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Abstract

Computational Fluid Dynamics (CFD) has enabled the design process in many engineering
applications. Advancements in computing power have allowed for the extension of CFD methods
in multi–phase flows. This category of methods can be directly applied in the field of Ship &
Marine Hydrodynamics. Multi–phase modeling can be used to study the interaction of the
two–immiscible fluids (air/water). A methodology can be formulated to address problems such
as wave propagation, viscous effects close to surface piercing boundaries and wave–structure
interaction.

This thesis investigates the extension of the Artificial Compressibility (AC) method in free
surface flows in conjunction with the Volume of Fluid (VoF) approach. The objective is to
formulate a complete CFD methodology for the hydrodynamic analysis of ship hulls and off-
shore platforms. A thorough validation and verification process is followed. Carefully designed
numerical experiments are conducted and results are compared against analytical, experimental
and other numerical results. The capabilities, limitations and potential enhancements of the
method are outlined. The methodology is implemented as an extension to the compressible
URANS solver MaPFlow, developed at NTUA.

In the following chapters, initially, the theoretical background of the coupled AC/VoF method-
ology is discussed. Afterwards, the numerical formulation of the Unsteady Reynolds Averaged
Navier Stokes (URANS) equations for free surface flows is given in detail. The equations are
discretized using the finite volume method in unstructured polyhedral grids. Since the structure
can move in space, cell can motion and deformation is also consider in the discretization process.
Focus is further given on introducing waves in a computational domain. Waves are introduced
and absorbed using source terms that drive the flowfield to a target solution. The linear theory
of Airy and the Stream Function theory of Fenton are used as basis for the numerical wave gen-
eration. Additionally, the problem of turbulence overproduction near the free surface is faced.
Existing options are examined and further guidelines are given. Fluid–Structure Interaction
(FSI) problems are at the core of the validation test cases. For these purposes, a 6 Degrees of
Freedom (DoFs) rigid body solver is developed and coupled with the URANS solver. In order
to effectively move the rigid body inside the computational mesh, deformation algorithms are
utilized.

A series of validation test cases are conducted inspired from the domain of Ship & Marine
Hydrodynamics. Firstly, simplified 2–dimensional (2D) flows are considered. The specifics of
generation and propagation, wave interaction with variable bathymetry and wave–induced mo-
tion of floating platforms are examined. Taken advantage of the simplifications arising from
the 2D approximation, parametric studies are conducted regarding the influence of the AC pa-
rameter –β–, as well as, the parameters for wave generation and absorption. The method is
generalized in the 3–dimensional space (3D). Comments are made on the challenge of main-
taining the hydrostatic equilibrium in 3D applications, especially for polyhedral cell elements.
The validation process continues by considering more realistic applications. The developed nu-
merical methodology is used as a tool to assess the efficiency of a propeller in deep water, the
resistance and the dynamic trim of two ship hulls and the response of floating structures in
regular and irregular head waves conditions.

As indicated by the comparisons, the method performs well in all cases. A fine agreement
between the results is found, proving that the developed coupled AC/VoF numerical method-
ology can compete against already existing State–of–the–Art numerical tools and contribute to
the further advancement of the CFD tools.
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Περίληψη

Η μέθοδος της Υπολογιστικής Ρευστομηχανικής έχει συμβάλλει καθοριστικά στην διαδικασία

του σχεδιασμού σε όλα τα επίπεδα της επιστήμης του μηχανικού. Η ανάπτυξη της διαθέσιμης υπο-

λογιστικής ισχύος έχει επιτρέψει την επέκταση των μεθόδων αυτών σε ροές με περισσότερες από

μία φάσεις. Σε αυτήν την κατηγορία μεθόδων εντάσσονται και προβλήματα Ναυτικής & Θαλάσσιας
Υδροδυναμικής. Τα μοντέλα πολυφασικών ροών μπορούν να προσαρμοστούν για την διφασική μο-

ντελοποίηση των άμμεικτων ρευστών, του νερού και του αέρα. Η προκύπτουσα μεθοδολογία μπορεί

να χρησιμοποιηθεί για την ανάλυση προβλημάτων κυματικής διάδοσης, συνεκτικών φαινομένων κο-

ντά σε στερεά τοιχώματα που βρίσκονται κοντά ή τέμνουν την ελεύθερη επιφάνεια, αλλά και να

μοντελοποιήσει την αλληλεπίδραση κυμάτων με πλωτές κατασκευές.

Η παρούσα διατριβή μελετά την επέκταση την μεθόδου της Τεχνητής Συμπιεστότητας σε ροές με

ελεύθερη επιφάνεια, συζευγμένη με την μέθοδο του κλασματικού όγκου. Ο σκοπός της εργασίας

είναι να δημιουργήσει μια πλήρη μεθοδολογία υπολογιστικής ρευστομηχανικής για την υδροδυναμική

ανάλυση πλοίων και πλωτών κατασκευών. Σε αυτά τα πλαίσια παρουσιάζεται η ενδελεχής πιστοποίη-

ση της προτεινόμενης μεθοδολογίας. Η εργασία παρουσιάζει προσεκτικά σχεδιασμένα υπολογιστικά

πειράματα, τα αποτελέσματα των οποίων συγκρίνονται με αναλυτικές λύσεις, πειραματικά δεδομένα

αλλά και με διαθέσιμα υπολογιστικά αποτελέσματα. Σκιαγραφούνται οι δυνατότητες, οι περιορισμοί

και οι πιθανές βελτιώσεις της μεθόδου. Η προτεινόμενη μεθοδολογία υλοποιήθηκε ως επέκταση

σε προ–υπάρχον λογισμικό υπολογιστικής ρευστομηχανικής που αναπτύσσεται στον Εθνικό Με-

τσόβιο Πολυτεχνείο. Ο υπολογιστικός κώδικας MaPFlow επιλύει τις μη–μόνιμες, σταθμισμένες
κατά Reynolds, συμπιεστές εξισώσεις Navier Stokes.
Αρχικά, στην εργασία παρουσιάζεται το θεωρητικό υπόβαθρο της συζευγμένης μεθοδολογίας

Τεχνητής Συμπιεστότητας και κλασματικού όγκου. Μετέπειτα, αναλύεται η αριθμητική διατύπωση

των μη—μόνιμων τυρβώδων εξισώσεων Navier Stokes για ροές με ελεύθερη επιφάνεια. Οι εξι-
σώσεις ροής διακριτοποιούνται κάνοντας χρήση της μεθόδου των πεπερασμένων όγκων σε τυχαίους

πολυεδρικούς όγκους. Η διακριτοποίηση των εξισώσεων ροής θεωρεί τόσο την κίνηση και όσο και

την παραμόρφωση των όγκων ελέγχου. Κύματα ελεύθερης επιφάνειας εισάγονται και αποσβένονται

από την υπολογιστική δεξαμενή εισάγοντας κατάλληλους όρους πηγής. Στόχος είναι να οδηγηθεί

μέσω αυτών η υπολογιστική λύση στο εξωτερικώς επιβαλλόμενο πεδίο ροής. Η κυματική θεωρία του

Airy για γραμμικούς κυματισμούς και η μη–γραμμική θεωρία της Ροϊκής Συνάρτησης του Fenton
χρησιμοποιούνται ως βάση για την διαδικασία της κυματογέννησης. Επιπρόσθετα, η αύξηση της

τυρβώδους συνεκτικότητας κοντά στην ελεύθερη επιφάνεια αντιμετωπίζεται επιτυχώς. Εξετάζονται

λύσεις που προτείνονται από την βιβλιογραφία και δίδονται περαιτέρω οδηγίες για την επιτυχή α-

ντιμετώπιση της. Στο επίκεντρο της μελέτης βρίσκονται τα προβλήματα αλληλεπίδρασης στερεού

ρευστού. Σε αυτά τα πλαίσια, αναπτύσσεται ένας δυναμικός επιλύτης στερεού σώματος 6 βαθμών

ελευθερίας και πραγματοποιείται η σύζευξη του με τον ρευστομηχανικό επιλύτη. Η μετακίνηση

του στερεού σώματος μέσα στο υπολογιστικό χωρίο πραγματοποιείται κάνοντας χρήση αλγορίθμων

παραμόρφωσης πλέγματος.

Αναφορικά με την διαδικασία πιστοποίησης του επιλύτη, διεξάγονται μια σειρά από υπολογιστικά

πειράματα που άπτονται στο πεδίο της Ναυτικής & Θαλάσσιας υδροδυναμικής. Σε πρώτο επίπε-
δο, θεωρούνται απλοποιημένες 2-διάστατες (2Δ) ροές, όπου παρουσιάζονται προβλήματα γέννησης

και διάδοσης κυματισμών, αλληλεπίδρασης κυμάτων με μεταβλητή βαθυμετρία αλλά και η απόκριση

πλωτών κατασκευών. Εκμεταλλευόμενοι τις απλοποιήσεις που εγείρονται από την 2Δ προσέγγι-

ση, διεξάγονται παραμετρικές μελέτες για την ανάλυση υπολογιστικών παραμέτρων όπως για την

σταθερά –β– της Τεχνητής Συμπιεστότητας, αλλά και για τις σταθερές ελέγχου της διαδικασίας

γέννησης και απόσβεσης κυματισμών. Η μέθοδος γενικεύεται σε 3–διάστατες (3Δ) ροές. ΄Εμφαση

δίνεται στην διατήρηση της υδροστατικής ισορροπίας σε μη– δομημένα πλέγματα με πολυεδρικούς

όγκους ελέγχου. Η διαδικασία πιστοποίησης επεκτείνεται σε πιο ρεαλιστικές εφαρμογές. Η παρο-

ύσα μεθοδολογία χρησιμοποιείται ως εργαλείο για την πρόλεξη της απόδοσης προπέλας σε ελεύθερη

ροή, της αντίστασης και της δυναμικής διαγωγής πλοίων σε ήρεμο νερό και τέλος της απόκρισης

πλωτών κατασκευών σε κανονικούς και τυχαίους κυματισμούς.
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Βάσει των συγκρίσεων, τα αποτελέσματα της μεθόδου κρίνονται ικανοποιητικά σε όλες τις περι-

πτώσεις. Η πλειοψηφία των αποτελεσμάτων βρίσκεται σε καλή συμφωνία με τα υπόλοιπα διαθέσιμα

αποτελέσματα. Συμπερασματικά θεωρείται ότι, η προτεινόμενη μεθοδολογία μπορεί να ανταγωνι-

στεί άλλες σύγχρονες υλοποιήσεις και να συμβάλει με την σειρά της στην περαιτέρω ανάπτυξη της

υπολογιστικής ρευστομηχανικής.
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Chapter 1

Introduction

This introductory chapter explores the various challenges encountered in modern marine engi-
neering applications. The various techniques used for hydrodynamic analysis are described, as
well as State–of–the–Art numerical methods. Additionally, a thorough literature survey on the
main computational tools is conducted and the goals of the proposed numerical method are set.
Lastly, the structure of the thesis is given.

1.1 Motivation & Objectives

The harsh and unpredictable nature of the marine environment itself is one of the key challenges
in marine engineering. Offshore structures, such as marine vessels and platforms, operate and
interact with wind, waves, currents and eventually intense turbulence. All these aspects impact
on design, operation and safety of offshore structures. A detailed and carefully planned design
process should be followed in order to include the various aspects and challenges of the envi-
ronmental conditions. Furthermore, the ecological impact of marine structures should be taken
into account. Managing the noise generated by underwater operations and reducing emissions
to ensure sustainable practices are also aspects to be considered during the evaluation of a
design concept. It is imperative to create methods that will help improve the efficiency of the
ships and the structural integrity of offshore structures. The main objective of the thesis is to
create a robust numerical formulation, which will facilitate the marine engineer to overcome
these challenges.

A distinguishable feature of the marine environment is the presence of the interfacial bound-
ary between air and water. Due to the large density difference of the two fluids, the free surface
term is commonly adopted. Within a theoretical framework, free surface flows can be viewed
as two–phase flows, characterized by the simultaneous presence of two immiscible fluids, air
and water. The free surface deforms under a pressure field (wind, presence of a moving vehicle
close to the free surface), gravity tries to restore equilibrium and wave patterns are created,
which propagate away from the source. Propagating waves change the local flow characteristics
(pressure and velocity), absorb energy and play a critical role in various offshore structures,
including ships, offshore platforms and underwater vehicles operating close to the free surface.
Accurate modeling of the free surface is crucial in many applications in order to assess various
performance aspects of marine structures, ranging from resistance calculations and maneuver-
ing trials, to the response of ship hulls under wave excitation and optimization the design of
platforms for supporting offshore wind turbines.

As a ship moves through water, a well–recognizable pattern is created, as shown in Figure
1.1a. Divergent waves propagate away from the bow of the ship, while an unsteady turbulent
wake is forming at the stern of the ship. Hydrodynamic assessment of a ship typically begins
with resistance calculations. During this test, the force required to tow the ship is computed.
Resistance calculations involve predictions about turbulent boundary layer formation around

1



2 CHAPTER 1. INTRODUCTION

the hull, flow separation at the stern of the ship, accurate capturing of the wave system generated
from the motion of the ship, wave elevation and possible breaking on the surface of the hull.
This is a fundamental step in ship design process, providing crucial information for assessing
the power requirements and fuel efficiency of vessels.

(a) Wake of a container ship in calm water1 (b) Propeller of a merchant ship2

Figure 1.1: Pictures of two technological aspects in marine engineering

Additionally, modern applications, apart from the hydrodynamic evaluation of the struc-
ture, aim to understand the motion of the structure under the flow excitation using a multi–
disciplinary approach. Fluid–Structure Interaction (FSI) process considers more than one phys-
ical aspects. In naval architecture, it is crucial to understand interaction between the hull and
the surrounding fluid even in simple straight ahead conditions in calm waters, and further, an-
alyze its dynamic behavior when subjected to incident waves. To this end, the FSI procedure
is utilized that incorporates both body and flow dynamics. A thorough understanding of the
coupled dynamics is important for the assessment of stability, structural integrity, and motion
characteristics of ships, leading to the optimization of vessel design and the enhancement of
passengers comfort and safety.

Another engineering aspect, that lies within the scope of the present thesis, is the assessment
of the propulsion systems. Typically, a bladed–propeller design is adopted for the propulsion
of large vessels, as shown in Figure 1.1b. The development of accurate methods for propeller
evaluation can provide valuable insights into the interaction between the propeller and the
surrounding fluid. Detailed modeling of the flow around the propeller blades, the assessment
of the propeller is enabled in terms of its performance, efficiency, and even cavitation behavior.
This information is crucial for optimizing the propulsion system of vessels, resulting in improved
fuel efficiency, reduced emissions and enhanced maneuverability.

The growing interest in renewable energy has pushed forward the development of offshore
wind farms. In the early days of offshore technology, the deployment of wind turbines (WT)
was limited to shallow waters where fixed structures, such as jackets and monopiles, were used
as foundation. The high wind potential in open seas, far from the shore, created the need
for alternative designs, in order to deploy WTs in greater depths. For deep sea applications,
construction and maintenance costs of the fixed structures increase drastically. Alternatively, a
floating platform design is preferred to support the tower of WTs. Among the various concepts,
the semi–submersible platform has gained the attention of researchers. This platform uses a
catenary mooring line system to hold it in place and prevent it from drifting. The main source of
restoring force, in the pitch and heave direction, is the buoyancy force that acts on the surface
of the floater. In Figure 1.2 two concepts of semi–submersible floaters are presented. Both
concepts are further discussed later and used as validation test cases in this thesis. In Figure
1.2a, the platform UMaine VolturnUs [1] is shown. This is a reference platform for 15–megawatt
(MW) wind turbine, developed by International Energy Agency (IEA). The platform consists
of a main column to support the WT’s tower and three more radial columns that add support

1Photo Credit: GreenOak/Shutterstock https://www.shutterstock.com
2https://wikipedia.org

https://www.shutterstock.com/g/SUPHANAT+KHUMSAP
https://commons.wikimedia.org/wiki/File:Ship-propeller_2000.jpg
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and increase the displacement of the platform. The second concept is shown in Figure 1.2b.
This platform is distinguished by an opening in the middle, where water oscillates freely and
interacts with the platform. This concept has been proposed and commercialized by Ideol, and
the objective of the moonpool is to reduce the structure motions. The previous concepts were
facilitated by detailed assessment of the hydrodynamic and aerodynamic loads that act on the
platform. These calculations added to the optimization of the platform’s structural design and
optimized its performance, ensuring its stability under extreme environmental conditions.

(a) Semi–submersible floater UMaine–VolturnUS3 (b) Ideol’s moonpool type floater4

Figure 1.2: Two modern semi–submersible concepts for the deployment of
offshore wind turbines in great depths.

It becomes clear that unique set of challenges are posed in the aquatic environment that need
to be faced by engineers. A variety of specialized techniques to capture FSI under the specific
environmental considerations encountered in the aquatic environment have been developed over
the past years. One approach to analyze the behavior of structures excited by a flowfield,
involves the implementation of detailed experiments. While real–world, full scale experiments
provide the advantage of accurate predictions, their costs are relatively high, resulting in a
constraint on the number of experiments that can be conducted. Typically, experiments are
conducted in laboratory tanks for scaled models. Again, expensive and specialized equipment is
required, yet the environmental conditions are easily monitored and more detailed measurements
can be taken. However, the inclusion of the free surface introduces scaling effects. In model
scale experiments, it is unfeasible to achieve similarity in both Reynolds and Froude numbers.
In order to compare results with full scale models, empirical correlations methods are typically
introduced.

Apart from experiments, traditionally, engineers relied on analytical models to gain insights
into fluid dynamics. Analytical methods are based on simplified assumptions and incorporate
experimental observations for fast and approximate calculations. With the increase of com-
puting power, computational methods became a standard procedure for approximating fluid
phenomena. Engineers formulated numerical methods that can account for more physical as-
pects. Over the years, a series of computational tools, of varying fidelity, have been developed.
Boundary element methods (BEM) based on the potential formulation of the velocity field have
been widely used in the literature to model non–linear phenomena, including propagation of free
surface waves [2]. They can provide sufficiently accurate results at small computational cost [3]
and can be easily coupled with other numerical frameworks [4, 5]. More sophisticated models
have been also developed [6] reducing the problem size and consequently the computational

3https://umaine.edu
4https://bw-ideol.com

https://umaine.edu/news/blog/2020/08/05/diamond-offshore-wind-rwe-renewables-join-the-university-of-maine-to-lead-development-of-maine-floating-offshore-wind-demonstration-project/
https://www.bw-ideol.com/en/technology
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cost. However, potential methods do not account for viscosity and a remedy is to apply viscous
corrections on the results [7]. When viscous effects become significant, the usual approach is to
employ a Computational Fluid Dynamics (CFD) framework. Space is discretized using struc-
tured/unstructured grids and often the Reynolds Averaged Navies-Stokes (RANS) equations
are solved on the underlying mesh.

CFD methods have emerged as a powerful tool in the field of engineering, leveraging the
analysis process of fluid flows and enabling design. In recent years, CFD has witnessed signif-
icant advancements due to the remarkable increase in computing power and the development
of sophisticated numerical methods. CFD is cost–effective, efficient and allows for a faster
design process. It provides detailed flow information that is not easily measurable in experi-
ments, enabling engineers to gain insight into complex flow phenomena. This flexibility and
versatility make CFD an indispensable tool for engineering purposes, in research as well as in
industry. CFD reduces significantly time and cost associated with physical experiments, enables
extensive parametric studies, facilitating exploration of design alternatives and their impact on
performance.

While CFD is a powerful tool for simulating fluid flows, it is worth comparing it with reduced
order models commonly used in engineering. Compared to simplified analytical models, CFD
offers naturally a higher level of accuracy by solving the governing equations directly. However,
it is important to note that CFD can be computationally expensive, particularly for large scale
and time dependent problems, which may limit its applicability in certain scenarios. On the
other hand, reduced order models, such as semi–analytical linear or non–linear methods, as well
as BEM solvers, offer computational efficiency and fast results. Therefore, the choice between
CFD and reduced order models depends on the specific requirements of the engineering problem,
considering each time the trade–off between accuracy and computational cost. Noticeably, there
are several works [8] proposing a hybrid potential/CFD, combining efficiency and accurate
representation of viscous phenomena.

Nowadays, State–of–the–art CFD tools, in conjunction with the constantly increasing High
Performance Computing (HPC) capabilities, offers significant advancements in the field of ocean
engineering and in the hydrodynamic evaluation of offshore structures. Some of the features
that modern computational practices have lied their attention ar, the difficulties that arise from
the incompressibility constraint, accurate representation of the free surface, effective capturing
of small scale turbulence, while at the same time considering the dynamics of the structure. In
case of free surface flows, usually the incompressible Navier–Stokes equations (conservation of
mass and momentum) are adopted to predict flow motion, although in some cases compress-
ibility effects are considered in the air phase [9, 10] as well. Research in this area has been
systematically conducted since the mid–60s and a variety of methods have been developed that
can be alternatively used.

Specifically for the free surface modeling, which has been greatly favored by the increase of
the computational power, the perplexities introduced to the flowfield, increase drastically the
computational cost. Research is focused on developing methods for the accurate tracking of the
free surface. Some of the most well known methods are discussed in the next section. Tracking
the motion of an interface has been troubling researches even beyond marine engineering appli-
cations. Multi–phase flows have gained the attention of the scientific community due to their
applicability in a range of applications. Apart from free surface flows, similar modeling can be
applied for reacting flows and cavitating flows, as well as for bubble dynamics [11].

Turbulence has always been a main topic of discussion in the fluid dynamics community. The
most common approach is to model the main effects of turbulence, such as increased diffusion
and mixing, by introducing the Reynolds Averaged approximation. Nowadays, advanced tur-
bulence models have shifted towards more accurate turbulence representations. Emphasis has
been given to resolve smaller turbulence scales, especially when analyzing sheared flows or the
wake of a structure. Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) are
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the most famous approaches for a higher fidelity approximation. The 3D effects of turbulence
can be captured better, which is important for separated flows and vortex dynamics.

Demands for more detailed analysis of the dynamic behavior of offshore structures, lead
engineers to take into account more than one physical aspect. Computational FSI is considered
to be one of the most prominent fields of research, where more models are combined into the
same framework to account for different physical aspects. These tools revolutionize design,
analysis, and optimization of marine systems, improving safety and efficiency.

The thesis complying with the State–of–the–Art requirements proposes a complete methodol-
ogy for incompressible free surface flows, where the motion of the structure is also considered as
part of a FSI procedure. Starting from the incompressibility assumption, a method rooted in the
compressible formulation is adopted and coupled with a two–phase model to accurately resolve
the motion of the free surface. Within a RANS approach, limitations and enhancements to the
turbulence modeling are also examined. Furthermore its applicability into the aforementioned
problems in Ship & Marine Hydrodynamics is directly demonstrated.

1.2 Literature Review

Simulating free surface flows can be decomposed into two main components, a model to incorpo-
rate the motion of the free surface and a model to account for the incompressibility constraint in
water (sound speed is assumed to be infinite). Here an attempt to outline the progress of these
two components over the years is made. The survey begins from the numerical methods devel-
oped for free surface flows, it proceeds with the various incompressible formulation and in the
last section, focuses on the work conducted on the application of the Artificial Compressibility
(AC) framework in two–phase applications.

Free Surface Flows

Modeling free surface flows presents a unique set of challenges. Complexity arises from the
dynamic nature of the free surface boundary, where the interface between two immiscible fluids
interacts with the surrounding flowfield. In the next few paragraphs, the basic methods that
have been developed to monitor the position of the free surface are described in brief.

In a finite volume framework, the free surface methods can be partitioned into two fami-
lies, the surface tracking (or surface methods) and the surface capturing methods (or volume
methods) [12, 13]. One of the methods that falls under the first category, is the surface fitting
method [14, 15]. Boundary fitted grids are used to monitor the position of the free surface. This
is a single phase approach, only the liquid phase is resolved and the free surface is an external
boundary of the domain, and thus appropriate boundary conditions should be considered (the
dynamic and kinematic boundary condition). At every timestep, the computational mesh is de-
formed to follow the motion of the free surface. Although, this surface fitting method manages
to provide an accurate representation of the free surface, the need of mesh deformation, or even
in some cases the re–initialization of the entire mesh, renders them as computationally expen-
sive. Additionally, wave breaking can not be considered based on this method. Over–turning
of the free surface would lead to negative volume cells.

Another method which belongs to the surface fitting approaches and has gained lot of atten-
tion is the Level Set Function [16]. This method is widely used, especially in cases where the
surface tension is also taken into account. Contrary to the previous method, the computational
mesh extends beyond the free surface and both liquid and gaseous phases are resolved. The level
set method defines a distance function which measures the distance from the interface. Positive
values typically denote distance from the free surface inside the liquid phase, while negative
values are used in case of the gaseous phase. The motion of the interface is tracked by solving
an advection equation. Geometric quantities such as normal or curvature of the free surface,
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are easily obtained from the definition of the distance function. For this reason, the surface
tension effect can be easily incorporated into this formulation. Despite its supreme characteris-
tics, at some point of the simulation, due to numerical diffusion the distance function becomes
distorted. In order to preserve its characteristics and maintain accuracy, re–initialization of the
distance function is needed [17].

Finally, in the family of surface tracking methods, the front tracking method [18] should
also be mentioned. This method explicitly follows the interface, however, in order to enhance
numerical stability, it uses an auxiliary grid that provides a finite thickness to free surface and
thus a smooth transition is made between the two fluids.

The second family of free surface models are the surface capturing methods. Compared to the
previous methods, in this case the position of the free surface is not explicitly known. In order
to calculate the exact geometric properties (position, normal vector, curvature) a secondary
reconstruction step is required. One of the first methods introduced to account for the motion
of an interface boundary, is the method of Marker and Cell (MaC) [19]. In this method, massless
particles are placed in the region of the fluid, and subsequently move with the local velocity.
The free surface is the boundary where cells with markers meet with empty cells. For this
reason, the representation of the free surface is directly related to the number of markers used.
Later [20], extended this method for multi–fluid calculations, where particles with mass are
considered to account for the motion of the free surface. This version resembles to a Lagrangian
approximation.

A more sophisticated approach that stems from the energy–based variational framework is
the phase–field method [21]. This method is used widely in material science problems. The
motion of the free surface is governed by an advection–diffusion equation. The interface is
assumed to be of finite thickness and described by thermodynamically consistent conservation
laws. The advantages of this method are that the smearing of the free surface can be artificially
controlled, and, similarly to the level–set function, the phase–field function can be directly
used to calculate geometric quantities on the free surface. As a result, this method can be
used to incorporate surface tension effects. On the downsides of the method, the phase–field
function lacks inherently of conserving the transported quantity and this is a major limitation
for immiscible two–phase flows [22].

Perhaps the most well–known and broadly used method, especially in the field of ocean
engineering, is the Volume of Fluid (VoF) method [23]. An indicator (volume) function is used
to distinguish between the two fluids. If the volume is empty of liquid, the volume function
is zero, otherwise it is equal to one. The volume function is evolved in time according to an
advection equation. The free surface is a discontinuity in the field of the volume fraction. The
free surface is commonly regarded to be an iso–surface (or iso–line in 2D) amongst the partially
filled volumes and typically values of 0.5 are adopted. This method is relatively simple to
implement and its built–in mass conservation property makes it an appealing choice. A critical
issue of this method is the numerical diffusion that is introduced at the advection step. This
leads to the smearing of the free surface over several cells, making difficult to locate its exact
position.

Over the years, researchers have proposed various methods to mitigate the numerical diffusion
and calculate exactly the numerical flux of the advection step, while at the same time guarantee
that the function stays between its physical bounds (zero and unity). These methods can be
divided into two categories; the algebraic and the geometric methods.

Starting from the algebraic methods, researchers tried either explicitly or implicitly to cre-
ate numerical schemes for the compression of the free surface. In the first case, an artificial
compression term is added to the advection equation of VoF to counteract the numerical dif-
fusion and maintain a sharp interface [24]. The term is activated in regions of large gradient
of volume function and its effect is regulated by an adhoc parameter. Furthermore, in case of
the implicit methods, which can also be combined with the previous compression term, high
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order resolution schemes are constructed to prevent the smearing of the free surface. These
schemes typically combine a high–order interpolation scheme and a downwind scheme, which is
responsible for the compression of the free surface. Well–known software use methods that lie
on this category. For example, OpenFOAM uses the Multidimensional Universal Limiter with
Explicit Solution (MULES) [25], ANSYS Fluent the Compressive Interface Capturing Scheme
for Arbitrary Meshes (CISCAM) [26], and STAR–CCM+ the High–Resolution Interface Cap-
turing Scheme (HRIC) [27]. The second category of methods, proposed for the advection of the
volume fraction, uses an exact representation of the interface by following a geometric recon-
struction. Afterwards, the reconstructed profile is advected with the local velocity field. Some
notable examples are; the Piecewise Linear Interface Calculation (PLIC) [28] and the isoAd-
vector scheme [29]. A more comprehensive review of the geometric formulation of VoF can be
found in [11].

Apart from these two broad categories for accounting the presence of the free surface, some
hybrid methods have been formulated that try to match the best practices of each method.
Some examples are; the couple level–set/VOF (CLSVOF) method [30] and phase–field/VOF
[31].

Incompressible Flows

The core algorithm for solving free surface flows is the incompressible solver. The algorithm is
responsible for calculating the vector velocity field υ⃗ and the pressure field p. The incompress-
ible equations have several features, that renders them as a demanding system to be solved.
Several computational algorithms have been developed over the years that try to tackle its
complications, provide accurate and cost effective numerical solutions. At this time, the various
techniques have been well documented and reported in several text books (see for example [12,
32]). Here, the complications that arise from the incompressible formulations are outlined and
an overview of the most widely spread technologies for solving incompressible equations on a
computational grid is provided.

The mass and the momentum equations for incompressible, iso–thermal flows are expressed
as

∇ · υ⃗ = 0 (1.1a)

∂υ⃗

∂t
+ υ⃗ · ∇υ⃗ = −∇p

ρ
+ ν∇2υ⃗ + f⃗B (1.1b)

The density ρ is constant everywhere, thus the continuity Equation (1.1a) appears as a
constraint for conservation of the fluid’s volume. Equation (1.1b) expresses the rate of change
of the velocity field relative to the non–linear advection term of the velocity field (υ⃗ · ∇υ⃗), the
pressure gradient (∇p), the diffusion caused by the shear stresses (ν∇τ), as well as the various
body forces (f⃗b) that add–up to the field (e.g. gravity). The above elliptic–parabolic system of
equations needs to be solved to acquire the pressure and the velocity vectors.

The first complication arises from the calculation of the pressure field. The previous system
of equations lacks of a time–evolution equation for pressure. In compressible equations, the
mass equation can be used to calculate the density field and then, by making use of the state
equation, the pressure can be computed. However, in this case the mass equation appears as
kinematic constraint, rather than a dynamic equation that can be used to advance the solution
in time. An equation to acquire the pressure field that satisfies a divergent–free velocity field
should be constructed. The second challenge is to account for the non–linearity of the advection
term in the momentum Equation (1.1b). The unknown velocity field is advected by the same
velocity. In a computational framework non–linearities are taken into account by formulating
an iterative process. Successive prediction–correction steps are made until a converged solution
is obtained. This linearization step, typically, depends on the implementation details of the
pressure–velocity coupling.
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Historically, two opposing classes of incompressible solvers have been developed; (a) the pres-
sure projection (or pressure–correction) methods and (b) the Artificial Compressibility methods.
Their main difference between the two is that the first creates a series of successive steps to
acquire the solution, while the second creates a single–block (non–segregated) process. While
several implementations examples of both methods can be found in literature, the first class of
methods has clearly dominated over the years.

By choosing a process based on a pressure projection method, the first thing that should
be addressed is the variable arrangement in the grid. A straight forward discretization of
the system, where all variables (pressure and velocities) are stored in the same positions (co–
located arrangement), leads to the decoupling of equations and gives rise to unphysical solutions.
Adopting either a finite volume or a finite difference approximation, a simple linear discretization
scheme would involve non–consecutive cells in the calculation of pressure gradient term, as well
as in the discretized continuity equation. As a result, the discrete system of equation admits
non–physical zigzag solutions, giving rise to the well–known checker–board problem.

The first method for enforcing the coupling of the equations and prevent unphysical solutions
was made possible by staggering the grid points for the different unknowns, with respect to
each other. The Grid Staggering technique, which is the most straightforward solution to the
checkerboard problem, was introduced by Harlow and Weltch [19] and had become a standard
practice until mid–80s. In this approach, the velocity field is stored at cell faces, while pressure
is stored at cell centroids. In this arrangement, the discretization involves directly the variables
at their known location, and thus no interpolation is needed. The theoretical convergence
analysis is well–developed and no special features are needed to prevent oscillations in pressure
and velocity fields. The staggered grid approach is the method of choice for orthogonal grids.
However, its extension to unstructured grids is complicated and computationally demanding.

A co–location arrangement, where all variables are stored in the same point, is favored due
to its easy implementation in unstructured grids. Complex flow phenomena and complex ge-
ometries are well fitted by using a set of control volumes that can be refined and coarsened
arbitrarily with no restrictions. The deficiency of the straight–forward discretization in a co–
located arrangement lies in the linear interpolation of the variables. In 1983, Rhie and Chow
[33] proposed an interpolation scheme that involves a higher–order scheme with a larger grid
stencil. It is widely used and is employed in many commercial CFD codes.

Once a proper variable arrangement on the grid has been decided, an algorithm to cal-
culate the pressure and the velocity field should be constructed. Both problems of the sys-
tem of equations associated with, the non–linearity of the velocity advected by itself and the
pressure–velocity linkage, can be resolved by adopting an iterative process. The most widely
used methods is the pressure–correction algorithms and its variants. These methods attempt
the inter–equation coupling by perturbing the mass equation with pressure terms.

In order to derive an equation for pressure, Equations (1.1a) and (1.1b) can be combined, by
taking the divergence of the momentum equation

∇ ·
[
∂υ⃗

∂t
+ υ⃗ · ∇υ⃗ +

∇p
ρ

− ν∇2υ⃗ − f⃗B

]
= 0 (1.2)

Since ∇· υ⃗ = 0 holds at all times, ∇·∂υ⃗/∂t = 0 and by neglecting body forces f⃗B, the Poisson
Equation (1.3) can be constructed and used as reference for pressure.

∇2p = −ρ∇ ·
[
υ⃗ · ∇υ⃗ − ν∇2υ⃗

]
(1.3)

The pressure–correction methods use a similar Poisson equation, however not for the primi-
tive variables of the field, but as a mean to correct them. The field variables are decomposed in
an initial and perturbed field. A guessed pressure field is used as a starting point, to solve the
momentum equations. Afterwards, a pressure correction equation deduced from the continuity
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equation is solved to obtain a correction for pressure, which is in turn used to update the veloc-
ity and pressure fields. The process continues until the perturbations of velocity and pressure
converge to zero. The most well–known pressure–correction algorithm, developed primarily for
steady flows, is the Semi–Implicit Method for Pressure–Linked Equations (SIMPLE) [34], while
several variants have been introduced that try to improve some of its deficiencies, such as SIM-
PLER [35], SIMPLEC [36]. These types of methods have been widely used in many commercial
software. An extension of the SIMPLE algorithm was reformed to account for unsteady flows,
the PISO algorithm, which stands for Pressure Implicit with Splitting of Operators, of Issa [37].

Another approach for the incompressible equations are the projection methods [38]. These
methods perform a decomposition of the velocity field into divergence–free and curl–free parts
(Hodge/Helmholtz decomposition). The solution is performed into two steps. The first step is
to compute the potential part of the decomposition process. The second step uses the pressure
to project the velocity field of the previous step onto a solenoidal velocity field and get the
updated solutions. These methods can be viewed as a generalization of the pressure–correction
and staggered grid approach, ultimately formulating a Poisson equation for pressure [32].

Another family of methods introduced aiming to perform the inter–equation coupling are the
Fractional Step methods [39]. This concept is more of a generic approach than a particular
method. In this context, an operator splitting is performed and the different physical aspects
are accounted for in the sub–steps. For example, using an explicit time formulation a velocity
component ui known at the time instance n can be advanced in time using the following symbolic
formulation,

un+1
i = uni + (Ci +Di + Pi)∆t (1.4)

The equation can be readily split into three components convection Ci, diffusion Di and the
pressure gradient Pi.

u∗i = uni + (Ci)∆t (1.4a)

u∗∗i = u∗i + (Di)∆t (1.4b)

un+1
i = u∗∗i + (Pi)∆t (1.4c)

This general framework can incorporate various methods to account for each sub–step. For
example for the gradient pressure, a similar Poisson equation as in (1.3) can be constructed.

In case of constant density flows, the Navier–Stokes equations can be replaced by the vortic-
ity/streamfunction equations [40]. In two dimensions, the pressure and the velocity components
can be eliminated from the equations, by the streamfunction and vorticity, which are scalar
fields. This reduction in the number of the dependent variables are one major advantage of the
method. In three–dimensional flows, however, the formulation leads to six variables compared
to four dependent variables in the case of primitive variables Navier–Stokes [32]. The main per-
plexity of this method, that makes it unattractive compared to a pressure–velocity formulation
is the implementation of boundary conditions at solid boundaries and symmetry planes. These
boundaries are surfaces of constant streamfunction and the boundary conditions are unknown
and should be calculated as part of the solution.

All the previous mentioned algorithms have some features in common. Firstly, all meth-
ods form a segregated (sequential) iterative process to perform the coupling of the individual
equations. Although, this features may be appealing in some cases, because every step can be
considered and improved separately, nevertheless it significantly complicates the final solution
algorithm. The second feature, and perhaps the greatest downside of these methods is that at
some point they construct a Poisson equation for the pressure or its perturbed component. Pois-
son solvers are algorithmically complicated and they add great computational cost especially in
a multi–processing environment.

An alternative to this for coupling mass and momentum equations is the Artificial Compress-
ibility method (AC) [41, 42]. The concept of AC is to transform the elliptic equations describing
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incompressible flows into a coupled hyperbolic system. The whole idea is to mimic the numer-
ical procedure followed in compressible flows, and adopt their appealing features such as its
efficiency in massively parallel applications and the vast arsenal of hyperbolic solvers offered for
the advection step.

The first step to perform the inter–equation coupling, is to assume a pseudo–relation between
pressure and density, similar to the definition of the sound speed in compressible flows ∂ρ

∂p = 1
c2
.

This relation does not have any physical meaning and it is artificially controlled by a free
numerical parameter β. The following relation is defined

∂ρ

∂p

∣∣∣∣
τ

=
1

β
(1.5)

Since this relation does not hold once an admissible solution is found, it can only be defined
during convergence. Thus, the relation has only meaning during pseudo–time–τ , the time
variable used to measure the dimension that an iterative process follows until it reaches a
convergent solution.

The second step is to perform the pseudo–time preconditioning of the governing equations
(1.1a) and (1.1b). This step involves the augmentation of the equations with pseudo–time
derivatives of the conservative variables (mass and momentum). These derivatives introduced
to the Navier–Stokes equations modify the way the solution evolves towards convergence. This
is a very popular approach and it is widely used to change the nature of the steady equations
in compressible flows. Additionally, its use has been extended to unsteady flows by introducing
the dual–time stepping approach. In case of steady flows, the pseudo–time derivatives are used
to initiate an iterative process and once convergence is accomplished, these terms vanish and
the original set of equations is retrieved. In time–true computations, time is discretized in a
number of finite intermediate steps (timesteps). In each step, a pseudo–state problem is solved
by performing the pseudo–time preconditioning. Again, convergence is accomplished once the
pseudo–time derivatives of the unknown variables tend to zero and the iterative process proceeds
to next timestep.

By considering the previous remarks, the incompressible Navier–Stokes equations augmented
with pseudo–time derivatives of the conservative variables and using the AC definition of sound
speed (Eq. (1.5)), the following system of equations is formed

1

β

∂p

∂τ
+∇ · υ⃗ = 0 (1.6a)

∂υ⃗

∂τ
+
∂υ⃗

∂t
+ υ⃗ · ∇υ⃗ = −∇p

ρ
+ ν∇2υ⃗ + f⃗B (1.6b)

The coupling is performed once a derivative to advance the solution in (pseudo–) time has
been introduced. Checker–board effects are directly avoided thus no staggering of variables or
other remedies are needed and the variables can be discretized directly. Furthermore, employing
the AC method the elliptic equations are transformed into hyperbolic in pseudo–time. This
is specifically important, because a great variety of Riemann solvers, initially developed for
compressible flows, can be utilized to account for the non–linearities. The advection step can
be viewed as a local Riemann problem, with discontinuous data on the two sides of the control
volume boundary. In literature of the compressible solvers, a variety of Riemann solvers have
been developed, HLLC [43], Osher [44] and Roe [45] to name a few, to compute the convective
fluxes across the boundary of the control volumes.

The concept of the AC method comes with the expense of an arbitrary parameter (β) that
needs to be specified. This parameter regulates the coupling of the equations. Large values
leads to a loose coupling of the equations and small values to stiff numerical procedure. In [46]
where a comparison for pressure–based and AC methods can be found, it is reported that the
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AC parameter can affect the stability and the convergence of the solver and its choice requires
some intuition on behalf of the user. On the present thesis, the effect of the AC parameter will
be further discussed.

As already mentioned, the solution of the free surface flows is based on the incompress-
ible assumption. A numerical algorithm of this type involves firstly, a method to solve the
incompressible equations and secondly, a method to predict the motion of the free surface. Pro-
jection methods and especially the pressure–corrections variants are by far the most employed
approaches in this area [47, 48], while fractional step methods have also emerged recently in
literature [49]. These algorithms incorporate the free surface modeling as an additional step
into this “shattered” iterative process. This segregation, in theory, sets on upper limit to the
time marching step in order to prevent the time lagging of the equations. In the present thesis,
a single–block system of equation that incorporates both the incompressible and free surface
modeling is constructed and tested, using the AC method coupled with the VoF model for
two–phase flows.

In this section, the two opposing families have been contrasted against each other and their
upsides and downsides have been presented. As a last remark, it should be mentioned that, the
two families have been combined into one algorithm, which exhibits the desirable characteristics
of both. The combined method is titled as Artificial Compressibility Characteristic–Based Split
(CBS–AC) [50] and has been also extended to account for free surface flows [51].

Artificial Compressibility

Artificial Compressibility (AC) method, at the early stages of its development was designed to
account for one–phase incompressible flows. As already described, the AC method introduces
pressure derivatives in the mass equation and as a result creates an equation to evolve the pres-
sure field in (pseudo–)time. Initially the method was proposed by Chorin [41] for solving steady
state incompressible viscous flows. Later the method extended for unsteady flows by Merkle,
adopting either an explicit time stepping scheme [42] or a fully implicit scheme by introducing
the dual–time stepping technique [52]. At the same period, Turkel [53] offered an alternative
formulation for the AC method. In his work, pressure pseudo–time derivatives were added also,
to the conservative form of the momentum equations to strengthen the coupling of the equa-
tions. He argued, additionally, that the AC parameter can have a local character, depending
on the local velocity field. This concept was later generalized by Malan et al. [54], where they
showed that the pressure contribution in the momentum equations can also scale locally. Apart
from the fully incompressible version of the AC method, various authors formulated the AC
method as a preconditioning method to accelerate convergence in weakly compressible flows
[55] (flows in the low Mach regime). As it becomes clear, the AC method has gradually found
its way in the assessment of incompressible (or weakly compressible) flows and nowadays has
been a standard practice in many research applications, especially in aerodynamic flows (see for
example in [56–58]). Additionally, due to the successful implementation of AC method, more
recent studies have used it as basis for constructing higher order numerical methods [59, 60].

Due to the appealing characteristics of the AC formulation, researchers have managed to
generalize its concept and apply it to multi–phase flows. In the last two decades the AC
has become popular for solving cavitating flows. One of the most fundamental works in the
field of the two–phase flows in general was performed by Kunz et al. [61]. In their work, a
preconditioned AC formulation was proposed to accelerate convergence. Their method has been
widely used since then [62]. Based on the preconditioner of Kunz and in the same spirit as Turkel
[53] and Malan [54] for one–phase flows, Hejranfar [63] and Yue et al. [64] introduced pressure
perturbations in the momentum equations and employed their method in cavitating flows. As
in the case of single phase flows, works have been presented that use the AC formulation as a
generalized preconditioning method for weakly compressible flows [65].

Apart from the work performed in cavitating flows, the AC has been used also in free surface
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flows. Typically, free surface flows are regarded as a special case of two–phase flows since
they are primarily driven by the gravitational field. In this direction, Kelecy and Pletcher [66]
have extended the AC method for free surface flows in closed containers by creating a coupled
system of equations involving the incompressible equations and the VoF method. In [67], the
AC method is used to simulate falling water columns in containers by performing an operator
splitting to integrate the VoF method. Bhat and Mandal [68] successfully implemented the AC
method in simple free surface flows in two dimensions in case of sloshing and bubble splash.
More recently, [69] have directly extended their work and conducted a comparative study by
making use of various Riemann solvers. A thorough review of the use of the AC method in in
two–phase flows can also be found in [70].

Despite the extended use of the AC method in two–phase flows, the literature for applications
in the field of ocean engineering is rather limited. Some of the works in this research area are;
firstly, Hino [71] demonstrated the use AC in flows around fully submerged hydrofoils and
around the streamed line Series 60 (S60) ship hull. Some fundamental works have also been
carried out for the propagation of steady water waves in [72, 73]. Perhaps one of the most
complete works in this area was performed by D.S. Nichols [74]. In his work, he managed to
extend the work presented from Kunz et al. [61] for cavitating flows and implemented it in
simple steady problems around ship hulls.

1.3 Present Contributions

Although many studies have successfully exploited the advantages of the AC method in one–
phase and two–phase flows, there is a lack of research in the field of Ship & Marine Hydrody-
namics. The objective of this thesis is to explore the capabilities of the AC formulation coupled
with the VoF method in marine applications. To this end, using as a starting point the pre-
conditioned AC formulation of Kunz et al. [61], a coupled AC/VoF methodology in arbitrary
polyhedral grids is developed using the finite volume method and validated in series of test
cases for free surface flows. Challenges as generation, propagation and absorption of surface
waves, turbulent flows around surface piercing structures and wave induced rigid body motions
are directly addressed.

In addition to the hydrodynamic methodology, a standard 6 Degrees of Freedom (6–DoF)
rigid body solver is developed and coupled with the flow solver to investigate FSI problems. The
motion of the rigid body inside the computational grids is made possible by applying deformation
algorithms. The coupling is performed within an iterative procedure until convergence of DoFs
is accomplished, leading to the strong coupling of the two procedures.

In short, the thesis makes the following contributions in the assessment of hydrodynamics
problems using CFD:

– A coupled formulation AC/VoF in arbitrary polyhedral volumes

– A framework for generation and absorption of regular (linear and non–linear) and irregular
free surface waves

– A correction method for the hydrostatic pressure terms in polyhedral terms

– A strong coupled methodology for FSI problems

In order to prove the validity of the proposed numerical framework, a series of numeri-
cal experiments are conducted. An extensive Validation and Verification (V&V) procedure is
performed. The validation is carried out by comparing numerical results with analytical, experi-
mental and other available numerical data. The verification is performed by contacting separate
sensitivity studies on the spatial and temporal resolution, for each computational experiment.
Moreover, parametric studies are conducted to establish the influence of various numerical pa-
rameters, such as the AC parameter β, as well as of the parameters affecting wave generation
and absorption.
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The following sets of test cases are considered in this study:

1. Generation, propagation and absorption of two non–linear waves (one Cnoidal and one
3rd Stokes)

2. Interaction of a linear wave with variable bathymetry

3. Response of a moonpool type floater under wave excitation in 2D

4. Evaluation of a propeller’s performance in open water tests

5. Resistance calculation, free trim and sinkage conditions, as well as response in head waves
conditions with 2 DoFs for the KCS ship

6. Preliminary evaluation of a ship augmentation propulsion concept using a fully submerged
hydrofoil. Test cases in calm water and in head waves conditions with 2 DoFs are con-
ducted

7. Response of a semi–submersible floater to an initial displacement and under excitation
from irregular waves

The present methodology was implemented as an extension to an unstructured cell–centered
finite volume code MaPFlow. The solver is capable of solving the compressible URANS equa-
tions [75] and has further capabilities of predicting laminar to turbulent transition, as well as
modeling turbulence using high fidelity models (DES and LES) [76]. MaPFlow is capable of
running in a multi–processor environment. Each process solves a specific part (or block) of the
computational domain and communication is made at the inter–block boundaries. The grid
partitioning is performed by the Metis library [77], while the interprocess communication is
achieved through the MPI protocol.

1.4 Structure of Thesis

The remainder of the thesis is structured as follows:

• In Chapter 2, the theoretical foundations of the work are set. The governing equations
of free surface flows in moving and deforming grids are formulated. Additionally, the
basic water wave theories, that are used to introduce regular and irregular waves in a
computational wave tank are described and finally the equations of motion of a rigid
body with 6 degrees of freedom are also presented.

• In Chapter 3, the discretization of the flow equation is given in detail. Spatial and time
discretization, as well as, the linearization of the system of equations are included. Further-
more, the numerical framework for regular and irregular wave generation is also included.

• In Chapter 4, the basic verification of the numerical methodology is presented. Simplified
flows in two dimensions are chosen to demonstrate the ability of the solver to propagate
free surface waves, resolve dispersive phenomena and account for motions induced by the
wave–structure interaction.

• In Chapter 5, the modeling of more complex geometry is considered with actual engineer-
ing interest. The results of the computational methodology are compared with experi-
mental data in a series of computational test cases. Specifically, validation is carried out
on; (a) a rotating propeller in open water tests, (b) resistance calculations for two different
ship hulls (a container and ferry ship) in fixed and in free conditions, (c) seakeeping tests
for the two hulls hulls in head waves conditions and lastly, (d) the response of a scaled
Y–shaped floater in decay tests and under polychromatic wave excitation.

• In Chapter 6, the basic outcomes of the thesis are summarized and suggestions for possible
extension of this work are given.
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All computations were performed in the National HPC facility – ARIS. The computational
time was granted by the Greek Research & Technology Network (GRNET) under a series of an-
nual production projects (MaPFloat–pr014043 thin, DYNASEA–pr012019 thin, SHIPFLOW–
pr010039 thin)



Chapter 2

Theoretical Background

The governing equations of fluid and rigid body motion are considered. The chapter emphasizes
on the Artificial Compressibility formulation for free surface, turbulent flows. The motion
and the deformation of the grid is also accounted for in the derivation of the flow equations.
Furthermore, the basic analytical theories used for wave generation inside a computational wave
tank are also presented.

2.1 Governing Equations of Two–Phase Flows

Artificial Compressibility

The Artificial Compressibility (AC) [41] permits the inter–equation coupling by introducing
pressure derivatives in the mass equation. This is performed by assuming a pseudo–relation
between density and pressure. The whole idea is rooted in the formulation of the compress-
ible flows, where pressure and density are linked through the definition of the sound speed c,
∂ρ
∂p = 1

c2
. AC adopts a similar definition, it creates a linking of the equations by considering a

pseudo–relation between pressure and density. The relation is controlled by a purely numerical
parameter β strictly greater than zero. To this end, the following relation is introduced

∂ρ

∂p

∣∣∣∣
τ

=
1

β
(2.1)

Equation (2.1) holds only in the context of a numerical procedure, where iterations are
performed until a convergent solution is obtained. The convergence rate can be quantified by
a time variable, commonly referred to as pseudo–time, τ . Relation (2.1) is valid only during
pseudo–time.

Returning to the governing equations of unsteady incompressible flows. Firstly, the incom-
pressible form of the mass equation expresses the conservation of fluid volume, meaning that
the divergence (∇·) of the 3–dimensional (3D) velocity vector υ⃗ = (u, v, w) is equal to zero.
Secondly, the change in the momentum in real time (t) is associated with the advection of mo-
mentum by the underlying velocity field (∇· (ρυ⃗υ⃗)), the pressure gradient (∇p), the change due
to diffusion ∇ · τ and the body forces (f⃗B) that act on the flowfield. The governing equations
are summarized below

∇ · υ⃗ = 0 (2.2a)

∂ρmυ⃗

∂t
+∇ · (ρmυ⃗υ⃗) +∇p = ∇ · τ + f⃗B (2.2b)

15
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The AC method introduces secondary time derivatives that measure the convergence rate of
the unknown variables within an iterative process. These pseudo–time (τ) derivatives tend to
zero upon convergence and thus the original system of equations is retrieved. By augmenting
the governing system of equations with pseudo–time derivatives of the conservative variables
(mass and momentum) and introducing the AC definition (2.1), a single coupled system of
equations is formed

1

β

∂p

∂τ
+ ∇ · υ⃗ = 0 (2.3a)

∂ρmυ⃗

∂τ
+

∂ρmυ⃗

∂t
+∇ · (ρmυ⃗υ⃗) +∇p = ∇ · τ + f⃗B (2.3b)

The AC method has managed to create an equation for pressure and additionally, by intro-
ducing in the momentum equation pseudo–time derivative, a coupled system is formed during
convergence. Once convergence is accomplished, pseudo–time derivatives vanish and the orig-
inal system of equations is retrieved. The coupling is controlled by the numerical parameter
β. Large values of β imply a loose coupling of the equations resulting in slow convergence
characteristics, while for small β values the system is strongly coupled, which may lead to a stiff
numerical scheme. It becomes clear that, parameter β can affect convergence and a familiarity
with the details of the numerical implementation is required.

Volume of Fluid Method

In order to resolve the motion of the free surface, the Volume of Fluid (VoF) [23] approach is
considered. The VoF method is widely used to describe the motion of two (or more) immiscible
fluids, as is air and water in case of free surface flows. The method begins with the definition
of the volume fraction αl, which indicates the presence of either the one or the other fluid. In
the present thesis, the usual convention is adopted, if αl is equal to one the liquid phase (water)
is identified, otherwise, for zero values, the gaseous phase (air) is indicated. The previous
convention leads to the following density definition of the volume fraction

αl =
ρm − ρa
ρw − ρa

(2.4)

where indices m, w and a, refer to the properties of the mixture, water and air.
The definition of the volume fraction can be generalized to account for multi–phase flows.

Each phase i can be assigned with a corresponding volume fraction αi, then at each point, the
sum of the volume fractions should be equal to one, meaning that∑

i=1

αi = 1 (2.5)

The above equation for free surface flows, where only water and air are considered, is simplified
in

αl + αg = 1 (2.6)

where αg is the volume fraction indicating the presence of gas phase (air).
VoF method dictates that the total derivative of the volume fraction is everywhere equal to

zero

Dαl

Dt
= 0 ⇒ ∂αl

∂t
+ υ⃗ · ∇αl = 0 (2.7)

This implies that the free surface is an iso–surface of constant volume fraction that is materially
conserved over time. Typically, the free surface is identified for αl = 0.5. The free surface is
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regarded as discontinuity in the volume fraction field, or equivalently as a discontinuity in the
density field, according to the definition of Equation (2.4).

Once the evolution of the volume fraction field has been defined based on the advection
Equation (2.7), the properties of the mixture can be decided. The density ρm and viscosity µm
are computed as

ρm = ρa + αl∆ρ

µm = µa + αl∆µ
(2.8)

where the difference between the properties of water and air are noted as ∆ρ = ρw − ρa and
∆µ = µw − µa. Again, indices w and a, indicate the properties of water and air, respectively.

Governing Equations of Free Surface Flows

Using the mass (2.3a), the momentum (2.3b) and the VoF (2.7) equations, the governing equa-
tions of free surface flows are formed. At this point, it is worth making a few comments on the
mass conservation and the incompressibility constraint in case of density–variable flows.

In the same spirit as in [47, 74], starting from the general form of the continuity equation
expressed separately for air (a) and water (w)

∂ρa
∂t

+∇ · (ρaυ⃗) = 0

∂ρw
∂t

+∇ · (ρwυ⃗) = 0

(2.9)

multiplying the air density equation with αg and similarly with αl the water equation

∂αgρa
∂t

+∇ · (αgρaυ⃗) = 0

∂αlρw
∂t

+∇ · (αlρwυ⃗) = 0

(2.10)

adding the previous equations together

∂ (αgρa + αlρw)

∂t
+∇ · ((αgρa + αlρw) υ⃗) = 0 (2.11)

and using the definitions (2.4) and (2.6), the general form of the continuity equation (2.12) is
obtained. Thus as a first comment, it should be noted that the density ρm of the mixture is
conserved.

∂ρm
∂t

+∇ · (ρmυ⃗) = 0 (2.12)

A similar approach can be followed to show that the general form of the momentum equation
(2.3b) also applies in multi–phase flows.

Moving on, to the incompressibility constraint applied in multi–phase incompressible flows.
Recalling that ρm = αlρw + (1− αl) ρa and by splitting the divergence product, the continuity
equation of the mixture density (2.12) can be written as(

ρw
∂al
∂t

+ ρwυ⃗ · ∇αl

)
−
(
ρa
∂al
∂t

+ ρaυ⃗ · ∇αl

)
+ ρm∇ · υ⃗ = 0 (2.13)

and using the definition of the VoF function of Equation (2.7), the divergence free velocity field
is retrieved

ρm∇ · υ⃗ = 0 (2.14)

As a result, a divergence free velocity field is recovered using the multi–phase equations.
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The last step to derive the governing equation for free surface flows is to perform the coupling
of the VoF method with the AC formulation. The divergent free velocity field can be introduced
into the VoF Equation (2.7) and produce its conservative form. Furthermore, as in the case of
the momentum equations, the VoF equation is augmented with pseudo–time derivative. The
last two remarks are shown below

∂αl

∂τ
+
∂αl

∂t
+∇ · (υ⃗αl) = 0 (2.15)

To sup up, the coupled AC and VoF method introduces a system of 5 equations, the in-
compressible constrain (2.3a), the conservation of momentum of the mixture (2.3b) and the
conservative counterpart of the VoF (2.15). The 5 unknowns of the system are the pressure
field p, the 3D velocity field υ⃗ and the volume fraction αl. All equations have been augmented
with pseudo–time derivatives and a coupled system of equations is formed.

One of the appealing features of the AC method is that, the coupled system of equations
is hyperbolic in pseudo–time. The same holds for the coupled AC/VoF formulation, since the
eigenvalues of the system are real and distinct. The density discontinuity is marked as a contact
discontinuity wave, where jumps of density are permitted but not of pressure or velocity. The
arsenal of the Riemann solvers developed for the compressible equations can be exploited to
advance the solution in (pseudo–) time.

One of the first attempt to use the AC/VoF approach to simulate the motion of the free surface
was performed by Kelecy and Pletcher [66]. The resulted eigensystem of the flow equations was
derived. A downside of the method is that the eigenvalues of the system scale with the local
density value. In case of high density ratios, as in free surface flows, small values of wave
propagation speed are computed and thus information propagates slowly. The next paragraph
presents preconditioning method to remove the density dependency from the eigenvalues of the
system and accelerate convergence.

Preconditioned Conservative Form

In order to remove the density dependency from the eigenvalues of the system, preconditioning
is applied to the governing equations. The present work uses the preconditioner matrix proposed
by Kunz et al. [61], initially for cavitating flows, and extended later by D.S. Nichols [74] for
steady free surface flows. Before presenting the preconditioner matrix and the final form of the
equations, it is useful to discuss some features of the governing equations and introduce also
definitions that will help to understand the preconditioning effects.

Starting from the design features of the preconditioner matrix. Firstly, the system of equa-
tions should be casted in a form, where the primary unknowns (primitive) variables appear at
the pseudo–time derivatives. Pressure and volume fraction are directly retrieved by the AC
augmented continuity equation (2.3a) and the conservative form of the volume fraction (2.15).
In order to formulate an equation for the velocity field, the pseudo–time terms of the momentum
(2.3b) can be written as

∂ (ρmυ⃗)

∂τ
= ρm

∂υ⃗

∂τ
+ υ⃗∆ρ

∂al
∂τ

(2.16)

where in the previous equation the definition of the mixture quantities (Eq. (2.8)) were intro-
duced. A similar equation can be derived for the unsteady derivatives.

Secondly, in the incompressibility constraint for multi–phase flows (2.14), the divergence free
velocity scales with the mixture density ρm. Kunz et al. proposed the scaling of the pressure
derivatives with this mixture density, obtaining the following form of the continuity equation

1

ρmβ

∂p

∂τ
+∇ · υ⃗ = 0 (2.17)

Finally, for the derivation of the conservative form of the VoF equation, a divergence free
velocity field is assumed. However, during convergence the divergence of the velocity is not
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zero, since the pseudo–time derivative of pressure has not yet vanished. By introducing the
preconditioned continuity equation (2.17) to the original advection form of the VoF definition
(Eq. (2.7)), the following equation for the volume fraction is derived

∂α

∂τ
+

αl

ρmβ

∂p

∂τ
+
∂αl

∂t
+∇ · (υ⃗αl) = 0 (2.18)

Equations (2.16), (2.17) and (2.18) will be used to derive the preconditioned form of the
governing equations.

Next, it is useful to define the vector of the primitive variables
−→
Q and the vector of conser-

vative variables
−→
U . Both vectors are given by Equation (2.19).

−→
U =

[
0 ρmυ⃗ αl

]T −→
Q =

[
p υ⃗ αl

]T (2.19)

Furthermore, in Equation (2.20), the Jacobian transformation matrix, from conservative to
primitive variables, Γe is defined

Γe =
∂
−→
U

∂
−→
Q

=

0 0 0

0 ρmI3×3 υ⃗∆ρ
0 0 1

 (2.20)

In the previous equation, I3×3 denotes the 3 by 3 identity matrix.
Keeping the above considerations in mind, the governing preconditioned equations can be

written in the following integral form for a control volume Ω.

Γ

∫
Ω

∂
−→
Q

∂τ
dΩ +

∫
Ω
Γe
∂
−→
Q

∂t
dΩ +

∫
∂Ω

(−→
F c −

−→
F v

)
dS =

∫
Ω

−→
S qdΩ (2.21)

Breaking down Equation (2.21), the first term of the equation corresponds to the pseudo–time
derivatives of the flow equations scaled by the preconditioner matrix Γ of Kunz. The matrix is
given in Equation (2.22). The preconditioner matrix summarizes the design features discussed
previously. The first row corresponds to the density preconditioned continuity equation (2.17),
the next three rows to the primitive to conservative definition of (2.16), and the final row to the
convection equation of VoF field perturbed by the pressure derivatives according to Equation
(2.18).

Γ =

 1
ρmβ 0 0

0 ρmI3×3 υ⃗∆ρ
αl

βρm
0 1

 (2.22)

The second term corresponds to the unsteady term of the equations although. Although the
system of equation is casted in primitive form, the conservative form of the equations is used to
advance the solution in time. Finally, the spatial terms of the equations appear. The surface
integral includes the convective (inviscid) F⃗c and viscous F⃗v fluxes, while the volume integral
at the right hand side, includes any possible source terms S⃗q that add–up to the field. All
previously mentioned vectors are defined below

−→
F c =


Vn

ρmuVn + pnx
ρmvVn + pny
ρmwVn + pnz

αlVn

 F⃗v =


0

τxxnx + τxyny + τxznz
τyxnx + τyyny + τyznz
τzxnx + τzyny + τzznz

0

 −→
S q =


0
0
0

−ρgz
0

 (2.23)

Regarding the notations used, Vn is the normal to the grid fluid velocity, meaning Vn = υ⃗ · n⃗,
with n⃗ = (nx, ny, nz) being the unit normal of the boundary surface ∂Ω of the control volume.
The viscous fluxes are given by the stress tensor described in (2.24), where µt is turbulent
dynamic viscosity used for the turbulence modeling (see Sec. 2.4).
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τij = (µm + µt)

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.24)

In case of free surface flows, vector S⃗q includes the gravitational acceleration. Neglecting
for now any other possible sources and assuming that gravity acts on the negative z–axis g⃗ =
(0, 0,−gz), S⃗q has the form presented in Equation (2.23).

Lastly, it has to be noticed that Equation (2.21) can be reduced to a system of equations
for one–phase flows by neglecting the VoF equation and setting ρ = const. everywhere. In the
present thesis, one–phase results are also presented, where the solid structure is fully–submerged
and the influence of the free surface can be neglected.

Artificial Compressibility parameter β

The AC method relaxes the incompressibility constraint (∇ · υ⃗ = 0) by introducing acoustic
waves with finite speed in order to distribute the pressure along the domain [60]. The speed of
the waves is controlled by the AC parameter β. If large values are adopted, the waves will travel
with greater speeds, which complies better with the incompressibility constraint. Accordingly,
small values of β decrease the wave speeds and relax further the incompressibility constraint. In
steady simulations the choice of β is less important, since the iterative process would eventually
converge to a steady solution. Typically, β is set large enough to facilitate convergence. A more
careful tuning of the AC parameter is required in time–true computations. In order to keep
the computational cost low, the pseudo–steady state problem solved in every physical timestep,
should converge within 10 to 50 iterations. β can significantly affect the convergence rate and
cause the divergence of the numerical procedure or lead to un–physical solutions. For example,
in [66, 69] it is reported that small values of β produced density oscillations near the free surface,
while excessive values caused the divergence of the solver.

As a general guideline, β should be selected so that re–scaling of the eigenvalues results in
acoustic wave speeds matching the convective velocities [63]. Thus, its value depends on the
details of the numerical implementation. If no preconditioning is applied, then the acoustic
wave speeds scale also with density, thus β should be set accordingly. For free surface flows, it
is reported [59, 66, 68, 72] that, optimal values are found between 103 and 104 due to the high
density ratio.

The precondition matrix utilized in the present thesis scales the continuity equation with the
local density field and removes the density dependency from the acoustic wave speeds. Thus,
the previous values are considered as exceedingly large. In similar applications with the ones
discussed in the present thesis, β values that ensure accuracy are found between 0.1 and 15 [64,
74].

Furthermore, reports can be found in literature, where β value can vary locally according
to the characteristics of the flows. In this direction, Turkel [53] proposed that β value should
be selected such that it minimizes the ratio of the maximum to minimum eigenvalue. This is
achieved by selecting β = max

(
Ko|υ⃗|2, ϵo

)
, where Ko equals 3 and ϵo a lower limit. In case of

two phase flows, where the Kunz preconditioner is used different reports can be found that set
Ko between 1 [54, 64] and 10 [61].

In the present work, the local varying approximation of the AC parameter β is used. As it
will be later discussed, the lower threshold is set between 5 and 50 for regions of low velocity
advection, while sufficient convergence properties were noted for Ko between 5 and 10.

2.2 Arbitrary Lagrangian–Eulerian Form

A control volume Ω is able to move in space with a velocity υ⃗vol. The Reynolds Transport
Theorem can be used to account for the change of the control volume Ω (t) over time. The
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temporal term of Equation (2.21) can be written as

∂

∂t

∫
Ω(t)

−→
U dΩ =

∫
Ω(t)

∂
−→
U

∂t
dΩ +

∫
∂Ω(t)

(υ⃗vol · n⃗)
−→
U dS ⇒ (2.25)

The control volume during the pseudo–time does not change, thus the volume integral is not
affected by the pseudo–time derivatives. Equation (2.21) can now be written as

Γ
∂

∂τ

∫
Ω(t)

−→
QdΩ +

∂

∂t

∫
Ω(t)

−→
U dΩ +

∫
∂Ω(t)

(−→
F c,g −

−→
F v

)
dS =

∫
Ω(t)

−→
S qdΩ (2.26)

−→
F c,g is the Arbitrary Lagrangian–Eulerian (ALE) flux given by Equation (2.27), ∆V is the
difference between Vn and the volume velocity projected to n⃗, meaning ∆V = Vn − Vg and
Vg = υ⃗vol · n⃗.

−→
F c,g =


Vn

ρmu∆V + pnx
ρmv∆V + pny
ρmwV + pnz

αl∆V

 (2.27)

For a state vector Q⃗ = [0, 1, 1, 1, 1]T , Equation (2.26) reduces to the well–known Geometric
Conservation Law (GCL) [78] and described in Equation (2.28). GCL states that the rate of
change of a volume is equal to the area swept by its boundary ∂Ω.

∂

∂t

∫
Ω(t)

dΩ =

∫
∂Ω(t)

VgdS (2.28)

The law is of great importance when deforming grids are utilized and conservation of volume
should be enforced. In case of rigid motion of the control volume, Equation (2.28) is satisfied
trivially.

2.3 Relative Frame of Reference

The previous formulation considered an earth–fixed coordinate system, where the observer is
still and the fluid moves with a velocity υ⃗. In some cases, it is convenient to change the
reference coordinate system and express the flow equations in a frame moving with constant
velocity relative to the fixed one.

Let r⃗ be a position vector in space with respect to the earth fixed coordinate system I, and
R be a relative frame of reference that is able to move in space with linear velocity υ⃗R and
rotational velocity ω⃗. The derivative of r⃗ in the inertial frame I can be expressed, with respect
to the relative frame R as

dr⃗

dt

∣∣∣∣
I

=
dr⃗

dt

∣∣∣∣
R

+ ω⃗ × r⃗ (2.29)

The above equation is an expression for the velocity in the inertial frame υ⃗I ,

υ⃗I = υ⃗R + ω⃗ × r⃗ (2.30)

Similarly, the acceleration of a point vector in the inertial frame of reference in case of constant
rotational speed is given as

dυ⃗I
dt

∣∣∣∣
I

=
dυ⃗R
dt

∣∣∣∣
R

+
�

�
�
�>
0

dω

dt
× r⃗ + 2ω⃗ × r⃗ + ω⃗ × ω⃗ × r⃗ (2.31)
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where ω is considered constant and the rotational terms −2 (ω⃗ × u⃗R) and −ω × (ω⃗ × r⃗) corre-
spond to the Coriolis force and to the centrifugal force, respectively

As a result, the two–phase Navier Stokes equations without source terms can be expressed
with respect to the relative system as

∇ · υ⃗R = 0

∂υ⃗R
∂t

+∇ ·
[
ρmυ⃗Rυ⃗R − pI3×3 + τ

]
= −2ρm (ω⃗ × u⃗R)− ρmω × (ω⃗ × r⃗)

∂αl

∂t
+∇ · (αlυ⃗R) = 0

(2.32)

The equations of motion in the relative frame can be expressed in terms of the absolute
inertial velocity since, υ⃗R = υ⃗I − ω⃗ × r⃗.

∇ · υ⃗I = 0

∂υ⃗I
∂t

+∇ · [ρυ⃗I( υ⃗I − ω⃗ × r⃗
)
−pI3×3 + τ

]
= −ρ (ω⃗ × υ⃗I)

∂αl

∂t
+∇ · (∂αlυ⃗I) = 0

(2.33)

where the definition ∇ · (ω⃗ × r⃗) = 0 has been used, assuming rigid body transformation. Ac-
cording to [79, 80] this leads to a more accurate representation of the fluxes for finite volume
solvers.

By integrating over a control volume Ω, a similar expression with the ALE form of Equation
(2.26) is produced

Γ

∫
Ω

∂
−→
Q

∂τ
dΩ + Γe

∂

∂t

∫
Ω

−→
QdΩ +

∫
∂Ω

(−→
F c,rel −

−→
F v

)
dS =

∫
Ω

−→
S qdΩ (2.34)

The inviscid flux
−→
F c,rel in the relative frame is computed as the ALE flux of Equation (2.27),

with the grid velocities being Vg = ω⃗ × r⃗. Furthermore, in the previous equation a constant

rotational speed is assumed. The source vector
−→
S q incorporates the source term of Equation

(2.33).
It is worth noticing that the momentum equations dictate that ω⃗× υ⃗∞ = 0. This means that

either the velocity vector υ⃗∞ is parallel to the rotation axis or υ⃗∞=0.

2.4 Turbulence Modeling

For turbulence modeling the Reynolds averaging process is followed. Taken as reference flow
variable the velocity ui in the ith direction, a time averaging over a sufficient large period T is
performed, meaning

ui =
1

T

∫ t+T

t
ui(t)dt (2.35)

The instantaneous value of the flow quantity u can now be written as a sum of a mean value,
according to Equation (2.35), and a fluctuating part u′, meaning

ui = ui + u′i (2.36)

For the mean value and the fluctuating part, the following properties hold

ui = ui

u′i = 0, but u′iu
′
j ̸= 0

(2.37)
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This is a standard procedure for incompressible constant density flows. However, in case
of incompressible variable density flows, a slightly different approach is followed. In order
to account for the density variation a density weighting is performed called Favre (or mass)
averaging. This process leads to a significantly more complicated system of equations due to
additional correlations that arise from the density fluctuations. For this reason it is advised
to perform the Favre decomposition only for the velocity components. For the rest of the flow
variables the standard Reynolds averaging is performed [81]. Specifically, performing a mass
averaging for the velocity components, yields

ũi =
1

ρ

1

T

∫ t+T

t
ρuidt (2.38)

In the above equation, ρ denotes the Reynolds averaged density. The decomposition rules
are the same as before

ui = ũi + u′′i (2.39)

while for the two parts, the mean and the fluctuating holds

ρ̃ui = ρũi , ρ̃u′′i = 0, but ũ′′i u
′′
j ̸= 0 (2.40)

Application of the Reynolds averaging to density and pressure variables, and of the Favre
averaging to velocity components do not affect the mass or the VoF equations. However,
additional terms arise in the momentum equations. Specifically, the momentum equations are
written as

∂ρũ

∂t
+

∂

∂xj
(ρũj ũi) = − ∂p

∂xi
+

∂

∂xj

(
τ̃ij − ρũ′′i u

′′
j

)
(2.41)

The additional terms are identified as the Favre averaged Reynolds stress tensor

τ̃ ′′ij = −ρũ′′i u′′j (2.42)

Additional equations should be specified for the closure of the problem. To this end, eddy
hypothesis has proven to be one of the standard approaches to compute the Reynolds stresses.
This assumption, originally proposed by Boussinesq, states that the Reynolds stresses can be
computed similarly to normal stresses, but with a variable viscosity, called turbulent viscosity,
that needs to be specified from an appropriate turbulence model. The hypothesis states that

−ρũ′′i u′′j = 2µtSij −
2

3
ρkδij (2.43)

where µt is the turbulent dynamic viscosity, Sij the strain rate tensor Sij = 1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
, k

is the turbulent kinetic energy, and δij is the Kronecker’s delta. In the previous equations, the
term −(2/3)ρkδij has been added to obtain the right trace of the Reynolds–stress tensor and it
is often neglected for stability.

2.4.1 Closure

For the turbulence closure the k–ω SST (Shear Stress Transport) [82] model is selected. The
model computes the dynamic viscosity µt be solving two differential equations. The first equa-
tion computes the turbulent kinetic energy k, while the second, the turbulent dissipation rate
ω.

∂(ρk)

∂t
+∇·(υ⃗ρk) = ∇

[
(µm + σkµt)∇k

]
+ Pk − β∗ρωk (2.44a)

∂(ρω)

∂t
+∇·(υ⃗ρω) = ∇

[
(µm + σωµt)∇ω

]
+
γ

νt
Pk − βρω2+

+ 2(1− F1)
ρσω2
ω

∇k · (∇ω)T
(2.44b)
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In the previous equations Pk is the production term of the turbulent kinetic energy, and it is
computed as

Pk = τij
∂ui
∂xj

(2.45)

In order to enhance stability a limiter is applied to the production term of the turbulent
kinetic energy. The k–ω SST model blends the original k–ω introduced by Wilcox, to account
for the viscous effect close to the wall, with the k–ε model which has better characteristics for
flows away from the solid boundaries. The blending is performed by two hyperbolic tangent
functions, F1 and F2, given by Equation (2.46).

F1 = tanh

{{
min

[
max

( √
k

β∗ωy
,
500v

y2ω

)
,
4ρσω2k

CDkωy2

]}4
}

(2.46a)

F2 = tanh

{[
max

(
2
√
k

β∗ωy
,
500v

y2ω

)]2}
(2.46b)

where y is the distance of a field point from the nearest wall point and term CDkω is computed
as

CDkω = max

(
2
ρσω2
ω

∇k · (∇ω)T , 10−10

)
(2.47)

The constants of the model are: β∗ = 0.09, α1 = 5/9, β1 = 0.075, σk1 = 0.85, σω1 = 0.5,
α2 = 0.44, β2 = 0.0828, σk2 = 1.0 and σω2 = 0.856. The subscript 1 denotes the constants of
the outer region, while subscript 2 the k–ω, or inner, region of the field.

ϕ = F1ϕ1 + (1− F1)ϕ2 (2.48)

Furthermore, the definitions of the magnitude of the strain rate and vorticity are given by

S =
√
SijSij , Sij =

1

2

(
∂υi
∂xj

+
∂uj
∂xi

)
Ω =

√
ΩijΩij , Ωij =

1

2

(
∂υi
∂xj

− ∂uj
∂xi

) (2.49)

Finally, once the values of k and ω have been computed, the turbulent viscosity is approxi-
mated as

µt =
ρα1k

max
(
α1ω,ΩF2

) (2.50)

2.4.2 Initial & Boundary Conditions

The initial and the boundary conditions of the farfield boundaries, according to the original
SST model, are given as

ωfar =
U∞
L

kfar =
10−3U2

∞
ReL

(2.51)

The turbulence close to wall tends to zero, thus the wall boundary conditions for the k–ω
model are

ωwall = 10
6ν

β (∆d1)
2

kwall = 0

(2.52)
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2.4.3 Turbulence Overproduction in Surface Wave Flows

Application of RANS models in surface wave problems leads to an unrealistic growth of turbulent
kinetic energy and eddy viscosity in the liquid phase close to the free surface, resulting in the
premature decay of free surface waves. This is triggered by the shear layer forming near the
free surface in case of propagating waves. Researchers have managed to resolve this issue by
adding limiters to the turbulent kinetic energy or to the eddy viscosity calculations.

One of the most well–known solution to the turbulence overproduction is the buoyancy source
term proposed by Devolder et al. [83, 84]. The source term is added on the right hand side of
the turbulent kinetic energy equation and described by Equation (2.53). The purpose of the
source term is to suppress turbulence in regions of large density gradient, e.g. close to the free
surface. In Equation (2.53), g⃗ is the gravitational vector, (0, 0,−gz), νt the kinematic turbulence
viscosity and σt is a constant equals to 0.85, used to regulate the amount of buoyancy modeled.

Gb = − νt
σt

∂ρ

∂xj
gj (2.53)

Although this modification has managed to restrain excessive turbulence production, it has
not suppressed entirely its production, especially in long time simulations. A better established
solution, that comes in addition to the buoyancy term, has been introduced by Larsen and
Fuhrman [85]. They have demonstrated that there will be a non–zero production of turbulent
kinetic energy in a potential flow region beneath surface waves. By performing a stability
analysis they proposed a stabilization limiter in the calculation of µt. This limiter is activated
in regions of nearly potential flow, which are identified as regions of very low rotation and high
shear or equivalent pΩ/po ≤ λ2, where λ2 is a small value, typically taken as 0.01.

µt =
ρα1k

max

(
α1ω, SF2, α1λ2

β
β∗α

P0
PΩ
ω

) (2.54)

Compared to Equation (2.50), µt is limited in the outer region by the strain rather than
vorticity magnitude. This approach has been successfully used to simulate turbulent surface
waves up to breaking [86] using MaPlow. When the additional stress limiting is applied to
turbulent flows with surface piercing objectives, a more precise tuning of the λ2 parameter is
required.

Another modification to resolve the overproduction of turbulence in regions of high shear
stresses S and low vorticity magnitude, Ω has been proposed by Kato and Launder [87]. Their
study of flows past square cylinders using the k–ϵ turbulence model has revealed excessive pro-
duction of turbulence kinetic energy close to stagnation points. These regions are characterized
by very high levels of shear, while the flow is nearly irrotational, which is similar to the remarks
made by Larsen and Fuhrman for flows beneath surface waves. They recommended to replace
the production limiter by

Pk = µtSΩ (2.55)

Once again this modification will not have an effect on simple shear flows. As discussed in
the next chapter, its application to surface wave flows manages to restrain the overproduction
of µt close to the free surface.

It is worth noticing that all modifications presented here aim to change the behavior of tur-
bulence model in specific regions only. The buoyancy term modifies production of the turbulent
kinetic energy near the free surface, while the other two change turbulence calculations in re-
gions away from solid boundaries where the flow rotation is insignificant. Thus the latter two
are activated in the k–ϵ regions of the model.
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2.5 Water Waves Theory

The previous sections focus on the formulation of the Navier–Stokes (NS) equations for turbulent
free surface flows. The modeling of the free surface waves propagating over constant bathymetry
can also be faced using analytical approaches by solving a boundary value problem. This solution
may serve as the basis of a numerical wave making technique that can be used to introduce
waves in a NS domain. Below, some analytical formulations of water waves propagating on
constant bathymetry are described in brief.

The analytical description of water wave motion can be sufficiently made using two main
assumptions. Firstly, the water can be considered purely incompressible and secondly, taking
advantage that the viscous effects are concentrated in thin layers close to the free surface and
the bottom, the assumption of irrotational inviscid flow can also be made [88, 89]. These
simplifications enable the definition of a velocity potential and a stream function.

In general, the mathematical formulation of the problem is as follows; a two dimensional
fixed inertial frame of reference is defined, with z–axis pointing upwards and its center located
at the calm free surface. The domain is defined by the open boundaries at the left and right
side, below by the bottom and by the free surface above. Using the assumption of irrotational
and incompressible fluid a velocity potential is defined that satisfies the continuity equation.
Let ϕ be the velocity potential, then

∇2ϕ (xI , zI , t) = 0 (2.56)

In the preceding equations, the index I denotes the spatial coordinates with respect to the fixed
inertial frame of reference.

At every boundary of the domain, boundary conditions should be specified. For the bottom,
the no penetration boundary condition holds. This states the normal component of the velocity
on the boundary which is described by the normal vector n⃗ is zero, or

υ⃗ · n⃗ = 0 (2.57)

where υ⃗ = (u, v, w) is the velocity vector and n the normal vector that defines the seabed.
For the free surface, two boundary conditions are defined. Firstly, the kinematic boundary

conditions which states that all particles that form the free surface in any time t will always
remain on the free surface. More formally, the free surface can described by equation of the
form F (xI , zI , t) = 0, in the earth fixed coordinate system. In a two dimensional context, the
total derivative will be zero or

DF (xI , zI , t)

Dt
= 0 (2.58)

The second boundary condition arises from the requirement for a uniform pressure distribu-
tion across the free surface. This requirement can be expressed using the Bernoulli equation
as,

−∂ϕ
∂t

+
1

2

(
u2 + w2

)
+
p

ρ
+ gz = 0 (2.59)

Boundary conditions should also be specified at the lateral boundaries. Assuming only wind
generated waves, which can be considered as periodic in space and time, the length of the
domain is chosen equal to one wavelength, thus the lateral boundaries can be set to periodic,
meaning that for a wave with length λ and period T the following boundary conditions hold

ϕ (xI , t) = ϕ (xI + λ, t)

ϕ (xI , t) = ϕ (xI , t+ T )
(2.60)

Apart from the velocity potential, another useful approach for wind generated waves, which
can be considered as steady in a reference frame that moves with the wave, is to use a stream



2.5. WATER WAVES THEORY 27

function formulation. Again considering a xz plane with the z–axis pointing upwards but this
time the origin of the coordinate system is located at the bottom. A stream function can defined
as

u =
∂ψ

∂z
, w = −∂ψ

∂x
(2.61)

and since the flow is considered as irrotational

∇2ψ = 0 (2.62)

The boundary conditions that hold are, for the bottom the non–entry condition is expressed
as

ψ (x, 0) = 0 (2.63)

At the free surface, the kinematic boundary condition expressed is as

ψ (x, η (x)) = −Q (2.64)

where η(x) is the free surface elevation and Q is the volume rate of flow underneath the steady
water. Additionally, the dynamic boundary condition implies

1

2

[(
∂ψ

∂x

)2

+

(
∂ψ

∂z

)2
]
+ η = R (2.65)

with R being the Bernoulli constant.
The following sections present briefly two well–known approximations for the solution of

steady water waves, that will be used for wave generation in the framework of a numerical
wave tank. The goal of this section is to present appropriate methodologies for the analytical
description of water waves for any wave steepness. A wave can be uniquely described given the
water depth d, the wave height H and either the wave length λ or the wave period T .

2.5.1 Linear Airy Wave Theory

The first approximation of water waves starts from the velocity potential formulation. In this
framework, a linearization of the equations is performed assuming small amplitude waves com-
pared to their wavelength, e.g. (H/2)/λ << 1, whereH is the wave height and λ the wavelength,
as well as small velocity perturbations thus the square of the velocity can be neglected.

A solution of the particular boundary value problem can be taken using the separation of
variables method. Assuming a water wave that it is propagating towards the x–axis, in absence
of current, then the velocity potential is given by

ϕ (x⃗I , t) = −H
2

g

ω

cosh k (d+ zI)

cosh kd
sin (kxI − ωt) (2.66)

In the preceding equation, k is the wave number, ω the wave frequency in rad/s, d the water
depth, g the acceleration of gravity, t the time variable, zI the vertical variable and xI the
horizontal variable in the inertial frame of reference.

The wave number k and the wave frequency ω are related with the linear dispersion relation

ω2 = gk tanh kd (2.67)

The free surface elevation for a linear progressive wave is given by

η =
H

2
cos (kxI − ωt) (2.68)
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The velocities under the wave crest are defined as

u(x⃗I , t) =
H

2
ω
cosh k (d+ zI)

sinh kd
cos (kxI − ωt)

w(x⃗I , t) =
H

2
ω
sinh k (d+ zI)

sinh kd
sin (kxI − ωt)

(2.69)

and the pressure field is described by,

p(x⃗I , t) = ρg
H

2

cosh k (d+ zI)

cosh kd
cos (kxI − ωt) (2.70)

A water wave is uniquely defined given the wave height H, the water depth d, and either the
wavelength λ or the wave period T . T and λ are connected by the dispersion relation, which
can be used to retrieve the one or the other.

2.5.2 Stream–Function Theory

The water wave theory of Airy offered an analytical solution by considering only small amplitude
and long crested waves. Further approaches have been proposed to account for the whole range
of steady wave propagation [90]. Stokes wave theory has been introduced to describe water
waves that are not very long compared to the water depth, while the complementary Cnoidal
wave theory is used to describe long water waves. Rienecker and Fenton [91] proposed a unified
numerical theory that can be used as a universal approximation for steadily propagating waves
in horizontal bottom, and titled as Stream Function Theory.

The main idea behind the Stream Function theory is, by exploiting the symmetry around the
crest, to approximate the stream function ψ, in N + 1 equispaced points from crest to though,
with the following Fourier expansion

ψ (x, z) = Boz +
N∑
j=1

Bj
sinh jkηj
cosh jkD

cos jkx (2.71)

Stream function ψ needs to also satisfy the corresponding boundary conditions. For every
point xj = jλ/2N , with j = 0, 1, . . . , N , the kinematic boundary condition (2.64) is expressed.
Furthermore, another set of equations is retrieved from the dynamic boundary condition (2.65).
In total, the boundary conditions introduce 2N + 2 equations and involve 2N + 5 unknowns,
namely the Fourier coefficients Bj , the elevations ηj at the N +1 points, the Bernoulli constant
R, the flow rate Q and the wave number k. Additionally, the free surface points should satisfy
the wave height H and the mean depth d. In order to close the system of equations additional
equations should be defined.

As already mentioned, in order to define a wave, the wave height H, the water depth d and
either the wave period T or the wave length λ have to be specified. Additional equations are
derived from the properties of H, d, T and λ. Firstly, the elevation at the crest η0 and at the
trough ηN should respect the wave height definition H. Secondly, the mean elevation should
satisfy the depth definition d. Furthermore, depending on the input data one more equation is
derived either by the relation between the wave period T and frequency ω, if the wave length
is defined, or for the wave length λ to wave number k relation, if the wave period is defined.

In case of non–linear waves the net flux across the domain is not zero and thus one additional
unknown is introduced. The non–zero flux is expressed either by a Stokes drift cS or through
a constant velocity current known as Euler current cE . Again, depending on the input data,
a final equation is introduced that is based either on the one or the other definition. In total,
a closed system of 2N + 6 equations is formed for the 2N + 6 unknowns. This system can
be solved iteratively using the Newton’s method. In the present thesis the numerical strategy,
which is described in detail in [92], is followed.
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2.5.3 Irregular Waves

Irregular waves in one direction are generated using a simple superposition of linear Airy waves
of N wave components.

For a given water depth, each wave component i is defined by a wave amplitude Ai, a wave
angular frequency ωi, a corresponding wave number ki, according to the dispersion relation
(2.67) and wave phase εi.

The total elevation is computed by Equation (2.72), the velocity under the crest by Equation
(2.73) and the pressure by Equation (2.74).

η (x, t) =
N∑
i=1

Ai cos (kix− ωit+ εi) (2.72)

u(x, z, t) =

N∑
i=1

Aiωi
cosh ki (h+ z)

sinh kih
cos (kix− ωit+ εi)

w(x, z, t) =

N∑
i=1

Aiωi
sinh ki (h+ z)

sinh kih
sin (kix− ωit+ εi)

(2.73)

p(x, z, t) =
N∑
i=1

ρgAi
cosh ki (h+ z)

cosh kih
cos (kix− ωit) (2.74)

In the case of a given wave spectrum, the amplitude of each wave is obtained by it into N
bands of length ∆ω and height Si, which corresponds to the spectral density of the i–component.
Then, the amplitude can be computed as

Ai =
√

2Si (ω)∆ω (2.75)

2.6 Motion of Rigid Body

In the previous sections, the foundations of the fluid solver have been set. In this last sec-
tion of the chapter, the motion of rigid body is studied under external excitation. During
Fluid–Structure Interaction (FSI), the rigid body solver is responsible for calculating the three
displacements and the three rotations of the body.

Rigid bodies are defined as structures that their deformation can be neglected compared to
the amplitude of motion. Typically, two coordinate systems are used to define the motion of a
body. One inertial system, fixed to the Earth and a second moving system, fixed to the center
of mass of the body. A schematic illustration of the two systems is given in Figure 2.1a. The
first system is an inertial system (non–accelerating) that is used to define the absolute position
of the body, denoted as OXIYIZI in the figure, while the relative system, CxRyRzR, follows
the motion of the body and it is used to express the equations of motion.

The body has 6 degrees of freedom (DoFs) three translational and three rotational. The
three translations are referred to as surge, sway and heave, while the three rotations as roll (or
heel), pitch (or tilt) and yaw (or swing).

The position of the body can be defined by a position vector pointing at its center of mass and
by its angular orientation. For the orientation of the body the modified Euler’s angle convention
is used. This means that, the rotations are performed in a specific order only. According to
this convention, in order to find the orientation of a body (or equivalent the orientation of the
relative reference frame) starting from the inertial, earth fixed, reference system, three successive
rotations are performed, firstly about the z–axis (yaw) with angle ψ, then about y–axis (pitch)
with angle θ and finally about x–axis (roll) with angle ϕ. An illustration of the pseudo–Euler
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(a) Illustration of the inertial (global) coordinate system
OXIYIZI and the relative (body fixed) coordinate system

CxRyRzR

(b) Definition of the pseudo–Euler angles for the
transformation from the inertial to the relative

coordinate system

Figure 2.1: Schematic representation of the two coordinate system used to
define the motion of a body (left) and the three successive rotations that

used to obtain the orientation of the body (right)

angles convection is given in Figure 2.1b. It is can be easily proven that finite rotations can not
be treated as vector quantities [93, 94].

Any point in space can be defined as

−→
R I =

−→
RC + T (ψ, θ, ϕ)−→r (2.76)

where
−→
R I is the position of the point with respect to the global coordinate system,

−→
RC the

position of the body fixed coordinate system, −→r the position of the point with respect to the
body fixed coordinate system and T the transformation matrix from the inertial to the relative
system. The matrix is product of the rotation matrices, according to the pseudo–Euler angles
convention T = T (ψ)T (θ)T (ϕ). The transformation matrix is computed by

T = T (ψ)T (θ)T (ϕ) =


cosψ sin θ cosψ sin θ sinϕ

− sinψ cosϕ
cosψ sin θ cosϕ

+sinψ sinϕ
sinψ cos θ sinψ sin θ sinϕ

+cosψ cosϕ
sinψ sin θ cosϕ

− cosψ sinϕ
− sin θ cos θ sinϕ cos θ cosϕ

 (2.77)

Based on the definition of Equation (2.76), which describes the coordinate transformation
from the inertial to the relative frame of reference, it can be proven that [95], the rate of change
of any arbitrary vector (or table) can be given by the following operator equation

d·
dt

∣∣∣∣
I

=
d·
dt

∣∣∣∣
R

+−→ω × · (2.78)

Indexes I and R denote derivative with respect to the inertial (global) and to the relative (body
fixed) coordinate system, respectively, while ω⃗ is the rotation vector of the body which passes
through the center of mass.

The equations of motion can be derived using Newton’s second law. For a rigid body with

mass m, that experiences external forces
−→
F (e.g., hydrodynamic, gravity, etc.), its motion

relative to the inertial (earth fixed) reference frame is described by

−→
F = m

d−→u
dt

∣∣∣∣
I

(2.79)
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It is more convenient [93, 94] to express the equations of motion with respect to the body
fixed coordinate system. By making use of operator (2.78), Newton’s second law in the relative
frame of reference is expressed as

−→
F = m

(
d−→u
dt

∣∣∣∣
R

+−→ω ×−→u
)

(2.80)

The above equation is a non–linear equation due to the cross product term result from
the coordinate system transformation. Regarding the notation used, the forces on the local
coordinate system are noted as F⃗ , with components (X,Y, Z), the local velocity (absolute
velocity with respect to the moving reference frame) as −→u , with components (u, v, w) and −→ω
the angular velocity of the body in the body fixed coordinate system, with components (p, q, r).

The component–wise form of the equation for the linear acceleration of the body is

X = m (u̇+ wq − vr)

Y = m (v̇ + ur − wp)

Z = m (ẇ + vp− uq)

(2.81)

A second set of equations, which described the angular motion of the body, can be derived

from the “moment–angular momentum relationship”. If
−→
G = (M,N,K) is the moment vector

about the center of gravity and h⃗ the angular momentum vector, then the moment equation of
motion for the rigid body is

−→
G =

dh⃗

dt

∣∣∣∣
I

(2.82)

As in the case of linear accelerations, the moment equation can be written with respect to
the body fixed coordinate system, as seen below

−→
G =

dh⃗

dt

∣∣∣∣
R

+ ω⃗ × h⃗ (2.83)

The angular momentum vector is given as the product of the inertia matrix I and the angular
velocity ω⃗

h⃗ = Iω⃗ =

 Ixx −Ixy −Ixz
−Iyz Iyy −Iyz
−Izx −Izy Izz

 ω⃗ (2.84)

By assuming that the rigid body consists of a swarm of particles with infinitesimal masses
δmi, then the elements of inertia matrix I are computed as Iij =

∑
i xiyiδmi

The component form of the moment equation with respect to the body’s center of mass has
the following form

K = Ixx + ṗ+ Ixy(q̇ − pr) + Ixz(ṙ + pq) + Iyz
(
q2 − r2

)
+ (Izz − Iyy) qr

M = Iyy + q̇ + Iyz(ṙ − pq) + Iyx(ṗ+ pr) + Izx
(
r2 − p2

)
+ (Ixx − Izz) rp

N = Izz + ṙ + Izx(ṗ− qr) + Izy(q̇ + rp) + Ixy
(
p2 − q2

)
+ (Iyy − Ixx) pq

(2.85)

Equations (2.80) and (2.83), or equivalently the component forms of Equations (2.81) and
(2.85), constitute a set of non–linear differential equations. They express the motion of a rigid
body with respect to its center of mass. Noteworthy, a similar but more complicated system
can be derived by expressing equations with respect to any arbitrary point [94]. Integration
of the system leads to the calculation of generalized position vector x⃗ = (x, y, z, θ, ϕ, ψ), which
contains the unknown displacements and rotations.

For the solution of the non–linear system a δ–formulation is considered. Iterations are per-
formed between the flow solver and the rigid body solver until convergence of perturbations is
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achieved. As described in detail in Appendix A, δ–formulation leads to the following second
order, ordinary differential equation

Mδ⃗̈x+ Cδ⃗̇x+Kδx⃗ = δ
−→
Q (2.86)

where perturbations δ· are with respect to the previous iteration of the flow–rigid body iterative

process, M,C,K are the mass, damping and stiffness matrices,
−→
Q the external forces, while

dots represent derivation with respect to time.
Time integration is performed using the Newmark–β method [96] with coefficient values

β = 0.25 and γ = 0.5. Details about time integration are given in Appendix B.



Chapter 3

Numerical Framework

This chapter presents the discretization process of the flow equations for turbulent free sur-
face flows. Details on geometric calculations, gradient and flux evaluations are given. The
linearization process of the flow equation and the solution of the linear system of equations
are also described. Furthermore, it provides the implementation details of the Fluid–Structure
Interaction (FSI) algorithm, that couples the flow with the rigid body solver. Lastly, mesh
deformation techniques used to communicate the motion of the rigid body to the flow solver
are also presented.

3.1 Definition of a Control Volume

Space is discretized using a set of unstructured computational cells. The center of each control
volume is defined at the geometric center of the computational cell. In Figure 3.1, an example
of a polyhedral control volume is given, where in every computational face an outwards normal
vector is defined.

Figure 3.1: Illustration of a polyhedral control volume with Nf number of
faces and definition of the n⃗i outwards pointing normal vectors

Prior to the discretization of the equations, the geometric quantities of the cells are computed.
Starting from the calculations performed in every cell face, which in general forms a polygonal
area, a standard practice is to triangulate the face. For every triangle, the area and the geometric
center are calculated. Then, the area of the polygonal face becomes the sum of the triangle
subareas, while the center is calculated as the geometric mean value of the triangles centers
[97].

The center of every computational cell is defined as the geometric mean value of its vertices,
meaning

x⃗ci =
1

Nv

Nv∑
j=1

x⃗vj (3.1)

33
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where x⃗ci is the center of the i
th computational cell, Nv the total number of vertices that define

the control volume, located at the x⃗vj positions.
For the calculation of volume the Green–Gauss theorem is used. By defining a function

F⃗ = (0, 0, z) and since ∇ · F = 1, the total volume of a computational cell can be computed as

Ωi =

Nf∑
f=1

zfnzfSf (3.2)

where, Ωi is the volume of the ith cell, zf is the z–coordinate of the f face’s midpoint and nzf
the z–component of the face’s normal.

An alternative to the volume calculation is the approximation of the control volume as sum
of pyramids with their apex being the center of the cell and its base (polyhedral in the general
case) being a face of the cell [97, 98]. The volume of each pyramid can be easily computed.
Both approximations were considered, however no major difference have been found between
them.

Noticeable most of the computational cells are not water tight. In most cases the vertices
of a face do not lie on the same plane. This implies that for the faces of a control volume the
following condition arises

Nf∑
f

n⃗fSf ̸= 0 (3.3)

This is the case for the majority of the computational meshes containing faces with more
than 3 vertices, but it is more pronounced in meshes with arbitrary polyhedral volumes. As
later discussed in Section 3.3.3, a correction can be applied to Equation (3.2) in order to
account for the non–planar vertices of the mesh, and for this is preferred over the pyramids
approximation. The non–water tight control volumes is a major source of accuracy degradation
in 3D simulations. This is especially pronounced in free surface flows, where second order
accuracy is required to preserve the hydrostatic equilibrium.

3.2 Finite Volume Method

The governing equations are discretized using the finite volume method. The method considers
a spatial average of the flow quantities in every control volume. The averaged flow solution is
stored at the center of the computational cell suggesting as cell–centered approximation. For a
cell i with volume Ωi the flow variables are approximated as

−→
Q i =

1

Ωi

∫
Ωi

−→
Q(x⃗; t)dΩ (3.4)

Returning to Equation (2.26) and applying the finite volume method, then the flow in the
ith computational cell is governed by the following equation

ΓΩi
∂
−→
Q i

∂τ
+
∂

∂t

(−→
U iΩi

)
= −−→

R s

(−→
Q i

)
(3.5)

where at the right–hand side of the equation, the term
−→
Rs

(−→
Q i

)
is the spatial residual of the

equations which includes, the surface integrals of the viscous and inviscid fluxes and the volume
integral of the sources terms, i.e.

−→
R s

(−→
Q i

)
=

∫
∂Ωi

(−→
F c,g −

−→
F v

)
dS −

∫
Ωi

−→
S qdΩ (3.6)
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At the left–hand side of the Equation (3.5) the unsteady part appears, which includes both
the flow quantities and the cell volume, since it can change over time. A linearization is applied
to Jacobian matrix Γe

ΓΩi
∂
−→
Q i

∂τ
+ Γe

∂

∂t

(−→
Q iΩi

)
= −−→

R s

(−→
Q i

)
(3.7)

The bar above the flow quantities
−→
Q denote the spatial averaging according to finite volume

method. In order to simplify the notation, the symbol will be suppressed in the following

sections and it is assumed that the
−→
Q denotes the mean spatial value.

The unsteady governing equations are given in a single vector form by equations Equation
(3.7). The discretization process can be split into two parts, (a) the discretization of the spatial
terms, and (b) the temporal discretization. Both are described in the following sections, Section
3.3 and Section 3.4.

3.3 Spatial Discretization

Starting the discretization process from the spatial residual of Equation (3.7), the surface terms
are approximated as a sum over the faces of the computational cell and the source terms are
considered constant inside the computational cell.

For a control volume Ωi with Nf number of edges on each side the spatial residual is approx-
imated as

−→
R s

(−→
Q i

)
≃

Nf,i∑
f=1

(−→
F c,g −

−→
F v

)
f
∆Sf − Ωi

−→
S q,i (3.8)

Equation (3.8) includes the evaluation of the inviscid
−→
F c,g and the viscous

−→
F v fluxes across

a computational face f . The next paragraphs focus on the approximation of these two terms.

3.3.1 Evaluation of Inviscid Fluxes

In the artificial compressibility method, the system of equations becomes hyperbolic in pseudo–
time. The inviscid fluxes are approximated by solving a Riemann problem at each computational
face. A normal vector is defined in each face, which points from the left (L) to the right (R)
state. A Riemann problem is defined by the extrapolated L and R states. The initial value
problem with initial discontinuous data L and R is solved using the approximate Riemann
solver of Roe [45]. In order to remove the density dependency from the eigenvalue, the Kunz
preconditioner [61] is used to scale the eigenvalues.

Let Ac be the convective jacobian matrix, Γ the preconditioner matrix and Γ
−1

its inverse,
then the preconditioned jacobian matrix Ãc is introduces through

Ac = ΓΓ
−1
Ac = ΓÃc (3.9)

and its analytical form

Ãc =


0 nx ny nz 0
nx ρm (nxu+∆V ) ρmnyu ρmnzu u∆V∆ρ
ny ρmnxv ρm (nyv +∆V ) ρmnzv v∆V∆ρ
nz ρmnxw ρmnyw ρm (nzw +∆V ) w∆V∆ρ
0 αlnx αlny αlnz ∆V

 (3.10)

The inviscid fluxes across face f can the be computed as,

−→
F cg,f =

1

2

(−→
F c,g

(−→
QR

)
+
−→
F c,g

(−→
QL

))
− 1

2
Γ
∣∣∣ÃRL

∣∣∣ (−→QR −−→
QL

)
(3.11)
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where |ÃRL| is the Roe averaged–precoditioned jacobian between the left (·L) and right (·R)
states.

The diagonalization of the jacobian matrix implies∣∣Ã∣∣ = R̃−1
∣∣Λ̃∣∣R̃ (3.12)

In Equation (3.12), matrix R̃ contains the right eigenvectors of the jacobian matrix arranged
in row wise order, R̃−1 is the matrix of the left eigenvectors arranged in column wise order
and Λ̃ is a diagonal matrix containing the absolute values of the system eigenvalues, i.e. Λ̃ =
diag {|λ1|, |λ2|, . . . , |λ5|} and defined as

λ1,2,5 = Vn − Vg

λ3 = Vn − c− Vg
2

λ4 = Vn + c− Vg
2

(3.13)

In the previous, Vn is the flow velocity projected on the face normal, Vg the grid velocity
projected on the face normal, while c is the “artificial speed of sound” which does not depend
on the local density field and it is computed as

c =

√
β +

(
Vn − Vg

2

)2

(3.14)

The eigensystem is evaluated on the basis of the Roe averaged flow variables, which are
defined as

χ =

√
ρR
ρL

ρ̃ = χρL

ũi =
uiL + χuiR
1 + χ

, i = 1, 2, 3

(3.15)

The complete eigenstructure of the hyperbolic problem is detailed in Appendix C.
Equations (3.11) and (3.15) introduce the value of the flow variables at the unknown left and

right states. The variables on each side of the computational face are approximated through
flowfield reconstruction procedure, which is described next.

Reconstruction of Flow Variables

The present section summarizes the strategies used for the reconstruction of the primitive flow
variables. Firstly, for the velocity field, a piece–wise linear reconstruction (PLR) scheme is used
that extrapolates the cell center values of the neighboring cells i, j on the faces providing the
left L and the right states R. In Figure 3.2 two neighboring cells i, j, with common boundary
f , are illustrated. The two cells have volumes Ωi and Ωj , respectively. The face orientation
f is defined based on the normal vector n⃗. It is necessary to extrapolate the known values at
the cell centers to the states L and R. The velocities υ⃗L and υ⃗R can be approximated using a
second order Taylor expansion as

υ⃗L = υ⃗i +∇υ⃗i · r⃗i
υ⃗R = υ⃗j +∇υ⃗j · r⃗j

(3.16)

In the Taylor expansion υ⃗i, υ⃗j are the known velocities at the cell centers i, j, ri, rj the vectors
from the cell centers to the face midpoint p and the gradients ∇υ⃗i,∇υ⃗j are evaluated at cell
centers.
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RL

Ωj

f

rj
→ri

→

n→Ωi

p

Figure 3.2: Reconstruction of variables on face f

The velocity field is continuous in incompressible one–phase flows, as well as, in two–phase
flows since surface tension is neglected. For this reason, no limiter is applied to the PLR
approximation.

Perplexities arise in the reconstruction of the volume fraction field. Due to the density dis-
continuity across the free surface, standard discretization schemes used for convection of scalar
fields can not be used. For example a first upwind scheme will lead to extreme smearing of the
surface over several computational cells, while a second–order central scheme would introduce
un–physical oscillations in the volume fraction field. Various methods have been proposed to
prevent this smearing and lead to a more accurate representation of the discontinuity, without
compromising numerical stability.

Two main families of variable reconstruction that can handle discontinuous fields have been
introduced. Both families use similar definitions to derive numerical schemes that preserve ac-
curacy and do not produce oscillations near the discontinuity. Their key concept is to introduce
a small amount of numerical diffusion, in specific regions, to preserve the solution within the
physical bounds (bounded solution) and switch to a higher approximation elsewhere. The first
family titled Total Variation Diminishing (TVD) states that, for any physical admissible solu-
tion, its total variation should not increase in time [99]. The total variation of a discrete 1D
solution ϕ is defined by

TV (ϕn) =
∑
i

∣∣ϕi+1 − ϕi
∣∣ (3.17)

A numerical scheme is said to be TVD in time, if, for every time level n

TV (ϕn) ≤ TV
(
ϕn+1

)
(3.18)

TVD approach uses high–order interpolation schemes and supplements them with a flux
limiter to comply with the TVD criterion. Limiters are applied to the high–order terms of the
interpolation scheme. A switch is made to a first order upwind scheme in order to produce
bounded solutions. Within the context of the present research, as high–order interpolation
schemes the second order PLR and the third order MUSCL [100] have been considered. In
order to comply with the TVD condition, the SUPERBEE limiter has been employed which
has proved to have excellent resolution properties for contact discontinuities [99]. However, in
all cases considered here the TVD approach has been found to be extremely diffusive, a remark
that has been also reported elsewhere [101].

The second family of interpolation schemes, that have been devised to minimize diffusion
and produce bounded solutions has been introduced by Leonard [102, 103]. It is based on the
Normalized Variable Approach (NVA). In order to obtain a reconstructed quantity on face, ϕf ,
the following normalization is defined
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ϕ̃ =
ϕf − ϕD
ϕU − ϕD

(3.19)

where U , C and D denote the center, the downwind and the upwind cells, according to the flow
direction. Reconstruction schemes can be formulated for the quantity ϕ̃f , based on ϕ̃C .

Using the normalization (3.19) for the two neighboring cells holds ϕ̃D = 0 and ϕ̃U = 1. In
order for a solution to be bounded, it should remain between the limits defined by ϕ̃D, ϕ̃U . This
condition is identified as the Convention Boundedness Criterion (CBC) [104].

0 ≤ ϕ̃C ≤ 1 (3.20)

The boundedness criterion for convection differencing schemes of Equation (3.20) can be illus-
trated using the Normalized Variable Diagram (NVD) of Figure (3.3). An admissible solution
should be bounded from below by the upwind cell value ϕ̃C and from above by unity.

Equation (3.21) shows typical differencing schemes expressed based on the NVA, which are
also plotted on the NVD of Figure 3.3.

Upwind (UD): ϕf = ϕC ⇒ ϕ̃f = ϕ̃C

Central (CD): ϕf = 1
2 (ϕC + ϕD) ⇒ ϕ̃f = 1

2

(
1 + ϕ̃C

)
Linear Upwind (LUD): ϕf = 3

2ϕC − 1
2ϕU ⇒ ϕ̃f = 3

2 ϕ̃C
QUICK: ϕf = 3

8ϕD + 3
4ϕC − 1

8ϕU ⇒ ϕ̃f = 3
8 + 3

4 ϕ̃C
Downwind (CD): ϕf = ϕD ⇒ ϕ̃f = 1

(3.21)

0 1

3/8
1/2

3/4

1

QUICK

UD

CDDD
LUD

φc
~

φf
~

Figure 3.3: Normalized Variable Diagram (NVD). The CBC criterion states
that in order preserve boundedness the reconstructed value should lie in the

shaded area or in the line ϕ̃f = ϕ̃C (Upwind Differencing–UD scheme).
Figure shows also various interpolation schemes

The idea of constructing compressive schemes based on NVD is to adopt a blending between
downwind differencing scheme and a high–order upwind scheme. The downwind branch of the
scheme is used to compress the smearing of the discontinuous profile, while the upwind scheme
to preserve monotonicity. The switch between the two is based on the angle θ formed between
the flow and the grid line of the face, ranging from 0 to 90 degrees. For an interface aligned
with the face (θ = 0), a higher–order downwind scheme (HDS) is selected, while in cases the
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flow is perpendicular to the face (θ = 90) a high–resolution schemes (HRS) is used. Numerical
schemes based on NVA can be written in the following compact form,

ϕ̃f = γ (θ) ϕ̃HDS
f + [1− γ (θ)] ϕ̃HRS

f (3.22)

In the previous, ϕ̃HRS
f is the normalized face variable as obtained by a high–resolution scheme

and ϕ̃HDS
f the result from a downwind approximation. The blending is performed by the

switching function γ (θ).
The blending function in most recent works depends also in the local Courant number (CFL)

as defined by the advection velocity inside a computational cell i (see Eq. (3.23)). Usually, for
values less than 0.3, a blending between high order downwind and upwind schemes are used,
for values between 0.3 and 0.7, the blending reduces to first order accurate schemes, while for
values greater than 0.7 a first order upwind scheme is used to enhance stability.

CFLi =
∆t

Ωi
F⃗c,g =

∆t

Ωi
max

∑
f

∆Vf∆Sf , 0

 (3.23)

In the previous paragraphs, an outline for methods on constructing shock–capturing schemes
has been given. The interested reader can be referred to [98] for more details about constructing
schemes based on the NVD approach.

In the present thesis, various schemes has been implemented and tested. Among them it was
found that STACS [105], HRIC [106] and BRICS [107] produce results with adequate accuracy
in free surface applications, with the latter scheme producing the most satisfying results. In all
cases presented here, the BRICS scheme is utilized, unless otherwise stated.

Lastly for the calculation of the inviscid fluxes, a reconstruction process should be followed
for the pressure field. Pressure can be decomposed into two components, the dynamic part pD
and the hydrostatic part pH = ρg (z − zref ), with ρ denoting density, g the gravity acceleration
acting on the negative z–axis and zref a hydrostatic reference height.

Before presenting the details of the reconstruction scheme employed, it is useful to make
two comments on the features of the pressure field in two–phase flows. Starting the analysis by
making a comment on hyperbolic conservation laws with source terms. The momentum equation
is a conservation law, where the gravity source term acts on the right hand side. A Riemann
solver is used to calculate the flux across the interface. Riemann solvers do not inherently
account for the presence of external forces [69, 72, 108–112], they translate any pressure jump
across an interface, as fluid velocity even in a hydrostatic configuration. An exact representation
of the fluxes at the cell’s interface is required to cancel the source terms out, so the net flux is
zero.

To elaborate further, the 1D conservation law of Equation (3.24) is taken as an example

∂q

∂t
+
∂f (q)

∂x
= Sq (3.24)

where Sq is a constant source term. Expanding into its semi–discrete form the following form
is obtained

∆qi
∆t

+
1

∆xi

(
fi+1/2 − fi−1/2

)
= Sq,i∆xi (3.25)

Similar to the hydrostatic equilibrium case, the value q varies linear in space, as illustrated in
Figure 3.4, and should be balanced by Sq. If the cell center values qi are used for the evaluation
of fluxes fi±1/2, implying a first order approximation, an imbalance between Sq,i and the cell
center values will be created. In order to prevent un–physical solutions, an exact second order
reconstruction scheme should be employed to balance the external forcing Sq,i.

Returning to the momentum equations, it is important to maintain a second order accuracy,
at least for the hydrostatic part pH of the pressure field. This can be achieved by a adopting
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Figure 3.4: Linear varying hydrostatic pressure field. The figure depicts the
cell center averaged values qi, the linear varying pressure term (gray line) and
discontinuity of gradient at the air/water interface. Furthermore, the dotted
line in the detailed view shows the field after numerical diffusion is introduced

second order PLR interpolation scheme, similar to one used for the velocity field (Eq. (3.16)),

pL = pi +∇p · r⃗i
pR = pj +∇p · r⃗j

(3.26)

where ∇p has to be computed with a second order accuracy. As it will be made clear later,
calculation of ∇p with a second order accuracy is not trivial on unstructured grids. Various
corrections should be applied to effectively balance the hydrostatic source terms.

The second point raised here, is with respect to the hydrostatic variation of pressure in two
phase flows. At the free surface, although the pressure field is continuous and no jump appears,
[p] = 0, this is not the case for its gradient. The different densities of the two fluids leads to
a jump in the hydrostatic part [∇pH ] ̸= 0. In the discretized field the free surface is perceived
as an abrupt, yet smooth, variation of the density field and so is the hydrostatic component of
pressure. This is illustrated in the detailed view of Figure (3.4). The pressure gradient varies
smoothly, as indicated by the dashed line. Even if a second order reconstruction scheme is
adopted (red lines in the detailed view), the numerical diffusion introduced at the free surface
will result in a hydrostatic pressure jump across the interface.

A solution to this problem was given by Queutey and Visonneau [47]. They noted that, al-
though, the pressure gradient is not continuous at the interface, its density weighted counterpart
is. This means that, at the free surface, the following conditions apply,

[p] = 0

[∇p] ̸= 0 but

[∇p
ρ

]
= 0

(3.27)

They formulate a second order accurate reconstruction, based on a density averaging. The
pressure gradient can be computed as,

pf =
hRρRpi + hLρLpj
hLρL + hRρR

(3.28)

where superscripts R,L denote extrapolated, left and right, quantities of the face and hL/R the
projected distances to the face, hL = r⃗i · n⃗ and hR = r⃗j · n⃗, as defined in Figure 3.2. In the
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present implementation, their approach is followed near the free surface, that is in regions of
∇αl ̸= 0.

Gradient Evaluation

For the flowfield reconstruction, the gradient at each computational should be computed. Two
different approximations are adopted. The first, uses the Green–Gauss theorem, where the
gradient of the primitive variables at the ith computational cell can be computed as

∇−→
Q i ≈

1

Ω i

∫
∂Ωi

−→
Q ij · n⃗dS , j ∈ Nf,i (3.29)

The term Q⃗ij denotes an approximation of the flow quantities at the face f . In some cases
a simple averaging is chosen, which can deteriorate the order of accuracy, but can enhance the
stability of the solver. Various corrections can be applied which can account for non–uniform
meshes or skewness of the mesh [101]. For flows with gravity, it is important to maintain
hydrostatic equilibrium, thus in MaPFlow, a simple averaging between the states of the two
adjacent cells is chosen, supplemented with a hydrostatic correction, i.e.

−→
Q ij =

1

2

(−→
Q ′

i +
−→
Q ′

j

)
(3.30)

where −→
Q ′

i =
−→
Q ′

i + ρig⃗ · r⃗i
−→
Q ′

j =
−→
Q ′

j + ρj g⃗ · r⃗j
(3.31)

and r⃗i denotes the vector from the i cell center to the midpoint of the face p, as illustrated in
Figure 3.2.

A second, more accurate approximation of the gradients, can be performed using the Least
Square Method [98]. If ∇Q⃗i is the unknown gradient at the control volume i, Q⃗j is the vector
of the flow quantities of a neighbor i and r⃗ij is vector from the center of the control volume i to

the center of the control volume j, then the vector Q⃗j can be approximated, with second order
accuracy, as −→

Q ′
j =

−→
Q i +

(
∇−→
Q
)
i
· r⃗ij (3.32)

The method of the Least Squares computes the gradient based on the following optimization
problem,

∆i =

Neis(i)∑
j=1

{
wj

[−→
Q j −

(−→
Q i +

(
∇−→
Q
)
i
· r⃗ij

)]2}
⇒

∆i =

Neis(i)∑
j=1

wj

[
∆
−→
Q ij −

(
∆xj

∂
−→
Q i

∂x
+∆yj

∂
−→
Q i

∂y
+∆zj

∂
−→
Q i

∂z

)]2
(3.33)

The minimum of the quantity ∆i is sought

∂∆i

∂
(−→

Q i

∂x

) =
∂∆i

∂
(−→

Q i

∂y

) =
∂∆i

∂
(−→

Q i

∂z

) = 0 (3.34)

The matrix form of the above optimization problem yields

wj∆xj∆xj wj∆xj∆yj wj∆xj∆zj
wj∆yj∆xj wj∆yj∆yj wj∆yj∆zj
wj∆zj∆xj wj∆zj∆yj wj∆zj∆zj



∂
−→
Q i

∂x
∂
−→
Q i

∂y
∂
−→
Q i

∂z

 =

wj∆xj∆
−→
Q ij

wj∆yj∆
−→
Q ij

wj∆zj∆
−→
Q ij

 (3.35)



42 CHAPTER 3. NUMERICAL FRAMEWORK

The weighting factor wj is computed as

wj =
1∣∣r⃗j − r⃗i
∣∣2 (3.36)

The above method is second order accurate thus it can reconstruct the hydrostatic field ex-
actly without any corrections. Least square method is the method of choice for two dimensional
simulations, however in 3D simulations the Green–Gauss approximation is preferred for stability
reasons.

3.3.2 Evaluation of Viscous Fluxes

For the calculation of the viscous fluxes, (see Eq. (2.23)) the values and the gradients of the
flow variables should be approximated on the face f . Firstly, for the flow variables on the face,
a simple averaging between the neighboring cells i, j

−→
Q ij =

1

2

(−→
Q i +

−→
Q j

)
(3.37)

is used.
Moreover, gradients are computed using the mean value of the known gradients at the cell

center, sumpplemented with a directional derivative to account for the skewness of the mesh,
according to

∇−→
Q ij = ∇−→

Q ij +

∇−→
Q ij · t⃗ij −

(
∂
−→
Q

∂l

)
ij

 · t⃗ij (3.38)

In the above, t⃗ij is the unit vector pointing from cell center i to cell center j and the mean
gradient is computed as

∇−→
Q ij =

1

2

(
∇−→
Q i +∇−→

Q j

)
(3.39)

The gradient across the line that passes through the cell centers i,j is computed by a finite
difference method. (

∂
−→
Q

∂l

)
ij

≈
−→
Q j −

−→
Qi

lij
(3.40)

3.3.3 Flux Correction for Non–Planar Vertices

Modern CFD applications have increased demands in terms of the perplexities of the studied
geometries and flow processes. Complex geometries and field discontinuities are some of the
typical features that CFD solvers need to tackle. These difficulties render the meshing step
significantly more complex and time consuming. In some cases by adopting classical meshing
algorithms, such as structured–like hexahedral or even unstructured tetrahedral meshing strate-
gies, can lead to a cumbersome process and probably will fail to meet the requirements of the
studied application.

Polyhedral or trim meshing have emerged as a solution for simpler and faster grid generation.
Polyhedral meshing has the advantages of anisotropic refinement and smoother mesh coarsening.
The meshing strategy is usually simple and automated, thus reducing the pre–processing time
significantly. Unfortunately, this algorithmic abstraction of grid generation may lead to low
cell quality that flow solvers should take into account. One common downside of polyhedral
meshing is that the face of the generated cells have vertices that do not lie on the same plane.
Although this is the case even in cells with one or more quadrilateral faces (such as pentas or
hexas), in case of the polyhedral cells with polygonal faces this is further pronounced. This
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could lead to a loss of accuracy and error amplification. Figure 3.5 shows two examples of
polyhedral cells, as generated by commercial meshing softwares. The polyhedral cell of Figure
3.5a has been created to resolve the curvature near a solid boundary, while the cell of Figure
3.5b is encountered typically in regions away from solid boundaries and is used for smoother
grid coarsening. It is evident that a single plane per face can not be used to define a closed
volume.

(a) Polyhedral cells used for resolving wall boundaries
(b) Polyhedral cell used for efficient grid coarsening.
Typically encountered away from solid boundaries

Figure 3.5: Examples of polyhedral cells used in modern CFD applications.
Each colors depicts a different cell face, the triangles are defined based on the

the face’s geometric center and a face edge

Standard CFD second order finite volume solvers, as the one discussed in the present dis-
sertation, use an one–point quadrature method for the flux evaluation of Equation (3.8). The
existence of non–planar vertices deteriorate the accuracy of the solver. A remedy is to split the
polygonal face into a set of triangles and use a multi–point quadrature integration method, in
the expanse of increased computational cost. A more cost effective solution has been proposed
by [113]. In this approach, given a polyhedral volume Ωi with its boundary described by a set

of polygonal faces ∂Ωi,f , then the equivalent flux vector
−→
F across a face f can be approximated

by a second order Taylor expansion around the geometric midpoint p of the face.∫
∂Ωi,f

−→
F · n⃗dSf =

∫
∂Ωi,f

[−→
F p +∇−→

F
∣∣
p
(x⃗− x⃗p)

]
· n⃗dSf (3.41)

The zero term of the expansion can be approximated with a linear reconstructed flux of
Equation (3.8). The second term defines the correction in case of non–planar vertices. The
evaluation of the correction flux is performed by tessellating the polygonal face into a set of
triangle Ti,f as illustrated in Figure 3.5. The flux across face f can be computed as∫

∂Ωi,f

−→
F · n⃗dSf =

−→
F p · n⃗fSf +

∑
T∈Ti,f

∫
T

[
∇−→
F
∣∣
p
(x⃗− x⃗p)

]
· n⃗dST (3.42)

Now, since three points define uniquely a plane, the evaluation of fluxes is performed in a
closed volume, thus a single point evaluation per triangle will lead to a second order accurate
solution in space. Equation (3.42) is approximated as∫

∂Ωi,f

−→
F · n⃗dSf =

−→
F p · n⃗fSf +

∑
T∈Ti,f

[
∇−→
F
∣∣
p
(x⃗T − x⃗p)

]
n⃗T∆ST (3.43)

In the above x⃗T is the midpoint of the triangle T which is part of face f , and n⃗T its normal
vector.
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To complete the evaluation of the flux, the flux gradient on the face is needed. The gradient
can be computed based on simple averaging between the adjacent cells. These gradients are
not known and must be computed. In the original reference ([113]) a chain rule is proposed to
calculate the gradients from the variable gradients, which are already known.

It is clear that this approach is more efficient than a multi–point integration and can be easily
incorporated in any standard second order finite volume method without changing the basic
computational strategy.

As already discussed, in case of hyperbolic conservation laws with source terms it is important
to maintain accuracy in order to imbalance the external forces. If linear varying hydrostatic
term is present in the flowfield, the flux reconstruction should be at least second order. Any
loss of accuracy will be translated to acceleration of the flow at the hydrostatic equilibrium.
Second order accuracy can be achieved, by applying the aforementioned procedure at least for
the hydrostatic part of the equations.

In absence of velocity field (υ⃗ = 0) and any other source of pressure disturbance, thus the
dynamic pressure is equal to zero (pD = 0), the hydrostatic equilibrium yields∫

∂Ω
phn⃗dS =

∫
Ω
ρ−→g dV (3.44)

where g⃗ is the gravity acceleration pointing towards the negative z–axis, ph is the hydrostatic
pressure relative to a reference vector x⃗0 = (0, 0, z0) and it is expressed as ph = ρg⃗ · (x⃗− x⃗0).

In the same spirit as in Equation (3.43), the integral over a polygonal face f can be approx-
imated within second order accuracy, using a second order expression for the point value ph,p
and a sum over the set of triangles Ti,f that define face f .∫

∂Ωi,f

phn⃗dS = ph,pn⃗fSf +
∑

T∈Ti,f

∫
T

[
∇ph

∣∣
p
(x⃗− x⃗p)

]
· n⃗dST (3.45)

The gradient of the hydrostatic pressure is,

∇ph,f =

 0
0

−ρfgz

 (3.46)

The surface integral of Equation (3.45) over the set of triangles can be exactly computed for
linear functions as,∫

T
[∇ph (x⃗− x⃗p)] n⃗TdST = −1

2
(r⃗1 × r⃗2)

3∑
n=1

1

3
ρfgz (zn − zp) (3.47)

where r⃗1, r⃗2 are the side vectors that define triangle T .
Furthermore, the imbalance due to non–planar vertices should be accounted for in every step

of the computational algorithm, where the Green–Gauss theorem is used. For example, a similar
correction flux is applied to the volume calculation (Eq. (3.2)) and to the gradient evaluation,
if formula (3.29) is used.

A Simple Numerical Example

To illustrate the importance of the above correction flux a simple numerical experiment is
conducted. The hydrostatic equilibrium test case is considered, for one–phase flow (without
free surface). Inside an empty box of base 1, pressure is initialized as p = pH = ρgz, the
velocity is set to zero (υ⃗ = 0) and farfield boundary conditions are applied to all box’s sides.
The domain is discretized by arbitrary polyhedral elements. An overview of the computational
mesh and the initial pressure disturbance can be seen in Figure 3.6.
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The numerical experiment is performed twice, once without considering any correction flux
and once with the correction flux of Equation (3.47). In Figure 3.7, the distribution of the
dynamic pressure pD is plotted, for both cases, after 500 iterations. The results on the left
correspond to the un–corrected case, while results on the right to the case with correction.

Figure 3.6: One–phase hydrostatic equilibrium. Simulation in an empty
rectangular box of length 1. The figure shows the initialization of pressure
(=ρgz) inside the box. Mesh consists of approximately 12,000 polyhedral

elements. The density of the fluid is ρ = 1000kg/m3 and the acceleration of
gravity is set to g = 9.81m/s

In the case of no correction is applied, Figure 3.7a, a pressure imbalance appears in the field
and it is more pronounced in larger cells. This numerical noise is produced by the non–planar
vertices of the cell. In the second case, Figure 3.7b, the dynamic pressure is close to machine
precision, as it should be in case of hydrostatic equilibrium.

As already mentioned, out of plane vertices may appear even in simple grid configurations.
For example, similar results can be obtained using hexahedral meshing. Thus correction of the
numerical flux is necessary, regardless of the meshing strategy.

3.4 Temporal Discretization

For every time true computational step a pseudo-steady problem is solved. Let
−→
Q∗ denote the

flow variables that are used to solve the pseudo–steady time problem, which until convergence
they do not satisfy the original unsteady problem. At every pseudo–time step iteration k, for a
computational cell i a problem of the form

ΓΩi
∂
−→
Q∗

i

∂τ
+

−→
Ru

(−→
Q∗

i

)
= 0 (3.48)

is solved, where
−→
Ru is the unsteady residual, defined as the sum of the spatial residual and the

time–derivatives, i.e.

−→
Ru (Q

∗
i ) =

−→
R s

(−→
Q∗

i

)
+ Γe

∂
(
Ωi

−→
Q∗

i

)
∂t

(3.49)



46 CHAPTER 3. NUMERICAL FRAMEWORK

(a) Niter = 500, without hydrostatic correction flux.
Contour range [-3:3]

(b) Niter = 500, with hydrostatic correction flux.
Contour range [-8 · 10−13 : 8 · 10−13]

Figure 3.7: Hydrostatic equilibrium in one phase flows. Dynamic pressure
distribution in an empty box with polyhedral elements. Error introduced due
to the non–planar vertices. Figures shows the dynamic pressure distribution,

at the plane x = 0, without (left) and with (right) correction flux

The convergent solution of the problem is obtained when
−→
Ru → 0 and thus

−→
Q∗ → −→

Qn+1 (n
is the time marching iterator). In case of steady flow problems the unsteady residual is equal to
the spatial, since the unsteady term is omitted. In this case, the pseudo–time marching begins
with k = 0 and the convergent steady solution of the problem is obtained once the pseudo–time
derivatives tend to zero.

A fully implicit scheme is used for the discretization of the unsteady terms. Let n+1 be the
unknown time level, with the flow quantities being known for the time levels n, n− 1, n− 2, . . . ,
writing the time derivative as a series expansion of successive levels backward in time [114], the
following backwards difference formula (BDF) is obtained

∂
(
Ωi

−→
Q i

)
∂t

=
1

∆t

[
φn+1

(
Ωi

−→
Q i

)n+1
+ φn

(
Ωi

−→
Q i

)n
+ φn−1

(
Ωi

−→
Q i

)n−1
+ φn−2

(
Ωi

−→
Q i

)n−2
+ . . .

]
(3.50)

By rearranging the terms of the above equation, the discretized unsteady term can be written
as

∂
(−→
Q iΩi

)
∂t

=
1

∆t

[−→
Qn
(
φn+1Ω

n+1
i + φnΩ

n
i + φn−1Ω

n−1
i + φn−2Ω

n−2
i + . . .

)
+

φn+1
(−→
Qn+1 −−→

Qn
)
Ωn+1
i + φn−1

(−→
Qn−1 −−→

Qn
)
Ωn−1
i + φn−2

(−→
Qn−2 −−→

Qn
)
Ωn−2
i + . . .

]
(3.51)

In order to enforce volume conservation, the GCL is imposed on the time discretization
process. Using the same sequence of the BDF scheme and assuming constant value fluxes at
each face of the cell i, Equation (2.28) can be discretized as

1

∆t

[(
φn+1Ω

n+1
i + φnΩ

n
i + φn−1Ω

n−1
i + φn−2Ω

n−2
i

)
+ . . .

]
=

Nf,i∑
f

Vg,f∆Sf = Rn+1
gcl (3.52)
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Now, the unsteady term can be written as

∂
(−→
Q iΩi

)
∂t

= Rn+1
gcl

−→
Qn

i +

1

∆t

[
φn+1

(−→
Qn+1

i −−→
Qn

i

)
Ωn+1 + φn−1

(−→
Qn−1

i −−→
Qn

i

)
Ωn−1 + φn−2

(−→
Qn−2

i −−→
Qn

i

)
Ωn−2 + . . .

]
(3.53)

Finally, the pseudo–steady term of equation (3.48) is discretized using first order Euler scheme

Ωi
∂
−→
Q∗

i

∂τ
= Ωn+1

i

−→
Q∗,k+1

i −−→
Q∗,k

i

∆τ
= Ωn+1

i

∆
−→
Q∗,k

i

∆τ
(3.54)

The above discrete equations describe the problem that governs a particular computational
cell i. By using this formulation for every computational cell a closed non–linear algebraic
system of N vector equations and N unknown vectors is formed. A linearization process is
required for the system solution, as described in the next section, Section 3.6.

Local Time Stepping

In order to facilitate convergence the local time stepping technique is used. At each computa-
tional cell the pseudo–timestep is determined by

∆τi = CFLτ
Ωi

Λ̂c,i

(3.55)

The convective spectral radii Λ̂c is the sum over the faces of the cell

Λ̂c,i =

Nf∑
f

(∣∣υ⃗ij · n⃗f − Vg
2

∣∣+ cij

)
∆Sf (3.56)

Subscript ij denotes the evaluation of the quantities at face f with simple averaging between
the neighboring cells i and j.

The CFLτ number is a numerical parameter that depends on the specific simulation. It
regulates the convergence rate and typically gets values way greater than 1. Usually, a linear
ramping is performed during the first few iterations. Especially in boundary valued problems
(e.g., the flow around a hydrofoil), a small CFLτ value is preferred for the few first iterations
when the flow is shaped. Once the flow starts to form around the body, large values of CFLτ

number are adopted for quicker convergence to the solution. In case of initial valued problems,
medium values of CFLτ number are usually adopted during the whole simulation, since a fast
convergence rate is needed in every time–true step.

3.5 Boundary Conditions of the Flow Equations

In order to close the system of the discretized flow equations, an appropriate set of boundary
conditions is specified. The boundary conditions are used for the calculation of the numerical
flux imposed at the boundary faces of the domain. In the present work, four types of bound-
ary conditions are defined; (a) wall boundary conditions, (b) farfield boundary conditions (c)
symmetry boundary conditions and (d) periodic boundary conditions. In MaPFlow, the con-
ditions for the farfield, symmetry and periodic boundaries are specified using ghost cells. The
boundaries of the computational mesh are extended for one computational cell outwards of the
domain. The values of the primitive variables at the ghost cells are specified depending on the
type of the boundary conditions.

Below the four computational types are described in detail.
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Wall Boundary Conditions

A wall boundary can either be fixed (e.g. seabed) or moving with body velocity U⃗B (e.g. a
rotating propeller). Solid boundaries can be considered either as a slip boundaries, where the
non–entry boundary condition is applied or as no–slip boundaries. For example, in free surface
flows, the viscosity effects at the sea bottom are usually neglected and the slip boundary con-
dition is considered. However, when ship resistance calculations are performed or the response
of a platform is studied, viscosity cannot be neglected and the no–slip boundary condition is
applied.

A slip boundary is typically considered in inviscid flows or in cases, where viscosity effects
close to the wall can be neglected. In these cases, the vertical to the wall velocity is set to zero
using (

υ⃗
∣∣
w
− U⃗B

)
· n⃗ = 0 (3.57)

If viscosity effects are also considered close to the wall, the no–slip boundary condition implies
that the fluid particles move with the velocity of the body

υ⃗
∣∣
w
= U⃗B (3.58)

The pressure on the wall boundary should satisfy the linear variation of pressure due to the
hydrostatic term. The pressure p

∣∣
w
in the wall boundary is computed as

p
∣∣
w
= pc +∇p ·∆x⃗w (3.59)

where pc is the pressure at the center of the boundary cell, ∇p = [0, 0,−ρgz] and ∆x⃗w the
distance from the boundary.

For the volume fraction, a zero–Neumann boundary condition is applied with first order
approximation

αl

∣∣
w
= αl,c (3.60)

At this point it is worth making a note on the case where the free–surface meets with moving
no–slip boundaries. In this case, a triple discontinuity is created among air, water and the solid
boundary. The no–slip boundary does not allow for the convection of the volume fraction on
the surface of the body. This can significantly affect the convergence of the solver. A remedy
that can be used in steady simulations, for example in ship resistance calculations, is to sweep
the volume fraction, within a user–defined region normal to the wall. This could be activated at
the early stages of the solution, until an estimation of the wave elevation on the solid boundary
is obtained, and then switched–off for the rest of the simulation. Recommended values for the
sweep region is approximately 10−4 for a body unit length [74].

Farfield Boundary Conditions

Farfield boundary conditions are imposed at the end of the computational domain, where the
flow can be considered as undisturbed and matches approximately the states at infinite. Due
to the hyperbolic nature of the equations, the information is propagated inwards (inlet) or
outwards (outlet) of the domain depending on the local sign of the eigenvalues.

A first approximation is to treat farfield boundaries as an interior cell. A local Riemann
solver can be solved between the numerical values of the interior boundary cells and the physical
boundary conditions specified at infinite using the Riemann solver of Roe.

A more accurate approximation can be made by solving the characteristic equations of the
hyperbolic problem on the direction normal to the boundary [57, 115]. The 1D–Euler equations
are solved locally by neglecting any source terms of the field. This can be achieved by making a
simplification regarding the hydrostatic term. The hydrostatic pressure can be removed locally
from the field and subsequently added once the characteristic problem has been solved.
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Moving on to the definition of the characteristic problem, let xn be the normal direction to
boundary, the 1D unsteady Euler Equations can be written as

Γ
∂Q⃗

∂τ
+ Ão

∂Q⃗

∂xn
= 0 (3.61)

where Ão is the preconditioned jacobian matrix which can be considered as locally constant.
The decoupling of the equations can be performed by utilizing the diagonal form of the

jacobian matrix, Λ̃o = R̃−1
o ÃoR̃o, and thus the Euler equations can be written as

∂wi

∂τ
+ λi

∂wi

∂xn
= 0, i = 1, . . . ,m (3.62)

where wi are the characteristics variables defined as ∂W⃗ = R−1
o ∂Q⃗

Integrating the 5 scalar differential of Equation (3.62) the values of the characteristics vari-
ables at infinite can be computed. The primitive variables are obtained by solving a five by
five linear equation system based on the definition of the characteristic variables. Finally, the

flux imposed at the boundary is computed as
−→
F =

−→
F
(−→
Q
)
. A more detailed description of the

characteristic boundary condition can be found in Appendix D of the present thesis.

Symmetry Boundary Conditions

Symmetry boundary conditions are useful for reducing the total computational cost. The sym-
metry over plane can be exploited to reduce the size of the domain. These type of boundary
conditions impose a zero flux over the symmetry plane. The boundary condition resembles to
the boundary conditions applied in case of inviscid wall, with an extra requirement about the
velocity gradient which is set to zero as well. For the velocities the boundary conditions applied
are

υ⃗ · n⃗ = 0

∇υ⃗ · n⃗ = 0
(3.63)

For the pressure and the volume fraction zero–Neumann boundary conditions are applied,
with a first order approximation. That is

psym = pc

αl,sym = αl,c

(3.64)

The indices sym and c indicate the values at the symmetry plane and the values at the
boundary cell, respectively.

Once, the boundary values are computed, they are stored at the ghost–cells of the extended
grid and the fluxes are calculated as in any interior face.

Periodic Boundary Conditions

Periodicity can be either lateral or rotational. For example, the propagation of water waves
inside a numerical tank can be dealt using lateral periodic boundary conditions. Similarly,
rotational periodicity is applied in case of a propeller rotating in a uniform flow where only
blade is simulated inside an angular domain. Either way, the periodic boundary conditions can
be defined using a rotation matrix RA. In the case of lateral periodicity, RA is equal to the
identity matrix I3×3 and in case of rotational periodicity, RA is the rotation matrix defined by
by the periodicity angle around its corresponding axis. The boundary conditions applied, in
case of periodic boundaries are
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pA = pB

υ⃗A = RAυ⃗B

αl,A = αl,B

(3.65)

where the indices A and B denote the two periodic planes.
Similarly to the symmetry boundary conditions, the primitive values resulted from the peri-

odic boundary conditions are stored in the ghost–cells of the extended grid and the convective
and the viscous fluxes are computed according to Equations (3.11) and (3.38).

3.6 Linearization & Matrix Assembly

The fully implicit discretization process results to a set of non–linear equations, since the spatial

terms are expressed in terms of the unknown flow quantities
−→
Q∗

i . The solution process linearizes
the system of equations assuming small variations during pseudo–time. The unsteady residual
can be written as a Taylor expansion in the time level k + 1 as

−→
R∗,k+1

u ≈ −→
R∗,k

u +

(
∂
−→
R∗,k

u

∂
−→
Q∗,k

)
∆
−→
Q∗,k (3.66)

where, in the above,
−→
R∗,k+1

u is a vector that assembles the unsteady residuals of all compu-

tational cells,
−→
Ru =

[−→
Ru,1,

−→
Ru,2, . . . ,

−→
Ru,N

]T
. Similarly, the assembly of the unknown vector

quantities is defined as
−→
Q =

[−→
Q1,

−→
Q2, · · · ,

−→
QN

]T
. The jacobian matrix has dimensions of

N × N . For syntax simplicity, the following equations are expressed for the ith cell. Making
use of Equation (3.51), the unsteady residual is written as

−→
R ∗,k+1

u,i =
−→
R ∗,k

u,i +

(
φn+1

∆t

(
Ωn+1Γ

∗,k
e

)
i
+
∂
−→
R ∗,k

i

∂
−→
Q∗,k

)
∆
−→
Q∗,k (3.67)

Furthermore, by using the definition of the unsteady residual (3.49)

−→
R ∗,k+1

u,i =
−→
R ∗,k

i +Rn+1
gcl

−→
Qn

i +

1

∆t

[
φn+1

(−→
Q∗,k

i −−→
Qn

i

)
Ωn+1
i + φn−1

(−→
Qn−1

i −−→
Qn

i

)
Ωn−1
i + φn−2

(−→
Qn−2

i −−→
Qn

i

)
Ωn−2
i + . . .

]
+

(
φn+1

∆t

(
Ωn+1Γ

∗,k
e

)
i
+
∂
−→
R ∗,k

i

∂
−→
Q∗,k

)
∆
−→
Q∗,k

(3.68)
Finally, by replacing the resulting Taylor expansion to the pseudo–steady Eq. (3.48), the

final form of the discretized problem is obtained, for the computational cell i,[
1

∆τi

(
Γ
∗,k

Ωn+1
)
i
+
φn+1

∆t

(
Γ
∗,k
e Ωn+1

)
i
+
∂
−→
R ∗,k

i

∂
−→
Q∗,k

]
︸ ︷︷ ︸

Implicit Operator

∆
−→
Q∗,k

i = −−→
R ∗,k

i −−→
S ∗,k

dual,i (3.69)

where the vector
−→
S ∗,k

dual is a source resulted from the temporal discretization process and contains
the values from the previous real timesteps. The terms inside the brackets constitute the Implicit
Operator of the numerical problem.
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Construction of the Jacobian

The implicit operator of the Equation (3.69) requires the evaluation of the jacobian matrix
∂R⃗/∂Q⃗, which expresses the change in the spatial residual to a variation of the flow quantities.
According to Equation (3.8), the spatial residual consists of the inviscid fluxes, the viscous
fluxes and the source terms. The expressions for the first matrices is given in the following
paragraphs. The jacobian of the source terms varies depending of the problem and the source
terms considered.

Inviscid Part:
The inviscid fluxes are evaluated on every face f of cell i, according to Equation (3.11). The
contribution of the inviscid fluxes in the jacobian for every left cell is

∂
−→
F cg,f

∂
−→
QR

=
1

2

[
Acg

(−→
QR

)
+ Γ

∣∣ÃRL

∣∣] (3.70)

while for every right cell

∂
−→
F c,j

∂
−→
QL

=
1

2

[
Acg

(−→
QL

)
− Γ

∣∣ÃRL

∣∣] (3.71)

Viscous Part:
For the viscous contribution, by neglecting the averaged quantities in the directional derivatives,
a unique expression for each face f , for both left and right cells, is obtained

∂
−→
F v,f

∂
−→
Q i

= Av (3.72)

where the viscous jacobian is computed by

Av =



0 0 0 0 0

0
λv
dij

0 0 0

0 0
λv
dij

0 0

0 0 0
λv
dij

0

0 0 0 0 0


(3.73)

with distance dij and viscous spectral radii defined as

dij =

√
(x⃗i − x⃗j)

2, λv = 2
µλ + µt

ρ
(3.74)

System Solution

Expressing Equation (3.69) for each computational cell a linear system of vector equations is
formed, with dimensions N ×N , which can be written simply as

Ax⃗ = b⃗ (3.75)

Matrix A is a sparse matrix, thus only the elements needed for the solution of the system
are stored. The system is solved using a Gauss–Seidel iterative method, supplemented with a
Reverse Cuthill–Mckee reordering scheme [116].

Alternative methods have been also explored for the solution of the linear system of equations.
MaPFlow incorporates the PETSc library [117], which offers a large variety of iterative solvers
for sparse and dense linear systems. In steady state problems, it was found that other methods
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offered by the PETSc library were able to accelerate convergence and larger values of ∆τ and β
were permitted. However for unsteady simulations, the built–in implementation of the Gauss–
Seidel is preferred. This implementation had proven to be more effective computationally–wise,
in a multi–processing environment.

3.7 Discretization of the Turbulence Model

For the discretization of the turbulence equations a similar approach is followed as in the case of
the main variables. A spatial residual similar to Equation (3.8) is formulated. The convective
fluxes are discretized using a first order upwind scheme

ρVn = max (ρVnL, 0) + min (ρVnR, 0) (3.76)

in which the left (L) and right (R) states are computed based on the cell center values of the
adjacent cells.

The diffusion terms on a face is calculated as an arithmetic mean of the values at the center
of the adjacent cells. The viscous gradients are computed similarly to the gradients of flow
variables, according to Equation (3.39).

For the calculation of the closest distance to the wall y, which appears in the blending function
(2.44), the kD–tree algorithm of [118] is used.

For the temporal discretization, a backwards difference scheme is used analogous to Equation
(3.50) and again the dual time stepping technique is employed. A 2N ×2N system of equations
is formed, with N being the total number of cells in the mesh. For a more detailed description
of the discretization process of the k–Ω SST model in MaPFlow, the reader can be referred to
[75].

3.8 Numerical Wave Generation & Absorption

Two main challenges that a free surface numerical method should face is the generation of desired
wave profiles and the effective damping of outgoing waves close to the boundary. Starting from
the wave generation inside a computational tank, given specific characteristics of a wave (such
as wave height, wave period and water depth), an appropriate wake making procedure should be
adopted to create the corresponding wave profile. The wave making process should be precise
since any induced generated disturbances could spread throughout the computational domain.

In literature, the wave generation methods are divided into two wide categories. On the
one hand, there are the physical wave makers, where waves are generated similar to a wave
flume by employing deforming meshes. On the other hand, there are the numerical methods,
where the physical variables are manipulated in a specific part of the domain to generate the
corresponding wave profile.

Physical wave makers, mimic the flap or piston motion of solid boundary, just like the case of
real wave maker, a solid boundary moves according to a specified law [88]. In a computational
context, this can be achieved using either deforming or overset meshes. Although this process
seems more natural and more consistent to the laboratory tests, it is rather computational
expensive for practical implementations.

Usually, a numerical approach is preferred. Various methods have been proposed [119] on how
a wave can be introduced in a numerical wave tank. A first approach to generate progressive
waves is by adopting an internal wave making method. In this context, source terms are added
either in the mass [120, 121] or momentum equations [122]. The source terms are specified only
in the rectangular region beneath the mean water level. The generated waves are propagated in
all directions. This is an efficient method that is able to generate linear and non–linear waves.
However, since the generated waves are propagating in all directions, an extended domain is
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needed and all boundaries should be equipped with damping zones. All these come to increase
the computational cost.

Another more simplistic approach is to impose the wave characteristics directly through the
boundary conditions. According to a wave theory, the free surface position (VoF function) and
the velocities under the crest are specified as Dirichlet boundary conditions [48]. This method
has the advantage of the simple implementation and reduces mesh size, since no additional
zones should specified for the wave generation.

Perhaps, one of the most widely used approach for the generation of free surface waves is
the relaxation zone method. This process can either be explicit [123] or implicit [124]. In both
cases, a zone is specified near the boundary, where the wave field is specified according to an
analytical solution. In the explicit case, the wave solution is specified exactly inside the zone
and an exponential blending function is used for the smooth transition between the boundary
and the CFD solution. The implicit relaxation zones use source terms to drive the solution
inside the specified zone to the desired wave solution. Again, a similar exponential function is
used minimize the effect of the computational solution away from the boundary. Both variants
are very efficient for wave generation. Although a larger domain is needed compared to the
previous approximation, this approach is more robust and guarantees the effective generation
of waves, regardless their characteristics. Regarding the differences between the two, on the
one hand explicit relaxation zones enforce the desired solution directly inside the specified zone.
On the other hand, the implicit counterpart drives the flowfield to the desired wave profile as
part of the computational solution. Thus the latter case, is considered to be more natural for a
numerical solver. In this work, the implicit relaxation zones are used for the wave generation.

In a specified part of the computational domain near the boundary, which typically extends
for a few wavelengths, the numerical solution is forced to follow a wave solution provided by a
wave theory. This is achieved by introducing source terms in the momentum equations. The
source terms, aim to drive the numerical velocity field to the one given by the wave theory.
The general form of the source terms is presenting in Equation (3.77). The source term of
Equation (3.78) is a function of the non–dimensional space variable xr, which depends on the
starting position xs of the specified zone and the end point of the zone xe. The wave generation
is performed by imposing the velocity υ⃗tar as given by an appropriate wave theory.

S⃗nwt = Cnwtρm (υ⃗tar − υ⃗) (3.77)

The effect of the source terms is regulated through the Cnwt function, its form is given in
Equation (3.78), while in Figure 3.8 its form is plotted for different values of α and n. The
maximum value of the function is regulated through parameter α, while its spatial distribution
through n parameter.

Cnwt = α
exp (xnr )− 1

exp (1)− 1
, xr =

xs − x

xs − xe
(3.78)

The function is zero away from the boundaries of the computational domain, scales expo-
nentially inside the specified zone and it reaches its maximum value α at the boundary. The
source term (3.78), should be dominant enough to drive the solution to the desired one, while
at the same time to be able to maintain the convergence properties of the method. Large values
of Cnwt may lead to numerical instabilities, while small values of α may not be able to drive
properly the solution. Typical values for the exponent n is between 2 and 5 and usually α is
not greater than 200. In the section of the two–dimensional results, it will be shown that there
is an acceptable range of values for the coefficient Cnwt where no numerical instabilities appear.
Furthermore, guidelines about the values of the exponential functions are given also in [125].

Apart from the wave generation, in a numerical wave tank an appropriate strategy should be
adopted to absorb any reflections before reaching the boundary. The boundary conditions ap-
plied in the inlet and outlet boundary, assume a uniform field and thus any physical disturbance
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Figure 3.8: The effect of the values α and n in function Cnwt.

created inside the domain is not easily radiated outside of the domain. Mesh coarsening can
help reduce the amplitude of the fluctuations, nevertheless, for the decay of free surface waves
a extensive domain would be needed. In most cases, the boundaries are supplied with sponge
layers or absorption zones, where the farfield conditions are imposed [124, 126]. The farfield
boundary values can be similarly imposed using the implicit relaxation zones as in the case of
wave generation. In this case, the target of the source term is to minimize the vertical velocity
components. In a two–dimensional context, where the wave propagation is along the x–axis,
the velocity vector υ⃗tar takes the following form υ⃗damp = (u, vinf ), where u is the x–component
of the velocity inside the computational domain and vinf the y–component of the freestream
velocity. The damping is applied only to the vertical component of the velocity field. If velocity
u was also set to the farfield values, there would not be any mass flow exiting the domain. The
latter case would resemble the presence of a vertical wall at the boundary.

3.9 Coupling Algorithm for Fluid–Structure Interaction prob-
lems

Fluid Structure Interaction (FSI) problems combine two different physical aspects. In the
framework presented here, on the one hand, flow phenomena are examined by solving the
Navier–Stokes equations. On the other hand, the response of the rigid structure under the flow
excitation, is considered using force and moment balance laws. The theoretical and computa-
tional aspects of both problems has been extensively presented up to this point. In the next
paragraphs the coupling process of the two is described.

The FSI process can be split into two main stages. Firstly, there is the flow solver which is
responsible for computing the hydrodynamic excitation field (forces and moments) and secondly
the rigid body dynamics (RBD) solver, which computes the new position of the body. Those
two are combined into an iterative procedure, performed in every computational step until an
appropriate convergence criterion is met. The new position of the body is communicated to the
flow solver by applying a mesh deformation algorithm.

The iterative procedure, followed in each real timestep, can be broken into the following steps

1. Given a flow solution, the forces and the moments that act on body are computed

2. The 6 DoF problem is solved by the RBD solver. The new position and orientation of the
body is computed

3. A mesh deformation algorithm is employed to account for the body motion

4. The new flow characteristics are computed by the flow solver
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5. Check if convergence criterion is met, if not return to Step 1

The hydrodynamic forces computed in Step 1 of the FSI algorithm, are computed as

−→
F B =

∫
∂B
pn⃗dS +

∫
∂B
µm
(
∇υ⃗ +∇υ⃗T

)
· n⃗dS (3.79)

while the moments that act on the body with respect to its center of gravity are computed as

−→
MB =

∫
∂B
pn⃗× r⃗dS +

∫
∂B
µm
(
∇υ⃗ +∇υ⃗T

)
· n⃗× r⃗dS (3.80)

In the preceding equations, p is the pressure of the fluid, µm the viscosity of the mixture, υ⃗
the velocity of the fluid, n⃗ the unit normal vector on the surface of the rigid body, r⃗ the position
vector with its origin being the center of gravity of the body and ∂B the body boundary.

The above algorithm is terminated once a convergence criterion is met. Typically, the maxi-
mum difference between the previous and new values of the 6 DoFs are is compared against a
user–defined threshold, meaning that if x⃗ is the vector containing the thee translation and the
three rotation of the body, then the convergence criterion specified is

max
(
|xl+1

i − xli|
)
≤ eps i = 1 , . . . , 6 (3.81)

where l is the index of the FSI iteration. Typical values of eps are below 10−6.
The previous iterative process imply a strong coupling between the two solver. This means,

that at the end of the process, the characteristics of the flow match the final position of the
body up to a convergence criterion.

Furthermore, in order to provide a better understanding of the FSI algorithm a logical chart
of the process is given in Figure 3.9, which describes every step of strong coupling of the solvers.

Start End

Calculate Forces 
and Moments

Call RBD 
solver

Call flow 
solver

Deform 
mesh

t=t+dt if t >= Ttotal

error < eps

Yes

Yes

No

No

Strongly coupled FSI iterative process
Figure 3.9: Flow chart of the Fluid–Structure Interaction algorithm. For
each real time step, internal iterations between the dynamics and the flow

solver are performed to ensure a strong coupling between the two
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3.10 Deforming Grids

The motion of the rigid body inside the computational domain is communicated to the flow
solver by moving the mesh nodes on the solid boundary. In the present thesis, the deforming
mesh approach is used in order to the motion of the rigid body.

Generally, various methods have been proposed in literature that try to offer the advantages of
an efficient grid deformation along with high quality characteristics of the final mesh. However,
none of the methods presented so far have optimal characteristics that can be applied universally
in all cases. In [127] an overview of the most well–known methods is presented and the pros
and cons of each method are summarized.

In the present work, two methods have been chosen with complementary characteristics. The
first is a simple method that applies an exponential damping to decay the deformation away
from solid boundaries, while the second treats deformation as an interpolation problem with
radial basis functions. The first is a simple and fast method, easily implemented, but it is able
to account for simple and relative smooth geometries. The second method is more general, it
is able to produce good quality meshes even in large deformation, regardless the shape of the
geometry, but it is more complicated and major difficulties arise in cases of large meshes (more
than 1 million cells).

The next two paragraphs describe briefly the deforming methods used in the Fluid–Structure
Interaction problems that will later be discussed.

3.10.1 Exponential Damping

The first method used has been originally proposed by Zhao et al. [128]. An internal node,
based on its distance from its closest wall node, experiences a displacement dr⃗ (node) according
to an exponential damping function f (node). If dr⃗ (nodewall) is the displacement of wall node,
then the displacement of every internal node is computed based on the following expression,

dr⃗ (node) = f (node) dr⃗ (nodewall) (3.82)

where the damping function f(x) is defined as,

f (x) =
ly2 (x)

lx2 (x) + ly2 (x))
(3.83)

and the exponential functions lx (x) and ly (x) are given by

lx (x) =
1− exp (−d(x)/dmax)

(e− 1) /e

ly (x) =
1− exp (1− d(x)/dmax)

(e− 1) /e

(3.84)

d (x) is the distance of the node to the nearest solid node and dmax is a maximum distance
outside of which mesh nodes are not affected by the deformation.

3.10.2 Radial Basis Functions

The second deformation method is based on the Radial Basis Function (RBF) approach [129].
This method defines around every wall node an area of influence in which the motion of the
internal mesh nodes is dictated according to a weighting factor. This approach regards the mesh
deformation as an interpolation problem. The deformation algorithm has been further extended
by Rendall and Allen [130] and their work will be presented here briefly. The displacement s
of an in internal mesh node is described by an interpolation function that uses a sum of basis
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functions ϕ, supplemented with a polynomial function p (x) to recover the rotation of the mesh.
The basis function are defined on every wall node si.

The interpolation function is given by,

s (x⃗) =

N∑
i=1

αiϕ (||x⃗− x⃗si ||) + p (x⃗) (3.85)

where s (x⃗) is the interpolation function of an internal node x⃗, αi the interpolation weights, ϕ
the RBF function which depends on the normed distance between the internal node x⃗ and the
wall nodes x⃗si . Typically, Wendland functions C0 and C2 [131] are used as basis functions for
the interpolation process. A first order polynomial p (x) [132] is selected of the following form

px (x⃗) = γxo + γxxx+ γxy y + γxz z

py (x⃗) = γyo + γyxx+ γyyy + γyz z

pz (x⃗) = γzo + γzxx+ γzyy + γzzz

(3.86)

Equation (3.85) should hold exactly for the displacement of the wall nodes. Thus, the first
condition that the interpolation scheme should satisfy is

s (x⃗si) = X⃗si (3.87)

Secondly, when the polynomial term that accounts for the rotation is used a complementary
condition is introduced

N∑
i=1

αiq (x) = 0 (3.88)

where q (x) is a polynomial with degree lesser or equal to p (x).
The previous two requirements can be combined into a single linear system of equations, one

in each direction, that can be solved to acquire the weights αi of the basis functions and the

coefficients γ
x/y/z
i of the polynomial. As a result, the following expressions are obtained

X⃗s = Cssα⃗x

Y⃗s = Cssα⃗y

Z⃗s = Cssα⃗z

(3.89)

where vectors X⃗s and α⃗x, and similarly in the y and z, can be written as

X⃗si =


0
0
0
0
x⃗si

 , x⃗si =


xs1
xs2
...

xsN

 , α⃗x =



γx0
γxx
γxy
γzz
αx
s1
αs2
...

αsN


(3.90)

and the matrix Css is block matrix defined as

Css =



0 0 0 0 1 1 · · · 1
0 0 0 0 xs1 xs2 · · · xsN
0 0 0 0 ys1 ys2 · · · ysN
0 0 0 0 zs1 zs2 · · · zsN
1 xs1 ys1 zs1 ϕs1s1 ϕs1s2 · · · ϕs1sN
1 xs2 ys2 zs2 ϕs2s1 ϕs2s2 · · · ϕs2sN
...

...
...

...
...

...
. . .

...
1 xsN ysN zsN ϕsNs1 ϕsNs2 · · · ϕsNsN


=

 0 P

P
T

M

 (3.91)
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with ϕsisj = ϕ
(
||x⃗si − x⃗sj ||

)
being the basis function defined in wall node sj and evaluated

in wall node si. The sub–matrices P and P
T

of Css constitute the polynomial part of the
interpolation and matrix M makes up for the RBF part.

For the calculation of the displacement of the internal nodes, the vector equations (3.89)

should be solved for vectors α⃗x/y/z. Rather than computing the inverse matrix C
−1
ss , a more

efficient method can be followed [130] that takes advantage of the block form of Css.
Returning to Equation (3.85). The matrix form for the displacement calculations of the

internal points is
x⃗a = Aasα⃗x

y⃗a = Aasα⃗y

z⃗a = Aasα⃗z

(3.92)

in which x⃗a, y⃗a, z⃗a are the new position of the internal nodes, vectors α⃗x/y/z include the weights

of the RBF interpolation and the polynomial coefficients (see Eq. (3.90)), and matrix Aas is
given by

Aas =


1 xα1 yα1 zα1 ϕα1s1 ϕα1s2 · · · ϕα1sN

1 xα2 yα2 zα2 ϕα2s1 ϕα2s2 · · · ϕα2sN
...

...
...

...
...

...
. . .

...
1 xαN yαN zαN ϕαNs1 ϕαNs2 · · · ϕαNsN

 (3.93)

Matrices Aas and Css can be combined by using Equation (3.90) into the following relation,
for the x–direction

x⃗a = Aasa⃗x ⇒ x⃗a = AasC
−1
ss X⃗s ⇒ x⃗a = HX⃗s (3.94)

and similarly in the y– and z–direction. Thus the displacement of each internal node is given
by x⃗αy⃗α

z⃗α

 =

H 0 0

0 H 0

0 0 H


X⃗s

Y⃗s
Z⃗s

 (3.95)

In order to calculate matrix H, the inverse of matrix Css should be found. By taking
advantage of its block form and splitting vectors α⃗x/y/z in the polynomial part (labeled as
poly) and in the RBF part, Equation (3.90) can be solved as

α⃗poly
x =MPPM

−1
X⃗s

α⃗RBF
x =

(
M

−1 −M
−1
P

T
MPPM

−1
)
X⃗s

(3.96)

whereMp is the Schur complement ofM , MP =
(
PM

−1
P T

)−1
. Using the previous definitions

matrix H can now be calculated as,

H = Aas

[
MPPM

−1

M
−1 −M

−1
P

T
MPPM

−1

]
= AasC

−1
ss (3.97)

The previous process can be split into two steps. Firstly, the “solution” step is preceded, in

which the computations of matrixM
−1

and of the interpolation weights αi take place, according
to Equation (3.96). Afterwards, the “update” step follows, in which the displacement of the
internal nodes is calculated by performing the matrix multiplication of Equation (3.95).

In a multi–processing environment each rank creates its own unique H matrix. This matrix
has dimension of M ×N , where M is the number of points per rank and N the total nodes on
the surface of the rigid body across all ranks. It is evident, that depending on the size of the
computational grid, it may not be feasible to store the entire matrix in runtime. A workaround
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for this is: each process stores H matrix in binary files and at each “compute” step accesses the
file to perform the deformation of the mesh. However, even this approach is limited to relative
small grids (no less than 1 million volume cells and only few thousand surface nodes). For larger
grids, a surface reduction algorithm should be employed in order to reduce the dimension of
the interpolation process. In the present thesis, a greedy algorithm based on the unit function
approach, as described in [133], is adopted.
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Chapter 4

Applications in Two–Dimensional
Flows

This chapter presents a variety of two–phase flow results ranging from simple wave propagation
to more complicated wave structure interaction problems. By taking advantage of the simpli-
fications arising from the 2–dimensional (2D) approximation in terms of mesh, CPU time and
flowfield characteristics, a series of parametric studies are conducted. Focus is given on the
effect of the artificial compressibility factor β, wave generation and absorption and turbulence
modeling in case of free surface flows. Recommendations and guidelines regarding their selection
are provided.

The chapter is structured as follows; firstly, the propagation of two non–linear free surface
waves in constant bathymetry is considered. Details about wave generation and absorption
are discussed. Secondly, the interaction of free surface waves with a variable bathymetry is
presented. The results are compared against available experimental data. Finally in the last
test case, the interaction of free surface waves with a barge type floater is studied. The floater
has a distinctive opening in the middle, typically called moonpool. The free surface inside this
opening is able to oscillate under the wave excitation and regulate the motion of the floater.
The excitation of the floater is considered for a range of wave frequencies. Furthermore in the
present, section discussion is made upon the turbulence overproduction, caused by the shear
stresses developed near the free surface.

4.1 Free Surface Waves in Constant Bathymetry

The validation of the numerical methodology begins by considering the propagation of two non–
linear regular waves. For the classification of water wave theories, Le Méhauté [134] proposed
the diagram presented here in Figure 4.1. The x–axis of the diagram represents the swallowness
of the water, while the y–axis the non–linearity of the wave. The swallowness is expressed as
the water depth d over the product between gravity g and wave period T squared, and the
non–linearity as the wave height H over the same product.

For the test cases considered here, two water waves are chosen. The first is a swallow water
wave that is classified as Cnoidal type wave and it is noted with a red dot in Figure 4.1, while
the second case considers a 3rd order Stokes wave and it is depicted with a yellow dot in the
same figure.

4.1.1 Cnoidal Wave

As a starting point, the propagation of a Cnoidal wave at constant bathymetry is considered.
The wave period is equal to T = 5s, the wave height is H = 0.05m, while the depth of
the numerical wave tank is d = 0.5m. Using the Stream Function theory of Fenton [92],

61
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T

T

Figure 4.1: Le Mehaute diagram for the classification of water wave
theories. The dots correspond to the waves studied in this section. The red
dot corresponds to the Cnoidal type wave, while the yellow to the 3rd order
Stokes wave. H is the wave height, g the gravity acceleration, TT the wave

period and d the water depth

the wavelength is calculated as λ = 11.08m. In order to evaluate the influence of the various
numerical parameters, the discussion is primarily focused on the free surface elevation inside
the wave tank, as well as the elevation at various wave gauges. A schematic representation of
the wave tank and the position of the wave gauges (or probes) is given in Figure 4.2.
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Figure 4.2: Schematic representation of the numerical setup used for wave
propagation in constant bathymetry. The waves are generated at the left of
the domain and damped at the right. Six probes are used to measure the

wave elevation at different location inside the numerical wave tank

Wave Generation and Absorption

The influence of the generation parameters α, n, as defined in Equation (4.1) (see also Sec.
3.8) is investigated by conducting a parametric study. In Table 4.1 six test cases are defined.
The same grid configuration is used in all cases. In the direction of the wave propagation,
the mesh is uniform almost everywhere with 150 cells per wavelength, except for the damping
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zone where the mesh coarsens based on a geometric rule. In the vertical direction, 20 cells per
wave height are employed. Regarding the timestep discretization, a constant timestep is chosen
corresponding to 800 timesteps per wave period (dt = 0.0625 s).

Cnwt = α
exp (xnr )− 1

exp (1)− 1
, xr =

xs − x

xs − xe
(4.1)

Table 4.1: Parametric study of the influence of the source term values a and
n in case of wave generation. Table presents the definition of the case studies

# Case Forcing α Exponent n

1 60 3.5
2 120 3.5
3 300 3.5
4 60 2
5 60 5
6 600 2

The surface elevation for all cases inside the generation zone is shown in Figure 4.3a and is
compared with the analytical solution provided by the Stream Function Theory. It can be seen
that the waveform is distorted for large values of α. Furthermore, it is noted that near the
farfield boundary the numerical solution deviates from the analytical one. This is attributed to
the approximation made at the boundary conditions. In case of a wave generation boundary,
if the geometric center of the ghost cell is below the current free surface position, its state is
defined based on the Stream Function solution, regardless if it is partially or totally filled with
water. This approximation seems to cause a discrepancy near the boundary, which however is
not propagated away, as it can be seen in the Figure 4.3. In all cases, the solution converges to
the desired wave profile as depicted in Figure 4.3b, where the free surface elevation is plotted
against time and is compared with the corresponding analytical form.
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Figure 4.3: Influence of parameters α and n in the generation of a wave.
Wave characteristics: T = 5 s, H = 0.05 m, d = 0.5 m, λ = 11.08 m.

The Fast Fourier Transformation (FFT) can be exploited for more detailed comparison.
Tables 4.2 and 4.3 present the error of the amplitude of the first four harmonics and the error
of the phase angle in degrees between the analytical and numerical solution. Overall, the error
of the amplitude at the dominant frequency is below 0.5% in all cases, while for large values of
α, an amplification in higher frequencies is evident. The exponent n does not seem to have a
significant influence on the results. In order to enhance the stability of the solver, the source
term should not be exceedingly large. For this reason, large values of exponent n and small
values of the parameter α are desired. On these grounds, an accurate representation of the wave
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profile, while keeping the influence of the source terms small, is obtained by choosing α = 60
and n = 3.5.

Table 4.2: Parametric study of the influence of the source term values a and
n in case of wave generation. Table presents the relative error of the

amplitude of the first four harmonics compared to the analytical solution

# Case
Harmonics

1st 2nd 3rd 4th

1 0.40 0.45 0.88 0.87
2 0.40 0.42 0.77 0.91
3 0.37 0.39 0.63 1.08
4 0.44 0.38 0.69 1.29
5 0.40 0.49 1.10 0.87
6 0.42 0.37 0.31 1.72

Table 4.3: Parametric study of the influence of the source term values a and
n in case of wave generation. Table presents the relative error of the phase

angle of the first four harmonics compared to the analytical solution

# Case
Harmonics

1st 2nd 3rd 4th

1 0.12 0.06 0.78 1.60
2 0.20 0.09 0.58 1.41
3 0.30 0.27 0.33 1.15
4 0.31 0.33 0.21 1.04
5 0.03 0.32 1.11 1.90
6 0.42 0.71 0.32 0.35

Following the wave generation test case, the damping performance of the solver is evaluated.
A parametric study is conducted by varying the values of the parameters α, n and the length of
the damping zone LD. The case studies are defined in Table 4.4. The star in the last two cases
indicates that a coarser mesh is used in the damping zone. In Figure 4.4a, the surface elevation
inside the damping zone is shown for the six test cases, while in Figure 4.4b the free surface
elevation during a wave period at the beginning of the damping zone is presented. As illustrated
in Figure 4.4c, the elevation of the free surface near the outlet boundary is completely damped
in Case 4, contrary to Cases 1 and 3. It is also worth noticing that for the same parameters α,
n (Cases 2 and 5) the grid coarsening does not affect the damping of the wave. However, all
cases produce the same wave profile at the beginning of the damping zone.

Table 4.4: Parametric study of the influence of the source term values a and
n in case of wave damping and the length LD of the damping zone. Table

presents the definition of the case studies

# Case Forcing α Exponent n Damping Length [LD]

1 60 3.5 3
2 120 3.5 3
3 120 3.5 1.5
4 120 3.5 6
5 120 3.5 3 *
6 250 3.5 3 *
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Figure 4.4: Influence of parameters α, n and of the damping length LD in
the generation of a wave. Wave characteristics: T = 5 s, H = 0.05 m, d = 0.5

m, λ = 11.08 m.

Furthermore, in order to examine in detail the effect of the damping zone in the wave flume,
the amplitude of the 1st harmonic of the free surface elevation is plotted in Figure 4.4c at various
stations across the computational domain. As expected, in all cases the amplitude decays due
to numerical diffusion. However, in Case 3 an oscillatory behavior of the harmonics amplitudes
is noticed. This is caused by reflections at the boundary of the domain. Also, in Case 1 the
amplitude of the 1st harmonic is not monotonically decreasing in space. This can be attributed
to reflections at the farfield boundary. In all other cases, the differences are regarded negligible.
A damping zone extending six wavelengths is excessive for practical implementations while large
values of α may cause numerical instabilities. For all these reasons mentioned above, for the
rest of the work α = 120 and n = 3.5 are chosen (Case 2) for wave generation.

In conclusion, the majority of the results showed that the generation and damping technique
can produce accurate results. The differences noted for different values of α and n can be
considered small. In case of wave generation, the numerical procedure was able to provide
acceptable results in all cases. However, for large values of α (>300) numerical instabilities
were noticed. Regarding wave damping, the method can absorb the outgoing waves, provided
that the length of the zones is sufficient. Finally, the damping sensitivity study indicates that
the damping performance is more sensitive to the chosen value of α. For this reason, a larger
value of α, compared to wave generation, is chosen.
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Grid and Timestep Independence

Once α and n have been decided, the next step is to perform a grid and a timestep sensitivity
study. The grid parametrization is based on the number of cells per wavelength (λ/dx) and the
number of cells per wave height near the free surface (H/dyFS). Predictions from four grids are
compared in Figure 4.5 with respect to free surface elevation in Figure 4.5a and the elevation
at a specific station during a wave period in Figure 4.5b.
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The snapshot is after 25 wave periods.
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Figure 4.5: Grid and Timestep independence studies. Wave characteristics:
T = 5 s, H = 0.05 m, d = 0.5, λ = 11.08 m.

In Figure 4.5c, the amplitude of the first harmonic of the propagating wave is depicted. The
Figure shows that in case of the fine grid (blue line) the amplitude of the wave elevation remains
almost constant across the domain. The coarse grid (red line) produces significant numerical
diffusion and the amplitude of the waves is decreasing. The yellow line corresponds to a mesh
with highly skewed cells near the free surface. It should be noticed that although the green line
corresponds to a coarser grid, the numerical diffusion introduced is smaller. Due to very thin
cells near the free surface, the CFL number is large and consequently the numerical diffusion
introduced by the temporal discretization is significant [101]. The computational mesh with 150
cells per wavelength and 20 cells in the wave height (green line) exhibits similar characteristics
with the finer grid (blue line) and consequently, it is kept for the rest of the simulations.

In Figure 4.5d, the amplitude of the first harmonic of the Cnoidal wave can be found. Three
different timesteps are considered, based on the wave period. Predictions for 400, 800 and
1600 timesteps per period are shown. It is evident that, even when 400 timesteps per period
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are chosen the relative error after 8 wavelengths is ≈ 2.5%. Predictions with 800 and 1600
timesteps per wave period are in very close agreement and thus the former timestep is selected.

Influence of the Artificial Compressibility β Parameter

The next case studies the impact of the artificial compressibility parameter β on wave propa-
gation. In general, β regulates the coupling between pressure and density during convergence,
i.e., β regulates the pseudo-sound speed (c). On the one hand, small values of β lead to small
values of c thus the system is strongly coupled, on the other hand large values of β lead to a
loose coupling of the equations. Because parameter β affects the convergence of the method, it
is imperative to quantify how the choice of β affects the predictions.

Several recommendations for choosing β can be found in the literature, as was already covered
in Section (2.1). For example, in one–phase incompressible flows, Turkel [53] proposed that β
should scale with the square of the local velocity, and hence β varies across the domain. Special
care should be taken near stagnation points where its value should be safeguarded. In case of
wave propagation, the velocities under the crest are small and so β should not depend on the
local characteristics of the flow. Nevertheless, the flows considered in his work did not involve
gravity. Kunz et al. [61] applied the AC method in cavitation problems and suggested values
of β ranging from 5 to 15 · υ⃗2∞. In order to understand the effect of β on the predictions, a
parametric study is conducted using five different constant values of β = 1, 10, 50, 100 and 1000.
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Figure 4.6: Influence of the AC parameter β: Wave characteristics:
T = 5 s, H = 0.05 m, d = 0.5 m, λ = 11.08 m.

The numerical setup is based on the previous parametric studies. Specifically, the grid is
uniform almost everywhere with 150 cells per wavelength and 20 cells in the wave height. The
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timestep corresponds to 800 steps per wave period. For the wave generation, the numerical
parameters are set to αG = 60 and nG = 3.5, with length of the generation zone LG = λ. The
corresponding values for the wave damping are, αD = 120, nD = 3.5 and LD = 3λ.

The results are summarized in Figure 4.6a. Figure 4.6b shows the free surface elevation 5
wavelengths downstream of the generation zone. It is evident that, the predictions yield large
differences for the two extreme values of β (β = 1 and β = 1000). However, for values ranging
from 10 to 100 the predictions yield negligible differences. This is also exhibited in Figure
4.6b, where the amplitude of the first harmonic for the various β values is shown. For values
β = 1 and β = 1000, elongation of the wavelength is observed. This is an artifact that implies
undesired compressibility effects.

To further investigate the effect of β on the solution, the 2nd and 3rd harmonics are provided
in Figure 4.6. It is apparent that, within the range β = 10 and β = 100 the solution is insensitive
to the chosen value for both the 2nd (Figure 4.6c) and 3rd (Figure 4.6d) harmonic. Nonetheless,
for β = 1 the differences are larger but still within an acceptable limit. For β = 1000 the solution
is clearly affected.

From the preceding analysis it is evident that, for the present formulation, predictions are
insensitive of value of β within an acceptable range. With these considerations and taking into
account the guidelines of the literature, the value β = 10 is suggested for the AC parameter
and used as reference for the rest of test cases.

The results of the preceding parametric studies are summarized in Table 4.5. Apart from the
already discussed parameters the table presents the value of the CFL number used in pseudo–
time (τ). The CFL number scales linearly from 1 to 50 in 50 iterations and in all cases is the
same.

Table 4.5: Results of the parametric studies for the Cnoidal type wave in
constant bathymetry. Index G denotes generation parameter, while D

damping parameter

Approx. Mesh dt β CFLτ LG αG nG LD αD nD

Inviscid 112973 T/800 10 50 λ 3.5 60 3λ 3.5 120

As a last remark, two figures are given for the comparison of the numerical solution with
the analytical one. Firstly, the free surface elevation at the entire numerical wave tank is
presented in Figure 4.7 and compared against the expected free surface elevation. In the figure,
the generation zone of one wavelength is noted in blue color and the damping zone of the
three wavelengths in gray color. The comparison between the two is fair, numerical results
follow the theoretical approximation. Minor differences in the wave height are noted at the two
last wavelengths. As it has already been discussed, CFD approximation introduces inherently
numerical diffusion, especially near the free surface, where the density discontinuity is present.
This leads to deviations between the numerical and the analytical solution, and they are depicted
in Figure 4.7 as minor changes in the wave height and length. Furthermore, in Figure 4.8 the
pressure field below the free surface and the corresponding velocity vectors are plotted for the
exact solution (Fig. 4.8b) and for the numerical solution (Fig. 4.8a) 5 wavelengths downstream
of the generation zone. No major differences are noted between the two. The numerical solution
is well compared against the exact solution. The numerical diffusion can also be seen here as a
smearing of the pressure field near the seabed and of the velocity field at the crest of the wave.
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Figure 4.7: Free surface elevation for a Cnoidal type wave. Comparison
between theoretical and numerical results. Wave characteristics: T = 5s,

H = 0.05m, d = 0.5m, λ = 1.57m.

(a) Analytical solution

(b) CFD solution

Figure 4.8: Pressure contours and velocity vectors over one wave length for
a Cnoidal type wave. Above results based on the analytical solution, while
below the CFD solution is presented 5 wavelengths after the generation zone
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4.1.2 3rd Order Stokes Wave

The second test case in constant bathymetry considers a wave with stepper crest compared to
the previous case. Specifically, based on Figure 4.1, a wave is chosen that lies in the region of
3rd order Stokes theory. The characteristics of the wave are: the wave height is H=0.1m, the
wave period is T=1s and the tank has depth d=0.5m. The resulted wave length as computed
from the Stream Function theory is λ = 1.57m. For the numerical setup, the outcomes of the
previous parametric studies are used. The grid near the free surface is discretized using 20 cells
in the wave height and 150 in the wave length. The timestep is chosen as dt = 0.00125s, which
corresponds to 800 timesteps per wave period. For the wave generation, a zone extended for
one wavelength (LG = λ) was used and the coefficients of the exponential function (Eq. (4.1))
are set to αG = 60 and nG = 3.5. Similarly, for the wave absorption, a source zone of three
wavelengths (LD = 3λ) is used and the coefficients are set to αD = 120 and nD = 3.5 The
artificial compressibility parameter equals 10 everywhere. Finally, it is worth noticing that due
to the increased wave height, the flow separation of the air behind the crest is significant and
should be considered in the numerical setup. Even though this separation is not expected to
affect wave propagation, a viscous approximation is followed to enhance numerical stability. In
Table 4.6 the numerical parameters used in this test case are summarized.

Table 4.6: Numerical parameters used for the 3rd Order wave in constant
bathymetry. Index G denotes generation parameter, while D damping

parameter

Approx. Mesh dt β CFLτ LG αG nG LD αD nD

Viscous 112973 T/800 10 50 λ 3.5 60 3λ 3.5 120
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Figure 4.9: Free surface elevation for a 3rd order Stokes wave. Comparison
between theoretical and numerical results. Wave characteristics: T = 1s,

H = 0.1m, d = 0.5m, λ = 1.57m.

Figure 4.9 compares the wave elevation, as computed from the Stream Function theory and
the numerical solution. The comparison is made after 25s of simulation (or 25 wave periods).
As a first remark, the numerical results follows adequately well the theoretical result. However,
the numerical solution seem to predict a different mean elevation, which leads to an upwards
shift of the entire wave profile. As it will be made clear below, this is caused by the increase
of the total water mass in the domain. One main difference of non–linear waves compared to
linear is that, the fluid particles under the crest experience a net drift velocity in the direction
of the waves, commonly referred to as Stokes Drift. This leads to a net mass flux entering
the domain at every wave period. For the specific wave, the Stokes drift velocity is computed
as cs = 0.0155m/s. This can be clearly seen in Figure 4.10a. The total mass that enters the
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domain is constantly increasing, while the mass that exits the domain is zero for the first 10s of
the simulation. Once the wave reaches the outlet boundary, the total mass leaving the domain
is the same as in the inlet boundary. This time window of 10s, where no mass outflow occurs,
leads to an increase of the total water mass. The water mass increased from 9980kg, at the
beginning of the simulation, to an average of 10038kg (±12kg) after 25s. This corresponds to a
mean water elevation of 2.9mm, as is the difference between the curves in Figure 4.9.

The previous statement is also supported by Figure 4.10b, where the mass flow rates at the
inlet and outlet boundaries are plotted. The outflow flux is zero for the first 10s of the simulation
and once the first wave crest reaches the boundary, an outflow mass flux is noted. In Figure
4.10b, besides the mass flow rates, the mean mass flux values at the inlet and outlet boundary,
as well as, the theoretical mass flux due to Stokes drift are also noted. It can be seen that, the
mean values as computed at the inflow and the outflow boundaries coincide and are close to the
theoretical (due to Stoked drift) flux.

(a) Total water mass inside the wave tank (left axis)
and total mass flow the passes thought the inlet and

outlet boundary (right axis)
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Additionally the mean flow rate as computed by Stokes
drift value is presented (blue line). The detailed view
corresponds to the last 5 seconds of the simulation

Figure 4.10: Increase of total water mass inside the numerical wave tank
due to Stokes drift. The left figures presents total mass values, while the
right figure presents mass flow rates. A constant mass flux enters the inlet

boundary due to Stokes drift, however the flux at the outlet boundary is zero
until the first wave reaches the boundary (after approx. 10s)

The increase of water mass is strictly related to the wave generation process. The source
terms at the wave generation zone are based on analytical solution of a periodic boundary value
problem. The periodicity imposed at the lateral boundaries implies, that the mass flux entering
the domain is the same as the one leaving the domain. However, this is not the case for the wave
propagation using wave generation and absorption zones. The solution is not periodic and the
source terms at the left boundary introduce mass in the domain, while at the right boundary
the outgoing flux is zero. One remedy to this problem would be to introduce a space (over
water depth) and time (over wave period) averaged velocity at the outlet boundary. However,
this remedy would be case specific and would only apply in case of wave propagation over
constant bathymetry. If a different case was studied where the direction of propagation can not
be easily determined, for example if the domain contains a structure that interacts with waves,
this remedy can not be easily implemented.

This increase primarily affects non–linear waves with significant Stokes drift. As it was seen
in case of the Cnoidal wave, the Stokes drift is not significant and of course this is the case for
linear waves in which the Stokes drift is zero. In practical implementations and in all results
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presented here, linear or low order (up to 2nd order Stokes waves) are considered. Thus, the
increase of the total water mass is insignificant and does not affect the results.

4.2 Wave Interaction with Variable Bathymetry

Once the ability of the numerical method to effectively propagate waves in constant bathymetry
has been determined, next the interaction of a wave with a trapezoidal bathymetry is considered.
This is a standard benchmark to evaluate the solver ability to accurately simulate dispersive
phenomena. The original experiment was setup and conducted by Beji and Battjes [135], where
seven wave gauges were placed along the wave tank. Later, Dingemans [136] repeated the same
experiment using four more probes and this will be used here as referece. The location of the
eleven wave probes are depicted in Figure 4.11. The generated wave profile has height h = 2.0cm
and period T = 2.02s.
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Figure 4.11: Schematic representation of the numerical setup for
interaction of regular waves with variable bathymetry. The waves are

generated at the left of the domain and damped at the right. Eleven probes
are used to measure the wave elevation at different location in the numerical

wave tank and used for comparison with experimental data

Figure 4.11 also illustrates the numerical setup. The length of the numerical wave tank is 31m.
The damping zone is 9m and the wave generation zone extends for 3.5m. The coefficients of the
generation and damping zones are chosen according to the preceding investigation. Following
the guidelines from the previous analysis, a timestep and grid sensitivity study was conducted.
The timestep resolution was based on the incident wave period, and the parametric study
included the values dt = Tinc/400, Tinc/800 and Tinc/1600. The spatial mesh should have
sufficient resolution to account for the higher harmonics created by the interaction with the
bathymetry.

For the grid generation a structured–like technique was adopted. Three grids were generated
labeled here as Coarse, Medium and Fine. In the x–direction, the grid in all cases is uniform
with resolutions dx = 2, 1 and 0.5cm, for the three grids respectively. In the y–direction, a
refinement zone is dfeined near the free surface to capture wave elevation. The vertical step was
set to dy = 2mm for the Coarse grid and to 1.5mm for the other two. The parameters for the
three grids led to mesh sizes of 90, 180 and 320 thousand cells, respectively. The results of the
two studies are presented in Figure 4.12, where free surface elevation at the last probe is plotted
for 2.5 seconds. Convergence of results is noted for the two finest discretizations in each case.
Thus, the solution can be considered as independent from parameters associated with time and
space, if either of them is selected. As basis for the comparison with experimental data the
finest mesh is selected with timestep resolution dt = 2.5 · 10−3 (=Tinc/800). The numerical
parameters used in this study are also summarized in Table 4.7.
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It needs to be noticed, that the viscosity effects can be neglected because the boundary
layer thickness is relative small compared to depth and thus it is not expected to affect wave
elevation. For this reason, a viscous–free approximation is adopted to reduce the computational
cost. Regarding the other numerical parameters, the artificial compressibility factor β is equal
to 10. The pseudo–CFLτ number is equal to 50 and at each time true iteration 10 dual steps
are executed for the convergence of the pseudo-steady state problem. At the bottom, no slip
boundary condition is applied.

Table 4.7: Numerical parameters used wave interaction with variable
bathymetry. Index G denotes generation parameter, while D damping

parameter

Approx. Mesh dt β CFLτ LG αG nG LD αD nD

Inviscid 319565 Tinc/800 10 50 λ 3.5 60 3λ 3.5 120
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Figure 4.12: Grid and timestep independence study. Free surface elevation
at probe 11 (x = 21.0m)

The predicted free surface elevation in the entire domain is presented in Figure 4.11 (con-
tinuous red line). Due to shoaling, the wavelength is compressed and energy is transferred to
higher harmonics. The deepening after the bar releases energy from higher harmonics and an
irregular wave profile is created. The signals recorded at the wave probes are compared against
the experimental data in Figure 4.13 at eleven stations. At the first probe (Fig. 4.13a), the two
signal appear to have a small difference in amplitude. However, as the comparison at the other
probes suggests, it does not affect the overall comparison. At probe 7 (Fig. 4.13g) a small phase
shift is observed between the simulation and the measurements. Nevertheless, the comparison
of free surface displacement is very good at all stations even when higher harmonics are excited
after the shoaling (Figures 4.13f-4.13k).
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experimental data
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4.3 Moonpool–Type Floater

In this final section, a wave structure interaction problem is examined aiming to validate the
FSI algorithm presented in Section 3.9. To this end, the response of a moonpool–type floater
in incident waves is investigated and compared with available experimental data taken from
[137]. Under wave excitation, the floater is displaced and the free surface inside the moonpool
is subjected to a vertical motion, commonly called piston motion, while additional sloshing
modes may appear. The piston motion inside the moonpool reduces the motion of the structure
induced by the incident waves. This problem poses additional challenges since the motion of
the floater is induced by the underlying flowfield. It is noted that in this case, viscous effects
are significant. The flow separation on the sharp edges directly affects the free surface elevation
inside the moonpool.

In the experiments conducted by [137] two barges of rectangular cross section of 20cm were
mounted together to form a moonpool of 10cm. The draft of the model is 0.097m. The breadth
of the barges was 14mm smaller than the width of the experimental wave tank and thus 3D
effects are limited. Following the notation of the experiments, the test case is defined on the
y–z plane. The mass of the floater is m = 22.885kg, its radius of gyration around the x–axis
is rxx = 0.18m and its center of gravity (CoG) is 0.091m above the bottom of the hull. In a
two-dimensional context, a body has three degrees of freedom, namely the sway motion (motion
along the y–axis, η2), the heave motion (motion along the z–axis, η3) and the roll motion (motion
around the x–axis, η4).

The setup of the experiment is depicted in Figure 4.14. The structure is mounted with
horizontal mooring lines to prevent it from drifting. At the end of these lines springs were
connected to allow the structure to move. Pre–tension was applied to the springs. The pre–
tension was much larger than the tension due to the motion of the structure, thus the restoring
effect of the mooring system was always active. A coupling between sway and roll motion is
assumed since the center of gravity of the model and the mounting point of the mooring lines
were not at the same height. Considering the above mentioned remarks, the rigid body motion
is described by equations (4.2).

mη̈2 =

∫
∂S

−pnydS +

∫
∂S

(τ̄ n⃗) · n⃗ydS −K22η2 −K24η4

mη̈3 =

∫
∂S

−pnzdS +

∫
∂S

(τ̄ n⃗) · n⃗zdS

Iη̈4 =

∫
∂S

−pn⃗× r⃗dS +

∫
∂S

(τ̄ n⃗× r) dS −K42η2 −K44η4

(4.2)

In the above equations m is the mass of the structure, I is the moment of inertia about its
center of gravity, n⃗ is the normal unit vector defined on the boundary S of the body, ny, nz the
components of n⃗, p is the fluid pressure and τ̄ is the viscous stress tensor. In addition, K22 and
K44 are the spring constants for the heave and roll motion, respectively. The spring constants
K24 and K42 are of the same magnitude and couple the heave and roll motions. They result
from the level arm created between the axis of the restoring forces and the center of gravity.
A more detailed report for the experimental setup and the physical modeling of the rigid body
motion can be found in [138]. The experiment considered three types of waves based on the
wave height to wavelength ratio for several wave periods. In the present study, only results for
waves with ratio H/λ = 1/30 for wave periods between the range [0.6 : 1.2] s are presented.

The flow is considered fully turbulent in all cases. The numerical setup is based on a previous
study and can be found in [139]. Grid and timestep sensitivity studies were conducted and used
as reference here. The grid and the timestep is the same in all cases. In the stream–wise
direction, the grid is almost uniform with size of dy = 0.008m, while in the transverse direction
close to the free surface, the grid size is dz = 0.001m. On the damping zone region, the mesh
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Figure 4.14: Schematic representation of the numerical setup for the

moonpool-type floater test case.

coarsens with a geometric rule to effectively damp the outgoing waves. The grid around the
structure has an O–grid topology which is dense to account for the vortex formation near the
sharp edges. The total size of the mesh is 3 · 105 cells. The selected timestep is equal to 0.001s.

Overproduction of turbulence kinetic energy (TKE) at the free surface regime is a well–known
shortcoming of RANS approximation, as already mentioned in Section 2.4. Various modifica-
tions have been proposed to mitigate the turbulence overproduction near the free surface. One
of the most widely used models has been proposed by Devolder [83] and described here in
Section 2.4. A buoyancy turbulence limiter is added in the turbulent kinetic energy equation
that is activated near the free surface. Although, the proposed limiter restrains the excessive
overproduction of turbulence, as it will be demonstrated here, turbulence viscosity is still high
far from the solid boundaries. In the case examined here, waves impinge on a floater in absence
of current in 2D. The turbulence generated near the free surface is not able to move beneath
the floater and advect to the downstream boundary. As a result, turbulence builds up gradually
upstream of the floater. This leads to increased levels of dissipation inside the flowfield, which
eventually decreases the amplitude of the floater motion especially in long time simulations.
Turbulence is built up away from the wall boundary where the k–ϵ branch of SST model is
activated. Kato and Launder [87] faced a similar problem when they tried to predict the flow
over stationary cylinders. The very high levels of shear near the stagnation point produced ex-
cessive levels of turbulent kinetic energy, k, similarly to the case discussed here. They proposed
to calculate turbulence viscosity (µt) not only based on the shear strain S, but to the vorticity
magnitude Ω as well. By adopting this definition in conjunction with the Devolder limiter, in
the k–ω SST formulation, turbulence overproduction has been decisively suppressed. In Figure
4.15 two snapshots of the turbulence field is presented with (Fig. 4.15a) and without (Fig.
4.15b) the Kato–Launder limiter. In both cases, the Devolder limiter is also employed. On the
one hand, it is clear that predictions which include only the modification of Devolder fail to
suppress the artificial overproduction of TKE. On the other hand, using also the Kato–Launder
limiter the levels of turbulent viscosity are considerably restrained.

The excessive production of TKE directly affects the motion of the floater. In Figure 4.16,
the signal of the roll motion is illustrated. The amplitude of the roll motion is considerably
reduced for long time simulations when only the turbulent buoyancy term is used. The results
are improved when the turbulence production limiter is used and as it is depicted the amplitude
remains constant.

The previous agrees with the work of Larsen and Fuhrman [85] where they also suggest that
the Devolder modification is not enough to suppress the artificial overproduction of TKE. In
[85], they employ another approach, where the turbulence viscosity is suppressed by identifying
nearly potential flow regions. Nonetheless, in this case study, this distinction is not trivial. By
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(a) With the Kato-Launder production limiter

(b) Without the Kato-Launder production limiter

(c) Contour Palette

Figure 4.15: Snapshot of the turbulent viscosity (µt) for the moonpool type
floater after 103 iterations with (upper) and without (middle) the

Kato-Launder production limiter [87]. Test case characteristics T = 0.95s and
H/L = 1/30. In both cases the Devolder [83] production limiter is applied.

employing the Kato limiter the overproduction of TKE was successively suppressed without
making any case–specific modifications. In Table 4.8 an overview of the numerical parame-
ters used in this study is presented. Mesh, timestep characteristics and also the turbulence
approximation are noted.
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Figure 4.16: Time signal of the roll motion with and without the
Kato-Launder production limiter [87]. Test case characteristics T = 0.95s

and H/L = 1/30. The figure illustrates a constant reduction of the amplitude
of the roll motion due to turbulence overproduction, when no production

limiter is used. In both cases the Devolder [83] is applied.
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Table 4.8: Numerical parameters used for the wave excitation of a
moonpool–type floater

Approx. Turb. Limiters # DoFs Mesh dt [s] β CFLτ

Fully Turb.
Devolder

Kato–Launder
3 294435 0.001 10 50

Next the results of the systematic evaluation are presented. In Figure 4.17, the results are
compared with the experimental data. In Figures 4.17a to 4.17c, the Response Amplitude
Operators (RAOs) of the motions are presented, while Figure 4.17d presents the amplitude of
the space averaged free surface elevation inside the moonpool. Regarding the sway motion,
the amplitudes scale linearly with respect to the wave period and the results coincide with the
experimental ones. The heave amplitudes appear to have a resonant behavior for wave periods
between T = 0.65s and T = 0.8s. This behavior is depicted in the amplitudes of the free
surface as well. Small discrepancies are observed near this resonant region. Furthermore, as
noted in Figure 4.17c, the numerical results are similar with the experimental in case of the
roll motion for wave period below T = 1s. However, for wave periods above T = 1s larger
amplitudes of roll motion are are predicted by the numerical solver. This could be caused by
the assumption of two–dimensional flow. Drag forces may appear in the experimental setup
in the thin layer created at the side of the structure, between the floater and the wave tank.
Additionally, another source of deviations between the experimental and the numerical results
is the roughness of the structure. The surface of the floater, in the simulations, is considered
smooth, which does not reflect the experimental case.

In Figure 4.18, vorticity near the edges of the structure is depicted where the flow separation at
the corners of the structure is evident. The flow separation at the lower entrance of the moonpool
regulates the resonant behavior of the piston mode which is apparent for wave periods between
T = 0.75s and T = 0.85s. Finally, the pressure field upstream of the structure is presented
in Figure 4.19. The figure illustrates the pressure distribution on the incident wave, the free
surface elevation inside the moonpool, as well as the pressure drop due to vortex formation near
the sharp edges of the structure.
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Figure 4.17: Comparison of experimental and numerical results for the
moonpool–type floater test case. Response Amplitude Operators (RAOs) of
the three motions and the space averaged free surface elevation inside the

moonpool for wave steepness H/λ = 1/30. ζa is the amplitude of the
incoming wave and k the wave number

Figure 4.18: Vorticity contours multiplied by the volume fraction near the
moonpool–type structure. The wave steepness is H/λ = 1/30 and the period

is T = 0.95s.
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Figure 4.19: Pressure contours upstream of the moonpool–type structure.
The wave steepness is H/λ = 1/30 and the period is T = 0.95s.



Chapter 5

Applications in Three–Dimensional
Flows

The present chapter focuses on the performance of the hydrodynamic solver in 3–dimensional
cases. The case studies that follow cover every feature of the numerical solver, including wave
generation and absorption, fixed and moving solid boundaries, the presence of only water (one-
phase) or both air and water (two-phase), among other things. The criteria for selecting the
case studies are; literature recommendations for validating numerical solvers, availability and
quality of experimental results, and modern engineering concepts for improving the design of
offshore structures. In every case study, the numerical setup, mesh and timestep independence
studies are given prior to numerical results.

The results start from an example of one–phase flow simulation, followed by three test cases
where both the liquid and the gaseous phases are present. Specifically, the first case considers
the performance of a model scaled propeller in open water tests. Numerical results are compared
against experimental data provided by the Laboratory of Ship & Marine Engineering (LMSH).
In the second case the hydrodynamic response of the Kriso Container Ship (KCS) is assessed
in calm water conditions and in head waves with two degrees of freedom. Moreover, results by
restraining completely the motion of the (fixed conditions) are also presenting. In the latter
case, additional flowfield characteristics are available from experimental data. The third section
presents a preliminary study of a ship retrofitting concept. Starting from the bare hull of a
model ferry ship, its performance is evaluated in calm water conditions and in head waves.
Afterwards, the performance of the vessel equipped with a static hydrofoil submerged in front
of its bow is examined. The findings of this study are set side by side with the ones taken from
the tow tank experiments conducted in LMSH. This study was part of the EU funded project
SEATECH (https://seatech2020.eu/, accessed on 25 July 2023) and the results have also
been published in [140]. The final case is a part of an international comparative study for the
numerical evaluation of hydrodynamic response of floating offshore wind turbines. This work
is part of the 1st Comparative Study for Floating Offshore Wind Turbines [141]. The study
follows an experimental campaign [142] that examines the response of a model wind turbine
floater in initial displacement and under excitation of two focused wave trains.

5.1 Evaluation of Propeller in Open Water Tests

Assessing propeller efficiency is a demanding task since it is operating in the wake of the ship.
Before evaluating the performance of the propeller in this turbulent wake, it is common to
execute open water tests and assess its performance in uniform flow. The propeller and its
hub are mounted on a carriage moving with constant speed. Due to the submergence depth of
the propeller, its interaction with the free surface is considered negligible. For this reason, the
one–phase version of the numerical solver is utilized.

81
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The simulations use as reference experiments conducted in the tow tank of LMSH [143]. The
experiments consider the performance of a handcrafted 4–blade Wageningen B–Series propeller.
The propeller is a model scale of 0.16m diameter, with pitch diameter ratio, P/D, 0.88 and
expanded blade area ratio equal to 0.628. In the experimental setup, the submergence depth is
40cm, which is enough to eliminate cavitation effects.

The results are compared in terms of thrust coefficient KT , torque coefficient KQ and effi-
ciency η, as given in Equation (5.1). In this equation, T is the thrust produced by the propeller,
Q is the applied torque, D is the propeller diameter, n is the rotation speed in rps and VA is
the carriage velocity in m/s.

KT =
T

ρn2D4
, KQ =

Q

ρn2D5

J =
VA
nD

, η =
J

2π

KT

KQ

(5.1)

The experiments were conducted for a series of advancing ratios J . The different advancing
ratios can be achieved by either altering the rotation speed of the propeller or changing the
carriage advancing velocity. In order to evaluate the consistency of the results, two series
of experiments were carried out. Firstly, the propeller speed and the carriage velocity were
appropriately selected to match a constant Reynolds number defined at a cross section at the
75% of the propeller radius, according to relation (5.2). The second test series regarded a
constant carriage velocity VA and altered the rotation speed of the propeller to match the
advancing ratio. In the latter case, the Reynolds number varied between 2 · 105 and 6 · 105.
The test conditions are summarized in Table 5.1. It is noted that for small values of J , the
velocity of the carriage was altered instead of the rotation speed in order to avoid overloading
the dynamometer.

Re0.75 =
C075R

√
V 2
A + (πn0.75D)2

νw
(5.2)

In Equation (5.2), C075R is the chord length at the 75% of the propeller span and is equal to
0.062m. Also, νw is the kinematic viscosity of water.

Table 5.1: Carrier velocity (VA) and propeller rotation speed (n) for the
two series of experiments

Re075 const VA const

VA [m/s] n [rps] J VA [m/s] n [rps] J

0.304 18.78 0.1 0.4 24.9 0.1
0.604 18.8 0.201 0.8 24.93 0.2
0.901 18.8 0.3 1.209 29.94 0.25
1.2 18.78 0.40 1.51 31.27 0.3

1.501 18.86 0.50 1.504 23.54 0.4
1.803 18.85 0.60 1.505 18.82 0.5
1.9 18.28 0.65 1.503 17.07 0.55

2.048 18.29 0.7 1.502 15.62 0.6
2.301 18.01 0.80 1.502 14.43 0.65
2.603 18.08 0.9 1.502 13.44 0.7
2.698 17.73 0.95 1.501 12.49 0.75

1.501 11.76 0.8
1.5 10.45 0.9

1.501 9.88 0.96
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5.1.1 Numerical Setup

Figure 5.1: Computational domain used for the open water tests

(a) Propeller and hub characteristics used in the CFD
calculations. VA is the inflow velocity

(b) Detailed view of the propeller’s mesh near the
sharp tip

Figure 5.2: Numerical setup for open water test of the handcrafted
Wageningen B–Series propeller

The CFD simulations are performed in a cylindrical domain of 25 propeller diameters in
length and radius of 10 propeller diameters, as illustrated in Figure 5.1. The flow is solved in
the rotating frame of reference using absolute velocity representation, as described in Section
2.3. The flow is uniform and parallel to the x–axis. Due to the Reynolds number, the flow is
considered fully turbulent and the standard k–ω SST model of Menter is utilized. The propeller
geometry used is depicted in Figure 5.2a. The geometry has been extended for two propeller
diameters downstream to emulate the hub used in the experimental setup. The boundary
condition of the extended hub was set to slip–free to avoid the development of the boundary
layer, while for the propeller blades and the hub upstream, no–slip boundary conditions were
defined (see Figure 5.2a).
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For the domain discretization, a mesh sensitivity study was conducted. Three different com-
putational meshes were studied, created by the unstructured mesher ANSA developed by BETA
CAE systems [144]. In order to control the mesh size close to the propeller a cylindrical re-
finement zone of 2 propeller diameters in diameter and 3.5 in length (0.5 upstream and 3
downstream of the propeller) was created. Furthermore, to capture the generated tip vortex
(see Figure 5.2b) special care has been taken near the sharp tip of the propeller. Lastly, in
all meshes mesh layers were generated normal to the wall boundaries to accurately resolve the
boundary layer. In all examined meshes 25 layers were generated with growth ratio 1.2 and the
first wall node was places 0.01mm away from the wall.

The first mesh, denoted as Coarse, had a total size of 2.68 million cells and the surface mesh
was consisted of 63.3 thousand elements. The second, Medium mesh, had 4.3 million cells and
131.8 thousand elements on the solid surface. The third Fine mesh had the same surface mesh
as the Medium mesh, but the mesh at the wake of the propeller was further refined. Fine mesh
had a total size of 7.8 million cells. As an example of the mesh discretization, in Figure 5.2 the
surface mesh of the Medium mesh on the blades is depicted in a detailed view. On the 4 blades
90 thousand cells are created while the propeller and hub consist of 42 thousand surface cells.
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(a) Grid sensitivity study. The detailed view focuses on the
last 500 iterations

(b) y+ values on the propeller

Figure 5.3: Mesh sensitivity study and y+ values for advancing ratio
J = 0.6

The sensitivity study was conducted for a constant Reynolds number equal to 360,000 for
4 different advance ratios (J). The results are presented in Table 5.2 us percentage deviations
with respect to the Fine mesh. In all cases, the differences are relatively small. However, as
it is seen in Figure 5.3a, in case of Coarse mesh, the thrust coefficient is not constant and
oscillates around a mean value. This is attributed to the coarse mesh discretization near the
tip of the blade. On the contrary, the other two meshes produce similar results with adequate
convergence characteristics; thus the coarser of the two (Medium mesh) is chosen for the rest of
simulations. As a last remark for the mesh setup, the y+ values on the surface of the propeller
are presented in Figure 5.3b. The mean y+ value is below 2 and large values are noted near the
tip of the propeller as expected.

The majority of the simulations examine the steady state problem. However, in case of
advancing ratios smaller than 0.3 (J < 0.3) an unsteady approximation is adopted, due to flow
separation occurring at the propeller tip. For the unsteady simulations the timestep is adjusted
at 1500 timesteps per propeller revolution. For the convergence of the pseudo–steady problem,
the β factor has been set to 750 due to the rotation speed, and the pseudo–time CFL is equal
to 10 increasing linearly from 1 to 1000 steps. An overview of the numerical setup is presented
in Table 5.3.
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Table 5.2: Mesh sensitivity study for evaluation of a propeller in open water
tests. Relative errors compared to Fine mesh

Coarse Medium

J δKt[%] δKq[%] δKt[%] δKq[%]

0.5 0.496 0.189 0.182 0.143
0.6 0.730 0.248 0.162 0.111
0.7 0.985 0.225 0.052 0.011
0.8 1.496 0.434 0.187 0.059

Table 5.3: Numerical parameters used for the evaluation of the propeller in
open water tests

Approx. Mesh dt β CFLτ

Fully Turb. 4273611
if J > 0.3: Steady

else: T/1500
750 10

5.1.2 Systematic Evaluation of the Propeller

In Figure 5.4, the results from the experimental (EFD) and the computational (CFD) approxi-
mations are compared. The two figures correspond to the constant Reynolds number as defined
at 75% of the blade (Re075 = 3.6 · 105) and to the constant carriage speed test cases. Addition-
ally to the previous results, the characteristics of the Wageningen B–series provided by [145] in
form of a polynomial are plotted in dotted lines and denoted as Wageningen. The polynomial
is independent from the Reynolds number in case of Re < 2 ·106, thus the same curve is plotted
in both figures.
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(a) Constant Reynolds number (Re = 3.6 105)

0.0 0.2 0.4 0.6 0.8 1.0
J [−]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

(b) Constant carriage velocity (VA = 1.5m/s)

(c) Legend

Figure 5.4: Comparison between experimental (EFD), computational
(CFD) results and theoretical values provided for the Wageningen propeller

(dotted line)

Both procedures presented here produce similar results for a wide range of advancing ratios
and compare well to the curves given by the literature. More precisely, all data seem to be in
agreement for advancing ratios up to 0.6, especially for the constant Reynolds case. CFD results
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start to deviate from experiments and polynomial at larger advancing ratios, particularly in case
of constant carriage speed. The simulations seem to under–predict the thrust of the propeller,
which is further pronounced in the efficiency coefficient – η plot. Larger differences are noted
among all datasets for advancing ratios greater than 0.9. However in this range, the thrust of
the propeller tends to zero and all approximations introduce uncertainties. Regarding the two
series of test cases, similar results are obtained and the comparison between the datasets is fair.
Nevertheless, more consistent results seem to be obtained from the constant Reynolds number
series where all approximations seem to converge in the same values.

The differences between the experimental and computational results are given also in a per-
centage form, relative to the experimental data, in Table 5.4. The differences between the two
sets are less than 1% and 8% for the constant Reynolds number and the constant carriage speed
case, respectively, in regions of interest (0.1 < J < 0.8).

Table 5.4: Differences between EFD and CFD results in evaluation of the
propeller in open water tests

Re075 const VA const

J δKt [%] δKq [%] J δKt [%] δKq [%]

0.1 6.07 3.37 0.1 5.06 0.25
0.2 3.21 1.57 0.2 3.04 1.43
0.30 0.67 0.16 0.25 4.73 0.42
0.40 0.56 0.25 0.3 2.61 1.51
0.50 0.23 1.04 0.4 0.69 3.33
0.60 0.62 0.91 0.5 1.34 2.69
0.65 0.76 1.09 0.55 1.93 2.59
0.70 0.57 1.29 0.6 1.02 3.83
0.80 0.19 2.14 0.65 0.59 4.91
0.90 5.13 2.82 0.7 3.34 6.71
0.95 38.83 4.85 0.75 5.19 7.47

0.8 10.57 11.49
0.9 61.46 13.06
0.95 29.4 8.29

(a) J=0.1 (b) J=0.6

Figure 5.5: Pressure contour and stream–traces on the surface of the
propeller for two advancing ratios
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(a) Slice of the pressure field at x = 0. Pressure
difference on the propeller’s blades for advance ratio

J=0.6

(b) Iso–surface of the Q-criterion (Q=1000) colored by
the longitudinal velocity component for advance ratio

J=0.6

Figure 5.6: Flow Visualization for two different advancing ratios, in case of
Reynolds Number 3.6 · 106

In order to gain a better insight of the flow around the propeller and the influence of the
advancing ratio J , two surface plots are presented, in Figure 5.5, for J = 0.1 and J = 0.6. For
the larger advancing ratio, the streamtraces are aligned with the geometry and the pressure
is larger at the leading edge of the propeller indicating a small effective angle of attack. On
the contrary, at small advance ratios, the effective angle of attack is larger and consequently
the stagnation point is moving upstream towards the trailing edge as the radius increases.
Moreover, for J = 0.1, the streamtraces on the propeller and the pressure values near the tip
of the propeller indicate flow a separation region.

Last but not least, Figure 5.6 presents visualization of the flow around the propeller. Figure
5.6a illustrates the pressure around the propeller and Figure 5.6b the tip and the hub vortices
around the propeller. For the identification of the vortex structures the Q–criterion [146] is
used. In this example, an iso–surface of Q=1000 is plotted, colored by the horizontal velocity
component for J=0.6. The tip and the hub vortex can be identified in the plot. Due to flow
separation at the hub of the propeller, the generated vorticity interacts with the root of the
propeller and the generated vortex tubes are advected downstream.

5.2 KRISO Container Ship

Having completed the testing of the solver in one–phase flows, in the present section and forth,
the evaluation of its performance in two–phase flows is examined. The next test case regards
the hydrodynamic behavior of the KRISO Container Ship (KCS) in calm water conditions and
in head waves. KCS is a concept container ship with a bulbous bow used as benchmark for
displacement hulls. The analysis considers both the ship in fixed conditions (not able to move),
as well as with two degrees of freedom in heave and pitch directions. A series of experiments have
been conducted from the Korean Research Institute for Ships and Ocean Engineering (KRISO)
to obtain resistance, amplitude of motions, free surface elevations and mean flow characteristics.
This plethora of experimental results made it as one of the most popular test cases for validating
numerical tools (see for example [147],[148]). The KCS hull has also been used as reference for
a series of computational workshops, such as in Gothenburg 2010 [149], in Tokyo 2015 [150] and
others. The characteristics of the full scale ship are summarized in Table 5.5.
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Table 5.5: Main particulars of KCS in full scale

Length between perpendiculars Lpp (m) 230.0

Maximum beam of waterline B (m) 32.2

Draft T (m) 10.8

Displacement ∆ (m3) 52030

Wetted area w/o rudder SW (m2) 9424

Wetted Surface area of rudder SR (m2) 115

Block Coefficient CB 0.6505

Propeller center, long. location (from FP) x/Lpp 0.9825

Propeller center, vert. location (below WL) -z/Lpp 0.02913

LCB (%Lpp), fwd+ -1.48

Vertical Center of Gravity (from keel) KG (m) 7.28

Metacentric Height GM (m) 0.60

Moment of Inertia Kxx/B 0.40

Moment of Inertia Kyy/Lpp, Kzz/Lpp 0.25

Service Speed Us (knots) 24.0
Fn 0.26

The present section follows the setup of three different experiments, attempting to compare
the numerical results against a variety of data provided in literature. The section is divided as
follows; firstly, the numerical setup is described, afterwards the resistance of KCS in calm water
conditions is considered with two degrees of freedom, namely, the vertical displacement in the z
axis –heave– and the rotation around the transverse y axis –pitch–. The numerical results are
compared with experimental data taken from [151]. The available data from experiments are
the resistance of the hull, as well as, the trim and sinkage of the ship, for 6 Froude numbers
between 0.108 and 0.28. Furthermore, the free surface elevations in four longitudinal wave cuts
are compared in the nominal Froude number (Fn=0.26). Afterwards, in order to compare free
surface elevations and flow patterns, KCS is again examined in calm water conditions with zero
degrees of freedom (fixed conditions) and the results are compared with experiments reported
in [152]. Finally, KCS is assessed in head waves conditions. The Response Amplitude Operators
(RAOs) and time series are compared with experimental data available from [150].

5.2.1 Numerical Setup

Prior to the systematic evaluation of the solver against experimental data, a parametric study
to select the appropriate numerical setup is conducted. As benchmark test case, KCS in calm
water conditions at the nominal Froude number is considered, based on the setup of [151]. The
ship is able to move in heave and pitch directions. The scale ratio of the model is λ = 31.6 and
the rudder of the ship is in place. According to Table 5.5, the nominal Froude number of the
ship is Fn = 0.26, which results in Us = 2.196m/s for the model scale.

The computational domain is illustrated in Figure 5.7. Due to symmetry and in order to
save computational resources, only the half of the ship is consider. The hull is positioned on the
x–axis, the free surface at z = 0, the front perpendicular of the ship is positioned at x = 0 and
the after perpendicular at x = 7.2786m. A rectangular numerical wave tank is selected for the
simulations. Its dimensions are: in the longitudinal direction x ∈ [−20, 25], in the transverse
direction y ∈ [0, 25] and in the vertical z ∈ [−25, 10]. In Figure 5.7, the dimensions of the
computational domain in terms of Lpp are also given. As already mentioned, KCS is evaluated
in calm water conditions and in head waves. The same computational domain is used in both
cases. However, different boundary conditions and forcing zones are applied at the farfield
boundaries of the domain. In case of calm water conditions all boundaries are set to farfield,
except for the symmetry plane which is set to symmetry. The boundary conditions on the ship
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(a) Calm water conditions (b) Head waves conditions

Figure 5.7: Computational domain with implicit forcing zones for KCS
evaluation, in calm water and in head waves conditions. Stripped areas
denote wave absorption zones, while checkerboard areas wave generation

zones

hull are set to no–slip, while on the deck the viscous effects are neglected and slip–free boundary
conditions are applied. All farfield boundaries are equipped with wave damping zones of one
ship length (LPP ) to ensure zero reflections from domain boundaries (see Figure 5.7a). The
damping zones aim to minimize the vertical velocity component according to Equation (3.78)
(wtar = 0). In case of head waves, apart from the symmetry plane, the lateral plane on the
starboard side is also set to symmetry and the rest of the boundaries are set to farfield as in
the previous case. Regarding wave generation, upstream of the hull, a forcing zone of one wave
length is defined, while downstream of the ship the wave absorption zone of the previous case is
retained (see Figure 5.7b). Furthermore, a damping zone is defined at the lateral boundary of
one ship length wide as well. However its purpose is to minimize the reflections from symmetry
plane due to waves radiating by the ship. For this purpose the vertical to the boundary velocity
component is minimized by setting vtar = 0 to the source terms of Equation (3.78).

The flow is solved in the relative frame of reference with respect to the absolute velocity. As
already described in Section 2.3, this means that the velocity of the surrounding fluid is zero,
and the apparent grid velocity is Vg = Us. In order to avoid strong transient effects, starting
from rest, a tangential hyperbolic function is used to increase the speed of the ship within
500 timesteps. In the wall boundary conditions the VoF value is swept for a distance of 1mm
normal to the wall. For the turbulence closure, the k–ω SST of Menter is used supplemented
with the Devolder production limiter that mitigates the turbulence over–production near the
free surface.

The Hexpress polyherdal trim mesher [153] was used for the generation of the computational
mesh. Trim meshers are unstructured meshers that use an initial uniform rectangular mesh
as base mesh and then cells are consecutively divided in half until the user–defined require-
ments are met. Typically, mesh refinement is imposed close to the solid boundaries and also
in special defined areas (refinement zones) that are meant to capture various flow patterns,
such as vortex streets or field discontinuities. Each cell can be divided either isotropically in
all directions creating nodes that may not be shared by the neighboring cell (hanging nodes)
or anisotropically in selected directions. The last feature renders them as ideal for test cases
with strong discontinuities, as in the case of a numerical wave tank where also air is taken into
account. The refinement zones used in the presented case studies are depicted in Figure 5.8.
The refinement zones can be divided into two groups. The ones in Figure 5.8a aims at resolving
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(a) Refinement boxes used to resolve the hull and its characteristics

(b) Refinement boxes used to capture the free surface

Figure 5.8: Refinement boxes defined in the trim mesher to accurate resolve
the geometry of the KCS and the created flow patterns

details of the geometry such as the bulbous bow, the stern and the rudder, while that in Figure
5.8b aims at accounting for the deformation of the free surface. One box is used to capture
the wave elevation on the hull, the two crests formed on the bow and the stern of the ship and
two troughs at the forward and aft shoulder. The second group is used to refine mesh in the
vertically direction to capture the free surface elevation. A box is created in the vicinity of the
free surface and another one to account for the Kelvin wake of the ship extended downstream
over one ship length.

For the mesh parameters in the region of the wake, the ship advancing speed and the dis-
persion relation for deep water waves are used as reference. Assuming that ω2 = kg holds, an
estimation of the wave length in the ship’s wake can be made as, λ = 2πU2

s /g, with g being the
gravity acceleration. Particularly, regarding the details of the three meshes, the Coarse grid
consists of 1.48 million cells. The surface of the hull is discretized using 20 thousand elements.
In order to capture the resulting wave system, a uniform refinement in the x and y direction
is applied which corresponds to 50 grid cells per wavelength and in the z direction the grid
step size is 12mm or 10 cells over the largest elevation based on the experimental data. The
Medium consists of 3.93 million cells and the surface mesh has 41 thousand cells. The wake
refinement has 100 cells per wave length and 20 cells over the wave height. Finally, the Fine
consists of 8.9 million cells and the mesh on the hull surface is discretized using 46 thousand
cells. The wake refinements consist of 200 cells along the wave length and 20 cells along the
wave height. In order to, account for the wall friction, in all cases, cell layers are inserted at
the viscous boundaries (ship hull). The first cell is placed 0.01mm normal to the wall which
corresponds to y+ values close to 1. Furthermore, 25 layers are inserted with growth rate 1.2 to
effectively resolve the turbulent boundary layer. For the time discretization, a reference time
length is defined based on the length of the ship between perpendiculars and the nominal service
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speed, Tref = Lpp/Us. Three step sizes are selected which correspond to 250, 500 and 1000 per
reference time scale, Tref .

Table 5.6: Results of the mesh sensitivity study and comparison with
respect to the finest mesh. The timestep size is dt=Tref/500. Froude number

Fn = 0.26

CT × 103 CT [%] σ × 102 [m] σ [%] τ [o] τ [%]

Coarse 3.887 4.55 -1.360 0.90 -0.180 2.35

Medium 3.725 0.2 -1.371 0.13 -0.177 0.39

Fine 3.717 - -1.372 - -0.176
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Figure 5.9: Mesh sensitivity study for KCS in free running conditions in
case of the Medium mesh. Froude Number Fn = 0.26. Convergence history

of (a) trim, (b) sinkage and (c) resistance coefficient

The mesh sensitivity study precedes. In order to ensure small CFL values in all grids, the
finest timestep is adopted for the study. The comparison is made upon the resistance coefficient
– CT , trim angle – τ and sinkage – σ. The results are presented in tabulated form in Table 5.6.
Regarding the sign convention, the upward motion is defined as positive sinkage and a bow up
rotation indicates positive trim angle. A convergence is noted for the Medium and Fine grids,
with the maximum deviation being smaller than 0.4%.

Furthermore, in Figure 5.9, the three time series of the mesh sensitivity study are depicted.
In all cases, the convergence histories have similar characteristics and the time signals for the
Medium and Fine mesh do not present any major differences. For this reason, the Medium
mesh is chosen for the rest of the simulations in calm water conditions.
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Similarly, the timestep sensitivity study is conducted and the results are presented in Table
5.7. The differences between the three timesteps are minor and convergence is noted for a
timestep size smaller than 500 steps per Tref . This is further illustrated in Figure 5.10 where
the time series of the three corresponding values are depicted. It can be pointed out that, the
results for the two smaller timesteps practically coincide. At this point, it should be noted that
in all signals an oscillatory behavior is noticed. As will be further discussed in Section 5.2.4, this
is probably attributed to the wall treatment, which causes the slow convergence of the solver.
The amplitude of the motion in all cases is smaller than 5% of the mean value.

Table 5.7: Results of the timestep sensitivity for the Medium mesh and
comparison with respect to the smallest timestep. Froude number Fn = 0.26

CT × 103 CT [%] σ × 102 [m] σ [%] τ [o] τ [%]

Tref/250 3.714 0.28 -1.371 0.04 -0.176 0.61

Tref/500 3.731 0.16 -1.37 0.02 -0.177 0.25

Tref/1000 3.725 - -1.371 - -0.177

90 95 100 105 110 115
t [s]

−0.20

−0.18

−0.16

τ
[o

]

Tref/250

Tref/500

Tref/1000

(a) Trim – τ

90 95 100 105 110 115
t [s]

−1.6

−1.4

−1.2

σ
×

10
2

[m
]

Tref/250

Tref/500

Tref/1000

(b) Sinkage – σ

90 95 100 105 110 115
t [s]

3.0

3.5

4.0

4.5

C
T
×

10
3

Tref/250

Tref/500

Tref/1000

(c) Resistance Coefficient – CT

Figure 5.10: Timestep sensitivity study for KCS in free running conditions
for the Medium mesh. Froude Number Fn = 0.26. Convergence history of

(a) trim , (b) sinkage and (c) resistance coefficient

An overview of the numerical parameters used in the simulations are detailed in Table 5.8.
The free surface elevation in the wake of the ship is presented for each grid, in Figure 5.11.

All axes are non–dimensionalized with respect to the ship length between perpendiculars (Lpp).
The free surface elevation is obtained as an iso–surface of the VoF field for αl = 0.5. A smearing
of the wave pattern is noted in case of the Coarse grid. Nonetheless, minor differences are noted
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Table 5.8: Numerical parameters used for the evaluation of KCS in calm
water conditions with free trim and sinkage

Approx. Turb. Limiter # DoFs Mesh dt βi CFLτ

Fully Turb. Devolder prod. 2 4379782 Tref/500 max(10, 10
∣∣U ∣∣2) 10

between the Medium and the Fine grid.

(a) Coarse mesh

(b) Medium mesh

(c) Fine mesh

Figure 5.11: Mesh sensitivity study for KCS in free running conditions.
Free surface elevation for the three meshes. Froude number Fn = 0.26
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5.2.2 Fixed Conditions

Prior to present the systematic evaluation of the hull in heave and pitch free conditions, the
hull in static condition, with zero degrees of freedom is considered. This test case focuses,
primarily, on the flow formation around KCS. Various flow data such as wave elevation and
velocity profiles are compared against experiments conducted in [152]. The ship is in the same
scale as previously, λ = 31.6, however, in the present example the rudder is not installed. The
same mesh parameters are used as before and mesh of 3.8 million cells is constructed. The mesh
size is reduced compared to the previous study due to the absence of the rudder. Additionally,
the timestep is Tref/500 based on the previous analysis.

Comparing the computations with the experiments, firstly, the resistance coefficient measured
is 3.56·10−3, while simulations predict 3.43·10−3 which is a deviation of 3.8%. Moreover the free
surface elevation around the hull is provided by the experiments. In Figure 5.12, the comparison
between the numerical (top) and the experimental (bottom) results is made. The comparison
is fair and no major differences are noted between the two. The CFD simulations are able to
produce adequate results and reproduce the wave system generated from the hull even for one
ship length downstream.

Figure 5.12: KCS in static conditions. Free surface elevation. Comparison
between experimental and numerical results. Picture for experiment taken

from [148].

Apart from the free surface elevation around the hull, during the experiments the free surface
elevation on the surface of the hull was measured. In Figure 5.13 the elevation is plotted as
obtained by the experiments and the simulations. A steep wave crest is produced at the bow of
the ship, which the CFD is abl to reproduce but an offset lesser than 0.03% of the Lpp towards
the bow is noted. Additionally, the crest of the stern wave is slightly overestimated by the CFD
results. The wave troughs formatting at the front and aft shoulder of the ship are identical in
the CFD and experimental results.

Finally, for the fixed conditions the local mean velocity fields are compared at the propeller
plane, x/Lpp = 0.9825. In Figure 5.14a contours of the relative axial velocity, divided by Us,
are plotted, while Figure 5.14b presents the cross flow vectors and streamlines. Due to the
propeller hub at the ship’s stern, a weak vortex is formed which directly affects the propeller,
this is indicated as velocity deficit in the axial component and it can also be seen in the cross
flow vectors in form of swirl. Additionally, in Figure 5.14a the boundary layer thickness can
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Figure 5.13: KCS in static conditions. Free surface elevation on the hull.
Comparison between experimental and numerical results

be evaluated by the distribution of the axial velocity component. The numerical results are
compared well against the experiments for both axial velocity and cross flow. A difference is
noted at the effect of the stern bulb between the two. The CFD results under–predict the velocity
deficit and the size of the vortex, which is attributed to numerical diffusion. Nevertheless, the
comparison is considered fair.

(a) Contour of the relative axial velocity divided by service speed Us

(b) Cross flow vectors and streamtraces

Figure 5.14: KCS in static conditions. Flow visualization comparison
between numerical (left panels) and computational (right panels) results. At
the top, figure contour lines of the axial velocity are presented, while at the

bottom cross flow vectors along with streamlines. Pictures for the
experimental date taken from [154]
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5.2.3 Dynamic Trim & Sinkage

Since the numerical parameters of the problem, grid and timestep, have been selected and
comparisons are made upon the static hull, the next step concerns the systematic evaluation
of the hydrodynamic behavior of KCS in various Froude numbers with two degrees of freedom.
Following the experiments reported in [151] and can be also found in [150], the hydrodynamic
behavior of KCS in model scale is examined in calm water conditions. The ship is free to move
in heave and pitch directions. In Figure 5.15, the computational results are presented for 6
different Froude numbers, between 0.108 and 0.28. The results regard resistance, trim angle
and heave displacement. As previously mentioned for the sign convention, a positive trim angle
moves the bow of the ship upwards and positive sinkage moves the center of mass upwards.
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Figure 5.15: KCS in free running conditions. Comparison between
experimental and numerical results

Overall, the computational results follows the trend of the experimental data. Specifically,
the trim angle is always negative and increases in amplitude with increasing Froude number.
This means, that the bow is moving down as the Froude number increases, except for the largest
value Fn = 0.28, where a sudden decrease in amplitude is noted. The sinkage of the ship is
decreasing with Froude number. Finally, the resistance of the ship becomes minimum for Froude
numbers between 0.195 and 0.227, where also a sudden increase is noted for the largest Froude
number. In general, the computational results present the same behavior as the experimental
one and quantitative agreement is noted between the two. The trim angles predicted by the
computational solver are very close to the experimental with the largest deviation being 0.008o

in trim at Fn = 0.195, 1.3mm in sinkage at Fn = 0.152 and 3.5% in resistance in case of
Fn = 0.108. Moreover, as discussed in Appendix E, predictions obtained with MaPFlow agree
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well with other numerical results.
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(a) y/Lpp = 0.0741
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(b) y/Lpp = 0.1509
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(c) y/Lpp = 0.4224

Figure 5.16: KCS in free running conditions. Comparison between
experimental and numerical results. Longitudinal wave cuts in three different

positions

Furthermore, in order to compare the wave elevation around the hull, three longitudinal
wave cuts are compared in Fig. 5.16. The numerical results are able to follow the experimental
adequately even away from the hull where the surface elevation is relative small (Fig. 5.16c).
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5.2.4 Evaluation in Regular Head Waves

Up to this point, the numerical methodology has been assessed in calm water conditions. The
next step is the assessment of the methodology, when the structure is excited under the presence
of incident waves. The following test case regards the response of the KCS hull in regular head
waves with two degrees of freedom. The ship, as in the previous case, is able to move in the
pitch–θ and heave–z directions. The simulations follow experiments conducted at the FORCE
technology center of Denmark [155] and also presented in the proceedings of the Tokyo 2015
CFD Workshop [150]. At this section, comparison is made against experimental results, while
complementary comparison with numerical results submitted in the Tokyo CFD workshop is
made in Appendix E.

The experimental model has length 6.070m, which corresponds to scale ratio r = 36.51. The
service speed, for this scale, is 2.0m/s and the rudder of the ship is installed. The experiments
have considered 5 different wave lengths based on the ship’s length (Lpp). Specifically, the
characteristics of the head waves are λ/Lpp = 0.65, 0.85, 1.15, 1.37, 1.95, and in all cases the
wave height is defined as H/λ = 1/60.

For the numerical setup, a single mesh is used for all simulations. The computational mesh
near the structure is the same as in the previous cases, but scaled to match the FORCE exper-
iments Furthermore, for the effective propagation of the surface waves, additional refinement
zones are defined, which stretch from the inlet boundary until the wave absorption zone. The
discretization in the x–direction corresponds to 60 cells per wavelength for the shorter wave and
to 170 for the longer. In the z–direction, the mesh ranges from 6 to 17 cells per wave height
for the 5 cases considered. The total mesh size is 5.38 million. The timestep is defined in all
cases as 750 steps per wave period. The flow is solved in the relative frame of reference. The
boundary conditions are the same as before, except from the starboard lateral boundary which
is set to symmetry. For the forcing zones defined, as already described in Section 5.2.1, at the
inlet boundary a wave generation zone is defined, at the outlet boundary an absorption zone is
defined to damp the vertical velocity component (wtar = 0), while an additional absorption zone
is defined at the starboard lateral boundary avoid and reflection from the symmetry plane by
setting vtar . A schematic representation of the computational domain is given in Figure 5.7b.
As in the previous cases, in order to avoid strong transient effects, the velocity of the vessel is
increased gradually within 2000 based on a hyperbolic tangent function. Once, the vessel has
reached its nominal speed, then the wave generation begins. The Stream Function theory of
Fenton [92] is used for the wave generation. Finally, apart from the wave excitation test cases,
the ship is evaluated in calm water conditions as well to obtain the added resistance of ship.
The simulation is performed with the same mesh but neglects the refinements for the wave
propagation, while the timestep is set to dt = Tref/500 according to the previous sensitivity
study.

Figures 5.17 to 5.21 compare the time historiesbetween FORCE experiments and numerical
results for the 5 cases, for a ten period time window. Each figure presents the wave elevation
ζ over the wave amplitude A, the resistance coefficient CT and the response of hull in the
degrees of freedom, heave–z/A and pitch–θ/kA, where k is the wavenumber. The experiments
have reported structural resonance of the rigid mount close to the heave and pitch resonance
condition [150]. This is clear in all CT time histories and especially for λ/L equal to 0.85 and
1.15.
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Figure 5.17: KCS in head waves conditions with λ/L = 0.65. Comparison
between experimental and numerical results in a ten–period segment for wave
elevation–ζ, resistance coefficient–CT , heave–z and pitch–θ motion. Wave
elevation and pitch motion are given with respect to the wave amplitude A,
while pitch motion with respect to the wave amplitude A and the wave

number k



100 CHAPTER 5. APPLICATIONS IN THREE–DIMENSIONAL FLOWS

0 1 2 3 4 5 6 7 8 9 10
t/Tenc [−]

−1

0

1

ζ
/A

[−
]

Experiment MaPFlow

(a) Free Surface Elevation

0 1 2 3 4 5 6 7 8 9 10
t/Tenc [−]

−5

0

5

10

15

C
T
×

10
3

[−
]

Experiment MaPFlow

(b) Resistance Coefficient

0 1 2 3 4 5 6 7 8 9 10
t/Tenc [−]

−0.6

−0.3

0.0

z/
A

[−
]

Experiment MaPFlow

(c) Heave motion

0 1 2 3 4 5 6 7 8 9 10
t/Tenc [−]

−0.3

0.0

0.3

θ/
k
A

[−
]

Experiment MaPFlow

(d) Pitch motion

Figure 5.18: KCS in head waves conditions with λ/L = 0.85. Comparison
between experimental and numerical results in a ten–period segment for wave
elevation–ζ, resistance coefficient–CT , heave–z and pitch–θ motion. Wave
elevation and pitch motion are given with respect to the wave amplitude A,
while pitch motion with respect to the wave amplitude A and the wave

number k
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Figure 5.19: KCS in head waves conditions with λ/L = 1.15. Comparison
between experimental and numerical results in a ten–period segment for wave
elevation–ζ, resistance coefficient–CT , heave–z and pitch–θ motion. Wave
elevation and pitch motion are given with respect to the wave amplitude A,
while pitch motion with respect to the wave amplitude A and the wave

number k
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Figure 5.20: KCS in head waves conditions with λ/L = 1.37. Comparison
between experimental and numerical results in a ten–period segment for wave
elevation–ζ, resistance coefficient–CT , heave–z and pitch–θ motion. Wave
elevation and pitch motion are given with respect to the wave amplitude A,
while pitch motion with respect to the wave amplitude A and the wave

number k
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Figure 5.21: KCS in head waves conditions with λ/L = 1.95. Comparison
between experimental and numerical results in a ten–period segment for wave
elevation–ζ, resistance coefficient–CT , heave–z and pitch–θ motion. Wave
elevation and pitch motion are given with respect to the wave amplitude A,
while pitch motion with respect to the wave amplitude A and the wave

number k
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The comparison is fair for all wavelengths, and especially for λ/L greater than 0.85 where
the two datasets are in very close agreement. Deviations from the experiments are noted for
λ/L = 0.65 and 0.85. Firstly, the simulations predict a larger amplitude in pitch for λ/L =
0.85 than the experiments. This difference is also present in other numerical approximations
presented in Appendix E. Secondly, in both cases, the numerical results present a second slower
frequency, which is more pronounced in the pitch and heave responses (Figs. 5.17c, 5.17d).
This frequency is due to oscillations in trim and sinkage, present in the calm water conditions
as well. In Figure 5.22a, the convergence history of the free trim case, in calm water conditions,
is compared against the pitch convergence history for λ/L = 0.65. Both cases present similar
characteristics and converge to the same mean trim value. Since, at these wavelengths the wave
excitation is relatively small, the oscillation around the mean trim value is comparable to the
response amplitudes and this is apparent in the time histories of pitch. This is also the case in
all frequencies, however in case of larger excitation is less pronounced. This is further illustrated
in Figure 5.22b, where a Fourier analysis is performed for all wave excitation cases and for the
calm water conditions. An amplification is clearly seen, in low frequencies which is present in
all cases.
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Figure 5.22: Convergence characteristics in calm water conditions of the
pitch signal. The time history for calm water and for head waves are given on

the left figure, while the right figure presents a Fourier analysis for all
examined cases. A secondary frequency is present in all simulations related

to convergence to mean values

Apart from the time histories the experimental data provide the added resistance coefficient–
σAR and the 0th, 1st and 2nd harmonic amplitudes for the ζ/A, CT , z/A and θ/kA. Figure 5.23
illustrates the comparison of the two sets. The added resistance, σAR is computed according to
Equation (5.3), where R̄ is the mean resistance in waves, Rcalm the corresponding resistance in
calm water conditions for Fn=0.26, A is the wave amplitude and B is the ship’s beam.

σAR =
R̄−Rcalm

ρgA2B2/L
(5.3)

CFD and experiments produce similar results in all cases, especially, for the mean values
and the first harmonics amplitudes. Minor deviations can be seen in the secondary harmonics.
It is worth noticing that CFD computes the resistance coefficient of the ship as 3.708 × 10−3

against the 3.860× 10−3 value given by the experiments. This deviation, of approximately 4%,
is pronounced in the added resistance figure (Fig. 5.23a), especially for the short wavelengths.
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Figure 5.23: Response Amplitude Operators (RAOs) of KCS in head waves
conditions at Fn = 0.26. Comparison between experimental and numerical
results, in terms of added resistance σAR, free surface elevation–ζ, resistance
coefficient–CT , heave–z and pitch–θ motion. The comparison is made upon
the mean value (indexed with 0) and the amplitudes of the 1st and 2nd

harmonics (indexed with 1 and 2 respectively). Free surface elevation ζ and
heave displacement z are presented normalized the wave amplitude A, and

pitch θ with respect to the wave amplitude A and the wave number k
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5.3 Ship Bow Dynamics

Traditional screw–like propellers driven by an internal combustion engine is the most common
form of marine propulsion. Internal combustion engines are responsible for the emission of
the greenhouse gases (GHG). The maritime transportation industry was responsible for the
2.89% of the total anthropogenic emission in 2018 [156], or using an expression in equivalent
carbon dioxide units (CO2e), for 1,076 million tones annually. The Initial GHG Strategy [157]
of International Maritime Organization (IMO) has been adopted which aims to reduce GHG
emissions from international shipping. This strategy includes milestones as reduction of GHG
emissions by at least 50% by 2050 compared to 2008 and further reduction by the end of the
century. Ship retrofitting is an important aspect of the shipping industry efforts to reduce its
environmental impact and comply with the IMO’s initial. Retrofitting a ship’s hull can involve
a range of modifications that improve its efficiency, reduce its carbon footprint, and extend its
lifespan. By retrofitting existing ships with more efficient technologies and alternative fuels, the
industry can reduce its emissions while also improving its operational efficiency.

To this end, Seatech H2020 EU funded project, titled as “Next generation short-sea ship dual–
fuel engine and propulsion retrofit technologies” (https://seatech2020.eu/, accessed on 28
July 2023), studied the development of two symbiotic ship engine and propulsion innovations.
This project proposes the use of a wing arranged in front of the bow in order to augment ship
propulsion in moderate and higher sea states by capturing the energy wave. The idea stems
of the field of biomemetics, in which inspiration is drawn from nature to create mechanisms
than can used to solve complex human problems. Sea animals propel themselves by creating an
oscillatory motion with their bodies. This rhythmic motion allows to either propel themselves or
harvest kinetic energy from incoming flow to enhance their forward motion [158], [159]. Mimicry
of this motion has led to the investigation of either passively or actively set wings that can be
used either as energy harvesting or as means of propulsion. This motion can be imitated by a
flap and a pitch motion with an appropriate phase difference. Seatech H2020’s project takes
this simple concept and applies to a vessel. Ships undergo an oscillatory vertical motion due
to waves, this can be exploited for thrust production by installing a wing in front of the ship
bow, supplemented with a pitch control mechanism. Results have shown [160–162] that the
dynamic wing can be used to generate additional thrust and enable the engine to operate in
part–loads conditions without compromising the vessel’s speed and thus improving its emission
profile. Apart from the generated thrust, the dynamic wing can be used to improve the dynamic
stability of the vessel in case of head waves.

This section aims to enrich the current findings and study the use of a static foil arranged at
the ship bow and investigate its effect in presence of waves. Static foils can be used to reduce
the ship motion and eventually the added resistance of the ship in presence of waves. Moreover,
before examining the ship under the excitation of waves, a preliminary study of the behavior of
the vessel in calm water condition with and without the foil is presented as well as the use of the
wing for trim control. Numerical simulations are compared with available experimental data.
The experiments were conducted in the Towing Tank of LSMH at NTUA [143]; see also [163].
More precisely, this chapter is divided into 5 subsections. Firstly, the numerical setup of the
investigation is presented. Secondly, the base hull is considered in two different draughts, in six
Froude numbers between 0.043 and 0.28 and compared with experimental data. In this case the
vessel is able to rotate around the transverse, y–axis (pitch) and move vertically in the z–axis
(heave). The second subsection, focuses on the effect of the wing and its supporting structure
in calm water conditions. In addition, a quantification of the impact of the experimental setup
is presented. Afterwards, the use of a static wing for trim control is investigated. Lastly, the
effect of a static wing arranged at the bow is assessed in head waves and numerical results are
compared against experimental data.

The vessel is a ferry ship model of length L = 3.3m, while the foil planform is orthogonal

https://seatech2020.eu/
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and the foil section is a NACA0012. The body plan of the ferry is presented in 5.24 and its
particulars are given in Table 5.9 along with the geometrical characteristics of the foil.

Table 5.9: Main Particulars of the ferry ship model and submerged wing

Length between perpendiculars Lpp (m) 3.3

Maximum beam of waterline B (m) 0.43

Draft T1 (m) 0.135
T2 (m) 0.125

Block Coefficient CB 0.45

LCB (%Lpp), fwd+ -2.4

Vertical Center of Gravity (from keel) KG/T 0.2

Moment of Inertia Kxx/B 0.25

Moment of Inertia Kyy/Lpp 0.20

Service Speed Us (m/s) 1.42
Fn 0.26

Foil span s (m) 0.50

Aspect Ratio AR 4

Foil location (from FP) xwing (m) 0.5

Foil submergence d/T 1.6

Figure 5.24: Ferry Body Plan

5.3.1 Numerical Setup

For the numerical simulations a single wave tank is used. Its basic dimensions are illustrated
in Figure 5.25a. In order to save computational resources only the half model is simulated by
applying symmetry conditions. The origin of the coordinate system is positioned at the section
where the front perpendicular meets the plane that defines the bottom of the hull. The x–axis
points towards the aft of the ship, the z–axis upwards and the y–axis towards the starboard
side in order to form a right handed coordinate system. Based on this definition, a positive
trim angles results to bow up rotations and positive sinkage to an upwards motion of the ship
center of mass.

In Figure 5.25b, the implicit source zones applied near the boundaries of the domain are
depicted. In case of calm water conditions, all zones serve as damping zones aiming at reducing
the amplitude of the vertical velocity component. In this case, all boundary conditions are set
to farfield. However, in case of head waves, Z3 is used for generating waves, Z2 for damping
the transverse velocity component, while Z3 damps the vertical component of the velocity as
before. The boundary conditions are the same as in the calm water case, with the exception of
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the lateral boundary which is set to symmetry. For the wall boundaries, viscous effects are only
considered on the hull of the ship and neglected on the deck. No–slip boundary conditions are
applied on the hull, while slip–free conditions are considered on the deck. Similarly to the case
of KCS, in order to avoid strong transient effects on the body, the model is accelerated using
a hyperbolic tangent function, this time for 1000 timesteps, which is found to provide better
numerical convergence characteristics. As in the case of the KCS, presented in the previous
chapter, to model turbulence, the k–ω SST model is used along with the Devolder production
limiter.

(a) Grid side view (b) Grid slice view

Figure 5.25: Overview of the computational domain. The forcing zones
(Z1, Z2, Z3) are noted on the right figure

Three different grids are generated consisted of 902 thousand (Coarse mesh), 2.46 million
(Medium mesh) and 6.11 million (Fine mesh) cells. The parameters used for the grid refinement
are the number of cells on the body (surface mesh), the number of cells over the height of the
hull generated waves and the number of cells per wavelength. The same timestep is adopted in
all simulations and it is small enough to keep the mean CFL value below 1 in the finest mesh
(approximately 0.60). Table 5.10 provides the results of the sensitivity studies. Convergence
of the results is noted between Medium and Fine mesh, since the differences are less than 1%
for the resistance and sinkage, and 3.5% for the trim angle, thus the Medium mesh is chosen
in the sequel. Furthermore, in order to choose the right timestep for the computations, a
similar parametric study was conducted. The three different timesteps were chosen based on
Tref = Lpp/Us, where Lpp is the ship length and Us the nominal advance speed. The results
can be found in Table 5.11. Since the problem converges to a steady solution, all cases produce
similar results. For the rest, the intermediate timestep is used.

Table 5.10: Mesh sensitivity studies for the ferry ship model

R [kp] δR [%] τ [deg] δτ [%] σ [cm] δσ [%]

Coarse 0.682 3.12 0.0922 5.63 -0.392 1.5

Medium 0.687 2.41 0.0954 2.35 -0.388 0.5

Fine 0.704 – 0.0977 – -0.386 –

Table 5.11: Time sensitivity studies for the ferry ship model

R [kp] τ [deg] σ [cm]

Tref/250 0.686 0.0958 -0.387

Tref/500 0.686 0.0959 -0.387

Tref/2500 0.687 0.0954 -0.388
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In order to provide a better illustration of the convergence studies, in Figure 5.26, the results
of the grid and timestep independence are shown in terms of vessel resistance. Again, consistency
of results is noted between Medium and Fine mesh and between the two smaller timesteps. The
numerical setup used for the evaluation of the ferry ship is summarized in Table 5.12.
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Figure 5.26: Convergence studies of the time and mesh discretization

Table 5.12: Numerical parameters used for the study of the ferry ship hull

Approx. Limiters # DoFs Mesh dt βi CFLτ

Fully Turb. Devolder prod. 2 2218013 Tref/500 max(10, 10
∣∣U ∣∣2) 20

Figure 5.27 presents the density field on the hull of the ship. Apart from a steep wave
crest formed on the bow, no apparent elevation is noted in the rest of the hull and no major
deformation is noted. It is noteworthy that the density field changes smoothly between water
and air on the surface of the hull and no areas of density diffusion are observed. The no–slip
boundary condition which is imposed on the model, can lead to a singular behavior of the
free surface on the wall. As described in the Boundary Conditions Section 3.5, in case of the
solid boundaries to facilitate convergence the values of αl are swept close to the hull. As the
free surface deforms due to the model motion, the no–slip boundary condition does not allow
convection of the volume fraction on the wall. A triple phase contact line is created among
the hull, water and air. In steady simulations (e.g. hull resistance) this line reaches at a
equilibrium once the wave on the hull has converged. This transient behavior may significantly
affect convergence of the simulation. For this reason, it is preferred to performing a sweeping
of αl values normal to the hull.

Furthermore, Figure 5.27 also includes a contour of the y+ values on the hull. The first grid
node is placed 0.01mm away from the solid boundary, which leads to y+ < 1 almost everywhere
over the hull and thus the turbulent boundary layer is fully resolved.

5.3.2 Dynamic Trim & Sinkage of the Bare Hull

Having decided the numerical configuration of the simulations, the results obtained from the
systematic evaluation of the hull with and without the foil are presented. Firstly, the dynamic
behavior of the bare hull is considered. Figure 5.28 presents the comparison of the numerical
predictions against the measurements for the two draughts. It is evident, that the computational
results are close to the experimental data especially for the heavier condition (T=0.135m). For
the lighter condition, larger deviations are evident.

Regarding the comparison of the trim and sinkage characteristics of the vessel, Figure 5.28a
illustrates the predicted trim values against the measured ones, for the two draughts. As
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(a) Free surface elevation

(b) y+ values

Figure 5.27: Free surface deformation on the ship hull in case of calm water
conditions. Draught T = 0.135m and Fn = 0.25
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Figure 5.28: Comparison of the CFD data and experimental predicted for
the two draughts for the ship’s resistance and the two degrees of freedom

already mentioned based on the defined coordinate system, negative trim values denote bow
down rotation. Although deviations are noted between the two approximations, the differences
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can be considered as minor, in all cases, since they remain less than 0.05 degrees. It is noted
however, that the oscillations of the trim data at the higher Froude numbers evident in the
measurements, are not reproduced by the numerical results. In Figure 5.28b the comparison of
the sinkage between the experiments and the simulations can be seen. The differences between
the computational and the experimental data are more pronounced in the low Froude number
regime up to Fn = 0.15. In this range, simulations predict larger displacements compared to
measurements. As the Froude number increases the comparison becomes better. Summarizing
the results, experiments and CFD simulations produce similar results, although some deviations
are noted for the lighter draft.

5.3.3 Resistance of the Full Configuration

The present subsection focuses on the effect of the static wing arranged in front of the bow.
Experiments conducted in LMSH of NTUA are taken as reference. The whole experimental
setup (vessel–wing configuration) is presented in Figure 5.29. Apart from the dynamic wing, in
from of the bow an instrument used to measure the local angle of attack (AoA), typically called
vane, is present as well as the vertical struts (or skegs) that support the foil. The size of vane
is comparable with the wing, thus it is expected to affect the overall results. Thus, in order to
quantify the effect of each component, measurements and numerical simulations are employed,
and regarding the measurements, additional experiments were conducted excluding the vane.

Figure 5.29: Experimental configuration of the dynamic wing arranged at
the bow of the ferry ship model tested in the tank of LMSH–NTUA, Photo

credit: [143]

In the CFD analysis the vane was omitted and the wing was considered, also fixed at zero
inclination, AoA=0°. The hull, the supporting skegs and the wing are modeled. An overview of
the mesh used is presented in Figure 5.30. The computational mesh for the hull is the same as
in the previous section while on the skegs and the wing a surface of 15000 cells was generated.
Additionally, in the free surface region the mesh was refined near the skeg to capture the skeg–
generated wave system, as well as refinement boxes were added around the configuration to
resolve the effects of the wake.

The experimental results with and without the presence of the vane for both draughts are
presented in Figures 5.31a and 5.31b. The CFD simulations considered for three velocities
namely U = 1m/s, 1.3m/s and 1.42m/s, which correspond to Froude number 0.176, 0,22 and
0.25. More specifically, the comparison for the heavy draught is presented in Figure 5.31a, while
the lighter draft is shown in Figure 5.31b.

Firstly, from both figures it becomes clear that the wing and the supporting structure configu-
ration adds extra resistance to the vessel, which increases with the Froude number. Furthermore,
it is noted that the vane amounts approximately 15% of the total resistance. This is attributed
to its large size as previously discussed. However, in the full–scale vessel, the vane will remain
the same (it does not scale with the rest of the geometry). The numerical predictions and the
measurements, as shown in Figure 5.31a and Figure 5.31b, for the two drafts, respectively, are
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(a) Side view (b) Top view

(c) 3D view

Figure 5.30: Computational mesh on the hull with the skegs–wing
configuration
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Figure 5.31: Resistance comparison for the various configurations, for the
two different draughts

in very good agreement, without the vane. This reinforces the experimental observation that
the presence of the vane significantly increases in the model’s resistance.

Furthermore, using the CFD solution the contribution of each individual component (hull,
skegs and wing) can be retrieved. The contribution of each component of the configuration in
the total resistance can be found in the two following tables for the two draughts.

It is evident that the resistance of the skegs and the foil, increase significantly the resistance
of the model. The resistance, of the supporting skegs is about 9.5% of the total value, while
the wing at inclination AoA=0° constitutes around 12% of the total resistance.
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Table 5.13: Contribution of the several components of the full configuration
on the model’s resistance. Three different Froude numbers are examined for

draught T=0.135m

Froude Total [kp] Hull [kp] Skegs [kp] Wing [kp]

0.25 0.829 0.66 0.077 0.092

0.22 0.653 0.52 0.061 0.072

0.176 0.431 0.34 0.043 0.048

Table 5.14: Contribution of the several components of the full configuration
on the model’s resistance Three different Froude numbers are examined for

draught T=0.125m

Froude Total [kp] Hull [kp] Skegs [kp] Wing [kp]

0.25 0.788 0.62 0.073 0.095
0.22 0.614 0.48 0.059 0.075
0.176 0.413 0.32 0.042 0.051

5.3.4 Effect of Foil Inclination in Calm Water Conditions

In order to investigate the utilization of the wing, trimming experimental have been performed
and used here as reference for comparison. Measurements were conducted with the wing po-
sitioned at four different angles AoA= 3.1o, 1.6o, 0o and −1.6o, where the positive sign indi-
cates nose–up foil inclination. The experiments were conducted considering the full configu-
ration (skegs, wing and vane) at the nominal Fn=0.25 (V=1.42 m/s) for the heavy condition
(T=0.135m).

Table 5.15: Experimental results for the static wing in various AoA. All
results regard the nominal speed of the vessel (Fn = 0.25 or = 1.42m/s) in

case of the heavier condition (T = 0.135m).

AoA [deg] Rm [kp] τ [deg] σ [cm]

3.1 1.031 0.159 -0.198

1.6 1.007 0.039 -0.291

0 1.042 -0.132 -0.401

-1.6 1.028 -0.264 -0.494

It is evident that, with respect to the resistance when the wing is positioned at zero inclination
(AoA= 0°), a change in the angle can have a beneficial effect. Indeed, for all the angles presented
above there is a drop in the measured resistance, attributed to different dynamic trim and
sinkage.

Contrary to the experimental setup, the CFD simulations were performed without the sup-
porting skegs and the vane. The mesh considered in the previous simulations is used (wing at
AoA=0°) and by employing the mesh deformation algorithm proposed by Zhao [128], which
is described in Section 3.10.1, the angle of attack of the wing can be adjusted without chang-
ing the computational mesh. The measurements include the whole configuration. In order to
compare them with the CFD predictions, the effect of the vane and the skegs is subtracted
from the measured data. Regarding the vane, this is accomplished by using the experimental
measurements with and without the vane (see Figure 5.31b). To quantify the effect of the skegs
on the resistance, the CFD predictions of the hull, skeg and wing system are exploited (see
Table 5.13). The skegs’ resistance is normalized as percentage of the total resistance and by
assuming that it remains constant for the various configurations, the experimental data are



114 CHAPTER 5. APPLICATIONS IN THREE–DIMENSIONAL FLOWS

corrected, enabling the direct comparison of measurements and the numerical CFD predictions
as presented in Figure 5.32c.
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Figure 5.32: Comparison of the CFD data and experimental predicted for
the two draughts for the ship resistance and the two degrees of freedom

The CFD simulations have been conducted for additional wing angles namely at 0.8°,1.2°, 2°,
2.6° and 5°. It is clear from Figure 5.32c that the reduction in resistance for an AoA ranging from
[0.8° : 1.2°] is also predicted by the numerical simulations. When the wing is positioned below 2°
the resistance increases. Compared to the measurement, the simulations predict smaller benefit
in the total resistance, however, the follow the experimental trend at least for the positive angles.
The larger deviation between the measurements and the simulations is noted when the wing is
placed at AoA=-1.6° (negative implies nose down foil inclination).

Finally, the predicted and measured dynamic trim and sinkage values for the various AoA’s
are presented in Figure 5.32a and Figure 5.32b, respectively. As concerns the experimental data
in these figures the original values are plotted (including the supporting skegs and vane), since
is not feasible to decouple the contribution of each component to the dynamic behavior of the
model. Despite, the different setup, the comparison between the two approximations is fairly
good for a wide range of AoA. At 0° and -1.6° the predicted sinkage and trim almost coincide.
Even though for negative AoA’s the deviation between the CFD and the experiments increases,
are still within acceptable limits, with largest difference being 0.05° for trim and 0.05cm for
sinkage.
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5.3.5 Effect of Wing in Presence of Regular Waves

In the last part of this study, the effect of a static wing on the model is investigated under the
excitation of regular waves for the heavier condition (T=0.135m). Simulations with and without
the foil are performed for four different head incident regular waves. The skegs are neglected
in the latter case. In all cases, the configuration has two degrees of freedom; namely pitch
(θ) and heave (z). Numerical predictions are compared with experiments that were conducted
at the NTUA towing tank for the bare hull and static wing configuration. The frequencies of
the incident waves are: f=0.55Hz, 0.65Hz, 0.67Hz and 0.75Hz. The corresponding ratios of
wavelength over ship’s length (λ/Lpp), using the linear theory of Airy, are: 1.66, 1.12, 1.20 and
0.87. In all cases the wave height is 0.06m. The frequencies selected is based on a particular sea
state spectrum. An extended band around resonance (0.67Hz) is considered in order to obtain
useful results also for the behavior in irregular waves characterized by this spectrum.

For the numerical setup the wave tank of Figure 5.25 is used. In order to account for the
mesh motion, the grid deformation algorithm of Zhao is used [128]. Compared to the mesh used
in the previous case, an extra refinement zones is defined upstream of the ship, for effective
wave propagation. The refined mesh has a constant dx equals to 0.03m which corresponds to
90 cells in the shortest wavelength and 170 to the largest. In the vertical direction 20 cells
are defined per wave height. The total mesh size for the bare is 4.56 million cells, while for
the configuration with the foil 6.00 million cells are used. For the proper time discretization
a sensitivity study is conducted, using as reference the main frequency (f = 0.67Hz). Three
timesteps are considered and the results are summarized in Table 5.16. Convergence is noted
for the two smaller timestep discretization. The smallest timestep is chosen for all simulations,
to ensure consistency of the results in larger wave frequencies as well.

Table 5.16: Timestep sensitivity study for the case study in regular waves.
The table presents mean value · and amplitude A of the heave—z, pitch—θ

and resistance— Rp

dt [s] z θ Rp Az Aθ ARp

3.00E-03 1.93 2.27 1.18 1.93 2.27 1.18

2.00E-03 1.79 2.19 1.1 1.79 2.19 1.1

1.00E-03 1.75 2.14 1.08 1.75 2.14 1.08

For better understanding of the wing’s influence under the excitation of the different waves,
in Figure 5.33 the signals of resistance, ship trim and sinkage are plotted in one encounter
period. All signals suggest better performance characteristics when a static foil is arranged in
front of the bow. By examining the signal of the resistance in case of the bare hull configuration,
a sudden increase of the loads, approximately at 0.4 of the encounter frequency, is noted for
the two larger wave frequencies (see Figures 5.33c and 5.33e). At that instance, the pitch of
the model is at its maximum negative value (negative pitch indicates bow down). The sudden
increase is attributed to the slamming of the ship’s bow at a wave crest. In case of the augmented
configuration, a delay in the signal of the pitch is noted. This phase shift prevents the slamming
of the bow, leading to smoother resistance signal. Regarding the effect of the static wing to the
vessel’s mean resistance in head wave conditions, Figures 5.33a, 5.33c and 5.33e, present, with
dotted lines, the mean resistance over an encounter cycle. The mean (total) resistance of the
vessel is reduced in all cases.
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(d) Heave–z (left axis) and pitch–θ (right axis) motions.
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Figure 5.33: Numerical results with and without the foil over one encounter
period. From top to bottom, the results correspond to f = 0.55Hz,

f = 0.67Hz and f = 0.75Hz. The left figures present ship’s resistance and
the corresponding mean values (with dotted lines), while the right figures

signals of heave (z) and pitch (θ).



5.3. SHIP BOW DYNAMICS 117

The previous remarks can be further illustrated by examining the flow characteristics at the
instance of the slamming for the two configurations. Flowfield comparisons with and without
the foil are presented in Figures 5.34 and 5.35. The first figure illustrates an iso–surface of the
VoF field for al = 0.5 colored by the vertical coordinate, in case of the heavier draught and
incident wave frequency 0.67Hz. The two snapshots are taken the moment of the impact of
the bare hull’s bow to the free surface, which occurs approximately at the 0.4 of the encounter
frequency (see Figure 5.33c). It can be seen the that at the same moment the pitch angle of the
hull equipped with the foil is smaller and no impact occurs. This leads to a smoother resistance
signal. This difference is further illustrated in Figure 5.35, where the pressure contours at
the symmetry plane are given for the two configurations at the same instance. The increased
pressure region in the bow of the bare hull configuration is clearly seen. At the same instant,
the augmented configuration presents a pressure difference at the sides of the foil and thus a
lift that effectively regulates the ship’s motion.

(a) Bare hull case (b) Hull equipped with the static foil

Figure 5.34: Iso–surface of the VoF field for al = 0.5 colored by the vertical
coordinate. The two figures correspond to the heavier draught (T=0.135m)

for incident wave frequency 0.67Hz

To summarize, it is evident that in all studied cases the foil has a positive effect. The foil
successfully reduces the heave and pitch responses. This has a direct impact on the resistance
showing reduction of up to 34% when the foil is present (in static condition). The reduction in
resistance at all the wavelengths is summarized in Table 5.17.

Table 5.17: Mean Resistance per encounter cycle for the bare hull and with
foil configurations at the considered wave excitation

Wavelength to ship’s
length λ/Lpp

Resistance [kp]
Bare Hull

Resistance[kp]
With Foil

Gain (%)

0.87 1.153 0.883 23.5

1.09 1.165 0.801 31.2

1.16 1.177 0.774 34.2

1.62 0.854 0.747 12.5

The effect of the wing can be further illustrated by the Response Amplitude Operators, which
are presented in Figure 5.36. The figures present the response amplitude operators, for the non-
dimensional heave (Fig.5.36a) and for the non–dimensional pitch (Fig. 5.36b). The heave is
non–dimensionalized based on the wave amplitude (A), while pitch using wavenumber (k) times
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(a) Bare hull case

(b) Hull equipped with the static foil

Figure 5.35: Pressure field at the symmetry plane (y = 0m) for the two
configurations. The two figures correspond to the heavier draught

(T = 0.135m) for incident wave frequency 0.67Hz

wave amplitude (A). The numerical results are also supported by experiments conducted in
LMSH of NTUA, where the full configuration of hull–foil–skegs–vane is tested at the same wave
frequencies.
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Figure 5.36: Comparison between numerical (CFD) and experimental
(EFD) results for regular waves with and without foil. The figures present
the response amplitude operators for the two motions, non–dimensionalized.

A is wave amplitude and k the wave number

Firstly, it is noted that the agreement between the computational results and the mea-
surements is fair. The larger deviation can be seen in the heave amplitude for the shortest
wavelength in case of the bare hull. Aside from that, the CFD calculations are in accordance
with the experimental for the bare hull. Regarding, the comparison when the foil is present it is
noted that although CFD results follow the experimental trends an almost constant deviation
from the measurements appears. Part of this deviation could be due to the different way the
wing appears in experiments and simulations where only the wing alone is modeled without the
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supporting skegs.
From both the numerical simulations and the measurements the same qualitative conclusions

can be drawn. The wing reduces significantly, the amplitude of the pitch motion. Heave is only
reduced at smaller wavelengths, while at larger the differences are smaller.
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5.4 Semi–Submersible Platform

On the direction of evaluating the coupled methodology of fluid structure interaction, the last
test case focuses on the interaction of a floating platform, used as foundation for a wind turbine,
with the surrounding fluid. Compared to the previous tests, in this case the motion in all 6
Degrees of Freedom (DoFs) is considered, a more complicated dynamic model is examined, and
more detailed experimental data are available. All these, will help to enlight the particularities
of the coupling of the flow and rigid body solver.

Floating offshore wind turbines (FOWT) have emerged as a promising solution for deploying
wind turbines (WT) in deep water. Modeling of FOWT systems pose several challenges since
we need to consider the complex hydrodynamic interactions between the turbine, the platform,
the mooring system and the surrounding water. The results presented in this last section are
part of the 1st FOWT Comparative Study [142]. Particularly, an experimental campaign has
been carried out in the COAST Laboratory Ocean Basin at the University of Plymouth to
investigate the hydrodynamic behavior of a semi–submersible platform without the effect of the
wind turbine. The main scope of the 1st FOWT Comparative Study is to evaluate the accuracy
and efficiency of various numerical approaches for modeling the wave interaction with a FOWT
support structure.

Figure 5.37: Model scaled UMain VolturnUS-S semi submersible platform.
At the left a schematic representation of the floater is presented along the its
dimension and the definition of the body fitted coordinate system. At the

right a snapshot taken during experiments is shown. Figures taken from [141]

The floater selected for the measurements is a 1:70 scale model of the IEA 15MW reference
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wind turbine (IEA-15-240-RWT) [164] and UMaine VolturnUS–S semi–submersible platform
[1]. The model of the platform is depicted in Figure 5.37 along with its basic dimensions. The
experimental campaign, includes static equilibrium load cases, free decay tests (in heave, surge
and pitch) and the hydrodynamic response to two focused wave trains.

The floater consists of a main column on which the wind turbine is mounted and three
cylinders arranged with 120o offset forming a circle of 0.7393m in radius. The three peripheral
cylinders are interconnected with the main column by orthogonal blocks (pontoons) at their
bases. The center of mass (CoM) of the structure is displaced by −4.77mm along the x–axis
from its geometric center. Three fairleads positioned 8.571cm above the hull bottom, one on
each external cylinder, are used as mounting points for the mooring lines. The positions of the
three fairleads and of the CoM are also depicted in Figure 5.37 and also given in Table 5.18.
The mass of the floater is 56.3kg and the moments of inertia with respect to the body fixed
coordinate system, as illustrated in Figure 5.37, are Ixx = 26.68kgm2, Iyy = 26.68kgm2 and
Izz = 14.18kgm2.

Table 5.18: Fairleads and CoM position with respect to the body fitted
coordinate system

x [m] y [m] z [m]

Fore fairlead -0.8392 0.0 0.08571

Starboard-aft
fairlead

0.4196 0.7268 0.08571

Port-aft
fairlead

0.4196 -0.7268 0.08571

Center of Mass (CoM) -0.00477 0.0 0.26369

Furthermore, in Figure 5.38 a sketch of the experimental setup is drawn. The global coor-
dinate system is defined as follows, the x–axis is parallel to the wave propagation, the z–axis
points upwards and the y–axis is placed accordingly to form a right-handed coordinate system.
The origin of the coordinate system is placed on the cross point of the calm free surface and
the vertical centerline of the structure.

The device is held in place using a 3–point mooring system constructed from 3mm long–link
chain. The positions of the anchors can be seen in Figure 5.38 and also given in tabulated
form in 5.19. The three mooring lines are of different length, the port and the starboard have
lengths of 9.017m, while the fore mooring line is longer with a length of 9.685m. The mass
properties of the mooring line are, its dry mass per meter length 0.144kg/m and its submerged
mass 0.126kg/m. The bar diameter of the chain is 0.00282m and the inner dimensions of the
link are 0.0263m and 0.0065m. Based on this geometric characteristics and for common steel
the stiffness of the chain can be estimated [165].

Table 5.19: Anchors position with respect to the global coordinate system

x [m] y [m] z [m]

Fore anchor -9.525 0 -2.86

Starboard-aft
anchor

4.412 7.655 -2.86

Port-aft
anchor

4.412 -7.655 -2.86

The experimental campaign conducted three groups of test cases. The first test case aims to
establish the equilibrium position with and without the mooring system attached. The floater
is left free to balance and the final equilibrium position of the CoM is tracked. In case of the
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Figure 5.38: Schematic representation of the experimental setup for the
VolturnUS–S semi–submersible platform and definition of the global

coordinate system. Figure taken from [141]

unmoored equilibrium position only an estimation of the pitch angle and heave position can be
made, since the other directions are not restrained. Apart from the final position experiments
provide the tension on the mooring lines.

The second group of test cases includes decay tests for the moored floater. Three test cases
are conducted with respect to the moored floater. In the first test, the floater is displaced in
the surge direction (along the x–axis), in the second in the heave direction (along the z–axis)
and at the last test case it is rotated around the pitch axis (y–axis). Although, the floater is
displaced every time in one of the three directions, due to the coupling of the motions, small
displacements or rotations occur in the other two directions. The initial displacements and
rotation of the floater, as they were provided by the experiments, are given in Table 5.20. In
the experimental dataset the decay history in the six degrees of freedom can be found, along
with the tension on the mooring lines.

Table 5.20: Offsets of the floaters for the three decay tests

Heavy Decay Surge Decay Pitch Decay

Initial z offset [m] -0.1472 -0.0017 -0.0277

Initial x offset [m] -0.0149 0.3825 -0.0031

Initial pitch offset [°] 0.4719 -0.7657 -9.798

The final group considers the wave structure interaction. To this end, two separate focused
wave trains are created by a paddle wave maker located 17.3m upstream of the floater (see
Figure 5.38). 112 wave fronts (components) evenly spaced between frequencies of 0.15 and 2Hz
create a single wave front that impinges on the floater. The characteristics of the wave fronts
were provided by the experiments for the comparative study. The description of the theoretical
wave is crest–focused, which means that a zero phase occurs at the focus location xfocus, at time
focus tfocus. The two wave trains have similar steepness but vary in terms of peak frequency,
Tp, and of significant wave height, Hs. The first wave spectrum has theoretical Tp = 1.3831s,
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theoretical Hs = 0.069m and theoretical crest elevation at the focus location Acr = 0.064m.
The corresponding characteristics of the second wave group are, Tp = 1.9380s and Hs = 0.139m
and Acr = 0.127m. Due to the different crest elevations, the first wave train is hereafter denoted
as Benign and the second one as Extreme. Both wave cases have a theoretical focus time at
tfocus = 50s and a theoretical focus location in the global coordinate system, xfocus = 0m, i.e.
17.3m downstream of the wave paddles. The experiments provided the free surface elevation in
9 wave gauges in case of empty wave tank (without the floater). Their coordinates are given
in Table 5.21. In case of the floater–wave interaction, the experiments provide the free surface
elevation at the first 3 wave gauges of Table 5.21, the coordinates of the CoM, the rotation
around the axis that pass through the CoM and the tension on the three mooring lines.

Table 5.21: Position of wave gauges for the free surface elevation in case of
the focused wave trains, for empty tank simulations. Coordinates are given

with respect to the global coordinate system

WG1 WG2 WG3 WG4 WG5 WG6 WG7 WG8 WG9

x [m] -10 -7.5 0 -0.4 -0.2 0 0.2 0.4 0.75

y [m] 0. 0. -1.5 0. 0 0 0 0 0

In this last section, the numerical results are obtained with the proposed AC methodology and
FSI algorithm are presenting. This results have been also published and presented in the ISOPE
conference 2023 as part of the NTUA’s contribution to the comparative study [166]. Firstly,
numerical setup is presented which includes the computational wave tank characteristics, mesh
and timestep sensitivity studies. Moreover, in the numerical setup subsection the equilibrium
position of the floater with and without the mooring lines is given. The following two sections
include the decay characteristics in the three directions and finally, the response of the floater
under the excitation of a single crested wave train. In all cases comparison is made between
the CFD results and the results obtained from the experimental campaign. The discussion
focuses on the principal degrees of freedom as they are defined by the excitation. Specifically,
comparisons are made upon the surge displacement (x), the heave displacement (z) and pitch
rotation (θ). Finally, it is noted that, every simulation has a specific time length which is
specified for each group of tests by the experiments.

5.4.1 Numerical Setup

The basic computational setup for can be seen in Figure 5.39. The depth of the computational
setup is constant at 2.86m, as in the experiments. In the absence of incident waves are considered
(static equilibrium or decay tests) a rectangular wave tank is used. In this case, its width spans
for eight floater diameters and near the boundaries of the domain wave absorption zones are
utilized to avoid undesired reflections. All boundaries are set to farfield in this case. For the
focused wave trains tests, the domain upstream of the floater is extended to allow for wave
generation. The inlet boundary is placed at x = −17.3m with respect to the global coordinate
system, while the floater at x = 0m that matches the focus location of the wave trains. At the
inlet boundary, a generation zone of one peak wave length is defined and it is used to create the
wave spectrum. The inlet and the outlet boundaries, in this set of test cases, are set to farfield,
while the lateral boundaries to symmetry.

In Figure 5.39 the mooring lines are also depicted. The dynamics of the mooring lines
are solved by a separate computational module which was developed in the Laboratory of
Aerodynamics of NTUA, as part of the dynamic solver hGAST [5]. The effect of the mooring
line is accounted for implicitly, this means that mooring dynamics are an additional step in
the iterative procedure described in Section 3.9. In every real computational timestep, an
iterative procedure is followed between the rigid body solver, the mooring lines solver and the
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Figure 5.39: Simulation setup. The figure illustrates the two CFD domains
used, in case of the decay test cases (blue color) and in case of the focused
wave trains (red color). In the figure also the generation zones and the wave

absorption zones are also depicted

hydrodynamic solver. The mooring line solver calculates the restoring forces and moments given
the position, velocity and acceleration of the floater, based on the hydrodynamic loading and
the tension of the mooring lines the new displacement and rotation of the floater is calculated
by the dynamic solver. Afterwards, the 6 DoFs are communicated in the flow solver by moving
the surface nodes of the mesh. As in the standard FSI procedure, an appropriate algorithm
to calculate the deformation of the mesh is needed. In these series of test cases, due to the
complexity of geometry, the RBF based algorithm, as described in Section 3.10.2 is used. Finally,
the new flow characteristics are computed and the process is repeated until convergence.

Regarding the modeling of the mooring system, here only a brief analysis is presented and
more details about the module can be found in the original publication [167]. Each mooring
line is divided into a number of geometrically nonlinear truss elements. Such elements transfer
only tensile forces while their compression stiffness is set approximately to zero. Application
of the virtual work principle leads to the dynamic equations of a truss element in space. This
requires that, for an arbitrary virtual displacement field δx⃗,∫

V0

σδϵdV −
∫
Lo

δx⃗T (q⃗E − q⃗I) dl = 0 (5.4)

where q⃗I and q⃗E are the inertial and external (hydrodynamic, gravitational and buoyancy) forces
per unit length, σ and δϵ are the axial stress and the variation of the axial strain caused by the
end nodes of the element, V0 and L0 are the volume and the length of the undeformed element.

The stress field is calculated using Hooke’s law, by assuming a linear elastic material, σ = Eϵ,
with E being the Young’s modulus. The hydrodynamic loads are calculated based in Morison’s
equation. The effect of the seabed is modeled through distributed stiffness and damping terms
which are activated when the element approaches the seabed.

Prior to conducting the simulations, the equilibrium position of the floater needs to be spec-
ified. The floater is left free to move until it reaches an equilibrium position. As already
mentioned the CoM of the floater is displaced by 4.77m towards the negative axis. This ec-
centricity of the CoM creates a non–zero pitch angle and a backwards displacement at the
equilibrium state. In addition, it is expected to cause a stronger coupling between the DoFs as
will be further discussed in the following test cases.
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Figure 5.40: Mesh and time sensitivity studies. Two different mesh sizes
and timesteps dt1 = 0.01s and dt2 = 0.005s are considered. The red dashed

lines correspond to the final equilibrium position of CoM,
xCoM = (−0.01177, 0,−0.0187)m and θ = −1.36o

In order to find the right numerical configuration, a mesh and a timestep sensitivity study is
conducted. Since the radiating waves from the structure are expected to be negligible for this
test case only two meshes are considered. The Coarse grid is consists of 1.28 million cells and the
surface mesh is 50 thousand cells. The Medium mesh consists of 3.1 million cells and the surface
mesh is 123 thousand cells. The first node in all meshes is placed 1mm normal to the wall. Two
timesteps are also chosen, namely dt1 = 0.005s and dt2 = 0.01s. All the results are presented
in Figure 5.40 regarding surge, heave and pitch. It is evident that regardless of the mesh and
timestep employed similar results are obtained. The final equilibrium position of the CoM, in
terms of global coordinate system, are (−0.01177, 0,−0.0187)m and a pitch angle −1.36o. In the
experimental campaign, the equilibrium position is found at (−0.02038, 0.0,−0.02386)m with
a pitch angle of −1.502o. The difference of the equilibrium position of the CoM between the
simulations and the measurements is attributed to the mooring line modeling. Indeed, at the
equilibrium position the simulation predict 7.35N tension at the fore mooring line and 7.36N
tension in the port and starboard mooring line, while the corresponding measured tension forces
are 7.6N and 7.2N , respectively. Nevertheless, the comparison is considered fair.

Using the same grid and timestep, the equilibrium position of the floater without the mooring
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(a) Mesh slice along the y–axis. The free surface
refinement zone is clear shown

(b) Mesh slice along the z–axis. The volume refinement
around the floater is depicted

Figure 5.41: Snapshots of the computational mesh used for the decay tests.
A large refinement zone near the free surface is defined to resolve the density

discontinuity even at the maximum initial pitch angle

lines is computed. In order to perform this simulation, only two degrees of freedom have been
considered, namely heave and pitch, and the rest have been deactivated. This choice has been
made only for this test case because, since there is nothing to restrain the floater, any numerical
instabilities introduced during convergence directly affect the motion of the floater. The final
equilibrium position of CoM, after 200s of simulation, in the z–direction is 0.002m while its
pitch angle is computed as −1.49o. For the same test case, the experiments predict heave
position z = −0.00126m and pitch angle −1.729o. This test case is primarily affected by the
distribution of the hydrostatic pressure on the surface of the floater. The differences can only
be attributed only to uncertainties introduced by either to numerical instabilities due to the
free surface discontinuity or due to uncertainties in the measurements since the floater is not
restraint. Either way, the differences are 3.25mm in heave and 0.24o in pitch, which can be
regarded as minor.

The results of the equilibrium test case are presented in tabulated form for both cases, with
and without the mooring lines in Table 5.22.

Table 5.22: Comparison between experimental and CFD results for the
equilibrium test cases, with and without the mooring lines

Moored Unmoored

Exp. CFD Exp. CFD

x [mm] -20.38 -11.77 – –
z [mm] -23.86 -18.70 -1.26 1.98
θ [o] -1.502 -1.36 -1.729 -1.490

Since the equilibrium position has been found, separate sensitivity studies are conducted
for the decay tests. Taken as reference the pitch decay test, three grids are constructed using
an unstructured trim mesher, denoted as Coarse, Medium and Fine. The Coarse grid which
consists of 1.4 million cells and its surface mesh is 31 thousand, the Medium which has 3.3
million cells and 80 thousand cells on the surface of the structure and finally the Fine which
consists of 5.3 million cells and the corresponding surface mesh has 150 thousand cells. The
refinement strategy was based on the cell sizes of the surface mesh, the size at the sharp edges
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Figure 5.42: Mesh sensitivity study for the decay tests. The pitch decay
study has been considered as reference. The timestep size is set to
dt = 0.0025s. The Medium mesh is chosen for the decay simulations

of the structure, the vertical step in the vicinity of the free surface, and finally on the volume
mesh which extends for two floater diameters around the body. The two latter refinement zones
can be seen in Figure 5.41, where two mesh slices are presented. It needs to be noticed that, the
free surface refinement box was large enough to account for the rotation of the mesh due to the
pitching motion. Specifically the corresponding cell sizes are, for the Coarse (base) mesh, the
surface mesh, the vertical step at the free surface, and the length close to the sharp edges, all
were to 0.8cm, while the volumic refinement size to 1.2cm. Based on the previous mesh, for the
Medium mesh the cell sizes at the vertical direction and the sharp edges, where reduced in half,
0.4cm while the rest were kept the same. Finally for the Fine mesh, the cell size at the edges was
further refined to 0.2cm and the characteristic length of the volumic mesh was reduced 0.6cm.
For the timestep sensitivity study three resolutions are selected, dt = 0.008, 0.005 and 0.0025s.
The results are compared in terms of surge, heave and pitch and can be seen in Figures 5.42
and 5.43. A fine agreement is noted between all configurations, especially in heave and pitch
motions. In the surge direction, small deviations are noted that are considered insignificant as
the surge motion is slightly excited in the pitch decay test and consequently the displacement
values are small. Consequently, the Medium mesh is chosen for the rest of the study with a
timestep of dt = 0.005s.
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Figure 5.43: Timestep sensitivity study for the decay tests in case of the
Medium mesh. The pitch decay study has been considered as reference.

Timestep dt = 0.005s is chosen for the decay simulations

Following up the decay tests, the incident wave cases are considered. The wave groups are
generated as a superposition of the 112 waves given by the experimental description. Again,
the parameters of timestep and grid should specified. The sensitivity studies regard only the
numerical parameters for the accurate wave propagation of the two wave spectra in empty wave
tank. For the floater wave interaction, the characteristics of the mesh near the structure are
the same as in the case of the Medium mesh in the decay configuration. The characteristics of
the mesh are based on the significant wave height and the peak wave length. More precisely,
three meshes are considered. The vertical step near the free surface for the three grids, is 4, 8
and 16 cells per wave height, respectively, while the horizontal step is 300, 600 and 1200 per
peak wave length. Furthermore, for the timestep resolution the peak wave period is selected
as reference value. Three timesteps are considered with 400, 800 and 1600 timesteps per peak
wave period. Convergence is accomplished for the medium timestep and mesh. The comparison
is made upon the free surface elevation on the given wave gauges (see Table 5.21). Figures 5.44
and 5.45 present the results of the grid and time independence study for the benign test case.
Two gauges are selected for comparison, firstly, the elevation recorded by WG1 is plotted and
secondly the elevation recorded by WG2 is given. WG2 is placed at the focus location of the
wave group which is the initial position of the floater, from where it was left free to balance.
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Figure 5.44: Mesh sensitivity study for the benign wave train test case in
an empty wave tank. In all cases the timestep size is Tp/1600. The Medium

Mesh was selected for the simulations
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Figure 5.45: Time sensitivity study for the benign wave train test case in
an empty wave tank, in case of the Medium mesh. Timestep Tp/1600 was

selected for the simulations

All configurations converge the same results and the differences are minor. For the wave floater
interaction study the Medium configurations have been selected. Finally, for the extreme wave
train case study, the same characteristics are chosen based on the corresponding wave of the
peak frequency.
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Table 5.23: Overview of the numerical parameters used in each series of
test cases

Equilibrium Decay tests Focused wavetrain (FW1) Focused wavetrain (FW2)

Approx. Laminar Laminar Laminar Laminar
Mesh 1181248 3108816 6989404 4973113
dt 0.01s 0.005s Tp/800 Tp/800
β 10 10 10 10

CFLτ 20 20 20 20

5.4.2 Decay Tests
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Figure 5.46: Comparison between computational and experimental results
for the pitch decay test case. Offsets from the corresponding equilibrium

positions.

Here the results of the three decay test cases are presented and a discussion is made upon
the comparison with the experimental. At each case the floater is moved from its equilibrium
position based on the offsets given by Table 5.20. The numerical equilibrium position of the
CoM, as it was found in the previous subsection, is (−0.01177, 0,−0.0187)m with a pitch angle
of −1.36o. At this point, it needs to be noticed that now tuning has been performed to match
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the natural frequencies of the numerical model with the experimental ones. The whole duration
of the numerical simulations is 180s, however in the next figures only the first 60s. This is
done to better illustrate the results, since afterwards the motion amplitudes of the structure are
relative small.

Starting the analysis from the pitch decay test and Figure 5.46, the floater is rotated by
−9.7980o around the y–axis. Due to the coupling of motions, apart from the initial pitch angle,
the floater also submerges 2.77cm and moves by −3.1mm in the x–axis. In order to be able to
compare directly the numerical with the experimental results, the decay signals are presented
in terms of difference d·, between the value of the corresponding DoF at time t and its initial
value at the equilibrium position. Comparison of the decay time series indicates that the CFD
results are able to adequately predict the amplitude of pitch motion for the first two periods.
Afterwards, the pitch amplitude of the simulations decreases faster than the measurements.
Moreover, a time lagging is also evident after the second decay period. This is also confirmed
by Fourier analysis on the time signals presented in Figure 5.47. The decay frequency for
the experiments is 0.28Hz, while CFD calculations predict 0.30Hz. This indicates that the
numerical dynamic system differs with respect to measurements.
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Figure 5.47: Fourier analysis of the pitch decay signals. Comparison
between computational and experimental results. The vertical axis is in

logarithmic scale

Regarding the other two degrees of freedom, the amplitude of the heave motion in the CFD
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Figure 5.48: Comparison between computational and experimental results
for the pitch decay test case. Tension on the mooring lines (a) at the fore

fairlead and (b) at the port fairlead

results damps earlier than in experiments. In fact in case of the experiments, the amplitude of
the motion remains almost constant for a time window of approximately 20s (from t = 30s to
t = 50s). This again indicates a difference between the dynamic model of the simulations and the
experiments. In terms of of the oscillation frequency, the two approximations produce similar
results as indicated by the Fourier analysis (Figure 5.47b). Finally, in the surge direction, in
both setups the amplitude of motion is small and no safe conclusions can be drawn, however the
numerical results seem to overestimate the first peak of the decay. Additionally, by conducting
a Fourier analysis, two frequencies of motion are detected in the experimental results, as it can
be seen in Figure 5.47a. The first that corresponds to the surge motion itself and a second one
related to the pitch frequency. Conducting the same analysis in the numerical results it is noted
that, the simulations does not present a peak in the surge frequency, however the comparison is
fair for the larger frequency, caused by the pitch motion. The absence of the smaller frequency
could be due to low grid or time resolution, nevertheless, since the amplitude values are small
this can be neglected.

To further analyze the behavior of the structure during the pitch decay, the tensions of the
mooring lines are presented in Figure 5.48. The tension at the starboard mooring is omitted
due to symmetry. In the first seconds of the decay simulations and experiments are in close
agreement. However, after the first 10s discrepancies are evident. Firstly, the tensions tend
to converge in different levels, which is expected since different values are predicted in the
equilibrium position. Additionally, the amplitude of the loading decays faster in case of the
CFD results, which is in accordance with the previous remarks. In general, the figure indicates
that the simulations are compared well with the experiments.

All in all, from the first decay test it can be concluded that, a similar behavior is noted
between experiments and simulations. Nevertheless, differences between the modeled and the
actual dynamic systems are evident. The numerical model seems to predict increased structural
damping, thus a faster decay of the amplitudes is predicted. Additionally, the differences in the
dynamic modeling lead to the prediction of a slightly greater natural frequency by the numerical
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solver compared to the experiment.
The second decay test case regards the response of the structure to an initial displacement

along the x–axis. The floater is moved in the x–direction by 0.3825m, in the y–direction by
−0.0017m and it is rotated around the pitch axis that passes through the CoM by −0.76757o.
In this test case, the effect of the mooring lines is dominant for the response of the structure
while the effect of the hydrodynamics is secondary. As Figure 5.49 suggests, the amplitude of
the surge decay is predicted well by the numerical simulation, with a difference between the
predicted periods. Regarding the other two degrees of freedom, the amplitudes of motions are
negligible and a small difference is noted in the periods. Moreover, the numerical results predict
a second higher frequency, which also appears in the experiments but it is damped during the
first 10s of the simulation. In general the surge decay test is a standard validation test to assess
the performance of the mooring lines dynamic solver and its parameters. This is attributed to
the small amplitude of the secondary motions (pitch, heave) and to the insignificant height of
the radiated waves. For this reason, it becomes clear from Figure 5.49 that the characteristics
of the mooring lines are different in the experiments and the simulations and this affects all
results including the final equilibrium position of the floater.
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Figure 5.49: Comparison between computational and experimental results
for the surge decay test case. Offsets from the corresponding equilibrium

positions.

The last decay test examines the response of the floater if a downwards displacement is ap-
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plied to the floater. Particularly, the floater is submerged for 14.72cm and due to the eccentricity
of the CoM, the CoM moves for −1.49cm in the x–axis and for 0.4719o around the y–axis. In
general, by examining the time histories of Figure 5.50, the remarks from the previous cases
apply here as well. The amplitude of the principal motion is the same in the two approaches
but it decays faster in the numerical simulation (see Figure 5.50b), as it was observed in the
pitch decay test. Regarding the period of the motion, it can be seen that there is a relative
agreement between the two. Furthermore, for the amplitudes of the surge and pitch motion,
a slight difference between the two is noted and once again different frequencies are predicted.
Their amplitudes of motion are rather small and the differences can be omitted. Finally, com-
pared to the previous test cases, the frequency of the principal displacement is in agreement in
experimental and numerical results.

As an overall comment, the analysis of the three decay tests revealed that the numerical
modeling of the mooring lines did not replicate exactly the mooring lines used in the experi-
mental setup. For the modeling of the mooring lines only geometric properties were available
from the experiments. The stiffness of the mooring lines was computed based on an approx-
imation for common steel was adopted and empirical relation for studless chains [165]. The
natural frequencies in the surge and pitch directions do not coincide between the experiments
and the simulations. A relative agreement is noted in the heave direction, where the restoring
force originates primarily from the hydrostatic pressure. In spite of the differences, the numer-
ical simulations have in general succeeded to replicate the experiments and similar dynamic
characteristics have been obtained.

5.4.3 Response under Irregular Wave Excitation

The final group of simulations regards the response of the structure under the excitation of two
focused wave trains. As already described in the introduction of this section, the two focused
wave trains have focus location at the origin of the global coordinate system and focus time at
tfocus = 50s. Their difference lies in the expected crest elevation at the focus location, the first
one is smaller and thus it is attributed as Benign wave train with Acr = 0.064m and the second
one Extreme wave train has Acr = 0.127m. The 112 wave fronts (given from experiments)
were specified as input for the wave spectrum generation. Their superposition resulted the
desired wave spectrum. The total simulation time is 64s, as it was dictated by the experimental
campaign.

Firstly, the results for the Benign test case are considered. In Figure 5.51 the wave eleva-
tion in the first three gauges of Table 5.21, as predicted by MaPFlow, are compared against
measurements. The results are practically identical and no major differences are noted.

Moving on to the comparison of the three principal DoFs, the next Figure (Fig. 5.52) depicts
the offsets of CoM from the equilibrium position. As it can be seen in the figures, the floater
is not moving for the first 47s seconds of the simulation, then the wave train impinges on the
floater and it starts moving. After approximately 5s, the wave train has passed through the
floater and the damping of the excited motion begins. Firstly, it needs to be noticed that
in the surge direction, a slight displacement is noted before the wave train hits the structure
for both numerical and experimental data. For the numerical ones, this could be caused by
numerical instabilities introduced either by the grid or by the wave generation process. Either
way, this offset is relatively small (approx. 5mm) and it is constant during the whole simulation.
Afterwards, the results for the time window where the floater is moving under the action of the
wave. The two data sets practically coincide and now major differences are noted. As it is seen
the offset of 5mm is not sufficient to create any phase difference between the experimental and
numerical data. Afterwards, when the damping of the motion begins the same conclusions can be
drawn as in the decay tests. Different frequencies between the two results are noted in the pitch
direction and the heave amplitude damps out faster in the simulations than the experiments
as before. Moreover, to further examine the behavior of the numerical modeling, in Figure
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Figure 5.50: Comparison between computational and experimental results
for the heave decay test case. Offsets from the corresponding equilibrium

positions.

5.53 the tensions of the mooring lines are plotted for the experiment and the simulation. The
mooring line tension is different in the equilibrium position, a constant offset is thus expected
between the two (in agreement with Fig. 5.48) and this is further pronounced by the previously
mentioned displacement in the x–direction. However, in terms of amplitude and frequency of
the two signals, measurements and simulations predict similar characteristics.

Finally, the response of the moored floater excited by the higher amplitude (Extreme) wave
train is examined. The displacement of the CoM in terms of surge, heave and pitch is presented
in Figure 5.54. Simulations are in good agreement with the measurements in heave and pitch.
Some differences are evident in case of the surge motion, as in the previous case of the benign
wave train. Particularly, the numerical surge displacement presents a constant offset with
respect to the measurements.

To sum up, for the time window where the motion of the structure is governed primarily by the
hydrodynamic part, numerical results can be predict with great accuracy with the experimental
ones. After the wave train passes through the floater, the decay of motion by the catenary
mooring lines begins. Again differences are evident between the two approaches, originate
primarily from the dynamic modeling, and the remarks that were discussed in the previous
subsection apply here as well.
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Figure 5.51: Comparison between computational and experimental results
for the benign focused wave train test case. Free surface elevation at various

wave gauges
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Figure 5.52: Comparison between computational and experimental results
for the benign wave train test case. Offsets from the corresponding

equilibrium positions.
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Figure 5.53: Comparison between computational and experimental results
for the benign wave train test case. Tension on the mooring lines.
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Chapter 6

Conclusions & Future Work

In this final chapter of the thesis, the basic conclusions of the work are drawn. The basic
intermediate steps taken are summarized and finally, recommendations for future work are
given.

6.1 Thesis Conclusions

The primary goals of the present work were, firstly to introduce a complete methodology for
simulating Fluid–Structure Interaction (FSI) problems in the marine environment and secondly,
to conduct a thorough validation in a plethora of numerical test cases. In order to accomplish the
first goal, the theoretical formulation of the coupled AC/VoF for free surface flows was derived
and guidelines for several aspects of the CFD modeling were given. Secondly, the test cases
were carefully chosen based on either recommendation taken from literature or requirements
that arise from modern engineering designs.

In order to accomplish the aforementioned goals, the following three steps were made

1. Development of an Artificial Compressibility formulation coupled with the Volume of Fluid
method to account for free surface flows. The research gap of exploiting the AC method
for free surface flows was successfully explored.

2. Development of a 6–DoF rigid body solver and of a FSI procedure for the coupling of the
rigid body solver with the flow solver. In addition, mesh deformation algorithms were
applied for the effective motion of the bodies inside a computational domain.

3. Validation of the above methodology in 7 test–cases, in which 4 of them considered the
interaction of the studied structure with the surrounding flowfield.

In each step the following general remarks can be made. Initially, for the fluid solver,

– The present methodology was based on the work of Kunz et al. [61]. The numerical
method was extended in arbitrarily polyhedral volumes that are able to move in space or
experience deformation.

– The implicit source zones formulation was implemented for the wave generation and ab-
sorption inside a numerical wave tank

– The various challenges of field reconstruction have been efficiently tackled. High–order
resolution schemes were used to prevent the smearing of the free surface, while for the
pressure field, near the free surface, a density based interpolation scheme was utilized to
account for the change of the pressure gradient.

– A flux–correction scheme was applied to maintain second order accuracy in case of non–
planar vertices in 3D.
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– The overproduction of turbulence near the free surface was successfully suppressed. Reme-
dies proposed by literature were investigated and further guidelines were given.

Secondly, for the coupled FSI procedure,

– A standard 6–DoF rigid body solver was developed. The equations of motion are solved in
the relative frame of reference. The non–linear terms are discretized using a δ–formulation
and for the time integration the Newmark–β is utilized.

– An iterative process was formulated for the coupling of the flow and the rigid body solvers.
The strong coupling of the solvers was enforced by combining them into an iterative
procedure with appropriate termination criterion.

– For the motion of the structure, two mesh deformation algorithms were used. A simple, but
efficient algorithm used for simple geometries, in which, deformation damps away from the
solid boundary, based on an exponential function. Moreover, a more sophisticated method
was implemented, which is based on the RBF interpolation method, supplemented with
a point reduction algorithm, to reduce the computational cost.

– The implementation of the FSI procedure was greatly facilitated by the coupled AC/VoF
approach. Since, no time lagging exists between the flow equations, no further limitations
in the maximum allowed timestep occurred.

Finally, for the validation of the methodology and the applications discussed in the previous
two chapters,

– Parametric studies conducted revealed a dependency of the method on the value of the
AC parameter β. If extremely large or small values of β are chosen, the convergence of the
may be affected. A relative familiarity of the user with the numerical method is required.
However, as it was demonstrated, there is a wide range of values, where β value can be
defined, and convergence would not be affected.

– Wave generation and absorption was performed using implicit source zones. For the gen-
eration of the waves, typically one wavelength of source zone was sufficient for accurate
wave generation, and no major dependencies from numerical parameters of the method
were found. More complications arise for the damping of the outgoing waves. Based on
parametric studies, the damping of the waves was found to be sensitive on the correspond-
ing the numerical parameters. Primarily, dependency was found on the length of the wave
generation zone, which should extend for at least for 1.5 wavelengths.

– In case of the turbulent flows, the conventional turbulence models exhibit an overproduc-
tion of turbulent viscosity near the free surface. The conventional techniques proposed
in literature manage to reduce overproduction, however they were unable to suppress it
completely. This is more pronounced in flows which include surface–piercing structures,
in absence of current. In this work, supplementary to the existing recommendations,
the Kato–Launder method was employed and the turbulent viscosity levels near the free
surface were drastically decreased.

– For the ship calculations, the calculated resistance and motion of the studied ship hulls
were in accordance with the experimental and numerical results. The only major devia-
tions from the experiments were noted, in low Froude numbers. However, these deviations
where not larger than 0.008o in trim and 1.3mm in sinkage (see Sec. 5.2.3). Additionally,
all results seem to be within the same limits as other computational results (see Appendix
E).

– For the floater calculations, the blind test comparison with the experiments was fair.
All calculations predict a similar response characteristics as in the experiments. The
deviations were primarily originated from the dynamic modeling of the mooring lines.
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Tuning of the dynamic model, using the experimental data, might improve the numerical
results.

– Lastly, it has to be noticed, that the method performed well, in all sensitivity analyses.
An adequate convergence performance was noted in all timestep and grid independence
studies.

6.2 Suggestions for Future Work

The recommendations for future research discussed here, concern two main topics. Firstly,
extensions and improvements on the numerical methodology and secondly engineering investi-
gations of various concepts and issues, that can use the present work as their starting point.

Starting from the extensions and improvements of the flow solver,

– The first family of improvements concerns the reconstruction of the VoF field. More
accurate approximations can be adopted to restrain the numerical diffusion. In this di-
rection, geometric approximations can be considered, or even coupling VoF method with
the level–set function creating the hybrid formulation of CLSVOF [30].

– The inclusion of surface tension terms in the free surface modeling. This recommendation
can be combined with the previous step. A more accurate representation of the free surface
would facilitate the calculation of the geometric quantities, such as curvature.

– Investigation of cavitating flows. The mass transfer terms proposed by Kunz et al. [61] can
be easily incorporated in the present methodology. A primary investigation in this direc-
tion has already been conducted in MaPFlow [168], however a more detailed investigation
is required, including its application to more realistic engineering problems.

– In MaPFlow apart from the RANS approach for the turbulence modeling, higher fidelity
models are also available [76]. Specifically, the Large Eddy Simulation (LES) [169] and the
Detached Eddy Simulation (DES) [170] have been developed in the compressible version
of the code. An immediate extension of the present work would be to incorporate these
methods to the free surface framework.

– MaPFlow has the ability of predicting transition from laminar to turbulent flow [76].
Another possible extension would be to assess their performance and explore their capa-
bilities in various marine applications. Among the implemented methods, models based
on transport equations, such the Amplification Factor Transport (AFT) model [171] and
the γ −Reθ [172] model could be considered for the calculation of the ship’s resistance in
conditions of free transition, or for more accurate prediction of propeller thrust.

Since in the present thesis, a complete methodology for free surface flows was formulated, a
natural follow–up is to be used as an assessment tool for engineering concepts. In this direction,
some recommendations are,

– Investigation of full scaled structures. In the present work, only model scaled structures
are considered. A possible extension of this work would be the investigations of full
scale ships and platforms for real application. In these cases Reynolds number increases
drastically along with the computational cost.

– Study of the interaction of vortical structures with the boundary layer of ship hulls. In
literature, ongoing research is performed on the evaluation of vortical structures generated
by parts of the ship hull (transom, fore–body, bilge keels) and their interaction with the
boundary layer using numerical methods. These simulations require high fidelity approx-
imations for turbulence and a fine spatial discretization. In literature, there are available
data for comparison. For example in [173] experimental data on the 3D separation and
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the progression of vortical structures are presented, in cases of the surface combatant 5512
in straight–ahead and drift conditions.

– Another class of engineering problems that can be faced based on the present work is the
maneuvering test cases. Turning circle, zig–zig manoeuvre, stopping test, are few of the
test cases proposed by the ITTC [174] to evaluate the manoeuvring characteristics of a
vessel.

– Self–propulsion test cases are one of the most common procedures executed with CFD
softwares in industrial level. MaPFlow, recently has been extended to include more than
one meshes that can overlap with each other [175]. This approximation, commonly referred
to as overset–grids, can be used to resolve the rotation of the propeller inside a background
grid fitted to the ship hull. Alternatively, the Actuator Disk method can utilized to reduce
the computational cost.

– Another idea for possible extension of the present work stems from the concluding remarks
of the EU founded project SEATECH. Both numerical and experimental results (see Sec.
5.3) indicated that, in presence of waves, a fully submerged horizontal foil can be used
to reduce the motions (especially in the heave direction) of a ship, and as a result its
resistance. In this direction, already some steps have been made in experimental level.
A preliminary experimental campaign has been conducted to study an alternative design
of submerged wing placed at the bow of the ship. A reverse T–shaped foil with a sweep
angle was constructed and placed beneath the bow of a model ferry ship. Pictures of
the experimental model and the T–foil arrangement are presented in Figure 6.1. In the
numerical level, the methodology developed in the present thesis can be used to obtain
predictions and detailed flowfield patterns for the effect of the foil in presence of waves, as
well as, for conducting a parametric study for trim optimization by regulating the Angle
of Attack (AoA) of the foil.

(a) Front view (b) Side view

Figure 6.1: Pictures of the experimental arrangement of a reverse T–foil
placed in under the bow of scaled ferry ship. Ship dimensions: length

L=3.3m, breadth B=0.43 and draught T=0.135m. Foil dimensions: span
s=0.5m, sweep angle θ = 12o

6.3 Publications

Within the context of the present thesis the following publications have been made, in interna-
tional journals and in proceedings of corresponding conferences.
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Appendix A

δ–formulation of Rigid Body
Equations

The motion of a rigid body vehicle is governed by the Newton’s second law of motion for its linear
acceleration and by the relation between moments and angular momentum for its orientation.

If m is the body mass, that is subjected to external forcing
−→
F , which creates moment

−→
G with

respect to its center of mass, I is the symmetric inertia tensor, u⃗ the velocity of the body fixed
frame with components u, v, w, ω⃗ the rotational speed of the relative frame with components
p, q, r and h⃗ = Iω⃗ the angular momentum, then the equations of motions are written as

−→
F = m

(
⃗̇u+ ω⃗ × u⃗

)
−→
G =

⃗̇
h+ ω⃗ × h⃗

(A.1)

This is a non–linear system of equations due to the cross product terms that involve the
unknown translational and rotational velocities. The non–linear terms arose from the coordinate
system transformation and in order to take them into account an iterative process is followed.
In every iteration l of the FSI algorithm, as described in Section, 3.9, small variations of the
unknown variables δu⃗, δω⃗ are assumed between the known level l and the next unknown l + 1.
This δ formulation implies

u⃗n+1
l+1 = u⃗n+1

l + δu⃗

ω⃗n+1
l+1 = ω⃗n+1

l + δω⃗
(A.2)

with n+ 1 being the next unknown timestep. The iterative process terminates once variations
tend to zero.

By inserting Equation (A.2) into Equation (A.1) the following expression is obtained

δF⃗ = m
(
δ⃗̇u+

(
ω⃗n+1
l × δu⃗

)
−
(
u⃗n+1
l × δω⃗

))
δG⃗ =

⃗
δḣ+

(
ω⃗n+1
l × δh⃗

)
−
(
h⃗n+1
l × δω⃗

) (A.3)

where the quadratic terms have been ignored. The forcing on the left hand side of the equa-
tions is corrected by the acceleration term on the known time level l, meaning δF⃗ = F⃗n+1

l −
m
(
⃗̇un+1
l +

(
ω⃗n+1
l × u⃗n+1

l

))
and δG⃗ = G⃗n+1

l −
(
⃗̇
hn+1
l + ω⃗n+1

l × h⃗n+1
l

)
.

Equations (A.3) can be further simplified by expressing the cross products as skew symmetric
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tensors1. Starting from the expression for the translational motion

ωn+1
l × δu⃗ = ωn+1

l,× δu⃗ =

 0 −r q
r 0 −p
−q p 0

 δu⃗ = Cnl,1δu⃗ (A.4)

and

−un+1
l × δω⃗ = −un+1

l,× δω⃗ =

 0 w −v
−w 0 u
v −u 0

 δω⃗ = Cnl,2δω⃗ (A.5)

Similarly, for the rotational motion

ω⃗n+1
l × δh⃗− h⃗n+1

l × δω⃗ =
(
ωn+1
l,× I − hn+1

l,×

)
δω⃗ =[

Ixzq − Ixyr Ixzp+ (Izz − Iyy) r + 2Iyzq −Ixyp+ (Izz − Iyy) q − 2Iyzr
−Iyzq + (Ixx − Izz) r − 2Ixzp Ixyr − Iyzp Ixyq + (Ixx − Izz) p+ 2Ixzr
Iyzr + (Iyy − Ixx) q + 2Ixyp −Ixzr + (Iyy − Ixx) p− 2Ixyq Iyzp− Ixzq

]
δω⃗

= Cnl,3δω⃗
(A.6)

Once the previous definitions have been given the following vector equation can be defined

δ
−→
Q =Mδ

−→̇
U + Cnlδ

−→
U (A.7)

where
−→
Q is a generalized vector that includes both forces and moments, vector

−→
U = [u, v, q, p, q, r]T

contains the unknown translational and rotational velocities, M is the mass matrix and Cnl the
damping matrix that includes the coupling between the equations of motion. The damping
matrix is a block matrix with submatrices according to definitions (A.4),(A.5) and (A.6)

Cnl =

[
mCnl,1 mCnl,2

0 Cnl,3

]
(A.8)

Typically Equation (A.7) is expressed in terms of the three translations surge–x, sway–y and
heave–z and the three rotations roll–ϕ, pitch–θ and yaw θ leading to the following expression

δ
−→
Q =Mδ

−→̈
x + Cnlδ

−→̇
x (A.9)

with−→x being a generalized vector that includes both translations and rotations, x⃗ = [x, y, z, ϕ, θ, ψ]T .

1a⃗× b⃗ = a×b⃗ =

 0 −az ay

az 0 −az

−ay ax 0

bxby
bz





Appendix B

Numerical Solution of Dynamic
System of Equations

In general, the response of a dynamic system can be expressed as a second order differential
equation of the form

M⃗̈x+ C⃗̇x+Kx⃗ =
−→
Q(x⃗, ⃗̇x) (B.1)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix and
−→
Q is the

vector of external dynamic loads (e.g. hydrodynamic forces, gravity, etc).
Equation (B.1) is a non–linear system of equation, since the forcing on the right hand side

depends on the unknown displacements and velocities of the problem. At any point in time
tn+1 = (n+ 1)∆t an in initial value problem is solved

M⃗̈xn+1 + C⃗̇xn+1 +Kx⃗n+1 =
−→
Q(x⃗n+1, ⃗̇xn+1) (B.2)

with initial data x⃗(t0) = x⃗0, ⃗̇x(t0) = ⃗̇x0.
For the solution of the non–linear equations, a δ–formulation is adopted

x⃗n+1
l+1 = x⃗n+1

l + δx⃗

⃗̇xn+1
l+1 = ⃗̇xn+1

l + δ⃗̇x

⃗̈xn+1
l+1 = ⃗̈xn+1

l + δ⃗̈x

(B.3)

The above equations formulate an iterative process, which aims to drive perturbations δx⃗,δ⃗̇x
and δ⃗̈x to zero. For l = 0 the iterative procedure is initiated with x⃗n+1

l = x⃗n and upon

convergence the new positions are retrieved x⃗n+1 = x⃗n+1
l+1 (similarly for ⃗̇xn+1, ⃗̈xn+1).

Plugging Equation (B.3) in (B.1) the following expression occurs

M
(
⃗̈xn+1
l + δ⃗̈x

)
+ C

(
⃗̇xn+1
l + δ⃗̇x

)
+K

(
x⃗n+1
l + δx⃗

)
=

−→
Q ⇒

Mδ⃗̈x+ Cδ⃗̇x+Kδx⃗ = δ
−→
Q

(B.4)

where δ
−→
Q =

−→
Qn+1

l −M⃗̈xn+1
l − C⃗̇xn+1

l −Kx⃗n+1
l , with Q⃗n+1

l =
−→
Q(x⃗n+1

l , ⃗̇xn+1
l ).

In FSI problems, with l being the iteration index, the hydrodynamic components of the
forcing term Q⃗n+1

l is calculated by the hydrodynamic solver (see Sec. 3.9).
For the time integration of the non–linear system the Newmark–β method is used. The

method expresses the unknown displacements and velocities of Equation (B.2) of the time level
n+ 1 as a Taylor expansion, with two regulation parameters β, γ. Specifically

x⃗n+1 = x⃗n + dt⃗̇xn + dt2
(
(0.5− β) ⃗̈xn + β⃗̈xn+1

)
= x⃗pre + dt2β⃗̈xn+1

⃗̇xn+1 = x⃗n + dt
(
(1− γ) ⃗̈xn + γ⃗̈xn+1

)
= ⃗̇xpre + dtγ⃗̈xn+1

(B.5)
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In the above equations x⃗pre and ⃗̇xpre contain the known contribution from the previous
timestep. Again, the δ–formulation as defined in Equation (B.3), is introduced into both equa-
tions. Starting from the expression for the displacements x⃗n+1

x⃗n+1
l + δx⃗ = x⃗pre + βdt2

(
⃗̈xn+1
l + δ⃗̈x

)
⇒

δ⃗̈x =
x⃗n+1
l − x⃗pre
βdt2

− ⃗̈xn+1
l +

δx⃗

βdt2
⇒

δ⃗̈x = ⃗̈xM +
δx⃗

βdt

(B.6)

where ⃗̈xM =
x⃗n+1
l −x⃗pre

βdt2
− ⃗̈xn+1

l .
Similarly for the velocities

⃗̇xn+1
l + δ⃗̇x = ⃗̇xpre + γdt⃗̈xn+1

l + γdtδ⃗̈x⇒

δ⃗̇x = ⃗̇xpre − ⃗̇xn+1
l +�����

γdt⃗̈xn+1
l + γdt

(
x⃗n+1
l − x⃗pre
βdt2

−
�

��⃗̈xn+1
l +

δx⃗

βdt2

)
⇒

δ⃗̇x = ⃗̇xC +
γ

βdt
δx⃗

(B.7)

where ⃗̇xc = ẋpre − ⃗̇xn+1
l + γ

βdt

(
x⃗n+1
l − x⃗pre

)
.

Equations (B.6) and (B.4) are introduced into (B.7) resulting in a linear system of equations(
1

βdt2
M +

γ

βdt
C +K

)
δx⃗ = δ

−→
Q −M⃗̈xM − C⃗̇xC (B.8)

The system is solved with LU decomposition. The last step of the procedure is to update all
variables

x⃗n+1
l+1 = x⃗n+1

l + δx⃗

⃗̈xn+1
l+1 =

x⃗n+1
l − x⃗pre
βdt2

⃗̇xn+1
l+1 = ⃗̇xpre + γdt⃗̈xn+1

l+1

(B.9)



Appendix C

Eigenstructure of the Hyperbolic
Two–Phase Problem

One main advantage of employing the Artificial Compressibility method in two–phase flows is

the formation of a hyperbolic system of equations in pseudo–time. Let
−→
Q = [p, υ⃗, a]T , be the

vector of unknown primitive variables, then by introducing the AC method the following system
is obtained.

Γ
∂
−→
Q

∂τ
+Ac

∂
−→
Q

∂x⃗
= 0 (C.1)

where Ac is the convective jacobian

Ac =
∂
−→
F

∂
−→
Q

(C.2)

and
−→
F =

(
f⃗ , g⃗, h⃗

)
is a generalized vector that contains the inviscid fluxes in the x,y and z

direction [99]. The preconditioner Γ of Kunz [61], is used to facilitate convergence

Ac = ΓΓ
−1
Ac = ΓÃc (C.3)

The scaled jacobian matrix Ãc is used to solve the hyperbolic system, which has real and
distinct eigenvalues. The matrix is given by the following expression

Ãc =


0 nx ny nz 0
nx ρm (nxu+∆V ) ρmnyu ρmnzu u∆V∆ρ
ny ρmnxv ρm (nyv +∆V ) ρmnzv v∆V∆ρ
nz ρmnxw ρmnyw ρm (nzw +∆V ) w∆V∆ρ
0 αlnx αlny αlnz ∆V

 (C.4)

A diagonalization of matrix Ãc implies that∣∣Ãc

∣∣ = R̃−1
∣∣Λ̃∣∣R̃ (C.5)

where matrix R̃ contains the right eigenvectors of the jacobian matrix arranged in row wise
order, R̃−1 is the matrix of the left eigenvectors arranged in column wise order and Λ̃ is a
diagonal matrix containing the absolute values of the system eigenvalues. The eigenvalues are
computed as

λ1,2,5 = Vn − Vg

λ3 = Vn − c− Vg
2

λ4 = Vn + c− Vg
2

(C.6)
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where Vn = υ⃗ · n⃗, Vg = υ⃗vol · n⃗ and the artificial sound speed is computed as

c =

√
β +

(
Vn − Vg

2

)2

(C.7)

Finally, the eigenvectors of the Jacobian (C.3) are given by Equations (C.8) and (C.9).

R̃ =



0 0 −ρmcm ρmcp 0

x1 x2 nx +
uλ3
β

nx +
uλ4
β

0

y1 y2 ny +
vλ3
β

ny +
vλ4
β

0

z1 z2 nz +
wλ3
β

nz +
wλ4
β

0

0 0 0 0 1


(C.8)

R̃−1 =



1

ρmcg
[nx (wy2 − vz2) +

ny (uz2 − wx2)+

nz (vx2 − uy2)]

1

cg
[β (nzy2 − nyz2) +

∆V (wy2 − vz2)]

1

cg
[β (nxz2 − nzx2) +

∆V (uz2 − wx2)]

1

cg
[β (nyx2 − nxy2) +

∆V (vx2 − uy2)]

0

1

ρmcg
[nx (vz1 − wy1) +

ny (wx1 − uz1)+

nz (uy1 − vx1)]

1

cg
[β (nyz1 − nzy1) +

∆V (wy1 − vz1)]

1

cg
[β (nzx1 − nxz1) +

∆V (wx1 − uz1)]

1

cg
[β (nxy1 − nyx1) +

∆V (vx1 − uy1)]

0

− 1

ρm 2c cg
(β + λ4Vn)

1

2c cg
βcpnx

1

2c cg
βcpny

1

2c cg
βcpnz 0

1

ρm 2c cg
(β + λ3Vn)

1

2c cg
βcmnx

1

2c cg
βcmny

1

2c cg
βcmnz 0

0 0 0 0 1


(C.9)

In the preceding equations cm, cp and cg are expressed as

cm = c− Vg
2
, cp = c+

Vg
2
, cg = β + Vn∆V (C.10)

∆V is equal to Vn − Vg, while for the unit vectors x⃗1 = (x1, y1, z1) and x⃗2 = (x2, y2, z2) should
hold x⃗1 · n⃗ = x⃗2 · n⃗ = 0.



Appendix D

Characteristic Boundary Conditions

For better approximation of the boundary conditions at farfield, the characteristic formulation
of the hyperbolic problem can be exploited. Since the problem is hyperbolic, information
propagates either inwards or outwards of the domain based on the local eigenvalues of the
problem.

The characteristic formulation begins with the definition of the linearised one–dimensional
Euler equations along direction xn normal to the boundary, according to Equation (D.1).

Γ
∂Q⃗

∂τ
+Ao

∂Q⃗

∂xn
= 0 (D.1)

The matrix Ao is the averaged jacobian between the states at farfield Q⃗∞, which are known
and constant, and the interior values Q⃗I of the boundary cell. By multiplying with the inverse

preconditioner matrix Γ
−1

the preconditioned averaged jacobian, Ão = Γ
−1
Ao is introduced

∂Q⃗

∂τ
+ Ão

∂Q⃗

∂xn
= 0 (D.2)

The diagonalization of Ão implies

Ão = R̃oΛ̃oR̃
−1
o ⇒ Λ̃ = R̃−1

o ÃoR̃o (D.3)

where R̃o, R̃
−1
o are the right and left eigenvectors of the matrix Ão and Λ̃o is a diagonal matrix

which contains the eigenvalues of matrix Ão.
Multiplying Equation (D.2) with R−1

o and applying the definition (D.3) leads to,

R̃−1
o

∂Q⃗

∂τ
+ R̃−1

o R̃oΛ̃R̃
−1
o

∂Q⃗

∂xn
= 0 ⇒ R̃−1

o

∂Q⃗

∂τ
+ Λ̃R̃−1

o

∂Q⃗

∂xn
= 0 (D.4)

Let W⃗ be the characteristic variables which are defined as

∂W⃗ = R̃−1
o ∂Q⃗ (D.5)

the system of equations in (D.4) can now be written in a decoupled form given by Equation
(D.6) and can be solved exact

∂wi

∂t
+ λi

∂wi

∂xn
= 0, i = 1, . . . ,m (D.6)

where m is the degree of the system.
Equation (D.6) implies that wi are information carried by the characteristic lines on the

curves dx = λidt with wave speeds λi [115]. This means that,

dwi = 0 for
dx

dτ
= λi (D.7)
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The values characteristic variables wi should be specified. Integrating equation (D.6) and
since R̃−1

o is constant ∫
∂wi =

n∑
j=1

R̃−1
o [i, j]

∫
∂qj (D.8)

The above equations for i = 1 can be written as∫
∂w1 = R̃−1

o [1, 1]

∫
∂p+ R̃−1

o [1, 2]

∫
∂u+ R̃−1

o [1, 3]

∫
∂v+ R̃−1

o [1, 4]

∫
∂w+ R̃−1

o [1, 5]

∫
∂αl

(D.9)
or in discrete form

δw1 = R̃−1
o [1, 1] δp+ R̃−1

o [1, 2] δu+ R̃−1
o [1, 3] δv + R̃−1

o [1, 4] δw + R̃−1
o [1, 5] δαl (D.10)

where δ {·} = {·}r − {·}b, with the subscript r referring to a reference state and subscript b to
the unknown values at the boundary.

The reference state r depends on the sign of the eigenvalues λi, it can be either the interior
computational values or the physical exterior values at farfield. Adopting the convention that
the normal vector on the boundary points always outside of the computational domain, and
since c > Vn, λ3 is always negative and λ4 is always positive. This implies that for i = 3
the reference state corresponds to the exterior values while for i = 4 to the interior values.
Furthermore, the sign of the eigenvalues, λ1,2,5 depends of the sign of the velocity Vn. In the
case of inflow, Vn is negative and thus the reference values is computed based on the farfield
values and on the opposite case where Vn is positive, information is propagating outwards of
the domain, indicating an outflow boundary, and the reference state is the interior values.

Before formulating the system of equations some algebraic operations are performed. Firstly,

for the multiplication of the first row of matrix R−1
o with the vector of δ

−→
Q , it can be written

that

R−1
o [1, 1] δp =

[
1

cg,oρm,o
[nx (woy2 − uoz2) + ny (uoz2 − wox2) + nz (voz2 − uoy2)]

]
δp⇒

R−1
o [1, 1] δp =

υ⃗o · (n⃗× n⃗2)

cg,oρm,o
δp = − υ⃗o · n⃗1

cg,oρm,o
δp = − Vn1,o

cg,oρm,o
δp

(D.11)
and

R−1
o [1, 2] δu+R−1

o [1, 3] δv +R−1
o [1, 4] δw =

1

cg,o
[βo (nzy2 − nyz2) + (Vn,o − Vg)] δu+

1

cg,o
[βo (nxz2 − nzx2) + (Vn,o − Vg)] δv+

1

cg,o
[βo (nyx2 − nxy2) + (Vn,o − Vg)] δw =

1

cg,o
[βoδυ⃗ · (n⃗2 × n⃗) + (υ⃗o − υ⃗vol) · n⃗ · δυ⃗ · (n⃗2 × υ⃗o)]

n⃗·n⃗2=0⇒

R−1
o [1, 2] δu+R−1

o [1, 3] δv +R−1
o [1, 4] δw =

1

cg,o
βoδυ⃗ · n⃗1 =

1

cg,o
βoδVn1

(D.12)

and,

R−1
o [1, 5] δαl = 0 (D.13)

which leads to

δw1 = − Vn1,o

cg,oρm,o
δp+

βo
cg,o

δVn1 (D.14)
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Similarly for the other rows

δw2 = − Vn2,o

cg,oρm,o
δp+

βo
cg,o

δVn2 (D.15)

δw3 = −βo + λ4,oVn,o
2cocg,oρm,o

δp+
βocp,o
2cocg,o

δVn (D.16)

δw4 =
βo + λ3,oVn,o
2cocg,oρm,o

δp+
βocm,o

2cocg,o
δVn (D.17)

δw5 = δαl (D.18)

Since wi are constant in each characteristic line and using the reference states depending on the
signs of λi, the following system of equations is obtained

w1,r = w1,b ⇒ −Vn1,o

ρm,o
pr + βoVn1,r = −Vn1,o

ρm,o
pb + βoVn1,b

w2,r = w2,b ⇒ −Vn2,o

ρm,o
pr + βoVn2,r = −Vn2,o

ρm,o
pb + βoVn2,b

w3,∞ = w3,b ⇒ −βo + λ4,oVn,o
ρm,o

p∞ + βocp,oVn,∞ = −βo + λ4,oVn,o
ρm,o

pb + βocp,oVn,b

w4,i = w4,b ⇒ βo + λ3,oVn,o
ρm,o

pi + βocm,oVn,i =
βo + λ3,oVn,o

ρm,o
pb + βocm,oVn,b

w5,r = w4,b ⇒ αl,r = αr,b

(D.19)

where once again the subscript ∞ denotes the state at infinite, i the state at the interior of the
computational domain and r the state at infinite or in the interior depending on the sign of the
corresponding eigenvalue.

The matrix form of the previous system of equations is



− V1,o
ρm,o

0 βo 0 0

− V1,o
ρm,o

0 0 βo 0

−βo + λ4,oVn.o
ρm,o

βocp,o 0 0 0

βo + λ3,oVn.o
ρm,o

βocm,o 0 0 0

0 0 0 0 1





pb

Vn,b

Vn1,b

Vn2,b

αl,b


=



−Vn1,o

ρm,o
pr + βoVn1,r

−Vn2,o

ρm,o
pr + βoVn2,r

−βo + λ4,oVn,o
ρm,o

p∞ + βocp,oVn,∞

βo + λ3,oVn,o
ρm,o

pi + βocm,oVn,i

αl,r


(D.20)
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The solution of the system gives

pb =

(
cp (β + λ3Vn)

2ccg

)
o

pi +

(
cm (β + λ4Vn)

2ccg

)
o

p∞ +

(
βcmcpρm

2ccg

)
o

(Vn,i − Vn,∞)

Vn,b =

(
cp (β + λ3Vn)

2ccg

)
o

Vn,∞ +

(
cm (β + λ4Vn)

2ccg

)
o

Vn,i +

(
(β + λ3Vn) (β + λ4Vn)

2βccgρm

)
o

(pi − p∞)

Vn1,b = Vn1,r +

(
Vn1

2ccgρm

)
o

(cm,o (p∞ − pr) + cp,o (pi − pr))+

+

(
Vn1Vn

2βccgρm

)
o

(cm,oλ4,o (p∞ − pr) + cp,oλ3,o (pi − pr)) +

(
cmcpVn1

2ccg

)
o

(Vn,i − Vn,∞)

Vn2,b = Vn2,r +

(
Vn2

2ccgρm

)
o

(cm,o (p∞ − pr) + cp,o (pi − pr))+

+

(
Vn2Vn

2βccgρm

)
o

(cm,oλ4,o (p∞ − pr) + cp,oλ3,o (pi − pr)) +

(
cmcpVn2

2ccg

)
o

(Vn,i − Vn,∞)

αl,b = αl,r

(D.21)
where now the velocities at the boundary can be computed as

ub = Vn,b (y1z2 − y2z1) + Vn1,b (nzy2 − nyz2) + Vn2,b (nyz1 − nzy1)

vb = Vn,b (z1x2 − z2x1) + Vn1,b (nxz2 − nzx2) + Vn2,b (nzx1 − nxz1)

wb = Vn,b (x1y2 − x2y1) + Vn1,b (nyx2 − nxy2) + Vn2,b (nxy1 − nyx1)

(D.22)



Appendix E

KCS – Comparison with Other
Numerical Codes

In 2015, in Tokyo, the 7th CFD Workshop was organized for the assessment of the state of the
art numerical hydrodynamics tools. The 2015 Workshop offered 16 test cases for three ship
hulls. For the validation of the presented coupled methodology, two test cases of the Tokyo
2015 workshop have been used as reference. The first case regards the evaluation of KRISO
Container Ship (KCS) in calm water conditions for 6 different Froude numbers, while the second
considers the same hull in regular head waves at Froude 0.26. In both cases, the ship hull has
two degrees of freedom being able to move in the heave and pitch directions.

In this section, the numerical results presented in Section 5.2.4, are contrasted with the
numerical results submitted by the participants of the workshop. The first case, titled as
Case 2.1, received 13 submissions in total. A variety of numerical tool were used, for example
commercial codes, such as Fluent and Star–CCm, open–source tools, such as OpenFOAM, and
other in–house solvers. The majority of the participants used a finite volume approximation on
unstructured grids, with VoF modeling for the free surface, two equations turbulence models,
while the motion of the hull was accounted for by using either deforming or overset grids.
Grid sizes varied from 1.1 to 6.6M. Noteworthy, all solvers are based on pressure–correction
algorithms and none of them use an Artificial Compressibility (AC) approach. All results are
plotted in Figure E.1, which includes the trim–τ , the sinkage–σ and the resistance coefficient–
CT of the hull. In addition to the 13 results and the experimental data, the average of all
CFD approximations is also plotted in Figure E.1. The results obtained with MaPFlow are, in
all cases, within the limits of the other approximations and are especially close to the average
results. MaPFlow’s results deviate from the average results only in case of the resistance
coefficient at the two smaller speeds. Nevertheless, in this region, a scattering of all results is
noted.

The corresponding results of the second test case, labeled as 2.10 in the workshop’s proceed-
ings, are presented from Figure E.2 to E.6. Figures show the input wave elevation–ζ, resistance
coefficient–CT , heave–z and pitch–θ motion over a time window of ten periods. For this test
case, 10 evaluations have been submitted using 9 different CFD codes. Results, however, are
reported only for 7 submissions. All codes use pressure–correction algorithms to solve the in-
compressible equations. Four of them use the VoF approach for the two–phase modeling, while
the other three a Level Set approach. The motion of the ship is accounted for by deforming
grids (2 participants) or overset grids (2 participants) or dynamic grids (4 participants). Grid
sizes varied from 0.6 to 29M cells with an average of 9.8M cells. All reported results using the
k − ω SST model, except for 1, which used the Explicit Algebraic Stress k−ω. Lastly, it has
to be noticed that 8 of the participants used wall functions and only 2 have chosen near wall
approximation, as in the case of MaPFlow’s results. Unfortunately, the report does not state
which results correspond to wall functions and which to near wall treatment.
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As in the previous case, the numerical data are supplemented with the experimental results.
Specifically, the FORCE2 experiments are presented and denoted as “D” in the legends. FORCE
reported that the mount natural frequency was close to the heave and pitch resonance condition.
This is most clearly seen in CT for λ/L equal to 0.85 and 1.15 in Figures E.3c and E.4c.
Regarding the comparison of the results, all predictions converge to the same results for the
longer waves. In the case of the shorter waves, starting from λ/L = 0.85, deviations are noted
between numerical results and experiments, especially in heave and pitch motion plots (see
Figs. E.3d and E.3e). Moreover, for λ/L = 0.65 large scattering of the results is noted. All
approximations seem to predict similar amplitudes of the primary frequency, but differences are
noted for the characteristics of the secondary frequency. MaPFlow predict smaller frequency
and larger amplitude, which is not in agreement with the majority of the results. However, two
of the results, IIHR and NUMECA, produce similar results with MaPFlow. This is especially
pronounced in Figure E.2e. Since only two submissions use near wall treatment, it is safe to
assume that the near wall treatment may be responsible for this difference. In all calm water
results presented here, small oscillations around the mean values are noted (see for example Sec.
5.2.3 and 5.3.2). Naturally, by fully resolving the boundary layer will result the simulations will
become more stiff and so numerical instabilities are more likely to emerge.

(a) Trim – τ (b) Sinkage – σ

(c) Resistance Coefficient – CT

Figure E.1: KCS in calm water conditions. Plots for trim–τ , sinkage–σ and
Resistance coefficient–CT in six Froude Numbers. Plots include experimental

data (EFD), the results from the 13 contributions of the 2015 Tokyo
Hydrodynamics Workshop [150] the average results of the CFD contributions

(CFD aver) and the results obtained with the presented methodology
(MaPFlow)
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(a) Legend

(b) Free Surface Elevation

(c) Resistance Coefficient

(d) Heave motion

(e) Pitch motion

Figure E.2: KCS in regular head waves conditions with Fn = 0.26. Results
for λ/L = 0.65 in a ten–period segment. Plots for wave elevation–ζ,
resistance coefficient–CT , heave z and pitch motion θ. Plots include

experimental data (D), results from the 10 contributions of the 2015 Tokyo
Hydrodynamics Workshop [150] and the results obtained with the presented

methodology (MaPFlow)
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(a) Legend

(b) Free Surface Elevation

(c) Resistance Coefficient

(d) Heave motion

(e) Pitch motion

Figure E.3: KCS in regular head waves conditions with Fn = 0.26. Results
for λ/L = 0.85 in a ten–period segment. Plots for wave elevation–ζ,
resistance coefficient–CT , heave z and pitch motion θ. Plots include

experimental data (D), results from the 10 contributions of the 2015 Tokyo
Hydrodynamics Workshop [150] and the results obtained with the presented

methodology (MaPFlow)
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(a) Legend

(b) Free Surface Elevation

(c) Resistance Coefficient

(d) Heave motion

(e) Pitch motion

Figure E.4: KCS in regular head waves conditions with Fn = 0.26. Results
for λ/L = 1.15 in a ten–period segment. Plots for wave elevation–ζ,
resistance coefficient–CT , heave z and pitch motion θ. Plots include

experimental data (D), results from the 10 contributions of the 2015 Tokyo
Hydrodynamics Workshop [150] and the results obtained with the presented

methodology (MaPFlow)
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(a) Legend

(b) Free Surface Elevation

(c) Resistance Coefficient

(d) Heave motion

(e) Pitch motion

Figure E.5: KCS in regular head waves conditions with Fn = 0.26. Results
for λ/L = 1.37 in a ten–period segment. Plots for wave elevation–ζ,
resistance coefficient–CT , heave z and pitch motion θ. Plots include

experimental data (D), results from the 10 contributions of the 2015 Tokyo
Hydrodynamics Workshop [150] and the results obtained with the presented

methodology (MaPFlow)
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(a) Legend

(b) Free Surface Elevation

(c) Resistance Coefficient

(d) Heave motion

(e) Pitch motion

Figure E.6: KCS in regular head waves conditions with Fn = 0.26. Results
for λ/L = 1.95 in a ten–period segment. Plots for wave elevation–ζ,
resistance coefficient–CT , heave z and pitch motion θ. Plots include

experimental data (D), results from the 10 contributions of the 2015 Tokyo
Hydrodynamics Workshop [150] and the results obtained with the presented

methodology (MaPFlow)
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[125] R. Perić and M. Abdel-Maksoud, “Analytical prediction of reflection coefficients for wave
absorbing layers in flow simulations of regular free-surface waves”, Ocean Engineering,
vol. 147, pp. 132–147, May 2017 2018, issn: 00298018. doi: 10.1016/j.oceaneng.2017.
10.009.

[126] G. Wei and J. T. Kirby, “Time-dependent numerical code for extended boussinesq equa-
tions”, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol. 121, pp. 251–
261, 5 Sep. 1995, issn: 0733-950X. doi: 10.1061/(ASCE)0733-950X(1995)121:5(251).

[127] M. Selim and R. Koomullil, “Mesh deformation approaches – a survey”, Journal of
Physical Mathematics, vol. 7, 2 2016. doi: 10.4172/2090-0902.1000181.

[128] Y. Zhao, J. Tai, and F. Ahmed, “Simulation of micro flows with moving boundaries using
high-order upwind fv method on unstructured grids”, Computational Mechanics, vol. 28,
pp. 66–75, 1 2001, issn: 01787675. doi: 10.1007/s00466-001-0271-1.

[129] A. de Boer, M. S. van der Schoot, and H. Bijl, “Mesh deformation based on radial basis
function interpolation”, Computers and Structures, vol. 85, pp. 784–795, 11-14 Jun. 2007,
issn: 00457949. doi: 10.1016/j.compstruc.2007.01.013.

[130] T. C. Rendall and C. B. Allen, “Unified fluid-structure interpolation and mesh motion
using radial basis functions”, International Journal for Numerical Methods in Engineer-
ing, vol. 74, pp. 1519–1559, 10 Jun. 2008, issn: 00295981. doi: 10.1002/nme.2219.

[131] H. Wendland, “Piecewise polynomial, positive definite and compactly supported radial
functions of minimal degree”, 1995, pp. 389–396.

[132] A. Beckert and H. Wendland, “Multivariate interpolation for fluid-structure-interaction
problems using radial basis functions”, 2001, pp. 125–134.

http://arxiv.org/abs/physics/0408067
http://arxiv.org/abs/physics/0408067
https://doi.org/10.1061/(ASCE)0733-950X(1999)125:4(207)
https://doi.org/10.1016/J.OCEANENG.2015.08.030
https://doi.org/10.1016/j.coastaleng.2009.06.009
http://dx.doi.org/10.1016/j.coastaleng.2009.06.009
http://dx.doi.org/10.1016/j.coastaleng.2009.06.009
https://doi.org/10.1002/fld.2726
https://arxiv.org/abs/fld.1
https://doi.org/https://doi.org/10.1016/j.coastaleng.2021.104035
https://doi.org/https://doi.org/10.1016/j.coastaleng.2021.104035
https://www.sciencedirect.com/science/article/pii/S0378383921001794
https://www.sciencedirect.com/science/article/pii/S0378383921001794
https://doi.org/10.1016/j.oceaneng.2017.10.009
https://doi.org/10.1016/j.oceaneng.2017.10.009
https://doi.org/10.1061/(ASCE)0733-950X(1995)121:5(251)
https://doi.org/10.4172/2090-0902.1000181
https://doi.org/10.1007/s00466-001-0271-1
https://doi.org/10.1016/j.compstruc.2007.01.013
https://doi.org/10.1002/nme.2219


174 BIBLIOGRAPHY

[133] T. C. S. Rendall and C. B. Allen, “Reduced surface point selection options for effi-
cient mesh deformation using radial basis functions”, Journal of Computational Physics,
vol. 229, pp. 2810–2820, 8 2010, issn: 0021-9991. doi: 10.1016/j.jcp.2009.12.006.
[Online]. Available: http://dx.doi.org/10.1016/j.jcp.2009.12.006.
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