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Abstract

A jet engine must perform optimally both in the thrust and efficiency categories as well
as in the vibration behavior. Excessive vibration levels can compromise the structural
integrity of the engine and increase the noise level perceived by the passengers of the
aircraft. Therefore, efficient and detailed modeling of the dynamic behavior of the entire
engine is of paramount importance.

This thesis implements the Harmonic Balance Method with an appropriate condensation
technique to efficiently simulate the dynamic performance of a generic, whole engine
model in the frequency domain. The novelty of the work lies in the application of
the method to whole engine models using not only the short squeeze film damper (SFD)
approximation for the calculation of the nonlinear reaction forces but also state-of-the-art
approaches developed in recent years. In addition, the work also integrates ball bearing
models into the simulations, providing results where the entire SFD configuration is
modeled. Similar studies on whole engine simulations in the frequency domain are not
yet found in the literature.

Through an extensive series of simulations, the study identifies critical simulation and
design considerations. The significance of the zero harmonic is emphasized and its
replacement by static analysis is challenged. The collaborative design approach, which
aligns the stiffness of the SFD support to the desired response, emerges as a critical
factor. Furthermore, detailed SFD models reveal the impact of fluid inertia modeling
on the dynamic response of the engine, especially when a feed groove is present. The
inclusion of ball bearing models also seems to affect the system response, although, for
the specific case examined, a fine-tuned stiffness value could be used for the early design
stages.

Through a collaborative effort, the study extends into the realm of surrogate modeling,
demonstrating how various predictive models have the potential to be integrated into
nonlinear dynamic simulations as a cost-effective alternative.

Collectively, all of the findings enhance the understanding of the intricate relation-
ship between squeeze film dampers, rolling element bearings and the overall system
response, providing insights and considerations for efficient jet engine design.
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Abstract (in Greek)

΄Ενας αεριωθούμενος (jet) κινητήρας πρέπει να αποδίδει βέλτιστα τόσο στις κατηγορίες ώσης και
απόδοσης όσο και στη ταλαντωτική συμπεριφορά. Τα υπερβολικά επίπεδα κραδασμών μπορούν

να θέσουν σε κίνδυνο τη δομική ακεραιότητα του κινητήρα και να αυξήσουν το επίπεδο θορύβου

που γίνεται αντιληπτό από τους επιβάτες του αεροσκάφους. Ως εκ τούτου, η αποτελεσματική και

λεπτομερής μοντελοποίηση της δυναμικής συμπεριφοράς ολόκληρου του κινητήρα είναι υψίστης

σημασίας.

Η παρούσα εργασία εφαρμόζει τη Μέθοδο Αρμονικής Ισορροπίας με μια κατάλληλη τεχνική

συμπύκνωσης για την αποτελεσματική προσομοίωση της δυναμικής συμπεριφοράς ενός γενικευ-

μένου, ολόκληρου μοντέλου κινητήρα αεροσκάφους στο πεδίο της συχνότητας. Η καινοτομία

της εργασίας έγκειται στην εφαρμογή της μεθόδου σε ολόκληρα μοντέλα κινητήρα, χρησιμο-

ποιώντας όχι μόνο την προσέγγιση του κοντού αποσβεστήρα συμπιεσμένου ελαίου (ΑΣΕ) για

τον υπολογισμό των μη γραμμικών δυνάμεων αντίδρασης, αλλά και σύγχρονες προσεγγίσεις

που έχουν αναπτυχθεί τα τελευταία χρόνια. Επιπλέον, η εργασία ενσωματώνει και μοντέλα

εδράνων κύλισης (ρουλεμάν) στις προσομοιώσεις, παρέχοντας αποτελέσματα όπου μοντελο-

ποιείται ολόκληρη η διαμόρφωση του ΑΣΕ. Παρόμοιες μελέτες για προσομοιώσεις ολόκληρου

του κινητήρα στο πεδίο της συχνότητας δεν έχουν ακόμη βρεθεί στη βιβλιογραφία.

Μέσω μιας εκτεταμένης σειράς προσομοιώσεων, η μελέτη εντοπίζει κρίσιμα ζητήματα προσο-

μοίωσης και σχεδιασμού. Η σημασία της μηδενικής αρμονικής τονίζεται και η αντικατάστασή

της από τη στατική ανάλυση αμφισβητείται. Η προσέγγιση συνεργατικού σχεδιασμού, η οποία

ευθυγραμμίζει την δυσκαμψία της στήριξης του ΑΣΕ με την επιθυμητή απόκριση, αναδεικνύεται

ως κρίσιμος παράγοντας. Επιπλέον, λεπτομερή μοντέλα ΑΣΕ αποκαλύπτουν την επίδραση της

μοντελοποίησης της αδράνειας του ρευστού στη δυναμική απόκριση του κινητήρα, ιδίως όταν

υπάρχει αυλάκι τροφοδοσίας. Η συμπερίληψη μοντέλων ρουλεμάν φαίνεται επίσης να επηρεάζει

την απόκριση του συστήματος, αν και, για τη συγκεκριμένη περίπτωση που εξετάστηκε, θα

μπορούσε να χρησιμοποιηθεί μια ρυθμισμένη τιμή δυσκαμψίας για τα πρώτα στάδια σχεδιασμού.

Μέσω μιας συνεργατικής προσπάθειας, η μελέτη επεκτείνεται στον τομέα της παρένθετης μο-

ντελοποίησης, αποδεικνύοντας πώς διάφορα μοντέλα πρόβλεψης έχουν τη δυνατότητα να ενσω-

ματωθούν σε μη-γραμμικές δυναμικές προσομοιώσεις ως μια οικονομικά-αποδοτική εναλλακτική

λύση.

Συλλογικά, όλα τα ευρήματα ενισχύουν την κατανόηση της περίπλοκης σχέσης μεταξύ των

αποσβεστήρων συμπιεσμένου ελαίου, των εδράνων κύλισης και της συνολικής απόκρισης του

συστήματος, παρέχοντας πληροφορίες και σκέψεις για τον αποτελεσματικό σχεδιασμό αεριω-

θούμενων κινητήρων.
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1 Introduction

1.1 Jet Engine Overview

Jet engines belong to the broader category of aircraft engines, which are used to develop
thrust and power various types of aircraft. The main characteristic that distinguishes
them from the various types of aircraft engines is that they provide thrust through the
principle of jet propulsion. In essence, a stream of hot gas is generated by combus-
tion and later expanded through a nozzle configuration that increases its velocity and
forms the propulsive jet [62]. There are four main components found in such engines: a
compressor, a combustion chamber, a turbine and a nozzle.

Depending on the configuration, a jet engine can be further classified as a turbojet or
a turbofan engine, as shown in Figure 1.1. In a turbojet engine, all of the intake air is
compressed by the compressor and later ignited in the combustion chamber with the
addition of an appropriate fuel. The resulting hot exhaust gas expands in the turbine,
which drives the compressor, and is then directed into the exhaust nozzle, which in-
creases its velocity and creates the propulsive jet. Since thrust depends solely on jet flow,
higher temperatures are required in the combustion chamber and thus the compressor
must pressurize the intake air to significant levels. For this reason, the addition of an
afterburner after the turbine is common practice in turbojets [64]. Additional fuel is
injected into the hot gas stream, which is reignited to produce more thrust without over-
loading the compressor. Due to high operating costs and high exhaust velocities, they
are most commonly used in military applications.

Figure 1.1: Diagram of a typical turbojet (left) and a turbofan (right) engine configura-
tion. Adapted from [64].

The turbofan engine works on a similar principle, with the difference being in the pres-
ence of a fan in the intake of the engine. The premise behind its presence is that the
thrust increases with airflow rate when the fuel consumption rate stays constant [31, 17].
Behind the fan, the inlet stream is divided into a hot and a cold stream. The former
passes through the core of the engine, which essentially acts as a turbojet, while the
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latter bypasses the core and is accelerated. In turbofan engines, the thrust comes mainly
from this secondary flow, while the core is used primarily to drive the rest of the compo-
nents. Turbofan engines offer lower fuel consumption and quieter operation compared
to turbojet engines and are therefore the dominant choice in the commercial aviation
industry [14].

Jet engines can have multiple spools, or shafts, rotating in the same or opposite direc-
tions. Each shaft/rotor is responsible for driving different components of the engine.
The most common configuration found is the dual or twin-spool engine. In this case,
the fan is usually connected to the low pressure compressor (LPC) and low pressure
turbine (LPT) on the same shaft, which is called the low pressure rotor (LPR) [40]. In ad-
dition, there is a high pressure rotor (HPR) linking the high pressure compressor (HPC)
with the high pressure turbine (HPT). One of the most successful dual-spool engines
manufactured is the CFM56 [66]. Less common are three-spool configurations. An ex-
ample of such a configuration is the Trent 1000 engine by Rolls-Royce. Multiple spools
provide better power distribution, enhanced thrust control and improved efficiency and
are therefore very common in modern aircraft.

1.2 Beyond Propulsion: Vibrations and Bearings in Jet

Engines

While thrust generation and thermal efficiency are primary concerns in the design of
a jet engine, vibrations resulting from the dynamic interaction of components are also
an important design consideration. Large vibrations can compromise the integrity of
the engine structure, causing cyclic stresses and fatigue failures in engine components,
structural damage to the rotor bearings and collisions of the rotor with stationary parts
[43]. The latter, resulting in blade damage, also significantly reduces the overall effi-
ciency of the engine. In addition, vibrations in the engine are directly related to noise
and can be transmitted through the aircraft structure to the fuselage, causing discomfort
to passengers [20, 16]. Therefore, the dynamic analysis of the engine in order to study
and reduce vibrations is of paramount importance.

A solid foundation for the dynamic analysis of rotating machinery can be found in the
work of Friswell [19], who also studied the dynamics of dual-spool configurations. To-
day, increased computing power has allowed engineers to employ numerical methods to
efficiently model and simulate the dynamic behavior of the engine. The most commonly
used approach is the Finite Element Method (FEM), which divides the engine into mul-
tiple finite elements. The choice between the types of elements is vast, but the simplest
and most commonly used is the one-dimensional Timoshenko beam element [60, 61, 13].
A more detailed presentation of the modeling of jet engines can be found in [44], as well
as in Chapter 4.

One of the most important components in vibration control is the bearing. Their type,
location and design have a tremendous effect on the dynamic response and stability of
a rotating system, as can be seen from the extensive literature on the subject. The most
commonly used types are journal and rolling element bearings (REBs). Each has ad-
vantages and disadvantages that make them suitable for different applications. Journal
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bearings are widely used in machinery belonging to the power, oil, gas and petrochemi-
cal industries, as well as in the automotive industry [7]. Some of their advantages include
quiet operation and gradual wear, which means they are not susceptible to sudden fail-
ure. However, they are characterized by high frictional forces, their life cycle is not easy
to calculate and they show unstable operation under certain conditions [48]. However,
there is a significant amount of literature that examines these instabilities and how they
can be addressed through improved, tunable designs [12, 21, 1]. Due to these disad-
vantages, the aviation industry relies solely on rolling element bearings [38], although
their range of applications is also vast. Their lower load capacity compared to journal
bearings is compensated by their low friction losses, higher speed applicability, low cost
and thrust load capacity [48]. An example of their dominant presence in a jet engine is
highlighted in Fig. 1.2, which shows the location and type of the eight bearings in the
Trent 1000 engine.

Figure 1.2: Bearings of the Rolls-Royce Trent 1000 engine [54]

Although rolling element bearings are used extensively in jet engines, the damping they
provide is not sufficient to reduce vibration amplitudes. Therefore, one or more of the
bearings in the engine are placed in series with a squeeze film damper (SFD). Essentially,
the rotating shaft is mounted on the bearing and the outer race is not allowed to rotate.
These two components together form the journal. Between the journal and the SFD
housing is a clearance filled with lubricant. Since the rotation of the shaft is decoupled
from the motion of the journal by the presence of the rolling elements, the motion of
the journal caused by the vibration of the shaft is converted into a pure whirl motion.
This results in the squeezing of the lubricant film and the generation of reaction forces.
These forces provide the damping that the bearing cannot provide on its own. A typical
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SFD configuration is shown on the left side of Fig. 1.3. Depending on the application,
a SFD can also be supported by a squirrel cage (SQC), which carries the weight of the
configuration and keeps the SFD centered. If the SFD is not supported, the journal will
be in direct contact with the housing at the start of operation.

Since the SFD reaction forces are the source of the external damping of the system, their
accurate prediction is crucial for the dynamic design of the engine. In the experimental
field, a lot of research has been conducted to investigate the effects of different geomet-
ric and operational characteristics on the performance of the damper. One of the most
important experimental initiatives has been the collaboration between Texas A& M Uni-
versity and an aircraft engine manufacturer, led by San Andres. In this work, damping
and added mass coefficients are calculated for different amplitude motions and static
eccentricity positions and compared with the available literature [3]. Among a plethora
of results, the authors highlight the importance of the fluid film inertia, which generates
significant added mass and contributes to the reaction forces. Additionally, contrary to
common belief, they show that the feed groove often found in SFDs does not isolate the
damper into two separate parts. Due to the incompressibility of the oil, fluid inertia ef-
fects become important and are the reason why large dynamic pressures are generated.
This effect increases the damping reaction force [2]. The effect of the sealing arrange-
ment in the SFD is also examined as part of this work. It was found that compared
to an open-ends damper, sealing increases the damping performance. Common sealing
approaches are the piston-ring seal and the O-ring seal, with the former being preferred
in jet engine applications [4, 51]. A visual representation of the feed groove and piston
ring seal can be seen on the right side of Fig. 1.3.

Figure 1.3: Typical squeeze film damper (SFD) configuration (left) with feed groove and
piston ring sealing (right). [22]

In the field of SFD modeling, the simplest approach to calculate the reaction forces of
the damper is to apply the short-bearing approximation to the Reynolds equation and
calculate analytical expressions for the reaction forces in both directions. A very detailed
derivation of these formulas can be found in the work of Mitsos [44]. This model is very
computationally efficient, but it does not take into account inertial effects and complex
geometric features that significantly affect SFD performance. Hori [32] lays a solid foun-
dation for the calculation of these forces, taking into account the inertial contribution as
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well, but still implementing the short-bearing approximation in the Reynolds equation to
arrive at an analytical expression. In the work of Karimulla et al. [35] and Hamzehlouia
and Behdinan [29], the authors also use the short-bearing SFD, but go a step further and
include both temporal and convective inertia terms before arriving at the analytical force
expressions.

Today, state-of-the-art models have been developed to accurately predict these forces.
The common feature of these models is that the Reynolds equation is now solved nu-
merically. This is referred to as finite bearing modeling. A detailed review of the state
of the art is presented by Gheller et al. [22, 23]. In particular, the inclusion of oil film
cavitation, air ingestion and inertia effects are discussed and a finite element approach is
presented. More specifically, in terms of inertia modeling, the work of San Andres and
Delgado [6] introduces the temporal inertia term and presents a finite element solution
for the resulting modified Reynolds equation. The most detailed model in terms of iner-
tia is completed with the inclusion of convective inertia, which is described in the work
of Hamzehlouia [27].

Regarding the oil temperature, the usual approach is to consider it as a constant value.
However, during operation, the oil is squeezed by the journal and absorbs vibration
energy, which due to the internal friction in the oil film, causes a significant increase
in its temperature [67]. Thus, in reality, the oil temperature varies. In recent years,
this effect has led to the development of thermohydrodynamic (THD) SFD models that
account for this temperature variation. Perreault et al. [46] develop a CFD model to
investigate such THD effects in SFDs and conclude that the temperature of the lubricant
increases as the whirl frequency, eccentricity ratio and SFD radial clearance increase.
The same behavior is observed in the work of Hamzehlouia and Behdinan [28], who
developed a THD SFD model that includes the inertial effect of the lubricant film.

1.3 Simulating Jet Engine Dynamics: Overview and

Motivation

As the modeling of SFDs becomes more detailed, the question arises as to how they affect
the dynamic response of jet engines. Since a transient simulation is often extremely time
consuming, there are numerous studies that use the Harmonic Balance Method (HBM)
to obtain the steady-state solution of the equation of motion in the frequency domain.
The vast majority of these studies simulate single rotor configurations and use short SFD
models, some more detailed than others [45, 55]. However, the classical HBM approach
becomes computationally inefficient for large systems with hundreds or thousands of
degrees of freedom. Therefore, it cannot be used to simulate whole engine models
and becomes even less efficient when detailed, state-of-the-art SFD models need to be
integrated, which in themselves increase computational time.

Pioneering work in the simulation of whole engine models was done by Bonello and
Pham [9, 47, 8]. The authors developed the Receptance Harmonic Balance Method
(RHBM) and the Impulsive Receptance Method (IRM) for efficient calculation of the
response of such models in the frequency and time domains respectively, leveraging the
fact that a jet engine has only a small number of truly nonlinear degrees of freedom.
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These nonlinearities arise from SFDs and rolling element bearings and can significantly
increase the simulation time if the entire system is solved as nonlinear. Regarding the
frequency domain simulation, the RHBM uses information extracted from the eigen-
value analysis of the linear part of the engine to set up the system for the nonlinear
component. As a result, the size of the vector of unknowns is drastically reduced. The
authors also applied the RHBM for a realistic three-spool engine configuration for the
case of multiple unbalance excitation, which occurs when the unbalance is located on
more than one rotor [26]. However, the SFD model implemented used the λ-Theory
to derive simple, analytical formulas for the pressure field under short and long SFD
assumptions.

The concept of segregating a system into a primary and a secondary component in or-
der to reduce simulation time was known long before the work of the aforementioned
authors. In 1978, the idea of the dynamic condensation was presented [39]. However,
the first time it was applied to a rotor dynamic analysis was in 1994 by Hahn and Chen
[25]. The authors applied the method to simple FEM rotor models supported on SFDs
and developed an improved Harmonic Balance Method where the nonlinear system is
solved only for the truly nonlinear degrees of freedom. During the condensation proce-
dure, a linear system appeared that was used to approximate the response of the linear
component. This method showed a tremendous simulation improvement compared to
the classic HBM and this is why many studies that followed employed it to simulate
more complex rotor systems. Sinou [56] implemented the HBM using appropriate dy-
namic condensation to simulate the nonlinear response of a flexible rotor supported by
ball bearings. The ball bearing models used were based on Hertzian contact theory to
calculate the nonlinear reaction force. He et al. [30] applied the method to a realistic
low pressure rotor of a jet engine supported on SFDs and compared various results with
transient simulations. The SFD modeling used the short-bearing approach with appro-
priate boundary conditions to simulate a piston ring seal. The authors observed almost
negligible differences with the transient analysis result, while the HBM was 5 to 12 times
faster.

It can be concluded that the majority of the studies using the HBM share some common
characteristics. The model of the SFD being used is relatively simple, nonlinear ball bear-
ing models connected in series with a nonlinear SFD spring are not implemented and,
excluding the work of Bonello and Pham, no whole engine models are being simulated.
The author of this thesis recognizes the great potential of the HBM using dynamic con-
densation and observes the need for state-of-the-art SFD models as well as nonlinear ball
bearing models to be integrated into nonlinear simulations of whole jet engine models.

A concise overview of the chapters is provided to give a clearer insight into the content
of the thesis:

In Chapter 2, the classical HBM method is presented and the mathematical basis of
the method is explained. Then, the dynamic condensation is applied and the reduced
nonlinear system for the nonlinear degrees of freedom is derived in detail. Important
parts of its solution procedure are explained and the schematic representation of the
algorithm is shown. Finally, the approach for dealing with the dual unbalance excitation
in this thesis is presented.

In Chapter 3, the nonlinear modeling of the squeeze film damper and the rolling el-
ement bearing is briefly discussed, since the aim of this thesis was not to delve deep
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into their modeling but rather to understand the differences between each model and
integrate them into rotor dynamic simulations. The equations governing the short SFD
approach are shown and then the state-of-the-art models are described, where the mod-
ified Reynolds equation is presented to include the temporal inertia term. In addition,
the main equations used in a THD SFD model are given with a brief explanation. Fi-
nally, two different models for calculating the nonlinear ball bearing reaction forces are
explained.

In Chapter 4, the HBM with appropriate dynamic condensation is applied to a generic jet
engine model with a dual-spool configuration. The model includes one SFD supported
by a squirrel cage (SQC). In the beginning, the usefulness of the SFD is investigated by
examining which resonance amplitudes it can attenuate through an eigenvalue/linear
analysis. The results of the linear analysis are compared with the nonlinear simula-
tions using the short SFD. An unbalance is then placed on both rotors of the engine to
simulate a dual unbalance excitation. Keeping the simple SFD model, the effects of oil
temperature, radial clearance size, SQC support stiffness and maneuvering loads on the
dynamic response of the engine are investigated. Then, the state-of-the-art SFD models
are integrated and the effects of different oil cavitation conditions, fluid inertia and the
presence and geometry of feed grooves are studied. Finally, nonlinear simulations us-
ing the short SFD and two different ball bearing models are presented. The results are
compared with nonlinear simulations using the short SFD and three constant stiffness
values for the ball bearing spring.

In Chapter 5, a collaborative work on the potential of the improved HBM for training
surrogate models for fast dynamic predictions is showcased. Using neural networks,
three surrogate models are trained, each with a specific function and with increasing
accuracy. Using these models, various results are obtained and discussed.

In Chapter 6, the main conclusions of the thesis are presented along with recommenda-
tions for the next steps in the research.





9

2 The Harmonic Balance Method in Nonlinear
Rotor Dynamics

In this section, the Harmonic Balance Method (HBM) is introduced along with a dynamic
condensation for great improvements in simulation efficiency.

2.1 Nonlinear Equations of Motion

An aircraft engine model can be represented as a system of second-order ordinary dif-
ferential equations using the Finite Element Method. The solution of these equations
describes the motion of the system under a given load and thus they are referred to as
equations of motion (EOM). In the general case where the external load is both linear
and nonlinear, they take the following form:

M · ẍ + D · ẋ + K · x = f (x, ẋ, ẍ, ω, t) (2.1)

where M is the mass matrix, D = ωG + Cvisc is the gyroscopic and viscous damp-
ing matrix and K is the stiffness matrix. Linear stiffness and viscous damping bearing
matrices are also included.

The linear force component is due to unbalance excitation and weight acting on the
system, whereas the nonlinear component in this analysis is due to squeeze film damper
(SFD) and rolling element bearing (REB) reaction forces. When the EOM is being solved
in the frequency domain, it is possible to include an imaginary stiffness term to account
for the structural damping C. The EOM then becomes:

M · ẍ + D · ẋ + (K + jC) · x = f (x, ẋ, ẍ, ω, t) (2.2)

2.2 Classic Harmonic Balance Method

The Harmonic Balance Method (HBM) is an approach to solving nonlinear problems in
the frequency domain when the forcing is periodic. The nonlinear force on the right-
hand side (RHS) of Eq. 2.2 is assumed to be of this nature and thus it can be expressed
as a truncated Fourier series with a fundamental frequency of ω. The RHS also includes
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an additional zero order excitation due to the weight and a first order excitation due to
the unbalance. Therefore, the RHS can be expressed as:

f (x, ẋ, ẍ, ω, t) = f0,NL +
m

∑
k=1

fk,NLejkωt + fg + fuejωt (2.3)

By combining all the excitations in their respective order, the RHS can be expressed as a
truncated Fourier series describing the complete forcing experienced by the system:

f (x, ẋ, ẍ, ω, t) = f0 +
m

∑
k=1

fkejkωt (2.4)

where f0 and fk are arrays containing the Fourier coefficients of the forces. They are one-
dimensional and their size is equal to the number of degrees of freedom of the system
n. The number of kept harmonics m depends on the number of harmonics the nonlinear
forces are expected to generate.

Since the above assumption is made for the excitation, the partial solution of the EOM
must also have the same form, i.e. it is a periodic solution. Therefore:

x (t) = x0 +
m

∑
k=1

xkejkωt (2.5)

Differentiating Eq. 2.5 once for the velocity and twice for the acceleration and substitut-
ing in Eq. 2.2, the following holds:

M ·
m

∑
k=1

− (kω)2 xkejkωt + D ·
m

∑
k=1

jkωxkejkωt+

+ (K + jC)

(
x0 +

m

∑
k=1

xkejkωt

)
= f0 +

m

∑
k=1

fkejkωt (2.6)

The above equation is true if and only if:

K · x0 = f0 (2.7)

and (
− (kω)2 M + jkωD + K + jC

)
xk = fk, ∀k ≥ 1 (2.8)

While mathematics dictates that eq. 2.7 should include the structural damping term,
there is no structural damping when the system is in its static state.
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Most numerical solvers cannot directly handle complex unknowns. This is why they
must be decomposed into their real and imaginary parts. The coefficients of the zero
harmonic only have a real part. Thus, x0 = α0 + j0 and xk = αk + jβk. Therefore, Eq.
2.7 and Eq. 2.8 can be written as follows:

Kα0 + j0 = f0 (2.9)

and

− (kω)2 Mαk + jkωDαk + Kαk + jCαk − j (kω)2 Mβk − kωDβk + jKβk − Cβk = fk
(2.10)

To satisfy the above equations, the real and imaginary terms on both sides must be equal.
This condition leads to the system of nonlinear equations for the classical harmonic
balance method:

Kα0 − Re(f0) = 0(
K − (kω)2 M

)
αk − (kωD + C) βk − Re(fk) = 0(

K − (kω)2 M
)

βk + (kωD + C) βk − Im(fk) = 0

(2.11)

The unknowns in the classical harmonic balance method depend directly on the num-
ber of degrees of freedom n of the system and the number of kept harmonics m. For
a simulation where the zero harmonic is included, the number of total equations is
(2 · m + 1) · n, whereas if the zero harmonic is excluded, this number is reduced to
2 · m · n.

2.3 Dynamic Condensation

In many applications, the nonlinear degrees of freedom are very low compared to the
total degrees of freedom of the system. With the classical approach described in section
2.2, the entire system is solved as nonlinear, while the actual nonlinearity arises from
only a few nodes. In this section, a dynamic condensation method is presented in order
to greatly reduce the computational time by solving a nonlinear system of equations
similar to the one described by Eq. 2.11, but only for the nonlinear degrees of freedom.

2.3.1 Partition of Equation of Motion

The first step is to perform a partition of the degrees of freedom into linear (p) and
nonlinear (q). Mathematically, this is expressed as the linear transformation:

x = Py = P [yp yq]⊤ (2.12)
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where P is the partition matrix and yp, yq are one-dimensional arrays containing the
linear and nonlinear degrees of freedom respectively. Thus, Eq. 2.2 is written as follows:

M̃︷ ︸︸ ︷[
Mpp Mpq

Mqp Mqq

] [
ÿp

ÿq

]
+

D̃︷ ︸︸ ︷[
Dpp Dpq

Dqp Dqq

] [
ẏp

ẏq

]
+

+

( [
Kpp Kpq

Kqp Kqq

]
︸ ︷︷ ︸

K̃

+

[
Cpp Cpq

Cqp Cqq

]
︸ ︷︷ ︸

C̃

)
=

[
fp

fq

]
(2.13)

From Eq. 2.5 and Eq. 2.12 it is clear that the arrays yp, yq can also be written as truncated
Fourier series. Taking into consideration Eq. 2.4, the same applies for the arrays fp, fq.
Therefore Eq. 2.13 is written as follows:

M̃


m

∑
k=1

− (kω)2 yp
kejkωt

m

∑
k=1

− (kω)2 yq
kejkωt

+ D̃


m

∑
k=1

jkωyp
kejkωt

m

∑
k=1

jkωyq
kejkωt

+

+
(
K̃ + jC̃

)


yp
0 +

m

∑
k=1

yp
kejkωt

yq
0 +

m

∑
k=1

yq
kejkωt

 =


fp

0 +
m

∑
k=1

fp
kejkωt

fq
0 +

m

∑
k=1

fq
kejkωt

 (2.14)

which is true under the following conditions (no structural damping provided in the
static state):

K̃

[
yp

0

yq
0

]
=

[
fp

0

fq
0

]
(2.15)

and (
− (kω)2 M̃ + jkωD̃ + K̃ + jC̃

) [yp
k

yq
k

]
=

[
fp

k

fq
k

]
, ∀k ≥ 1 (2.16)

Equations 2.15 and 2.16 are the partitioned equivalents of Eq. 2.7 and Eq. 2.8, respec-
tively.
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2.3.2 Condensed equations for zero harmonic

In this section, the equations for the zero harmonic Fourier coefficients of the nonlinear
degrees of freedom are derived. The complex unknowns of Eq. 2.15 are expressed as
a real and an imaginary component. With the same procedure described in section 2.2,
the following equation is obtained:

[
Kpp Kpq

Kqp Kqq

] [
α

p
0

α
q
0

]
= Re

[
fp

0

fq
0

]
(2.17)

From Eq. 2.17, two additional equations are yielded:

Kppα
p
0 + Kpqα

q
0 = Re(fp

0 ) ⇔ α
p
0 = K−1

pp ·
(
Re(fp

0 )− Kpqα
q
0
)

(2.18)

Kqpα
p
0 + Kqqα

q
0 = Re(fq

0) (2.19)

By substituting Eq. 2.18 into Eq. 2.19, the unknown linear coefficients are eliminated
and the equation for calculating the Fourier coefficients of the zero harmonic only for
the nonlinear degrees of freedom is obtained:

(
Kqq − KqpK−1

pp Kpq

)
α

q
0 + KqpK−1

pp Re(fp
0 )− Re(fq

0) = 0 (2.20)

2.3.3 Condensed equations for higher harmonics - Real part

In this section, the equations for the real part of the k-harmonic Fourier coefficients of
the nonlinear degrees of freedom are derived. For clarity reasons, the following symbols
are introduced in Eq. 2.16:

[
yp

k

yq
k

]
=

[
α

p
k

α
q
k

]
+ j

[
β

p
k

β
q
k

]
= α̃k + jβ̃k,

[
fp

k

fq
k

]
= f̃k (2.21)

Substituting these expressions in Eq. 2.16 and following the same procedure as in section
2.2, the following equations are obtained:

(
K̃ − (kω)2 M̃

)
α̃k −

(
kωD̃ + C̃

)
β̃k − Re(f̃k) = 0 (2.22)(

K̃ − (kω)2 M̃
)

β̃k +
(
kωD̃ + C̃

)
α̃k − Im(f̃k) = 0 (2.23)
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From Eq. 2.23:

β̃k =
(

K̃ − (kω)2 M̃
)−1

Im(f̃k)−
(

K̃ − (kω)2 M̃
)−1 (

kωD̃ + C̃
)

α̃k (2.24)

Substituting Eq. 2.24 into Eq. 2.22, the unknown β̃k is eliminated and an equation
containing only the real part of the Fourier coefficients is obtained:

Tkα̃k = wk (2.25)

where:

Tk = K̃ − (kω)2 M̃ +
(
kωD̃ + C̃

) (
K̃ − (kω)2 M̃

)−1 (
kωD̃ + C̃

)
(2.26)

and
wk = Re(f̃k) +

(
kωD̃ + C̃

) (
K̃ − (kω)2 M̃

)−1
Im(f̃k) (2.27)

Now, Eq. 2.25 can be expressed in its expanded form:

[
Tk,pp Tk,pq

Tk,qp Tk,qq

] [
α

p
k

α
q
k

]
=

[
wp

k

wq
k

]
(2.28)

which is the same as Eq. 2.17. Therefore, using the same calculations performed to
obtain Eq. 2.20, a similar expression is obtained for calculating the real part of the
k-harmonic Fourier coefficients only for the nonlinear degrees of freedom:

(
Tk,qq − Tk,qpT−1

k,ppTk,pq

)
α

q
k + Tk,qpT−1

k,ppwp
k − wq

k = 0 (2.29)

2.3.4 Condensed equations for higher harmonics - Imaginary part

In this section, the equations for the imaginary part of the k-harmonic Fourier coefficients
of the nonlinear degrees of freedom are derived. The procedure is the same as the one
followed in section 2.3.3. The difference lies in the variable that gets eliminated. From
Eq. 2.22:

α̃k =
(

K̃ − (kω)2 M̃
)−1 (

kωD̃ + C̃
)

β̃k +
(

K̃ − (kω)2 M̃
)−1

Re(f̃k) (2.30)

Substituting Eq. 2.30 into Eq. 2.23, the unknown α̃k is eliminated and an equation
containing only the imaginary part of the Fourier coefficients is obtained:
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Tk β̃k = uk (2.31)

where matrix Tk is calculated by Eq. 2.26 and uk by:

uk = Im(f̃k)−
(
kωD̃ + C̃

) (
K̃ − (kω)2 M̃

)−1
Re(f̃k) (2.32)

As in the previous section, Eq. 2.31 can be expressed in its expanded form:

[
Tk,pp Tk,pq

Tk,qp Tk,qq

] [
β

p
k

β
q
k

]
=

[
up

k

uq
k

]
(2.33)

which is the same as Eq. 2.17. Therefore, using the same calculations performed to
obtain Eq. 2.20, a similar expression is obtained for calculating the imaginary part of the
k-harmonic Fourier coefficients only for the nonlinear degrees of freedom:

(
Tk,qq − Tk,qpT−1

k,ppTk,pq

)
β

q
k + Tk,qpT−1

k,ppup
k − uq

k = 0 (2.34)

With the equations for every harmonic obtained, the nonlinear system of equations for
the harmonic balance method using a dynamic condensation approach is presented be-
low:

(
Kqq − KqpK−1

pp Kpq

)
α

q
0 + KqpK−1

pp Re(fp
0 )− Re(fq

0) = 0(
Tk,qq − Tk,qpT−1

k,ppTk,pq

)
α

q
k + Tk,qpT−1

k,ppwp
k − wq

k = 0(
Tk,qq − Tk,qpT−1

k,ppTk,pq

)
β

q
k + Tk,qpT−1

k,ppup
k − uq

k = 0

(2.35)

This system is the condensed equivalent of the system described by Eq. 2.11. The reader
will notice that the number of equations to solve now depends on the number of kept
harmonics m and the number of nonlinear degrees of freedom q, instead of the number
of total degrees of freedom n. This is a significant improvement in terms of efficiency,
since the systems studied in this thesis contain hundreds of degrees of freedom, but only
a few nonlinear ones. An example of a system with n = 500, q = 8 and 2 harmonics (0x,
1x) shows that using the classical harmonic balancing method the nonlinear equations
are 1500, while using dynamic condensation the equations are reduced to 24.

After solving Eq. 2.35, the Fourier coefficients of the linear degrees of freedom can be
estimated by Eq. 2.18, 2.28, 2.33. More specifically, a linear system can be solved to
obtain every linear unknown:

Kppα
p
0 = Re(fp

0 )− Kpqα
q
0

Tk,ppα
p
k = wp

k − Tk,pqα
q
k

Tk,ppβ
p
k = up

k − Tk,pqβ
q
k

(2.36)
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2.4 Solution algorithm

This section presents the solution procedure for the nonlinear condensed system de-
scribed by Eq. 2.35. The unknowns are the arrays α

q
0 , α

q
k, β

q
k. Each array contains q

coefficients, as many as there are nonlinear degrees of freedom. These values are orga-
nized into a single one-dimensional array of unknowns r for handling by the numerical
solver. The general format of this array is shown below:

r =
[

α
q
1 α

q
2 . . . α

q
m︸ ︷︷ ︸

m·q

β
q
1 β

q
2 . . . β

q
m︸ ︷︷ ︸

m·q

α
q
0︸︷︷︸

q

]
(2.37)

where the subscripts 0, 1, . . . , m denote the harmonic. With the introduction of this vari-
able, the nonlinear system of Eq. 2.35 can be expressed mathematically in one line as
follows:

G (r) = 0 (2.38)

2.4.1 Calculation of the nonlinear force coefficients

An important part of the solution procedure is the calculation of the nonlinear force
Fourier coefficients. These coefficients are also stored in a one-dimensional array, the
general format of which is shown below:

fNL =
[

fq
1,NL fq

2,NL . . . fq
m,NL︸ ︷︷ ︸

m·q

fq
0,NL︸ ︷︷ ︸

q

]
(2.39)

where again the subscripts 0, 1, . . . , m denote the harmonic. Similar to array r, each
individual force array contains q coefficients. The difference is that compared to array r,
the coefficients in array fNL are kept in their complex form. Calculating them directly in
the frequency domain would be a complex task due to the nature of the nonlinearities.
Therefore, the Alternate Frequency-Time domain (AFT) method proposed by Cameron
and Griffin [11] is used for their calculation.

r x (t)
FFT−1

fNL (x, ẋ, ẍ, ω, t) FFT fNL

Figure 2.1: Schematic description of the AFT-method.

Essentially, the vector in Eq. 2.37 describes the motion of the system in the frequency
domain. Using an inverse FFT, this motion can be translated to the time domain, where
the nonlinear reaction forces from the SFD and/or REB are then calculated. Finally, the
force coefficients in the frequency domain are obtained by applying an FFT directly to
the force signal.
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To obtain the correct force arrays present in Eq. 2.35, the weight and unbalance force
array fg and fu must be partitioned. Hence, the arrays fp

g , fq
g, fp

u and fq
u are obtained.

As mentioned at the beginning of section 2.2, the weight force corresponds to a zero
order excitation and the unbalance force to a first order excitation. Therefore, the fol-
lowing relations hold for the total excitation of zero, first (k = 1) and higher harmonics
(k = 2 . . . m):

Table 2.1: Relations for the total excitation force arrays depending on the harmonic

k = 0 k = 1 k ≥ 2

fp
0 = fp

g fp
1 = fp

u fp
k = 0

fq
0 = fq

g + fq
0,NL fq

1 = fq
u + fq

1,NL fq
k = fq

k,NL

These equations allow for the calculation of the arrays fp
0 , fq

0 , wp
k, wq

k, up
k and uq

k which
are all present in the condensed system of 2.35.

2.4.2 Solution algorithm schematic

The procedure for solving the condensed Harmonic Balance system of equations de-
scribed by Eq. 2.35 is shown in Fig. 2.2. The dark-colored boxes represent the AFT-
method described in the previous section. To start the simulation, the user must specify
among other inputs, the location of the nonlinear elements (nodes of the system) and the
model used to calculate the reaction forces. These models can be analytical or numerical
and they will be discussed in later chapters. In addition, the harmonics to be included
in the simulation must be specified.

The AFT parameters are also user-defined. They consist of the number of sample points
and the number of sample periods used in the FFT. The latter is always equal to one,
unless multiple frequency excitations occur. This case is discussed in the next section.
The number of sample points P greatly influences the efficiency of the algorithm and
thus extra care must be taken when choosing this value. For up to the third harmonic,
P = 8 is sufficient. For additional harmonics, 16 points are recommended. In general,
since an FFT algorithm is used, this number must obey the following relation:

P ≥ 2m (2.40)

where m is the number of kept harmonics, excluding the zero harmonic.
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AFT parametersLocation, type and
model of nonlinearity

Included harmonics

User

Partition of matrices and linear force arrays

Initial estimation of solution r

Calculation of relative journal orbit at nonlinear bearings
(x, ẋ, ẍ)

Calculation of nonlinear SFD/REB reaction forces
(time domain)

FFT on force signal

Construction of arrays:
fp

0 , fq
0 , wp

k, wq
k, up

k, uq
k

Solution of condensed Harmonic Balance
equations

New solution rnew

convergence
no

yes

Next ω

Figure 2.2: Schematic representation of the solution procedure for the nonlinear, con-
densed system of equations.



2 The Harmonic Balance Method in Nonlinear Rotor Dynamics 19

After selecting these parameters, the linear and nonlinear degrees of freedom are sepa-
rated and the solution for the first frequency begins. The process is iterative because the
system of 2.35 is nonlinear. As with all nonlinear systems, an initial solution is required,
which is obtained from the three previously converged solutions using Lagrange poly-
nomials for equidistant solution steps. Then, the AFT method described in the previous
section is applied. From the resulting force coefficients, the function G of Eq. 2.38 can be
calculated at r along with its derivative and then a new solution can be estimated. This
procedure is repeated until convergence, at which point the user can choose to calculate
the coefficients for the linear degrees of freedom as well. The algorithm proceeds to the
next frequency step and the process is repeated until convergence.

The algorithm described above can also be run in parallel if the user so chooses. This is
particularly useful when the numerical nonlinear models, which are described in more
detail in Chapter 3, are being used. Since these models are slower than an analytical
expression, running the simulation in parallel greatly reduces the simulation cost. In
addition, parallelization is often used in this work when the number of harmonics in-
creases, since the equations approximately double along with the simulation time. The
frequency range can be divided into as many cores as are available, and each subrange
can be run on a separate thread. However, care must be taken when selecting the sub-
ranges to not start on a resonance peak. Since the initial solution there won’t have the
information of the previous solutions, the solver may not converge. To avoid this behav-
ior, a linear analysis can be performed a priori to get a good understanding of where the
resonance peaks are located.

The exact algorithm used to solve the nonlinear system is a modification of the Powell
hybrid method. In this algorithm, the Jacobian is approximated using finite differences.
This routine is part of the algorithms of MINPACK. Since the programming language
used in this work is Python, the routine is accessed through the scipy library [49]. For
the parallelization, the multiprocessing library is used.

2.5 Multiple frequency excitation

In the simple case of a single frequency excitation, the force acting on the system can
be expressed according to Eq. 2.4. The frequency ω is the base or reference frequency,
which in this work corresponds to the rotational speed of the unbalance rotor. When
performing the AFT steps, only one sampling period T = 2π/ω is required to obtain the
correct result, since the time signal is periodic in this period. As discussed in paragraph
2.4.2, the number of sampling points P is adjusted according to the number of kept
harmonics.

In this work, the case of multiple unbalanced rotors is also considered. Now, besides
the reference frequency ω, there is a secondary excitation frequency ωsec, which arises
from an unbalance located on another rotor, called the secondary rotor. The secondary
frequency is related to the reference frequency by the speed ratio (sr), so ωsec = sr · ω.
Each of these frequencies has its corresponding harmonics. The time signal calculated
in the first step of the AFT now has the information on both frequencies. If the sampling
period is kept to one, then the resulting time signal will contain the full reference signal,
but the secondary signal will be truncated, resulting in a quasi-periodic solution.
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Since the harmonic balance method presented in this work cannot directly handle quasi-
periodic solutions, a different approach is considered. By restricting the speed ratio
to only commensurable frequencies, a number of sampling periods are selected that
completely encompass both the reference and secondary signals. In the case of a speed
ratio sr = 1.5, the procedure is illustrated in Fig. 2.3 for the 1x (reference) and 1.5x
(secondary) components. The AFT now requires two sample periods and twice as many
sample points P. Therefore, there will be 2 reference signals and 3 secondary signals in
the final time signal. There will be no truncation occurring, so the resulting signal will
be periodic and the harmonic balance method can be applied as is.

ref
sec

Tre f 2Tre f

t

x

Figure 2.3: Visual representation of the extension of the sampling period in order to keep
the solution periodic in the case of a dual unbalance excitation.
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3 Nonlinear Element Models

3.1 Squeeze Film Damper Modeling

3.1.1 Short Bearing Modeling

The short bearing model provides analytical expressions for the reaction forces of an
SFD. It is the simplest model available and one of the most commonly used in rotor
dynamic simulations due to its efficiency and ease of integration. The model is derived
from the Reynolds equation, which in turn is derived from the Navier-Stokes equations
in conjunction with the continuity equation.

The Navier-Stokes equations describe the motion of a Newtonian fluid and are an ex-
pression of the conservation of momentum in a fluid volume. For an incompressible
fluid with constant dynamic viscosity η, they can be expressed concisely as [53]

ρ
∂u
∂t

+ ρu (∇ · u) = −∇p + η∇2u + ρg (3.1)

where u is a vector containing the velocity components of the fluid in all three directions
and p is the pressure. The first and second terms on the left-hand side of Eq. 3.1 repre-
sent the temporal and convective inertia, respectively. To simplify the equations, certain
assumptions are made. The inertia terms are neglected and the velocity in the direction
of the gap is assumed to be zero due to the small size of the film thickness. Additionally,
the gravitational terms are neglected and the pressure across the gap is assumed to be
constant. With these simplifications and the use of the continuity equation, the Reynolds
equation is derived and expressed in cylindrical coordinates for an SFD [4],

∂

R∂θ

(
ρh3

12η
· ∂p

R∂θ

)
+

∂

∂z

(
ρh3

12η
· ∂p

∂z

)
=

∂ (ρh)
∂t

(3.2)

where θ is the circumferential direction, z is the axial direction, η is the dynamic viscosity
of the fluid and h is the oil film thickness. A more detailed presentation for the derivation
of the Reynolds equation can be found in [44] and [5]. The short bearing assumption
further simplifies Eq. 3.2 by assuming that due to the short length, the pressure gradient
in the axial z-direction is significantly larger than in the x-direction. Therefore, the
corresponding term on the left hand side is neglected and the resulting equation yields
an analytical solution for the pressure field [44].
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P(θ, z) =
6η

h3 · [−ẋ · cos θ − ẏ · sin θ] · (z2 − L · z) (3.3)

To calculate the reaction forces in the x and y directions, the following integrations are
performed,

Fx =

L∫
0

2π∫
0

P(θ, z) · cos θ · R dθ dz

Fy =

L∫
0

2π∫
0

P(θ, z) · sin θ · R dθ dz

(3.4)

where L is the length of the SFD and R is its radius. The analytical expressions for the
reaction forces in the x and y directions can now be obtained,

Fx = η · R · L3
2π∫
0

ẋ · cos2 θ + ẏ · sin θ · cos θ

(cr − x · cos θ − y · sin θ)3 dθ

Fy = η · R · L3
2π∫
0

ẋ · cos θ · sin θ + ẏ · sin2 θ

(cr − x · cos θ − y · sin θ)3 dθ

(3.5)

where the integral that remains can be calculated numerically.

3.1.2 State-of-the-Art Modeling

In many practical applications, the simple short bearing approach is not sufficient to
adequately capture the complex geometric and operational features present in a squeeze
film damper. Therefore, more detailed models have been developed. The main difference
from the short bearing model is that the Reynolds equation is now discretized and solved
numerically. This approach is called the finite bearing model. In this section, the most
recent models available for the calculation of SFD reaction forces are briefly presented.
The objective of this work is not to delve into the SFD modeling, but rather to integrate
certain state-of-the-art models into the harmonic balance simulations and to interpret
the results.

The section is divided into two parts, the isothermal modeling, where the temperature of
the lubricant is kept constant, and the thermal modeling, where the temperature inside
the damper is allowed to vary.

Isothermal Modeling in Squeeze Film Dampers

When the temperature of the fluid is held constant, the viscosity of the fluid remains the
same and the Reynolds equation of 3.2 is solved as is.
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The finite element approach allows complex geometric features to be modeled. An
important feature found in many squeeze film dampers is a circumferential groove. The
primary function of the groove is to provide a continuous supply of oil to the damper
surfaces, commonly referred to as lands. When modeling a circumferential groove, the
effects of inertia can become important. In the work of San Andres [6], the temporal
inertia term is included, resulting in the modified Reynolds equation [4].

∂

R∂θ

(
ρh3

12η
· ∂p

R∂θ

)
+

∂

∂z

(
ρh3

12η
· ∂p

∂z

)
=

∂ (ρh)
∂t

+
ρh2

12η
· ∂2 (ρh)

∂t2 (3.6)

For low eccentricity amplitude motions of the journal within the SFD, the temporal
inertia term is assumed to be much larger than the convective term [18]. For this reason,
the state-of-the-art temporal inertia model [6] should be limited to such motions. In
the work of Hamzehlouia [29, 27], the convective term is also considered and thus a
complete modeling of the inertial effects is achieved.

In the work of Gheller et al. [22], the authors mention another important feature in
SFDs, called the piston ring seal. They explain that when the SFD has an open-ends
configuration, the lubricant is directly exposed to the ambient pressure and is therefore
subject to significant air entrainment, which reduces damping capability. This is the
reason piston ring seals are used, which are placed in corresponding piston ring grooves
on both sides of the SFD. Their presence is imposed as an outlet boundary condition
and is modeled as a restriction on the outlet flow rate of the lubricant,

qout =
Cp (P (θ, L)− Pout) h3

p

12ηwp
(3.7)

where Cp is the piston ring loss coefficient, Pout is the pressure on the outer side of the
piston ring and hp, wp describe the geometry and position of the piston ring groove,
respectively. Imposing all necessary inlet and outlet boundary conditions as well as
other geometrical features present in the SFD, the Reynolds equation is solved and the
reaction forces are calculated using Eq. 3.4.

Thermal Modeling in Squeeze Film Dampers

In thermal modeling, the temperature of the lubricant, and thus its viscosity, varies
inside the damper. To account for this effect, the Reynolds equation of Dowson is used
[15]

∂

∂xi

(
ρG

∂p
∂xj

)
= ujournal,i

∂ (ρF)
∂xi

+
∂ (ρh)

∂t
(3.8)

where G = J4 − J2
1 /J0 and F = J1/J0. The Dowson integrals J0, J1, J4 represent the

variation of the viscosity in regards to the gap height and are described by the following
expressions
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J0 =

h∫
0

1
η (T)

dz, J1 =

h∫
0

z
η (T)

dz, J4 =

h∫
0

z2

η (T)
dz (3.9)

where z represents the gap height coordinate and h is the total oil film gap. The variation
of the viscosity with temperature η (T) is given by the Vogels equation

η (T) = c1e
(

c2
T+c3

)
(3.10)

where c1, c2, c3 are Vogel parameters. The temperature distribution of the lubricant
across the gap height z is a parabolic curve described in [50, 33]. For its calculation,
the average temperature of the fluid across the gap height T must also be calculated.
This is done by the 3D energy equation for fluid in tribological contact [36], which,
integrated across the gap height, has the following 2D form

hρcp

(
U

∂T
∂x

+ V
∂T
∂y

)
− ∂

∂x

(
hλ

∂T
∂x

)
− ∂

∂y

(
hλ

∂T
∂y

)
− λ

[
∂T
∂z

]h

0
= Φhyd (3.11)

The temperature of the fluid is also affected by the temperature of the journal and the
housing and vice versa. The energy equation for the solids is given by

ρcp
∂T
∂t

− ∂

∂x

(
λ

∂T
∂x

)
− ∂

∂y

(
λ

∂T
∂y

)
− ∂

∂z

(
λ

∂T
∂z

)
= q̇ (3.12)

Therefore the complete thermal modeling contains three equations that need to be solved,
Eq. 3.8, Eq. 3.11 and Eq. 3.12. These equations are nonlinear, time-dependent partial
differential equations (PDEs) and they are solved simultaneously since they are coupled
with one another. It is also possible to solve only the fluid energy equation and ne-
glect the solid energy equation if boundary conditions are imposed for the journal and
housing temperatures.

3.2 Rolling Element Bearing Modeling

Rolling element bearing models can be divided into kinematic and dynamic models
based on the effects they consider. In this work, the effect of the first category is studied
by integrating the standard kinematic model and the elastohydrodynamic model devel-
oped for ball bearings in the work of Stylianopoulou [57]. In order to couple the models
with the motion of the shaft at different rotational speeds, it is assumed that the inner
rings follow exactly the displacement of the shaft. Although this assumption differs from
reality due to the fit between the two bodies, the difference is negligible. Finally, for the
correct coupling of the model, the bearing must be preloaded in the axial direction to
avoid free-play.
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Standard Kinematic Model

The standard kinematic model is based on the kinematic and geometric relationships
proposed by Lim and Singh [41]. It includes certain simplifying assumptions, such as
keeping the angle between two balls constant, treating the cages as rigid bodies, includ-
ing pin retainers, and neglecting centrifugal or gyroscopic effects. In addition, thermal
effects are not considered. The key point in this model is that the rolling elements are in
dry contact with the inner and outer rings and therefore a Hertzian parameter must be
calculated in order to calculate the forces.

As the inner ring displaces, the elastic force exerted by each ball k can be calculated
using the following expression,

Qn,k = KH · δ
3
2
k (3.13)

where KH is the Hertzian parameter and δk is the elastic deformation of the ball. The
exponent value is one typically used in ball bearing calculations. The normal force
calculated by Eq. 3.13 must then be projected to the global inner ring coordinate system
using the Lim and Singh projection vector of each ball and then the contribution of the
total number of balls N must be added together. The resulting force vector is given by

f =
N

∑
k=1

Qn,k · e fLS,k (3.14)

where

f =
(

Fx Fy Fz Mx My Mz
)

(3.15)

Elastohydrodynamic Model

The main difference between the elastohydrodynamic (EHD) model and the standard
kinematic model is the presence of a lubricant film between the rolling elements and
the inner/outer ring. In addition to reducing wear, the lubricant also introduces viscous
damping into the system. In addition, at high speeds and load conditions, it further
increases the elastic deformation of the ball compared to dry contact only. This effect is
described by

δk = δH,k − δEHD,k (3.16)

where δk is the total elastic deformation of the ball, δEHD,k is the elastic deformation
due to the elastohydrodynamic effect and δH,k is the elastic deformation due to the dry
contact. It can be shown that Eq. 3.16 can be expressed as [65, 57]

δk =

(
Qn,k

KH,in

) 2
3 [

1 − pin (Nred,inQn,k)
qin
]
+

(
Qn,k

KH,out

) 2
3 [

1 − pout (Nred,outQn,k)
qout
]

(3.17)
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where Qn,k is the normal elastic force that is exerted from ball k, p and q are bearing
parameters and Nred is a dimensionless load parameter. The subscripts in and out refer
to the inner and outer rings, respectively. Eq. 3.17 is solved using an iterative procedure
to calculate Qn,k. After obtaining the elastic normal force of the ball, a dimensional
damping coefficient c can be calculated for both ball-inner and ball-outer ring contacts.
The total damping coefficient is given by

ctot =
1

1
cin

+ 1
cout

(3.18)

from which the damping force exerted by the ball can be calculated according to

Qd,k = δ̇kctot (3.19)

where the calculation of δ̇k is also given in the literature [57]. Similar to the standard
kinematic model, the reaction force of each ball is projected onto the global inner ring
coordinate system using the projection vector proposed by Wagner [63].

f =
N

∑
k=1

(Qn,k + Qd,k) · e f ,k (3.20)

Note that there is no geometric difference between the Wagner projection vector and the
Lim and Singh projection vector. The latter is expressed for use in specific analytical for-
mulas for calculating the stiffness matrix, while the former is a more general expression.
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4 Generic Jet Engine Dynamic Simulations

4.1 Jet Engine Model

The simulation results presented in this chapter revolve around the model displayed in
Fig. 4.1. The model is a generic representation of a dual-spool jet engine, consisting of a
Low Pressure (LP) and a High Pressure (HP) rotor, an outer casing and various bearing
casing structures. Both rotors are hollow and they can rotate in the same direction (co-
rotating) or in the opposite (contra-rotating). In this work, the rotors are contra-rotating,
with the HP rotor rotating 1.5 times faster than the LP rotor. At the front of the LP and
HP rotors are the LP compressor (LPC) and the HP compressor (HPC), respectively. The
former has three stages, while the latter has five. At the rear of the rotors are the LP
turbine (LPT) and the HP turbine (HPT), each with one stage.

Bearings and connecting structures are represented as springs. These springs can be
either linear or nonlinear. Springs SP1 through SP3 represent struts, used to connect the
bearing housings to the outer casing. Springs M1 and M2 have one end connected to the
ground, hence they are not directly visible in the figure. They are used to represent the
mounts used to connect the engine to the airframe. Springs B1 through B5 depicts the
location of the rolling element bearings (REBs). The location of the SFD is shown with
the corresponding spring.

The rotors and casings are modeled using Timoshenko beam elements, while the stages
are represented as rigid disks with specific masses and moments of inertia since their
geometric complexity is of little value for rotor dynamic simulations. It is worth noting
that the structure OR is considered a casing since it does not rotate, but in reality, it
represents the outer ring of a REB. In the detailed view of Fig. 4.1, the SQC element
represents the squirrel cage used to centralize the SFD. Its complex geometry is best
represented using the flexibility matrix approach presented in [10]. The left end of the
SQC is rigidly connected to the casing above it.

In this model, the nonlinear elements can be either the SFD spring and/or one of the
B1-B5 springs. In the present work, the SFD and B3 springs are treated as nonlinear to
understand their effects on the dynamics. The models presented in Chapter 3 are used
to calculate their reaction forces. Since the model in Fig. 4.1 represents a whole engine,
it will be referred to as a Whole Engine Model (WEM).

4.2 Critical Speed Analysis

The first step in a rotor dynamic analysis is to calculate the critical speeds of the system.
In addition to information about the motion of the system, the engineer can predict if
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Figure 4.1: Generic jet engine model (MTU in-house tool).

and where an SFD will be of value and what peaks to expect in a frequency response
analysis.

To calculate the critical speeds and corresponding modes, the eigenvalue problem must
first be solved for discrete speeds of a given reference rotor. In the dual-spool system
presented in this chapter, the LP rotor acts as the reference. By calculating the eigenval-
ues for each speed, the natural undamped frequencies are obtained and the results are
displayed in a single figure called Campbell diagram. Fig. 4.2 shows this diagram for
the case of contra-rotating rotors with a speed ratio of ωHP/ωLP = −1.5.

The black line represents the unbalance excitation frequency due to the reference rotor,
which is the LP, while the magenta line represents the unbalance excitation frequency
due to the secondary rotor, which is the HP. The points of intersection of these lines with
the Campbell diagram are the critical speeds of the system. These values correspond to a
forward (FW) or backward (BW) system mode. Whether the mode is FW or BW depends
on the choice of reference rotor.

In this specific case, the LP rotor can only excite FW modes because its unbalance rotates
in the same direction as it. In contrast, the HP rotor can only excite BW modes since
its unbalance rotates in the opposite direction relative to the reference rotor. The critical
speeds for this case are shown in Table 4.1. The letter L indicates the presence of a critical
speed due to the unbalance on the LP rotor, while the letter H indicates the presence of
a critical speed due to the unbalance on the HP rotor. Therefore, depending on which
rotor the unbalance is on, peaks at these speeds can be expected in a frequency response
analysis. The maximum speed of the LP rotor is 18000 rpm, so the critical speeds shown
are limited by this value.

As mentioned earlier, one of the main reasons for performing a critical speed analysis
is to gain an initial understanding of whether the installation of an SFD will benefit the
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Figure 4.2: Campbell diagram for the case of contra-rotating rotors with LP rotor as
reference.

system. An appropriate metric for this case is the squirrel cage (SQC) potential energy
relative to the total system potential energy. A high value of this metric indicates that
there is significant movement of the journal within the SFD, and thus the corresponding
modes are sensitive to the damping provided by it. From Table 4.1, it is possible to
predict that the modes L3, L5 and H4, H6 will be the most affected by the SFD damping.
This prediction is further supported in the following section. In both cases, the LP rotor
speed is the reference.

4.3 Linear Harmonic Analysis

The second step in a rotor dynamic analysis and a major factor in deciding for or against
a SFD is to perform a linear harmonic analysis to observe if the resonances predicted
by the Campbell diagram are indeed sensitive to the damping provided by a SFD. The
analysis is performed for different damping coefficient values for the SFD spring, with
the term ”linear” denoting that the damping force of the spring is expressed as CSFD · ẋ,
where CSFD is the damping matrix of the SFD, containing the damping coefficients.
These are assumed isotropic and constant throughout the simulation, with no cross-
coupling present.
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Table 4.1: Critical speeds and potential energy distribution at the SQC element for the
case of contra-rotating rotors

Critical speed (rpm) Name SQC Potential Energy (%)
1698 H1 0.02%
2590 L1 0.08%
2734 H2 1.09%
3146 H3 0.01%
3967 H4 12.2%
4329 L2 0.9%
5672 L3 23.1%
5985 H5 0.02%
7633 H6 36.3%
8126 L4 1.1%
9949 H7 0.4%

11416 L5 30.9%
11901 H8 1.94%
14606 H9 0.9%
15556 L6 0.4%

Two different unbalance scenarios are investigated. The first one, depicted in Fig. 4.3,
represents the case where a single unbalance of 100 gmm is placed on the first stage
of the HP compressor (HPC-S1). The second case, depicted in Fig. 4.4, represents the
scenario where two unbalances of magnitude 100 gmm each and zero phase difference
are placed on the first compressor and turbine stage of the LP rotor (LPC-S1 and LPT-S1).

H1

H2

H3

H4

H5

H6

H7
H8 H9

Figure 4.3: Linear frequency response of HPC-S1 for varying SFD spring damping values
with the unbalance located on the HPC-S1.
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Figure 4.4: Linear frequency response of HPC-S1 for varying SFD spring damping values
with the unbalance located on the LPC-S1 and LPT-S1.

It is clear that the SFD damping has a strong effect in attenuating the resonances of H4,
H6 and L3, L5 as predicted from Table 4.1. Therefore, the SFD is of value to the system
and further investigation of its effects and design is justified.

4.4 Nonlinear Simulations using the Harmonic Balance

Method

This section presents the results of nonlinear simulations performed on the WEM of Fig.
4.1. First, a nonlinear simulation is compared with the results of the linear analysis.
Then, in subsection 4.4.2, simulations with unbalance on both rotors are presented. The
model used for the SFD is the short bearing model presented in section 3.1.1. The
effect of the oil viscosity and the clearance of the SFD is studied, the influence of the
SQC stiffness is investigated, and finally simulations with different maneuver loads are
presented. In subsection 4.4.3 the state-of-the-art models presented in section 3.1.2 are
used. The inertia of the fluid film is taken into account and the effect of a circumferential
feed groove on the response of the system is studied. Finally, in subsection 4.4.4, two
different nonlinear models are used along with a SFD for the ball bearing B3 and the
results are compared.

In all the simulations presented, the dynamic condensation introduced in Chapter 2 has
been applied. Additionally, parallel processing has been integrated which is specifically
useful when the detailed SFD models are being used. The results depicted showcase the
maximum amplitude in the y-direction in the first stage of the HP compressor (HPC-S1).
When only the 1x harmonic and higher are included in the simulation, the response (ei-
ther the total response or the response of each harmonic separately) in the y-direction is
the same as the response in the x-direction. When the 0x harmonic is included, it causes
an anisotropic behavior that makes the response in the two directions different. When
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the effect of the 0x harmonic is small, that is, when the journal is not highly eccentric, the
difference between the two directions is very small. However, as the eccentricity grows,
so can the difference. It is up to the user to decide whether to plot the x-direction or not.
In this work only the y-direction is shown for the sake of clarity and mainly because the
effects observed are the same in both directions.

Regarding the unbalance scenarios, an unbalance can be placed in any of the HPC-S1,
LPC-S1 and LPT-S1. The case where the unbalance is placed in all of these positions is
referred to as dual unbalance excitation. In this case, the reference rotor (LP) produces
1x, 2x, ... etc. harmonics, while the secondary rotor (HP) produces 1.5x, 3x, ... etc.
harmonics.

4.4.1 Comparison with Linear Harmonic Analysis

The linear SFD spring used in the Linear Harmonic Analysis (LHA) is replaced by a
nonlinear SFD model, and the results are compared for the same cases described in
section 4.3. The SFD has a specific geometry and dynamic viscosity that are regarded as
reference values and presented in Table 4.2. Different SFD configurations later on will
be clearly indicated.

Table 4.2: Reference SFD values

Reference SFD

Gap 100 µm

Length 20 mm

Radius 110 mm

Dynamic viscosity 2.5 mPas

For the case of the static unbalance located on the LP rotor, the linear damping value
of 5 Ns/mm underestimates the amplitude of the L3 peak but still provides a good
overall approximation of the nonlinear response as seen in Fig. 4.5. The same behavior
is evident in the case of a single unbalance located on the HP rotor. The H4 peak is
underestimated in the LHA, but the overall approximation of the nonlinear response is
adequate, as seen in Fig. 4.6.

Clearly, a constant damping value of 5 Ns/mm provides a good approximation of the
nonlinear response. However, this can only be said if the nonlinear result has been cal-
culated and used as a reference. Without it, it is not possible to know if the constant
damping used is a good choice or not. In addition, the response can change drastically
with certain parameters and thus linear analysis using a constant damping is not appro-
priate to capture such variations. This will be showcased further in the next sections.
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L3

Figure 4.5: Nonlinear vs Linear response of the HPC-S1 for the case of static unbalance
located on the LP Rotor.

H4

Figure 4.6: Nonlinear vs Linear response of the HPC-S1 for the case of a single unbalance
located on the HP Rotor.

4.4.2 Simulations with Dual Unbalance Excitation

Dual unbalance excitation - Reference case

This simulation represents the reference case for the dual unbalance excitation simula-
tions. The SFD parameters follow those in Table 4.2. Three 100 gmm unbalances with
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zero phase difference are placed at all possible unbalance locations, therefore two unbal-
ance excitations with different frequencies occur.

The result is shown in Fig. 4.7. In addition, the harmonics are plotted separately to
clearly show their effect. The 1x harmonic is due to the unbalance excitation from the
LP rotor, while the 1.5x harmonic is due to the unbalance excitation from the HP rotor.

Figure 4.7: Nonlinear frequency response of the HPC-S1 for the reference case of dual
unbalance excitation.

All of the observed peaks correspond to the critical speeds shown in the table 4.1. Some
resonances seem to be more damped than others and some seem to be expressed as
anti-resonances. An interesting observation can be made when looking at the detailed
view of the figure above. It can be seen that in the case of dual unbalance excitation,
two resonances from separate rotors can be very close to each other and under certain
conditions (speed ratio) can coincide, which can lead to unexpected amplitudes and
damage to the engine.

Dual unbalance excitation - SFD parameter variation

In the following simulations, the oil viscosity and the radial gap of the SFD are varied.
These simulations show how much the response can vary and how difficult it is to
replace a nonlinear SFD spring with a linear damping value. In Fig. 4.8 the oil viscosity
is varied with the lowest value corresponding to a temperature of about 130 ◦C and the
highest value corresponding to a temperature of approximately 25 ◦C. The 1x and 1.5x
harmonics are shown separately for clarity.
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Figure 4.8: Nonlinear frequency response of the 1x (top) and 1.5x (bottom) harmonics
for the HPC-S1 in the case of dual unbalance excitation with varying values
of SFD oil viscosity.

It is clear that the viscosity of the oil has a strong influence on the response of the system.
From a transition from cold to hot oil, the maximum amplitude of the response for both
harmonics (L3 and H4 resonances) can experience an increase of approximately 12 and
7.5 times, respectively. In addition, resonances L5 and H6 that were completely damped
when the oil was cold, can appear again as the oil warms up. Since the oil can experience
all of these states, using a constant damping coefficient value for the SFD does not seem
adequate to capture such variations.

A similar influence on the maximum amplitude, but less on the shape of the response,
is observed when the gap (clearance) of the SFD is varied from 80 µm to 160 µm. It is
reminded that the gap value refers to the radial distance between the journal and the
housing when the former is centered within the SFD. As the metal of the journal and
housing heats up or cools down during operation, this clearance can vary significantly
from its nominal design value. The results are shown in Fig. 4.9.
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Figure 4.9: Nonlinear frequency response of the 1x (top) and 1.5x (bottom) harmonics
for the HPC-S1 in the case of dual unbalance excitation with varying values
of the SFD radial gap.

Dual unbalance excitation - SQC stiffness influence

The influence of the SQC support is investigated in the following simulations. Three
different cases are considered, one with an SQC stiffness of 25 kN/mm (soft), one with
50 kN/mm (stiff) and one with 75 kN/mm (very stiff). The reference SFD from Table 4.2
is used. The analysis now includes the zero harmonic as well as the 2x and 3x harmonics,
for a total of 5 harmonics in this simulation. Fig. 4.10 shows the response of the 1, 1.5
and 0x harmonics for the different cases of SQC stiffness.

Immediately noticeable is that the softer support allows more movement of the journal
inside the SFD. As a result, the damping force increases and the response amplitude
decreases. A cage that is too stiff can render the SFD ineffective, as shown in Fig.
4.10, where the maximum amplitude of the 1.5 x harmonic exceeds 120 µm. Thus,
an important conclusion is that the SQC has a strong influence on the response and
damping of the critical modes, and thus its design should be done in conjunction with
the design of the SFD.
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Figure 4.10: Nonlinear frequency response of the 1x, 1.5x and 0x harmonic for the HPC-
S1 in the case of dual unbalance excitation with varying values of the SQC
stiffness

The 0x harmonic also appears to affect the response of the system, as shown in the lower
diagram of Fig. 4.10. For the case of a very stiff SQC, the 0x response is almost a flat line,
meaning that it is mainly influenced by the weight of the engine, which remains constant
throughout the simulation. As the SQC becomes softer, the 0x response deviates from
that of a flat line and shows peaks due to the nonlinear force, which also contributes a
0x component in addition to the weight. The influence of this specific harmonic becomes
even greater when high G-loads are applied, as will be showcased later.

Finally, compared to the importance of the 0x, 1x and 1.5x harmonics, the 2x and 3x
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harmonics shown in Fig. 4.11 have a negligible effect in this particular case and will not
be shown further.

Figure 4.11: Nonlinear frequency response of the 2x and 3x harmonic for the HPC-S1
in the case of dual unbalance excitation with varying values of the SQC
stiffness

Dual unbalance excitation - Influence of maneuver loads

An aircraft engine may experience high G-forces during operation, such as when the
aircraft is maneuvering. During a maneuver, the increased G-load causes the journal to
be pushed toward the SFD housing, increasing its eccentricity. The higher the G-load,
the more pronounced this behavior becomes.

In the following cases, the effect of such high G-loads on the response of the system
is examined in conjunction with the SQC support stiffness. It should be noted that the
response of the 0x harmonic has been normalized to zero speed, i.e. at zero speed the
displacement is also zero. This allows for a better understanding of the significance of
the 0x harmonic.

In the first case, shown in Fig. 4.12, a stiff SQC (50 kN/mm) is used and a maneuver
load of 4G is implemented. The results are compared to the case of a normal 1G load on
the engine. It is clear that the 0x harmonic changes significantly when a higher G-force
is applied, and this also affects the other harmonics, namely the 1x and the 1.5x, where
their maximum amplitudes are reduced by approximately 40 % and 38 %, respectively.
Since the SQC is very stiff, the shape of the 1x and 1.5x response curves is not greatly
altered. However, the same cannot be said for the response curve of the 0x harmonic.
In addition, compared to the 1G case, the magnitude of the 0x harmonic in the 4G case
increases to the same order of magnitude as the 1x and 1.5x responses.
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Figure 4.12: Nonlinear frequency response of the 1x, 1.5x and 0x harmonic for the HPC-
S1 for a maneuver load of 4G, using a stiff SQC.

In the second case, presented in Fig. 4.13, a soft SQC (25 kN/mm) is used. Since the
journal is forced to reach higher eccentricities within the SFD compared to the case of the
stiff SQC, the effect of the maneuver load becomes greater. Now, the amplitude of the
0x harmonic is almost half of the amplitude of the 1.5x harmonic and even exceeds the
amplitude of the 1x harmonic for most of the frequency range. Furthermore, compared
to the previous case, the 0x harmonic affects the response curves of the 1x and 1.5x
harmonics not only in amplitude but also in shape.
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Figure 4.13: Nonlinear frequency response of the 1x, 1.5x and 0x harmonic for the HPC-
S1 for a maneuver load of 4G, using a soft SQC.

The effect of lower G loads is also examined for the soft SQC case in Fig. 4.14. Here, only
the response of the 1.5x harmonic is shown, since it provides higher vibration amplitudes
compared to the 1x. Once again, the influence of the G-load is clear. In the case examined
here, even a small 2G load can significantly affect the response amplitudes. All of the
simulations performed here demonstrate the importance of including the 0x harmonic
in the harmonic balance simulations. A static calculation and its addition to the final
response is not sufficient to represent the complex relationship between the 0x and the
rest of the harmonics.
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Figure 4.14: Nonlinear frequency response of the 1.5x harmonic for the HPC-S1 for a
maneuver load of 1, 2, 3 and 4G, using a soft SQC.

4.4.3 Simulations using State-of-the-Art SFD Models

In this section, the simulations use the state-of-the-art (detailed) models described in
3.1.2 to calculate the SFD reaction forces. Compared to the short-bearing approxima-
tion, they provide a high level of detail at the cost of increased simulation effort. First,
different modeling approaches for different cavitation boundary conditions (BCs) are
compared. Then, a circumferential groove is added and inertia effects are considered.
Finally, the effect of the groove depth is investigated.

The oil temperature is kept constant at 120 oC in the first simulations to approximate
the viscosity of Table 4.2 and is later reduced to 40 oC to better show specific effects.
Therefore thermal modeling is not presented in this work. This is due to the significant
simulation effort required. An unbalance of 100 gmm is placed on the HPC-S1 and only
the 1x harmonic is considered in order to reduce simulation time. In all the simulations
presented, a stiff SQC of 50 kN/mm is used. A feed hole is considered for the lubricant
supply and the relative pressure outside the SFD is 0 Pa.

Detailed SFD models - Influence of modeling approach and cavitation boundary con-
ditions

The modeling approach can either be the short bearing approximation or the finite bear-
ing solution. For both approaches, the solution is numerical, but in the short approxi-
mation, the Reynolds equation has been simplified before. For the cavitation boundary
condition (BC) in the latter approach, the Gümbel and the Reynolds conditions are com-
pared. The results are presented in Fig. 4.15.

The difference between the three models is marginal. The modeling improvement from
short to finite bearing as well as from Gümbel to Reynolds cavitation condition does not
seem to affect the response of the system. This observation may be true for this specific
case, but should not be generalized in any way.
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Figure 4.15: Nonlinear frequency response of the HPC-S1 using detailed SFD models
with different cavitation conditions.

Detailed SFD models - Influence of groove and inertia effects

Now a circumferential groove is added to the SFD with a length and depth of 10 mm.
Initially, no inertia model is used. Then the temporal inertia is considered and finally a
simulation around the H4 resonance is performed including the convective inertia. This
last case is called full inertia and due to the increased simulation time, it would not be
efficient to simulate the whole speed range. The cavitation model used is Gümbel. The
results are shown in Fig. 4.16.

The black line represents an SFD without groove and inertia modeling. The entire length
of the SFD is used to generate pressure, so the reaction forces are high. Coupled with the
low temperature of the oil, which is reflected in a high viscosity, the vibration amplitude
is kept to a minimum. Considering a groove with a length of 10 mm, the effective length
of the SFD is significantly reduced. If the inertia is not modeled, this results in lower
reaction forces and therefore a very different response with much larger amplitudes
(green line). When the inertia is considered, the additional mass created by the groove
contributes to the pressure generation and the reaction forces are higher compared to
the case where no inertia is modeled. The response where only the temporal inertia is
simulated corresponds to the red line. However, this inertia model [6] should be limited
to small vibration amplitudes. A better approach is to use the full inertia model [29],
which also includes the convective inertia term and corresponds to the blue line. The
difference with the previous model is significant, as shown in the detailed view of Fig.
4.16.

The simulations presented in Fig. 4.16 demonstrate the importance of inertia modeling.
If the simulation time for the full range is not acceptable, the author suggests local runs
around the resonance peaks of interest where the inertia is modeled. The difference
between temporal and full inertia seems to be significant in the response of the system,
but a general conclusion is not yet possible. A general approach is to use the temporal
inertia first, which provides a faster simulation compared to the full model, and then
use the full model only at high amplitude resonance peaks.
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Figure 4.16: Nonlinear frequency response of the HPC-S1 using a detailed SFD model
with a circumferential groove of 10mm in length and inertia effects.

Detailed SFD models - Influence of groove depth

The influence of the circumferential groove depth is investigated. Tan and Li state that
the groove depth doesn’t appear to have a significant effect on the unbalance response
of the system [58]. The results shown in Fig 4.17 agree with this claim.

Figure 4.17: Nonlinear frequency response of the HPC-S1 using a detailed SFD model
with a circumferential groove of various depth values.
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There is a reduction in the H4 and H5 resonance amplitudes when the depth is increased
from 5 mm to 10 mm, but a further increase to 15 mm only improves the damping qual-
ity of the SFD by a small amount. This behavior can be explained by the concept of
effective groove depth [2]. A recirculation region is formed inside the groove which lim-
its further dynamic pressure generation after a specific depth. In the case examined here,
it seems that the effective groove depth is around 15 mm, although further investigation
is required to reach a conclusion, since the different temperatures occurring in the oil
film may also influence this parameter.

4.4.4 Simulations using Nonlinear Ball Bearing Models

The rolling element bearing models discussed in Chapter 3 are integrated into the har-
monic balance simulations by replacing the B3 spring, shown in Fig. 4.1. The geometry
of the bearing corresponds to a typical bearing used in aircraft engine applications and
the preload in the axial direction given for both models is 136 µm. The reference SFD is
used with the short bearing model for the calculation of its reaction forces. The stiffness
of the SQC is 25 kN/mm. An unbalance of 100 gmm is placed on the HPC-S1 and the 1x
harmonic is included in the analysis. Three additional simulations were performed with
constant B3 typical stiffness values to investigate the influence of using the nonlinear
REB models in this particular case. The results are presented in Fig. 4.18, while the
detail views A and B are shown in Fig. 4.19.

A

B

Figure 4.18: Nonlinear frequency response of the HPC-S1 using a detailed SFD model
with a circumferential groove of various depth values.

In the case presented, there seems to be no significant difference between the two non-
linear REB models. In detailed view A, the amplitude of the compressor when using the
EHD model is slightly higher than the amplitude calculated with the standard model.
This is also observed in some other peaks, but the opposite is also true, as can be seen in
the peak of the detailed view B, where the EHD produces a smaller vibration amplitude
compared to the standard model. The latter is expected since the EHD produces damp-
ing due to the lubricant. The former behavior is counterintuitive, but if the damping
force provided by the EHD model is neglected, the behavior persists. Therefore, it can
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Figure 4.19: Detailed views A (left) and B (right) of nonlinear response using rolling
element bearings.

be concluded that the bearing is stiffer at this specific resonance, but the phenomenon
requires further investigation beyond the scope of the present thesis.

Comparing the responses using a constant stiffness value for the REB with the results
using the nonlinear models shows that there is a difference that may be neglected in the
very early design stages, but is important for the detailed design. It is easy to observe
that by running one or two simulations using the ball bearing model, a constant stiffness
value can be fine-tuned to adequately approximate the true response. This value can
then replace the ball bearing at the beginning of the design when multiple simulations
are required.

It is also important to note that even with the presence of a squirrel cage, whose stiffness
largely determines the stiffness of the entire SFD configuration, the stiffness of the ball
bearing still has an effect on the final response. If all the other bearings in the engine
were modeled, this effect could be much greater. However, more research is needed to
support this claim.

Finally, an interesting observation is that higher stiffness does not necessarily mean
higher amplitudes. Although this is true for 1-degree-of-freedom systems, for large
multi-degree-of-freedom systems, modal stiffness plays a more significant role in deter-
mining amplitude than physical stiffness alone.
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5 The Harmonic Balance Method in Surrogate
Modeling Approaches

The purpose of this chapter is to briefly introduce the potential of the harmonic balance
method using dynamic condensation in the training of surrogate models based on neural
networks. A surrogate model is a model that is used in place of a physical model to
predict certain outputs from certain inputs. This model acts as a black box. The results
presented in this chapter were obtained in collaboration with F. Tieleman, who focused
on machine learning methods for aircraft engine rotor optimization [59].

5.1 SFD Surrogate Model

The first surrogate model created was the simplest and was able to predict the SFD
reaction forces with an accuracy of about 65 %. The model was trained on a specific SFD
geometry following the reference values in Table 4.2 with the only difference that the
radius was 80 mm instead of 110 mm.

The model could accept three inputs. These were the relative eccentricities of the journal
in the x and y directions and the whirling frequency. The training data was obtained
by sampling 10000 input sets using the Latin Hypercube approach [42]. The reaction
forces were calculated using the detailed SFD calculation tool with the Gümbel cavitation
condition. In this tool, the short bearing approach was chosen, i.e. the Reynolds equation
was simplified accordingly but was solved numerically.

To test the potential of the surrogate model, the rotor dynamic model of the HP rotor
shown in the work of [45] was used. The two SFDs were replaced by the surrogate
model and the case of static unbalance with 500 gmm per unbalance node was examined.
The results were compared with the reference case simulated by the harmonic balance
method with appropriate dynamic condensation. The SFD model used for the reference
simulation was the short bearing model. The result of the comparison is shown in Fig.
5.1.

With the use of the surrogate model, the large resonance peak and the jump phenomenon
occurring around 13000 rpm are significantly well captured. However, the prediction of
the lower amplitude resonance just after 20000 rpm is not as good as the reference case.
Considering the low accuracy of the surrogate, the overall response is adequately pre-
dicted and the potential of such models is highlighted. It should also be noted that the
simulation using the surrogate model was about 50 % faster than the simulation using
the short-bearing approximation, which is already fast due to the analytical formulas.
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Figure 5.1: Nonlinear frequency response on the 2x SFD nodes when using the short
bearing model (solid lines) and the surrogate model (dashed lines) to calcu-
late the SFD reaction forces.

5.2 Peak-Prediction Surrogate Model

The second surrogate model created was intended to replace the entire dynamic simula-
tion of the generic whole engine model shown in Fig. 4.1. The inputs were the geometry
of the SFD, specifically the length L, the gap cr and the radius R. The temperature was
kept constant at 60 oC. The outputs were the 2 maximum peaks in the HPC-S1 and the
2 maximum peaks in the HPT-S1, a total of 4 outputs.

The model was trained using the results of 800 simulations of the generic dual-spool
model. The simulations were again performed using the improved harmonic balancing
method presented in this thesis. The short bearing model was used for the SFD force
calculations and only the 1x harmonic was included in the analysis. To obtain the desired
outputs, the response at the HPC-S1 and HPT-S1 was calculated and the 2 maximum
amplitudes from each response were selected. The resulting surrogate model showed a
significant accuracy of approximately 90 %.

Leveraging the quality of the surrogate, a sensitivity analysis was performed in order to
evaluate the effect of the SFD geometry parameters in attenuating the 4 desired maxi-
mum amplitudes in the compressor and turbine stages. A result of this analysis was the
first-order Sobol’s indices, which show the variance of an output due to the variance of
the inputs. An easier way to understand this result is through the heatmap of Fig. 5.2.

The first row (S1) shows the first order relationship between the inputs and the outputs.
The second row (ST) shows the higher order relations. If S1 = ST, the relationship is
purely linear. If S1 is close to zero and ST is not, it means that there are mainly higher
order interactions. If both S1, ST are close to zero, it means that the output does not vary
when the respective input is varied. An interesting observation can be made for the
2nd maximum peak c2 of the HPC-S1. Its amplitude seems to have mainly a nonlinear
relationship with the gap or the length. On the contrary, it changes insignificantly when
the radius is varied. For a visual representation, 5 different cases of constant length were
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Figure 5.2: Heatmap of first-order (top row) and total-order (bottom row) Sobol’s sensi-
tivity indices showing the order of the interaction between each output and
the individual inputs (temperature is always constant).

selected and the gap was allowed to vary. Similarly, another 5 cases of constant gap were
selected and the length was allowed to vary. In all cases the radius was kept constant.
The effect on the amplitude of the c2 peak is shown in Fig. 5.3.

Figure 5.3: Variation of the c2 amplitude with respect to SFD gap (left) and SFD length
(right) for 5 cases of constant SFD length and SFD gap respectively.

The nonlinear relation between the inputs and the output is clear. However, there is also
a linear component present which is visible in some cases, for example in the case of
L = 20mm in the left figure. Another interesting observation is that for most of the cases
presented, there is an optimum value for which the response is minimal. In other words,
increasing the length or decreasing the gap as much as possible to increase the damping
of the SFD is not always beneficial and can lead to the opposite results.
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5.3 Curve-Prediction Surrogate Model

The third surrogate model created is very similar to the second, except that the outputs
now are not the maximum amplitude values, but rather the entire frequency response
curve of the HPC-S1 and HPT-S1. The inputs remain the same and the model is now
trained on 200 simulations of the generic dual-spool engine model. The resulting sur-
rogate shows a very high accuracy of 97 %. This means that the predicted curves are
almost identical to those calculated by the physical model, as shown in Fig. 5.4.

Figure 5.4: Predictions of the HPC-S1 nonlinear frequency response using the surrogate
model and comparison with the results from the physical calculation.
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6 Conclusions and Outlook

6.1 Conclusions

This thesis investigated the nonlinear steady-state response of a generic whole engine
model using the harmonic balance method with appropriate condensation.

Using both the short and the detailed SFD models, various simulations were performed
under different unbalance scenarios and SFD geometric and operating parameters. The
effects of oil viscosity, radial clearance size, feed groove and oil inertia were studied,
along with the effect of the SFD support stiffness on the system response, especially un-
der high G-load conditions that occur during aircraft maneuvers. The effect of modeling
the ball bearing was also investigated using two different approaches. Approximately
half of the results presented were performed under multiple frequency excitation result-
ing from unbalance on both rotors. According to the simulation results of the generic
engine model presented in Chapter 4, the author arrives at five main conclusions:

• The effect of the 0x harmonic is very significant and cannot be replaced by a static
calculation. Simulations under increasing G-loads show that there is a significant
influence of the 1x and 1.5x components, which becomes larger the softer the squir-
rel cage is. A static calculation cannot capture this complex relationship.

• The stiffness of the squirrel cage support greatly influences the response of the sys-
tem and should be designed in conjunction with the SFD. Simulations showed that
an excessive amount of stiffness can render the SFD ineffective and significantly
increase the amplitudes of the 1x and higher components. On the other hand, a
softer support allows for more movement of the journal within the SFD, resulting
in higher damping forces and lower vibration amplitudes.

• A more detailed modeling of the SFD cavitation condition won’t necessarily affect
the dynamic response to a large extent.

• Modeling of the fluid inertia must be considered, especially if there is a feed groove
in the SFD. Otherwise, the groove will reduce the effective length of the SFD,
resulting in lower damping forces than in reality and incorrect response prediction.
Regarding the inertia model, Between the temporal and full inertia modeling, there
is a significant difference between the time and full inertia models when comparing
the vibration amplitude of the largest resonance.

• Nonlinear ball bearing models should be included in the simulations as their in-
fluence can become important even with a moderately stiff SQC. For the particular
engine model, the modeling approach for the bearing showed very small differ-
ences between them. The nonlinear result can be used to fine-tune a constant
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stiffness value that can be used in the early design stages to reduce simulation
time.

Finally, the work presented in Chapter 5 aims to highlight the use of the method in
training surrogate models. Due to its computational efficiency, predictive models can be
trained in a matter of hours. As the results show, even models of low accuracy can still be
effectively integrated into the nonlinear simulations and produce results at a fraction of
the cost. However, further investigation on the matter is required. The author concludes
that surrogate models could be very useful for efficiently integrating THD SFD models
into the harmonic balance calculations, since they are computationally expensive due to
their complexity and a time-transient solution wouldn’t be viable for the design stages.

6.2 Outlook: The Next Steps

The author recognizes the potential of the method and suggests the next steps following
this thesis.

First, the contacts between the journal and the housing within the SFD need to be mod-
eled. This is a necessary addition in order to simulate engine response with unsupported
SFDs, i.e. SFDs where the journal is not supported by a squirrel cage. Currently, such
configurations can be simulated using a very soft squirrel cage, but this is not the ideal
approach and does not apply to every SFD geometry. Since the journal is allowed to
reach very high eccentricities, this causes the solution to diverge at certain frequencies
due to the fact that the journal is very close to the housing and in reality there is contact.

The second addition is the modification of the method to allow for quasi-periodic solu-
tions. As described in Chapter 2, these solutions can occur when the speed ratio of the
shafts cannot be expressed as a ratio of integers. Under this condition, there is no num-
ber of sampling periods that can be chosen to avoid truncation of the secondary signal,
so the resulting signal will be quasi-periodic. Fortunately, there is a way to account for
quasi-periodic solutions using an extension of the harmonic balance method. The idea is
based on the concept of multidimensional time, where essentially each signal is observed
on its own time domain, then a 2D Fourier transform is performed, and the resulting
solution is now a surface containing the Fourier coefficients for linear combinations of
the harmonics of each signal. A very good amount of literature exists on the subject
[34, 52, 24, 37]. In addition to the quasi-periodic solution extension, an evaluation of the
stability of the equilibrium positions computed by the harmonic balance method must
be implemented using Floquet theory.

It is also recommended to implement an adaptive step solver using a continuation
scheme. This can lead to increased efficiency since the frequency step can be increased
in the part of the simulation where the response is flat and no sharp resonances occur.
In addition, a continuation scheme can capture unstable solutions.

Finally, a large improvement in efficiency can be achieved by implementing Model Order
Reduction (MOR) schemes (Guayn, Craig-Bampton). Such reduction schemes can be
applied to the linear part of the system that is left after partitioning the degrees of
freedom. For the model presented in this thesis, a reduction in the linear part may
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sound insignificant, since the linear system solved to compute the Fourier coefficients
for the linear degrees of freedom is already very fast. However, in more detailed real jet
engine models, the casings typically have thousands of degrees of freedom due to their
modeling complexity. This is where MOR methods can provide high computational
savings.
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