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IMTepiindn

Ou Biounyoavixéc Eyxatactdoeic mdvta elvar otéyoc emtdécewy o di-
8popES HOPPES OTIOUV EYOLY ETUTTOOELS OE XOWVWVIXO, OLXOVOUIXO X0l
oaxouo xon ToMTixd eminedo. H evowudtwon mponypévwy mhnpo@o-
PLIX®Y TEYVOROYLWY, OTwe To Atadixtuo twv Ipayudtwny, o tétol
mepi3dhhovta Tor Eyel extedel o {nTrdato acgaieiog Tou ¢meLood
%OGUOL xal £YEL PEREL 6TO TRooXAVIO xUBepvoemiéaeic. M dnpogL-
AAC OTEATIYLXN Yo TNV TEOC TUCTN TWV BLOUNYOVIXWY EYXATAC TUCEWY
am6 Tétolou eldoug emiéoelg elvon 1 avdmTuln alyoplduwy xon ue-
YOBwV aviyveuone Bactopévwy o unyovixr) udinon, xodog xou oe
avdhuon yeovooeeny. H mpdxhnon oe auTéc TIC TEQIMTOOELS €lvan
Vo avamTu Vol YRYORES, OXOUO YO TEAYHATIX0U YeOVOU AUCELS,
TOL AVLYVEDOLY X0l X0 ATOTEETOUY XaxOPBoLAEG emtiEoelc. e -
TV TNV Simlwpatixy epyacia, mpoteivouue tny emtdyuvon FPGA yi
EVOL TROY VWO TXO HOVTERNO TIOU vty VEVEL XUPBEpVoQuUOIXEC etiEoelg o
o ook povéda enelepyaoiac vepol (SwaT). H BiBhoypapia de-
fyver 6T Tar povtéha pmyovinnic wdinone Random Forest eugoviCouv
PNy axelfeta oty aviyvevon tétowwy emiéocwy. O otdyog TNg
ottelfric ebvan 1 emtdyuvon tne extiunone Bactouévne oto Random
Forest (RF) péow tne yeronc tou mhawciov High Level Synthesis
(HLS) Vitis, mpocavoatohlduevo oe wo ouoxeur) FPGA. Tlpotetvoupe
ua Lepapy ) oTeaTnYr fehtioTonolnong mou o toyelel TNy evioyu-
o1 TNG AmOdOONG UECK TNG OLVERYASiag TEYVIXWY [BeATio Tomoinomg
TOU XOOXOL TNYHS XAl TEYVIXDY TUEUAANAIGUOU TOU Efval EVOOUAUTE-
uéveg oto HLS. e éva mp®to eminedo, evepyonolo0Ue TOV TOQUAAT-
Mopo6 evTog Tng extéheonc wog uovo epyaotac Random Forest. e
€val Be0TEPO ETIMEDO, EEEPEUVOUUE TOV TUQUAANMOUG O TOANATAOUC
Random Forests pe 800 Swupopetinéc apyttextovixéc: (i) éva coarse
grained design mou SeuxohlveEL TOV TOEAAANAO YEIPLOUO UECK TOA-
Aamh@v instances evoc povo oyedaopod RF xau (ii) évav oyediooud
throughput-optimized nou Baoctleton oty TaEdAANAT eXTéAEOT) TTOA-
hamhwv Random Forests péow yiac axorouvdiocg ouoloyevmy Lovadmy
enelepyaoiac. Télog,oe autd Tor 60 eminedo TUPAAANAIGUOD EQuE-
uoleton 1 tey Vx| precision scaling mou emituyydvel emmAéoy evioyuor
NG AMOBOONG HEGHL TNG EXTEAEOTG AYOTERO TOAUTAOXMY AELTOURYLOVY
X0l ATMOTEAEOHATIXNG YpNong Topwy. H mapandve otpatnywr evow-
HOTOVETAL ETUTAEOV O €VOL AUTOUATOTIONUEVO TAAICLO TOU TEOYUTO-
molel pat e€epedivnon Tdve o€ €val GUVORO eEETUlOUEVWY TUPUUETOMY



xou ToEEYEL var ToPETo UE ADGELS TOU ETLTLUYYAvoUV Evay cuUPBacud
ueToV amédoong xou yerione topwy. O tapayoduevol oyedlacuol aflo-
hoyoivton évavtt g extéreong C++ xaw Python vy dudgpopa peyedr
€l0600V, EMTUYYAVOVTAS UEYIO TN EmiTdyuvon X 20.03.

AéEerg kAer61d: Aviyveuon avouoiy, Blounyavixéc Eyxoto-
otdoel, Enutdyuvon oe FPGA, Vitis HLS Tool, Scikit Learn



Abstract

Industrial facilities have always been the target of attacks in various
forms and impact on a social, economic and even political level. The
integration of advanced information technologies such as the Inter-
net of Things in such environments has exposed them to security
issues of the digital world and have brought forward cyber attacks.
A popular strategy to protect industrial facilities from such attacks,
is to develop detection algorithms and methods based on machine
learning as well as time series analysis. The challenge in this cases
is to develop quick, even real-time solutions, that detect and even
deter malicious attacks. In this work, we propose FPGA accelera-
tion for a predictive model that detects cyber-physical attacks at a
Secure Water Treatment facility (SwaT). Literature shows that Ran-
dom Forest machine learning models exhibit high accuracy in the
detection of such attacks. The goal of the thesis is to accelerate the
Random-Forest(RF)-based inference through the use of High Level
Synthesis framework Vitis HLS targeting an FPGA device. We pro-
pose a hierarchical optimization strategy that targets performance
enhancement through the synergy of source code optimization tech-
niques and HLS-inherent parallelization techniques. On a first level,
we enable parallelism within the execution of a single Random Forest
inference task. On a second level, we explore parallelism across mul-
tiple Random Forests by proposing two different architectures: (i) a
coarse-grained design that facilitates parallel execution through mul-
tiple instances of a single RF design and (ii) a throughput-optimized
design that is based on pipelined execution of multiple Random For-
est across an array of homogeneous Processing Units. Lastly, these
two levels of parallelism are coupled with a precision scaling ex-
ploration that achieves further performance enhancement through
the execution of less complex operations and efficient resources uti-
lization. The above strategy is further enclosed in an automated
framework that performs an exploration over a set of examined pa-
rameters and delivers a pareto front with solutions that achieve a
trade-off between performance and resources utilization. The gen-
erated designs are evaluated against C++ and python inference for
various inputs sizes achieving a speedup of almost x20.03.

Key words: Anomaly Detection, Industial Facilities, Accelera-
tion on FPGA, Vitis HLS Tool, Scikit Learn



Euyapiotieg

Oa fdeha, €V TEOTOIC, Vo EUYEIOTHCW Tov emPBAETOVTA XNy NTH
x. Anuften Xolvien yio TNV EUTOTOCUVH TOU You E€0eile Yo TNV
eEXTOVNON TNG ToEOVoG OLTAWUATIXNAG AAAGL XOU TNV UOVADIXT) EXTIOL-
deuTIY| eumelplar Tou awTY You Tpoctgepe. EmmAcov Uéhw vo guyo-
ploThow TNV utodhgla Sddxtpopa xa. Kwvotavtiva Koloyenpyn,
tov Enixovpo Koadnynt I'iddpyo Aevtden xon tov urodripio 8iddxtpo-
cor Anuriten Aavémouvho yia TS GUPBOUAES TOUg xon TNV xood1ynoT
TOUC 0g OA T OTAOLL EXTOVNONG NG Tapovoag epyaciog. Kielvo-
vTog, Yo Hieho vo evyopto THow Toug GIAoUC Jou YdeT GTOUS OToloug
oL oTNTIXG yeovia Vo uou Jetvouy aléyacta ahhd xaL Toug YOveic
Hou xou Tar adEpgra wou, Pavoven xow MaploAeva, yiar TNV AUEQLO TN
OTHRLEN TOU OV EBELEaY XATA T1) OLIEXELL TGV OTIOUBWY UOU.



1 Exztevng llepiindn

1.1 Ewaywyn-Kivnteo

Ta tehevtalo yedvia tapatneeiton 6Tt 6Ao xou teplocdTepeC Blounyovixeg
Eyxotactdoeig yivovton otoyo entdeocwv. TToAld and autd toa cuotr-
potar Oev elyoy oyedlaoTel Ue yvwuova TNy acpdield. Méypl mpdTivog

oL teyvohoyleg Acttoupyiog Aoy Slaywplouéveg and Tic TEYVohoyieg
mAnpogopioc. Emmiéov anutolviay eZEBEUPEVES YVOOELS YIol TOV
YELRLouo xan TNy 0pd1 Aettoupyio auteyv. Adyw autov ol Blopnyavixéc
EYXATAC TAOELS NTOY THO aoPaAelc o€ oyéon pe ofuepa. H ouveyonc
awEavopevn avdmtugn xou {Rtnon tne teyvohoyiog Internet of Things(IoT)
€yel evioyVoel To mopamdve @ouvopevo. Ilapd ta Eexddopa o@éin,
OYETIXY UE TNV TOEOY WYIXOTNTAL, TNV ATOO0TIXOTNTA XAl TV AUTOUATOTONOT,
TOL TEOCYEQEL 1) EVOWNT®waoT Tou [oT xou 1 dlaclvdeoTn TV cuoTN-
udtev ehhoyelel o xivouvog va extedoly TEPLOCOTERES UBUVOLES.

Ipoxeyévou v SLacQUAOGOUUE TG BLOUNYAVIXES EYHATAUC TAOELS
and Tétolou eldoug emécenmy ypetdleton 0 Tyl EVIOTIOUOS AUTMOV
X0 1) OVATTUE Y] ATOTEETTIXMY UNYOVICUMDY. XXOTOC AUTAC TNG OLTAL-
potixic epyactag elvon 0 oYEBLIGUOS EVOS oY UEOL TEOBAETTIXOU UOV-
Téhou mou Vo umopel vo eviomioel tétolou eldoug emléoelc xou va
To emtayuvoule xota To inference. o var metdyouue autd xdvouue
Anomaly Detection ye yeron ahyoprdumy unyovixig pdinong, omee
o Random Forest ensembler.To napoyduevo autéd poviéro emiéape
va o emtayUvoude o FPGA Bewce pe v Pordeia tou epyaieiou
Vitis HLS.

H aviyveust avouaAidy, Yoo T ot o¢ aviyVeuon axpaiwy Ty,
AVOPERETAL 0TO TROBANUA TG EVPEOTC HOTIBWY ot Bedouéva oL BeV
CUHHOPPOVOVTUL UE TNV UVUUEVOUEVT) cUUTERLPoRd. Kuplwg emxevte-
WVOUAOTE . XENOWOTOLOVTOS L0 TOPXE OEDOUEVH EXTIUUOEVOUNE TO UOV-
tého Random Forest yia va xdver tétoleg mpoPiedec. Random For-
est elvon €vag adyodpriuoc supervised learning émou amoteAelton amod
wa cuAroyr and Decision Trees. Kdéde Decision Tree exmoudeueton
ove€apTNTOL O TAL UTIOAOLTTOL GE £VaL UTOGUVOAO amd To apyix6 dataset.
Mo var mpoxOer xdmota TedBAedr xdde 5EVTE0 xdveL avegopTnTa TNV
O TOU %ot UOTEPA QUTEC GUAAEYOVTOL. LTNV Oy Hog TEPITTWOT)
omou [ag evolpépel To classification, 1 teAy| mpoBhedm e&dyetan e
majority voting.

M and Tic xUpieg mpoxArioelc mou oyeTiCovTon UE TNV EQPUPUOYT
real-time anomaly detection eivon to yphyopo xou o&iémoto infer-
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ence. LNy epyooia wog npotetvoupe va yenotuonotficouue Field Pro-
grammable Gate Arrays (FPGA) xou to toolchain Vitis-HLS. Ot
duvaToTNTES TapaAANAlag Tou Tpoogepouy Ta FPGA pog emitpénet va
uetoouue aodntd To yedvo inference, xdtL amapattnTo Yo real-time
xou security critical eqopuoyéc cav tnv dur poc. Emmiéov, péow to
Vitis pmopolue va ypddouue tov xwmdwa pog oe high level yhwoou
onwe 1 C++ xou oyt o yYAOooo Teplypaghc LAxoU émwe Verilog 1
VHDL. Mog diver tnv cuehior xon euxohion vor UTopOUUE VoL ETUXEV-
Towlolue otny Bedtinon tou design Tou ahyopriuou xon Oyt GTNV
vhotoinon tou oe low-level.

Yo mhadola auTrg TNG BIMAWUATIXAC EpYaotag, ECETACUUE Th BLUVATOTNTY
TapaAinhonoinong tou adyoplduou RE yio tny eniteuén emtdyuvong.
Y10 eowtepind evog RF, xdde Decision Tree etvan avedptnto and ta
UTOAOLTI, %Ol AUTO AmOTEAEL TO TEWTO ENinedo mapuriniiog mou ex-
HeTOAAEUTAXOE. Anuioupyrioaue dLdpopa avtiypaga oe hardware yia
%x40eDT, emtpénovtag TNV TapdAANAn EXTEAECY) TOUC.

Elepeuviioape enione ulmidtepa eninedo TopoAAniiag, OTwe autd
e ToEdAANANG enelepyacioag TOAMATAGY Oetyudtewy ewoodou. Ilpo-
tebvaue 000 dlagpopetinég apyttextovinés. H mpwtrn, Coarse Grained
Multiple RF, mepihopfdver morhamieg avtiypapeg tou (Bov RE, ue
TopdAinhoug decision tree estimators oe xde éva €€ autdv. Autod
ETUTEETEL TNV TURIAANAT) EXTEAEST) TOANATAGY WVTUTE TowTO)eova. Y-
Goyer cupric oupPBaoudg ueTall amoBooNS XoL YPHONG TOPWY, TOV
omofo avaAUCUUE AETTOUERNCS.

H 8eltepn mpotewvouevn apyttextovixy| ovoudletar Pipelined RF.
Awmotohooue 6T 1) Sladixacio didoyuone evog DT umopel vor xotax-
eppatiotel oe aveldptnta otdd.  Xpnowomowwvtog buffers, peto-
Teédape Tn Sldacio o pipeline. Xuvdudooue mopdhhnho xat aveldpTnTa
pipelined DT's yio va Snioupyricoupe oe uhnho eninedo éva pipelined
RF. To pipelined RF ymopel va déyeton véo delyuota €lo6d0ou o€
%&de wOxhO, ETTEETOVTAS TNV TUPUAANAT| Btaryelplom Toug xa Ty eni-
Teuén yaunhoo latency. Kou 6Tic 600 apyltextovinéc, EQupuocape TNV
TeYVr) precision scaling yu Beitiwon tng anddoong xoutd to infer-
ence xo Uelworn TN yeRong mopwy.

Y10 uTdhoLTo TNE BMALUATIXTC Epyaciog, Tapoustdoaue TNy uedodoroyia
HOG, T UMOTEAECHUATA TNG EPUPUOY NS TWV OLUPOPETIXMY TEYVIXMV X0l
Ti¢ ouyxplogig pe C++ xou Python viornoujoeic tou RE aiyopid-
uov. Extedécoue avdAuoT SEBOUEVGY GTA EVPTUATO X0 TUPOUGLACUUE
CUUTERAOHTA, XAEVOVTAG UE Lol MATId 6TO UEANOY Xon TN Orntovpyia

11



evog egpyahetou mou autopatonolel T dadxacta Tou design explo-
ration.

1.2 Yyetxr Epyaocio

H Aviyveion Avouahiov etvan éva eupéwg eupnuevo {rtnuo. TTohkég
OLUPOPETIXES TpooEYYioEIS EYouy BoxacTel oTny Tpoomdielo avdm-
TUENE EVOC 0ELOTIOTOL LoVTENOU. Mo amd auTég apopd TNy cUyxpeLo
Support Vector Classifires(SVM) xar Random Forest(RF). Ou ouy-
Yeupeic Tou Tanep Yenoylomololy 2 dlapopeTxd datasets Tou agopouv
Intrusion Detection(ID) oe Broynyovixéc eyxotaotdoetc. 2e pa GAAN
€pELVAL, ETLOIWENY Vo avamTUEOUY €Vl EEUTIVO Xol ACPUAES HOVTENO Yid
vo avtyvevouy aduvopieg oe IoT cuotruata xo vo tpocTatedovto
am6 cyber-attacks.I'o vor o xatagepouy autd, cUyxewvay TOAAOUG
OLpopETX0UG ahybpuloug unyavixig pdinong.  Xuvolxd yenot-
womoydnxav 5, ot onofot fray Logistic Regression(LR), Support Vec-
tor Machine, Decision Trees(DT), Random Forest xou Artificial Neu-
ral Networks (ANN).Xvurépavay 6t évo amhéd povtého 6mwe to PO
UTOpEL, GE GLUVAPTNOT TEVTA UE TO DUTAGET, VoL PEREL XUAVTERA ATOTEAED-
Hotar 6Gov apopd TNV axpeifeio Twv TEoPAEPewy ot cuyxpion pe TOAD
mo mepimhoxa cav o ANN.

Eivar eygavég 6t o RF, ydpic otn xah axpifeo xan toug ypryop-
0Ug YEOVOUG eXTOBEVOTC XAl EXTEAEOTG, Elvan Lol ONUOPLAAG ETLAOYT
070 yweo Tou anomaly detection. IIdvto umdpyer ouwe 1 avdyxm
Yoo o ox@i3n), ToyUTEPES xou EVERYEIXA CUMpEROUCES ADoels. Adyw
autoU, €youv yivel mpoomdieleg yia EMITAYUVOY TOU YOVTEAOU OF TA-
niopa hardware mhatgopudy, énwe GPU xa FPGA. Mio and autéc
elvoal 10 moamep OmOU yenowonolsiocal Uit ToEaAAXY ) TOU XAAGIXOU
olyoerduou RF, 1 omofo eivor Compact Random Forest(CRE). Ot
Baowrée dlagopég Toug ebvar oto mAdog twv DT xa oto péyloto
OETTN OV ETUTEENETAL VoL PEYahwoet xdde devtpo. H avdryxn yio autég
TIC AAAXYEC TEOXUTITEL amd TO YEYOVOS OTL 0 P® ahyodprduog elvon
memory bound xdtt to omolo 6ev evoeixvutal yia hw acceleration,
UE Teploplopévoug mépous.  Ltnyv ulomoinon oe FPGA mpoteiveton
wae pipeline apyttextoviny| ye N dapopetind piplines yioa N oévtpa.
Yty vhonoinon CP-GPU, ectdlouv otov PEYIOTO EXPETOANEUTING
TOEUAANALONG o ToAUTOPNVES HOVADES Xou TNV emiteuln PEATIOTNG
enavarypnoluonoinong dedouEvey oTig uviueg cache. H peAetn xotanryet
oto ouunépacpa 6Tt T FPGA mopéyouv upmiétepn anddoon avd watt
XL UTOPOVV VoL YELPIOTOUY UEYUAUTEPOUS TAEVOUNTES Ywelc Vo UT-
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OVOUEVOLY TIC DUVUTOTNTES TOUG.

Booiopevol ota tponyolUeVa, ano@aucicaue Vo OO TOTO|COUUE
Aviyveuon Aveuahioy yenowonowvtog Random Forest oe éva FPGA.
Kotapyde, dev da emPdhovue xavévay meploploud oto péyedog tou
RF xotd tnv exnaldevon. Emmiéov, Yo ocuyxplvouue 800 dagpope-
g opyrtextovixég oto FPGA. Mia apyitextovixy eivon mpocéyyiom
pipeline, mopoéuota pe autH Tou TEotdlnxe oTo delpo, eV( 1 GAAT
EUTAEXEL Lol TLO TLoEdAANAT) LAOTIOIN ).

Xdpn otic awgnuéveg duvatdtnie Twv oUyypeoveny FPGAs, Yo oto-
YEVGOUUE GTO Vol EMTOYOUUE TOV UEYIOTO BUVATO dpldUd TUEdAANAWY
xou aveldpTnTwy tepintwoswy REF mou propolv va yweéoouv otov -
vaxo. ‘Oheg o mepintdoeig Yo efvanr movooldtuma avtiypapo petall
Touc. Eowtepd, to dévtpa Yo enelepyactoly xdie delyua mapdhhnia
o€ xat TIC 000 TEOTEWOUEVEC OPYLTEXTOVIXEC. XTOYOC UOC EVOL Vo
oLuYxeivoude Tola amd TIC VO TEOCEYYIOELS, CWANVKOTY 1| TaEdAANAN,
Yo g mopéyel LPNAGTERT amddooT xaL Vo ECETACOUUE TNV LoOPEOTX
HETOEY TOPWY Xl AmdBOoTC.

1.3 Random Forest AAyopirdpog

O oryéprduoc RF mpotdldnxe mpdtn gopd and tov Leo Breiman.
Yuvdlaoe TOAEC TeEYVIXEC xou TEOTEWVE xouvolpylec.  Amotehel o
noparay ) Tou CART alyoplduou otov onolo egapudotnxe Poryyvy
xou tuyador emhoyt| yopoxtneo ey . O CART ahydprduog eivor
0LOXOAO VoL UMY xdveL overfit To SEBOUEVA XU CUUTEQLPEPETOL 1| ATTODOTIX
oe outhigps. O Breiman mpdtewve va yproulomoinet 1 teyvixr bag-
ging 7 aAAg bootstrap aggregating. Yto Bagging mohhol adivopot
[Aeopvepc| exmardebovton Topdhhnho 0 xoévag o BlPOPETIXG GUVONO
OEDOUEVLY, TO 0Tolo TEOXVTTEL Ue Tuyada avaxatour| Tou apyxoL. To
o0OvVolo TV Bedouéve dmou extoudeleton o xdlevac learner(classifier
1 regressor) mopdyetar teoévioc N Belypoto pe enavotonodétnon,
onou N ebvon to peyedoc tou apyixol. O otéyoc pag elvon extoudevov-
Tog ®GUE BEVTPO,0TN OInY| UG TERIMTMOT), YE DLUPOPETIXG GUVOAO OE-
OOMEVE VAL YIVEL TO LOVTEAO Tilo avilexTixd oe Vo oelyparta. To dévtpa
TIOL TORAYOVTOL OO TNV TOEATEVE OLadixacior 0T CUVEYELL amoQaci-
Couv cuAloYIXd Yo TN TEdPBAedn o xde véa elcodo. Mtn nepintwor
Tou classification n andgoon malpveton ye Pngogopia evey Tou regres-
sion ye To Yéco 6po amo Gheg TIC TPOBAEPEC TwV BEVTPWY.

210 TEQLOGOTEQN GUVOAX DEDOUEVLV, UTHRYOLY XATOLL Y AUX TNELO-
TIXG IOV QUEVETOL VOL UTEQTEPOUV TGV GAGY 6T AP TOV amoQacENDY
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XOTAL TNV Ol 0TOUNACT) TV XOUBWP %ot x0T ETOUXOAOLVO GTN XATUCHEUT
TV 0EvTpwy. Axoua xou ye bootstrap gaivetar 6tL Tor TaporyduEvo
OEVTEO BEV XATAPEPVOLUV VoL BlapopoToinloly apxeTa UETAELU TOUG Yid
vo avTipetoniotel o overfitting. O Breiman npoonadnoe va ev-
TAEEL TEPLOOOTERT TUYUOTNTA OTO UOVIENO UE GTOYO VO UELDOEL TO
GUOYETION TOL EVOC BEVTEOU amd TO GAAO xou VoL aLENCEL 1) Vo SlaTret|-
ol TNV TeoPAeTTIXNY eavoTNTa Tou xoevoe. Tlpdteve vo unv yenot-
poToteltar 0AoXANEO TO E0POC THV YAUPUXTNELO TV GE XAVE xOUBO ahhd
eva Tuyaio LTooUvoho aLTKOY. To yuEUXTNELETIXG Xou 1) TYT| TOU ToU
Yol XUTAAREOUPE VoL (EVOUPE BLy0TOUNOT TOU XOuBou emAEYETaL amod
auT6 10 TUYato uTtochvoro. To TAog aut®Y elvor oTadepd Yo Ghoug
%OUPoUG OALY TV BEVTPKY %ot CUVATKG amoTEAEL it GUVEETNOT) Tou
GLYOALXOU Ueyedoug Twv yapoxtnetotxwy. Mio and ¢ méd olvnideg
2O QUTY| TTOU XATAUAYOUUE €lvar 1) TETporywvixy| oila, dAAN emtiong eu-
PELC yenoonotoUev o hoyderuog Tou.H ntpocdixn twv nopandve
TEYVIXOY GUUBHAAEL GTNV ooy YT TowaAlag HETAEY TV BEVTOMY Xl
otn Beltiwon Tne wavdTNTIC TOU LOVTEAOU VoL YEVIXEVEL. AUTO av-
Tietwnrilel tpoiAuata 6mwe To overfitting xou evioy Vel T GUVOAXT
am6d00T).

H Swdixacta inference evog Pavooy Popeot mepihaufBdver ta e€rig

Bruaro:

e Ficodoc: T'a xde delypa = yio To omolo YEAOLUE VoL xEVOUUE ULal
TeoPAedT, To PP malpvel autoV TOV BIAVUCUA YAROXTNELOTIXMY (G
eloodo.

o Audoyion Aévtpou:H elcodog nepvd o xdie dévtpo amdpaong.
Eexwvovtog and TN etla, To delyua oy (et T Sour| Tou BEVTEoU
Baowlopevo ota xpithpta dSakpeong ot xde ecwTepd xOUPo.Ye
%(80e e0eTEPIXO XOUPO, YENOHIOTOLELTAUL EVA CUYXEXQUIEVO Y EOX-
e TG xan oruelo dibpeong yia vor xodopiotel 1 xateduvon
mou meénel vor axohovdioel To detyua.H T tou yopuxtnelo-
TixoU 670 delypa efetdleton oe oyéon ue To onucio dlalpeong,
xan ue Bdom to anotéheoua, To delyua UEToVETOL GTOV PO TERS
1) 0e16 xouBo-mandt. Auty 1 Sadixacio cuveyiCeton avadEOUIXd
uéyet To Belypa va gtdoel oc €va pUANO xOUBou, TOU OVTITPOCK-
meleL ot TEOPBAed.

e Ungogopla  Mécog ‘Opog:Ta dévtpa xdvouv cuRhoYXES TpoS3-
Mdeic yia xdde eloodo. Ye epyaoieg Suadixnic Tagvounong, xdie
0évtpo amogdotone Yneller’ yio wor etixéta €N Pactopévn
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oty mAstoPn@in| xhdon oto POARO x6ufou OTOL XATUAYYEL TO
octyua €060 H tehind mpoPBhedn yiveton péow micsodneuerc
dmpogopiog PeTA) OAWY TV BEVTPOV AMOPACNS. XE EQYACIES
TOAVOEOUNOTG, Ot TEOPBAETOUEVES THIES amd xdde BEVTEO amopdcewy
AowPdvovtar uéoo 6po yior vor tpoxUel 1) Tehxr) €€000¢ TohLv-
OPOUNOT.

e 'EZodoc:To RF eldyel tny tehxr) mpdPredn yio To delypa 106-
dou, 1 omola umopel var elvor pLor eTETA TEENC (oe XAUTNYOpPL-
omoinon) 1 oprdunte| Tun (o Takvdpdunon)

1.4 FPGA & HLS Epyaheio

‘Eva FPGA ceivon éva evoopatwpévo xOxdoua (IC) mou urogel va
TEOYEUUUATIO TEL Yia SLdpopoug alydprduoug uetd TNy xotaoxeur|. Ta
oUyyeova FPGAs arotehodvton and €we 500 exotouudoto Aoyixd xe-
MG TOU UTOPOUY Va SLopop@mUoly Yol TNV LAoToinoy dLdpopnmy ho-
Yooy aryoplduwy. Ilapdbho mou n mopadoctaxy| dadixacia cye-
otaopol oe FPGA elvan mepiocdtepo nopduotar e €var xavovixd 1C
Topd pe évay enelepyaoty, éva FPGA mapéyel onuoavtind ogéln oe
%00 TOC oL YEOVO CUYXELTIXG PE Uiot Tpoondleta avdmtuéne IC xou
TpoopepeL Tov (B0 Badud amddoong OTIC MEQLIOCOTEPEG MEQLTTMOOELC.
Auté ogetheton ot duvatotnta tou FPGA, oe obyxpeion ue to IC, va
avaxotaoxeudleton Suvopxd. Autr 1 Sdwacto, Tou elvor TapouoLa
UE TO VO POPTWVETE €Va TPOYEUUUA OF EVay ENEEEPYAUOTY), XAVEL OA-
AYEC GTO TEAYUOTIXG LALXO %ol TOUS OLIEGIIOUE TOPOUS GTO UAXO
tou FPGA.H yevur apyitextovixr) tou FPGA eivan etepoyeviic mhat-
(pOEUO UTOAOYLOUOU Tou amoteheitar amd tpio €ldn Yovddwy. Autéc
elvonr oL povddeg £l0680v /e€600L, oL HOVAOES &ocxom’]g/&uo()v&ong
XOAWBiwV xou oL Blopoppnotues hoyixés wovideg (CLB).

H Y0Ovieon Tnhot Emnédou (High-Level Synthesis - HLS) ei-
voi 1) Srodixacion ueTatpomAg Wiag Tpodlaypapric ot yAwooa C ot éva
eninedo petapopdc xotoywentwy (Register Transfer Level - RTL) yu
va unopet vo cuvietiotel o éva FPGA. Anotehel yépupa uetald Ao-
YIOUIXOU %ot UMXOU, ETUTEETOVIAS OTOUC GYEDLICTES Vo EXPEACOUV
ToL OYEDLAL TOUC YENOILOTIOLOVTUS YAOCGCES TROYRUUUATIONOU LMAoD
emmédou onwe 1 C 4 C++. H HLS mpoogépel apxetd mheovexthuoata
o€ OUYXQLOT UE TIC TUPABOCLUXES YAWOTES TEQLY UPYC.

Optopéva amd autd mepthopfdvouy to e€hc. AQaipmdvTag TI¢ AeT-
TOUEQELEG O YoUNAG emimedo, oL OYEBUOTEC UTOPOUY VO ETUXEVTE-
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000V 670 VoL EXPEACOLY TNV ETIVUNTHA ASLTOVEYIXOTNTA TWY GYEDIKV
TOUG, APAVOVTAS TIC AETTOPERELES LAOTIoINoTS 670 epyaheto HLS. Enlong,
UTOPEL VoL ETIXUPWOEL TN AELTOUEYXY] 0PUOTNTA TOU GYEDIICUOL TO
Yefyopa oe olyxpion we Tic VHDL ¥ Verilog. Ou mohAéc odnyleg
Behtiotomoinong mou ebvon drardéoiueg emitpénouy EAEYY0 EmdVe TN
oradixacta chvieong xon dNUoUEYoVY EWBWEC UNOTOLACELC UPNATC amd-
doone. Me tn Pordeia twv 0dnyuwny BeAtiotonoinong, uropel vo dnulovey -
o€l Tohamhéc vhomolfoelc and tov Tyaio x)owa C. Télog, uropolue
VoL ONULOVRYHOOUUE avory VWOGOUIOY xot popntov mnyaiov xoowa C, va
enavoaotelloupe Tov Tyaio xwoxa C oe BLAPOpES GUOKEVES Xal Vol
TOV GUUTERLAGBOUUE OF VEX QYL

Mok ohoxhnpeiel 1 olvieon tou xwowa and to HIS mopdye-
Tou e avapopd obvieong.  TIAnpogopleg oyetind ye o petprioud
xpLThpta amédoong mopEyovial oc auTAY TNV avapopd. H xotavonor
TV XELTNREIWY TOU YENCLLOTOOVVTAL Yo VO UETEHCOUY TNV atd000T| GE
€val oYEdLIopO Tou dnuoveyunxe ue T Yeron e HLS etvon xpiown
yioe var emteuy Vel autd amotereouatnd. To tpla Bacxd and autd etvor
n éxtaon (Area), n xoduotépnon (Latency) xou to Sidotnua exxivong
(Initiation Interval - IT).

Xenowonowooue tnv Evorownuévn Ihatgopua Vitis yio tny emtdyuvor
¢ egapuoyhc woc. H eqopuoyr yweileton xuplng o 6Vo uéen, tov
xevtexd unoroytoty (host) xaw 1o FPGA. O xevtpide unohoyiotrc
Aertovpyel we 1 xOplar povdda enelepyaciog mou ahAnhemidpd Ue To
FPGA yio tnyv extéleon ouyxexpiévemy epyactoyv. O oxomdg Tou xev-
TEWOU UTOAOYIGTH Elval 0 EAEYYOC, 1) GUVTOVIGUOG XAl 1) ETUXOVG VI UE
70 FPGA o0 Ty avdAndmn umoAoylo Tixmy €pYAOLOY 1 TNV ETLTEYUVOT)
CUYXEXQUEVODY TUNUETWY ULog e@opuoyhc. O enelepyacThC TOU XEV-
TewoU unohoylo T emxownvel pue o FPGA vy tn uetagopd oe-
OOUEVLY, TUPUUETOWY BLOPPMOOTNE XoL OOMYIWY.  ALUOPPHVEL TO
FPGA v tnyv extéheor, otéhvel dedopéva yio eneepyacio amd Tupves
FPGA o howfdver miow to anoteréopata and to FPGA. Enlong, ei-
vai utebduvog yia Tov éAeyyo Tng extéheong epyaciwy oto FPGA.
BeBawcyveton yior ToV 0wOTO GUYYEOVIONS PETUED TWY EQYACLOY TOU
TEEYOLY GTOV XEVTEIXG uToAOYLoTY xat oto FPGA v tn Swtripnor
¢ owo TS oxohovdiog Aettovpyiwy. ‘Evac dAlog xpiciuoc pdrog Tou
xevtpixol unohoyloth ebvan 1 Ipoenelepyaotia xou Metaenelepyasia
AcBouévnv.
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1.5 7YMloroinom tou Random Forestyia 30vOeor Ydniod
Enmunédou

[a o xouudTt Tou Tpovivy yenowomoufinxe 1 python BiBiodfxn
Scikit-learn. H Scikit-learn pog €0woe TNy SuVATHTNTA VoL TUPUUETEOTOLN-
GOUUE TO UOVTEAO OTIC avayXES TNG EQOpUOYNS pog. Eletdooue mohhég
TOEUUETEOUS YLl TNV exTofdEVST) TV LoVTEAWY pag.OL 800 xplotueg
TOPAUETEOL TOU EMAEEAUE Vo EEEQEUVHCOUUE €lval 0 0pldUOC TWY EX-
TUNTOV X0t 0 0ELIUOS TWV YopoxTnelo Tixmy. Emxevtpwiixoue o
aUTEC TIC 0V EMEWDY) UTOPOUCUUE VoL TIC EEEQEUVACOUNE Ywplc Var xd-
voupe Poptéc urtodéoeic oyetnd e To oUVOLO BEBOUEVLY oL TN OL-
adixaocior dnuioupyiog Twv 6évtpmy. Axdua xai yio Tov (Blo opriud
YUEAXTNELO TIXWY, ONULOVEYOUVTOL OLAPOP DEVTEA, OEOOUEVOU OTL 1)
ETAOYT TOV YoUpoXTNEOTIXOVY elvor Tuyola.  Autd Ta BévTpa €youv
OLPOPETNOUG UEYEUT X0t DOPES, ETOUEVWS 1) 0RLOVETNCT GTNV OVAT-
TUZN Toug odNyel ot onuavTixy ueiwon e axpBetac. Erniong, autod
T0 6pl0 Yo ATV AVETULTUYES ETELDY 1 Ontovpyia Tou BEVTEoL elvar
un-vieteppviotix. O Aéyog duipeone mou emiéydnxe, Baolouévog
oe yevixée mpoxtixée, eivon 70/30. To 70% tou cuvéhou Bedouévwy
yenottomo{inxe yio tny exnaideuon xat to dhho 30% yia tov éheyyo.0t
uetpixéc mou agtoroyfoope tav 1 Axpifeto (Accuracy), n Avdxnon
(Recall), n AxpiBewa (Precision) o to F-oxop.

Exmoudeboaue To JOVTEAN YONOWOTOWWMVTAS T1) YAWCOU TROYPUUUO-
Tiopoy Iltnov, 6mwe avagépdnre mponyouuévne, Ye BLepopous GUV-
OLOUOUE TV EXTHINTOY XAl TV YoeaxTnEo Tixey. o xdie éva and
oUTE Tor oVTEND, xoTarypdipope Tic peTprioelg F-oxop xatd tn Sidpxeia
TOU CUUTEQUCUOY GTO GUYOAO BedoUéVwy eAEyyou. Amoxhelouye Ta
uovteha ue F-oxop 99% omd TN GUVEYOUEVY OVAAUGT oG YLl Vol
OLUTNEHOOVUE QUTA UE TNV XUAUTERPY TEOBAETTIXY IXAVOTNTAL.

Meragépape v Python vlomoinon oe C4+ xwdixd xatdhhnho
Yo vou umopet vor extedeitan péow tou Vitis. Anodnxedoupe tnv dour
v Aévtpnv Atogaong ot mivoxeg. o Ty avaxataoxeur) oe C++,
Yo yeelaotolue TEVTE ouyxexpévoug mivaxeg: children left, chil-
dren right, feature, threshold, xou value.Ilepetaipw orhayéc mpénet
Vo YIVOUV OOTE v exTEAELTAL 0 xOOLXag yenotonowwvas to HLS.
Aedouévou OTL 1 evtoA) while dev unoctrnpileton and 1o epyaheio,
meEnel v onuovpynlel évac Bedyyoc gop avti avtol. To avouevo-
uevo opto tou Bpodyyou for elvar To prxog Tng Sadpounc UEypeL va
gpTdoouue o eva oMo, To ufxog tng uaxpLTeEng dtadpoung Vew-
pelton g éva dvw 6plo, BLOTL eivon BUoXoo Vo TEoBAEYouNE ol oo
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ohec Tic mavég dradpouéc Yo axorovdniel. To uhxoc tTne poxelTEENC
otadpoprc utoroyiletan yenowonowwvtog tov alyoprduo DEFS.YEtov
xOOa, yenotponotioape Stavioporto (vectors) emedn xatd tny €&-
£pe0VNOT TOL YOEOL GYESlaoTS, Eval amd To ToEdUETEA ToL pLYUICoUUE
elvon 0 apLiuog TWV YuEaxXTNEOTIXGY. 26TOC0, 1) BUVAULXY EXYWENOT)
uvAune dev unootneiletan oto Vitis, EMOUEVLC aVTIXATOCO THOOUE To
OLtVOOUOTA UE OTUTIXS SLOOPPOUEVOUS TEVOXEC.

1.6 Apyrtextovixég BeAticTonowoelc Tov Random For-
est Baciopéveg oto HLS

1.6.1 IIoparAniicpodc ecwtepixd Tou Random Forest

Ytoyog tNg Oimhwpatinfg epyaoiug elvar 1 emitdyuvon xatd To in-
ference. Ilpoxewévou va To TETOYOLUE TO TOEATAVE OVTIIETWTICOUE
apyd 2 xipteg tpoxhnoelc. H mpwtn mpdxhnor elye vo xdvet pe 1o va
Beolue mola xouudtior Tou aAyoplduou vo emToy OVOUUE ot TG QUTO
UTOPOUUE VO TO UAOTIOLCOUPE OE ATMOTEAECUATIXO XMOOXAL YL TO EQ-
yaréro Vitis . H 8eltepn mpdxnon agopoloal 6NV TapoUeTeOTOAOT)
TOU TORATEVE XWOXO OOTE VoL £YOUUE TO BEATIOTO a€lOTOLAOT TOPMV.

H mpwtn mpdxhnon eivon vor umop€couye vor UETaTeéPoulE Ty oxou-
Moo| extéleon Tou RF akyopiduol oe mopdhhnin. Apywxd émpeme va
EVTOTGOUNE TOLE TUYUOTo TOU oA YORiIOU UTTOPOUNE Vo TUPNAAOTIOL -
OOUPE. XTN cuveyew Eyoviag Peel mowd efvar autd Tar xopudTia TEo-
telvoupe ahhay€g 6To Bour| Tou xWOWa xaddg xon elodyouue Bondi-
TIXEC EVTOAEG UTO TNV HOE®T] Pragmas Yo Vo UTOPECOUUE OVIWS VA
metOyoupe TV emuunty) topoAinia.  Ou amogdoelc molpvovtal Ue
npogopla amo 10U BLUPORETIXOUC ot AVEEHPTNTOUS HETALY TOUG EX-
Tiuntéc. Aev umdpyet xdmota e€dpTnom ot TEOBAedN Tou xdvel xdie
DT, 6note dev umdpyet avdyxn yio oetptaxt| extéreot twv DT. Avti-
Yeta mpotelvoupe, To inference twv DT va yiveton mopdAAnio

Ipoxeyevou va xatahdBet To Vitis epydheto i Hehouvue mopdhhnin
EXTEAEOT) TOV EXTWNTWY, YPEWOTNXE Vo eQappocouue pragmas. Ilo
ouyxexpyéva tpoc¥éoaue To pragmas dataflow. H dAiwon pragma
DATAFLOW evepyorotel tov mopodhnhioud oe eninedo epyooiov,
ETMUTEETOVTOC GE GUVAPTAHCELS X0l BoOYYOUS VoL ETIXUAUTTOVTAL OTH) AEL-
Toupyla Toug, awidvovtag Tov Baldud cuyyeoviouol TNe LAoToinomg
RTL xou avédvovtac tov cuvokixd puiud enelepyacioc tou oyedl-
aouoV. H Bertiotonoinon DATAFLOW emtpénel ot Acttoupyleg
evog Bpoyyou 1| wag cuvdpTnong va Lextviicouv T Aettovpyio Toug
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TEW OhOXATEWYOLY OAES 0L AgtToupYiEG TOL TPOoNYOoUUEVOL BpdYyou 1
CLVAPTNONG, UTO TOV Op0 OTL BEV LTIEYOLY ECUPTACELS BEGOUEVOV.

IeTtuyatvoupe mapdhAnAn extéheon twv decision trees evidg evog
rf SnAwvovtag moAAéS Qopéc TNy (Bla cUVAETNOT Xt EQEUOLOVTOG
Toe amopadtnTar pragmas 6mwe to dataflow. H dedtepn npdxknon mou
xAAONrape Vo avTétwnicovde elye vor xAVEL UE TO VoL BLATNEY|COUUE
TNV TPV TOEAAAN AL A0l VoL UEWWCOUUE CTUAVTIXG TOU TOROUS
mou amoutolvTon yioe TNV metuyouue. To xlpto mEdBAnua mnydlet
amb Tov Teémo Tou anoUnxeloupe Toug Tivaxec Twv decision trees
xou emoxdhovda Ye Tov TeOTo Tou Toug OwPaloude. o va To av-
TIETOTICOUNUE YEEWOTNXE VO HETOXWAVOUNE ATO TO TNV YEVIXEUUEVT
Hop®h xOOxa Tou emTpénel iterative access/execution xou vo eotio-
coupe og Aoelg ue hardcoded cuvaptrioeig yio xdie decision tree mou
ETLPEPOLY OTUAVTIXT UElWwoN 0NV a&LOTOLAOT TORWYV.

1.6.2 ITaparAnAiopos petal noAloyv Random Forest

ITponYOUUEVKS avahOOOE TNV UETATEOTY OO GELRLAXT| EXTEAECT] TWV
EXTWNTWYV OE TORIAANAT. 207660 UnopoluE Vo TETUYOUUE TopaAAN Al
xaL o AN xopudtio Tou adyopiduou RE. Kdle delypa eioddou ef-
vor aveldptnTo amd Tor UTOANAa.  Me dedouévo auto eepeuvicae
0UO BLAPOPETIXEC TPooEYYIoE oTNV apyttexTovixy) Tou kernel. H
TEWTY APOEE. TNV TUREAANAT EXTEAECT) OLUPORETIXMY AVTLYRAPWY TOU
instance tou random forest, 6mou To xadeva VYo xdver inference di-
agopetind detypo. H dedtepn npdtaom elvan war pipeline npocéyyion
ue otoyo va metdyouye Iteration Interval (II) ico ye 1. Anhodn oe
x&de xOxho pohoylol va emedepydleTon Uior xovoupyta £icodo, N ov-
TioTouyo vo mapdiyet Wit TpoBhedn avd Evar xixho.

H mpoytn apyttextoviny etvan 1 Coarse Grained Design Parallel
RFs. Anuoupy®vtag mohhamAd xon aveldotnTor avTiypoupol TG cuvapTnomg
EUVOOU (POPECT OIVETAL 1) BUVATOTNTA YLo TUUTOYEOVY] XAl TOEGAANAN
enelepyaoia etloddmvy. Yuyxexpyéva yio K oe mafdog napdhinia REs
eowTepnd To xodéva €yel N mopdiinio. H apyitextovixy elodyet éva
€€tpa eninedo mopaAAniiog, TR AUTOV TWV TURUAANAWY EXTUINTOV
xododg €yel TV duvatdTTa va eneepydletan Tawtdypova K eioo-
douc. Axoulfinoope Vv Blo yedodoloyla OTWE X0 PUE TOUC ECTUUO-
TOPC YLOL VO TETUYOUUE Tapothhniiar petalld twv rfs. Onwe xou mpo-
NYOUUEVLS Yenotuonolovue To pragma dataflow xou array_parition,
YLoL Vor BLUGPUAIGOUNE TNV TOREAANAT) ETUXUAUTTOUEVT] EXTEAEDT).

[Tpoxewévou va €youpe o&lOTIGTES PETEHOELS TOCO YIdL TO YEOVO
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inference oAAd xou yior TV adlonolion tépwv xavdue hw implemen-
tation. ‘Onwg elvar avopevouevo dnuovpyovtoag avtiypapa and REs
TETUYUVOUPE TORUAAN ALY GAAS Y ENCULOTIOLOUUE TTEPLOGOTEPOUS TTOPOUG.
O nopor avd FPGA, oc BRAM, FF xa LUT, elvar xodopiouévol
yior U6 TEETEL Vo Bpolpe Tooa avTiypapo UTOPOUUE VoL YWEECOUUE.
Oploaue eva dve 6plo Yior TV yeHor Tépwy Tou YEMEOUUE IXAVOTOL-
NTx6 xan O Vo Vehope var umepBolue Yo va dlac@ahicouue Ty ot
Aettovpyior tou FPGA. To 6pto awtd elvon 80% twv mpoavagpepiéy
Topwyv. Kdvoue duadiny| avalrtnon uéyet va feolue to uéytoto TAfdog
RFs mou n yprion toug dev Yo Eemepvd 80%. Kotd v e€epeivnon
doxwoocoue 1, 2, 4, 8, 16, xou 24 napdhinia RFEs.

Hopatneoldue 6Tt 0 TOPOS TOU PETUPBIAAETOL TEPLOCOTEQO Elvan 1)
BRAM. Yuurepatvouye 6Tt yia xdde véo avtiypapo tou RF, decucuov-
Tan €x VEou TopoL Yo Toug Tivaxec Twv decision trees. Evo mavoc
AOYOC YO QUTH| TNV CUUTERLPOES To epYaheiou efvarl oL TEQLOPLOUEVES
ports (o€ olvolo 2) yio xdde bram. Eivor d0oxolo va yivel o cuvtov-
lopoS v TpooPacy otoug (Bloug mivoxeg and molhamhd RFs. Ev-
Telvel TNV ToEamdve BuoXoAi TO YEYOVOC OTL OEV UTHEYEL XATOLO
potifo yio To mold Véon Tou mivoxa EMOLONOUNE VoL BLBECOUUE, Xo-
Vg €youde Tuyola dlaoyvon Tou eCuptdton and TNV elcodo. ‘Omnote
OEV EMUTUYYOVETAL XATOLOG OLOUOLRUOUOS TV TWVEXWY PE YOV ADoT
Tou gpyaheiou TNV avTiypa@r Toug. AcGOoUEVOU aUTO TEQLIEVOUUE Vol
UTIGEYEL YRaUixY) aENnoT TV Topny ot oyéon ue To TAvog Tov RESs,
OTWS xou yivetal

H oeltepn mpotevduevn apyttextovixt| eivon 1 Pipelined Random
Forest. Kdle extiunthc umopel vo umopel va avamopactadel we o
oelpd and S oTddla, PE TO S va elvon {00 pe poxpUTEQo UovVoTdTL
x&de BEvTpou. 2LToy0C elvor vor UeETaTtparel 1) OELELOXT) EXTEAEST) TV S
otadievy ot mmekve. Autéd unopel va yivel TomtoUeTOVTS XoToywenTéS
peTal) Twv oTadiwy. Xe xdde xOxho Tpogodoteiton Ye véo delyua ol
VoTepa amd TNV apywt| xaduotéenon xon emtuyydveton II=1.

Actlope 6Tt éva decision tree ymopel va ovomopaocTtodel we €va
pipeline. Metagépoupe 1o Toapandve oto rf, 6mou anotelel Uit GUA-
Aoy amd avelaptnta dt. ‘Onote 1 mpotevduevn apyttextoviny| amoptiCe-
Tou amd aveldptnta ecnmTepd pipelines, ta omoio cuvdudlovtar xou
emTuyyaveTow o UPNAG eminedo 1 rf va etvon xan owtr pipeline. I'a
VoL TO TETUYOUUE o)TO YPNOWOTOLooUE To pragma pipeline tou Vitis
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1.7 E&epebvnon pe egapuroyy Precision Scaling

O nuplopyoc mépoc, dNAadY| exelvoc ToU OAAALEL TEQIGCOTERO XAl KO-
Yopilel oe peyoritepo Baduod av umopet va vhomotfel To oyédio, etvor
0 BRAM. X16y0¢ ooy eivon datnpoviog otadepr| Ty oxpBeia
TOU UOVTENOL VO UEWOOUUE TO T0c0CTO Yerone twv BRAM. To
xatapépoue Yow tng teyvixng Precision Scaling. ITo cuyxexpiuéva,
pewoaue 1o mAlog and bits mou amantelton yio TV avamopdo oo
TV oTolyElwy Twv mvixwy Ty dt. Adpowotind n tapandve Uelwor
umopel var €yel ueydhn enidpaon wlwg yiar peydho oyédl, 6w Tor 24
nopdhinha REs, netuyévovtac ntwon ano o 70,69 oe 39,88 BRAM(%).

To epyaheto xdver avtodUoTa TNV YeTUTEOTA 0o 32-int e wixpdTeEQOL
tomou int. Aev avagépetar xdmou Tov TOTo Tou EVTEREL XUTOAYEL (OTO!
TAGOLAL TTOU XOTOUPEQUUE VoL EAEYEOUUE) 0AAG €xeL TNV (BLat amdBoaoT ue
Toug TOTOUC ap-uint Tou oplooue Yl Vo EAEYEOUPE TNV TORUTAV®
unoveon. Aev cupfoivel xar To 610 yio mivaxor threshold 6mou €yet
tono float. Adyw tng Sourc pe tnv omola amodnxedetan évac float
aprduog dev ebvon SuVUTOV Vo YIVOUY oUTOUOTA BEATIO TOTIOLOELS GV
TNV ToEATAVE. AoX{UocuUe 5U0 BLUPOPETIXES UVATUEAUC TACELS YLl TOV
threshold mivoxa Tic @ fixed point xau integer.To epyaheio itic divel
TNV dLYVITOTN T VoL yenotdomololvton arbitrary precision data types
vt fixed float xou integer.

Kotd tnv exnaideuot twv LoVTEAWY Hag TO GUVOAO TWV DEDOUEVLY
Aoy xovovixonotnuéva petolt (0,1). ‘Omote Bev undpyet axépoto
TURO %o UTOPOVUE Vo ECTINCOUUE xordopd 0To 6eXddIx0. Acdouévou
autou o fixed point TOnog Yo Slordécel GAa Ta bits, doa arnogacicouue
euele, uovo yia to dexadind xouudtt. H eepedvnon mou Yo xdvouue
agopd o ThAdog auT®Y TeV bits. Xuyxexplueva Yo e€etdoouye 8, 16,
24 o 32 Pire.

H fixed point ovanopdotaon yac GUNCE Vo TELOUATHC TOUUE %ol
ue dhhec midaveg avanapaoctdoelc yio Toug threshold mivaxec. Apyuxd
OXEPTAXUUE TNV integer avamupdo TaoT) OPUMUEVT OO TO YEYOVOS OTL
oL TpAEELS xan ouYxpeioElC Ue integer elvon o Yp1YORES OE GUYXELON UE
Toug float ydpwv tng amiolotepnc avanapdotaone. Emniéov dwumiot-
WOUUE OTNV CUVEYELL OTL TEPAL TG EMTAEOY EMITAYUVONG, UE integer
AVOTOEAC TACT) GE OGS YLl YAUNAG precision 6mwe 16 xou 8 bits, to
HOVTENO €yEL onuavTd xaAlTeRY| oxplBeta ev cuyxpion pe Toug fixed
point.

H petatponny evoe float oe integer diathipwmviac ta yopoxTnelo-
TG TNV XATOVOUT) Toug Yivetal Ue Tnv TeyVixt| Tou xPavtonowjong.H
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xPoavtonoinom elvar pLor TEYVIXT VLot TN UELWCT] TWV UTOAOYLOTIXGY X0l
UVAUNG Bomovedy xatd TNV exTEAEOT) TNG TEOPAEdNG, avamopio TEv-
Tog Ta BN Ao TIC EVERYOTOLACELS UE YUUNATC oxpifBetag ToTou Oe-
douévwy, omwe To 8-bit integer (int8) ovti tou cuvnhopévou 32-bit
floating point (float32). To mhdvo ¥Bavtomoinone mou epopudoaue
elvon Booiopévo otn ouvdptnor edpoug . H ypouux xPavrtonoinor
METOTEETEL TIC XIVNTEC UTODIUOTOAEG OE AXEQUIOUS Y ENOLLOTIOLOVTUC
evav mapdyovta xhipoxag. H »xBoavrtonoinon Baciouévn oto edpog ut-
ohoyilel auTdV TOV TaEdyoVTo BACEL TWV TEUYUATIXOY THWY TOU ov-
TiEévou, miavog aroxAsloviag TIC axpatie THES, eV dAAeC uédodot
YeNoyLomooly oToepd 1 EXUSUINOTG XATOPALL Yid TO XAEOWO TWV
Ty, BEuelg epopudoaue 1ov ouvduooud Twy 800 Xl CUYXEXPWEVY
CUUPETEIXY XBavToToLo.

Me 7o precision scaling cuugwvoiue ot éva trade off aZlonoiong
TOPWY %ol amédooNG Ue TNV axpifelor Tou poviéhou. Muyxplvouue to
F-oxop yw inference oe 6ho to dataset tou apyxol (float) yovtehou
ue To avtiototyo fixed_point xou fixed-int yio 8,16,24 xon Birc. T
mAfidoc 32 xou 24 bits n axpifeio topapével oTadept| xou Yo TL 800 ovo-
mopactdoelc. ‘Ouwe yuor 8 xan 16 bits to fixed_point yovtého yavel
onuovTd TNV TpoPAenTinn wavotnTa.  Kakitepn ocuumeppopd ut-
odexvieL 1o xBavtiopévo povtéro. T 16 bits mpaxtind yevel otodepd
T0 F-oxop xou yio 8 bits peiwveton eddytota. Ipoywpedvtag mopondte
epappooaue precision scaling povo yio 24 xou 32 otoug float_fixed xou
16,24 xo 32 otouc fixed_int.

1.8 IIeipapoatixry AEoAéyTom

ITpw mpoywerioouue 6T TELpopaTIXY AELOAOYNOT WPEihoVUE Vo €Ny
GOUNE TWE EMAEEOUE TO UOVTEAO BNAUDT TOV GUVBLICUS EXTINTEOV Xl
aprdud YaEAXTNELO TIXGY, Yia To oTolo xdvaue To hw e&epelvuot 6meg
T0 Teptypdope oTa xe@dhona. XONOWOTOLCUUE (Lol EVPLO TIXT| EVPLO-
TIXT Y10l VU XUTOAREOUPE OE VAL UOVTEAD. DUYXEXPWIEVOL YLo TO [HOV-
TéAat IOV EEETACOUE XATd TNV exmaidevon xou Eryay F-oxop " 99 xdvopue
hw emulation ye nopauétpoug apyntextovixc coarse grained parallel
rf ue RF_SIZE=1 xou ywpic precision caling. Ao tic 37 moporyOUEVES
vhonotioelde xan Berixoue mold Atay mdve oto pareto front. H eu-
PLOTIXT| TTIOU YENOWOTOLACUUE YLt XUTOAAEOUUE 6TO BEATIOTO YoVTELO
Aoy amo autd mou Bploxovton oTo pareto front vo dlAéEoupe exelvo
ue udnioétepo F-oxop, 6mou xou ftav o povtéro pe 10 extyuntés ex-
TOUOEVUEVO UE 32 YopaX TNELC TLXAL.
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E&etdooue tny enidpaoct tou precision scaling otny yio Ty pipeline
xou parallel apyrtextovinr. Aniody) 10 extyuntéc exmoudeuuévous Ue
32 YopuXTNEIOTIXG, UE TA TORYOUEVO UOVTEAX VoL EYouV pipeline op-
yrtextovixr) xau parallel apyttextoviny| ue 1,2,4,8,16 xon 24 mopdhhnha
RFs . Emniéov eqopudoa yetatpony| and float 32 oc fixed float yia
32 xou 24 bits xou oe fixed_int yia 32,24 xor 16 bits.

Y10 Lo mhoT cUUTEPAIPBoUE TIC PETEHOELS YLl PAOUT XL TOUG
TOEATAVEL TUTOUS YLo TEEGIolov oceAvy. T'tar umopecouye vo cuuT-
tiloupe oe Lo UETEWXY TNV ENIDEAUCT) TOU TPECIOLOV GCUAVY GUAOYLXS
ota pecoupces Tou PIITA mapoapeTpomificoue Tov TOTO amo To e€NC To-
Tep oluPeVE Pe Tov axdhovdo tino. Agopéooue to AXII vtiilatiov
mag xon To povTtého pog oev yenowponoroe xadorou AXIle.

[o vo umopéooupe vo cuunepdvouue to xaAUTtepa configurations
howBdvovtag utodn to inference time xou To resource utilization oyedioacoue
pareto plots. To y-axis mopéyet To inference time xde configura-
tion xou To x-axis to resource utilization. Emieloue va oyedlocouue
uovo v 1o BRAM pioc xon elvor 0 mo dopwvovt xon eavTAsiton
Yenyopotepa. Myedlacoue SlapopeTnd dtorypduuata yior xdde yéye-
Yog €106d0u, HOTE Vo Unopolue va Peolue Tor xahlTepa configura-
tions yuor uixpd xon peydha test datasets. ‘Omwe to inputs sizes etvou
480,4800,48000,28334 (6hoxhneo 1o datacet). Enione cuunepiiaBoue
to unptomized RF design.

Yto pareto Orypauuotor oyedidooue xar Too configurations mou
Beloxovtar oto pareto front. Amé autéd tou pareto fronts oyetind e
To performance yio OAEC TIC TEQIMTWOELS EXTOC Yl Uxed input size
480 samples to mo ypryopo povteho eyel pipeline apyttextovixn. e
oelteEn Véom elvon To parallel povtéro pe 24 mopddinia RF. Kowd
YOEUXTNELOTIXO OYEDOY OAWY Twv configurations ota pareto fronts ei-
va 6T exelva Tou ebvat o yeryopa xat €youy youniotepo BRAM uti-
lization €yel eqgupuoctel precision scaling pe integer 16 bits. Muunep-
alvoupe OTL 1) EQapUoYT) Tou precision scaling €yel onuavtixy| enidpaor
otV pelwon Tov tépwv oAk Behtiwvel to performance. I tnv
oUyxplon PE c++ xou python emiéyoupe ta ypnyopdtepa configura-
tions amd Tic BLO apyLTEXTOVIXES OnAadY| pipeline fixed integer 16 bits
xou parallel 24 rf integer 16 bits.

Arnd ta melpduato pog Unopolue va eEGYOUUE YEY oW GUUTERAO-
MOTAL YLOL TV YenowotnTa g hw emtdyuvong. T 6Ao tar peyedr
ELOODWY XATUPERVOUUE Vo TETOYOLUE emiTdyuvong. Trmv uixpdtepn
emtdyvvone 1.5 v €youpe v o wixpd uéyedoc dataset (480 Oely-
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pota) o€ obyxpelon pe to inferece oe c++. H exdvo auth ahhdlet
600 PeYUAOVEL To Yeyedog ewobdou. ot OAeg Tic UTOAOLTES TEQLTTL-
oeig 4800,48000 detyuata xou bhoxhneo to dataset xotagépvouue va
TeTOyoupe TOAD xohOtepr) emtdyuvor. To xoldTteEpo covpryuvpaTiov
yioe auTd peyed ) ebvan 1 pipeline apyitextovixr ue precision scale in-
teger oc 16 bits, ye povn eaipeon o 480 delyyato dmou 7 parallel
vhornowion 24 RF metuyatvel xolbtepo ypdvoo.lllo elduxa to speed up
mou TETUYoUE QaiveTon oTov mivaxa. Evolapépov €yer 6TL yia infer-
ence o€ python o ypdvog pével mpoxtixd otadepdc yipw ota 140 ms.
Abyw autol o0 peyahevel To péyedoc Tou test yio evaluation to in-
ference time tng python npooeyyilet autd TN -, Ue TNV TEPITTOON
v teptocdTepa amd 48000 vor Exel xahltepn anddoor). Ot ulonotioelg
o xde popd cuyxpivovTon Pe To Ypryopo and ta Yo (c++,python)
xan avtioTtolya meoxUnTeL To avdAioyo speed up. To xahOtepo speed
up 20,03 o metuyaue Yo 48000 debyporto.

input size | compare to | native time(ms) | best fpga time(ms) | speed up
480 c++ 1.47 0.99 1.5
4800 c+—+ 14.07 1.64 8.6
48000 python 141.61 7.07 20
288344 python 141.8 37.15 3.8

Table 1: Achieved speed up.

‘Olor ot mapamdvey pog odnyoly 6T €A CUUTERAOMTA OTL Yol
uxed input sizes yUpw ota 500 samples dev €youue oNUAVTIXG OPET)
an6 1o hw acceleration. To uéyedoc etvor opxeto uxpd wote To trans-
fer time overhead ané o host oto fpga v uneptepel onoloudritote ac-
celeration mou meTuyalvoupe ydpic oty ToEaAANAlL TV UAOTO|CEWY
Hoc. Oa unopoloe ce auTH TNV TEpinTwon To inference va yivel na-
tively oe c4++ ywplc xdmota onuavtixy diapopd. ‘Oco peyah®veL To
input size etvar Eexddapo 6TL T0 TOaTdve overhead oxialeton and Ta
acceleration mou netuyotvoupe. To Wavixd input size €wvon yOpw oA
50000 samples 6mou 1ot o JOVTEAN UOC ETLOUXVIOLY X0l TO XUAVTEQO
performance. Télog vyl input sizes mohhamAdoio 6GhoxAnpou Tou
dataset elvow mdoavév n python viomoiforn va metuyaiver xahbTepa
anoteAéopato AOyw Tou batch processing . ‘Ouwc Alyec umopolyue va
povTao ToUPE efvar oL TEpITTOoElg 6Tou Va yeelaoTel va yivel inference
oe 1600 peydio dataset yio security critical introduction detection
EQUOUOYES OTWG AUTH TOU ECETACUUE O QUTY TNV OLTAWHNTIXY €0-
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yoota.

1.9 3Xvunepdopata xow MeAhoviixy Epyacia

Yo mhadotar auTAS TNG BIMAWUATIXAC EpYaciog eEETUOUUE TOV AAYOpL-

Yuo unyavixric pdinone Random Forest yio vo xdvoupe Anomaly
detection oe Blopnyovixéc Eyxoataotdosc. Epeuvioaue tpdmoug ue
ToUC oTtoloug Unopolye vo tetuyouue hardware acceleration oe FPGA
tou RF xato to inference. Evtornicoue tor xouudtia tou ahyopituou
TOU UTOPOUUE Vol ETUTUYOVOUUE XL VO TOUQUAANAOTIOIACOUUE EXUET-
arhevduevol Tic duvatdtnteg Tic duvatdtnteg Tou FPGA. Ta deci-
sion trees mou amaptilouv To RF ewvon aveloptnto yetadu Toug xou
umopoLY va mapokknhonomdolv. Mtnotlduevol oe auTr TNV WBIOTNTA
TpoTelvaUE BLO BlapopeTixeg apyttextovixég Tig Coarse grained Par-
allel RF's xou Pipeline RF, oto ecwtepd xar twv 600 ot estimators
EXTEAOUVTOL TUEAAATAGL. X TNV TEWTY £YOUVUE TOMATAY avTlypapa ToU
dou RF, ewodyovtag éva dedtepo mapalhniiog autd Ty mapdhAning
T TdYpovNe enelepyaoiuc TOAATAGY BelyudTwy ElcddoL, (60 oF p-
WUO PE QUTOV TV avTLYedpwy. XTn OeUTERY QYITEXTOVIXT UXONOL-
UUnxe pipeline mpocéyyion émou Uotepa amd €va apyixd latency
emituyyaveTow iteration interval II=1, donhady| mapaywyr) evog vEou
classification o xdde véo xOxdho. Emmieov ewodyoue tnv TEYVIXT
Behtiotomoinong precision scaling pe 6x6mo Vol UELWCOUNE TO Tesource
utilization xau xodog xon To inference time. Xuyxptvéuevol xde popd
ue Vv wo yeryopn viomnoinorn tou RE mou étpeye natively oe C++
xo Python xatagépoue va netdyouue acceleration yio dAo tor sam-
ples sizes mou doxiudooue. To xahltepo speed up mou UeTECUUE HTAY
20 yio 48000 samples. IMapdywy tng Simhwpatinic epyaciog HToy 1)
onuoupyio evog epyaieiou yia TNy autouatonoion Tng dwdxactiog de-
sign exploration oc FPGA, anoutdvtac eAdylotn ahhenidpoot e tov
PO,

e pehhovtiny| epyaocio, emupoUUe Vo EUPYVOUUE TEQIGOOTEPES
ey vixég Y acceleration oe ®IIIA¢ ¥ axdun dagopetixég hardware
Thatogopueg Omwe o embedded fpgas. H épeuva tng Simhwportixndc
e0xolo puropet v petagpeplel xan oe eFPGA, ta onolo amoxtolv dnpoguiia
o€ TANIOEA EQUPUOYMY OTEVA GUGYETICOUEVY) UE TNV OIXT| HOC 0TS
elvon o edge computing. Mua dhin evotagpépouca pehétn Yo unopoloe
va atoteel to acceleration evoc dihou tree structure machile learn-
ing oAyopituou xotdhhnho yio anomaly detection to Isolation Forests.
To IF Yumlouv apxeta to RE ye v Bacixdtepn dragpopd toug 6t
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uTOoPOLY va xdvouv xa unsupervised anomaly detection. Evoiupépov
Yo fray 1 odyxplon twv 600 alyopruwy oe hw acceleration per-
formance oo xan mEOPAeTTIN XAVOTNTAL  MUUTEQUOUN AUTAC TNG
OimhwuoTiAC epyaotog etvon 6Tt Ta tedio tou HW accelartion xow Anomaly
detection diapxnc avantiocovTal xat Yo Yog amacyololy olyoupa xo
oTO PEANOV.
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2 Introduction

In recent years, it has been observed that more and more Industrial
Facilities are becoming the target of attacks. Many of these systems
were not designed with security in mind. Until recently, operation
technologies were separated from information technologies. In ad-
dition, specialized knowledge was required to handle and properly
operate them[7]. Because of this, industrial plants were safer than
they are today. The ever-increasing growth and demand for Internet
of Things(IoT) technology has reinforced the above phenomenon.
Despite the clear benefits, in terms of productivity, efficiency and
automation, offered by IoT integration and interconnection of sys-
tems, there is a risk of exposing more vulnerabilities.

In order to protect industrial facilities from attacks, we need to
quickly detect them and develop deterrents. The aim of this thesis is
to accelerate the inference stage of a predictive model that detects
cyber-physical attacks to a Secure Water Treatment Facility. To
achieve this we apply Anomaly Detection utilizing machine learning
algorithms such as Random Forest ensemble. We chose to accelerate
the generated model on a FPGA device with the help of Vitis HLS
tool.

Anomaly detection, also known as outlier detection, refers to the
problem of finding patterns in data that do not conform to expected
behavior [1]. We focus mainly at intrusion detection, the process of
identifying hostile activity (break-ins, penetrations, and other types
of computer abuse) in a system [1] . Using historical data we train
the Random Forest model to make such predictions. Random Forest
is a supervised learning algorithm which consists of a collection of
Decision Trees. Each Decision Tree is trained independently of the
others on a subset of the original dataset. To obtain a prediction,
each tree independently makes its own prediction and then these are
aggregated. In our case we are interested in classification, the final
prediction is extracted by majority voting.

One of the main challenges related to anomaly detection imple-
mentation is fast and reliable inference. In our thesis we propose to
use Field Programmable Gate Arrays (FPGA) and the Vitis-HLS
tool-chain. The parallelism capabilities offered by FPGAs allows
us to significantly reduce the inference time, which is essential for
security critical applications like ours. Furthermore, through Vitis
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we can write our code in a high-level language like C++ rather than
a hardware description language such as Verilog or VHDL. It pro-
vides us with the flexibility and convenience to be able to focus on
improving the design and the structure of the algorithm rather than
on low-level implementation.

In the context of this thesis, we explored the possibility of par-
allelizing the RF algorithm to achieve acceleration. Inside an RF,
each Decision Tree operates independently from the others, consti-
tuting the first level of parallelism we leveraged. To achieve this, we
created different instances for each Decision Tree in the hardware,
enabling their parallel execution. We also investigated higher lev-
els of parallelism, specifically parallel processing of multiple input
samples. We proposed two different architectures. The first one,
named Coarse-Grained Multiple RF, involves instantiating multiple
copies of the same RF, with each containing parallel decision tree
estimators. This allows us to implement, for example, K parallel
RF's, each with N parallel Decision Trees, internally evaluating K
inputs simultaneously. It’s clear that there is a trade-off between
performance and resource utilization, for which we conducted an
analysis.

The second proposed architecture is called Pipelined RF. We ob-
served that the process of traversing a Decision Tree can be frag-
mented into individual sequential stages. While there’s a depen-
dency between the stages, by inserting buffers between them, we
managed to transform the process into a pipeline. We combined
parallel and independent pipelined Decision Trees to achieve a high-
level Pipelined RF. The Pipelined RF can accept new input sam-
ples in each cycle, which are then propagated through the pipelined
stages of each Decision Tree, achieving an initial Iteration Latency
and then reaching an Iteration Interval of II=1.

In both architectures, we applied precision scaling techniques to
achieve better performance during inference and lower resource uti-
lization. Precision scaling is the technique of representing model
elements in a different and lower precision format. We experi-
mented with different numbers of bits lengths and data types be-
yond floating-point, such as fixed floats and integers. In the case of
integers, we needed to apply quantization.

Having the two architectures and the aforementioned microar-
chitectural optimization techniques, we conducted hardware design
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exploration to find the best configurations for comparison with C+-+
and Python implementations of the RF algorithm. We analyzed the
findings from these comparisons and presented our conclusions in
detail. A byproduct of this thesis is the creation of a framework
tool capable of automating the design exploration process. The
contribution of this thesis lies in the study of novel techniques for
accelerating the RF algorithm on FPGA and providing the afore-
mentioned tool.

The rest of the thesis has the following structure. In chapter 3 we
report on related work on Anomaly Detection and acceleration in
FPGA. We make an extensive analysis of the Random Forest algo-
rithm and compare it with other state of the art classifiers. We also
analyze the structure and the capabilities of the FPGA in relation
to other platforms and the operation of the Vitis HLS. In chapter
4, we present the dataset we used and the methodology we followed
to produce the first executable on FPGA. In chapter 5, we present
the two architectures parallel and pipeline we implemented and the
HLS directives we used to achieve the best predictive accuracy with
maximum acceleration and lowest resource usage. In chapter 6, we
present micro architectural optimizations, such as precision scaling,
we applied to improve further the aforementioned architectures re-
garding the performance and resource utilization.In chapter 7 we
present a framework that was produced through the thesis in order
to automate the design exploration process in FPGA for the ran-
dom forest algorithm.In chapter 8 we analyse the results from the
design exploration of the previous chapters and we select the best
ones implementations to compare with the equivalents C++ and
Python that run natively. Finally, in chapter 9 we summarize with
our conclusions and discuss further ideas for future optimizations.
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3 Theoretical Background

3.1 Related Work

Anomaly detection is a widely found issue. Many different ap-
proaches have been tried in an attempt to develop a reliable model.
One of them involves the comparison of Support Vector Classi-
fires(SVM) and Random Forest(RF)[8]. Simon D. Duque Anton
used 2 different datasets involving intrusion detection in industrial
facilities. They also did feature selection in order to keep the most
important features, with the aim of reducing training time while
maintaining a relatively high accuracy rate. There is no straight
forward solution in finding those features that are able to distin-
guish between malicious and no malicious instances.One suggested
heuristic is the feature importance metric of RF, which shows us
the importance of a feature according to its ability to increase the
pureness of the leaves. The authors of the paper concluded that RF
achieved significantly better performance and accuracy than SVM
and had more linear behavior with respect to run-time.

A similar study [9] comparing SVM and RF for ID on the KDD99
dataset had different conclusions. Specifically, RF achieves better
prediction for specific type of attacks such as probing and U2R and
has higher precision than SVM. However, SVM has overall slightly
better accuracy and lower False Negative Rate(FNR). Both of pa-
pers agree that RF is faster at training and running.

In another study [10], they sought to develop an intelligent and
secure model to detect vulnerabilities in IoT systems and protect
against cyber-attacks.To achieve this, they compared several dif-
ferent machine learning algorithms. In total 5 were used, which
were Logistic Regression(LR), Support Vector Machine, Decision
Trees(DT), Random Forest and Artificial Neural Networks (ANN).
They concluded that a simple model like RF can, always depending
on the dataset, bring better results in terms of prediction accuracy
compared to much more complex ones like ANN.

It is evident that RF, thanks to its good accuracy and fast train-
ing and running times, is a popular choice in the field of anomaly
detection. However, there is always a need for more precise, faster,
and energy-efficient solutions. Therefore, efforts have been made
to accelerate the model on a variety of hardware platforms such
as GPUs and FPGAs. One such approach is presented in a paper
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[11]that utilizes a variant of the classic RF algorithm called Com-
pact Random Forest (CRF). The main differences lie in the number
of decision trees (DT) and the maximum depth allowed for each tree
to grow. These changes are motivated by the fact that the RF algo-
rithm is memory-bound, which is not ideal for hardware acceleration
with limited resources.

Regarding FPGA implementation, a pipeline architecture is sug-
gested with n different pipelines for n trees. Each pipeline consists
of s stages, where each stage represents the node that the sample
traverses in the corresponding tree. In the s-1 stage, the classifica-
tion of the sample by the tree takes place. The last stage of the
design is the majority voting from all the pipelines. This particular
implementation achieves processing of each sample in every clock
cycle, meaning an Iteration Interval (II) of 1.

In the CP-GPU implementation, the focus is on maximizing the
utilization of parallelism in multicores and achieving optimal data
reuse in the caches. To achieve this, each streaming multiprocessor
selectively traverses a subset of trees from the forest for each sample.
The study concludes that FPGA provides higher performance/per-
formance per watt and can handle larger classifiers without compro-
mising its capabilities, with the necessary hardware resources. On
the other hand, CP-GPU offers better cost-effectiveness in terms of
efficiency per dollar, although it experiences a significant reduction
in its performance when dealing with the maximum size of the Com-
pact Random Forest (CRF). However, the CP-GPU implementation
allows for easier scalability.

Based on the previous work, we have decided to perform Anomaly
Detection (AD) using Random Forest (RF) on an FPGA. However,
we have made some differences compared to [11]. Firstly, we will not
impose any restriction on the size of the RF during training. Addi-
tionally, we will compare two different architectures on the FPGA.
One architecture is a pipeline approach, similar to the one proposed
in the paper, while the other involves a more parallel implementa-
tion.

Thanks to the increased capabilities of modern FPGAs, we will
aim to achieve the maximum possible number of parallel and inde-
pendent RF instances that can fit on the board. All instances will
be identical copies of each other. Internally, the trees will process
each sample in parallel in both proposed architectures. Our goal is
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to compare which of the two approaches, pipeline or parallel, will
provide us with higher performance and to examine the trade-off
between resources and performance.

3.2 Random Forest Algorithm

The RF algorithm was first proposed by Leo Breiman. It combines
multiple techniques and introduces new ones. It is a variation of the
CART algorithm, in which bagging and random feature selection
are applied.

First, let’s analyze the Classification And Regression Tree (CART)
algorithm [12], which consists of 4 basic steps. In the first step, we
start from the root and construct the tree by recursively creating
nodes and splitting the data. Each node acquires a class based on
the distribution of classes in the learning data at that node, as well
as the decision cost matrix, regardless of whether the node will be
further split or not. The importance of the label of all node will
evident at the analysis of stage 3. One of the most common crite-
ria used to find the optimal splitting variable in a node is the Gini
index. The Gini index measures the degree or probability of a par-
ticular variable being wrongly classified when randomly chosen. It
takes values from 0 to 1. If all elements belong to a single class,
the index has a value of 0 and is considered pure. Conversely, if the
elements are randomly distributed across classes, the index has a
value of 1 and is considered impure. As expected, in each node, the
feature and value that give us the lowest Gini index are selected.
The formula for calculating the Gini index is as follows.

n

Gini =1-Y (pi)® (1)

=1

‘pi’ is the probability of an object being classified to a particular
class.

The second stage is the stopping of tree building. This occurs
under 3 conditions:

e there is only one instance in a child node

e there many instances at a child node but all of them have the
same classification

e the maximum number of nodes has been reached
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In the third stage, we proceed with pruning the tree. The maxi-
mal tree always has better accuracy on the learning data, which is
why there is a risk of overfitting. The purpose of pruning is to ob-
tain simpler trees that can distinguish the correlations between the
data and the noise. The technique used is called 'cost-complexity’
pruning. Starting from the leaves, we remove nodes and compare
the drop in accuracy relative to the complexity of the tree. In the
fourth and final stage, we select the optimal tree that resulted from
the pool of trees in the third stage. This is usually done by using a
different dataset from the training dataset.

The CART algorithm, however, is prone to overfitting the data
and performs poorly with outliers. Breiman proposed using the
technique called bagging, also known as bootstrap aggregating. In
bagging, multiple weak learners are trained in parallel, each on a
different dataset generated by random redistribution of the original
dataset. The training dataset for each learner (classifier or regressor)
is created by randomly selecting N samples with replacement, where
N is the size of the original dataset. The goal is to train each tree
with a different dataset, to make the model more robust to new
samples.

In most datasets, there are certain features that appear to be
more influential than others in making decisions regarding node
splitting and, consequently, in constructing decision trees. Even
with the use of bootstrap sampling, it seems that the generated
trees do not differentiate themselves enough to effectively address
overfitting. Breiman attempted to introduce more randomness into
the model with the goal of reducing the correlation between trees
and either increasing or maintaining their predictive ability. He
proposed that instead of using the entire range of features at each
node, a random subset of features should be utilized. The feature
and its corresponding value for splitting the node are selected from
this random subset. The number of features considered in this pro-
cess remains constant for all nodes and all trees, and it is typically
a function of the total number of features. One commonly used ap-
proach is to select the square root of the total number of features,
while another widely employed method is to take the logarithm.

This inclusion of bagging and random feature selection helps to
introduce diversity among the trees and enhance the model’s ability
to generalize, thus addressing the issues of overfitting and improving
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overall performance.
The inference process of a RF is the following:

e Input: For each given X sample which we want to make a
prediction, the RF takes this feature vector as input.

e Tree Traversal: The input is passed to each decision tree. Start-
ing from the root the sample moves through the tree structure
based on the splitting criteria at each internal node. At each
internal node, a specific feature and split point are used to
determine the direction the sample should follow. The fea-
ture’s value in the input sample is compared to the split point,
and based on the result, the sample moves to the left or right
child node. This process continues recursively until the sample
reaches a leaf node, which represents a prediction

e Voting or Averaging: The trees collectively make predictions
for each input. In binary classification tasks, each decision tree
in the Random Forest ”"votes” for a class label based on the
majority class in the leaf node where the input sample lands.
The final prediction is made through majority voting among all
decision trees. In regression tasks, the predicted values from
each decision tree are averaged to obtain the final regression
output.

e Output: The RF outputs the final prediction for the input sam-
ple, which can be a class label (in classification) or a numerical
value (in regression).

The training and the inference,for classification, are visualized at
figure 1.
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Figure 1: (a) Training process: Multiple decision trees constructed on bootstrap
samples of the training set(in this fig there are only two classes shown -orange
and blue)(b) Classification process: The classification decision is based on the
majority voting results among all the trees.[13]
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3.3 FPGA

An Field Programmable Gate Array or FPGA for short, is an inte-
grated circuit (IC) that can be programmed for different algorithms
after fabrication. Modern FPGAs consist of up to two million logic
cells that can be configured to implement a variety of software algo-
rithms. Although the traditional FPGA design flow is more similar
to a regular IC than a processor, an FPGA provides significant cost
and time advantages in comparison to an IC development effort and
offers the same level of performance in most cases. This is due to the
ability of the FPGA, when compared to the IC, to be dynamically
reconfigured. This process, which is similar to loading a program in

a processor, make changes to the actual hardware and the available
resources in the FPGA fabric[15].

3.3.1 Understanding the FPGA Architecture

The general FPGA architecture is heterogeneous compute platforms
which consists of three types of modules. They are 1/O blocks,
Switch Matrix/ Interconnection Wires and Configurable logic blocks
(CLB). A basic FPGA architecture is shown at figure 2.
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Figure 2: FPGA Architecture[14].

The CLB is the fundamental bulding element for the FPGA, it
provides the basic logic and storage capability. In general, a logic
block consists of a few logic cells (each cell is called an adaptive
logic module (ALM), a logic element (LE), slice, etc.). A typical
cell consists of a 4-input LUT, a full adder (FA), and a D-type flip-
flop (DFF), as shown to the right. The LUTSs are in this figure
split into two 3-input LUTs. In normal mode those are combined
into a 4-input LUT through the left mux. In arithmetic mode, their
outputs are fed to the FA. The selection of mode is programmed
into the middle multiplexer. The output can be either synchronous
or asynchronous, depending on the programming of the mux to the
right, in the figure example. In practice, entire or parts of the FA
are put as functions into the LUTSs in order to save space. Figure 3
illustrates a simplified logic cell.[16]
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Figure 3: Simplified illustration of a logic cell.[16]

Programmable routing frequently makes up more than 50% of
the fabric area and the application’s critical path delay. So, it’s
effectiveness is essential. Pre-fabricated wiring segments and pro-
grammable switches make up programmable routing. Any function
block output can be connected to any input by programming the
appropriate switch sequence to be on [17]. Figure 4 illustrates the
fundamentals of the routing configuration.

FPGAs include unique programmable 10 structures to allow them
to communicate with a very wide variety of other devices, making
FPGAs the communications hub of many systems[17]. These days,
nearly every Xilinx IP uses an AXI Interface. AXI, which means
Advanced eXtensible Interface, is an interface protocol defined by
ARM as par of the AMBA (Advanced Microcontroller Bus Archi-
tecture) standard[18]. There are 3 types of AXI4-Interfaces (AMBA
4.0), also shown at 5:

e AXI4 (Full AXI4): For high-performance memory-mapped re-
quirements.

e AXI4-Lite: For simple, low-throughput memory-mapped com-
munication (for example, to and from control and status regis-
ters).

e AXI4-Stream: For high-speed streaming data.
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Figure 4: FPGA Routing configuration.[17]
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Maxi protocol utilizes bursting, the aggregation of successive
memory access requests. Also provides the ability to control the
max data width, up to 1024 bits. Combining these two techniques
it can theoretically achieve 17-19 GB/s for a DDR.[19]

3.3.2 FPGA Components

An FPGA’s fundamental building blocks consist of the following
components|[15]:

e Look-up table (LUT)

e Flip Flops (FF)

e DSP

e Bram and other memories

The Look Up Table (LUT) is the fundamental component of an
FPGA and has the ability to implement any logic operation involv-
ing N Boolean variables. This component is essentially a truth table
where different input/output combinations implement various func-
tions to produce output values. The truth table can only be as big
as N, where N is the total number of inputs into the LUT.A LUT
can be implemented in hardware by connecting a number of mem-
ory cells to a number of multiplexers. The multiplexer selects the
outcome at a specific time point using the inputs to the LUT as
selector bits. Both a function compute engine and a data storage
component can be used with LUT[15].
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Figure 6: Lut Representation.[15]
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A flip-flop’s fundamental components are data input, clock input,
clock enable, reset, and data output. Any value entered into the data
input port during normal operation is latched and sent to the output
on each clock pulse. The clock enable pin’s function is to enable the
flip-flop to hold a particular value for multiple clock pulses. Only
when clock and clock enable are equal to one are new data inputs
latched and passed to the data output port[15].

St

FF
din d_out ——
— clk_en
—>clk
reset

|

Figure 7: Flip Flop Representation.[15]
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The Digital Signal Processing block (DSP), an embedded arith-
metic logic unit (ALU) in the FPGA, is made up of a series of three
different blocks. An add/subtract unit, a multiplier, and a final
add/subtract /accumulate engine make up the DSP’s computational
chain[15]. A single DSP unit,thanks to this chain , can implement
the following functions:

P +=Bx(A+D)
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Shift registers, read-only memory (ROM), and random-access
memory (RAM) are all forms of embedded memory that are present
in the FPGA fabric. To provide on-chip storage for a sizable amount
of data, the FPGA fabric instantiates the BRAM, a dual-port RAM
module. A device’s two types of BRAM memory can store either
18k or 36k bits. These memories’ dual-port design enables parallel,
same-clock-cycle access to numerous locations[15].

In a RAM setup, data can be read and written at any point
while the circuit is operating.in contrast, data can only be read
from a ROM configuration while the circuit is running. Also for
ROM memories, it is possible to implement multiple ports to allow
multiple parallel access from different parts of the design, this will
become handy later for our model[15].

3.4 High Level Synthesis

The High level Synthensis(HLS) is the process of transforming a C
specification into a register transfer level(RTL) to be able to synthe-
sized at a FPGA. It bridges the gap between software and hardware
by allowing designers to express their designs using high-level pro-
gramming languages like C or C++. HLS offers several advantages
compared to traditional description languages[20].

Some of them are the following. By abstracting away the low-
level details, designers can focus on expressing the desired function-
ality of their designs. While leaving the implementation details to
the HLS tool, which otherwise would consume significant develop-
ment time. Also, it can validate the functional correctness of the
design more quickly, compared to VHDL or Verilog. The numerous
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optimization directives available allow control over the synthesis pro-
cess and still create specific high-performance hardware implemen-
tations.With the aid of optimization directives, generate numerous
implementations from the C source code. Explore the design space
to improve the likehood of finding the best solution. Finally, we can
create readable and portable C source code. Retarget the C source
into different devices as well as incorporate the C source into new
projects[20].
High-level synthesis includes the following phases:

e Scheduling: Determines which operations are carried out dur-
ing each clock cycle. It is based on the frequency or length
of the clock cycle. Moreover, the target device’s and the user-
specified optimization directives’ definitions of the operation’s
completion time.More operations can be finished in a single
clock cycle, and all operations may be finished in a single clock
cycle, if the clock period is longer or a faster FPGA is desired.
Conversely, high-level synthesis automatically spreads out the
operations over more clock cycles if the clock period is longer
or a slower FPGA is being used, and some operations might
need to be implemented as multicycle resources.

e Binding: identifies the hardware resource that will carry out
each scheduled operation. High-level synthesis makes use of
data about the target device to implement the best solution.

e Control logic extraction:Extracts the control logic to create a
finite state machine (FSM) that sequences the operations in
the RTL design.

The Xilinx Vivado HLS tool synthesizes a C function into an IP
block to integrate into a hardware system. It is tightly integrated
with the rest of the Xilinx design tools and provides comprehensive
language support and features for creating the optimal implemen-
tation of the C algorithm.

Following is the Vivado HLS design flow stages:

e Compile, execute (simulate), and debug the C algorithm.

e Synthesize the C algorithm into an RTL implementation, op-
tionally using user optimization directives.

e Generate comprehensive reports and analyze the design.
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e Verify the RTL implementation using a pushbutton flow.
e Package the RTL implementation into a selection of IP formats.

The flow of using HLS is briefly descripted in 9.

Test C, C++, Constraints/
Bench SystemC, Directives
OpenCL APIC
Y v 4
C Simulation | | C Synthesis
v
RTL Vivado HLS VHDL
Adapter Verilog
P :
| RTL Simulation | | Packaged IP |
Y Y
Vivado Svsiem Xilinx
Design (_' ¥: ¢ Platform
Suite rencrator Studio

Figure 9: Vivado HLS Design Flow.[20]

A synthesis report is produced by HLS once synthesis is finished.
Information on the performance metrics is provided in this report.
Understanding the metrics employed to gauge performance in an
HLS-created design, is crucial for accomplishing that effectively.
Area, latency, and initiation interval are the three main ones.

The synthesis report contains information on the following per-
formance metrics[20]:

e Area: Amount of hardware resources required to implement the
design based on the resources available in the FPGA, including
look-up tables (LUT), registers, block RAMs, and DSP48s.

e Latency: Number of clock cycles required for the function to
compute all output values.
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e Initiation interval (IT): Number of clock cycles before the func-
tion can accept new input data.

3.5 Vitis and Host code

We used the Vtis Unified Platform to accelerate our application.
In the Vitis environment, heterogeneous systems include software
applications running on x86 host processors or Arm@®) embedded
processors, compute kernels running in programmable-logic (PL)
regions or Versal Al Engine arrays, and extensible platform designs
that provide the foundation for building and running the heteroge-
neous systems[21].

The application is mainly separeted in two parts, the host and
the fpga. The host serves as the main processing unit that interacts
with the FPGA to perform specific tasks. The purpose of the host
is to control, coordinate, and communicate with the FPGA to of-
fload computation-intensive tasks or accelerate specific parts of an
application. The host CPU communicates with the FPGA to trans-
fer data, configuration parameters, and instructions. It sets up the
FPGA for execution, sends data to be processed by FPGA kernels,
and receives results back from the FPGA. Also, is responsible for
controlling the execution of tasks on the FPGA. It ensures proper
synchronization between tasks running on the host and FPGA to
maintain the correct sequence of operations. The above are achieved
utilizing Opencl Commands and APT calls[21].

Another crucial role of the host is the Data Preprocessing and
Post-processing. The host may perform data preprocessing before
sending it to the FPGA for acceleration. For example, based on
the number of features that we decided to train our model, we strip
the dataset from those that we ended up not using. This allowed
us, to reserve bandwith and storage resources and simultaneously
achieve better performance by eliminating unused data. Similarly,
after receiving results from the FPGA, the host may perform post-
processing to present the final output or integrate it with other parts
of the application. The post-processing we did is to determine the
quality of the model’s prediction by calculating the accuracy, or
other metrics such as precision,recall etc.

The development flow of our Vitis application is the following:

e Application compilation using G+-+

45



e Kernel compilation using Vitis HLS
e PL kernel linking using Vitis Tools
e Running the Application

Firstly, the host code which is written in C/C++, with Opencl
API calls, is compiled using the G4++ compiler to generate a exe-
cutable to run on a x86 processor. Through that, we will communi-
cate with the PL where our kernel will be executed. The function we
decide to accelerate is synthesised to a hardware function, which is
called kernel. Each C++ kernel when synthesized, using Vitis HLS,
produce a Xilinx object (.xo) file. Those Xilinx object (.xo) files
are then linked together with the target hardware platform by the
Vitis linker to create a device binary file (.xclbin). The command
line utility v++4, provided by the Vitid AMD), is the one we use for
the compiling and linking process. Finally, to run the application
the host executable loads the .xclbin file, usually as a command
line argument (./host.exe kernel.xclbin). The development flow is
illustrated at figure 10.
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Figure 10: Vitis Development Flow[21].

The steps involving the execution of our application is as follow[21]:

e The host program writes the data needed by a kernel into the
global memory of the attached device through the PCle inter-
face on an Alveo Data center accelerator card.

e The host program sets up the kernel with its input parameters

e The host program triggers the execution of the kernel function
on the FPGA.

e The kernel performs the required computation while reading
data from global memory, as necessary

e The kernel writes data back to global memory and notifies the
host that it has completed its task.

e The host program reads data back from global memory into
the host memory and continues processing as needed.
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The communication of the CPU and FPGA is shown at figure
11.
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Figure 11: CPU/FPGA Interaction[21].

The nature and contents of the .xclbin file are determined by the
build target of the AMD Vitis™ tool we choose during compiling
and linking. There are three potential targets, two emulations and
the hardware target, each one with it’s own functionality. We can
specify the potential build target by setting the -t (target) at the
v++ command[21]. Those are:

e Software emulation
e Hardware emulation
e Hardware execution

Software emulation (sw_emu) is a crucial step in the FPGA de-
velopment process using Vitis. Its primary aim is to ensure the
correctness of both the host program and FPGA kernels. Sw_emu
is valuable for refining algorithms, debugging, and quickly iterating
through code improvements without the need for physical FPGA
hardware. During software emulation, FPGA kernels are executed
natively, and the host program runs on the CPU. It does not consider
timing delays or latency and focuses solely on functional execution
without providing performance data[21].

Hardware emulation in FPGA development executes an RTL sim-
ulation of the programmable logic design, combining PL kernels with
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a cycle-approximate hardware platform model. It serves various pur-
poses, including functional correctness verification, testing kernel
interactions, and obtaining initial performance estimates. Through
cycle-accurate waveforms, we can gain in-depth visibility into ker-
nel activity. Although it has longer compile and execution times than
software emulation, it is a valuable tool for validating FPGA designs
and obtaining critical insights into the hardware implementation[21].

Finally, once we settle on a design we choose the hardware build
target. The v++ builds the FPGA binary for the AMD device by
running Vivado synthesis and implementation on the design. It is
normal for this build target to take a longer period of time than
generating either the software or hardware emulation targets. How-
ever, the final FPGA binary can be loaded into the hardware of the
accelerator card, or embedded processor platform, and the applica-
tion can be run in its actual operating environment. Also, we get
the actual summary of the resources and timing, on the contrary
the hw_emu produce an estimate[21].
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4 Random forest implementation for HLS

In this chapter, we describe the methodology followed to generate
the initial form of code that can be executed on the FPGA. First,
we present the dataset used for training and testing. Then, we
describe the process of training the models in Python, as well as the
parameters we fine-tuned. Finally, we demonstrate the migration of
the models from Python to C++ code for execution on a CPU, and
later on an FPGA.

4.1 Model training and tuning

The name of the dataset we used is SWaT Al & A2 DEC 2015 and
was collected from a Secure Water Treatment facility (SWaT). Our
aim is to be able to use it to improve the design of a secure Cyber
Physical System (CPS). The dataset was generated after 11 days of
continuous operation of the facility, with the first 7 under normal
operation and the next 4 under attack. The types of attacks are di-
vided into two categories Physical and Network. Our research will
focus on Physical attacks, with the goal of developing and acceler-
ating a model for early detection of these types of attacks.

The dataset consists of 3 excel files, the first 2 are related with
the normal operation of the installation and the third with the one
under attack. In each of these files we have measurements from
the 50 sensors of SWa'T collected every second, as well as another
field where we have the status at the given moment, i.e. Normal or
Attack. The pre-processing we did is to compress the 3 files into a
single CSV file, which will be the one we will use in training and
testing. In addition we removed the Timestamp field, which showed
the time of the measurement. The reason for this is that we don’t
want the generated model to make decisions based on the time it
"saw” in the training phase.

At Table 2. we list the name of each sensor and the function it
serves. There is an extra column showing the range of values we have
for each variable. We notice that most of the values have a small
range.Following best practices in ML training, we have normalized
the dataset. We used the Scikit-Learn library, specifically the Nor-
malizer class[3]. The normalized data retains the same distribution
as the original data, ensuring the utility of your application. We
will take advantage of the dense distribution in chapter 6, when
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for acceleration and resource saving purposes, we will seek to con-
vert the data from a float_32 representation to some lower precision
representation such as integer_16.

Table 2: Features

No Name Description Ranges
1 FIT-101 Flow meter; s inflow into raw water tank. 0.0-2.760145
2 LIT-101 Raw water tank le 120.6237-1000.0
3 MV-101 : Motorized valve; Controls water flow to the raw water tank. 0-2
1 P-101 Actuator Pump; Pumps water from raw water tank to second stage. 12
5 | P-102 (backup) | Actuator Pump; Pumps from raw water tank to second stage. 2
6 AIT-201 Sensor Conductivity analyser; Measures NaCl level. 168.0338-272.5263
7 Sensor pH analy Measures HCI le 6.0-8.988273
8 Sensor ORP anal Measures NaOCl level. 285.3371-567.4699
9 Sensor Flow Transmitter; Control dosing pumps. 0.0-2.826899
10 MV-201 Actuator Motorized valve; Controls water flow to the UF feed water tank. 0-2
11 P-201 Actuator Dosing pump; NaCl dosing pump. 12
12 | P-202 (backup) | Actuator Dosing pump; NaCl dosing pump. 1-1
13 P-203 Actuator Dosing pump; HCI dosing pump. 1-2
14 | P-204 (backup) | Actuator Dosing pump; HCI dosing pump. 1-2
5 P-205 Actuator Dosing pump; NaOCI dosing pump. 12
16 | P-206 (backup) | Actuator Dosing pump; NaOCI dosing pump. 1-2
17 P Sensor Differential pressure indicating transmitter; Controls the back- wash process. 0. 0
18 Sensor Flow meter; Measures the flow of water in the UF stage. 0.0-2.376197
19 Sensor Level Transmitter; UF feed water tank level. 132.8185-1201.0
20 Actuator Motorized Valve; Controls UF-Backwash process. 0-2
21 Actuator MotorizedValve;ControlswaterfromUFprocesstoDe- Chlorination unit. 0-2
22 Actuator Motorized Valve; Controls UF-Backwash drain.
23 4 Actuator Motorized Valve; Controls UF drain.
24 | P-301 (backup) | Actuator | UF feed Pump; Pumps water from UF feed water tank to RO feed water tank via UF filtration.
25 P-302 Actuator | UF feed Pump; Pumps water from UF feed water tank to RO feed water tank via UF filtration.
26 AIT-401 Sensor RO hardness meter of water.
27 AIT-402 Sensor "ORP meter; Controls the NaHSO3dosing(P203), NaOCl dosing (P205).”
28 FIT-401 Sensor Flow Transmitter ; Controls the UV dechlorinator.
29 LIT-401 Actuator Level Transmitter; RO feed water tank level. 130.3896-1003.935
30 | P-401 (backup) | Actuator Pump; Pumps water from RO feed tank to UV dechlorinator. 1-1
31 P-402 Actuator Pump; Pumps water from RO feed tank to UV dechlorinator. 1-2
32 P-403 Actuator Sodium bi-sulphate pump. 12
33 | P-404 (backup) | Actuator Sodium bi-sulphate pump. 1-1
34 UV-401 Actuator Dechlorinator; Removes chlorine from water. 1-2
35 AIT-501 Sensor RO pH analyser; Measures HCI level. 7.303769-8.307037
36 AIT-502 Sensor RO feed ORP analyser; Measures NaOCl level. 3
37 AIT-503 Sensor RO feed conductivity analyser; Measures NaCl level.
38 AIT-504 Sensor RO permeate conductivity analyser; Measures NaCl level. . 37
39 FIT-501 Sensor Flow meter; RO membrane inlet flow meter. 0.0-1.757754
40 FIT-502 Sensor Flow meter; RO Permeate flow meter. 0.0-1.361983
41 FIT-503 Sensor Flow meter; RO Reject flow meter. 0.0-0.7636911
42 FIT-504 Sensor Flow meter; RO re-circulation flow meter. 0.0-0.3170099
43 P-501 Actuator Pump; Pumps dechlorinated water to RO. 1-2
44 | P-502 (backup) | Actuator Pump; Pumps dechlorinated water to RO. 1-1
45 PIT-501 Sensor Pressure meter; RO feed pressure. 8.891951-264.6437
16 Sensor Pressure meter; RO permeate pressure. 56
47 Sensor Pressure meter;RO reject pressure.
48 Sensor Flow meter; UF Backwash flow meter. 0.0-1.80271
49 Actuator | Pump; Pumps water from RO permeate tank to raw water tank (not used for data collection). 1-1
50 Actuator Pump; Pumps water from UF back wash tank to UF filter to clean the membrane. 1-2

The python library Scikit-learn was used for the training part[4].
The algorithm chosen for the classification is the Random forest
Scikit-learn allowed us to customize the model to the
needs of our application.

The main parameters for the training phase are as follows[5].
The n_estimators controls the number of decision trees in the forest,
depending on the size we choose the accuracy increases but at the
same time the training time increases. During the fitting phase of
the model, we set the n_features_in_ parameter to the desired num-
ber of features we will use.The criterion refers to the criterion where

ensembler.
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it measures the quality of the separation at each node. The function
we have chosen is gini, i.e. Gini impurity, other widely used ones
are log_loss and entropy, metrics related to Shannon information
gain. Max_depth controls maximum height of each tree, we chose
not to set a limit since we found that it can drastically limit the
accuracy of the predictions. Other parameters worth pointing out
are mid_sample_split and min_sample_leaf. These define the min-
imum number of samples required for a node to be split and can
be considered a leaf, respectively. For the same reason I mentioned
earlier we left them at their default values, i.e. 1 and 2.

As we mention on section 2.2, rf use the bootstrap technique.
To evaluate the robustness of our model to new samples we used
the metric Out of Bag Error(OOB).The model takes as inputs the
samples it did not "see” during training and shows us the percentage
of those it predicted incorrectly. The implementation we finally
came up with achieves 0.004 %(OOB).

The two crucial parameters we choose to explore are the number
of estimators and the number of features. We emphasized to those
two because we could explore them without making heavy assump-
tions about the dataset and the tree creation process. Even for the
same number of features different trees are created, since the feature
selection is random. Those trees have different sizes and structures,
so setting a limit at the growth results at significant reduction on
accuracy. Also, that limit would be inefficient because the tree cre-
ation is non deterministic. The split ratio that was chosen, based
on general practice, is 70/30. 70% of the dataset was used for the
training and other 30% for the testing.

We experimented with a wide range of estimators and number of
features. Specifically:

e Estimators: 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
e Number of Features: 2, 4, 8, 16, 32, 50

There are total 12(estimatos) x 6( features) = 72 designs. The
metrics that we evaluated were Accuracy, Recall, Precision and
F _score.

Accuracy measures the overall correctness of the model’s predic-
tions. It is calculated as the ratio of the correctly predicted instances
(true positives and true negatives) to the total number of instances
in the dataset. A high accuracy indicates that the model is making
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correct predictions for most of the data points. For unevenly dis-
tributed datasets like ours, if we constantly made the prediction to
the majority of labels, we would still get a high accuracy. For ex-
ample, from a test dataset of 432516 entries there 416080 labeled as
Normal and 16436 as Attack. We could achieve a accuracy of 96%
by just selecting the Normal label. It is evident that the accuracy
metric is not well suited for our application, that why we primarily
focus on the other tree.

Since our main goal is to detect attacks, we define as true posi-
tive(tp) the correct prediction of an attack. Subsequently, we mark
as true negative(tp) the correct prediction of a normal instance. On
same principle, the definitions of false positive(fp) and false nega-
tive(fn) are derived.

Actual Values

Positive (1) Negative (0)

Positive (1) TP FP

Negative (0) FN TN

Predicted Values

Figure 12: Confusion Matrix[22].

Precision measures the accuracy of positive predictions made by
the model. It is intuitively the ability of the classifier not to label a
negative sample as positive.It is calculated as the ration of the true
positives to the total amount of positives (tp + fp).Recall measures
the ability of the model to correctly identify positive instances. It
is calculated as the ratio of the true positives to the sum of true
positives and false negative(tp+fn).F1_score is a single metric that
combines both the precision and recall. It is the metric we will
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mostly rely on to evaluate the predictive ability of our model.

tp+tn
Accuracy tp+tn+fp+fn
.. t
Precision L
tp+fp
tp
Recall T
F1 _score 2xprecisionxrecall
- precision—+recall

Table 3: Evaluation metrics.

We trained the models using Python, as mentioned earlier, with
various combinations of estimators and features. For each of these
models, we recorded the F-score measurements during inference on
the test dataset. We visualized these measurements in Figure 13.
It is evident that the F-score improves as both the number of es-
timators and features increase. Beyond 32 features and with more
than 2 estimators, all models converge to an F-score greater than
99%. This suggests that the number of features plays a more cru-
cial role than the number of estimators. We exclude models with
an F-score < 99% from our subsequent analysis to retain those with
the best predictive ability.. The dashed line in the chart represents
that threshold.
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Figure 13: Fscore metrics[22].

4.2 Code transformation for HLS
4.2.1 Python to C++ Model Conversion

As it was mentioned before the training of the forest is done in
python, however our goal is to accelerate the inference on FPGA
with the HLS C++ tool. So first we need to convert the generated
model from python to c++. The model generated by Scikit-learn
is saved in a .pkl file using the joblib library. Through this we can
access the estimator - decision trees of the forest and store their
structure in a c++ suitable format. More specifically, in header file
format.

According to Scikit-learn[6], Decision Trees store their structure
in arrays. For the reconstruction in C++4, we will need five specific
arrays: children_left, children_right, feature, threshold, and value.

e The children_left array stores the index of the left child of each
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node in the tree. If a node has no left child, it is represented
by -1.

e The children_right array is the as the children _left, for the right
child.

e The feature array contains the feature index for each node. It
represents which feature is used for splitting at each node.

e The threshold array holds the threshold value for each node.
It represents the value at which the feature is compared to
determine the splitting direction.

e The value array stores the class probabilities for each leaf node.
For classification tasks, it represents the distribution of classes
in each leaf.

For each tree we know the total number of nodes(node_count)
and each one has its own index. The index represents its position
in the tables. The root of each tree has index 0 and the rest in the
range 1-node_count-1. To illustrate how the aforementioned arrays
are used for decision tree traversal, we depicted them in the figure
14. Specifically, we show 3 different decision trees, and for simplicity,
we chose to display only the left and right children arrays. In all 3
examples, the node’s ID is used as an index in the arrays. Depending
on the comparison result at the node, the value is selected from the
left or right array. The process stops when we reach a leaf node,
meaning both values in the left and right arrays are equal (and
equal to -1) for the node’s ID.
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Decision Tree 1

Right 1 1 1

Left 1 -1 3 -1 -1

Decision Tree 2

1

Decision Tree 3
D \0 1 2 3 4 5
6 E K E

Figure 14: Decision Trees traversal using arrays.

To automate the conversion process a python script was written.
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Through this we had access to each tree and its structure. For each
of them we started at root and traversed the tree with the DFS
algorithm. In the header file trees.hpp the tables are stored in 2D
format. .The index of the first dimension represents the respective
tree and the second one the value we want to store. The size of each
array is equivalent to the product of the number of estimators with
the maximum number of nodes from all trees.

Array Size = n_estimators x max_nodes

The type of children_left , children_right and feature is integer. The
threshold is float, because most of our data is float. We chose the
value array to be of type bool since our classification is binary. The
value 0 is considered as the "Normal” state and the value 1 as the
7 Attack” state. For example:

int children_left[n_estimators][max_nodes]

Having the forest structure stored in the header file, we prepared
the first implementation of the code in C++4-. As we analyzed in the
beginning the Random Forest Classifier algorithm is a collection of
Binary Decision Trees. At the internal nodes a comparison with a
selected feature is made until we reach a leaf. The classification for
a specific input is found in the leaf nodes. Finally, a majority voting
is performed among all the trees to determine the final classification.

At Listing 1 is the C++ implementation that runs on the CPU:

Listing 1: Random Forest C++

#include ”trees_packed .hpp”
#include <vector>

void random_forest (const vector<float> &row, bool & prediction){

const int xleft_ptr, xright_ptr, xfeature_ptr;
const float xthreshold_ptr;
const bool xvalue_ptr;

int node, class_0, class_1;
class_-1 = 0;

for (int est=0; est<ESTIMATORS; est++){
left_ptr = children_left [est];
right_ptr = children_right [est];
feature_ptr = feature[est];
threshold_ptr = threshold [est];
value_ptr = value[est |;
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node = 0;

while(left_ptr [node] != right_ptr[node]){
node = (row|[feature_ptr[node]] <= threshold_ptr [node])
? left_ptr[node] : right_ptr[node];
}

class_1 += value_ptr [node];

}

class_0 = ESTIMATORS-class_1;
prediction = (class_0>=class_1) ? 0 : 1;

From the above code it is obvious that we reach a leaf only in the
case right_ptr[node] == left_ptrinode] == —1. The path that is
followed to traverse each tree is different and unknown beforehand.

4.2.2 C++ to Vitis HLS Modifications

Some changes must be done in order to run this code using HL.S on
an FPGA. Since the while statement is not supported by the tool, a
for loop must be created instead. The expected limit of the for loop
is the length of the path until we reach a leaf node. The length of
the longest path is thought of as an upper limit because it is difficult
to predict which of all potential paths will be taken. The length of
the longest is calculated using the DF'S algorithm, when we generate
the trees.hpp file as we described in the previous section.

In the code, we used vectors because during the subsequent de-
sign space exploration, one of the parameters we manipulate is the
number of features. For this reason, vectors are convenient for us as
the size of each input is variable. However, dynamic allocation is not
supported in Vitis, so we replaced the vectors with static allocated
arrays.

The aforementioned changes led us to the initial template code
that we executed on Vitis and later optimized. At Listing 2 we
present the code.

Listing 2: Template For FPGA

#include " trees.hpp”
#include ”header.hpp”

void random_forest (float (&row)|[FEATURESIZE], bool & prediction){
const int xleft_ptr, xright_ptr, xfeature_ptr;

const float sthreshold_ptr;
const bool xvalue_ptr;
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int node, class_0, class_1;
class_1 = 0;

for (int est=0; est<ESTIMATORS; est++){
left_ptr = children_left [est];
right_ptr = children_right [est];

feature_ptr = feature[est|;
threshold_ptr = threshold [est];
value_ptr = value[est];
node = 0;
for (int path=0; path < MAXPATH; path++){
if (left_ptr[node] != right_ptr[node]){
node = (row|[feature_ptr[node]] <= threshold_ptr|
node]) ? left_ptr[node] : right_ptr[node];
}
}

class_1 += value_ptr [node];

}

class_0 = ESTIMATORS-class_1;
prediction = (class_0>=class_1) ? 0 : 1;

The reader easily notices that converting the while statement to

a for loop introduces overhead. Regardless of how quickly it reaches
to a leaf node, we must fully run the loop to ensure the correctness
of the algorithm, as if we were taking the longest route. However,
we can offset this overhead thanks to the parallelization capabilities

offered by the FPGA. We will discuss this in detail at chapter 4.
In the "header.hpp” file, we define the variables that we will mod-

ify during the design exploration and need to be known at compile
time. An example at Listing 3 is as follows , with 12 ESTIMATORS,
16 FEATURES_SIZE and a maximum path length of MAX_PATH

Listing 3: Example of Header file

#ifndef _HEADER.
#define _HEADER.

#define ESTIMATORS 12
#define FEATURE.SIZE 16
#define MAX PATH 39

#endif
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5 Architectural optimizations for HLS-based Ran-
dom forest

5.1 Estimator parallelism within a Random Forest

In Chapter 3.2, we analyzed the Random Forest (RF) algorithm
concerning both training and inference. The goal of this thesis is to
accelerate the inference phase. To achieve this, we initially identi-
fied two main challenges. The first challenge was to determine which
parts of the algorithm to accelerate and how to efficiently implement
this in code for the Vitis tool. The second challenge involved con-
figuring the code to achieve the optimal resource utilization. We
extensively present these challenges as well as proposed solutions in
the subchapters.

5.1.1 Challenge 1:Multi-threaded execution on hardware

The first challenge is to transform the sequential execution of the
RF algorithm into a parallel one. Initially, we needed to identify
which parts of the algorithm could be parallelized. Subsequently,
having identified these sections, we proposed changes to the code
structure and introduced helper commands in the form of pragmas
to achieve the desired parallelism. In the rest of this subchapter,
we provide an in-depth analysis of the optimizations we applied to
achieve multithreaded execution in hardware.

Decisions are made through majority voting by different and in-
dependent estimators. There is no dependency in the prediction
made by each decision tree, so there is no need for sequential ex-
ecution of the decision trees. Instead, we propose performing the
inference of decision trees in parallel. More specifically, the input
sample will traverse each tree simultaneously. Before proceeding
with the implementation of this approach, we modified the generic
code from listing 2 to that in listing 4. The reason for this change
is to enhance the understanding of the algorithm’s operation. Ad-
ditionally, this restructuring will enable both Vitis and us to apply
optimizations more easily.

Listing 4: Updated Code

#ifndef _FUNCTIONS_HPP
#define FUNCTIONS_HPP
#include 7 trees.hpp”
#include ”header.hpp”
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void add(bool x dt_prediction, bool & prediction){
int count=0;
loop-predictions:for(int est=0; est < ESTIMATORS; est++){
count += dt_prediction [est];
}

prediction = (ESTIMATORS-count >= count)? 0 : 1;
}

void decision_tree (const float row [FEATURESIZE], bool & prediction
, int est_index){
#pragma hls inline off

int node_index=0;

for (int path=0; path<MAXPATH; path++){
if (children_left [est_index ][ node_index]| != children_right |
est_index | [ node_index]){
float threshold_-value = threshold [est_index ][ node-index

float row_value = row|[feature[est_index ][ node_index]];
node_index = ( row_value <= threshold_value) 7

children_left [est_index ][ node_index]
children_right [est_index ][ node_index |;

}
prediction = value[est_-index ][ node_index|;
}
void random_forest (const float row [FEATURESIZE], bool & prediction
)
bool dt_-prediction [ESTIMATORS];
for (int est=0;est <ESTIMATORS; est++){
dt(row,dt_prediction[est],est);
add(dt_-prediction ,prediction);
}
#endif

The function ‘decision_tree’ has replaced the body of the initial
loop. It takes the sample and the ‘prediction’ variable as arguments,
where it will store its own prediction. The ‘est_index’ argument
indicates which estimator the function is called for, allowing the
correct arrays to be read. The ‘add‘ function takes predictions from
all estimators in the form of an array and returns the classification
after majority voting.

The ‘random _forest® function, as before, is responsible for return-
ing the classification based on the sample. It does so by calling the
‘decision_tree' function for each estimator and then using the ‘add’
function.
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Vitis provides us with the ability to define the architecture of our
model at a high level. One way to achieve this is through pragmas,
where the user can add them to their code. During hardware imple-
mentation, each function can be built into an instance that performs
the function’s operation. In sequential execution, as described up to
listing 2, one instance of the ‘decision_tree' function is built. Thus,
the estimators use the same instance and must wait for previous
execution to complete before starting their own.

In FPGAs, parallel execution of a function is accomplished by
building multiple instances/copies. To achieve parallel execution
of the estimators, multiple instances of the ‘decision_tree‘ function
need to be built. Each instance will correspond to an estimator.Each
instance will correspond to an estimator. The HLS pragma we will
use to achieve this is the unroll. The unroll pragma transforms loops
by creating multiple copies of the loop body in the RTL design,
which allows some or all loop iterations to occur in parallel[19].
Through the "factor” parameter, we can select the degree to which
we perform unrolling. Since our goal is the parallel execution of all
estimators, we have not specified the ”factor,” opting for a complete
unroll of the loop.

In order for the Vitis tool to understand that we want parallel
execution of the estimators, we needed to apply additional pragmas.
Specifically, we added the dataflow pragma. The dataflow pragma
enables task-level pipelining, allowing functions and loops to over-
lap in their operation, increasing the concurrency of the RTL imple-
mentation, and increasing the overall throughput of the design. The
dataflow optimization enables the operations in a function or loop
to start operation before the previous function or loop completes all
its operations, provided that there are no data dependencies [19].

Given that we want parallel execution, we will also need paral-
lel access to shared data, such as the arrays representing the tree
structures and the sample input. Since we will have only read-only
access, one approach is to use the array partition pragma. The
pragma array_partition partitions an array into smaller arrays or in-
dividual elements, resulting in RTL (Register-Transfer Level) with
multiple small memories or multiple registers instead of one large
memory. This effectively increases the amount of read and write
ports for the storage[19].Due to the size of the arrays for each tree,
which contain more than 1024 elements, and the random traversal
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of these arrays, it is not possible to partition them. The random ac-
cess occurs because in each iteration, the next node is recalculated
based on the comparison result between the elements of the current
node and the input. As a result, these arrays are stored as BRAM
in a read-only format because, apart from reading the elements, no
other processing is performed on them.

Since no partitioning of the arrays is perfomed in the subsequent
iterations of the code, we replaced the array_partition pragma with
bind_storage. The bind_storage pragma assigns a variable (array or
function argument) in the code to a specific memory type (type) in
the RTL. The HLS tool implements the memory using the specified
implementations (impl) in the hardware[19]. As the type, we define
ROM_NP (multiple port ROM memory), and we choose bram as
the impl.

The above changes, as shown in listing 5, transform the sequen-
tial execution into parallel, with a significant impact on the latency
cycles of a sigle sample inference. In the table 4, it is evident that we
managed to reduce latency from 2135 to 339, achieving a speedup
of 6.3. As expected, there is a trade-off between performance and
resources utilization. The most significant increase was observed
was in the utilization of BRAMSs, which went from approximately
67(1%) to 400(9%). These measurements pertain to the hw_emu
environment, and as mentioned in Chapter 3, they can only approx-
imate the real ones from the hw implementation. The goal is to
capture the operation and impact of the above changes, as well as
those we will present later. For this purpose, the information from
the synthesis report is sufficient.

Cycles | Bram(%) | Lut(%) | FF(% )

Sequential | 2139 1.55 0.52 0.16

Parallel 339 9.25 0.87 0.43

Table 4: Sequential vs Parallel.

Listing 5: Parallel estimators

void random_forest (const float row [FEATURESIZE], bool & prediction
H
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#pragma hls dataflow

#pragma HLS array_partition variable=children_left type=
complete

#pragma HLS array_partition variable=children_right type=
complete

#pragma HLS array_partition variable=threshold type=complete

#pragma HLS array_partition variable=feature type=complete

#pragma HLS array_partition variable=value type=complete

bool dt_prediction [ESTIMATORS];

#pragma HLS ARRAY PARTITION variable=dt_prediction type=
complete

#pragma HLS ARRAY PARTITION variable=row type=complete

for (int est=0;est <ESTIMATORS; est++){
#pragma hls unroll
dt(row,dt_prediction[est],est);

}

add(dt-prediction ,prediction);

5.1.2 Challenge 2: Efficient BlockRAM utilization.

In the previous subsection, we demonstrated that we can achieve
parallel execution of decision trees within a random forest (RF) by
instantiating the same function multiple times and applying the nec-
essary pragmas, such as unroll and dataflow. The second challenge
we had to address was to maintain the above parallelism while signif-
icantly reducing the required resources. The main problem stemmed
from the way we stored the decision tree arrays and how we accessed
them. To address this, we needed to move away from the generic
code that allows iterative access/execution and focus on solutions
with hardcoded functions for each decision tree that significantly
reduce resource utilization.

Further experimentation showed that we could achieve greater
resource savings, specifically in the number of Block RAM (BRAM)
required to represent each estimator. Up until then, we stored the
RF arrays in a 2D representation. As mentioned in the chapter 4.2,
each decision tree in an RF requires five arrays to operate, which
are left_children, right_children, threshold, feature, and value. We
decided to aggregate the arrays from all decision trees that perform
the same utility (e.g., left_children) and store them in a data struc-
ture as an array of arrays. The primary reason for doing this was
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to have iterative access to the sub-arrays of a given decision tree
through a loop by simply changing the estimator index of the first
dimension, as shown in the listing 5.

We observed the following behavior: Vitis, the tool we used, did
not understand which subset of the RF arrays to load into the in-
stances it was building when the estimator index was given through
a loop. As a result, it loaded all the RF arrays and then selected
which ones to use. While this achieved parallelism, it led to re-
source underutilization. The solution to this problem was to make
the tool understand which subset of arrays it intended to use before
hand and load only that subset. To do this, we had to manually
unroll the loop. First, we attempted to give the estimator index
as an input to the decision tree function, either through the loop
or hardcoded, as shown in the listing6. However, this did not help
reduce the number of BRAM. From the above, we concluded that
regardless of whether the decision tree function received the estima-
tor index as an argument (through the loop or hardcoded), it would
load all the arrays and then choose which ones to use.

Listing 6: Manual Unroll using the generic form of the decisio tree function.

void random_forest (const float row [FEATURESIZE], bool & prediction
o

#pragma hls dataflow

#pragma HLS bind_storage variable=children_left_0 type=ROMNP

#pragma HLS bind_storage variable=children_right_0 type=ROMNP
impl=bram

#pragma HLS bind_storage variable=threshold_0 type=ROMNP impl=
bram

#pragma HLS bind_storage variable=feature_0 type=ROMNP impl=
bram

#pragma HLS bind_storage variable=value_-0 type=ROMNP impl=bram

bool dt_prediction [ESTIMATORS];

#pragma HLS ARRAY PARTITION variable=dt_prediction type=
complete

#pragma HLS ARRAY PARTITION variable=row type=complete

dt (row,dt_prediction [0],0);
dt (row,dt-prediction[1],1);
dt (row,dt_prediction [2],2);
dt (row,dt-prediction [3],3);
dt (row,dt_prediction [4] ,4) ;
dt (row,dt_-prediction [5],5);
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dt (row,dt_prediction [6],6) ;
dt (row,dt_prediction [7],7);
dt (row,dt-prediction [8],8);
dt (row,dt_prediction[9],9);

add(dt-prediction ,prediction);

}
#endif

We needed to change how we stored the RF arrays. Now, the
arrays are stored independently as 1D arrays, meaning they are not
aggregated and stored in 2D format based on their utility. Each
array’s name is a combination of its utility(e.g., left_children) and
the decision tree it belongs to. For example, the enumeration 5
shows how we defined the arrays for decision tree 1. During array
declaration, we can now use the actual size (e.g., 1547 elements) and
not that of the largest array/tree (decision tree 8: 1739 elements),
as we were forced to do with the array of arrays data structure. This
allowed us to adjust the number of BRAM for each array and not
take the worst-case scenario for all of them.

1. int children_left_1[1547]
int children_right_1[1547]
float threshold 1[1547]
int feature_1[1547]

int value_1[1547]

v W

Having the arrays in the above format, we wrote different hard-
coded functions for each decision tree, as shown in the listing 7.
The main difference from the generic form of the decision tree func-
tion, as presented in the listingh, is that the subset of arrays used
is hardcoded and not determined by the estimator index argument,
which is no longer needed. Essentially, we transitioned from itera-
tive parallel execution of one generic function using pragma unroll
to dataflow parallel execution of specific hardcoded functions.

Listing 7: Hardcoded Random Forest

#ifndef FUNCTIONS_HPP
#define FUNCTIONS_HPP
#include " trees_fpga .hpp”
#include ”header.hpp”
#include <iostream>
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using namespace std;
void print_row (const float row [FEATURESIZE]) {
for (int i=0; i<FEATURESIZE; i++){
std :: cout<<(float )row [i]<<” 7"
}

std :: cout<<endl;

}

void add(bool % dt_prediction, bool & prediction){
int count=0;
loop-predictions:for(int est=0; est < ESTIMATORS; est++){
#pragma hls unroll
count += dt_prediction [est];

prediction = (ESTIMATORS-count >= count)? 0 : 1;
}

void dt_.0(const float row [FEATURESIZE], bool & prediction){
#pragma hls inline off
// int est_index=0;

int node_index=0;

loop_dt_0:for(int path=0; path<depth [0]; path++){
if(children_left_0 [node_index]| != children_right_0|
node_index]) {
float threshold_value = threshold_0[node_index];

float row_value = row|[feature_0[node_index]];
node_index = ( row_value <= threshold_value) 7
children_left_0 [node_index] : children_right_0|
node_index | ;
}
prediction = value_0[node_index |;

void rf(const float row [FEATURESIZE|, bool & prediction){
#pragma hls dataflow

#pragma HLS bind_storage variable=children_left_0 type=ROMNP

#pragma HLS bind_storage variable=children_right_0 type=ROMNP
impl=bram

#pragma HLS bind_storage variable=threshold_0 type=ROMNP impl=
bram

#pragma HLS bind_storage variable=feature_0 type=ROMNP impl=
bram

#pragma HLS bind_storage variable=value_0 type=ROMNP impl=bram
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bool dt_prediction [ESTIMATORS];

#pragma HLS ARRAY PARTITION variable=dt_prediction type=
complete

#pragma HLS ARRAY PARTITION variable=row type=complete

dt_0(row,dt_prediction [0
dt_1(row,dt_prediction [1
dt_2 (row,dt_prediction [2
dt_3 (row,dt_prediction [3
dt_4 (row,dt_prediction [4
dt_5(row,dt_prediction [5
dt_6 (row,dt_prediction [6
dt_7 (row,dt_prediction [7
dt_8 (row,dt_prediction [8
dt_-9 (row,dt_prediction [9

1)
1)
1)
1)
DE
1)
DE
1)
1)
1)

add(dt-prediction ,prediction);
}
#endif

As shown in the figure 15, from the 400(9%) BRAMs required
for the unroll implementation, we managed to reduce it to 102(2%).
In the figure 16, we are comparing single-sample inference for the
implementations, with the best on being the hard coded unroll. We
achieved 6.5 speedup compared to sequential implementation with
only increasing the BRAM utilization by 52%.
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Figure 15: Bram utilization.
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Figure 16: Latency of an single sample.

In Figure 17, screenshots captured from the Vitis HLS tool dis-
play a comparison of how many BRAMs are required for the repre-
sentation of arrays for each instance. Specifically, for the hardcoded
implementation, 10 BRAMs are needed, while for the unroll ver-
sion, 36 BRAMs are required, achieving a 72% savings. It is evident
that this significant reduction becomes even more pronounced as the
number of estimators increases.
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w O dt5 Pipeline_loop_dt NUM
children left34 U 8 - yes children left34 rom np bram
children _right43 U - yes children_right43 rom_np bram
threshold60 U 3 = ye thresholdé0 rom np bram

features2 U - features2 rom np bram

loop dt NUM

v © dt 11728
children left 1 U 2 - yes children left 1 rom np bram

children _right 1 U 2 - yes children_right 1 rom _np bram

threshold 1 U - - threshold 1 rom_np bram

feature 1 U - feature 1 rom _np bram
value 1 U - yes value 1 rom_np bram

loop dt 1

Figure 17: Unroll vs Hardcoded resources.

The same structure,as presented at 5,is followed for the arrays
of the remaining decision trees as well. We customized the original
Python script used to generate the header file for the arrays, as
mentioned in 4.2. The new file, named trees_fpga.hpp, contains
individual arrays for each decision tree. We kept the original format
for inference on the host, renaming the file to trees_host.hpp, where
we perform validation by comparing the predictions with those from
the FPGA inference.

5.2 Parallelism across multiple random forests

In the 5.1 subsection, we analyzed the transformation from sequen-
tial execution of the estimators to parallel execution. However, we
can achieve parallelism in other parts of the RF algorithm as well.
Each sample input is independent of the others. Given this, we
explored two different approaches of the kernel’s architecture.The
first approach involves parallel execution of different copies of the
random forest instance, where each one will perform inference on a
different input sample. The second proposal is a pipeline approach
with the goal of achieving an Iteration Interval (II) equal to 1. This
translates to processing a new input or producing a prediction in
every clock cycle, after the initial latency.

Before we proceed to analyze the two different architectures, we
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should examine the common functions that we will parameterize.
The "krnl_rf” function is the top-level function that accelerates on
the FPGA and communicates with the host. It takes three argu-
ments: ”input,” which corresponds to the samples, "output,” where
we return the classifications, and ”size,” indicating the number of
samples. The first two are implemented as MAXI ports by Vitis.

The body of krnl_rf consists of a loop over the entire input, calling
the predict function. The predict function takes the same arguments
as krnl_rf. Internally, predict performs three main operations. First,
it reads the input argument into a local register ,named samples,
using the read_input function. Then, it performs classification using
the parallel rf and pipeline_rf functions, each for one of the two
different architectures respectively . The generated classifications
are temporarily stored in the rf _predictions register. Finally, the
contents of rf_predictions are transferred to the AXI output using
the write_output function. These three functions have different code
and implementations in hardware for the two architectures but serve
the same purpose.

5.2.1 Coarse Grained Design

By creating multiple, independent instances of the Random Forest
function, we enable the simultaneous and parallel processing of in-
puts. An illustration of the proposed architecture is shown in the
figure 18. Specifically, we represent K parallel RF's, internally each
one has N parallel estimators. This architecture introduces an ex-
tra layer of parallelism beyond that of the parallel estimators, as it
can simultaneously process K inputs.The number of RFs (K), which
moving on we will refer to as RF_SIZE, is a hyperparameter that
we explored to understand its impact on both inference time and
resource utilization. Since this parameter(like the ESTIMATORS
or FEATURE_SIZE) must be known during synthesis, we included
it in the header.hpp file, as shown in listing 8.
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Figure 18: K parallel RFs with N parallel estimators for simultaneous processing
of K inputs.

Listing 8: Header file with RF_SIZE

#ifndef _HEADER_
#define _HEADER._

#define RF_SIZE 8
#define ESTIMATORS 10
#define FEATURESIZE 16

#endif

We followed the methodology similar to the estimators to achieve
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parallelism among the copies of the random forests. Specifically, we
created a new function called parallel rf, as shown at listing 9, in
which we hard-coded the calls to the random forest. It takes two ar-
guments, samples a 2D array with dimensions RF_SIZE*FEATURE
SIZE, and rf_predictions. Same as before, we used the pragma
dataflow to ensure parallel overlap execution of the rf instances.

Listing 9: parallel_rf RF_SIZE=8

void parallel_rf(const float samples [RF_SIZE][FEATURE.SIZE], bool =x
rf_predictions){

rf(samples[0] ,rf_predictions [0]);
rf(samples[1],rf_predictions [1]);
rf(samples[2],rf_predictions [2]);
rf(samples 3], rf_predictions [3]);
rf(samples[4],rf_predictions [4]);
rf(samples 5], rf_predictions [5]);
rf(samples[6] ,rf_predictions [6]) ;
rf(samples 7], rf_predictions [7]);

The listing 10 shows the implementations of the read_input, write
_output, and predict functions. To achieve the minimum possible de-
lay during input reading, we set the MAXI port’s bus width to the
maximum value, which is 1024. We implemented it using the config-
uration command config_interface -m_axi_max_widen_bitwidth 1024.
Additionally, to assist the tool to instrument this functionality, we
defined a synthetic type for the input port, indicating that we aim
to perform parallel reads of FEATURE_SIZE elements.

typedefhls :: vector < float, FEATURE_SIZFE > v_row

Reading from the input MAXI is done in segments of size RF_SIZE,
so each call of read_input corresponds to reading total RF_SIZE *
FEATURE_SIZE size of data from the MAXI. The index argument
is used to determine the starting position for reading from MAXI
and is updated with each call of read_input to point to the correct
location. The write_output function operates at a similar fashion.
In both functions, we used the pragma unroll in order to achieve
parallel reads and writes. In the predict function, we define and
partition the registers samples and rf_predictions and also call the
previously mentioned functions accordingly.
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Listing 10: Function definitions

void read_input( const v_row # input, float (&rows)[RF_SIZE]|
FEATURESIZE], int index){
loop_rf_row_input: for(int rf=0; rf<RF_SIZE; rf++4){
#pragma HLS unroll
loop-feature:for(int j=0; j<FEATURESIZE; j++){
#pragma HLS unroll

rows[rf][j] = input[index+rf][j];
}
}
void write_output( bool % rf_predictions , bool % output, int index
)R
loop-rf_row_outpus: for(int rf=0; rf<RF_SIZE; rf++){
#pragma HLS unroll
output [index+rf]=rf_predictions [rf];
}

void predict(const v_row * input,bool x output, int index){
#pragma hls dataflow

float rows|[RF_SIZE][FEATURESIZE];
bool rf_predictions [RF_SIZE];

#pragma HLS ARRAY PARTITION variable=rows type=complete
#pragma HLS ARRAY PARTITION variable=rf_predictions type=
complete

read_input (input ,rows,index);
multiple_rf(rows,rf_predictions);
write_output (rf_predictions ,output,index);

The top kernel function krnl rf is shown in the listing 11. The
bounds of the loop are dynamically determined by the size argument.
However, the step at which we iterate over the input is fixed and
equal to the number of parallel RFs. As a result, regardless of the
input size, inference will be performed for at least RF_SIZE times.
In cases where the "size” is not an integer multiple of RF_SIZE, the
kernel will read whatever is available on the MAXI BUS and proceed
to classify it as if it were valid input. Consequently, this can lead
to underutilization of the kernel, which is why it’s important to find
the appropriate RF_SIZE.

Listing 11: Top kernel function

#include ”functions.hpp”
using namespace std;

extern "C” {
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void krnl_rf(const v_row sinput, bool xoutput, int size){
loop_rf:for(int index=0; index<size; index+=RF_SIZE){
#pragma hls dataflow
predict (input, output, index);

}

In order to have reliable measurements for both inference time
and resource utilization, we performed a hardware implementation.
As expected, creating copies of RFs achieves parallelism but utilizes
more resources. The resources on each FPGA | including BRAM, FF,
and LUT, are fixed, so we needed to determine how many copies we
can accommodate. We started with the hardware implementation of
a single RF, which serves as our baseline. We defined a threshold for
resource utilization that we consider acceptable and do not want to
exceed to ensure the correct operation of the FPGA. This threshold
is set at 70% of the previously mentioned resources. We conducted a
binary search to find the maximum RF_SIZE that would not exceed
70% utilization. During the exploration, we tried RF_SIZE values
of 1, 2, 4, 8, 16, and 24. With RF_SIZE=24 being the largest model
with utilization as shown in the table 5.

RF_SIZE | Bram(%) | Lut(%) | FF(% )
1 20.21 15.91 10.86
2 22.52 16.42 11.16
4 27.15 17.49 11.71
8 36.41 19.53 12.79
16 52.18 22.73 14.06
24 70.69 26.84 16.14

Table 5: Resources Utilization for HW implementation.

We observe that the resource that changes the most is BRAM.
In order to have parallel access to the same array there is need for
multiple ports. However there is a limited number of ports (a total

(s




root=0
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of 2) for each BRAM. In our case, we need all trees to operate
in parallel, therefore more than 2 ports are required. A potential
solution would be to partition the arrays so that tree nodes that are
accessed at the same time are placed in different arrays and therefore
BRAMs. However, there is no specific pattern for which position in
the array we are trying to read, as we have random access that
depends on the input. Therefore, the only solution the tool employs
is copying them. Given this, we should expect a linear increase in
resources with respect to RF_SIZE, which is indeed the case. We
observe that for each additional RF, there is an average overhead
of 2.2% in BRAM, 0.5% in LUT, and 0.25% in FF (Flip-Flops).
We will present charts related to inference time after analyzing the
pipeline architecture, so that we could draw more conclusions by

comparing the two architectures.

5.2.2 Pipeline architecture

Each estimator can be represented as a sequence of S stages, where

S is equal to the longest path in each tree, as shown at figure 19.

nodeq

nodeq

sample

sample

nodep

Let K represent a stage with 0 < K <= S. It takes two inputs:
the node index of the previous stage node,, and the sample for
which we are making an inference. As output, it produces the next
node_id ,nodey 1, which results from comparing the sample with the
estimator’s arrays. A visual representation of a stage is shown at
figure 20. The final stage, S, generates the estimator’s prediction.
The goal is to transform the sequential execution of the S stages
into a pipeline. This can be achieved by placing buffers between the
stages. As a result, it is possible to save and shift the node_id and
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Figure 19: Stages of a DT.
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Figure 20: Representation of a stage.

In each cycle, it is fed with a new sample, and after the initial
latency (S) an II=1 is achieved. A conceptual representation of the
propagation of the multiple inputs through the dt pipeline is shown
at figure 21.

79



Cycle 1

Cycle 2

Cycle 3

Cycle 4

Input 1

\l \l M M Prediction
. — — -
u . u ~ u = ~
Stage L Stage 2 Stage 3 Stage S-1 Stage s
Input 2 Input 1
n — n — -
. ] { Y] erescion
Stage 1 Stage 2 Stage 3 Stage 51 Stage 5
Input 3 Input 2 Input 1
ki B —_——
prediction
J
u U U . P
Stage L Stage 2 Stage 3 Stage S-1 Stage S
Input 4 Input 3 Input 2
S n n n — —
. —
_ ‘ Prediction
— U u U — L—
Stage 1 Stage 2 Stage 3 Stage 5.1 Stage S

Figure 21: Propagation of input data through the pipeline design.

We have shown that a decision tree can be represented as a
pipeline. We extend this concept to the random forest (RF), which
consists of a collection of independently functioning decision trees.
Therefore, the proposed architecture comprises internally indepen-
dent parallel pipelines, which are combined to achieve at high-level
a RF that is also a pipeline. An illustration of this architecture is
shown at the diagram 22.
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Figure 22: Representation of RF pipeline.
The changes we made to the code to generate a pipeline archi-

tecture are relatively minor compared to those for the parallel ar-
chitecture. The main change is that we completely removed the
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pragma dataflow and placed the pragma pipeline in the appropri-
ate places. Specifically, we removed the pragma dataflow from the
krnl_rf,predict and rf functions and renamed the later to pipeline_rf.
Then, we modified the read_input and write_output functions to
read /write only one sample at a time. In the predict function,
the ‘samples‘ array is defined as a 1D array with a size of FEA-
TURE_SIZE, and rf_predictions is now a scalar. We kept the v_row
type for the same benefits described at the 4.2 subsection. The
aforementioned changed are displayed at listing 12 .

Listing 12: Functions definition for pipeline arch

void read_input( const v_row * input, float (&data)[FEATURESIZE],
int i){
loop-feature:for(int j=0; j<FEATURESIZE; j++){
#pragma HLS pipeline
data[j] = input[i][j];

}

void write_output( bool &result, bool * output, int index){
output [index]=result;
}

void predict (const v_row * input,bool x output, int index){
float samples [FEATURESSIZE];
bool rf_predictions;

#pragma HLS ARRAY PARTITION variable=sample type=complete

read_input (input ,sample,index);
pipeline_rf(sample, prediction);
write_output (prediction ,output,index);

}

Finally, we added the pragma pipeline to the krnlrf function,as
shown at listing 13, to force the tool to pipeline the inner loop.
The index is increment by 1(not by RF_SIZE) at each iteration.
A consequence of applying the pipeline is that all loops at lower
levels are automatically unrolled, such as in the read_input and dt
functions, so the use of pragma unroll is now unnecessary.

Listing 13: Top kernel fuction for pipeline arch

#include ”functions.hpp”
using namespace std;

extern "C” {
void krnl_rf(const v_row *input, bool xoutput, int size){

loop_samples: for(int i=0; i<size; i++){
#pragma hls pipeline
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pipe (input ,output,i);

}
}

The iteration latency of the RF is equal to that of the longest
decision tree plus the delay from the other parts of the architec-
ture.However, after this period, an II=1 is achieved.The theoretical
formula for calculating the required cycles for inference of a dataset
of size D for the parallel and pipeline architecture is shown at table
6.

Architecture Total Cycles
Pipeline Iteration_Latencypipetine + D — 1
Parallel [WDIZE] * Iteration_Latencypqaraliel

Table 6: Required Cycles for Dataset of size D.

Similarly to the parallel architecture, we proceeded with the hard-
ware implementation of the pipeline architecture. The measure-
ments for resource utilization are shown at table 7.In the shared
diagrams 23 24 25, we compare the resource utilization for the two
architectures.
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Figure 23: Bram Utilization.
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Figure 24: LUT Utilization.
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Figure 25: FF Utilization.

Architecture | Bram(%) | Lut(%) | FF(% )

Pipeline 60.21 60.35 28.86

Table 7: Pipeline Resources Utilization.

In the figure 26, we compare the inference time for all the designs
for a common input size. The input sizes we evaluated are 48,
480, 4800, 48000, and 288344 (the entire dataset). To fully utilize
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the parallel RFs, we selected the minimum input size as the least
common multiple of the RF sizes, which is lem(1, 2, 4, 8, 16, 24) =
48. Except for the entire dataset case, the other sizes are multiples
of the lem.

pipeline
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500 A

EEREEN

400 +

w
o
o

Inference(ms)

N
o
o

100 A

480 4800 48000 288344
Inputs size

Figure 26: Inference times.
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6 Precision Scaling Exploration

From the diagram in the previous chapter, we observed that the
most dominant resource, meaning the one that changes the most
and significantly influences whether the design can be implemented,
is the BRAM. Therefore, the goal is to reduce the percentage of
BRAM usage while keeping performance stable. We achieved this
through the technique of Precision Scaling. More specifically, we
reduced the number of bits required to represent the elements in
the decision tree’s arrays.

The tool already performs such optimizations, which is where we
got inspired. At the figure 17 we showed the number of BRAM (18K
bits) required for the representation of arrays. If we focus on the
hardcoded implementation, we can observe the aforementioned op-
timization. All arrays in Decision Tree 1 have the same size (1701)
and the same type integer, except for the threshold, which has a
float type. The range for the values of the arrays is ther following:

e children left, children right: (-1,1700)
o feature: (-1,49)
e value: Oor 1

The number of bits required to represent a integer n is logan+ 1. So
the elements of children arrays demand 12 bits for representation,
for feature 7, and for value 1. it is evident that there is no need the
full 32 bits of a standard int. The number of 18k bits BRAM used
for each array is as follows:

e children_left, children_right:[1812] = [1.134] = 2 BRAM

o feature: [190] = [0.661] = 1 BRAM

o value: [£8] = [0.094] = 1 BRAM

Those calculations align with the results from the figure 17. We con-
cluded that the tool automatically converts the standard int type,
with which we defined the arrays, into smaller int types. It’s not
explicitly mentioned which specific type it ends up with (in the de-
gree we were able to check), but it performs similarly to the ap_uint
types that we manually defined to investigate this hypothesis.
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The same does not happen for the threshold array, which has a
float type. Due to the structure in which a float number is stored,
automatic optimizations like the one mentioned above are not pos-
sible. A breakdown of how single-precision floating-point numbers
are typically structured is as following[23]:

e Sign bit (1 bit): This bit represents the sign of the number. 0
indicates a positive number, and 1 indicates a negative number.

e Exponent bits (8 bits): These bits represent the exponent of
the number. They are biased, meaning that a certain value is
subtracted from them to allow for both positive and negative
exponents. In single-precision, the bias is 127, so the actual
exponent is calculated as (exponent bits - 127).

e Fraction bits (23 bits): These bits represent the significand or
mantissa of the number. They are used to store the digits of
the number in binary form.

The formula to calculate the value of a single-precision floating-point
number is :

(_1>sign % 2(emponent—bia5) % 1.fT6LCtiOTL

It’s evident that to represent a number in floating-point format,
32 bits are required. Regardless of whether the number is simple,
meaning it doesn’t have many decimal digits, it’s not possible to use
fewer bits for the exponent or mantissa since the count is hardcoded
in the hardware, a ilustration is shown at figure 27. As a counter-
measure to this logic, we suggest using fixed-point and even integer
representations, after appling the appropriate transformations to the
weights of your model.
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Figure 27: Floating Point Representation[23].

6.1 Fixed Point representation

The Vitis tool provides the capability to use arbitrary precision data
types for both floating-point and integer representations. For fixed-
point representation, we can customize to a specific number the
required bits for the integer and fractional parts of a number. Us-
ing the jap_fixed.h; library, we can define fixed-point types with the
command ap_fired < W,I,Q,0,N >[19]. Additionally, there is
an option for unsigned fixed-point types by instead applying the
ap_ufixed prefix, which we will choose since all the features are
greater than 0.

e W denotes the word length in bits.

e [ specifies the number of bits used to represent the integer value.
e Q and O determine the quantization and overflow mode.

e N defines the number of saturation bits in overflow wrap modes.

For our application, we will only tune the W, I, and Q parameters,
leaving the other two flags at their default settings.

As mentioned in the training subsection 4.1, the features are
normalized between (0,1). Therefore, there is no integer part, and
we can focus solely on the fractional part. Given this, the fixed-
point type will allocate all the bits, as specified by us, exclusively
for the fractional part. The exploration we will conduct concerns
the number of these bits. Specifically, we will examine 8, 16, 24, and
32 bits. We used the quantization flag AP_RND, as it gave us the
best accuracy through our testing. An example for 16-bit unsigned
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fixed-point format is ap, fired < 16,0, AP_RN D >. For simplicity
and also to ensure a common structure and terminology in all the
generated codes through the exploration, we renamed each ap_ufixed
type to float_fixed using the typedef command. The specific type is
included in each header.hpp file of the models we wish to explore,
as shown at listing 14.

Listing 14: Header for fix point type

#ifndef _HEADER_
#define HEADER.
#include 7 ap_fixed .h”
#define DATATYPESIZE 16

#define ESTIMATORS 10
#define FEATURESIZE 32

typedef ap_ufixed <DATATYPESIZE,0 ,APRND> float_fixed;

#endif

To apply precision scaling with fixed-point numbers, we only
need to change the data type in the threshold arrays as defined in
trees_fpga.hpp . The tool takes care of converting the decimal values
to the float_fixed format. Additionally, quantization and overflow,
when assigned to lower precision types like 16 or 8 bits, are handled
automatically by Vitis.In order to automate the generation of modi-
fied header files, we added extra functionalities to the python scripts
as mentioned in 5.1. It is expected that there will be trade-offs be-
tween resources, performance, and model accuracy when applying
precision scaling. We proceed to the analysis of the findings after
presenting the integer representation.

6.2 Integer representation

Our exploration of fixed-point representation led us to experiment
with other possible representations for the threshold matrices. Ini-
tially, we considered integer representation due to the fact that arith-
metic operations and comparisons with integers are faster compared
to floating-point numbers, thanks to their simpler format. Further-
more, we later discovered that, in addition to the additional acceler-
ation, the integer types exhibit better accuracy. Especially for low
precision such as 16 and 8 bits, the integer models achieve signifi-
cantly better accuracy compared to fixed-point counterpart.
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Converting a float range to an integer range while preserving the
distribution of features is achieved through the technique of quanti-
zation. Quantization is a method used to reduce the computational
and memory costs of running inference by representing weights and
activations with low-precision data types like 8-bit integers (int8)
instead of the usual 32-bit floating point (float32)[24]. The scheme
we applied is Range-Based Linear Quantization. Linear quantiza-
tion converts floats to integers using a scaling factor. Range-based
quantization calculates this factor based on the actual tensor val-
ues, potentially excluding outliers, while other methods use fixed or
learned thresholds for clipping values. We applied a combination of
both methods.

Two widely used quantization methods are symmetric and asymmetric[25].
In asymmetric mode, we map the min/max values in the float range
to the min/max values in the integer range. This is achieved by
using a zero-point (also known as quantization bias or offset) in ad-
dition to the scale factor. On the other hand, in symmetric mode,
we select the maximum absolute value between min/max without
using a zero-point. As a result, the floating-point range we are ef-
fectively quantizing becomes symmetric with respect to zero, and so
does the quantized range. We chose the symmetric method as it led
to better accuracy.

The calculation of the scale factor q.i of a feature column of
dataset, denoted as f_i, is given by the following formula:

(2" —1)/2
max(abs(f;))

For each feature column i of the dataset we calculate, by applying
the above formula, the corresponding q_i. Given the value zf; of
the column f;, the quantized value gx; is obtained by rounding the
product of the scale factor ¢; and z f; as show below.

(2)

q; =

qr; = round(q; * x f;) (3)

The features of the dataset are not symmetric around 0 as they have
a range of (0,1). As a result, the quantized range for N bits will be
0,2V — 1), even though we apply symmetric quantization. This
serves our purpose well as it maintains a consistent distribution, de-
pending on the value of N, ensuring better predictive capability of
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the quantized model.In correspondence with fixed-point representa-
tion, we experimented with conversion to integers for 8, 16, 24, and
32 bits. The resulting range for each case is as follows:

e 8 bits: (0,255)

e 16 bits: (0,655.35)

e 24 bits: (0,16.777.215)

o 32 bits: (0,4.294.967.295)

Following the above procedure, we generated the quantized datasets
for each of the aforementioned bit lengths. One possible approach to
create a quantized model could be to retrain a RF model using the
quantized dataset. The disadvantage of this approach is that we are
not transforming an existing model, as we did with the fixed-point
representation, instead we generate a new one with a different struc-
ture and predictive ability. Comparing the integer model with the
floating-point and fixed-point models, in terms of resource utiliza-
tion and accuracy loss, may not be valid since they would generally
be different models. For this reason, we transformed the model, we
have been presenting so far, into a quantized one.

As previously mentioned at 4.1, within the inner workings of each
node of a decision tree, information is stored about which feature
fi will be used for the comparison and the corresponding threshold
value z i of the feature. Knowing the feature f; and subsequently
the scale factor ¢;, we can perform symmetric quantization according
to the formulas 2 3. The result of this process is that we can convert
the float arrays of thresholds for each decision tree into quantized
integer form. We added this conversion process as an extra function-
ality to the automated scripts, as mentioned in previous chapters.
The parameter we are exploring is the number of bits, N, for integer
representation.

The format of the threshold arrays for fixed-point and integer rep-
resentation is similar to that for floating-point. In correspondence
to the example in the previous section 5, we have the following:

e fixed float threshold_1[1701]
e fixed_int threshold_1[1701]
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The Vitis tool also provides the capability to define Arbitrary
Precision Integer Data Types through the ap_int.h library. Similarly
to 6.1, we will use unsigned types with the ap_uint < W > command
for integer representation. For integer representation, we only need
to specify the bit length by parameterizing the variable W. For the
same reasons we mentioned in the previous section 6.1, we used the
typedef command to maintain the generated integer types under a
common name, which is fixed_int. An example of the header file for
16-bit integers is shown in the listing15.

Listing 15: Header for integer type

#ifndef HEADER.
#define HEADER._
#include ”ap_int.h”
#define DATATYPESIZE 16

#define ESTIMATORS 10
#define FEATURESIZE 32

typedef ap_uint<DATATYPESIZE> fixed_int;

#endif

The changes required in the code, as presented in the previous
subsections 5.2.1 & 5.2.2, to apply precision scaling for both parallel
and pipeline are made at two levels. The first level involves including
the updated header files header.hpp and the trees_fpga.hpp, which
contain the definitions of the fixed_point and fixed_int types, as well
as the new arrays of the decision tree for each representation, re-
spectively. The second stage simply involves replacing the float
type within the functions with fixed_point or fixed_int type. The
final step makes clear the utility of a common name for fixed_point
or fixed_int, regardless of the number of bits. As an example at
listings 16 & 17, in correspondence with the listing 7, we show the
new definition of the dt_0 function for both representations.

Listing 16: Fixed point representation of decision tree function

void dt_0(const fixed_float row [FEATURESIZE|, bool & prediction){
#pragma hls inline off
// int est_index=0;

int node_index=0;
loop_dt_0:for(int path=0; path<depth [0]; path++){

if(children_left_0 [node_index]| != children_right_0|
node_index]) {
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fixed_float threshold_-value = threshold_-0[node_index];

fixed_float row_value = row|[feature_0[node_index]];
node_index = ( row_value <= threshold_value) ?
children_left_0 [node_index] : children_right_0 [
node_index |;
}
prediction = value_0[node_index|;

Listing 17: Integer representation of decision tree function

void dt_-0(const fixed_-int row [FEATURESIZE], bool & prediction){
#pragma hls inline off
// int est_index=0;

int node_index=0;

loop-dt_-0:for (int path=0; path<depth[0]; path++){
if (children_left_0 [node-index] != children_right_0 |
node_index]) {
fixed-int threshold_value = threshold_0[node_index];

fixed_int row_value = row[feature_0 [node_index]];
node_index = ( row_value <= threshold_value) ?
children_left_0 [node_index] : children_right_0 [
node_index |;
}
}
prediction = value_0[node_index|;

With precision scaling, we agree to trade off resource utilization
and performance with the accuracy of the model. In the figure 28, we
compare the F-score (over the entire dataset) of the original (float)
model with the corresponding fixed_point and fixed_int models for 8,
16, 24, and 32 bits. For 32 and 24 bits, the accuracy remains stable
for both representations. However, for 8 and 16 bits, the fixed_point
model significantly loses predictive ability, with the 8-bit model not
making any correct classifications. The quantized model displays
better results. For 16 bits, the F-score remains practically stable,
and for 8 bits, it decreases slightly but enough to not meet the
required 99% threshold, as defined in Chapter 4.1. Moving forward,
we applied precision scaling only for 24 and 32 bits for float_fixed
and 16, 24, and 32 bits for fixed_int.The analysis of the impact
on performance and resource utilization will be conducted in the
experimental section.
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Figure 28: Precision scaling fscore[23].
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7 Automated framework for hw design explo-
ration

As mentioned in various parts of the thesis, many of the processes,
from model training in Python to finding the optimal implementa-
tions using the Pareto plot, are automated. This led us to consoli-
date all the scripts into a unified framework capable of automating
the entire exploration process by simply specifying the initial con-
ditions.

The proposed framework consists of the following components:

e Model training in Python and data preprocessing.
e Code generation for HLS (High-Level Synthesis).

e Hardware emulation (hw_emu) for finding the Pareto-optimal
model.

e HW implementation (hw) for design exploration in pipeline and
parallel RF's architectures.

e Inference and resource utilization analysis.
The user inputs required are:
e The dataset on which training and inference will be performed.

e A list of how many estimators and features the user wants to
include in the training.

e A list of input sizes for inference.

During the training phase, all combinations of estimators and
features are trained. The train/test ratio has a default value of 0.3,
but the user can adjust it. After training, the models are validated
on the test dataset. Any model with an F-score less than the desired
threshold is excluded from the next steps of the exploration. The
default metric is the F-score, but other metrics such as accuracy,
recall, or precision can be selected. The threshold value can also be
adjusted, with a default value of 99%. The Scikit-learn framework is
used for model training, and the generated models are saved in .pkl
format. Once the training is completed, the models that meet the
above condition are the ones that will be candidates for HW emula-
tion and implementation. Data preprocessing involves normalizing
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the dataset and performing quantization, with default values of 8,
16, 24, and 32 bits, but the user can specify other values.

The code generation part involves generating code in a format
suitable for execution in Vitis. The goal is to automatically generate
code by specifying high-level parameters. Such parameters include
the type of architecture :pipeline or dataflow , the data types (float,
fixed_float, or fixed_int), and the bit length for the last two cases.
Additionally, for the dataflow architecture, the number of parallel
RFs can be specified. Code generation is done by parameterizing
template files according to the user’s inputs. Another aspect of
code generation is extracting the model structure into header files
in the form of arrays. The result of this process is the creation of
a directory containing all the code for the host and FPGA required
to proceed to synthesising and later for inference.

Given the selected models from the training phase, the corre-
sponding directories are automatically generated through the code
generation module. The next step is hardware (HW) emulation to
find the Pareto-optimal model, where we will proceed with HW im-
plementation exploration. Exhaustive HW implementation for all
models, applying all optimizations as presented in Chapters 5 and
6, would be prohibitive in terms of resources, including storage and
time. On average, an HW implementation consumes 4 GB of stor-
age and takes about 8 hours. Instead of an exhaustive search, we
propose a greedy heuristic.

Specifically, for the models, we will apply HW emulation using
a dataflow architecture with rf size=1 and a standard 32 bit float
data type. The reason for choosing this configuration is that it is
the simplest one that allows us to have a good understanding of re-
source utilization and iteration latency. With this configuration, we
automatically generate the Pareto plot of utilization/latency. The
candidates for further exploration are the models located on the
Pareto front. Having the Pareto front, we can either explore all
of them or select one using some criteria. We followed the second
option, and the criterion we chose to select a model is the F-score.
More specifically, from the Pareto front, we choose the model with
the best F-score or any other desired metric the user wish to use.

Once we have selected a model, we proceed with HW implemen-
tation exploration. In this stage, we implement both pipeline and
parallel architectures while applying precision scaling. We have ex-
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tensively discussed these concepts in 5 and 6. Initially, we determine
the bit length for fixed float and fixed_int data types that satisfy the
F-score threshold defined in the training phase. Knowing the pa-
rameters of precision scaling, we apply them to the exploration of
both architectures. Our goal is to find the configuration that pro-
vides the best inference performance. For the pipeline architecture,
we only apply precision scaling. While for the parallel architecture,
we perform a binary search in the space of rf_size, starting from
rf_size=1, until we find the maximum number of parallel RFs that
fit within the FPGA. We set an upper limit of 75% of the avail-
able resources, but this limit can be adjusted. All the necessary
directories and codes are automatically generated through the code
generation modules.

During this exploration phase, parallelization is important due to
the time-consuming nature of HW implementation. By parallelizing
the build process, multiple configurations can be processed concur-
rently, speeding up the overall exploration process. This paralleliza-
tion can be controlled by adjusting the size of the process pool to
prevent resource exhaustion.You used the Python ‘multiprocessing’
library for this purpose. This approach was chosen initially because
even for the exploration of a single model dictated from the hard-
ware emulation, it can take weeks. The result of the above process
is the rapid exploration of the design space.

After exploration, the next steps involve inference and testing.
Inference can be performed on input sizes specified by the user or
generated by the framework based on the least common multiple
(LCM) of the RF sizes, as discussed in 5. Reports are generated,
including information on inference time, prediction accuracy, and re-
source utilization on the FPGA. Additionally, utilization/inference
time Pareto plots are generated for each input size, and configura-
tions lying on the Pareto front are returned. These reports provide
valuable insights for further analysis. There are many possibilities for
data analysis in the reports, one of which we implemented concerns
the speedup of the best configuration compared to native execution
in C++ and Python.

In summary, the proposed framework automates the entire pro-
cess, from model training to HW implementation exploration, and
provides tools for efficient exploration and selection of the most suit-
able configurations for HW implementation.At figure 29, we present
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a conceptual diagram illustrating the framework’s components and
workflow.
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8 Experimental

In this chapter, we will present our findings regarding the perfor-
mance and resource utilization of the pipeline and parallel archi-
tectures as presented in Chapter 4, applying precision scaling from
Chapter 5. We will demonstrate the impact on resource utiliza-
tion while maintaining or improving the inference time. The best-
performing models in terms of inference time will be compared to
their respective implementations in C++ and Python as they run
natively.

8.1 Device set up

The target FPGA board for this work is the Alveo U200 Data Cen-
ter Accelerator Card xilinx_u200_xdma_201830_2 . The AMD Alveo
U200 accelerator card is custom-built UltraScale+ FPGA that run
optimally (and exclusively) on the Alveo architecture. The Alveo
U200 card uses the XCU200 FPGA also the AMD stacked silicon
interconnect (SSI) technology to deliver breakthrough FPGA ca-
pacity, bandwidth, and power efficiency. This technology allows for
increased density by combining multiple super logic regions (SLRs).
The XCU200 comprises three SLRs. The device connect to 16 lanes
of PCI Express®) that can operate up to 8 GT /s (Gen3). Also con-
nects to four DDR4 16 GB, 2400 MT/s, 64-bit with error correcting
code (ECC) DIMMs for a total of 64 GB of DDR4. Furhtermore the
device connects to two QSFP28 connectors with associated clocks
generated on board. The following figure 30 show the SLR regions
along with the PCle, DDR4 and QSFP28 connections for the Alveo
U200 . The U200 card has three SLRs [26].
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The resources available as presented through the Vitis IDE are

shown at figure 31.

102



Resources

Resource Total Count
BRAM 2160

DSP 6840

LUT 1182240

FF 2364480
REG 2186301

Figure 31: Resources of U200 card.

8.2 Results - Evaluation

Before we proceed with the experimental evaluation, we must ex-
plain how we selected the model, specifically the combination of
estimators and the number of features, for which we conducted the
hardware exploration as described in the previous chapters. We
used the heuristic presented in the Framework chapter 7. From the
models we proposed in the training section 4.1 we examined only
those that had an F-score greater than 99%. We performed hard-
ware emulation using parameters for the coarse-grained parallel RF
architecture with RF_SIZE=1 and without precision scaling. Out
of the 37 generated configurations, we identified which ones were on
the Pareto front, as shown in the figure 32.
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Figure 32: Selection of optimal model using hw emulation heuristic.

The heuristic we employed to determine the optimal configura-
tion was to choose the one with the highest F-score from those on
the Pareto front. In this case, the optimal model consisted of 10
estimators trained over 32 features. This choice is consistent with
the analysis we conducted in the previous chapters.

In the figures 33, 34 & 35, we display bar plots illustrating the
impact of precision scaling over the BRAM, LUT and FF utilization
for both the pipeline and parallel architectures. The proposed con-
figurations have both pipeline and parallel architectures with the
later consisting of 1, 2, 4, 8, 16, and 24 parallel RFs. Addition-
ally, we applied the conversion from float 32 bits to fixed float for
32 and 24 bits, as well as to fixed_int for 32, 24, and 16 bits. This
accumulative reduction can have a significant impact, especially for
large designs like Parallel RF SIZE=24, resulting in a decrease from
70.69% to 39.88% BRAM usage.

104



BRAM (%)

Precision scaling impact over BRAM

70+

60 -

50

40+

30+

20+

10 A

f 8
Configuration
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Figure 35: Impact of precision scaling over FF Utilization(%).

In order to determine the best configurations, taking into account
both inference time and resource utilization, we designed Pareto
plots. The yaxis provides the inference time for each configuration,
and the xaxis represents resource utilization. We chose to create
plots specifically for BRAM since, as indicated by the previous box
plots, it is the most dominant resource and depletes faster.We gen-
erated different plots for each input size, enabling us to identify the
best configurations for both small and large test datasets. As men-
tioned in Chapter 5.2.2, the input sizes are 480, 4800, 48000, and
288334 (the entire dataset).
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Figure 36: Pareto plot for input size 480 samples.
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Figure 37: Pareto plot for input size 4800 samples.
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Figure 38: Pareto plot for input size 48000 samples.
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Figure 39: Pareto plot for whole test dataset.

We highlighted the configurations that are on the Pareto front
in the Pareto diagrams 36, 37, 38 & 39. With the exception of
the limited input amount of 480 samples, the fastest model from
the Pareto fronts had a pipeline design and performed well in all
circumstances. The parallel variant with 24 RFs comes in second,
consolidating the hypothesis that more parallel RFs improve perfor-
mance. On the Pareto fronts, practically all configurations have the
trait that the ones that are faster and use less BRAM have precision
scaling with integer 16 bits applied. As also seen in the aforemen-
tioned graphs 33, 34 & 35, precision scaling application significantly
impacts resource reduction while also enhancing performance. We
selected the two quickest configurations from the two architectures
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for the comparison with C4++ and Python, namely pipeline fixed
integer 16 bits and parallel 24 RF integer 16 bits.We also included
the unoptimized RF design that was presented in 4.2
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Figure 40: Inference comparison for 480 samples.
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Figure 41: Inference comparison for 4800 samples.
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Figure 42: Inference comparison for 4800 samples.
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Figure 43: Inference comparison for whole test dataset.

From the above diagrams, we can draw valuable conclusions about
the utility of hardware acceleration. For all input sizes, we manage
to achieve acceleration. The lowest speedup, 1.5, is observed for
the smallest dataset size (480 samples) when compared to inference
in C++. This picture changes as the input size increases. For all
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other cases, 4800, 48000 samples, and the whole dataset, we achieve
much better acceleration. The best configuration for these sizes is
the pipeline architecture with integer precision scaling to 16 bits,
with the exception of 480 samples, where the parallel implemen-
tation with 24 RF achieves better performance. Specifically, the
speedup achieved is shown in the table 8. It’s interesting to note
that for inference in Python, the time remains practically constant
at around 140 ms. Because of this, as the test size increases, the
Python inference time approaches that of C++, with the case of
more than 48000 samples showing better performance. Our imple-
mentations are compared each time with the faster implementation
in both C++ and Python, and the corresponding speedup is calcu-
lated. The best speedup achieved is 20.03 for 48000 samples.

input size | compare to | native time(ms) | best fpga time(ms) | speed up
480 c++ 1.47 0.99 1.5
4800 c++ 14.07 1.64 8.6
48000 python 141.61 7.07 20
288344 python 141.8 37.15 3.8

Table 8: Achieved speed up.

All of the above lead us to the following conclusions.For small
input sizes, around 500 samples, there is little benefit from hard-
ware acceleration. The size is small enough that the transfer time
overhead from the host to the FPGA outweighs any acceleration
achieved through parallelism in our implementations. In this case,
inference can be done natively in C++ without a significant differ-
ence. As the input size increases, it becomes clear that the above
overhead is overshadowed by the acceleration achieved. The ideal
input size is around 50,000 samples, where our models demonstrate
the best performance. For input sizes multiple times larger than
the whole dataset, it’s possible that the Python implementation
achieves better results due to batch processing. However, it’s hard
to imagine cases where inference on such a large dataset is needed
for security-critical intrusion detection applications, such as the one
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examined in this thesis.
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9 Conclusions

9.1 Summary

In the context of this thesis, we examined the Random Forest ma-
chine learning algorithm for anomaly detection in industrial facil-
ities. We researched ways to achieve hardware acceleration in an
FPGA for RF during inference. We identified the parts of the
algorithm that can be accelerated and parallelized, leveraging the
FPGA'’s capabilities. The decision trees that make up the RF are
independent of each other and can be parallelized. Based on this
property, we proposed two different architectures: Coarse-Grained
Parallel RFs and Pipeline RFs. In both of these architectures, esti-
mators are executed in parallel. In the first approach, we have multi-
ple copies of the same RF, introducing a second level of parallelism
for concurrent processing of multiple input samples, equal to the
number of copies. In the second architecture, a pipeline approach
was followed where, after an initial latency, an iteration interval (II)
of 1 was achieved, meaning a new classification was produced in
each new cycle. Additionally, we introduced the precision scaling
optimization technique to reduce resource utilization and inference
time. By comparing each time with the fastest RF implementation
running natively in C++ and Python, we managed to achieve accel-
eration for all tested sample sizes. The best speedup we measured
was 20 for 48,000 samples. A sub product of this thesis was the
creation of a tool for automating the design exploration process on
the FPGA, requiring minimal user interaction.

9.2 Future Work

In future work, we aim to explore additional techniques for accel-
eration on FPGAs or even different hardware platforms, such as
embedded FPGAs. The research conducted in this thesis can be
easily transferred to eFPGAs, which are gaining popularity in var-
ious applications closely related to our work, such as edge comput-
ing.Another interesting study could involve the acceleration of an-
other tree-structured machine learning algorithm suitable for anomaly
detection, such as Isolation Forests (IF). IF bear several similarities
to RF, with a key difference being their ability to perform unsuper-
vised anomaly detection. It would be worthwhile to compare the
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two algorithms in terms of hardware acceleration performance and
predictive capabilities.

The conclusion of this thesis work is that the fields of hardware
acceleration and anomaly detection are continually evolving, and
they will certainly continue to be of interest in the future.
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