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1 Introduction

1.1 Jet Engine Outline

Aircraft engines, often referred to as jet engines are the heart and soul of modern avi-
ation. In general, jet engines, generate thrust by the usage of jet propulsion. These
propulsion machines are the reason for the revolution of travel philosophy in the past
century. Modern air crafts are able to to soar through the skies at unprecedented speeds
and altitudes, for a substantial time, withstanding various weather conditions. In this
part of the introduction we will delve into the fascinating world of jet engines, exploring
their fundamental principles which made them a pivotal part in the world travel. Two
books that have summarized beautifully the dynamics behind jet engines are written
by Friswell [4] and Geradin [6]. Here are the main components of a typical jet engine,
which work together expelling high-velocity exhaust gases and powering the aircraft:

• Inlet: Also known as the air intake, it’s the front part of the engine that captures
and compresses incoming air.

• Compressor: It contains multiple rotating blades, which compress the incoming
air, by increasing its pressure before it enters the combustion process.

• Combustion Chamber: In this area, fuel is injected and mixed with the compressed
air. Then the mixture that is created is ignited, as a result creating high-pressure.

• Turbine: Turbines are then driven by the high-pressure gases. These turbines ex-
tract energy from the gases to provide thrust.

• Exhaust Nozzle: In this rear part of the engine, high-velocity exhaust gases are
expelled, creating thrust to power the compressor and the fan by the shafts.

• Accessory Gearbox: This component powers accessories such as generators, hy-
draulic pumps and auxiliary systems

The following figure presents the positions of bearings that are being used in the Rolls-
Royce Trent 1000 engine:
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Figure 1.1: Bearings of the Rolls-Royce 1000 Engine [22]

1.2 Bearing Applications in Jet Engines

Bearings in general play a crucial role in jet engines, ensuring their smooth and efficient
operation. More specifically, ball bearings are widely used in this field, due to their
ability to substain high trust loads and speed, while maintaining a low cost. Here are
some key applications of ball bearings in jet engines:

• Compressor and Turbine Bearings: Ball bearings are used to support the rotation
of the compressor and turbine blades, which operate at very high speeds and tem-
peratures. Ball bearings allow precise alignment and reduce friction, which is an
essential element for the efficiency of the compression and expansion of air and
gases within the engine.

• Accessory Drive Bearings: Accessory drives power systems like hydraulic pumps,
generators and fuel pumps. The shafts of these drives are being supported by ball
bearings, that ensure their smooth rotation

• Thrust Support Bearings: Jet engines generate an enormous thrust to propel the
aircraft forward. Ball bearings are design this way to withstand this thrust and sup-
port axial loads, handling the forces generating during take-off and flight. These
bearings help maintain the axial position of the engine’s rotating components

• Auxiliary Power Unit Bearings: These units are smaller gas turbine units and they
are used to provide auxiliary power for functions like starting the main engines,
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electricity generation and air conditioning. In these systems ball bearings are used
to support the shafts

• Gearbox Bearings: Ball bearings are often used in gearboxes, to ensure an efficient
power transmission and reduce wear.

• Variable Geometry Bearings: In the case that a jet engine carries variable geometry
components, e.g. adjustable guide vanes or nozzle vanes, ball bearings are used to
support that movement to ensure a precise control of airflow and thrust.

• High-Speed Bearings: Ball bearings are optimal to withstand the extremely high
operating speeds of ball bearings, with minimal friction and wear. Not only that,
but they are made in such material to even operate in extremely high temperatures.

In conclusion, ball bearings are essential components in jet engines, contributing to their
reliability, efficiency, and overall performance. These small but essential parts of the
whole machine help reduce friction and wear, ensure the precise operation of critical
engine components, allowing for precise control of airflow and thrust.

1.3 State of the Art

Mechanisms that require transfer of rotary motion are in need of a machine element that
permits such motion, allowing such power transmission. A common practice throughout
the years, is the usage of bearings. Specifically, ball and roller bearings, often referred
to as ”rolling bearings”, are preferred, for their ability to establish a good power trans-
mission and load support, with minimum power losses and lubrication cost. For that
reason, it is now a common practice to use ball bearings, amongst other bearings, in
other complex mechanisms such as jet engine rotors. To ascertain what a fundamental
part bearings play in modern engineering applications, it is essential to understand how
these bearings operate and can withstand operating under strenuous operations, such
as a jet engine environment.

Most information about bearings are available from the manufacturers, who present
data usually extracted from tests or purely out of empirical nature. Either source of
information is often given from the American National Standards Institute (ANSI) or
International Organization for Standards (ISO). However, that data only present appli-
cations which involve mostly low speeds, low loads and low temperatures. In order
to fully take advantage of the potential of bearings, an engineer needs to return to the
basics.

A very thorough and overall summation of the potential of rolling bearings is provided
by Harris, with the book ”Rolling Bearing Analysis” [11]. Harris’ book dives deep into
the dynamic phenomena that surround the bearing’s operation. Harris has managed to
keep condensed and simplified the concept and mathematical presentations after thor-
oughly reviewing the available literature at the time. From the kinematics and motions
to lubrication effects and fatigue life. This book is a standard for every engineer that
needs to fully grasp the idea of complexity of rolling bearings.
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Going back some years, in the 60s, Jones [12],[13] has published some articles that contain
details about the elastic constraints and different motions that occur in ball bearing
operations. The first publication ”Ball Motion and Sliding friction in Ball Bearings”
[12], conceptualizes the sliding motions along with the pressure areas. Here, a method
is derived to determine the motion of the ball, along with the power loss because of
sliding friction. Specifically, the analytical expression of the elliptical pressure of contact
is denoted. This paper then is connected with his next publication ”A General Theory for
Elastically Constrained Ball and Radial Roller Bearings Under Arbitrary Load and Speed
Conditions”. This paper presents the general equations for the elastic equilibrium of ball
bearings. What is notable here, is that this is the first time the term ”race control” has
been referenced, in terms of literature. In order to solve the equilibrium, a race control
type must be assumed. Jones provides with two expression to check the type of race
control. However, in order to determine the type, the dynamic operating contacts need
to be determined iteratively. These terms are explicit to the ellipse’s coordinates, which
is a complicated matter by itself. Jones offers the general equations, but the level of
complication is that great that in modern ball bearing engineering race control is either
ignored completely or defaulted as outer race control (as Harris also supports). Servais
and Bozet tried to follow up on this idea with their publication ”New computational
method of the ball/race contacts transverse loads of high speed ball bearings without
race control hypothesis” [24], [23], [2]. Basing their hypothesis on the Jones and Harris
ball bearing kinematic theory, they develop a method in determining the type of race
control. However, in order for this method to be successful, the different speeds of the
ball’s contact area with the rings must be determined. Once again, this leads back to
Jones [12], with the relative motions of the rolling element. In that regard, Noel [21]
introduces another way to determine the power distribution, instead of the race control:
The Hybrid hypothesis, which is based on the d’Alembert’s principle. His assumption
was based on Changan’s publication [3].

Lim and Singh provide explicit expressions of non-linear stiffness of rolling bearings,
that contain kinematic and elastic characteristics [18], [19]. This paper develops a new
mathematical model of the rolling element bearings, while providing with a numerical
scheme to compute the stiffness matrix K. Indeed, here a simple computational way
of calculating the non-linear forces and stiffness is given. However, the proposed kine-
matic relations remain quite basic and stay within the premise of a constant Hertzian
parameter and a single contact angle. Based on this paper, Wagner [26] further extends
the ball bearing modelling. In his thesis he introduces new kinematics that take into
account the different contact angles of the rolling element. In addition, the modelling of
dry and lubricated contact are introduced. He also takes into consideration the different
gyroscopic and centrifugal phenomena. In other words, introducing not only kinematic
but also the dynamic modelling of such bearings. Likewise, Wensing [28] thoroughly
explains the development of stiffness and damping for both dry and lubricated contacts.
In regards of the calculation of the Hertzian area, Grekkousis has done an approximation
[7], which the papers use. Additional kinematic relations are given by Wang [27], Liao
[16] and Kurvinen [15] but most of them remain in the premise of the kinematics that
Harris suggest. In some cases variations are suggested. Liew [17] explores the kinematic
relations of a Five-degrees-of-freedom model with inertia and holding a transient solu-
tion method for such model. Furthermore, Gao [5] suggests another non-linear dynamic
ball bearing model, taking into consideration thermal effects.

Gupta [8] has created a commercial tool for dynamic calculations of bearings, called
ADORE [9]. This stand alone tool , however, cannot be coupled directly with a rotor
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to execute dynamic simulations and investigate directly the effects of the whole system.
In addition, since it is a commercial tool, the kinematics and other modelling of the
phenomena are not available to the public. To investigate the effects of a ball bearing
coupled with a rotor Tiwari [25] suggests to couple the rotor a bearing using a resultant
translational velocity.

1.4 Motivation

Jet engine applications are operating under high speeds and loads. These conditions
are producing high thrust loads, making conditions in need of support. In order for
the rotor to sustain these loads, supporting structures are introduced, such as bearings.
These bearings may be of several types. For large loads, then ball bearings are used.
Ball bearings provide a great load support and stiffness, but influence the dynamic be-
haviour of the whole structure, influencing the natural frequencies of the system. The
effect of the load and speed on the bearing’s stiffness needs to be investigated, as it is
natural that the stiffness does not remain constant during the operation of the jet engine.
This dependency can change the system’s whole transient response and introduce new
excitations in the system. In addition, the modelling non-linear bearings, can lead to
completely replace of Squeeze Film Dampers (SFD) in aircraft engines, providing non
linear damping, reducing the cost in oil and manufacturing. As of now, aircraft engine
rotors are supported by a combination of rolling bearings and SFDs. However, by having
a non-linear bearing that provides adapting stiffness and damping, can operate in the
rotor, without the help of SFD damping.

Furthermore, there are no commercial tools available that have implemented non-linear
stiffness, while investigating the effects by directly coupling the model to a jet engine
rotor. Implementing non-linear ball bearings can give us a clear view on the kinematics
that are being used and develop more advanced modelling methods to provide even
more accurate results. The purpose of this thesis is to provide the reader with a struc-
tured idea of the steps that are taken to create such advanced modelling. Specifically, the
current thesis deals with the speed and load dependency of both kinematic and dynamic
modelling, taking into consideration different phenomena, e.g. elastohydrodynamic lu-
brication, gyroscopic moment, centrifugal forces etc. In addition, this model is able
to directly be coupled to a jet engine model and provide fast results of time transient
responses and harmonic balance with minimum convergence problems. One specific
element that sets this thesis apart, is the introduction of the race control hypothesis im-
plementation. All in all, the models that are being introduced can be further extended
to other types of non-linear bearings, such as roller bearings, or having additional im-
plementations such as thermal effects, skidding, press fits.

1.5 Content of Chapters

In Chapter 2, there is an overview of the modelling that will follow. The distinction
between Kinematic and Dynamic Modelling is made, along with a brief information of
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the basic content of each model. In addition, the inverse and direct formulations are also
introduced.

Chapter 3, takes a dive into the theoretical background of the kinematic modelling. The
bearing’s geometry is introduced along with the kinematic relations. This chapter thor-
oughly explains how the dry and lubricated contacts are modelled accordingly. The
explicit expressions that contain kinematic and elastic characteristics are given. All vari-
ations of the kinematic modelling are then compared in a separate section.

Chapter 4, presents the formulation of the dynamic modelling. Different variations of
kinematic equations are examined. Furthermore, the race control hypothesis is intro-
duced. This hypothesis is further investigated with case scenarios. Ball pitch angle is
also discussed with corresponding results.

In chapter 5, validation of the previous models with a commercial dynamic simulation
tool (ADORE). Different cases are investigated for the speed and load dependency of the
bearing’s stiffness. Finally, a realistic example of an aircraft engine’s Low Pressure (LP)
rotor is used for further validation.

Chapter 6, the coupling of the models with a different rotor examples is examined. This
chapter goes into detail on how the coupling is established. Then, the results of the
transient simulation are showcased (time domain plot and spectrogram). In the end, the
findings are discussed and future work is suggested.

In chapter 7, the conclusion takes place, along with a summary of the principle ideas of
the thesis. Further suggestions and future works are also discussed.
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2 Bearing Theory

2.1 Introduction to Bearing modelling

This particular thesis focuses on the modelling of ball bearings under high speed and
loaded conditions. A group of different modelling formulations will follow, as additional
changes and different phenomena are added gradually. There are two big distinctions
that are made: Kinematic and Dynamic modelling. Both the models provide non-linear
stiffness, however, each have a series of phenomena that they either neglect or take into
consideration. It is up to the user to determine what model is fit for each operation.

The models that fall under the basic category of Kinematic modelling, follow the Lim
and Singh [18] kinematic formulation of ball bearings. They hold the same approach
when it comes to the calculation of the contact angle αk and they neglect any centrifugal
forces and gyroscopic moments. They follow a dry Hertzian contact or a lubricated
contact. Skidding and rolling phenomena are neglected. All in all, there is an implicit
connection from the kinematics to the calculation of stiffness. Damping is provided only
for the lubricated case.

The ball bearings that follow the dynamic modelling have different contact angles for the
ball raceways (αout,αin) and take into account the additional degrees of freedom (DoFs) of
the ball, as well as the centrifugal forces. they solve the dynamic equilibrium each time
and they apply the race control hypothesis. The calculation of the stiffness and forces is
now provided by solving numerically the problem, while load and speed conditions are
directly introduced into the problem.

2.2 Forward vs. Inverse Formulation

There are two different problem formulations, that can provide different solutions de-
pending on the wanted outcome. An inverse formulation, is expressed by applying a
known force, thus acquiring the displacement of the inner ring, by solving the quasi-
static equilibrium. Alternatively, a forward or direct problem was given the inner ring
displacement and then calculates the occurred force, following analytical expressions.
The following results are mostly generated by using the direct formulation. However, an
inverse formulation was also achieved by approximating the displacement with a solver
(”fsolve” in Python). The following parts contain a brief summary of the steps that were
followed, in order to produce results, before going in depth in the whole process.
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Forward Formulation

As mentioned above, the main idea is that the generated inner ring forces can be deter-
mined from the given inner ring displacement. Firstly, global inner ring displacements
must be given. Then, based on certain kinematic formulations and the bearing geometry,
the axial (ua) and radial (ur) displacements are calculated. Also, the individual position
of each ball φk is determined. At this point it must be highlighted that there is a direct
correlation between the kinematic formulations, that are being used, and the generated
force and stiffness matrices. Thus, making the modelling kinematically sensitive. This
relation between the initial inner ring displacement is what also makes the model, load
dependent. After more in between calculations are done, the Hertzian parameter KH
must be determined. Later on, it will be proven that this parameter is also dependent on
the inner ring displacements. Using this parameter, the theoretical elastic deformation
of the ball raceway contacts δk and certain projection vectors, the external forces and
moments of the inner ring can be determined. Finally, the procedures for determining
the stiffness matrix vary, according the calculation method (analytically, numerically).

Inverse Formulation

The inverse problem formulation, follows the exact opposite structure as the forward
problem. Meaning, it is given the external load and it returns the inner ring displace-
ment vector u. In order for this to be done, the state vector u must be approximated
numerically, for the minimization of the resulting inner ring forces. Of course, an initial
vector u must be set in order for this method to work. A later example will showcase this
method thoroughly. Using this initial step, we proceed with the calculation of the kine-
matics and the generated forces and stiffness, for said displacement. In essence, the same
steps as the forward problem are applied. However, after the end of the calculation, a
minimization of the resulting force follows, using a solver (”fsolve” in Python). Thus, we
retrieve the correct displacement that creates said inner ring force and then we proceed
with the calculation of the correct force. In other words, an initial input, returns a force
and that force generates the correct state vector, that it will be then used to generate the
expected inner ring forces and stiffness. This procedure is more time consuming, as it
needs more computational power to minimize the function and essentially performing
all the calculations twice.
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3 Kinematic Modelling

3.1 Standard Lim and Singh Model

Introducing the first bearing model, that follows the proposed kinematic and geometrical
relations of Lim and Singh (LS) [18]. They introduce a comprehensive mathematical
model to calculate the bearing stiffness matrix K, using basic principles.

This method derives the bearing displacement vector u, that is generated from external
loads and bearing preload, and calculates the force F and stiffness K matrices, respec-
tively. This is referred to as ”Inverse” formulation. Two methods of approach are used
in this thesis: the Forward and the Inverse problem, as discussed before.

In the standard model, the effects of the force and stiffness matrices are transmitted
through basic geometric relations of the bearing and the rolling elements. It is assumed
that the angular position between each rolling element is always maintained relative, as
the cages are assumed rigid and pin retainers are taking place. Furthermore, any effects
of centrifugal forces and gyroscopic moments are neglected. A dry contact is in effect
and any lubrication or thermal issues are ignored. For the effects of the dry contact,
an effective stiffness coefficient (Hertzian Parameter) KH, is calculated following the
Hertzian Theory. Finally, the standard model achieves the computation of a non-linear
stiffness matrix K, while presenting the parametric dependence between the kinematics
and loads.

3.1.1 Kinematics and Geometrical Relations

The proposed model by Lim and Singh(LS) [18] offers a simple depiction of the bearing
kinematics. Generally, the rolling element displacements are expressed through constant
bearing parameters. This allows the development of a model that gives the liberty of only
manipulating the input externally, meaning the bearing geometry.

The following proposed kinematic relations are taken as is from the Lim and Singh
(LS) publications [18]. This study proposes a rolling element bearing stiffness matrix
K which is suitable for analysis of the vibration transmission through a ball bearing
and investigate the existence of the non-linear algebraic bearing equations by describing
load-displacement dependency. The LS model, offers a linear vibrating system, making
fast and easy calculations of the force, stiffness and damping matrices.

In this section, the kinematic and geometric relations will be as expressed from the
LS paper. This first ”Standard model”, the gyroscopic moment, centrifugal forces and
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elastohydrodynamic effect, are not taken into consideration. It is also assumed that no
skidding or rolling effects occur. Moreover, a rigid cage and ring is assumed, along with
common cage speed. Further on, the different dynamic phenomena will gradually be
taken into consideration, thus producing a different result, which will be also evaluated.

Ball Bearing Geometry

This section delves deeper into the bearing geometric relations, that are crucial for the
definition of ball geometric relations. To initiate the calculation, the bearing’s geometric
parameters are needed, which are usually available from the manufacturer. This turns
out to be helpful, as the user just needs to change externally the bearing parameters in
order to manipulate the results. These parameters are: the inner Din and the outer ring
Dout diameter. The ball diameter Db, from which the ball radius br can be derived as
br = Db/2. The inner ring raceway diameter din and the inner groove curvature radii
rin must be given from the manufacturer. The same applies for the equivalent quantities
of the outer ring dout and rout. After enquiring these parameters, using the following
expressions, we can acquire the full geometry configuration of the ball bearing. The
pitch diameter can be expressed as: dm = (dout + din)/2 and the radial position of the
inner race curvature centre as: rj = din/2 + rin. From the above, the unloaded distance
between the inner and outer raceway curvature centres A0 can be calculated:
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Figure 3.1: Unloaded Bearing Geometry
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Figure 3.2: Ball Distribution

A0 = rin + rout − Db (3.1)

Axial aL and radial ar clearance occurs when being in an unloaded state. Meaning, when
the bearing is in a force-free state, the axial and radial displacements are expressed as:

aL = A0sin(a0), (3.2)

rL = rin + rout −
Db

2
(3.3)

where a0 ,is the unloaded contact angle of the bearing:

a0 = arccos(1− rL

A0
) (3.4)

As the bearing is in a loaded state and since the outer ring is considered rigid, the
rolling elements are distributed evenly. However, different contact angles occur for every
rolling element, especially for combined axial and radial loads. According the position
of each ball in relation to the loaded zone, the contact angle changes. In order to define
that contact angle, first the circumferential position of each individual ball k must be
expressed:

φk =
2π

N
k + ωct, kε[0; N − 1] (3.5)
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Figure 3.3: Preloaded Bearing Geometry, Inner Ring Displacement

Where ωc is the rotational speed of the cage. This circumferential position of each el-
ement is dependent on the common cage speed ωc and N the number of balls. This
speed is common, as the cage forces the rolling elements to rotate with the same circum-
ferential speed. Once the circumferential position is determined, the axial and radial
displacement of the centre of the inner raceway curvature at each balls position k is
expressed as [26]:

uα,k = uz + rj(ψxsin(φk)− ψycos(φk)), (3.6)

ur,k = uxcos(φk) + uysin(φk)− rL (3.7)

where rL is the radial clearance, rj is the radial position of the inner raceway curvature
centre and u is the inner ring displacement vector and it is expressed as:

u =
[
ux uy uz ψx ψy ψz

]
(3.8)

Notably, the displacements above are explicitly dependent on the inner ring displace-
ment vector, making the modelling very sensitive to any movement of the inner ring.
Through this, a load dependency can be achieved. It will be discussed later on, that
the movement of the inner ring is caused from the load effects that are taking place on
the bearing, thus implementing this to the model. It can be also seen, in the previous
expressions, that a circumferential position dependency is applied. In this way, a state
dependency can be implemented into the modelling.

After the calculation of the bearing’s displacements, the elastic deformation of each
rolling element follows. Elastic deformation occurs due to the contacts of the rolling
elements and the inner and outer rings. In this basic model, a dry Hertzian contact is
modelled and the speed effects are neglected. In order to determine this component,
the contact angle of each individual ball must be calculated. Within the framework of
Lim and Singh, the contact angles between the inner and outer ring are equal (αk =
αin = αout). Consequently, the sum of the theoretical elastic deformation is expressed as
δk = δin + δout.
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First of all, the loaded distance between the inner and outer raceway curvature centres
-Ak- must be determined. It expresses the distance between the inner and outer raceway
groove curvature centre:

dsαk = uα,k + A0 sin α0, (3.9)

dsrk = ur,k + A0 cos α0, (3.10)

Ak =

√
dsαk

2 + dsrk
2 (3.11)

where dsαk and dsrk are axial and radial displacements, respectively. Consequently, the
loaded contact angle occurs as:

αk = arctan
(

dsαk
dsrk

)
(3.12)

and the theoretical elastic deformation δk denotes as:

δk =

Ak − A0, (Ak − A0) > 0

0, (Ak − A0) ≤ 0
(3.13)

As shown above, the elastic deformation δk consists of the difference between the real
(Ak) and the load free (A0) displacement. Once this value is greater than zero, then
contact is established. When, this difference is less or equal to zero, free play occurs.
Free play is the phenomenon where the ball is allowed to move freely in the raceway, as
it has no movement restriction from contact. Thus when free play is active, no contact
force occurs. Thus it is worth noting that there is room for future work in order to
improve the configuration of the radial and axial free play, making it more realistic.

There are conditions to which free play occurs [26].

Axial free play:

−
√

A2
0 − (A0 − 2rL)2 − αL ≤ uz ≤

√
A2

0 − (A0 − 2rL)2 (3.14)

Radial free play:
− rL ≤ ux ≤ rL (3.15)

This shows the restriction of the kinematics by Lim and Singh. The force free radial
movement is equal to the free play rL. The force free axial movement is slightly different
to aL. This is a simplification made by Lim and Singh. This simplification is substituted
later, when the updated kinematics are introduced in the Dynamic modelling chapter.

When all the kinematics are implemented, the estimation of the Hertzian parameter
follows, as it is necessary for the computation of the elastic normal force Qn,k of each
ball:

Qn,k = KHδ
3
2
k , kε[0; N − 1] (3.16)
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where N is the number of balls.

In order to obtain that, the calculation of the Hertzian parameter must be done.

3.1.2 Hertzian Theory

When the rolling elements and the raceways are respectively in a point contact, due to
dry condition, elastic deformation takes place. The geometry of a point contact is de-
scribed by four radii of curvature. The surface of the inner raceway is convex whereas
the surface of the outer raceway is concave. By definition, convex surfaces have positive
radii and concave surfaces have negative radii. Due to this concave and convex area con-
tact, an elliptical shape is created. The pressure, known as the Hertzian contact pressure,
that is created between the two bodies result in the formation of contact forces. Addi-
tionally tangential forces can be transmitted. In later stages of the thesis, the calculation
of such forces will be discussed.

3.1.3 Determination of Hertzian Parameters

The calculation of the static normal forces Qn, occurs with the multiplication of the

stiffness coefficient KH and the elastic deformation due to contact δ
3
2
k . As referred in

equation 3.13, δ is calculated. The computation for the Hertzian Parameter KH is done
analytically, from the expressions taken from Wensing [28]. In order for the Hertzian
Parameter KH to be calculated, the individual radii of curvature for both inner and outer
ring contact must be defined [28]:

plane 2

plan
e 1

body I

ρ1X

ρ1Y

ρ1Y

plan
e 1

plane 2 body II

ρ2X
ρ2Y

δ

Figure 3.4: Hertz Contact of Two Mounted Surfaces [26]
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For inner ring contact:

R1X,in =
Db
2

,

R1Y,in =
Db
2

,

R2X,in = 0.5
(

dm

cos αk
− Db

)
,

R2Y,in = −rin,

ρ1X,in =
1

R1X,in
,

ρ1Y,in =
1

R1Y,in
,

ρ2X,in =
1

R2X,in
,

ρ2Y,in =
1

R2Y,in

(3.17)

Similarly, for outer ring contact:

R1X,out =
Db
2

,

R1Y,out =
Db
2

,

R2X,out = −0.5
(

dm

cos αk
+ Db

)
,

R2Y,out = −rout,

ρ1X,out =
1

R1X,out
,

ρ1Y,out =
1

R1Y,out
,

ρ2X,out =
1

R2X,out
,

ρ2Y,out =
1

R2Y,out

(3.18)

Resulting to a reduced curvature R of the polaroid, for both contacts as:

R = (ρ1X + ρ2X) + (ρ1Y + ρ2Y) (3.19)

Once the radii are determined, the additional parameter cos τ, as specified by HERTZ
[26]:

cos τ =

√
(ρ1X − ρ1Y)2 + (ρ2X − ρ2Y)2 + 2(ρ1X − ρ1Y)(ρ2X − ρ2Y)

R
(3.20)
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and the function f (τ) as:
f (τ) = ln (1− cos τ) (3.21)

At this point of the calculation, it is integral to denote the approximation of the param-
eters ξ and η. These approximations were given by Grekoussis [7] to eliminate time
consumption while giving a low error.

ln ξ =


f (τ)

−1.53+0.333 f (τ)+0.0467 f 2(τ)
, 0 < cos τ < 0.949√

−0.4567− 0.4446 f (τ) + 0.1238 f 2(τ), 0.949 ≤ cos τ < 1
(3.22)

ln η =


f (τ)

1.525−0.86 f (τ)+0.00993 f 2(τ)
, 0 < cos τ < 0.949√

−0.333− 0.2037 f (τ) + 0.0012 f 2(τ), 0.949 ≤ cos τ < 1
(3.23)

Once these parameters are determined, the first and the second elliptic integrals can be
calculated. It must be noted, that the calculation of the integrals is done by using the
Grekoussis approximation as the original expressions are denoted as:

K =
∫ π

2

0

(
(1−

(
1− 1

κ2

)
sin 2φ)

−1
2

)
dφ (3.24)

E =
∫ π

2

0

(
(1−

(
1− 1

κ2

)
sin 2φ)

1
2

)
dφ (3.25)

The approximations for the first and second elliptic integrals are given as:

E =
η3πκ

2
(3.26)

K = −E
2
(κ2 − 1) cos τ +

E
2
(κ2 + 1) (3.27)

The ellipticity parameter κ is defined as shown below, for each contact:

κ =
α

b
=

ξ

η
(3.28)

and parameter ζ:

ζ =
2K
πξ

(3.29)

where α and b ar the half-axis of the contact ellipses, α being the length of the direction
of motion, whereas b in the transverse direction.

α = η

(
Qn

3Ered
R

)
1
3 b = ξ

(
Qn

3Ered
R

)
1
3 (3.30)
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Where Ered is the reduced Young’s modulus:

Ered = 0.5
(

1− v2
2

E1
+

1− v2
2

E2

)
(3.31)

The v1,2 is defined as Poisson’s ratio for the equivalent material for each contact body.
Similarly, E1,2 is the material’s Young’s modulus. The Qn for the case of ”Dry contact”,
are the normal forces 3.16.

This flattening of the area, causes a concentration of stresses, hardening the material and
thus producing this Hertzian stiffness coefficient KH. At this stage, material damping
also occurs. However, it is quite insignificant and so it is neglected in the present state
of the modelling. For inner and outer contact respectively, the following is applied:

Kin,out =
√

3Ep

(
1

1.5ζR
1
3

)
1.5 (3.32)

where Ep is the prime Young’s Modulus, ζ is given in 3.29 and R is the reduced curvature
of the polaroid, for each contact respectively:

Ep =
2E1E2

E1(1− v1
2) + E2(1− v22)

(3.33)

Finally, we can proceed with the calculation of the Hertzian stiffness coefficient KH:

KH =
KinKout(

Kin
2
3 + Kout

2
3

)
3
2

(3.34)

Notice how the above formulation follows the logic that the total Hertzian parameter is
the result of each contact’s parameter acting as springs in line.

The maximum stress Pmax of that contact area is as follows:

Pmax =
3Qn

2παb
(3.35)

From all the above, it can be derived that the Hertzian Parameter KH is heavily influ-
enced by the geometric parameters of the bearing. As a result, two cases are worth
investigating: A loaded contact angle αk or an unloaded contact angle α0 dependency.

3.1.4 Constant Hertzian Parameter vs. Varying Hertzian Parameter

In this section, an investigation on the effect that the contact angles have on KH, will be
conducted. This will be done by using either the unloaded α0 or loaded contact angle
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αk, as shown in the individual radii of curvature. When αk is used, KH is implicitly
dependent to vector u. It is evident that these expressions dependent on the geometry.
Specific interest arises concerning the influence of contact angle αk on the curvature
radii. The rest are depended to constant bearing parameters and do not require further
investigation. Firstly, this case concerns the unloaded contact angle α0, cf. eq. 3.4. α0 is
a constant bearing parameter and it is purely dependent to the geometry of the bearing.
In this current example, for every step of displacement uz, there is no effect to KH. In
the case of the loaded contact angle αk eq. 3.12, KH is influenced by both the geometry
of the bearing as well as the displacement of the inner ring. As it is displayed in figure
3.5 below, the stiffness parameter changes linearly to the displacement.

Figure 3.5: Varying and Constant Hertzian Parameter: Comparison for Varying Inner
Ring Axial Displacement

As a result, for every step of displacement uz, a different value for KH occurs. After
investigating this matter, it seems like this variation is almost linear and in general,
insignificant. In the grand scheme of the stiffness calculation, which will take part later
on, it has almost no effect. Hence, just for accuracy purposes, a loaded contact angle αk
will be used in the more advanced models.

3.1.5 Analytical Expressions of Standard Model

After obtaining the desired KH using eq. 3.34, the modelling may proceed, by applying
the stiffness to the calculation of the recurring elastic forces Qn (3.16). This modelling
follows the analytical expressions as suggested by [26], which are mainly based on the
Lim and Singh [18] expressions.

To begin with, the generated inner ring forces are projected to the global coordinates, by
using a force projection vector e fLS,k, achieving a connection to the global loads F. Thus,
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the resulting forces of the inner ring occur as:

F = (Fx Fy Fz Mx My Mz), (3.36)

F =
N

∑
k=1

Qn,ke fLS,k (3.37)

,where e fLS,k is the projection vector of each ball-k, to the global inner ring coordinate
frame, as given by Lim and Singh [18]:

e fLS,k =



(A0 cos a0 + ur) cos φ

(A0 cos a0 + ur) sin φ

A0 sin a0 + ua

rj(A0 sin a0 + ua) sin φ

−rj(A0 sin a0 + ua) cos φ

0


(3.38)
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The stiffness matrix K is produced analytically from these formulations [18]:

kxx = KH

N

∑
k=1

δ1.5
k cos φk(

1.5Akdsrk
δk

+ A2
k − dsr2

k)

A3
k

kyy = KH

N

∑
k=1

δ1.5
k sin φk(

1.5Akdsrk
δk

+ A2
k − dsr2

k)

A3
k

kzz = KH

N

∑
k=1

δ1.5
k (1.5Akdsαk

δk
+ A2

k − dsα2
k)

A3
k

kxy = KH

N

∑
k=1

δ1.5
k cos φk sin φk(1.5Akdsrk

δk
+ A2

k − dsr2
k)

A3
k

kxz = KH

N

∑
k=1

δ1.5
k dsrkdsak cos φk(

1.5Ak
δk

)− 1

Ak3

kxψx = KH

N

∑
k=1

δ1.5
k dsrkdsak sin φk cos φk((

1.5Ak
δk

)− 1)

Ak3

kxψy = KH

N

∑
k=1

δ1.5
k dsrkdsak cos2 φk((

1.5Ak
δk

)− 1)

Ak3

kyz = KH

N

∑
k=1

δ1.5
k dsrkdsak sin φk((

1.56Ak
δk

)− 1)

Ak3

kyψx = KH

N

∑
k=1

rjδ
1.5
k dsrkdsak sin2 φk(1− 1.5Ak

δk
)

Ak3

kyψy = KH

N

∑
k=1

rjδ
1.5
k dsrkdsak sin φk cos φk(1− 1.5Ak

δk
)

Ak3

kzψx = KH

N

∑
k=1

rjδk sin φk(
1.5Akdsα2

k
δk

) + A2
k − dsα2

k

A3
k

kzψy = KH

N

∑
k=1

rjδk cos φk(dsα2
k −

1.5Akdsα2
k

δk
)− A2

k

A3
k

kψxψx = KH

N

∑
k=1

r2
j δk sin2 φk(

1.5Akdsα2
k

δk
) + A2

k − dsα2
k

A3
k

kψxψy = KH

N

∑
k=1

r2
j δk sin φk cos φk(dsα2

k −
1.5Akdsα2

k
δk

)− A2
k

A3
k

kψyψy = KH

N

∑
k=1

r2
j δk cos2 φk(

1.5Akdsα2
k

δk
) + A2

k − dsα2
k

A3
k

(3.39)

Here the calculation of the stiffness matrix K is done analytically using the equations
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above. This formulation expresses the dependency of the stiffness to the displacement
vector u. Thus the 6 x 6 stiffness matrix K is formulated as so:

K =



Kxx kxy kxz kxψx kxψy 0

kyy kyz kyψx kyψy 0

Kzz kzψx kzψy 0

sym. kψxψx kψxψy 0

kψyψy 0

0


(3.40)

In the following example, the Standard model is used. The FAG6404 ball bearing is used.
In this case, a varying inner ring displacement in the axial direction uz is applied, from
0 to 100 µm. A constant rotational speed of 3 krpm is applied.

Figure 3.6: Standard Model (LS) for Varying Inner Ring Axial Displacement

It is evident that during the first steps of the displacement, no development of force or
stiffness occurs. This phenomenon takes place because of the bearing’s clearance, as dis-
cussed in 3.14 and 3.15. No contact occurs, hence there is no elastic deflection to produce
contact reaction and Hertzian stiffness. Notice how the point of contact is identical at the
bearing’s stiffness, in the corresponding direction (axial,radial). This occurs because in
the example above, the bearing is loaded with purely axial displacement. Thus, for the
case of 3.14, it is only dependent on the bearing’s geometry. As a result, the point of con-
tact, which determines the development of force, is going to be the same for both cases,
axial and radial. Additionally, it is notable that by applying a displacement, develop-
ment of stiffness occurs. Not only that, but the stiffness that occurs is non-linear. Thus,
there is a clear correlation between load and stiffness (load dependency of bearing).

3.2 Extended Lim and Singh Model

The following model is an extension of the standard modelling to Lim and Singh, as
it uses the product of derivatives in order to calculate the force and stiffness matrices.
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The derivatives are produced by deriving the elastic deformation Qn to the inner ring
displacement vector u. However, in this thesis, the Hertzian parameter that is being used
is depended to the inner ring displacement. As a result the analytical expressions of the
derivatives are very complex and difficult to calculate. The main goal is to determine the
accuracy of the Lim and Singh simplified expressions, compared to the actual analytical
expressions. As proven above, KHk = f (αkg(u)), hence by deriving in respect to u,
we can obtain the analytical expressions of that model. That way, it is expected to
have more accuracy regarding the calculations, as the different contacts are taken into
consideration. In this particular example, the derivation has only been made in respect
to the axial displacement uz, for comparison reasons. The stiffness matrix K is produced
by the general stiffness expression, as the sum of each ball’s contribution:

Kk =
∂Qn, k

∂u
ef,k +

∂ef,k

∂u
Qn, k (3.41)

The projection vector that is being used here is suggested by Wagner [26] as:

e f ,k =



cos αk cos φk

cos αk sin φk

sin αk

rj sin αk sin φk

−rj sin αk cos φk

0


(3.42)

For this particular example only the first three derivatives shall be used (ux, uy, uz).The
procedure is done as follows:

∂ur

∂uz
= cos φk, (3.43)

∂ua

∂uz
= 1 (3.44)
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Then ∂αk
∂(u) reads as:

∂αk
∂ux

=
cos2 αk

dsrk

(
−dsαk cos φk

dsrk

)
, (3.45)

∂αk
∂uy

=
cos2 αk

dsrk

(
−dsαk sin φk

dsrk

)
, (3.46)

∂αk
∂uz

=
cos2 αk

dsrk
, (3.47)

∂αk
∂ψx

=
cos2 αk

dsrk

(
rj sin φk

)
, (3.48)

∂αk
∂ψy

=
cos2 αk

dsrk

(
−rj cos φk

)
, (3.49)

∂αk
∂ψz

=0 (3.50)

The derivative for the local deflection δk is given as:

∂δk
∂ux

=
1

2Ak

(
2dsrk

∂ur

∂uz

)
, (3.51)

∂δk
∂uy

=
1

2Ak

(
2dsαk

∂ua

∂uz

)
, (3.52)

∂δk
∂uz

=
1

2Ak
(2dsrk sin φk) , (3.53)

∂δk
∂ψx

=
1

2Ak

(
2dsαk2rj sin φk

)
, (3.54)

∂δk
∂ψy

=
1

2Ak

(
−2dsαk2rj cos φk

)
, (3.55)

∂δk
∂ψz

=0 (3.56)

Finally, the derivation ∂ef,k
∂(u) reads as:

∂ef,k

∂ux
=

∂αk
∂ux

cos φk (− sin αk) , (3.57)

∂ef,k

∂uy
=

∂αk
∂uy

sin φk (− sin αk) , (3.58)

∂ef,k

∂uz
=

∂αk
∂uz

cos αk, (3.59)

Then, each Hertzian parameter from (2.14) is derived with respect to uz accordingly. So



3 Kinematic Modelling 25

a KH derivative occurs as:

∂KH

∂uz
= −(KH,in + KH,out)


∂KH,in

∂uz
KH,in

1
3

+
∂KH,out

∂uz
KH,out

1
3

(K
2
3
H,in + K

2
3
H,out)

5
2

 (3.60)

An example of the occurring partial derivative of Qn,k:

∂Qn,k

∂uz
= 0.5

√
δk

(
2δk

∂KH,k

∂uz
+ 3KH,k

∂δk
∂uz

)
(3.61)

Finally, the axial stiffness Kxx can be denoted as:

Kzz =
∂Qn,k

∂uz
ef,k + Qn,k

∂ef,k

∂uz
(3.62)

This method has been validated by using the Central Difference method for the formu-
lation of stiffness matrix K :

ki,j =
Fmax,j − Fmin,j

2∆u
(3.63)

,where iε[1, 6] and jε[1, 6]. Essentially, for each coordinate of the stiffness matrix, the
maximum and minimum force that can be generated, is calculated. Then, it is divided
by an increment ∆u. Using the previous example (FAG6404 bearing and varying uz
displacement), we compare the standard and the extended models.

Figure 3.7: Comparison Between Standard (LS) and Extended Model with Hertzian Stiff-
ness Coefficient Dependent on Loaded Contact Angle αk

As it is evident from the figures above, the difference between the two methods is detri-
mental. In order to avoid high computational load, it is recommended to use the Stan-
dard model with the simple analytical expressions. The stiffness coefficient seem to have
an almost non existent effect in the whole axial displacement operation.
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3.3 Elastohydrodynamic - EHD Model

In this model, the bearing is assumed to be under lubricated conditions. Hence, to
describe its behaviour the elastohydrodynamic lubrication (EHD) theory will be used.
The lubrication in bearings has the purpose of reducing the friction between the rolling
elements and the raceway, thus extending the wear. At this stage, it is essential to study
this phenomenon, as it influences the elastic deformation, affecting the elastic force,
stiffness and damping behaviour. Additionally, it is essential to model this lubrication
effects that occur during the bearing operation, in order to achieve more realistic results.
The following section, investigates the effects and the way to effectively model this.

3.3.1 EHD Contact Theory

When a lubricant is applied, a film between the mating surfaces of the different machine
elements (rolling element, inner/outer ring etc.) forms. During operation, the fluid
film experiences high pressure loads because of the mating elements, causing a series
of effects such as deformations, damping behaviour, slipping etc. This phenomenon is
known as elastohydrodynamic lubrication. In this section it is abbreviated as EHD. In
the dry Standard model, no damping takes place, as there is no lubricant to generate the
viscous damping. Material damping is neglected as it is significantly low. Hence, the
damping qualities reflect the qualities of the applied lubricant. The quality of damping
is also reflected in the amplitude of vibrations that the system generates. This will be
further investigated in the Transient Analysis section.

The closest approach of describing this phenomenon is the Reynolds equation: This time
dependent equation, contains the fluid film pressures, the geometry of the deformed gap
and the velocities of the contacting surfaces. However, this thesis is not going to go in
depth about the solution of this equation. Here, the effect of the EHD contact will be
calculated following the suggested parameters of Wagner [26]. It is assumed that only
elliptical contacts occur and that pure rolling conditions are in effect.

At this point, the speed effect is introduced into the modelling. When in high speeds, the
incompressible lubricant, with a film thickness of h0, compresses even more the mated
areas, producing a different local deflection δ as before · the δEHD:

δ = δH − δEHD (3.64)

where δ is the total deflection that occurs and δH is the elastic deformation caused by
Hertzian -dry- contact.
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Figure 3.8: EHD Contact of Two Curved Bodies [26]

The viscous qualities of the lubricant also result in generating a viscous damping, which
will also be modelled. However, in really slow speed, the effect of the lubricant is
minimum, hence there is almost an identification of the dry and the lubricated contact.
Concluding, in order for the EHD phenomenon to be in effect, high speed must be in
effect:

ωc,k =
Ω
2

(
1− br cos αk

pr

)
, (3.65)

ωb,k =
brΩ

2br

(
1− br cos αk

pr

)2 , (3.66)

vs,k = ωc,k (pr + br cos αk) + ωb,kbr (3.67)

Where ωc,k is the cage speed of each ball’s contribution, ωb,k is the angular velocity of
each ball and vs,k is the relative surface speed of each ball, br is the rolling element’s
diameter and pr the pitch radius.

3.3.2 Determination of EHD Parameters

In order to determine the stiffness in an EHD contact, the elastic deformation under the
effect of the film thickness must be calculated as expression 3.64. Once the deflection
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expression is constructed as δEHD = f (Qel) , it must be solved iteratively. This solution
will provide the elastic resulting force Qel that occurs when the model is under the influ-
ence of an elastohydrodynamic effect. This will provide us with a different stiffness than
the previous models. In order to establish that, we utilize certain Hertzian parameters
from section (2.1.4). The calculation of the EHD parameters is done using the Wensing
approximations [28]. Therefore, the reduced dimensionless Moes parameters for circular
contacts in incompressible fluids, M and L, read as:

L = αpEred

(
η0vs

EredRX

) 1
4

Mred =
1

EredR2
X

(
EredRX

η0vs

) 3
4

(3.68)

Where RX and RY denote as:

RX = ρ1X + ρ2X RY = ρ1Y + ρ2Y (3.69)

Then the reduced dimensionless load parameter Nred is expressed by Wijnant [29] as:

Nred =

(
RX

RY

) 1
2

Mred (3.70)

Wensing suggests this for the following curve-fit formula:

∆(N, L) = 1− pNq (3.71)

Thus the deformation for the lubricated case δEHD is approximated as:

δEHD = δH

(
1− pN2

)
(3.72)

where

p =
[
(4− 0.2L)7 (3.5 + 0.1L)7

] 1
7 (3.73)

and

q =
[
− (0.6 + 0.6(L + 3))−

1
2
] 1

7
(3.74)

Now, the elastic force Qel must be calculated iteritavely for the total deflection δ:

δ =

(
Qel

KH,in

) 2
3 [

1− pin (Nred,inQel)
qin
]
+

(
Qel

KH,out

) 2
3 [

1− pout (Nred,outQel)
qout
]

(3.75)

Also, the film thickness h0 can be calculated as:

h0 =

(
Qel

KH,in

) 2
3

+

(
Qel

KH,out

) 2
3

− δ (3.76)
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Note that for different contact angles αin, αout, each parameter must be calculated accord-
ingly.

3.3.3 Damping Formulation

The Elastohydrodynamic effect, also causes a damping effect because of the lubrication.
Therefore, it is also essential to calculate the damping forces Qd and damping matrix C
that occurs. The calculation of the EHD damping for each ball k follows as:

r = 0.98− 0.017L (3.77)

s = −0.83− 0.008L (3.78)

Then the elliptical half axis of the contact between the rings and the balls must be calcu-
lated. α is the elliptical half axis of the direction of motion and b the elliptical half axis
of the transverse direction. These are calculated for each inner and outer contact.

a = ξ

(
3Ered

R

) 1
3

(3.79)

b = η

(
3Ered

R

) 1
3

(3.80)

Physical (dimensional) damping denotes as:

c = rNs
(

4QelR
avs

)(
E
K

)
(3.81)

Calculated for both contacts. The total damping coefficient follows as:

ctot =
1

1
cin

+ 1
cout

(3.82)

Therefore, the damping forces Qd are calculated as:

Qd,k = δ̇kctot (3.83)

For each ball’s contribution k to the damping follows as:

Ck =
∂δ̇k
∂u̇

ef,kctot (3.84)
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,where the partial derivation ∂δ̇k
∂u̇ follows as:

∂δ̇k
∂ux

=
1

2Ak
(2dsrk cos φk) , (3.85)

∂δ̇k
∂uy

=
1

2Ak
(2dsrk sin φk) , (3.86)

∂δ̇k
∂uz

=
1

2Ak
(2dsαk) , (3.87)

∂δ̇k
∂ψx

=
1

2Ak

(
2dsαkrj sin φk

)
, (3.88)

∂δ̇k
∂ψy

=
1

2Ak

(
−2dsαkrj cos φk

)
, (3.89)

∂δ̇k
∂ψz

=0 (3.90)

The previous expressions can be used to obtain the damping forces Fd,k:

Fd,k = Qd,kef,k (3.91)

Finally, the damping matrix C is the sum of each ball’s contribution:

C =



cxx cxy cxz cxψx cxψy 0

cyy cyz cyψx cyψy 0

czz czψx czψy 0

sym. cψxψx cψxψy 0

cψyψy 0

0


(3.92)

Although, damping is produced, the damping forces Qd are kept very low. As it is
shown in the figure 3.9 the damping, while it is indeed kept low, it is also non-linear to
the displacement. This non-linearity is worth mentioning, however the values are so low
that the damping provided is not sufficient for the following transient analysis. Thus, in
later investigation of the transient analysis, a proportionate damping is used instead of
the bearing’s damping, in order to be able to produce realistic results. It also must be
noted that the EHD model returns both inner ring elastic forces F and damping forces
Fd.
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Figure 3.9: EHD Damping in Radial Cxx and Axial Czz Direction to Inner Ring Axial
Displacement

3.4 Model Comparison

The purpose of the following chapter is to make a distinction between the different
kinematic models, on a larger scale. This investigation allows to see the different effects
that each addition in the modelling have in the resulted force and stiffness.

Figure 3.10: Comparison Between Standard (LS), Extended (KH Dependency on αk) and
EHD Model

It is quite evident that there is little to no difference between the Standard and Extended
models. Thus, we confirm that the LS formulations of force and stiffness are quite
accurate. Also, it is derived that little to no difference occurs when there is a varying
Hertzian parameter KH in the model. However, for general accuracy reasons a varying
KH will be used for further modelling. In the Standard and Extended model, a free play
occurs, in both axial and radial direction. This is due to the clearance bounds, as it was
touched on 3.14 and 3.15. In the case of EHD, little to no free play is resulted, as the
contact is almost immediate because of the lubricant. Thus, force and stiffness develop
in faster in terms of displacement, compared to the other two models.
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4 Dynamic modelling

The purpose of this chapter is to introduce the dynamic modelling into the simulation.
In this case, the Dynamic equilibrium is used. This includes the forces of the balls, all
the acting forces, centrifugal force and moments. This modelling is referred to as ”Full
Model” and it consists all of the above phenomena that have been previously discussed
such as: Additional degrees of freedom of the ball, varying Hertzian parameter KH,
EHD contact and solving the dynamic equilibrium. Furthermore, a new formulation of
kinematics is introduced and compared to.

4.1 Full Model

The Full implementation takes into account the additional ball Degrees of Freedom
(DoFs) to provide a more accurate representation of the bearing’s actual behaviour. In
order to establish that, the ball DoFs (ubr,uba) are calculated iteratively. Furthermore, the
Full model takes into consideration the centrifugal force Fz and gyroscopic moment Mg
which will be mentioned later on.

4.1.1 Full Model Formulation

Firstly, this model takes an input of ub 2N ball degrees of freedom, where N is the
number of balls:

ub = [uba ubr ˙uba ˙ubr] (4.1)

where α and r, axial and radial direction respectively.

By initializing this vector, we proceed by solving iteratively the following dynamic equi-
librium. This way we obtain the degrees of freedom to proceed and calculate the pro-
duced forces F of the inner ring:

mb ¨uba = (Qn,in + Qd,in) sin αin + Qt,in cos αin − (Qn,out + Qd,out) sin αout −Qt,out cos αout

(4.2)

mbübr = (Qn,in + Qd,in) cos αin −Qt,in sin αin − (Qn,out + Qd,out) cos αout + Qt,out cos αout + Fz
(4.3)
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where mb is the rolling elements mass and denotes as:

mb = ρ

(
4
3

πr3
b

)
(4.4)

where ρ is the density of the ball’s material.

Since this model includes additional degrees of freedom, new kinematic formulations
are introduced, as suggested by Wagner [26]:

α0

ubr uba rout

A
0

α out

Aout

α
r

rj

α0

A
0

α in

ur
ua uba

ubr

x
z y

x
z y

A
in

Figure 4.1: Additional Kinematics as Suggested by Wagner [26]

This set of kinematics is used when the bearing is preloaded, so it doesn’t take into
account the radial displacement rL. Because of the additional degrees of freedom, the
contact angles are formulated differently:

For inner ring contact:

dsαin = uα − uba + 0.5A0 sin α0, (4.5)

dsrin = ur − ubr + 0.5A0 cos α0 (4.6)

Ain =

√
dsαin

2 + dsrin
2 (4.7)

αin = arctan
(

dsαin

dsrin

)
(4.8)

and the theoretical elastic deformation of the inner ring denotes as:

δin =

Ain − 0.5A0, (Ain − 0.5A0) > 0

0, (Ain − 0.5A0) ≤ 0
(4.9)
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Similarly, for outer ring contact:

dsαout = uba + 0.5A0 sin α0, (4.10)

dsrout = ubr + 0.5A0 cos α0 (4.11)

Aout =

√
dsαout

2 + dsrout
2 (4.12)

αout = arctan
(

dsαout

dsrout

)
(4.13)

and the theoretical elastic deformation of the outer ring is expressed as:

δout =

Aout − 0.5A0, (Aout − 0.5A0) > 0

0, (Aout − 0.5A0) ≤ 0
(4.14)

Upon further investigation on the kinematics, a new formulation occurred. While the
above kinematics use a loaded geometry, it would be more optimal to take into consid-
eration the position of the bearing when it is unloaded. An investigation between both
formulations will take place. In order to make a distinction, the new formulation will be
referred to as ” updated ”.

rin
ubr

uba

ur

ua

Ain

0.5rL

0.5(A0rL)

x
z y

Figure 4.2: Updated Kinematics

The new updated formulations denote as so:
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For inner ring contact the new expressions are:

dsαin = uα − uba, (4.15)

dsrin = ur − ubr + 0.5 (A0 − rL) (4.16)

Ain =

√
dsαin

2 + dsrin
2 (4.17)

αin = arctan
(

dsαin

dsrin

)
(4.18)

and the theoretical elastic deformation of the inner ring denotes as:

δin =

Ain − 0.5A0, (Ain − 0.5A0) > 0

0, (Ain − 0.5A0) ≤ 0
(4.19)

Similarly, the updated expressions for outer ring contact:

dsαout = uba, (4.20)

dsrout = ubr + 0.5 (A0 − rL) (4.21)

Aout =

√
dsαout

2 + dsrout
2 (4.22)

αout = arctan
(

dsαout

dsrout

)
(4.23)

and the theoretical elastic deformation of the outer ring is expressed as:

δout =

Aout − 0.5A0, (Aout − 0.5A0) > 0

0, (Aout − 0.5A0) ≤ 0
(4.24)

It must be highlighted that with the above change, the force free axial and radial move-
ment lead to be equal to the axial and radial clearance, accordingly. This is due to the
new state of the ball position, as it now lays in a centred position. As a result, the
representation of a realistic force free movement of the inner ring renders possible.

As discussed above, the Full model includes the EHD effect. Thus in this model the
calculation of the elastic force Qel takes place. The normal, tangential and damping
forces are also added into the equilibrium (Qn, Qt, Qd) Additionally, the centrifugal and
gyroscopic phenomena are added. These are discussed in detail further on with the
explanation of the race control. It must be noted that there is a distinction between the
lubricated and non-lubricated full model. This will be mentioned again on the ADORE
validation examples. When the user chooses the non-lubricated case, then Qel = Qn and
the EHD module is deactivated. This makes the calculations a lot faster, as we skip the
iteration.
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4.2 Race Control Hypothesis

In order to achieve a better comparison to ADORE [8], some parameter investigation
was done. A correlation between the ball pitch angle ab and the race control was .
According to Harris [11], a ball pitch angle is referred to as the angle between the vector
of the ball’s angular velocity vector around it’s centre and x-axis. The angular velocity
vector, is expressed through two types of other components: the rolling motion and the
spinning motion of the ball. Thus the ball pitch angle, expresses the rolling and spinning
motions that occur to the rolling elements during operations. To be more specific, in ball
bearings with non zero contact angles between the rolling elements and raceways with
high-speed applications, motions like sliding, spinning and gyroscopic motions occur.
In order to differentiate the motions that will be addressed later on, a description of each
phenomena will be made.

4.2.1 Rolling, Spinning and Sliding Motion

A rolling element of the ball bearing, moves in respect to the raceway, about the gener-
atrix of motion. The generatrix of motion may be intersected with the contact line at a
singular point, thus In the following applications, a pure rolling condition is assumed.
Pure rolling between two contacting surfaces can be obtained when:

• Mathematical line contact under zero load

• Line contact in which the contact bodies are identical in length

• Mathematical point contact under zero load

However, when the spinning vector component acts normal to the surface, it causes a
spinning effect, around the pure rolling point. This combination of spin and rolling
of the ball, creates a contact ellipse that the ball operates on, in contact with the inner
and outer race respectively. This phenomenon that occurs is called sliding motion. This
sliding motion, is caused by the gyroscopic moment that occurs to each loaded ball,
when the contact angle αk is non zero.

4.2.2 Race Control Dependency

Depending on the distribution of the moment between the inner and the outer ring, the
dynamic equilibrium changes. As a result, different ball bearing displacements (uba,ubr)
are returned by the solver. Consequently, producing different stiffnesses, as they are
calculated numerically, using the returned uba,ubr. It must be noted that the stiffness is
calculated numerically by using the Central Difference method 3.63.

This distribution of transfer is controlled via race control. Generally, when pure rolling
occurs, there is also a spinning motion happening, either at the inner or outer race
contacts. That is for non zero contact angles. When the race control is in effect in either
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race, it indicates that no spin occurs at said race contact. Hence the ball is controlled by
that race. To be more specific, a pure rolling motion is obtained between the ball and the
race that has the control at the moment. To express what type of control is in effect, a λ
parameter is introduced. This parameter controls the transfer of the gyroscopic moment
between the contacts. According to Servais [23], for λ equal to zero, inner race control
is in effect, whereas for λ equal to one, outer race control is established. According to
the configuration, the ball pitch angle of the ball, interchanges between the αout and αin.
Similarly, when λ = 0, αb = αin. Additionally, when full race control occurs on one
of each races, it suggests that the all the tangential forces Qt effect is produced by said
race contact. However, this is not fully representative of the real interchange of the ωb
plane and the distribution of the tangential forces Qt between the races. Consequently,
the dynamic equilibrium changes. After establishing that indeed there is an implicit
connection between the transfer percentage of the gyroscopic moment and the stiffness,
a formula was developed to take this into consideration.

The main notion of the formula is to determine a parameter λ, where 0 ≤ λ ≤ 1 that
represents the race control that is in effect. In order to make the formula more robust
the following expression was followed:

λout =

1
Qn,out

+ 1
Qn,in

Qn,in
(4.25)

λin = 1− λout (4.26)

The notion behind this is formula is, the race that carries the most normal forces, has a
better contact, hence is more unlikely to have slip. In order to prove that, the following
expression from Wagner [26], for dry pure Hertzian contact was taken:

Qt,in

Qt,out
=

Qn,in

Qn,out
⇒ Qt,in

Qt,out
=

1− λout

λout
⇒ Qn,out

Qn,in
=

1− λout

λout
⇒ λout =

1
Qn,out

+ 1
Qn,in

Qn,in
(4.27)

This formulation works for dry contact. In order to handle the lubricated case or make
it even more accurate in regards of load distribution, it is suggested to investigate the
ellipse’s contact velocities given by Jones [12] as Servais [24] suggests.



4 Dynamic modelling 38

xz
y

αb
ω b

Mg

Fz

Figure 4.3: Ball Pitch Angle αb, Centrifugal Force Fz and Gyroscopic Moment Mg

This statement indicates the amount of normal forces that are applied to each ring con-
tact accordingly. For example, when the contact is greater on the outer ring, then the
normal forces increase in that point of contact. Thus, the amount of friction that is gen-
erated there is larger, compared to the inner ring. For a large amount of friction, the
slip decreases. In this case, the race that is in control is the outer one. Similarly, when
the inner ring is accountable for the larger percentage of friction, then inner race is in
control. Hence, having in effect the λ for the calculation of the tangential forces, would
benefit in a more accurate representation of the transferable friction percentage to each
ring. The tangential forces are then given as:

Qt,in =
2Mg

Db
(1− λout) Qt,out =

2Mg

Db
λout (4.28)

,where Mg is the gyroscopic moment and Jb the moment of inertia of the ball:

Jb = 0.4mbb2
r 2 (4.29)

Mg = Jbωbωc sin αb (4.30)

The ball pitch angle αb is expressed here as:

αb = αin(1− λout) + αoutλout (4.31)

To showcase the sensitivity due to race control, the following example uses the FAG6404
and the Full dry model, with updated kinematics. We have a constant axial force of 5
kN and rotational speed Ω that varies from 0 to 60 krpm.



4 Dynamic modelling 39

Figure 4.4: Stiffness Dependency of Race Control Hypothesis: λ = 1 (Outer Race Con-
trol), λ = 0 (Inner Race Control) and ADORE

As it is shown above, the modelling is very sensitive to the configuration of the λ. For
outer race control, the model underestimates the ADORE results for the axial stiffness
Kxx, whereas the radial stiffness Kzz is overestimated. For inner race control, the results
are even further to the ADORE calculation. Regarding the feedback race control, a better
approach to Kxx is achieved. However, in regards of Kzz, a deviation occurs. This is due
to the λ implementation in the equilibrium loop. In conclusion, it is highly likely that
the tangential forces Qt are sensitive to this λ factor, heavily influencing the dynamic
equilibrium calculation.

4.2.3 Ball Pitch Angle Dependency

Keeping the race control hypothesis in effect, the ball pitch angle can now be investi-
gated. The ball pitch angle αb 4.3, indicates the position of the ball rotational axis ωb,
on the specific plane of rotation. This angle is used for the calculation of the gyroscopic
moment Mg. Different approaches of this angle, changes the behaviour of the whole
bearing. This is due to the implicit connection this angle has with the dynamic equilib-
rium. Three different expressions were investigated: ab is given above 4.31, θ is expressed
by Kurvinen [15] and b by Wang [27]. Using the same example as 4.4, we sustain the
race control hypothesis, and change the different ball pitch angle configurations.
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Figure 4.5: Different Ball Pitch Angle Configurations and their Effect on the Bearing’s
Stiffness

It is evident that in this case, the best case is the αb configuration, which will be used
for the rest of the thesis. However, it is notable that Noel[21] and Antoine[1] have
made suggestions on how to approximate more accurately the ball pitch angle, by doing
various iterations. While this is an interesting topic, it is not the specific scope of the
analysis. In addition, this iteration requires more computational power and will affect
the total calculation time of the modelling.
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5 Validating with ADORE

ADORE is an advanced interface, that performs real time simulations of the dynamic be-
haviour of the rolling bearings. ADORE, operates under classical differential equations
of motion and the analytical models for the interaction between the various bearing el-
ements. A six DoF system is used to formulate the kinematic equations. ADORE is a
very powerful tool that it is widely spread amongst the rotordynamic field. However,
it has a complex interface for the user, in addition of being time consuming to produce
certain results. In this section the data taken from ADORE, will be compared with the
non-linear ball bearing models. The goal here is to investigate if similar results can be
achieved with the suggested models, in an optimum amount of time, while being user
friendly.

5.0.1 Standard Model Validation

It has to be taken into consideration that the following Standard model operates under
dry friction conditions. Thus, the calculation of the contact area will be under a dry point
contact. To establish the validation with ADORE, the FAG6404 bearing is used 8.3.1. In
order to investigate the load dependency of the basic kinematic model, the rotational
speed is kept at a constant 3 krpm and the axial force Fz varies from 0 to 4 kN.

Figure 5.1: Validating with ADORE - Load Dependency of Force Stiffness and Contact
Stress, using Standard (LS) Model

From the comparison of the displacement, assuming that ADORE returns the optimal
solution, it seems that there is quite a relevant error between the Standard and ADORE.
This can be explained from the fact that there is a difference between the kinematic for-
mulations. ADORE uses kinematic expressions that are not accessible. Thus, this affects
the displacement. As a result, stiffness (axial stiffness: Kzz, radial stiffness Kxx) and max-
imum stress Pmax is affected, as they are implicitly dependent on the axial displacement
uz of the inner ring. In addition, this example showcases the non-linearity of stiffness.
With the change of axial force Fz, different stiffness and force occurs (force dependency).
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5.0.2 Full Model Validation

For the following validation, data from the interface ADORE has been extracted and
used for comparison reasons. It is important to note once more, that the ADORE uses
different kinematics, and slight difference in results is to be expected. For this example,
”Dry Full” model variations will be used. That is because the race control is not fit for the
lubricated case, as it considers only dry contact conditions. Thus, it is expected to have
some variance from ADORE, as it is assumed that different lubrication configurations.
Another note is that it is not clear if ADORE uses any race control hypothesis at all, or by
default uses an outer race control, which is usually the case for high speed applications.
A comparison between the updated and not kinematic formulations will take place,
again with the FAG6404 bearing. The first example tests the load dependency of the
models, with varying axial force Fz from 0 to 4 kN and a constant rotational speed of 3
krpm.

Figure 5.2: Load Dependency of Inner Ring Displacement, Stiffness and Contact Stress
of Dry Full and Dry Full Updated Models and ADORE

Unquestionably, the updated kinematics have a minimal relevant error to ADORE, which
has an effect on the stiffness (axial stiffness: Kzz, radial stiffness Kxx) and the stress Pmax
approximation. From the relative deviation, considering that the ADORE data is the
optimum solution, the updated kinematics model establishes almost zero percent error.
That carries through both in the stiffness and maximum contact stress. This proves
that with improving the kinematics, we achieve less variance to ADORE. Furthermore,
the load dependency of the model is evident. The second example, tests the speed
dependency of the models. This time, keeping the axial force Fz constant at 5 kN and
changing the rotational speed at 0 to 60 krpm.
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Figure 5.3: Speed Dependency of Inner Ring Displacement, Stiffness and Contact Stress
of Dry Full and Dry Full Updated Models and ADORE

5.0.3 Realistic Example Using Aircraft Engine Bearing

In this chapter we test even further the capabilities of the models. Here the models
are put under realistic aircraft engine operation. The models’ stiffness speed and load
dependency will be tested under the range of rotational speed 0 to 22.5 krpm, with
constant thrust load of 25 KN. Furthermore, different race control scenarios will be
tested, in order to establish which scenario achieves the least deviation with the ADORE
data (assuming that ADORE is the optimum in each case). The model that it is used
for the following example is the dynamic Full model with dry contact and updated
kinematics (”Full Dry Updated” model):
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Figure 5.4: Realistic Jet Engine Bearing Operation: Influence of Race Control Compared
to ADORE

First of all, it is evident that the non-linearity in stiffness and force is established due
to the rotational speed. Regarding the race control configurations, it is evident that
both outer and inner race control (where inner race control is λ = 0 and outer λ = 1)
are over estimating the displacement. The controlled case (4.26,4.25) achieves the best
approximation to ADORE, with a less than 7.5% error. Regarding the stiffness, the
controlled case, lands between the outer and inner configurations. It is evident that
the controlled case approaches ADORE with minimum error in the radial stiffness Kxx.
However, in the case of axial stiffness Kzz, even though the controlled case is the best,
the deviation still runs quite high (10 to 20%). This is expected due to the deviation
in the axial inner ring displacement uz and it is most probably due to difference in
the kinematic expressions. In the calculation for the maximum stress Pmax, all race
control configurations have a low error for both outer and inner ring contact stress. The
controlled case, remains as the optimal option as it maintains a very low error in outer
and inner contact, even though outer race control establishes less deviation for outer race
contact stress. This can be explained due to the fact that in the case for outer stress the
outer control diminishes the slip effect on the outer race. Thus having a better contact
and less power loss. In conclusion, race control configuration effects greatly the dynamic
equilibrium due to the different force distribution that can be achieved through it. In
order to achieve better results for future jet applications even for lubricated cases, the
race control expression must be further investigated and reformed.
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6 Rotor Coupling

In this section, the influence of the non-linear bearing on the transient response when
coupled with a jet engine will be investigated. Jet engine rotors, are operating on high
speeds and thrust loads. The bearings supporting the rotor, must be able to handle
these high thrust loads. The goal with these non-linear bearings is to essentially have a
feedback on the displacement of the rotor (load dependency), in order to produce the
appropriate stiffness to support such loads. Therefore, a transient analysis is needed, to
clearly see what amplitudes and resonances occur. For comparison reasons, a transient
analysis with linear bearings is also done.

The coupling is achieved as so. First, to achieve the speed dependency, the rotor’s rota-
tional speed is inserted to the modelling through φ0 (3.5). The exact implementation is
discussed on the next section. The load dependency is achieved by matching the shaft’s
displacements to the inner ring’s displacement vector u. This is not exactly accurate,
because the inner ring’s position to the shaft’s is not identical. This is mostly due to the
fit. However, the difference is negligible. When coupled with a certain model, the model
returns the bearing forces that are being produced with the given configurations. These
bearing forces will be referred as Fb for the rest of the chapter.

Influence of Cage’s Circumferential Position

As it was mentioned above, to achieve the speed dependency, the rotor’s speed was
implemented in φ 3.5. Thus ia necessary to investigate the influence of the cage’s cir-
cumferential position φ 3.5. In order to do that, the initial position of the balls φ0 was
manipulated accordingly. In this particular example, the displacement ux is varying, as
an input. The first case, φ0 is taking values from 0◦ to 360◦. Because of the pre-tension
on the radial x direction, we see that the force Fx is fluctuating around a non-zero value.
Alternatively, Fy fluctuates around zero. Both forces showcase a periodic wave for a
period of 60◦. This is expected, as φ is dependent on the terms 2π

N k and the number of
balls in this example is equal to 6. In the second case, the same input is kept, however
the initial position of the ball φ0 is dependent on θ, where θε[0, 360]. θ expresses the cir-
cumferential position of the inner ring. In order to couple θ to φ, the geometric relation
between the inner ring and the ball was used, as given from Krämer [14]:

φ0 =
Rin

Rin + Rout
θ (6.1)
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Figure 6.1: Comparison of Different Cage Configurations: θε[0, 360] and φ0 = f (θ)

It is evident here that the period of the wave has increased to 90◦, as the initial position
of the ball is proportional to the inner ring position. Thus, in order to make the overall
coupling with the rotor more realistic, expression 6.1 is used. The rotor’s angular posi-
tion is set as equal to θ, establishing the speed dependency of the model, as realistically
as possible. It has to be noted here, that the angular position of the rotor is not exactly
the same as the inner ring’s, due to fitting and friction. However, the error between them
is negligible.

6.0.1 4 - DoF Jeffcott Rotor Example

The first coupling is done with a simple 4 DoF Jeffcott Rotor. This Jeffcott rotor model
is supported by two bearings, one on each end. One unbalance is located in the middle,
as seen in figure 6.2. It consists of 4 Finite Elements and each node carries 4 degrees of
freedom (DoFs). Our modelling consists of 6 DoFs. However this is not a concern, we
can simply set the additional degrees of freedom as constant. Of course for the coupling
to work, a pre-tension needs to be added. This pre-tension can be either given by the
manufacturer or a good baseline is to use the free-play calculation (3.14). The rotor
is symmetrical. System stiffness K, mass M and damping C are given, when coupled
with linear bearings. Then, the transient analysis is done by solving the time domain
equation:

M~̈x + (C + G(Ω))~̇x + K = F + Fb ⇒ ~̈x + M−1(C + G(Ω))~̇x = M−1(F + Fb) (6.2)

This is done using the ”solveivp” function in Python. It is suggested using the ”Radau”
or the ”BDF” method for a fast calculation.

In regards of the system’s damping C, Rayleigh damping is used, in order not to inter-
fere with any additional structural damping [6]. In general, the damping that is being
generated by the non-linear bearings, is not enough to support the load that is pro-
duced by the rotors. Therefore, Rayleigh damping is implemented, proportionate to the
system’s stiffness and mass:

C = αM + bK (6.3)
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where α and b are parameters defined by the user. For this particular example an α equal
to 0.5 and b of 1e− 4 was used.

B1 B2

Ω

L/2

L

D

mu

ρ, E
x

z y

Figure 6.2: Jeffcott Rotor Supported by Two Bearings

In this first coupling example, we are coupling a Jeffcott rotor with the Standard model,
using the FAG6404 bearing. In order to achieve a realistic comparison, the stiffness
of the non-linear bearing coupling is extracted from the peak of its transient analysis.
That value is used as a linearization for the linear bearings coupling. When compared
this way, it seems that the resonance point is almost identical. The same goes for the
amplitude. It is notable that when a different linearization is used, different point of
resonance and amplitude occurs. Thus, it is safe to assume that different linearization
leads to different transient responses. Additionally, the general advantage of non-linear
models is highlighted, as they produce stiffness that adapts to each operation. That is
exceptionally useful when coupled with a rotor, as a widespread amount of stiffness is
taken into consideration, directly without any linearization.

Figure 6.3: Jeffcott Rotor Transient Analysis: Comparison of Direct Coupling and Con-
stant Bearing Stiffness Assumption
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6.0.2 Realistic LP Rotor Example
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Figure 6.4: Realistic Engine [20]

For this example, a realistic Low Pressure (LP) Rotor is used (see figure 6.4). This part of
the rotor was taken from a dual spool engine. Then, the High Pressure (HP) part of the
rotor is deactivated, including the casing. That leaves the LP part and the three bearings,
in the positions B1, B2, B5. For this particular example, the bearing in B2 is replaced with
a non-linear model and the rest are kept as linear. However, this can change accordingly.

Figure 6.5: LP Rotor Transient Analysis: Comparison Between Constant Bearing Stiff-
ness and Direct Coupling of Standard (LS) and EHD model

The coupling is done like the Jeffcott example. However in this case, a reduction has to
be done. In this case the Guyan reduction is used. The time domain (transient) analysis
is done using the ”Backward Differentiation Formula” (BDF). Here, a typical aircraft en-
gine ball bearing is used. The system is again slightly damped, using the same Rayleigh
coefficients 6.3. The rotational speed of the rotor goes through 0 to 22.5 krpm. For this
comparison, the Standard and the EHD models are used, to reduce the computational
time. In regards of the Full model, it takes more time to execute the dynamic equilib-
rium. For the linear model, a basic bearing linearization is used. It is evident that two
resonance peaks occur. Regarding the linearization, it could have been done by running
the non-linear model, extract the stiffness at the resonance peaks and conduct the lin-
earization with different coefficients. However, this is time consuming and it defeats the
purpose of this analysis. Additionally, this highlights further the need of a non-linear
bearing model, that produces the stiffness matrix without any linearization assumption,
like it is done here. Moving forward to the Standard model, two resonance peaks occur.
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The peaks are around the same magnitude scale as the linear one, but still remain quite
different, especially in the first peak. The first peak seems exceptionally more damped.
Also, the resonance has moved to the right in general. The EHD model, displays the
same behaviour. However the system is more damped, as the lubrication produces some
damping. It must be noted that the effect after the resonance is caused by a transient
sweep [10] and can be adjusted by changing the parameters of the solver.

Figure 6.7: Transient Analysis Comparison between Normal and Decreased Rayleigh
Damping

While keeping the same problem configuration, this time the Rayleigh damping is re-
duced to half as before. When doing that, an interesting phenomena occurs. It seems
that a self excitation occurs and a different mode appears. To further analyse this, a
spectrogram has been made. From that it is clearly evident that a separate is introduced,
one that is in a higher frequency than the unbalance. This may be caused because of
the bifurcation. It seems not to be a numerical phenomenon, as it showcases the same
behaviour when used a different solver.
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Figure 6.8: Transient Analysis Rundown with a Decreased Rayleigh Damping

Further more, even when performing a run-down, we experience the same behaviour in
this case. For this excitation to be diminished, additional damping must be deployed,
or increase the Rayleigh damping in this case. Therefore, we can conclude that this phe-
nomenon is based on physical occurrences that must be investigated further. It is clearly
shown that the displacement of the bearing is great and most likely to cause contact in
the different parts of the machine. Thus it is essential for this to be investigated, because
in the future, ball bearings may be used to replace the squeeze film dampers (SFD). Ball
bearings may prove to be more financially beneficial, as they need less lubrication to
operate. When using an SFD this phenomenon doesn’t occur, as the damping is greater.
Thus we can once again assume that it is an occurrence because of the damping. In
order to determine the cause of that, a parameter investigation of each element of the
whole system must be done, but this is not the premise of this thesis. However, it is a
topic worthwhile of investigation.
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7 Conclusion

This thesis has succeeded in presenting the stand alone non-linear bearing models, that
can be used for a variety of applications. From the basic kinematic modelling, using
analytic expressions to deduce results while using only dry contact, to dynamic mod-
els that implement the dynamic equilibrium, gyroscopic and centrifugal phenomena.
According the computational power and time available, only dry models can be used
for calculations or add the elastohydrodynamic effect (EHD). This effect was modelled
according to available approximations, however even more detailed modelling can be
achieved, by investigating further the Reynolds equation and the calculation of the ellip-
tic integrals. In addition, this thesis brought to light the relation between the kinematics
and the stress. The different results that were produced by exploring different kinematic
configurations was presented. This proposes that we can achieve even more accurate
results when the kinematic relations of the bearing is even more realistically expressed.
Furthermore, this work can be further expanded by integrating into the modelling the
different thermal effects that take place during bearing operation, as well as skidding
effects, different press fits and the centrifugal expansion of rings.

A race control hypothesis was also introduced. This is one open topic for investigation,
as the formulation of the race control can even more accurately represent the tangential
force transfer between the two races. It is worthwhile to also formulate λ, such as to
take into consideration lubrication cases too. Thus affecting differently the equilibrium.
Using the race control with the updated kinematics we can achieve close results to the
ADORE data, suggesting that ,in low rotational speed, the model is validated. For high
rotational speed however, race control needs to be investigated further. In addition of
these stand alone models, it cannot be undermined, that all models indicate a non-
linearity in regards to stiffness, when tested for both speed or load dependency. This
proves to be very important for jet engine applications, as such operations have high
thrust loads, affecting the bearing’s stiffness.

In addition, the findings of this research indicate that there is a relation between the non-
linearity of bearings to the overall behaviour of a rotor system. Assessing the different
effects that occur when coupling the non-linear bearings to a rotor, bifurcation occurs.
This interesting self excitation, needs to be further investigated, as it seems to have a
correlation to the damping system of the rotor. Finally, this thesis showcases how the
non-linear bearings can be coupled directly to a rotor, producing results, without the
need of a linearization, while unveiling phenomena that wouldn’t be detectable by using
a linear model. In general, this work proves that there is a vast usage of these tools and
they can be further improved to serve even more in the field of rotordynamics.

Finally, the main suggestions for future work to improve the ball bearing modelling
consist of:

• Improved Implementation of Race Control Hypothesis
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• More Detailed Implementation of EHD Contacts

• Thermal Effects

• Centrifugal Expansion of the Rings

• Press Fits

• Skidding Criteria
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8 Appendix

8.1 Varying Velocity

In this part of the thesis, the case of an input of varying velocity is investigated. The
displacement vector of the inner ring u is set to zero and only velocity u̇ is given. The
purpose here is to see the relation between the velocity and the output. The same
expressions are used as the EHD inverse problem. Thus, it is expected to have a constant
stiffness and a linear force as the velocity is used only as part of the partial derivation as
seen on section (2.3.3):

Figure 8.1: EHD Varying Velocity and Constant Displacement

8.2 Influence of Viscosity to EHD Damping Coefficient

In the following example, two different formulations are used to showcase this relation.
Here, a comparison is done between the Wensing [28] and Wagner [26] formulation of
damping. Here the EHD model is used, which takes into account the damping coef-
ficients and viscosity and we vary the dynamic viscosity h0 for values 0 to 20e-3. The
bearing parameters that were used are given in section (8.3.3).
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Figure 8.2: Comparison of Wensing vs. Wagner Damping coef. Calculation

Notably, the two formulations show no signs of variation and it is clear that there is an
influence of the viscosity to the damping coefficient. In all the investigation, the Wagner
formulation for the damping is used.

8.3 Ball Bearing Geometric and Fluid Parameters

8.3.1 FAG6404

Inner Ring

din 31.845 mm Raceway diameter

Din 20.000 mm Ring diameter

rin 7.7057 mm Race radius

Outer Ring

dout 62.955 mm Raceway diameter

Dout 72.000 mm Ring diameter

rout 7.8239 mm Race radius

Rolling Element
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N 6 Number o f balls

Db 15.1 mm Diameter

Lubricant

αp 1 • 10−8Pa−1 Pressure− viscosity coe f f icient

η0 0.11 Pa • s Dynamic viscosity at ambient pressure

General

E 210 GPa Young′s modulus

ν 0.300 Poisson′s ratio
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