.46 15.2 | 17.30  52.7
LG —HP | 62.13 | 60.60 4.3 | 66.60 —12.4 | 60.09 5.7 31.48 3154 —0.4 | 39.15 —48.4 | 31.36 0.8
CV— LG | 69.55 | 68.98 1.5 | 68.29 34 |63.40 164 50.80 47.61 13.1 | 42.53 34.0 | 36.93 57.0
CV—HP | 70.72 | 71.79 —2.4 | 69.68 2.3 | 68.70 4.5 52.09 48.14 10.8 | 53.8 —4.7 | 41.88 28.0

1. Source-Only (SO): IIpaypatonolovje peteknaidevon tov XLSR-53 (CTC) ¥p1OLLOTIOLOVTOG
HOVO 8oV ATtO TOV TNYXI0 TOUEX KL EKTEAODHE HTTOKWSIKOTIONOT] OTO GET EAEYYOV TOV
OTOYEVOHEVOV TOPEN. AEV YPTOLULOTIOODVTL SESOUEVX EVTOG TOHEN YIX TIPOCGAPLLOYY).

2. Continuous Pre-Training (CPT): IIpoylATOTOLOVUE MIA PAOT] TIPOEKTHISEVGTC XPNOLLO-
TOLWVTOG TN OLVEPTNOT KOoTovg oTtnv EE. (10.1) 0T 0€T ekmaiSevong TOV TNYA{OV Kot TOV
OTOXEVOHEVOV TOHEN, YLO VO STILLOVPYTICOVIE TTPOCAPLOCHEVES ekSOaeLg Tov XLSR-53. H mpo-
ekmaidevomn Ste€ayetan yiax 20000 Pripota pe péyebog moptibag 4. Xprnoyomoleital pdvo 1o
NXNTIKO VAKO, YWPIG HETOYPAPEG. TN GUVEXELX, TO TIPOCHPHOCUEVA OTEIX EAEYXOV UETEK-
modevovtal pe ) xpnon g anwAelag CTC ota Se50EVH TOV TNYXIOL TOPEN |LE LETAYPUPEG.
H o§loAdymomn yiveTal 6To €T EAEYYOL TOV GTOYXEVOLEVOD TOUEX.
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3. Pseudo-Labeling (PSL): Meteknaidevovpe 10 XLSR-53 Yp1OLLOTIOIOVTHG T SESOPEVX TOV
mmyaiov Topéa pe 10 K60Tog CTC. ZT1) GLVEXELX, EKTEAOVIE ATTIOKWSLKOTIONOT] LE TO HOVTENOD
TOV TNYiov TOPE, Yo Vo EEXYXYOVLE OOTLEVIEG LETAYPAPES YLOL TO OET EKTIA{SEVOTG TOV OTO-
XEVOLEVOL TOPEN. XPTOLLOTIOLWVTOS TIG KOTHEVLIES LETAYPXPES TIOV TTOPAYONKAY GTO TPWTO
BMK, SNULOVPYOVHE TO PEVSO-EMIOTUELWUEVO OET EKTIKISEVOTC TOV GTOXEVOHEVOD TOUEN KOl
TO CUYXWVEVOVE |E TO OWOTH PETAYPAUNEVO OET ekmaiSevang Tov mnyaiov Topén. TEAOG,
EMOVXPEPOVE TO HOVTEAD OTA XPXIKK B&pn Tov XLSR-53 KOl TO HETEKTAULSEVOVIE OTO GUV-
SvaoEVo OET ekTiSevong.

To amoTEAESPATO TIPOCKPROYTC paivovTat aTtov Mivako 1.5.

® == = |G->HP LG-> CV
70

65

A S i Bl e St 7/l by

60 ¥

. 4

WER

55

50
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Percentage of In-Domain Audio Data

Ewova 1.9: AndSoon tov M2DS2 yia tig pubpiceig LG — HP (pmAe kOkAog) kow LG — CV (kitpivo tetphywvo), dtav
HELOVOLHE TNV Too6TNTA TwV SloBéctpwy Serypétwv otoyov ato 50%, 25%, ko 10% Tov apyikol oet Sedopévwy (opiid-
vTog agovag). H amdédoon tov SO eppavidetan pe Tig Srakekoppéves ypappés. Katakdpugpog agovag: WER, Opiidvtiog
AEovag: T0c00T6 NYNTIKOL LAkOD 6TdY0L (100% — 0%)

Mia Baokn mopatipnor ot BipAloypa@io kot ot TEP&PaTd pag eivan 0Tt o CPT amoutel pe-
Y&AEG TTOGOTNTEC MY TIKOV VAIKOV OTIG TOV OTOXEVOHEVO TOHEN XWPIC HETOYPAPES. AVTO SnpLLovpyel
TO EPWTNIA, UTTOPOVKE VA KELOTIONCOVE TNV XUTO-EMIBAEPT] Yl TPOCKPOYT] TOPEWV OE GUVOTIKEC
TIEPLOPLOPEVWY SESOUEVWVY; AUTO TIPOCPEPEL PLot EATILEOPOPX SUVATOTNTH YLX TIPOCAPLOYT] OTOV 1
GUAAOYY| NYOYPOPTOEWY EVTOC TOHEX elvat SaTtorvnpn) 1) avEPIKTN. £T0 LN 1.9 aflodoyovpe tnv
am68001 Tov M2DS2 4TOV HELWVOVE TNV TTOGOTNTX TOV NYNTIKOD VALKOD TOV GTOYXEVOLEVOD TOUEX.

Télo¢ o Iivakag 1.6 ovvoilel Ta k€PN oTNVY €MIBOOT YL TN U1 EMPAETIOUEVT] TIPOCKPHOYY|
mediov dTav YPTOLLOTIOOVIE XKOVOTIKY] TTIPOCKPHOYT] HECW TOV M2DS2 o€ GUVSVXOS e PAWOOIKY)
TIPOCOPHOYT) HECW ATIAWY TEXVIKWY TIPOCAPHOYNG N-gram LM.
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Mivakag 1.6: KAcivovtag to xaopo peto€d g ekmaidevong SO ko thg TARpwg emiBAemdpevng ekmaidevong yio to
oevéplo mpocappoyrg LG — CV ypnoipomorwvtag to M2DS2, pe Stapopetikég moodtnTeg Stabéoipon pn ovievypévou
NxNTkoO VALKOO Ko Kelpévou evtdg topéa. (U): pn emPAenopevn akovotiky § yAwooikr) mtpoooappoyr]. (W): acBevig
eMLBAETOHEVN TTPOCAPHOYT).

Mé6oSog | #Audio (h) #Tokens LM WER
SO (U) - - N/A 59.57
M2DS2 (U) 3 - N/A 57.31
M2DS2 (U) 12 - N/A 51.31
SO (U) - - Teviko 25.96
SO (U) - 38,632 Emowvinuévo 24.67
SO (U) - 751,953 Emoavénpévo  20.46
M2DS2 (U) 3 - Tevikd 20.7
M2DS2 (U) 12 - Teviko 17.3
M2DS2 (W) 3 38,632 Emovgnuévo 19.31
M2DS2 (W) 12 38,632 Emow&npévo 16.29
M2DS2 (W) 3 751,953  Emovinpévo 12.84
M2DS2 (W) 12 751,953 Emavénpévo  10.61
EmpAendpevn 12 751,953 Teviko 9.52
EmpAemnopevn 12 751,953 EmowEnpévo  7.94
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1.3 ZYNEIZ®OPEZ

1. M&Bnon vmoYwpwv e TOASLAOTAT KALUAKWON:

(o)

®)

W)

Pattern search MDS: IIpoteivetal €vag vEog aAyOpLOpoC pPelwomng NG SLoTATIKOTNTOG
oV oUVSVALEL TNV TTOALSIAOTOTN KAUAKWOT] e BEATIOTOTOINOT XWPI§ Topaywyouc.
AvTtdG 0 XAYOpLOLOG TTPOCPEPEL YPIYOPT] KAL EYYVTIHLEVT) CUYKALDT), EVQ TIXPEXOVIE KAL
Hia BeATIOTOTIOMEVT) VAOTIOM o).

A&loloynon emniSoomnc kot avBekTIKOTNTHG: H amdSoom Tov aAyopiBpov agloroyeitan pé-
0w TIEIPAPUATWV 0T VEWHETPIX TTOAAXTIAOTNTWY, TNV THEWOUNOT] EIKOVOV KAL TT| OT)-
pootodoyio Twv AéEewv. H ovBekTIKOTNTA TOv aloAoyeital oe aevapla pe BopuPwdelg
€Ll0080VG KOl XToVCia SESOUEVWV.

Meiwon G SIXCTATIKOTNTAG YLK TNV XVXYVROPLOT) CUVALSONUETWY amd @wvr): ELeTd-
Letou 1 xpnowdtnTa Tov pattern search MDS kot GAAWV TEXVIKWV Helwong SloTaTl-
KOTNTOG YL TNV 0VXYVWPLOT) CLVXICONUETWY oTté PV}, SEIXVOVTHG OTL TO LELWHEVX
OUVOAX YOPOKTNPLOTIKWY UITOPOVY VX EMTVXOLY QVTHYWVIOTIKY] ATTOS00T).

2. MkTY| avTtoemiBAeyn yLa ammoS0TIKT) TTPOCHPOYY) TOpEX Xwpig emipAeyn (UDA):

(o)

®)

[Ipooappoyn Topéx Ywpic emifAieyr péow yAwooikng povtelomoinong: H mpooéyylon
NG LIKTNG QUTOETIRAEYNG EQapUOLETAL OTNV TAEVOUNOT) KELUEVOD, ELSIKK YLt TNV TTPO-
BAgyT ™G cLVOLOOMUATIKNG A&LOAGYNOTC TWV KPITIK®WY TIPOIOVTWY NG Amazon. Emi-
SEIKVDETAL 1] ATTOTEAECUATIKOTNTA PE EAAYLOTT) PUBLOT VTIEPTIXPAUETPWY, KKOPX KOl
e Tieploplopéva 5eSopéva 6ToV (810 TOPEX. AUTH 1) TIPOGEYYLOT] XVTILETWTICEL ETTIONC
TOVG TIEPLOPLOROVC TNG XVTAYWVLOTIKIG EKTIXISEVOTC TOHED.

AT0S80TIKT] TIPOCKPHOYY| TOV TOPEN XWPIC EMIPAEYN 0 GUOTILATX XVXYVWPLOTG OMLAL-
OG: AUTY| 1] HEAETY) EMKEVTPWVETAL OTNV HUKTI QUTO-ETPAEYT YIX TNV KKOVGTIKY) TIPO-
COPUOYY] TOULEX PLX CUOTIHOTH CVAYVOPLOTG OMLALXG, XPTOLLOTIOLWVTOS VX TIPOCPATX
Snuovpynpévo ovvoro Sedopévawv opthiog yla T Néo EAANvikn. Bpiokovpe 0TL 1 amoTe-
AEOPOTIKOTNTA TN LIKTTG 0VTO-ETIBAEYTC TTOIKIAAEL AVEAOY X |LE TNV Epyaior IpOEKTIX-
8gvomc Kot VITOYPUpI{OVPE TN ONUXGIK TS XPNOTS TOGO SeS0UEVWVY EKTOC TOUER, OGO
KoL 5E80EVWV EVTOC TOHEX YIX XVTOETRAEYT), WOTE VX XTOTPUTIEL 1) KKTAPPEVOT) TWV €-
OWTEPIKWY VUTHPACTAOEWV. ETmAEov, SOKIUKLOVTAL TEXVIKES EMEKTAOTC YLO TNV TIPO-
OOPLOYY| TOV YAWOGIKOD OVTEAOV GE VEOUC TOUEIG.
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“Deep Blue was intelligent the way your programmable
alarm clock is intelligent. Not that losing to a $10 million
alarm clock made me feel any better.”

Garry Kasparov, Deep Thinking: Where Machine
Intelligence Ends and Human Creativity Begins

Preface

Chess masters in the late 90s witnessed technology transform their field, and they had to
accept that they were no longer the dominant chess entities on the planet and that how they
trained and competed would radically change. Almost thirty years later, chess masters still
exist and have benefited by incorporating chess engines into their training regime.

Artificial Intelligence (AI) researchers face a similar situation in the past couple of years,
with radical shifts in both their practical experience, and, more importantly, with shifts in their
intuitions and perspectives. Bias-variance is no longer a trade-off in the over-parameterized
region, overfitting can be benign, and scaling-up is now the dominant strategy for good per-
formance. The reader should not infer that I argue against the current trends, nor that I lament
the new status quo'. That would be an exercise in futility, as the “scale-up” strategy is well-
founded, and it is hard to argue with the results.

The key argument of this dissertation is that drawing inspiration from the cognitive sci-
ences, and studying how biological neural networks operate, is essential for building effective
artificial neural networks. To me, it would feel disingenuous not to place this argument in the
modern context. Therefore, we will begin our discussion with an overview of the scaling laws
that characterize artificial and biological neural networks, and the differences in their opera-
tion. Then, we will introduce the key ideas of this work, i.e., (i) conceptual spaces that rely on
compact representations, and (ii) neural plasticity and how it leads to sample-efficient training
schemes. The human brain is the most intelligent machine we know; the word “intelligent”
not being considered as a collection of metrics in a set of narrowly defined tasks, rather as a
combination of good performance, rapid adaptability, versatility, ability to act, introspect, and
communicate. These properties are hard to define rigorously, and even harder to measure, but
nevertheless they are desirable for truly intelligent machines. In this dissertation I intend to
demonstrate that drawing inspiration from biological neural networks can complement and
enhance future architecture design by steering it towards, at least some of, these desiderata.
With this context in place, we shall begin our exploration.
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“An attempt will be made to find how to make machines
use language, form abstractions, and concepts, solve kinds of
problems now reserved for humans, and improve themselves.
We think that a significant advance can be made in one or
more of these problems if a carefully selected group of scien-
tists work on it together for a summer.”

Dartmouth AI workshop proposal, 1955

Introduction

3.1 BIGGER AND BETTER

In 1955 a group of influential scientists gathered in the Dartmouth AI workshop, coining the
term Artificial Intelligence in the process. They viewed the brain as a machine, and learning
and intelligence as procedures that can be precisely described and simulated. The key aspects
of the artificial intelligence problem they defined were (i) automatic computation, (ii) natural
language usage, (iii) neural networks, (iv) efficient calculation, (v) self-improvement, (vi) abil-
ity to form abstractions from sensory data, and (vii) creativity. 68 years after the Dartmouth
Al workshop, the current state-of-the-art models are able to demonstrate close-to-human or
super-human ability in almost all of these aspects. Computer vision models have long sur-
passed human performance in object detection tasks?. GPT-4 and ChatGPT** have impressive
reasoning skills, demonstrate theory of mind® properties, and can effectively communicate
with humans®. ChatGPT also achieves genius level scores in standardized verbal IQ assess-
ment tests *.

3.1.1 SCALING LAWS OF ARTIFICIAL AND BIOLOGICAL NEURAL NETWORKS

Two advancements lie in the center of these technological feats; one model architecture and
one learning paradigm. The model architecture is the Transformer’, a highly scalable atten-
tion network based on Multi-Layer Perceptron (MLP), and weak inductive biases®. The new
learning paradigm is Self-Supervised Learning (SSL)’, where, through different pretext tasks,
a network is learning to predict partial patterns about the data itself. Some example pretext
tasks include masked language modeling'’, image inpainting'!, and contrastive learning '°.
The success of Transformers combined with SSL, lies in the fact that it enables scaling of per-
formance with model and training data size. Thus, a dominant strategy has formed in the
machine learning community, of building “bigger and better” models *. Fig. 3.1 summarizes
this trend for recent Natural Language Processing (NLP) models.

“https://www.scientificamerican.com/article/i-gave-chatgpt-an-iq-test-heres-what-i-discovered/,  accessed
9/11/2023.

"This strategy is “dominant” if we only care about model performance given an unbounded budget. There are
multiple data-privacy, economic and environmental sustainability concerns that could prove to be a significant
limiting factor for model growth in the near future "7,
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NLP’s Moore’s Law: Every year model size increases by 10x
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Figure 3.1: The trend in this graph shows an exponential increase of parameters in new NLP models. This results in

increased reasoning capabilities, but also the potential forming of a new “Moore’s law” for NLP. (image credit: MIT HAN

Lab)

Test error

Bias-variance
tradeoff

Solutions interpolate

training data

Learned model

Underparameterized

Overparameterized

complexity

Figure 3.2: The double-descent error curve consists of the classical bias-variance trade-off regime and the modern inter-

polating regime. Predictors in the interpolating regime have zero training risk (perfectly fit the training data), while the

test error can become arbitrarily small. (image credit: Dar et al.®.)
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(a) Under-fitting (b) Good Fitting
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Figure 3.3: lllustration of benign overfitting of a linear regression model on a noisy cosine curve. The over-parameterized
model in the last figure is able to accurately interpolate the training data. (image credit: Tsigler and Bartlett.)
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Figure 3.4: The power-law relationship between language model performance and compute (left), training data (center),
and model size (right). (image credit: Kaplan et al.”)

This over-parameterization has theoretical justifications, besides the discussed practical
benefits. For example, recent theoretical research '®?° has identified that over-parameterized
models overcome the bias-variance trade-off, by being able to exactly fit the training data,
leading to the double descent error curve in Fig. 3.2. This adds the “benign overfitting”!1:%2
as a new mode of operation for neural networks, where the training error and the test error
can become arbitrarily small, and the network learns both low frequency patterns and high-
frequency noise in the training data (Fig. 3.3).

Consequently, researchers have attempted to empirically assess the fundamental question
“how should the expected performance scale with model size? ”. Kaplan, McCandlish et al.**
studied the scaling laws of neural language models, using the test loss as a proxy metric for
model performance. They derived empirically a power-law relationship between the test loss
and the three scaling factors, i.e. compute, parameter count, and dataset size. This power-
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Table 3.1: Number of parameters and training examples for state-of-the-art models across different modalities and tasks.
For multitask models (e.g., Whisper also performs speech translation), we list the primary task.

Model Modality (Primary) task Number of parameters Number of training data
ResNet-152% Vision Object recognition 58.5 x 10° 1.3 x 10° images
ViT-Huge % Vision Object recognition 632 x 10° 14.2 x 10® images

Stable-Diffusion?”  Vision Image generation 890 x 10° 2.3 x 10 images
XLSR-53% Speech  Automatic speech recognition 300 x 10° 50 x 10° hours
Whisper Speech  Automatic speech recognition 1.6 x 10° 680 x 10% hours
Voicebox* Speech Speech synthesis 330 x 10° 60 x 10° hours

AudioLDM*! Audio Audio generation 937 x 10° 9 x 10% hours
GPT-3* Language Language modeling 175 x 10° 300 x 10° tokens
Chinchilla* Language Language modeling 70 x 10° 1.4 x 10" tokens
Tokens Seen = 5B Tokens Seen = 10B Tokens Seen = 100B

102

Model Size
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Figure 3.5: Autoregressive modeling performance for different modalities, with varied training data and model sizes.
Observe that, for the 100B token setting, the performance of text and code modalities improves drastically with model
size, contrary to other modalities. (image credit: Kaplan et al.*)

law relationship is summarized in Fig. 3.4. The key projections obtained by this power-law
relationships are that (i) language models will continue to improve with model size before
reaching diminishing returns, (ii) larger models are more sample-efficient, and (iii) the amount
of training data should increase sub-linearly in terms of model parameters to avoid overfitting.
However, Hoffmann et al.?* postulate that current language models are largely over-sized and
under-trained, and find that the number of training tokens should increase linearly with the
model size for optimal performance on a fixed compute budget.

Arguably, this radical need for increasing the model size is more pertinent to the text
modality. Vision and speech models performance ranges from close to human to super-human,
while their parameter budget stays modest, as can be seen in Table 3.1, where we summarize
the parameter and training data budget for state-of-the-art vision, speech, and language mod-
els. This can also be observed in a recent study about the scaling laws of multimodal autore-
gressive models®’, where text-based modalities are shown to benefit more from larger model
and dataset sizes. Fig. 3.5 from this paper summarizes the differences in scaling for textual
versus speech and visual modalities in an autoregressive setting.

At this stage it is tempting to compare the scale of artificial neural networks to that of the
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human brain *. Biological brains are also governed by scaling laws, in terms of size, neuron
density and energy consumption®®. Direct estimations place the number of neurons in the
human brain at 86 billion®’, with the number of synapses per neuron being estimated between
1000 and 10000°%%7, or 8.6 — 86 trillion synapses (parameters). Remarkably, only ~ 20% of the
neurons are in the cerebral cortex, which is associated with higher-order mental functions*>*
(16 — 22 trillion parameters).

The brain has a modular structure, where different regions are more associated with dif-
ferent higher functions, i.e. visual and auditory cortex drive visual and audio perception,
while Broca’s and Wernicke’s areas drive language processing®’. Using the estimations of
Beren Millidge*’, the visual cortex, the auditory cortex and the language-related areas have
3000 — 5000 x 10%, 700 — 1000 x 10°, and 400 — 700 x 10° synapses respectively. This puts
current language models in the same order of magnitude with the brain language processing
areas, while visual and audio models are estimated largely more parameter efficient.

In terms of data efficiency though there is a gap. As a thought experiment, a person that
reads constantly for 80 years at a rate of 300 words per minute*! will read ~ 12.5 x 10°
words, which is one to two orders of magnitude less than the training sets of state-of-the-art
language models. Similarly, 80 years correspond to 700800 hours, which is roughly equivalent
to the training set of WhisperS. In conclusion, while no gap is observed in terms of parameter
efficiency, there is an apparent gap in data efficiency between artificial neural networks and
the human brain. This may underscore fundamental processing differences, indicating that
we have much to learn from the brain’s inherent efficiency in achieving complex tasks with
relatively few data.

3.2 ScoPE AND CHALLENGES

In this dissertation, two main pillars of machine learning systems are explored, i.e., low-rank
representation learning, and data-efficient adaptation strategies. For the development of the
techniques discussed throughout this manuscript, we draw from the accumulated knowledge
obtained in prior studies of the human brain and its cognitive abilities. Specifically, we explore:

1. How low-dimensional conceptual spaces can be used to encode complex concepts.

2. How a balance can be found between stability and plasticity during neural network
adaptation to unseen domains.

*Though the study of the human brain has progressed, there is still much we do not know. Drawing compar-
isons between artificial and biological neural networks relies on multiple simplifications and Fermi estimations,
e.g., 1 — 1 synapse to parameter equivalence and isotropic distribution of neurons in different brain regions of
the cerebral cortex. Nevertheless, the rough comparison can have value in the context of “scaling-up”, given that
it is limited only in order-of-magnitude estimations, as it can reveal differences and similarities in the learning
processes of machines and brains.

SFor vision such an upper-bound estimate is difficult to obtain, since human visual perception is based on a
continuous stream, not on ii.d. sampled images. Nevertheless, 80 years correspond to 151 x 10° frames at 60 fps.
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In this section we provide a summary of the cognitive background that forms the inspira-
tion for the development of the algorithms, architectures, and techniques discussed in the rest
of this manuscript.

3.2.1 CoOGNITIVE REPRESENTATIONS AND CONCEPTUAL SPACES

The manifold hypothesis** is a key concept in machine learning and computational neuro-
science, stating that high-dimensional data, encountered in the real-world (e.g. images, speech,
neural activity), tend to lie in the vicinity of low-dimensional manifolds. The hypothesis is
based on the observation that while the data we encounter in the real world is high dimen-
sional (e.g., every pixel in an image can be considered a separate dimension), it is not entirely
random and exhibits structure and dependencies. For example, images of cats differ greatly in
pixel space but share underlying visual features such as the shape of the eyes or the structure
of the fur. The manifold hypothesis is the base for manifold learning algorithms*’, which aim
to extract the underlying low-dimensional structure of high-dimensional input signals. Fur-
thermore, Brahma et al.** remark that the success of modern deep learning algorithms lies in
the progressive unfolding of the intrinsic low-dimensional manifolds in the input data.

From a cognitive perspective we are motivated by the seminal work of Peter Giardenfors*’,
where a model of conceptual representations is proposed. Specifically, concepts are repre-
sented as points that lie along low-dimensional manifolds, e.g. the color hue concept is a point
that lies along an 1D circle. The relations between concepts are represented as different sim-
ilarity metrics between the low-dimensional concept representations. For this, we focus our
study on the Multi-Dimensional Scaling (MDS)*® algorithm, where the relations (distances)
between data are directly used to extract low-dimensional representations.

3.2.2 THE STABILITY-PLASTICITY DILEMMA

A key trade-off when training connectionist networks is the stability-plasticity dilemma®’,
where plastic connections storing novel patterns, while stability is desirable to keep learned
patterns from being erased. McCloskey and Cohen*® noticed that Artificial Neural Networks
(ANN) display a phenomenon known as catastrophic interference, or catastrophic forgetting.
This occurs when new patterns alter the weights of previously learned patterns in sequentially
trained networks, leading to the forgetting of old patterns. French**** postulated that this is an
inherent problem of networks that store information in the form of distributed representations,
that is caused due to representational overlap.

More recently, Kirkpatrick et al.’! proposed Elastic Weight Consolidation (EWC) to over-
come catastrophic forgetting, inspired by synaptic consolidation in the brain>4°*, where sub-
sets of synapses are dynamically becoming more stable, enabling long-term memory. EWC
takes the form of a regularization term which aims to keep the average change small when
learning a new task for all network parameters. Another popular approach for overcoming
catastrophic forgetting is information rehearsal**, where old data are interleaved with novel
data in order to reactivate learned patterns and facilitate memory integration. The difference

54



between EWC and information rehearsal is that in the former, distributional memory con-
solidation is performed in a direct manner, while in the latter it is performed implicitly. An
approach that merges characteristics from both approaches is proposed by Chronopoulou et
al.>>, where a pretrained language model is fine-tuned for a supervised task, while performing
task replay using a multitask language model loss.

3.3 CONTRIBUTIONS AND THESIS STRUCTURE

This dissertation is organized in two parts that revolve around the main pillars.

1. Part I Subspace learning with Multi-Dimensional Scaling: In this part we focus on
low-rank representation learning of conceptual spaces through MDS. We include two
studies where we develop a novel MDS algorithm and utilize it in real-world scenarios.

()

(b)

Pattern search multi-dimensional scaling: We propose a novel algorithm for di-
mensionality reduction, based on multi-dimensional scaling and derivative-free
optimization. First we overview the necessary background and algorithmic for-
mulations in Chapter 4, and then we proceed to develop the algorithm, along with
a series of optimizations in Chapter 5. Pattern search MDS is shown to have fast
and guaranteed convergence.

Performance and robustness evaluation: In Chapter 6, we evaluate the perfor-
mance of the proposed algorithm in a series of experiments for manifold geome-
try, image classification, and lexical semantics, and assess its robustness for noisy
inputs and missing data.

Dimensionality reduction for speech emotion recognition: In Chapter 7 we ex-
plore the effectiveness of pattern search MDS and other dimensionality reduction
techniques for Speech Emotion Recognition (SER) with different databases and
input features, demonstrating that reduce feature sets achieve competitive perfor-
mance.

2. Part II Mixed Self-Supervision for Sample-Efficient Unsupervised Domain Adapta-

tion:

In this part we examine the stability-plasticity dilemma in order to combat catas-

trophic forgetting during adaptation of pretrained architectures to new domains. We
suggest that a mixed self-supervision approach, maintaining the self-supervised pre-
training loss during fine-tuning, effectively balances stability and plasticity. Two studies
are included, where the proposed approach is employed for the adaptation of transformer-
based architectures in diverse settings and different modalities.

()

Unsupervised domain adaptation for text and speech: In Chapter 8, we formu-
late the problem of Unsupervised Domain Adaptation (UDA) for classification and
sequence to sequence settings. Then we review the relevant prior work in the
literature and introduce the proposed fine-tuning strategy.
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(b)

(©

Unsupervised domain adaptation through language modeling: In Chapter 9, we
employ a mixed-self supervision approach for performing UDA between domains
in a text classification setting, i.e., predicting the sentiment of Amazon reviews for
different categories of products. The proposed approach yields successful adap-
tation with minimal hyperparameter tuning, even when few in-domain data are
available. Furthermore, it is demonstrated that the proposed loss function can be
a good proxy validation metric in this semi-supervised setting. Finally, we dis-
cuss the limitations of domain-adversarial training®, focused on the difficulty to
converge at satisfying solutions and the need for extensive tuning.

Sample-efficient unsupervised domain adaptation of speech recognition systems:
We propose mixed self-supervision for UDA of the acoustic model in a speech
recognition setting for the Greek language in Chapter 10. We create the largest yet
transcribed speech corpus for Modern Greek (120 hours) based on parliamentary
proceedings. A key finding is that mixed self-supervision is sensitive to the pre-
training task; in the case of language modeling, task replay using solely in-domain
data is sufficient, while in the case of contrastive pretraining a mix of both out-of-
domain and in-domain data is required during task replay to avoid mode-collapse
of the internal representations. Finally, we test the effectiveness augmentation
techniques for adapting the language model to new domains.
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Part 1

SUBSPACE LEARNING WITH
MULTI-DIMENSIONAL SCALING

“These creatures you call mice, you see,
they are not quite as they appear. They
are merely the protrusion into our
dimension of vastly hyperintelligent
pandimensional beings.”

Douglas Adams, The Hitchhiker’s Guide
to the Galaxy
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Background on dimensionality reduction and
derivative-free optimization

4.1 INTRODUCTION

In the past decades, we have been witnessing a steady increase in the size of datasets generated
and processed by computational systems. Such voluminous data comes from various sources,
such as business sales records, the collected results of scientific experiments or real-time sen-
sors used in the internet of things. The most popular way to represent such data is via a set
of data points lying in a vector space. The construction of the vector space is often performed
using a distance or similarity matrix that can be constructed manually using perceptual rat-
ings or, more commonly, computed automatically using a set of features. In many of these
applications high-dimensional data representations are assumed to lie in the vicinity of a low-
dimensional, possibly non-linear manifold", embedded in the high-dimensional space. This is
known as the manifold hypothesis**. Intuitively human cognition also performs similar map-
pings when performing everyday tasks, i.e., high-dimensional sensory input get embedded
into low dimensional cognitive subspaces®’ ™’ for rapid and robust decision making, since
only a small number of features are salient for each task. Given this assumption manifold
learning aims to discover such hidden low-dimensional structure and to output a representa-
tion with much fewer “intrinsic variables”.

In the first part of this dissertation, we study the problem of manifold learning in non-
metric topological spaces. The input to this problem is a matrix of (similarities or) dissimilar-
ities™ of the dataset objects. “Objects” can be colors, faces, map coordinates, political persua-
sion scores, or any kind of real-world or synthetic stimuli. For each input dataset object, the
output is a low-dimensional vector such that the pairwise Euclidean distances of the output
vectors resemble the original dissimilarities. This problem is known as non-metric MDS or
Non-Linear Dimensionality Reduction (NLDR) task. An abundance of embedding methods
have been developed for dealing with this task as detailed in Section 4.4.

The majority of these algorithms reduce this problem to the optimization of a determin-

“Loosely speaking, a manifold is a topological space that is locally Euclidean.
"It should be mentioned that in many real-world tasks the used dissimilarity measures may correspond in
pseudo- or semimetric distance functions that violate the triangular inequality.
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istic loss function f Given this minimization objective, they usually employ gradient-based
methods to find a global or a local optimum. In many situations, however, the loss function
is non-differentiable or estimating its gradient may be computational expensive. Additionally,
gradient-based algorithms usually yield a slow convergence; multiple iterations are needed in
order to minimize the loss function.

Inspired by the recent progress in derivative-free optimization tools, we propose an itera-
tive algorithm which treats the non-metric MDS task as a derivative-free optimization prob-
lem. Due to the derivative-free formulation, the MDS task can be expanded in spaces where
the selected metric results in non-differentiable loss functions. We demonstrate an example
of a metric where majorization-based approaches fail to converge to a meaningful solution,
while the General Pattern Search (GPS)-based formulation can. The main contributions of
this part are as follows: 1) Using the GPS formulation we are able to provide theoretical con-
vergence guarantees for the proposed non-metric MDS algorithm. 2) A set of heuristics are
proposed that significantly improve the performance of the proposed algorithm in terms of
computational efficiency, convergence rate and solution accuracy. 3) The proposed algorithm
is evaluated on a variety of tasks including manifold unfolding, word embeddings and optical
digit recognition, and speech emotion recognition, showing consistent performance and good
convergence properties. We also compare performance with state-of-the-art MDS algorithms
for the aforementioned tasks for clean and noisy datasets. An optimized implementation of
pattern search MDS and the experimental code is made available as open source to the research
community“.

The first part of this dissertation is based on one preprint publication® and one conference
publication in Interspeech 2.

4.2 ORGANIZATION

The remainder of the first part of this dissertation is organized as follows: In this chapter, we
begin with an overview of the relevant notation and the related work (Sections 4.3 and 4.4),
while we also provide an overview of the MDS problem and the GPS family of algorithms and
their convergence characteristics (Sections 4.5, 4.6, and 4.7). In Chapter 5 we present in de-
tail the proposed derivative-free algorithm, coined Pattern Search MDS, the reduction of the
algorithm to the GPS formulation and the associated fixed-point convergence guarantees. In
Chapter 6 we present the application of Pattern Search MDS to manifold geometry, classifi-
cation, and lexical similarity problems, and study its robustness with noisy or missing data.
Finally, in Chapter 7 we study Dimensionality Reduction (DR) on multiple feature sets in a
real-world setting for classifying emotions from speech input.

*Open source code available: https://github.com/georgepar/pattern-search-mds
SChapters 5, 6 consist joint work with Efthymios Tzinis (see **®")
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4.3 NOTATION

In this part, we denote real, integer and natural numbers as R, Z, N, respectively. Scalars are
represented by no-boldface letters, vectors appear in boldface lowercase letters and matrices
are indicated by boldface uppercase letters. All vectors are assumed to be column vectors
unless they are explicitly defined as row vectors. For a vector z € R", ||z|; = Y 1, |z is its
¢y norm and ||z||; =/}, # is its £, norm, where z; is the ith element of z. By A € R™*"™
we denote a real-valued matrix with n rows and m columns. Additionally, the jth column of
the matrix A and its entry at ith row and jth column are referenced as a; and ay;, respectively.

The trace of the matrix A appears as tr(A) and its Frobenius norm as ||A[[p =, />°/_, >° 7, af.

The square identity matrix with n rows is denoted as I, € R"™". For the matrices A € R™*™
and B € R™™ we indicate their Hadamard product as A ® B. The n-ary Cartesian product
over n sets Sy, ..., S, is denoted by {(s1,...,s) : s; € Si. 1 < i < n} Finally, X refers to the
estimate of a variable X at the kth iteration of an algorithm.

4.4 RELATED WORK

DR algorithms compress data in a low-dimensional space while preserving meaningful sta-
tistical and geometrical properties. Such properties are covariance of original data, pairwise
distances between samples or local neighborhoods. They can be separated into two general
categories, linear and non-linear.

Linear DR aims to find a linear projection Y = TX € R™* of the real data X € R™™,
where k < m. Examples of linear DR algorithms are Principal Component Analysis (PCA)
and Classical Multi-Dimensional Scaling (cMDS)®. PCA projects data into a low-dimensional
space, which is formed by an orthogonal basis of linearly uncorrelated vectors called the prin-
cipal components. Principal components are selected as the axes along which the samples
have maximum variance. cMDS takes a geometric approach, finding a set of low-dimensional
points that best preserve pairwise euclidean distances between original data points.

In real data applications, such a linearity assumption may be too strong and can lead to
suboptimal results. Thus a significant effort has been made by the machine learning com-
munity to apply manifold learning in non-linear domains. These algorithms are not limited
in linear transformations, like the rotations and stretches that can be induced by a matrix
multiplication. Representative manifold learning algorithms include Isometric Feature Map-
ping ISOMAP)®4~%¢, Landmark ISOMAP®*°, Locally Linear Embedding (LLE)”!"7°, Modified
LLE’®, Hessian LLE”’, Semi-Definite Embedding (SDE)’®"8!, Laplacian Eigenmaps (LE), or
Spectral Embedding,”"">%?, Local Tangent Space Alignment (LTSA)®’, etc. An extension of
cMDS is metric MDS*® where dissimilarity measures are assumed metric, but not necessar-
ily euclidean. When these measures are closely related to the euclidean distance, e.g. cosine
distance, metric MDS is still characterized as a linear DR approach. Stress Majorization *°
is an algorithm for metric MDS. The non-metric extension of MDS®! tries to approximate
the rank order of original distances by applying a monotonically increasing function, usu-
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ally approximated by isotonic regression. ISOMAP®"%® finds an isometric mapping of the
original data by extending metric MDS to approximate geodesic pairwise distances between
original samples space as euclidean pairwise distances in the transformed samples. Geodesic
distances are approximated by the shortest path distances between data points. While MDS
and ISOMAP consider the global data geometry, LLE”!~7° reconstructs local regions by finding
sets of weights which are used to represent samples as a weighted combination of their closest
neighbors. Representations are computed by solving a sparse eigenvalue problem. Modified
LLE’® extends LLE, by using multiple neighborhood weights, to produce more robust results.
Hessian LLE”” obtains low-dimensional representations through applying eigenanalysis on a
Hessian coefficient matrix. SDE’®7®! attempts to maximize the distance between points that
don’t belong in a local neighborhood. LE’!7>82 preserves local manifold geometry by mini-
mizing the Laplacian of the graph formed by neighboring data points. The Laplacian of this
graph approximates the Laplacian-Beltrami operator over the manifold, which indicates the
divergence of the mapping of a high-dimensional point to the low-dimensionsional manifold.
LTSA® utilizes local tangent information to represent the manifold geometry and extends
this to global coordinates. Also, a common nonlinear method for dimensionality reduction is
the kernel extension of PCA®>. Finally, autoencoders®® are a class of deep neural networks
that can be used for linear and non-linear dimensionality reduction and are composed of an
encoder and a decoder. Encoder projects input x to a low-dimensional space via a hidden layer
h, while the attempts to reconstruct x from h. If no non-linear activations are used, encoder
learns a linear projection Wx + b, whereas if we use a non-linear activation function (e.g.,
sigmoid or rectified linear unit) in the output of the encoder’s layers, a non-linear embedding
is learned.

A wide class of derivative-free algorithms for nonlinear optimization has been studied
and analyzed in Rios and Sahinidis®” and Avriel®®. GPS methods are a subset of the afore-
mentioned algorithms which do not require the explicit computation of the gradient in each
iteration-step. Some GPS algorithms are: the original Hooke and Jeeves pattern search algo-
rithm?®’, the evolutionary operation by utilizing factorial design®’ and the multi-directional
% a unified theoretical formulation of GPS algorithms un-
der a common notation model has been presented as well as an extensive analysis of their
global convergence properties. Local convergence properties have been studied later by Dolan
etal.”. Notably, the theoretical framework as well as the convergence properties of GPS meth-
ods have been extended in cases with linear constrains®’, boundary constrains’® and general
Lagrangian formulation®’.

search algorithm "2, In Torczon

4.5 MULTI-DIMENSIONAL SCALING PROBLEM FORMULATION

4.5.1 Crassicar MDS

cMDS was first introduced by Torgerson ®* and can be formalized as follows. Given the matrix
A consisting of pairwise distances or dissimilarities {J;;}1<;j<n between N points in a high
dimensional space, the solution to cMDS is given by a set of points {x;}}; which lie on the
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manifold M € R’ and their pairwise distances are able to preserve the given dissimilarities
{8;}1<ij<n as faithfully as possible. Each point x; € RF, 1< i < N corresponds to a column
of the matrix X’ € RI*N, The embedding dimension L is selected as small as possible in order
to obtain the maximum dimensionality reduction but also to be able to approximate the given
dissimilarities §; by the Euclidean distances di;(X) = ||x; — xj||2 = \/ Sk (xXik — x%)? in the
embedded space R”.

The proposed algorithm uses a centering matrix H = Iy — lNIIT,lN in order to subtract
the mean of the columns and the rows for each element. Where 1y = [1,1,...,1] a vector of
ones in RN space. By applying the double centering to the Hadamard product of the given
dissimilarities, the Gram matrix B is constructed as follows:

1
B = —5HT(A ® A)H (4.1)
It can be shown (Ch. 12°%) that cMDS minimizes the Strain algebraic criterion in Eq. 4.2 below:
[IXX" - B[ (42)

The eigendecomposition of the symmetric matrix B gives us B = VAV and thus the new set of
points consisting the embedding in R% are given by the first L positive eigenvalues of A, namely
X = V. This solution provides the same result as PCA applied on the vector in the high
dimensional space””. ¢cMDS was originally proposed for dissimilarity matrices A which can be
embedded with good approximation accuracy in alow-dimensional Euclidean space. However,
matrices which correspond to embeddings in Euclidean sub-spaces'?’, Poincare disks'®! and
constant-curvature Riemannian spaces'°? have also been studied.

4.5.2 MEeTRIC MDS

Metric MDS describes a superset of optimization problems containing ¢cMDS. Shepard has
introduced heuristic methods to enable transformations of the given dissimilarities &;'**,'**
but did not provide any loss function in order to model them'?. Kruskal**** formalized the
metric MDS as a least squares optimization problem of minimizing the non-convex Stress-1
function defined in Eq. 4.3 shown next:

[ )
AP =\ TN SV e ix)

where matrix D with elements cfy represents all the pairs of the transformed dissimilarities J;;
that are used to fit the embedded distance pairs d;;(X).

In essence, oi,j = F(8;) where F is usually an affine transformationT oiy = a+ pé; for

(4.3)

TMonotone and polynomial regression transformations are employed for nonmetric-MDS, as well as, a wider
family of transformations'%.
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unknown « and f. Kruskal proposed an iterative gradient-based algorithm for the minimiza-
tion of o7 since the solution cannot be expressed in closed form. Assuming that dj; = djj the
algorithm iteratively tries to find the coordinates of points X which are lying in the low em-
bedding space RE. Trivial solutions (X = 0 and D = 0) are avoided by the denominator term
in Eq. 4.3.

A weighted MDS raw Stress function is defined as:

N N

O%aw(xv 15) = Z Z le(dAU - dy(x))z (4.4)

i=1 j=1

where the weights wj; are restricted to be non-negative; for missing data the weights are set
equal to zero. By setting w;; = 1,V1 < i,j < N one can model an equal contribution to the
metric MDS solution for all the elements.

453 SMACOF

Scaling by Majorizing a Complicated Function (SMACOF) is a state-of-the-art algorithm for
solving metric MDS and was introduced by Leeuw et al. '”. By setting d;; = §;; in raw stress
function defined in Eq. 4.4, SMACOF minimizes the resulting stress function o2, (X).

N N

A(X) =D ) w8 — 285dy(X) + (X)) (4.5)

i=1 j=1

The algorithm proceeds iteratively and decreases stress monotonically up to a fixed point
by optimizing a convex function which serves as an upper bound for the non-convex stress
function in Eq. 4.5. An extensive description of SMACOF can be found in Borg and Groenen **
while its convergence for a Euclidean embedded space R’ has been proven by de Leeuw '%%.

Let matrices U and R(X) be defined element-wise as follows:

—Wjj i 7]
i= 7 46
" { Zk;éiwik 1=7J (46)
rj=14 0 i # j, dy(X) =0 (4.7)
D kzi Tik i=J

The stress function in Eq. 4.5 is converted to the following quadratic form:

N N
F(X) = ) wyd — 2tr(X"R(X)X) + tr(X"UX) (4.8)

i=1 j=1
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The quadratic can be minimized iteratively as follows:

T(X, X)) = ¢ — 20X RXIXDO) 4+ ir(XTUX)

N N
c= E E wij@?j:const.

i=1 j=1
XD — argmin T(X,XW) = UtR(X0)X® (4.10)
X

where X(¥ is the estimate of matrix X at the kth iteration and U is Moore-Penrose pseudoin-
verse of U. At iteration k the convex majorizing convex function touches the surface of o at
the point X(¥). By minimizing this simple quadratic function in Eq. 4.9 we find the next update
which serves as a starting point for the next iteration k + 1. The solution to the minimization
problem is shown in Eq. 4.10. The algorithm stops when the new update yields a decrease
o?(X(D) — 62(X(®)) that is smaller than a threshold value.

4.6 GENERAL PATTERN SEARCH ALGORITHMIC FAMILY

The unconstrained problem of minimizing a continuously differentiable function f: R* — R
is formally described as

x" = argmin f(x) (4.11)
xeRn

Next we present a short description of iterative GPS minimization of Eq. 4.11 based on”**.

First we have to define the following components:
« A basis matrix that could be any nonsingular matrix B € R"*".

« A matrix C%) for generating all the possible moves for the kth iteration of the minimiza-
tion algorithm
ch — [M(k) —M® L(k)] — [I‘(k) L(k)] (4.12)

where the columns of M(X) € Z™" form a positive span of R” and L(*) contains at least
the zero column of the search space R".

« A pattern matrix P(¥) defined as
P =Bck = BM® — BMK* BLH®] (4.13)
where the submatrix BM(® forms a basis of R™.

In each iteration k, we define a set of steps {sl(k) i, generated by the pattern matrix pk)
as shown next: ; ) ; .
st = a®p, PO = [p{t), .. piV] € R (4.14)



where pgk) is the ith column of P(Y) and defines the direction of the new step, while A¥) con-

figures the length towards this direction. If the pattern matrix P(X) contains m columns, then
m > n+ 1in order to positively span the search space R". Thus, a new trial point of GPS
algorithm towards this step would be xSkH) =
function fto minimize. The success of a new trial point is decided based on the condition that
it takes a step towards further minimizing the function f, ie., f{x(% + sgk)) > ﬂxSkH)). The
steps of a GPS method are presented in Alg. 4.

x(K) 4 sgk) where we evaluate the value of the

Algorithm 4 General Pattern Search (GPS)

procedure GPS_SOLVER(x(?), A(©), C(9) B)
. k=1

1:
2
3 do

4: k=k+1

5: sk = EXPLORE_ MOVES(BC®), x| A(K))

6 P = x4 sy — Ax(K)

7 if p(¥) < 0 then

8 x(k1) = x(B) 4 (k) > Successful iteration
9 else

10: x(kD) = x(®) > Unsuccessful iteration
11: AUHD) cltt) — UPDATE(C®), AWK p(k)

12: while convergence criterion == False

To initialize the algorithm we select a point x(°) € R" and a positive step length parameter
A > 0. In each iteration k, we explore a set of moves defined by the EXPLORE_MOVES()
subroutine at line 5 of the algorithm. Pattern search methods described using a GPS formalism
mainly differ on the heuristics used for the selection of exploratory moves. If a new exploratory
point lowers the value of the function f; iteration k is successful and the starting point of the
next iteration is updated x(F1) — x(0) 1 §(5) 35 shown in line 8, else there is no update. The
step length parameter A¥) is modified by the UPDATE() subroutine in line 11. For successful
iterations, i.e., pt¥) < 0, the step length is forced to increase in a determistic way as follows:

AR = JRAR 30 e A = {1 M)

(4.15)
> 1, {wy, ., wia b CN, Al < +o00

where 7 and w; are predefined constants that are used for the ith successive successful itera-
tion. For unsuccessful iterations the step length parameter is decreased, i.e., A1) < AP ag
follows:

AFD = A0 9= 51 wy <o, (4.16)

where 7and the negative integer wy determine the fixed ratio of step reduction. Note that the
generating matrix C(**V) could be also updated for unsuccessful/successful iterations in order
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to contain more/less search directions, respectively.

4.7 GENERAL PATTERN SEARCH CONVERGENCE

GPS methods under the aforementioned defined framework have some important convergence
properties shown in°*~*” and summarized here. For any GPS method which satisfies the spec-
ifications of Hyp. 1 on the exploratory moves one may be able to show convergence for Alg. 4.

Hypothesis 1 (Weak Hyp. on Exploratory Moves): The subroutine EXPLORE_MOVES() defined
in Alg. 4, line 5 guarantees the following:

« The exploratory step direction for iteration k is selected from the columns of the pattern
matrix PX) as defined in Eq. 4.14 and the exploratory step length is A®) as defined in
Egs. 4.15, 4.16.

« If among the exploratory moves a'®) at iteration k selected from the columns of the matrix
APBM® — MK

exist at least one successful move, ie., fix*) + a) < filx(¥), then the EXPLORE_MOVES|()
subroutine will return a move s such that fix® + s < Ax(9).

Hyp. 1 enforces some mild constraints on the configuration of the exploratory moves produced
by Alg. 4, line 5. Essentially, the suggested step s(¥) is derived from the pattern matrix P(X),
while the algorithm needs to provide a simple decrease for the objective function f. Specifically,
the only way to accept an unsuccessful iteration would be if none of the steps from the columns
of the matrix AWB[M®*) — M| lead to a decrease of the objective function f. Based on this
hypothesis one can formulate Thm. 1 as follows:

Theorem 1: Let L(x*) = {x : f{x) < filx*)} be closed and bounded and f continuously differ-

entiable on a neighborhood of L(x*), namely on the union of the open balls |J B(a, n) where
ac€L(x*)
n > 0. If a GPS method is formulated as described in Section 4.6 and Hyp. 1 holds then for the

sequence of iterations {x©'} produced by Alg. 4

1i inf (|| —
i inf [[VAx9)]| = 0

Proof: See™.

As shown in'% one can construct a continuously differentiable objective function and a
GPS method with infinite many limit points with non-zero gradients and thus even Thm. 1
holds, the convergence of ||V f{xx)|| is not assured. However, the convergence properties of
GPS methods can be further strengthened if additional criteria are met. Specifically, a stronger
hypothesis on exploratory moves Hyp. 2 regulates the measure of decrease of the objective
function for each step produced by the GPS method, as follows:
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Hypothesis 2 (Strong Hyp. on Exploratory Moves): The subroutine EXPLORE_MOVES() as de-
fined in Alg. 4, line 5 guarantees the following:

o The exploratory step direction for iteration k is selected from the columns of the pattern
matrix P as defined in Eq. 4.14 and the exploratory step length is A as defined in
Egs. 4.15, 4.16.

« If among the exploratory moves a'X) at iteration k selected from the columns of the matrix
A(k)B[M(k) _ M(k)]

exists at least one successful move, i.e., fix®) + a) < fix(K)), then the EXPLORE_MOVES()
subroutine will return a move s such that:
f(x(k) + S(k)) S min f(x(k) + a(k))'

ak)

Hyp. 2 enforces the additional strong constraint on the configuration of the exploratory moves,
namely that the subroutine EXPLORE_MOVES() will do no worse than produce the best ex-
ploratory move from the columns of the matrix A B[M®) — M(9)]. Based on this hypothesis
and by adding requirements restricting the exploration step direction and length for the GPS
method, one can formulate Thm. 2 which is also presented here without proof.

Theorem 2: Let L(x*) = {x : f{x) < fix*)} be closed and bounded and f continuously differ-
entiable on a neighborhood of L(x*), namely on the union of the open balls |J B(a,n) where
acL(x*)

n > 0. If a GPS method is formulated as described in Section 4.6, klim AK®) = 0, the columns
— 400

of the generating matrices C'X) are bounded by norm and Hyp. 2 holds then for the sequence of
iterations {x®)} produced by Alg. 4

lim ||[VAx®)|| =0

k—+00

Proof: See™.

The additional requirements specify that: 1) the generating matrix C'® should have bounded
norm in order to produce trial steps from Eq. 4.14 that are bounded by the step length parame-
ter A and 2) lim A®) = 0 that can be easily met by selecting A = {1} in Eq. 4.16; this also

k—+o00
guarantees a non increasing sequence of AY) steps®®. Although these criteria provide much
stronger convergence properties, we are faced with a trade off between the theoretical proof
of convergence and the efficiency of heuristics in finding a local optimum.

Both theorems 1 and 2 provide a first order optimality condition if their specifications hold.
Although the latter theorem premises much stronger convergence results, step-length control
parameter A, provides a reliable asymptotic measure of first-order stationarity when it is
reduced after unsuccessful iterations **.
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Pattern Search Multi-dimensional Scaling

5.1 INTRODUCTION

In this section we describe Pattern Search MDS, a derivative-free formulation of the MDS
algorithm. The input to the algorithm is a distance matrix T, obtained from a set of points
in a high-dimensional space with dimension M. The goal is to find a set of points in a low-
dimensional space, with target dimension L < M with the same distance matrix. Pattern
Search MDS achieves this using a direct search approach, by exploring pertubations on the
surface of a hyper-sphere around each point.

After we present the core algorithm, we explore a set of optimizations and perform a
complexity analysis of the proposed approach. We further reduce Pattern Search MDS belongs
to the General Pattern Search family of derivative-free exploration methods; thus the proposed
algorithm inherits the guaranteed convergence properties of GPS. Finally, we show how to
automatically tune the hyperparameters for the proposed algorithm and explore the benefits
of derivative-free optimization in solving non-differentiable loss functions.

5.2 CORE ALGORITHM

The key idea behind the proposed algorithm is to treat MDS as a derivative-free problem,
using a variant of general pattern search optimization to minimize a loss function. The input
to pattern search MDS is a N x N target dissimilarity matrix T and the target dimension L of
the embedding space. An overview of the algorithm shown in Alg. 5 is presented next.

The initialization process of the algorithm consists of: 1) random sampling of N points in

the embedded space and construction of the matrix X(?) = [xio) , xgo), e xj(\?)} € RM*L, 2) com-

()
ij

distance between vectors xgo) and xj(o) of X(, and 3) computing the initial approximation
error e = fIT,D(®), where e is the element-wise Mean Squared Error (MSE) between the
two matrices. The functional fthat we attempt to minimize is the normalized square of the
Frobenius norm of the matrix T — D, i.e,, AT,D) = (1/N*)||T — D||% Equivalently one may

puting the embedded space dissimilarity matrix D), where the element d\; is the Euclidean
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express felement-wise as follows:

AT.D) =

i=1 j=1

N
(tj — dy)?, where T,D € RMVN (5.1)

Algorithm 5 Pattern Search MDS

procedure MDS(T, L, /%))
: k<0 > k is the number of epochs

1:

2

3 X% +— UNIFORM(N x L)

4 D" + DISTANCE MATRIX(X))
5. e« AT, DW)

6 ek +o00

7 AR [0)

s:  while 70 > §do

9 if ek — ¢(k) < . ¢(F) then

k
10: AL %
11: S < SEARCH_DIRECTIONS(A¥), L)
12: for all x € X do
13: X*, € < OPTIMAL MOVE(X® x8,e(¥)
14: elk=1) ¢ (k)
15: ek ¢
16: XK x*
17: k=k+1

Following the initialization steps, in each epoch (iteration), we consider the surface of a
hypersphere of radius r around each point xgk). The possible search directions lie on the sur-
face of a hypersphere along the orthogonal basis of the space, e.g., in the case of 3-dimensional
space along the directions +x, &y, ==z on the sphere shown in Fig. 5.1. This creates the search
directions matrix S and is summarized in Alg. 6

Algorithm 6 Define search directions
1: function SEARCH_DIRECTIONS(r, L)
2: ST« r- Ip

3: ST+ —r-Ig
4
5

S+ [$4)
return S

Each point is moved greedily along the dimension that produces the minimum error. At
this stage we only consider moves that yield a monotonic decrease in the error function. Alg. 7
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Figure 5.1: Sphere of radius r around point x; ) and possible search directions

finds the optimal move that minimizes (¥} = f{T,D®) for each new point X and moves X
in that direction. Note that when writing s € S, the matrix S is considered to be a set of row
vectors.

Algorithm 7 Find optimal move for a point

1: function OPTIMAL_MOVE(X(Y, x, S, ¢)

2 e e

3 for all s € Sdo

4: X x+s

5: X <+ UPDATE_POINT(X®, x, %) > Update x point of X(¥) with x
6

7

8

9

D « DISTANCE MATRIX(X)
e+ {(T, D)
if e < ¢ then
: e e
10: X"+ X
11: return X*, ¢*

The resulting error e* is computed after performing the optimal move for each point in
XK. If the error decrease hits a plateau, we halve the search radius and proceed to the next
epoch. This is expressed as e®) — ¢ < ¢- el¥) where ¢ is a small positive constant, namely
the error decrease becomes very small in relation to e(¥). The process stops when the search
radius r becomes very small, namely r < §, where §is a small constant, as shown in Alg. 5.

5.3 OPTIMIZATIONS AND ALGORITHM COMPLEXITY

Next, a set of algorithmic optimizations are presented that can improve the execution time
and the solution quality of Alg. 5. We also present ways to improve the execution time by
searching for an approximate solution, as well as, discuss ways to utilize parallel computation
for parts of the algorithm.
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5.3.1 ALLOW FOR “BAD” MOVES

In Section 5.2 we restrict the accepted moves so that the error decreases monotonically. This
is a reasonable restriction that also provides us with theoretical guarantees of convergence.
Nonetheless in our experimental setting, we observed that if we relax this restriction and allow
each point to always make the optimal move, regardless if the error (temporarily) increases
the algorithm converges faster to better solutions. The idea of allowing greedy algorithms to
make some “bad” moves in hope to get over local minima can be found in other optimization
algorithms, simulated annealing ''° being the most popular. To implement this one can modify
line 13 in Alg. 5 to:

Algorithm 8 Allow for bad moves
X*, ¢* < OPTIMAL_MOVE(X(®), x, S, +00)

5.3.2 ONLINE COMPUTATION OF DISSIMILARITY MATRIX

In line 6 of Alg. 7 we observe that we recompute the dissimilarity matrix for each move. This

(k) )

can be avoided because each move modifies only one point x;, therefore only the row dgk

(l? of the dissimilarity matrix D() are affected. Furthermore only one dimension

[ of the vector xl(k) is modified by the move, i.e., only element xl(];) of matrix X(®_ In detail, the

element d; ; that stores the dissimilarity between points x; and x7j should be updated as follows

k k+1 . .
for the move from xl(.’ l) to xl(’ ! ) for i % J:

and column d

57 =\~ G A+ ) 52

5.3.3 STEP AND MOVE SELECTION

It follows from the need to search for the optimal move across the embedding dimensions
L, that the complexity of the algorithm has a linear dependency on L. A large value of L
might affect the execution time of the algorithm. An approximate technique to alleviate this
is perform a random sampling over all possible directions in the L dimensional space in order
to select a “good” direction instead of the optimal, thus restricting the search space”.

An important parameter for our algorithm is the starting radius A% This parameter con-
trols how broad the search will be initially and has an effect similar to the learning rate of
gradient-based optimization algorithms. If we are too conservative and choose a small initial

*One can potentially do better than random sampling of all possible directions in the L dimensional space. As
the geometry of the embedding space starts becoming apparent, after a few epochs of the algorithm, it makes sense
to increasingly bias the search towards the principal component vectors of the neighborhood of the point that is
being moved.
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radius, the algorithm will converge slowly to a local optimum, whereas if we set it too high, the
error will overshoot and convergence is not guaranteed. A simple technique to automatically
find a good starting radius is to use binary search. In particular, we set the starting radius to
an arbitrary value, perform a dry run of the algorithm for one epoch and observe the effect on
error. If the error increases we halve the radius. Otherwise we double it and repeat the process.
This process is allowed to run for a small number of epochs. The starting radius found using
this technique is a not too pessimistic or too optimistic estimate of the best parameter value.

5.3.4 PARALLELIZATION

Another way to boost the execution time is to utilize parallel computation to speed up parts
of the algorithm. In our case we can parallelize the search for the optimal moves across the
embedding dimensions using the map-reduce parallelization pattern. Specifically, we can map
the search for candidate moves to run in different threads and store the error for each candidate
move in an array e = [ey, e;.., ea1]. After the search completes we can perform a reduction
operation (min) to find the optimal move and the optimal error X*, e*. For our implementation
we used the OpenMP parallelization framework!!! and it led to a 2 — 4 times speedup in
execution time.

5.3.5 COMPLEXITY

For each epoch we search across 2L dimensions for Npoints. In each search we also need O(N)
operations to update the distance matrix. Thus, the per epoch computational complexity of the
algorithm is O(N2L). The optimizations proposed above do not change the complexity of the
algorithm per epoch with the notable exception of the move selection optimization: if instead
of 2L moves per epoch one would consider only 2K moves. In this case, the overall complexity
per epoch would be O(N?K) instead of O(N?L). However, as we shall see in the experiments
that follow the (rest of the) proposed optimization significantly improve convergence speed,
resulting in fewer epochs and less computation complexity overall.

5.4 RepucTioN TO GPS FAMILY OF ALGORITHMS

Pattern Search MDS belongs to the general class of GPS methods and can be expressed us-
ing the unified GPS formulation introduced in Section 4.6. Next, we express our proposed
algorithm and associated objective function under this formalism.

First, we restate the problem of MDS in a vectorized form. We use matrix A with elements
{8ii}1<ij<n that expresses the dissimilarities between N points in the high dimensional space.
The set of points {x;}Y, lie on the low dimensional manifold M € R! and form the column
set of matrix X'. The matrix X € RV will be now vectorized as an one column vector as
shown next:
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X =[x, x7] € REL1I<i<N )
z = vec(XT) = [Xu1, ooy X1y vy X1y vy XNL) T )

Now our new variable z lies in the search space RV, The distance between any two
points x; and x; of the manifold M remains the same but is now expressed as a function of

the vectorized variable z. Namely, d;;(X) = ||x; — xj|| = 1/ > F_,(xik — xj%)? = d;j(z). To this
end, our new objective function to minimize g is the MSE between the given dissimilarities d;;
and the euclidean distances d;; in the low dimensional manifold M as defined in Eq. 5.4 shown

next:
N N

82) = <5 > D (dyle) — 8P, ze RV 64

i=1 j=1

Consequently, the initial MDS is now expressed as an unconstrained non-convex optimiza-
tion problem which is expressed by minimizing the function g over the search space of RN
(Eq. 5.5). Specifically, the L coordinates for all N points on the manifold M now serve as
degrees of freedom for our solution.

% .

2" = min g(z) (5.5)

Now that we have formulated the problem and the variable z in the appropriate format we

can match each epoch of our initial algorithm with an iteration of a GPS method. Therefore,

the moves produced by our algorithm form a sequence of points {z(¥}. Moreover, we are

going to define the matrices B, C(Y), P() for our algorithm as in Egs. 4.12, 4.13. The choice of
our basis matrix B is the identity matrix as shown in Eq. 5.7.

T .
ei=1[0,., 1 ,..,0,1<i<N-L (5.6)
index i
B = IN-L = [el, ceey CN.L] (5.7)

While the identity matrix is non singular and its columns span positively the search space
RNL, we also define M(¥) as the identity matrix. In Eq. 5.8 matrix I'®) represents the movement
alongside the unit coordinate vectors of RN'L. Nevertheless, our generating matrix C also
comprises of all the remaining possible directions which are generated by the set {—1,0,1}.
In total, we have 3¥L — 2. N - L extra direction vectors inside the corresponding matrix L(*)
as it is shown in Eq. 5.9.

A~

M =M = Iy, € ZNPNE

L (5.8)
' =f=M —M]
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S={-1,0,1}
L =1
/\ ¢ {el, ...,eN.L}}

(5.9)
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According to Eqs. 5.8, 5.9, we construct the full pattern matrix P(¥) in Eq. 5.10 in a similar
way to Eq. 4.13. For our algorithm the pattern matrix is is equal to our generating matrix
C®) = C which is also fixed for all iterations. Conceptually, the generating matrix C contains
all the possible exploratory moves while a heuristic is utilized for evaluating the objective
function g only for a subset of them.

cW=C=[L=M -M L]

. L (5.10)
pH —p=BC=C

Finally, we configure the updates of the step length parameter for each class of both suc-
cessful and unsuccessful iterations as they were previously described in Egs. 4.15, 4.16, respec-
tively. Recalling the notation of Section 4.6, %) is the step which is returned from our ex-
ploratory moves subroutine at kth iteration. For the successful iterates g(z(¥) 4+ §(®)) < g(z(¥)
we do not further increase the length of our moves by limiting A = {1} as follows:

ARHD — AR ip 120 5Ky < 2R (5.11)

Similarly, for the unsuccessful iterations g(z(¥) + §(0) > g(z(K)) we halve the distance by

a factor of 2 by setting 6 = % as it is shown next:
Al %w, it fz® 150y > fz0) (5.12)
A short description of our algorithm as a GPS method for solving the problem stated in
Eq. 5.5 follows: In each iteration, we fix the optimal coordinate direction for each one of
the points lying on the low dimensional manifold x; € M, 1 < i < N. For each internal
iteration of Alg. 7, if the optimal direction produces a lower value for our objective function
g we accumulate this direction and move alongside this coordinate of the RN, Otherwise,
we remain at the same position. As a result, the exploration of coordinates for the new point
X;+1 begins from this temporary position. This greedy approach provides a potential one-hot
vector as described in Eq. 5.6 if the iterate is successful or otherwise, the zero vector 0 € RN-L,
The final direction vector §(%) for kth iteration is computed by summing these one-hot or zero
vectors. At the kth iteration, the movement would be given by a scalar multiplication of the
step length parameter A® with the final direction vector in a similar way as defined in Eq. 4.14.
This provides a simple decrease for the objective function g or in the worst case represent a
zero movement in the search space Ry. Regarding the movement across (¥, it is trivial to
show that this reduction of the objective function g is an associative operation. In other words,
accumulating all best coordinate steps for each point {x;}¥ , and performing the movement
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at the end of the kth iteration (as GPS method formulation requires) produces the same result
as taking each coordinate step individually. Finally, pattern search MDS terminates when the
step length parameter AY) becomes smaller than a predefined threshold.

5.5 CONVERGENCE OF PATTERN SEARCH MDS

Now that we have homogenized the notation framework as well as have expressed the pro-
posed algorithm as a GPS method one can utilize the theorems stated in Section 4.7 to prove
the convergence properties of the proposed algorithm.

First of all, the objective function g is indeed continuously differentiable for all the values
of the search space RN'L by its definition in Eq. 5.4. Moreover, the pattern matrix P in Eq. 5.10
contains all the possible step vectors provided by our exploratory moves routine. Thus, all of
our exploratory moves are defined by Eq. 4.14. In each iteration we evaluate the trial steps
alongside all coordinates for all the points x; € M, 1 < i < N. In our restated problem
definition (see Section 5.4), this is translated to searching all over the identity matrices In.; and
—In.r of the search space RN, But from our definition of the first columns of our generating
matrix in Eq. 5.8 this corresponds to checking all the potential coordinate steps provided by
r = [Iny — Iniz]. Consequently, if there exists a simple decrease when moving towards
any of the directions provided by the columns of T then our algorithm also provides a simple
decrease. This result verifies that Hyp. 1 is true for the exploratory moves. By combining the
differentiability of our objective function g and Hyp. 1, Thm. 1 holds for pattern search MDS.
Hence, lim inf ||[VAz)|| = 0 is guaranteed.

k—4o00

Trying to further strengthen the convergence properties of the proposed algorithm, we
note that most of the requirements of Thm. 2 are met, but we fail to meet the specifications of
Hyp. 2 for the minimum decrease provided by the the columns of I'. However, our generating
matrix C = [&, ..., &vz] is indeed bounded by norm because ||¢j||; < N-L, 1 < j < 3NL,
By halving the step length parameter for the unsuccessful iterations we also ensure that
limg_,00 A®). In order to meet the specifications of Thm. 2 we would need a quadratic com-
plexity of O((N - L)?) in order to ensure that each iteration provides the same decrease in
function g as the decrease provided by the “best” column of T. This is formally stated at the
second part of Hyp. 2. If we modify our algorithm in order to meet these requirements we
would not be able to implement all the optimizations proposed in Section 5.3 and the overall
runtime would be dramatically increased.

5.6 TUNING THE HYPERPARAMETERS

Next we present some guidelines on how to set the hyperparameters for the proposed algo-
rithm and report the values used in the experiments that follow. Specifically:

+ The constant ¢ in line 9 of Alg. 5 determines when the move radius r is decreased. By
setting ¢ to a value very close to 0, e.g., 10719, the search will take more epochs but the
solution will be closer to the local optimum. If we relax ¢ to a value around 1072, we can
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do a coarse exploration of the search space that will produce a rough solution in a small
number of epochs. In our experiments we set ¢ = 10~* that provides a good trade-off
between solution quality and fast convergence for the datasets used.

« We experimentally found that if L is large, we may only search 50% of the search di-
mensions and still get a good solution, while significantly reducing the execution time.
For this to hold, it is important that we randomly sample a new search space for each
epoch.

« The proposed algorithm is relatively robust to the choice of the initial size of the move
search radius. However, the choice of %) does affect convergence speed. We show the
convergence for an example run of the classical swissroll (see Section 6.1) for best-case
(10 = 32), pessimistic (19 = 1) and optimistic (H%) = 65536) starting radii in Fig. 5.2.

Starting radius effect

I —— r0=1, Epochs: 282, Final Error: 22090.3
ﬁ, r0=32, Epochs: 73, Final Error: 20612.9
i', —-- r0=65536, Epochs: 102, Final Error: 20609.5

1013 4

1011 4

10% o

MSE

107 4

105 4

T T T T T T
0 50 100 150 200 250

Epochs

Figure 5.2: Convergence plot of pattern search MDS for different starting radii. Finding the optimal radius (in this case
r = 32) leads to faster convergence.

5.7 SOLVING NON-DIFFERENTIABLE LOSS FUNCTIONS

Consider the distance function in Eq. 5.13.

lx =l i [lxlly =[]yl
8(x,y) = ’ : ’

) (5.13)
00 , otherwise

This quasimetric results in a non-symmetric distance matrix where many entries are equal
to 0o. A physical interpretation can be given to this quasimetric if we imagine xand yas energy
states in a physical system, where we can transition from high to low energy states but not
vice-versa.
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For this experiment we selected to perform MDS for an intuitive geometrical example
using the quasimetric of Eq. 5.13 as the target distance function. Specifically consider a set of
Npoints in R lying in a straight line. The original high-dimensional points can be summarized
in the matrix in Eq. 5.14. For the sake of readability we show the case where the points are
sampled as equidistant points on the line that crosses all axes at 45 degrees, but the results of
this section can be generalized in the case where the points are randomly sampled on any line.

0 0 ce. 0
x=] 1! et , X € RNx (5.14)
N-1 N-1 ... N-1
The pairwise distance matrix of X with respect to 5.13 has the pairwise euclidean distances
in the upper triangle, zeros in the diagonal and oo in the lower triagle, as shown in Eq. 5.15

0 V2 2-v/2 ... (N=1)-v2
oo 0 V2 oo (N=2)-2
A=1|... ... ... .. , A € RN (5.15)
oo 0 0 \/5
o0 00 00 0

When reducing the dimensionality of X to a lower dimensional space, e.g. in 2 dimensions
we would like the straight line geometry to be preserved. Due to the nature of the distance
matrix, the loss function contains many saddle points, specifically due to the non-informative
nature of the lower triangle. We apply both SMACOF and pattern search MDS and the results
are summarized in Fig. 5.3. Specifically in Fig. 5.3a we see that SMACOF fails to converge to
a meaningful solution. Compare this to Fig. 5.3b, where Pattern Search MDS puts the points
along a straight line, bissecting the 2 axes. The equidistant relationship between the points
is lost, because the oo terms dominate the loss function, but the general geometry of the data
points is preserved.
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Figure 5.3: DR in 2 dimensions using MDS for the distance matrix in Eq. 5.15
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Manifold Geometry, Classification, and Lexical
Similarity Experiments

6.1 MANIFOLD GEOMETRY

The key assumption in manifold learning is that input data lie on a low-dimensional, non-
linear manifold, embedded in a high-dimensional space. Thus non-linear DR techniques aim
to extract the low-dimensional manifold from the high dimensional space. To showcase this we
generated a variety of geometric manifold shapes and compared the proposed MDS to other,
well-established DR techniques. We make the code to generate the synthetic data openly
available to the community”.

One should note that MDS algorithms with Euclidean distance matrices as inputs cannot
infer data geometry, thus we need to provide as input a geodesic distance matrix. This matrix
is computed by running Djikstra’s shortest path algorithm on the nearest neighbors graph
trained on the input data. For our experiments we sample 3000 points on 11 3D shapes and
reduce them to 2 dimensions using pattern search MDS, SMACOF '/, truncated Singular Value
Decomposition (SVD) 2, ISOMAP ®*~%, LLE”'~7>, Hessian LLE’’, modified LLE’® and LTSA ®°.

Fig. 6.1 shows experiments for NLDR of three manifold shapes. The geodesic distance
matrices provided to pattern search MDS and SMACOF is computed using Djikstra’s algorithm
k Nearest Neighbor (k-NN) graphs. We list the times it took each method to run. Note that
pattern search MDS is faster than SMACOF.

We present 3 characteristic shapes selected from the ones we tested. The first shape we
examine is the classical swissroll, where a 2D plane is “rolled” in 3D space and the target is
to extract the original 2D plane. Results are presented in Fig. 6.1a. We observe that linear DR
techniques like truncated SVD have trouble unrolling the swissroll. Also LLE introduces a lot
of distortion to the constructed plane.

Next we examine how the algorithms handle sparse distance matrices. To this end, we
generate a dataset of 3D non-overlapping clusters with a line connecting the centroids, where
sparsity of the distance matrix follows because the vast majority of the points are very closely
sampled inside the clusters. A good mapping should preserve the cluster structure in lower
dimensions. In Fig. 6.1b we see that the truncated SVD and the MDS family of algorithms (pro-

*Open source code available: https://github.com/georgepar/gentlemandata

81


https://github.com/georgepar/gentlemandata

Pattern search MDS(25 sec) MDS SMACOF(60 sec) Pattern search MDS(13 sec) MDS SMACOF(36 sec)
. . o 3 Original Manifold
Original Manifold » ‘
- » > ‘ ; .
c) LLE(0.98 sec) Isomap(7 se’c)' LLE(0.72 sec)
- N wl s
ﬁ l
. as
LTSA(1.3 sec) HessianLLE did not run ... ModifiedLLE(1 sec) LTSA(1.2 sec)
- - - e |

() (b)

MDS (proposed)(8.4 sec MDS SMACOF(11 sec

Truncated SVD(0.002 sec)  lsomap(7.2sec)  LLE(0.73sec)
HessianLLE(1.8 sec) ModifiedLLE(2 sec) ~LTSAR2seq)

(©)

Figure 6.1: Comparison of pattern search MDS with other DR methods when converting: (a) 3D swissroll to 2D plane,
(b) 3D clusters to 2D clusters, and (c) 3D toroid helix to 2D circle



posed, SMACOF, ISOMAP) produce good results, while the LLE variants can’t handle sparsity
in distance matrices very well. In particular Hessian LLE and LTSA do not produce any output
because of numerical instability in the eigenvalue decomposition stages of these algorithms.
Pattern search MDS does not rely on eigenvalue computation or equation system solvers, and
therefore it is numerically stable.

Finally, we showcase how the algorithms perform with transitions from dense to sparse
regions with a toroidal helix shape in Fig. 6.1c. We can see that five methods, including pattern
search MDS, unroll the shape into the expected 2D circle, while truncated SVD provides a
daisy-like shape. Hessian LLE and LTSA collapse the helix into multiple overlapping circles.

6.2 DR FOR SEMANTIC SIMILARITY

Construction of semantic network models consists of representing concepts as vectors in a,
possibly high-dimensional, space R". The relations between concepts are quantified as the
distances, or inversely the cosine similarities, between semantic vectors. The semantic sim-
ilarity task aims to evaluate the correlation of the similarities between concepts in a given
semantic space against a set of ground truth similarity values provided by human annotators.

We evaluate the performance of the dimensionality techniques investigated also in Sec-
tion 6.1 for the semantic similarity task. We use the MEN'"® and SimLex-999''* semantic
datasets as ground truth. Both datasets are provided in the form of lists of word pairs, where
each pair is associated with a similarity score. This score was computed by averaging the
similarities provided by human annotators. As the high-dimensional semantic word vectors,
we use the 300-dimensional GloVe vectors constructed by '!> using a large Twitter corpus. We
reduce the dimensionality of the vectors to the target dimension L and calculate the Spearman
correlation coefficient between the human provided and the automatically computed similar-
ity scores. Results are summarized in Table 6.1 for L = 10. We observe that LLE yields the
best results for MEN, while pattern search MDS performs best for SimLex-999. In addition,
we observe that non-linear DR techniques can significantly improve the performance of the
semantic vectors in some cases.

6.3 DIMENSIONALITY REDUCTION FOR k-NN CLASSIFICATION

The next set of experiments aims to compare the proposed algorithm to other DR methods
for k-NN classification on a real dataset. We choose to use MNIST as a benchmark dataset
which contains 70, 000 handwritten digit images. We selected a random subset of 1000 images
and reduced the dimensionality from 784 to 20. Performance of the models is evaluated on
k-NN with k = 1 classification and using 10-fold cross-validation. The evaluation metric is
macro-averaged F1 score. Table 6.2 summarizes the results. Observe that DR using pattern

In Hessian LLE the matrices used for the null space computation become singular, while in LTSA the resulting
point coordinates are infinite.
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Table 6.1: Comparison of DR techniques for the semantic similarity task for MEN and SimLex-999 datasets.

Method Dimensions | MEN | SimLex-999
- 300 0.635 0.177
Pattern search MDS 10 0.596 0.242
SMACOF 10 0.632 0.221
ISOMAP 10 0.625 0.132
Truncated SVD 10 0.562 0.140
LLE 10 0.657 0.172
Hessian LLE 10 0.157 0.004
Modified LLE 10 0.643 0.158
LTSA 10 0.154 0.004

search MDS and Truncated SVD can improve classification performance over the original high-
dimensional data. Pattern search MDS yields the best results overall. Hessian LLE, Modified
LLE and LTSA did not run due to numerical instability.

Table 6.2: Comparison of DR techniques. We use the reduced features for classification on the MNIST dataset.

Method Dimensions | MNIST (F1-score)

Original features 784 0.861

pattern search MDS 20 0.878

SMACOF 20 0.857

ISOMAP 20 0.829

Truncated SVD 20 0.871

LLE 20 0.813
Hessian LLE 20 -
Modified LLE 20 -
LTSA 20 —
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Figure 6.2: Convergence comparison of pattern search MDS and SMACOF for (a) swissroll, (c) toroid helix, (b) 3d clusters
and (d) word vectors

6.4 CONVERGENCE CHARACTERISTICS

Next we compare speed of convergence of pattern search MDS and SMACOF, in terms of
numbers of epochs. To this end we will consider the experiments of Sections 6.1 and 6.2
and present comparative convergence plots. We see the convergence plots for the cases of
swissroll, 3D clusters, toroid helix in Fig. 6.2a, 6.2b and 6.2c, respectively. The convergence
plot for the word semantic similarity task is shown in Fig. 6.2d. The plots are presented in
y-axis logarithmic scale because the starting error is many orders of magnitude larger than
the local minimum reached by the algorithms.

For all cases, we observe that pattern search MDS converges very quickly to a similar or
better local optimum while SMACOF hits regions where the convergence slows down and

then recovers. These saw-like structure of the pattern search plots are due to the fact that we
allow for “bad moves” as detailed in Section 5.3.1.
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From the computational point of view, we see intuitively that pattern search MDS algo-
rithm performs a wider search of the solution space at each epoch, by exploring multiple
directions, while gradient or majorization based optimization follows a narrower search path.
This highlights a trade-off between the two approaches, where GPS-based optimization con-
verges faster in terms of epochs, but has higher complexity per epoch. Future works could
explore hybrid solutions that combine pattern search and gradient descent, in order to find
the sweet spot between wide search space exploration and convergence speed.

6.5 ROBUSTNESS TO NOISY OR MISSING DATA

The final set of experiments aims to demonstrate the robustness of pattern search MDS when
the input data are corrupted or noisy. To this end two cases of data corruption are considered:
additive noise and missing data.

6.5.1 ROBUSTNESS TO ADDITIVE NOISE

For this set of experiments, we inject Gaussian noise of variable standard deviation (o) to the
input data and use the dissimilarity matrix calculated on the noisy data as input to each one
of the algorithms evaluated.

For the synthetic data of Section 6.1, we will follow a qualitative evaluation by showing the
unrolled manifolds for high levels of noise. We perform DR for swissroll, toroid helix and 3D
clusters for increasing noise levels. We report results for the highest possible noise deviation
where one or more techniques still produce meaningful manifolds. Beyond these values of o
the original manifolds become corrupted and the output of all methods is dominated by noise.
Figs. 6.3a, 6.3b, 6.3c show the results for noisy swissroll with ¢ = 0.3, 3D clusters with ¢ = 0.4
and toroid helix with ¢ = 0.07 respectively. Overall, the pattern search MDS, followed by
SMACOF and ISOMAP are more robust to additive noise.

For the semantic similarity task we injected different levels of Gaussian noise in the origi-
nal word vectors and evaluated the correlation on MEN and Simlex-999. Results are presented
in Table 6.3. We observe that the relative performance of the algorithms is maintained under
noise injection, except for LLE which cannot handle high amounts of noise. LLE is achiev-
ing the best correlation values on MEN at ¢ = 0.01 and ¢ = 0.1, while pattern search MDS
achieving the best performance on Simlex-999.

6.5.2 ROBUSTNESS TO MISSING DATA

For the final set of experiments we consider the case of missing data. For this two new
synthetic datasets where constructed, namely a dense and a sparse swissroll with a hole as
shown in Fig. 6.4. In Fig 6.4a, we show the performance of the various algorithms applied to a
dense swissroll with a hole in the middle. As we can see only Hessian LLE, modified LLE and
LTSA are able to reconstruct the shape correctly, while MDS algorithms result in distortion
around the hole. This is due to the non-convexity we introduced to the space when adding the
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Table 6.3: Comparison of DR techniques with noisy word vectors on the semantic similarity task for MEN and SimLex-999
datasets. We introduce additive gaussian noise to the word vectors with increasing standard deviation o € {0.01,0.1,0.5}

| Method | Dimensions | MEN [ SimLex-99 |

| [ [ 0=001]6=01]06=05]0=001] 06=01] 0c=05 |
Original GloVe 300 0.635 0.619 [ 0.431 0.178 0.169 | 0.077
pattern search MDS 10 0.593 0.597 | 0.462 0249 | 0315 | 0.204
SMACOF 10 0.633 | 0.620 | 0.462 0229 | 0222 | 0123
ISOMAP 10 0.622 0.613 | 0.497 0.134 0.124 | 0.079
Truncated SVD 10 0.562 0.551 | 0.380 0.140 0.136 | 0.039
LLE 10 0659 | 0.649 | 0.369 0.175 0.166 | 0.052
Hessian LLE 10 0.156 0.144 | 0.023 0.005 0.04 0.018
Modified LLE 10 0.635 0.633 [ 0.489 0.158 0.162 | 0.096
LTSA 10 0.155 0.141 | 0.020 0.06 0.04 | 0.002

hole. This distortion can still be observed (to a lesser degree) in the sparse variation shown in
Fig. 6.4b. For the sparse data case, we observe that LLE methods result in distortion around
the edges.

These preliminary experiments indicate that LLE variations can handle non-convexities in
input data, while MDS variations can handle sparse data better. This is because LLE methods
are based on inferring and combining local data geometry, while MDS methods are inferring
global geometry.

6.6 DiscussiOoN

We propose pattern search MDS, a novel algorithm for nonlinear DR, inspired by gradient-
free optimization methods. Pattern search MDS is formulated as an instance of the wider
family of GPS methods, thus providing theoretical guarantees of convergence up to a fixed
point. Additional optimizations further improve the performance of our algorithm in terms of
computational efficiency, robustness and solution quality. The qualitative evaluation against
other popular DR techniques for both clean and noisy manifold geometry shapes indicates
that pattern search MDS can accurately infer the intrinsic geometry of manifolds embedded in
high-dimensional spaces. Furthermore, the comparison of convergence characteristics against
SMACOF show that pattern search MDS converges in fewer epochs to similar or better solu-
tions. Experiments on real data yield comparable to state-of-the-art results both for a lexical
semantic similarity task and on MNIST for k-NN classification. Open-source implementations
of pattern search MDS and the data generation process are provided to facilitate the repro-
ducibility of our results.

Future work will focus on improving runtime performance and scalability of pattern search
MDS. Specifically, an approach for decreasing per epoch computational complexity is to nar-
row the search space of possible moves as the geometry of the embedding space becomes more
apparent by biasing the moves towards the principal component vectors of the neighborhood
of the point that is being moved. This can be viewed as a combination of pattern search and
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Figure 6.4: Comparison of pattern search MDS with other DR methods for (a) dense and (b) sparse swissroll with hole.
Target is a plane with a rectangular hole.

gradient descent, where the search space of moves is wide at the beginning and then gets
increasingly biased towards the direction of the gradient. Our algorithm can scale to large
numbers of points by utilizing landmark points®® or fast approximations to MDS'!®. These
approaches aim to alleviate the computational and memory cost of computing the full distance
matrix, by approximating the data geometry using smaller submatrices. Moreover, stochastic
approximations like stochastic SMACOF'!” can be adapted to pattern search MDS.

We also plan to provide more in-depth theoretical insights and ways to enable pattern
search MDS to capture complex geometrical properties of input data. We aim to perform a
detailed analysis on how heuristics and especially allowing for “bad moves” affect the perfor-
mance of pattern search MDS. Furthermore, in Sections 6.1 and 6.5.2 we showcased that MDS
can better handle sparse data and LLE can better handle non-convexity and missing data. This
makes sense, as MDS takes into account the global geometry of the embedding space, while
LLE focuses on the geometry of local neighborhoods. We plan to combine the cost functions
of these approaches to infer both global and local geometry of the low dimensional data man-
ifold. Another way to increase the expressiveness of the algorithm is to investigate a wider
variety of distance metrics, and specifically non-symmetrical distance “metrics”, motivated by
cognitive sciences .
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Unsupervised low-rank representations for
speech emotion recognition

7.1 DIMENSIONALITY REDUCTION AND SPEECH EMOTION RECOGNITION

Human-machine interaction is constantly evolving towards the use of more natural interfaces,
like speech. Still the key difference between human-human and human-machine communica-
tion is the ability of humans to recognize the emotion of their conversation peers and modify
their communication strategy based on that. Although significant progress has been done in
the field of Speech Emotion Recognition (SER), machines have not achieved human-like per-
formance. One of the reasons is the scarcity of available annotated data. SER databases are
mostly composed of relatively small number of utterances from few speakers, which limits
the generalization abilities of the models. Furthermore modern SER systems rely on feature
sets of high dimensions. The small amount of training samples do not cover all combinations
of values in the high-dimensional feature spaces and, thus, SER algorithms suffer from the
Curse of Dimensionality (CoD)!'®. In this work we postulate that reducing dimensionality of
the feature space is an effective way to combat CoD and demonstrate that low-dimensional
representations yield simpler models with comparable performance. Dimensionality Reduc-
tion (DR) algorithms aim at learning low-dimensional latent representations of real world data.
Such representations can be used for exploratory data analysis, to visualize and gain intuition
on the statistical properties of data or, as in our case, extract latent features for input to clas-
sification or regression models.

Evidence that DR on speech features can create robust representations for SER can be
found in the literature. Chiou and Chen''?, use PCA '?° to extract low-dimensional represen-
tations for the feature set introduced by Schuller et al. '*! containing 6552 features. The system
is evaluated on Berlin emotional database (Emo-DB)'%2. In'? use Linear Discriminant Analy-
sis (LDA)'?* and PCA for SER, along with a weighted variation of LDA on a feature set of 225
dimensions. Experiments showed no significant performance difference between PCA and
LDA. These methods are also compared by You et al. '* 1.126 along with Sequen-
tial Forward Selection'?’, on a feature set consisting of 48 prosodic features and 16 formants.
PCA representations extracted by You et al.'* are found to be inferior than LDA, while '%°
observed no significant difference. Selective Feature Selection and PCA are also explored
by Ververidis et al.'?® for the Danish Emotion Speech database!?’. Lee et al.'*" experimen-

and You et a
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tally found that applying PCA on utterance-level statistics of pitch and energy features gives
equivalent SER performance with the original features on a call center dialog corpus. Chuang
and Wu *! have reported that classification accuracy keeps improving when increasing the
number of principal components only up to a centain rank for a feature set of 33 dimensions.
A supervised variation of PCA along with Greedy Feature Selection ** and ElasticNet'** are
explored by Fewzee and Karray ** on two sets of energy-based and MFCC-based feature sets
of 400 and 82 dimensions, with inconclusive results as to which approach is superior. The ap-
plication of Linear and non-linear DR methods on SER is examined on a prosodic feature set of
48 dimensions by Zhang and Zhao '**. Compared methods include unsupervised methods like
PCA,ISOMAP®* and LLE *°, and supervised methods LDA, Supervised LLE */, Neighborhood
Component Analysis '**, Maximally Component Metric Learning '*’, local Fisher Discriminant
Analysis'*’ and Modified Supervised LLE. Results show better performance of PCA for unsu-
pervised DR while Modified Supervised LLE was superior for supervised DR.

7.2 FEATURES FOR SPEECH EMOTION RECOGNITION

We consider the following feature sets:

Interspeech 2010 (IS10) set: The IS10 feature set'*! consists of 1582 features. IS10 is obtained
by transforming the signal in the Fourier space. Features correspond to 21 statistical function-
als (e.g. percentiles, linear regression coefficients) applied to 38 low level descriptors (MFCCs,
PCM loudness etc.) and their deltas. Extraction is performed using the openSMILE toolKkit.

Recurrence Quantification Analysis (RQA) set: The RQA feature set'*? consists of 432 fea-
tures. This feature set is obtained by analyzing speech dynamics through phase space repre-
sentation. The phase space is reconstructed through the use of time-delayed versions of the
original signal and then the recurrence plots are calculated as thresholded pairwise distances
of points in the phase space. Features are extracted as aggregated RQA measures from the
recurrence plots. Source code for feature extraction is publicly available.”

Fused set: We concatenate features from IS10 and RQA into a represenation of 2014 dimen-
sions, modeling both frequency content of speech signals and recurrence dynamics.

7.3 EXPERIMENTAL SETUP

We use the following databases for evaluation:

Emo-DB: Berlin Database of Emotional Speech (Emo-DB)'?* contains 535 emotional German
sentences, voiced by 10 actors (5 male and 5 female). Specifically, 7 emotions are included i.e.,
127 anger, 45 disgust, 70 fear, 71 joy, 60 sadness, 81 boredom and 70 neutral.

IEMOCAP: IEMOCAP database '** contains 12 hours of video data with scripted and impro-
vised dialog recorded by 10 actors. Utterances are organized in 5 sessions of dyadic interac-
tions between pairs of actors. For our experiments we consider 5531 utterances of 4 emotions

“https://github.com/etzinis/nldrp
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Table 7.1: Speech emotion recognition results for different combinations of DR techniques and classifiers using the 1S10
features for the IEMOCAP dataset. We report unweighted accuracy (UA %).

SVM (linear) SVM (RBF) k-NN LR

Pattern search MDS 56.0 57.5 56.5 55.4
SMACOF 55.8 58.5 56.7 55.8
PCA 55.8 57.7 56.2 55.8
ISOMAP 52.3 52.5 51.7 52.2

LLE 53.4 54.2 53.6 53.2
Modified LLE 54.6 47.0 53.9 55.5
LE 54.1 54.3 54.2 55.1
Autoencoder 55.4 57.8 56.3  55.5
Original 1582D 54.7 59.8 55.7 56.9

(1103 angry, 1636 happy, 1708 neutral and 1084 sad), where we merge excitement class into
happiness 447147,

We consider utterance-level, speaker independent SER for our experiments. In this setup a
number of speakers are kept hidden from the training set and used for evaluation. Specifically
in the case of Emo-DB we perform leave one speaker out cross-validation, where test folds
contain the instances of the unknown speaker. For IEMOCAP we use the leave one session
out cross-validation scheme, where two speakers participating in a session are used as the
evaluation folds. This results in a 10-fold cross-validation scheme for Emo-DB and 5-fold
cross-validation for IEMOCAP. We apply Z-normalization to standardize the features in zero
mean and unit variance, where each sample x is transformed according to the formula z = =*.
Note that for speaker independent experiments only samples in the training set are used to
calculate p and o and test samples are normalized using these statistics.

Representations resulting from all DR approaches are evaluated for k-NN classification.
We perform grid search on the optimal number of neighbors k in the [1,30] range and report
results for the optimal value for each dimension and each method. Optimal values of k range
from 13 to 20 indicating that consistent neighborhoods are formed in the low-dimensional
spaces. We also evaluate low-rank representations on Support Vector Machines (SVM) with
linear and Radial Basis Function (RBF) kernels, and Logistic Regression (LR), with optimal
value of C in the range [0.01,10]. Autoencoder is trained with 3 encoder layers, 3 decoder
layers and 1 hidden layer, using ReLU activations.

7.4 RESULTS

As evaluation metrics we used both weighted accuracy and unweighted accuracy. For brevity
we report unweighted accuracy results, noting that same trends form with respect to the
weighted accuracy metric. Fig. 7.1a shows the results of DR applied to the RQA features on
Emo-DB for all DR methods, for different embedding dimensions L. We observe that Modified
LLE achieves the best results when L = 50, followed by SMACOF in L = 25. Observe that all
methods except ISOMAP and LE manage to outperform the original features of 432 dimensions.
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Figure 7.1: DR for the RQA (top), IS10 (middle), and fused (bottom) feature sets on Emo-DB (left) and IEMOCAP (right) for
varying target dimensions. We report unweighted accuracy for k-NN classification. Observe that for multiple techniques,
when choosing target dimensions in the range 25-100 the reduced features outperform the original features, indicated
by the dashed line.

In Fig. 7.1¢c, which shows results for DR on IS10 features for Emo-DB, we can observe a differ-
ent pattern. Here the MDS algorithms perform best for every embedding dimension, followed
by PCA, all three of these methods outperforming the original feature set of 1582 dimensions.
This indicates that this feature set resembles more a hyperplane in the high-dimensional space
than a non-linear manifold. Non-linear methods like LLE, ISOMAP and LE underperform. For
the fused feature set in Fig. 7.1e we see again that distance-preserving transformations yield
the best performance. Same patterns emerge in IEMOCAP in Fig. 7.1b, 7.1d, 7.1f, with Modi-
fied LLE achieving better performance for the RQA features and Pattern Search MDS and PCA

94



(a) Series

(c) Interviews

Figure 7.2: Visualization of decision regions with PCA for speech emotion recognition in a large proprietary multi-domain
dataset, containing speech segments from movies, tv series, and interviews.

yielding best representations for IS10 features. Notably in IEMOCAP, performance of the
Autoencoder is significantly better because there are more training samples. For the experi-
ments with the fused feature set we again observe a consistent pattern in both Emo-DB and
IEMOCAP, with MDS yielding again the best representations followed by PCA. Fusion is still
beneficial after applying DR though we observe that the structure of IS10 features dominates
under fusion.

In Table 7.1 we show results for linear SVM, RBF SVM, k-NN and LR. We reduce dimen-
sionality of IS10 features from 1582 to 25 dimensions and report unweighted accuracy (UA) on
IEMOCAP. Low-rank representations produce very competitive results to the original sparse
features, while for linear SVM and k-NN they even improve classification accuracy. Overall
global, linear DR methods like MDS and PCA produce the best representations.

7.5 VISUALIZATIONS

We include visualizations of feature maps reduced in 2D. We focus on the best and the worst
performing methods and comment on some interesting observations.
Figure 7.2 demonstrates the results of PCA into two dimensions, for a large proprietary
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(a) Pattern Search MDS (b) LLE
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Figure 7.3: Visualization of the fused features for different emotions on Emo-DB using different DR techniques.
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Figure 7.4: Visualization of the fused features using ISOMAP for two IEMOCAP speakers and four emotion classes.
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and internally annotated dataset containing speech segments from multiple domains such as
movies, TV series and interviews. Subfigures illustrate the distributions of the speech seg-
ments into the two PCA dimensions for three emotional classes: anger, happiness and sad-
ness. In addition, we illustrate the decision surfaces for a simple k-NN classifier. The results
demonstrate how the blue class (anger) is similarly distributed between the red and green (sad-
ness and happiness respectively) for the two first domains (Series and Movies) in Fig 7.2a and
Fig. 7.2b respectively, based on the primary PCA dimension (x axis). On the other hand, for
the interviews domain, the primary PCA dimension is not enough to discriminate between the
emotional classes as we see in Fig. 7.2¢c. On the contrary, the anger and happiness classes are
mostly discriminated based in the second PCA dimension. Interestingly, this unsupervised
distribution is quite similar to the Valence-Arousal affective representation. This example
demonstrates how an unsupervised dimensionality reduction can be very sensitive to changes
in domain when illustrating emotional content.

Fig. 7.3a shows the 2D space created using Pattern Search MDS, which maps the points
inside an elongated disk area. We can see on the left the anger points while the sadness points
are on the right. Close to anger is happiness samples, while boredom is close to sadness. Other
emotions lie in the middle. So it looks like that even in the 2D space MDS learns meaningful
representations, with x axis being a latent feature that can encode arousal. On the contrary
LLE, which tries to preserve local neighborhoods and yields poor recognition accuracy on
the fused feature set concentrates most samples in the center as we can see in Fig. 7.3b, but
still we can observe low arousal emotions (sadness) being separated from high arousal ones
(anger). In Fig. 7.4 we show ISOMAP embeddings for two speakers in IEMOCAP. Observe, al-
though ISOMAP cannot separate emotions, it achieves a better discrimination result, in terms
of speaker separation, for this experiment. One could consider basing a speaker diarizer on
geodesic distances between samples.

7.6 DiscussioN

In this work we explore the effects of unsupervised linear and non-linear DR on state-of-the-
art speech features for SER. We evaluate these algorithms for speaker independent SER on
IEMOCAP and Emo-DB. Experiments show that performance of low-rank representations is
competitive to original high-dimensional representations. This phenomenon is hypothesized
to be caused by the curse of dimensionality, since the number of samples in SER datasets
does not span the high-dimensional space. Interpretation of results and vizualization of 2D
representations gives interesting insights on the high-dimensional structures. First insight
is that IS10 features can be decomposed by use of linear DR, e.g. by use of PCA or MDS
algorithms. Second, distance preserving DR can encode meaningful dimensions, e.g. arousal.
Third, speaker samples can be separated by isometric mappings. Fourth, unsupervised DR
can be rather sensitive when illustrating cross-domain emotional content. Future work will
focus on creating end-to-end representations using autoencoders with distance preserving
regularization and investigating the interesting insight on using geodesic-distance preserving
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representations for speaker separation.
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Part 11

MIXED SELF-SUPERVISION FOR
SAMPLE-EFFICIENT UNSUPERVISED
DOMAIN ADAPTATION

“They made data a controlled substance.”

Neal Stephenson, Snow Crash
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Unsupervised domain adaptation for text and
speech

8.1 INTRODUCTION

Deep architectures have achieved state-of-the-art results in a variety of machine learning tasks.
However, real world deployments of machine learning systems often operate under domain
shift, which leads to performance degradation. This introduces the need for adaptation tech-
niques, where a model is trained with data from a specific domain, and then can be optimized
for use in new settings. Efficient techniques for model re-usability can lead to faster and
cheaper development of machine learning applications and facilitate their wider adoption. Es-
pecially techniques for Unsupervised Domain Adaptation (UDA) can have high real world
impact, because they do not rely on expensive and time-consuming annotation processes to
collect labeled data for domain-specific supervised training.

In the second part of this dissertation we devise training strategies that facilitate the unsu-
pervised adaptation of text and speech systems to unseen domains. Particular focus is placed
in the amount of data needed for successful adaptation, and we verify the sample-efficiency
of the proposed techniques through extensive experimentation. We validate the proposed
method for two diverse application settings, text classification and Automatic Speech Recog-
nition (ASR). The proposed methods work in tandem with popular, state-of-the-art models,
trained in a self-supervised manner; for text we verify our approach with BERT' and for
speech with XLSR-53'%®, This part consolidates our published works in the North American
Association of Computational Linguistics (Karouzos et al. 1*’) and the IEEE/ACM Transactions
on Audio Speech and Language Processing (Paraskevopoulos et al. *?).

8.2 ORGANIZATION

The second part of this dissertation is organized as follows: In this chapter we begin in Sec-
tion 8.3 with a rigorous definition for the problem of UDA in the context of classification,
which is extended for ASR in a sequence-to-sequence setting. Then we outline the recent
advancements in UDA for text and speech models in Sections 8.4 and 8.5, and we provide a
general overview of the proposed training strategy in Section 8.6. In Chapter 9 we employ
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the proposed training strategy for UDA of BERT, to perform sentiment classification of tex-
tual product reviews. In Chapter 10 we consider the problem ASR, and modify our approach
for acoustic adaptation of XLSR-53. We create a 120 hour Greek ASR corpus of parliamentary
speech and perform cross-corpus evaluation to validate the performance of the proposed UDA
method.

8.3 PROBLEM DEFINITION

Formally, the problem of UDA can be defined as follows. Let X C R" be a real-valued space
that consists of n-dimentional feature vectors x € X, and Y a finite set of labels y € Y, i.e,
Y = {1,2,...,L}. Furthermore, assume two different distributions, i.e., the source domain
distribution S(x, y) and the target domain distribution 7 (x, y), defined on the cartesian prod-
uct X X Y.

The goal is to train a model that learns a mapping between feature vectors x7 to their
respective labels y7 for samples drawn from the target distribution (x7, y7) ~ T.

At training time we have access to samples from the source distribution S(x, y) and the
marginalized target distribution 7 (x), i.e., no target labels are provided. We define the training
dataset D as the concatenation of the source and target training sets, D = (Ds, Dr). Ds and Dr
are defined as sequences of tuples, i.e.,

Ds = {(xi7 yi) | (xi> yi) ~ S(x7 Y)a 1<i< N}

Dr={(x.0) |5~ T(x), 1< < M}, &1

where we draw N samples from S(x, y) and M samples from 7 (x). Finally, we augment
tuples in D with a domain indicator function:

D = {(xk, Y 1) |1 < k < N+ M}
0 lf .X'kNS(x)’

1 =

Ui x ~ T (), (8.2)
;) VK if X ~ S(X),
TN i o~ T (0

UNSUPERVISED ACOUSTIC ADAPTATION FOR AUTOMATIC SPEECH RECOGNITION

The above definition can be directly extended in the case of speech recognition, with some
modifications. In detail, we modify the feature space X, to be the set of (finite) sequences of real-
valued feature vectors (xm) epp (oo} € X € (R™)*. Furthermore, the label space Y is modified
to be the set of sequences (yn),ep oo} Where Y = ({1,2,... ,L})" contains finite-length
sequences over a finite lexicon. For Connectionist Temporal Classification (CTC) training
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we assume that m > n for any sample (xp,, y,), i.e., feature sequences are longer than their
respective label sequences'!. The rest of the definitions need no modifications.

UNSUPERVISED LANGUAGE ADAPTATION FOR AUTOMATIC SPEECH RECOGNITION

Adaptation for ASR systems can also be performed at the language level, i.e., the label space. In
this setting, we assume that the target domain samples are drawn from the marginalized target
distribution 7 (y). The target dataset Dy now consists of tuples in the form ((), y;), where y; is
the label word sequence (yn),cp (o0} for the j-th sample.

WEAKLY SUPERVISED ADAPTATION FOR AUTOMATIC SPEECH RECOGNITION

The last setting we explore is the case where both audio and language in-domain samples are
available, but the mapping between them is unknown. This situation can be encountered in
real-world settings, e.g., in the case in-domain audio and text are collected independently. For
example consider the case where audio clips from newscasts are collected, along with con-
temporary newspaper articles. Another example is the case where long audio clips alongside
transcriptions are available, but no fine-grained time alignments®. In this case, the target do-
main samples are drawn independently from the marginalized distributions 7 (x) and 7 (y),
and the target dataset Dr consists of tuples in the form (x;, ) and (0, ).

8.4 UNSUPERVISED DOMAIN ADAPTATION IN NATURAL LANGUAGE PROCESSING

UDA approaches for text can be grouped in three major categories; Pseudo-Labeling (PSL)
techniques 1°#!**, domain adversarial training”®, and pivot-based approaches'**!*>. Pseudo-
Labeling (PSL) approaches use a model trained on the source labeled data to produce pseudo-
labels for unlabeled target data and then train a model for the target domain in a supervised
manner. Domain Adversarial Training (DAT) aims to learn a domain-independent mapping
for input samples by adding an adversarial cost during model training, that minimizes the
distance between the source and target domain distributions. Pivot-based approaches aim to
select domain-invariant features (pivots) and use them as a basis for cross-domain mapping.
Traditionally, UDA has been performed using PSL approaches. PSL techniques are semi-
supervised algorithms that either use the same model (self-training) '°#1°%!>7 or multiple en-
sembles of models (tri-training)'°*°® in order to produce pseudo-labels for the target unla-
beled data. Saito et al. ">’ proposed an asymmetric tri-training approach. Ruder and Plank '*
introduced a multi-task tri-training method. Rotman and Reichart '°! and Lim et al. '** study
PSL with contextualized word representations. Ye et al.!®> combine self-training with XLM-
R?® to reduce the produced label noise and propose CFd, class aware feature self-distillation.
Another line of UDA research includes pivot-based methods, focusing on extracting cross-
domain features. Structural Correspondence Learning (SCL)*** and Spectral Feature Align-

“While a fully supervised in-domain dataset can be constructed in this case using long / forced alignment
methods, this is not a focal point for the experimental part of this work.
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ment '*> aim to find domain-invariant features (pivots) to learn a mapping between two domain

distributions. Ziser and Reichart 194,19 196 combine SCL with neural network architectures and
language modeling.
Miller 7 proposes to jointly learn the task and pivots. Li et al. 1°® learn pivots with hierarchical
attention networks. Pivot-based methods have also been used in conjunction with BERT '’
DAT is a dominant approach for UDA'"’, inspired by the theory for learning from differ-
ent domains introduced by Ben-David et al.'”!,'7?. Ganin et al.”®, Ganin and Lempitsky 3
propose to learn a task while not being able to distinguish if samples come from the source
or the target distribution, through use of an adversarial cost. This approach has been adopted
for a diverse set of problems, e.g. sentiment analysis, tweet classification and universal depen-
dency parsing'’*"17°. Du et al.'’” pose domain adversarial training in the context of BERT
models. Zhao et al.'’® propose multi-source domain adversarial networks. Guo et al.”* pro-
pose a mixture-of-experts approach for multi-source UDA. Guo et al. '* explore distance mea-
sures as additional losses and use them to construct dynamic multi-armed bandit controller for
the source domains. Shen et al. ! learn domain invariant features via Wasserstein distance.

1. 182 introduce domain seperation networks with private and shared encoders.

Bousmalis et a

Unsupervised pretraining on domain-specific corpora can be an effective adaptation pro-
cess. For example BioBERT '®* and SciBERT ' are specialized BERT variants, where pretrain-
ing is extended on large amounts of biomedical and scientific corpora respectively. Sun et al. 1%
propose continuing the pretraining of BERT with target domain data and multitask learning
using relevant tasks for BERT fine-tuning. Xu et al.'®® introduce a review reading compre-
hension task and a post-training approach for BERT with an auxiliary loss on a question-
answering task. Continuing pretraining on multiple phases, from general to domain specific
and task specific data, further improves performance of pretrained language models, as shown
by Gururangan et al. '®’. Han and Eisenstein '*® propose AdaptaBERT, which includes a second
phase of unsupervised pretraining, in order to use BERT in a unsupervised domain adaptation
context.

Recent works have highlighted the merits of using language modeling as an auxiliary
task during fine-tuning. Chronopoulou et al.>> use an auxiliary Language Model (LM) loss
to avoid catastrophic forgetting in transfer learning and Jia et al.'®’ adopt this approach for
cross-domain named-entity recognition. Motivated by these approaches, we use a joint, in-
domain LM for UDA.

8.5 UNSUPERVISED DOMAIN ADAPTATION IN AUTOMATIC SPEECH RECOGNITION

In the following subsections we provide an overview of different adaptation approaches in
the literature and link each approach to the UDA problem formulation. Table 8.1 presents a
summary of the key adaptation settings and applications that are explored in the literature. We
see, that a relatively small amount of methods, and their variants, are used to address multiple
real-world ASR problems, for example, cross-lingual, accent, speaker, and noise adaptation.
Furthermore, while the majority of the works focus on the English language, there is an effort
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Table 8.1: Summary of related works on UDA for ASR.

Work Method Model Adaptation Setting Language
103
190-192 Teacher-Student C(_)[,ri(::?:r;izngg C News speech, Voice search, Far-field, Enelish
Hard and soft labels RNN-T 1% Telephony, YouTube &
195,196 Teasc:;rl—jgglclent TDNN-LSTM 7 Noise, Far-field English
Teacher-Student Dialects
198 NiN- 199
Hard and soft labels IN-CNN Children speech Japanese
English,
Brazilian Portuguese,
200 Teascil;ﬁfl:eulient Streaming RNN-T20! Multilingual Russian,
Turkish,
Nordic/Germanic
English, French, German,
202 Te?;::;igj:nt wav2vec2?® Cross-lingual Italian, Polish, Arabic,

Spanish, Portuguese, Dutch

TDNN Kaldi 207208

204=206 Domain Adversarial Training DNN-HMM Noise, Channel English
DNN-HMM
209 Domain Adversarial Training RNN-CTC?" Far-field English
211212 Domain Adversarial Training TDRI\II\II\INIT,?MI Accent Mandarin
213,214 . . L DNN-HMM Speaker, Gender .
213,214 ) ,
Domain Adversarial Training CNN-DNN Aceent English
215 Domain Adversarial Training DSN 182 Multilingual Hindi, Sanskri
Audiobooks, Accents,
216,217 Continuous Pre-Training wav2vec2 Ted Talks, Telephony, English
Crowd-sourced, Parliamentary speech
218 Continuous Pre-Training wav2vec2 Cross-lingual Korean
Ainu
5148
219.220 Continuous Pre-Training %:‘23:02 Low resource languages Georgian, Somali,

Tagalog, Farsi

221 Continuous Pre-Training

222
(Adapters) wav2vec2, HuBERT

Children speech English

to explore other popular languages, e.g., Mandarin, and under-resourced languages, e.g., Ainu,
Somali, etc.

8.5.1 TEACHER-STUDENT MODELS

Teacher-Student learning is one of the earliest methods in semi-supervised learning '°%%23:224,

Teacher-Student learning can be construed as a general framework for Pseudo-Labeling ap-
proaches. The key idea is to reduce the problem of unsupervised learning of the task at hand
in the target domain to a supervised one. The general methodology is to train a teacher model
gs using the labeled data in the source domain Ds, and then use this for inference on the target
domain to produce pseudo-labels J; = gs(x;), x; ~ 7 (x). The target domain dataset Dris aug-
mented with these silver labels, to contain tuples (x;j, 3;). Finally, a student model gr is trained
in a supervised fashion, using the augmented Dy or a combination of Ds and Dr. This process
is usually repeated, with the student model serving as the teacher model for the next iteration,
until no further improvement is observed. An end-to-end iterative self-training approach for
CTC models is proposed bt Chen et al. ?°. Momentum Pseudo-Labeling ?*° and Kaizen **” have
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been proposed to avoid the inefficient retraining required by iterative approaches, by main-
taining a slowly evolving teacher model, updated using momentum or exponential moving
average. Recently, soft target Teacher-Student learning has been explored for ASR 72200228,
where the Kullback-Leibler (KL) divergence between the teacher and student output label
distributions is used as the loss function.

Being trained only on the source domain data the teacher model is susceptible to error
propagation. Filtering is a commonly used technique to achieve the right balance between the
size of the target domain used for training the student model and the noise in the pseudo-labels.
Confidence scoring based on the likelihood is usually applied, discarding those utterances for
which the hypothesized labels are untrustworthy **°. Khurana et al. 1! use dropout to measure
the model uncertainty. The agreement between model predictions with and without dropout
is used for confidence scoring. Hwang et al.'”’ apply a multi-task training objective with a
confidence loss to minimize the binary cross entropy between the estimated confidence and
the binary target sequence. To learn more robust and generalizable features from the teacher
model, Noisy student training has been proposed by et al?*’. The teacher models generate
pseudo-labels for Dr while the student models are trained on a heavily augmented version of
D1r?. et al*®", Zhang et al.”*! augment the input target data with SpecAugment?*?, while
Asami et al. '”® perform spectrum frequency augmentation.

Li et al.'” introduce Teacher-Student learning with soft labels for ASR to tackle noisy,
far-field, and children’s speech.'”® extend this approach for LF-MMI-based models and used
for noisy, far-field, and bandwidth adaptation. In '”® a weighted sum of hard and soft target
cross-entropy losses is used for Japanese dialects and children’s speech adaptation. Ramab-
hadran et al.?”’ propose a self-adaptive distillation method from multiple teachers which is
applied across several multilingual ASR systems for different language groups. A comparison
between soft and hard targets for RNN-T models'* showed that soft targets perform better
when both the teacher and student models have the same architecture. Otherwise, hard targets
are superior?%%.

8.5.2 DOMAIN ADVERSARIAL TRAINING

DAT was initially introduced for image classification'”®. The key idea is to train a model that
learns deep features that solve the task at hand in the source domain while being invariant
to the domain shift. Concretely, the model is trained end-to-end using the combined loss
L = L; — aL,, where L; is the supervised task loss L;, learned on Ds, and L, is the domain
discrimination loss. The loss L, is binary cross-entropy, trained for domain discrimination
using the tuples (xg, 1¢). Notice the — sign in the loss indicates adversarial learning, i.e., the
model should learn features that cannot discriminate between domains while solving the task.

Shinohara ?** employ DAT for noise adaptation on a noise-corrupted version of WSJ?** a
the target dataset. Using the Aurora-42** dataset which has labels associated with the noise
type, Serdyuk et al.?® train an adversarial noise classifier. Sun et al.?!! and Hu et al.?!? use
DAT for accent adaptation for Mandarin and English respectively. Anoop C.S. et al.?'® propose
DAT, to address the scarcity of data in low-resource languages that share a common acoustic

S
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space with a high-resource language, namely Sanskrit and Hindi. They empirically demon-
strate the effectiveness of adversarial training, presenting experiments with and without the
reversal of the domain classification loss.

8.5.3 LEVERAGING IN-DOMAIN SELF-SUPERVISION

These lines of work have roots in NLP tasks'**!%’ and explore domain adaptation by lever-

aging the in-domain data Dy for Self-Supervised Learning (SSL). The core focus is domain
adaptation of large pre-trained models, e.g.,'’, and self-supervision is achieved by the use of
the pre-training self-supervised loss Ls. This process can either take part in stages, via con-
tinual pre-training '®’, or by constructing a multitask objective L = L, + aL, as suggested
by Karouzos et al. '*’.

Continuous Pre-Training (CPT), else found as Domain Pre-Training (DPT), has been ex-
plored for adaptation of ASR models. Hsu et al. >!® explore the effectiveness of CPT for domain
adaptation, indicating the importance of utilizing unlabeled in-domain data. In CASTLE?7,
CPT is combined with an online PSL strategy for domain adaptation of wav2vec2. Cross-
dataset evaluation for popular English speech corpora indicates that CPT helps to reduce the
error rate in the target domain. Kim and Kang *'® and Nowakowski et al. ?? utilize CPT for
cross-lingual adaptation of wav2vec2 for Korean and Ainu, respectively. Notably for Ainu,
which is an endangered language, CPT has resulted in significant system improvement. De-
Haven and Jayadev?!’ compare CPT and PSL for adapting XLSR-53 to four under-resourced
languages, i.e., Georgian, Somali, Tagalog, and Farsi. They find that both approaches yield sim-
ilar improvements, with CPT being the more computationally efficient approach. Fan et al. %!
employ CPT based on Adapters®* to adapt wav2vec2 and HuBERT for child speech.

8.6 OVERVIEW OF THE PROPOSED TRAINING STRATEGY

While CPT yields significant improvements in a variety of tasks, one common theme in these
works is the assumption of hundreds or thousands of hours of available in-domain data, mostly
from online resources, e.g., YouTube. This can be infeasible when we consider more niche
adaptation settings, or possible privacy concerns, e.g., how would one collect 1000 hours of psy-
chotherapy sessions in Greek? Furthermore, CPT approaches rely on in-domain pre-training,
which is susceptible to catastrophic forgetting *>?*®. Popular methods to combat catastrophic
forgetting include Incremental Learning**” in a few-shot setting and Moment Matching**® of
the learned posterior distributions. More related to our approach, Elastic Weight Consolida-
tion (EWC)°! combats catastrophic forgetting when learning a new task B by slowing down
learning in neurons that are important for a previously learned task A. EWC aims to explicitly
find a balance in the stability-plasticity trade-off, by including an additive regularization term.
However, direct application of EWC for large models may be computationally infeasible, since
the proposed regularization term requires the computation of the Fisher information matrix **
and a norm calculation over all the network parameters 8;, as can be seen by the second term in
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Eq. (8.3). In addition, multiple copies of the network weights are needed to be kept in memory
when learning multiple tasks.

£(0) = £s(0) + 3 2R (0.~ ) 63)

Hence, we opt to implicitly find a balance between stability and plasticity, by leveraging
in-domain self-supervision to combat catastrophic forgetting for UDA in a data-constrained
environment. The key idea is to start from a pretrained model, trained with a self-supervised
loss Lgs. During fine-tuning, we learn the new task A using the labeled out-of-domain data
xs ~ &S, while simultaneously adapting to the target domain using the unlabeled, in-domain
data x7 ~ T using the self-supervised loss. The total fine-tuning loss is formulated in Eq. (8.4).
We find that the proposed fine-tuning strategy with mixed self-supervision is robust, leads to
effective adaptation, and can be easily adapted to work in diverse application settings.

L(xs,x1) = La(xs) + ALss(x7) (8.4)
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Unsupervised Domain Adaptation through
Language Modeling

9.1 INTRODUCTION

The rise of Self-Supervised Learning **~%*3 has created a paradigm shift in the way we develop
machine learning enabled applications. Transfer learning from language models pretrained in
massive corpora 32244724 hag yielded significant improvements across a wide variety of NLP
tasks, even when small amounts of data are used for fine-tuning. Fine-tuning a pretrained
model is a straightforward framework for adaptation to target tasks and new domains, when
labeled data are available. However, optimizing the fine-tuning process in Unsupervised Do-
main Adaptation (UDA) scenarios, where unlabeled in-domain data are available is challeng-
ing.

We propose Unsupervised Domain Adaptation through Language Modeling (UDALM), a
fine-tuning method for BERT '° in order to address the UDA problem. Our method is based on
simultaneously learning the task from labeled data in the source distribution, while adapting
to the language in the target distribution using multitask learning. The key idea of our method
is that by simultaneously minimizing a task-specific loss on the source data and a language
modeling loss on the target data during fine-tuning, the model will be able to adapt to the
language of the target domain, while learning the supervised task from the available labeled
data.

Our key contributions are: (a) We introduce UDALM, a novel, simple and robust unsuper-
vised domain adaptation procedure for downstream BERT models based on multitask learning,
(b) we achieve state-of-the-art results for the Amazon reviews benchmark dataset, surpassing
more complicated approaches and (c) we explore how A-distance and the target error are
related and conclude with some remarks on Domain Adversarial Training (DAT), based on
theoretical concepts and our empirical observations. Our code and models are publicly avail-
able™T.

“https://github.com/ckarouzos/slp_daptmlm

This is a joint work with Constantinos Karouzos (see 1**"7)
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Figure 9.1: (a) BERT " is pretrained on English Wikipedia and BookCorpus with the MLM and the NSP tasks. (b) We
continue the pretraining of BERT on unlabeled target domain data using the MLM task. (c) We train a task classifier with
source domain labeled data, while we keep the MLM objective on unlabeled target domain data.

9.2 PROPOSED METHOD

Fig. 9.1 gives an overview of the proposed UDALM framework. Starting from a model that is
pretrained in general corpora (Fig. 9.1a), we keep pretraining it on target domain data using the
masked language modeling task (Fig. 9.1b). On the final fine-tuning step (Fig. 9.1c) we update
the model weights using both a classification loss on the labeled source data and Masked
Language Modeling (MLM) loss on the unlabeled target data.

In Fig. 9.1a we see the BERT general pretraining phase. BERT!? is based on the Trans-
former architecture’. During BERT pretraining, input tokens are randomly selected to be
masked. BERT is trained using the MLM objective, which consists of predicting the most
probable tokens for the masked positions. Additionally it uses a Next Sentence Prediction
(NSP) loss, which classifies whether the pair of input sentences are continuous or not. If a
labeled dataset is available, a pretrained BERT model can be fine-tuned for the downstream
task in a supervised manner with the addition of an output layer.

In Fig. 9.1b we initialize a model using the weights of a generally pretrained BERT and
continue pretraining on an unsupervised set of in-domain data, in order to adapt to the target
domain. This step does not require use of supervised data, since we use the MLM objective.

For the final fine-tuning step, shown in Fig. 9.1c we perform supervised fine-tuning on
the source data, while we keep the MLM objective on the target data as an auxiliary task.
Following standard practice, we use the [CLS] token representation for classification. The
classifier consists of a single feed-forward layer.

During this procedure the model learns the task through the classification objective using
the labeled source domain samples, and simultaneously it adapts to the target domain data
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through the MLM objective. The model is trained on the source domain labeled data for the
classification task and target domain unlabeled data for the masked language modeling task.
We mask only the target domain data. During training we interleave source and target data
and feed them to the BERT encoder. Features extracted from the source data are then used for
classification, while target features are used for MLM.

The mixed loss used for the fine-tuning step, is the sum of the classification loss L¢crr and
the auxiliary MLM loss Lygay. Lepr is a cross-entropy loss, calculated on labeled examples
from source domain, while Lysys is used to predict masked tokens for unlabeled examples
from target domain. We train the model over mixed batches, that include both source and
target data, used for the respective tasks. The mixed loss is presented in Eq. 9.1:

L(s,t) = ALcrr(s) + (1= A)Laa(t) (9.1)

We process nlabeled source samples s ~ Dsand m unlabeled target samples t ~ Dron a batch.
The weighting factor A is selected as the ratio of labeled source data over the sum of labeled
source and unlabeled target data, as stated in Eq. 9.2:

n
= 9.2
A n+m 0:2)

9.3 EXPERIMENTAL SETUP

9.3.1 DATASET

We evaluate UDALM on the Amazon reviews multi-domain sentiment dataset®*?, a standard
benchmark dataset for domain adaptation. Reviews with one or two stars are labeled as nega-
tive, while reviews with four or five stars are labeled as positive. The dataset contains reviews
on four product domains: Books (B), DVDs (D), Electronics (E) and Kitchen appliances (K), yield-
ing 12 adaptation scenarios of source-target domain pairs. Balanced sets of 2000 labeled re-
views are available for each domain. We use 20000 (randomly selected) unlabeled reviews
for (B), (D) and (E). For (K) 17805 unlabeled reviews are available. For each of the 12 adap-
tation scenarios we use 20% of both labeled source and unlabeled target data for validation,
while labeled target data are used for testing exclusively and are not seen during training or
validation.

9.3.2 IMPLEMENTATION DETAILS

We use bert-base-uncased as the Language Model on which we apply domain pretraining.
The bert-base-uncased original English model is a 12-layer, 768-hidden, 12-heads, 110M pa-
rameter transformer, trained on the BookCorpus with 800M words and a version of the English
Wikipedia with 2500M words. We convert source and target sentences to WordPieces?*’. For
target sentences we randomly mask 15% of WordPiece tokens, as in'. If a token in a specific
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Table 9.1: Accuracy of unsupervised domain adaptation on twelve domain pairs of Amazon Reviews Multi Domain Sen-

timent Dataset.

R-PERL DAAT p+CFd| SOBERT DATBERT DPT BERT UDALM
B—D 87.8 90.9 87.7 |89.51£0.76 87.31£2.14 90.49 £ 0.38 90.97 + 0.22
B—E 87.2 88.9 91.3 | 90.51£0.51 86.91+2.71 90.38 £1.59 91.69 £ 0.31
B—K 90.2 88.0 92.5 |91.75+£0.28 90.59 +1.17 92.66 + 0.43 93.21 £+ 0.22
D— B 85.6 89.7 91.5 |90.26 = 0.64 86.30 =3.10 91.02 £0.75 91.00 £ 0.42
D—E 89.3 90.1 91.6 | 88.71+£1.48 87.85+1.24 91.03+0.82 92.30 £ 0.47
D— K 90.4 88.8 925 |91.22£0.69 89.95+1.53 92.30 £ 0.42 93.66 £ 0.37
E— B 90.2 89.6  88.7 |87.96+0.89 85.65+1.91 88.52+ 0.55 90.61 + 0.30
E—D 84.8 89.3 88.2 |87.37+£0.64 83.99+1.31 87.85+0.47 88.83 £ 0.61
E— K 91.2 91.7 93.6 |93.30 £0.50 92.45+1.35 94.39 £0.72 94.43 £ 0.24
K—B 83.0 90.8 89.8 |88.15+0.64 85.07+1.03 88.83£0.81 90.29 £0.51
K—D 85.6 90.5 87.8 |87.23+0.49 84.11+0.62 88.52+0.69 89.54 £ 0.59
K—E 91.2 93.2 92.6 |93.23£0.34 92.07 £ 0.24 93.42 £ 0.40 94.34 £ 0.26
Average | 87.50 90.12 90.63 |89.93 +0.65 87.68 £1.53 90.78 £ 0.67 91.74 £ 0.38

position is selected to be masked 80% of the time is replaced with a [MASK] token, 10% of the
time with a random token and 10% of the time remains unchanged.

The maximum sequence length is set to 512 by truncation of inputs. During domain pre-
training we train with batch size of 8 for 3 epochs (2 hours on two GTX-1080Ti cards). During
the final fine-tuning step of UDALM we train with batch size 36, consisting of n = 1 source
sub-batch of 4 samples and m = 8 target sub-batches of 4 samples each. We update parame-
ters after every 5 accumulated sub-batches. We train for 10 epochs with early stopping on the
mixed loss in Eq. 9.1. For all experiments we use AdamW optimizer **° with learning rate 10 .
Each adaptation scenario requires one hour on one GTX-1080Ti. For the domain adversarial
experiments we set 1y = 0.01in Eq. 9.3 * and train for 10 epochs. Models are developed with
PyTorch?! and HuggingFace Transformers?>%,

9.3.3 BASELINES — COMPARED METHODS

We select three state-of-the-art methods for comparison. Each of the selected methods rep-
resents a different line of UDA research, namely the adversarial loss-based BERT-DAAT 77,
self-training XLM-R-based p+CFd'®® and pivot-based R-PERL!®°. We report results for the
following settings with BERT models:

Source-Only (SO): We fine-tune BERT on source domain labeled data, without using target
data.

Domain Pre-Training (DPT): We use the target domain unlabeled data in order to continue
pretraining of BERT with MLM loss (as in Fig. 9.1b) and then fine-tune the resulting model on
source domain labeled data.

*We also manually experimented with A; = 1 and lambda; = 0.1, and a sigmoid schedule for ;. We report
best results.
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Domain Adversarial Training (DAT): Starting from the domain-pretrained BERT (see Fig. 9.1b),
we then fine-tune the model with DAT as in Ganin et al.*®. For a BERT model with parame-
ters 6, with Lcrr being a cross-entropy loss for supervised task prediction, Lapy being a cross-
entropy loss for domain prediction and A4 being a weighting factor, DAT consists of the mini-
mization criterion described in Eq. 9.3.

mein Lerr(6; Ds) — AqLapv(6; Ds, Dr) (9.3)

UDALM: The proposed method, where we fine-tune the model created in the domain pretrain-
ing step using the mixed loss in Eq. 9.1.

9.4 COMPARISON TO STATE-OF-THE-ART

We present results for all 12 domain adaptation settings in Table 9.1. Results for SO BERT,
DAT BERT, DPT BERT and UDALM are averaged over five runs and we include standard
deviations The last line of Table 9.1 contains the macro-averaged accuracy and deviations over
all domain pairs. UDALM surpasses all other techniques, yielding an absolute improvement
of 1.81% over the SO BERT baseline. For fair comparison, we compare only with methods
based on pretrained models, mostly BERT. We observe that BERT fine-tuned only with the
source domain labeled data, without any knowledge of the target domain, is a competitive
baseline. This source-only model even surpasses state-of-the-art methods developed for UDA,
e.g. R-PERL'®.

We reproduce the DAT procedure and present results in the DAT BERT column of Table 9.1.
Adversarial training proved to be unstable in our experiments, even after careful tuning of the
adversarial loss weighting factor A4. This is evidenced by the high standard deviations in the
DAT BERT experiments. We observe that adversarial training does not manage to outperform
the source-only baseline.’

Domain pretraining increases the average accuracy with an absolute improvement of 0.85%
over the source-only baseline. Continuing MLM pretraining on the target domain data leads
to better model adaptation, and therefore improved performance, on the target domain. This
is consistent with previous works on supervised '*7'87 and unsupervised settings'7”:1¢,

UDALM yields an additional 0.96% absolute improvement of average accuracy over do-
main pretraining. Keeping the MLM loss during fine-tuning therefore, leads to better adapta-
tion and acts as a regularizer that prevents the model from overfitting on the source domain.
We also observe smaller standard deviations when using UDALM, which indicates that includ-
ing the MLM loss during fine-tuning can result to more robust training.

UDALM surpasses in terms of macro-average accuracy all other approaches for unsuper-
vised domain adaptation on the Amazon reviews multi-domain sentiment dataset. Specifically,
our method improves on the state-of-the-art pseudo-labeling (p+CFd!®®), domain adversarial
(DAAT'"7) and pivot-based (R-PERL ') approaches by 1.11%, 1.62% and 4.24% respectively.

SNote that we did not have to perform extensive tuning for the other methods, including UDALM.
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Figure 9.2: Average accuracy for different amount of target domain unlabeled samples of: (1) DPT BERT (2) DAT BERT
and (3) UDALM.

9.5 SAMPLE EFFICIENCY

We further investigate the impact of using different amount of target domain unlabeled data on
model performance, to study the sample efficiency of UDALM. We experiment with settings of
500, 2000, 6000, 10000 and 14000 samples, by randomly limiting the number of unlabeled target
domain data. For each setting we conduct three experiments with BERT models: (1) DPT, (2)
DAT and (3) UDALM. When no target data are available, all methods are equivalent to a source
only fine-tuned BERT. Again, we do not tune the hyper-parameters for DPT or UDALM. Fig. 9.2
shows the average accuracy on the twelve adaptation scenarios of the studied dataset. We see
that UDALM produces robust performance improvement when we limit the amount of target
data, indicating that it can be used in low-resource settings. However, training BERT in a
domain adversarial manner shows instabilities. This is further discussed in Section 9.7.

Table 9.2: Comparison of average accuracy for various validation settings.

’ Stopping Criterion Epochs Av. Acc.
Fixed 1 90.98
Fixed 3 91.65
Fixed 10 91.75
Min source loss 10, patience 3 91.30
Min mixed loss 10, patience 3~ 91.74
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9.6 ON THE STOPPING CRITERIA FOR UDA TRAINING

A common problem when performing UDA is the lack of target labeled data that can be used
for hyperparameter validation. For example, Ruder and Plank '’ use a small set of labeled
target data for validation, putting the problem in a semi-supervised setting. When training
under a domain shift, optimization of model performance on the source data may not result
to optimal performance for the target data.

To illustrate this, we examine if the minimization of the mixed loss can be used as a stop-
ping criterion for UDA training. We compare five stopping criteria: (1) fixed training for 1
epoch, (2) fixed training for 3 epochs, (3) fixed training for 10 epochs, (4) stop when the mini-
mum classification loss is reached for the source data and (5) stop when the minimum mixed
loss ( Eq. 9.1) is reached. For (4) and (5) we train for 10 epochs with patience 3. We report
average accuracy of the five stopping criteria over the twelve adaptation scenarios of Amazon
Reviews dataset on Table 9.2. Training for a fixed number of 10 epochs and stopping when
the minimum mixed loss perform best, yielding comparable accuracies of 91.75% and 91.73%
respectively. Note that stopping when the minimum source loss stops the fine-tuning process
too soon and does not allow the model to learn the target domain effectively. Overall, we
observe that the mixed loss can be effectively used for early stopping, regularizing the model
and alleviating the need for extensive search for the optimal number of training steps. This is
an indication that the mixed loss could be used for model validation.
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Figure 9.3: Comparison of average A-distance, average source error and average target error rate of different methods
over all source - target pairs of the Amazon reviews dataset.

9.7 DiscussioN

9.7.1 BACKGROUND THEORY

Ben-David et al. /71,72 provide a theory of learning from different domains. A key outcome of
this work is the following theorem:
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Tueorem "172 Let H be the hypothesis space and let Ds, Dt be the two domains and &, e7
be the corresponding error functions. Then for any h € H:

er(h) < es(h) + %dHAH(D& Dr)+C (9.4)

where dyau(Ds, Dr) is the HAH-divergence® between two domains, that is a measure of
distance between domains that can be estimated from finite samples.

Eq. 9.4 defines an upper bound for the expected error 7(h) of a hypothesis h on the target
domain as the sum of three terms, namely the expected error on the source domain ¢s(h), the
divergence between the source and target domain distributions %dHA H(Ds, Dr) and the error of
the ideal joint hypothesis C. When such an hypothesis exists, the term is considered relatively
small and in practice ignored. The first term, bounds the expected error on the target domain
by the expected error in the source domain and is expected to be small, due to supervised
learning on the source domain. The second term, gives a notion of distance between the
source and target domain extracted features. Intuitively this equation states: “if there exists a
hypothesis A that has small error on the source data and the source feature space is close to the
target feature space, then this hypothesis will have low error on the target data”. DAT aims to
learn features that simultaneously result to low source error and low distance between target
and source feature spaces based on the combined loss in Eq. 9.3.

9.7.2 A-DISTANCE ONLY PROVIDES AN UPPER BOUND FOR TARGET ERROR

According to Ben-David et al. 7! the HAH-divergence can be approximated by proxy A-distance,
that is defined by Eq. 9.5 given the domain classification error ep.

dA = 2(1 - ZED) (9.5)

We calculate an approximation of the distance between domains. Following prior work °%1%?
we create an SVM domain classifier. We feed the SVM with BERT’s [CLS| token representa-
tions, measure the domain classification error, and compute A-distance as in Eq. 9.5. We train
the domain classifier on 2000 samples from each source and target domains. Fig. 9.3 shows the
A-distance along with the source and the target error, averaged over the twelve available do-
main pairs using representations obtained from four methods, namely BERT SO, DAT BERT,
DPT BERT and UDALM. DAT BERT minimizes the distance between domains. DPT BERT also
reduces the A-distance, to similar levels with DAT, without using an explicit loss to minimize
A-distance. To our surprise we found that, although it achieves the lowest error rate, UDALM
does not significantly reduce the proxy A-distance compared to the source-only baseline. Ad-
ditionally, we observe that the source error is correlated to model performance on the target
task, i.e. models with lower source error have also lower target error. UDALM specifically,
achieves high accuracy on the source task and is able to transfer the task knowledge across
domains, while DAT is able to bring domain representations closer, but at the cost of achieving
weaker performance on the task at hand.
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Overall, we do not observe a correlation between the resulting A-distance and model per-
formance on target domain. Therefore, lower distance between domains, achieved intention-
ally or not, is not a necessary condition for good performance on the target domain?, and our
efforts could be better spent towards synergistic learning of the supervised source task and
the target domain distribution.

(c) DPT BERT (d) UDALM
—o— Autoencoder -l Modified LLE ~— SMACOF
=¥~ ISOMAP -@- PCA == Spectral Embedding
—r— LLE == Pattern Search MDS == Original Data 2014D

Figure 9.4: 2D representations of BERT [CLS] features using t-SNE for the D — K task. The goal is to maximize
separation between target positive (blue) and target negative (yellow) samples.

9.7.3 LIMITATIONS OF DOMAIN ADVERSARIAL TRAINING

DAT"® faces some critical limitations that make the method difficult to be reproduced due to
high hyper-parameter sensitivity and instability during training.

Such limitations have been highlighted by other authors in the UDA literature. For ex-
ample, according to Shen et al.'®! when a domain classifier can perfectly distinguish target
from source representations, there will be a gradient vanishing problem. Shah et al. ?>* state

IShu et al. #* state that feature distribution matching is a weak constraint when high-capacity feature extractors
are used. Intuitively, a high-capacity feature extractor can perform arbitrary transformations to the input features
in order to match the distributions.
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that DAT is unstable and needs careful hyper-parameter tuning for their experiments. Wang
et al. 2°° report results over three multi-domain NLP datasets, where DAT in conjunction with
BERT under-performs. Ruder and Plank '®* found that the domain adversarial loss did not
help for their experiments on the Amazon reviews dataset.

In our experiments we note that domain-adversarial training results to worse performance
than naive source only training. Furthermore, we experienced the need for extensive tuning of
the A; parameter from Eq. 9.3 every time the experimental setting changed (e.g. when testing
for different amounts of available target data as in Section 9.5). This motivated us to further
investigate the behavior of BERT fine-tuned with the adversarial cost. For visual inspection,
we perform T-SNE®7 on representations extracted from BERT, under four UDA setings in
Fig. 9.4. In Fig. 9.4a we observe features extracted using BERT with DAT and we compare
it with features from SO BERT (Fig. 9.4b), DPT BERT (Fig. 9.4c) and UDALM (Fig. 9.4d). We
observe that DAT manages to group tightly target and source samples, especially in the case
of positive samples. Nevertheless, in the process, DAT introduces significant distortion in the
semantic space, which is reflected in model performance”.

We can attribute this behavior to two factors. First, The formulation of the adversarial loss
in Eq. (9.3) can lead to trivial solutions. In order to maximize the Lypy term of Eq. (9.3), the
model can just flip all domain labels, namely just predict that source samples belong to the tar-
get domain and vice-versa. In this case the model can still discriminate between domains and
domain-independent representations are not encouraged. We empirically observed this behav-
ior in our experiments with DAT, and only extensive hyper-parameter tuning could alleviate
this issue. Additionally, Eq. (9.3) aims to minimize the upper bound of the target error e7(h) in
Eq. (9.4). While this is desirable, reduction of the upper bound does not necessarily result in
reduction of the bounded term in all scenarios. Furthermore, optimizing the Lapy(6; Ds, Dr)
term can lead to increasing Lcyr(6; Ds), and therefore one must find a balance between the
two adversarial terms, again through careful hyper-parameter tuning. These issues could po-
tentially be alleviated by including regularization terms that discourage trivial solutions and
improve robustness. Therefore, given the lack of guarantees for good performance and the
practical considerations, further investigation should be conducted regarding the robustness
and reproducibility of DAT for UDA.

9.7.4 CoNCLUSIONS AND FUTURE WORK

Unsupervised Domain Adaptation of pretrained language models is a challenging problem
with direct real world applications. In this work we propose UDALM, a robust, plug and play
training strategy, which is able to improve performance in the target domain, achieving state-
of-the-art results across 12 adaptation settings in the multi-domain Amazon reviews dataset.
Our method produces robust results with little hyper-parameter tuning and the proposed
mixed-loss can be used for model validation, allowing for fast model development. Further-
more, UDALM scales with the amount of available unsupervised data from the target domain,

INote, we include this visualization for a single source-domain pair as an example. We performed multiple
runs of T-SNE over all 12 source-domain pairs and this behavior appeared consistently.
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allowing for adaptation in low-resource settings. In our analysis, we discuss the relationship
between the A-distance and the target error. We observe that low A-distance may not suggest
low target error for high capacity models. Additionally, we examine limitations of Domain Ad-
versarial Training and highlight that the adversarial cost may lead to distortion of the feature
space and negatively impact performance.

In the future we plan to apply UDALM to other tasks under domain-shift, such as sequence
classification, question answering and part-of-speech tagging. Furthermore, we plan to extend
our method for temporal and style adaptation, by adding more relevant auxiliary tasks that
model language shift over time and over different platforms. Finally, we want to investigate
the effectiveness of the proposed fine-tuning approach in supervised scenarios.
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10

Sample-Efficient Unsupervised Domain
Adaptation of Speech Recognition Systems

10.1 INTRODUCTION

Automatic Speech Recognition (ASR) models have matured to the point where they can enable
commercial, real-world applications, e.g., voice assistants, dictation systems, etc., thus being
one of machine learning’s success stories. However, the performance of ASR systems rapidly
deteriorates when the test data domain differs significantly from the training data. Domain
mismatches can be caused by differences in the recording conditions, such as environmental
noise, room reverberation, speaker and accent variability, or shifts in the target vocabulary.
These issues are made more prominent in the case of low-resource languages, where diversity
in the training data is limited due to the poor availability of high-quality transcribed audio.
Therefore, specialized domain adaptation approaches need to be employed when operating
under domain shift.

Unsupervised Domain Adaptation (UDA) methods are of special interest, as they do not
rely on expensive annotation of domain-specific data for supervised in-domain training. In
contrast to supervised approaches, where the existence of labeled data would allow to train
domain-specific models, UDA methods aim to leverage data in the absence of labels to improve
system performance in the domain of interest*?°%, In the context of speech recognition, the
importance of UDA is extenuated, as the transcription and alignment process is especially ex-
pensive and time-consuming. Adaptation methods have been explored since the early days
of ASR, at different levels of the system and different deployment settings*’. UDA has been
used to improve the robustness of ASR on a variety of recording conditions including far-
field speech, environmental noise, and reverberation ?>1% 204 Furthermore, UDA has been
used for speaker adaptation, and to improve performance under speaker, gender, and accent
variability *!1*!*, UDA has also been employed for multilingual and cross-lingual ASR, to im-
prove ASR models for low-resource languages?®!'”, adapt to different dialects'”®
speech recognition systems for endangered languages®*’.

Classical speech adaptation techniques involve feature-based techniques, e.g., speaker nor-
malization?®°, feature-based approaches 17263

, and even train

, or multi-condition training 264 Generally, tra-
ditional approaches require some knowledge about the target domain, and the domain mis-
match, e.g., regarding the noise and reverberation variability ?°, and require specific engineer-
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ing for each adaptation scenario.

Modern ASR pipelines, increasingly rely on end-to-end neural networks, e.g.,
large pre-trained models with self-supervised objectives ¢?°3, The key approaches employed
for UDA of end-to-end ASR models can be grouped into three categories, namely, teacher-
student learning'’®, domain adversarial training ?’, and target domain self-supervision °.
The benefit of these techniques is that they do not require any special knowledge about the
source or the target domain. This makes end-to-end UDA approaches versatile and able to
be utilized in a larger array of adaptation scenarios. In particular, adaptation through self-
supervision is a robust, simple, and efficient technique for adaptation of state-of-the-art speech
models?'®.

We leverage in-domain self-supervision to propose Mixed Multi-Domain Self-Supervision
(M2DS2), a fine-tuning strategy enabling sample-efficient domain adaptation of wav2vec2?%*
based speech recognition models, even when available in-domain data are scarce. Our key
contributions are organized as follows:

194,266 ,or

1. Inspired by recent advances in UDA for NLP systems ', we propose a fine-tuning strat-
egy for speech models, where the self-supervised objective is based on a contrastive
loss in Section 10.2. While prior works leverage only in-domain self-supervision, we
find that mixed source and target domain self-supervision is essential in our setting, to
avoid the mode-collapse of latent representations. We demonstrate this empirically in
Section 10.6.2.

2. We collect and curate HParl, the largest publicly available* speech corpus for Greek,
collected from plenary sessions in the Greek Parliament between 2018 and 2022. We
establish a data collection, pre-processing, and alignment pipeline that can be used for
continuous data integration, as the parliamentary proceedings get regularly uploaded.
We provide a detailed description of our data collection process and the dataset statis-
tics in Section 10.3.1. HParl is merged in Section 10.3 with two popular Greek corpora
(Logotypografia and CommonVoice) to create GREC-MD, a testbed for multi-domain
evaluation of ASR systems in Greek.

3. We demonstrate that, while other baselines fail at UDA in our resource-constrained
setting, M2DS2 can improve model performance in the target domain in multiple adap-
tation scenarios in Section 10.6. Specifical emphasis is given to the sample efficiency of
our approach in Section 10.6.1, where we demonstrate successful adaptation even when
we reduce the available in-domain data.

4. When we relax the problem to a weakly supervised adaptation setting, where some in-
domain text is available but the pairing between audio and text is unknown, we find
that M2DS2 can be effectively combined with simple N-gram adaptation techniques to

"HParl is publicly available under the CC-BY-NC 4.0 license: http://hdl.handle.net/11500/
CLARIN-EL-0000-0000-7665-A. The other corpora used in this work are available through their respective
distributors.
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Figure 10.1: Target-domain adaptation through self-supervision. On the left, we see the general pre-training stage of
XLSR-53 using the self-supervised loss L;. General pre-training is performed on 56, 000 hours of audio in 53 languages.
On the right, we see the proposed domain-adaptive fine-tuning stage, where the speech recognition task is learned using
transcribed source domain data, while adaptation to the target domain is performed by including the self-supervised loss
over (audio-only) source and target domain data

get comparable performance with the fully supervised baseline in Section 10.7. Further-
more, we find that a simple text augmentation approach, based on perplexity filtering
of a large corpus can produce strong adaptation results, even for small amounts of in-
domain text.

Additionally, we provide detailed experimental settings for reproducibility in Section 10.4, and
an upper-bound estimation for UDA performance with fully supervised fine-tuning in Sec-
tion 10.5.

10.2 DOMAIN ADAPTATION THROUGH MULTI-DOMAIN SELF-SUPERVISION

The proposed approach is based on end-to-end adaptation of a large pre-trained speech model
during the fine-tuning phase, by including in-domain self-supervision. We extend UDALM '*°,
which has shown promise for NLP tasks, for adaptation of wav2vec2-based acoustic models,
and specifically XLSR-53. We focus on the problem of UDA in the context of a low-resource
language, i.e., Greek. The key finding of our exploration is that straight-forward extension
of UDALM, i.e., by using only target domain self-supervision, underperforms in this setting,
and use of both source and target domain data is essential for successful adaptation. In this
section, first, we will present a quick overview of the XLSR-53 training procedure, and then
we are going to outline the proposed domain adaptation approach, which is shown in Fig. 10.1.
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Table 10.1: The GREC-MD corpus. We can see the duration of each split in hours:minutes:seconds format, as well as
the number of speakers for each of the sub-corpora.

Dataset Domain Speakers Train Dev Test Total Duration
HParl Public (political) speech 387 99:31:41  9:03:33 11:12:28 119:47:42

Ccv Crowd-sourced speech 325  12:16:17  1:57:44  1:59:19 16:13:20
Logotypografia News casts 125  51:58:45  9:08:35  8:59:22 70:06:42
Total - 713 163:46:43 20:09:52 22:11:44 206:08:19

10.2.1 XLSR-53

XLSR-53'%® is a massively pre-trained speech model, trained on 56, 000 hours of multilingual
speech, covering 53 languages. The model is based on wav2vec2??, which is composed of a
multi-layer convolutional feature encoder, that extracts audio features z; from the raw audio,
and a transformer context encoder that maps the latent audio features to the output hidden
states c;. Each latent feature z; corresponds to 25 ms of audio with stride 20 ms. A contrastive
objective L. is used for pre-training. For this, product quantization*® is applied to the features
z;, and then a discrete approximation of z; is obtained by sampling from a Gumbel-softmax
distribution®’, to obtain discrete code vectors g;, organized into G = 2 codebooks with V =
320 vocabulary entries each. The contrastive loss aims to identify the correct code vector for a
given time step, among a set of distractors Qy, obtained through negative sampling from other
timesteps. To avoid mode collapse, a diversity loss L, is included by maximizing the entropy
over the averaged softmax distribution over the code vector entries py. The total loss is:

Diversity Loss

G VvV
s(zt,qt) 1 - -
Ly = —logm Gy > ) pyvlog(ps) (10.1)
+ g=1 v=1
Contrastive Loss

10.2.2 DOMAIN ADAPTIVE FINE-TUNING FOR CONTRASTIVE LEARNING OF SPEECH REPRESEN-
TATIONS

Fig. 10.1 shows the proposed fine-tuning process. The key intuition is that we want the model
to synergistically learn the task at hand (in our case ASR) while being adapted to the tar-
get domain by in-domain self-supervision. On the left, we see the general pre-training stage
of XLSR-53, which is pre-trained on 56K hours of multilingual audio corpora using the con-
trastive pre-training objective. On the right, we see the proposed fine-tuning stage.

During fine-tuning, we form a mixed objective function:

L = Lere(xs, ys) + aLs(xs) 4+ BLs(xt), (10.2)

where (x5, ys) ~ S(x,y), xy ~ T(x), Lere is the Connectionist Temporal Classification
(CTC) objective function, optimized using transcribed source domain data, and L; is the con-
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trastive loss from Eq. (10.1). We scale the contribution of each term using hyper-parameters
aand f.

Note that contrary to Karouzos et al.'*’, who use only in-domain self-supervision, we
leverage both source and target domain samples for the mixed self-supervision. We find that
this is essential in our case to avoid mode collapse, i.e., the model using only a few of the avail-
able discrete code vectors. Simultaneous self-supervision on both the source and target data
alleviates mode collapse by anchoring the target code vector space to have a similar structure
as the source code vectors.

10.3 THE GREC-MD corpruUs

For our experiments we compose a speech corpus for the Greek language, that is suitable
for multi- and cross-domain evaluation. The GREC-MD corpus contains 206 hours of Greek
speech. Audio is segmented into individual utterances and each utterance is paired with its
corresponding transcription. Table 10.1 summarizes the included sub-corpora, as well as the
train, development, and test splits. The dataset is constructed with three core principles in
mind:

1. Data Volume: We collect the largest publicly available speech recognition corpus for
the Greek language, able to scale to hundreds of hours of transcribed audio.

2. Temporal Relevance: Language changes over time. We aim at an up-to-date corpus that
encompasses the latest terms and topics that appear in daily speech.

3. Multi-Domain Evaluation: Single domain evaluation can lead to misleading estima-
tions of the expected performance for ASR models. For example, state-of-the-art ASR
models'” achieve under 5% Word Error Rate (WER) on Librispeech 27° test sets, but
this is an over-estimation of system performance in the field. This is extenuated when
considering different acoustic conditions or terminology. We consider multi-domain
evaluation essential when developing and deploying real-world ASR models. This is
further supported by the ablations performed by Likhomanenko et al.?’!, who observe
that the average WER over multiple test sets is a good proxy metric for real-world ASR
performance, and Chan et al.?’? who achieve significant WER reduction through multi-
domain training.

To satisfy the first two points, we collect data from a public, continuously updated resource,
i.e., the Hellenic Parliament Proceedings, where recordings of the parliamentary sessions are
regularly uploaded. We refer to this corpus as HParl. The benefit of using this resource is
the straightforward collection of a continuously growing, multi-speaker corpus of transcribed
audio that is always up-to-date, as the parliamentary discussions revolve around current af-
fairs. This approach is established in the literature for the creation of open speech corpora
for multiple languages, by collecting plenary data from the Japanese?’*, Finnish?’#, Czech?’,
Danish?’®, and European®’’ parliaments.
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For the multi-domain evaluation, we merge HParl with two publicly available corpora, that
have different acoustic and language characteristics. We refer to the merged, multi-domain
corpus as GREC-MD. In this Section, we will describe the collection and curation process of
HParl, and present the relevant statistics for the experiments.

Table 10.2: Plenary sessions included in HParl. The Hours column refers to the raw (unsegmented) hours of collected
audio.

Start date  End date  #Sessions Hours

15-02-2022 01-03-2022 10 55
18-01-2019 01-02-2019 10 52
28-03-2019 10-05-2019 20 108
10-12-2018 21-12-2018 10 88

10.3.1 COLLECTION AND CURATION OF HPARL

Modern technological advances allow for more direct government transparency, through the
commodification of storage and internet speeds. In this spirit, the records of plenary sessions
of the Hellenic Parliament are made publicly available, for direct access through a webpage.
The available video recordings date back to 2015. For each plenary session, a video recording
is uploaded, along with a full transcription that is recorded verbatim, and in real-time by
the parliament secretaries. For the creation of HParl, we have built a web crawler that can
traverse and download the video recordings, along with the transcriptions from the official
website. The collection process is parallelized over multiple threads and parameterized by a
range of dates and, optionally, a target corpus size in GB or hours. For this version of HParl, we
collect the plenary sessions in four date ranges, as described in Table 10.2. The majority of the
collected sessions are from 2019, but we also include sessions from 2018 and 2022 to include
coverage of different topics. The individual components of the HParl curation pipeline are
Audio Pre-processing, Text Pre-processing, Alignment, Post-processing, and dataset Splitting.

AUDIO PRE-PROCESSING

Fig. 10.2 shows the layout of the Hellenic Parliament Chamber. Plenary sessions mainly take
place in this room, or in the secondary House Chamber which has a similar setup but is smaller
in size. Because of the room and microphone characteristics, the captured audio in the video
streams contains reverberation, due to sound reflections. We pass the input video streams
through FFmpeg and convert them to monophonic, lossless audio format at 16000 Hz sampling
rate. The resulting audio is not passed through any de-reverberation or speech enhancement
software. The resulting audio files have a minimum, average, and maximum duration of 6
minutes, 6 hours, and 16 hours respectively.

https://www.hellenicparliament.gr/en/
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Figure 10.2: Overview of the Hellenic Parliament Chamber. The chamber has an amphitheatrical shape and can accom-
modate approximately 400 — 450 people. The positions of the key speakers, i.e., the current speaker and the parliament
president are annotated in the image.

TEXT PRE-PROCESSING

The text files contain full, word-by-word transcription of the speeches and questions asked
by members of the audience, as well as extra annotations made by the parliament secretaries.
Some annotations are relevant, i.e., the speaker name, while others are plain text descriptions
of events happening during the session and need to be filtered out (e.g., “The session is inter-
rupted for a 15-minute break”). We use a rule-based system, based on regular expressions, that
filters the unnecessary information, keeping only the transcriptions and the speaker names.
The speaker labels are created by transliterating their names and roles from Greek to Greeklish
using the “All Greek to Me!” tool?’®, Text is lower-cased and normalized to remove multiple
whitespaces. The result is a text file containing the raw transcriptions, and a mapping from
speaker labels to their respective text parts.

ALIGMENT AND SEGMENTATION

The primary challenge of exploiting the plenary sessions for ASR purposes is the length of the
plenary recordings, as their durations vary from 6 minutes to 16 hours in length. However, data
samples used to train ASR are generally less than 30 seconds long. Computational challenges
have limited the length of training utterances for HMM-GMM models?”’, and continue to do
so in contemporary neural network models. Therefore, we need to segment the sessions into
smaller pieces more suitable for ASR training. A second challenge is posed by mismatches
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between audio and transcripts. Parliamentary proceedings do not fully capture everything
that is said during the parliamentary sessions, and do not account for speech disfluencies.

To obtain smaller, clean segments, that are suitable for ASR training we follow the seg-
mentation procedure proposed by?*. Initially, the raw recordings are segmented into 30
second segments and the transcriptions are split into smaller segments of approximately 1000
words called documents. Each segment is decoded using a seed acoustic model trained on the
Logotypografia corpus“®! and a 4-gram biased LM trained on the corresponding transcription
of each recording. The best path transcript of each segment is obtained and paired with the
best matching document via TF-IDF similarity. Finally, each hypothesis is aligned with the
transcription using Smith-Waterman alignment?** to select the best matching sub-sequence
of words. The above method yields a list of text utterances, with their corresponding start
and end times in the source audio files. The procedure yields 120 hours of useable segmented
utterances out of the original 303 hours of raw audio, or a ratio of 39.6%.

POST-PROCESSING

After the segments are extracted, we filter out extremely short segments (less than 2 words).
Moreover, the iterative alignment algorithm may replace some intermediate words with a
<spoken-noise> tag. When this tag is inserted, we match the surrounding text with the raw
transcriptions and re-insert the missing words. Furthermore, we match each segment to its cor-
responding speaker label. Segments without a speaker label are discarded. Lastly, speakers are
associated with their gender based on name suffixes, using a simple, Greek language-specific,
rule: Speaker names which end in a(a), h(n), w(w) or is(1g) are classified as female, while the
rest as male. We format the segments, speaker, and gender mappings in the standard folder
structure used by the Kaldi speech recognition toolkit*’®.

Table 10.3: Dominant topic words for each dataset split.

Dataset | Topic words (Top-10)

HP Train | New Democracy, work, growth, government, country, time, policy, reality, agreement, development

HP Dev | investments, New Democracy, Greeks, government, problem, national, reality, reason, development, economic
HP Test state, New Democracy, funding, citizens, work, contract, department, government, public, function

LG Train | president, position, problem, decision, time, subject, reason, policy, group, opinion

LG Dev time, position, problem, measure, energy, government, subject, region, policy, percent
LG Test percent, space, agreement, policy, subject, semitics, country, state, officials, conference

CV Train | prince, unnecessary, truth, six, no more, soldiers, eyes, man, work, door

CV Dev words, compose, women, took, bad guy, prince, eyes, door, deaf, son

CV Test | ships, bad, brother, prince, Irine, paper, cervix, deaf, course, observations

DATA SPLITTING

We provide an official train - development - test split. The development set contains 3 plenary
sessions, one from 2018, one from 2019, and one from 2022, resulting in 9 hours of segmented
speech. Similarly, the test set contains one session from each year, resulting in 11 hours of
segmented speech. The rest 99 hours of segmented speech are assigned to the training set.
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10.3.2 INCLUDING CORPORA FROM DIFFERENT DOMAINS

We merge HParl with two publicly available corpora to create GREC-MD for multi-domain
evaluation.

ComMmoN VoICE

Common Voice (CV)?*? is a crowd-sourced, multi-lingual corpus of dictated speech, created by
Morzilla. The data collection is performed by use of a web app or an iPhone app. Contributors
are presented with a prompt and are asked to read it. The prompts are taken from public do-
main sources, i.e., books, Wikipedia, user-submitted prompts, and other public corpora. The
maximum prompt length is 15 words. A rating system is built into the platform, where con-
tributors can upvote or downvote submitted <audio, transcript> pairs. A pair is considered
valid if it receives two upvotes. Speaker-independent training, development, and test splits
are provided. The dataset is open to the research community, and released under a permissive
Creative Commons license (CCO0). In this work, we use version 9.0 of CV, accessed on April 27,
2022. We keep only the valid utterances, i.e., 16 hours of speech from 325 contributors (19 — 49
years old, 67% male / 23% female).

Table 10.4: Speaker overlap between the splits for each corpus.

Dataset # Speakers # Overlapping Speakers
Train | Test | Dev | Train-Test | Train-Dev | Dev-Test
HP 378 | 82 | 64 77 60 T
LG 78 18 16 0 1 1
9% 110 | 204 | 25 79 o4 1
LOGOTYPOGRAFIA

Logotypografia®®! is one of the first corpora for Large Vocabulary Continuous Speech Recog-
nition in Greek. The dataset contains 33, 136 newscast utterances or 72 hours of speech. The
utterances were collected from 125 speakers (55 male, 70 female), who were staff of the popular
“Eleftherotypia” newspaper in Greece, under varied acoustic conditions. Approximately one
third of the utterances were collected in a soundproof room, one third in a quiet room, and the
last third in an office room. The average utterance duration is 7.8 seconds. The transcriptions
contain several speech and non-speech events (e.g., <cough>), lower-cased Greek words, and
stress marks. Numbers are expanded to full words. We use the whole dataset, and perform
light preprocessing in the transcriptions, by discarding the annotated events and punctuation.

We hence refer to each dataset by the abbreviations: HParl: HP, CommonVoice: CV, Lo-
gotypografia: LG.

In Table 10.3 we show the dominant topic words for the train, development, and test splits
of HP, LG, and CV. For this, we train a Latent Dirichlet Allocation ?®* model for each subcorpus
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and isolate four dominant topics per subcorpus. We select the top ten topic words from the
dominant topics, excluding stop-words. In Table 10.4 we can see the speaker overlap between
the data splits of HP, LG, and CV. LG is based on a strict speaker-independent split, while for
HP we opt for a balanced split. CV also contains significant speaker overlap between train
and test splits.

10.4 EXPERIMENTAL SETTINGS

For our experiments, we use the following hyper-parameter settings, unless explicitly stated
otherwise. For model training, we use AdamW optimizer**’ with a learning rate of 0.0003.
We apply warmup for the first 10% of the maximum training steps, and a linear learning rate
decay after that. Models are fine-tuned for a maximum of 10000 steps. For speech recognition
training, we make use of the CTC loss'*!, optimized using the available transcribed data in
each scenario. Validation runs every 500 steps on the development set, and early stopping
is employed on the development CTC loss with patience 5. Batch size is set to 8 during fine-
tuning for all scenarios, except for M2DS2. In the case of M2DS2, we create mixed batches of
size 12, containing 4 transcribed source domain samples and 8 unlabeled target domain samples
and train for 10,000 CTC updates. For memory reasons, we split the mixed batches into mini-
batches of 4 and interleave them during model training. Gradients are accumulated over 3
interleaved batches. For the self-supervised objective, we create masks of maximum timestep
length 10, with masking probability 0.4. We weigh the contributions of the source and target
domain contrastive objectives, and bring them to the same order of magnitude as the CTC
loss, by setting @ = 0.01 and = 0.02. The convolutional feature encoder is kept frozen for
all experiments. Our code is based on the huggingface ¥ implementation of XLSR-53. For all
experiments, we resample the audio files to 16 kHz and downsample to single-channel audio.
We exclude utterances in the training set that are longer than 12 seconds. All experiments are
run on a single NVIDIA RTX 3090 GPU, with mixed precision training.

For the Language model training, we create a large corpus for the Greek language using
a subset of the Greek part of CCNet?®® (approximately 11 billion tokens) and combine it with
1.5 billion tokens from the Greek version of Wikipedia and the Hellenic National Corpus?®.
During preprocessing, we remove all punctuation and accents, deduplicate lines, and convert
all letters to lowercase. We will refer to this corpus as the Generic Greek Corpus (GGC). We
train a 4-gram language model on GGC using KenLM?®’ and prune bigrams, trigrams, and
four-grams with counts less than 3, 5 and 7 respectively. We incorporate the n-gram LM at
inference time using the pyctcdecode frameworkS. We use language model rescoring over a
beam search decoder with 13 beams.

The evaluation metric is the Word Error Rate (WER) over the target test set. For assess-
ing the adaptation effectiveness, we also report the WER recovery of the UDA against fully
supervised training**®, which is defined in Eq. (10.3):

*https://huggingface.co/docs/transformers/
$https://github.com/kensho-technologies/pyctcdecode
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WERunadapted — WERuypa

x 100% (10.3)
VVERunadapted - WERsupervised

WRR =

The metric in Eq. (10.3) measures the relative improvement obtained by a UDA approach,
compared to the fully supervised baseline, taking into account the difficulty of each scenario.
We refer to this metric as Word error Rate Recovery (WRR) for the rest of this paper.

Table 10.5: ASR performance of XLSR-53 over the three corpora for fully supervised in-domain fine-tuning (WER). Left:
Decoding without LM, Right: Decoding with 4-gram LM trained on GGC

M NoLM 4-gram LM
Dataset
HP 26.21 15.64
Cv 29.33 9.52
LG 31.94 26.45

10.5 SUPERVISED IN-DOMAIN TRAINING

In the first set of experiments, we explore the performance of supervised fine-tuning of XLSR-
53 for each domain. This will give an upper-bound estimation for UDA performance. We
fine-tune XLSR-53 on CV, HP, and LG (separately) and perform in-domain evaluation on the
respective test sets. Results are summarized in Table 10.5. The first column indicates the
performance of greedy decoding, while in the second column, we report the performance of
the beam search decoder, rescored using the scores of the 4-gram GGC language model. We
observe that the greedy decoding performance is under 30 WER for both HP and CV, while
for LG we achieve ~ 32 WER. This makes sense, as LG is the most diverse dataset, with
respect to the included acoustic conditions. Furthermore, we observe that the incorporation of
a language model results in an impressive WER reduction on CV, followed by HP and then LG.
While CV includes relatively simple phrases with a common vocabulary, HP and LG contain
more specialized terminology.

10.6 UNSUPERVISED DOMAIN ADAPTATION USING IN-DOMAIN AUDIO

Here, we evaluate the effectiveness of M2DS2 for UDA. We compare with three baselines:

1. Source-Only (SO): We perform supervised fine-tuning of XLSR-53 (CTC) using only the
source-domain data and run decoding on the target domain test set. No in-domain data
are used for adaptation.

2. Continuous Pre-Training (CPT): We perform a pre-training phase using the loss in
Eq. (10.1) on the source and target domain train sets, to create adapted versions of XLSR-
53. Pre-training is run for 20000 steps with batch size 4. Only the audio is used, without
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Table 10.6: M2DS2 performance using greedy decoding for UDA between HP, CV, and LG. A — B indicates that A is the
source domain and B is the target domain. (G) indicates greedy decoding. (LM) indicates beam search with LM rescoring.
We report the WER on the target test set, as well as the WRR (%) over the SO, i.e., unadapted, baseline. WER: lower is
better. WRR: higher is better.

Method | SO(G)| CPT(G) PSL (G) M2DS2 (G) || SO(LM) | CPT (LM) PSL(LM) | M2DS2 (LM)
Setting WER | WER WRR | WER WRR | WER WRR | WER | WER WRR | WER WRR | WER WRR

HP — CV | 55.90 | 54.80 4.1 | 53.48 9.1 5295 111 25.26 23.26 12.7 | 24.34 5.9 | 1835 439
HP — LG | 48.65 | 47.99 4.0 | 51.75 —18.6 | 46.47 125 30.34 33.88 —91.0 | 31.92 —40.6 | 29.56  20.1
LG—CV | 5957 | 60.81 —4.1| 63.28 —12.3 | 51.31 27.3 25.96 29.10 —19.1 | 23.46 15.2 | 17.30  52.7
LG —HP | 62.13 | 60.60 4.3 | 66.60 —12.4 | 60.09 5.7 31.48 31.54 —0.4 | 39.15 —48.4 | 31.36 0.8
CV—=LG | 69.55 | 68.98 1.5 | 68.29 3.4 16340 16.4 50.80 47.61 13.1 | 42.53 34.0 | 36.93 57.0
CV—HP | 70.72 | 71.79 —2.4 | 69.68 2.3 | 68.70 4.5 52.09 48.14 10.8 | 53.8 —4.7 | 41.88  28.0

transcriptions. The adapted checkpoints are then fine-tuned by the use of CTC loss on
the source domain transcribed data. Evaluation is performed on the target test set.

3. Pseudo-Labeling (PSL): We fine-tune XLSR-53 using the source domain data with CTC
loss. Then we run inference on the source model, to extract silver transcriptions for the
target domain training set. Using the silver transcriptions produced in the first step, we
create the pseudo-labeled target train set, and merge it with the correctly transcribed
source domain train set. Finally, we re-initialize the model to the original XLSR-53
weights and fine-tune it on the combined training corpus.

In Table 10.6 we compare M2DS2 with the SO, CPT, and PSL baselines for six adaptation
scenarios, i.e., cross dataset evaluation between the three datasets in GREC-MD. The left half
corresponds to greedy decoding, while for the right half, we use the 4-gram LM trained on
GGC. First, we observe the SO model performance. The SO models are the fine-tuned models
from Table 10.5, evaluated in out-of-domain settings. We see that out-of-domain evaluation
results in a large performance hit, e.g., while in the CV — CV in-domain setting we achieve
29.33 WER, in the CV — LG out-of-domain setting we get 69.55 WER. This confirms that for
real-world ASR tasks, multi-domain evaluation is of the essence. Second, we observe that in
most adaptation scenarios both CPT and PSL fail to surpass the SO (unadapted) baseline. In the
case of CPT, we hypothesize that this is due to the relatively data-constrained version of our
setting. In the best-case scenario, we have 99 hours of available target domain audio, which
is not enough to perform a discrete CPT stage. Note that most of the works in the literature
use ~ 1000 hours of target audio for CPT. In the case of PSL, the poor performance is due
to the quality of the silver labels created by the seed model. While the performance would
improve with more elaborate approaches (e.g., confidence filtering), in challenging adaptation
scenarios PSL approaches are limited by the SO model’s performance. Lastly, we observe that
M2DS2 is the only approach among our baselines that manages to achieve a positive WRR
in most adaptation scenarios, by consistently outperforming the SO baseline by significant
margins. This is exaggerated when we include an LM during inference.
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Figure 10.3: Performance of M2DS2 for the LG — HP (blue circle), and the LG — CV settings (yellow square), when
reducing the amount of available target samples to 50%, 25%, and 10% of the original dataset (horizontal axis). SO
performance is indicated with the dashed lines. Vertical axis: WER, Horizontal Axis: target audio percentage (100% —>

0%)

10.6.1 THE SAMPLE EFFICIENCY OF M2DS2

We have observed from our literature review and experimental validation that CPT requires
large amounts of un-transcribed target domain audio. This raises the question, can we leverage
self-supervision for domain adaptation in data-constrained settings?

This provides a promising avenue for adaptation when the collection of in-domain record-
ings is expensive, or infeasible.

In Fig. 10.3 we evaluate the performance of M2DS2 when we reduce the amount of target
domain audio. Specifically, we focus on two scenarios, LG — CV and LG — HP. We evaluate
four settings, where we train M2DS2 with 100%, 50%, 25%, and 10% of the available samples,
and plot the resulting WER on the target test set. For the CV target domain, this corresponds
to 12, 6, 3, and 1.2 hours of audio respectively. For the HP target, this corresponds to 100, 50, 25,
and 10 hours of audio. In all cases, the full source (LG) training corpus is used. We observe that
the LG — HP is a more challenging setting than LG — CV, as it demonstrates smaller absolute
WER improvement as we include in-domain audio. This can also be observed by the amount
of data needed for successful adaptation for each setting, i.e. 25 hours for HP versus 3 hours
for CV. In both cases, we observe that M2DS2 achieves lower WER than the SO baseline, even
with only 25% of target domain audio. While CPT can suffer from catastrophic forgetting, as
most multi-stage training approaches, M2DS2 avoids this issue, being a single-stage approach
with a mixed task-specific and self-supervised objective. This provides a promising avenue
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(b) Target and source domain self-supervision

Figure 10.4: T-SNE scatter plots of code vectors extracted from M2DS2 without source domain self-supervision (top) and
with source domain self-supervision (bottom) for LG (red) and CV (teal)
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Table 10.7: WER of M2DS2 without source-domain self-supervision when varying the diversity loss weight for the
LG—CV setting.

w 0.0 0.01 0.1 0.5 1.0 1.5 2.0
M2DS2 (@ = 0) | 65.23 70.34 62.77 66.41 60.98 77.51 78.66
M2DS2 51.31

for adaptation when the collection of in-domain recordings is expensive, or infeasible.

10.6.2 THE IMPORTANCE OF MULTI-DOMAIN SELF-SUPERVISION

In Section 10.2.2 we argue that it is essential to include both source and target domain data for
the self-supervised objective of M2DS2. To illustrate the effect of this approach, we train two
versions of M2DS2 for the LG — CV scenario. For the first version, we set & = 0.01, while for
the second we set @ = 0, removing the second term of Eq. (10.2). We extract the code vectors
for the first 100 samples of both LG and CV and flatten them across the time steps, resulting in
60000 x 768 code vectors corresponding to individual timesteps. We plot these code vectors
using T-SNE?*7 in Fig. 10.4 for both models. We see that when we do not include the source
domain self-supervision, the code vector space collapses in a few tight clusters, and most audio
segments correspond to just a few code vectors. This is a visual clue that indicates the mode
collapse problem. When we include the source domain term, we see that the code vector space
has more structure, and the space coverage is more complete, both for CV (target domain) and
LG (source domain). Experimentally we train M2DS2 with o = 0 for all source/target domain
pairs and we find that the mode collapse is destructive for target domain performance. The
simple inclusion of both source and target domain self-supervision stabilizes training, avoids
mode collapse, and leads to successful unsupervised adaptation between domains.

In addition, we explore if increasing the contribution of the diversity loss term in Eq. (10.1)
is sufficient to combat mode collapse. We weigh the diversity loss with a multiplicative hyper-
parameter w, and explore the following values w € {0.0,0.01,0.1,0.5,1.0,1.5,2.0} for M2DS2
without source-domain self-supervision (¢ = 0). For the proposed M2DS2, w is set to the
default value 0.1. The results are summarized in Table 10.7. We observe that varying the
contribution of the diversity loss can be important, but mixing source and target domain data
is essential for good performance. This observation is in accordance with other works in

the literature, which highlight the importance of mixing source and target domain data for
CPT?'%?!7 and pseudo-labeling .

10.7 UNSUPERVISED AND WEAKLY SUPERVISED LANGUAGE ADAPTATION

When small amounts of in-domain textual data are available, simple N-gram LM adaptation
techniques can be very effective. In this brief set of experiments, we first explore the unsu-
pervised language adaptation setting, where no in-domain audio is used, and then we relax
the problem to the weakly supervised setting, where M2DS2 is combined with the adapted

135



43

41

39

37

WER

35

33

31

v
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

29

Percentage of In-Domain Text Data

Figure 10.5: Language-only adaptation for LG — HP using the SO model fine-tuned on LG. In-domain text data range
from 11M tokens (left) to 110K tokens (right). Blue / dashed: Baseline with generic LM. Purple / circles: Biased LM. Yellow
/ diamonds: Augmented LM.

N-Gram LM. These settings are described in Sections 8.3 and 8.3 respectively. We explore two
approaches for LM adaptation: biased LM, and in-domain data augmentation. To create the
biased LM, we train a 4-gram LM on the available in-domain data. Then we replace the generic
LM trained on GGC. For LM data augmentation we follow a perplexity filtering approach sim-
ilar to®®. We first train a biased LM using available target domain text, and then use it to
calculate the perplexity of each line in the GGC corpus. We keep the 10% of the lines with the
lowest perplexity. Then we train a 4-gram LM on the augmented “in-domain” corpus and use
it for inference.

Fig. 10.5 shows the performance of the SO LG — HP model with biased and augmented

Table 10.8: Language adaptation for M2DS2 in the LG — CV and LG — HP scenarios, using biased and augmented LM.
We vary the amount of available in-domain text. LG — CV: 752K to 38K tokens. LG — HP: 11M to 550K tokens.

Setting LG — CV (3 hours) LG — HP (100 hours)
Tokens (%) Biased LM Augmented LM | Biased LM Augmented LM

100% 11.22 12.84 27.95 28.91

50% 15.13 15.05 29.39 29.44

25% 20.84 16.64 31.06 29.46

10% 27.75 18.47 33.58 29.81

5% 33.04 19.31 35.69 30.16

Baseline (M2DS2 + Generic LM) ‘ 20.70 31.36
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Table 10.9: Closing the gap between SO training and fully supervised training for the LG — CV adaptation scenario using
M2DS2, with varying amounts of available unpaired in-domain audio and text. (U): unsupervised acoustic or language
adaptation. (W): weakly supervised adaptation.

Method | #Audio (h) #Tokens LM WER
SO (U) - - N/A 59.57
M2DS2 (U) 3 - N/A 57.31
M2DS2 (U) 12 - N/A 51.31
SO (U) - - Generic 25.96
SO (U) - 38,632  Augmented 24.67
SO (U) - 751,953 Augmented 20.46
M2DSz2 (U) 3 - Generic 20.7
M2DS2 (U) 12 - Generic 17.3
M2DS2 (W) 3 38,632  Augmented 19.31
M2DS2 (W) 12 38,632 Augmented 16.29
M2DS2 (W) 3 751,953 Augmented 12.84
M2DS2 (W) 12 751,953 Augmented 10.61
Supervised 12 751,953 Generic 9.52
Supervised 12 751,953 Augmented 7.94

LM, as we reduce the amount of available in-domain text data from 100% to 1% of the in-
domain transcriptions (11M tokens to 110K tokens respectively). As a baseline, we include the
LG — HP SO model in combination with the generic LM trained on GGC. We observe that the
use of biased LM can lead to successful adaptation when an adequate amount of in-domain
text data is available. On the other hand, the LM augmentation approach results in successful
augmentation, even with very small amounts of in-domain text.

In Table 10.8 we see the results of LM adaptation, combined with M2DS2 for the LG — CV
and LG — HP scenarios. To account for different target corpus sizes, we use the variant trained
on 3 hours of target domain audio for the LG — CV case, and the variant trained with 100 hour
of in-domain audio for the LG — HP case. We compare with M2DS2 combined with the 4-gram
GGC LM for inference. We draw similar conclusions, i.e., the use of biased LM performs well
for sufficient text data. When we use augmented LM we can leverage very small amounts
of in-domain text. Furthermore, when adapting for HP we see smaller improvements from
both LM biasing and LM augmentation techniques. This can be attributed to the linguistic
content of the HP dataset. HP contains names, dates, law acts, etc., which make the linguistic
adaptation harder.
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10.8 DiscussioN

In this work, we have explored Unsupervised and Weakly Supervised Domain Adaptation of
ASR systems in the context of an under-resourced language, i.e., Greek. We focus on domain
adaptation through in-domain self-supervision for XLSR-53, a state-of-the-art multilingual
ASR model. Specifically, we adopt a mixed task and self-supervised objective, inspired by
NLP, and show that using only in-domain self-supervision can lead to mode collapse of the
representations created by the contrastive loss of XLSR-53. Therefore, we propose the use of
mixed task and multi-domain self-supervision, M2DS2, where the contrastive loss leverages
both the source and target domain audio data. For evaluation, we create and release HParl,
the largest to-date public corpus of transcribed Greek speech (120 hours), collected from the
Greek Parliamentary Proceedings. HParl is combined with two other popular Greek speech
corpora, i.e., Logotypografia and CommonVoice, for multi-domain evaluation.

In our experiments, we find that while most UDA baselines fail in our low-resource set-
ting, the proposed mixed task and multi-domain self-supervised fine-tuning strategy yields
significant improvements for the majority of adaptation scenarios. Furthermore, we focus our
ablations on showcasing the sample efficiency of the proposed fine-tuning strategy and demon-
strating the necessity of including both source and target domain data for self-supervision.
Finally, we show that M2DS2 can be combined with simple language model adaptation tech-
niques in a relaxed weakly supervised setting, where we achieve significant performance im-
provements with a few hours of in-domain audio and a small, unpaired in-domain text corpus.

More concretely, in Table 10.9 we present a summary of the discussed unsupervised and
weakly supervised adaptation combinations, for different amounts of available in-domain au-
dio and text. Note that for the weakly supervised scenarios, the in-domain audio and text are
unpaired. We see, that when no in-domain data are available, including an n-gram LM trained
on large corpora is recommended. Furthermore, when in-domain audio is available, following
a mixed multi-domain fine-tuning strategy using M2DS2 can yield significant WER reductions,
even for a few hours of audio. When small amounts of in-domain text are available, using a
corpus augmentation strategy, e.g., perplexity filtering, can produce an adapted LM and yield
small improvements to the final WER. In the case of sufficient amounts of unpaired in-domain
text and audio, the independent adaptation of XLSR-53 using the audio data and the n-gram
LM using the text data can yield comparable performance with a fully supervised fine-tuning
pipeline.

10.8.1 FuTUurRE WORK

In the future, we plan to explore the effectiveness of the proposed adaptation strategy for
other languages, and different adaptation settings, e.g., accent or cross-lingual adaptation. The
combination of M2DS2 with different self-supervised models, e.g. WavLM?*’, will also be
explored, to assess the effectiveness of mixed self-supervision in a non-contrastive setting for
English ASR. Of special interest is the investigation of the effectiveness of our approach for
endangered languages, e.g., Pomak. Furthermore, we plan to explore the combination of in-
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domain self-supervision, when combined with other popular UDA techniques, e.g., teacher-
student models, adversarial learning, and data augmentation approaches. On the language
adaptation side, we plan to explore multi-resolution learning, which has shown promise for
ASR?°| and investigate more elaborate end-to-end weakly supervised adaptation methods.
Finally, we plan to expand our study in a multimodal setting, where both audio and video are

available, e.g., lip reading.

139



140



DISCUSSION

“His philosophy was a mixture of three
famous schools — the Cynics, the Stoics
and the Epicureans — and summed up all
three of them in his famous phrase, ‘You
can’t trust any bugger further than you
can throw him, and there’s nothing you
can do about it, so let’s have a drink.”

Terry Pratchett, Small Gods
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Conclusions and Future Directions

11.1 SUMMARY OF KEY CONTRIBUTIONS

In this work, we explore modern, robust, and flexible machine learning techniques tailored
for resource-constrained settings. Our two key contributions, inspired by cognitive sciences,
are: firstly, Pattern Search MDS, a novel algorithm for Dimensionality Reduction (DR); and
secondly, robust fine-tuning strategies based on mixed self-supervision for Unsupervised Do-
main Adaptation (UDA). We extensively evaluate both methods in terms of performance and
robustness across a diverse set of tasks, with a particular emphasis on speech and language
processing. Moreover, we assess the relevance of these techniques in the contemporary “scale-
up” context, demonstrating their significant impact in data-scarce scenarios. Finally, beyond
these methodological contributions, this dissertation has led to several technical contributions,
including the creation of the largest speech recognition dataset for a low-resource language
(Modern Greek), named HParl, and the development of multiple open-source projects®.

11.2 SUBSPACE LEARNING WITH MULTI-DIMENSIONAL SCALING

We have proposed pattern search MDS, a high-performant, derivative-free algorithm for Di-
mensionality Reduction through Multi-Dimensional Scaling. Reduction of pattern search MDS
to the GPS family of direct search algorithms provides theoretical convergence guarantees.
The proposed algorithm has been extensively evaluated in diverse tasks and datasets, i.e.,
Speech Emotion Recognition, visual classification, word semantic similarity, and manifold ge-
ometry. Our experiments show that the reduced feature sets obtained by pattern search MDS
geometric, semantic, visual, and affective properties, visual, and affective properties.

The derivative-free formulation of pattern search MDS opens avenues to project features
and latent vectors into subspaces, employed with a wide variety of distance metrics, e.g., non-
metric distances, quasi-metric distances, etc. This flexibility can be used to produce hierar-
chical distributed representations, by breaking down semantic neighborhoods into mutliple
low-dimensional subspaces, each encoding a different semantic property. A similar idea has
been proposed by Karlgren et al. ?’!, where high-dimensional lexical vector space models are
argued to be composed of embedded, local, low-dimensional manifolds. This idea is further

*See https://github.com/georgepar
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explored by Athanasopoulou et al. °?, where a Distributional Semantic Model (DSM) for word
semantics is decomposed into a sparse set of low-dimensional DSMs, using a set of dissimilar-
ity metrics based on contextual distances in local semantic neighborhoods. In this framework,
concepts can be encoded as distributed vectors, while relations are encoded as the similarities
between the concept vectors. Multiple subspaces can be created based on different similarity
metrics, encoding different relations. Future works can utilize pattern search MDS for the
efficient creation of hierarchical DSM, where concepts are encoded in interpretable subspaces,
while concept relations are represented using sets of contextual similarity metrics*”.

Another line of exploration can focus on the unsupervised sense disambiguation of dis-
tributed word vectors, by viewing a polysemous word vector as a set S of n senses x, Xz, . . . , Xp.
The word distances in the high-dimensional space can be then assumed to be obtained from a
set distance between the sense sets, i.e.:

S, 8:) = Xieraa?esz d(x;, x;) (11.1)
The word senses can be disentagled in a low-dimensional space with more points than
the original via dimensionality reduction using pattern search MDS, by assuming the original
distance matrix is obtained using 6 as the underlying distance. This is a challenging scenario,
as  is a pseudo-metric that violates the triagle inequality. Future works can develop of ro-
bust algorithms for this problem, i.e. Set-MDS, with the diploma thesis of Lena Fotaki' as a
starting point. Furthermore, the Set-MDS problem can be viewed as a manifold untangling
problem, which has been assumed to underlie the human visual system*** with strong cogni-
tive motivation. Manifold untangling has also been shown to be an emergent phenomenon in
Transformer-based language models?”> and speech recognition systems .

11.3 MIXED SELF-SUPERVISION FOR SAMPLE-EFFICIENT UNSUPERVISED DOMAIN ADAPTATION

In the second part of this work, we have investigated the problem of Unsupervised Domain
Adaptation in speech and language models. Along these lines, we have proposed a mixed
self-supervision fine-tuning strategy. During fine-tuning, the task is learned using annotated
out-of-domain data, while adaptation is performed through self-supervision on unlabeled in-
domain samples. Mixed self-supervision is motivated as an implicit strategy for solving the
stability-plasticity dilemma. It implicitly finds the optimal way to change the network parame-
ters for unseen domains while maintaining the useful knowledge acquired during pretraining.
The proposed technique can be applied to various problems and different input modalities.
Specifically, in this work, mixed self-supervision leads to successful adaptation in text sen-
timent analysis and speech recognition settings, across multiple domain pairs. Furthermore,
the sample efficiency of mixed self-supervision has been a central point of our investigation.
Our ablations have shown that successful adaptation can be achieved with a limited number

*Citation not yet available
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of in-domain samples; as few as 3 hours of in-domain audio for speech recognition and 500
text samples for sentiment analysis.

In the future, mixed self-supervision can be explored in more challenging adaptation sce-
narios, particularly in cross-lingual adaptation of text and speech models, a significant issue
in creating resources for digitally under-represented languages. Furthermore, source-free do-

297 where annotated out-of-domain data are not available at the time of adap-

main adaptation
tation, presents a challenging scenario, especially in commercial settings where data privacy
concerns and limited edge computing resources are prevalent. Finally, the combination of
Meta-Learning >*® and Self-Supervised Learning is an exciting area for future exploration that
has attracted the interest of the machine learning community ***°%, and have been combined
for few-shot UDA®’!, On the surface, SSL and meta-learning assume different strategies for
model generalization. SSL requires an extensive pretraining stage on vast amounts of unsu-
pervised data, enabling the model to learn the underlying data distribution. In contrast, meta-
learning strategies emphasize ease of adaptation, where an easily adaptable model is trained
(learning to learn) and then fine-tuned in a few-shot manner at inference time. However, both
paradigms ultimately aim for generalization, and their integration could be instrumental in
developing advanced System 1/System 2 models, which would combine fast decision-making
with the ability to adapt on the fly from new, complex scenarios.

11.4 BEYOND UNIMODAL REPRESENTATIONS: MULTIMODAL FUSION AND CO-LEARNING

Our experience of the world relies on modal systems of perception (e.g., vision, auditory, hap-
tic), action (e.g., motor control, movement), and introspection (e.g., affect). Grounded cog-
nition theory>’? supports the notion that these systems not only allow us to perceive and
interact with the environment, but that our understanding of the physical world is deeply
rooted in our modal experiences, challenging views of cognition based on amodal, abstract
symbols. This theory posits that cognitive processes, rather than being abstract and separate
from bodily experiences, are fundamentally shaped and informed by our sensory and motor
interactions. Complementing this perspective, the concept of a metamodal brain***** high-
lights the brain’s capacity for cross-modal integration and neuroplasticity **°. It suggests that
the brain can reorganize and adapt, processing sensory information in areas typically dedi-
cated to other modalities. Together, grounded cognition and the metamodal brain concept
underscore the dynamic and adaptable nature of the brain, shaping our perception, cognition,
and interaction with the world in an integrated and fluid manner.

Given how our understanding of the world is deeply rooted in our sensory experiences,
a fruitful direction is to explore the applicability of the proposed techniques in multimodal
settings. In the context of machine learning, multimodal processing seeks to emulate aspects
of human multimodal perception and cognition. Just as grounded cognition and the meta-
modal brain concepts illustrate the brain’s capacity for cross-modal integration and adaptabil-
ity, multimodal machine learning aims to integrate and process diverse types of data (e.g., vi-
sual, auditory, textual) to enhance learning and decision-making. This integration reflects the
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principle that different modalities provide complementary information, enriching the overall
understanding of a given context or task>’°. For instance, in image captioning>’’, combining
visual data with linguistic context leads to more accurate and nuanced descriptions. Further-
more, the field explores how models can adaptively switch or combine modalities, akin to the
brain’s neuroplasticity, to optimize performance under varying conditions. This involves not
only the development of algorithms capable of handling multimodal data efficiently but also
understanding how different modalities influence and reinforce each other within these sys-
tems. A key goal is to develop Al systems that can process and interpret complex, multimodal
information in a way that mirrors human cognitive flexibility and efficiency, leading to more
intuitive and effective interactions between humans and machines.

11.4.1 MULTIMODAL AND MULTITASK LEARNING

We begin this section with a Proposition demonstrating the close relationship between multi-
task and multimodal learning*.

Proposition 3: Consider the multi-class classification problem with N data points and C classes:

N C
. . 1 -
minL(y,y) = — >0 yilog(3y)

i=1 j=1

Furthermore, consider that predictions y are obtained using a late fusion strategy for features from
two modalities x%, xP:
y=5"3" = o(x%) - o),

where o is the softmax function. Then, the loss L can be rewritten as the sum:

L(j’v y) = L(j/a> y) + L(i’ﬁ’ )

Proof: See Appendix A.

Proposition 3 shows that in its basic form, multimodal learning via late fusion can be
equated to multitask learning, by learning the relationship between each modality’s features
and the target label independentlyS. More complex fusion strategies, can result in more com-
plex (non-linear) loss term combinations, or the addition of cross-modal regularization terms.

This intuition can drive future researchers to devise effective multimodal learning strate-
gies, by borrowing ideas from the multitask learning literature. For example, in our prelim-
inary study®’, we employ mixed self-supervision for fusion of textual and visual informa-
tion in an industrial application setting with good results. Further research could explore the

*Surprisingly given the simplicity of the derivation, I have not been able to locate a similar remark in the
context of multimodal learning in prior works.

Mt is trivial to show that, if we want to weigh the contribution of each loss term, we only need to modify the
logits as j = a(x®)* - a(x#)'*
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Pareto fronts between different modalities, mitigating cross-modal competition>’’, modality
imbalance 31311 and the fact that different modalities learn at different rates®!?. Works such
as Dimitriadis et al.>'*, Lin et al.*'*, Ma et al.*" provide a starting point for this exploration.

11.4.2 BOTTOM-UP AND TOP-DOWN CROSS-MODAL MODELING

Mask Value

0.6

0.5
0.4

Figure 11.1: Average top-down mask values, learned by MMLatch, over the test set for samples with sentiment values
from neg++ (very negative) to pos++ (very positive), and for different facial features. Observe that for negative samples,
more higher mask values are put in more negative expressions (top). Vice versa for positive samples higher mask values
are associated with more positive expressions (bottom).

Taking it one step further, it is especially intriguing to examine the methods through which
cross-modal interactions are facilitated. In common pipelines, only bottom-up interactions
are considered in a feedforward manner, i.e., low-level multisensory inputs are processed in
modality-systems, and then fused in a high-level multimodal module. Nevertheless, multi-
ple empirical studies®'®~3?* highlight the importance of top-down regulation. For example,
Papale et al.>'® presented occluded images to monkeys, and measured the response of neu-
rons in the primary visual cortex whose receptive field corresponded to the occluded part of
the image. Remarkably, they found that the measured activations of the occluded neurons
allowed the decoding of the original image. Furthermore, they analyzed the delay in the oc-
cluded neurons’ response, and found that it indicates the existence of feedback connections
from higher-level neurons. The importance of top-down regulation in a cross-modal setting
is underscored by Winkowski and Knudsen?**3?°, In their studies, they demonstrated the in-
fluence of top-down gain control by electrically stimulating gaze control regions in the barn
owl’s brain, and examining the impact on auditory spatial perception. Their findings revealed
that such stimulation not only modulates but specifically enhances the gain of midbrain au-
ditory responses corresponding to targeted spatial locations, while concurrently attenuating
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responses to non-targeted areas, illustrating a sophisticated mechanism for sensory gain mod-
ulation across different sensory modalities.

Along these lines, we have reported preliminary results in Paraskevopoulos et al. 2°, where
we propose MMLatch, a neural architecture that models bottom-up and top-down cross-modal
interactions1. MMLatch is a feedback module that performs top-down regulation using high-
level representations to produce masks that enhance or attenuate low-level input features.
We have demonstrated that incorporating MMLatch to Recurrent Neural Network (RNN) and
Transformer-based architectures improves model performance. Furthermore, we have ob-
served that the masks learned by MMLatch can enhance or attenuate input features in an
interpretable way. Average top-down mask values, learned using MMLatch are shown in
Fig. 11.1, where we can observe the top-down mask values that are associated with different
facial expressions for samples with positive or negative sentiment.

One possible limitation of introducing top-down feedback in neural architectures is the
difficulty introduced in the training process, by allowing the architecture to modify itself. MM-
Latch side-steps this difficulty by using only cross-modal top-down feedback. In further exper-
iments we observed convergence issues when trying to introduce within-modality feedback.
Future works can focus on separating the training of bottom-up and top-down parts of the
network, or formulating the training of bottom-up and top-down parameters in a hierarchical
optimization setting**”3?8, where the top-down parameters can be viewed as meta-parameters
that constrain the bottom-up learning process. Additionally, different top-down functions can
be explored. For example, exploring top-down sharpening, instead of masking, can be a fruit-
ful endeavor, where the top-down interactions are more closely resemble the gain control
mechanism described in the studies of Winkowski and Knudsen 4%,

IThis study is included in Appendix B. You can refer to the appendix for more details.
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APPENDICES

“Real stupidity beats artificial intelligence
every time.”

Terry Pratchett, Hogfather
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Proof of Proposition 3
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Bottom-up Top-down Fusion for Multimodal
Sentiment Analysis

B.1 INTRODUCTION

Multimodal processing aims to model interactions between inputs that come from different
sources in real world tasks. Multimodality can open ways to develop novel applications (e.g.
Image Captioning, Visual Question Answering’’*?’ etc.) or boost performance in tradition-
ally unimodal applications (e.g. Machine Translation**°, Speech Recognition?’*%! etc.). More-
over, modern advances in neuroscience and psychology hint that multi-sensory inputs are
crucial for cognitive functions®*?, even since infancy***. Thus, modeling and understanding
multimodal interactions can open avenues to develop smarter agents, inspired by the human
brain.

Feedback loops have been shown to exist in the human brain, e.g. in the case of vocal pro-
duction®!” or visual-motor coordination®'®. Human perception has been traditionally mod-
elled as a linear (bottom-up) process (e.g. reflected light is captured by the eye, processed in
the prefrontal visual cortex, then the posterior visual cortex etc.). Recent studies have high-
lighted that this model may be too simplistic and that high level cognition may affect low-level
visual®?*? or audio®*! perception. For example, studies state that perception may be affected
by an individual’s long-term memory>%?, emotions*** and physical state®*>. While scientists
still debate on this subject®*, such works offer strong motivation to explore if artificial neural
networks can benefit from multimodal top-down modeling.

Early works on multimodal machine learning use binary decision trees**® and ensembles
of Support Vector Machines**’. Modeling contextual information is addressed in>**73*" using
Recurrent Neural Networks (RNNs), while Poria et al.**! use Convolutional Neural Networks
(CNNs). For a detailed review we refer to Baltruvsaitis et al.>*?. Later works use Kronecker
product between late representations**>***, while others investigate architectures with neu-
ral memory-like modules®*>?%¢, Hierarchical attention mechanisms>*’, as well as hierarchical
fusion®*® have been also proposed. Pham et al.?*’ learn cyclic cross-modal mappings, Sun et
al.**° propose Deep Canonical Correlation Analysis (DCCA) for jointly learning representa-
tions. Multitask learning has been also investigated®>! in the multimodal context. Transform-
ers’ have been applied to and extended for multimodal tasks***~*>°. Wang et al.**® shift word
representations based on non-verbal imformation.**’ propose a fusion gating mechanism.>>®
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Figure B.1: Architecture overview of three high-level modules, composing the overall system: Unimodal encoders, Cross-
modal fusion and MMLatch. Solid lines indicate the feedforward connections (bottom-up processing), while dashed lines
indicate feedback connections (top-down processing). Colors indicate different modalities (Blue: Audio, Orange: Text,

Yellow: Visual)

use capsule networks®> to weight input modalities and create distinct representations for
input samples.

In this work we propose MMLatch, a neural network module that uses representations
from higher levels of the architecture to create top-down masks for the low level input features.
The masks are created by a set of feedback connections. The module is integrated in a strong
late fusion baseline based on LSTM*® encoders and cross-modal attention. A similar top-
down masking idea is proposed in*°!, where feedback masks are produced for interpretability
of a unimodal (vision) CNN architecture, trained using an auxiliary loss. Our key contribution
is the modeling of cross-modal interactions between high-level representations extracted by
the network and low-level input features, using an end to end framework, without need for an
auxiliary loss. We integrate MMLatch with RNNs and Transformers, but it can be adapted for
more architectures. Incorporating top-down modeling shows consistent improvements over
our strong baseline, yielding state-of-the-art results for sentiment analysis on CMU-MOSEI
Our code is open source”.

B.2 PropoSED METHOD

Fig. B.1 illustrates an overview of the system architecture. The baseline system consists of
a set of unimodal encoders and a cross-modal attention fusion network, that extracts fused
feature vectors for regression on the sentiment values. We integrate top-down information by
augmenting the baseline system with a set of feedback connections that create cross-modal,
top-down feature masks.

Unimodal Encoders: Input features iy, ir, iy for each modality are encoded using three LSTMs.
The hidden states of each LSTM are then passed through a Dot Product self-attention mecha-

“https://github.com/georgepar/mmlatch/
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Table B.1: Results on CMU-MOSEI for MMLatch. Models indicated with * are reproduced for CMU-MOSEI by Tsai et
al.®%. In row “MMLatch average” we include results averaged over five runs. Since other works do not report standard
deviation, we also include row “MMLatch best”, where we report the best of the five runs (lowest error).

Model / Metric ‘ Acc@7 ‘ Acc@2 ‘ Fl@2 ‘ MAE ‘ Corr
RAVEN ¢ * 50.0 79.1 79.5 0.614 0.662
MCTN?34 * 49.6 79.8 80.6 0.609 0.670
Multimodal Routing ** 51.6 81.7 81.8 - -

MulT?%? 51.8 82.5 82.3 0.580 0.703

Baseline (ours) 51.34+0.7 | 81.9+0.7 | 82.2+0.6 | 0.593 +0.005 | 0.695 & 0.004

Baseline + MMLatch average (ours) | 52.0 £ 0.2 | 82.4 0.3 | 82.54 0.3 | 0.585 4 0.002 | 0.700 % 0.004
Baseline + MMLatch best (ours) 52.1 82.8 82.9 0.582 0.704

nism to produce the unimodal representations r4, rr, ry, where A, T, V are the audio, text and
visual modalities respectively.

Cross-modal Fusion: The encoded unimodal representations are fed into a cross-modal fusion
network, that uses a set of attention mechanisms to capture cross-modal interactions. The core
component of this subsystem is the symmetric attention mechanism, inspired by Lu et al.>**.
If we consider modality indicators k, I € {A, V, T}, k # L r, ; € RB¥N*4 the input modality
representations, we can construct keys K; = W‘lKrl, queries Qy = Wgrk and values V; = WlVrl

using learnable projection matrices
as:

e and we can define a cross-modal attention layer

KT
ap =s < \z/%k> Vi+ r, (B.1)

where s is the softmax operation and B, N, d are the batch size, sequence length and hidden
size respectively. For the symmetric attention we sum the two cross-modal attentions:

My = ag + ai, (B.2)

In the fusion subsystem we use three symmetric attention mechanisms to produce mry,
mry and myy. Additionally we create asyr using a cross-modal attention mechanism (Eq. (B.1))
with inputs may and rr. These crossmodal representations are concatenated (||), along with
the unimodal representations m,, mr, my to produce the fused feature vector o € REXNx7d i
Eq. (B.3).

o=rall rrll vl aavr || mav |l mrv || mra (B.3)

We then feed o into a LSTM and the last hidden state is used for regression. The baseline
system consists of the unimodal encoders followed by the cross-modal fusion network.
Top-down fusion: We integrate top-down information by augmenting the baseline system
with MMLatch, i.e. a set of feedback connections composing of three LSTMs followed by sig-
moid activations ¢. The inputs to these LSTMs are rq4, rr, ry as they come out of the unimodal
encoders. Feedback LSTMs produce hidden states hy4, ht, hy. The feedback masks fa, fr, fy are
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Figure B.2: Averaged top-down mask values for FACET features over all test samples across seven sentiment classes.
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neg++ indicates a sentiment score &% —3, neg+ ~ —2, neg & —1, neu = 0, pos = 1, pos+ =~ 2 and pos++ ~ 3.

produced by applying a sigmoid activation on the hidden states fi = o(hy), k € {A, T, V} and
then applied to the input features ia, it, iy using element-wise multiplication ©, as:

i = %03 +f) Ok (B.4)

where j, k, 1€ {A, V, T}, k# 1 # m.

This pipeline is implemented as a two-stage computation. During the first stage we use
the unimodal encoders and MMLatch to produce the feedback masks f4, fr, fy and apply them
to the input features using Eq. (B.4). During the second stage we pass the masked features
7A,7T,~iV through the unimodal encoders and the cross-modal fusion module and use the fused
representations for regression. Intuitively, this two-stage computation allows the network to
use its own representations in order to select which input features should be enhanced or
attenuated to solve the task at hand, resulting to a dynamic feature selection process.

B.3 EXPERIMENTAL SETUP

We use CMU-MOSEI sentiment analysis dataset®*® for our experiments. The dataset contains
23,454 YouTube video clips of movie reviews accompanied by human annotations for sen-
timent scores from -3 (strongly negative) to 3 (strongly positive) and emotion annotations.
Audio sequences are sampled at 20Hz and then 74 COVAREP features are extracted. Visual
sequences are sampled at 15Hz and represented using FACET features. Video transcriptions
are segmented in words and represented using GloVe. All sequences are word-aligned using
P2FA. Standard train, validation and test splits are used.

For all our experiments we use bidirectional LSTMs with hidden size 100. LSTMs are bidi-
rectional and forward and backward passes are summed. All projection sizes for the attention
modules are set to 100. We use dropout 0.2. We use Adam**? with learning rate 0.0005 and
halve the learning rate if the validation loss does not decrease for 2 epochs. We use early stop-
ping on the validation loss (patience 10 epochs). During Stage I of each training step we disable
gradients for the unimodal encoders. Models are trained for regression on sentiment values
using Mean Absolute Error (MAE) loss. We use standard evaluation metrics: 7-class, 5-class
accuracy (i.e. classification in Z N [—3, 3], Z N [—2, 2]), binary accuracy and F1-score (negative

n [—3,0), positive in (0, 3]), MAE and correlation between model and human predictions. For
fair comparison we compare with methods in the literature that use GloVe, COVAREP and
FACET features.
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Table B.2: Results on CMU-MOSEI when combining top-down feedback with different multimodal encoder networks.
MulT with T is reproduced by us. We report results, averaged over five runs, along with standard deviations.

‘ Multimodal Encoder ‘ Feedback Type Acc@7 Acc@2 F1@2 MAE Corr
Baseline - 51.3+ 0.7 81.9+0.7 82.2+0.6 0.593 £ 0.005 | 0.695 =+ 0.004
Baseline MMlatch (no LSTM) | 51.48 4+ 0.41 | 82.07 +0.47 | 82.29 +0.39 | 0.592 4 0.002 | 0.692 + 0.003
Baseline MMLatch 52.0£0.2 824+0.3 82.5+0.3 0.585 + 0.002 | 0.700 £ 0.004

MulTf - 47.91+1.13 | 80.35+ 0.36 | 80.54 + 0.52 0.643 4+ 0.01 0.648 4+ 0.02
MulTf MMLatch 49.04 + 0.45 | 80.65 £+ 0.43 | 81.07 = 0.38 | 0.627 £ 0.004 | 0.665 + 0.003

B.4 EXPERIMENTS

Table B.1 shows the results for sentiment analysis on CMU-MOSEI The Baseline row refers
to our late-fusion baseline described in Section B.2, which achieves competitive to the state-of-
the-art performance. Incorporating MMLatch into the baseline constistently improves perfor-
mance and specifically, almost 1.0% over the binary accuracy and 0.8% over the seven class
accuracy. Moreover, we observe lower deviation, w.r.t. the baseline, across experiments, indi-
cating that top-down feedback can stabilize training. Compared to state-of-the-art we achieve
better performance for 7-class accuracy and binary F1 metrics in our five run experiments.
Since, prior works do not report average results over multiple runs so we also report results
for the best (mean absolute error) out of five runs in the last row of Table B.1, showing im-
provements across metrics over the best runs of the other methods.

In Table B.2 we evaluate MMLatch with different multimodal encoders and different feed-
back types. The first three rows show the effect of using different feedback types. Specifically,
first row shows our baseline performance (no feedback). For the second row we add feedback
connections, but instead of using LSTMs in the feedback loop (Stage I in Fig. B.1), we use a
simple feed-forward layer. The last row shows performance when we include LSTMs in the
feedback loop. We observe that, while the inclusion of top-down feedback, using a simple
projection layer results to a small performance boost, when we include an LSTM in the feed-
back loop we get significant improvements. This shows that choosing an appropriate mapping
from high-level representations to low-level features in the feedback loop is important.

For the last two rows of Table B.2 we integrate MMLatch with MulT architecture® >,
Specifically, we use MMLatch, as shown in Fig. B.1 and swap the baseline architecture (uni-
modal encoders and cross-modal fusion) with MulT. We use a 4-layer Transformer model with
the same hyperparameter set and feature set described in the original paper®*?. The output
of the fourth (final) layer is used by MMLatch to mask the input features. First, we notice
a performance gap between our reproduced results and the ones reported in the original pa-
per (fourth row of Table B.2). Other works®***** have reported similar observations. We
observe that the integration of MMLatch with MulT yields significant performance improve-
ments across metrics. Furthermore, similarly to Table B.1, we observe that the inclusion of
MMLatch reduces standard deviation across metrics. Overall, we observe that the inclusion of
MMLatch results to performance improvements for both our baseline model and MulT with

"We use the original code in this GitHub Link
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no additional tuning, indicating the effectiveness of the proposed method.

Fig. B.2 shows a heatmap of the average mask values %(fT + fa). This mask is applied to
the input visual features iy, i.e. 35 FACET features. The average mask values range from 0.36
to 0.65 and depicted across 7 sentiment classes. Some features are attenuated or enhanced
across all classes (e.g. features 1 or 32). Interestingly, some features are attenuated for some
classes and enhanced for others (e.g. feature 2). More importantly, mask values change almost
monotonically as the sentiment value increases from —3 to +3, indicating MMLatch training
procedure is well-behaved. We observe the same for COVAREP masks.

B.5 CoNCLUSIONS

We introduce MMLatch, a feedback module that allows modeling top-down cross-modal in-
teractions between higher and lower levels of the architecture. MMLatch is motivated by
recent advances in cognitive science, analyzing how cognition affects perception and is im-
plemented as a plug and play framework that can be adapted for modern neural architectures.
MMLatch improves model performance over our proposed baseline and over MulT. The com-
bination of MMLatch with our baseline achieves state-of-the-art results. We believe top-down
cross-modal modeling can augment traditional bottom-up pipelines, improve performance in
multimodal tasks and inspire novel multimodal architectures.

In this work, we implement top-down cross-modal modeling as an adaptive feature mask-
ing mechanism. In the future, we plan to explore more elaborate implementations that directly
affect the state of the network modules from different levels in the network. Furthermore,
we aim to extend MMLatch to more tasks, diverse architectures (e.g. Transformers) and for
unimodal architectures. Finally, we will explore applications of top-down masks for model
interpretability.
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ACRONYMS

Abbr. Description Greek Translation Page List

k-NN k Nearest Neighbor. k Kovtwvortepor Teitoveg 13,17, 18,
31, 81, 83,

88, 93-95,

97

Al Artificial Intelligence. Texvnt Nonpootvn 47,49
ANN Artificial Neural Networks. Texvnta Nevpwvikd Alktoo 54
ASR Automatic Speech Recognition. Avtopatn Avayvaopion Pwviig 21, 22,
101-107,
121, 122,
124, 125,
127, 128,
131, 132,
138, 139

cMDS Classical Multi-Dimensional Scaling. Khaown HHodvdibotatn Khypdxwon 61-63
CoD Curse of Dimensionality. Koatapa tng Alaotatikotntog 91
CPT Continuous Pre-Training. Yvveyrg Iposkmaidevon 35, 36, 43,
44, 105,

107,

131-133,

135

CTC Connectionist Temporal Classification. ~ Zuvvdetiotikr) Xpovikr Ta€ivopion 35, 41, 43,
44, 102,

105, 124,

130-132
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Page List

DAT

DPT

DR

DSM

EWC

GloVe

GPS

GPT-4

IS10

ISOMAP

KL

LDA
LE

Domain Adversarial Training.

Domain Pre-Training.

Dimensionality Reduction.

Distributional Semantic Model.
Elastic Weight Consolidation.
Global Vectors for word

representations.
General Pattern Search.

General Pre-Training model version 4.

Interspeech 2010.

Isometric Feature Mapping.

Kullback-Leibler.

Linear Discriminant Analysis.
Laplacian Eigenmaps.

Avtaywviotikr Exnaidevon ITediov

Ipoeknaidevon Iediov

Meiwon Awxctatikdtnrag

Katavepnpévo Znpoactoroyikd Atktoo
EAlaotikn Zvuyxdvevon Bapov
Juvolik& Atvdopata yio

avanapaotaot AéEewv
T'evikr) Avadritnon Ipotomwv

Movrtého I'evikrig Ilpoekmaidevong (4n
éxdoom)

Interspeech 2010

Ioopetpikn) Amewkovion

Kullback-Leibler

Ipappikny Arakpirikny Avédvon
Aomhaoiovy ISoamekdvion

17, 19, 36,
38-40,
103-106,
109,
112-114,
116-119
17, 19,
38-40, 107,
112-114,
116-118
13, 18, 21,
60, 61,
81-84,
86-89,
91-97, 143
144

36, 54, 55,
107

27, 83, 88

23, 27, 60,

62, 65-69,

73-76, 143
49

18, 21,
29-31, 33,
92-95, 97
17, 18, 26,
29, 33, 61,
62, 81, 83,
84, 86, 88,
92-94, 96,

97

106
91, 92

61, 62, 93,
94
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LLE

LM

LR
LTSA

M2DS2

MDS

MLM

MLP

MSE

NLDR

PCA

PSL

Locally Linear Embedding.

Language Model.

Logistic Regression.
Local Tangent Space Alignment.

Mixed Multi-Domain Self-Supervision.

Multi-Dimensional Scaling.

Masked Language Modeling.

Multi-Layer Perceptron.
Mean Squared Error.

Non-Linear Dimensionality Reduction.

Natural Language Processing.

Principal Component Analysis.

Pseudo-Labeling.

Tomké I'poppikn Evewpdronon

I'woowkn Movtelomoinon

Aoyiotikr ITaAvdpopnon
Tomwkr) Epamtopevikn Xwpikn
EvBuypappion

Miktr] HHoAv-nediokny Avtoenifieyn

IToAvdiaotarn Khpdkwon

Maokopdpa Thwooikn
Movrtehomoinon

IToAveninedo AvtiAnmTpo
Méoo Tetpoywvikd Zedipa

Mn Ipopypukr) Meiwon

AwotatikotnTog

Ene€epyacio Puowrig Mwooag

Avéivon Kopuwv Zuvictwodv

Yevdoemionpeiwon

26, 27, 29,
30, 32, 33,
61, 62, 81,
83, 84, 86,
88, 89,
92-94, 96,
97

19, 21, 22,
43-45, 104,
128,
130-132,
135-138
93,95

26, 29, 81,
83, 84, 86,
88

17,19, 21,
22, 39, 40,
43-45, 122,
130-138
17, 18, 23,
26-30, 32,
33, 46, 54,
55, 59-64,
69, 73, 74,
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144

17, 19,
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Page List

RBF

ROA

SDE
SER

SMACOF

SO

SSL
SVD
SVM

UDA

UDALM

Radial Basis Function.
Recurrent Neural Network.
Recurrence Quantification Analysis.

Semi-Definite Embedding.
Speech Emotion Recognition.

Scaling by Majorizing a Complicated
Function.

Source-Only.

Self-Supervised Learning.
Singular Value Decomposition.
Support Vector Machines.

Unsupervised Domain Adaptation.

Unsupervised Domain Adaptation
through Language Modeling.

Yvvéaptnon Baong Aktivikod Tomov
Avadpopukd Nevpwvika Aiktoa
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93,95
148

18, 30, 31,
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29, 55,
91-93, 97,
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18, 26, 27,
29, 64, 78,
81, 83-86,
88, 89, 93
17, 19, 21,
22, 38, 39,
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131-133,
136, 137
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83, 84, 88
93,95
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36, 46, 55,
56,
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115, 117,
118,
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130-132,
138, 139,
143-145
17,19,
36-40,
109-114,
116-119,
123

166



Abbr. Description Greek Translation Page List

WER Word Error Rate. Aektikog Pubpog Zeahpoatog 17,19, 21,
22, 42-45,

125,
130-133,
135, 137,

138

WRR Word error Rate Recovery. Avéxnon Aekticod PuBpoo 21, 22, 43,
ZPAApHATOG 131, 132
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