
National Technical University of Athens
Department of Mechanical Engineering
Fluids Section
Laboratory for Innovative Environmental Technologies

Data Assimilation in Fast Fluid Dynamics
Methodologies

Diploma Thesis

Despoina Angeliki Spanou

Supervisor: Demetri Bouris, Professor NTUA

Athens, February 2024

National Technical University of Athens
Department of Mechanical Engineering
Fluids Section
Laboratory for Innovative Environmental Technologies

PLAGIARISM AND INTELLECTUAL PROPERTY THEFT DISCLAIMER

I have read and understood the rules on plagiarism and how to properly cite
sources in accordance with the guidelines provided in the thesis writing guide. I
declare that, to the best of my knowledge, the content of this Diploma Thesis is
the product of my own work, and there are references to all the sources that I
used.

The views and conclusions contained in this Diploma Thesis are those of the
author and should not be construed as representing the official positions of the
School of Mechanical Engineering or the National Technical University.

Despoina Angeliki Spanou, Athens 2024

This work ©2024 by Despoina Angeliki Spanou is licensed under

a Creative Commons “Attribution-ShareAlike 4.0 International”

license.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Περίληψη

Η μέθοδος Ταχείας Υπολογιστικής Ρευστομηχανικής είναι μια υπολογιστική τεχνική

που έχει σχεδιαστεί για την αποτελεσματική επίλυση των εξισώσεων Navier-Stokes για
ασυμπίεστα ρευστά. Σε αντίθεση με τις παραδοσιακές μεθόδους που δίνουν προτεραιότητα
στην απόλυτη ακρίβεια, η Ταχεία Υπολογιστική Ρευστομηχανική δίνει προτεραιότητα στην
υπολογιστική ταχύτητα, καθιστώντας την ιδιαίτερα ικανή σε σενάρια όπου οι γρήγορες προ-
σομοιώσεις είναι απαραίτητες. Αν και μπορεί να θυσιάσει κάποια ακρίβεια, η δύναμή της
έγκειται στην ικανότητά της να παρέχει οπτικά ελκυστική και δυναμική συμπεριφορά ρευστών

σε εφαρμογές πραγματικού χρόνου. Η μέθοδος Ταχείας Υπολογιστικής Ρευστομηχανικής
σχεδιάστηκε αρχικά ως εργαλείο για την ενίσχυση της οπτικής πιστότητας της δυναμικής

ρευστών σε βιντεοπαιχνίδια, αλλά εξελίχθηκε ώστε να καλύπτει ένα ευρύτερο φάσμα εφαρ-
μογών, συμπεριλαμβανομένων των προσομοιώσεων αστικού μικροκλίματος.

Από την άλλη πλευρά, η αφομοίωση δεδομένων είναι η επιστήμη του συνδυασμού δι-
αφορετικών πηγών πληροφοριών για την πρόβλεψη πιθανών καταστάσεων ενός συστήματος

καθώς αυτό εξελίσσεται με το χρόνο. Σε αυτό το πλαίσιο, το nudging είναι μια δυναμική
μέθοδος που χρησιμοποιείται σε διάφορους τομείς, συμπεριλαμβανομένης της Υπολογιστικής
Ρευστομηχανικής, για την προσαρμογή της κατάστασης ενός μοντέλου προς τα παρατηρού-
μενα δεδομένα μέσω της εισαγωγής ενός όρου ανατροφοδότησης.

Η παρούσα διπλωματική εργασία παρουσιάζει μια καινοτόμο και υπολογιστικά αποδοτική

μέθοδο για την προσομοίωση δισδιάστατων ασυμπίεστων ροών με χρήση Ταχείας Υπολογισ-

τικής Ρευστομηχανικής σε δομημένα πλέγματα. Για τον μετριασμό των πιθανών ανακριβειών
που ενυπάρχουν στην Ταχεία Υπολογιστική Ρευστομηχανική, ενσωματώνεται η μέθοδος
nudging, η οποία αφομοιώνει δεδομένα από εξωτερικές πηγές για να βελτιώσει τα αριθμητικά
αποτελέσματα και να αντισταθμίσει τους εγγενέις περιορισμούς του επιλύτη στην ακριβή

μοντελοποίηση φυσικών φαινομένων σε λεπτομερές επίπεδο.

Στα πλασία της διπλωματικής εργασίας αναπτύχθηκε ένας προσαρμοσμένος επιλύτης σε

γλώσσα προγραμματισμού C++ για την υλοποίηση του αλγορίθμου Ταχείας Υπολογισ-
τικής Ρευστομηχανικής και της τεχνικής nudging. Αρχικά, η αποδοτικότητα του επιλύτη
αξιολογήθηκε σε μια ροή αναφοράς σε μια τετραγωνική κοιλότητα με κινούμενο άνω στερεό

όριο, επιβεβαιώνοντας τα αποτελέσματα της βιβλιογραφίας. Ξεφεύγοντας από τις συμβατικές
μεθόδους Ταχείας Υπολογιστικής Ρευστομηχανικής, ο επιλύτης ενσωμάτωσε ένα σχήμα
υψηλής τάξης για την ημι-Λαγκρανζιανή μέθοδο στην επίλυση της εξίσωσης συναγωγής,
με αποτέλεσμα να εκτελεί ακριβέστερες προσομοιώσεις. Επιπροσθέτως, η ενσωμάτωση
δεδομένων υψηλής ανάλυσης από τη βιβλιογραφία μέσω nudging βελτίωσε σημαντικά την
ακρίβεια του επιλύτη και την πιστότητα της ροής.

Στη συνέχεια, ο επιλύτης Ταχείας Υπολογιστικής Ρευστομηχανικής εφαρμόστηκε σε
ένα μοντέλο οδικής χαράδρας, όπου εφαρμόστηκαν δύο “φθηνά” μοντέλα τύρβης. Παρά τις
αρχικές προσδοκίες, τα μοντέλα αυτά παρουσίασαν κακή απόδοση, αποτυγχάνοντας να απο-
τυπώσουν με ακρίβεια τη δυναμική των ρευστών μέσα στο αστικό περιβάλλον. Για το λόγο
αυτό, η μέθοδος nudging χρησιμοποιήθηκε και πάλι για να βελτιωθεί η ακρίβεια του μον-
τέλου. Σε αυτή την υλοποίηση, πειραματικά δεδομένα από την βιβλιογραφία αξιοποιήθηκαν
για την ενημέρωση και την καθοδήγηση της διαδικασίας προσομοίωσης. Με την αφομοίωση
αυτών των εμπειρικών δεδομένων μέσω της τεχνικής nudging, το μοντέλο προσαρμόστηκε
αποτελεσματικά ώστε να αντικατοπτρίζει καλύτερα τις ιδιαιτερότητες των πραγματικών συν-

iii

θηκών ροής που επικρατούν στις οδικές χαράδρες.
Συνδυάζοντας την αποδοτικότητα της Ταχείας Υπολογιστικής Ρευστομηχανικής με

την αφομοίωση δεδομένων μέσω του nudging, αυτή η έρευνα καταδεικνύει μια πολλά
υποσχόμενη προσέγγιση για πρακτικές προσομοιώσεις ροής ρευστών. Υπογραμμίζει την
ανάγκη εξισορρόπησης της ακρίβειας και της υπολογιστικής ταχύτητας, αναγνωρίζοντας
τους εγγενείς συμβιβασμούς.

Λέξεις Κλειδία:
Ταχεία Υπολογιστική Ρευστομηχανική, Ημι-Λαγκρανζιανό Σχήμα, Αφομοίωση Δεδομένων,
Nudging, OpenFOAM

iv

Abstract

Fast Fluid Dynamics (FFD) is a computational technique designed for efficiently solv-
ing the incompressible Navier-Stokes equations. Unlike traditional methods which pri-
oritize absolute accuracy, FFD places a premium on computational speed, making it
particularly adept at scenarios where rapid simulations are essential. While it may sac-
rifice some precision, its strength lies in its ability to provide visually appealing and
dynamic fluid behavior in real-time applications.

On the other hand, data assimilation is the science of combining different sources of
information to predict possible states of a system as it progresses with time. In this con-
text, nudging is a dynamic method employed in various fields, including Computational
Fluid Dynamics (CFD), to adjust a model’s state toward observed data by introducing
a feedback term.

This thesis presents an innovative and computationally efficient method for simulating
2D incompressible flows using FFD on structured grids. To mitigate potential inaccu-
racies inherent in FFD, a cost-effective nudging method is integrated, which assimilates
data from external sources to enhance numerical results and compensate for the solver’s
limitations in accurately modeling physical phenomena at a detailed level.

The implementation of this approach involved developing a custom C++ solver to
deploy the FFD algorithm and nudging technique. Initially, the solver’s efficiency was
rigorously evaluated on a benchmark lid-driven cavity flow, showcasing close agreement
with established literature. Departing from conventional FFD methods, the solver incor-
porated a high-order scheme for the semi-Lagrangian method in solving the convection
equation, resulting in more accurate simulations. To validate the results and assess the
solver’s performance, comparisons were made with similar simulations conducted using
OpenFOAM. Additionally, integrating high-resolution data from literature through nudg-
ing played a crucial role in significantly improving the solver’s accuracy and the fidelity
of the flow.

Subsequently, the FFD solver was applied to a street canyon model, where two cost-
effective turbulence models were implemented. Despite initial expectations, these models
exhibited poor performance, failing to accurately capture real-world fluid dynamics within
the urban environment. In response to these shortcomings, the nudging method was once
again employed to enhance the model’s accuracy. In this implementation, experimental
data obtained from experiments were leveraged to inform and guide the simulation pro-
cess. By assimilating this empirical data through the nudging technique, the model was
effectively adjusted to better reflect the intricacies of the actual flow conditions experi-
enced in street canyons.

By synergizing FFD’s efficiency with data assimilation through nudging, this research
demonstrates a promising approach for practical fluid flow simulations. It underscores
the need to balance accuracy and computational speed, acknowledging the inherent
trade-offs therein.

Keywords:
Fast Fluid Dynamics, Semi-Lagrangian Scheme, Data Assimilation, Nudging, Open-
FOAM

v

Contents

1 Introduction 1

1.1 Motivation - Problem Statement . 1

1.2 Literature Review . 1

1.2.1 Fast Fluid Dynamics . 1
1.2.2 Data Assimilation in Computational Fluid Mechanics 5

1.3 Thesis Outline . 8

2 Fast Fluid Dynamics 11

2.1 Governing Equations . 11

2.2 Finite Difference Method . 11

2.2.1 Mesh Configuration . 12
2.2.2 Boundary Conditions Handling 15

2.3 FFD Algorithm . 15

2.3.1 Source and Diffusion Term . 16
2.3.2 Convection Term . 19

2.3.2.1 Method of Characteristics 20
2.3.2.2 Interpolation Scheme . 23

2.3.3 Pressure Correction . 24
2.3.3.1 Poisson Equation . 25
2.3.3.2 Pressure Gradient Term 26

2.4 Turbulence Models . 27

2.4.1 Constant Turbulence Model . 27
2.4.2 Zero-Equation Model . 28

3 Data Assimilation Method - Nudging 29

3.1 General Principles . 29

3.2 Application to Navier-Stokes Equations 30

3.2.1 FFD Implementation . 31
3.2.2 Discretization . 31

4 Benchmark Test: Lid-Driven Cavity 33

4.1 Problem Description . 33

4.2 Numerical Solution of Fast Fluid Dynamics Algorithm 34

4.2.1 Validation of CityFFD Back & Forth Sweep Interpolation Method 34
4.2.2 Model Validation for Various Reynolds Numbers 41

4.3 Performance and Stability Analysis . 46

4.3.1 Performance Evaluation . 46
4.3.2 Performance Comparison with OpenFOAM Simulation 48
4.3.3 Stability Analysis for Timestep 50

4.4 Nudging . 53

ix

Contents

5 Application: Street Canyon 61

5.1 Problem Description . 61

5.1.1 Boundary Conditions . 61
5.1.2 Mesh Configuration . 62

5.2 Numerical Solution of Fast Fluid Dynamics Algorithm 63

5.2.1 Case: Allegrini Experiment . 63
5.2.2 Turbulence Model vt = 100v . 65
5.2.3 Zero Equation Turbulence Model 68

5.3 Performance Analysis . 71

5.3.1 OpenFOAM Simulation . 71
5.3.2 Performance Evaluation . 74

5.4 Nudging . 75

6 Conclusions and Future Work 85

6.1 Summary & Conclusions . 85

6.2 Future Work . 86

Bibliography

x

List of Figures

1.1 Snapshots from Stam’s Interactive Solver [1] 2

1.2 (a) Rising Smoke with Vortices Preserved with Vorticity Confinement
Method ; (b) Smoke Interaction with Several Objects [4] 2

1.3 (a) Laminar Flow FFD ; (b) Zero Equation FFD ; (c) Laminar CFD ; (d)
k − ϵ CFD [6] . 3

1.4 (a) k − ϵ CFD ; (b) FFD without Mass Correction ; (c) FFD with Mass
Correction [8] . 3

1.5 Indoor Ventilation Results (a) Liu et al. [9] ; (b) Xue et al. [10] 4

1.6 Schematic of Data Assimilation Methods [14] 5

1.7 Instantaneous Vorticity Isocontours during the First Phases of Data As-
similation via Estimator. The Model Acts as a Forcing while Synchronizing
the Numerical Model to the Observation [15] 6

1.8 Mean Velocity Comparison of Numerical Simulation (left) and EnKF Im-
plementation (right) [16] . 6

1.9 Comparison of Streamwise Velocity (top) and Vorticity (bottom) between
the Experimental Mean Flow (left) Obtained from PIV and the Data-
Assimilated Flow (right) around an Idealized Airfoil [18] 7

1.10 Comparative Results of Nudged URANS around a Square Cylinder for
Re = 22000 [21] . 8

2.1 Schematic of Staggered Grid - Shifted Velocity Grids 12

2.2 Example of Sizing and Shifting of a Single Cell on a Staggered Grid . . . 13

2.3 1D Case of Cell Size for (a) Mid-Distance Edges and (b) Node at Cell Center 13

2.4 First Derivative’s Computational Location with a Staggered Grid Approx-
imation . 14

2.5 Positions of Common Interpolated Values in Staggered Grid 14

2.6 Handling of Boundary Conditions [27] . 15

2.7 Schematic of Fast Fluid Dynamics Algorithm [28] 16

2.8 Schematic of the 1D Taylor Series Expansion 17

2.9 Characteristic Curve for the 1st and 2nd Order Velocity Models [28] . . . 21

2.10 Treatment of Departure Points Located Out of Bounds [34] 22

2.11 Wall Treatment in 2D for X-Line Intersection 22

2.12 Schematic of the 1D Semi-Lagrangian Method for a) Forwards Interpola-
tion and b) Backwards Interpolation [28] 24

2.13 Schematic of the 2D Semi-Lagrangian Method [28] 24

3.1 Schematic of Nudging Method[14] . 29

3.2 Visualization of the Nudging Process [38] 30

4.1 Boundary Conditions for the 2D Lid-Driven Cavity Test 33

4.2 Uniform and Structured Grids of 64 × 64 and 128 × 128 for the 2D Lid-
Driven Cavity . 34

xi

List of Figures

4.3 Ghia et al.’s [39] Tabular Velocity Values along Cavity’s Midlines and
Interpolated Profiles for Better Visualization 35

4.4 CityFFD [28] Lid-Driven Cavity Benchmark Results for Horizontal Veloc-
ity u for Re = 1000, ∆t = 0.005 sec . 35

4.5 Present Thesis Lid-Driven Cavity Benchmark Results for Horizontal Ve-
locity u for Re = 1000, ∆t = 0.005 sec 36

4.6 Present Thesis Lid-Driven Cavity Benchmark Results for Vetical Velocity
v for Re = 1000, ∆t = 0.005 sec . 36

4.7 Comparison of CityFFD [28] and Thesis u Profiles for Different Interpola-
tion Schemes for Re = 1000, ∆t = 0.005 sec, Grid: 64× 64 37

4.8 Comparison of CityFFD [28] and Thesis u Profiles for Different Interpola-
tion Schemes for Re = 1000, ∆t = 0.005 sec, Grid: 128× 128 38

4.9 Velocity Streamlines for CityFFD [28] with Back & Forth Sweep Interpo-
lation Method for Re = 1000, ∆t = 0.005 sec 39

4.10 Velocity Streamlines for Grids 64× 64 (left) and 128× 128 (right) for (a)
Linear Scheme ; (b) 4th Order Central Scheme ; (c) Back & Forth Sweep 40

4.11 Horizontal Profile u with Back & Forth Sweep Interpolation for Various
Reynolds Numbers and Uniform Mesh for Grids: 64× 64 and 128× 128 . 42

4.12 Vertical Profile v with Back & Forth Sweep Interpolation for Various
Reynolds Numbers and Uniform Mesh for Grids: 64× 64 and 128× 128 . 42

4.13 Comparison of Present Work Velocity Streamlines to Ghia et al. [39] for
Re = 100, ∆t = 0.005 sec, Grid: 128× 128 44

4.14 Comparison of Present Work Velocity Streamlines to Ghia et al. [39] for
Re = 400, ∆t = 0.005 sec, Grid: 128× 128 44

4.15 Comparison of Present Work Velocity Streamlines to Ghia et al. [39] for
Re = 1000, ∆t = 0.005 sec, Grid: 128× 128 45

4.16 Comparison of Present Work Velocity Streamlines to Ghia et al. [39] for
Re = 3200, ∆t = 0.005 sec, Grid: 128× 128 45

4.17 Comparison of Present Work Velocity Streamlines to Ghia et al. [39] for
Re = 5000, ∆t = 0.005 sec, Grid: 128× 128 45

4.18 FFD Cycles for Various Reynolds Numbers for Present Work Simulations
of ∆t = 0.005 sec and Grids: 64× 64, 128× 128 46

4.19 Horizontal Velocity Profile u for Present Work Simulations for Various
Timesteps for Re = 1000, Grid: 64× 64 51

4.20 Vertical Velocity Profile v for Present Work Simulations for Various
Timesteps for Re = 1000, Grid: 64× 64 51

4.21 Velocity Streamlines for Present Work Simulations for Back & Forth Sweep
for Various Timesteps for Re = 1000, Grid: 64× 64 52

4.22 Configuration of Nudging Observation’s Positioning 53
4.23 Evaluation of Various α values for Re = 1000 based on Simulation Time,

Clock Time for Cross-Section Simulation on Grid 64 × 64 and RSME for
u and v Profiles Compared to Back & Forth Sweep on Grid 128× 128 . 54

4.24 Velocity Profiles at Cavity Centerlines for Nudging Location at Vertical
Centerline for Re = 1000, α = 95, ∆t = 0.005 sec 55

4.25 Velocity Profiles at Cavity Centerlines for Nudging Location at Horizontal
Centerline for Re = 1000, α = 95, ∆t = 0.005 sec 55

4.26 Velocity Profiles at Cavity Centerlines for Nudging Location at the Cross-
Section for Re = 1000, α = 95, ∆t = 0.005 sec 56

xii

List of Figures

4.27 Velocity Streamlines for (a) Linear Scheme on Grid 64 × 64 ; (b) Cross-
Section Nudging ; (c) Back & Forth Sweep on Grid 128×128 for Re = 1000,
∆t = 0.005 sec . 57

4.28 Case (a) - Velocity Profiles at Cavity Centerlines for 3-Point Nudging Lo-
cations at Cross-Section for Re = 1000, α = 200, ∆t = 0.005 sec 58

4.29 Case (b) - Velocity Profiles at Cavity Centerlines for 3-Point Nudging
Locations at Cross-Section for Re = 1000, α = 200, ∆t = 0.005 sec 59

4.30 Velocity Streamlines for (a) Case (a) ; (b) Case (b) ; (c) Linear Scheme
on Grid 64×64 (d) Back & Forth Sweep on Grid 128×128 for Re = 1000,
∆t = 0.005 sec . 59

5.1 Predicted Velocity Contour on the Vertical Centerplane of the Street
Canyon Model [42] . 61

5.2 Boundary Conditions for the 2D Street Canyon Test 62

5.3 Grid: ∆x = ∆y = 0.0375 m for H1/H2 = 1, H1/W = 1 63

5.4 Dimensions of Wind Tunnel Model for Allegrini Experiment [45] 64

5.5 Normalized Horizontal Velocity on the Horizontal Centerline of the Street
Canyon for Re = 9000 Derived from Allegrini’s Experiment [42] 64

5.6 Normalized Vertical Velocity on the Vertical Centerline of the Street
Canyon for Re = 9000 Derived from Allegrini’s Experiment [42] 65

5.7 Velocity Streamlines for Isothermal Street Canyon Case and Re = 9000
Derived from Allegrini’s Experiment [42] 65

5.8 Velocity Contour of Simulation Domain for Turbulence Model vt = 100v,
Re = 9000, ∆t = 0.001 sec . 66

5.9 Velocity Streamlines for Turbulence Model vt = 100v, Re = 9000, ∆t =
0.001 sec . 67

5.10 Velocity Profiles for Turbulence Model vt = 100v, Re = 9000, ∆t = 0.001sec 67

5.11 Velocity Contour for Zero Equation Turbulence Model, Re = 9000, ∆t =
0.001 sec . 68

5.12 Velocity Streamlines for Zero Equation Turbulence Model, Re = 9000,
T = 90 sec, ∆t = 0.001 sec . 69

5.13 Velocity Streamlines for Various Timesteps for Zero Equation Turbulence
Model, Re = 9000, ∆t = 0.001 sec . 70

5.14 Velocity Profiles for Various Timesteps for Zero Equation Turbulence
Model, Re = 9000, ∆t = 0.001 sec . 71

5.15 Velocity Residuals for OpenFOAM Simulation for Turbulence Model k−ϵ,
Re = 9000, ∆t = 0.001 sec . 72

5.16 Velocity Contour for OpenFOAM Simulation for Turbulence Model k − ϵ,
Re = 9000, ∆t = 0.001 sec . 72

5.17 Velocity Streamlines for OpenFOAM Simulation for Turbulence Model k−
ϵ, Re = 9000, ∆t = 0.001 sec . 73

5.18 Velocity Profiles for OpenFOAM Simulation for Turbulence Model k − ϵ,
Re = 9000, ∆t = 0.001 sec . 73

5.19 Velocity Profiles for Cross-Sectional Nudging Simulation for Turbulence
Model νt = 100ν, Re = 9000, ∆t = 0.001 sec 76

5.20 Velocity Streamlines for Cross-Sectional Nudging Simulation for Turbu-
lence Model vt = 100v, Re = 9000, ∆t = 0.001 sec, α = 2500 77

xiii

List of Figures

5.21 Velocity Profiles for Vertical (a) and Horizontal (b) Centerline Nudging
Simulation for Turbulence Model νt = 100ν, Re = 9000, ∆t = 0.001 sec,
α = 2500 . 78

5.22 Velocity Streamlines for Vertical (a) and Horizontal (b) Centerline Nudging
Simulation for Turbulence Model νt = 100ν, Re = 9000, ∆t = 0.001 sec,
α = 2500 . 78

5.23 Velocity Profiles for 9-Point Nudging Simulation for Turbulence Model
νt = 100ν, Re = 9000, ∆t = 0.001 sec, α = 2500 79

5.24 Velocity Streamlines for (a) Case (a) ; (b) Case (b) ; (c) Back & Forth
Sweep ; (d) Cross-Sectional Nudging for Turbulence Model νt = 100ν,
Re = 9000, ∆t = 0.001 sec, α = 2500; (e) Allegrini Case [45] 80

5.25 Case (a) - Velocity Profiles for 3-Point Nudging Simulation for Turbulence
Model νt = 100ν, Re = 9000, ∆t = 0.001 sec, α = 2500 81

5.26 Case (b) - Velocity Profiles for 9-Point Nudging Simulation for Turbulence
Model νt = 100ν, Re = 9000, ∆t = 0.001 sec, α = 2500 81

5.27 Velocity Profiles for Cross-Sectional Nudging Simulation for Zero Equation
Turbulence Model, Re = 9000, ∆t = 0.001 sec, α = 1000 82

5.28 Velocity Streamlines for Cross-Sectional Nudging Simulation for Zero
Equation Turbulence Model, Re = 9000, ∆t = 0.001 sec, α = 1000 83

xiv

List of Tables

4.1 Comparative Error of CityFFD and Present Thesis Applications for Dif-
ferent Interpolation Schemes . 38

4.2 Clock Time of CityFFD and Present Thesis Applications for Different In-
terpolation Schemes . 41

4.3 Comparative Error of Present Thesis Results to Ghia et al. [39] Simulations
for ∆t = 0.005 sec, Grid: 128× 128 . 43

4.4 Simulation and Clock Time of Present Thesis Solver for Various Reynolds
Numbers for ∆t = 0.005 sec, Grid:128× 128 43

4.5 Number of FFD Cycles Needed for Convergence for ∆t = 0.005 sec . . . 47
4.6 Computational Cost of Each of FFD’s Algorithm Step for Present Thesis

Simulations for ∆t = 0.005 sec . 47
4.7 Computational Cost of Each of FFD’s Algorithm Step as Percentage of

the Total Clock Time for Simulations for ∆t = 0.005 sec 48
4.8 Clock Time of Thesis Solver and OpenFOAM Lid-Driven Cavity Case for

Similar Simulation Parameters . 49
4.9 Comparison of Solver and OpenFOAM Clock and Simulations Times for

Various Timesteps for Re = 1000, Grid 64× 64 50
4.10 Comparative Error of Nudging Results for Grid 64 × 64 to Back & Forth

Sweep Interpolation Method for Re = 1000, ∆t = 0.005 sec, Grid 128× 128 56
4.11 Simulation and Clock Time for the Nudging Cases for Re = 1000, ∆t =

0.005 sec . 57
4.12 Simulation and Clock Time and RMSE Compared to Back & Forth Sweep

on 128×128 for the Nudging Cases (a) and (b) for Re = 1000, ∆t = 0.005sec 58

5.1 Clock Time for Simulations with Different Turbulence Models for the First
1000 Timesteps and Re = 9000, ∆xmax = 0.035 m, 28321 Cells, ∆t =
0.001 sec . 74

5.2 Computational Cost of Each of FFD’s Algorithm Step for Simulations for
the First 1000 Timesteps and Re = 9000, ∆xmax = 0.035m, 28321 Cells,
∆t = 0.001 sec . 74

5.3 Clock Time for Laminar Case Simulations for the First 1000 Timesteps
and Re = 9000, Uniform Grid: ∆x = 0.02m, 46166 Cells, ∆t = 0.001 sec 75

5.4 Simulation Time and RMSE for Nudged Cases for Turbulence Model νt =
100ν, Re = 9000, ∆t = 0.001 sec . 76

5.5 Simulation Time and RMSE Compared to Allegrini’s Data [45] for Nudged
Cases and for Turbulence Model νt = 100ν, Re = 9000, ∆t = 0.001 sec,
α = 2500 . 77

5.6 Simulation Time and RMSE Compared to Allegrini’s Data [45] for 9-Point
Nudging and Cross-Sectional for Turbulence Model νt = 100ν, Re = 9000,
∆t = 0.001 sec, α = 2500 . 79

5.7 Simulation Time and RMSE Compared to Allegrini’s Data [45] for 3-Point
Nudging for Turbulence Model νt = 100ν, Re = 9000, ∆t = 0.001 sec,
α = 2500 . 80

xv

1. Introduction

1.1 Motivation - Problem Statement

Fluid Dynamics is a branch of physics that studies the motion of fluids (liquids and
gases) and the forces acting on them. In various fields such as engineering, environmental
science, and biomechanics, understanding fluid flow is crucial for optimizing designs and
predicting system behaviors. Traditional methods for simulating fluid dynamics, such as
finite element (FEA) and finite volume (FVM) methods, have proven effective but can be
computationally expensive, particularly for large-scale and time-dependent simulations.
For this reason, alternative techniques like Fast Fluid Dynamics are being increasingly
used.

Similarly, Data Assimilation methods have found extensive application in meteorology,
oceanography, geophysics, and various other fields for addressing large-scale simulations.
In recent years, increased attention has been directed towards integrating experimen-
tal fluid dynamics (EFD) and computational fluid dynamics (CFD) to address their
respective limitations. Unlike current EFD approaches that heavily rely on advanced
measurement devices and high-order post-processing schemes, a dynamical model can be
seamlessly integrated into data assimilation. This integration offers a distinct advantage
over traditional CFD methods as uncertainties are mitigated by directly incorporating
measured data, bypassing the need to exhaustively model and define boundary conditions.

The scope of this thesis is to construct and validate a Fast Fluid Dynamics solver,
written in C++ and improve its performance and accuracy with Data Assimilation meth-
ods.

1.2 Literature Review

This literature review focuses on the evolution, advancements, and applications of Fast
Fluid Dynamics methods, which aim to provide efficient and accurate solutions to fluid
flow problems. Additionally, the review explores the role of data assimilation techniques
in improving the accuracy and reliability of CFD simulations, by integrating observational
data.

1.2.1 Fast Fluid Dynamics

Fast Fluid Dynamics (FFD) were initially proposed by Jos Stam [1] as a simple and rapid
simulation of fluid-like motions in three-dimensional graphics and computer animations.
In comparison to traditional CFD methods, FFD stands out for its computational effi-
ciency and unconditional stability, allowing for larger simulation steps and, consequently,
faster simulations. The stability advantage lies in both the implicit and Lagrangian
approach of the Navier-Stokes equations. The semi-Lagrangian scheme was extensively
reviewed by Staniforth and Côté in 1991 [2], highlighting that the time step is not con-
strained by the Courant-Friedrichs-Lewy (CFL) condition. In Stam’s research, he iden-
tified a drawback in the Semi-Lagrangian scheme, which caused the flow to dampen too
quickly. In response, he developed the software so as to allow the animators to introduce

1

1.2. Literature Review

external forces to the fluid and dynamically update the flow in real-time. To enhance the
quality of animations, the team incorporated texture into the flow and advected it with
density. This involved assigning texture coordinates at the beginning of the simulation,
which would then follow the density changes within the flow over time [3]. As a result,
the gas in the animations appears more detailed, even when working with low-resolution
grids.

Figure 1.1: Snapshots from Stam’s Interactive Solver [1]

However, the initially-developed FFD algorithm prioritized the shape and general
behavior of the fluid, over the accuracy of physical quantities, and most benchmark
tests focused on coarser grids and simpler turbulence models or laminar flows. In 2003
Fedkiw et al. [4] employed Stam’s “Stable Fluids” algorithm for the simulation of smoke,
a highly complex and turbulent phenomenon. The results showed poor performance of
FFD, in terms of accuracy, mainly due to the numerical dissipation of the semi-Lagrangian
scheme, which weakened the vortices in the flow. To alleviate this problem, they used
a vorticity confinement method to inject the lost energy of the simulation. Essentially,
this method identifies specific locations in a flow field where small-scale rotational and
turbulent structures need to be generated. These features are then added in a physically
realistic manner to create a passive-looking smoke on coarse grids. Additionally, the
updated model efficiently handles solid boundaries within the computational domain and
effectively manages the interaction of the flow with objects.

Figure 1.2: (a) Rising Smoke with Vortices Preserved with Vorticity Confinement
Method ; (b) Smoke Interaction with Several Objects [4]

Harris el al. [5] drew upon the work of both Stam and Fedkiw to model the behavior

2

1.2. Literature Review

of clouds, in terms of dynamics and radiometry. His research utilized GPUs to conduct
these simulations and concluded that they were approximately 5× faster than their CPU
counterparts. GPUs, or Graphics Processing Units, are specialized hardware components
designed to accelerate the processing of graphics and were originally developed to han-
dle the complex calculations involved in rendering graphics for video games and other
graphical applications. Programmable GPUs are specifically designed for computations
on pixels, and these pixels can effectively represent a grid of cells and CFD simulations
can also take advantage of the GPU’s ability to perform matrix operations in parallel.

In 2009 Zuo et al. [6] introduced an FFD method for indoor flows, in hope of devel-
oping a faster than real-time simulation model for smoke and contaminant management
in fire emergencies. The goal was to find a compromise between traditional CFD, which
was very expensive computationally, and nodal models, which failed to provide detailed
information of the flow. Indeed, FFD was found to be 50× times faster [7] and was
an adequate tool for preliminary investigations, especially for laminar flow simulations.
However, when dealing with turbulent phenomena, investigation for cheap turbulence
models, proved that FFD employed with zero equation models overestimated the turbu-
lence viscosity and could not compete with a conventional CFD k − ϵ simulation [6].

Figure 1.3: (a) Laminar Flow FFD ; (b) Zero Equation FFD ; (c) Laminar CFD ;
(d) k − ϵ CFD [6]

After further research, Zuo et al. [8] proposed a few improvements for indoor mod-
eling like a mass conservation correction function, as mass imbalance was an inherent
disadvantage of the semi-Lagrangian scheme. They speculated that the mass conserva-
tion violation could be attributed to the pressure correction step in the FFD algorithm,
which, contrary to the SIMPLE algorithm, was performed only once. Additionally, the
performance of FFD on a GPU was again investigated and it was found, that, as a whole,
FFD on GPU can be 500−1500× times faster than on CPU [8]. This allows for real-time
simulation and provides a very powerful tool for inverse design processes.

Figure 1.4: (a) k − ϵ CFD ; (b) FFD without Mass Correction ; (c) FFD with Mass
Correction [8]

3

1.2. Literature Review

Inverse design processes involve working backward from desired specifications or per-
formance requirements to generate a design that meets those criteria. This often involves
the use of optimization algorithms, such as genetic algorithms or gradient-based methods
like adjoint optimization. Inverse design requires tens of simulations, either for examin-
ing a potential solution in genetic algorithms or for solving the Navier-Stokes and the
adjoint equations sequentially in each design cycle. Liu et al. [9] combined an adjoint
optimization technique with FFD for indoor environments which proved to be 4 − 10×
times faster than CFD-adjoint. They explored various turbulence models and pressure
correction techniques to compensate for the numerical diffusion in the Semi Lagrangian
scheme and found good performance of the algorithm for both the steady-state and tran-
sient flow. The least favorable results were noted when employing a non-incremental
pressure-correction scheme with SL scheme. Adjoint optimization is effective in identify-
ing the local optima but relies heavily on the initial values for the design variable, making
genetic algorithms a preferable alternative. However, genetic algorithms are computa-
tionally slower than the CFD-adjoint method. To address this, Xue et al. [10] aimed to
incorporate FFD into GA optimization. In their study on indoor ventilation optimiza-
tion, they reported a substantial 75% reduction in computational costs, when using a
FFD based genetic algorithm.

Figure 1.5: Indoor Ventilation Results (a) Liu et al. [9] ; (b) Xue et al. [10]

In 2019, Tial et al [11] conducted a comparative analysis of FFD and CFD simulations
in data center applications. With identical simulation parameters, such as grid resolution,
turbulence method, and discretization schemes, the study emphasizes that both methods
capture the re-circulation of airflow and show minimal differences in the pressure field.

4

1.2. Literature Review

It is important to note that, unlike prior studies that utilized a Semi-Lagrangian scheme,
they employed a first-order upwind scheme for advection, highlighting the SL method
drawbacks. Lastly, efforts were made to employ FFD for outdoor simulations. Ting et al.
[12] reviewed various turbulence models and reported that the Smagorinsky and dynamic
Smagorinsky model was the best fit as it was as fast and accurate as the RNG k − ϵ
model. The RNG k − ϵ tubulence model solves two differential equations to calculate
the turbulent kinetic energy and its dissipation, while the Smagorinsky model adds an
artificial viscosity to account for the smaller scale turbulent eddies.

1.2.2 Data Assimilation in Computational Fluid Mechanics

Data Assimilation (DA) is a statistical method used to enhance the accuracy of numerical
simulations by incorporating real-time measurement data into the simulation process. In
this approach, the error term of the numerical simulation is characterized by a probability
distribution, treating the simulation as a “system model”. When experimental values
representing true dynamics are introduced, the probability distribution of error is adjusted
to reduce uncertainty in the simulation [13].

Figure 1.6: Schematic of Data Assimilation Methods [14]

There are two fundamental approaches to data assimilation: sequential or statistical
assimilation, based on statistical estimation theory and Bayes’s law, and non-sequential
or variational assimilation, rooted in optimal control theory [14]. Sequential data as-
similation involves updating simulation estimates continuously at each observation time,
while variational data assimilation methods aim to find the optimal solution for a numer-
ical model by fitting it with a set of observations over a specific time span. In statistical
assimilation, the focus is on minimizing variance, while in variational assimilation, the
emphasis is on minimizing a suitable cost or error function. Despite the statistical ap-
proach often being more intricate and time-consuming, it has the potential to provide
a richer information structure. Ideally, a unified or hybrid approach should be pursued,

5

1.2. Literature Review

combining both sequential and non-sequential methods. By doing so, one can take ad-
vantage of the quick and robust nature of the variational approach, while simultaneously
obtaining a more information-rich solution through the statistical/probabilistic approach.

The most common techniques for sequential data assimilation include the Kalman
filter, which dynamically adjusts the state estimate and its uncertainty. It involves a
prediction step, where the model anticipates the system’s behavior, and an update step,
where actual observations are used to correct and refine the predicted state. Meldi et al.
[15] incorporated a Kalman filter-based sequential estimator into the PISO algorithm of
a segregated solver designed for handling incompressible flows. This integration enables
the generation of an augmented flow state that considers both the model’s confidence
and the provided observations. The initial investigation focused on a two-dimensional
flow around a cylinder with a Reynolds number of Re = 100 and reported a reduction
in computational cost of 10− 15%, combined with efficient predictions. Additionally, an
improvement to the Kalman filter is the Ensemble Kalman Filter (EnKF), which uses
a Monte Carlo approach by representing the state estimate as an ensemble of samples.
It maintains and updates a set of ensemble members through the prediction and update
steps and is particularly useful for high-dimensional systems. In the study conducted by
Kato et al. [16], the ensemble Kalman filter was utilized in the context of a wind tunnel
experiment featuring a square cylinder. The experiment involved the generation of a von
Kármán vortex street, representing a quasi-unsteady flow. Pressure measurements on the
front surface and lateral faces of the square cylinder were obtained through pressure ports
and additional measurements with Laser Doppler Velocimetry (LDV) were conducted for
the velocity data.

Figure 1.7: Instantaneous Vorticity Isocontours during the First Phases of Data
Assimilation via Estimator. The Model Acts as a Forcing while Synchronizing the

Numerical Model to the Observation [15]

Figure 1.8: Mean Velocity Comparison of Numerical Simulation (left) and EnKF
Implementation (right) [16]

Regarding variational data assimilation methods, they can be classified into 3D-Var
and 4D-Var, depending on the spatial dimensions of the simulation and the inclusion,

6

1.2. Literature Review

or not, of a temporal window for the system’s dynamical evolution. Both methods de-
mand substantial computational power, limiting their application to simple 2D flows in
fluid mechanics. Chandramouli et al. [17] utilized a 4D-Var approach to reconstruct time-
resolved, incompressible turbulent flows from measurements on two orthogonal 2D planes.
The algorithm proved successful in a 3D turbulent wake flow, and validation was con-
ducted on a synthetic 3D dataset acquired with experimental Particle Image Velocimetry
(PIV) observations. Variational methods are often coupled with adjoint optimization for
inverse design, where model parameters such as initial conditions are optimized to match
measurements. In Symon et al.’s [18] paper, variational methods combined with adjoint
optimization were employed to minimize the differences in mean velocity fields between
a Direct Numerical Simulation (DNS) and an incompressible Reynolds-Averaged Navier-
Stokes (RANS) simulation for a 2D flow around an idealized airfoil at high Reynolds
numbers. The implemented direct-adjoint optimization procedure reported good agree-
ment with the PIV experimental results.

Figure 1.9: Comparison of Streamwise Velocity (top) and Vorticity (bottom)
between the Experimental Mean Flow (left) Obtained from PIV and the

Data-Assimilated Flow (right) around an Idealized Airfoil [18]

Finally, nudging is a variational method that shares some similarities with Kalman
filter and often referred to as a state observer technique in control theory. It has a
negligible computational cost compared to a standard simulation and is quite versatile,
allowing users to fine-tune the nudging weight. In the context of Computational Fluid
Dynamics (CFD), the utilization of nudging techniques dates back to 1997 [19], when a
state observer provided feedback to the boundary conditions in a SIMPLER simulation
of a fully developed turbulent flow through a square cross-section duct. The judicious
selection of an appropriate gain led to an acceleration of convergence by a factor of
0.012. In 2010, Imagawa et al. [20] improved the application of nudging in the same
flow problem, and were able to minimize uncertainties in initial conditions or numerical
errors arising from the use of a coarser grid. Building upon these advancements, Zauner
et al. [21] implemented nudging in an URANS solver for unsteady flow around a cylinder
at Re = 22000, based on sparse velocity observations from DNS. Their findings revealed
that the nudged URANS solver outperformed traditional URANS simulations without
nudging, particularly in accurately capturing small-scale Kelvin-Helmholtz phenomena
and vortex shedding, as shown in Figure 1.10.

7

1.3. Thesis Outline

Figure 1.10: Comparative Results of Nudged URANS around a Square Cylinder for
Re = 22000 [21]

1.3 Thesis Outline

After the opening chapter, the structure of the thesis is organized in the following manner:

■ Chapter 2

This chapter introduces the Fast Fluid Dynamics (FFD) algorithm, which serves as
the primary numerical solution method for analyzing fluid flows in this thesis. It
outlines the fundamental concepts and the governing equations of fluid flows, followed
by their discretization through the Finite Differences Method. This chapter lays the
groundwork for the subsequent numerical analysis and solution of fluid flow problems
throughout the thesis.

■ Chapter 3

The nudging method is introduced and thoroughly explained, with a focus on its in-
tegration into the FFD solver. This chapter provides a comprehensive understanding
of the nudging method and its practical implementation within the context of fluid
dynamics analysis.

■ Chapter 4

This chapter investigates the lid-driven cavity benchmark test for incompressible flows.
The case study is employed for validating the FFD solver and evaluating its perfor-
mance in comparison to existing literature and OpenFOAM simulations. In addition,
this chapter examines and evaluates the practical application of nudging.

■ Chapter 5

This chapter focuses on the application of the FFD algorithm in the dynamic context
of a street canyon. Additionally, various turbulence models are explored, comparing
their impact on accuracy and computational efficiency. The chapter concludes with an
analysis of the nudging method’s integration.

8

1.3. Thesis Outline

■ Chapter 6

The key findings and conclusions of the thesis are presented, accompanied by recom-
mendations for future work in the studied applications and developed codes.

9

2. Fast Fluid Dynamics

2.1 Governing Equations

The Navier-Stokes equations are a set of partial differential equations that describe the be-
havior of fluid flow. They are derived from the fundamental principles of fluid mechanics,
including Newton’s Second Law of motion. The equations account for the conservation
of momentum within a fluid, and they also account for the viscous forces that arise due
to internal friction within the fluid. The full form of the Navier-Stokes equations for an
incompressible fluid can be written as follows:

∇ · U⃗ = 0 (2.1)

Material
Derivative︷ ︸︸ ︷

∂U⃗

∂t
+ (U⃗ · ∇)U⃗︸ ︷︷ ︸

Acceleration/
Convection

= −1

ρ
∇P︸ ︷︷ ︸

Pressure
Gradient

+

Viscous
Force/

Diffusion︷ ︸︸ ︷
ν∇2U⃗ + f⃗︸︷︷︸

External
Forces

(2.2)

where:
U⃗ : the 2D velocity field (u, v)
P : pressure
ρ: fluid density
ν: kinematic viscosity of the fluid
f⃗ : external forces vector

These equations describe how the velocity field U⃗ and pressure P in a fluid evolve
over time, subject to the forces and initial/boundary conditions. The first equation, the
continuity equation, enforces mass conservation by ensuring that the divergence of the
velocity field is zero, whereas the second equation, the momentum equation, accounts for
the acceleration of fluid particles, the forces due to pressure difference, the viscous forces
and any external forces (e.g gravity or thermal forces).

2.2 Finite Difference Method

The Finite Difference Method (FDM) is a numerical technique used to solve partial
differential equations (PDEs), such as the Navier-Stokes equations. In the context of
FDM, the continuous spatial and time domains are divided into a grid of discrete points
where the dependent variables are computed and stored. At each of these grid points,
the derivatives are written in the form of differences, which relate the value at each point
to its neighbors, using the truncated Taylor series expansion. As a result, the initial set
of equations is transformed into a system of algebraic equations, which is subsequently
solved with numerical methods. [22]

The truncated Taylor series expansion (2.3) plays a pivotal role in FDM. It expresses
a function as an infinite series of derivatives evaluated at a particular point, x0, and is

11

2.2. Finite Difference Method

truncated to a finite number of terms to make it computationally feasible. The remainder
term Rn(x) represents the truncation error, which accounts for the difference between the
true function and its truncated approximation.

f(x) = f(x0)+
f

′
(x0)

1!
(x−x0)+

f
′′
(x0)

2!
(x−x0)

2+ . . .+
f (n)(x0)

n!
(x−x0)

n+ Rn(x)︸ ︷︷ ︸
Truncation

Error

(2.3)

The truncation error heavily depends on the term (x − x0), which in FDM, is the
distance between two neighboring points on the grid. A small distance, meaning a fine
mesh, implies that higher order terms are negligible, except in situations where higher
derivatives are locally large [22]. Increasing the number of terms in the truncated Taylor
series generally enhances the accuracy of the approximation, as it involves the informa-
tion from more neighbors. However, this improvement comes at the cost of increased
computational resources.

Contrary to the finite volume method (FVM), the nature of FDM approach does not
automatically satisfy the conservation principles and is best suited for structured and
orthogonal grids. To address this limitation, a staggered grid is often chosen as it is
equivalent to FVM and obeys global conservation, as pointed out by Konangi et al. [23].

2.2.1 Mesh Configuration

The FFD algorithm is implemented using Finite Differences Methods on a staggered grid,
introduced by Harlow and Welsh [24] in 1965. This is different from a collocated grid ar-
rangement, where all variables are stored in the same positions. In a “velocity” staggered
mesh, pressure is typically stored at the cell centroid and the velocity components are
stored at the center of the edges of the grid cells. The staggering is not a diagonal pro-
cedure; rather, each velocity component has its own shifted grid, with the u-grid shifted
to the right (x-direction) and the v-grid shifted up (y-direction). As a result, there are
essentially three different grids.

Figure 2.1: Schematic of Staggered Grid - Shifted Velocity Grids

Staggered grids are a useful solution to prevent odd-even decoupling problems in CFD,
eliminating checkerboard patterns in solutions. However, they come with the disadvan-
tage of storing different variables in separate locations, making it challenging to manage
distinct control volumes and track metrics effectively. In contrast, modern codes often opt

12

2.2. Finite Difference Method

for collocated storage due to the Rhie & Chow [25] interpolation method. This widely
used technique on collocated meshes helps suppress non-physical pressure oscillations
linked to checkerboard effects, while maintaining computational efficiency.

The shifting of the original grid leads to the appearance of half cells near the bound-
aries of the velocity grids. This introduces implications for the indexing of the nodes and
the dependent variables due to the presence of an additional node.

Figure 2.2: Example of Sizing and Shifting of a Single Cell on a Staggered Grid

The grid points are identified by an index i that runs in the x-direction and an index
j for the y-direction. The edges of each cell are located so as to position the grid point at
the cell center, contrary to having the edges midway between two adjacent grid points,
as shown in the figure below.

Figure 2.3: 1D Case of Cell Size for (a) Mid-Distance Edges and (b) Node at Cell
Center

Staggered grids are particularly well-suited for FFD applications due to their strate-
gic placement of variables. In this grid structure, an effective approximation of the first
derivatives of velocity is achieved by employing centered differences around half grid

13

2.2. Finite Difference Method

points. This approach not only ensures good accuracy in the calculations but also mit-
igates the risk of numerical instabilities. As a result, first derivatives “live” at the cell
centers [26], where the pressure grid points are originally located. This alignment proves
to be pivotal for the pressure correction method, which is a key component in the later
stages of FFD simulations. For instance, the following equation of a centered differences
around ui+1/2,j node is a good approximation for the first derivative of u at the position
of pressure Pi,j. (

∂u

∂x

)
i+ 1

2
,j

≈ ui+1,j − ui,j

∆xi,j

(2.4)

Figure 2.4: First Derivative’s Computational Location with a Staggered Grid
Approximation

Furthermore, the arrangement of staggered grids facilitates the application of a
straightforward averaging interpolation method, without compromising accuracy. As
a result, the translation of velocity values to the center of the original grid is usually
accomplished through a simple averaging interpolation of the velocity values at the edges
of the corresponding cell. This approach not only helps maintain accuracy but also plays
a crucial role in effectively handling non-linear convective terms.

ui+ 1
2
,j =

ui+1,j + ui,j

2
, ui,j+ 1

2
=

ui,j+1 + ui,j

2
(2.5)

vi,j+ 1
2
=

vi,j+1 + vi,j
2

, vi+ 1
2
,j =

vi+1,j + vi,j
2

(2.6)

Figure 2.5: Positions of Common Interpolated Values in Staggered Grid

14

2.3. FFD Algorithm

2.2.2 Boundary Conditions Handling

In the implementation of boundary conditions, an additional layer of ghostnodes is gen-
erated around the perimeter of the original mesh. This augmentation facilitates the
handling of Neumann boundary conditions (BCs). For no-slip velocity BCs, Neumann
BCs are commonly employed for pressure, resulting in the “mirroring” of pressure values
at the boundary and the corresponding ghost node cells. In the case of Dirichlet velocity
BCs, the staggered grid configuration allows for the averaging of velocity values on each
side of the boundary, as illustrated in Figure 2.6, while for pressure Dirichlet conditions,
it is accepted that the edge and the center of the cell have the same pressure. In the
example case:

uwest = u1,3 (2.7)

ueast =
u2,1 + u2,2

2
(2.8)

Figure 2.6: Handling of Boundary Conditions [27]

2.3 FFD Algorithm

FFD adopts a fractional step method for solving the Navier-Stokes equations, which de-
couples the pressure and the velocity. At first, intermediate velocity fields are computed
from the momentum equation’s forces, separately, ignoring the incompressibility con-
straint. Subsequently, a pressure correction method is used to project the intermediate
velocity field into a a divergence-free vector field to obtain the pressure and update the
velocity field.

∂U⃗

∂t
= ν∇2U⃗ + f⃗ (2.9)

∂U⃗

∂t
+ (U⃗ · ∇)U⃗ = 0 (2.10)

∇2P =
ρ

∆t
∇ · U⃗ (2.11)

∂U⃗

∂t
= −1

ρ
∇P (2.12)

15

2.3. FFD Algorithm

The calculation procedure of FFD is as follows:

Step 1. Diffusion/Source equation (2.9) is solved implicitly with Gauss-Seidel iterative
method to obtain an initial intermediate velocity field.

Step 2. Convective equation (2.10) is solved by the Semi-Lagrangian method proposed by
M. Dorostkar [28] to obtain the second intermediate velocity field

Step 3. Poisson equation of pressure (2.11) is also solved implicitly with Gauss-Seidel iter-
ative method

Step 4. Pressure Gradient equation (2.12) is solved explicitly, by marching through time
with a time step ∆t

Figure 2.7: Schematic of Fast Fluid Dynamics Algorithm [28]

2.3.1 Source and Diffusion Term

The FFD algorithm begins with the equation for external forces and the diffusion of the
flow (2.9). In this work, the only force taken into consideration is the gravitational force
along the y-axis.

f⃗ = (0,−g) (2.13)

where:
g: gravity’s acceleration

The diffusive term accounts for the internal frictional forces and, thus, the turbulence
present in the flow. Based on the application, there are appropriate turbulence models.

The equation is descritized using a first order forward scheme for the time derivative
(2.14) and a second order central difference (2.15) approximation for the Laplace operator.

16

2.3. FFD Algorithm

∂U⃗

∂t
=

U⃗⋆
i,j − U⃗n

i,j

∆t
(2.14)

∇2U⃗ =
U⃗⋆
i+1,j − 2U⃗⋆

i,j + U⃗⋆
i−1,j

∆x2
i,j

+
U⃗⋆
i,j+1 − 2U⃗⋆

i,j + U⃗⋆
i,j−1

∆y2i,j
(2.15)

The “star” notation (⋆) is used for the intermediate velocity fields, and the upper
index n denotes the timestep numbering.

Equation (2.15) is used for meshes with equal spacing between the nodes. For non-
uniform structured grid cases, the spatial derivatives are derived from the Taylor series.
For the 1-dimensional case, the Taylor series expansion for f(xi+∆xi+1) and f(xi −∆xi)
in terms of f(xi) is:

f(xi+1) = f(xi) + ∆xi+1f
′(xi) +

∆x2
i+1

2
f ′′(xi) +O(∆x3

i) (2.16)

f(xi−1) = f(xi)−∆xif
′(xi) +

∆x2
i

2
f ′′(xi)−O(∆x3

i) (2.17)

Figure 2.8: Schematic of the 1D Taylor Series Expansion

By summing the two Taylor expressions and eliminating the first derivative terms,
the second derivative equals:

f ′′(xi) = 2

[
f(xi+1)

∆xi+1(∆xi+1 +∆xi)
− f(xi)

∆xi+1∆xi

+
f(xi−1)

∆xi(∆xi+1 +∆xi)

]
+

∆xi+1 −∆xi

3
f ′′′(xi) +O(∆x2

i)

(2.18)

However, the resulting scheme exhibits first-order accuracy, and may lead to significant
numerical instabilities when the step size is not adequately small or when the expansion
ratio between adjacent cells is excessively large.

The general discretized form for equation (2.9) is as follows:

17

2.3. FFD Algorithm

U⃗⋆
i,j − U⃗n

i,j

∆t
=2ν

[
U⃗i+1,j

∆xi+1,j(∆xi+1,j +∆xi,j)
+

U⃗i,j+1

∆yi,j+1(∆yi,j+1 +∆yi,j)

]

− 2ν

[
1

∆xi+1,j∆xi,j

+
1

∆yi,j+1∆yi,j

]
U⃗i,j

+ 2ν

[
U⃗i−1,j

∆xi,j(∆xi+1,j +∆xi,j)
+

U⃗i,j−1

∆yi,j(∆yi,j+1 +∆yi,j)

]
+ f⃗

(2.19)

⇒ α1U⃗
⋆
i+1,j + α2U⃗

⋆
i,j+1 + β0U⃗

⋆
i,j + γ1U⃗

⋆
i−1,j + γ2U⃗

⋆
i,j−1 = −

(
U⃗n
i,j

∆t
+ f⃗

)
(2.20)

where:

α1 = 2ν

[
1

∆xi+1,j(∆xi+1,j +∆xi,j)

]
α2 = 2ν

[
1

∆yi,j+1(∆yi,j+1 +∆yi,j)

]
β0 = −2ν

[
1

∆xi+1,j∆xi,j

+
1

∆yi,j+1∆yi,j

]
− 1

∆t

γ1 = 2ν

[
1

∆xi,j(∆xi+1,j +∆xi,j)

]
γ2 = 2ν

[
1

∆yi,j(∆yi,j+1 +∆yi,j)

]

Each linear equation is solved twice, once for each velocity component (u, v), at every
grid point of the mesh. Equation (2.20) is written in matrix form and solved implicitly
for the intermediate velocity (⋆) field, using a simple Gauss-Seidel Solver.

Au

n×n
· u⋆

n×1
= Bu

n×1
, Av

n×n
· v⋆
n×1

= Bv

n×1
(2.21)

where:
n: the number of nodes in the mesh

In the developed solver, the grids utilized in applications, adhere to an orthogonal
structured grid format, yet the overall code structure resembles that of an unstructured
mesh. The indexing commences from the lower-left corner node, systematically tracing
cells vertically while assigning unique identification numbers. An ID number is an iden-
tifier assigned to each cell in the mesh, in order to handle data efficiently and manipulate
specific cells during the simulation. The index of each velocity value and each column
of matrix A correspond to the ID number of the respective cell. Coefficient matrix A is
a sparse square matrix n × n, where each row represents a cell with ID number i and
contains at most five non-zero elements, a set of (α1, α2, β0, γ1, γ2)

i for each cell. Four of
these elements correspond to contributions from the four neighbors. The vertical tracing
employed in the indexing process reveals a distinctive pattern: the northern and southern
neighbors exhibit an ID difference of ±1 compared to the examined cell. Consequently,

18

2.3. FFD Algorithm

in the matrix structure, these neighboring elements are strategically positioned one place
apart from the diagonal entry. This positioning explains why parameters α2, β0, γ2 are
grouped together in equation (2.22). The diagonal elements are strictly negative and
the matrix is diagonally dominant, which enhances the likelihood of convergence when
applying the Gauss-Seidel method. Near mesh boundaries, grid points may have fewer
than four neighbors and the diagonal element is adjusted to satisfy boundary conditions
while ensuring it is non-zero. Matrices Au and Av share similar expressions but differ due
to their reliance on cell size. This distinction arises from using staggered grids, where
velocity components are computed on separate meshes. The general form of matrix A is:

A =

β1
0 α1

2 0 0 0 α1
1 · · · 0

γ2
2 β2

0 α2
2 0 α2

1 0 0 · · ·
...

...
. . .

...
...

...
...

...
...

...
...

. . .
...

...
...

...
0 0 γn−2

1 0 γn−2
2 βn−2

0 αn−2
2 0

0 γn−1
1 0 0 0 γn−1

2 βn−1
0 αn−1

2

0 0 0 0 0 0 γn
2 βn

0

(2.22)

The velocity field (u, v) and vectors B are of length n with each index associated with
the cell ID.

u⋆ =

u⋆
1

u⋆
2
...
u⋆
n

 , v⋆ =

v⋆1
v⋆2
...
v⋆n

, Bu = −

un
1

un
2
...
un
n

 , Bv = −

vn1 − g
vn2 − g

...
vnn − g

 (2.23)

2.3.2 Convection Term

The semi-Lagrangian scheme is a numerical method used for solving the advection equa-
tion, which describes the transport of a scalar quantity ϕ (such as temperature, concen-
tration, or velocity) by a fluid flow. In the Navier-Stokes equations ϕ corresponds to the
velocity components (u, v). The advection equation can be written as follows:

∂ϕ

∂t
+ U⃗ · ∇ϕ = 0 (2.24)

The semi-Lagrangian scheme employs the method of characteristics, which involves
the tracing of particle trajectories within the fluid flow to estimate the values of the
transported quantity at future time increments, as along a fluid path, the scalar quantity
ϕ is assumed to remain constant.

dϕ

dS⃗
= 0 (2.25)

where:
S⃗: characteristic curve

The “arrival points” are typically positioned at the grid points of the mesh (Eulerian
points), while the values of the transported quantity at the “departure points” are cal-
culated with an interpolation scheme of the surrounding Eulerian points, as they do not
necessarily coincide with the grid points [29]. The scheme is advantageous for its stabil-

19

2.3. FFD Algorithm

ity, accuracy in capturing sharp gradients, and its ability to handle advection-dominated
phenomena without the limitations of the Courant-Friedrichs-Lewy (CFL) stability con-
dition. However, its poor performance in mass and momentum conversation is most likely
attributed to the selected interpolation scheme. [30].

2.3.2.1 Method of Characteristics

In mathematics, the method of characteristics is a technique for solving hyperbolic partial
differential equations, by reducing the PDEs to a system of 1st order ordinary differential
equations (ODEs) [31]. A characteristic curve of the PDE (2.24) is by definition a solution
of the differential equation (2.26).

dS⃗

dt
= U⃗ (2.26)

Assuming a constant velocity within one time step [tn, tn+1], the integral function of
the characteristic curve can be written as:

U⃗(t,x⃗) = U⃗ +O(∆t)

tn+1∫
tn

S⃗ =

tn+1∫
tn

U⃗dt ⇒ S⃗n = S⃗n+1 − U⃗∆t
(2.27)

Characteristic Curve with Improved Accuracy

Equation (2.27) is the conventional way of calculating the departure points in the semi-
Lagrangian scheme. In his work, Mohammad M. Dorostkar [28] proposed a non-linear
treatment of the velocity, which he considers a function of time, so as to improve the
accuracy of the method by taking into account the curvature of the characteristic.

U⃗(t,x⃗) = U⃗ + a⃗t+O(∆t2)

tn+1∫
tn

S⃗ =

tn+1∫
tn

(U⃗ + a⃗t)dt ⇒ S⃗n = S⃗n+1 − U⃗∆t− a⃗
∆t2

2

(2.28)

where:
a⃗: acceleration of the arrival point

For 2-dimensional problems the departure point’s location is calculated as:

xd = xa − u∆t− ax
∆t2

2

yd = ya − v∆t− ay
∆t2

2

(2.29)

with acceleration:

ax =
un − un−1

∆t
+O(∆t2)

ay =
vn − vn−1

∆t
+O(∆t2)

(2.30)

20

2.3. FFD Algorithm

While the proper way of calculating acceleration is between consecutive timesteps,
because in FFD, the equations are split and solved separately, un and vn essentially
represent the intermediate velocity values from the diffusion equation, denoted as u⋆ and
v⋆.

Figure 2.9: Characteristic Curve for the 1st and 2nd Order Velocity Models [28]

Wall Treatment

The trajectory equation is approximated with 2nd order accuracy, but due to truncation
errors, there may be instances where departure points fall outside the computational
domain. As a common practice, these Lagrangian points are re-positioned onto the
boundary of the domain. However, when a particle’s departure point is already situated
on the solid boundary, it cannot migrate to an arrival point located away from that
boundary. Consequently, this situation can lead to an unusually high concentration
of departure points along the boundary [32]. As an alternative method, M. Jin et al.
[33] implemented a special treatment for the near wall region. This approach assumed
that the velocity component normal to the wall exhibited a linear variation between
the solid boundary and the first adjacent grid point. This linear variation causes the
velocity to gradually decrease to zero as it approaches the wall’s surface during the
trajectory tracing, as shown in Figure 2.10. For the trace-back from the arrival point to
the first-grid point, the 1st order accuracy scheme is used, where the velocity is constant
(2.27).

The velocity’s component normal to the solid boundary is:

w =

{ z − z0
z1 − z0

w1, t < t⋆

wa, t⋆ ≤ t ≤ tn+1
(2.31)

By integrating equation (2.31) the relocated departure point is calculated as:

zd = z0 + (z1 − z0) exp

(
− w1

z1 − z0

(
∆t− za − z1

wa

))
(2.32)

21

2.3. FFD Algorithm

where:
z: coordinate in the direction normal to the solid boundary
z0: z-coordinate of the solid boundary
z1: z-coordinate of the first-grid node
z1: z-coordinate of the departure point
w1: velocity at first-grid node
wa: velocity at arrival point

Figure 2.10: Treatment of Departure Points Located Out of Bounds [34]

In 2-dimensional problems within the (x, y) plane, this approach is employed when
one of the coordinates of the departure point extends beyond the domain boundaries,
while the other coordinate follows the conventional trajectory equation. For cases, where
both coordinates of the departure points are simultaneously out of bounds, the point is
translated on top of the boundary. Additionally, the velocity w1 at the first adjacent grid
node is interpolated with second-order accuracy from the surrounding nodes.

Figure 2.11: Wall Treatment in 2D for X-Line Intersection

22

2.3. FFD Algorithm

2.3.2.2 Interpolation Scheme

The method of characteristics dictates that the scalar quantity ϕ is equal at both the
arrival and departure points over a time step ∆t. Therefore, after computing the de-
parture point coordinates, ϕd requires an interpolation scheme. The proposed method
employs an 4th order semi-Lagrangian scheme with a computing cost of a 3rd order inter-
polation. This is achieved by applying backward and forward 3rd order interpolations in
an alternating sweep manner, as described in [35].

In 1D semi-Lagrangian applications on non-uniform grids, the interpolated value of ϕd

is determined using the Taylor series for the neighboring cell about xd. The generalized
formula is the following polynomial [36]:

ϕd ≈
nb∑
i=1

 nb∏

1≤j≤nb
j ̸=i

(xd − xj)

(xi − xj)

ϕj

 (2.33)

For a uniform grid, the 3rd order schemes are:

■ Forward Interpolation

ϕd =
s2s3
2∆x2

ϕi +
s1s3
∆x2

ϕi+1 −
s1s2
2∆x2

ϕi+2 + Ef (2.34)

where:

s1 = xd − xi

s2 = xi+1 − xd

s3 = xi+2 − xd

The truncation error is:

Ef =
s1s2s3

6

∂3ϕd

∂x3
+O(∆x4) (2.35)

■ Backwards Interpolation

ϕd = − s1s3
2∆x2

ϕi−1 +
s2s3
∆x2

ϕi +
s1s2
2∆x2

ϕi+1 + Eb (2.36)

where:

s1 = xd − xi

s2 = xd − xi−1

s3 = x3 − xi+1

The truncation error is:

Eb = −s1s2s3
6

∂3ϕd

∂x3
+O(∆x4) (2.37)

23

2.3. FFD Algorithm

Figure 2.12: Schematic of the 1D Semi-Lagrangian Method for a) Forwards
Interpolation and b) Backwards Interpolation [28]

The truncation errors are of 3rd order, but by alternating between forward and back-
ward interpolation, the leading errors are proved to cancel out at the end of 2∆t (which
completes one sweep), and the final error is of 4th order [35].

When applying the scheme on 2D grids, the 1D formulas (2.34) and (2.36) are used, in
the manner demonstrated in Figure 2.13. Initially, three interpolations in the x-direction
are performed to calculate the intermediate scalar values ϕ⋆, which serve as reference
points for the subsequent interpolation in the y-direction. The specific interpolation
region varies depending on the timestep of the simulation, alternating between the blue
and red regions in the figure for even and odd timesteps, respectively.

Figure 2.13: Schematic of the 2D Semi-Lagrangian Method [28]

2.3.3 Pressure Correction

Chorin’s projection method is a numerical technique used to decouple the velocity and
pressure equations in simulations of incompressible fluids. This is necessary because
the Navier-Stokes equations lack an independent equation for pressure; instead, pressure

24

2.3. FFD Algorithm

acts as a constraint to ensure mass conservation of the velocity field. Chorin’s method
involves solving the Poisson equation for pressure and subsequently updating the velocity
field based on the pressure gradient. The resulting field is divergence-free, which satisfies
the continuity equation for incompressible fluids.

2.3.3.1 Poisson Equation

Poisson equation for pressure is derived by applying the divergence operator to the in-
compressible Navier-Stokes equations.

Assuming a velocity field v⃗ that satisfies the momentum and mass equations at a time
moment (n+ 1). The time-discretized equations are as follows:

∇ · v⃗n+1 = 0 (2.38)

v⃗n+1 − v⃗n

∆t
= −1

ρ
∇P n+1 − (v⃗n · ∇)v⃗n + ν∇2v⃗n (2.39)

Note that the velocity is explicitly solved, simplifying the left side and resulting equa-
tions. This approach is chosen to keep the equations more straightforward and manage-
able.

To facilitate decoupling, an intermediate velocity field v⃗⋆ is introduced, which “splits”
the time derivative

v⃗n+1 − v⃗⋆

∆t
+

v⃗⋆ − v⃗n

∆t
= −1

ρ
∇P n+1 − (v⃗n · ∇)v⃗n + ν∇2v⃗n (2.40)

This leads to two sets of equations:

v⃗⋆ − v⃗n

∆t
= −(v⃗n · ∇)v⃗n + ν∇2v⃗n (2.41)

v⃗n+1 − v⃗⋆

∆t
= −1

ρ
∇P n+1 (2.42)

Equation (2.41) calculates the velocity field v⃗⋆, that does not inherently satisfy the
mass conversation as the pressure field is not taken into consideration. As a result it
cannot be equal to velocity vector v⃗n+1.

The divergence operator is applied to equation (2.42), resulting in the Poisson equation
for pressure. This equation calculates the pressure distribution necessary to ensure the
incompressibility of the fluid in the simulation.

�����: incompressible
∇ · v⃗n+1 −∇ · v⃗⋆ = −∆t

ρ
∇2P n+1 ⇒ ∇2P n+1 =

∆t

ρ
∇ · v⃗⋆ (2.43)

Similarly, to the diffusion term, the Poisson equation is descritized with a central 2nd

order scheme on the pressure grid of the staggered meshes.

α1P
⋆
i+1,j + α2P

⋆
i,j+1 + β0P

⋆
i,j + γ1P

⋆
i−1,j + γ2P

⋆
i,j−1 =

ρ

∆t

∂U⃗⋆⋆
i

∂xi

(2.44)

where:

25

2.3. FFD Algorithm

α1 = 2

[
1

∆xi+1,j(∆xi+1,j +∆xi,j)

]
α2 = 2

[
1

∆yi,j+1(∆yi,j+1 +∆yi,j)

]
β0 = −2

[
1

∆xi+1,j∆xi,j

+
1

∆yi,j+1∆yi,j

]

γ1 = 2

[
1

∆xi,j(∆xi+1,j +∆xi,j)

]
γ2 = 2

[
1

∆yi,j(∆yi,j+1 +∆yi,j)

]

The matrix form is then formulated and and addressed using the Gauss-Seidel iterative
method. It is important to note that for both the diffusion and pressure correction steps,
no relaxation or scheme was employed in the Gauss-Seidel method. Convergence criteria
were defined by either achieving a relative error within the range of 103− 104 or ensuring
that the number of iterations remained below a specified threshold.

The spatial derivative is expressed in the Einstein notation, where the repeated index
indicates the summation of the corresponding terms.

∂U⃗⋆⋆
i

∂xi

=
∂u⋆⋆

∂x
+

∂v⋆⋆

∂y
(2.45)

where:
U⋆⋆
i : the second intermediate field after the convection step is solved

The velocity gradient is descretized with a 1st order forward scheme:

∂u⋆⋆

∂x
=

u⋆⋆
i+1,j − u⋆⋆

i,j

∆xi,j

(2.46)

∂v⋆⋆

∂y
=

v⋆⋆i+1,j − v⋆⋆i,j
∆yi,j

(2.47)

2.3.3.2 Pressure Gradient Term

The corrected pressure field derived from Poisson equation is later used to update the ve-
locity field, by simply marching through time, without the need for iterations or complex
algorithms.

U⃗n+1 = U⃗⋆⋆ − ∆t

ρ
∇P ⋆ (2.48)

un+1 = u⋆⋆ − ∆t

ρ

(
∂P ⋆

∂x

)
(2.49)

vn+1 = v⋆⋆ − ∆t

ρ

(
∂P ⋆

∂y

)
(2.50)

The gradient term of pressure is discretized with a 1st order forward scheme:

26

2.4. Turbulence Models

∂P ⋆

∂x
=

P ⋆
i+1,j − P ⋆

i,j

∆xi,j

(2.51)

∂P ⋆

∂y
=

P ⋆
i,j+1 − P ⋆

i,j

∆yi,j
(2.52)

The first iteration of FFD is thus completed and the algorithm commences anew with
the velocity and pressure fields of the previous timestep as initial conditions in order to
speed up the convergence.

2.4 Turbulence Models

Turbulence in fluid flows refers to the chaotic and irregular motion of fluid elements.
When a fluid, such as air or water, flows over a surface, it can exhibit different types of
flow patterns. In laminar flow, the fluid moves smoothly in parallel layers with minimal
disruption. However, as the speed of the fluid or the complexity of the flow increases,
turbulence may occur.

Turbulent flow is characterized by random and irregular fluctuations in velocity, pres-
sure, and other flow properties. These fluctuations create swirling eddies and vortices
within the fluid, leading to a more complex and less predictable flow pattern compared
to laminar flow. Turbulence is often accompanied by increased mixing, heat transfer, and
energy dissipation.

Until now, the flow has been characterized as laminar, with no consideration given to
turbulent behavior. However, for the purpose of this thesis, which focuses on addressing
the application of atmospheric flows and urban micro-climates, two distinct turbulent
models will be utilized. These models have been documented in relevant literature,
particularly in the context of indoor simulations.

Turbulence is introduced into the diffusion term of the Navier-Stokes equations as an
additional viscosity.

∂U⃗

∂t
+ (U⃗ · ∇)U⃗ = −1

ρ
∇P + (ν + νt)∇2U⃗ + f⃗ (2.53)

2.4.1 Constant Turbulence Model

In 2019 Tan et al. developed an FFD solver for Data-Center Floor Plenums. To mitigate
the computational cost and simplify implementation, they opted for a practical approach,
regarding turbulence, by introducing a fixed turbulent viscosity set at 100 times the
molecular viscosity, as documented in [11].

νt = 100 ν (2.54)

Given that accuracy was not the primary objective of the investigation, this model
was selected for its simplicity and reported a relative error of 3.6% compared with the
standard CFD with k − ϵ turbulence model.

27

2.4. Turbulence Models

2.4.2 Zero-Equation Model

Chen et al. [37] introduced a zero-equation turbulence model, designed to eliminate the
need for solving an additional differential equation, thereby offering a computationally
economical alternative. It originates from Prandtl’s mixing length hypothesis, deveoped
in the early 20th century. The key idea behind Prandtl’a mixing length hypothesis is
to relate the turbulent eddy viscosity to the characteristic length scale of the turbulent
eddies within the flow.

u ∼ lmox

∣∣∣∣∂U∂y
∣∣∣∣ (2.55)

µt = ρl2mix

∣∣∣∣∂U∂y
∣∣∣∣ (2.56)

The concept assumes that the turbulent mixing can be represented by a length scale,
known as the mixing length and is used to estimate the eddy viscosity. While the hy-
pothesis has limitations and is not universally accurate for all turbulent flows, it provides
a practical approach in modeling free shear flows. After some modifications to make the
hypothesis mode applicable, the following model was developed:

νt = 0.03874 L U (2.57)

where:
L: a length scale, which is equal to the shortest distance inside the domain from

the wall
U : the local mean velocity

The model has shown promising results in simulating indoor scenarios involving nat-
ural, forced, and mixed convection.

28

3. Data Assimilation Method - Nudging

Data Assimilation has been introduced in Chapter 1 as the merging of experimental data
with numerical models, in order to reduce computational costs without compromising
the accuracy of the results. The primary emphasis of this thesis will be on nudging, a
particularly inexpensive Data Assimilation method.

3.1 General Principles

Nudging, also known as Newtonian relaxation, is a dynamic method employed in various
fields, such as meteorology and computational modeling, to adjust a model’s state toward
observed data [14]. This technique involves introducing a feedback term into the model
equation that is proportional to the misfit between the model and the observations. The
feedback term introduced in nudging serves as a control mechanism for the evolution of
a dynamical system. This concept shares similarities with PID control, where feedback
terms are adjusted based on the error between the desired and actual states.

Figure 3.1: Schematic of Nudging Method[14]

The following system of ordinary differential equations govern a dynamic system with
state variable x

dx

dt
= M(x(t)), x(t = 0) = x0 (3.1)

If yo(t) are a set of observations of the system’s state at locations xk, distributed over
time, the observation error is calculated as:

ϵo(t) = yo(t)−H(x(t)) (3.2)

where:
H : the observation operator or measurement matrix

Operator H transfers a state x to the same time and location as the observations yo,
so that yo(t) and H(x(t)) are comparable.

29

3.2. Application to Navier-Stokes Equations

The nudged system of equations incorporates a gain matrix K that when small, x
simply solves the model equations. Parameter K can be either a matrix or a scalar and
is case dependent, meaning it cannot be selected automatically but relies on numerical
experimentation.The strength of the nudging term determines how much influence the
observations have on the model’s evolution.

The nudged system is:

dx

dt
= M(x(t)) +K(yo(t)−H(x(t)))︸ ︷︷ ︸

feedback-like term

, x(t = 0) = x0 (3.3)

For small observation errors that remain constant over time and are independent of
spatial variations, nudging proves to be a reliable and effective approach. However, when
dealing with substantial observational errors, the use of an ill-defined gain matrix K
can lead to suboptimal results, necessitating a more sophisticated selection approach.
Examples of such advanced methods include the incorporation of a Kalman filter gain
matrix or the implementation of an optimal nudging scheme [14]. While these methods
offer improved accuracy, it’s important to note that they also come with an increased
computational cost.

Figure 3.2: Visualization of the Nudging Process [38]

3.2 Application to Navier-Stokes Equations

The nudging term is added to the momentum Navier-Stokes equations as a forcing term.

∂U⃗a

∂t
+ (U⃗a · ∇)U⃗a = −1

ρ
∇P + ν∇2U⃗a + f⃗ +K(U⃗obs −H(U⃗a)) (3.4)

where:
U⃗a: the estimated velocity field
U⃗obs: the velocity measurements

For simplicity the gain matrix K is characterized by a scalar parameter α to adjust
the weight of the nudging and the adjoint of the observation operator, HT , to project
the observation error at the observation locations. The value of parameter α has been
researched extensively and Di Leoni et al. [38] reported that α should scale as the inverse
of the time step of the simulations.

α ≈ 1

∆t
(3.5)

30

3.2. Application to Navier-Stokes Equations

The nudged Navier-Stokes equations are:

∂U⃗a

∂t
+ (U⃗a · ∇)U⃗a = −1

ρ
∇P + ν∇2U⃗a + f⃗ + αHT (U⃗obs −H(U⃗a)) (3.6)

3.2.1 FFD Implementation

The FFD algorithm, extensively detailed in Chapter 2, employs a time-splitting method
where each component of the Navier-Stokes equations is addressed independently. The
nudging term can be incorporated into either the diffusion equation or the pressure cor-
rection Poisson equation.

∂U⃗a

∂t
= ν∇2U⃗a + f⃗ + αHT (U⃗obs −H(U⃗a))

∇2P =
ρ

∆t
∇ · U⃗a + αHT (U⃗obs −H(U⃗a))

Given that the experimental data represent velocity measurements, it is preferable to
introduce the nudging feedback into the diffusion equation. This choice is motivated by
the fact that the external forces are already accounted for in the diffusion equation, and
solving it implicitly in relation to velocity can enhance the stability of the algorithm.

3.2.2 Discretization

The finite differences framework for the nudging process does not require the nudging
points to coincide with the grid nodes of the mesh. However, for the sake of simplicity
in the coding process, observations derived from experimental values in the literature are
translated to the nearest mesh nodes. Moreover, rather than projecting the observation
error to the simulation grid, the observation vector is populated with zeros, and the whole
nudging process takes place exclusively on the mesh locations. The nudged equation is
thus simplified in the following manner:

∂U⃗a

∂t
= ν∇2U⃗a + f⃗ + α(U⃗obs − U⃗a) (3.7)

where U⃗obs, U⃗a are of size n number of mesh points.

Additionally, given that the applications that are being examined in the present
thesis are steady state problems, the observations are not time dependent but correspond
to the steady state solution.

The discretization is identical with the method presented in Chapter 2, where an
implicit scheme is implemented. The observation vector is considered at the previous
timestep and modifies the constant vector B⃗ of the system of equations.

A
n×n

· U⃗⋆

n×1
= B

n×1
(3.8)

where:
n: the number of nodes in the mesh

31

3.2. Application to Navier-Stokes Equations

For a uniform mesh, the diffusion equation becomes:

U⃗⋆
a,i,j − U⃗n

a,i,j

∆t
= ν

[
U⃗⋆
a,i+1,j − 2U⃗⋆

a,i,j + U⃗⋆
a,i−1,j

∆x2
+

U⃗⋆
a,i,j+1 − 2U⃗⋆

a,i,j + U⃗⋆
a,i,j−1

∆y2

]

+f⃗ + α(U⃗obs,i,j − U⃗n
a,i,j)

(3.9)

32

4. Benchmark Test: Lid-Driven Cavity

4.1 Problem Description

The lid-driven cavity is a classic benchmark test that is widely used for validating and
comparing different numerical methods and solvers, as it has been extensively researched
and documented for both laminar and turbulent cases and there are available analytical
solutions for certain Reynolds numbers. It involves a simple square cavity domain with
three stationary walls and a top lid that is moving at a constant velocity u0. Despite
its simplicity, the lid-driven cavity problem exhibits interesting flow physics, including
the formation of vortices and flow patterns, making it a valuable tool for studying the
behavior of fluid flow in confined domains.

Figure 4.1: Boundary Conditions for the 2D Lid-Driven Cavity Test

For simulating the cavity lid, it is assumed that there is not a gravitational field or any
other external forces acting on the system, in accordance with the simulations conducted
by Ghia et al [39]. The flow is considered laminar with a constant viscosity ν. The
Reynolds number is thus calculated as:

Re =
u0H

ν
(4.1)

It is common practice to either use dimensionless variables or normalize every param-
eter to unity, in order to standardize comparisons. As such the upper lid velocity is set
to u0 = 1m/s and the domain’s dimensions are 1× 1m2

Regarding boundary conditions (Figure 4.1), the simulation employs a no-slip Dirich-
let boundary condition for velocity at the fixed walls. For the pressure field, Neumann
boundary conditions are imposed along every edge of the cavity. In order to establish
the pressure level in the flow, a single reference point of pressure, denoted as Pref, is
usually applied at the inner left corner of the cavity, which acts as a pressure constraint.

33

4.2. Numerical Solution of Fast Fluid Dynamics Algorithm

Otherwise, the Navier Stokes equations have an infinite number of solutions, since they
only solve with respect to the pressure gradient.

4.2 Numerical Solution of Fast Fluid Dynamics Algorithm

This section focuses on evaluating the effectiveness and reliability of the C++ code devel-
oped for the FFD algorithm. The objective is to assess the algorithm’s accuracy, stability,
and efficiency in simulating fluid dynamics phenomena.

All the simulations in this thesis were performed on a PC system with AMD Ryzen 5
2500U CPU @ 2 GHz and 12 GB RAM. The C++ code was compiled using GCC 11.4.0
with standard C++17 compliance and Level-3 optimization settings.

4.2.1 Validation of CityFFD Back & Forth Sweep Interpolation Method

As previously discussed in Chapter 2, the back & forth sweep interpolation method used
in the semi-Lagrangian scheme of the convection term was based on the research work
of Mohammad M. Dorostkar [28] and the CityFFD model application. As an initial
validation step, it is crucial to assess the C++ solver using conditions and parameters
akin to those proposed in this work. While the solving techniques remain similar, it’s
worth noting that the algorithm for solving the system of linear equations utilizes the
Gauss-Seidel method instead of the multigrid method. This choice does not necessarily
impact the results and maintains compatibility and simplicity, even though it may not
provide the same level of computational efficiency as the multigrid method.

Similarly, to the CityFFD 2D cavity-lid testing, the simulation’s timestep is set to
∆t = 0.005 sec and the selected Reynolds number is Re = 1000. The domain is divided
into structured and uniform grids of sizes 64×64 and 128×128. The convergence criterion
is set to 10−6, which is the maximum value of the difference between the current and the
previous timestep. This criterion is well-suited for this application, given the known
tendency of the laminar variation in the cavity benchmark to reach a steady state.

Figure 4.2: Uniform and Structured Grids of 64× 64 and 128× 128 for the 2D
Lid-Driven Cavity

34

4.2. Numerical Solution of Fast Fluid Dynamics Algorithm

To facilitate comparisons, the velocity profiles along the lines x = 0.5 and y = 0.5
are presented for the horizontal and vertical components respectively, as shown in Figure
4.3. Ghia et al. [39] have provided a tabular version of the results for reference, which
are based on a vorticity-stream function formulation coupled with an implicit multigrid
method. Despite its age, the reliability of the Ghia et al. [39] lid-driven cavity benchmark
persists due to its extensively validated results, consistent agreement with newer studies,
well-defined geometry and conditions, numerical stability, and enduring educational value.

Figure 4.3: Ghia et al.’s [39] Tabular Velocity Values along Cavity’s Midlines and
Interpolated Profiles for Better Visualization

In CityFFD [28], the profile of the horizontal velocity component u is used as a
validation criteria. Figure 4.4 shows the high accuracy of the proposed back & forth
interpolation scheme, while the conventional linear method fails to converge satisfactorily
to Ghia’s [39] solution even on the finer mesh.

Figure 4.4: CityFFD [28] Lid-Driven Cavity Benchmark Results for Horizontal
Velocity u for Re = 1000, ∆t = 0.005 sec

35

4.2. Numerical Solution of Fast Fluid Dynamics Algorithm

The solver developed in the present thesis successfully replicates the results of
CityFFD, as shown in the accompanying figures. Figure 4.5 mirrors the behavior ob-
served in Figure 4.4 and verifies that the back & forth interpolation scheme applied in
the convection term can achieve the same accuracy of the 4th order central scheme. As
expected, the finer mesh is able to capture the velocity profiles with greater precision, as
it facilitates better calculations of gradients and reduces numerical errors.

Figure 4.5: Present Thesis Lid-Driven Cavity Benchmark Results for Horizontal
Velocity u for Re = 1000, ∆t = 0.005 sec

Figure 4.6: Present Thesis Lid-Driven Cavity Benchmark Results for Vetical
Velocity v for Re = 1000, ∆t = 0.005 sec

Upon examining each interpolation scheme individually and comparing them to M.
Dorostkar’s work [28] in Figures 4.7 and 4.8, certain discrepancies become apparent.
To facilitate a statistical comparison, both the Root Mean Squared Error (RMSE) and

36

4.2. Numerical Solution of Fast Fluid Dynamics Algorithm

the Mean Absolute Error (MAE) were calculated. It is crucial to acknowledge that the
error calculations themselves may introduce uncertainties due to the misalignment of the
observations (ŷi) and predicted values (yi). In this analysis, an interpolation method was
employed to align the data points and the observed values, which were extracted from
the graphs using a plotting tool. These steps introduce an additional layer of potential
error, and the results should be interpreted with caution, taking into consideration the
interpolation process and the reliance on graphical data extraction.

MAE =
n∑

i=1

|yi − ŷi|
n

(4.2)

RMSE =

√√√√ n∑
i=1

(yi − ŷi)2

n
(4.3)

where :
n: the number of observations
yi: predicted values (thesis results)
ŷi: observed values (M. Dorostkar [28] results)

Figure 4.7: Comparison of CityFFD [28] and Thesis u Profiles for Different
Interpolation Schemes for Re = 1000, ∆t = 0.005 sec, Grid: 64× 64

37

4.2. Numerical Solution of Fast Fluid Dynamics Algorithm

Figure 4.8: Comparison of CityFFD [28] and Thesis u Profiles for Different
Interpolation Schemes for Re = 1000, ∆t = 0.005 sec, Grid: 128× 128

Table 4.1: Comparative Error of CityFFD and Present Thesis Applications for
Different Interpolation Schemes

Schemes Grid MAE [%] RMSE

Linear
64× 64
128× 128

2.54184
1.96834

0.029347
0.02252

4th Order Central
64× 64
128× 128

1.55463
1.38028

0.01938
0.01717

Back & Forth Sweep
64× 64
128× 128

0.80235
0.72321

0.01136
0.01059

The results indicate an absolute error of approximately ∼ 2% for the linear cases
and ∼ 0.8% for the back-and-forth sweep interpolation method. The small magnitude
of these errors suggests that they may be attributable to coding parameters. Notably,
the linear case exhibits the most pronounced struggle, indicating a potential disparity
in the coding implementation. Although the same interpolation scheme is employed,
variations could arise from how departure points lacking sufficient neighboring cells
for interpolation are handled. Moreover, given that this scheme inherently possesses
higher numerical error, disparities between codes are likely to be magnified. Other
factors contributing to these differences could include the treatment of ghostnodes, the

38

4.2. Numerical Solution of Fast Fluid Dynamics Algorithm

convergence criteria employed by the linear solver, and potential relaxation factors.
Additionally, the absence of information regarding the mesh used, such as whether it
was collocated or staggered, complicates the expectation of identical results.

In the context of a lid-driven cavity, vortices typically emerge due to the shear forces
induced by the motion of the lid against the stationary fluid. These vortices tend to
manifest near the corners and along the edges of the cavity, where the interaction be-
tween the moving lid and the stationary walls with the fluid generates regions of high
vorticity. The viscous corner eddies at the intersection of two solid boundaries are known
as “Moffatt vortices”, forming a sequence of vortices with rapidly decreasing size and
intensity towards the corner [40]. However, due to computational limitations, accurately
resolving tertiary and quaternary vortices, which occur at extremely small scales, remains
challenging. Consequently, most simulations primarily focus on capturing the larger-scale
secondary vortices. The specific patterns of vortices depend mainly on the Reynolds num-
ber. At lower Reynolds numbers, the flow tends to be more steady and laminar, whereas
at higher Reynolds numbers, turbulence becomes more prominent, leading to complex
vortex structures.

Figure 4.9: Velocity Streamlines for CityFFD [28] with Back & Forth Sweep
Interpolation Method for Re = 1000, ∆t = 0.005 sec

In Figure 4.10, the velocity streamlines of each interpolation method for grids 64× 64
and 128×128 are presented. Regardless of the grid resolution, the solver adeptly captures
the secondary small-scale vortices at the lower corners of the domain for both linear and
higher-order interpolation schemes. Moreover, the streamlines at the top left corner of the
cavity, where the upstream secondary top vortex is located, are curved more pronouncedly
for the higher-order schemes.

Interestingly, the impact of grid resolution appears to be less significant compared to
the influence of the chosen interpolation scheme, except notably for the linear scheme.
This suggests that for high-order schemes, finer meshes do not lead to substantial changes
in capturing the underlying physics of the flow. However, for the linear interpolation

39

4.2. Numerical Solution of Fast Fluid Dynamics Algorithm

scheme, on the fine mesh of 128×128, the primary central vortex is positioned lower, closer
to the geometric center of the cavity, resembling the behavior seen in the higher-order
schemes. Nonetheless, there are notable alterations in velocity magnitude. Conversely,
on a 64× 64 grid, the primary vortex appears tilted towards the upper right corner.

Figure 4.10: Velocity Streamlines for Grids 64× 64 (left) and 128× 128 (right) for
(a) Linear Scheme ; (b) 4th Order Central Scheme ; (c) Back & Forth Sweep

Finally, the solver’s performance was found to be comparable to the results obtained
using CityFFD. Specifically, for the coarse grid of size 64× 64, the current work demon-

40

4.2. Numerical Solution of Fast Fluid Dynamics Algorithm

strated an average improvement in computational speed of approximately ∼ 35% com-
pared to CityFFD. For the fine mesh 128 × 128, the performance remained superior,
showing an ∼ 18% increase in speed.

In the case of CityFFD [28], reducing the cell size to half its original size required
approximately 3× more computational time, whereas the present code exhibited a steeper
increase, requiring approximately 4 − 5× more computational time. It’s essential to
note that these numbers are not directly comparable quantities, as CityFFD [28] utilizes
multigrid methods for solving the elliptic equations, which inherently tend to be faster.
Additionally, the processor employed in the CityFFD [28] work, the Intel(R) Core(TM)
i7-4790 CPU @ 3.60 GHz, has been benchmarked to be approximately 10% more powerful,
compared to the current processor unit, AMD Ryzen 5 2500U CPU @ 2 GHz. Despite
this, the recorded clock times remained smaller than those of CityFFD, possible due to the
Gauss-Seidel having limited iterations and lax convergence criteria. However, subsequent
doubling of the number of nodes would probably result in suboptimal outcomes.

Regarding the performance of each interpolation scheme, the linear scheme exhibits
the fastest performance as it involves the fewest cells for interpolation. In contrast, the
4th order central scheme consumes approximately 50% more computational resources.
The back-and-forth sweep method achieves similar accuracy to the 4th order scheme with
approximately 15− 20% less computing time, aligning with the findings of M. Dorostkar
[28].

Table 4.2: Clock Time of CityFFD and Present Thesis Applications for Different
Interpolation Schemes

Schemes CityFFD Present Thesis Difference
[%]

Grid Clock
Time [sec]

Grid Clock
Time [sec]

Linear
64× 64
128× 128

21
67

64× 64
128× 128

11.13
47.28

-47.00
−29.43

4th Order Central
64× 64
128× 128

26
82

64× 64
128× 128

18.08
72.52

−30.46
−11.56

Back & Forth Sweep
64× 64
128× 128

22
73

64× 64
128× 128

14.29
61.87

−35.05
−15.25

In Table 4.2 clock time refers to the approximate processor time that is consumed
by the program, during execution. Simulation time represents the physical time that the
transient solver actually solved, in order to reach steady state.

4.2.2 Model Validation for Various Reynolds Numbers

The validated model with the back & forth interpolation scheme is tested at various
Reynolds numbers and compared with the tabular results of Ghia et al. [39]. In Fig-
ures 4.11 and 4.12, the u and v profiles are respectively depicted along the centerlines of
the cavity for Reynolds numbers Re = 100, 400, 1000, 3200, 5000. Two grid resolutions,
namely 64 × 64 and 128 × 128, are considered. For lower Reynolds numbers, the pro-
files generated by the different meshes exhibit almost indistinguishable characteristics.

41

4.2. Numerical Solution of Fast Fluid Dynamics Algorithm

However, as the Reynolds number increases, so does the complexity of the flow. Conse-
quently, high Reynolds number flows require finer grids to capture the details of the flow
accurately. As a result, differences in the profiles become more pronounced at Re = 3200
and Re = 5000, especially for the coarse grid of 64× 64.

Figure 4.11: Horizontal Profile u with Back & Forth Sweep Interpolation for
Various Reynolds Numbers and Uniform Mesh for Grids: 64× 64 and 128× 128

Figure 4.12: Vertical Profile v with Back & Forth Sweep Interpolation for Various
Reynolds Numbers and Uniform Mesh for Grids: 64× 64 and 128× 128

Additionally, when the Reynolds number increases, the core of a vortex tends to

42

4.2. Numerical Solution of Fast Fluid Dynamics Algorithm

exhibit characteristics of solid-body rotation. This means that the fluid within the core
rotates as if it were a solid object, with circular streamlines and a consistent vorticity
throughout. This behavior becomes particularly evident when observing velocity
profiles, as at high Reynolds numbers, these profiles become increasingly linear within
the primary vortex, indicating uniform rotation of the fluid. This phenomenon arises
due to the dominance of inertial effects in the flow at high Reynolds numbers.

Table 4.3 shows the Root Mean Square Error (RMSE) between the solver employed in
this thesis for the fine grid case and the benchmark results from Ghia et al. [39]. Notably,
the RMS error is higher by an order of magnitude at high Reynolds numbers compared to
the lower Reynolds number cases, but it still remains remarkably small. Furthermore, the
solver encounters difficulties in achieving convergence as the Reynolds number increases,
as presented in Table 4.4.

Table 4.3: Comparative Error of Present Thesis Results to Ghia et al. [39]
Simulations for ∆t = 0.005 sec, Grid: 128× 128

Reynolds Number RMSE

U-Profile V-Profile

100 0.0042212 0.0099060
400 0.0056102 0.0035536
1000 0.011064 0.0058725
3200 0.022208 0.020566
5000 0.032113 0.033482

Table 4.4: Simulation and Clock Time of Present Thesis Solver for Various
Reynolds Numbers for ∆t = 0.005 sec, Grid:128× 128

Reynolds Number Simulation Time[sec] Clock Time [sec]

100 15.135 23.25
400 29.425 43.53
1000 39.55 61.87
3200 107.515 168.88
5000 201.925 320.34

The following contours illustrate the velocity streamlines resolved by the current solver
for the examined Reynolds numbers. As the Reynolds number increases, notable changes
occur within the flow dynamics of the cavity. Initially, at low Reynolds numbers, viscous
forces dominate, leading to steady and straightforward flow patterns. However, as the
Reynolds number escalates, the flow becomes more intricate and as result, multiple vor-
tices and recirculation zones are formed. Literature on the subject [41] highlights that the
two-dimensional flow is not stable at high Reynolds numbers as, beyond a critical value,
smaller-scale vortices are shed into the cavity from the downstream end of the moving
wall.

From the velocity streamlines it is evident, that as the Reynolds number increases, the
flow dynamics within the cavity undergo significant changes. Initially, the primary vortex

43

4.2. Numerical Solution of Fast Fluid Dynamics Algorithm

is displaced from the cavity’s geometric center, as shown in Figure 4.13 for Re = 100,
but gradually migrates towards it as the Reynolds number grows. This phenomenon can
be attributed to the increasing dominance of inertial forces over viscous forces, resulting
in a more organized flow pattern.

As the flow progresses downstream of the lid, there’s a notable acceleration, which
leads to a significant asymmetry in the vortices formed at the lower corners of the domain.
Specifically, the vortex located at the bottom right (BR1) tends to be larger in size
compared to its counterpart on the bottom left (BL1). At lower Reynolds numbers, the
bottom left vortex may even be negligible. However, as the Reynolds number increases,
the separated vortices at the bottom gain strength and size.

The emergence of an upper upstream eddy signifies a notable shift in the flow’s topol-
ogy. The presence of this vortex becomes apparent even at early Reynolds numbers, such
as Re = 400, where a subtle curvature is observed at the upper left corner. Ghia et al.
[39] emphasizes that this vortex is different in nature, compared to the two lower eddies,
which are an infinite sequence of eddies.

Figure 4.13: Comparison of Present Work Velocity Streamlines to Ghia et al. [39]
for Re = 100, ∆t = 0.005 sec, Grid: 128× 128

Figure 4.14: Comparison of Present Work Velocity Streamlines to Ghia et al. [39]
for Re = 400, ∆t = 0.005 sec, Grid: 128× 128

44

4.2. Numerical Solution of Fast Fluid Dynamics Algorithm

Figure 4.15: Comparison of Present Work Velocity Streamlines to Ghia et al. [39]
for Re = 1000, ∆t = 0.005 sec, Grid: 128× 128

Figure 4.16: Comparison of Present Work Velocity Streamlines to Ghia et al. [39]
for Re = 3200, ∆t = 0.005 sec, Grid: 128× 128

Figure 4.17: Comparison of Present Work Velocity Streamlines to Ghia et al. [39]
for Re = 5000, ∆t = 0.005 sec, Grid: 128× 128

45

4.3. Performance and Stability Analysis

4.3 Performance and Stability Analysis

In Fast Fluid Dynamics (FFD), algorithmic performance stands out as a key selling point,
making it necessary to conduct a thorough investigation of the solver’s overall efficiency.
The performance of each individual FFD step is examined, and the overall performance is
compared to OpenFOAM. In addition, various timesteps are explored, in order to validate
the stability of the semi-Lagrangian scheme. This approach ensures a comprehensive un-
derstanding of FFD’s capabilities and allows for meaningful comparisons with established
solvers like OpenFOAM.

4.3.1 Performance Evaluation

The cavity case is revisited across five distinct Reynolds numbers, employing grid reso-
lutions of 64× 64 and 128× 128.

Initially, the focus is on the number of FFD cycles required for the case to attain a
steady-state solution. Notably, it is observed that the grid resolution exerts minimal im-
pact on simulation iterations, suggesting a mesh-independent solution within the selected
range of mesh sizes. In instances where simulation cycles differ, this variability may be as-
cribed to the convergence criteria of the linear system solvers. For instance, a low number
of maximum iterations might result in insufficient solution convergence, thereby delay-
ing the overall convergence process. As expected, cases with higher Reynolds numbers
require the most FFD cycles due to the increased complexity of the flow dynamics.

Additionally, employing linear regression analysis on the data reveals an R2 value of
approximately ∼ 0.98. The coefficient of determination, denoted by R2, is utilized to
assess how well the model fits the data, with a value close to 1 indicating a strong fit.
However, it’s crucial to note that this correlation is specific to the case under consideration
and cannot be generalized to other cases or employed for predictions within the same case.
It is an observation that lacks deterministic patterns.

Figure 4.18: FFD Cycles for Various Reynolds Numbers for Present Work
Simulations of ∆t = 0.005 sec and Grids: 64× 64, 128× 128

46

4.3. Performance and Stability Analysis

Table 4.5: Number of FFD Cycles Needed for Convergence for ∆t = 0.005 sec

Reynolds Number Grid

64× 64 128× 128

100 2457 (12.285 sec) 3027 (15.135 sec)
400 6062 (30.31 sec) 5884 (29.42 sec)
1000 8483 (42.315 sec) 12292 (61.46 sec)
3200 25358 (126.79 sec) 21503 (107.515 sec)
5000 39500 (197.5 sec) 40358 (201.925 sec)

In Chapter 2, the FFD algorithm is described, which decomposes the Navier-Stokes
equations into four distinct steps. Table 4.6 records the clock times for each of these
steps.

Table 4.6: Computational Cost of Each of FFD’s Algorithm Step for Present Thesis
Simulations for ∆t = 0.005 sec

Reynolds
Number

Grid Diffusion
[sec]

Convection
[sec]

Pressure
Correction

[sec]

Pressure
Gradient
[sec]

Clock
Time [sec]

100
64× 64
128× 128

1.178
6.097

2.709
13.842

0.527
2.804

0.0744
0.480

4.66
24.03

400
64× 64
128× 128

2.874
11.889

6.617
26.966

1.293
5.451

0.177
0.910

11.16
46.00

1000
64× 64
128× 128

3.364
15.874

8.840
34.154

1.706
6.905

0.186
1.038

14.29
61.46

3200
64× 64
128× 128

8.819
38.539

27.756
93.017

5.272
18.578

0.714
2.815

42.90
154.195

5000
64× 64
128× 128

12.588
69.791

43.849
184.653

8.316
36.913

1.129
5.642

66.30
298.74

Notably, the convection step, which employs the method of characteristics, requires
the most computational resources, accounting for approximately 55 − 65% of the total
simulation time. It is important to highlight that despite its significant time consumption,
the convection step does not involve any iterations. Instead, it computes the departure
points for each node in the mesh and interpolates the surrounding neighbors for velocity
calculation. The poor performance is most likely attributed to the coding, such as un-
necessary assignments and excessive initialization of variables. It should be mentioned,
though, that the convection step is perfect for parallelization, which would significantly
minimize the computational cost of the FFD algorithm as a whole.

The diffusion and pressure correction steps each demand approximately ∼ 23.9% and
∼ 12.2% of the computational workload, respectively. In the diffusion step, two linear
systems of equations are solved—one for each velocity component—making it comparable
in computational cost to the pressure correction step. Essentially, the pressure correc-
tion computational cost is equal to one Gauss-Seidel iterative process. While solving
the pressure equation is inherently more complex and could theoretically require more
computational time, the minimum iterations factor serves to minimize the clock time.

47

4.3. Performance and Stability Analysis

Considering the relatively slow nature of the Gauss-Seidel iterative method, there is po-
tential for improvement in computational efficiency by exploring alternative solvers like
the multi-grid method.

Finally, the pressure gradient term has a negligible impact on the performance of the
solver, as it simply calculates the pressure gradient and updates the velocity for each
mesh node.

Increasing the Reynolds number or refining the mesh does not significantly alter the
distribution of computational resources during the simulation, as evidenced by the data
presented in Table 4.7. However, halving the cell size, and consequently quadrupling the
number of nodes, results in approximately a 4−5× increase in the time required for each
step. Specifically, diffusion time is multiplied on average by 4.78, convection time by 4.12,
pressure correction time by 4.31 and lastly pressure gradient time by 5.22. This indicates
that the algorithm’s complexity scales proportionally with the number of nodes.

Table 4.7: Computational Cost of Each of FFD’s Algorithm Step as Percentage of
the Total Clock Time for Simulations for ∆t = 0.005 sec

Reynolds
Number

Grid Diffusion
[%]

Convection
[%]

Pressure
Correction

[%]

Pressure
Gradient

[%]

100
64× 64
128× 128

25.27
25.37

58.13
57.60

11.30
11.67

1.59
1.99

400
64× 64
128× 128

25.75
25.85

59.26
58.62

11.58
11.85

1.59
1.98

1000
64× 64
128× 128

23.54
25.83

61.86
55.57

11.94
11.23

1.30
1.68

3200
64× 64
128× 128

20.56
24.99

64.69
60.32

12.28
12.05

1.66
1.83

5000
64× 64
128× 128

18.98
23.36

66.14
61.81

15.54
12.35

1.70
1.89

4.3.2 Performance Comparison with OpenFOAM Simulation

The performance comparison to the CityFFD model, as conducted in previous para-
graphs, lacks the depth necessary to draw significant conclusions, as it merely validates
the current solver. To provide a more comprehensive analysis, the performance of Open-
FOAM for the lid-driven cavity case is also evaluated. This case serves as a standard
benchmark within the OpenFOAM tutorials folder. By comparing these two approaches,
the aim is to assess whether the Fast Fluid Dynamics (FFD) algorithm indeed outper-
forms conventional methods.

In OpenFOAM environment, Pressure-Implicit with Splitting of Operators (PISO)
algorithm is one the most popular transient solvers. PISO employs a methodology con-
sisting of one predictor step followed by two corrector steps, all aimed at upholding mass
conservation through predictor-corrector iterations. Unlike approaches that tackle all
coupled equations simultaneously or through iterative sequences, PISO breaks down the
operators into an implicit predictor and several explicit corrector steps. This approach
isn’t typically viewed as iterative, as only a minimal number of corrector steps are typi-

48

4.3. Performance and Stability Analysis

cally required to achieve the desired precision. Each time step involves predicting velocity,
then subsequently correcting pressure and velocity to refine the solution.

While a comprehensive explanation of PISO can be found in relevant literature, it’s
essential to note that this thesis does not delve into the intricacies of the algorithm itself
but rather acknowledges its significance in CFD simulations within the OpenFOAM
framework.

The OpenFOAM case was meticulously set up to replicate the conditions of the FFD
algorithm as closely as possible. This involved substituting the solvers for linear systems
with plain Gauss-Seidel solvers, ensuring that convergence criteria and minimum iteration
requirements were consistent. Additionally, the grid resolution and timestep parameters
were matched to ensure equitable conditions. To maintain fairness in time recording,
unnecessary file writing and logging between timesteps were avoided in both cases. This
approach allowed for a focused evaluation of solver efficiency and computational speed
under comparable conditions. Finally, the simulation was stopped upon reaching a steady
state, which was determined by observing that the velocity equation no longer required
further iterations for solutions.

In the OpenFOAM cases, the Reynolds numbers from the previous sections were
reexamined with grid resolutions of 64×64 and 128×128, alongside a simulation timestep
of ∆t = 0.005 sec. The results obtained from these simulations are presented in Table
4.8 for comprehensive comparison and evaluation.

An immediate observation reveals that the FFD algorithm outperforms the conven-
tional OpenFOAM method. On average, it showcases a reduction in computational cost
of approximately 29.39%, with the highest recorded improvement reaching 35.50%. How-
ever, upon closer examination, no clear evidence emerges to directly correlate the im-
proved performance with either the Reynolds number or the grid resolution. The specific
simulation times are omitted from the table as they closely resemble those of the FFD
method, with no significant deviations observed.

Table 4.8: Clock Time of Thesis Solver and OpenFOAM Lid-Driven Cavity Case for
Similar Simulation Parameters

Reynolds Number Present Work OpenFOAM Difference
[%]

Grid Clock
Time [sec]

Grid Clock
Time [sec]

100
64× 64
128× 128

4.58
23.25

64× 64
128× 128

6.78
34.05

−32.45
−31.72

400
64× 64
128× 128

11.10
43.53

64× 64
128× 128

14.97
64.42

−25.85
−32.43

1000
64× 64
128× 128

14.29
61.87

64× 64
128× 128

20.67
85.79

−30.87
−27.88

3200
64× 64
128× 128

43.43
168.88

64× 64
128× 128

64.43
262.65

−32.59
-35.50

5000
64× 64
128× 128

61.32
320.34

64× 64
128× 128

79.48
410.00

−22.84
−21.87

49

4.3. Performance and Stability Analysis

While the improved performance is a significant advantage of the FFD algorithm,
it is worth noting that the literature reports, as discussed in Chapter 1, suggest even
greater improvements, often ranging from 5− 10× better performance. This underscores
the potential of the FFD algorithm and highlights the need for further investigation into
optimizing its implementation in the present thesis for even more substantial gains in
computational efficiency. It’s important to acknowledge that the present implementation
may lack in coding proficiency in C++, whereas OpenFOAM is a simulation library
maintained by professional programmers. This expertise in development and optimization
could be a contributing factor to the observed performance disparities between the present
FFD algorithm and the literature claims.

4.3.3 Stability Analysis for Timestep

The semi-Lagrangian scheme used for solving the convection term is a stable method that
is not constrained by the Courant-Friedrichs-Lewy (CFL) number. CFL is a dimensionless
number used in numerical simulations to access the stability and accuracy of numerical
solutions for time-dependent partial differential equations. The CFL number must be
minimized for explicit schemes, ensuring it remains below a certain value, typically around
1. However, for inherently more stable implicit schemes, a slightly larger CFL number
may be deemed acceptable.

So far, the simulations have maintained a constant timestep of ∆t = 0.005 sec. To
evaluate the stability of the solver, a progressive increase in timestep was implemented
for the Re = 1000 scenario, conducted on a grid resolution of 64 × 64. Remarkably, the
solver was able to handle timesteps up to ∆t = 0.14 sec. However, upon reaching this
timestep, the Courant number surged to an extremely large value, causing the solver to
fail. The maximum recorded CFL number during the simulations peaked at approxi-
mately ∼ 32 for a timestep of ∆t = 0.1325 sec. In contrast, the OpenFOAM’s PISO
simulation, under similar parameters, successfully handled a timestep of ∆t = 0.02 sec,
as its Courant number remained close to 1. Moreover, as the timestep increased, the
FFD solver demonstrated exceptional speed, albeit at the expense of solution accuracy.

Table 4.9: Comparison of Solver and OpenFOAM Clock and Simulations Times for
Various Timesteps for Re = 1000, Grid 64× 64

Timestep[sec] Present Work OpenFOAM Max CFL RMSE

Clock
Time[sec]

Simulation
Time[sec]

Clock
Time[sec]

Simulation
Time[sec]

∆t = 0.001 58.33 34.126 95.81 30.435 0.056 0.024656
∆t = 0.005 14.29 42.415 24.47 41.045 0.28 0.031229
∆t = 0.01 8.88 47.47 14.28 47.78 0.57 0.041682
∆t = 0.02 5.44 56.82 9.629 67.18 1.13 0.061845
∆t = 0.05 3.16 78.9 − − 2.81 0.11085
∆t = 0.1 3.47 166.9 − − 5.52 0.17041
∆t = 0.12 3.96 229.68 − − 6.59 0.19162
∆t = 0.13 3.54 215.41 − − 7.14 0.20275
∆t = 0.1325 3.78 243.27 − − 32.71 0.20496
∆t = 0.14 − − − − − −

50

4.3. Performance and Stability Analysis

Figure 4.19: Horizontal Velocity Profile u for Present Work Simulations for Various
Timesteps for Re = 1000, Grid: 64× 64

Figure 4.20: Vertical Velocity Profile v for Present Work Simulations for Various
Timesteps for Re = 1000, Grid: 64× 64

The provided velocity profiles demonstrate that as the timestep increases beyond
∆t = 0.02 − 0.05 sec, the solution of the flow progressively diverges from the reference
solutions documented by Ghia et al. [39]. Interestingly, for timesteps below this threshold,
∆t = 0.02sec, which coincidentally aligns with the maximum timestep OpenFOAM could
simulate, the velocity profiles closely match Ghia et al.’s [39] solutions. The streamlines
depicted in Figure 4.21 further illustrate this point, with the primary vortex consistently

51

4.3. Performance and Stability Analysis

located at the geometric center of the cavity across timesteps below ∆t = 0.02 sec.
Additionally, the sizes of the lower eddies maintain their size, compared to the most
accurate solution for timestep ∆t = 0.001 sec.

For timesteps exceeding ∆t = 0.1 sec, corresponding to Courant numbers larger than
5.5, the flow exhibits a more rapid damping, likely due to numerical dissipation. Con-
sequently, the primary vortex starts to drift towards the upper corner of the cavity, as
the velocity magnitude is lower and cannot maintain the vortex’s rotation. This move-
ment creates additional space for the lower right vortex (BL1) to expand in size, further
distorting the primary vortex.

Figure 4.21: Velocity Streamlines for Present Work Simulations for Back & Forth
Sweep for Various Timesteps for Re = 1000, Grid: 64× 64

52

4.4. Nudging

4.4 Nudging

In Chapter 3, nudging was introduced as a cost-effective and fast technique for integrat-
ing experimental results into numerical simulations. To validate the effectiveness of this
method, the velocity profiles provided by Ghia et al. [39] served as the reference obser-
vation values. The investigation of the method’s impact involved utilizing various sets
of observations, as depicted in the figure below. Specifically, the values at each center-
line, comprising 16 observation points each, were individually employed. Subsequently,
these observations were combined to assess the overall improvement in accuracy achieved
through the nudging technique and its consistency across different observation sets.

Figure 4.22: Configuration of Nudging Observation’s Positioning

The nudged equation is reiterated here for clarity. To begin, it is essential to establish
the nudging factor, denoted as α. As mentioned earlier, a practical estimation for α is
derived from the simulation timestep, as discussed in Leoni et al. [38]. In all preceding
simulations, the timestep has consistently been set to ∆t = 0.005 sec, so according to the
approximation, the optimal α value hovers around α ∼ 200.

∂U⃗a

∂t
= ν∇2U⃗a + f⃗ + α(U⃗obs − U⃗a) (4.4)

To effectively determine the appropriate value for the parameter α, a brief parametric
analysis is carried out. Figure 4.23 illustrates a comparison of various α values, taking
into consideration key criteria such as simulation time, clock time, and the Root Mean
Square Error (RMSE) between the nudged cross-section simulation on the coarse grid
(64× 64) and the high-order fine grid (128× 128) simulation for Reynolds number Re =
1000. This analysis aims to identify the optimal α value that strikes a balance between
computational efficiency and accuracy. Although values in the vicinity of 200 exhibit a
small RMSE, the overall optimal point, primarily based on clock time considerations, is
found to be α ∼ 95. For larger parameters, the code has difficulty converging and for
very large values, it fails to converge altogether. It is crucial to note that parameter α is
inherently case-specific, and further experimentation revealed its sensitivity to different
scenarios. For instance, when dealing with cross-section nudging at a consistent Reynolds
number, such as Re = 5000, which inherently presents convergence challenges, the chosen
α value did not converge. In stark contrast, convergence is attained for the vertical
centerline nudging under the same conditions. This underscores a significant drawback
of the nudging method, that it is not an automated process and relies heavily on user
input.

53

4.4. Nudging

Figure 4.23: Evaluation of Various α values for Re = 1000 based on Simulation
Time, Clock Time for Cross-Section Simulation on Grid 64× 64 and RSME for u

and v Profiles Compared to Back & Forth Sweep on Grid 128× 128

The optimal value of α ∼ 95 for cross-section nudging has been implemented for both
the vertical and horizontal centerline cases. In Figure 4.23, it can be observed that the
root mean square error remains relatively stable around this value and up to α ∼ 200.
This suggests that the effectiveness of the nudging technique is consistent across these
parameters. Consequently, it seems reasonable to infer that the other two nudging cases
do not demonstrate significant deviations.

In the following figures, the velocity profiles for each assimilation case are depicted.
Upon initial inspection, a striking improvement is evident in the nudged profiles compared
to the original linear interpolation simulation. This improvement signifies the nudging
term’s capability to compensate for flow physics that might not be accurately simulated
due to numerical errors. Notably, in all three cases, the nudged profiles closely match
the profiles derived from the simulation on the fine grid using the back & forth sweep
method, which was significantly more computationally expensive.

As expected, when using exclusively the set of observations from one centerline, the
corresponding velocity profile showed the most significant improvement. For instance,
when assimilating the u profile on the vertical centerline, the horizontal velocity exhibited
better results compared to the vertical velocity. However, it should be noted that even
though the vertical profile was not as accurately matched as the horizontal one, it still
showed considerable improvement compared to the poor linear interpolation case. This
is further confirmed by the comparative errors presented in Table 4.10, where the RMSE
values are approximately 8× smaller for the u profile and around 5× smaller for the
v profile, compared to the linear interpolation case. These substantial reductions in
RMSE highlight the effectiveness of the nudging technique in significantly enhancing
the accuracy of velocity profiles, particularly when utilizing observations from a single

54

4.4. Nudging

centerline. Additionally, nudging for the cross-section case yields the smallest overall
error, with a mere 1% difference compared to the back & forth sweep scheme on a finer
128× 128 grid.

Figure 4.24: Velocity Profiles at Cavity Centerlines for Nudging Location at
Vertical Centerline for Re = 1000, α = 95, ∆t = 0.005 sec

Figure 4.25: Velocity Profiles at Cavity Centerlines for Nudging Location at
Horizontal Centerline for Re = 1000, α = 95, ∆t = 0.005 sec

55

4.4. Nudging

Figure 4.26: Velocity Profiles at Cavity Centerlines for Nudging Location at the
Cross-Section for Re = 1000, α = 95, ∆t = 0.005 sec

Table 4.10: Comparative Error of Nudging Results for Grid 64× 64 to Back &
Forth Sweep Interpolation Method for Re = 1000, ∆t = 0.005 sec, Grid 128× 128

Case RMSE

U-Profile V-Profile

Linear Scheme 64× 64 0.084931 0.081421
Vertical Centerline Nudging 0.010477 0.016494

Horizontal Centerline Nudging 0.020177 0.011528
Cross-Sectional Nudging 0.010188 0.011308

Performing nudging techniques not only improved the accuracy of the solution, but it
also significantly lowered the time needed for the solution to reach a steady state. This
reduction in computational time is a crucial advantage, as it enhances the efficiency of
the simulation process. By effectively guiding the model towards a more accurate rep-
resentation of the flow dynamics, nudging minimizes the transient phase and accelerates
the convergence to a stable solution. This is evidenced by the simulation times needed by
each case, with the nudged cases requiring the least number of FFD cycles to converge. In
comparison to the original linear interpolation case conducted on the coarse grid, nudging
accelerated the simulation by a factor of 2 to 4, depending on the number of observation
values integrated into the simulation. Notably, cross-sectional nudging, which involves
the highest density of observation points, exhibited the swiftest convergence and lowest
clock time. Finally, given that the velocity profiles closely resemble the results of the back
& forth sweep method on the fine grid, a comparison of computational time is warranted.
Remarkably, nudging on cases with only one set of observations needed 11 − 13× less
computational resources, while cross-sectional performed 22× faster.

56

4.4. Nudging

Table 4.11: Simulation and Clock Time for the Nudging Cases for Re = 1000,
∆t = 0.005 sec

Case Simulation Time[sec] Clock Time [sec]

Back & Forth Sweep 128× 128 39.55 61.87
Linear Scheme 64× 64 39.055 11.13

Vertical Centerline Nudging 18.04 4.602
Horizontal Centerline Nudging 23.41 5.406

Cross-Sectional Nudging 10.64 2.832

With the relatively minor discrepancies between the nudged cases, the streamlines
appear similar. To better visualize the impact of nudging on the simulation, the velocity
streamlines of the cross-section nudged case are compared to the linear interpolation for
the same grid and the back & forth sweep method on 128× 128. In contrast to the linear
case, the nudged case effectively repositions the primary vortex closer to the geometric
center of the cavity, resulting in smaller lower vortices. Although the positioning resem-
bles that of the high-order case on the fine grid, there are notable differences, particularly
in the magnitude of the velocity, which affects the size of the bottom-right (BL1) vortex.
Overall, the nudged case proves to be a viable alternative to high-order schemes, even
when applied to coarser grids.

Figure 4.27: Velocity Streamlines for (a) Linear Scheme on Grid 64× 64 ; (b)
Cross-Section Nudging ; (c) Back & Forth Sweep on Grid 128× 128 for Re = 1000,

∆t = 0.005 sec

57

4.4. Nudging

In real-life scenarios and experimental testing, the number of measurement points is
often significantly fewer than the 17 points per velocity profile documented by Ghia et
al. [39]. In the following figures, the number of observed values has been reduced to
three points per cavity centerline, for two different testing locations (cases (a) and (b)).
Similar, to previous simulations, nudging is conducted on a 64×64 grid, employing linear
scheme interpolation for convection. Nonetheless, the results exhibit a poor performance
compared to prior cases. This is primarily due to the limited number of points, which
exerts a concentrated impact, affecting only a small subset of nodes in the mesh. Con-
sequently, the observed values induce a highly localized effect, influencing the flow solely
in close proximity to them. Ideally, it would be necessary to employ appropriate inter-
polating methods and weighting functions to distribute the observations across as many
cells as possible. Despite the nudged cases displaying a lower error when compared with
the linear case, the velocity profiles still lack smoothness and exhibit unnatural spikes
around the observation points. Additionally, the topology of the observation points sig-
nificantly affects the performance of nudging, as seen in Table 4.12, warranting further
investigation.

Table 4.12: Simulation and Clock Time and RMSE Compared to Back & Forth
Sweep on 128× 128 for the Nudging Cases (a) and (b) for Re = 1000, ∆t = 0.005 sec

Case Simulation
Time[sec]

Clock Time
[sec]

RMSE

Back & Forth Sweep 128× 128 39.55 61.87 −
Linear Scheme 64× 64 39.055 11.13 0.082906

Case (a) 33.535 10.35 0.053389
Case (b) 26.225 7.73 0.048756

Figure 4.28: Case (a) - Velocity Profiles at Cavity Centerlines for 3-Point Nudging
Locations at Cross-Section for Re = 1000, α = 200, ∆t = 0.005 sec

58

4.4. Nudging

Figure 4.29: Case (b) - Velocity Profiles at Cavity Centerlines for 3-Point Nudging
Locations at Cross-Section for Re = 1000, α = 200, ∆t = 0.005 sec

Figure 4.30: Velocity Streamlines for (a) Case (a) ; (b) Case (b) ; (c) Linear
Scheme on Grid 64× 64 (d) Back & Forth Sweep on Grid 128× 128 for Re = 1000,

∆t = 0.005 sec

59

5. Application: Street Canyon

5.1 Problem Description

In recent years, there has been a growing trend among researchers to employ Computa-
tional Fluid Dynamics (CFD) for modeling microclimates and addressing environmental
challenges in diverse urban settings, ranging from generic layouts to real-world cityscapes.
The analysis of aerodynamics in urban areas, driven by concerns such as air quality, pedes-
trian comfort, energy consumption of buildings, and the dispersion of contaminants, plays
a pivotal role in urban planning and design. For these reasons, researchers have exten-
sively studied street canyons using both wind tunnel experiments and numerical models.

Street canyons, formed by closely situated buildings around narrow streets in densely
populated cities, present unique challenges and opportunities for urban planners, as they
can significantly impact the dispersion of pollutants and traffic emissions due to buildings
hindering the wind flow. Consequently, it is crucial to gain accurate prediction of street
pollution when designing cities that prioritize optimal natural ventilation and comfort.

In 2D simulations, employing a T-shape domain is a widely adopted practice due to
its simplicity and computational efficiency, serving as a viable alternative to modeling a
complex array of buildings and street canyons. Figure 5.1 illustrates that in a sequence
of buildings, the flow fields tend to exhibit few differences beyond a certain number of
structures. The use of a T-shape configuration can yield comparable results and capture
the behavior in the downstream street canyons, albeit with slightly weaker flows [42].

Figure 5.1: Predicted Velocity Contour on the Vertical Centerplane of the Street
Canyon Model [42]

5.1.1 Boundary Conditions

Figure 5.2 shows a T-shape computational domain, the configuration of which is based
on the work of Xiaomin et al. [43]. The upstream side of the street canyon is called the
leeward wall with a height of H1, and the downstream side is the windward wall with a
height of H2. The ratios of these building heights, H1/H2, and the ratio to the canyon
width, H1/W , are common geometric parameters examined in street canyon simulations.

Regarding the boundary conditions, a no-slip boundary condition is enforced on the
wall surfaces, and wall functions are not employed. A symmetry plane is implemented at
the top of the domain to ensure a parallel flow; thus, the vertical component of velocity
is set to zero, and the fluxes of all other variables are also set to zero, preserving the

61

5.1. Problem Description

inflow velocity profile. At the domain entrance, a velocity inlet is implemented with a
Dirichlet condition for the horizontal velocity (u), either as a specified velocity profile or
a constant freestream velocity. At the outlet, the flow is assumed to be fully developed,
and a constant static pressure is applied. All other boundaries have a Neumann condition
for pressure, and the outlet serves as the reference point for the pressure level. In cases
where the gravity field is active, the outlet pressure must incorporate the hydrostatic
pressure +ρgh.

Figure 5.2: Boundary Conditions for the 2D Street Canyon Test

5.1.2 Mesh Configuration

The computational grid plays a pivotal role in ensuring the stability and accuracy of
discretization schemes employed in CFD solvers. A well-designed grid is essential to min-
imize errors, particularly in capturing critical physical phenomena like shear layers and
vortices. Achieving a fine resolution on the grid is crucial for an accurate representation
of these phenomena. This requires careful consideration of grid stretching or compres-
sion, especially in regions exhibiting high gradients near boundaries such as walls. To
maintain a low truncation error, it is advisable to limit grid stretching, and a recom-
mended maximum expansion ratio between two consecutive cells in high-gradient regions
is typically suggested to be below 1.3 − 1.5. Hoffmann and Chiang [44] proposed the
following stretching function for the y direction, which will be used for the placement of
the first node closest to the wall y1.

yi =
(2α + β)(β+1

β−1
)
γi−α

1−α + 2α− β

(2α + 1)
[
1 + (β+1

β−1
)
γi−α

1−α

] (5.1)

where:
γi = (i− 1)∆y

The rest of the refinement zone is defined by a geometric series, according to which,
the cell center is positioned at:

62

5.2. Numerical Solution of Fast Fluid Dynamics Algorithm

yi = G(1−Gi) +
yH
2
Gi (5.2)

where:
G: the growth factor of the geometric progression; estimated at ∼ 1.1
yH : the height of the first cell, closest to the wall (calculated by Hoffmann equation)

The total thickness of the refinement zone is:

yT =
N−1∑
k=1

yHG
k = yH

(
1−GN

1−G

)
(5.3)

where:
N : the total number of refinement layers

The C++ solver requires user-defined values for the cell size parameters, ∆x and ∆y,
which dictate the grid resolution in regions outside the refinement layers. In Figure 5.3,
an example mesh for cases H1/H2 = 1, H1/W = 1 with ∆x = ∆y = 0.0375 is presented.
It is important to note that the top boundary, outlet, and inlet sections do not undergo
any refinement treatment, in contrast to the dense mesh employed atop the walls and
within the confines of the street canyon. This strategic differentiation in mesh resolution
enhances computational efficiency and accuracy, concentrating computational resources
where they are most needed while maintaining a coarser grid in less critical regions.

Figure 5.3: Grid: ∆x = ∆y = 0.0375 m for H1/H2 = 1, H1/W = 1

5.2 Numerical Solution of Fast Fluid Dynamics Algorithm

5.2.1 Case: Allegrini Experiment

The primary objective of the street canyon case is to reproduce the findings documented in
the experimental study conducted by Allegrini et al. [45], wherein a street canyon with

63

5.2. Numerical Solution of Fast Fluid Dynamics Algorithm

a height ratio of H1/H2 = 1 for various Reynolds numbers and heating scenarios was
investigated. The experiments were carried out in a wind tunnel and the measurements
were extracted with a PIV method for the model in Figure 5.4. It is important to note
that this thesis specifically focuses on the isothermal case, where there is an absence of
buoyancy or turbulence induced by temperature differentials.

Figure 5.4: Dimensions of Wind Tunnel Model for Allegrini Experiment [45]

The employed solver utilizes the back & forth sweep interpolation method and incor-
porates two different turbulence models, as described in Chapter 2. The tested case is for
Reynolds number Re = 9000, which for a street canyon of height H = 0.2m, corresponds
to a freestream velocity ufreestream = 0.68m/s. To ensure a detailed capture of the physics
involved, a timestep of ∆t = 0.001 sec was chosen based on relevant literature.

The velocity profiles documented in Allegrini et al.’s work [45] were extracted to a
set of points using an online plotting tool and are presented in Figures 5.5 and 5.6.
These points will serve as the reference values for later comparisons and analyses. It’s
important to note that these data incorporate not only the experimental errors but also
any inaccuracies introduced by the plotting tool itself.

Figure 5.5: Normalized Horizontal Velocity on the Horizontal Centerline of the
Street Canyon for Re = 9000 Derived from Allegrini’s Experiment [42]

64

5.2. Numerical Solution of Fast Fluid Dynamics Algorithm

Figure 5.6: Normalized Vertical Velocity on the Vertical Centerline of the Street
Canyon for Re = 9000 Derived from Allegrini’s Experiment [42]

The velocity profiles and accompanying streamlines exhibit similarities to those ob-
served in the lid-driven case, investigated in Chapter 4. However, rather than being driven
by a moving lid, the motion within the canyon is induced by the shear force exerted by
the airflow above it. This airflow, aimed at simulating an urban landscape, introduces
turbulence, rendering the flow non-laminar, unlike the laminar conditions in the cavity
problem. Moreover, considering that the reference data stem from real-life experiments,
gravitational acceleration is also factored in, albeit with minimal influence on the overall
flow dynamics.

Figure 5.7: Velocity Streamlines for Isothermal Street Canyon Case and Re = 9000
Derived from Allegrini’s Experiment [42]

5.2.2 Turbulence Model vt = 100v

In this section, the efficiency of the turbulence model νt = 100ν is examined. Given that
the turbulent viscosity remains constant irrespective of spatial or temporal constraints,

65

5.2. Numerical Solution of Fast Fluid Dynamics Algorithm

the computational cost of this particular model is negligible compared to the laminar
case, which is its primary advantage.

The augmented viscosity utilized in the simulation serves as a stabilizing factor, akin to
the artificial viscosity technique. This augmentation effectively mitigates high-frequency
oscillations and averts numerical instabilities. Consequently, the solver is able to achieve
steady state convergence in ∼ 51 sec of simulation time in approximately 53 min. The
max recorded CFL number was 1.107.

Figure 5.8: Velocity Contour of Simulation Domain for Turbulence Model
vt = 100v, Re = 9000, ∆t = 0.001 sec

The multiplication of viscosity by a factor of 100 has a dual effect. While it helps
in stabilizing the flow to achieve a steady solution, it significantly alters the Reynolds
number of the case. The model essentially, simulates a flow with a Reynolds number at
approximately ∼ 90, where viscous forces dominate, resembling laminar flow character-
istics. This is evidenced by the boundary layer created, along the flow in the domain, as
illustrated in Figure 5.8. At lower Reynolds numbers, such as in this case, the boundary
layer remains laminar, and the streamwise velocity undergoes uniform changes as one
moves away from the wall. Additionally, the thickness of the boundary layer appears to
be larger than expected for the conditions being examined.

In Figure 5.9, the velocity streamlines are depicted and a notable deviation from the
findings of Allegrini et al. [45] is observed. In their study, the primary vortex is situated
near the geometric center of the cavity. In contrast, the FFD solver manages to align
the vortex with the vertical axis but struggles to do so with the horizontal axis. This
discrepancy primarily arises from the unresolved lower bottom eddies by the solver. One
would anticipate the presence of three eddies—two at the bottom of the canyon and
one in the top left corner. Nevertheless, in this instance, only the lower-right vortex
manifests, albeit with significant disparities in size compared to the experimental setup.
Additionally, there’s a noticeable difference in the velocity magnitude, with the FFD
flow exhibiting substantially lower velocities. This discrepancy in velocity magnitude
could be attributed to the excessive damping imposed by the turbulence model and the
semi-Lagrangian scheme utilized in the simulation.

66

5.2. Numerical Solution of Fast Fluid Dynamics Algorithm

Figure 5.9: Velocity Streamlines for Turbulence Model vt = 100v, Re = 9000,
∆t = 0.001 sec

Figure 5.10: Velocity Profiles for Turbulence Model vt = 100v, Re = 9000,
∆t = 0.001 sec

67

5.2. Numerical Solution of Fast Fluid Dynamics Algorithm

This is further evidenced by the velocity profiles in Figure 5.10, where the velocities
are observed to be 2 − 3× smaller than the maximum velocity recorded in Allegrini’s
[45] work. Moreover, the displacement of the primary vortex is also noticeable in the
u profile by the peak value’s placement. Although the v profile captures the nature of
the vortex, there is a significant difference in magnitude compared to the experimental
results. Lastly, the treatment of the walls appears different, with the FFD capturing
smaller velocity gradients near the walls.

5.2.3 Zero Equation Turbulence Model

Contrary to the simplified νt = 100ν turbulence model, which assumes a constant tur-
bulent viscosity throughout the flow domain, the zero equation model offers a more so-
phisticated approach by considering the actual flow dynamics and behavior. This model,
also known as the algebraic turbulence model, is termed “zero equation” because it di-
rectly solves for the turbulent viscosity without explicitly solving any additional transport
equations. The equation is reiterated here for clarity.

νt = 0.03874 L U (5.4)

where:
L: a length scale
U : the local mean velocity

During the model testing phase, a series of simulations were conducted across a range
of refinement levels in mesh resolution and timesteps. However, a notable challenge
emerged as the model failed to attain a steady-state solution, primarily due to pronounced
oscillations in the flow above the street canyon, particularly within the shearing zone. The
final results cover a simulation time of up to 90 sec and required approximately 102min
to compute. The maximum CFL number recorded during the simulation was 1.26.

Figure 5.11: Velocity Contour for Zero Equation Turbulence Model, Re = 9000,
∆t = 0.001 sec

68

5.2. Numerical Solution of Fast Fluid Dynamics Algorithm

In contrast to the previous turbulence model, there’s a marked difference in the bound-
ary layer formed on the walls downstream of the canyon. Notably, the boundary layer’s
height is significantly reduced, primarily attributed to the higher Reynolds value. This
reduction highlights a more accurate representation of the flow’s dynamics, indicating
improved resolution and capturing of turbulent effects.

Significant improvements are also evident in the behavior of the flow inside the street
canyon, as shown in the streamlines in Figure 5.12 for the time moment 90 sec. The
positioning of the primary vortex at the geometric center of the cavity closely resembles
the findings of Allegrini et al.’s experiment [45]. Additionally, the model adeptly captures
the existence of three additional eddies situated at the corners of the street canyon,
mirroring the experimental setup. However, it’s important to note that while the general
placement of these vortices corresponds to the experiment, there are noticeable differences
in their strength and size compared to the observed data.

In Figure 5.13, the velocity streamlines for the last 10 sec of the simulation are pre-
sented. While the primary vortex remains stable in its position, consistent with Allegrini’s
[45] results, the three additional vortices exhibit constant fluctuations. Of particular note
is the upper-left vortex, situated in the shearing region of the flow, where these fluctua-
tions are most prominent. It is also evident that these fluctuations follow an almost peri-
odic pattern. For example, the velocity streamlines for times 80 sec, 83 sec, 87 sec, 90 sec
display similar vortex geometries and placements.

Finally, the velocity profiles in Figure 5.14 suggest that the model tends to overesti-
mate the turbulence within the flow, as evidenced by velocity magnitudes that are 2−4×
greater than expected. Particularly affected is the profile of the horizontal velocity u,
which deviates significantly from the anticipated behavior, especially within the shearing
zone. However, contrary to the νt = 100ν turbulence model, the velocity at the bottom
wall of the cavity aligns well with experimental observations, as does the center of the vor-
tex, where u = 0. Regarding the profile of the v component of the velocity, although its
magnitude appears higher in comparison, it adeptly captures the general behavior of the
flow. Specifically, the linear portion of the plot, representing the primary vortex, closely
mirrors the corresponding positions observed in the experiments, particularly along the
windward wall.

Figure 5.12: Velocity Streamlines for Zero Equation Turbulence Model, Re = 9000,
T = 90 sec, ∆t = 0.001 sec

69

5.2. Numerical Solution of Fast Fluid Dynamics Algorithm

Figure 5.13: Velocity Streamlines for Various Timesteps for Zero Equation
Turbulence Model, Re = 9000, ∆t = 0.001 sec

70

5.3. Performance Analysis

Figure 5.14: Velocity Profiles for Various Timesteps for Zero Equation Turbulence
Model, Re = 9000, ∆t = 0.001 sec

5.3 Performance Analysis

5.3.1 OpenFOAM Simulation

For the OpenFoam simulation, the k − ϵ turbulence model was utilized, requiring the
solution of two additional equations for kinetic energy (k) and its dissipation (ϵ). This
specific model is computationally demanding, making it challenging to compare directly
with the turbulence model integrated into the FFD algorithm. Nevertheless, the results
are presented here to underscore the discrepancy in accuracy between k − ϵ and the
previous turbulence models. The OpenFOAM simulation was performed for 85 sec.

Similar to the zero equation model, the OpenFOAM simulation fails to converge to a
steady-state solution. This issue becomes evident in Figure 5.15,where the initial residuals
oscillate, indicating the inherent unsteadiness of the problem. However, despite this
convergence issue, the velocity profiles and streamlines closely resemble those observed
in the experimental work conducted by Allegrini et al. [45].

71

5.3. Performance Analysis

Figure 5.15: Velocity Residuals for OpenFOAM Simulation for Turbulence Model
k − ϵ, Re = 9000, ∆t = 0.001 sec

The velocity streamlines mirror those depicted in Figure 5.7, exhibiting similar char-
acteristics in terms of velocity magnitude and vortex formation. The freestream flow
appears detached from the flow within the street canyon, leading to a distinct behavior
where the u velocity component becomes nearly parallel in the upper region, akin to the
lid-driven cavity benchmark. However, despite the similarities, it’s worth noting that
even the k − ϵ model struggles to perfectly match the velocity profiles observed in the
actual flow.

Figure 5.16: Velocity Contour for OpenFOAM Simulation for Turbulence Model
k − ϵ, Re = 9000, ∆t = 0.001 sec

72

5.3. Performance Analysis

Figure 5.17: Velocity Streamlines for OpenFOAM Simulation for Turbulence Model
k − ϵ, Re = 9000, ∆t = 0.001 sec

Figure 5.18: Velocity Profiles for OpenFOAM Simulation for Turbulence Model
k − ϵ, Re = 9000, ∆t = 0.001 sec

73

5.3. Performance Analysis

5.3.2 Performance Evaluation

To effectively compare the performance of each turbulence model, especially considering
the unsteadiness of the simulation, the analysis focuses on the initial 1000 timesteps,
corresponding to the first 1 sec of the simulation. It is worth noting again that the FFD
algorithm utilizes the back & forth sweep interpolation method, which was introduced in
Chapter 2.

In Table 5.1, the clock times for each turbulence model are recorded under identical
grid resolution and simulation parameters. It is observed that there is no significant
difference in time between the laminar case and the νt = 100ν turbulence model, as
expected. However, when employing the zero-equation model, there is an increase of 8.8%
in computational cost. This additional cost arises from the extra calculations needed to
interpolate the velocity at each mesh node for the velocity magnitude required by the
model. Similarly, OpenFOAM’s k − ϵ model exhibits the highest computational cost
among all models. However, it is noteworthy that the computational costs of the two
latter models are surprisingly close in terms of clock time, which may require further
investigation.

Table 5.1: Clock Time for Simulations with Different Turbulence Models for the
First 1000 Timesteps and Re = 9000, ∆xmax = 0.035m, 28321 Cells, ∆t = 0.001 sec

Turbulence Model Case Clock Time[sec]

FFD Laminar Case 61.01
νt = 100ν 60.07

Zero Equation Model 66.37
OpenFOAM k − ϵ 67.48

Table 5.2: Computational Cost of Each of FFD’s Algorithm Step for Simulations for
the First 1000 Timesteps and Re = 9000, ∆xmax = 0.035m, 28321 Cells,

∆t = 0.001 sec

Turbulence Model
Case

Diffusion
[sec]

Convection
[sec]

Pressure
Correc-
tion [sec]

Pressure
Gradient
[sec]

Clock
Time [sec]

FFD Laminar Case
2.473
3.92 %

57.396
91.08 %

1.651
2.62 %

0.278
0.44 %

63.02
−

νt = 100ν
3.162
5.09 %

55.864
89.96 %

1.619
2.61 %

0.274
0.44 %

62.1
−

Zero Equation Model
8.187

12.02 %
56.731
83.27 %

1.668
2.45 %

0.297
0.44 %

68.13
−

In Chapter 4, where the cavity benchmark was investigated, the FFD solver was
found to be approximately 30% faster than OpenFOAM. However, this trend does not
seem to hold true in the current analysis. Upon examining each of FFD’s individual steps
in Table 5.2, it was found that the convection step demonstrated a dramatic increase in
computational cost, requiring approximately 87% of the total computational cost. This is
in stark contrast to the lid-driven cavity application, where the convection step accounted

74

5.4. Nudging

for only about 55% of the total computational cost. Such a significant difference indicates
that the coding of the convection library may be suboptimal, as the performance of the
code deteriorates significantly as the number of nodes increases.

To conduct a fair comparison between the FFD and OpenFOAM solvers, the turbu-
lence models are omitted, and the laminar case is simulated with identical parameters
and grid resolutions. Doubling the number of nodes from the previous comparison, it be-
comes apparent that the computational cost of the FFD algorithm not only matches but
exceeds that of OpenFOAM by almost twofold. Notably, the convection step accounts
for approximately 95% of the total clock time. This discrepancy underscores a significant
performance issue with the current FFD solver, particularly when dealing with larger
grid sizes.

Table 5.3: Clock Time for Laminar Case Simulations for the First 1000 Timesteps
and Re = 9000, Uniform Grid: ∆x = 0.02m, 46166 Cells, ∆t = 0.001 sec

Laminar Case’s Solver Clock Time[sec]

FFD 95.81
OpenFOAM 41.66

5.4 Nudging

The implementation of the nudging method aims to assess the potential improvement in
the physical representation of the flow by assimilating Allegrini’s [45] experimental data.
In Chapter 4, it was established that nudging effectively compensated for inaccuracies
in FFD and expedited convergence towards a steady-state solution, and employing a
greater number of observation points during the nudging process resulted in accelerated
convergence.

In the street canyon application, both velocity profiles from Allegrini’s [45] experi-
ments are assimilated for each turbulence model to assess the impact of nudging on the
solution. However, to mitigate computational costs, the linear interpolation scheme is
employed during the semi-Lagrangian method in the convection equation, which intro-
duces an additional level of numerical inaccuracies. Despite the inherent limitations of the
linear interpolation scheme, the RMS error values presented in Table 5.4 are comparable
to those achieved using the high-order back & forth sweep method.

Nudging is applied to both turbulence models discussed in the preceding section.
However, for the zero-equation model, which failed to attain a steady-state solution and is
computationally demanding, nudging is implemented primarily for the sake of inclusivity.
It’s worth noting that nudging relies on the experimental data provided by Allegrini et
al.[45], extracted from Figures 5.5 and 5.6, comprising approximately of 30 observation
points for each velocity profile.

For the νt = 100ν turbulence model, a few values of parameter α are investigated for
the cross sectional nudging. It is crucial to emphasize that when comparing the nudging
source term to the source term of the diffusion equation, their magnitudes are of similar
size, with the nudging source term being consistently smaller than the source term. This
observation indicates that nudging neither eliminates the original diffusion equation nor
imposes boundary conditions akin to a identity equation.

In Figure 5.19, the nudged equations exhibit a significant improvement compared to

75

5.4. Nudging

the original simulation. As expected, increasing the parameter α yields better results
in velocity profiles, as the nudged source term gradually outweighs the diffusion source
term. However, neither the simulation time nor the RMSE demonstrate a significant
improvement proportional to the increase in α, as shown in Table 5.4. What remains
significant is the reduction in total error by approximately 3−6×, coupled with achieving
convergence in fewer iterations.

Table 5.4: Simulation Time and RMSE for Nudged Cases for Turbulence Model
νt = 100ν, Re = 9000, ∆t = 0.001 sec

Nudging Parameter α Simulation Time[sec] RMSE

500 43.976 0.024477
1000 41.404 0.019207
1250 38.62 0.017949
2500 37.253 0.015143

Linear Case (α = 0) 58.960 0.091278
Back & Forth Sweep Case (α = 0) 51.051 0.090657

Figure 5.19: Velocity Profiles for Cross-Sectional Nudging Simulation for
Turbulence Model νt = 100ν, Re = 9000, ∆t = 0.001 sec

76

5.4. Nudging

Despite achieving good agreement in the velocity profiles with the experimental data,
the velocity streamlines highlight a weakness in the model. A comparison with Allegrini’s
[45] velocity contour in Figure 5.7 reveals that the nudged simulations fail to capture the
lower left vortex, a similar limitation observed in the non-nudged FFD simulation utilizing
the same turbulence model. This discrepancy could be attributed to the concentration
of observation points along the centerlines of the street canyon, resulting in a lack of
additional information for locations farther away. Secondly, it’s plausible that the nudging
process isn’t fully capable of bypassing the underlying physics of the flow, potentially
being overruled by the effects of the current turbulence model.

Figure 5.20: Velocity Streamlines for Cross-Sectional Nudging Simulation for
Turbulence Model vt = 100v, Re = 9000, ∆t = 0.001 sec, α = 2500

Furthermore, restricting the nudging to either the u or v profile yields the antici-
pated outcomes, with the corresponding velocity profile exhibiting the most significant
improvement. However, this doesn’t imply that the other non-nudged velocity component
remains unaffected and does not show improvement. Table 5.5 highlights this, where the
RMSE compared to the experimental data is very small for both velocity components,
but notably smaller for the nudged profile.

Table 5.5: Simulation Time and RMSE Compared to Allegrini’s Data [45] for
Nudged Cases and for Turbulence Model νt = 100ν, Re = 9000, ∆t = 0.001 sec,

α = 2500

Case Simulation
Time[sec]

RMSE

U-Profile V-Profile

Vertical Centerline
Nudging (Nudged u)

38.496 0.018299 0.056315

Horizontal Centerline
Nudging (Nudged v)

36.967 0.038052 0.013831

Cross-Sectional Nudging 37.253 0.016751 0.013536
Linear Case (α = 0) 58.960 0.088309 0.094248
Back & Forth Sweep

Case (α = 0)
51.051 0.087422 0.093893

77

5.4. Nudging

Figure 5.21: Velocity Profiles for Vertical (a) and Horizontal (b) Centerline Nudging
Simulation for Turbulence Model νt = 100ν, Re = 9000, ∆t = 0.001 sec, α = 2500

Figure 5.22: Velocity Streamlines for Vertical (a) and Horizontal (b) Centerline
Nudging Simulation for Turbulence Model νt = 100ν, Re = 9000, ∆t = 0.001 sec,

α = 2500

78

5.4. Nudging

By limiting the number of nudging locations to 9 points per velocity profile, con-
vergence is achieved at approximately the same simulation time, as the cross-sectional
nudging case. However, the RMSE increases, indicating that the velocity profiles start to
deviate from the experimental data. Similar to the lid-driven cavity, the profiles exhibit
unnatural spikes in the observation points vicinity and struggle to match the original
experimental values. It is reasonable to assume that further reducing the number of ob-
servation points would exacerbate the discrepancy between simulation and experiment.

Table 5.6: Simulation Time and RMSE Compared to Allegrini’s Data [45] for
9-Point Nudging and Cross-Sectional for Turbulence Model νt = 100ν, Re = 9000,

∆t = 0.001 sec, α = 2500

Case Simulation
Time[sec]

RMSE

U-Profile V-Profile

9-Point Nudging 37.07 0.022860 0.021672
Cross-Sectional Nudging 37.253 0.016751 0.013536
Linear Case (α = 0) 58.960 0.088309 0.094248
Back & Forth Sweep

Case (α = 0)
51.051 0.087422 0.093893

Figure 5.23: Velocity Profiles for 9-Point Nudging Simulation for Turbulence Model
νt = 100ν, Re = 9000, ∆t = 0.001 sec, α = 2500

79

5.4. Nudging

Utilizing 3 points for each velocity profile, nudging is performed at two distinct loca-
tions. Table 5.7 illustrates the RMS errors in comparison to those reported by Allegrini
et al. [45]. Notably, while the error reduction is evident when compared to the linear and
back-and-forth sweep interpolation methods, the extent of improvement is somewhat less
pronounced in contrast to cross-sectional nudging utilizing all observation points.

Table 5.7: Simulation Time and RMSE Compared to Allegrini’s Data [45] for
3-Point Nudging for Turbulence Model νt = 100ν, Re = 9000, ∆t = 0.001 sec,

α = 2500

Case Simulation
Time[sec]

RMSE

U-Profile V-Profile

Cross-Sectional Nudging 37.253 0.016751 0.013536
Case (a) 47.529 0.058392 0.082697
Case (b) 50.779 0.075421 0.084974

Linear Case (α = 0) 58.960 0.088309 0.094248
Back & Forth Sweep

Case (α = 0)
51.051 0.087422 0.093893

Figure 5.24: Velocity Streamlines for (a) Case (a) ; (b) Case (b) ; (c) Back & Forth
Sweep ; (d) Cross-Sectional Nudging for Turbulence Model νt = 100ν, Re = 9000,

∆t = 0.001 sec, α = 2500; (e) Allegrini Case [45]

80

5.4. Nudging

Figure 5.25: Case (a) - Velocity Profiles for 3-Point Nudging Simulation for
Turbulence Model νt = 100ν, Re = 9000, ∆t = 0.001 sec, α = 2500

Figure 5.26: Case (b) - Velocity Profiles for 9-Point Nudging Simulation for
Turbulence Model νt = 100ν, Re = 9000, ∆t = 0.001 sec, α = 2500

81

5.4. Nudging

The velocity profiles depicted in Figures 5.25 and 5.26 reveal poor performance of
the nudging technique. The profiles fail to align with all the observation points used
in the process and exhibit local peaks around these points. Furthermore, the profiles
demonstrate high levels of unnatural behavior, a characteristic also confirmed by the ve-
locity contours. Interestingly, although case (a) yields a lower RMSE, the overall results
are inferior compared to case (b). This suggests that RMSE alone may not be a reliable
metric for assessing the effectiveness of the nudging technique. Finally, it’s worth not-
ing that the positioning of the nudging points has a dramatic impact on the flow behavior.

For the zero equation model, nudging was applied in conjunction with the cross-
sectional data using a nudging parameter of α = 1000. However, the simulation failed
to converge due to repetitive instabilities occurring in the shearing zone of the flow,
particularly on top of the street canyon. This instability is apparent in the velocity
profiles depicted in Figure 5.27, where the profiles for different timesteps align well with
the experimental data and with each other, except for the horizontal profile at the top.

Figure 5.27: Velocity Profiles for Cross-Sectional Nudging Simulation for Zero
Equation Turbulence Model, Re = 9000, ∆t = 0.001 sec, α = 1000

82

5.4. Nudging

In contrast, the velocity streamlines shown in Figure 5.28 reveal an unexpected result.
While the zero equation model was able to capture the lower left vortex in the FFD
simulation using the back-and-forth sweep interpolation method, the nudged simulation
fails to do so. This discrepancy could stem from the lower-order scheme used or from
limitations inherent in the nudging process itself. Nevertheless, despite this difference,
the streamlines match well with Allegrini’s [45] streamlines in Figure 5.7 in terms of
magnitude, thereby highlighting the weakness of νt = 100ν turbulence model.

Figure 5.28: Velocity Streamlines for Cross-Sectional Nudging Simulation for Zero
Equation Turbulence Model, Re = 9000, ∆t = 0.001 sec, α = 1000

83

6. Conclusions and Future Work

6.1 Summary & Conclusions

In this thesis, an innovative Fast Fluid Dynamics (FFD) solver was developed using
C++. The primary objective was to investigate the effectiveness of coupling this solver
with a data assimilation technique known as nudging to enhance the accuracy of fluid
flow simulations.

Initially, the focus was on developing and validating the FFD solver. It underwent
rigorous testing using a lid-driven cavity benchmark, which is a common test case in
computational fluid dynamics. The solver demonstrated exceptional performance in terms
of both flow accuracy and computational speed, attributed to a novel back-and-forth
interpolating scheme in the semi-Lagrangian method. Notably, it even outperformed
corresponding simulations conducted using OpenFOAM, a widely used open-source CFD
software package. Moreover, the solver demonstrated excellent stability across various
time steps, thanks to the semi-Lagrangian scheme employed in the convection equation.

With the solver’s robust performance established, the subsequent step involved inte-
grating nudging algorithms into the solver framework. This allowed for the investigation
of how nudging could further improve the accuracy of fluid flow simulations by assimilat-
ing observational data into the model. The results verified that nudging was capable of
compensating for the numerical errors of computational solutions and was able to guide
the solution to mirror the results of well documented fine-grid simulations. The results
indicated that nudging effectively compensated for numerical errors in computational so-
lutions and guided the solution to closely match results from well-documented fine-grid
simulations. However, determining the optimal nudging parameter, α, required a trial-
and-error approach. Furthermore, narrowing down the number of observation points used
during nudging was explored, revealing a decrease in the method’s efficiency. Although
results still exhibited smaller errors, the positioning and topology of observation points
were found to be critical factors influencing the effectiveness of the nudging method.

The process was repeated for a second application, focusing on an urban street canyon,
where two different turbulence models were investigated. Unfortunately, both models
exhibited poor results, attributed to either excessive damping of the flow or inherent in-
stability in turbulence modeling. Additionally, during this investigation, the FFD solver
demonstrated poor computational efficiency. It was observed that as the number of nodes
in the mesh increased, the solver’s performance gradually deteriorated. This degradation
in performance was primarily due to challenges related to the convection equation. De-
spite the solver’s initial success in the lid-driven cavity benchmark, the complexities of
urban flow dynamics posed significant challenges that the solver struggled to effectively
address. Even when assimilating experimental data through nudging, the solver success-
fully matched the velocity profiles in the canyon’s centerlines but failed to correct the
rest of the flow. This observation underscores the importance of both the placement and
number of observation points in nudging. It highlights the nuanced nature of data assimi-
lation techniques and the need for careful consideration of observational data distribution
to effectively guide simulations.

85

6.2. Future Work

6.2 Future Work

Based on the analyses conducted in the present thesis, several areas warrant further
investigation for future research. First and foremost, enhancing the computational effi-
ciency of the proposed C++ solver is imperative. One promising avenue for achieving
this goal is to implement a more efficient solver for solving the elliptic equations, such as
the multigrid method. Moreover, addressing the computational demands associated with
the convection equation is crucial. This aspect of the FFD solver appears to consume
the most computational resources and therefore requires a thorough debugging session to
identify and rectify any bottlenecks in the processes. Once these issues have been pin-
pointed and addressed, optimizing the convection equation to run in parallel could lead
to a substantial improvement in the solver’s performance. Parallelization would allow for
more efficient utilization of computational resources, potentially resulting in significant
speedups and improved scalability.

In terms of accuracy, non-laminar applications pose a significant challenge. Exploring
alternative turbulence models is necessary to improve solver accuracy in such scenarios.
Wall functions could be a computationally efficient approach to handle boundary layers
without requiring excessively fine grid resolutions near the boundaries. Additionally, in-
corporating literature proposals such as finite volume methods or artificial compressibility
corrections could enhance model accuracy. These approaches offer potential solutions to
improve the representation of complex flow phenomena and should be pursued to ensure
the solver’s reliability across a broader range of applications.

Furthermore, extending the FFD solver to 3D cases and non-structured meshes is
essential for its applicability to a wider range of real-world problems. This expansion
would enable the solver to handle more complex geometries and flow patterns, enhancing
its versatility and usefulness in various engineering problems.

Finally, the nudging process requires further fine-tuning. The selection of the nudging
parameter, α, appears to be particularly challenging as it is highly case-specific and cannot
be automatically determined. There is a need to devise a method for selecting the optimal
value without incurring significant additional computational costs. Additionally, in all
the simulations presented in the thesis, nudging was performed using steady-state data.
Exploring the possibility of incorporating real-time measurements from observations and
running the solver simultaneously should be investigated. This approach could potentially
lead to better predictive capabilities and more reliable results, as the simulation would
be dynamically updated.

86

Bibliography

[1] J. Stam, “Stable Fluids,” ACM SIGGRAPH 99, vol. 1999, 11 2001. [Online].
Available: https://www.researchgate.net/publication/2486965 Stable Fluids

[2] A. Staniforth and J. Côté, “Semi-Lagrangian Integration Schemes for Atmospheric
Models—A Review,” Monthly Weather Review, vol. 119, no. 9, pp. 2206 – 2223,
1991. [Online]. Available: https://journals.ametsoc.org/view/journals/mwre/119/
9/1520-0493 1991 119 2206 slisfa 2 0 co 2.xml

[3] N. Max, R. Crawfis, and D. Williams, “Visualizing Wind Velocities by Advecting
Cloud Textures,” Proceedings Visualization ’92, pp. 179–184, 4 1992. [Online].
Available: https://ieeexplore.ieee.org/document/235210

[4] R. Fedkiw, J. Stam, and H. Jensen, “Visual Simulation of Smoke,” SIGGRAPH
’01: Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques, pp. 15–22, 06 2001. [Online]. Available: https:
//dl.acm.org/doi/10.1145/383259.383260

[5] Harris and Mark, “Real-Time Cloud Simulation and Rendering,” 07 2005. [Online].
Available: https://www.researchgate.net/publication/262285593 Real-time Cloud
Simulation and Rendering

[6] W. Zuo and Q. Chen, “Real-Time or Faster-than-Real-Time Sim-
ulation of Airflow in Buildings,” Indoor Air, vol. 19, pp. 33–
44, 03 2009. [Online]. Available: https://www.researchgate.net/publication/
23976130 Real-time or faster-than-real-time simulation of airflow in buildings

[7] W. Zuo, J. Hu, and Q. Chen, “Improvements in FFD Model-
ing by Using Different Numerical Schemes,” Numerical Heat Trans-
fer Part B-fundamentals, vol. 58, pp. 1–16, 08 2010. [Online]. Avail-
able: https://www.researchgate.net/publication/263407897 Improvements of Fast
Fluid Dynamics for Simulating Air Flow in Buildings

[8] W. Zuo and Q. Chen, “Simulations of Air Distributions in Buildings by
FFD on GPU,” HVAC&R Research, vol. 16, pp. 785–798, 11 2010. [Online].
Available: https://www.researchgate.net/publication/254306414 Simulations of
Air Distributions in Buildings by FFD on GPU

[9] W. Liu, R. You, J. Zhang, and Q. Chen, “Development of a Fast Fluid
Dynamics-Based Adjoint Method for the Inverse Design of Indoor Environments,”
Journal of Building Performance Simulation, vol. 10, pp. 1–18, 11 2016. [Online].
Available: https://www.tandfonline.com/doi/abs/10.1080/19401493.2016.1257654

[10] Y. Xue and W. Liu, “Inverse Design of Built Environment by a Fast
Fluid Dynamics-based Genetic Algorithm,” 01 2019, pp. 2880–2885. [Online].
Available: https://www.researchgate.net/publication/342385454 Inverse Design of
Built Environment by a Fast Fluid Dynamics-based Genetic Algorithm

https://www.researchgate.net/publication/2486965_Stable_Fluids
https://journals.ametsoc.org/view/journals/mwre/119/9/1520-0493_1991_119_2206_slisfa_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/mwre/119/9/1520-0493_1991_119_2206_slisfa_2_0_co_2.xml
https://ieeexplore.ieee.org/document/235210
https://dl.acm.org/doi/10.1145/383259.383260
https://dl.acm.org/doi/10.1145/383259.383260
https://www.researchgate.net/publication/262285593_Real-time_Cloud_Simulation_and_Rendering
https://www.researchgate.net/publication/262285593_Real-time_Cloud_Simulation_and_Rendering
https://www.researchgate.net/publication/23976130_Real-time_or_faster-than-real-time_simulation_of_airflow_in_buildings
https://www.researchgate.net/publication/23976130_Real-time_or_faster-than-real-time_simulation_of_airflow_in_buildings
https://www.researchgate.net/publication/263407897_Improvements_of_Fast_Fluid_Dynamics_for_Simulating_Air_Flow_in_Buildings
https://www.researchgate.net/publication/263407897_Improvements_of_Fast_Fluid_Dynamics_for_Simulating_Air_Flow_in_Buildings
https://www.researchgate.net/publication/254306414_Simulations_of_Air_Distributions_in_Buildings_by_FFD_on_GPU
https://www.researchgate.net/publication/254306414_Simulations_of_Air_Distributions_in_Buildings_by_FFD_on_GPU
https://www.tandfonline.com/doi/abs/10.1080/19401493.2016.1257654
https://www.researchgate.net/publication/342385454_Inverse_Design_of_Built_Environment_by_a_Fast_Fluid_Dynamics-based_Genetic_Algorithm
https://www.researchgate.net/publication/342385454_Inverse_Design_of_Built_Environment_by_a_Fast_Fluid_Dynamics-based_Genetic_Algorithm

Bibliography

[11] W. Tian, J. Vangilder, X. Han, C. Healey, M. Condor, and W. Zuo, “A
New Fast Fluid Dynamics Model for Data-Center Floor Plenums,” vol. 125,
no. 1, 01 2019. [Online]. Available: https://www.researchgate.net/publication/
330542284 A New Fast Fluid Dynamics Model for Data-Center Floor Plenums

[12] T. Dai, S. Liu, J. Liu, N. Jiang, W. Liu, and Q. Chen, “Evaluation of
Fast Fluid Dynamics with Different Turbulence Models for Predicting Outdoor
Airflow and Pollutant Dispersion,” Sustainable Cities and Society, vol. 77, p.
103583, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S2210670721008489

[13] H. Kato and S. Obayashi, “Integration of CFD and Wind Tunnel by Data
Assimilation,” Journal of Fluid Science and Technology, vol. 6, no. 5, pp. 717–728,
2011. [Online]. Available: https://www.jstage.jst.go.jp/article/jfst/6/5/6 5 717/
article/-char/en

[14] M. Asch, M. Bocquet, and M. Nodet, Data Assimilation. Philadelphia, PA:
Society for Industrial and Applied Mathematics, 2016. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9781611974546

[15] M. Meldi and A. Poux, “A Reduced Order Model based on Kalman
Filtering for Sequential Data Assimilation of Turbulent Flows,” Journal of
Computational Physics, vol. 347, pp. 207–234, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0021999117304965

[16] H. Kato and S. Obayashi, “Integration of CFD and Wind Tunnel by Data
Assimilation,” Journal of Fluid Science and Technology, vol. 6, no. 5, pp. 717–728,
2011. [Online]. Available: https://www.jstage.jst.go.jp/article/jfst/6/5/6 5 717/
article/-char/en

[17] P. Chandramouli, E. Memin, and D. Heitz, “4D Large Scale Variational Data
Assimilation of a Turbulent Flow with a Dynamics Error Model,” Journal
of Computational Physics, vol. 412, p. 109446, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0021999120302205

[18] S. Symon, N. Dovetta, B. McKeon, D. Sipp, and P. Schmid, “Data Assimilation
of Mean Velocity from 2D PIV Measurements of Flow over an Idealized Airfoil,”
Experiments in Fluids, vol. 58, 04 2017.

[19] T. Hayase and S. Hayashi, “State Estimator of Flow as an Integrated Computational
Method With the Feedback of Online Experimental Measurement,” Journal of
Fluids Engineering, vol. 119, no. 4, pp. 814–822, 12 1997. [Online]. Available:
https://doi.org/10.1115/1.2819503

[20] K. Imagawa and T. Hayase, “Numerical Experiment of Measurement-Integrated
Simulation to Reproduce Turbulent Flows with Feedback Loop to Dynamically
Compensate the Solution using Real Flow Information,” Computers & Fluids,
vol. 39, no. 9, pp. 1439–1450, 2010. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S004579301000099X

https://www.researchgate.net/publication/330542284_A_New_Fast_Fluid_Dynamics_Model_for_Data-Center_Floor_Plenums
https://www.researchgate.net/publication/330542284_A_New_Fast_Fluid_Dynamics_Model_for_Data-Center_Floor_Plenums
https://www.sciencedirect.com/science/article/pii/S2210670721008489
https://www.sciencedirect.com/science/article/pii/S2210670721008489
https://www.jstage.jst.go.jp/article/jfst/6/5/6_5_717/_article/-char/en
https://www.jstage.jst.go.jp/article/jfst/6/5/6_5_717/_article/-char/en
https://epubs.siam.org/doi/abs/10.1137/1.9781611974546
https://www.sciencedirect.com/science/article/pii/S0021999117304965
https://www.jstage.jst.go.jp/article/jfst/6/5/6_5_717/_article/-char/en
https://www.jstage.jst.go.jp/article/jfst/6/5/6_5_717/_article/-char/en
https://www.sciencedirect.com/science/article/pii/S0021999120302205
https://doi.org/10.1115/1.2819503
https://www.sciencedirect.com/science/article/pii/S004579301000099X
https://www.sciencedirect.com/science/article/pii/S004579301000099X

Bibliography

[21] M. Zauner, V. Mons, O. Marquet, and B. Leclaire, “Nudging-Based Data
Assimilation of the Turbulent Flow around a Square Cylinder,” Journal
of Fluid Mechanics, vol. 937, p. A38, 2022. [Online]. Available: https:
//hal.science/hal-03709219

[22] J. H. Ferziger, M. Perić, and R. L. Street, Computational Methods for Fluid Dy-
namics. Springer International Publishing, 2020, p. 426. [Online]. Available: https:
//link.springer.com/book/10.1007/978-3-642-56026-2#bibliographic-information

[23] S. Konangi, N. K. Palakurthi, and U. Ghia, “Von Neumann Stability Analysis
of First-Order Accurate Discretization Schemes for One-Dimensional (1D) and
Two-Dimensional (2D) Fluid Flow Equations,” Computers & Mathematics
with Applications, vol. 75, no. 2, pp. 643–665, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S089812211730620X

[24] F. H. Harlow and J. E. Welch, “Numerical Calculation of Time-Dependent Viscous
Incompressible Flow of Fluid with Free Surface,” The Physics of Fluids, vol. 8, no. 12,
pp. 2182–2189, 12 1965. [Online]. Available: https://doi.org/10.1063/1.1761178

[25] C. M. Rhie and W. L. Chow, “Numerical Study of the Turbulent Flow Past
an Airfoil with Trailing Edge Separation,” AIAA Journal, vol. 21, no. 11, pp.
1525–1532, 1983. [Online]. Available: https://doi.org/10.2514/3.8284

[26] N. Stoop, “Lecture 12,” MIT OpenCourseWare, Massachusetts Institute of Technol-
ogy, Spring 2016, computational Science And Engineering II.

[27] B. Seibold, “Lecture 23,” MIT OpenCourseWare, Massachusetts Institute of Tech-
nology, Spring 2009, numerical Methods for Partial Differential Equations.

[28] M. Mortezazadeh, L. L. Wang, M. Albettar, and S. Yang, “CityFFD –
City Fast Fluid Dynamics for Urban Microclimate Simulations on Graphics
Processing Units,” Urban Climate, vol. 41, p. 101063, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2212095521002935

[29] J. C. Andrew Staniforth, “Semi-Lagrangian Integration Schemes for Atmospheric
Models—A Review,” Review Articles in Monthly Weather Review, vol. 135,
p. 2206–2223, 09 1991. [Online]. Available: https://journals.ametsoc.org/view/
journals/mwre/113/3/1520-0493 1985 113 0388 aslasi 2 0 co 2.xml

[30] M. Mortezazadeh and L. L. Wang, “An Adaptive Time-Stepping Semi-
Lagrangian Method for Incompressible Flows,” Numerical Heat Trans-
fer, Part B: Fundamentals, vol. 75, no. 1, pp. 1–18, 2019.
[Online]. Available: https://www.researchgate.net/publication/332433395 An
adaptive time-stepping semi-Lagrangian method for incompressible flows

[31] A. Salih, “Method of Characteristics,” Indian Institute of Space Science and Tech-
nology, Thiruvananthapuram, Tech. Rep., 06 2016.

[32] N. Wood, A. Staniforth, and A. White, “Determining Near-Boundary Departure
Points in Semi-Lagrangian Models,” Quarterly Journal of the Royal Meteorological
Society, vol. 135, pp. 1890 – 1896, 10 2009. [Online]. Available: https:
//rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.478

https://hal.science/hal-03709219
https://hal.science/hal-03709219
https://link.springer.com/book/10.1007/978-3-642-56026-2#bibliographic-information
https://link.springer.com/book/10.1007/978-3-642-56026-2#bibliographic-information
https://www.sciencedirect.com/science/article/pii/S089812211730620X
https://doi.org/10.1063/1.1761178
https://doi.org/10.2514/3.8284
https://www.sciencedirect.com/science/article/pii/S2212095521002935
https://journals.ametsoc.org/view/journals/mwre/113/3/1520-0493_1985_113_0388_aslasi_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/mwre/113/3/1520-0493_1985_113_0388_aslasi_2_0_co_2.xml
https://www.researchgate.net/publication/332433395_An_adaptive_time-stepping_semi-Lagrangian_method_for_incompressible_flows
https://www.researchgate.net/publication/332433395_An_adaptive_time-stepping_semi-Lagrangian_method_for_incompressible_flows
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.478
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.478

Bibliography

[33] M. Jin, W. Zuo, and Q. Chen, “Simulating Natural Ventilation in and
Around Buildings by Fast Fluid Dynamics,” Numerical Heat Transfer
Part A - Applications, vol. 64, pp. 273–289, 08 2013. [Online]. Avail-
able: https://www.researchgate.net/publication/258806507 Simulating Natural
Ventilation in and Around Buildings by Fast Fluid Dynamics

[34] Jin, Mingang and Zuo, Wangda and Chen, Qingyan, “Improvements of
Fast Fluid Dynamics for Simulating Air Flow in Buildings,” Numerical
Heat Transfer Part B: Fundamentals, vol. 62, 01 2012. [Online]. Avail-
able: https://www.researchgate.net/publication/263407897 Improvements of Fast
Fluid Dynamics for Simulating Air Flow in Buildings

[35] M. Mortezazadeh Dorostkar and L. Wang, “A High-Order Backward Forward
Sweep Interpolating Algorithm for Semi-Lagrangian Method,” International
Journal for Numerical Methods in Fluids, vol. 84, 01 2017. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4362

[36] G. Stewart, Afternotes on Numerical Analysis, ser. Lectures on Elementary
Numerical Analysis. Society for Industrial and Applied Mathematics, 1996.
[Online]. Available: https://books.google.gr/books?id=XvdSuKcKpmwC

[37] Q. Chen and W. Xu, “A Zero-Equation Turbulence Model for Indoor Airflow
Simulation,” Energy and Buildings, vol. 28, pp. 137–144, 1998. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378778898000206

[38] P. Clark Di Leoni, A. Mazzino, and L. Biferale, “Synchronization to Big
Data: Nudging the Navier-Stokes Equations for Data Assimilation of Turbulent
Flows,” Phys. Rev. X, vol. 10, p. 011023, Feb 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevX.10.011023

[39] U. Ghia, K. Ghia, and C. Shin, “High-Re Solutions for Incom-
pressible Flow using the Navier-Stokes Equations and a Multi-
grid Method,” Journal of Computational Physics, vol. 48, no. 3,
pp. 387–411, 1982. [Online]. Available: https://www.semanticscholar.
org/paper/High-Re-solutions-for-incompressible-flow-using-the-Ghia-Ghia/
211b45b6a06336a72ca064a6e59b14ebc520211c

[40] S. Biswas and J. Kalita, “Moffatt Vortices in the Lid-Driven Cavity Flow,”
Journal of Physics: Conference Series, vol. 759, 01 2016. [Online]. Available:
https://iopscience.iop.org/article/10.1088/1742-6596/759/1/012081/pdf

[41] H. Kuhlmann and F. Romanò, “The Lid-Driven Cavity,” Computational Methods
in Applied Sciences, 04 2018. [Online]. Available: https://www.researchgate.net/
publication/324413434 The Lid-Driven Cavity

[42] Z. Ai and C. Mak, “CFD Simulation of Flow in a Long Street Canyon under
a Perpendicular Wind Direction: Evaluation of Three Computational Settings,”
Building and Environment, vol. 114, pp. 293–306, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360132316305273

https://www.researchgate.net/publication/258806507_Simulating_Natural_Ventilation_in_and_Around_Buildings_by_Fast_Fluid_Dynamics
https://www.researchgate.net/publication/258806507_Simulating_Natural_Ventilation_in_and_Around_Buildings_by_Fast_Fluid_Dynamics
https://www.researchgate.net/publication/263407897_Improvements_of_Fast_Fluid_Dynamics_for_Simulating_Air_Flow_in_Buildings
https://www.researchgate.net/publication/263407897_Improvements_of_Fast_Fluid_Dynamics_for_Simulating_Air_Flow_in_Buildings
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4362
https://books.google.gr/books?id=XvdSuKcKpmwC
https://www.sciencedirect.com/science/article/pii/S0378778898000206
https://link.aps.org/doi/10.1103/PhysRevX.10.011023
https://www.semanticscholar.org/paper/High-Re-solutions-for-incompressible-flow-using-the-Ghia-Ghia/211b45b6a06336a72ca064a6e59b14ebc520211c
https://www.semanticscholar.org/paper/High-Re-solutions-for-incompressible-flow-using-the-Ghia-Ghia/211b45b6a06336a72ca064a6e59b14ebc520211c
https://www.semanticscholar.org/paper/High-Re-solutions-for-incompressible-flow-using-the-Ghia-Ghia/211b45b6a06336a72ca064a6e59b14ebc520211c
https://iopscience.iop.org/article/10.1088/1742-6596/759/1/012081/pdf
https://www.researchgate.net/publication/324413434_The_Lid-Driven_Cavity
https://www.researchgate.net/publication/324413434_The_Lid-Driven_Cavity
https://www.sciencedirect.com/science/article/pii/S0360132316305273

Bibliography

[43] X. Xiaomin, H. Zhen, and W. Jiasong, “The Impact of Urban Street Layout
on Local Atmospheric Environment,” Building and Environment, vol. 41, no. 10,
pp. 1352–1363, 2006. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0360132305002003

[44] K. Hoffmann and S. Chiang, Computational Fluid Dynamics, ser. Computational
Fluid Dynamics. Engineering Education System, 2000, no. v. 1. [Online]. Available:
https://books.google.gr/books?id=98gjAAAACAAJ

[45] J. Allegrini, V. Dorer, and J. Carmeliet, “Wind Tunnel Measurements of
Buoyant Flows in Street Canyons,” Building and Environment, vol. 59, pp.
315–326, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0360132312002399

https://www.sciencedirect.com/science/article/pii/S0360132305002003
https://www.sciencedirect.com/science/article/pii/S0360132305002003
https://books.google.gr/books?id=98gjAAAACAAJ
https://www.sciencedirect.com/science/article/pii/S0360132312002399
https://www.sciencedirect.com/science/article/pii/S0360132312002399

	Introduction
	Motivation - Problem Statement
	Literature Review
	Fast Fluid Dynamics
	Data Assimilation in Computational Fluid Mechanics

	Thesis Outline

	Fast Fluid Dynamics
	Governing Equations
	Finite Difference Method
	Mesh Configuration
	Boundary Conditions Handling

	FFD Algorithm
	Source and Diffusion Term
	Convection Term
	Method of Characteristics
	Interpolation Scheme

	Pressure Correction
	Poisson Equation
	Pressure Gradient Term

	Turbulence Models
	Constant Turbulence Model
	Zero-Equation Model

	Data Assimilation Method - Nudging
	General Principles
	Application to Navier-Stokes Equations
	FFD Implementation
	Discretization

	Benchmark Test: Lid-Driven Cavity
	Problem Description
	Numerical Solution of Fast Fluid Dynamics Algorithm
	Validation of CityFFD Back & Forth Sweep Interpolation Method
	Model Validation for Various Reynolds Numbers

	Performance and Stability Analysis
	Performance Evaluation
	Performance Comparison with OpenFOAM Simulation
	Stability Analysis for Timestep

	Nudging

	Application: Street Canyon
	Problem Description
	Boundary Conditions
	Mesh Configuration

	Numerical Solution of Fast Fluid Dynamics Algorithm
	Case: Allegrini Experiment
	Turbulence Model vt = 100v
	Zero Equation Turbulence Model

	Performance Analysis
	OpenFOAM Simulation
	Performance Evaluation

	Nudging

	Conclusions and Future Work
	Summary & Conclusions
	Future Work

	Bibliography

