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Summary

Myeloid malignancies consist of a heterogeneous spectrum of clonal stem cell disorders driven by genetic
alterations, resulting in dysregulated hematopoiesis. The investigation of the mechanisms underpinning
myeloid neoplasia relies primarily on experimental models of disease biology and the phenotyping of primary
patient samples using emerging genomic technologies. In recognition of the increasing complexity, scale and
dimensionality of the datasets generated by these approaches, this thesis focuses on the development of
analytical frameworks that operate within and across different omics modalities (genomics, transcriptomics,
epigenomics) and sequencing techniques (bulk and single cell), and set out to enhance the understanding of
the underlying biology of myeloid neoplasms. Specifically, this work deploys principles from multi-view data
fusion and interconnection to analyze signals in an integrative manner, aiming to elucidate molecular
landscapes and assist the study of phenotypes at a genetic level.

Chapter 2 investigates the transcriptional repertoire and chromatin profile of SF3B1-mutated
Myelodysplastic Syndromes (MDS), leveraging bulk RNA and ATAC sequencing data from patient-derived
genetically matched normal and SF3B1-mutated induced pluripotent stem cell (iPSC) lines. We introduce a
multi-stage fusion framework that merges signals from diverse data layers obtained from transcriptome
sequencing (splicing, transcript usage, gene expression). The analytical framework developed as part of this
work leads to the derivation of a splicing signature linked to 34 genes, which associates with the SF3B1
mutational status of primary MDS patient cells. Additional unimodal chromatin accessibility analysis showed
increased priming of SF3B1 hematopoietic progenitors toward the megakaryocyte-erythroid lineage, as well
as the enrichment of motifs from the TEA (TEAD) domain in accessible regions linked to genes with
upregulated expression. Overall, chapter 2, applies a multi-stage fusion approach on transcriptomic data
views to prioritize mis-spliced gene targets, and concurrently provides a formal overview of the SF3B1-
mutated chromatin landscape and nominates transcriptional programs with putative roles in MDS disease
biology.

Chapter 3 examines if single cell gene expression signals together with the computational capacity of neural
networks are able to predict a cell’s malignant status and subsequently its genotype for specific abnormalities
in IDH1/2-mutated Acute Myeloid Leukemia (AML). To this end, using single cell RNA sequencing data from
50,026 cells, a feedforward neural network was trained to predict the cell’s malignant or wild-type (WT)
status in a binary fashion, achieving an accuracy of 98% on the holdout test set. Furthermore, in a multi-label
setting, this work deploys a similar architecture to predict the mutational status of specific genomic
abnormalities at the single cell level, showing a macro-average AUC ROC=0.84 and NRAS mutational status
prediction AUC ROC=0.83 on the holdout test-set. Altogether, chapter 3 applies deep learning in a supervised
context to explore the connection between single cell gene expression profiles and genotypes in IDH1/2 AML
and shows the potential of such modeling approaches in capturing meaningful genotype-phenotype

relationships.
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Extended summary

Introduction

Myeloid Neoplasms (MNs) constitute a continuum of clonal proliferative disorders, which are comprised of
chronic phases including Myeloproliferative Neoplasms (MPN), Myelodysplastic Syndromes (MDS), and
acute stages i.e. Acute Myeloid Leukemia (AML). MNs typically arise from the acquisition of genetic
abnormalities that disrupt normal hematopoiesis. In recent years, genome profiling studies have delivered a
detailed catalog of the somatic mutations in MNs. However, understanding the mechanisms leading to
myeloid transformation and the effectors of disease biology relies on the development of experimental
models (murine, cell based, organoids) as well as the phenotyping of primary patient samples. Such
approaches are typically combined with profiling assays that analyze a sample’s genome, transcriptome and
epigenome. Next to the well-established bulk sequencing techniques, the more recent advancements of
single cell technologies have also added to the routine yield of high-throughput and extensive omics datasets.
These datasets contain distinct data views (representations or sets of features derived from the measured
biomolecules either within or across modalities) that permit the investigation of molecular properties at
multiple omic levels (genomic, transcriptomic or epigenomic). However, analyses focusing on a single data
view do not lead to the full characterization of molecular landscapes and the establishment of genotype-
phenotype associations. Thus, the development of analytical frameworks that allow for the integration and
interpretation of multiple data views offers an opportunity to study the representation of different molecular
layers and the relationships between them. In recognition of the increasing complexity, scale and
dimensionality of the generated data as well as the need for gaining multi-faceted insights on disease
behavior, this thesis sets out to develop analytical frameworks aiming to enhance the understanding of the
underlying biology of myeloid neoplasms. Specifically, this work uses principles from multi-view data fusion
and interconnection as a means of integrating signals within and between omics modalities (genomics,
transcriptomics, epigenomics) either from bulk or single cell sequencing techniques. The presented analyses
and the frameworks developed in the context of it, set out to elucidate molecular landscapes and assist the
study of phenotypes at a genetic level, focusing on SF3BI1-mutated MDS and IDH1/2-mutated AML
correspondingly.

Patient-specific MDS-RS iPSCs define the mis-spliced transcript repertoire and
chromatin landscape of SF3B1-mutant HSPCs

Background

Myelodysplastic syndromes (MDS) are myeloid malignancies characterized by ineffective hematopoiesis,
blood cytopenias, and an increased risk of progression to AML. Recent sequencing studies have emphasized
the role of mutations in splicing factor genes (SF3B1, SRSF2, ZRSR2, U2AF1) as initiating and MDS defining.
Among these splicing factor genes, SF3B1 is the most frequently mutated one in MDS (~ 24 % patients) and

iX



defines a distinct nosologic entity, termed MDS with ring sideroblasts (MDS-RS). Mutations in SF3B1 are
commonly found as isolated events, mainly target the K700 hotspot and are associated with favorable
outcomes. Despite the characterization of the molecular landscape in MDS, how such mutations drive
disease pathogenesis and how they can inform clinical management remains unclear. In this study, by
leveraging data from an experimental iPSC model, we explore the downstream consequences of the
SF3B1%7%%F mutation and its role in disease pathogenesis through the integration of multiple views from the
transcriptome and the examination of the SF3B1X7%¢ chromatin accessibility landscape.

Data & Methods

Hereby, we used a panel of 18 genetically matched SF3B1%79% and SF3B1"7" induced pluripotent stem cell
(iPSC) lines derived from 3 MDS-RS patients who harbored isolated SF3B1%7% mutations. For these iPSC
lines, directed hematopoietic differentiation was performed using protocols from the Papapetrou laboratory
and CD34*/CD45* human stem and progenitor cells (HSPCs) were collected for RNA and ATAC-sequencing.
(We note that the generation of the data is not part of the current thesis). HSPC samples from 16 iPSC lines
were included in the RNA-seq analyses after quality control of the raw data. RNA-seq reads were aligned and
used for the quantification of transcript abundance and the generation of the gene counts. Differential gene
expression analysis, transcript usage analysis and splicing analysis were conducted between SF3B1%790 ys
SF3BIMT cells. To assess the impact of the SF3B1¥79% mutation at the exon, transcript and gene level, we
combined signals from these 3 analyses in a multi-stage fusion setting. First, we identified the set of
transcripts that contain the exons present in each differential splicing event. Then, we paired each
differential splicing event with the set of differentially used transcripts. The pairs that belonged to genes with
a statistically significant expression log,fc and contained a differential splicing event with an FDR value within
the 20 lowermost ones, were considered as the “tier 1” set. From this set, we derived the mutant SF3B1
signature events and genes. Additionally, HSPC samples from 15 iPSC lines were included in the ATAC-seq
analysis. After read alignment and quality control, we identified chromatin accessibility peaks and created
an ATAC-seq atlas. This atlas was used for downstream differential accessibility analysis, correlation with the
accessibility landscape of the normal hematopoietic hierarchy as well as motif enrichment analysis.

Results

Principal component analysis (PCA) and hierarchical clustering based on gene expression grouped the iPSC
lines primarily by genotype (SF3B1X7%% ys SF3B1"T). Additionally, differential analyses revealed 2737
differentially expressed genes, 1086 differentially used transcripts and 1829 differentially spliced events
between SF3B1%7%%F and SF3B1T cells. Integrating the signals from these analyses using our multi-stage
fusion approach resulted in the derivation of a splicing signature consisting of 59 splicing events linked to 34
genes. We tested this signature against a published dataset of primary MDS patient samples (Pellagatti et al.
Blood 2018). Specifically, PCA based on the inclusion level of the splicing events of our signature separated
SF3B1-mutated MDS patients from patients without splicing factor mutations (SF-WT) or healthy individuals.
Importantly, it identified one patient erroneously annotated as SF-WT that clustered together with the
SF3B1-mutated patients. This patient had a previously overlooked 6 base pair (bp) in-frame deletion spanning
the K700E hotspot. Comparing our ATAC-seq peak atlas to the chromatin accessibility profiles of primary
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human cell types along the hematopoietic hierarchy (Corces et al. Nat Genetics 2016), we found that the
chromatin landscape of SF3B1%7%% HSPCs resembled more that of megakaryocyte-erythroid progenitor cells
(MEPs) and erythroid cells. Furthermore, motifs enriched in ATAC-Seq peaks more accessible in SF3B1K70%
cells that were linked to genes upregulated in SF3B1X70% cells, included motifs of the TEAD transcription
factor family. TEAD2 and TEAD4 were upregulated in SF3B1-mutant, compared to the WT iPSC-HSPCs and
TEAD transcriptional activity, measured with a luciferase reporter construct, was higher in SF3B1/70%,
compared to SF3B1WT iPSC-HSPCs. We did not find expression or activation of YAP or TAZ, which bind to DNA
as a complex with TEAD upon Hippo pathway activation, suggesting a Hippo-independent increase of TEAD
expression and activity in SF3B1K700F,

Discussion

Powered by a data integration framework, this study assesses the combination of the effects of the SF3B1%70%
mutation across parallel levels of deregulation of the transcriptome towards deriving a tier-based
classification of splicing events. Specifically, this framework systematically evaluates the relationships
between the SF3B1 mutation, differential splicing, transcript usage and gene expression and leads to a fully
characterized SF3B1%7%F splicing signature. This signature includes several known gene candidates and is also
able to identify atypical mutations involving the K700 hotspot. Furthermore, this study, shows, at the
chromatin level, a potential “priming” of SF3B1X79% HSPCs toward the erythroid over the myeloid lineage - a
finding that may be related to the preferential involvement of the erythroid lineage in MDS and, in particular,
MDS-RS. Lastly, our chromatin accessibility analyses lend support to a putative role for the TEAD TFs in the
context of SF3B1X7%% mutation, a sighal which warrants validation in future studies.

Predicting single cell genotypes from single cell expression profiles in AML using
deep learning

Background

Approximately 30% of MDS patients eventually progress to AML, an aggressive blood cancer associated with
rapid disease progression, poor response to therapy and dismal outcomes. AML is a genetically
heterogeneous disease defined by the gradual accumulation of mutations. These are often characterized by
specific gene by gene interactions, indicative of functional cooperativity, and result in genetically and clonally
heterogeneous populations. This imposes a significant challenge in treating and ultimately curing the disease.
Elucidating the role and effect of this diversity at the cellular phenotypes and disease biology requires: 1.
molecular representations at the cellular level, which cannot be achieved by bulk sequencing approaches in
primary tumor samples, and 2. analytical frameworks able to connect multi-modal data views. In this context,
here, by leveraging single cell data from a set of IDH1/2 mutant AML patients, we develop deep learning
approaches to explore how genotypic changes are reflected in cell specific gene expression signals.
Specifically, we set out to answer if and how single cell gene expression patterns together with the
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deployment of neural networks have the capacity to predict a cell’s malignant status and genotype for
specific genomic abnormalities.

Data & Methods

The study cohort consists of 4 healthy individuals and 6 AML patients, 3 with clonal IDH1 and 3 with clonal
IDH2 mutations. These patients also harbored co-mutations in NPM1, NRAS, KRAS, SRSF2, DNMT3A, as well
as a set of chromosomal abnormalities (gains in chromosomes 1q [+1q/dupli_chrl], 6 [+6/dupli_chré], 8
[+8/dupli_chr8], 10 [+10/dupli_chrl0] and 14 [+14/dupli_chr14]). For this cohort, scRNA-seq data were
generated from BM and peripheral blood (PB) samples. Next to the single cell gene expression profiles, single
cell genotypic information was also available for the 6 AML patients, as derived from the method of
genotyping of transcriptomes (Nam et al. Nature 2019). (We note that the generation of the data is not part
of the current thesis). After alignment and quality control, single cell gene expression counts for both AML
and healthy individuals were generated, normalized and then integrated into a unified dataframe. The cells,
from the AML patients, with at least one detected mutation or chromosomal abnormality were labeled as
malignant while every cell from the WT individuals was labeled as WT. To assess if single cell gene expression
values can predict the malignant or WT status of a cell we train a feedforward neural network that outputs
the probability of a cell being malignant (binary classification model). Additionally, to be able to predict the
acquired genomic abnormalities harbored by the malignant cells (for instance, if NRAS mutation is present
or not), we train a multi-label classification model of a similar architecture. Application of holdout
randomization tests (HRT, Tansey et al. JCGS 2021) in both trained models selects features predictive for the
respective labels (malignant for the binary model, genetic abnormality present for the multi-label model).

Results

A total of 50,026 cells (35,314 were malignant and 14,712 WT) with high-quality data were selected for the
training, validation and testing of the binary classification model. This binary model separated malignant and
WT cells with an accuracy of 98%, precision of 98% and recall of 99%. Additionally, the HRT method led to
the selection of 58 genes as important for this classification task (malignant vs WT). Gene ontology analysis
on this set of 58 genes showed enrichment of processes related to apoptosis (Benjamini-Hochberg [BH]
adjusted p-value = 0.009, e.g. MCL1, HMGB2) and the TGF-beta signaling pathway (BH adjusted p-value =
0.005, e.g. ID1, JUNB). Applying the model on the cells of the AML patients that were not part of the training,
validation and test sets, revealed a small portion of cells within each patient that present a phenotype similar
to that of the WT cells (WT-like). These WT-like predictions are the 4.1% of this cell-set and 56% of them
correspond to myeloid differentiated cells. Similarly to the binary classification case, the multi-label model,
trained, validated and tested on 16,614 cells of a single AML patient, presents 98% correct predictions in
separating the malignant from the WT cells on the holdout test set. Additionally, this multi-label model
achieved near optimal results on the prediction of the chromosomal abnormalities (AUC ROC higher >= 0.96)
and had a considerable performance for the subclonal NRAS (AUC ROC = 0.83) mutation, in contrast to its
limited capacity to correctly predict the mutational status of clonal IDH1 mutation.

Discussion

Xii



This study develops deep learning approaches to explore how genotypic changes are reflected in cell specific
gene expression signals in IDH1/2 AML. The designed networks predict malignant vs WT cell status and
identify the mutational status of specific genomic abnormalities for a single patient, while dealing
concurrently with the excessive absence of mutation labels for some of these abnormalities during the
training process. Both models showed similarly high performance in classifying malignant cells from WT ones.
The low performance on predicting the IDH1 status can be attributed to its low genotyping efficiency, while
the notable performance on predicting the subclonal NRAS status implies the acquisition of specific gene
expression profiles from the cells that acquire the NRAS mutation as a later event. This outcome
demonstrates that the multi-label classification task may perform optimal when addressing cells with a
representative spread of mutant and WT profiles such as subclones. This is of significant translational and
clinical relevance as it is often such emerging subclones that carry mutations that confer resistance to
treatment, and that seed disease relapse and progression. Lastly, the treating of both trained models as black
boxes and the application of the HRT feature selection method, select as important input genes related to
processes previously reported in the context of AML (e.g. apoptosis).

Conclusion

The analytical frameworks presented hereby demonstrate that the deployment of multi-view data
integration concepts for the mining of bulk and single cell sequencing data in myeloid neoplasms, leads to a
comprehensive and detailed profiling of molecular landscapes and enhances the capturing of genotype-
phenotype associations. The derived outcomes show that these approaches offer the opportunity to
establish connections between diverse data views and extract key signals related to disease biology. In a
broader perspective, the rationale used for the integration of different data views from bulk RNA-seq data,
can be applied to other studies investigating the role of splicing factor mutations across relevant signals that
can be quantified by transcriptome sequencing (expression, splicing, transcript usage). Additionally, in other
studies in oncology, especially in cancer indications with the presence of different genetic clones, the
deployment of supervised deep learning architectures can link single cell transcriptomic and genomic data
and show if and how the mutations and their clonality are reflected in the single cell gene expression profiles.
Extending data views to include other types of diagnostic modalities such as morphological,
immunophenotypic and clinical, as well as building integration approaches to analyze these views in a
collective manner in supervised and unsupervised contexts, will pave the way for the adoption of the
resulting insights in clinical practice.
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NepiAnyn

Ot pueloyeveic kakonBeleg amoteAolv etepoyeveic Statapaxeg KAWVIKWY BAaCTOKUTTAPpWY, Tou odeilovtal o
VEVETIKEG AANOLWOELG KOl 08NyoUV Og EAATTWHATLKN oLpomnoinon. H €peuva Twv PNXOVICUWY TwV LUEAOYEVWV
VEOTAAOUATWY Baciletal o MEPAUATIKA HOVTEAQ BLoAoyiag Kot 0To GOLVOTUTILKO TIPOCGSLOPLOUO TIPWTOYEVWY
Selypdtwy 0oBevwv HECW QVEPXOUEVWY YOVISLWUOTLKWY TEXVOAOYLWY. XTO TMEPOWPLO TNG QUEAVOUEVNG
TIOAUTTAOKOTNTAG, TOU OyKoUu Kol tng Slaotaotpudtntag twv Sedopévwy mou dnuoupyolvtal omd QUTEC TLG
TIPOKTLKEG, N €V AOYyw SLatplfn avamtiooel UTTOAOYLOTIKA TAALCLa XPNOLUOTIOLWVTAG SLPOPETIKA OULKA TIPOdIA
(yoviSlwpatikd, METAYPOPWHOTIKA, ETLYOVIOLWHATIKA) Kal €ldn Ttexvikwv oAAnAouyioag (pMallkng Kol
HUEMOVWHEVWY KUTTAPWYV), HE OTOXO va eVIOXUOEL TNV KATOvOnon TNG UTIOKELUEVNG BloAoyiag Twv pueAoyevwv
VEOTIAAOMATWY. ZUYKEKPLUEVQ, N Epyacia autr otnpiletal otn cVUMpPagn Kat tn Stacuvdeon MOANATAWY OYPEwWV
Sebopévwy yla TNV OMOTIKA QVAAUCN ONUATWY, OTTOCKOTIWVTOC VA QmocodnVicEl HopLakd Tomiot Kal va
ETULKOUPNOEL TN UEAETN PALVOTUTIWY O€ YEVETIKO eTtinedo.

To Keddhaio 2 epeuvd Tt TOmiat HETAYPAPWHATOC KoL XpwHativhg Twv SF3B1  petaAAayuévwv
MuehobSuomhaotikwv Zuvdpopwv (MDS), aflomolwwvtag dedopéva palikng aAAnlouyiag RNA kat ATAC amo
LOOYOVIKEG UYLELG KAl SF3B1 PETAMOYUEVEG OELPEG EMOYOUEVWV TIOAUSUVOUWY BAaotikwyv Kuttdpwy (iPSCs).
El81kd, uAomoloUpe €va avaluTikd mAaiolo cuyxwveuong mAnpodoplwy and dtadopetika enineda Sedopévwv
aAnAouyiag RNA (patiopa, xprion Hetaypadnuatwy, Ekppaon yovidiwv). To mAaiolo auto Eexwpilel éva cuvolo
cupBavtwy patiopatog and 34 yovibla, To omoio oxetiletal UE TNV KAtdotaon tng Met@AAatng SF3B1 ot
npwTtoyevn delypata acBevwv pe MDS. MapdAAnAa, n avaAuon thg mPooBactudtnTag TG XpwHATivng Seixvel
auénuévn mopoucia potifwv TEAD oe éva cUVOAO QVOLXTWV TIEPLOXWV TNG KABWG Kol avénuévn kAlon twv
OULLLOTIOLNTLKWY TIPOYOVLKWY KUTtApwv SF3B1 mpog tnv KatelBuvon Twv UEYOKAPUOKUTTAPWY - £pUBPOoELSWV.
JUVOALKA, To KedaAalo auto, ouvdualel mpoBolég amo SeSopéva RNA yla va KOTNyOpPLOTIOLROEL YOVISLAKOUC
OTOXOUG LE EAQTTWHUOTIKO UATIOUO, EVW ETLONG TIOPEXEL L0 ETLOKOTNON TOU TOTiou TNG Xpwpativng SF3B81 MDS
KOl T(POTELVEL TTpOYpApOTO HeTaypadn g Le TBavolg podoug otn Bloloyia tng vooou MDS.

To Kedbdhato 3 gEetalel €av n ékdpacn yoviSiwv HEUOVWUEVWY KUTTAPWY UOll E TNV UTIOAOYLOTLKN LKAVOTNTA
TWV VEUPWVIKWY SIKTUWV prmopolV va TPoPBAEYPOUV XaPAKTNPLOTIKA TOU KUTTAPLKOU yovotumou otnv IDH1/2
petoMayuévn Ofeia Mugloyevr] Asuyatpio (AML). ZuykekpLpéva, xpnotpomnotwvtag dedopéva ahhnAouyiag RNA
HMEUOVWHEVWV KUTTAPpWV armod 50.026 kUTTapa, ekmaldeUTNKE Vo VEUPWVLKO SIKTUO TToU TIPOPBAETEL TNV KakonOn
A UYL KOTAOTOON TOU KUTTAPOU UE akpiPela 98%. ITn CUVEXEL, SOKLUAOTNKE LA TTAPOUOLA APXLTEKTOVLKNA yLa
™V Tautoxpovn TPORAEYdN CUYKEKPLUEVWY YOVIOLWHOTIKWY OVWHOALWY O HEHOVWHEVA KUTTOPA, N omola
napouciaoe macro-average AUC ROC=0.84 kat AUC ROC=0.83 yia tnv mpoPAedn tng petala&ng NRAS. Ev
KATAKAELSL, TO Kepdlato 3, péow emiPAenopevou deep learning, ouvdéel ta mpodiA yovidiakrg £kdpaonc Kal
YOVOTUTIOU HEUOVWHEVWY KUTTApwv otnv IDH1/2 petalaypévn AML kot Selyvel TNV TPOOTTTIKY TETOLWV
T(POCEYYLOEWV HOVTEAOTIOLNGNG OTNV OMOTUMWON OXECEWV YOVOTUTIOU-GALVOTUTIOU.
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EktevAg mepiAnyn

Elcaywyn

Ta puehoyevn veomhaopata (MNs) amoteloUv £va cuvexég GAoUa KAWVLKWY TIOAAATIAQGLAOTIKWY
Slatapaywv, ou nepthapBavouv xpovieg paoelg, omwe ta MughomoAlamAactaotikd NeomAaopota (MPN)
kat ta MuehoSuomhaotikad Z0vSpopa (MDS) kabwc Kat oteieg pdoelg, omwe n Ofeia Muegloyevig Asuyatpia
(AML). Ta MNs cuvnBw¢ mpokaAoUVTAL Ao TNV ATOKTNON YEVETIKWY AVWUOALWY TIou SLaTapAcoouy T
duololoyikn alpomoinon. Ta teAeutaia xpovia, ol LEAETEG TPOd A YOVISLWUOTOC TTAPEXOUV EVOL AETITOUEPEC
KATAAOYO TWV CWUOTIKWY HeTaMdEswv ota MNs. Qotdco, n KaTavonon Twv TEAECTWVY TG BLoAoylag tng
vOOOU KOl TWV HNXOVIOUWV TIOU 08NnNyouv OTO MUEAOYEVI) HETACXNUATIONO, Baoilletal otnv avamtuén
TELPOUATIKWY HOVTEAWV (TOVTLKWY, KUTTOPLKWY, OPYOVOELWSWV) Kol oTo (aVOTUTILKO TpoaSloplopo
MpwToyevwy Selypdtwy acbevwy. TEToleG pooeyyioelg ouviBwe cuvdualovTal Pe TEXVIKEG avAaAuong Tou
YOVISLWHATOG, TOU UETaypadWHATOC Kol Tou emyoviSlwpato¢ tou OSelypatog. MapdAAnAa pe TIG
KABOLEPWHEVEG TEXVIKEG Halkng aAAnAouxiag, oL o mpoodates eEEAEEL OTIG TEXVOAOYIEG UEMOVWHEVWY
KUTTAPWV oUVELCDEPOLV €MionG otnV MAEOV cUVNON AmoSOTIKA KOL EKTETAUEVN TIAPAY WY OULKWY CUVOAWV
S6ebopévwy. Auta ta cuvola edopévwy TieplhapuBdvouv SLakpltég MpoBoAEg (avanapaotaoels i cUVoAa
XOPOAKTNPLOTIKWY TIOU TIPOEPYOVTOL OO TO. LETPOUUEVA BLOMOPLA) TTOU ETILTPEMOUV T UEAETN TWV LOPLAKWY
dlotTwy og TMOAAOTAQ OpLKA eTtimeda (YOVISLWUOTIKO, HETOYPADIKO 1 ETLYOVISLWUATIKO). Qotoco, ol
OVAAUCELG TTIOU ETILKEVIPWVOVTAL O€ pLa [OVo TipoPolr SeSopévwy Sev 0dnyolv atov AN PN XOPOKTNPLOUO
TWV HOPLOKWY TOTIWV Kol 0TNV KABLEPWON TWV CUCXETIOEWVY YovotuTmou-dalvotumou. Etal, n avamtuén
QVOAUTIKWY TAQLGLWY TIOU ETUTPETIOUV TNV EVOMoinon Kal tnv gpunveia moAhamAwv npoBoiwv dedouévwv
npood£peL TNV gukatpla vo peAetnBel n avamapdotacn S1adopPETIKWY HOPLOKWY EMMESWY KABwWG KoLl TwV
OX£0EWV HETOEL TouG. AapBavovtag umodn tnv auvfavouevn MOAUTIAOKOTNTA, KALaKa Kot SlootaciuotnTa
TWV TTapayopevVwY SeS0UEVWY, KOBWE KoL TNV avAyKn amokKTnong mMoAUSLACTATWY EVOOOKOTIOEWY OXETIKA
UE TN oupmneplpopd TnG vooou, autr n Statptpry avoamtloosl avaAuTLkA TAQLOLA e OTOXO TV evioxuaon g
KaTavonong tg umokeipevng PBloloyiog Twv puesloysvwv veomhaopdtwy. ElSkOtepa, auth n epyaocia
XPNOLUOTOLEL OpXEG ATIO TN cuumpatn Kot tn dtaclvdean MoAAanmAwv oPewv(mpoBolwv) SeSopévwv wg
HECO eVOMoinonG oNUATWY EVTOG KAl LETOED OUKWV KATnyopLwV (yoviSlwua, petaypddwpa, enyovidiwua)
TIOU TIPOEPXOVTOL OTTO TEXVLKEC €ite pallkig aAAnAouxiag 1 HEHOVWHEVWY KUTTAPWY. OL TapoucLalOUEVES
avaAUOoELS KOl Ta Aol Tou avamtuxdnkoav oto MAAloo authg tng Slatplprig, amookomoluv otnv
anmocadnVvion TWV HOPLAKWY TOTIWY KOL OTNV EMIKOUPLON TNG HEAETNG PALVOTUTIWY OE YEVETIKO £mimedo,
gotialovtag tnv npocoyr ota MDS pe petdA\aén SF3B1 kat otnv AML pe petdMaén IDH1/2 avtictolya.

Patient-specific MDS-RS iPSCs define the mis-spliced transcript repertoire and
chromatin landscape of SF3B1-mutant HSPCs

Background
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Ta puehobuomhaotikd ouvdpopo (MDS) elval pueloyevelg kakornBeleg mou yapaktnpilovtal amno
OVATIOTEAECUATLKA OLUOTIOlNON, KUTTAPOTEVIEC alpaTog Kot auénuévo kivbuvo e€€AEng oe AML. Npdodateg
HeAétec aAAnAouxiag €xouv Tovioel Tov poAo Twv peTtalaéewv ota yovidla tou patiopartog (SF3B1, SRSF2,
ZRSR2, U2AF1) w¢ evapkTiplo Kot KaBoplotikod yia ta MDS. MeTaty autwy twv yovidiwy, to SF3B1 eival to
TIO CUXVA peTaAAayEVO oTtoug acBeveic pe MDS (~ 24 %) kat opilel pa EexwpLotry VOOOAOYLKH ovtoTnTa,
Tou ovopaletatl MDS pe daktulloeldeic olbepoBAdoteg (MDS-RS). Ol petaAAdelg oto SF3B1 evtomilovtal
ouvnBwWG WG HEPOVWHEVA cupPBavta, otoxelouv Kupiwg oto hotspot K700 kat oyxetilovtal pe guvoikd
T(POYVWOTLIKA. MNMapd TOV XOpAKTNPLOUO TOU Hoplakou Tomiou oto MDS, mapapével acad£g To mwE AUTEG oL
HeTAAAAEELG 06nyoUV TNV MaBoy£vean TN VOOOU KoL TIWG UIMOPOUV VA EVNLEPWOOUV TNV KALWVIKN Slaxeiplon.
Je auth TN PEAETn, aflomolioape Sedopéva amod €va MELPAUOTIKO HUOVIEAO EMAYOUEVWV TTOAUSUVOUWY
BAaotikwy Kuttdpwy (iPSC) yla va SLlEpEUVACOUUE TIC CUVETELEC TNG LETAAAOENG SF3B1XK70% ka tov poAo NG
otnv nmaboy£veon tnNg vOOOU, EVOWUOTWVOVTOC TTOAATIAEG TTtPoPOoAEC (OWELg) amd To peTaypddwa Kal
g€etalovtag To Tomio MPooPaACLUOTNTAG TNC XPWHOATIVNG.

Data & Methods

Mot MEAETN AuTr, XPNOLUOTIOLCOUE €va TAveN 18 ouvoAkd SF3BIX70%F petoAAQyHEVWV KOL UYLWV
(SF3B1™T) wooyovikwv oslpwyv iPSC amd 3 acBeveic pe MDS-RS mou €depav UEUOVWHEVEG UETAMGEELS
SF3B1%7%% Mo autég TIC oslpég iPSC, mpaypotonolifnke kateuBuvopevn alpomnotntiky Slagdopormoinon
XPNOLLOTIOLWVTAS TTPWTOKOAAQ OO TO £PYAOTHPLO TNC Kag Mamamnétpou Kat cuAAEXOnkav CD34+/CD45+
avBpwriva BAaoTKA Kat poyovikd kuttapa (HSPCs) yia RNA kat ATAC-sequencing. (ZnHELWVOUUE OTL N
Snuloupylo twv dedopévwy dev amotelel pépog tng tpéxouoag StatpBrg). HSPCs amd 16 oslpég iPSC
ocupmnepltAndBnkav otig avaAloslg RNA-seq LETA Ao TOLOTIKO EAEYXO TWV apXLKWV Sedouévwv. MeTd thv
guBbuypdppion Twv avayvwoswv RNA-seq moootikonolnonke n adbovia twv HeTaypadnUATWY KAl N
yovidlakn ékdpaon. MpaypatonotiBnkav avaAloelg Stadoplkng ékdppacng yovidiou, dladopikng xprong
petaypadpnuatwy kot dtadoplkol patiopatog (ouvapuoyng) avapeoa ota kuttopa SF3B1K7%% kau ota
kUttapa SF3B1YT. Ta va afloAoyrjooupEe Tov avtiktumo tng MetaMaéng SF3BI1/79% ge emninebo £€oviou,
HETAypodpUATOC KAl Yovidiou, cUVOUACAUE CAUATA aTtO AUTEG TIG 3 aVOAUOEL LECW EVOC TTOAUCTASLOKOU
TAQLGLOU CUYXWVEUONG. APXLKA, EVTOTILOOE TO GUVOAO TWV HETAYPADNUATWY TIOU TIEPLEXOUV T £€OVLA TTOU
CUMMETEXOUV OE oupBavta Sladoplkol HATIOUATOG. ITN CUVEXELD, CUCXETIoaE KABs cupBadv Sladopilkol
HOTIOUOTOC UE TO CUVOAO TWV SLadoplkA XpNOLUOTOLOU LEVWY PeTaypadnudtwy. Ta {elyn TTOU avAKav Ot
yovidla pe oTatlotikd onpavtikn Stadopik ékdpacn kot epleiyav éva dtadoptkd cupPav patiopatog pe
Ty FDR (False Discovery Rate) eviog twv 20 xapnAdtepwy, Bewpnbnkav wg To cuvoro «Baduidag 1». Auto
TO 0UVOAO, TIEPLEXEL TAL LETAANOYEVA cUupPBavTa Katl yovidia tng unoypadng SF3B1. EmumAéov, kuttapa HSPC
amnd 15 oelpég iPSC ouumepAndOnkav otnv avaluon ATAC-seq. MeTA TNV EUBUYPALLILON TWV AVOYVWOEWVY
KOl TOV TIOLOTIKO £AeyX0, evIOTioape KOPUEC MPOOPACLUOTNTAG XPWHATIVAG Kol SnULOUPYROapE Evav
atdavta ATAC-seq. Autog o dtAag xpnoldomouibnke yio availuon Sladoplkng MPooPacLUoTNTAG
XPWHATIVNG, CUCXETLON [LE TO TOTILO TPOCPRACLUOTNTAG TNG GUCLOAOYLKNG ALUOTIOLNTIKNG Lepapxlag KaBwg Katl
yla avaAluon eUMAOUTIOUOU HoTiBwv.

Results
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H avdAuon kupwwv ouviotwowv (PCA) kat n tepapxtkn opadomnoinon (hierarchical clustering) pe pdaon t
yovidlakn éxkdpaon opadomoinoav ¢ osipég iPSC avda yovotumo (SF3BIK70% ys SF3BIWT). EmumAéov,
Sladoplkeg avalloelg amokdAuvpav 2737 Swadopika ekdpalopeva  yovidla, 1086 Siadopka
XpnolpomnoloUpeva petaypadnipota kot 1829 dtadopikd cupBavta patiopatog (cuvopuoyng) HETaty Twy
KuTtapwyv SF3B1%79% kau SF3B1W'. H gvomoinon Twv onUATWY amnd auTég TIC avaAUOELS XPNOLLOTIOLWVTAG
TIOAUOTASLOKA TIPOCEYYLON CUYXWVEUONG €iXE WG ATOTEAECHA TNV TTAPAYWYN ULAG UTTOYPAdN G HATIOHATOC
mou amoteAsital and 59 cupBavta (patiopotog) mpoepxoueva and 34 yovidia. AOKIUACOUE QUTAV TNV
urntoypadn og éva Snpooleupévo oUVolo SeSopévwy amnod mpwtoyevn delypata acBevwy pe MDS (Pellagatti
et al. Blood 2018). Juykekptpéva, PCA pe Bdon to eninedo cuunepiAndng Twv cupPBAVIWY GUVAPHOYAG TNC
uroypadng pag, Staxwploe Toug aobeveic pe petahagn SF3B1 amod toug aobeveic xwplg petaldtelg o
napdyovteg patiopoatog (SF-WT) 1 ta uyl) ATopo. ZNHAVIIKOTEPA, EVIOMOE €vav ooBevr ToU
opoadormnotnOnke pall pe toug acBeveig pe petdAAagn SF3B1 evw eopalpéva sixe onpelwBei wg SF-WT. Autog
0 aoBevng eixe pa mponyoupévwe apaPiedBeioa Staypadr 6 bp oto onuelo K700E. Zuykpivovtog tov
atAdavra kopudwv ATAC-seq pe ta TiPodiA TTPooBaACLUOTNTAG XPWHATIVNG TWV MPWTOYEVWY TUMTWY TWV
avBpWIMIVWV KUTTAPWY KOTA HNKOC TNG alpomolnTkng Lepapxiag (Corces et al. Nat Genetics 2016),
Slamotwoape OtL TO TOMmio Ypwpativng twv SF3BI1K70% HSPCs £uolale TMEePLOOOTEPO HE OUTO TwV
LEYOKOPUWTLKWV-gpuBpoeldwy Tmpoyovikwy Kuttdpwv (MEPs) kat twv epuBpostdwv (Ery) Kuttdpwv.
EmumtAéov, To oUvoAo gumAouTIoPEVWY HoTiBwY oTLg kopudEg ATAC-Seq mou NTav O MPOCPACLOLUEG OF
kOTtopa SF3BIK79%F kol smumAéov cuvdéovtav He yoviblo auénuevng €kdppoong ota KUTTAPA AUTA
(SF3B1%70%), mepleAdpBavay poTiBa tng olKoyEVELOC peTaypadIKwy tapayoviwy TEAD. Ta TEAD2 kot TEAD4
giyov avénuévn ekppaon oto kUTTOpo SF3BIK70% ge olykplon pe ta SF3BIVWT. Akdpa, n HeTOypodLkn
Spaoctnplotnta TEAD, Hetpriuévn pe pla kataokeun avadopd¢ Aouaoidepdong, Atav uvnAdtepn ota
kUTtopa SF3B1%7%% ge glykplon pe ta SF3BIYT. Emiong, 8e Bprikape ékdpaon i evepyonoinon tou YAP 1
TAZ, ta omoia cuvéovtal pe to DNA wg ocUumAeyua pe to TEAD katd tnv evepyomoinon t¢ odou
onuatodotnong Hippo. Ta otolxeia autd unoSnAwvouv auénuévn £kppacn kat Spaoctnplotnta tou TEAD
aveédptnta amno tnv 086 onupatodotnong Hippo ota SF3B1X70% kittapa.

Discussion

Me tnv umootnplen evog mAalolou evomoinong (integration) SeSopévwv, auTA n HEAETN QTOTLUA
oLUVOUOOTIKA TIC €Tdpdoelg tng HeTdMafng SF3BIK79% ge mopdAAnAa emineda amopplBuiong tou
HETOYPAPWUOTOG HE OTOXO TNV Taflvounon Twv cupBavtwy patiopotog os Babuides. TuykekpLpéva, outo
To mAaiolo afloloyel oUOTNUOTIKA TIG OXECELG MeTafL TNG uetdMagng SF3B1, tou Sladoplkou patiopatog,
™G XPNonNg MeTaypadnUATwy Kal TnG £KPpacng Yyovidiwv Kot KATAANYEL O L0l XAPAKTNPLOTIKA uTtoypad)
uatiopatog SF3BI7%%, Ayt n umoypadr mephapBdavel moAAd yvwotd yovidla kat gival oe Béon va
ovayvwpioel aturikég HetaAldgelg mou adopolv to hotspot K700. EmumAéov, autn n peAétn Seiyvel, ot
eminedo ypwpativng, £va Suvntiko mMpooavatoAlopo twv HSPCs SF3B1K79% kuttdpwv mpog tnv epuBpocetldn
KatevBuvon oe oxéon Pe TN UMUENOELSN - €va OTOLXElo ToU pmopel va oxetiletol YE TNV MPOTLUNTEQ
OUMMETOXN TNG €puBpoeldouc katevBuvong (lineage) ota MDS kat eldikotepa ota MDS-RS. Télog, ol
avaAUoelg mpooBaclpudtnTog TG Xpwiativng umootnpilouv évav Bewpolpevo pOAO TwV TAPAYOVIWY
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uetaypadng TEAD oto mAaioto tng petdMaéng SF3B1K79F, éva orjua mou Xprlel emkUpwWong o€ UEANOVTIKEG
HeAETec.

Predicting single cell genotypes from single cell expression profiles in AML using
deep learning

Background

Mepimou to 30% Twv neplntwoswv e MDS teAika e€elicoovtal og AML, évav eTUBETIKO KapKivo TOU aipatog
TIoU eK&NAWVETOL TAXEWC, £XEL adUVAUN QVTATIOKPLON OTn Bepareia kal ducoiwva poyvwoTtikad emiBlwong.
H AML gival pLa YeVETIKA ETEPOYEVHG VOOOG TTou opiletal amod tn otadlakr cUCCWPEVCT UETAANGEEWY. AUTEG
ouXVA Yapaktnpllovtol amod CUYKeKPLUEVEG aAANAsTUSpaoel yoviSiwy, Tou umoSnAwVouV AELTOUPYIKN
ouvepyaoia, kol 0dnyouv oe YEVETIKA Kol KAWVIKA €TEPOYeVELG MANBUOHOUG. AUTO BETEL ULl ONUOVTIKN
TPOKANGN OTNV QVTILETWIILON Kol TeALKA tn Beparmeia tng vooou. H amocadnvion tou poAou Kot tNng
enidpaong autAg TN mowkiAopopdiag oToug KUTTApLKoU ¢ GpotvOTUTIOUS Kal T BLoAoyia TNG vOoOoU amattel:
1. LOPLOKEC OVATIOPAOTACELG OE KUTTOPLKO ETMESO, OL OTIolEC SEV UMOpOoUV va eTITEUXBOUV [UE TIPOOEYYLOELS
padikng aAAnAouyiog o mpwtoyevh Selypata, Kot 2. avaAuTKA TAaiola tkovad vo cUVEE00UV TTIOAUTPOTILKEG
nipoBoléc Sedopévwy. 2to TeplBwplo autd, aflomolwvtag Se60UEVO HEUOVWHEVWY KUTTAPWY amo éva
olUvolo acBevwv AML pe petdM\oén IDH1/2, avamtuccoupe Tpooeyyloslg deep learning ywo va
OLEPEUVNOOUUE TIWC Ol YOVOTUTILKEG OAAOYEG MEUOVWHEVWY KUTTAPWY OVTAVOKAWVTIAL OTA OHUOTO
YOVLOLOKNG €KPpacnC. ZUYKEKPLUEVA, OTITOCKOTIOULE VA OMAVTNCOUHE €AV KAl TIWE TA UOTiBa YoviSLoKAG
£kdpaong evog KUTTAPOU O cuvdUAOUO HE TNV XPNOoN VEUPWVIKWY SIKTUWV, €xouv Tn Suvatotnta va
TpoBAEPOUV TNV KOKONRON KATACTAON KoL TOV YOVOTUTIO EVOC KUTTAPOU YLOL CUYKEKPLUEVEG YOVISLWUATLKEG
avVwWHaALeG.

Data & Methods

To ouvolo Twv 6eSopévwy TNG LEAETNG AUTNG TIPOEPXETAL Ao 4 vyl Atopa Kol 6 aoBeveig pe AML, 3 ue
KAWVLKEG LETAANGEELS IDHT Kal 3 pe KAWVLKECG LeTalagelg IDH2. Autol ol aoBeveig elyav emiong LeTaAAAEELG
ota yovidia NPM1, NRAS, KRAS, SRSF2, DNMT3A, kaBw¢ Kol €va GUVOAO XPWHOCWHLKWY OVWUOALWY
(avénosic [gains] ota xpwpoowpota 1g [+1q/dupli_chrl], 6 [+6/dupli_chr6], 8 [ +8/dupli_chr8], 10
[+10/dupli_chr10] kat 14 [+14/dupli_chr14]). MNa autd to cuvolo acBevwy Kal LYWV ATOpwWY, Sedopéva
scRNA-seq SnuloupynBnkav amd deiypata puelol twv ootwv (Bone Marrow) kat mepldeptlkol aipartog
(Peripheral Blood). MapaAAnAa pe ta mpodil €kppaong yovidiwv amo HEPOVWHEVO KUTTAPA, ATOV EMiONG
Sl00£01ueg yovoTuTikEG TIANPOdOPIEC HEMOVWUEVWY KUTTAPWY yla Toug 6 acBeveic pe AML, oOmwg
npoékuPav amno tn péEBodo GoT (Nam et al. Nature 2019). (EnpeLwWVOUNE OTL N dnuLoupyia Twv Sedopévwv
Sev amoteAel HéEpoC TNG TpEXoUcaC SLatpLBrg). MeTd TtV eUBUYPALILON TWV AVAYVWOEWY KAl TOV TTOLOTIKO
£€heyxo Twv Sedopévwy, umoAoyloTnkav, KaVOVIKOTOLNOnKav KoL OTn CUVEXELO EVowUATwOnkav og €va
gvLalo mivaka oL yoVISLOKEG EKPPACELS LEUOVWHEVWY KUTTAPWYV TOCO yla Toug acBeveic 600 Kal yla uyLn
atopa. Ta KUTTOPQ, oo Toug aobeveic pe AML, Ta omola elyav TouAdylotov pia avixveuévn HeTAMNagn
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XPWHOCWHULKN avwpaAila emonuavonkoyv wg kakondn evw kaBe KOTTAPO Ao Ta VYL ATOUA EMLONUAVONKE
WG VYLEC. Lo vaL EKTLUAOOUE EAV OL TLUECG EKPPaonG EVOS YoVISiou eVOC KUTTAPOU Htopouv va ipoPAEouy
™V Kakondn n uyl) kataotaon evog Kuttapou, skmaldevoupe éva feedforward veupwviko Siktuo mou
g€ayeL Tnv mBavotnta éva KUTTOPO va gival kakonBeg (Loviédo Suadikng Taflvounong). EmumAéoy, yia va
elpaote oe B€on va mpoPAEPoupe TIC YOVISLWUATIKEG avwUaAieg mou dépouv Ta kakondn kuttapa (yio
MapAdelyua, Qv umapxel LeTAANEN NRAS 1 0xL), ekmatldelou e Eva LOVTEAO TTOANAMAWY ETIKETWV (Mmulti-
label) mapopolag apyitektovikne. H epapuoyr tng puebodou HRT (Holdout Randdomization Test, Tansey et
al. JCGS 2021) kat ota §U0 ekmaldeUPEVA LOVTEAQ ETUAEYEL TA XAPAKTNPLOTIKA HE TNV KUPLOTEPN Suvatdtnta
TPORAePNC TWV avtioToLyeg TIKETWV (KakonBn KUTTapa ylo to SuadLkd HOVTENO, YEVETIKEG OVWHAALEC yia
TO MOVTEAO TIOAAQTTAWY ETIKETWV).

Results

JuvoAlka 50.026 kuttapa (35.314 kakondn kat 14.712 uyin) pe dedopéva uPnAng molotntag emAEXOnKav
yla tnv ekmaideuon, TNV emKUpwaon Kat tn SOKLn Tou povtéAou Suadikig Taflvopnong. Auto to duadiko
HOVTEAO SLaxwploe Ta KoKonon amo ta vyl KUTtopa Le accuracy 98%, precision 98% kot recall 99%, evw n
uEBodog HRT odnynoe otnv emiloyn 58 yovidiwv w¢ onUAVIIKWY ylo autAv tv taflvopnon (kakonon
KOTTOpa €vavtl uylwv). H avaluon yoviSlakng ovtoloyiag oe autd To cUVoAo Twv 58 yovidiwv £6¢el€e T
cuppetoxn Slepyactwy mou oxetilovtal pe tnv anontwon (BH adjusted p-value = 0,009, mx MCL1, HMGB2)
kaLtnv 086 onuatodotnong TGF-beta (BH adjusted p-value = 0,005, ity /D1, JUNB). Edappéloviag to LoVTEAD
QUTO ota KUTTapa Twv acBevwv pe AML rtou dev anotedolUoav HEPOG TWV OET EKTIALSEUONG, EMLKUPWONG KOl
Soklpwy, amokdAuPe éva pIKPO MOc0oTO (KUTTtdpwy) os kABe acBevr mou mapouciale éva davotumo
TAPOUOLO HE QUTOV TwV Uylwv Kuttdpwyv (WT-like). Ou ev-Adyw WT-like mpoPAéPelg eivat to 4,1% tou
OUVOAOU Kal TO 56% aUTWV avtloTtolyoUV o puehoyevh Sladopomotnpéva kuttapa. Mapopolwg pe tnv
neptmtwon Suadikng taflvounong, To UOVTEAO TIOAAOTAWY ETIKETWY, EKMALOEUUEVO, ETUKUPWUEVO Kol
Soklpoopévo os 16.614 kuttapa evog aoBevolg pe AML, apouotdlel 98% cwoteg mMPoPAEYPELC KATA ToV
SLOYWPLOUO TWV KOKONBWY KUTTAPWYV ATIO TO UYL OTO OET SOKLUNG. EMmA£ov, auTd TO LOVTEAO TTOAAQTTAWY
ETIKETWV TIETUXE 0XeS60V BEATIOTO amoteAéopata otnv MPOPAEPN TWV XPWHOCWHULKWY avwpoAlwyv (AUC ROC
>= 0,96) Kal gixe onupavtiky andédoon yla thv mPoPAedn g UOKAWVIKAG HeTdAAaéng NRAS (AUC ROC =
0,83), o avtiBeon e TNV TEPLOPLOUEVH LKAVOTNTA TOU VA TIPOPAETIEL CWOTA TNV KATAOTAGCN TNG KAWVLKNAG
petaAAagng IDHI.

Discussion

AuTh n PEAETN avamtuooel Mpooeyyioelg deep learning ylo va SLEPEUVHOEL TIWG OL YOVOTUTUKECG aAAQYEG
OVTOVAKAWVTAL OTA OHUOTA YoviSlakng £kbpacng LEUOVWHUEVWY KUTTAPpwY otnv AML pe petoAAA€elg
IDH1/2. Ta oxeblaopéva Siktua mpoPAEmouv TNV Kotdotaon KakonBwv £VOvilL UYLV KUTTAPWV Kal
PoodLopilouv TNV KATAOTACN UETAANAENG CUYKEKPLUEVWVY YOVISLWUOTIKWY OVWHOALWY, aVTLLETWTIIovVTaG
TOUTOXPOVO. TNV QTIOUGCIOl ETIKETWV YLOL OPLOUEVEC OATIO QUTEC TIG OVWHOALEG KOTA T SLApKeEld TNG
ekmaildevong. Kat ta Suo poviéda €delav efioou upnAn amodoon otnv Tafvounon Twv Kakornbwv
KUTTAPWV £VavTl TwV Lywwv. H yapnAn anodoon otnv npoPAedn tne katdotaonc /IDHI punopei va amodobet
otn XaunAn amoteAeopatikotnTa tnG LeBOSou GoT Katd TNV Mopaywyr TwV YOVOTUTILKWY TPodiA, evw n
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onpavtiky anddoon otnv mpoPAedn tng katdotaong NRAS UTIOSNAWVEL TNV ATIOKTNGN CUYKEKPLUEVWV
nipodiA yoviSlakng ekppaocng amd to KUTTApA TOU TNV AmoKToUV (HetdAAagn NRAS) wg PETayeVECTEPO
yeyovos. Auto to amotéleopa Selxvel OTL n TAfVOUNGON TOMAMAWY E€TIKETWV yla TV TPOPAedn
puetalatewv, umopel va €xel tn PEATIoTn anodoon oe MANBUOUOUC KUTTAPWY HE EVA QVTLTPOCWIIEUTLKO
€UpoC HeTOAAAYUEVWY Kal UYLwV Tipodid, OmMweg ol UTtoKAwvVOoL. AuTO TO OTOLXElO eXeL €vvola KAWVIKOU
XOpaKTnpa KoBwe Kal onuoocia oTto MAALOLO UETADPAOTLKNAG €peuvag, KaBwg ouxva TETolol avaduopevol
uttokAwvol $pépouv  petadAaéelc mou mpoodidouv avtiotaon otn Oeparmeia TNG vooou OAAG Kal
ouvelohEpouv otnv uTtotponr tng (vooou). TéEAog, n Slaxeiplon Kal Twv SUO EKTIALSEUUEVWVY HOVTEAWY WE
“Halpwv KouTwwv” Kal n epappoyn g uebddou HRT emidéyouv w¢ onUavtikd, yovidla eodédou Tou
oxetilovtal pe Siepyaoiec mou €xouv eronuavOel otn BLpAloypadia tng vooou AML (ry anontwon).

Tuunepaopato

Ta avoAuTika Aaiolo tou apouctalovtal otnv napovoa StatptBnr Seixvouv OtTL n edapuoyr EVvolwy amno
to nebio evonoinong dedopévwy moAamAwyY poBoAwv katd tn Bewpnon (mining) 6edopévwy pallkng
aAAnAouxiog aAAd Kol HEUOVWHEVWY KUTTAPWY, 08NYEL O LILOL TIEPLEKTLKA KOL AEMTOUEPH QMOTUTIWON TWV
LOPLOKWY TOTWV Kal evioyVel TNV Kataypadrn Twv OXECEWV YOVOTUTIOU-GALVOTUTIOU 0T HUEAOYEVN
veomAdopota. Ta amoTteA£oUATA TIOU TPOKUTITOUV UTIOSNAWVOUV OTL QUTEC OL TIPOOEYYIOELG €XOUV TN
Suvaptkn va SnpLoupyrnoouv cUVEECELG LETAEY SLaPOopPETIKWY OPewv SESOUEVWV KAL VO EVTOTILOOUV G AT
Tou oxetilovtal pe tn Broloyia Tng vooou. YIO éva eupUTEPO Mpiopa, N AOYLKN TTOU XPNOLUOTOLRONKE yla
v evoroinon nmpoPolwv and Sedopéva RNA-seq, unopel va edappootel oe GAAeg peléteg ou e€etalouv
TO POAO TWV UETOAAGEE WV TTAPAYOVTWY UATIOUOTOG OE GALOTA TIOU TIOU UIOpOoUV va TOCOoTIKomoLlnBouv pe
aAAnlouyia petaypadwpatog (Ekdpacn yovidiwv, HATIoUa, Xprion HeTaypadnudatwy). EmumAéov, oe GAAEG
UEAETEC OTNV OYyKOoAoylo Kal ELSLKA O TIEPUTTWOELG KAPKIVOU UE TNV Mapoucia SLadOpPETIKWY YEVETIKWY
KAWVWV, N QVATTUEN ETIOTITEVOUEVWVY apXLTEKTOVIKWY deep learning pmopel va cuoxetiosl yoviSLWUOTIKA
Kol LETAYPADLKA TIPOPIA LEPOVWHEVWY KUTTAPWVY KoL va Sl€el eav Kal w¢ oL LETAAAGEELG KAl 0 TUTIOC TOUG
avtikatonpilovtal oto mpodiA Eékdppacng yovidiwv evog kuttapou. H eméktoon twv mpofoiwv (oPewv)
6ebopévwy yla t™n oupmepiAndn Kol GAWV TUMWV SLAYyVWOTIKWY €EETACEWY ONMWG HOopdOAOYLIKEG,
avooodALVOTUTIKEG Kol KAWVIKEG, KOBwWC KoL n ovamtuén evomownTKwy (integrative) UTOAOYLOTIKWV
TPOCEYYIOEWY ylO TNV QVAAUON OUTWV TwV Se00UEVWY E GUAAOYLKO TPOTIO OE ETOMTEUOUEVA KOL W
gnontevopeva meptpailovta, Ba avoiel To 6popo yla thv ULoBETNON Twv €afOUEVWV YWWOEWV OTNV
KALVLKN TIPAEN.
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Chapter 1

Introduction

1.1. Cancer: Pathogenesis and evolution

Cancer arises from the acquisition of mutations that result in the autonomous growth and expansion of
malignant clones[1,2]. Somatic mutations occur spontaneously during lifetime and are largely
inconsequential. However, a subset of these mutations may alter important biological processes that confer
a fitness advantage to the carrier cells and contribute to malignant transformation[2,3]. The latter mutations,
called drivers, enable the cell to escape the normal constraints of development and proliferation, contribute
to the modification of key cellular functions and pathways, cause disorders and phenotypic alterations and
lead to tumor formation[1,3].

Cancers are considered to share a common framework of pathogenesis and progression[3,4] whereby each
tumor is the product of a Darwinian evolutionary process happening among the population of cells residing
in the tissue microenvironments[4,5]. These microenvironments, shaped by the tissue space, resources,
immune predation as well as a mixture of adverse conditions such as hypoxia and acidosis, pose constraints
in tumor growth[5]. Similarly to the Darwinian principles of the evolution of species, cancer progression is
driven by the stepwise accrual of mutations and the concomitant natural selection sweeps occurring on the
resulting phenotypic diversity[3,4,6]. This process may confer a selective advantage to cells carrying genetic
alterations that favor proliferation and survival and lead to the dominance of specific subpopulations.
Genomic profiling of atumor’s DNA reveals the set of genetic variants accumulated during disease evolution.
Quantitative estimates of the cellular representation for each mutation using variant allele fraction (VAF)
metrics, provide further insights into the temporal order of mutation acquisition. This temporal order of
mutations enables the reconstruction of the evolutionary tree of the tumor and sheds light on intra-tumor
heterogeneity (ITH). Alterations present in all cells form the trunk of a cancer’s somatic evolutionary
trajectory while mutations identified in specific cell subsets define distinct subclones that arise and grow
during later stages of disease evolution[5,6].

Cancer genome profiling studies[7,8] reveal a diverse spectrum of gene mutations, involving frequently
mutated genes (>5% within tumor indications) as well as a long tail of infrequently mutated genes (<2%
within tumor indications). On average each patient has 4 such driver mutations (ranging from 1-10 across
tumor types)[2], resulting in a diverse range of patient-specific molecular profiles. This genetic heterogeneity
underscores the complexity of modeling and treating cancer. Beyond gene mutations, the occurrence of
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distinct epigenetic changes, including DNA methylation, chromatin remodeling and post-translational
histone modifications also adds to the variety of resulting phenotypic patterns[5,6]. Therefore, ITH combined
with the diversity between cancer patients outline the degree of the disease complexity and the challenges
of patient care. With the advent of computational methods and technological pipelines such as next
generation sequencing, it is now possible to map out changes in a tumor's genome, transcriptome and
epigenome. Analysis of genotype-phenotype relationships also enables insights into mechanisms of disease
biology. The generation of detailed and extensive datasets coupled with the design of quantitative
approaches to study associations between genotypes, biological readouts and clinical phenotypes,
significantly advance our potential to deliver evidence-based care and therapeutics in oncology|5,9].

The work in this thesis takes into consideration patient-relevant genetic and clonal representations in
myeloid neoplasms, employs high-dimensional omics profiling applications (genetic, transcriptomic and
epigenetic) and develops analytical frameworks to study how specific gene mutations contribute to disease
pathogenesis in the context of myeloid neoplasms.

1.2. Hematopoietic System

Hematologic malignancies describe a heterogeneous set of myeloid and lymphoid neoplasms emerging from
the disruption of normal hematopoiesis[10—12]. Hematopoiesis is the hierarchical developmental process of
the lifelong and continuous formation of blood cells produced from a limited population of hematopoietic
stem cells (HSCs)[11,13—16]. HSCs reside at the apex of the hematopoietic system and have the ability of self-
renewal as well as of multipotent differentiation to all blood cell lineages[11,13-16]. HSCs are located in the
bone marrow (BM) niche and in the absence of stimuli reside in a quiescent state of low mitochondrial
activity and limited levels of protein synthesis[17]. In the context of maintaining homeostatic balance within
the tissue, the regulation between the self-renewal and differentiation of HSCs is complex and dynamic and
depends both on intracellular characteristics as well as extrinsic signals from the microenvironment[11,12].
Upon self-renewal HSCs produce new stem cells assisting in the supply of the HSC pool, while upon
differentiation HSCs vyield a variety of hematopoietic progenitor cells that gradually commit to specific
lineages (myeloid and lymphoid) and progressively give rise to the mature blood cell types[11,13-16].

The hematopoietic process follows a hierarchical structure and unfolds as a continuum of multipotent
hematopoietic stem and progenitor cells (HSPCs) that give rise to specialized blood cell lineages (Figure 1.1)
in response to a regulated environment of growth factors and cellular interactions[11,12,15,16,18]. The
classic roadmap of this tree-like structure is characterized by the commitment of progenitor intermediate
cells towards one of two principal hematopoietic branches: the myeloid and the lymphoid[13,16,18] (Figure
1.1). The mature blood cells of the myeloid branch descend mostly from common myeloid progenitor cells
(CMPs) and include monocytes, erythrocytes, granulocytes (neutrophils, eosinophils, mast cells, basophils)
and megakaryocytes (Figure 1.1)[12,16,18]. On the other hand, the lymphoid branch generates B cells,
natural killer (NK) cells as well as T cells[12,13,16]. This set of terminally differentiated blood cells called

lymphocytes form the backbone of the immune system responding to a range of pathological challenges.
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This thesis focuses specifically on blood cancers that arise following the deregulation of the myeloid lineage.

1.3. Myeloid Neoplasms

Myeloid neoplasms (MNs) are prevalent and clonal hematologic malignancies marked by the dysregulated
proliferation and differentiation of HSCs and myeloid progenitor cells[19,20]. Genetic changes and epigenetic
variations in these cells lead to abnormal growth and defective maturation of the myeloid cell types[21].
Diagnosis and classification of the MNs to separate clinicopathological disease entities relies heavily on the
assessment of BM morphology, immunophenotyping, clinical features (such as the enumeration of
peripheral blood counts [PBCs]), cytogenetic and gene mutation profiling[21]. MNs consist of chronic
disorders like myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN), acute stages such
as acute myeloid leukemia as well as related overlap syndromes, i.e. MDS/MPN. Apart from these disease
groups, the umbrella of MNs, as per WHO 2022, also covers: myeloid precursor lesions, mastocytosis,
secondary myeloid neoplasms, myeloid/lymphoid neoplasms with eosinophilia and defining gene
rearrangement and acute leukemias of mixed or ambiguous lineage[22]. Even though each of these disorders
presents with distinct clinical features, MNs are closely related, lie on a continuum of morphological
parameters from dysplastic to more proliferative, share genetic features and as a result may have common
therapeutic approaches. Treatment modalities include hypomethylating agents, hematopoietic stem cell
transplantation, chemotherapy and more recently targeted agents.

The starting point of the pathophysiological process that ultimately induces MDS is the growth and expansion
of a somatically mutated clone of hematopoietic cells[23,24]. In particular, the stage before disease
presentation, called clonal hematopoiesis, begins with an initiating driver mutation in HSPCs. Clonal
hematopoiesis manifests under selective forces induced by various exposures such as cytotoxic treatments
and tobacco smoking, unrepaired DNA replication errors, aging or natural selection[24]. While in the setting
of clonal hematopoiesis a single mutation can lead to clonal expansions, secondary co-operative mutations
are required to confer a hematologic malignancy. Thus, the majority of people with clonal hematopoiesis
may never transform into a blood cancerous stage and remain in a phase of ‘indeterminate potential’[24].
Therefore, this condition, named clonal hematopoiesis of indeterminate potential (CHIP), describes the
clonal expansions of somatically mutated HSPCs in individuals with absence of dysplasias or cytopenias or
any other diagnostic criteria for hematologic neoplasms[21,23-25]. However, upon the acquisition of
secondary mutations, clonal hematopoiesis can dominate the BM and lead to malignant transformation and
overt disease presentation. This malignant transformation, depending on the morphologic abnormalities as
well as the cytogenetic and mutational landscape, can meet the criteria for an MN diagnosis[23,26]. MNs
such as MDS or MPN can further progress to AML upon the increase of the abnormal immature blood cells
called blasts, above the threshold of 20% [23].

Chapter 2 of the present thesis studies one of the most common mutations in MDS (SF3B1), whilst Chapter
3 is set in the context of IDH mutations in AML.
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Figure 1.1. Hierarchical representation of the hematopoietic process adapted from Corces et al. 2016. Hematopoietic
stem cells (HSCc) can either self-renew or produce multipotent progenitor cells (MPPs) that further differentiate to
lymphoid-primed multipotent progenitor cells (LMPPs) and common myeloid progenitors (CMPs). The latter can further
branch into megakaryocyte—erythroid progenitor cells (MEPs) or granulocyte-monocyte progenitor cells (GMPs) which
can be also reached from LMPPs. The terminally differentiated set of myeloid cell types consists of monocytes (Mono),
granulocytes (Gran), erythrocytes (Ery) and megakaryocytes (Mega). On the lymphoid branch, LMPPs give rise to
common lymphoid progenitors (CLPs) that mature into B cells, natural killer (NK) cells as well as T cells. Drawn using

BioRender.

1.3.1 Myelodysplastic Syndromes

Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid neoplasms characterized by
dysplasia, ineffective hematopoiesis, varying cytopenias and a significant risk of transformation to
AML[23,26—-29]. MDS diagnosis and subtype classification are mostly based on the examination of
morphological features (e.g. the degree of myelodysplasia, the presence of ring sideroblasts), percentage of
bone marrow and peripheral blood blasts, specific cytogenetic abnormalities (5g deletion, monosomy 7) and
gene mutations (SF3B1, TP53)[21,22,27,30]. The median age at diagnosis is approximately 70 years
old[26,29].

Determining the genetic landscape of MDS is important for improving the diagnostic, therapeutic as well as
prognostic practices in oncology[23,25,30—32]. The mutational burden as well as the detection of clonal and
subclonal mutations have significant prognostic value[31,33]. Several of the genes that are mutated in MDS
patients are commonly identified in the genetic profiling of other MNs (like MPN, MDS/MPN, AML) while
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the complex patterns of co-mutations and subclonal evolution are associated with diverse disease
trajectories and clinical traits. Upon the diagnosis of MDS, patients have a median number of 2-3 mutations
while the landscape of the disease is characterized by mutations in more than 40 genes. However, only a
small fraction of these are frequently mutated whereas the rest compose a long tail of more rare
abnormalities[23,25,34]. Recurrently mutated genes in MDS include those involved in RNA splicing (SF3B1,
U2AF1, SRSF2 and ZRSR2), DNA methylation (DNMT3A, TET2, IDH1, IDH2), chromatin modification (EZH2,
ASXL1, KMT2, SUZ12), transcription regulation (TP53, EVI1, RUNX1, GATA2), DNA repair control (ATM,
BRCC3), and the cohesin complex (STAG2, CTCF, SMC1A, RAD21) [23,25,27,32,34]. Different combinations of
mutations in these genes lead to the dysregulation of various biological pathways accounting for the disease
heterogeneity among MDS patients. Events in RNA splicing, DNA methylation and histone modification genes
are early driver and clonal events, while the rest contribute to disease evolution[25,27].

The most frequent mutations in MDS target components of the spliceosome machinery. Mutations in splicing
factor genes are recurrent events and have been described as central to MDS disease
biology[23,25,27,32,34]. Such mutations are heterozygous (e.g. affecting only one allele) and mutually
exclusive (like SF3B1 and SRSF2) and the different co-mutation patterns affect the downstream genomic
evolution[27]. Given their importance in MDS pathogenesis, splicing factors have been subject to rapid
therapeutic drug targeting, while inhibitors of the spliceosome complex are currently under clinical trial
development[23,32]. The SF3B1 gene is the most prevalently mutated one in MDS (~ 24% of the patients)
and encodes the splicing factor 3b subunit 1[25,27,32]. Its somatic mutation is an early, disease-defining
genetic lesion with an overall median variant allele frequency (VAF) around 40%[23,32]. Less frequently,
SF3B1 mutations can be identified as secondary events appearing in the background, most commonly, of
TET2, DNMT3A or ASXL1-mutated cases[32]. From a clinicopathological perspective, SF3B1 defines a distinct
nosologic group in MDS, is associated with more favorable outcomes and has proven to have notable
importance in prognostic systems of risk of transformation to AML [31,32,35]. SF3B1-mutant MDS is
characterized by the presence of ring sideroblasts (RS), ineffective erythropoiesis, low blast counts and
macrocytic anemia[21,23,32,35].

SF3B1 is a key component of the U2 small nuclear ribonucleoprotein complex (snRNP). Functionally,
mutations in SF3B1 affect splicing, namely the regulatory process that removes the intronic portions from
the pre-mRNA and then ligates the protein-coding sequences (exons) of the genes in the context of
transcription [36,37]. Under normal conditions, such exons are joined in different combinations (alternative
splicing, Figure 1.2), resulting in a range of alternative transcripts. The acquisition of mutations in SF3B1 (and
other spliceosome genes) induces preferential splicing alterations, leading to differential splicing behavior
compared to wild type [36,37]. SF3B1 mutations cause alternative 3’ splicing, mainly affecting mitochondrial
gene pathways [35]. Specifically, such mutations alter the RNA branchpoint recognition leading to the
preferential use of cryptic 3’ splice sites (Figure 1.2). This results in decreased production of canonical
transcripts and subsequent downregulation of protein expression as well as in increased formation of
aberrant transcripts with a premature stop codon. The latter transcripts are degraded by nonsense-mediated
decay mechanisms [23,32,38]. Apart from alternative 3’ splice site events (A3SS), mutations in SF3B1 (and
other spliceosome genes) can also lead to other differential splicing of other alternative patterns. As
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described in Figure 1.2, these include alternative 5’ splice site events (A5SS), skipping exon (SE) events,
retention of intron (RI) events and mutually exclusive exon (MXE) events. Despite modeling studies of SF3B1
mutations and the outlining of the genetic landscape in MDS, the determination of the downstream effectors
of SF3B1 mutations remains unclear.

Approximately 30% of MDS patients progress to AML resulting in chemoresistant disease and extremely poor
outcomes (5-year overall survival of <30%) [39,40]. Molecularly, progression to AML can take place in
different ways [23]. Mutations leading to leukemic transformation can be either acquired as secondary
events (e.g. EZH2 in SF3B1-mutated MDS) or be present when clinical symptoms of MDS appear, but expand
and attain dominance at a later stage under selection pressure (such as RUNX1 or STAG2) [23]. Upon MDS
progression to AML, blasts accumulate and reach the 20% diagnostic threshold for AML [23].

long transcript

Skipping Exon (SE) exonl exon3 “exon2
short transcript
[ ‘ long transcript
Alternative 3’ splice site exonl exon?2
(A3SS) ' : short transcript

Alternative 5’ splice site [ : long transcript
(A5SS) exonl exon2

short transcript

long transcript
Retention of Intron (RI) exonl intron exon2
short transcript

Mutually Exclusive Exons transcript 1

exonl exon3 exon2 exon4 -
(MXE) HIE :

S N transcript 2

Figure 1.2. Types of alternative splicing events. 1) Skipping Exon (SE): An exon (exon 3 in the figure) may be excluded
from the transcript or retained. 2) Alternative 3’ splice site (A3SS): An alternative 3’ splice junction of exon 2 is used. 3)
Alternative 5’ splice site (A5SS): An alternative 5’ splice junction of exon 1 is used. 4) Retention of intron (RI): The intronic
region may or may not be spliced out of the transcript. 5) Mutually Exclusive Exons (MXE): Only one out of two exons
(exon 2, exon 3) participates in the transcript.

Chapter 2 of this thesis introduces a multi-stage fusion strategy to integrate distinct transcriptomic readouts
from the splicing, transcript and gene level, as well as incorporates analyses of chromatin accessibility data
to characterize the functional implications of SF3B1 mutations in MDS.
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1.3.2  Acute Myeloid Leukemia

AML describes a set of aggressive and clonal MNs with rapid onset, acute progression and frequently
chemoresistance disease [41-44]. Similar to other MNs, AML pathogenesis is characterized by the presence
of a differentiation block that impairs hematopoiesis by preventing progenitor cells from proceeding toward
more mature myeloid cell types. This causes the aggregation and expansion of abnormal immature
hematopoietic precursor cells called blasts [41-44]. Patients with AML either can be asymptomatic with
abnormal complete blood count (CBC) or, in the majority, present with symptoms associated with BM failure
(e.g. fever, infections, anemia, bruising, etc) [45,46]. AML has a diverse age range, affecting most often older
individuals (the median age of diagnosis is 68 years old) and is associated with poor outcomes. Specifically,
disease occurrence rises with age and mortality is higher than 90% when the age of diagnosis is higher than
65 years [45,47].

AML can arise as a de-novo disease, may have a preceding MN such as an MDS preface (secondary AML -
sAML) or develop as a consequence of prior therapy (therapy-related AML). AML development is the result
of the stepwise acquisition of somatic mutations and cytogenetic aberrations in HSPCs that impede
differentiation and promote the proliferation and increase of the blast population [47,48]. In clinical practice,
diagnosis of AML requires the presence of blasts at a percentage higher than 20%, usually evaluated
morphologically on a bone marrow aspirate. The complete diagnostic profiling relies on immunophenotyping
by flow cytometry, which can confirm the existence of excessive blasts and other cell type populations,
cytogenetic testing (e.g. FISH or karyotyping) for the identification of chromosomal aberrations and genetic
screening for the cataloging of mutations [42,44,46,47,49].

The genomic landscape of the disease includes mutations in more than 80 genes, but only a small fraction of
them is frequently mutated (>5% of AML patients) [41]. More than 90% of AML patients are identified with
somatic mutations and typically most of them are identified with 2-3 drivers [41,49]. Mutation acquisition is
defined by well-characterized and preferred patterns of co-mutations that are ordered in time (Figure 1.3).
Early and disease-initiating events usually happen on epigenetic modifiers such as DNMT3A, ASXL1, IDH1,
IDH2 and TET2 [41]. These events are part of the parent clone and the fact that they are rarely identified in
isolation, shows that, on their own, are not capable of conferring overt leukemic disease. These events are
followed by secondary mutations in genes of the cohesin complex or chromatin modifiers (e.g. BCOR, STAG2),
RNA splicing (e.g. SRSF2, U2AF1, SF3B1) genes or transcription factor genes (e.g. WT1, RUNX1, GATAZ2) [41].
Late mutations, often associated with disease progression, occur usually in signaling genes such as the
receptor tyrosine kinase—RAS pathway genes (Figure 1.3). Other recurrently mutated genes in AML are NPM 1
and TP53, the genetic lesions of which typically take place as subclonal events [41].
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Early Secondary Late
events events events
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Figure 1.3. Disease progression in AML. Early, disease-initiating events are acquired by myeloid progenitor cells forming
the parent clone (red). These events are followed by secondary mutations, usually in chromatin modifiers and
spliceosome genes and late mutations in signaling genes[41]. In the course of disease progression, the gradual
acquisition of secondary and late events gives rise to subclones (blue, yellow) and creates populations of cells with
different genetic landscapes. Drawn using BioRender.

Studying the genomic composition of the disease shows that AML progression follows ordered evolutionary
trajectories. The co-occurrence and exclusivity of mutations define heterogeneous and dynamic sets of
subclones and outline the need for personalized therapy design. For instance, two of the most frequently
mutated genes in AML (15-20% of patients) are IDH1 (p.R132) and IDH2 (p.R140 and p.R172). Mutations in
these genes are early initiating events (clonal) and are frequently identified with co-mutations in DNMT3A,
NPM1, SRSF2 and NRAS. IDH1/2 mutations cause the elevated production of the oncometabolite 2-
hydroxyglutarate (R-2-HG) leading to hypermethylated phenotypes [50-54]. Therapeutic approaches
combine IDH inhibitors (e.g. ivosidenib, enasidenib) with chemotherapy or hypomethylating agents and aim
to decrease the 2-HG production and relieve the myeloid differentiation block [55-57]. Responses to these
therapies are multifactorial and depend at least in part on the presence of resistance-associated mutations
such as in the receptor tyrosine kinase—RAS pathway [56,58].

Chapter 3 of this thesis explores single cell transcriptome and genotyping data derived from IDH1/2 mutated
primary AML patient samples, aiming to derive associations between genomic abnormalities and gene

expression profiles.
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1.4. Omics profiling applications in cancer research

Investigating the role of mutations in disease pathogenesis and evolution relies on the study of primary
patient samples as well as on experimental models of disease biology. Examples of such models with
applications in myeloid neoplasms include murine models [59,60], immortalized cell lines [61,62] and
induced pluripotent stem cells (iPSCs) [63,64]. Murine models can be combined with genetic engineering
approaches to introduce mutations as seen in human samples. Immortalized cell lines, such as the leukemic
K562, represent primary patient cells that have been engineered to grow in vitro, while iPSCs represent
primary patient cells that have been reprogrammed back into an embryonic-like pluripotent state that can
be subsequently differentiated into the cell lineage of interest [65,66]. The deployment of omics profiling
across cells derived from models of disease biology or primary patient samples, creates an opportunity to
study cellular states and characterize putative mechanisms that are directly linked to acquired gene
mutations and implicated in disease pathogenesis.

The present thesis leverages omics profiling data from primary patient samples (Chapter 3), as well as
patient-derived iPSC models (Chapter 2).

1.4.1. Bulk omics modalities: Genome, transcriptome and epigenome sequencing

The decrease in the costs together with the high throughput and depth of next generation sequencing (NGS)
technologies, have enabled bulk data generation at massive scales at the human genome, epigenome,
transcriptome, metabolome and proteome level[67,68].

Genomic sequencing applications allow for the detailed documentation of the mutations present in a
genome [69]. DNA-sequencing (DNA-seq) applications include 1) targeted sequencing approaches, where
select regions of the genome are captured and sequenced 2) whole exome sequencing (WES) approaches
that analyze the DNA sequence of the coding part of the genome 3) whole genome sequencing (WGS)
approaches that capture the entire genome (coding and non-coding). Whilst targeted and whole exome
sequencing approaches capture small mutations and profile copy number abnormalities in select regions of
the genome, WGS allows the analyses of all classes of mutations to include copy number abnormalities and
genomic rearrangements. Increasingly, primary patient samples are profiled for the genes most commonly
mutated in cancer using targeted genome profiling approaches. These deliver information on the genes
mutated in each sample as well as the relative clonal representation of each mutation. In the present thesis,
data derived from targeted gene profiling of primary patient samples have directly informed the selection of
patient samples for disease modeling (i.e. iPSC generation of MDS patient samples with isolated SF3B1
mutations, Chapter 2) or phenotyping (i.e. selection of AML patient samples with clonal /DH mutations,
Chapter 3).

The transcriptome represents the full set of RNA transcripts produced in a cell(i.e. mRNAs, rRNAs, tRNAs,
miRNAs and other ncRNAs, such as siRNAs, snRNAs, IncRNAs) and depicts the profile of diverse cell types
and highly dynamic cellular states [70]. In addition to offering, high throughput and quality measurements
of gene expression, RNA sequencing (RNA-seq) also provides multi-faceted information on alternative
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splicing (Figure 1.2), transcript usage (relative expression-abundances of transcripts from the same gene,
Figure 1.4) and chimeric gene fusions[71]. Quantitative analyses from RNA-seq lead to detailed insights on
the regulation of cancer pathways and mechanisms, the evaluation of the tumor response to treatment as
well as the identification of biomarkers in the form of novel isoforms and fusion transcripts [69,72].

Condition A Condition B
exonl exon3 exon4 : exonl exon3 exon4
exonl exon3 exon4 E exonl exon3 exon4
Transcript 3 exonl exon3 exon4 ! exonl exon3 exond
exonl exon3 exon4 : exonl exon3 exon4
i exonl exon2 exond
: exonl exon2 exon4
' exonl exon2 exon4
5 exonl exon2 exon4 : exonl exon2 exon4
Transcript 2 :
exonl exon2 exon4 1 exonl exon2 exon4
exonl exon2 exon3 exon4 :
exonl exon2 exon3 exon4 ;
Transcri p t1 exonl exon2 exon3 exon4 E
exonl exon2 exon3 exon4 ' exonl exon2 exon3 exon4
exonl exon2 exon3 exon4 : exonl exon2 exon3 exond
exonl exon2 exon3 exond : exonl exon2 exon3 exon4

Alternative splicing and transcript formation
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Gene — exonl intron exon2 intron exon3 intron exond ——

Figure 1.4. Example of transcript usage for a gene across two conditions. Upon the transcription process, the gene is
alternatively spliced. This gives rise to 3 different transcripts. The gene has approximately the same overall expression
between the 2 conditions, but the proportions of the transcript copies differ. Here transcript 1 has higher usage in
condition A, while transcript 2 shows higher usage in condition B.

Epigenomic changes are a diverse set of chemical modifications of DNA nucleotides and histone proteins
[73]. They are present genome-wide and have the capacity to confer stable and heritable changes in the
functional output of the genome without altering the genomic DNA sequence itself [69,74]. Epigenomic
changes include, but are not limited to, DNA methylation (transfer of a methyl group to the C5 position of
the cytosine ring of DNA) and post-translational modifications of histones, and alter the chromatin dynamics
and accessibility [70,73,74]. Chromatin accessibility or nucleosome positioning along the genome can be
profiled using a range of assays such as deoxyribonuclease | (DNase |) hypersensitive site sequencing (DNase-
seq), micrococcal nuclease sequencing (MNase-seq) and transposase-accessible chromatin using sequencing
(ATAC-seq, Figure 1.5)[69]. The latter is a high-throughput, fast and sensitive technique that can detect
genome-wide regions of open chromatin and provide indirect insights on the regulatory processes of gene
expression[75].
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Figure 1.5. Steps of ATAC-seq for chromatin accessibility. Initially, nuclei are isolated from cells retaining their chromatin
architecture. Then, the Tn5 transposase cleaves the chromatin regions and the resulting fragments are tagged with
adapters. The library fragments are sequenced and ultimately the genomic regions enriched for Tn5 transposition
events are emerging as chromatin accessibility (ATAC-seq) peaks. This figure is adapted from Grandi et al. 2022 [73].

In Chapter 2, we harness the breadth of information present in the transcriptomic data (splicing, transcript
usage, gene expression) of patient-derived iPSC lines in SF3B1-mutated MDS to document the effects of the
SF3B1 mutations in the transcript repertoire. Concurrent analysis of bulk ATAC-seq data from the same iPSC
model adds a detailed overview of the chromatin accessibility landscape.

1.4.2. Single cell omics modalities: Genome and transcriptome sequencing

Widespread application of next-generation sequencing approaches have so far been used for the analysis of
DNA/RNA extracted from bulk samples which typically capture aggregated information from millions of cells
at a time. Although such experiments can be performed at scale and reduced costs generating high quality
data, the resulting molecular measurements are averaged across all cells in a sample [69,74] (Figure 1.6).
Thus, the study of biological variability among cell subsets such as cells of distinct lineages or clones is not
feasible from bulk sequencing approaches. To this end, single cell technologies enable the examination of
omics profiles at the single cell level, thereby providing high resolution cell-specific molecular measurements
that can be studied in unison as well as in aggregate [15,69]. These data enable the unmasking of the cellular
diversity between different populations and the robust exploration of intra-tumor heterogeneity (genetic
and clonal)[76] (Figure 1.6).
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Figure 1.6. Bulk vs Single cell sequencing. Bulk sequencing provides average measurements from all cells of the tissue.
On the other hand, single cell sequencing technologies allow measurements for each single cell profile and thus they

unmask cellular heterogeneity. Adapted from 10X Genomics and drawn using BioRender.

Current single cell assays profile the genome, transcriptome, epigenome, proteome and metabolome
allowing the investigation of the genetic diversity of clones, gene expression dynamics, chromatin
accessibility states, transient protein abundances and metabolic changes, respectively[77]. Among all
available types of single cell omics data, single cell RNA-sequencing (scRNA-seq) is the most widely used
application [78]. Particularly, scRNA-seq data captures the transcriptional states of different cell populations
and permits the comparison of gene expression profiles between single cells, leading to the dissection of the
transcriptional diversity between distinct clones[76]. As a result of comparing cell identities, single cell
transcriptomic analyses uncover cell-to-cell heterogeneity, aid the identification of rare or novel cell types,
shed light on previously unknown differentiation trajectories and reveal the dynamics of regulatory networks
and pathways[78]. Exploiting this potential of the raw scRNA-seq data has been facilitated by the
development of new computational methods or the novel application of existing ones to the single cell field.
Specifically, a wide set of methods focuses on reducing the dimensionality of scRNA-seq data, projecting cells
onto low dimensional spaces (e.g. t-SNE, UMAP) and grouping cell populations through alternative clustering
techniques (e.g. Leiden[79], pcaReduce[80], SC3[81]). Another category of algorithms aim to impute missing
gene expression values (e.g. MAGIC[82], scImpute[83]) due to the phenomenon of dropout, i.e the
undersampling of mMRNA molecules caused by the lack of detection of an expressed gene, especially in the
case of lowly expressed genes. Other methods set out to address the inference of regulatory networks (e.g.
SCODE[84], SCENIC[85]) while other approaches concentrate on inferring topologies for cellular trajectories
describing the temporal evolution of cells (e.g. DPT[86], PAGA[87]).

Single cell DNA-sequencing (scDNA-seq) documents genomic variation at a single cell resolution and is used
for the identification of mutations and copy number alterations at the single cell level [78]. However,
derivation of single cell genetic data is more challenging than scRNA-seq. The latter exploits the presence of
thousands of RNA copies of each transcript, whereas there are only two copies of DNA in each human cell
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[88]. Whole genome amplification (WGA) methodologies offer the opportunity to address this challenge by
amplifying or generating multiple copies of genomic DNA. However, at times, WGA techniques might not be
able to detect a specific allele within an extensive genomic region and thus struggle to maintain a consistent
sequencing depth along the genome[88]. For this reason, bioinformatics tools designed to identify single
nucleotide variants (SNVs) attempt to take allele coverage biases and amplification artifacts into account
(e.g. SCcaller[89], Monovar[90], LiRA[91]).

1.5. Integration of omics data

It is evident that a variety of omics data types, both at the bulk and single cell level, permit the
characterization of molecular properties with unparalleled scale and precision, thereby offering a
comprehensive understanding of tumor behavior[69]. However, each omic technology is targeted to a
specific molecular type (e.g. genome, transcriptome, epigenome, proteome, metabolome) and thus, the
spectrum of insights that can be drawn from single omics studies is limited to the biological scope of the
measured biomolecules[68]. Therefore, such approaches do not have the means to investigate the intricate
complexities across biological landscapes and are not sufficient enough to establish relationships among the
various molecular layers or decode the dependencies between features from different modalities[71,92].
Despite diving into a higher resolution space assisting in deciphering tumor heterogeneity, even single cell
datasets of a single data type may depict a modality-specific view of the cell state and may not have the
power to provide a detailed understanding of the function of cellular components and their interactions[77].

1.5.1. Multi-view mining with bulk omics: Background & Benefits

Hence, beginning from the bulk level, bringing together knowledge from multiple sequencing data modalities
or analyzing in unison the full spectrum of information offered from a single sequencing technology (e.g.
RNA-seq), results at a more complete perspective of the underlying disease biology[93]. Considering each
omic modality or each set of measurements from a specific data type (e.g. gene expression, transcript usage,
alternative splicing from RNA-seq data) as a separate data view, then the integration of all these data views
together utilizes their complementary nature and leads to synergistic conclusions influenced from various
biological aspects[94]. Such multi-view studies allow the analysis of a range of high-dimensional
measurements at multiple levels and scales and thus, can comprise the backbone of data-driven translational
research[71]. Additionally, using various views of data together, can help overcome any uncertainty
generated by any missing or unreliable information in any single view[95]. Overall, bulk integrative
approaches are empowered to examine the flow of molecular information between the multiple data
views[68], display a holistic picture of molecular systems[96], processes and mechanisms at the tissue level
and elucidate complex cancer phenotypes [67].

In particular, multi-view data integration within the setting of a single bulk sequencing modality such as RNA-
seq, can be interpreted as the systematic assembly of multiple types of measurements (views) extracted
from the same source[97]. In this case, these views depict distinct profiles or levels of the same data (e.g.
alternative splicing, transcript usage, gene expression) and jointly represent the entire spectrum of
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knowledge provided by the respective omics type (transcriptomics)[71,98]. Integrating all branches within
the same omics modality in a multi-level fashion, interrogates molecular properties from different levels and
traverses the flow[71] of information from one level to the other. This process uncovers the underpinnings
of biological processes[74], and ultimately links characteristics of biomolecules across multiple stages, aiding
the formation of a comprehensive representation of the underlying landscape. Therefore, combining
supporting evidence from these different levels can explain previously reported observations from single-
view analyses and also lead to the identification of novel biomarkers. For example, Ha et al. 2021[97] jointly
consider gene expression, splicing and polyadenylation patterns from RNA-seq data to examine the relative
contribution of multiple transcriptomic regulatory layers in the specification of neuronal identities. Their
results highlight the significance of coordinating multiple aspects of the same transcriptomic data in the
framework of defining the temporally and spatially distinct neuronal subpopulations.

Alternatively, in the setting where data views correspond to unique bulk sequencing modalities, multi-view
data integration typically unites the profiles of different types of biomolecules originating from the same
samples. Multi-omics approaches with bulk sequencing data focus on documenting the interactions between
biological layers[99] as well as describing the regulatory mechanisms that could possibly explain complex
phenotypic traits or the behavior of molecular systems[93]. Bringing together complementary omics-views
enhances a more thorough disease profiling and, based on the scope of the study, can also lead to an
improved disease subtyping and patient stratification[93,100], the identification of multifaceted biomarkers
for cancer diagnostics[93,100], the improved prediction of clinical outcomes[101] and a more complete
understanding of the responses to therapy[100]. Collating views of the genome, transcriptome, and
epigenome allows a more precise characterization of cancer biology and shows how gene expression
patterns are related to chromatin accessibility topologies and histone modifications within different genetic
contexts. For instance, Xiang et al. 2020[102] merged epigenetic features and transcriptomes to produce a
detailed picture of the regulatory landscape of differentiating hematopoietic cell types in mice. On a similar
note, Chen et al. 2022[103] utilize collectively RNA-seq, ATAC-seq and ChlIP-seq (chromatin
immunoprecipitation assays used for the identification of genome-wide DNA binding sites for transcription
factors and other proteins) data to reflect the role of JUNB in the human hematopoietic fate induction.

1.5.2. Multi-view mining with single cell omics: Background & Benefits

Integration of omics modalities at a single cell level can be either matched, i.e. different omics data are
captured from the same cell or unmatched, i.e. different omics data are captured from different
samples[104]. Focusing on the former case, matched data integration necessitates experimental protocols
that process more than one type of biomolecules. The joint profiling of genotypes and transcriptomes occurs
either through low throughput techniques such as scSIDR-seq[105] or medium throughput ones such as G&T-
seq[106] or higher throughput ones such as TARGET-seq[107]. Despite the concurrent ascertainment of DNA
and RNA from the same cell, the cost, technical challenges and labor-heavy requirements of these
protocols[108], pose significant considerations for their adoption at scale. An alternative approach for the
integration of genotype information to transcriptomic data has been to call somatic variants and identify
copy number variations fromscRNA-seq data alone, using bioinformatics tools such as SComatic[109],
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Monopogen[110] and InferCNV[111], HoneyBADGER([76] respectively. Alternatively, Nam et al. 2019[112]
presented an experimental framework, called GoT (genotyping of transcriptomes), that is able to link select
genotypes to the transcriptional profiling of thousands of single cells using scRNA-seq data. Using a
modification of the 10X scRNA-seq pipeline and the development of allele specific genotyping probes, GoT
enables targeted genotyping of scRNA-seq libraries. This enables the derivation of somatic genotypes for a
set of a priori known variants across thousands of cells. However, genotyping efficiencies may differ
significantly across alleles and are dependent on the expression levels of the gene of interest and the
proximity of the desired allele to the 5’ or 3’ of the transcript[112]. Chapter 3 leverages genotypic profiles
derived from the application of GoT on scRNA-seq data from IDH1/2-mutated AML primary patient samples

Single cell multi-omics approaches, by profiling genetic abnormalities and the transcriptome, have the
capacity to reveal genotype-phenotype associations[78]. For example, genotype-phenotype associations can
be established as the links between specific genetic variations and their downstream impact on the
expression of disease driver genes[78]. Considering intra-tumor heterogeneity, the joint analysis of single
cell transcriptomic data and genotypes enlightens the correspondence between cellular states or
transcriptionally unique cell populations with genetic subclones[76,113]. This integrative path leads to the
functional characterization of specific mutations or cytogenetic aberrations and the deciphering of their
consequences on distinct phenotypes. For instance, Macaulay et al. 2015[106], by applying G&T, discovered
a subset of HCC38-BL (B lymphoblastoid cell line) cells with trisomy of chromosome 11. This subpopulation
exhibited elevated expression in the genes of chromosome 11 compared to the diploid cells. Additionally,
Rodriguez-Meira et al. 2019[114], by using TARGET-seq, identified abnormal expression of oncogenes (like
MYCN, TP53) as well as of Wnt signaling and interferon-related genes in JAK2V627F-mutated HSPCs. Moreover,
examining such approaches within the inherent complexity of AML, makes the coupling of single cell
transcriptomic with genomic data a necessary step toward understanding the connection between genetic
and transcriptional heterogeneity. In this direction, Petti et al. 2019[113] examined the cell representation
of identified AML gene expression clusters at the phenotypic and mutational level in an unsupervised setting
while van Galen et al. 2019[115] similarly combined single cell genotypes with gene expression
measurements to correlate cell type compositions with genetic lesions.

Chapter 3 leverages transcriptomic and genomic information from the same cells and captures links between
gene expression profiles and genetic abnormalities in IDH1/2 mutated AML.

1.5.3. Multi-view integration strategies

From a computational perspective, integrating multiple views of data (representations or sets of features
derived from the measured biomolecules either within or across modalities) consists of two overlapping
procedures: data fusion and data interconnection[116] (Figure 1.7). Data fusion describes the process of
extracting and combining complementary contextual information from multiple data to improve decision
making and the quality of relevant outcomes (e.g. for prediction, classification, or clustering tasks). Data
interconnection denotes the action of unmasking the information and associations shared between data
views[116] (Figure 1.7).
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Data fusion strategies
Multi-stage fusion

Methods for data fusion can be broadly divided into two categories: the multi-stage and the meta-
dimensional[95,96] (Figure 1.7, Table 1.1). In the multi-stage fusion, information is integrated in a stepwise
or hierarchical mode. In particular, multi-stage approaches handle data views as separate entities and build
frameworks that sequentially or hierarchically enrich the emerging signals with additional layers of
information[95,96]. This strategy, as the name suggests, divides the analysis to distinct steps and may involve
some degree of independent processing of each view before investigating inherent correlations. Results
derived from the analysis of each view may serve as anchors between the different steps and can facilitate
the framework to 1) establish inter-layer associations 2) relate these associations with a phenotype in a
supervised setting or produce new conclusions in an unsupervised manner.

Depictive applications of this multi-stage logic in a biological or molecular context can be seen in bulk omic
approaches such as genomic variation analyses, domain knowledge guided analyses and allele-specific
expression (ASE) analyses[95] (Table 1.1). The genomic variation analyses attempt to associate variations in
the DNA with another data view (usually gene expression, DNA methylation or protein levels) and then, relate
both of them with a phenotype of interest. This can be achieved either through likelihood-based causal
inference approaches[117] or, most commonly, through a three-stage technique[95]. In the setting of the
latter, initially, genomic variation analyses identify single-nucleotide polymorphisms (SNPs) associated with
the phenotype of interest. Second, the statistically significant SNPs from step 1 are tested for association
with the second omic view (e.g. gene expression). In the final step, the data from the second omic view are
correlated with the phenotype of interest. For instance, efforts that adopted this approach combined
genome-wide SNPs with baseline gene expression levels of HapMap lymphoblastoid cell lines (LCLs) to
identify associations with the IC50 drug cytotoxicity measurements[118—120]. Domain knowledge guided
analyses also adopt a multi-level logic, using at the same time derived insights either from known biological
mechanisms and processes or from documented functional and pathway information in resources such as
ENCODE[121] and KEGG[122]. Compared to the genomic variation analyses, the domain knowledge guided
ones involve an additional step of annotating genetic variants and selectively advancing only a subset of them
to the subsequent stages of the analysis[95]. Lastly, ASE first assesses whether the maternal or paternal allele
is preferentially expressed and then relates this allele to variations of cis-regulatory elements and epigenetic
modifications[95]. ASE as well as its extensions such as allele-specific transcript structure, have been
employed to discover functional variation[123] and protein-DNA[124] interactions in humans.

Chapter 2 uses principles from the multi-stage fusion strategy to integrate different levels of deregulation of
the transcriptome (splicing, transcript usage, gene expression) in SF3B1-mutated MDS.

Beyond the multi-stage fusion strategy utilized in this thesis, there has been active development of a plethora
of meta-dimensional (concatenation-based, transformation-based and late) fusion approaches. In the
section below, we highlight some notable and relevant innovations of this fast growing field.

16


https://paperpile.com/c/fpF7ib/us2rb+vgVNu
https://paperpile.com/c/fpF7ib/vgVNu+us2rb
https://paperpile.com/c/fpF7ib/us2rb
https://paperpile.com/c/fpF7ib/AOKn
https://paperpile.com/c/fpF7ib/us2rb
https://paperpile.com/c/fpF7ib/dwzH+DcOU+UfeB
https://paperpile.com/c/fpF7ib/KQXQO
https://paperpile.com/c/fpF7ib/zoDWz
https://paperpile.com/c/fpF7ib/us2rb
https://paperpile.com/c/fpF7ib/us2rb
https://paperpile.com/c/fpF7ib/3UVDv
https://paperpile.com/c/fpF7ib/4zL5z

Chapter 1

Meta-dimensional fusion: Concatenation-based & late strategies

Meta-dimensional fusion strategies merge diverse data views simultaneously and can be divided into three
categories: concatenation-based (early) fusion, transformation-based (intermediate) fusion and late
fusion[95,96] (Figure 1.7, Table 1.1). Concatenation-based fusion methods are usually deployed in bulk
sequencing settings and as the name suggests, combine all data views at the original, hand crafted or lower-
dimensional space into one common representation (e.g. matrix) before constructing a
model[69,92,95,96,116]. This representation can be used as a single entity and serves as input for any
downstream modeling (Figure 1.7). This straightforward strategy, by simply concatenating data views at an
early stage, allows the use of a variety of downstream models for mining the data and has the advantage of
taking feature interdependencies and interactions into account[92]. However, the resulting representation
might suffer from the ‘curse of dimensionality’ due to the size of the final feature space[69]. For instance,
Fridley et al. 2012[125] fused data from SNPs and gene expression into a single matrix and applied Bayesian
modeling to predict drug cytotoxicity. Mankoo et al. 2011[126], after computing Spearman rank correlations
among different data types, applied a multivariate Cox Lasso model on a merged representation of CNVs,
methylation and gene expression data to predict survival in ovarian cancer.

Contrary to concatenation fusion methods, late fusion methods conduct independent analysis for each data
view and then consolidate the individual results[69,92,95,96,116]. In particular, first, unimodal models are
constructed using single views and in a second step, a final model is built from them following a reasoning
strategy (Figure 1.7). Popular choices for the development of the final model are, among others, majority
voting, multiple kernel learning as well as ensemble approaches. The limitation of the late fusion strategy is
its inability to account for the complementarity and the interdependencies of the different data views[95].
On the other hand, the fact that the integration is applied on the independently derived outcomes of
unimodal models, makes the late fusion strategy agnostic to the method used to derive each individual
outcome. Thus, it provides the flexibility of changing modeling approaches without affecting the architecture
and the reasoning of the fusion method. In a bulk sequencing context, Tao et al. 2019[127] deployed multiple
kernel learning on CNV, transcriptomic and methylation data for subtype prediction in breast cancer.
Additionally, for cancer subtyping tasks, Aure et al. 2017[128] applied COCA (cluster-of-clusters
analysis)[129] to fuse clustering assignments produced on multiple omic levels (e.g. protein, miRNA,
metabolic profiles). At the single cell level, late fusion approaches can be applied for the integration of
clustering results from different algorithms on the same data modality (e.g. scRNA-seq). For example, Huh
et al. 2020[130] fused clustering annotations from multiple clustering methods via mixture model ensemble
solving a maximum likelihood problem, and provided a consensus clustering of human peripheral blood
mononuclear cells (PBMCs).

Meta-dimensional fusion: transformation-based strategies

Transformation-based fusion approaches jointly analyze all data views within a modeling framework,
commonly by mapping or transforming the initial data to intermediate representations (e.g. graphs, kernel
matrices, etc)[69,92,95,96,116] (Figure 1.7). In such approaches, the fact that modeling occurs on the
transformed space, facilitates the integration of measurements across different scales and types (discrete,
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continuous)[95]. At the same time, the transformation of the data views to intermediate representations
does not mask data specific properties, but might render the recognition of interaction effects between the
single views more challenging[69]. The categorization of the transformation-based methods is not definite
and it can depend on technical aspects (e.g. deep learning methods, graph-based methods, etc), the type of
the transformed representation (e.g. matrices, networks, etc), as well as, the biological problem tackled (e.g.
disease subtype identification, patient classification, prediction of clinical outcomes, biomarker identification
etc). Here, in an effort to put both bulk and single cell methods under the same perspective and at the same
time account for the technical characteristics of the methods used, we categorize transformation-based
fusion approaches into three non-exclusive groups: 1. similarity-based methods; 2. dimension reduction-
based methods; and, 3. statistical modeling-based methods.

Similarity-based approaches typically learn sample affinities commonly depicted as similarity matrices or
graphs for each data view and then merge these inter-sample similarities in a unified context. In particular,
similarity network fusion SNF[131], suited for bulk multi-omics efforts, models pairwise patient similarities
from each view in view-specific graph structures called similarity networks. Then, SNF integrates these graphs
using an iterative fusion procedure that eventually produces a single network, representative of the full
spectrum of the underlying data. Wang et al. 2021[132], within a supervised setting for patient classification,
handled the view-specific similarity networks as graph convolutional networks (GCNs). The predictions of
these GCNs were passed to a view correlation discovery network that produced the final labels. In an
alternative approach, Ramazzoti et al. 2018[133] proposed a cancer subtyping method, CIMLR (Cancer
Integration via Multikernel LeaRning), which constructs a unified similarity matrix for downstream clustering,
after combining multiple gaussian kernels per view. In single cell omics, Hao et al 2021[134] generated a
weighted nearest neighbor graph which, for each cell, depicts its most similar ones based on a weighted
combination of the different modalities (e.g. protein and RNA). This graph can be used for downstream
analyses such as low dimensional projections and clustering of PBMCs. Alternatively, Singh et al 2021[135],
first chose one modality as the primary one, then determined modality specific cell similarities and finally
transformed the primary modality such that it has maximum level of agreement with the rest. In another
approach, CiteFuse[136] computed the cell-to-cell similarity matrices of matched proteomic and mRNA data
separately and then applied SNF to merge them. Then, graph-based clustering was performed on this merged

similarity matrix.

Dimension-based reduction strategies typically deploy matrix factorization (MF), canonical correlation
analysis (CCA) or deep learning (DL) techniques and focus on projecting the different data-views to a joint
latent space. In particular, joint factorization decomposes the observed data matrices into sets of low
dimensional latent factors able to capture inter-view dependencies. Lock et al 2013[137], in the context of
bulk multi-omics, proposed JIVE (Joint and Individual Variation Explained), a MF framework that decomposes
data variation into a component representative of the joint biological variation across views and into another
component that is specific for each view. Argelaguet et al 2018[138], using MF, introduced MOFA (multi-
omics factor analysis), a framework that operates both in bulk and single cell data and infers latent factors
that capture the underlying sources of variation across either complete or partial data views. MOFA was
applied on a chronic lymphocytic leukemia cohort to identify axes of disease heterogeneity. Welch et al
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2019[139], developed LIGER (linked inference of genomic experimental relationships), a method that uses
integrative non-negative MF[140] on single cell multi-omics to represent cell profiles as a mixture of view-
specific and shared factors. LIGER can be used for cell type identification from scRNA-seq and scATAC-seq.

CCA, as a subspace learning approach that aims to identify pairs of projections for different views such that
correlations between them are maximized, can be also used as a backbone for multi-omic fusion efforts. For
example, in a bulk setting, CCA[141,142] provides insights on inherent structures by spotting correlated
patterns across different omics types (such as finding genomic regions with CNVs correlated with various
expression levels). In a single cell context, Stuart et al 2019[143] use CCA to jointly reduce the dimensionality
of two single cell datasets and then search for mutual nearest neighbors in the shared low dimensional space.
This method can be applied for the integration of multiple single cell measurements from different scRNA-
seq samples and technologies. In another approach, MAESTRO[144] projects cells with matched
transcriptomic and chromatin accessibility data into a unified low-dimensional space by performing CCA
between gene expression from scRNA-seq and regulatory potential from scATAC-seq.

Apart from MF and CCA, deep learning architectures and specifically autoencoders are also commonly
deployed for transformation-based fusion approaches. They have the ability to learn unified low dimensional
embeddings across views and capture nonlinear dependencies at the same time. Even though the
deployment of autoencoders can be also seen in bulk multi-omic integration[145], the fact that single cell
data sets typically comprise thousands of cells, offers more suitable conditions for optimal training and
exploitation of their computing capacities. Within a single cell setting, Gayoso et al. 2021[146] introduced
totalVI (Total Variational Inference), a probabilistic framework that learns representations of cell profiles
based on the joint low-dimensional embeddings of RNA and protein data emerging from a variational
autoencoder architecture. These representations can be used for visualization purposes and downstream
tasks such as cell clustering. Additionally, Lin et al 2022[147] proposed a deep autoencoder model, named
scMDC (single cell Multimodal Deep Clustering), that also jointly forms latent features of encoded
embeddings for the clustering of matched single cell multi-omics views (e.g. from PBMCs).

Statistical modeling-based methods allow the joint probabilistic modeling of multi-omics data under a
Bayesian framework. Lock & Dunson et al. 2013[148] introduced Bayesian consensus clustering (BCC), a
Bayesian framework that utilizes Dirichlet mixture models to produce view-specific but dependent clusters
that adhere loosely to an overall consensus clustering. Application of BCC on bulk transcriptomic,
methylation and proteomic data from TCGA[8] (The Cancer Genome Atlas) resulted in breast cancer subtypes
with specific clinical features. In a similar approach, Kirk et al. 2012[149] describe a Bayesian method, named
Multiple Dataset Integration (MDI), which does not assume a common clustering structure, but instead
defines view-specific clusters while also modeling the pairwise dependencies between them. Alternatively,
in a non-inherently Bayesian setting, other efforts determine a single joint clustering by finding the structure
that maximizes a joint likelihood. This approach is followed by Kormaksson et al. 2012[150] upon fusing gene
expression and DNA methylation data, while the iCluster[151] method initially fits a Gaussian latent factor
model to the joint likelihood and then applies K-means on the factor scores to extract the cluster
assignments. iCluster has been applied for breast and lung cancer subtyping based on copy number and gene
expression data. At the single cell level, contrary to the similarity-based and autoencoder-based methods,
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the statistical modeling-based ones have not been widely deployed for multi-view fusion. However, Wang et

al. 2020[152] developed BREM-SC, a hierarchical Bayesian mixture framework that adopts Dirichlet

multinomial distributions to model the expression levels of genes and surface proteins from matched single

cell data. Wang et al. also introduce in their approach cell-specific random effects to model the correlation

between these two data views and apply BREM-SC for the clustering of publicly available single cell data from

PBMCs.

Table 1.1. Literature examples of multi-view omics integration across fusion strategies.

Fusion strategy

Multi-stage

Multi-stage

Multi-stage

Multi-stage

Meta-dimensional
(concatenation-based)

Meta-dimensional
(concatenation-based)

Meta-dimensional (late)

Meta-dimensional (late)

Meta-dimensional (late)

Meta-dimensional
(transformation-based)

Method

type
QTDT*, general Bulk
linear models

Likelihood-based  Bulk
causal inference

Maximal Bulk
concordance
Significance Bulk
analysis of

microarrays

Multivariate Cox  Bulk
Lasso

Bayesian modeling Bulk

Multiple Kernel Bulk
Learning

COCA* Bulk

Mixture model
ensemble

Similarity Network Bulk
Fusion

Single cell

Sequencing Omics types used

Genomics,
transcriptomics,

cytotoxicity assays

Genomics,
transcriptomics

Genomics,
transcriptomics

Genomics,
epigenomics

Genomics,
transcriptomics,
epigenomics

Genomics,
transcriptomics

Genomics,
transcriptomics,
epigenomics

Genomics,
transcriptomics,
metabolomics,
proteomics

Transcriptomics

Transcriptomics,
epigenomics

Scope

Genomic variation,
biomarker
identification

Genomic variation,
biomarker
identification

Allele-specific
expression,
functional variation
identification

Allele specific
protein-DNA
interactions

Survival prediction

Phenotype
prediction (drug
cytotoxicity)

Cancer subtyping

Cancer subtyping

Clustering

Cancer subtyping,
survival prediction

Reference

[118-120]

[117]

[123]

[124]

[126]

[125]

[127]

[128]

[130]

[131]
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Meta-dimensional
(transformation-based)

Meta-dimensional
(transformation-based)

Meta-dimensional
(transformation-based)

Meta-dimensional
(transformation-based)

Meta-dimensional
(transformation-based)

Meta-dimensional
(transformation-based)

Meta-dimensional
(transformation-based)

Meta-dimensional
(transformation-based)

Meta-dimensional
(transformation-based)

Meta-dimensional
(transformation-based)

Meta-dimensional
(transformation-based)

Meta-dimensional
(transformation-based)

Meta-dimensional
(transformation-based)

Meta-dimensional
(transformation-based)

Graph
Convolutional
Networks

Multiple Kernel
Learning

Weighted Nearest
Neighbor graphs

Metric learning

Similarity Network
Fusion

Matrix
Factorization

Matrix
Factorization

Matrix
Factorization

Canonical
Correlation
Analysis

Canonical
Correlation
Analysis

Canonical
Correlation
Analysis

Autoencoders

Autoencoders

Autoencoders

Bulk

Bulk

Single cell

Single cell

Single cell

Bulk

Bulk & single

cell

Single cell

Bulk

Single cell

Single cell

Bulk

Single cell

Single cell

Transcriptomics,
epigenomics

Genomics,
transcriptomics,
epigenomics

Transcriptomics,
proteomics,
epigenomics
Transcriptomics,
epigenomics
Transcriptomics,

proteomics

Transcriptomics

Genomics,
transcriptomics,
epigenomics

Transcriptomics,
epigenomics

Genomics,
transcriptomics

Transcriptomics,
epigenomics,
proteomics

Transcriptomics,
epigenomics

Transcriptomics

Transcriptomics,
proteomics

Transcriptomics,
epigenomics,
proteomics

Patient classification,
cancer subtyping,
biomarker
identification

Cancer subtyping,
survival prediction

Cell state
identification,
clustering

Modality alignment,
cell type inference

Clustering

Cancer subtype
characterization

Biomarker
identification

Cell type
identification,
clustering

Survival prediction,
cancer subtyping

Batch-effect
correction, cell state
identification,
clustering

Clustering, cell type
annotation

Clustering, cancer
subtyping, molecular
characterization

Batch-effect
correction,
biomarker
identification

Batch-effect
correction, clustering

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[141]

[143]

[144]

[145]

[146]

[147]
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Meta-dimensional Bayesian modeling Bulk Transcriptomics, Clustering, cancer [148]
(transformation-based) epigenomics, subtyping
proteomics
Meta-dimensional Bayesian modeling Bulk Transcriptomics, Clustering, molecular [149]
(transformation-based) epigenomics, characterization
proteomics
Meta-dimensional Mixture models Bulk Transcriptomics, Clustering, cancer [150]
(transformation-based) and likelihood epigenomics subtyping
estimation
Meta-dimensional Latent variable Bulk Genomics, Clustering, cancer [151]
(transformation-based)  modeling and transcriptomics subtyping
likelihood
estimation
Meta-dimensional Bayesian modeling Single cell Transcriptomics, Clustering [152]
(transformation-based) proteomics

* QTDT: quantitative transmission-disequilibrium test
* COCA: cluster-of-clusters analysis

Data interconnection

The goal of multi-view data interconnection is to establish links and relationships between pairs of data
views, as well as, examine how specific patterns visible in one view are represented in the other[116] (Figure
1.7). An important principle of data interconnection is the flow of information from one data view to the
other. A classic paradigm of this flow, depictive of disease etiology, is that the downstream consequences of
oncogenic variations can be at least in part ascertained through gene expression phenotyping. A common
way of connecting gene expression phenotypic profiles with genetic abnormalities at the cell level, is to
overlay cell-level genetic annotations (e.g. using genomic profiling to derive mutation information) onto the
low dimensional representation of the same cells from matched scRNA-seq. This provides the opportunity
to associate gene expression clusters with the malignant or WT status of a sample or cell[115] or the
existence of CNVs[113] as well as the mutational status of specific genes[112]. On the contrary, in an
unmatched setting, Campbell et al. 2019[153] developed Clonealign whereby each cell’s gene expression
profile is assigned to its clone-of-origin by integrating independently sampled scRNA-seq (expression) and
(scDNA-seq) copy number data. Clonealign is based on a Bayesian latent variable model that maps the copy
number of a gene to its expression value by introducing a copy number dosage effect on the gene expression.

In Chapter 3 of the thesis, we deploy deep learning as a means of interconnecting single cell genotypic and

expression profiles.

Furthermore, data interconnection is also adopted in the context of exploring the associations between bulk
RNA and ATAC-seq data. Such associations are drawn using either the sample or the gene as a point of
connection. In the sample-wise manner, chromatin accessibility at regulatory elements is correlated to RNA
abundances, while in gene-wise correlations fold changes of differential accessibility and expression analyses

are compared[154]. In particular, Sanghi et al. 2021[154] show the density of the sample-wise correlation
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between gene accessibility and gene expression from primary and metastatic thyroid samples. In a gene-
wise specific context, Wang et al. 2021[155] used diamond plots to present the accessibility fold change of
chromatin peaks together with the expression change of the genes associated with them, within different
AML genetic subgroups using human iPSCs. Additionally, using the gene as a central anchor allows one to
observe the expression of transcription factors matching accessibility motifs[156].

The interconnection between data views also includes combinations of omics with other data modalities.
Particularly, the generation of diverse datasets in scale, coupled with the computational efficiency of deep
learning models, have enabled links between omic profiles and modalities such as radiology scans, chemical
compounds or tissue morphology in pathology slides [116]. For instance, gene expression data have been
associated with whole slide (pathology) images (WSlIs) and chemical structures. Schmauch et al. 2020[157]
used thousands of matched hematoxylin and eosin (H&E)-stained slides and RNA-seq samples across 28
cancer types from TCGA to train HE2RNA, a deep learning model that predicts RNA-seq profiles from
histology images without expert annotations. Fotis et al. 2020[158] used Siamese graph convolutions to
associate chemical compounds with their affected biological processes inferred from matched gene
expression data. In the context of establishing genotype-phenotype associations, Coudray et al. 2018[159]
showed that mutations in STK11, EGFR, FAT1, SETBP1, KRAS and TP53 can be identified directly from H&E
WSiIs in lung cancer using the inception v3[160] convolutional neural network (CNN). In MDS, Briick et al
2021[161], connected BM histopathology images to genetic alterations indirectly, through deep CNN
features, representative of the tissue morphology. Other studies, in similar settings, aim to predict such
mutational statuses in liver[162], bladder[163], colorectal[164] and thyroid[165] cancer, whereas other
approaches [166,167] operate on a pan-cancer context. In radiology, Ha et al 2017[168] associated features
from breast mammography to the mutational status of BRCA1/2, Wang et al 2019[169] trained a CNN using
thousands of CT (computed tomography) scans to predict EGFR mutations in lung adenocarcinoma, while He
et al. 2020[170] deployed a ResNet architecture to predict noninvasive KRAS mutations through CT scans in
colorectal cancer.

We note that the separation between data interconnection and fusion approaches is not exclusive as both
processes inherently follow the idea of leveraging shared or complementary patterns from multi-view
profiles. The fact that data fusion techniques might exploit hidden data interconnections as part of their
integration strategy, might create an overlap between the two approaches. Concluding, we underline that
the choice between the two approaches, as well as, the subsequent selection of computational techniques
depends on the task in question, data prevalence, experimental setting as well as computing considerations.
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Figure 1.7. Map of multi-view integration in the setting of omics data. Integrating multiple views can be separated into
data fusion and data interconnection. The latter examines the cross-talk between pairs of views either directly or
indirectly while the former (data fusion) combines complementary contextual information to improve an output.
Methods for data fusion can be divided into the multi-stage fusion ones, which merge information from each view in a
stepwise or hierarchical fashion, and the meta-dimensional fusion ones which can be further categorized into early
(concatenation-based), late and transformation-based approaches. Early fusion techniques first concatenate all views
into a single entity and then apply a model on this entity, late fusion techniques perform uni-view analyses and then
merge the view-specific outputs whereas transformation-based ones jointly analyze all data views.

1.6. Thesis outline

This thesis adapts concepts from data integration to formally mine omics data derived from primary patient
samples or experimental models of MDS and AML. We deploy principles from multi-view data fusion and
interconnection to develop analytical frameworks within and between different omics modalities and
sequencing techniques, aiming to extract biologically relevant relationships amongst multi-faceted molecular
signals. In the context of SF3B1-mutated MDS (Chapter 2) and IDH1/2-mutated AML (Chapter 3), the
presented analyses and frameworks establish links between diverse data views and identify patterns
inherent in the data, setting out to elucidate omics landscapes, identify molecular characteristics and assist
the study of phenotypes at a genetic level.

Chapter 2 investigates the transcriptional repertoire and chromatin profile of SF3B1-mutated MDS,
leveraging bulk RNA and ATAC-seq data from patient-derived genetically matched normal and SF3B1-
mutated iPSC lines. Within this context, we introduce a multi-stage fusion framework which brings together
data views from different layers of transcriptome sequencing and results in a detailed overview of the
transcriptomic repertoire of SF3B1-mutated MDS. Particularly, with a domain knowledge approach, we
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merge signals from splicing, transcript usage and gene expression and we derive a splicing signature of 59
splicing events linked to 34 genes, which associates with the SF3B1 mutational status of primary MDS patient
cells. Additional unimodal chromatin accessibility analysis from the ATAC-seq data, showed increased
priming of SF3B1 HSPCs toward the megakaryocyte- erythroid lineage, as well as the enrichment of motifs
from the TEA (TEAD) domain in accessible regions linked to genes with upregulated expression. Overall,
chapter 2, applies a multi-stage fusion approach on transcriptomic data views to prioritize mis-spliced gene
targets, and concurrently provides a formal overview of the SF3BI1-mutated chromatin landscape and
nominates transcriptional programs with putative roles in MDS disease biology.

Inspired by past studies that aim to predict genotypic abnormalities from pathology or radiology data[116],
in chapter 3 we focus on capturing genotype-phenotype associations using neural networks as a means of
connecting data views. By leveraging single cell data from a set of IDH1/2 mutant AML patients, we develop
deep learning approaches to explore how genotypic changes are reflected in cell specific gene expression
signals. Specifically, this chapter examines if single cell gene expression patterns together with the
computational power of neural networks have the capacity to predict a cell’s status (malignant or WT) and
subsequently its genotype in the context of IDH1/2 mutated AML. Thus, first, we train a feedforward neural
network to predict the cell’s malignant or wild-type (WT) status in a binary fashion using single cell RNA
sequencing data from 6 AML patients and 4 healthy individuals (50,026 cells in total). Then, in a multi-label
setting, we train, for a single patient, a similar architecture to predict the mutational status of specific
genomic abnormalities at the single cell level. In the hold-out test sets, the binary classification model
achieved an accuracy of 98% while the multi-label one achieved a macro-average AUC ROC of 0.84.
Additionally, the latter model showed notable efficiency (AUC ROC of 0.83) in predicting the subclonal NRAS
mutational status, suggesting that NRAS mutations confer a distinctive gene expression pattern in IDH1/2
AML. Concluding, chapter 3 applies deep learning to explore if and how single cell gene expression profiles
can be predictive of the malignant cell status and the mutational profile of specific genetic abnormalities in
IDH1/2 AML in a supervised training context, and shows the potential of such modeling approaches in
capturing meaningful genotype-phenotype relationships.

The work presented in Chapter 2 has been published here (Blood Advances journal) and the work presented
in Chapter 3 has been published here (Association for Computing Machinery, International Conference on
Bioscience, Biochemistry and Bioinformatics 2023 Conference proceedings).

1.7. References

1. Pan-cancer analysis of whole genomes. Nature. 2020;578: 82—93.

2. Martincorena |, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, et al. Universal Patterns of
Selection in Cancer and Somatic Tissues. Cell. 2018;173: 1823.

3. Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells. Science. 2015;349: 1483-1489.

4, Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458: 719-724.

25


https://paperpile.com/c/fpF7ib/DoPgN
https://doi.org/10.1182/bloodadvances.2021006325
https://doi.org/10.1145/3586139.3586140

Chapter 1

5. McGranahan N, Swanton C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell.
2017;168: 613-628.

6. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481: 306—-313.

7. International Cancer Genome Consortium, Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, et al.
International network of cancer genome projects. Nature. 2010;464: 993—-998.

8. Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA,
et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45: 1113-1120.

9. Gerstung M, Papaemmanuil E, Martincorena I, Bullinger L, Gaidzik VI, Paschka P, et al. Precision oncology
for acute myeloid leukemia using a knowledge bank approach. Nat Genet. 2017;49: 332-340.

10. Zhang N, Wu J, Wang Q, Liang Y, Li X, Chen G, et al. Global burden of hematologic malignancies and
evolution patterns over the past 30 years. Blood Cancer J. 2023;13: 82.

11. Karagianni P, Giannouli S, Voulgarelis M. From the (Epi)Genome to Metabolism and Vice Versa; Examples
from Hematologic Malignancy. Int J Mol Sci. 2021;22. doi:10.3390/ijms22126321

12. Maloy S, Hughes K. Brenner’s Encyclopedia of Genetics. Academic Press; 2013.
13. Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132: 631-644.

14. Crisan M, Dzierzak E. Correction: The many faces of hematopoietic stem cell heterogeneity. Development
doi: 10.1242/dev.114231. Development. 2017;144: 4195.

15. Zhang Y, Gao S, Xia J, Liu F. Hematopoietic Hierarchy - An Updated Roadmap. Trends Cell Biol. 2018;28:
976-986.

16. Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: a human perspective. Cell Stem Cell. 2012;10:
120-136.

17. Laurenti E, Gottgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature.
2018;553: 418-426.

18. Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, et al. Lineage-specific and single-cell
chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet. 2016;48: 1193—
1203.

19. Murati A, Brecqueville M, Devillier R, Mozziconacci M-J, Gelsi-Boyer V, Birnbaum D. Myeloid
malignancies: mutations, models and management. BMC Cancer. 2012;12: 304.

20. Korn C, Méndez-Ferrer S. Myeloid malignancies and the microenvironment. Blood. 2017;129: 811-822.

21. Malcovati L, Ambaglio |, Elena C. The genomic landscape of myeloid neoplasms with myelodysplasia and
its clinical implications. Curr Opin Oncol. 2015;27: 551-559.
26



Chapter 1

22. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health
Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms.
Leukemia. 2022;36: 1703-1719.

23. Cazzola M. Myelodysplastic Syndromes. N Engl J Med. 2020;383: 1358-1374.

24. Marnell CS, Bick A, Natarajan P. Clonal hematopoiesis of indeterminate potential (CHIP): Linking somatic
mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J Mol Cell Cardiol. 2021;161:
98-105.

25. Bejar R. Implications of molecular genetic diversity in myelodysplastic syndromes. Curr Opin Hematol.
2017;24: 73-78.

26. Current standard of care in patients with myelodysplastic syndromes and future perspectives. healthbook
TIMES Onco Hema. 2020. doi:10.36000/hbt.oh.2020.06.026

27. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological
implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122: 3616-27; quiz 3699.

28. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in
944 patients with myelodysplastic syndromes. Leukemia. 2014;28: 241-247.

29. Visconte V, Tiu RV, Rogers HJ. Pathogenesis of myelodysplastic syndromes: an overview of molecular and
non-molecular aspects of the disease. Blood Res. 2014;49: 216-227.

30. Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H, Medina-Martinez JS, et al. Implications of
TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat
Med. 2020;26: 1549-1556.

31. Bernard E, Tuechler H, Greenberg PL, Hasserjian RP, Arango Ossa JE, Nannya Y, et al. Molecular
international prognostic scoring system for myelodysplastic syndromes. NEJM Evid. 2022;1.
doi:10.1056/evidoa2200008

32. Malcovati L, Stevenson K, Papaemmanuil E, Neuberg D, Bejar R, Boultwood J, et al. SF3B1-mutant MDS
as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS.
Blood. 2020;136: 157-170.

33. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international
prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120: 2454—-2465.

34. Kontandreopoulou C-N, Kalopisis K, Viniou N-A, Diamantopoulos P. The genetics of myelodysplastic
syndromes and the opportunities for tailored treatments. Front Oncol. 2022;12: 989483.

35. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation
in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365: 1384-1395.

27



Chapter 1

36. Kataoka N, Matsumoto E, Masaki S. Mechanistic Insights of Aberrant Splicing with Splicing Factor
Mutations Found in Myelodysplastic Syndromes. Int J Mol Sci. 2021;22. doi:10.3390/ijms22157789

37. Taylor J, Lee SC. Mutations in spliceosome genes and therapeutic opportunities in myeloid malignancies.
Genes Chromosomes Cancer. 2019;58: 889-902.

38. Pellagatti A, Armstrong RN, Steeples V, Sharma E, Repapi E, Singh S, et al. Impact of spliceosome
mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood.
2018;132: 1225-1240.

39. Menssen AJ, Walter MJ. Genetics of progression from MDS to secondary leukemia. Blood. 2020;136: 50—
60.

40. Capelli D, Menotti D, Fiorentini A, Saraceni F, Olivieri A. Secondary Acute Myeloid Leukemia: Pathogenesis
and Treatment. In: Li W, editor. Leukemia. Brisbane (AU): Exon Publications;

41. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic Classification
and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374: 2209-2221.

42. Déhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med. 2015;373: 1136-1152.

43. Déhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Blichner T, et al. Diagnosis and management
of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129: 424-447.

44. DiNardo CD, Erba HP, Freeman SD, Wei AH. Acute myeloid leukaemia. Lancet. 2023;401: 2073-2086.

45. Abelson S, Collord G, Ng SWK, Weissbrod O, Mendelson Cohen N, Niemeyer E, et al. Prediction of acute
myeloid leukaemia risk in healthy individuals. Nature. 2018;559: 400—-404.

46. Stubbins RJ, Francis A, Kuchenbauer F, Sanford D. Management of Acute Myeloid Leukemia: A Review for
General Practitioners in Oncology. Curr Oncol. 2022;29: 6245—-6259.

47. De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update.
Blood Cancer J. 2016;6: e441.

48. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny
is defined by distinct somatic mutations. Blood. 2015;125: 1367-1376.

49, Kantarjian H, Kadia T, DiNardo C, Daver N, Borthakur G, Jabbour E, et al. Acute myeloid leukemia: current
progress and future directions. Blood Cancer J. 2021;11: 41.

50. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations
result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation.
Cancer Cell. 2010;18: 553-567.

28



Chapter 1

51. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim S-H, et al. Oncometabolite 2-hydroxyglutarate is a competitive
inhibitor of a-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19: 17-30.

52. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, et al. IDH mutation impairs histone
demethylation and results in a block to cell differentiation. Nature. 2012;483: 474-478.

53. Kats LM, Reschke M, Taulli R, Pozdnyakova O, Burgess K, Bhargava P, et al. Proto-oncogenic role of mutant
IDH2 in leukemia initiation and maintenance. Cell Stem Cell. 2014;14: 329-341.

54. Prada-Arismendy J, Arroyave JC, Rothlisberger S. Molecular biomarkers in acute myeloid leukemia. Blood
Rev. 2017;31: 63-76.

55. Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant relapsed or
refractory acute myeloid leukemia. Blood. 2017;130: 722-731.

56. DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable Remissions with
Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. N Engl ) Med. 2018;378: 2386—-2398.

57. Stein EM, DiNardo CD, Fathi AT, Mims AS, Pratz KW, Savona MR, et al. Ilvosidenib or enasidenib combined
with intensive chemotherapy in patients with newly diagnosed AML: a phase 1 study. Blood. 2021;137: 1792
1803.

58. Choe S, Wang H, DiNardo CD, Stein EM, de Botton S, Roboz GJ, et al. Molecular mechanisms mediating
relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AML. Blood Adv. 2020;4:
1894-1905.

59. Visconte V, Tabarroki A, Zhang L, Parker Y, Hasrouni E, Mahfouz R, et al. Splicing factor 3b subunit 1
(Sf3b1) haploinsufficient mice display features of low risk Myelodysplastic syndromes with ring sideroblasts.
J Hematol Oncol. 2014;7: 89.

60. Obeng EA, Chappell RJ, Seiler M, Chen MC, Campagna DR, Schmidt PJ, et al. Physiologic Expression of
Sf3b1(K700E) Causes Impaired Erythropoiesis, Aberrant Splicing, and Sensitivity to Therapeutic Spliceosome
Modulation. Cancer Cell. 2016;30: 404-417.

61. Skopek R, Palusinska M, Kaczor-Keller K, Pingwara R, Papierniak-Wygladata A, Schenk T, et al. Choosing
the Right Cell Line for Acute Myeloid Leukemia (AML) Research. Int J Mol Sci. 2023;24.
doi:10.3390/ijms24065377

62. Kurkowiak M, Pepek M, Machnicki MM, Solarska I, Borg K, Rydzanicz M, et al. Genomic landscape of
human erythroleukemia K562 cell line, as determined by next-generation sequencing and cytogenetics. Acta
Haematol Pol. 2017;48: 343—-349.

63. Kotini AG, Chang C-J, Chow A, Yuan H, Ho T-C, Wang T, et al. Stage-Specific Human Induced Pluripotent
Stem Cells Map the Progression of Myeloid Transformation to Transplantable Leukemia. Cell Stem Cell.
2017;20: 315-328.e7.

29



Chapter 1

64. Kotini AG, Carcamo S, Cruz-Rodriguez N, Olszewska M, Wang T, Demircioglu D, et al. Patient-Derived
iPSCs Faithfully Represent the Genetic Diversity and Cellular Architecture of Human Acute Myeloid Leukemia.
Blood cancer discovery. 2023. pp. 318-335.

65. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem
cells from adult human fibroblasts by defined factors. Cell. 2007;131: 861-872.

66. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell. 2006;126: 663—-676.

67. Bodein A, Scott-Boyer M-P, Perin O, Lé Cao K-A, Droit A. Interpretation of network-based integration from
multi-omics longitudinal data. Nucleic Acids Res. 2022;50: e27.

68. Sun YV, Hu Y-J. Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex
Human Diseases. Adv Genet. 2016;93: 147-190.

69. He X, Liu X, Zuo F, Shi H, Jing J. Artificial intelligence-based multi-omics analysis fuels cancer precision
medicine. Semin Cancer Biol. 2023;88: 187-200.

70. Wang Q, Peng W-X, Wang L, Ye L. Toward multiomics-based next-generation diagnostics for precision
medicine. Per Med. 2019;16: 157-170.

71. Menyhart O, Gyé6rffy B. Multi-omics approaches in cancer research with applications in tumor subtyping,
prognosis, and diagnosis. Comput Struct Biotechnol J. 2021;19: 949-960.

72. Mohorianu I, Bretman A, Smith DT, Fowler EK, Dalmay T, Chapman T. Comparison of alternative
approaches for analysing multi-level RNA-seq data. PLoS One. 2017;12: e0182694.

73. Grandi FC, Modi H, Kampman L, Corces MR. Chromatin accessibility profiling by ATAC-seq. Nat Protoc.
2022;17: 1518-1552.

74. Cai Z, Poulos RC, Liu J, Zhong Q. Machine learning for multi-omics data integration in cancer. iScience.
2022;25: 103798.

75.Wu J, Li Y, Feng D, Yu Y, Long H, Hu Z, et al. Integrated analysis of ATAC-seq and RNA-seq reveals the
transcriptional regulation network in SLE. Int Immunopharmacol. 2023;116: 109803.

76.FanJ, Lee H-O, Lee S, Ryu D-E, Lee S, Xue C, et al. Linking transcriptional and genetic tumor heterogeneity
through allele analysis of single-cell RNA-seq data. Genome Res. 2018;28: 1217-1227.

77. Wang X, Wu X, Hong N, Jin W. Progress in single-cell multimodal sequencing and multi-omics data
integration. Biophys Rev. 2023. d0i:10.1007/s12551-023-01092-3

78. Lee J, Hyeon DY, Hwang D. Single-cell multiomics: technologies and data analysis methods. Exp Mol Med.
2020;52: 1428-1442.

30



Chapter 1

79. Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities. Sci
Rep. 2019;9: 5233.

80. Zurauskiené J, Yau C. pcaReduce: hierarchical clustering of single cell transcriptional profiles. BMC
Bioinformatics. 2016;17: 140.

81. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, et al. SC3: consensus clustering of single-
cell RNA-seq data. Nat Methods. 2017;14: 483—-486.

82. van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, et al. Recovering Gene Interactions from Single-
Cell Data Using Data Diffusion. Cell. 2018;174: 716—729.e27.

83. Li WV, Li JJ. An accurate and robust imputation method scimpute for single-cell RNA-seq data. Nat
Commun. 2018;9: 997.

84. Matsumoto H, Kiryu H, Furusawa C, Ko MSH, Ko SBH, Gouda N, et al. SCODE: an efficient regulatory
network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics. 2017;33: 2314-
2321.

85. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-
cell regulatory network inference and clustering. Nat Methods. 2017;14: 1083—-1086.

86. Haghverdi L, Buttner M, Wolf FA, Buettner F, Theis FJ. Diffusion pseudotime robustly reconstructs lineage
branching. Nat Methods. 2016;13: 845-848.

87. Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, Gottgens B, et al. PAGA: graph abstraction reconciles
clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 2019;20:
59,

88. Kashima Y, Sakamoto Y, Kaneko K, Seki M, Suzuki Y, Suzuki A. Single-cell sequencing techniques from
individual to multiomics analyses. Exp Mol Med. 2020;52: 1419-1427.

89. Dong X, Zhang L, Milholland B, Lee M, Maslov AY, Wang T, et al. Accurate identification of single-
nucleotide variants in whole-genome-amplified single cells. Nat Methods. 2017;14: 491-493.

90. Zafar H, Wang Y, Nakhleh L, Navin N, Chen K. Monovar: single-nucleotide variant detection in single cells.
Nat Methods. 2016;13: 505-507.

91. Bohrson CL, Barton AR, Lodato MA, Rodin RE, Luquette LJ, Viswanadham VV, et al. Linked-read analysis
identifies mutations in single-cell DNA-sequencing data. Nat Genet. 2019;51: 749-754.

92. Momeni Z, Hassanzadeh E, Saniee Abadeh M, Bellazzi R. A survey on single and multi omics data mining
methods in cancer data classification. J Biomed Inform. 2020;107: 103466.

93. Heo YJ, Hwa C, Lee G-H, Park J-M, An J-Y. Integrative Multi-Omics Approaches in Cancer Research: From
Biological Networks to Clinical Subtypes. Mol Cells. 2021;44: 433—-443.

31



Chapter 1

94. Mitra S, Saha S, Hasanuzzaman M. Multi-view clustering for multi-omics data using unified embedding.
Sci Rep. 2020;10: 13654.

95. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-
phenotype interactions. Nat Rev Genet. 2015;16: 85-97.

96. Agamah FE, Bayjanov JR, Niehues A, Njoku KF, Skelton M, Mazandu GK, et al. Computational approaches
for network-based integrative multi-omics analysis. Front Mol Biosci. 2022;9: 967205.

97. Ha KCH, Sterne-Weiler T, Morris Q, Weatheritt RJ, Blencowe BIJ. Differential contribution of
transcriptomic regulatory layers in the definition of neuronal identity. Nat Commun. 2021;12: 335.

98. Hua X, Wang Y-Y, Jia P, Xiong Q, Hu Y, Chang Y, et al. Multi-level transcriptome sequencing identifies
COL1A1 as a candidate marker in human heart failure progression. BMC Med. 2020;18: 2.

99. Arjmand B, Hamidpour SK, Tayanloo-Beik A, Goodarzi P, Aghayan HR, Adibi H, et al. Machine Learning: A
New Prospect in Multi-Omics Data Analysis of Cancer. Front Genet. 2022;13: 824451.

100. Nicora G, Vitali F, Dagliati A, Geifman N, Bellazzi R. Integrated Multi-Omics Analyses in Oncology: A
Review of Machine Learning Methods and Tools. Front Oncol. 2020;10: 1030.

101. Kang M, Ko E, Mersha TB. A roadmap for multi-omics data integration using deep learning. Brief
Bioinform. 2022;23. doi:10.1093/bib/bbab454

102. Xiang G, Keller CA, Heuston E, Giardine BM, An L, Wixom AQ, et al. An integrative view of the regulatory
and transcriptional landscapes in mouse hematopoiesis. Genome Res. 2020;30: 472-484.

103. Chen X, Wang P, Qiu H, Zhu Y, Zhang X, Zhang Y, et al. Integrative epigenomic and transcriptomic analysis
reveals the requirement of JUNB for hematopoietic fate induction. Nat Commun. 2022;13: 3131.

104. Adossa N, Khan S, Rytkonen KT, Elo LL. Computational strategies for single-cell multi-omics integration.
Comput Struct Biotechnol J. 2021;19: 2588—-2596.

105. Han KY, Kim K-T, Joung J-G, Son D-S, Kim YJ, Jo A, et al. SIDR: simultaneous isolation and parallel
sequencing of genomic DNA and total RNA from single cells. Genome Res. 2018;28: 75-87.

106. Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, et al. G&T-seq: parallel sequencing of single-cell
genomes and transcriptomes. Nat Methods. 2015;12: 519-522.

107. Rodriguez-Meira A, O’Sullivan J, Rahman H, Mead AJ. TARGET-Seq: A Protocol for High-Sensitivity Single-
Cell Mutational Analysis and Parallel RNA Sequencing. STAR Protoc. 2020;1: 100125.

108. Serin Harmanci A, Harmanci AO, Zhou X. CaSpER identifies and visualizes CNV events by integrative
analysis of single-cell or bulk RNA-sequencing data. Nat Commun. 2020;11: 89.

32



Chapter 1

109. Muyas F, Sauer CM, Valle-Inclan JE, Li R, Rahbari R, Mitchell TJ, et al. De novo detection of somatic
mutations in high-throughput single-cell profiling data sets. Nat Biotechnol. 2023. d0i:10.1038/s41587-023-
01863-z

110. Dou J, Tan Y, Kock KH, Wang J, Cheng X, Tan LM, et al. Single-nucleotide variant calling in single-cell
sequencing data with Monopogen. Nat Biotechnol. 2023. doi:10.1038/s41587-023-01873-x

111. Website. Available: inferCNV of the Trinity CTAT Project. https://github.com/broadinstitute/inferCNV

112. Nam AS, Kim K-T, Chaligne R, 1zzo F, Ang C, Taylor J, et al. Somatic mutations and cell identity linked by
Genotyping of Transcriptomes. Nature. 2019;571: 355-360.

113. Petti AA, Williams SR, Miller CA, Fiddes IT, Srivatsan SN, Chen DY, et al. A general approach for detecting
expressed mutations in AML cells using single cell RNA-sequencing. Nat Commun. 2019;10: 3660.

114. Rodriguez-Meira A, Buck G, Clark S-A, Povinelli BJ, Alcolea V, Louka E, et al. Unravelling Intratumoral
Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing. Mol
Cell. 2019;73: 1292-1305.e8.

115. van Galen P, Hovestadt V, Wadsworth MH li, Hughes TK, Griffin GK, Battaglia S, et al. Single-Cell RNA-
Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. Cell. 2019;176: 1265-1281.e24.

116. Lipkova J, Chen RJ, Chen B, Lu MY, Barbieri M, Shao D, et al. Artificial intelligence for multimodal data
integration in oncology. Cancer Cell. 2022;40: 1095-1110.

117. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, et al. An integrative genomics approach
to infer causal associations between gene expression and disease. Nat Genet. 2005;37: 710-717.

118. Hartford CM, Duan S, Delaney SM, Mi S, Kistner EO, Lamba JK, et al. Population-specific genetic variants
important in susceptibility to cytarabine arabinoside cytotoxicity. Blood. 2009;113: 2145-2153.

119. Huang RS, Duan S, Bleibel WK, Kistner EO, Zhang W, Clark TA, et al. A genome-wide approach to identify
genetic variants that contribute to etoposide-induced cytotoxicity. Proc Natl Acad Sci U S A. 2007;104: 9758—
9763.

120. Huang RS, Duan S, Kistner EO, Hartford CM, Dolan ME. Genetic variants associated with carboplatin-
induced cytotoxicity in cell lines derived from Africans. Mol Cancer Ther. 2008;7: 3038—3046.

121. ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science. 2004;306:
636—640.

122. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28: 27—
30.

123. Lappalainen T, Sammeth M, Friedldander MR, 't Hoen PAC, Monlong J, Rivas MA, et al. Transcriptome
and genome sequencing uncovers functional variation in humans. Nature. 2013;501: 506-511.

33



Chapter 1

124. Maynard ND, Chen J, Stuart RK, Fan J-B, Ren B. Genome-wide mapping of allele-specific protein-DNA
interactions in human cells. Nat Methods. 2008;5: 307—-309.

125. Fridley BL, Lund S, Jenkins GD, Wang L. A Bayesian integrative genomic model for pathway analysis of
complex traits. Genet Epidemiol. 2012;36: 352—-359.

126. Mankoo PK, Shen R, Schultz N, Levine DA, Sander C. Time to recurrence and survival in serous ovarian
tumors predicted from integrated genomic profiles. PLoS One. 2011;6: e24709.

127. Tao M, Song T, Du W, Han S, Zuo C, Li Y, et al. Classifying Breast Cancer Subtypes Using Multiple Kernel
Learning Based on Omics Data. Genes . 2019;10. doi:10.3390/genes10030200

128. Aure MR, Vitelli V, Jernstrom S, Kumar S, Krohn M, Due EU, et al. Integrative clustering reveals a novel
split in the luminal A subtype of breast cancer with impact on outcome. Breast Cancer Res. 2017;19: 44.

129. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature.
2012;490: 61-70.

130. Huh R, Yang, JiangV, Shen Y, Li Y. SAME-clustering: Single-cell Aggregated Clustering via Mixture Model
Ensemble. Nucleic Acids Res. 2020;48: 86-95.

131. Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity network fusion for aggregating
data types on a genomic scale. Nat Methods. 2014;11: 333-337.

132. Wang T, Shao W, Huang Z, Tang H, Zhang J, Ding Z, et al. MOGONET integrates multi-omics data using
graph convolutional networks allowing patient classification and biomarker identification. Nat Commun.
2021;12: 3445.

133. Ramazzotti D, Lal A, Wang B, Batzoglou S, Sidow A. Multi-omic tumor data reveal diversity of molecular
mechanisms that correlate with survival. Nat Commun. 2018;9: 4453.

134. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al. Integrated analysis of
multimodal single-cell data. Cell. 2021;184: 3573-3587.e29.

135. Singh R, Hie BL, Narayan A, Berger B. Schema: metric learning enables interpretable synthesis of
heterogeneous single-cell modalities. Genome Biol. 2021;22: 131.

136. Kim HJ, Lin Y, Geddes TA, Yang JYH, Yang P. CiteFuse enables multi-modal analysis of CITE-seq data.
Bioinformatics. 2020;36: 4137-4143.

137. Lock EF, Hoadley KA, Marron JS, Nobel AB. JOINT AND INDIVIDUAL VARIATION EXPLAINED (JIVE) FOR
INTEGRATED ANALYSIS OF MULTIPLE DATA TYPES. Ann Appl Stat. 2013;7: 523-542.

138. Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, et al. Multi-Omics Factor Analysis-a
framework for unsupervised integration of multi-omics data sets. Mol Syst Biol. 2018;14: e8124.

34



Chapter 1

139. Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ. Single-Cell Multi-omic
Integration Compares and Contrasts Features of Brain Cell Identity. Cell. 2019;177: 1873-1887.e17.

140. Yang Z, Michailidis G. A non-negative matrix factorization method for detecting modules in
heterogeneous omics multi-modal data. Bioinformatics. 2016;32: 1-8.

141. Witten DM, Tibshirani RJ. Extensions of sparse canonical correlation analysis with applications to
genomic data. Stat Appl Genet Mol Biol. 2009;8: Article28.

142. Hardoon DR, Shawe-Taylor J. Sparse canonical correlation analysis. Mach Learn. 2011;83: 331-353.

143. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive
Integration of Single-Cell Data. Cell. 2019;177: 1888—-1902.e21.

144. Wang C, Sun D, Huang X, Wan C, Li Z, Han Y, et al. Integrative analyses of single-cell transcriptome and
regulome using MAESTRO. Genome Biol. 2020;21: 198.

145. Yu T. AIME: Autoencoder-based integrative multi-omics data embedding that allows for confounder
adjustments. PLoS Comput Biol. 2022;18: e1009826.

146. Gayoso A, Steier Z, Lopez R, Regier J, Nazor KL, Streets A, et al. Joint probabilistic modeling of single-cell
multi-omic data with totalVIl. Nat Methods. 2021;18: 272-282.

147. Lin X, Tian T, Wei Z, Hakonarson H. Clustering of single-cell multi-omics data with a multimodal deep
learning method. Nat Commun. 2022;13: 7705.

148. Lock EF, Dunson DB. Bayesian consensus clustering. Bioinformatics. 2013;29: 2610-2616.

149. Kirk P, Griffin JE, Savage RS, Ghahramani Z, Wild DL. Bayesian correlated clustering to integrate multiple
datasets. Bioinformatics. 2012;28: 3290-3297.

150. Kormaksson M, Booth JG, Figueroa ME, Melnick A. Integrative model-based clustering of microarray
methylation and expression data. Ann. Appl. Stat. 2012;6 (3) 1327 - 1347

151. Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types using a joint latent
variable model with application to breast and lung cancer subtype analysis. Bioinformatics. 2009;25: 2906—
2912.

152. Wang X, Sun Z, Zhang Y, Xu Z, Xin H, Huang H, et al. BREM-SC: a bayesian random effects mixture model
for joint clustering single cell multi-omics data. Nucleic Acids Res. 2020;48: 5814—-5824.

153. Campbell KR, Steif A, Laks E, Zahn H, Lai D, McPherson A, et al. clonealign: statistical integration of
independent single-cell RNA and DNA sequencing data from human cancers. Genome Biol. 2019;20: 54.

154. Sanghi A, Gruber JJ, Metwally A, Jiang L, Reynolds W, Sunwoo J, et al. Chromatin accessibility associates
with protein-RNA correlation in human cancer. Nat Commun. 2021;12: 5732.

35



Chapter 1

155. Wang T, Pine AR, Kotini AG, Yuan H, Zamparo L, Starczynowski DT, et al. Sequential CRISPR gene editing
in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets. Cell Stem
Cell. 2021;28: 1074-1089.€7.

156. Wesely J, Kotini AG, 1zzo F, Luo H, Yuan H, Sun J, et al. Acute Myeloid Leukemia iPSCs Reveal a Role for
RUNX1 in the Maintenance of Human Leukemia Stem Cells. Cell Rep. 2020;31: 107688.

157. Schmauch B, Romagnoni A, Pronier E, Saillard C, Maillé P, Calderaro J, et al. A deep learning model to
predict RNA-Seq expression of tumours from whole slide images. Nat Commun. 2020;11: 3877.

158. Fotis C, Meimetis N, Sardis A, Alexopoulos LG. DeepSIBA: chemical structure-based inference of
biological alterations using deep learning. Mol Omics. 2021;17: 108-120.

159. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Feny6 D, et al. Classification and
mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med.
2018;24: 1559-1567.

160. Szegedy C, Vanhoucke V, loffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer
vision. 2016 I|EEE Conference on Computer Vision and Pattern Recognition (CVPR). I|EEE; 2016.
doi:10.1109/cvpr.2016.308

161. Brick OE, Lallukka-Briick SE, Hohtari HR, lanevski A, Ebeling FT, Kovanen PE, et al. Machine Learning of
Bone Marrow Histopathology Identifies Genetic and Clinical Determinants in Patients with MDS. Blood
cancer discovery. 2021. pp. 238-249.

162. Chen M, Zhang B, Topatana W, Cao J, Zhu H, Juengpanich S, et al. Classification and mutation prediction
based on histopathology H&E images in liver cancer using deep learning. NPJ Precis Oncol. 2020;4: 14.

163. Loeffler CML, Ortiz Bruechle N, Jung M, Seillier L, Rose M, Laleh NG, et al. Artificial Intelligence-based
Detection of FGFR3 Mutational Status Directly from Routine Histology in Bladder Cancer: A Possible
Preselection for Molecular Testing? Eur Urol Focus. 2022;8: 472—479.

164. Jang H-J, Lee A, Kang J, Song IH, Lee SH. Prediction of clinically actionable genetic alterations from
colorectal cancer histopathology images using deep learning. World J Gastroenterol. 2020;26: 6207-6223.

165. Tsou P, Wu C-J. Mapping Driver Mutations to Histopathological Subtypes in Papillary Thyroid Carcinoma:
Applying a Deep Convolutional Neural Network. J Clin Med Res. 2019;8. doi:10.3390/jcm8101675

166. Fu Y, Jung AW, Torne RV, Gonzalez S, Vohringer H, Shmatko A, et al. Pan-cancer computational
histopathology reveals mutations, tumor composition and prognosis. Nat Cancer. 2020;1: 800-810.

167. Kather JN, Heij LR, Grabsch HI, Loeffler C, Echle A, Muti HS, et al. Pan-cancer image-based detection of
clinically actionable genetic alterations. Nat Cancer. 2020;1: 789-799.

36



Chapter 1

168. Ha SM, Chae EY, Cha JH, Kim HH, Shin HJ, Choi WJ. Association of BRCA Mutation Types, Imaging
Features, and Pathologic Findings in Patients With Breast Cancer With BRCA1 and BRCA2 Mutations. AJR Am
J Roentgenol. 2017;209: 920-928.

169. Wang S, ShiJ, Ye Z, Dong D, Yu D, Zhou M, et al. Predicting EGFR mutation status in lung adenocarcinoma
on computed tomography image using deep learning. Eur Respir J. 2019;53. doi:10.1183/13993003.00986-
2018

170. He K, Liu X, Li M, Li X, Yang H, Zhang H. Noninvasive KRAS mutation estimation in colorectal cancer using
a deep learning method based on CT imaging. BMC Med Imaging. 2020;20: 59.

37



Chapter 2

Chapter 2

Patient-specific MDS-RS iPSCs define the mis-spliced
transcript repertoire and chromatin landscape of SF3B1-

mutant HSPCs

SF3BA
MDS-RS BMMCs I'('?O'DE

= 3 patients

'I|_ 'II
' % (A ég K700E ||/ i

iIPSCs *

..' (]

18 iPSC lines HSPGS

Differentiation Sorting

i Ty
ATAC-seq

RNA-seq

CD34+/CD45+

Gene Transcript Splicing
expression usage

% M@

(e L)

53

59 signature splicing events
34 genes

D

EEETE
M=

Chromatin accessibility
WT K700E
GMP
MEP
Mono
Ery

TEAD
(K 70CE

Lo

38



Chapter 2

2.1. Chapter abstract

SF3B1%7%% js the most frequent mutation in myelodysplastic syndrome (MDS), but the mechanisms by which
it drives MDS pathogenesis remain unclear. We harnessed a panel of 18 genetically matched SF381¢7%%- and
SF3B1"-induced pluripotent stem cell (iPSC) lines from patients with MDS with ring sideroblasts (MDS-RS)
harboring isolated SF3B1%79% mutations. RNA and ATAC sequencing was performed in purified CD34*/CD45*
hematopoietic stem/progenitor cells (HSPCs) derived from these lines. We developed a novel computational
framework integrating splicing with transcript usage and gene expression analyses and derived a SF3B1/70%
splicing signature consisting of 59 splicing events linked to 34 genes, which associates with the SF3B1
mutational status of primary MDS patient cells. The chromatin landscape of SF3B1%7?% HSPCs showed
increased priming toward the megakaryocyte-erythroid lineage. Transcription factor (TF) motifs enriched in
chromatin regions more accessible in SF3B1%7%% cells included, unexpectedly, motifs of the TEA domain
(TEAD) transcription factor family. TEAD expression and transcriptional activity were upregulated in SF3B1-
mutant iPSC-HSPCs, in support of a Hippo pathway-independent role of TEAD as a potential novel
transcriptional regulator of SF3B1%7%F cells. This study provides a comprehensive characterization of the
transcriptional and chromatin landscape of SF3B1%7%%¢ HSPCs and nominates mis-spliced genes and
transcriptional programs with putative roles in MDS-RS disease biology

2.2. Introduction

Myelodysplastic syndromes (MDS) are myeloid malignancies characterized by ineffective hematopoiesis,
blood cytopenias, and an increased risk of progression to secondary acute myeloid leukemia[1]. Recurrent
somatic mutations in genes encoding splicing factors (SFs) were discovered a decade ago as a novel class of
driver mutations in MDS, collectively occurring in more than 50% of patients with MDS[2-5]. Mutations in
splicing factor 3B, subunit 1 (SF3B1), are present in ~ 24% of patients with MDS and define a distinct MDS
clinical subgroup, termed MDS with ring sideroblasts (MDS-RS), characterized by erythroblasts with
abnormal iron accumulation in mitochondria that form a ring around the cell nucleus (ring sideroblasts),
ineffective erythropoiesis, macrocytic anemia, and favorable prognosis[3-7].

SF3B1 is a core spliceosomal protein (a key component of the U2 small nuclear ribonucleoprotein complex
[snRNP]) that binds upstream of the branch point and is required to facilitate 3’ splice site recognition of
most introns[8]. Nearly all mutations in SF3B1 are heterozygous, most commonly target the K700 hotspot,
and result in altered RNA-binding specificity of mutant SF3B1. SF3B1 mutations are associated with
preferential use of cryptic 3’ splice sites, leading to nonsense-mediated decay (NMD) or generation of
different isoforms of multiple transcripts[9-11].

Some recent studies implicated specific mis-splicing events associated with SF3B1 mutations in the
pathogenesis of MDS or other malignancies. An alternative erythroferrone (ERFE) transcript in SF3B1-mutant
erythroid lineage cells was linked to disruption of iron homeostasis[12]. Decrease in expression of BRD9, a
component of the noncanonical BRG1-associated factors (BAF) chromatin-remodeling complex, through
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inclusion of a “poison exon”, was also shown to confer oncogenic properties in uveal melanoma models[13].
Despite these insights, the mechanisms by which mutant SF3B1 drives MDS, and malignancy in general,
remain incompletely understood, and the critical mis-splicing events that mediate these effects are not well
characterized. Importantly, mis-splicing events have thus far been cataloged either in primary patient cells
or murine or cellular models, each with distinct limitations. Patient samples are heterogeneous in terms of
clonality, presence of co-occurring mutations, and cell type composition. Conversely, murine models have
the important limitation that alternative splicing events are largely non conserved between mouse and
human[14]. Finally, previous cellular models of SF3B1 mutations consisted of engineered immortalized
leukemia cell lines (such as K562), which harbor mutations not related to MDS pathogenesis, and result in
abnormal levels and stoichiometry of mutant and wild-type (WT) SF3B1 because of aneuploidy and/or use
of overexpression systems.

Here, we leveraged a panel of karyotypically normal diploid-induced pluripotent stem cell (iPSC) lines with
an isolated SF3B1X79% mutation, as well as genetically matched WT iPSCs, from patients with MDS-RS. By
integrating splicing, gene expression, and transcript usage analyses, we derived a splicing signature of mutant
SF3B1 that we validated in datasets of patients with MDS. Furthermore, we characterized the chromatin
landscape of SF3B1%79%f ipPSC-derived hematopoietic stem/progenitor cells (iPSC-HSPCs) and identified
increased transcriptional activity of the TEAD family of transcription factors (TFs) in mutant cells. This study
provides a refined view of the altered misspliced transcriptome of human SF3B1X79% HSPCs and characterizes
for the first time their chromatin landscape, pinpointing TEAD as a potential regulator of SF3B1%79% HSPCs.

2.3. Data & Methods

From a previous population genome profiling study[3], 3 BM mononuclear cell samples from 3 patients with
MDS-RS (P21, P22, P23) were identified. These patients harbored isolated SF3B1%7%% mutations with high
variant allele frequencies (VAFs; range, 37%-42%; Figure 2.1; supplemental Table 2.1). Upon cell
reprogramming, both SF3B1X79% and SF3BI1YT iPSC lines from all patients were obtained. Specifically, 3
independent SF3B1X7%% and 3 SF3B1YTiPSC lines from each patient (total lines = 18) were established, serving
as biological replicates (supplemental Table 2.2). The presence of any karyotypic abnormalities in any of
these lines was excluded. The presence of any other MDS/AML driver mutations in all lines or in the starting
cells was also excluded by using next generation sequencing of a panel of 126 genes implicated in myeloid
malignancy[15]. For these iPSC lines, directed hematopoietic differentiation was performed using
protocols[16] from the Papapetrou laboratory and CD34*/CD45* HSPCs were collected for RNA and ATAC-
sequencing. (We note that the data generation process including the derivation and differentiation of the
iPSC lines is not part of the current thesis).

RNA-sequencing analysis

RNA was extracted with the Direct-zol RNA purification kit (Zymo R2061). Sequencing libraries were prepared
using the TruSeq Stranded mRNA library prep kit (lllumina 20020594) from 500 ng input RNA. Samples were
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barcoded and run on a Hi-seq 4000 in a 100-bp/100-bp paired-end run, using the Hi-seq 3000/4000 SBS kit
(Hlumina).

HSPC samples from 16 iPSC lines were included in the RNA-seq analyses after quality control of the raw data
(supplemental Table 2.2). RNA-seq reads from the fastq files were mapped to the GRCh37 assembly of the
human genome using the STAR aligner[17]. The Ensembl GRCh37 gene and transcript annotations were used.
Salmon[18] was used to perform transcript quantification, and gene counts were generated from the
transcript level abundances using the tximport function of the tximport R package[19]. Differential gene
expression analysis was performed using DESeq2[20]. Genes with a false discovery rate (FDR) < 0.05 and
absolute expression log,fc > 1 in SF3B1%7%% ys SF3B1YT cells were considered as differentially expressed.

Differential transcript usage between the SF3B1%7%% and SF3B1Y" iPSC-HSPCs was performed using the
DEXSeq[21] and stageR[22] R-packages. Transcripts with a relative abundance proportion <5% in all samples
were filtered. Transcripts were considered to have differential usage if absolute usage log.fc was >1 and
overall FDR was < 0.05 (supplemental Methods).

Differential alternative splicing was performed using the rMATS[23] tool using the aligned BAM files. The
relative expression (inclusion level) of alternatively spliced isoforms was estimated by the fraction of reads
mapping to an alternative splicing event over the total reads[23]. Events with FDR < 0.05 and absolute
inclusion level difference >10% were considered as differentially spliced between the SF3B1¥70% and SF3B1YT"
iPSC-HSPCs.

Integration framework of differential gene expression, transcript usage, and
splicing

To generate an SF3B1¥7%% signature, we combined differential gene expression, differential transcript usage,
and differential splicing analyses in a multi-stage fusion setting[24,25]. First, we identified the set of
transcripts that contain the exons present in each differential splicing event using the maser R-package[26].
We then filtered out non-differentially used transcripts and paired each differential splicing event with the
remaining set of differentially used transcripts. The pairs that belonged to genes with a statistically significant
expression log,fc and contained a differential splicing event with an FDR value within the 20 lowermost FDR
values were considered as the “tier 1” set, from which the mutant SF3B1 signature events and genes were
derived (supplemental Methods).

ATAC-sequencing analysis

Nuclear pellets (supplemental Methods) were subjected to transposase reaction using the lllumina Nextera
DNA Sample Preparation Kit. The libraries were quantified using the Agilent BioAnalyzer. Sequencing of 75
nucleotide-long paired-end reads was performed in a NextSeg-500 (lllumina).

HSPC samples from 15 iPSC lines were included in the ATAC-seq analyses after quality control of the raw data
(supplemental Table 2.2). ATAC-seq reads from the fastq files were trimmed with the TrimGalore tool to
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remove adaptor sequences and then aligned to the GRCh37 reference genome using the Bowtie2[27] aligner.
Reads with a mapping quality (MAPQ) score < 10 were removed using samtools. Duplicate reads were
removed using Picard. All aligned reads were shifted to remove Tn5 transposase artifacts, as previously
described[28] using deeptools[29]. Peaks were called using MACS2[30] (supplemental Methods) and then
filtered using the irreproducible discovery rate[30,31] framework with a cutoff of 0.05. Then, we merged all
reproducible peaks to create an ATAC-seq atlas. Differential accessibility analysis was performed using
DESeq2. Peaks with an FDR cutoff of 0.05 and absolute log,fc > 1 were considered differentially accessible.
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Figure 2.1. Schematic overview of the derivation of iPSC lines with isolated SF3B1X79% mutation and genetically

matched normal WT lines from 3 patients with MDS-RS (BMMCs, bone marrow mononuclear cells).

2.4. Results

Global gene expression, mis-splicing, and differential transcript usage in SF3B1%70%
HSPCs

To examine the effects of SF3B1¥7%F in the transcriptome, we performed RNA sequencing in sorted
CD34*/CD45" iPSC-HSPCs from 3 SF3B1K70% and 3 SF3B1"T iPSC lines from each patient (total 18 lines;
supplemental Table 2.2). Samples MDS-22.1 and MDS-22.43 did not pass quality control at the library
preparation stage and were not included in the analyses. Principal component analysis (PCA) and hierarchical
clustering based on gene expression grouped the iPSC lines by genotype (i.e. SF3B1%79% ys SF3B1"T; Figure
2.2A-B).

Differential gene expression analysis revealed 2737 differentially expressed genes in the SF3B1¥7%% mutant
vs WT lines, 1821 of which were upregulated in the SF3B1X79%F cells (supplemental Figure 2.1A-B). Gene set
enrichment analysis showed enrichment of gene sets related to metabolism and cell morphology in genes
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upregulated in SF3B1%7%% cells and enrichment of genes related to myeloid lineage differentiation in the
downregulated genes (supplemental Figure 2.1C-E).

To examine the effects of the SF3B1%7%F mutation on splicing, we characterized alternative splicing (AS)
events in the SF3B1¥79% and SF3B1"T cells, classified as alternative 3’ splice site use (A3SS), alternative 5’
splice site use (A5SS), mutually exclusive exons (MXE), retention of introns (RI), and skipping (inclusion or
exclusion) of cassette exons (SE). A total of 1829 differential splicing events were detected between
SF3B1K79% and SF3B1YT cells, which included 983 SE, 338 MXE, 265 A3SS, 173 RI, and 70 A5SS events
(supplemental Figure 2.1F). Hierarchical clustering, as well as PCA, based on the inclusion levels of the
differential splicing events, also separated the cells based on genotype, as expected (Figure 2.2C;
supplemental Figure 2.1G). Consistent with previous studies, we found increased exclusion of cassette exons,
increased use of alternative 3’ splice sites, and decreased retention of introns in SF3B1X7% cells (Figure 2.2D;
supplemental Figure 2.1H)[9,11].

To evaluate the effects of the SF3B1%7%F mutation at the transcript level, we performed differential transcript
usage analysis, which identified 1086 differentially used transcripts between SF3B1%7%% and SF3B1"" cells
(547 more used and 539 less used in SF3B1X7%% compared with SF3B1"" cells). These differentially used
transcripts belong to 865 genes, 198 of which were also found to be differentially expressed (supplemental
Figure 2.11). In summary, these analyses demonstrate that SF3B1%7%% mutations are associated with distinct
gene expression, splicing, and transcript usage signatures.

Integration framework categorizes mutant SF3B1 gene targets by linking
differential splicing to differential transcript usage and differential gene expression

Most previous studies have prioritized candidate target genes of mis-splicing by mutant SF3B1 in cancer cells,
by selecting splicing events based on the size of differences in inclusion level of the isoforms between mutant
and control cells[11]. To categorize splicing effects of the SF3B1X7%% mutation in MDS, we developed a
computational multi-stage approach combining analyses at 3 different transcriptomic levels: gene
expression, splicing, and transcript usage. This framework was used to classify the splicing eventsinto 5 tier-
based classes (supplemental Methods, supplemental Figure 2.2A; supplemental Table 2.3).

Of 1829 total differential splicing events between SF3B1X7%% and SF3B1"™ HSPCs, 215 were associated with
at least 1 differentially used transcript. Of these 215 events, 95 belong to genes with a statistically significant
(FDR < 0.05) expression log, fold change (log.fc) between SF3B1¥7%%F and SF3B1"T HSPCs. Of these 95 events,
we selected the top 59 differentially spliced events (with the lowest 20 FDR values). These tier 1 59 events
belong to 34 genes: 19 downregulated and 15 upregulated in SF3B1%79% ys SF3B1" cells (Figures 2.2E and
2.3; supplemental Figure 2.2B; supplemental Table 2.4). Fifty-one (86%) of these 59 tier 1 events are A3SS,
RI, or SE events (supplemental Figure 2.2C). This set of 59 events contained more A3SS events with increased
use in SF3B1K79% ys SF3B1YT cells and more Rl events that were less retained in SF3B1K70% ys SF3B1WT cells,

reflecting the event distribution among all differential splicing events (Figure 2.3).
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Figure 2.2. Integrative gene expression, alternative splicing, and transcript usage analyses categorize gene targets of
mutant SF3B1. (A) PCA plots based on gene expression of the 3000 most highly variable genes color-coded by SF3B1
mutation status and sign-coded by patient ID. (B) Heatmap showing distance of the indicated iPSC-HSPCs based on
pairwise Pearson correlation of their gene expression profiles, color-coded by SF3B1 mutation status and patient ID. (C)
PCA plot based on inclusion levels of the differentially spliced events between SF3B1K79% and SF3B1WT iPSC-HSPCs. (D)
Scatterplots comparing the mean inclusion levels of the differentially spliced events in SF3B1¥79% yvs SF3B1"TiPSC-HSPCs
with different event types broken down by color, as indicated. (E) Schematic summarizing the integrative analysis used
to derive a mutant SF3B1 signature of splicing events and genes and scatterplot showing the inclusion level difference
of all 59 signature splicing events, corresponding to 34 genes. A positive y axis value indicates that the event is more
frequently found in SF3B1K70%€ ys SF3B1T,

We observed that several of the transcripts used preferentially in SF3B1%79% vs SF3B1"T HSPCs were
annotated as NMD (Figure 2.3). Notably, this increased use of NMD transcripts was also associated with
decreased expression of the corresponding genes (DLST, BRD9, KIAA1033, SHKBP1, GASS8). This is consistent
with previous findings showing that SF3B1 mutations induce widespread use of abnormal cryptic 3’ splice
sites, leading to NMD of multiple transcripts[13,32].

The 59-splicing event signature is associated with SF3B1 mutational status

To test whether the SF3B1 signature derived in iPSC-HSPCs is also found in primary patient samples, we
interrogated transcriptome data from CD34* BM cells from 68 patients with MDS and 8 healthy individuals
from a published dataset[9]. Thirty-one of the 59 tier 1 events (53%) were found differentially spliced (FDR <
0.05, |inclusion level difference| > 0.1) between SF3B1-mutated patients (SF3B1mut, n = 28) and patients
with MDS without any SF mutations (SF-WT, n = 40). Twenty-eight of those were also found differentially
spliced between SF3B1-mutated patients and healthy individuals (WT; n = 8; Figure 2.3; supplemental Figure
2.2D). This splicing signature was not found in events differentially spliced between MDS primary cells
harboring other splicing factor mutations (SRSF2, U2AF1) and SF-WT MDS or healthy individuals and is thus
specific to SF3B1 mutations (supplemental Figure 2.2E). PCA based on the inclusion level of the mutant SF3B1
signature splicing events separated all samples (SF3B1mut; SF-WT; WT) based on SF3B1 genotype, with the
exception of 1 sample, annotated as SF-WT, which clustered together with the SF3B1-mutated samples
(Figure 2.4). Examination of the RNA-seq data for sequence alterations in the SF3B1 locus in this specific
patient revealed a previously overlooked 6-bp in-frame deletion spanning the K700E hotspot
(SF3B1p.K700 _V701delKV; Figure 2.4). This demonstrates that the splicing signature derived in iPSC-HSPCs is
also present in HSPCs of patients with MDS. Furthermore, patients with SF3B1 mutations other than K700E
clustered together with the SF3B1¥7%%-mutated patients (Figure 2.4), which indicates that our signature is
representative of a broader spectrum of SF3B1 mutations.
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Figure 2.3. Events of the mutant SF3B1 splicing signature. Heatmap showing the row normalized inclusion levels of the
59 signature events across HSPCs from all iPSC lines. For each row, color-coded side panels present metadata relevant
to each event, including the log,fc of expression of the respective genes, the biotypes of the up- and downregulated
transcripts that are associated with the splicing events, and the presence of the events in the MDS patient dataset of
Pellagatti et al[9], encoded as not present (signature events not present in any comparison); present but not significant
(signature events that were not statistically significant or/and had an absolute inclusion level difference < 0.1 in both
comparisons [SF3B1mut vs SF-WT and SF3B1mut vs WT, i.e., healthy individuals]); present only in SF3B1mut vs SF-WT
(signature events statistically significant [FDR < 0.05] and with an absolute inclusion level difference > 0.1 only in the
SF3B1mut vs SF-WT MDS patient comparison); and present in SF3B1mut vs SF-WT and SF3B1mut vs WT (signature
events statistically significant [FDR < 0.05] and with an absolute inclusion level difference > 0.1 in both comparisons).
The annotations of the transcript biotypes are derived from the Ensembl GRCh37 gtf annotation file. Each row
represents one event labeled with the respective gene name followed by a number indicating distinct events.
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Figure 2.4. Splicing event signature separates SF3B1-mutated MDS cases. PCA plot based on the inclusion levels of the
signature splicing events in the patient samples of Pellagatti et al[9], separating MDS SF3B1K7%%-mutated patients
(K700E SF3B1mut MDS) and patients with SF3B1 mutations other than K700E (non-K700E SF3B1mut MDS) from patients
without SF mutations (SF-WT MDS) and healthy individuals (WT). The asterisk marks 1 patient annotated as SF-WT.
Clustering of this sample together with the SF3B1-mutated cases prompted us to more closely interrogate the sequence
of the SF3B1 locus for any previously unidentified mutations. We thus discovered an in-frame 6-bp deletion
(SF3B1p.K700_V701delKV) removing 2 amino acids, including the K700 hotspot.

Chromatin accessibility landscape of SF3B1%79% HSPCs

To investigate the chromatin landscape of SF3B1%7% cells, we performed ATAC sequencing (supplemental
Methods) in sorted CD34*/CD45* iPSC-HSPC samples paired to those used for RNA sequencing (3 SF3B1K700¢
and 3 SF3B1"T iPSC lines from each patient; supplemental Table 2.2) resulting in an ATAC-seq atlas of 56420
peaks. (Samples MDS-22.1, MDS-22.43, and N-21.1 did not pass quality control at the library preparation
stage and were not included in the analyses.) PCA and hierarchical clustering based on chromatin accessibility

grouped the iPSC lines by genotype (Figure 2.5A-B). Differential accessibility analysis revealed 3737
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differentially accessible peaks between the SF3B1¥79%f and SF3B1YWT HSPCs, 1527 of which were more
accessible in the mutants (Figure 2.5C; supplemental Figure 2.3A). Differentially accessible peaks were
predominantly localized in intronic and intergenic regions (supplemental Figure 2.3B). Chromatin
accessibility changes correlated with gene expression changes in both directions (more accessible and
upregulated; less accessible and downregulated; Figure 2.5D-E; supplemental Figure 2.3C). Next, we
compared the chromatin accessibility profiles of the SF3B1%7%%F and SF3B1"7 iPSC-HSPCs to those defined in
primary human hematopoietic cell types along the hematopoietic hierarchy[33] (supplemental Methods). Of
the 56420 total ATAC-seq peaks called in the iPSC-HSPC dataset, 40568 overlapped with the peaks from
Corces et al[33] (total = 98525). Differential accessibility analysis on these 40568 peaks resulted in 2757
differentially accessible peaks between SF3B1%79% and SF3B1"7iPSC-HSPCs. The pairwise Pearson correlation
between read counts of these 2757 peaks in iPSC-HSPCs and the hematopoietic populations of Corces et
al[33] showed that the chromatin landscapes of SF3B1¥7%% cells resembled more those of megakaryocyte—
erythroid progenitor cells and erythroid cells, whereas the chromatin landscape of SF3B1"" cells resembled
more that of granulocyte-monocyte progenitors and monocytes (Figure 2.5F). These results suggest a
potential chromatin priming of SF3B1%79% CD34* HSPCs toward the erythroid rather than the myeloid lineage
and may reflect the more prominent involvement of the erythroid lineage in the pathology and clinical
presentation of MDS-RS.

Increased transcriptional activity of the TEAD family of transcription factors in
SF3B1*7%% HSPCs

To identify transcriptional programs of potential importance to SF3B1X7%% HSPCs, we performed TF motif
enrichment analysis in ATAC-seq peaks more accessible in SF3B1¥79% cells that were linked to genes
upregulated in SF3B1X7%%F cells (Figure 2.5E). This analysis revealed enrichment of motifs of several
prototypical hematopoietic lineage TFs, such as those of the GATA, ETS, and AP-1 families. Unexpectedly,
motifs of the TEAD family were also enriched (Figure 2.6A-C). Furthermore, regions more accessible and
linked to upregulated genes in SF3B1%7%% cells that contained TEAD motifs overlapped with annotated TEAD
binding sites (supplemental Figure 2.4A).

The TEAD family of TFs are best known as effectors of the Hippo signaling pathway, with important roles in
various biological processes and malignancies, albeit no previous links to hematologic disease[34,35]. To
further investigate a potential role for TEAD TFs in SF3B1/7% HSPCs, we examined expression of the 4
members of the TEAD family TEAD1-4 in SF3B1%7°%f and SF3B1"T cells. TEAD2 and TEAD4 were the TEAD
family members expressed at the highest levels in both SF3B1%79% and SF3B1YT cells, including iPSC-HSPCs,
as well as patient cells (Figure 2.6D; supplemental Figure 2.4B). All 4 TEAD genes were upregulated in the
SF3B1X70% compared with SF3B1"T iPSC-HSPCs (Figure 2.6D).
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Figure 2.5. SF3B1X700F HSPCs have altered chromatin landscapes. (A) PCA based on the accessibility of all peaks in the
ATAC-seq atlas color-coded by SF3B1 mutation status and sign-coded by patient ID. (B) Heatmap showing the distance

of the HSPCs from the indicated iPSC lines, based on pairwise Pearson correlation of their chromatin accessibility

landscapes, color-coded by SF3B1 mutation status and patient ID. (C) Scatterplot showing the accessibility log,fc and
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the adjusted P value of the differentially accessible peaks between SF3B1X79% and SF3B1"" iPSC-HSPCs per chromosome,
color-coded by the adjusted P value. Each point represents a peak. (D) Cumulative distribution function (CDF) of the
expression log,fc of genes more accessible in SF3B1¥70% HSPCs, genes less accessible in SF3B1X700F HSPCs, and all genes,
showing that genes more accessible in SF3B1X79% HSPCs are upregulated (Kolmogorov—Smirnov [KS] test, P = 1.17e-07)
and genes less accessible in SF3B1%70%F HSPCs are downregulated (KS test, P = 3.13e-16) compared with background. (E)
Scatterplot showing the log,fc accessibility value of the differentially accessible peaks and the log,fc expression value
of the linked gene (genes for which P value could not be calculated were excluded). (F) Heatmap showing Pearson
correlation values of normalized read counts for ATAC-seq peaks that overlap between the indicated iPSC-HSPCs and
primary normal hematopoietic cell subpopulations (hematopoietic stem cells [HSC], multipotent progenitors [MPP],
common myeloid progenitors [CMP], lymphoid-primed multipotent progenitors [LMPP], granulocyte-monocyte
progenitors [GMP], megakaryocyte-erythrocyte progenitors [MEP], common lymphoid progenitors [CLP], monocytes
[Mono], erythroid cells [Ery], natural killer cells [NK], and B cells) from Corces et al.[33].

To experimentally test whether TEAD transcriptional activity is higher in SF3B1%7%¢ cells, we transduced
SF3B1%7%% and SF3B1YT iPSC-HSPCs with a luciferase construct (implemented at the Papapetrou laboratory
and its experimental process is not part of this thesis) reporting TEAD activity. Reporter activity was higher
or trended higher in SF3B1%7%% compared with SF3BI"T iPSC-HSPCs from 2 of the 3 patients (Figure 2.6E).
TEAD is best known as an effector of the Hippo signaling pathway and is bound to DNA as a complex with
YAP or TAZ transcriptional coactivators[36]. To test the activity of the Hippo pathway in our cells, we
performed immunoblots (implemented at the Papapetrou laboratory and the experimental process is not
part of this thesis) in SF3B1%7%% and SF3B1"TiPSC-HSPCs from 2 of the patients. Although we confirmed TEAD
expression at the protein level, we did not detect YAP activation (phosphorylated form pYAPS?’) or
expression of YAP or TAZ (supplemental Figure 2.4C). These results, collectively, support a Hippo pathway-
independent increase of TEAD expression and transcriptional activity in SF3B1%79% HSPCs.

2.5. Discussion

Previous studies have shown that iPSC models of myeloid malignancies capture molecular characteristics of
the disease and can be used to discover new mechanisms and therapeutic vulnerabilities, further
corroborated by the present study[37-40]. Hereby, we harnessed sequencing data from patient-derived
genetically matched WT and SF3BI1-mutated induced pluripotent stem cell (iPSC) lines. The genetically
matched conditions and the availability of biological replicates to control for any effects of the
reprogramming process (nongenetic line-to-line variability upon cell line generation) and of the patient’s
genetic background on the transcriptome, were critical components of this study.

Our study was powered by a multi-stage data fusion framework with which we were able to assess the
combination of the effects of the SF3B1%7%% mutation across parallel levels of deregulation of the
transcriptome toward deriving a tier-based classification of splicing events. Specifically, this framework
systematically evaluates the effects SF3B1%7%% mutation on splicing, transcript usage and gene expression,
merges signals from the data views representative of these 3 processes, and leads to a comprehensive
SF3B1%7% splicing sighature. These integrated analyses validated several known gene candidates, such as

ANKHD1[9], METTL5 (A3SS event)[9,13], ABCB7 (A3SS event)[11,41,42] and BRD9 (SE event)[13].
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Additionally, the genes DPH5, COASY, ZDHHC16, TMEMZ214, and EI24, previously cataloged as mis-spliced in
SF3B1 mutant cells, are also included in our tier 2 and tier 1 set[13]. Furthermore, we nominate several new
splicing events in genes not previously reported mis-spliced by mutant SF3B1 that warrant further
investigation for their relevance to the pathogenesis of MDS. The diversity of mis-splicing events, many of
which are found across different models of SF3B1X79% mutation, may suggest a multifactorial disease
pathogenesis. In addition, the specificity of the mutant SF3B1 signature, derived from the iPSC lines and
validated in primary patient samples, identifies atypical mutations involving the K700 hotspot, such as the
SF3B1p.K700_V701delKV that we report here, as functionally equivalent to the K700E mutation, and can thus
be further used to evaluate the role of putative pathogenic variants in SF3B1[43].

Our study is the first to characterize the chromatin landscape of SF3B1X79% HSPCs. Interestingly, we report
potential “priming” at the chromatin level of SF3B1X79% HSPCs toward the erythroid over the myeloid lineage,
a finding that may be related to the preferential involvement of the erythroid lineage in MDS and, in
particular, MDS-RS. It is unclear whether any of the global chromatin accessibility changes that we report
here are a direct consequence of missplicing (for example, of a chromatin regulator gene, such as BRD9[13],
or a pioneer transcription factor). Likely, at least some of them reflect differences in differentiation state and
lineage priming as an indirect consequence of the SF3B1%7°% mutation. Because reprogramming to
pluripotency (upon the experimental process) effectively erases the epigenome of the somatic cell,
differences found between mutant and WT cells across replicates can be solely attributed to genotype.

Several master hematopoietic lineage TF motifs were present in chromatin regions that were differentially
accessible between SF3B1%7%%F and SF3B1Y" iPSC-HSPCs, which may underlie the differentiation and colony
formation impairment of these cells. Interestingly, our chromatin accessibility analyses, followed by
functional studies, lend support to a putative role for the TEAD TFs in the context of SF3B1%7% mutation. The
relevance of elevated TEAD activity to the pathogenesis of MDS-RS and its link to SF3B1 mutations will need
to be validated in further studies involving assessment of TEAD binding to DNA and functional experiments,
such as genetic perturbation of TEAD factors, in our iPSC models, as well as potential validation of the findings
in primary patient cells. Pending further investigation, this novel finding may point to a new disease
mechanism and possible therapeutic vulnerabilities specific to SF3B1%7% cells.
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Figure 2.6. Increased transcriptional activity of TEAD TFs in SF3B1K70F HSPCs. (A) TF motifs enriched in peaks more
accessible in SF3B1%79%F compared with SF3B1"WT HSPCs and linked to upregulated genes. (B) Most statistically significant
TF motifs enriched in peaks more accessible in SF3B1%79% compared with SF3B1YWT HSPCs and linked to upregulated
genes. (C) Tornado plots showing the normalized accessibility signal in peaks more accessible in SF3B1X70% compared
with SF3BIWT HSPCs and linked to upregulated genes that contain TEAD motifs. (D) Expression levels of TEAD family
genes in iPSC-HSPCs. Mean and SEM of transcripts per million (TPM) values from RNA-seq are shown. **Padj < .01;
***Ppadj < .001. (E) TEAD reporter activity in HSPCs from the indicated iPSC lines. Mean and SEM of 2 to 5 independent
differentiation and transduction experiments per line are shown. n.s., not significant; **P < .01.

2.6. Supplementary

2.6.1. Supplemental methods

Targeted gene sequencing

Variant calling and annotation, filtering for artifacts and copy number identification was performed as
previously described[3,15].

GSEA analysis

GSEA analysis was performed on the differentially expressed genes between SF3B1%7%% and SF3B1"T iPSC-
HSPCs using the R-package clusterProfiler[44]. Only gene sets with Benjamini-Hochberg (BH) adjusted p-
value < 0.05 were considered.

Computation of statistical significance in differential transcript usage

The statistical significance of the change in transcript usage between SF3B1%7%% and SF3B1"" iPSC-HSPCs was
assessed in a two stage process using the stageR R-package. The first stage (screening phase) identified the
genes with evidence of differential transcript usage (DTU) and the second stage (confirmation phase)
identified the transcripts within these genes that participate in the DTU.

Integration Framework

As shown in supplemental Figure 2.2A, the categorization of differential splicing events to 5 tier-based classes
(tier 1, tier 2, tier 3, tier 4 and tier 5) depends on the following criteria: (1) Presence of at least one
differentially used transcript paired to the event (2) Statistically significant expression logfc of the respective
gene (3) Statistical significance of the event (FDR value among the lowest 20 FDR values across all events).
Based on the criteria met, the events are rewarded with scores (score of 2 for meeting criterion 1 and score
of 1 for meeting each of the rest). According to their total, events are classified to a specific tier as shown in
the schema of supplemental Figure 2.2A. Events that meet all criteria (total score of 4) comprise the tier 1
(signature) class.
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ATAC sequencing

50,000 MACS-sorted CD34*/CD45* cells from each individual iPSC line were processed as follows: nuclei were
isolated by lysis with 50 ul of ATAC lysis buffer (10 mM Tris pH 7.4, 10 mM NacCl, 3 mM MgCl2, 0.1% NP40,
0.1% Tween-20, and 0.01% Digitonin) and washed with 1 mL of ATAC wash buffer (10 mM Tris pH 7.4, 10
mM NaCl, 3 mM MgCI2, 0.1% Tween-20). Cell lysates were spun to obtain nuclear pellets, which were
subjected to transposase reaction using the Illumina Nextera DNA Sample Preparation Kit according to the
manufacturer’s instructions.

Peak Calling, assighment of ATAC-seq peaks to genes, differential accessibility of genes & motif
enrichment analysis

ATAC-seq peaks for each replicate of the cohort were called using MACS2[30] with a low pass whole genome
sequencing background sample and the following parameters (--min-length 100 -f BAMPE). Each ATAC-seq
peak was assigned to the gene with the closest Transcription Start Site (TSS) using HOMER[45] with the
Ensembl GRCh37 gtf annotation file. To determine accessibility changes at the gene level, we considered the
regulation of the surrounding peak regions as well as the proximity of each gene to a differentially accessible
peak. Specifically, a gene was regarded as differentially accessible if: (1) There was at least 1 differentially
accessible peak within 50 kb of its TSS; or (2) The distribution of accessibility log.fc of all peaks within 50 kb
upstream and downstream of its TSS was significantly shifted (Benjamini-Hochberg [BH] adjusted p-value <
0.05), as compared to the ATAC-seq atlas background distribution by a Kolmogorov-Smirnov (KS) test. Motif
enrichment analysis was performed with HOMER using known motifs in the HOMER default database.

Correlation of chromatin accessibility to normal hematopoiesis

To compare the accessibility profiles of our iPSC-HSPCs to normal primary hematopoietic populations, we
obtained raw bulk ATAC-seq data of 67 samples (7 HSC, 6 MPP, 3 LMPP, 8 CMP, 7 GMP, 7 MEP, 6 Mono, 8
Ery, 5 CLP, 6 NK, 4 B cell) from a published dataset[33]. These were processed as described above for the
iPSC-HSPC data. Pairwise Pearson correlation between iPSC-HSPCs and the normal hematopoietic
populations was computed based on a set of differentially accessible peaks between the SF3B1X7%% and
SF3B1"T iPSC-HSPCs that overlapped with the ATAC-seq atlas of the Corces et al. samples

Data and code availability
The work presented in this chapter has been published here (Blood Advances journal).

Data preprocessing and analysis was conducted using R 3.5.2 and bash scripting. A github repository
containing the code used in generating the figures and the analysis results is available at the Papaemmanuil
lab github page (https://github.com/papaemmelab/MDS SF3B1 iPSC). The data used for this project are
deposited in the Gene Expression Omnibus (GEO) with accession number GSE184246.
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Supplemental Figure 2.1. Gene expression, splicing and transcript usage analyses. (A) Volcano plot of differentially
expressed genes between SF3B1K70%F and SF3B1"T iPSC-HSPCs. (B) Column-normalized heatmap of gene expression
values of the differentially expressed genes between SF3B1¥7%%F and SF3B1WT iPSC-HSPCs, color-coded by SF3B1
mutation status and patient ID. (C,D) GSEA plots of gene ontology (GO) gene sets enriched in genes upregulated (C) or
downregulated (D) in SF3B1K79% ys SF3BIWT iPSC-HSPCs. (E) Scatterplot of enriched GO terms. (F) Distribution of the
differential splicing events between SF3B1%79% and SF3B1"T iPSC-HSPCs by event type. (G) Column-normalized heatmap
of inclusion levels of the differentially spliced events between SF3B1X70% and SF3B1"TiPSC-HSPCs, color-coded by SF3B1
mutation status and patient ID. (H) Differential splicing events between SF3B1X70%F and SF3B1%" iPSC-HSPCs. (1) Overlap
between differentially expressed genes, genes with differentially used transcripts and genes linked to differential
splicing events between SF3B1¥79% and SF3B1"T iPSC-HSPCs.
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Supplemental Figure 2.2. Integration Framework (A) Schema used for the categorization of differential splicing events
to 5 tier-based classes: tier 1, tier 2, tier 3, tier 4 and tier 5. The classification of each event to one of these classes is
based on the following: (1) Presence of at least one differentially used transcript paired to the event (2) Statistically
significant expression log,fc of the respective gene (3) Statistical significance of the event (FDR value among the lowest
20 FDR values across all events). (B) Volcano plot of the tier 1 genes. (C) Differential splicing events in each tier-based
class color-coded per event type. (D) Intersection of the tier 1 splicing events with the Pellagatti et al.[9] dataset. Not
present: tier 1 events not present in any comparison. Present but not significant: tier 1 events that were not statistically
significant or/and had an absolute inclusion level difference < 0.1 in both comparisons (SF3B1mut vs SF-WT & SF3B1mut
vs WT, i.e. healthy individuals). Present in SF3B1mut vs SFWT & SF3B1mut vs WT: tier 1 events statistically significant
(FDR < 0.05) and with an absolute inclusion level difference > 0.1 in both comparisons. Present only in SF3B1mut vs SF-
WT: tier 1 events statistically significant (FDR < 0.05) and with an absolute inclusion level difference > 0.1 only in the
SF3B1mut vs SF-WT MDS patient comparison. (E) Venn diagrams showing overlap of differential splicing events present
in the respective comparisons from MDS patients from the Pellagatti et al.[9] dataset and our mutant SF3B1 splicing
signature. There is minimal or no overlap between the mutant SF3B1 splicing signature and differential splicing events
found in MDS cases with SRSF2 (lower left) or U2AF1 (lower right) mutations.
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Supplemental Figure 2.3. Chromatin accessibility analyses. (A) Volcano plot showing the differentially accessible peaks
between SF3B1¥79% and SF3B1WT iPSC-HSPCs (B) Genomic distribution of the differentially accessible peaks between
SF3B1¥790F and SF3B1WT iPSC-HSPCs. (TTS: transcription termination site) (C) Diamond plot showing the differentially
accessible genes with the highest and lowest expression log,fc, together with the accessibility log,fc of the peaks

associated with these respective genes. The black triangle shows the expression log2fc of each gene, and the points

above correspond to all peaks associated with each gene. The peaks are color-coded based on their accessibility log,fc.
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Supplemental Figure 2.4. TEAD transcriptional activity in SF3B1K70%F and SF3B1YT iPSC HSPCs. (A) Percentage of peaks
more accessible in SF3B1X70% compared to SF3B1"T HSPCs and linked to upregulated genes containing TEAD motifs that
overlap with TEAD binding sites from the Gene Transcription Regulation Database (GTRD) across all samples. (B)
Expression of TEAD family genes in primary patient samples from Shiozawa et al.[11] (upper panels) and Pellagatti et
al.[9] (lower panels). MDS SF3B1mut: MDS with isolated SF3B1 mutation for the Shiozawa et al.[11] dataset; MDS with
isolated SF3B1 K700E mutation for the Pellagatti et al.[9] dataset., MDS SF-WT: MDS with no mutations in SF3B1, SRSF2,
U2AF1, ZRSR2, U2AF2, PRPF8, SF1 genes for the Shiozawa et al.[11] dataset; MDS with no mutations in SF3B1, SRSF2,
U2AF1, ZRSR2 genes for the Pellagatti et al.[9] dataset. CMP: counts per million; TPM: transcripts per million. (C)
Phosphorylated YAP, TEAD, total YAP and TAZ expression in HSPCs from the indicated iPSC lines on day 12 of

differentiation and in 293T cells as positive control.

2.6.3. Supplemental tables

Supplemental Table 2.1. Clinical, cytogenetic and mutational profile of MDS-RS patients selected for this study. A
pericentric inversion of chromosome 9 found in patient 23 is a polymorphic chromosomal rearrangement not linked to
MDS[46,47]. The patients did not harbor additional MDS/AML-driver mutations other than the SF3B1 K700E. (They were
selected for the study on the basis of isolated SF3B81 K700E mutation.)
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Patient Sex Age Diagnosis SF3B1 K700E VAF Cytogenetics

P21 Male 74 MDS-RS 0.42 46, XY

P22 Female 65 MDS-RS 0.37 46, XX, +mar

P23 Male 84 MDS-RS 0.37 46,XY, inv(9)(p11g13)
Supplemental Table 2.2. All iPSC lines used in this study.

Patient iPSC line Genotype RNA-Seq ATAC-Seq

P21 N-21.1 WT/WT + -

P21 N-21.6 WT/WT + +

P21 N-21.14 WT/WT + +

P21 MDS-21.16 WT/K700E + +

P21 MDS-21.29 WT/K700E + +

P21 MDS-21.31 WT/K700E + +

P22 N-22.22 WT/WT + +

P22 N-22.27 WT/WT + +

P22 N-22.45 WT/WT + +

P22 MDS-22.1 WT/K700E - -

P22 MDS-22.43 WT/K700E - -

P22 MDS-22.44 WT/K700E + +

P23 N-23.5 WT/WT + +

P23 N-23.13 WT/WT + +

P23 N-23.28 WT/WT + +

P23 MDS-23.6 WT/K700E + +

P23 MDS-23.24 WT/K700E + +

P23 MDS-23.38 WT/K700E + +
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Supplemental Table 2.3. Tier-based classification of events and qualitative levels of evidence.

Tier Qualitative levels of evidence

1 DTU n top ranked in splicing N gene shows statistically significant expression change
2 DTU n top ranked in splicing
or

DTU n gene shows statistically significant expression change

3 DTU
or

top ranked in splicing N gene shows statistically significant expression change

4 top ranked in splicing
or
gene shows statistically significant expression change

5 any other differential splicing event

Supplemental Table 2.4. Mutant SF3B1 splicing signature.

Event Gene Chr Starting Ending FDR Inclusion Label Expression | Expressio
Type position Position level n_log2fc|
difference

A3SS ABCB7 X 74291343 74291539 0 0.127 ABCB7 down stat >1
significant

A3SS ANKHD1 5 139818045 139818202 0 -0.524 ANKHD1 down stat <1
significant

A3SS ANKHD1 5 139818078 139818202 0 0.458 ANKHD1-1 down stat <1
significant

A3SS APBB3 5 139941171 139941307 0 0.321 APBB3-2 down stat >1
significant

A3SS ARIH1 15 72862504 72862648 0 0.119 ARIH1 down stat <1
significant

A3SS BRD9 5 869359 869519 0 0.442 BRD9 down stat <1
significant

A3SS CRNDE 16 54954209 54954322 0 -0.651 CRNDE up stat <1
significant

A3SS CRNDE 16 54954209 54954322 0 -0.372 CRNDE-1 up stat <1
significant

A3SS DLST 14 75356580 75356655 0 0.389 DLST down stat <1
significant

A3SS ERCC3 2 128046912 128047095 0 0.147 ERCC3-1 up stat <1
significant

A3SS FOXRED1 11 126143210 126143349 0 0.114 FOXRED1 down stat <1
significant

A3SS GAS8 16 90097583 90097904 0 0.461 GAS8 down stat <1
significant
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A3SS GUCY1B3 4 156723364 156723731 0 0.109 GUCY1B3 up stat <1
significant

A3SS HLTF 3 148759276 148759467 0 0.246 HLTF up stat <1
significant

A3SS KIAA1033 12 105514866 105514982 0 0.28 KIAA1033 down stat <1
significant

A3SS METTLS 2 170668966 170669034 0 0.141 METTL5 up stat <1
significant

A3SS PSTPIP1 15 77328142 77328276 0 -0.217 PSTPIP1 down stat <1
significant

A3SS SHKBP1 19 41084353 41084448 0 0.108 SHKBP1 down stat <1
significant

A3SS SNRPN 15 25219434 25219603 0 -0.296 SNRPN-5 up stat >1
significant

A3SS SNRPN 15 25219457 25219603 0 -0.145 SNRPN up stat >1
significant

A3SS STAU2 8 74621266 74621412 0 0.315 STAU2 up stat <1
significant

A3SS TMEM214 2 27260657 27260760 0 -0.471 TMEM214 up stat <1
significant

A3SS TMEM?218 11 124972027 124972247 0 0.531 TMEM218 down stat <1
significant

A3SS TMEM218 11 124972027 124972247 0 0.355 TMEM218-1 down stat <1
significant

A3SS ZNF410 14 74360478 74360635 0 0.296 ZNF410 up stat <1
significant

A5SS DSN1 20 35399275 35399876 2.97 -0.111 DSN1 up stat <1
E-12 significant

A5SS SNRPN 15 25212175 25212387 0 -0.14 SNRPN-2 up stat >1
significant

A5SS TMEM218 11 124972532 124972705 4.60 -0.188 TMEM218-2 down stat <1
E-08 significant

MXE BRD9 5 868721 869234 0 0.193 BRD9-4 down stat <1
significant

MXE BRD9 5 869359 869509 0 -0.197 BRD9-2 down stat <1
significant

MXE SNRPN 15 25212175 25212299 0 0.192 SNRPN-3 up stat >1
significant

MXE SNRPN 15 25212175 25212387 0 0.153 SNRPN-4 up stat >1
significant

MXE TPM1 15 63353396 63353472 0 -0.101 TPM1 up stat >1
significant

RI AMT 3 49454210 49455151 0 -0.283 AMT down stat <1
significant

RI AP5Z1 7 4829462 4830222 141 -0.293 AP5Z1 down stat <1
E-10 significant

63




Chapter 2

RI APBB3 5 139941171 139941434 0 -0.655 APBB3 down stat >1
significant

RI APBB3 5 139941171 139941812 0 -0.278 APBB3-1 down stat >1
significant

RI ERCC3 2 128046912 128047400 0 -0.329 ERCC3 up stat <1
significant

RI HERC2P9 15 28881632 28882253 4.07 0.401 HERC2P9 up stat <1
E-10 significant

RI MFSD10 4 2934326 2934936 7.21 -0.115 MFSD10 down stat <1
E-13 significant

RI OXA1L 14 23239401 23239834 0 0.199 OXA1L down stat <1
significant

RI RFNG 17 80007552 80007882 1.01 -0.171 RFNG down stat <1
E-13 significant

RI RPRD1A 18 33605560 33607038 0 -0.822 RPRD1A up stat <1
significant

RI TMEM218 11 124972027 124972705 0 -0.444 TMEM218-3 down stat <1
significant

RI TMEM?218 11 124972027 124972705 0 -0.312 TMEM218-4 down stat <1
significant

SE AC093415.2 3 37892914 37892983 1.22 0.302 AC093415.2 up stat >1
E-12 significant

SE BRD9 5 869359 869509 0 0.244 BRD9-3 down stat <1
significant

SE BRD9 5 869359 869519 0 0.359 BRD9-1 down stat <1
significant

SE DLST 14 75349293 75349327 0 -0.324 DLST-1 down stat <1
significant

SE DLST 14 75352288 75352337 0 -0.114 DLST-2 down stat <1
significant

SE DPH5 1 101458192 101458296 0 -0.131 DPH5 down stat <1
significant

SE DPH5 1 101490864 101491022 0 -0.143 DPH5-1 down stat <1
significant

SE PROS1 3 93647545 93647641 0 0.38 PROS1 up stat <1
significant

SE SNRPN 15 25212175 25212299 0 0.283 SNRPN-1 up stat >1
significant

SE SNRPN 15 25212175 25212387 0 0.155 SNRPN-6 up stat >1
significant

SE STAU2 8 74621266 74621412 0 0.148 STAU2-1 up stat <1
significant

SE TMEM214 2 27260682 27260760 0 0.457 TMEM214-2 up stat <1
significant

SE TPM1 15 63353396 63353472 0 -0.167 TPM1-1 up stat >1
significant

SE TYROBP 19 36398631 36398664 0 -0.149 TYROBP down stat <1
significant
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Predicting single cell genotypes from single cell expression
profiles in AML using deep learning
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Chapter 3

3.1. Chapter abstract

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy composed of a mixture of
genotypically, phenotypically and functionally diverse cell populations including wild-type (WT) cells. The
generation of high throughput single cell gene expression and mutational profiles in AML enables the
deployment of deep learning frameworks for gaining insights on how genotypic changes are associated with
disease phenotypes. However, the question of whether the single cell gene expression patterns together
with the computational power of neural networks have the capacity to predict a cell’s genotype remains
unclear. In this study, we train two supervised deep learning models to predict the cell’s malignant or wild-
type (WT) status as well as the mutational status of specific genomic abnormalities in a binary and multi-
class multi-label setting respectively, based on single cell RNA sequencing data from 6 IDH1/2-mutated AML
patients and 4 healthy individuals. In the independent test sets, the binary classification model achieved an
accuracy of 98% while the multi-class multi-label model achieved a macro-average AUC ROC of 0.84.
Moreover, applying black box feature selection on the trained networks identified genes involved in
biological processes and pathways of reported significance in AML, such as apoptosis and NF-kB related
signaling pathways. Overall, this study proposes two deep learning tasks for the prediction of single cell
genotypic profiles from single cell expression data and showcases how the trained models can be used for
the derivation of biologically related signals.

3.2. Introduction

Acute myeloid leukemias (AML) are aggressive hematologic malignancies with acute onset, rapid progression
and poor patient outcomes[1-3]. The pathogenesis of AML is underlied by the serial acquisition of gene
mutations in hematopoietic stem and progenitor cells. These mutations impair normal cell regulation and
result in a block in the differentiation of myeloid precursors towards more mature myeloid cell types. Thus,
AML is characterized by the increased proliferation and accumulation of abnormal immature myeloid
progenitor cells (blasts) in the bone marrow (BM) and blood[4,5].

Large genomic population studies have shown that AML is genetically heterogeneous and is defined by the
gradual accumulation of multiple gene mutations with specific patterns with regards to mutation order and
co-occurrence[6,7]. This genetic and clonal diversity in AML imposes one of the biggest challenges in treating
and ultimately curing the disease. Understanding how specific gene mutations result in distinct populations
of cells and elucidating how clones with distinct differentiation characteristics lead to malignancy, cannot be
achieved by bulk sequencing approaches. The latter methods capture tissue related information and cannot
provide information at the cellular level, thus limiting our understanding on how mutations drive AML
pathogenesis and how genotypic changes are reflected in clone specific gene expression signals. In contrast
to bulk approaches, single cell sequencing technologies provide insights towards the characterization of
intra-patient cell diversity and clonal heterogeneity as well as empower the study of gene expression profiles
between individuals with different conditions at a single cell resolution. The wealth of data generated by

single cell sequencing has also created the opportunity for the design and implementation of deep learning
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methods that explore the high-order structure of the data, embed cells on lower dimensional spaces, identify
cell clusters, integrate different modalities and reveal different aspects of biological signals[8-10].

In AML, single cell gene expression and single cell genotypes can be combined to assign cells into distinct
clones across the AML phylogeny. This allows the identification of different cell populations, the analysis of
the interactions between cells and the establishment of relationships between gene expression
heterogeneity and genotypically distinct subclones. In particular, Petti et al.[11] evaluated the capacity of
using scRNA-sequencing reads from cryopreserved BM cells from AML patients to detect, at a single cell level,
a set of somatic variants called by enhanced whole-genome sequencing (eWGS) on the same samples.
Exploiting the detected single nucleotide variants (SNVs) of each cell, Petti et al. distinguished tumor and
normal cells and examined the cell composition of identified gene expression clusters at the phenotypic and
mutational level in an unsupervised setting. In another study, Van Galen et al.[12] utilized nanowell-based
technology to collect single cell gene expression and mutational profiles from AML patients as well as healthy
individuals and deployed random forests to predict the WT or malignant status of each cell in a two-step
approach. First, Van Galen et al. applied a random forest to assign mutated AML cells a label based on a
defined set of WT cell types and then separated malignant and WT cells by training a second random forest
model to classify cells to WT or malignant cell type labels.

Inspired by the work of Petti et al. and Van Galen et al. on AML as well as by the applicability of deep learning
to single cell data, this paper first, introduces a deep learning framework to classify AML malignant and WT
cells in a binary setting and second, attempts to predict the single cell mutational status of specific genes in
a multi-label supervised setting. Both tasks are performed using 1. single cell gene expression profiles from
scRNA-seq data from 6 IDH1/2-mutated AML patients and 4 WT individuals and, 2. genotype labels produced
experimentally from applying the method of Genotyping of Transcriptomes (GoT)[13] on the same samples.
Through this deep learning approach, we integrate single cell gene expression with single cell genotypes in
AML and enable the identification of genes that play a significant role in these classification tasks. Our main
contributions in this study are: i) deploying a feedforward neural network to classify cells to WT or malignant
in a supervised approach using as input single cell expression profiles from diagnostic AML patient samples
and healthy individuals, ii) deploying a feedforward neural network to predict the single cell mutational
status of a specific set of genes and chromosomal abnormalities for a single patient in a supervised multi-
class, multi-label setting using the same single cell gene expression profiles, and iii) identifying features-genes
that are important for both classification outcomes by applying the holdout randomization test (HRT)[14] on
the trained models.

3.3. Data

Study cohort

The study cohort consists of 6 AML patients and 4 healthy individuals (N-01, N-02, N-03, N-04) from the paper
of Sirenko et al (in review)[15]. These 6 AML patients harbored clonal IDH1 (patient IDH1i-01, patient IDH1i-
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02, patient IDH1i-03) or IDH2 (patient IDH2i-01, patient IDH2i-02, patient IDH2i-03) mutations as well as co-
mutations in one or more of the most commonly co-mutated genes in IDH1/2 AML; NPM1, NRAS, KRAS,
SRSF2, DNMT3A (Figure 3.1A). For this cohort, scRNA-seq data were generated from BM and peripheral blood
(PB) samples. Next to the single cell gene expression profiles, single cell genotypic information was also
available for the 6 AML patients for specific hotspot mutations (IDH1 p.R132, IDH2 p.R172, IDH2 p.R140,
SRSF2 p.P95, DNMT3A p.R882, NPM1 p.W288, NRAS p.G12, KRAS p.G12), as derived from the application of
the GoT method on the same samples[13] (Supplemental Table 3.1). Additionally, a set of chromosomal
abnormalities (gains in chromosomes 1q [+1q/dupli_chrl], 6 [+6/dupli_chr6], 8 [+8/dupli_chr8], 10
[+10/dupli_chr10] and 14 [+14/dupli_chrl4]), as reported from inferCNV at the single cell level, is
included[16]. We note that all patient samples were treatment naive and that the generation of the data is
not part of the current thesis.

Data preprocessing

The raw scRNA-seq fastq files were aligned to the GRCh37 assembly and single cell gene expression counts
were generated using CellRanger v3.1[17]. We enhanced the quality of the AML and healthy datasets by
performing a series of quality control steps with scanpy[18] including the removal of cells with less than 200
expressed genes, of genes expressed in less than 3 cells and of cells with mitochondrial content more than
20%. Lastly, based on cell type annotations, we remove any lymphoid-related cells. To bring the single cell
gene expression values of the AML and healthy datasets to the same scale, we applied the sctransform
normalization[19] using Seurat[20]. Then, we integrated the healthy and AML single cell gene expression
profiles into a unified dataset, first by identifying correspondences between pairs of single cells from the two
datasets, and second by transforming the gene expression values of the datasets into a common space[20].
This unified dataset contains in total 61,091 myeloid cells (Figure 3.1B). Applying UMAP on the top 30
principal components and coloring these cells on the 2D UMAP space based on the dataset of origin, we can
visually identify both overlapping and non-overlapping single cell profiles between WT and AML (Figure
3.1C). Thus, we can rationally ask if it is possible, through deep learning, to predict 1) each cell’s status
(malignant or WT) and 2) each cell’s genomic abnormalities based on single cell gene expression values. To
do that, any cell, from the AML patients, with at least one hotspot mutation or chromosomal abnormality
was labeled as malignant while every cell from the WT individuals was labeled as WT (Figure 3.1D). Therefore,
the total number of cells used for the downstream training, validation and testing reached a total of 50,026,
35,314 of which were malignant and 14,712 of which were WT (Figure 3.1E, Supplemental Table 3.2).
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Figure 3.1. Study cohort and data characteristics. A) Study cohort composed of 6 AML patients and 4 healthy individuals
from Sirenko et al (in review). The chromosomal abnormalities and genotyped mutated genes used in the study are
listed next to each patient. B) Barplot showing the number of cells with gene expression data per individual, colored by
dataset. C) UMAP of all cells based on their expression profiles, colored by dataset. D) Horizontal barplot showing the
number of cells with genotypic labels per genomic abnormality, colored by dataset. E) Pieplots showing the total
number of cells per dataset (left) and the total number of cells used for the training, validation and testing of the models.

3.4. Methods

In this study we develop a binary classification and a multi-class, multi-label model to predict the cell’s
malignant or WT status and the mutational status of specific genomic abnormalities correspondingly, using
the single cell gene expression profiles of the integrated AML and healthy datasets. Let X € RM*N be the
single cell gene expression matrix, where M = 50,026 is the total number of malignant and WT cells, while
N = 1,000 is the number of genes with the highest expression variance across cells (Figure 3.2A).
Additionally, let G be the M X L matrix of genotype labels, where L = 13 is the total set of hotspot mutations
from GoT (n=8) and chromosomal abnormalities from inferCNV (n=5). A value of G; ; = 1 denotes that the
genomic abnormality j is present in cell i, a value of G; ; = 0 denotes that the genomic abnormality j is not
present in cell i, while NA denotes that there is not enough information for assigning a 0 or 1 (e.g. dropout
in GoT) for the genomic abnormality j in cell i (Figure 3.2A). Since M = 50,026 is the total number of
malignant and WT cells, there is no single row in G that contains only NAs. Lastly, the binary vector S of size
M indicates if each cell i is malignant (S; = 1) or WT (S; = 0, Figure 3.2A).

Binary classification model

First, we deploy a feedforward neural network of 3 hidden dense layers (sizes 512, 512, 64 respectively) to
predict if a cell is WT or malignant (S;) based on its expression profile X; (Figure 3.2B). In particular, the
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network receives as input each single cell gene expression profile, creates a latent representation of this
profile through a series of hidden non-linear operations and eventually outputs a probability estimate that

indicates how likely each cell is to be malignant. The output Hi(l) of each hidden layer [ € {1,2,3} for cell i is
defined as:

H® = ReLU (Hi(l_l) x WO +b(l)),i € {1..M} (1)

where WO and b® are the transposed learnable weights and the bias of layer I, respectively, and H(® =
X. The output O; of the model for cell i is defined as:

0;, = Sigmoid(Hl.@) x W out) 4 plout)y (2)

where W ©48) and p(©UD) are the transposed learnable weights and the bias of the output layer, respectively.
The proposed end to end model is trained in a supervised fashion by minimizing the binary cross-entropy

loss LBCE .
LBCE = —[S;-log0; + (1—5S)-log(1—0)li€ {1.M}  (3)

where L?CE is the binary cross entropy loss for cell i and 0O; is the output for cell i. Furthermore, to reduce
overfitting and improve generalization, during training we used dropout regularization after the output H®
of each hidden layer. Upon the completion of training and the evaluation of the model performance on a
holdout unseen test set, we identify which genes are important for the classification decision by treating the
trained model as a black box and applying the HRT method[14] for feature selection (Figure 3.2B). HRT
handles the feature selection task as a hypothesis testing problem and selects the features that are relevant
to the outcome by performing conditional independence tests. Under the null hypothesis (feature
conditionally independent of the outcome given all other features), the feature is irrelevant to the outcome.
When the null hypothesis is rejected, then the respective feature is accounted as a discovery[14].

Multi-class multi-label classification model

Next, we extend the previous binary classification model aiming to also predict the state (mutated or not
mutated) of each hotspot position and chromosomal aberration. For this task, we develop a patient-specific
multi-class, multi-label model for the patient with the largest amount of data (IDH1i-02) (Figure 3.1B,
Supplemental Table 3.3). This model retains the feedforward architecture deployed earlier, but produces 7
different outputs (Figure 3.2C), 6 of which correspond to the presence of a hotspot mutation or a
chromosomal abnormality (j € A = {IDH1,NRAS, dupli_chrl, dupli_chr6, dupli_chr8, dupli_ch10})
and the last one (j € {WTsqtus}) corresponds to the genotypic status of the cell (WT or malignant). The
data used for training, validating and testing this model consists of all malignant cells from patient IDH1i-02
(n=16,614) as well as all WT cells (n=14,712) of the cohort. We denote the sum of these cells as K (K =
31,326). Similarly to the binary classification model, this extended network receives as input each single cell
gene expression profile X; and creates a latent representation of this profile through a series of hidden non-
linear operations. Eventually, the network produces a probability estimate for each output j € A that
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indicates how likely each mutation or chromosomal abnormality is to be present in each cell i, aswellasj €
{WTstqrus} that indicates how likely each cell i is to be WT (contrary to the binary classification model in
which the output was estimating the probability of the cell being malignant). The output Hl-(l) of each hidden
layer I € {1,2,3} (sizes 512, 512, 512 respectively) for cell i is as in equation (1) while the model output can

be written as:

0;; = Sigmoid(H® x Wy +b;),i €{1..K},j € AU WTgrarus}  (4)

where 0, ; is the probability estimate for output j for cell i, and W; and b; are the transposed weight
parameters and the bias of the output layer, respectively, that correspond to each output j. The proposed
multi-class, multi-label end to end model is trained in a supervised fashion by minimizing the sum (L7°T) of
two binary cross-entropy losses; LECE that penalizes any deviation of the model output from the true output
labels and L°VL that penalizes cells with high output probabilities of having any mutation and being predicted
as WT at the same time or vice versa (low probabilities of any mutation and being predicted as malignant).
These losses are defined as:

LBE = —w; [Ty - log0;; +(1—T;;) -log(1—0;)) |.j € AU WTsqpys} i € {1..K} (5)

LV = ~[max (0ije)  10g(1 = Oywrygp) + (1~ max(0 ¢ ) - 10g Oy )i € {1..K}  (6)
where O; ; is the output prediction j for cell i,

_(1=S8;, if j € {WTstarus}
n={ G i e a v

and w; € R is the weight of each label {0,1,NA} for output j defined as:

0, lle'] = NA
wj = Vo ER,if Ti,j =0 (8)
V1 ER,lf Ti,j =1

If the true label for output j is NA, the model output j cannot be evaluated for its correctness and thus based
on equation (8), there isn’t any loss component from output j contributing to LE¢E. The nonzero w; (v, for
label 0 and v for label 1) are computed based on the prevalence of the labels {0,1} in G;. The total loss for
cell i is defined as:

BCE

Lqi"OT — LiOVL +ZjEAU{WTst7atus} Lij ,i € {1..K} (9)

Similarly to the binary classification model, we used dropout regularization after the output H® of each
hidden layer. Additionally, we apply the HRT method[14] on the trained model to identify the genes that play
a significant role in the positive prediction of the NRAS mutation.
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3.5. Results

Binary classification model accurately predicts malignant cells from WT cells

For the binary classification task we split the data into training, validation and test sets. The model was
trained and optimized based on the training and validation sets and tested for its performance on the holdout
test data. Particularly, it was trained for 283 epochs in batches of 64 cells using the Adagrad optimizer with
a learning rate of 0.013 and a weight decay of 0.01 (Supplemental Figure 3.1).

Outputs with a probability higher than 0.5 were regarded as positive and represented malignant predictions,
whereas the rest were regarded as negative and represented WT predictions. The evaluation of the model
performance on the test set (Figure 3.3A) showed that the model has the capacity to separate malignant
from WT cells with an accuracy of 98%, precision of 98% and recall of 99%, resulting in 70.19% of the test
set cells being True Positives (TP, malignant cells that were correctly classified as such), 28.28% being True
Negatives (TN, WT cells that were correctly classified as such), 1.13% being False Positives (FP, WT cells that
were classified as malignant) and 0.4% being False Negatives (FN, malignant cells that were classified as WT).

Additionally, running the HRT method twice on the test set in the context of identifying the most important
features for this classification task, led to the selection of 58 common genes between the two runs with a
Benjamini-Hochberg (BH) adjusted p-value<0.05. To find out if these genes share similar biological functions
or participate in the same biological processes, we performed a gene ontology and pathway enrichment
analysis[21] on this selected set of genes which showed the enrichment of processes related to apoptosis
(BH adjusted p-value = 0.009, e.g. MCL1, HMGB2) as well as of the TGF-beta signaling pathway (BH adjusted
p-value = 0.005, e.g. ID1, JUNB) (Figure 3.3B). We further used this trained model to search for the presence
of WT-like cells within the AML patients (Figure 3.3C). Applying the model to the cells of the AML patients
that were not part of the training, validation and test sets, we find a small portion of cells within each patient
that present a phenotype similar to that of the WT cells (WT-like). In total, these WT-like predictions are the
4.1% of this cell-set and 56% of them correspond to myeloid differentiated cells (Figure 3.3D), which may
have escaped the differentiation block and reached myeloid maturation. Notably, only 8% of the malignant
predicted cells of this set correspond to myeloid differentiated ones, indicative of the differentiation block
that characterizes the disease.
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Figure 3.2. Data representation, frameworks and use of model equations. A) 2D single cell gene expression matrix X €
RM*N (left), 2D single cell genotype matrix G, G;; € {0,1,NA},i € {1..M}, j € AU {WTqrys} (middle) and 1D matrix
S, S; € {0,1}, i € {1..M} representing if a cell is malignant or WT (right). B) Binary classification model and use of
model equations in a forward pass example. The model receives as input single cell expression profiles X;, produces a
series of latent representations Hl.(l), [ € {1,2,3} and outputs the probability (0;,i € {1..M}) of a cell i being malignant
using the sigmoid activation function. The binary cross entropy loss (LZ¢F) between the output probability 0; and the
true label S; is used during training. W are the transposed weight parameters and b is the bias of layer [, €
{1,2,3}, while W) and p(°40 gre the transposed weight parameters and the bias of the output layer, respectively.
C) Multi-class multi-label model and use of model equations in a forward pass example. The model receives as input
single cell expression profiles X;, produces a series of latent representations Hl.(l),l € {1,2,3} and outputs the
probabilities O; ; of a cell i € {1..K} (K is the total number of cells from IDH1i-02 and the WT Cohort) harboring each
genomic abnormality j € A and the probability of cell i being WT (j € {WTstqtus})- The model is developed for patient
IDH1i-02 using this patient’s cells and the WT cells from the healthy individuals too. Besides the binary cross entropy
loss L7S* between 0; ; and the true label for j € A U {WTs¢q¢ys}, the training of this model also uses LY"", a binary cross
entropy loss between the maximum probability of a genomic abnormality being present and the probability of the cell

i being malignant. The total loss LT°" for cell i during a training iteration is the sum of L?"" and the average of L7%*
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across all outputs j. W® and b® are the transposed weight parameter and the bias of layer [ ,I € {1,2,3} respectively,
while W; and b; are the transposed weight parameters and the bias of the output layer, respectively, that correspond
to each output j. The HRT method is applied on both trained models for black box feature selection. M: total number
of cells; N: number of input features (genes); A4 is the set of genomic abnormalities.

Multi-label classification model effectively predicts NRAS mutational status

For the multi-class multi-label classification framework, we split the data to training, validation and test,
ensuring at the same time that all sets contain cells with genomic abnormalities for every output j € A
(there is at least one i € {1..K} for which G; j=1, j € A). The model was trained and optimized based on
the training and validation sets and tested for its performance on the unseen test data similarly to the binary
classification model. In this case, the model was trained for 68 epochs in batches of 128 cells using the SGD
optimizer with a learning rate of 0.086 and a weight decay of 0.001 (Supplemental Figure 3.2).

In this multi-class multi-label setting we do not use the 0.5 probability threshold to determine positive and
negative outcomes, but we adjust the classification threshold for each output separately. The threshold
selected for each output was the one achieving the highest f1 score on the precision-recall curve of the
validation set. Therefore, each output j with probability estimate higher than the output-specific threshold
was regarded as positive (predicted presence of genomic abnormality j € A, predicted WT for j €
{WTstarus}) While every output with probability estimate below that threshold was regarded as negative

(predicted absence of genomic abnormality for j € A, predicted malignant for j € {WTsatus})-
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Figure 3.3. Results of the binary classification model. A) Confusion matrix of the binary classification model on the test
set. B) Dotplot showing AML related biological processes and pathways that are enriched in the set of selected genes
resulting from the application of HRT for the test set on the binary classification model. The y axis presents the terms,
the x axis shows the statistical significance for each term and the color of the dots indicates the odds ratio of the terms.
C) Barplot showing the predictions of the binary classification model on the set of cells not used in the training,
validation and testing of the model (cells without available genotypic information). The x-axis shows the patients and
the color indicates the model prediction. D) Nested donut plot showing the model predictions on the cells not used in
the training, validation and testing (outer) along with the indication of the myeloid maturation stage (inner).

Similar to the binary classification case, this model also achieves the (98% of the predictions are correct)
separation between malignant and WT cells on the test set (Figure 3.4A). Complementary to this, we also
note for clarity that the model does also predict absence of genomic abnormalities (j € A) in almost all (in
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2262 out of the 2272) of the WT predicted cells. As far as genomic abnormalities (j € A) are concerned, the
model performance is assessed only on the malignant cells of the test set. In this context, the model achieved
near optimal results on the prediction of the chromosomal abnormalities, especially of dupli_chré and
dupli_chr10 (Figure 3.4A), achieving an AUC ROC higher than 0.96 for all (Figure 3.4B, for dupli_chrl, no AUC
ROC is computed as all cells had a chromosome 1 gain). Regarding the mutations, the model demonstrated
a considerable performance for subclonal NRAS achieving an AUC ROC of 0.83 (Figure 3.4B, Supplemental
Table 3.4), in contrast to its limited capacity to correctly predict the mutational status of clonal IDHI1. The
latter may be due to the lack of IDH1 WT cells from the cohort and consequently the training set (Figure 3.4C,
Supplemental Table 3.3).

Given the performance of the model on NRAS as well as the fact that NRAS is one of the most commonly co-
mutated genes in AML[7], we applied the HRT method twice on the cells of the test set that were predicted
to have an NRAS mutation. This led to the selection of 82 common genes between the two runs (BH adjusted
p-value<0.05) as important for the positive NRAS prediction. Gene ontology and pathway enrichment
analysis on this set of genes showed, among others, association of these genes with inflammatory responses
(BH adjusted p-value = 0.006, e.g. RNF144B, TLR2) as well as the TNF-alpha signaling via NF-kB (BH adjusted
p-value = 0.00003, e.g. BTG2, SAT1) and IL-2/STATS5 (BH adjusted p-value = 0.028, e.g. XBP1, HOPX) signaling
pathway (Figure 3.4D). We note that the outcome of the enrichment analysis shows which terms are over-
represented in the set of genes derived from HRT and does not imply the up or down-regulation of the
processes/pathways and their matched genes.

3.6. Discussion

In this study, in the context of IDH1/2 AML and using as input single cell gene expression profiles, we propose
a binary classification and a multi-label deep learning model to predict the Malignant or WT status of single
cells and their specific genomic abnormalities, respectively. To develop these models, we integrated the
single cell gene expression and genotypic data from 6 IDH1/2-mutated AML patients and 4 healthy
individuals from Sirenko et al (in review). Motivated by the work of Van Galen et al. on AML, who deployed
cell type labeling and two random forest models to separate between malignant and WT cells, this paper
leverages the computational power of deep learning models to not only predict malignant vs WT cell status,
but also identify the mutational status of genomic abnormalities for a single patient despite missing data. In
particular, the multi-class multi-label architecture aims to shape internal cell representations through the
sharing of information learned from different outputs, recovering that way for the excessive absence of
mutation labels for some genomic abnormalities.
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Figure 3.4. Results of the multi-label classification. A) Confusion matrix for each output of the multi-class multi-label
model on all test set cells for j € {WTg.4ys} and on the test set cells of patient IDH1i-02 for j € A inwhich G;; # NA.
B) ROC curve for each output j € A of the multi-class multi-label model along with the respective AUC on the test set.
C) Barplot showing the number and mutational status of the cells from patient IDH1i-02 used for the training and
validation of the multi-class multi-label model. The x axis shows the genomic abnormalities and the color indicates the
presence, absence or unavailability of the label. D) Dotplot showing the biological processes and pathways that are
enriched in the set of selected genes resulting from the application of HRT on the multi-class, multi-label model for the
test set cells with a predicted NRAS mutation. The y axis presents the terms, the x axis shows the statistical significance
for each term and the color of the dots indicates the odds ratio of the terms.

Both deep learning models showed similarly excellent performance in classifying malignant from WT cells
(98 % correct test set predictions from both models) while the multi-class multi-label model for patient IDH1i-
02 presented remarkable results in predicting the status of chromosomal abnormalities and of NRAS, in
contrast to IDH1. We believe that the superior performance of the model on NRAS compared to IDH1 is
related to the limited genotyping efficiency of IDH1 in the Sirenko et al. data, but it could also depend on the
different acquisition stages of the two mutations. Specifically, IDH1 is a clonal mutation, while the acquisition
of NRAS in patient IDH1i-02 is a later event that might have such an effect on the gene expression profiles of
the mutated cells that makes them more easily distinguishable for the model. The fact that NRAS is a
subclonal event with higher genotyping efficiency than IDH1, provided for patient IDH1i-02 a quite balanced
set of NRAS genotyped cells in which 37% is NRAS WT (Figure 3.4C). That allowed us to train a patient-specific
model with considerable results for NRAS. Excluding the chromosomal abnormalities, we note that within
each of the other patients of the cohort, there were at least two mutations in which the gene specific status
was WT for less than 30% of the cells.
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The superior performance on NRAS demonstrates that this classification task is optimal when addressing
cells with a spread of mutant and WT representations such as sub-clones. This is of significant translational
and clinical relevance as it is often such emerging subclones that carry mutations that confer resistance to
treatment, and that seed disease relapse and progression. This will allow one to characterize the biological
determinants of specific gene mutations across cell lineages that result in treatment resistance and disease
progression as opposed to phenotyping disease initiating mutations that are present in all the cells (e.g.
IDH1/2).

In the context of obtaining a better understanding of the classification decisions and deep learning model
behavior, white box interpretability methods have recently gained much attention[22,23]. However, a
number of those (e.g. Integrated Gradients, Deeplift, SHAP variants, Feature Ablation and Occlusion) are
based on input baselines[23], the setting of which in the context of the heterogeneous single cell gene
expression profiles is tricky and might influence the resulting interpretation. Thus, by applying the HRT
feature selection method, we show how these trained models can be treated as black boxes for recovering
biologically related associations between the model outputs and the input genes. The HRT results in the
binary classification model show that the selected features are, among others, enriched in the TGF-beta
signaling pathway, the significance of which in the context of AML has been previously reported[24,25]. The
HRT results for NRAS predictions in the multi-class, multi-label setting present an association with
inflammation related processes, the role of which in AML and other hematologic malignancies has also been
previously examined[26,27]. We note that given the shared input between the two models as well as the
fact that the positive NRAS predictions are also malignant ones, there is an overlap between the associated
biological terms in both models. Apoptotic processes and NF-kB related signaling pathways, which have
central impact on the cellular functions in AML[28,29], were, among others, associated with the selected
genes of both classification tasks.

To conclude, this study first deployed two deep learning frameworks that integrate single cell gene
expression profiles and genotypes, and second leveraged them to extract biological signals related to disease.
To develop these models we carefully selected a sample set that includes healthy individuals (n=4), as well
as patients (n=6) with representative genotypes from IDH1/2-mutated AML, for which both scRNA-seq data
coupled to single cell genotyping of transcriptomes (GoT) data were generated. While acknowledging the
small cohort size of the study, we note that GoT is a very laborious technique that cannot be readily scaled,
and the significant cost of the combined assays (scRNA-seq and single cell genotyping) prohibits at present
the generation of such data at scale. As part of the analysis, we composed a set of thousands of cells with
different genotypes, normalized this set to reduce patient-specific effects, and used it to train frameworks
that operate at a single cell level and predict specific genotypes. Future efforts encompassing larger sample
sets may focus on enriching the genotype-phenotype associations derived hereby. Additionally, the approach
of this study can be extended not only to different scientific questions within the same dataset (e.g.
classifying IDH1 vs IDH2 cells), but could also be acquired in similar data settings in other diseases. Lastly,
future directions could concentrate on overcoming integration issues across single cell RNA-seq data from
different sources and technology protocols so that the proposed frameworks can be readily applicable
without retraining or calibration on unseen patients on a wide research or clinical scale.
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3.7. Supplementary

3.7.1. Supplemental methods

Model training

The models were developed in pytorch[30] under python 3.7.1. Hyperparameter tuning (learning rate,
weight decay, optimization algorithm) was performed using the Asynchronous Successive Halving Algorithm
(ASHA)[31]. Gene enrichment analysis was conducted using GSEApy[32].

Data and code availability

The work presented in this chapter has been published here (Association for Computing Machinery,
International Conference on Bioscience, Biochemistry and Bioinformatics 2023 Conference proceedings).

A github repository containing the models’ source code is available at the Papaemmanuil lab github page
(https://github.com/papaemmelab/Asimomitis ACM 2023). The single cell dataframes used for the

training, validation and testing of the models will become available upon publication of the Sirenko et al.
3.7.2. Supplemental figures

Binary classification

0.351 — Training loss

0.30 1 — Validation loss
0.25 1
0.20 1
0.15 1
0.10 1
0.05 1

0 50 100 150 200 250
Epoch

Supplemental Figure 3.1. Curves for the training and validation loss for the binary classification model across epochs.
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Multi-label classification
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Supplemental Figure 3.2. A) Curves for the training and validation loss for the multi-label classification model across

epochs. B) The two components (L°Y* and the average of

model.

3.7.3. Supplemental tables

LBCE)

of the training loss for the multi-label classification

Supplemental Table 3.1. Patient-specific genotypic profiles (genotyped mutations and chromosomal gains) used in the

study.
Patient Genotyped mutations Gains in chromosomes
IDH1i-01 IDH1, NPM1 -
IDH1i-02 IDH1, NRAS 1q, 6, 8, 10
IDH1i-03 IDH1, NPM1, KRAS -
IDH2i-01 IDH2 p.R172, SRSF2 8,14
IDH2i-02 IDH2 p.R140, DNMT3A, SRSF2 8
IDH2i-03 IDH2 p.R140, DNMT3A, SRSF2 -
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Supplemental Table 3.2. Breakdown, across cohort individuals, of the 50,026 cells used for the tuning and testing of the
binary classification model.

Patient Model tuning Hold out test set
IDH1i-01 506 45
IDH1i-02 15647 967
IDH1i-03 1181 68
IDH2i-01 4618 311
IDH2i-02 7755 491
IDH2i-03 3488 237
N-01 4141 265
N-02 4044 240
N-03 1911 137
N-04 3733 241

Supplemental Table 3.3. Number of cells per mutational status for each genomic abnormality of patient IDH1i-02, used
for the model tuning (training, validation) and the hold out test set of the multi-label framework.

Model tuning Hold out test set
NA Not mutated Mutated NA Not mutated Mutated
IDH1_R132 11127 12 252 5017 15 191
NRAS_G12 10455 398 538 4598 173 452
dupli_chr8 0 1261 10130 0 225 4998
duplic_chr10 0 9473 1918 0 3535 1688
dupli_chr6 0 9478 1913 0 3542 1681
dupli_chrl 0 0 11391 0 0 5223
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Supplemental Table 3.4. Performance metrics of the multilabel classification model on the hold-out test set of patient
IDH1-02. (TNR: True Negative Rate, ROC AUC: Area Under the ROC curve).

Accuracy Precision Recall [F1score TNR AUC ROC
IDH1_R132 67% 92% 70% 79% 27% 41%
NRAS_G12 87% 88% 94% 91% 68% 83%
dupli_chr8 95% 99% 95% 97% 85% 96%
dupli_chr10 97% 98% 92% 95% 99% 99%
dupli_chr6 97% 98% 92% 95% 99% 99%
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Concluding remarks

4.1. Conclusion

Myeloid neoplasms are a complex set of prevalent and clonal hematologic malignancies characterized by
genetic and phenotypic heterogeneity. Despite significant advances in the elucidation of the gene mutations
that are frequently acquired in myeloid neoplasms, our understanding of the respective mechanisms,
whereby these mutations cause disease pathogenesis, remains largely incomplete. To this end, advances in
the development of patient relevant models of disease biology coupled to the deployment of high-
throughput single and multi-omic laboratory assays set out to link established drivers of disease biology to
specific molecular phenotypes. The scale and complexity of the data generated in research studies of MNs
require the design and development of computational frameworks tailored to analyze such high-dimensional
datasets. Thorough data analysis and interpretation of omic-based studies rely on the integration of multiple
data views. This integration can be achieved either through the process of fusing data views towards facing
supervised or unsupervised tasks (e.g. prediction, classification, clustering) or the process of interconnecting
them towards studying the cross-talk between them.

This thesis develops analytical strategies based on multi-view data integration. We deploy data fusion and
interconnection concepts to develop analytical frameworks within and across different omics views. We
investigate the effects of the SF381%79F mutation in the molecular landscape of MDS (Chapter 2) and capture
prominent genotype-phenotype associations in IDH1/2-mutated AML (Chapter 3). The first study performs
an interpretable multi-stage fusion of splicing, transcript usage and gene expression and results in a splicing
signature that can accurately predict the SF3B1 mutational status. Concurrently, the work presented here
provides a comprehensive representation of the chromatin accessibility landscape and among others,
nominates transcriptional programs with putative roles in MDS disease biology. In Chapter 3 (IDH1/2 AML),
we show that deep learning approaches applied on single cell gene expression and genotypic data, have the
capacity to effectively predict the malignant status of cells and, importantly, the status of subclonal genomic
abnormalities such as NRAS. Overall, the analytical frameworks presented herein demonstrate that the
deployment of multi-view data integration concepts for the mining of bulk and single cell sequencing data in
myeloid neoplasms, leads to a systematic and detailed profiling of molecular landscapes and enhances our
ability to study genotype-phenotype relationships. The derived outcomes show that these approaches offer
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the opportunity to establish links between diverse data views (e.g. links between splicing and transcript
usage in Chapter 2 or effect of NRAS mutation on gene expression in Chapter 3) and characterize key signals
related to disease biology.

The computational approaches of this thesis can be applied in extended datasets across MNs and other
cancer indications. In a broader perspective, the rationale used for the integration of different data views
from bulk RNA-seq data in Chapter 2, can be applied to other studies investigating the role of splicing factor
mutations across relevant signals that can be quantified by transcriptome sequencing (expression, splicing,
transcript usage). Given that mutations in splicing genes are not restricted to MDS, deploying the proposed
multi-stage fusion framework in other diseases can enhance tissue-specific gene target prioritization and
offer a thorough understanding of the transcriptomic repertoire through the derivation of signals from
splicing analyses, transcript usage and gene expression. Additionally, concurrent bulk RNA and ATAC-seq in
larger cohorts may enable the use of meta-dimensional fusion approaches that can jointly model patterns
from the transcriptome and chromatin accessibility.

The supervised deep learning approaches of Chapter 3 can be deployed either to expand the genotype-
phenotype associations derived herein in the context of MNs or to study the interconnection between single
cell transcriptomes and genotypes in other translational studies. For instance, in IDH1/2 AML, future efforts
may focus on investigating links between the transcriptomic profiles and the genotypes of IDH1 vs IDH2
mutated cells. Other studies in oncology, especially in cancer indications with the presence of different
genetic clones, can use matched transcriptomic and genomic data within classification or prediction tasks to
explore if and how the acquired mutations and their clonality are reflected in the single cell gene expression
profiles. We note that the approaches developed herein can be also used to study the associations between
single cell genomic and chromatin accessibility profiles, as these architectures are compatible with the use
of single cell ATAC-seq data as input instead of gene expression. However, a prerequisite for the efficient
performance of the presented deep learning models is the presence of well-annotated and extensive data
sets. Given though the challenges and limitations (e.g. cost, labor-heavy work) in aggregating larger sample
sets and improving technical procedures upon the data generation process, future initiatives may focus on
overcoming integration issues across single cell data (e.g. scRNA-seq) from different sources and technology
protocols. This will enable the proposed frameworks to be easily applicable, without extensive retraining or
calibration, on unseen patients in a wide research or clinical scale.

The fact that MNs present a phenotypic continuum of malignancies that share genomic abnormalities and
treatment strategies, motivates the use of multi-view integration approaches at larger population scales on
patients across the whole spectrum of the disease (MNs). Beyond bulk and single cell sequencing data, future
incorporation of further data modalities that are commonly ascertained at diagnosis (such as digital
pathology and immunophenotyping) into data integration strategies may have the power to reveal patient
subgroups with molecular resemblance irrespective of their clinical annotations, and also unravel
associations between genotypes and other data profiles.

It is worth highlighting though, that the addition of extra modalities needs to be coupled with the thoughtful

formulation of scientific questions, the careful selection of cohorts and the mindful design of experimental
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processes. Based on the experience acquired through the training process of this journey, | believe that the
generation of data with minimum technical noise plus the collection and annotation of larger sample sizes
are the foundation for data-driven research and provide the power to the downstream models to exploit the
complementarity of the measurements and capture solid patterns between views. Moreover, from a
computational perspective, considering the common challenges in processing and mining data from
emerging omic technologies and other modalities, | note that efforts for consensus computational guidelines
and literacy amongst research initiatives will be very beneficial for the advancement of translational research
and will set the ground for the establishment of applicable pipelines with clinical utility. Given the multi-
faceted nature of myeloid neoplasia, the collection of high quality multi-view datasets together with
integration strategies and collaborative efforts from physicians, engineers and computational scientists are
pivotal for the identification of the relevant molecular biomarkers and their adoption in clinical practice.

4.2. Data and code availability

A github repository containing the code used in generating the figures and the analysis results of Chapter 2
is available at the Papaemmanuil lab github page (https://github.com/papaemmelab/MDS SF3B1 iPSC). The
data used for this project (Chapter 2) are deposited in the Gene Expression Omnibus (GEO) under the

accession number GSE184246. For Chapter 3, a github repository containing the models’ source code is
available at the Papaemmanuil lab github page (https://github.com/papaemmelab/Asimomitis ACM 2023).

The single cell dataframes used for the training, validation and testing of the models will become available
upon publication of the Sirenko et al.
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