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Summary 

Myeloid malignancies consist of a heterogeneous spectrum of clonal stem cell disorders driven by genetic 

alterations, resulting in dysregulated hematopoiesis. The investigation of the mechanisms underpinning 

myeloid neoplasia relies primarily on experimental models of disease biology and the phenotyping of primary 

patient samples using emerging genomic technologies. In recognition of the increasing complexity, scale and 

dimensionality of the datasets generated by these approaches, this thesis focuses on the development of 

analytical frameworks that operate within and across different omics modalities (genomics, transcriptomics, 

epigenomics) and sequencing techniques (bulk and single cell), and set out to enhance the understanding of 

the underlying biology of myeloid neoplasms. Specifically, this work deploys principles from multi-view data 

fusion and interconnection to analyze signals in an integrative manner, aiming to elucidate molecular 

landscapes and assist the study of phenotypes at a genetic level. 

Chapter 2 investigates the transcriptional repertoire and chromatin profile of SF3B1-mutated 

Myelodysplastic Syndromes (MDS), leveraging bulk RNA and ATAC sequencing data from patient-derived 

genetically matched normal and SF3B1-mutated induced pluripotent stem cell (iPSC) lines. We introduce a 

multi-stage fusion framework that merges signals from diverse data layers obtained from transcriptome 

sequencing (splicing, transcript usage, gene expression). The analytical framework developed as part of this 

work leads to the derivation of a splicing signature linked to 34 genes, which associates with the SF3B1 

mutational status of primary MDS patient cells. Additional unimodal chromatin accessibility analysis showed 

increased priming of SF3B1 hematopoietic progenitors toward the megakaryocyte-erythroid lineage, as well 

as the enrichment of motifs from the TEA (TEAD) domain in accessible regions linked to genes with 

upregulated expression. Overall, chapter 2, applies a multi-stage fusion approach on transcriptomic data 

views to prioritize mis-spliced gene targets, and concurrently provides a formal overview of the SF3B1-

mutated chromatin landscape and nominates transcriptional programs with putative roles in MDS disease 

biology.  

Chapter 3 examines if single cell gene expression signals together with the computational capacity of neural 

networks are able to predict a cell’s malignant status and subsequently its genotype for specific abnormalities 

in IDH1/2-mutated Acute Myeloid Leukemia (AML). To this end, using single cell RNA sequencing data from 

50,026 cells, a feedforward neural network was trained to predict the cell’s malignant or wild-type (WT) 

status in a binary fashion, achieving an accuracy of 98% on the holdout test set. Furthermore, in a multi-label 

setting, this work deploys a similar architecture to predict the mutational status of specific genomic 

abnormalities at the single cell level, showing a macro-average AUC ROC=0.84 and NRAS mutational status 

prediction AUC ROC=0.83 on the holdout test-set. Altogether, chapter 3 applies deep learning in a supervised 

context to explore the connection between single cell gene expression profiles and genotypes in IDH1/2 AML 

and shows the potential of such modeling approaches in capturing meaningful genotype-phenotype 

relationships. 
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                Extended summary 

Introduction 

Myeloid Neoplasms (MNs) constitute a continuum of clonal proliferative disorders, which are comprised of 

chronic phases including Myeloproliferative Neoplasms (MPN), Myelodysplastic Syndromes (MDS), and 

acute stages i.e. Acute Myeloid Leukemia (AML). MNs typically arise from the acquisition of genetic 

abnormalities that disrupt normal hematopoiesis. In recent years, genome profiling studies have delivered a 

detailed catalog of the somatic mutations in MNs. However, understanding the mechanisms leading to 

myeloid transformation and the effectors of disease biology relies on the development of experimental 

models (murine, cell based, organoids) as well as the phenotyping of primary patient samples. Such 

approaches are typically combined with profiling assays that analyze a sample’s genome, transcriptome and 

epigenome. Next to the well-established bulk sequencing techniques, the more recent advancements of 

single cell technologies have also added to the routine yield of high-throughput and extensive omics datasets. 

These datasets contain distinct data views (representations or sets of features derived from the measured 

biomolecules either within or across modalities) that permit the investigation of molecular properties at 

multiple omic levels (genomic, transcriptomic or epigenomic). However, analyses focusing on a single data 

view do not lead to the full characterization of molecular landscapes and the establishment of genotype-

phenotype associations. Thus, the development of analytical frameworks that allow for the integration and 

interpretation of multiple data views offers an opportunity to study the representation of different molecular 

layers and the relationships between them. In recognition of the increasing complexity, scale and 

dimensionality of the generated data as well as the need for gaining multi-faceted insights on disease 

behavior, this thesis sets out to develop analytical frameworks aiming to enhance the understanding of the 

underlying biology of myeloid neoplasms. Specifically, this work uses principles from multi-view data fusion 

and interconnection as a means of integrating signals within and between omics modalities (genomics, 

transcriptomics, epigenomics) either from bulk or single cell sequencing techniques. The presented analyses 

and the frameworks developed in the context of it, set out to elucidate molecular landscapes and assist the 

study of phenotypes at a genetic level, focusing on SF3B1-mutated MDS and IDH1/2-mutated AML 

correspondingly.  

 

Patient-specific MDS-RS iPSCs define the mis-spliced transcript repertoire and 

chromatin landscape of SF3B1-mutant HSPCs 

Background 

Myelodysplastic syndromes (MDS) are myeloid malignancies characterized by ineffective hematopoiesis, 

blood cytopenias, and an increased risk of progression to AML. Recent sequencing studies have emphasized 

the role of mutations in splicing factor genes (SF3B1, SRSF2, ZRSR2, U2AF1) as initiating and MDS defining. 

Among these splicing factor genes, SF3B1 is the most frequently mutated one in MDS (~ 24 % patients) and 
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defines a distinct nosologic entity, termed MDS with ring sideroblasts (MDS-RS). Mutations in SF3B1 are 

commonly found as isolated events, mainly target the K700 hotspot and are associated with favorable 

outcomes. Despite the characterization of the molecular landscape in MDS, how such mutations drive 

disease pathogenesis and how they can inform clinical management remains unclear. In this study, by 

leveraging data from an experimental iPSC model, we explore the downstream consequences of the 

SF3B1K700E mutation and its role in disease pathogenesis through the integration of multiple views from the 

transcriptome and the examination of the SF3B1K700E chromatin accessibility landscape.   

Data & Methods 

Hereby, we used a panel of 18 genetically matched SF3B1K700E and SF3B1WT induced pluripotent stem cell 

(iPSC) lines derived from 3 MDS-RS patients who harbored isolated SF3B1K700E mutations.  For these iPSC 

lines, directed hematopoietic differentiation was performed using protocols from the Papapetrou laboratory 

and CD34+/CD45+ human stem and progenitor  cells (HSPCs) were collected for RNA and ATAC-sequencing. 

(We note that the generation of the data is not part of the current thesis). HSPC samples from 16 iPSC lines 

were included in the RNA-seq analyses after quality control of the raw data. RNA-seq reads were aligned and 

used for the quantification of transcript abundance and the generation of the gene counts. Differential gene 

expression analysis, transcript usage analysis and splicing analysis were conducted between SF3B1K700E vs 

SF3B1WT cells. To assess the impact of the SF3B1K700E mutation at the exon, transcript and gene level, we 

combined signals from these 3 analyses in a multi-stage fusion setting. First, we identified the set of 

transcripts that contain the exons present in each differential splicing event. Then, we paired each 

differential splicing event with the set of differentially used transcripts. The pairs that belonged to genes with 

a statistically significant expression log2fc and contained a differential splicing event with an FDR value within 

the 20 lowermost ones, were considered as the “tier 1” set. From this set, we derived the mutant SF3B1 

signature events and genes. Additionally, HSPC samples from 15 iPSC lines were included in the ATAC-seq 

analysis. After read alignment and quality control, we identified chromatin accessibility peaks and created 

an ATAC-seq atlas. This atlas was used for downstream differential accessibility analysis, correlation with the 

accessibility landscape of the normal hematopoietic hierarchy as well as motif enrichment analysis.   

Results 

Principal component analysis (PCA) and hierarchical clustering based on gene expression grouped the iPSC 

lines primarily by genotype (SF3B1K700E vs SF3B1WT). Additionally, differential analyses revealed 2737 

differentially expressed genes, 1086 differentially used transcripts and 1829 differentially spliced events 

between SF3B1K700E and SF3B1WT cells. Integrating the signals from these analyses using our multi-stage 

fusion approach resulted in the derivation of a splicing signature consisting of 59 splicing events linked to 34 

genes. We tested this signature against a published dataset of primary MDS patient samples (Pellagatti et al. 

Blood 2018). Specifically, PCA based on the inclusion level of the splicing events of our signature separated 

SF3B1-mutated MDS patients from patients without splicing factor mutations (SF-WT) or healthy individuals. 

Importantly, it identified one patient erroneously annotated as SF-WT that clustered together with the 

SF3B1-mutated patients. This patient had a previously overlooked 6 base pair (bp) in-frame deletion spanning 

the K700E hotspot. Comparing our ATAC-seq peak atlas to the chromatin accessibility profiles of primary 
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human cell types along the hematopoietic hierarchy (Corces et al. Nat Genetics 2016), we found that the 

chromatin landscape of SF3B1K700E HSPCs resembled more that of megakaryocyte-erythroid progenitor cells 

(MEPs) and erythroid cells. Furthermore, motifs enriched in ATAC-Seq peaks more accessible in SF3B1K700E 

cells that were linked to genes upregulated in SF3B1K700E cells, included motifs of the TEAD transcription 

factor family. TEAD2 and TEAD4 were upregulated in SF3B1-mutant, compared to the WT iPSC-HSPCs and 

TEAD transcriptional activity, measured with a luciferase reporter construct, was higher in SF3B1K700E, 

compared to SF3B1WT iPSC-HSPCs. We did not find expression or activation of YAP or TAZ, which bind to DNA 

as a complex with TEAD upon Hippo pathway activation, suggesting a Hippo-independent increase of TEAD 

expression and activity in SF3B1K700E. 

Discussion 

Powered by a data integration framework, this study assesses the combination of the effects of the SF3B1K700E 

mutation across parallel levels of deregulation of the transcriptome towards deriving a tier-based 

classification of splicing events.  Specifically, this framework systematically evaluates the relationships 

between the SF3B1 mutation, differential splicing, transcript usage and gene expression and leads to a fully 

characterized SF3B1K700E splicing signature. This signature includes several known gene candidates and is also 

able to identify atypical mutations involving the K700 hotspot. Furthermore, this study, shows, at the 

chromatin level, a potential “priming” of SF3B1K700E HSPCs toward the erythroid over the myeloid lineage - a 

finding that may be related to the preferential involvement of the erythroid lineage in MDS and, in particular, 

MDS-RS. Lastly, our chromatin accessibility analyses lend support to a putative role for the TEAD TFs in the 

context of SF3B1K700E mutation, a signal which warrants validation in future studies. 

 

Predicting single cell genotypes from single cell expression profiles in AML using 

deep learning 

Background 

Approximately 30% of MDS patients eventually progress to AML, an aggressive blood cancer associated with 

rapid disease progression, poor response to therapy and dismal outcomes. AML is a genetically 

heterogeneous disease defined by the gradual accumulation of mutations. These are often characterized by 

specific gene by gene interactions, indicative of functional cooperativity, and result in genetically and clonally 

heterogeneous populations. This imposes a significant challenge in treating and ultimately curing the disease. 

Elucidating the role and effect of this diversity at the cellular phenotypes and disease biology requires: 1. 

molecular representations at the cellular level, which cannot be achieved by bulk sequencing approaches in 

primary tumor samples, and 2. analytical frameworks able to connect multi-modal data views. In this context, 

here, by leveraging single cell data from a set of IDH1/2 mutant AML patients, we develop deep learning 

approaches to explore how genotypic changes are reflected in cell specific gene expression signals. 

Specifically, we set out to answer if and how single cell gene expression patterns together with the 
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deployment of neural networks have the capacity to predict a cell’s malignant status and genotype for 

specific genomic abnormalities. 

Data & Methods 

The study cohort consists of 4 healthy individuals and 6 AML patients, 3 with clonal IDH1 and 3 with clonal 

IDH2 mutations. These patients also harbored co-mutations in NPM1, NRAS, KRAS, SRSF2, DNMT3A, as well 

as a set of chromosomal abnormalities (gains in chromosomes 1q [+1q/dupli_chr1], 6 [+6/dupli_chr6], 8 

[+8/dupli_chr8], 10 [+10/dupli_chr10] and 14 [+14/dupli_chr14]). For this cohort, scRNA-seq data were 

generated from BM and peripheral blood (PB) samples. Next to the single cell gene expression profiles,  single 

cell genotypic information was also available for the 6 AML patients, as derived from the method of 

genotyping of transcriptomes (Nam et al. Nature 2019). (We note that the generation of the data is not part 

of the current thesis). After alignment and quality control, single cell gene expression counts for both AML 

and healthy individuals were generated, normalized and then integrated into a unified dataframe. The cells, 

from the AML patients, with at least one detected mutation or chromosomal abnormality were labeled as 

malignant while every cell from the WT individuals was labeled as WT. To assess if single cell gene expression 

values can predict the malignant or WT status of a cell we train a feedforward neural network that outputs 

the probability of a cell being malignant (binary classification model). Additionally, to be able to predict the 

acquired genomic abnormalities harbored by the malignant cells (for instance, if NRAS mutation is present 

or not), we train a multi-label classification model of a similar architecture. Application of holdout 

randomization tests (HRT, Tansey et al. JCGS 2021) in both trained models selects features predictive for the 

respective labels (malignant for the binary model, genetic abnormality present for the multi-label model). 

Results 

A total of 50,026 cells (35,314 were malignant and 14,712 WT) with high-quality data were selected for the 

training, validation and testing of the binary classification model. This binary model separated malignant and 

WT cells with an accuracy of 98%, precision of 98% and recall of 99%. Additionally, the HRT method led to 

the selection of 58 genes as important for this classification task (malignant vs WT). Gene ontology analysis 

on this set of 58 genes showed enrichment of processes related to apoptosis (Benjamini-Hochberg [BH] 

adjusted p-value = 0.009, e.g. MCL1, HMGB2) and the TGF-beta signaling pathway (BH adjusted p-value = 

0.005, e.g. ID1, JUNB). Applying the model on the cells of the AML patients that were not part of the training, 

validation and test sets, revealed a small portion of cells within each patient that present a phenotype similar 

to that of the WT cells (WT-like). These WT-like predictions are the 4.1% of this cell-set and 56% of them 

correspond to myeloid differentiated cells. Similarly to the binary classification case, the multi-label model, 

trained, validated and tested on 16,614 cells of a single AML patient, presents 98% correct predictions in 

separating the malignant from the WT cells on the holdout test set. Additionally, this multi-label model 

achieved near optimal results on the prediction of the chromosomal abnormalities (AUC ROC higher >= 0.96) 

and had a considerable performance for the subclonal NRAS (AUC ROC = 0.83) mutation, in contrast to its 

limited capacity to correctly predict the mutational status of clonal IDH1 mutation.  

Discussion 
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This study develops deep learning approaches to explore how genotypic changes are reflected in cell specific 

gene expression signals in IDH1/2 AML. The designed networks predict malignant vs WT cell status and 

identify the mutational status of specific genomic abnormalities for a single patient, while dealing 

concurrently with the excessive absence of mutation labels for some of these abnormalities during the 

training process. Both models showed similarly high performance in classifying malignant cells from WT ones. 

The low performance on predicting the IDH1 status can be attributed to its low genotyping efficiency, while 

the notable performance on predicting the subclonal NRAS status implies the acquisition of specific gene 

expression profiles from the cells that acquire the NRAS mutation as a later event. This outcome 

demonstrates that the multi-label classification task may perform optimal when addressing cells with a 

representative spread of mutant and WT profiles such as subclones. This is of significant translational and 

clinical relevance as it is often such emerging subclones that carry mutations that confer resistance to 

treatment, and that seed disease relapse and progression. Lastly, the treating of both trained models as black 

boxes and the application of the HRT feature selection method, select as important input genes related to 

processes previously reported in the context of AML (e.g. apoptosis). 

 

Conclusion 

The analytical frameworks presented hereby demonstrate that the deployment of multi-view data 

integration concepts for the mining of bulk and single cell sequencing data in myeloid neoplasms, leads to a 

comprehensive and detailed profiling of molecular landscapes and enhances the capturing of genotype-

phenotype associations. The derived outcomes show that these approaches offer the opportunity to 

establish connections between diverse data views and extract key signals related to disease biology. In a 

broader perspective, the rationale used for the integration of different data views from bulk RNA-seq data, 

can be applied to other studies investigating the role of splicing factor mutations across relevant signals that 

can be quantified by transcriptome sequencing (expression, splicing, transcript usage). Additionally, in other 

studies in oncology, especially in cancer indications with the presence of different genetic clones, the 

deployment of supervised deep learning architectures can link single cell transcriptomic and genomic data 

and show if and how the mutations and their clonality are reflected in the single cell gene expression profiles. 

Extending data views to include other types of diagnostic modalities such as morphological, 

immunophenotypic and clinical, as well as building integration approaches to analyze these views in a 

collective manner in supervised and unsupervised contexts, will pave the way for the adoption of the 

resulting insights in clinical practice.    
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Περίληψη 

Οι μυελογενείς κακοήθειες αποτελούν ετερογενείς διαταραχές κλωνικών βλαστοκυττάρων, που οφείλονται σε 

γενετικές αλλοιώσεις και οδηγούν σε ελαττωματική αιμοποίηση. Η έρευνα των μηχανισμών των μυελογενών 

νεοπλασμάτων βασίζεται σε πειραματικά μοντέλα βιολογίας και στο φαινοτυπικό προσδιορισμό πρωτογενών 

δειγμάτων ασθενών μέσω ανερχόμενων γονιδιωματικών τεχνολογιών. Στο περιθώριο της αυξανόμενης 

πολυπλοκότητας, του όγκου και της διαστασιμότητας των δεδομένων που δημιουργούνται από αυτές τις 

πρακτικές, η εν λόγω διατριβή αναπτύσσει υπολογιστικά πλαίσια χρησιμοποιώντας διαφορετικά ομικά προφίλ 

(γονιδιωματικά, μεταγραφωματικά, επιγονιδιωματικά) και είδη τεχνικών αλληλουχίας (μαζικής και 

μεμονωμένων κυττάρων), με στόχο να ενισχύσει την κατανόηση της υποκείμενης βιολογίας των μυελογενών 

νεοπλασμάτων. Συγκεκριμένα, η εργασία αυτή στηρίζεται στη σύμπραξη και τη διασύνδεση πολλαπλών όψεων 

δεδομένων για την ολιστική ανάλυση σημάτων, αποσκοπώντας να αποσαφηνίσει μοριακά τοπία και να 

επικουρήσει τη μελέτη φαινότυπων σε γενετικό επίπεδο. 

Το Κεφάλαιο 2 ερευνά τα τοπία μεταγραφώματος και χρωματίνης των SF3B1 μεταλλαγμένων 

Μυελοδυσπλαστικών Συνδρόμων (MDS), αξιοποιώντας δεδομένα μαζικής αλληλουχίας RNA και ATAC από 

ισογονικές υγιείς και SF3B1 μεταλλαγμένες σειρές επαγόμενων πολυδύναμων βλαστικών κυττάρων (iPSCs). 

Ειδικά, υλοποιούμε ένα αναλυτικό πλαίσιο συγχώνευσης πληροφοριών από διαφορετικά επίπεδα δεδομένων 

αλληλουχίας RNA (μάτισμα, χρήση μεταγραφημάτων, έκφραση γονιδίων). Το πλαίσιο αυτό ξεχωρίζει ένα σύνολο 

συμβάντων ματίσματος από 34 γονίδια, το οποίο σχετίζεται με την κατάσταση της μετάλλαξης SF3B1 σε 

πρωτογενή δείγματα ασθενών με MDS. Παράλληλα, η ανάλυση της προσβασιμότητας της χρωματίνης δείχνει 

αυξημένη παρουσία μοτίβων TEAD σε ένα σύνολο ανοιχτών περιοχών της καθώς και αυξημένη κλίση των 

αιμοποιητικών προγονικών κυττάρων SF3B1 προς την κατεύθυνση των μεγακαρυοκυττάρων - ερυθροειδών. 

Συνολικά, το κεφάλαιο αυτό, συνδυάζει προβολές από δεδομένα RNA για να κατηγοριοποιήσει γονιδιακούς 

στόχους με ελαττωματικό μάτισμα, ενώ επίσης παρέχει μια επισκόπηση του τοπίου της χρωματίνης SF3B1 MDS 

και προτείνει προγράμματα μεταγραφής με πιθανούς ρόλους στη βιολογία της νόσου MDS.  

Το Κεφάλαιο 3 εξετάζει εάν η έκφραση γονιδίων μεμονωμένων κυττάρων μαζί με την υπολογιστική ικανότητα 

των νευρωνικών δικτύων μπορούν να προβλέψουν χαρακτηριστικά του κυτταρικού γονότυπου στην IDH1/2 

μεταλλαγμένη Οξεία Μυελογενή Λευχαιμία (AML). Συγκεκριμένα, χρησιμοποιώντας δεδομένα αλληλουχίας RNA 

μεμονωμένων κυττάρων από 50.026 κύτταρα, εκπαιδεύτηκε ένα νευρωνικό δίκτυο που προβλέπει την κακοήθη 

ή υγιή κατάσταση του κυττάρου με ακρίβεια 98%. Στη συνέχεια, δοκιμάστηκε μια παρόμοια αρχιτεκτονική για 

την ταυτόχρονη πρόβλεψη συγκεκριμένων γονιδιωματικών ανωμαλιών σε μεμονωμένα κύτταρα, η οποία 

παρουσίασε macro-average AUC ROC=0.84 και AUC ROC=0.83 για την πρόβλεψη της μετάλλαξης NRAS. Εν 

κατακλείδι, το κεφάλαιο 3, μέσω επιβλεπόμενου deep learning, συνδέει τα προφίλ γονιδιακής έκφρασης και 

γονότυπου μεμονωμένων κυττάρων στην IDH1/2 μεταλλαγμένη AML και δείχνει την προοπτική τέτοιων 

προσεγγίσεων μοντελοποίησης στην αποτύπωση σχέσεων γονότυπου-φαινότυπου.  
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Εκτενής περίληψη 

Εισαγωγή 

Τα μυελογενή νεοπλάσματα (MNs) αποτελούν ένα συνεχές φάσμα κλωνικών πολλαπλασιαστικών 

διαταραχών, που περιλαμβάνουν χρόνιες φάσεις, όπως τα Μυελοπολλαπλασιαστικά Νεοπλασματα (MPN) 

και τα Μυελοδυσπλαστικά Σύνδρομα (MDS) καθώς και οξείες φάσεις, όπως η Οξεία Μυελογενής Λευχαιμία 

(AML). Τα MNs συνήθως προκαλούνται από την απόκτηση γενετικών ανωμαλιών που διαταράσσουν τη 

φυσιολογική αιμοποίηση. Τα τελευταία χρόνια, οι μελέτες προφίλ γονιδιώματος παρέχουν ένα λεπτομερές 

κατάλογο των σωματικών μεταλλάξεων στα MNs. Ωστόσο, η κατανόηση των τελεστών της βιολογίας της 

νόσου και των μηχανισμών που οδηγούν στο μυελογενή μετασχηματισμό, βασίζεται στην ανάπτυξη 

πειραματικών μοντέλων (ποντικών, κυτταρικών, οργανοειδών) και στο φαινοτυπικό προσδιορισμό 

πρωτογενών δειγμάτων ασθενών. Τέτοιες προσεγγίσεις συνήθως συνδυάζονται με τεχνικές ανάλυσης του 

γονιδιώματος, του μεταγραφώματος και του επιγονιδιώματος του δείγματος. Παράλληλα με τις 

καθιερωμένες τεχνικές μαζικής αλληλουχίας, οι πιο πρόσφατες εξελίξεις στις τεχνολογίες μεμονωμένων 

κυττάρων συνεισφέρουν επίσης στην πλέον σύνηθη αποδοτική και εκτεταμένη παραγωγή ομικών συνόλων 

δεδομένων. Αυτά τα σύνολα δεδομένων περιλαμβάνουν διακριτές προβολές (αναπαραστάσεις ή σύνολα 

χαρακτηριστικών που προέρχονται από τα μετρούμενα βιομόρια) που επιτρέπουν τη μελέτη των μοριακών 

ιδιοτήτων σε πολλαπλά ομικά επίπεδα (γονιδιωματικό, μεταγραφικό ή επιγονιδιωματικό). Ωστόσο, οι 

αναλύσεις που επικεντρώνονται σε μια μόνο προβολή δεδομένων δεν οδηγούν στον πλήρη χαρακτηρισμό 

των μοριακών τοπίων και στην καθιέρωση των συσχετίσεων γονότυπου-φαινότυπου. Έτσι, η ανάπτυξη 

αναλυτικών πλαισίων που επιτρέπουν την ενοποίηση και την ερμηνεία πολλαπλών προβολών δεδομένων 

προσφέρει την ευκαιρία να μελετηθεί η αναπαράσταση διαφορετικών μοριακών επιπέδων καθώς και των 

σχέσεων μεταξύ τους. Λαμβάνοντας υπόψη την αυξανόμενη πολυπλοκότητα, κλίμακα και διαστασιμότητα 

των παραγόμενων δεδομένων, καθώς και την ανάγκη απόκτησης πολυδιάστατων ενδοσκοπήσεων σχετικά 

με τη συμπεριφορά της νόσου, αυτή η διατριβή  αναπτύσσει αναλυτικά πλαισία με στόχο την ενίσχυση της 

κατανόησης της υποκείμενης βιολογίας των μυελογενών νεοπλασμάτων. Ειδικότερα, αυτή η εργασία 

χρησιμοποιεί αρχές από τη σύμπραξη και τη διασύνδεση πολλαπλών όψεων(προβολών) δεδομένων ως 

μέσο ενοποίησης σημάτων εντός και μεταξύ ομικών κατηγοριών (γονιδιωμα, μεταγράφωμα, επιγονιδίωμα) 

που προέρχονται από τεχνικές είτε μαζικής αλληλουχίας ή μεμονωμένων κυττάρων. Οι παρουσιαζόμενες 

αναλύσεις και τα πλαίσια που αναπτύχθηκαν στο πλαίσιο αυτής της διατριβής, αποσκοπούν στην 

αποσαφήνιση των μοριακών τοπίων και στην επικούριση της μελέτης φαινότυπων σε γενετικό επίπεδο, 

εστιάζοντας την προσοχή στα MDS με μετάλλαξη SF3B1 και στην AML με μετάλλαξη IDH1/2 αντίστοιχα. 

 

Patient-specific MDS-RS iPSCs define the mis-spliced transcript repertoire and 

chromatin landscape of SF3B1-mutant HSPCs 

Background 
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Τα μυελοδυσπλαστικά σύνδρομα (MDS) είναι μυελογενείς κακοήθειες που χαρακτηρίζονται από 

αναποτελεσματική αιμοποίηση, κυτταροπενίες αίματος και αυξημένο κίνδυνο εξέλιξης σε AML. Πρόσφατες 

μελέτες αλληλουχίας έχουν τονίσει τον ρόλο των μεταλλάξεων στα γονίδια του ματίσματος (SF3B1, SRSF2, 

ZRSR2, U2AF1) ως εναρκτήριο και καθοριστικό για τα MDS. Μεταξύ αυτών των γονιδίων, το SF3B1 είναι το 

πιο συχνά μεταλλαγμένο στους ασθενείς με MDS (~ 24 %) και ορίζει μια ξεχωριστή νοσολογική οντότητα, 

που ονομάζεται MDS με δακτυλιοειδείς σιδεροβλάστες (MDS-RS). Οι μεταλλάξεις στο SF3B1 εντοπίζονται 

συνήθως ως μεμονωμένα συμβάντα, στοχεύουν κυρίως στο hotspot K700 και σχετίζονται με ευνοϊκά 

προγνωστικά. Παρά τον χαρακτηρισμό του μοριακού τοπίου στο MDS, παραμένει ασαφές το πώς αυτές οι 

μεταλλάξεις οδηγούν την παθογένεση της νόσου και πώς μπορούν να ενημερώσουν την κλινική διαχείριση. 

Σε αυτή τη μελέτη, αξιοποιήσαμε δεδομένα από ένα πειραματικό μοντέλο επαγόμενων πολυδύναμων 

βλαστικών κυττάρων (iPSC) για να διερευνήσουμε τις συνέπειες της μετάλλαξης SF3B1K700E και τον ρόλο της 

στην παθογένεση της νόσου, ενσωματώνοντας πολλαπλές προβολές (όψεις) από το μεταγράφωμα και 

εξετάζοντας το τοπίο προσβασιμότητας της χρωματίνης.   

Data & Methods 

Για τη μελέτη αυτή, χρησιμοποιήσαμε ένα πάνελ 18 συνολικά SF3B1K700E μεταλλαγμένων και υγιών 

(SF3B1WT) ισογονικών σειρών iPSC από 3 ασθενείς με MDS-RS που έφεραν μεμονωμένες μεταλλάξεις 

SF3B1K700E. Για αυτές τις σειρές iPSC, πραγματοποιήθηκε κατευθυνόμενη αιμοποιητική διαφοροποίηση 

χρησιμοποιώντας πρωτόκολλα από το εργαστήριο της κας Παπαπέτρου και συλλέχθηκαν CD34+/CD45+ 

ανθρώπινα βλαστικά και προγονικά κύτταρα (HSPCs) για RNA και ATAC-sequencing. (Σημειώνουμε ότι η 

δημιουργία των δεδομένων δεν αποτελεί μέρος της τρέχουσας διατριβής). HSPCs από 16 σειρές iPSC 

συμπεριλήφθηκαν στις αναλύσεις RNA-seq μετά από ποιοτικό έλεγχο των αρχικών δεδομένων. Μετά την 

ευθυγράμμιση των αναγνώσεων RNA-seq  ποσοτικόποιήθηκε η αφθονία των μεταγραφημάτων και η 

γονιδιακή έκφραση. Πραγματοποιήθηκαν αναλύσεις διαφορικής έκφρασης γονιδίου, διαφορικής χρήσης 

μεταγραφημάτων και διαφορικού ματίσματος (συναρμογής) ανάμεσα στα κύτταρα SF3B1K700E και στα 

κύτταρα SF3B1WT. Για να αξιολογήσουμε τον αντίκτυπο της μετάλλαξης SF3B1K700E σε επίπεδο εξονίου, 

μεταγραφήματος και γονιδίου, συνδυάσαμε σήματα από αυτές τις 3 αναλύσεις μέσω ενός πολυσταδιακού 

πλαισίου συγχώνευσης. Αρχικά, εντοπίσαμε το σύνολο των μεταγραφημάτων που περιέχουν τα εξόνια που 

συμμετέχουν σε συμβάντα διαφορικού ματίσματος. Στη συνέχεια, συσχετίσαμε κάθε συμβάν διαφορικού 

ματίσματος με το σύνολο των διαφορικά χρησιμοποιούμενων μεταγραφημάτων. Τα ζεύγη που ανήκαν σε 

γονίδια με στατιστικά σημαντική διαφορική έκφραση και περιείχαν ένα διαφορικό συμβάν ματίσματος με 

τιμή FDR (False Discovery Rate) εντός των 20 χαμηλότερων, θεωρήθηκαν ως το σύνολο «βαθμίδας 1». Αυτό 

το σύνολο, περιέχει τα μεταλλαγμένα συμβάντα και γονίδια της υπογραφής SF3B1. Επιπλέον, κύτταρα HSPC 

από 15 σειρές iPSC συμπεριλήφθηκαν στην ανάλυση ATAC-seq. Μετά την ευθυγράμμιση των αναγνώσεων 

και τον ποιοτικό έλεγχο, εντοπίσαμε κορυφές προσβασιμότητας χρωματίνης και δημιουργήσαμε έναν 

άτλαντα ATAC-seq. Αυτός ο άτλας χρησιμοποιήθηκε για ανάλυση διαφορικής προσβασιμότητας 

χρωματίνης, συσχέτιση με το τοπίο προσβασιμότητας της φυσιολογικής αιμοποιητικής ιεραρχίας καθώς και 

για ανάλυση εμπλουτισμού μοτίβων.   

Results 
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Η ανάλυση κύριων συνιστωσών (PCA) και η ιεραρχική ομαδοποίηση (hierarchical clustering) με βάση τη 

γονιδιακή έκφραση ομαδοποίησαν τις σειρές iPSC ανά γονότυπο (SF3B1K700E vs SF3B1WT). Επιπλέον, 

διαφορικές αναλύσεις αποκάλυψαν 2737 διαφορικά εκφραζόμενα γονίδια, 1086 διαφορικά 

χρησιμοποιούμενα μεταγραφήματα και 1829 διαφορικά συμβάντα ματίσματος (συναρμογής) μεταξύ των 

κυττάρων SF3B1K700E και SF3B1WT. Η ενοποίηση των σημάτων από αυτές τις αναλύσεις χρησιμοποιώντας 

πολυσταδιακή προσέγγιση συγχώνευσης είχε ως αποτέλεσμα την παραγωγή μιας υπογραφής ματίσματος 

που αποτελείται από 59 συμβάντα (ματίσματος) προερχόμενα από 34 γονίδια. Δοκιμάσαμε αυτήν την 

υπογραφή σε ένα δημοσιευμένο σύνολο δεδομένων από πρωτογενή δείγματα ασθενών με MDS (Pellagatti 

et al. Blood 2018). Συγκεκριμένα, PCA με βάση το επίπεδο συμπερίληψης των συμβάντων συναρμογής της 

υπογραφής μας, διαχώρισε τους ασθενείς με μετάλλαξη SF3B1 από τους ασθενείς χωρίς μεταλλάξεις σε 

παράγοντες ματίσματος (SF-WT) ή τα υγιή άτομα. Σημαντικότερα, εντόπισε έναν ασθενή που 

ομαδοποιήθηκε μαζί με τους ασθενείς με μετάλλαξη SF3B1 ενώ εσφαλμένα είχε σημειωθεί ως SF-WT. Αυτός 

ο ασθενής είχε μια προηγουμένως παραβλεφθείσα διαγραφή 6 bp στο σημείο K700E. Συγκρίνοντας τον 

άτλαντα κορυφών ATAC-seq με τα προφίλ προσβασιμότητας χρωματίνης των πρωτογενών τύπων των 

ανθρώπινων κυττάρων κατά μήκος της αιμοποιητικής ιεραρχίας (Corces et al. Nat Genetics 2016), 

διαπιστώσαμε ότι το τοπίο χρωματίνης των SF3B1K700E HSPCs έμοιαζε περισσότερο με αυτό των 

μεγακαρυωτικών-ερυθροειδών προγονικών κυττάρων (MEPs) και των ερυθροειδών (Ery) κυττάρων. 

Επιπλέον, το σύνολο εμπλουτισμένων μοτίβων στις κορυφές ATAC-Seq που ήταν πιο προσβάσισιμες σε 

κύτταρα SF3B1K700E και επιπλέον συνδέονταν με γονίδια αυξημένης έκφρασης στα κύτταρα αυτά 

(SF3B1K700E), περιελάμβαναν μοτίβα της οικογένειας μεταγραφικών παραγόντων TEAD. Τα TEAD2 και TEAD4 

είχαν αυξημένη έκφραση στα κύτταρα SF3B1K700E σε σύγκριση με τα SF3B1WT. Ακόμα, η μεταγραφική 

δραστηριότητα TEAD,  μετρήμένη με μία κατασκευή αναφοράς λουσιφεράσης, ήταν υψηλότερη στα 

κύτταρα SF3B1K700E σε σύγκριση με τα SF3B1WT. Επίσης, δε βρήκαμε έκφραση ή ενεργοποίηση του YAP ή 

TAZ, τα οποία συνδέονται με το DNA ως σύμπλεγμα με το TEAD κατά την ενεργοποίηση της οδού 

σηματοδότησης Hippo. Τα στοιχεία αυτά υποδηλώνουν αυξημένη έκφραση και δραστηριότητα του TEAD 

ανεξάρτητα από την οδό σηματοδότησης Hippo στα SF3B1K700E κύτταρα. 

Discussion 

Με την υποστήριξη ενός πλαισίου ενοποίησης (integration) δεδομένων, αυτή η μελέτη αποτιμά 

συνδυαστικά τις επιδράσεις της μετάλλαξης SF3B1K700E σε παράλληλα επίπεδα απορρύθμισης του 

μεταγραφώματος με στόχο την ταξινόμηση των συμβάντων ματίσματος σε βαθμίδες. Συγκεκριμένα, αυτό 

το πλαίσιο αξιολογεί συστηματικά τις σχέσεις μεταξύ της μετάλλαξης SF3B1, του διαφορικού ματίσματος, 

της χρήσης μεταγραφημάτων και της έκφρασης γονιδίων και καταλήγει σε μια χαρακτηριστική υπογραφή 

ματίσματος SF3B1K700E. Αυτή η υπογραφή περιλαμβάνει πολλά γνωστά γονίδια και είναι σε θέση να 

αναγνωρίσει ατυπικές μεταλλάξεις που αφορούν το hotspot K700. Επιπλέον, αυτή η μελέτη δείχνει, σε 

επίπεδο χρωματίνης, ένα δυνητικό προσανατολισμό των HSPCs SF3B1K700E κυττάρων προς την ερυθροειδή 

κατεύθυνση σε σχέση με τη μυελοειδή - ένα στοιχείο που μπορεί να σχετίζεται με την προτιμητέα 

συμμετοχή της ερυθροειδούς κατεύθυνσης (lineage) στα MDS και ειδικότερα στα MDS-RS. Τέλος, οι 

αναλύσεις προσβασιμότητας της χρωματίνης υποστηρίζουν έναν θεωρούμενο ρόλο των παραγόντων 
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μεταγραφής TEAD στο πλαίσιο της μετάλλαξης SF3B1K700E, ένα σήμα που χρήζει επικύρωσης σε μελλοντικές 

μελέτες. 

 

Predicting single cell genotypes from single cell expression profiles in AML using 

deep learning 

Background 

Περίπου το 30% των περιπτώσεων με MDS τελικά εξελίσσονται σε AML, έναν επιθετικό καρκίνο του αίματος 

που εκδηλώνεται ταχέως, έχει αδύναμη ανταπόκριση στη θεραπεία και δυσοίωνα προγνωστικά επιβίωσης. 

Η AML είναι μια γενετικά ετερογενής νόσος που ορίζεται από τη σταδιακή συσσώρευση μεταλλάξεων. Αυτές 

συχνά χαρακτηρίζονται από συγκεκριμένες αλληλεπιδράσεις γονιδίων, που υποδηλώνουν λειτουργική 

συνεργασία, και οδηγούν σε γενετικά και κλωνικά ετερογενείς πληθυσμούς. Αυτό θέτει μια σημαντική 

πρόκληση στην αντιμετώπιση και τελικά τη θεραπεία της νόσου. Η αποσαφήνιση του ρόλου και της 

επίδρασης αυτής της ποικιλομορφίας στους κυτταρικούς φαινότυπους και τη βιολογία της νόσου απαιτεί: 

1. μοριακές αναπαραστάσεις σε κυτταρικό επίπεδο, οι οποίες δεν μπορούν να επιτευχθούν με προσεγγίσεις 

μαζικής αλληλουχίας σε πρωτογενή δείγματα, και 2. αναλυτικά πλαίσια ικανά να συνδέσουν πολυτροπικές 

προβολές δεδομένων. Στο περιθώριο αυτό, αξιοποιώντας δεδομένα μεμονωμένων κυττάρων από ένα 

σύνολο ασθενών AML με μετάλλαξη IDH1/2, αναπτύσσουμε προσεγγίσεις deep learning για να 

διερευνήσουμε πώς οι γονοτυπικές αλλαγές μεμονωμένων κυττάρων αντανακλώνται στα σήματα 

γονιδιακής έκφρασης. Συγκεκριμένα, αποσκοπούμε να απαντήσουμε εάν και πώς τα μοτίβα γονιδιακής 

έκφρασης ενός κυττάρου σε συνδυασμό με την χρήση νευρωνικών δικτύων, έχουν τη δυνατότητα να 

προβλέψουν την κακοήθη κατάσταση και τον γονότυπο ενός κυττάρου για συγκεκριμένες γονιδιωματικές 

ανωμαλίες. 

Data & Methods 

Το σύνολο των δεδομένων της μελέτης αυτής προέρχεται από 4 υγιή άτομα και 6 ασθενείς με AML, 3 με 

κλωνικές μεταλλάξεις IDH1 και 3 με κλωνικές μεταλλάξεις IDH2. Αυτοί οι ασθενείς είχαν επίσης μεταλλάξεις 

στα γονίδια NPM1, NRAS, KRAS, SRSF2, DNMT3A, καθώς και ένα σύνολο χρωμοσωμικών ανωμαλιών 

(αυξήσεις [gains] στα χρωμοσώματα 1q [+1q/dupli_chr1], 6 [+6/dupli_chr6], 8 [ +8/dupli_chr8], 10 

[+10/dupli_chr10] και 14 [+14/dupli_chr14]). Για αυτό το σύνολο ασθενών και υγιών ατόμων, δεδομένα 

scRNA-seq δημιουργήθηκαν από δείγματα μυελού των οστών (Bone Marrow) και περιφερικού αίματος 

(Peripheral Blood). Παράλληλα με τα προφίλ έκφρασης γονιδίων από μεμονωμένα κύτταρα, ήταν επίσης 

διαθέσιμες γονοτυπικές πληροφορίες μεμονωμένων κυττάρων για τους 6 ασθενείς με AML, όπως 

προέκυψαν από τη μέθοδο GoT (Nam et al. Nature 2019). (Σημειώνουμε ότι η δημιουργία των δεδομένων 

δεν αποτελεί μέρος της τρέχουσας διατριβής). Μετά την ευθυγράμμιση των αναγνώσεων και τον ποιοτικό 

έλεγχο των δεδομένων, υπολογίστηκαν,  κανονικοποιήθηκαν και στη συνέχεια ενσωματώθηκαν σε ένα 

ενιαίο πίνακα οι γονιδιακές εκφράσεις μεμονωμένων κυττάρων τόσο για τους ασθενείς όσο και για υγιή 

άτομα. Τα κύτταρα, από τους ασθενείς με AML, τα οποία είχαν τουλάχιστον μία ανιχνευμένη μετάλλαξη ή 
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χρωμοσωμική ανωμαλία επισημάνθηκαν ως κακοήθη ενώ κάθε κύτταρο από τα υγιή άτομα επισημάνθηκε 

ως υγιές. Για να εκτιμήσουμε εάν οι τιμές έκφρασης ενός γονιδίου ενός κυττάρου μπορούν να προβλέψουν 

την κακοήθη ή υγιή κατάσταση ενός κυττάρου, εκπαιδεύουμε ένα feedforward νευρωνικό δίκτυο που 

εξάγει την πιθανότητα ένα κύτταρο να είναι κακοήθες (μοντέλο δυαδικής ταξινόμησης). Επιπλέον, για να 

είμαστε σε θέση να προβλέψουμε τις γονιδιωματικές ανωμαλίες που φέρουν τα κακοήθη κύτταρα (για 

παράδειγμα, εάν υπάρχει μετάλλαξη NRAS ή όχι), εκπαιδεύουμε ένα μοντέλο πολλαπλών ετικετών (multi-

label) παρόμοιας αρχιτεκτονικής. Η εφαρμογή της μεθόδου HRT (Holdout Randdomization Test, Tansey et 

al. JCGS 2021) και στα δύο εκπαιδευμένα μοντέλα επιλέγει τα χαρακτηριστικά με την κυριότερη δυνατότητα 

πρόβλεψης των αντίστοιχες ετικετών (κακοήθη κύτταρα για το δυαδικό μοντέλο, γενετικές ανωμαλίες για 

το μοντέλο πολλαπλών ετικετών). 

Results 

Συνολικά 50.026 κύτταρα (35.314 κακοήθη και 14.712 υγιή) με δεδομένα υψηλής ποιότητας επιλέχθηκαν 

για την εκπαίδευση, την επικύρωση και τη δοκιμή του μοντέλου δυαδικής ταξινόμησης. Αυτό το δυαδικό 

μοντέλο διαχώρισε τα κακοήθη από τα υγιή κύτταρα με accuracy 98%, precision 98% και recall 99%, ενώ η 

μέθοδος HRT οδήγησε στην επιλογή 58 γονιδίων ως σημαντικών για αυτήν την ταξινόμηση (κακοήθη 

κύτταρα έναντι υγιών). Η ανάλυση γονιδιακής οντολογίας σε αυτό το σύνολο των 58 γονιδίων έδειξε τη 

συμμετοχή διεργασιών που σχετίζονται με την απόπτωση (BH adjusted p-value = 0,009, πχ MCL1, HMGB2) 

και την οδό σηματοδότησης TGF-beta (BH adjusted p-value = 0,005, πχ ID1, JUNB). Εφαρμόζοντας το μοντέλο 

αυτό στα κύτταρα των ασθενών με AML που δεν αποτελούσαν μέρος των σετ εκπαίδευσης, επικύρωσης και 

δοκιμών, αποκάλυψε ένα μικρό ποσοστό (κυττάρων) σε κάθε ασθενή που παρουσίαζε ένα φαινότυπο 

παρόμοιο με αυτόν των υγιών κυττάρων (WT-like). Οι εν-λόγω WT-like προβλέψεις είναι το 4,1% του 

συνόλου και το 56% αυτών αντιστοιχούν σε μυελογενή διαφοροποιημένα κύτταρα. Παρομοίως με την 

περίπτωση δυαδικής ταξινόμησης, το μοντέλο πολλαπλών ετικετών, εκπαιδευμένο, επικυρωμένο και 

δοκιμασμένο σε 16.614 κύτταρα ενός ασθενούς με AML, παρουσιάζει 98% σωστές προβλέψεις κατά τον 

διαχωρισμό των κακοήθων κυττάρων από τα υγιή στο σετ δοκιμής. Επιπλέον, αυτό το μοντέλο πολλαπλών 

ετικετών πέτυχε σχεδόν βέλτιστα αποτελέσματα στην πρόβλεψη των χρωμοσωμικών ανωμαλιών (AUC ROC 

>= 0,96) και είχε σημαντική απόδοση για την πρόβλεψη της υποκλωνικής μετάλλαξης NRAS (AUC ROC = 

0,83), σε αντίθεση με την περιορισμένη ικανότητά του να προβλέπει σωστά την κατάσταση της κλωνικής 

μετάλλαξης IDH1. 

Discussion 

Αυτή η μελέτη αναπτύσσει προσεγγίσεις deep learning για να διερευνήσει πώς οι γονοτυπικές αλλαγές 

αντανακλώνται στα σήματα γονιδιακής έκφρασης μεμονωμένων κυττάρων στην AML με μεταλλάξεις 

IDH1/2. Τα σχεδιασμένα δίκτυα προβλέπουν την κατάσταση κακοήθων έναντι υγιών κυττάρων και 

προσδιορίζουν την κατάσταση μετάλλαξης συγκεκριμένων γονιδιωματικών ανωμαλιών, αντιμετωπίζοντας 

ταυτόχρονα την απουσία ετικετών για ορισμένες από αυτές τις ανωμαλίες κατά τη διάρκεια της 

εκπαίδευσης. Και τα δύο μοντέλα έδειξαν εξίσου υψηλή απόδοση στην ταξινόμηση των κακοήθων 

κυττάρων έναντι των υγιών. Η χαμηλή απόδοση στην πρόβλεψη της κατάστασης IDH1 μπορεί να αποδοθεί 

στη χαμηλή αποτελεσματικότητα της μεθόδου GoT κατά την παραγωγή των γονοτυπικών προφίλ, ενώ η 
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σημαντική απόδοση στην πρόβλεψη της κατάστασης NRAS υποδηλώνει την απόκτηση συγκεκριμένων 

προφίλ γονιδιακής έκφρασης από τα κύτταρα που την αποκτούν (μετάλλαξη NRAS) ως μεταγενέστερο 

γεγονός. Αυτό το αποτέλεσμα δείχνει ότι η ταξινόμηση πολλαπλών ετικετών για την πρόβλεψη 

μεταλλάξεων, μπορεί να έχει τη βέλτιστη απόδοση σε πληθυσμούς κυττάρων με ένα αντιπροσωπευτικό 

εύρος μεταλλαγμένων και υγιών προφίλ, όπως οι υποκλώνοι. Αυτό το στοιχείο εχει έννοια κλινικού 

χαρακτήρα καθώς και σημασία στο πλάισιο μεταφραστικής έρευνας, καθώς συχνά τέτοιοι αναδυόμενοι 

υποκλώνοι φέρουν μεταλλάξεις που προσδίδουν αντίσταση στη θεραπεία της νόσου αλλά και 

συνεισφέρουν στην υποτροπή της (νόσου). Τέλος, η διαχείριση και των δύο εκπαιδευμένων μοντέλων ως 

“μαύρων κουτιών” και η εφαρμογή της μεθόδου HRT επιλέγουν ως σημαντικά, γονίδια εισόδου που 

σχετίζονται με διεργασίες που έχουν επισημανθεί στη βιβλιογραφία της νόσου AML (πχ απόπτωση). 

 

Συμπεράσματα 

Τα αναλυτικά πλαίσια που παρουσιάζονται στην παρούσα διατριβή δείχνουν ότι η εφαρμογή εννοιών από 

το πεδίο ενοποίησης δεδομένων πολλαπλών προβολών κατά τη θεώρηση (mining) δεδομένων μαζικής 

αλληλουχίας αλλά και μεμονωμένων κυττάρων, οδηγεί σε μια περιεκτική και λεπτομερή αποτύπωση των 

μοριακών τοπίων και ενισχύει την καταγραφή των σχέσεων γονότυπου-φαινότυπου στα μυελογενή 

νεοπλάσματα. Τα αποτελέσματα που προκύπτουν υποδηλώνουν ότι αυτές οι προσεγγίσεις έχουν τη 

δυναμική να δημιουργήσουν συνδέσεις μεταξύ διαφορετικών όψεων δεδομένων και να εντοπίσουν σήματα 

που σχετίζονται με τη βιολογία της νόσου. Υπό ένα ευρύτερο πρίσμα, η λογική που χρησιμοποιήθηκε για 

την ενοποίηση προβολών από δεδομένα RNA-seq, μπορεί να εφαρμοστεί σε άλλες μελέτες που εξετάζουν 

το ρόλο των μεταλλάξεων παραγόντων ματίσματος σε σήματα που που μπορούν να ποσοτικοποιηθούν με 

αλληλουχία μεταγραφώματος (έκφραση γονιδίων, μάτισμα, χρήση μεταγραφημάτων). Επιπλέον, σε άλλες 

μελέτες στην ογκολογία και ειδικά σε περιπτώσεις καρκίνου με την παρουσία διαφορετικών γενετικών 

κλώνων, η ανάπτυξη εποπτευόμενων αρχιτεκτονικών deep learning μπορεί να συσχετίσει γονιδιωματικά 

και μεταγραφικά προφίλ μεμονωμένων κυττάρων και να δείξει εάν και πώς οι μεταλλάξεις και ο τύπος τους 

αντικατοπρίζονται στο προφίλ έκφρασης γονιδίων ενός κυττάρου. Η επέκταση των προβολών (όψεων) 

δεδομένων για τη συμπερίληψη και άλλων τύπων διαγνωστικών εξετάσεων όπως μορφολογικές, 

ανοσοφαινοτυπικές και κλινικές, καθώς και η ανάπτυξη ενοποιητικών (integrative) υπολογιστικών 

προσεγγίσεων για την ανάλυση αυτών των δεδομένων με συλλογικό τρόπο σε εποπτευόμενα και μη 

εποπτευόμενα περιβάλλοντα, θα ανοίξει το δρόμο για την υιοθέτηση των εξαξόμενων γνώσεων στην 

κλινική πράξη. 
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Chapter 1 

 

Introduction 

1.1. Cancer: Pathogenesis and evolution 

Cancer arises from the acquisition of mutations that result in the autonomous growth and expansion of 

malignant clones[1,2]. Somatic mutations occur spontaneously during lifetime and are largely 

inconsequential.  However, a subset of these mutations may alter important biological processes that confer 

a fitness advantage to the carrier cells and contribute to malignant transformation[2,3]. The latter mutations, 

called drivers, enable the cell to escape the normal constraints of development and proliferation, contribute 

to the modification of key cellular functions and pathways, cause disorders and phenotypic alterations and 

lead to tumor formation[1,3].  

Cancers are considered to share a common framework of pathogenesis and progression[3,4] whereby each 

tumor is the product of a Darwinian evolutionary process happening among the population of cells residing 

in the tissue microenvironments[4,5]. These microenvironments, shaped by the tissue space, resources, 

immune predation as well as a mixture of adverse conditions such as hypoxia and acidosis, pose constraints 

in tumor growth[5]. Similarly to the Darwinian principles of the evolution of species, cancer progression is 

driven by the stepwise accrual of mutations and the concomitant natural selection sweeps occurring on the 

resulting phenotypic diversity[3,4,6]. This process may confer a selective advantage to cells carrying genetic 

alterations that favor proliferation and survival and lead to the dominance of specific subpopulations. 

Genomic profiling of a tumor’s DNA reveals the set of genetic variants accumulated during disease evolution. 

Quantitative estimates of the cellular representation for each mutation using variant allele fraction (VAF) 

metrics, provide further insights into the temporal order of mutation acquisition. This temporal order of 

mutations enables the reconstruction of the evolutionary tree of the tumor and sheds light on intra-tumor 

heterogeneity (ITH). Alterations present in all cells form the trunk of a cancer’s somatic evolutionary 

trajectory while mutations identified in specific cell subsets define distinct subclones that arise and grow 

during later stages of disease evolution[5,6].  

Cancer genome profiling studies[7,8] reveal a diverse spectrum of gene mutations, involving frequently 

mutated genes (>5% within tumor indications) as well as a long tail of infrequently mutated genes (<2% 

within tumor indications). On average each patient has 4 such driver mutations (ranging from 1-10 across 

tumor types)[2], resulting in a diverse range of patient-specific molecular profiles. This genetic heterogeneity 

underscores the complexity of modeling and treating cancer.  Beyond gene mutations, the occurrence of 

https://paperpile.com/c/fpF7ib/TqUBf+F5lT2
https://paperpile.com/c/fpF7ib/F5lT2+0QXdH
https://paperpile.com/c/fpF7ib/0QXdH+TqUBf
https://paperpile.com/c/fpF7ib/0QXdH+Sq4qp
https://paperpile.com/c/fpF7ib/Sq4qp+hagYh
https://paperpile.com/c/fpF7ib/hagYh
https://paperpile.com/c/fpF7ib/Sq4qp+0QXdH+4Iff0
https://paperpile.com/c/fpF7ib/4Iff0+hagYh
https://paperpile.com/c/fpF7ib/Rosl+bweET
https://paperpile.com/c/fpF7ib/F5lT2
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distinct epigenetic changes, including DNA methylation, chromatin remodeling and post-translational 

histone modifications also adds to the variety of resulting phenotypic patterns[5,6]. Therefore, ITH combined 

with the diversity between cancer patients outline the degree of the disease complexity and the challenges 

of patient care. With the advent of computational methods and technological pipelines such as next 

generation sequencing, it is now possible to map out changes in a tumor's genome, transcriptome and 

epigenome. Analysis of genotype-phenotype relationships also enables insights into mechanisms of disease 

biology. The generation of detailed and extensive datasets coupled with the design of quantitative 

approaches to study associations between genotypes, biological readouts and clinical phenotypes, 

significantly advance our potential to deliver evidence-based care and therapeutics in oncology[5,9]. 

The work in this thesis takes into consideration patient-relevant genetic and clonal representations in 

myeloid neoplasms, employs high-dimensional omics profiling applications (genetic, transcriptomic and 

epigenetic) and develops analytical frameworks to study how specific gene mutations contribute to disease 

pathogenesis in the context of myeloid neoplasms.  

1.2. Hematopoietic System 

Hematologic malignancies describe a heterogeneous set of myeloid and lymphoid neoplasms emerging from 

the disruption of normal hematopoiesis[10–12]. Hematopoiesis is the hierarchical developmental process of 

the lifelong and continuous formation of blood cells produced from a limited population of hematopoietic 

stem cells (HSCs)[11,13–16]. HSCs reside at the apex of the hematopoietic system and have the ability of self-

renewal as well as of multipotent differentiation to all blood cell lineages[11,13–16]. HSCs are located in the 

bone marrow (BM) niche and in the absence of stimuli reside in a quiescent state of low mitochondrial 

activity and limited levels of protein synthesis[17]. In the context of maintaining homeostatic balance within 

the tissue, the regulation between the self-renewal and differentiation of HSCs is complex and dynamic and 

depends both on intracellular characteristics as well as extrinsic signals from the microenvironment[11,12]. 

Upon self-renewal HSCs produce new stem cells assisting in the supply of the HSC pool, while upon 

differentiation HSCs yield a variety of hematopoietic progenitor cells that gradually commit to specific 

lineages (myeloid and lymphoid) and progressively give rise to the mature blood cell types[11,13–16].    

The hematopoietic process follows a hierarchical structure and unfolds as a continuum of multipotent 

hematopoietic stem and progenitor cells (HSPCs) that give rise to specialized blood cell lineages (Figure 1.1) 

in response to a regulated environment of growth factors and cellular interactions[11,12,15,16,18]. The 

classic roadmap of this tree-like structure is characterized by the commitment of progenitor intermediate 

cells towards one of two principal hematopoietic branches: the myeloid and the lymphoid[13,16,18] (Figure 

1.1). The mature blood cells of the myeloid branch descend mostly from common myeloid progenitor cells 

(CMPs) and include monocytes, erythrocytes, granulocytes (neutrophils, eosinophils, mast cells, basophils) 

and megakaryocytes (Figure 1.1)[12,16,18]. On the other hand, the lymphoid branch generates B cells, 

natural killer (NK) cells as well as T cells[12,13,16]. This set of terminally differentiated blood cells called 

lymphocytes form the backbone of the immune system responding to a range of pathological challenges.  

https://paperpile.com/c/fpF7ib/hagYh+4Iff0
https://paperpile.com/c/fpF7ib/hagYh+S1CIH
https://paperpile.com/c/fpF7ib/14TR4+iUhFx+8fkDw
https://paperpile.com/c/fpF7ib/LFTcU+QI6Nl+Wuks2+5PgHK+iUhFx
https://paperpile.com/c/fpF7ib/iUhFx+Wuks2+5PgHK+LFTcU+QI6Nl
https://paperpile.com/c/fpF7ib/Apw4D
https://paperpile.com/c/fpF7ib/8fkDw+iUhFx
https://paperpile.com/c/fpF7ib/iUhFx+5PgHK+LFTcU+Wuks2+QI6Nl
https://paperpile.com/c/fpF7ib/Wuks2+iUhFx+8fkDw+5PgHK+dYtUJ
https://paperpile.com/c/fpF7ib/5PgHK+LFTcU+dYtUJ
https://paperpile.com/c/fpF7ib/5PgHK+8fkDw+dYtUJ
https://paperpile.com/c/fpF7ib/LFTcU+5PgHK+8fkDw
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This thesis focuses specifically on blood cancers that arise following the deregulation of the myeloid lineage.   

1.3. Myeloid Neoplasms 

Myeloid neoplasms (MNs) are prevalent and clonal hematologic malignancies marked by the dysregulated 

proliferation and differentiation of HSCs and myeloid progenitor cells[19,20]. Genetic changes and epigenetic 

variations in these cells lead to abnormal growth and defective maturation of the myeloid cell types[21]. 

Diagnosis and classification of the MNs to separate clinicopathological disease entities relies heavily on the 

assessment of BM morphology, immunophenotyping, clinical features (such as the enumeration of 

peripheral blood counts [PBCs]), cytogenetic and gene mutation profiling[21]. MNs consist of chronic 

disorders like myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN), acute stages such 

as acute myeloid leukemia as well as related overlap syndromes, i.e. MDS/MPN. Apart from these disease 

groups, the umbrella of MNs, as per WHO 2022, also covers: myeloid precursor lesions, mastocytosis, 

secondary myeloid neoplasms, myeloid/lymphoid neoplasms with eosinophilia and defining gene 

rearrangement and acute leukemias of mixed or ambiguous lineage[22]. Even though each of these disorders 

presents with distinct clinical features, MNs are closely related, lie on a continuum of morphological 

parameters from dysplastic to more proliferative, share genetic features and as a result may have common 

therapeutic approaches. Treatment modalities include hypomethylating agents, hematopoietic stem cell 

transplantation, chemotherapy and more recently targeted agents.  

The starting point of the pathophysiological process that ultimately induces MDS is the growth and expansion 

of a somatically mutated clone of hematopoietic cells[23,24]. In particular, the stage before disease 

presentation, called clonal hematopoiesis, begins with an initiating driver mutation in HSPCs. Clonal 

hematopoiesis manifests under selective forces induced by various exposures such as cytotoxic treatments 

and tobacco smoking, unrepaired DNA replication errors, aging or natural selection[24]. While in the setting 

of clonal hematopoiesis a single mutation can lead to clonal expansions, secondary co-operative mutations 

are required to confer a hematologic malignancy. Thus, the majority of people with clonal hematopoiesis 

may never transform into a blood cancerous stage and remain in a phase of ‘indeterminate potential’[24]. 

Therefore, this condition, named clonal hematopoiesis of indeterminate potential (CHIP), describes the 

clonal expansions of somatically mutated HSPCs in individuals with absence of dysplasias or cytopenias or 

any other diagnostic criteria for hematologic neoplasms[21,23–25]. However, upon the acquisition of 

secondary mutations, clonal hematopoiesis can dominate the BM and lead to malignant transformation and 

overt disease presentation. This malignant transformation, depending on the morphologic abnormalities as 

well as the cytogenetic and mutational landscape, can meet the criteria for an MN diagnosis[23,26]. MNs 

such as MDS or MPN can further progress to AML upon the increase of the abnormal immature blood cells 

called blasts, above the threshold of 20% [23]. 

 

Chapter 2 of the present thesis studies one of the most common mutations in MDS (SF3B1), whilst Chapter 

3 is set in the context of IDH mutations in AML.  

 

https://paperpile.com/c/fpF7ib/CAr6v+lUl5D
https://paperpile.com/c/fpF7ib/DfgOg
https://paperpile.com/c/fpF7ib/DfgOg
https://paperpile.com/c/fpF7ib/S4OYS
https://paperpile.com/c/fpF7ib/BIRdP+NEPM6
https://paperpile.com/c/fpF7ib/NEPM6
https://paperpile.com/c/fpF7ib/NEPM6
https://paperpile.com/c/fpF7ib/qt68C+NEPM6+BIRdP+DfgOg
https://paperpile.com/c/fpF7ib/BIRdP+i6Wx1
https://paperpile.com/c/fpF7ib/BIRdP
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Figure 1.1. Hierarchical representation of the hematopoietic process adapted from Corces et al. 2016. Hematopoietic 

stem cells (HSCc) can either self-renew or produce multipotent progenitor cells (MPPs) that further differentiate to 

lymphoid-primed multipotent progenitor cells (LMPPs) and common myeloid progenitors (CMPs). The latter can further 

branch into megakaryocyte–erythroid progenitor cells (MEPs) or granulocyte-monocyte progenitor cells (GMPs) which 

can be also reached from LMPPs. The terminally differentiated set of myeloid cell types consists of monocytes (Mono), 

granulocytes (Gran), erythrocytes (Ery) and megakaryocytes (Mega). On the lymphoid branch, LMPPs give rise to 

common lymphoid progenitors (CLPs) that mature into B cells, natural killer (NK) cells as well as T cells. Drawn using 

BioRender. 

1.3.1 Myelodysplastic Syndromes 

Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid neoplasms characterized by 

dysplasia, ineffective hematopoiesis, varying cytopenias and a significant risk of transformation to 

AML[23,26–29]. MDS diagnosis and subtype classification are mostly based on the examination of 

morphological features (e.g. the degree of myelodysplasia, the presence of ring sideroblasts), percentage of 

bone marrow and peripheral blood blasts, specific cytogenetic abnormalities (5q deletion, monosomy 7) and 

gene mutations (SF3B1, TP53)[21,22,27,30]. The median age at diagnosis is approximately 70 years 

old[26,29]. 

Determining the genetic landscape of MDS is important for improving the diagnostic, therapeutic as well as 

prognostic practices in oncology[23,25,30–32]. The mutational burden as well as the detection of clonal and 

subclonal mutations have significant prognostic value[31,33]. Several of the genes that are mutated in MDS 

patients are commonly identified  in the genetic profiling of other MNs (like MPN, MDS/MPN, AML) while 
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the complex patterns of co-mutations and subclonal evolution are associated with diverse disease 

trajectories and clinical traits. Upon the diagnosis of MDS, patients have a median number of 2-3 mutations 

while the landscape of the disease is characterized by mutations in more than 40 genes. However, only a 

small fraction of these are frequently mutated whereas the rest compose a long tail of more rare 

abnormalities[23,25,34]. Recurrently mutated genes in MDS include those involved in RNA splicing (SF3B1, 

U2AF1, SRSF2 and ZRSR2), DNA methylation (DNMT3A, TET2, IDH1, IDH2), chromatin modification (EZH2, 

ASXL1, KMT2, SUZ12), transcription regulation (TP53, EVI1, RUNX1, GATA2), DNA repair control (ATM, 

BRCC3), and the cohesin complex (STAG2, CTCF, SMC1A, RAD21) [23,25,27,32,34]. Different combinations of 

mutations in these genes lead to the dysregulation of various biological pathways accounting for the disease 

heterogeneity among MDS patients. Events in RNA splicing, DNA methylation and histone modification genes 

are early driver and clonal events, while the rest contribute to disease evolution[25,27].   

The most frequent mutations in MDS target components of the spliceosome machinery. Mutations in splicing 

factor genes are recurrent events and have been described as central to MDS disease 

biology[23,25,27,32,34]. Such mutations are heterozygous (e.g. affecting only one allele) and mutually 

exclusive (like SF3B1 and SRSF2) and the different co-mutation patterns affect the downstream genomic 

evolution[27]. Given their importance in MDS pathogenesis, splicing factors have been subject to rapid 

therapeutic drug targeting, while inhibitors of the spliceosome complex are currently under clinical trial 

development[23,32]. The SF3B1 gene is the most prevalently mutated one in MDS (~ 24% of the patients) 

and encodes the splicing factor 3b subunit 1[25,27,32]. Its somatic mutation is an early, disease-defining 

genetic lesion with an overall median variant allele frequency (VAF) around 40%[23,32]. Less frequently, 

SF3B1 mutations can be identified as secondary events appearing in the background, most commonly, of 

TET2, DNMT3A or ASXL1-mutated cases[32]. From a clinicopathological perspective, SF3B1 defines a distinct 

nosologic group in MDS, is associated with more favorable outcomes and has proven to have notable 

importance in prognostic systems of risk of transformation to AML [31,32,35]. SF3B1-mutant MDS is 

characterized by the presence of ring sideroblasts (RS), ineffective erythropoiesis, low blast counts and 

macrocytic anemia[21,23,32,35].  

SF3B1 is a key component of the U2 small nuclear ribonucleoprotein complex (snRNP). Functionally, 

mutations in SF3B1 affect splicing, namely the regulatory process that removes the intronic portions from 

the pre‐mRNA and then ligates the protein-coding sequences (exons) of the genes in the context of 

transcription [36,37]. Under normal conditions, such exons are joined in different combinations (alternative 

splicing, Figure 1.2), resulting in a range of alternative transcripts. The acquisition of mutations in SF3B1 (and 

other spliceosome genes) induces preferential splicing alterations, leading to differential splicing behavior 

compared to wild type [36,37]. SF3B1 mutations cause alternative 3’ splicing, mainly affecting mitochondrial 

gene pathways [35]. Specifically, such mutations alter the RNA branchpoint recognition leading to the 

preferential use of cryptic 3′ splice sites (Figure 1.2). This results in decreased production of canonical 

transcripts and subsequent downregulation of protein expression as well as in increased formation of 

aberrant transcripts with a premature stop codon. The latter transcripts are degraded by nonsense-mediated 

decay mechanisms [23,32,38]. Apart from alternative 3’ splice site events (A3SS), mutations in SF3B1 (and 

other spliceosome genes) can also lead to other differential splicing of other alternative patterns. As 
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described in Figure 1.2, these include alternative 5’ splice site events (A5SS), skipping exon (SE) events, 

retention of intron (RI) events and mutually exclusive exon (MXE) events. Despite modeling studies of SF3B1 

mutations and the outlining of the genetic landscape in MDS, the determination of the downstream effectors 

of SF3B1 mutations remains unclear.  

Approximately 30% of MDS patients progress to AML resulting in chemoresistant disease and extremely poor 

outcomes (5-year overall survival of <30%) [39,40]. Molecularly, progression to AML can take place in 

different ways [23]. Mutations leading to leukemic transformation can be either acquired as secondary 

events (e.g. EZH2 in SF3B1-mutated MDS) or be present when clinical symptoms of MDS appear, but expand 

and attain dominance at a later stage under selection pressure (such as RUNX1 or STAG2) [23]. Upon MDS 

progression to AML, blasts accumulate and reach the 20% diagnostic threshold for AML [23]. 

 

 
 

Figure 1.2. Types of alternative splicing events. 1) Skipping Exon (SE): An exon (exon 3 in the figure) may be excluded 

from the transcript or retained. 2) Alternative 3’ splice site (A3SS): An alternative 3’ splice junction of exon 2 is used. 3) 

Alternative 5’ splice site (A5SS): An alternative 5’ splice junction of exon 1 is used. 4) Retention of intron (RI): The intronic 

region may or may not be spliced out of the transcript. 5) Mutually Exclusive Exons (MXE): Only one out of two exons 

(exon 2, exon 3) participates in the transcript. 

Chapter 2 of this thesis introduces a multi-stage fusion strategy to integrate distinct transcriptomic readouts 

from the splicing, transcript and gene level, as well as incorporates analyses of chromatin accessibility data 

to characterize the functional implications of SF3B1 mutations in MDS.  
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1.3.2 Acute Myeloid Leukemia 

AML describes a set of aggressive and clonal MNs with rapid onset, acute progression and frequently 

chemoresistance disease [41–44]. Similar to other MNs, AML pathogenesis is characterized by the presence 

of a differentiation block that impairs hematopoiesis by preventing progenitor cells from proceeding toward 

more mature myeloid cell types. This causes the aggregation and expansion of abnormal immature 

hematopoietic precursor cells called blasts [41–44]. Patients with AML either can be asymptomatic with 

abnormal complete blood count (CBC) or, in the majority, present with symptoms associated with BM failure 

(e.g. fever, infections, anemia, bruising, etc) [45,46]. AML has a diverse age range, affecting most often older 

individuals (the median age of diagnosis is 68 years old) and is associated with poor outcomes. Specifically, 

disease occurrence rises with age and mortality is higher than 90% when the age of diagnosis is higher than 

65 years [45,47].  

AML can arise as a de-novo disease, may have a preceding MN such as an MDS preface (secondary AML - 

sAML) or develop as a consequence of prior therapy (therapy-related AML). AML development is the result 

of the stepwise acquisition of somatic mutations and cytogenetic aberrations in HSPCs that impede 

differentiation and promote the proliferation and increase of the blast population [47,48]. In clinical practice, 

diagnosis of AML requires the presence of blasts at a percentage higher than 20%, usually evaluated 

morphologically on a bone marrow aspirate. The complete diagnostic profiling relies on immunophenotyping 

by flow cytometry, which can confirm the existence of excessive blasts and other cell type populations, 

cytogenetic testing (e.g. FISH or karyotyping) for the identification of chromosomal aberrations and genetic 

screening for the cataloging of mutations [42,44,46,47,49]. 

The genomic landscape of the disease includes mutations in more than 80 genes, but only a small fraction of 

them is frequently mutated (>5% of AML patients) [41]. More than 90% of AML patients are identified with 

somatic mutations and typically most of them are identified with 2-3 drivers [41,49]. Mutation acquisition is 

defined by well-characterized and preferred patterns of co-mutations that are ordered in time (Figure 1.3). 

Early and disease-initiating events usually happen on epigenetic modifiers such as DNMT3A, ASXL1, IDH1, 

IDH2 and TET2 [41]. These events are part of the parent clone and the fact that they are rarely identified in 

isolation, shows that, on their own, are not capable of conferring overt leukemic disease. These events are 

followed by secondary mutations in genes of the cohesin complex or chromatin modifiers (e.g. BCOR, STAG2), 

RNA splicing (e.g. SRSF2, U2AF1, SF3B1) genes or transcription factor genes (e.g. WT1, RUNX1, GATA2) [41]. 

Late mutations, often associated with disease progression, occur usually in signaling genes such as the 

receptor tyrosine kinase–RAS pathway genes (Figure 1.3). Other recurrently mutated genes in AML are NPM1 

and TP53, the genetic lesions of which typically take place as subclonal events [41].  
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Figure 1.3. Disease progression in AML. Early, disease-initiating events are acquired by myeloid progenitor cells forming 

the parent clone (red). These events are followed by secondary mutations, usually in chromatin modifiers and 

spliceosome genes and late mutations in signaling genes[41]. In the course of disease progression, the gradual 

acquisition of secondary and late events gives rise to subclones (blue, yellow) and creates populations of cells with 

different genetic landscapes. Drawn using BioRender. 

Studying the genomic composition of the disease shows that AML progression follows ordered evolutionary 

trajectories. The co-occurrence and exclusivity of mutations define heterogeneous and dynamic sets of 

subclones and outline the need for personalized therapy design. For instance, two of the most frequently 

mutated genes in AML (15-20% of patients) are IDH1 (p.R132) and IDH2 (p.R140 and p.R172). Mutations in 

these genes are early initiating events (clonal) and are frequently identified with co-mutations in DNMT3A, 

NPM1, SRSF2 and NRAS. IDH1/2 mutations cause the elevated production of the oncometabolite 2-

hydroxyglutarate (R-2-HG) leading to hypermethylated phenotypes [50–54]. Therapeutic approaches 

combine IDH inhibitors (e.g. ivosidenib, enasidenib) with chemotherapy or hypomethylating agents and aim 

to decrease the 2-HG production and relieve the myeloid differentiation block [55–57]. Responses to these 

therapies are multifactorial and depend at least in part on the presence of resistance-associated mutations 

such as in the receptor tyrosine kinase–RAS pathway [56,58]. 

Chapter 3 of this thesis explores single cell transcriptome and genotyping data derived from IDH1/2 mutated 

primary AML patient samples, aiming to derive associations between genomic abnormalities and gene 

expression profiles. 
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1.4. Omics profiling applications in cancer research 

Investigating the role of mutations in disease pathogenesis and evolution relies on the study of primary 

patient samples as well as on experimental models of disease biology. Examples of such models with 

applications in myeloid neoplasms include murine models [59,60], immortalized cell lines [61,62] and 

induced pluripotent stem cells (iPSCs) [63,64]. Murine models can be combined with genetic engineering 

approaches to introduce mutations as seen in human samples. Immortalized cell lines, such as the leukemic 

K562, represent primary patient cells that have been engineered to grow in vitro, while iPSCs represent 

primary patient cells that have been reprogrammed back into an embryonic-like pluripotent state that can 

be subsequently differentiated into the cell lineage of interest [65,66]. The deployment of omics profiling 

across cells derived from models of disease biology or primary patient samples, creates an opportunity to 

study cellular states and characterize putative mechanisms that are directly linked to acquired gene 

mutations and implicated in disease pathogenesis. 

The present thesis leverages omics profiling data from primary patient samples (Chapter 3), as well as 

patient-derived iPSC models (Chapter 2).      

1.4.1. Bulk omics modalities: Genome, transcriptome and epigenome sequencing 

The decrease in the costs together with the high throughput and depth of next generation sequencing (NGS) 

technologies, have enabled bulk data generation at massive scales at the human genome, epigenome, 

transcriptome, metabolome and proteome level[67,68].            

Genomic sequencing applications allow for the detailed documentation of the mutations present in a 

genome [69]. DNA-sequencing (DNA-seq) applications include 1) targeted sequencing approaches, where 

select regions of the genome are captured and sequenced 2) whole exome sequencing (WES) approaches 

that analyze the DNA sequence of the coding part of the genome 3) whole genome sequencing (WGS) 

approaches that capture the entire genome (coding and non-coding). Whilst targeted and whole exome 

sequencing approaches capture small mutations and profile copy number abnormalities in select regions of 

the genome, WGS allows the analyses of all classes of mutations to include copy number abnormalities and 

genomic rearrangements. Increasingly, primary patient samples are profiled for the genes most commonly 

mutated in cancer using targeted genome profiling approaches. These deliver information on the genes 

mutated in each sample as well as the relative clonal representation of each mutation. In the present thesis, 

data derived from targeted gene profiling of primary patient samples have directly informed the selection of 

patient samples for disease modeling (i.e. iPSC generation of MDS patient samples with isolated SF3B1 

mutations, Chapter 2) or phenotyping (i.e. selection of AML patient samples with clonal IDH mutations, 

Chapter 3).  

The transcriptome represents the full set of RNA transcripts produced in a cell(i.e. mRNAs, rRNAs, tRNAs, 

miRNAs and other ncRNAs, such  as siRNAs, snRNAs, lncRNAs) and depicts the profile of diverse cell types 

and highly dynamic cellular states [70]. In addition to offering, high throughput and quality measurements 

of gene expression, RNA sequencing (RNA-seq) also provides multi-faceted information on alternative 
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splicing (Figure 1.2), transcript usage (relative expression-abundances of transcripts from the same gene, 

Figure 1.4) and chimeric gene fusions[71]. Quantitative analyses from RNA-seq lead to detailed insights on 

the regulation of cancer pathways and mechanisms, the evaluation of the tumor response to treatment as 

well as the identification of biomarkers in the form of novel isoforms and fusion transcripts [69,72].  

 

 
  
Figure 1.4. Example of transcript usage for a gene across two conditions. Upon the transcription process, the gene is 

alternatively spliced. This gives rise to 3 different transcripts. The gene has approximately the same overall expression 

between the 2 conditions, but the proportions of the transcript copies differ. Here transcript 1 has higher usage in 

condition A, while transcript 2 shows higher usage in condition B.  

 

Epigenomic changes are a diverse set of chemical modifications of DNA nucleotides and histone proteins 

[73]. They are present genome-wide and have the capacity to confer stable and heritable changes in the 

functional output of the genome without altering the genomic DNA sequence itself [69,74]. Epigenomic 

changes include, but are not limited to, DNA methylation (transfer of a methyl group to the C5 position of 

the cytosine ring of DNA) and post-translational modifications of histones, and alter the chromatin dynamics 

and accessibility [70,73,74]. Chromatin accessibility or nucleosome positioning along the genome can be 

profiled using a range of assays such as deoxyribonuclease I (DNase I) hypersensitive site sequencing (DNase-

seq), micrococcal nuclease sequencing (MNase-seq) and transposase-accessible chromatin using sequencing 

(ATAC-seq, Figure 1.5)[69]. The latter is a high-throughput, fast and sensitive technique that can detect 

genome-wide regions of open chromatin and provide indirect insights on the regulatory processes of gene 

expression[75]. 
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Figure 1.5. Steps of ATAC-seq for chromatin accessibility. Initially, nuclei are isolated from cells retaining their chromatin 

architecture. Then, the Tn5 transposase cleaves the chromatin regions and the resulting fragments are tagged with 

adapters. The library fragments are sequenced and ultimately the genomic regions enriched for Tn5 transposition 

events are emerging as chromatin accessibility (ATAC-seq) peaks. This figure is adapted from Grandi et al. 2022 [73]. 

 

In Chapter 2, we harness the breadth of information present in the transcriptomic data (splicing, transcript 

usage, gene expression) of patient-derived iPSC lines in SF3B1-mutated MDS to document the effects of the 

SF3B1 mutations in the transcript repertoire. Concurrent analysis of bulk ATAC-seq data from the same iPSC 

model adds a detailed overview of the chromatin accessibility landscape.     

1.4.2. Single cell omics modalities: Genome and transcriptome sequencing 

Widespread application of next-generation sequencing approaches have so far been used for the analysis of 

DNA/RNA extracted from bulk samples which typically capture aggregated information from millions of cells 

at a time. Although such experiments can be performed at scale and reduced costs generating high quality 

data, the resulting molecular measurements are averaged across all cells in a sample [69,74] (Figure 1.6). 

Thus, the study of biological variability among cell subsets such as cells of distinct lineages or clones is not 

feasible from bulk sequencing approaches. To this end, single cell technologies enable the examination of 

omics profiles at the single cell level, thereby providing high resolution cell-specific molecular measurements 

that can be studied in unison as well as in aggregate [15,69]. These data enable the unmasking of the cellular 

diversity between different populations and the robust exploration of intra-tumor heterogeneity (genetic 

and clonal)[76] (Figure 1.6). 
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Figure 1.6. Bulk vs Single cell sequencing. Bulk sequencing provides average measurements from all cells of the tissue. 

On the other hand, single cell sequencing technologies allow measurements for each single cell profile and thus they 

unmask cellular heterogeneity. Adapted from 10X Genomics and drawn using BioRender. 

Current single cell assays profile the genome, transcriptome, epigenome, proteome and metabolome 

allowing the investigation of the genetic diversity of clones, gene expression dynamics, chromatin 

accessibility states, transient protein abundances and metabolic changes, respectively[77]. Among all 

available types of single cell omics data, single cell RNA-sequencing (scRNA-seq) is the most widely used 

application [78]. Particularly, scRNA-seq data captures the transcriptional states of different cell populations 

and permits the comparison of gene expression profiles between single cells, leading to the dissection of the 

transcriptional diversity between distinct clones[76]. As a result of comparing cell identities, single cell 

transcriptomic analyses uncover cell-to-cell heterogeneity, aid the identification of rare or novel cell types, 

shed light on previously unknown differentiation trajectories and reveal the dynamics of regulatory networks 

and pathways[78]. Exploiting this potential of the raw scRNA-seq data has been facilitated by the 

development of new computational methods or the novel application of existing ones to the single cell field. 

Specifically, a wide set of methods focuses on reducing the dimensionality of scRNA-seq data, projecting cells 

onto low dimensional spaces (e.g. t-SNE, UMAP) and grouping cell populations through alternative clustering 

techniques (e.g. Leiden[79], pcaReduce[80], SC3[81]). Another category of algorithms aim to impute missing 

gene expression values (e.g. MAGIC[82], scImpute[83]) due to the phenomenon of dropout, i.e the 

undersampling of mRNA molecules caused by the lack of detection of an expressed gene, especially in the 

case of lowly expressed genes. Other methods set out to address the inference of regulatory networks (e.g. 

SCODE[84], SCENIC[85]) while other approaches concentrate on inferring topologies for cellular trajectories 

describing the temporal evolution of cells (e.g. DPT[86], PAGA[87]).  

Single cell DNA-sequencing (scDNA-seq) documents genomic variation at a single cell resolution and is used 

for the identification of mutations and copy number alterations at the single cell level [78]. However, 

derivation of single cell genetic data is more challenging than scRNA-seq. The latter exploits the presence of 

thousands of RNA copies of each transcript, whereas there are only two copies of DNA in each human cell 
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[88]. Whole genome amplification (WGA) methodologies offer the opportunity to address this challenge by 

amplifying or generating multiple copies of genomic DNA. However, at times, WGA techniques might not be 

able to detect a specific allele within an extensive genomic region and thus struggle to maintain a consistent 

sequencing depth along the genome[88]. For this reason, bioinformatics tools designed to identify single 

nucleotide variants (SNVs) attempt to take allele coverage biases and amplification artifacts into account 

(e.g. SCcaller[89], Monovar[90], LiRA[91]).  

1.5. Integration of omics data 

It is evident that a variety of omics data types, both at the bulk and single cell level, permit the 

characterization of molecular properties with unparalleled scale and precision, thereby offering a 

comprehensive understanding of tumor behavior[69]. However, each omic technology is targeted to a 

specific molecular type (e.g. genome, transcriptome, epigenome, proteome, metabolome) and thus, the 

spectrum of insights that can be drawn from single omics studies is limited to the biological scope of the 

measured biomolecules[68]. Therefore, such approaches do not have the means to investigate the intricate 

complexities across biological landscapes and are not sufficient enough to establish relationships among the 

various molecular layers or decode the dependencies between features from different modalities[71,92].  

Despite diving into a higher resolution space assisting in deciphering tumor heterogeneity, even single cell 

datasets of a single data type may depict a modality-specific view of the cell state and may not have the 

power to provide a detailed understanding of the function of cellular components and their interactions[77]. 

1.5.1. Multi-view mining with bulk omics: Background & Benefits  

Hence, beginning from the bulk level, bringing together knowledge from multiple sequencing data modalities 

or analyzing in unison the full spectrum of information offered from a single sequencing technology (e.g. 

RNA-seq), results at a more complete perspective of the underlying disease biology[93]. Considering each 

omic modality or each set of measurements from a specific data type (e.g. gene expression, transcript usage, 

alternative splicing from RNA-seq data) as a separate data view, then the integration of all these data views 

together utilizes their complementary nature and leads to synergistic conclusions influenced from various 

biological aspects[94]. Such multi-view studies allow the analysis of a range of high-dimensional 

measurements at multiple levels and scales and thus, can comprise the backbone of data-driven translational 

research[71]. Additionally, using various views of data together, can help overcome any uncertainty 

generated by any missing or unreliable information in any single view[95]. Overall, bulk integrative 

approaches are empowered to examine the flow of molecular information between the multiple data 

views[68], display a holistic picture of molecular systems[96], processes and mechanisms at the tissue level 

and elucidate complex cancer phenotypes [67].  

In particular, multi-view data integration within the setting of a single bulk sequencing modality such as RNA-

seq, can be interpreted as the systematic assembly of multiple types of measurements (views) extracted 

from the same source[97]. In this case, these views depict distinct profiles or levels of the same data (e.g. 

alternative splicing, transcript usage, gene expression) and jointly represent the entire spectrum of 

https://paperpile.com/c/fpF7ib/U2Ftn
https://paperpile.com/c/fpF7ib/U2Ftn
https://paperpile.com/c/fpF7ib/kqWLz
https://paperpile.com/c/fpF7ib/QqYhk
https://paperpile.com/c/fpF7ib/ivD5u
https://paperpile.com/c/fpF7ib/q2q9r
https://paperpile.com/c/fpF7ib/57Gup
https://paperpile.com/c/fpF7ib/6Lqz5+jDtvr
https://paperpile.com/c/fpF7ib/Eqb1X
https://paperpile.com/c/fpF7ib/Fy06F
https://paperpile.com/c/fpF7ib/JhxLk
https://paperpile.com/c/fpF7ib/6Lqz5
https://paperpile.com/c/fpF7ib/us2rb
https://paperpile.com/c/fpF7ib/57Gup
https://paperpile.com/c/fpF7ib/vgVNu
https://paperpile.com/c/fpF7ib/vTxa3
https://paperpile.com/c/fpF7ib/0kiFp


Chapter 1 

 14 

knowledge provided by the respective omics type (transcriptomics)[71,98]. Integrating all branches within 

the same omics modality in a multi-level fashion, interrogates molecular properties from different levels and 

traverses the flow[71] of information from one level to the other. This process uncovers the underpinnings 

of biological processes[74], and ultimately links characteristics of biomolecules across multiple stages, aiding 

the formation of a comprehensive representation of the underlying landscape. Therefore, combining 

supporting evidence from these different levels can explain previously reported observations from single-

view analyses and also lead to the identification of novel biomarkers. For example, Ha et al. 2021[97] jointly 

consider gene expression, splicing and polyadenylation patterns from RNA-seq data to examine the relative 

contribution of multiple transcriptomic regulatory layers in the specification of neuronal identities. Their 

results highlight the significance of coordinating multiple aspects of the same transcriptomic data in the 

framework of defining the temporally and spatially distinct neuronal subpopulations. 

Alternatively, in the setting where data views correspond to unique bulk sequencing modalities, multi-view 

data integration typically unites the profiles of different types of biomolecules originating from the same 

samples. Multi-omics approaches with bulk sequencing data focus on documenting the interactions between 

biological layers[99] as well as describing the regulatory mechanisms that could possibly explain complex 

phenotypic traits or the behavior of molecular systems[93]. Bringing together complementary omics-views 

enhances a more thorough disease profiling and, based on the scope of the study, can also lead to an 

improved disease subtyping and patient stratification[93,100], the identification of multifaceted biomarkers 

for cancer diagnostics[93,100], the improved prediction of clinical outcomes[101] and a more complete 

understanding of the responses to therapy[100]. Collating views of the genome, transcriptome, and 

epigenome allows a more precise characterization of cancer biology and shows how gene expression 

patterns are related to chromatin accessibility topologies and histone modifications within different genetic 

contexts. For instance, Xiang et al. 2020[102] merged epigenetic features and transcriptomes to produce a 

detailed picture of the regulatory landscape of differentiating hematopoietic cell types in mice. On a similar 

note, Chen et al. 2022[103] utilize collectively RNA-seq, ATAC-seq and ChIP-seq (chromatin 

immunoprecipitation assays used for the identification of genome-wide DNA binding sites for transcription 

factors and other proteins) data to reflect the role of JUNB in the human hematopoietic fate induction. 

1.5.2. Multi-view mining with single cell omics: Background & Benefits  

Integration of omics modalities at a single cell level can be either matched, i.e. different omics data are 

captured from the same cell or unmatched, i.e. different omics data are captured from different 

samples[104]. Focusing on the former case, matched data integration necessitates experimental protocols 

that process more than one type of biomolecules. The joint profiling of genotypes and transcriptomes occurs 

either through low throughput techniques such as scSIDR-seq[105] or medium throughput ones such as G&T-

seq[106] or higher throughput ones such as TARGET-seq[107]. Despite the concurrent ascertainment  of DNA 

and RNA from the same cell, the cost, technical challenges and labor-heavy requirements of these 

protocols[108], pose significant considerations for their adoption at scale. An alternative approach for the 

integration of genotype information to transcriptomic data has been  to call somatic variants and identify 

copy number variations fromscRNA-seq data alone, using bioinformatics tools such as SComatic[109], 
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Monopogen[110] and InferCNV[111], HoneyBADGER[76] respectively. Alternatively, Nam et al. 2019[112] 

presented an experimental framework, called GoT (genotyping of transcriptomes), that is able to link select 

genotypes to the transcriptional profiling of thousands of single cells using scRNA-seq data. Using a 

modification of the 10X scRNA-seq pipeline and the development of allele specific genotyping probes, GoT 

enables targeted genotyping of scRNA-seq libraries. This enables the derivation of somatic genotypes for a 

set of a priori known variants across thousands of cells. However, genotyping efficiencies may differ 

significantly across alleles and are dependent on the expression levels of the gene of interest and the 

proximity of the desired allele to the 5’ or 3’ of the transcript[112]. Chapter 3 leverages genotypic profiles 

derived from the application of GoT on scRNA-seq data from IDH1/2-mutated AML primary patient samples   

Single cell multi-omics approaches, by profiling genetic abnormalities and the transcriptome, have the 

capacity to reveal genotype-phenotype associations[78]. For example, genotype-phenotype associations can 

be established as the links between specific genetic variations and their downstream impact on the 

expression of disease driver genes[78]. Considering intra-tumor heterogeneity, the joint analysis of single 

cell transcriptomic data and genotypes enlightens the correspondence between cellular states or 

transcriptionally unique cell populations with genetic subclones[76,113]. This integrative path leads to the 

functional characterization of specific mutations or cytogenetic aberrations and the deciphering of their 

consequences on distinct phenotypes. For instance, Macaulay et al. 2015[106], by applying G&T, discovered 

a subset of HCC38-BL (B lymphoblastoid cell line) cells with trisomy of chromosome 11. This subpopulation 

exhibited elevated expression in the genes of chromosome 11 compared to the diploid cells. Additionally, 

Rodriguez-Meira et al. 2019[114], by using TARGET-seq, identified abnormal expression of oncogenes (like 

MYCN, TP53) as well as of Wnt signaling and interferon-related genes in JAK2V617F-mutated HSPCs. Moreover, 

examining such approaches within the inherent complexity of AML, makes the coupling of single cell 

transcriptomic with genomic data a necessary step toward understanding the connection between genetic 

and transcriptional heterogeneity. In this direction, Petti et al. 2019[113] examined the cell representation 

of identified AML gene expression clusters at the phenotypic and mutational level in an unsupervised setting 

while van Galen et al. 2019[115] similarly combined single cell genotypes with gene expression 

measurements to correlate cell type compositions with genetic lesions.    

Chapter 3 leverages transcriptomic and genomic information from the same cells and captures links between 

gene expression profiles and genetic abnormalities in IDH1/2 mutated AML.   

1.5.3.   Multi-view integration strategies 

From a computational perspective, integrating multiple views of data (representations or sets of features 

derived from the measured biomolecules either within or across modalities) consists of two overlapping 

procedures: data fusion and data interconnection[116] (Figure 1.7). Data fusion describes the process of 

extracting and combining complementary contextual information from multiple data to improve decision 

making and the quality of relevant outcomes (e.g. for prediction, classification, or clustering tasks). Data 

interconnection denotes the action of unmasking the information and associations shared between data 

views[116] (Figure 1.7). 
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Data fusion strategies 

Multi-stage fusion 

Methods for data fusion can be broadly divided into two categories: the multi-stage and the meta-

dimensional[95,96] (Figure 1.7, Table 1.1). In the multi-stage fusion, information is integrated in a stepwise 

or hierarchical mode. In particular, multi-stage approaches handle data views as separate entities and build 

frameworks that sequentially or hierarchically enrich the emerging signals with additional layers of 

information[95,96]. This strategy, as the name suggests, divides the analysis to distinct steps and may involve 

some degree of independent processing of each view before investigating inherent correlations. Results 

derived from the analysis of each view may serve as anchors between the different steps and can facilitate 

the framework to 1) establish inter-layer associations 2) relate these associations with a phenotype in a 

supervised setting or produce new conclusions in an unsupervised manner. 

Depictive applications of this multi-stage logic in a biological or molecular context can be seen in bulk omic 

approaches such as genomic variation analyses, domain knowledge guided analyses and allele-specific 

expression (ASE) analyses[95] (Table 1.1). The genomic variation analyses attempt to associate variations in 

the DNA with another data view (usually gene expression, DNA methylation or protein levels) and then, relate 

both of them with a phenotype of interest. This can be achieved either through likelihood-based causal 

inference approaches[117] or, most commonly, through a three-stage technique[95]. In the setting of the 

latter, initially, genomic variation analyses identify single-nucleotide polymorphisms (SNPs) associated with 

the phenotype of interest. Second, the statistically significant SNPs from step 1 are tested for association 

with the second omic view (e.g. gene expression). In the final step, the data from the second omic view are 

correlated with the phenotype of interest. For instance, efforts that adopted this approach combined 

genome-wide SNPs with baseline gene expression levels of HapMap lymphoblastoid cell lines (LCLs) to 

identify associations with the IC50 drug cytotoxicity measurements[118–120]. Domain knowledge guided 

analyses also adopt a  multi-level logic, using at the same time derived insights either from known biological 

mechanisms and processes or from documented functional and pathway information in resources such as 

ENCODE[121] and KEGG[122]. Compared to the genomic variation analyses, the domain knowledge guided 

ones involve an additional step of annotating genetic variants and selectively advancing only a subset of them 

to the subsequent stages of the analysis[95]. Lastly, ASE first assesses whether the maternal or paternal allele 

is preferentially expressed and then relates this allele to variations of cis-regulatory elements and epigenetic 

modifications[95]. ASE as well as its extensions such as allele-specific transcript structure, have been 

employed to discover functional variation[123] and protein-DNA[124] interactions in humans.  

Chapter 2 uses principles from the multi-stage fusion strategy to integrate different levels of deregulation of 

the transcriptome (splicing, transcript usage, gene expression) in SF3B1-mutated MDS.  

Beyond the multi-stage fusion strategy utilized in this thesis, there has been active development of a plethora 

of meta-dimensional (concatenation-based, transformation-based and late) fusion approaches. In the 

section below, we highlight some notable and relevant innovations of this fast growing field. 
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Meta-dimensional fusion: Concatenation-based & late strategies 

Meta-dimensional fusion strategies merge diverse data views simultaneously and can be divided into three 

categories: concatenation-based (early) fusion, transformation-based (intermediate) fusion and late 

fusion[95,96] (Figure 1.7, Table 1.1). Concatenation-based fusion methods are usually deployed in bulk 

sequencing settings and as the name suggests, combine all data views at the original, hand crafted or lower-

dimensional space into one common representation (e.g. matrix) before constructing a 

model[69,92,95,96,116]. This representation can be used as a single entity and serves as input for any 

downstream modeling (Figure 1.7). This straightforward strategy, by simply concatenating data views at an 

early stage, allows the use of a variety of downstream models for mining the data and has the advantage of 

taking feature interdependencies and interactions into account[92]. However, the resulting representation 

might suffer from the ‘curse of dimensionality’ due to the size of the final feature space[69]. For instance, 

Fridley et al. 2012[125] fused data from SNPs and gene expression into a single matrix and applied Bayesian 

modeling to predict drug cytotoxicity. Mankoo et al. 2011[126], after computing Spearman rank correlations 

among different data types, applied a multivariate Cox Lasso model on a merged representation of CNVs, 

methylation and gene expression data to predict survival in ovarian cancer.  

Contrary to concatenation fusion methods, late fusion methods conduct independent analysis for each data 

view and then consolidate the individual results[69,92,95,96,116]. In particular, first, unimodal models are 

constructed using single views and in a second step, a final model is built from them following a reasoning 

strategy (Figure 1.7). Popular choices for the development of the final model are, among others, majority 

voting, multiple kernel learning as well as ensemble approaches. The limitation of the late fusion strategy is 

its inability to account for the complementarity and the interdependencies of the different data views[95]. 

On the other hand, the fact that the integration is applied on the independently derived outcomes of 

unimodal models, makes the late fusion strategy agnostic to the method used to derive each individual 

outcome. Thus, it provides the flexibility of changing modeling approaches without affecting the architecture 

and the reasoning of the fusion method. In a bulk sequencing context, Tao et al. 2019[127] deployed multiple 

kernel learning on CNV, transcriptomic and methylation data for subtype prediction in breast cancer. 

Additionally, for cancer subtyping tasks, Aure et al. 2017[128] applied COCA (cluster-of-clusters 

analysis)[129] to fuse clustering assignments produced on multiple omic levels (e.g. protein, miRNA, 

metabolic profiles). At the single cell level, late fusion approaches can be applied for the integration of 

clustering results from different algorithms on the same data modality (e.g. scRNA-seq). For example, Huh 

et al. 2020[130] fused clustering annotations from multiple clustering methods via mixture model ensemble 

solving a maximum likelihood problem, and provided a consensus clustering of human peripheral blood 

mononuclear cells (PBMCs). 

Meta-dimensional fusion: transformation-based strategies  

Transformation-based fusion approaches jointly analyze all data views within a modeling framework, 

commonly by mapping or transforming the initial data to intermediate representations (e.g. graphs, kernel 

matrices, etc)[69,92,95,96,116] (Figure 1.7). In such approaches, the fact that modeling occurs on the 

transformed space, facilitates the integration of measurements across different scales and types (discrete, 
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continuous)[95]. At the same time, the transformation of the data views to intermediate representations 

does not mask data specific properties, but might render the recognition of interaction effects between the 

single views more challenging[69]. The categorization of the transformation-based methods is not definite 

and it can depend on technical aspects (e.g. deep learning methods, graph-based methods, etc), the type of 

the transformed representation (e.g. matrices, networks, etc), as well as, the biological problem tackled (e.g. 

disease subtype identification, patient classification, prediction of clinical outcomes, biomarker identification 

etc). Here, in an effort to put both bulk and single cell methods under the same perspective and at the same 

time account for the technical characteristics of the methods used, we categorize transformation-based 

fusion approaches into three non-exclusive groups: 1. similarity-based methods; 2.  dimension reduction-

based methods; and, 3. statistical modeling-based methods.  

Similarity-based approaches typically learn sample affinities commonly depicted as similarity matrices or 

graphs for each data view and then merge these inter-sample similarities in a unified context. In particular, 

similarity network fusion SNF[131], suited for bulk multi-omics efforts, models pairwise patient similarities 

from each view in view-specific graph structures called similarity networks. Then, SNF integrates these graphs 

using an iterative fusion procedure that eventually produces a single network, representative of the full 

spectrum of the underlying data. Wang et al. 2021[132], within a supervised setting for patient classification, 

handled the view-specific similarity networks as graph convolutional networks (GCNs). The predictions of 

these GCNs were passed to a view correlation discovery network that produced the final labels. In an 

alternative approach, Ramazzoti et al. 2018[133] proposed a cancer subtyping method, CIMLR (Cancer 

Integration via Multikernel LeaRning), which constructs a unified similarity matrix for downstream clustering, 

after combining multiple gaussian kernels per view. In single cell omics, Hao et al 2021[134] generated a 

weighted nearest neighbor graph which, for each cell, depicts its most similar ones based on a weighted 

combination of the different modalities (e.g. protein and RNA). This graph can be used for downstream 

analyses such as low dimensional projections and clustering of PBMCs. Alternatively, Singh et al 2021[135], 

first chose one modality as the primary one, then determined modality specific cell similarities and finally 

transformed the primary modality such that it has maximum level of agreement with the rest. In another 

approach, CiteFuse[136] computed the cell-to-cell similarity matrices of matched proteomic and mRNA data 

separately and then applied SNF to merge them. Then, graph-based clustering was performed on this merged 

similarity matrix.  

Dimension-based reduction strategies typically deploy matrix factorization (MF), canonical correlation 

analysis (CCA) or deep learning (DL) techniques and focus on projecting the different data-views to a joint 

latent space. In particular, joint factorization decomposes the observed data matrices into sets of low 

dimensional latent factors able to capture inter-view dependencies. Lock et al 2013[137], in the context of 

bulk multi-omics, proposed JIVE (Joint and Individual Variation Explained), a MF framework that decomposes 

data variation into a component representative of the joint biological variation across views and into another 

component that is specific for each view. Argelaguet et al 2018[138], using MF, introduced MOFA (multi-

omics factor analysis), a framework that operates both in bulk and single cell data and infers latent factors 

that capture the underlying sources of variation across either complete or partial data views. MOFA was 

applied on a chronic lymphocytic leukemia cohort to identify axes of disease heterogeneity. Welch et al 
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2019[139], developed LIGER (linked inference of genomic experimental relationships), a method that uses 

integrative non-negative MF[140] on single cell multi-omics to represent cell profiles as a mixture of view-

specific and shared factors. LIGER can be used for cell type identification from scRNA-seq and scATAC-seq. 

CCA, as a subspace learning approach that aims to identify pairs of projections for different views such that 

correlations between them are maximized, can be also used as a backbone for multi-omic fusion efforts. For 

example, in a bulk setting, CCA[141,142] provides insights on inherent structures by spotting correlated 

patterns across different omics types (such as finding genomic regions with CNVs correlated with various 

expression levels). In a single cell context, Stuart et al 2019[143] use CCA to jointly reduce the dimensionality 

of two single cell datasets and then search for mutual nearest neighbors in the shared low dimensional space. 

This method can be applied for the integration of multiple single cell measurements from different scRNA-

seq samples and technologies. In another approach, MAESTRO[144] projects cells with matched 

transcriptomic and chromatin accessibility data into a unified low-dimensional space by performing CCA 

between gene expression from scRNA-seq and regulatory potential from scATAC-seq. 

Apart from MF and CCA, deep learning architectures and specifically autoencoders are also commonly 

deployed for transformation-based fusion approaches. They have the ability to learn unified low dimensional 

embeddings across views and capture nonlinear dependencies at the same time. Even though the 

deployment of autoencoders can be also seen in bulk multi-omic integration[145], the fact that single cell 

data sets typically comprise thousands of cells, offers more suitable conditions for optimal training and 

exploitation of their computing capacities. Within a single cell setting, Gayoso et al. 2021[146] introduced 

totalVI (Total Variational Inference), a probabilistic framework that learns representations of cell profiles 

based on the joint low-dimensional embeddings of RNA and protein data emerging from a variational 

autoencoder architecture. These representations can be used for visualization purposes and downstream 

tasks such as cell clustering. Additionally, Lin et al 2022[147] proposed a deep autoencoder model, named 

scMDC (single cell Multimodal Deep Clustering), that also jointly forms latent features of encoded 

embeddings for the clustering of matched single cell multi-omics views (e.g. from PBMCs).  

Statistical modeling-based methods allow the joint probabilistic modeling of multi-omics data under a 

Bayesian framework. Lock & Dunson et al. 2013[148] introduced Bayesian consensus clustering (BCC), a 

Bayesian framework that utilizes Dirichlet mixture models to produce view-specific but dependent clusters 

that adhere loosely to an overall consensus clustering. Application of BCC on bulk transcriptomic, 

methylation and proteomic data from TCGA[8] (The Cancer Genome Atlas) resulted in breast cancer subtypes 

with specific clinical features. In a similar approach, Kirk et al. 2012[149] describe a Bayesian method, named 

Multiple Dataset Integration (MDI), which does not assume a common clustering structure, but instead 

defines view-specific clusters while also modeling the pairwise dependencies between them. Alternatively, 

in a non-inherently Bayesian setting, other efforts determine a single joint clustering by finding the structure 

that maximizes a joint likelihood. This approach is followed by Kormaksson et al. 2012[150] upon fusing gene 

expression and DNA methylation data, while the iCluster[151] method initially fits a Gaussian latent factor 

model to the joint likelihood and then applies K-means on the factor scores to extract the cluster 

assignments. iCluster has been applied for breast and lung cancer subtyping based on copy number and gene 

expression data. At the single cell level, contrary to the similarity-based and autoencoder-based methods, 
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the statistical modeling-based ones have not been widely deployed for multi-view fusion. However, Wang et 

al. 2020[152] developed BREM-SC, a hierarchical Bayesian mixture framework that adopts Dirichlet 

multinomial distributions to model the expression levels of genes and surface proteins from matched single 

cell data. Wang et al. also introduce in their approach cell-specific random effects to model the correlation 

between these two data views and apply BREM-SC for the clustering of publicly available single cell data from 

PBMCs. 

 
Table 1.1. Literature examples of multi-view omics integration across fusion strategies.  
 

Fusion strategy Method Sequencing 

type 

Omics types used Scope Reference 

Multi-stage QTDT*, general 

linear models 

Bulk Genomics, 

transcriptomics, 

cytotoxicity assays 

Genomic variation, 

biomarker 

identification 

[118–120] 

Multi-stage Likelihood-based 

causal inference 

Bulk Genomics, 

transcriptomics 

Genomic variation, 

biomarker 

identification 

[117] 

Multi-stage Maximal 

concordance 

Bulk Genomics, 

transcriptomics 

Allele-specific 

expression, 

functional variation 

identification 

[123] 

Multi-stage Significance 

analysis of 

microarrays 

Bulk Genomics, 

epigenomics 

Allele specific 

protein-DNA 

interactions 

[124] 

Meta-dimensional 

(concatenation-based) 

Multivariate Cox 

Lasso 

Bulk Genomics, 

transcriptomics, 

epigenomics 

Survival prediction [126] 

Meta-dimensional 

(concatenation-based) 

Bayesian modeling Bulk Genomics, 

transcriptomics 

Phenotype 

prediction (drug 

cytotoxicity) 

[125] 

Meta-dimensional (late) Multiple Kernel 

Learning 

Bulk Genomics, 

transcriptomics, 

epigenomics 

Cancer subtyping [127] 

Meta-dimensional (late) COCA* Bulk Genomics, 

transcriptomics, 

metabolomics, 

proteomics 

Cancer subtyping [128] 

Meta-dimensional (late) Mixture model 

ensemble 

Single cell Transcriptomics Clustering [130] 

Meta-dimensional 

(transformation-based) 

Similarity Network 

Fusion 

Bulk Transcriptomics, 

epigenomics 

Cancer subtyping, 

survival prediction 

[131] 
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Meta-dimensional 

(transformation-based) 

Graph 

Convolutional 

Networks 

Bulk Transcriptomics, 

epigenomics 

Patient classification, 

cancer subtyping, 

biomarker 

identification 

[132] 

Meta-dimensional 

(transformation-based) 

Multiple Kernel 

Learning 

Bulk Genomics, 

transcriptomics, 

epigenomics 

Cancer subtyping, 

survival prediction 

[133] 

Meta-dimensional 

(transformation-based) 

Weighted Nearest 

Neighbor graphs 

Single cell Transcriptomics, 

proteomics, 

epigenomics 

Cell state 

identification, 

clustering 

[134] 

Meta-dimensional 

(transformation-based) 

Metric learning Single cell Transcriptomics, 

epigenomics 

Modality alignment, 

cell type inference 

[135] 

Meta-dimensional 

(transformation-based) 

Similarity Network 

Fusion 

Single cell Transcriptomics, 

proteomics 

Clustering [136] 

Meta-dimensional 

(transformation-based) 

Matrix 

Factorization 

Bulk Transcriptomics Cancer subtype 

characterization 

[137] 

Meta-dimensional 

(transformation-based) 

Matrix 

Factorization 

Bulk & single 

cell 

Genomics, 

transcriptomics, 

epigenomics 

Biomarker 

identification 

[138] 

Meta-dimensional 

(transformation-based) 

Matrix 

Factorization 

Single cell Transcriptomics, 

epigenomics 

Cell type 

identification, 

clustering 

[139] 

Meta-dimensional 

(transformation-based) 

Canonical 

Correlation 

Analysis 

Bulk Genomics, 

transcriptomics 

Survival prediction, 

cancer subtyping 

[141] 

Meta-dimensional 

(transformation-based) 

Canonical 

Correlation 

Analysis 

Single cell Transcriptomics, 

epigenomics, 

proteomics 

Batch-effect 

correction, cell state 

identification, 

clustering 

[143] 

Meta-dimensional 

(transformation-based) 

Canonical 

Correlation 

Analysis 

Single cell Transcriptomics, 

epigenomics 

Clustering, cell type 

annotation 

[144] 

Meta-dimensional 

(transformation-based) 

Autoencoders Bulk Transcriptomics Clustering, cancer 

subtyping, molecular 

characterization 

[145] 

Meta-dimensional 

(transformation-based) 

Autoencoders Single cell Transcriptomics, 

proteomics 

Batch-effect 

correction, 

biomarker 

identification 

[146] 

Meta-dimensional 

(transformation-based) 

Autoencoders Single cell Transcriptomics, 

epigenomics, 

proteomics 

Batch-effect 

correction, clustering 

[147] 

https://paperpile.com/c/fpF7ib/yI7lf
https://paperpile.com/c/fpF7ib/H4z7i
https://paperpile.com/c/fpF7ib/ZfSvd
https://paperpile.com/c/fpF7ib/mJuZB
https://paperpile.com/c/fpF7ib/s6jrj
https://paperpile.com/c/fpF7ib/AtVCQ
https://paperpile.com/c/fpF7ib/MGJtk
https://paperpile.com/c/fpF7ib/Kh5XF
https://paperpile.com/c/fpF7ib/ot2is
https://paperpile.com/c/fpF7ib/Io3FO
https://paperpile.com/c/fpF7ib/3Sv1P
https://paperpile.com/c/fpF7ib/D8eVl
https://paperpile.com/c/fpF7ib/WL2JQ
https://paperpile.com/c/fpF7ib/V2Wfs
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Meta-dimensional 

(transformation-based) 

Bayesian modeling Bulk Transcriptomics, 

epigenomics, 

proteomics 

Clustering, cancer 

subtyping 

[148] 

Meta-dimensional 

(transformation-based) 

Bayesian modeling Bulk Transcriptomics, 

epigenomics, 

proteomics 

Clustering, molecular 

characterization 

[149] 

Meta-dimensional 

(transformation-based) 

Mixture models 

and likelihood 

estimation 

Bulk Transcriptomics, 

epigenomics 

Clustering, cancer 

subtyping 

[150] 

Meta-dimensional 

(transformation-based) 

Latent variable 

modeling and 

likelihood 

estimation 

Bulk Genomics, 

transcriptomics 

Clustering, cancer 

subtyping 

[151] 

Meta-dimensional 

(transformation-based) 

Bayesian modeling Single cell Transcriptomics, 

proteomics 

Clustering [152] 

* QTDT: quantitative transmission-disequilibrium test 

* COCA: cluster-of-clusters analysis 

Data interconnection 

The goal of multi-view data interconnection is to establish links and relationships between pairs of data 

views, as well as, examine how specific patterns visible in one view are represented in the other[116] (Figure 

1.7). An important principle of data interconnection is the flow of information from one data view to the 

other. A classic paradigm of this flow, depictive of disease etiology, is that the downstream consequences of 

oncogenic variations can be at least in part ascertained through gene expression phenotyping. A common 

way of connecting gene expression phenotypic profiles with genetic abnormalities at the cell level, is to 

overlay cell-level genetic annotations (e.g. using genomic profiling to derive mutation information) onto the 

low dimensional representation of the same cells from matched scRNA-seq. This provides the opportunity 

to associate gene expression clusters with the malignant or WT status of a sample or cell[115] or the 

existence of CNVs[113] as well as the mutational status of specific genes[112]. On the contrary, in an 

unmatched setting, Campbell et al. 2019[153] developed Clonealign whereby each cell’s gene expression 

profile is assigned to its clone-of-origin by integrating independently sampled scRNA-seq (expression) and 

(scDNA-seq) copy number data. Clonealign is based on a Bayesian latent variable model that maps the copy 

number of a gene to its expression value by introducing a copy number dosage effect on the gene expression.  

In Chapter 3 of the thesis, we deploy deep learning as a means of interconnecting single cell genotypic and 

expression profiles.  

Furthermore, data interconnection is also adopted in the context of exploring the associations between bulk 

RNA and ATAC-seq data. Such associations are drawn using either the sample or the gene as a point of 

connection. In the sample-wise manner, chromatin accessibility at regulatory elements is correlated to RNA 

abundances, while in gene-wise correlations fold changes of differential accessibility and expression analyses 

are compared[154]. In particular, Sanghi et al. 2021[154] show the density of the sample-wise correlation 

https://paperpile.com/c/fpF7ib/2HMvR
https://paperpile.com/c/fpF7ib/Rn1es
https://paperpile.com/c/fpF7ib/Vjvub
https://paperpile.com/c/fpF7ib/OIInW
https://paperpile.com/c/fpF7ib/gGjxb
https://paperpile.com/c/fpF7ib/DoPgN
https://paperpile.com/c/fpF7ib/0kVmo
https://paperpile.com/c/fpF7ib/a9LUq
https://paperpile.com/c/fpF7ib/QhIOx
https://paperpile.com/c/fpF7ib/9sKtT
https://paperpile.com/c/fpF7ib/0tIdJ
https://paperpile.com/c/fpF7ib/0tIdJ
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between gene accessibility and gene expression from primary and metastatic thyroid samples. In a gene-

wise specific context, Wang et al. 2021[155] used diamond plots to present the accessibility fold change of 

chromatin peaks together with the expression change of the genes associated with them, within different 

AML genetic subgroups using human iPSCs. Additionally, using the gene as a central anchor allows one to 

observe the expression of transcription factors matching accessibility motifs[156].  

The interconnection between data views also includes combinations of omics with other data modalities. 

Particularly, the generation of diverse datasets in scale, coupled with the computational efficiency of deep 

learning models, have enabled links between omic profiles and modalities such as radiology scans, chemical 

compounds or tissue morphology in pathology slides [116]. For instance, gene expression data have been 

associated with whole slide (pathology) images (WSIs) and chemical structures. Schmauch et al. 2020[157] 

used thousands of matched hematoxylin and eosin (H&E)-stained slides and RNA-seq samples across 28 

cancer types from TCGA to train HE2RNA, a deep learning model that predicts RNA-seq profiles from 

histology images without expert annotations. Fotis et al. 2020[158] used Siamese graph convolutions to 

associate chemical compounds with their affected biological processes inferred from matched gene 

expression data. In the context of establishing genotype-phenotype associations, Coudray et al. 2018[159] 

showed that mutations in STK11, EGFR, FAT1, SETBP1, KRAS and TP53 can be identified directly from H&E 

WSIs in lung cancer using the inception v3[160] convolutional neural network (CNN). In MDS, Brück et al 

2021[161], connected BM histopathology images to genetic alterations indirectly, through deep CNN 

features, representative of the tissue morphology. Other studies, in similar settings, aim to predict such 

mutational statuses in liver[162], bladder[163], colorectal[164] and thyroid[165] cancer, whereas other 

approaches [166,167] operate on a pan-cancer context. In radiology, Ha et al 2017[168] associated features 

from breast mammography to the mutational status of BRCA1/2, Wang et al 2019[169] trained a CNN using 

thousands of CT (computed tomography) scans to predict EGFR mutations in lung adenocarcinoma, while He 

et al. 2020[170] deployed a ResNet architecture to predict noninvasive KRAS mutations through CT scans in 

colorectal cancer.       

We note that the separation between data interconnection and fusion approaches is not exclusive as both 

processes inherently follow the idea of leveraging shared or complementary patterns from multi-view 

profiles. The fact that data fusion techniques might exploit hidden data interconnections as part of their 

integration strategy, might create an overlap between the two approaches. Concluding, we underline that 

the choice between the two approaches, as well as, the subsequent selection of computational techniques 

depends on the task in question, data prevalence, experimental setting as well as computing considerations.  

 

https://paperpile.com/c/fpF7ib/RuWsI
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https://paperpile.com/c/fpF7ib/DoPgN
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https://paperpile.com/c/fpF7ib/kle5n
https://paperpile.com/c/fpF7ib/54zbH
https://paperpile.com/c/fpF7ib/Y5avx
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https://paperpile.com/c/fpF7ib/1nxEo
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Figure 1.7. Map of multi-view integration in the setting of omics data. Integrating multiple views can be separated into 

data fusion and data interconnection. The latter examines the cross-talk between pairs of views either directly or 

indirectly while the former (data fusion) combines complementary contextual information to improve an output. 

Methods for data fusion can be divided into the multi-stage fusion ones, which merge information from each view in a 

stepwise or hierarchical fashion, and the meta-dimensional fusion ones which can be further categorized into early 

(concatenation-based), late and transformation-based approaches. Early fusion techniques first concatenate all views 

into a single entity and then apply a model on this entity, late fusion techniques perform uni-view analyses and then 

merge the view-specific outputs whereas transformation-based ones jointly analyze all data views. 

1.6. Thesis outline 

This thesis adapts concepts from data integration to formally mine omics data derived from primary patient 

samples or experimental models of MDS and AML. We deploy principles from multi-view data fusion and 

interconnection to develop analytical frameworks within and between different omics modalities and 

sequencing techniques, aiming to extract biologically relevant relationships amongst multi-faceted molecular 

signals. In the context of SF3B1-mutated MDS (Chapter 2) and IDH1/2-mutated AML (Chapter 3), the 

presented analyses and frameworks establish links between diverse data views and identify patterns 

inherent in the data, setting out to elucidate omics landscapes, identify molecular characteristics and assist 

the study of phenotypes at a genetic level.    

Chapter 2 investigates the transcriptional repertoire and chromatin profile of SF3B1-mutated MDS, 

leveraging bulk RNA and ATAC-seq data from patient-derived genetically matched normal and SF3B1-

mutated iPSC lines. Within this context, we introduce a multi-stage fusion framework which brings together 

data views from different layers of transcriptome sequencing and results in a detailed overview of the 

transcriptomic repertoire of SF3B1-mutated MDS. Particularly, with a domain knowledge approach, we 
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merge signals from splicing, transcript usage and gene expression and we derive a splicing signature of 59 

splicing events linked to 34 genes, which associates with the SF3B1 mutational status of primary MDS patient 

cells. Additional unimodal chromatin accessibility analysis from the ATAC-seq data, showed increased 

priming of SF3B1 HSPCs toward the megakaryocyte- erythroid lineage, as well as the enrichment of motifs 

from the TEA (TEAD) domain in accessible regions linked to genes with upregulated expression. Overall, 

chapter 2, applies a multi-stage fusion approach on transcriptomic data views to prioritize mis-spliced gene 

targets, and concurrently provides a formal overview of the SF3B1-mutated chromatin landscape and 

nominates transcriptional programs with putative roles in MDS disease biology.    

Inspired by past studies that aim to predict genotypic abnormalities from pathology or radiology data[116], 

in chapter 3 we focus on capturing genotype-phenotype associations using neural networks as a means of 

connecting data views. By leveraging single cell data from a set of IDH1/2 mutant AML patients, we develop 

deep learning approaches to explore how genotypic changes are reflected in cell specific gene expression 

signals. Specifically, this chapter examines if single cell gene expression patterns together with the 

computational power of neural networks have the capacity to predict a cell’s status (malignant or WT) and 

subsequently its genotype in the context of IDH1/2 mutated AML. Thus, first, we train a feedforward neural 

network to predict the cell’s malignant or wild-type (WT) status in a binary fashion using single cell RNA 

sequencing data from 6 AML patients and 4 healthy individuals (50,026 cells in total). Then, in a multi-label 

setting, we train, for a single patient, a similar architecture to predict the mutational status of specific 

genomic abnormalities at the single cell level. In the hold-out test sets, the binary classification model 

achieved an accuracy of 98% while the multi-label one achieved a macro-average AUC ROC of 0.84. 

Additionally, the latter model showed notable efficiency (AUC ROC of 0.83) in predicting the subclonal NRAS 

mutational status, suggesting that NRAS mutations confer a distinctive gene expression pattern in IDH1/2 

AML. Concluding, chapter 3 applies deep learning to explore if and how single cell gene expression profiles 

can be predictive of the malignant cell status and the mutational profile of specific genetic abnormalities in 

IDH1/2 AML in a supervised training context, and shows the potential of such modeling approaches in 

capturing meaningful genotype-phenotype relationships.     

The work presented in Chapter 2 has been published here (Blood Advances journal) and the work presented 

in Chapter 3 has been published here (Association for Computing Machinery, International Conference on 

Bioscience, Biochemistry and Bioinformatics 2023 Conference proceedings).  
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2.1.  Chapter abstract 

SF3B1K700E is the most frequent mutation in myelodysplastic syndrome (MDS), but the mechanisms by which 

it drives MDS pathogenesis remain unclear. We harnessed a panel of 18 genetically matched SF3B1K700E- and 

SF3B1WT-induced pluripotent stem cell (iPSC) lines from patients with MDS with ring sideroblasts (MDS-RS) 

harboring isolated SF3B1K700E mutations. RNA and ATAC sequencing was performed in purified CD34+/CD45+ 

hematopoietic stem/progenitor cells (HSPCs) derived from these lines. We developed a novel computational 

framework integrating splicing with transcript usage and gene expression analyses and derived a SF3B1K700E 

splicing signature consisting of 59 splicing events linked to 34 genes, which associates with the SF3B1 

mutational status of primary MDS patient cells. The chromatin landscape of SF3B1K700E HSPCs showed 

increased priming toward the megakaryocyte-erythroid lineage. Transcription factor (TF) motifs enriched in 

chromatin regions more accessible in SF3B1K700E cells included, unexpectedly, motifs of the TEA domain 

(TEAD) transcription factor family. TEAD expression and transcriptional activity were upregulated in SF3B1-

mutant iPSC-HSPCs, in support of a Hippo pathway-independent role of TEAD as a potential novel 

transcriptional regulator of SF3B1K700E cells. This study provides a comprehensive characterization of the 

transcriptional and chromatin landscape of SF3B1K700E HSPCs and nominates mis-spliced genes and 

transcriptional programs with putative roles in MDS-RS disease biology 

2.2.  Introduction 

Myelodysplastic syndromes (MDS) are myeloid malignancies characterized by ineffective hematopoiesis, 

blood cytopenias, and an increased risk of progression to secondary acute myeloid leukemia[1]. Recurrent 

somatic mutations in genes encoding splicing factors (SFs) were discovered a decade ago as a novel class of 

driver mutations in MDS, collectively occurring in more than 50% of patients with MDS[2–5]. Mutations in 

splicing factor 3B, subunit 1 (SF3B1), are present in ~ 24% of patients with MDS and define a distinct MDS 

clinical subgroup, termed MDS with ring sideroblasts (MDS-RS), characterized by erythroblasts with 

abnormal iron accumulation in mitochondria that form a ring around the cell nucleus (ring sideroblasts), 

ineffective erythropoiesis, macrocytic anemia, and favorable prognosis[3–7]. 

SF3B1 is a core spliceosomal protein (a key component of the U2 small nuclear ribonucleoprotein complex 

[snRNP]) that binds upstream of the branch point and is required to facilitate 3’ splice site recognition of 

most introns[8]. Nearly all mutations in SF3B1 are heterozygous, most commonly target the K700 hotspot, 

and result in altered RNA-binding specificity of mutant SF3B1. SF3B1 mutations are associated with 

preferential use of cryptic 3’ splice sites, leading to nonsense-mediated decay (NMD) or generation of 

different isoforms of multiple transcripts[9–11].  

Some recent studies implicated specific mis-splicing events associated with SF3B1 mutations in the 

pathogenesis of MDS or other malignancies. An alternative erythroferrone (ERFE) transcript in SF3B1-mutant 

erythroid lineage cells was linked to disruption of iron homeostasis[12]. Decrease in expression of BRD9, a 

component of the noncanonical BRG1-associated factors (BAF) chromatin-remodeling complex, through 

https://paperpile.com/c/Gtlbm4/fkge
https://paperpile.com/c/Gtlbm4/6a1J+bp78+FnkC+5FXy
https://paperpile.com/c/Gtlbm4/bp78+FnkC+5FXy+ZMUd+LXFe
https://paperpile.com/c/Gtlbm4/2VeI
https://paperpile.com/c/Gtlbm4/DziK+5Z0H+W4bT
https://paperpile.com/c/Gtlbm4/UnVt
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inclusion of a “poison exon”, was also shown to confer oncogenic properties in uveal melanoma models[13]. 

Despite these insights, the mechanisms by which mutant SF3B1 drives MDS, and malignancy in general, 

remain incompletely understood, and the critical mis-splicing events that mediate these effects are not well 

characterized. Importantly, mis-splicing events have thus far been cataloged either in primary patient cells 

or murine or cellular models, each with distinct limitations. Patient samples are heterogeneous in terms of 

clonality, presence of co-occurring mutations, and cell type composition. Conversely, murine models have 

the important limitation that alternative splicing events are largely non conserved between mouse and 

human[14]. Finally, previous cellular models of SF3B1 mutations consisted of engineered immortalized 

leukemia cell lines (such as K562), which harbor mutations not related to MDS pathogenesis, and result in 

abnormal levels and stoichiometry of mutant and wild-type (WT) SF3B1 because of aneuploidy and/or use 

of overexpression systems. 

Here, we leveraged a panel of karyotypically normal diploid-induced pluripotent stem cell (iPSC) lines with 

an isolated SF3B1K700E mutation, as well as genetically matched WT iPSCs, from patients with MDS-RS. By 

integrating splicing, gene expression, and transcript usage analyses, we derived a splicing signature of mutant 

SF3B1 that we validated in datasets of patients with MDS. Furthermore, we characterized the chromatin 

landscape of SF3B1K700E iPSC-derived hematopoietic stem/progenitor cells (iPSC-HSPCs) and identified 

increased transcriptional activity of the TEAD family of transcription factors (TFs) in mutant cells. This study 

provides a refined view of the altered misspliced transcriptome of human SF3B1K700E HSPCs and characterizes 

for the first time their chromatin landscape, pinpointing TEAD as a potential regulator of SF3B1K700E HSPCs. 

2.3.    Data & Methods 

From a previous population genome profiling study[3], 3 BM mononuclear cell samples from 3 patients with 

MDS-RS (P21, P22, P23) were identified. These patients harbored isolated SF3B1K700E mutations with high 

variant allele frequencies (VAFs; range, 37%-42%; Figure 2.1; supplemental Table 2.1). Upon cell 

reprogramming, both SF3B1K700E and SF3B1WT iPSC lines from all patients were obtained. Specifically, 3 

independent SF3B1K700E and 3 SF3B1WT iPSC lines from each patient (total lines = 18) were established, serving 

as biological replicates (supplemental Table 2.2). The presence of any karyotypic abnormalities in any of 

these lines was excluded. The presence of any other MDS/AML driver mutations in all lines or in the starting 

cells was also excluded by using next generation sequencing of a panel of 126 genes implicated in myeloid 

malignancy[15]. For these iPSC lines, directed hematopoietic differentiation was performed using 

protocols[16] from the Papapetrou laboratory and CD34+/CD45+ HSPCs were collected for RNA and ATAC-

sequencing. (We note that the data generation process including the derivation and differentiation of the 

iPSC lines is not part of the current thesis). 

RNA-sequencing analysis 

RNA was extracted with the Direct-zol RNA purification kit (Zymo R2061). Sequencing libraries were prepared 

using the TruSeq Stranded mRNA library prep kit (Illumina 20020594) from 500 ng input RNA. Samples were 

https://paperpile.com/c/Gtlbm4/jvyP
https://paperpile.com/c/Gtlbm4/hwSo
https://paperpile.com/c/Gtlbm4/bp78
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https://paperpile.com/c/Gtlbm4/GCih
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barcoded and run on a Hi-seq 4000 in a 100-bp/100-bp paired-end run, using the Hi-seq 3000/4000 SBS kit 

(Illumina).  

HSPC samples from 16 iPSC lines were included in the RNA-seq analyses after quality control of the raw data 

(supplemental Table 2.2). RNA-seq reads from the fastq files were mapped to the GRCh37 assembly of the 

human genome using the STAR aligner[17]. The Ensembl GRCh37 gene and transcript annotations were used. 

Salmon[18] was used to perform transcript quantification, and gene counts were generated from the 

transcript level abundances using the tximport function of the tximport R package[19]. Differential gene 

expression analysis was performed using DESeq2[20]. Genes with a false discovery rate (FDR) < 0.05 and 

absolute expression log2fc > 1 in SF3B1K700E vs SF3B1WT cells were considered as differentially expressed.  

Differential transcript usage between the SF3B1K700E and SF3B1WT iPSC-HSPCs was performed using the 

DEXSeq[21] and stageR[22] R-packages. Transcripts with a relative abundance proportion <5% in all samples 

were filtered. Transcripts were considered to have differential usage if absolute usage log2fc was >1 and 

overall FDR was < 0.05 (supplemental Methods).  

Differential alternative splicing was performed using the rMATS[23] tool using the aligned BAM files. The 

relative expression (inclusion level) of alternatively spliced isoforms was estimated by the fraction of reads 

mapping to an alternative splicing event over the total reads[23]. Events with FDR < 0.05 and absolute 

inclusion level difference >10% were considered as differentially spliced between the SF3B1K700E and SF3B1WT 

iPSC-HSPCs. 

Integration framework of differential gene expression, transcript usage, and 

splicing 

To generate an SF3B1K700E signature, we combined differential gene expression, differential transcript usage, 

and differential splicing analyses in a multi-stage fusion setting[24,25]. First, we identified the set of 

transcripts that contain the exons present in each differential splicing event using the maser R-package[26]. 

We then filtered out non-differentially used transcripts and paired each differential splicing event with the 

remaining set of differentially used transcripts. The pairs that belonged to genes with a statistically significant 

expression log2fc and contained a differential splicing event with an FDR value within the 20 lowermost FDR 

values were considered as the “tier 1” set, from which the mutant SF3B1 signature events and genes were 

derived (supplemental Methods). 

ATAC-sequencing analysis 

Nuclear pellets (supplemental Methods) were subjected to transposase reaction using the Illumina Nextera 

DNA Sample Preparation Kit. The libraries were quantified using the Agilent BioAnalyzer. Sequencing of 75 

nucleotide-long paired-end reads was performed in a NextSeq-500 (Illumina). 

HSPC samples from 15 iPSC lines were included in the ATAC-seq analyses after quality control of the raw data 

(supplemental Table 2.2). ATAC-seq reads from the fastq files were trimmed with the TrimGalore tool to 

https://paperpile.com/c/Gtlbm4/sz6D
https://paperpile.com/c/Gtlbm4/Pk7A
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remove adaptor sequences and then aligned to the GRCh37 reference genome using the Bowtie2[27] aligner. 

Reads with a mapping quality (MAPQ) score < 10 were removed using samtools. Duplicate reads were 

removed using Picard. All aligned reads were shifted to remove Tn5 transposase artifacts, as previously 

described[28] using deeptools[29]. Peaks were called using MACS2[30] (supplemental Methods) and then 

filtered using the irreproducible discovery rate[30,31] framework with a cutoff of 0.05. Then, we merged all 

reproducible peaks to create an ATAC-seq atlas. Differential accessibility analysis was performed using 

DESeq2. Peaks with an FDR cutoff of 0.05 and absolute log2fc > 1 were considered differentially accessible. 

 

                     

Figure 2.1. Schematic overview of the derivation of iPSC lines with isolated SF3B1K700E mutation and genetically 

matched normal WT lines from 3 patients with MDS-RS (BMMCs, bone marrow mononuclear cells). 

2.4.  Results 

Global gene expression, mis-splicing, and differential transcript usage in SF3B1K700E 

HSPCs 

To examine the effects of SF3B1K700E in the transcriptome, we performed RNA sequencing in sorted 

CD34+/CD45+ iPSC-HSPCs from 3 SF3B1K700E and 3 SF3B1WT iPSC lines from each patient (total 18 lines;  

supplemental Table 2.2). Samples MDS-22.1 and MDS-22.43 did not pass quality control at the library 

preparation stage and were not included in the analyses. Principal component analysis (PCA) and hierarchical 

clustering based on gene expression grouped the iPSC lines by genotype (i.e. SF3B1K700E vs SF3B1WT; Figure 

2.2A-B).  

Differential gene expression analysis revealed 2737 differentially expressed genes in the SF3B1K700E mutant 

vs WT lines, 1821 of which were upregulated in the SF3B1K700E cells (supplemental Figure 2.1A-B). Gene set 

enrichment analysis showed enrichment of gene sets related to metabolism and cell morphology in genes 

https://paperpile.com/c/Gtlbm4/JMQK
https://paperpile.com/c/Gtlbm4/6Ao8
https://paperpile.com/c/Gtlbm4/m0NY
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upregulated in SF3B1K700E cells and enrichment of genes related to myeloid lineage differentiation in the 

downregulated genes (supplemental Figure 2.1C-E).  

To examine the effects of the SF3B1K700E mutation on splicing, we characterized alternative splicing (AS) 

events in the SF3B1K700E and SF3B1WT cells, classified as alternative 3’ splice site use (A3SS), alternative 5’ 

splice site use (A5SS), mutually exclusive exons (MXE), retention of introns (RI), and skipping (inclusion or 

exclusion) of cassette exons (SE). A total of 1829 differential splicing events were detected between 

SF3B1K700E and SF3B1WT cells, which included 983 SE, 338 MXE, 265 A3SS, 173 RI, and 70 A5SS events 

(supplemental Figure 2.1F). Hierarchical clustering, as well as PCA, based on the inclusion levels of the 

differential splicing events, also separated the cells based on genotype, as expected (Figure 2.2C; 

supplemental Figure 2.1G). Consistent with previous studies, we found increased exclusion of cassette exons, 

increased use of alternative 3’ splice sites, and decreased retention of introns in SF3B1K700E cells (Figure 2.2D; 

supplemental Figure 2.1H)[9,11]. 

To evaluate the effects of the SF3B1K700E mutation at the transcript level, we performed differential transcript 

usage analysis, which identified 1086 differentially used transcripts between SF3B1K700E and SF3B1WT cells 

(547 more used and 539 less used in SF3B1K700E compared with SF3B1WT cells). These differentially used 

transcripts belong to 865 genes, 198 of which were also found to be differentially expressed (supplemental 

Figure 2.1I). In summary, these analyses demonstrate that SF3B1K700E mutations are associated with distinct 

gene expression, splicing, and transcript usage signatures. 

Integration framework categorizes mutant SF3B1 gene targets by linking 

differential splicing to differential transcript usage and differential gene expression 

Most previous studies have prioritized candidate target genes of mis-splicing by mutant SF3B1 in cancer cells, 

by selecting splicing events based on the size of differences in inclusion level of the isoforms between mutant 

and control cells[11]. To categorize splicing effects of the SF3B1K700E mutation in MDS, we developed a 

computational multi-stage approach combining analyses at 3 different transcriptomic levels: gene 

expression, splicing, and transcript usage. This framework was used to classify the splicing events into 5 tier-

based classes (supplemental Methods, supplemental Figure 2.2A; supplemental Table 2.3). 

Of 1829 total differential splicing events between SF3B1K700E and SF3B1WT HSPCs, 215 were associated with 

at least 1 differentially used transcript. Of these 215 events, 95 belong to genes with a statistically significant 

(FDR < 0.05) expression log2 fold change (log2fc) between SF3B1K700E and SF3B1WT HSPCs. Of these 95 events, 

we selected the top 59 differentially spliced events (with the lowest 20 FDR values). These tier 1 59 events 

belong to 34 genes: 19 downregulated and 15 upregulated in SF3B1K700E vs SF3B1WT cells (Figures 2.2E and 

2.3; supplemental Figure 2.2B; supplemental Table 2.4). Fifty-one (86%) of these 59 tier 1 events are A3SS, 

RI, or SE events (supplemental Figure 2.2C). This set of 59 events contained more A3SS events with increased 

use in SF3B1K700E vs SF3B1WT cells and more RI events that were less retained in SF3B1K700E vs SF3B1WT cells, 

reflecting the event distribution among all differential splicing events (Figure 2.3).  
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Figure 2.2. Integrative gene expression, alternative splicing, and transcript usage analyses categorize gene targets of 

mutant SF3B1. (A) PCA plots based on gene expression of the 3000 most highly variable genes color-coded by SF3B1 

mutation status and sign-coded by patient ID. (B) Heatmap showing distance of the indicated iPSC-HSPCs based on 

pairwise Pearson correlation of their gene expression profiles, color-coded by SF3B1 mutation status and patient ID. (C) 

PCA plot based on inclusion levels of the differentially spliced events between SF3B1K700E and SF3B1WT iPSC-HSPCs. (D) 

Scatterplots comparing the mean inclusion levels of the differentially spliced events in SF3B1K700E vs SF3B1WT iPSC-HSPCs 

with different event types broken down by color, as indicated. (E) Schematic summarizing the integrative analysis used 

to derive a mutant SF3B1 signature of splicing events and genes and scatterplot showing the inclusion level difference 

of all 59 signature splicing events, corresponding to 34 genes. A positive y axis value indicates that the event is more 

frequently found in SF3B1K700E vs SF3B1WT. 

We observed that several of the transcripts used preferentially in SF3B1K700E vs SF3B1WT HSPCs were 

annotated as NMD (Figure 2.3). Notably, this increased use of NMD transcripts was also associated with 

decreased expression of the corresponding genes (DLST, BRD9, KIAA1033, SHKBP1, GAS8). This is consistent 

with previous findings showing that SF3B1 mutations induce widespread use of abnormal cryptic 3’ splice 

sites, leading to NMD of multiple transcripts[13,32]. 

The 59-splicing event signature is associated with SF3B1 mutational status 

To test whether the SF3B1 signature derived in iPSC-HSPCs is also found in primary patient samples, we 

interrogated transcriptome data from CD34+ BM cells from 68 patients with MDS and 8 healthy individuals 

from a published dataset[9]. Thirty-one of the 59 tier 1 events (53%) were found differentially spliced (FDR < 

0.05, |inclusion level difference| > 0.1) between SF3B1-mutated patients (SF3B1mut, n = 28) and patients 

with MDS without any SF mutations (SF-WT, n = 40). Twenty-eight of those were also found differentially 

spliced between SF3B1-mutated patients and healthy individuals (WT; n = 8; Figure 2.3; supplemental Figure 

2.2D). This splicing signature was not found in events differentially spliced between MDS primary cells 

harboring other splicing factor mutations (SRSF2, U2AF1) and SF-WT MDS or healthy individuals and is thus 

specific to SF3B1 mutations (supplemental Figure 2.2E). PCA based on the inclusion level of the mutant SF3B1 

signature splicing events separated all samples (SF3B1mut; SF-WT; WT) based on SF3B1 genotype, with the 

exception of 1 sample, annotated as SF-WT, which clustered together with the SF3B1-mutated samples 

(Figure 2.4). Examination of the RNA-seq data for sequence alterations in the SF3B1 locus in this specific 

patient revealed a previously overlooked 6-bp in-frame deletion spanning the K700E hotspot 

(SF3B1p.K700_V701delKV; Figure 2.4). This demonstrates that the splicing signature derived in iPSC-HSPCs is 

also present in HSPCs of patients with MDS. Furthermore, patients with SF3B1 mutations other than K700E 

clustered together with the SF3B1K700E-mutated patients (Figure 2.4), which indicates that our signature is 

representative of a broader spectrum of SF3B1 mutations. 
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Figure 2.3. Events of the mutant SF3B1 splicing signature. Heatmap showing the row normalized inclusion levels of the 

59 signature events across HSPCs from all iPSC lines. For each row, color-coded side panels present metadata relevant 

to each event, including the log2fc of expression of the respective genes, the biotypes of the up- and downregulated 

transcripts that are associated with the splicing events, and the presence of the events in the MDS patient dataset of 

Pellagatti et al[9], encoded as not present (signature events not present in any comparison); present but not significant 

(signature events that were not statistically significant or/and had an absolute inclusion level difference < 0.1 in both 

comparisons [SF3B1mut vs SF-WT and SF3B1mut vs WT, i.e., healthy individuals]); present only in SF3B1mut vs SF-WT 

(signature events statistically significant [FDR < 0.05] and with an absolute inclusion level difference > 0.1 only in the 

SF3B1mut vs SF-WT MDS patient comparison); and present in SF3B1mut vs SF-WT and SF3B1mut vs WT (signature 

events statistically significant [FDR < 0.05] and with an absolute inclusion level difference > 0.1 in both comparisons). 

The annotations of the transcript biotypes are derived from the Ensembl GRCh37 gtf annotation file. Each row 

represents one event labeled with the respective gene name followed by a number indicating distinct events. 

 

                                     

Figure 2.4. Splicing event signature separates SF3B1-mutated MDS cases. PCA plot based on the inclusion levels of the 

signature splicing events in the patient samples of Pellagatti et al[9], separating MDS SF3B1K700E-mutated patients 

(K700E SF3B1mut MDS) and patients with SF3B1 mutations other than K700E (non-K700E SF3B1mut MDS) from patients 

without SF mutations (SF-WT MDS) and healthy individuals (WT). The asterisk marks 1 patient annotated as SF-WT. 

Clustering of this sample together with the SF3B1-mutated cases prompted us to more closely interrogate the sequence 

of the SF3B1 locus for any previously unidentified mutations. We thus discovered an in-frame 6-bp deletion 

(SF3B1p.K700_V701delKV) removing 2 amino acids, including the K700 hotspot. 

Chromatin accessibility landscape of SF3B1K700E HSPCs 

To investigate the chromatin landscape of SF3B1K700E cells, we performed ATAC sequencing (supplemental 

Methods) in sorted CD34+/CD45+ iPSC-HSPC samples paired to those used for RNA sequencing (3 SF3B1K700E 

and 3 SF3B1WT iPSC lines from each patient; supplemental Table 2.2) resulting in an ATAC-seq atlas of 56420 

peaks. (Samples MDS-22.1, MDS-22.43, and N-21.1 did not pass quality control at the library preparation 

stage and were not included in the analyses.) PCA and hierarchical clustering based on chromatin accessibility 

grouped the iPSC lines by genotype (Figure 2.5A-B). Differential accessibility analysis revealed 3737 

https://paperpile.com/c/Gtlbm4/DziK
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differentially accessible peaks between the SF3B1K700E and SF3B1WT HSPCs, 1527 of which were more 

accessible in the mutants (Figure 2.5C; supplemental Figure 2.3A). Differentially accessible peaks were 

predominantly localized in intronic and intergenic regions (supplemental Figure 2.3B). Chromatin 

accessibility changes correlated with gene expression changes in both directions (more accessible and 

upregulated; less accessible and downregulated; Figure 2.5D-E; supplemental Figure 2.3C). Next, we 

compared the chromatin accessibility profiles of the SF3B1K700E and SF3B1WT iPSC-HSPCs to those defined in 

primary human hematopoietic cell types along the hematopoietic hierarchy[33] (supplemental Methods). Of 

the 56420 total ATAC-seq peaks called in the iPSC-HSPC dataset, 40568 overlapped with the peaks from 

Corces et al[33] (total = 98525). Differential accessibility analysis on these 40568 peaks resulted in 2757 

differentially accessible peaks between SF3B1K700E and SF3B1WT iPSC-HSPCs. The pairwise Pearson correlation 

between read counts of these 2757 peaks in iPSC-HSPCs and the hematopoietic populations of Corces et 

al[33] showed that the chromatin landscapes of SF3B1K700E cells resembled more those of megakaryocyte–

erythroid progenitor cells and erythroid cells, whereas the chromatin landscape of SF3B1WT cells resembled 

more that of granulocyte-monocyte progenitors and monocytes (Figure 2.5F). These results suggest a 

potential chromatin priming of SF3B1K700E CD34+ HSPCs toward the erythroid rather than the myeloid lineage 

and may reflect the more prominent involvement of the erythroid lineage in the pathology and clinical 

presentation of MDS-RS. 

Increased transcriptional activity of the TEAD family of transcription factors in 

SF3B1K700E HSPCs 

To identify transcriptional programs of potential importance to SF3B1K700E HSPCs, we performed TF motif 

enrichment analysis in ATAC-seq peaks more accessible in SF3B1K700E cells that were linked to genes 

upregulated in SF3B1K700E cells (Figure 2.5E). This analysis revealed enrichment of motifs of several 

prototypical hematopoietic lineage TFs, such as those of the GATA, ETS, and AP-1 families. Unexpectedly, 

motifs of the TEAD family were also enriched (Figure 2.6A-C). Furthermore, regions more accessible and 

linked to upregulated genes in SF3B1K700E cells that contained TEAD motifs overlapped with annotated TEAD 

binding sites (supplemental Figure 2.4A). 

The TEAD family of TFs are best known as effectors of the Hippo signaling pathway, with important roles in 

various biological processes and malignancies, albeit no previous links to hematologic disease[34,35]. To 

further investigate a potential role for TEAD TFs in SF3B1K700E HSPCs, we examined expression of the 4 

members of the TEAD family TEAD1-4 in SF3B1K700E and SF3B1WT cells. TEAD2 and TEAD4 were the TEAD 

family members expressed at the highest levels in both SF3B1K700E and SF3B1WT cells, including iPSC-HSPCs, 

as well as patient cells (Figure 2.6D; supplemental Figure 2.4B). All 4 TEAD genes were upregulated in the 

SF3B1K700E compared with SF3B1WT iPSC-HSPCs (Figure 2.6D). 
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Figure 2.5. SF3B1K700E HSPCs have altered chromatin landscapes. (A) PCA based on the accessibility of all peaks in the 

ATAC-seq atlas color-coded by SF3B1 mutation status and sign-coded by patient ID. (B) Heatmap showing the distance 

of the HSPCs from the indicated iPSC lines, based on pairwise Pearson correlation of their chromatin accessibility 

landscapes, color-coded by SF3B1 mutation status and patient ID. (C) Scatterplot showing the accessibility log2fc and 
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the adjusted P value of the differentially accessible peaks between SF3B1K700E and SF3B1WT iPSC-HSPCs per chromosome, 

color-coded by the adjusted P value. Each point represents a peak. (D) Cumulative distribution function (CDF) of the 

expression log2fc of genes more accessible in SF3B1K700E HSPCs, genes less accessible in SF3B1K700E HSPCs, and all genes, 

showing that genes more accessible in SF3B1K700E HSPCs are upregulated (Kolmogorov–Smirnov [KS] test, P = 1.17e-07) 

and genes less accessible in SF3B1K700E HSPCs are downregulated (KS test, P = 3.13e-16) compared with background. (E) 

Scatterplot showing the log2fc accessibility value of the differentially accessible peaks and the log2fc expression value 

of the linked gene (genes for which P value could not be calculated were excluded). (F) Heatmap showing Pearson 

correlation values of normalized read counts for ATAC-seq peaks that overlap between the indicated iPSC-HSPCs and 

primary normal hematopoietic cell subpopulations (hematopoietic stem cells [HSC], multipotent progenitors [MPP], 

common myeloid progenitors [CMP], lymphoid-primed multipotent progenitors [LMPP], granulocyte-monocyte 

progenitors [GMP], megakaryocyte-erythrocyte progenitors [MEP], common lymphoid progenitors [CLP], monocytes 

[Mono], erythroid cells [Ery], natural killer cells [NK], and B cells) from Corces et al.[33]. 

To experimentally test whether TEAD transcriptional activity is higher in SF3B1K700E cells, we transduced 

SF3B1K700E and SF3B1WT iPSC-HSPCs with a luciferase construct (implemented at the Papapetrou laboratory 

and its experimental process is not part of this thesis) reporting TEAD activity. Reporter activity was higher 

or trended higher in SF3B1K700E compared with SF3B1WT iPSC-HSPCs from 2 of the 3 patients (Figure 2.6E). 

TEAD is best known as an effector of the Hippo signaling pathway and is bound to DNA as a complex with 

YAP or TAZ transcriptional coactivators[36]. To test the activity of the Hippo pathway in our cells, we 

performed immunoblots (implemented at the Papapetrou laboratory and the experimental process is not 

part of this thesis) in SF3B1K700E and SF3B1WT iPSC-HSPCs from 2 of the patients. Although we confirmed TEAD 

expression at the protein level, we did not detect YAP activation (phosphorylated form pYAPS127) or 

expression of YAP or TAZ (supplemental Figure 2.4C). These results, collectively, support a Hippo pathway-

independent increase of TEAD expression and transcriptional activity in SF3B1K700E HSPCs. 

2.5.      Discussion 

Previous studies have shown that iPSC models of myeloid malignancies capture molecular characteristics of 

the disease and can be used to discover new mechanisms and therapeutic vulnerabilities,  further 

corroborated by the present study[37–40]. Hereby, we harnessed sequencing data from patient-derived 

genetically matched WT and SF3B1-mutated induced pluripotent stem cell (iPSC) lines. The genetically 

matched conditions and the availability of biological replicates to control for any effects of the 

reprogramming process (nongenetic line-to-line variability upon cell line generation) and of the patient’s 

genetic background on the transcriptome, were critical components of this study.  

Our study was powered by a multi-stage data fusion framework with which we were able to assess the 

combination of the effects of the SF3B1K700E mutation across parallel levels of deregulation of the 

transcriptome toward deriving a tier-based classification of splicing events.  Specifically, this framework 

systematically evaluates the effects SF3B1K700E mutation on splicing, transcript usage and gene expression, 

merges signals from the data views representative of these 3 processes, and leads to a comprehensive  

SF3B1K700E splicing signature. These integrated analyses validated several known gene candidates, such as 

ANKHD1[9], METTL5 (A3SS event)[9,13], ABCB7 (A3SS event)[11,41,42] and BRD9 (SE event)[13]. 
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Additionally, the genes DPH5, COASY, ZDHHC16, TMEM214, and EI24, previously cataloged as mis-spliced in 

SF3B1 mutant cells, are also included in our tier 2 and tier 1 set[13]. Furthermore, we nominate several new 

splicing events in genes not previously reported mis-spliced by mutant SF3B1 that warrant further 

investigation for their relevance to the pathogenesis of MDS. The diversity of mis-splicing events, many of 

which are found across different models of SF3B1K700E mutation, may suggest a multifactorial disease 

pathogenesis. In addition, the specificity of the mutant SF3B1 signature, derived from the iPSC lines and 

validated in primary patient samples, identifies atypical mutations involving the K700 hotspot, such as the 

SF3B1p.K700_V701delKV that we report here, as functionally equivalent to the K700E mutation, and can thus 

be further used to evaluate the role of putative pathogenic variants in SF3B1[43]. 

Our study is the first to characterize the chromatin landscape of SF3B1K700E HSPCs. Interestingly, we report 

potential “priming” at the chromatin level of SF3B1K700E HSPCs toward the erythroid over the myeloid lineage, 

a finding that may be related to the preferential involvement of the erythroid lineage in MDS and, in 

particular, MDS-RS. It is unclear whether any of the global chromatin accessibility changes that we report 

here are a direct consequence of missplicing (for example, of a chromatin regulator gene, such as BRD9[13], 

or a pioneer transcription factor). Likely, at least some of them reflect differences in differentiation state and 

lineage priming as an indirect consequence of the SF3B1K700E mutation. Because reprogramming to 

pluripotency (upon the experimental process) effectively erases the epigenome of the somatic cell, 

differences found between mutant and WT cells across replicates can be solely attributed to genotype. 

Several master hematopoietic lineage TF motifs were present in chromatin regions that were differentially 

accessible between SF3B1K700E and SF3B1WT iPSC-HSPCs, which may underlie the differentiation and colony 

formation impairment of these cells. Interestingly, our chromatin accessibility analyses, followed by 

functional studies, lend support to a putative role for the TEAD TFs in the context of SF3B1K700E mutation. The 

relevance of elevated TEAD activity to the pathogenesis of MDS-RS and its link to SF3B1 mutations will need 

to be validated in further studies involving assessment of TEAD binding to DNA and functional experiments, 

such as genetic perturbation of TEAD factors, in our iPSC models, as well as potential validation of the findings 

in primary patient cells. Pending further investigation, this novel finding may point to a new disease 

mechanism and possible therapeutic vulnerabilities specific to SF3B1K700E cells. 

https://paperpile.com/c/Gtlbm4/jvyP
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Figure 2.6. Increased transcriptional activity of TEAD TFs in SF3B1K700E HSPCs. (A) TF motifs enriched in peaks more 

accessible in SF3B1K700E compared with SF3B1WT HSPCs and linked to upregulated genes. (B) Most statistically significant 

TF motifs enriched in peaks more accessible in SF3B1K700E compared with SF3B1WT HSPCs and linked to upregulated 

genes. (C) Tornado plots showing the normalized accessibility signal in peaks more accessible in SF3B1K700E compared 

with SF3B1WT HSPCs and linked to upregulated genes that contain TEAD motifs. (D) Expression levels of TEAD family 

genes in iPSC-HSPCs. Mean and SEM of transcripts per million (TPM) values from RNA-seq are shown. **Padj ≤ .01; 

***Padj ≤ .001. (E) TEAD reporter activity in HSPCs from the indicated iPSC lines. Mean and SEM of 2 to 5 independent 

differentiation and transduction experiments per line are shown. n.s., not significant; **P ≤ .01. 

2.6.  Supplementary 

2.6.1.      Supplemental methods 

Targeted gene sequencing 

Variant calling and annotation, filtering for artifacts and copy number identification was performed as 

previously described[3,15]. 

GSEA analysis 

GSEA analysis was performed on the differentially expressed genes between SF3B1K700E and SF3B1WT iPSC-

HSPCs using the R-package clusterProfiler[44]. Only gene sets with Benjamini-Hochberg (BH) adjusted p-

value < 0.05 were considered. 

Computation of statistical significance in differential transcript usage 

The statistical significance of the change in transcript usage between SF3B1K700E and SF3B1WT iPSC-HSPCs was 

assessed in a two stage process using the stageR R-package. The first stage (screening phase) identified the 

genes with evidence of differential transcript usage (DTU) and the second stage (confirmation phase) 

identified the transcripts within these genes that participate in the DTU. 

Integration Framework 

As shown in supplemental Figure 2.2A, the categorization of differential splicing events to 5 tier-based classes 

(tier 1, tier 2, tier 3, tier 4 and tier 5) depends on the following criteria: (1) Presence of at least one 

differentially used transcript paired to the event (2) Statistically significant expression log2fc of the respective 

gene (3) Statistical significance of the event (FDR value among the lowest 20 FDR values across all events).  

Based on the criteria met, the events are rewarded with scores (score of 2 for meeting criterion 1 and score 

of 1 for meeting each of the rest). According to their total, events are classified to a specific tier as shown in 

the schema of supplemental Figure 2.2A. Events that meet all criteria (total score of 4) comprise the tier 1 

(signature) class.     

https://paperpile.com/c/Gtlbm4/bp78+pLca
https://paperpile.com/c/Gtlbm4/OgET
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ATAC sequencing 

50,000 MACS-sorted CD34+/CD45+ cells from each individual iPSC line were processed as follows: nuclei were 

isolated by lysis with 50 ul of ATAC lysis buffer (10 mM Tris pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% NP40, 

0.1% Tween-20, and 0.01% Digitonin) and washed with 1 mL of ATAC wash buffer (10 mM Tris pH 7.4, 10 

mM NaCl, 3 mM MgCl2, 0.1% Tween-20). Cell lysates were spun to obtain nuclear pellets, which were 

subjected to transposase reaction using the Illumina Nextera DNA Sample Preparation Kit according to the 

manufacturer’s instructions. 

Peak Calling, assignment of ATAC-seq peaks to genes, differential accessibility of genes & motif 

enrichment analysis 

ATAC-seq peaks for each replicate of the cohort were called using MACS2[30] with a low pass whole genome 

sequencing background sample and the following parameters (--min-length 100 -f BAMPE). Each ATAC-seq 

peak was assigned to the gene with the closest Transcription Start Site (TSS) using HOMER[45] with the 

Ensembl GRCh37 gtf annotation file. To determine accessibility changes at the gene level, we considered the 

regulation of the surrounding peak regions as well as the proximity of each gene to a differentially accessible 

peak. Specifically, a gene was regarded as differentially accessible if: (1) There was at least 1 differentially 

accessible peak within 50 kb of its TSS; or (2) The distribution of accessibility log2fc of all peaks within 50 kb 

upstream and downstream of its TSS was significantly shifted (Benjamini-Hochberg [BH] adjusted p-value < 

0.05), as compared to the ATAC-seq atlas background distribution by a Kolmogorov-Smirnov (KS) test. Motif 

enrichment analysis was performed with HOMER using known motifs in the HOMER default database. 

Correlation of chromatin accessibility to normal hematopoiesis 

To compare the accessibility profiles of our iPSC-HSPCs to normal primary hematopoietic populations, we 

obtained raw bulk ATAC-seq data of 67 samples (7 HSC, 6 MPP, 3 LMPP, 8 CMP, 7 GMP, 7 MEP, 6 Mono, 8 

Ery, 5 CLP, 6 NK, 4 B cell) from a published dataset[33]. These were processed as described above for the 

iPSC-HSPC data. Pairwise Pearson correlation between iPSC-HSPCs and the normal hematopoietic 

populations was computed based on a set of differentially accessible peaks between the SF3B1K700E and 

SF3B1WT iPSC-HSPCs that overlapped with the ATAC-seq atlas of the Corces et al. samples 

Data and code availability 

The work presented in this chapter has been published here (Blood Advances journal).  

Data preprocessing and analysis was conducted using R 3.5.2 and bash scripting. A github repository 

containing the code used in generating the figures and the analysis results is available at the Papaemmanuil 

lab github page (https://github.com/papaemmelab/MDS_SF3B1_iPSC). The data used for this project are 

deposited in the Gene Expression Omnibus (GEO) with accession number GSE184246. 

 

https://paperpile.com/c/Gtlbm4/8zfS
https://paperpile.com/c/Gtlbm4/ED7f
https://paperpile.com/c/Gtlbm4/E04T
https://doi.org/10.1182/bloodadvances.2021006325
https://github.com/papaemmelab/MDS_SF3B1_iPSC
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE184246
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2.6.2.  Supplemental figures 
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Supplemental Figure 2.1. Gene expression, splicing and transcript usage analyses. (A) Volcano plot of differentially 

expressed genes between SF3B1K700E and SF3B1WT iPSC-HSPCs. (B) Column-normalized heatmap of gene expression 

values of the differentially expressed genes between SF3B1K700E and SF3B1WT iPSC-HSPCs, color-coded by SF3B1 

mutation status and patient ID. (C,D) GSEA plots of gene ontology (GO) gene sets enriched in genes upregulated (C) or 

downregulated (D) in SF3B1K700E vs SF3B1WT iPSC-HSPCs. (E) Scatterplot of enriched GO terms. (F) Distribution of the 

differential splicing events between SF3B1K700E and SF3B1WT iPSC-HSPCs by event type. (G) Column-normalized heatmap 

of inclusion levels of the differentially spliced events between SF3B1K700E and SF3B1WT iPSC-HSPCs, color-coded by SF3B1 

mutation status and patient ID. (H) Differential splicing events between SF3B1K700E and SF3B1WT iPSC-HSPCs. (I) Overlap 

between differentially expressed genes, genes with differentially used transcripts and genes linked to differential 

splicing events between SF3B1K700E and SF3B1WT iPSC-HSPCs. 
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Supplemental Figure 2.2. Integration Framework (A) Schema used for the categorization of differential splicing events 

to 5 tier-based classes: tier 1, tier 2, tier 3, tier 4 and tier 5. The classification of each event to one of these classes is 

based on the following: (1) Presence of at least one differentially used transcript paired to the event (2) Statistically 

significant expression log2fc of the respective gene (3) Statistical significance of the event (FDR value among the lowest 

20 FDR values across all events). (B) Volcano plot of the tier 1 genes. (C) Differential splicing events in each tier-based 

class color-coded per event type. (D) Intersection of the tier 1 splicing events with the Pellagatti et al.[9] dataset. Not 

present: tier 1 events not present in any comparison. Present but not significant: tier 1 events that were not statistically 

significant or/and had an absolute inclusion level difference < 0.1 in both comparisons (SF3B1mut vs SF-WT & SF3B1mut 

vs WT, i.e. healthy individuals). Present in SF3B1mut vs SFWT & SF3B1mut vs WT: tier 1 events statistically significant 

(FDR < 0.05) and with an absolute inclusion level difference > 0.1 in both comparisons. Present only in SF3B1mut vs SF-

WT: tier 1 events statistically significant (FDR < 0.05) and with an absolute inclusion level difference > 0.1 only in the 

SF3B1mut vs SF-WT MDS patient comparison. (E) Venn diagrams showing overlap of differential splicing events present 

in the respective comparisons from MDS patients from the Pellagatti et al.[9] dataset and our mutant SF3B1 splicing 

signature. There is minimal or no overlap between the mutant SF3B1 splicing signature and differential splicing events 

found in MDS cases with SRSF2 (lower left) or U2AF1 (lower right) mutations. 

          

https://paperpile.com/c/Gtlbm4/DziK
https://paperpile.com/c/Gtlbm4/DziK
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Supplemental Figure 2.3. Chromatin accessibility analyses. (A) Volcano plot showing the differentially accessible peaks 

between SF3B1K700E and SF3B1WT iPSC-HSPCs (B) Genomic distribution of the differentially accessible peaks between 

SF3B1K700E and SF3B1WT iPSC-HSPCs. (TTS: transcription termination site) (C) Diamond plot showing the differentially 

accessible genes with the highest and lowest expression log2fc, together with the accessibility log2fc of the peaks 

associated with these respective genes. The black triangle shows the expression log2fc of each gene, and the points 

above correspond to all peaks associated with each gene. The peaks are color-coded based on their accessibility log2fc. 
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Supplemental Figure 2.4. TEAD transcriptional activity in SF3B1K700E and SF3B1WT iPSC HSPCs. (A) Percentage of peaks 

more accessible in SF3B1K700E compared to SF3B1WT HSPCs and linked to upregulated genes containing TEAD motifs that 

overlap with TEAD binding sites from the Gene Transcription Regulation Database (GTRD) across all samples. (B) 

Expression of TEAD family genes in primary patient samples from Shiozawa et al.[11] (upper panels) and Pellagatti et 

al.[9] (lower panels). MDS SF3B1mut: MDS with isolated SF3B1 mutation for the Shiozawa et al.[11] dataset; MDS with 

isolated SF3B1 K700E mutation for the Pellagatti et al.[9] dataset., MDS SF-WT: MDS with no mutations in SF3B1, SRSF2, 

U2AF1, ZRSR2, U2AF2, PRPF8, SF1 genes for the Shiozawa et al.[11] dataset; MDS with no mutations in SF3B1, SRSF2, 

U2AF1, ZRSR2 genes for the Pellagatti et al.[9] dataset. CMP: counts per million; TPM: transcripts per million. (C) 

Phosphorylated YAP, TEAD, total YAP and TAZ expression in HSPCs from the indicated iPSC lines on day 12 of 

differentiation and in 293T cells as positive control. 

2.6.3.  Supplemental tables 

Supplemental Table 2.1. Clinical, cytogenetic and mutational profile of MDS-RS patients selected for this study. A 

pericentric inversion of chromosome 9 found in patient 23 is a polymorphic chromosomal rearrangement not linked to 

MDS[46,47]. The patients did not harbor additional MDS/AML-driver mutations other than the SF3B1 K700E. (They were 

selected for the study on the basis of isolated SF3B1 K700E mutation.) 
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Supplemental Table 2.2. All iPSC lines used in this study. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 
 
 

Patient Sex Age Diagnosis SF3B1 K700E VAF Cytogenetics 

P21 Male 74 MDS-RS 0.42 46, XY 

P22 Female 65 MDS-RS 0.37 46, XX, +mar 

P23 Male 84 MDS-RS 0.37 46,XY, inv(9)(p11q13) 

 Patient iPSC line Genotype RNA-Seq ATAC-Seq 

P21 N-21.1 WT/WT + - 

P21 N-21.6 WT/WT + + 

P21 N-21.14 WT/WT + + 

P21 MDS-21.16 WT/K700E + + 

P21 MDS-21.29 WT/K700E + + 

P21 MDS-21.31 WT/K700E + + 

P22 N-22.22 WT/WT + + 

P22 N-22.27 WT/WT + + 

P22 N-22.45 WT/WT + + 

P22 MDS-22.1 WT/K700E - - 

P22 MDS-22.43 WT/K700E - - 

P22 MDS-22.44 WT/K700E + + 

P23 N-23.5 WT/WT + + 

P23 N-23.13 WT/WT + + 

P23 N-23.28 WT/WT + + 

P23 MDS-23.6 WT/K700E + + 

P23 MDS-23.24 WT/K700E + + 

P23 MDS-23.38 WT/K700E + + 
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Supplemental Table 2.3. Tier-based classification of events and qualitative levels of evidence. 
 

 

 

 

 

 

 

 

 
 
 
 
Supplemental Table 2.4. Mutant SF3B1 splicing signature. 

 

 

Tier Qualitative levels of evidence 

1 DTU ∩ top ranked in splicing ∩ gene shows statistically significant expression change 

2 DTU ∩ top ranked in splicing 

or 

DTU ∩ gene shows statistically significant expression change 

3 DTU 

or 

top ranked in splicing ∩ gene shows statistically significant expression change 

4 top ranked in splicing 

or 

gene shows statistically significant expression change 

5 any other differential splicing event  

Event 

Type 

Gene Chr Starting 

position 

Ending 

Position 

FDR Inclusion 

level 

difference 

Label Expression |Expressio

n_log2fc| 

A3SS ABCB7 X 74291343 74291539 0 0.127 ABCB7 down stat 

significant 

>1 

A3SS ANKHD1 5 139818045 139818202 0 -0.524 ANKHD1 down stat 

significant 

<1 

A3SS ANKHD1 5 139818078 139818202 0 0.458 ANKHD1-1 down stat 

significant 

<1 

A3SS APBB3 5 139941171 139941307 0 0.321 APBB3-2 down stat 

significant 

>1 

A3SS ARIH1 15 72862504 72862648 0 0.119 ARIH1 down stat 

significant 

<1 

A3SS BRD9 5 869359 869519 0 0.442 BRD9 down stat 

significant 

<1 

A3SS CRNDE 16 54954209 54954322 0 -0.651 CRNDE up stat 

significant 

<1 

A3SS CRNDE 16 54954209 54954322 0 -0.372 CRNDE-1 up stat 

significant 

<1 

A3SS DLST 14 75356580 75356655 0 0.389 DLST down stat 

significant 

<1 

A3SS ERCC3 2 128046912 128047095 0 0.147 ERCC3-1 up stat 

significant 

<1 

A3SS FOXRED1 11 126143210 126143349 0 0.114 FOXRED1 down stat 

significant 

<1 

A3SS GAS8 16 90097583 90097904 0 0.461 GAS8 down stat 

significant 

<1 
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A3SS GUCY1B3 4 156723364 156723731 0 0.109 GUCY1B3 up stat 

significant 

<1 

A3SS HLTF 3 148759276 148759467 0 0.246 HLTF up stat 

significant 

<1 

A3SS KIAA1033 12 105514866 105514982 0 0.28 KIAA1033 down stat 

significant 

<1 

A3SS METTL5 2 170668966 170669034 0 0.141 METTL5 up stat 

significant 

<1 

A3SS PSTPIP1 15 77328142 77328276 0 -0.217 PSTPIP1 down stat 

significant 

<1 

A3SS SHKBP1 19 41084353 41084448 0 0.108 SHKBP1 down stat 

significant 

<1 

A3SS SNRPN 15 25219434 25219603 0 -0.296 SNRPN-5 up stat 

significant 

>1 

A3SS SNRPN 15 25219457 25219603 0 -0.145 SNRPN up stat 

significant 

>1 

A3SS STAU2 8 74621266 74621412 0 0.315 STAU2 up stat 

significant 

<1 

A3SS TMEM214 2 27260657 27260760 0 -0.471 TMEM214 up stat 

significant 

<1 

A3SS TMEM218 11 124972027 124972247 0 0.531 TMEM218 down stat 

significant 

<1 

A3SS TMEM218 11 124972027 124972247 0 0.355 TMEM218-1 down stat 

significant 

<1 

A3SS ZNF410 14 74360478 74360635 0 0.296 ZNF410 up stat 

significant 

<1 

A5SS DSN1 20 35399275 35399876 2.97

E-12 

-0.111 DSN1 up stat 

significant 

<1 

A5SS SNRPN 15 25212175 25212387 0 -0.14 SNRPN-2 up stat 

significant 

>1 

A5SS TMEM218 11 124972532 124972705 4.60

E-08 

-0.188 TMEM218-2 down stat 

significant 

<1 

MXE BRD9 5 868721 869234 0 0.193 BRD9-4 down stat 

significant 

<1 

MXE BRD9 5 869359 869509 0 -0.197 BRD9-2 down stat 

significant 

<1 

MXE SNRPN 15 25212175 25212299 0 0.192 SNRPN-3 up stat 

significant 

>1 

MXE SNRPN 15 25212175 25212387 0 0.153 SNRPN-4 up stat 

significant 

>1 

MXE TPM1 15 63353396 63353472 0 -0.101 TPM1 up stat 

significant 

>1 

RI AMT 3 49454210 49455151 0 -0.283 AMT down stat 

significant 

<1 

RI AP5Z1 7 4829462 4830222 1.41

E-10 

-0.293 AP5Z1 down stat 

significant 

<1 
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RI APBB3 5 139941171 139941434 0 -0.655 APBB3 down stat 

significant 

>1 

RI APBB3 5 139941171 139941812 0 -0.278 APBB3-1 down stat 

significant 

>1 

RI ERCC3 2 128046912 128047400 0 -0.329 ERCC3 up stat 

significant 

<1 

RI HERC2P9 15 28881632 28882253 4.07

E-10 

0.401 HERC2P9 up stat 

significant 

<1 

RI MFSD10 4 2934326 2934936 7.21

E-13 

-0.115 MFSD10 down stat 

significant 

<1 

RI OXA1L 14 23239401 23239834 0 0.199 OXA1L down stat 

significant 

<1 

RI RFNG 17 80007552 80007882 1.01

E-13 

-0.171 RFNG down stat 

significant 

<1 

RI RPRD1A 18 33605560 33607038 0 -0.822 RPRD1A up stat 

significant 

<1 

RI TMEM218 11 124972027 124972705 0 -0.444 TMEM218-3 down stat 

significant 

<1 

RI TMEM218 11 124972027 124972705 0 -0.312 TMEM218-4 down stat 

significant 

<1 

SE AC093415.2 3 37892914 37892983 1.22

E-12 

0.302 AC093415.2 up stat 

significant 

>1 

SE BRD9 5 869359 869509 0 0.244 BRD9-3 down stat 

significant 

<1 

SE BRD9 5 869359 869519 0 0.359 BRD9-1 down stat 

significant 

<1 

SE DLST 14 75349293 75349327 0 -0.324 DLST-1 down stat 

significant 

<1 

SE DLST 14 75352288 75352337 0 -0.114 DLST-2 down stat 

significant 

<1 

SE DPH5 1 101458192 101458296 0 -0.131 DPH5 down stat 

significant 

<1 

SE DPH5 1 101490864 101491022 0 -0.143 DPH5-1 down stat 

significant 

<1 

SE PROS1 3 93647545 93647641 0 0.38 PROS1 up stat 

significant 

<1 

SE SNRPN 15 25212175 25212299 0 0.283 SNRPN-1 up stat 

significant 

>1 

SE SNRPN 15 25212175 25212387 0 0.155 SNRPN-6 up stat 

significant 

>1 

SE STAU2 8 74621266 74621412 0 0.148 STAU2-1 up stat 

significant 

<1 

SE TMEM214 2 27260682 27260760 0 0.457 TMEM214-2 up stat 

significant 

<1 

SE TPM1 15 63353396 63353472 0 -0.167 TPM1-1 up stat 

significant 

>1 

SE TYROBP 19 36398631 36398664 0 -0.149 TYROBP down stat 

significant 

<1 



Chapter 2 

 65 

2.7. References 

1.  Cazzola M. Myelodysplastic Syndromes. N Engl J Med. 2020;383: 1358–1374. 

2.  Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations 
of splicing machinery in myelodysplasia. Nature. 2011;478: 64–69. 

3.  Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological 
implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122: 3616–27; quiz 3699. 

4.  Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions 
in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28: 241–247. 

5.  Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 
mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365: 1384–1395. 

6.  Malcovati L, Ambaglio I, Elena C. The genomic landscape of myeloid neoplasms with myelodysplasia 
and its clinical implications. Curr Opin Oncol. 2015;27: 551–559. 

7.  Malcovati L, Stevenson K, Papaemmanuil E, Neuberg D, Bejar R, Boultwood J, et al. SF3B1-mutant MDS 
as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of 
MDS. Blood. 2020;136: 157–170. 

8.  Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol. 2014;15: 108–121. 

9.  Pellagatti A, Armstrong RN, Steeples V, Sharma E, Repapi E, Singh S, et al. Impact of spliceosome 
mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. 
Blood. 2018;132: 1225–1240. 

10.  Obeng EA, Chappell RJ, Seiler M, Chen MC, Campagna DR, Schmidt PJ, et al. Physiologic Expression of 
Sf3b1(K700E) Causes Impaired Erythropoiesis, Aberrant Splicing, and Sensitivity to Therapeutic 
Spliceosome Modulation. Cancer Cell. 2016;30: 404–417. 

11.  Shiozawa Y, Malcovati L, Gallì A, Sato-Otsubo A, Kataoka K, Sato Y, et al. Aberrant splicing and 
defective mRNA production induced by somatic spliceosome mutations in myelodysplasia. Nat 
Commun. 2018;9: 3649. 

12.  Bondu S, Alary A-S, Lefèvre C, Houy A, Jung G, Lefebvre T, et al. A variant erythroferrone disrupts iron 
homeostasis in -mutated myelodysplastic syndrome. Sci Transl Med. 2019;11. 
doi:10.1126/scitranslmed.aav5467 

13.  Inoue D, Chew G-L, Liu B, Michel BC, Pangallo J, D’Avino AR, et al. Spliceosomal disruption of the non-
canonical BAF complex in cancer. Nature. 2019;574: 432–436. 

14.  Yeo GW, Van Nostrand E, Holste D, Poggio T, Burge CB. Identification and analysis of alternative 
splicing events conserved in human and mouse. Proc Natl Acad Sci U S A. 2005;102: 2850–2855. 

15.  Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H, Medina-Martinez JS, et al. Implications of 
TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic 
syndromes. Nat Med. 2020;26: 1549–1556. 

http://paperpile.com/b/Gtlbm4/fkge
http://paperpile.com/b/Gtlbm4/6a1J
http://paperpile.com/b/Gtlbm4/6a1J
http://paperpile.com/b/Gtlbm4/bp78
http://paperpile.com/b/Gtlbm4/bp78
http://paperpile.com/b/Gtlbm4/FnkC
http://paperpile.com/b/Gtlbm4/FnkC
http://paperpile.com/b/Gtlbm4/5FXy
http://paperpile.com/b/Gtlbm4/5FXy
http://paperpile.com/b/Gtlbm4/ZMUd
http://paperpile.com/b/Gtlbm4/ZMUd
http://paperpile.com/b/Gtlbm4/LXFe
http://paperpile.com/b/Gtlbm4/LXFe
http://paperpile.com/b/Gtlbm4/LXFe
http://paperpile.com/b/Gtlbm4/2VeI
http://paperpile.com/b/Gtlbm4/DziK
http://paperpile.com/b/Gtlbm4/DziK
http://paperpile.com/b/Gtlbm4/DziK
http://paperpile.com/b/Gtlbm4/5Z0H
http://paperpile.com/b/Gtlbm4/5Z0H
http://paperpile.com/b/Gtlbm4/5Z0H
http://paperpile.com/b/Gtlbm4/W4bT
http://paperpile.com/b/Gtlbm4/W4bT
http://paperpile.com/b/Gtlbm4/W4bT
http://paperpile.com/b/Gtlbm4/UnVt
http://paperpile.com/b/Gtlbm4/UnVt
http://paperpile.com/b/Gtlbm4/UnVt
http://dx.doi.org/10.1126/scitranslmed.aav5467
http://paperpile.com/b/Gtlbm4/jvyP
http://paperpile.com/b/Gtlbm4/jvyP
http://paperpile.com/b/Gtlbm4/hwSo
http://paperpile.com/b/Gtlbm4/hwSo
http://paperpile.com/b/Gtlbm4/pLca
http://paperpile.com/b/Gtlbm4/pLca
http://paperpile.com/b/Gtlbm4/pLca


Chapter 2 

 66 

16.  Papapetrou EP. Modeling myeloid malignancies with patient-derived iPSCs. Exp Hematol. 2019;71: 77–
84. 

17.  Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq 
aligner. Bioinformatics. 2013;29: 15–21. 

18.  Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware 
quantification of transcript expression. Nat Methods. 2017;14: 417–419. 

19.  Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates 
improve gene-level inferences. F1000Res. 2015;4: 1521. 

20.  Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data 
with DESeq2. Genome Biol. 2014;15: 550. 

21.  Reyes A, Anders S, Weatheritt RJ, Gibson TJ, Steinmetz LM, Huber W. Drift and conservation of 
differential exon usage across tissues in primate species. Proc Natl Acad Sci U S A. 2013;110: 15377–
15382. 

22.  Van den Berge K, Soneson C, Robinson MD, Clement L. stageR: a general stage-wise method for 
controlling the gene-level false discovery rate in differential expression and differential transcript 
usage. Genome Biol. 2017;18: 151. 

23.  Shen S, Park JW, Lu Z-X, Lin L, Henry MD, Wu YN, et al. rMATS: robust and flexible detection of 
differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci U S A. 2014;111: 
E5593–601. 

24.  Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover 
genotype-phenotype interactions. Nat Rev Genet. 2015;16: 85–97. 

25.  Agamah FE, Bayjanov JR, Niehues A, Njoku KF, Skelton M, Mazandu GK, et al. Computational 
approaches for network-based integrative multi-omics analysis. Front Mol Biosci. 2022;9: 967205. 

26.  Veiga D. maser. Bioconductor; 2018. doi:10.18129/B9.BIOC.MASER 

27.  Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9: 357–359. 

28.  Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast 
and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. 
Nat Methods. 2013;10: 1213–1218. 

29.  Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation 
web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44: W160–5. 

30.  Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-
Seq (MACS). Genome Biol. 2008;9: R137. 

31.  Li Q, Brown JB, Huang H, Bickel PJ. Measuring reproducibility of high-throughput experiments. The 
Annals of Applied Statistics. 2011. doi:10.1214/11-aoas466 

32.  Darman RB, Seiler M, Agrawal AA, Lim KH, Peng S, Aird D, et al. Cancer-Associated SF3B1 Hotspot 

http://paperpile.com/b/Gtlbm4/GCih
http://paperpile.com/b/Gtlbm4/GCih
http://paperpile.com/b/Gtlbm4/sz6D
http://paperpile.com/b/Gtlbm4/sz6D
http://paperpile.com/b/Gtlbm4/Pk7A
http://paperpile.com/b/Gtlbm4/Pk7A
http://paperpile.com/b/Gtlbm4/mNqf
http://paperpile.com/b/Gtlbm4/mNqf
http://paperpile.com/b/Gtlbm4/eOzR
http://paperpile.com/b/Gtlbm4/eOzR
http://paperpile.com/b/Gtlbm4/lgJd
http://paperpile.com/b/Gtlbm4/lgJd
http://paperpile.com/b/Gtlbm4/lgJd
http://paperpile.com/b/Gtlbm4/VULu
http://paperpile.com/b/Gtlbm4/VULu
http://paperpile.com/b/Gtlbm4/VULu
http://paperpile.com/b/Gtlbm4/7Fq2
http://paperpile.com/b/Gtlbm4/7Fq2
http://paperpile.com/b/Gtlbm4/7Fq2
http://paperpile.com/b/Gtlbm4/vKPIl
http://paperpile.com/b/Gtlbm4/vKPIl
http://paperpile.com/b/Gtlbm4/7kMHp
http://paperpile.com/b/Gtlbm4/7kMHp
http://paperpile.com/b/Gtlbm4/XYH6
http://dx.doi.org/10.18129/B9.BIOC.MASER
http://paperpile.com/b/Gtlbm4/JMQK
http://paperpile.com/b/Gtlbm4/6Ao8
http://paperpile.com/b/Gtlbm4/6Ao8
http://paperpile.com/b/Gtlbm4/6Ao8
http://paperpile.com/b/Gtlbm4/m0NY
http://paperpile.com/b/Gtlbm4/m0NY
http://paperpile.com/b/Gtlbm4/8zfS
http://paperpile.com/b/Gtlbm4/8zfS
http://paperpile.com/b/Gtlbm4/cfRN1
http://paperpile.com/b/Gtlbm4/cfRN1
http://dx.doi.org/10.1214/11-aoas466
http://paperpile.com/b/Gtlbm4/mQ3t


Chapter 2 

 67 

Mutations Induce Cryptic 3’ Splice Site Selection through Use of a Different Branch Point. Cell Rep. 
2015;13: 1033–1045. 

33.  Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, et al. Lineage-specific and single-
cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet. 2016;48: 
1193–1203. 

34.  Wang Y, Xu X, Maglic D, Dill MT, Mojumdar K, Ng PK-S, et al. Comprehensive Molecular 
Characterization of the Hippo Signaling Pathway in Cancer. Cell Rep. 2018;25: 1304–1317.e5. 

35.  Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13: 
246–257. 

36.  Ma S, Meng Z, Chen R, Guan K-L. The Hippo Pathway: Biology and Pathophysiology. Annu Rev 
Biochem. 2019;88: 577–604. 

37.  Wang T, Pine AR, Kotini AG, Yuan H, Zamparo L, Starczynowski DT, et al. Sequential CRISPR gene 
editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease 
targets. Cell Stem Cell. 2021;28: 1074–1089.e7. 

38.  Wesely J, Kotini AG, Izzo F, Luo H, Yuan H, Sun J, et al. Acute Myeloid Leukemia iPSCs Reveal a Role for 
RUNX1 in the Maintenance of Human Leukemia Stem Cells. Cell Rep. 2020;31: 107688. 

39.  Chang C-J, Kotini AG, Olszewska M, Georgomanoli M, Teruya-Feldstein J, Sperber H, et al. Dissecting 
the Contributions of Cooperating Gene Mutations to Cancer Phenotypes and Drug Responses with 
Patient-Derived iPSCs. Stem Cell Reports. 2018;10: 1610–1624. 

40.  Kotini AG, Chang C-J, Boussaad I, Delrow JJ, Dolezal EK, Nagulapally AB, et al. Functional analysis of a 
chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced 
pluripotent stem cells. Nat Biotechnol. 2015;33: 646–655. 

41.  Dolatshad H, Pellagatti A, Liberante FG, Llorian M, Repapi E, Steeples V, et al. Cryptic splicing events in 
the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes. 
Leukemia. 2016;30: 2322–2331. 

42.  Nikpour M, Scharenberg C, Liu A, Conte S, Karimi M, Mortera-Blanco T, et al. The transporter ABCB7 is 
a mediator of the phenotype of acquired refractory anemia with ring sideroblasts. Leukemia. 2013;27: 
889–896. 

43.  Kanagal-Shamanna R, Montalban-Bravo G, Sasaki K, Darbaniyan F, Jabbour E, Bueso-Ramos C, et al. 
Only SF3B1 mutation involving K700E independently predicts overall survival in myelodysplastic 
syndromes. Cancer. 2021;127: 3552–3565. 

44.  Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among 
gene clusters. OMICS. 2012;16: 284–287. 

45.  Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-
determining transcription factors prime cis-regulatory elements required for macrophage and B cell 
identities. Mol Cell. 2010;38: 576–589. 

http://paperpile.com/b/Gtlbm4/mQ3t
http://paperpile.com/b/Gtlbm4/mQ3t
http://paperpile.com/b/Gtlbm4/E04T
http://paperpile.com/b/Gtlbm4/E04T
http://paperpile.com/b/Gtlbm4/E04T
http://paperpile.com/b/Gtlbm4/VKfh
http://paperpile.com/b/Gtlbm4/VKfh
http://paperpile.com/b/Gtlbm4/3N4W
http://paperpile.com/b/Gtlbm4/3N4W
http://paperpile.com/b/Gtlbm4/2SQL
http://paperpile.com/b/Gtlbm4/2SQL
http://paperpile.com/b/Gtlbm4/DO67
http://paperpile.com/b/Gtlbm4/DO67
http://paperpile.com/b/Gtlbm4/DO67
http://paperpile.com/b/Gtlbm4/ELpX
http://paperpile.com/b/Gtlbm4/ELpX
http://paperpile.com/b/Gtlbm4/Ki97
http://paperpile.com/b/Gtlbm4/Ki97
http://paperpile.com/b/Gtlbm4/Ki97
http://paperpile.com/b/Gtlbm4/uu9H
http://paperpile.com/b/Gtlbm4/uu9H
http://paperpile.com/b/Gtlbm4/uu9H
http://paperpile.com/b/Gtlbm4/qPwQ
http://paperpile.com/b/Gtlbm4/qPwQ
http://paperpile.com/b/Gtlbm4/qPwQ
http://paperpile.com/b/Gtlbm4/LrgD
http://paperpile.com/b/Gtlbm4/LrgD
http://paperpile.com/b/Gtlbm4/LrgD
http://paperpile.com/b/Gtlbm4/7mfR
http://paperpile.com/b/Gtlbm4/7mfR
http://paperpile.com/b/Gtlbm4/7mfR
http://paperpile.com/b/Gtlbm4/OgET
http://paperpile.com/b/Gtlbm4/OgET
http://paperpile.com/b/Gtlbm4/ED7f
http://paperpile.com/b/Gtlbm4/ED7f
http://paperpile.com/b/Gtlbm4/ED7f


Chapter 2 

 68 

46.  Teo SH, Tan M, Knight L, Yeo SH, Ng I. Pericentric inversion 9--incidence and clinical significance. Ann 
Acad Med Singapore. 1995;24: 302–304. 

47.  Lee S-G, Park TS, Lim G, Lee K-A, Song J, Choi JR. Constitutional pericentric inversion 9 and 
hematological disorders: a Korean tertiary institution’s experience over eight years. Ann Clin Lab Sci. 
2010;40: 273–277.

http://paperpile.com/b/Gtlbm4/N3WU
http://paperpile.com/b/Gtlbm4/N3WU
http://paperpile.com/b/Gtlbm4/phUE
http://paperpile.com/b/Gtlbm4/phUE
http://paperpile.com/b/Gtlbm4/phUE


Chapter 3 

 69 

Chapter 3 

 

Predicting single cell genotypes from single cell expression 

profiles in AML using deep learning 

 

 

 
 

 

 

 

 

 

 

 

 

 

1         2         3        ….       N

model

input

output 01 1 1 0 0 1

IDH1 NRAS  +1q    +6       +8     +10     WT status

single cell mutation status

genes

IDH1

NRAS

10X scRNA-seq

10X scRNA-seq

Genotyping of transcriptomes

WT

IDH AML



Chapter 3 

 70 

3.1. Chapter abstract 

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy composed of a mixture of 

genotypically, phenotypically and functionally diverse cell populations including wild-type (WT) cells. The 

generation of high throughput single cell gene expression and mutational profiles in AML enables the 

deployment of deep learning frameworks for gaining insights on how genotypic changes are associated with 

disease phenotypes. However, the question of whether the single cell gene expression patterns together 

with the computational power of neural networks have the capacity to predict a cell’s genotype remains 

unclear. In this study, we train two supervised deep learning models to predict the cell’s malignant or wild-

type (WT) status as well as the mutational status of specific genomic abnormalities in a binary and multi-

class multi-label setting respectively, based on single cell RNA sequencing data from 6 IDH1/2-mutated AML 

patients and 4 healthy individuals. In the independent test sets, the binary classification model achieved an 

accuracy of 98% while the multi-class multi-label model achieved a macro-average AUC ROC of 0.84. 

Moreover, applying black box feature selection on the trained networks identified genes involved in 

biological processes and pathways of reported significance in AML, such as apoptosis and NF-kB related 

signaling pathways. Overall, this study proposes two deep learning tasks for the prediction of single cell 

genotypic profiles from single cell expression data and showcases how the trained models can be used for 

the derivation of biologically related signals.

3.2.  Introduction 

Acute myeloid leukemias (AML) are aggressive hematologic malignancies with acute onset, rapid progression 

and poor patient outcomes[1–3]. The pathogenesis of AML is underlied by the serial acquisition of gene 

mutations in hematopoietic stem and progenitor cells. These mutations impair normal cell regulation and 

result in a block in the differentiation of myeloid precursors towards more mature myeloid cell types. Thus, 

AML is characterized by the increased proliferation and accumulation of abnormal immature myeloid 

progenitor cells (blasts) in the bone marrow (BM) and blood[4,5]. 

Large genomic population studies have shown that AML is genetically heterogeneous and is defined by the 

gradual accumulation of multiple gene mutations with specific patterns with regards to mutation order and 

co-occurrence[6,7]. This genetic and clonal diversity in AML imposes one of the biggest challenges in treating 

and ultimately curing the disease. Understanding how specific gene mutations result in distinct populations 

of cells and elucidating how clones with distinct differentiation characteristics lead to malignancy, cannot be 

achieved by bulk sequencing approaches. The latter methods capture tissue related information and cannot 

provide information at the cellular level, thus limiting our understanding on how mutations drive AML 

pathogenesis and how genotypic changes are reflected in clone specific gene expression signals. In contrast 

to bulk approaches, single cell sequencing technologies provide insights towards the characterization of 

intra-patient cell diversity and clonal heterogeneity as well as empower the study of gene expression profiles 

between individuals with different conditions at a single cell resolution. The wealth of data generated by 

single cell sequencing has also created the opportunity for the design and implementation of deep learning 
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methods that explore the high-order structure of the data, embed cells on lower dimensional spaces, identify 

cell clusters, integrate different modalities and reveal different aspects of biological signals[8–10]. 

In AML, single cell gene expression and single cell genotypes can be combined to assign cells into distinct 

clones across the AML phylogeny. This allows the identification of different cell populations, the analysis of 

the interactions between cells and the establishment of relationships between gene expression 

heterogeneity and genotypically distinct subclones. In particular, Petti et al.[11] evaluated the capacity of 

using scRNA-sequencing reads from cryopreserved BM cells from AML patients to detect, at a single cell level, 

a set of somatic variants called by enhanced whole-genome sequencing (eWGS) on the same samples. 

Exploiting the detected single nucleotide variants (SNVs) of each cell, Petti et al. distinguished tumor and 

normal cells and examined the cell composition of identified gene expression clusters at the phenotypic and 

mutational level in an unsupervised setting. In another study, Van Galen et al.[12] utilized nanowell-based 

technology to collect single cell gene expression and mutational profiles from AML patients as well as healthy 

individuals and deployed random forests to predict the WT or malignant status of each cell in a two-step 

approach. First, Van Galen et al. applied a random forest to assign mutated AML cells a label based on a 

defined set of WT cell types and then separated malignant and WT cells by training a second random forest 

model to classify cells to WT or malignant cell type labels. 

Inspired by the work of Petti et al. and Van Galen et al. on AML as well as by the applicability of deep learning 

to single cell data, this paper first, introduces a deep learning framework to classify AML malignant and WT 

cells in a binary setting and second, attempts to predict the single cell mutational status of specific genes in 

a multi-label supervised setting. Both tasks are performed using 1. single cell gene expression profiles from 

scRNA-seq data from 6 IDH1/2-mutated AML patients and 4 WT individuals and, 2. genotype labels produced 

experimentally from applying the method of Genotyping of Transcriptomes (GoT)[13] on the same samples. 

Through this deep learning approach, we integrate single cell gene expression with single cell genotypes in 

AML and enable the identification of genes that play a significant role in these classification tasks. Our main 

contributions in this study are: i) deploying a feedforward neural network to classify cells to WT or malignant 

in a supervised approach using as input single cell expression profiles from diagnostic AML patient samples 

and healthy individuals, ii) deploying a feedforward neural network to predict the single cell mutational 

status of a specific set of genes and chromosomal abnormalities for a single patient in a supervised multi-

class, multi-label setting using the same single cell gene expression profiles, and iii) identifying features-genes 

that are important for both classification outcomes by applying the holdout randomization test (HRT)[14] on 

the trained models. 

3.3.  Data 

Study cohort 

The study cohort consists of 6 AML patients and 4 healthy individuals (N-01, N-02, N-03, N-04) from the paper 

of Sirenko et al (in review)[15]. These 6 AML patients harbored clonal IDH1 (patient IDH1i-01, patient IDH1i-
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02, patient IDH1i-03) or IDH2 (patient IDH2i-01, patient IDH2i-02, patient IDH2i-03) mutations as well as co-

mutations in one or more of the most commonly co-mutated genes in IDH1/2 AML; NPM1, NRAS, KRAS, 

SRSF2, DNMT3A (Figure 3.1A). For this cohort, scRNA-seq data were generated from BM and peripheral blood 

(PB) samples. Next to the single cell gene expression profiles,  single cell genotypic information was also 

available for the 6 AML patients for specific hotspot mutations (IDH1 p.R132, IDH2 p.R172, IDH2 p.R140, 

SRSF2 p.P95, DNMT3A p.R882, NPM1 p.W288, NRAS p.G12, KRAS p.G12), as derived from the application of 

the GoT method on the same samples[13] (Supplemental Table 3.1). Additionally, a set of chromosomal 

abnormalities (gains in chromosomes 1q [+1q/dupli_chr1], 6 [+6/dupli_chr6], 8 [+8/dupli_chr8], 10 

[+10/dupli_chr10] and 14 [+14/dupli_chr14]), as reported from inferCNV at the single cell level, is 

included[16]. We note that all patient samples were treatment naive and that the generation of the data is 

not part of the current thesis. 

Data preprocessing   

The raw scRNA-seq fastq files were aligned to the GRCh37 assembly and single cell gene expression counts 

were generated using CellRanger v3.1[17]. We enhanced the quality of the AML and healthy datasets by 

performing a series of quality control steps with scanpy[18]  including the removal of cells with less than 200 

expressed genes, of genes expressed in less than 3 cells and of cells with mitochondrial content more than 

20%. Lastly, based on cell type annotations, we remove any lymphoid-related cells. To bring the single cell 

gene expression values of the AML and healthy datasets to the same scale, we applied the sctransform 

normalization[19] using Seurat[20]. Then, we integrated the healthy and AML single cell gene expression 

profiles into a unified dataset, first by identifying correspondences between pairs of single cells from the two 

datasets, and second by transforming the gene expression values of the datasets into a common space[20]. 

This unified dataset contains in total 61,091 myeloid cells (Figure 3.1B). Applying UMAP on the top 30 

principal components and coloring these cells on the 2D UMAP space based on the dataset of origin, we can 

visually identify both overlapping and non-overlapping single cell profiles between WT and AML (Figure 

3.1C). Thus, we can rationally ask if it is possible, through deep learning, to predict 1) each cell’s status 

(malignant or WT) and 2) each cell’s genomic abnormalities based on single cell gene expression values. To 

do that, any cell, from the AML patients, with at least one hotspot mutation or chromosomal abnormality 

was labeled as malignant while every cell from the WT individuals was labeled as WT (Figure 3.1D). Therefore, 

the total number of cells used for the downstream training, validation and testing reached a total of 50,026, 

35,314 of which were malignant and 14,712 of which were WT (Figure 3.1E, Supplemental Table 3.2). 
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Figure 3.1. Study cohort and data characteristics. A) Study cohort composed of 6 AML patients and 4 healthy individuals 

from Sirenko et al (in review). The chromosomal abnormalities and genotyped mutated genes used in the study are 

listed next to each patient. B) Barplot showing the number of cells with gene expression data per individual, colored by 

dataset. C) UMAP of all cells based on their expression profiles, colored by dataset. D) Horizontal barplot showing the 

number of cells with genotypic labels per genomic abnormality, colored by dataset. E) Pieplots showing the total 

number of cells per dataset (left) and the total number of cells used for the training, validation and testing of the models. 

3.4.  Methods 

In this study we develop a binary classification and a multi-class, multi-label model to predict the cell’s 

malignant or WT status and the mutational status of specific genomic abnormalities correspondingly, using 

the single cell gene expression profiles of the integrated AML and healthy datasets. Let 𝑋 ∈ 𝑅𝑀×𝑁 be the 

single cell gene expression matrix, where 𝑀 = 50,026 is the total number of malignant and WT cells, while 

𝑁 = 1,000 is the number of genes with the highest expression variance across cells (Figure 3.2A). 

Additionally, let 𝐺 be the 𝑀 × 𝐿 matrix of genotype labels, where 𝐿 = 13 is the total set of hotspot mutations 

from GoT (n=8) and chromosomal abnormalities from inferCNV (n=5). A value of 𝐺𝑖,𝑗 = 1 denotes that the 

genomic abnormality 𝑗 is present in cell 𝑖, a value of 𝐺𝑖,𝑗 = 0 denotes that the genomic abnormality 𝑗 is not 

present in cell 𝑖, while NA denotes that there is not enough information for assigning a 0 or 1 (e.g. dropout 

in GoT) for the genomic abnormality 𝑗 in cell 𝑖 (Figure 3.2A). Since 𝑀 = 50,026 is the total number of 

malignant and WT cells, there is no single row in 𝐺 that contains only NAs. Lastly, the binary vector 𝑆 of size 

𝑀 indicates if each cell 𝑖 is malignant (𝑆𝑖 = 1) or WT (𝑆𝑖 = 0, Figure 3.2A). 

Binary classification model  

First, we deploy a feedforward neural network of 3 hidden dense layers (sizes 512, 512, 64 respectively) to 

predict if a cell is WT or malignant (𝑆𝑖) based on its expression profile 𝑋𝑖  (Figure 3.2B). In particular, the 
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network receives as input each single cell gene expression profile, creates a latent representation of this 

profile through a series of hidden non-linear operations and eventually outputs a probability estimate that 

indicates how likely each cell is to be malignant. The output 𝐻𝑖
(𝑙)

 of each hidden layer 𝑙 ∈  {1,2,3} for cell 𝑖 is 

defined as: 

𝐻𝑖
(𝑙)

 = 𝑅𝑒𝐿𝑈 (𝐻𝑖
(𝑙−1)

× 𝑊(𝑙)  + 𝑏(𝑙)) , 𝑖 ∈  {1. . 𝑀} (1) 

where  𝑊(𝑙)  and 𝑏(𝑙) are the transposed learnable weights and the bias of layer 𝑙, respectively, and 𝐻(0) =

 𝑋. The output 𝑂𝑖 of the model for cell 𝑖 is defined as: 

𝑂𝑖  = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐻𝑖
(3)

 × 𝑊(𝑜𝑢𝑡)  + 𝑏(𝑜𝑢𝑡)) (2) 

where  𝑊(𝑜𝑢𝑡)  and 𝑏(𝑜𝑢𝑡) are the transposed learnable weights and the bias of the output layer, respectively. 

The proposed end to end model is trained in a supervised fashion by minimizing the binary cross-entropy 

loss 𝐿𝐵𝐶𝐸 : 

𝐿𝑖
𝐵𝐶𝐸  =  −[𝑆𝑖 ⋅ 𝑙𝑜𝑔𝑂𝑖  +  (1 − 𝑆𝑖) ⋅ 𝑙𝑜𝑔(1 − 𝑂𝑖)], 𝑖 ∈  {1. . 𝑀}     (3) 

where 𝐿𝑖
𝐵𝐶𝐸  is the binary cross entropy loss for cell 𝑖 and 𝑂𝑖 is the output for cell 𝑖. Furthermore, to reduce 

overfitting and improve generalization, during training we used dropout regularization after the output 𝐻(𝑙) 

of each hidden layer. Upon the completion of training and the evaluation of the model performance on a 

holdout unseen test set, we identify which genes are important for the classification decision by treating the 

trained model as a black box and applying the HRT method[14] for feature selection (Figure 3.2B). HRT 

handles the feature selection task as a hypothesis testing problem and selects the features that are relevant 

to the outcome by performing conditional independence tests. Under the null hypothesis (feature 

conditionally independent of the outcome given all other features), the feature is irrelevant to the outcome. 

When the null hypothesis is rejected, then the respective feature is accounted as a discovery[14]. 

Multi-class multi-label classification model  

Next, we extend the previous binary classification model aiming to also predict the state (mutated or not 

mutated) of each hotspot position and chromosomal aberration. For this task, we develop a patient-specific 

multi-class, multi-label model for the patient with the largest amount of data (IDH1i-02) (Figure 3.1B, 

Supplemental Table 3.3). This model retains the feedforward architecture deployed earlier, but produces 7 

different outputs (Figure 3.2C), 6 of which correspond to the presence of a hotspot mutation or a 

chromosomal abnormality (𝑗 ∈ 𝐴 = {𝐼𝐷𝐻1, 𝑁𝑅𝐴𝑆, 𝑑𝑢𝑝𝑙𝑖_𝑐ℎ𝑟1, 𝑑𝑢𝑝𝑙𝑖_𝑐ℎ𝑟6, 𝑑𝑢𝑝𝑙𝑖_𝑐ℎ𝑟8, 𝑑𝑢𝑝𝑙𝑖_𝑐ℎ10}) 

and the last one (𝑗 ∈  {𝑊𝑇𝑠𝑡𝑎𝑡𝑢𝑠}) corresponds to the genotypic status of the cell (WT or malignant). The 

data used for training, validating and testing this model consists of all malignant cells from patient IDH1i-02 

(n=16,614) as well as all WT cells (n=14,712) of the cohort. We denote the sum of these cells as 𝐾 (𝐾 =

31,326). Similarly to the binary classification model, this extended network receives as input each single cell 

gene expression profile 𝑋𝑖  and creates a latent representation of this profile through a series of hidden non-

linear operations. Eventually, the network produces a probability estimate for each output 𝑗 ∈  𝐴 that 

https://paperpile.com/c/7vbgCn/uwvi
https://paperpile.com/c/7vbgCn/uwvi
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indicates how likely each mutation or chromosomal abnormality is to be present in each cell 𝑖, as well as 𝑗 ∈

 {𝑊𝑇𝑠𝑡𝑎𝑡𝑢𝑠} that indicates how likely each cell 𝑖 is to be WT (contrary to the binary classification model in 

which the output was estimating the probability of the cell being malignant).  The output 𝐻𝑖
(𝑙)

 of each hidden 

layer 𝑙 ∈  {1,2,3} (sizes 512, 512, 512 respectively) for cell 𝑖 is as in equation (1) while the model output can 

be written as: 

𝑂𝑖,𝑗  = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐻𝑖
(3)

× 𝑊𝑗  + 𝑏𝑗) , 𝑖 ∈ {1. . 𝐾}, 𝑗 ∈ 𝐴 ∪ {𝑊𝑇𝑠𝑡𝑎𝑡𝑢𝑠} (4) 

where 𝑂𝑖,𝑗  is the probability estimate for output 𝑗 for cell 𝑖, and 𝑊𝑗  and 𝑏𝑗 are the transposed weight 

parameters and the bias of the output layer, respectively, that correspond to each output 𝑗.  The proposed 

multi-class, multi-label end to end model is trained in a supervised fashion by minimizing the sum (𝐿𝑇𝑂𝑇) of 

two binary cross-entropy losses; 𝐿𝐵𝐶𝐸  that penalizes any deviation of the model output from the true output 

labels and 𝐿𝑂𝑉𝐿 that penalizes cells with high output probabilities of having any mutation and being predicted 

as WT at the same time or vice versa (low probabilities of any mutation and being predicted as malignant). 

These losses are defined as: 

         𝐿𝑖,𝑗
𝐵𝐶𝐸 =  −𝑤𝑗  [𝑇𝑖,𝑗 ⋅ 𝑙𝑜𝑔𝑂𝑖,𝑗   + (1 − 𝑇𝑖,𝑗) ⋅ 𝑙𝑜𝑔(1 − 𝑂𝑖,𝑗) ], 𝑗 ∈ 𝐴 ∪ {𝑊𝑇𝑠𝑡𝑎𝑡𝑢𝑠} , 𝑖 ∈ {1. . 𝐾}         (5) 

𝐿𝑖
𝑂𝑉𝐿 =  −[𝑚𝑎𝑥 (𝑂𝑖,𝑗 ∈ 𝐴) ⋅ 𝑙𝑜𝑔(1 − 𝑂𝑖,𝑊𝑇𝑠𝑡𝑎𝑡𝑢𝑠

) + (1 − 𝑚𝑎𝑥(𝑂𝑖,𝑗 ∈ 𝐴)) ⋅ 𝑙𝑜𝑔(𝑂𝑖,𝑊𝑇𝑠𝑡𝑎𝑡𝑢𝑠
)], 𝑖 ∈ {1. . 𝐾} (6) 

where 𝑂𝑖,𝑗  is the output prediction j for cell 𝑖, 

𝑇𝑖,𝑗 = {
1 − 𝑆𝑖 , 𝑖𝑓 𝑗 ∈  {WTstatus}

𝐺𝑖,𝑗 , 𝑖𝑓 𝑗 ∈  𝐴
     (7) 

and 𝑤𝑗 ∈ 𝑅 is the weight of each label {0,1,NA} for output 𝑗 defined as: 

𝑤𝑗 = {

0, 𝑖𝑓 𝑇𝑖,𝑗  =  𝑁𝐴

𝑣0 ∈ 𝑅, 𝑖𝑓 𝑇𝑖,𝑗  =  0

𝑣1 ∈ 𝑅, 𝑖𝑓 𝑇𝑖,𝑗  =  1
    (8) 

If the true label for output 𝑗 is NA, the model output 𝑗 cannot be evaluated for its correctness and thus based 

on equation (8), there isn’t any loss component from output 𝑗 contributing to 𝐿𝐵𝐶𝐸 . The nonzero 𝑤𝑗 (𝑣0 for 

label 0 and 𝑣1 for label 1) are computed based on the prevalence of the labels {0,1} in 𝐺𝑗. The total loss for 

cell 𝑖 is defined as: 

𝐿𝑖
𝑇𝑂𝑇  = 𝐿𝑖

𝑂𝑉𝐿  +
∑𝑗 ∈ 𝐴∪{𝑊𝑇𝑠𝑡𝑎𝑡𝑢𝑠} 𝐿𝑖,𝑗

𝐵𝐶𝐸

7
 , 𝑖 ∈  {1. . 𝐾} (9) 

Similarly to the binary classification model, we used dropout regularization after the output 𝐻(𝑙) of each 

hidden layer. Additionally, we apply the HRT method[14] on the trained model to identify the genes that play 

a significant role in the positive prediction of the NRAS mutation. 

https://paperpile.com/c/7vbgCn/uwvi
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3.5.  Results 

Binary classification model accurately predicts malignant cells from WT cells 

For the binary classification task we split the data into training, validation and test sets. The model was 

trained and optimized based on the training and validation sets and tested for its performance on the holdout 

test data. Particularly, it was trained for 283 epochs in batches of 64 cells using the Adagrad optimizer with 

a learning rate of 0.013 and a weight decay of 0.01 (Supplemental Figure 3.1).  

Outputs with a probability higher than 0.5 were regarded as positive and represented malignant predictions, 

whereas the rest were regarded as negative and represented WT predictions. The evaluation of the model 

performance on the test set (Figure 3.3A) showed that the model has the capacity to separate malignant 

from WT cells with an accuracy of 98%, precision of 98% and recall of 99%, resulting  in 70.19% of the test 

set cells being True Positives (TP, malignant cells that were correctly classified as such), 28.28% being True 

Negatives (TN, WT cells that were correctly classified as such), 1.13% being False Positives (FP, WT cells that 

were classified as malignant) and 0.4% being False Negatives (FN, malignant cells that were classified as WT).  

Additionally, running the HRT method twice on the test set in the context of identifying the most important 

features for this classification task, led to the selection of 58 common genes between the two runs with a 

Benjamini-Hochberg (BH) adjusted p-value<0.05. To find out if these genes share similar biological functions 

or participate in the same biological processes, we performed a gene ontology and pathway enrichment 

analysis[21] on this selected set of genes which showed the enrichment of processes related to apoptosis 

(BH adjusted p-value = 0.009, e.g. MCL1, HMGB2) as well as of the TGF-beta signaling pathway (BH adjusted 

p-value = 0.005, e.g. ID1, JUNB) (Figure 3.3B). We further used this trained model to search for the presence 

of WT-like cells within the AML patients (Figure 3.3C). Applying the model to the cells of the AML patients 

that were not part of the training, validation and test sets, we find a small portion of cells within each patient 

that present a phenotype similar to that of the WT cells (WT-like). In total, these WT-like predictions are the 

4.1% of this cell-set and 56% of them correspond to myeloid differentiated cells (Figure 3.3D), which may 

have escaped the differentiation block and reached myeloid maturation. Notably, only 8% of the malignant 

predicted cells of this set correspond to myeloid differentiated ones, indicative of the differentiation block 

that characterizes the disease. 

 

https://paperpile.com/c/7vbgCn/xFAa
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Figure 3.2. Data representation, frameworks and use of model equations. A) 2D single cell gene expression matrix 𝑋 ∈

𝑅𝑀×𝑁 (left), 2D single cell genotype matrix 𝐺, 𝐺𝑖,𝑗 ∈  {0,1, 𝑁𝐴}, 𝑖 ∈  {1. . 𝑀}, 𝑗 ∈ 𝐴 ∪ {𝑊𝑇𝑠𝑡𝑎𝑡𝑢𝑠} (middle) and 1D matrix 

𝑆, 𝑆𝑖 ∈  {0,1}, 𝑖 ∈  {1. . 𝑀} representing if a cell is malignant or WT (right). B) Binary classification model and use of 

model equations in a forward pass example. The model receives as input single cell expression profiles 𝑋𝑖, produces a 

series of latent representations 𝐻𝑖
(𝑙)

, 𝑙 ∈  {1,2,3} and outputs the probability (𝑂𝑖 , 𝑖 ∈  {1. . 𝑀}) of a cell 𝑖 being malignant 

using the sigmoid activation function. The binary cross entropy loss (𝐿𝑖
𝐵𝐶𝐸) between the output probability 𝑂𝑖  and the 

true label 𝑆𝑖  is used during training. 𝑊(𝑙)  are the transposed weight parameters and 𝑏(𝑙) is the bias of layer 𝑙 , 𝑙 ∈

 {1,2,3}, while 𝑊(𝑜𝑢𝑡)  and 𝑏(𝑜𝑢𝑡) are the transposed weight parameters and the bias of the output layer, respectively. 

C) Multi-class multi-label model and use of model equations in a forward pass example. The model receives as input 

single cell expression profiles 𝑋𝑖, produces a series of latent representations 𝐻𝑖
(𝑙)

, 𝑙 ∈  {1,2,3} and outputs the 

probabilities 𝑂𝑖,𝑗  of a cell 𝑖 ∈  {1. . 𝐾} (𝐾 is the total number of cells from IDH1i-02 and the WT Cohort) harboring each 

genomic abnormality 𝑗 ∈ 𝐴 and the probability of cell 𝑖 being WT (𝑗 ∈  {𝑊𝑇𝑠𝑡𝑎𝑡𝑢𝑠}). The model is developed for patient 

IDH1i-02 using this patient’s cells and the WT cells from the healthy individuals too. Besides the binary cross entropy 

loss 𝐿𝑖,𝑗
𝐵𝐶𝐸  between 𝑂𝑖,𝑗  and the true label for 𝑗 ∈ 𝐴 ∪ {𝑊𝑇𝑠𝑡𝑎𝑡𝑢𝑠}, the training of this model also uses 𝐿𝑖

𝑂𝑉𝐿, a binary cross 

entropy loss between the maximum probability of a genomic abnormality being present and the probability of the cell 

𝑖 being malignant. The total loss 𝐿𝑖
𝑇𝑂𝑇 for cell 𝑖 during a training iteration is the sum of 𝐿𝑖

𝑂𝑉𝐿 and the average of 𝐿𝑖,𝑗
𝐵𝐶𝐸  
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across all outputs 𝑗. 𝑊(𝑙)  and 𝑏(𝑙) are the transposed weight parameter and the bias of layer 𝑙 , 𝑙 ∈  {1,2,3} respectively, 

while 𝑊𝑗 and 𝑏𝑗 are the transposed weight parameters and the bias of the output layer, respectively, that correspond 

to each output 𝑗. The HRT method is applied on both trained models for black box feature selection.  𝑀: total number 

of cells; 𝑁: number of input features (genes); 𝐴 is the set of genomic abnormalities. 

Multi-label classification model effectively predicts NRAS mutational status 

For the multi-class multi-label classification framework, we split the data to training, validation and test, 

ensuring at the same time that all sets contain cells with genomic abnormalities for every output 𝑗 ∈  𝐴 

(there is at least one 𝑖 ∈ {1. . 𝐾} for which 𝐺𝑖,𝑗= 1, 𝑗 ∈  𝐴). The model was trained and optimized based on 

the training and validation sets and tested for its performance on the unseen test data similarly to the binary 

classification model. In this case, the model was trained for 68 epochs in batches of 128 cells using the SGD 

optimizer with a learning rate of 0.086 and a weight decay of 0.001 (Supplemental Figure 3.2). 

In this multi-class multi-label setting we do not use the 0.5 probability threshold to determine positive and 

negative outcomes, but we adjust the classification threshold for each output separately. The threshold 

selected for each output was the one achieving the highest f1 score on the precision-recall curve of the 

validation set. Therefore, each output 𝑗 with probability estimate higher than the output-specific threshold 

was regarded as positive (predicted presence of genomic abnormality 𝑗 ∈  𝐴, predicted WT for 𝑗 ∈

 {𝑊𝑇𝑠𝑡𝑎𝑡𝑢𝑠}) while every output with  probability estimate below that threshold was regarded as negative 

(predicted absence of genomic abnormality for 𝑗 ∈  𝐴, predicted malignant for 𝑗 ∈  {𝑊𝑇𝑠𝑡𝑎𝑡𝑢𝑠}). 

 

 

Figure 3.3. Results of the binary classification model. A) Confusion matrix of the binary classification model on the test 

set. B) Dotplot showing AML related biological processes and pathways that are enriched in the set of selected genes 

resulting from the application of HRT for the test set on the binary classification model. The y axis presents the terms, 

the x axis shows the statistical significance for each term and the color of the dots indicates the odds ratio of the terms. 

C) Barplot showing the predictions of the binary classification model on the set of cells not used in the training, 

validation and testing of the model (cells without available genotypic information). The x-axis shows the patients and 

the color indicates the model prediction. D) Nested donut plot showing the model predictions on the cells not used in 

the training, validation and testing (outer) along with the indication of the myeloid maturation stage (inner). 

Similar to the binary classification case, this model also achieves the (98% of the predictions are correct) 

separation between malignant and WT cells on the test set (Figure 3.4A). Complementary to this, we also 

note for clarity that the model does also predict absence of genomic abnormalities (𝑗 ∈  𝐴) in almost all (in 
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2262 out of the 2272) of the WT predicted cells. As far as genomic abnormalities (𝑗 ∈  𝐴) are concerned, the 

model performance is assessed only on the malignant cells of the test set. In this context, the model achieved 

near optimal results on the prediction of the chromosomal abnormalities, especially of dupli_chr6 and 

dupli_chr10 (Figure 3.4A), achieving an AUC ROC higher than 0.96 for all (Figure 3.4B, for dupli_chr1, no AUC 

ROC is computed as all cells had a chromosome 1 gain). Regarding the mutations, the model demonstrated 

a considerable performance for subclonal NRAS achieving an AUC ROC of 0.83 (Figure 3.4B, Supplemental 

Table 3.4), in contrast to its limited capacity to correctly predict the mutational status of clonal IDH1. The 

latter may be due to the lack of IDH1 WT cells from the cohort and consequently the training set (Figure 3.4C, 

Supplemental Table 3.3).  

Given the performance of the model on NRAS as well as the fact that NRAS is one of the most commonly co-

mutated genes in AML[7], we applied the HRT method twice on the cells of the test set that were predicted 

to have an NRAS mutation. This led to the selection of 82 common genes between the two runs (BH adjusted 

p-value<0.05) as important for the positive NRAS prediction. Gene ontology and pathway enrichment 

analysis on this set of genes showed, among others, association of these genes with inflammatory responses 

(BH adjusted p-value = 0.006, e.g. RNF144B, TLR2) as well as the TNF-alpha signaling via NF-kB (BH adjusted 

p-value = 0.00003, e.g. BTG2, SAT1) and IL-2/STAT5 (BH adjusted p-value = 0.028, e.g. XBP1, HOPX) signaling 

pathway (Figure 3.4D). We note that the outcome of the enrichment analysis shows which terms are over-

represented in the set of genes derived from HRT and does not imply the up or down-regulation of the 

processes/pathways and their matched genes.     

3.6.  Discussion 

In this study, in the context of IDH1/2 AML and using as input single cell gene expression profiles, we propose 

a binary classification and a multi-label deep learning model to predict the Malignant or WT status of single 

cells and their specific genomic abnormalities, respectively. To develop these models, we integrated the 

single cell gene expression and genotypic data from 6 IDH1/2-mutated AML patients and 4 healthy 

individuals from Sirenko et al (in review). Motivated by the work of Van Galen et al. on AML, who deployed 

cell type labeling and two random forest models to separate between malignant and WT cells, this paper 

leverages the computational power of deep learning models to not only predict malignant vs WT cell status, 

but also identify the mutational status of genomic abnormalities for a single patient despite missing data. In 

particular, the multi-class multi-label architecture aims to shape internal cell representations through the 

sharing of information learned from different outputs, recovering that way for the excessive absence of 

mutation labels for some genomic abnormalities. 

https://paperpile.com/c/7vbgCn/E0e2
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Figure 3.4. Results of the multi-label classification. A) Confusion matrix for each output of the multi-class multi-label 

model on all test set cells for 𝑗 ∈  {𝑊𝑇𝑠𝑡𝑎𝑡𝑢𝑠} and on the test set cells of patient IDH1i-02 for 𝑗 ∈  𝐴 in which 𝐺𝑖,𝑗   𝑁𝐴. 

B) ROC curve for each output 𝑗 ∈  𝐴 of the multi-class multi-label model along with the respective AUC on the test set. 

C) Barplot showing the number and mutational status of the cells from patient IDH1i-02 used for the training and 

validation of the multi-class multi-label model. The x axis shows the genomic abnormalities and the color indicates the 

presence, absence or unavailability of the label. D) Dotplot showing the biological processes and pathways that are 

enriched in the set of selected genes resulting from the application of HRT on the multi-class, multi-label model for the 

test set cells with a predicted NRAS mutation. The y axis presents the terms, the x axis shows the statistical significance 

for each term and the color of the dots indicates the odds ratio of the terms.  

Both deep learning models showed similarly excellent performance in classifying malignant from WT cells 

(98 % correct test set predictions from both models) while the multi-class multi-label model for patient IDH1i-

02 presented remarkable results in predicting the status of chromosomal abnormalities and of NRAS, in 

contrast to IDH1. We believe that the superior performance of the model on NRAS compared to IDH1 is 

related to the limited genotyping efficiency of IDH1 in the Sirenko et al. data, but it could also depend on the 

different acquisition stages of the two mutations. Specifically, IDH1 is a clonal mutation, while the acquisition 

of NRAS in patient IDH1i-02 is a later event that might have such an effect on the gene expression profiles of 

the mutated cells that makes them more easily distinguishable for the model. The fact that NRAS is a 

subclonal event with higher genotyping efficiency than IDH1, provided for patient IDH1i-02 a quite balanced 

set of NRAS genotyped cells in which 37% is NRAS WT (Figure 3.4C). That allowed us to train a patient-specific 

model with considerable results for NRAS. Excluding the chromosomal abnormalities, we note that within 

each of the other patients of the cohort, there were at least two mutations in which the gene specific status 

was WT for less than 30% of the cells.  

Figure 4 (IDH1i-02 results)
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The superior performance on NRAS demonstrates that this classification task is optimal when addressing 

cells with a spread of mutant and WT representations such as sub-clones. This is of significant translational 

and clinical relevance as it is often such emerging subclones that carry mutations that confer resistance to 

treatment, and that seed disease relapse and progression. This will allow one to characterize the biological 

determinants of specific gene mutations across cell lineages that result in treatment resistance and disease 

progression as opposed to phenotyping disease initiating mutations that are present in all the cells (e.g. 

IDH1/2). 

In the context of obtaining a better understanding of the classification decisions and deep learning model 

behavior, white box interpretability methods have recently gained much attention[22,23]. However, a 

number of those (e.g. Integrated Gradients, DeepLift, SHAP variants, Feature Ablation and Occlusion) are 

based on input baselines[23], the setting of which in the context of the heterogeneous single cell gene 

expression profiles is tricky and might influence the resulting interpretation. Thus, by applying the HRT 

feature selection method, we show how these trained models can be treated as black boxes for recovering 

biologically related associations between the model outputs and the input genes. The HRT results in the 

binary classification model show that the selected features are, among others, enriched in the TGF-beta 

signaling pathway, the significance of which in the context of AML has been previously reported[24,25]. The 

HRT results for NRAS predictions in the multi-class, multi-label setting present an association with 

inflammation related processes, the role of which in AML and other hematologic malignancies has also been 

previously examined[26,27]. We note that given the shared input between the two models as well as the 

fact that the positive NRAS predictions are also malignant ones, there is an overlap between the associated 

biological terms in both models. Apoptotic processes and NF-kB related signaling pathways, which have 

central impact on the cellular functions in AML[28,29], were, among others, associated with the selected 

genes of both classification tasks.  

To conclude, this study first deployed two deep learning frameworks that integrate single cell gene 

expression profiles and genotypes, and second leveraged them to extract biological signals related to disease. 

To develop these models we carefully selected a sample set that includes healthy individuals (n=4), as well 

as patients (n=6) with representative genotypes from IDH1/2-mutated AML, for which both scRNA-seq data 

coupled to single cell genotyping of transcriptomes (GoT) data were generated. While acknowledging the 

small cohort size of the study, we note that GoT is a very laborious technique that cannot be readily scaled, 

and the significant cost of the combined assays (scRNA-seq and single cell genotyping) prohibits at present 

the generation of such data at scale. As part of the analysis, we composed a set of thousands of cells with 

different genotypes, normalized this set to reduce patient-specific effects, and used it to train frameworks 

that operate at a single cell level and predict specific genotypes. Future efforts encompassing larger sample 

sets may focus on enriching the genotype-phenotype associations derived hereby. Additionally, the approach 

of this study can be extended not only to different scientific questions within the same dataset (e.g. 

classifying IDH1 vs IDH2 cells), but could also be acquired in similar data settings in other diseases. Lastly, 

future directions could concentrate on overcoming integration issues across single cell RNA-seq data from 

different sources and technology protocols so that the proposed frameworks can be readily applicable 

without retraining or calibration on unseen patients on a wide research or clinical scale. 

https://paperpile.com/c/7vbgCn/uWpH+17Ye
https://paperpile.com/c/7vbgCn/17Ye
https://paperpile.com/c/7vbgCn/PF4w+EadB
https://paperpile.com/c/7vbgCn/4Jna+yMHr
https://paperpile.com/c/7vbgCn/aqUg+wycS
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3.7.  Supplementary 

3.7.1.  Supplemental methods 

Model training 

The models were developed in pytorch[30] under python 3.7.1. Hyperparameter tuning (learning rate, 

weight decay, optimization algorithm) was performed using the Asynchronous Successive Halving Algorithm 

(ASHA)[31]. Gene enrichment analysis was conducted using GSEApy[32].  

Data and code availability 

The work presented in this chapter has been published here (Association for Computing Machinery, 

International Conference on Bioscience, Biochemistry and Bioinformatics 2023 Conference proceedings).  

A github repository containing the models’ source code is available at the Papaemmanuil lab github page 

(https://github.com/papaemmelab/Asimomitis_ACM_2023). The single cell dataframes used for the 

training, validation and testing of the models will become available upon publication of the Sirenko et al. 

3.7.2.  Supplemental figures 

 

 

Supplemental Figure 3.1. Curves for the training and validation loss for the binary classification model across epochs. 

 

https://paperpile.com/c/7vbgCn/uSDM
https://paperpile.com/c/7vbgCn/rRB8
https://paperpile.com/c/7vbgCn/cQMV
https://doi.org/10.1145/3586139.3586140
https://github.com/papaemmelab/Asimomitis_ACM_2023
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Supplemental Figure 3.2. A) Curves for the training and validation loss for the multi-label classification model across 

epochs. B) The two components (𝐿𝑂𝑉𝐿 and the average of 𝐿𝐵𝐶𝐸) of the training loss for the multi-label classification 

model. 

3.7.3.  Supplemental tables 
 
Supplemental Table 3.1. Patient-specific genotypic profiles (genotyped mutations and chromosomal gains) used in the 
study. 
 

Patient Genotyped mutations Gains in chromosomes 

IDH1i-01 IDH1, NPM1 - 

IDH1i-02 IDH1, NRAS 1q, 6, 8, 10 

IDH1i-03 IDH1, NPM1, KRAS - 

IDH2i-01 IDH2 p.R172, SRSF2 8,14 

IDH2i-02 IDH2 p.R140, DNMT3A, SRSF2 8 

IDH2i-03 IDH2 p.R140, DNMT3A, SRSF2 - 
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Supplemental Table 3.2. Breakdown, across cohort individuals, of the 50,026 cells used for the tuning and testing of the 
binary classification model. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Supplemental Table 3.3. Number of cells per mutational status for each genomic abnormality of patient IDH1i-02, used 
for the model tuning (training, validation) and the hold out test set of the multi-label framework.  

 
 
 
 
 
 
 

Patient Model tuning Hold out test set 

IDH1i-01 506 45 

IDH1i-02 15647 967 

IDH1i-03 1181 68 

IDH2i-01 4618 311 

IDH2i-02 7755 491 

IDH2i-03 3488 237 

N-01 4141 265 

N-02 4044 240 

N-03 1911 137 

N-04 3733 241 

            Model tuning           Hold out test set 

  NA Not mutated Mutated NA Not mutated Mutated 

IDH1_R132 11127 12 252 5017 15 191 

NRAS_G12 10455 398 538 4598 173 452 

dupli_chr8 0 1261 10130 0 225 4998 

duplic_chr10 0 9473 1918 0 3535 1688 

dupli_chr6 0 9478 1913 0 3542 1681 

dupli_chr1 0 0 11391 0 0 5223 
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Supplemental Table 3.4. Performance metrics of the multilabel classification model on the hold-out test set of patient 
IDH1-02. (TNR: True Negative Rate, ROC AUC: Area Under the ROC curve). 
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Chapter 4 

 

Concluding remarks 

 

4.1. Conclusion 

Myeloid neoplasms are a complex set of prevalent and clonal hematologic malignancies characterized by 

genetic and phenotypic heterogeneity. Despite significant advances in the elucidation of the gene mutations 

that are frequently acquired in myeloid neoplasms, our understanding of the respective mechanisms, 

whereby these mutations cause disease pathogenesis, remains largely incomplete. To this end, advances in 

the development of patient relevant models of disease biology coupled to the deployment of high-

throughput single and multi-omic laboratory assays set out to link established drivers of disease biology to 

specific molecular phenotypes. The scale and complexity of the data generated in research studies of MNs 

require the design and development of computational frameworks tailored to analyze such high-dimensional 

datasets. Thorough data analysis and interpretation of omic-based studies rely on the integration of multiple 

data views. This integration can be achieved either through the process of fusing data views towards facing 

supervised or unsupervised tasks (e.g. prediction, classification, clustering) or the process of interconnecting 

them towards studying the cross-talk between them.        

This thesis develops analytical strategies based on multi-view data integration. We deploy data fusion and 

interconnection concepts to develop analytical frameworks within and across different omics views. We 

investigate the effects of the SF3B1K700E mutation in the molecular landscape of MDS (Chapter 2) and capture 

prominent genotype-phenotype associations in IDH1/2-mutated AML (Chapter 3). The first study performs 

an interpretable multi-stage fusion of splicing, transcript usage and gene expression and results in a splicing 

signature that can accurately predict the SF3B1 mutational status. Concurrently, the work presented here 

provides a comprehensive representation of the chromatin accessibility landscape and among others,  

nominates transcriptional programs with putative roles in MDS disease biology. In Chapter 3 (IDH1/2 AML), 

we show that deep learning approaches applied on single cell gene expression and genotypic data, have the 

capacity to effectively predict the malignant status of cells and, importantly, the status of subclonal genomic 

abnormalities such as NRAS. Overall, the analytical frameworks presented herein demonstrate that the 

deployment of multi-view data integration concepts for the mining of bulk and single cell sequencing data in 

myeloid neoplasms, leads to a systematic and detailed profiling of molecular landscapes and enhances our 

ability to study genotype-phenotype relationships. The derived outcomes show that these approaches offer 
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the opportunity to establish links between diverse data views (e.g. links between splicing and transcript 

usage in Chapter 2 or effect of NRAS mutation on gene expression in Chapter 3) and characterize key signals 

related to disease biology. 

The computational approaches of this thesis can be applied in extended datasets across MNs and other 

cancer indications. In a broader perspective, the rationale used for the integration of different data views 

from bulk RNA-seq data in Chapter 2, can be applied to other studies investigating the role of splicing factor 

mutations across relevant signals that can be quantified by transcriptome sequencing (expression, splicing, 

transcript usage). Given that mutations in splicing genes are not restricted to MDS, deploying the proposed 

multi-stage fusion framework in other diseases can enhance tissue-specific gene target prioritization and 

offer a thorough understanding of the transcriptomic repertoire through the derivation of signals from 

splicing analyses, transcript usage and gene expression. Additionally, concurrent bulk RNA and ATAC-seq in 

larger cohorts may enable the use of meta-dimensional fusion approaches that can jointly model patterns 

from the transcriptome and chromatin accessibility.  

The supervised deep learning approaches of Chapter 3 can be deployed either to expand the genotype-

phenotype associations derived herein in the context of MNs or to study the interconnection between single 

cell transcriptomes and genotypes in other translational studies. For instance, in IDH1/2 AML, future efforts 

may focus on investigating links between the transcriptomic profiles and the genotypes of IDH1 vs IDH2 

mutated cells. Other studies in oncology, especially in cancer indications with the presence of different 

genetic clones, can use matched transcriptomic and genomic data within classification or prediction tasks to 

explore if and how the acquired mutations and their clonality are reflected in the single cell gene expression 

profiles. We note that the approaches developed herein can be also used to study the associations between 

single cell genomic and chromatin accessibility profiles, as these architectures are compatible with the use 

of single cell ATAC-seq data as input instead of gene expression. However, a prerequisite for the efficient 

performance of the presented deep learning models is the presence of well-annotated and extensive data 

sets. Given though the challenges and limitations (e.g. cost, labor-heavy work) in aggregating larger sample 

sets and improving technical procedures upon the data generation process, future initiatives may focus on 

overcoming integration issues across single cell data (e.g. scRNA-seq) from different sources and technology 

protocols. This will enable the proposed frameworks to be easily applicable, without extensive retraining or 

calibration, on unseen patients in a wide research or clinical scale.  

The fact that MNs present a phenotypic continuum of malignancies that share genomic abnormalities and 

treatment strategies, motivates the use of multi-view integration approaches at larger population scales on 

patients across the whole spectrum of the disease (MNs). Beyond bulk and single cell sequencing data, future 

incorporation of further data modalities that are commonly ascertained at diagnosis (such as digital 

pathology and immunophenotyping) into data integration strategies may have the power to reveal patient 

subgroups with molecular resemblance irrespective of their clinical annotations, and also unravel 

associations between genotypes and other data profiles.  

It is worth highlighting though, that the addition of extra modalities needs to be coupled with the thoughtful 

formulation of scientific questions, the careful selection of cohorts and the mindful design of experimental 
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processes. Based on the experience acquired through the training process of this journey, I believe that the 

generation of data with minimum technical noise plus the collection and annotation of larger sample sizes 

are the foundation for data-driven research and provide the power to the downstream models to exploit the 

complementarity of the measurements and capture solid patterns between views. Moreover, from a 

computational perspective, considering the common challenges in processing and mining data from 

emerging omic technologies and other modalities, I note that efforts for consensus computational guidelines 

and literacy amongst research initiatives will be very beneficial for the advancement of translational research 

and will set the ground for the establishment of applicable pipelines with clinical utility. Given the multi-

faceted nature of myeloid neoplasia, the collection of high quality multi-view datasets together with 

integration strategies and collaborative efforts from physicians, engineers and computational scientists are 

pivotal for the identification of the relevant molecular biomarkers and their adoption in clinical practice.  

4.2. Data and code availability 

A github repository containing the code used in generating the figures and the analysis results of Chapter 2 

is available at the Papaemmanuil lab github page (https://github.com/papaemmelab/MDS_SF3B1_iPSC). The 

data used for this project (Chapter 2) are deposited in the Gene Expression Omnibus (GEO) under the  

accession number GSE184246. For Chapter 3, a github repository containing the models’ source code is 

available at the Papaemmanuil lab github page (https://github.com/papaemmelab/Asimomitis_ACM_2023). 

The single cell dataframes used for the training, validation and testing of the models will become available 

upon publication of the Sirenko et al.      

 

https://github.com/papaemmelab/MDS_SF3B1_iPSC
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE184246
https://github.com/papaemmelab/Asimomitis_ACM_2023
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