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ITepiindm

21N onuepvY| emoyn TG TEPBUAAOVTIXAC EuoUNTOTOMONG X TWV BLOCWOY TEUX-
TIXQY, 1) AVATTUEY ATOTEAECUATIXGDY CTRUTNYIXWY AVTIIETOTIONS TN (HTnong tpobnolétel
TN AETTOUERT| XUTAVONOT) TWV TEOTOTWY XATAVIAWONG EVEQYELNS TV VOoxLELwy. TEétoleg
otpatnywéc Bacilovion ot BUVOUIXY TEOGUPUOYT TNS XATAVIAWONG EVERYELNS OVAAOYX
Ue T ouVDNXES TEOGPORAS, YEYOVOC Tou XaoTd TNV XATOVONOT TNG CUUTERLPORACS
Twv yenotov (wtxic onuocioc. H mapoloa dimdwuotiny cpyoacioa e€etdlel dSielodxd
TIC EVEQYELUXEC CUUTEQLPORES TWV VOXOXUPIWY YENOWOTOLOVTIG EVOL EXTETUUEVO GUVOAO
oedopévwy ané to London Data Store. To clUvolo dedopévwv mapouctdlel PETENOELS
XATOVAAWOTG eVEpYELaG amd 5.567 vowoxupld tou Aovdivou Tou CUUUETELOV EVERYE OTO
¢pyo Low Carbon London tou UK Power Networks and tov Noéufeio tou 2011 €w¢ tov
defBpoudplo Tou 2014.

ZEXLVOVTOG UE TO OXATEQYACTO GUVOAO BEBOUEVLV, EQUQUOC TNXE L0 OTEAUTTYIXT| TROCEY-
yion derypatorndiog yior vo xatao ToOY Tor SEBOUEVA TILO BlaryELplouuol Xt EUVOIXS YLoL AvaAUOT).
Méow oyolactnfic mpoenelepyaciog - mou mepLAoufdvel epYaoiee OTWE O YEIRLOUOS TWYV
EMNTIOV TWOVY, O UETAOYNUATIONOC XL 1) XAVOVLXOTONOT - TO GUVOAO OEDOUEVLV TEOE-
TOWAOTNXE YL TEQOLTERL Olepelvnor. H xouvotoula tng €peuvag €yxeitan otn @don tng
UNYOVIXAS TWY YOEUXTNELO TIXWY, OTOU TEOEXUYAY YRHOWO YARPUXTNELOTIXE, Tou OEV elyav
ouunepuingdel mponyouueveg ot PidAoypapla, yio vor amoTunwdoldy oL AETTEG BLoUUdY-
OEIC OTNY EVERYELUXT| XATAVIAWOT) TV VOLXOXUELOY. AUTE To XATAOHEVACUEVOL YOO TPLO-
TIXG GvolEay To BPOUO YIoL TNV EQUPUOYT| LG GELRAS ahyopiluwy ouadoTolnong unyovixnc
udinong, cuumepioufoavouévmy Twv aiyopliuwy K-Means+-+, Fuzzy C-means, Iepopyixic
opodonoinone (pédodoc Ward), Auvtoopyavotxmy yauptov (SOMs), BIRCH, Movtéiwy
ui&nc Gaussian (GMMs) xau Spectral. EmnAéov, diepeuvidnxe n ouotadonoinon Ensembe.

o vae mpoodloploouye Tov BEATIOTO apLiud OUddwY Xou Vo GUYXEIVOUUE auoTNed TLC
EMOOCELC TV TOMATAGY oAyopiluwy opadonolnong, YeNoWOTOLCoUE WUlo OEWRd omd
uetpwég allohdynone. Autéc mepthduPBavay to Silhouette Score, To Davies-Bouldin Score,
to Calinski-Harabasz Score o to Dunn Index. Xpnowomoidvtog autég Tig YeTELXE,
aCLOAOYNOUUE UE EMTUYIA TNV AMOTEAEOUATIXOTNTA xde ohyopiduou xou emhélope TOV
XUTAAANAOTEQO YO TN CUYXEXQWEVT UEAETN TEPIMTWONG oY NuaTiopol €EL ouddwy. Metd
NV ouadoToinoT, OnuoueYHINXaY OTTIXOTOWCEL TOU TOREYOUV TANPoQoplec Yyl To
uovodxd LoTifo xatavdhwone eVEPYELIC OTIC DIAPOPES OUADBES, AVABEXVOOVTAS WUdl GO
OLopoEOTOINCT UETAC) TWV XAVOVIXOTOUUEVWY XUk U XAVOVIXOTONUEVLY TROYIA popTiou
TV ouddwy. Xpnoyomotinxoy TEYVIXES ETEENYACIUNG TEYVNTAC VONLOCUVNG (TN) vy ™y
TEPAULTEPW OLEEEDVNOTN TWV TLO CNUAVTIXWDY OTOLYElwY xdie cuoTddag, OTwe xadoplcTnxoy
amd Tov aAyopriuo opadoroinomng.

To arotehéopata auth TG €peuvag Yétouy Tar Jeueha Yo Tn PeATiworn TV TaXTIXOY
anoxELoNC-CATNONG UE TNV TEOCURHOYY| TOUS WGTE VAL AVTATOXEVOVTOL XOUAUTEPO OTIC GUUTER-
LPOPES TV XATAVOAWTMY X0 TNV AVOY VOPLOT) TNE ATOTEAECUATIXOTNTOS TNE edodou Ensem-
ble Clustering xou tng cuyPornc tne ene&nyfoyune TN. o vo amoxticouye yio o EUmepl-
OTATOUEVT YVOOT| QUTMY TOV XATAVOAWTIXGY TEOTUT®OY 0To PEAAOY, Vo AToV OQEMUO Vol
Ole€ory Vel ULor EXTEVEGTERT) EPELVAL TWV UTOXEIUEVWY TOQUYOVIWY TOUC, UE TNV EVOWOUATWOT
XOWVOVIXOONUOYRAPIXWY OEdoUEVLY. Emimiéov, Yo déile va diepeuvnioly Ttepontépn oL tpoo-
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eyyloeg e enenylonune TN.

AéZeig-xAedid:  Etpatnyixéc amdxplone-Chtnong, €Eumvol  PETENTES, Uy avixn
udinon, oiyoderduol opadonoinone, K-Means++ , Oedopéva mpoemelepyosia, eloywyt
YARUXTNELO TV, UETEXES alohdYNoNE ouoTddwy, Ontixonoinon dedoyévey , Ensemble
opadomoinon, Enegnyiown TN.
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Abstract

In today’s age of environmental awareness and sustainable practices, the develop-
ment of effective Demand-Response (DR) strategies requires an intricate understanding
of household energy consumption patterns. Such strategies hinge on dynamically ad-
justing energy consumption in response to supply conditions, making insights into user
behavior crucial. This study extensively examines household energy behaviors using an
extensive data set sourced from the London Data Store. The dataset presents energy con-
sumption readings from 5,567 London households that actively participated in the UK
Power Networks’” Low Carbon London project from November 2011 to February 2014.

Beginning with the raw dataset, a strategic sampling approach was implemented to
make the data more manageable and conducive to analysis. Through meticulous prepro-
cessing — encompassing tasks like handling missing values, transformation, and scaling
— the dataset was readied for further exploration. The research’s novelty lies in its phase
of feature engineering, where informative features, not previously included in the liter-
ature, were derived to capture the subtle variations in households’ energy consumption.
These engineered features paved the way for the application of a diverse suite of machine
learning clustering algorithms, including K-Means++, Fuzzy C-means, Hierarchical clus-
tering (Ward method), Self-Organizing Maps (SOMs), BIRCH, Gaussian Mixture Models
(GMMs) and Spectral Clustering. Additionally, Ensembe Clustering was investigated,
although it has received limited scholarly attention.

To determine the optimal number of clusters and rigorously compare the performance
of multiple clustering algorithms, we employed a suite of cluster evaluation metrics. These
included the Silhouette Score, Davies-Bouldin Score, Calinski-Harabasz Score, and the
Dunn Index. By utilizing these metrics, we successfully assessed the efficacy of every
algorithm and chose the most suitable one for the given case study of six cluster forma-
tion. Upon clustering, visualizations were generated to provide insights into the unique
energy consumption patterns across the different clusters, highlighting a clear differentia-
tion between normalized and non-normalized cluster load profiles. Explainable AT (XAI)
techniques were utilized to further investigate the most significant elements of each cluster
as determined by the clustering algorithm.

The results of this research establish the foundation for improving Demand-Response
tactics by customizing them to better suit consumer behaviors and recognizing the effec-
tiveness of Ensemble Clustering and the contribution of Explainable AIl. To gain a more
thorough knowledge of these consuming patterns in the future, it would be beneficial
to conduct a more extensive investigation into their underlying factors, by incorporating
sociodemographic data. Additionally, it would be worthwhile to further explore the ap-
proaches of XAI.

Keywords: Household Energy Consumption, Demand-Response Strategies, Smart
Meter, Machine Learning, Clustering Algorithms, K-Means++ , Data Preprocessing, Fea-
ture Engineering, Cluster Evaluation Metrics, Data Visualization , Ensemble Clustering
, XAL
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Evepeia Ilepiindn

Kegpdhowo 1: Eicaywyn

H xaravérwon evépyelag e€oxohovdel vo anotekel yelCov (ATNUo 0T0V ONUEEVO %OGUO
e parydaiog TEOGBOL, CLUVLPAVOVTAS TIC ATAUTACELS PUWCILOTNTIC UE TNV TOAUTAOXOTNTA
e oUyyeovne Lwhc. Avamdgeuxta, xadde 1 actixomolnon xou 1 adEnomn Tou TAnducuoy
ouveytlouv va auidvovtal, To {Blo cupfalvel xou pe TNV avdyxn o evépyeta. Auty| 1 auin-
uévn {Atnom onuLoupyel Tepdo Tia TEST) OTIC EVEQYELOXES UTOBOUES TIOU €Y OUUE, OO TOVTOG
ETUTOXTIXT T ONLouEYiol TOAITIX®Y oL EVIaPEUYOLY TNV EVEQYELIXT| ATOBOOT).

H otpatnywr {Atnonc-amoxplong elvan €vog T€Tolog Unyavioldog mou elvar amopodtnTog
Yoo Tor uQUT evepyetaxd cuoTAdato xou To EEunva dixtua. H (Atnon-amdxpion elvon uia
OTEUTNYWXY DLy ElPLONS TNG EVEQYELNC TIOU €YEL GYEDLAGTEL YLl VAL UELWOEL TO Ydoua HETOEY
ueTa€l NG TEOCPOoEAS EVERYELNG Xat TNG (ATNONG TOV XATAVOAWTGY. XTdyYog Tng civor
VOl TPV OEL TOUG XATAVUAWTES, TOCO WOIOTEG Xou Blounyavieg, vor oAAIEOLY TG TUTIXEG
AATAVOAOTIXEG CUVAVELES TOUC WG ATAVTYNOT) OE CUYXEXPWUEVA GUATAL, GUVATKG OLUXUUAVOELS
TV TGV 1 xivitea. Me Ty eVoWUdTwon eupuols TEYVOroYIag OTwe oL EEUTVOL UETENTEC
xou ot ouoxevég IoT, 1 avtondxplon ot (Atnorn tepthoaufBdvel xdTL TEQIGGOTERO ANO ATAL
uelwon 1 YeTatomon g yerone evépyelag oe meptodoug uPnifc {itnone.  IlepthopPdver
enlong T YeHom OEBOUEVKY GE TRUYUITIXG YEOVO YLl TN AAP1 BUVOUIXGDY Xl TEXUNPUWUEVLY
ETLAOY V.

Qotéoo, n ovvietn @ion tng {ATNong-amdxplong eXTEVETL Tépa amd TNV TeyvVoloyia.
H {Atnon-omoxplon nepiotpégeton yOpw amd TNy avipommive CUUTERLPORE, oo TOVTOG
TNV moAUTAoxN xon ToAUTAELpn medxinorn.  H xatavonon tou Tpomou pe Tov omolo oL
XATOVUAWTES, UTO TIC LOLUTERES TEPLOTAGELS TOUG, AVTIOROVUY GTa GHUNTO amdxplone {ATNoNG
ebvon eConpeTnd onuavtiny. H ocuoyétion petald tng evepyelaxic amddoone xon TG
avTamoxpione ot CATNoT €YXELToL OTNY xoTavonon Twv Boditepwy Aoyny tou xplBovTal
Tow amd TIC TEOTUTAL XUTAVAIAWONG EVEQYELNS, TEOXEWEVOU VO GYEDLUCTOOY CTRAUTIYIXES
YL TLO GUVETY| YEY\ON.

H emdlwin e evepyetomrc anddoorg dev anotekel povo amaitnomn yio T dlatrienom e
TePBoAOVTIXC BlwotudTnTog, ohhd Xou ULl TEAXTIXY) CTEATHYLXA YLol TN DLCPIMGT) TNG
owovoug otoepdtntag. H Bedtiotonolnom tng xatavdiwong evépyelog ehoytoTomoLel
TIC TEPLTTEC EVEPYELUXES BUTAVES, PELOVEL TOL TOCOGTA TWV TOPWY €CAVTANCNS TWV TOPWY
xo UETELACEL TIC TEQIBUANOVTINES ETUMTOOELS. LAUEQA, 1) EVEQYELAXT| AmOOOGT OEV lvall AmANC
€vac HoVTEQVOC 6poc- elvan amaltnom, xadrxov xat, xupiewe, Wio EEUTVn TEOCEYYLoN Yl TNV
enitevdn Budoyng avamTudng.

‘Eva Baowd cuctatind authc tne otpatrnyc Poaciletor oty oot Tagvouncng
X0 LAY WELOUOU TV XATAVOAOTES EVERYELNG. H xatovdnom Tev LoVadBIXmY XoTavohGTIXGY
TEOTUTIOY, GUUTERLPORMY X TEOTNOEWY Toug OV elvon éva amhd 1 xadolwnd épyo. H
EVVOLNL TNG OUAdOTOMOMNG TEOXUTITEL WC EVAL LOYLEO EQYUAE(D Yo TNV otvdAUGT) TWV OUOLO-
YEVOV OUddmY GE Lo ToLAAOUop@T ayopd evépyelag. Méow tng Swdiactog Tadivounorng
TWV YENOTOVY EVERYELUC CUUPWYAL UE TIC OUOLOTNTEG GTA XATAVUAWTIXG TOUG TROTUTY, Xoio-
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TOTAL EQPWTY 1) TROCOPUOYT) CTEATNYWOY (ATNoNc-andxplone mou eutuypoupilovton e Tic
EEYWEIOTECTAOELS CUUTERLPORAS Xdle opddac. Ol TEOCUPUOCUEVES OTEATNYIXES EYOUY TNV
IXAVOTNTOL VoL ONULOURYOUVOLENUEVDL ETUTEDO DECUEUOTS OTA TTROYEUUUOTO AVTUTOXELONG OTN
Chnom, BEATIOVOVTAC €TOL TN GUYOALXY| ATOTEAECUATIXOTNTO TOU GUC THUITOC.

H opadonoinon oyl uoévo SLEUXOADVEL TNV ATOTEAECUATIXNY AVATTUEN OTEATNYIXAC AAAS
xan evioy Vel TNV anoteheopotixy] emxotvwvia. H petddoorn twv onudtonv andxpione ot
CATtnom 1 1 EMAOYTH TV XATIANAGY XVATEOVY O i oaps xadoplopévr oudda audvel
v mdavotnTa vor Angiel plor euvoiny| avtidpaon and TOUg XUTAVUAWTEC.

Tehxd, xodog ThonyoLuacte otV TopEia TNG TEYVOAOYIXN G TPoddoU, N onuacio TNng
avipwmoxevipay pedodolroyiwv ot dloyelplon tTng evEpyelag yiveTow Oho xaL O €u-
gavric.  Auth n perétn eetdlel Ble€odxd T CUYYWVEUST TNG TEYVOAOYIOC Xou TNG olv-
YoOTIVNG CUUTERLPORUS, YENOWOTOWVTAS TNY OUUdOTOiNcT Yiol TNV EVIGYUOT) TOU TUQUOELY-
uatog (ATNONC-AmoXELoTS.

2TOY0g Ko AVTIXELLEVO TNG OIMAWUATIXNG

‘Oneg avapéplnne TEONYOUUEVKS, 1) ATOXTNOT] YVWOEDY OYETIXG UE TU XAUTUAVOUAWTIXE
mpoTUTA Eivol (OTXAG ONUACTg YIol TNV ATOTEAECUUTIXOTERT) Loy ElpLOT TNG EVERYELNG Xl TN
uoxponpdVeoun Blwoudtnta 6To duvauxd evepyetaxd og mepBdihov. H mapoloca dimiw-
MOt BLEEELVE TOV TOUEN TNG OLUYElPLOTS TNG EVERYELG, UE LtadTepn Eugaot oTn Peltiwon
TWV GTRATNYWY {ATNONC-OMOXELONG UEGK TNG OVAAUCTC DESOUEVLYV.

Ov mpwtapyixol otdyol avtAc Tng €peuvag elvon 1 Bleodxr) e€€TacT TwV BEBOUEVLY
XATOVIAWOTNG EVERYELUC TWV VOIXOXUELOY, TEOXEWEVOU Vo amoxahu@ioly Bloxpltd meo-
TUTOL X0l CUUTEQLPORES. O YENOLOTOCOUUE Ulal Oelpd amd e€ehlyuévous ahyopliuoug
OUABOTOINONS YLt VoL LY WEICOUUE TOUC XUTUVUAWTEG OE OLUXQLTEG OUGUDES, ETUTOETOVTOG
NV aVETTUEN TEOCUPUOCUEVWY CTEATNYIXWY amdxpiong otrn (htnon. Metd v egapuoy
QUTOY TWV TEYVXOY, Vo allOAOYHOOUUE TNV omodoct| Toug xat Yo TEoyUUTOTOLCOUUE
Utal ONOXATPWUEVT avEALUOT] TWV ATOTEAECUATLY Yid Vo Dlac@okicouue 6Tl TANEOLY Tig
UTOUTACELS TOV TEUXTIXMY EQPUPUOYWV.

H nopodoo dimhwuatixd] emddxel vor EMTOYEL aUTOUE TOUG GTOYOUS TEOXEWEVOL Vi
ONULOVEYHOEL Lot GOVOEST) HETAEY TNG UXUBNUOIXAC EPELVAC X0 TV TEAXTIXMY EPUOUOY WY
oTov Topéa Tng dlayelplong Tne evépyelag. Ev téhel, oToyelel va cuufdiel ToAUTIH TIROC
éva u€Aov Tou Yo efvan o amodoTIXd EVEQYELNXT.

Yuvelocpopd %ol ol TN SIMAWUATIXNG

H xatavénon tov mpotinmy evepyetonic XaTavahwong Twy vouxoxuploy eivar {wTixig
oruociog 6TOV TOAITAOXO TOUEN TNG DL EIPLONG TNG EVEQYELAS X0 TOV PUOCULLY TOOXTIXMY.
H nopoloa €peuva Tpowlel, WQEAMVTIC TOUS TUEATEVE TOUELS:

Evepyeiaxéc otpatnyixég xo oTeaTnyXES {NToNg-AnopLxens

H mopoloa yerétn nopéyet mohlTiuee tAnpogoplec yio T Beitiwon twv oTpatnyX@y ot
ayelplong Tng eVEpYELIC xou TG amodxELoS 0T (HTNOT), O)L UOVO UXUdNUNIXES AETTOUERELES.
H xotavonon xou 1 xatnyoplonolnon Tng CUUTERLPORIS TV XATAVIAWOTGY Borndd Toug evol-
APEPOUEVOUS EVERYELINOUE TOREYOVTES VO ONULOURYHOOUY TILO UTOTEAECUATIXES OTRATIYIXES,
eCao@ahlovTag Ui looppoTNUéVN Teocpopd xaL (ATNOT EVERYELIS.
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A&woloynon ANyopidpwy

YtV moapoloo  BimhwpoaTixr;  ouyxpivovton  xon  eqopuoélovion  Bidpopol  olyopLiuol
opadoTnolnong o Bedouéva xatavdhwone evépyeng.  Méow Soxid®y, TUpEYOUUE Lo
ONOYXANEWUEVY alloAOYNOT NG WXavoTnTaC TV oAyoplluwmy vo evitonilouv medTUTYL
xatovdiworng evépyetag. H pédodoc auty| avadeixviel Ta TAEOVEXTAUNTO XU T UELOVEXTH-
wotar xde ahyoplduou xar amoxohOTTEL ToLoL Efvan Ol XUAUTEROL Yol Tal EVERYELUXE BEGOUEVQL
TIOU €YOUNE GTNY TEPIMTWOT UOC.

AvVEALOoT ARATAVAAWOTG EVERYELAS

H napoloa pereétn avahlel TV xoTaveAwoT) EVEQYELNS TV CUOTAOWY TEEAY TNG CUAAOYNAS
oedouévmy. H tadivounon twv voixoxupidv Ue Bdon tn yenor eVERYELIS uag divel TOAITIIES
TANEOQOPIEC YIOL TN CUUTEQLPORE TNS XATAVIAWOTC. AUTH 1) CUCTNHATIXT) TEOCEYYION UETO-
TEETEL TOL UXATERYOO TAL DEQOUEVIL GE YPHOLIT YVWGCT] Xl WPEREL TOUC EVOLUPEROUEVOUS PORE(C
oloyelplong evépyetog.

Euvguia 6edopévwy ota evepyelxd dedouEva

Avuth 1 SwTedr) yenowonotel pa véa ueodohoyior avdhuonc BEBOUEVKY YLl TOV EVIOTIGUO
HOUVOTOUWY YORAXTNELOTIXWY OF un encéepyaopéva dedopéva. H perétn auty| emxevtpcve-
TOL OTNY TEOCEXTIXY TEOENEEERYUTIa BEBOUEVWY, TOV UETACYNUATICUO XOL TNV TEOTYUEVT
unyevix yopoxtneo oy, H pehétn auty| fedtidvel Tny avdAucT BeBOUEVLY XATAVIANDGTS
EVEQYELUG UE TOV EVTOTIOUO Xt TNV EEAYOYT) EEYWPLOTOV YUQUXTNELO TIXWY.

Kowvwvixdg xou nepiBarhovtindg aviixtunog

H mopoloa épeuva enneedlet tnv xowvwvia. H éupacn otnv evepyeloxr) anddoor xat T
Buwootnta utooTneilel TIC TAYXOOUES TPOOTAVEIES YLol TNV XAUATIX GAAAYH) XL TNV
TepBarhovTiny dayelpion.

H €peuva auty| €xel onuavixd avTiXTuTo TEQUY TOV oXadNUUIXOY xOXA®Y. MToyelEL
oTNV XoBHYNON TV EVOLUPEROUEVLY POREWY TNE Plounyaviag meog éva Bliotuo uéAloy,
OUUPWVOL UE TNV 0EAVOUEVY) ONUCEN TNG EVERYELOXNC AmOB00TC %ot TN BLCUOTNTAC.

Aopf NG SITAWUATIXTS

H Simhopotind amoteleiton amd €L xepdharo xan €va mopdetnua. Axoloudel o chvtoun
TEQLYPAPT) TOU TEPLEYOUEVOL TOUC:

Kegpdhowo 1

To T *EPAALO TNE DIMAOUATIXNAC TUREYEL Ylal GUVTOUT ELCUYWYT| OTO TEOBANUAL, CUUTEER-
LAUBOVOUEVGDY TWV xVPLWV YORUXTNEIC TIXWY TOU Xt Tou loToptxol mhawciou. Kadoplleton
0 0TOY0G TNG DIMAWUATIXNG X0 1) GUUPBOAT) GTNV ETLGTNOVIXY xovwvia. TEhog, TeplypdpeTtan
1 00U TNG OLTAGUOTIXAS.

Kegpdiaio 2

Y10 6e0TEPO XEPAAANO TNG OIMAWUUTIXAC VIAVETOL 1) amoxplon (ATNONG OTOL OLXLoXdL EV-
EQYELXE CUC TAUOTA, CUUTEQLAUUSBOVOUEVGY TWY TAEOVEXTNUATOY, TV TEOXANCEWY X0k TNS
onuactac tng ogadononong Twv xatavahwtey. H eloaywyh otny andxpeion-{itnor axolou-
Velton amd pLor AemToueet) GULATNOT TV TASOVEXTNUATWY X0k TWV TEOXAACEWY TN GE OLXLUXd.
nepBdrhovta. Tovileton 1 onuacio Tng opadonolnong TV XATAVIAWTGY Yio TN Behtiwon
TWV TEOYRUUUATOVY (HTNnonc-amoxetone xat eCetdleTon TS 1 unyavixy pdinor urnopel vo
BehTuwoel T OTEATNYIXEC opadoTOiNoTG.
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Kegpdhowo 3

Yto Kegdhoo 3, yiveton avaoxdnnon tng PiBhoypaplac o 1€00epc PAoES. LNV TEMT
pdon, Hpo-opadonoinong, eetdlouue 1N Bifoypapia yioo TNV TpocTodacior SEBOUEVLY XaL
TNV €CayWYT) YopuxXTNEIoTIXGDY. LT deltepn @don, Medodoroyiec opadomoinong, e£etd-
Coupe Bidpopoug akyoplduoug mou yenouomoolvtar ot Bihoypeagia. Axoloudel 1 tpitn
pdomn, Metpwée allohdynong emdocewy, 1 onolo XOAUTTEL TIg UETPXES A&LONGYNOTS ohYO-
elduwy. H teleutaio gdorn, Metd-ouadonoinong, e€etdler tn BBhoypapio oyeTnd Ue TV
gpunVelo TV AMOTEASOUATWY TN OUABOTOMOTN.

Kegpdiaio 4

H pedodoroyia tng dimhwuotixrc napouctdleton 6To xegdiaio 4. To xeqpdiaro Eexuvd ue Wiat
EMOXOTNOY TOU GUVOLOU BEBOUEVLY, axohoudoluevn and Tig dladixaoieg Tpoenelepyaciog
X0 EEAYWYNE YORAXTNPLOTIXGY. XT1 CUVEYELL, TapouatdlovTal ol ahydprduol ogadonoinong
mou Yo yenowonomndoiv. To xepdhono Teptypdpel enione Tig UETEXES aLONOYNONG Yiol TNV
allohdyNon NG anédooNe TV ahyopliuwy.

Kegpdhowo 5

2T0 XEPAAMO D TNG OIMAWUATIXAC, TOEOUCIALOVUE To AmOTEAECUATO A6 OLAPOEOUS ohyOo-
elduoug opadornoinong. To xepdhaio auTd ToEEyeL war BLe€odXT AvdAUCT AUTOY TWV oh-
yoplduwy, allohoy®vTag Ty anédoot| Toug o€ OLdpopes doxyéc. Metd and evoeheyr oli-
ONOYNOT), EMAEYETOL O OAYORLIUOC UE TNV XUAUTEQT) ATOBOOT] YLl TEQAULTERL AVIAUGT). XeNot-
HOTOLOVTAS ToV ahybprduo ou emAéydnxe, evroniCovtan xou e€dyovTon potifBo xotavdiwong,
TOEEYOVTOG (Lol TEELYPAPT] XGVE OUADUS HUTAVUAWTOY.

Kegpdiaio 6
To 60 xepdhano NG OIMAWUATIXNC OAOXANEWVEL TO €pY0 Xou eCETALEL TIG PEANOVTIXES TIPOOT-
TIXEC.

IMapdptnua A

Yto Hoapdptnua A napovoidlovton to anoteréopata tou Kegohalou 5 mou Sev cuumep-
IA@dnxay 610 xuplwe xeluevo Aoyw meptoplopévng éxtaons. Autd To TaEAQTNUO GUYXEV-
TEWVEL TEOCVETA DEBOPEVL Xal AUVAAUGELS YIoL VO TOREYEL L0l IO OAOXATEWUEVT] XATAVONOT)
TV alyoplduwy opadomoinone mou culnthtnxay oto Kegpdhoo 5.

Kegpdhowo 2: To npdlBinua tng Andxpiong-ZNntnong

270 %EQdhono 2 TNG BIMAOUATIXAG, AVOADETAL EXTEVAS O UNyoviolog andxptonc-CAtnong
ot oUYYPEOVA U TAUATA Bloyelplong eVERYELaG. Apyind, TEQLYPAPETOL AETTOPERMOS 1) ECENMEN
TOU €VERYELOXOU BIXTOOU Xal 1) AUEAVOUEYY) TOAUTAOXOTNTO 0T DLy Elplor TNg TEOcPoEdc
xou TN CATNONG NAexTEirc EVERPYELIS, WIS PE TNV EVOWUATWOT TWY AVIVEOCYLWY TNYOV
EVEQYEWIG. DTN OUVEYELN, TO XEPAAUO BIEPEUVE TOUC OLAPOEOUS TUTOUS TROYEUUUATLY
I\ Tnomeg-amoxpLong, xdvovtag dudxpelon Petoll povtéawy tou Bacilovtar ot xivntea xou og
TWECS, XL TEPLYQPAPEL ASTTOUEPMS T1) OTEATNYIXY| ONUociol TOUG OTN BIUORPWOT) TNG CUUTER-
LPOPAS HATAVIAWONG NAEXTEIXNG EVEQYELOC.

To xepdharo euPoiivel Tepoutépw oTol OPEAT TNG oTATNYIXNG amdxplong-CATNoNG , Tovi-
Covtog Tov xploo pOAO TNG GTNY EVOWUATWOT TWVY OVAVEOCIMOY TNYOV EVEQYELNS X0k TN
dlocpdhon Tne otadepdTnTag Tou dixtlou. Troypoupllel To TASOVEXTAUATO TOU TROGHEQREL
1 oTEATNYWXT ATOXELONG-CATNONG TOOO GTOUC XATUVOAWTES OGO XL OTNY oy0ped EVEQYELNC,
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Omwe 1 Uelworn g {ATNONS ouyng, 1N MElON TwV Samavedy NAEXTEIMNAC EVERYELIS XYoL 1)
TEOWUNOY TNG AMOTEASCUATIXOTNTOS TNG AYORAC.

(267600, TO AEPIAAO ATAOEIXVOEL XU TIC TPOXANOELS GTNY EQUOUOYY| TNS OaxC
amoxplonc-CATnone , 0 TdlovTag G TEYVOROYIXE EUTOOLY, OTWC 1) EVOWUATWOT EEUTVWY
ueTenToOY xou cuoxeuny IoT, xa oe mpoxioelg cuunepLpopds tou oyetilovton pe T Béo-
UEUOT) TV XOTAVIAOTOV XAl TNV AVTATOXELOT) GTA OfpaTta anoxpions-Chtnong. Troypoy-
utler ™ onuaocla NG opABOTOINONG TWV XATAVIAWTMOY Y TOV CYNUATIOUO ATOBOTIXMY
OTEATNYIXWY amoxplonc-LATNoNG , utoosTneilovtag TN yeron TNg UNyavixhic hddnong, 1iwg
TV ahyopiduwy pdinong ywelc enifiedn, 6mwe 1 cucTadomoinc, Yo TNV ATOTEAECUATIXY
XATIYOPLOTOINGT TV XATAVIAOTOV PE BAoT T TEOTUTAL YRHOTS EVEQYELNGS.

Ev xotaxheldl, to xepdhowo unoypoupllel T onuacior Tou cUVOLNCUOU TNG ATOXELOTC-
CATNONG UE TNV OUADOTOINCT TWV XATAVUAWTOV PE Bdomn T unyovixy uddnon yioe
Ornutovpyla EVOC TO TPOCUPUOGTIX0U, L0pTVONOYIOUEVOU XAl ECTIICUEVOU GTOV XUTUVAAWTH
evepyelaxol YEAhovTog.  OETel Tig (Aot Yol TNV TEPALTER OLEPELYNOT TWV OLAPOPWY
alyopllumy ouadoTolinong xaL NG €QUQUOYNC TOUG OF EMOUEVA XEQIANLYL, UE OTOYO TNV
TOEOY T LG OAOXANEWUEVNG ELXOVAS TV TAEOVEXTNUATWY, TWV TEQLOPLOUMY XOL TWV
HOVOBIXMY TEOOTTIXWY TOU TEOGPEEOUY GTOV UETAOY NUATICHO TOU EVEQRYELOXOU TOUEX.

Kegpdiawo 3: Enioxdnnoyn cuvapony nedodoAoyioy

To xepdloo 3 ng Oimhwpotinig epyaolag mpoopépel W OSlelodiny] Bi3hoypapuxt
AVUOXOTNOT TWV TEYVIXOV OUadoTONoNG Ue unyevixh pdinomn yl Ty opadoroinot Twy
HATAVOAD TGV EVERYELUG, XS xou Lot avdhuoT) Twv pYaheiwy Tou yenotuorotdnxay yio
TN CUYXEVTEWOT] WG oAoxAnewuévng BiBhiodrxne. H ev Aoyw avaoxdmnon etvar pedodxd
dounuévn oe dlaxpltéc @doelc, xoeplo and T onoleg efval aQLEQUEVT OTT BIERELYNOT TWV
VP TAUEVRLY Yedodohoyldv ot Bddoc. To xepdhaio Tapéyel Uiol XPLITIXT oL CUC TNUATIXT
OVIAUCY) TNC TEEYOUCOS XATICTAOTC TOV TEYVIXWOY OMABOTOMONG UE Unyovixy| udidnon,
aVadEVOOVTAG TNV EQUOUOYY| TOUC 0TO TAaiCLo TNg avdAuonC Xo TUNUATOTOINONG TNG
CUUTIEQLPORAIS TGV XATAVOADTWV EVEQYELOG.

®don L:Ilpoetoipacia dedopevwy el TNV opadonoinon

H mpo-opadomoinoy etvar xplown yior Ty mpoetoyocion Ty deBOPEVLY, TNV amdXTNOT
YVOOEWY GYETIXG UE Tor apyd woTifo xon T Onutovpyla plac BAong yio amoTeEAEoUATIXT
opadornoinon. MNtny undpyouca BiBAoypeagio yenotwortot|inxay ToAamhéc uedodoroyleg Yo
TNV AVTIIETOTLOT 0UTOV ToL cuyXexpévou otadiov. H mpoenelepyaoio dedouévwy teptiay-
Bdver TNV %xovOVIXOTIOINGT| TWV BEBOPEVGY X0k TOV YELOUO TWV EANTOV TGV, EVK 1) eCay-
OYT) YUEOXTNELO TIXGY avTETOTICEL TNy "xatdpa Tng BidoTaong" emMAEYOVTAG To XATHAANAN
YUEUXTNELO TIXE. Yo TNV opadoTolno.

Ou pédodot pelwong Tou peyédoug Twv BEBOUEVKDY TEQLAUUBAVOLY TNV avdAucT x0OELKY
ouviotwowy (PCA), tov ydptn Sammon xou tnv avéluon xuetdv cuviotwowy (CCA).
O ahyobpruoc ouadonoinone Hopfield-K-Means eiodyet deixteg toybog yio 0 Uelworn Twy
OE00UEVLY, €0TIALOVTAG OF Bactxd YEOVIXA BLUC TAUNTA Yol TNV AmOTEASOUUTIXY cUvodn
TWV TANEOYORIGY NG xaumUAng goptiou. H teyvixr SAX yenowomnoeitan eniong yu
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UETUTEOTY| TV XOUTUAGY @opTiou e cUULOAMXES GUUBOAOCELRES, UTAOTIOWWVTAS TNY TONL-
TAOXOTNT TGV OEDOUEVLV.

®dor II: Medodoroyieg opadonoinong

Y Bihoypagla topouctdlovton didpopes pedodoroyieg ouadomtolnong yior TV XoTnyo-
ELOTIONGT| TV XATAVIAWTMY NAEXTEIXNC EVEQYELAS, Xoeplal UE ToL BLXd TNG TASOVEXTHUATOL.
To avtitpoowreuTind TEOTLTA PoETioL (RLP) eivou Cothc onuaciag yio TNV XaTovono
TWVY CUUTEQLPOPWY XAUTAVIAWCTS NAEXTEIXAS EVERYELNG XU ELVOL XOVOVIXOTIOWNUEVY TTEOPIA
popTloL PEPOVOUEVLY TEAaTeY. Ot tapadoctaxol alyopriuol ouadonoinong ywelc eniBiedn
YETNOULOTOLOUVTOL EVPEMS X0l VEwpoUvToL 1) VEUEALDONG TEOCEYYLON YLl TNV XATNYOPLOTONOo
TV XATAVIADTOV Nhextewhc evépyewng. H epyoaoia twv Chicco et al. upe titho "Com-
parisons Among Clustering Techniques for Electricity Customer Classification" a&iohoyet
oLdpopeg pedodoroyieg opadonoinong, cuunepliaufoavouévey Ty Yeddodny K-means, ep-
apyhg opadonolinong, acupolc K-means xou tng tponomoinuévng tpoceyylong follow-the-
leader.

Or pedodoroyieg TOAATAOY oTadlwy €youv TpwTaYKWIGTHOEL 0T BiAloypapla oyeTnd
UE TNV XOTNYOROTOMON TV XATAVOAWT®Y NAexTewhc evépyelog, omwe "A Hybrid Ma-
chine Learning Model for Electricity Consumer Categorization Using Smart Meter Data"
xau "A Clustering Approach to Domestic Electricity Load Profile". H teywvur toyeloc
avolAtnone xaw ebpeong xopupnv muxvétntoe (Fast Search and Find of Density Peaks
- CFSFDP) eivou xopPixric onuooiac yior T oxioypd@non TV GUUTERLPORMY XATOUVIAG-
ONG NAEXTEXAG EVEPYELNG, 1) OTOLol EXTWATAL IO TN YOUNAT] YEOVIXT| TOAUTAOXOTNTE NS
xon TNy ovlexTixdtnTd g 0T0 YopuBo. H peAETn eVOWUATOVEL Uio TROGEYYLON Olofpel
xou Bactheve, e@oapuoloviog TeooupuooTxd k-means oe Tomxég Tonoveoieg yio TV andx-
TNON AVTITPOOWTEVTIXWY TEOPIA TEAATOVY, ax0AoUYOUUEYY amtd Lol TROTOTONUEVY U€V0B0
CFSFDP oe nayxdouiec tonodeoies yio anoteAeopotiny enelepyaoio dedouévmy.

®dom III: Metpixég adlohNdynong Tng anddoong

Ou deixtec eyxvpdTnToc opadonoinone (CVIs) yenowonowdvtar yioo tn pétenon g
CUUTOYOUC HOPPNE TV HOTBWY PORTWONS EVIOS UG CUGTABIS XOL TOU Lo WELOUOU TOUG
and GAAEC cuoTddEC.

O tpomonownuévoe deixtne Dunn (MDI) enixevtpdvetar otov Adyo g uxpdtepnc ando-
TaoNG PETAE) TV CUOTABWY TEOC TN UEYAUADTERT) ATOC TAUOT) EVIOC TwV GUCTABMY. O Belxtng
iclopidolell (SI) TEOXUTTEL amd TNV avaAoyia TNG BLUCTORAS TOU AVTITPOCWTEVEL 1) GUCTA-
domoinom. O odeixtne Davies-Bouldin (DB) AVTITEOCKTEVEL TO UECO PETEO OUOLOTNTOC XAE
oLCTAdG PE TNV o Tapouota cucTdda Tng. To 2011, n Chicco cuunifpnoe Toug Oeixteg
CVI pe deixteg 6mwg o delxtng evidg ocusTddag (IAI), to xpLTAplo avahoyiog BlaOpoveTg
(VRC), o deixtne petoll ocvotddwy (IEI), o uyéoog deixtne endpxetoc (MIA), o deixtng
mivaxa: opotdtnTag (SMI) xar 0 Aéyog tou adpolopatog TETRUYMVWY EVIOE UG TABUC TEOC
™) Btoxdpovon Yetall ouotddwy (WCBCR). O Seixtne Calinski-Harabasz (CH) efvan o
EUPEWC YPNOWOTOLOVUEYY) HETEIXY Yiot TNV ACLOAOYNOT) TNG TOLOTNTAS TV ahyopiduwy cuo-
tadonoinone. H Baduoroyia cthovétog (SIL) UETEE TOCO TUPOUOLO EIVOL EVOL AVTIXEIUEVO UE
™) Oixr} Tou cuoTdda (cuvoyh) oe olyxpeLon UE dhhec cuoTddes (Slaywptopds). O deixtne
Entropy of Eigenvalues (EoE) npoteiveton yia tnv ebpeon tou Bértiotou aprduod cuotddny,
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OAAGL XOTOYEAPEL XUPIWS TIC YROUUIXES OYETELC HETOEY TWY YPOVOOELRMY TWV CUCTAOWY, TE-
eLopilovTog EVOEYOUEVS TNV AMOTEAEOUATIXOTNTA TOU GE OEVAQLNL UE LOYURES U1 YROUUXES
cuoyeTloeLC.

®don IV: MeBodohoyicg petd tnyv opadonoino

To tehixd oTddl0 TV YedodoloyLOdY opadotoong Tepthaufdvel T olyxelor xou o-
AoYNoT alyoplduwy, TN dnutovpyia XUTNYOPLOY XATAVOAOTOY UE PAOT TA YoQUXTNELO-
TIXA TV CUCTABWY XL TOV TPOGOLOPLOUS TV TEAMXOY TRoGIA popTiou yia xdie xotnyopia
AATOAVOAO TV, PETUTEENOVTUG TNV AVIAUGT) GUCTABOTOINCNG OF TEAXTIXES CTEATNYLXEC.

H perétn ye titho "Comparisons among Clustering Techniques for Electricity Customer
Classification" e€etdlet Sidpopoug ahyopituoug opadomoinong Yo TNV TaEVOUNGCT TEAUTOVY
nhextowrc evépyetag. H tpomonowumuevn follow-the-leader xou 1 epopyxr opadoroinon
Becnxav va elvon oL mo amoteheouatixeg uEVodol, PE TEoxTXd 6pto T 15 €wg 20 ¥Ad-
oeig mtehatov. H yehétn unoypduuioe enlong tn onpacta evog uixedtepou aptiuol cuoTtddwy
Y10 TO OYEBLUOUO TIEOCUPUOCUEVLY TEOYRUUUATOY Yo xdde xatnyopio TEAATOY.

H didwasta emhoyhc Tou alyoplduou cuctadomoinone teptAauBdvel Tov TpocBloptous6
TV xAdoewv tpogik (PCs) ue tnv avdluon tov xoaumuloy goptiou xdle cuotddag. Autd
Bondd otn BLdxplon povadn®Y HOTIBWY XUTAVIAWOTNG EVEQYELIS X0k OTNV TUNUATOTOMGT TWV
TEAUTOY OE BloxELTEC xAdoelg TpogiA. H dnuiovpyio twv PCs nepthapBdver tn uéon Ty yio
AVTITPOCOTEVTIXG TROPIA, TNV XAVOVIXOTIOINGT) TOV TGV, TN CUYYWOVEUCT] XMV CUGTAOWY
ue mapopota potBa, Ty e€€Taon NS UETABANTOTNTOC oL TN GOVOEST| JE TOL YUPAUXTNEIGTIXG
TWY VOLXOXUPLMY.

YupnepdopaTa

H Bihoypagpun avaoxonnon mou tpayuatorotjinxe oto TAalolo Tng TepoLoag dimhe-
HOTIXNC AmOXIAVYE EXETA CNUUVTIXG XEVA GTNY OTNV LTdpyouca PiBhoypagio oyeTIXd Ue
TIC TEYVIXES OUUDOTIOINONG VLol TOUG XATAVOAWTES EVEQYELNG:

o Mnyavixy yopaxtneioTixmv: Trdpyer olloonuelwtn €AAeu)n Aemntouepolc
OLEPELYNONG OYETIXG PE TO YUQUXTNEWOTIXG GTO TAdiclo Tng ouadomoinong ylo T
Yeron evépyetag amd toug xatavohwtéc. Ot meploodtepeg peréteg Paoilovton xupiee
o€ XUUTOAES POPTIOU, UE TEPLOPIGUEVT DLEREUYNOT) EVOUG EUREWS PACUATOC Y oQUXTNELO-
Ty, H avddeln véwy xon xavotopwy yopoxtnolo ixwmy o utopoloe vo evioyUoel
ONUOVTIXG TNV ATOTEAECUATIXOTNTA TNS OPAOOTOINCTNG.

o ANyépripor opadixrc ouvctadornoinong: H Bifloypagio Oelyver
OTOVIOTNTA OTNY EQopUOYY| ahyopidumy ouadixhc ouadonoinone (ensemble clustering
algorithms). Autol ot ahyopriuol, yvwoTol Yl Ty evpwatia Toug xou TNy axp{Betd
Toug, Vo umopoUcay EVOEYOUEVKS VU TTROGPELOUY TLO OLUPOROTIONUEVES YV(OELS GTNY
TUNUATOTIOMGT) TWV XATOUVIADTOV.

o EEnyrowwn texvnth vonuoolvr oty dnuovpyio npogil: Trdpoyel xevé
otn xenon e eneénynowne TN yio 0 onuovpyla mpogih xatavokwtody. H enel-
nynown TN Jo unopoloe vo Topéyel SLPAVEL XAl XATOVONTOTATA OT1 Olodixacio
opadomoinong, fondnvtag 6Ty VIVETNOT AUTWY TOV TEYVIXGY oTO U1 ELOIXOUS EVOL-
AUPEQOUEVOUC.
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Kegdiowo 4: Medodolhoyia

Ewcaywy

Onie mpoenadydnxe, 1n Oimhwuatxd] cpyacia yenowonotel oAyoplduoug unyovixhc
udinone yioe Ty odadomoinom tng xatavdhwong evépyeloc. H pyehétn yonowonotel dedouéva
on6 to London Data Store, 5.567 vowoxvpidv tou Meydhou Aovdivou. To cOvoho
0E00UEVWY, To omolo xahiTTel TNV Teplodo and tov Noéufplo Tou 2011 €ng tov Pefpoudplo
Tou 2014, nepthoufBdver 167 exatopudplo oelpéc Nuinpwy petprfioewy. To civoio dedouévmy
repLhopfdvel Baoixeg petaPantéc 6mwe LCLid, stdorToU (Standard 1 Time of Use), Date-
Time xoo KWH/hh (Kilowatt-Hours per Half-Hour).I'to va: xataotel to oOvoho dedopévwy
olayelplolo yio avdAhucT Pe Toug BLECLUOUS UTOAOYLOTIXOUS TOROUS, yenolonotiinxe
woe uédodoc otpatnywhc derypoatorndlac.  To olvolo Bedopévev ueidinxe GoTe va
repLhopfdvel wovo Tig 800 mpwteg efdouddes Tou Aexeufpiou, Tou OxtwBelou, Tou Arpihiou
xar Tou Toudiou Tou 2013. H emhoyy) auty| Baciotnxe oty enoyloxy avIimEOCOTEVOT),
OTLC TEPLOBOUG GLYUAC XL TLG TEQLODOUS EXTOC GLYUNC, OTNY TOUAOUORPId TwV DEDOUEVWY
xaL oty unoloywotxt| oxomuotnta.  Ta BAuatag tng pedodoroyiag mou axohoudrinxe
Tapovatdlovion oto dudypaupo 1] avahuTixd.

ESaywy” Yopaxtnelotixmy

Yy evotnta "Mnyovin| yapaxtnelo Ty tou xegolalou 4, 1 Simhwpotiny epyocio
umoypauuiler Tov xplowo pého TNg e€aymYNC YOLUXTNELOTIXWY OTNY AVATTULT UOVTEAWY
Uy ovViXg Leinong yior Ty avdAuoT) TG xatavdAnong evépyetag. H diadixaota nepihoufdvet
TNV XOYOVIXOTIOINOT) TWV OEBOUEVKDY XAl TN ONULOVEYIA EBXDY YUQUXTNPLO TIXWY TOU CYETI-
Covtan Ye TNy xatavdhwon evépyelag. Mepd amo ta yopaxTnelo Tixd Tou UToAoyloTrxay
elvon oL oo dTe:

e Mcomn xatavdiwon

o Meon xatavdhworn ayung

e Yuyvotnrto oawyung oe xdie ypovoduplda

o Méon mpwivh)/amoyeupativy/Beodiv/ amoyeudative xatavdhonon
e Mcom enoytomny| xatavdAnmo

o Mcéomn xatavdhwon oe Weeg oatyung xaL EXTOC oy IS

e Mcom yerion Tic xoinuepLvég xon tar LoBBatoxdplona

o XopoxTNELoTIXG AUTOCUGCYETIONS

o Ernoytaxr) tdon yerong

o Al&nomn tne xatavdAwong

o MeTofANTéTnTor OTIC WEES ALy UT|S
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Figure 1: Brjuata yedodoroyiag
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ANyopripol unyavixne wadnong

Yy evotnro " Alyopriuol unyovixrg udinong" tou xegoiatou 4, 1 SimAwuatin epyacio
TEPLYPAPEL Wi oELRd ahyoplluwy Tou yenoLonolovvToL Yio TNy avdhuoT ouadotoinong oTnv
TUNUaTOTONOT TWV XATAVOAOTOY evépyewas. Ou ahyoprduol mou e€etdlovtar mepthou3d-
vouv touc K-Means++, Fuzzy K-Means, Hierarchical Clustering, Self-Organizing Maps
(SOMs), BIRCH, Gaussian Mixture Models (GMMs), Spectral Clustering xou Ensemble
Clustering.

Kdée ahyodpriuog avahleTon AETTOUEPMSC OGOV aPORE TNV EQPAPUOYT| TOU %Ok Tl LOVAOLXS
YUEUXTNPLOTIXE. TOU, TUPEYOVTUC U OAOXANEWUEVY] XUATAVONOY] TWV EQPUPUOYOY XL TNG
ATOTEAECUATIXOTNTAC TOUC 0TO TAXGLO TeV BEBOPEVWY XaTavdAnwong evépyetag. H evotnra
oUTY| Oyt LOVO BLEQEUVE TG TEYWXES TTUYES QUTWY TV oAYopilumy, aAld culntd emlong
XL TNV TEax T Toug ahyoprduxt| e@apuoyt) oto TepddAiov Python xau tnv yeron twv
XTIV BUBA00NXGY Yo TNy vAomoinoT Toug.

Metpuxég agloAdynong Tng anodoong

Y10 pépoc "Metpuéc adlohdynonc" tou Kegohalov 4, 1 Simhwuoatiny epyoasio emixey-
TEWVETAUL OTLC UETPIXEC TTOL YENOWOTO0VTAL Yo TNV alloAOYNOT TNG AmddOcNS TWV OAYO-
elduwy opadonolnong mou epopuolovTaL OTNY TUNUATOTOMNGCT TWV XUTAVUAWTWY EVEQYELIS.
To tufua autd ToviCel T onuacta TG ETAOYAC TOV XATIAANAWY HETEWMOY ACLOAOYNONC Yo
NV alloAdynon TNe anoTeEAecuaTixdTNTaC Xdde ohyopituou. Eletdlovton didpopec UeTELxEC
omwc to Silhouette Score, To Davies-Bouldin Score, to Calinski-Harabasz Score xou  Dunn
Index, ot omoleg elvon xpiotueg yio T weTenon g emtuylag TNg cucTadonoinong 6cov agopd
TOV Lo WPELOUO YO TN GUYVOYT) TWV CUCTABMY. AUTH 1) OAOXANEWUEVT AVEAUGCT| TOV YETELXOY
aglohdynong ebvor xouPixic onuactag yio T Slacpdiion Tne adlomotiog xan Tng axpeifelog
TWV ATOTEAEOUA TRV opadoToinong Tou AaufdvovTon and Tov alyoprduo unyovixic udinong.

Kegpdhowo 5: AnoteAécuata

To xepdhono 5 TepLypdpEL TNV TEOGEYYLON YL TN DOXIUY| XU T GUYXELOT| TWY ETOOCEWY
OLapdpwy ahyopilumy oyadonoinong mou eqopudloviar ota dedoyéva mou €youpe.  Afvel
éugpaon oty evduypduuion auTAC TS avdAuong Ue Tic apyéc tng emednyrowng TN,
Tovilovtag TN onuaoia Oyt Wovo TNng alloAGYNOoNG NG AMOTEAEOUATIXOTNTAS TWV AAYO-
elbuwvy opadomoinong aAAd xar TN Slc@dhlong 6Tl Ta amoTeAEouaTo elvon epunveloulaL
xou xotavontd. H mpooéyyion auth umoypouuiler tn onuaocio Tng Olapdvelag xon Tng
TEOGPBACOTNTUS OTIC EQPUPUOYES UNyYavixhc udidnong, wiwe oto mAaloto TN avdAuong g
AATAVIAWOTG EVEQYELIC.

AZLoNoyTMom alyopidpwy
Yy evotnra "Alohdynon odyopiluwmv' tou xegaiaiou 5, 1 dmAwuaTixr epyocio
oflohoyel Toug Bldopous ohyoplduouc ouadoToinone YENOWOTOLWVTOS Toug OeixTeS

eyxupdTNTag cvotddwy (CVI) nou napouvsidotnxay oto xepdhao 4. H avdhuon yivetou
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o€ éva £0pog oUoTEdWY [3,9] xou anooxomnel oTNV olOAOYNOT TNE AMOTEAEOUATIXOTNTAS XAl
NG xUTAAANAOTNTAC xdE ahyopldUoU Yior TNV TUNUATOTOINGT] TV XATAVIAWTOV EVEQYELIS.
Auth 1 auotner dtadwacto altohdynong eltvon {wtixAg onuaciog yio ToV TEocOLOPIGUO TOU
TLO ATMOTEAECUOTIXOU OAYORIIUOU Yial TEUXTIXY| EQUOUOYY| OTNV VIAUGCT TNG XATOUVIAWGONS
evépyetog. To SorypauoTind AmOTEAECUOTA TOU TEOXUTTOUYV (QoiVOVTAL OTO OLOYEUUUOTOL

[21B]4] »ou 5]

0.57 —8— KMeans++
—o— Fuzzy C-means
—8— Hierarchical (Ward)
—o— 50Ms
—e— BIRCH
—o— GMMs
Spectral
—8— Ensemble

0.4

0.3

0.2

silhouette Score

0.1

0.0 1

Number of Clusters

Figure 2: Silouette Score petpwr yia SapopeTinols ahyoplduoug ouadomoinong oe éva VoG
oprdu®y cuoTtddwy [3,9].
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—e— BIRCH
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Calinski-Harabasz Score

Number of Clusters

Figure 3: Calinski-Harabasz petpu yia Slapopetinolg alyoplduouc opadonoinong oe éva eVpog
aprdu®Y cuoTtddwy [3,9].

—o— KMeans++
—e— Fuzzy C-means
6 —e— Hierarchical (Ward)
—o— SOMs
—&— BIRCH
—o— GMMs
Spectral
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Davies-Bouldin Score

Number of Clusters

Figure 4: Davies-Bouldin Calinski-Harabasz petpu yio Stapopetinoie alyoplduous opyadomoinong
oe éva elpog apliudy cusTtddny [3,9].
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Figure 5: Dunn Index Calinski-Harabasz pyetpix?| yio Swapopetinolc alyopituoug ogadonoinong
oe éva ebpog aptiundy cuoTddwy [3,9].

Avdiuvom opddwyv we Ensemble Clustering

Ynv evotnta "Avdhuon ouddev ue Ensemble Clustering " tou xeqodaiou 5, dieldryeton
OLe€odIxY| aVIAUOT TV CLUCTAOWY ToL Ty NuatilovTon amd Tov ahyderduo Ensemble. Auth
N eic Padog elétaon mepthopPdvel T Slepedvnom TwV UEYEDMY X0l TV YoRUXTNELO TIXWOY
TWV OLUCTADWY, UE CUYXEXQUEVT ambguon va yenotwonomdoly €€l cuotddeg. Xpnol-
MOTOLOVVTAL TROTYUEVES TEYVIXES OTITIXOTIOMONG Yol VoL EVIOYUUEL 1) XAUTOVONOT) QUTMV TWV
CLUCTABWY, ATEXOVICOVTOC TO BLUPORETIXG TEOTUTAL XOl TIC CUUTEQLPORES YV OGS EVEQYELIS
eVTOC xde opddoc. Auth 1 oloxhnowuévn avdivon eivon {oTixrc onuactac Yo Ty oaxel3t
gpUNVElD TV ATOTEAECUATOY TN OUADOTOMONG oL TNV XATAVONOT] TV OLUPORETIXMY TUN-
HETWY XATAVOAWTWY GTNY 0YOpd EVEQYELIS.

To evdewtixd mpopik (representative load profiles) mou mpoxdOntouv amo Tg pr-
XAVOVIXOTIOMNUEVES TYES Yo xGde oudda goivovtar 6To Sy bl

Non-normalized Cluster Centroids with error bars
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Figure 6: Evoewtind mpogih @optiou ouddag

Hapatnpolue 6L el YIVEL EVAC COPHC DL WPIOUOS TWV OUMDWY aVEAOY UE TNV XAl
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OCOL XAUTOVOAGWONG TOUC (TORU LPNAT - UPNAT - ETELO - YOUNAT| - UNOEVIXY| XOTAVIAWOT)).
[ vae Sraxpivouue xadnuepvd dtapopoTolnuéva LoTiBa XUTAVIAWGTS, XAVOVIXOTOLOUUE TG
HATOVUAWOELS XAUE OUAdES Hat AAUBEVOUUE TA XAVOVIXOTIOLNUEVA EVOEWTIXG TIROGIA , Tot oTolat
oivovton oo Sudrypopua [7]

Normalized Cluster Centroids
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Figure 7: Kovovixonowmuéva Evdextind npogih poptiou ouddog

Emnhéov, To XovOVIXOTONUEVA TEOPIA XATAVIAWONG OAWY TV VOXoxLELwY Holl ue TNV
Uéom ypouunc xatavdhwong xdie ouddag ancixovilovion oTo
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Figure 8: IIpogik goptiov OAwV TwV VOLXOXUELDY

Load Shapes for Cluster 2
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xdde ouddog

Am6 T xovovixoToinuéva TEoPiA TUEATNEOVUE BLUPORES AVIUEGH OTIC XAVMUEPLVES CUVY-
Yeleg e xde ouddog , mpay Tou UPOUC XATAVIAWONG OIS Ty 1 OUddo 4 TIC TEWIVES
Ope Eyel TOND younAY| xotavdhwon (evieyopévng dev Bploxeton xdmotoc oto omitt) xat
TO AMOYEUPOL UTIARYEL Wit oY ETIXS UPNAOTERT XoTAVIAWO (EVOEYOUEVHC ETIOTEEPOUY OTIiTL).
Avtideto, oty oudda 2 TapaTNEoVUE XATAVIANOGT) Xord OAN TNV BLAEXELN TN NUERAS, YEYOVOS
70 omolo umopel va uTodNAWveL 0Tt Bploxovton omitt OAN TV Nuéea.
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Yy ouvéyela, ot pétdodol Tne e&nyfowne teyvntic vonuoovng (XAI) poc ordnooy va
XoTavoicoupE YTl oL cuoTAde opadoTodnxay Eeywetotd. Xenoyonohoaue T BYBAto-
Un SHAP (SHapley Additive exPlanations), mou ypnowomnotel ) Yewpla mouyviov yio vo
e&nyrioet Ty €£000 TV HOVTEAWY unyavixrc udinone. H BBaodndxn SHAP poc Borinoe va
XATOVOHOOUPE TN Aoyixy| Tou akyoplduou Ensemble, delyvovtoc noe xdlde yopoxtnoio tind
ennpedlel TNV oyadoroinoy.

Téhog, €yive Evag aocnc dLoywELouog aviueca ota Nuepriota xadnueptvd Ttpogih xan Ta
TeogiA Tou cuf3BatoxipLoxou.
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Figure 9: RLPs Yaffotoxiplonou xar EBSopadiaiog nuépos tnv opdda 1
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Mean C ion for Cluster 3
—— Weekday Mean Consumption
—— Weekend Mean Consumption
004
3 oo
E o000
§ 002
£
0.04
S A w“'»°e°'5“o°'a“§a°e°®°e°'» P A N R e PR T O
FESF P PP I FEF GG EE N N F E G @ DD Y P GG NN GG ST NN G G S S
Time Slot

Figure 11: RLPs Yafotoxdploxou xar Edouadiaiog nuépag tnv opdda 3
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Figure 12: RLPs Yaffotoxiploxou xan Edouadiaiag nuépac tnv oudda 4
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Figure 14: RLPs Mafotoxiploxou xan EBdouadiatag nuépac tnv oudda 6
Kegpdhowo 6: Xvpnepdopota xol LEANOVIIXES TEOOTTIXES

H evbeheyric oflordynomn towv olyoplduwy ouadonoinone oe OGEGOUEVA XATAVAAWONS
EVEQYELOC ATTOXGAVE TNV OCLVETELNL GTNV ATOBOGCT| TwY ahyopldunmy ue Bdon Tov emheypévo
aprdud TV ouddwy. To amoteléopato g YEAETNG Uog Oelyvouv OTL oplopévol ahyopt-
Yuot, 6mwe o K-means++ xou n ouadonoinon Ensemble, emdeixviouvy ctodepd 1oyvpéc
emdooelc. 201600, 1 ATOTEAEOUATIXOTNTA SAAWY ohyopiluwy Towdhhel 6Tay AouBdvovTal
umodn BrapopeTiol apriuol cucTddwy. AloonuelnwTn elvon 1) ATOTEASOUATIXOTNTO TOU
Ensemble Clustering, xodog emituyydver otoadepd ané mooderate éwg uhniéc xatatdierc.
QoT600, dev LeMEPVE TAVTA TIC EMOOOELS TWV XOPLUPALWY UEHOVOUEVLY ahyopldumY, OTeS
o K-means++.

H mepoutépw €peuvd hog €yEL XUTNYOPLOTIOOEL ETUTUY WS TOUG XATAVIAWTES OE BLAXELTES
xatnyoplec mpogik poptiou, xuplng ue Bdor Tor CUVOAIXA eTiTEDN EVEQYELUNNC XATAVIAWONC
- YounAd, uecota xou LmAd. Evtoniooue opddeg axpalwy Tumy mou mopouctdlouvy U u-
CLOAOY WS TEOTUTIOL XATAVAAWCTG.

Ye avtileon pe Tig apyIneg Hag TUPATNRHOELS, OL OTOLEG EBELY VALY OTL OL GUGTADES Blory wpl-
Covtay xupieg pe Bdon To emineda xATAVIAWONS, 1) BLadIXAGTA XoUVOVIXOTOINGTC AmOXdAUPE
mo obvieta wotio xatavdlnong eviog xde cuotddac. Tovileton 1 onuacia Tng xovov-
IXOTOINONG OTIC HEAETEC XATAVIAWOTG EVEQYELNS, XM ETLTEETEL TNV oXEYBECTERT GUYXELOT
TV TEOTUTWY YEHoNG UETAUED BLaPOOMY OUABEY XATAVOADTOV.

Emniéov, o MepInTOOEC OTOU Ol GUCTAOES EMEBEEaY OTEVE CUGYETILOUEVEC CUUTEQL-
popéc, 1 XAl mpocépepe BIEUXPVIGELS TYETIXE UE TOl BLUPOLOTIONUEVAL YUPUXTNEIO TIXG TTOU
OLopopoToloY TN piot cLoTAdA amd TNV dAAY. T'iot ToEEBELY AL, oY XAl OPLOUEVES OUGOES El-
(PAVIOOY OUOLOTNTEC OGOV APOEE TNV TOCHTNTA TNE XaTavdhwong, o XA amoxdiude Sonpitd
YOUEOXTNELO TG, OTIWE O YEOVOS TNE LPNAOTERNC YENONE 1) 1) XAVOVIXOTNTA TNS XUTOAVIAWCTC,
TOoL TIC OLExEvaY YETOED TOUC.

YuvoliCovtag, 1 mapovoo Yerétn unoypauuilel T onuacio TG EMAOYAS XATAAANAWY
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aAyopliumy opadonolnong mou elvon EWOIXA GYEBLACUEVOL YLOL TO HOVUOXE YOQUXTNELO TIXY
TV 0edoPEVLY xatavdhwong evépyetag. H onpacta tou Ensemble Clustering otny avdiuot
uog umoypouuilel TNV AmMOTEAEOUUTIXOTNTE TOUC OTOV EVIOTIOUO OLUXQITGV  TUNUATWY
xaTovoATOV. Emumiéov, n yeron tou XAI anodeiydnxe ot anotehel Yepehidec ototyelo
yioo T BeAtlwon TG X(ATOUVONTOTNTAC TWV ATOTEAECUATLY TNG OMABOTOMONG, TUPEYOVTUC
Bohd xaTtavonon TNG EVEQYEIXAG CUUTERLPORAS TWV xoTavolonTov. H mapodoa ueiét
TpowUel TNV TEOCEXTINY| EPUPUOYT TNG XAVOVIXOTOINONG %ol TNG ETAOYAS YAQUXTNELO-
TiX@Y, vtootnewlouevn ard to XAl v ) Bedtinon tng axplBelag TV oTEATYIXOY
Olayelptone evépyelog xou Béoueuong Tehatwy. Autd umepPulvel TNV amAY xaTNyoploToino
TV XATUVOAWTOV PE Bdom Ta eminedo XATavdAwong Toug xat, avtideta, cToyelel oTnv
amoxdhun TV tepimhoxwy poTiBwy mou yopuxnellouy xdde TURUA XUTAVOADTH.

ITeoomTixég

H mapolvoo epyacio dnutoupyel evOLUPEQOUCES UEAAOVTIXEC TEOOTTIXES EQEUVIS, OL
XUPLOTEQEC €X TWV OTOWVY TUEOUGIALOVTAL TURUXIT:

YUOYETLON E XOLVWVIXOOINUOYEPAPLXA YopaxtneioTixd: H yehhovunr| épeuva
Yo mpémel vor eEETAOEL T1) CUCYETION UETAEY TOV TROTUTOV XATAVIAWONG EVEQYELIS XOL TWV
HOWVWVIXOONUOYRAUPIXDY YAUQUXTNRLO TIXGY TwV Vowoxuplwy. H xatavénern tou tpémou ue
ToV omolo TaEdYOVTEC OTWE TO UEYETOC TOU VoLXoXUElo), TO ENINESO EIGOBAUATOC, 1) YEW-
Yeapur| Véomn xou oL emhoyég Tou Tedmou Lwng enneedlouy T yeromn evépyelag Yo umopoloe
Vo Tpoo@Epet BardiTeERT XUTAVONOY TNG CUUTEELPORAS TwV xatavornTwy. H mpocéyylon
ouTr) umopel vo Bondrioel oty avdnTugn To EEATOUXEVPEVKDY OTRAUTIYIXWY ECOLXOVOUNOTS
EVEQYELIG XOL OTNV TPOCUQUOYT| TNG ETUXOVWVING GE DLUPORETING DNUOYEAUPLXS TUNUATL.

Extetopévn egoappoyy g ene€nynolung TeXvnINe vonpoolvrng: M
TOMG uTooYOUeVT xotevduvon elvon 1 meputépw ollonoinon tne E&nyhowne TN. Tao
epyareion tne EEnynowne TN, 6nwe 1 BBhiodfxn SHAP (SHapley Additive exPlanations),
gyouv 1o1 amoderyVel moAUTIA 0TV TeEyouca avdhuon upag.  IlpoywpmvTag mpog To
eumEog, Wi Poditeen evowudtwon towv pedodoroyiwy Einyhowune TN da urnopoloe va
TEOGPEREL UEYURDTERT XATAVONOT] TWV TARAYOVIWY TOU ETNEEGLOLY Tol ATOTEAECUATA TNG
opadomoinong. Auty 1 auénuévn Spdvelor oo wovtéra TN dev Yo Bondfoel povo otny
XATOVONOT] TV TOAITAOXWY CUUTEQLPOPMY TV XATUVOAWTGY, GAAG XaL TNV ETUXVEWOT)
xan Bedtioon Towv Buwv Twv poviéhwy. H duvatdtnta tne E&nyroune TN vo amoxohintel
TeplmhOXEC OYECELC HECA 0T DEDOUEVA UTIOPEL Vo OONYNOEL GE TLO CTOYEUUEVES XU OTOTE-
AEOUOTIXEC OTEATNYWXES OLoyElplone TNC EVERYELNS, TPOCUQUOCUEVES OTIC CUYXEXQUIEVES
OVEYXES XOUL TOL TTROTUTIOL TGV DLAPORMY TUNUSTWY XATUVIAWTOV.

Meiwor dwactdoewy xal BeAtioTonoinon neyédoug dedopevwy: Mo onuav-
T TTTUYT| TNE OLoyelplong TEPAOTILY GUVOAWY BEDOUEVGY €Vl 1) ATOTEAEOUOTINY| Uelwon
NG OLIC TATIXOTNTOS TWVY OEBOUEVOY YWEIC Vor SLoUBEVETAL 1) AXEEOLOTNTOL TWV UTOXEIUEVWY
mpotinwy. Teyvixée 6mwe n avdhuon xVpwwy ouvotwony (PCA), n t-duveunuévn oto-
Yoo T evowudtwon yertévov (t-SNE) xou ot autoxwdixonomtée éyouv dellel unooyéoelg
oe dhhoug Touelc. H allohdynom tng amoTeEAEOUATIXOTNTOC QUTWY TV HEVOBKY 6TO TAi-
Ol0 TV BEDOUEVWY XATAVIAWOTG EVERYELNG Vo UTOPOUGE VoL 00N YHOEL OE TO EXAETTUCUEVT
opadomoinon yweic To Bdpoc Tng enelepyaciag xou AVIAUOTC UEYHAOU OYXOU GECOUEVWYV.
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Chapter 1

Introduction

1.1 Introduction

Energy consumption is still a major concern in today’s world of rapid advancement, en-
twining sustainability requirements with the complexities of modern living. Unavoidably,
as urbanization and population growth continue to rise, so does the need for energy. This
elevated demand places tremendous strain on the energy infrastructure we currently have,
making it imperative to create policies that encourage energy efficiency. The Demand-
Response (DR) strategy is one such mechanism that is essential to intelligent energy
systems and smart grids.

Demand-Response is an energy management strategy designed to narrow the gap be-
tween energy supply and consumer demand. Its objective is to motivate consumers, both
individuals and industries, to alter their typical consumption habits in response to spe-
cific indicators, typically fluctuations in prices or incentives. By incorporating intelligent
technologies like smart meters and IoT devices, DR involves more than just reducing or
shifting energy usage during periods of high demand. It also involves utilizing real-time
data to make dynamic and well-informed choices.

Nevertheless, the complex nature of DR extends beyond technology. DR revolves
around human behavior, making it a complex and multifaceted challenge. Understand-
ing how consumers, in their particular circumstances, react to DR signals is of utmost
importance. The correlation between energy efficiency and DR lies in comprehending
the underlying reasons behind people’s energy consumption patterns in order to devise
strategies for more prudent utilization.

The pursuit of energy efficiency is not only a requirement for maintaining environmen-
tal sustainability, but also a practical strategy for ensuring economic stability. Optimizing
energy consumption minimizes superfluous energy expenses, diminishes rates of resource
exhaustion, and alleviates environmental repercussions. Today, energy efficiency is not
just a trendy term; it is a requirement, a duty, and, most importantly, a smart approach
for achieving sustainable development.

An essential component of this strategy relies on the ability to classify and divide
energy consumers. Gaining insight into their unique consumption patterns, behaviors, and
preferences is not a simple or universal task. The concept of clustering arises as a powerful
tool for analyzing the homogeneous groups within a diverse energy market. Through the
process of classifying energy users according to similarities in their consumption patterns,
it becomes feasible to customize DR strategies that align with the distinct behavioral
tendencies of each group. Customized strategies have the capacity to generate increased
levels of engagement in DR programs, thereby improving the overall effectiveness of the

36



Introduction

system.

Clustering not only facilitates efficient strategy development but also enhances effective
communication. Familiarizing yourself with your clusters is akin to understanding your
target demographic. Transmitting DR signals or incentives to a clearly defined group
enhances the probability of receiving a favorable reaction from consumers.

Ultimately, as we navigate the course of technological progress, the significance of
human-centered methodologies in energy management becomes increasingly evident. This
study thoroughly examines the merging of technology and human behavior, using clus-
tering to strengthen the DR paradigm.

1.2 Thesis target and objectives

As previously mentioned, acquiring knowledge about consumption patterns is vital
for efficient energy administration and long-term sustainability in our dynamic energy
environment. This thesis explores the field of energy management, with a specific emphasis
on improving DR strategies through the use of data analytics.

The primary goals of this research are to thoroughly examine household energy con-
sumption data in order to reveal distinct patterns and behaviors. We will utilize a range
of sophisticated clustering algorithms to divide consumers into distinct groups, allowing
for the development of customized DR strategies. Upon implementing these techniques,
we will assess their performance and conduct a comprehensive analysis of the outcomes to
ensure they meet the requirements of practical applications and foster long-term viability.

This thesis seeks to accomplish these objectives in order to establish a connection
between academic research and practical applications in the field of energy management.
Ultimately, it aims to make a valuable contribution towards a future that is more energy-
efficient.

1.3 Thesis contribution and value

Within the highly complex field of energy management and sustainable practices,
comprehending the nuances of household energy consumption patterns is of utmost im-
portance. This research makes significant progress in this field, providing diverse benefits
as illustrated in the diagram [I.1}

Energy Management and DR Strategies

The results of this study are not just insignificant details in academia; they function as
precise plans for the development and improvement of energy management and demand
response strategies. Through comprehending and categorizing consumer behaviors, en-
ergy stakeholders can develop more knowledgeable and efficient strategies, guaranteeing
a harmonious equilibrium between energy supply and demand.

Algorithmic Evaluation
This thesis entails a comprehensive comparative analysis of different clustering algorithms
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Algorithmic
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Figure 1.1: Thesis contribution

as they are applied to energy consumption data. By running these algorithms and metic-
ulously comparing their performance, we offer a detailed evaluation of their effectiveness
in deciphering energy consumption patterns. This approach not only emphasizes the ad-
vantages and drawbacks of each algorithm but also offers essential insights into which
algorithms are most appropriate for particular types of energy data.

Deep Insights into Energy Consumption

This study goes beyond simple data collection by examining the analysis of energy con-
sumption in the clusters. By classifying households according to their energy usage pat-
terns, we are able to obtain valuable insights into various consumption behaviors. This
systematic approach not only converts raw data into practical knowledge but also becomes
an invaluable asset for stakeholders in energy management.

Data Intelligence in Energy Analytics

This thesis employs a unique methodology for data analytics, with a particular emphasis
on extracting innovative characteristics from unprocessed data. The main focus of this
study revolves around the rigorous procedure of data preprocessing, transformation, and
sophisticated feature engineering. The research enhances the level of understanding that
can be derived from energy consumption data by effectively identifying and extracting
distinctive features.

Wider Societal and Environmental Relevance

This research carries substantial societal ramifications. By emphasizing the significance of
energy efficiency and sustainability, it reinforces global endeavors to tackle climate change
and advocate for environmental stewardship.

This research has a broader impact that goes beyond the boundaries of academic
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circles. The thesis provides valuable guidance for industry stakeholders, ensuring a more
sustainable future, as energy sustainability and efficiency become increasingly crucial in
today’s world.

1.4 Thesis structure

The thesis consists of 6 chapters and 1 appendix. Here is a brief description of their
contents.

Chapter 1

In the 1st chapter of the thesis, a brief introduction to the problem was made, defining
the main attributes and the historical background. The thesis target and objective were
defined, as well as its contribution to the scientific society. Finally, there was a description
of the thesis structure.

Chapter 2

In the 2nd chapter of the thesis, a comprehensive analysis of DR in residential energy
systems is presented, covering its overview, benefits, challenges, and the essential role of
consumer segmentation. The chapter begins with an introduction to DR, followed by a
detailed discussion of its advantages and the specific challenges encountered in residential
contexts. It emphasizes the necessity of consumer segmentation in enhancing the efficacy
of DR programs and explores the integration of Machine Learning to refine these segmen-
tation strategies. The chapter concludes by summarizing these key aspects.

Chapter 3

In Chapter 3, we present a literature review segmented into four phases. The first phase,
Pre-Clustering, examines existing literature on data preparation and feature extraction.
The second phase, Clustering Methodologies, reviews the various clustering algorithms
used in literature. This is followed by the third phase, Performance Evaluation Met-
rics, which discusses the metrics used in evaluating the algorithms.The final phase, Post-
Clustering, explores literature on the interpretation of clustering results.

Chapter 4

In the 4th chapter of the thesis, we present the proposed methodology. The chapter com-
mences with a synopsis of the data set, followed by the procedures included in prepro-
cessing and feature extraction. Next, the clustering algorithms that will be utilized are
presented. The chapter also presents the evaluation metrics that will be utilized to assess
the performance of the algorithms.

Chapter 5

In the 5th chapter of the thesis, we present the he results derived from the application
of various clustering algorithms.This chapter presents a comprehensive analysis of these
algorithms, assessing their performance across a range of tests. After conducting a thor-
ough evaluation, the algorithm that demonstrates superior performance is chosen for a
detailed analysis. The selected algorithm is subsequently employed to identify and extract
indicative load patterns, offering a comprehensive description of each consumer cluster.

Chapter 6
Finally, in the 6th chapter of the thesis, a conclusion of the whole project is made and
the future prospects are discussed.
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Appendix A

In Appendix A, we provide a comprehensive collection of results related to Chapter 5 that
were not included in the main text due to length considerations. This appendix serves
as an extensive repository of additional data and analyses, offering a deeper and more
detailed insight into the outcomes of the clustering algorithms discussed in Chapter 5.
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Chapter 2

Problem Setting

2.1 Introduction

The Demand-Response (DR) mechanism is a key component of contemporary energy
systems in the ever-changing field of energy management. Demand-Response is the delib-
erate adjustment of energy consumption patterns by end-users in reaction to signals from
energy suppliers or grid operators|l]. Traditionally, the energy grid operated primarily
in a unidirectional manner, where electricity was generated by power plants and trans-
mitted to consumers. The integration of intermittent renewable energy sources, such as
solar and wind, along with the growing variability of consumer demands, has resulted in
a heightened complexity in the management of electricity supply and demand|2].

Given the increasing energy demands and the pressing need to incorporate sustainable
energy practices, the effectiveness of the DR system becomes crucial. It offers a flexible
solution that enables the adaptation of energy requirements to match the available supply.
This promotes energy efficiency and helps to decrease expenses related to high-demand
periods|3].

Nevertheless, the practical application of DR has its share of its difficulties. A major
challenge is comprehending and forecasting consumer behavior, which exhibits significant
variations among different demographic groups|4]. The presence of variability diminishes
the effectiveness of a one-size-fits-all approach, thereby emphasizing the necessity for a
more customized strategy.

In this chapter, we will explore in detail the intricacies of the DR challenge, em-
phasizing the need for consumer segmentation, the potential role of machine learning in
addressing these challenges, and laying the foundation for the discussions and analyses
that follow in this thesis.

2.2 Overview of DR

DR has steadily grown in prominence, transitioning from a niche concept to a central
pillar in the energy sector. It operates on the basic principle of aligning energy demand
with supply, but there’s more depth to its functionality and application than meets the
eye.
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Definition and Fundamental Principles

DR serves as both a proactive and reactive approach in energy management, aiming to
harmonize consumption with generation. What sets DR apart is its capacity to influence
consumers - be it households, industries, or businesses - to modify their energy use in
response to real-time electricity prices or specific external cues. Typically, these cues
come from grid operators or utilities and indicate various scenarios, like a supply shortage,
abundant renewable energy output, or grid congestion.

Leveraging advanced technologies, an effective DR system incorporates real-time me-
tering, predictive analytics, and automated controls. This integration permits almost
immediate feedback and adjustments, fortifying a flexible and adaptive energy ecosystem.
Additionally, there are diverse DR programs: some offer financial incentives to consumers
who adjust their energy use, while others have fluctuating energy prices based on time or
demand levels.

In essence, DR symbolizes a mutual endeavor between energy providers and consumers
to create an energy framework that’s more sustainable and adaptable. As we move for-
ward, we will dissect the various types of DR strategies, each catering to unique scenarios
and requirements.

Types of DR Programs

The diverse classification of DR programs underlines their strategic importance in
shaping electricity consumption behaviors. These programs are primarily segregated into
two major categories: incentive-based DR programs and price-based DR programs. Figure
depicts the classification of DR programs.

DR programs

lliiiiiiiiiiilll ||HHHHHHHHHHHII
based

Direct Load Load Demand Time of Use QCritical Peak Real-Time Hybrid price-
Control (DLC) Curtailment Bidding Q)] Pricing (CPP) @Pricing (RTP) based

Figure 2.1: Classification of DR programs

Emergency
Demand

Reduction

Incentive-based DR Programs

Incentive-based programs reward consumers with incentives for modifying their elec-
tricity usage in accordance with the needs of the supply-side. By providing tangible
rewards, these programs create a direct link between consumer behavior and the opera-
tional needs of the energy grid. For example, during times of peak demand or specific
events, utilities may need to ease the load on the grid. With incentive-based programs,
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consumers can volunteer or sign up to reduce their energy consumption during these crit-
ical periods|l]. In return, they receive financial incentives or other benefits, making it a
win-win situation: the grid experiences reduced strain, and consumers benefit financially.
Different types of incentive-based DR programs are discussed and detailed below accord-
ing to [5],]2],[1].

e Direct Load Control (DLC) Programs: Here, certain consumers or appliances
are pre-enrolled, granting the utility permission to shut them down or cycle them
as per requirements, primarily during peak demand or specific events. Participating
consumers receive incentives for their cooperation.

e Load Curtailment Programs: In these setups, enrolled consumers receive incen-
tives for reducing their electricity usage based on the utility’s needs. Notably, if
these consumers don’t adhere to the program, they may face significant penalties.

¢ Demand Bidding Programs: This kind of program is typically available for large-
scale consumers with consumptions surpassing 1 MW. In situations of high demand
or contingencies, these consumers can propose to reduce a part of their consumption
for a specific bid price.

e Emergency Demand Reduction Programs: This program activates during se-
vere system contingencies. Participating consumers are generously incentivized to
decrease their electricity usage, bolstering the overall reliability of the power system.
Penalties are not imposed for noncompliance.

Price-based DR Programs

In price-based DR programs, the fluctuations in electricity tariffs serve as an implicit
signal to consumers about the current state of the grid. When electricity is abundant and
the grid is under low stress, tariffs may drop, encouraging consumption. On the contrary,
during peak times or when supply is limited, tariffs rise, nudging consumers to either
curtail their use or shift it to a more favorable time. This dynamic electricity pricing
not only reflects the real-time costs associated with generating and distributing electricity
but also encourages more strategic energy consumption patterns among users.The primary
forms of price-based DR programs are mentioned below.

e Time of Use (TOU) Pricing: Electricity pricing in this scheme hinges on specific
intervals within the day. Typically, the day gets divided into peak, mid-peak, and
off-peak intervals. Consumption during peak times incurs higher charges, nudging
consumers to shift their usage to off-peak hours|5].

e Critical Peak Pricing (CPP): Similar to TOU, CPP increases the electricity rate
dramatically during times when the power system’s reliability is at stake. These
high rates are usually in effect for a few hours annually, aiding in maintaining the
power system’s stability|[6].

e Real-Time Pricing (RTP): This dynamic pricing structure alters the electricity
tariffs, often on an hourly basis, mirroring the ongoing wholesale electricity market
prices. Consumers typically receive notifications about these prices a day or an hour
in advance. As real-time pricing grows in popularity, especially with the rise of smart

43



Problem Setting

homes, some cases require a price prediction module, particularly when prices aren’t
declared on a day-ahead basis[5].

In addition to the conventional TOU structures, advancements in DR strategies have
led to the inception of hybrid price-based programs, specifically tailored for residential
micro-grids. These hybrid programs integrate both fixed and dynamic pricing mecha-
nisms. They are designed to synergize the benefits of stable pricing structures like TOU
with the flexibility of real-time pricing (RTP). This fusion allows for more efficient elec-
tricity consumption management within micro-grids as stated in [7],

2.3 Benefits of DR

Within the transition towards more intelligent and resilient energy systems, DR arises
as a crucial innovation, improving grid efficiency and empowering consumers. DR enables
a more agile and environmentally-friendly electricity grid by adjusting energy usage in ac-
cordance with grid conditions. The following paragraphs highlight the diverse advantages
of DR:

Integration of Renewable Resources and Grid Stability

DR plays a crucial role in tackling the difficulties related to incorporating renewable
energy resources (RES) into the power grid, specifically because of their intermittent and
fluctuating characteristics. As the European Union (EU) begins its ambitious pursuit of
a sustainable and resilient energy future, as outlined in the European Green Deal|§|, DR
emerges as a crucial facilitator. The EU’s dedication to achieving climate neutrality by
2050 requires a swift escalation in the adoption and integration of RES, which will fun-
damentally reshape its energy system.Dynamic DR facilitates the real-time modification
of electricity consumption, thereby mitigating the variability of renewable energy genera-
tion and guaranteeing the stability and dependability of the power grid. This adaptation
is vital during periods of elevated renewable energy production, such as when there is
abundant sunlight or strong winds, as well as during periods of limited renewable energy
generation. DR can optimize the utilization of the current grid infrastructure, minimiz-
ing the requirement for expensive upgrades and improving the grid’s ability to withstand
fluctuations|2|. Furthermore, through its support for a less centralized energy system, DR
promotes the use of small-scale renewable generators like solar panels on homes or wind
turbines in local communities.

Benefits for Consumers

Both consumers and businesses participating in DR, programs directly reap financial
advantages. To achieve substantial reductions in their electricity bills, individuals can
optimize their energy consumption by aligning it with periods of lower energy prices,
such as off-peak periods or times when renewable energy production is at its peak|2].
These modifications not only lead to financial savings but also encourage a more environ-
mentally friendly and accountable energy usage pattern. Moreover, participants acquire
enhanced visibility and authority over their energy consumption, enabling them to make
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more knowledgeable choices and cultivating a feeling of empowerment and engagement
in the wider energy domain. The improved regulation and the possibility of reducing
expenses contribute to higher levels of customer contentment and can also bolster the
public’s perception of utility providers.

Benefits for the Energy Market

DR programs not only facilitate the integration of renewable resources and provide
direct benefits to consumers, but they also play a pivotal role in enhancing the overall
efficiency and competitiveness of the energy market. DR aids in mitigating price fluctu-
ations and lowering electricity expenses throughout the market by promoting a dynamic
equilibrium between supply and demand|9]. The stabilization of this market is especially
crucial in areas with a significant prevalence of renewable energy sources.

Moreover, DR programs encourage innovation in the energy industry, promoting the
advancement of intelligent power grids, sophisticated metering infrastructure, and other
technologies that improve grid control and effectiveness [1]. These technological advance-
ments contribute to the development of energy markets that are more adaptable and
responsive, capable of accommodating the increasing proportion of renewable energy in
the energy mix.

DR not only improves market efficiency, but also fosters transparency and equity in
the energy market. By facilitating the involvement of consumers in the decision-making
process, DR ensures that all participants in the market, as referenced by [1|, have the
opportunity to influence market outcomes. The process of democratizing the energy
market not only results in fairer pricing and improved access to energy, but also promotes
responsible energy usage and encourages investments in clean energy technologies.

2.4 Challenges of Residential DR

The concept of residential DR signifies a fundamental change in the manner in which
electricity is utilized and controlled within households. It involves modifying consumer
electricity consumption in accordance with supply conditions, such as price signals or
power grid requirements. Although residential DR offers notable advantages, such as
improved energy efficiency, decreased peak demand, and reduced electricity expenses, its
execution encounters various obstacles.

Technological Challenges

The main technological obstacles in residential DR programs revolve around the in-
tegration and efficient utilization of sophisticated technologies. This encompasses the
implementation of intelligent meters and Internet of Things (IoT) devices, which are es-
sential for real-time monitoring and regulation of energy consumption. Nevertheless, the
extensive implementation and maintenance of these devices in various residential areas
present notable difficulties.
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An additional crucial factor is the administration and examination of the substan-
tial quantities of data produced by these programs. Processing this data and generating
actionable insights necessitates the use of advanced data analytics and artificial intel-
ligence algorithms. Moreover, the success of DR programs heavily depends on reliable
and secure communication networks to transmit data and DR signals between utilities
and consumers. The complexity is increased by the need to maintain consistent commu-
nication in different geographical and infrastructural environments, as well as ensuring
compatibility between various devices and systems.

Moreover, it is imperative to tackle the issues related to cybersecurity and privacy.
Ensuring the security of consumer data and energy usage patterns against cyberthreats, as
well as addressing privacy concerns associated with the extensive monitoring of household
energy usage, are crucial for upholding consumer confidence and program reliability:.

Behavioral Challenges

On the behavioral side, the heterogeneity of residential consumers in terms of their en-
ergy needs and their responsiveness to DR signals presents a complex challenge. Louf and
Barthelemy (2016) emphasize that the spatial arrangement of resources and socioeconomic
factors plays a crucial role in determining the adoption and efficacy of DR strategies|10].
Changing consumer behavior to accommodate DR (DR) strategies necessitates not just
knowledge and instruction, but also rewards that are in line with their individual and
financial motivations.

Consumers’ inclination to engage in DR (DR) programs can be impacted by multiple
factors, such as their comprehension of the program’s advantages, apprehensions regarding
comfort and convenience, and confidence in the utility providers. To overcome these
behavioral barriers, it is necessary to develop DR (DR) programs that are both financially
appealing and user-friendly.

Furthermore, the adoption and effectiveness of DR (DR) strategies are significantly
influenced by socioeconomic factors and the spatial distribution of resources. This encom-
passes the presence of technology, the financial condition of consumers, and their ability
to obtain information regarding energy management. Customizing DR (DR) programs to
cater to the distinct requirements and situations of various consumer segments is crucial
for achieving widespread acceptance and efficacy.

Forecasting and Scenario Planning

Comprehending the critical importance of forecasting in DR (DR) programs is essen-
tial. DR programs, which seek to modify energy consumption during periods of high
demand, heavily depend on precise forecasts of energy usage. Precision is essential for
optimizing the distribution of energy and guaranteeing reliability in the energy grid. Fore-
casting allows energy providers to predict increases in demand and modify supply accord-
ingly, making it an essential tool in the management and success of DR (DR) initiatives.

Predicting residential energy usage with precision poses considerable difficulties.
Zhang and Zhang (2019) underscore the challenges, emphasizing the capriciousness of
household energy consumption patterns|l11]. These patterns are influenced by various
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factors, such as individual behaviors, weather conditions, and the implementation of
energy-efficient technologies.

A major challenge in this forecasting project arises from the intricate and diverse
characteristics of residential energy usage. Residential energy consumption is subject to
various personal habits and preferences, which introduces unpredictability, unlike com-
mercial or industrial energy usage. The diversity of daily routines, appliance usage, and
home-based activities across households results in substantial variations in energy con-
sumption patterns. The inherent unpredictability presents a significant obstacle in devel-
oping precise and dependable energy predictions for the successful implementation of DR
programs.

2.5 Necessity of Consumer Segmentation in DR

Consumer segmentation in DR (DR) involves categorizing a large consumer popu-
lation into smaller, more similar groups based on specific factors like energy consump-
tion patterns, demographic traits, lifestyle preferences, and receptiveness to DR signals.
This approach enables a more customized and effective implementation of DR strate-
gies. Through comprehending the distinct requirements and actions of various segments,
utilities and energy providers can devise DR (DR) programs that are more enticing and
efficient for each demographic.For example, a group of consumers that uses a lot of energy
during busy times of the day may be more open to pricing models that change based on
demand. On the other hand, another group that is environmentally conscious may be
more likely to participate in programs that focus on the environmental advantages. Seg-
mentation allows for the creation of focused communications and incentives, enhancing
the consumer-centricity and effectiveness of DR initiatives.

Household characteristic 2

Household characteristic 1

Cluster A Cluster B Cluster C
DR plan A DR plan B DR plan C
A a
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Figure 2.2: Consumer Segmentation in DR

A key example of this in practice is a Smart Grid pilot project|12], which provided
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a clear demonstration of the importance of consumer segmentation in DR. The project
utilized advanced metering infrastructure to gather data on consumer energy usage, en-
abling effective segmentation. The outcomes showed notable differences in how various
consumer segments responded to DR strategies, emphasizing that consumer-specific ap-
proaches significantly improve participation rates and energy savings.

This approach brings multiple benefits:

1. Increased Participation and Engagement: By understanding and addressing
the unique motivations of different segments, utilities can design DR programs that
are more appealing to each group. This personalized approach often results in higher
participation rates.

2. Efficiency in Energy Management: Segmentation allows for more precise tar-
geting of energy-saving efforts. For example, segments with high energy use during
peak times can be targeted with specific incentives to reduce consumption, leading
to more effective load balancing.

3. Enhanced Customer Satisfaction: When consumers feel that their specific needs
and preferences are being considered, their satisfaction with utility providers in-
creases. This positive relationship fosters trust and long-term engagement with DR
programs.

4. Cost-Effectiveness: By focusing resources and strategies on specific segments,
utilities can achieve more with less, reducing the overall cost of implementing DR
programs.

2.6 Machine Learning in Consumer Segmentation

ML is a transformative branch of artificial intelligence that empowers systems to learn
and improve from experience without explicit programming [13]. It stands as a pivotal tool
in contemporary data analysis, facilitating the automation of decision-making processes
and the extraction of meaningful insights from voluminous datasets.

ML is broadly categorized into three principal types:

1. Supervised Learning: This approach involves training models on a labeled
dataset, where the desired output is known. The model learns to map input data
to the corresponding output, and it finds extensive use in applications like spam
detection and image recognition [14].

2. Unsupervised Learning: Here, models are trained on unlabeled data, aiming to
discover hidden patterns or intrinsic structures within the data. This category is
crucial in exploratory data analysis, clustering, and dimensionality reduction [15].

3. Reinforcement Learning: This type focuses on how agents should act in an envi-
ronment to maximize a cumulative reward. It has applications in diverse domains,
including robotics and gaming [16].

Our primary focus will be on unsupervised learning, given its relevance to our objec-
tives.
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2.6.1 Unsupervised Learning

In unsupervised learning, the algorithm receives a set of inputs {x1, o, ..., z,,} without
any corresponding output labels. The objective is to uncover the underlying structure of
the data, grouping similar data together, or representing the data in a more informative
manner|17]. Unsupervised learning encompasses a variety of methods, each serving spe-
cific purposes:

e Clustering - This process mathematically involves partitioning the dataset into
distinct groups, or clusters, ensuring that data points within the same cluster exhibit
greater similarity to each other than to those in other clusters. Similarity is often
quantified using measures like Euclidean distance [18].

e Dimensionality Reduction (e.g., PCA, t-SNE) - for reducing the number of vari-
ables in the dataset while retaining its essential features [19].

e Association Rule Learning (e.g., Apriori, Eclat) - useful in market basket analysis
to find common itemsets [20].

Unsupervised learning Clustering Algorithms

Clustering is one of the most popular unsupervised machine learning approaches.
There are several types of unsupervised learning algorithms that are used for cluster-
ing, which include exclusive, overlapping, hierarchical, and probabilistic.

e Exclusive clustering: Data is grouped in a way where a single data point can only
exist in one cluster. This is also referred to as “hard” clustering. A common example
of exclusive clustering is the K-means clustering algorithm, which partitions data
points into a user-defined number K of clusters.

e Overlapping clustering: Data is grouped in a way where a single data point
can exist in two or more clusters with different degrees of membership. This is
also referred to as “soft” clustering. The difference of exclusive and overlapping is

illustrated in 2.3

Exclusive Clustering Overlapping Clustering

Figure 2.3: Graphical representation of overlapping and exclusive clustering |21].

e Hierarchical clustering: Data is divided into distinct clusters based on similar-
ities, which are then repeatedly merged and organized based on their hierarchical
relationships. There are two main types of hierarchical clustering as seen in [2.4]
agglomerative and divisive clustering. This method is also referred to as HAC (hi-
erarchical cluster analysis).
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Agglomerative Divisive

e

Figure 2.4: Dendrogram displaying the two main hierarchical clustering techniques

e Probabilistic clustering: Data is grouped into clusters based on the probability
of each data point belonging to each cluster. This approach differs from the other
methods, which group data points based on their similarities to others in a cluster.
The Gaussian Mixture Model (GMM) is the one of the most commonly used prob-
abilistic clustering methods and a visual representation of how GMMs work can be

seen in

Tclusteri\

hcluster B

Gaussian Mixture Models (GMMs) seek to
group Cluster A and Cluster B accurately
when distinct datasets are mixed together

Figure 2.5: Gaussian Mixture model illustration example [22].

According to [23], a clear distinction is made between modern and traditional clus-
tering algorithms. Below, Tables and summarize the categorization and typical
algorithms associated with each.
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Table 2.1: Traditional Clustering Algorithms

Category Typical Algorithm

Based on partition K-means, K-medoids, PAM, CLARA,
CLARANS

Based on hierarchy BIRCH, CURE, ROCK, Chameleon

Based on fuzzy theory FCM, FCS, MM

Based on distribution DBCLASD, GMM

Based on density DBSCAN, OPTICS, Mean-shift

Based on graph theory CLICK, MST

Based on grid STING, CLIQUE

Based on fractal theory FC

Based on model COBWEB, GMM, SOM, ART

Table 2.2: Modern Clustering Algorithms

Category Typical Algorithm

Based on kernel Kernel K-means, Kernel SOM, Kernel
FCM, SVC, MMC, MKC

Based on ensemble CSPA, HGPA, MCLA, VM, HCE, LAC,
WPCK, sCSPA , sMCLA, sHBGPA

Based on swarm intelligence ACO _based(LF), PSO _based,
SFLA based, ABC based

Based on quantum theory QC, DQC

Based on spectral graph theory SM, NJW

Based on affinity propagation AP

Based on density and distance DD

For spatial data DBSCAN, STING, Wavecluster,
CLARANS

For data stream STREAM, CluStream, HPStream, Den-
Stream

For large-scale data K-means, BIRCH, CLARA, CURE, DB-
SCAN, DENCLUE, Wavecluster, FC

Applications in Consumer Segmentation

In the context of energy consumer segmentation, particularly for DR programs, unsu-
pervised learning algorithms like K-means play a crucial role. These algorithms are adept
at segmenting energy consumers based on their usage patterns, peak demand times, and
consumption behaviors. By analyzing factors such as time-of-use data, seasonal consump-
tion variations, and load profiles, unsupervised learning helps utilities identify distinct
consumer groups with similar energy demands and responsiveness to DR initiatives. This
segmentation is vital for optimizing DR strategies, as it allows energy providers to tailor
their approaches to specific segments, ensuring more effective management of energy de-
mand and supply. It also aids in enhancing the efficiency of energy distribution systems
and in promoting more sustainable energy consumption practices.
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2.7 Conclusion

Throughout this chapter, we have examined how DR plays a crucial role in the modern-
ization of energy systems. It provides significant advantages for grid stability, consumers,
and the overall energy market. DR strategies are uniquely positioned to manage the
variability introduced by the integration of renewable resources, which is beneficial for
sustainability. DR programs offer consumers the chance to save money and enable them
to actively participate in managing their energy usage. DR plays a significant role in the
energy market by improving efficiency, facilitating the integration of renewable energy
sources, and maintaining price stability.

Nevertheless, the implementation of residential DR encounters certain difficulties.
Overcoming technological and behavioral challenges, actively involving the community,
addressing perception issues, and dealing with the intricacies of predicting and planning
for different scenarios are all major obstacles that require careful and precise naviga-
tion. The importance of consumer segmentation becomes evident in this context. Energy
providers can customize DR strategies to effectively address the varied requirements of
their customer base by analyzing and classifying consumers according to their energy load
patterns and socio-demographic characteristics.

ML, particularly unsupervised learning methods such as clustering, play a leading role
in this segmentation endeavor. Through the utilization of ML, utilities can analyze intri-
cate datasets to discover patterns and clusters that provide insights for more sophisticated
and efficient DR strategies. This not only improves the accuracy of DR programs but also
guarantees their ability to adjust and stay pertinent as consumer behaviors and the energy
landscape continue to change.

Ultimately, the combination of DR and ML-driven consumer segmentation holds great
potential for creating a more adaptive, streamlined, and consumer-focused energy future.
As we finish this chapter, we are about to embark on a more extensive investigation
into the capabilities of different clustering algorithms. In the upcoming chapters, we
will analyze these algorithms by implementing them on actual datasets to determine their
advantages, constraints, and the distinct perspectives they can offer. Additionally, we will
investigate the extensive range of existing academic studies. This upcoming analysis is not
just an academic exercise; it is a crucial step towards realizing the potential of machine
learning (ML) to completely transform the energy sector. It will enable the development
of a more intelligent and adaptable grid that can effectively address the challenges of the
21st century.
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Related Work

3.1 Introduction

This chapter provides a comprehensive literature review focused on machine learning
clustering techniques employed for the segmentation of consumer energy usage, which is
a fundamental aspect of our thesis. We analyze different clustering techniques that are
essential for comprehending the segments of energy consumers, and discuss the difficulties
encountered in this ever-changing domain. The aim of our project is to establish connec-
tions between various methodologies, assess their efficacy, and investigate novel research
opportunities.

The chapter has been structured to systematically explore the complicated landscape
of clustering algorithms in energy consumption. In order to offer a more comprehensive
analysis, we partitioned our literature review into distinct phases that align with the
entirety of the clustering problem. This framework enables a concentrated investigation
and direct contrast of various clustering methodologies and their utilization in partitioning
energy consumers.

3.2 Approach to Literature Review

In compiling the literature for this thesis, a systematic and methodical approach was
employed to ensure a comprehensive understanding of clustering techniques in electricity
consumer segmentation. The process was guided by the following steps:

1. Search Methodology: The literature was identified through targeted searches in
academic databases and journals. Keywords such as "clustering techniques," "elec-
tricity consumer segmentation," "energy consumption segmentation," and names of
specific algorithms like "K-Means," "DBSCAN" were used. This approach ensured
a diverse yet focused collection of relevant scholarly work.

2. Criteria for Inclusion: The papers included in this review were selected based on
their direct relevance to clustering techniques in energy consumption segmentation.
Special attention was given to studies that demonstrated significant citation counts,
indicating their impact and recognition in the field.

3. Analysis Approach: The selected papers will be analyzed with the aim of com-
paring methodologies, results, and their applicability to the problem of electricity
consumer segmentation. This analysis will also explore the implications of these
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studies on the current research, identifying gaps and opportunities for further inves-
tigation.

In addition to the above methodologies, we employed InfraNodus , a graph visu-
alization tool, to create a network representation of our literature library. This graphical
depiction allowed for an intuitive understanding of the relationships and clusters within
the selected papers, facilitating an efficient filtering and analysis process. The use of
InfraNodus underscores our commitment to leveraging advanced tools for enhancing the
effectiveness and depth of our literature review. The resulting network provided for our
research can be found in Figure

Figure 3.1: Network visualization of the literature library using InfraNodus

This structured approach to literature review guarantees a thorough exploration of
the field, providing a solid foundation for the research presented in this thesis.

3.3 Phase I: Pre-Clustering

Prior to the main clustering process, the pre-clustering phase plays a vital role in
the classification of electricity consumers. This phase is crucial for data preparation,
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gaining insights into initial patterns, and establishing a foundation for efficient clustering.
Multiple methodologies were employed in the existing literature to address this particular
stage, which we will now present.

Data pre-processing

In the context of data normalization and handling missing values, Yilmaz et al. in
[25] address these aspects effectively. They adopt a strategy where datasets with more
than five consecutive days of missing data are not filled, preserving the dataset’s integrity.
Outliers are also carefully identified and removed, such as households with exceptionally
high or low electricity consumption. In [26] the authors specifically ignore daily usage
data with very small sums in the dictionary generation process. This decision is based
on the rationale that such small usage patterns tend to be irregular and can distort the
representative shapes in the dictionary after normalization. The study also sets a practical
threshold for considering load patterns: those with total energy consumption lower than
3 kWh (which is less than the 6% quantile) are excluded from analysis.

Clustering techniques can be applied to customer load profiles using various types of
data, as well-roundly explained in [27].The methods include:

e Raw consumption data, which are the actual time series data of customer elec-
tricity usage.

e User-defined features based on the characteristics of the load shapes and the
specific application at hand.

e Features extracted from load shapes using techniques such as frequency domain
analysis, which unveil intrinsic patterns like periodicity.

e A reduced data set obtained from the original data through dimensionality re-
duction techniques like principal component analysis (PCA).

Feature extraction

An important challenge faced when implementing machine learning is the phenomenon
known as the "curse of dimensionality". Several algorithms that exhibit good per-
formance in low dimensions become unmanageable when applied to high-dimensional in-
put[28]. Put simply, as the number of features increases, clustering becomes significantly
more challenging.

The paper "Overview and Performance Assessment of the Clustering Methods for Elec-
trical Load Pattern Grouping" [29] underscores the importance of selecting appropriate
features for clustering in the field of feature engineering. While Résénen and Kolehmainen
in [30] elaborates on this, detailing that customer load profiles can be efficiently repre-
sented using a concise set of seven features, namely mean, standard deviation, skewness,
kurtosis, chaos, enerqy, and periodicity.

In addressing the challenges, the work by Haben et al. in [31] offers a sophisticated
approach to mitigate the curse of dimensionality. The study strategically selects attributes
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that capture the essence of customer energy behavior, focusing on four distinct time
periods: the overnight period from 10:30 P.M. to 6:30 A.M., the breakfast period from
6:30 A.M. to 9:00 A.M., the daytime from 9:00 A.M. to 3:30 P.M., and the evening
from 3:30 P.M. to 10:30 P.M. For each customer, the relative average power across these
periods is calculated, along with a mean relative standard deviation to gauge variability.
Seasonal and day-type variations are encapsulated by a seasonal score, reflecting the
absolute differences between summer and winter mean powers, and a weekend versus
weekday difference score, both normalized and summed across all time periods.

Moreover, |32]| introduces additional advanced time series features that are critical
for capturing the dynamic nature of electrical load patterns. These encompass cross-
correlation measures that reflect the degree of similarity between the time series at varying
lags, autocorrelation-based distances that emphasize the self-similarity of a load profile,
periodogram-based distances that assess the distribution of power across frequencies, and
Fourier coefficients-based distances that isolate the essential frequency components of
the time series. These measures enable a deeper understanding of the temporal dynamics
within the electrical load data, which is essential for developing more refined and insightful
clustering models.

Data size reduction methods

For data size reduction, Chicco et al. 33| in "Comparisons Among Clustering Tech-
niques for Electricity Customer Classification" discuss the use of Principal Component
Analysis (PCA) , Sammon map, and Curvilinear component analysis (CCA),
emphasizing the necessity of reducing dataset size for manageable and accurate cluster-
ing. Additionally, the "Hopfield-K-Means clustering algorithm" paper [34] introduces the
concept of power indexes for data reduction, focusing on key time intervals to summarize
load curve information effectively. Furthermore, the "Clustering of Electricity Consump-
tion Behavior Dynamics Toward Big Data Applications" [35] outlines the utilization of
the SAX technique for transforming load curves into symbolic strings, thereby simplifying
data complexity. The SAX (Symbolic Aggregate Approximation) technique is also used in
[36].

3.4 Phase II: Clustering Methodologies

In the following section, we will present various clustering approaches found in liter-
ature, acknowledging that there is no consensus on a singular ’best’ method. Instead,
we observe a range of popular methodologies, each with its own merits in the context of
clustering electricity consumers.

Before discussing the various methodologies, it is important to define a commonly
used term in the literature: Representative Load Patterns (RLPs). RLPs are crucial for
understanding electricity consumption behaviors and are defined as the normalized load
profiles of individual electricity customers. Mathematically, an RLP for a customer is
expressed as:

RLP(t) = L;“—d(t) (3.1)
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where Load(t) represents the power consumed at time ¢, and Py is the maximum
power consumption recorded for that customer. This normalization process, by scaling
the load pattern relative to P, ., allows for a standardized comparison of consumption
patterns across different customers, highlighting their relative consumption intensity and
timing, independent of their absolute levels of power usage [33],[29],[36].

Traditional clustering algorithms

Traditional unsupervised clustering algorithms are widely used and considered the
fundamental approach in classifying electricity consumers. Their prominence stems from
their demonstrated efficacy in segmenting data on electricity consumption, making them
an essential component of the literature.

"Comparisons Among Clustering Techniques for Electricity Customer Classification"
by Chicco et al.|33] is a seminal work that evaluates several clustering methodologies,
including K-means, hierarchical clustering, fuzzy K-means, and the modified follow-the-
leader approach. Focused on classifying electricity customers based on Representative
Load Patterns (RLPs), these techniques are analyzed within a Euclidean distance frame-
work, essential for measuring distances between RLPs and forming meaningful clusters.

In a similar vein, "Overview and performance assessment of the clustering methods
for electrical load pattern grouping" [29] delves into the specifics of K-means and Fuzzy
K-means algorithms, highlighting their need for a predefined number of clusters. The
K-means algorithm is noted for its use of a fixed number of iterations to refine clusters,
starting with centroids randomly selected from RLPs. Conversely, the Fuzzy K-means
algorithm introduces a fuzziness degree to determine each RLP’s cluster membership,
with lower degrees often leading to more effective clustering.

Contrasting these methods, hierarchical clustering variants and the Follow the Leader
(FDL) method offer a more adaptable clustering approach. Hierarchical clustering, em-
ploying an agglomerative procedure, merges RLPs based on similarity measures, while the
FDL method eschews the need for predefined cluster numbers and relies on a user-defined
distance threshold to determine cluster centroids.

Clustering Algorithm References

K-means 133, 1291, [37]. [38]. [29] . [39] |
Fuzzy K-means [33], [29], [38] B
Weighted Fuzzy Average K-means [39r R

Hierarchical Clustering [33] , [38] . [39]

Follow the Leader (FDL) [29], [40], [38] , [39]

Self Organising Maps (SOMs) [37] , [40], [38] , [39]

Gaussian Mixture Models (GMMs) | [36] -

Table 3.1: Summary of Clustering Algorithms and Corresponding References

Multi-stage methodologies

In the literature on electricity consumer categorization, two-stage methodologies have
been prominently featured. One such approach, detailed in "A Hybrid Machine Learning
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Model for Electricity Consumer Categorization Using Smart Meter Data," [41] utilizes un-
supervised clustering algorithms in its first stage to extract typical electricity consumption
behaviors. This phase is followed by a classification stage, where fuzzy consumer cate-
gorization and supervised classification algorithms are employed for in-depth consumer
analysis.
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Figure 3.2: Diagram of the two-stage methodology in [41]

Another notable two-stage methodology is presented in "A clustering approach to
domestic electricity load profile." [37] The initial phase involves clustering techniques
like k-means, k-medoid, and Self-Organizing Maps (SOM).The second stage focuses on
characterizing and classifying electricity load profile classes (PCs), utilizing a multi-
nomial logistic regression to classify consumers based on their electricity usage pat-
terns.Additionally, "Hopfield-K-Means Clustering Algorithm" [34] introduces a method
that combines the Hopfield neural network with K-Means, enhancing customer segmen-
tation accuracy through a two-stage process.

Distributed clustering

In "Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Ap-
plications,"|35] the Fast Search and Find of Density Peaks (CFSFDP) technique is pivotal
in profiling electricity consumption behaviors, valued for its low time complexity and ro-
bustness to noise. To tackle the complexities of large, distributed datasets, the study
integrates a divide-and-conquer approach, applying adaptive k-means, also used in |26],
at local sites to obtain representative customer profiles, followed by a modified CFSFDP
method at global sites for efficient data processing. This innovative methodology, combin-
ing local adaptive clustering with global density-based clustering, addresses the challenges
of big data in electricity consumption analysis, optimizing both the computational effi-
ciency and the accuracy of the clustering process.

3.5 Phase III: Performance Evaluation Metrics

As stated in [33] a crucial aspect of the research is the Clustering Validity Assessment.
The study conducts repeated executions of various clustering algorithms, varying the
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Figure 3.3: Distributed framework proposed in [35]

number of customer classes from 5 to 100. This range was chosen to provide a broad basis
for method comparison, though it’s noted that having as many as 100 classes is practically
too high for real-world applications like tariff association.

Chicco et al.(2004) refer to the metrics used for the assessment of each clustering
algorithm as Adequacy Measures while in 2006 they refer to them as Clustering
validity indicators. They propose the following CVlIs:

e Clustering dispersion indicator (CDI), which measures the compactness of load
patterns within a cluster and their separation from other clusters, also used in [40].

e Modified Dunn index (MDI), adapted to use Euclidean distances, focuses on
the ratio of the smallest inter-cluster distance to the largest intra-cluster distance.

e Scatter index (SI), derived from the proportion of scatter accounted for by clus-
tering.

e Davies—Bouldin index (DB), which represents the average similarity measure of

each cluster with its most similar cluster ([37],[34],[38].[36]).

In 2011, Chicco [29] complemented the CVIs with the following indicators:

e Intra-cluster index (IAI): This metric evaluates the homogeneity within each
cluster. A lower IAI value indicates that the elements within a cluster are more
similar to each other, suggesting a better clustering quality.

e Variance Ratio Criterion (VRC): measures the ratio of the sum of variances
within clusters to the variance between clusters. High values of VRC indicate dis-

59



Related Work

tinct, well-separated clusters, as it implies that the variation within clusters is small
compared to the variation between clusters.

e Inter-cluster index (IEI): In contrast to IAI, the IEI assesses the distinctness or
separation between different clusters. A higher IEI value suggests that clusters are
more distinct from each other, which is a desirable trait in clustering.

e Mean Index Adequacy (MIA): measures how well each object lies within its
cluster. It is an average measure that assesses the adequacy of the clustering process

for each data point individually, thus providing a more detailed view of the clustering
performance (]40],[34],38],[36])

e Similarity Matrix Indicator (SMI):uses a similarity matrix to evaluate the clus-
tering structure. It helps in visualizing and understanding the relationships between
different clusters and the degree of separation or overlap among them.

e Ratio of within cluster sum of squares to between cluster variation
(WCBCR): compares the sum of squares within each cluster to the variation
between different clusters. A higher value indicates that the data points within each
cluster are closely packed together, while being well-separated from other clusters.

The Calinski-Harabasz index (CH), also known as the Calinski index, is a widely-used
metric for assessing the quality of clustering algorithms and was used in [34]. Introduced
by T. Calinski and J. Harabasz in 1974, it evaluates the clustering by calculating the
ratio of the sum of between-clusters dispersion to within-cluster dispersion for different
numbers of clusters (See Table 3.2/ where T'SS = total sum of squares, WSS = the within-
cluster sum of squares, N = number of data points in the dataset, and k = number of
clusters).

The silhouette score (SIL) is also a popular metric used to assess the quality of
clusters in a clustering algorithm.It measures how similar an object is to its own cluster
(cohesion) compared to other clusters (separation) as was used in [25] as well as in [36].
(See Table where a = average intra-cluster distance, b = average shortest distance to
another cluster)

Optimal Number of clusters

All the above metrics, including the silhouette score, Davies-Bouldin index, Calinski-
Harabasz index, and others, can be utilized for determining the optimal number of clusters
in a dataset. Whether these metrics are minimized or maximized, they provide valuable
insights into the clustering structure, helping to identify the most effective number of
clusters for a given dataset.

Addressing the challenge of determining the optimal number of clusters, the study "A
Novel Clustering Index to Find Optimal Clusters Size With Application to Segmentation
of Energy Consumers"[42] proposes an Entropy of Eigenvalues (EoE) index. This index
assesses the distinguishability between clusters, aiming to identify the optimal cluster size.
However, it’s important to note that the EoE index primarily captures linear relationships
between time series of clusters, potentially limiting its effectiveness in scenarios with strong
nonlinear correlations.
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Table 3.2: Summary of Clustering Validity Metrics in Literature
3.6 Phase IV: Post-clustering methodologies

The final stage of clustering methodologies involves the critical tasks of comparing and
evaluating the clustering algorithms, and subsequently utilizing the acquired knowledge to
create customer classes based on cluster attributes. This stage also entails identifying the
ultimate load profiles for each customer category, thereby converting clustering analysis
into practical strategies.

Comparison of the algorithms

The study titled "Comparisons among Clustering Techniques for Electricity Customer
Classification" presents a detailed comparison of various clustering algorithms, examining
a range of cluster numbers from 10 to 30 based on Cluster Validity Indexes (CVIs). The
analysis revealed that the modified follow-the-leader and hierarchical clustering using the
average distance linkage criterion outperformed other methods in effectiveness. Further-
more, the study advises that a practical limit of 15 to 20 customer classes is optimal for
meeting supplier needs, despite theoretical criteria sometimes suggesting a higher number
of clusters [33].

Another significant contribution in this field is found in [36|, which focuses on hi-
erarchical clustering, particularly employing ward linkage, and identifies it as the most
effective method for analyzing daily load patterns of customers. Contrarily, the Self-
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Organizing Map (SOM) algorithm was deemed the least effective in this context. The
study also evaluated the Fuzzy C-Means (FCM) clustering method, noting its potential
yet highlighting its sensitivity to minor adjustments in the fuzziness degree. The CVI
values pointed towards an optimal cluster range of 8-10.

In [39] the results indicated that the choice of the appropriate clustering algorithm is
somewhat dependent on the clustering’s objective. For more distinct clusters, Modified
Follow the Leader is the best, while for compact clusters, Weighted Fuzzy Average K-
Means is recommended. Overall, Weighted Fuzzy Average K-Means demonstrated better
performance across both objectives.

Upon summarizing the comparison of clustering algorithms in these studies, it is clear
that although a wide range of clusters is initially taken into account for testing the al-
gorithms, practical considerations of usefulness require a more targeted approach. It is
recommended to have a smaller number of clusters so that utilities can easily design and
implement effective programs that are customized for each customer class.

Profile Classes

After selecting the right clustering algorithm and determining the cluster number, the
focus shifts to identifying Profile Classes (PCs) by analyzing each cluster’s load curves.
This analysis helps to discern unique energy consumption patterns, segmenting customers
into distinct profile classes. The creation of these PCs is complex and involves multiple
important factors, as mentioned in the literature:

Averaging for Representative Profiles: The most common method found in liter-
ature involves averaging the daily electricity demand of all households within a cluster for
each time period. This process results in a representative daily load profile for the cluster,
effectively smoothing out individual variations and highlighting the prevailing pattern of
energy use [43]. However, this method can sometimes oversimplify the diversity within
the cluster, masking important nuances in consumption behavior.

Normalization of Values: Prior to averaging, normalizing the values is recom-
mended. This step adjusts for variations in overall consumption levels among different
households, allowing for a more equitable comparison of patterns based on the shape of
the load curve, rather than the absolute magnitude of consumption|44].The importance
of normalization can be seen in the above diagram:

Combining Small Clusters with Similar Patterns: In instances where smaller
clusters exhibit only minor differences in magnitudes or timing of electricity use, it may
be beneficial to merge them [37]. This strategy not only simplifies the profiling process
but also ensures that essential consumption patterns are preserved, thereby generating
more robust PCs.

Consideration of Variability: It’s crucial to acknowledge the inherent variability in
electricity demand profiles within each cluster. While averaging leads to a more uniform
profile, the underlying demand may exhibit significant fluctuations [25]. Recognizing and
understanding this variability is key to accurately representing the energy usage behaviors
of each cluster.

Linking to Household Characteristics: An integral part of creating PCs is linking
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Figure 3.5: Daily electricity demand profiles for four households chosen at random and the
average value of 656 households on 25th August 2015 illustrating variation among the households

[25)

them to specific dwelling and household characteristics as was illustrated in . This
connection not only provides valuable context but also facilitates a deeper understanding
of the factors influencing consumption behaviors. Such insights are invaluable for design-
ing targeted energy efficiency programs and informing policy decisions.

3.7 Conclusion

The literature review conducted in this thesis has revealed several significant gaps in
the existing literature regarding clustering techniques for energy consumers:

e Feature Engineering: There is a noticeable lack of detailed exploration on feature
engineering in the context of clustering for consumer energy usage. Most studies
primarily rely on load curves, with a limited variety exploring a diverse range of
features. Highlighting new and innovative features could significantly enhance clus-
tering effectiveness.

e Ensemble Clustering Algorithms: The literature shows a scarcity in the applica-
tion of ensemble clustering algorithms. These algorithms, known for their robustness
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and accuracy, could potentially offer more nuanced insights in consumer segmenta-
tion.

e Explainable Al in Profile Creation: There’s a gap in the utilization of explain-
able Al for creating consumer profiles. Explainable Al could provide transparency
and understandability in the clustering process, aiding in the adoption of these tech-
niques by non-expert stakeholders.
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Chapter 4

Methodology

4.1 Introduction

The research project’s methodology provides the essential framework that guides the
analytical structure, overseeing the investigation from hypothesis development to the ulti-
mate conclusion. This chapter offers an intricate elucidation of the methodology employed
in this thesis. This text discusses the methods and analytical approaches employed to
group energy consumers by utilizing machine learning algorithms.

The methodology in this chapter is carefully organized in a systematic and sequen-
tial manner, guaranteeing clarity and facilitating comprehension. Commencing with a
comprehensive outline, we present a lucid and succinct introduction to the methodology
to facilitate better understanding. Subsequently, we thoroughly examine each stage of
our methodology, providing extensive elaboration. This encompasses a comprehensive
depiction of each algorithm employed, along with a detailed examination of every metric
implicated.

Furthermore, the methodology is presented with meticulousness and clarity, making
it conducive to effortless replication and application in future research. We have metic-
ulously documented every aspect of the process, guaranteeing that anyone desiring to
replicate or expand upon our work can do so effortlessly and with utmost precision. The
level of detail in our research not only emphasizes its rigor but also enhances its value as
a resource that can be reused and adapted in the field.

4.2 Methodology Overview

This research systematically explores London’s households - energy consumers clus-
tering to find patterns and structures that can inform energy management strategies and
DR programs. The sequential steps and analytical methods that make up the research
process are described at the diagram
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Methodology

The quantitative research uses machine learning algorithms to analyze a large en-
ergy consumption dataset. The methodology begins with dataset acquisition, followed
by exploratory data analysis (EDA), feature engineering, and unsupervised learning for
clustering.

Feature engineering requires a foundational understanding of the data’s characteristics
from the EDA. In this crucial stage, domain knowledge is used to construct informative
features that may indicate energy consumption patterns. To reveal data structure for
clustering, this process involves selecting relevant variables, creating new composite fea-
tures, and transforming variables.

After feature engineering, unsupervised machine learning algorithms cluster the data.
Algorithms are chosen based on their compatibility with the dataset and their multidi-
mensional cluster detection methods. The algorithms used include Kmeans++, Fuzzy
K-means, and Hierarchical clustering.

Internal validity indices measure cluster structure fitness and evaluate clustering re-
sults. The Dunn index and other metrics assess cluster compactness and separation.
These measures compare algorithm performance across cluster numbers and algorithms.

The methodology determines the best clustering solution using evaluation criteria.
This solution is then analyzed to interpret the clusters in the context of energy consumer
behavior, advancing energy consumption analysis.

Our research methodology relies on a solid technical framework to efficiently handle
and analyze the large dataset. Our primary work environment is Google Colab, a cloud-
based platform with powerful computing and ease of use. The infrastructure supports
large-scale data processing and analysis.

Alongside Google Colab, Python was employed as the main programming language.
Known for its versatility and wide range of libraries, Python is particularly well-suited
for data analysis and machine learning tasks. Its intuitive syntax and rich ecosystem of
tools enable efficient handling of complex data operations, which are fundamental to our
study.

In conclusion, the methodology overview prepares the data for systematic and precise
analysis. Each step will be detailed in the following sections to explain the research
process.

4.3 Data description and EDA

This study used data from the London Data Store, a Greater London Author-
ity(GLA) initiative to make data public. The dataset "Smart-meter Energy Use Data
in London Households" contains half-hourly energy consumption readings from smart
meters in London households. This detailed dataset of energy usage patterns is essential
to our demand response management analysis.

Academic and research use of the dataset is free. To access the dataset, visit the Lon-
don Data Store website at London Datastore to download the data in various formats.
The open dataset shows the city’s commitment to public service transparency and inno-
vation.

67


https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households?fbclid=IwAR1H0_wGe8h-sgTUUKwL4B8GUixNBtLcKs8b-PqzupFA6IdHGO2737qLOOI

Methodology

Registration was optional, making data collection easy. Following data protection laws
like the GDPR, the dataset is anonymized to protect privacy. The anonymization process
ensures ethical research by preventing personal data from being linked to individuals.
Despite anonymity, researchers should follow ethical guidelines when handling data.

4.3.1 Dataset Overview

The dataset meticulously records the energy consumption of 5,567 Greater London
households, representing the city’s diverse population. The record covers November
2011 to February 2014, allowing for longitudinal analysis. Half-hourly energy con-
sumption readings result in a large dataset of 167 million rows. The dataset includes
several key variables:

e LCLid: Serves as the anonymized unique identifier for each household, essential for
discrete data analysis without compromising privacy.

e stdorToU (Standard or Time of Use): This categorizes the tariff the customer
is on.

e DateTime: This timestamp records the date and time when the energy consump-
tion was logged.

¢ KWH /hh (Kilowatt-Hours per Half-Hour): Represents the energy consumed
in kilowatt-hours during each half-hour interval.

Figure below presents a snapshot of the dataset in Excel, highlighting key variables
and their recorded values.

LCLid stdorToU DateTime KWH/hh (per half hour)
MACO000002 Std 12/1/2012 0:00 0.215
MACO000002 Std 12/1/2012 0:30 0.217
MACO000002 Std 12/1/2012 1:00 0.237
MACO000002 Std 12/1/2012 1:30 0.204
MAC000002 std 12/1/2012 2:00 0.243
MACO000002 Std 12/1/2012 2:30 0.199
MACO000002 Std 12/1/2012 3:00 0.237
MACO000002 Std 12/1/2012 3:30 0.125

Figure 4.2: Snapshot of the energy consumption dataset

The dataset identifies two primary tariff structures:

1. Standard Tariff (Std): A consistent rate applied across the board, regardless of
the time of day, offering a baseline for energy costs.

2. Dynamic Time of Use (dToU) Tariff: A variable pricing model experienced by
a subset of around 1,100 households, with costs fluctuating based on time-of-day
demand, aiming to incentivize consumption during off-peak hours. The dToU struc-
ture had three pricing levels—High, Low, and Normal-—communicated to customers
a day in advance.
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Those on the dToU tariff were informed of the rates via their Smart Meter In-Home
Display or by text message, aligning energy consumption with periods of high renewable
generation or to alleviate grid stress during peak demand.

4.3.2 Exploratory Data Analysis

Given the extensive size of the dataset, encompassing approximately 167 million rows
of half-hourly energy consumption data, a pragmatic approach was necessary to make
the dataset manageable for analysis with the available computational resources. The
constraints primarily arose from limitations in RAM and GPU power, which are critical
for processing and analyzing large datasets efficiently.

To address this, a strategic sampling method was employed. The dataset was reduced
to include only the first two weeks of December, October, April, and July from the year
2013. This selection was made based on several considerations:

1. Seasonal Representation: These months were chosen to represent different sea-
sons—winter, autumn, spring, and summer—ensuring that the sample captured
varying energy consumption patterns influenced by seasonal changes.

2. Peak and Off-Peak Periods: December and July typically represent peak energy
usage months due to heating and cooling needs, respectively, whereas April and
October are generally considered off-peak months. Including both peak and off-peak
periods allows for a more comprehensive analysis of energy consumption behaviors.

3. Data Diversity: Sampling from different months ensures a diverse range of data,
contributing to a more robust and generalizable analysis. This diversity is crucial
for developing machine learning models that are effective across various conditions.

4. Computational Feasibility: Limiting the dataset to specific weeks reduces the
computational load, making it feasible to process and analyze the data with the
available resources without compromising the integrity and representativeness of
the analysis.

Pandas was extensively used for data analysis and manipulation in Python. The
powerful Pandas data analysis toolkit makes structured data manipulation easy. Its nu-
merical table and time series manipulation data structures and operations make it ideal
for our comprehensive EDA. To gain preliminary insights into the sampled dataset’s con-
sumption patterns, mean, median, standard deviation, minimum, and maximum values
were calculated.

For in-depth analysis, the sampled data was critically assessed for integrity and accu-
racy. Key steps in this quality assessment process:

e Missing Values: The dataset was thoroughly scanned for missing values. Only
three missing data points were found, a negligible percentage of the dataset. These
missing values had little effect on the dataset’s representativeness, and imputation
could introduce bias, so they were dropped. This method preserves data authenticity
while minimizing analysis impact.
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e Outliers Detection: This study avoided outlier detection. This choice was based
on the dataset and research focus. Since the dataset represents real-world energy con-
sumption patterns, it was important to preserve its natural variability and extremes
to gain insights into unusual but potentially significant consumption behaviors.

The 2012 dataset was added to the data quality assessment. This inclusion was strate-
gic to enable a year-on-year energy consumption comparison to identify trends.The study
focused on households from both 2012 and 2013 datasets for consistency and accurate
comparisons. This method ensures that energy consumption trends are due to changes
over time rather than household variations.

4.4 Feature Engineering

Feature engineering is crucial to machine learning model development. Changing fea-
tures to make raw data analyzeable is the key. This step can improve a model by highlight-
ing key data patterns or removing noise and irrelevant details. We want to create features
that reveal data structures to help machine learning algorithms learn and predict.We
chose feature engineering over using load curves, which have dominated literature. To
explore new features that may be indicative, we went off the beaten path. This method
may yield valuable insights and a deeper understanding of the data, improving model
performance and predictive accuracy.

Normalization

Our study began feature engineering with normalization, which was crucial due to the
dataset’s diverse energy consumption values. Normalization scales data between 0 and 1,
ensuring that all features contribute equally to model performance. When dealing with
features of different scales, this process prevents larger features from dominating model
learning.

We normalized using standard scaling, also known as Z-score normalization.
Each feature’s mean is subtracted and divided by its standard deviation. Each feature
will have a zero mean and one standard deviation. Standard scaling standardises inde-
pendent variables, which is useful when dataset features have different units or scales. A
uniform scale ensures that each feature contributes proportionally to the final prediction,
improving the model’s ability to learn from data.

In this formula:

e 7 represents the standardized value after scaling.
e x is the original value of the feature.

e U is the mean of the feature.
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e o is the standard deviation of the feature.

After normalization, we developed and selected energy consumption-related features.

Median Consumption

The Median Consumption is a key feature of our machine learning model. A house-
hold’s median energy consumption over a period is represented by this feature. The
median is more robust than the mean and less sensitive to outliers. It is important in
energy consumption analysis, where usage spikes can skew the mean. The median is the
middle number in a sorted list. It is the average of the two middle numbers if the list has
even observations.

) Tnt1, if n is odd
Median(X) = pay (4.2)

, if n is even

o X ={xy,29,...,2,} represents a sorted set of observations.
e 1 is the number of observations in X.

e 1, represents the i-th value in X.

Average Peak Consumption

Another key feature engineered for our analysis is the Awverage Peak Consumption.
This feature represents the average energy usage during peak consumption periods for each
household. Peak periods are critical as they often correspond to the highest demand on the
energy grid, and understanding these periods is crucial for efficient energy management
and load balancing. The process for calculating this feature involves two primary steps:

1. Identification of Peak Periods: Peak periods were identified using the
‘find _peaks’ function from the ‘scipy.signal® library. This method involves a simple
comparison of neighboring values to determine the peaks in energy consumption.

2. Calculation of Average Peak Consumption: After identifying peak periods,
the average consumption during these times is calculated. This involves averaging
the energy consumption values (z;) at each peak, where N is the number of peaks.
The formula is given by:

ZiNzl Li
N

Average Peak Consumption =

(4.3)

Here, Zfil x; sums the energy consumption during peak periods, and dividing by
N yields the average.
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Peak Frequency in Each Time Slot

The fourth feature we focused on is Peak Frequency in Each Time Slot. This feature
quantifies the frequency of peak energy consumption within specific time slots throughout
the day for each household. The process for developing this feature involved several steps:

1. Time Slot Identification: Each record in the dataset was associated with a specific
time slot based on the time of day of the energy consumption. This step involved
extracting the time component from each timestamp.

2. Peak Counting per Time Slot: For each household, the number of peak energy
consumption occurrences within each time slot was counted.

3. Total Count Calculation: The total number of records for each household over
the analysis period was calculated.

4. Frequency Calculation: The frequency of peak consumption for each time slot
was computed by dividing the peak count by the total number of records, yielding
a frequency value for each time slot.

5. Matrix Formation: The frequencies were arranged in a matrix format, with each
row corresponding to a household and each column to a time slot. This matrix
offers a comprehensive view of peak consumption patterns throughout the day for
each household.

6. Data Cleaning: Frequencies were set to zero for time slots with no recorded peaks
to maintain consistency.

The Peak Frequency in Fach Time Slot feature provides valuable insights into the
temporal distribution of high-energy consumption events, aiding energy suppliers and
policymakers in understanding and managing energy demand dynamics throughout the
day.

Consumption Standard Deviation

The Consumption Standard Deviation is a key metric in our energy consumption anal-
ysis, measuring the variability in a household’s energy use over time.A high standard devi-
ation indicates irregular energy use, while a low value suggests consistency. The standard
deviation is mathematically expressed as:

N (e — )2
Standard Deviation = \/ Z’}\;x_z 1 ) (4.4)

In this equation, z; are the individual consumption values, p is the mean consumption,
and N is the number of observations. The formula calculates the square root of the average
squared deviations from the mean, using N — 1 in the denominator. The Pandas ’std’
function uses the N-1 denominator.
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Average Consumption by Time of Day

In our analysis, we further segmented the energy consumption data into different parts
of the day to understand the consumption patterns during specific timeframes. This
segmentation resulted in four key features:

Average Morning Consumption

Average Afternoon Consumption

Average Evening Consumption

Average Night Consumption

Each of these features is calculated by averaging the energy consumption readings
within the respective time slots for each household.

ZteT Tt

7 (4.5)

Average Time-of-Day Consumption =

In equation x; represents the energy consumption in time slot ¢, T" is the set of
time slots corresponding to morning, afternoon, evening, or night, and |7'| is the number
of slots in T. This calculation is repeated for each of the time segments to derive the
respective average consumption values.

Average Seasonal Consumption

Understanding how energy consumption varies with the seasons is crucial for our anal-
ysis. To this end, we divided the data into four distinct seasonal categories, resulting in
the creation of the following features:

e Average Winter Consumption

e Average Autumn Consumption

e Average Spring Consumption

e Average Summer Consumption

These seasonal features are computed by averaging the energy consumption readings

for each household across the respective seasons.

Data Filtering: It is important to note that during the feature creation process,
we encountered households that lacked data for one or more seasons. To maintain the
integrity and consistency of our analysis, these households were excluded from the dataset.
This decision was made to ensure that our seasonal consumption analysis is based on
complete and representative data for each household across all seasons.
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> des Td

£ (4.6)

Average Seasonal Consumption =

In equation [4.6] x4 represents the energy consumption on day d, S denotes the set of
days in the considered season, and |S| is the total number of days in S. This formula is
applied separately for each season to obtain the average consumption values.

Average Peak-Hours and Off-Peak-Hours Usage

In our energy consumption analysis, distinguishing between peak-hours and off-peak-
hours usage is essential to understand the dynamics of energy demand. Based on the study
referenced in [45], we define peak hours as the period from 16:00 to 20:00. Accordingly,
we have developed two features:

e Average Peak-Hours Usage
e Average Off-Peak-Hours Usage

The calculation of these features involves aggregating the energy consumption data within
the respective time frames and computing the average usage for each household.

x
ZteTpea t
Average Peak-Hours Usage = T k| (4.7)
peak

teTofffpeak mt

Average Off-Peak-Hours Usage = (4.8)
T,
Tos s pear]

In these equations, x; denotes the energy consumption at time ¢, T},cqx represents the
set of peak hours, Tprf_pear represents the off-peak hours, and |Tpeqr| and [T,z f—pear| are
the number of time slots in peak and off-peak periods, respectively.

Average Weekday and Weekend Usage

Understanding the difference in energy consumption patterns between weekdays and
weekends is vital for a comprehensive analysis of household energy usage. To this end,
we have developed two distinct features:

e Average Weekday Usage
e Average Weekend Usage

The calculation of these features involves segmenting the energy consumption data into
weekdays and weekends and then computing the average consumption for each segment
for every household.

deDweekday xd

Average Weekday Usage = (4.9)

’Dweekday |
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ZdeD

|Dweekend|

Tq

weekend

Average Weekend Usage = (4.10)

In these equations, x4 represents the energy consumption on day d, Dyeekday is the
set of all weekdays in the analysis period, Dycerend 18 the set of all weekend days, and
| Dueekday| and |Dieekena| are the total number of days in each set, respectively. These
formulas provide the average consumption values that are essential for understanding the
variations in household energy consumption across different days of the week.

Seasonal Usage Trend

To understand how energy consumption patterns change throughout the year, we
conducted a seasonal analysis. We calculated usage trends individually for each of the
four seasons - Spring, Summer, Autumn, and Winter.The process involved:

1. Aggregating daily energy consumption data for each household.

2. Creating a 'DayOfYear’ column to represent each day numerically within its respec-
tive season.

3. Using the LinearRegression model from scikit-learn to fit a linear model to the daily
usage data for each season.

4. Calculating the slope of the regression line for each season and household, indicating
consumption trends. A positive slope suggests an increase, while a negative slope
indicates a decrease.

The Seasonal Usage Trend is defined as the slope of the linear regression model fitted
to each season’s data. It quantifies the direction and magnitude of consumption trends
within specific seasons.

Autocorrelation Features

Autocorrelation is a statistical measure that helps in understanding the degree of simi-
larity between a time series and a lagged version of itself over successive time intervals. In
the context of energy consumption, it is crucial for identifying patterns and predictability
in usage, which are key factors in the effectiveness of DR strategies. We focused on two
specific autocorrelation features:

e Autocorrelation 7 days: This feature calculates the autocorrelation of energy
consumption with a lag of seven days, helping to understand weekly consumption
patterns.

e Autocorrelation 1 day: Similarly, this feature measures the autocorrelation with
a lag of one day.
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Households with high autocorrelation, especially over these time lags, are ideal candi-
dates for DR programs, as their energy usage patterns are more predictable and can be
managed more effectively. The autocorrelation is calculated using the formula:

i\i—llag (ajt _ :u) (xtJrlag - :u)

Zi\;(xt — p)?

Autocorrelation = (4.11)

In this equation, z; is the energy consumption at time ¢, p is the mean energy con-
sumption, N is the total number of observations, and lag is the lag period (1 day or 7
days). This calculation provides a numerical value indicating the strength and direction
of the relationship between the energy consumption and its lagged values.

Consumption Growth

As part of our energy consumption study, we assessed the change in consumption from
2012 to 2013, captured by the "Consumption Growth" feature. This metric quantifies the
year-over-year variation in average energy consumption for each household. The process
involved:

1. Calculating the average energy consumption for each household in both 2012 and
2013.

2. Determining the consumption growth by subtracting the 2012 average from the 2013
average for each household, representing the change in energy usage over the two
years.

3. Adding the consumption growth values to our features dataset as ’Consump-
tion Growth.’

4. Handling missing values by filling gaps with the median consumption growth to
ensure data consistency.

Consumption Growth = Average Consumptionyy; — Average Consumption,g,, (4.12)

Equation succinctly represents the calculation of Consumption Growth, quantifying
the year-over-year change in energy usage for each household.

The Consumption Growth feature is essential for understanding how energy usage pat-
terns evolve over time, benefiting energy providers and policymakers in demand planning
and forecasting.

Variability in Peak-Usage Times

The Variability in Peak-Usage Times quantifies the consistency of peak energy con-
sumption times for each household. High variability implies irregular peak times, while
low variability suggests a more consistent pattern. The calculation involved:
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1. Identification of Peak Times (in seconds):

Let Pj; represent the peak time in seconds for household i at peak j.

2. Calculation of Standard Deviation of Peak Times (Time Variability):

For each household 4, calculate the standard deviation (o;) of peak times (P;;) using
the formula:

-
o=\ N 1 > (P — p)?
K2 J:1

Where N; is the number of peak times for household 7 and p; is the mean peak time

for household 1.

3. Normalizing Standard Deviations:

Normalize the standard deviations (o;) across households by calculating the mean
(14,) and standard deviation (o,) of all household standard deviations:

1 M
NU—M;UZ'

1 M
7T\ M1 ZH (0 = #o)

Where: - M is the total number of households.
4. Handling Missing Data:

Fill gaps in the calculated standard deviations (o;) with zeros for households with
insufficient peak data.

The "Variability in Peak-Usage Times" feature, represented as "Time Variability (nor-
malized)," is defined as:

0; — Ho
Og

Time Variability (normalized) =

This equation quantifies the normalized variability in peak energy consumption times
for each household, allowing for consistency and comparison across households.

4.5 Machine Learning Algorithms

This section of the thesis describes the machine learning algorithms utilized in our
analysis. The choice of algorithms was guided by the nature of our dataset, the spe-
cific characteristics of our features, and the goals of the study. We employed a range
of algorithms, each offering unique strengths and suited for different aspects of energy
consumption analysis.
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Feature Transformation for Algorithm Application

To optimize our features for machine learning algorithms, we focused on transforming
the seasonal usage trend features that represent energy consumption patterns in each
season (Autumn, Spring, Summer, Winter). In this transformation:

e For each seasonal trend feature, we introduced two new columns: one for the sine
and another for the cosine of the trend value. These new columns represent the
cyclical components of the original trends.

e We retained the new sine and cosine columns while dropping the original linear trend
features.

This approach allows machine learning algorithms to better understand and utilize the
cyclical patterns in energy consumption data, leading to improved model performance and
interpretability.

4.5.1 K-Means-+-+

In our analysis, the K-Means++ clustering algorithm was implemented to segment
households based on energy consumption patterns. K-Means+-+ is an extension of the
standard K-Means algorithm, with an improved initialization method that enhances the
quality of the resulting clusters.

Algorithm Description

K-Means++ clustering algorithm seeks to partition the dataset into a predetermined
number of clusters, K, by minimizing the within-cluster variance. The algorithm involves
the following steps:

Sklearn Implementation

The implementation of K-Means+-+ in our study was carried out using the KMeans
class from the scikit-learn library in Python. We explored a range of values for K to
find the optimal number of clusters for our dataset.This range is chosen to be between 3
and 10 clusters, allowing for a comprehensive analysis of the dataset. The KMeans function
in sklearn is invoked as follows:

from sklearn.cluster import KMeans
kmeans_plusplus = KMeans(n_clusters=K, init=’k-means++’,

random_state=0, n_init=20)
kmeans_plusplus.fit(data)
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Algorithm 1 K-Means+-+ Clustering
procedure KMEANS+ -+ (Data, K)
: Initialize an empty set of centroids, C'

1:

2

3 Select the first centroid ¢; randomly from the data points

4: C«+Cu {Cl}

5. while |C] < K do

6 Select the next centroid ¢; using a weighted probability distribution
7

8

9

C+Cu {Cz}
end while
: repeat

10: for each point z in Data do
11: Find the nearest centroid c; € C
12: Assign x to cluster j
13: end for
14: for each cluster j in C' do
15: Calculate the new centroid c¢; as the mean of all points in cluster j
16: end for
17: until centroids do not change or maximum iterations are reached
18: return clusters and centroids

19: end procedure

In this implementation: - n_clusters represents the number of clusters, K. -
init=’k-means++’ specifies the use of the K-Means++ initialization method. -
random_state ensures reproducibility of results. - n_init denotes the number of times
the algorithm will run with different centroid seeds.

K
Objective Function = Z Z 2 — ] |2 (4.13)

=1 zeC;

Equation represents the objective function of K-Means++, where C; is the i
cluster, x is a data point in C;, and p; is the centroid of C;. The goal is to minimize this
objective function, which quantifies the within-cluster variance.

4.5.2 Fuzzy K-Means

Fuzzy K-Means, also known as Fuzzy C-Means (FCM), is an advanced clustering
technique used in our study to analyze energy consumption patterns. This algorithm
extends the idea of traditional K-Means clustering by allowing data points to belong to
multiple clusters with varying degrees of membership.

Algorithm Description

In Fuzzy K-Means clustering, each data point is assigned a membership level for each
cluster, ranging from 0 (no membership) to 1 (full membership). This approach contrasts
with the hard clustering of K-Means, where each point is assigned to only one cluster.
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Algorithm 2 Fuzzy K-Means Clustering

1: procedure FuzzyKMEANS(Data, K, m)

2 Initialize membership matrix U with random values between 0 and 1

3 Normalize each column of U to ensure that the sum of memberships for each point is 1
4 repeat

5: for each cluster &k from 1 to K do

6 Calculate the centroid cj as a weighted mean of all points

7 end for

8 for each point x; and each cluster k£ do

9 Calculate the membership u;; using the distance to centroid ¢y
10: Update u;, using the fuzziness parameter m
11: end for
12: Normalize each column of U to maintain the constraint on memberships
13: until the change in U is below a threshold or a maximum number of iterations is reached
14: return membership matrix U and centroids C

15: end procedure

Implementation Using Scikit-Fuzzy

The implementation of Fuzzy K-Means in our study was conducted using the
scikit-fuzzy library in Python [46]. The algorithm was applied across the same
range of cluster numbers as before [3,10], and for each configuration, cluster centers and
membership degrees were calculated.

import skfuzzy as fuzz

# Initialize a dictionary to store membership matrices
#for each cluster countmemberships_fuzzycmeans = {}

#Apply the Fuzzy C-Means algorithm
cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(
data.T, n_clusters, 2, error=0.005, maxiter=1000, init=None
)
# Determine the cluster assignments based
#on the highest membership value
cluster_assignments_fuzzy = np.argmax(u, axis=0)

In the context of this implementation: - The ‘fuzz.cluster.cmeans‘ function is the cen-
tral component, where ‘data_df.T* is the transposed data frame input. - The parameter
‘n_clusters’ represents the number of clusters K. - The fuzziness coefficient is set to 2,
controlling the degree of cluster fuzziness. - The ‘error parameter and ‘maxiter® define
the stopping criteria of the algorithm. - The ‘init’ parameter is set to ‘None‘, allowing
the algorithm to select initial cluster centers automatically.

4.5.3 Hierarchical Clustering

Agglomerative Hierarchical Clustering is a technique used in our study to uncover the
hierarchical structure within the energy consumption dataset. This method is particularly
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useful for its ability to provide a detailed view of the data’s clustering at various levels of
granularity.

Mathematical Basis of the Algorithm

The Agglomerative Hierarchical Clustering algorithm operates on the principle of it-
eratively merging clusters based on a certain measure of dissimilarity or distance between
them. The process starts with each data point as a single cluster and then successively
merges clusters until all points are merged into a single cluster.

Distance Metrics and Linkage Criteria The key to this algorithm lies in the choice of
distance metric and linkage criterion:

e Distance Metric: This defines the distance between data points. Common metrics
include Euclidean distance, Manhattan distance, etc.

e Linkage Criterion: This determines the distance between clusters. The Ward
method, used in our study, minimizes the total within-cluster variance at each merg-
ing step.

Mathematically, the Ward linkage criterion minimizes the sum of squared differences
within all clusters. It is a variance-minimizing approach and is given by:

N N N
ASSw) =Y llzi — poverl P =Y llzs — pell> = Y llai — perl P (4.14)
i=1 i=1 i=1

where A(SSy) is the increase in the total within-cluster sum of squares as a result of
merging cluster C' and C’, z; are the data points, and p denotes the mean of the points
in a cluster.

Sklearn Implementation of Hierarchical Clustering

The implementation of Hierarchical Clustering in our study was conducted using the
AgglomerativeClustering class from the scikit-learn library in Python. To explore
the data’s inherent structure, we applied the algorithm across a range of cluster numbers,
varying from 3 to 11. This range was chosen to comprehensively analyze the dataset and
understand the natural groupings within it.

In our implementation, we specifically used the Ward linkage method within the
AgglomerativeClustering class, as it minimizes the total within-cluster variance,
thereby creating more homogenous clusters. The AgglomerativeClustering function in
sklearn is invoked as follows:

from sklearn.cluster import AgglomerativeClustering
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# Applying Agglomerative Clustering with the Ward linkage method
hierarchical_ward = AgglomerativeClustering(n_clusters=K,
linkage=’ward’)hierarchical_ward.fit(data)

In this implementation: - n_clusters represents the number of clusters, K. -
linkage=’ward’ specifies the use of the Ward linkage method. - The fit method applies
the algorithm to the data, executing the agglomerative clustering process.

This approach to Hierarchical Clustering using the Ward method allowed us to sys-
tematically reveal and analyze the layered structure of household energy consumption
behaviors, enhancing our understanding of various consumer groups and patterns.

4.5.4 Self-Organizing Maps (SOMs)

Self-Organizing Maps (SOMs) represent another significant machine learning algorithm
employed in our analysis. SOMs are a type of unsupervised learning algorithm used for
clustering and visualizing high-dimensional data in a lower-dimensional space, typically
two dimensions.

Algorithm Overview

SOMs operate by mapping the input data onto a grid of neurons, where each neuron
has a position in the grid and a weight vector of the same dimensionality as the input
data. The training process involves adjusting these weights to preserve the topological
properties of the input space, leading to a form of dimensionality reduction. The key
steps in the SOM algorithm include:

Algorithm 3 Self-Organizing Maps (SOMs)
procedure SELFORGANIZINGMAP(Data, grid _size, iterations)

1:
2 Initialize a grid of neurons with random weights

3 for each iteration do

4: for each input vector v in Data do

5: Find the Best Matching Unit (BMU) on the grid
6 Determine the neighborhood of the BMU

7 for each neighbor n of BMU do

8 Adjust the weights of n to be more like v

9

: end for
10: end for
11: Decrease the neighborhood radius
12: Decrease the learning rate
13: end for
14: return trained grid

15: end procedure

Implementation Using MiniSom

In our study, SOMs were implemented using the ‘MiniSom* library in Python [47].
The algorithm was applied to cluster energy consumption data, exploring various config-
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urations to identify meaningful groupings:

from minisom import MiniSom

# Define function to train SOM
def train_som(som_shape, data):
som = MiniSom(som_shape[0], som_shape[1], data.shapel[1],
sigma=0.9, learning_rate=1)
som.train_random(data.values, 1000)
winner_coordinates = np.array([som.winner(x) for x
in data.values]).T
som_cluster_index = np.ravel_multi_index(winner_coordinates,
som_shape)
return som_cluster_index

# Example of training a SOM

som_shape = (number_of_clusters, 1) # Example shape
som_cluster_index = train_som(som_shape, data)

In this implementation, we trained SOMs of different shapes and configurations, ex-
perimenting with various numbers of clusters to best capture the patterns in our dataset.
The ‘train_som'‘ function defines the training process, including grid size (determined by
‘som_shape’), learning parameters, and the training algorithm.

4.5.5 BIRCH Clustering

Our analysis utilizes the BIRCH (Balanced Iterative Reducing and Clustering using
Hierarchies) algorithm, which is especially adept at clustering large datasets. BIRCH
incrementally processes data, efficiently constructing a hierarchical tree structure.

Algorithm Overview

BIRCH is ideal for large datasets due to its incremental and memory-efficient approach.
The algorithm’s process involves several key steps:

Implementation Using Scikit-Learn

For implementing BIRCH, we used the Birch class from the scikit-learn library.
We configured the BIRCH parameters to align with our dataset’s characteristics, focusing
on energy consumption patterns:

from sklearn.cluster import Birch

# Configuration of the BIRCH algorithm
birch_model = Birch(n_clusters=number_of_clusters,
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Algorithm 4 BIRCH Clustering
1: procedure BIRCH(Data, threshold, branching factor)
2 Initialize a Clustering Feature (CF) Tree with given threshold and branching factor
3 for each data point d in Data do
4: Insert d into the CF Tree
5: if any CF Tree node exceeds the threshold then
6
7
8
9

Split the node according to the branching factor
end if
Update the tree structure to reflect the new data
: end for
10: Optionally perform global clustering on the leaf nodes
11: Handle outliers and noise in the dataset
12: return clusters and updated CF Tree
13: end procedure

threshold=0.5, branching_factor=50)
birch_model.fit(data)

In this configuration: - n_clusters specifies the number of clusters. - threshold
determines the radius of the sub-cluster obtained in the leaf node of the CF Tree. -
branching_factor defines the number of sub-clusters a node in the tree can have.

4.5.6 Gaussian Mixture Models (GMMs)

Gaussian Mixture Models (GMMSs) are employed in our analysis to cluster household
energy consumption data. GMMs are based on the assumption that all data points are
generated from a mixture of a finite number of Gaussian distributions with unknown
parameters.

Mathematical Foundation of GMMs

The GMM represents the data using a probabilistic model where each component
corresponds to a Gaussian distribution. Mathematically, the probability of observing a
data point x is given by:

P(z) = Z N (2| s, 50) (4.15)

In this equation: - K is the number of Gaussian distributions (clusters). - m; is the
weight of the i Gaussian in the mixture. - N (z|u;, ;) is the i Gaussian distribution
with mean p; and covariance matrix ¥;. - P(x) is the probability density of x under the
model.
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Expectation-Maximization in GMMs

The parameters of GMMs (m;, 13, ;) are typically estimated using the Expectation-
Maximization (EM) algorithm, which iteratively applies the following steps:

e Expectation (E) Step: Calculate the probability of each data point belonging to
each cluster.

e Maximization (M) Step: Update the parameters (m;, i, %;) to maximize the
likelihood of the data given these probabilities.

Algorithm 5 Clustering with Gaussian Mixture Models

1: procedure CLUSTERGMM (Data, K)

2 Initialize the parameters m;, p;, >; for each Gaussian ¢ in the mixture

3 repeat

4 Expectation Step:

5: for each data point x in Data do

6 Calculate the probability of x belonging to each Gaussian

7 Assign x to the cluster with the highest probability

8 end for

9 Mazimization Step:
10: for each cluster do
11: Recalculate the mean p and covariance ¥ based on assigned data points
12: Update the weight 7 of the cluster
13: end for
14: until cluster assignments do not change or a maximum number of iterations is reached
15: return cluster assignments and updated parameters m;, p;, 2;

16: end procedure

Implementation Using Scikit-Learn

We implemented GMMs in our study using the GaussianMixture class from the
scikit-learn library. The algorithm was configured to explore a range of clusters, de-
termining the best fit for our dataset:

from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components=n_clusters, random_state=0)
gmm.fit(data)

cluster_assignments_gmm = gmm.predict(data)

labels_gmm[n_clusters] = cluster_assignments_gmm

This process involved estimating the GMM parameters for different numbers of clusters
(specified by n_components) and assigning data points to clusters based on the fitted
model.
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The GMM’s probabilistic approach and flexibility in modeling complex data distribu-
tions made it a valuable tool for identifying and understanding the patterns in household
energy consumption.

4.5.7 Spectral Clustering

Spectral Clustering, used in our analysis, is particularly adept at identifying complex
structures in data that are not necessarily linearly separable. This method involves trans-
forming the data into a space where clusters are more apparent.

Algorithm Overview

The foundation of Spectral Clustering lies in graph theory and linear algebra. Its
process can be described as follows:

Algorithm 6 Spectral Clustering

1: Input: Data set S = {z;}]"; € RP, number of clusters k, affinity parameter o
2: Output: Cluster labels for the data set

function SPECTRALCLUSTERING(S, k, o)
Form the affinity matrix A € R™*™ defined by:

3:

4:

5: Ajj = exp (7%> for 7 # j, and A;; = 0 otherwise
6 Construct the diagonal matrix D with D;; = > y Ajj

7
8

Compute the normalized Laplacian L = D~1/24D—1/2
Perform eigenvalue decomposition on L to obtain the k smallest eigenvalues and their
corresponding eigenvectors

9: Form matrix X by stacking the eigenvectors associated with the k£ smallest eigenvalues
10: Normalize the rows of X to have unit length to obtain matrix Y

11: Apply K-Means clustering on the rows of Y to identify & clusters

12: Assign each original point x; to a cluster based on the K-Means result

13: end function

Implementation Using Scikit-Learn

The practical implementation of Spectral Clustering was done using the SpectralClustering
class from Python’s scikit-learn library. Our approach included varying the number
of clusters to best fit the energy consumption data:

from sklearn.cluster import SpectralClustering

spectral = SpectralClustering(n_clusters=n_clusters,
affinity=’nearest_neighbors’,
n_neighbors=15,
assign_labels="kmeans",
random_state=42)

cluster_assignments_spectral = spectral.fit_predict(data)
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labels_spectral [n_clusters] = cluster_assignments_spectral

In this setup, the affinity parameter determines how the affinity matrix is computed,
and n_neighbors is used in the nearest neighbor approach for affinity calculation. The
assign_labels parameter, set to 'kmeans’, indicates the method used for clustering in
the reduced eigenvector space.

4.5.8 Ensemble Clustering

Ensemble Clustering received limited attention in the literature.We have chosen to
investigate this approach and conduct a comparative analysis with the other unsuper-
vised algorithms used in this study. Jain (2010) [48] classifies the techniques for creating
multiple fundamental partitions for ensemble clustering into three distinct approaches:

(i) Using Different Clustering Algorithms: This approach involves applying var-
ious clustering algorithms to the same dataset. Each algorithm, due to its unique
mechanism and principles, can provide different clustering results, contributing to
the ensemble’s diversity.

(ii) Applying the Same Clustering Algorithm with Different Initializations:
In this method, the same clustering algorithm is run multiple times on the dataset,
but with different initial conditions or parameters each time. This variability in
initialization can lead to different clustering outcomes, which can be combined in
the ensemble process.

(iii) Running Clustering Algorithms on Different Feature Spaces: This tech-
nique employs the same or different clustering algorithms on varied feature spaces of
the dataset. By transforming or selecting different subsets of features, the algorithm
can capture different aspects of the data, leading to diverse clustering solutions.

We followed Jain’s first suggestion and used different clustering algorithms to advance
our research. Our feature matrix was clustered using KMeans--+, Hierarchical, and Birch.
We then created a similarity matrix from these algorithms. We used this matrix to perform
hierarchical clustering again and get an ensemble clustering result. Our methodology is
described more explicitly below:

4.6 Evaluation Metrics

Evaluation metrics for clustering are crucial to understanding algorithm effectiveness.
Internal and external validation methods exist. Internal validation metrics evaluate clus-
tering structures without external data. However, external validation metrics require
ground truth labels to assess clustering accuracy.

We use internal validation metrics because our study lacks ground truth data, as in
unsupervised learning. These metrics are essential because they reveal the clustering
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Algorithm 7 Ensemble Clustering Approach

1: Input: Data points, D

2: Output: Cluster labels, cluster labels

3: Initialize n < number of data points in D

4: Initialize co-association matrix co association matriz as a zero matrix of size n X n
5: for each clustering algorithm (kmeans + +, hierarchical, birch) do

6: Generate labels

7 for : < 1ton do

8: for j < 1tondo

9: if labels[i] == labels[j] then

10: co_association__matriz[i][j] < co_association _matriz[i][j] + 1
11: end if

12: end for

13: end for
14: end for

15: Normalize co assoctation matrixz by dividing each element by 3
16: Compute distance _matriz < 1 — co_association _matrix

17: Convert distance _matrix to condensed form condensed distance matrix
18: Perform hierarchical clustering on condensed distance matriz using ’average’ linkage

method
19: Decide on the number of clusters, num _clusters < 6
20: Obtain final cluster labels cluster labels using fcluster
21: return cluster labels

process intrinsically. They analyze the dataset and cluster compactness and separation
to determine clustering formation goodness.

Internal validation metrics help compare clustering algorithms. They help us rank
algorithms based on their ability to find meaningful data structures. By using multiple
metrics, we can assess each algorithm’s clustering quality strengths and weaknesses.

The following internal validation metrics were used to compare clustering algorithm
performance:

e Silhouette Score (SI)

e Davies-Bouldin Score (DB)

e Calinski-Harabasz Score (CH)

e Dunn Index (DI)

Each of these metrics captures a different aspect of clustering quality, such as cluster
cohesion, separation, and overall structure. The subsequent subsections will elaborate

on the mathematical formulation of each metric and the rationale behind its use in our
evaluation framework.

4.6.1 Silhouette Score

The Silhouette Score is a widely used internal metric for measuring the quality of a
clustering. For each data point, the score is a comparative measure of how similar the
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point is to its own cluster (cohesion) versus other clusters (separation). The score for a
single data point 7 is calculated as follows:

b~ a()
) = ac{a®), b(0)} (4.16)

where:

e a(i) is the mean intra-cluster distance, or the average distance between the /" data
point and all other points in its own cluster.

e (i) is the mean nearest-cluster distance, or the smallest mean distance from the 7"
data point to points in a different cluster, minimized over all clusters.

The silhouette score for the entire dataset is the mean of all individual silhouette scores
s(7), and it ranges from -1 to 1. A high silhouette score close to 1 indicates that the data
point is very similar to other points in its cluster and dissimilar to points of other clusters,
suggesting that the clusters are well apart from each other and clearly defined. Conversely,
a silhouette score close to -1 implies that the point is closer to points of neighboring clusters
than to points in its own cluster, indicating poor clustering. Therefore, when comparing
clustering algorithms, higher average silhouette scores across the dataset typically signify
superior clustering performance.

4.6.2 Davies-Bouldin Score

The Davies-Bouldin Score (DB) is an internal evaluation metric that captures the
average "similarity" between each cluster and its most closely adjacent cluster. Here,
"similarity" is a function that compares the within-cluster cohesion against the between-
cluster separation. The Davies-Bouldin Score is mathematically expressed as:

Tk Z " {UJZ)} (4.17)

where:

e k represents the number of clusters.

e 0; denotes the average distance of all points in cluster ¢ to their centroid ¢;, which
measures the extent of dispersion within the cluster.

e d(c;, ¢ ) is the distance between centroids ¢; and ¢;, signifying the separation between
clusters.

The DB score quantifies the ratio of the sum of within-cluster scatter to the separation
between clusters. A lower Davies-Bouldin Score indicates a better clustering scheme where
clusters are densely packed and well separated from each other. Thus, when assessing
clustering results, one seeks to minimize the DB score as an objective criterion for quality.
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4.6.3 Calinski-Harabasz Score

The Calinski-Harabasz Score, also known as the Variance Ratio Criterion, evaluates
cluster validity based on the ratio of between-cluster variance to within-cluster variance.
A higher ratio corresponds to clusters with better definition, that is, clusters that are
more compact and well-separated from each other. The score is formally defined by the
following equation:

H prm
¢ TI'(Wk) %

Tr(By) N-—k
e (4.18)

In this equation:

e Tr(By) is the trace of the between-group dispersion matrix and measures the dis-
persion between the clusters. It is computed as the sum of squared distances from
each cluster centroid to the overall centroid of the data, scaled by the size of the
respective clusters.

e Tr(Wy) is the trace of the within-cluster dispersion matrix, which quantifies the
dispersion of data points within each cluster. It is the sum of squared distances
from each data point to its respective cluster centroid.

e N is the total number of data points.

e L is the number of clusters.

A high Calinski-Harabasz Score indicates that the clusters are dense and well-
separated, which generally represents a better clustering structure. Consequently, when
comparing different clustering results, models with higher Calinski-Harabasz Scores are
preferred as they suggest more clearly defined clusters.

4.6.4 Dunn Index

The Dunn Index is an internal validation metric that assesses the quality of clustering
by simultaneously considering the compactness within clusters and the separation between
clusters. It is especially valuable for identifying sets of clusters that are both cohesive and
distinct from each other. The Dunn Index for a set of clusters is mathematically defined
as:

Dunn = pin { {0 (119)

1<i<k | 1<j<ki#i | max;<j<p{diam(l)}

In this formula:

e d(i,j) represents the inter-cluster distance, which is the distance between clusters i
and j. This distance can be measured in various ways, such as the distance between
cluster centroids or the closest points of the clusters.
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e diam(l) denotes the intra-cluster diameter, or the largest distance between any two
points within cluster {. This measure reflects the spread or size of the cluster.

The Dunn Index is the ratio of the smallest inter-cluster distance to the largest intra-
cluster diameter across all clusters. The goal is to maximize this ratio; thus, a higher
Dunn Index is indicative of a clustering structure where the clusters are compact (small
diameters) and well-separated (large inter-cluster distances). It is a direct measure of the
overall clustering validity, with higher values suggesting a more robust partitioning of the
data into distinct groups.

Dunn Index Calculation

The Dunn Index was calculated using a custom Python function, due to the absence
of its implementation in scikit-learn. The code listing below demonstrates the compu-
tation of the Dunn Index:

from scipy.spatial.distance import cdist
from itertools import combinations
import numpy as np

def dunn(data, labels):

unique_labels = np.unique(labels)

# Compute inter-cluster distances

min_intercluster_distance = float(’inf?’)

for cluster_i, cluster_j in combinations(unique_labels, 2):
data_i = data[labels cluster_i].to_numpy ()
data_j data[labels cluster_j].to_numpy ()
distances = cdist(data_i, data_j, ’euclidean’)
min_distance = distances.min ()
if min_distance < min_intercluster_distance:

min_intercluster_distance = min_distance

# Compute intra-cluster diameters

max_intracluster_diameter = 0
for cluster in unique_labels:
data_cluster = datal[labels == cluster].to_numpy ()
distances = cdist(data_cluster, data_cluster, ’euclidean’)
max_distance = distances.max ()
if max_distance > max_intracluster_diameter:
max_intracluster_diameter = max_distance

return min_intercluster_distance / max_intracluster_diameter

Listing 4.1: Python code for computing the Dunn Index
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Chapter 5

Results

5.1 Introduction

We test several clustering algorithms on energy consumption data in this chapter. We
used cluster numbers from 3 to 10 to rigorously test and compare each algorithm’s ability
to reveal energy usage patterns.

Our evaluation relies on carefully selected metrics to quantify these algorithms’ energy
data clustering performance. This method finds the most efficient algorithm and illumi-
nates clustering configurations.

How well our analysis fits explainable Al principles is crucial. In the rapidly evolving
field of artificial intelligence, understanding and trusting AI model decision-making is
crucial. Our study follows this philosophy by presenting clustering results and explaining
their rationale. Energy stakeholders who make decisions using Al-driven insights need
this transparency.

Businesses, especially energy providers, need a manageable number of customer profiles
to implement demand-response policies. Here, granularity and manageability must be
balanced. A 6-cluster solution analyzed using the Ensemble Clustering algorithm is a
viable and practical option. This focused approach makes clusters statistically sound,
meaningful, and actionable for business.

We go beyond technical analysis of the 6-cluster model using ensemble clustering.
It aims to explain and apply energy clustering Al. Each cluster is dissected to reveal
its unique traits and behavior. These insights help energy providers improve demand-
response policies, energy distribution, and customer engagement and satisfaction.

In conclusion, this chapter connects advanced clustering methods to energy manage-
ment applications. It emphasizes the technical sophistication of algorithms and the impor-
tance of explainable Al in turning data-driven insights into energy management strategies.

5.2 Performance of the Algorithms

In this section, we present the performance evaluation of the implemented clustering
algorithms through the use of Cluster Validity Indices (CVIs). The following subsections
display and discuss the graphical representations of these indices for each clustering algo-
rithm.
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We will first examine the silhouette score of the algorithms. As was previously
mentioned, clustering is improved as the silhouette score increases.The silhouette scores
for clusters 3 through 9 for each of our testing algorithms are presented in the diagram:
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Figure 5.1: Comparison of Silhouette Scores across Clustering Algorithms for a Range of 3 to 9
Clusters

From the graph, key insights include:

e Low Performers: 'GMMs’, 'Spectral’, and 'Fuzzy C-Means’ exhibit the lowest
silhouette scores.

e Stable Algorithms: 'KMeans++’ Ensemble’ and "Hierarchical’ maintain stable
performance across varying cluster numbers, suggesting robustness, while "SOMs’
and ’Birch’ are more unstable.

¢ Ensemble Method: The 'Ensemble’ demonstrates steady results, underscoring its
utility as a reliable clustering approach. However, for a small number of clusters it
does not outperform the best-performing individual algorithms.

We should add here that it is a logical outcome for silhouette scores to generally
decrease as the number of clusters increases due to the inherent increase in within-cluster
dispersion and decrease in between-cluster separation.

Next CVI we will examine is the Davies-Bouldin and as we mentioned before a lower
DB score indicates better clustering results. Figure [5.2] depicts the score of each algorithm
for the range [3,9] of number of clusters again:

93



Results

Davies-Bouldin Score
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Figure 5.2: DB for different clustering algorithms across a range of cluster numbers.

Observations from the graph are as follows:

Low Performers: 'Fuzzy C-Means’, 'GMMs’, and 'SOMs’. It is noteworthy that
Fuzzy C-Means’s DB score appears to increase linearly as the number of clusters
increases.

Good Performers: Birch now demonstrates good scores. The low Davies-Bouldin
Score for BIRCH indicates that, despite the lack of cohesion within clusters (as
reflected by the low Silhouette Score), the algorithm effectively separates the clusters
from each other. In essence, BIRCH might be generating clusters that are not tight
or cohesive (hence the low Silhouette Score), but are well-separated from each other
(resulting in a low Davies-Bouldin Score).

Ensemble Method: Overall steady behavior and similar to most of the other good-
performing algorithms.

Moving forward we will examine the Calinski-Harabasz CVI. Below [5.3| are the
clustering results:
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Figure 5.3: Calinski-Harabasz Score for different clustering algorithms across a range of cluster
numbers.

The graph reveals several noteworthy observations:

e Top Performer: 'KMeans++’ manages to maintain the highest scores across the
range of clusters.

e Low Performer: 'GMMs’ exhibit the lowest performance again indicating that
they were not very suitable for our dataset.

Lastly, we examine the Dunn Index scores in [5.4) and we conclude the following:

e Fluctuating Performance: No single algorithm consistently maintains a high
Dunn Index across the range of cluster numbers. Instead, each algorithm exhibits
significant variability in performance as the number of clusters changes. Especially,
Ensemble Clustering has a spike in 6 clusters.

The overall instability in Dunn Index scores across the algorithms and number of
clusters underscores the complex nature of clustering. It suggests that there is not a
one-size-fits-all approach to clustering and that algorithm performance can significantly
depend on the chosen number of clusters. Furthermore, it highlights the importance of
selecting the appropriate number of clusters for each algorithm and dataset to optimize
clustering outcomes. The graph serves as a reminder of the need to combine multiple
validity indices to comprehensively assess and understand the behavior of different clus-
tering algorithms.
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Figure 5.4: Dunn Index for different clustering algorithms across a range of cluster numbers.

The above graphs demonstrate a fundamental cluster analysis principle: different
algorithms are optimized for different clustering scenarios and perform better
with specific cluster counts. The optimal number of clusters for practical applications
like utility DR is often determined by business considerations rather than unsupervised
learning metrics. Clusters may match operational segments, customer categorizations, or
strategic initiatives for utilities. After determining the desired number of clusters based
on business needs, utility companies can use performance graphs like the one provided
to choose the clustering algorithm with the best results. This ensures that the algorithm
selected delivers actionable insights that match business goals and data structure.

Within the scope of this analysis, We chose a six-cluster solution as a prime example
for this analysis. This cluster number will be used to define Profile Classes (PCs) that
best represent the dataset’s structure in DR strategies.

More specifically the CVIs results for 6 clusters are the following:

Table 5.1: Clustering Algorithm Performance Metrics for 6 Clusters

Sil Score | DB Score | CH Score | Dunn Index
K-Means+-+ 0.1594 1.5856 1,180.0197 0.0204
Fuzzy C-means 0.0580 4.0677 748.0819 0.0114
Hierarchical (Ward) 0.1627 1.5791 995.3937 0.0234
SOMs 0.1798 2.1524 831.4561 0.0115
BIRCH 0.1039 1.6358 925.4142 0.0105
GMMs 0.0095 2.3987 701.0690 0.0159
Spectral 0.0592 1.9206 834.7180 0.0093
Ensemble 0.1722 1.5660 1,056.0420 0.0275
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The exact results-table for other number of clusters can be found in the Appendix in

table [A 1l

According to the table the best performorming algorithm for 6 clusters is En-
semble Clustering which has the top score in 2 out of 4 CVIs and overall very close
performance with the top-perfromer in the other 2 CVIs. Given its consistent and superior
performance across multiple metrics, Ensemble Clustering is selected as the algorithm
of choice for our cluster analysis.

5.3 Cluster Analysis Using Ensemble Clustering

In this section, we present a detailed analysis of the clusters obtained through the
Ensemble algorithm. We begin by examining the sizes of the clusters, which provide initial
insight into the distribution of data points among the identified groups. Subsequently, we
utilize visualization techniques such as 3D plots, Principal Component Analysis (PCA),
and t-Distributed Stochastic Neighbor Embedding (t-SNE) to facilitate a more intuitive
understanding of the clustering results.

Cluster Sizes

The distribution of data points among the clusters is a fundamental characteristic that
can shed light on the underlying structure of the data. The sizes of the clusters obtained
from the Ensemble algorithm are shown in [5.5}

Cluster Sizes
3107
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Count

1123

1000
738

500 ~

Cluster 1D

Figure 5.5: Cluster Sizes

The cluster size bar chart shows a large data point distribution variance.Cluster 4
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stands out with a notably high count of 3107 consumers, suggesting it represents the
most common energy usage behavior among the dataset. In stark contrast, Clusters 3
and 5 contain markedly fewer consumers, with just 5 and 12 respectively, indicating these
clusters represent niche or atypical consumption patterns. Clusters 1, 2, and 6 exhibit
more moderate sizes, with Cluster 2 being the second most populous cluster, containing
1123 consumers. The substantial difference in cluster sizes suggests a diverse range of
energy usage behaviors, with a dominant pattern captured by Cluster 4 and more unique
or irregular profiles characterized by Clusters 3 and 5.

Visualizing Clustering Results

We will display clustering results using multiple visualization methods in the next
section. Principal Component Analysis (PCA) is a highly regarded statistical tech-
nique for reducing dimensionality. A large dataset of potentially correlated variables is
transformed into a structured set of linearly uncorrelated principal components by PCA
[49]. This method reduces data dimensionality, allowing a two-dimensional or three-
dimensional visualization that captures most of its variance. Our clustering results are
presented in a two-dimensional PCA visualization in figure [5.6

Ensemble Clustering with PCA

® Clusterl
© Cluster2
Cluster 3
® Cluster 4
Cluster 5
Cluster 6

259

20 4

15 A

10

Principal Component 2

T T T T T
0 5 10 15 20
Principal Component 1

Figure 5.6: Clusters visualisation with PCA

We also created a 3D plot to visualize our clustering analysis and explore data rela-
tionships. We chose 'Consumption Growth’ for the z-axis, ’avg peak consumption’ for
the y-axis, and 'median__consumption’ for the x-axis. These characteristics were chosen
to describe consumption patterns. Other analyses may prioritize different features based
on research goals. The 3D visualization shows how data clusters around these features in

il
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3D Cluster Visualization
Clusters
e 1

2
3
4
5
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Consumption Growth

Figure 5.7: 3D Clusters visualisation

We concluded our visualization with t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) for its effectiveness in high-dimensional data visualization. t-SNE allows
us to observe data structure in a reduced two-dimensional space, revealing clusters and
patterns that are not immediately apparent in higher dimensions. Employing the follow-
ing parameters: perplexity set to 30, iteration count at 300, and a fixed random state for
reproducibility, we performed t-SNE on the scaled dataset and can be seen in figure [5.8]
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Ensemble Clustering with t-SNE
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Figure 5.8: Clusters visualisation with t-SNE

5.3.1 Load shape analysis

As the next step in our analysis, we will present the load shapes characteristic of
(RLPs) for
all households within a given cluster. By aggregating the individual load curves of the
households and computing the median RLP for each cluster, we obtain a cluster-specific
load shape. It provides a visual summary of the typical energy usage behavior within each
cluster, which can be a valuable asset for designing targeted DR strategies and tailoring
energy services to meet specific customer needs. The figures [5.9]5.10[5.1TI/5.12|/5.13|[5.14]

each cluster. These load shapes encapsulate the representative load profiles
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Figure 5.9: Individual and Mean Residential Load Profiles for Cluster 1
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Load Shapes for Cluster 2
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Figure 5.10: Individual and Mean Residential Load Profiles for Cluster 2
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Figure 5.11: Individual and Mean Residential Load Profiles for Cluster 3
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Figure 5.12: Individual and Mean Residential Load Profiles for Cluster 4
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Load Shapes for Cluster 5
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Figure 5.13: Individual and Mean Residential Load Profiles for Cluster 5

Load Shapes for Cluster 6
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Figure 5.14: Individual and Mean Residential Load Profiles for Cluster 6
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We also plot the representative load profile for all clusters in one diagram [5.15|so that
the scales of consumption would be comparable among clusters:
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Figure 5.15: Cluster Representatives Load Profiles

It is evident that the clustering algorithms have partitioned the consumers into distinct
levels of consumption:

Clusters 1 (Blue Line) and 4 (Red Line): These clusters show the lowest consump-
tion levels among all, indicating either energy-efficient households or small-scale
consumers.

Cluster 2 (Orange Line): Presents a moderate consumption level.

Cluster 3 (Green Line): Shows zero consumption, indicated by the flat line at the
bottom of the chart. This could represent unoccupied properties(vacant homes or
unused office spaces).

Cluster 5 (Purple Line): This cluster stands out with the highest energy consump-
tion throughout the day, which could represent large commercial spaces or industrial
operations with high energy demands.

Cluster 6 (Brown Line): Displays consistently high consumption with less variabil-
ity than Cluster 5. This pattern might be associated with high-occupancy residential
buildings or businesses with steady energy needs.

The above plots do not exhibit any discernible patterns. As stated by [25], nor-
malization is crucial in order to uncover more distinct household patterns.Thus, we
will now present the updated, refined normalized load shapes for each cluster in
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Load Shapes for Cluster 1
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Figure 5.16: Cluster 1 Load Shapes with normalized values
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Figure 5.17: Cluster 2 Load Shapes with normalized values
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Figure 5.18: Cluster 3 Load Shapes with normalized values
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Load Shapes for Cluster 4
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Figure 5.19: Cluster 4 Load Shapes with normalized values
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Figure 5.20: Cluster 5 Load Shapes with normalized values

Load Shapes for Cluster 6
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Figure 5.21: Cluster 6 Load Shapes with normalized values
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Average Consumption

And the centroids of the normalized values are depicted in [5.22
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Figure 5.22: Cluster Representatives Normalized Load Profiles

Cluster 1 (Blue Line): Displays consistent energy use throughout the day, suggest-
ing occupants are likely at home, using energy fairly regularly.

Cluster 2 (Orange Line): Dual peak pattern, with morning and evening spikes,
typical of residential routines.

Cluster 3 (Green Line): Flat baseline, zero consumption, potentially empty prop-
erties.

Cluster 4 (Red Line): Flat usage with evening peak, possibly indicating households
that go to work in the morning and return home in evening , which is the most
common energy consumption pattern.

Cluster 5 (Purple Line): Presents a very high level of consumption as we seen
before, and a decline in the after-work hours suggesting these could be commercial
spaces or offices that also are running some equipment during the night.

Cluster 6 (Brown Line): This pattern shows a sharp rise in the morning, a plateau
during working hours, and a decline after work, which, along with high consumption
levels, may represent commercial spaces or offices.
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5.3.2 Explainable AI

Explainable AT (XAI) methods helped us understand why Clusters were clustered sep-
arately. We used the SHAP (SHapley Additive exPlanations) library, a cutting-edge XAl
tool that uses game theory to explain machine learning model output. The SHAP library
helps us understand the Ensemble algorithm’s rationale by showing how each feature af-
fects clustering. SHAP value analysis of our clustering model reveals the features that
most influenced clusters’ separation. This method improves clustering interpretability
and helps us identify distinguishing traits between similar clusters.

Figure 5.23: SHAP Values for Cluster 1 Figure 5.24: SHAP Values for Cluster 2
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For Cluster 1 and Cluster 2, while they present a similar scale of consumption and
appear to exhibit related behavior patterns at first glance, the SHAP values allow us to
discern more nuanced differences between them.

Cluster 1’s energy consumption is characterized by steady, consistent use, with sig-
nificant features such as Peak Hours and Median Consumption indicating a regular and
predictable pattern that doesn’t change much from day to day, as evidenced by the ab-
sence of autocorrelation features.

Cluster 2, although similar in overall consumption levels, shows evidence of being
influenced by recent consumption patterns (albeit slightly), as indicated by the presence
(but low impact) of autocorrelation features in the SHAP plot. Additionally, the Average
Weekday Usage has a more uniform and pronounced effect across instances, suggesting
a more routine-based consumption with noticeable morning and evening peaks typical of
residential lifestyles.
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Figure 5.25:
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Figure 5.27: SHAP Values for Cluster 5
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Figure 5.26: SHAP Values for Cluster 4

Figure 5.28: SHAP Values for Cluster 6
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The high consumption levels in both clusters align with the expected energy usage
profiles of commercial spaces or offices. However, the nuanced differences in feature im-
pacts between Cluster 5 and Cluster 6, as indicated by their respective SHAP plots, offer
a more refined understanding of their consumption behaviors. For instance, Cluster 5
might represent businesses that continue to consume energy into the evening, while Clus-
ter 6 may include operations with a clear delineation between working and non-working
hours. These insights could guide energy management strategies, such as targeted energy

efficiency measures for after-work hours in Cluster 5 and DR programs during peak hours
for Cluster 6.

5.3.3 Weekend - Weekday load profiles

Lastly, we must distinguish weekday and weekend energy consumption patterns. Week-
end and weekday lifestyles and occupancy patterns can significantly affect energy usage.
Thus, we will show weekday and weekend load profiles for each cluster. The profile for
Cluster 1 is depicted in Figure [5.29] Cluster 2 in Figure [5.30] Cluster 3 in Figure [5.31
Cluster 4 in Figure [5.32] Cluster 5 in Figure [5.33] and Cluster 6 in Figure [5.34]
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Figure 5.29: Weekend and weekday profile for cluster 1
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Figure 5.30: Weekend and weekday profile for cluster 2
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Figure 5.34: Weekend and weekday profile for cluster 6
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Chapter 6

Conclusion - Future Prospects

6.1 Conclusion

Our thorough assessment of clustering algorithms on consumer energy usage data has
revealed the inconsistency in algorithm performance based on the selected number of
clusters. The results of our study suggest that certain algorithms, such as K-means++
and Ensemble clustering, consistently demonstrate strong performance. However, the
effectiveness of other algorithms varies when considering different cluster counts. The
effectiveness of ensemble clustering is noteworthy, as it consistently achieves mooderate-
to-high rankings. However, it does not always surpass the performance of top-performing
individual algorithms such as K-means++-.

Our further investigation has successfully categorized consumers into distinct Load
Profile Classes, primarily based on their overall energy consumption levels—low, medium,
and high. We have identified outlier clusters that exhibit abnormal consumption patterns.

Contrary to our initial observations, which indicated that clusters were mainly sep-
arated based on consumption levels, the normalization process uncovered more complex
consumption patterns within each cluster. The importance of normalization in energy
consumption studies is emphasized, as it enables a more precise comparison of usage pat-
terns among various consumer groups.

Moreover, in instances where clusters demonstrated closely correlated behaviors, XAl
offered elucidation on the nuanced characteristics that differentiate one cluster from an-
other. For instance, although certain clusters showed similarities in terms of the amount
of consumption, XAI uncovered distinct characteristics, such as the timing of the highest
usage or the regularity of consumption, that distinguished them from each other.

To summarize, this study emphasizes the importance of choosing suitable clustering
algorithms that are specifically designed for the unique features of energy consumption
data. The significance of Ensemble clustering in our analysis underscores their effective-
ness in identifying distinct consumer segments. Furthermore, the utilization of XAI has
demonstrated itself to be a fundamental element in improving the comprehensibility of
clustering results, providing deep understanding into consumer energy behaviors. This
study promotes the careful implementation of normalization and feature selection, sup-
ported by XAI, to enhance the accuracy of energy management and customer engagement
strategies. This goes beyond simply categorizing consumers based on their consumption
levels, and instead aims to uncover the intricate patterns that characterize each consumer
segment.
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6.2 Future Work

As we consider future developments in the field of energy consumers segmentation,
some key areas emerge as promising avenues for research and methodology enhancement:

Correlation with Socio-Demographic Features: Future research should also con-
sider the correlation between energy consumption patterns and socio-demographic char-
acteristics of households. Understanding how factors like household size, income level,
geographical location, and lifestyle choices impact energy usage could provide deeper in-
sights into consumer behavior. This approach could aid in developing more personalized
energy-saving strategies and tailoring communication to different demographic segments.

Expanded Application of Explainable AI (XAI): Another promising direction is
the further utilization of Explainable AI. XAI tools, such as the SHAP (SHapley Addi-
tive exPlanations) library, have already proven valuable in our current analysis. Going
forward, a deeper integration of XAI methodologies could provide greater insights into
the factors influencing clustering outcomes. This increased transparency in Al models
will not only aid in understanding complex consumer behaviors but also in validating and
improving the models themselves. XAI’s potential to reveal intricate relationships within
data can lead to more targeted and effective energy management strategies, tailored to
the specific needs and patterns of different consumer segments.

Dimensionality Reduction and Data Size Optimization: An important aspect of
managing vast datasets is the efficient reduction of data dimensionality without compro-
mising the integrity of the underlying patterns. Techniques such as principal component
analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and autoencoders
have shown promise in other domains. Evaluating the effectiveness of these methods in
the context of energy consumption data could lead to more refined clustering without the
burden of processing and analyzing large volumes of data.
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Appendix A

The purpose of Appendix A in this document is to provide a detailed expansion on
the main analysis, specifically focusing on the intricacies of clustering algorithms used for
analyzing consumer energy usage data. The analysis involves a comprehensive assessment
of the performance metrics for different clustering algorithms across a spectrum of clus-
ter solutions, ranging from 3 to 9 clusters. This provides a thorough evaluation of the
effectiveness of each algorithm. Furthermore, this appendix offers comprehensive visual
representations for the six-cluster solution, shedding light on the unique consumption
patterns and characteristics of each identified consumer cluster. This additional section is
intended for readers who desire a comprehensive quantitative comprehension and aims to
strengthen the reliability and clarity of the research methodology and findings presented
in the main part of the study.

A.1 Detailed Clustering Algorithms Performance

This section presents a comprehensive tabular summary of the performance metrics
for a range of clustering algorithms applied to our consumer energy usage dataset. The
table spans cluster solutions from 3 to 9 clusters, providing a broad perspective on
how each algorithm scales with increasing cluster numbers.

The performance metrics encapsulated in the table include the Silhouette Score,
Davies-Bouldin Index, Calinski-Harabasz Score, and the Dunn Index. These metrics
collectively offer insights into the compactness, separation, and overall suitability of the
clustering solutions generated by each algorithm.

The detailed performance table thus serves as a crucial tool for selecting the most
appropriate clustering algorithm for specific energy consumer segmentation tasks. It also
underpins the necessity for rigorous evaluation of clustering outcomes to ensure meaningful
and actionable segmentation.
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Clusters | Algorithm Sil Score | DB Score | CH Score | Dunn Index
K-Means—++ 0.2975 1.3997 1649.5400 0.0133
Fuzzy C-means 0.1693 1.9228 1303.8637 0.0096
Hierarchical (Ward) 0.2464 1.4638 1482.0378 0.0143
3 SOMs 0.4895 1.2893 1099.1569 0.0172
BIRCH 0.3482 1.3389 1331.2656 0.0133
GMMs 0.0410 2.4035 682.3985 0.0097
Spectral 0.1836 1.4205 1412.7718 0.0117
Ensemble 0.2463 1.4652 1481.4723 0.0143
K-Means++ 0.3019 1.1458 1464.2405 0.0182
Fuzzy C-means 0.1110 2.6827 1014.7781 0.0117
Hierarchical (Ward) 0.2491 1.1371 1281.6889 0.0181
4 SOMs 0.3262 1.3890 1162.1289 0.0166
BIRCH 0.3538 1.1984 1127.2532 0.0166
GMMs 0.0447 2.1385 810.1209 0.0097
Spectral 0.0773 1.4772 973.3099 0.0090
Ensemble 0.2498 1.1942 1322.1354 0.0181
K-Means-++ 0.2473 1.2637 1322.0442 0.0225
Fuzzy C-means 0.0856 3.3597 856.2704 0.0116
Hierarchical (Ward) 0.1610 1.7075 1098.0232 0.0181
5 SOMs 0.1076 1.7909 1066.8957 0.0099
BIRCH 0.3552 1.1469 962.0519 0.0166
GMMs 0.0698 1.7884 830.2905 0.0135
Spectral 0.0481 1.6599 950.6170 0.0093
Ensemble 0.1921 1.6833 1146.4227 0.0168
K-Means-+-+ 0.1594 1.5865 1180.0833 0.0204
Fuzzy C-means 0.0581 4.0676 748.1149 0.0113
Hierarchical (Ward) 0.1627 1.5790 995.4433 0.0234
6 SOMs 0.1798 2.1523 831.4943 0.0115
BIRCH 0.1039 1.6357 925.4578 0.0105
GMMs 0.0096 2.3986 701.0983 0.0158
Spectral 0.0592 1.9206 834.7551 0.0093
Ensemble 0.1722 1.5660 1056.0957 0.0275
K-Means-+-+ 0.1771 1.5837 1080.8693 0.0196
Fuzzy C-means 0.0448 4.9141 651.5604 0.0101
Hierarchical (Ward) 0.1671 1.7806 892.3846 0.0234
7 SOMs 0.1896 2.1436 790.2138 0.0103
BIRCH 0.1048 1.4362 846.3774 0.0174
GMDMs -0.0333 2.8439 591.7261 0.0149
Spectral 0.0529 1.9206 724.1489 0.0093
Ensemble 0.1652 1.7075 933.1757 0.0179
K-Means-+-+ 0.1004 1.7201 982.1360 0.0158
Fuzzy C-means 0.0365 5.6663 576.9787 0.0087
Hierarchical (Ward) 0.1185 2.0386 821.2460 0.0208
3 SOMs 0.1996 2.0972 685.6861 0.0105
BIRCH 0.0974 1.6816 790.3500 0.0174
GMDMs -0.0339 2.9167 546.4884 0.0148
Spectral 0.0143 1.8613 689.7913 0.0083
Ensemble 0.0373 2.2647 807.7934 0.0137
K-Means—++ 0.1093 1.7845 899.1727 0.0158
Fuzzy C-means 0.0315 6.5000 522.0603 0.0099
Hierarchical (Ward) 0.1207 1.9054 767.9334 0.0264
9 SOMs 0.1708 2.1405 669.0390 0.0126
BIRCH 0.0964 1.7770 716.6024 0.0179
GMDMs -0.0316 2.8111 488.6858 0.0155
Spectral 0.0163 1.8951 622.4718 0.0092
Ensemble 0.0250 2.0941 750.0807 0.0174

Table A.1: Clustering Algorithm Performance Metrics for 3 to 9 Clusters
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A.2 Extended Clustering Results for Six-Cluster Solution

Within this subsection, we explore a seasonal analysis for each of the six clusters
that have been identified in our study. This analysis aims to compare the mean energy
consumption patterns of each cluster during various seasons, including Spring, Summer,
Autumn, and Winter. Through the analysis of these profiles in an non-normalized format,
our objective is to reveal the influence of seasonal variations on the energy consumption
patterns of various consumer segments.

For each cluster, the seasonal analysis will provide:

e Spring Profile: Understanding how the onset of warmer weather affects energy
consumption, particularly in clusters that may indicate residential or commercial
spaces.

e Summer Profile: Insights into the peak energy usage during the hottest part of
the year, which can be critical for managing energy demands and optimizing grid
performance.

e Autumn Profile: Observations on the transitional energy usage patterns as tem-
peratures begin to drop, potentially affecting heating and lighting needs.

e Winter Profile: Analysis of energy consumption during the coldest season, which
is often associated with increased heating demands.
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Cluster 2 Average kWh Consumption per Time Slot Across Seasons
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Figure A.2: Seasonal Consumption Profile for Cluster 2
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Cluster 6 Average kWh Consumption per Time Slot Across Seasons
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Figure A.6: Seasonal Consumption Profile for Cluster 6
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A.3 Refined Load Shape Profiles Post-Outlier Removal

In this section, we present the load shape profiles for each of the six clusters after
the removal of outlier values. Outliers in energy consumption data can often skew the
analysis, leading to misrepresentations of the typical usage patterns within each cluster.
By eliminating these extreme values, we aim to achieve a more accurate and realistic
depiction of the average energy consumption behaviors in each consumer segment.

The refined load shape profiles are expected to provide:
e A clearer understanding of the typical daily energy usage patterns in each cluster,
devoid of extreme variations caused by outliers.

e Enhanced insights into the operational characteristics and lifestyle habits of con-
sumers within each cluster, facilitating more targeted energy management strategies.
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Figure A.7: Normalized Load Shapes Post-Outlier Removal for Cluster 1
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Load Shapes for Cluster 2
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Figure A.9: Normalized Load Shapes Post-Outlier Removal for Cluster 3
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Load Shapes for Cluster 4
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Figure A.10: Normalized Load Shapes Post-Outlier Removal for Cluster 4
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Figure A.11: Normalized Load Shapes Post-Outlier Removal for Cluster 5
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Load Shapes for Cluster 6
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A.4 Code Availability

All the code developed and utilized for the analyses presented in this document, in-
cluding the clustering algorithms, data preprocessing, normalization, outlier removal, and
generation of visualizations, is available for review and use. The code repository, which
offers a comprehensive collection of the scripts and notebooks, can be accessed on GitHub.

Interested readers, researchers, and practitioners can find the code at the following
GitHub repository: github.com/afragiadaki/Clustering-EnergyConsumers. This reposi-
tory includes detailed documentation and instructions for running the code, allowing for
replication of the results or further exploration and adaptation of the methodologies for
other datasets or purposes.
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