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ITepiAnyn

To Linux eivau éva Aettovpylkd obotnpa mov Tpéxet TNy mAeloyneia twv e§umnpetn-
TWV TAyKOOHIWG Kat 0€ TOAAOVG OLKLAKOUG VTTOAOYLOTEG. Mia amd Tig kOpLeg Aettovpyi-
€G EVOG AELTOVPYIKOD CLUOTHHATOG givart va StaxelpileTal artripata TpoypapUdTwy Tov
TpEXOLV O0TO XWpo XpnoTn Kat BElovy mpooPaon oto vVAKO. IMapadooiakd, To Linux
Voo TNpilel AVTEG TIG KANOELG CLOTHHATOG e GVUYXPOVO TPpOTo, SNAadT oAokAnpwvel
TPAOTA TNV ATATOVHUEVT] AELTOVPYIA KAl OTN OLVEXELA EMOTPEPEL TOV EXEYXO OTO TPO-
ypappa. ITapdro mov to Linux mpoogépet TpOTOVG yla achyXpovn EMKOLVWYVia, avTol

£XOLV ONUAVTIKA PELOVEKTHHLATAL

Ze auTO TO TMAALGLO KAl YLt VAL IKAVOTIOWOeL au TV TNV EANenYT alOTOTOV HNXAVIoHOD
yla achyXpovn eMKOLVWVia, 0 UNXAVIONOG io_uring evowpatwOnke oTov mupnva Tov
Linux 1o 2019. To io_uring emtpémel 0TA TPOYPAHUUATA VA EMKOLVWVODV E TOV TTVPT|-
VaL e aoVYXPOVO, YPIYopo Kat amodoTikd Tpomo. Avtd odrynoe otnv avantuln véwy
mAawoiwv Tov ekpeTaAlevovtal Tig Suvatotnteg Tov io_uring. 'Eva tétolo mhaioto eivat
10 ublk, To omoio emiTpénel TV VAoMOINON 08NYWV UTAOK GCVOKEVWDV GTO XWPO XPNOTH.
Avto emtvyxavetat pe Ty vmap&n evog eploptopévov module tov ublk otov uprva
mov StaPiBadet Ta aTHpATA TWV EQAPHOYDV O Evav e§umnpeTnTn (server) 0To Xwpo

XpNoTn yla enefepyacia.

2e autr) ™ Sumlwpatikr epyaocia, emekteivape To mAaioto ublk, evowpatwvovrag é-
Va HOVOTIATL KpUTTOYpagnong anevdeiag atov efumnpetnt Tov ublk mov Tpéxel o0
xwpo xpriotn. Etol, ta dedopéva mov oTéAVOLV Ol EQAPUOYEG TTOV XPNOLHOTOLOVV TO
dioko mov vrootnpilet To ublk amoBnkevovtal kpumToypagnuéva. YAomowoape Ty
KPUTITOYPA@PNOT) He TPELG SLAPOPETIKOVG TPOTIOVG - £va aelplakd Kat dVo mapdAAnAovg
- KOl GUYKPIVALE TIG DAOTIOWOELG AmOKOUICOVTAG XPTOLHA CUHUTEPACUATA OXETIKA [E
TG SuvatdTNTEG TWV LVAOTIOOEWV HaG Kal TIG TOAVEG EMEKTATELG TOVG Pe OTOXO TNV

upstream ovvelo@opa pag oto ublk.

Aé€aic-KAaidid

Agttovpyikd ovotrpata, Linux, kpuntoypagia, 00nyoG GVOKEVTG, EIKOVIKEG OVOKEVES,

AES, XTS, io_uring, ublk, GPGME, OpenSSL, LUKS
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Abstract

Linux is an operating system that runs on the majority of servers worldwide and on
many home computers. One of the main functions of an operating system is to man-
age requests from userspace programs that require access to hardware. Traditionally,
Linux supports these system calls in a synchronous manner, meaning it completes the
requested operation first and then returns control to the program. Although Linux of-

fers methods for asynchronous communication, they have significant drawbacks.

To address the lack of a reliable mechanism for asynchronous communication, the io_-
uring mechanism, which was integrated into the Linux kernel in 2019, allows programs
to communicate with the kernel in an asynchronous, fast, and efficient manner. This
led to the development of new frameworks that take advantage of io_uring’s capabili-
ties. One such framework is ublk, which enables the implementation of block device
drivers in userspace. This is achieved via a limited ublk driver module in the kernel that

forwards application requests to a server in userspace for processing.

In this thesis, we expanded the ublk framework by integrating a cryptographic path di-
rectly into the ublk server running in userspace. Thus, data sent by applications using
the ublk-supported disk are stored encrypted. We implemented the encryption in three
different ways - one serial and two parallel - and compared the implementations, draw-
ing useful conclusions about the capabilities of our implementations and their potential

extensions with the aim of contributing our work upstream to ublk.

Keywords

Operating systems, Linux, cryptography, AES, XTS, io_uring, ublk, GPGME, OpenSSL,

block device drivers, character device drivers, virtual block devices






Evxapiotieg

H napodoa dimwpatikn epyacia ekmoviiOnke oto Epyaotrplo YroloyoTikwv Zvotnpatwv
™G oxoAnig HMMY tov EMII, vmo tnv enifAeyn tov kabnynt k. Nektapiov Kolvpn,
TOV OTI0I0 EVXAPLOTW YL TNV EVKALPiat TOV OV €dwoe va aoXoANO e TO CLYKEKPIUEVO

Oépa.

ISwaitepn pveia, Ba nOeda va kavw otov Ap. BayyéAn Kovkn, n fondeia tov onoiov
v p&e moAvTin kb OAn tn Sdpketa avtig TNG SIMAWHATIKNG epyaciag. OLmapatnproelg
TOV, Ta OXOALA TOV, AANA KAl O YEVIKOTEPOG TPOTIOG e TOV 0T0i0 TIpoaeyyLle Ta mpofAnjuata
vmnp&av yla gpéva éva moAvTiHo oxoAeio. Eival oiyovpo 61t xwpig tn forBeta tov Sev
Oa frav eQkTh N eKMOVNON TNG Tapovoag SIMAWHATIKAG Kat YL aLTO TOV EVXAPLOTA

Oeppad.

Oa noeha emiong va evxaplotiow v Ap. XAon AABépTtn yla Tn ovvepyaoia pag otny
apyn avtrg TG SImMAwUaTIKAG epyaciag.

Télog, 0éAw va evxapLOTHOW TNV OLKOYEVELA OV, TOVG YOVELG OV Kal TOV adep@o [ov,
KaB WG Kat TOVG iAoV LOV YLa TNV VTTOOTHPLEN KAl TV VTTOHOVT} TOVG KATA T GLYYPa@
avTng TG Stmlwpatikng aAld kat Yevikotepa Tny mapovaia tovg otn {wr pov.
Anuntpns Xapiong-ITovdog

MapTtiog 2024
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Extevng IepiAnun

0.1 Ewoaywyn

To Linux eivat éva Aeitovpyiko Zootnpa (AX) mov XpnoLHOTOLELTAL EVPEWG TOCO Yia &-
TALPLKOVG 000 KAl YLa OIKIAKOVG okoTovs. H mAelovotnta twv servers mov Aettovpyovv
TYKOOIwG, Twv smartphones pe Aettovpyikd Android kat Twv 500 kopv@aiwv vrepv-
TMoAoyloTWV Xpnotponolody Linux. TToAd amd ta xapaktnptotikd tov Linux to éxovv
Kataotnoet To emBuunto AX yia moANEég etatpeieg kat mpopnOevtés, Kupiwg emeldn eivat

avolyTol KwAIKa, [N IOLOKTNOLAKO KAl EMEKTAOLHLO.

O kVpLog okomdG evOG AT givat va Aettovpyei wg Yépupa petafh Twv eQappoywy Xwpov
XPNoTn Kat Tov VAkoL. Ot eQapHoyEG TOV AEITOVPYOVV OTO XWPO XPHOTN dev emiTpéme-
Tal va eMmKoLvwvovy anevbeiag pe 1o vAko. Eav pa epappoyr Oélet va éxet mpooBaon
oe auto (m.x. va Stafdoet anod évav dioko), pémet va {ntnoet anod to AX va ekteléoel
TNV avTioToLn eVépyela €K HEPOVG TNG. AVTEG OL AUTHOELG Elval YVWOTEG WG KANOELG

OVOTIUATOG.

Ot kAroelg ovoTpartog eivat éva cbvolo amod Siemagég (API) mov mpoogépet o AX oe

Slepyacieg xwpov XproTn, Yl va TOUG EMTPEVEL VA ETUKOLVWVIGOVV (e TO DALKO.

H petaPaon and v katdotaon xprotn (user mode) oty katdotaon muprva (kernel
mode) opwg €pxetat pe €va k60toG. IIEpav avtov Tov KOOTOVG, Hia Siepyacia mov e-
KTeAel pia KANOT) OLOTARATOG, HITAOKAPEL GTOV TTVPT VA TIEPIUEVOVTAG VA EKTENEOTEL |
aitnon tng, TovhdxloToVv yia TV mepintwon tov blocking I/O (nepiocotepa otny evo-
ta 3.1). Avto onpaivel 0Tt akoun kat av avtn 1 Stepyacia éxet dAAeg epyaoieg yla
va ektehéoel ov Sev efapTwvTtan anod ta anoteAéopata TG KANONG GLOTAATOG, Sev

umopei va Tig ekteAéoel. Avtd ta (nTrpata eival Slaitepa kpioipa o€ EQAPHOYEG e V-

xvii



Xviii EKTENHX IIEPIAHYH

YNAEG TpodiaypagEg, TTov amattovy oAV ypnyopn npdoPact ota Sedopéva pe xapnAn

kaBvotépnon.

To io_uring eival évag unxaviopog mov emitpémnel oe diepyaoieg va ekTeEAOVV KANOELG
OVOTHHATOG [Le AoVYXPOVO TPOTO, Kal eVowHaTwOnKke oTnv version 5.1 Tov muprva. Xe
YEVIKEG YpapuEG, To io_uring mapéyet dvo buffers pvriung mov eivat kowvoi petagd tov
XWPOL XPHOTH Kat TOL Xwpov muprva. ONOkAnpn 1 emkowvwvia AapPavel xwpa ekei.
H apyitektovikr) Tov vootnpilet T Quotkr opadomnoinon Twv artnudtwy (KAfoewy
OVLOTARATOG), OSNYWVTAG 08 ONUAVTIKT HEIWOT) TWV EVOANAYWDV HETAED XWPOL XPHoTN
Kat xwpov muprva. Tevikd eivat pa diema@r oxeStaopévn e TETOLOV TPOTO WOTE va

Tapéxel amodoTIKOTNTA, KAHAKWOT) KAl EMEKTACIUOTNTA.

Q¢ ook ovvénela, eppaviCovtat véa frameworks, pe 0tdX0 va ekpeTalAevTovy TN
véa, Taxvtepn Stemagr| emkotvwviag mov mapéxet To io_uring. H 1déa eivat 6Tt av Eo-
devovpie AMyOTePO XPOVO EMKOLVWVMDVTAG UE TOV TTVPHVA, TOTE UTOPOVUE Va e&ayovpe
AELTOVPYIKOTNTA ATIO AVTOV KAl VAL TNV VAOTIOCOVE OTO XWPO XPNHOTH, IOV YEVIKA

napéxel av&nuévn aopdeta, eveliia kat evkoAia oto debugging.

‘Eva tétolo framework eivat to ublk, mov evowpatwOnke and tov Ming Lei otov mopn-
va tov Linux v.6.0 [Lei]. To ublk eivat éva mhaioto yia tnv vAomoinon odnywv umhok
ovokevwv (block device drivers) oto xwpo xpnotn. Amoteleitan and dvo “ororxeia”

Evav 08nyo evtog Tov mupriva kat évay eEumnpeTnTr 0TO XWPO XPHoTN.

0.1.1 Awrtvnwon IIpoPAnpatog

v tpéxovoa ¢ékdoor Tov, To ublk dev vooTnpilel kpuTTOypAPNUEVEG AEtTOVPYiES.
H kpuntoypdenon tov apxeiov mov Aettovpyei wg Siokog, eEaptdtat anokAeloTika anod
TIG SuvatoTNTEG KPLTTTOYPAPNONG TOL cvoTHHatoG. To ublk amoteheital and dvo emi-
KOLV@WVOUVTA [EPT: €vay 0dnyo Héoa oTov mupnva, Tov onoio Ba avagépovpe wg “ublk
driver”, xat éva e§unnpetnT 0TO XWPO XPNOTN, TOV omoio Ba avagépovpe wg “ublk
server”. H emkotvwvia Tovg mpaypatonoteitat péow tov io_uring. To ublk umopei va
vnootnpi&et ToANovG oTtdX0VG (SnAadr| va vAomoloet SlaQOPETIKEG EKOVIKEG UTAOK
OVOKEVEG). Ze auTh TN SIMAWUATIK epyaocia, EMKEVIPWVOHATTE GTOV GTOXO GVOKEV-
16 loop. Mia cvokevr| loop giva pa cvokevr| umhok mov avtiotoryilet ta dedopéva tng

OXL O€ [La QUOLKT) OLOKELT] OTIWG £vag OKANPOG diokog 1) €vag omTikog diokog, alAd oTa



0.1. EIXAI'QI'H xix

HTAOK £VOG KAVOVIKOV apXelov 0g £va oVOTNUA apXeiwV 1) o€ pia AAAN ovoKeLT} HTAOK
[mpd].

Otav pa epappoyr mov xpnotponotei To ublk embupei va oteilet éva aitnua I/0, avtod
10 aitnpa Staoyifet T VIOCVOTHKATA TOV VPN VA, PTAVOVTAG TeAkd oTov ublk driver.
2t ovvéxela, o driver mpowBei to aitnua otov ublk server xpnoonoiwvrag To io_-
uring, TapEXovTag 0TO XWPO XPNOTN TNV EVKALpiat VA XEIPIOTEL TO aiTnua TPV avtod

otalei oto loop target.

Zvvenwe, ta dedopéva amobnkebovral oTo apyeio pe Ty idla poper mov eixav dtav
apxtkd oTdAOnkav amod v epappoyrn. Avtd To yeyovog, emPAaAlel oTny epappoyn va
elvau eite evrjpepn yia to mepiailov oto omoio Aettovpyei To ublk (m.x. evdexouévwg
va VAOTIOLEl KPLTITOYPAPNOT TO CVOTNUA apXEiwY), €iTe va XelpileTat TNV KpuITOYpA-
Qnomn povn g av o emBovuntog Paduog Wiwtikotntag dev eyyvdtat Stagopetikd. Tia
Tapadetypa, 1 eQapUOYT HIopel va XpelaoTel va kpumtoypagroet Ta dedopéva mptv Ta

oteilel oto ublk.

0.1.2 IIpotervopevn Avon

Zxedldoape Kot DAOTIOIOAE Eva OXUA KPUTTOYPAPOonG Tov emitpénetl oTo ublk va
amofnkevel Ta dedopéva iag epappoyng kpumtoypaenuéva oto dioko. Me avtdv Tov
TPOTO, EPAPHOYEG LE ATIALTIOELG ACPAAEIAG UTOPOVV VA XPTOLUOTIOIOOVV TN CVOKEDT
nov vrootnpiet To ublk xwpig va xpetaletar va StaxetpiCovrat ave§dptnta TNV ao@a-
Aeta Twv Sedopévwy tovg. H vAomoinor pag mpaypatomnoteitat e§ oAokAfpov 0to Xwpo

XpPNoTn, wg pépog Tov ublk server.

Xwpioape tn dtadikacio kpuntoypagnong oe dVo SlaQopeTIKEG PATELG:

o ®don 1: Katd tnv ekkivion tov ublk opifovpe éva apyeio .gpg mov mepiéxet €va
kpuntoypapiko kAewdi. To iSto to apyeio eival kpvmtoypagnpévo, e§acpaliCo-
VTag TNV mpoatacia Tov. Ze avTh TN QACT| ATOKPLTITOYPAPOVE AVTO TO apyeio

petadedopévwv kat e§ayovpe To kAeLdi.

o ®aon 2: O ublk server ypnowomotei To mapayopevo kAetdi and ™ eaon 1, ya

va ekteNéoel KpunToypa@ikég Aettovpyieg I/O otn ovokevr). Xpnotpomotovpe
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OVUUETPIKI] KPUTITOYPAPNON, ovykekpiuéva o AES-256 oe XTS operation mode

yla QUTOV TOV OKOTIO.

Etol, otav pa epapuoyn ypaget dedopéva otn ovokevr, o ublk server kpuntoypagei
Ta dedopéva kat ta anobnkevet atov dioko. Opoiwg, dtav €vag xpnotng (nra dedo-
Héva amod tn ovokevr, o ublk server avaktd kat anokpuntoypagel Ta dedopéva mpLy

ETMKOLVWVHOEL TNV amdvTnon tov otov ublk driver.

O o16x06 pag Nrav va egacakioovpe TNy acdieta Twv dedopévwv mov amodnkevo-
VTal 0To 8i0KO Kal VA TTAPEXOVLE OTLG EPAPHOYEG TH SUVATOTNTA VA XPTOLUOTIO|COVV
t0 ublk xwpig va xpetaletat va Staxelptotovy poveg Tovg TN Stadikacia KpuTToypaen-
ong. HAvon pag eyyvdrtat 6tt kapia mAnpogopia dev Oa armoOnkevtei moté ot cvokevn
0€ AKPLTITOYPAPNTN Hop@T). UG amoTéAeopa, akdun Kat av o diokog kKAamel 1} kataoye-

Oei, Sev umopovv va eaxBovv dedopéva xwpic yvwon Tov KAESLo0 KPLTITOYPAPNONG.

o k&Be @don, xpnoiponojoape pa StagopeTikn kpuntoypagikr PLpAtodnkn ya va
EMTOXOVHE TO 0TOXO Hag. 2T @don 1, xpnowponowmoape tn PtAodnkn GnuPG Made
Easy (GPGME) [GNUa], yia va KpumToypag@rioove Kal Vo ATOKPLTITOYPAPTIOOVE TO
OXETIKO apXeio Kal Va amokToovpe To kAeldi dedopévwy, evw oTn QAo 2, XprOLHOTOL-
noape ™ PLPAodnkn OpenSSL [Ope] yia TV KPLTITOYPAPNON KAl ATTOKPLTITOYPAPTON

dedopévwy katd tn Sidpketa Tov I/0.

EmmA€éov, vhomowoae tr de0Tepn @Aom TNG KPUTITOYPAPNOTG He TPELG SLapopeTIKOG

TPOTOVG:

« Single-thread: To kvVpto vijpua Tov ublk server, mov eivat vievBLvo yia TV emi-

Kotvwvia pe tov ublk driver, xepiCetat emiong TNy KPLTTTOYPAPN O KAl ATTOKPL-

TTOYPAPNOT).

o Intra-block parallelism: Anuiovpyroaue pa Seapeviy viiudtwy mov anotelei-
Tal and VAHATA-epYATEG. AVTi va eKTEAEL TPOCWTILKA TNV KPUTITOYPAPNON/armo-
Kpuntoypdenon oe kdbe buffer o kvpto vrpa, dtaupei Tov buffer kat Stavépet

KaOe TURHA OTA VAHATA-EPYATEG.

« Inter-block parallelism: ITapopoia pe tov intra-block mapaAAniiopo, dnuiovp-

ynoaye o Se§apev) VijHdTwy pe vijpaTa-epydates. QoT000, 0€ QUTHV TNV TEpi-
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TTwOoT), To kOpLo vipa mapadidet odokAnpo to bufter oe kamoto vrpa-epydtn kat

ovveyilel.

Me auTtdv TOV TPOTO, HTOPECANE VA TIEPAUATIOTOVHE [E TNV ATOSOTIKOTNTA Kat TIG
TPOKANOELG TOV TTAPAAANAOL TTPOYPAUUATIOHOV 0 SVO SLaKPLTEG HOPPEG. ZvyKpivale
AVTEG TIG TTPOCEYYIOELG E TNV TIPWTN TEPITTWOT TG OELPLAKIG KPUTITOYPAPTONG, KAl
TEAKA avakaAdyape Tovg TePLOPLopovg kat Ta mbavd o@éAn tov mapaAiniiopov. H
SdvuvatotnTd yia mapaAAnAopud 6To KPLTITOYPAPIKO Hag OXNHa, HTav duvath Adyw Tng

xpnong tov akyopifpov AES [Wika] oe Aettovpyia XTS [NIS].

O mapaAnAiopog g Aettovpyiag XTS opeiletal 0to yeyovog 0Tt kdbe pmAok Sedoyié-
VoV pnopel va kpurrtoypagndei ave§dptnta Xxwpis va xpetaletat mAinpogopia and kd-
ToL0 AAA0 UMAOK. AVTO TO XAPAKTNPLOTIKO EMUTPETEL GTA KPLTITOYpAPNUEVA dedopéva
va StapeBovv o TUNpATA e TETOLO TPOTIO WOTE SlaopeTikd umhok dedopévwy va pmo-

povv va eme€epyactody Tavtoxpova oe StagopeTikég povadeg enefepyaciog [MAAR].

0.2 Ynopabpo

0.2.1 Linux OS

To Linux, &ekivnoe and tov Linus Torvalds 1o 1991 wg €va mpoowmiko épyo, kat éxel &-
EehxOei o€ éva aflomoTo, avoytod kKWSIKaA, AEITOVPYIKO CVOTNHA TTOV £XEL YiVEL EVPEWG
anodekTod o€ [a TolKAia TAATPOPUWY, TEPIAAUPAVOVTAG TIPOCWTILKOVG VTTONOYLOTEG,

KIVITEG CVOKEVEG, EVOWUATWUEVA GUOTHUATA KAl VTTEPUTIOAOYLOTEG.

Eva ano ta facikd mAeovekTrpaTa Tov, gival 1 ¢OOT TOL WG AOYIOUIKO AVOLXTOD KW-
dwka, mov Sitémetat and Tnv Adeta Ievikng Anpootag Xprjong GNU ékdoon 2 (GPLv2),
1 omoia eMTPETEL O€ OTOLOVONTIOTE EVOLAPEPOUEVO VA HEAETHTEL, VA TPOTIOTIOLNOEL Kt
va Staveipet To Aoytopiko. Avti n Stapdvela €xet ovpPdiet otnv acpaleta Tov Linux,
kaBwg mpoPArHaTa ac@aleiog PITOPOVY VA EVTOTOTOVV KAl VO AVTIHETWTILOTOVV YPT|-

YOopa amo TnV KovoTnTa.

To Linux vhomotei éva povtélo aopaleiag faciopévo oe daxTvAidia mpovopioy, pe Tov
nupnva va Aettovpyei oe éva mpovopakd “kernel mode” (Ring 0) kau Tig epappoyég

XPNOTH va TpEXoLV o€ £va pn mpovoutako “user mode” (Ring 3). Avtog o daxwplopog
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Stao@alilel 0TL ot epappoyég xprotn dev umopovv va mapépfovv anevbeiag oTig Aet-
TOVPYieG TOL TLPTVA, EVIOXVOVTAG TNV A0PAAELa Kal T 0TabepOTNTA TOL CVOTAUATOG.
Otav a epappoyn xprnotn anattel npooPaocn oe hardware, mpémet va kdvet pia kKAfon
OVOTHHATOG, TPOKAAWDVTAG pia peTdPaon amod to user mode oto kernel mode. Avtog
0 UNXAVIOPOG emITpéTel 0TOV TTVpva va Stapecolafel pe aocpaleta otnv mpooBaon

0TOVG TTOPOVG TOV GUOTHHATOG, ATOTPETOVTAG TIG pn eEovotodoTnpéveg Aettovpyieg.

O apyttexTovikr TOv TTVPrVa Tov Linux yapaktnpifetat wg povolBikn, mpaypa mov
OnUaivel OTL OAa TA VTTOCVOTAHATA TOV VAL EVOWUATWHEVA OTOV TTVPTVA KAl AELTOVP-
youv oe kernel mode, Stevkohvovtag Tig anevbeiag kAfoelg petadd Twv voovotn-
Hatwv. Avtd avtimapatietal e Ty mpooéyylon Tov pkpomvpnva (microkernels), n
omoia Sivel TPOTEPALOTNTA OTO UIVIHAAIOHO SLATNPOVTAG TOV TTUPHVA UKPO Kal ava-
Bétovtag moANég Aettovpyieg Tov oe Siepyaoieg mov Tpéxovy oTo Xwpo xprotn. ‘Etol
evioxXVeTAL 1] AVOEKTIKOTNTA TOL CLOTHHATOG HECW TNG ATOHOVWOT|G TWV VTTOCVOTNHHA-
TWV TOV, TANPWVOVTAG OUwG TO KOGTOG TNG Stadiepyactakr|g enkotvwviag (IPC) petafd

TWV VTTOCVOTNHATWYV TOV TIOV TPEXOLV e SLAPOPETIKA TIPOVOLLLAL.

Ta va e§looppomroet TNV anodoTkOTNTA TwV HovoAMBIKWY Tuprvwy pe Ty apBpw
dopr| Twv pkpomupnvwy, to Linux xpnowponotei kernel modules. Avtd eivan Svva-
K4 ApXELQ AVTIKELLEVIKOD KWOSIKA TIOV EMTPETOVY TNV EMEKTAOT] TNG AELTOVPYIKOTNTAG
TOV TIVPTVA KATA Tapayyehia XwpiG TNV avaykn eMAVEKKIVIONG 1] EMAVAUETAYADTTL-
ong tov. Ta modules Aettovpyovv oe kernel mode, mpoogépovtag évav ocuuPifacpod
nov diatnpel TNV anodoon evw mpowdei évav eviaio oxedlaoo, emTpENOVTAG TNV Op-

yavwpévn Slaxeiplon VIOCVOTNUATOY KAl TNV OLKOVOLIAL UVHHNG.

To Linux Staxpivel TG OLOKEVEG O€ TPELG PACIKEG KATNYOPIEG: OCLOKEVEG XAPAKTIPWY
(character devices), ovokevég pumlok (block devices) kat cvokevég diktvov (network
devices). Evw ot ovokevég xapaktipwv mpoogépovv dtadoxikn mpooPaon ota dedo-
HéEVa, EMITPEMOVTAG AELTOVPYieG Ot pepovwpéva bytes (m.X. TANKTpoAdyLa, oelplakég
BVpeg), oL ovoKeVEG PTAOK AetTovpyovv e Sedopéva oe umhok otabepol peyébovg kat
vnootnpilovv Tuxaia mpocPaon (m.x. oxkAnpoi Siokot). Ot SikTvakég cLVOKEVEG Stevko-

Abvouv tn petadoon dedopévwv petald Twv VITOAOYLOTWY.

H vlomoinomn evog odnyov cuoKkevng XApakThpwy, TePLOTPEPETAL YVUPpW amtd Tn Soun
struct file_operations, n onoia mepiéxetl Seikteg o€ GLVAPTNOELG TTOL EKTEAOVV OLd-

Qopeg “epyaocieg” 0TI OLOKELT]. AVTEG OL CLVAPTIOELG AVTIOTOLXOVV O€ KAOELG GVLOTH-
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Hatog omwg open( ), close(), read() katwrite(), emtpénovrag otov odnyod va opiocel

TIWG 1) OLOKELT] AAANAETIOPA e AVTEG TIG KANOELG.

0.2.2 Zroifa Ewcodov/EEodov (1/0)

H otoifa 1/O oto Linux eivat éva dopnpévo povomdtt mov akolovdei pia kAnon cvoth-
Hatog read() nwrite() amod pa epappoyn kat tepvaet péoa ano didopa LIOGVOTH-
HATOL TOV TIVPH VA HEXPL VA QTACEL GTO PUOLKO dioko. Avtr i Stadpoun mepthapPdvet
apketd emineda, ovunepapPavopévey petad AAwv Tov Ekovikod Zvotruatog Ap-
xelwv (VES), Tov Zvotripatog Apyeiwv (FS), tov Block Layer kat Twv 0dnyadv cvokevwv

1oV aAANAETSPOVV TENIKA [LE TN PULOLKT) CLOKELT] AToONKEVONG.

Eninedo Epappoyng

v xopver| g otoifag E/E Ppioketal To emimedo eQappOYnG, OOV Ol EQAPHOYEG
XpNotn aAAnAemidpovv pe Ta apyeia HEow KANOEWY GLOTHHATOG OTIwG open( ), read()
Kat write(). Améd TNV OMTIKA TWV eQApUOYWY, Ta apxeia Bewpovvtal wg ypaputkég
axkolovBieg bytes, emtpénovrag Tny anAn TpocPaon kat Tpomonoinon Twv dedopévwy.
Avtr n alnAemidpaon vynlol emmédov kpvPel TIG VTTOKEILEVEG TTOAVTTAOKOTNTEG TOV

OVOTHHATOG apyeiwV Kkat TG Slaxeiplong CLOKEVWV.

Ewcoviko Zvotnpa Apxeiwv (VES)

To Ewoviko Xbotnua Apyeiowv (VES) eival éva kpiotpo vmoovotnua oto Linux mov
Staxetpiletal TIG AeLTOVPYIEG TWV CLOTNUATWY APXEIWY, TIPOCPEPOVTAG WL EVOTIOLN-
Hévn Slemagn oTig epappoyég Xprotn kat emPaAlovrtag €va kovo Hovtélo apyeiov
oe dlagopetikd ovotnpata apxeiwv. To VES agaipel Tig Aentopépeleg Twv vmokeipte-
vov filesystems, emtpénovtag ot eQappoyés va alAniemdpovv e ta apyeio xwpig
va xpetdetat va yvwpiCovv tov tomo Tov filesytem 1} Tig Aemtopépeteg TG vAomoinong
tov. To emTvyxdvel avTo péow PACIKWV OVIOTHTWVY EVTOG TOV TVPHVA OTIWG eival Ta
struct superblock, struct inode, struct file kaistruct dentry. Avtrnapxt-
TEKTOVIKI| OXL LOVO ATTAOTIOLEL TIG AELTOVPYiEG apxeiwV yia TIG epappoyés alAd eEaoga-
AiCer emtiong ovvémela kat amodotikdTnTa 0T Staxeiplon Twv apxeiwv oe SlaPopeTIKA

filesystems.
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Svotnua Apyeiwv (FS)

Eva ovotnua apyeiwv oto Linux opyavwvel Ta deSopéva LepapyIkd, TPOTPEPOVTAG [Lat
demagn ya mpooPaon Paciopévn oe apyeia. O o16X0G TwV filesystems eivat va vAo-
7oLV Aettovpyieg mov opiovtat and to VES yua va Stacealiletat n ovpPatdtnra.
Eva kbplo xapaktnplotikod mov StaxetpiCovrat Ta cuotrhpata apxeiwv eival n Aettovp-
yia TG kpveng pviune oeAidwv (page cache), n onoia emtaxvvel Tig Aettovpyieg I/O
KPATWVTAG 0T HVAHN TG TpooTeAaoéveg 1) bavwg mpoonelaotéeg (010 pEAAOV) oe-
Aideg. Ot artiioelg avdyvwong yepilovv tnv page cache pe dedopéva and tov dioko (av
dev eivat N mapoOVIA), EVW OL ATNOELG EYYPAPTG HTOPOVY VA XPTOLUOTIOCOVY TNV
page cache wg mpoowpvo amoBnkevtikd xwpo (write-back cache), emrpémovrag acvy-

XPOVEG EYYPaPEG aTOV dioKo.

Q0T1000, oL eQappoyég umopovv va emhé€ovv va mapakdyouvv tnyv page cache xpn-
OLHOTIOLWVTAG TN onpaia O_DIRECT Katd TNV KAfon cvothpatog open(), odnywvtag
o€ dpeoeg petapopés dedopévwy netadd twv buffers tov xwpov xprotn kat Tov apyei-
ov o7o dioko. Tla TN Slatrpnon TNG CLVETELAG, O TVPTIVAG OTUELWVEL TIG EVIUEPWHEVES
oehideg NG page cache wg “dirty” kat T1g adetalel otov dioko dmote Xpetdletal, eEaoga-
AiCovtag TV akepatdTnTa TWV SeSOUEVWY OE SLAPOPETIKEG EPAPOYEG TIOL TTPOOTIEAAV-
vouv ta idia dedopéva. Ztnv mepintwon mov n Aettovpyia E/E xpnotpomnotei tnv page
cache avagépetal wg buffered evw oty nepintwon mov TNV mpoomepvael avapépeTal

wg¢ direct.

Generic Block Layer

To block layer oto Linux Aettovpyel wg €vag evdiapesog otn otoifa I/0, ovvdéovtag
vynAotepa emineda OMwWG To CVLOTNA APXEIWYV [E TOVG 0O1YOVG CVOKEVWYV UITAOK TVTIO-
ToLwVTag TNy mpooPacn oe avTovs. Me avToV TOV TPpOTo anhomotei Tig aAAnAemdpd-

O£LG LE TIG CVOKEVEG UTTAOK TTAPEXOVTOG L CLVETT SLETAPT| YIa T CVOTHIATA APYELWY.

Single-Queue Block Layer

Iotopikd, To block layer xpnowpomotovoe évav oxediaopo povng ovpdg (Single-Queue),
omov kdBe ovokevn pmAok “ovvdedTav” pe pia dikid Tng dopng (struct request_queue).
Avtn n dopr| anotehovvtav anod request (struct request), Ta omoia Ue TN OeLPA TOVG

nepteAdpBavav Sopég struct bio, kabéva ek’ Twv omolwv meptypagetl pia Aettovp-
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yia I/O. Avtog o oxediaopnog nrav kupiwg emkevipwpévog otovg HDDs, éxovtag wg
0TOX0 TNV eEAAXLOTOTOINOT TWV XPOVWV avaliTnong TG KePaAng Tov diokov (e T ov-
ykévtpworn dadoxikwv artnuatwyv (dtadoxikwv bio ot éva). O oxediaopog g Single-
Queue meptedapBave unxaviopovg 6mws to plugging yia tnyv kabvotépnon tng eneep-
yaoiag aTnuaTwy, EMTPENOVTAG TN oLYXWVELON Stadoxikwy bio €xovTag wg oToX0 TNV
evioyvon g anoteAeopatTikoOTNTAG. OTOCO, AVTH 1) TPOCEYYLOT ApxLoe Va epgavilel
npoPAnpata emidoong pe Ty epgdavion twv SSDs, kabwg n ovykpovon kAeWdwpdtwv
pneta&d twv CPUs yia mpdoPacn otn dopr} request_queue €yve Eva ONUAVTIKO eUo-

dto0 katé Ty vAomoinon evog I/0.

Multi-Queue Block Layer

[a va avTipe TwmotodV oL TpokAnoelg anddoong mov mapovaoiace o oxedlaopog Single-
Queue otny enoxn} Twv SSDs, 1o Linux evowpdtwoe pia véa apxttektovikn oto block
layer yvwotr kot wg blk-mg, akolovBwvtag éva oxedtaouo moAamAwv ovpav (Multi-
Queue). Avti n apxitektovikn Staxwpilet v enegepyaoio artnpatwy oe dvo emineda:
oe software staging queues kat oe hardware dispatch queues, pe TIg TpwTEG Vo KaTavépo-
vtat ava CPU 1 kopfo NUMA kat tig Sedtepeg va kabopilovtal and tig Suvatotnreg
NG OVLOKEVNG. AVTOG 0 SLAXWPLOUOG UELWVEL ONHAVTLKA TT) 0VYKPOLOT| KAEIOWHATWV
avaBétovtag Eexwplotég ovpég oe kabe CPU, Stevkohvvovtag £tot Tny enefepyacia at-
muatwv. O oxediaopodg blk-mq kdvet EexdBapo Tov Staxwplopd Twv vBuVVWY, e To
eninedo pmlok va Stayetpiletat kupiwg Tig software queues kat Tovg 081yoVG GVOKELVWDV
va emonttevovy Tig hardware queues, StevkoAbvovTtag TV avantuén odnywv kat BeAtiw-

VovTag TN ovvoAkr anodoomn g otoifag I/0.

Odnyoi Mnhok Xvokevwv

Ot odnyoi ovokevwv PTAOK OTOV TTVPH VA TOV Linux eival kpiotpot yla Ty emKovwvia
peta&h Tov AelTovpyLKov CLOTHUATOG KAl TWV CLOKELWY amobnkevoNG. XpnoLoTolovy
™ Soun struct gendisk yia va meptypdyouv évav dioko, cuunepthappdavovrag Paot-

KEG TANpOPOpieg TOV.

H apxikomoinomn Twv odnywv umAok cvokevwyv mepAapPavel Ty apxLKOToINomn Kat TN
Sapdpewon twv dopwv gendisk kat request_queue, ovviBwg evtog TG pouTivag

apxLKomoinong Tov odnyov.
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Aiokog

Ot Siokot AelTovpyovV wg oL KUPLEG CLOKEVEG ATOBNKEVONG OTA CLOTHHATA VTTOAOY!L-
otwv, tepthapfavovtag petafd alwv and Hard Disk Drivers (HDDs) kat Solid-State
Drives (SSDs) éwg ontikovg Siokovg kat diokéte. Ia kdbe TOMO diokov vdpyxet Eva
trade-off petafd taxvTnTag, KOGTOUVG KAt AVOEKTIKOTNTAG, e TIG TaVTEPES EMAOYEG

amofnkevong va eivat yevikd mo akpiPég ) Atyotepo avOekTikes.

0.2.3 Kpvnroypagia

[a v vVAomoinon Tov kpvmToypaPikoy Hovonatiod otov ublk server, émpemne, eKTOG
TV AAAwV, va egotkelwBolpie pe Ta Pactkd XApaAKTNPLOTIKA TNG KPUTITOYPAPIAG, YL va

eipaote oe B¢on va kdvovpe TG KATAANAEG OXESLAOTIKEG KPUTITOYPAPIKEG ETUAOYEG.

H xpuntoypagia gival n) emoTnun TG KwOIKOTOINONG TANPOPOPLWY, KAl | LETATPOTN
Twv dedopévwv o€ ia Lop@r| akatavonTtn Kat &xpnotn yia kdbe pn e§ovotodotnuévn
oVTOTNTA, He 0TOXO TNV eEa0PANLOT [iag aopalovg emkovwviag petagd Twv vTokel-
HEV@VY TIOL AVTAANACOOVY TANPOPOpia. ZTNV YNPLAKT ETOXT, I KPUTITOYypAPia CLXVA
oxetiCetat pe tn Stadikaoia peTatpomnng kavovikov kelpévou (plaintext) oe kpvmToypa-
enuévo keipevo (ciphertext), e§ao@alilovtag Tny eUMOTEVTIKOTNTA, TNV AKEPALOTNTA

KAt TNV TAUTOMoinon Twv OeSOHEVWY KAl TWV EMKOLVWVIDYV.

H kpuntoypagio xwpiletat oe Vo Pacikos TOTOVG: TN CVLHUETPIKT KAl TNV ACVUHE-
tpn. H ovppetpikn kpumtoypagia xpnotpomnotel £va kKAedi Koo kal yla TV KpLTTO-
YPAPNON KAl Yia TNV ATOKPUTITOYPAPNOT|, EVA 1) AOVUUETPT) XPNotpoTotel €va {evyog
KAeStwv: éva SnUOoLo yia TNV KPLTTOYPAPN o Kat £va IOLWTIKO yla THV amoKpLTTO-
ypaenon. H GuppeTpikn Kpumtoypaenon eivat yevikd mo ypryopr kat KatdAAnAn yla
TIV KPUTITOYPAPNOT HeEYAAWY OYKwV dedopévwy, aANd amalTel ao@alT] KATAVOur TOV
Kotvov kAetdov. H acOupetpn kpumtoypdenon amhomoLel Ty Katavopn Twv KAetSiwv
Kal {TOpEL va TTapE€XEL TAVTOTOINOT, KaBloTWVTAG TNV £ToL KATAAANAN yla ac@aleig a-
vTaAhay€g KAWLy Kal ynetakég vmoypagég oe avolktd ovotipata. Ot dvo pébodot
HTTOPOUV VA GUVOLACTOVV Yia [ia TiLo OAOKANPWHEVT AVOT| ao@aleiag, OTwG 0TV KPL-
nroypagnon SSL/TLS [F5], mov xpnotpomnotel acOUHETPT KpLTTOYpA@nomn Yl Tr 8n-
ovpyia pag ac@alovg ovvedpiog Kat Ty avtaAlayr Tov CUHHETPIKOV KAEdL0V Kat

0TI OUVEXELA OCVUUETPLKT KPLTITOYPAPNOT KATA TNV Stdpkela avTarllayng Twv dedopié-
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VV.

Ewoaywyn otov AES

To Advanced Encryption Standard (AES) eivat o o dtadedopévog alydptBpog ovppe-
TPIKNG KpUTTOYpd@nong, avtikabiotwvrag to DES petd and tnv emAoyn Tov and 1o
NIST 710 2001 [Wika]. Zyedidotnke and tovg Bédyovg kpuntoypagovg Vincent Rijmen
Kkat Joan Daemen kot xpnopomnotel peyedn khediwv 128, 192 kat 256 bits. Aettovpyel
w¢ €va block cipher, xwpiCovtag ta dedopéva oe blocks twv 128 bits kot exteleitat o€
YOpOUG, pe tov aplBpd twv yvpwv va efaptatat and to péyebog tov khediov (10, 12

Kat 14 ybpovg).

Ta 128 bits g et068ov Tov AES Statpodvtal eowtepikd oe chunks twv 16 bytes, dn-
Hovpywvtag évav 4x4 mivaka, YVwoTo Kal wg TVaKa KATAOTAOTG, OTOV TPAYUATO-
nolovvTaL OAeg oL Aettovpyieg Tov AES. Kabe yopog mepthapPdvet téooepa otadia: Byte

Substitution, Shift Row, Mix Columns, kat Key Addition.
>to Byte Substitution, k&0 byte Tng eto6dov avtioToryel pe éva ailo byte.

2o Shift Rows ta bytes ka0e oelpdg Tov mivaka KATAOTAONG, TEPLOTPEPOVTAL KUKALKA,
npooBétovtag oplovtia didxvon, evid otn @don tov Mix Columns kdfe othAn Tov
Tivaka katdotaong moAamhaotdletat pe Evav mpokabopiopévo mivaka, tpooBétovrag

kaBetn duaxvon.

Télog, otnv @don tov Key Addition mpaypatomnotei XOR Tov tpéxovtog mivaka Katd-

otaong pe éva 128-bit vrokAeldi mov mpokbmTel amod To KVPLo KAeLdL.

H Stadikacia amokpuntoypa@nong avtioTpé@et Ta Prpata auTd, XpnoLHoToLdVTAG TIG
avTioTpoPeg Aettovpyieg yla kdBe 0tddio kat epapuolovrag ta vTokAedla og avTi-

OTPOPN OELPAL.

0.3 Xxediaon

0.3.1 Tpomot Emkowvwviag

2TOV TIPOYPAUUATIONO, CUVAVTAE OVX VA TIG £€VVOLEG TNG OLYXPOVNG, acVyxpovng, blocking

kat non-blocking emkowvwviag. H emloyr evog e§” avtwv twv 1OV emkotvwviog -
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EapTaTat amo TIg anattoelg Kal Ta XapakTnploTkd tng kabe epappoyng.

Yvyxpovn Emxowvwvia

Otav pa Stepyacia KAvel o oVUyxXpovn KANon Tpog To Aeltovpylkd obotnpa (6mwg
éva ovyxpovo read), n ohokAnpwon tng epyaciag mov BéAet n diepyaocia Ba éxel olo-
KAnpwOei 6tav Oa exteéoel TV endpevn evtor tnG. Q0TO00, pnopei va pHmAokapet
TEPUEVOVTAG HEGA OTOV TIVPTVA AV TO AEITOVPYLKO avoTNnHa Sev eival £Tolo va ama-

VIOl AUECWS.

Acvyxpovn emkovovia

Mia Siepyaocia kdvet pia achyxpovn KANon 0To AelTovpytko cvOTNpHA dTAV 1] EpYasi-
a ov {nTdel and Tov Muprva va eKTeNETEL, TpaypaTooLeital Xwpis 1 Stepyacia va
umhokapet otov upnva. H diepyaoia Eekiva tnv epyacia kat edv o muprjvag Sev eiva
£TOLNOG, dev “kotpdtal” eviog Tov alAd emoTpé@et. T1” avtd To Adyo amatteital évag

TpOTMOG emkovwviag yia va eldomotndei ) Stepyacia 6tav o muprvag oAoKANpwoeL TO

aitnpa tng.

Blocking emxowvwvia

Mia blocking kArjon Oa pmhokdpel T Siepyacio mov Ty ekteel péxpt va eival £Totuo
T0o anotéleopa. Avtd ovpBadiCet pe Ty £vvola TG oVYXpPOVNG KANONG Kat YU auTo

ovxva XprnoHomolovvTal WG TAVTOOTUES EVVOLEG.

Non-blocking emxowvwvia

Mia non-blocking kArjon dev Oa pumhokapet T diepyacia av 1o anotéeopa dev eiva
étolpo, ald Sev Ba Eekviioet kat v epyaocia tnv omoia attrOnke, oe avtifeon pe
Hia aobyxpovn kAron mov emiong Sev Ba pmAokdpet alha emmAéov Ba evnuepwoet Tov

TupTVa va EEKLVI|OEL TNV epyacia.
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0.3.2 io_uring

To mo ovvnOLopEVO HOVTENO ETIKOLVWVIAG TIOV XPTOLUOTIOLOVY OTHEPA Ol EQAPHOYEG

yta I/O eivau 1o a0yypovo, XpnotHomoLwvTag TG Pactkés KA oelg cvuoThpatog read () /write()
1| TIG veoTepeG eKOOXEG TOVG, pread()/pwrite() katpreadv()/pwritev(). Qotd00, Ot
OPLOEVEG TIEPITITWOELG, £VAL A0VYXPOVO HOVTENO Tatptdlet kakvtepa. To Linux, ektog

Tov io_uring, vtootnpiCet Svo acvyypova APIs: to POSIX AIO kat to Linux AIO (1)
libaio).

To POSIX AIO oto Linux vAomnoteitat and tn BipAiodnkn glibc péow vnuatwy. Ka-
Oe aovyxpovn kKAfon I/O avatiBevtat oe €va thread mov dnpovpyei n glibe To omoio
UTTAOKAPEL TIEPLUEVOVTAG TO ATTOTENETHA. AVTO ATAULTEL EMIKOVWVIA HETAED TV gUTAE-
kopevwv threads yia va evnuepwbei to kOplo thread ot o amotéeopa eivat £toipo,
aAld Oev KApakvel kKadd Aoyw 80Tt dnovpyei éva thread ava request. AvtiBeta,
7o Linux AIO xpnotpomotei KA|OELG CLOTAHATOG, e TOV TVPTva va Xelpiletat anevDei-
ag Ta authpata xwpig to Bapog Tov evog thread ava request mov éxet to POSIX AIO.
Q0T1000, £Xel AAAOVG ONHAVTIKOVG TIEPLOPLOHOVG OTwG To OTL Sev vtooTtnpilet buffered
I/O, meplopilovTag onNUAvVTIKA TIG EQAPHOYEG OV UTTOPOLYV VA XPTOLLOTIOTOVY AUTO

10 APIL.

O meproptopot Twv Linux AIO kat POSIX AIO odrjynoav moAAég epappoyég mov nle-
Aav va BeATiwoovy Ty andSoor Tovg HEow Hiag achyXpovng Slemagng va vAomotocovv
116 Stkég Tovg achyxpoveg Avoelg, Staxetptlopeves éva pool vijpdtwy yt” avtdv To oko-
no. To io_uring éywve merged otnv ékdoon 5.1 Tov TVPHVA yla va va KaAOYeL avTo
T0 Kevo 010 acvyyxpovo I/0. Apxikd vtootpile kKupiwg kKAfoelg ovotripatog yia block
I/O aA)ld otn ovvéxeta e&ehixOnke vtootnpilovTag TeEPLOoOTEPEG KA OELG CLOTHUATOG,
€XOVTAG WG OTOXO VA Yivel £va yeEVIKO TTAQUOLO Yla TV EKTENEDT] AOVYXPOVWY KA OEWY

OVOTHHATOG.

To io_uring StaBétel d0o bufters pvrpung: Tov Submission Queue (SQ) yta tnv vofoAn
artnuatwv kat tov Completion Queue (CQ) yta Ty avaktnon anavtioewv. Kat ot dvo
elvat potpalopevol petald g epappoyng kat tov moprva. Kabe aitnua meprypagetat
ano ¢va Submission Queue Entry (SQE) kat yia k&8s SQE, o mupnvag tomobetei éva

Completion Queue Entry (CQE) oto CQ 6tav 1o anotéheopa eival Totpo.

To io_uring vootnpilet Tpelg kKANoEG oLOTHHATOG Yo TN dnovpyia Twv memory
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mapped buffers kat Tnv emkowvwvia pe Tov mupnva: v io_uring_setup(), nvio_uring_enter()

Kat Tnv io_uring_register().

H io_uring_setup() eival n mpwtn kAo OV TPEMEL VAL KAVEL (Lo EQAPUOYT] YL VL
dnovpynoet éva instance tov io_uring, SnAwvovtag Tov aptBpd Twv entries kat Aap-
Bavovtag miow €vav file descriptor yia Tnv avagopd oto instance avtd. Metd tnyv emt-
TUXT] EMOTPOPT), 1] EPaApPHOYN TIPETEL Va eKTEAETEL Evammap () Yla va “epgavioet ” Tovg

buffers oto xwpo Sievbvvoewv tng.

H kAfjon ovotiuartog io_uring_enter() eviuepwvel Tov mupnva yla tny vmapén twv
SQEs oto Submission Queue. Me avtnv TV KAfon GLOTHHATOG VIIAPXEeL N SuvatdTnTa
va vrtoPdAet n epappoyr ToANamAd artfpata (moAld SQEs) pe pio povo kAron. Me
dAa Aoyla pio epappoyr pnopel va “etolpdoet” moANd SQEs kat va gvnpuepwoet Tov
Tuprva He pia povo kAnon otny io_uring_enter(), mAnpwvovtag €ToL TNV emPapuv-

o1 €vog povo context switch.

Télog, n kAfon ovotiuatog io_uring_register() emtpénet Ty npoeyypaen buffers

kat file descriptors Tng epappoyng otov mupnva, pelwvovtag €tol To overhead ava I/0.

To io_uring mapéxet pa PipAodnkn xwpov xpnotn, v liburing [Axbe], mov Stevko-
AOvel o€ peydho Pabpod tnv xpron Tov amod TiG eQappoyEs, kabwg amlomotel Ty mo-
AvmhokdTnTa TNG Staeiptong Twv KAOEWV CLOTHHATOG TAPEXOVTAG TOVG pia Stemagn

vynhov emmédov.

EmunAéov, to io_uring vootnpilet Vo Aettovpyieg polling, Tig Aeyopeveg SQPOLL kat
IOPOLL, yia epappoyég pe vyniég amoautnoelg oe xapnAn kabvotépnon. To SQPOLL
Onovpyei éva kernel thread mov eAéyxet tnv SQ yla Stabéoipa artipara, evw to IOPOLL
ETUTPEMEL 0T Slepyacia OV €KAVE TO AiTNUA Vo EAEYXEL EVEPYA YLa OAOKANPWOELG T

OVOKELT 0TOXO.

0.3.3 Ublk

H eloaywyn tov unxaviopov emikotvwviag io_uring oto Linux, éxet evBappovel tn pe-
TAQOPA AELTOVPYLWV ATIO TOV TTVPHVA OTO XWPO XPHOTH OOV avTd eivat ePikto. Ot fa-
otkoi Aoyot yla avtnv TN petakivion mepthapfavooy (a) tn peyalvtepn evehi&ia otov
TPOYPAUUATIONO, KAOWG Ol TPOYPAUHATIOTEG UTTOPOVY VAL XPTOLHOTIOLCOVV SLAPOPES

YAwooeg mpoypappatiopon kat BipAodnkes (B) tnv evkohia oto debugging (y) tn pe-
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yaAvtepn ac@aleta, kKabdg Ta TPOYPAHUATA OTO XWPO XPNOTH HELWVOLY TOV Kivéuvo
OAKWV TPOPANUATWY 1} KPACAPLOUATWY TOV GVOTAHATOG 0€ avTifeon pe To evOexOLe-
vo Omtap&ng kdmolov odApartog otov muprva kat (8) emtpénovy avefdptnTn avantudn
KAl GUVTHPNOT Amd TOV TVPTVA, TOL 0TTOI0L TO TEPIPAANOV avanTuEng eivat apkeTd me-

PLOPLOTLKO.

Q0T1600, VTTAPYEL EVOG ONUAVTIKOG TTEPLOPLONOG: 1) entidoor). Ot kpiotueg Aettovpyieg mov
ATAUTOVV YPIYOPOUG XPOVOLG AOKPLOTG HTTOPEL va UV eival KaTAAANAEG yla peTagopd
07O XWPO XPNoTn Adyw TG avdnuévng kabuaTépnong oV EMKOLVWYVIa TOL TUPTVA e

TO userspace.

To ublk framework akohovOei Tnv iSta Aoywkn pe dvo emkolvwvovvta pépn, €va oto
XWpo xpnotn, To omoio Ba ovopalovpe “ublk server” 1 amAwg “server’, kat éva otov
nupnva, mov Ba to avagépovpe wg “ublk driver” ) amAd “driver”. To ublk, onwg oxe-
didotnke and tov Ming Lei, éxel evowpatwOel wg melpapatiké module otov moprva
tov Linux otnv ékdoon 6.0 kat vtootnpilet TPoG To MApPOV CUYKEKPLUEVOLG TUTIOVG EL-

KOVIKWV pmhok ovokevwv (tovg Null, loop, NBD kat gcow?2).

Xy napovoa StatpiPn, n éugao divetat oto target “loop”, yia to omoio vAomouOnke
EVa KPUTTOYPAPIKO cbotnpa €’ 0AokAnpov ato xwpo xpnotn (otov ublk server), dnwg

AVAPEPALLE KAl OTNV ELOAYWYT).

Tevikn Xxediaomn tov ublk

O ublk driver Eexivael, apotov poptwaoove To oXeTikd module otov muprva, Snpovp-
YWVTOG [l CVOKELT] XAPAKTHpwY, TNV /dev/ublk-control, ye Tnv onoia o ublk server
Ba aAAnkemidpd. O ublk server Eexivavtag, Snuovpyei éva instance Tov io_uring yia

va “wiAnoet” pe tov driver, kat avoiyet Tnv ovokevr ublk-control.

KaBe SQE mov Ba kdvet submit o server 6to io_uring Oa eivat tomov IORING_OP_URING_CMD.
To ovykekppévo opcode, eivat To io_uring command passthrough, mov avtiotoryei oe
évaaovyxpovo ioctl(). Me dAlaloyia, o server pe SQEs TOmov IORING_OP_URING_CMD

Hropei va oTéAvel avBaipeteg evtoAég otov driver péow Tov io_uring.

Eektvawvtog o server ekdidel pio evrolr) UBLK_CMD_ADD_DEV, kaBopifovtag tig Suva-
TOTNTEG TNG ovokevng Tov Ba vtootnpilet To ublk, 6mwWG 0 APPSO TWV OVpWV TTOVL N

ovokevr| Oa S€xeTat requests, 1 XwpnTIKOTNTA AVTOV TWV OVPWY, TO pEyebog Tov umhok
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kok. H emrtuyng ektéheon avtig TnG eVTOANG €xel wg OLVETELA TN Snpovpyia evVog a-
Kopa character device, Tov /dev/ublkcN, 6mov o ‘N’ eival To avayvwpLoTKO TG OV-
okevng. AvTh eivat  ovokevr} mov Ba Aettovpyroet wg fondog yla TNV emkovwvia Tov

server pe Tov driver katd tnv didpkela Tov data path.

Ev’ ovvexeia o server, kavetmmap () pia meploxn ano descriptors, yia va €xet mpooBaon
katd tnv Sdpketa tov data path. Kafe évag descriptor mpaktikéd Oa meptypaget éva
read/write request, kat xpnowonolwwvrag to device /dev/ublkcN, kdvel submit TO-
oa requests, 6oa eivat kat To uéyedog TG ovpdg Tov evnpepwvovtag Tov driver 6Tt TO

ovykekptpévo slot eivau étotpo va dexOel kdmoto request.

Téhog, o server exdidel pia evrolr) UBLK_CMD_DEV_START, OV éxel wG AMOTEAECHA Va
elpavioTel 1 ovokevn) PmAok /dev/ublkbN. ATd avTd TO OMUELO Kal ETELTA OL EPAPHLO-
Y£G UTTOPOVYV Va XPNOLHOTIOLoVV TV cvokevn avtr. Ta requests mov oTéAvovy, gTavouv
otov ublk driver péoa otov mupnva, kat o driver pe T oelpd TOL APOV EVNUEPWDOEL Yia
10 £idog Tov request Tov avtiototyo descriptor 0T polpalopevn mePLOXT LE TOV server,
Ba ovpmAnpwoet éva CQE yia va ikavomnoinoet to avtiototyo avoiytd SQE mov eixe kd-
vel tponyovpévwg o server. O server Eumvawvtag, AapPavel Ty andvtnon tov driver,
Kat e Paon mAnpogopia mov avtAei péoa and to CQE, mnyaivel otov descriptor tng
Hotpalopevng HVIHNG Kat EKTEAEL TO request TOL TEPLYPAPEL ETUKOLVWVWVTAG TO UE TOV
target. Otav n dovAetd ohokAnpwOei kat o target amavTtroeL o server eMKOVWVEL €K’
véou (e Tov driver yla va Tov evipepwoel yia TV oAokAnpwaor Tov request, kat o driver

{e TN oelpd Tov yvwoTonotel oto block layer tov muprva tnv andvtnon yia va Stadobei

MEXPL TNV EQAPHOYT.

0.3.4 Kpvntoypaenuévo Ublk

2e autd To onpeio, Oa avapepBolue TEPIANTITIKA OTIG EMEKTAOELG IOV KAvape 6To ublk
framework oe avtv v StatpiPn pe otdXO TNV LITOCTHPLEN KPLTITOYPAPIKWV AELTOVP-
ywv. Ot emektdoelg pag Pefatwvovy Tt Ta dedopEva OV EMKOLVWVODV Ol EQAPHOYES

pe to ublk Ba gTdcovv oTOV target oe kKPLTTOYPAPNUEVT HOPEPT).

Eektvovtag Oa avagépovpie kamoleg oxedlaoTIKEG pag eMAOYEG. Apyikd, 6000V apopd
70 €i00G TNG KPLTITOYPAPNONG, ATOPACICAE TN XPTOT) CUUHETPIKNG KPUTITOYPa@Piag yia
TNV KPUTTOYPAPNOT/ATOKPLTITOYPAPon dedopévwy, e TNV emtloyn Tov akyopibuov
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Advanced Encryption Standard (AES) mov xpnoipomnoteitat evphrata kat ivat ao@a-
g xau ypriyopos. Emdéape t Aettovpyia XTS tov AES, 1ot mépav tov yeyovo-
ToG o7t eivau To default operation mode tov AES oe moANEG kKpuTTOYpAPIKEG ADOELG OF
block devices, 6nwg to LUKS, to BitLocker kat to VeraCrypt €xet kat To TAgovéKTnUA
OTL ETUTPETEL TNV TTAPAAANAN KPUTITOYPAPTOT)/ATIOKPUTITOPYAPNOT), TPy TTOV eival

avaykaio yla Tig mapdAAnheg vAomouoeLg Hog.

Onwg avagépape kat otny eloaywyn 0.1.2, xwpioape tn Stadikacia kpLTTOYPAPNONG
oe 6Vo Sakptta oTadia. Xto TpwTo 6TadLo, Staxelpl{opaoTte To kUpLo kAeldi ov Ba xpn-
olpomotoovpe Kata Tnv didpketa Tov data path yia Tnv kpunToypagnon/anokpvntop-
yagnon twv dedopévwy. Ba TapovoLACOVIE CUVOTITIKA TO TPWTO AVTO KOO 0TAd0
yta OAeG pag Tig vAomouoelg, kal v’ ovvexeia Ba avagépovpe TIG KOPLEG OXESIATTIKEG

emAOYEG yia kdBe pia vAomoinon Eexwplota.

Awaxeipion Koprov KAedov

O¢\ape va arodnkebovpe To kOpLo kAedi (master key) oe éva apyeio woTe va pmopovpe
va To Xpnotponotioovpe Eava. Qotdoo, dev Ba ftav cogn kivion va armobnkedoovpe
1o master key akpvmtoypaento ot éva apxeio. EmmAéov, OéAape va pmopovye va mpo-
00¢tovpe véa kAedia kat va agatpovpe kAedta xwpig va aAldfovpe to ido To master
key. Kat avtd ot av to master key dA\ale Ba amartovoe v enavakpuntoypaen-
o1 oAokAnpov Tov diokov, Tpdypa ov dev eival TPAKTIKO yia péoa amobnikevong mov

umopei va amodnkebovv peydho oyko dedopévwv.

Avti n 16€a pag odrynoe va viobetoovpe éva oxnua tepapyiag kAediwv. Oélape
éva alho key mov Ba yxpnowpomoteitan yia Tnv Kpumtoypdenorn tov master key. Avtin

gvvola pag emTpETEL VA XELP{OUAOTE TNV KPUTITOYPAPNOT| pe HeyahbTepr eveldia.

Eniong 8é\ape va vootnpifovpe Tig akolovbeg vynlov emmédov Aettovpyieg:

« Anpovpyia evog véov kpumtoypagikov diockov. Apyikomoinon evog master key,

Kat amoBnKevoT| Tov o€ éva apxeio 0€ KPLTITOYPAPNUEVT HOPQPT].

+ Avorypa gvog kpumToypa@névov diokov avaktavTag To master key, mov mapé-

XETOUL O KPUTITOYPAPNUEVT HOPPT ATIO TO ap)Eio.

o IIpooBnkn evog véou kAeldiov.
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» Ag@aipeon evog kAetdiov.

T va pmop€covpie v DAOTIOGOVE KATIOLEG aTtd TIG Ttapandvw Aettovpyieg xpetalo-
HaoTav pia meptoxn Tov diokov 6mov Ba anmofnkebovpe TAnpogopieg petadedopévwy.
‘Etot akoAovBwvtag tn Aoyikn tov LUKS, katakdPape pia meptoxr otny apxn Tov ap-
xelov mov xpnotpomoteitat wg diokog oto ublk (loop target), yia ta petadedopéva tng
Kpuntoypdenone. Eva and ta ototyeia mov kpatdpe o€ avtd Ta petadedopéva eival kat
7o hash tov master key ¢to1 @ote va pmopovpe va Befatwvovpe tnv eicodo ot Xproteg

TIOV TIAPEXOVV TO GWOTO KPUTITOYPAPNUEVO KAELSL.

e authv TNV TpWTN 9Ao, xprotpomotovpe Tn PrpAtodrkn GnuPG Made Easy (GPGME)

[GNUa] yia 1 Staxeiplon Twv KPUTTOYPAPIKWDY AELTOVPYLWDV.

Kpuvnroypagnon Single-Thread

H evowpdtwon tng kpuntoypdenong otov ublk server Eekivd pe v mpwtn pag Avon,
tnv single-thread. e avtiv kdBe vrjpa tov ublk server avalappdver tooo tnv emkot-
vwvia pe tov ublk driver kat Tov 6t6)0 (TO ApyEio OV XpnotponoLeital wg diokog) 600

KA TIG AEITOVPYIEG KPUTITOYPAPNONG KAl ATTOKPUTITOYPAPTONG.

[a va dtevkoAbvovpe Ty Kputoypagnomn, tpocdéoaye kdmotovg mpoowptvovg buffers,
TEPA ATTO TOVG APXLKOVG OTOVG 0ToiovG 0 server dexotav Ta dedopéva and tov driver
o€ TepinTwon evog write request 1) €dive Ta dedopéva otov driver oty mepinTwon VoG
read request. Ot mpoowptvoi buffers xpnowomnolodvtal ya Tnv anobrkevon Twv kpv-
TTOYPAPNUEVWV OESOHEVWY TIPLY ATIO TNV £YYPAPT] OTO OTOXO (OTNV TEPIMTWOT EVOG
write request) kol yla TV anobnkevon Twv kpuroypagnuévwy dedopévwv mov ava-
KTOVTAL Ao TO 0TOXO TIPLV ATtO TNV Amokpuntoypagnon (otnv mepintwon evog read

request).

Zta write request, Ta dedopéva KPLTTOYPAPOVVTAL TIPLY TNV ATOOTOAN] OTO GTOXO, &-
v ota read, Ta KpuITOypaPNUEVA dESOLEVA ATTOKPUTITOYPAPOVVTAL UETA TNV AVAKTI-
o Tovg and 1o 01dX0. Ot kpuNTOYpaAPLKEG AetTOVpYieg Xpnotponolody Tn PipAodnkn

OpenSSL ywa AES kpuntoypdenon oe Aettovpyia XTS.

H kpuntoypdenon kat n anokpuntoypdenon npaypatomotovvrat avd sector. Ot buffer
nov Staxetpiletat o server yla va anobnkevet ta dedopéva, TG00 oL apxtkoi OG0 Kat ot

“npoowpvol” mov kataldPapie epeig éxovv péyebog 0.5Mb. Ztnv mepintwon Aomov
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TIov o sector eivau 512 bytes, kd0e buffer pnopei va anoOnkevoet éwg 1024 sector. Kade
Aetovpyia kpLTTOYpAPnOoNG/amokpLTTOypdenong Aowmdv mpaypatomnoteitatl Stadoxt-

KA yta k&Be sector Twv 512-byte ano6 tov ublk server.

Kpvntoypagnon Intra-Block

H devtepn kpuntoypagikr pag Ao, Baciletat otny mapdAAnAn ektéleon tng KpLTTO-
ypagnong/amokpuvntoypagnong AES-XTS. Ze avtifeon pe trn single-thread vhomoinon,
OTIOV 1] KPUTITOYPAPTOT)/ATIOKPVTITOYPAPT 0T KABE TURHATOG TwV 512 bytes yivetau Sia-
doxkd, o avtr) TV VAomoinon kdbe vijpa Tov ublk server dnuiovpyel éva pool vnpatwv

Kat SlavEpEL TNV epyacia 0T VUATA-EPYATEG.

ZUVETIWG, Ol EPYATIEG KPLTITOYPAPNONG KAl ATTOKPLTITOYPAPNoNgG avatiBevtat oe Eexw-
pLOTA Vpata avTi va ektedovvtat anevbeiag amod To kvpto vipa Tov ublk server. Avto
emTpémneL TNV TapdAAnAn ene§epyacia Twv sectors (e TOVG EPYATEG VAL KPUTITOYPAPODY
napdAAnAa and tovg apyikotg buffers atovg mpoowptvovg, 0TV MEpiMTWOT EVOG Write
request, Kal Vo AOKPLTITOYPAPOVV ATtO TOVG TPOCWPLYOLG 0TOVG apyikovg buffers otnv

nepintworn evog read request.

O apBudg Twv vnuatwy gival TapapeTpononpuévog kal pmopei va tebel katd v ek-
kivnon tov server. O ovyxpoviopog petalh Tov KOPLOL VAHATOG KAl TWV VIHATWYV-
gPYaTWV emTLYXAVETAL PEéow SO barriers, emTpénovtag 0To KVpLo VA va avabétel
epyaoieg kat va mepPEVEL Yia TNV OAOKANPWOT) TOVG XwpIG TNV avAyKn yia emTAEoV

Khedwpata.

Kpvnrtoypagnon Inter-Block

2Ny Tpitn KPLTIITOYPAPLKT pag Avorn, mov ovopdoape inter-block, To kbpto vipa Tov
ublk server avaBétet oAokAnpo to buffer yia kpuvntoypagnon n anokpuvtoypdPnon oe
éva vijpa-epydtn, kat ovvexilel pe v enefepyacia twv emopevwy artnudtwy. Kat oe
auTrv TNV VAomoinon Aowmdv €xovpie €va pool amod VijpaTa-gpydTeg, LOVO TTOL TO KVPLO
vrjua tov ublk server 8ev popadlet tov buffer yia kpvnroypagnon/anokpuntoypaenon
OTOVG EPYATEG OTIWG €kave 0T SevTepT LAOTOINOT, AAA& avabétet oAdKANpoO TO aitnua

0€ KATOLOV aTtd avTog Xwpig To 810 va UmAOKApEL TEPLHEVOVTAG TNV ATAVTNOT).
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2e avtiBeon Aomdv pe Tig mpornyobueveg vhomowoelg, 1) inter-block mpooéyyion datn-
pei v I/O-bound @Oon tov ublk server, apatpwvrag tnv avdykn amod to kOpLo vijpa va
katavalwvet CPU ektedwvtag TNy kpuntoypagnon (otnv mepintwon g single-thread
vAoToinomng) 1 va TePLPEVEL TNV OAOKATpWOT TWV KPUTITOYPAPIKWV AeLTovpylwv (0Tnv
nepinTwon tng intra-block vAomoinong). Avto emtpénel otov ublk server va xepifetat
Ta artfipata I/O StatnpdvTag TNV apyLTEKTOVIKT] TOL TPOCAVATOALGUEVT 0TV YPIyopPn
ene§epyacia aVTOV TWV AUTHUATWY KAl TNV ATOOTOAN TOVG 0TOV KAtdAAnAo mapain-

).

H emxowvwvia petagd Tov kKUpLov VIHATOG KAt TWV VIHATWV-EPYATWV YiVETAL HEOW &-
vog eventfd kat evog condition variable. ITio ovykekpiéva, To KOpLo vijua, XpnoLpo-
notel To condition variable yia va evnuepwoel Ta VAHATA-EPYATEG Yia VEEG EPYAOIES.
AvTo egmiTpémnel 0TO KOPLO VI va cuvexilel TNV VTTOBOAN Kat AVAUOVT yla amavTh-
O£1G AUTNUATWV XwpPiG va kabBvoTepel and TIG KPLITOYpAPLKEG AetTovpyieg. ATO TNV
AAAN N emKovwvia amd Evav epyatn TPogG TO KVPLO VIHA Yot TV YVWOTOTOINOT TG
OAOKANPWOTNG TNG KPLTITOYPAPNOTG/ATIOKPLTITOYPAPTONG piag epyaciag yivetat péow
Tov eventfd, yla To omoio To kOplo vijpa éxet vroPdiel éva SQE otov mupnva yia poll
request. Me &A\a AOyta, To main thread €xet (ntrioet and Tov muprva va to {umvroet
o€ TePIMTWOT OV KATOL0G Ypdyet oTo eventfd. Zvvenwg pe avtdv TOV TPOTO, EVNpLE-

PWVETAL YL TNV OAOKANpWOT) KATIOLAG KPUTITOYPAPLKNG EPYATIAG.

H Siaxeipton Twv altnpdTwv HETAED TOV KUPLOV VIUATOG KAL TWV VIUATWV-EPYATWYV Yi-
VETAL [EOW EVOG KOLVOU HeTAED TOVG avTikeuévou ov TepthapPavel ovpég vIoBoAng
Kat ONoKAfpwonG, kabwg kat Evay mivaka and dopég artnpdtwy (struct request) kd-

O¢ pia ex” TwV omoiwv TEPLYPAPEL [Liot KPUTITOYPAPLKT EpYaTiaL.

0.4 YMAomoinon

KaBwg 010 ovykekpiuévo ke@alato Tapovotalovpe (o GUVOTITIKT TIEPLYPAPT] TwV AD-
O€WV LG, TIG VAOTIOLOELG G UTTOPEITE Va TIG BpeiTe 0TO avTioTOLXO oy yAIKO KeQAAato

4.
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0.5 A&oloynon

2e auTo TO KEQANALO, TTAPOVOLALOVLE CUVOTITIKA TNV A&loAOYNOT TWV LAOTIO|CEWY HAG.
ZUYKPIVOVE TIG TPELG KPUTITOYPAPLKEG [ AVOELS Yo va eEAyovLe GUTEpATUATA O)E-
TIka pe Ta lava o@éAn 1) mayideg Twv mapdAAnAwv Aoewv pag, fe 0ToX0 va Ppovpe
TpOTOVG Vat TG PeATidoovpe 0To uéAAoV. Ot petprioelg mov mapovotalovpe £yvay xpn-
owomnolwvtoag to fio [Axbc], éva mapapetponomoipo mpdypappa mov Sokipalel optia

gpyaoiag Kat HeTpd TNV anddoon Tovg.

[TpaypatoTmotoale TIG LETPHOELS Hag O €va unxavnua tng Amazon Web Services (AWS),
ovykekplpéva €va povtélo c5d.2xlarge. Avtd To punxdvnpa XpnoLULOTOLEL TV apyLTE-

KTOVIKT X86_64.

E€autiog tng ovyvrg xpnong tov AES oe mAn08og epappoywy, n Intel apyikd oxediaoe kot
EVOWUATWOE 0TOVG eMEEEPYATTEG TIG KATIOLEG VEEG EVTONEG pe 0TOXO TN Behtiwon tng
anodoong tov aAyopifuov kpvntoypagnong AES. To Advanced Encryption Standard
New Instructions (AES-NI) eionyaye 6 véeg evtohég yia ektédeon tov AES oe eminedo

VAKOV.

O enefepyaotng mov XpnoLloTotoape yla Ti§ HeTproels vtootnpilet to AES-NI, onwg
kat 1 BtPAodnkn OpenSSL. Ot Sokipég mpaypatomotr|Onkay pe TiG véeg eVTONEG evep-
YOTIONUEVEG Kal AmevePYOTONUEVEG. [la Vo TIG AMEVEPYOTIOLTOVLE, XPTOLHLOTIOLCALE
TN petaPAntr mepipdAlovtog OPENSSL_ia32cap. Kavape petprioeig pe dvo eidn 1/0:
oLyxpovo kat acvyxpovo. Tig achyxpoveg HETPHOELG pag TIG KAvape e To io_uring.
KaBe pétpnon mpaypatomotOnke ya block size 4Kk, 8k, 16k, 32k, 64k kat 1m pe 6t6)0
Va €YOVE Wial IO OPALPLKT| ATTOYT Yl THV amodoon TwV VAOTONOEWY [ag o€ Slagope-

TIKoV peyéBoug requests.

T O\eg T1G petprioets, Eexiviioape to ublk pe Tig default mtapapétpovg (pia ovpd yla va
déxetal request, peyéBovg 128), kat ot maparinAeg viomnowoetg (ublk-intra kat ublk-

inter) eixav 4 vijpata-epydTec.

Tevikd XxoAa

Metpnoeig xwpig AES-NI

Ot petprioetg mov AdBapie xwpic Tig véeg eVTOAEG, oupPadiCovy pe avtd mov mepiuévayte
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va dovpe and T VAomomoelg pag. Mo avaAvtikd, oTny TePIMTwon Twv oVYXpovwy
Aettovpytay, 1 ublk-single vAomoinon eivat kaAbtepn yla pikpol peyébovg request, e-
v kabwg to request peyahwvel oe péyedog n ublk-intra kKhipakwvet kalbtepa kat Ty
Eemepvdet. H ublk-inter oe avtn v mepintwon dev pmopel va enweeAndei anod tnv
napaAnAia, StotL vtapxet Eéva povo request on the fly. Ané tnv dAAn oty mepintwon
OTIOV £XOVLE ACVYXPpOVa requests e TO i0_uring, mapatnpovpe oti 1 ublk-inter vAomoi-
non eivar KahvTepn akoun kat av avtd eivat pikpov peyéBovg. Avtifeta n ublk-single
vlomoinon dev kApakwvet kadd, KATL TOL eivat Aoyiko kabwg dev pmopei va expeTal-

AevTel 0TO £€MAKPO TO YEYOVOG OTL LTIAPYOLV TIEPLOTOTEPA TOV £VOG requests on the fly.

Metpnoeig pe AES-NI

Ot petproetg mov AaPapte tpéxovtag ta workloads pie Tig véeg evtolég, dev ovpPadiCovv
He avTd oL Teptuévape va dodue anod Tig vAomowoelg pag. H ublk-single vAomoinon
Eemepvd TIg TAPAAANAEG AKOA KAl OTNV TEPIMTWOT TWV aoVYXpovwy requests. Paive-
TaL OTL T YPIYOPN TPAYUATOTIONGOT TWV KPUTITOYPAPIKWV AELTOVPYLDV TIOV ETUTPETOVV
Ol VEEG EVTOAEG elval TTPOTIHOTEPT ATO TNV EMPAPLVOT) IOV TTPOoTOETEL 1) dlayeiplon Tov

napaAAnAiopot otig ublk-intra kat ublk-inter vhomotrjoel.

Duoika Ba XpelaoTel va TIPAYHATOTO|OOVE HETPTIOELG KAl OE GLOTHHATA [e LYNAO-
TePO eVPOG LWwvNG, kaBwg TOANEG peTpnoets pag (Staitepa requests pHeyaATEPOL HeYE-
Bovg) gtavouv oto “Taavt” Tov EVPOVG LWVNG TOVG UNXAVI|LATOG ATt OTTOV A&PBapie Tig
HETPNOELG Kat £TOL 8&V HaG EMUTPETOVY VA £XOVE [iat TILO OANOKANPWEVT ATTOYN Yl TV

OXETIK amdd00T TWV VAOTIOOEWV [AG.

0.6 Emiloyog

To Tta&idt pag Eexivnoe pwv amod évav mepimov xpovo e Evtovo evllagépov ya ta Aet-
TOVPYLKA ZVOTHHATA KAl TEPLEPYELA YL TOVG XAUNAOD ETUTEGOV [NXAVIOHOVG TTOV XPT)-
otgomotei o muprvag Tov Linux. Avtr n mepiépyela pag odnynoe oto io_uring. Agov
peetnoape TG Pactkég Tov apxée, Oélape va eQaprOCOVHE TIG YVWOELG IOV ATTOKOLI-

OQE 0€ KATL TIPAKTIKO, KA&TL IOV pag odrjynoe oto ublk.

Apykd, n éMewyn documentation yopw amd 1o ublk pag avaykace va peletroovpe
TOV Tyaio KOSIKA TOV yia va KATAVONOOLE TIG AelTovpyieg Tov. AvTh 1 eumelpia

frav moAvTipn, kabwg pag didage Oxt HOVo véeg €vvoleg alAd Kat TO TWG Vo TIPOoEYYi-



0.6. EIIINAOI'OX XXXixX

{ovpe ovotnuatikd dyvwota codebases, KATL TOL €ivat ONHAVTIKO, SlaiTtepa amévavTt

o€ TOADTTAOKA CLOTHHATA OTIWG O TTVPTVaG Tov Linux.

O 010X06 pag 0T ovvéxeta éytve To Eekabapog: va ovvelopépovpte oTo ublk evowpa-
TOvovTag anevbeiag éva KpLTToypaPIkod povomdtt otov ublk server. Avtd pag emétpe-
Y€ VO CLVELOQEPOVIE OVOLAOTIKA O€ avTO To framework, evw amoKTOVCAE TIPAKTIKT

epmetpia pe mpotuvma 0nwg to LUKS kat to AES-XTS.

Téhog, avtr i StatpiPr) pag mapeixe TV evkatpia va egepevvrjoovpe SLagopeTikég MTL-
X€G TApAAANAOV TIPOYPAUUATIONHOV, Va a&LOAOYT|COVHE Ta OQEAT KAl TOVG TIEPLOPLOUOVG

TOV KOl VA ATTOKTHCOVE [ia TTPAKTIKY aVTIANYT 0TIV EQAPUOYT| TOV.

0.6.1 MeAlovtiko Epyo

[apakdtw mapatiBevral kamoleg LeANOVTIKEG KaTeVODVOELG OXETIKA pe avTh) TN Statpt-

pi:

o Efepevvnon evallaktikwv kpumtoypagikav BiAodnkwv (mx. libgerypt) kat
oVYKpLOT| TNG andd00TG TOVG He Ta amotedéopata Tov Angdnkav xpnotponoww-

vtag v BiAtodrkn OpenSSL.

o Tlepautépw €pevva yla tnv davikn Stapodpewaor Tov apluod Twv VpdTwv-gpyatwy
0TI TapAAANAEG ADOELG pag. ZKOTOG LA Eival va SOKILACOVE KAl VoL LETPTIo0V-
pe tnv anddoon twv ublk-intra kat ublk-inter vo SrapopeTikd popTtia epyaciag
Kat og Stapopetikd meparlovta pe Stapopovg aptduons ViHdTwy, yia va Ka-

Tavoroove TNV emidpaot) Tovg oty anddoon.

o Avdamtoln pag amodotikotepng peBodov emkotvwviag yia Ty Tpitn Lag vAomoi-
non (ublk-inter) mov pewwvet TNV avaykn ya kKAeldwpata otny entkovwvia Tov
KVPLOV VIHATOG pe Ta Vipata-gpyates. Exovpe apyioet va vAomotovpie pia eval-
AQKTIKT TIPOOEYYLOT PACIOUEVT) OTNV LTAPXOLOA, 1| OTOLOL HELWVEL TNV AVAYKN

yta andkTnon evog KAESDUATOG ava VTTOPOAT] AULTHHATOG.

« ZVVElOPOPA TNG epyaociag pag upstream oto ublk.
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Introduction

1.1 Motivation

Linux is an Operating System (OS) widely used worldwide for both industrial and do-
mestic purposes. The majority of the servers running globally, smartphones running
Android and the top 500 supercomputers prefer Linux as their OS. [Top, HS]. Many
of Linux’s characteristics have made it the go-to OS for many companies and vendors,
mainly because it is open source, non-proprietary, and extendable. While Linux un-
doubtedly thrives on servers, in recent years, it has also been making significant strides

in personal computers.

The main purpose of an Operating System, is to act as a bridge between userspace appli-
cations and hardware. Applications that run in userspace aren’t allowed to communi-
cate directly with the hardware. This is where the OS comes into play. If an application
wants to access hardware (e.g. read from a disk), it needs to request the OS to perform
the corresponding action on its behalf. These requests are known as system calls. When
the kernel runs on behalf of a process executing a system call, we refer to it as running
in process context. The other context in which the kernel can run is interrupt context,

which occurs when it services an interrupt triggered by a hardware component.

System calls are a set of interfaces (an API) offered by the OS to the userspace appli-
cations, in order to allow them to interact with hardware devices such as the CPU and

disks.
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Putting an extra layer between the application and the hardware has several advantages

[BCOG]:

» Makes programming easier by freeing users from studying low-level program-

ming characteristics.
o Greatly increases system security.

« Makes programs more portable.

Of course, nothing great comes free. System calls are expensive. Transitioning from
user mode to kernel mode in order to execute a request comes at a cost. Apart from this
overhead, an application that performs a system call, blocks until the request is satisfied,
at least in case of blocking I/O (see Section 3.1 for types of I/O). This means that even if
the application has other tasks to perform that don't depend on the results of the system
call, it cannot execute them. These issues are particularly critical in applications with
high specifications, that require super fast, low-latency data access. Response speed and
resource utilization play pivotal roles. Consequently, a lot of effort have been directed
towards improving the entire I/O data path and mitigate some of the challenges system

calls expose.

Welcome, io_uring!

io_uring [Axbb] is an asynchronous system call interface for the Linux kernel, which
has been merged in version 5.1 by Jens Axboe, the current maintainer of the Linux
kernel block layer. It was created to solve the asynchronous I/O problem. This is a func-
tionality that Linux has never supported as well as users would have liked [Cora]. In
a nutshell, io_uring provides two memory mapped bufters, shared between userspace
and kernelspace. The entire communication takes place there. It’s architecture supports
the natural batching of requests (i.e. system calls) and responses, leading to a signifi-
cant reduction of the context switches. In general it is an interface designed in a way to

provide efficiency, scalability and extendability.

As a natural consequence new frameworks are appearing, aiming to take advantage of
the new, faster communication interface, io_uring provides. The idea is that if we spend

less time communicating with the kernel, then we can extract functionality of it and



1.2. PROBLEM STATEMENT 3

implement it in userspace, which generally provides increased safety, flexibility and ease

for debugging.

One such framework is ublk, introduced by Ming Lei in Linux v.6.0 [Lei]. Ublk is a
framework for implementing block device drivers in userspace. Ublk consists of two
components. An in-kernel driver and a userspace component. The driver acts as a
bridge between the userspace component and the rest of the Linux kernel. All the im-

plementation is taking place in userspace.

1.2 Problem Statement

In its current version, the ublk framework doesn’t support encrypted operations. The
encryption of the backing file that serves as a disk, solely relies on the system’s encryption
capabilities. In other words, if the system running ublk does not implement any form

of encryption, the data written to the backing file remains unencrypted.

A very simplified version of ublk framework is illustrated in Figure 1.1.

\,
|
=@

Userspace

Kernelspace

Hardware

Figure 1.1: General View of ublk Framework

Ublk framework consists of two communicating components: an in-kernel driver com-
ponent, which we will refer to as “ublk driver”, and a userspace component, which we
will refer to as “ublk server”. These two are communicating via an io_uring instance.

Ublk can support many targets (i.e. implement different Virtual Block Devices). In this
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diploma thesis our focus is the loop device target. A loop device is a block device that
maps its data blocks not to a physical device such as a hard disk or optical disk drive,

but to the blocks of a regular file in a filesystem or to another block device [mpd].

When an application using ublk, wishes to send an I/O request, this request traverses
through the in-kernel subsystems (see Section 2.4 for more), ultimately reaching the
ublk driver. Then, the ublk driver forwards the request to ublk server using an estab-
lished io_uring instance, providing userspace with an opportunity to manipulate the

request before it is sent to the backing file.

Let’s take a look at Figure 1.1, which helps us understand the challenge we face in the
current ublk implementation. Imagine an application wanting to write data to the de-
vice. It triggers a system call and provides the corresponding bufter to the kernel. Once
the request reaches the ublk driver, the data is copied to a userspace buffer within the
ublk server’s virtual memory and the driver informs the server that a request arrived.
The ublk server then, sends the request to the backing file as is. Consequently, the raw
data are stored in the backing file in the same form they had when initially sent by the
application. This remains true unless the file system itself operates on the data before
the block device driver comes into play or if the backing file is stored on a form of Self

Encrypted Drive [Arc].

This fact, places the burden on the application to either be aware of the context and
environment in which the ublk framework operates, or to handle encryption on its own
if the desired level of privacy is not guaranteed otherwise. For instance, the application

may need to encrypt the data prior to sending them to ublk.

Linux represents internally (almost) everything as a file. “Everything is a file” in Linux.
It manages file access using user identification and permissions, offering a satisfactory
level of security for typical use cases. Nevertheless, the lasting nature of disk storage in-
troduces a vulnerability that standard operating system permissions alone cannot fully
address. If your disk is seized or stolen, your secrets are exposed. Hence, when han-
dling sensitive files, it becomes mandatory to store data on the disk in a manner that
guarantees the safety of information. To achieve this, a lot of effort has gone into how
we can protect data stored on a disk. Numerous software and hardware solutions have
been suggested over time, but finding a one-size-fits-all answer is not an easy task in a

diversify field like software management. Each case has its unique demands and might
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need a different approach compared to others.

1.3 Proposed Solution

We designed and implemented an encryption schema that enables ublk to save the data
of an application in the backing file encrypted. This way, security-sensitive applications
can utilize the device exposed by the ublk framework, without needing to independently
manage the security of their data. Our implementation is carried out completely in

userspace, as part of the ublk server.

We split the encryption process in two different phases.

) \

Decrypted
Key

1
|
1
|
|
1
Password :
|
1
1
I
I

Encrypted Decrypted
Key Key

Figure 1.2: 2-phase Encryption Schema

« Phase 1: When starting the ublk framework we specity a .gpg file that contains
a cryptographic key. The file itself is encrypted, ensuring its protection. In this

phase we decrypt this metadata file and extract the key.

 Phase2: Ublk server uses the derived key from phase 1, to perform cryptographic
I/O operations on the device. We employ symmetric cryptography, specifically
AES-256 in XTS mode for this purpose.

So, when an application writes data to the device, the ublk server encrypts the data and
stores it in the backing file. Similarly, when a user requests data from the device, the
ublk server retrieves and decrypts the data. This decrypted data is then passed back to
the ublk driver and subsequently to the end user.

Our goal was to ensure the security of data stored in the backing file, and provide ap-

plications with the opportunity to use the ublk framework without needing to manage
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Userspace

Kernelspace

Hardware

Figure 1.3: General View of a Write Request in Encrypted Ublk Framework

the encryption procedure themselves. Our solution guarantees that no file information
will ever be stored on the device in plain format. As a result, even if the disk is stolen or

seized, no data can be extracted without knowledge of the encryption key.

For each phase, we used a different cryptographic library to achieve our goal. In phase
1, we used the GnuPG Made Easy (GPGME) [GNUa] library, to encrypt and decrypt the
relevant file and obtain the data key, while in phase 2, we utilized the OpenSSL library
[Ope] for on-the-fly data encryption and decryption.

Furthermore, we implemented the second phase of the encryption in three different

ways:

« Single-thread: The main thread of ublk server, responsible for communication

with the ublk driver, was also handled encryption and decryption.

o Intra-block parallelism: We created a thread pool consisting of working threads.
Instead of personally performing encryption/decryption on each buffer, the main

thread now divides the buffer and distributes each segment to the working threads.

« Inter-block parallelism: Similar to intra-block parallelism, we created a thread
pool with working threads. However, in this case, the main thread hands over the

entire buffer to a working thread before continuing.
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In doing so, we were able to experiment with the efficiency and challenges of paral-
lel computing in two distinct forms (inter and intra block parallelism). We compared
these approaches with the single-thread case, and ultimately uncovered the limitations
and potential benefits of parallelism. Our ability to implement parallelism in our cryp-
tographic schema, was made possible by the use of the AES algorithm [Wika] in XTS
mode [NIS].

The parallelization of XTS mode depends mainly on an important feature of this mode
in which each block of data can be encrypted independently without any relation to
other blocks. This feature allows the encrypted data to be divided into different portions
in such a way that two successive blocks of data can be processed concurrently in two

different processing units [MAAR].

1.4 Outline

The rest of this thesis is structured as follows:

« Chapter 2: We provide background information for readers who want to under-

stand the rest of the thesis.

« Chapter 3: We present the design of the io_uring mechanism, the ublk frame-
work and the design of our three cryptographic solutions. Also we discuss the

relevant to our solutions concepts of LUKS, AES and XTS.

« Chapter 4: We present the implementation of our three cryptographic solutions

along with the common key setup phase.

 Chapter 5: We evaluate our solutions and make comments on their efficiency

based on the results.

« Chapter 6: We conclude with a summary of our work and with some directions

for future work.






Background

During our survey on ublk, we encountered a lot of interesting features. In this chapter,
we will focus on some of these, which are necessary for understanding the concepts

presented in the rest of this thesis.

We will provide a brief overview of the Linux operating system. We will examine the
subsystems related to the I/O stack, ranging from applications to disks. This exploration

will help us clarify how data flows within the Linux system.

Finally, we have included a chapter on elementary cryptographic concepts and some
background mathematics. This foundation will be useful when we will encounter the

AES algorithm in the next chapter.

2.1 Linux OS

Linux is an operating system (OS) created by Linus Torvalds, a Finnish software en-
gineer. He began its development as a personal project and made it open source on
August 25, 1991, 32 years ago. As Linus stated in his first announcement «I'm doing a
(free) operating system (just a hobby, won’t be big and professional like gnu) for 386 (486)
AT clones...» [Verb].

Of course it eventually turned out to be a very professional one! Linux is a Unix-like
OS and quickly gained the attention of the open source community. Because many
developers had access to the source code, they helped Linus rebuild and refactor the

kernel and by 1994, Linux kernel version 1.0 was released [Wikg].
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Nowadays Linux runs everywhere. From mobile phones to personal computers and
from embedded devices to supercomputers. One of the more attractive advantages of
Linux is its non-commercial nature: the source code, governed by the GNU General
Public License version 2 (GPLv2), is open and accessible for anyone interested in study-

ing it. Along with this, some other Linux’s characteristics are:

« Reliability and Stability: It can handle heavy workloads and runs for long periods
without restarts. This makes it a top choice for crucial systems like servers and

supercomputers, ensuring consistent operation even in high-pressure situations.

o Security: Its design makes it tougher for malware, setting it apart as a secure

choice. It also benefits a lot from open source review to quickly fix vulnerabilities.

« Flexibility: It offers limitless customization, allowing everyone to find their fit in
the diverse Linux ecosystem. With various distributions, desktop environments,
package managers, and more, users can explore differences and personalize their

Linux experience.

2.1.1 Operating System vs Kernel

The kernel is the big chunk of executable code in charge of handling all requests from
processes asking to access system resources. Technically speaking the kernel is part of
the operating system, not the whole operating system. It is its core component, and the
first program that bootloader loads into memory. But an operating system consists of
other system programs that are not part of the kernel. Typically, an OS is shipped along-
side a Graphical User Interface (GUI), a compiler, a package manager, a command line
interface (e.g. bash), system libraries and many more. A kernel without these interfaces
would be useless in most cases, and of course all these system programs interact with

the kernel to provide to the end users the desired result.

Note: From now on, we will use the terms “kernel” and “operating system” interchange-
ably. As previously noted, the kernel constitutes the fundamental element of the OS, and

this interchangeable usage is a commonly accepted convention.



2.1. LINUX OS 11

2.1.2 And...what a kernel does?

Although the distinction between the different kernel tasks is not always clearly marked,

the kernel’s role can be split (as shown in Figure 2.1) into the following parts [RKHO05]:

Process management: Manages process creation, communication, and schedul-

ing, enabling multiple processes to run efficiently on one or more CPUs.

« Memory management: Creates virtual address space for each process, coordinat-
ing memory management through a range of function calls, from basic allocation

to more complex ones.

o Filesystems: Linux treats almost everything as a file. It builds a structure filesys-
tem atop hardware, while it supports various filesystem types for organizing data

on physical volumes.

« Device control: Nearly all system operations correspond to physical devices, and
except for a few core components (like memory and CPU), specific device-related
code, called “device driver”, handles device control. These drivers are part of the

kernel.

» Networking: Network activity is managed by the OS. It collects, identifies and
dispatches outcome and income packets, serving the needs of all processes want-

ing to access a network.

2.1.3 user mode vs kernel mode

A process is a program that is loaded into the system’s memory and executed. In this
context “execute” means that the Central Processing Unit (CPU) fetches instructions

from a memory region specific to the process and carries out with their execution.

Typically each CPU architecture incorporates multiple protection layers known as priv-
ilege rings. Each process’s instruction is executed within one of these protection rings,
having its own resource access rights. The innermost ring has the highest privilege,
while the outer ones have progressively fewer privileges. For instance the x86 architec-

ture, employs a 4-ring protection layer schema as depicted in Figure 2.2.
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Figure 2.1: A High-Level View of the Kernel

Modern CPUs offer at least two distinct execution modes: a nonprivileged mode for
the user and system programs, and a privileged mode for the kernel. These modes are
referred to as user mode and kernel mode (also known as supervisor mode). User
mode corresponds to the outer ring, while kernel mode corresponds to the inner ring.
This design enables CPU to differentiate between different level of privileges, thereby

preventing users from executing commands that exceed their permissions.

Linux adopts a two-ring protection model: Ring 0 signifies kernel mode, and Ring 3

signifies user mode. Rings 1 and 2 are not used.

2.1.4 userspace vs kernelspace

Userspace denotes the memory space where user applications and operating system-
related processes execute. Everything apart from the kernel runs there. Userspace pro-
cesses can be divided into system processes, executing system-related code, and user

processes, executing user code.
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Figure 2.2: x86 Architecture: Privilege Rings

On the other hand, kernelspace refers to the memory space in which the kernel operates.

To make the distinction clearer: userspace and kernelspace relate to the memory where
processes operate, while kernel mode and user mode refer to the CPU’s operational

mode when executing instructions.

Consider a simple “Hello World” program like the one shown in Listing 2.1:

#include <stdio.h>

int main(int argc, char *argv[])
{
printf(”Hello, World!\n”);

return 0;

Listing 2.1: Hello World!

Let’s see what occurs when a user runs the executable generated from the program in

Listing 2.1:

1. The OS loads the program into memory and initiates a new process to execute the
hello_world program. This process operates in userspace, and its instructions

run in user mode on the CPU.

2. When the instruction pointer (IP) reaches the printf() command, it actually

executes code from alibrary function in the glibc’ s library. This library function
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is essentially a wrapper around the write() system call. The process remains in

userspace.

3. Asthewrite() system call begins, the kernel is invoked to fulfill the correspond-
ing request. At this point, the execution shifts from userspace to kernelspace, and

the CPU’s instruction execution is in kernel mode.

4. Once the kernel completes the system call, it returns a status code indicating the
result. Control is then handed back to userspace, enabling the execution of the

next instructions in the program (in user mode).

CPU runs
in user

mode

Userspace

CPU runs
in kenrel
mode

Kernelspace

Figure 2.3: Userspace vs Kernelspace

Note: In the rest of this thesis, the terms “kernelspace” and “kernel mode” will be used
interchangeably to signify the kernel’s operation. Similarly, the terms “userspace” and

“user mode” will denote all other cases.

2.2 Kernel Architecture

2.2.1 Monolithic vs Microkernel

Linux kernel like most of the Unix kernels, is monolithic: each kernel layer is integrated
into the whole kernel program and runs in kernel mode on behalf of the current process
[BCO6]. In other words monolithic is a kernel that there is no protection between the
various kernel subsystems and where public functions can be directly called between

various subsystems [Teab].
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In contrast, there exists another kernel design, named microkernel. This is a mini-
malist design approach, where the kernel is kept as small and simple as possible. In a
microkernel system, the kernel only includes the most essential functions. Additional
functionality, is moved out of the kernel and into separate userspace modules, known
as servers or services. Because significant parts of the kernel are now running in user
mode, the remaining code that runs in kernel mode is significantly smaller, hence mi-

crokernel term.

In a microkernel architecture the kernel contains just enough code that allows for mes-
sage passing between different running processes. Essentially, that means implement-
ing an inter-process communication (IPC) mechanism in the kernel, as well as some
functionality on memory management to achieve the protection between applications

and services.

Both designs have their advantages and disadvantages. It is obvious that microkernels
isolate the different subsystems to a greater extend. As a result, if a service crashes,
we can just restart it without affecting the whole system. Bugs in one service can’t af-
fect other services. On the other hand, such operating systems are generally slower than
monolithic ones, because the explicit message passing between the different layers of the

operating system incurs an overhead. What is a simple function call between two sub-
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Figure 2.5: Microkernel Architecture

systems on monolithic kernels, now requires going through IPC and scheduling which

of course, comes at a cost.

Kernel modules

In order to attain many of the theoretical benefits associated with microkernels, while
avoiding potential performance drawbacks, the Linux kernel uses a feature known as
“modules” A module is essentially an object file containing code that can be dynami-
cally linked and unlinked from the kernel during runtime, via the programs insmod and
rmmod respectively. This object code typically comprises a set of functions that imple-
ment what is known as a “device driver”. The difference with the microkernel-based
operating systems, is that modules do not operate as distinct processes, instead, they
run within kernel mode on behalf of the ongoing process, like any other statically linked

kernel function.
The main advantages of using modules include:
« Logically organize the kernel in subsystems.

« Save main memory, by loading a module only when it is needed and unloaded

afterwards.

o Force developers to adopt a modularized approach on their design.
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2.2.2 Device Drivers

Linux categorizes devices into three fundamental types: character devices, block de-
vices and network devices. Each kernel module, usually implements one of these types
and hence we classify them as: character modules, block modules and network mod-
ules. Of course this classification isn't strict, and developers can choose to combine dif-
ferent types of device drivers, into a single module, although it is highly recommended

to create separate modules for different functionalities.

More specifically the three classes are:

1. Character devices: Devices that provide sequential access of any I/O size down
to a single character. The corresponding driver, usually implements at least the
open(), close(), read() and write() system calls. Such devices include key-

boards and serial ports.

2. Block devices: Devices that perform I/O in units of blocks (usually in 512 byte
chunks named sectors or a larger power of two). These blocks can be accessed
randomly based on their block offset, which begins at 0 at the start of the block
device [Gre20]. Kernel uses the corresponding driver to implement two main
functionalities: «read block with number N and write its data in memory pointed
to by buf »and «retrieve the data stored at buf and write them at block N». Although
block drivers have a completely different interface inside the kernel, Linux enables
applications to treat block devices similarly to char devices, presenting a transpar-
ent interface for both of them. The difference between them is managed internally

by the kernel.

3. Network devices: Peripheral devices that can send and receive data packets to and
from other computer systems. This category includes physical network cards (like
etho, eth1 for the first and second Ethernet adapters) as well as virtual network

adapters like 1o for packets sent to the same machine.

In this thesis, we didnt come across any network device drivers. However, we en-
countered both character and block device drivers. Therefore, let’s examine them more

closely.
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Access to devices via special files

As stated earlier, users interact transparently to both block and character devices. The
kernel exposes those devices in a special directory named /dev. So, on the one hand we
have the device driver which provides the communication on behalf of a user program
and on the other hand we have /dev which represents each piece of hardware in the

system.

For example, imagine that you have a solid-state drive (SSD) [Wikh]. This is a block
device and the kernel will expose this device in /dev. Let’s assume that it assigns to it the
name /dev/sda. Now userspace utilities can use /dev/sda without ever knowing what
kind of disk they are communicating with. This is a typical example of abstraction in the
Linux kernel. Subsystems offer a standard API to interact with, hiding the complexities
of their internal workings and allowing other utilities to interact with them in a uniform

way.

Let’s take a look at some device files:

$ 1s -1 /dev/

brw-rw---- 1 root disk 8, @ Auy 29 19:16 sda
brw-rw---- 1 root disk 8, 1 Auy 29 19:16 sdal
brw-rw---- 1 root disk 8, 2 Auy 29 19:16 sda2
crw-rw-rw- 1 root tty 5, © Auy 30 01:30 tty
crw--w---- 1 root tty 4, 0 Auy 29 19:16 ttyo

Listing 2.2: List Device Files

The first character of the output line, denotes whether it is a block device (b), or a char-

acter device (c).

Two columns of numbers separated by a comma are present. The first number is called
the major number of the device, and the second the minor number. The major number
tells which driver is used to access the hardware. What type of device is used. Each
driver has a unique major number. The minor number is used by the driver to distinguish
between the various hardware it controls. It identifies a specific device among a group

of devices that share the same major number. For instance, in Listing 2.2, we a have a




2.2. KERNEL ARCHITECTURE 19

group of three devices managed by the same disk controller that have the same major

number (8) and different minor numbers (0, 1 and 2).

Note: When a device file (e.g. /dev/sdal) is accessed, the kernel uses the major num-
ber to determine which driver should be used to handle the access. This means that the
kernel doesn’t really need to use the minor number. The driver itself is the only entity
that cares about the minor number. The kernel uses the major number to find the corre-
sponding driver, and passes the execution to it and then the driver itself uses the minor

number to distinguish between different instances of the specific device.

In-kernel representation of Device Files

Both major and minor parts of a device file are stored in a dev_t type inside the kernel.
Practically the dev_t type is an u32, that stores in the 12 most significant bits the major

number and in the 20 least significant bits the minor number.

Major Number Minor Number

31{30[29]28]27] 26| 25| 24] 23] 22| 21 ] 20] 19] 18] 17] 16] 15[ 14[ 3] 12] 11 [ 0] o [ 8 | 7 [ 6 [ 5 | 4| 3 [ 2| 1] 0

Figure 2.6: Major and Minor Parts of dev_t Type

Of course the internal representation of dev_t may change in the future, and that’s
why to obtain the major and minor numbers of a dev, the macros MAJOR(dev) and

MINOR(dev) respectively should be used (can be found in 1inux/kdev_t.h).

If instead, you have the major and minor numbers and need to turn them into a dev_t,

use the macro: MKDEV(int major, int minor).

2.2.3 A dive into /dev directory

Let’s take a closer look at /dev directory. If we list the status of all currently mounted

file systems, we can obtain useful information:

$ grep -w dev /proc/mounts
dev /dev devtmpfs rw,nosuid,relatime,size=4007368k,nr_inodes=1001842,mode

=755,1inode64 0 ©

Listing 2.3: List /proc/mounts
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The file /proc/mounts actually is not a real file, but part of the virtual file system that
represents the status of mounted objects as reported by the Linux kernel. The format is

similar to fstab: the system’s name, mount point, file system type, etc [Dia].

As we see, in /dev directory there is mounted a filesystem named devtmpfs. devtmpfs

replaced devfs and merged in the Linux kernel in version 2.6.34. [LWNc, LWNa, LWND]

devtmpfs is a special filesystem that the kernel creates and populates to expose infor-

mation about devices.

And who is responsible for mounting devtmpfs in /dev directory?
If CONFIG_DEVTMPFS_MOUNT is set to y (in .config file) when building the kernel, the
resulting kernel will automatically attempt to mount devtmpfs to /dev after mounting

the root filesystem [Sta].

It can also be done with a rule in /etc/fstab like:

$ mount -t devtmpfs junk /dev

Although the kernel is responsible for populating devtmpfs filesystem, it provides userspace
with the opportunity to process device events further through the “udev” subsystem,

which matches events with rules and triggers additional actions based on them.

More specifically, whenever a device is added or removed from the system (or change
its state) kernel sends messages, named uevents to userspace. Kernel sends these mes-
sages via “netlink”. Netlink is a socket-like mechanism used in Linux to pass informa-
tion between kernel and user processes [Dwe]. This mechanism gives the opportunity

to userspace, to manipulate further the changes in the system.

Udev subsystem uses a userspace daemon which is now part of systemd, named systemd-udevd.
This daemon is responsible to catch the user events (uevents) that kernel sends. Then udev,
tries to match these messages with some rules it maintains. These rules can be found

in /usr/lib/udev/rules.d, /usr/local/lib/udev/rules.d, /run/udev/rules.d and
/etc/udev/rules.d [mpg].

And if it manages to match the uevent with a rule, then it may trigger additional pro-

cessing based on the specific rule.

Note: The information above applies to both character and block devices.



2.2. KERNEL ARCHITECTURE 21

Now, let’s turn our attention specifically to character device drivers.

2.2.4 Character Device Drivers

In the kernel, a character device is represented by struct cdev, a structure used to reg-

ister the driver in the system. A definition of this structure can be found in /include/1inux/cdev.h.

To complete the addition of a character device to the system, we need to follow three

distinct steps:

1. Firstly, we should register a range of device numbers, which can be done either
statically (if we know the device’s major number,) or dynamically (if we let the

kernel pick one for us).

2. Secondly, we should initialize the data structure struct cdev for our character

device.

3. Thirdly, once we finish the initialization, we can add the character device to the
system. In this step practically we notify the kernel for the driver via associat-
ing the character device initialized in step 2, with the range of device numbers

registered in step 1.

// Statically register a range of device numbers

int register_chrdev_region(dev_t from, unsigned count, const char *name)
// Dynamically allocate a range of char device numbers.
int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count,

const char *name)

// Initialize a cdev structure

void cdev_init(struct cdev *cdev, const struct file_operations *fops)

// Add a char device to the system

int cdev_add(struct cdev *cdev, dev_t dev, unsigned count)

Listing 2.4: Register a Character Device
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Of course, once we have finished with the device driver, we need to delete and unregister
it from the system, allowing the kernel to reclaim resources. To do so, we can use the

following functions:

// Unregister a range of device numbers

void unregister_chrdev_region(dev_t first, unsigned int count)

// Remove a character device from the system

void cdev_del(struct cdev *dev);

Listing 2.5: Unregister a Character Device

Device drivers are loaded and unloaded as modules. We explained in Section 2.2.1 the
advantages of modularization. The program that loads a module is called insmod, while

the program that unloads it is called rmmod.

Each of these programs triggers a specific function within the device driver. insmod,
invokes a function declared with the macro module_init(), while rmmod, triggers a
function declared with the macro module_exit(). Usually, inside these functions oc-
curs the registration phase of Listing 2.4, and the unregistration phase of Listing 2.5

respectively.

Data structures for character device drivers

As Listing 2.4 shows, initializing a character device structure, with cdev_init(), de-
mands the use of a structure named file_operations. This structure along with the
structures file and inode are very important kernel data structures and commonly

used by many character devices.

struct file_operations
The file_operations structure, holds pointers to functions defined by the driver that
perform various operations on the device. Each field of the structure corresponds to

system calls made by users over device type files.

struct file_operations {
struct module *owner;
loff_t (*1llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);

ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
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ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);

ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);

long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);

int (*open) (struct inode *, struct file *);

int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *,
unsigned int poll_flags);
}s

Listing 2.6: struct file_operations

Thus, implementing a character device driver means defining the system calls open(),
close(), read(), write(), etc, for the specific device. The driver of course, may not
implement some of the above operations (i.e. system calls), because it may not support
(or need) the specific functionality. Usually we use the C99 way of assigning elements to
the file_operations structure [989]. Structure members who do not explicitly appear

in this initialization will be set to NULL.

struct file_operations my_functions {
.read = my_read,
.write = my_write,

.mmap = my_mmap,

.open = my_open,
.release = my_release,

s

struct file

The struct file,representsan open file. This structure is not specific to device drivers.
The kernel itself is responsible of allocating a struct file each time an open() system

call is called. All open files have an associated file structure.

struct inode

This structure, represents a file on the disk. It's used by the kernel internally. There can

be numerous file structures representing multiple open descriptors on a single file, but
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they all point to a single inode structure.

As [Teaa] aptly stated: «To understand the differences between inode and file, we will use
an analogy from object-oriented programming: if we consider a class inode, then the files
are objects, that is, instances of the inode class. Inode represents the static image of the file
(the inode has no state), while the file represents the dynamic image of the file (the file has

state).»

2.2.5 Miscellaneous Device Drivers

Misc (or miscellaneous) drivers are simple character drivers that share certain common
characteristics. The kernel abstracts these commonalities into an API (implemented in
drivers/char/misc.c), and this simplifies the way these drivers are initialized. All
misc devices are assigned a major number of 10, but each can choose a single minor

number [Ven08].

A misc driver accomplishes all of the initialization steps of a character device
(alloc_chrdev_region(), cdev_init(), cdev_add() see 2.2.4) with a single call to
misc_register(). This function registers a miscdevice structure, which is the repre-

sentation of the misc device in the kernel (the same as cdev in character devices).

Block Device Drivers

Block device drivers are discussed in Section 2.4.5 because we believe they would be
better understood if we provided an overview of the block layer before delving into

them.

2.3 Disks

Throughout this thesis, we came across the notion of “disks” quite often. Although ublk
framework is handling virtual disks (see Section 1.2), we still encountered disk-related
terms and features frequently. Virtual devices are still manipulated like regular disks
after all. In this section, we’ll explore some concepts that will come in handy later on

[Gre20].
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With the term disk we refer to the primary storage device of the system. There are a
lot of disk types like Optical Discs, Floppy Disks, Hard Disk Drives (HDDs), the faster
flash memory-based solid-state disks (SSDs) etc. Generally, there’s a trade-oft between

storage speed and value or endurance. Faster options tend to be more expensive or less

durable.

Illustration of a simple disk

Disks are asynchronous in nature (more on asynchronous API in 3.1.2). They follow an
interrupt-driven approach to notify the CPU with their response. The kernel performs
an I/0 and the disk responds with an interrupt when it is ready. An interrupt is a signal
sent by another device to the CPU. Then CPU typically stops whatever it does at this
moment, acknowledges the interrupt and passes the control to the operating system to

serve it.

At this point let’s clarify what an I/O is: it is an abbreviation for Input/Output and refers

to disk reads and writes. To describe an I/O, we need to include at least:

1. The type of the I/O (read or write).
2. 'The size of the I/O (how many sectors).

3. The starting sector.

Due to their asynchronous nature, disks often include some kind of buffering. This type

of buffering is one (or more) in-disk queues.

Disk

110 Requests

/O Queue

110 Completions

«

Figure 2.7: Simple Disk with Queue

The I/O operations that the disk handles can either be waiting in a queue or currently
being processed. Although it might seem like a first-come, first-served queue, disk con-

trollers can employ various algorithms to enhance performance.
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Recent disks, usually ship with an in-disk cache. This cache is used by the controller
to finish its job faster. When a read request comes to the device, the controller checks
the cache if the desired data is stored. If it is it replies immediately. If it’s not, then the
regular procedure will be followed. In case of a write request, this cache can be used as
a write-back cache. This means that the write is considered as completed as soon as the
data transfer to cache and before the slower transfer to persistent disk storage. This new
caching schema enhances the disk’s performance because this cache is a faster memory

(usually DRAM) and can reply to requests significantly faster.

Disk
/O Requests
=
Cache Hits On-Disk Cache
IO Queue
Cache Misses

Figure 2.8: Simple Disk with Queue and Cache

2.3.1 Time related concepts

An essential aspect when evaluating disks is their responsiveness to requests. Through-
out the evolution of technology, disks have remained an integral part of this progression,
continually adapting to new demands and requirements. Therefore, it holds significant
importance to measure their capabilities, both in terms of response time and through-

put. To establish a foundation, let’s begin by defining some fundamental terminology:

Throughput: With disks, throughput commonly refers to the current data transfer rate,

measured in bytes per second (Bps).
Bandwidth: Signifies the maximum achievable data transfer rate for storage transports.

I/0 latency: Indicates the time duration required for an I/O operation to complete,

encompassing the entire process from initiation to conclusion.

Measuring time

Let’s take a closer look to I/O latency. We can split this time, into two phases:
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1. I/O wait time: This interval represents the time a request spends in a queue,

awaiting execution.

2. 1/0O service time: This is the actual time it took to process the request.

The summation of these two times, is the entire time from issuing an I/O to it’s comple-

tion. This time is called I/O request or I/O response time.

170 wait tim I 1/0 service time——»

1/0 request tim

1/0 request start 1/0 request finish

Figure 2.9: Time-related Terminology

Of course, when talking about I/O time, it’s really important to specify which starting
and ending events we're considering. This matters because it’s not just the disk involved.
The operating system plays a role too. To break it down, there are two main categories
of events: those happening in the kernel (kernel-based events) and those related to the
disk (disk-based events). When an application starts an I/O operation, the operating
system forms the final stage of this request in a subsystem named block layer (more
detailed information about block layer in Section 2.4.4). From there on, we start mea-

suring the time a request spends in the kernel.

This exploration leads us to distinct time components that collectively constitute the I/O
time. On one hand, there exists the Block I/O wait time, denoting the duration a request
resides in in-kernel queues, the Block I/O service time measured from from the time
kernel issues the request to the device until the completion interrupt from the device
and finally the summation of these two times that gives us the overall Block I/O request

time.

Equally, a parallel set of components characterizes disk I/O, encompassing disk I/O wait

time, disk I/O service time, and disk I/O request time.

Naturally, these two sets may intersect in certain instances. For instance, the Block ser-
vice time corresponds to the time spent on the disk, which coincides with the disk I/O

request time.



28 CHAPTER 2. BACKGROUND

Consequently, I/O latency may refer to block I/O request time (the entire I/O time), or

to the entire time spent on device (disk I/O request time).

The Figure 2.10 below, referenced from [Gre20], effectively summarizes the concepts we

discussed:
Block /O Request Time
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E Block 11O Wait Time (Disk Response Time)
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Figure 2.10: Kernel and Disk Time Terminology

2.3.2 Disk Types

The two most common disk types that are being used in industry are magnetic disks
(HDDs) and solid-state drives (SSDs). Let’s take a brief look at both of them and define

some basic terminology that we’ll use throughout the thesis.

Hard Disk Drives

HDDs are magnetic rotational disks, that are made of one or more platters. Each platter
consists of a number of tracks, and each track is divided into sectors. The platters rotate,
while a mechanical arm, with circuitry to read and write data from a head, reaches

across the surface.

Sector is the smallest block of storage on a disk. Traditionally it was 512-bytes in size,
but today they are often 4K in size (or another power of 2). Sectors should be considered

as the basic unit of data transfer. It is never possible to transfer less than one sector.
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Hard disk drive structure

B tracks

sectors

clusters

Figure 2.11: HDD’s Anatomy

While the sector is the basic unit of data transfer for the hardware devices, the block is
the basic unit of data transfer for the filesystems. Each block must include an integral
number of sectors, thus it must be multiple or equal to the sector size. In other words
the kernel requests are in magnitude of a block, and the device translates these requests

into sectors.

This correlation is shown in the Figure 2.11, with clusters. Clusters are the smallest unit

of storage from filesystem’s perspective (i.e. block in kernel’s terminology).

Due to the mechanical part of the HDD, and the rotation of the platter, this storage

medium, is slow and it consists of three parts:

1. Seek time: The time taken by the head to reach the desired track from its current

position.
2. Rotational latency: Time is taken by the sector to come under the head.

3. Data transfer time: The actual time to read/write the data, which depends upon

the rotational speed.

Total time is the aggregation of these three times. Because of the peculiarities of HDDs

a lot of effort has been put into inventing a new type of storage, free of these symptoms.

Solid-State Drives

Solid-state drives are storage devices that mostly use as storing medium NAND flash

memory [Wike]. This type of disks have faster data access compared to HDDs, lower
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power consumption, and due to the lack of moving parts they are also physically durable.

We won't go into much details in the internal structures of SSDs. We will just refer to

some core components of it, to see how they differ from HDDs.

A flush-based SSD consists of arrays of memory cells. Each memory cell can store from
1 to 5 bits at the moment [Tec]. The smallest unit of an SSD is a page, which is composed
of several memory cells, and is usually 4 KB in size. One page is the smallest structure
which can be read or written. Multiple pages form one block. We oversimplifying a little
bit but someone can think these concepts of NAND flash memory like a grid. Each point
in the grid is the cell, each row is the page and the whole grid is the block.

One thing worth mentioning, is that flash memory has asymmetrical read/write perfor-
mance: fast reads and slower writes. This is due to the fact that flash memory cannot
overwrite a page. The fact that you can read and write in pages but only erase in blocks
leads to some odd behavior when compared to traditional storage. A magnetic hard
disk can always write wherever it likes and update data “in-place”. Flash storage can't.

It can (essentially) only write to empty, freshly erased pages.

The most obviously bad side effect of this kind of scheme is that, unless the SSD has an
available erased page ready and waiting for data, it can’t immediately perform a write.
In cases where no erased pages are present, the SSD must identify a block with unused
(yet unerased) pages, erase the entire block, and subsequently write out the old contents

of the block alongside the new page [Hut].

2.4 1I/0 Stack

In this section we will analyze the data path from an application in a computing system,
to the physical non-volatile memory (disk). More specifically, we will follow a read()
orwrite() system call, and we will make a brief tour in the various Linux kernel subsys-
tems it passes until the request finally reaches the disk. In sections 2.2.2 and 2.3, actually
we touched the 2 last components of this path, the Device Drivers, and the disk itself.

Now, we will take a look in the overall picture.

In Figure 2.12, we present a visual representation of the subsystems involved. This men-

tal model should be in our minds when we think about a read() or a write() system
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call. It’s important to note that this figure is not exhaustive and represents a high-level

overview of the I/O stack.

Userspace
/>l

Ny
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Figure 2.12: I/O Path

2.4.1 Application

At the highest level, an application, running as a process in the operating system, inter-
acts with a file through system calls exposed by the VES, such as open(), read(), write().
To a user application a file is just a linear sequence of bytes, with the ability to access

and modify each of them.

2.4.2 Virtual File System (VEFS)

In order to support multiple filesystem types Linux implements a large and complex
subsystem that deals with filesystem management: the Virtual File System. This sub-

system serves two main purposes:
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 Exposes a consistent API to the applications above it.

 Enforces a common file model on the filesystems, beneath it.

Imagine a system that requires users to know precisely what type of filesystem is mounted
on the storage device they’re interacting with, and based on this type, call a different
function. Consider how cumbersome it will be for an application to implement some-

thing like this:

[...]

fd = open(”desired_file”);

if (is_filesystem_ext4(fd))
ext4_read();

else if (is_filesystem_xfs(fd))
xfs_read();

else if (is_filesystem_vfat(fd))
vfat_read();

[...]

This complexity is hidden from end users (applications) by the common file model. The
common file model demands filesystems to implement this consistent API. In other
words, it’s as if VFS is telling filesystems: «I don’t care how you’ll implement the read()
system call, but be aware that I enforce these policies, 'm making this assumptions, and

I expect your read() implementation to adhere to them.».

For example, as noted in [BC06], in the common file model, each directory is regarded
as a file, which contains a list of files and other directories. However, several non-Unix
disk-based filesystems use a File Allocation Table (FAT), which stores the position of
each file in the directory tree. In these filesystems, directories are not files. To stick to
the VFS’s common file model, the Linux implementations of such FAT-based filesys-
tems must be able to construct on the fly, when needed, the files corresponding to the

directories.

This logic, of hiding complexity from subsystems and enforcing rules for others to follow

is a common feature in the Linux kernel.

To achieve this, VFS uses four important objects. Some of these data structures exist

solely in memory, and some reside both on disk and in memory:
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1. Supeblock object: Contains information about the filesystem instance. It exists
on disk, and usually also in memory for caching purposes. Essentially it is the

filesystem’s metadata.

2. Inode object: This object uniquely identifies a file on disk (see also 2.2.4). It ex-
ists on disk and in memory for caching purposes. While superblock contains
filesystem metadata, an inode contains metadata for a specific file, including in-

formation such as file type, the file size, access rights etc.

3. File object: This object exists solely in memory and corresponds to an open file

(see also section 2.2.4).

4. Dentry object: This object, is a memory entity (similar to a file) and associates a
name with an inode (i.e. a name with a corresponding file on disk). It is the glue

that holds inodes and files together.

" struct file
openl’ ny fleox )
struct dentry
struct inode ]—>{ struct superblock ]
Process 1 struct file 5 ‘;
i -struct dentr
o |
e

of

open(*hard_link file it struct file

Process 2

Disk with a
filesystem

Figure 2.13: From Processes to VFS Objects

Figure 2.13 illustrates the relationships between these objects.

Process 1 opensa filenamedmy_file.txt, and process 2 opens the same filemy_file.txt
and a hard link [Wikf] to this file named hard_link_file.txt. The kernel creates three
struct file objects associating each of them with an open operation. Two of these objects
point to the same struct dentry, because they were opened using the same pathname.

Both of these dentry structures point to the same struct inode, because they refer to
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the same file on disk. The Figure 2.13 also demonstrates that the superblock is typically
stored at the beginning of the filesystem, (and because it is critical, copies of it exist in

other places as well).

2.4.3 Filesystem (FS)

The filesystem is a special data hierarchical storage structure, which contains files, di-
rectories and related control information. It provides a file-based interface for access
and file permissions to control the access. As mentioned previously each compatible

filesystem, needs to implement various functions defined from VFS.

Filesystems are also responsible for a very important type of cache: the page cache.
Page cache is a region in memory that is used from filesystems to save pages that the
application accessed (or may access) in order to speed up I/O operations. New pages
are added to the page cache to fulfill read requests from processes. If the page is not
already in the cache, a new entry is added, and it is populated with the data read from
the disk. If the page is there, then it returns with the result without the need to reach
the disk and block the calling process . For write requests, filesystems can use the page
cache as a write-back cache. This will improve the speed of the write because it will treat
it as completed after data reach main memory and will postpone the “real”, costly write

to disk sometime later, asynchronously.

An application can bypass the page cache by specifying the 0_DIRECT flag in the open()
system call. According to this flag, the file system communicates directly with the generic
block layer, and data is transferred to or from the disk directly from the userspace bufter,
without first being stored in pages of the page cache. This can be ideal for applications
that manages some form of temporary storage and does not wish to rely on the kernel’s

caching mechanism, like databases.

Of course, this behavior creates an inconsistency in our system. What if an application
(appl) writes to a page in the page cache and another application (app2) tries to read
the same page while having the file open with the 0_DIRECT flag? For this reason, the
kernel marks each updated page in the page cache as dirty. Dirty means that the data
stored on a page in the page cache differs from the corresponding “block” on the disk.

The kernel detects that there is an updated version of the page that app2 wants to read
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and instructs a kernel thread to flush the page cache to disk so that app2 can now read

the correct data.

A read() from a file opened with the O_DIRECT flag leads to page cache flush and a

write() leads to page cache invalidation.

The I/O operation that passes through the page cache is also known as buffered 1/0,
while the I/O operation that is not passing is called direct I/O.

Note: The page cache effect is depicted in Fig. 2.12 in the middle path, while the 0_DIRECT
approach is illustrated in the rightmost path. The leftmost path indicates a call to a block

device that doesn’t have a filesystem.

2.4.4 Block Layer

The block layer glues together all the upper and lower components of the I/O stack. I/O
requests targeting block devices, will (most probably) pass through this layer. Just as
VES hides from userspace the complexity of the files, block layer hides from filesystems
the complexity of block devices, by enforcing a unified way in order to access device

drivers. As previously mentioned this is a common technique followed in Linux kernel.

The bio structure

The fundamental structure governing this layer, starting from kernel version 2.6 on-
wards, is the “struct bio”, which describes a current I/O operation. This structure fills

the gap between how the kernel allocates memory and how disks operate.

Generally, a read or write operation consists of at least one buffer. The buffer is where
the user either waits for data in the case of a read or demands to write to the disk in the
case of a write. There are also variants to the classical read and write, like readv or writev
system calls [mph], where you specify an array of buffers in each call. This means that
when the I/O request reaches the block layer, we can have something like what Fig. 2.14

shows.

Here, we should note that even for the classical read/write where we only specify one
buffer, it may not be contiguous in physical memory. So, in general, what Fig. 2.14

illustrates, applies to all read/write family system calls.
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write(fd, buf, count) ' }

The struct bio structure contains a bi_io_vec vector of struct bio_vec structures. A
bio_vec structure, consists of the individual pages in the physical memory to be trans-
ferred, the offset within the page and the size of the buffer. This is the field in bio
that «knows what is happening in memory». The struct bvec_iter on the other hand

«knows what is happening on disk». From which sector this I/O will start, what is the

length etc.

Also, the request type (read or write) is encoded in bi_opf field of the bio structure.

A bio defines a block I/O operation as a group of consecutive sectors that need to be read
or written to dispersed memory segments. But block device drivers do not generally
receive bio structures directly; they service block requests received as struct requests,

which emerge after the bio structures have undergone processing by the Linux block

layer [Koul].
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Figure 2.14: The Role of struct bio
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Single-Queue Linux block layer

The block layer has gone through numerous changes over the last decade. The previ-
ous design was known as a Single-Queue (SQ) design. In this design, each device had a
corresponding queue in the block layer, of type “struct request_queue” This struc-
ture was made up of requests, of type “struct request”. Each request consisted of
struct bios, and each request described an I/O operation from a location (or locations)
in memory to a physically adjacent area on the disk. This means that every time we
registered a block device driver, the kernel initiated a request_queue dedicated to that
driver. The block layer was responsible for populating the queue with requests, and the

driver was responsible for dispatching them.

The block layer treated the struct request_queue practically as a staging area. Once a
request was in the staging area, the block layer could perform I/O scheduling and adjust
accounting information before scheduling I/O submissions to the appropriate storage

device driver.

At this point, it is useful to refer to a mechanism that the scheduler implements, named
plugging. In short, plugging is a way to temporarily “lock” the request queue, preventing
drivers from dequeuing any requests from it. This allows the scheduler to wait for and

merge new bios with pre-existing requests, creating larger requests.

In a world where HDDs were the primary hardware target for disk I/O, the main bot-
tleneck was the seek time of the disk head. Therefore, the primary concern was to hand

over to the device as many consecutive sectors as possible in one request.

This mechanism illustrates a general solution in engineering. Many times, when we seek
a solution, we may need to perform an action that, at first glance, appears counterpro-
ductive to our goal (in this case, introducing a delay via plugging). However, this delay
is much smaller than the delay we would have incurred if we had sent random requests

to the disk.

Multi-Queue Linux block layer

The single queue architecture described in the previous section was sufficient when the
secondary storage device was HDDs. However, the arrival of SSDs, changed the char-

acteristics of I/O and significantly increased the response speed of the disks.
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Figure 2.15: Single-Queue Linux Block Layer Design

It was observed that the biggest performance bottleneck in I/O appeared in the block
layer [MBB]. The previously sufficient single queue architecture was reducing the speed
of the requests basically because of the lock contention between difterent CPUs. As ex-
plained, there was one request queue for every block device driver. So if we had different
applications running on different CPUs we spent a lot of time competing for the lock of

the queue.

This problem was not noticeable when the disks responded slowly. However, when this
changed, it became exposed and led many device driver designers to bypass the block

layer in order to gain performance.

The new block layer named blk-mq was merged in the Linux kernel on 25, October 2013

in 3.17 kernel version [Axba].

The new design of the block layer introduced a two level, Multi-Queue approach. Two

level, means that it uses of two separate sets of request queues:

1. Software staging queues: One per CPU or per NUMA node.

2. Hardware dispatch queue(s): The corresponding device driver specifies how many
hardware queues supports (but they cannot surpass the number of cores in the

system).
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Figure 2.16: blk_mgq Linux Block Layer Design

There were two main benefits from the blk-mq design: (a) The spread of queues across
CPUs obviously led to a reduction in the number of locks required for each request
queue. Since each CPU has its own queue, there is no need for other CPUs to compete
for the lock. (b) It became clearer which objects the block layer was handling and which
the drivers were handling. With the previous design, both the block layer and the drivers
shared a common request queue. With the new design, the block layer mainly deals
with software queues, while the drivers “watch” the hardware queues. This facilitates

the design of the drivers, as it makes the role of each layer in the kernel more clear.

Note: Neither the block layer nor the device protocols guarantee the order of completion

of requests. This must be handled by higher layers, like the filesystem [docb].

To facilitate the completions, blk-mq associates each request structure a tag number that
is unique among requests for that device. This tag accompanies the request throughout
its journey, extending into the hardware if supported, and returning in the same manner.
Allocating the tag number early ensures a more seamless transit for the request through

lower layers, until eventually the block layer releases it.
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2.4.5 Block Device Drivers

The kernel must interact with a variety of different hardware devices. Device drivers are
the final in-kernel component in the I/O stack, responsible for handling this communi-
cation, and they are often provided by the vendors who develop the hardware devices.
Specifically, for the I/O stack, we are interested in block device drivers because they are

responsible for communicating with storage devices.

In the kernel, a disk is represented by a structure called gendisk, which contains es-
sential information describing a block device. This information includes the major and
minor numbers of the device and its partitions (if any), the device’s name, associated

disk operations, a queue responsible for managing I/O requests and more.

This queue is the request_queue referred to earlier in Section 2.4.4. It servers as the
container for the two distinct queues types that make up blk_mq architecture: the “soft-
ware staging queues” and the “hardware dispatch queues” This linkage illustrates how

a block device becomes connected with the queues in the blk_mq architecture.

The allocation of both the gendisk and request_queue occurs in a single step, per-
formed by the blk_mq_alloc_disk function, commonly within the device driver’s ini-

tialization routine.

It's worth noting that the disk operations embedded in the gendisk structure are equiv-
alent to the file_operations used for character devices, as explained in Section 2.2.4.
These operations are represented as a collection of function pointers, where each func-
tion corresponds to an operation on the disk. Here are some of the fields within

block device operations:

struct block_device_operations {
void (*submit_bio)(struct bio *bio);
int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
unsigned int flags);
int (*open) (struct block_device *, fmode_t);
void (*release) (struct gendisk *, fmode_t);
int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
[...]
void (*free_disk)(struct gendisk *disk);
[...]
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12| };

Listing 2.7: struct block_device_operations

Notably, there are no specific read or write functions within block_device_operations.

This raises the question of how a block device driver handles reads and writes.

Before drivers allocate the gendisk and request_queue, they have the opportunity to
fine-tune this allocation. In the Linux kernel, there exists a structure called blk_mq_tag_set,
which stores metadata information about struct_request. Using blk_mq_tag_set,
driver designers can specify essential parameters, including the number of hardware
queues and the depth of each queue. Additionally, they can provide a pointer to a
structure known as blk_mq_ops, which holds various function pointers responsible for

defining driver-specific behavior and handling I/O operations.

The blk_mq_tag_set structure plays a pivotal role in establishing the connection be-
tween these configurable parameters, and the subsequent initialization of both the gendisk
and the request_queue. It serves as the linchpin that configures how the block device

driver manages I/O operations.

blk_mg_tag_set contains a vital field that stores pointers to functions responsible for
implementing block driver behavior. Among these functions, the most significant one
is queue_rq. This function gets called when the kernel decides that the driver should
process I/O requests. It serves as the equivalent of the read and write functions en-
countered in character devices. queue_rq receives the requests for the device as argu-

ments and can use various functions to process them.

To initialize and add a block driver to the system, the driver typically:

1. Specifies essential information that the disk supports in the blk_mq_tag_set

structure and allocates it.

2. Initializes a gendisk with a corresponding reqeust_queue, by passing the pre-

viously allocated structure as an argument to the initialization function.

3. Finally, adds the disk to the system by calling the add_disk() function. This ad-
dition must occur when everything is ready, as the disk may already be active and

can receive calls during this function’s execution.
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From this point forward, the driver is prepared to handle any request by invoking the

queue_rq function to process it.
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Figure 2.17: Relation Between Structures on Block Drivers

2.4.6 Storage Device

The last component of the I/O stack is the disk. It is where the data we want to read/write

are stored. We covered disks in Section 2.3.

2.5 Cryptography

We utilized the Advanced Encryption Standard (AES) algorithm to implement the en-
cryption scheme of the ublk framework. In this section, we will present some basic

cryptographic knowledge, introduce the AES algorithm, and finally, we will provide
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the mathematical background that is important for understanding the internals of the

AES algorithm.

2.5.1 Introduction to cryptography

Cryptography is the science of encoding information and transforming it into a format
that is unintelligible and useless to any unauthorized party, ensuring secure communi-
cation and data protection. The need to hide information and disguise it dates back to
ancient times. Many different cryptographic methods were employed by ancient civi-

lizations, including the Egyptians, Greeks, Romans, and others.

In today’s digital age, cryptography is often associated with the process of transforming
ordinary plaintext into ciphertext. Ciphertext is a form of text that is modified in such a
way that only the intended recipient can decode it. In our contemporary world, where
every piece of personal information is stored in a database somewhere in the world
and can potentially be accessed by others, it is a necessity to be able to protect against

malicious users. This is precisely what cryptography aims to achieve.

Cryptography achieves its goals through various means:

Confidentiality: Ensures that data are useless for unauthorized parties.

o Integrity: Safeguards the reliability and accuracy of data, preventing tampering

and unauthorized alterations.

« Authentication: Verifies the identity of parties engaged in communication, en-

suring that interactions occur with the correct and trusted entities.

« Non-repudiation: Provides evidence that a message was sent or received, pre-

venting individuals from denying their involvement in a transaction.

2.5.2 Symmetric vs Asymmetric Cryptography

We can envision encryption as a black-box operation that takes plaintext as input and
produces ciphertext. Alongside the plaintext, this transformation requires a critical

component known as a key, which is used in the encryption process.
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plaintext 4>-—> ciphertext

Key

Figure 2.18: Encryption

Similarly, decryption is the opposite operation. It functions as a black-box, taking ci-
phertext as input, along with a key (not necessarily the same key used for encrypting

the original message), and producing the plaintext.

ciphertext 4>-—> plaintext

Key

Figure 2.19: Decryption

The black-boxes are essentially algorithms. The encryption algorithm can be repre-
sented as a function that takes plaintext and a key as input yielding ciphertext. F'(k, p) =
¢, where E is the encryption function, k is the key, p is the plaintext and c is the cipher-
text. Similarly decryption is denoted as the function D(k, ¢) = p, where k is the key for
decryption, c is the ciphertext and p is the plaintext.

According to what key we use to decrypt the ciphertext there are two types of encryption:
symmetric and asymmetric encryption. Symmetric encryption relies on a single shared
key for both encryption and decryption. In contrast, asymmetric encryption employs a

pair of keys: a public key for encryption and a private key for decryption.

Each method has its own advantages and disadvantages. Let’s examine some of their

differences:

« Symmetric encryption is generally faster than asymmetric encryption because
it requires less computational power. This makes it well-suited for encrypting

large volumes of data quickly.
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« In symmetric encryption, the secure distribution of the shared key is vital since
it serves for both encryption and decryption. On the other hand, asymmetric
encryption simplifies key distribution by requiring only the sharing of the public

key, while the private key remains confidential.

« Symmetric encryption is ideal when transferring large amounts of data within
closed systems, because it provides only confidentiality without authentication
or non-repudiation. Asymmetric encryption, on the other hand, is often used
for secure key exchanges, digital signatures, and authentication in open systems
because in addition to confidentiality it can provide both authentication and non-

repudiation.

Of course, symmetric and asymmetric encryption can collaborate to create a more com-
prehensive security solution. For instance, SSL/TLS encryption employs asymmetric
encryption to establish a secure session between a client and a server, and then relies
on symmetric encryption for exchanging data within the secured session [F5]. This
approach allows to leverage the advantages of both encryption methods in a unified

security framework.

2.5.3 Introduction to AES

AES is currently the most popular symmetric encryption algorithm in use. It replaced
the DES (Data Encryption Standard), after the National Institute of Standards and Tech-
nology (NIST) announced in 1997 their intention to select a successor to DES, which
they named AES. After three years of searching and evaluating various algorithm sub-
missions, NIST selected the Rijndael algorithm as the final successor of DES, and named
it AES. Rijndael was designed by two Belgian cryptographers Vincent Rijmen and Joan
Daemen [Wika].

AES is a block cipher, that employs symmetric encryption with key sizes of 128, 192 and
256 bits. The larger the key size, the greater the level of security and resistance to brute-
force attacks. In essence, as the key size increases, so does the complexity of breaking

the encryption, making it more robust and suitable for protecting sensitive information.

Block cipher: is a deterministic algorithm that operates on fixed-length group of bits,

called blocks [Wikb].
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AES divides the plaintext into 128-bit blocks and processes each block individually. A
high-level overview of the encryption and decryption processes of AES is depicted in

Figures 2.20 and 2.21, respectively.
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Figure 2.20: AES Encryption
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Figure 2.21: AES Decryption

The AES algorithm operates in rounds, with the number of rounds varying depending

on the key size as Table 2.1 illustrates:

key | # rounds
128 10
192 12
256 14

Table 2.1: Key Size and Rounds

To comprehend the AES internals, it is essential to introduce and establish a mathemat-
ical foundation. All internal operations of AES are rooted in Finite Fields, also known
as Galois Fields. Therefore, we will dedicate the next section to explore and grasp cer-
tain mathematical concepts that are crucial for understanding AES. Of course, those

uninterested in these concepts can skip the following section.
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2.5.4 Mathematical Background

Before we can understand what a field is, we need to introduce a simpler algebraic struc-

ture named Group. Theorems and definitions are taken from [CP10].

Definition 2.5.1 (Group). A Group is a set of elements G, together with an operation o

which combines two elements of G. A Group has the following properties:

1. The Group operation o is closed. That is Va,b € G, itholdsthataob =c € G.
2. The Group operation is associative. Thatis,ao (boc) = (aob)oc,Va,b,c € G

3. Thereisan element 1 € G, called the neutral element (or identity element), such

thataol =10a =a,Va € G.

4. Ya € G, there exists an element ¢! € G, called the inverse of a, such that

1

aoa ' =at

oaq=1.

5. A group G is abelian (or commutative) if, furthermore,a o b = bo a,Va,b € G.
For example:

e« For G = Z and o = +, the (Z,+) forms a Group, with 0 being the neutral

element.

« (Z,-)isnotagroup. Forexamplefora =3,0=2,c=1= (a—b) —c=0#

a — (b— c¢) = 2, so it isn’t associative.

e ForG = Z,, = {0,1,...,m — 1} and the operation addition modulo m forms
a group with the neutral element 0. Every element a has an inverse —a such that

a+(-a) =(—a)+a=0 (mod m).

Definition 2.5.2 (Field). A field F is a set of elements with the following properties:

1. All elements of F' form an additive group with the group operation “ + ” and the

neutral element 0.

2. All elements of F' except 0 form a multiplicative group with the group operation

“ x ” and the neutral element 1.
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3. When the two group operations are mixed, the distributivity law holds, i.e., Va, b, c €

F:ax(b+c)=(axb)+(axec).

Examples of fields are R, Q and C.

Fields can form an infinite set (like R), or finite sets. In cryptography we are interested

in the latter. These fields are called Finite Fields (FF) or Galois Fields (GF).

The following theorem is very important:

Theorem 2.5.1. Finite Fields (FF) only exists if they have p" elements, where p is prime

and m is a positive integer.

From this theorem, we can derive for example that there exists FF with 2,4, 8, 16, ....

elements, since 2 is prime and 2 = 2!, 4 = 22 and so on.

We obtain also, that we can distinguish between two types of GI: Both of them have
the form of GF'(p™), where p is a prime, m is a positive integer and p" are the elements

of the field:

1. Prime Fields: for m = 1.

2. Extension Fields for m > 1.

Prime Fields (G F'(p))

The elements of a prime Galois Field, GF'(p) are the integers {1, 2,3, ..., p — 1}. Arith-
metic in GF(p) is done modulo p.

Leta,b € GF(p) ={0,1,2,....,p— 1} :
a+b=c (mod p)
a—b=d (mod p)
a-b=e (mod p)

a-a'=1 (mod p)

Note: All conditions of fields are satisfied with these computations.
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Extension Fields (GF (p™))

In cryptography we are interested in Extension Fields, with p = 2. So we will investigate

GF(2™). The elements of GF'(2™) are polynomials, and can be represented as:

A(Qf) = am—1$m_1 + am_szm_Q +...+a1x+ ag

The coefficients a; € GF(2) = {0, 1}. So each q; is either 0 or 1.

Example: GF'(2%) is a Galois Field with 8 elements. Each element A(z) has the form:

Ax) = arx? + a1z + aop, where ay, ay, ag € {0,1}.

The 8 polynomials of G F'(2%) can be represented by the combinations of (as, a1, ag) in
{0, 1}: For (az, a1, ag) = (0,0,0) = A(x) = 0, for (az, a1, a0) = (0,0,1) = A(z) =

1, and so on.

GF(2*) ={0,1,z,2+ 1, 2%, 2* + 1,2* + z,2* + = + 1}

Addition and Subtraction in GF'(2"™)

Definition 2.5.3 (Extension field Addition and Subtraction). Let A(x), B(z) € GF(2™).
The sum of the two elements is then computed according to:
m—1

C(z) = A(z) + B(z) = Z Gr'ie;=a;+b;=a;—b; (mod 2)

n=0
And the difference is computed according to to:

m—1
C(z) = A(z) + B(z) = Z ' i =a;+ b =a;—b; (mod 2)

n=0

Example: Let A(z) = 2* + x and B(z) = 2*> + 2 + 1. Then A(z) + B(z) = (1 +
D2+ (1+1)z+ (0+1) = 022 + 0z + 1 = 1, because the coefficients are computed

modulo 2.
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Note: Subtraction and addition in GF'(2™) are the same operations: A(z) + B(x) =
A(z) — B(z).

Multiplication in GF'(2™)

In order to understand the multiplication and inversion in GF'(2™), we need to in-
troduce the concept of irreducible polynomials. Irreducible polynomials are roughly

comparable with prime numbers, (i.e. their only factors are 1 and the polynomial itself).

For example, A(x) = x? + x, is reducible because A(x) = x(x + 1). On the other

hand, A(z) = 2 + x + 1 is irreducible because we cannot factor it.
Let A(x), B(x) € GF(2™) and
P(zr) =) pua',p; € GF(2)
i=0

be an irreducible polynomial. Multiplication takes part in three steps:

1. Multiply A(z) and B(z) like normal
2. Reduce the coefficients of the resulting polynomial modulo 2

3. Reduce the entire polynomial modulo P(x)

Note that the irreducible polynomial P(x) has degree of number m, while the elements

of the field has degree up to m — 1. Both of them have coefficients a; € {0, 1}.

Example: Let A(z) = 2%+ 2% + 1 and B(z) = 2% + x and the GF(2%). An irreducible
polynomial for this field is P(z) = z* + x + 1.

Step1: C'(z) = A(z) - B(z) =2 + 22 + 23 + 2% + 2

Step 2: Reduce the coefficients modulo 2. 22* = 0 (mod 2), so after this step we have
the polynomial 2° + 23 + 22 + x

Step 3: We perform the polynomial division which gives 2° + 2% + 22 + » = 23

mod P(z). So, A(x) - B(x) = 3.
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Inversion in GF'(2™)

The inverse A~!(x) of an element A(z) € GF(2™) must satisfy:
Alx)- A (z) = A (z) - A(x) =1 mod P(x)

where P(x) is an irreducible polynomial.

Even though A~!(z) can be computed via the extended Euclidean algorithm [CP10],
in practice, we use just a lookup table for Galois Fields with relatively small number of

elements.

Note: Division is simply a matter of multiplying the first operand by the inverse of the

second.
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Design

3.1 Synchronous vs Asynchronous vs Blocking vs Non-

Blocking

Synchronous, asynchronous, blocking and non-blocking are four concepts that can some-
times be little vague, and we encountered them frequently during our thesis. In this

section, we will attempt to provide our understanding on these matters.

Programming is a diverse field. The types of tasks programmers and engineers face are
varied and cover a wide range of applications. Of course, these tasks may have different
requirements, and they may involve inherently different applications. This necessitates
software engineers to design software tailored to the demands and specific characteris-

tics of each application.

One of the fundamental concepts engineers encounter when constructing a solution to
a problem is the type of communication they will employ to achieve their objectives, if

any communication is required.

In this investigation our communication parties are processes (or threads) on the one

hand and the Linux kernel on the other.

3.1.1 Synchronous API

We refer to a process (or a thread) as making a synchronous call to the operating system

(e.g. asynchronous read), when we can be certain that the desired task will be completed

53
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by the time the instruction pointer advances to the next instruction of the process (e.g.

for a read this means that the buffer will contain the requested data).

Of course, there will be a waiting period if the operating system isn't ready to respond
immediately. However not all synchronous calls necessarily lead to blocking. In fact,
the ideal scenario is quite the opposite: to have a flawless system where requests are
always ready to be serviced without blocking. This is the rationale behind mechanisms

like the page cache, as discussed in 2.4.3.

For example, a synchronous read will not block if the data it requires are present in the
page cache and the page is not marked as dirty. However, if the required data are not
in the page cache, or if the file is opened with the O_DIRECT flag (bypassing the page
cache entirely), then it will block until the operating system retrieves the data from the

disk.

The write semantics exhibit some differences. When using the page cache and sufficient
space is available to store the data, the operating system employs it as a write-back cache,
ensuring that the process never blocks. Once the operating system transfers the desired

data to the page cache, it considers the request as completed (see also section 2.4.3).

Synchronous writes are those made to files opened with the O_SYNC flag, or one of
the variants O_DSYNC and O_RSYNC. A synchronous write only completes when the
data is fully written to persistent storage (e.g., disk devices), including any necessary
filesystem metadata changes. Consequently, the kernel places the process initiating the

write on a waiting queue until the data is written on the disk.

In all of these cases, whether for reading or writing, and whether the process experienced
blocking or not: synchronous calls guarantee that when control returns to the process,

the task will be accomplished.

An illustration of synchronous behavior is shown in Figure 3.1

3.1.2 Asynchronous API

We refer to a process as making an asynchronous call to the operating system, when
the job is being done without the process waiting in the kernel. The process starts the

job and if the kernel is not ready, doesn't stuck and returns. So, in instruction pointer
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Figure 3.1: Synchronous API

terms, when the instruction pointer points to the next instruction of the asynchronous

call, the job may not have finished yet.

This situation implies the need to establish a means of communication between the ker-

nel and the process in order to enable notifications when the task is completed.

Asynchronous APIs may boost the application’s performance if the results of the call
are not needed immediately. This way, the process initiates a job, continues performing

other tasks, and receives a notification from the kernel when the response is ready.

An illustration of asynchronous behavior is shown in Figure 3.2

3.1.3 Blocking

A blocking call is a call that will block the caller until the result is ready. Blocking has

the same semantics as synchronous, and that is why they are used interchangeably.

3.1.4 Non-Blocking

A non-blocking call from an application will not block if the answer is not ready, but it
will not initiate the desired operation either. Non-blocking is like asking the operating-

system «Hey, can you do this job without putting me to sleep? ». If the operating system

\
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Figure 3.2: Asynchronous API

can, then the job will complete successfully. If not, it will just return an error message.

This is a delicate point in the difference between non-blocking and asynchronous. In an
asynchronous API, you start a background effort to fulfil your request. In non-blocking

this is not the case.

Some general observations

« I have synchronous and asynchronous communication in mind as the general

“strategy” of the communication. As the communication API.
« Blocking and non-blocking as mechanisms.

o If the communication API is synchronous, we can’t have a non-blocking mech-
anism. Because their definitions inherently conflict. Synchronous means block-
ing. An example of this is that if you open a regular file as O_NONBLOCK (i.e. as
non-blocking), this will not make any difference in the subsequent calls to the file

(see [mpe]). Reading and writing from regular files have a synchronous interface.

o On the other hand, an Asynchronous API can be blocking only if it chooses to
block and wait for the results. Or it may implement a part of the communication
as blocking in the background. For instance, asynchronous communication can

be achieved if the API creates a thread that will block and wait for the response
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and then notify the caller of the result. In this case, we have an asynchronous API

with a blocking part. This part is not “visible” to the caller.

Note: Of course synchronous and asynchronous concepts extend out of programming.
Imagine if you have to call someone to ask for information. If the other person doesn't
have the response and needs to search before the reply you can either wait on the phone
till then, or give the other person your phone, and tell him or her to call you back when
they have the answer. This simulates exactly the concept of synchronous, where you
wait on your phone, and asynchronous where you establish a way to find you (you gave

him/her your number) and you close the phone.

3.2 io_uring

io_uring...why?

The most common communication model used by applications today with respect to
/O is synchronous. This involves either the oldest read/write system calls or one of
the later added variants: pread/pwrite and preadv/pwritev. However, due to their na-
ture, in certain applications, an asynchronous approach matches better. Linux supports
two asynchronous APIs: (a) The Linux native asynchronous API (named Linux AIO or

libaio) and (b) the one POSIX defines, called POSIX AIO.

These two are implemented differently in Linux. The POSIX AIO is actually a thread-
based implementation, manipulated by the glibc library [mpa]. An application that
wants to use this API generates library calls which result in offloading the real work to
another thread, which then actually blocks while waiting for the result. This implies the
need to establish a notification channel so that the “main thread” can be notified that a
result is ready. The most notable limitation of POSIX AIO is that maintaining multiple
threads to perform I/O operations on a one-thread-per-request basis is expensive and

doesn’t scale well.

On the other hand, Linux AIO uses system calls directly. Thus, the kernel is responsible
for handling the requests without the overhead of one-thread-per-request that POSIX
AIO has. However, it also suffers from many limitations. The biggest one is that it doesn’t

support buffered I/O, but only I/O issued to file descriptors open with the 0O_DIRECT flag
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(see 2.4.3). This imposes a great limitation on applications that want to use this API,

excluding any application that uses the page cache.

3.2.1 io_uring overview

All these limitations of both Linux AIO and POSIX AIO have led the majority of appli-
cations that want to enhance the performance of their application via an asynchronous
interface to implement it themselves. Usually, this means that they have to manage a
pool of threads that the main core of the application will offload any blocking call to. Of
course, this leads to additional burden on the application’s side because they have to take
into account the thread pool administration, including the communication between the

evolving parties.

io_uring tries to fill in this gap in asynchronous Linux I/O. It got merged in the 5.1
release in May 2019. Initially, it was focused on block I/O, but then it evolved to support
more system calls. So, it has become like a generic framework for performing system

calls in an asynchronous way.

According to its creator, Jens Axboe, the objectives that guided the creation of io_ur-
ing, addressed the challenge of balancing usability, flexibility, scalability and of course

efficiency in asynchronous I/O.

At the core of an io_uring instance are two ring buffers: one for submitting requests
named the Submission Queue (SQ), and one for reaping the responses named the Com-
pletion Queue (CQ). These buffers are shared between the application and the kernel
via mmap (), and each queue consists of entries. The SQ consists of Submission Queue
Entries (SQEs), while the CQ consists of Completion Queue Entries (CQEs). It’s worth
noting that while CQEs are indeed embedded in the CQ, SQ descriptor doesn’t actually
contain the SQEs. They reside in a different mmaped space, and there is an indirection
reference from the SQ to them. However, this doesn’t change the conceptual semantics

of io_uring communication, which can be thought of as depicted in Figure 3.3.

The application submits requests at the fail of the SQ and reaps responses from the head
of the CQ. The kernel extracts requests from the head of the SQ and puts responses at the
tail of the CQ. Thus, although the two rings are shared between the application and the

kernel, there is a single consumer and a single producer in each ring (i.e., only one side
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Figure 3.3: io_uring Visualization

reads and one writes, and never both). This is the reason why io_uring gets away with

only some barriers that guarantee the synchronization between the two communication

parties when updating the head and tail, and avoids locking.

Submission Queue Entry (SQE)

Every Submission Queue Entry is a descriptor of a request that an application wants to

perform. Itis a 64-byte structure (there is an option to send a 128-byte request as we will

see) named io_uring_sqe that describes a traditional system call with its parameters:

what operation we want to perform, and with which arguments. Some important fields

of the SQE’s descriptor are depicted in Listing 3.1.

struct io_uring_sqe {

u8

__s32

uésd

u64

*/

u32

ue4d

opcode;
fd;
off;
addr;
len;

user_data;

type of operation for this sqge */
file descriptor to do IO on */
offset into file */

pointer to buffer or 1iovecs */
buffer size or number of 1iovecs */

data to be passed back at completion time
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Listing 3.1: struct io_uring sqe

For example, if an application wants to read from a file, it will fill in the opcode with
the read identifier (IORING_OP_READ) or one of its variants, pass the file descriptor of
the file from which it wants to read (sqe- >fd), specify the buffer where the data will be
written (sqe->addr), and provide the size of the buffer (sqe->1en). Then, it will submit

the request to the ring.

Completion Queue Entry (CQE)

For every SQE, the kernel will place a corresponding CQE in the Completion Queue
when the desired result is ready in order to inform the userspace. CQEs are described
by a descriptor named io_uring_cqe, and they are fairly straightforward as shown in
Listing 3.2. It is a 16-byte struct (there is a case to enable 32-byte CQEs that we will
examine later) that packs the information that a system call usually returns (res field)

along with a flags field and an important identifier named user_data.

struct io_uring_cqe {
__u64 user_data /* sqe->data submission passed back */
__s32 res; /* result code for this event */

__u32 flags;

__u6b4 big cqe[];
s

Listing 3.2: struct io_uring cqe

The user_data field serves as the link between a Submission Queue Entry and a Com-
pletion Queue Entry. This field is never touched by the kernel, and is copied as is from
the SQE to the corresponding CQE. This way, the application can identify which request
the CQE corresponds to.

Note: It is important to understand that the kernel reaps the requests from the SQ, and
there is no guarantee that it will execute them in the same order they were submitted.
This means that the CQEs may be out of order. This is why applications need an iden-

tifier field (the user_data in this case) that will help them recognize which request this




3.2. I0_URING 61

reply belongs to.

Due to the asynchronous nature of io_uring, it cannot use errno to notify for an error.
That is why when an error happens, the kernel places the corresponding negative error
number in the res field. For instance, if a read request fails due to an invalid argument
(error EINVAL), a regular system call will have set errno equal to EINVAL and will have
returned -1. But in io_uring, the kernel places -EINVAL in the res field of the CQE. If
the request is successful, it returns the ordinary positive value (e.g. for a read request,

the number of bytes read successfully).

So practically, when the operation an SQE asked for is completed, the kernel simply
places a result at the tail of CQ by copying the user_data field of the corresponding

SQE and informing the res field with the result of the operation.

3.2.2 io_uring system calls

io_uring supports three system calls that set up the rings and enable communication
with the kernel. Typically, a userspace application will not directly use these calls, as
there is a wrapper library named liburing [Axbe] that wraps these functions and pro-

vides a higher-level perspective on the operations. We will examine liburing later.

Now, let’s focus on the io_uring system calls to gain a better understanding of how io_-

uring functions.

There are three system calls provided by the io_uring interface:

1. io_uring_setup
2. io_uring_enter

3. io_uring_register

io_uring_setup system call

int io_uring_setup(u32 entries, struct io_uring_params *p);

Listing 3.3: io_uring_setup system call
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io_uring_setup is the first system call that an application must make to inform the
kernel about its intention to start an io_uring instance. The user must fill in the entries
field and can also specify some flags, which is a field inside the second parameter of the

system call.

The kernel takes the entries value and uses it to set up the submission and completion
buffers, ensuring there are at least entries slots available. Additionally, it reads the
flags field of the io_uring_params structure to understand which specific features this
particular instance will employ. We will explore alternative modes of using io_uring
beyond the standard one later. Furthermore, the kernel is responsible for populating
other fields within the io_uring_params structure to provide crucial information about

the configured instance to the userspace.

In other words, io_uring_params serves as a “handshake object”. Applications set up
the flags to indicate the kind of communication they want, and the kernel responds with
important information for the instance. Finally, the kernel will return a file descriptor,

which the application can use from now on to refer to the io_uring instance.

After the successful return of io_uring_setup, the first thing an application must do is
to map the submission and completion queues, so that it can access this memory. This
can be done via an mmap system call, using the descriptor returned by io_uring_setup.

The offsets of the rings can be retrieved by the application via specific fields of io_uring_params

(the “handshake object”).
A visualization of the setup process along with the mmap call is depicted in Figure 3.4.

Once the rings have been successfully mapped, the application can now use them to

communicate with the kernel.

io_uring_enter() System Call

int io_uring_enter(unsigned fd, u32 to_submit, u32 min_complete, u32 flags,

const void* argp, size_t argsz);

Listing 3.4: io_uring_enter system call

This system call notifies the kernel that there are SQEs in the Submission Queue. The
parameter fd must be the file descriptor of the io_uring instance an application wants

to use (the one io_uring_setup returned). to_submit informs the kernel about how
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many SQEs are ready for consumption, while min_complete is used to instruct the ker-
nel to return control back to the application only when min_complete CQEs are ready.
Setting this field enables both the submission and the waiting for requests to take place
in one step, with one system call. In practice, this provides synchronous semantics in
the call, as control returns to the application only when min_complete requests have
been satisfied. Of course, an application can set this parameter to 0 and not wait for any

response.

An important thing to note in this design is that an application can batch up a lot of
requests and submit them all at once with only one system call. This is an immediate
optimization compared to traditional system calls, where you have to pay the overhead

for every context switch.

Every application that wants to submit an SQE to the ring must follow four distinct steps:

1. Extract an empty SQE.

[\

. Prepare a request by filling in the desired operation and arguments.

3. Place the request in the SQ.

S

. Submit the SQE(s) to the kernel via io_uring_enter.



64 CHAPTER 3. DESIGN

Only the fourth step leads to a system call. Due to batching, an application can perform
steps 1-2-3 as many times as the available (non-used) entries in the SQ allow, and only

perform Step 4 when it wants to notify the kernel.

This specific design, of course, helps in the submission of requests that don’t require any
synchronization (i.e. they don't depend on each other). However, this is not always the
case. There are times when users want to submit requests that need to be executed in
a specific order. For example, can I submit a write and a read request, and be sure that
the read request will retrieve the updated data? The answer is yes. io_uring provides
a specific flag (I0SQE_IO_LINK) that, if set in an SQE, it guarantees that as long as the
next submitted SQEs have the same flag set, the execution will occur in the order they
were submitted. This chain of “serial” requests continues until the first SQE that doesn’t

have the TOSQE_IO_LINK set.

io_uring_register() System Call

int io_uring_register(unsigned fd, unsigned opcode, void *arg, unsigned int

nr_args);

Listing 3.5: io_uring_register System Call

Using userspace buffers and file descriptors in the kernel comes with some overhead.
Therefore, it is possible to preregister buffers and descriptors using the io_uring_register

syscall.

The fd field refers to the instance of io_uring, while the opcode is a flag that indicates the
type of the resource we want to register with the kernel. Registering files or user buffers
allows the kernel to take long term references to internal data structures or create long

term mappings of application memory, greatly reducing per-I/O overhead [mpc].

3.2.3 Thankfully...liburing!

io_uring comes with a userspace library, named liburing [Axbe], developed and main-
tained by Jens Axboe, the creator of io_uring. Liburing abstracts away all the nitty-gritty
details, complexity, and low-level adjustments that must be made when setting and ma-

nipulating the ring buffers directly. This library aims to achieve one of io_uring’s goals:
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“easy-to-use, hard-to-misuse”, making it highly recommended for applications to use
the wrappers it provides instead of directly interacting with the system calls whenever

possible.

In the following example, we demonstrate a typical workflow with explanatory com-
ments to show how an application can perform all of the previously discussed steps. The
primary structure that describes an io_uring instance in liburing is the struct io_uring.
This descriptor consolidates all the important information that defines this instance, in-
cluding the Submission Queue and Completion Queue descriptors, the file descriptor

returned by io_uring_setup (see Listing 3.3), and other flags.

Of course, due to the versatility of io_uring, this example only scratches the surface of its
potential uses. Nonetheless, it illustrates the basic workflow and the essential wrappers
provided by liburing. Specifically, in the following code snippet, we create an io_uring
instance with 8 slots, retrieve an SQE, prepare a read request, submit the request, wait
for the response, and finally update the CQ head counter after retrieving the result from

the ring.

Note: For the sake of simplicity, we omit error handling.

struct io_uring ring; // The descriptor of an 1io_uring 1instance
struct io_uring_sqe *sqe

uint64_t user_data = 1;

char buf[64];

int fd;

fd = open(”file_to_read_from”, O_RDONLY);

// Set up a communication channel. This wrapper does both
// the io_uring_setup() and the mmap() of the rings.

io_uring_queue_init (8, &ring, 90);

// Retrieve an sge from SQ’s tail

sqe = io_uring_get_sqe(&ring);

// Prepare a read request from file fd. We want to
// read 64 bytes at buf, starting from offset ©
io_uring_prep_read(sqe, fd, buf, 64, 90);

// Set user_data to recognize the completion
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io_uring_sqe_set_data64(sqe, &user_data);

// Submit all requests available in SQ.
// Will invoke the 1io_uring _enter syscall

io_uring_submit(&ring);

// Do whatever you want. We didn’t block

struct io_uring_cqe *cqe;
// wait for a completion

io_uring_wait_cqe(&ring, &cqge);

// A completion has arrived. Check the user_data
// to verify if it 1is the one we want

uinté64_t check = io_uring_cqe_get_data64(cqe);
if (check == user_data) {

// Yes this was the response to the read

// Mark cqe as seen. Increment the ring head of CQ

io_uring _cqe_seen(&ring, cqge);

// exit 1o_uring 1instance and free the resources

io_uring_queue_exit(&ring);

. DESIGN

Listing 3.6: Simple Liburing Workflow

3.2.4 Advanced modes of operation

io_uring provides two different kinds of polling modes for applications aiming for very

low latencies: “SQPOLL” and “IOPOLL”.

SQPOLL

This is an operational mode of io_uring designed for applications that prioritize low

latency and have a high request submission flow. It is enabled during the setup phase

of the io_uring instance using the TORING_SETUP_SQPOLL flag. As a consequence, the

kernel spawns a dedicated thread that polls the Submission Queue (SQ) for available

requests. This allows the application to submit requests without the need for a system
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call to notify the kernel. The application simply prepares a request, updates the tail index
of SQ, and as long as this is different from the head, the kernel thread recognizes that

there are pending requests. It then extracts them and proceeds with the necessary steps

to fulfill them.

This is another step towards efficiency after request batching: the ability to submit tasks
without a single system call. It targets applications with high submission rates that
don’t mind incurring an additional CPU utilization cost. To prevent unnecessary con-
sumption of system resources, if the application doesn’t submit an SQE for a predefined
amount of time (which is configurable), the kernel thread will go to sleep. The applica-
tion will need to call io_uring_enter the next time it submits a request to wake it up

again.

IOPOLL

This mode can be enabled via the IORING_SETUP_IOPOLL flag during the initialization
of the ring. It specifically pertains to I/O operations against block devices and filesys-
tems. In general the responses of block devices are interrupt driven, meaning that when
a device finishes a requested operation, it interrupts the CPU to signal completion. En-
abling IOPOLL means that the process that made the request (via io_uring_enter) will
actively poll for completions on the target device. This reduces overhead for high IOPS

applications, and reduces latency in general [Axbf].

Note: This mode resembles a flag that can be passed in regular preadv2() and pwritev2()
named RWF_HIPRI, which «allows block-based filesystems to use polling of the device,

which provides lower latency, but may use additional resources» [mph].

How kernel treats an SQE

io_uring is a complex subsystem within the kernel that is continuously evolving. The
following analysis is an attempt to articulate my understanding of this matter, it is not

exhaustive, and may, at some points, not be entirely correct.
There are three different execution paths that a submitted SQE may follow inside the

kernel:

1. Executed in the process context of the process that submitted the request, without

blocking (inline execution).
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2. If the result is not available, but it can be polled for readiness, it is placed in a set

of pollable requests.

3. Iftheresultis notready, and cannot be polled for readiness, it is placed in a waiting

queue and will be executed by a thread from a dedicated worker pool.

io_uring attempts to complete a request inline. If this is not possible, it checks whether
it is a request that has a non-blocking behavior. By this, we mean a request on a file
descriptor that can be checked for readiness, such as a socket. This does not hold true
for file descriptors that refer to “disk files”. As discussed in 3.1.4, real files have a block-
ing/synchronous interface. If the request supports non-blocking I/0, io_uring monitors
it for readiness without needing to spawn a new kernel thread. When the file descriptor

becomes ready, io_uring is notified and continues with the execution.

Finally, there is a third path for requests that cannot be handled in a non-blocking
manner and are expected to block. These requests are placed in a queue, and a ker-
nel thread is spawned and assigned to their execution. Additionally, there is a specific
flag (I0SQE_ASYNC) that an application can assign to an SQE before submission, indi-
cating to the kernel that «we are aware that the request will likely block, thus bypass the

non-blocking path (step two) and assign this task to a worker ».

io_uring classifies tasks, in this third path, into two types: those that can be completed
in a bound time (such as reading from a file) and those that may potentially never com-
plete, known as unbounded work (like reading from a socket). These two categories
of requests are managed by separate groups of workers. Bounded tasks are delegated
to bounded workers, which are kernel threads, with the number of these threads being
limited by the size of the Submission Queue. In contrast, unbounded tasks are assigned
to unbounded workers, which are also kernel threads, and their quantity is determined

by the system’s resource limit RLIMIT_NPROC [Axbd, Sit].

3.3 Coroutines

Ublk server, uses a feature of C++20, called “coroutines” to communicate with the “tar-
get” after receiving a request from the ublk driver. In this section, we will explore what

coroutines are and how are implemented in C++20. Before explaining coroutines, we
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Figure 3.5: In-Kernel Path of a SQE

will provide some general theoretical background to understand what problems they

address and their role in the realm of program, processes, subroutines, etc.

Let’s begin with definitions of fundamental programming entities:

« Programs are binaries residing in a storage medium, ready for execution but not

yet loaded into memory.
« Processes are running programs that have been loaded into the memory.

o Threads are execution units within processes. They are the smallest execution

unit in Linux.

A process contains at least one thread, but it can also contain many. If a process has only
one thread, it is considered single-threaded. Conversely, if a process contains multiple
threads, it is multithreaded, indicating that more than one task is occurring concur-

rently.
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The implementation of threads in a system, can vary according to how much the kernel

and userspace is involved [Lov13]:

o 1-1 model, known as kernel-level threading, where the kernel provides support
for every thread in the system. Each thread is represented in the kernel by a struc-
ture called task_struct. Threads belonging to the same process share some of
these resources saved in their task_struct, which is why they are traditionally

called lightweight processes.

« N:1 model, known as user-level threading. A process with N threads maps to a
single kernel process. This model requires minimal support from the kernel for
thread implementation, but it necessitates the development of userspace compo-

nents, such as a scheduler, to manage thread operations.

o N:M model, a hybrid model, where N userspace threads are mapped to M kernel
threads in the kernel (where M < N).

Linux has native support for the first model. Each thread in userspace corresponds
to a thread (struct task_struct) in kernel. To implement other models in Linux,

attention to userspace implementation details is required.

The advantage of the 1-1 model is that it enables true parallelism, as each thread has its
own CPU and can run concurrently with other threads, whether from the same process
or not. This is not the case for userspace threads. As mentioned earlier, all userspace
threads “belong” to one descriptor in the kernel and are scheduled by the OS as a unit.

This means that true parallelism is not achievable in userspace threads.

At this point, let’s clarify two “similar but distinct” definitions regarding concurrency
and parallelism. Concurrency is an overarching concept that encompasses parallelism.
When we say that two or more threads run concurrently, we mean that all of them make
forward progress, though not necessarily simultaneously. For instance, concurrency can
occur in a multithreaded program running on a single CPU. All threads make forward
progress, but a scheduler arbitrates their turns, because only one thread can run at a
given time. Conversely, threads run in parallel when they execute simultaneously. This
implies that parallelism is limited by the number of cores in a system. For example, an
8-core machine can run up to 8 threads in parallel, even though thousands may run

concurrently.
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Now, it is clearer why user-level threading does not support “parallelism” as opposed to
kernel-level threading. However, user-level threading incurs (almost) no overhead for

thread switching, as they do not require the OS’s intervention to switch.

3.3.1 And...what are coroutines?

Coroutines are based upon the concept of “cooperative multitasking”. This means that
a task (an execution flow in our concept) willingly relinquishing control to allow other
tasks (other execution flows) to run. This resembles the notion of functions, yet differs
in a crucial aspect. Unlike classical functions (subroutines) that follow a linear start-to-
finish execution without interruption, coroutines have the ability to pause their execu-
tion voluntarily and later resume. In this sense, they can be viewed as an extension of
classical subroutines, possessing the ability not only to be invoked and return but also

to temporarily suspend and then resume.

caller function caller coroutine

7/7_\ ”;Qe/ )
o
e

e
— ® o
./ 8 he \J_/

Figure 3.6: Subroutines vs Coroutines

Coroutines are userspace phenomena, much like user-level threads (N:1 model), but
unlike user-level threads, they require little or no userspace support for their scheduling
and their execution. Instead they work cooperatively relinquishing voluntarily the CPU
in order to run another execution flow (other coroutine or function). They are more

about program control than concurrency.

Since coroutines function within userspace, the specific implementation details are typ-

ically determined by the designers of the supporting library. As a result, different pro-
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gramming languages may implement coroutines in different ways. One key distinction
lies in whether they are stackful or stackless. In traditional functions, due to their nested
structure, their activation frames can be efficiently stored in the stack, which is good
at quick allocation and deallocation. However, coroutines require the preservation of
certain information to enable later resumption. Stackful coroutines save their entire ac-
tivation frame upon suspension, while stackless coroutines take a different approach,

retaining only essential information needed for resuming execution.

3.3.2 Coroutines in C++

Coroutines support in C++ is a relatively recent addition, introduced in C++20, and
it’s still evolving. C++ coroutines are considered stackless, meaning they don’t save the

entire stack of the coroutine when they suspend.

However, to resume execution, certain crucial information must be preserved. When a
coroutine is called, the compiler assigns it a stack frame just like it would for a regular
function. It then allocates a memory frame in the heap and saves the coroutine’s pa-
rameters, which are typically used after the first suspension point. Figure 3.7 provides a
visual representation of the activation frame of the coroutine (bar()) after being called
from the function foo(). It can be thought of as divided into two parts: the conven-
tional stack frame and an additional frame saved in the heap, often referred to as the
“coroutine frame”. The compiler is smart enough to determine what information will
be needed after the first suspension point and ensures it’s stored in the coroutine frame.

Any value that is not used post-suspension is saved on the stack [Bak].

Elements of a coroutine

There are three new keywords essential for coroutine support: co_await, co_yield, and
co_return. The compiler recognizes a routine as a coroutine, rather than a regular func-
tion, if it encounters one of these three keywords within the body of the routine. Sus-
pension points are identified by the use of co_await or co_yield. The third keyword,
co_return, comes into play when the coroutine is finished. If there’s no co_return at

the end of the coroutine’s body, it is implicitly executed.

To declare a coroutine you need to specify at least two types:
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1. A wrapper type. This is the return type of the coroutine function’s prototype.

With this type we can control the coroutine from the outside. For example, re-

suming the coroutine or getting data into or from the coroutine. This is basically

done by storing a so called “handler” to the coroutine, more or less a function

pointer which knows how to invoke functions like resume.

2. A Promise Type: Within the wrapper type, the compiler searches for a type with

the exact name promise_type. This serves as internal control. Therefore, promise_type

is a hardcoded thing the compiler looks for within the wrapper type. Its presence

is crucial for a valid coroutine.

So, these are the main two components a coroutine requires: a type that encompasses

another type. The outer type serves as the return type of the coroutine, while the inner

type (the promise object) is utilized by the compiler to generate calls to specific methods

it defines at critical points during the coroutine’s execution. The wrapper type typically

also contains the “coroutine handle’, akin to a function pointer, which facilitates the

resumption (or destruction) of the coroutine. The return type of the coroutine is the

only access the caller has to it. So, if further interaction is anticipated, the coroutine

handle must be embedded within the wrapper type, ensuring the caller knows how to

invoke and manage the coroutine’s state.

Upon the initial call of the coroutine, as depicted in Fig. 3.7, the compiler proceeds with
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Figure 3.8: co_await, co_yield and co_return

the following steps: (a) allocates a coroutine frame in heap (b) copies the parameters
from the stack frame to the coroutine frame (c) identifies the promise type inside of the

wrapper type and allocates a promise object inside coroutine’s frame.

From this point onward, the compiler triggers method calls on key points in the corou-

tine’s life-cycle that are defined in this promise object.

heap

Coroutine's return type
A

/

struct WrapperType {
struct promise_type { m
WrapperType get_return_object() { {3} , parameters |
std: :suspend_never initial_suspend() { {}; } ' |
std: :suspend_never final_suspend() { {3}

void unhandled_exception() {}

bé

_____________

std::coroutine_handle<> h;

\ coroutine frame/

Figure 3.9: Return Type, promise_type and Coroutine Handler

Figure 3.9, shows the contents of a coroutine frame when the coroutine is suspended.
It saves the parameters, the promise_type, various local variables for post-resumption

use and a return address, specifying where execution should continue once it resumes.
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Additionally it illustrates a simple wrapper type with an embedded promise type and a
coroutine handle. The coroutine handle references the coroutine frame, signifying that

this pointer “knows” how to resume the coroutine’s execution.

Furthermore, within the promise object, there are several methods that the compiler in-
vokes at various stages of coroutine execution, as previously discussed. At the very start,
the get_return_object() method is invoked which returns the wrapper type that the
coroutine will return to the caller the first time it is suspended. initial_suspend()
is triggered just before the main body of the coroutine and final_suspend() is called
after the main body of the coroutine. Essentially, the compiler transforms the body of a
coroutine, as depicted in Figure 3.10, by invoking these two calls on the promise object
methods at the beginning and end. This means that, for instance, the coroutine can be

suspended even before its main body begins execution.

WrapperType my_coroutine(params){
coroutine body

}

struct WrapperType {
struct promise_type {
WrapperType get_return_object() { {};}
std: :suspend_never initial_suspend() { {}; }
std: :suspend_never final_suspend() { {};
void unhandled_exception() {}

b
WrapperType my_coroutine(params){
std: :coroutine_handle<> h;

} initial suspend

coroutine body

final suspend

Figure 3.10: Compiler Transformation on Coroutine’s Body

The co_await operator

The co_await isa unary operator that can be applied to an expression, like co_await <expr>.
The type of <expr> must support specific methods and is called an Awaitable. Awaitable
items are any type that offers three functions: await_ready(), await_suspend(), and

await_resume(). When the coroutine encounters co_await <expr>, these functions
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dictate its behavior.

For example, in Figure 3.9, we see the type std: : suspend_never as a return type of two
methods of the promise_type. This is a special Awaitable type offered by the standard
library which when invoked never suspends the execution. If it were an
std: :suspend_always, another special Awaitable from the standard library, then exe-

cution would have suspended.

In general, the co_await operator serves as a point where we can customize the behav-
ior of the coroutine. It allows us to pause the execution and wait for something, then
return once we have it. We can extract a value from the coroutine or pass something to
it. co_await can behave in a way similar to passing parameters to a regular function.
Because with a coroutine, you can only pass parameters at the start. What if, somewhere
in between, we need to provide additional data to the coroutine? co_await allows the
coroutine to pause and say «Hey, I need more data from the outside. Please instruct me

on what to do next».

The co_yield operator allows a coroutine to produce a value and then suspend, often
used in generator patterns. Meanwhile, co_return signals the coroutine’s end, indicat-

ing its completion and potentially returning a value.

3.4 Ublk

The introduction of the new communication mechanism, io_uring, has generated inter-
est within the Linux community in relocating functionality from the kernel to userspace.
In cases where communication time between userspace and the kernel was the main
limitation, io_uring’s reduced latency in userspace/kernelspace communication is prompt-

ing a reconsideration of operational strategies.

This has led to a reevaluation of certain concepts, in the way of trying to find ways to
move things to userspace, including the implementation of Virtual Block Devices. Vir-
tual Block Devices are software-emulated devices that replicate the behavior of physical
devices. This process remains transparent to the end user, who interacts with it as if it

<« » .
were a “real” storage medium.

Linux already includes several implementations of Virtual Block Devices within the ker-
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nel. Examples include the loop block device, which maps a regular file to a block device,
and the Network Based Device (NBD), which uses a remote server as a block device

[Docal.

The question that arises is: why choose to implement these devices in userspace when

they can be directly implemented in the kernel? Here are some compelling reasons:

1. Programming flexibility:
« They can be developed in a much less restrictive environment compared to
the Linux kernel.
o They can be written in a variety of programming languages.

o They can use already existing libraries and frameworks that are not available

in the kernel.

« Debugging is significantly more straightforward using tools familiar to ap-

plication developers.
2. Security:

o If a userspace block device encounters an issue, it won’t cause a complete
system crash or kernel panic, ensuring that the rest of the system remains

stable.

« Bugs in userspace block devices are likely to have a lower impact on system

security compared to bugs in kernel code, leading to a more robust system.
3. Independent in Development and Maintenance:

o They can be developed and maintained independently of the kernel, pro-

viding greater flexibility in managing system’s components.

« They can be a lot easier for testing, facilitating more efficient development

workflows.

However, it's important to note that critical operations requiring fast response times,
which are implemented within the kernel, cannot be easily migrated to userspace. One
must carefully weigh the advantages mentioned above against the need for fast response

times.
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Of course, virtual devices still require a small piece of kernel code, a module, to in-
teract with the Linux kernel. As mentioned previously, end users may not understand
the differences between using a Virtual Block Device or a regular one. They expect to
communicate with it as they would with any device under the /dev directory (which we

covered in 2.2.3).

The Virtual Block Device is transparent not only to end users but also to other Linux
subsystems. For example, the block layer (see 2.4.4) is unaware of the device to which
the request it prepares will be directed. Therefore, even for Virtual Block Devices imple-
mented in userspace, a kernel module is needed to interact with the rest of the kernel as
usual, but it will forward the information to the userspace component to take care the

implementation.

Figure 3.11, illustrates this design.
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Figure 3.11: Virtual Block Devices General Design

3.4.1 Ublk overview

This concept is followed by the ublk framework as well. As we stated in the Introduc-

tion chapter 1.1, ublk was designed by Ming Lei, and its driver component was merged
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into the Linux kernel v.6.0 as an experimental module. The ublk framework consists
of two communicating components: a userspace component, which we will call “ublk
server” or simply “server’, and a corresponding kernel module, which we refer to as

“ublk driver” or just “driver”.

At the moment of writing this thesis, ublk can support a specific number of targets. We'll
use the name “targets” to refer to the emulated devices. Null, loop, NBD and qcow?2 are
the currently supported types of emulated block devices, with a lot of new features being

under development, especially in the qcow2 target.

In this thesis, we will focus on the loop target. In other words, we implemented a crypto-
graphic system that specifically works with the loop target, which is why we will examine
the design of this target. Of course, the general concepts remain the same for all tar-
gets. Only the specific target code changes. We will explore this design in the following

sections.

Ublk general design

The ublk driver, exposes three different special devices under /dev. The first one is regis-
tered in the kernel when we insmod the ublk driver component. This is a simple charac-
ter device (a miscellaneous device) and it appears in the system as /dev/ublk-control
(we covered misc devices in Section 2.2.5). This special device exposes an interface that
can be used for controlling the kind of operation we want to perform. More specifi-
cally, we can use ublk-control, to add a new device, delete a new device to set and get

parameters, among other operations.

To utilize this interface, we must start the ublk server and instruct it to perform a specific
operation. For example, we can add a new emulated loop device by running
“ublk add -t loop -f backing_file”, where “backing file” is the file that will be

used as the storage device.

For each new emulated device we add, we use ublk-control and two new devices are
registered in the system and appear under /dev. A character device (ublkcN) and a
block device (ublkbN). The block device is the device we emulate, the device that end
users want to use as a disk. The character device is used to control this block device

and orchestrate its operation. There is a 1-1 correspondence between a character and a
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block device. Each time we want to add a new emulated device, both a character and
block device are created. The “N” in their name, which is the device identifier, can be
configurable by the user when the device starts or by the driver component itself in

incremental order if no specific device ID is passed by the user.
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Figure 3.12: Ublk, the Big Picture

Figure 3.12 illustrates this concept. We will examine each of these steps in more depth
later on, but this provides a general idea. We add the module in the kernel (1), which
exposes a special device (2), and this is used every time we want to create a new emulated
device (3, 4). Each emulated device comes with a character device that is used during

the data path to control its execution.

IOCTL and io_uring command passthrough

As mentioned, the communication between the driver and the server is performed via
io_uring. More specifically, the operation performed for each Submission Queue Entry
is an ioctl-like operation referred to in io_uring terminology as a “io_uring passthrough

command”. The opcode filled in each SQE is IORING_OP_URING_CMD.

ioctl() is a system call that enables userspace to issue arbitrary commands. In addi-

tion to read() and write() operations, drivers sometimes need the ability to perform
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certain device control tasks that fall outside the scope of classical read/write. ioctl()
provides developers with the ability to pass specific commands to the device. These com-
mands can be implemented in a driver-specific manner and may hold meaning only for

a particular type of driver.

Asdiscussed in Section 2.2.4, each character device is associated witha file_operations
structure, which defines the functionality of this driver and the available operations it
can manage. One of these operations is the unlocked_ioctl function pointer, which
handles the ioctl system call on the character device. For more information on the

“unlocked” prefix see [Corb].

To add support for io_uring operations to standard character devices, one needs to in-
corporate this functionality into the file_operations struct. Since it is common to use
I/O operations in conjunction with ioctl commands, the ability to handle these asyn-

chronously would be beneficial.

This need is addressed by the io_uring command passthrough. To achieve this, a new
operation was added to the file_operations struct. This operationis called uring_cmd,

as seen in Listing 2.6.

Thus, we can handle operations in a character device that come through an io_uring
instance. This concept is utilized in ublk. Both the ublk-control and ublkcN character

devices implement the uring_cmd function to provide the desired functionality.

Let’s now explore more deeply into all these concepts we have referred to so far. In order

to understand ublk framework properly, we will separate its examination into 3 phases:

o The initial phase, involving communication/negotiation between the server and

driver to setup the basic attributes, which is centered around ublk-control.

« The second phase, which consists of the setup of the server itself, where it creates

a pthread for every queue.

« The third phase, where an application uses the ublk framework for an I/O oper-

ation.
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3.4.2 Initial Phase: Setting up the Environment

The miscellaneous device ublk-control is used for controlling ublk devices. The cor-
responding struct file_operations is listed in Listing 3.7. Basically the only useful
operation this special device implements is the io_uring command passthrough, which

is implemented via ublk_ctrl_uring_cmd.

static const struct file_operations ublk_ctl _fops = {

.open = nonseekable_open,

.uring_cmd = ublk_ctrl_uring_cmd,
.owner = THIS_MODULE,

.1lseek = noop_llseek,

s

Listing 3.7: ublk-control file_operations
Some of the supported operations, that are important to us include:

« Adding a new character device (UBLK_CMD_ADD_DEV). This is the ublkcN device
mentioned earlier, which serves as the communication medium between the ublk
server and the ublk driver. When sending this command, the ublk server can cus-
tomize the new device, such as setting the number of hardware queues it supports
(for more on hardware queues, see 2.4.4), the depth of each queue, the length of
the I/O buffers, and more. These settings sent by ublk server cannot exceed in-
ternal kernel limits, which is why the final information is sent back to the server

with the reply to this command.

o Setting parameters for the device (UBLK_CMD_SET_PARAMS). These parameters re-
fer to the backing file attributes and include the number of sectors of the emulated
device, the number of sectors for each I/O buffer, the block size, etc. These can
only be set before the real device (ub1kbN) starts. These parameters also undergo

validation before being put into practice.

« Starting a new block device (UBLK_CMD_START_DEV). This registers the real device.
After this command succeeds, the block device is up and registered in the kernel

and can be used by applications.

+ Getting parameters from the device (UBLK_CMD_GET_PARAMS). This is the reverse

of UBLK_CMD_SET_PARAMS. The ublk server gets the parameters from the driver.
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« Stopping a device (UBLK_CMD_STOP_DEV). This command will halt the ublk device
(ub1kbN).

o Deletinga device (UBLK_CMD_DEL_DEV). This command will remove the character

device (ublkcN). From this point on the device ID can be reused.

These are the most basic functionalities that ublk-control exposes. For a full list of

available commands see [kD].

The high-level flow of adding a device in the system is depicted in Figure 3.13. The
server sends an SQE to add the character device (1), customizing and revealing device
information to the driver. Then it sets specific device parameters (2). Finally (3) after
setting up all the userspace components, the ublk server sends the start command to
inform the driver that everything is ready and the block device can be exposed in the

system.

ﬂ UBLK_CMD_DEV_ADD

a UBLK_CMD_SET_PARAMS
o UBLK_CMD_START_DEV M

/dev/ublkc0 | /dev/ublkbo [ —
I Y z

/dev/ublk-control

.uring_cmd = o o
| ublk_ctrl_uring_cmd a a
A —_-__'___'__—_"\\\
l;’ 1case UBLK_CMD_DEV_ADD: |- 4

&5

Kernelspace

! case UBLK_CMD_GET_PARAMS: |

case UBLK_CMD_STOP_DEV:

Figure 3.13: Initial Commands to Add a Device
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A Deeper Dive into Setting up the Ublk Environment

Until now, we have presented a general overview of the control path of the ublk frame-
work. Now, let’s dive deeper into how this communication is set up: what userspace

components are used and how they interact with the ublk driver.

Let’s decipher the ublk server starting command:

./ublk add -t loop -f backing_file [-n device_id] [-q number_of_hw_queues] [-
d queue_depth]

Listing 3.8: Command to Add a Ublk Loop Device

We will examine the most important steps this command takes. We will shift from
userspace (server) to kernelspace (driver), and by the end, we will have a clear under-
standing of the essential parts and how they are set up along the way. This will be a more

detailed explanation of the concepts we touched on previously.

Before that, let’s understand what the given options do:

o -t loop: Identifies the type of the emulated device.

o -n device_id: Starts a device with specific device ID. (If not set, the driver will

pick one by itself).
o -f backing_file: Indicates which file will be used as a disk.

o -q number_of_hw_queues: Specifies the number of queues the device will ex-
pose. These queues correspond to the hardware queues each real device exposes
and match with the hardware queues of the block layer (in blk-mq design) for the
specific device (default value: 1, maximum value: min {number of CPU cores,

32}).

o -d queue_depth: Specifies the size of each queue (default value: 128, maximum

value: 4096).

The number of queues and the queue size determine how many on-the-fly requests our
emulated block device can support. For example, if we have 2 queues and each queue

has a depth of 1024, then we can have 2048 requests on-the-fly.
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Note: These are not all the available configuration commands that can be given when

starting the ublk server, but rather the most important for us to understand the concept.

With this information in mind, let’s begin investigating how the command to add a ublk
device is satisfied:
Step 1: The ublk server starts and saves any command line arguments in an internal

structure.

Step 2: It opens the /dev/ublk-control special device exposed by the driver, and saves

the file descriptor for later usage.

Step 3: It sets up an io_uring instance so that it can “talk” to the driver. Every SQE
submitted from now on in this io_uring instance will have the open file from Step 2 as

the fd field (see the SQE internals in Section 3.2.1).

Step 4: It submits the first SQE to the io_uring instance. This SQE has the opened
file from Step 2 as the file descriptor and the opcode IORING_OP_URING_CMD. These two
fields are crucial for the io_uring subsystem to locate the device that will serve this com-
mand. It also stores in another structure that ships with the SQE the type of command
the driver is going to execute and the device information needed to fulfill this com-
mand. Remember that io_uring command passthrough is an ioctl-like command, so
we need to specify which command the driver will execute. This command operation
is UBLK_CMD_ADD_DEV. After the submission, the ublk server waits for the response and

does not continue until the driver submits a CQE.

Step 5: The io_uring subsystem extracts the SQE from the Submission Queue and, using
the file descriptor field (fd of ublk-control) along with the opcode (IORING_OP_URING_CMD),
itlocates the registered struct file_operationsand callsthe specificublk_ctrl_uring_cmd

function.

Step 6: The ublk driver runs and checks the command operation passed in the io_uring

command passthrough to recognize the type of request it is serving. It then runs the
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corresponding function that handles the addition of a device. This function is respon-
sible for:

Step 6a: Allocating a structure named ublk_device, which will be the internal driver
representation of the device.

Step 6b: Allocating a unique identifier and saving it in the ublk_device structure. If
the server has requested a specific ID (via the -n device_id option), it asks for this ID,
otherwise it allocates one on its own. This ID will be used later when the driver needs
to retrieve the ublk_device structure.

Step 6¢: It validates the information sent by the server and initializes internal fields of
the ublk_device.

Step 6d: It allocates a specific structure for each hardware queue requested by the server
(via the -q nr_hw_queues option). Each such structure serves as an information con-
tainer for the queue. We'll see later how this corresponds 1-1 with a ublk server’s thread.
Step 6e: It registers a blk-mq tag set. In Section 2.4.4, we analyze the importance of this
structure. The block layer needs to know how many hardware queues are supposed to
exist, what the number of each queue’s capacity is, etc., in order to set up the block layer’s
relevant components.

Step 6f: Finally it adds the character device (ublkcN) in the system. From this point on,
the ublk server can open and use this device by sending TORING_OP_URING_CMD com-

mands.

Step 7: The driver fills a CQE and submits it into the Completion Queue.

Step 8: The server wakes up, checks the res of the CQE to verify that everything went
ok, and forks a daemon child. This daemon, in turn, will create one thread for every
hardware queue that our device has declared it can serve, and then it will wait for them
(pthread_join). We will see exactly how the daemon with its threads are set up in the
next section. For now, we can think of them as ublk server’s services that will eventually

serve an I/O request in the data path.

Step 9: After the daemon has been successfully set up, the ublk server submits another

SQE with the UBLK_CMD_SET_PARAMS command operation flag set, to notify the kernel
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of the device’s parameters (as noted in the previous Section 3.4.2).

Step 10: The io_uring subsystem passes the request to the ublk driver, which, in turn,
updates the internal parameter structure in its ublk_device descriptor. The driver then

responds with a CQE to indicate that the operation has been completed.

Step 11: The ublk server retrieves the Completion Queue Entry and verifies that the
parameter setting concluded without any issues. It then prepares and submits the third
SQE with the operation UBLK_CMD_START_DEV to initiate the device startup process. As

of this moment, there is no block device registered in the system.

Step 12: The io_uring subsystem forwards the request to the ublk driver, similar to steps
10and 5. The ublk driver executes the corresponding function for the UBLK_CMD_START_DEV
command. This function handles the registration of ublkbN in the system, following
the steps outlined in Section 2.4.5. This involves the allocation of a gendisk descriptor
along with a request_queue, utilizing the blk_mq_tag_set initialized in Step 6e. The
block device is then added to the system using add_disk(). Just like previous submis-

sions, the driver populates a CQE and submits it to the Completion Queue.

Step 13: The ublk server awakens, extracts the CQE, and verifies the outcome. It prints
device-specific information to the standard output and then exits. From this point for-
ward, the active components of the ublk server are the daemon threads, each dedicated

to serving a specific hardware queue.

Note: This process exhibits a consistent pattern for each io_uring submission: the ublk
server sends an SQE with the desired command operation and awaits the response. The
ublk driver processes it and submits the corresponding CQE. The server then awak-
ens, retrieves the CQE, verifies that everything has proceeded as expected, and moves
forward. It’s noteworthy that in this initial phase, the io_uring is employed in a syn-
chronous manner. The ublk server waits after each SQE submission to obtain the CQE.
This aligns with the request semantics. For instance, upon submitting the UBLK_CMD_ADD_DEV
command, the server must ensure that everything proceeded smoothly before forking

the daemon. Additionally, as previously mentioned, these requests entail a negotiation
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between the server and driver. The driver may alter some of the provided parameters,
and the server must be aware of these changes to appropriately initiate the daemon and

the subsequent queue-threads.

3.4.3 Second Phase: Ublk Server Internal Setup

So far, we've covered the basic control path but haven't yet explored Step 8 from the
previous steps, which involves crucial configuration on the server’s side. In this section,

we'll take a closer look at what happens in this step.

# ./ublk add -t loop -f backing file -q 4
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Figure 3.14: One pthread for Every Queue

In Figure 3.14, we illustrate the relationship between the initial ublk server entities
and the one-to-one correspondence between in-kernel descriptors and userspace queue
threads. In Step 6d, we saw that the driver allocates a specific structure for each queue.
This is shown as “ublk_queue” in the figure. Also we used the term “ublk server” to refer

to the initial process started by the “ublk add” command. The term “daemon server
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is used to identify the daemon spawned from the “ublk server”, which in turn creates
one pthread for each queue. While these are all part of the userspace entities in the
ublk server, we use these terms for clarity. To reiterate, the “queue threads” depicted in

Figure 3.14 are part of the ublk server.

Now, let’s take a closer look into Step 8, to explore how userspace is configured, how the

“queue threads” are created, and how they are prepared to facilitate the I/O path:

Step 1: After the ublk server retrieves the CQE in response to UBLK_CMD_ADD_DEV, it
forks a child process, which in turn forks a daemon process (a process without access to
the terminal) and then exits. The parent process waits until the daemon completes its
setup. These two entities correspond to the “ublk server” and “daemon server” in the

Figure 3.14.

Step 2: While the ublk server is waiting, the daemon server:

Step 2a: Opens the /dev/ublkcN character device and saves the file descriptor. It’s im-
portant to note that if the device is already open, this operation will fail, preventing the
character device from being opened again.

Step 2b: Executes a target-specific initialization callback function. This function probes
and sets parameters for the backing file, known as the “target”. At this point, we deter-
mine attributes such as the device size, the number of sectors, the block size, whether it
operates in buffered or direct mode, etc.

Step 2c: After obtaining the target’s parameters, the daemon opens a file in a predefined

directory and writes its PID to this file.

Step 3: The “ublk server”, which was waiting for the daemon to complete, reads this PID

and proceeds with Step 9 from the previous list of numbered steps.

Step 4: The “daemon server” creates one thread for every queue and waits for them to
finish. From this point onward, each of the following steps is executed independently

by every queue thread.

Step 5: It maps a memory region of ublkcN using the file descriptor obtained in Step

2a. This memory region is pivotal in the ublk framework. Its size is determined by the
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queue depth multiplied by the size of a descriptor called ublksrv_io_desc. Each de-
scriptor provides information about an I/O operation. So, each queue thread possesses
a dedicated memory-mapped area, which is read-only for the server and write-only for
the driver. This helps the driver to describe the request sent from an application to the

SErver.

Step 6: It allocates one buffer for each available queue slot. These buffers are used for

serving read/write requests in the data path.

Step 7: It sets up an io_uring instance with a ring size of at least the queue depth. Each
queue thread uses its own io_uring instance to communicate with the driver. Addition-
ally, the same ring is used to communicate with the target (the backing file). We will see

how this is achieved in the “third phase” section (3.4.4).

Step 8: It prepares a batch of SQEs equal to the queue depth of the Submission Queue.
Each request is characterized by an IORING_OP_URING_CMD, and the specific command
passthrough is set to UBLK_IO_FETCH_REQ. It is noteworthy that the server populates
the queue depth SQEs but refrains from submitting them individually to the io_uring
instance, thereby avoiding a system call for each SQE. Instead, they will be collectively

submitted in the next step with one system call.

Step 9: With the initialization phase complete, each queue thread now starts its primary
task. This task centers around an infinite loop. Within this loop, the thread both sub-
mits any pending SQEs and awaits one response in the form of a CQE. Once a response
is received, it checks the type of CQE and proceeds with the corresponding action. Fol-
lowing the completion of request manipulation, the thread reverts back to the process
of submitting SQEs and awaiting CQE(s). So, every queue thread continuously follows

this loop.

In Figure 3.15, we've outlined the basic components discussed in the previous steps. In
this example, we set up the ublk server with 2 queues, making use of the default queue
depth (which is 128), since we didn’t specity a different depth for each queue. This means
the system can handle up to 256 I/O requests at the same time, 128 requests for each

queue. Each Submission Queue contains 128 SQEs, each corresponding to an available
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# ./ublk add -t loop -f backing file -q 2

queue slot. Additionally, in the memory-mapped area, there are 256 ublksrv_io_desc

descriptors, 128 for each queue. It's important to understand that the depth of each

queue determines how many requests it can handle simultaneously. This, in turn, affects

the size of the io_uring instance’s ring and the number of descriptors in the memory-

mapped area.

struct ublksrv_io_desc

The ublksrv_io_desc structure plays a vital role in the communication between the

two ublk components.

struct ublksrv_io_desc {

__u32 op_flags;
__u32 nr_sectors
__ub4 start_sector;

__u64
s

addr;

Listing 3.9: struct ublksrv_io_desc
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The fields of this descriptor describe exactly what ublk server needs to know for any

request:

 op_flags: Stores the type of operation (read or write) along with specific flags.

« nr_sectors: Specifies the number of sectors involved in the read/write opera-

tion.
 start_sector: Indicates the starting sector in the backing file.

« addr: Represents the address of a buffer in the ublk server’s memory. This buffer
is employed in the read/write operation and all of them are preallocated (see pre-

vious Step 6).
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Figure 3.16: A Zoom in ublksrv_io_desc

The driver populates this descriptor to communicate the request details to the server.
Equipped with this information, the server is ready to handle the request effectively. It
knows the type of the operation, the starting point for reading/writing in the backing
file (start_sector), the size of the request (nr_sectors), and, in the case of a write

request, which buffer to use for writing data to the backing file, or in the case of a read
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request, which buffer to fill with data from the backing file. All of these aspects are
illustrated in Figure 3.16.

Tag-Based Communication

Each 1I/0O request reaching the driver is assigned a unique number within the range of
the queue’s depth. This number accompanies the request throughout its processing cycle
and allows the block layer to track the progress of each request. The tag number is
unique within each queue slot. For instance, if our device has two hardware queues,

each with 256 slots, then each queue slot is assigned a tag from 0 to 255.

The driver uses this tag number to find the corresponding ublksrv_io_desc structure
and fills it with the necessary information for the request. This is why we have queue

depth ublksrv_io_desc descriptors.

In steps 8 and 9, we noticed that each SQE sends an UBLK_IO_FETCH_REQ request to
the driver. Now, let’s take a closer look and examine the specific information contained
within each SQE. This includes: (a) the tag of the request, (b) the address of the userspace
buffer for I/0, and (c) the queue identifier (indicating from which queue this request

comes).

The first SQE will be tagged as 0 and correspond to the first ublksrv_io_desc. The
second will carry tag 1 and correspond to the second ublksrv_io_desc, and so forth.
Consequently, when a request arrives from the block layer, the driver uses the tag to
locate the corresponding ublksrv_io_desc in the memory-mapped area and complete
the corresponding CQE for this tag. This is why we refer to this communication scheme

as “tag-based”.

This communication method is depicted in Figure 3.17. In this example, we show an
instance of a ublk framework started with 2 hardware queues, and thus having two
pthreads to serve each one of them (“queue thread 1” and “queue thread 2”). The block
layer hands a read/write request to the driver for the first queue (queue thread 1) with a
tag equal to 2 (1). The driver, based on the tag and the queue, identifies the appropriate
ublksrv_io_desc descriptor (2) and updates it with the I/O information (3). Subse-
quently, it populates the CQE corresponding to the specific tag, prompting the server to

wake up (4). The server then retrieves the user_data field of the CQE, which contains
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Figure 3.17: Tag-Based Communication

the tag of this request. Now, it can reference the descriptor to determine the details of

the received request (5).

3.4.4 Third phase: The Data Path

Up until now, we've covered the setup phase and the roles of each important component.
In this final section, we'll see how all the previous work together to fulfill an I/O request
from an application. We'll follow both a read and a write request to understand how

they are processed.

Along the way, we'll also explore how the ublk framework leverages coroutines, a con-

cept discussed in Section 3.3.2.

Figure 3.18 assumes that the setup phase is complete, the ublk server has dispatched
queue depth UBLK_IO_FETCH_REQ operations, and waits for an application to interact
with the block device.

Write request:

Step 1: An application sends a write request, either directly to ublkbN, or via a filesys-
tem. The request traverses the I/O stack (for more details about the I/O stack, refer to

Section 2.4) and ends up at the ublk driver.
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Figure 3.18: I/O Request from an Application

Step 2: The driver detects the incoming request, checks the tag, and informs the corre-
sponding ublksrv_io_desc. Since it’s a write request, it maps the provided application
buffer and the ublk server’s buffer (the one taken from the ublksrv_io_desc) to kernel

addresses and copies the data from the first to the second.

Step 3: It submits the corresponding CQE to the Completion Queue. As a result, the
ublk server wakes up to check the CQE. It specifically examines the user_data field to
determine the type of request (see the Table 3.1 for a detailed layout of the user_data
field). This 64-bit value indicates that the request originates from the driver. It also re-
veals the accompanying tag. With this tag, the server can retrieve the buffer containing
the data ready for writing. It then calls a target-specific callback function. This callback,
in turn, invokes a coroutine whose task is to prepare the corresponding write request.
The coroutine doesn’t submit the request at this point, instead it populates an SQE (of
the same io_uring instance that communicates with the driver) with the write request
details and suspends its execution using co_await (refer to 3.3.2, for more on co_await

keyword).
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Step 4: With the coroutine suspended, the server continues its loop, submitting any
pending SQEs from the Submission Queue ring. There is at least one SQE ready for
processing, prepared by the coroutine in the previous step. However, this time, the file
descriptor of the request is not that of the ublkcN device, but rather the file descriptor
of the backing file. Thus, after the submission, the generic io_uring code takes charge,
fulfilling the write request. At this point, the data provided by the application is written
to the backing file.

Step 5: A Completion Queue Entry with the response from the target awakens the
server. The server examines the user_data field and identifies it as a response from
the backing file. It then resumes the suspended coroutine. The coroutine finalizes this
request by preparing a SQE, this time with the recipient being the ublk driver. The server
needs to ack that the operation was successful (or not). Therefore, this request embeds

a flag with the value UBLK_IO_COMMIT_AND_FETCH_REQ.

Step 6: The ublk driver receives the SQE. Upon recognizing the UBLK_IO_COMMIT_AND_FETCH_REQ
flag, it performs two tasks: (a) It finalizes the request by providing the number of bytes
written to the block layer, allowing it to propagate up to the application and (b) it pre-

pares the environment for fetching future requests with the same tag.

Step 7: The completed request travels all the way up to the application, which now can

check the result to confirm its success.

The steps for a read request are identical, except for the copying to and from the ublk
server’s I/O buffers. In Step 2 of a read request, there is no writing to an I/O bufter.
Then, in Step 4, when the server submits a SQE with a read request to the backing file,
the backing file populates an I/O buffer in the ublk server’s memory with the requested
data. Consequently, in Step 6, when the driver receives the SQE and identifies it as
a read request, it copies the results from the ublk server’s buffers to the application’s
buffers after mapping them to kernel addresses. The rest of the steps follow the same

process as described above for the write request.

Note: The ublk server uses the same io_uring instance for both communicating with the

target and the driver. The 64-bit user_data field is the only source of information upon
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receiving a CQE. This field has the layout shown in Table 3.1, encompassing three vital
pieces of information: (a) 0-15 bits denote the tag of the request. (b) 16-23 bits store the
type of the operation, whether it is a read or a write request. (c) The 63rd bit denotes
if it is a response from the target or a request from the driver. Bits 24-39 and 40-62 are

unused in this context.

Thus, in Steps 3 and 5, the “is_target_io” bit (the last bit) of the user_data is the one
that informs the server about the initiator of the request (target I/O or driver request).

Based on this information, it determines the subsequent action.

63 62-40 39-24 | 23-16 | 15-0
is_target_io | unused | tgt_data | op tag

Table 3.1: user_data Layout per Bits

We've now covered the core functionality of the ublk framework. We've seen how it
sets up various components, spawns threads for each queue, and ultimately processes
real I/O operations on the emulated block device through the collaboration of the ublk

driver and ublk server.

Of course, there are some attributes that we haven’t touched on this journey, as they

won't play a role in our encryption scheme.

3.5 Encrypted Ublk

From the design of the ublk framework (Section 3.4), it is evident that no cryptographic
operations occur in either the ublk server or the driver. Consequently, when an ap-
plication utilizing ublk sends data, they are simply copied into the ublk server’s virtual
memory (by the ublk driver) and subsequently forwarded to the backing file for stor-
age. This way the data provided by an application are saved in exactly the same format

as acquired from the block layer by the ublk driver.

As aresult, an application employing ublk and aiming to secure its data must be aware of
the environment in which the ublk framework operates. For instance, it should consider
whether the disk on which the data is eventually stored is a Self-Encrypted Disk, or if

the filesystem itself uses any form of encryption. Therefore, it cannot rely solely on the
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ublk framework for data security. If the environment is not secure, the application must

take proactive measures by encrypting the data prior to interacting with the disk.

Our aim was to enable applications to use the ublk framework securely, without neces-
sitating extensive knowledge about the underlying environment. To achieve this, we in-
tegrated an encryption scheme directly within ublk, implemented entirely in userspace.
This integration guarantees that no data will be written to the backing file in an unen-

crypted form.

In this section, we will discuss the key architectural decisions we made to implement
encryption within the ublk framework. As mentioned in the Introduction chapter, we

achieved encryption with three three distinct methods:

« Single-thread encryption: Ublk server itself handles the encryption of each bufter.

o Intra-block parallelism: Ublk server splits the buffer, and activates a thread pool
where each thread is responsible for encrypting/decrypting a specific range in the

buffer, while the server waits for them to finish.

« Inter-block parallelism: Ublk server offloads the whole buffer to a thread from a

thread pool and continues.

While each of these methods has a different approach to encryption, they share a com-
mon method for key setup. The term “key setup” refers to how we incorporate a crypto-
graphic key into ublk, how we store it, and how it is utilized for encryption operations.

This setup is the same across all three implementations.

To provide a more organized presentation, we have divided this discussion into five
sections. We will start with an overview of the Encrypted Ublk. Then, we will move
on outlining our decisions regarding the key setup phase, which is common to all the
implementations. Following that, we will go into the specific design choices for each

implementation.

3.5.1 Overview of Encrypted Ublk

At the beginning, we needed to decide on the type of encryption to use: symmetric or

asymmetric. This was rather easy to decide. As we discussed in Section 2.5.2 symmetric
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encryption is the way to go when we need to quickly encrypt large amounts of data.
Given that our system requires on-the-fly encryption and decryption for each write/read

operation, opting for a symmetric encryption algorithm was clear.

Once we settled on symmetric encryption, the next question was: which symmetric
encryption method should we use? This one was also straightforward: AES. It's widely
used, secure, and fast. AES stands as the de facto standard for the majority of the online

cryptographic operations employing symmetric cryptography.

However, as we explained in Section 3.6.2, AES can work in different modes. So, the
last question was: which mode should we use? This decision wasn't as easy as the previ-
ous ones, but we ended up going with XTS mode for a few good reasons. We explained
the advantages of AES-XTS in Section 3.6.3. In short, XTS mode is tailored specifically
for disk encryption, serves as the default mode of operation for many major crypto-
graphic distributors, and facilitates parallel encryption and decryption. This last point
was important because we wanted to explore how parallelism affects the data path and

if different parallel strategies make a noticeable difference.

Consequently, the chosen encryption algorithm was AES, operated in XTS mode with
a 256-bit key size. Since XTS mode uses a key size twice the size of AES, we need a
512-bit key. This means that during the use of the encrypted ublk, a 512-bit key (64
bytes) resides in memory in unencrypted form and is utilized for every encryption and

decryption operation. This key will be referred to as the “master key” or “data key”.

Figure 3.19 provides a high-level visualization of the ublk encryption process. “P” stands
for the original, unencrypted data (Plaintext), and “C” represents the encrypted data
(Ciphertext), enabling a clear depiction of the data’s path. An application initiates a
write request, the driver maps its buffer(s) into the kernel memory, and copies the data
to the ublk server’s memory buffers (the data path in ublk is detailed in Section 3.4.4).
Subsequently, the ublk server uses the master key to encrypt the buffer before forward-
ing it to the backing file, ensuring that everything is transmitted in encrypted form. For
brevity and to emphasize the data encryption, we omit the io_uring instance from this

diagram.

The same process applies to a read request from an application. The ublk server retrieves
the encrypted data from the backing file, decrypts it using the master key, and stores the

plain data in its buffers. Then, once the server notifies the driver, the driver copies the
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Figure 3.19: General Overview of a Write Request in Encrypted Ublk

unencrypted data from the server’s memory to the application’s buffer, completing the
read request. Since AES is a symmetric encryption method, the key stays the same for

both encryption and decryption.

With this general overview in mind, we are prepared to examine precisely how we man-

age the key setup and ultimately how we design each of the three encryption methods.

3.5.2 Key Setup design

After deciding on the type of encryption, we faced the question of how to handle the
master key that is going to be used for data encryption. We wanted the master key to be
saved in a file so that we can use it again. However, it wouldn’t be a wise move to save the
master key unencrypted in a file. It must be saved in an encrypted form. Additionally,
we wanted to be able to add new keys and remove keys without changing the master key
itself. This is because if the master key has to change in order to add or change a key,
it would require re-encrypting the whole disk, which is not practical for data mediums

that may store a large amount of data.

Thisidealed us to adopt a scheme of key hierarchies. We wanted another key that would
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be used to encrypt the master-data key. This concept enables us to handle encryption

with more flexibility (see more about key hierarchies in Section 3.7.1).

Also we wanted our key setup, to support the following high level operations:

Create a new cryptographic disk. Initialize a master key, and save it encrypted in

a file.

» Openan encrypted disk by recovering the master key, provided in encrypted form

from a file.

Add a new key.

Remove a key.

We will follow each of these operations and see how exactly they function in our design.
In order to be able to control some of the above high-level operations, we believed it
would be better to allocate a range on the disk for metadata information. That's why we
chose to allocate the first block of the disk (4096 bytes) for metadata reasons. In other
words, the backing file that serves as a disk has the layout shown in Figure 3.20. The

bulk data are saved after the “metadata area”.

|—4096 bytes—|

Backing File—) In“:::;?t::n Encrypted Data
Ublk .
Header Padding

|— 80 bytes—|

Figure 3.20: Backing File Layout

The header information is stored in a structure in this first version of Encrypted Ublk

and it contains four fields:

1. The magic number for a ublk encryption disk.
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2. The version of the encryption.
3. A flag that verifies if this disk is active (i.e. it has a valid master key) or not.

4. A hash of the master key.

Of course, this structure doesn't take up the whole metadata block. But we designed it
this way in order to be extendable for later usages, and aligned with block size which is

the basic operation unit from the OS’s side.

Now, let’s see how we respond to the high-level operations in our design, and what ex-

actly is the role of the metadata ublk_header in each phase.

Create an encrypted disk

To initiate the ublk encryption, we must create an encrypted disk the first time we start
the server. As discussed in Section 3.4.1, starting the ublk server necessitates specifying
the file that will serve as a storage medium. This “disk” will house both metadata and

the actual encrypted data.

We added an additional option to designate the name of the file that will contain the

encrypted master key:

./ublk add -t loop -f backing_file -s <file_to_save_master_key>

Listing 3.10: Start Encryption in Ublk

Let’s examine the basic steps undertaken when initiating our encryption scheme. Al-
gorithm 1 outlines the process at a high level. The core design is as follows: We read
ublk_header size from the beginning of the disk to check if it is an active disk. If it’s
active, it indicates that encryption is already in place, and to prevent user shooting his
own leg, the operation is aborted. If the disk is not encrypted, we read 512 bits from
a random source to serve as the master key. Subsequently, we: (a) Encrypt the mas-
ter key, saving its encrypted form in the file passed via the -s option, and (b) Initialize
the ublk_header struct with the relevant information, storing it at the beginning of the

backing file.

A critical question centers around the method used to encrypt the master key. While the

implementation details will be explored in the next chapter, for now, it suffices to say that
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we leverage GnuPG for symmetric encryption of the master key before saving it to the
file. By default, GnuPG adopts AES for symmetric encryption, requesting a password to
secure the file contents in which it will be saved the encrypted key. We use the GPGME
library [GNUa] to interface with the GPG agent, with more details on GPGME and the

key encryption implementation to be provided in the subsequent chapter.

Now, with the master key loaded into memory, we can proceed with the remaining ublk
server initializations. The encrypted master key, stored in the specified file, is now set

aside for future use.

Algorithm 1 Initialize an encrypted disk

disk_fd < open(backing_file)
master_file_fd <— open(file_to_save_master_key)
ublk_header < read from disk_fd the first 80 bytes
if ublk_header.active is true then
if ublk_header.magic == “UBLKEN” then
ABORT. The disk is already encrypted.
end if
end if
master_key <— read 64 bytes (512 bits) from /dev/random
master_file_fd <— Encrypt(master_key)
: md_key <— SHA512(master_key)
: ublk_header.magic +— “UBLKEN”
. ublk_header.version < “0.1”
ublk_header.active + 1
: ublk_header.master_key_hash <— md_key
Write ublk_header in disk_fd, starting from byte 0

Y e N Dy

e e e e

Open an Encrypted Disk

What if we want to reuse a disk that’s already encrypted? To do so, we need to recover
the master key. That’s why, when starting the ublk server, we pass a file containing the
encrypted master key via the command line. Of course, we need to decrypt this file and

verify if the result is indeed the valid master key.

To enable this functionality, we add the -e <file> option:

./ublk add -t loop -f backing_file -e <file_with_saved_enc_master_key>

Listing 3.11: Open an Encrypted Ublk Disk
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The process is outlined in Algorithm 2, and, in short, the steps we follow are: (a) read
the ublk_header from the metadata section of the disk, (b) check if it’s a valid ublk
encryption disk, (c) decrypt the file containing the candidate master key, (d) hash the
decrypted candidate master key, and finally (e) compare it with the hash stored in the
ublk_header. If the hashes match, this indicates that the candidate key is indeed the
master key. If the hashes match, it means that the candidate key is indeed the master
key, and we proceed with the master key saved in memory, ready to be used in any I/O

encryption operation. If the hashes don’t match, we abort.

Algorithm 2 Open an Encrypted Disk

disk_fd < open(backing_file)

cand_file_fd < open(file_with_saved_enc_master_key)

ublk_header < read from disk_fd the first 80 bytes

if ublk_header.active is false || ublk_header.magic != “UBLKEN” then
ABORT

end if

candidate_master_key <— Decrypt(cand_file_fd)

md_candidate_key <— SHA512(candidate_master_key)

if md_candidate_key == ublk_header.master_key_hash then
PASS. The recovery of the master key was successful.

R AR A S A e

_
e

. else

—_—
N =

ABORT. The given key does not match with the master key.
: end if

—
[S¥]

Add a New Key

To support this operation, we introduced a new command within the ublk framework.
Adding a new key is an action independent from starting the ublk server. The previous
two high-level operations involved starting the server, which is why they were options

in the “. /ublk add” command.

When a new key is added, the master key remains unchanged. What happens instead is
that we re-encrypt the master key using a different password, and save the outcome in
a new file. So, although the files are different, they house the same master key, the only

difference is the encryption key applied on the master key.

The new command is called add_new_key and can be used as follows:

1| ./ublk add_new_key -f <backing_file> -s <file_with_saved_enc_master_key> -e <

new_file>
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Listing 3.12: Add a New Key

When we execute this command, it will re-encrypt the master key and save it in the
<new_file>. From this point onwards, to start the ublk server and recover the master
key, as demonstrated in Section 3.5.2, we can use either a previously added “master
key file” or the <new_file> as the key. The result will be the same, and the decryption

process will successfully yield the same master key.

In Algorithm 3, we outline the steps to follow when adding a new key. Practically, the
entire procedure resembles Algorithm 2 because we choose to add a new key only if a
valid encrypted master key is provided. Thus, we need to specify a valid file that con-
tains the correct encrypted master key. This file is decrypted, hashed, and then checked
against the saved hash of the master key in ublk_header. If they match, it indicates that
we provided the correct master key. We then re-encrypt it and save the new encryption
in the <new_file> passed as an input parameter. After adding the key, the user can use

<new_file> to start the ublk framework.

Algorithm 3 Add new key

disk_fd < open(backing_file)

cand_file_fd < open(file_with_saved_enc_master_key)

new_file_fd < open(new_file)

ublk_header < read from disk_fd the first 80 bytes

if ublk_header.active is false || ublk_header.magic != “UBLKEN” then
ABORT

end if

candidate_master_key <— Decrypt(cand_file_fd)

md_candidate_key <— SHA512(candidate_master_key)

if md_candidate_key == ublk_header.master_key_hash then
new_file_fd < Encrypt(candidate_master_key)

¥ 2 NSy

— = =
M = 2

. else

._.
W

ABORT. The given key does not match with the master key.
end if

—_
=

The Figure 3.21 illustrates the connection between the first three high-level operations.
After adding a new key, you can open the Encrypted Disk and run the ublk server with

any file that stores a valid encrypted version of the master key.
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Figure 3.21: Create, Add and Open Operations
Remove a Key

Removing a key is a straightforward operation. To do so, we simply delete a file that
contains the encrypted master key. We don’t need to involve the ublk server at any point
during this operation. There’s no information stored about added keys in the metadata
area. As long as we provide a valid file containing the encrypted master key, we can
create a new encrypted master key file. Therefore, to remove a key, all we need to do is

delete the file containing the encrypted master key.

3.5.3 Single-Thread Encryption
Having addressed the key setup problem, we can now discuss how we integrate encryp-
tion inside the ublk server, starting with our first solution: single-thread encryption.

By “single-thread”, we mean that each ublk server thread responsible for communication

with the driver and the target also performs encryption and decryption. As detailed in
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Section 3.4, the ublk server consists of daemon threads, with each thread serving one
queue. Each thread communicates via its io_uring instance with the ublk driver and the

target.

In this design, each ublk server thread follows a loop where it submits all available SQEs
in its io_uring and waits for at least one CQE. Since each thread uses the same io_-
uring instance for communication with both the ublk driver and the target, SQEs can
be directed to either destination. Therefore, when a ublk server thread wakes up with a

response in the form of a CQE, it can be attributed to one of four possible scenarios:

o Ublk driver completes a CQE for a write request: In this case, the server locates
the data to be written in a specific buffer, and it must then submit a write SQE to

the target to transmit the data.

o Ublk driver completes a CQE for a read request: The server needs to retrieve the

data from the target (i.e. submit a read SQE to the target).

« Target responds after a write request from the server: The server’s responsibility
is to inform the driver that the request was successful (or not) submitting a SQE

with UBLK_IO_COMMIT_AND_FETCH_REQ.

« Target responds after a read request from the server: In this scenario, the server
needs to locate the data it requested to read from the target. The data can be found
in a predefined buffer, and the server must then inform the driver submitting

again a SQE with UBLK_IO_COMMIT_AND_FETCH_REQ.

As we discussed earlier (see Figure 3.19), the ublk server incorporates dedicated bufters
to facilitate data transmission between the application and the target. When a write
request arrives from the driver, the ublk server knows where to locate the data that needs
to be written. Conversely, when a read request is received, the ublk server knows where

to store the data after reading it from the target.

These buffers are preallocated during the ublk server’s initialization, and their quan-
tity matches the queue depth. Each buffer can store the intermediate result of one I/O

operation, so the number of buffers must align with the outstanding requests.

In our design, we required an additional set of buffers equal to the queue depth to store

the encrypted results. While we could allocate each bufter dynamically when needed in
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order to save space, our primary concern was efficiency and speed. Allocating buffers
on-the-fly in the critical path of an I/O request would have significantly impacted effi-
ciency. For this reason, we decided to preallocate a set of buffers for each queue, similar
to the buffers allocated by the ublk server. We'll refer to these preallocated buffers as

“temporary buffers” to distinguish them from the “original buffers”.

The Figure 3.22 provides a clear depiction of some key concepts and illustrates the 1-1
correlation between the “original buffers” and our “temporary buffers”. In this figure,
we observe a running ublk server instance equipped with three queues. Each thread
operates with its own io_uring instance and interacts with a distinct memory-mapped
area. Additionally, every thread maintains its set of bufters, with each buffer having a
corresponding temporary buffer designated for encryption purposes. Note that, the size
of each ring aligns with the number of slots in the memory-mapped area, which, in turn,
corresponds to the number of buffers and matches the quantity of outstanding requests

that a queue can serve.

ublk server's memory

-

ublk server

’
N

Userspace

”, ~
’ Memory N !
' mapped area ,’

N\

Kernelspace

Figure 3.22: Correlation Between Original Buffers and Temporary Buffers

To enable encryption, we must extend the four previously mentioned actions when the

server wakes up with a CQE to include the following:
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 Ublk driver completes a CQE for a write request: The server locates the data
to be written in a specific “original buffer”. Then , it encrypts the data from this
buffer, saves the encrypted results in the corresponding “temporary bufter”, and
finally writes the corresponding region from the “temporary buffer” to the target

file.

 Ublk driver completes a CQE for a read request: The ublk server performs a
read request to the target but doesn’'t save the results in the “original buffers”.
Instead, it initiates a read request and reads the (encrypted) data into the “tem-

porary buffers”.

o Target responds after a write request from the server: The server doesn’t need to
perform any additional steps. It simply submits an SQE with
UBLK_IO_COMMIT_AND_FETCH_REQ to inform the driver.

« Target responds after a read request: When the target responds after a read re-
quest, it implies that the encrypted data resides in a “temporary buffer”. At this
point, the server must decrypt the data, save them in the “original buffer”, and

then submit an SQE with UBLK_IO_COMMIT_AND_FETCH_REQ to inform the driver.

Our intervention in the I/O path is crucial to ensure encryption occurs before saving
data to the backing file, and decryption takes place before passing the results back to the

driver and the application.

Each thread in the ublk server conducts encryption and decryption independently using
AES in XTS mode with the key stored in memory from system initialization. We use the
OpenSSL library for these cryptographic operations. While we will provide a detailed
implementation overview in the next chapter, for now, consider the OpenSSL library
calls as black boxes that take plaintext as input and produce ciphertext for encryption,
and vice versa for decryption. The OpenSSL library operates in userspace, performing

mathematical computations to achieve the desired results.

Encryption and decryption using the OpenSSL library occur at the sector level. Our
buffers, both “original” and “temporary”, can each store up to 0.5MB (2'? bytes). There-
fore, the ublk server can handle requests that read or write up to 1024 sectors. So, we

must repetitively invoke the encryption/decryption library function for each distinct
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Figure 3.23: Encryption Process on Each 512-byte Section

512-byte chunk, which corresponds to a sector on the disk. Figure 3.23 illustrates this
behavior in the encryption process of a request that is 0.5MB (N equals 1024 in this
case). The decryption process is similar, with data being decrypted from the “tempo-
rary buffers” and stored in the “original buffers” Each encryption operation for every

512-byte chunk is carried out sequentially.

In Figures 3.24 and 3.25, we present the data path for a write and a read request, respec-
tively. To enhance clarity, we depict a ublk server instance running with a single queue.
We can compare this path with the original I/O path presented in 3.4.4 to identify the

differences between read and write requests.

For a write request, the process begins with an application submitting a bufter for writ-
ing (1). The write request travels through the I/O stack and eventually reaches the ublk
driver from the block layer. The driver identifies the request type (read or write), and
copies the applications buffer to the ublk server’s memory buffers (2). Then it com-
pletes a CQE to notify the server (3). Upon waking up (3), the server recognizes that a
CQE for a write request arrived from the driver, locates the buffer, sends the data to the
OpenSSL function for encryption, and stores the encrypted data in a temporary buffer
(4). Next, it submits an SQE to the target for the encrypted buffer (5). After the disk

write operation concludes, the target responds with a CQE (6). The server wakes up,
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Figure 3.24: Data Path for a Write Request in the Ublk Single-Thread

identifies the response from the target, and submits a SQE to the driver to report the
operation’s result (7). The driver receives the result, completes the request, and passes

the response (the number of bytes written or an error) to the upper layers (8).

For a read request, the driver doesn’t need to perform any copying before submitting
the CQE to notify the server (2). Upon waking up, the server identifies the read re-
quest from the driver and submits a SQE for a read request to the target, specifying the
temporary buffer as the destination buffer of the request (3). Once the requested copy
from the device to the temporary buffer is complete, the target notifies the server by
submitting a CQE (4). The server wakes up, recognizes that the read request from the
target has finished, indicating that the encrypted data is available in a temporary bufer.
It then processes the buffer through the appropriate OpenSSL function for decryption,
storing the decrypted data in the corresponding original buffer (5). Subsequently, the
server submits an SQE with the driver as the recipient (6). The driver receives the SQE,
identifies it as a response from the server for a read request, copies the server’s buffer
into the application’s buffer and then completes the request and provides the response

(the number of bytes read or an error) to the upper layers (7, 8).
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Figure 3.25: Data Path for a Read Request in the Ublk Single-Thread
3.5.4 Intra-Block Encryption

Our second solution to the encryption problem is based on the fact that AES-XTS en-
cryption and decryption can be performed in parallel. As discussed in Section 3.6.3,
the encryption and decryption of each sector do not depend on anything other than the
sector number, which serves as a tweak value for a single sector’s encryption/decryp-
tion. Consequently, there is no impediment to parallelizing the encryption of a buffer

larger than 512 bytes (1 sector).

In the single-thread implementation, the ublk server encrypts/decrypts every 512-byte
segment within each buffer sequentially. It invokes an OpenSSL library function as

many times as necessary to complete the task, as depicted in Figure 3.23.

In this new implementation, each ublk server’s thread creates a thread pool and dis-
tributes the work to the threads within the pool. For clarity, we will refer to the ublk
server thread as the “main thread” and the threads within the pool as “working threads”
or “workers” When the time comes to perform encryption or decryption, the main

thread no longer handles these tasks directly. Instead, it informs a shared structure that
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“instructs” the working threads about the type of work they should perform. It then

waits for them to finish the encryption or decryption.

Introducing a thread pool raises several questions, such as how the pool will be cre-
ated, how communication between the main thread and the working threads will be

managed, how the pool will be destroyed etc.

Starting with the first question, we've introduced an option at the beginning of the ublk
server that allows specifying the number of threads in the thread pool. The maximum
allowed value is 64 threads, and the default setting is 8 threads. It’s worth noting that

each ublk server “queue-thread” maintains its own pool of working threads.

One key point to emphasize is that the points at which the encryption and decryption
are performed remain unchanged compared to the single-thread solution. The main
difference lies in who performs the encryption and decryption. For example, when a
write request is received from the driver, the server distributes the work to the worker
threads as follows: each thread takes responsibility for encrypting one 512-byte seg-
ment, according to its position. Once a segment is encrypted, the threads compute a
stride and proceed to encrypt another segment, and so on until the requested size is
processed. A similar distribution process occurs when a response from a read request
arrives from the target. In this case, the server assigns the work to the worker threads,
tasking them with decrypting the data based on their positions, following the same logic

as before.
Figure 3.26 provides a visual representation of this work distribution.

In the core of our design, exists a shared object that facilitates the communication be-
tween the working threads and the main thread. This shared object stores essential in-
formation that enables the main thread to convey specific details about each incoming
request to the working threads. This information includes the nature of the task to be
performed (encryption or decryption), the source and destination buffers, the request
size, the starting sector etc. This shared object represents the communication channel
from the main thread to the working threads. Conversely, no explicit sign is needed
for communication from the working threads to the main thread, as the main thread
already knows what kind of task it has delegated to the working threads. Hence, upon
waking from barrier2, it understands that the job has been completed, as will be exam-

ine below.
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Figure 3.26: Work Distribution Among Workers

The second crucial aspect of our design concerns the synchronization between the main
thread and the working threads. To achieve this, we use two barriers (pthread_barrier_t)
within the shared object. A barrier works as follows: during the initialization of the
barrier you denote a “count”. The count argument specifies the number of threads that
must call pthread_barrier_wait() before any of them successfully return from the
call [mpf]. In other words, in a barrier you denote a number, and as long as the number
of threads that have called this barrier (via pthread_barrier_wait()) has not reached
the number you denoted, all threads remain blocked at the barrier. It is the last thread

to “reach” the barrier that subsequently unblocks all other waiting threads.

Both barriers in our implementation were initialized with N + 1, where [V is the num-
ber of working threads. Let’s follow the Figure 3.27, in order to understand better the
synchronization design. Initially, the working threads wait on the first barrier, referred
to as barrierl, to receive a job (1). The main thread, wakes up by a CQE, and processes

either a write request from the driver or a response to a read request from the target, re-
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quiring encryption and decryption of data respectively. If such a CQE occurs, it records
the request details into the shared object (2) and then triggers barrierl (3). This indi-
cates that /V 41 threads have reached barrierl, which means that every thread unblocks
from the barrier. The working threads inspect the shared object to recognize what job
they had to perform (4), while the main thread waits on the second barrier (barrier2)
for their work completion. Each worker executes its job repetitively as shown in Figure
3.26 (5). Upon completion, working threads “hit” barrier2 (6). When the last worker
reaches barrier2, all threads wake up and continue. The main thread, now knowing that
the requested job is completed, continues with its tasks (7), while the working threads

loop back to barrierl awaiting the next job (7).
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Figure 3.27: Synchronization Between Main and Working Threads

The primary objective during this design phase was to minimize the time spent on syn-
chronization, avoiding unnecessary delays induced by waiting for locks. As illustrated
in Figure 3.27, the working threads and the main thread do not wake up concurrently.
The main thread activates the working threads at barrierl and immediately awaits them
at barrier2. Correspondingly, when the working threads awaken the main thread at bar-
rier2, they loop back to wait at barrierl, while the main thread progresses. This ensures
that there’s no simultaneous manipulation of the shared object. If concurrent usage of
the shared object between the main and working threads was allowed, a locking scheme

would have been necessary, as the main thread writes to it and the working threads read
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from it, which potentially would have reduced the efficiency of our solution. We should
note, that the concurent access of the workers in the shared object doesn’t need any

synchronization because they are read-only entities.

Lastly, we take care of the elimination of the thread pool in a similar manner. Upon
receiving a stop request, the main thread updates a specific field in the shared object,
triggers barrierl to wake up all threads, and invokes pthread_join() to join them.
The working threads, upon waking and before they start to “work’, they always check

this specific variable. If set, it means that they need to stop, so they exit themselves.

3.5.5 Inter-Block Encryption

Both of the previous two implementations, namely single-thread and intra-block par-
allelism, had an issue: they altered the fundamental nature of the ublk server. This
means that they modified the type of work the ublk server was initially designed to
handle. Originally, the ublk server was architected as an I/O bound framework. The
daemon queue threads comprising the ublk server submit requests to their Submission
Queue and await a response. Upon receiving the response, they prepare the next re-
quest, whether it’s for the driver or the target, and submit it again to the Submission

Queue.

Our single-thread design transformed the semantics of each ublk server’s thread into
being CPU bound. The thread itself handled the necessary encryption or decryption,
requiring CPU resources to perform the mathematical computations and generate re-
sults. Even in the case of intra-block parallelism, where we distributed this workload to
worker threads, the main thread still waited for the results, so it remained a CPU bound

implementation.

This issue made us think, design, and implement a solution that would allow the entire
encryption process to occur without shifting the ublk server’s nature from I/O-bound

to CPU-bound.

To achieve this goal, we needed to relieve the main thread of any cryptographic oper-
ations or the need to wait for their completion, as it was the case in the previous two
design solutions respectively. However, encryption and decryption tasks still needed

to be performed, leading us to rely on a pool of worker threads once again. Each ublk
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server’s thread has a dedicated pool of workers, similarly to the intra-block implemen-
tation. However, in this case, instead of dividing the buffer and distributing the work
to the workers, the main thread offloads the entire buffer to one worker and continues.
Remember that each buffer can store up to 1024 sectors. This means that the work-
ing thread will execute the encryption or decryption on this buffer sequentially on each
512-byte segment, according to its size each time, exactly as it was the case in the single-
thread solution. But, unlike the single-thread solution where this task was executed by

the main thread itself, now it is managed by a worker.

Communication between main thread and workers

One of the key questions in this design was how to perform the communication between
the main thread and the working threads. After offloading a request, the main thread
no longer waits but continues its work, which, as mentioned earlier, involves submitting
SQEs and waiting for CQEs. So, how do the working threads signal the main thread
that a request is completed? We needed to integrate this communication (from working
threads to the main thread) into the io_uring. To do so, we decided to allocate one more
entry during the initialization of each io_uring Submission Queue, and this entry would

be used to poll for readiness an eventfd.

The eventfd system call returns a file descriptor that refers to an “eventfd object” that
can be used as an event wait/notify mechanism by userspace applications, and by the
kernel to notify userspace applications of events [mpb]. The eventfd can be thought of
as an empty pipe. One process waits at one end of the pipe until another process writes
something to the other end to unblock it. The file descriptor returned by the eventtd
system call can be used by the main thread to receive notifications from the worker
threads. Every working thread, after finishing with a request, just needs to perform a

write on the eventfd.

However, the main thread cannot directly wait on the eventfd because it also awaits
requests from the driver and the target. For this reason, we integrated the waiting on
the eventfd within the io_uring. The server submits a SQE with a poll request (operation

TORING_OP_POLL_ADD) on the eventfd.

This means that each time the main thread wakes up with a CQE in hand, this CQE

could originate from one of five sources:
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o The ublk driver sent a write request.

o The ublk driver sent a read request.

The target responded to a read request.

The target responded to a write request.

A worker finished a cryptographic job (encryption or decryption) and wrote to
the eventfd.

The first four sources remain unchanged from the previous implementations. However,
we now have an additional case to handle in this design. What should the main thread
do when it receives notification that a requested job is complete? We will examine this

in the data path section below.

Now, let’s consider communication from the main thread to a working thread. We
implemented this “communication flow” through a condition variable. The working
threads are waiting on this condition variable, and the main thread signals them when-

ever there is work to be done.

Figure 3.28 focuses on this communication between the main thread and the working
threads. The ublk server receives either a write request from the driver, or a read re-
sponse from the target (1), prepares a request and submits it to the working threads
(2), then signals the condition variable (3). A thread wakes up and carries out the en-
cryption or decryption (4), then writes to the eventfd to notify the main thread that the
requested job is completed (5). The kernel sees the write to the eventfd, indicating that
the eventfd is ready to be read, so it submits a CQE for the previously submitted SQE
with the TORING_OP_POLL_ADD operation (6).

Request manipulation

We've discussed the communication between the working threads and the main thread,
but we haven't describe how exactly the requests from the main thread to working
threads are managed and vice versa. What is happening in Step 2 of Figure 3.28? In

this section, we'll try to provide answers to these questions.



3.5. ENCRYPTED UBLK 119

- - o - -~
- Working threads N
- waiting on the 7
S L .
~ _ condition variable _ -

prepare 1
and submit a job |
for the workers |

4
1
1
\

P -

~
Write to eventfd to N
: . ’
N notify the main thread

Userspace

Kernelspace

Figure 3.28: Communication Between Main Thread and Working Threads

As in the case of intra-block design, we have a shared object at the core of our design
that helps communication between the main thread and the working threads. This ob-
ject, in addition to the eventfd and the condition variable (whose roles we explained
earlier), consists of three crucial fields: a “submit queue”, a “complete queue’, and an
array of requests. Each request is a structure that represents a job and encapsulates all

the information necessary for a worker to perform encryption or decryption.

Fig. 3.29 helps to clarify the relationships between these entities. Initially, we have
queue-depth request structures preallocated during the initialization phase, for the same
reason we have queue-depth “original” and “temporary” buffers. This is because each
ublk server’s thread can process a specific number of I/O requests on-the-fly, which is
defined by the queue depth, and cannot handle more than that. Therefore, we have one
request structure for every possible outstanding I/O request, establishing a 1-1 connec-
tion between the “original buffers”, “temporary buffers”, and the “request structures”

The Nth request structure handles a cryptographic operation from or to the Nth “orig-

inal buffer” and “temporary buffer”.

The logic behind preallocating all the structures is the same as it was for the “temporary

buffers” preallocation, which we analyzed in Section 3.5.3: to avoid invoking new system
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calls for allocation during the hot path while serving each I/O operation. In the “time

vs space” trade-off, we have chosen time whenever possible in our design.

shared object

condition variable
eventfd
submit queue
complete queue
array of requests

[

complete queue

submit queue

lock lock

1

1

|

v v
1 queue depth - 1

0 2 3 4 5 6 7 8 9
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Figure 3.29: Connections Between Important Structs

Every time the ublk server needs to perform a cryptographic operation, it prepares the
“request structure” based on the tag of the specific operation. As discussed in 3.4.3, each
CQE sent by the driver to the server refers to a specific buffer using a value provided by
the block layer, which is known as tag. This tag is the connecting factor that associates

the “request structure” with the “original” and “temporary bufters”.

We keep track of the submitted requests using a linked list called the “submit queue”
The main thread adds requests at the head of the list, while the working threads extract
requests from the tail of this list.

Similarly, there is a second list named “complete queue”. This list is used by the working

threads to submit their responses, and by the main thread to read the results. For these

responses, we use the same “request structures” that we used for submissions.

It’s important to note that these lists do not allocate or deallocate any request structure.
We simply create a “chain” of requests either for the “submit queue’or for the “complete

queue”. This setup can be clearly seen in Figure 3.29, where the requests 1, 2, 4, 7, and
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8 are in the “submit queue’, and the requests 3, 5, and 9 are in the “complete queue”. All

other requests are not used at this moment.

We also need to consider synchronization among these components and protect against
parallel access using locks in the “submit queue” and the “complete queue”. We will

explain how we managed to do this in the implementation chapter.

Data Path in Inter-Block Parallelism

Now let’s try to fit all the pieces together and follow an I/O request to see how all com-
ponents work together. We'll present both a write and a read request as sent by an

application.

Let’s begin by tracing a write request as illustrated in Figure 3.30. Up until Step 3, the
process remains the same as discussed in Fig. 3.24. Now, after the server wakes up and
checks the CQE in its hands (3) and realizes it has a write request, this indicates that
it needs to encrypt the data before sending them to the disk. Thus, based on the tag
number, it prepares a “request structure” which, among other information necessary
for the working threads, also points to the buffer where the working thread will find the
plaintext (the “original buffer”) and the buffer where it needs to write the ciphertext (the
“temporary buffer”) (4). After populating this structure, the server adds this request to
the “submit queue” It then signals the working threads that there is work to do (5). A
thread wakes up, removes the job from the “submit queue” and then calls the necessary
OpenSSL library functions to perform the encryption (6). At the same time, the main
thread continues its job, by submitting any available SQEs (6). When the working thread
completes its task, it adds the request to the “complete queue’, and writes to the eventfd to
notify the main thread (7). The main thread wakes up, processes the CQE and identifies
that it was a “signal” from a working thread. This signifies that there is a request ready
for further processing. So it retrieves the requests from the “complete queue” and finds
that it has a response from a working thread regarding a write request. This means that
the main thread has to send the encrypted buffer to the disk for writing, so it submits an
SQE to write the buffer (8). Beyond this point the steps are again the same as the path

we followed in Fig. 3.24 and have been analyzed.

A read request follows the same logic, but changes the order in which things are exe-

cuted. Figure 3.31 demonstrates the flow. Upon receiving a read request (2), the server
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Figure 3.30: Write Request from an Application in Inter-Block Encryption

submits an SQE to the target to read the encrypted data into a “temporary buffer”(3). Af-
ter the target replies (4), the server submits a “request structure” to the working threads
to decrypt this buffer and place the plaintext in the original buffer (5, 6). A working
thread carries out the decryption and “signals” the completion via the eventfd (7, 8).
Lastly, the server notifies the driver as usual via a UBLK_IO_COMMIT_AND_FETCH_REQ
(9), and the driver performs the necessary copies to the application’s buffer, before com-

pleting the request to the block layer (10, 11).

This concludes the discussion on Inter-Block encryption. It is now clear how we man-
aged to design and integrate encryption into the ublk framework, by offloading CPU-

intensive tasks and keeping the server I/O bound.
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Figure 3.31: Read Request from an Application in Inter-Block Encryption

3.6 AES

Following the introduction to AES and the mathematical background we presented in
Sections 2.5.3 and 2.5.4, we will now delve into its inner workings, examine how it func-
tions, and consequently, comprehend why it is widely employed and how it eventually

delivers the encryption we require.

3.6.1 Structure of AES

AES operates in rounds, depending on the size of the key provided, as indicated in Table
2.1. For input, this algorithm takes a 128-bit block. AES splits the input into 16-byte
chunks, and these bytes form a 4x4 matrix known as the state matrix. All the operations

in AES take place on this matrix.

Each round consists of 4 layers:
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Figure 3.32: AES Input

1. Byte Substitution

2. Shift Row

3. Mix Columns

4. Key Addition

Byte Substitution

This layer is also known as the “S-Box layer”. Each byte of the input, is passed in parallel

into the same S-Box and produces another byte as output.

|A8 | A9 |A18|A11| |A12|A13|A14|A15|

Figure 3.33: Byte Substitution Layer
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An S-Box is essentially a function that takes as input a byte and produces another byte
as output. Because both input and output are bytes, there are 256 different inputs, each
of which is mapped to a unique output. This is why the AES S-Box can be represented
as a lookup table (see Fig. 3.34).

| |00 0102 03 04 05 06 07 08 09 Oa Ob Oc|Od Oe  Of

‘_oo_'g 7c |77 E\E |60 |6f [c5 30 | 01|67 |2b fe |a7 ab | E‘
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I [ 7
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Figure 3.34: S-Box

Example: Let’s assume the input byte to the S-Box is A; = (B5)pe,. Then the output
value will be S((B5)pez) = (D5)pes-

On a bit level (B5)pe, = 10110101 and (D5)pe, = 11010101, so the substitution can

be described as:

5((10110101),) = (11010101),

]

As explained by [CP10] «The S-Box is the only nonlinear element of AES, i.e., it holds that
ByteSub(A) + ByteSub(B) # ByteSub(A + B) for two states A and B. The S-Box
substitution is a bijective mapping, i.e., each of the 28 = 256 possible input elements is
one-to-one mapped to one output element. This allows us to uniquely reverse the S-Box,

which is needed for decryption”.
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Internals of the S-Box
The S-Box operates in two phases. In the first phase, it computes the inverse of the input
byte, and in the second phase, each inverse byte is multiplied by a constant bit-matrix

followed by the addition of a constant 8-bit vector.

The inverse of the input byte is done in the G F'(2®) field (see more on 2.5.4). The irre-

ducible polynomial used in AES, known as the “AES irreducible polynomial” is:

Plx)=2®+2*+ 28 +2+1

The constant matrix is:

O O O = = e
O O R H = = = O
(e T N =l e
e e e e e == T o B )
— R = R, O O O
e == = R e R e
e === T o R
_ O O O = ==

And the constant 8-bit vector is:

S = = O O O = =

Example: Let’s examine how the S-Box matches S((B5)per) to (D5)pes» as shown in

the previous example.

Step 1: Compute the inverse of (B5)e, modulo 2 + x* + 23 + x + 1. This is explained
in 2.5.4 and can be computed directly via a lookup table. It is (B5);} = (75)nex =
(01110101)p.

Step 2: Compute the multiplication of the 8x8 constant matrix, with the inverse (75) ¢,

. Note that it goes from the least significant bit to the most significant bit:
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10001111 1 4 0

11000111 0 3 1

11100011 1 3 1

11110001 0:2EO(mod2)

11111000 1 3 1

01 111100 1 3 1

001 1 1T11O0 1 4 0

00011111 0 3 1
0 1 1 1
1 1 2 0
1 0 1 1

Step 3: Add the constant 8-bit vector: 0 + 0 = 0 = 0 (mod 2)
1 0 1 1
1 1 2 0
0 1 1 1
1 0 1 1

And finally when we examine the result bottom-up we find that (1101), = (D)., and
(0101)p = (5)pew> which is what we expected.

This example demonstrates how the S-Box maps input bytes to output bytes.

Shift Rows

The state matrix after the “Byte Substitution” phase, looks like this:

By | By | Bg | Bio
By | Bs | By | Bis
By | B | Bio | Bus
Bs | By | By1 | Bis

Table 3.2: Input of Shift Rows Phase

Where each B; = S(A;).

In this phase, the bytes of each row in the state matrix shift cyclically to the left as follows:

the first row remains unchanged, the second row shifts by one position to the left, the
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third row shifts by two positions to the left, and the fourth row shifts by three positions

to the left.

The output is the new state:

By | By | Bg | Bia
Bs | By | Bi3 | By
By | Bia | Ba | Bs
Bys | B3 | By | By

Table 3.3: Output of Shift Rows phase

Mix Columns

In this step, each column of the state matrix, is multiplied by a predefined matrix. The

predefined matrix is the following:

03
02
01
01

01
03
02
01

01
01
03
02

CHAPTER 3. DESIGN

This computation results in another array, where each column of the new array consists
of the multiplication of the predefined array with the corresponding column of the state

matrix. For example, the second column of the new array is computed as:

Oy 02 03 01 01 B,
G| for 02 03 o1 Bo
sl o1t o1 02 03| |Bu
Cy 03 01 01 02 By

Every operation is performed in GF'(2%) as described in 2.5.4. Therefore, the multipli-
cation is modulo the AES polynomial (z® + 2% + 2 4+ 2 + 1) and the addition is modulo

2, which is essentially an XOR operation.

For example, the calculation for C'y is as follows: ’ Ci=02-B4d03-Byd01-Bys®01-

These two steps (Shift Rows and Mix Columns) add diffusion to the cipher. Shifting
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diffuses the data horizontally, while mixing does so vertically. Diffusion is crucial op-
eration in cryptographic algorithms that spreads the influence of one plaintext bit over
many ciphertext bits, making it challenging to discern any patterns in the plaintext. In
other words, if two plaintexts differ by just one bit, the corresponding ciphertexts must

be completely unrelated. Both of them must look like random numbers.

Some intuition on diffusion in AES: If we flip one bit of the 128-bit plaintext, it will ini-
tially affect only one byte in the Byte Substitution step, resulting in approximately 4 bits
being flipped compared to the original byte. In the Shift Rows step, this byte changes
its position, but no other bytes are affected. However, in the Mix Columns step, this
changed byte influences 4 bytes in the output, specifically the corresponding C; col-
umn, which consists of 4 bytes, as we observed in the Mix Columns step. So, in just one

round, a single-bit change in the plaintext can alter 32 bits in the output.

Key Addition

In this layer, the current state matrix is XORed (added in G F'(2)) with a 128-bit subkey
derived from the primary key. The number of subkeys equals the number of rounds
plus one because there is an initial XOR operation with the input using the first subkey
at the beginning of AES, before the 4-layer round we discussed. For instance, in AES

with 256-bit keys and 14 rounds, there are 15 key derivations.

The derivation process involves passing through a nonlinear function for 32 bits of the
key and then cyclically XORing each 32-bit part of the key with another 32-bit part.
We won't delve further into the details of key derivation here, but anyone interested can

refer to [CP10].

Decryption

The decryption process involves the inversion of the layers we discussed. Practically,
each step we examined has an inverse, and the subkeys remain the same, but they are

applied in the reverse order. So, the order of decryption in each round is as follows:

1. Key Addition

2. Inverse Mix Columns
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3. Inverse Shift Row

4. Inverse Byte Substitution

3.6.2 Modes of Operation

The AES algorithm we presented encrypts chunks of 128 bits. However, in practical
scenarios like secure communication, emails, and data storage, the information being
transmitted is typically much larger than 128 bits. This raises the question of how we

can encrypt long plaintexts using a block cipher.

The usual approach is to break the lengthy message into a series of sequentially fixed-
sized blocks, and then apply encryption operations to each of these blocks. Essentially,
a mode of operation describes how to repeatedly apply a cipher’s single-block operation

to securely transform amounts of data larger than a block [Wikc].

Many modes of operations have been defined. In this section we will cover the following:

o Electronic Codebook Mode (ECB)
« Cipher Block Chaining Mode (CBC)
o Cipher Feedback Mode (CFB)

« XEX Tweakable Block Ciphertext Stealing (XTS)

We'll pay special attention to the last one, the XTS mode of operation, as it was the mode

we employed for implementing third-party encryption on ublk.

Note: The block operations are not tied to a specific block cipher. They simply describe
how you can encrypt a lengthy message using a block cipher of your choosing. While

we're using the AES block cipher, they are conceptually separate entities.

Electronic Codebook Mode (ECB)

ECB is the most straightforward way of encrypting a long message. If the message ex-

ceeds the block cipher’s size, it's divided into the required fixed-sized blocks, and each
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Figure 3.35: ECB Mode

block is encrypted independently. If the message length isn’t a multiple of the block

size, it must be padded before encryption. Figure 3.35 provides an illustration.

The decryption process follows similar principles. The ciphertext is split into fixed-sized

blocks, and the decryption process is applied to each individual block.

This mode has several advantages: (a) It is parallelizable, allowing for the encryption and
decryption of each chunk of code in parallel without requiring knowledge of anything
else. (b) Bit errors only affect the specific fixed-size chunk they belong to and don’t
propagate. (c) There is no need for sender-receiver synchronization. The receiver can

start the decryption process prior to receiving all of the encrypted blocks.

However, the disadvantages outweigh the advantages. The main drawback is that it
doesn’t conceal data patterns well. Identical plaintext blocks will always lead to identi-
cal ciphertext blocks, as long as the cipher key remains unchanged. Fig. 3.36 illustrates
this issue. It reveals information about the underlying message. By examining the pub-
licly accessible ciphertexts, a third party can identify identical blocks and potentially

make educated guesses about the original plaintext.

We can differentiate between two types of encryption schemes:
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Figure 3.36: Tux Encrypted Using AES in ECB Mode

1. Deterministic encryption: This scheme always maps a particular plaintext to the

same ciphertext if the key doesn’t change.

2. Probabilistic encryption: This scheme uses randomness to achieve non-deterministic

generation of ciphertext.

The problem with the ECB mode is that it is deterministic. The goal in general is to
use probabilistic encryption. And this type of encryption is what CBC and CFB mode

provide.

Cipher Block Chaining Mode (CBC)

The Initialization Vector, or more simply IV, plays the crucial role of the randomization
factor in encryption. It is essentially a random number used in conjunction with the
encryption key. Unlike the key in symmetric encryption, the IV doesn’t need to be kept
secret. However, it must be used only once during the encryption process. This unique
characteristic gives rise to another term for IV: “nonce”, which stands for “number used

b2l
once.

IV serves as the randomizer, because if we encrypt a plaintext once with a first IV and a
second time with a different IV, the two resulting ciphertexts look completely unrelated

to each other for an attacker.

The CBC mode, both the encryption in the upper half, and the decryption in the lower
half, is illustrated in Figure 3.37.

The IV is XORed with the first plaintext block (p;) and the result is passed from the
encryption cipher to produce the first ciphertext block (c;), and then each plaintext
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plaintext
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Figure 3.37: CBC Mode

block is XORed with the previous ciphertext block. Note that the first ciphertext c;
depends on plaintext p; and the IV. The second ciphertext depends on the IV, p; and
p2. The third ciphertext c3 depends on the IV, py, po, p3, and so on. The last ciphertext
block depends on all plaintext blocks and the IV.

This property makes CBC mode suitable for authenticating the original message, as even

a small change in the plaintext will result in a different, unpredictable final block.

However, one disadvantage of this mode is that it cannot encrypt in parallel like ECB,
because to compute a ciphertext block, you need to have computed the previous one
first. This introduces a form of serialization in the ciphertext block computation. Nev-
ertheless, it can decrypt in parallel, as only two ciphertext blocks are needed. Another
drawback of CBC is that altering bits in the ciphertext block ¢; results in corresponding

alterations in the plaintext block p;;; at exactly the same positions.

Cipher Feedback Mode (CFB)

The principle behind CFB is as follows: initially, we encrypt the IV in order to generate
a key that will be XORed with the first plaintext block. For all subsequent “key blocks”,
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the previous ciphertext is encrypted. This process is illustrated in Figure 3.38.

1
| plaintext

———

Figure 3.38: CFB Mode

The operations for encryption and decryption are identical. Like CBC mode, CFB also
has parallel decryption, but serial encryption because the production of a ciphertext
block depends on the previous one. It also shares the same issue as CBC regarding
altering specific positions of the plaintext but with a slight difference. Altering bits in the
ciphertext ¢; affects specific positions in the corresponding plaintext p;. In CBC mode,

changing c; impacts the corresponding positions in the subsequent plaintext block p; .

3.6.3 XEX Tweakable Block Ciphertext Stealing (XTS)

The term “data-at-rest” refers to data that is stored on a storage medium, typically on a
computer’s or server’s disk. Other forms of data, such as “data-in-transit” and “data-in-

use’, describe data that is in motion or loaded into memory, respectively [CLO].

AES-XTS is the default algorithm used for protecting data-at-rest on various storage
mediums today. Many industry-standard disk encryption utilities, like VeraCrypt, Bit-
Locker, and LUKS, employ AES-XTS as the default mode for data protection [Vera, Mic,
Red].

ciphertext

plaintext
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Note: XTS mode is specifically designed for protecting data on storage devices and not

intended for other purposes, such as encrypting data-in-transit.

Disk encryption methods are designed to achieve three key objectives:

1. Ensure confidentiality
2. Maintain fast data retrieval

3. Minimize disk wastage

The AES-XTS mode incorporates the concept of a tweak. Similar to the Initialization
Vector discussed in Section 3.6.2, a tweakable cipher takes an additional argument, the
tweak, alongside the key and input. The tweak introduces variability to the encryption

scheme and, like the IV, does not need to remain secret.

XTS internals

XTS mode, like any other block cipher using AES as the basic encryption algorithm,
operates on 128-bit blocks. Since XTS is used for encrypting disks, it also operates on
sectors. This results in two basic units when referring to XTS: the 128-bit chunk, which
serves as the working unit for each AES encryption (referred to as a block), and the
sector, the minimum unit a storage device can handle (referred to as a sector). Thus,
for the typical case we have 512-byte sectors they can be divided into 32 128-bit blocks.

Understanding this division is important for comprehending how AES-XTS operates.

Let’s examine how the encryption of an individual block is performed under XTS. Fig.

3.39 illustrates this operation.

AES-XTS employs a key with twice the size of AES encryption. This means for 128-bit
AES, a 256-bit key is needed, and for 256-bit AES, a 512-bit key is required. XTS divides

the key into two equal subkeys, referred to as keyl and key2, as shown in Figure 3.40.

The tweak plays the role of plaintext in the first encryption, using key2 as the key. The
result is then multiplied by a?, where a is an irreducible polynomial in GF'(2'?®) (specif-
ically 22 + 27 + 2% + x + 1), and j represents the block’s position within the sector
(ranging from 0 to 31 for 512-byte sectors). The multiplication and computation oc-
cur in GF(2'?8) as explained in Section 2.5.4. The result of this multiplication is then

XORed with the plaintext block to be encrypted, followed by an AES operation. The
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Figure 3.39: Block Encryption in AES-XTS

final ciphertext is obtained by XORing the result of this AES operation with the earlier

multiplication result.

The tweak, is equal to the sector number. The sector number is a logical identifier de-
noting which sector is within the storage medium. Sectors start with 0, 1, and so forth,
until reaching the storage mediumss size divided by the sector size. Thus, the tweak is

equal to the sector number: 0 for sector 0, 1 for sector 1, and so on.

Figure 3.39 describes the encryption of one block within a sector. Figure 3.41 illustrates
the AES-XTS encryption within a whole sector. Notably, the tweak encryption occurs
only once in a sector. Each time, the result of the encryption is multiplied in GF'(2'%®)
by a’, where j signifies the block’s position within the sector. Consequently, for a 512-
byte sector, the AES encryption algorithm must be executed 33 times: 32 times for each

block within the sector and once for the tweak value.

Decryption follows a similar process, with the only difference being that each ciphertext
block is passed through an AES decryption algorithm after XOR with the encrypted

tweak value. The decryption procedure for a sector is depicted in Figure 3.42.

Note: The tweak value, is fed into the AES encryption algorithm again, just like in the
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___________________

i

I XTS KEY length = 2 * AES key size
: AES-128 => 256 bits

! AES-256 => 512 bits

|

...................

Figure 3.40: Key Sizes in AES-XTS

encryption procedure.

Ciphertext stealing

The last letter of the XTS acronym, stands for ciphertext Stealing. This is a feature that
enables XTS to encrypt/decrypt sectors, whose size is not a multiple of the block size.
For instance, what if the size of each sector was 520 bytes? This is not an XTS specific

feature [Wikd].

Figure 3.43 showcases the ciphertext stealing technique by displaying the last two blocks
of a sector in a scenario where the block size is not a multiple of the sector size. The last

block consists of M bits, where 0 < M < 128.

The concept is as follows: Suppose a sector that is divided into k£ 4 1 blocks, with the
first k blocks being 128 bits in size and the last one being M bits. All blocks except
the last two are encrypted normally, as shown in Figure 3.43. The last two blocks are
encrypted differently: the penultimate block is encrypted as usual, and its ciphertext is
split into two parts. The first part consists of M bits and becomes the ciphertext of the
last block, while the second part, comprising 128 — M bits, is used to pad the last M/ bits
of plaintext. With this addition, the last plaintext block becomes 128 bits in size and is
encrypted as usual. The resulting ciphertext block becomes the penultimate ciphertext

block of the sector.

This concludes our discussion on the XTS mode. In summary, AES-XTS effectively
achieves the three initial objectives we outlined for data-at-rest encryption, in the be-
ginning of this section. It offers confidentiality, it doesn’t add any overhead to access

and process data, and due to ciphertext stealing the plaintext size and the ciphertext size
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Figure 3.41: Sector Encryption in AES-XTS

are always equal. Also as it can be shown, both in encryption and in decryption the XTS
mode can operate in parallel, for different sectors. However, it does not provide data
authentication. This means that an adversary could potentially alter the data without
detection. Achieving data authentication typically requires the inclusion of additional
information, which may contradict the third objective. Disk encryption solutions usu-

ally aim to minimize the use of extra metadata space.

3.7 Linux Unified Key Setup (LUKS)

At this point, it will be useful to compare our key setup implementation with a standard
system used in both professional and personal computing environments: LUKS, which
is the acronym for Linux Unified Key Setup. This will allow us to assess what we may be

missing and how we can improve our implementation in the near future.

What is LUKS?
LUKS is an encryption specification for block devices. It was developed by Clemens

Fruhwirth, who released the version 1.0 in March 2005 [Fru]. Previous attempts at inte-
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Figure 3.42: Sector Decryption in AES-XTS

grating cryptography into the Linux kernel faced challenges due to different approaches
to key processing and parameter settings. The situation was resolved with the develop-
ment of LUKS, which introduced a unified tool, resolving compatibility problems and
providing a standardized approach to secure key setup for disk encryption in Linux. In
a nutshell, LUKS defines how a block device is encrypted, which keys are used, where

there are stored etc, along with various metadata information.

Today, the standard followed by most systems is an evolution of LUKS, known as LUKS2
[Bro]. We will analyze the initial implementation of LUKS, referred to as LUKS], as the
core concepts remain the same, and it provides a clearer understanding of the main

ideas.

3.7.1 Key hierarchy

LUKS employs a concept known as key hierarchies. To grasp the concept, consider
the following scenario: If we were to encrypt a disk with a single key, changing this key
would require re-encrypting the entire storage medium. This process can be particularly

time-consuming, especially for larger disks. The idea behind “key hierarchies” is to treat



140 CHAPTER 3. DESIGN

sector size=128 k+ M

A
~ ™~

I 128-bit pIaintextI M-bit

128-bit plaintextl1 28-bit plaintextl

v v <

128-bit block M-bitl128-M bit

v !

AES-ENC AES-ENC

key1 key1

A A

M-bitl128-M bit 128-bit

ciphertext

M-bit

128-bit 128-bit e o o 128-bit
ciphertext ciphertext ciphertext

Figure 3.43: Ciphertext Stealing Encryption

the primary key as data. It is encrypted and stored as such. Consequently, a second key

is necessary in order to decrypt the first.

We will refer to the initial key, which is responsible for encrypting the data, as data key

or master key and to second key that is used to decrypt the initial key, as user key.

This two-layer approach makes the procedure of changing user keys a lot easier. If a
user wishes to change the key, the user decrypts the master key with the old user key,
then re-encrypts the master key with the new user key, storing it in the same location as
the previous one. As a result, the data encrypted by the master key remain unchanged.

Only the encryption of the master key itself is modified.

Key hierarchies is a concept that is widely used in many cryptographic operations. For
example Secure Shell protocol (SSH), uses key hierarchies [Phe]. A session key for a
regular block cipher is generated on the fly and sent via public key encryption to another
party. Upon successful decryption of the session key by the other party, it can then be
used in a “symmetric way” by both parties for further communication. Generally, the

practice of using a temporary key (often asymmetric) to encrypt a second data key (often
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symmetric) for actual data transmission is a common technique in cryptography.

Key hierarchies also provide a way to allow more than one user keys to refer to the same

master key. We just need to store the master key encrypted via each different user key.

Before we dive into the internal design of LUKS and examine how it works, it would
be helpful to familiarize ourselves with two concepts that LUKS employs: (a) Secret

splitting and (b) Key Derivation Functions.

3.7.2  Secret Splitting

This technique tries to split a secret message (e.g. a key) into equal parts. From these
parts, we can reconstruct the secret key. However, if even one of these parts is altered
the reconstruction will fail. This technique is commonly used to ensure the permanent
erasure of sensitive information. Disks have a long memory and data can be recovered

even if they seem to be gone.

By distributing crucial information into equally important parts, where even if one is
altered the information can't be retrieved, we increase the probability that data erosion

is permanent.

An easy to implement method for secret splitting is as follows: Imagine we have a secret
message M of length K. We want to split M into IV parts. We split the secret message
by producing Si, S, ..., Sy—1 random messages of size /. Then we compute the last

messageas Sy = S1 B Sa B S5 D ... B Sn_1 D M.

From the XOR semantics, this means:

M= EBSi (3.1)

Now, every S, carries important information for M . If an S; changes, we will not be

able to reconstruct M.

Usually, a more sophisticated concept is used for secret splitting. We typically want
to insert some kind of diffusion in the process. With the process we described, each

alteration on a specific position on an .S; will lead to a change in the corresponding
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position on M . So, usually, during the computation of the .S; some kind of a hashing

takes places to establish diffusion. But the concept remains the same.

The process of the splitting phase, from the original message M to the parts Sy, S, ...Sn
is called AF splitting (Anti-Forensic splitting). Conversely, the process from the Sy, 5o, ..., Sn

to the M as shown in equation 3.1, is called AF merging.

3.7.3 Key Derivation Functions (KDF)

People authenticate themselves on the Internet using passwords. Everyone who has
used the Internet has come to a point where they needed to provide a password, whether
it’s for securing their accounts, accessing sensitive information, or conducting various
online transactions. The biggest problem with this, is that people tend to use short
passphrases that are easy to remember. In a mathematical sense, they provide pass-
words that lack entropy. This creates various problems because an adversary that can
query the password can easily produce dictionary-like words and gain access to pro-

tected information.

Key Derivation Functions are functions that take a password as input, often along with
additional data such as a salt, and generate a result that can be used as a cryptographic
key for other operations. Typically, the computations performed by a KDF to derive
the final key are CPU intensive. As a result, they do not complete quickly, demanding
a significant amount of CPU cycles to produce the final result. The amount of time re-
quired is a factor that can often be adjusted. This characteristic makes KDFs particularly
well-suited for deriving the user key protected by a passphrase, significantly increasing

the level of difficulty for brute force attacks.

LUKS uses the Password-Based Key Derivation Function, revision 2 (PBKDF2) as a key
derivation function. PBKDEF2 is based on a pseudo random function that is iterated
many times, in order to consume a lot of CPU cycles for the final calculation. PBKDF2
takes not only the passphrase as input, but also the pseudo random function that com-
putes the intermediate results, a salt, the desired number of iterations and the desired
key length. However, we don't need to know the internals of PBKDF2. We can think
of it like a black box that takes a password as input and instead of producing a result

quickly, consumes a lot of CPU cycles until it produces the final key.
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3.7.4 LUKS internal structure

The format of a disk that follows the LUKS standard, is shown in the Figure 3.44.

LUKS phdr| KM1|KM2| * °* °* |KM8 DISK DATA (Encrypted by master key)

3
I
o
Q
o
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Figure 3.44: LUKS Layout

A LUKS partition starts with a partition header (the “LUKS phdr” in Fig. 3.44) that
stores various metadata information for the partition. This includes the magic number
that identifies it as a LUKS partition, the cipher name and cipher mode for cryptography,
a digest of the master key, and more. At the end of the phdr, there are 8 slots, each
referring to a KM field (Key Material). Key material refers to the actual bytes of the
key used in a cryptographic operation. This distinction is important because sometimes
“key” refers to both the actual key material and metadata about the key. Each of the eight
KM regions stores the master key encrypted, and there are corresponding metadata slots
in the phdr for each of these regions. Figure 3.45 provides a closer look at some of the

LUKS header fields and visualizes the relationship between key-slots and key material.

A question that may arise is, “why do we need eight regions to save the same master
key”? The answer lies in Section 3.7.1 where we discussed key hierarchies. Each of
these regions saves the same master key encrypted by a different user key. This means
a user can choose as many passwords as there are key slots, allowing LUKS to operate

with up to eight different user keys.

3.7.5 LUKS semantics

According to [Fru], LUKS can respond to 4 essential high-level commands:
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Figure 3.45: A Zoom in LUKS Header

1. create partition: Initialise an empty partition with a new master key, and set an

initial passphrase.

2. open partition: Recover the master key with the help of a user supplied passphrase,

and install a new virtual mapping for the backing device.

3. addkey: Add anew passphrase to a key slot. A valid passphrase has to be supplied

for this command.

4. revoke key: Disable an active passphrase.

Let’s examine how these high-level commands are executed, and how the structures we

presented fit into this process.

We will present two of the above operation, the “create partition” and the “open parti-

tion”. The other two follow the same logic.

Create partition

To create a new LUKS partition, a series of steps are taken. Let’s break down the most

significant ones to enhance our understanding of the previously discussed topics. In
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Figure 3.46, we present the initialization of a LUKS partition and the addition of a new
key. While the figure may not capture all the details, it provides a clear representation

of the core concepts. Let’s dissect it.
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Figure 3.46: Operation: Create Partition

Initially, the kernel generates a random master key that will be employed later to en-
crypt the data (1). This key is temporarily stored unencrypted in memory (2a) and also
digested in the “master key digest” field of the LUKS partition table (2b, 3). This digest
is crucial for subsequent validation. With this step, the LUKS partition is initialized.

The key activation process follows.

A user provides a password (4a), and other parameters for PBKDF?2 are determined by
the kernel. Subsequently, key derivation occurs, as detailed in Section 3.7.3. This yields
a “user key” that will be used to encrypt the master key. In step 5, the AF splitting takes
place, wherein the master key is divided into segments. This procedure is explained in
Section 3.7.2. The encryption of the segmented key then occurs, using the user key de-
rived from the user’s password as the encryption key (6a, 6b). Finally, after encryption,
the encrypted segmented master key is saved in one of the eight key material areas (7).

The kernel then erases the memory where the master key was temporarily stored.
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It’s noteworthy that the master key is never saved in an unencrypted form on disk. Addi-
tionally, as we've observed, the master key isn’t encrypted directly, instead a segmented

master key is stored in the key material area.
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Figure 3.47: Operation: Open Partition

The procedure of recovering the master key, and decrypt the data is shown in Fig. 3.47.
A user key, derived from a PBKDF2 s used to decrypt the master key. But the master key
is AF-split stored in key material. Thus after decrypting it we must AF-merge it (4) to
retrieve a possible master key. This candidate key then is passed from a digestion process
(the same as in 2b of Fig. 3.46) and the result is checked against the saved master key
digestion which lives in the LUKS phdr (6). If those two digests are equal, the validation
process is passed successfully, and we have a master key decrypted, that can be used to
decrypt/encrypt the whole disk. If this process fails, the kernel checks if there are other

active key-slots and repeats the steps 2-8 for every active key-slot. If it achieves to match
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one of them, then the master key is decrypted successfully and it is ready for usage. If
it fails for every active key-slot, then the user is not validated and can’t encrypt/decrypt

the disk.
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Implementation

4.1 Overview

In this chapter, we present our implementation of the three proposed solutions for inte-
grating encryption within the ublk framework. Additionally, we describe the key setup

phase, which is common across all implementations.

The ublk server is written in C and C++. Our implementation is compatible with both
languages, though it adheres to the conventions of the C programming language to en-

sure compatibility and ease of integration with the existing codebase.

Throughout the upcoming sections, we’ll highlight the key aspects of our solutions, dis-
cuss challenges encountered while translating our design choices into code, and refer-
ence the corresponding design decisions and diagrams to establish a stronger connec-

tion between implementation details and the chosen design.

Note: For brevity, we will focus on the key points, omitting some finer details, and will
avoid showcasing error handling in most cases, to keep the presented code easy to fol-

low and less noisy.

Libraries Used

One advantage of integrating the encryption mechanism directly into userspace is the
ability to use ready-made libraries. Especially for encryption purposes, this is very im-
portant because implementing cryptographic operations from scratch is difficult and

error-prone. These libraries are, of course, open-source and they have been tested and

149
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integrated into numerous systems. This fact provides us with assurance (at least to some

extent) that we won't introduce a security-related bug in our implementation.

We used two libraries: GnuPG Made Easy (GPGME) and OpenSSL [GNUa, Ope]. Both
are C libraries and have been used for many years for various cryptographic tasks, in
both industry and personal computing environments. These libraries are popular and
have played a key role in making data transfer and storage secure in many applications

and systems.

GPGME

GPGME is a library that doesn’t implement by itself the cryptographic protocols and
operations. It acts as a high-level interface, making it easier for developers to integrate
cryptographic functions into their applications, and uses “backends” to do the real work.
The default backend used by GPGME, and the one we also used in our operations, is
the GnuPG, which according to [Gnub] is «an universal crypto engine which can be used
directly from a command line prompt, from shell scripts, or from other programs. Therefore

GnuPG is often used as the actual crypto backend of other applications».

{ o \I :f
: ? ! GPGME librar
I ) % Y

Figure 4.1: Application Using GPGME

GPGME employs inter-process communication (pipes) to exchange data between the
application and the backend. However, the specifics of the communication protocol
and how the backend is accessed are completely hidden by the interface. Simply put,
GPGME takes away all the complexity, allowing the application to interact with the
backend effortlessly, without getting bogged down by the underlying technical details.

OpenSSL

OpenSSL is a full-featured open-source toolkit that implements the Secure Sockets Layer
(SSL) and Transport Layer Security (TLS) protocols. It also includes a cryptographic
library that provides a vast array of cryptographic algorithms and functions, such as
symmetric and asymmetric encryption, hashing, digital signatures, and key generation

and management.



)

'S

4.2. KEY SETUP IMPLEMENTATION 151

Unlike GPGME, which serves as a higher-level interface to backend cryptographic en-
gines, OpenSSL itself is a cryptographic library that directly implements all the neces-

sary cryptographic algorithms and protocols.

By using these libraries, we were able to take advantage of well-tested cryptographic
solutions, saving a lot of development time. We avoided the challenges that come with
building cryptographic algorithms and protocols from the ground up. This way, we
could concentrate on adapting the encryption mechanism to work smoothly with the

ublk framework, making sure our implementation is both safe and efficient.

4.2 Key Setup Implementation

An encrypted ublk disk begins with a metadata region that saves information about the

current encryption (if any) on the disk.

The struct that holds the metadata information has the following form:

#define UBLK_MAGIC_LEN 6
#tdefine UBLK_HEADER_VERSION_LEN 3
#define UBLK_MASTER_KEY_HASH_LEN 64
struct ublk_header {
char magic[UBLK_MAGIC_LEN];
char version[UBLK_HEADER_VERSION_LEN];
int active;
unsigned char master_key_hash[UBLK_MASTER_KEY_HASH_LEN];
}s

Listing 4.1: struct ublk_header

The whole metadata region allocated is 4096 bytes, but the ublk_header structure takes
up the first 80 bytes (see Fig. 3.20).

The basic functionality of this structure is to store the hash of the master key. When
creating the encrypted ublk disk for the first time, we store the hash of the master key
in the master_key_hash field. This enables us to validate users later on, who want to

utilize the ublk framework.

Also, the active field along with the magic, inform if the current disk has already been

encrypted or not.
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Now, let’s see how we implemented some of the high-level operations as presented in

Section 3.5.2.

Create an Encrypted Disk Implementation

The following function, start_enc(), executes the Algorithm 1. This function is called
during the creation of the encrypted ublk (when calling 3.10) before the ublk server

starts, and takes the following three parameters:

« A pointer to a structure (struct ublksrv_dev_data), which encompasses in-
formation necessary to start the ublk server. The important field for us at this
moment is a structure of type encryption, that storesan array of unsigned char,

that will hold the master key during the usage of the server.
« The file descriptor of the backing file, which serves as the disk.

« The file descriptor of the file, where we will eventually store the encrypted master

key.

int start_enc(struct ublksrv_dev_data *data, int fd_disk, int fd_master_key)
{
gpgme_ctx_t ctx;
gpgme_data_t plain, cipher;
int fd_random;
unsigned char md_buf[UBLK_MASTER_KEY_HASH_LEN];

struct ublk_header header = {0};

// Check that this 1is not an active disk
pread(fd_disk, &header, sizeof(struct ublk_header), 0);
if (header.active == 1) {
if (!strncmp(header.magic, , UBLK_MAGIC_LEN)) {
fprintf(stderr, )5

return -1;

}
ftruncate(fd_master_key, 0);

// Allocate a structure to hold the master key

data->enc = (struct encryption *)calloc(l, sizeof(struct encryption));

// Read the master key from a random source
fd_random = open( >, O_RDONLY);
read(fd_random, data->enc->key, KEY_SIZE);
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// Initialize

a GPGME context

init_gpgme (GPGME_PROTOCOL_OpenPGP);

gpgme_new (&ctx);

gpgme_set_ctx_

flag(ctx, B ); // Disable caching of GPG daemon

gpgme_set_armor(ctx, 1);

// Save the encrypted master key to file fd_master_key

gpgme_data_new_from_mem(&plain, (const char *)data->enc->key, KEY_SIZE, 0);

gpgme_data_new_from_fd(&cipher, fd_master_key);

gpgme_op_encrypt(ctx, NULL, GPGME_ENCRYPT_SYMMETRIC, plain, cipher);

// Compute and store the hash of the key

SHA512(data->enc->key, UBLK_MASTER_KEY_HASH_LEN, md_buf);

memset (&header, 0, sizeof(struct ublk_header));

memcpy (header.

memcpy (header.

header.active

memcpy (header.

magic, , UBLK_MAGIC_LEN);

version, , UBLK_HEADER_VERSION_LEN);

= 1;

master_key_hash, md_buf, UBLK_MASTER_KEY_HASH_LEN);

pwrite(fd_disk, &header, sizeof(struct ublk_header), 0);

return 1;

Listing 4.2: Function start_enc()

We can divide the functionality of start_enc() function into the following sections:

1. Checks whether the disk is already encrypted. If it is, it aborts.

2. Reads from /dev/random the master key. This key will be saved in a data struc-

ture (struct encryption) that we will be used later on to perform the “real”

encryption and decryption. The KEY_SIZE is defined as 64 bytes (512 bits) be-

cause when encrypting in XTS mode, the key size required is twice the size of the

standard AES key.

3. Starts a cryptographic context. The actual cryptographic operations are always

set within a context in GPGME. A context provides configuration parameters

that define the behaviour of all operations performed within it.
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4. Encrypts the master key and saves the encrypted key in the file indicated by the

fd_master_key argument.
5. Digests the master key using the Secure Hash Algorithm (SHA512).

6. Populates the ublk_header structure and saves it at the start of the disk for later
usage. The information stored in this structure remains unchanged in subsequent

interactions with the disk.

Every function prefixed with “gpgme_*” is actually a library call to GPGME. The encryp-
tion of the master key and the save to the file is performed via the gpgme_op_encrypt().
We used symmetric encryption to protect the file that is going to hold the master key,
and by default, the GnuPG backend uses the AES algorithm. It also asks for a passphrase

that will protect the encrypted master key from now on.

The SHA512() function that performs the digest of the master key, is defined in the
OpenSSL library.

From this point onwards, the metadata section of the disk is populated, and the master
key is stored in the key field of the encryption structure and from there it can be used

for any cryptographic operation.

Open an Encrypted Disk Implementation

The function below is used when starting the ublk server with a pre-encrypted disk,
and it is invoked as a consequence of starting the ublk server as mentioned in 3.11.
Its main task is to recover the master key from the file passed as an argument. This

implementation corresponds to Algorithm 2 shown in Section 3.5.2.

Justlike start_enc(), the extract_key () function takes three arguments, with a slight
difference. Here, the file descriptor referred to as fd_cand_key refers to a file containing

a “candidate key”, which needs validation before granting access.

int extract_key(struct ublksrv_dev_data *data, int fd_disk, int fd_cand_key)

214

gpgme_ctx_t ctx;
gpgme_error_t err;
gpgme_data_t plain, cipher;
size_t len;

unsigned char md_buf[UBLK_MASTER_KEY_HASH_LEN];
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unsigned char *buf;

struct ublk_header header = {0};

pread(fd_disk, &header, sizeof(struct ublk_header), 0);

if (strncmp(header.magic, , UBLK_MAGIC_LEN)) {
fprintf(stderr, );
return -1;

}

if (header.active != 1) {
fprintf(stderr, )s

return -1;

data->enc = (struct encryption *)calloc(1l, sizeof(struct encryption));

init_gpgme (GPGME_PROTOCOL_OpenPGP);
gpgme_new (&ctx);
gpgme_set_ctx_flag(ctx, N ); // Disable caching of GPG daemon

gpgme_data_new_from_fd(&cipher, fd_cand_key);
gpgme_data_new(&plain);
gpgme_op_decrypt(ctx, cipher, plain);

buf = (unsigned char *)gpgme_data_release_and_get_mem(plain, &len);

SHA512 (buf, UBLK_MASTER_KEY_HASH_LEN, md_buf);

if (strncmp((const char *)header.master_key_hash, (const char *)md_buf,
UBLK_MASTER_KEY_HASH_LEN)) {
// Validation failed
fprintf(stderr, )
return -1;
} else {
// Validation passed

memcpy (data->enc->key, buf, KEY_SIZE);

return 1;
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Listing 4.3: Function extract_key()

The primary tasks of the extract_key() are listed below:

1. Retrieves the metadata section from the disk.

2. Checks that this is indeed a valid disk.
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Allocates the encryption structure, which will house the master key upon suc-

cessful validation.

Initializes a cryptographic context, essential for making any GPGME-related func-

tion calls.

. Decrypts the context of the file containing the candidate master key.

Computes the hash of the candidate master key.

Compares the hash of the candidate master key with the stored master key hash in
the master_key hash field of the ublk_header structure. A mismatch in hashes
denies access, whereas a match confirms the provided file contains the correct
master key. The master key is then copied to the enc->key field, making it ready

for subsequent cryptographic operations.

The next high-level operation of adding a new key, as presented in Section 3.5.2, follows

the logic of the previous two, and thus, will not be detailed here.

Lastly, as discussed in 3.5.2, to remove a key we simply delete the file containing the

encrypted master key. This action does not require any additional steps.

4.3 Single-Thread Encryption Implementation

In our initial solution, we mainly made three modifications to the existing ublk server

code:

1. We initialized an OpenSSL cryptographic context inside of which every crypto-

graphic operation is performed.

. We allocated the “temporary buffers” and utilized them whenever interacting

with the target. For a write request, the encrypted data resides in these “tempo-
rary buffers” and are sent to the target for storage. In contrast, for a read request,
we retrieve the encrypted data from the target and place them in the “temporary

buffers” before decryption.

. We executed the appropriate calls to the OpenSSL library functions for perform-

ing the encryption or decryption tasks.
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Initialize a Cryptographic Context

Every cryptographic operation must take place within a specific “cryptographic con-
text” in OpenSSL. This context is represented by a structure of type EVP_CIPHER_CTX.
Additionally, there is a separate structure for the specific cipher method implementa-

tion, denoted as EVP_CIPHER.

We allocate these two structures during the initialization phase of every “queue-thread”
in the ublk server and maintain a reference to them. This approach allows us to reuse
them for every encryption or decryption operation, avoiding unnecessary allocations

during hot path.

These two structures are encapsulated within a common structure named crypt_ctx,
and we refer to this structure whenever we need to perform an operation within the

OpenSSL context.

Let’s see how this initialization is performed.

struct crypt_ctx {
EVP_CIPHER_CTX *ctx;

EVP_CIPHER *cipher;
}s

6| struct crypt_ctx *init_crypt_ctx(void)
714

struct crypt_ctx *c_ctx = (struct crypt_ctx *)malloc(sizeof(*c_ctx));

c_ctx->ctx = NULL;
c_ctx->cipher = NULL;
c_ctx->ctx = EVP_CIPHER_CTX_new();

c_ctx->cipher = EVP_CIPHER_fetch(NULL, , NULL);

return c_ctx;

Listing 4.4: Function init_crypt_ctx

Every EVP_* object and function, refers to OpenSSL-related features. The EVP_CIPHER_CTX
and EVP_CIPHER structures are initialized using EVP_CIPHER_CTX_new() and
EVP_CIPHER_fetch() respectively. The former function allocates and returns a cipher
context while the latter retrieves the cipher implementation for the specified algorithm.

We requested AES-256 in XTS mode as the algorithm.
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Write Request

The following function is triggered during the data path for a write request, specifically

at Step 4, as shown in Figure 3.24.

int encrypt(const struct ublksrv_queue *q, const struct ublksrv_io_desc *iod, int tag)
{

struct crypt_ctx *c_ctx = g->private_data; // Cryptographic context

void *buf = (void *)iod->addr; // Original buffer

__u6b4 start_sector = iod->start_sector;

__u32 nr_sectors = iod->nr_sectors;

__u64 relative_bytes;

__u32 relative_sector = 0;

union iv xts = {0};

int encrypt_size;

const struct ublksrv_ctrl_dev *ctrl_dev = ublksrv_get_ctrl_dev(qg->dev);

struct encryption *enc = ublksrv_get_encryption(ctrl_dev); // Master key

struct _ublksrv_queue *queue = tq_to_local(q);

unsigned char *t_buf = queue->tmp_buf[tag]l; // Temporary buffer

if (!'EVP_EncryptInit_ex2(c_ctx->ctx, c_ctx->cipher, enc->key, NULL, NULL))

goto err;

while (nr_sectors) {
xts.sector = start_sector;

relative_bytes = relative_sector << 9;

if (!EVP_EncryptInit_ex2(c_ctx->ctx, NULL, NULL,
(const unsigned char *)xts.tweak, NULL))
goto err;
if (!EVP_EncryptUpdate(c_ctx->ctx, t_buf + relative_bytes, &encrypt_size,
(const unsigned char *)buf + relative_bytes, 512))

goto err;

start_sector++;
relative_sector++;

nr_sectors--;

Listing 4.5: Function encrypt()

Let’s decompose this code. Firstly, the function takes three parameters:

« A pointer to a structure containing information for a running ublk server queue.
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« A pointer to a descriptor of the request, which has been explained thoroughly in

Section 3.4.3.

« The tag of the request.

With the information from the second argument (ublksrv_io_desc), we can obtain
three crucial values: (a) The pointer to the “original buffer” (i.e. the buffer containing
the plaintext we wish to encrypt), (b) the starting sector that the first 512-byte segment
of the “original buffer” refers to (this value is significant for encryption as the sector
number is used as the tweak value), and (c) the total number of sectors included in this

request.

Based on the tag, we can identify the specific “temporary buffer’, referred to as t_buf,
that will store the result of the encryption. This information along with the crypt_ctx
structure which holds the cryptographic context in which the encryption operation will
be performed, is extracted from the first parameter of the function, which contains in-

formation about the current queue.

The important computation occurs within the while(nr_sectors) loop. This loop,
based on the request size, processes each 512-byte segment from the “original buffer”,
and stores the encrypted version of each segment in the corresponding location within

the “temporary buffer”. Here is a breakdown of the loop:

1. The loop continues as long as there are sectors left to process, as indicated by

nr_sectors.
2. In each iteration:

(a) The current sector number is updated in the xts structure.

(b) The byte position within the buffers is calculated based on the current sector

being processed.

(c) Encryption initialization is performed with the current sector’s tweak value
via EVP_EncryptInit_ex2() function. This function is called in two dif-
ferent places. The first time it sets up the cipher context ctx for encryption
with the XTS cipher, and inside the while loop it sets the current tweak

value according to the current sector.
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(d) The encryption process takes a 512-byte segment from the original buffer,
encrypts it, and places the result in the temporary buffer at the correspond-
ing position. This is performed by the EVP_EncryptUpdate() function,

which encrypts successive blocks of data in every call.
(e) Sector indices are updated for the next iteration, moving on to the next 512-

byte segment.

3. The loop advances to the next sector and repeats the process until all sectors have

been encrypted.

As we can see, the XTS is applied individually to 512-byte chunks that corresponds to

disk sectors with the tweak being the sector number.

To set appropriately the tweak value, we store it in a union as follows:

union iv {

__ub4 sector;

unsigned char tweak[TWEAK_SIZE];
}s

Listing 4.6: Union Used to Set the Tweak Value

So, in each loop iteration, we assign the number of the sector being encrypted to the
sector field, and then translate this value to an unsigned char to properly set the
tweak value expected by EVP_EncryptInit_ex2(). This is a “trick” we used in all im-

plementations.

Read Request

In a read request, decryption occurs after the data has been retrieved from the target
and stored in the “temporary buffer” (Step 5 in Fig. 3.25). The function logic mirrors
that of encrypt() (4.5), with the primary difference being the source and destination
buffers during the decryption process. Instead of encrypting data from the “original
buffer” to the “temporary buffer”, we decrypt data from the “temporary buffer” to the

“original buffer”.

The snippet below highlights the key differences:
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int decrypt(const struct ublksrv_queue *q, const struct ublk_io_data *data, int tag)

{
[...]
if (!'EVP_DecryptInit_ex2(c_ctx->ctx, c_ctx->cipher, enc->key, NULL, NULL))

goto err;

while (nr_sectors) {

xts.sector = start_sector;

relative_bytes = relative_sector << 9;

if (!EVP_DecryptInit_ex2(c_ctx->ctx, NULL, NULL,
(const unsigned char *)xts.tweak, NULL))

goto err;

if (!EVP_DecryptUpdate(c_ctx->ctx, buf + relative_bytes, &decrypt_size,

t_buf + relative_bytes, 512))

goto err;

start_sector++;
relative_sector++;

nr_sectors--;

Listing 4.7: Function decrypt()

We can observe that the roles of the “temporary buffer” (t_buf) and “original buffer”
(buf) have been switched and of course, unlike the encryption process, here we call the

decryption-related functions from the OpenSSL library.

The term “single-thread” in the encryption solution is now clearer. It refers to the step-
by-step encryption or decryption of each sector by the main thread itself, with the ap-

propriate tweak value set sequentially for every sector involved.

4.4 Intra-Block Encryption Implementation

In our second solution, we manage a thread pool to handle the cryptographic tasks. The
cornerstone of this solution is a shared object that facilitates communication between
the main thread and the worker threads. Let’s take a look into this object and explore

the functionality of its various fields.

1| struct shared_obj {

pthread_barrier_t barrieri;
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s

pthread_barrier_t barrier2;

struct {
int pos;
pthread_mutex_t mutex;

}s

struct {
void *buf;
void *tmp_buf;
s

unsigned long request_size;

__u64 start_sector;

struct encryption *enc;

int encrypt; // Type of request
unsigned long num_threads;

int quit; //@ => don’t quit, => quit
pthread_t threads[];

Listing 4.8: Shared Object Descriptor

The fields of this structure are:

e« barrierl, barrier2: These two barriers are necessary for synchronization be-

tween the main and the working threads.
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pos, mutex: The pos field is used by each thread to acquire a “position” within
the pool during their initialization. Based on its position, each worker identifies
the area of the buffer it must operate on. Since multiple threads may access the
pos field concurrently while acquiring positions, a lock (mutex) is used to ensure

safe access.

buf, tmp_buf: Pointers to the “original buffer” and “temporary buffer” respec-

tively, set by the main thread to guide workers on which buffers to operate on.

request_size: Indicates the size of the request, enabling each worker to compute

the number of iterations it has to perform.

start_sector: Denotes the starting sector on disk of the I/O request, crucial for

setting the appropriate “tweak” value.
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« enc: A pointer to a structure holding the master key.
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« encrypt: Specifies the type of request. A value of 1 indicates a write request

requiring encryption from the “original buffer” to the “temporary buffer” before

sending data to the backing file. A value of 0 indicates a read request requiring

decryption from the “temporary buffer” to the “original buffer” after reading data

from the backing file.

o num_threads: Indicates the total number of worker threads, which is essential

for computing the stride.

« quit: Set by the main thread to instruct worker threads to exit.

« threads: This is a flexible array member and is used during the creation of the

thread pool, storing unique identifiers for every thread, which in turn enables the

main thread to await the completion of each worker before exiting.

Examining how this object is used, Figure 3.27 depicts that whenever the main thread

needs to notify the worker threads of a request, it populates the fields of the shared object

with relevant to this request information.

// q => struct ublksrv_queue *

// 1iod => struct ublksrv_io_desc *

3S([...]

struct shared_obj *so = ublksrv_queue_get_shared_object(q);

5| // Fill in the shared object

7| so->encrypt = 1;

so->buf = (void *)iod->addr;
so->tmp_buf = get_tmp_buf_from_queue(q, tag);
so->request_size = iod->nr_sectors << 9;

so->start_sector = iod->start_sector;

2| so->quit = @; // it’s not a quit request

// Let’s start the encryption

5| pthread_barrier_wait(&so->barrierl);

71 // Wait for working threads to finish

pthread_barrier_wait(&so->barrier2);

[...1

Listing 4.9: The Main Thread Prepares a Write Request
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The code snippet above demonstrates how the main thread prepares a request for en-

cryption, alerts the workers, and waits for the task completion.

For a decryption request, the only change is setting so->encrypt to 0.

Now, let’s inspect the actions of each worker. The following routine is carried out by

each worker thread, with the shared object being passed as an argument during thread

creation.

void *working_pool_fun(void *args)

{

struct shared_obj *so = (struct shared_obj *)args;

pthread_mutex_lock (&so->mutex);
int pos = sO->pos++;

pthread_mutex_unlock(&so->mutex);

unsigned long stride;

__ub4 sec;

unsigned long num_threads = so->num_threads;
struct encryption *enc = so->enc;

int retval = 1;

// Initialize encryption/decryption context and cipher
EVP_CIPHER_CTX *ctx = NULL;

EVP_CIPHER *cipher = NULL;

ctx = EVP_CIPHER_CTX_new();

cipher = EVP_CIPHER fetch(NULL, , NULL);

union iv xts = {0};

int encrypt_size, decrypt_size;

for (535) {

pthread_barrier_wait(&so->barrierl); // Wait for a request from main thread

// Check if we need to exit

if (so->quit) {
EVP_CIPHER_free(cipher);
EVP_CIPHER_CTX_free(ctx);

pthread_exit(&retval);

// Set the cipher and the key for the context
if (so->encrypt) {

EVP_EncryptInit_ex2(ctx, cipher, enc->key, NULL, NULL);
} else {

EVP_DecryptInit_ex2(ctx, cipher, enc->key, NULL, NULL);
}
stride = pos << 9;

sec = so->start_sector + pos;
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while (stride < so->request_size) {
xts.sector = sec;
if (so->encrypt) {
// Write request
if (!'EVP_EncryptInit_ex2(ctx, NULL, NULL, (const unsigned char *)xts.tweak, NULL))
ublk_err( )s

if (!EVP_EncryptUpdate(ctx, (unsigned char *)so->tmp_buf + stride,
&encrypt_size, (const unsigned char *)so->buf + stride, 512))

ublk_err( )s

} else {
// Read request
if (!EVP_DecryptInit_ex2(ctx, NULL, NULL, (const unsigned char *)xts.tweak, NULL))
ublk_err( )s

if (!EVP_DecryptUpdate(ctx, (unsigned char *)so->buf + stride,
&decrypt_size, (const unsigned char *)so->tmp_buf + stride, 512))

ublk_err( )s

stride += (num_threads << 9);
sec += num_threads;

}

pthread_barrier_wait(&so->barrier2);

Listing 4.10: Working Threads Running Function

Here's a summary of the key activities within in this function. Each thread:

1. Determines its position, ensuring that there will be no concurrent access to the

so->pos field.

2. Allocates the cryptographic context and fetches the cipher implementation for

the AES-XTS algorithm, as seen in the single-thread solution.

3. Enters a loop, awaiting a request from the main thread at the first barrier.

4. Wakes up from the barrier when the request arrives, checks if it should terminate,
and if not, it sets the context ctx with the specific cipher and key for encryption

or decryption according to the type of the request it has to manage.
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5. Calculates the necessary offsets based on its position, determining its “operational
area” within the buffers. The stride variable indicates the starting point within
the buffer, while the sec variable represents the specific sector number necessary
to set the tweak value for the cryptographic operations. Since pos is a unique
value for each thread, this calculation ensures that each thread starts at a different

position within the buffers.

6. Starts a while loop, in which it either encrypts, or decrypts one sector at time.
The distribution of work is set up such that each thread works on different, non-
overlapping 512-byte sectors. After processing its current sector, the thread skips
sectors equal to the total number of threads (num_threads) and processes the
next one. This mechanism ensures that all threads operate simultaneously but
on different parts of the buffer, achieving parallelism. Also the current sector is
incremented in sync with stride, ensuring the correct sector number is used
for each operation. For example, considering we have 4 threads (numbered 0

through 3) and a buffer of 16 sectors. Here’s how the distribution will look:

o Thread 0: processes sectors 0, 4, 8, 12

o Thread 1: processes sectors 1, 5, 9, 13

Thread 2: processes sectors 2, 6, 10, 14

o Thread 3: processes sectors 3, 7, 11, 15

7. Finishes the while loop, as soon as the stride exceeds the request size and “hits”

the second barrier.

When every thread completes its task, it means the whole request has been processed,
and the final thread to reach the second barrier will wake up the remaining worker

threads and the main thread, as illustrated in Steps 6 and 7 of Fig. 3.27.

The union iv remains consistent with the previous implementation, serving the same
purpose. When the sector number is set, the tweak value is also set due to the shared

memory space of the union.



4.5. INTER-BLOCK ENCRYPTION IMPLEMENTATION 167

4.5 Inter-Block Encryption Implementation

In our third implementation, three key structures are employed to manage crypto-
graphic tasks and help communication between the main thread and workers. These
structures and their interconnections are depicted in Figure 3.29. Let’s examine their

components.

N

struct shared_obj {
pthread_cond_t cond;
int efd;
struct encryption *enc;
struct queue *submit;
struct queue *complete;
struct ublksrv_req *req_array;

pthread_t threads[];
s

struct queue {
pthread_mutex_t mutex_queue;
int num;
struct ublksrv_req *head;

struct ublksrv_req *tail;

s

struct ublksrv_req {
const struct ublksrv_io_desc *iod;
void *tmp_buf;
unsigned tag;
int op; // @=>read(decryption), 1=>write(encryption), set by main thread
int quit; // Set by main thread if we need to quit
struct ublksrv_req *next;
struct io_uring_cqe cqe;

s

Listing 4.11: Basic Structures in Inter-Block Implementation

The struct shared_obj acts as a bridge between the main thread and worker threads.
Similar to the intra-block solution, a shared object is required as the main and worker
threads need to collaborate to perform any cryptographic task. Below is a breakdown

of the fields in the struct shared_obj:

« cond: A condition variable used by the main thread to notify worker threads of a

request.
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« efd: An eventfd file descriptor used by worker threads to notify the main thread

of job completion.
« enc: Holds the master key used in cryptographic operations.
« submit: A queue containing requests submitted to workers but not yet processed.

« complete: A queue containing requests from workers awaiting processing by the

main thread.
« req_array: An array holding all potential on-the-fly requests.

« threads: A flexible array member holding threads, serving the same role as in

the previous implementation.

The communication flow is explained in the Section 3.5.5. In short: the main thread
signals the workers about a new job through the condition variable, and upon job com-

pletion, the workers notify the main thread via the eventfd file descriptor.

The queues submit and complete serve as holding areas for requests at different stages
of processing. The submit queue holds the requests ready for processing, while the
complete queue holds the requests that have been processed and are ready for the main

thread to pick up.

The struct ublksrv_req plays a central role in managing a task’s lifecycle, from the
moment the main thread initiates it to its completion by a worker and subsequent pro-

cessing by the main thread again. The fields of this structure are the following:

o iod: This is the task’s descriptor, providing workers with necessary details. Its

specific role and function is further discussed in Section 3.4.3.

 tmp_buf: A pointer to a “temporary buffer”. Depending on the task’s nature, this
buffer is employed by workers either to store the encrypted result before sending
it to the target, or to access encrypted content after fetching the data from the

target.

« tag: A unique identifier for tasks, ensuring their tracking and management through-

out their lifecycle.
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« op: An indicator the main thread fills out to specify the task type. A “0” signifies

a decryption task, whereas a “1” indicates an encryption operation.

o quit: Acts as an exit signal. It informs the worker threads to conclude and ter-

minate their current activities when set by the main thread.
 next: A pointer used to link requests in the queues.

« cqge: Stores a Completion Queue Entry before submitting a read request to a
worker. We will clear out its purpose below, after examining exactly what the

main thread does when submitting a request.

Working Threads Execution Flow

The following function is the routine each working thread executes. The shared object,
given as an argument during thread creation, acts as the synchronization and commu-

nication bridge between the main thread and worker threads.

void *working_pool_fun(void *args)
{
struct shared_obj *so = (struct shared_obj *)args;
uint64_t data = 1;
int cnt = sizeof(uint64_t);
int retval = 1;
struct crypt_ctx *c_ctx = init_crypt_ctx();
for (55) {

struct ublksrv_req *req;

// Wait for a request

pthread_mutex_lock(&so->submit->mutex_queue);

while (so->submit->num == @) {
pthread_cond_wait(&so->cond, &so->submit->mutex_queue);

}

req = pop_req_from_list(so->submit);

pthread_mutex_unlock(&so->submit->mutex_queue);
// Check 1if we are done

if (req->quit) {
pthread_exit(&retval);

// Execute the request

execute_req(c_ctx, req, so->enc);

// Add the request to the completion
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pthread_mutex_lock(&so->complete->mutex_queue);
add_req_to_list(so->complete, req);

pthread_mutex_unlock(&so->complete->mutex_queue);

// Notify main thread

write(so->efd, &data, cnt);

Listing 4.12: Working Threads Running Function

The main workflow of this function can be broken down as:

1. Initialize a cryptographic context: Each worker has to perform the encryption or
decryption inside of a cryptographic context, as we have already mentioned. To
do so it calls the function init_crypt_ctx(), which has been shown in Listing

4.4,

2. Wait for new requests on a condition variable: Each worker thread enters a loop
and first locks the “submit queue mutex” to safely check if there is any available
requests. If no request is present, the thread waits on a condition variable, freeing

up the mutex, until the main thread signals the arrival of new tasks.

3. Retrieve a request: After getting a pthread_cond_signal(), a worker awakens,

pops out a request from the submit queue, and then releases the mutex.

4. Process the request: After passing the termination check, the thread moves for-
ward to handle the request using the execute_req function. This function com-
pletes the request by invoking the necessary encryption or decryption functions,

as discussed further below.

5. Mark the request’s completion: After processing, the thread locks the “complete
queue mutex’, adds the finished request to the complete queue for the main thread

to pick up, and then unlocks the mutex.

6. Inform the main thread: At the end, the worker thread alerts the main thread

about the task’s completion by writing to the eventfd.

Through this infinite loop, each worker thread handles requests, processes them, and

communicates their completion to the main thread.




4.5. INTER-BLOCK ENCRYPTION IMPLEMENTATION 171

The two helper functions for queue manipulation, add_req_to_list() and
pop_req_from_list(), are always called with the specific queue’s lock held, guarding
against simultaneous access. Requests are added to the head of a queue and taken from

the tail.

void add_req_to_list(struct queue *q, struct ublksrv_req *req)
{
reg->next = NULL;
if (g->head != NULL) {
//assert(q->num != 0);
q->head->next = req;
} else {
//assert(q->num == 0);
q->tail = req;
}
//assert(q->tail != NULL);
q->head = req;

q->num++;

struct ublksrv_req *pop_req_from_list(struct queue *q)

714

//assert(q->tail != NULL && q->num > 0);

struct ublksrv_req *req;

req = q->tail;

q->tail = g->tail->next;

gq->num--;

if (g->tail == NULL) {
//assert(q->num==0) ;
q->head = NULL;

}

return req;

Listing 4.13: Addition and Retrieval of a Request

To wrap up our exploration of the working threads, let’s see how request execution oc-
curs. As mentioned before, each request can be either for encryption or decryption,

with the op field of ublksrv_req indicating which.

The execute_req function determines the type of cryptographic task the worker should

carry out and calls the relevant function.

void execute_req(struct crypt_ctx *c_ctx, struct ublksrv_req *req, struct encryption *enc)
{
if (req->op) {

encrypt(c_ctx, req, enc);
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} else {

decrypt(c_ctx, req, enc);

Listing 4.14: Distinguish the Type of the Request

The encrypt and decrypt functions follow the same logic as the functions in the single-
thread implementation (4.5, 4.7). Every worker computes the results by repeatedly in-

voking the relevant OpenSSL function to encrypt or decrypt the entire buffer.

Main Thread Execution Flow

While we have explored the operations of worker threads, the role of the main thread in
this implementation remains to be discussed. How is the offloading of requests man-

aged?

The main thread submits SQEs and awaits CQEs. In this design, the main thread may

be awakened by a CQE originating from one of three sources:

1. A read or write request from the driver.
2. A response to a read or write request from the target.

3. A write to the eventfd from a working thread.

Upon awakening, the server examines two specific bits of the user_data field of CQE

to acknowledge the type of request it needs to handle.

With that context, let’s proceed to closely analyze the implementation for each of these

three cases.

Case 1: The Driver Sent a Write or a Read Request
Upon receiving a request from the driver, the server takes action based on whether the

: <« . b2 <« » .
request is a “write” or “read” operation.

[...]
if (cqe->res == UBLK_IO_RES_OK) {
__u8 real_cmd_op = ublksrv_get_op(io->data.iod);

if (real_cmd_op == UBLK_IO_OP_WRITE) {
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// A write request came from ublk driver.

// Forward the request to a working thread for encryption.
// First of all prepare the request.

struct ublksrv_req *req = &so->req_array[tag];

req->iod = io->data.iod;

req->tmp_buf = g->tmp_buf[tag];

req->op = 1; //encrypt operation

req->quit = @; // This is not a quit request

// Now put the request in the ”submit” queue and signal a working thread
pthread_mutex_lock(&so->submit->mutex_queue);
add_req_to_list(so->submit, req);
pthread_cond_signal(&so->cond);
pthread_mutex_unlock (&so->submit->mutex_queue);

} else {
// A read request came from ublk driver. Call this target callback
// to prepare a read SQE for the target.
q->tgt_ops->handle_io_async(local_to_tq(q), &io->data);

Listing 4.15: Serving a Request from the Driver

From the above code, it’s evident that in the case of a write request, the server prepares
an appropriate ublksrv_req structure. It adds the request to the submit queue, and

subsequently, it signals a worker thread to handle the encryption.

On the other hand, when handling a read request, the server must interact with the tar-
get, not the workers. The reason being, the server must first retrieve the encrypted data
from the target. To achieve this, it invokes a “target-specific” callback, which prepares a

read request directed to the target.

Case 2: Response from the Target to a Write or Read Request

[...]
struct ublk_io *io;
io = &g->ios[tag];
__u8 real_cmd_op = ublksrv_get_op(io->data.iod);

if (real_cmd_op == UBLK_IO_OP_READ) {

// This 1is a respond to a read request.
// A worker must decrypt the data.

// Prepare the request

struct shared_obj *so = g->so;

unsigned tag = user_data_to_tag(cqe->user_data);
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struct ublksrv_req *req = &so->req_array[tag];
//assert(tag == req->tag);

req->iod = io->data.iod;

req->tmp_buf = g->tmp_buf[tag];

req->op = 0; // read request

req->quit = 9;

req->cqe.user_data = cqe->user_data;
reg->cqe.res = cqe->res;

req->cqe.flags = cqe->flags;

// Put the request 1in submit Llist and signal a working thread
pthread_mutex_lock(&so->submit->mutex_queue);
add_req_to_list(so->submit, req);
pthread_cond_signal(&so->cond);
pthread_mutex_unlock(&so->submit->mutex_queue);
} else {

// This 1is a response to a write request.
// Call this target callback to prepare a UBLK_IO_COMMIT_AND_FETCH_REQ SQE for the driver
if (g->tgt_ops->tgt_io_done)

q->tgt_ops->tgt_io_done(local_to_tq(q),

&q->ios[tag].data, cqe);

Listing 4.16: Serving a Response from the Target

The server again, must choose between different paths based on whether it receives a

write or read response from the target.

For write responses, since the encrypted data is already written to the target, the server

only invokes a target-specific callback to prepare the response for the driver.

For read responses, data decryption is required. To achieve this, the server prepares a
ublksrv_req, places it into the submit queue, and signals a worker. Notably, in this
scenario, the server saves the target’s CQE response within the ublksrv_req structure.
This step is absent when preparing a ublksrv_req for encryption, as shown in Listing
4.15. This distinction arises because omitting this step would cause the server to lose

track of the target’s specific request response.

To understand this nuance, let’s review the stages for both write and read requests. The

request flows are:

» Ublk server receives a write request from the ublk driver:
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1. The server adds a ublksrv_req and notifies a worker. The worker does the

encryption and responds.
2. The server sends to the target the encrypted data. The target responds.

3. The Server submits an UBLK_IO_COMMIT_AND_FETCH_REQ SQE to the driver

to inform about the request.
o Ublk server receives a read request from ublk driver:

1. The server submits a read SQE to the target to fetch the encrypted data. The

target responds.

2. The server adds a ublksrv_req to the submit queue and notifies a worker.

A worker does the decryption and responds.

3. The server submits an UBLK_IO_COMMIT_AND_FETCH_REQ SQE to the driver

to inform about the request.

Each “response” in the sequences above stands for a CQE. Thus, in Step 3 of the write
request, the server possesses the target’s response, allowing it to prepare the SQE that
will be submitted to the driver, reflecting the result of the request. In contrast, during
the read process in Step 3, the only response the server has is from the worker. This
distinction highlights the necessity for a field in the ublksrv_req structure to “hold”
the target’s CQE for read requests.

Case 3: A worker notifies the server via eventfd

In this third scenario, the server awakens to find a CQE that corresponds to the
IORING_OP_POLL_ADD SQE. The server had previously submitted this SQE to receive

notifications from the workers.

[...]
struct req_list rl;
struct shared_obj *so = g->so;
unsigned long long d;
const int cnt = sizeof(uint64_t);

req_list_init(&rl);

pthread_mutex_lock(&so->complete->mutex_queue);
req_list_splice(so->complete, &rl);

// Consume the eventfd.
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read(so->efd, &d, cnt);
__ublksrv_queue_event_for_main_thread(local_to_tq(q));
io_uring_submit_and_wait(&q->ring, 0);

pthread_mutex_unlock(&so->complete->mutex_queue);

/*
* Now we have in rl the pointers to the beginning and
* the end of the requests that we have to satisfy
*/
struct ublksrv_req *req = rl.tail;
while (req != NULL) {
struct ublksrv_req *tmp;
tmp = req;
/*
* manipulate the responds.
* If it 1s a write request, we need to handle 1it,
* but if it is a read request, which we have already
* handled, we need to proceed to tgt_1io_done
*/
struct ublk_io *io;

io = &qg->ios[req->tag]l;

if (req->op) {
// Write case
q->tgt_ops->handle_io_async(local_to_tq(q), &io->data);
} else {
// Read case
if (g->tgt_ops->tgt_io_done) {
q->tgt_ops->tgt_io_done(local_to_tq(q),
&q->ios[req->tag].data, &req->cqe);

}
req = req->next;

tmp->next = NULL;

Listing 4.17: Ublk Server Handles a CQE from eventfd

Let’s dissect the code snippet to understand the actions the main thread performs:

 The main thread first acquires the lock for the complete queue. It then copies
the head and tail fields of it to a temporary structure, named “r1”. This struc-
ture is made up of two pointers to ublksrv_req and will hold these pointers as

the main thread begins processing each completed request. Holding onto these
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pointers in a temporary structure prevents the server from retaining the lock
on the complete queue while processing the completed requests. The function

req_list_splice also sets the num field of the complete queue structure to zero.

« While still possessing the lock, the server:

—_

. Clears any pending notifications by reading from the eventfd.

[\S)

. Prepares a IORING_OP_POLL_ADD SQE for the eventfd.

w

. Submits the SQE and returns immediately without waiting.

4. Releases the mutex of the complete queue.

o After releasing the lock, the main thread now has the pointers to the start and
end of the complete queue. It must now address each completed request. The
while() loop serves this purpose. The loop traverses each request, moving from
tail to head, and takes actions based on its type. If it was a completed write
request, the server needs to submit a write request to the target and thus calls the
handle_io_async callback. If it was a read request, the server must finalize the

response to the driver and invokes another target callback to achieve this.

Locking Schema

Our design has two primary “communication directions™ from the main thread to the
worker threads, and vice versa. We'll explain how our locking system keeps the data

safe.

From Main Thread to Working Threads
At the heart of this direction is the submit queue. The crucial element here is the mutex
that safeguards this queue, coming into play when the main thread adds a request and

when worker threads retrieve requests from it.

This locking mechanism ensures only one worker manipulates an event. But how can
we be certain no “orphaned” job will arise? There are two potential scenarios after the

main thread submits a request to the submit queue:

1. At least one worker is already waiting because of pthread_cond_wait. In this
case, the pthread_cond_signal just wakes up one of the waiting threads. This

means the request will be taken care of.
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2. All workers are active and currently processing jobs. Here, the first worker that
concludes its task and loops back into the for(;;) loop will find the
while(so->submit->num == @) predicate unsatisfied, meaning it won’t wait and

will instead retrieve the request from the list.

Hence, we can confidently state that we won’t encounter unprocessed requests.

From Working Threads to Main Thread

The complete queue is central to this communication direction. We've designed our
solution with an emphasis on reducing the duration for which locks are held. Asa result,
when the main thread manipulates the complete list, it doesn’t maintain any lock. This

design choice allows workers to continue if they need to add jobs to the list.

As detailed in Listing 4.17, the main thread acquires the lock of the complete queue
during the “splicing” process, i.e. while taking the reference of its head and tail. Fur-
thermore, it continues to hold this lock while reading the eventfd and resubmitting the
poll request. This decision is crucial. Imagine a scenario where the main thread only
acquires the lock during the “splice” operation for the complete queue. If a worker
completes a request and writes to the eventfd just before the main thread submits the
next poll request, the notification would be missed. To sidestep such pitfalls, the main
thread maintains the lock until the poll request for the eventfd is resubmitted. However,
it ensures that the lock is released before processing each individual request, allowing

this way the workers to submit any completed request to the list.



Evaluation

In this chapter, we present the evaluation of our implementations. We compare our three
cryptographic solutions with the original ublk and measure the overhead each adds to it.
This allows us to draw conclusions about the potential benefits or pitfalls of our parallel
solutions which will help us find ways to improve them in the future. Our presented
metrics were done using fio [Axbc], a configurable program that tests workloads and

measures the performance of various components in the I/O stack.

5.1 Machine Specification

We conducted our measurements on an Amazon Web Services (AWS) machine, specif-
ically a “c5d.2xlarge” model [Ama]. This machine uses the x86_64 architecture. Tables

5.1 and 5.2 present its software and hardware specifications respectively.

Operating System | Debian GNU/Linux 12 (bookworm)
Kernel 6.1.0-17-cloud-amd64
Shell bash 5.2.15
Compiler gcc (Debian 12.2.0-14) 12.2.0

Table 5.1: Software Specification

5.2 fio

Fio is a benchmarking tool that is used mainly for storage performance benchmarking.

It can be configured to model nearly any storage model, making it the standard tool

179
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CPU Intel Xeon Platinum 8275CL
Frequency 3.000GHz
Architecture x86_64
Socket(s) 1
Cores per socket 4
Threads per core 2
Level 1 Data Cache 128 KiB (4 instances)
Level 1 Instruction Cache 128 KiB (4 instances)
Level 2 Unified Cache 4 MiB (4 instances)
Level 3 Unified Cache 35.8 MiB (1 instance)
Memory 16GiB DIMM DDR4
Drive 1 Amazon Elastic Block Store (15 GiB)
Drive 2 Amazon EC2 NVMe Instance Storage (186.26 GiB)

Table 5.2: Hardware Specification

for testing various workloads against disk devices and measuring their performance. It

spawns processes (or threads if explicitly set) that perform the specified I/O actions.

And why do we need fio?

We aim to measure the overhead caused by the encryption we've implemented. More
specifically, we want to see how bandwidth and latency are affected. We want to under-
stand the burden our encryption/decryption implementation adds to the ublk frame-

work and compare the different implementations.

In this section, we will analyze the fio script we wrote for the testing purposes. Fio runs

either via a job file (i.e. a file script) or through the command line.

To simulate and test our implementations under different environments, we measured
four different types of workloads, issued from both a synchronous and asynchronous
I/O engines for different request sizes. More specifically, we tested both random and
sequential reads and writes issued both synchronously and asynchronously for six dif-

ferent request block sizes (4k, 8k, 16k, 32k, 64k and 1m).

Below, we present an indicative segment of the fio job file for the case of random read.
The other three options (sequential read and random/sequential writes) follow the same

logic and for the sake of brevity we omit their display here.

[global]
filename=/dev/ublkbo
direct=1

ioengine=sync
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ramp_time=5s
runtime=1m
time_based
numjobs=1
iodepth=1

rw=randread

#### RANDOM READ ######
[4k_randread]
bs=4k
[8k_randread]
stonewall
bs=8k
[16k_randread]
stonewall
bs=16k
[32k_randread]
stonewall
bs=32k
[64k_randread]
stonewall
bs=64k
[1m_randread]
stonewall

bs=1m

Listing 5.1: fio job file

The job file typically contains a global section defining shared parameters which are
common to the subsequent job sections. In the example above, we have one global
section and six job sections, each for a different block size. For this workload, fio will
spawn six processes (six jobs in fio terminology, “4k_randread”, “8k_randread”, “16k_-

randread”, “32k_randread”, 64k_randread” and “Im_randread”), each performing ran-

dom reads with a different block size.

Let’s analyze the parameters of the fio segment 5.1 one-by-one:

« filename=/dev/ublkb0: Specifies the device or the file that is the “target” of the

I/0. Of course, in our case we specified the emulated block device that ublk ex-
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poses. The backing file that ublk uses for any read or write is the NVMe disk,
displayed as “Drive 2”in Table 5.2.

direct=1: Specifies whether the I/O will be buffered or not. In our case we set
it to non-buffered, meaning that the I/O will be O_DIRECT. This ensures the
I/O performed on the block device exposed by ublk will not use the operating
system’s page cache, providing a more accurate measurement of the “real” device’s

performance.

ioengine=sync: Defines how the job issues I/O to the file. In our case we have
“sync”, which stands for “synchronous”. For asynchronous metrics, this parameter

is set to io_uring.

ramp_time=5s: Specifies the time to pass without logging measurements in be-
tween workloads. This is useful to let the performance settle before the logging

takes place.
runtime=1m: Specifies the duration of each metric.

time_based: Ensures fio runs for the specified runtime duration (one minute in
our case), even if the file is completely read or written. It will simply loop over

the same workload as many times as the runtime allows.

numjobs=1: The number of processes that will run each workload. In our case
each workload is executed by one process. It can be used to setup a larger number

of processes do the same thing.

iodepth=1: The number of I/O units to keep in flight against the file. Having
iodepth above 1 doesn’t make sense in synchronous engine, but for asynchronous

engines like io_uring, this parameter can be set higher.
stonewall: Serializes the jobs so that each job starts after the previous one finishes.

rw=randread: Specifies the type of I/O. In this case “randread” stands for random
read. For the other I/O types (sequential read and random/sequential write), this

parameter is set to “read”, “randwrite” or “write” accordingly.

bs=4k,8k,16k,32k,64k,1m: The block size in bytes for each I/O, indicating the

“chunk” size for each workload.
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So to wrap up our workload has six jobs, each job runs after the previous job ends (due to
“stonewall”), and each job runs with the same parameters except the block size. Thus,
each job performs random, synchronous reads, on /dev/ublkb0, for 1 minute with

block size equal to 4k, 8k, 32, 64k and 1m each time.

5.3 Experimental Evaluation

As explained in Section 3.6, AES is the most widely used encryption algorithm today
across various domains. However, cryptography comes at a cost. The AES algorithm
operates in rounds, with different computations occurring in each round. To address
this, Intel initially, designed and integrated a new set of instructions into their proces-

sors, specifically to accelerate the AES algorithm.

The Advanced Encryption Standard New Instructions (AES-NI) introduce six new in-

structions to support AES execution at hardware level [Int].

The processor in the machine where we took the measurements (see Table 5.2) supports
AES-NI. The OpenSSL library we used for encryption and decryption also supports the

new instructions if the running processor does so.

For this reason, to gain a comprehensive view of our implementations, we ran the work-
loads with the new instructions both enabled and disabled. Disabling AES-NI means
that cryptographic operations are performed in software by the OpenSSL crypto li-

braries, instead of hardware.

The difference between software and hardware implementations of AES can be tested
using the speed command that OpenSSL provides. By querying our machine with this
command, with AES-NI enabled and disabled, we found that decryption with AES-NI

is approximately 11 times faster than without it, while encryption is 9.5 times faster.

Note: To force OpenSSL to disable the new instructions and run the workload via its

software implementation, we used the environmental variable OPENSSL_ia32cap.

In the next two sections, we present the bandwidth and latency metrics for our imple-
mentations without and with AES-NI support, respectively. After each section there
are comments and conclusions on the results. To conserve space in the presentation,

we will only display metrics for the synchronous engine and for io_uring with iodepth
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equal to 4, focusing on the random read and write cases. The sequential read and write

follow the same logic and are therefore omitted.

Note: In every workload, ublk server was parametrized with the default settings (one
queue with 128 requests depth). Also our parallel implementations (ublk-intra and

ublk-inter) were operating with 4 workers.
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5.3.1 Metrics Without AES-NI Support
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Figure 5.1: Synchronous Random Read
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Figure 5.2: Synchronous Random Write
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Figure 5.3: io_uring Random Read (iodepth = 4)
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Figure 5.4: io_uring Random Write (iodepth = 4)
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Latency
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Figure 5.6: Synchronous Random Write
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Figure 5.7: io_uring Random Read (iodepth = 4)
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Figure 5.8: io_uring Random Write (iodepth = 4)
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5.3.2 Comments on Results (no AES-NI support)

To begin with, we can observe from the fio test results that there appears to be a sat-
uration point in the bandwidth of our system for both reads and writes. For the read
tests, no test surpassed the 371MB/s limit, while for the write tests, this ceiling was
at 171MB/s. Therefore, some results may not be particularly representative, especially
those with larger block sizes that reach higher bandwidth. This may indicate a bottle-
neck in the I/O path at a different spot than our implementations, or it could simply

mean that AWS limits the bandwidth when a certain size is reached.

That said, we clearly see that the nvme workload records the best performance in all test
cases below the saturation point, which we anticipated since this workload runs directly

on the disk without any overhead caused by the ublk framework.

Following the raw results from the nvme workload, the next best overall workload is
the ublk one, without any cryptographic operation. This was also expected because
cryptographic operations add functionality to the framework, which, of course, impacts

overall performance.

Synchronous operations:

« Write requests: For both random and sequential writes, the ublk-single imple-
mentation performs better for 4k and 8k requests. The ublk-intra has the worst
performance for these two block sizes but scales better than the other two, reach-
ing the ublk-single performance for 16k block size. The ublk-inter starts between
the other two for 4k requests but scales less than ublk-intra as request size in-

creases.

» Read requests: The results are clearer here. Again, the ublk-intra implementa-
tion starts as the worst compared to the other two but scales better, recording the
best performance for sequential reads after 16k requests and for random reads
after 32k. The ublk-inter implementation performs worse than ublk-single for all

request sizes except for the 1Mb requests.

Conclusions:
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 Write request results for large sizes (32k, 64k, and 1m) seem to reach our system’s

limit (171MB/s), so we cannot derive meaningful insights from them.

o The read request results were as expected. The ublk-intra implementation is not
suited for small requests due to the overhead of worker synchronization plus the
inherent parallel implementation overheads (communication, caching). How-
ever, as request size increases, the sequential encryption/decryption performed
by both ublk-single and ublk-inter becomes more costly than managing workers
in the ublk-intra pool, making ublk-intra the better solution for requests of 32k

and above.

 Ublk-inter performs worse than ublk-single for all request sizes except 1Mb. In
synchronous cases, there is only one request that fio submits and waits for com-
pletion, limiting the advantage of parallelism offered by ublk-inter. The main
thread simply offloads encryption/decryption to a worker, who performs it se-
quentially, resulting in worse performance than ublk-single, which does the same
without the overhead of thread communication. In the case of 1Mb requests, the
block layer sends two requests for execution (due to the 0.5Mb internal buffer
limit in the ublk server), allowing parallel execution in ublk-inter and resulting

in better performance compared to ublk-single.

io_uring operations:

» Write requests: Again, our results in this case aren’t very helpful. For request sizes
of 16k and above, all our implementations reach the upper limit (171 MB/s). For
smaller requests, the results reflect the logic we encountered in the synchronous
case, where the ublk-intra implementation performs the worst, and ublk-single

performs the best.

 Read requests: The ublk-intra implementation starts as the worst compared to
the others for both iodepth equal to 2 and 4. In the first case (iodepth = 2), it
scales better than ublk-inter and surpasses it for block sizes of 64k. In the second

case (iodepth = 4), both hit the bandwidth ceiling for 64k requests.

Conclusions:
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o The results of these measurements match our expectations. The ublk-single im-
plementation, though it performs better than in the synchronous case, it does not
improve as much as the other two implementations as iodepth increases. Even
for the smallest block size (4k), where ublk-single recorded its biggest difference
from the others in the synchronous case, in io_uring with iodepth equal to two
the difference is smaller, and for iodepth equal to four, ublk-inter performs bet-
ter. This can be attributed to the fact that even for small requests, when iodepth
increases and multiple requests are on the fly, working on them in parallel can

make a difference.

« Asblock size increases, ublk-single cannot scale well, which prevents it from fully
taking advantage of iodepth. The time spent on sequentially decrypting larger

buffers impacts its performance, which was anticipated.

« Ublk-inter shows better performance in these asynchronous workloads for iodepth
equal to 4. We observed a progressive improvement in performance from syn-
chronous to io_uring with iodepth equal to 4. This was expected, as this scenario
can fully leverage iodepth by offloading requests to different threads. However,
since both ublk-intra and ublk-inter reach the performance limit (371MB/s) for
large requests, we cannot be certain if ublk-intra would perform better as size

increases, as was the case in synchronous tests.
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5.3.3 Metrics With AES-NI Support
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5.3.4 Comments on Results (with AES-NI support)

Running our workload with AES-NI enabled, our implementations, as expected, per-
form better than without it. Surprisingly, the ublk-single implementation records the
best overall performance, even in asynchronous cases with iodepth equal to 4, which we
did not anticipate. With hardware support for AES, which accelerates encryption and
decryption by approximately 10 times, ublk-single scales well even for large requests,
unlike when AES-NI is disabled. However, all implementations eventually reach a per-
formance ceiling for larger requests, not helping us make conclusions on their scaling

capabilities.

This suggests that the overhead of thread communication and scheduling in parallel
implementations outweighs the cost of executing AES instructions in hardware. The
superior performance of ublk-single could be attributed to two factors: (a) the over-
head of scheduling threads, which appears to be more significant than performing AES
operations in hardware, and (b) potential cache invalidations in the ublk-intra imple-
mentation, where threads working on different CPUs and accessing the same buffers

may lead to frequent RAM accesses, reducing efficiency.

Further investigation is needed on a system with higher bandwidth to better understand

the scaling factor of each implementation.



Conclusion

In this final chapter, we present a brief summary of our work, our conclusions, and

potential directions for future research.

6.1 Concluding Remarks

Our journey began over a year ago with a keen interest in Operating Systems and a
curiosity about the low-level mechanisms used by the Linux kernel. This curiosity led
us to io_uring. After grasping its core concepts, we wanted to apply our knowledge

practically, which brought us to the ublk framework.

Initially, the lack of documentation for ublk required us to dive into its source code to
unravel its functionalities. This process involved using various tools in both userspace
and kernelspace, gradually clarifying the workings of ublk’s components. This experi-
ence was invaluable, teaching us not only new concepts but also how to approach un-
familiar code bases systematically, which is a crucial skill, especially when dealing with

complex systems like the Linux kernel.

Our focus then became more defined: contribute to the ublk project by integrating
cryptographic functionality directly into the ublk server. This allowed us to contribute
meaningfully to the project while gaining practical experience with industry standards

like LUKS and AES-XTS.

Finally, this thesis provided us with the opportunity to explore different aspects of par-

allelism, evaluate its benefits and limitations, and gain practical insights into its appli-
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cation.

6.2 Future Work

Although we have achieved our initial goal, there is still plenty of room for improvement

and further research. Below are some directions for future work related to this thesis:

« Explore alternative cryptographic libraries (e.g. libgcrypt [Gnuc]) and compare

their performance with the results obtained using OpenSSL.

Further investigate the optimal configuration for the number of workers in our
parallel solutions. We aim to test and measure the performance of ublk-intra and
ublk-inter under various workloads and environments with different numbers of
worker threads to understand their impact on performance. Additionally, we plan
to examine whether binding workers to specific CPUs makes a practical difference

in these implementations.

Develop a more efficient communication method for the ublk-inter encryption
schema that minimizes the need for locks. We have begun to implement a concept
similar to plugging (see more on 2.4.4) in our approach, where the main thread
submits a batch of requests to the workers, allowing them to process multiple
requests. This approach reduces the need for acquiring a lock with each request

submission.

« Contribute and push our work to the upstream ublk project.



[989]

[Ama]

[Arc]

[Axba]

[Axbb]

[Axbc]

[Axbd]

Bibliography

iso 9899, The standard, https://www.iso-9899.info/wiki/The

Standard#C99, Accessed: 2023/08/30.

Amazon, Amazon EC2 C5 Instances, https://aws.amazon.com/ec2/

instance-types/c5/, Accessed: 2024/1/31.

Archlinux, Archwiki, https://wiki.archlinux.org/title/
Self-encrypting drives, Accessed: 2023/08/27.

Jens Axboe, blk-mq: new multi-queue block IO queueing mechanism,

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/

linux.git/commit/?id=320ae51feed5c2f13664aa05a76bec198967e04d,
Accessed: 2023/9/4.

Jens Axboe, Efficient IO with io_uring, https://kernel.dk/io_uring.pdf,
Accessed: 2023/08/27.

Jens Axboe, fio - Flexible I/O tester, https://fio.readthedocs.io/en/

latest/fio doc.html, Accessed: 2024/1/31.

Jens Axboe, io-wq: provide a way to limit max number of workers,

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/

linux.git/commit/?id=2e480058ddc2lec53a10e8b41623e245e908bdbc,
Accessed: 2023/9/15.

199


https://www.iso-9899.info/wiki/The_Standard#C99
https://www.iso-9899.info/wiki/The_Standard#C99
https://aws.amazon.com/ec2/instance-types/c5/
https://aws.amazon.com/ec2/instance-types/c5/
https://wiki.archlinux.org/title/Self-encrypting_drives
https://wiki.archlinux.org/title/Self-encrypting_drives
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=320ae51feed5c2f13664aa05a76bec198967e04d
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=320ae51feed5c2f13664aa05a76bec198967e04d
https://kernel.dk/io_uring.pdf
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2e480058ddc21ec53a10e8b41623e245e908bdbc
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2e480058ddc21ec53a10e8b41623e245e908bdbc

200 BIBLIOGRAPHY

[Axbe] Jens Axboe, liburing, https://github.com/axboe/liburing, Accessed:
2023/9/15.

[Axbf] Jens Axboe, polling mode using liburing example, https://github.com/
axboe/liburing/issues/385, Accessed: 2023/9/15.

[Bak]  Lewiss Baker, Coroutine Theory, https://lewissbaker.github.io/2017/

09/25/coroutine-theory, Accessed: 2023/9/17.

[BC06] Daniel P. Bovet and Marco Cesati, Understanding the Linux Kernel, O'REILLY,
2006.

[Bro]  Milan Broz, LUKS2 On-Disk Format Specification, https://gitlab.com/

cryptsetup/cryptsetup/blob/master/docs/on-disk-format-1luks2.
pdf, Accessed: 2023/9/13.

[CLO] CLOUDFLARE, What is data at rest?, https://www.cloudflare.com/

learning/security/glossary/data-at-rest/, Accessed: 2023/9/9.

[Cora] Jonathan Corbet, Descriptorless files for io_uring, https://lwn.net/
Articles/863071/, Accessed: 2023/08/27.

[Corb] Jonathan Corbet, The new way of ioctl(), https://lwn.net/Articles/
119652/, Accessed: 2023/9/18.

[CP10] Jan Pelzl Cristof Paar, Understanding Cryptography: A Textbook for Students
and Practitioners, Springer, 2010.

[Dia] The Geek Diary, Understanding the /proc/mounts,  /etc/mtab
and /proc/partitions files, https://www.thegeekdiary.com/

understanding-the-proc-mounts-etc-mtab-and-proc-partitions-files/,

Accessed: 2023/08/30.

[Doca] Kernel Docs, Network Block Device (TCP version), https://docs.kernel.
org/admin-guide/blockdev/nbd.html, Accessed: 2023/9/18.

[docb] The Linux Kernel documentation, Multi-Queue Block 10 Queueing Mecha-
nism (blk-mgq), https://docs.kernel.org/block/blk-mqg.html, Accessed:
2023/9/4.



https://github.com/axboe/liburing
https://github.com/axboe/liburing/issues/385
https://github.com/axboe/liburing/issues/385
https://lewissbaker.github.io/2017/09/25/coroutine-theory
https://lewissbaker.github.io/2017/09/25/coroutine-theory
https://gitlab.com/cryptsetup/cryptsetup/blob/master/docs/on-disk-format-luks2.pdf
https://gitlab.com/cryptsetup/cryptsetup/blob/master/docs/on-disk-format-luks2.pdf
https://gitlab.com/cryptsetup/cryptsetup/blob/master/docs/on-disk-format-luks2.pdf
https://www.cloudflare.com/learning/security/glossary/data-at-rest/
https://www.cloudflare.com/learning/security/glossary/data-at-rest/
https://lwn.net/Articles/863071/
https://lwn.net/Articles/863071/
https://lwn.net/Articles/119652/
https://lwn.net/Articles/119652/
https://www.thegeekdiary.com/understanding-the-proc-mounts-etc-mtab-and-proc-partitions-files/
https://www.thegeekdiary.com/understanding-the-proc-mounts-etc-mtab-and-proc-partitions-files/
https://docs.kernel.org/admin-guide/blockdev/nbd.html
https://docs.kernel.org/admin-guide/blockdev/nbd.html
https://docs.kernel.org/block/blk-mq.html

BIBLIOGRAPHY 201

[Dwe]

[F5]

[Fru]

[GNUa]

[Gnub]

[Gnuc]

[Gre20]

[HS]

[Hut]

[Int]

(kD]

Hiba Dweib, Kernel Uevent, https://issuu.com/hibadweib/docs/open

source for you - october 2012/s/13663276, Accessed: 2023/08/30.

F5, What is SSL/TLS Encryption?, https://www.f5.com/glossary/

ssl-tls-encryption, Accessed: 2023/9/3.

Clemens Fruhwirth, New Methods in Hard Disk Encryption, https:
//clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf, Accessed:
2023/9/13.

GNU, GPGME, https://gnupg.org/software/gpgme/index.html, Ac-
cessed: 2023/08/27.

GnuPG, GnuPG - The Universal Crypto Engine, https://www.gnupg.org/
related software/, Accessed: 2023/9/29.

GnuPG, LIBGCRYPT, https://gnupg.org/software/libgcrypt/index.
html, Accessed: 2024/2/18.

Brendan Gregg, Systems Performance, Mark L. Taub, 2020.

Sandra Henry-Stocker, Linux dominates supercomput-

ing, https://www.networkworld.com/article/3568616/

linux-dominates-supercomputing.html, Accessed: 2023/08/27.

Lee Hutchinson, Solid-state revolution: in-depth on how SSDs really
work, https://arstechnica.com/information-technology/2012/06/

inside-the-ssd-revolution-how-solid-state-disks-really-work/

3/, Accessed: 2023/08/31.

Intel, Advanced Encryption Standard Instructions (AES-NI), https://

www.intel.com/content/www/us/en/developer/articles/technical/

advanced-encryption-standard-instructions-aes-ni.html, Accessed:

2024/2/1.

Linux kernel Documentation, ublk.rst, https://elixir.bootlin.

com/1linux/v6.3/source/Documentation/block/ublk.rst, Accessed:

2023/9/19.



https://issuu.com/hibadweib/docs/open_source_for_you_-_october_2012/s/13663276
https://issuu.com/hibadweib/docs/open_source_for_you_-_october_2012/s/13663276
https://www.f5.com/glossary/ssl-tls-encryption
https://www.f5.com/glossary/ssl-tls-encryption
https://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
https://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
https://gnupg.org/software/gpgme/index.html
https://www.gnupg.org/related_software/
https://www.gnupg.org/related_software/
https://gnupg.org/software/libgcrypt/index.html
https://gnupg.org/software/libgcrypt/index.html
https://www.networkworld.com/article/3568616/linux-dominates-supercomputing.html
https://www.networkworld.com/article/3568616/linux-dominates-supercomputing.html
https://arstechnica.com/information-technology/2012/06/inside-the-ssd-revolution-how-solid-state-disks-really-work/3/
https://arstechnica.com/information-technology/2012/06/inside-the-ssd-revolution-how-solid-state-disks-really-work/3/
https://arstechnica.com/information-technology/2012/06/inside-the-ssd-revolution-how-solid-state-disks-really-work/3/
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://elixir.bootlin.com/linux/v6.3/source/Documentation/block/ublk.rst
https://elixir.bootlin.com/linux/v6.3/source/Documentation/block/ublk.rst

202

[Kou]

[Lei]

[Lov13]

[LWNa]

BIBLIOGRAPHY

Vangelis Koukis, I/O and Scheduling Techniques for the Efficient
Utilization of Shared Architectural Resources on Clusters of SMPs,

http://artemis.cslab.ece.ntua.gr:8080/jspui/bitstream/

123456789/8802/1/PD2010-0052. pdf, Accessed: 2023/9/4.

Ming Lei, Userspace block driver(ublk), https://github.com/mingl/
ubdsrv, Accessed: 2023/08/27.

Robert Love, Linux System Programming: Talking directly to the kernel and C
library, O’Reilly Media, 2013.

LWN, driver-core: devtmpfs - driver core maintained /dev tmpfs, https://lwn.
net/Articles/330985/, Accessed: 2023/08/30.

[LWNb] LWN, Driver-Core: devtmpfs - remove EXPERIMENTAL and enable it by de-

[LWNCc]

fault, https://lwn.net/Articles/370422/, Accessed: 2023/08/30.

LWN, Kernel development, https://lwn.net/Articles/369883/, Accessed:
2023/08/30.

[MAAR] Khairulmizam Samsudin Mohammad Ahmed Alomari and Abdul Rah-

[MBB]

[Mic]

man Ramli, Implementation of a Parallel XTS Encryption Mode of Opera-

tion, https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/

2014/Issue-11/Articlel3.pdf, Accessed: 2023/08/27.

David Nellans Matias Bjorling, Jens Axboe and Philippe Bonnet, Linux Block
IO: Introducing Multi-queue SSD Access on Multi-core Systems, https://
kernel.dk/blk-mq.pdf, Accessed: 2023/9/5.

Microsoft, BitLocker settings reference , https://learn.microsoft.

com/en-us/mem/configmgr/protect/tech-ref/bitlocker/settings,

Accessed: 2023/9/9.

Linux manual page, aio (7), https://man7.org/linux/man-pages/man7/

aio.7.html, Accessed: 2023/9/13.

Linux manual page, eventfd(2), https://man7.org/linux/man-pages/
man2/eventfd.2.html, Accessed: 2023/9/27.



http://artemis.cslab.ece.ntua.gr:8080/jspui/bitstream/123456789/8802/1/PD2010-0052.pdf
http://artemis.cslab.ece.ntua.gr:8080/jspui/bitstream/123456789/8802/1/PD2010-0052.pdf
https://github.com/ming1/ubdsrv
https://github.com/ming1/ubdsrv
https://lwn.net/Articles/330985/
https://lwn.net/Articles/330985/
https://lwn.net/Articles/370422/
https://lwn.net/Articles/369883/
https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2014/Issue-11/Article13.pdf
https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2014/Issue-11/Article13.pdf
https://kernel.dk/blk-mq.pdf
https://kernel.dk/blk-mq.pdf
https://learn.microsoft.com/en-us/mem/configmgr/protect/tech-ref/bitlocker/settings
https://learn.microsoft.com/en-us/mem/configmgr/protect/tech-ref/bitlocker/settings
https://man7.org/linux/man-pages/man7/aio.7.html
https://man7.org/linux/man-pages/man7/aio.7.html
https://man7.org/linux/man-pages/man2/eventfd.2.html
https://man7.org/linux/man-pages/man2/eventfd.2.html

BIBLIOGRAPHY 203

[mpc]

[Ope]

[Phe]

[Red]

Linux manual page, io_uring register(2), https://manpages.debian.

org/unstable/liburing-dev/io uring register.2.en.html, Accessed:

2023/9/14.

Linux manual page, loop(4), https://man7.org/linux/man-pages/man4/

loop.4.html, Accessed: 2023/08/27.

Linux manual page, open(2), https://man7.org/linux/man-pages/man2/

open.2.html, Accessed: 2023/9/2.

Linux manual page, pthread_barrier_init(3), https://linux.die.net/man/

3/pthread barrier init, Accessed: 2023/9/26.

Linux manual page, udev(7), https://man7.org/linux/man-pages/man7/
udev.7.html, Accessed: 2023/08/30.

Linux manual pages, readv(2), https://man7.org/linux/man-pages/

man2/readv.2.html, Accessed: 2023/9/15.

NIST, The XTS-AES Mode for Confidentiality on Storage De-
vices, https://nvlpubs.nist.gov/nistpubs/legacy/sp/

nistspecialpublication800-38e.pdf, Accessed: 2023/08/27.

OpenSSL, OpenSSL - Cryptography and SSL/TLS Toolkit, https://www.
openssl.org/, Accessed: 2023/9/29.

PheonixNAP, How Does SSH Work, https://phoenixnap.com/kb/
how-does - ssh-work, Accessed: 2023/9/9.

RedHat, Chapter 11. Encrypting block devices using LUKS, https://access.

redhat.com/documentation/en-us/red hat enterprise linux/8/

html/security hardening/encrypting-block-devices-using-1luks

security-hardening, Accessed: 2023/9/9.

[RKHO5] Jonathan Corbet Alessandro Rubini and Greg Kroah-Hartman, Linux Device

[Sit]

Drivers, O'REILLY, 2005.

Jakub = Sitnicki, Missing Manuals - io_uring worker pool, https:
//blog.cloudflare.com/missing-manuals-io uring-worker-pool/,

Accessed: 2023/9/15.



https://manpages.debian.org/unstable/liburing-dev/io_uring_register.2.en.html
https://manpages.debian.org/unstable/liburing-dev/io_uring_register.2.en.html
https://man7.org/linux/man-pages/man4/loop.4.html
https://man7.org/linux/man-pages/man4/loop.4.html
https://man7.org/linux/man-pages/man2/open.2.html
https://man7.org/linux/man-pages/man2/open.2.html
https://linux.die.net/man/3/pthread_barrier_init
https://linux.die.net/man/3/pthread_barrier_init
https://man7.org/linux/man-pages/man7/udev.7.html
https://man7.org/linux/man-pages/man7/udev.7.html
https://man7.org/linux/man-pages/man2/readv.2.html
https://man7.org/linux/man-pages/man2/readv.2.html
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38e.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38e.pdf
https://www.openssl.org/
https://www.openssl.org/
https://phoenixnap.com/kb/how-does-ssh-work
https://phoenixnap.com/kb/how-does-ssh-work
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/encrypting-block-devices-using-luks_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/encrypting-block-devices-using-luks_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/encrypting-block-devices-using-luks_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/encrypting-block-devices-using-luks_security-hardening
https://blog.cloudflare.com/missing-manuals-io_uring-worker-pool/
https://blog.cloudflare.com/missing-manuals-io_uring-worker-pool/

204

[Sta]

[Teaa]

[Teab]

[Tec]

[Ven08]

[Vera]

[Verb]

[Wika]

[Wikb]

[Wikc]

BIBLIOGRAPHY

StackExchange, Is it necessary to mount devtmpfs with /etc/f-

stab?, https://unix.stackexchange.com/questions/619589/
is-it-necessary-to-mount-devtmpfs-with-etc-fstab, Accessed:
2023/08/30.

Linux Kernel Teaching,  Character Device Drivers, https://
linux-kernel-labs.github.io/refs/heads/master/labs/device

drivers.html, Accessed: 2023/08/29.

Linux Kernel Teaching, Linux Kernel Labs, https://1linux-kernel-1labs.

github.io/refs/heads/master/lectures/intro.html, Accessed:

2023/08/29.

Kinsgston Technology, NAND Flash Technology and Solid-State Drives
(SSDs), https://www.kingston.com/en/blog/pc-performance/

nand-flash-technology-and-ssd, Accessed: 2023/08/31.

Top500.0rg, List Statistics, https://top500.org/statistics/list/, Ac-
cessed: 2023/08/27.

Sreekrishnan Venkateswaran, Essential Linux Device Drivers, Prentice Hall,

2008.

VeraCrypt, AES, https://veracrypt.eu/en/AES.html, Accessed: 2023/9/9.

Adarsh  Verma, Linus Torvaldss  Famous  Email — The
First Linux Announcement, https://fossbytes.com/
linus-torvaldss-famous-email-first-1linux-announcement/, Ac-

cessed: 2023/08/28.

Wikipedia, Advanced Encryption Standard, https://en.wikipedia.org/

wiki/Advanced Encryption Standard, Accessed: 2023/08/27.

Wikipedia, Block cipher, https://en.wikipedia.org/wiki/Block_cipher,
Accessed: 2023/9/3.

Wikipedia, Block cipher mode of operation, https://en.wikipedia.org/

wiki/Block cipher mode of operation, Accessed: 2023/9/7.



https://unix.stackexchange.com/questions/619589/is-it-necessary-to-mount-devtmpfs-with-etc-fstab
https://unix.stackexchange.com/questions/619589/is-it-necessary-to-mount-devtmpfs-with-etc-fstab
https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html
https://linux-kernel-labs.github.io/refs/heads/master/lectures/intro.html
https://linux-kernel-labs.github.io/refs/heads/master/lectures/intro.html
https://www.kingston.com/en/blog/pc-performance/nand-flash-technology-and-ssd
https://www.kingston.com/en/blog/pc-performance/nand-flash-technology-and-ssd
https://top500.org/statistics/list/
https://veracrypt.eu/en/AES.html
https://fossbytes.com/linus-torvaldss-famous-email-first-linux-announcement/
https://fossbytes.com/linus-torvaldss-famous-email-first-linux-announcement/
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

BIBLIOGRAPHY 205

[Wikd]

[Wike]

[Wik(]

[Wikg]

[Wikh]

Wikipedia,  Ciphertext stealing, https://en.wikipedia.org/wiki/

Ciphertext stealing, Accessed: 2023/9/9.

Wikipedia, Flash memory, https://en.wikipedia.org/wiki/Flash

memory, Accessed: 2023/08/31.

Wikipedia, Hard link, ihttps://en.wikipedia.org/wiki/Hard_link, Ac-
cessed: 2023/9/1.

Wikipedia, History of Linux, https://en.wikipedia.org/wiki/History
of Linux, Accessed: 2023/08/28.

Wikipedia, Solid-state  drive, https://en.wikipedia.org/wiki/
Solid-state drive, Accessed: 2023/08/29.



https://en.wikipedia.org/wiki/Ciphertext_stealing
https://en.wikipedia.org/wiki/Ciphertext_stealing
https://en.wikipedia.org/wiki/Flash_memory
https://en.wikipedia.org/wiki/Flash_memory
ihttps://en.wikipedia.org/wiki/Hard_link
https://en.wikipedia.org/wiki/History_of_Linux
https://en.wikipedia.org/wiki/History_of_Linux
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Solid-state_drive

	Περίληψη
	Abstract
	Ευχαριστίες
	Εκτενής Περίληψη
	Εισαγωγή
	Διατύπωση Προβλήματος
	Προτεινόμενη Λύση

	Υπόβαθρο
	Linux OS
	Στοίβα Εισόδου/Εξόδου (I/O)
	Κρυπτογραφία

	Σχεδίαση
	Τρόποι Επικοινωνίας
	io_uring
	Ublk
	Κρυπτογραφημένο Ublk

	Υλοποίηση
	Αξιολόγηση
	Επίλογος
	Μελλοντικό Έργο


	Introduction
	Motivation
	Problem Statement
	Proposed Solution
	Outline

	Background
	Linux OS
	Operating System vs Kernel
	And...what a kernel does?
	user mode vs kernel mode
	userspace vs kernelspace

	Kernel Architecture 
	Monolithic vs Microkernel
	Device Drivers
	A dive into /dev directory
	Character Device Drivers
	Miscellaneous Device Drivers

	Disks
	Time related concepts
	Disk Types

	I/O Stack
	Application
	Virtual File System (VFS)
	Filesystem (FS)
	Block Layer
	Block Device Drivers
	Storage Device

	Cryptography
	Introduction to cryptography
	Symmetric vs Asymmetric Cryptography
	Introduction to AES
	Mathematical Background


	Design
	Synchronous vs Asynchronous vs Blocking vs Non-Blocking
	Synchronous API
	Asynchronous API
	Blocking
	Non-Blocking

	io_uring
	io_uring overview
	io_uring system calls
	Thankfully...liburing!
	Advanced modes of operation

	Coroutines
	And...what are coroutines?
	Coroutines in C++

	Ublk
	Ublk overview
	Initial Phase: Setting up the Environment
	Second Phase: Ublk Server Internal Setup
	Third phase: The Data Path

	Encrypted Ublk
	Overview of Encrypted Ublk
	Key Setup design
	Single-Thread Encryption
	Intra-Block Encryption
	Inter-Block Encryption

	AES
	Structure of AES
	Modes of Operation
	XEX Tweakable Block Ciphertext Stealing (XTS)

	Linux Unified Key Setup (LUKS)
	Key hierarchy
	Secret Splitting
	Key Derivation Functions (KDF)
	LUKS internal structure
	LUKS semantics


	Implementation
	Overview
	Key Setup Implementation
	Single-Thread Encryption Implementation
	Intra-Block Encryption Implementation
	Inter-Block Encryption Implementation

	Evaluation
	Machine Specification
	fio
	Experimental Evaluation
	Metrics Without AES-NI Support
	Comments on Results (no AES-NI support)
	Metrics With AES-NI Support
	Comments on Results (with AES-NI support)


	Conclusion
	Concluding Remarks
	Future Work

	Bibliography

