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Περίληψη 

Η παρούσα εργασία πραγματεύεται τον σχεδιασμό και υλοποίηση ενός μοντέλου 

προσομοίωσης του τετράποδου ρομπότ ARGOS στον προσομοιωτή Gazebo [1] και ενός 

ελεγκτή που χρησιμοποιεί βάσει μοντέλου προβλεπτικό έλεγχο (MPC) στο ROS (Robot 

Operating System) [2]. Το ARGOS είναι ένα τετράποδο ρομπότ που σχεδιάστηκε από το 

Εργαστήριο Αυτομάτου Ελέγχου της Σχολής Μηχανολόγων Μηχανικών, και σκοπός του είναι 

η επιθεώρηση αμπελώνων. Σχήματα ελέγχου σαν αυτά που παρουσιάζονται σε αυτή την 

εργασία θα επιτρέπουν στο τετράποδο να εκτελεί κινήσεις στον τρισδιάστατο χώρο στους 

αμπελώνες. Το ROS χρησιμοποιήθηκε διότι επιτρέπει την υλοποίηση και εκτέλεση νόμων 

ελέγχου σε πραγματικό χρόνο, είτε σε hardware είτε σε προσομοίωση. Χάρις στην συνεργασία 

του Gazebo με το ROS καθίσταται δυνατή η προσομοίωση και ο έλεγχος του ARGOS σε 

πραγματικό χρόνο. Οι μετρήσεις που χρειάζονται σαν ανάδραση στο σύστημα κλειστού 

βρόχου είναι οι μετρήσεις που παρέχουν ιδιοδεκτικοί αισθητήρες. 

Το δεύτερο κεφάλαιο περιλαμβάνει μια αναλυτική επισκόπηση της διαδικασίας 

μοντελοποίησης ρομπότ στο Gazebo καθώς επίσης και του επιμέρους λογισμικού που 

διαθέτουν τέτοιου είδους προσομοιωτές ρομπότ. Επικεντρώνεται στην επιλογή και ρύθμιση 

των διαφόρων παραμέτρων του Gazebo που απαιτούνται για τη δημιουργία μιας ρεαλιστικής 

προσομοίωσης. Τέλος, πραγματοποιήθηκε μια επαλήθευση της ακρίβεια της προσομοίωσης 

στο Gazebo χρησιμοποιώντας αναλυτικά μοντέλα του συστήματος που σχεδιάστηκαν στο 

Simulink. Οι συγκρίσεις ανάμεσα στο μοντέλο στο Gazebo και στο αναλυτικό μοντέλο 

απέδειξαν ότι η ακρίβεια της μοντελοποίησης στο Gazebo είναι ικανοποιητική. 

Το τρίτο κεφάλαιο περιλαμβάνει μια αναλυτική επισκόπηση των μεθόδων βέλτιστου 

ελέγχου (ανοιχτού/κλειστού βρόχου) και πιο συγκεκριμένα των διαφορετικών διατυπώσεων 

προβλημάτων βέλτιστου ελέγχου (OCPs) και των μεθόδων επίλυσης που χρησιμοποιούνται 

για κάθε διατύπωση. Στη συνέχεια, οι διάφορες μέθοδοι βελτιστοποίησης τροχιάς (ΤΟ) 

συγκρίθηκαν μεταξύ τους χρησιμοποιώντας ένα διπλό εκκρεμές σε προσομοίωση 

προκειμένου να αποφασισθεί ποια είναι η πιο κατάλληλη μέθοδος για τον MPC του 

τετράποδου. Αυτά τα προβλήματα λύθηκαν χρησιμοποιώντας έτοιμα πακέτα βελτιστοποίησης 

και επιλύτες καθώς και ειδικά προσαρμοσμένους επιλύτες. Τα αποτελέσματα των συγκρίσεων 

απέδειξαν ότι η Κυρτή Βελτιστοποίηση (Convex Optimization) είναι η καταλληλότερη μέθοδος 

καθότι μπορεί να επιλύσει τέτοια προβλήματα πολύ γρήγορα και αξιόπιστα (με εγγυημένες 

ταχύτητες επίλυσης), γεγονός που την καθιστά ιδανική για εφαρμογές ελέγχου σε πραγματικό 

χρόνο. Συνεπώς, ο ελεγκτής που θα χρησιμοποιηθεί είναι ένας Convex MPC. 

Το τέταρτο κεφάλαιο εστιάζει στην εφαρμογή του Convex MPC συγκεκριμένα σε 

τετράποδα ρομπότ. Αναλύει τις παραδοχές που έγιναν έτσι ώστε να επιτευχθεί η διατύπωση 

του Convex MPC, την ίδια την διατύπωση του Convex MPC σε τέτοια συστήματα, 

συμπεριλαμβανομένης της μορφής της συνάρτηση κόστους/δείκτη απόδοσης και των 

περιορισμών που σχετίζονται με τη δυναμική του συστήματος και με τις δυνάμεις 

αλληλεπίδρασης των ποδιών με το έδαφος καθώς και τα επιμέρους συστατικά μέρη του 

συστήματος ελέγχου (π.χ. προγραμματιστής βηματισμού, σχεδιαστής βημάτων). Η επιθυμητή 

κίνηση προσδιορίζεται από το είδος του βηματισμού και των χαρακτηριστικών του καθώς και 

από εντολές υψηλού επιπέδου όπως την επιθυμητή πόζα και ταχύτητα του σώματος του 

ρομπότ κατά τη διάρκεια της κίνησης. Οι είσοδοι ελέγχου που οδηγούν το σύστημα 

υπολογίζονται βάσει αυτών των εντολών υψηλού επιπέδου. 
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Τέλος, στο πέμπτο κεφάλαιο, παρουσιάζονται τα αποτελέσματα των πειραμάτων τα 

οποία διεξήχθησαν χρησιμοποιώντας τη προαναφερθείσα προσομοίωση και ελεγκτή στο 

ARGOS. Ο MPC δοκιμάστηκε για δύο διαφορετικά είδη βηματισμών: περπάτημα (walk) και 

τροχασμό (trot). Το ρομπότ είναι ικανό να παρακολουθεί με ικανοποιητική ακρίβεια την εντολή 

πόζας και ταχύτητας χωρίς να υπερβαίνονται τα όρια ροπής των κινητήρων κατά τη διάρκεια 

του βηματισμού. 
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Abstract 

The present thesis focuses on the design and implementation of a simulation framework for 

the quadruped ARGOS using the real-time physics simulator Gazebo [1] and of a control 

framework that utilizes Model Predictive Control (MPC) in ROS (Robot Operating System) [2]. 

ARGOS is a quadruped robot designed by the Legged Robots Team of the Control Systems 

Lab in NTUA, whose main purpose is the inspection of vineyards. Such control schemes will 

allow the quadruped to execute 3D locomotion maneuvers in the vineyards. ROS was utilized 

since it allows the implementation and execution of control laws in real-time, whether in 

hardware or simulation. Gazebo and its tight integration with ROS make the real-time 

simulation and control of ARGOS possible. The feedback measurements needed by the 

closed loop system were measurements that proprioceptive sensors provide.  

The second chapter includes a thorough study of Gazebo modelling procedure of robots 

and an overview of the constituent functionalities of such simulators, (e.g., physics and 

collision detection engine). It focuses on the selection and tuning of the various Gazebo 

parameters needed to create a realistic simulation. Finally, a validation of the accuracy of the 

Gazebo simulation was conducted using analytical models of the system built in Simulink. The 

comparisons between the Gazebo and the analytical model proved that the accuracy of the 

Gazebo modeling was satisfactory. 

The third chapter includes an overview of the optimal control methods (open/closed loop) 

and more specifically the different optimal control problem (OCP) formulations and the solution 

methods utilized for each formulation. Then, the various trajectory optimization (ΤΟ) methods 

are compared using a simulated double pendulum to determine which is the most suitable for 

the quadrupeds’ MPC controller. Such problems were solved using off-the-shelf optimization 

packages and solvers as well as custom made solvers. The findings of the comparisons 

proved that Convex Optimization is the most suitable method due to its ability to solve such 

problems very fast and reliably (at guaranteed rates), which is ideal for real-time control 

applications. Therefore, a Convex MPC controller has been utilized. 

The fourth chapter focuses on the application of Convex MPC specifically on quadruped 

robots. It elaborates on the assumptions made to accomplish a Convex MPC formulation, on 

the formulation of the Convex MPC itself for such systems, including the form that the cost 

function/performance index and the constraints pertinent to the system’s dynamics and ground 

reaction forces have and on the constituent components of the control system (e.g., gait 

scheduler, footstep planner). The desired locomotion task is specified by the gait type and 

characteristics and by high-level commands like the desired pose and velocity of the robot’s 

body during that task. The control inputs that drive the system are computed based on these 

high-level commands. 

Finally, in the fifth chapter, the results of experiments conducted using the aforementioned 

simulation and control frameworks on ARGOS are presented. The MPC controller was tested 

on two different gait types: walk and trot. The robot is capable of tracking accurately enough 

the commanded pose and velocity without exceeding the motor torque limits during a gait. 
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1 Introduction 

1.1 Motivation 

One of the objectives of the present thesis is to create a realistic simulated model for the 

quadruped robot ARGOS. Testing and designing software are easier and more effective when 

using a simulated robot rather than the real-world one. Accurate simulated models of robots 

do not require access to the real hardware for testing software. Also, such tests provide proof 

of concept regarding the implemented control algorithms. More specifically, the user can 

develop software that can be validated using a simulated robot in a variety of environments 

and for different tasks without damaging the associated physical systems in the process. 

Additionally, any software flaws that emerged during the validation process will not be 

transferred to the real-world robot. 

The main objective of the present thesis is optimization-based motion planning and 

control of quadruped robots in real-time. A simple hand-tuned controller cannot achieve a high 

level of performance or fully exploit the capabilities of the hardware, which leads to the 

development of model-based optimal controllers. Unlike conventional approaches, 

optimization-based ones produce motion plans that minimize a performance index/cost 

function (e.g., energy consumption, task completion time) and satisfy physical constraints of 

the system (e.g., motor torque limits, leg kinematic limits). Moreover, in the case of Model 

Predictive Control (MPC), where the motion is replanned frequently online through 

optimization, the robot becomes extremely robust against disturbances and capable of 

adapting to a dynamically changing environment. Therefore, the design and implementation 

of MPC controllers for legged robots has been an active research area in the past decade. 

Focus has been given to making the optimal control problems (OCPs) more computationally 

tractable. This includes attention to the formulation of the OCP, the simplification of the 

model’s dynamics, handling contact with the environment and selecting a numerical technique 

to solve the OCP based on these choices. 

1.2 Literature Review 

1.2.1 Legged Robots 

In recent years, there has been a significant increase in research interest in the broader field 

of robotics in legged robots. The main incentive behind this interest lies in the potential of 

legged robots to be extensively utilized for numerous applications due to their versatility 

compared to wheeled ones. After all, in a world where legs are the most competent locomotion 

mechanism in nature, legged robots have a significant role to play. More precisely, the value 

of legged robots lies in their distinct ability to navigate and move through unstructured 

environments. This trait could be harnessed to assist or even replace humans in many 

dangerous occupations such as firefighting, search and rescue missions in disaster areas 

(e.g., post-earthquake locations), space exploration, and monitoring and inspection in 

locations with hazardous waste. These tasks pose risks to humans, who are often obligated 

to complete them. By deploying robots in harm’s way instead of humans, potentially 

dangerous situations for human workers can be avoided or even eliminated entirely. 

Therefore, research conducted on legged robots and their applications can contribute not only 

to improving people’s quality of life but also to potentially saving many human lives. 
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In the past decade, there has been a rapid advancement in the capabilities of legged 

robots, with various academic institutions and high-tech companies creating state-of-the-art 

platforms. This transitioned from a time when only a limited number of research groups had 

access to capable platforms to the current state where locomotion is widespread in both 

industry and academic laboratories, addressing fundamental issues and challenges. State of 

the art attempts, such as Boston Dynamics’ Atlas [3], Spot [4], and BigDog [5], along with 

others such as Anybotics’ ANYmal and its recent successor ANYmal C [6], MIT Cheetah [7] 

and Agility Robotics’ most recent biped DIGIT [8], showcase current research trends in the 

field (Figure 1-1). 

 

Figure 1-1. (a) Boston Dynamics Atlas. (b) Boston Dynamics Spot. (c) ANYbotics ANYmal-C. 
(d) Agility Robotics DIGIT. (e) Boston Dynamics BigDog. (f) MIT Cheetah 3. 

1.2.2 Motion Planning and Control 

MPC’s main challenge is to solve finite-horizon OCPs at a real time rate. Especially when 

using full-body dynamics, it is a nonlinear optimization problem that needs to be solved within 

a few milliseconds [9]. This process comes with a high computational cost that defies online 

execution. 

Algorithms that plan physically feasible motions for legged robots can subsequently be 

executed using a tracking controller or embedded into an MPC formulation [10]. In many 

cases, MPC is used as a higher-level planner rather than as the primary stabilizing controller. 

Available solutions for the motion planning problem include heuristic controllers [11], 

inverse dynamics control [12], and hierarchical operational space control [13]. In [14], [15] the 

authors optimize the motion-plan in an MPC fashion, resulting in a controller that can react to 

disturbances and handle model inaccuracies. In [14] a linearized Zero Moment Point (ZMP) 

planner was used to generate planar Center of Mass (CoM) motion plans, which were 

executed in an MPC-like fashion via a hierarchical whole-body controller. The desired joint 

accelerations and contact forces are found by solving a cascade of prioritized Quadratic 

Programming (QP) problems (or Quadratic Programs). However, it could not generate and 

track more agile motions, like trotting, dynamics lateral walk and pronking. For modeling and 

computation of kinematics and dynamics, the open-source Rigid Body Dynamics Library 

(RBDL) [16] is being used. To numerically solve the QP problems, a custom version of the 

QuadProg++ [17] library is being used. Experiments were conducted on ANYmal, an 

accurately torque-controllable quadruped robot. 
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So, in [15], a nonlinear ZMP planner was used to optimize the CoM position, as well as a 

parallelized optimization of footholds. Transition between gaits was possible with the addition 

of a dedicated gait switching module. A Sequential Quadratic Programming (SQP) method 

was used for the motion optimization which included solving the nonlinear ZMP constraints. 

The optimization could be evaluated at more than 100 Hz, although this frequency varies 

depending on the type of gait and optimization parameters. This approach also produced 

motion plans online and could execute them in MPC fashion by planning online the next motion 

plan with the most recent state while tracking the current motion plan with a whole-body 

controller. For modeling and computation of kinematics and dynamics, RBDL is used. The 

nonlinear optimization problem is solved by using a custom library which implements the SQP 

framework, which solves the nonlinear program by iterating through a sequence of QP 

problems. Each QP is numerically solved using the QuadProg++ library. Experiments were 

conducted on ANYmal. 

Multiple attempts of solving motion planning through contacts using a hierarchy of 

optimization problems have existed [18], [19], [20], [21]. The downside is that the lower 

hierarchies need to respect the constraints of the higher hierarchies, often leading to heuristics 

which impair the optimality of the overall solution. 

Work by Winkler et al. generates footholds and CoM trajectories for a certain look ahead 

period and then has a separate controller track the motion in practice [22], [23]. In [22], walking 

motion were generated without the use of an explicit footstep planner, by simultaneously 

optimizing over both the CoM trajectory and the footholds. Kinematic constraints between the 

footholds and the CoM position are explicitly enforced. Also, stability constraints are imposed 

on the CoM related to the ZMP. In this way, it is ensured that the planned motion is dynamically 

feasible. This problem is solved online by the Nonlinear Programming solver IPOPT [24]. The 

performance of this approach was evaluated on the hydraulically actuated quadruped robot 

HyQ [25]. 

A downside of [22] is that it can only generate motions for quadruped robots with three or 

more legs on the ground. This means that it requires 2D-support areas and thus point- and 

line-contacts can’t be modeled. Typically, such more dynamic motions are generated using 

Capture Point [26] approaches. However, if a more static gait is desired, the approach has to 

be switched to the one using ZMP with 2D-support areas. As a result, more complex motions 

where the gait cannot be precisely categorized, cannot be planned with this method. 

Therefore, in [23] they introduced a vertex-based representation of the Center of Pressure 

(CoP) constraint which allows treating arbitrarily oriented point-, line- and area-contacts 

uniformly. Thus, more complex motions like trotting and bounding can be planned. The motion 

planning problem could be solved for multiple steps in less than a second to generate walking, 

trotting, and push-recovery motions. Here the nonlinear programming problem (NLP) was 

solved with IPOPT and SNOPT [27]. The performance of this locomotion framework was 

evaluated on the quadruped robot HyQ. 

Both [22] and [23] can be executed in a few milliseconds (~3 ms and ~35 ms respectively) 

but they reach their limits as motions and terrains become more complex, due to the use of 

the Linear Inverted Pendulum Model (LIPM), which has as input the position of the CoP. Also, 

not all kinematic plans are dynamically feasible since they may exceed actuation limits or 

friction cones. 

In [28] these issues are tackled by replacing the LIPM model with the 6D Single Rigid 

Body Dynamics (SRBD) model. Since with this model contact forces can be handled directly 
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as part of the optimization problem, unilateral and friction constraints can be directly 

formulated as well as generate motions with flight phases or vertical motions. This framework 

automatically determines the gait-sequence, step-timings, footholds, swing-leg motions and 

6D body motion over non-flat terrain. To enable the algorithm to automatically determine the 

gait-sequence, step-timings and footholds using only continuous optimization variables, a new 

phase-based foot parameterization was introduced. After defining all the constraints, the 

solution to the problem can be obtained by solving an NLP, which can be solved fast (~100 

ms). The NLP was solved using the Interior Point Method solver (IPOPT). The entire software 

used to generate these motions is TOWR, is presented in [28] and is freely available. The 

software was successfully tested on hardware, more specifically on the quadruped ANYmal. 

However, the complexity of the formulation, for gait parameterization, makes the problem 

difficult to solve for real-time applications. 

In most state-of-the-art works, motion planning for legged locomotion is often tackled with 

control frameworks, which typically consist of one or more planner stages that use simplified 

dynamics models and a reactive tracking controller. Despite the successful results, such 

planners do not always produce feasible motions and need to plan conservatively to do so. 

The tracking controllers also do not have enough control authority to e.g., modify footholds or 

contact timings, and only try to track the planned reference blindly. To address this challenging 

problem, whole-body optimization approaches are increasingly proposed, yet their runtimes 

are in most cases a few orders of magnitude away from running in receding horizon or MPC 

fashion. 

Some of the current existing MPC methods for quadrupedal locomotion tackle these 

challenges of the MPC problem through careful software designs and high-performance, 

parallel implementations [29], [30], [31]. In addition, they adopt simplified dynamics models to 

reduce computational burdens: one common simplification is pre-defining the footholds with 

heuristics-based methods [32], [33], [34]. This, however, restricts the range of achievable 

motion and the capability to reject external disturbances. 

Nonlinear optimization techniques, unlike convex optimization solvers, are not guaranteed 

to find the global optimum because multiple local optima exist and, depending on the 

initialization of the method, might get stuck on one of these. They also tend to suffer from 

numerical issues. Recent progress on convex optimization [35] and applications to model 

predictive control [36] has led to the development of many open-source solvers such as 

qpOASES [37], OSQP [38] and OOQP [39] that enable QP-based MPC problems to be solved 

rapidly and reliably. 

In [32] MPC problem is transcribed into a QP, formulating the problem as convex 

optimization, after linearizing SRBD model. With this simplified model, which still captures the 

full 3D nature of the system, ground reaction force (GRF) planning problems are formulated 

for prediction horizons of up to 0.5 seconds and are solved in real time at a rate of 20-30 Hz. 

Experimental results, on the MIT Cheetah 3 Robot, demonstrate control of gaits including trot, 

pronk, bound and a full 3D gallop. The qpOASES, a QP solver which uses online active set 

strategy, was used to solve the convex optimization problem. 

Later, in [33], an extension of the framework of [32] was proposed. This controller 

complements the model predictive control (MPC) implementation of [32] with a whole-body 

impulse control (WBIC) implementation. The MPC is a QP-based MPC using simplified 

dynamics, like in [32], that computes an optimal reaction force profile over a longer time 

horizon. The WBIC computes joint torque, position, and velocity commands based on the 
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reaction forces computed from MPC. More specifically, the first part of WBC computes joint 

position, velocity, and acceleration commands, by utilizing an inverse kinematics algorithm 

that strictly holds task priority. The later part modifies the reaction forces computed by MPC, 

also including the acceleration command found previously, to incorporate body stabilization 

and swing leg control. This is accomplished by solving another QP using an open source 

solver [17], efficient for small problems. The torque commands are computed given the 

reaction forces, configuration space acceleration and multi-body dynamics. In the experiments 

conducted on the Mini-Cheetah robot, high speed dynamic locomotion with aerial phases was 

achieved. They enabled the MPC to run at 30 Hz and WBIC to run at 500 Hz on the computer 

installed in the robot. 

As simple as it may seem, the MPC framework in [32] is reliable and there exist many 

approaches that try to improve Convex MPC performance [40], [41], [42]. In [40] a 

representation-free linear model predictive control (RF-MPC) framework was developed, 

where rotational dynamics were represented using the rotation matrix. As a result, issues 

associated with the use of Euler angles, like gimbal lock, and quaternion orientation 

representations were nonexistent. This was possible thanks to a variation-based linearization 

technique for the SRBD model. These changes enabled the MPC to be transcribed into the 

standard QP form. The MPC controller was implemented on the quadruped robot Panther and 

could operate at real-time rates between 160 and 250 Hz. The gaits tested were trot, bound 

and backflip. The QP was solved by the custom solver qpSWIFT [43] for all the experiments. 

In [42], a new linearization of the robot’s centroidal dynamics was proposed. By 

expressing the angular motion with exponential coordinates, more linear terms are identified 

and retained than in the existing methods to reduce the loss from the model linearization. The 

proposed MPC was tested on the quadruped robot developed by Tencent Robotics X. The 

MPC prediction happens at 100 Hz using the QP solver qpOASES. 

Approaches based on dynamic programming (DP), such as Differential Dynamic 

Programming (DDP) [44], Iterative Linear Quadratic Gaussian Regulator (iLQG) [45] or 

Iterative Linear Quadratic Regulator (iLQR) [46], and Sequential Linear Quadratic 

Programming (SLQ) [47] algorithms (Riccati-style) can also be used to generate optimal 

motion-plans. 

Application of this work to humanoids has been done by [48], [49] which demonstrated 

impressive results, but did not present hardware results. In [48], Tassa et al., demonstrated in 

simulation that it is feasible to deploy MPC based on the robot’s full dynamics with using iLQR. 

This approach employed MuJoCo’s smooth and invertible contact model. Also in [49] there 

weren’t presented any dynamic motions. Later work in [50] included hardware results but the 

MPC horizon was short and only quasi-static motions with slow contact changes and kinematic 

manipulation tasks were tested. A reason is that MuJoCo’s contact model seemed to be not 

accurate enough for locomotion tasks. 

Other approaches based on these algorithms generate motions-plans for switched 

systems, such as a quadruped robot, quick enough to be used in an MPC control loop [29], 

[30], [51], [52], [53]. In [54] the problem was formulated as an OCP for switched systems based 

on SLQ. The centroidal dynamics and the full kinematics [55] were employed in the switched 

system model where the switching times, the contact forces and the joint velocities were 

optimized for different tasks such as gap crossing, walking and trotting. Simulation results 

were presented on HyQ, to validate the approach. 
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Later, based on [54], Farshidian et al. demonstrate their FastSLQ-MPC for generating a 

real-time, constrained, whole-body nonlinear MPC to create trotting gaits using the same 

dynamic model [29]. The performance of the algorithm was improved by introducing a multi-

processing scheme for estimating value function in its backward pass. This allowed them to 

optimize over longer horizons without proportional increase in computation time. For 

evaluating this MPC approach, experiments were conducted on HyQ that generated dynamic 

gaits like trotting. This MPC could generate trajectories for the next phases of motion in a few 

milliseconds. Using the four independent threads of their processor, the MPC loop could run 

at about 60 Hz. Various other recent approaches, like those presented in [56], [57], [58]. have 

been developed based on this approach. 

A real-time whole-body nonlinear MPC (NMPC) implementation is shown on hardware in 

[30]. A whole-body 3D model was used and neither contact switching times nor contact events 

nor contact points were defined a priori but were optimized by the solver. A linear spring-

damper contact model was used. Both iLQR and Gauss-Newton Multiple Shooting (GNMS) 

[59] approaches were used and tested on hardware. Rigid Body Dynamics and kinematics, 

which are essential for the controller implementation, were modelled using the efficient code 

generation framework RobCoGen [60]. Also Control Toolbox (CT) was used in this work which 

is available as open-source software [61]. Hardware experiments were conducted on the 

quadruped robots HyQ and ANYmal. During trotting experiments on ANYmal, iLQR achieved 

update rates of around 80 Hz while GNMS reaches almost 190 Hz, for a time horizon of half 

a second. Although the higher update rate does not lead to significantly better performance, it 

encourages the use of more extended time horizons. Despite all these results, they note that 

computation and real-world limitations must still be overcome to take full advantage of the 

nonlinear optimization’s capabilities. Also, only simple motions, walking and trotting in flat 

terrain, were demonstrated. Moreover, tuning the hyperparameters of the contact model is a 

complex task, because non-zero “phantom” (virtual) forces may be created artificially during 

flight phases. These “phantom” forces may create unrealistic motions plans, during the flight 

phases, and consequently agile and complex motions will not be generated, under this 

assumption. Finally, because of the use of iLQR (unconstrained DDP), actuation limits were 

not considered during motion planning. 

Later works like [52], [53] aim to use the full-body dynamics in predictive control as well. 

In the MPC approach in [53] actuation limits are taken into consideration for the optimization 

and tracks the optimal policy while executing agile maneuvers. They demonstrate their Riccati-

based, state-feedback predictive controller (BOX-FDDP), which has been open sourced in the 

Crocoddyl (Contact RObot COntrol by Differential DYnamic programming Library) repository 

[62]. BOX-FDDP also employs a multiple-shooting approach which enables the parallel 

computation of analytical derivatives. Crocoddyl also utilizes Pinocchio [63] for fast 

computation of robot dynamics and of the analytical derivatives of the dynamics and of other 

functions. The controller was tested on hardware, specifically on ANYmal B and C 

quadrupeds. In most of their experiments, the predictive controller could compute local 

feedback policies at 50 Hz, although it could also operate at up to 100 Hz, with the use of the 

offboard MPC computers, over an optimization horizon of 1.25 seconds. 

Motion generation in an MPC fashion using a direct method with collocation and a SRBD 

model is used in [31], [64], [65], [66] without pre-specified contact locations and with pre-

specified contact locations in [67]. In general, direct methods using collocation are not as 

efficient and fast as DDP based methods due to the expensive factorizations that their linear 
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solvers do. This limits their practical use to real time control on reduced models [68] or motion 

planning [28], [69] in robotics. 

In [64], they proposed a policy-regularized MPC (PR-MPC), where regularization is added 

to direct collocation optimization problems that are solved. Regularization is added to penalize 

the deviation of the solution of the optimization from simple heuristic reference policies that 

are described in the literature. The solution is biased towards a less complex solution, that is 

defined by these simple heuristics, while it can also diverge from these references when they 

are not adequate. PR-MPC behaves better than regularization-free MPC and better than bare 

heuristic control laws. It is challenging to tune heuristic control laws to accommodate various 

behaviors and regularization-free MPC may converge in bad local optima or may have slow 

convergence rates. Reference control inputs (contact forces and foothold positions) are used 

for policy regularization and also policy regularization is included in the cost function. However, 

this control framework has been tested on MIT Cheetah in simulation, and not on the real 

hardware. The NLP was solved online using fmincon() function of MATLAB. 

In [31], the authors implemented nonlinear optimization-based Regularized Predictive 

Control (RPC) which is an extension of their previous work, described in [64]. PRC uses almost 

the same control framework as PR-MPC. The authors focused more on the techniques they 

employed to implement their controller on hardware. Some of the implementation details that 

are discussed are the direct transcription method used to derive the NLP, adaptive timestep 

segmentation, prediction delay compensation, the use of heuristic models, asynchronous 

solution filtering and controller gain tuning. In the experiments conducted on MIT Cheetah 3, 

the solution of the optimization problem was found using IPOPT solver at roughly 40-80 Hz. 

In [65], the authors extend their work in [31], [64] by extracting more polished, regularizing 

legged locomotion heuristics with a data-driven method. The heuristics found with the 

proposed framework can be generalized, and thus they can be used in many different 

scenarios and are easily tunable. The authors improve the performance of RPC with these 

heuristics without changing the main controller architecture. Also, the robot that uses RPC and 

these heuristics can execute motions that could not be performed stably only with RPC. Data 

is extracted from offline simulations of RPC and is fitted with simple models to produce the 

heuristics. In the experiments conducted on MIT Mini Cheetah, the solution of the optimization 

problem was found using IPOPT solver at roughly 100-200 Hz. 

In [66], a landing controller was implemented that accommodated a NMPC. The landing 

controller consists of three parts: an NMPC, a trained neural network, and a whole-body 

controller. The model predictive controller solves an NLP that was formulated using direct 

transcription, based on [70], that includes contact complementarity constraints and actuator 

torque and leg kinematic limits. These types of constraints, (e.g., actuation limits), can be 

imposed because the joint positions of the legs are part of the decision variables of the 

optimization problem. This problem is solved while the robot is airborne and its solution is the 

optimal GRFs, the landing body postures and the joint positions. When touchdown occurs, the 

optimized trajectory is used as a reference that gets tracked by a whole-body controller. This 

whole-body controller is a QP that is described in [33]. The neural network, trained using 

supervised learning, was used to warm start the OCP solver. The quality of the initial estimate 

given to a nonlinear optimization problem is critical as it can either draw the optimization 

towards undesirable local minima or even prevent it from finding a viable solution. Experiments 

on hardware were conducted using this control framework, on MIT Mini Cheetah. The solver 
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Artelys KNITRO [71] was used to solve the NLP online and was able to find solutions at 

roughly 10 Hz. 
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2 Real Time Simulation in Gazebo 

2.1 Introduction 

The main objective of this chapter, is to build a simulation model for the quadruped robot 

ARGOS using Gazebo simulator [1]. Gazebo is a robotics simulator that is commonly used in 

research for mobile ground robots like legged and wheeled robots. It allows the user to import 

robot models in the simulation environment from the Universal Robot Description Format 

(URDF) files. It is tightly integrated with ROS (Robot Operating System) [2] an open-source 

framework that contains libraries that define components of robots like actuators, sensors 

(e.g., camera, IMU, GPS) and control systems through its packages (e.g., ros_control). Such 

components can connect and communicate with each other using ROS tools (topics, 

messages). The interface with ROS provided by Gazebo simplifies the process of testing 

control software on a simulated robot and then transferring it onto the real-world robot [72]. 

The simulation of rigid, multibody dynamics is performed using the physics engine called Open 

Dynamics Engine (ODE or OpenDE). Out of all the physics engines supported by Gazebo, 

OpenDE was selected because it is the most compatible and smoothly integrated physics 

engine with Gazebo and ROS. 

2.2 Modelling in Gazebo/OpenDE 

OpenDE does not solely provide to the user the software library responsible for the simulation 

of rigid body dynamics in real time, which is called physics engine. It provides two additional 

software modules or engines that are necessary to conduct any simulation. These are a 

collision detection engine and a rendering engine. More details about the collision detection 

engine will be presented in chapter 2.2.7. The rendering engine is called OpenGL, is used by 

the OpenDE demos, is responsible for the generation of images from a model [73]. In Figure 

2-1 the interaction of all these engines is shown during a standard simulation. 

 

Figure 2-1. Flow diagram of a simulation that depicts the interaction of the engines that are 
responsible for multibody dynamics, for collision detection and for rendering 

[63]. 
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2.2.1 Geometric and Inertial Parameters 

Building the model of ARGOS in Gazebo demands the values of the geometric and inertial 

parameters of the robot. These values are contained in Table 2-1. The model of ARGOS in 

Gazebo is presented in Figure 2-2 and the model of ARGOS’s legs in Gazebo is presented in 

Figure 2-3. To be more precise, the aforementioned values are the masses of the links of the 

robot, the inertia matrices of the links w.r.t. their CoM and some characteristic dimensions of 

the robot. The most important dimensions are the length and the width of the body and the 

lengths of the links of the leg and the manipulator. These values were extracted with the help 

of Solidworks environment which was utilized for the generation of the CAD files of the robot’s 

components, which are the robot’s body and legs. Τo insert the components of the robot into 

the simulation environment, they have to be described using the XACRO format [74]. XACRO 

is an XML macro language. It allows the user to construct shorter and more readable XML 

files by using macros. All the components of the robot are extracted as STL or DAE files that 

originate from their corresponding CAD files and are introduced in their XACRO description. 

Τhe STL files are necessary for the visualization of the components of the robot in Gazebo 

and for the collision detection between links or between a link and the ground and for the 

computation of the contact points creates between bodies that come in contact. 

Apart from the parameters pertinent to the geometric and inertial attributes of the robot, 

some additional parameters have to be specified that are associated with other facets of the 

simulation environment. These parameters are pertinent to the solver utilized for the numerical 

solution of the equations of motion (EoM), to the modelling of the collision and contact of the 

feet with the ground, to the joints of the robot, to the ground friction model and to the viscous 

joint damping model. The values of the aforementioned parameters are located in Table 2-2. 

Table 2-1. Geometric and Inertial parameters of ARGOS in Gazebo. 

Parameter Value 

Body 

Mass 29kg  

Length 0.8m 

Width 0.26m  

Inertia Matrix   21.719612, 0.421794, 1.684144 kgmxx yy zzI I I= = =  

Leg Roll 

Mass 1.1kg  

Inertia Matrix 

2

{ 0.005776, 0.000769, 0.0, 

0.018940, 0.0,  . }0 018831 kgm

xx xy xz

yy yz zz

I I I

I I I

= = =

= = =
 

Upper Leg 

Distance between hip and 
knee joint (link length) 

0.45m  

Mass 0.2kg  

Inertia Matrix   20.014896, 0.000647, 0.014572 kgmxx yy zzI I I= = =  

Lower Leg 

Distance between knee joint 
and toe center (link length) 

0.5885m  

Mass 0.2kg  
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Inertia Matrix 

2

0.042404, 0.0,  0.0, 

0.002461, 0.005774, 0.0

{

40486 kgm}

xx xy xz

yy yz zz

I I I

I I I

= = =

= =− =
 

Manipulator 

Joint 1 

Distance between joint 1 and 
joint 2 (link length) 

0.25m  

Mass 0.2kg  

Inertia Matrix   20.006805, 0.000266, 0.006670 kgmxx yy zzI I I= = =  

Joint 2  

Distance between joint 2 and 
end effector (link length) 

0.53m 

Mass 0.5kg  

Inertia Matrix   20.020414, 0.000169, 0.020362 kgmxx yy zzI I I= = =  

 

Figure 2-2. Model of ARGOS in Gazebo. 



 

27/252 

 

Figure 2-3. Model of ARGOS’s leg in Gazebo. 

2.2.2 Solver Parameters 

Some features of the physics engine utilized by Gazebo are presented in this section. The 

solver features as well as the parameters of the model of ARGOS in Gazebo that are 

discussed, are described in detail in [75], [76], [77]. In general, rigid body dynamic simulators 

attempt to solve the constrained Newton-Euler equation for systems of rigid bodies. OpenDE 

poses the constrained Newton-Euler equations as a Linear Complementarity Problem (LCP) 

in the maximal coordinate system with the use of constraints (constraint-based LCP) to ensure 

that forces satisfy non-interpenetration and joint-constraints. More information about that LPC 

will be presented in the next paragraph. OpenDE utilizes fixed time step solvers. The selected 

time step t  ( )_ _max step size  is equal to 1msec . The reason behind the selection of a time 

step that lies in the range of milliseconds, is the fact that OpenDE uses Euler integration. Such 

low-order integration schemes require small time steps to achieve satisfying accuracy. 

Another parameter necessary in OpenDE is the _ _ _real time update rate , that expresses the 

frequency at which the simulation time steps are advanced in time. Its selected value is equal 

to 1kHz . The product ( ) ( )_ _ _ _ _max step size real time update rate  defines the upper bound of 

_ _real time factor  parameter. If _ _ 1real time factor   the simulation is slower than real time. 

The final physics engine parameter presented is _max contacts , that expresses the maximum 

possible number of contacts to be generated between two bodies that are in contact. This 

parameter sets an upper bound to the maximum number of potential contact points between 

two bodies, useful feature especially for face-to-face collisions, with a potential sacrifice to the 

accuracy of the computations. This feature is also particularly useful when the bodies that 

come in contact are modeled using 3D meshes as collision models. Furthermore, this 

parameter allows the user to allocate a fixed amount of memory at the beginning of the 
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simulation necessary for contact storage. Therefore, no memory reallocation would be 

necessary since the memory allocated is adequate for storing the maximum possible number 

of contacts. In this work, the value selected is equal to 1. More details about the contact points 

and the collision models will be presented in chapter 2.2.7. 

In addition to the physics engine parameters presented before, some features of the 

solvers available in this physics engine are also presented. OpenDE provides two types of 

solvers to solve the constraint-based LCP, world and quick. World step uses a direct (pivoting) 

method, that is based on an extension of Danzig’s algorithm [78], which, according to [79], is 

Lemke’s algorithm [80]. Quick step uses an iterative method, called projected Gauss-Seidel 

(PGS) with Successive Over-Relaxation (SOR) [81], [82]. World step provides more accurate 

solutions but exhibits convergence difficulties since it is not always able to compute a solution 

and exhibits slower convergence rate compared to quick. Quick step converges easier, but its 

accuracy depends on the number of iterations. In general, the higher the number of solver 

iterations (in every time step), the more accurate the results will be but the slower the 

convergence will be. The parameter iters  that specifies the number of iterations is used only 

by quick solver. When quick solver is selected, the SOR  parameter must also be specified. 

The Over-Relaxation parameter is a number larger than 1 and is used to increase the 

convergence rate of an iterative method. 

In this work, the world step solver was selected since, after many trials, it was determined 

that it provides more accurate results compared to quick. To be more precise, simulations 

were conducted to decide which solver provides the most accurate results. In these 

simulations, the quadruped fell from a small height to the ground and eventually stopped 

moving completely. After running these simulations, the following results were recorded: the 

joint angular velocities computed by world step (order of magnitude 1010 rad/s− ) were closer to 

zero than the ones that quick step computed (order of magnitude 210 rad/s− ). Moreover, the 

expected outcome of this experiment is that after some seconds of simulation time have 

passed, the responses of the joint angles and the responses of the torques of the actuators of 

the joints should converge to steady values. This outcome was observed only when world step 

was employed. When quick step was employed, even after many minutes of simulation time 

have passed, the responses of the joint angles and motor torques did not converge to steady 

values. In general, quick solver exhibits poor accuracy for near-singular systems [76]. Near-

singular systems can occur when using high-friction contacts, motors, or certain articulated 

systems. For instance, a quadruped robot sitting on the ground may be near-singular. There 

are certain ways that can help tackle the inaccuracy problem from which the quick solver 

suffers. Some of these are the following: 

• Increase CFM . 

• Reduce the number of contact points in the system (i.e., by using the minimum 

possible number of contact points for the feet of the robot). 

• Avoid excessive friction in the contacts. 

• Avoid closed kinematic loops, which is inevitable in the case of legged robots. 

• Increase the number of solver iterations, which in case where the system is near-

singular is not significantly helpful. 

Since the aforementioned alternatives were tested but the accuracy of quick step solver was 

not improved, world step solver was the final choice. 
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2.2.3 Rigid Body Dynamics 

OpenDE represents rigid body states with maximal coordinates, in which each rigid body has 

six degrees of freedom, and articulation and contact constraints are enforced by adding 

constraint equations. The methodology that OpenDE uses to extract the EoM, is thoroughly 

described in [79]. 

Unconstrained Rigid Body Dynamics 

All vectors utilized are expressed in the world frame, unless otherwise specified. Each rigid 

body has a body-fixed coordinate frame attached to its CoM, whose position is denoted as x

, and its orientation denoted as q , that is a quaternion (quaternion orientation). These 

quantities evolve in time according to the rigid body kinematic equations: 

 t =x x  (2-1) 

 
1

2
t = q ω q  (2-2) 

where x  is the linear velocity of the body’s CoM, ω  is the body angular velocity and where 

  denotes quaternion product. These velocities evolve in time according to the Newton-Euler 

EoM: 

 tm =x f  (2-3) 

 t =L τ  (2-4) 

where m  is the body mass, ,f τ  are the net force and torque acting on the body and L  is the 

angular momentum of the body. The angular momentum can be calculated using the 

expression: = L I ω  where I  is the inertia tensor w.r.t the world frame that is given by the 

following expression: T=  I R D R  where ( )R q  is the rotation matrix that describes the 

orientation of the body-fixed coordinate frame w.r.t the world frame and D  is the body-frame 

inertia tensor. Therefore, equations (2-3) and (2-4), for a single unconstrained body, can be 

written in the following form: 

 
m     

=    −     

δ 0 x f

0 I ω τ ω Iω
 (2-5) 

where δ  is the identity matrix. 

In case of a system that is comprised of multiple rigid bodies, the following augmented 

variables are defined for every rigid body b : the velocity vector 
TT T

b b b
 =  v x ω , the block 

diagonal mass matrix ( ),b b bdiag m=m δ I  and the vector that contains the forces and torques 

acting on the bodies (effort vector) ( )
TTT

b b b b b b
 = − 
 

e f τ ω I ω . Consequently, the equation 

(2-5) can be written in the following form: 

 b b b=m v e  (2-6) 

In case of a system that is comprised of N  rigid bodies, the following system variables are 

defined: the velocity states 1 2

TT T T
N

 =  v v v v , the block diagonal system mass matrix 

( )1 2, , , Ndiag m m m=M  and the system effort vector 1 2

TT T T
N

 =  E e e e . Thus, the 

unconstrained dynamics described in equation (2-6), can be rewritten in the following form: 

 =Mv E  (2-7) 
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Articulation and Contact Constraints 

Articulations that connect bodies with each other and contacts between bodies, are modeled 

using a set of nonlinear constraints on the body position and orientation of the rigid bodies 

that are part of the system. Articulations make use of equality constraints that have the form 

( ), 0eh =x q  and contacts make use of inequality constraints that have the form ( ), 0ih x q , 

both of which are position constraints. 

To avoid nonlinearities, the position constraints are differentiated to extract linear velocity 

constraints [79] that have the form: 

 =Jv c  (2-8) 

where J  is the constraint Jacobian matrix with one row for every degree of freedom the 

constraint removes from the system, and c  a right-hand side vector. For articulation 

constraints, that are equalities, c  obeys the following relationship: 0e= =c c . For contact 

constraints, that are inequalities, c  obeys the following relationship: 0i= c c . The procedure 

that should be followed to construct these velocity constraints is thoroughly described in [83]. 

The velocity constraints get appended to the EoM using a vector of Lagrange multipliers λ  

as: 

 T= +Mv E J λ  (2-9) 

where, according to [84], vector E  is equal to the sum the external forces applied to the 

system, extf , with the joint viscous damping forces, dampf . The term TJ λ  is equal to the 

constraint forces applied to the system, constraintf . So equation (2-9) can also be written in the 

form:  

 = + +ext damp constraintMv f f f  (2-10) 

Discretization and Solution of the Dynamics 

Equation (2-9) has to be discretized over a time interval t  using first-order Euler integration 

method (forward or explicit Euler integration), for the discretization of the time derivatives, 

which is the following: 

  
1n n

t

+ −
=



v v
v  (2-11) 

Rearranging the terms of equation (2-11) and combining it with equation (2-9) results in the 

following expression: 

 
( ) ( )11 1

0

T n nt t+     −  +
=    

    

M J v Mv E

J λ c
 (2-12) 

where λ 0  and c 0  for unilateral contacts. Assuming that the constraints are satisfied 

implicitly at the next time step ( )t t+ , 1n+ =Jv c , the Lagrange multipliers λ  are calculated 

using the equation (2-13), that is derived by left multiplying the equation (2-12) with the term 
1−JM . This equation has the following form: 

 1 1
n

T

t t
− − 

  = − +     

c v
JM J λ J M E  (2-13) 

The equation (2-13) is a system of linear equations that can be rewritten in the following form: 

 =Aλ b  (2-14) 
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where 

 1 1,
n

T

t t
− − 

= = − + 
  

c v
A JM J b J M E  (2-15) 

Equation (2-13) is solved for the unknown Lagrange multipliers λ  which are necessary for 

forward dynamics. This system can be solved using the algorithms that were referred in 

section 2.2.2, which are either Dantzig or PGS. 

Having the vector λ  acquired, the velocities 1n+v  are calculated using equation (2-12). 

The positions 1n+x  and the orientations 1n+q  are computed by integrating equations (2-1), 

(2-2) respectively, using the velocity at the next time step ( )t t+ , 1n+v  (backward or implicit 

Euler integration), to give semi-implicit stability [79]. The resulting integrations schemes are 

the following: 

 1 1n n nt+ += +x x x  (2-16) 

 1 1

2
n n n nt+ +
= + q q ω q  (2-17) 

This should be combined with a renormalization 1 1 1: /n n n+ + +=q q q  to ensure that the result is 

a unit quaternion. The entire integration scheme is called semi-implicit Euler integration, due 

to the combination of both forward and backward Euler integration rules. 

The Lagrange multipliers that correspond to inequality constraints, are initially calculated 

using equation (2-13) and these intermediate values are projected afterwards into their 

corresponding solution space, depending on the type of constraint that corresponds in each 

situation. This solution projection [84], is conducted in the case of contact and frictional 

constraints. For contact constraints, the constraint force that corresponds to the direction 

normal to the contact surface, 

 , constraints, 1, ,T
i i i i N= =constraintf J λ  (2-18) 

is necessary to push the bodies apart from each other (no stiction between the bodies), means 

that, 

 0i λ  (2-19) 

where T
iJ  denotes the transpose of the -thi  column of matrix J  and constraintsN  is the number 

of all the constraints present in a system. Frictional constraints will be examined in more detail 

in section 2.2.5. 

2.2.4 Joint Constraints Parameters 

When a joint (constraint) attaches two bodies, they are supposed to have certain positions 

and orientations relative to each other. Nevertheless, it is possible for the two bodies to be in 

positions where the conditions that the constraints represent are not satisfied. This “joint error” 

may occur for the following two reasons: 

• The user sets the position/orientation of one body without correctly setting the 

position/orientation of the other body. 

• During the simulation, errors can creep in that result in the bodies drifting away 

from their required positions and not lining up properly, as is shown in Figure 2-4. 
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Figure 2-4. An example of “joint error” in a ball and socket joint [76]. 

It is possible to reduce the joint error. At every simulation step, each joint applies a force 

to its bodies, that aims to bring them back into correct alignment. This force is controlled by 

the error reduction parameter ( ERP ), and it has a value between 0 and 1. 

To be more specific, according to [79], OpenDE adds an additional term to the constraint 

equation, which is a position constraint correction term. The position constraint error at the 

thn  time step nh , is calculated for every constraint and at every time step. This term is 

combined with ERP  and then added to the velocity constraint equation. Thus, the constraint 

equation takes the following form: 

  nERP

t
+ =


Jv h c  (2-20) 

This term can be regarded as a form of Baumgarte stabilization [85]. Additionally, the 

constraint error correction term can be also added in equation (2-13), which takes the form: 

 1 1

2

n
T nERP

t t t
− − 

  = − − +      

c v
JM J λ h J M E  (2-21) 

ERP  specifies what portion of joint error will be corrected during the next step of the 

simulation. If 0ERP= , then no correcting force will be applied to the bodies, and they will 

eventually drift apart. If 1ERP= , then the simulation will attempt to correct the entirety of joint 

error during the next step of the simulation. However, in practice it is not recommended to use 

1ERP= , since due to various internal approximations joint error will not be entirely corrected. 

Apart from that, it may also lead some systems to instability. In practice, the recommended 

value for ERP  lies in the interval  0.1 0.8 . 

A second parameter used for the joint constraints called the constraint force mixing 

parameter (CFM ) will be presented here. Most articulation constraints are “hard”, meaning 

that conditions that the constraints represent must never be violated. For example, in case of 

a ball and socket joint, the ball must always lie inside the socket. Nevertheless, these 

constraints may be violated in practice because of errors that are inadvertently introduced into 

the system. However, these errors can be corrected with the use of ERP . 

Some constraints are “soft”, meaning that they are designed to be violated. For instance, 

the contact constraint formed by two bodies that come in contact and should not penetrate 

each other is “hard”. However, a contact constraint formed by two bodies that come in contact 
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and should be able to deform and allow some penetration upon contact, is “soft”. The 

distinction between “hard” and “soft” constraints is done using ERP  and CFM  parameters. 

As it was mentioned in chapter 2.2.3 the constraint equation of every joint can be written 

in the form: 

 =Jv c  (2-22) 

Ta the next time step, the vector λ  is calculated, that has the same dimensions as vector c . 

Τhe vector λ  is calculated in such a way that the forces constraintf  acting on the bodies of the 

joint to enforce the constraint are the following: 

 T=constraintf J λ  (2-23) 

In OpenDE the constraint equation has the following form: 

 = + Jv c CFM λ  (2-24) 

where CFM is a square, diagonal, and positive definite matrix whose elements are comprised 

of the parameter CFM . A positive CFM  allows the aforementioned constraint to be violated 

by an amount proportional to the product CFM λ , where the restoring force λ  is necessary 

to enforce the constraint. In the approach that OpenDE adopts, the term ( )1 t CFM λ  is 

added to the right hand side part of equation (2-21), and by calling the right hand side part of 

the equation, rhs , equation (2-21) can be rewritten as follows: 

 1 T rhs
t

− 
+ =  

CFM
JΜ J λ  (2-25) 

Thus, CFM  adds additional terms to the diagonal of the original system matrix. If 

0CFM = , then the constraint will be “hard”. If 0CFM  , then the constraint will be “soft” and 

as CFM  increases, so does the softness of the constraint. One additional benefit of positive 

CFM  is that the system moves away from singularities and thus the factorizer accuracy is 

being improved [76]. The parameters ,ERP CFM  can be set for each rotational joint of the 

robot separately, or they can be set simultaneously for all the rotational joints of the robot by 

using global ,ERP CFM  parameters. For the articulation constraints of the robot, which are 

rotational joints, the selected values are 0.8ERP=  and 310CFM −= . More information about 

the “joints” that correspond to the contact points of the feet of the quadruped with the ground 

will be presented in chapter 2.2.6. 

To select the proper ,ERP CFM  for the articulation constraints simulations were 

conducted. In these simulations, the quadruped, with legs with 2 Degrees of Freedom (DoF) 

(abduction angle was fixed and was equal to zero), fell from a small height to the ground and 

eventually stopped moving completely. Running these simulations, with friction present at the 

contacts of the feet with the ground, the following were observed: when 0CFM = , the robot’s 

body roll angle was not close enough to zero. To be more precise, for 0CFM = , the body roll 

angle varied, depending on the controllers’ gains, in the order of magnitude of 4 510 10 rad− − . 

When 0CFM   and more precisely when CFM  varied in the order of magnitude of 
3 1010 10− − , then the body roll angle varied in the order of magnitude of 7 1110 10 rad− − . 

Therefore, the use of a non-zero CFM  significantly improves the accuracy of the 

computations. Some additional simulations were also conducted. In these simulations, a table 

fell from a small height to the ground and eventually stopped moving completely. The table 

was a rigid body with legs that had no joints. When it was standing still on the ground, the 

body roll angle was almost zero (order of magnitude 1810 rad− ) even for 0CFM = . Therefore, 
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the non-zero body roll angle is caused by the joint error, present due to the articulation 

constraints, in the simulation. If legs with joints were added to the table, then the body roll 

angle moved away from zero. The body roll angle moved even further from zero when the 

number of leg joints was increased. Consequently, this problem present in articulated systems 

can be significantly reduced by tuning appropriately CFM . 

2.2.5 Friction Parameters 

The friction model utilized to model the friction between two or more bodies that come in 

contact is the Coulomb friction model, that poses a relationship between normal and the 

tangential component of the friction force at the contact point. This relationship is the following: 

 t n
umf f  (2-26) 

where ,n tf f  are the normal and tangential components of the contact force, and um  is the 

friction coefficient. This equation defines a friction cone with axis parallel to the vector nf  and 

with vertex the contact point. This friction cone is depicted in Figure 2-5. If the total friction 

force vector lies within the friction cone, then the contact is in “sticking mode”, which means 

that the friction force is enough to prevent the bodies that are in contact from moving w.r.t 

each other. If the total friction force vector lies on the surface of the friction cone, then the 

contact is in “sliding mode”, which means that the friction force is typically not large enough to 

prevent the contacting surface the bodies that are in contact from sliding. Ergo the coefficient 

um  specifies the maximum ratio of tangential to normal force that will not cause sliding. 

 

Figure 2-5. Friction Cone [86]. 

In OpenDE, according to [79], the frictional constraint equations are also written as 

velocity constraints in the following form: 

 fric fric=J v c  (2-27) 

The direction the tangential friction force component tf , is referred to as Tj , and should satisfy 

the maximum dissipation principle [87]. The Lagrange multipliers that correspond to the 

frictional constraints, Tλ , are projected into a corresponding solution space based on 

Coulomb’s friction law of equation (2-26).  
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OpenDE utilizes friction models that are approximations of the friction cone, for more 

efficient calculations since they tend to be much faster than the friction cone [79]. In such 

models the direction of maximum dissipation is not computed, but the frictional constraints are 

split into two or more vectors that span over the contact surface manifold. In case where two 

spanning directions are chosen, the friction cone is approximated by a pyramid. The friction 

pyramid, displayed in Figure 2-6, is utilized in this work. Consequently, friction’s behavior will 

be anisotropic, and thus orientation based artifacts might be introduced [84]. These artifacts 

do not occur when the friction cone is utilized. In this model, two friction coefficients 2,u um m  

must be specified that correspond to the two friction directions of the friction pyramid. These 

two directions coincide with the directions of the axes of the global coordinate system (world 

frame). When the friction pyramid is used, the frictional constraint equations have the following 

form: 

 
1

1 2

2

TT T T
fric fric

 
 = =  

 

N T

N T T

N T

j j
J v v v v c

j j
 (2-28) 

with the Lagrange multipliers 1 2,T Tλ λ  that correspond to the two directions of the pyramid, 

being projected into their corresponding solution spaces, at each solver iteration, based on 

the expressions: 

 1
1

t n
umf f  (2-29) 

 2
2

t n
umf f  (2-30) 

OpenDE makes an additional approximation to this model which is the following: firstly, 

OpenDE calculates the normal components of the contact forces assuming that the contacts 

are frictionless. Then it computes the bounds of the tangential component of the friction force 

mf  from the expression: 

 n
um=mf f  (2-31) 

and afterwards solves the equations of the system using these fixed bounds. The value 

selected for the coefficients 2,u um m  is 1.2. 

Apart from the coefficients 2,u um m , OpenDE allows the user to specify the direction of the 

first friction direction of the pyramid at which the friction coefficient um  corresponds to. This 

direction is specified with the unit vector 1dirf , that is shown in Figure 2-6. This vector is defined 

w.r.t. the local reference frame of each of the bodies that come in contact. The vector that 

specifies the second friction direction of the pyramid 2dirf , is equal to the cross product of the 

unit vector along the normal direction to the contact surface with the vector 1dirf . In case where 

 1 0 0 0=dirf  for both bodies that come in contact, then the two directions of the friction 

pyramid will be aligned with the axes of the world frame. This means that the direction of 1dirf  

is the same as the direction of the positive semi-axis x , and the direction of 2dirf  is the same 

as the direction of the positive semi-axis y . In case where a nonzero 1dirf  is utilized, then its 

value should be defined in only one of the two bodies that come in contact. If it is set for both 

bodies, then the behavior of the friction model will be undefined. 
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Figure 2-6. Friction cone approximation with square pyramid [75]. 

Finally, torsional friction [88] must also be included in the model in addition to the 

translational friction that has already been defined. The importance of torsional friction 

becomes apparent with the following example: consider a sphere that is in contact with the 

ground, at only one contact point, and rotates about an axis that passes through that contact 

point. More information about contact and collision modelling of bodies with the ground in 

Gazebo will be presented in chapters 2.2.6, 2.2.7. Since the axis of rotation passes through 

the contact point with the ground, the linear velocity of that point will be equal to zero while its 

angular velocity will be nonzero. As a result, the translational friction acting on the sphere is 

zero and thus the sphere will rotate without being decelerated by friction. Therefore, torsional 

friction must be defined and included in the model. The torsional friction torque tT  that acts on 

a body and decelerates it, is given by the following expression: 

 
3

16
n

tT a coefficient


=   f  (2-32) 

where coefficient  is the coefficient of torsional friction, which is usually equal to the 

translational friction coefficients 2,u um m . In this work, this coefficient is equal to 0.0. The radius 

a  is the radius of the contact patch created between the two surfaces that come in contact as 

is shown in Figure 2-7. The value of that radius is given by the expression: 

 a R d=   (2-33) 

where R  is the surface radius at the contact point and d  is the contact penetration depth. The 

procedure that must be followed to derive the equation (2-33) is analyzed in [89]. 
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Figure 2-7. Sphere geometry at the contact point with the ground [88]. 

As seen in equation (2-32), torsional friction, unlike translational friction, does not depend 

solely on the friction coefficient and the normal contact force component. It also depends on 

the area of contact formed between two bodies that come in contact. OpenDE supports two 

different parameterizations of the contact area. With the first one, the user has to define the 

surface radius a  needed for the calculation of tT . However, with this parameterization, the 

surface radius a  will no longer depend on d , but will always have a constant value and equal 

to the value that the user has provided. With the second one, the user has to define the surface 

radius R  and thus the patch radius a  is computed using equation (2-33) and the contact 

depth d . The value of R , was set equal to the radius of the cylindrical part of the lower legs 

of the robot. With the first parameterization, since the user has defined the patch radii 1 2,a a  of 

the two bodies that are in contact, the equivalent surface radius a  is calculated as follows: 

 ( )1 2max ,a a a=  (2-34) 

with the second parameterization, since the user has defined the surface radii 1 2,R R  of the 

two bodies that are in contact, the equivalent surface radius R is calculated as follows: 

 

1 2

1

1 1
R

R R

=

+

 (2-35) 

In case where one of the two bodies is the ground (plane), then its surface radius is set equal 

to infinity (inf).  

2.2.6 Contact Constraints Parameters 

The contacts between bodies are handled by the physics engine as joints (contact joints), as 

is shown in Figure 2-8. When two bodies or a body and the ground come in contact, then that 

contact is represented with one or more contact points. A penetration depth corresponds at 

each contact point that expresses the depth to which the two bodies inter-penetrate each 

other. Also, a unit vector, that is perpendicular to the contact surface, corresponds at each 

contact point as well. Representing contact with contact points is just an approximation of the 

real phenomenon. The use of contact patches or surfaces is a much more accurate 

approximation, but it is extremely challenging to employ such models in a high-speed 

simulation software. 
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Figure 2-8. Contact Joint [76]. 

As it was mentioned before, the contact of the feet with the ground can be modeled if the 

appropriate values of ERP , CFM  are selected firstly. The contact modeling between bodies 

can be implemented by using a spring-damper model. Many variants of this model exist. The 

spring-damper model utilizes a spring (linear or nonlinear) connected in parallel with a damper 

(linear or nonlinear), whose constants ,p dk k  must be specified. These constants depend on 

the materials from which the two bodies that come in contact are constructed. Since the user 

has defined the spring constants ,1 ,1,p dk k  and the damper constants ,2 ,2,p dk k  of the two bodies 

that come in contact, the equivalent spring and damper constants , ,,p eq d eqk k  are calculated as 

follows: assume that , ,,p f d fk k  and , ,,p g d gk k  are the spring and damper constants of the two 

bodies that come in contact, which are the foot and the ground respectively. According to the 

Gazebo source code, the two springs are assumed to be connected in series and the two 

dampers are assumed to be connected in parallel. Consequently, the equivalent spring and 

damper constants , ,,p eq d eqk k  are the following: 

 ,

, ,

1

1 1p eq

p f p g

k

k k

=

+

 (2-36) 

 , , ,d eq d f d gk k k= +  (2-37) 

However, it is possible to map the ERP , CFM  parameters into equivalent spring and 

damper constants ,p dk k  with the following expressions: 

 
p

p d

k t
ERP

k t k


=

 +
 (2-38) 

 
1

p d

CFM
k t k

=
 +

 (2-39) 

The procedure that must be followed to derive the equations (2-38), (2-39) is analyzed in 

[90]. Any spring-damper system can be implemented by tuning appropriately ERP , CFM . It 

is important to note that the spring-damper system solution is obtained in this way is obtained 

implicitly as part of the overall LCP system. Therefore, the numerical stiffness problems that 
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are present in explicit spring-damper systems are nonexistent here [79]. The constants that 

were chosen for the material of the robot’s foot are the following: , 300000N/mp fk = , 

, 1000Ns/md fk =  the constants that were chosen for the material of the ground are the 

following: , 300000N/mp gk = , , 1000Ns/md gk = . These constants correspond to rubber, which is 

the material from which the feet and the ground are constructed (CSL lab’s treadmill). The 

equivalent spring and damper constants are calculated using (2-36), (2-37) and are the 

following: , 150000N/mp eqk = , , 2000Ns/md eqk = . 

Table 2-2. Solver, articulation constraints, friction and contact constraints parameters utilized 
for the model of ARGOS in Gazebo. 

Parameter Value 

Physics Engine 
type  ode  

_ _max step size  0.001sec  

_ _ _real time update rate  1000Hz  

_max contacts  1 

Solver 
type  world  

Constraints  
CFM  310−  

ERP  0.8 

Friction 

_friction model  _pyramid model  

um  1.2  

2um  1.2  

1dirf   0 0 0  

/torsional

coefficient
 

0.0 

Contacts  

pk  300000N/m  

dk  1000Ns/m 

2.2.7 Collision Detection 

The collision detection engine checks to find out if any objects have collided. If so, ’virtual’ 

joints (contact joints) are created for every collision point and are added to points of contact 

containing penetration depth. This is often the costliest step w.r.t the processing time. In 

OpenDE the collision detection engine GIMPACT [91] is being utilized. To perform collision 

detection in Gazebo, a collision model has to be associated with each body. This model can 

be an STL file, which is a 3D unstructured mesh that describes the geometry of a body, or a 

simple geometric primitive provided by ROS libraries. Some of these simple collision primitives 

are boxes, cylinders, spheres, convex polyhedra and planes.  

Initially, the collision models used for the lower legs were the meshes contained in STL 

files that were extracted from the CAD files that describe their geometry. The collision model 

utilized for the ground was a plane. To validate the accuracy of these collision models, 

simulations were conducted. In these simulations, the quadruped fell from a small height to 

the ground and eventually stopped moving completely. The resulting contact points were not 
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stable, meaning that their coordinates w.r.t. the inertia (or world frame) were time varying even 

though the quadruped was standing still on the ground. This phenomenon is called 

flickering/jittering contact and is a common artifact of OpenDE that has not been resolved yet 

[92]. The poor contact handling, especially between unstructured meshes, induces simulation 

artifacts like jitter, phantom impulses, or even divergence (“blowing up”), as is shown in Figure 

2-9. This artifact is even more intense when the bodies that come in contact are both modeled 

using unstructured meshes [93]. Due to the flickering artifact, high frequency signals that 

resemble “noise” are superimposed on the low frequency signals of physical quantities like 

the motor torques. Consequently, the time responses of these physical quantities get 

distorted. According to [92], one check that can be performed is the following one: run the 

simulation with the physics engine deactivated. The deactivation of the physics engine does 

not affect the collision detection and thus the contact points can be computed as usual, for the 

standing still robot. In this case, the contact points are stable. Therefore, small displacements 

of the legs of the robot, possibly due to numerical errors, result in the intense flickering of the 

contact points. Consequently, the method that computes the contact points and is utilized by 

GIMPACT, is sensitive to small variations of the position of the bodies that come in contact. 

However, these variations are not present when the physics engine is deactivated. Some 

modifications to the setup of the Gazebo model were also tested to find the remedy for this 

problem. Some of them are the following: 

• Create denser and coarser meshes for the lower legs, which did not resolve the 

problem. 

• Alter the structure of the manipulator. With this modification, the position of the 

CoM of the robot changed. This modification resolved the problem. However, this 

is not an appropriate solution for the problem since the position of the CoM of the 

robot changes when the configuration of the manipulator changes as well. Also, 

when the manipulator was removed completely from the robot, the flickering was 

completely removed. Nevertheless, this solution is not realistic. 

• Decrease the sampling frequency of the sensors. Therefore, the “noise” that was 

present in the time responses was filtered out partially. 

• Decrease the _ _real time factor . Therefore, the “noise” that was present in the 

time responses was also filtered out partially, but not completely. 

The remedy for the problem was to change the collision models of the lower legs. Spheres 

were used as shown in Figure 2-10, instead of 3D meshes, whose center coincides with the 

center of the toes, and whose radius is equal to the radius of the cylindrical segment of the 

toes. The selection of simpler collision models is a common practice, to increase the stability 

of the contact points and thus have more robust contact resolution, in many simulators [93]. 

The simpler collision primitives are also more preferrable in practice in comparison to the 3D 

meshes because they exhibit faster collision detection. Spheres are selected instead of 

cylinders since the contact of a sphere with a plane is modeled with only one contact point 

while the contact of a cylinder with a plane is modeled with two contact points. These two 

points are located at the two edges of the cylinder. In general, it is recommended to the 

minimum possible number of contact points in contact modeling. The cylinder can also be 

modeled with one contact point but in some cases, instabilities emerge, since the position of 

the contact point alternated between the two positions, at every time step of the simulation, 

that correspond to the edges of the cylinder. 
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Figure 2-9. A stack of cubes is dropped. Left: with GIMPACT it “blows up” nearly instantly 
after the second block touches the first. Right: the expected outcome [93]. 

 

Figure 2-10. Collision primitives for Lower Legs. Left: 3D unstructured mesh. Right: Sphere. 

2.2.8 Viscous Joint Damping 

In OpenDE, according to [84], the modelling that is implemented for the joint-dampening is not 

adequate enough to model the joints of real robots. In general, the viscous friction joint 

dampening constant b  is not easily determined as a constant before run-time. Moreover, 

OpenDE is not able to simulate viscous joint damping in the current implementation of the 

solvers world step and quick step. The user must apply the viscous joint damping force 

explicitly outside of OpenDE, where to compute the viscous joint damping force at the current 

time step, the joint velocity from the previous time step should be used,  

 1n nb+ =damp jointf v  (2-40) 

In this model, viscous friction joint dampening constant selected for all the joints of the robots 

is the following: 0Nm s/radb=  . The joints of many real robots have gearboxes with high 
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reduction ratios which leads to high viscous damping coefficients and low efficiency. When 

large viscous damping forces are introduced in simulations, then the problem suffers from 

numerical stiffness. Numerically stiff problems demand very small integration time step sizes 

which leads to poor performance simulations. On the other hand, solving for damping forces 

implicitly is computationally expensive. In the case of the quick step solver the following 

approach can be adopted: the forces can be updated within each PGS iteration without 

significantly impairing the computational efficiency of the method and higher viscous damping 

coefficients can be utilized for a given time step size. 

In Figure 2-11, describes an overview of a simulation architecture in Gazebo, with the use 

of OpenDE. 

 

Figure 2-11. Flow chart of simulation architecture in OpenDE [63]. 

2.3 Validation of Gazebo Modelling 

To validate the accuracy of the Gazebo modelling, the results of the Gazebo simulation of a 

robot have been compared with the results that the analytical equations provide for the same 

robot. The robot that has been tested is the leg of ARGOS. As long as this comparison was 

considered, it has been treated as a 2 DoF manipulator. To be more precise, the value of the 

abduction angle was fixed and was equal to zero. The analytical EoM were extracted using 

the Euler-Lagrange formulation. However, these equations were solved numerically using a 

simulation environment in Simulink. 
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2.3.1 Leg Model in Gazebo 

The geometric and inertial parameters used for the model of the leg in Gazebo are the same 

as the ones used for ARGOS’s legs. Also, the solver parameters and the joint constraints 

parameters used here are the same as the ones used for the model of ARGOS in Gazebo. 

Additionally, no virtual sensors were mounted on the leg. To compare the results of the 

Gazebo with the ones given by the analytical EoM, the values of the joint angular positions, 

angular velocities and torques are necessary. These values are taken from the ROS topic, 

/joint_states. 

The leg is driven using two PD controllers, one for every leg joint, which are provided by 

the ros_control package. The proportional and derivative gains of each controller ,p dK K  can 

be selected separately. These gains are defined in a .yaml file. The leg joints accept torque 

commands as reference inputs (effort joints), and therefore effort controllers are utilized. 

However, since position control is applied for each leg joint, the reference inputs that are sent 

to the aforementioned controllers are angular position commands. Thus, the controllers 

utilized accept position commands (joint_position_controllers) and produce torque 

commands, given the positions commands, that are applied to the joints by the simulated hip 

and knee actuators. These position controllers are running at a frequency of 1 KHz. The user 

can send reference inputs to the topics /joint1_position_controller/command and 

/joint2_position_controller/command that correspond to each controller, and in this case are 

the angular positions of the joints. To drive the center of the leg’s foot along a desired path 

that lies inside the leg’s workspace, defined in the cartesian space, a ROS node (publisher 

node) must be utilized, that implements the following procedure: at every time step, the desired 

position of the center of the leg’s foot in cartesian space is computed by a trajectory planning 

algorithm. Then, this position in the leg’s workspace is reconstructed to desired joint angles, 

expressed in the joint space, using an inverse kinematics algorithm. Finally, these angular 

positions are published to the aforementioned topics. 

2.3.2 Trajectory Planning 

The center of the foot toe should move along a trajectory that is nearly elliptical. More 

specifically, a time series of points, in the cartesian space, along an elliptical primitive in the 

workspace of each leg is generated, which are used as a reference for the leg’s joint 

controllers. This trajectory is generated using the parametric equations of the ellipse which 

are expressed w.r.t. the fixed frame Ο that is located at the hip joint, as shown in Figure 2-12. 

These parametric equations are the following: 

 ( )sin simtr c trtx x b = +   (2-41) 

 ( )cos simtr c trty y a = +   (2-42) 

where  
T

tr trx y  is the vector containing the coordinates of the elliptical path along which the 

center of the foot should move,    m0 0.5
T

c cx y = −  is the vector containing the coordinates 

of the ellipse center position, 6m0.0a=  and 2m0.1b=  are the lengths of the ellipse semi-

axes, s10rad/tr =  the angular velocity of the foot’s motion along the elliptical path and simt  is 

the simulation time. 
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2.3.3 Inverse Kinematics 

The leg’s joint controllers accept as command the desired position of each leg joint. Therefore, 

to implement the control law, the time series of the desired foot positions, expressed in the 

cartesian space, should be reconstructed to a time series of the desired joint angles, 

expressed in the joint space. This reconstruction is achieved by using an inverse kinematics 

algorithm. This algorithm takes as input the desired position of the center of the legs foot 

 
T

x y   and gives the desired joint angles as output  1 2

T
  . 

 

 

Figure 2-12. Leg dynamic model used for the calculation of the inverse kinematics. 

The following relationships are derived by solving the inverse kinematics problem: 

 ( ) ( ) ( )
2 2 2 2

21 2
2 2 2

1 2

cos sin cos, 1
2ik ik ik

x y l l

l l
   = =

+ − −
 −  (2-43) 

 ( ) ( )( )2 2 2tan2 sin o,c s
ik ik ik

a  =  (2-44) 

 ( ) ( ) ( )( )1 2 2 1 2 2tan2 tan2 n, si cos,
ik ik ik

a x a l l ly   = − − − +  (2-45) 

 1 1 2 2 1,
ik ik

     = = + +  (2-46) 
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Therefore, two different leg configurations, meaning two different pairs of joint angles 

1 2,  , correspond to a single position of the center of the foot in the cartesian space. The one 

pair corresponds to configuration 1 and the other to configuration 2 as shown in Figure 2-13. 

The selected solution is the one that corresponds to leg configuration 1. This solution is yielded 

when the following inequality is satisfied: ( )2 0sin
ik

  .  

 

Figure 2-13. Two different configurations of the leg that correspond to the same point in the 
cartesian space [x, y]. 

2.3.4 Analytical EoM 

To validate the Gazebo simulation results, the EoM should be found using the Euler-Lagrange 

formulation. As is shown in Figure 2-14, the model of the leg is a 2 DoF planar serial leg and 

consists of the Leg Roll, the Upper Leg, and the Lower Leg. The mass of each link of the leg 

is im , moment of inertia of each link of the leg about its CoM is iI  and the length of each link 

of the leg is il . The numbering of the subscript i  starts from the Leg Roll. The length of link 

1i = , 1l , is defined as the distance between the hip and the knee joint, and the length of the 

link 2i = , 2eff
l , is defined as the distance between the knee joint and the contact point of the 

foot with the ground, as shown in Figure 2-15. Point contact is assumed each time the foot 

impacts the ground. The CoM of each leg link is at a distance id  from the respective leg joint. 

The hip and knee joints are driven by actuators modeled as ideal torque sources i . When 

the foot impacts the ground, a force acts on it due to contact with the environment. This force 

consists of a component tangential at the contact surface xF  , due to friction, and of a normal 

component at the contact surface N . 

The length 2eff
l  and the angle   can be computed by applying the cosine and the sine 

theorem respectively to the triangle shown in Figure 2-15. The length 2eff
l  is given by: 
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( )( )

( )

2 2 2
2 2 2 2

2 2
2 2 2 2

2 cos

2 cos

eff

eff

l l r l r

l l r l r

  

 

= + − − − 

= + + −
 (2-47) 

The angle   is given by: 

 

( ) ( )( )
( )

( )
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2 2

2 2
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 −
 =
 
 

 (2-48) 

Therefore, the position of the contact point is a function of the angle 2  and not constant 

during the robot’s motion. 

 

Figure 2-14. Leg dynamic model used for the calculation of the analytical EoM. 
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Figure 2-15. Geometry of ARGOS’s leg at the contact point of the foot with the ground. 

The robot’s EoM are computed using the Euler-Lagrange formulation, as it is described 

in [94]. Firstly, a set of variables , 1, ,j j n=q  must be chosen, which are called generalized 

coordinates and describe the link positions of a robot with DOFsn− . In this case, the selected 

generalized coordinates , 1, ,j j n=q  are the following variables: 

  1 2

T
 =q  (2-49) 

Then the Lagrangian of the mechanical system L  can be defined which is a function of 

the generalized coordinates. The Lagrangian is computed as follows: 

 L T U= −  (2-50) 

where T  is the total kinetic energy of the system and U  is the total potential energy of the 

system. The Lagrange equations are expressed by: 

 , 1, ,
j j j

dPd L dL
j n

dt


 

− = =     q q q
 (2-51) 

where P  is the power of the nonconservative generalized forces acting on the robot. These 

generalized forces are the joint actuator torques, the joint friction torques, and the joint torques 

induced by end-effector forces at the contact with the environment. 

To compute T , U  and P , the expressions that describe the cartesian coordinates of the 

CoM of each leg’s link  
T

i ix y  as well as the coordinates of the foot 
T

f fx y    must be 

found. These expressions are the following: 

 ( )1 1 1sinx d =  (2-52) 

 ( )1 1 1cosy d =−  (2-53) 
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 ( ) ( )2 1 1 2 1 2sin sinx l d   = + + −  (2-54) 

 ( ) ( )2 1 1 2 1 2cos cosy l d   =− − + −  (2-55) 

 

 ( ) ( )1 1 2 1 2sin sin
efffx l l    = + + − −  (2-56) 

 ( ) ( )1 1 2 1 2cos cos
efffy l l    =−  −  + − −  (2-57) 

The total kinetic energy T  of the system is computed using the following expressions: 

 ( )2 2 2
1 1 1 1 1 1

1 1

2 2
T I m x y= + +  (2-58) 

 ( )2 2 2
2 2 2 2 2 2

1 1

2 2
T I m x y= + +  (2-59) 

 

 1 2T T T= +  (2-60) 

The total potential energy U  of the system is computed using the following expressions: 

 1 1 1U m gy=  (2-61) 

 2 2 2U m gy=  (2-62) 

 

 1 2U U U= +  (2-63) 

The power of the nonconservative generalized forces acting on the robot P  consists of 

the power of the joint actuator torques, P  and the power of the joint torques induced by end-

effector forces at the contact with the environment, gP . In this case, it is assumed that the 

Lower Leg does not slide on the ground but rotates instantaneously about the contact point of 

the foot with the ground, whose velocity is equal to zero. These powers are given by the 

following expressions: 

 ( ) ( )1 2 1 2 2 1 1 2 2 1P P          = − +  = + −  (2-64) 

 2 2 2g yP F x Ny M= + +  (2-65) 

where ( ) ( )2 2f f yM x x N y y F= − − −  

 gP P P = +  (2-66) 

Taking the derivatives required by Lagrange equations in (2-51), the EoM of the robot can 

be rewritten in the following compact matrix form which represents the joint space dynamic 

model: 

 ( ) ( ) ( ) ( ), T T+ + = +M q q c q q G q S τ J q f  (2-67) 

where q  is the generalized coordinates vector, M is the Joint Space Inertia matrix, c  are the 

Coriolis and centripetal terms, G  is the gravity term, J  is the contact (geometric) Jacobian 

that that maps the external forces/torques to the generalized coordinate space, f  are the 
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external forces/torques, S  is the selection matrix that maps input forces/torques to joints and 

τ  are the input forces/torques. The vectors ,τ Fare the following: 

  1 2

T
 =τ  (2-68) 

 
T

yF N =  F  (2-69) 

The values of the matrices , , , ,M c G S J  may be found in Appendix A. 

2.3.5 Integration of Analytical EoM 

The Euler-Lagrange equations in (2-67) define the inverse dynamics problem. The inverse 

dynamics problem consists of determining the joint torques τ  which are needed to generate 

the motion specified by the joint positions, velocities and accelerations ( ), ,q q q , given the 

possible end-effector forces f . Solving the inverse dynamics problem is useful for manipulator 

trajectory planning and control algorithm implementation. 

The forward dynamics problem consists of determining the joint accelerations q , as well 

as the joint velocities and positions ,q q  through numerical integration, resulting from given 

joint torques τ  and the possible end-effector forces f , given also the initial state of the system 

(i.e., initial joint positions 0q  and initial joint velocities 0q ). Solving equation (2-67) for q  yields 

the following expression: 

 ( ) ( ) ( ) ( )
1

,T T−
 = − − + q M q S τ c q q G q J q f  (2-70) 

In this equation, the inversion of matrix ( )M q  is always possible since it is positive 

definite. The joint velocities and positions are computed by integrating equation (2-70) two 

times, given the initial joint positions and velocities ( ) ( )0 0,t t t t= = = =0 0q q q q . Solving the 

forward dynamics problem is useful for manipulator simulation. The block diagram that 

implements equation (2-70), is shown in Figure 2-16. 

 

Figure 2-16. Block diagram of forward dynamics. 
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The joint accelerations and joint velocities are integrated numerically in a simulation 

environment built in Simulink, in which the variable-step solver ode45 is used, with absolute 

tolerance 910− , relative tolerance 910−  and maximum step 310 s− . The closed loop block 

diagram as it is implemented in Simulink is shown in Figure 2-17. 

 

Figure 2-17. Block diagram of the closed loop system. 

2.3.6 Comparison 

Leg Stabilization 

For this simulation, the leg is initially in a specific configuration. The controller’s objective is to 

maintain the leg in this configuration despite the influence of gravity. The initial hip and knee 

joint angular positions are 1 0.5708rad =−  and 2 0.5708rad = . The proportional and derivative 

gains selected for the hip and knee joint controllers are ,1 10Nm/radpK = , ,1 1Nm s/raddK =   and 

,2 10Nm/radpK = , ,2 1Nm s/raddK =   respectively. During its motion, the leg’s foot does not 

impact the ground. 

The time responses of the joint angular positions as well as the difference between the 

responses given by the Gazebo model and the Simulink model are shown in Figure 2-18 and 

Figure 2-19 respectively. It is obvious that the results given by the Gazebo and the Simulink 

model do not differ significantly from each other. The steady state errors of the joint angles 

responses are relatively large. Tuning appropriately the gains ,p dK K  can improve the 

characteristics of the transient response. Increasing pK  will make the system’s response 

faster, will increase the overshoot and will reduce the steady state error. However, the steady 

state error will not be eliminated unless an integral gain IK  gets introduced. Also, increasing 

dK  will limit significantly the oscillations present in the transient response of the system as 

well as the overshoot, since it increases the dampening of the oscillations, and will make the 

response more stable. Nevertheless, the purpose of these simulations is not the joint PD 

controllers tuning but the validation of the Gazebo’s model results. The time responses of the 

joint angular velocities as well as the difference between the responses given by the Gazebo 

model and the Simulink model are shown in Figure 2-20 and Figure 2-21 respectively. It is 

also obvious that the results given by the Gazebo and the Simulink model do not differ 

significantly from each other. The time responses of the joint torques as well as the difference 

between the responses given by the Gazebo model and the Simulink model are shown in 

Figure 2-22 and Figure 2-23 respectively. It is obvious, in this case as well, that the results 

given by the Gazebo and the Simulink model do not differ significantly from each other. In 
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conclusion, the Gazebo modelling provides a satisfactory approximation of the modelling that 

utilizes the Euler-Lagrange equations and thus the two models agree with each other. 

 

Figure 2-18. Time responses of the angular position of the hip and knee joint computed by the 
Gazebo model and the analytical model for the leg stabilization. 

 

Figure 2-19. Difference between the time responses of the angular position of the hip and knee 
joint computed by the Gazebo model and the analytical model for the leg 

stabilization. 
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Figure 2-20. Time responses of the angular velocity of the hip and knee joint computed by the 
Gazebo model and the analytical model for the leg stabilization. 

 

Figure 2-21. Difference between the time responses of the angular velocity of the hip and knee 
joint computed by the Gazebo model and the analytical model for the leg 

stabilization. 
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Figure 2-22. Time responses of the torque of the hip and knee joint computed by the Gazebo 
model and the analytical model for the leg stabilization. 

 

Figure 2-23. Difference between the time responses of the torque of the hip and knee joint 
computed by the Gazebo model and the analytical model for the leg stabilization. 

Elliptical Trajectory 

For this simulation, the controller’s objective is to drive the center of the leg’s foot along an 

elliptical path. This path is described in the chapter 2.3.2. The initial hip and knee joint angular 

positions are 1 1.4447rad =−  and 2 1.0449rad = . The proportional and derivative gains 

selected for the hip and knee joint controllers are ,1 100Nm/radpK = , ,1 1Nm s/raddK =   and 
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,2 70Nm/radpK = , ,2 1Nm s/raddK =  . During its motion, the leg’s foot does not impact the 

ground. 

The time responses of the joint angular positions as well as the difference between the 

responses given by the Gazebo model and the Simulink model are shown in Figure 2-24 and 

Figure 2-25 respectively. The time responses of the joint angular velocities as well as the 

difference between the responses given by the Gazebo model and the Simulink model are 

shown in Figure 2-26 and Figure 2-27 respectively. Finally, the time responses of the joint 

torques as well as the difference between the responses given by the Gazebo model and the 

Simulink model are shown in Figure 2-28 and Figure 2-29 respectively. It is obvious, in this 

case as well, that the results given by the Gazebo and the Simulink model do not differ 

significantly from each other. In conclusion, the Gazebo modelling provides a satisfactory 

approximation of the modelling that utilizes the Euler-Lagrange equations and thus the two 

models agree with each other. 

 

Figure 2-24. Time responses of the angular position of the hip and knee joint computed by the 
Gazebo model and the analytical model for the elliptical trajectory. 
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Figure 2-25. Difference between the time responses of the angular position of the hip and knee 
joint computed by the Gazebo model and the analytical model for the elliptical 

trajectory. 

 

Figure 2-26. Time responses of the angular velocity of the hip and knee joint computed by the 
Gazebo model and the analytical model for the elliptical trajectory. 
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Figure 2-27. Difference between the time responses of the angular velocity of the hip and knee 
joint computed by the Gazebo model and the analytical model for the elliptical 

trajectory. 

 

Figure 2-28. Time responses of the torque of the hip and knee joint computed by the Gazebo 
model and the analytical model for the elliptical trajectory. 
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Figure 2-29. Difference between the time responses of the torque of the hip and knee joint 
computed by the Gazebo model and the analytical model for the elliptical 

trajectory. 

2.4 Conclusion 

In this chapter, the simulation framework for ARGOS in Gazebo is described and analyzed 

thoroughly. The various artifacts that tend to emerge in simulated models of legged robots 

were addressed through appropriate collision modelling as well as selection and tuning of the 

various parameters of the solver and the rest constituent functionalities of Gazebo. These 

modifications led to results that are qualitatively physically correct and realistic. Also, the 

comparisons with the analytical EoM validated the accuracy of the model and proved that the 

results of the Gazebo model are also quantitatively correct, since the pertinent errors were 

insignificant. Thus, it can be utilized as a testbed to evaluate the control frameworks that can 

be executed in real-time and will be described and analyzed in this work. 
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3 Optimal Control 

3.1 Overview of Optimal Control (Open/Closed Loop) 

Optimal control is concerned with finding the optimal choice of controls (motion plan) to 

achieve some desired goal, while minimizing a given cost function or objective function or 

performance index (e.g., energy consumption, task completion time) and while satisfying 

constraints (e.g., on contact forces, actuation limits, path constraints). 

Methods for formulating and solving Optimal Control problems (open/closed loop) are 

divided into three broad categories, as shown in Figure 3-1. A detailed overview can be found 

in [95], [96]. 

 

Figure 3-1. Overview of Optimal Control methods. 

3.1.1 Dynamic Programming 

In Dynamic Programming (DP) [97], a partial differential equation (PDE), known as Hamilton-

Jacobi-Bellman (HJB) equation, is discretized and solved over the entire state space. It finds 

a globally optimal, closed loop solution, also known as optimal policy. An optimal policy, that 

has the form ( )=u u x , provides globally optimal control for every initial state in the state 

space, as depicted in Figure 3-2. However, DP does not scale well to high dimensional 

systems since the computational cost grows exponentially with the state dimension (“curse of 

dimensionality”). For this reason, DP is trackable only when applied on low dimensional 

systems. More information about DP will also be presented in chapter 3.3. 

 

Figure 3-2. Optimal policy vs Optimal trajectory [98]. 

3.1.2 Indirect Methods 

Indirect methods are based on Pontryagin’s Maximum Principle (PMP) and derive and solve 

numerically a Boundary Value Problem (BVP) [99]. Indirect methods analytically construct the 

necessary and sufficient conditions for optimality, then they discretize these conditions and 
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solve them numerically using non-linear root finding. This is why these approaches are often 

referred to as “first optimize, then discretize”. The first-order optimality conditions are 

determined using the calculus of variations [99]. Generally, indirect methods tend to be more 

accurate and have a more reliable error estimate compared to the direct methods. These 

advantages are a result of the analytically derived conditions of optimality [98]. However, 

constructing these conditions analytically can be challenging [100]. Indirect methods tend to 

be numerically unstable and difficult to implement and initialize [9]. Thus, they are rarely used 

in practice. 

3.1.3 Direct Methods 

Direct methods transcribe the continuous time MPC problem to a finite dimensional Nonlinear 

Programming Problem (NLP). The transcription happens by discretizing the problem in time, 

by dividing the time period (horizon in MPC) of length T  seconds into 1N −  segments, 

typically of equal length of t  seconds. As a result, N  discretization points are created, also 

referred to as “knot” points, including the initial and final times. Then, they get solved using 

numerical optimization techniques. Consequently, these approaches are often referred to as 

“first discretize, then optimize”. In general, direct methods have a larger region of convergence 

when compared to indirect methods which means that they do not require as good of an 

initialization as indirect methods do. Finally, direct methods scale well to high dimensional 

systems but converge a locally optimal, open loop solution, also known as optimal trajectory 

[101]. An optimal trajectory, that has the form ( )t=u u , is a sequence of control actions, as a 

function of time, for a single initial state, as depicted in Figure 3-2. In some instances, these 

methods may even fail to converge to a solution. Despite that downside, direct methods are 

the most widely used methods in MPC applications on robotic systems [102] and therefore will 

be examined thoroughly in this work. 

3.2 Transcription Methods 

Finite-horizon, OCPs, in continuous time have the following form: 
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 (3-1) 

where the decision variables ( ) ( ),t tx u  are the state and control input trajectories from the 

initial time 0t  to the final time ft . The initial and final time are parameters and not decision 

variables in finite/receding horizon control problems. The decision variables have to be 

calculated by the solver so that they minimize the cost function J  while fulfilling the dynamical 

system constraints, defined by the continuous dynamics ( ) ( ) ( )( ), ,t t t t=x f x u , given the initial 

state of the system 0x , other equality constraints ( ) ( )( ),t t =h x u 0  and inequality constraints 

( ) ( )( ),t t g x u 0 . The cost function, in general, is comprised of the stage or running cost l  and 

the terminal or final cost fl . 

This problem is also called trajectory optimization (TO) problem. The decision variables 

here are vector functions and not real numbers and thus the problem is infinite dimensional. 
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Additionally, the fact that ,x u  are vector functions contributes to the fact that J  is a functional 

and not a scalar function. Consequently, this problem is extremely difficult to solve, since the 

space of functions is much larger than the space of real numbers and thus extremely hard to 

optimize over. Also, integral terms and differential equations are part of the cost function or 

the constraints of the problem. 

Consequently, transcription (or discretization) is being utilized, by the direct methods, to 

convert the continuous TO problem into a constrained parameter optimization problem or a 

finite dimensional NLP. The problem is discretized in time, by dividing the time period 

(prediction horizon in MPC) of length 0fT t t= −  seconds into 1N −  segments, typically of 

equal length of t  seconds. As a result, N  discretization points are created, also referred to 

as “knot” points, including the initial and final times. Finite-horizon, OCPs, in discrete time have 

the following form: 
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where k  is the time-step index. Here the decision variables ( )k kt=x x  and ( )k kt=u u  where 
n

k x  and m
k u , are real numbers and thus the problem is finite dimensional. State and 

control trajectories ,X U , where nNX  and ( )1m N−
U , are defined as a sequence of states 

 0 1, ,
T

NX x x x  and a sequence of control inputs  0 1, ,
T

NU u u u . 

Additionally, due to that fact, the objective function J  is a scalar function, not a functional. 

Moreover, the integral terms (i.e., the stage cost) are approximated with discrete sums and 

the ordinary differential equations ODEs (i.e., the system dynamics in continuous time 

( ) ( ) ( )( ), ,t t t t=x f x u ) are transformed into discrete difference equations (i.e., the system 

dynamics in discrete time ( )1 , ,k k k t+ = x f x u ), where ( ), , : n m n
k k t  →f x u . Both of these 

are essentially converted into algebraic expressions. Here the stage and terminal cost of the 

cost function are denoted as ,k Nl l , where ( ), : n m
k k kl  →x u . 

The most common assumptions made to successfully tackle TO problems are the 

following: 

• Cost functions are assumed to be 2C  (have continuous second derivatives) and 

constraints are assumed to be, at least, 1C  (have continuous first derivatives), but 

ideally should be also 2C . Also, the derivatives should all remain relatively small. 

Non smooth (sharp) but continuous corners will still cause problems [101]. 

• The output of both the cost function and the constraints must be consistent for 

every function call. This means that the same lines of code must be executed at 

every function call (functions that include if statements, like absolute value function 

or minimum function should be avoided). 

• TO is generally applied on single-phase problems, as shown in Figure 3-3, in which 

the dynamics are continuous over the entire time horizon. However, it can also be 

applied on hybrid systems with multi-phase trajectories, as shown in Figure 3-4, 

where the system dynamics are piecewise-continuous with discrete jumps 

between them. In these problems, multiple sequences of continuous-motions 

phases exist separated by discrete jumps. They can be solved in fashion similar to 
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solving many single-phase problems parallelly while connecting the boundary 

constraints between any two phases to couple the two trajectories. 

 

Figure 3-3. Single-phase problems. 

 

Figure 3-4. Multi-phase problems. 

Direct transcription methods, as is shown in Figure 3-5, can be divided into sequential and 

simultaneous methods. A detailed overview of them can be found in [103], [104]. Sequential 

methods consist of single shooting and simultaneous methods consist of collocation and 

multiple shooting. 

 

Figure 3-5. Direct methods overview. 

3.2.1 Single Shooting 

In single shooting, the decision variables are only the control inputs ( )tu , which are 

parameterized (discretized) through a set of discrete variables, ku . The states are 

represented using simulation. The system dynamics are integrated forward in time (shooting 

or rollout) using explicit (forward) integration, as shown in Figure 3-6, while applying the 

computed control inputs. A single shot is being conducted (single segment trajectory) starting 

from the initial time 0t  and ending at final time ft . Therefore, the state trajectory, that is not 

part of the decision variables, is computed using the control input trajectory and the initial state 

0x . Thus, the system dynamics are enforced to the solution of the optimization problem using 

simulation, and consequently single shooting is referred to as method based on simulation. 

Also, the resulting state trajectory is always dynamically feasible (satisfies the dynamical 

system constraint), even before the convergence occurs, due to the forward rollouts that 

happen in every iteration of the solving procedure. 
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Figure 3-6. Sequential methods [105]. 

One advantage of single shooting is pertinent to the utilization of adaptive step-size, error-

controlled ODE/DAE solvers [103]. These solvers integrate the dynamics of the system with a 

reduced computational cost compared to fixed step-size integrators [104], thereby reducing 

the overall computational cost of the optimization method. Moreover, the number of decision 

variables of this problem is relatively small, since they are only the control inputs. As a result, 

the size of the derived NLP is relatively small compared to the NLPs created using 

simultaneous methods, and thus less expensive to solve. Additionally, only an initial guess for 

the control inputs is necessary for the initialization of the solution. 

A downside of single shooting is that it only requires an initial guess for the input trajectory, 

not for the state trajectory. The guess for the state trajectory is often more intuitive than an 

initial guess for the input trajectory. As a result, available information about the state trajectory 

cannot be utilized for the initialization of the method. Moreover, handling unstable systems 

with single shooting is a demanding task due to the fact that variations in control input affect 

the entire state trajectory [101], [103], [104]. To be more precise, integrating over a horizon 

requires calling recursively the explicit integrator function: 
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By doing so nonlinearity is increasing along the horizon, leading to inaccurate solutions to the 

problem [106]. The longer the horizons that are utilized get, the more inaccurate the solution 

of the problem becomes. This is a well-recognized and documented limitation that solvers 

based on single shooting have [106]. It is a fundamental property of the problem that was 

formulated using single shooting, and not merely an artifact of that particular transcription 

method [107]. Finally, it is difficult to enforce constraints on the state trajectory because the 

state values are not part of the decision variables of the optimization problem [100].  

Solvers dedicated to solving single shooting problems follow the procedure sketched 

here. Firstly, an initial guess of the control trajectory is made. Secondly, given that initial guess, 

the system dynamics get integrated forward in time, thus providing a state trajectory. Then 

checks are conducted to verify whether the constraints are violated or not (e.g., check if a 

desired goal state has been reached (terminal constraint) as shown in Figure 3-7). If the 
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constraints are violated, a modification of the control inputs gets calculated and then it gets 

applied to the control trajectory thus updating its parameterization. This process is repeated 

until the constraints are satisfied and desired convergence criteria are met. Consequently, in 

single shooting, simulation and optimization proceed sequentially.  

Single shooting problems have special, dense structures [95], [108], also known as 

Markovian structure. Therefore, these problems are solved more efficiently by algorithms that 

exploit that structure by solving a sequence of smaller sub-problems [106]. Such algorithms 

are structure-exploiting Newton-type methods for nonlinear MPC problems. Also, these 

algorithms are based on Riccati recursion-based Newton’s methods, often interpreted as 

Differential Dynamic Programming (DDP) [44]. More information about DDP will be presented 

extensively in chapter 3.3. 

 

Figure 3-7. Single Shooting [101]. 

3.2.2 Collocation 

In collocation, the decision variables are both the states ( )tx  and control inputs ( )tu , which 

are parameterized (discretized) through sets of discrete variables, ,k kx u . The state and 

control input trajectories are represented using function approximations (e.g., polynomial 

splines), as shown in Figure 3-8, which essentially are implicit integration schemes (e.g., 

implicit Runge-Kutta methods). The system dynamics are imposed to the solution of the 

optimization problem as equality constraints between knot points, at pre-specified times on 

intermediate points, called collocation points. The solver will attempt to vary the state and 

control input trajectories ,k kx u  simultaneously while trying to enforce the dynamical system 

constraints between them at the collocation points. Consequently, collocation is referred to as 

method based on function approximation. Also, in collocation methods, simulation and 

optimization proceed simultaneously and so the solution will satisfy the dynamical system 

constraint, as well as the rest of the enforced constraints, only at the convergence of the NLP 

solving procedure. As a result, if the user extracts the values of the decision variables before 

the convergence of the solver, they will not obey the dynamical system constraints and thus 

this (sub optimal) trajectory cannot be executed by the robot. 
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Figure 3-8. Simultaneous methods [105]. 

One advantage of collocation is that the obtained NLPs are very sparse1, although larger 

in size than the NLPs derived using single shooting and show fast local convergence [103]. 

Another advantage is pertinent to the initialization of the method. To be more precise, 

knowledge of the initial state trajectory can now be utilized for the initialization of the method, 

since states are also part of the decision variables of the optimization problem, alongside the 

control inputs. Therefore, the initial guess of the solution can be easily made. Since the states 

are part of the decision variables of the optimization problem, collocation can easily handle 

state and terminal constraints [103]. Finally, collocation is more robust and more suitable for 

handling unstable systems compared to single shooting. Because of the fact that both the 

states and the controls inputs are separate, independent decision variables, variations in 

control input solely impact the state only at that time instance, with no impact on future states 

[104]. This property is demonstrated in the sparsity patterns within the Jacobians and 

Hessians of constraint and cost functions [68], [101], [103]. 

The main downside of collocation is that it is computationally costly to change its accuracy 

during the runtime of the optimization. To do so, the points (and the times) on which the 

dynamics constraint is enforced have to change (regridding) during the iterations of the 

optimization, altering also the dimension of the NLP. Single shooting does not suffer from that 

issue since adaptive step-size solvers are utilized there [104]. Nevertheless, collocation is 

extensively used in many OCPs that are presented thoroughly in the literature review. 

Collocation problems can be solved using general Newton-type methods for NLPs such 

as Sequential Quadratic Programming (SQP) methods and (nonlinear) Interior Point (IP) (or 

Barrier) methods. These numerical optimization techniques have been implemented and 

developed along with efficient general-purpose off-the-shelf NLP solvers like SNOPT [27], 

IPOPT [24] and KNITRO [71]. These solvers can tackle collocation as well as single shooting 

problems. However, it is important to note that these solvers handle sparser problems, with 

certain structures, more efficiently because they exploit he banded diagonal sparsity patterns 

within the cost and constraint Jacobians/Hessians [103]. In single shooting, this is not the 

case, as the aforementioned diagonal sparsity patterns do not exist due to the fact that state 

trajectories were not optimized alongside control inputs trajectories [64]. Both the constraint 

Jacobian and the Lagrangian Hessian exhibit a highly sparse, repeated structure, as was 

shown in [31], which contributes to the flexibility and speed of the SQP/IP algorithms. In 

 
1 The problem's matrices have a sufficiently large number of zeros compared to non-zero elements, 
allowing for algorithmic advantages to be leveraged [109]. 
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general, the sparser the problem, the more suitable these solvers will be to solve it. 

Consequently, SQP and IP methods are ideal for collocation problems and are suboptimal for 

single shooting. SNOPT and IPOPT can handle any arbitrary NLP, with any arbitrary 

constraints, and are numerically robust and versatile. However, SNOPT, IPOPT and similar 

optimizers tend to be slower, when compared with optimizers based on DDP, due to the 

sparse linear solvers they use (i.e., MA27, MA57, and MA97 [110]). These sparse linear 

solvers are necessary for performing very large matrix factorizations when computing the 

search direction required to converge to a solution [106]. The aforementioned solvers can 

handle every arbitrary NLP if the terms of the NLP described in (3-2) get re-arranged in the 

following form: 
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b z 0

c z 0
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where z  are decision variables of the optimization problem, ( )a z  is the cost function, 

( )=b z 0  are the equality constraints, ( )c z 0  are the inequality constraints and ,lower upperz z  

are the lower and upper bounds of the decision variables z . The two most commonly used 

collocation methods are direct transcription (DIRTRAN) [68], that is also called trapezoid 

collocation, and direct collocation (DIRCOL) [111], that is also called Hermite-Simpson 

collocation, as shown in Figure 3-9. In DIRTRAN, the state trajectory is represented as a 

piecewise linear function of time and the control input trajectory as a piecewise-constant 

function. In DIRCOL, the state trajectory is represented as a piecewise cubic function of time 

and the control input trajectory as a piecewise linear function of time. 

 

Figure 3-9. Direct Transcription & Direct Collocation [101]. 

DIRTRAN 

The main difference between all collocation methods lies in the approach they adopt to 

represent the dynamical system constraint, also called defect ( )  1 , 0, , 1N n

k k N−  = −Δ , 

due to the different representations of state and control trajectories that are used. The simplest 

dynamic constraint is given by explicit Euler integration scheme. In this scheme, the states 

trajectories are represented by piecewise linear polynomials and the constraint is defined by 

the defect: 

 ( )1 ,k k k k kh+= − − =Δ x x f x u 0  (3-5) 
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where 1k kh t t+= −  is the constant integration time-step that is being used. In DIRTRAN, an 

implicit integration scheme is utilized, where the dynamics are integrated using the trapezoidal 

rule. Here, the defect is defined as follows: 

 ( ) ( )1 1 1, ,
2

k k k k k k k

h
+ + += − −  +  = Δ x x f x u f x u 0  (3-6) 

The NLP solver will modify the values of 1 1, , ,k k k k+ +x u x u  to drive the value of kΔ  to zero. This 

method is also called trapezoid collocation because equation (3-6) is reminiscent of the 

trapezoid integration rule. The implicit integration scheme of equation (3-6) has the same 

order of accuracy as the explicit integration scheme of equation (3-5). In general, implicit 

integration schemes tend to be more numerically stable than their explicit counterparts [112], 

and as a result they are chosen frequently in collocation methods. Also, explicit integration 

schemes are more frequently used in methods where forward rollouts are executed (shooting 

methods). In collocation methods where the dynamics are enforced as equality constraints 

between knot points, this attribute is not advantageous. 

DIRCOL 

The main idea behind the classic DIRCOL is illustrated in Figure 3-10. For each discretization 

time interval  1,k kt t + , of length 1k kh t t+= − , the two points at the boundaries of the interval are 

called “knot” points (blue dots). These points represent the state and control variables 

1 1, , ,k k k k+ +x u x u  that correspond to them. The derivatives of the state variables at the knot 

points 1,k k+x x , can be computed utilizing the continuous system dynamics ( ),=x f x u . Having 

the values of the state and the state derivatives, at the knot points, 1 1, , ,k k k k+ +x x x x  available, 

means that a cubic interpolant polynomial can be constructed. Due to the way that it is 

constructed, this interpolant polynomial will satisfy the dynamics equations only at the knot 

points, and not at any time instance within the interval  1,k kt t + . In DIRCOL, a point at the 

middle of the interval  1,k kt t +  is defined, at the time instance ct  (also denoted as 1 2kt + ) and 

with corresponding state and control variables being equal to ,c cx u  (also denoted as 

1 2 1 2,k k+ +x u ). This point is called “collocation” point (red diamond). Enforcing the constraint 

( ),c c c= − =Δ x f x u 0  will result in a polynomial that satisfies the dynamics constraints not only 

at the knot points but also at the collocation point. The defect Δ  defines the difference 

between the derivative computed using the polynomial interpolation cx  with the derivative 

computed using the system dynamics at the collocation point ( ),c cf x u . The more 

discretization intervals utilized for optimization, the better the resulting state trajectory will 

adhere to the system dynamics across the entire interval. 
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Figure 3-10. Hermite-Simpson collocation method [113]. 

The procedure followed to construct the defect in DIRCOL can be derived according to [113]. 

First and foremost, the state ( )tx  in each discretization interval  1,k kt t +  is represented by a 

third order polynomial of the form: 

 ( ) 2 3
1 2 3t t t t= + + +0x c c c c  (3-7) 

and the state derivative ( )tx  has the form: 

 ( ) 2
1 2 32 3t t t= + +x c c c  (3-8) 

where , , ,0 1 2 3c c c c  are the coefficients of the polynomial. The polynomial coefficients can be 

calculated using the state and state derivative values 1 1, , ,k k k k+ +x x x x  at the knot points. For 

easier computations, the interval is shifted from  1,k kt t +  to  0,h , so that  0,t h , with the 

values of the states and the state derivatives at the boundaries being the same. The boundary 

conditions now have the following form: 
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Evaluating (3-7) and (3-8) at 0t =  and at t h=  yields the following expression: 
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Inverting the matrix gives the following expression for the polynomial coefficients: 
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After acquiring the coefficients, they can be substituted in the expressions (3-7), (3-8). Thus, 

the values of the state and the state derivative at the collocation point ,c cx x  can be calculated 

and are the following: 

 ( ) ( ) ( )1 1 1

1
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2 2 8
c k k k k k k

h h
+ + +
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x x x x f x u f x u  (3-12) 
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The control input value at the collocation point cu  is calculated using the piecewise linear 

interpolation: 
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u u u u  (3-14) 

The integration defect Δ  is computed by taking the difference between the interpolated 

derivative and the derivative calculated using the system dynamics, at the collocation point as 

follows: 
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The integration defect of equation (3-15) can be rewritten in the following commonly used 

form: 

 ( ) ( ) ( )1 1 1, 4 , ,
6

k k k k k c c k k

h
+ + += − −  + +  Δ x x f x u f x u f x u  (3-16) 

The NLP solver will modify the values of 1 1, , ,k k k k+ +x u x u  to drive the value of kΔ  to zero. 

Consequently, the interpolated polynomial will approximate the dynamics of the system 

according to the accuracy of the numerical integration scheme utilized. This method is also 

called Hermite-Simpson collocation because the cubic splines used to represent the state 

trajectory are also called Hermite polynomials and because equation (3-16) is reminiscent of 

the Simpson’s integration rule. Tests conducted in [111] proved that using higher order 

polynomials to represent the control inputs does not provide any significant advantage.  

An additional advantage of implicit integration schemes over their explicit counterparts, in 

terms of numerical accuracy, is pertinent to their computational cost. The aforementioned 

approach is equivalent to 3rd order implicit Runge-Kutta integrator (RK3). It is less 

computationally expensive than the explicit RK3 integrator because it requires less calls of the 

function that computes the system dynamics, per time step. Invoking the dynamics function 

and the associated Jacobians constitutes the majority of the computational cost in collocation 

methods [114]. The explicit RK3 requires 3 calls of dynamics function per time step: 
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However, Hermite-Simpson collocation (equation (3-16)) requires 2 calls of dynamics function 

per time step, because the end of one time interval, is the beginning of the next one. As a 

result, the value ( )1 1,k k+ +f x u , that corresponds to the end of a time interval, can be utilized at 

the next time interval, at the beginning of it as ( ),k kf x u . 

Higher order collocation methods 

Finally, higher order polynomials can also be utilized for the representation of state trajectories 

using the high order Gauss-Lobatto methods [113] or Pseudospectral methods [115]. In 

general, fewer discretization intervals can be utilized for the optimization, if higher order of 

implicit integration gets employed. For instance, the fifth-order Gauss-Lobatto method is 

illustrated in Figure 3-11. 

 

Figure 3-11. Fifth-order Gauss-Lobatto collocation method [113]. 

Here, three knot points and two collocations points are selected. The values of the state and 

the state derivative at the three knot points (six values in total), are used to construct the fifth 

order Hermite polynomial that represents the state trajectory. Then, this interpolant polynomial 

is used to evaluate the states at the two collocation points. The procedure sketched here is 

repeated for higher order interpolant polynomials. In general, high-order polynomials 

represent more accurately the state trajectory but require increased computation time. 

However, polynomials used for state trajectory representation that have order higher than 

three, are not commonly used [101], [116]. In robotics, in general, the system dynamics are 

not smooth enough (i.e., due to impacts and grasping) to justify the utilization of high order 

polynomials. Moreover, the models of the system’s dynamics might not be accurate enough, 

as they could be approximations rather than high-fidelity models. Therefore, the loss in 

accuracy caused by using lower-order polynomials is not of paramount importance. More 

information about the approximate dynamic models used in legged robotics will be presented 
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in chapter.4.1 Consequently, lower-order polynomials are encouraged the most. Therefore, 

these higher order collocation methods will not be examined in this research project. 

3.2.3 Multiple Shooting 

Multiple shooting [108] (also called parallel shooting) is a hybrid method that combines 

features of sequential and simultaneous methods, though usually it is considered as a 

simultaneous method. For instance, in multiple shooting, the decision variables are both the 

states ( )tx  and control inputs ( )tu , which are parameterized (discretized) through sets of 

discrete variables, ,k kx u . It is also a simulation-based method, since dynamics are enforced 

to the solution of the optimization problem using explicit (forward) integration. However, here 

the trajectory is divided into multiple segments and multiple shots are conducted. 

Multiple shooting combines the advantages mostly of collocation but of single shooting as 

well. For instance, knowledge of the initial state trajectory can be utilized for the initialization 

of the method, since states are also part of the decision variables of the optimization problem, 

alongside the control inputs. This integration of states in the decision variables allows 

collocation to easily handle state and terminal constraints. Moreover, multiple shooting is more 

robust and more suitable for handling unstable systems compared to single shooting due to 

the fact that variations in control input affect the state trajectory of the current shot only, and 

do not affect other shots. Consequently, the nonlinearities that emerge due to the forward 

rollouts get distributed over the entire horizon and do not increase along the horizon [106]. 

The more segments the horizon gets divided into, the less the nonlinearities will increase at 

each segment. However, as the number of segments that the horizon gets divided into 

increases, the problem size grows, since more decision variables are added to the problem. 

This effect will become apparent once the downsides of multiple shooting are presented. 

Finally, efficient state-of-the-art ODE/DAE solvers used in single shooting can also be utilized 

in multiple shooting as well. 

A downside of multiple shooting is that, unlike single shooting, the solution will be 

dynamically feasible only at the convergence of the NLP solving procedure. As a result, if the 

user extracts the values of the decision variables before the solver converges, they will not 

obey the dynamical system constraints and thus this (sub optimal) trajectory cannot be 

executed by the robot. Also, the NLPs that are derived in multiple shooting problems have 

smaller dimension, when compared to the ones derived in collocation, but are less sparse. As 

a result, the computational cost of each iteration in multiple shooting might be higher than the 

cost of each collocation iteration, especially when including the ODE solver computational cost 

[103]. However, efficient state-of-the-art ODE/DAE solvers utilized in multiple shooting may 

bridge that gap and result in multiple shooting solvers are as efficient as solvers used in 

collocation problems, in terms of CPU time per iteration [103]. 

Optimizers dedicated to solving multiple shooting problems follow the procedure sketched 

here. Firstly, an initial guess of the control trajectory is made. Secondly, the state trajectory is 

divided into many segments and given that initial guess, the system dynamics get integrated 

forward in time, in each segment, as shown in Figure 3-12. Thus, many shots of smaller 

duration are being conducted instead of a single shot that covers the entire duration (horizon) 

of the problem. Each of these shots, except the first one, use an artificial state value is  (green 

dots in the state trajectory plot) as initial conditions. These artificial state values are unknowns 

and will be part of the decision variables of the problem along with the control inputs [103]. To 

assure that the entire trajectory is continuous, i.e. the terminal state of each shot is the same 
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as the initial state of the next shot, continuity conditions are imposed to remove these defects. 

Then checks are conducted to verify if the constraints are violated or not. If the constraints are 

violated, a modification of the control inputs gets calculated, and then it gets applied to the 

control trajectory thus updating its parameterization. This process is repeated until the 

constraints are satisfied and desired convergence criteria are met. 

 

Figure 3-12. Multiple Shooting [101]. 

In multiple shooting problems, as it was mentioned earlier, the derived NLPs are smaller 

but less sparse than the ones derived in collocation problems. As a result, numerical 

optimization techniques, like SQP or IP methods, utilized in collocation are not the ideal choice 

for multiple shooting. However, these problems have also special, dense structures similar to 

the structures that single shooting problems have [108]. Therefore, these problems are solved 

more efficiently by algorithms based on DDP, that are multiple shooting variants of DDP [59], 

[62], [117], [118]. 

3.3 Differential Dynamic Programming (DDP) 

In DP, a function named the value function or optimal cost-to-go ( )  , 0, ,k kV k N  =x  is 

defined. It expresses the (minimal) cost J  incurred, for completing a particular task, when 

starting from the state kx  at time k , assuming that the optimal action u  is taken. It can be 

calculated starting backwards from the boundary condition, which is the terminal cost. The 

cost-to-go ( )kV x  is computed recursively, backwards in time, by applying Bellman’s Principle 

of Optimality [48], [119], as follows: 

 ( )N N NV l= x  (3-18) 

 ( ) ( )( )   1min , , , 1, ,0
k

k k k k k kV l V k N+= +  = −
u

x u f x u  (3-19) 

The equation (3-19) is known as the discrete time HJB equation. Also, the action-value 

function or Q-function ( )  , , 0, , 1k k kS k N = −x u  is defined as follows: 

 ( ) ( ) ( )( )1, , ,k k k k k k k kS l V += +x u x u f x u  (3-20) 
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Action value function is usually denoted as ( ),k k kQ x u . However, in this thesis, the symbol Q  

is utilized for the quadratic state cost, which is also used in Linear Quadratic Regulator (LQR). 

Therefore, it will not be used for the action-value function to avoid confusion. Consequently, 

the expression (3-19) can be rewritten as follows: 

 
( ) ( )( ) 
( )  

1min , ,

min , , 1, ,0

k

k

k k k k k k

k k k

V l V

S k N

+= +

=  = −

u

u

x u f x u

x u
 (3-21) 

Acquiring the value function ( )k kV x , is equivalent to acquiring the desired optimal control law 

(policy) that is given by the following expression: 

 
( ) ( )( ) 
( )

1argmin , ,

argmin ,

k

k

k k k k k k

k k k

l V

S


+= +

=

u

u

u x u f x u

x u
 (3-22) 

DP optimality conditions are sufficient for finding a global optimum, in contrast to TO where 

only locally optimal solutions are guaranteed to be found [45]. Also, in DP, stochastic dynamics 

can be taken into account, in contrast to the methods based on Pontryagin’s Maximum 

Principle (indirect methods) [45]. As mentioned in chapter 3.1.1, the (exact) DP problem, that 

involves solving numerically a PDE in continuous time [45], is tractable only for low 

dimensional systems and simple problems, like LQR. In LQR, the value function can be 

computed analytically and is quadratic [120], [121]. However, if system dynamics are 

nonlinear, even if the cost function is quadratic, the value function will not be quadratic and 

may even be impossible to compute analytically. Also the minimization problem defined by 

(3-19), will be non-convex and difficult to solve numerically for any arbitrary nonlinear system 

dynamics. 

In approximate DP, function approximations of the value function or the action-value 

function are used to make the aforementioned problem more solvable. This idea is applied on 

DDP, a direct single shooting method, where 2nd order Taylor (quadratic) approximations are 

used for the value and action-value function. This idea is also applied on Reinforcement 

Learning (RL), particularly in Q-learning, where an action-value function is learned from data 

sampled from hardware or simulation (using deep neural networks) [122] and then optimal 

controls are found by solving the minimization problem of (3-22). Learning the action-value 

function instead of the value function means that the model dynamics will not be needed to 

solve the optimization problem (model-free RL). 

Backward pass 

Notation: For a function ( ), : n ml  →x u , the following are defined: nl  xl x , 
2 2 n nl   xxl x  and 2 n ml    xul x u . 

 

In DDP [48], a 2nd order Taylor approximation of the value function ( )kV x  is used: 
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where ,
k kx xxV V  denote the gradient and the Hessian of the value function. Their values at the 

boundary, which is the terminal state Nx  are known and equal to: 
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Similarly, a 2nd order Taylor approximation of the value function ( ),kS x u  is used: 
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Combining the Taylor expansions described in equations (3-23), (3-25) with the definition of 

the action-value function described in equation (3-20) results in the following expressions for 

the action-value function’s Jacobians and Hessians: 
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where ,
k kx ul l  and , ,

k k kxx uu uxl l l  are the Jacobians and the Hessians of the cost function; and 

,
k kx uf f  and , ,

k k kxx uu uxf f f  are the Jacobians and the Hessians of the discretized system 

dynamics. Also, the last terms of the equations (3-26) denote the product of a vector with a 



 

74/252 

tensor. The Hessians , ,
k k kxx uu uxf f f  are rank-3 tensors that are often ignored from the 

expressions of the Hessians of the action-value function, to avoid the computationally 

expensive tensor-vector multiplications [106]. The version that includes the tensor terms is 

often called DDP and it corresponds to the Newton method since the step that it computes is 

nearly identical to the full Newton step [123]. The version that approximates the Hessians of 

the action-value function, by neglecting the tensor terms (Gauss-Newton (GN) Hessian 

approximation), is often referred to as Iterative Linear Quadratic Regulator (iLQR) [46] and 

corresponds to the GN method. It can also be referred to as DDP algorithm with GN 

approximation instead of iLQR. The DDP method, like Newton’s method, has quadratic 

convergence while the iLQR variant, like GN method, has linear convergence. As a result, 

DDP can converge to the (local) optimal solution in fewer iterations than iLQR would require. 

However, iLRQ’s iterations are significantly less expensive to compute when compared to the 

ones in DDP. Consequently, iLQR exhibits a considerably faster convergence rate than DDP. 

In this work, the GN approximation is adopted. However, it is important to note that there has 

been some recent work which attempts to compute, in an efficient way, these neglected 

Hessian terms [124], [125]. 

Using the quadratic approximation of the Q-function, equation (3-21) is rewritten as 

follows: 
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Minimizing kS  w.r.t. the control modification ku , gives optimal control modification k u  for 

some state perturbation kx . This can be accomplished by calculating the gradient of kS  

w.r.t ku  and setting it equal to zero. 
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2 2k k k k
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k k k

k
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u uu xu uxS S u S x S x 0

u
 (3-28) 

Thus, the optimal control modification k u  is given by solving for ku : 

 ( ) ( ) ( )1argmin ,
k k k

k
k k k k k k k k kS


      −= =− + = +uu u ux

u
u x x u S S S x k K x  (3-29) 

This locally linear feedback policy consists of a feed-forward (open-loop) term 1

k kk
−− uu uk S S  

and a linear feedback gain term 1

k kk
−− uu uxK S S . The computation of kk  is called the feed-

forward sub-problem, while the computation kK  of is called the feed-back sub-problem. 

Substituting the policy k u  into the expansion of action-value function in (3-25) gives the 

following expression:  

 ( )
1

,
2

k k k

k k k

T T

k k k

k k k

k k k k k k k k k

S
  


  

        
= +        + + +           

x xx xu

u ux uu

S S Sx x x
x u

k K x k K x k K xS S S
 (3-30) 

Equating the result with equation (3-27) and combining it with the expansion of value function 

in (3-23), provides closed-form expressions of , ,
k k kVx xxV V : 
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An iterative recursive procedure is conducted in DDP, backwards in time, to calculate the 

terms of the optimal feedback policy ,k kk K  as well as the terms of the quadratic model of the 

value function ,
k kx xxV V , and the expected cost change kV  for every time step k . This 

procedure is called backward pass. The backward pass begins at time step k N= , where the 

values of , ,
N NNV x xxV V  are known. Then equations (3-26), (3-29), (3-31) are recursively 

computed for decreasing 1, ,1k N= − . 

It is important to note that, as it was also mentioned about single shooting in chapter 3.2.1, 

DDP/iLQR suffers from numerical ill-conditioning on long horizons, due to the error 

accumulation that occurs during the backward pass. Consequently, the optimal control 

modification calculated on long trajectories will be inaccurate and the solver will eventually 

diverge. This problem is also present in machine learning when performing backpropagation 

on a very deep neural network with many stages. In machine learning this problem is often 

referred to as “vanishing/exploding gradient” problem and in control theory is often called as 

“tail wagging the dog” problem [107]. 

Forward pass 

When the backward pass gets completed for the time step k N= , a procedure called forward 

pass get initiated. The forward pass computes the new, updated state and control trajectory 
ˆ ˆ,X U  by applying the control modification to the nominal control trajectory U . 
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 (3-32) 

where ( )1 ,k k k+ =x f x u  are the system dynamics in discrete time. This backward-forward 

process is repeated until convergence to the locally optimal trajectory. Some convergence 

criteria that are commonly used in practice are presented in [121]. Modified versions of the 

forward and backward pass, that exhibit better numerical properties, are often utilized. These 

versions incorporate two techniques common in nonlinear optimization: line-search and 

regularization. 

Line search 

Line search, which is performed on kk , along the descent direction, is added to ensure an 

adequate reduction in cost or even avoid divergence [121]. This happens because in an 

arbitrary nonlinear system, the updated trajectory may lay too far from the region where the 

model is valid [48]. Thus, equation (3-32) is modified as follows: 
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where  , 0,1a a  is a backtracking line-search parameter. This parameter is initially set equal 

to 1, gets iteratively reduced and the forward pass gets restarted until the adequate reduction 

in cost is achieved. More specifically, after applying equation (3-33), and thus obtaining 

candidate state and control trajectory ˆ ˆ,X U , the ration of the actual cost reduction to the 

expected cost reduction z  gets calculated: 
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z
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where 
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0 02 2k k

N N
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V a a a V V

− −

= =

 = + =  +  u uuk S k S k  (3-35) 

is the expected cost reduction calculated using kak  instead of kk  in the equation (3-31). If 

 1 2 1, , 0z     , then the iteration is accepted, and the line search has converged. If z does 

not lie in this interval, parameter a  gets updated, using the expression a = , where  0,1   

is a backtracking scaling parameter. The value 0.5 =  is used often in practice. Some typical 

values for the aforementioned hyperparameters can be found in [121]. 

Regularization 

Regularization is added to ensure the invertibility of the Hessian 
kuuS .To be more precise, as 

in Newton’s method, to ensure a descent direction, regularization must be used so that the 

Hessian stays always positive definite (pd) [49]. There are two options available for 

regularization. The first option, as it is analyzed in [126], penalizes deviations from a control 

trajectory. It adds a diagonal matrix to the control-cost Hessian 
kuuS . 

 
1 1k k k k k k k k

T
m m 

+ +
= + +  + = +uu uu u xx u x uu uuS l f V f V f I S I  (3-36) 

where , 0   , also known as Levenberg-Marquardt parameter, acts as a damping 

parameter, that gets modified when feed-forward sub-problems fails to get solved and mI  is 

the m m  identity matrix. The second option, as it is analyzed in [48], penalizes deviations 

from the state trajectory. 
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 (3-37) 

Where nI  is the n n  identity matrix. In both options, the value of   gets increased if a non-

positive definite 
kuuS  is encountered and the backward pass gets repeated. If 

kuuS  is positive 

definite, the value of   gets decreased. An important note is that, while the regularized 

Hessian 
kuuS  (and 

kuxS ) is used for the computation of the terms of the optimal feedback policy 

,k kk K , the Hessian 
kuuS  is utilized for the computation of the quadratic model of the value 
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function, i.e., , ,
k k kVx xxV V , during the backward pass. This strategy is more robust and more 

preferable in general [127]. 

Another instance in which regularization is necessary is when the line search procedure 

does not make progress after a pre-specified number of iterations [121]. In this case, the 

forward pass gets abandoned and the regularization term   is increased prior to starting the 

backward pass. Increasing  , makes the partial Hessian resemble more the identity matrix. 

It also “moves” the Newton (or GN) step direction closer to the gradient descent direction, that 

is more reliable when the current value of the decision variables is not close to the local 

optimum. However, when the current value of the decision variables current is close to the 

local minimum,   should rapidly go to zero to achieve faster convergence. To meet the 

aforementioned requirements, a quadratic modification scheme of the regularization 

parameter   was adopted, as in [48]. This scheme requires the selection of a minimal value 

of  , min , and a minimal modification factor 0 . It has the following form: 
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Handling Constraints 

A downside of DDP based methods is that they cannot natively handle constraints on either 

states or control inputs. They have to be extensively modified to do so. The scenario that is 

first examined is when only control limits are present. The inequality constraints in that 

scenario have the form: 

  , 0, , 1k k N   = −u u u  (3-39) 

where ,u u  are the lower and the upper control input bounds. These kinds of constraints are 

called box inequality constraints. Box constraints are very common in practice due to the fact 

that they accurately model the limitations that the vast majority of mechanical actuators has. 

The first way to enforce box constraints is to clamp the control inputs in the forward pass. 

Consequently, the control inputs will be modified as follows: 

 ( )( )min max , ,k ku u u u  (3-40) 

However, this simple clamping does not take into consideration the clamped direction during 

the inversion of 
kuuS , and therefore it does not yield satisfying results [49]. Another way to 

enforce constraints is to impose a squashing function ( )s u  (i.e., a sigmoid) on the control 

inputs. Consequently, the system dynamics will have the form: 

 ( )( )1 ,k k k+ =x f x s u  (3-41) 

where ( )s  is an element-wise sigmoid operator with the following properties:  

 ( ) ( )lim , lim
→− →

= =
u u

s u u s u u  (3-42) 
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One example of such sigmoid function that can be utilized is the following: 

 ( ) ( )tanh
2 2

− +
= +

u u u u
s u u  (3-43) 

It has been shown that the simple usage of squashing functions impairs the convergence rate 

(sublinear convergence), since it introduces non-linearity to the problem [49], [128].  

The method adopted in this solver implementation takes into consideration the control 

input constraints while minimizing the quadratic model of the action-value function. More 

specifically, with box constraints, the problem of equation (3-29) will have the form: 
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Consequently, a box-constrained QP can be solved in the backward pass, at each time-step. 

During the backward pass the feed-forward and the feed-back sub-problems have to be 

solved. The feed-forward term kk  is obtained by solving the following QP: 
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A custom QP solver is developed to solve the problem of (3-45) that uses the Projected-

Newton QP algorithm [129], in similar fashion to the one described in [49]. It is an active set 

method designed for problems with simple constraints. This algorithm iteratively identifies the 

active constraints and moves along the free subspace of the Newton step, where the 

constraints are inactive [106]. It has a similar computational cost to the unconstrained QP if 

the active set remains unchanged, and thus it has similar performance to the unconstrained 

DDP algorithm. The Projected-Newton QP algorithm is described in much more detail in [129]. 

Apart from solving the QP of (3-45), the solver should also provide a decomposition of the 

free dimensions of 
kuuS  denoted by , kfuuS  where kf  describes the free dimensions at timestep 

k , where the bounds are inactive. Similarly, kc  describes the clamped dimensions, where the 

bounds are active and the decomposition of the clamped dimensions of 
kuuS  is denoted by 

, kcuuS . Given the decomposition of 
kuuS , it can be partitioned and rewritten in the following way: 
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k k

k

k k
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=  
  

uu uu

uu

uu uu

S S
S

S S
  (3-46) 

After acquiring , kfuuS , while solving the QP, the feedback gain term kK  can be computed 

as follows: 

 1
,

ˆ
k kk f

−=− uu uxK S S  (3-47) 

where 1
,

ˆ
kf

−
uuS  is the control Hessian of the free subspace and is computed internally based on 

the factorization of 1
, kf

−
uuS . It is obvious that the rows of kK  that correspond to the clamped 

control inputs, will be equal to zero. This method designed to handle box constraints on control 

inputs is often referred to as BOX-DDP. More details about the implementation of the code of 

Projected-Newton QP algorithm can be found in [130]. 

The scenario in which state constraints are present is more complicated. Many of these 

approaches can uniformly handle state and control input constraints. The techniques utilized 
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to handle any arbitrary constraint combine the DDP algorithm with either an active set or a 

penalization method. All these methods are explained in detail in [131]. In general, active set 

methods utilize heuristics to guess which constraints are active. Then, they solve an equality 

constrained problem, which is a straightforward task when compared to the inequality 

constrained problem. These methods tend to perform better on optimization problems with 

few decision variables, since the cost of computing the active set becomes significant in large-

scale optimization problems. Thus, penalty methods have been examined. These methods 

replace the inequality constraints with a penalty term, that is usually quadratic, that is being 

added to the cost function. When the constraint is being violated, this term becomes infinitely 

large and thus constraint violations get penalized. If the constraint is not violated, the term that 

is added to the cost function is equal to zero. However, such methods perform poorly in 

practice since they suffer from numerical ill-conditioning and poor convergence rate.  

To tackle these drawbacks, Augmented Lagrangian (AL) methods have been formulated. 

In AL, a linear term is also added to the cost in addition to the quadratic penalty term. This 

linear term consists of a Lagrange multiplier multiplied with the constraints vector. Then the 

DDP algorithm described before tries to minimize this new sum, comprised of the cost function, 

the penalty term, and the linear term, instead of the cost function solely. Most of the state-of-

the-art DDP based solvers utilize this method. One particular solver is ALTRO (Augmented 

Lagrangian TRajectory Optimizer) [116] while others are included in software libraries like 

Control Toolbox (CT) [61], OCS2 (Optimal Control for Switched Systems) [132] and Crocoddyl 

(Contact RObot COntrol by Differential DYnamic Library) [62], namely the FDDP (Feasibility-

prone Differential Dynamic Programming) solver. The ability to handle state constraints favors 

the development of multiple shooting variants of the DDP algorithm (single shooting), which 

are often referred to as Gauss-Newton Multiple Shooting (GNMS). Consequently, these 

packages include both single and multiple shooting variants of DDP. 

3.4 Convex Optimization 

3.4.1 Background & Overview 

To explain how convex optimization is utilized in control applications, some background 

terminology has to be introduced first. A constraint set d  is characterized as a convex 

set if: 

   ( ), , 0,1 :t t   + − u v u v u  (3-48)  

This definition is equivalent to stating that the set is convex if a line segment that connects 

any two points inside the set, lies inside the set [133], as illustrated in Figure 3-13. 

 

Figure 3-13. Convex and non-convex sets [133]. 

Some standard examples of convex constraint sets are the following: 
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A function ( ):f →z  is convex, if  is a convex set and if: 

   ( )( ) ( ) ( ) ( )( ), , 0,1 :t f t f t f f   + −  + −u v u v u u v u  (3-50) 

This definition is equivalent to saying that the function is convex is the epigraph of that function 

(blue colored area) is always a convex set [133], as illustrated in Figure 3-14. It is also 

equivalent to claiming that a line segment between any two points of the graph of the function 

(secant) lies above the graph. 

 

Figure 3-14. Convex and non-convex functions. 

Some standard examples of convex cost functions are the following: 
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 (3-51) 

An optimization problem is denoted as a convex optimization problem if a convex cost function 

:f →  has to be minimized over a convex constraint set . In general, a constraint set 

contains both equality and inequality constraints. Apart from the condition presented before, 

the set will be convex only if all the equality constraints of the set are linear [133]. In convex 

optimization problems, any local minimum found is guaranteed to be also the global minimum. 

In other words, they have a single local optimum which is the global optimum. For non-convex 

problems, multiple local minima exist and not all of them are global minima, as shown in Figure 

3-15. 

 

Figure 3-15. Convex and non-convex optimization problems [133]. 

The most common classes of convex optimization problems are Linear Programs (LPs), 

Quadratic Programs (QPs), Quadratically Constrained Quadratic Programs (QCQPs) and 
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Second Order Cone Programs (SOCPs). A LP is an optimization problem with a linear cost 

function and a constraint set with linear inequality constraints: 

 

( )min

s.t.

Tf =

− =

− 

z
z c z

Az b 0

Cz d 0

 (3-52) 

where dc , p dA , pb , q dC  and qd . The cost function could also include a 

constant term i.e., ( ) 0
Tf = +z c z c  without affecting the value of the solution to the problem z

. 

A QP is an optimization problem with a quadratic cost function and a constraint set with 

linear inequality constraints: 

 

( )
1

min , 0
2

s.t.

T Tf = + 

− =

− 

z
z z Qz q z Q

Az b 0

Cz d 0

 (3-53) 

where d dQ , dq , p dA , pb , q dC  and qd . The matrix Q  is the Hessian 

matrix of the objective function since: ( )2 f =z Q  and q  is the gradient of the objective 

function. Only if the matrix Q  is positive semi-definite (psd) ( : 0d T  z z Qz  also denoted 

as 0Q  or d
+Q ), then the QP will be convex. Otherwise, it will be a non-convex problem 

and it might have multiple local minima. In general, convex QPs are significantly easier to 

solve globally that non-convex ones [133]. It is important to note that, according to the majority 

of the conventions, quadratic programming refers to the convex case, by definition. The cost 

function may also include a constant term i.e., ( ) ( ) 01 2 T Tf = + +z z Qz q z c  that is usually 

neglected without affecting the solution z . Additionally, every LP can be written as a QP with 

=Q 0. As it was also mentioned in the literature review, control techniques based on solving 

QPs have been formulated in the past years. To be more precise, QP-based MPC has been 

designed and executed on quadrupeds (e.g., MIT Cheetah) with linearized dynamics and 

friction pyramid model (linearized friction cone model) [32]. 

A QCQP is an optimization problem with a quadratic cost function and a constraint set 

with quadratic (ellipsoidal) inequality constraints: 
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 (3-54) 

where p dA , pb , 0, d d
i

Q Q , 0,
d

i q q , d
i c  and m  is the number of all the 

inequality constraints. Similar to the QP case, the difficulty of the problems is dependent on 

whether or not the matrices 0, iQ Q  are psd or not [134]. If 0, iQ Q  are psd, then the problem is 

classified as a convex QCQP Finally, every QP can be written as a QCQP with i =Q 0 . 

A SOQP is an optimization problem with a linear cost function and a constraint set with 

conic inequality constraints: 
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where dc , p dA , pb , iq d
i

C , iq
i d , d

i e , i f  and m  is the number of 

all the inequality constraints. The term SOCP is derived from the inequality constraint, that 

corresponds to a second order cone. It is also called quadratic, Lorentz, or ice-cream cone. 

Additionally, every QCQP can be written as a SOCP by reformulating the objective function 

as a constraint [135]. Finally, control techniques based on solving SOCPs have also been 

formulated recently, particularly on rocket landing problems [136], [137]. 

An advantage of convex optimization problems, in contrast to all the nonlinear 

optimization problems, is that they do not have numerous local optima that minimize the 

objective function while also satisfying the constraints. Therefore, finding a local optimum in a 

convex problem is equivalent to finding the global optimum. In general, the numerical 

optimization techniques utilized to solve arbitrary optimization problems (i.e., Newton’s 

method) only guarantee to find a locally optimal solution to the problem. Consequently, such 

techniques are well-suited for convex problems since they do not run the risk of getting stuck 

on a sub-optimal local solution during the runtime of the optimization. Solvers based on 

Newton’s method can solve convex problems very fast and reliably, since the solver cannot 

not get stuck in a strange local minimum. They can also guarantee the maximum runtime 

necessary to do so, for a specific problem size. Consequently, solution time can be bounded, 

which is ideal for real-time online control applications where it is of paramount importance to 

utilize controllers that can run at guaranteed rates. 

3.4.2 Convex MPC 

Convex, discrete time, time varying, MPC problems usually have the following form: 
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where the discrete time system dynamics 1k k k k k+ = +x A x B u , where n n
k

A  and n m
k

B , 

are linearized either about an equilibrium point, in equilibrium point stabilization (balancing) 

problem, or about a nominal trajectory, in a trajectory tracking problem. In the first case ,k kA B  

will be time invariant ( ,k k= =A A B B ) and in the second they will be time varying. In the vast 

majority of optimal control applications, the cost functions J  that are chosen are quadratic, 

where n n
k

Q  is the symmetric stage cost weight matrix corresponding to the states, 
m m

k
R  is the symmetric stage cost weight matrix corresponding to the control inputs and 

n n
N

Q  is the symmetric terminal cost weight matrix. The matrices ,k NQ Q  have to be psd 

and matrix kR  has to be pd, as in the standard LQR case [120]. Additionally, 
k

nrefx  and 

k

mrefu  are the state and control input references that represent either an equilibrium point, 
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in the time invariant case, or a nominal trajectory, in the time varying case. Finally, this MPC 

problem is convex only if the constraint sets ,  are also convex. 

In this research project, the convex MPC problems that will be examined include only 

linear inequality constraints for the states and control inputs. For instance, these constraints 

can have the form: 
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 (3-57) 

where ,u u  are the lower and the upper control input bounds and ,x x  are the lower and the 

upper state bounds. In that case the problem of equation (3-56) takes the following form: 
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If the cost function is quadratic and all the constraints sets are linear, the convex MPC problem 

of (3-56) or equivalently the NLPs of the direct methods of (3-2) are reduced to QPs. The 

existing QP solvers include active-set [37], [138], interior point [43], [139], [140] and alternating 

direction method of multipliers (ADMM)-based methods [38]. 

3.5 Implementation 

The aforementioned optimization techniques have been implemented on a double pendulum 

using the Gazebo simulator. Thus, the performance of these methods can be reasoned about 

after the results of those experiments are taken into consideration. First of all, some important 

information and details about the software, routines and algorithms that were utilized have to 

be presented. A list of all the function declarations is located in Appendix B. 

First and foremost, this entire project consists of four ROS packages. The tree structure 

of the project is depicted in Figure 3-16. The first one is plugins package which is responsible 

for the interaction of the controllers with the simulation model and environment. The second 

one is rr_manipulator_online_control that consists of four other packages. Each of them 

implements the controllers that are presented in this section. The third one is 

rr_manipulator_online_description that contains the URDF description of the model that is 

simulated. The fourth and final package is rr_manipulator_online_gazebo that contains a 

.launch file that spawns the model in the simulation environment and a .world file that contains 

the description of the environment in which the model is being simulated. This description 

includes the ground model, the friction model and global parameters such as physics 

properties and solver parameters. The entire project can be found at the CSL-Legged Team 

bitbucket repository2. 

 
2https://bitbucket.org/csl_legged/rr_manipulator_online_optimal_control/src/main/ 

https://bitbucket.org/csl_legged/rr_manipulator_online_optimal_control/src/main/
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Figure 3-16. Project tree structure of rr_manipulator_online_optimal_control. 

Secondly, the C++ linear algebra library Eigen [141] is utilized to represent vectors and 

matrices and to make use of the algorithms it supports, e.g. for matrix decompositions. 

Furthermore, the system dynamics, in continuous time, are necessary for the design of 

the MPC controller and therefore, they must be provided to the controller. The Rigid Body 

Dynamics (RBD) of the robot can be expressed in the following compact matrix form, which 

represents the joint space dynamic model: 

 ( ) ( ) ( ) ( ), T T+ + = +M q q c q q G q S τ J q f  (3-59) 

where q  is the generalized coordinates vector, M is the Joint Space Inertia matrix, c  are the 

Coriolis and centripetal terms, G  is the gravity term, J  is the contact (geometric) Jacobian 

that that maps the external forces/torques to the generalized coordinate space, f  are the 

external forces/torques, S  is the selection matrix that maps input forces/torques to joints and 

τ  are the input forces/torques. In case of a fully actuated system with directly driven joints, S  

is equal to the identity matrix. Moreover, the RBD of the robot can also be expressed in the 

state-space model, which is more common in the design of control laws compared to the joint 

space dynamic model and it has the following form: 

 ( ),=x f x u  (3-60) 

The relationship between the state variables x  and the generalized coordinates q  as well 

as the relationship between the control inputs u  and the input forces/torques τ  are the 

following: 

 ,
 

= = 
  

q
x u τ

q
 (3-61) 
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Consequently, the state-space dynamics can be computed, given some specific ,x u , by 

calculating x  which is equal to: 

 ( ),
 

= = 
  

q
x f x u

q
 (3-62) 

The only unknown variable in the equation (3-62) is the acceleration q  which can be 

computed using the forward dynamics equation FD : 

 ( ) ( ) ( ) ( ) ( )
1

, , ,T TFD
−
 = = + − − q q τ q M q S τ J q f c q q G q  (3-63) 

which describes the response of a system to given input forces/torques and external 

forces/torques, in terms of generalized coordinates. The forward dynamics can be computed 

using a rigid body dynamics algorithm named Articulated Body Algorithm (ABA) [142], [143]. 

The ABA and other rigid body algorithms for articulated systems have been implemented in 

libraries like Pinocchio [63] and RBDL, the Rigid Body Dynamics Library [16]. Both Pinocchio 

and RBDL are built upon Eigen and are thus compatible with it. In this thesis, both libraries 

were utilized, for different optimization techniques, for reasons that will become clear in 

chapter 3.5.3. In Pinocchio the forward dynamics are computed using the function aba(.) and 

in RBDL using the function ForwardDynamics(.). To perform this calculation both libraries 

need a description format of the robot that is being modeled. Such description is contained in 

the .urdf file, that is also necessary for spawning the robot in the simulation environment. Using 

this .urdf file, they are able to build a Model object of that robot that they make use of for the 

computation of the forward dynamics as well as for other computations they can perform (i.e., 

forward and inverse kinematics). Therefore, the Model object contains the physical description 

of the robot which includes kinematic and inertial parameters defining its structure. Pinocchio 

apart from the Model object also requires a Data object, necessary for algorithm buffering. In 

Pinocchio, a Data structure dedicated to the model has to be allocated, similar to how most 

algorithms need extra storage space for storing internal values. The Data object contains 

values that are the intermediate or the final results of the computations that are dictated by 

various algorithms that it provides, like the ABA. Pinocchio relies on a strict separation 

between constant parameters, in Model, and computation buffer, in Data. The Data objects 

are built from Model objects. This procedure is conducted in Pinocchio as shown in the 

following code snippet, using the function BuildPinocchioModel(), member of the custom 

class RobotDynamics. This custom function uses the Pinocchio function buildModel(.) to 

create the model given the path of the URDF. 

 
// Build pinocchio model of the robot 
void RobotDynamics::BuildPinocchioModel() 

{ 

  string urdf_package_filename =  

      ros::package::getPath("rr_manipulator_online_description"); 

  string urdf_filename =  

      urdf_package_filename + string("/urdf/rr_manipulator_online.urdf"); 

   

  std::cout << "Opening file: " << urdf_filename << std::endl; 
 

  // Load the urdf model 
  pinocchio::urdf::buildModel(urdf_filename, model); 
  std::cout << "model name: " << model.name << std::endl; 
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  // Set model gravity 
  model.gravity.linear() << 0.0, 0.0, -9.81; 

 
  // Create data required by the algorithms 
  data = Data(model); 

 
  // Model and data needed for CppAD 

  ad_model = model.cast<ADScalar>(); 
  ad_data = ADData(ad_model); 
} 

 

while in RBDL as shown in the following code snippet, using the function BuildRBDLModel(), 

member of the custom class SymbolicRobotDynamics. This custom function uses the RBDL 

function URDFReadFromFile(.) to create the model given the path of the URDF. 

 
// Build rbdl model of the robot 
void SymbolicRobotDynamics::BuildRBDLModel() 

{ 
  string urdf_package_filename =  

      ros::package::getPath("rr_manipulator_online_description"); 

  string urdf_filename =  

      urdf_package_filename + string("/urdf/rr_manipulator_online.urdf"); 

   
  std::cout << "Opening file: " << urdf_filename << std::endl; 

 
  model = new RigidBodyDynamics::Model(); 

 
  if (!Addons::URDFReadFromFile(urdf_filename.c_str(), model, false,  

                                false)) 

  { 
    abort(); 

  } 

 
  // Set model gravity 
  model->gravity = Vector3d(0., 0., -9.81); 

 
  std::cout << "Dofs: " << model->q_size << std::endl; 

 
  //const std::vector<bool> actuated_dofs{ true, true }; 

 
  //ConstraintSet C1; 
  //C1.Bind(**model); 

  //C1.SetActuationMap(**model, actuated_dofs); 
} 

 

Given this model, the procedure described to compute the continuous time dynamics is 

implemented using the function ContinuousDynamics(.), member of the custom class 

RobotDynamics located in the file robot_dynamics.cpp, for Pinocchio and 

ContinousDynamicsRBDL(.), member of the custom class SymbolicRobotDynamics 

located in the file symbolic_robot_dynamics.cpp, for RBDL. Both functions are illustrated in 

the following code snippets, the first one corresponds to Pinocchio and the last two correspond 

to RBDL. 

 
// Compute continuous time dynamics 

void RobotDynamics::ContinuousDynamics(ADConfigVectorType& ad_x, 

                                       ADTangentVectorType& ad_u, 
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                                       ADTangentVectorType& ad_xdot) 

{ 

  pinocchio::aba(ad_model, ad_data, ad_x.head(ad_model.nq),  

                 ad_x.tail(ad_model.nv), ad_u); 

  ad_xdot << ad_x.tail(ad_model.nq), ad_data.ddq; 
 

  // std::cout << "Here is ad_data.ddq:\n" << ad_data.ddq << std::endl; 

} 

 
// Compute continuous time dynamics 

casadi::MX SymbolicRobotDynamics::fd(const VectorNd& Q, 

                                     const VectorNd& Qdot, 

                                     const VectorNd& Tau) 

{ 
  VectorNd Qddot(model->qdot_size); 

  ForwardDynamics(*model, Q, Qdot, Tau, Qddot); 

  return vertcat(Qdot, Qddot); 

} 

 
void SymbolicRobotDynamics::ContinuousDynamicsRBDL(VectorNd& q, 

                                                   VectorNd& q_dot, 

                                                   VectorNd& u, 

                                                   casadi::MX& x_dot) 

{ 

  rbdl_check_api_version(RBDL_API_VERSION); 

  
  casadi::Function fd_fun = 
      casadi::Function("fd_fun", { Q_sym, QDot_sym, Tau_sym },  

                       { fd(Q_sym, QDot_sym, Tau_sym) }, 
                       { "Q", "QDot", "Tau" }, { "xDot" }) 

          .expand(); 

 
  x_dot = fd_fun(casadi::MXDict{ 

                     { "Q", q }, { "QDot", q_dot }, { "Tau", u } }) 

              .at("xDot"); 

 
  // std::cout << "x_dot :"<< x_dot << std::endl; 
} 

 

Furthermore, the MPC controller is executed in real-time, and is implemented using a 

ROS node. The controller uses the joint positions and velocities to calculate the optimal action 

and afterwards applies it to the model. To do so, it subscribes to the ROS topic /joint_states 

to access the joint positions and velocities and publishes the optimal action to the ROS topic 

/joint_commands to get it applied to the model.  

Also, a Gazebo model plugin, named apply_action.cc, is utilized. Model plugins in Gazebo 

allow the user to access some of the physical properties of the model and its components (i.e., 

links, joints, collision objects) in the simulation environment as well as enabling the user to 

interact directly with that model or its components. To be more precise, for the double 

pendulum control scenario, the position and the velocities of the joint angles are needed. 

Gazebo offers the functions Position() and GetVelocity(_index) that provide the joint position 

and velocity respectively, where _index represents index that corresponds to the joint axis, 

that is equal to zero for 1-DoF joints. These values are then published to the topic /joint_states. 

Moreover, this plugin applies the control inputs (actions), which are joint torques calculated by 

the MPC controller, to the joints of the pendulum. It subscribes to the topic /joint_commands 
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to have access to them. These actions then are applied using the Gazebo function 

SetForce(_index, _effort) where _effort represents the torque that should be applied.  

Finally, it is wise, especially in convex problems, to set the terminal cost weight matrix 

NQ  equal an approximation of the true value function of the OCP being solved. One idea is to 

set it equal to the solution of the infinite horizon LQR Riccati equation applied to the matrices 

, , ,A B Q R . This solution can be obtained by solving the discrete algebraic Riccati equation 

(DARE) [38]. In that scenario, the terminal cost will be equal to the LQR optimal value function 

at the end of the horizon NV . However, this will only be an approximation of the true value 

function of the OCP being solved (i.e, convex MPC) since that problem will in general include 

state and/or control input inequality constraints and LQR does not. In general, it is of 

paramount importance to equip a good approximation of the true cost-to-go at the tail of MPC 

horizon, for better performance. Such terminal cost provides information regarding what the 

tail of the problem is, past the end of the horizon [48], [144], [145]. In other words, this terminal 

cost encodes information about the future that lies past the end of the horizon that does not 

get optimized. Convex MPC problems, in particular, match exactly LQR when the state and 

control input inequality constraints are inactive, for any horizon size N , since both problems 

use linearized dynamics. Inactive inequality constraints means that the states and the control 

inputs will lay away from their bounds. Therefore, if these constraints are inactive at the end 

of the horizon, the LQR value function will be a good approximation of the convex MPC exact 

value function and consequently will be valid for any future time instances at the tail. Therefore, 

the horizon must be long enough to guarantee that at its end, states and control inputs will lay 

away from their bounds. In general, if the system is controllable, it will eventually converge to 

the equilibrium point or the nominal trajectory by applying a proper control law, where the 

inequality constraints should be inactive. Better approximations of the true cost-to-go, mean 

that shorter horizons can be used while simultaneously avoiding myopic behavior. If longer 

horizons get utilized, then less accurate approximations of the exact value function can be 

used. An alternative of using the DARE solution for the value function approximation, one such 

approximation can be learned from data [146]. Here, the algorithm that is executed to solve 

the DARE is described in detail in [147] and is implemented using the function DARE(.). The 

definition of that function is contained in the file solve_dare.cpp and is presented in the two 

code snippets below. In the first snippet, all the variables necessary are initialized. The second 

snippet contains the main body of the function. 

 
// Algorithm that computes the discrete-time steady state Riccati-Matrix  

// (LQR) by solving the discrete algebraic Riccati equation (DARE) 
void DARE(MatrixNxNx& A, MatrixNxNu& B, MatrixNxNx& Q, MatrixNuNu& R,  

          MatrixNxNx& Pn) 
{ 
  int const N = A.rows(); 
 

  // Dynamic programming Solution for P and K 
  Eigen ::MatrixXd Pn_old(N, N); 
 

  Eigen ::MatrixXd Pn_plus_1(N, N); 
  Eigen ::MatrixXd Gn_plus_1(N, N); 
  Eigen ::MatrixXd Gn(N, N); 
  Eigen ::MatrixXd An_plus_1(N, N); 
  Eigen ::MatrixXd An(N, N); 
 

  An = A; 
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  Gn = B * R.inverse() * B.transpose(); 
  Pn = Q; 
 

  Pn_old = Eigen ::MatrixXd ::Zero(N, N); 
  Pn_plus_1 = Eigen ::MatrixXd ::Zero(N, N); 
 

  Eigen ::MatrixXd I_Nx = 1.0 * Eigen ::MatrixXd ::Identity(N, N); 
 

  int counter = 0; 

 
  while ((Pn.squaredNorm() - Pn_old.squaredNorm()) / Pn.squaredNorm() >   

          1e-05) 
  { 
    Pn_old = Pn; 
 

    An_plus_1 = An * (I_Nx + Gn * Pn).inverse() * An; 
    Gn_plus_1 =  

        Gn + An * (I_Nx + Gn * Pn).inverse() * Gn * An.transpose(); 
    Pn_plus_1 =  

        Pn + An.transpose() * Pn * (I_Nx + Gn * Pn).inverse() * An; 
 

    An = An_plus_1; 
    Gn = Gn_plus_1; 
    Pn = Pn_plus_1; 
 

    std::cout << "Not converged" << std::endl; 
    counter++; 
    std::cout << "Here is counter:\n" << counter << std::endl; 
  } 
 

  std::cout << "Converged" << std::endl; 
  std::cout << "Here is the matrix Pn:\n" << Pn << std::endl; 
} 

 

3.5.1 Convex (QP-based) MPC 

For the convex MPC, the continuous time dynamics of the form ( ),= cx f x u , have to be 

discretized and written in the form ( )1 ,k k k+ = dx f x u  and then to be linearized about an 

equilibrium point or a nominal trajectory and written in the form 1k k k k k+ = +x A x B u . The 

discretization is conducted using an explicit integration scheme, in particular a 4th order explicit 

Runge-Kutta integrator (RK4) with zero-order hold (zoh) on the control inputs, that has the 

following form: 
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where h  is the constant time step. This discretization scheme is implemented by the function 

DiscreteDynamicsRK4(.), member of the custom class RobotDynamics located in the file 
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robot_dynamics.cpp. The continuous time dynamics needed are computed by calling the 

function ContinuousDynamics(.), located in the same file. The implementation of 

DiscreteDynamicsRK4(.) is illustrated in the code snippet below: 

 
// Discretize dynamics (RK4 with zoh on control input u) 
void RobotDynamics::DiscreteDynamicsRK4(double& planning_timestep, 

                                        VectorNx& x_k, VectorNu& u_k, 

                                        ADTangentVectorType& ad_f_k, 

                                        VectorNx& f_k) 

{ 
  ConfigVectorType q(ad_model.nq); 
  TangentVectorType v(ad_model.nv); 
  TangentVectorType tau(u_k.size()); 
 

  ADConfigVectorType ad_q(ad_model.nq); 
  ADTangentVectorType ad_v(ad_model.nv); 
  ADTangentVectorType ad_tau(u_k.size()); 
 

  q = x_k.head(ad_model.nq); 
  v = x_k.tail(ad_model.nv); 
  tau = u_k; // u = [1 1] * tau 
 

  ad_q = q.cast<ADScalar>(); 
  ad_v = v.cast<ADScalar>(); 
  ad_tau = tau.cast<ADScalar>(); 
 

  // Set independent variable X 
  ADTangentVectorType X(ad_model.nq + ad_model.nv + ad_tau.size()); 
  X << ad_q, ad_v, ad_tau; 
  CppAD::Independent(X); 
 

  ADTangentVectorType ad_x(ad_model.nq + ad_model.nv); 
  ad_x = X.head(ad_model.nq + ad_model.nv); 
 

  ADTangentVectorType ad_u(ad_tau.size()); 
  ad_u = X.tail(ad_tau.size()); 
 

  ADTangentVectorType ad_x1(ad_model.nq + ad_model.nv); 
  ADTangentVectorType ad_x2(ad_model.nq + ad_model.nv); 
  ADTangentVectorType ad_x3(ad_model.nq + ad_model.nv); 
  ADTangentVectorType ad_x4(ad_model.nq + ad_model.nv); 
 

  ADTangentVectorType ad_k1(ad_model.nq + ad_model.nv); 
  ADTangentVectorType ad_k2(ad_model.nq + ad_model.nv); 
  ADTangentVectorType ad_k3(ad_model.nq + ad_model.nv); 
  ADTangentVectorType ad_k4(ad_model.nq + ad_model.nv); 
 

  ad_f_k(ad_model.nq + ad_model.nv); 
 

  ad_x1 = ad_x; 
  continuous_dynamics(ad_model, ad_data, ad_x1, ad_u, ad_k1); 
 

  ad_x2 = ad_x + 0.5 * planning_timestep * ad_k1; 
  continuous_dynamics(ad_model, ad_data, ad_x2, ad_u, ad_k2); 
 

  ad_x3 = ad_x + 0.5 * planning_timestep * ad_k2; 
  continuous_dynamics(ad_model, ad_data, ad_x3, ad_u, ad_k3); 
 

  ad_x4 = ad_x + planning_timestep * ad_k3; 
  continuous_dynamics(ad_model, ad_data, ad_x4, ad_u, ad_k4); 
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  ad_f_k = ad_x + (planning_timestep / 6.0) * 

                      (ad_k1 + 2 * ad_k2 + 2 * ad_k3 + ad_k4); 

  // std::cout << "Here is ad_f_k:\n" << ad_f_k << std::endl; 
 

  f_k = ad_f_k.cast<double>(); 
  // std::cout << "Here is f_k:\n" << f_k << std::endl; 
} 

 

Then, the matrices ,k kA B  of the discretized linear dynamic model can be computed using the 

expressions: 
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Matrices ,k kA B  are necessary for the dynamical system constraints and for the calculation of 

the terminal cost weight NQ , by solving the DARE. These derivatives are computed using 

Automatic/Algorithmic Differentiation (AD) [148] implemented in the open-source AD 

framework CppAD that is supported by Pinocchio and is compatible with Eigen. This 

differentiation is implemented by the function LinearizedDiscreteDynamics(.), member of 

the custom class RobotDynamics located in the file robot_dynamics.cpp. The implementation 

of LinearizedDiscreteDynamics(.) is illustrated in the code snippet below: 

 
// Linearize dynamics about an equilibrium point 
void RobotDynamics::LinearizedDiscreteDynamics(double& planning_timestep, 

                                               VectorNx& x_k, 

                                               VectorNu& u_k, 

                                               MatrixNxNx& A_k, 

                                               MatrixNxNu& B_k) 

{ 
  ConfigVectorType q(ad_model.nq); 

  TangentVectorType v(ad_model.nv); 
  TangentVectorType tau(u_k.size()); 

 
  ADConfigVectorType ad_q(ad_model.nq); 

  ADTangentVectorType ad_v(ad_model.nv); 
  ADTangentVectorType ad_tau(u_k.size()); 

 
  ADTangentVectorType ad_f_k(ad_model.nq + ad_model.nv); 
  VectorNx f_k; 

 
  q = x_k.head(ad_model.nq); 

  v = x_k.tail(ad_model.nq); 
  tau = u_k; // u = [1 1] * tau 

 
  ad_q = q.cast<ADScalar>(); 

  ad_v = v.cast<ADScalar>(); 
  ad_tau = tau.cast<ADScalar>(); 
 

  // Set independent variable X 
  ADTangentVectorType X(ad_model.nq + ad_model.nv + ad_tau.size()); 

  X << ad_q, ad_v, ad_tau; 
  CppAD::Independent(X); 
 

  // std::cout << "Here is X:\n" << X << std::endl; 
 

  DiscreteDynamicsRK4(planning_timestep, x_k, u_k, ad_f_k, f_k); 
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  VectorXAD Y(ad_model.nq + ad_model.nv); 

 

  Eigen::Map<ADData::TangentVectorType>( 

      Y.data(), ad_model.nq + ad_model.nv, 1) = ad_f_k; 
   

  // std::cout << "Here is Y:\n" << Y << std::endl; 

   

  // Create the function fund: X -> Y 

  CppAD::ADFun<Scalar> fund(X, Y); 
   

  CPPAD_TESTVECTOR(Scalar)  

  X_val((size_t)(ad_model.nq + ad_model.nv + ad_tau.size())); 
   

  TangentVectorType X_arg(ad_model.nq + ad_model.nv + ad_tau.size()); 
  X_arg << x_k, u_k; 
  Eigen::Map<Data::TangentVectorType>( 

      X_val.data(), ad_model.nq + ad_model.nv + ad_tau.size(), 1) = 

      X_arg; 

   

  // std::cout << "Here is X_val:\n" << X_val << std::endl; 
   

  // Compute the derivative of Y w.r.t X using CppAD 
  CPPAD_TESTVECTOR(Scalar) df_dX = fund.Jacobian(X_val); 

  Data::MatrixXs J =  

      Eigen::Map<PINOCCHIO_EIGEN_PLAIN_ROW_MAJOR_TYPE(Data::MatrixXs)>( 
          df_dX.data(), ad_model.nq + ad_model.nv + ad_tau.size(),  

          ad_model.nq + ad_model.nv + ad_tau.size()); 
   

  A_k = J.block(0, 0, ad_model.nq + ad_model.nv,  

                ad_model.nq + ad_model.nv); 

  B_k = J.block(0, ad_model.nq + ad_model.nv, ad_model.nq + ad_model.nv,  

                ad_tau.size()); 

 

  // std::cout << "Here is J   :\n" << J   << std::endl; 
  // std::cout << "Here is A_k :\n" << A_k << std::endl; 
  // std::cout << "Here is B_k :\n" << B_k << std::endl; 

} 

 

The QP-based MPC controller is implemented in the file Linear_MPC.cpp. The solver that 

is utilized here to solve the QP is OSQP (Operator Splitting Quadratic Program), an ADMM-

based solver for quadratic programming. It is also combined with osqp-eigen [149], which is a 

simple Eigen-C++ wrapper for OSQP library that functions as an interface. The solver OSQP 

solves (convex) QPs that have the form: 
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where ( )n m N+z  is the optimization variable comprised of the states and control inputs over 

the entire horizon. The objective function is defined by the psd matrix ( )n m N+

+P  and a vector 
( )n m N+q . The linear equality and inequality constraints are defined by the matrix 

( )q n m N +cA  and vectors , qb bl u  so that  
i
  −bl  and  

i
  +bu ,  1, ,i q =  

where q  is the number of all the constraint equations. Linear equality constraints can be 

encoded by setting 
i i
=b bl u  for some of the elements in vectors ,b bl u . Consequently, the 

terms of the problem of equation (3-58) have to be rearranged to match the form of (3-66). 
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The decision variables vector z  will be equal to:  0 1 1

T

N=z u x u x . According to 

this arrangement of the decision variables, will the rest of the QP matrices and vectors be 

selected. The Hessian P  and the gradient q  in the cost function are the following: 
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The linear constraints matrix cA  and the constraint bound vectors ,b bl u  are the following: 
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The aforementioned QP matrices and vectors are filled in after the code in the file 

qp_terms.cpp is executed. The functions that should be executed to do so are 

ComputeQPHessian(.), ComputeQPGradient(.), ComputeQPConstraintMatrix(.) and 

ComputeQPConstraintVectors(.), members of the custom class QP, and are presented 

here: 

 
// Build Hessian matrix H for QP 
void QP::ComputeQPHessian(int planning_horizon_steps, MatrixNxNx& Q,  

                          MatrixNuNu& R, MatrixNxNx& P, SpMat& H) 

{ 

  int const N = Q.rows(); 

  int const M = R.rows(); 

 
  Eigen::MatrixXd H_dense((N + M) * planning_horizon_steps,  

                          (N + M) * planning_horizon_steps); 

  H_dense.setZero(); 

  // H.reserve( 

  //     Eigen::VectorXi::Constant((M+N) * planning_horizon_steps, N)); 

 
  Eigen::VectorXd qp_hessian_vec(N + M); 

  qp_hessian_vec.setZero(); 

 
  qp_hessian_vec << R.diagonal(), Q.diagonal(); 

 
  H_dense =  

      qp_hessian_vec.replicate(planning_horizon_steps, 1).asDiagonal(); 

 
  H_dense.block((N + M) * (planning_horizon_steps - 1) + M,  

                (N + M) * (planning_horizon_steps - 1) + M, N, N) = P; 

 
  H = H_dense.sparseView(); 

  // H.makeCompressed(); 

 
  // std::cout << "Here is the matrix H:\n" << H << std::endl; 

} 

 
// Build gradient vector q for OP 
void QP::ComputeQPGradient(int planning_horizon_steps, MatrixNxNx& Q,  

                           MatrixNuNu& R, MatrixNxNx& P, VectorNx& x_ref, 

                           VectorNu& u_ref, Vector_sol& q) 

{ 
  int const N = Q.rows(); 
  int const M = R.rows(); 
 

  Eigen::VectorXd qp_grad_vec(N + M); 
  qp_grad_vec.setZero(); 
 

  qp_grad_vec << -R * u_ref, -Q * x_ref; 
 

  q = qp_grad_vec.replicate(planning_horizon_steps, 1); 
 

  q.tail(N) = -P * x_ref; 
} 

 
// Build Linear Constraints Matrix Ac for QP 
void QP::ComputeQPConstraintMatrix(int planning_horizon_steps,  

                                   MatrixNxNx& A, MatrixNxNu& B,  

                                   SpMat& Ac) 
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{ 
  int const N = A.cols(); 
  int const M = B.cols(); 

 
  Eigen::MatrixXd Ac_dense((N + M + N) * planning_horizon_steps,  

                           (N + M) * planning_horizon_steps); 
  Ac_dense.setZero(); 

 
  ////////////////////////////////////////////////////////// 
  ////////////////////////////////////////////////////////// 

 
  Eigen::MatrixXd C_dense(N * planning_horizon_steps,  

                          (N + M) * planning_horizon_steps); 
  C_dense.setZero(); 

 
  int i = 0; 
  for (int j = 0; j < (M + N) * planning_horizon_steps; j += (N + M)) 
  { 
    C_dense.block(i, j, N, M) = B; 
    i += N; 
  } 

 
  i = N; 
  for (int j = M; j < (M + N) * (planning_horizon_steps - 1);  

       j += (N + M)) 
  { 
    C_dense.block(I, j, N, N) = A; 
    i += N; 
  } 

 
  i = 0; 
  for (int j = M; j < (M + N) * planning_horizon_steps; j += (N + M)) 
  { 
    C_dense.block(i, j, N, N) = -Eigen::MatrixXd::Identity(N, N); 
    i += N; 
  } 

 
  // std::cout <<“"Here is the matrix C:\”" << C_dense << std::endl; 

 
  ////////////////////////////////////////////////////////// 
  ////////////////////////////////////////////////////////// 

 
  Eigen::MatrixXd U_dense(M * planning_horizon_steps,  

                          planning_horizon_steps * (N + M)); 
  U_dense.setZero(); 

 
  i = 0; 
  for (int j = 0; j < (M + N) * planning_horizon_steps; j += (N + M)) 
  { 
    U_dense.block(i, j, M, M) = Eigen::MatrixXd::Identity(M, M); 
    i += M; 
  } 

 
  // std::cout << "Here is the matrix U:\n" << U_dense << std::endl; 

 
  ////////////////////////////////////////////////////////// 
  ////////////////////////////////////////////////////////// 
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  Eigen::MatrixXd X_dense(N * planning_horizon_steps,  

                          planning_horizon_steps * (N + M)); 
  X_dense.setZero(); 

 
  i = 0; 
  for (int j = M; j < (M + N) * planning_horizon_steps; j += (N + M)) 
  { 
    X_dense.block(i, j, N, N) = Eigen::MatrixXd::Identity(N, N); 
    i += N; 
  } 

 
  // std::cout << "Here is the matrix X:\n" << X_dense << std::endl; 

 
  ////////////////////////////////////////////////////////// 
  ////////////////////////////////////////////////////////// 

 
  Ac_dense << C_dense, U_dense, X_dense; 

 
  Ac = Ac_dense.sparseView(); 
  // Ac.makeCompressed(); 

 
  // std::cout << "Here is the matrix Ac:\n" << Ac << std::endl; 
} 

 
// Build lower and upper bound vectors lb, ub for QP 
void QP::ComputeQPConstraintVectors(int planning_horizon_steps,  

                                    VectorNx& xmin, VectorNx& xmax,  

                                    VectorNu& umin, VectorNu& umax,  

                                    Vector_constr& lb, Vector_constr& ub) 

{ 
  int const N = xmax.size(); 
  int const M = umax.size(); 
 

  Eigen::MatrixXd b(N * planning_horizon_steps, 1); 
  b.setZero(); 
 

  // Lower bounds for control inputs 
  Eigen ::MatrixXd lb_con_u(M * planning_horizon_steps, 1); 
  lb_con_u = umin.replicate(planning_horizon_steps, 1); 
 

  // Upper bounds for control inputs 
  Eigen ::MatrixXd ub_con_u(M * planning_horizon_steps, 1); 
  ub_con_u = umax.replicate(planning_horizon_steps, 1); 
 

  // Lower bounds for states 
  Eigen ::MatrixXd lb_con_x(N * planning_horizon_steps, 1); 
  lb_con_x = xmin.replicate(planning_horizon_steps, 1); 
 

  // Upper bounds for states 
  Eigen ::MatrixXd ub_con_x(N * planning_horizon_steps, 1); 
  ub_con_x = xmax.replicate(planning_horizon_steps, 1); 
 

  lb << b, lb_con_u, lb_con_x; 
  ub << b, ub_con_u, ub_con_x; 
} 

 

After each control loop, the values of the bounds ,b bl u  should be updated with the new values 

of the initial conditions 0x . If the problem is time varying, meaning that 
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, , ,k k k k= = = =A A B B Q Q R R , then the values of the matrices , cP A  and of the vector q , will 

also have to be updated, after each control loop.  

The procedure followed to instantiate and initialize the solver and also to initialize or 

update the values of the QP matrices and vectors is described in the code snippet below. If 

the solver is not initialized some initial parameters of the solver must be specified like the 

tolerances that must be achieved to converge to a solution, or the number of decision variables 

and constraints of the problem. Moreover, an initial guess of the solution of the problem must 

be provided if the solver is not initialized. If the solver is already initialized, this initial guess of 

the decision variables (primal solution) as well as the guess for the Lagrange multipliers (dual 

solution) should also be updated. Lagrange multipliers are variables that are needed to force 

the solution to not only minimize the cost function but also to obey the constraints of the 

problem. A vector of Lagrange multipliers corresponds for each constraint set. The technique 

of using the previous solution as an initial guess for the decision variables is known as warm 

starting and significantly accelerates the convergence of the solver. A common technique is 

to use the primal and dual solution acquired in the previous control loop as an initial guess for 

the primal and dual variables. This technique is known as warm starting and significantly 

accelerates the convergence of the solver. This is done automatically in OSQP, as it is written 

in the snippet. 

 
if (!solver.isInitialized()) 
{ 
  std::cout << "It IS NOT initialized \n" << std::endl; 

 
  // solver settings 
  solver.settings()->setVerbosity(true); 
  solver.settings()->setWarmStart(true); 
  solver.settings()->setPolish(true); 
  solver.settings()->setAbsoluteTolerance(1e-03); 
  solver.settings()->setRelativeTolerance(1e-03); 
  solver.settings()->setCheckTermination(1); 
  // solver.settings()->setScaledTerimination(1); 

 
  // set the initial data of the QP solver 
  solver.data()->setNumberOfVariables(Ac.cols()); 
  solver.data()->setNumberOfConstraints(Ac.rows()); 

 
  solver.data()->setHessianMatrix(P); 
  solver.data()->setGradient(q); 
  solver.data()->setLinearConstraintsMatrix(Ac); 
  solver.data()->setLowerBound(lb); 
  solver.data()->setUpperBound(ub); 

 
  // instantiate the solver 
  solver.initSolver(); 
} 
else 
{ 
  std::cout << "It IS initialized \n" << std::endl; 

 
  // update the QP matrices and vectors 
  // solver.updateHessianMatrix(P); 
  // solver.updateGradient(q); 
  // solver.updateLinearConstraintsMatrix(Ac); 
  solver.updateBounds(lb, ub); 
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} 

 

Then the QP can be solved by calling the function solveProblem(.) provided by the solver. 

After solving it, the user can extract the optimal values of the decision variables z  by calling 

the function getSolution(.). The first m  elements of the vector z  are equal to the control 

input 0u . Then, this control input is applied to the system. Afterwards, the system responds to 

that control action and the current state of the system gets measured measx . In general, measx  

will not be equal to the expected (predicted) state response 1x . So, the new initial state 0x  is 

set equal to measx , the QP matrices and vectors get updated, and the entire iterative procedure 

gets repeated at every simulation step. This entire procedure is sketched in detail in the flow 

chart of Figure 3-17. Also, the directory tree of this package is depicted in Figure 3-18. 

 

Figure 3-17. QP-based MPC flow chart. 
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Figure 3-18. Directory tree of Linear_MPC package. 
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3.5.2 BOX-DDP MPC 

For the BOX-DDP MPC, the continuous time dynamics of the form ( ),= cx f x u , also need to 

be discretized and written in the form ( )1 ,k k k+ = dx f x u , to perform forward rollouts of the 

dynamics. The discretization is also conducted using an explicit RK4 integrator with zero-order 

hold (zoh) on the control inputs. The continuous time dynamics are computed by calling the 

function ContinuousDynamics(.), located in the file robot_dynamics.cpp. Also, this 

discretization scheme is implemented by the function DiscreteDynamicsRK4(.), located in 

the same file. Moreover, the derivatives of the discretized dynamics ,
k kx uf f are needed for the 

backward pass and for the calculation of the terminal cost weight NQ , by solving the DARE. 

They are defined by the following expressions: 
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These derivatives are also computed using AD and the library CppAD. This differentiation is 

implemented by the function LinearizedDiscreteDynamics(.), located in the file 

robot_dynamics.cpp. 

The cost function selected is a quadratic that has the same form as the objective utilized 

in the Convex MPC case. This objective, in discrete time, is given by the following expression: 

 

( ) ( ) ( ) ( )

( ) ( )

1

0

1

2

1
, 0, 0

2

k k k k

N N

N T T

k k k k k k
k

T

N N N k k

J
−

=

= − − + − −

+ − −  

 ref ref ref ref

ref ref

x x Q x x u u R u u

x x Q x x Q R

 (3-72) 

This cost is computed by calling the function ComputeCost(.), member of the custom class 

BoxDDP located in the file box_ddp.cpp. It is described in the code snippet below. 

 
void BoxDDP::ComputeCost(MatrixNxNh& X_traj, MatrixNuNh_1& U_traj, 

                         EigenDouble& J) 

{ 

  J.setZero(); 

  EigenDouble l = EigenDouble::Zero(); 

 
  for (int i = 0; i < planning_horizon_steps - 1; i++) 

  { 

    l += 0.5 * ((X_traj.col(i) - x_goal).transpose() * Q * 

                (X_traj.col(i) - x_goal)) + 

         0.5 * ((U_traj.col(i)).transpose() * R * (U_traj.col(i))); 

  } 

 
  EigenDouble lf = 

      0.5 * 

      ((X_traj.col(planning_horizon_steps - 1) - x_goal).transpose() * 

       Qn  * (X_traj.col(planning_horizon_steps - 1) - x_goal)); 

 
  J = l + lf; 

} 

 

Furthermore, the code that implements the backward pass is presented. It is implemented by 

the function BackwardPass(.), member of the custom class BoxDDP that is located in the file 

box_ddp. It is described using the two code snippets below. In the first snippet, all the variables 
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necessary are initialized, like the gradient and the Hessian of the value function at the 

boundary ,
N Nx xxV V , which is the terminal state Nx , using equation (3-24). 

 
void BoxDDP::BackwardPass(MatrixNxNh& X_traj, MatrixNuNh_1& U_traj, 

                          MatrixNuNh_1& d, MatrixNuNxNh_1& K) 

{ 

  std::cout << "Starting backward pass" << std::endl; 

 
  // The cost function must be quadratic (otherwise it must be 

  // quadratized firstly) 

 
  d.setZero(); 

  K.setZero(); 

  MatrixNxNh p = MatrixNxNh::Zero(); 

  MatrixNxNxNh P = MatrixNxNxNh::Zero(); 

  MatrixNxNxNh P_reg = MatrixNxNxNh::Zero(); 

  dJ1.setZero(); 

  dJ2.setZero(); 

 
  // Value function's first and second derivatives (p, P respectively) 

  // calculated at the end of the horizon 

  p.col(planning_horizon_steps - 1) = 

      Qn * (X_traj.col(planning_horizon_steps - 1) - x_goal); 

  P.block<Nx, Nx>(0, Nx * (planning_horizon_steps - 1)) = Qn; 

 

The second snippet contains the main body of the function. Firstly, the Jacobians and the 

Hessians of the cost function , , , ,
k k k k kx u xx uu uxl l l l l  are calculated. Secondly, the Jacobians and 

Hessians of the action-value function  are computed using equation (3-26) and the GN 

approximation as well as their regularized versions ,
k kuu uxS S  using equation (3-37). In this 

snippet also, a function named BoxQPSolver(.), member of the custom class BoxQuadProg 

whose description is located in the file box_quad_prog.cpp, is also called. The purpose of this 

function is to solve the QP of equation (3-45). To be more specific, it calculates the feed-

forward term kk , the set of the free dimensions kf , the decomposition of the free dimensions 

of 
kuuS , , kfuuS  and a flag named result . If 1result =− , then a non-positive definite 

kuuS  is 

encountered and regularization begins. During this procedure, the parameter   gets 

increased, using the modification schedule of (3-38), the Hessians ,
k kuu uxS S  are computed 

again and the QP of equation (3-45) gets solved again. This process gets repeated while 

1result =− . Afterwards, the feedback gain term kK  can be calculated using (3-47). Finally, 

the quadratic model of the value function can be completed by computing the terms 

, ,
k k kVx xxV V  using equations (3-31) and (3-35). This process is repeated fo

, , , ,
k k k k kx u xx uu uxS S S S S r every timestep k . 

 
  for (int k = planning_horizon_steps - 2; k > -1; k--) 

  { 

    VectorNx x_k = X_traj.col(k); 

    VectorNu u_k = U_traj.col(k); 

 
    // Calculate derivatives 

    VectorNx lx = Q * (x_k - x_goal); 

    VectorNu lu = R * (u_k); 

    MatrixNxNx lxx = Q; 

    MatrixNuNu luu = R; 

    MatrixNuNx lux = MatrixNuNx::Zero(); 
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    MatrixNxNx Ad; 

    MatrixNxNu Bd; 

    robotdynamics->LinearizedDiscreteDynamics(planning_timestep, x_k, 

                                              u_k, Ad, Bd); 

 
    // iLQR (Gauss - Newton) version 

    // Calculate action value function's S first and second derivatives 

    VectorNx Sx = lx + Ad.transpose() * p.col(k + 1); 

    VectorNu Su = lu + Bd.transpose() * p.col(k + 1); 

    MatrixNxNx Sxx = 

        lxx + Ad.transpose() * P.block<Nx, Nx>(0, Nx * (k + 1)) * Ad; 

    MatrixNuNu Suu = 

        luu + Bd.transpose() * P.block<Nx, Nx>(0, Nx * (k + 1)) * Bd; 

    MatrixNuNx Sux = 

        lux + Bd.transpose() * P.block<Nx, Nx>(0, Nx * (k + 1)) * Ad; 

 
    P_reg.block<Nx, Nx>(0, Nx * (k + 1)) = 

        P.block<Nx, Nx>(0, Nx * (k + 1)) + 

        lambda * Eigen ::MatrixXd ::Identity(Nx, Nx); 

 
    MatrixNuNx Sux_reg = lux + Bd.transpose() * 

                                   P_reg.block<Nx, Nx>(0, Nx * (k + 1)) * 

                                   Ad; 

    MatrixNuNu SuuF = luu + Bd.transpose() * 

                                P_reg.block<Nx, Nx>(0, Nx * (k + 1)) * 

                                Bd; 

 
    // Solve Quadratic Program (QP) 

    VectorNu lower = umin - u_k; 

    VectorNu upper = umax - u_k; 

 
    VectorNu d_k = d.col(min(k + 1, planning_horizon_steps - 2)); 

 
    VectorNu d_i; 

    MatrixDD SuuF_free; 

    double result; 

    Eigen ::LLT<Eigen::MatrixXd> cholesky; 

    VectorNuBool free_dir; 

    boxQuadProg->BoxQPSolver(SuuF, Su, lower, upper, d_k, d_i, result, 

                             cholesky, free_dir); 

 
    // Regalarization of SuuF, Sux_reg 

    while (result == -1.0) 

    { 

      std::cout << "Possibly non positive definitie matrix!" 

                << std::endl; 

      std::cout << "Regularizing SuuF" << std::endl; 

 
      dlambda = max(lambda_factor, dlambda * lambda_factor); 

      lambda = max(lambda_min, lambda * dlambda); 

 
      // std::cout << "lambda :\n" << lambda << std::endl; 

      // std::cout << "dlambda :\n" << dlambda << std::endl; 

 
      if (lambda > lambda_max) 

      { 

        std::cout << "lambda > lambda_max \n" << std::endl; 

        break; 

      } 

 
      P_reg.block<Nx, Nx>(0, Nx * (k + 1)) = 
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          P.block<Nx, Nx>(0, Nx * (k + 1)) + 

          lambda * Eigen ::MatrixXd ::Identity(Nx, Nx); 

 
      Sux_reg = lux + Bd.transpose() * 

                          P_reg.block<Nx, Nx>(0, Nx * (k + 1)) * Ad; 

      SuuF = luu + Bd.transpose() * 

                       P_reg.block<Nx, Nx>(0, Nx * (k + 1)) * Bd; 

 
      // Solve Quadratic Program (QP) 

      lower = umin - u_k; 

      upper = umax - u_k; 

 
      d_k = d.col(min(k + 1, planning_horizon_steps - 2)); 

      boxQuadProg->BoxQPSolver(SuuF, Su, lower, upper, d_k, d_i, result, 

                               cholesky, free_dir); 

    } 

 
    MatrixDD Sux_reg_free; 

    boxQuadProg->logical_slicing_matrix_asym(Sux_reg, free_dir, 

                                             ones_bool, Sux_reg_free); 

 
    Eigen ::MatrixXd Lfree(Sux_reg_free.rows(), Sux_reg_free.cols()); 

 
    MatrixNuNx K_i = MatrixNuNx::Zero(); 

 
    if (free_dir.any()) 

    { 

      Lfree = -cholesky.solve( 

          Sux_reg_free); // -SuuF_free.solve(Sux_reg_free); 

      boxQuadProg->LogicalFillingMatrixAsym(Lfree, free_dir, 

                                               ones_bool, K_i); 

    } 

 
    // Save controls/gains 

    d.col(k) = d_i; 

    K.block<Nu, Nx>(0, Nx * (k)) = K_i; 

 
    // Update cost-to-go approximation 

    p.col(k) = 

        Sx + 

        (K.block<Nu, Nx>(0, Nx * (k))).transpose() * Suu * d.col(k) + 

        (K.block<Nu, Nx>(0, Nx * (k))).transpose() * Su + 

        Sux.transpose() * d.col(k); 

    P.block<Nx, Nx>(0, Nx * (k)) = 

        Sxx + 

        (K.block<Nu, Nx>(0, Nx * (k))).transpose() * Suu * 

            K.block<Nu, Nx>(0, Nx * (k)) + 

        (K.block<Nu, Nx>(0, Nx * (k))).transpose() * Sux + 

        Sux.transpose() * K.block<Nu, Nx>(0, Nx * (k)); 

 
    dJ1 += d.col(k).transpose() * Su; 

    dJ2 += 0.5 * d.col(k).transpose() * Suu * d.col(k); 

  } 

} 

 

Moreover, the code that implements the forward pass is presented. It is implemented by 

the function ForwardPass(.) member of the custom class BoxDDP located in the file 

box_ddp.cpp. It is described using the two code snippets below. In the first snippet all the 

variables necessary are initialized, like the maximum number of line-search iterations. Also, 
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the first forward rollout is executed using equation (3-33) with 1.0a= . This rollout evaluates 

the new trajectory ˆ ˆ,X U  by applying the optimal control modification, given by the backward 

pass, to the old trajectory ,X U . Afterwards, the value of the new cost function gets computed 

using the function cost(.) as well as the value of the expected cost reduction ( )V a  using 

equation (3-35). Then, if ( ) 0V a  , the ratio z  gets computed using equation (3-34). 

 
void BoxDDP::ForwardPass(MatrixNxNh& X_old, MatrixNuNh_1& U_old, 

                         EigenDouble& J_old, MatrixNuNh_1& d, 

                         MatrixNuNxNh_1& K, MatrixNxNh& X_new, 

                         MatrixNuNh_1& U_new, EigenDouble& J_new) 

{ 

  std::cout << "Starting forward pass" << std::endl; 

 
  // Line search iterations 

  int iter2 = 0; 

 
  // Forward rollout (a = 1) 

  X_new.col(0) = X_old.col(0); 

 
  // Backtracking line search parameter 

  double a = 1.0; 

 
  ADTangentVectorType f; 

  VectorNx f_k; 

 
  for (int k = 0; k < planning_horizon_steps - 1; k++) 

  { 

    U_new.col(k) = 

        U_old.col(k) + a * d.col(k) + 

        K.block<Nu, Nx>(0, Nx * (k)) * (X_new.col(k) - X_old.col(k)); 

 
    VectorNx x_k = X_new.col(k); 

    VectorNu u_k = U_new.col(k); 

    robotdynamics->DiscreteDynamicsRK4(planning_timestep, x_k, u_k, f, 

                                       f_k); 

    X_new.col(k + 1) = f_k; 

  } 

 
  // Cost Function 

  ComputeCost(X_new, U_new, J_new); 

 
  // Expected cost decrease 

  EigenDouble dJ = -a * (dJ1 + a * dJ2); 

 
  // Convergence criterion 

  if (dJ(0, 0) > 0) 

  { 

    z = ((J_old(0, 0) - J_new(0, 0)) / (dJ(0, 0))); 

  } 

  else 

  { 

    z = ((J_old(0, 0) - J_new(0, 0)) > 0) - 

        ((J_old(0, 0) - J_new(0, 0)) < 0); 

    std::cout << "Warning: non-positive expected reduction: should not " 

                 "occur" 

              << std::endl; 

    return; 

  } 
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The second snippet contains the main body of the function, which is the line-search 

procedure. While the value of the ratio z  lies within the interval  1 2,   or the number of the 

line-search iterations does not exceed the maximum, the line-search procedure gets repeated. 

During this procedure the parameter a  gets iteratively reduced, using the expression a =

, where 0.5 =  is a backtracking scaling parameter. Given this new value for a , a forward 

rollout is executed again, the cost function gets computed again as well as the value of the 

expected cost reduction ( )V a  and the ratio z , if ( ) 0V a  . 

 
  // Line Search 

  while ((z < z_min || z > z_max) && (iter2 < iter2_max)) 

  { 

    a *= 0.5; 

 
    // Forward rollout 

    for (int k = 0; k < planning_horizon_steps - 1; k++) 

    { 

      U_new.col(k) = 

          U_old.col(k) + a * d.col(k) + 

          K.block<Nu, Nx>(0, Nx * (k)) * (X_new.col(k) - X_old.col(k)); 

 
      VectorNx x_k = X_new.col(k); 

      VectorNu u_k = U_new.col(k); 

      robotdynamics->DiscreteDynamicsRK4(planning_timestep, x_k, u_k, f, 

                                         f_k); 

      X_new.col(k + 1) = f_k; 

    } 

 
    // Cost Function 

    ComputeCost(X_new, U_new, J_new); 

 
    // Expected cost decrease 

    dJ = -a * (dJ1 + a * dJ2); 

 
    // Convergence criterion 

    if (dJ(0, 0) > 0) 

    { 

      z = ((J_old(0, 0) - J_new(0, 0)) / (dJ(0, 0))); 

    } 

    else 

    { 

      z = ((J_old(0, 0) - J_new(0, 0)) > 0) - 

          ((J_old(0, 0) - J_new(0, 0)) < 0); 

      std::cout << "Warning: non-positive expected reduction: should " 

                   "not occur" 

                << std::endl; 

    } 

 
    iter2++; 

  } 

} 

 

The main body of the control loop is presented next and is implemented in the file 

DDP_MPC.cpp. The following three termination conditions, that are also described in [121], 

are checked at every iteration of the loop (internal iteration).  

• The first condition checks if the cost decrease between two consecutive iterations 

( ) ( )ˆ ˆ, ,J J−X U X U  is less than the tolerance tolFun . 
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• The second condition checks if the feedforward gains kk  converge to zero. To do 

so, the norm normk  must be computed which is equal to the average maximum of 

the normalized gains: 

 
1

norm
0

1

1 1

N
k

k kN

−


=

=
− +


k
k

U
 (3-73) 

Convergence occurs when this norm gets lower than the pre-specified tolerance 

tolGrad .  

• The third condition checks if the number of solver iterations becomes equal to the 

maximum number of iterations. 

In the code snippet below, while the number of solver iterations is lower than the 

tolerance, the loop gets executed. Then, the backward pass gets initiated by calling the 

function BackwardPass(.). Afterwards, kk  gets computed, using the feedforward gains kk  

given by the backward pass, and the code check if the second termination condition, that is 

pertinent to the feedforward gains, is met. If it is met, the value of the parameter   gets 

decreased, using the modification schedule of (3-38), and the loop breaks. Afterwards, the 

forward pass gets initiated by calling the function ForwardPass(.), and the cost reduction 

( ) ( )ˆ ˆ, ,J J−X U X U  gets computed. If the line-search procedure succeeds, meaning that 

 1 2,z   , then the value of   gets decreased, using the modification schedule of (3-38), 

and the old trajectories and cost ( ), , ,JX U X U  are set equal to the new ones ( )ˆ ˆ ˆ ˆ, , ,JX U X U . 

Also, if the first termination condition, that is pertinent to the cost reduction, is met, then the 

loop breaks. However, if  1 2,z   , then the value of   gets increased, using the 

modification schedule of (3-38). Also, if   hits a maximum threshold, then the loop breaks. 

The aforementioned procedure is implemented by the function BoxDDPSolver(.), member of 

the class BoxDDP, that is located in the file box_ddp.cpp. 

 
// BOX-DDP Algorithm 
void BoxDDP::BoxDDPSolver(MatrixNxNh& X_old, MatrixNuNh_1& U_old, 

                          EigenDouble& J_old, MatrixNxNh& X_new, 

                          MatrixNuNh_1& U_new, EigenDouble& J_new) 

{ 

  std::cout << "Start of DDP iterative process" << std::endl; 

 
  // DDP algorithm iterations 

  int iter1 = 0; 

 
  z = 0.0; 

  lambda = lambda_ini; 

  dlambda = dlambda_ini; 

 
  MatrixNuNh_1 k; 

  MatrixNuNxNh_1 K; 

 
  // BOX-DDP Algorithm 

  while ((iter1 < iter1_max)) 

  { 

    // Backward pass 

    BackwardPass(X_old, U_old, k, K); 

 
    // Check for termination due to small gradient 

    Matrix1Nh_1 g = 

        ((k.cwiseAbs()) 
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             .cwiseProduct( 

                 (U_old.cwiseAbs() + Eigen ::MatrixXd ::Ones( 

                                         Nu, planning_horizon_steps - 1)) 

                     .cwiseInverse())) 

            .colwise() 

            .maxCoeff(); 

    double g_norm = g.mean(); 

 
    if (g_norm < tolGrad && lambda < 1e-5) 

    { 

      dlambda = min(dlambda / lambda_factor, 1 / lambda_factor); 

      lambda = lambda * dlambda * (lambda > lambda_min); 

      std::cout << "Decrease Lambda" << std::endl; 

      std::cout << "lambda :\n" << lambda << std::endl; 

      std::cout << "dlambda :\n" << dlambda << std::endl; 

 
      std::cout << "SUCCESS: gradient norm < tolGrad \n" << std::endl; 

      break; 

    } 

 
    // Forward pass 

    ForwardPass(X_old, U_old, J_old, k, K, X_new, U_new, J_new); 

    double dcost = J_old(0, 0) - J_new(0, 0); 

 
    // Improved Regularization 

    if (z > z_min && z < z_max) 

    { 

      // decrease lambda 

      dlambda = min(dlambda / lambda_factor, 1 / lambda_factor); 

      lambda = lambda * dlambda * (lambda > lambda_min); 

      std::cout << "Decrease Lambda" << std::endl; 

      std::cout << "lambda :\n" << lambda << std::endl; 

      std::cout << "dlambda :\n" << dlambda << std::endl; 

 
      // accept changes 

      J_old = J_new; 

      X_old = X_new; 

      U_old = U_new; 

 
      // terminate ? 

      if (dcost < tolFun) 

      { 

        std::cout << "SUCCESS: cost change < tolFun \n" << std::endl; 

        break; 

      } 

    } 

    else 

    { 

      // no cost improvement 

      // increase lambda 

      dlambda = max(lambda_factor, dlambda * lambda_factor); 

      lambda = max(lambda_min, lambda * dlambda); 

      std::cout << "Increase Lambda" << std::endl; 

      std::cout << "lambda :\n" << lambda << std::endl; 

      std::cout << "dlambda :\n" << dlambda << std::endl; 

 
      // terminate ? 

      if (lambda > lambda_max) 

      { 

        std::cout << "EXIT: lambda > lambda_max\n" << std::endl; 

        break; 
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      } 

    } 

 
    std::cout << "Not converged" << std::endl; 

    std::cout << "Cost Difference :\n" << dcost << std::endl; 

    std::cout << "Feedforward gain :\n" << g_norm << std::endl; 

 
    iter1++; 

  } 

 
  std::cout << "Done DDP completely" << std::endl; 

  std::cout << "Here is final number of iterations:\n" 

            << iter1 << std::endl; 

} 

 

When the BOX-DDP algorithm has converged, the updated trajectory ˆ ˆ,X U  has been 

calculated. The first m  elements of the vector Û  are equal to the control input 0û . Then, this 

control input is applied to the system. Afterwards, the system responds to that control action 

and the current state of the system gets measured measx . In general, measx  will not be equal to 

the expected (predicted) state response 1x̂ . So, the new initial state 0x  is set equal to measx . 

Also, a new initial control input trajectory U  must be selected. The updated trajectory Û  is 

utilized for this initialization. In this way, the solver gets warm started. The entire iterative 

procedure gets repeated at every simulation step. This entire procedure is sketched in detail 

in the flow chart of Figure 3-19. Also, the directory tree of this package is depicted in Figure 

3-20. 
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Figure 3-19. BOX-DDP MPC flow chart. 
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Figure 3-20. Directory tree of DDP_MPC package. 
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3.5.3 DIRTRAN/DIRCOL MPC 

For the DIRTRAN/DIRCOL MPC, the continuous time dynamics of the form ( ),= cx f x u , are 

also needed, to formulate the dynamical system constraint, defined by the defects kΔ  of 

equations (3-6), (3-16) for DIRTRAN/DIRCOL respectively. The continuous time dynamics 

needed are computed by calling the function ContinuousDynamicsRBDL(.). 

The defect constraint kΔ  of DIRTRAN is implemented by the function 

ComputeNLPDefectConstraintTrapezoidal(.), member of the custom class NLP located in 

the file nlp_terms.cpp. This function is presented in the two code snippets below. In the first 

snippet, all the variables necessary are initialized. This snippet also calculates the defect 0Δ . 

The second snippet contains the main body of the function, where the defects kΔ  are 

calculated  1, , 1k N = − . 

 
// Trapezoidal integration with zero-order hold on u 
void NLP::ComputeNLPDefectConstraintTrapezoidal( 

    int planning_horizon_steps, double& planning_timestep, casadi::MX& X, 

    casadi::MX& U, casadi::MX& constraint) 

{ 
  int const N = X.size1() / planning_horizon_steps; 
  int const M = U.size1() / planning_horizon_steps; 

 
  MX x1 = MX::sym("x1", N); 
  MX u1 = MX::sym("u1", M); 

 

  MX x2 = MX::sym("x2", N); 
  MX u2 = MX::sym("u2", M); 

 

  MX f1 = MX::sym("f1", N); 

  MX f2 = MX::sym("f2", N); 
 

  VectorNd q; 

  VectorNd q_dot; 
  VectorNd tau; 

 

  MX constraint_k = MX::sym("constraint_k", N); 
 

  // Formulate dynamics constraints 
 

  int i = 0; 
  int j = 0; 

 
  x1 = X(Slice(i, i + N, 1)); 

  u1 = U(Slice(j, j + M, 1)); 
  q = VectorNd(x1(Slice(0, int(0.5 * double(N)), 1), 0)); 
  q_dot = VectorNd(x1(Slice(int(0.5 * double(N)), N, 1), 0)); 

  tau = VectorNd(u1(Slice(0, M, 1), 0)); 
  symbolicrobotdynamics->ContinuousDynamicsRBDL(q, q_dot, tau, f1); 

  std::cout << "f1 :\n " << f1 << std::endl; 

 

  x2 = X(Slice(i + N, i + 2 * N, 1)); 

  u2 = U(Slice(j + M, j + 2 * M, 1)); 
  q = VectorNd(x2(Slice(0, int(0.5 * double(N)), 1), 0)); 

  q_dot = VectorNd(x2(Slice(int(0.5 * double(N)), N, 1), 0)); 
  tau = VectorNd(u2(Slice(0, M, 1), 0)); 
  symbolicrobotdynamics->ContinuousDynamicsRBDL(q, q_dot, tau, f2); 

  std::cout << "f2 :\n " << f2 << std::endl; 

 

  constraint_k = x2 - (x1 + DM(0.5 * planning_timestep) * (f1 + f2)); 
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  constraint = constraint_k; 

 
  x1 = x2; 

  f1 = f2; 
 

  i += N, j += M; 

 
  for (int k = 1; k < planning_horizon_steps - 1; k++) 
  { 

    x2 = X(Slice(i + N, i + 2 * N, 1)); 
    u2 = U(Slice(j + M, j + 2 * M, 1)); 
    q = VectorNd(x2(Slice(0, int(0.5 * double(N)), 1), 0)); 

    q_dot = VectorNd(x2(Slice(int(0.5 * double(N)), N, 1), 0)); 
    tau = VectorNd(u2(Slice(0, M, 1), 0)); 

    symbolicrobotdynamics->ContinuousDynamicsRBDL(q, q_dot, tau, f2); 

    std::cout << "f2 :\n " << f2 << std::endl; 

 
    constraint_k = x2 - (x1 + DM(0.5 * planning_timestep) * (f1 + f2)); 

    constraint = vertcat(constraint, constraint_k); 
 

    x1 = x2; 

    f1 = f2; 
 

    i += N, j += M; 
  } 
 

  std::cout << "constraint :\n " << constraint << std::endl; 
} 

 

The defect constraint kΔ  of DIRCOL is implemented by the function 

ComputeNLPDefectConstraintHermiteSimpson(.), member of the custom class NLP 

located in the file nlp_terms.cpp. This function is presented in the two code snippets below. In 

the first snippet, all the variables necessary are initialized. This snippet also calculates the 

defect 0Δ . The second snippet contains the main body of the function, where the defects kΔ  

are calculated  1, , 1k N = − . 

 
// Hermite-Simpson integration with first-order hold on u 
void NLP::ComputeNLPDefectConstraintHermiteSimpson( 

    int planning_horizon_steps, double& planning_timestep, casadi::MX& X, 

    casadi::MX& U, casadi::MX& constraint) 

{ 

  int const N = X.size1() / planning_horizon_steps; 
  int const M = U.size1() / planning_horizon_steps; 

 
  MX x1 = MX::sym("x1", N); 

  MX u1 = MX::sym("u1", M); 
 

  MX x2 = MX::sym("x2", N); 
  MX u2 = MX::sym("u2", M); 
 

  MX f1 = MX::sym("f1", N); 
  MX f2 = MX::sym("f2", N); 

 

  MX xm = MX::sym("xm", N); 
  MX um = MX::sym("um", M); 

 

  MX fm = MX::sym("fm", N); 

  MX xm_dot = MX::sym("xm_dot", N) 
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  VectorNd q; 
  VectorNd q_dot; 

  VectorNd tau; 
 

  MX constraint_k = MX::sym("constraint_k", N); 

 

  // Formulate dynamics constraints 

 
  int i = 0; 

  int j = 0; 

 
  x1 = X(Slice(i, i + N, 1)); 
  u1 = U(Slice(j, j + M, 1)); 

  q = VectorNd(x1(Slice(0, int(0.5 * double(N)), 1), 0)); 
  q_dot = VectorNd(x1(Slice(int(0.5 * double(N)), N, 1), 0)); 

  tau = VectorNd(u1); 
  symbolicrobotdynamics->ContinuousDynamicsRBDL(q, q_dot, tau, f1); 

  std::cout << "f1 :\n " << f1 << std::endl; 

 
  x2 = X(Slice(i + N, i + 2 * N, 1)); 
  u2 = U(Slice(j + M, j + 2 * M, 1)); 

  q = VectorNd(x2(Slice(0, int(0.5 * double(N)), 1), 0)); 
  q_dot = VectorNd(x2(Slice(int(0.5 * double(N)), N, 1), 0)); 
  tau = VectorNd(u2(Slice(0, M, 1), 0)); 

  symbolicrobotdynamics->ContinuousDynamicsRBDL(q, q_dot, tau, f2); 

  std::cout << "f2 :\n " << f2 << std::endl; 

 
  // xm_dot = DM( -3.0/(2.0*h) )*(x1 - x2) - DM( 0.25 )*(f1 + f2) ; 

 
  xm = DM(0.5) * (x1 + x2) + DM(h / 8.0) * (f1 - f2); 
  um = DM(0.5) * (u1 + u2); 
  q = VectorNd(xm(Slice(0, int(0.5 * double(N)), 1), 0)); 

  q_dot = VectorNd(xm(Slice(int(0.5 * double(N)), N, 1), 0)); 
  tau = VectorNd(um); 

  symbolicrobotdynamics->ContinuousDynamicsRBDL(q, q_dot, tau, fm); 

  std::cout << "fm :\n " << fm << std::endl; 

 
  constraint_k =  

      x2 - x1 - DM(planning_timestep / 6.0) *  

                    (f1 + DM(4.0) * fm + f2); // xm_dot - fm; 
  constraint = constraint_k; 

 
  x1 = x2; 
  f1 = f2; 

 
  i += N, j += M; 

 
  for (int k = 1; k < planning_horizon_steps - 1; k++) 
  { 
    x2 = X(Slice(i + N, i + 2 * N, 1)); 

    u2 = U(Slice(j + M, j + 2 * M, 1)); 
    q = VectorNd(x2(Slice(0, int(0.5 * double(N)), 1), 0)); 

    q_dot = VectorNd(x2(Slice(int(0.5 * double(N)), N, 1), 0)); 
    tau = VectorNd(u2(Slice(0, M, 1), 0)); 
    symbolicrobotdynamics->ContinuousDynamicsRBDL(q, q_dot, tau, f2); 

    std::cout << "f2 :\n " << f2 << std::endl; 

 
    // xm_dot = DM( -3.0/(2.0*h) )*(x1 - x2) - DM( 0.25 )*(f1 + f2) ; 

 
    xm = DM(0.5) * (x1 + x2) + DM(planning_timestep / 8.0) * (f1 - f2); 



 

114/252 

    um = DM(0.5) * (u1 + u2); 
    q = VectorNd(xm(Slice(0, int(0.5 * double(N)), 1), 0)); 

    q_dot = VectorNd(xm(Slice(int(0.5 * double(N)), N, 1), 0)); 
    tau = VectorNd(um); 

    symbolicrobotdynamics->ContinuousDynamicsRBDL(q, q_dot, tau, fm); 

    std::cout << "fm :\n " << fm << std::endl; 

 
    constraint_k =  

        x2 - x1 –  

        DM(planning_timestep / 6.0) *  

            (f1 + DM(4.0) * fm + f2); // xm_dot - fm; 

    constraint = constraint_k; 

 
    x1 = x2; 
    f1 = f2; 

 
    i += N, j += M; 
  } 
 

  std::cout << "constraint :\n " << constraint << std::endl; 
} 

 

Moreover, the cost function, in continuous time, should be discretized using an integration 

or quadrature scheme. In general, continuous time cost functions in OCPs have the following 

form: 

 ( ) ( )( ) ( )( )
0

,
ft

f f

t

J l t t dt l t= + x u x  (3-74) 

The cost function can be integrated using the trapezoid rule. Applying this integration scheme 

to the cost function yields the following: 
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For this work, the time-step 1k kh t t+= −  is constant. Also, the cost function selected is a 

quadratic that has the same form as the objective utilized in the Convex MPC case. Therefore, 

the cost function in discrete time has the following form: 
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This trapezoid integration scheme is utilized for the DIRTRAN MPC. It is implemented by the 

function ComputeNLPCostTrapezoidal(.), member of the custom class NLP located in the 

file nlp_terms.cpp. This function is presented in the code snippet below. 

 
void NLP::ComputeNLPCostTrapezoidal(int planning_horizon_steps, 

                                    double& planning_timestep, 

                                    casadi::MX& X, casadi::MX& U, 

                                    casadi::MX& x_goal, casadi::MX& Q, 

                                    casadi::MX& R, casadi::MX& Qn, 

                                    casadi::MX& J) 

{ 
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  int const N = X.size1() / planning_horizon_steps; 
  int const M = U.size1() / plnning_horizon_steps; 
 

  MX x_k = MX::sym("x_k", N); 
  MX u_k = MX::sym("u_k", M); 
 

  MX l = MX::sym("l"); 
  MX lf = MX::sym("lf"); 
 

  int i = 0; 
  int j = 0; 
  J = 0.0; 
 

  // Stage Cost 
  // idx = 0 
  int idx = 0; 
  x_k = X(Slice(i, i + N, 1)); 
  u_k = U(Slice(j, j + M, 1)); 
  l = mtimes(mtimes((x_k - x_goal).T(), Q), (x_k - x_goal)) +  

      mtimes(mtimes(u_k.T(), R), u_k); 
  J += DM(1.0) * l; 
  i += N, j += M; 
  idx++; 
 

  // 1 < idx < horizon - 2 
  while (idx < planning_horizon_steps - 2) 
  { 
    x_k = X(Slice(i, i + N, 1)); 
    u_k = U(Slice(j, j + M, 1)); 
    l = mtimes(mtimes((x_k - x_goal).T(), Q), (x_k - x_goal)) +  

        mtimes(mtimes(u_k.T(), R), u_k); 
    J += DM(2.0) * l; 
    i += N, j += M; 
    idx++; 
  } 
 

  // idx = horizon - 2 
  x_k = X(Slice(i, i + N, 1)); 
  u_k = U(Slice(j, j + M, 1)); 
  l = mtimes(mtimes((x_k - x_goal).T(), Q), (x_k - x_goal)) +  

      mtimes(mtimes(u_k.T(), R), u_k); 
  J += DM(1.0) * l; 
  i += N, j += M; 
 

  // Terminal Cost 
  // idx = horizon - 1 
  x_k = X(Slice(i, i + N, 1), 0); 
 

  lf = mtimes(mtimes((x_k - x_goal).T(), Qn), (x_k - x_goal)); 
  std::cout << "lf :\n " << lf << std::endl; 
 

  // Cost function 
  J = DM(0.5 * planning_timestep) * J + lf; 
  std::cout << "J :\n " << J << std::endl; 
} 

 

One other option that can be utilized in DIRCOL is to integrate the cost function using 

Simpson’s integration rule. Applying this integration scheme to the cost function yields the 

following: 
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In case of a time-step 1k kh t t+= −  that is constant and of a cost function that is a quadratic, the 

discretized cost function has the following form: 
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This Simpson integration scheme is utilized for the DIRCOL MPC. It is implemented by 

the function ComputeNLPCostSimpson(.), member of the custom class NLP located in the 

file nlp_terms.cpp. This function is presented in the two code snippets below. 

 
void NLP::ComputeNLPSimpson(int planning_horizon_steps, 

                            double& planning_timestep, casadi::MX& X,  

                            casadi::MX& U, casadi::MX& x_goal,  

                            casadi::MX& Q, casadi::MX& R,  

                            casadi::MX& Qn, casadi::MX& J) 

{ 
  int const N = X.size1() / planning_horizon_steps; 
  int const M = U.size1() / planning_horizon_steps; 
 

  MX x1 = MX::sym("x1", N); 
  MX u1 = MX::sym("u1", M); 
 

  MX x2 = MX::sym("x2", N); 
  MX u2 = MX::sym("u2", M); 
 

  MX x_k = MX::sym("x_k", N); 
  MX u_k = MX::sym("u_k", M); 
 

  MX f1 = MX::sym("f1", N); 
  MX f2 = MX::sym("f2", N); 
 

  MX xm = MX::sym("xm", N); 
  MX um = MX::sym("um", M); 
 

  VectorNd q; 
  VectorNd q_dot; 
  VectorNd tau; 
 

  MX l = MX::sym("l"); 
  MX lf = MX::sym("lf"); 
 

  int i = 0; 
  int j = 0; 
  J = 0.0; 
 

  // Stage Cost 
  // idx = 0 
  int idx = 0; 
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  x_k = X(Slice(i, i + N, 1)); 
  u_k = U(Slice(j, j + M, 1)); 
  l = mtimes(mtimes((x_k - x_goal).T(), Q), (x_k - x_goal)) +  

      mtimes(mtimes(u_k.T(), R), u_k); 
  J += DM(1.0) * l; 
  idx++; 

 
  // 1 < idx < horizon - 2 

  x1 = X(Slice(i, i + N, 1)); 
  u1 = U(Slice(j, j + M, 1)); 

  q = VectorNd(x1(Slice(0, int(0.5 * double(N)), 1), 0)); 
  q_dot = VectorNd(x1(Slice(int(0.5 * double(N)), N, 1), 0)); 
  tau = VectorNd(u1(Slice(0, M, 1), 0)); 

  symbolicrobotdynamics->ContinuousDynamicsRBDL(q, q_dot, tau, f1); 

 
  while (idx < planning_horizon_steps - 2) 
  { 

    x2 = X(Slice(i + N, i + 2 * N, 1)); 
    u2 = U(Slice(j + M, j + 2 * M, 1)); 

    q = VectorNd(x2(Slice(0, int(0.5 * double(N)), 1), 0)); 
    q_dot = VectorNd(x2(Slice(int(0.5 * double(N)), N, 1), 0)); 
    tau = VectorNd(u2(Slice(0, M, 1), 0)); 

    symbolicrobotdynamics->ContinuousDynamicsRBDL(q, q_dot, tau, f2); 

 
    x_k = DM(0.5) * (x1 + x2) + DM(planning_timestep / 8.0) * (f1 - f2); 
    u_k = DM(0.5) * (u1 + u2); 

 
    l = mtimes(mtimes((x_k - x_goal).T(), Q), (x_k - x_goal)) +  

        mtimes(mtimes(u_k.T(), R), u_k); 

    J += DM(4.0) * l; 
 

    l = mtimes(mtimes((x2 - x_goal).T(), Q), (x2 - x_goal)) +  

        mtimes(mtimes(u2.T(), R), u2); 
    J += DM(2.0) * l; 

 

    x1 = x2; 
    f1 = f2; 

 

    i += N, j += M; 

    idx++; 
  } 

 
  // idx = horizon – 2 

  x2 = X(Slice(i + N, i + 2 * N, 1)); 
  u2 = U(Slice(j + M, j + 2 * M, 1)); 
  q = VectorNd(x2(Slice(0, int(0.5 * double(N)), 1), 0)); 

  q_dot = VectorNd(x2(Slice(int(0.5 * double(N)), N, 1), 0)); 
  tau = VectorNd(u2(Slice(0, M, 1), 0)); 

  symbolicrobotdynamics->ContinuousDynamicsRBDL(q, q_dot, tau, f2); 

 
  x_k = DM(0.5) * (x1 + x2) + DM(planning_timestep / 8.0) * (f1 - f2); 
  u_k = DM(0.5) * (u1 + u2); 

 

  l = mtimes(mtimes((x_k - x_goal).T(), Q), (x_k - x_goal)) +  

      mtimes(mtimes(u_k.T(), R), u_k); 

  J += DM(4.0) * l; 
 

  l = mtimes(mtimes((x2 - x_goal).T(), Q), (x2 - x_goal)) +  

      mtimes(mtimes(u2.T(), R), u2); 
  J += DM(1.0) * l; 
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  i += N, j += M; 

 

  // Terminal Cost 

  // idx = horizon - 1 
  x_k = X(Slice(i, i + N, 1), 0); 
 

  lf = mtimes(mtimes((x_k - x_goal).T(), Qn), (x_k - x_goal)); 
  std::cout << "lf :\n " << lf << std::endl; 

 

  // Cost function 
  J = DM((planning_timestep / 3.0)) * J + lf; 

  std::cout << "J :\n " << J << std::endl; 
} 

 

The DIRTRAN/DIRCOL MPC controllers are implemented in the files 

DIRTRAN_MPC.cpp and DIRCOL_MPC.cpp respectively. The solver that is utilized here to 

solve the NLPs is IPOPT (Interior Point OPTimizer), a software package for large-scale 

nonlinear optimization. It is also interfaced to CasADi [150], which is an open-source tool 

for nonlinear optimization and algorithmic differentiation. Also, IPOPT relies on third-party 

software for some linear algebra routines. Of the biggest significance is the need to solve 

sparse, symmetric, indefinite linear systems of equations. Such a sparse symmetric indefinite 

linear solver is provided by the HSL (Harwell Subroutine Library) Mathematical Software 

Library [110] which is being utilized for this work. To be more specific, the solver MA57 is 

employed here.  

The solver IPOPT is designed to find (local) solutions to NLPs using an IP line search 

filter method [151]. IP methods replace inequality constraints with a barrier function, that is 

usually logarithmic, that is being added to the cost function. At the constraint boundary, this 

term becomes infinitely large and thus constraint violations get penalized, and the constraint 

boundary is never crossed. To be more precise, barrier function converges to infinity, as the 

solution of the problem approaches the constraint boundary. Their main difference with 

penalty methods is that penalty terms are nonzero only when the constraint boundaries are 

crossed. Only if the constraint boundaries are crossed, do these methods try to force the 

solution to lay inside the boundaries. For this reason, penalty methods are often referred to as 

exterior penalty methods. IP methods prevent the solution from ever crossing the constraint 

boundary, in the first place. The solution always lies in the interior.  

The solver IPOPT can handle mathematical optimization problems of the form: 
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 (3-79) 

where ( )n m N+z  is the optimization variable comprised of the states and control inputs over 

the entire horizon, ( ) ( ):
n m Nf +

→z  denotes the objective function and ( ) ( ): n m N q+ →g z  

denotes the constraint functions, with q  being equal to the number of all the constraint 

equations. These two functions are in general linear or nonlinear and convex or nonconvex. 

The vectors ( ), n m N+lb ubz z  denote the lower and upper bounds on the decision variables, so 

that  
i
  −lbz  and  

i
  +ubz , ( ) 1, ,i n m N = + . Finally, the vectors 

, qlb ubg g  denote the lower and upper bounds on the constraints, so that  
i
  −lbg  

and  
i
  +ubg ,  1, ,i q = . Equality constraints can be encoded by setting 

i i
=lb ubz z  
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or 
i i
=lb ubg g  for some of the elements in vectors ,lb ubz z  or ,lb ubg g . Consequently, the terms of 

the problem of equation (3-4) have to be rearranged to match the form of (3-79). 

The interface with CasADi requires that the decision variables z  and all the terms of the 

NLP that are dependent on the decision variables, like ( )f z  and ( )g z , must be represented 

using CasADi’s symbolic variables. The symbolic framework of CasADi allows the user to 

construct symbolic expressions using a syntax similar to the one that MATLAB uses. 

According to this syntax, matrices, vectors, and scalars are treated uniformly, as if they all 

were matrices. However, under these conditions, Pinocchio cannot be utilized for the 

computation of system dynamics since it is not compatible with this symbolic format. Its various 

functions cannot accept as arguments or process these symbolic variables. On the other hand, 

RBDL is compatible with it, thanks to the rbdl-casadi version of the RBDL library. The terms 

that are constant and not dependent on the decision variables, like the bounds 
i i
=lb ubz z  or 

i i
=lb ubg g  are represented using std vectors, provided by the C++ library std, instead of Eigen 

vectors. This action has to be taken since CasADi is not compatible with Eigen. 

 The decision variables vector z  will be equal to  0 0

T

N N=z x x u u . 

According to this arrangement of the decision variables, will the rest of the NLP terms be 

selected. Thus, objective function ( )f z  and the constraints function ( )g z  are the following: 
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In this work, it is assumed that the only constraint equations present on the problem are 

the dynamical system constraints. As a result, ( )1q N n= − . This assumption justifies the value 

of the vector ( )g z . After taking this assumption into consideration, the bounds on the decision 

variables ,lb ubz z  and the bounds on the constraints ,lb ubg g  will be the following: 
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 (3-82) 

By setting the upper bounds on the decision variables that correspond to the initial state (first 

n  elements) equal to the lower bounds on the decision variables that correspond to the initial 

state (first n  elements), an equality constraint gets defined. However, if both of them are equal 

to the initial state itself 0x , then the solver recognizes the first elements n  of the vector z  as 

constant and does not alter their value during the solution process. 

The aforementioned NLP vectors are filled in after the code in the file nlp_terms.cpp is 

executed. The functions that should be executed to do so are 
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ComputeNLPDefectConstraintTrapezoidal(.)/ComputeNLPDefectConstraintHermiteSi

mpson(.), ComputeNLPCostTrapezoidal(.)/ComputeNLPCostSimpson(.), 

ComputeNLPDecisionVariablesBounds(.) and ComputeNLPConstraintBounds(.), 

members of the custom class NLP. The last two are presented here: 

 
void NLP::ComputeNLPDecisionVariablesBounds( 

    int planning_horizon_steps, std::vector<double>& x0, VectorNx& xmax, 

    VectorNx& xmin, VectorNu& umax, VectorNu& umin, 

    std::vector<double>& lbz, std::vector<double>& ubz) 

{ 
  // Initial decision variables bounds (lbz, ubz) values 
 

  int const N = xmax.rows(); 
  int const M = umax.rows(); 
 

  // States 
 

  // n = 0 
  for (int i = 0; i < N; i++) 
  { 
    lbz.push_back(x0[i]), ubz.push_back(x0[i]); 
  } 
 

  // n = 1 
  for (int n = 1; n < planning_horizon_steps; n++) 
  { 
    for (int i = 0; i < N; i++) 
    { 
      lbz.push_back(xmin(i)), ubz.push_back(xmax(i)); 
    } 
  } 
 

  // Controls 
  for (int n = 0; n < planning_horizon_steps; n++) 
  { 
    for (int i = 0; i < M; i++) 
    { 
      lbz.push_back(umin(i)), ubz.push_back(umax(i)); 
    } 
  } 
 

  std::cout << "lbz :\n" << lbz << std::endl; 
  std::cout << "ubz :\n" << ubz << std::endl; 
} 

 
void NLP::ComputeNLPConstraintBounds(casadi::MX& constraint, 

                                     std::vector<double>& lbg, 

                                     std::vector<double>& ubg) 

{ 

  // Initial constraints bounds (lbg, ubg) values 
 

  for (int n = 0; n < constraint.size1(); n++) 
  { 
    lbg.push_back(0.0), ubg.push_back(0.0); 
  } 
 

  std::cout << "lbg :\n" << lbg << std::endl; 
  std::cout << "ubg :\n" << ubg << std::endl; 
} 
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Then an instance of the solver must be created, and the solver must then be initialized. 

This initialization procedure includes the declaration of the NLP terms and the specification of 

the values of the solver parameters. The procedure followed to instantiate and initialize the 

solver is described in the code snippet below. 

 
// Declaration of the NLP 
MXDict nlp_prob;               // NLP declaration 
nlp_prob["x"] = vertcat(X, U); // decision variables 
nlp_prob["f"] = J;             // objective 
nlp_prob["g"] = constraint;    // constraints 

 
// Casadi and IPOPT (solver) settings 
Dict opts_dict; 
opts_dict["expand"] = 1; 

 
opts_dict["warn_initial_bounds"] = 1; 
opts_dict["eval_errors_fatal"] = 1; 
opts_dict["regularity_check"] = 1; 
opts_dict["inputs_check"] = 1; 

 
opts_dict["ipopt.print_level"] = 0; //5 
opts_dict["ipopt.print_user_options"] = "yes"; 
opts_dict["ipopt.print_timing_statistics"] = "no"; 

 
opts_dict["ipopt.mu_init"] = 1e-3; 

 
opts_dict["ipopt.linear_solver"] = "ma57"; 
opts_dict["ipopt.ma57_pre_alloc"] = 1.5; 
opts_dict["ipopt.tol"] = 1e-3; 
// opts_dict["ipopt.acceptable_tol"] = 1e-6; 
// opts_dict["ipopt.acceptable_obj_change_tol"] = 1e-6; 
opts_dict["ipopt.dual_inf_tol"] = 1e10; 
opts_dict["ipopt.constr_viol_tol"] = 1e-2; 
opts_dict["ipopt.compl_inf_tol"] = 1e-2; 
opts_dict["ipopt.jacobian_approximation"] = "exact"; 
opts_dict["ipopt.gradient_approximation"] = "exact"; 
opts_dict["ipopt.fixed_variable_treatment"] = "make_parameter_nodual"; 
opts_dict["ipopt.jac_d_constant"] =  

    "yes"; // Indicates linear inequality constraints 
// opts_dict["ipopt.hessian_approximation"] = "limited-memory"; 
 

opts_dict["ipopt.warm_start_init_point"] = "yes"; 
opts_dict["ipopt.warm_start_bound_push"] = 1e-6; 
opts_dict["ipopt.warm_start_slack_bound_push"] = 1e-6; 
opts_dict["ipopt.warm_start_mult_bound_push"] = 1e-6; 
opts_dict["ipopt.warm_start_bound_frac"] = 1e-6; 
opts_dict["ipopt.warm_start_slack_bound_frac"] = 1e-6; 
 

opts_dict["ipopt.max_wall_time"] = 0.01; 
opts_dict["ipopt.max_cpu_time"] = 0.01; 
 

// Create solver instance 
solver = nlpsol("solver", "ipopt", nlp_prob, opts_dict); 
 

// Declare NLP constraint bounds 
DMDict arg_nlp; 
arg_nlp["x0"] = z0_std; 
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arg_nlp["lam_x0"] = lam_z0_std; 
arg_nlp["lam_g0"] = lam_g0_std; 
arg_nlp["lbx"] = lbz_std; 
arg_nlp["ubx"] = ubz_std; 
arg_nlp["lbg"] = lbg_std; 
arg_nlp["ubg"] = ubg_std; 

 

However, some NLP terms, like the bounds ,lb ubz z , are dependent on the initial states 0x . 

Consequently, they should be updated with the new values of the initial conditions 0x , at every 

control loop iteration. Additionally, the initial guess of the decision variables (primal solution) 

as well as the guess for the Lagrange multipliers (dual solution) should also be updated. A 

vector of Lagrange multipliers corresponds for each constraint set. For this optimization 

problem the first vector of Lagrange multipliers corresponds to the bounds on the decision 

variables ( )n m N+zλ  and second vector of Lagrange multipliers corresponds to the bounds 

on the constraints qgλ , where ( )1q N n= − . The initial guess for the primal solution is 

denoted by 0z  and the initial guess for the dual solution associated with the bounds on the 

decision variables and with the bounds on the constraints are denoted by 
0 0
,z gλ λ  respectively. 

Then the solver will be able to solve the problem. After solving it, the user can extract the 

decision variables for optimal solution z , the Lagrange multipliers associated with the bounds 

on the decision variables at the solution *
zλ , the Lagrange multipliers associated with the 

bounds on the constraints at the solution *
gλ , the cost function for the optimal solution *f  and 

the constraints evaluated at the optimal solution *g . The actions mentioned in this paragraph 

are illustrated in the code snippet below: 

 
// Update NLP initial conditions and decision variables bounds 
arg_nlp["x0"] = z0_std; 
arg_nlp["lam_x0"] = lam_z0_std; 
arg_nlp["lam_g0"] = lam_g0_std; 
arg_nlp["lbx"] = lbz_std; 
arg_nlp["ubx"] = ubz_std; 

 
// Solve the NLP 
DMDict res_nlp = solver(arg_nlp); 

 
// Print solution 
// cout << "Optimal cost:                \n" 

//      << double(res_nlp.at("f")) << endl; 
// cout << "Primal solution:             \n"  

//      << vector<double>(res_nlp.at("x")) << endl; 
// cout << "Constraints:                 \n"  

//      << vector<double>(res_nlp.at("g")) << endl; 
// cout << "Dual solution (bounds on X): \n"  

//      << vector<double>(res_nlp.at("lam_x")) << endl; 
// cout << "Dual solution (bounds on G): \n"  

//      << vector<double>(res_nlp.at("lam_g")) << endl; 

 
// NLP solution 
NLPSolution = vector<double>(res_nlp.at("x")); 

 
// std::cout << "Here is the NLPSolution:\n " << NLPSolution  

//           << std::endl; 
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The first m  elements of the vector z  are equal to the control input 0u . Then, this control input 

is applied to the system. Afterwards, the system responds to that control action and the current 

state of the system gets measured measx . In general, measx  will not be equal to the expected 

(predicted) state response 1x . So, the new initial state 0x  is set equal to measx , the NLP terms 

get updated, and the entire iterative procedure gets repeated at every simulation step. The 

initial guesses 0z  and 
0 0
,z gλ λ  are warm started with the primal and dual solution respectively 

that were acquired in the previous control loop. This has to be done manually when using 

IPOPT. This entire procedure is sketched in detail in the flow chart of Figure 3-21. Also, the 

directory tree of this package is depicted in Figure 3-22. 

 

Figure 3-21. DIRTRAN/DIRCOL MPC flow chart. 
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Figure 3-22. Directory tree of (DIRTRAN/DIRCOL)_MPC package. 
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3.6 Experiments for double pendulum in Gazebo 

The numerical optimization techniques whose implementation was discussed in chapter 3.5, 

have been tested on a fully actuated double pendulum, also known as RR manipulator, in 

Gazebo simulator illustrated in Figure 3-23. Each actuator is mounted on the joints of the 

manipulator. The geometric and inertial parameters of the double pendulum are presented in 

Table 3-1. For this dynamical system, state variables x  and the control inputs u  are the 

following: 

 

1

2 1

1 2

2

,



 

 



 
 

  = =   
  

  

x u  (3-83) 

where 1 2,   are the angular positions of the two joints of the manipulator, 1 2,   are the angular 

velocities of the two joints of the manipulator and 1 2,   are the torques applied to each of the 

joints of the manipulator. The goal of each of the controllers tested is to bring the pendulum 

from an initial position to the up-ward position, at which 1 2 0rad = =  with zero velocity 

1 2 0rad/s = = . This position is also an equilibrium point. Therefore, the state and control input 

references ,ref refx u  are the following: 4= refx 0 , 2= refu 0 . 

 

Figure 3-23. Double pendulum in Gazebo. 

Table 3-1. Geometric and Inertial parameters of the double pendulum. 

Parameter Value 

Link 1 
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Mass 1.0kg  

Length 2.0m  

Distance between the CoM and 
the 1st joint 

1.0m 

Inertia Matrix 
 

  20.05, 0.05, 0.05 kgmxx yy zzI I I= = =  

Actuator max torque 50.0Nm  

Link 2 

Mass 1.0kg  

Length 2.0m  

Distance between the CoM and 
the 2nd joint 

1.0m 

Inertia Matrix   20.05, 0.05, 0.05 kgmxx yy zzI I I= = =  

Actuator max torque 50.0Nm  

 

The cost function employed for all the controllers is a quadratic that has the form 

described in equation (3-56). The stage cost weight matrices corresponding to the states and 

the control inputs ,Q R  are constant and have the same value for all the controllers. Their 

values are the following: 

 

1 0 0 0

0 1 0 0 0.01 0
,

0 0 1 0 0 0.01

0 0 0 1

 
 

  = =     
 
 

Q R  (3-84) 

3.6.1 Convex (QP-based) MPC 

Firstly, experiments conducted on the Convex MPC controller are presented. Here the double 

pendulum dynamics are linearized around the equilibrium point that corresponds to the up-

ward position of the double pendulum. This equilibrium point coincides with the reference state 

and control input ,ref refx u . This linearization of the dynamics is valid from a small 

neighborhood around the linearizing point. Consequently, the initial state is chosen so that it 

lies in this neighborhood. To be more precise the initial angular positions of the joints are 

1,0 0.4rad = , 2,0 0.0rad =  and the initial angular velocities of the joints are 1,0 0.0rad/s = , 

2,0 0.0rad/s = . The size of the constant integration time step that is utilized by the RK4 explicit 

integrator is 1msech= , that is equal to the constant simulation time-step. The prediction 

horizon is divided into 2N =  time steps. This means that the horizon length is equal to 2msec

. Longer horizons could also be achieved but are not necessary for this task. 

The time responses of the angular positions, the angular velocities and the torques of the 

joints of the manipulator are presented in Figure 3-24, Figure 3-25 and Figure 3-26 

respectively. The responses are considerably fast since the steady state is reached in just 

4sec . Also, not many oscillations are present in the responses. Finally, the actuators do not 

reach their maximum torque limits during the execution of the control law. 
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Figure 3-24. Time responses of the angular positions of the joints of the double pendulum. 

 

Figure 3-25. Time responses of the angular velocities of the joints of the double pendulum. 
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Figure 3-26. Time responses of the torques of the joints of the double pendulum. 

The distribution of all Convex MPC solve time is presented in Figure 3-27. The mean 

value of solve time is equal to 0.3msec  and the standard deviation of solve times is equal to 

0.06msec . It is important to note that the vast majority of solve times of this controller exhibits 

small variation around the mean solve time. 

 

Figure 3-27. Solve time distribution of Convex MPC. 

3.6.2 BOX-DDP MPC 

Secondly, experiments conducted on the BOX-DDP MPC controller are presented. Here the 

controller makes use of the nonlinear dynamics of the manipulator. The initial state is chosen 

so that it corresponds to the double pendulum downward position. To be more precise the 

initial angular positions of the joints are 1,0 rad = , 2,0 0.0rad =  and the initial angular 
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velocities of the joints are 1,0 0.0rad/s = , 2,0 0.0rad/s = . The size of the constant integration 

time step that is utilized by the RK4 explicit integrator is 100msech= . The prediction horizon 

is divided into 2N =  time steps. This means that the horizon length is equal to 200msec . The 

number of horizon time steps is kept the same to make a fair comparison with the Convex 

MPC. In general, the computational cost gets linearly increased with the number of horizon 

time steps. However, the time step size here was increased to have a longer horizon. The 

longer horizon, in comparison with the Convex MPC horizon, is necessary because the 

manipulator must cover a longer distance in the state space to reach the goal state. Longer 

horizons could be achieved but only to some extent. As was also mentioned in chapter 3.2.1, 

very long horizons are not feasible in DDP due to numerical ill-conditioning that is caused by 

error accumulation in the backward pass. 

The time responses of the angular positions, the angular velocities and the torques of the 

joints of the manipulator are presented in Figure 3-28, Figure 3-29 and Figure 3-30. The 

responses are considerably fast as well since the steady state is reached in just 4sec . Also, 

not many oscillations are present in the responses. Finally, the hip actuator does reach the 

control effort saturation limits during the execution of the control law. This hip actuators control 

effort is saturated for approximately 0.5sec , without exceeding this limit. 

 

Figure 3-28. Time responses of the angular positions of the joints of the double pendulum. 



 

130/252 

 

Figure 3-29. Time responses of the angular velocities of the joints of the double pendulum. 

 

Figure 3-30. Time responses of the torques of the joints of the double pendulum. 

The distribution of all BOX-DDP MPC solve time is presented in Figure 3-31. The mean 

value of solve time is equal to 1.0msec  and the standard deviation of solve times is equal to 

0.52msec . The mean solve time is approximately three orders of magnitude higher than the 

one of Convex MPC. Also, the solve times are more dispersed around the mean value, when 

compared to Convex-MPC, which is justified by the higher standard deviation of the solve 

times. Consequently, the Convex-MPC controller is faster than the BOX-DDP one even 

though the problem that it solves has more decision variables than the BOX-DDP one. In BOX-

DDP only the control inputs are decision variables, while in Convex-MPC are both the states 

and control inputs.  
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Figure 3-31. Solve time distribution of BOX-DDP MPC. 

3.6.3 DIRTRAN MPC 

Afterwards, experiments conducted on the DIRTRAN MPC controller are presented. Here also 

the controller makes use of the nonlinear dynamics of the manipulator. The initial state is 

chosen so that it corresponds to the double pendulum downward position. To be more precise 

the initial angular positions of the joints are 1,0 rad = , 2,0 0.0rad =  and the initial angular 

velocities of the joints are 1,0 0.0rad/s = , 2,0 0.0rad/s = . The size of the constant integration 

time step that is utilized by the RK4 explicit integrator is 100msech= , which is equal to the one 

used in BOX-DDP MPC. However, the prediction horizon is divided into 10N =  time steps. 

This means that the horizon length is equal to 1sec . The number of time steps here was 

increased, in comparison to the BOX-DDP MPC, to achieve a more desirable response. To 

be more precise, when the number of time steps was smaller, the steady state error was 

significantly larger. In the previous two controllers, the state was integrated using RK4. This 

integration scheme is equivalent to utilizing piecewise cubic polynomials for the state 

interpolation. However, DIRTRAN utilizes piecewise linear polynomials for the state 

interpolation. This selection is not appropriate enough for the state trajectory of a highly 

nonlinear system. Therefore, the number of the horizon time steps has to be increased to 

compensate for the low order state interpolation scheme. 

The time responses of the angular positions, the angular velocities and the torques of the 

joints of the manipulator are presented in Figure 3-32, Figure 3-33 and Figure 3-34. The 

responses are considerably fast as well since the steady state is reached in just 4sec . Also, 

not many oscillations are present in the responses. Finally, the hip actuator does reach the 

control effort saturation limits during the execution of the control law. This hip actuators control 

effort is saturated for approximately 0.1sec , without exceeding this limit. This duration is 

smaller than the one in BOX-DDP MPC. 
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Figure 3-32. Time responses of the angular positions of the joints of the double pendulum. 

 

Figure 3-33. Time responses of the angular velocities of the joints of the double pendulum. 
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Figure 3-34. Time responses of the torques of the joints of the double pendulum. 

The distribution of all DIRTRAN MPC solve time is presented in Figure 3-35. The mean 

value of solve time is equal to 2.3msec  and the standard deviation of solve times is equal to 

1.1msec . The mean solve time is approximately two orders of magnitude lower than the one 

of BOX-DDP MPC. Also, the solve times are more dispersed around the mean value, when 

compared to BOX-DPP MPC ones, which is justified by the higher standard deviation of the 

solve times. Consequently, the BOX-DDP MPC controller is faster than the DIRTRAN DDP 

one, which was expected. 

 

Figure 3-35. Solve time distribution of DIRTRAN MPC. 
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3.6.4 DIRCOL MPC 

Finally, experiments conducted on the DIRCOL MPC controller are presented. Here also the 

controller makes use of the nonlinear dynamics of the manipulator. The initial state is chosen 

so that it corresponds to the double pendulum downward position. To be more precise the 

initial angular positions of the joints are 1,0 rad = , 2,0 0.0rad =  and the initial angular 

velocities of the joints are 1,0 0.0rad/s = , 2,0 0.0rad/s = . The size of the constant integration 

time step that is utilized by the RK4 explicit integrator is 100msech= , which is equal to the one 

used in DIRTRAN MPC. The prediction horizon is divided into 10N =  time steps. This means 

that the horizon length is equal to 1sec . The number of horizon time steps is kept the same to 

make a fair comparison with the DIRTRAN MPC. Fewer time steps, for instance 3N = , were 

also tested in experiments and provided satisfying results. The mean solve time was almost 

equal to that of DITRAN-MPC discussed previously. 

The time responses of the angular positions, the angular velocities and the torques of the 

joints of the manipulator are presented in Figure 3-36, Figure 3-37 and Figure 3-38. The 

responses are considerably fast as well since the steady state is reached in just 5sec . This 

settling time is slightly higher than the previous ones. Also, not many oscillations are present 

in the responses. Finally, the hip actuator does reach the control effort saturation limits during 

the execution of the control law. This hip actuators control effort is saturated for approximately 

0.1sec , without exceeding this limit. The duration of saturation is similar to the one in DIRTRAN 

MPC. 

 

Figure 3-36. Time responses of the angular positions of the joints of the double pendulum. 
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Figure 3-37. Time responses of the angular velocities of the joints of the double pendulum. 

 

Figure 3-38. Time responses of the torques of the joints of the double pendulum. 

The distribution of all DIRTRAN MPC solve time is presented in Figure 3-39. The mean 

value of solve time is equal to 4.3msec  and the standard deviation of solve times is equal to 

1.4msec . The mean solve time is approximately two orders of magnitude lower than the one 

of DIRTRAN MPC. Also, the solve times are almost equally dispersed around the mean value, 

as the DIRTRAN MPC ones. This is justified by the similar standard deviation of the solve 
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times that DIRTRAN and DIRCOL exhibit. Consequently, the DIRTAN MPC controller is faster 

than the DIRCOL DDP one, which was expected since fewer computations are performed in 

DIRTRAN while formulating the dynamical system constraints. Less computations are 

required for the computation of linear polynomials in comparison with cubic ones. 

 

Figure 3-39. Solve time distribution of DIRCOL MPC. 

3.7 Conclusion 

The above results of the experiments conducted in Gazebo simulator allow to draw the 

following conclusions about the controllers: 

• The Convex-MPC controller has the fastest convergence rate with solve times that 

exhibit small variation around the mean value. It also guarantees convergence to 

a global optimum. This attribute makes it ideal for online use on hardware. Also, it 

is numerically robust and can handle long horizons. Its primary downside is that it 

cannot handle nonlinear dynamics or other nonlinear constraints. They must be 

linearized to do so, in the case of QP-based MPC. 

• The BOX-DDP MPC controller has the second fastest convergence rate with the 

second small variation of solve times. It can make use of nonlinear dynamics, even 

full-body dynamics, and is the only controller that produces dynamically feasible 

trajectories, even before convergence. However, it may converge to any arbitrary 

local optimum. Also, it cannot handle long horizons, due to numerical ill-

conditioning. Finally, it cannot handle state constraints and input constraints that 

are not box constraints. 

• The DIRTRAN/DIRCOL MPC controllers can handle nonlinear dynamics and any 

arbitrary state and control input constraints. Also, they are particularly numerically 

robust and can handle long horizons. However, they may converge to any arbitrary 

local optimum. Also, they are the slowest option with the largest variation of solve 

times around the mean value. Additionally, in the case of real time applications, 
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reduced-order dynamics are more common with such methods, due to their 

inherently slow convergence rate. 

After taking all these conclusions into consideration, it becomes apparent that the Convex 

MPC controller is the most preferable choice for real time control applications and will be 

utilized for the control of ARGOS. 
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4 Optimal Control for Quadrupeds 

4.1 Dynamic models in Optimal Control 

The following dynamic models can be utilized in controllers of legged robots. These models 

are extensively analyzed in [104]. 

Rigid/Whole Body Dynamics (RBD/WBD) 

The assumption made in this model, as shown in Figure 4-1, is the following: 

• the robot is comprised of rigid bodies, that do not deform when forces/torques are 

applied to them.  

The Rigid Body Dynamics of the robot can be expressed in the following compact matrix form, 

which represents the joint space dynamic model: 

 ( ) ( ) ( ) ( ), T T+ + = +M q q c q q G q S τ J q f  (4-1) 

where ( )3 j
T nT T =   b jq q q  is the generalized coordinates vector, ( )3bq  is the 

floating base pose, jn
jq  are the joints angles and jn  is the number of joints. Also, 

( ) ( )6 6j jn n+  +
M  is the Joint Space Inertia matrix, 

6 jn+
c  are the Coriolis and centripetal 

terms, 
6 jn+

G  is the gravity term, 
( )3 6j jn n +

J  is the contact (geometric) Jacobian that that 

maps the external forces/torques to the generalized coordinate space, 3
1

l

l

T n
n

 =  f f f  

are the external forces/torques acting at the ln  end-effectors, 6j j j

T
T

n n n 
 =
 

S 0 I  is the 

selection matrix that maps input forces/torques to joints and jn
τ  are the input 

forces/torques. 

The inputs to this system are the motor torques and the contact forces, but only motor 

torques are control inputs and thus decision variables of the optimization problem. This allows 

to consider torque limits during the optimization, but the contact forces have to be modeled as 

described in chapter 4.2. 

However, full-body dynamic models for legged robots are very high-dimensional and 

complex. Also, TO problems (i.e., DDP) scale poorly (cubically) with the state dimension n , 

and cubically with the control input dimension m . The combined complexity of such TO 

problems is ( )( )3
O N n m+  [152], where N  is the optimization horizon. Thus, to make these 

problems more tractable, reduced-order dynamic models are used extensively in practice. In 

such models the state dimension is smaller. Reducing the state dimension by half would result 

in almost an order of magnitude reduction to the computational cost of the optimization 

problem. These reduced-order models are presented in this chapter. 
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Figure 4-1. Whole Body Dynamics Model [104]. 

Single Rigid Body Dynamics (SRBD) 

The assumptions made in this model, as shown in Figure 4-2, additionally to the one made in 

the RBD model, are the following: 

• the momentum produced by the joint velocities is negligible. 

• the full-body inertia remains similar to the one in nominal joint position. 

Then, the SRBD of the robot, which are the Newton-Euler equations for a single rigid body, 

can be expressed in the following form: 

 

( ) ( )

1

1

l

l

n

i
i

n

i i
i

m m

d

dt

=

=

= +

  =  − 





p g f

I θ ω f p r

 (4-2) 

where 3p  is the CoM position, θ  is the base orientation, 3ω  is the angular velocity of 

the base, 3g  is the acceleration of gravity, m  is the combined mass of the base and 

the limbs of the robot, ( ) 3 3I θ  is the combined inertia of the base and of all limbs of the 

robot in nominal joint configuration, anchored at the CoM and expressed in coordinate axis 

parallel to the inertial frame, 3
i r  the position of the end-effector i  where the ground 

reaction force (GRF) 3
i f  acts. 

The dynamics are independent of the joint angles and are expressed through Cartesian 

coordinates and rotations in 3-dimensional space. However, the cross-product term introduces 

nonlinearity in the model. The inputs to this system are vertical and tangential contact forces. 

This means that the variety of constraints that are imposed on the 3-dimensional forces at 

each foot (unilateral and friction constraints) can be directly enforced to them. This is not the 

case with models like the Linear Inverted Pendulum Model (LIPM) where the input to the 

system is the CoP position. 
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Figure 4-2. Single Rigid Body Dynamics Model [104]. 

Linear Inverted Pendulum Model (LIPM) 

The assumptions made in this model, as shown in Figure 4-3, additionally to the ones made 

in the SRBD model, are the following: 

• The CoM height zp  is constant. 

• the base angular velocity ω  and angular acceleration ω  are zero. 

• the footholds height zr  is constant.  

Then, the LIPM can be expressed in the following form: 

 

( )

( )

,

,

x x c x

y y c y

g
p p r

h

g
p p r

h

= −

= −

 (4-3) 

where h  is the walking height of the robot, g  is the gravity acceleration in the direction of z 

axis and ,c xr , ,c yr  are the x and y position of the CoP. 

This model describes how the position of the CoP linearly affects the horizontal CoM 

acceleration. The position of the CoP is manipulated through the vertical contact forces z
if  

and the position of the feet ,i xr . By summarizing the 3-dimensional forces into the CoP, critical 

information about them is lost and many characteristics of legged locomotion can’t be 

modelled. Also, the LIPM assumptions restrict the range of motions that can be planned. More 

complex motions may require jumping or placing feet at different heights. Despite all that, it 

can be solved analytically and efficiently which makes it ideal for online motion planning. 

The summary of these dynamic models, along with the corresponding state and control 

input variables needed to express these dynamics in state-space form, are presented in Table 

4-1. It should be noted that only the position components are listed, although the state vector 

includes both position and velocity. 
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Figure 4-3. Linear Inverted Pendulum Model [104]. 

Table 4-1. State and input variables for state-space dynamic models for legged robots. 

Dynamic Model State variable Input Variable 

Rigid/Whole Body Dynamics (RBD/WBD) ,b jq q  , iτ f  

Single Rigid Body Dynamics (SRBD) , , ip θ r  if  

Linear Inverted Pendulum Model (LIPM) ,x yp p  , ,,c x c yr r  

4.2 Contact Simulation in Robotics in Optimal Control Problems 

Impacts and stiction cause velocity discontinuities, which result in infinite forces and 

accelerations. Thus modeling, simulation, control, and learning become more challenging 

tasks.  

When WBD are utilized by the controller, contact forces have to be modeled explicitly. 

The following techniques are used to simulate contact in robotics, both for simulation and 

control. These models are thoroughly described in [153], and shown in Figure 4-4, Figure 4-5, 

Figure 4-6. 

Soft/Compliant/Smooth contact model 

In smooth contact models, unilateral constraints (the forces exerted by the robot to the ground, 

can only push into the ground, and not pull on it) are replaced by a compliant model of contact, 

like a nonlinear spring-damper model. This continuous force law tries to smooth out all the 

discontinuities that are present during impacts. A smooth contact model is implemented in 

MuJoCo simulator [154]. To be more precise, MuJoCo utilizes a smooth contact model that 

converts the contact problem to a convex optimization problem by relaxing the 

complementarity constraint between colliding objects (no friction cone approximation).  
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Figure 4-4. Smooth contact model [105]. 

In general, smooth contact models are easy models to implement and the resulting rigid 

body dynamics will be smooth, thus differentiable, and invertible. As a result, they are 

convenient for use in OCPs and RL.  

The downside is that it can be hard to tune its parameters (stiffness, damping, etc). The 

collision outcome is highly sensitive to these values. If the model gets tuned to resemble a 

less compliant contact model, the ODEs become stiff, which must be avoided for real-time 

applications or for fast simulations. Additionally, these contact models tend to be inaccurate 

since they induce simulation artifacts. More specifically, non-zero contact forces may occur 

during non-contact phases (phantom forces), true stick-slip behavior cannot be captured due 

to creep and penetration always occurs between bodies and as a result only soft contacts can 

be modeled. 

Hybrid/Event based (driven) model 

In hybrid models, ODEs are integrated forward in time, using smooth integrators, while 

checking for contact events, then backtracking in time to find the exact moment the event 

occurs, by solving a root finding problem. An event finding algorithm for localizing the contact 

events is needed (also called guard or guard function) as well as a reset map (also called 

jump map) that is executed when the guard is met. The reset map is utilized to model the 

discontinuity. To be more precise, it re-initializes the state of the system exactly after the event 

(using restitution coefficient) and specifies the dynamics of the system that will be valid until 

the next event. Afterwards it proceeds with integrating the smooth dynamics until the next 

impact event occurs. This model is used extensively in controller design but not commonly 

used by simulators. 

 

Figure 4-5. Hybrid/Event Driven methods [105]. 

In general, these contact models can make use of the standard, adaptive step size 

integrators that exist to integrate the smooth dynamics of the system that are existent between 
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the impact events. Moreover, they capture qualitatively correct contact dynamics since the 

aforementioned artifacts of compliant contact models are not present. 

The downside is that they do not scale well with the number of potential contact 

configurations (modes) of a particular problem (combinatorial mode explosion). However, in 

the case of quadrupeds, where four legs with point contacts are existent, then the number of 

possible contact modes is finite, and this is not an issue. Consequently, these contact models 

are extremely popular for legged locomotion. Also, event driven methods suffer from Zeno, 

where an infinite number of events may occur in a finite amount of time, and consequently the 

integration must cease, and the reset map should be executed for every single event. Finally, 

these contact models are explicitly non-smooth, and thus are in general non-differentiable. 

However, techniques have been implemented to differentiate through these hybrid models, 

like the saltation matrix [52]. 

Time stepping model 

In time stepping models [87], a time-discretization of non-smooth dynamics is used, including 

complementarity conditions and impact rules. Then a constrained optimization problem has to 

be solved at every time step. The solution to the problem is the contact forces, over the time 

step, that satisfy interpenetration constraints at the next time step. Called time stepping 

because of moving forward, in time, in discrete time steps. 

 

Figure 4-6. Time stepping model [105]. 

An advantage of these models is that they scale well (linearly) with the number of possible 

contact configurations of the system. They also do not suffer from issues like Zeno, since they 

integrate impulses over small time intervals at a time. Additionally, they capture qualitatively 

correct contact physics, depending on the internal approximations they make. For instance, 

since interpenetration constraint is enforced on the solution of the optimization, hard contacts 

can be modeled (objects do not sink into the ground). The approximations they make are 

pertinent to relaxation of constraints enforced in contact modeling, like complementarity 

constraints, Coulomb’s friction cone constraint and maximum dissipation principle. 

A downside is that first-order (Euler) integration methods are usually used in such models. 

Consequently, to be accurate enough, the time step has to be small (~kHz). Also, it is the most 

computationally expensive model. They are extensively used in many simulators like PyBullet, 

Dart, ODE, that solve an LCP, but not in TO. The reason is that the dynamics, that are a 

constraint to the TO problem, are another optimization problem by themselves which is 

embedded in the constraints of the TO problem (bilevel optimization [155], [156]). Frameworks 

that attempt to combine TO with such contact models exist like [157] and [158], but are tested 

on single legged hoppers and not on quadruped robots. Finally, these contact models are 

explicitly non-smooth, and thus are in general non-differentiable. However, techniques have 

been implemented to calculate derivatives. 
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4.3 Convex MPC for Quadrupeds 

The control framework that was implemented in this research project consists of the following 

components: a state estimator, a gait scheduler, a swing leg controller, a stance leg controller, 

and a footstep planner. An overview of that control framework is presented in Figure 4-7. Each 

component will be thoroughly examined in the following sections. 

 

Figure 4-7. Control framework block diagram. 

4.3.1 State Estimator 

The state estimation for a quadruped is mainly performed using proprioceptive sensors. For 

instance, joint position encoders attached to each leg joint can be utilized to provide the joint 

angles measurement. Moreover, an estimate of the joint angular velocity can be acquired by 

numerically differentiating the joints angle measurements over the sensor sampling period.  

Additionally, an inertia measurement unit (IMU) is usually attached to the body of the 

quadruped. This sensor measures the linear acceleration and the angular rate of the body of 

the robot. They are essential for any state estimation algorithm that can be utilized, like the 

Extended Kalman Filter (EKF) that is extremely common [159]. Integrating the linear CoM 

acceleration reading provided by the IMU provides an estimate of the linear CoM velocity. 

Moreover, this result can be combined with data provided from the leg velocity kinematics and 

thus a better estimate can be retrieved [40]. In similar fashion, an estimate of the CoM position 

can be obtained by fusing the estimated CoM velocity with data provided by the leg position 

kinematics [40]. However, instead of this fusion, the position and orientation of the robot’s 

body can also be provided by a Motion Capture (MoCap) system. For outdoor applications 

MoCap is not a viable option and instead a vision-based algorithm (visual odometry) can be 

utilized instead for pose estimation. Finally, the robot’s position and velocity can also be 

estimated using the proprioceptive odometry approach presented in [160]. In this approach 

IMU sensors are attached just above the quadruped’s feet. The data provided by these IMUs 

as well as the IMU attached to the robot’s body and the data provided by the joint encoders 

were fused using an EKF to estimate the robot’s body and foot positions in the world frame. 

Finally, the controller needs to be aware of whether the feet of the robot are in contact 

with the ground or not. This can be accomplished by mounting force sensors at the feet of the 

quadruped. One other alternative employed by Unitree robots [161] is to read the data 

provided by pressure sensors that are installed inside a cavity in the rubber feet of the robot. 
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Changes in pressure indicate contact events. Finally, the method that MIT Cheetah [162] 

utilizes is measuring the motor current (back-EMF voltage) and filtering it appropriately to 

detect contact events [163]. In the case of ARGOS in the Gazebo simulation environment, the 

aforementioned quantities were provided to the controller either from ROS sensors or directly 

from the physics engine. More information about the implementation in Gazebo will be 

presented in chapter 4.4. 

4.3.2 Gait Scheduler 

A period phase-based, open loop gait scheduler is utilized in this work similar to the one in 

[33]. This gait scheduler considers the gait timing to be fixed. In legged locomotion mode 

switches occur when a leg enters, or leaves contact with the ground. Consequently, during a 

locomotion task the state of a leg constantly switches between stance and swing state. The 

controller needs to be aware of what the state of each leg should be according to the gait 

executed. The main purpose of the gait scheduler is to specify this foot contact mode timing 

for a pre-defined gait. 

This gait scheduler needs three parameters to specify a gait. These parameters are the 

relative phase offset of each leg ,offset is , the stance period stT  and the gait cycle period T . 

Another important parameter that should be defined is the duty factor   that is defined as the 

quotient of the stance period stT  with the total gait period T . 

 stT

T
 =  (4-4) 

It describes what fraction of the gait cycle is comprised of the stance. For periodic gaits, 

the duty factor is the same for all four legs. The phase scheduler defines a relative overall 

phase variable  0 1s  that cycles over the entire gait cycle. This variable quantifies the 

percentile completion of the entire gait cycle. It is described by the following linear function of 

time: 

  , 0 1
trajt

s s
T

=   (4-5) 

where 

 ( ),mod , ,traj offset i st swt t s T T T T T= +  = +  (4-6) 

is the current time progression of the gait cycle and swT  is the swing period. By using the 

modulo operator, the time progression of the gait becomes invariant of the number of 

precedented gait cycles. If the phase variable s  meets a particular threshold, then transition 

occurs between the leg states. This threshold is defined differently depending on the initial leg 

state. If a leg is in swing state at the beginning of the gait cycle and afterwards transitions in 

stance state, then this threshold is equal to 1 − . However, if a leg is in stance state at the 

beginning of the gait cycle and afterwards transitions in swing state, then this threshold is 

equal to  . If the phase variable is smaller than this threshold then no state transition occurs, 

while if it is larger than the threshold a state transition occurs. 

A phase offset ,offset is  is defined for every leg at the initialization of the gait. For one of the 

legs the value of ,offset is  is always equal to zero and its value for the remaining three legs is 

selected accordingly, depending on the gait. It must always lie in the interval  0 1 . The legs 

that are in stance/swing state simultaneously, have the same value assigned to the variable 
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,offset is . For example, in case of a trotting gait the legs that belong in the same diagonal pair 

will have the same value for ,offset is . Consequently, the variable ,offset is  needs to be included in 

the calculation of trajt  to account for the legs that have non-zero ,offset is . 

One other phase variable is also defined. This variable expresses the relative phase of a 

specific leg state (either stance or swing)  0 1s . Therefore, it reflects the leg’s phase 

within the current swing or stance cycle. This variable cycles over the entire stance or swing 

period of a given leg. This variable quantifies the percentile completion of either the stance or 

swing state for each leg. It is described by the following linear function of time: 

    , , , 0 1
j

j

t
s j st sw s

T
 =    (4-7) 

where ,st swt t  are the time durations that the leg spends in either stance or swing state if its 

current state is either stance or swing. The values of ,st swt t  are computed as follows: if a leg is 

in stance state at the beginning of the gait cycle and afterwards transitions in swing state, then 

their values are the following: 

 ,st traj sw traj stt t t t T= = −  (4-8) 

On the other hand, if a leg is in swing state at the beginning of the gait cycle and afterwards 

transitions in stance state, then their values are the following: 

 ,sw traj st traj swt t t t T= = −  (4-9) 

This normalized phase variable is utilized by the swing leg controller. 

4.3.3 Swing Leg Controller 

The swing leg controller swings the legs, that are in swing phase, from the current foothold 

position towards the next one. Given the desired foothold location that the leg is supposed to 

reach, the controller computes and tracks a swing foot trajectory. This trajectory is chosen to 

be an elliptical trajectory that has the following form: 

 ( ) ( ) ( )  cos sin , 0 1s s s s    = +  +  r c u v  (4-10) 

where 3c  is the center of the ellipse, 3, u v  are the vectors whose lengths are equal to 

the two ellipse half-axis lengths and  0 1s  represents a normalized phase variable. When 

the leg is in swing phase, this variable is equal to the quotient of the time that the leg is in 

swing phase swt  with the swing phase period swT . The values of the vectors , ,c u v  can be 

computed given the foot’s position at the beginning of the swing cycle 3
start p , the foot’s 

desired position at the end of the swing cycle 3
end p  and the foot clearance on the ground 

at the middle of the swing phase max  when the foot’s position will be 3
mid p . 

The values of the , ,x y z - coordinates of the points , ,start mid endp p p  are the following: 

 

Tx y z
start start start start

Tx y z
end end end end

Tx y z
mid mid mid mid

 =  

 =  

 =  

p p p p

p p p p

p p p p

 (4-11) 

where in case of locomotion on flat ground the following will be true: z z z
start end= =p p p . 

Consequently, the coordinates of the middle trajectory point will be the following: 
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( )

( )

( ) max max

1

2

1

2

1

2

x x x
mid start end

y y y
mid start end

z z z z
mid start end  

= +

= +

= + + = +

p p p

p p p

p p p p

 (4-12) 

Using the boundary conditions allows to extract the following expressions: 

 
( )

( )

0

1

start start

end end

=  + =

=  − =

r p c u p

r p c u p
 (4-13) 

The value of c  can be acquired by combining these two equations. The result will be the 

following: 

 ( )

( )

( )

1

2

1 1

2 2

x x
start end

y y
start end start end

z

 
+ 

 
 = + = +
 
 
 
  

p p

c p p p p

p

 (4-14) 

Given the c  vector, the computation of u  can be achieved using equation (4-13) which yields 

the following: 

 

( )

( )

1

2

1

2

0

x x
start end

y y
start start end

 
− 

 
 = − = −
 
 
 
  

p p

u p c p p  (4-15) 

Computing the value of the spline at the middle point yields the following expression: 

 
1

2
mid mid

 
=  + = 

 
r p c v p  (4-16) 

Given the c  vector, the computation of v  can be achieved using equation (4-16) which yields 

the following: 

 

max

0

0mid



 
 = − =  
  

v p c  (4-17) 

Consequently, the elliptical primitive along which the toe is supposed to move can be 

constructed given the vectors , ,c u v . This elliptical primitive should always lie inside the 

workspace of each leg. A point along this elliptical primitive is computed for a specified phase 

variable value.  

However, the control action is finally implemented in the joint space. Therefore, an inverse 

kinematics algorithm is executed to convert the desired foot position into desired joint angles. 

The control law utilized by the swing leg controller to compute joint torques for the thi  leg 
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3
,sw i τ  consists of a feed-forward 3

,
ff
sw i τ  and a feedback term 3

,
fb
sw i τ  of the following 

form: 

 , , ,
ff fb

sw i sw i sw i= +τ τ τ  (4-18) 

The feedforward term is based on the system dynamics and is given by the following 

expression: 

 ( ) ( ) ( ) ( ) ( )1
, ,ff

sw i i i i i i i i i i i i i i
−  = − + + τ M q J q r J q q c q q G q  (4-19) 

where 3,i i q q  are the joint angles and angular velocities of the thi  leg, 3 3
i

M  is the joint 

space inertia matrix of thi  leg, 3 3,i i
J J  are the thi  leg Jacobian matrix and its time 

derivative respectively, 3,i i c G  are the Coriolis and centripetal and gravity terms of the thi  

leg, respectively, and ir  is the reference workspace acceleration of the foot expressed in the 

body frame. During the locomotion tasks that were executed, the gravity terms had the highest 

contribution to the resulting torque and consequently could not be neglected. Also, unlike in 

the case of the stance leg controller, the leg inertia was not neglected. Its contribution is taken 

into consideration since it is included in the Inertia matrix despite the fact that it is insignificant 

compared to the inertia of the robot’s body. Finally, the feedback term is a PD controller 

described by the following expression: 

 ( ) ( ),
fb cmd cmd
sw i i i i i= − + −p dτ K q q K q q  (4-20) 

where 3 3, p dK K  are the diagonal positive definite proportional and derivative gain 

matrices and 3,cmd cmd
i i q q  are the commanded joint angles and angular velocities that are 

defined by the spline presented previously. A preferable alternative to the PD controller is a 

PV controller that has the following form: 

 ( ),
fb cmd
sw i i i i= − −p dτ K q q K q  (4-21) 

The main advantage of PV control over PD is that PV control does not add any zero terms to 

the closed loop system, which results in transient responses with fewer oscillations. 

The desired footstep locations, needed for the primitive design, are determined by the 

footstep planner. If an early contact event occurs for a particular leg, then it will cease to be 

controlled by the swing leg controller and the stance leg controller will take over. 

4.3.4 Stance Leg Controller 

The stance leg controller treats the entire robot as a single lumped mass rigid body and given 

the desired foothold positions, computes the GRFs of the feet that are in stance state. 

Therefore, the SRBD model is utilized in the stance leg controller design. The tradeoff between 

accuracy and computational cost is more favorable with this reduced-order model since it is 

more accurate than the LIPM and computationally less expensive than the RBD model. 

Another advantage of this model is that the GRFs are decision variables of the optimization 

problem and not the motor torques. Therefore, the GRFs will not have to be modeled explicitly 

using the contact models of the chapter 4.2. Additionally, the approximation of the WBD with 

the SRBD model is valid for a quadruped like ARGOS. It was utilized in the MIT Cheetah 3 

robot [162], whose design is similar to ARGOS. To be more precise, in such robots the 

mass/inertia of all four legs is approximately equal to only the 10%  of the total mass/inertia of 

the robot. Consequently, even fast leg motion does not contribute significantly to the total 
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momentum of the system and the leg position does not significantly alter the full-body inertia. 

Also, the leg actuators can move the swing legs very fast, compared to the body motion.  

SRBD Linearization and Discretization 

The SRBD can also be written in the following form: 

 

( )

1

1

l

l

n

i
i

n

i i
i

m m
=

=

= +

+  = 





p g f

Iω ω Iω r f

 (4-22) 

where ( )=I I θ  is the inertia tensor of the robot expressed in the world frame and 3
i r  is 

the position of the end-effector i  w.r.t. the CoM of the robot. The CoM position p , the 

acceleration of gravity   30 0 g= g  and the GRF of the thi  leg 3
i f  are written w.r.t. 

the world frame. The body frame  and the inertia (or world) frame  are defined in Figure 

4-8. Quantities expressed in the body coordinate system have a left subscript  while 

quantities expressed in the world coordinate system have no subscript. 

 

Figure 4-8. State and input vectors and coordinate systems for SRBD model [41]. 

However, in Convex MPC, the system dynamics must be linear time-varying (LTV) or linear 

time-invariant (LTI). The single lumped mass rigid body model is not linear w.r.t. the state and 

input variables, due to the cross-product term in the GRF moments, the quadratic cross 

product term in the attitude dynamics and the nonlinear rotation dynamics. Linear dynamics 

can be obtained if some additional approximations are made. 

The orientation of the body frame  w.r.t. the inertia frame  is expressed as a vector 

of Z-Y-X Euler angles   3T
  = θ  where   is the roll angle,   is the pitch angle and 

  is the yaw angle. These angles correspond to a sequence of rotations such that the 

transform from the body frame to the world frame ( )3R  can be expressed as: 

 ( ) ( ) ( )z y x  =R R R R  (4-23) 

The angular velocity in world coordinates ω  can be found from the rate of change of these 

angles 3
T

   =  θ  according to the following expression: 
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( ) ( ) ( )
( ) ( ) ( )

( )

cos cos sin 0

cos sin cos 0

sin 0 1

  

  



 − 
 

=  
 − 

ω θ  (4-24) 

If the robot is not pointed vertically w.r.t the world frame, meaning that ( )cos 0  , equation 

(4-24) can be inverted yielding the following one: 

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

cos cos sin cos 0

sin cos 0

cos tan sin tan 1

   

 

   

 
 

= − 
  

θ ω  (4-25) 

The first assumption is that the body roll and pitch angles are small. Equivalently, 

linearization about the roll and pitch axis is performed and not about the yaw axis. This 

assumption is reasonable for walking motions on relatively flat terrain. Given this assumption, 

equation (4-25) can be approximated as: 

 

( ) ( )
( ) ( ) ( )

cos sin 0

sin cos 0

0 0 1

T
z

 

  

 
 

 − = 
  

θ ω R ω  (4-26) 

Also, the inertia tensor of the robot in the world frame can be computed as follows: 

 T=I R IR  (4-27) 

where I  is the inertia tensor of the robot expressed in the body frame. Using the first 

assumption, equation (4-27) can be approximated as: 

 ( ) ( )T
z z =I R IR  (4-28) 

The second assumption is that the angular velocities of the body are small. Given this 

assumption the following approximation can be made:  

 ( ) ( )
d

dt
= +  Iω Iω ω Iω Iω  (4-29) 

where the term ( )ω Iω  has been neglected from equation (4-29) since it is small, if the 

angular velocities of the body are small, and its contribution to the dynamics of the robot is 

insignificant. That term expresses the effect of precession and nutation of the rotating body of 

the robot. This approximation is even more valid if the off-diagonal terms of the inertia tensor 

are also small. 

Given these two assumptions the SRBD of equation (4-22) can be written in the following 

matrix form: 

 

( )

 

3 3 3 13 3 3
1

3 3 3 13 3 3 3
1 1

1 3 13 3 3 3

3 3 3 3 3 3

l

l

T
z

n

n

d

dt

m m

 



− −

 

       
        
        = + +                               

0 0θ θ 00 0 R 0
f0 0p p 00 0 0 I

I r I rω ω 00 0 0 0
f

p p g0 0 0 0 I I

 (4-30) 

where 3I  is the 3 3  identity matrix, 30  is the 3 3  zero matrix, 3 10  is the 3 1  zero vector 

and   ( )3i 
r  is defined as the skew symmetric matrix such that   3,i i

=   r b r b b . 

However, the state and input matrices of the system of this form are dependent on the yaw 
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angle   and the footstep locations ir . If these quantities are predetermined and computed 

ahead of time, then the dynamics of the equation (4-30) can be converted into LTV dynamics. 

Consequently, the third and final assumption necessary, to complete the linearization of 

SRBD, is that the actual yaw angle   and footstep locations ir  are close to their commanded 

values cmd , cmd
ir  and therefore the reference is tracked almost perfectly. Now, the state and 

input matrices of the system are only time varying. 

Finally, the constant term of equation (4-30)  3 1 3 1 3 1

T

  0 0 0 g , has to be eliminated to 

achieve linear dynamics. This elimination is achieved by adding an additional gravity state to 

the dynamics. With the new state variable vector ( )   13T
t g= x θ p ω p  and the new 

input variable vector ( ) 3
1

l

l

T n
nt  =  u f f , the system continuous time dynamics can be 

rewritten in the following form: 

 ( ) ( ) ( ) ( ) ( )t t t t t= +x A x B u  (4-31) 

where 

 ( )

( )

( )

3 3 3 3 1

3 3 3 3 3 1
13 13

3 3 3 3 3 1

3 3 3 3

1 3 1 3 1 3 1 3

0 0 1

0

T cmd
z

T

t

 






   

 
 
 
 = 
 
 
 
  

0 0 R 0 0

0 0 0 I 0

A 0 0 0 0 0

0 0 0 0

0 0 0 0

 (4-32) 

and 

 ( )

3 3

3 3

1 1 13 3
1

3 3

1 3 1 3

l

l

cmd cmd n
nt

m m

− − 

 

 

 
 
 
   =     
 
 
  

0 0

0 0

I r I rB

I I

0 0

 (4-33) 

with 1 30  being equal to the 1 3  zero vector. Ergo, for this system, the number of the state 

variables is 13n= , and the number of the input variables is 3 im n= . Substituting 

( ) ( ) ( ) ( ), , ,t t t tx u A B  in (4-31) yields the following expression: 

( )

( )

3 33 3 3 3 1

3 3
3 3 3 3 3 1

1 1
13 3 3 3 3 1

3 33 3 3 3

1 3 1 31 3 1 3 1 3 1 3

0 0 1

0

l

T cmd
z

cmd cmd
n

T

d

dt
m m

g g

 


− −

  

    

     
     
     
        = +         
     
            

0 00 0 R 0 0θ θ
0 0p p0 0 0 I 0

I r I rω ω0 0 0 0 0

p p I I0 0 0 0

0 00 0 0 0

1

ln



 
 
 
  



f

f

 

 (4-34) 

The addition of this gravity state results in a LTV system that is no longer controllable but is 

still stabilizable. Finally, the continuous time dynamics of have to be discretized and written in 

the form 1k k k k k+ = +x A x B u . For simplicity, the discretization is conducted using an explicit 

first-order Euler integration integrator with zero-order hold on the inputs is applied such that: 

  ( ) ( ),k n k k kt h t h= + =A I A B B  (4-35) 
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where h  is the constant time step. By choosing Euler integration the accuracy of the 

integration gets reduced but also the computational cost of the integration gets reduced. This 

loss of accuracy is not of paramount importance since the model utilized in the MPC controller 

is already an approximation of WBD and not a high-fidelity model [31]. 

Cost Function 

The cost function that is used is quadratic, since Convex MPC is being implemented. This 

objective, in discrete time, is given by the following expression: 

 
( ) ( ) ( )

( ) ( )

1

0

,

, 0, 0

k k

N N

N T
T

k k k k k k
k

T

N N N k k

J J
−

=

= = − − +

+ − −  

 ref ref

ref ref

X U x x Q x x u R u

x x Q x x Q R

 (4-36) 

The reference trajectory 
krefx  is selected as follows: it contains only non-zero ,x y -

velocity, , ,x y z -position, yaw angle  , and yaw rate  . The robot operator selects ahead of 

time the desired ,x y -velocity and yaw rate  . The desired ,x y -position and yaw angle   

are determined by integrating the ,x y -velocity and yaw rate  , respectively. The remaining 

states, which are the desired roll angle  , pitch angle  , roll rate  , pitch rate   and z -

velocity, are always equal to zero. This reference trajectory can also be utilized for determining 

the commanded yaw angle k  and footstep locations ,i kr , that are necessary for the 

computation of the matrices ,k kA B  for every time step of the horizon. 

Force Constraints 

Also, constraints have to be imposed on the GRFs ,i kf , for the thi  leg, at the thk  horizon time 

step, to ensure that GRFs computed by the solver are physically feasible. When the thi  leg is 

in stance state, the normal component of the GRF acting on the leg ,
z
i kf , where the z  axis is 

aligned with the normal vector of the ground, should be limited by an upper bound ,max
z
if  and a 

lower bound ,min
z
if , so that: 

 ,min , ,max ,min, 0z z z z
i i k i i  f f f f  (4-37) 

This inequality constraint is linear (box constraint) and consequently fits in the requirements 

of a QP. The minimum value of the normal component of GRF ,min
z
if  should be non-negative 

(i.e., ,min 0z
i f ). It is physically feasible for the legs in stance state to only create contact forces 

that push into the ground and not pull on it. This constraint is also known as the unilateral 

constraint and the solution of the QP will obey it only if the lower bound of equation (4-37) is 

nonnegative. The maximum value of the normal component of GRF ,max
z
if  is needed to 

guarantee that the commanded torque does not exceed the actuation limits of the joint 

actuators. While the motor torques are dependent not only on the GRFs but also on the leg 

configurations, a sensible ,max
z
if  value can be calculated using the nominal leg configurations 

and the actuator torque limits. In general, the joint angles of the legs during a locomotion task 

are close to the joint angles in the nominal leg configuration. Consequently, this approximation 

will be valid for such tasks. 

Also, when the thi  leg is in stance state, the tangent component of the GRF acting on the 

leg should lie within the Coulomb friction cone. This constraint is described by the following 

relationship: 

 3
, , , ,2

0,n t n
i k i k i k i k   f f f f  (4-38) 
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where   is the friction coefficient, ,
t
i kf  denotes the tangential GRF component, ,

n
i kf  denotes 

the tangential GRF component. However, this inequality constraint is a second-order cone 

constraint and consequently does not fit in the requirements of a QP. It has to be linearized to 

meet the criteria for a QP. The linear approximation of the friction cone is a square pyramid 

[164].Using this approximation, the constraint of equation (4-38) can be written as follows: 

 3
, , , , , ,, , 0x z y z z

i k i k i k i k i k i k     f f f f f f  (4-39) 

where the z  axis is aligned with the normal vector of the ground and ,x y  are two axes 

orthogonal to each other that lie in the tangent plane at the contact point. Combining 

constraints (4-37) and (4-39) yields the following constraints that are enforced on the thi  leg 

when it is in stance state: 

 

,min , ,max

, , ,

, , ,

z z z
i i k i

z x z
i k i k i k

z y z
i k i k i k

 

 

 

−  

−  

f f f

f f f

f f f

 (4-40) 

All the inequality constraints of equation (4-40) can be encoded using a single inequality 

constraint. For a single leg i , at the horizon time step k , this inequality constraint has the 

following form: 

    , , , , , 1, , , 0, , 1i k i k i k i k li n k N   =  = −c C u c  (4-41) 

where the constraint matrix 5 3
,i k

C  and constraint bounds 5 1
, ,,i k i k

c c  are given by the 

following expressions: 
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00 1
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+   − 
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   + = = =−
     +    
           

C c c

f f

 (4-42) 

where 
,i kflagc  is a flag that is equal to zero, if the thi  leg, at the thk  horizon time step is not in 

contact with the ground, or equal to one, if the thi  leg, at the thk  horizon time step is in contact 

with the ground. For all four legs, at the horizon step k , the inequality constraint has the 

following form: 

  , 0, , 1k k k k k N   = −c C u c  (4-43) 

where the constraint matrix 5 3l ln n
k

C  and constraint bounds 5 1, ln
k k

c c  are given by the 

following expressions: 

 

1, 1, 1,

2, 2, 2,

, , ,

, ,

i i i

k k k

k k k

k k k

n k n k n k

     
     
     = = =
     
     
          

C 0 0 c c

0 C 0 c c
C c c

0 0 C c c

 (4-44) 

When the thi  leg is in swing phase, the GRF must be equal to zero since the foot of the 

leg does not interact with the ground. Ergo, these GRFs must obey the following relationship: 

 ,i k =f 0 (4-45) 
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The same result can be achieved if the upper and lower bounds ,max ,min,z z
i if f  of constraint 

equation (4-40) are set equal to zero. These legs are handled by the swing leg controller which 

guides their feet towards the next foothold position. However, as it was also mentioned before, 

the stance leg controller assumes that the swing leg controller will track the reference almost 

perfectly and land the foot almost exactly at the pre-specified foothold position. 

QP Formulation 

After the dynamics, the cost function and the constraints have been formulated, the Convex 

MPC problem can be arranged and has the form: 
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 (4-46) 

The optimization problem of (4-46) can be reformulated to reduce the size of the problem. This 

modification is based on the condensed QP formulation presented in [165]. To be more 

precise, the condensed formulation reduces the size of the problem by eliminating the state 

trajectory from the decision variables of the optimization problem. It also removes the 

dynamical system constraints from the constraints of the optimization problem. Instead, both 

the state trajectory and the dynamical system constraints get included in the cost function of 

the problem. The main difference with [165] is that here the dynamics are time-varying and 

not time-invariant and a non-zero state reference is present. This formulation gets adopted for 

the controller of the quadruped since the problem size is significantly larger than that of 

problems similar to the double pendulum.  

The state variables can be eliminated from the decision variables of the problem by 

expressing them as a function of the initial state and the input trajectory. This relationship 

becomes apparent with the following example where the states at the first three steps of the 

horizon 1 2 3, ,x x x  are being computed. 
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2 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1

3 2 2 2 2 2 1 0 0 1 0 0 1 1 2 2

2 1 0 0 2 1 0 0 2 1 1 2 2

= +

= + = + + = + +

= + = + + +

= + + +

x A x B u

x A x B u A A x B u B u A A x A B u B u

x A x B u A A A x A B u B u B u

A A A x A A B u A B u B u

 (4-47) 

Consequently, the state trajectory X  can be calculated, from the initial state 0x  and the input 

trajectory U , using the following expression:  

 0= +qp qpX A x B U  (4-48) 

where, if the system is LTV, the matrices ,qp qpA B  are the following: 



 

155/252 

 

0

1 0 13 13

2 3 1 0

1 2 1 0

0

1 0 1

2 3 2 1 0 2 3 3 2 1 2

1 2 2 1 0 1 2 3 2 1

,

...

...

... ...

... ...

n

N

N N

N N

n m n m n m

n m n m

n m n m

N N N N N n m

N N N N



− −

− −

  

 

 

− − − − − 

− − − −

 
 
 
 

=  
 
 
 
  

=

qp

qp

I

A

A A
A

A A A A

A A A A

0 0 0

B 0 0

A B B 0 0
B

A A A A B A A A A B B 0

A A A A B A A A A B

13 3

1 2 1

lN n N

N N N



− − −

 
 
 
 

 
 
 
 
  A B B

 (4-49) 

while, if the system is LTI, the matrices ,qp qpA B  are the following: 
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 (4-50) 

Given this expression for the state trajectory, the cost function can be rewritten as follows: 

 ( ) ( ) ( )0 0

T TJ J= = + − + − +qp qp ref qp qp qp ref qpU A x B U X Q A x B U X U R U  (4-51) 

where 
0 1
, ,

N

T
nN   ref ref ref refX x x x  is the state trajectory reference and ,qp qpQ R  are 

the following matrices: 
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0 R 0
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 (4-52) 

where   denotes the Kronecker product. The second equality in the expressions of ,qp qpQ R  

is valid only if  , 0, , 1k k N=  = −Q Q  and if  , 0, , 1k k N=  = −R R . With these 

modifications in action, the QP of (4-46) is reformulated into an inequality constrained QP and 

can be rewritten in the following form: 

 

1
min

2

s.t.

T T+

 

U
U HU h U

c CU c

 (4-53) 
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where the Hessian 3 3l ln N n NH  and the gradient 3 1ln Nh  of the cost function are the 

following: 

 ( )2 T= +qp qp qp qpH B Q B R  (4-54) 

 ( )02 T= −qp qp qp refh B Q A x X  (4-55) 

And the linear constraints matrix 5 3l ln N n NC  and the constraint bound vectors 5 1, ln Nc c  

are the following: 

 

00 0

11 1

11 1

, ,

NN N−− −

    
    
    = = =
    
    

    

cC 0 0 c

c0 C 0 c
C c c

c0 0 C c

 (4-56) 

The desired GRFs are then the first 3 ln  elements of U . Given these GRFs, the joint motor 

torques for the thi  leg 3
,st i τ , are computed using the following expression: 

 ( ) ( ) ( ), , T
st i i i i i i i i i= + −τ c q q G q J q f  (4-57) 

where 3,i i q q  are the joint angles and angular velocities of the thi  leg, 3 3
i

J  is the foot 

Jacobian of the thi  leg and 3,i i c G  are the Coriolis and centripetal and gravity terms of the 

thi  leg. 

4.3.5 Footstep Planner 

Both the swing and stance leg controllers need to be aware of the commanded foothold 

locations. Since foothold positions are not part of the decision variables of the MPC, they have 

to be pre-specified. This selection is accomplished using some standard heuristics. To be 

more precise, the reference foothold position of the thi  leg on the ground plane cmd
ir  is 

computed from the corresponding hip location projected on the ground plane ,ihp  using a 

linear combination of the Raibert heuristic [11], a capture-point-based velocity feedback term 

[26] and a centrifugal term [33], [67]. 

 ( ) ( )0 0
, , , , ,

2
cmd cmd cmd cmdst

i i i i i i

T z z

g
= + + − + h h h h hr p p p p p ω

g
 (4-58) 

where 0z  is the nominal locomotion height, stT  is the stance period, ,ihp  is the thi  leg hip 

(linear) velocity, ,
cmd

ihp  is the desired thi  leg hip (linear) velocity and cmdω  is the desired angular 

velocity. The velocity feedback and centrifugal terms are associated with velocity and angular 

velocity tracking [33]. They are included in the footstep planner so that undesired moments 

produced during agile locomotion tasks by the GRFs are counteracted [67]. 

4.4 Implementation of Convex (QP-based) MPC 

First of all, some important information and details about the software, routines and algorithms 

that were utilized by the Convex MPC controllers have to be presented. A list of all the function 

declarations is located in Appendix B. 

First and foremost, this entire project consists of four ROS packages. The tree structure 

of the project is depicted in Figure 4-9. The first one is plugins package which is responsible 

for the interaction of the controllers with the simulation model and environment. The second 
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one is argos_mpc_control that contains the implementation of the Convex MPC controller. 

The tree structure of the argos_mpc_control pakage is depicted in Figure 4-10. The third one 

is argos_mpc_description that contains the URDF description of the model that is simulated. 

The fourth and final package is argos_mpc_gazebo that contains a .launch file that spawns 

the model in the simulation environment and a .world file that contains the description of the 

environment in which the model is being simulated. The entire project can be found at the 

CSL-Legged Team bitbucket repository3. 

 

 

Figure 4-9. Project tree structure of argos_mpc. 

 
3 https://bitbucket.org/csl_legged/argos_mpc/src/main/ 

https://bitbucket.org/csl_legged/argos_mpc/src/main/
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Figure 4-10. Directory tree of argos_mpc_control package. 
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The controller implemented in this work requires algorithms that conduct tasks such as 

coordinate frame transformations, forward kinematics and forward dynamics and the 

computation of quantities like the spatial Jacobians of specific frames of the robot and the joint 

space inertia matrix. These tasks and computations are performed using custom functions 

that belong to the custom class Robot. These functions rely mainly on algorithms that are 

provided by the Pinocchio library. The header file robot.h contains the definition of the class, 

that includes declaration of its member variables and functions. The implementation of the 

class is located in the robot.cpp file. 

To do so, a Model and a Data object that correspond to the Gazebo model of ARGOS 

must be generated, given its .urdf description. This generation is conducted in Pinocchio as 

shown in the following code snippet, using the function BuildPinocchioModel(.). Since 

quadruped robots are floating base systems, it is important to connect the body of the 

quadruped (base) to the world frame using a joint that allows the base to perform translations 

along the three axes of the world frame and rotations about these axes as well. This joint is a 

composite joint that consists of a JointModelTranslation(.) joint and a 

JointModelSphericalZYX(.) joint. The first one allows the translation of the base along the 

, ,x y z  axes and the second one allows the rotation of the base about these axes. The 

pinocchio function addJoint(.) allows the user to add a joint, given its ( )3  placement 

relative to its predecessor. Furthermore, this function also adds frames to the centers of the 

robot’s toes, which are considered as its end-effectors where the GRFs act. The pinocchio 

function addFrame(.) allows the user to add a frame, given its ( )3  placement (relative 

position and orientation) w.r.t. the parent joint frame. These frames are called operational 

frames and are necessary for the computation of the contact Jacobians that map the GRFs to 

motor torques. Finally, this function also calculates the total mass of the robot and the total 

moment of inertia of the robot in the nominal joint position. Necessary for this calculation is 

the Pinocchio function ccrba(.). 

 
void Robot::BuildPinocchioModel(Eigen::VectorXd& q) 

{ 

  // You should change here to set up your own URDF file or just pass it 

  // as an argument of this example. 

  std::string urdf_package_filename = 

      ros::package::getPath("argos_mpc_description"); 

  std::string urdf_filename = 

      urdf_package_filename + std::string("/urdf/argos.urdf"); 

 
  std::cout << "Opening file: " << urdf_filename << std::endl; 

 
  SE3 config1 = SE3::Identity(); //(0, 0, 0); 

  SE3 config2 = SE3::Identity(); //(0, 0, 0); 

 
  JointModelComposite root_joint; 

  root_joint.addJoint(pinocchio::JointModelTranslation(), config1); 

  root_joint.addJoint(pinocchio::JointModelSphericalZYX(), config2); 

  root_joint.setIndexes(0, 0, 0); 

 
  std::cout << "root_joint nv: " << root_joint.nv() << std::endl; 

  std::cout << "root_joint nq: " << root_joint.nq() << std::endl; 

  std::cout << "root_joint njoints: " << root_joint.njoints << std::endl; 

 
  pinocchio::urdf::buildModel(urdf_filename, root_joint, model); 

  std::cout << "model name: " << model.name << std::endl; 
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  std::cout << "model nv: " << model.nv << std::endl; 

  std::cout << "model nq: " << model.nq << std::endl; 

 
  // Set model gravity 

  model.gravity.linear() << 0.0, 0.0, -kGravity; 

 
  /////////////////////////////////////////////////////////////////////// 

  /////////////////////////////////////////////////////////////////////// 

 
  // Add frame at leg toes 

 
  Eigen::Vector3d trans; 

  trans(0) = 0.0; 

  trans(1) = -0.107521; 

  trans(2) = -0.578551; 

  Eigen::Matrix3d rot; 

  rot = Eigen::Matrix3d::Identity(); 

 
  SE3 framePlacement; 

  framePlacement.translation_impl(trans); 

  framePlacement.rotation_impl(rot); 

 
  std::cout << "Here is framePlacement:\n" 

            << framePlacement << std::endl; 

 
  /////////////////////////////////////////////////////////////////////// 

 
  Model::Index parent_idx = model.existJointName("FL_joint_knee") ? 

                                model.getJointId("FL_joint_knee") : 

                                (Model::Index)(model.njoints - 1); 

  std::cout << "Here is parent_idx:\n" << parent_idx << std::endl; 

 
  Model::Index previous_frame_idx = model.getFrameId("FL_joint_knee"); 

  std::cout << "Here is previous_frame_idx :\n" 

            << previous_frame_idx << std::endl; 

 
  const std::string& frame_name_FL = 

      std::string(model.names[parent_idx] + "_foot_frame"); 

  std::cout << "Here is frame_name:\n" << frame_name_FL << std::endl; 

 
  model.addFrame(Frame(frame_name_FL, parent_idx, previous_frame_idx, 

                       framePlacement, OP_FRAME)); 

 
  Model::Index frame_idx = model.getFrameId(frame_name_FL); 

  std::cout << "Here is frame_idx :\n" << frame_idx << std::endl; 

 
  /////////////////////////////////////////////////////////////////////// 

 
  parent_idx = model.existJointName("FR_joint_knee") ? 

                   model.getJointId("FR_joint_knee") : 

                   (Model::Index)(model.njoints - 1); 

  previous_frame_idx = model.getFrameId("FR_joint_knee"); 

 
  const std::string& frame_name_FR = 

      std::string(model.names[parent_idx] + "_foot_frame"); 

  std::cout << "Here is frame_name:\n" << frame_name_FR << std::endl; 

 
  model.addFrame(Frame(frame_name_FR, parent_idx, previous_frame_idx, 

                       framePlacement, OP_FRAME)); 
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  /////////////////////////////////////////////////////////////////////// 

 
  parent_idx = model.existJointName("HL_joint_knee") ? 

                   model.getJointId("HL_joint_knee") : 

                   (Model::Index)(model.njoints - 1); 

  previous_frame_idx = model.getFrameId("HL_joint_knee"); 

 
  const std::string& frame_name_HL = 

      std::string(model.names[parent_idx] + "_foot_frame"); 

  std::cout << "Here is frame_name:\n" << frame_name_HL << std::endl; 

 
  model.addFrame(Frame(frame_name_HL, parent_idx, previous_frame_idx, 

                       framePlacement, OP_FRAME)); 

 
  /////////////////////////////////////////////////////////////////////// 

   

  parent_idx = model.existJointName("HR_joint_knee") ? 

                   model.getJointId("HR_joint_knee") : 

                   (Model::Index)(model.njoints - 1); 

  previous_frame_idx = model.getFrameId("HR_joint_knee"); 

 
  const std::string& frame_name_HR = 

      std::string(model.names[parent_idx] + "_foot_frame"); 

  std::cout << "Here is frame_name:\n" << frame_name_HR << std::endl; 

 
  model.addFrame(Frame(frame_name_HR, parent_idx, previous_frame_idx, 

                       framePlacement, OP_FRAME)); 

 
  /////////////////////////////////////////////////////////////////////// 

 
  data = Data(model); 

  Eigen::VectorXd v = Eigen::VectorXd::Zero(model.nv); 

 
  pinocchio::ccrba(model, data, q, v); 

 
  robot_mass = data.Ig.mass(); 

  robot_inertia = data.Ig.inertia(); 

 
  std::cout << "Here is mass :\n" << robot_mass << std::endl; 

  std::cout << "Here is inertia:\n" << robot_inertia << std::endl; 

} 

  

Additionally, the positions of the abduction and hip joints of the robot relative to the body 

frame, w.r.t the body frame, must also be computed. These computations are performed using 

the functions HipPositionsInBaseFrame() and AbdPositionsInBaseFrame() that are 

illustrated in the following two code snippets. The joint frame ( )3  placement w.r.t. the world 

frame is equal to data.oMi[_index], where _index is the index of that particular joint, while 

the ( )3  placement of an operational frame w.r.t. the world frame is equal to 

data.oMf[_index], where _index is the index of that particular frame. The index of a particular 

joint can be extracted by calling the Pinocchio function getJointId(.) while the index of a 

particular frame can be extracted by calling the Pinocchio function getFrameId(.). 

 
void Robot::AbdPositionsInBaseFrame() 

{ 

  Eigen::VectorXd q = Eigen::VectorXd::Zero(com_dof + num_motors); 

  forwardKinematics(model, data, q); 
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  Model::Index parent_idx = model.existJointName("root_joint") ? 

                                model.getJointId("root_joint") : 

                             (Model::Index)(model.njoints - 1); 

  Model::Index parent_idx_FL = model.existJointName("FL_joint_abd") ? 

                                   model.getJointId("FL_joint_abd") : 

                                  (Model::Index)(model.njoints - 1); 

 

  Eigen::Vector3d trans_B = data.oMi[parent_idx].translation(); 

  Eigen::Vector3d trans_FL = data.oMi[parent_idx_FL].translation(); 

 

  abd_positions_base_frame.col(0) = 

      data.oMi[parent_idx].rotation().transpose() * (trans_FL - trans_B); 

 

  /////////////////////////////////////////////////////////////////////// 

 

  Model::Index parent_idx_FR = model.existJointName("FR_joint_abd") ? 

                                   model.getJointId("FR_joint_abd") : 

                                  (Model::Index)(model.njoints - 1); 

 

  Eigen::Vector3d trans_FR = data.oMi[parent_idx_FR].translation(); 

 

  abd_positions_base_frame.col(1) = 

      data.oMi[parent_idx].rotation().transpose() * (trans_FR - trans_B); 

 

  /////////////////////////////////////////////////////////////////////// 

 

  Model::Index parent_idx_HL = model.existJointName("HL_joint_abd") ? 

                                   model.getJointId("HL_joint_abd") : 

                                  (Model::Index)(model.njoints - 1); 

 

  Eigen::Vector3d trans_HL = data.oMi[parent_idx_HL].translation(); 

 

  abd_positions_base_frame.col(2) = 

      data.oMi[parent_idx].rotation().transpose() * (trans_HL - trans_B); 

 

  /////////////////////////////////////////////////////////////////////// 

 

  Model::Index parent_idx_HR = model.existJointName("HR_joint_abd") ? 

                                   model.getJointId("HR_joint_abd") : 

                                  (Model::Index)(model.njoints - 1); 

 

  Eigen::Vector3d trans_HR = data.oMi[parent_idx_HR].translation(); 

 

  abd_positions_base_frame.col(3) = 

      data.oMi[parent_idx].rotation().transpose() * (trans_HR - trans_B); 

 

  std::cout << "Here is abd_positions_base_frame:\n" 

            << abd_positions_base_frame << std::endl; 

} 

 
void Robot::HipPositionsInBaseFrame() 

{ 

  Eigen::VectorXd q = Eigen::VectorXd::Zero(com_dof + num_motors); 

  forwardKinematics(model, data, q); 

 

  Model::Index parent_idx = model.existJointName("root_joint") ? 

                                model.getJointId("root_joint") : 

                             (Model::Index)(model.njoints - 1); 

  Model::Index parent_idx_FL = model.existJointName("FL_joint_hip") ? 

                                   model.getJointId("FL_joint_hip") : 

                                  (Model::Index)(model.njoints - 1); 



 

163/252 

 

  Eigen::Vector3d trans_B = data.oMi[parent_idx].translation(); 

  Eigen::Vector3d trans_FL = data.oMi[parent_idx_FL].translation(); 

 

  hip_positions_base_frame.col(0) = 

      data.oMi[parent_idx].rotation().transpose() * (trans_FL - trans_B); 

 

  /////////////////////////////////////////////////////////////////////// 

 

  Model::Index parent_idx_FR = model.existJointName("FR_joint_hip") ? 

                                   model.getJointId("FR_joint_hip") : 

                                  (Model::Index)(model.njoints - 1); 

 

  Eigen::Vector3d trans_FR = data.oMi[parent_idx_FR].translation(); 

 

  hip_positions_base_frame.col(1) = 

      data.oMi[parent_idx].rotation().transpose() * (trans_FR - trans_B); 

 

  /////////////////////////////////////////////////////////////////////// 

 

  Model::Index parent_idx_HL = model.existJointName("HL_joint_hip") ? 

                                   model.getJointId("HL_joint_hip") : 

                                  (Model::Index)(model.njoints - 1); 

 

  Eigen::Vector3d trans_HL = data.oMi[parent_idx_HL].translation(); 

 

  hip_positions_base_frame.col(2) = 

      data.oMi[parent_idx].rotation().transpose() * (trans_HL - trans_B); 

 

  /////////////////////////////////////////////////////////////////////// 

 

  Model::Index parent_idx_HR = model.existJointName("HR_joint_hip") ? 

                                   model.getJointId("HR_joint_hip") : 

                                  (Model::Index)(model.njoints - 1); 

 

  Eigen::Vector3d trans_HR = data.oMi[parent_idx_HR].translation(); 

 

  hip_positions_base_frame.col(3) = 

      data.oMi[parent_idx].rotation().transpose() * (trans_HR - trans_B); 

 

  std::cout << "Here is hip_positions_base_frame:\n" 

            << hip_positions_base_frame << std::endl; 

} 

 

Additionally, the Joint Space Inertia matrix of each leg of the quadruped is required by the 

swing leg controller for the commanded torque computation. It is computed using a rigid body 

dynamics algorithm named Composite Rigid Body Algorithm (CRBA) [143]. In Pinocchio the 

upper triangular part of the joint space inertia matrix is computed by calling the function crba(.) 

and the result is accessible through data.M. This computation is executed by calling the 

ComputeInertiaMatrix(.) function that is implemented as shown in the following code snippet: 

 
void Robot::ComputeInertiaMatrix(Eigen::VectorXd& q, 

                                 Eigen::MatrixXd& mass_matrix) 

{ 

  // Joint Space Inertia Matrix 

  crba(model, data, q); 

 

  // data.M.triangularView<Eigen::StrictlyLower>() = 

  //     data.M.transpose().triangularView<Eigen::StrictlyLower>(); 



 

164/252 

  // MatrixXd M_ = data.M; 

 

  mass_matrix = data.M; 

} 

 

Additionally, the sum of the Coriolis, centrifugal and gravitational terms of each leg of the 

quadruped is required by the stance and swing leg controller for the commanded torque 

computation. These terms are also called non-linear effects or bias terms. In Pinocchio the 

non-linear effects are computed using the function nonLinearEffects(.). This computation is 

executed by calling the ComputeBiasTerms(.) function that is implemented as shown in the 

following code snippet: 

 
void Robot::ComputeBiasTerms(Eigen::VectorXd& q, Eigen::VectorXd& q_dot, 

                             Eigen::VectorXd& bias_terms) 

{ 

  // bias_terms = computeGeneralizedGravity(model, data, q); 

  bias_terms = nonLinearEffects(model, data, q, q_dot); 

} 

 

Additionally, the Jacobian matrix of the operational frame of each leg’s toe is required by 

the stance leg controller for mapping the computed GRFs to motor torques. This computation 

is performed using the function ComputeFootJacobian(.) that is illustrated in the following 

code snippet. These Jacobians are computed w.r.t. the robot’s body frame. Firstly, the forward 

kinematics of the model must be computed given the current configuration of the model, using 

the Pinocchio function forwardkinematics(.). In this way the joint placements get updated 

according to the current joint configuration. Then, the placement of each frame contained in 

the model should also be updated, according to the current joint configuration. This is achieved 

by calling the Pinocchio function updateFramePlacements(.). Afterwards the Jacobians of 

the frames of the model can be computed by calling the Pinocchio function 

computeJointJacobians(.). Then, the Jacobian of a specific end-effector can be extracted 

by calling the function getFrameJacobian(.), where the index of the frame has to be specified 

as well as the reference frame w.r.t. which the Jacobian is computed. In this function, it is 

calculated w.r.t. the world frame. This choice is signified by setting the reference frame 

argument to LOCAL_WORLD_ALIGNED. Then it gets transformed so that it is expressed 

w.r.t. the robot’s body frame. 

 
void Robot::ComputeFootJacobian(Eigen::VectorXd& q, int& leg_id, 

                                Eigen::MatrixXd& Jac) 

{ 

  // Computes the Jacobian matrix for the given leg 

 

  forwardKinematics(model, data, q); 

  updateFramePlacements(model, data); 

 

  Matrix3d R = data.oMi[1].rotation(); 

  // R = Eigen::Matrix3d::Identity(); 

 

  pinocchio::computeJointJacobians(model, data, q); 

 

  /////////////////////////////////////////////////////////////////////// 

 

  if (leg_id == FL) 

  { 
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    Model::Index frame_idx = 

    model.getFrameId("FL_joint_knee_foot_frame"); 

    // std::cout << "Here is frame_idx :\n" << frame_idx << std::endl; 

 

    MatrixXd Jac4_loc(6, model.nv); 

    Jac4_loc.fill(0); 

    getFrameJacobian(model, data, frame_idx, LOCAL_WORLD_ALIGNED, 

                     Jac4_loc); 

 

    VectorXd Jcol3(6); 

    VectorXd Jcol5(6); 

 

    Jcol3 = Jac4_loc.col(3); 

    Jcol5 = Jac4_loc.col(5); 

 

    Jac4_loc.col(3) = Jcol5; 

    Jac4_loc.col(5) = Jcol3; 

 

    // std::cout << "Here is Jac4_loc:\n" << Jac4_loc << std::endl; 

 

    MatrixXd Jac4(6, model.nv); 

    Jac4.fill(0); 

 

    Jac4.block(0, 6, 3, 3) = R.transpose() * Jac4_loc.block(0, 6, 3, 3); 

 

    // std::cout << "Here is Jac4:\n" << Jac4 << std::endl; 

 

    Jac = Jac4.block(0, 0, 3, Jac4.cols()); 

 

    // std::cout << "Here is Jac:\n" << Jac << std::endl; 

  } 

 

  /////////////////////////////////////////////////////////////////////// 

 

  else if (leg_id == FR) 

  { 

    Model::Index frame_idx = 

    model.getFrameId("FR_joint_knee_foot_frame"); 

    // std::cout << "Here is frame_idx :\n" << frame_idx << std::endl; 

 

    MatrixXd Jac7_loc(6, model.nv); 

    Jac7_loc.fill(0); 

    getFrameJacobian(model, data, frame_idx, LOCAL_WORLD_ALIGNED, 

                     Jac7_loc); 

 

    VectorXd Jcol3(6); 

    VectorXd Jcol5(6); 

 

    Jcol3 = Jac7_loc.col(3); 

    Jcol5 = Jac7_loc.col(5); 

 

    Jac7_loc.col(3) = Jcol5; 

    Jac7_loc.col(5) = Jcol3; 

 

    // std::cout << "Here is Jac7_loc:\n" << Jac7_loc << std::endl; 

 

    MatrixXd Jac7(6, model.nv); 

    Jac7.fill(0); 

 

    Jac7.block(0, 9, 3, 3) = R.transpose() * Jac7_loc.block(0, 9, 3, 3); 
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    // std::cout << "Here is Jac7:\n" << Jac7 << std::endl; 

 

    Jac = Jac7.block(0, 0, 3, Jac7.cols()); 

 

    // std::cout << "Here is Jac:\n" << Jac << std::endl; 

  } 

 

  /////////////////////////////////////////////////////////////////////// 

 

  else if (leg_id == HL) 

  { 

    Model::Index frame_idx = 

    model.getFrameId("HL_joint_knee_foot_frame"); 

    // std::cout << "Here is frame_idx :\n" << frame_idx << std::endl; 

 

    MatrixXd Jac10_loc(6, model.nv); 

    Jac10_loc.fill(0); 

    getFrameJacobian(model, data, frame_idx, LOCAL_WORLD_ALIGNED, 

                     Jac10_loc); 

 

    VectorXd Jcol3(6); 

    VectorXd Jcol5(6); 

 

    Jcol3 = Jac10_loc.col(3); 

    Jcol5 = Jac10_loc.col(5); 

 

    Jac10_loc.col(3) = Jcol5; 

    Jac10_loc.col(5) = Jcol3; 

 

    // std::cout << "Here is Jac10_loc:\n" << Jac10_loc << std::endl; 

 

    MatrixXd Jac10(6, model.nv); 

    Jac10.fill(0); 

 

    Jac10.block(0, 12, 3, 3) = 

        R.transpose() * Jac10_loc.block(0, 12, 3, 3); 

 

    // std::cout << "Here is Jac10:\n" << Jac10 << std::endl; 

 

    Jac = Jac10.block(0, 0, 3, Jac10.cols()); 

 

    // std::cout << "Here is Jac:\n" << Jac << std::endl; 

  } 

 

  /////////////////////////////////////////////////////////////////////// 

 

  else if (leg_id == HR) 

  { 

    Model::Index frame_idx = 

    model.getFrameId("HR_joint_knee_foot_frame"); 

    // std::cout << "Here is frame_idx :\n" << frame_idx << std::endl; 

 

    MatrixXd Jac13_loc(6, model.nv); 

    Jac13_loc.fill(0); 

    getFrameJacobian(model, data, frame_idx, LOCAL_WORLD_ALIGNED, 

                     Jac13_loc); 

 

    VectorXd Jcol3(6); 

    VectorXd Jcol5(6); 

 

    Jcol3 = Jac13_loc.col(3); 
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    Jcol5 = Jac13_loc.col(5); 

 

    Jac13_loc.col(3) = Jcol5; 

    Jac13_loc.col(5) = Jcol3; 

 

    // std::cout << "Here is Jac13_loc:\n" << Jac13_loc << std::endl; 

 

    MatrixXd Jac13(6, model.nv); 

    Jac13.fill(0); 

 

    Jac13.block(0, 15, 3, 3) = 

        R.transpose() * Jac13_loc.block(0, 15, 3, 3); 

 

    // std::cout << "Here is Jac13:\n" << Jac13 << std::endl; 

 

    Jac = Jac13.block(0, 0, 3, Jac13.cols()); 

 

    // std::cout << "Here is Jac:\n" << Jac << std::endl; 

  } 

} 

 

Additionally, the time derivative of the Jacobian matrix of the operational frame of each 

leg’s toe is required by the swing leg controller for the commanded torque computation. This 

computation is performed using the function ComputeFootJacobianTimeVariation(.) that is 

illustrated in the following code snippet. The same operations that are performed in the 

function ComputeFootJacobian(.) are also performed here but instead of the Pinocchio 

functions computeJointJacobians(.) and getFrameJacobian(.) the functions 

computeJointJacobiansTimeVariation(.) and getFrameJacobianTimeVariation(.) are 

utilized. These functions compute instead the respective Jacobian variations with respect to 

time. 

 
void Robot::ComputeFootJacobianTimeVariation(Eigen::VectorXd& q, 

                                             Eigen::VectorXd& q_dot, 

                                             int& leg_id, 

                                             Eigen::MatrixXd& Jac_dot) 

{ 

  // Computes the Jacobian matrix for the given leg 

 

  forwardKinematics(model, data, q); 

  updateFramePlacements(model, data); 

 

  Matrix3d R = data.oMi[1].rotation(); 

  // R = Eigen::Matrix3d::Identity(); 

 

  pinocchio::computeJointJacobiansTimeVariation(model, data, q, q_dot); 

 

  /////////////////////////////////////////////////////////////////////// 

 

  if (leg_id == FL) 

  { 

    Model::Index frame_idx = 

        model.getFrameId("FL_joint_knee_foot_frame"); 

    // std::cout << "Here is frame_idx :\n" << frame_idx << std::endl; 

 

    MatrixXd Jac4_loc_dot(6, model.nv); 

    Jac4_loc_dot.fill(0); 

    getFrameJacobianTimeVariation(model, data, frame_idx, 

                                  LOCAL_WORLD_ALIGNED, Jac4_loc_dot); 
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    VectorXd Jcol3(6); 

    VectorXd Jcol5(6); 

 

    Jcol3 = Jac4_loc_dot.col(3); 

    Jcol5 = Jac4_loc_dot.col(5); 

 

    Jac4_loc_dot.col(3) = Jcol5; 

    Jac4_loc_dot.col(5) = Jcol3; 

 

    // std::cout << "Here is Jac4_loc_dot:\n" << Jac4_loc_dot << 

    // std::endl; 

 

    MatrixXd Jac4_dot(6, model.nv); 

    Jac4_dot.fill(0); 

 

    Jac4_dot.block(0, 6, 3, 3) = 

        R.transpose() * Jac4_loc_dot.block(0, 6, 3, 3); 

 

    // std::cout << "Here is Jac4_dot:\n" << Jac4_dot << std::endl; 

 

    Jac_dot = Jac4_dot.block(0, 0, 3, Jac4_dot.cols()); 

 

    // std::cout << "Here is Jac_dot:\n" << Jac_dot << std::endl; 

  } 

 

  /////////////////////////////////////////////////////////////////////// 

 

  else if (leg_id == FR) 

  { 

    Model::Index frame_idx = 

        model.getFrameId("FR_joint_knee_foot_frame"); 

    // std::cout << "Here is frame_idx :\n" << frame_idx << std::endl; 

 

    MatrixXd Jac7_loc_dot(6, model.nv); 

    Jac7_loc_dot.fill(0); 

    getFrameJacobianTimeVariation(model, data, frame_idx, 

                                  LOCAL_WORLD_ALIGNED, Jac7_loc_dot); 

 

    VectorXd Jcol3(6); 

    VectorXd Jcol5(6); 

 

    Jcol3 = Jac7_loc_dot.col(3); 

    Jcol5 = Jac7_loc_dot.col(5); 

 

    Jac7_loc_dot.col(3) = Jcol5; 

    Jac7_loc_dot.col(5) = Jcol3; 

 

    // std::cout << "Here is Jac7_loc_dot:\n" << Jac7_loc_dot << 

    // std::endl; 

 

    MatrixXd Jac7_dot(6, model.nv); 

    Jac7_dot.fill(0); 

 

    Jac7_dot.block(0, 9, 3, 3) = 

        R.transpose() * Jac7_loc_dot.block(0, 9, 3, 3); 

 

    // std::cout << "Here is Jac7_dot:\n" << Jac7_dot << std::endl; 

 

    Jac_dot = Jac7_dot.block(0, 0, 3, Jac7_dot.cols()); 
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    // std::cout << "Here is Jac_dot:\n" << Jac_dot << std::endl; 

  } 

 

  /////////////////////////////////////////////////////////////////////// 

 

  else if (leg_id == HL) 

  { 

    Model::Index frame_idx = 

        model.getFrameId("HL_joint_knee_foot_frame"); 

    // std::cout << "Here is frame_idx :\n" << frame_idx << std::endl; 

 

    MatrixXd Jac10_loc_dot(6, model.nv); 

    Jac10_loc_dot.fill(0); 

    getFrameJacobianTimeVariation(model, data, frame_idx, 

                                  LOCAL_WORLD_ALIGNED, Jac10_loc_dot); 

 

    VectorXd Jcol3(6); 

    VectorXd Jcol5(6); 

 

    Jcol3 = Jac10_loc_dot.col(3); 

    Jcol5 = Jac10_loc_dot.col(5); 

 

    Jac10_loc_dot.col(3) = Jcol5; 

    Jac10_loc_dot.col(5) = Jcol3; 

 

    // std::cout << "Here is Jac10_loc:\n" << Jac10_loc << std::endl; 

 

    MatrixXd Jac10_dot(6, model.nv); 

    Jac10_dot.fill(0); 

 

    Jac10_dot.block(0, 12, 3, 3) = 

         R.transpose() * Jac10_loc_dot.block(0, 12, 3, 3); 

 

    // std::cout << "Here is Jac10_dot:\n" << Jac10_dot << std::endl; 

 

    Jac_dot = Jac10_dot.block(0, 0, 3, Jac10_dot.cols()); 

 

    // std::cout << "Here is Jac_dot:\n" << Jac_dot << std::endl; 

  } 

 

  /////////////////////////////////////////////////////////////////////// 

 

  else if (leg_id == HR) 

  { 

    Model::Index frame_idx = 

        model.getFrameId("HR_joint_knee_foot_frame"); 

    // std::cout << "Here is frame_idx :\n" << frame_idx << std::endl; 

 

    MatrixXd Jac13_loc_dot(6, model.nv); 

    Jac13_loc_dot.fill(0); 

    getFrameJacobianTimeVariation(model, data, frame_idx, 

                                  LOCAL_WORLD_ALIGNED, Jac13_loc_dot); 

 

    VectorXd Jcol3(6); 

    VectorXd Jcol5(6); 

 

    Jcol3 = Jac13_loc_dot.col(3); 

    Jcol5 = Jac13_loc_dot.col(5); 

 

    Jac13_loc_dot.col(3) = Jcol5; 

    Jac13_loc_dot.col(5) = Jcol3; 
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    // std::cout << "Here is Jac13_loc_dot:\n" << Jac13_loc_dot << 

    // std::endl; 

 

    MatrixXd Jac13_dot(6, model.nv); 

    Jac13_dot.fill(0); 

 

    Jac13_dot.block(0, 15, 3, 3) = 

         R.transpose() * Jac13_loc_dot.block(0, 15, 3, 3); 

 

    // std::cout << "Here is Jac13_dot:\n" << Jac13_dot << std::endl; 

 

    Jac_dot = Jac13_dot.block(0, 0, 3, Jac13_dot.cols()); 

 

    // std::cout << "Here is Jac_dot:\n" << Jac_dot << std::endl; 

  } 

} 

 

Additionally, the GRFs computed by the stance leg controller have to be mapped to joint 

motor torque, as it is described by equation (4-57). This mapping is executed by calling the 

function MapContactForceToJointTorques(.) and is presented in the following code snippet. 

The Jacobian and the bias terms needed for the computation are computed by calling the 

functions ComputeFootJacobian(.), ComputeBiasTerms(.) previously described. 

 
void Robot::MapContactForceToJointTorques(int& leg_id, 

                                          Eigen::VectorXd& q, 

                                          Eigen::Vector3d& contact_force, 

                                          Eigen::VectorXd& nle, 

                                          VectorNm& motor_torques) 

{ 

  // Maps the foot contact force to the leg joint torques 

 

  Eigen::MatrixXd Jv; 

  ComputeFootJacobian(q, leg_id, Jv); 

 

  Eigen::VectorXd all_motor_torques; 

  all_motor_torques = Jv.transpose() * contact_force; 

 

  // std::cout << "Here is all_motor_torques:\n" << all_motor_torques << 

  // std::endl; 

 

  all_motor_torques = nle - all_motor_torques; 

 

  for (int joint_id = leg_id * motors_per_leg; 

       joint_id < (leg_id + 1) * motors_per_leg; joint_id++) 

  { 

    motor_torques(joint_id) = all_motor_torques(com_dof + joint_id); 

  } 

 

  // std::cout << "Here is motor_torques:\n" << motor_torques << 

  // std::endl; 

} 

 

Also, the angular velocity of the robot’s body provided by the ROS topic must be converted 

to the rate of change of the Z-Y-X Euler angles. This conversion is achieved by calling the 

function BaseRollPitchYawRate(.) that can be viewed in the following code snippet. 
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void Robot::BaseRollPitchYawRate(Vector3d& orientation_rpy, 

                                 Vector3d& angular_velocity, 

                                 Eigen::Vector3d& rpy_rate) 

{ 

  // Get the rate of orientation change of the argos's base in euler 

  // angle ( rate of (roll, pitch, yaw) change ) 

 

  Eigen::Matrix3d Rot = rpy::rpyToMatrix( 

      orientation_rpy(0), orientation_rpy(1), orientation_rpy(2)); 

  Eigen::Matrix3d Rot_inv = Rot.transpose(); 

 

  rpy_rate = Rot_inv * angular_velocity; 

} 

 

Also, the linear velocity of the CoM of the robot’s body provided by the ROS topic in the 

world frame must be expressed w.r.t. the robot’s body frame. This conversion is achieved by 

calling the function BaseVelocityInBodyFrame(.) that can be viewed in the following code 

snippet. 

 
void Robot::BaseVelocityInBodyFrame( 

    Vector3d& orientation_rpy, Vector3d& linear_vel_b, 

    Eigen::Vector3d& relative_linear_vel_b) 

{ 

  // Get the linear velocity of argos's base (body) in the base frame 

 

  Eigen::Matrix3d Rot = rpy::rpyToMatrix( 

      orientation_rpy(0), orientation_rpy(1), orientation_rpy(2)); 

  Eigen::Matrix3d Rot_inv = Rot.transpose(); 

 

  relative_linear_vel_b = Rot_inv * linear_vel_b; 

} 

 

In addition to that, an inverse kinematics algorithm needs to be executed to convert the 

desired foot position into desired joint angles, for the joint space control implemented by the 

swing leg controller. This conversion is achieved by calling the function 

ComputeJointAnglesFromFootLocalPosition(.). This function is presented in the code 

snippet below. This function accepts as an argument the foot positions expressed in the 

robot’s body frame. Initially it performs a transformation to express the foot positions in a frame 

whose origin coincides with the origin of the abduction joint frame of each leg and is aligned 

with the robot’s body frame. This conversion is necessary since the inverse kinematics 

algorithm utilized accepts foot positions that are expressed in that specific frame. Coordinate 

transformations in Pinocchio can be performed as follows: an ( )3  variable is created given 

the relative position and orientation of the one frame relative to the other one. Thus, the 

coordinate transformation is defined. It can be then applied to a vector, using the function 

act(.). 

 
void Robot::ComputeJointAnglesFromFootLocalPosition( 

    int& leg_id, Eigen::VectorXd& q, 

    Vector3d& foot_local_position_base_frame, Vector3d& joint_ids_leg_id, 

    Vector3d& joint_angles_leg_id) 

{ 

  forwardKinematics(model, data, q); 

  updateFramePlacements(model, data); 
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  Eigen::Vector3d trans_B_0 = abd_positions_base_frame.col(leg_id); 

  Eigen::Matrix3d rot_B_0 = Eigen::MatrixXd::Identity(3, 3); 

 

  SE3 transformation_B_0(rot_B_0, trans_B_0); 

  SE3 transformation_0_B = transformation_B_0.inverse(); 

 

  Vector3d foot_local_position_abd_frame = 

      transformation_0_B.act(foot_local_position_base_frame); 

 

  InverseKinematics(foot_local_position_abd_frame, leg_id, 

                    joint_angles_leg_id); 

 

  joint_ids_leg_id = 

      Vector3d(motors_per_leg * leg_id, motors_per_leg * leg_id + 1, 

               motors_per_leg * leg_id + 2); 

} 

 

Then, the necessary inverse kinematics algorithm is executed by calling the function 

InverseKinematics(.) which is illustrated in the following code snippet: 

 
void Robot::InverseKinematics(Vector3d& foot_local_position_abd_frame, 

                              int& leg_id, Vector3d& joint_angles_leg_id) 

{ 

  double xE = foot_local_position_hip_frame(0); 

  double yE = foot_local_position_hip_frame(1); 

  double zE = foot_local_position_hip_frame(2); 

 

  double s1 = sqrt(pow(xE, 2.0) + pow(zE, 2.0) - pow(l0, 2.0)); 

 

  double cos_th2 = 

      ((pow(s1, 2.0) + pow(yE, 2.0) - pow(l1, 2.0) - pow(l2, 2.0)) / 

       (2 * l1 * l2)); 

  double sin_th2_plus = sqrt(1 - cos_th2 * cos_th2); 

  // double sin_th2_minus = -sqrt(1 - cos_th2 * cos_th2); 

  double th2 = atan2(sin_th2_plus, cos_th2) + gamma; 

  double th1 = 

      atan2(yE, s1) - atan2(l2 * sin_th2_plus, l1 + l2 * cos_th2); 

 

  double th0; 

 

  if (leg_id == FR || leg_id == HR) 

  { 

    th0 = atan2(-zE, xE) - atan2(s1, l0); 

  } 

  else if (leg_id == FL || leg_id == HL) 

  { 

    th0 = -(atan2(-zE, -xE) - atan2(s1, l0)); 

  } 

 

  joint_angles_leg_id = Vector3d(th0, th1, th2); 

  //  std::cout << "Here is joint_angles_leg_id:\n" 

  //            << leg_id << ":\n" 

  //            << joint_angles_leg_id << std::endl; 

} 

 

Moreover, the position of the feet of the robot (end-effectors) relative to the robot’s body 

frame must be available, for a given model configuration. This computation is executed by 
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calling the function FootPositionsInBaseFrame(.). This function is presented in the code 

snippet below. 

 
void Robot::FootPositionsInBaseFrame( 

    Eigen::VectorXd& q, Matrix3x4& foot_positions_in_base_frame) 

{ 

  forwardKinematics(model, data, q); 

  updateFramePlacements(model, data); 

 

  Model::Index parent_idx = model.existJointName("root_joint") ? 

                                model.getJointId("root_joint") : 

                                (Model::Index)(model.njoints - 1); 

  Eigen::Vector3d trans_B = data.oMi[parent_idx].translation(); 

  Eigen::Matrix3d rot_B = data.oMi[parent_idx].rotation(); 

 

  SE3 transformation_I_B(rot_B, trans_B); 

  SE3 transformation_B_I = transformation_I_B.inverse(); 

 

  Eigen::Vector3d pos_B_FL_fc; 

  pos_B_FL_fc.setZero(); 

  Eigen::Vector3d pos_B_FR_fc; 

  pos_B_FR_fc.setZero(); 

  Eigen::Vector3d pos_B_HL_fc; 

  pos_B_HL_fc.setZero(); 

  Eigen::Vector3d pos_B_HR_fc; 

  pos_B_HR_fc.setZero(); 

 

  Model::Index frame_idx; 

  Eigen::Vector3d pos_I_fc; 

  pos_I_fc.setZero(); 

 

  /////////////////////////////////////////////////////////////////////// 

 

  frame_idx = model.getFrameId("FL_joint_knee_foot_frame"); 

 

  pos_I_fc = data.oMf[frame_idx].translation(); 

 

  // std::cout << "Here is pos_I_FL_fc:\n" << pos_I_fc << std::endl; 

 

  pos_B_FL_fc = transformation_B_I.act(pos_I_fc); 

 

  // std::cout << "Here is pos_B_FL_fc:\n" << pos_B_FL_fc << std::endl; 

 

  /////////////////////////////////////////////////////////////////////// 

 

  frame_idx = model.getFrameId("FR_joint_knee_foot_frame"); 

 

  pos_I_fc = data.oMf[frame_idx].translation(); 

 

  // std::cout << "Here is pos_I_FR_fc:\n" << pos_I_fc << std::endl; 

 

  pos_B_FR_fc = transformation_B_I.act(pos_I_fc); 

 

  // std::cout << "Here is pos_B_FR_fc:\n" << pos_B_FR_fc << std::endl; 

 

  /////////////////////////////////////////////////////////////////////// 

 

  frame_idx = model.getFrameId("HL_joint_knee_foot_frame"); 

 

  pos_I_fc = data.oMf[frame_idx].translation(); 



 

174/252 

 

  // std::cout << "Here is pos_I_HL_fc:\n" << pos_I_fc << std::endl; 

 

  pos_B_HL_fc = transformation_B_I.act(pos_I_fc); 

 

  // std::cout << "Here is pos_B_HL_fc:\n" << pos_B_HL_fc << std::endl; 

 

  /////////////////////////////////////////////////////////////////////// 

 

  frame_idx = model.getFrameId("HR_joint_knee_foot_frame"); 

 

  pos_I_fc = data.oMf[frame_idx].translation(); 

 

  // std::cout << "Here is pos_I_HR_fc:\n" << pos_I_fc << std::endl; 

 

  pos_B_HR_fc = transformation_B_I.act(pos_I_fc); 

 

  // std::cout << "Here is pos_B_HR_fc:\n" << pos_B_HR_fc << std::endl; 

 

  /////////////////////////////////////////////////////////////////////// 

 

  foot_positions_in_base_frame.col(0) = pos_B_FL_fc; 

  foot_positions_in_base_frame.col(1) = pos_B_FR_fc; 

  foot_positions_in_base_frame.col(2) = pos_B_HL_fc; 

  foot_positions_in_base_frame.col(3) = pos_B_HR_fc; 

} 

 

However, it is possible that only the position of a specific foot, relative to the robot’s body 

frame for a given model configuration, will be needed and not the position of all four feet. This 

computation is executed by calling the function FootPositionsLegidInBaseFrame(.). It 

follows the same procedure that the function FootPositionsInBaseFrame(.) follows, but it 

requires to specify the index of the leg whose foot position must be calculated. This function 

is presented in the code snippet below. 

 
void Robot::FootPositionsLegidInBaseFrame( 

    int& leg_id, Eigen::VectorXd& q, 

    Vector3d& foot_positions_in_base_frame) 

{ 

  forwardKinematics(model, data, q); 

  updateFramePlacements(model, data); 

 

  Model::Index parent_idx = model.existJointName("root_joint") ? 

                                model.getJointId("root_joint") : 

                                (Model::Index)(model.njoints - 1); 

  Eigen::Vector3d trans_B = data.oMi[parent_idx].translation(); 

  Eigen::Matrix3d rot_B = data.oMi[parent_idx].rotation(); 

 

  SE3 transformation_I_B(rot_B, trans_B); 

  SE3 transformation_B_I = transformation_I_B.inverse(); 

 

  Eigen::Vector3d pos_B_fc; 

 

  if (leg_id == FL) 

  { 

    Model::Index frame_idx = 

        model.getFrameId("FL_joint_knee_foot_frame"); 

 

    Eigen::Vector3d pos_I_fc = data.oMf[frame_idx].translation(); 
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    pos_B_fc = transformation_B_I.act(pos_I_fc); 

 

    std::cout << "Here is pos_B_FL_fc:\n" << pos_B_fc << std::endl; 

  } 

 

  /////////////////////////////////////////////////////////////////////// 

 

  else if (leg_id == FR) 

  { 

    Model::Index frame_idx = 

        model.getFrameId("FR_joint_knee_foot_frame"); 

 

    Eigen::Vector3d pos_I_fc = data.oMf[frame_idx].translation(); 

 

    pos_B_fc = transformation_B_I.act(pos_I_fc); 

 

    std::cout << "Here is pos_B_FL_fc:\n" << pos_B_fc << std::endl; 

  } 

 

  /////////////////////////////////////////////////////////////////////// 

 

  else if (leg_id == HL) 

  { 

    Model::Index frame_idx = 

        model.getFrameId("HL_joint_knee_foot_frame"); 

 

    Eigen::Vector3d pos_I_fc = data.oMf[frame_idx].translation(); 

 

    pos_B_fc = transformation_B_I.act(pos_I_fc); 

 

    std::cout << "Here is pos_B_FL_fc:\n" << pos_B_fc << std::endl; 

  } 

 

  /////////////////////////////////////////////////////////////////////// 

 

  else if (leg_id == HR) 

  { 

    Model::Index frame_idx = 

        model.getFrameId("HR_joint_knee_foot_frame"); 

 

    Eigen::Vector3d pos_I_fc = data.oMf[frame_idx].translation(); 

 

    pos_B_fc = transformation_B_I.act(pos_I_fc); 

 

    std::cout << "Here is pos_B_FL_fc:\n" << pos_B_fc << std::endl; 

  } 

 

  /////////////////////////////////////////////////////////////////////// 

 

  foot_positions_in_base_frame = pos_B_fc; 

} 

 

Moreover, the position of the hip of a particular leg relative to the world frame must be 

available, for a given model configuration. This computation is executed by calling the function 

HipPositionsLegidInWorldFrame(.). It requires specifying the index of the leg whose hip 

position must be calculated. This function is presented in the code snippet below. 

 
void Robot::HipPositionsLegidInWorldFrame( 

    int& leg_id, Eigen::VectorXd& q, 
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    Vector3d& hip_positions_in_world_frame) 

{ 

  forwardKinematics(model, data, q); 

 

  Eigen::Vector3d pos_I_hip; 

 

  if (leg_id == FL) 

  { 

    Model::Index joint_idx = model.getJointId("FL_joint_hip"); 

 

    pos_I_hip = data.oMi[joint_idx].translation(); 

 

    // std::cout << "Here is pos_I_FL_hip:\n" << pos_I_hip << std::endl; 

  } 

 

  /////////////////////////////////////////////////////////////////////// 

 

  else if (leg_id == FR) 

  { 

    Model::Index joint_idx = model.getJointId("FR_joint_hip"); 

 

    pos_I_hip = data.oMi[joint_idx].translation(); 

 

    // std::cout << "Here is pos_I_FR_fc:\n" << pos_I_hip << std::endl; 

  } 

 

  /////////////////////////////////////////////////////////////////////// 

 

  else if (leg_id == HL) 

  { 

    Model::Index joint_idx = model.getJointId("HL_joint_hip"); 

 

    pos_I_hip = data.oMi[joint_idx].translation(); 

 

    // std::cout << "Here is pos_I_HL_fc:\n" << pos_I_hip << std::endl; 

  } 

 

  /////////////////////////////////////////////////////////////////////// 

 

  else if (leg_id == HR) 

  { 

    Model::Index joint_idx = model.getJointId("HR_joint_hip"); 

 

    pos_I_hip = data.oMi[joint_idx].translation(); 

 

    // std::cout << "Here is pos_I_HR_fc:\n" << pos_I_hip << std::endl; 

  } 

 

  /////////////////////////////////////////////////////////////////////// 

 

  hip_positions_in_world_frame = pos_I_hip; 

} 

 

Also, the position of the various frames of the robot w.r.t the world frame must be 

converted so that it is expressed w.r.t. the robot’s body frame. This conversion is achieved by 

calling the function ConvertPositionWorldToBaseFrame(.) that can be viewed in the 

following code snippet. 

 
void Robot::ConvertPositionWorldToBaseFrame(Eigen::VectorXd& q, 
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                                            Vector3d& pos_I, 

                                            Vector3d& pos_B) 

{ 

  forwardKinematics(model, data, q); 

  updateFramePlacements(model, data); 

 

  Model::Index parent_idx = model.existJointName("root_joint") ? 

                                model.getJointId("root_joint") : 

                                (Model::Index)(model.njoints - 1); 

  Eigen::Vector3d trans_B = data.oMi[parent_idx].translation(); 

  Eigen::Matrix3d rot_B = data.oMi[parent_idx].rotation(); 

 

  SE3 transformation_I_B(rot_B, trans_B); 

  SE3 transformation_B_I = transformation_I_B.inverse(); 

 

  pos_B = transformation_B_I.act(pos_I); 

} 

 

Finally, it is important to define the desired speed profile that the robot should track during 

the locomotion task. This speed profile determines the desired ,x y  - linear velocity and the 

current desired z  - angular velocity as functions of time. This profile is designed as follows: 

some characteristic pairs of points along the profile are specified initially, and then linear 

interpolation is performed to decide the desired ,x y  - linear velocity and the current desired 

z  - angular velocity at a given time instance. This linear interpolation is performed using a 

function of the linear algebra library Armadillo [166], that is called interp1(.). If the current time 

surpasses the maximum time used to define the profile, then linear extrapolation is utilized. 

This line is defined using the last two pairs of points used to define the profile. The desired 

speed profile is created using the function GenerateSpeedProfile(.) that can be viewed in the 

following code snippet. 

 
void Robot::GenerateSpeedProfile(double& time, Vector2d& desired_speed, 

                                 double& desired_twisting_speed) 

{ 

  double vx = nominal_speed_(0); 

  double vy = nominal_speed_(1); 

  double wz = nominal_twisting_speed_; 

 

  arma::vec time_points = { 0, 5, 10, 15, 20, 25, 30 }; 

  arma::mat speed_points = { { 0, 0, 0, 0 },    { vx, vy, 0, wz }, 

                             { vx, vy, 0, wz }, { vx, vy, 0, wz }, 

                             { vx, vy, 0, wz }, { vx, vy, 0, wz }, 

                             { vx, vy, 0, wz } }; 

 

  arma::vec t = { time }; 

  arma::vec vx_t; 

  arma::vec vy_t; 

  arma::vec wz_t; 

 

  interp1(time_points, speed_points.col(0), t, vx_t, "*linear", vx); 

  interp1(time_points, speed_points.col(1), t, vy_t, "*linear", vy); 

  interp1(time_points, speed_points.col(3), t, wz_t, "*linear", wz); 

 

  std::cout << "Here is vx_t:\n" << vx_t << std::endl; 

  std::cout << "Here is vy_t:\n" << vy_t << std::endl; 

  std::cout << "Here is wz_t:\n" << wz_t << std::endl; 

 

  desired_speed = Vector2d(vx_t(0), vy_t(0)); 
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  desired_twisting_speed = wz_t(0); 

} 

 

Also, it is necessary for the swing leg controller to invert the foot Jacobian matrix of the 

swinging leg, as dictated by equation (4-19). This inversion of the Jacobian is accomplished 

by calling the function sdlsInv(.), by performing singular value decomposition on the Jacobian 

matrix. In this way the selective damping least square inverse matrix can be computed. This 

function is presented in the code snippet below. 

 
Eigen::MatrixXd Robot::sdlsInv(const Eigen::MatrixXd& jacobian) 

{ 

  Eigen::JacobiSVD<Eigen::MatrixXd> svd( 

      jacobian, Eigen::ComputeThinU | Eigen::ComputeThinV); 

 

  Eigen::VectorXd sigval = svd.singularValues(); 

  Eigen::VectorXd sigval_inv = sigval; 

 

  for (size_t i = 0; i < sigval.size(); i++) 

  { 

    sigval_inv(i) =  

        std::min(1 / sigval(i), 1 / (1e-1 * sigval.maxCoeff())); 

  } 

 

  Eigen::MatrixXd jacobian_inv = svd.matrixV() *  

                                 sigval_inv.asDiagonal() *  

                                 svd.matrixU().transpose(); 

 

  return jacobian_inv; 

} 

 

4.4.1 State Estimator 

For the control framework presented in this work no state estimator was utilized. Instead, 

physical quantities that are required by the controller to calculate the optimal control action 

were provided to it by either ROS sensors or by the physics engine itself. More specifically, 

the Gazebo model plugin, named apply_action.cc, interacts directly with the physics engine 

and has access to such physical quantities, with the help of some functions, and publishes 

them to certain topics. Then, the MPC controller that is implemented using a ROS node, 

subscribes to these topics and gets access to these quantities. These topics as well as the 

aforementioned Gazebo functions are described in this section. After each control loop 

iteration, the calculated optimal action gets published to the ROS topic /joint_commands to 

get it applied to the model. 

To be more precise, the controller needs the pose of the robot’s body frame w.r.t. the 

world frame. Gazebo offers the function WorldCoGPose() that provides the , ,x y z -position of 

the CoM of a certain rigid body w.r.t. the world frame, as WorldCoGPose().X(), 

WorldCoGPose().Y(), WorldCoGPose().Z(), and the orientation of the robot’s body frame 

w.r.t. the world frame expressed using roll-pitch-yaw angles, as WorldCoGPose().Roll(), 

WorldCoGPose().Pitch(), WorldCoGPose().Yaw(). The body’s pose is then published to the 

topic /body_pose. Furthermore, the controller requires the linear velocity of the robot’s body 

CoM w.r.t. the world frame. Gazebo offers the function WorldCoGLinearVel() that provides 

the , ,x y z -linear velocity of the CoM of a certain rigid body w.r.t. the world frame. Additionally, 
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the controller requires the angular velocity of the robot’s body w.r.t. the world frame. Gazebo 

offers the function WorldAngularVel() that provides the , ,x y z -angular velocity of a certain 

rigid body w.r.t. the world frame. The body’s velocity is then published to the topic /body_twist. 

Moreover, the joint positions and velocities are needed by the controller. Gazebo offers the 

functions Position() and GetVelocity(_index) that provide the joint position and velocity 

respectively, where _index represents index that corresponds to the joint axis, that is equal 

to zero for 1-DoF joints. These values are then published to the topic /joint_states. The 

controller needs to be aware of whether the feet of the robot are in contact with the ground or 

not. The ROS package provides contact force sensors that are attached to the four feet of the 

robot. These sensors measure the GRFs and publish their values to the topics 

/FL_Lower_Leg_state, /FR_Lower_Leg_state, /HL_Lower_Leg_state and 

/HR_Lower_Leg_state. Moreover, this plugin applies the control inputs (actions), which are 

joint torques calculated by the MPC controller, to the joints of the pendulum. It subscribes to 

the topic /joint_commands to have access to them. These actions then are applied using the 

Gazebo function SetForce(_index, _effort) where _effort represents the torque that should 

be applied.  

4.4.2 Gait Scheduler 

The gait scheduler consists of the class OpenLoopGaitGenerator. The functions that belong 

to this class are responsible for deciding what are the desired states of the legs at each time 

instance, according to the selected gait and for the normalized phase of the entire gait cycle 

and of the stance or swing phase of each leg, for the current time instance. The header file 

openloop_gait_generator.h contains the definition of the class, that includes declaration of its 

member variables and functions. The implementation of the class is located in the 

openloop_gait_generator.cpp file. 

First of all, the class OpenLoopGaitGenerator should be initialized. The parameters 

necessary to initialize this class and thus define the desired gait are the following: the stance 

duration, the duty factor, the initial leg state, the initial leg phase, and the contact detection 

phase threshold. The first four parameters were explained in the chapter 4.3.2. The contact 

detection phase threshold parameter serves the following purpose: the state of each leg gets 

updated after taking into account the measurements provided by the contact sensors when 

the current normalized phase is greater than this threshold. This is essential to remove false 

positives in contact detection when phase switches. For example, a swing foot at the beginning 

of the gait cycle might be still on the ground. The function that performs this initialization is 

shown in the following code snippet. 

 
OpenLoopGaitGenerator::OpenLoopGaitGenerator( 

    Robot* robot, Vector4d stance_duration, Vector4d duty_factor, 

    Vector4d initial_leg_state, Vector4d initial_leg_phase, 

    double contact_detection_phase_threshold) 

{ 

  this->robot = robot; 

  this->stance_duration = stance_duration; 

  this->duty_factor = duty_factor; 

  this->initial_leg_state = initial_leg_state; 

  this->initial_leg_phase = initial_leg_phase; 

  this->contact_detection_phase_threshold = 

      contact_detection_phase_threshold; 
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  // The ratio in cycle is duty factor if initial state of the leg is 

  // STANCE, and 1 - duty_factory if the initial state of the leg is 

  // SWING. 

 

  for (int leg_id = 0; leg_id < initial_leg_state.size(); leg_id++) 

  { 

    if (duty_factor(leg_id) == 0.0) 

    { 

      this->swing_duration(leg_id) = 1e3; 

      initial_leg_state(leg_id) = LegState::USERDEFINED_SWING; 

      next_leg_state(leg_id) = LegState::USERDEFINED_SWING; 

      printf("Leg [%i] is userdefined leg!\n", leg_id); 

    } 

    else 

    { 

      this->swing_duration(leg_id) = 

          stance_duration(leg_id) / duty_factor(leg_id) - 

          stance_duration(leg_id); 

 

      if (initial_leg_state(leg_id) == LegState::SWING) 

      { 

        initial_state_ratio_in_cycle(leg_id) = 1 - duty_factor(leg_id); 

        next_leg_state(leg_id) = LegState::STANCE; 

      } 

      else 

      { 

        initial_state_ratio_in_cycle(leg_id) = duty_factor(leg_id); 

        next_leg_state(leg_id) = LegState::SWING; 

      } 

    } 

  } 

 

  this->Reset(0); 

} 

 

Secondly, the function Reset(.) is also a member of this class. It needs to be called to 

reset the gait parameters. This function is shown in the following code snippet. 

 
void OpenLoopGaitGenerator::Reset(double current_time) 

{ 

  normalized_phase = Eigen ::VectorXd ::Zero(num_legs); 

  leg_state = initial_leg_state; 

  desired_leg_state = initial_leg_state; 

} 

 

Finally, the function Update(.) needs to be called at every control loop iteration so that 

the various gait parameters get updated. This function is shown in the following code snippet. 

It is important to note that apart from the swing and stance state, two more possible leg states 

are defined. These are early contact and lose contact state. The actual leg state can be swing, 

stance, early contact and lose contact while the desired leg state can be only swing or stance. 

If the desired state of a leg is swing but the force sensors measurements indicate that the foot 

is in contact with the ground, then the state of that leg will be early contact. However, if the 

desired state of a leg in stance but the force sensors measurements indicate that the foot is 

not in contact with the ground, then the state of that leg will be lose contact. This distinction is 

taken into consideration by the function below. 
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void OpenLoopGaitGenerator::Update(double current_time, 

                                   Vector4d& contact_state, 

                                   VectorNm& contact_force) 

{ 

  std::cout << "gait_generator_update:\n" << std::endl; 

 

  // Called at each control step 

 

  // The phase within the full swing/stance cycle is used to determine 

  // if a swing/stance switch occurs for a leg. The threshold value is 

  // the "initial_state_ratio_in_cycle" If the current phase is less than 

  // the initial state ratio, then the leg is either in the initial state 

  // or has switched back after one or more full cycles. 

 

  for (int leg_id = 0; leg_id < num_legs; leg_id++) 

  { 

    if (initial_leg_state(leg_id) == LegState::USERDEFINED_SWING) 

    { 

      desired_leg_state(leg_id) = initial_leg_state(leg_id); 

      leg_state(leg_id) = desired_leg_state(leg_id); 

      continue; 

    } 

 

    double full_cycle_period = 

        stance_duration(leg_id) / duty_factor(leg_id); 

 

    // To account for the non-zero initial phase, we offset the time 

    // duration with the effect time contribution from the initial leg 

    // phase. 

 

    double augmented_time = 

        current_time + initial_leg_phase(leg_id) * full_cycle_period; 

    double phase_in_full_cycle = 

        fmod(augmented_time, full_cycle_period) / full_cycle_period; 

 

    double ratio = initial_state_ratio_in_cycle(leg_id); 

    if (phase_in_full_cycle < ratio) 

    { 

      desired_leg_state(leg_id) = initial_leg_state(leg_id); 

      normalized_phase(leg_id) = phase_in_full_cycle / ratio; 

    } 

    else 

    { 

      // A phase switch happens for this leg. 

      desired_leg_state(leg_id) = next_leg_state(leg_id); 

      normalized_phase(leg_id) = 

          (phase_in_full_cycle - ratio) / (1 - ratio); 

    } 

 

    leg_state(leg_id) = desired_leg_state(leg_id); 

 

    // No contact detection at the beginning of each SWING/STANCE phase. 

    if (normalized_phase(leg_id) < contact_detection_phase_threshold) 

    { 

      continue; 

    } 

 

    if (leg_state(leg_id) == LegState::SWING && 

        contact_state(leg_id) == 1.0 && 

        contact_force(3 * leg_id + 2) > robot->robot_mass * kGravity / 4) 

    { 
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      printf("Early touch down detected \n"); 

      leg_state(leg_id) = LegState::EARLY_CONTACT; 

    } 

    if (leg_state(leg_id) == LegState::STANCE && 

        contact_state(leg_id) == 0.0 && 

        contact_force(3 * leg_id + 2) < robot->robot_mass * kGravity / 4) 

    { 

      printf("Lost contact detected \n"); 

      leg_state(leg_id) = LegState::LOSE_CONTACT; 

    } 

  } 

 

  std::cout << "Here is leg_state :\n" 

            << leg_state.transpose() << std::endl; 

} 

 

4.4.3  Swing Leg Controller 

The swing leg controller consists of the class RaibertSwingLegController. The functions that 

belong to this class are responsible for selecting the desired foothold positions, according to 

the footstep planner of equation (4-58), and for calculating the desired configuration of the 

swinging legs, for the current phase of the gait cycle. The header file 

raibert_swing_leg_controller.h contains the definition of the class, that includes declaration of 

its member variables and functions. The implementation of the class is located in the 

raibert_swing_leg_controller.cpp file. 

Firstly, the function GenSwingFootTrajectory(.) is defined as a member function of the 

class. It generates the trajectory of the swing leg using an ellipse. To be more precise, it 

returns desired foot position and acceleration at the current phase, in the cartesian space, 

given the foot’s position at the beginning of the swing cycle, the foot’s position at the middle 

of the swing cycle, that is determined by the maximum clearance that the foot should have 

w.r.t the ground, and the foot’s desired position at the end of the swing cycle. This function is 

presented in the following code snippet. 

 
void RaibertSwingLegController::GenSwingFootTrajectory( 

    double& swing_period, double& max_clearance, double& input_phase, 

    Vector3d& start_pos, Vector3d& end_pos, Vector3d& desired_pos, 

    Vector3d& desired_acc) 

{ 

  // Generates the swing trajectory using an ellipse. 

 
  double phase = input_phase; 

 
  double mid_pos_z; 

 
  mid_pos_z = 0.5 * (start_pos(2) + end_pos(2)) + max_clearance; 

  // mid_pos_z = start_pos(2) + max_clearance; 

 
  GenEllipse(swing_period, phase, start_pos, mid_pos_z, end_pos, 

              desired_pos, desired_acc); 

 
  // std::cout << "Here is desired_acc:\n" << desired_acc << std::endl; 

} 
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The points along the elliptical trajectory are generated by the function GenEllipse(.). This 

function computes the coefficients , ,c u v  of the ellipse using the equations (4-14), (4-15) and 

given the foot’s position at the beginning of the swing cycle, the maximum clearance and the 

foot’s desired position at the end of the swing cycle. Then, the function computes the desired 

foot position and the desired foot acceleration for the given phase in the swing cycle. The 

function that performs this initialization is presented in the following code snippet. 

 
void RaibertSwingLegController::GenEllipse( 

    double& swing_period, double& phase, Vector3d& start, double& mid, 

    Vector3d& end, Vector3d& pos_des, Vector3d& pos_des_ddot) 

{ 

  // Gets a point on an ellipse. 

 
  Vector3d coef_c, coef_u, coef_v; 

  Vector3d middle = 0.5 * (start + end); 

  middle(2) = mid; 

 
  coef_c = 0.5 * (start + end); 

  // coef_c(2) = start(2); 

  // coef_c(2) = end(2); 

 
  coef_u = start - coef_c; 

  // coef_u = - end_pos + coef_c; 

 
  coef_v = middle - coef_c; 

 
  pos_des = 

      coef_c + coef_u * cos(M_PI * phase) + coef_v * sin(M_PI * phase); 

 
  // std::cout << "Here is pos_des :\n" << pos_des << std::endl; 

 
  pos_des_ddot = -coef_u *  

                     ((pow(M_PI, 2.0)) / (pow(swing_period, 2.0))) * 

                     cos(M_PI * phase) - 

                 coef_v * ((pow(M_PI, 2.0)) / (pow(swing_period, 2.0))) * 

                     sin(M_PI * phase); 

 
  // std::cout << "Here is pos_des_ddot :\n" << pos_des_ddot << 

  // std::endl; 

} 

 

First of all, the class RaibertSwingLegController should be initialized. The parameters 

necessary to initialize this class are the following: an instance of the Robot class, an instance 

of the class OpenLoopGaitGenerator, the initial desired ,x y  - linear velocity of the robot, the 

initial desired z  - angular velocity of the robot, the desired locomotion height and the 

maximum clearance. This function is shown in the following code snippet. 

 
RaibertSwingLegController::RaibertSwingLegController( 

    Robot* robot, OpenLoopGaitGenerator* gaitGenerator, 

    Vector2d desired_speed, double desired_twisting_speed, 

    double desired_height, double max_clearance) 

{ 

  this->robot = robot; 

  this->gaitGenerator = gaitGenerator; 

  this->desired_speed = Vector3d(desired_speed(0), desired_speed(1), 0); 

  this->desired_twisting_speed = desired_twisting_speed; 
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  this->desired_height = Vector3d(0.0, 0.0, desired_height); 

  this->max_clearance = max_clearance; 

 

  last_leg_state = gaitGenerator->desired_leg_state; 

 

  foot_position_ddot_des.setZero(); 

 

  joint_angles.resize(num_motors, 2); 

  joint_angles.setZero(); 

  joint_angles.col(1) << LegId::FL, LegId::FL, LegId::FL, LegId::FR, 

      LegId::FR, LegId::FR, LegId::HL, LegId::HL, LegId::HL, LegId::HR, 

      LegId::HR, LegId::HR; 

} 

 

Secondly, the function Reset(.) is also a member of this class. It needs to be called to 

reset the swing leg controller parameters. This function is shown in the following code snippet. 

 
void RaibertSwingLegController::Reset(double current_time, 

                                      Eigen::VectorXd& q) 

{ 

  std::cout << "swing_leg_controller_reset:\n" << std::endl; 

 

  last_leg_state = gaitGenerator->desired_leg_state; 

 

  Matrix3x4 foot_positions_in_base_frame; 

  foot_positions_in_base_frame.setZero(); 

  robot->FootPositionsInBaseFrame(q, foot_positions_in_base_frame); 

 

  phase_switch_foot_local_position = foot_positions_in_base_frame; 

} 

 

Moreover, the function Update(.) needs to be called at every control loop iteration so that 

the swing leg controller parameters get updated. To be more specific, it detects if a phase 

switch has occurred for each leg, facilitating the controller in remembering the feet positions 

at the beginning of the swing phase. These positions are stored in the phase switch foot local 

position variable. This function is shown in the following code snippet. 

 
void RaibertSwingLegController::Update(double current_time, 

                                       Eigen::VectorXd& q) 

{ 

  std::cout << "swing_leg_controller_update:\n" << std::endl; 

 

  // Called at each control step 

 

  Vector4d new_leg_state = gaitGenerator->desired_leg_state; 

 

  // Detects phase switch for each leg so we can remember the feet 

  // position at the beginning of the swing phase. 

 

  Matrix3x4 foot_positions_in_base_frame; 

  Vector3d foot_positions_in_base_frame_leg_id; 

 

  for (int leg_id = 0; leg_id < new_leg_state.size(); leg_id++) 

  { 

    if (new_leg_state(leg_id) == LegState::SWING && 

        new_leg_state(leg_id) != last_leg_state(leg_id)) 

    { 

    robot->FootPositionsLegidInBaseFrame( 
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        leg_id, q, foot_positions_in_base_frame_leg_id); 

    // std::cout << "Here is foot_positions_in_base_frame_leg_id :\n" 

    //           << foot_positions_in_base_frame_leg_id << std::endl; 

 

    phase_switch_foot_local_position.col(leg_id) = 

        foot_positions_in_base_frame_leg_id; 

    } 

  } 

 

  // std::cout << "Here is phase_switch_foot_local_position :\n" 

  //           << phase_switch_foot_local_position << std::endl; 

  last_leg_state = new_leg_state; 

} 

 

Also, the function UpdateControlParameters(.) needs to be called at every control loop 

iteration so that the current desired ,x y  - linear velocity of the robot, the current desired z  - 

angular velocity of the robot get updated, according to the desired speed profile. This function 

is shown in the following code snippet. 

 
void RaibertSwingLegController::UpdateControlParameters( 

    Vector2d& linSpeed, double& angSpeed) 

{ 

  desired_speed = Vector3d(linSpeed(0), linSpeed(1), 0); 

  desired_twisting_speed = angSpeed; 

} 

 

Finally, the function GetAction(.) needs to be called at every control loop iteration to 

compute the actions corresponding to the swing legs. This function is shown in the following 

code snippet. The computation proceeds only if the leg that is supposed to be in swing phase 

is not in contact with the ground. Therefore, checks are performed to verify if the desired leg 

state is not stance, or if the leg state is not early contact, for a specific leg. If they are not, then 

the computation proceeds. In that case, the hip ,x y  - linear velocity and the desired hip ,x y  

- linear velocity get calculated. Afterwards, the target foothold position gets computed using 

the footstep planner of equation (4-58). Necessary for this computation are the hip linear 

velocities , ,, cmd
i ih hp p  that are calculated beforehand. Then, the desired foot position for the given 

swing cycle phase is computed by calling the function GenSwingFootTrajectory(.). Given 

the desired foot position, the leg’s joint angles that correspond to that position can be 

computed by calling the function ComputeJointAnglesFromFootLocalPosition(.). This 

process is repeated for every swinging leg. Finally, these desired joint angles are stored in a 

matrix alongside the gains of the PD controller that correspond to that joint, for every swinging 

leg.  

 
void RaibertSwingLegController::GetAction( 

    double current_time, Eigen::VectorXd& q, Vector3d& com_position, 

    Vector3d& body_orientation_rpy, Vector3d& com_velocity, 

    Vector3d& body_angular_velocity) 

{ 

  std::cout << "swing_leg_controller_get_action:\n" << std::endl; 

 

  // std::cout << "Here is normalized_phase :\n" 

  //           << gaitGenerator->normalized_phase << std::endl; 

 

  Vector3d com_velocity_body_frame; 

  robot->BaseVelocityInBodyFrame(body_orientation_rpy, com_velocity, 



 

186/252 

                                 com_velocity_body_frame); 

  com_velocity_body_frame(2) = 0.0; 

 

  Vector3d desired_speed_body_frame; 

  robot->BaseVelocityInBodyFrame(body_orientation_rpy, desired_speed, 

                                 desired_speed_body_frame); 

  desired_speed_body_frame(2) = 0.0; 

 

  Vector3d base_rpy_rate; 

  robot->BaseRollPitchYawRate(body_orientation_rpy, 

                              body_angular_velocity, base_rpy_rate); 

 

  double roll_dot = base_rpy_rate(0); 

  double pitch_dot = base_rpy_rate(1); 

  double yaw_dot = base_rpy_rate(2); 

 

  joint_angles.col(0).setZero(); 

  foot_position_ddot_des.setZero(); 

  action.setZero(); 

 

  for (int leg_id = 0; leg_id < gaitGenerator->leg_state.size(); 

       leg_id++) 

  { 

    // std::cout << "Now doing leg " << leg_id << std::endl; 

 

    double c_flag = 

        gaitGenerator->desired_leg_state(leg_id) == LegState::STANCE || 

        gaitGenerator->leg_state(leg_id) == LegState::EARLY_CONTACT; 

 

    if (c_flag == 1) 

    { 

      // std::cout << "The leg " << leg_id 

      //           << " is in STANCE or EARLY_CONTACT or " 

      //             "USERDEFINED_SWING \n" 

      //           << std::endl; 

      continue; 

    } 

 

    // All calculation is in the body frame. 

    Vector3d hip_offset = robot->hip_positions_base_frame.col(leg_id); 

 

    Vector3d r_cross_omega = skew(hip_offset) * base_rpy_rate; 

    r_cross_omega(2) = 0.0; 

 

    Vector3d hip_horizontal_velocity = 

        com_velocity_body_frame + r_cross_omega; 

    Vector3d target_hip_horizontal_velocity = 

        desired_speed + 

        skew(hip_offset) * Vector3d(0.0, 0.0, desired_twisting_speed); 

 

    // std::cout << "Here is hip_horizontal_velocity :\n" 

    //           << hip_horizontal_velocity << std::endl; 

 

    Vector3d hip_positions_world; 

    robot->HipPositionsLegidInWorldFrame(leg_id, q, hip_positions_world); 

    hip_positions_world(2) = 0.0; 

    Vector3d hip_positions_base; 

    robot->ConvertPositionWorldtoBaseFrame(q, hip_positions_world, 

                                           hip_positions_base); 

 

    std::cout << "Here is leg_id :\n" << leg_id << std::endl; 
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    Vector3d foot_target_position = 

        (0.5 * gaitGenerator->stance_duration(leg_id) * 

             target_hip_horizontal_velocity - 

         sqrt(desired_height(2) / kGravity) * 

             (target_hip_horizontal_velocity - 

              hip_horizontal_velocity)) + 

        (desired_height(2) / kGravity) * skew(hip_horizontal_velocity) * 

            (Vector3d(0.0, 0.0, desired_twisting_speed)) + 

        hip_positions_base; 

    //- Vector3d( 0.0, 0.0, com_position(2) ) + Vector3d( hip_offset(0), 

    // hip_offset(1), 0.0 ); 

 

    // std::cout << "Here is foot_target_position :\n" 

    //           << foot_target_position << std::endl; 

 

    Vector3d phase_switch_foot_local_position_leg_id = 

        phase_switch_foot_local_position.col(leg_id); 

 

    Vector3d foot_position; 

    double normalized_phase_leg_id = 

        gaitGenerator->normalized_phase(leg_id); 

 

    // Elliptic Curve 

    GenSwingFootTrajectory(gaitGenerator->swing_duration(leg_id), 

                           max_clearance, normalized_phase_leg_id, 

                           phase_switch_foot_local_position_leg_id, 

                           foot_target_position, foot_position, 

                           foot_position_ddot_des_leg_id); 

    foot_position_ddot_des.col(leg_id) = foot_position_ddot_des_leg_id; 

 

    // std::cout << "Here is foot_position :\n" 

    //           << foot_position << std::endl; 

 

    Vector3d joint_angles_leg_id; 

    Vector3d joint_ids_leg_id; 

 

    // compute joint position 

    robot->ComputeJointAnglesFromFootLocalPosition( 

        leg_id, q, foot_position, joint_ids_leg_id, joint_angles_leg_id); 

 

    // Update the stored joint angles as needed. 

    for (int i = 0; i < joint_ids_leg_id.size(); i++) 

    { 

      double joint_id = joint_ids_leg_id(i); 

      double joint_angle = joint_angles_leg_id(i); 

      joint_angles.row(joint_id) << joint_angle, leg_id; 

    } 

  } 

 

  for (int joint_id = 0; joint_id < joint_angles.rows(); joint_id++) 

  { 

    double joint_angle_leg_id = joint_angles(joint_id, 0); 

    int leg_id = joint_angles(joint_id, 1); 

 

    double c_flag = 

        gaitGenerator->desired_leg_state(leg_id) == LegState::STANCE || 

        gaitGenerator->leg_state(leg_id) == LegState::EARLY_CONTACT; 

    if (c_flag == 0) 

    { 

      // This is a hybrid action for PD control. 

      action.row(joint_id) << joint_angle_leg_id, robot->Kps(joint_id), 
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          0.0, robot->Kds(joint_id), 0.0; 

      // std::cout << "Here is swing action :\n" << action << 

      // std::endl; 

    } 

  } 

 

  std::cout << "Here is swing action :\n" << action << std::endl; 

} 

 

4.4.4 Stance Leg Controller 

The stance leg controller consists of the classes TorqueStanceLegController and 

ConvexMpcDense. The functions that belong to the first class are responsible for providing 

all the necessary high level parameters and variables needed to set up the QP of equation 

(4-53). They also map the predicted GRFs that constitute the QP solution into the desired 

motor torques. The functions that belong to the second class are responsible for setting up 

and solving that QP, to compute the predicted GRFs that track the desired position and 

velocity of the robot. The header file torque_stance_leg_controller.h contains the definition of 

the class, that includes declaration of its member variables and functions. The implementation 

of the class is located in the torque_stance_leg_controller.cpp file. Also, the header file 

mpc_osqp_dense.h contains the definition of the class, that includes declaration of its member 

variables and functions. The implementation of the class is located in the 

mpc_osqp_dense.cpp file. 

First of all, the class TorqueStanceLegController should be initialized. The parameters 

necessary to initialize this class are the following: an instance of the Robot class, an instance 

of the class OpenLoopGaitGenerator, an instance of the class RaibertSwingLegController, 

the reference robot’s body yaw angle, the foot friction coefficients, the number of the timesteps 

into which the horizon was divided, the timestep size and the minimum and maximum normal 

contact force limits. The function that performs this initialization is shown in the following code 

snippet. Moreover, this function also calculates the values of the matrices ,qp qpQ R  and 

initializes the class ConvexMpcDense. 

 
TorqueStanceLegController::TorqueStanceLegController( 

    Robot* robot, OpenLoopGaitGenerator* gaitGenerator, 

    RaibertSwingLegController* swingLegController, double body_yaw_ref, 

    Vector4d friction_coeffs, int planning_horizon_steps, 

    double planning_timestep, VectorNx state_weights, 

    VectorNu input_weights, double fz_max, double fz_min) 

{ 

  this->robot = robot; 

  this->gaitGenerator = gaitGenerator; 

  this->swingLegController = swingLegController; 

  this->body_yaw_ref = body_yaw_ref; 

  this->foot_friction_coeffs = friction_coeffs; 

  this->planning_horizon_steps = planning_horizon_steps; 

  this->planning_timestep = planning_timestep; 

  this->fz_max = fz_max; 

  this->fz_min = fz_min; 

 

  desired_speed = swingLegController->desired_speed; 

  desired_twisting_speed = swingLegController->desired_twisting_speed; 

  desired_height = swingLegController->desired_height; 
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  Q_qp.setZero(); 

  R_qp.setZero(); 

 

  Eigen::Matrix<double, Nx * Nh, 1> q_weights_mpc; 

  Eigen::Matrix<double, Nu * Nh, 1> r_weights_mpc; 

 

  for (int i = 0; i < Nh; ++i) 

  { 

    q_weights_mpc.segment(i * Nx, Nx) = state_weights; 

  } 

  Q_qp.diagonal() = 2 * q_weights_mpc; 

 

  for (int i = 0; i < Nh; ++i) 

  { 

    r_weights_mpc.segment(i * Nu, Nu) = input_weights; 

  } 

  R_qp.diagonal() = 2 * r_weights_mpc; 

 

  convexMPC = new ConvexMPCDense( 

      robot, body_yaw_ref, friction_coeffs, planning_horizon_steps, 

      planning_timestep, Q_qp, R_qp, fz_max, fz_min); 

} 

 

Also, the function UpdateControlParameters(.) needs to be called at every control loop 

iteration so that the current desired ,x y  - linear velocity of the robot, the current desired z  - 

angular velocity of the robot get updated, according to the desired speed profile. This function 

is shown in the following code snippet. 

 
void TorqueStanceLegController::UpdateControlParameters( 

    Vector2d& linSpeed, double& angSpeed) 

{ 

  desired_speed = Vector3d(linSpeed(0), linSpeed(1), 0); 

  desired_twisting_speed = angSpeed; 

} 

 

Finally, the function GetAction(.) needs to be called at every control loop iteration to 

compute the actions corresponding to the stance legs. This function is shown in the following 

code snippet. The computation proceeds only if the leg that is supposed to be in stance phase 

is in contact with the ground. Therefore, checks are performed to verify if the desired leg state 

is stance, or if the leg state is lose contact, for a specific leg. If they are, then the computation 

proceeds. This information is of paramount importance for the QP setup, since the solver must 

be aware of which feet are in contact with the ground or not. The QP setup also requires the 

foot positions w.r.t the robot’s body frame. Additionally, for the MPC computations, a body yaw 

aligned world frame is utilized. To be more precise, this frame’s origin coincides with the world 

frame’s origin, its z  - axis is aligned with the world frames z  - axis and its ,x y  - axes are 

aligned with the robot’s body frame ,x y  - axes, respectively. Thus, the state vector is being 

expressed in this frame. In case were the desired z  - angular velocity of the robot is zero, 

then robot’s body yaw angle, w.r.t. the world frame, must be kept constant and thus this value 

is the reference yaw angle. In case were the desired z  - angular velocity of the robot is non 

zero, then the yaw angle from the previous control loop iteration is utilized to formulate the 

initial robot state. Given these higher-level parameters, the QP can be solved by calling the 

member function of the class ConvexMPCDense, ComputeContactForces(.). Then the 

predicted GRFs can be mapped to motor torques using the relationship of equation (4-57). 
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void TorqueStanceLegController::GetAction( 

    double current_time, Eigen::VectorXd& q, Eigen::VectorXd& q_dot, 

    Vector3d& com_position, Vector3d& body_orientation_rpy, 

    Vector3d& com_velocity, Vector3d& body_angular_velocity) 

{ 

  std::cout << "stance_leg_controller_get_action:\n" << std::endl; 

 

  // Computes the torque for stance legs 

 

  Vector3d desired_com_position = Vector3d(0.0, 0.0, desired_height(2)); 

  Vector3d desired_com_velocity = 

      Vector3d(desired_speed(0), desired_speed(1), 0.0); 

  Vector3d desired_com_roll_pitch_yaw = Vector3d(0.0, 0.0, 0.0); 

  Vector3d desired_com_angular_velocity = 

      Vector3d(0.0, 0.0, desired_twisting_speed); 

 

  VectorXd foot_contact_state(gaitGenerator->desired_leg_state.size()); 

 

  for (int i = 0; i < gaitGenerator->desired_leg_state.size(); ++i) 

  { 

    foot_contact_state(i) = 

        (gaitGenerator->desired_leg_state(i) == LegState::STANCE || 

         gaitGenerator->leg_state(i) == LegState::EARLY_CONTACT); 

  } 

 

  // We use the body yaw aligned world frame for MPC computation. 

 

  Vector3d com_velocity_body_frame; 

  robot->BaseVelocityInBodyFrame(body_orientation_rpy, com_velocity, 

                                 com_velocity_body_frame); 

 

  // Angular velocity in the yaw aligned world frame is actually 

  // different from rpy rate. We use it here as a simple approximation. 

  Vector3d base_rpy_rate; 

  robot->BaseRollPitchYawRate(body_orientation_rpy, 

                              body_angular_velocity, base_rpy_rate); 

 

  Matrix3d rotation = 

      rpy::rpyToMatrix(0.0, 0.0, 

                       ((desired_com_angular_velocity(2) == 0.0) ? 

                            (body_yaw_ref) : 

                            (convexMPC->body_previous_yaw))); 

  Vector3d com_position_by = rotation_.transpose() * com_position; 

 

  Vector3d body_rpy = body_orientation_rpy; 

  double body_yaw = body_orientation_rpy(2); 

  body_rpy(2) = 0.0; 

 

  // std::cout << "Here is body_orientation_rpy:\n" 

  //           << body_orientation_rpy << std::endl; 

 

  Matrix3x4 foot_positions_base_frame; 

  foot_positions_base_frame.setZero(); 

  robot->FootPositionsInBaseFrame(q, foot_positions_base_frame); 

 

  convexMPC->ComputeContactForces( 

      current_time, body_yaw, body_yaw_ref, foot_contact_state, 

      foot_positions_base_frame, com_position_by,  

      com_velocity_body_frame, body_rpy, base_rpy_rate, 

      desired_com_position, desired_com_velocity, 
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      desired_com_roll_pitch_yaw, desired_com_angular_velocity); 

 

  Matrix3x4 contact_forces; 

  for (int i = 0; i < num_legs; i++) 

  { 

    contact_forces.col(i) = 

        convexMPC->predicted_contact_forces.segment<k3Dim>(i * k3Dim); 

  } 

 

  action.setZero(); 

  VectorNm motor_torques; 

  motor_torques.setZero(); 

 

  Eigen::VectorXd nle; 

  robot->ComputeBiasTerms(q, q_dot, nle); 

 

  for (int leg_id = 0; leg_id < num_legs; leg_id++) 

  { 

    Vector3d force = contact_forces.col(leg_id); 

 

    // While "LOSE CONTACT" is useful in simulation, in real environment 

    // it's susceptible to sensor noise. 

    if (gaitGenerator->leg_state(leg_id) == LegState::LOSE_CONTACT) 

    { 

      std::cout << "The leg " << leg_id << " is in LOSE_CONTACT \n" 

                << std::endl; 

      force << 0.0, 0.0, 0.0; 

    } 

 
    // std::cout << "Here is leg_id:\n" << leg_id << std::endl; 

 

    robot->MapContactForceToJointTorques(leg_id, q, force, nle, 

                                         motor_torques); 

 

    // std::cout << "Here is motor_torques:\n" << motor_torques << 

    // std::endl; 

 

    Vector3i joint_ids; 

    joint_ids << motors_per_leg * leg_id, motors_per_leg * leg_id + 1, 

        motors_per_leg * leg_id + 2; 

 

    for (int i = 0; i < joint_ids.size(); i++) 

    { 

      int joint_id = joint_ids(i); 

      double torque = motor_torques(joint_id); 

 

      action.row(joint_id) << 0.0, 0.0, 0.0, 0.0, torque; 

    } 

  } 

 

  std::cout << "Here is stance action:\n" << action << std::endl; 

} 

 

Now follows the description of the class ConvexMPCDense. First of all, the class 

ConvexMPCDense should be initialized. The parameters necessary to initialize this class are 

the following: an instance of the Robot class, the reference robot’s body yaw angle in the 

previous control loop iteration, the foot friction coefficients, the number of the timesteps into 

which the horizon was divided, the timestep size, the matrices ,qp qpQ R  and the minimum and 
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maximum normal contact force limits. The function that performs this initialization is shown in 

the following code snippet. 

 
ConvexMPCDense::ConvexMPCDense(Robot* robot, double body_previous_yaw, 

                               Vector4d friction_coeffs, 

                               int planning_horizon_steps, 

                               double planning_timestep, 

                               MatrixNxNhNxNh Q_qp, MatrixNuNhNuNh R_qp, 

                               double fz_max, double fz_min) 

{ 

  this->robot = robot; 

  this->body_previous_yaw = body_previous_yaw; 

  this->foot_friction_coeffs = friction_coeffs; 

  this->planning_horizon_steps = planning_horizon_steps; 

  this->planning_timestep = planning_timestep; 

  this->Q_qp = Q_qp; 

  this->R_qp = R_qp; 

  this->fz_max = fz_max; 

  this->fz_min = fz_min; 

 

  inv_robot_mass = 1 / robot->robot_mass; 

  inv_robot_inertia = robot->robot_inertia.inverse(); 

 

  H.resize(Nu * Nh, Nu * Nh); 

  Ac.resize(Nc * Nh, Nu * Nh); 

} 

 

The linear dynamics matrices ,A B defined by the equations (4-32), (4-33) are computed 

using the functions CalculateAMatrix(.) and CalculateBMatrix(.) respectively that are 

implemented in the following two code snippets. 

 
void ConvexMPCDense::CalculateAMatrix(Vector3d& body_rpy, 

                                      MatrixNxNx& A_mat) 

{ 

  // The CoM dynamics can be written as: 

  // x_dot = A x + B u 

  // where x is the 13-dimensional state vector (r, p, y, x, y, z, r_dot, 

  // p_dot, y_dot, vx, vy, vz, -g) constructed from the CoM 

  // roll/pitch/yaw/position, and their first order derivatives. 'g' is 

  // the gravity constant. u is the 3*num_legs -dimensional input vector 

  // ( (fx, fy, fz) for each leg ) 

 
  // Construct A matrix (13x13) in the linearized CoM dynamics equation 

 

  // We assume that the input rotation is in X->Y->Z order in the 

  // extrinsic/fixed frame, or z->y'->x'' order in the intrinsic frame. 

 
  double cos_yaw = cos(body_rpy(2)); 

  double sin_yaw = sin(body_rpy(2)); 

  double cos_pitch = cos(body_rpy(1)); 

  double tan_pitch = tan(body_rpy(1)); 

 
  Matrix3d angular_velocity_to_rpy_rate; 

  angular_velocity_to_rpy_rate << cos_yaw / cos_pitch, 

      sin_yaw / cos_pitch, 0, -sin_yaw, cos_yaw, 0, cos_yaw * tan_pitch, 

      sin_yaw * tan_pitch, 1; 

 
  // angular_velocity_to_rpy_rate << cos_yaw, sin_yaw, 0, 
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  //                                -sin_yaw, cos_yaw, 0, 

  //                                       0,       0, 1; 

 
  A_mat.setZero(); 

 
  A_mat.block<3, 3>(0, 6) = angular_velocity_to_rpy_rate; 

  A_mat.block<3, 3>(3, 9) = Eigen::Matrix3d::Identity(); 

  A_mat(11, 12) = 1; 

} 

 
void ConvexMPCDense::CalculateBMatrix(double& inv_mass, 

                                      Matrix3d& inv_inertia, 

                                      Matrix3x4& foot_positions, 

                                      MatrixNxNu& B_mat) 

{ 

  // Construct B matrix in the linearized CoM dynamics equation 

 
  // B (13x(num_legs*3)) contains non_zero elements only in row 6:12. 

 
  B_mat.setZero(); 

 
  for (int i = 0; i < num_legs; ++i) 

  { 

    B_mat.block<k3Dim, k3Dim>(6, i * k3Dim) = 

        inv_inertia * skew(foot_positions.col(i)); // r x f torque 

    B_mat.block<k3Dim, k3Dim>(9, i * k3Dim) = 

        inv_mass * Eigen::Matrix3d::Identity(); // f = ma 

  } 

} 

 

Also, the discretized linear dynamics matrices ,k kA B  defined by equation (4-35) are 

computed using the function CalculateDiscreteABMatrices(.) that is implemented in the 

following code snippet. 

 
void ConvexMPCDense::CalculateDiscreteABMatrices( 

    MatrixNxNx& A_mat, MatrixNxNu& B_mat, double& planning_timestep, 

    MatrixNxNx& Ad_mat, MatrixNxNu& Bd_mat) 

{ 

  // Calculates the discretized space-time dynamics. Given the dynamics 

  // equation: 

  //   xdot = A x + B u 

  // and a timestep dt, we can estimate the snapshot of the state at t + 

  // dt by: 

  //   x(t + dt) = = Ad x + Bd u 

 
  // Using explicit 1st order Euler integration with zero-order hold on u 

 
  const int state_dim = kStateDim; 

 
  Ad_mat.setZero(); 

  Bd_mat.setZero(); 

 
  Ad_mat = MatrixXd::Identity(state_dim, state_dim) +  

           A_mat * planning_timestep; 

  Bd_mat = B_mat * planning_timestep; 

} 
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The solver OSQP is also utilized here to solve the QP. The decision variables vector z  

will be equal to: 0 1

TTT T
N

 = =
 

z u u u U . According to this arrangement of the decision 

variables, and to the form of the QP formulation of equation (4-53), will the rest of the QP 

matrices and vectors be selected. The Hessian P  and the gradient q  in the cost function are 

the following: 

 ,= =P H q h  (4-59) 

The linear constraints matrix cA  and the constraint bound vectors ,b bl u  are the following: 

 , ,= = =c b bA C l c u c  (4-60) 

The aforementioned QP matrices and vectors are filled in by calling the functions 

CalculateQPMatrices(.), CalculateConstraintMatrix(.) and 

CalculateConstraintBounds(.). The first function builds the matrix and vector ,P q , the 

second function builds the matrix cA  and the third function builds the vectors ,b bl u . These 

functions are presented in the three code snippets below: 

 
// Calculate Hessian matrix H and gradient vector q for QP 

void ConvexMPCDense::CalculateQPMatrices( 

    int& planning_horizon_steps, VectorNx& x0, VectorNxNh& state_ref, 

    VectorNuNh& input_ref, MatrixNxNhNxNh& Q, MatrixNuNhNuNh& R, 

    MatrixNxNx& Ad_mat, MatrixNxNu& Bd_mat, Sparse_Matrix& H_sparse, 

    VectorNuNh& q_dense) 

{ 

  const int state_dim = Ad.cols(); 

  const int action_dim = Bd.cols(); 

 
  MatrixNxNhNx A_qp; 

  A_qp.setZero(); 

  Eigen::MatrixXd B_qp(state_dim * planning_horizon_steps,  

                       action_dim * planning_horizon_steps); 

  B_qp.setZero(); 

 
  Eigen::MatrixXd H_dense(action_dim * planning_horizon_steps,  

                          action_dim * planning_horizon_steps); 

  H_dense.setZero(); 

  q_dense.setZero(); 

 
  /////////////////////////////////////////////////////////////////////// 

  /////////////////////////////////////////////////////////////////////// 

 
  // calculate A_qp and B_qp 

 
  // A_qp = [A, 

  // A^2, 

  // A^3, 

  // ... 

  // A^k]' 

 
  // B_qp = [A^0*B(0), 

  // A^1*B(0), B(1), 

  // A^2*B(0), A*B(1), B(2), 

  // ... 

  // A^(k-1)*B(0), A^(k-2)*B(1), A^(k-3)*B(2), ... B(k-1)] 

 
  for (int i = 0; i < planning_horizon_steps; ++i) 

  { 
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    if (i == 0) 

    { 

      A_qp.block(state_dim * i, 0, state_dim, state_dim) = Ad; 

    } 

    else 

    { 

      A_qp.block(state_dim * i, 0, state_dim, state_dim) = 

          A_qp.block(state_dim * (i - 1), 0, state_dim, state_dim) * Ad; 

    } 

 
    for (int j = 0; j < i + 1; ++j) 

    { 

      if (i - j == 0) 

      { 

        B_qp.block(state_dim * i, action_dim * j, state_dim,  

                   action_dim) = 

            Bd; // Bd.block(j * state_dim, 0, state_dim, action_dim); 

      } 

      else 

      { 

        B_qp.block(state_dim * i, action_dim * j, state_dim,  

                   action_dim) = 

            A_qp.block(state_dim * (i - j - 1), 0, state_dim,  

                       state_dim) * 

            Bd; // Bd.block(j * state_dim, 0, state_dim, action_dim); 

      } 

    } 

  } 

 
  /////////////////////////////////////////////////////////////////////// 

 
  // calculate hessian 

  H_dense = (B_qp.transpose() * Q * B_qp + R); 

  H_sparse = H_dense.sparseView(); 

 
  // calculate gradient 

  q_dense = B_qp.transpose() * Q * (A_qp * x0 - state_ref); 

} 

 
// Calculate Linear Constraints Matrix Ac for QP 

void ConvexMPCDense::CalculateConstraintMatrix( 

    int& planning_horizon_steps, MatrixNhNl& contact_states,  

    Vector4d& friction_coeff, Sparse_Matrix& Ac_sparse) 

{ 

  Eigen::MatrixXd Ac_dense(kConstraintDim * num_legs *  

                               planning_horizon_steps, 

                           kInputDim * planning_horizon_steps); 

  Ac_dense.setZero(); 

 
  for (int i = 0; i < planning_horizon_steps * num_legs; ++i) 

  { 

    Ac_dense.block<kConstraintDim, k3Dim>(i * kConstraintDim, i * k3Dim) 

    << -1, 

    0, friction_coeff(0),     // -fx + mu * fz 

    1, 0, friction_coeff(1),  //  fx + mu * fz 

    0, -1, friction_coeff(2), // -fy + mu * fz 

    0, 1, friction_coeff(3),  //  fy + mu * fz 

    0, 0, 1;                  //  fz 

  } 

 
  Ac_sparse = Ac_dense.sparseView(); 
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} 

 
// Build lower and upper bound vectors lb, ub for QP 

void ConvexMPCDense::CalculateConstraintBounds( 

    int& planning_horizon_steps, MatrixNhNl& contact_state,  

    double& fz_max, double& fz_min, double& friction_coeff,  

    VectorNcNh& l, VectorNcNh& u) 

{ 

  VectorXd constraint_lb_C(kConstraintDim * int(num_legs) *  

                           planning_horizon_steps); 

  VectorXd constraint_ub_C(kConstraintDim * int(num_legs) *  

                           planning_horizon_steps); 

 
  for (int i = 0; i < planning_horizon_steps; ++i) 

  { 

    for (int j = 0; j < num_legs; ++j) 

    { 

      const int row = (i * num_legs + j) * kConstraintDim; 

 
      constraint_lb_C(row) = 0.0; 

      constraint_lb_C(row + 1) = 0.0; 

      constraint_lb_C(row + 2) = 0.0; 

      constraint_lb_C(row + 3) = 0.0; 

      constraint_lb_C(row + 4) = fz_min * contact_state(i, j); 

 
      const double friction_ub = OsqpEigen::INFTY * contact_state(i, j); 

 
      constraint_ub_C(row) = friction_ub; 

      constraint_ub_C(row + 1) = friction_ub; 

      constraint_ub_C(row + 2) = friction_ub; 

      constraint_ub_C(row + 3) = friction_ub; 

      constraint_ub_C(row + 4) = fz_max * contact_state(i, j); 

    } 

  } 

 
  l = constraint_lb_C; 

  u = constraint_ub_C; 

} 

 

Finally, the function ComputeContactForces(.) needs to be called at every control loop 

iteration to solve the QP and compute the GRFs that track the desired position and velocity of 

the robot. This function is shown in the following code snippet. The initial state vector and the 

desired (reference) state vector of the linearized SRBD have to be expressed in the body yaw 

aligned world frame. The desired ,x y -position and yaw angle   are determined by 

integrating the ,x y -velocity and z  - angular velocity respectively. In case were the desired z  

- angular velocity of the robot is nonzero, then the yaw angle from the previous control loop 

iteration is used as the initial condition for the integration. Then the QP matrices and vectors 

can be calculated by calling the functions CalculateQPMatrices(.), 

CalculateConstraintMatrix(.) and CalculateConstraintBounds(.). Afterwards, the QP 

solver gets either initialized or updated and solves the problem. The predicted GRFs are then 

expressed in the robot’s body frame since the foot Jacobians matrices computed by calling 

the function ComputeFootJacobian(.) are also expressed in this frame. 

 
void ConvexMPCDense::ComputeContactForces( 

    double current_time, double& yaw, double& yaw_ref, 

    VectorXd& foot_contact_states, Matrix3x4& foot_positions_body_frame, 



 

197/252 

    Vector3d& com_position, Vector3d& com_velocity, 

    Vector3d& body_orientation_rpy, Vector3d& body_angular_velocity, 

    Vector3d& desired_com_position, Vector3d& desired_com_velocity, 

    Vector3d& desired_body_orientation_rpy, 

    Vector3d& desired_body_angular_velocity) 

{ 

  std::cout << "osqp_compute_contact_forces_DENSE:\n" << std::endl; 

 

  // std::cout << "Here is robot_mass:\n" 

  //           << 1 / inv_robot_mass << std::endl; 

 

  // First we compute the foot positions in the world frame. 

  DCHECK_EQ(body_orientation_rpy.size(), k3Dim); 

  const Quaterniond com_rotation = 

      AngleAxisd(body_orientation_rpy(0), Vector3d::UnitX()) * 

      AngleAxisd(body_orientation_rpy(1), Vector3d::UnitY()) * 

      AngleAxisd(body_orientation_rpy(2), Vector3d::UnitZ()); 

 

  DCHECK_EQ(foot_positions_body_frame.size(), k3Dim * num_legs); 

  foot_positions_base = foot_positions_body_frame; 

 

  for (int i = 0; i < num_legs; ++i) 

  { 

    foot_positions_world.col(i) = 

        com_rotation * foot_positions_base.col(i); 

  } 

 

  // In MPC planning we don't care about absolute position in the 

  // horizontal plane. 

  double com_x = com_position(0); 

  double com_y = com_position(1); 

  double com_z = com_position(2); 

 

  VectorNx state; 

  state << body_orientation_rpy(0), body_orientation_rpy(1), 

      ((desired_body_angular_velocity(2) == 0.0) ? 

           (yaw - yaw_ref) : 

           (yaw - body_previous_yaw)), 

      com_x, com_y, com_z, body_angular_velocity(0), 

      body_angular_velocity(1), body_angular_velocity(2),  

      com_velocity(0), com_velocity(1), com_velocity(2), -kGravity; 

 

  // Prepare the current and desired state vectors of length kStateDim * 

  // planning_horizon. 

 

  desired_states(0) = desired_body_orientation_rpy(0); 

  desired_states(1) = desired_body_orientation_rpy(1); 

  desired_states(2) = 

      ((desired_body_angular_velocity(2) == 0.0) ? 

           (0.0) : 

           (yaw - body_previous_yaw)) + 

      planning_timestep * desired_body_angular_velocity(2); 

 

  desired_states(3) = ((desired_com_velocity(0) == 0.0) ? 0.0 : com_x) + 

                       planning_timestep * desired_com_velocity(0); 

  desired_states(4) = ((desired_com_velocity(1) == 0.0) ? 0.0 : com_y) + 

                       planning_timestep * desired_com_velocity(1); 

  desired_states(5) = desired_com_position(2); 

 

  // Prefer to stabilize roll and pitch. 

  desired_states(6) = desired_body_angular_velocity(0); 
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  desired_states(7) = desired_body_angular_velocity(1); 

  desired_states(8) = desired_body_angular_velocity(2); 

 

  desired_states(9) = desired_com_velocity(0); 

  desired_states(10) = desired_com_velocity(1); 

 

  // Prefer to stabilize the body height. 

  desired_states(11) = 0.0; 

 

  desired_states(12) = -kGravity; 

 

  for (int i = 1; i < planning_horizon_steps; ++i) 

  { 

    desired_states(i * kStateDim + 0) = desired_body_orientation_rpy(0); 

    desired_states(i * kStateDim + 1) = desired_body_orientation_rpy(1); 

    desired_states(i * kStateDim + 2) = 

        desired_states((i - 1) * kStateDim + 2) + 

        planning_timestep * desired_body_angular_velocity(2); 

 

    desired_states(i * kStateDim + 3) = 

        desired_states((i - 1) * kStateDim + 3) + 

        planning_timestep * desired_com_velocity(0); 

    desired_states(i * kStateDim + 4) = 

        desired_states((i - 1) * kStateDim + 4) + 

        planning_timestep * desired_com_velocity(1); 

    desired_states(i * kStateDim + 5) = desired_com_position(2); 

 

    // Prefer to stabilize roll and pitch. 

    desired_states(i * kStateDim + 6) = 

        desired_body_angular_velocity(0); 

    desired_states(i * kStateDim + 7) =  

        desired_body_angular_velocity(1); 

    desired_states(i * kStateDim + 8) =  

        desired_body_angular_velocity(2); 

 

    desired_states(i * kStateDim + 9) = desired_com_velocity(0); 

    desired_states(i * kStateDim + 10) = desired_com_velocity(1); 

 

    // Prefer to stabilize the body height. 

    desired_states(i * kStateDim + 11) = 0.0; 

 

    desired_states(i * kStateDim + 12) = -kGravity; 

  } 

 

  // Prepare the current and desired input vectors of length kInputDim * 

  // planning_horizon_steps. 

  desired_inputs = VectorXd::Zero(kInputDim * planning_horizon_steps); 

 

  Vector3d rpy(body_orientation_rpy(0), body_orientation_rpy(1), 

               body_orientation_rpy(2)); 

 

  // std::cout << "Here is the yaw : \n" << yaw << std::endl; 

  // std::cout << "Here is the yaw_ref : \n" << yaw_ref << 

  // std::endl; 

 

  CalculateAMatrix(rpy, A); 

 

  Matrix3d rotation = rpy::rpyToMatrix(rpy(0), rpy(1), rpy(2)); 

  Matrix3d inv_inertia_world = 

      rotation * inv_robot_inertia * rotation.transpose(); 
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  CalculateBMatrix(inv_robot_mass, inv_inertia_world, 

                   foot_positions_world, B); 

 

  CalculateDiscreteABMatrices(A, B, planning_timestep, Ad, Bd); 

 

  CalculateQPMatrices(planning_horizon_steps, state, desired_states, 

                      desired_inputs, Q_qp, R_qp, Ad, Bd, H, q); 

 

  const VectorXd one_vec = 

      VectorXd::Constant(planning_horizon_steps, 1.0); 

  const VectorXd zero_vec = VectorXd::Zero(planning_horizon_steps); 

 

  for (int j = 0; j < foot_contact_states.size(); ++j) 

  { 

    if (foot_contact_states(j)) 

    { 

      contact_states.col(j) = one_vec; 

    } 

    else 

    { 

      contact_states.col(j) = zero_vec; 

    } 

  } 

 

  std::cout << "Here is the matrix contact_states:\n" 

            << contact_states << std::endl; 

 

  double mu = foot_friction_coeffs(0); 

  CalculateConstraintBounds(planning_horizon_steps, contact_states,  

                            fz_max, fz_min, mu, lb, ub); 

 

  CalculateConstraintMatrix(planning_horizon_steps, contact_states, 

                            foot_friction_coeffs, Ac); 

 

  if (!solver.isInitialized()) 

  { 

    std::cout << "It IS NOT initialized \n" << std::endl; 

 

    // settings 

    solver.settings()->setVerbosity(false); 

    solver.settings()->setWarmStart(true); 

    solver.settings()->setPolish(true); 

    // solver.settings()->setAdaptiveRhoInterval(25) ; 

 

    solver.settings()->setAbsoluteTolerance(1e-03); 

    solver.settings()->setRelativeTolerance(1e-03); 

    solver.settings()->setCheckTermination(1); 

    // solver.settings()->setScaledTerimination(1) ; 

 

    // set the initial data of the QP solver 

    solver.data()->setNumberOfVariables(Ac.cols()); 

    solver.data()->setNumberOfConstraints(Ac.rows()); 

 

    solver.data()->setHessianMatrix(H); 

    solver.data()->setGradient(q); 

    solver.data()->setLinearConstraintsMatrix(Ac); 

    solver.data()->setLowerBound(lb); 

    solver.data()->setUpperBound(ub); 

 

    // instantiate the solver 

    solver.initSolver(); 
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    VectorNuNh primal_variable_init; 

    VectorNu primal_variable_vec; 

    primal_variable_vec << 0.0, 0.0, 

        (robot->robot_mass * kGravity) / 4.0, 0.0, 0.0, 

        (robot->robot_mass * kGravity) / 4.0, 0.0, 0.0, 

        (robot->robot_mass * kGravity) / 4.0, 0.0, 0.0, 

        (robot->robot_mass * kGravity) / 4.0; 

    primal_variable_init = 

        primal_variable_vec.replicate(planning_horizon_steps, 1); 

 

    solver.setPrimalVariable(primal_variable_init); 

  } 

  else 

  { 

    std::cout << "It IS initialized \n" << std::endl; 

 

    // update the QP matrices and vectors 

    solver.updateHessianMatrix(H); 

    solver.updateGradient(q); 

    // solver.updateLinearConstraintsMatrix( Ac ); 

    // solver.updateLowerBound( lb ) ; 

    // solver.updateUpperBound( ub ) ; 

    solver.updateBounds(lb, ub); 

  } 

 

  // solve the QP problem 

  //(!solver->solve()); 

  solver.solveProblem() != OsqpEigen::ErrorExitFlag::NoError; 

 

  VectorXd qp_solution = solver.getSolution(); 

 

  VectorNm contact_forces_world_yaw_aligned = 

      qp_solution.head<kInputDim>(); 

 

  for (int i = 0; i < num_legs; i++) 

  { 

    predicted_contact_forces.segment(i * 3, 3) = 

        rotation * contact_forces_world_yaw_aligned.segment(i * 3, 3); 

  } 

 

  body_previous_yaw = 

      ((desired_body_angular_velocity(2) == 0.0) ? (yaw_ref) : (yaw)); 

 

  std::cout << "Here is predicted_contact_forces:\n" 

            << predicted_contact_forces << std::endl; 

} 

 

4.4.5 Locomotion Controller 

The locomotion controller consists of the class LocomotionController. The functions that 

belong to this class are responsible for deciding the motor torque (action) of each leg joint 

depending on whether the leg is in stance or swing state. In the case of the swinging legs, it 

computes the actions that should be applied to the leg joints using equation (4-18). The header 

file locomotion_controller.h contains the definition of the class, that includes declaration of its 

member variables and functions. The implementation of the class is located in the 

locomotion_controller.cpp file. 
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First of all, the class LocomotionController should be initialized. The parameters 

necessary to initialize this class are the following: an instance of the Robot class, an instance 

of the class OpenLoopGaitGenerator, an instance of the class RaibertSwingLegController 

and an instance of the class TorqueStanceLegController. The function that performs this 

initialization is shown in the following code snippet. 

 
LocomotionController::LocomotionController( 

    Robot* robot, OpenLoopGaitGenerator* gaitGenerator, 

    RaibertSwingLegController* swingLegController, 

    TorqueStanceLegController* stanceLegController) 

{ 

  this->robot = robot; 

  this->gaitGenerator = gaitGenerator; 

  this->swingLegController = swingLegController; 

  this->stanceLegController = stanceLegController; 

} 

 

Secondly, the function Reset(.) is also a member of this class. It needs to be called to 

reset the parameters of the planners and the controllers. This function is shown in the following 

code snippet. 

 
void LocomotionController::Reset(double current_time, Eigen::VectorXd& q) 

{ 

  // Resets the controller's internal state 

 

  gaitGenerator->Reset(current_time); 

  swingLegController->Reset(current_time, q); 

} 

 

Furthermore, the function Update(.) needs to be called at every control loop iteration so 

that the various parameters of the planners and the controllers get updated. This function is 

shown in the following code snippet. 

 
void LocomotionController::Update(double current_time, 

                                  Vector4d& contact_state, 

                                  VectorNm& contact_force, 

                                  Eigen::VectorXd& q, Vector2d& linSpeed, 

                                  double& angSpeed) 

{ 

  // Updates the controller's internal state 

 

  gaitGenerator->Update(current_time, contact_state, contact_force); 

  swingLegController->UpdateControlParameters(linSpeed, angSpeed); 

  swingLegController->Update(current_time, q); 

  stanceLegController->UpdateControlParameters(linSpeed, angSpeed); 

} 

 

Finally, the function GetAction(.) needs to be called at every control loop iteration to 

compute the motor torques via the sub controllers. This function is shown in the following code 

snippet. The motor torques that correspond to the stance legs are computed directly by the 

member function of the class TorqueStanceLegController, GetAction(.). The motor torques 

that correspond to the swing legs are computed in this function, using equation (4-18). The 
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member function of the class RaibertSwingLegController, GetAction(.), merely computes 

the desired joint angles and the PD controller gains corresponding to the swing legs.  

 
void LocomotionController::GetAction( 

    double current_time, Eigen::VectorXd& q, Eigen::VectorXd& q_dot, 

    VectorNm& qj_dot, Vector3d& com_position, 

    Vector3d& body_orientation_rpy, Vector3d& com_velocity, 

    Vector3d& body_angular_velocity) 

{ 

  // Returns the control outputs (torques) for all motors 

 

  std::cout << "locomotion_controller_get_action:\n" << std::endl; 

 

  swingLegController->GetAction(current_time, q, com_position, 

                                body_orientation_rpy, com_velocity, 

                                body_angular_velocity); 

  MatrixNm5 swing_action = swingLegController->action; 

 

  stanceLegController->GetAction(current_time, q, q_dot, com_position, 

                                 body_orientation_rpy, com_velocity, 

                                 body_angular_velocity); 

  MatrixNm5 stance_action = stanceLegController->action; 

 

  action.setZero(); 

  VectorNm qj = q.segment(com_dof, num_motors); 

 

  Eigen::MatrixXd M; 

  Eigen::MatrixXd Jv; 

  Eigen::MatrixXd Jv_dot; 

 

  M.setZero(); 

 

  if (!swing_action.isZero()) 

  { 

    robot->ComputeInertiaMatrix(q, M); 

  } 

 

  for (int leg_id = 0; leg_id < num_legs; leg_id++) 

  { 

    if (swing_action(motors_per_leg * leg_id, 0) != 0.0) 

    { 

      robot->ComputeFootJacobian(q, leg_id, Jv); 

      robot->ComputeFootJacobianTimeVariation(q, q_dot, leg_id, Jv_dot); 

 

      Eigen::MatrixXd Jv_inv = robot->sdlsInv( 

          Jv.block(0, com_dof + motors_per_leg * leg_id, 3, 3)); 

 

      action.segment(motors_per_leg * leg_id, 3) = 

          M.block(com_dof + motors_per_leg * leg_id, 

                  com_dof + motors_per_leg * leg_id, 3, 3) * 

              Jv_inv * 

              (swingLegController->foot_position_ddot_des.col(leg_id) - 

               Jv_dot.block(0, com_dof + motors_per_leg * leg_id, 3, 3) * 

                   q_dot.segment(com_dof + motors_per_leg * leg_id, 3)) + 

          (-swing_action.block(motors_per_leg * leg_id, 1, 3, 1) 

                .cwiseProduct(qj.segment(motors_per_leg * leg_id, 3) - 

                              swing_action.block(motors_per_leg * leg_id, 

                                                 0, 3, 1)) - 

           swing_action.block(motors_per_leg * leg_id, 3, 3, 1) 

               .cwiseProduct(qj_dot.segment(motors_per_leg * leg_id, 3) - 
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                             swing_action.block(motors_per_leg * leg_id, 

                                                2, 3, 1))); 

 

      // Bias terms compensation 

      action.segment(motors_per_leg * leg_id, 3) += 

          stance_action.block(motors_per_leg * leg_id, 4, 3, 1); 

    } 

    else 

    { 

      action.segment(motors_per_leg * leg_id, 3) += 

          stance_action.block(motors_per_leg * leg_id, 4, 3, 1); 

    } 

 

    VectorNm lower; 

    lower = -torque_limit * Eigen ::MatrixXd ::Ones(num_motors, 1); 

    VectorNm upper; 

    upper = torque_limit * Eigen ::MatrixXd ::Ones(num_motors, 1); 

    action = lower.cwiseMax(upper.cwiseMin(action)); 

  } 

 

  std::cout << "Here is action:\n" << action << std::endl; 

} 

 

 



 

204/252 

5 Experiments for ARGOS in Gazebo 

The locomotion MPC controller whose implementation was discussed in chapter 4.4, is tested 

on the quadruped robot ARGOS, in Gazebo simulator. Two different gaits were performed by 

ARGOS in these simulations: walking and trotting gait. For each of these gaits, both nonzero 

desired ,x y  - linear velocity with zero desired z  - angular velocity and zero desired ,x y  - 

linear velocity with nonzero desired z  - angular velocity were tested in the simulations. The 

numerical values of the parameters for the MPC controller got tabulated and are presented in 

Table 5-1. Different gait patterns are selected depending on the locomotion speed that should 

be achieved. With gait patterns like trot, higher locomotion speeds can be achieved in 

comparison to gait patterns like walk. Thus, different gait patterns were tested. Finally, the 

controller should maintain the locomotion height constant and equal to the reference during 

the execution of the commanded tasks. Moreover, the horizon was set equal to the stance 

duration of each gait and did not cover the swing state. In this way, the computational cost 

remains relatively small while achieving adequately accurate tracking of the desired body 

motion. 

Table 5-1. Numerical values of the MPC parameters implemented on ARGOS in Gazebo 
simulator. 

Parameter Description Symbol Numerical Value 

State Stage Cost Q  



3 3 4

3 3 4

3 3 4

1 , 1 ,  1 ,

1 ,  1 ,  5 ,

1 ,  1 ,  1 ,

1,  1,  1,  0

diag e e e

e e e

e e e
 

Input Stage Cost R  



4 4 4

4 4 4

4 4 4

4 4 4

1 , 1 ,  1 ,

1 ,  1 ,  1 ,

1 ,  1 ,  1 ,

1 ,  1 ,  1

diag e e e

e e e

e e e

e e e

− − −

− − −

− − −

− − −

 

Terminal State Cost 
NQ  Q  

Coefficient of friction   0.3  

Desired Locomotion Height 
0z  0.94m  

Maximum foot clearance 
max  0.1m 

Proportional Gain of 
the Abduction joint 

,p abdK  100Nm/rad  

Derivative Gain of 
the Abduction joint 

,d abdK  3Nm s/rad  

Proportional Gain of 
the Hip joint 

,p hipK  100Nm/rad  

Derivative Gain of 
the Hip joint 

,d hipK  3Nm s/rad  

Proportional Gain of 
the Knee joint 

,p kneeK  100Nm/rad  

Derivative Gain of 
the Knee joint 

,d kneeK  3Nm s/rad  
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5.1 Walking Gait 

The first gait that was executed in the simulation is walk. The gait plot that corresponds to the 

walking gait tested is presented in Figure 5-1. This is a timing diagram that specifies the 

desired state of each leg, which is either stance or swing, throughout the entire gait cycle. The 

horizontal axis represents the values of phase variable s  that cycles over the entire gait cycle. 

The grey colored areas indicate stance while the white colored areas indicate swing. Also, the 

parameters that specify that gait and other gait-dependent parameters for the MPC controller 

got tabulated and are presented in Table 5-2. 

 

Figure 5-1. Walking gait graph. The grey colored areas indicate stance while the white 
colored areas indicate swing. 

Table 5-2. Numerical values of the gait specific MPC parameters implemented on ARGOS in 
Gazebo simulator, for the walking gait. 

Parameter Description Symbol Numerical Value 

Stance Duration 
stT   0.8 0.8 0.8 0.8 sec  

Duty Factor    0.8 0.8 0.8 0.8  

Initial Leg State   1 1 1 1 Stance: 1, Swing: 0  

Initial Leg Phase   0 0.25 0.5 0.75  

Nominal Contact Detection 
Phase Threshold 

 0.1 

Desired Linear Velocity  0.3m/s  

Desired Angular Velocity  0.3rad/s  

Maximum Vertical Contact 
Force (translation) 

max
zf  1.0 343.35Nmg  =  

Minimum Vertical Contact 
Force (translation) 

min
zf  0.1 34.34Nmg  =  

Maximum Vertical Contact 
Force (rotation) 

max
zf  0.5 171.68Nmg  =  

Minimum Vertical Contact 
Force (rotation) 

min
zf  0.1 34.34Nmg  =  

Planning Horizon Steps N  5  

Planning Timestep h  0.16sec  

5.1.1 Linear Velocity Command 

In this set of experiments, the reference linear velocity profile requires the robot to reach a 

linear velocity of 0.3m/s  along the x -axis of the world frame, within 5sec , by accelerating 

linearly over time. The time responses of the , ,x y z -position of the CoM of the robot’s body 
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frame are presented in Figure 5-2. The reference x -position is derived by integrating the 

reference x -linear velocity of the CoM of the robot’s body frame. The actual response of the 

x -position and the reference position diverge from each other after the first 5sec  of simulation 

time have passed, but not significantly. This occurs since it cannot track perfectly the desired 

x -linear velocity command. This effect will become apparent when the time response of the 

x -linear velocity of the CoM of the robot’s body will be examined. Moreover, the z -position of 

the CoM is closer to the reference in comparison to the y -position and exhibits smaller 

periodic state error. To be more precise, the mean value of the ,y z -position, after the first 

5sec  of simulation time have passed, is equal to 0.003m  and 0.9423m respectively, while 

amplitude of the time responses of ,y z -position is approximately equal to 210 m−  and 410 m−  

respectively. Therefore, the controller can successfully stabilize the robot’s locomotion height 

and force the robot to move only along the x -axis of the world frame, while altering 

insignificantly the y -position of the robot’s body CoM in the process. 

 

Figure 5-2. The time responses of the x,y,z-position of the CoM of the robot’s body frame, for 
the walking gait (translation). 

The time responses of the orientation of the robot’s body frame, expressed using a Z-Y-

X Euler angles parameterization, are presented in Figure 5-3. The amplitude of the time 

responses of the body roll and pitch angles is small since its order of magnitude is 

approximately 310 rad− . Also, the mean value of these two responses is almost equal to zero. 

Thus, the assumption made when deriving the linearized SRBD is valid. Finally, the response 

of the yaw angle of the body exhibits a mean value equal to -1.5709rad  that does not differ 

significantly with the reference value of 2rad− , and a small variation around the mean value 

that is equal to 0.004rad . Consequently, the controller is able to successfully stabilize the body 

roll, pitch and yaw angles. 
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Figure 5-3. The time responses of the roll, pitch, yaw orientation of the robot’s body frame, 
for the walking gait (translation). 

The time responses of the , ,x y z -linear velocity of the CoM of the robot’s body frame are 

presented in Figure 5-4. The mean value of the x -linear velocity of the CoM after the first 5sec  

of simulation time is equal to 0.29m/s  which is close to the desired value. This periodic state 

error is responsible for the divergence that was observed between the reference and the actual 

x -position of the robot’s body CoM. Also, the amplitude of the time response of the x -linear 

velocity is relatively small but not insignificant since it is approximately equal to 0.05m/s . 

Despite that quantitative inaccuracy, the controller is able to track qualitatively correctly the 

desired speed profile. The mean value of the z -linear velocity of the CoM is close to the 

reference value with insignificant variations around that reference. The amplitude of the time 

response of the y -linear velocity though is higher than the one of the z -linear velocity. This 

difference can also be observed from the time responses of the , ,x y z -position of the CoM, 

shown in Figure 5-2. Nevertheless, that amplitude is relatively small but not insignificant, since 

it is equal to 0.1m/s . 
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Figure 5-4. The time responses of the x,y,z-linear velocity of the CoM of the robot’s body 
frame, for the walking gait (translation). 

The time responses of the , ,x y z -angular velocity of the robot’s body frame are presented in 

Figure 5-5. The mean value of all the time responses is almost equal to zero, which is expected 

since the controller must keep the angular velocities of the robot’s body as close to zero as 

possible. The amplitude of the time responses of the ,x z -angular velocity is small since it is 

approximately equal to 0.05rad/s  and 0.02rad/s  respectively. However, the amplitude of the 

time response of the y -angular velocity is higher than the other two. This difference is justified 

by the fact that only the x -linear velocity of the robot’s body CoM is nonzero, and thus this 

pitching motion is expected. Nevertheless, the amplitude is relatively small but not 

insignificant, since it is equal to 0.1rad/s . 

 

Figure 5-5. The time responses of the x,y,z-angular velocity of the robot’s body frame, for the 
walking gait (translation). 
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The time responses of the angular positions, the angular velocities and the torques of the 

joints of the FL leg of the quadruped are presented in Figure 5-6, Figure 5-7 and Figure 5-8 

respectively. The motors utilized in legged robots can usually achieve maximum angular rates 

that do not exceed 8rad/s . Thus, the angular velocities of all the joints must not exceed this 

bound. Also, such actuators can achieve maximum torques that do not exceed 50Nm . The 

torques of the joint actuators do not exceed this bound. The maximum vertical contact force 

limit was selected so that this constraint can be satisfied. 

 

Figure 5-6. Time responses of the angular positions of the joints of the FL leg, for the walking 
gait (translation). 

 

Figure 5-7. Time responses of the angular velocities of the joints of the FL leg, for the 
walking gait (translation). 
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Figure 5-8. Time responses of the torques of the joints of the FL leg, for the walking gait 
(translation). 

Finally, the distribution of the solve times of every control loop is presented in the histogram 

of Figure 5-9. The majority of the solve times ( 70%) are between 1.0ms  and 1.5ms . Also, the 

mean value of the solve times is equal to 1.4ms  and the standard deviation of the solve times 

is equal to 0.31ms . Thus, the control inputs can be computed very fast, since the value of the 

mean solve time is small, and at guaranteed rates, since the distribution around that mean 

value is also small. 

 

Figure 5-9. Solve time distribution of Convex MPC, for the walking gait (translation). 
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5.1.2 Angular Velocity Command 

In this set of experiments, the reference angular velocity profile requires the robot to reach an 

angular velocity of 0.3rad/s  along the z -axis of the world frame, within 5sec , by accelerating 

linearly over time. The time responses of the , ,x y z -position of the CoM of the robot’s body 

frame are presented in Figure 5-10. The amplitude of the time responses of ,x y -position of 

the robot’s CoM is relatively small but not insignificant since it is approximately equal to 0.02m

. Also, the mean value of these two responses is almost equal to zero since it is approximately 

equal to 0.003m− . Finally, the z -position of the CoM is also close to the reference and exhibits 

small periodic state error. To be more precise, its mean value after the first 5sec  of simulation 

time have passed, is equal to 0.9417m, and its variation around the mean value is small in 

comparison to one present in time responses of the ,x y -position, since its order of magnitude 

is approximately 410 m− . Therefore, the controller can successfully stabilize the robot’s 

locomotion height and force the robot to rotate about the z -axis of the world frame, while 

altering insignificantly the ,x y -position of the robot’s body CoM in the process. 

 

Figure 5-10. The time responses of the x,y,z-position of the CoM of the robot’s body frame, for 
the walking gait (rotation). 

The time responses of the orientation of the robot’s body frame, expressed using a Z-Y-

X Euler angles parameterization, are presented in Figure 5-11. The reference body yaw angle 

is derived by integrating the reference z -angular velocity of the robot’s body frame. The actual 

response of the yaw angle and the reference angular position diverge from each other after 

the first 5sec  of simulation time have passed, but not significantly. This occurs since it can 

track almost perfectly the desired z -angular velocity command. This effect will become 

apparent when the time response of the z -angular velocity of the robot’s body will be 

examined. The amplitude of the time responses of the body roll and pitch angles is small since 

its order of magnitude is approximately 210 rad−  and 310 rad−  respectively. Also, the mean 

value of these two responses is almost equal to zero since the mean value of the roll and pitch 

angle of the robot’s body is almost equal to 310 rad−  and 510 rad−  respectively. Thus, the 

assumption made when deriving the linearized SRBD is valid. Consequently, the controller is 
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able to successfully stabilize the body roll and pitch angles while rotating about the z -axis of 

the world frame. 

 

Figure 5-11. The time responses of the roll, pitch, yaw orientation of the robot’s body frame, 
for the walking gait (rotation). 

The time responses of the , ,x y z -linear velocity of the CoM of the robot’s body frame are 

presented in Figure 5-12. The mean value of all the time responses is almost equal to zero, 

which is expected since the controller must keep the linear velocities of the robot’s body CoM 

as close to zero as possible. The amplitude of the time response of the z -linear velocity is 

relatively small since it is approximately equal to 0.01m/s . However, the amplitude of the time 

responses of the ,x y -linear velocity is noticeably higher and almost equal to 0.1m/s . This 

difference can also be observed from the time responses of the , ,x y z -position of the CoM, 

shown in Figure 5-10. This difference is justified by the fact that the robot is moving on the xy

-plane of the world frame, while attempting to perform the desired rotation. Nevertheless, that 

amplitude is also relatively small, but not insignificant. 
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Figure 5-12. The time responses of the x,y,z-linear velocity of the CoM of the robot’s body 
frame, for the walking gait (rotation). 

The time responses of the , ,x y z -angular velocity of the robot’s body frame are presented in 

Figure 5-13. The mean value of the z -angular velocity of the robot’s body frame after the first 

5sec  of simulation time is almost equal 0.3rad/s  which is equal to the reference. Also, the 

amplitude of the time response of the z -angular velocity is relatively small since it is 

approximately equal to 0.04rad/s . Despite that quantitative inaccuracy, the controller is able 

to track qualitatively correctly the desired speed profile. The mean value of the ,y z -angular 

velocity of the robot’s body is close to the reference value and the amplitude of these 

responses is relatively small but not insignificant since it is equal to 0.2rad/s  

 

Figure 5-13. The time responses of the x,y,z-angular velocity of the robot’s body frame, for the 
walking gait (rotation). 
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The time responses of the angular positions, the angular velocities and the torques of the 

joints of the FL leg of the quadruped are presented in Figure 5-14, Figure 5-15 and Figure 

5-16 respectively. The motors utilized in legged robots can usually achieve maximum angular 

rates that do not exceed 8rad/s . Thus, the angular velocities of all the joints must not exceed 

this bound. Also, such actuators can achieve maximum torques that do not exceed 50Nm . 

The torques of the joint actuators do not exceed this bound. The maximum vertical contact 

force limit was selected so that this constraint can be satisfied. 

 

Figure 5-14. Time responses of the angular positions of the joints of the FL leg, for the walking 
gait (rotation). 

 

Figure 5-15. Time responses of the angular velocities of the joints of the FL leg, for the 
walking gait (rotation). 
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Figure 5-16. Time responses of the torques of the joints of the FL leg, for the walking gait 
(rotation). 

Finally, the distribution of the solve times of every control loop is presented in the histogram 

of Figure 5-17. The majority of the solve times ( 70%) are between 1.0ms  and 1.5ms . Also, 

the mean value of the solve times is equal to 1.34ms  and the standard deviation of the solve 

times is equal to 0.32ms . Thus, the control inputs can be computed very fast, since the value 

of the mean solve time is small, and at guaranteed rates, since the distribution around that 

mean value is also small. 

 

Figure 5-17. Solve time distribution of Convex MPC, for the walking gait (rotation). 
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5.2 Trotting Gait 

The second gait that was executed in the simulation is trot. The gait plot that corresponds to 

the trotting gait tested is presented in Figure 5-18. This gait pattern allows the robot to achieve 

higher locomotion speeds, while avoiding saturation of its actuators. Also, the parameters that 

specify that gait and other gait-dependent parameters for the MPC controller got tabulated 

and are presented in Table 5-3. 

 

Figure 5-18. Trotting gait graph. The grey colored areas indicate stance while the white 
colored areas indicate swing. 

Table 5-3. Numerical values of the gait specific MPC parameters implemented on ARGOS in 
Gazebo simulator, for the trotting gait. 

Parameter Description Symbol Numerical Value 

Stance Duration 
stT   0.3 0.3 0.3 0.3 sec  

Duty Factor    0.6 0.6 0.6 0.6  

Initial Leg State   0 1 1 0 Stance: 1, Swing: 0 

Initial Leg Phase   0.9 0 0 0.9  

Nominal Contact Detection 
Phase Threshold 

 0.1 

Desired Linear Velocity  0.5m/s  

Desired Angular Velocity  0.5rad/s  

Maximum Vertical Contact 
Force (translation) 

max
zf  0.6 206.01Nmg  =  

Minimum Vertical Contact 
Force (translation) 

min
zf  0.1 34.34Nmg  =  

Maximum Vertical Contact 
Force (rotation) 

max
zf  0.5 171.68Nmg  =  

Minimum Vertical Contact 
Force (rotation) 

min
zf  0.1 34.34Nmg  =  

Planning Horizon Steps N  5  

Planning Timestep h  0.06sec  

5.2.1 Linear Velocity Command 

In this set of experiments, the reference linear velocity profile requires the robot to reach a 

linear velocity of 0.5m/s  along the x -axis of the world frame, within 5sec , by accelerating 

linearly over time. The time responses of the , ,x y z -position of the CoM of the robot’s body 

frame are presented in Figure 5-19. The reference x -position is derived by integrating the 

reference x -linear velocity of the CoM of the robot’s body frame. The actual response of the 
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x -position and the reference position coincide almost perfectly. Therefore, the controller can 

track almost perfectly the desired x -linear velocity command. The tracking accuracy will 

become more apparent when the time response of the x -linear velocity of the CoM of the 

robot’s body will be examined. Moreover, the z -position of the CoM is closer to the reference 

in comparison to the y -position and exhibits smaller periodic state error. To be more precise, 

the mean value of the ,y z -position, after the first 5sec  of simulation time have passed, is 

approximately equal to 510 m−  and 0.9407m  respectively, while amplitude of the time 

responses of ,y z -position is approximately equal to 310 m−  and 410 m−  respectively. 

Therefore, the controller can successfully stabilize the robot’s locomotion height and force the 

robot to move only along the x -axis of the world frame, without altering the y -position of the 

robot’s body CoM in the process. 

 

Figure 5-19. The time responses of the x,y,z-position of the CoM of the robot’s body frame, for 
the trotting gait (translation). 

The time responses of the orientation of the robot’s body frame, expressed using a Z-Y-

X Euler angles parameterization, are presented in Figure 5-20. The amplitude of the time 

responses of the body roll and pitch angles is small since its order of magnitude is 

approximately 310 rad−  and 410 rad−  respectively. Also, the mean value of these two responses 

is almost equal to zero. Thus, the assumption made when deriving the linearized SRBD is 

valid. Finally, the response of the yaw angle of the body exhibits a mean value equal to 

-1.5708rad  that does not differ significantly with the reference value of 2rad− , and a small 

variation around the mean value that is equal to 0.001rad . Consequently, the controller is able 

to successfully stabilize the body roll, pitch and yaw angles. 
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Figure 5-20. The time responses of the roll, pitch, yaw orientation of the robot’s body frame, 
for the trotting gait (translation). 

The time responses of the , ,x y z -linear velocity of the CoM of the robot’s body frame are 

presented in Figure 5-21. The mean value of the x -linear velocity of the CoM after the first 

5sec  of simulation time is equal to 0.497m/s  which is almost equal to the desired value. Also, 

the amplitude of the time response of the x -linear velocity in insignificant since it is 

approximately equal to 0.013m/s . Therefore, the controller is able to track qualitatively and 

quantitatively correctly the desired speed profile. The mean value of the z -linear velocity of 

the CoM is close to the reference value with insignificant variations around that reference. The 

amplitude of the time response of the y -linear velocity though is higher than the one of the z

-linear velocity. This difference can also be observed from the time responses of the , ,x y z -

position of the CoM, shown in Figure 5-19. Nevertheless, that amplitude is insignificant since 

it is equal to 0.02m/s . 
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Figure 5-21. The time responses of the x,y,z-linear velocity of the CoM of the robot’s body 
frame, for the trotting gait. (translation). 

The time responses of the , ,x y z -angular velocity of the robot’s body frame are presented in 

Figure 5-22. The mean value of all the time responses is almost equal to zero, which is 

expected since the controller must keep the angular velocities of the robot’s body as close to 

zero as possible. The amplitude of the time responses of the ,x z -angular velocity is small 

since it is approximately equal to 0.01rad/s  and 0.02rad/s  respectively. However, the 

amplitude of the time response of the y -angular velocity is higher than the other two. This 

difference is justified by the fact that only the x -linear velocity of the robot’s body CoM is 

nonzero, and thus this pitching motion is expected. Nevertheless, the amplitude is relatively 

small but not insignificant, since it is equal to 0.1rad/s . 

 

Figure 5-22. The time responses of the x,y,z-angular velocity of the robot’s body frame, for the 
trotting gait (translation). 
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The time responses of the angular positions, the angular velocities and the torques of the 

joints of the FL leg of the quadruped are presented in Figure 5-23, Figure 5-24 and Figure 

5-25 respectively. The motors utilized in legged robots can usually achieve maximum angular 

rates that do not exceed 8rad/s . Thus, the angular velocities of all the joints must not exceed 

this bound. Also, such actuators can achieve maximum torques that do not exceed 50Nm . 

The torques of the joint actuators do not exceed this bound. The maximum vertical contact 

force limit was selected so that this constraint can be satisfied. 

 

Figure 5-23. Time responses of the angular positions of the joints of the FL leg, for the trotting 
gait (translation). 

 

Figure 5-24. Time responses of the angular velocities of the joints of the FL leg, for the trotting 
gait (translation). 
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Figure 5-25. Time responses of the torques of the joints of the FL leg, for the trotting gait 
(translation). 

Finally, the distribution of the solve times of every control loop is presented in the histogram 

of Figure 5-26. The majority of the solve times ( 70%) are between 1.0ms  and 1.5ms . Also, 

the mean value of the solve times is equal to 1.5ms  and the standard deviation of the solve 

times is equal to 0.33ms . Thus, the control inputs can be computed very fast, since the value 

of the mean solve time is small, and at guaranteed rates, since the distribution around that 

mean value is also small. 

 

Figure 5-26. Solve time distribution of Convex MPC, for the trotting gait. (translation). 
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5.2.2 Angular Velocity Command 

In this set of experiments, the reference angular velocity profile requires the robot to reach a 

linear velocity of 0.5rad/s  along the z -axis of the world frame, within 5sec , by accelerating 

linearly over time. The time responses of the , ,x y z -position of the CoM of the robot’s body 

frame are presented in Figure 5-27. The amplitude of the time responses of ,x y -position of 

the robot’s CoM is insignificant since its order of magnitude is approximately 310 m− . Also, the 

mean value of these two responses is almost equal to zero since it is approximately equal to 
410 m− . Finally, the z -position of the CoM is also close to the reference and exhibits small 

periodic state error. To be more precise, its mean value after the first of simulation time have 

passed, is equal to 0.9402m , and its variation around the mean value is also small but larger 

than the one present in time responses of the ,x y -position, since its order of magnitude is 

approximately 310 m− . Therefore, the controller can successfully stabilize the robot’s 

locomotion height and force the robot to rotate about the z -axis of the world frame, without 

altering the ,x y -position of the robot’s body CoM in the process. 

 

Figure 5-27. The time responses of the x,y,z-position of the CoM of the robot’s body frame, for 
the trotting gait (rotation). 

The time responses of the orientation of the robot’s body frame, expressed using a Z-Y-

X Euler angles parameterization, are presented in Figure 5-28. The reference body yaw angle 

is derived by integrating the reference z -angular velocity of the robot’s body frame. The actual 

response of the yaw angle and the reference angular position coincide almost perfectly. 

Therefore, the controller can track almost perfectly the desired x -linear velocity command. 

This effect will become apparent when the time response of the z -angular velocity of the 

robot’s body will be examined. The amplitude of the time responses of the body roll and pitch 

angles is small since its order of magnitude is approximately 310 rad− . Also, the mean value of 

these two responses is almost equal to zero since the mean value of the roll and pitch angle 

of the robot’s body is almost equal to 310 rad−  and 410 rad−  respectively. Thus, the assumption 

made when deriving the linearized SRBD is valid. Consequently, the controller is able to 

successfully stabilize the body roll and pitch angles while rotating about the z -axis of the world 

frame.  
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Figure 5-28. The time responses of the roll, pitch, yaw orientation of the robot’s body frame, 
for the trotting gait (rotation). 

The time responses of the , ,x y z -linear velocity of the CoM of the robot’s body frame are 

presented in Figure 5-29. The mean value of all the time responses is almost equal to zero, 

which is expected since the controller must keep the linear velocities of the robot’s body CoM 

as close to zero as possible. The amplitude of all the time responses is relatively small since 

it is approximately equal to 210 m/s− . Therefore, the variations of the linear velocities around 

the mean value are insignificant. 

 

Figure 5-29. The time responses of the x,y,z-linear velocity of the CoM of the robot’s body 
frame, for the trotting gait (rotation). 

The time responses of the , ,x y z -angular velocity of the robot’s body frame are presented in 

Figure 5-30. The mean value of the z -angular velocity of the robot’s body frame after the first 
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5sec  of simulation time is almost equal 0.5rad/s  which is equal to the reference. Also, the 

amplitude of the time response of the z -angular velocity is relatively small since it is 

approximately equal to 0.03rad/s . Despite that quantitative inaccuracy, the controller is able to 

track qualitatively correctly the desired speed profile. The mean value of the ,y z -angular 

velocity of the robot’s body is close to the reference value and the amplitude of these 

responses is relatively small but not insignificant since it is equal to 0.1rad/s  

 

Figure 5-30. The time responses of the x,y,z-angular velocity of the robot’s body frame, for the 
trotting gait (rotation). 

The time responses of the angular positions, the angular velocities and the torques of the 

joints of the FL leg of the quadruped are presented in Figure 5-31, Figure 5-32 and Figure 

5-33 respectively. The motors utilized in legged robots can usually achieve maximum angular 

rates that do not exceed 8rad/s . Thus, the angular velocities of all the joints must not exceed 

this bound. Also, such actuators can achieve maximum torques that do not exceed 50Nm . 

The torques of the joint actuators do not exceed this bound. The maximum vertical contact 

force limit was selected so that this constraint can be satisfied. 
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Figure 5-31. Time responses of the angular positions of the joints of the FL leg, for the trotting 
gait (rotation). 

 

Figure 5-32. Time responses of the angular velocities of the joints of the FL leg, for the trotting 
gait (rotation). 
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Figure 5-33. Time responses of the torques of the joints of the FL leg, for the trotting gait 
(rotation). 

Finally, the distribution of the solve times of every control loop is presented in the histogram 

of Figure 5-34. The majority of the solve times ( 70%) are between 1.0ms  and 1.5ms . Also, 

the mean value of the solve times is equal to 1.4ms  and the standard deviation of the solve 

times is equal to 0.33ms . Thus, the control inputs can be computed very fast, since the value 

of the mean solve time is small, and at guaranteed rates, since the distribution around that 

mean value is also small. 

 

Figure 5-34. Solve time distribution of Convex MPC, for the trotting gait (rotation). 
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6 Conclusions and Future Work 

6.1 Conclusions 

In this thesis, an effort was made to build a simulation framework for ARGOS in Gazebo. 

Throughout the second chapter, the various aspects and features of modelling and simulation 

of robots in Gazebo were identified and documented in detail. Moreover, the results of the 

various trials and tests conducted showcased many artifacts that emerged in the simulation. 

Many of these artifacts were the result of poor contact handling and inaccurate numerical 

solutions. Without the appropriate parameter selection and tuning, these artifacts emerged, 

and the yielded simulation results are inaccurate or even physically infeasible. Such selection 

regarded the collision model selection for the quadruped’s feet and the LCP solver selection 

and tuning regarded mainly the values of the ,ERP CFM  parameters corresponding to the 

robot’s joints. These modifications resulted in simulation results that were qualitatively correct. 

The comparisons with the analytical EoM proved that the Gazebo simulation results are also 

quantitatively correct since the errors were insignificant. 

In the third chapter, the various TO methods were presented in detail and were compared 

with each other by conducting experiments on a simulated double pendulum. These 

comparisons showcased that each method has its own pros and cons, and that no method 

inherently the best choice among the rest of them. The selection of the method is dependent 

upon the application itself and on its specific characteristics. These characteristics include the 

convergence to the global optimum or to a local one, the form of the cost function, whether 

the system’s dynamics are linear or not, or if they are reduced or full order, whether the 

optimization problem’s constraints are linear or not, the average solution time, the variation of 

solve times, the horizon length and numerical robustness of the method. The criterion that 

determined the final section of the TO method was pertinent to how fast and reliably can a TO 

method solve the optimization problem. The experiments showcased that Convex 

Optimization exhibits the smallest mean solution time and the smallest variation of the solve 

times around that mean value. Therefore, a Convex MPC controller was implemented.  

However, since legged robots’ dynamics are high-dimensional and nonlinear, such TO 

problems are high-dimensional and non-convex. The high dimension is especially concerning 

in the context of online TO, where fast computation times are mandatory. The non-convexity 

is also concerning, since it renders the solver highly sensitive to the initial guess utilized. Thus, 

in the fourth chapter, various assumptions are made to create a convex optimization problem. 

These assumptions include using linearized SRBD and linearizing the optimization problems 

constraints. Such assumptions are valid according to the quadruped design and the 

specifications of the locomotion tasks that ARGOS will be executing. Also, the QP condensed 

formulation was utilized since it reduces the size of the problem by eliminating the state 

trajectory from the decision variables of the optimization problem. The resulting MPC can 

solve the OCP fast but since the SRBD are utilized the swing foot trajectories need to be 

planned since the swing leg motion is not computed as part of the decision variables of the 

optimization problem. As a result, a swing leg controller was also implemented as part of the 

framework. Also, the contact mode sequence, timings and the footstep locations problem 

needed to be planned since they were not computed as part of the decision variables of the 

optimization problem. As a result, a gait scheduler and a footstep planner were also 

implemented as part of the framework. Finally, the sensor measurements needed for closing 
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the loop were not estimated but were provided by either ROS sensors or directly by the physics 

engine itself. 

Finally, in the fifth chapter, to evaluate the Convex MPC controller, it was tested on two 

different gaits, walk and trot, while achieving linear speeds up to 0.5m/s  and angular speeds 

up to 0.5rad/s . This approach is general enough since it can execute all these behaviors using 

the same set of cost function weights and PD controllers’ gains. The parameters that differed 

were the upper and lower bounds on the value of the normal on the ground surface component 

of the GRF. Trotting gait allows the robot to achieve higher locomotion speeds than with 

walking gait, while avoiding saturation of its actuators in the process. The MPC was able to 

successfully stabilize these gaits despite relatively short planning horizon was utilized. The 

horizon was divided into five steps and its duration was equal to the stance duration of each 

gait. Even though the actuator torques were bounded implicitly by bounding the normal 

components of the GRFs, the value of the motor torques obeyed the constraints and did not 

exceed the limits of 50Nm . However, with that constraint the resulting torques are on the 

conservative side and thus the capabilities of the actuators are not fully harnessed. While the 

aforementioned locomotion tasks were executed, the controller was able to successfully 

stabilize the robot’s body roll and pitch angles, keep the desired locomotion height constant 

and track the commanded velocity profile accurately enough. Moreover, it was observed that 

the controller could track the desired speed profile more accurately when the robot followed 

the trotting gait rather than when it followed the walking gait. The tracking was more accurate 

since the mean value of the velocity was closer to the desired one and the variation around 

that mean value was smaller. Finally, the resultant controller was designed to be portable so 

that it can be executed on other ROS-compatible robotic simulators apart from Gazebo and 

on other quadrupeds apart from ARGOS given their urdf description format. This was achieved 

by using Pinocchio to compute the systems kinematics and dynamics given the .urdf file that 

describes the structure of the quadruped. Therefore, they were not computed using analytical 

expressions tailor-made for ARGOS. 

6.2 Future Work 

Although the current implementations of the simulation and control framework have been 

tested and have yielded satisfying results, there is always room for improvement. The 

simulation framework for ARGOS could also be built using other real-time robotics simulators 

like MuJoCo and RaiSim [167]. The frameworks built with MuJoCo and RaiSim can be used 

to validate furthermore the accuracy of the Gazebo framework by comparing their results with 

Gazebo’s. The MuJoCo simulator is selected since it is a simulator that is particularly popular 

within the learning community and is commonly used for RL applications on legged robots. A 

simulation framework in MuJoCo will make it possible to test learning-based strategies on 

quadruped robots. The RaiSim simulator is selected due to its more accurate contact 

modelling and its faster computations when compared to the LCP solvers utilized by Gazebo. 

Most of the simulators make some approximations regarding impact and friction modelling, 

like friction cone approximation (Gazebo) or relaxation of the complementarity constraint 

(MuJoCo). Neither of these approximations are made in RaiSim and therefore tends to be 

more accurate than the other two. More accurate contact simulation will contribute to bridging 

the gap between simulation and reality. 
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Another step could be to utilize ROS sensors and a state estimation algorithm to estimate 

the physical quantities that are not directly provided by the sensors, instead of acquiring them 

through the physics engine itself. ROS provides models for sensors, like IMUs and encoders, 

that can be attached to the quadruped, and fuse the data that they provide to estimate physical 

quantities like the position and the velocity of the robot’s body. Additionally, instead of 

proprioceptive odometry, a visual odometry approach could also be adopted by the proposed 

framework. Some available state estimation techniques for legged robots were sketched 

briefly in chapter 4.3.1. Finally, ROS provides noise models for its sensors which can also be 

utilized. In the real world, sensors exhibit noise, and thus they do not observe the world 

perfectly. Including such models will also help bridge the gap between simulation and reality 

significantly. More information about Gazebo’s sensor noise models can be found in [168]. 

The MPC controller for ARGOS can also be implemented using a different TO method 

like multiple shooting or collocation. These problems can be solved by using state-of-the-art 

solvers like the FDDP or IPOPT solvers. Such nonlinear optimization techniques will allow the 

utilization of higher order and nonlinear dynamics or even nonlinear constraints. Such higher 

order models may include centroidal dynamics plus the full kinematics [55] or even whole-

body dynamics. Comparisons between the different MPC formulations will assess whether the 

loss of physical accuracy, caused by the use of reduced-order models to reduce the 

computational cost of the optimization, is a trade-off worth accepting. The nonlinear 

constraints may include imposing leg kinematics limits as a constraint to ensure that the 

foothold position computed by the optimization problem solver lies inside the leg’s workspace 

or enforcing stricter motor torque limits by using the foot Jacobian while formulating the 

pertinent constraint. Finally, these nonlinear optimization techniques will allow performing gait 

discovery where contact sequences, timings and footstep locations are not pre-specified but 

are computed real-time by the optimization algorithm. 

Moreover, the Convex MPC controller can be utilized in conjunction with learning-based 

approaches. Complementing and improving the performance of model-based approaches 

with learning-based ones is an active research area. For instance, nonlinear optimization 

problems can be “warm started” with an initial guess learned from data thus improving the 

convergence rate of OCP solvers or helping avoid poor local minima (suboptimal solutions). 

Also, an approximation of the value function, which can function as a terminal cost to enable 

online TO over shorter horizons while avoiding myopic behavior, can be learned from data. 

Finally, in the Convex MPC case, learning can be used as a high-level footstep planner. The 

desired foothold positions can be learned, as in [169], and not be specified by heuristics as 

was done in this work. 

Last but not least, the proposed control framework needs to be tested extensively on in-

house hardware. Only through hardware testing one can be sure about the performance of a 

controller no matter how extensive testing was performed in simulations. Deploying the 

controller on hardware will be facilitated since it is built using ROS, which is extensively used 

for real-time applications on real-world robots and is establishing itself as the primary standard 

in the field of robotics research. 
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Appendix A 

The Joint Space Inertia matrix 2 2M  is a symmetric positive definite matrix that has the 

following form: 
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Τhe Coriolis and centripetal terms vector 2 1c  has the following form: 

 
( )

( )
1 2

1

2
2 1 2 2

2
2 1 2 1 2

sin

sin

m l d

m l d

  





 

 
=  

− 

− +

− + 

c  (A-2) 

 

The gravity terms vector 2 1G  has the following form: 
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The selection matrix 2 2S  has the following form: 
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The contact Jacobian matrix 2 2J  has the following form: 
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Appendix B 

Gazebo Functions 

GetVelocity 
virtual double GetVelocity(unsigned int _index); 

Get the rotation rate of an axis of a joint (index).  

 

Position 
virtual double Position(const unsigned int _index = 0); 

Get the position of an axis of a joint according to its index. 

 

SetForce 
virtual void SetForce(unsigned int _index, double _effort); 

Set the force applied to this joint. The force applied is additive, meaning that multiple calls to 

SetForce to the same joint in the same time step will accumulate forces on that joint. 

 

WorldAngularVel 
virtual ignition::math::Vector3d WorldAngularVel()const 

Get the angular velocity of the entity in the world frame. 

 

WorldCoGLinearVel 
virtual ignition::math::Vector3d WorldCoGLinearVel()const 

Get the linear velocity at the body's center of gravity in the world frame. 

 

WorldCoGPose 
ignition::math::Pose3d WorldCoGPose()const 

Get the pose of the body's center of gravity in the world frame. 

 

Pinocchio Functions 

aba 
const DataTpl<Scalar, Options, JointCollectionTpl>::TangentVectorType& 

aba(const ModelTpl<Scalar, Options, JointCollectionTpl>& model, 

    DataTpl<Scalar, Options, JointCollectionTpl>& data, 

    const Eigen::MatrixBase<ConfigVectorType>& q, 

    const Eigen::MatrixBase<TangentVectorType1>& v, 

    const Eigen::MatrixBase<TangentVectorType2>& tau) 

Computes the joint accelerations given the current state and actuation of the model using the 

ABA. 

 

addFrame 
FrameIndex addFrame(const Frame& frame, const bool append_inertia = true) 

Add a frame to the robot’s kinematic tree. 

 

addJoint 
JointModelDerived& addJoint(const JointModelBase<JointModel>& jmodel, 

                            const SE3& placement = SE3::Identity()) 

Add a joint to the robot’s model at a given placement. 
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buildModel [1/2] 
ModelTpl<Scalar, Options, JointCollectionTpl>& 

pinocchio::urdf::buildModel( 

    const std::string& filename, 

    ModelTpl<Scalar, Options, JointCollectionTpl>& model, 

    const bool verbose = false) 

Build the dynamic model of the robot from a URDF file with a fixed joint as root of the model 

tree. 

 

buildModel [2/2] 
ModelTpl<Scalar, Options, JointCollectionTpl>& 

pinocchio::urdf::buildModel( 

    const std::string& filename, 

    const typename ModelTpl<Scalar, Options, 

                            JointCollectionTpl>::JointModel& rootJoint, 

    ModelTpl<Scalar, Options, JointCollectionTpl>& model, 

    const bool verbose = false) 

Build the dynamic model of the robot from a URDF file with a particular joint as root of the 

model tree given as a reference argument. 

 

ccrba 
const DataTpl<Scalar, Options, JointCollectionTpl>::Matrix6x& 

pinocchio::ccrba( 

    const ModelTpl<Scalar, Options, JointCollectionTpl>& model, 

    DataTpl<Scalar, Options, JointCollectionTpl>& data, 

    const Eigen::MatrixBase<ConfigVectorType>& q, 

    const Eigen::MatrixBase<TangentVectorType>& v) 

Computes the Centroidal Momentum Matrix, the Composite Rigid Body Inertia as well as the 

centroidal momenta according to the current joint configuration and velocity. 

 

computeJointJacobians 
const DataTpl<Scalar, Options, JointCollectionTpl>::Matrix6x& 

pinocchio::computeJointJacobians( 

    const ModelTpl<Scalar, Options, JointCollectionTpl>& model, 

    DataTpl<Scalar, Options, JointCollectionTpl>& data, 

    const Eigen::MatrixBase<ConfigVectorType>& q) 

Computes the full model Jacobian expressed in the world frame. This Jacobian does not 

correspond to any specific joint frame Jacobian. From this Jacobian, it is then possible to 

easily extract the Jacobian of a specific joint frame. 

 

computeJointJacobiansTimeVariation 
const DataTpl<Scalar, Options, JointCollectionTpl>::Matrix6x& 

pinocchio::computeJointJacobiansTimeVariation( 

    const ModelTpl<Scalar, Options, JointCollectionTpl>& model, 

    DataTpl<Scalar, Options, JointCollectionTpl>& data, 

    const Eigen::MatrixBase<ConfigVectorType>& q, 

    const Eigen::MatrixBase<TangentVectorType>& v) 

Computes the full model Jacobian variations with respect to time. 

 

crba 
const DataTpl<Scalar, Options, JointCollectionTpl>::MatrixXs& 

pinocchio::crba( 

    const ModelTpl<Scalar, Options, JointCollectionTpl>& model, 

    DataTpl<Scalar, Options, JointCollectionTpl>& data, 
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    const Eigen::MatrixBase<ConfigVectorType>& q) 

Computes the upper triangular part of the joint space inertia matrix by using the CRBA. 

 

forwardKinematics 
void pinocchio::forwardKinematics( 

    const ModelTpl<Scalar, Options, JointCollectionTpl>& model, 

    DataTpl<Scalar, Options, JointCollectionTpl>& data, 

    const Eigen::MatrixBase<ConfigVectorType>& q) 

Update the joint placements according to the current joint configuration. 

 

getFrameJacobian 
void pinocchio::getFrameJacobian( 

    const ModelTpl<Scalar, Options, JointCollectionTpl>& model, 

    DataTpl<Scalar, Options, JointCollectionTpl>& data, 

    const FrameIndex frame_id, const ReferenceFrame rf, 

    const Eigen::MatrixBase<Matrix6xLike>& J) 

Returns the Jacobian of the frame expressed in the coordinate system specified by the value 

of value of rf. 

 

getFrameJacobianTimeVariation 
void pinocchio::getFrameJacobianTimeVariation( 

    const ModelTpl<Scalar, Options, JointCollectionTpl>& model, 

    DataTpl<Scalar, Options, JointCollectionTpl>& data, 

    const FrameIndex frame_id, const ReferenceFrame rf, 

    const Eigen::MatrixBase<Matrix6xLike>& dJ) 

Returns the Jacobian time variation of the frame expressed in the coordinate system specified 

by the value of value of rf. 

 

getFrameId 
FrameIndex getFrameId( 

    const std::string& name, 

    const FrameType& type = (FrameType)(JOINT | FIXED_JOINT | BODY | 

                                        OP_FRAME | SENSOR)) const 

Get the index of a frame given by its name. 

 

getJointId 
JointIndex getJointId(const std::string& name) const 

Get the index of a joint given by its name. 

 

nonLinearEffects 
const DataTpl<Scalar, Options, JointCollectionTpl>::TangentVectorType& 

pinocchio::nonLinearEffects( 

    const ModelTpl<Scalar, Options, JointCollectionTpl>& model, 

    DataTpl<Scalar, Options, JointCollectionTpl>& data, 

    const Eigen::MatrixBase<ConfigVectorType>& q, 

    const Eigen::MatrixBase<TangentVectorType>& v) 

Computes the non-linear effects (Coriolis, centrifugal and gravitational effects), also called the 

bias terms of the Lagrangian dynamics. 

 

updateFramePlacements 
void pinocchio::updateFramePlacements( 

    const ModelTpl<Scalar, Options, JointCollectionTpl>& model, 

    DataTpl<Scalar, Options, JointCollectionTpl>& data) 
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Updates the position of each frame contained in the model. 

 

RBDL Functions 

ForwardDynamics 
void ForwardDynamics(Model& model, const Math::VectorNd& Q,  

                     const Math::VectorNd& QDot,  

                     const Math::VectorNd& Tau, Math::VectorNd& QDDot,  

                     std::vector<Math::SpatialVector>* f_ext = NULL); 

Computes the joint accelerations given the current state and actuation of the model using the 

ABA. 

 

URDFReadFromFile 
bool URDFReadFromFile(const char* filename, Model* model,  

                      bool floating_base, bool verbose = false); 

This function loads a URDF model from a file and assigns it to the referenced model. 

 

RobotDynamics Class 

BuildPinocchioModel 
void RobotDynamics::BuildPinocchioModel() 

Builds a Pinocchio Model and Data object, that are also compatible with the automatic 

differentiation framework of CppAD, using the URDF model of the robot. 

 

ContinuousDynamics 
void RobotDynamics::ContinuousDynamics(ADConfigVectorType& ad_x, 

                                       ADTangentVectorType& ad_u, 

                                       ADTangentVectorType& ad_xdot) 

Computes the continuous dynamics, more specifically the derivative of the states, of a given 

model and for a particular state and input using Pinocchio functions. 

 

DiscreteDynamicsRK4 
void RobotDynamics::DiscreteDynamicsRK4(double& planning_timestep, 

                                        VectorNx& x_k, VectorNu& u_k, 

                                        ADTangentVectorType& ad_f_k, 

                                        VectorNx& f_k) 

Discretizes the continuous time dynamics, computed at a particular state and input, using the 

explicit RK4 integrator. 

 

LinearizedDiscreteDynamics 
void RobotDynamics::LinearizedDiscreteDynamics(double& planning_timestep, 

                                               VectorNx& x_k, 

                                               VectorNu& u_k, 

                                               MatrixNxNx& A_k, 

                                               MatrixNxNu& B_k) 

Linearizes the discretized dynamics about a given reference state and input vector.  

 

QP Class 

ComputeQPConstraintMatrix 
void QP::ComputeQPConstraintMatrix(int planning_horizon_steps,  
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                                   MatrixNxNx& A, MatrixNxNu& B,  

                                   SpMat& Ac) 

Calculates the linear constraints matrix of the QP. 

 

ComputeQPConstraintVectors 
void QP::ComputeQPConstraintVectors(int planning_horizon_steps,  

                                    VectorNx& xmin, VectorNx& xmax,  

                                    VectorNu& umin, VectorNu& umax,  

                                    Vector_constr& lb, Vector_constr& ub) 

Calculates the bounds of the linear constraints of the QP. 

 

ComputeQPGradient 
void QP::ComputeQPGradient(int planning_horizon_steps, MatrixNxNx& Q,  

                           MatrixNuNu& R, MatrixNxNx& P, VectorNx& x_ref,  

                           VectorNu& u_ref, Vector_sol& q) 

Calculates the gradient vector of the cost function of the QP. 

 

ComputeQPHessian 
void QP::ComputeQPHessian(int planning_horizon_steps, MatrixNxNx& Q,  

                          MatrixNuNu& R, MatrixNxNx& P, SpMat& H) 

Calculates the Hessian matrix of the cost function of the QP. 

 

BoxDDP Class 

BackwardPass 
void BoxDDP::BackwardPass(MatrixNxNh& X_traj, MatrixNuNh_1& U_traj, 

                          MatrixNuNh_1& d, MatrixNuNxNh_1& K) 

This function performs the backward pass needed by the BOX-DDP algorithm. 

 

BoxDDPSolver 
void BoxDDP::BoxDDPSolver(MatrixNxNh& X_old, MatrixNuNh_1& U_old, 

                          EigenDouble& J_old, MatrixNxNh& X_new, 

                          MatrixNuNh_1& U_new, EigenDouble& J_new) 

This function contains the main body of the BOX-DDP algorithm. 

 

ComputeCost 
void BoxDDP::ComputeCost(MatrixNxNh& X_traj, MatrixNuNh_1& U_traj, 

                         EigenDouble& J) 

Computes the discretized cost function that is necessary for the BOX-DDP algorithm. 

 

ForwardPass 
void BoxDDP::ForwardPass(MatrixNxNh& X_old, MatrixNuNh_1& U_old, 

                         EigenDouble& J_old, MatrixNuNh_1& d, 

                         MatrixNuNxNh_1& K, MatrixNxNh& X_new, 

                         MatrixNuNh_1& U_new, EigenDouble& J_new) 

This function performs the forward pass needed by the BOX-DDP algorithm. 

 

SymbolicRobotDynamics Class 

BuildRBDLModel 
void SymbolicRobotDynamics::BuildRBDLModel() 
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This function builds a RBDL model object using the URDF model of the robot. 

 

ContinousDynamicsRBDL 
void SymbolicRobotDynamics::ContinuousDynamicsRBDL(VectorNd& q, 

                                                   VectorNd& q_dot, 

                                                   VectorNd& u, 

                                                   casadi::MX& x_dot) 

Computes the continuous dynamics, more specifically the derivative of the states, of a given 

model and for a particular state and input using RBDL functions. It creates a CasADi function 

that represents the dynamics of the system and can handle symbolic variables as arguments 

and outputs. Here the input state is a CasADi symbolic variable, and the output derivative of 

the state is also a CasADi symbolic variable. 

 

fd 
casadi::MX SymbolicRobotDynamics::fd(const VectorNd& Q, 

                                     const VectorNd& Qdot, 

                                     const VectorNd& Tau) 

Computes the continuous dynamics, more specifically the derivative of the states, of a given 

model and for a particular state and input, using RBDL functions. Here the input state is a 

double vector. The output derivative of the state is also a double vector.  

 

NLP Class 

ComputeNLPConstraintBounds 
void NLP::ComputeNLPConstraintBounds(casadi::MX& constraint, 

                                     std::vector<double>& lbg, 

                                     std::vector<double>& ubg) 

Computes the bounds of the constraints of the NLP. 

 

ComputeNLPCostSimpson 
void NLP::ComputeNLPSimpson(int planning_horizon_steps, 

                            double& planning_timestep, casadi::MX& X,  

                            casadi::MX& U, casadi::MX& x_goal,  

                            casadi::MX& Q, casadi::MX& R,  

                            casadi::MX& Qn, casadi::MX& J) 

This function integrates the cost function using the Simpson integration rule and is utilized by 

the DIRCOL algorithm. 

 

ComputeNLPCostTrapezoidal 
void NLP::ComputeNLPCostTrapezoidal(int planning_horizon_steps, 

                                    double& planning_timestep, 

                                    casadi::MX& X, casadi::MX& U, 

                                    casadi::MX& x_goal, casadi::MX& Q, 

                                    casadi::MX& R, casadi::MX& Qn, 

                                    casadi::MX& J) 

This function integrates the cost function using the trapezoid integration rule and is utilized by 

the DIRTRAN algorithm. 

 

ComputeNLPDecisionVariablesBounds 
void NLP::ComputeNLPDecisionVariablesBounds( 

    int planning_horizon_steps, std::vector<double>& x0, VectorNx& xmax, 

    VectorNx& xmin, VectorNu& umax, VectorNu& umin, 
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    std::vector<double>& lbz, std::vector<double>& ubz) 

Computes the bounds of the decision variables of the NLP. 

 

ComputeNLPDefectConstraintHermiteSimpson 
void NLP::ComputeNLPDefectConstraintHermiteSimpson( 

    int planning_horizon_steps, double& planning_timestep, casadi::MX& X, 

    casadi::MX& U, casadi::MX& constraint) 

Computes the dynamical system constraint using Hermite-Simpson collocation, in defect form, 

needed by the DIRCOL algorithm. 

 

ComputeNLPDefectConstraintTrapezoidal 
void NLP::ComputeNLPDefectConstraintTrapezoidal( 

    int planning_horizon_steps, double& planning_timestep, casadi::MX& X, 

    casadi::MX& U, casadi::MX& constraint) 

Computes the dynamical system constraint using the trapezoid integration rule, in defect form, 

needed by the DIRTRAN algorithm. 

 

Robot Class 

AbdPositionsInBaseFrame 
void Robot::AbdPositionsInBaseFrame() 

This function computes the position of the abduction joints of the robot’s legs expressed in the 

robot’s body frame. 

 

BaseRollPitchYawRate 
void Robot::BaseRollPitchYawRate(Vector3d& orientation_rpy, 

                                 Vector3d& angular_velocity, 

                                 Eigen::Vector3d& rpy_rate) 

This function converts the angular velocity of the robot’s base to rate of orientation change of 

the robot’s base in Euler angles. 

 

BaseVelocityInBodyFrame 
void Robot::BaseVelocityInBodyFrame( 

    Vector3d& orientation_rpy, Vector3d& linear_vel_b, 

    Eigen::Vector3d& relative_linear_vel_b) 

This function converts the linear velocity of the robot’s body CoM expressed in the world frame 

to the base frame of the robot. 

 

BuildPinocchioModel 
void Robot::BuildPinocchioModel(Eigen::VectorXd& q) 

This function builds a Pinocchio Model and Data object using the URDF model of the robot. 

 

ComputeInertiaMatrix 
void Robot::ComputeInertiaMatrix(Eigen::VectorXd& q, 

                                 Eigen::MatrixXd& mass_matrix) 

Computes the joint space inertia matrix of the robot using the CRBA. 

 

ComputeBiasTerms 
void Robot::ComputeBiasTerms(Eigen::VectorXd& q, Eigen::VectorXd& q_dot, 

                             Eigen::VectorXd& bias_terms) 
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Computes the bias terms of the Lagrangian dynamics (Coriolis, centrifugal and gravitational 

effects) of the robot. 

 

ComputeFootJacobian 
void Robot::ComputeFootJacobian(Eigen::VectorXd& q, int& leg_id, 

                                Eigen::MatrixXd& Jac) 

Computes current foot Jacobian of leg leg_id. 

 

ComputeFootJacobianTimeVariation 
void Robot::ComputeFootJacobianTimeVariation(Eigen::VectorXd& q, 

                                             Eigen::VectorXd& q_dot, 

                                             int& leg_id, 

                                             Eigen::MatrixXd& Jac_dot) 

Computes current time variation of the foot Jacobian of leg leg_id. 

 

ComputeJointAnglesFromFootLocalPosition 
void Robot::ComputeJointAnglesFromFootLocalPosition( 

    int& leg_id, Eigen::VectorXd& q, 

    Vector3d& foot_local_position_base_frame, Vector3d& joint_ids_leg_id, 

    Vector3d& joint_angles_leg_id) 

This function uses the inverse kinematics to compute the joint angles, given the foot’s local 

position. 

 

ConvertPositionWorldToBaseFrame 
void Robot::ConvertPositionWorldToBaseFrame(Eigen::VectorXd& q, 

                                            Vector3d& pos_I, 

                                            Vector3d& pos_B) 

Converts a position vector expressed w.r.t. the world frame to a vector expressed w.r.t. the 

base frame of the robot. 

 

FootPositionsInBaseFrame 
void Robot::FootPositionsInBaseFrame( 

    Eigen::VectorXd& q, Matrix3x4& foot_positions_in_base_frame) 

This function calculates the robot’s feet positions w.r.t the base frame of the robot. 

 

FootPositionsLegidInBaseFrame 
void Robot::FootPositionsLegidInBaseFrame( 

    int& leg_id, Eigen::VectorXd& q, 

    Vector3d& foot_positions_in_base_frame) 

This function calculates the foot positions of the robot’s leg leg_id w.r.t the base frame of the 

robot. 

 

GenerateSpeedProfile 
void Robot::GenerateSpeedProfile(double& time, Vector2d& desired_speed, 

                                 double& desired_twisting_speed) 

Gets the desired linear and angular velocity from the speed profile for the given time. 

 

HipPositionsInBaseFrame 
void Robot::HipPositionsInBaseFrame() 

This function computes the position of the hip joints of the robot’s legs expressed in the robot’s 

body frame. 
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HipPositionsLegidInWorldFrame 
void Robot::HipPositionsLegidInWorldFrame( 

    int& leg_id, Eigen::VectorXd& q, 

    Vector3d& hip_positions_in_world_frame) 

This function computes the position of the hip joint of the robot’s leg leg_id expressed in the 

world frame. 

 

InverseKinematics 
void Robot::InverseKinematics(Vector3d& foot_local_position_abd_frame, 

                              int& leg_id, Vector3d& joint_angles_leg_id) 

This function implements an inverse kinematics algorithm to compute the joint positions from 

the end effector position of leg leg_id. 

 

MapContactForceToJointTorques 
void Robot::MapContactForceToJointTorques(int& leg_id, 

                                          Eigen::VectorXd& q, 

                                          Eigen::Vector3d& contact_force, 

                                          Eigen::VectorXd& nle, 

                                          VectorNm& motor_torques) 

Maps the foot contact force to the leg leg_id joint torques. 

 

sdlsInv 
Eigen::MatrixXd Robot::sdlsInv(const Eigen::MatrixXd& jacobian) 

This function computes the selective damping least square inverse matrix. 

 

OpenLoopGaitGenerator Class 

OpenLoopGaitGenerator 
OpenLoopGaitGenerator::OpenLoopGaitGenerator( 

    Robot* robot, Vector4d stance_duration, Vector4d duty_factor, 

    Vector4d initial_leg_state, Vector4d initial_leg_phase, 

    double contact_detection_phase_threshold) 

Construct an OpenLoopGaitGenerator object using the given parameters. 

 

Reset 
void OpenLoopGaitGenerator::Reset(double current_time) 

Reset the gait parameters. 

 

Update 
void OpenLoopGaitGenerator::Update(double current_time, 

                                   Vector4d& contact_state, 

                                   VectorNm& contact_force) 

Update the gait parameters. 

 

RaibertSwingLegController Class 

GenEllipse 
void RaibertSwingLegController::GenEllipse( 

    double& swing_period, double& phase, Vector3d& start, double& mid, 

    Vector3d& end, Vector3d& pos_des, Vector3d& pos_des_ddot) 
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Elliptic interpolation function used to generate the desired polygon curve. 

 

GenSwingFootTrajectory 
void RaibertSwingLegController::GenSwingFootTrajectory( 

    double& swing_period, double& max_clearance, double& input_phase, 

    Vector3d& start_pos, Vector3d& end_pos, Vector3d& desired_pos, 

    Vector3d& desired_acc) 

Generating the trajectory of the swing leg. 

 

RaibertSwingLegController 
RaibertSwingLegController::RaibertSwingLegController( 

    Robot* robot, OpenLoopGaitGenerator* gaitGenerator, 

    Vector2d desired_speed, double desired_twisting_speed, 

    double desired_height, double max_clearance) 

Construct a RaibertSwingLegController object using the given parameters. 

 

Reset 
void RaibertSwingLegController::Reset(double current_time, 

                                      Eigen::VectorXd& q) 

Reset the parameters of the RaibertSwingLegController. 

 

Update 
void RaibertSwingLegController::Update(double current_time, 

                                       Eigen::VectorXd& q) 

Update the parameters of the RaibertSwingLegController. 

 

UpdateControlParameters 
void RaibertSwingLegController::UpdateControlParameters( 

    Vector2d& linSpeed, double& angSpeed) 

Update the linear velocity and angular velocity of the controller. 

 

GetAction 
void RaibertSwingLegController::GetAction( 

    double current_time, Eigen::VectorXd& q, Vector3d& com_position, 

    Vector3d& body_orientation_rpy, Vector3d& com_velocity, 

    Vector3d& body_angular_velocity) 

Compute all motors’ position commands using this controller. 

 

TorqueStanceLegController Class 

TorqueStanceLegController 
TorqueStanceLegController::TorqueStanceLegController( 

    Robot* robot, OpenLoopGaitGenerator* gaitGenerator, 

    RaibertSwingLegController* swingLegController, double body_yaw_ref, 

    Vector4d friction_coeffs, int planning_horizon_steps, 

    double planning_timestep, VectorNx state_weights, 

    VectorNu input_weights, double fz_max, double fz_min) 

Construct a TorqueStanceLegController object using the given parameters. 

 

UpdateControlParameters 
void TorqueStanceLegController::UpdateControlParameters( 

    Vector2d& linSpeed, double& angSpeed) 
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Update the linear velocity and angular velocity of the controller. 

 

GetAction 
void TorqueStanceLegController::GetAction( 

    double current_time, Eigen::VectorXd& q, Eigen::VectorXd& q_dot, 

    Vector3d& com_position, Vector3d& body_orientation_rpy, 

    Vector3d& com_velocity, Vector3d& body_angular_velocity) 

Compute all motors’ torque commands using this controller. 

 

ConvexMPCDense Class 

ConvexMPCDense 
ConvexMPCDense::ConvexMPCDense(Robot* robot, double body_previous_yaw, 

                               Vector4d friction_coeffs, 

                               int planning_horizon_steps, 

                               double planning_timestep, 

                               MatrixNxNhNxNh Q_qp, MatrixNuNhNuNh R_qp, 

                               double fz_max, double fz_min) 

Construct a ConvexMPCDense object using the given parameters. 

 

CalculateAMatrix 
void ConvexMPCDense::CalculateAMatrix(Vector3d& body_rpy, 

                                      MatrixNxNx& A_mat) 

Calculates the A matrix of the linearized state-space SRBD equation. 

 

CalculateBMatrix 
void ConvexMPCDense::CalculateBMatrix(double& inv_mass, 

                                      Matrix3d& inv_inertia, 

                                      Matrix3x4& foot_positions, 

                                      MatrixNxNu& B_mat) 

Calculates the B matrix of the linearized state-space SRBD equation. 

 

CalculateDiscreteABMatrices 
void ConvexMPCDense::CalculateDiscreteABMatrices( 

    MatrixNxNx& A_mat, MatrixNxNu& B_mat, double& planning_timestep, 

    MatrixNxNx& Ad_mat, MatrixNxNu& Bd_mat) 

Calculates the A, B matrices of the discretized, linearized state-space SRBD equation. 

 

CalculateQPMatrices 
void ConvexMPCDense::CalculateQPMatrices( 

    int& planning_horizon_steps, VectorNx& x0, VectorNxNh& state_ref, 

    VectorNuNh& input_ref, MatrixNxNhNxNh& Q, MatrixNuNhNuNh& R, 

    MatrixNxNx& Ad_mat, MatrixNxNu& Bd_mat, Sparse_Matrix& H_sparse, 

    VectorNuNh& q_dense) 

This function calculates the Hessian matrix and the gradient vector of the cost function of the 

condensed QP. 

 

CalculateConstraintMatrix 
void ConvexMPCDense::CalculateConstraintMatrix( 

    int& planning_horizon_steps, MatrixNhNl& contact_states,  

    Vector4d& friction_coeff, Sparse_Matrix& Ac_sparse) 

This function calculates the linear constraints matrix of the condensed QP. 
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CalculateConstraintBounds 
void ConvexMPCDense::CalculateConstraintBounds( 

    int& planning_horizon_steps, MatrixNhNl& contact_state,  

    double& fz_max, double& fz_min, double& friction_coeff,  

    VectorNcNh& l, VectorNcNh& u) 

This function calculates the bounds of the linear constraints of the condensed QP. 

 

ComputeContactForces 
void ConvexMPCDense::ComputeContactForces( 

    double current_time, double& yaw, double& yaw_ref, 

    VectorXd& foot_contact_states, Matrix3x4& foot_positions_body_frame, 

    Vector3d& com_position, Vector3d& com_velocity, 

    Vector3d& body_orientation_rpy, Vector3d& body_angular_velocity, 

    Vector3d& desired_com_position, Vector3d& desired_com_velocity, 

    Vector3d& desired_body_orientation_rpy, 

    Vector3d& desired_body_angular_velocity) 

Compute four leg’s contact forces by solving the condensed QP. 

 

LocomotionController Class 

LocomotionController  
LocomotionController::LocomotionController( 

    Robot* robot, OpenLoopGaitGenerator* gaitGenerator, 

    RaibertSwingLegController* swingLegController, 

    TorqueStanceLegController* stanceLegController) 

Construct a LocomotionController object using the other planners and controllers. 

 

Reset 
void LocomotionController::Reset(double current_time, Eigen::VectorXd& q) 

Reset the parameters of the planners and controllers. 

 

Update 
void LocomotionController::Update(double current_time, 

                                  Vector4d& contact_state, 

                                  VectorNm& contact_force, 

                                  Eigen::VectorXd& q, Vector2d& linSpeed, 

                                  double& angSpeed) 

Update the parameters of the planners and controllers. 

 

GetAction 
void LocomotionController::GetAction( 

    double current_time, Eigen::VectorXd& q, Eigen::VectorXd& q_dot, 

    VectorNm& qj_dot, Vector3d& com_position, 

    Vector3d& body_orientation_rpy, Vector3d& com_velocity, 

    Vector3d& body_angular_velocity) 

Compute all motors’ torque commands using the subcontrollers. 

 

Other Functions 

DARE 
void DARE(MatrixNxNx& A, MatrixNxNu& B, MatrixNxNx& Q, MatrixNuNu& R,  

          MatrixNxNx& Pn) 

Solves the DARE. 


