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Abstract 
 

This diploma thesis aims to explore the potential of artificial intelligence and machine learning 
techniques, and more specifically the field of object recognition, in the maritime business. It focuses 
on the development of a robust and accurate system for identifying and localizing mechanical 
components in complex systems that can be found in a vessel, such as piping networks. The end-goal 
is to develop an object recognition software tool that will be user-friendly and easy to use, without 
the need for explicit programming and fine-tuning. 

The thesis reviews the state-of-the-art object recognition algorithms and analyzes their function and 
evolution over time. The proposed approach is based on deep learning techniques, particularly 
convolutional neural networks, for 3D object recognition in 2D images.  

Additionally, the thesis includes a method to automate the process of generating a large and 
accurate dataset required for training a custom object detection CNN-based network. The developed 
system has potential applications in various fields, including shipbuilding, manufacturing, and 
industrial automation, where accurate object recognition can facilitate maintenance, inspection, and 
retrofitting tasks.  

 

1. Introduction 

1.1 Artificial Intelligence (AI) 
Artificial Intelligence (AI) is a field of computer science that focuses on creating intelligent machines, 
capable of performing tasks that normally require human intelligence, such as learning, reasoning, 
problem-solving, perception and language understanding. 

AI systems use algorithms and statistical models to analyze and process large amounts of data, 
learning from the patterns and relationships they find to make predictions, recommendations and 
decisions. These systems can be designed to perform a wide range of functions, from recognizing 
speech and images to driving cars, playing games and even creating new artwork. 

There are many different approaches to AI, including rule-based systems, decision trees, neural 
networks, and deep learning, among others. Each of these approaches has its own strengths and 
weaknesses, and the choice of method depends on the specific problem that needs to be solved. 

AI has numerous applications across a wide range of industries, including healthcare, finance, 
transportation, entertainment and more. In healthcare, for example, AI can be used to analyze 
medical images and assist in diagnosis, while in finance, it can be used to detect fraudulent 
transactions and make investment recommendations. 

 

1.2 Machine Learning (ML) 
Machine learning is a subset of artificial intelligence that involves teaching machines to learn from 
data without being explicitly programmed. It involves developing algorithms and models that can 
learn and improve on their own, based on the data they are trained on. 
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There are several types of machine learning algorithms, including supervised learning, unsupervised 
learning and reinforcement learning. Supervised learning involves training a machine to predict an 
output based on a set of input data, while unsupervised learning involves identifying patterns and 
relationships in data without any predefined output. Reinforcement learning involves training a 
machine to make decisions based on feedback from its environment. 

Machine learning has many practical applications, including natural language processing, image 
recognition, fraud detection and personalized recommendations. It is used in a wide range of 
industries, including healthcare, finance and retail, among others. 

However, it is important to note that machine learning algorithms are not infallible and can be prone 
to bias and errors. Properly training and evaluating these algorithms is essential to ensure their 
accuracy and effectiveness. 

 

1.3 Deep Learning 
Deep learning is a subfield of machine learning that involves the creation of neural networks with 
multiple layers, allowing for complex computations and pattern recognition. It has been driving 
advancements in artificial intelligence and has been applied to various fields, including computer 
vision, natural language processing and speech recognition. 

At the heart of deep learning are neural networks, which are composed of multiple layers of 
interconnected nodes, or neurons. Each layer processes input data and passes the output to the next 
layer until a final output is produced. The number of layers and neurons in each layer can vary 
depending on the complexity of the task. 

Deep learning has shown impressive results in a range of applications. For example, deep learning 
algorithms have achieved near-human level accuracy in image classification tasks, such as 
recognizing objects in images or detecting cancerous cells in medical images. Similarly, natural 
language processing models using deep learning techniques have been used to develop chatbots and 
virtual assistants capable of understanding and responding to human language. 

However, deep learning is not without its limitations. One of the main challenges is the need for 
large amounts of labeled data to train the models effectively. Additionally, the complexity of the 
models can make it difficult to interpret how they make their predictions, leading to concerns about 
bias and fairness. 
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Figure 1: Artificial Intelligence, Machine Learning and Deep Learning areas 

 

 

 

1.4 Computer vision 
Computer vision is a field of study that aims to teach computers to interpret and understand the 
visual world. It is an interdisciplinary field that combines computer science, mathematics, physics, 
and biology to develop algorithms and techniques that allow computers to "see" and "understand" 
images and videos. 

The goal of computer vision is to replicate and enhance human vision capabilities, such as 
recognizing objects, identifying people, detecting and tracking movements and understanding 
complex scenes. The process of achieving this goal involves acquiring, processing, analyzing and 
interpreting visual data. 

Computer vision is widely used in various applications, including medical imaging, robotics, 
autonomous vehicles, surveillance, augmented reality and gaming. For example, in medical imaging, 
computer vision techniques are used to detect and diagnose diseases from medical images, while in 
autonomous vehicles, they are used to identify and track pedestrians, vehicles and obstacles in real-
time. 

To achieve these applications, computer vision researchers and engineers use various techniques 
such as image processing, pattern recognition, machine learning, deep learning, and neural 
networks. These techniques allow computers to learn from vast amounts of data and make decisions 
based on that data. 
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1.5 Object detection / recognition 
Object detection and object recognition are two closely related computer vision tasks that involve 
identifying objects in images or video frames. While they are often used interchangeably, they refer 
to different aspects of the overall task of understanding the visual world. 

Object detection is the process of identifying the presence and location of objects within an image or 
video frame. It involves not only recognizing what objects are present, but also drawing bounding 
boxes around them to indicate their precise locations within the image. Object detection is typically 
performed using deep learning models such as convolutional neural networks (CNNs) that are 
trained on large datasets of annotated images. 

Object recognition, on the other hand, is the process of identifying the specific category or type of 
object that is present in an image or video frame. This involves recognizing the object's shape, color, 
texture and other visual features, and mapping those features to a set of predefined categories or 
labels. Object recognition can be performed using a wide range of machine learning algorithms, 
including traditional computer vision techniques such as feature extraction and classification, as well 
as more advanced deep learning approaches such as CNNs and recurrent neural networks (RNNs). 

While object detection and object recognition are distinct tasks, they are often used together in 
practical applications. For example, in self-driving cars, object detection is used to identify obstacles 
and other vehicles on the road, while object recognition is used to recognize traffic signs and signals. 
Similarly, in surveillance systems, object detection can be used to detect people and other objects of 
interest, while object recognition can be used to identify specific individuals or objects based on 
their appearance. 

In recent years, there has been a tremendous amount of progress in both object detection and 
object recognition, thanks to advances in deep learning and the availability of large datasets such as 
ImageNet and COCO. These advances have made it possible to build systems that can identify and 
track objects in real-time with a high degree of accuracy and they have opened up new possibilities 
for applications in fields ranging from healthcare and agriculture to retail and entertainment. 

2. Artificial Neural Networks (ANNs) 
Artificial neural networks (ANNs) are a type of machine learning algorithm that is inspired by the 
structure and function of the human brain. ANNs consist of interconnected nodes, also known as 
neurons, that process and transmit information. These neurons are organized into layers, with each 
layer having a specific function. 
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The input layer receives data from the outside world, such as an image or text. The hidden layers 
process this information and extract meaningful features, while the output layer produces a 
prediction or classification based on the input. 

Figure 2: Structure of an ANN with a single hidden layer 

One of the key advantages of ANNs is their ability to generalize to new data. Once an ANN is trained 
on a dataset, it can be applied to new, unseen data and still produce accurate predictions. This 
makes them a powerful tool for tasks such as image recognition, where the number of possible 
images is virtually infinite. 

 

2.1 Weights 
Weights are the parameters that are learned by the neural network during the training process. They 
represent the strength of the connections between neurons and determine how much influence one 
neuron has on another. Training an artificial neural network involves adjusting the weights of the 
connections between neurons to minimize the error between the predicted output and the true 
output.  

 
2.2 Bias 
Bias, or threshold, is an additional learnable parameter that influences the connections between 
neurons. It is the one that decides whether the activation function of the neuron will shift towards 
the positive or negative side, since it is added to the weighted sum of inputs in the activation 
function. 

Output = activation function(x1w1 + x2w2 + ⋯+ xnwn + bias) 
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where xi are the inputs and wi are the weights 

Figure 3: Representation of weight and bias impact on the processing of each neuron 

 

2.3 Activation functions 
In ANNs, activation functions are used to introduce non-linearity into the model, allowing it to learn 
complex patterns and relationships in the input data. An activation function takes a weighted sum of 
inputs and applies a non-linear transformation to generate the output of a neuron. 

Figure 4: Plot of the activation function parameters 

 

 

 

There are several types of activation functions, the most common of which are: 
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- Sigmoid: This activation function produces values between 0 and 1, making it useful for binary 
classification problems. However, it can suffer from the vanishing gradient problem, which 
can slow down learning. The vanishing gradient problem is a phenomenon that can occur 
during the training of artificial neural networks, where the gradients of the loss function with 
respect to the weights of the network become very small (i.e., close to zero) in certain layers. 
This can happen when an activation function used in a layer has a very small derivative, which 
can cause the gradients to decrease exponentially as they propagate through the network. 
This can make it difficult for the network to learn from the data, as the updates to the weights 
during training become too small to make a meaningful difference. 

Figure 5: Plot of sigmoid function 

 

- Tanh (hyperbolic tangent): This activation function produces values between -1 and 1, which 
can be helpful for classification problems with balanced data. Like the sigmoid function, it can 
also suffer from the vanishing gradient problem. 

Figure 6: Plot of hyperbolic tangent function 

 
- ReLU (Rectified Linear Unit): This activation function sets any negative inputs to 0 and leaves 

positive inputs unchanged. It is one of the most popular activation functions because it is 
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simple and computationally efficient.  The "dying ReLU" problem is a common issue that can 
occur when using the ReLU activation function in neural networks. The ReLU function returns 
a value of 0 for any negative input and returns the input value for any positive input. However, 
during training, some neurons in the network may end up receiving only negative input values, 
which causes the ReLU function to output 0. When this happens, the neuron is said to be 
"dead" and it will no longer participate in the training process since its gradient is always 0. If 
a large number of neurons become "dead," it can lead to a significant reduction in the 
network's capacity to learn and may result in poor performance. The "dying ReLU" problem 
can be especially problematic in deeper networks, where it can occur more frequently. 
 

- Leaky ReLU: This activation function is similar to ReLU but allows small negative values, which 
can help prevent the dying ReLU problem. 
 

- Parametric ReLU (PReLU): This activation function is similar to Leaky ReLU, but the negative 
slop is not fixed, but instead is learnable, which allows the network to adaptively change the 
slope during training. 

Figure 7: Plot of ReLU functions 

 
2.4 Feedforward Neural Networks 
Feedforward neural networks are a type of artificial neural network that processes information in a 
unidirectional way, meaning the input data flows through the network in a fixed direction from the 
input layer to the output layer without looping back on itself. These networks are commonly used in 
machine learning applications such as image classification, natural language processing and speech 
recognition. They are composed of multiple layers of interconnected nodes, with each node 
performing a simple mathematical function on the input it receives before passing it on to the next 
layer. The output of the final layer is then used to make a prediction or decision about the input 
data. 



- 14 - 
 

2.5 Feedback Neural Networks 
Feedback neural networks, on the other hand, are neural networks that incorporate feedback 
connections, meaning they can loop back on themselves to influence their own output. These 
networks are also known as Recurrent Neural Networks (RNN) and are particularly useful for 
processing sequential data such as time series or natural language. In feedback networks, the output 
of a previous time step is fed back into the network as input for the current time step, allowing the 
network to learn patterns over time. Feedback neural networks have been used in a variety of 
applications, including speech recognition, language translation and image captioning. 

Figure 8: Feedforward and Recurrent Neural Networks architecture 

3. Convolutional Neural Networks (CNNs) 
Convolutional Neural Networks (CNNs) are a type of deep learning model commonly used for image 
recognition and classification tasks. They are inspired by the way the human visual cortex processes 
visual information, by detecting patterns and features at different levels of abstraction. 

CNNs typically consist of multiple layers that perform different types of operations on the input 
image, such as convolution, pooling and non-linear activation functions. These layers work together 
to gradually transform the input image into a set of high-level features that can be used for 
classification or other tasks. 

Figure 9: A typical Convolutional Neural Network  
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One important aspect of CNNs is their ability to learn features automatically from data, without the 
need for explicit feature engineering. This is achieved through the use of convolutional layers, which 
apply a set of filters to the input image to detect local patterns and features. 

Overall, CNNs are a powerful and flexible tool for processing and analyzing visual data and have 
been used in a wide range of applications, including computer vision, natural language processing, 
and speech recognition.  

 

3.1 Convolution 
Convolution is a mathematical operation commonly used in signal processing, image processing and 
other related fields. The operation involves combining two functions to produce a third function that 
represents how one function modifies the other. 

The basic idea of convolution is to slide one function (known as the kernel or filter) over the other 
function (known as the input signal) and compute the area of overlap between the two functions at 
each position. The result of the convolution operation is a new function that represents the modified 
input signal. 

The convolution operation is often represented using mathematical notation, with the input signal 
represented by a function f(x) and the kernel represented by a function g(x). It is defined as: 

(𝑓𝑓 ∗ 𝑔𝑔)(𝑥𝑥) =  �𝑓𝑓(𝑦𝑦) 𝑔𝑔(𝑥𝑥 − 𝑦𝑦)𝑑𝑑𝑑𝑑 

where the integral is taken over all possible values of y. In other words, at each position x, the 
convolution operation involves multiplying the input signal f(y) by the kernel g(x - y), summing the 
product over all possible values of y, and assigning the result to the output function. 

Figure 10: Depiction of convolution between two functions 

 

3.2 Convolutional layers 
Convolutional layers perform convolutions, which involve sliding a small, fixed-size filter (also called 
a kernel) over the input data (e.g., an image) and computing the dot product between the filter and 
the local region of the input it overlaps. This operation produces a single output value, which is 
typically added to a bias term and passed through a non-linear activation function (e.g., ReLU) to 
produce the output of the convolutional layer. 
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The main advantage of convolutional layers is their ability to capture local spatial patterns and 
hierarchies of features in the input data. By using multiple convolutional layers with increasing filter 
sizes and numbers of filters, CNNs can learn increasingly complex and abstract representations of 
the input data, ultimately enabling high-level recognition and classification tasks. 

Figure 11: Convolutional Layer representation 

Stride refers to the number of pixels by which the filter moves across the input during convolution. 
In other words, it determines the spacing between the locations at which the dot product is 
computed. A stride of 1 means that the filter moves by 1 pixel at a time, while a stride of 2 means 
that the filter moves by 2 pixels at a time. A larger stride can help to reduce the size of the output 
feature map and make the model more computationally efficient, but it may also lead to a loss of 
information. 

Padding refers to the addition of extra pixels around the input, usually with a value of 0, in order to 
ensure that the output feature map has the same spatial dimensions as the input. Padding can be 
important for preventing the loss of information at the edges of the input, which can occur when the 
filter extends beyond the edges of the input. The amount of padding is usually determined by the 
size of the filter and the desired output spatial dimensions. 

 

3.2 Pooling layers 
Pooling layers operate on the output of convolutional layers by downsampling the spatial 
dimensions of the feature maps, while retaining their channel depth. This is typically achieved by 
dividing the feature maps into non-overlapping regions (e.g., 2x2 or 3x3) and replacing each region 
with a single value that summarizes its content. Common pooling operations include max pooling 
(taking the maximum value in each region), average pooling (taking the average value) and others. 

The main purpose of pooling layers is to reduce the dimensionality of the feature maps, making 
them more computationally efficient to process and less prone to overfitting. Pooling can also help 
to increase the invariance of the network to small translations and distortions in the input data, 
since the pooling operation is relatively insensitive to small changes in the input. 

However, too much pooling can also lead to loss of spatial information and make it more difficult for 
the network to localize objects accurately. Therefore, the number and size of pooling layers, as well 
as the pooling operation used, are typically chosen based on the specific requirements of the task 
and the available computational resources. 
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Figure 12: Pooling Layer representation 

 

3.3 Fully connected layers 
Fully connected layers, also known as dense layers, are a type of neural network layer that connects 
every neuron in one layer to every neuron in the next layer. They are often used as the final layer in 
neural networks to map the learned features to the output labels. 

The purpose of fully connected layers is to perform a nonlinear mapping from the high-level features 
learned by the previous convolutional and pooling layers to the output classes or values. This 
enables the network to make complex, non-linear decisions based on the learned features. 
However, fully connected layers can also introduce a large number of parameters into the network, 
making it more prone to overfitting and requiring more training data and computational resources. 

Figure 13: Fully connected layers representation 
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4. Training 
Training a CNN involves several steps, each of which requires careful consideration and tuning to 
achieve optimal performance. With the right architecture, data preprocessing, hyperparameter 
tuning and optimization techniques, a well-trained CNN can achieve state-of-the-art performance on 
a wide range of tasks. 

 

4.1 Supervised Learning 
Supervised learning is a type of neural network training in which the model learns to predict output 
values based on input data and known output values. In supervised learning, the neural network is 
provided with labeled training data, which consists of input data and corresponding output data. The 
network then learns to map the input data to the correct output values by adjusting the weights and 
biases of the neurons. It is well-suited for problems where there is a clear mapping between the 
input and output data. 

 

4.2 Unsupervised Learning 
Unsupervised learning, on the other hand, is a type of neural network training in which the model 
learns to identify patterns and structure in unlabeled data. In unsupervised learning, the neural 
network is provided with input data but without corresponding output data.  

Figure 14: Supervised vs Unsupervised Learning 
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4.3 Loss function 
The loss function plays a critical role in the training of neural networks. It is a measure of how well 
the neural network is performing on a given task and its optimization is the primary objective during 
training. 

The loss function is essentially a mathematical function that calculates the difference between the 
predicted output of a neural network and the actual output. This difference is known as “error” or 
“loss”. The objective of training is to minimize this error or loss, which means the neural network is 
getting closer to the desired output. 

There are various types of loss functions and the choice of loss function depends on the type of task 
the neural network is being trained to perform. For example, in a classification task, the most 
commonly used loss function is the cross-entropy loss. In regression tasks, mean squared error or 
mean absolute error loss functions are commonly used. 

The choice of loss function also depends on the type of activation function used in the neural 
network's output layer. For example, if the output layer uses a softmax activation function, cross-
entropy loss is a suitable choice. On the other hand, if the output layer uses a linear activation 
function, mean squared error loss is more appropriate. 

Figure 15: Cross-Entropy Loss function’s mathematical notation and the corresponding Softmax 
activation function 

 

4.4 Backpropagation 
Backpropagation is a method of computing the gradient of a neural network's loss function with 
respect to its weights. This gradient can then be used to update the weights in order to minimize the 
loss function. 

The backpropagation algorithm works by propagating the error backwards through the neural 
network, starting from the output layer and moving towards the input layer. At each layer, the error 
is split among the neurons in proportion to their contribution to the output of the layer and then the 
gradients are computed with respect to the weights and biases of the layer. 

Once the gradients have been computed for all layers, the weights and biases can be updated using 
a technique such as gradient descent or one of its variants. This process is repeated many times until 
the network converges to a set of weights and biases that minimize the loss function. 
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Figure 16: Representation of Backpropagation 

 

4.5 Overfitting / Underfitting 
Overfitting and underfitting are common problems in the training of neural networks. Overfitting 
occurs when a model is trained to fit the training data so closely that it performs poorly on new, 
unseen data. This is often due to the model being too complex or having too many parameters, 
allowing it to memorize the training data rather than learning generalizable patterns. On the other 
hand, underfitting occurs when a model is too simple and unable to capture the underlying patterns 
in the data. This often leads to poor performance on both the training and test data. To avoid 
overfitting, techniques such as regularization, early stopping and dropout can be used, while to 
avoid underfitting, increasing model complexity, gathering more data and adjusting 
hyperparameters can be helpful. 

 

Figure 16: Overfitting and Underfitting 
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4.6 Hyperparameters 
Hyperparameters in neural network training are parameters that cannot be learned during the 
training process, but must be set before training begins. These parameters govern the architecture 
of the network and the details of the learning algorithm. Some common hyperparameters in neural 
network training include: 

- Learning rate: determines how quickly the model should update its parameters based on 
the error during training. 

- Number of epochs: determines the number of times the training process should loop 
through the entire training dataset. 

- Batch size: determines the number of training examples used in each iteration of the 
optimization algorithm. 

- Number of hidden layers: determines the number of layers of neurons in the neural 
network. 

- Number of neurons in each hidden layer: determines the number of neurons in each layer 
of the neural network. 

- Activation functions: determines the function applied to the output of each neuron in the 
neural network. 

- Regularization: determines the degree of regularization applied to the neural network to 
avoid overfitting. 

- Optimization algorithm: determines the specific algorithm used to update the weights and 
biases of the neural network during training, such as stochastic gradient descent or Adam. 

Choosing appropriate hyperparameters is crucial for successful neural network training, as poorly 
chosen hyperparameters can lead to overfitting or slow convergence during training.  

4.7 Regularization techniques 
Regularization techniques are used in neural network training to prevent overfitting, which occurs 
when the model becomes too complex and fits the training data too closely, resulting in poor 
performance on new data. Some common regularization techniques in neural network training 
include: 

- L1 and L2 regularization: These methods add a penalty term to the loss function that 
discourages large weights in the network. L1 regularization adds the absolute values of the 
weights, while L2 regularization adds the squared values of the weights. 

- Dropout: This technique randomly drops out some of the neurons during training, which 
helps prevent overfitting by reducing co-adaptation between neurons. 

- Early stopping: This method stops the training process before it reaches the maximum 
number of epochs if the performance on a validation set has stopped improving. 

- Data augmentation: This involves creating new training examples by applying random 
transformations to the existing data, such as flipping, rotating, or adding noise. This can help 
the model generalize better to new data. 

- DropConnect: This method is similar to dropout but instead of dropping out neurons, it 
drops out connections between neurons. 

These techniques can be used individually or in combination to improve the performance and 
generalization ability of neural networks. 
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4.8 Optimization algorithms 
There are various optimization algorithms that can be used in neural network training. The most 
commonly used and most effective ones are: 

- Stochastic Gradient Descent (SGD): 

SGD is used to minimize the loss function in neural network training. It updates the weights of the 
neural network in the direction of the negative gradient of the loss function. In other words, it 
calculates the gradient of the loss function with respect to the weights and adjusts the weights in the 
direction that decreases the loss. SGD updates the weights after processing each mini-batch of 
training examples, which makes it faster than regular gradient descent. However, because it updates 
the weights in small steps, it can take longer to converge to the minimum of the loss function. 

- Adaptive Moment Estimation (Adam): 

Adam is an adaptive optimization algorithm that adjusts the learning rate for each weight based on 
the historical gradient information. It computes the learning rate for each weight by combining the 
estimates of the first and second moments of the gradients. In other words, it uses a moving average 
of the gradients and the squared gradients to adjust the learning rate. This makes Adam an effective 
optimization algorithm for problems with noisy and sparse gradients. Adam also uses bias correction 
to adjust the estimates of the moments during the early stages of training. 

 

5. You Only Look Once (YOLO) 
5.1 Original YOLO 
YOLO, which stands for "You Only Look Once," is a real-time object detection system that has 
revolutionized the field of computer vision. It was developed by Joseph Redmon, Santosh Divvala, 
Ross Girshick, and Ali Farhadi in May 2016 and has since become one of the most popular algorithms 
for object detection. 

YOLO is different from traditional object detection algorithms in that it performs detection and 
classification in a single stage, as opposed to two-stage algorithms such as Faster R-CNN or SSD. The 
entire detection process consists of three steps: resizing the input image to 448 x 448, running a 
single CNN on the complete image and then thresholding the resulting detections by the model’s 
confidence, thereby removing duplicate detections. 

Figure 17: The YOLO detection system 
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5.1.1 Definitions 
The below definitions that are used in YOLO are critical for the understanding of the way the model 
works: 

- Intersection over Union (IoU): 

 IoU (Intersection over Union) is a commonly used evaluation metric in computer vision tasks, 
particularly in object detection and segmentation. It measures the overlap between two sets of 
bounding boxes or regions of interest (ROIs) and determines how well the predicted bounding boxes 
or regions match the ground truth annotations. 

To calculate the IoU, the intersection between the predicted and ground truth bounding 
boxes/regions is divided by the union of the two regions. The result is a value between 0 and 1, 
where a score of 1 indicates a perfect match between the predicted and ground truth regions. 

Figure 18: Intersection over Union calculation 

 
 

- Mean Average Precision (mAP) 

mAP is a measure of the accuracy and completeness of a model's predictions, taking into account 
both the precision and recall of the predictions. It is calculated by first computing the average 
precision (AP) for each class and then taking the mean of those values. AP is a measure of how well 
the model correctly identifies objects in an image for a particular class, considering all possible 
thresholds for the confidence score of the predictions. 

To calculate AP, the model's predictions are sorted by their confidence scores and then the precision 
and recall are computed at each threshold. Precision is the ratio of true positive predictions to the 
total number of positive predictions, while recall is the ratio of true positive predictions to the total 
number of actual positive instances in the dataset. The precision-recall curve is then plotted and the 
area under the curve (AUC) is computed, which represents the AP. 
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Figure 18: Precision and Recall definitions 

mAP is an important metric because it provides an overall measure of a model's performance across 
all classes, rather than just for a single class. A higher mAP indicates better performance in 
identifying objects in an image. 

Figure 19: Precision and Recall curve 

 

- Non-maximum suppression 

Non-maximum suppression (NMS) is a technique commonly used in object detection and computer 
vision to eliminate duplicate detections of the same object. It involves selecting the highest-scoring 
bounding box that overlaps with other bounding boxes above a certain threshold and suppressing 
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the rest. This threshold is typically based on the IoU metric. By using NMS, we can obtain a more 
accurate and robust object detection output. 

5.1.2 Architecture 
The original YOLO model consists of 24 Convolutional layers with intermediate Maxpool layers, 
which do the image feature extraction, followed by two fully connected layers that predict the 
output probabilities and coordinates.  

Figure 20: Original YOLO architecture 

 

 

5.1.3 Loss function 
The loss function that is used in YOLO is based on the sum-squared error function, mainly because it 
was easier to optimize. It was retrofitted in a way to remedy its weaknesses in order to produce the 
highest mAP possible.  

More specifically, the sum-squared error function weights localization error equally with 
classification error, which is not optimal. Also, in every image many grid cells do not contain any 
object, which pushes the “confidence” scores of those cells towards zero, often overpowering the 
gradient from cells that do contain objects. This can lead to model instability, causing training to 
diverge early on. To face this issue, the loss from bounding box coordinate predictions was 
increased, while the loss from confidence predictions for boxes that don’t contain objects was 
decreased, using two parameters, λcoord, which is set to 5, and λnoobj, which is set to 0.5. 

Another issue of the sum-squared error is that it weights errors equally in large and small boxes. In 
reality, small deviations in large boxes matter less than in small boxes, so to address this, the YOLO 
loss function predicts the square root of the bounding box dimensions instead. 
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The final loss function is: 

Figure 21: YOLO loss function 

where 𝐼𝐼𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜  denotes if an object appears in cell i and 𝐼𝐼𝑖𝑖𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜  denotes that jth bounding box predicted in 
cell i is responsible for that prediction 

 
5.2 YOLOv2 
The 2nd version of YOLO, or as the paper was called “YOLO9000: Better, Faster, Stronger”, is an 
improvement to the original YOLO model, developed by Joseph Redmon and Ali Farhadi in 
December 2016. The new features that are proposed try to face the weaknesses of the original YOLO 
model, such as the significant amount of localization errors that it produces and its low recall 
compared to region proposal-based methods. 

In order to address these issues, YOLOv2 uses, among others, the below features: 

- Batch normalization: it is a technique used to normalize the input of each layer of a neural 
network. It works by subtracting the mean and dividing by the standard deviation of the 
values in each batch of data. This helps to stabilize the training process by reducing the 
internal covariate shift problem, which occurs when the distribution of the input to a layer 
changes during training. By normalizing the input to each layer, batch normalization can 
improve the performance of the network, reduce overfitting, and speed up training. By 
adding batch normalization to all of the convolutional layers, there is an increase of at least 
2% on the mAP of the model. 
 

- Convolutional with Anchor Boxes: The YOLO algorithm predicts bounding box coordinates 
directly using fully connected layers on top of the convolutional feature extractor. By 
predicting offsets instead of coordinates, the problem is simplified and easier for the 
network to learn. To use anchor boxes in YOLOv2, the fully connected layers are removed, 
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and one pooling layer is eliminated to increase the resolution of the convolutional layers. 
The network is also shrunk to operate on 416 input images, resulting in an output feature 
map of 13 × 13. With anchor boxes, the class and objectness predictions are decoupled from 
the spatial location, and every anchor box is used for class and objectness prediction. 
Although the use of anchor boxes results in a small decrease in accuracy, the increase in 
recall indicates that the model has more potential for improvement. The YOLO algorithm 
predicts only 98 boxes per image, whereas YOLOv2 model predicts more than a thousand. 

 

Figure 22: Bounding box dimensions and location with the use of anchor boxes 

 
- Multi-Scale Training: In the original YOLO algorithm, the input resolution was set to 448 × 

448. However, with the addition of anchor boxes, the resolution was changed to 416 × 416. 
As the YOLOv2 model only uses convolutional and pooling layers, it can be resized 
dynamically, making it robust to running on images of different sizes. To train this into the 
model, the network is changed every few iterations, with the input image size randomly 
chosen every 10 batches from multiples of 32 ranging from 320 × 320 to 608 × 608. This 
approach forces the network to learn to predict well across a variety of input dimensions, 
allowing the same network to predict detections at different resolutions. YOLOv2 offers a 
trade-off between speed and accuracy, with the network running faster at smaller sizes.  

Figure 23: YOLOv2 architecture 
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5.3 YOLOv3 
YOLOv3 (You Only Look Once version 3) was developed by Joseph Redmon and Ali Farhadi in April 
2018. It is the third iteration of the YOLO algorithm, which stands out for its high accuracy and real-
time performance. 

The most significant improvement over the previous versions is the use of a feature extractor called 
Darknet-53, which has 53 convolutional layers and is capable of extracting more complex features 
than previous versions, thus significantly improving accuracy. In addition, YOLOv3 uses three 
different scales to detect objects, which allows it to identify objects of different sizes and shapes 
more accurately. 

Figure 24: YOLOv3 architecture with Darknet-53 backbone and the three prediction scales 

Another major improvement in YOLOv3 is its ability to detect objects at different levels of 
granularity. YOLOv3 can detect objects at the level of individual pixels, which means it can accurately 
locate small objects even in cluttered scenes. It is also designed for real-time performance, with the 
ability to process up to 60 frames per second on a conventional GPU.  
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5.4 YOLOv4 
YOLOv4 (You Only Look Once version 4), the fourth iteration of the YOLO model, was developed by 
Alexey Bochkovskiy with the help of Chien-Yao Wang and Hong-Yuan Mark Liao in April 2020, since 
the YOLOv3 was an open-source model, available to everyone for experimenting and improving. 

Yolov4 introduces two new sets of features that are used to optimize training and detection, called 
“bag of freebies” and “bag of specials”: 

- Bag of freebies: Typically, a conventional object detector is trained offline, which motivates 
researchers to develop better training methods that can enhance the object detector's 
accuracy without increasing inference cost. These methods are known as "bag of freebies," 
which refers to strategies that only modify the training procedure or increase its cost. One 
common bag of freebies approach used in object detection methods is data augmentation, 
which aims to increase the variability of input images to improve the model's robustness to 
different environmental conditions. 
There are several data augmentation methods, including photometric distortions and 
geometric distortions, which make pixel-wise adjustments to images. Additionally, some 
researchers use data augmentation to simulate object occlusion issues, achieving good 
results in image classification and object detection. Other data augmentation methods 
involve using multiple images together, such as MixUp and CutMix, to adjust labels and 
reduce texture bias learned by CNN. 
Some bag of freebies methods address the problem of data imbalance between different 
classes, which can cause semantic distribution bias. Hard negative example mining and 
online hard example mining are often used in two-stage object detectors, but they are not 
applicable to one-stage detectors. To address data imbalance, focal loss and label smoothing 
have been proposed. Knowledge distillation and label refinement networks have also been 
introduced to refine soft labels. 
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Finally, the objective function of bounding box (BBox) regression is another bag of freebies 
method. Traditional object detectors use mean square error (MSE) to perform regression 
directly on the center point coordinates and height and width of the BBox. IoU loss has been 
proposed to address the issue of treating points as independent variables, with researchers 
continuing to improve it with GIoU loss and DIoU loss. 

Figure 25: Bag of Freebies methods 

- Bag of Specials: We refer to plugin modules and post-processing methods as "bag of 
specials" if they increase the inference cost slightly but greatly enhance the accuracy of 
object detection. These modules can be used to improve specific attributes of a model such 
as feature integration capability, receptive field, or attention mechanism. 
The Bag of Specials includes various plugin modules that can enhance the receptive field of a 
model, such as Spatial Pyramid Pooling (SPP), Atrous Spatial Pyramid Pooling (ASPP) and 
Receptive Field Block (RFB).  
SPP was originally developed as a Spatial Pyramid Matching (SPM) method and later 
integrated into convolutional neural networks (CNNs) using max-pooling instead of a bag-of-
word operation. However, its one-dimensional output made it infeasible to use in Fully 
Convolutional Networks (FCNs). Thus, the SPP module was improved by concatenating max-
pooling outputs with kernel sizes ranging from 1 to 13 and stride equal to 1. This design 
allows for larger max-pooling kernels, which effectively increase the receptive field of 
backbone features.  
Another common type of plugin module used in object detection is the attention module. 
Attention modules can be divided into channel-wise and point-wise attention, represented 
by Squeeze-and-Excitation (SE) and Spatial Attention Module (SAM), respectively. SE 
modules can improve the accuracy of ResNet50 in the ImageNet image classification task by 
1% top-1 accuracy at the cost of only increasing the computational effort by 2%. However, 
on a GPU, SE modules can increase inference time by approximately 10%. On the other 
hand, SAM only requires 0.1% extra calculation and can improve ResNet50-SE 0.5% top-1 
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accuracy on the ImageNet image classification task without affecting the speed of inference 
on the GPU. 
Finally, the Bag of Specials includes various post-processing methods, with Non-Maximum 
Suppression (NMS) being the most commonly used in deep learning-based object detection. 
NMS can be used to filter out bounding boxes that predict the same object poorly and only 
retain candidate bounding boxes with higher response. This approach can significantly 
improve object detection accuracy by reducing false positives. 

Figure 25: Bag of Specials modules 

YOLOv4 consists of:  

- Backbone: CSPDarknet53 
- Neck: SPP, Path Aggregation Network (PAN) 
- Head: Yolov3 

Figure 26: YOLOv4 architecture 
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YOLOv4 uses: 

- Bag of Freebies for backbone: Cutmix and Mosaic data augmentation, DropBlock 
regularization, Class label smoothing 

- Bag of Specials for backbone: Mish activation, Cross-stage partial connections (CSP), Multi-
input weighted residual connections (MiWRC) 

- Bag of Freebies for detector: CIoU-loss, Cross mini-Batch Normalization (CmBN), DropBlock 
regularization, Mosaic data augmentation, Self-Adversial Training, Eliminate grid sensitivity, 
Using multiple anchors for a single ground truth, Cosine annealing scheduler, Optimal hyper-
parameters, Random training shapes 

- Back of Specials for detector: Mish activation, SPP-block, SAM-block, PAN path-aggregation 
block, DIoU-NMS 

Figure 27: YOLOv4 BoF and BoS 
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5.5 YOLOv4-tiny 
YOLOv4-tiny is the compressed version of YOLOv4 designed to train on machines that have less 
computing power. YOLOv4-tiny utilizes a couple of different changes from the original YOLOv4 
network to help it achieve these fast speeds. First and foremost, the number of convolutional layers 
in the CSP backbone are compressed with a total of 29 pretrained convolutional layers. Additionally, 
the number of YOLO layers has been reduced to two instead of three and there are fewer anchor 
boxes for prediction. 

Figure 28: YOLOv4-tiny architecture 
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6. Case study 
6.1 General Description – Goal 
The main goal of this study was to develop a software tool for 3D object recognition, which can be 
custom trained to detect and identify any items the programmer chooses. In this case, it was trained 
to recognize mechanical components that can be found inside a vessel, such as pipes, flanges, valves 
and electric motors.  

Additionally, the abovementioned software should be able to run on conventional devices, without 
the need for high-end computational components, that would make it inaccessible to common 
users. In order to achieve this, an object recognition model that requires low computing power was 
needed, without losing out on accuracy and speed. For this reason, the YOLOv4-tiny model was 
chosen as the ideal option. 

Lastly, all of the software tools that are available on the internet until now, like Darknet and 
PyTorch, have a complex setup process, which requires the installation of various dependencies and 
applications that work in the background. This study aimed to create a software tool that can 
perform object recognition without the need for excessive preparation and setup and will be more 
user-friendly. Unity was deemed to be the best environment to create an application like that. 

 

6.2 Used tools 
6.2.1 Unity 
Unity is a popular game engine that enables developers to create high-quality, interactive 2D and 3D 
games for various platforms such as desktop, mobile, and virtual reality (VR) devices. It was first 
released in 2005 by Unity Technologies and has since become one of the most widely used game 
engines in the world. 

One of the primary advantages of Unity is its ease of use. The engine offers a visual editor that 
allows developers to create game scenes by dragging and dropping assets and scripts. Additionally, 
Unity supports a wide range of programming languages, including C#, which is commonly used by 
game developers. This flexibility makes Unity an accessible tool for developers of all skill levels. 

Another key feature of Unity is its cross-platform capabilities. Games developed using Unity can be 
easily deployed to various platforms such as Windows, macOS, iOS, Android, and many more. This 
makes it possible for developers to reach a wider audience and maximize the potential of their 
games. 

Unity also offers a variety of tools and features that can enhance the development process. For 
example, the engine supports real-time lighting and physics simulation, which can help create more 
immersive and realistic game experiences. Additionally, Unity's Asset Store provides a vast library of 
pre-made assets and tools that developers can use to speed up their workflow and improve the 
quality of their games. 
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6.2.1.1 Unity Barracuda 
Unity Barracuda is an open-source deep learning framework developed by Unity Technologies. It is 
designed to enable developers to easily incorporate machine learning models into their Unity 
projects, allowing for advanced AI and data-driven game mechanics. 

Barracuda supports a wide range of deep learning frameworks such as TensorFlow, ONNX, and 
PyTorch, and can be used with Unity's own machine learning tools such as ML-Agents. This flexibility 
makes it possible for developers to use their preferred machine learning framework while still taking 
advantage of Unity's game development capabilities. 

One of the key benefits of Barracuda is its high performance. The framework is designed to run 
efficiently on a range of hardware, including CPUs, GPUs, and even mobile devices. This makes it 
possible to run complex machine learning models in real-time within a Unity game. 

Overall, Unity Barracuda is a powerful tool for game developers looking to incorporate machine 
learning into their projects. Its high performance and flexible framework make it possible to create 
advanced AI and data-driven game mechanics with ease. 

 

6.2.2 TensorFlow 
TensorFlow is an open-source machine learning framework developed by Google Brain team in 
2015. It is designed to build and deploy machine learning models at scale, allowing developers to 
create complex neural networks and other machine learning algorithms with ease. 

The core component of TensorFlow is its computational graph, which represents a series of 
mathematical operations that are applied to input data to produce an output. This graph is highly 
flexible and can be optimized for a wide range of hardware configurations, including CPUs, GPUs, 
and TPUs. 

One of the key advantages of TensorFlow is its ability to handle large-scale datasets efficiently. This 
is achieved through its use of data flow graphs, which allow developers to parallelize computations 
across multiple machines and GPUs. Additionally, TensorFlow supports distributed computing, which 
enables developers to train and deploy models across multiple nodes in a cluster. 

TensorFlow has a wide range of pre-built libraries and tools, including Keras, a high-level API for 
building and training deep learning models, and TensorBoard, a visualization toolkit that helps 
developers to monitor and optimize their models. Additionally, TensorFlow supports a wide range of 
programming languages, including Python, C++, and Java. 

 

6.2.2.1 Keras 
Keras is an open-source neural network library written in Python. It is designed to enable the 
creation of deep learning models with minimal code. Keras was developed with a focus on enabling 
fast experimentation, and it has become a popular choice for building neural networks. 

One of the main advantages of Keras is its high-level interface, which abstracts away many of the 
low-level details of building a neural network. Keras provides a simple and intuitive API for building 
and training models, which allows users to quickly prototype and experiment with different 
architectures. 
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6.2.3 ONNX 
ONNX (Open Neural Network Exchange) is an open-source project developed by Microsoft and 
Facebook that allows deep learning models to be transferred between different frameworks, making 
it easier to deploy and optimize them on a variety of hardware platforms. ONNX defines a standard 
format for representing machine learning models, allowing them to be interoperable across 
different software frameworks. 

The ONNX format allows users to export their trained models from their original framework to the 
ONNX format and then import them into another framework. This enables users to take advantage 
of the strengths of different frameworks and use them in combination to build complex models. The 
ONNX format is particularly useful for deploying machine learning models to a range of devices, from 
mobile phones to cloud servers, as it supports a wide range of hardware accelerators. 

 

6.3 Steps in Case Study 
6.3.1 Dataset preparation 
In order to train a CNN to recognize objects in images, it is necessary to ‘’feed’’ the model with 
images that are already labelled and have bounding boxes drawn around each object. It is 
highlighted that for every object class (in this case, the classes will be 4: pipe, flange, valve, motor) 
about 2000 different images are required. This means that in order to train the model, it is required 
to have a minimum of 8000 images, with the accompanying annotation files that contain the 
information about the objects’ classes and bounding boxes. 

The annotation file that is needed for every image is an .xml file that has the following format: 

<annotation> 
  <folder>train/Images</folder>  //specifies the folder that contains the image 
  <filename>0001.jpg</filename> //the image’s name (images should be in .jpg format) 
  <segmented>0</segmented>  //specifies if the image is segmented or not (0 or 1) 
  <size> 
    <width>416</width>   //image width 
    <height>416</height>  //image height 
    <depth>3</depth>    //image depth (3 is for RGB images) 
  </size> 
  <object>    //this segment is repeated for every object in the image 
    <name>motor</name>  //object’s class 
    <pose>Unspecified</pose>  //specifies the skewness or orientation of the object 
    <truncated>0</truncated>  //specifies if the object is fully or partially visible 
    <difficult>0</difficult>  //specifies if the object is difficult to recognize 
    <bndbox>    //bounding box coordinates 
      <xmin>12</xmin>   //xmin and ymin are the coordinates of the top-left corner 
      <ymin>94</ymin> 
      <xmax>188</xmax>   //xmax and ymax are the coordinates of the bottom-right  
      <ymax>200</ymax>   //corner 
    </bndbox> 
  </object> 
  </annotation> 
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An example of an image and its annotation file is the following: 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 29: Image with two motors and the corresponding annotation file 

Creating a dataset of at least 8000 sample images from data found on the internet is a task that 
requires hundreds of hours to complete, since it requires drawing the bounding boxes and writing 
the annotation files manually. Since there is no available dataset online that contains mechanical 
components, it was necessary to automate this process. In order to achieve the automation of the 
dataset preparation, a Unity project was used, where the images and annotation files were 
generated by the project. 

Initially, the meshes of the required objects were created in Blender, a 3D modelling software, and 
then imported in the Unity project. Then, a scene was created in the Unity project with the use of 
the imported meshes on a custom design. When the project starts running, it takes screenshots of 
the scene and automatically creates the annotation files, while rotating the objects, changing their 
colour and spinning the camera angle, in order for the images to differentiate between them and 
give different perspectives of the scene. This process was repeated for every different object class 
for about 2000 images, and then it was used with a combination of classes, similar to a vessel’s 
engine room.  
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Figure 30: Screenshot of Unity scene with a custom design of pipe, flange and valve meshes 
 

A total number of 25040 images and their corresponding annotation files were created in order to 
be used in the training process. 

6.3.2 Training 
The training was done with the use of the below Keras implementation of YOLOv4-tiny 
(https://github.com/bubbliiiing/yolov4-tiny-keras). 

After installing the required dependencies and downloading the pre-trained YOLOv4-tiny weights 
file, the voc_annotation.py script was used in order to split the dataset into two categories. The 
’’train’’ category, which contains 90% of the images, is used to train the model, while the ’’val’’ 
category, that contains the rest of the images, is used to evaluate the model and correct the training 
process. 
Then, a .txt file named cls_classes was created, which contains the four classes’ names, each on a 
separate line. 
Lastly, the train.py script, which contains all of the parameters and hyperparameters, was updated 
with the new file paths and it was ran on the Command Prompt. At this point, it should be noted 
that the new Nvidia GPUs with Ampere technology do not support the TensorFlow version 1.13 that 
the above software requires, so training was conducted using an Nvidia GeForce 1050 Ti GPU. 
Training lasted about 3 days and the output was an .h5 file that contains the weights of the network. 

https://github.com/bubbliiiing/yolov4-tiny-keras
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Figure 31: Graph showing mAP calculations throughout the 250 epochs of training 

 
Figure 32: Graph showing train loss and val loss throughout the training process 

In the end, the below lines were added in the yolo.py script in the generate method: 

self.yolo_model.summary()  
json_string = self.yolo_model.to_json() 
open('yolov4_tiny_custom.json', 'w').write(json_string) 
 
and the predict.py script was used, in order to generate a .json file that will be used in future steps. 
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6.3.3 Conversion to ONNX format 
In order to be able to use the trained model in Unity, the weights needed to be converted to ONNX 
format. The conversion happened in three steps: 

- Conversion from Keras format (.h5) to TensorFlow format (.pb) 

Using the below script and the two files generated during the training process (the .h5 weights 
file and the .json file), a ’’saved model’’ folder was created containing the .pb weights file 

import tensorflow as tf 
model = tf.keras.models.model_from_json(open('yolov4_tiny_voc.json').read(), 
custom_objects={'tf': tf}) 
model.load_weights('yolov4_tiny_voc.h5') 
model.save('saved_model') 
 
- Conversion from TensorFlow format (.pb) to ONNX format (.on) 
 
https://github.com/onnx/tensorflow-onnx 
Using the above GitHub repository, after installing the required dependencies, the below 
command converts the saved_model folder to an .onnx weights file: 
 
python -m tf2onnx.convert --saved-model tensorflow-model-path --opset 9 --output model.onnx 

  
- Conversion to a Unity Barracuda compatible format 
 
Unity Barracuda version 1.0.4 does not support the ’Split’ node, so in order to solve this issue, 
the following script was used, which replaces the Split nodes of the network:  
 
import numpy as np 
import onnx 
from onnx import checker, helper 
from onnx import AttributeProto, TensorProto, GraphProto 
from onnx import numpy_helper as np_helper 
def scan_split_ops(model): 
  for i in range(len(model.graph.node)): 
    # Node type check 
    node = model.graph.node[i] 
    if node.op_type != 'Split': continue 
    # Output tensor shape 
    output = next(v for v in model.graph.value_info if v.name == node.output[0]) 
    shape = tuple(map(lambda x: x.dim_value, output.type.tensor_type.shape.dim)) 
    shape = (shape[3], shape[3]) 
    # "split" attribute addition 
    new_node = helper.make_node('Split', node.input, node.output, split = shape, axis = 3) 
    # Node replacement 
    model.graph.node.insert(i, new_node) 
    model.graph.node.remove(node) 
model = onnx.load('yolov4_tiny.onnx') 

https://github.com/onnx/tensorflow-onnx/
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model = onnx.shape_inference.infer_shapes(model) 
scan_split_ops(model) 
checker.check_model(model) 
onnx.save(model, 'yolov4_tiny_barracuda.onnx') 
 
The final result is an ONNX file that contains the weights and the structure of the network, which 
can be used in Unity and perform the desired 3D object recognition.  
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Figure 33: Architecture of the .onnx file 
 

6.3.4 Implementation in Unity 
For the final step of this study, a project by Keijiro Takahashi, a Unity developer was used 
(https://github.com/keijiro/YoloV4TinyBarracuda). After importing the final ONNX weights file into 
the project and assigning it to the Resource Set, a few changes were also made. First of all, in the 
“Marker” script, the “_labels” string was changed to contain the model’s 4 classes. Also, in the 
“ObjectDetector” script, the names of the output layers in lines 131 and 132 were changed as shown 
below, in order to correspond with our model’s output layers: 

https://github.com/keijiro/YoloV4TinyBarracuda
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"Identity" → "conv2d_18" 
"Identity_1" → "conv2d_21" 

At this point, it is possible to choose in the “Image Source” script of the “Visualizer” game object the 
desired source type, between image, video or a webcam, and the project is ready to perform the 
desired object recognition task. 

Figure 34: Output of the model with a threshold of 0.65 

 

In the above picture, the model was able to detect most of the machinery parts with an adequate 
accuracy. The threshold of detection was set to 0.65, meaning that the model will show only 
predictions with confidence score above said threshold. 
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7. Conclusion and Future Work 
7.1 Conclusion 
The present thesis describes and analyses the process of creating a software tool capable of 
performing 3D object recognition, without the need of explicit programming and computer science 
knowledge. In this case, the desired objects were mechanical components that can be found inside a 
vessel, but it can be used to detect any object class, provided that a dataset with enough sample 
images is provided or generated by the user. The training part of the CNN is a more complex process, 
which requires several parameters to be monitored and a dataset that is vast and correctly labelled, 
but as soon as the model is trained efficiently, the detection part is a simple and easy task. The end-
product is both effective and user-friendly, and can be used by anyone desiring to automate an 
object recognition process, such as inventory management. 

Additionally, in this time of rapid advancement of AI technology, it is important that anyone who 
wishes to invest time and effort on AI applications can learn their basic concepts and principles, in 
order to be able to utilize them in efficient ways and help each industry evolve. This thesis provides a 
comprehensive overview of the state-of-the-art techniques and methods used for 3D object 
recognition, as well as the strengths and limitations of each approach. 

 

7.2 Future work 
First of all, the end-product of the Unity project can be further optimized with a user-friendly UI and 
built into an application that can run on any device without the need for the Unity platform. This 
way, the 3D object recognition task can be performed everywhere and by anyone, even inside a 
vessel’s engine room in real-time using a smartphone’s camera. 

One other improvement can be the complete automation of the training process. The Unity project 
that was used for the dataset preparation is a huge improvement compared to the manual 
processing of each image, but considering the rapid evolve of AI these days, it should be possible to 
assign the task of image labelling to a machine. This way, by using images from an existing engine 
room’s environment, the training process will be much more efficient and the model will perform 
object recognition with almost 100% accuracy.  

Lastly, this thesis can serve as a foundation for the application of more state-of-the-art object 
recognition models, such as YOLOv7, which is an improvement to the previous YOLO models, but it is 
not yet able to run on the Unity Barracuda environment. 
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