
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ

ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Σχεδίαση και Υλοποίηση Μονοπατιού για
Κρυπτογραφημένη Ε/Ε στο Χώρο Χρήστη, με Χρήση του

Πλαισίου Ublk και του Μηχανισμού io_uring

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Δημήτρης Γ. Χαρίσης-Πούλος

Αθήνα, Μάρτιος 2024

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Σχεδίαση και Υλοποίηση Μονοπατιού για
Κρυπτογραφημένη Ε/Ε στο Χώρο Χρήστη, με Χρήση του

Πλαισίου Ublk και του Μηχανισμού io_uring

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Δημήτρης Γ. Χαρίσης-Πούλος

Επιβλέπων: Νεκτάριος Κοζύρης
Καθηγητής ΕΜΠ

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 8η Μαρτίου 2024.

.
Νεκτάριος Κοζύρης
Καθηγητής ΕΜΠ

.
Γεώργιος Γκούμας
Αν. Καθηγητής ΕΜΠ

.
Διονύσιος Πνευματικάτος
Καθηγητής ΕΜΠ

Αθήνα, Μάρτιος 2024

NATIONAL TECHINCAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DIVISION OF COMPUTER SCIENCE

Design and Implementation of an Encrypted I/O Path in
Userspace, Using the Ublk Framework and the io_uring

Mechanism

DIPLOMA THESIS

Dimitris G. Charisis-Poulos

Athens, March 2024

NATIONAL TECHINCAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF COMPUTER SCIENCE

Design and Implementation of an Encrypted I/O Path in
Userspace, Using the Ublk Framework and the io_uring

Mechanism

DIPLOMA THESIS

Dimitris G. Charisis-Poulos

Supervisor: Nectarios Koziris
Professor NTUA

Approved by the three-member examination committee on the 8th of March 2024.

.
Nectarios Koziris
Professor NTUA

.
Georgios Goumas
Assoc. Professor NTUA

.
Dionisios Pnevmatikatos
Professor NTUA

Athens, March 2024

.

Δημήτρης Γ. Χαρίσης-Πούλος
Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών ΕΜΠ

Copyright © Δημήτρης Γ. Χαρίσης-Πούλος, 2024
Με επιφύλαξη παντός δικαιώματος. All rights reserved.
Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή
τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για
σκοπόμη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικήςφύσης, υπό τηνπροϋπόθεση νααναφέρεται
η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση
της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.
Οι απόψεις και τα συμπεράσματαπουπεριέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα
και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του ΕθνικούΜετσόβιου
Πολυτεχνείου.

Η στοιχειοθεσία του κειμένου έγινε με το X ETEX 0.999994.

Χρησιμοποιήθηκαν οι γραμματοσειρές Minion Pro, Myriad Pro και Consolas.

vi

vii

Περίληψη

Το Linux είναι ένα λειτουργικό σύστημα που τρέχει στην πλειοψηφία των εξυπηρετη-

τών παγκοσμίως και σε πολλούς οικιακούς υπολογιστές. Μία από τις κύριες λειτουργί-

ες ενός λειτουργικού συστήματος είναι να διαχειρίζεται αιτήματα προγραμμάτων που

τρέχουν στο χώρο χρήστη και θέλουν πρόσβαση στο υλικό. Παραδοσιακά, το Linux

υποστηρίζει αυτές τις κλήσεις συστήματος με σύγχρονο τρόπο, δηλαδή ολοκληρώνει

πρώτα την απαιτούμενη λειτουργία και στη συνέχεια επιστρέφει τον έλεγχο στο πρό-

γραμμα. Παρόλο που το Linux προσφέρει τρόπους για ασύγχρονη επικοινωνία, αυτοί

έχουν σημαντικά μειονεκτήματα.

Σε αυτό το πλαίσιο και για να ικανοποιήσει αυτήν την έλλειψη αξιόπιστου μηχανισμού

για ασύγχρονη επικοινωνία, ο μηχανισμός io_uring ενσωματώθηκε στον πυρήνα του

Linux το 2019. Το io_uring επιτρέπει στα προγράμματα να επικοινωνούν με τον πυρή-

να με ασύγχρονο, γρήγορο και αποδοτικό τρόπο. Αυτό οδήγησε στην ανάπτυξη νέων

πλαισίων που εκμεταλλεύονται τις δυνατότητες του io_uring. Ένα τέτοιο πλαίσιο είναι

το ublk, το οποίο επιτρέπει την υλοποίηση οδηγών μπλοκ συσκευών στο χώρο χρήστη.

Αυτό επιτυγχάνεται με την ύπαρξη ενός περιορισμένου module του ublk στον πυρήνα

που διαβιβάζει τα αιτήματα των εφαρμογών σε έναν εξυπηρετητή (server) στο χώρο

χρήστη για επεξεργασία.

Σε αυτή τη διπλωματική εργασία, επεκτείναμε το πλαίσιο ublk, ενσωματώνοντας έ-

να μονοπάτι κρυπτογράφησης απευθείας στον εξυπηρετητή του ublk που τρέχει στο

χώρο χρήστη. Έτσι, τα δεδομένα που στέλνουν οι εφαρμογές που χρησιμοποιούν το

δίσκο που υποστηρίζει το ublk αποθηκεύονται κρυπτογραφημένα. Υλοποιήσαμε την

κρυπτογράφηση με τρεις διαφορετικούς τρόπους - ένα σειριακό και δύο παράλληλους

- και συγκρίναμε τις υλοποιήσεις αποκομίζοντας χρήσιμα συμπεράσματα σχετικά με

τις δυνατότητες των υλοποιήσεων μας και τις πιθανές επεκτάσεις τους με στόχο την

upstream συνεισφορά μας στο ublk.

Λέξεις-Κλειδιά

Λειτουργικά συστήματα, Linux, κρυπτογραφία, οδηγός συσκευής, εικονικές συσκευές,

AES, XTS, io_uring, ublk, GPGME, OpenSSL, LUKS

viii

ix

Abstract

Linux is an operating system that runs on the majority of servers worldwide and on

many home computers. One of the main functions of an operating system is to man-

age requests from userspace programs that require access to hardware. Traditionally,

Linux supports these system calls in a synchronous manner, meaning it completes the

requested operation first and then returns control to the program. Although Linux of-

fers methods for asynchronous communication, they have significant drawbacks.

To address the lack of a reliable mechanism for asynchronous communication, the io_-

uring mechanism, which was integrated into the Linux kernel in 2019, allows programs

to communicate with the kernel in an asynchronous, fast, and efficient manner. This

led to the development of new frameworks that take advantage of io_uring’s capabili-

ties. One such framework is ublk, which enables the implementation of block device

drivers in userspace. This is achieved via a limited ublk driver module in the kernel that

forwards application requests to a server in userspace for processing.

In this thesis, we expanded the ublk framework by integrating a cryptographic path di-

rectly into the ublk server running in userspace. Thus, data sent by applications using

the ublk-supported disk are stored encrypted. We implemented the encryption in three

different ways - one serial and two parallel - and compared the implementations, draw-

ing useful conclusions about the capabilities of our implementations and their potential

extensions with the aim of contributing our work upstream to ublk.

Keywords

Operating systems, Linux, cryptography, AES, XTS, io_uring, ublk, GPGME, OpenSSL,

block device drivers, character device drivers, virtual block devices

x

Ευχαριστίες

Ηπαρούσαδιπλωματική εργασία εκπονήθηκε στοΕργαστήριοΥπολογιστικώνΣυστημάτων

της σχολής ΗΜΜΥ του ΕΜΠ, υπό την επίβλεψη του καθηγητή κ. Νεκτάριου Κοζύρη,

τον οποίο ευχαριστώ για την ευκαιρία που μου έδωσε να ασχοληθώ με το συγκεκριμένο

θέμα.

Ιδιαίτερη μνεία, θα ήθελα να κάνω στον Δρ. Βαγγέλη Κούκη, η βοήθεια του οποίου

υπήρξε πολύτιμη καθ´ όλη τη διάρκεια αυτής της διπλωματικής εργασίας. Οι παρατηρήσεις

του, τα σχόλια του, αλλά και ο γενικότερος τρόπος με τον οποίο προσέγγιζε ταπροβλήματα

υπήρξαν για εμένα ένα πολύτιμο σχολείο. Είναι σίγουρο ότι χωρίς τη βοήθεια του δεν

θα ήταν εφικτή η εκπόνηση της παρούσας διπλωματικής και γι´ αυτό τον ευχαριστώ

θερμά.

Θα ήθελα επίσης να ευχαριστήσω την Δρ. Χλόη Αλβέρτη για τη συνεργασία μας στην

αρχή αυτής της διπλωματικής εργασίας.

Τέλος, θέλω να ευχαριστήσω την οικογένεια μου, τους γονείς μου και τον αδερφό μου,

καθώς και τουςφίλους μου για την υποστήριξή και την υπομονή τους κατά τη συγγραφή

αυτής της διπλωματικής αλλά και γενικότερα την παρουσία τους στη ζωή μου.

Δημήτρης Χαρίσης-Πούλος

Μάρτιος 2024

xi

xii

Contents

Περίληψη vii

Abstract ix

Ευχαριστίες xi

Εκτενής Περίληψη xvii

0.1 Εισαγωγή . xvii

0.1.1 Διατύπωση Προβλήματος . xviii

0.1.2 Προτεινόμενη Λύση . xix

0.2 Υπόβαθρο . xxi

0.2.1 Linux OS . xxi

0.2.2 Στοίβα Εισόδου/Εξόδου (I/O) xxiii

0.2.3 Κρυπτογραφία . xxvi

0.3 Σχεδίαση . xxvii

0.3.1 Τρόποι Επικοινωνίας . xxvii

0.3.2 io_uring . xxix

0.3.3 Ublk . xxx

0.3.4 Κρυπτογραφημένο Ublk . xxxii

0.4 Υλοποίηση . xxxvi

0.5 Αξιολόγηση . xxxvii

0.6 Επίλογος . xxxviii

0.6.1 Μελλοντικό Έργο . xxxix

xiii

xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Proposed Solution . 5

1.4 Outline . 7

2 Background 9

2.1 Linux OS . 9

2.1.1 Operating System vs Kernel 10

2.1.2 And...what a kernel does? . 11

2.1.3 user mode vs kernel mode . 11

2.1.4 userspace vs kernelspace . 12

2.2 Kernel Architecture . 14

2.2.1 Monolithic vs Microkernel 14

2.2.2 Device Drivers . 17

2.2.3 A dive into /dev directory . 19

2.2.4 Character Device Drivers . 21

2.2.5 Miscellaneous Device Drivers 24

2.3 Disks . 24

2.3.1 Time related concepts . 26

2.3.2 Disk Types . 28

2.4 I/O Stack . 30

2.4.1 Application . 31

2.4.2 Virtual File System (VFS) . 31

2.4.3 Filesystem (FS) . 34

2.4.4 Block Layer . 35

2.4.5 Block Device Drivers . 40

2.4.6 Storage Device . 42

2.5 Cryptography . 42

2.5.1 Introduction to cryptography 43

2.5.2 Symmetric vs Asymmetric Cryptography 43

2.5.3 Introduction to AES . 45

2.5.4 Mathematical Background . 47

xv

3 Design 53
3.1 Synchronous vs Asynchronous vs Blocking vs Non-Blocking 53

3.1.1 Synchronous API . 53

3.1.2 Asynchronous API . 54

3.1.3 Blocking . 55

3.1.4 Non-Blocking . 55

3.2 io_uring . 57

3.2.1 io_uring overview . 58

3.2.2 io_uring system calls . 61

3.2.3 Thankfully...liburing! . 64

3.2.4 Advanced modes of operation 66

3.3 Coroutines . 68

3.3.1 And...what are coroutines? . 71

3.3.2 Coroutines in C++ . 72

3.4 Ublk . 76

3.4.1 Ublk overview . 78

3.4.2 Initial Phase: Setting up the Environment 82

3.4.3 Second Phase: Ublk Server Internal Setup 88

3.4.4 Third phase: The Data Path 94

3.5 Encrypted Ublk . 97

3.5.1 Overview of Encrypted Ublk 98

3.5.2 Key Setup design . 100

3.5.3 Single-Thread Encryption . 106

3.5.4 Intra-Block Encryption . 112

3.5.5 Inter-Block Encryption . 116

3.6 AES . 123

3.6.1 Structure of AES . 123

3.6.2 Modes of Operation . 130

3.6.3 XEX Tweakable Block Ciphertext Stealing (XTS) 134

3.7 Linux Unified Key Setup (LUKS) . 138

3.7.1 Key hierarchy . 139

3.7.2 Secret Splitting . 141

3.7.3 Key Derivation Functions (KDF) 142

3.7.4 LUKS internal structure . 143

3.7.5 LUKS semantics . 143

xvi

4 Implementation 149

4.1 Overview . 149

4.2 Key Setup Implementation . 151

4.3 Single-Thread Encryption Implementation 156

4.4 Intra-Block Encryption Implementation 161

4.5 Inter-Block Encryption Implementation 167

5 Evaluation 179

5.1 Machine Specification . 179

5.2 fio . 179

5.3 Experimental Evaluation . 183

5.3.1 Metrics Without AES-NI Support 185

5.3.2 Comments on Results (no AES-NI support) 189

5.3.3 Metrics With AES-NI Support 192

5.3.4 Comments on Results (with AES-NI support) 196

6 Conclusion 197

6.1 Concluding Remarks . 197

6.2 Future Work . 198

Bibliography 199

Εκτενής Περίληψη

0.1 Εισαγωγή

Το Linux είναι ένα Λειτουργικό Σύστημα (ΛΣ) που χρησιμοποιείται ευρέως τόσο για ε-

ταιρικούς όσο και για οικιακούς σκοπούς. Η πλειονότητα των servers που λειτουργούν

παγκοσμίως, των smartphones με λειτουργικό Android και των 500 κορυφαίων υπερυ-

πολογιστών χρησιμοποιούν Linux. Πολλά από τα χαρακτηριστικά του Linux το έχουν

καταστήσει το επιθυμητόΛΣ για πολλές εταιρείες και προμηθευτές, κυρίως επειδή είναι

ανοιχτού κώδικα, μη ιδιοκτησιακό και επεκτάσιμο.

Ο κύριος σκοπός ενός ΛΣ είναι να λειτουργεί ως γέφυρα μεταξύ των εφαρμογών χώρου

χρήστη και του υλικού. Οι εφαρμογές που λειτουργούν στο χώρο χρήστη δεν επιτρέπε-

ται να επικοινωνούν απευθείας με το υλικό. Εάν μια εφαρμογή θέλει να έχει πρόσβαση

σε αυτό (π.χ. να διαβάσει από έναν δίσκο), πρέπει να ζητήσει από το ΛΣ να εκτελέσει

την αντίστοιχη ενέργεια εκ μέρους της. Αυτές οι αιτήσεις είναι γνωστές ως κλήσεις

συστήματος.

Οι κλήσεις συστήματος είναι ένα σύνολο από διεπαφές (API) που προσφέρει το ΛΣ σε

διεργασίες χώρου χρήστη, για να τους επιτρέψει να επικοινωνήσουν με το υλικό.

Η μετάβαση από την κατάσταση χρήστη (user mode) στην κατάσταση πυρήνα (kernel

mode) όμως έρχεται με ένα κόστος. Πέραν αυτού του κόστους, μία διεργασία που ε-

κτελεί μία κλήση συστήματος, μπλοκάρει στον πυρήνα περιμένοντας να εκτελεστεί η

αίτηση της, τουλάχιστον για την περίπτωση του blocking I/O (περισσότερα στην ενό-

τητα 3.1). Αυτό σημαίνει ότι ακόμη και αν αυτή η διεργασία έχει άλλες εργασίες για

να εκτελέσει που δεν εξαρτώνται από τα αποτελέσματα της κλήσης συστήματος, δεν

μπορεί να τις εκτελέσει. Αυτά τα ζητήματα είναι ιδιαίτερα κρίσιμα σε εφαρμογές με υ-

xvii

xviii ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ

ψηλές προδιαγραφές, που απαιτούν πολύ γρήγορη πρόσβαση στα δεδομένα με χαμηλή

καθυστέρηση.

Το io_uring είναι ένας μηχανισμός που επιτρέπει σε διεργασίες να εκτελούν κλήσεις

συστήματος με ασύγχρονο τρόπο, και ενσωματώθηκε στην version 5.1 του πυρήνα. Σε

γενικές γραμμές, το io_uring παρέχει δύο buffers μνήμης που είναι κοινοί μεταξύ του

χώρου χρήστη και του χώρου πυρήνα. Ολόκληρη η επικοινωνία λαμβάνει χώρα εκεί.

Η αρχιτεκτονική του υποστηρίζει τη φυσική ομαδοποίηση των αιτημάτων (κλήσεων

συστήματος), οδηγώντας σε σημαντική μείωση των εναλλαγών μεταξύ χώρου χρήστη

και χώρου πυρήνα. Γενικά είναι μια διεπαφή σχεδιασμένη με τέτοιον τρόπο ώστε να

παρέχει αποδοτικότητα, κλιμάκωση και επεκτασιμότητα.

Ως φυσική συνέπεια, εμφανίζονται νέα frameworks, με στόχο να εκμεταλλευτούν τη

νέα, ταχύτερη διεπαφή επικοινωνίας που παρέχει το io_uring. Η ιδέα είναι ότι αν ξο-

δεύουμε λιγότερο χρόνο επικοινωνώντας με τον πυρήνα, τότε μπορούμε να εξάγουμε

λειτουργικότητα από αυτόν και να την υλοποιήσουμε στο χώρο χρήστη, που γενικά

παρέχει αυξημένη ασφάλεια, ευελιξία και ευκολία στο debugging.

Ένα τέτοιο framework είναι το ublk, που ενσωματώθηκε από τον Ming Lei στον πυρή-

να του Linux v.6.0 [Lei]. Το ublk είναι ένα πλαίσιο για την υλοποίηση οδηγών μπλοκ

συσκευών (block device drivers) στο χώρο χρήστη. Αποτελείται από δύο “στοιχεία”.

Έναν οδηγό εντός του πυρήνα και έναν εξυπηρετητή στο χώρο χρήστη.

0.1.1 Διατύπωση Προβλήματος

Στην τρέχουσα έκδοσή του, το ublk δεν υποστηρίζει κρυπτογραφημένες λειτουργίες.

Η κρυπτογράφηση του αρχείου που λειτουργεί ως δίσκος, εξαρτάται αποκλειστικά από

τις δυνατότητες κρυπτογράφησης του συστήματος. Το ublk αποτελείται από δύο επι-

κοινωνούντα μέρη: έναν οδηγό μέσα στον πυρήνα, τον οποίο θα αναφέρουμε ως “ublk

driver”, και ένα εξυπηρετητή στο χώρο χρήστη, τον οποίο θα αναφέρουμε ως “ublk

server”. Η επικοινωνία τους πραγματοποιείται μέσω του io_uring. Το ublk μπορεί να

υποστηρίξει πολλούς στόχους (δηλαδή να υλοποιήσει διαφορετικές εικονικές μπλοκ

συσκευές). Σε αυτή τη διπλωματική εργασία, επικεντρωνόμαστε στον στόχο συσκευ-

ής loop. Μια συσκευή loop είναι μια συσκευή μπλοκ που αντιστοιχίζει τα δεδομένα της

όχι σε μια φυσική συσκευή όπως ένας σκληρός δίσκος ή ένας οπτικός δίσκος, αλλά στα

0.1. ΕΙΣΑΓΩΓΗ xix

μπλοκ ενός κανονικού αρχείου σε ένα σύστημα αρχείων ή σε μια άλλη συσκευή μπλοκ

[mpd].

Όταν μια εφαρμογή που χρησιμοποιεί το ublk επιθυμεί να στείλει ένα αίτημα Ι/Ο, αυτό

το αίτημα διασχίζει τα υποσυστήματα του πυρήνα, φτάνοντας τελικά στον ublk driver.

Στη συνέχεια, ο driver προωθεί το αίτημα στον ublk server χρησιμοποιώντας το io_-

uring, παρέχοντας στο χώρο χρήστη την ευκαιρία να χειριστεί το αίτημα πριν αυτό

σταλεί στο loop target.

Συνεπώς, τα δεδομένα αποθηκεύονται στο αρχείο με την ίδια μορφή που είχαν όταν

αρχικά στάλθηκαν από την εφαρμογή. Αυτό το γεγονός, επιβάλλει στην εφαρμογή να

είναι είτε ενήμερη για το περιβάλλον στο οποίο λειτουργεί το ublk (π.χ. ενδεχομένως

να υλοποιεί κρυπτογράφηση το σύστημα αρχείων), είτε να χειρίζεται την κρυπτογρά-

φηση μόνη της αν ο επιθυμητός βαθμός ιδιωτικότητας δεν εγγυάται διαφορετικά. Για

παράδειγμα, η εφαρμογή μπορεί να χρειαστεί να κρυπτογραφήσει τα δεδομένα πριν τα

στείλει στο ublk.

0.1.2 Προτεινόμενη Λύση

Σχεδιάσαμε και υλοποιήσαμε ένα σχήμα κρυπτογράφησης που επιτρέπει στο ublk να

αποθηκεύει τα δεδομένα μιας εφαρμογής κρυπτογραφημένα στο δίσκο. Με αυτόν τον

τρόπο, εφαρμογές με απαιτήσεις ασφαλείας μπορούν να χρησιμοποιήσουν τη συσκευή

που υποστηρίζει το ublk χωρίς να χρειάζεται να διαχειρίζονται ανεξάρτητα την ασφά-

λεια των δεδομένων τους. Η υλοποίησή μας πραγματοποιείται εξ ολοκλήρου στο χώρο

χρήστη, ως μέρος του ublk server.

Χωρίσαμε τη διαδικασία κρυπτογράφησης σε δύο διαφορετικές φάσεις:

• Φάση 1: Κατά την εκκίνηση του ublk ορίζουμε ένα αρχείο .gpg που περιέχει ένα

κρυπτογραφικό κλειδί. Το ίδιο το αρχείο είναι κρυπτογραφημένο, εξασφαλίζο-

ντας την προστασία του. Σε αυτή τη φάση αποκρυπτογραφούμε αυτό το αρχείο

μεταδεδομένων και εξάγουμε το κλειδί.

• Φάση 2: Ο ublk server χρησιμοποιεί το παραγόμενο κλειδί από τη φάση 1, για

να εκτελέσει κρυπτογραφικές λειτουργίες Ι/Ο στη συσκευή. Χρησιμοποιούμε

xx ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ

συμμετρική κρυπτογράφηση, συγκεκριμένα το AES-256 σε XTS operation mode

για αυτόν τον σκοπό.

Έτσι, όταν μια εφαρμογή γράφει δεδομένα στη συσκευή, ο ublk server κρυπτογραφεί

τα δεδομένα και τα αποθηκεύει στον δίσκο. Ομοίως, όταν ένας χρήστης ζητά δεδο-

μένα από τη συσκευή, ο ublk server ανακτά και αποκρυπτογραφεί τα δεδομένα πριν

επικοινωνήσει την απάντηση του στον ublk driver.

Ο στόχος μας ήταν να εξασφαλίσουμε την ασφάλεια των δεδομένων που αποθηκεύο-

νται στο δίσκο και να παρέχουμε στις εφαρμογές τη δυνατότητα να χρησιμοποιήσουν

το ublk χωρίς να χρειάζεται να διαχειριστούν μόνες τους τη διαδικασία κρυπτογράφη-

σης. Η λύση μας εγγυάται ότι καμία πληροφορία δεν θα αποθηκευτεί ποτέ στη συσκευή

σε ακρυπτογράφητη μορφή. Ως αποτέλεσμα, ακόμη και αν ο δίσκος κλαπεί ή κατασχε-

θεί, δεν μπορούν να εξαχθούν δεδομένα χωρίς γνώση του κλειδιού κρυπτογράφησης.

Για κάθε φάση, χρησιμοποιήσαμε μια διαφορετική κρυπτογραφική βιβλιοθήκη για να

επιτύχουμε το στόχο μας. Στη φάση 1, χρησιμοποιήσαμε τη βιβλιοθήκη GnuPG Made

Easy (GPGME) [GNUa], για να κρυπτογραφήσουμε και να αποκρυπτογραφήσουμε το

σχετικό αρχείο και να αποκτήσουμε το κλειδί δεδομένων, ενώ στη φάση 2, χρησιμοποι-

ήσαμε τη βιβλιοθήκη OpenSSL [Ope] για την κρυπτογράφηση και αποκρυπτογράφηση

δεδομένων κατά τη διάρκεια του I/O.

Επιπλέον, υλοποιήσαμε τη δεύτερη φάση της κρυπτογράφησης με τρεις διαφορετικούς

τρόπους:

• Single-thread: Το κύριο νήμα του ublk server, που είναι υπεύθυνο για την επι-

κοινωνία με τον ublk driver, χειρίζεται επίσης την κρυπτογράφηση και αποκρυ-

πτογράφηση.

• Intra-block parallelism: Δημιουργήσαμε μια δεξαμενή νημάτων που αποτελεί-

ται από νήματα-εργάτες. Αντί να εκτελεί προσωπικά την κρυπτογράφηση/απο-

κρυπτογράφηση σε κάθε buffer το κύριο νήμα, διαιρεί τον buffer και διανέμει

κάθε τμήμα στα νήματα-εργάτες.

• Inter-block parallelism: Παρόμοια με τον intra-block παραλληλισμό, δημιουρ-

γήσαμε μια δεξαμενή νημάτων με νήματα-εργάτες. Ωστόσο, σε αυτήν την περί-

0.2. ΥΠΟΒΑΘΡΟ xxi

πτωση, το κύριο νήμα παραδίδει ολόκληρο το buffer σε κάποιο νήμα-εργάτη και

συνεχίζει.

Με αυτόν τον τρόπο, μπορέσαμε να πειραματιστούμε με την αποδοτικότητα και τις

προκλήσεις του παράλληλου προγραμματισμού σε δύο διακριτές μορφές. Συγκρίναμε

αυτές τις προσεγγίσεις με την πρώτη περίπτωση της σειριακής κρυπτογράφησης, και

τελικά ανακαλύψαμε τους περιορισμούς και τα πιθανά οφέλη του παραλληλισμού. Η

δυνατότητά για παραλληλισμό στο κρυπτογραφικό μας σχήμα, ήταν δυνατή λόγω της

χρήσης του αλγορίθμου AES [Wika] σε λειτουργία XTS [NIS].

Ο παραλληλισμός της λειτουργίας XTS οφείλεται στο γεγονός ότι κάθε μπλοκ δεδομέ-

νων μπορεί να κρυπτογραφηθεί ανεξάρτητα χωρίς να χρειάζεται πληροφορία από κά-

ποιο άλλο μπλοκ. Αυτό το χαρακτηριστικό επιτρέπει στα κρυπτογραφημένα δεδομένα

να διαιρεθούν σε τμήματα με τέτοιο τρόποώστε διαφορετικά μπλοκ δεδομένων να μπο-

ρούν να επεξεργαστούν ταυτόχρονα σε διαφορετικές μονάδες επεξεργασίας [MAAR].

0.2 Υπόβαθρο

0.2.1 Linux OS

Το Linux, ξεκίνησε από τον Linus Torvalds το 1991 ως ένα προσωπικό έργο, και έχει ε-

ξελιχθεί σε ένα αξιόπιστο, ανοιχτού κώδικα, λειτουργικό σύστημα που έχει γίνει ευρέως

αποδεκτό σε μια ποικιλία πλατφορμών, περιλαμβάνοντας προσωπικούς υπολογιστές,

κινητές συσκευές, ενσωματωμένα συστήματα και υπερυπολογιστές.

Ένα από τα βασικά πλεονεκτήματα του, είναι η φύση του ως λογισμικό ανοιχτού κώ-

δικα, που διέπεται από την Άδεια Γενικής Δημόσιας Χρήσης GNU έκδοση 2 (GPLv2),

η οποία επιτρέπει σε οποιονδήποτε ενδιαφερόμενο να μελετήσει, να τροποποιήσει και

να διανείμει το λογισμικό. Αυτή η διαφάνεια έχει συμβάλει στην ασφάλεια του Linux,

καθώς προβλήματα ασφαλείας μπορούν να εντοπιστούν και να αντιμετωπιστούν γρή-

γορα από την κοινότητα.

Το Linux υλοποιεί ένα μοντέλο ασφαλείας βασισμένο σε δαχτυλίδια προνομίων, με τον

πυρήνα να λειτουργεί σε ένα προνομιακό “kernel mode” (Ring 0) και τις εφαρμογές

χρήστη να τρέχουν σε ένα μη προνομιακό “user mode” (Ring 3). Αυτός ο διαχωρισμός

xxii ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ

διασφαλίζει ότι οι εφαρμογές χρήστη δεν μπορούν να παρέμβουν απευθείας στις λει-

τουργίες του πυρήνα, ενισχύοντας την ασφάλεια και τη σταθερότητα του συστήματος.

Όταν μια εφαρμογή χρήστη απαιτεί πρόσβαση σε hardware, πρέπει να κάνει μία κλήση

συστήματος, προκαλώντας μια μετάβαση από το user mode στο kernel mode. Αυτός

ο μηχανισμός επιτρέπει στον πυρήνα να διαμεσολαβεί με ασφάλεια στην πρόσβαση

στους πόρους του συστήματος, αποτρέποντας τις μη εξουσιοδοτημένες λειτουργίες.

Ο αρχιτεκτονική του πυρήνα του Linux χαρακτηρίζεται ως μονολιθική, πράγμα που

σημαίνει ότι όλα τα υποσυστήματα του είναι ενσωματωμένα στον πυρήνα και λειτουρ-

γούν σε kernel mode, διευκολύνοντας τις απευθείας κλήσεις μεταξύ των υποσυστη-

μάτων. Αυτό αντιπαρατίθεται με την προσέγγιση του μικροπυρήνα (microkernels), η

οποία δίνει προτεραιότητα στο μινιμαλισμό διατηρώντας τον πυρήνα μικρό και ανα-

θέτοντας πολλές λειτουργίες του σε διεργασίες που τρέχουν στο χώρο χρήστη. Έτσι

ενισχύεται η ανθεκτικότητα του συστήματος μέσω της απομόνωσης των υποσυστημά-

των του, πληρώνοντας όμως το κόστος της διαδιεργασιακής επικοινωνίας (IPC) μεταξύ

των υποσυστημάτων του που τρέχουν με διαφορετικά προνόμια.

Για να εξισορροπήσει την αποδοτικότητα των μονολιθικών πυρήνων με την αρθρωτή

δομή των μικροπυρήνων, το Linux χρησιμοποιεί kernel modules. Αυτά είναι δυναμι-

κά αρχεία αντικειμενικού κώδικα που επιτρέπουν την επέκταση της λειτουργικότητας

του πυρήνα κατά παραγγελία χωρίς την ανάγκη επανεκκίνησης ή επαναμεταγλώττι-

σης του. Τα modules λειτουργούν σε kernel mode, προσφέροντας έναν συμβιβασμό

που διατηρεί την απόδοση ενώ προωθεί έναν ενιαίο σχεδιασμό, επιτρέποντας την ορ-

γανωμένη διαχείριση υποσυστημάτων και την οικονομία μνήμης.

Το Linux διακρίνει τις συσκευές σε τρεις βασικές κατηγορίες: συσκευές χαρακτήρων

(character devices), συσκευές μπλοκ (block devices) και συσκευές δικτύου (network

devices). Ενώ οι συσκευές χαρακτήρων προσφέρουν διαδοχική πρόσβαση στα δεδο-

μένα, επιτρέποντας λειτουργίες σε μεμονωμένα bytes (π.χ. πληκτρολόγια, σειριακές

θύρες), οι συσκευές μπλοκ λειτουργούν με δεδομένα σε μπλοκ σταθερού μεγέθους και

υποστηρίζουν τυχαία πρόσβαση (π.χ. σκληροί δίσκοι). Οι δικτυακές συσκευές διευκο-

λύνουν τη μετάδοση δεδομένων μεταξύ των υπολογιστών.

Η υλοποίηση ενός οδηγού συσκευής χαρακτήρων, περιστρέφεται γύρω από τη δομή

struct file_operations, η οποία περιέχει δείκτες σε συναρτήσεις που εκτελούν διά-

φορες “εργασίες” στη συσκευή. Αυτές οι συναρτήσεις αντιστοιχούν σε κλήσεις συστή-

0.2. ΥΠΟΒΑΘΡΟ xxiii

ματος όπως open(), close(), read() και write(), επιτρέποντας στον οδηγό να ορίσει

πώς η συσκευή αλληλεπιδρά με αυτές τις κλήσεις.

0.2.2 Στοίβα Εισόδου/Εξόδου (I/O)

Ηστοίβα I/O στο Linux είναι ένα δομημένο μονοπάτι που ακολουθεί μια κλήση συστή-

ματος read() ή write() από μια εφαρμογή και περνάει μέσα από διάφορα υποσυστή-

ματα του πυρήνα μέχρι να φτάσει στο φυσικό δίσκο. Αυτή η διαδρομή περιλαμβάνει

αρκετά επίπεδα, συμπεριλαμβανομένων μεταξύ άλλων του Εικονικού Συστήματος Αρ-

χείων (VFS), του Συστήματος Αρχείων (FS), του Block Layer και των οδηγών συσκευών

που αλληλεπιδρούν τελικά με τη φυσική συσκευή αποθήκευσης.

Επίπεδο Εφαρμογής

Στην κορυφή της στοίβας Ε/Ε βρίσκεται το επίπεδο εφαρμογής, όπου οι εφαρμογές

χρήστη αλληλεπιδρούν με τα αρχεία μέσω κλήσεων συστήματος όπως open(), read()

και write(). Από την οπτική των εφαρμογών, τα αρχεία θεωρούνται ως γραμμικές

ακολουθίες bytes, επιτρέποντας την απλή πρόσβαση και τροποποίηση των δεδομένων.

Αυτή η αλληλεπίδραση υψηλού επιπέδου κρύβει τις υποκείμενες πολυπλοκότητες του

συστήματος αρχείων και της διαχείρισης συσκευών.

Εικονικό Σύστημα Αρχείων (VFS)

Το Εικονικό Σύστημα Αρχείων (VFS) είναι ένα κρίσιμο υποσύστημα στο Linux που

διαχειρίζεται τις λειτουργίες των συστημάτων αρχείων, προσφέροντας μια ενοποιη-

μένη διεπαφή στις εφαρμογές χρήστη και επιβάλλοντας ένα κοινό μοντέλο αρχείου

σε διαφορετικά συστήματα αρχείων. Το VFS αφαιρεί τις λεπτομέρειες των υποκείμε-

νων filesystems, επιτρέποντας στις εφαρμογές να αλληλεπιδρούν με τα αρχεία χωρίς

να χρειάζεται να γνωρίζουν τον τύπο του filesytem ή τις λεπτομέρειες της υλοποίησής

του. Το επιτυγχάνει αυτό μέσω βασικών οντοτήτων εντός του πυρήνα όπως είναι τα

struct superblock, struct inode, struct file και struct dentry. Αυτή η αρχι-

τεκτονική όχι μόνο απλοποιεί τις λειτουργίες αρχείων για τις εφαρμογές αλλά εξασφα-

λίζει επίσης συνέπεια και αποδοτικότητα στη διαχείριση των αρχείων σε διαφορετικά

filesystems.

xxiv ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ

Σύστημα Αρχείων (FS)

Ένα σύστημα αρχείων στο Linux οργανώνει τα δεδομένα ιεραρχικά, προσφέροντας μια

διεπαφή για πρόσβαση βασισμένη σε αρχεία. Ο στόχος των filesystems είναι να υλο-

ποιούν λειτουργίες που ορίζονται από το VFS για να διασφαλίζεται η συμβατότητα.

Ένα κύριο χαρακτηριστικό που διαχειρίζονται τα συστήματα αρχείων είναι η λειτουρ-

γία της κρυφής μνήμης σελίδων (page cache), η οποία επιταχύνει τις λειτουργίες Ι/Ο

κρατώντας στη μνήμη τις προσπελασμένες ή πιθανώς προσπελαστέες (στο μέλλον) σε-

λίδες. Οι αιτήσεις ανάγνωσης γεμίζουν την page cache με δεδομένα από τον δίσκο (αν

δεν είναι ήδη παρόντα), ενώ οι αιτήσεις εγγραφής μπορούν να χρησιμοποιήσουν την

page cache ως προσωρινό αποθηκευτικό χώρο (write-back cache), επιτρέποντας ασύγ-

χρονες εγγραφές στον δίσκο.

Ωστόσο, οι εφαρμογές μπορούν να επιλέξουν να παρακάμψουν την page cache χρη-

σιμοποιώντας τη σημαία O_DIRECT κατά την κλήση συστήματος open(), οδηγώντας

σε άμεσες μεταφορές δεδομένων μεταξύ των buffers του χώρου χρήστη και του αρχεί-

ου στο δίσκο. Για τη διατήρηση της συνέπειας, ο πυρήνας σημειώνει τις ενημερωμένες

σελίδες της page cache ως “dirty” και τις αδειάζει στον δίσκο όποτε χρειάζεται, εξασφα-

λίζοντας την ακεραιότητα των δεδομένων σε διαφορετικές εφαρμογές που προσπελαύ-

νουν τα ίδια δεδομένα. Στην περίπτωση που η λειτουργία Ε/E χρησιμοποιεί την page

cache αναφέρεται ως buffered ενώ στην περίπτωση που την προσπερνάει αναφέρεται

ως direct.

Generic Block Layer

Το block layer στο Linux λειτουργεί ως ένας ενδιάμεσος στη στοίβα Ι/Ο, συνδέοντας

υψηλότερα επίπεδα όπως το σύστημα αρχείων με τους οδηγούς συσκευών μπλοκ τυπο-

ποιώντας την πρόσβαση σε αυτούς. Με αυτόν τον τρόπο απλοποιεί τις αλληλεπιδρά-

σεις με τις συσκευές μπλοκ παρέχοντας μια συνεπή διεπαφή για τα συστήματα αρχείων.

Single-Queue Block Layer

Ιστορικά, το block layer χρησιμοποιούσε έναν σχεδιασμό μονής ουράς (Single-Queue),

όπου κάθε συσκευή μπλοκ “συνδεόταν” με μία δικιά της δομής (struct request_queue).

Αυτή η δομή αποτελούνταν από request (struct request), τα οποία με τη σειρά τους

περιελάμβαναν δομές struct bio, καθένα εκ´ των οποίων περιγράφει μία λειτουρ-

0.2. ΥΠΟΒΑΘΡΟ xxv

γία Ι/Ο. Αυτός ο σχεδιασμός ήταν κυρίως επικεντρωμένος στους HDDs, έχοντας ως

στόχο την ελαχιστοποίηση των χρόνων αναζήτησης της κεφαλής του δίσκου με τη συ-

γκέντρωση διαδοχικών αιτημάτων (διαδοχικών bio σε ένα). Ο σχεδιασμός της Single-

Queue περιελάμβανε μηχανισμούς όπως το plugging για την καθυστέρηση της επεξερ-

γασίας αιτημάτων, επιτρέποντας τη συγχώνευση διαδοχικών bio έχοντας ως στόχο την

ενίσχυση της αποτελεσματικότητας. Ωστόσο, αυτή η προσέγγιση άρχισε να εμφανίζει

προβλήματα επίδοσης με την εμφάνιση των SSDs, καθώς η σύγκρουση κλειδωμάτων

μεταξύ των CPUs για πρόσβαση στη δομή request_queue έγινε ένα σημαντικό εμπό-

διο κατά την υλοποίηση ενός Ι/Ο.

Multi-Queue Block Layer

Για να αντιμετωπιστούν οι προκλήσεις απόδοσης που παρουσίασε ο σχεδιασμός Single-

Queue στην εποχή των SSDs, το Linux ενσωμάτωσε μια νέα αρχιτεκτονική στο block

layer γνωστή και ως blk-mq, ακολουθώντας ένα σχεδιασμό πολλαπλών ουρών (Multi-

Queue). Αυτή η αρχιτεκτονική διαχωρίζει την επεξεργασία αιτημάτων σε δύο επίπεδα:

σε software staging queues και σε hardware dispatch queues, με τις πρώτες να κατανέμο-

νται ανά CPU ή κόμβο NUMA και τις δεύτερες να καθορίζονται από τις δυνατότητες

της συσκευής. Αυτός ο διαχωρισμός μειώνει σημαντικά τη σύγκρουση κλειδωμάτων

αναθέτοντας ξεχωριστές ουρές σε κάθε CPU, διευκολύνοντας έτσι την επεξεργασία αι-

τημάτων. Ο σχεδιασμός blk-mq κάνει ξεκάθαρο τον διαχωρισμό των ευθυνών, με το

επίπεδο μπλοκ να διαχειρίζεται κυρίως τις software queues και τους οδηγούς συσκευών

να εποπτεύουν τις hardware queues, διευκολύνοντας την ανάπτυξη οδηγών και βελτιώ-

νοντας τη συνολική απόδοση της στοίβας I/O.

Οδηγοί Μπλοκ Συσκευών

Οι οδηγοί συσκευών μπλοκ στον πυρήνα του Linux είναι κρίσιμοι για την επικοινωνία

μεταξύ του λειτουργικού συστήματος και των συσκευών αποθήκευσης. Χρησιμοποιούν

τη δομή struct gendisk για να περιγράψουν έναν δίσκο, συμπεριλαμβάνοντας βασι-

κές πληροφορίες του.

Η αρχικοποίηση των οδηγών μπλοκ συσκευών περιλαμβάνει την αρχικοποίηση και τη

διαμόρφωση των δομών gendisk και request_queue, συνήθως εντός της ρουτίνας

αρχικοποίησης του οδηγού.

xxvi ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ

Δίσκος

Οι δίσκοι λειτουργούν ως οι κύριες συσκευές αποθήκευσης στα συστήματα υπολογι-

στών, περιλαμβάνοντας μεταξύ άλλων από Hard Disk Drivers (HDDs) και Solid-State

Drives (SSDs) έως οπτικούς δίσκους και δισκέτες. Για κάθε τύπο δίσκου υπάρχει ένα

trade-off μεταξύ ταχύτητας, κόστους και ανθεκτικότητας, με τις ταχύτερες επιλογές

αποθήκευσης να είναι γενικά πιο ακριβές ή λιγότερο ανθεκτικές.

0.2.3 Κρυπτογραφία

Για την υλοποίηση του κρυπτογραφικού μονοπατιού στον ublk server, έπρεπε, εκτός

των άλλων, να εξοικειωθούμε με τα βασικά χαρακτηριστικά της κρυπτογραφίας, για να

είμαστε σε θέση να κάνουμε τις κατάλληλες σχεδιαστικές κρυπτογραφικές επιλογές.

Η κρυπτογραφία είναι η επιστήμη της κωδικοποίησης πληροφοριών, και η μετατροπή

των δεδομένων σε μία μορφή ακατανόητη και άχρηστη για κάθε μη εξουσιοδοτημένη

οντότητα, με στόχο την εξασφάλιση μιας ασφαλούς επικοινωνίας μεταξύ των υποκει-

μένων που ανταλλάσσουν πληροφορία. Στην ψηφιακή εποχή, η κρυπτογραφία συχνά

σχετίζεται με τη διαδικασία μετατροπής κανονικού κειμένου (plaintext) σε κρυπτογρα-

φημένο κείμενο (ciphertext), εξασφαλίζοντας την εμπιστευτικότητα, την ακεραιότητα

και την ταυτοποίηση των δεδομένων και των επικοινωνιών.

Η κρυπτογραφία χωρίζεται σε δύο βασικούς τύπους: τη συμμετρική και την ασύμμε-

τρη. Η συμμετρική κρυπτογραφία χρησιμοποιεί ένα κλειδί κοινό και για την κρυπτο-

γράφηση και για την αποκρυπτογράφηση, ενώ η ασύμμετρη χρησιμοποιεί ένα ζεύγος

κλειδιών: ένα δημόσιο για την κρυπτογράφηση και ένα ιδιωτικό για την αποκρυπτο-

γράφηση. Η συμμετρική κρυπτογράφηση είναι γενικά πιο γρήγορη και κατάλληλη για

την κρυπτογράφηση μεγάλων όγκων δεδομένων, αλλά απαιτεί ασφαλή κατανομή του

κοινού κλειδιού. Η ασύμμετρη κρυπτογράφηση απλοποιεί την κατανομή των κλειδιών

και μπορεί να παρέχει ταυτοποίηση, καθιστώντας την έτσι κατάλληλη για ασφαλείς α-

νταλλαγές κλειδιών και ψηφιακές υπογραφές σε ανοικτά συστήματα. Οι δύο μέθοδοι

μπορούν να συνδυαστούν για μια πιο ολοκληρωμένη λύση ασφαλείας, όπως στην κρυ-

πτογράφηση SSL/TLS [F5], που χρησιμοποιεί ασύμμετρη κρυπτογράφηση για τη δη-

μιουργία μιας ασφαλούς συνεδρίας και την ανταλλαγή του συμμετρικού κλειδιού και

στη συνέχεια συμμετρική κρυπτογράφηση κατά την διάρκεια ανταλλαγής των δεδομέ-

0.3. ΣΧΕΔΙΑΣΗ xxvii

νων.

Εισαγωγή στον AES

Το Advanced Encryption Standard (AES) είναι ο πιο διαδεδομένος αλγόριθμος συμμε-

τρικής κρυπτογράφησης, αντικαθιστώντας το DES μετά από την επιλογή του από το

NIST το 2001 [Wika]. Σχεδιάστηκε από τους Βέλγους κρυπτογράφους Vincent Rijmen

και Joan Daemen και χρησιμοποιεί μεγέθη κλειδιών 128, 192 και 256 bits. Λειτουργεί

ως ένα block cipher, χωρίζοντας τα δεδομένα σε blocks των 128 bits και εκτελείται σε

γύρους, με τον αριθμό των γύρων να εξαρτάται από το μέγεθος του κλειδιού (10, 12

και 14 γύρους).

Τα 128 bits της εισόδου του ΑΕS διαιρούνται εσωτερικά σε chunks των 16 bytes, δη-

μιουργώντας έναν 4x4 πίνακα, γνωστό και ως πίνακα κατάστασης, όπου πραγματο-

ποιούνται όλες οι λειτουργίες τουAES. Κάθε γύρος περιλαμβάνει τέσσερα στάδια: Byte

Substitution, Shift Row, Mix Columns, και Key Addition.

Στο Byte Substitution, κάθε byte της εισόδου αντιστοιχεί με ένα άλλο byte.

Στο Shift Rows τα bytes κάθε σειράς του πίνακα κατάστασης, περιστρέφονται κυκλικά,

προσθέτοντας οριζόντια διάχυση, ενώ στη φάση του Mix Columns κάθε στήλη του

πίνακα κατάστασης πολλαπλασιάζεται με έναν προκαθορισμένο πίνακα, προσθέτοντας

κάθετη διάχυση.

Τέλος, στην φάση του Key Addition πραγματοποιεί XOR του τρέχοντος πίνακα κατά-

στασης με ένα 128-bit υποκλειδί που προκύπτει από το κύριο κλειδί.

Η διαδικασία αποκρυπτογράφησης αντιστρέφει τα βήματα αυτά, χρησιμοποιώντας τις

αντίστροφες λειτουργίες για κάθε στάδιο και εφαρμόζοντας τα υποκλειδιά σε αντί-

στροφη σειρά.

0.3 Σχεδίαση

0.3.1 Τρόποι Επικοινωνίας

Στονπρογραμματισμό, συναντάμε συχνά τις έννοιες τηςσύγχρονης, ασύγχρονης, blocking

και non-blocking επικοινωνίας. Η επιλογή ενός εξ´ αυτών των τύπων επικοινωνίας ε-

xxviii ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ

ξαρτάται από τις απαιτήσεις και τα χαρακτηριστικά της κάθε εφαρμογής.

Σύγχρονη Επικοινωνία

Όταν μια διεργασία κάνει μια σύγχρονη κλήση προς το λειτουργικό σύστημα (όπως

ένα σύγχρονο read), η ολοκλήρωση της εργασίας που θέλει η διεργασία θα έχει ολο-

κληρωθεί όταν θα εκτελέσει την επόμενη εντολή της. Ωστόσο, μπορεί να μπλοκάρει

περιμένοντας μέσα στον πυρήνα αν το λειτουργικό σύστημα δεν είναι έτοιμο να απα-

ντήσει αμέσως.

Ασύγχρονη επικοινωνία

Μια διεργασία κάνει μία ασύγχρονη κλήση στο λειτουργικό σύστημα όταν η εργασί-

α που ζητάει από τον πυρήνα να εκτελέσει, πραγματοποιείται χωρίς η διεργασία να

μπλοκάρει στον πυρήνα. Η διεργασία ξεκινά την εργασία και εάν ο πυρήνας δεν είναι

έτοιμος, δεν “κοιμάται” εντός του αλλά επιστρέφει. Γι´ αυτό το λόγο απαιτείται ένας

τρόπος επικοινωνίας για να ειδοποιηθεί η διεργασία όταν ο πυρήνας ολοκληρώσει το

αίτημα της.

Blocking επικοινωνία

Μια blocking κλήση θα μπλοκάρει τη διεργασία που την εκτελεί μέχρι να είναι έτοιμο

το αποτέλεσμα. Αυτό συμβαδίζει με την έννοια της σύγχρονης κλήσης και γι’ αυτό

συχνά χρησιμοποιούνται ως ταυτόσημες έννοιες.

Non-blocking επικοινωνία

Μια non-blocking κλήση δεν θα μπλοκάρει τη διεργασία αν το αποτέλεσμα δεν είναι

έτοιμο, αλλά δεν θα ξεκινήσει και την εργασία την οποία αιτήθηκε, σε αντίθεση με τη

μία ασύγχρονη κλήση που επίσης δεν θα μπλοκάρει αλλά επιπλέον θα ενημερώσει τον

πυρήνα να ξεκινήσει την εργασία.

0.3. ΣΧΕΔΙΑΣΗ xxix

0.3.2 io_uring

Το πιο συνηθισμένο μοντέλο επικοινωνίας που χρησιμοποιούν σήμερα οι εφαρμογές

για Ι/Ο είναι το σύγχρονο, χρησιμοποιώντας τις βασικές κλήσεις συστήματος read()/write()

ή τις νεότερες εκδοχές τους, pread()/pwrite() και preadv()/pwritev(). Ωστόσο, σε

ορισμένες περιπτώσεις, ένα ασύγχρονο μοντέλο ταιριάζει καλύτερα. Το Linux, εκτός

του io_uring, υποστηρίζει δύο ασύγχρονα APIs: το POSIX AIO και το Linux AIO (ή

libaio).

Το POSIX AIO στο Linux υλοποιείται από τη βιβλιοθήκη glibc μέσω νημάτων. Κά-

θε ασύγχρονη κλήση Ι/Ο ανατίθενται σε ένα thread που δημιουργεί η glibc το οποίο

μπλοκάρει περιμένοντας το αποτέλεσμα. Αυτό απαιτεί επικοινωνία μεταξύ των εμπλε-

κόμενων threads για να ενημερωθεί το κύριο thread ότι το αποτέλεσμα είναι έτοιμο,

αλλά δεν κλιμακώνει καλά λόγω διότι δημιουργεί ένα thread ανά request. Αντίθετα,

το Linux AIO χρησιμοποιεί κλήσεις συστήματος, με τον πυρήνα να χειρίζεται απευθεί-

ας τα αιτήματα χωρίς το βάρος του ενός thread ανά request που έχει το POSIX AIO.

Ωστόσο, έχει άλλους σημαντικούς περιορισμούς όπως το ότι δεν υποστηρίζει buffered

I/O, περιορίζοντας σημαντικά τις εφαρμογές που μπορούν να χρησιμοποιήσουν αυτό

το API.

Οι περιορισμοί των Linux AIO και POSIX AIO οδήγησαν πολλές εφαρμογές που ήθε-

λαν να βελτιώσουν την απόδοσή τους μέσωμιας ασύγχρονης διεπαφής να υλοποιήσουν

τις δικές τους ασύγχρονες λύσεις, διαχειριζόμενες ένα pool νημάτων γι´ αυτόν το σκο-

πό. Το io_uring έγινε merged στην έκδοση 5.1 του πυρήνα για να να καλύψει αυτό

το κενό στο ασύγχρονο I/O. Αρχικά υποστήριζε κυρίως κλήσεις συστήματος για block

I/O αλλά στη συνέχεια εξελίχθηκε υποστηρίζοντας περισσότερες κλήσεις συστήματος,

έχοντας ως στόχο να γίνει ένα γενικό πλαίσιο για την εκτέλεση ασύγχρονων κλήσεων

συστήματος.

Το io_uring διαθέτει δύο buffers μνήμης: τον Submission Queue (SQ) για την υποβολή

αιτημάτων και τον Completion Queue (CQ) για την ανάκτηση απαντήσεων. Και οι δύο

είναι μοιραζόμενοι μεταξύ της εφαρμογής και του πυρήνα. Κάθε αίτημα περιγράφεται

από ένα Submission Queue Entry (SQE) και για κάθε SQE, ο πυρήνας τοποθετεί ένα

Completion Queue Entry (CQE) στο CQ όταν το αποτέλεσμα είναι έτοιμο.

Το io_uring υποστηρίζει τρεις κλήσεις συστήματος για τη δημιουργία των memory

xxx ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ

mappedbuffers και την επικοινωνία με τονπυρήνα: την io_uring_setup(), την io_uring_enter()

και την io_uring_register().

Η io_uring_setup() είναι η πρώτη κλήση που πρέπει να κάνει μια εφαρμογή για να

δημιουργήσει ένα instance του io_uring, δηλώνοντας τον αριθμό των entries και λαμ-

βάνοντας πίσω έναν file descriptor για την αναφορά στο instance αυτό. Μετά την επι-

τυχή επιστροφή, η εφαρμογή πρέπει να εκτελέσει ένα mmap() για να “εμφανίσει ” τους

buffers στο χώρο διευθύνσεων της.

Η κλήση συστήματος io_uring_enter() ενημερώνει τον πυρήνα για την ύπαρξη των

SQEs στο Submission Queue. Με αυτήν την κλήση συστήματος υπάρχει η δυνατότητα

να υποβάλλει η εφαρμογή πολλαπλά αιτήματα (πολλά SQEs) με μία μόνο κλήση. Με

άλλα λόγια μία εφαρμογή μπορεί να “ετοιμάσει” πολλά SQEs και να ενημερώσει τον

πυρήνα με μία μόνο κλήση στην io_uring_enter(), πληρώνοντας έτσι την επιβάρυν-

ση ενός μόνο context switch.

Τέλος, η κλήση συστήματος io_uring_register() επιτρέπει την προεγγραφή buffers

και file descriptors της εφαρμογής στον πυρήνα, μειώνοντας έτσι το overhead ανά I/O.

Το io_uring παρέχει μια βιβλιοθήκη χώρου χρήστη, την liburing [Axbe], που διευκο-

λύνει σε μεγάλο βαθμό την χρήση του από τις εφαρμογές, καθώς απλοποιεί την πο-

λυπλοκότητα της διαχείρισης των κλήσεων συστήματος παρέχοντας τους μία διεπαφή

υψηλού επιπέδου.

Επιπλέον, το io_uring υποστηρίζει δύο λειτουργίες polling, τις λεγόμενες SQPOLL και

IOPOLL, για εφαρμογές με υψηλές απαιτήσεις σε χαμηλή καθυστέρηση. Το SQPOLL

δημιουργεί ένα kernel threadπου ελέγχει την SQγια διαθέσιμα αιτήματα, ενώ το IOPOLL

επιτρέπει στη διεργασία που έκανε το αίτημα να ελέγχει ενεργά για ολοκληρώσεις τη

συσκευή στόχο.

0.3.3 Ublk

Η εισαγωγή του μηχανισμού επικοινωνίας io_uring στο Linux, έχει ενθαρρύνει τη με-

ταφορά λειτουργιών από τον πυρήνα στο χώρο χρήστη όπου αυτό είναι εφικτό. Οι βα-

σικοί λόγοι για αυτήν τη μετακίνηση περιλαμβάνουν (α) τη μεγαλύτερη ευελιξία στον

προγραμματισμό, καθώς οι προγραμματιστές μπορούν να χρησιμοποιήσουν διάφορες

γλώσσες προγραμματισμού και βιβλιοθήκες (β) την ευκολία στο debugging (γ) τη με-

0.3. ΣΧΕΔΙΑΣΗ xxxi

γαλύτερη ασφάλεια, καθώς τα προγράμματα στο χώρο χρήστη μειώνουν τον κίνδυνο

ολικών προβλημάτων ή κρασαρισμάτων του συστήματος σε αντίθεση με το ενδεχόμε-

νο ύπαρξης κάποιου σφάλματος στον πυρήνα και (δ) επιτρέπουν ανεξάρτητη ανάπτυξη

και συντήρηση από τον πυρήνα, του οποίου το περιβάλλον ανάπτυξης είναι αρκετά πε-

ριοριστικό.

Ωστόσο, υπάρχει ένας σημαντικός περιορισμός: η επίδοση. Οι κρίσιμες λειτουργίες που

απαιτούν γρήγορους χρόνους απόκρισης μπορεί να μην είναι κατάλληλες για μεταφορά

στο χώρο χρήστη λόγω της αυξημένης καθυστέρησης στην επικοινωνία του πυρήνα με

το userspace.

Το ublk framework ακολουθεί την ίδια λογική με δύο επικοινωνούντα μέρη, ένα στο

χώρο χρήστη, το οποίο θα ονομάζουμε “ublk server” ή απλώς “server”, και ένα στον

πυρήνα, που θα το αναφέρουμε ως “ublk driver” ή απλά “driver”. Το ublk, όπως σχε-

διάστηκε από τον Ming Lei, έχει ενσωματωθεί ως πειραματικό module στον πυρήνα

του Linux στην έκδοση 6.0 και υποστηρίζει προς το παρόν συγκεκριμένους τύπους ει-

κονικών μπλοκ συσκευών (τους Null, loop, NBD και qcow2).

Στην παρούσα διατριβή, η έμφαση δίνεται στο target “loop”, για το οποίο υλοποιήθηκε

ένα κρυπτογραφικό σύστημα εξ´ ολοκλήρου στο χώρο χρήστη (στον ublk server), όπως

αναφέραμε και στην εισαγωγή.

Γενική Σχεδίαση του ublk

Οublk driver ξεκινάει, αφότου φορτώσουμε το σχετικόmodule στον πυρήνα, δημιουρ-

γώντας μια συσκευή χαρακτήρων, την /dev/ublk‐control, με την οποία ο ublk server

θα αλληλεπιδρά. Ο ublk server ξεκινώντας, δημιουργεί ένα instance του io_uring για

να “μιλήσει” με τον driver, και ανοίγει την συσκευή ublk‐control.

Κάθε SQEπου θα κάνει submit ο server στο io_uring θα είναι τύπου IORING_OP_URING_CMD.

Το συγκεκριμένο opcode, είναι το io_uring command passthrough, που αντιστοιχεί σε

ένα ασύγχρονο ioctl(). Μεάλλα λόγια, ο server με SQEs τύπου IORING_OP_URING_CMD

μπορεί να στέλνει αυθαίρετες εντολές στον driver μέσω του io_uring.

Ξεκινώντας ο server εκδίδει μια εντολή UBLK_CMD_ADD_DEV, καθορίζοντας τις δυνα-

τότητές της συσκευής που θα υποστηρίζει το ublk, όπως ο αριθμός των ουρών που η

συσκευή θα δέχεται requests, η χωρητικότητα αυτών των ουρών, το μέγεθος του μπλοκ

xxxii ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ

κοκ. Η επιτυχής εκτέλεση αυτής της εντολής έχει ως συνέπεια τη δημιουργία ενός α-

κόμα character device, του /dev/ublkcN, όπου το ‘N’ είναι το αναγνωριστικό της συ-

σκευής. Αυτή είναι η συσκευή που θα λειτουργήσει ως βοηθός για την επικοινωνία του

server με τον driver κατά την διάρκεια του data path.

Εν´ συνεχεία ο server, κάνει mmap() μία περιοχή από descriptors, για να έχει πρόσβαση

κατά την διάρκεια του data path. Κάθε ένας descriptor πρακτικά θα περιγράφει ένα

read/write request, και χρησιμοποιώντας το device /dev/ublkcN, κάνει submit τό-

σα requests, όσα είναι και το μέγεθος της ουράς του ενημερώνοντας τον driver ότι το

συγκεκριμένο slot είναι έτοιμο να δεχθεί κάποιο request.

Τέλος, ο server εκδίδει μία εντολή UBLK_CMD_DEV_START, που έχει ως αποτέλεσμα να

εμφανιστεί η συσκευή μπλοκ /dev/ublkbN. Από αυτό το σημείο και έπειτα οι εφαρμο-

γές μπορούν να χρησιμοποιούν την συσκευή αυτή. Τα requests που στέλνουν, φτάνουν

στον ublk driver μέσα στον πυρήνα, και ο driver με τη σειρά του αφού ενημερώσει για

το είδος του request τον αντίστοιχο descriptor στη μοιραζόμενη περιοχή με τον server,

θα συμπληρώσει ένα CQE για να ικανοποιήσει το αντίστοιχο ανοιχτό SQE που είχε κά-

νει προηγουμένως ο server. Ο server ξυπνώντας, λαμβάνει την απάντηση του driver,

και με βάση πληροφορία που αντλεί μέσα από το CQE, πηγαίνει στον descriptor της

μοιραζόμενης μνήμης και εκτελεί το request που περιγράφει επικοινωνώντας το με τον

target. Όταν η δουλειά ολοκληρωθεί και ο target απαντήσει ο server επικοινωνεί εκ´

νέου με τον driver για να τον ενημερώσει για την ολοκλήρωση του request, και ο driver

με τη σειρά του γνωστοποιεί στο block layer του πυρήνα την απάντηση για να διαδοθεί

μέχρι την εφαρμογή.

0.3.4 Κρυπτογραφημένο Ublk

Σε αυτό το σημείο, θα αναφερθούμε περιληπτικά στις επεκτάσεις που κάναμε στο ublk

framework σε αυτήν την διατριβή με στόχο την υποστήριξη κρυπτογραφικών λειτουρ-

γιών. Οι επεκτάσεις μας βεβαιώνουν ότι τα δεδομένα που επικοινωνούν οι εφαρμογές

με το ublk θα φτάσουν στον target σε κρυπτογραφημένη μορφή.

Ξεκινώντας θα αναφέρουμε κάποιες σχεδιαστικές μας επιλογές. Αρχικά, όσον αφορά

το είδος της κρυπτογράφησης, αποφασίσαμε τη χρήση συμμετρικής κρυπτογραφίας για

την κρυπτογράφηση/αποκρυπτογράφηση δεδομένων, με την επιλογή του αλγορίθμου

0.3. ΣΧΕΔΙΑΣΗ xxxiii

Advanced Encryption Standard (AES) που χρησιμοποιείται ευρύτατα και είναι ασφα-

λής και γρήγορος. Επιλέξαμε τη λειτουργία XTS του AES, διότι πέραν του γεγονό-

τος ότι είναι το default operation mode του ΑΕS σε πολλές κρυπτογραφικές λύσεις σε

block devices, όπως το LUKS, το BitLocker και το VeraCrypt έχει και το πλεονέκτημα

ότι επιτρέπει την παράλληλη κρυπτογράφηση/αποκρυπτοργάφηση, πράγμα που είναι

αναγκαίο για τις παράλληλες υλοποιήσεις μας.

Όπως αναφέραμε και στην εισαγωγή 0.1.2, χωρίσαμε τη διαδικασία κρυπτογράφησης

σε δύο διακριτά στάδια. Στο πρώτο στάδιο, διαχειριζόμαστε το κύριο κλειδί που θα χρη-

σιμοποιήσουμε κατά την διάρκεια του data path για την κρυπτογράφηση/αποκρυπτορ-

γάφηση των δεδομένων. Θα παρουσιάσουμε συνοπτικά το πρώτο αυτό κοινό στάδιο

για όλες μας τις υλοποιήσεις, και εν´ συνεχεία θα αναφέρουμε τις κύριες σχεδιαστικές

επιλογές για κάθε μία υλοποίηση ξεχωριστά.

Διαχείριση Κύριου Κλειδιού

Θέλαμε να αποθηκεύουμε το κύριο κλειδί (master key) σε ένα αρχείο ώστε να μπορούμε

να το χρησιμοποιήσουμε ξανά. Ωστόσο, δεν θα ήταν σοφή κίνηση να αποθηκεύσουμε

το master key ακρυπτογράφητο σε ένα αρχείο. Επιπλέον, θέλαμε να μπορούμε να προ-

σθέτουμε νέα κλειδιά και να αφαιρούμε κλειδιά χωρίς να αλλάζουμε το ίδιο το master

key. Και αυτό διότι αν το master key άλλαζε θα απαιτούσε την επανακρυπτογράφη-

ση ολόκληρου του δίσκου, πράγμα που δεν είναι πρακτικό για μέσα αποθήκευσης που

μπορεί να αποθηκεύουν μεγάλο όγκο δεδομένων.

Αυτή η ιδέα μας οδήγησε να υιοθετήσουμε ένα σχήμα ιεραρχίας κλειδιών. Θέλαμε

ένα άλλο key που θα χρησιμοποιείται για την κρυπτογράφηση του master key. Αυτή η

έννοια μας επιτρέπει να χειριζόμαστε την κρυπτογράφηση με μεγαλύτερη ευελιξία.

Επίσης θέλαμε να υποστηρίζουμε τις ακόλουθες υψηλού επιπέδου λειτουργίες:

• Δημιουργία ενός νέου κρυπτογραφικού δίσκου. Αρχικοποίηση ενός master key,

και αποθήκευσή του σε ένα αρχείο σε κρυπτογραφημένη μορφή.

• Άνοιγμα ενός κρυπτογραφημένου δίσκου ανακτώντας το master key, που παρέ-

χεται σε κρυπτογραφημένη μορφή από το αρχείο.

• Προσθήκη ενός νέου κλειδιού.

xxxiv ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ

• Αφαίρεση ενός κλειδιού.

Για να μπορέσουμε να υλοποιήσουμε κάποιες από τις παραπάνω λειτουργίες χρειαζό-

μασταν μία περιοχή του δίσκου όπου θα αποθηκεύουμε πληροφορίες μεταδεδομένων.

Έτσι ακολουθώντας τη λογική του LUKS, καταλάβαμε μία περιοχή στην αρχή του αρ-

χείου που χρησιμοποιείται ως δίσκος στο ublk (loop target), για τα μεταδεδομένα της

κρυπτογράφησης. Ένα από τα στοιχεία που κρατάμε σε αυτά τα μεταδεδομένα είναι και

το hash του master key έτσι ώστε να μπορούμε να βεβαιώνουμε την είσοδο σε χρήστες

που παρέχουν το σωστό κρυπτογραφημένο κλειδί.

Σε αυτήν τηνπρώτηφάση, χρησιμοποιούμε τη βιβλιοθήκηGnuPGMadeEasy (GPGME)

[GNUa] για τη διαχείριση των κρυπτογραφικών λειτουργιών.

Κρυπτογράφηση Single-Thread

Η ενσωμάτωση της κρυπτογράφησης στον ublk server ξεκινά με την πρώτη μας λύση,

την single-thread. Σε αυτήν κάθε νήμα του ublk server αναλαμβάνει τόσο την επικοι-

νωνία με τον ublk driver και τον στόχο (το αρχείο που χρησιμοποιείται ως δίσκος) όσο

και τις λειτουργίες κρυπτογράφησης και αποκρυπτογράφησης.

Για να διευκολύνουμε την κρυπτογράφηση, προσθέσαμε κάποιους προσωρινούς buffers,

πέρα από τους αρχικούς στους οποίους ο server δεχόταν τα δεδομένα από τον driver

σε περίπτωση ενός write request ή έδινε τα δεδομένα στον driver στην περίπτωση ενός

read request. Οι προσωρινοί buffers χρησιμοποιούνται για την αποθήκευση των κρυ-

πτογραφημένων δεδομένων πριν από την εγγραφή στο στόχο (στην περίπτωση ενός

write request) και για την αποθήκευση των κρυπτογραφημένων δεδομένων που ανα-

κτώνται από το στόχο πριν από την αποκρυπτογράφηση (στην περίπτωση ενός read

request).

Στα write request, τα δεδομένα κρυπτογραφούνται πριν την αποστολή στο στόχο, ε-

νώ στα read, τα κρυπτογραφημένα δεδομένα αποκρυπτογραφούνται μετά την ανάκτη-

σή τους από το στόχο. Οι κρυπτογραφικές λειτουργίες χρησιμοποιούν τη βιβλιοθήκη

OpenSSL για AES κρυπτογράφηση σε λειτουργία XTS.

Η κρυπτογράφηση και η αποκρυπτογράφηση πραγματοποιούνται ανά sector. Οι buffer

που διαχειρίζεται ο server για να αποθηκεύει τα δεδομένα, τόσο οι αρχικοί όσο και οι

“προσωρινοί” που καταλάβαμε εμείς έχουν μέγεθος 0.5Mb. Στην περίπτωση λοιπόν

0.3. ΣΧΕΔΙΑΣΗ xxxv

που ο sector είναι 512 bytes, κάθε buffer μπορεί να αποθηκεύσει έως 1024 sector. Κάθε

λειτουργία κρυπτογράφησης/αποκρυπτογράφησης λοιπόν πραγματοποιείται διαδοχι-

κά για κάθε sector των 512-byte από τον ublk server.

Κρυπτογράφηση Intra-Block

Η δεύτερη κρυπτογραφική μας λύση, βασίζεται στην παράλληλη εκτέλεση της κρυπτο-

γράφησης/αποκρυπτογράφησηςAES-XTS. Σε αντίθεση με τη single-thread υλοποίηση,

όπου η κρυπτογράφηση/αποκρυπτογράφηση κάθε τμήματος των 512 bytes γίνεται δια-

δοχικά, σε αυτή την υλοποίηση κάθε νήμα του ublk server δημιουργεί ένα pool νημάτων

και διανέμει την εργασία στα νήματα-εργάτες.

Συνεπώς, οι εργασίες κρυπτογράφησης και αποκρυπτογράφησης ανατίθενται σε ξεχω-

ριστά νήματα αντί να εκτελούνται απευθείας από το κύριο νήμα του ublk server. Αυτό

επιτρέπει την παράλληλη επεξεργασία των sectors με τους εργάτες να κρυπτογραφούν

παράλληλα από τους αρχικούς buffers στους προσωρινούς, στην περίπτωση ενός write

request, και να αποκρυπτογραφούν από τους προσωρινούς στους αρχικούς buffers στην

περίπτωση ενός read request.

Ο αριθμός των νημάτων είναι παραμετροποιημένος και μπορεί να τεθεί κατά την εκ-

κίνηση του server. Ο συγχρονισμός μεταξύ του κύριου νήματος και των νημάτων-

εργατών επιτυγχάνεται μέσω δύο barriers, επιτρέποντας στο κύριο νήμα να αναθέτει

εργασίες και να περιμένει για την ολοκλήρωσή τους χωρίς την ανάγκη για επιπλέον

κλειδώματα.

Κρυπτογράφηση Inter-Block

Στην τρίτη κρυπτογραφική μας λύση, που ονομάσαμε inter-block, το κύριο νήμα του

ublk server αναθέτει ολόκληρο το buffer για κρυπτογράφηση ή αποκρυπτογράφηση σε

ένα νήμα-εργάτη, και συνεχίζει με την επεξεργασία των επόμενων αιτημάτων. Και σε

αυτήν την υλοποίηση λοιπόν έχουμε ένα pool από νήματα-εργάτες, μόνο που το κύριο

νήμα του ublk server δεν μοιράζει τον buffer για κρυπτογράφηση/αποκρυπτογράφηση

στους εργάτες όπως έκανε στη δεύτερη υλοποίηση, αλλά αναθέτει ολόκληρο το αίτημα

σε κάποιον από αυτούς χωρίς το ίδιο να μπλοκάρει περιμένοντας την απάντηση.

xxxvi ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ

Σε αντίθεση λοιπόν με τις προηγούμενες υλοποιήσεις, η inter-block προσέγγιση διατη-

ρεί την I/O-bound φύση του ublk server, αφαιρώντας την ανάγκη από το κύριο νήμα να

καταναλώνει CPU εκτελώντας την κρυπτογράφηση (στην περίπτωση της single-thread

υλοποίησης) ή να περιμένει την ολοκλήρωση των κρυπτογραφικών λειτουργιών (στην

περίπτωση της intra-block υλοποίησης). Αυτό επιτρέπει στον ublk server να χειρίζεται

τα αιτήματα I/O διατηρώντας την αρχιτεκτονική του προσανατολισμένη στην γρήγορη

επεξεργασία αυτών των αιτημάτων και την αποστολή τους στον κατάλληλο παραλή-

πτη.

Η επικοινωνία μεταξύ του κύριου νήματος και των νημάτων-εργατών γίνεται μέσω ε-

νός eventfd και ενός condition variable. Πιο συγκεκριμένα, το κύριο νήμα, χρησιμο-

ποιεί το condition variable για να ενημερώσει τα νήματα-εργάτες για νέες εργασίες.

Αυτό επιτρέπει στο κύριο νήμα να συνεχίζει την υποβολή και αναμονή για απαντή-

σεις αιτημάτων χωρίς να καθυστερεί από τις κρυπτογραφικές λειτουργίες. Από την

άλλη η επικοινωνία από έναν εργάτη προς το κύριο νήμα για την γνωστοποίηση της

ολοκλήρωσης της κρυπτογράφησης/αποκρυπτογράφησης μίας εργασίας γίνεται μέσω

του eventfd, για το οποίο το κύριο νήμα έχει υποβάλει ένα SQE στον πυρήνα για poll

request. Με άλλα λόγια, το main thread έχει ζητήσει από τον πυρήνα να το ξυπνήσει

σε περίπτωση που κάποιος γράψει στο eventfd. Συνεπώς με αυτόν τον τρόπο, ενημε-

ρώνεται για την ολοκλήρωση κάποιας κρυπτογραφικής εργασίας.

Η διαχείριση των αιτημάτων μεταξύ του κύριου νήματος και των νημάτων-εργατών γί-

νεται μέσω ενός κοινού μεταξύ τους αντικειμένου που περιλαμβάνει ουρές υποβολής

και ολοκλήρωσης, καθώς και έναν πίνακα από δομές αιτημάτων (struct request) κά-

θε μία εκ´ των οποίων περιγράφει μία κρυπτογραφική εργασία.

0.4 Υλοποίηση

Καθώς στο συγκεκριμένο κεφάλαιο παρουσιάζουμε μια συνοπτική περιγραφή των λύ-

σεων μας, τις υλοποιήσεις μας μπορείτε να τις βρείτε στο αντίστοιχο αγγλικό κεφάλαιο

4.

0.5. ΑΞΙΟΛΟΓΗΣΗ xxxvii

0.5 Αξιολόγηση

Σε αυτό το κεφάλαιο, παρουσιάζουμε συνοπτικά την αξιολόγηση των υλοποιήσεών μας.

Συγκρίνουμε τις τρεις κρυπτογραφικές μας λύσεις για να εξάγουμε συμπεράσματα σχε-

τικά με τα πιθανά οφέλη ή παγίδες των παράλληλων λύσεών μας, με στόχο να βρούμε

τρόπους να τις βελτιώσουμε στο μέλλον. Οι μετρήσεις που παρουσιάζουμε έγιναν χρη-

σιμοποιώντας το fio [Axbc], ένα παραμετροποιήσιμο πρόγραμμα που δοκιμάζει φορτία

εργασίας και μετρά την απόδοση τους.

Πραγματοποιήσαμε τις μετρήσεις μας σε ένα μηχάνημα τηςAmazonWebServices (AWS),

συγκεκριμένα ένα μοντέλο c5d.2xlarge. Αυτό το μηχάνημα χρησιμοποιεί την αρχιτε-

κτονική x86_64.

Εξαιτίας της συχνής χρήσης τουAES σε πλήθος εφαρμογών, η Intel αρχικά σχεδίασε και

ενσωμάτωσε στους επεξεργαστές τις κάποιες νέες εντολές με στόχο τη βελτίωση της

απόδοσης του αλγορίθμου κρυπτογράφησης AES. Το Advanced Encryption Standard

New Instructions (AES-NI) εισήγαγε 6 νέες εντολές για εκτέλεση του AES σε επίπεδο

υλικού.

Ο επεξεργαστής που χρησιμοποιήσαμε για τις μετρήσεις υποστηρίζει το AES-NI, όπως

και η βιβλιοθήκη OpenSSL. Οι δοκιμές πραγματοποιήθηκαν με τις νέες εντολές ενερ-

γοποιημένες και απενεργοποιημένες. Για να τις απενεργοποιήσουμε, χρησιμοποιήσαμε

τη μεταβλητή περιβάλλοντος OPENSSL_ia32cap. Κάναμε μετρήσεις με δύο είδη I/O:

σύγχρονο και ασύγχρονο. Τις ασύγχρονες μετρήσεις μας τις κάναμε με το io_uring.

Κάθε μέτρηση πραγματοποιήθηκε για block size 4k, 8k, 16k, 32k, 64k και 1m με στόχο

να έχουμε μία πιο σφαιρική άποψη για την απόδοση των υλοποιήσεων μας σε διαφορε-

τικού μεγέθους requests.

Για όλες τις μετρήσεις, ξεκινήσαμε το ublk με τις default παραμέτρους (μία ουρά για να

δέχεται request, μεγέθους 128), και οι παράλληλες υλοποιήσεις (ublk-intra και ublk-

inter) είχαν 4 νήματα-εργάτες.

Γενικά Σχόλια

Μετρήσεις χωρίς AES-NI

Οι μετρήσεις που λάβαμε χωρίς τις νέες εντολές, συμβαδίζουν με αυτά που περιμέναμε

xxxviii ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ

να δούμε από τις υλοποιήσεις μας. Πιο αναλυτικά, στην περίπτωση των σύγχρονων

λειτουργιών, η ublk-single υλοποίηση είναι καλύτερη για μικρού μεγέθους request, ε-

νώ καθώς το request μεγαλώνει σε μέγεθος η ublk-intra κλιμακώνει καλύτερα και την

ξεπερνάει. Η ublk-inter σε αυτή την περίπτωση δεν μπορεί να επωφεληθεί από την

παραλληλία, διότι υπάρχει ένα μόνο request on the fly. Από την άλλη στην περίπτωση

όπου έχουμε ασύγχρονα requests με το io_uring, παρατηρούμε ότι η ublk-inter υλοποί-

ηση είναι καλύτερη ακόμη και αν αυτά είναι μικρού μεγέθους. Αντίθετα η ublk-single

υλοποίηση δεν κλιμακώνει καλά, κάτι που είναι λογικό καθώς δεν μπορεί να εκμεταλ-

λευτεί στο έπακρο το γεγονός ότι υπάρχουν περισσότερα του ενός requests on the fly.

Μετρήσεις με AES-NI

Οι μετρήσεις που λάβαμε τρέχοντας τα workloads με τις νέες εντολές, δεν συμβαδίζουν

με αυτά που περιμέναμε να δούμε από τις υλοποιήσεις μας. Η ublk-single υλοποίηση

ξεπερνά τις παράλληλες ακόμα και στην περίπτωση των ασύγχρονων requests. Φαίνε-

ται ότι η γρήγορη πραγματοποίηση των κρυπτογραφικών λειτουργιών που επιτρέπουν

οι νέες εντολές είναι προτιμότερη από την επιβάρυνση που προσθέτει η διαχείριση του

παραλληλισμού στις ublk-intra και ublk-inter υλοποιήσεις.

Φυσικά θα χρειαστεί να πραγματοποιήσουμε μετρήσεις και σε συστήματα με υψηλό-

τερο εύρος ζώνης, καθώς πολλές μετρήσεις μας (ιδιαίτερα requests μεγαλύτερου μεγέ-

θους) φτάνουν στο “ταβάνι” του εύρους ζώνης τους μηχανήματος από όπου λάβαμε τις

μετρήσεις και έτσι δεν μας επιτρέπουν να έχουμε μία πιο ολοκληρωμένη άποψη για την

σχετική απόδοση των υλοποιήσεων μας.

0.6 Επίλογος

Το ταξίδι μας ξεκίνησε πριν από έναν περίπου χρόνο με έντονο ενδιαφέρον για τα Λει-

τουργικά Συστήματα και περιέργεια για τους χαμηλού επιπέδου μηχανισμούς που χρη-

σιμοποιεί ο πυρήνας του Linux. Αυτή η περιέργεια μας οδήγησε στο io_uring. Αφού

μελετήσαμε τις βασικές του αρχές, θέλαμε να εφαρμόσουμε τις γνώσεις που αποκομί-

σαμε σε κάτι πρακτικό, κάτι που μας οδήγησε στο ublk.

Αρχικά, η έλλειψη documentation γύρω από το ublk μας ανάγκασε να μελετήσουμε

τον πηγαίο κώδικα του για να κατανοήσουμε τις λειτουργίες του. Αυτή η εμπειρία

ήταν πολύτιμη, καθώς μας δίδαξε όχι μόνο νέες έννοιες αλλά και το πώς να προσεγγί-

0.6. ΕΠΙΛΟΓΟΣ xxxix

ζουμε συστηματικά άγνωστα codebases, κάτι που είναι σημαντικό, ιδιαίτερα απέναντι

σε πολύπλοκα συστήματα όπως ο πυρήνας του Linux.

Ο στόχος μας στη συνέχεια έγινε πιο ξεκάθαρος: να συνεισφέρουμε στο ublk ενσωμα-

τώνοντας απευθείας ένα κρυπτογραφικό μονοπάτι στον ublk server. Αυτό μας επέτρε-

ψε να συνεισφέρουμε ουσιαστικά σε αυτό το framework, ενώ αποκτούσαμε πρακτική

εμπειρία με πρότυπα όπως το LUKS και το AES-XTS.

Τέλος, αυτή η διατριβή μας παρείχε την ευκαιρία να εξερευνήσουμε διαφορετικές πτυ-

χές παράλληλου προγραμματισμού, να αξιολογήσουμε τα οφέλη και τους περιορισμούς

του και να αποκτήσουμε μία πρακτική αντίληψη στην εφαρμογή του.

0.6.1 Μελλοντικό Έργο

Παρακάτω παρατίθενται κάποιες μελλοντικές κατευθύνσεις σχετικά με αυτή τη διατρι-

βή:

• Εξερεύνηση εναλλακτικών κρυπτογραφικών βιβλιοθηκών (π.χ. libgcrypt) και

σύγκριση της απόδοσής τους με τα αποτελέσματα που λήφθηκαν χρησιμοποιώ-

ντας την βιβλιοθήκη OpenSSL.

• Περαιτέρω έρευνα για την ιδανική διαμόρφωση τουαριθμού των νημάτων-εργατών

στις παράλληλες λύσεις μας. Σκοπός μας είναι να δοκιμάσουμε και να μετρήσου-

με την απόδοση των ublk-intra και ublk-inter υπό διαφορετικά φορτία εργασίας

και σε διαφορετικά περιβάλλοντα με διάφορους αριθμούς νημάτων, για να κα-

τανοήσουμε την επίδρασή τους στην απόδοση.

• Ανάπτυξη μιας αποδοτικότερης μεθόδου επικοινωνίας για την τρίτη μας υλοποί-

ηση (ublk-inter) που μειώνει την ανάγκη για κλειδώματα στην επικοινωνία του

κύριου νήματος με τα νήματα-εργάτες. Έχουμε αρχίσει να υλοποιούμε μία εναλ-

λακτική προσέγγιση βασισμένη στην υπάρχουσα, η οποία μειώνει την ανάγκη

για απόκτηση ενός κλειδώματος ανά υποβολή αιτήματος.

• Συνεισφορά της εργασίας μας upstream στο ublk.

xl

1
Introduction

1.1 Motivation

Linux is an Operating System (OS) widely used worldwide for both industrial and do-

mestic purposes. The majority of the servers running globally, smartphones running

Android and the top 500 supercomputers prefer Linux as their OS. [Top, HS]. Many

of Linux’s characteristics have made it the go-to OS for many companies and vendors,

mainly because it is open source, non-proprietary, and extendable. While Linux un-

doubtedly thrives on servers, in recent years, it has also been making significant strides

in personal computers.

Themain purpose of an Operating System, is to act as a bridge between userspace appli-

cations and hardware. Applications that run in userspace aren’t allowed to communi-

cate directly with the hardware. This is where the OS comes into play. If an application

wants to access hardware (e.g. read from a disk), it needs to request the OS to perform

the corresponding action on its behalf. These requests are known as system calls. When

the kernel runs on behalf of a process executing a system call, we refer to it as running

in process context. The other context in which the kernel can run is interrupt context,

which occurs when it services an interrupt triggered by a hardware component.

System calls are a set of interfaces (an API) offered by the OS to the userspace appli-

cations, in order to allow them to interact with hardware devices such as the CPU and

disks.

1

2 CHAPTER 1. INTRODUCTION

Putting an extra layer between the application and the hardware has several advantages

[BC06]:

• Makes programming easier by freeing users from studying low-level program-

ming characteristics.

• Greatly increases system security.

• Makes programs more portable.

Of course, nothing great comes free. System calls are expensive. Transitioning from

user mode to kernel mode in order to execute a request comes at a cost. Apart from this

overhead, an application that performs a system call, blocks until the request is satisfied,

at least in case of blocking I/O (see Section 3.1 for types of I/O). This means that even if

the application has other tasks to perform that don’t depend on the results of the system

call, it cannot execute them. These issues are particularly critical in applications with

high specifications, that require super fast, low-latency data access. Response speed and

resource utilization play pivotal roles. Consequently, a lot of effort have been directed

towards improving the entire I/O data path and mitigate some of the challenges system

calls expose.

Welcome, io_uring!

io_uring [Axbb] is an asynchronous system call interface for the Linux kernel, which

has been merged in version 5.1 by Jens Axboe, the current maintainer of the Linux

kernel block layer. It was created to solve the asynchronous I/O problem. This is a func-

tionality that Linux has never supported as well as users would have liked [Cora]. In

a nutshell, io_uring provides two memory mapped buffers, shared between userspace

and kernelspace. The entire communication takes place there. It’s architecture supports

the natural batching of requests (i.e. system calls) and responses, leading to a signifi-

cant reduction of the context switches. In general it is an interface designed in a way to

provide efficiency, scalability and extendability.

As a natural consequence new frameworks are appearing, aiming to take advantage of

the new, faster communication interface, io_uring provides. The idea is that if we spend

less time communicating with the kernel, then we can extract functionality of it and

1.2. PROBLEM STATEMENT 3

implement it in userspace, which generally provides increased safety, flexibility and ease

for debugging.

One such framework is ublk, introduced by Ming Lei in Linux v.6.0 [Lei]. Ublk is a

framework for implementing block device drivers in userspace. Ublk consists of two

components. An in-kernel driver and a userspace component. The driver acts as a

bridge between the userspace component and the rest of the Linux kernel. All the im-

plementation is taking place in userspace.

1.2 Problem Statement

In its current version, the ublk framework doesn’t support encrypted operations. The

encryption of the backing file that serves as a disk, solely relies on the system’s encryption

capabilities. In other words, if the system running ublk does not implement any form

of encryption, the data written to the backing file remains unencrypted.

A very simplified version of ublk framework is illustrated in Figure 1.1.

ublk server

ublk driver

Us
er
sp

ac
e

Ke
rn
el
sp

ac
e

H
ar
dw

ar
e

APP
Super
Secret
FIle

Super
Secret
FIle

Super
Secret
FIle

Super
Secret
File

Super
Secret
File

Backing
File

1 2 34

5

6

Figure 1.1: General View of ublk Framework

Ublk framework consists of two communicating components: an in-kernel driver com-

ponent, which we will refer to as “ublk driver”, and a userspace component, which we

will refer to as “ublk server”. These two are communicating via an io_uring instance.

Ublk can support many targets (i.e. implement different Virtual Block Devices). In this

4 CHAPTER 1. INTRODUCTION

diploma thesis our focus is the loop device target. A loop device is a block device that

maps its data blocks not to a physical device such as a hard disk or optical disk drive,

but to the blocks of a regular file in a filesystem or to another block device [mpd].

When an application using ublk, wishes to send an I/O request, this request traverses

through the in-kernel subsystems (see Section 2.4 for more), ultimately reaching the

ublk driver. Then, the ublk driver forwards the request to ublk server using an estab-

lished io_uring instance, providing userspace with an opportunity to manipulate the

request before it is sent to the backing file.

Let’s take a look at Figure 1.1, which helps us understand the challenge we face in the

current ublk implementation. Imagine an application wanting to write data to the de-

vice. It triggers a system call and provides the corresponding buffer to the kernel. Once

the request reaches the ublk driver, the data is copied to a userspace buffer within the

ublk server’s virtual memory and the driver informs the server that a request arrived.

The ublk server then, sends the request to the backing file as is. Consequently, the raw

data are stored in the backing file in the same form they had when initially sent by the

application. This remains true unless the file system itself operates on the data before

the block device driver comes into play or if the backing file is stored on a form of Self

Encrypted Drive [Arc].

This fact, places the burden on the application to either be aware of the context and

environment in which the ublk framework operates, or to handle encryption on its own

if the desired level of privacy is not guaranteed otherwise. For instance, the application

may need to encrypt the data prior to sending them to ublk.

Linux represents internally (almost) everything as a file. “Everything is a file” in Linux.

It manages file access using user identification and permissions, offering a satisfactory

level of security for typical use cases. Nevertheless, the lasting nature of disk storage in-

troduces a vulnerability that standard operating system permissions alone cannot fully

address. If your disk is seized or stolen, your secrets are exposed. Hence, when han-

dling sensitive files, it becomes mandatory to store data on the disk in a manner that

guarantees the safety of information. To achieve this, a lot of effort has gone into how

we can protect data stored on a disk. Numerous software and hardware solutions have

been suggested over time, but finding a one-size-fits-all answer is not an easy task in a

diversify field like software management. Each case has its unique demands and might

1.3. PROPOSED SOLUTION 5

need a different approach compared to others.

1.3 Proposed Solution

We designed and implemented an encryption schema that enables ublk to save the data

of an application in the backing file encrypted. This way, security-sensitive applications

can utilize the device exposed by the ublk framework, without needing to independently

manage the security of their data. Our implementation is carried out completely in

userspace, as part of the ublk server.

We split the encryption process in two different phases.

Password

Phase 1

Decrypted
Key

Phase 2

DiskUBLK

Decrypted
Key

Encrypted
Key

Figure 1.2: 2-phase Encryption Schema

• Phase 1: When starting the ublk framework we specify a .gpg file that contains

a cryptographic key. The file itself is encrypted, ensuring its protection. In this

phase we decrypt this metadata file and extract the key.

• Phase 2: Ublk server uses the derived key fromphase 1, to perform cryptographic

I/O operations on the device. We employ symmetric cryptography, specifically

AES-256 in XTS mode for this purpose.

So, when an application writes data to the device, the ublk server encrypts the data and

stores it in the backing file. Similarly, when a user requests data from the device, the

ublk server retrieves and decrypts the data. This decrypted data is then passed back to

the ublk driver and subsequently to the end user.

Our goal was to ensure the security of data stored in the backing file, and provide ap-

plications with the opportunity to use the ublk framework without needing to manage

6 CHAPTER 1. INTRODUCTION

ublk server

ublk driver

Us
er
sp

ac
e

Ke
rn

el
sp

ac
e

Ha
rd
w
ar
e

APP
Super
Secret
FIle

Super
Secret
FIle

Super
Secret
FIle

fdsafafj
kdkfjasf

kja

fdsafafj
kdkfjasf

kja

Backing
File

1 2 346

5

Figure 1.3: General View of a Write Request in Encrypted Ublk Framework

the encryption procedure themselves. Our solution guarantees that no file information

will ever be stored on the device in plain format. As a result, even if the disk is stolen or

seized, no data can be extracted without knowledge of the encryption key.

For each phase, we used a different cryptographic library to achieve our goal. In phase

1, we used theGnuPG Made Easy (GPGME) [GNUa] library, to encrypt and decrypt the

relevant file and obtain the data key, while in phase 2, we utilized the OpenSSL library

[Ope] for on-the-fly data encryption and decryption.

Furthermore, we implemented the second phase of the encryption in three different

ways:

• Single-thread: The main thread of ublk server, responsible for communication

with the ublk driver, was also handled encryption and decryption.

• Intra-block parallelism: We created a thread pool consisting of working threads.

Instead of personally performing encryption/decryption on each buffer, themain

threadnowdivides the buffer anddistributes each segment to theworking threads.

• Inter-block parallelism: Similar to intra-block parallelism, we created a thread

pool with working threads. However, in this case, themain thread hands over the

entire buffer to a working thread before continuing.

1.4. OUTLINE 7

In doing so, we were able to experiment with the efficiency and challenges of paral-

lel computing in two distinct forms (inter and intra block parallelism). We compared

these approaches with the single-thread case, and ultimately uncovered the limitations

and potential benefits of parallelism. Our ability to implement parallelism in our cryp-

tographic schema, was made possible by the use of the AES algorithm [Wika] in XTS

mode [NIS].

The parallelization of XTS mode depends mainly on an important feature of this mode

in which each block of data can be encrypted independently without any relation to

other blocks. This feature allows the encrypted data to be divided into different portions

in such a way that two successive blocks of data can be processed concurrently in two

different processing units [MAAR].

1.4 Outline

The rest of this thesis is structured as follows:

• Chapter 2: We provide background information for readers who want to under-

stand the rest of the thesis.

• Chapter 3: We present the design of the io_uring mechanism, the ublk frame-

work and the design of our three cryptographic solutions. Also we discuss the

relevant to our solutions concepts of LUKS, AES and XTS.

• Chapter 4: We present the implementation of our three cryptographic solutions

along with the common key setup phase.

• Chapter 5: We evaluate our solutions and make comments on their efficiency

based on the results.

• Chapter 6: We conclude with a summary of our work and with some directions

for future work.

8

2
Background

During our survey on ublk, we encountered a lot of interesting features. In this chapter,

we will focus on some of these, which are necessary for understanding the concepts

presented in the rest of this thesis.

We will provide a brief overview of the Linux operating system. We will examine the

subsystems related to the I/O stack, ranging from applications to disks. This exploration

will help us clarify how data flows within the Linux system.

Finally, we have included a chapter on elementary cryptographic concepts and some

background mathematics. This foundation will be useful when we will encounter the

AES algorithm in the next chapter.

2.1 Linux OS

Linux is an operating system (OS) created by Linus Torvalds, a Finnish software en-

gineer. He began its development as a personal project and made it open source on

August 25, 1991, 32 years ago. As Linus stated in his first announcement «I’m doing a

(free) operating system (just a hobby, won’t be big and professional like gnu) for 386 (486)

AT clones...» [Verb].

Of course it eventually turned out to be a very professional one! Linux is a Unix-like

OS and quickly gained the attention of the open source community. Because many

developers had access to the source code, they helped Linus rebuild and refactor the

kernel and by 1994, Linux kernel version 1.0 was released [Wikg].

9

10 CHAPTER 2. BACKGROUND

Nowadays Linux runs everywhere. From mobile phones to personal computers and

from embedded devices to supercomputers. One of the more attractive advantages of

Linux is its non-commercial nature: the source code, governed by the GNU General

Public License version 2 (GPLv2), is open and accessible for anyone interested in study-

ing it. Along with this, some other Linux’s characteristics are:

• Reliability and Stability: It can handle heavyworkloads and runs for long periods

without restarts. This makes it a top choice for crucial systems like servers and

supercomputers, ensuring consistent operation even in high-pressure situations.

• Security: Its design makes it tougher for malware, setting it apart as a secure

choice. It also benefits a lot from open source review to quickly fix vulnerabilities.

• Flexibility: It offers limitless customization, allowing everyone to find their fit in

the diverse Linux ecosystem. With various distributions, desktop environments,

package managers, and more, users can explore differences and personalize their

Linux experience.

2.1.1 Operating System vs Kernel

The kernel is the big chunk of executable code in charge of handling all requests from

processes asking to access system resources. Technically speaking the kernel is part of

the operating system, not the whole operating system. It is its core component, and the

first program that bootloader loads into memory. But an operating system consists of

other system programs that are not part of the kernel. Typically, an OS is shipped along-

side a Graphical User Interface (GUI), a compiler, a package manager, a command line

interface (e.g. bash), system libraries and many more. A kernel without these interfaces

would be useless in most cases, and of course all these system programs interact with

the kernel to provide to the end users the desired result.

Note: From now on, we will use the terms “kernel” and “operating system” interchange-

ably. As previously noted, the kernel constitutes the fundamental element of theOS, and

this interchangeable usage is a commonly accepted convention.

2.1. LINUX OS 11

2.1.2 And...what a kernel does?

Although the distinction between the different kernel tasks is not always clearlymarked,

the kernel’s role can be split (as shown in Figure 2.1) into the following parts [RKH05]:

• Process management: Manages process creation, communication, and schedul-

ing, enabling multiple processes to run efficiently on one or more CPUs.

• Memorymanagement: Creates virtual address space for each process, coordinat-

ingmemorymanagement through a range of function calls, from basic allocation

to more complex ones.

• Filesystems: Linux treats almost everything as a file. It builds a structure filesys-

tem atop hardware, while it supports various filesystem types for organizing data

on physical volumes.

• Device control: Nearly all system operations correspond to physical devices, and

except for a few core components (likememory andCPU), specific device-related

code, called “device driver”, handles device control. These drivers are part of the

kernel.

• Networking: Network activity is managed by the OS. It collects, identifies and

dispatches outcome and income packets, serving the needs of all processes want-

ing to access a network.

2.1.3 user mode vs kernel mode

A process is a program that is loaded into the system’s memory and executed. In this

context “execute” means that the Central Processing Unit (CPU) fetches instructions

from a memory region specific to the process and carries out with their execution.

Typically each CPU architecture incorporates multiple protection layers known as priv-

ilege rings. Each process’s instruction is executed within one of these protection rings,

having its own resource access rights. The innermost ring has the highest privilege,

while the outer ones have progressively fewer privileges. For instance the x86 architec-

ture, employs a 4-ring protection layer schema as depicted in Figure 2.2.

12 CHAPTER 2. BACKGROUND

Figure 2.1: A High-Level View of the Kernel

Modern CPUs offer at least two distinct execution modes: a nonprivileged mode for

the user and system programs, and a privileged mode for the kernel. These modes are

referred to as user mode and kernel mode (also known as supervisor mode). User

mode corresponds to the outer ring, while kernel mode corresponds to the inner ring.

This design enables CPU to differentiate between different level of privileges, thereby

preventing users from executing commands that exceed their permissions.

Linux adopts a two-ring protection model: Ring 0 signifies kernel mode, and Ring 3

signifies user mode. Rings 1 and 2 are not used.

2.1.4 userspace vs kernelspace

Userspace denotes the memory space where user applications and operating system-

related processes execute. Everything apart from the kernel runs there. Userspace pro-

cesses can be divided into system processes, executing system-related code, and user

processes, executing user code.

2.1. LINUX OS 13

Ring 0
Kernel Mode

Ring 1
Ring 2

Ring 3
User Mode

Higher privileged

Least privileged

Figure 2.2: x86 Architecture: Privilege Rings

On the other hand, kernelspace refers to thememory space inwhich the kernel operates.

To make the distinction clearer: userspace and kernelspace relate to the memory where

processes operate, while kernel mode and user mode refer to the CPU’s operational

mode when executing instructions.

Consider a simple “Hello World” program like the one shown in Listing 2.1:

1 #include <stdio.h>

2

3 int main(int argc, char *argv[])

4 {

5 printf(”Hello, World!\n”);

6 return 0;

7 }

Listing 2.1: Hello World!

Let’s see what occurs when a user runs the executable generated from the program in

Listing 2.1:

1. TheOS loads the program intomemory and initiates a new process to execute the

hello_world program. This process operates in userspace, and its instructions

run in user mode on the CPU.

2. When the instruction pointer (IP) reaches the printf() command, it actually

executes code froma library function in the glibc’s library. This library function

14 CHAPTER 2. BACKGROUND

is essentially a wrapper around the write() system call. The process remains in

userspace.

3. As the write() system call begins, the kernel is invoked to fulfill the correspond-

ing request. At this point, the execution shifts from userspace to kernelspace, and

the CPU’s instruction execution is in kernel mode.

4. Once the kernel completes the system call, it returns a status code indicating the

result. Control is then handed back to userspace, enabling the execution of the

next instructions in the program (in user mode).

U
se

rs
pa

ce
Ke

rn
el

sp
ac

e

APP

GLIBC

KERNEL

CPU runs
in user
mode

CPU runs
in kenrel

mode

Figure 2.3: Userspace vs Kernelspace

Note: In the rest of this thesis, the terms “kernelspace” and “kernel mode” will be used

interchangeably to signify the kernel’s operation. Similarly, the terms “userspace” and

“user mode” will denote all other cases.

2.2 Kernel Architecture

2.2.1 Monolithic vs Microkernel

Linux kernel like most of the Unix kernels, ismonolithic: each kernel layer is integrated

into the whole kernel program and runs in kernel mode on behalf of the current process

[BC06]. In other words monolithic is a kernel that there is no protection between the

various kernel subsystems and where public functions can be directly called between

various subsystems [Teab].

2.2. KERNEL ARCHITECTURE 15

Figure 2.4: Monolithic Architecture

In contrast, there exists another kernel design, named microkernel. This is a mini-

malist design approach, where the kernel is kept as small and simple as possible. In a

microkernel system, the kernel only includes the most essential functions. Additional

functionality, is moved out of the kernel and into separate userspace modules, known

as servers or services. Because significant parts of the kernel are now running in user

mode, the remaining code that runs in kernel mode is significantly smaller, hence mi-

crokernel term.

In a microkernel architecture the kernel contains just enough code that allows for mes-

sage passing between different running processes. Essentially, that means implement-

ing an inter-process communication (IPC) mechanism in the kernel, as well as some

functionality on memory management to achieve the protection between applications

and services.

Both designs have their advantages and disadvantages. It is obvious that microkernels

isolate the different subsystems to a greater extend. As a result, if a service crashes,

we can just restart it without affecting the whole system. Bugs in one service can’t af-

fect other services. On the other hand, such operating systems are generally slower than

monolithic ones, because the explicit message passing between the different layers of the

operating system incurs an overhead. What is a simple function call between two sub-

16 CHAPTER 2. BACKGROUND

Figure 2.5: Microkernel Architecture

systems on monolithic kernels, now requires going through IPC and scheduling which

of course, comes at a cost.

Kernel modules

In order to attain many of the theoretical benefits associated with microkernels, while

avoiding potential performance drawbacks, the Linux kernel uses a feature known as

“modules”. A module is essentially an object file containing code that can be dynami-

cally linked and unlinked from the kernel during runtime, via the programs insmod and

rmmod respectively. This object code typically comprises a set of functions that imple-

ment what is known as a “device driver”. The difference with the microkernel-based

operating systems, is that modules do not operate as distinct processes, instead, they

run within kernel mode on behalf of the ongoing process, like any other statically linked

kernel function.

The main advantages of using modules include:

• Logically organize the kernel in subsystems.

• Save main memory, by loading a module only when it is needed and unloaded

afterwards.

• Force developers to adopt a modularized approach on their design.

2.2. KERNEL ARCHITECTURE 17

2.2.2 Device Drivers

Linux categorizes devices into three fundamental types: character devices, block de-

vices and network devices. Each kernel module, usually implements one of these types

and hence we classify them as: character modules, block modules and network mod-

ules. Of course this classification isn’t strict, and developers can choose to combine dif-

ferent types of device drivers, into a single module, although it is highly recommended

to create separate modules for different functionalities.

More specifically the three classes are:

1. Character devices: Devices that provide sequential access of any I/O size down

to a single character. The corresponding driver, usually implements at least the

open(), close(), read() and write() system calls. Such devices include key-

boards and serial ports.

2. Block devices: Devices that perform I/O in units of blocks (usually in 512 byte

chunks named sectors or a larger power of two). These blocks can be accessed

randomly based on their block offset, which begins at 0 at the start of the block

device [Gre20]. Kernel uses the corresponding driver to implement two main

functionalities: «read block with number N and write its data in memory pointed

to by buf »and «retrieve the data stored at buf andwrite them at block N». Although

block drivers have a completely different interface inside the kernel, Linux enables

applications to treat block devices similarly to char devices, presenting a transpar-

ent interface for both of them. Thedifference between them ismanaged internally

by the kernel.

3. Networkdevices: Peripheral devices that can send and receive data packets to and

fromother computer systems. This category includes physical network cards (like

eth0, eth1 for the first and second Ethernet adapters) as well as virtual network

adapters like lo for packets sent to the same machine.

In this thesis, we didn’t come across any network device drivers. However, we en-

countered both character and block device drivers. Therefore, let’s examine them more

closely.

18 CHAPTER 2. BACKGROUND

Access to devices via special files

As stated earlier, users interact transparently to both block and character devices. The

kernel exposes those devices in a special directory named /dev. So, on the one hand we

have the device driver which provides the communication on behalf of a user program

and on the other hand we have /dev which represents each piece of hardware in the

system.

For example, imagine that you have a solid-state drive (SSD) [Wikh]. This is a block

device and the kernel will expose this device in /dev. Let’s assume that it assigns to it the

name /dev/sda. Now userspace utilities can use /dev/sda without ever knowing what

kind of disk they are communicating with. This is a typical example of abstraction in the

Linux kernel. Subsystems offer a standard API to interact with, hiding the complexities

of their internal workings and allowing other utilities to interact with them in a uniform

way.

Let’s take a look at some device files:

$ ls ‐l /dev/

...

brw‐rw‐‐‐‐ 1 root disk 8, 0 Αυγ 29 19:16 sda

brw‐rw‐‐‐‐ 1 root disk 8, 1 Αυγ 29 19:16 sda1

brw‐rw‐‐‐‐ 1 root disk 8, 2 Αυγ 29 19:16 sda2

...

crw‐rw‐rw‐ 1 root tty 5, 0 Αυγ 30 01:30 tty

crw‐‐w‐‐‐‐ 1 root tty 4, 0 Αυγ 29 19:16 tty0

...

Listing 2.2: List Device Files

The first character of the output line, denotes whether it is a block device (b), or a char-

acter device (c).

Two columns of numbers separated by a comma are present. The first number is called

the major number of the device, and the second the minor number. The major number

tells which driver is used to access the hardware. What type of device is used. Each

driver has a uniquemajor number. Theminor number is used by the driver to distinguish

between the various hardware it controls. It identifies a specific device among a group

of devices that share the same major number. For instance, in Listing 2.2, we a have a

2.2. KERNEL ARCHITECTURE 19

group of three devices managed by the same disk controller that have the same major

number (8) and different minor numbers (0, 1 and 2).

Note: When a device file (e.g. /dev/sda1) is accessed, the kernel uses the major num-

ber to determine which driver should be used to handle the access. This means that the

kernel doesn’t really need to use the minor number. The driver itself is the only entity

that cares about theminor number. The kernel uses themajor number to find the corre-

sponding driver, and passes the execution to it and then the driver itself uses the minor

number to distinguish between different instances of the specific device.

In-kernel representation of Device Files

Both major and minor parts of a device file are stored in a dev_t type inside the kernel.

Practically the dev_t type is an u32, that stores in the 12 most significant bits the major

number and in the 20 least significant bits the minor number.

31 30 29 26 23 162022 21 182528 27 24 19 17 15 14 13 10 7 046 5 2912 11 8 3 1

Major Number Minor Number

Figure 2.6: Major and Minor Parts of dev_t Type

Of course the internal representation of dev_t may change in the future, and that’s

why to obtain the major and minor numbers of a dev, the macros MAJOR(dev) and

MINOR(dev) respectively should be used (can be found in linux/kdev_t.h).

If instead, you have the major and minor numbers and need to turn them into a dev_t,

use the macro: MKDEV(int major, int minor).

2.2.3 A dive into /dev directory

Let’s take a closer look at /dev directory. If we list the status of all currently mounted

file systems, we can obtain useful information:

$ grep ‐w dev /proc/mounts

dev /dev devtmpfs rw,nosuid,relatime,size=4007368k,nr_inodes=1001842,mode

=755,inode64 0 0

Listing 2.3: List /proc/mounts

20 CHAPTER 2. BACKGROUND

The file /proc/mounts actually is not a real file, but part of the virtual file system that

represents the status of mounted objects as reported by the Linux kernel. The format is

similar to fstab: the system’s name, mount point, file system type, etc [Dia].

As we see, in /dev directory there is mounted a filesystem named devtmpfs. devtmpfs

replaced devfs andmerged in the Linux kernel in version 2.6.34. [LWNc, LWNa, LWNb]

devtmpfs is a special filesystem that the kernel creates and populates to expose infor-

mation about devices.

And who is responsible for mounting devtmpfs in /dev directory?

If CONFIG_DEVTMPFS_MOUNT is set to y (in .config file) when building the kernel, the

resulting kernel will automatically attempt to mount devtmpfs to /dev after mounting

the root filesystem [Sta].

It can also be done with a rule in /etc/fstab like:

$ mount ‐t devtmpfs junk /dev

Although the kernel is responsible for populating devtmpfsfilesystem, it provides userspace

with the opportunity to process device events further through the “udev” subsystem,

which matches events with rules and triggers additional actions based on them.

More specifically, whenever a device is added or removed from the system (or change

its state) kernel sends messages, named uevents to userspace. Kernel sends these mes-

sages via “netlink”. Netlink is a socket-like mechanism used in Linux to pass informa-

tion between kernel and user processes [Dwe]. This mechanism gives the opportunity

to userspace, to manipulate further the changes in the system.

Udev subsystemuses a userspace daemonwhich is nowpart of systemd, named systemd‐udevd.

This daemon is responsible to catch the user events (uevents) that kernel sends. Then udev,

tries to match these messages with some rules it maintains. These rules can be found

in /usr/lib/udev/rules.d, /usr/local/lib/udev/rules.d, /run/udev/rules.d and

/etc/udev/rules.d [mpg].

And if it manages to match the uevent with a rule, then it may trigger additional pro-

cessing based on the specific rule.

Note: The information above applies to both character and block devices.

2.2. KERNEL ARCHITECTURE 21

Now, let’s turn our attention specifically to character device drivers.

2.2.4 Character Device Drivers

In the kernel, a character device is represented by struct cdev, a structure used to reg-

ister the driver in the system. Adefinition of this structure can be found in /include/linux/cdev.h.

To complete the addition of a character device to the system, we need to follow three

distinct steps:

1. Firstly, we should register a range of device numbers, which can be done either

statically (if we know the device’s major number,) or dynamically (if we let the

kernel pick one for us).

2. Secondly, we should initialize the data structure struct cdev for our character

device.

3. Thirdly, once we finish the initialization, we can add the character device to the

system. In this step practically we notify the kernel for the driver via associat-

ing the character device initialized in step 2, with the range of device numbers

registered in step 1.

1 // Statically register a range of device numbers

2 int register_chrdev_region(dev_t from, unsigned count, const char *name)

3

4 // Dynamically allocate a range of char device numbers.

5 int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count,

6 const char *name)

7

8 // Initialize a cdev structure

9 void cdev_init(struct cdev *cdev, const struct file_operations *fops)

10

11 // Add a char device to the system

12 int cdev_add(struct cdev *cdev, dev_t dev, unsigned count)

Listing 2.4: Register a Character Device

22 CHAPTER 2. BACKGROUND

Of course, once we have finishedwith the device driver, we need to delete and unregister

it from the system, allowing the kernel to reclaim resources. To do so, we can use the

following functions:

1 // Unregister a range of device numbers

2 void unregister_chrdev_region(dev_t first, unsigned int count)

3

4 // Remove a character device from the system

5 void cdev_del(struct cdev *dev);

Listing 2.5: Unregister a Character Device

Device drivers are loaded and unloaded as modules. We explained in Section 2.2.1 the

advantages of modularization. The program that loads a module is called insmod, while

the program that unloads it is called rmmod.

Each of these programs triggers a specific function within the device driver. insmod,

invokes a function declared with the macro module_init(), while rmmod, triggers a

function declared with the macro module_exit(). Usually, inside these functions oc-

curs the registration phase of Listing 2.4, and the unregistration phase of Listing 2.5

respectively.

Data structures for character device drivers

As Listing 2.4 shows, initializing a character device structure, with cdev_init(), de-

mands the use of a structure named file_operations. This structure along with the

structures file and inode are very important kernel data structures and commonly

used by many character devices.

struct file_operations

The file_operations structure, holds pointers to functions defined by the driver that

perform various operations on the device. Each field of the structure corresponds to

system calls made by users over device type files.

1 struct file_operations {

2 struct module *owner;

3 loff_t (*llseek) (struct file *, loff_t, int);

4 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);

5 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);

2.2. KERNEL ARCHITECTURE 23

6 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);

7 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);

8 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);

9 int (*mmap) (struct file *, struct vm_area_struct *);

10 int (*open) (struct inode *, struct file *);

11 ...

12 int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags);

13 int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *,

14 unsigned int poll_flags);

15 };

Listing 2.6: struct file_operations

Thus, implementing a character device driver means defining the system calls open(),

close(), read(), write(), etc, for the specific device. The driver of course, may not

implement some of the above operations (i.e. system calls), because it may not support

(or need) the specific functionality. Usually we use the C99 way of assigning elements to

the file_operations structure [989]. Structuremembers who do not explicitly appear

in this initialization will be set to NULL.

1 struct file_operations my_functions {

2 .read = my_read,

3 .write = my_write,

4 .mmap = my_mmap,

5 .open = my_open,

6 .release = my_release,

7 };

struct file

The struct file, represents anopenfile. This structure is not specific to device drivers.

The kernel itself is responsible of allocating a struct file each time an open() system

call is called. All open files have an associated file structure.

struct inode

This structure, represents a file on the disk. It’s used by the kernel internally. There can

be numerous file structures representingmultiple open descriptors on a single file, but

24 CHAPTER 2. BACKGROUND

they all point to a single inode structure.

As [Teaa] aptly stated: «To understand the differences between inode and file, we will use

an analogy from object-oriented programming: if we consider a class inode, then the files

are objects, that is, instances of the inode class. Inode represents the static image of the file

(the inode has no state), while the file represents the dynamic image of the file (the file has

state).»

2.2.5 Miscellaneous Device Drivers

Misc (ormiscellaneous) drivers are simple character drivers that share certain common

characteristics. The kernel abstracts these commonalities into an API (implemented in

drivers/char/misc.c), and this simplifies the way these drivers are initialized. All

misc devices are assigned a major number of 10, but each can choose a single minor

number [Ven08].

A misc driver accomplishes all of the initialization steps of a character device

(alloc_chrdev_region(), cdev_init(), cdev_add() see 2.2.4) with a single call to

misc_register(). This function registers a miscdevice structure, which is the repre-

sentation of the misc device in the kernel (the same as cdev in character devices).

Block Device Drivers

Block device drivers are discussed in Section 2.4.5 because we believe they would be

better understood if we provided an overview of the block layer before delving into

them.

2.3 Disks

Throughout this thesis, we came across the notion of “disks” quite often. Although ublk

framework is handling virtual disks (see Section 1.2), we still encountered disk-related

terms and features frequently. Virtual devices are still manipulated like regular disks

after all. In this section, we’ll explore some concepts that will come in handy later on

[Gre20].

2.3. DISKS 25

With the term disk we refer to the primary storage device of the system. There are a

lot of disk types like Optical Discs, Floppy Disks, Hard Disk Drives (HDDs), the faster

flash memory-based solid-state disks (SSDs) etc. Generally, there’s a trade-off between

storage speed and value or endurance. Faster options tend to be more expensive or less

durable.

Illustration of a simple disk

Disks are asynchronous in nature (more on asynchronous API in 3.1.2). They follow an

interrupt-driven approach to notify the CPU with their response. The kernel performs

an I/O and the disk responds with an interrupt when it is ready. An interrupt is a signal

sent by another device to the CPU. Then CPU typically stops whatever it does at this

moment, acknowledges the interrupt and passes the control to the operating system to

serve it.

At this point let’s clarify what an I/O is: it is an abbreviation for Input/Output and refers

to disk reads and writes. To describe an I/O, we need to include at least:

1. The type of the I/O (read or write).

2. The size of the I/O (how many sectors).

3. The starting sector.

Due to their asynchronous nature, disks often include some kind of buffering. This type

of buffering is one (or more) in-disk queues.

Figure 2.7: Simple Disk with Queue

The I/O operations that the disk handles can either be waiting in a queue or currently

being processed. Although it might seem like a first-come, first-served queue, disk con-

trollers can employ various algorithms to enhance performance.

26 CHAPTER 2. BACKGROUND

Recent disks, usually ship with an in-disk cache. This cache is used by the controller

to finish its job faster. When a read request comes to the device, the controller checks

the cache if the desired data is stored. If it is it replies immediately. If it’s not, then the

regular procedure will be followed. In case of a write request, this cache can be used as

a write-back cache. This means that the write is considered as completed as soon as the

data transfer to cache and before the slower transfer to persistent disk storage. This new

caching schema enhances the disk’s performance because this cache is a faster memory

(usually DRAM) and can reply to requests significantly faster.

Figure 2.8: Simple Disk with Queue and Cache

2.3.1 Time related concepts

An essential aspect when evaluating disks is their responsiveness to requests. Through-

out the evolution of technology, disks have remained an integral part of this progression,

continually adapting to new demands and requirements. Therefore, it holds significant

importance to measure their capabilities, both in terms of response time and through-

put. To establish a foundation, let’s begin by defining some fundamental terminology:

Throughput: With disks, throughput commonly refers to the current data transfer rate,

measured in bytes per second (Bps).

Bandwidth: Signifies the maximum achievable data transfer rate for storage transports.

I/O latency: Indicates the time duration required for an I/O operation to complete,

encompassing the entire process from initiation to conclusion.

Measuring time

Let’s take a closer look to I/O latency. We can split this time, into two phases:

2.3. DISKS 27

1. I/O wait time: This interval represents the time a request spends in a queue,

awaiting execution.

2. I/O service time: This is the actual time it took to process the request.

The summation of these two times, is the entire time from issuing an I/O to it’s comple-

tion. This time is called I/O request or I/O response time.

I/O request time

I/O request start I/O request finish

I/O wait time I/O service time

Figure 2.9: Time-related Terminology

Of course, when talking about I/O time, it’s really important to specify which starting

and ending events we’re considering. This matters because it’s not just the disk involved.

The operating system plays a role too. To break it down, there are two main categories

of events: those happening in the kernel (kernel-based events) and those related to the

disk (disk-based events). When an application starts an I/O operation, the operating

system forms the final stage of this request in a subsystem named block layer (more

detailed information about block layer in Section 2.4.4). From there on, we start mea-

suring the time a request spends in the kernel.

This exploration leads us to distinct time components that collectively constitute the I/O

time. On one hand, there exists the Block I/O wait time, denoting the duration a request

resides in in-kernel queues, the Block I/O service time measured from from the time

kernel issues the request to the device until the completion interrupt from the device

and finally the summation of these two times that gives us the overall Block I/O request

time.

Equally, a parallel set of components characterizes disk I/O, encompassing disk I/O wait

time, disk I/O service time, and disk I/O request time.

Naturally, these two sets may intersect in certain instances. For instance, the Block ser-

vice time corresponds to the time spent on the disk, which coincides with the disk I/O

request time.

28 CHAPTER 2. BACKGROUND

Consequently, I/O latency may refer to block I/O request time (the entire I/O time), or

to the entire time spent on device (disk I/O request time).

The Figure 2.10 below, referenced from [Gre20], effectively summarizes the concepts we

discussed:

Figure 2.10: Kernel and Disk Time Terminology

2.3.2 Disk Types

The two most common disk types that are being used in industry are magnetic disks

(HDDs) and solid-state drives (SSDs). Let’s take a brief look at both of them and define

some basic terminology that we’ll use throughout the thesis.

Hard Disk Drives

HDDs aremagnetic rotational disks, that are made of one ormore platters. Each platter

consists of a number of tracks, and each track is divided into sectors. The platters rotate,

while a mechanical arm, with circuitry to read and write data from a head, reaches

across the surface.

Sector is the smallest block of storage on a disk. Traditionally it was 512-bytes in size,

but today they are often 4K in size (or another power of 2). Sectors should be considered

as the basic unit of data transfer. It is never possible to transfer less than one sector.

2.3. DISKS 29

Figure 2.11: HDD’s Anatomy

While the sector is the basic unit of data transfer for the hardware devices, the block is

the basic unit of data transfer for the filesystems. Each block must include an integral

number of sectors, thus it must be multiple or equal to the sector size. In other words

the kernel requests are in magnitude of a block, and the device translates these requests

into sectors.

This correlation is shown in the Figure 2.11, with clusters. Clusters are the smallest unit

of storage from filesystem’s perspective (i.e. block in kernel’s terminology).

Due to the mechanical part of the HDD, and the rotation of the platter, this storage

medium, is slow and it consists of three parts:

1. Seek time: The time taken by the head to reach the desired track from its current

position.

2. Rotational latency: Time is taken by the sector to come under the head.

3. Data transfer time: The actual time to read/write the data, which depends upon

the rotational speed.

Total time is the aggregation of these three times. Because of the peculiarities of HDDs

a lot of effort has been put into inventing a new type of storage, free of these symptoms.

Solid-State Drives

Solid-state drives are storage devices that mostly use as storing medium NAND flash

memory [Wike]. This type of disks have faster data access compared to HDDs, lower

30 CHAPTER 2. BACKGROUND

power consumption, anddue to the lack ofmoving parts they are also physically durable.

We won’t go into much details in the internal structures of SSDs. We will just refer to

some core components of it, to see how they differ from HDDs.

A flush-based SSD consists of arrays of memory cells. Eachmemory cell can store from

1 to 5 bits at themoment [Tec]. The smallest unit of an SSD is a page, which is composed

of several memory cells, and is usually 4 KB in size. One page is the smallest structure

which can be read or written. Multiple pages form one block. We oversimplifying a little

bit but someone can think these concepts ofNANDflashmemory like a grid. Each point

in the grid is the cell, each row is the page and the whole grid is the block.

One thing worth mentioning, is that flash memory has asymmetrical read/write perfor-

mance: fast reads and slower writes. This is due to the fact that flash memory cannot

overwrite a page. The fact that you can read and write in pages but only erase in blocks

leads to some odd behavior when compared to traditional storage. A magnetic hard

disk can always write wherever it likes and update data “in-place”. Flash storage can’t.

It can (essentially) only write to empty, freshly erased pages.

The most obviously bad side effect of this kind of scheme is that, unless the SSD has an

available erased page ready and waiting for data, it can’t immediately perform a write.

In cases where no erased pages are present, the SSD must identify a block with unused

(yet unerased) pages, erase the entire block, and subsequently write out the old contents

of the block alongside the new page [Hut].

2.4 I/O Stack

In this section we will analyze the data path from an application in a computing system,

to the physical non-volatile memory (disk). More specifically, we will follow a read()

or write() system call, andwewill make a brief tour in the various Linux kernel subsys-

tems it passes until the request finally reaches the disk. In sections 2.2.2 and 2.3, actually

we touched the 2 last components of this path, the Device Drivers, and the disk itself.

Now, we will take a look in the overall picture.

In Figure 2.12, we present a visual representation of the subsystems involved. Thismen-

tal model should be in our minds when we think about a read() or a write() system

2.4. I/O STACK 31

call. It’s important to note that this figure is not exhaustive and represents a high-level

overview of the I/O stack.

CD ROM

U
se
rs
p
ac
e

K
er
n
el
sp
ac
e

H
ar
d
w
ar
e

APP APP APP

HDD SSD

VIRTUAL FILE SYSTEM (VFS)

PAGE CACHE

FS
EXT4XFS BTRFS

BLOCK LAYER

DRIVERDRIVERDRIVER

Figure 2.12: I/O Path

2.4.1 Application

At the highest level, an application, running as a process in the operating system, inter-

acts with a file through system calls exposed by the VFS, such as open(), read(), write().

To a user application a file is just a linear sequence of bytes, with the ability to access

and modify each of them.

2.4.2 Virtual File System (VFS)

In order to support multiple filesystem types Linux implements a large and complex

subsystem that deals with filesystem management: the Virtual File System. This sub-

system serves two main purposes:

32 CHAPTER 2. BACKGROUND

• Exposes a consistent API to the applications above it.

• Enforces a common file model on the filesystems, beneath it.

Imagine a system that requires users to knowpreciselywhat type of filesystem ismounted

on the storage device they’re interacting with, and based on this type, call a different

function. Consider how cumbersome it will be for an application to implement some-

thing like this:

1 [...]

2 fd = open(”desired_file”);

3 if (is_filesystem_ext4(fd))

4 ext4_read();

5 else if (is_filesystem_xfs(fd))

6 xfs_read();

7 else if (is_filesystem_vfat(fd))

8 vfat_read();

9 [...]

This complexity is hidden from end users (applications) by the common file model. The

common file model demands filesystems to implement this consistent API. In other

words, it’s as if VFS is telling filesystems: «I don’t care how you’ll implement the read()

system call, but be aware that I enforce these policies, I’m making this assumptions, and

I expect your read() implementation to adhere to them.».

For example, as noted in [BC06], in the common file model, each directory is regarded

as a file, which contains a list of files and other directories. However, several non-Unix

disk-based filesystems use a File Allocation Table (FAT), which stores the position of

each file in the directory tree. In these filesystems, directories are not files. To stick to

the VFS’s common file model, the Linux implementations of such FAT-based filesys-

tems must be able to construct on the fly, when needed, the files corresponding to the

directories.

This logic, of hiding complexity from subsystems and enforcing rules for others to follow

is a common feature in the Linux kernel.

To achieve this, VFS uses four important objects. Some of these data structures exist

solely in memory, and some reside both on disk and in memory:

2.4. I/O STACK 33

1. Supeblock object: Contains information about the filesystem instance. It exists

on disk, and usually also in memory for caching purposes. Essentially it is the

filesystem’s metadata.

2. Inode object: This object uniquely identifies a file on disk (see also 2.2.4). It ex-

ists on disk and in memory for caching purposes. While superblock contains

filesystem metadata, an inode contains metadata for a specific file, including in-

formation such as file type, the file size, access rights etc.

3. File object: This object exists solely in memory and corresponds to an open file

(see also section 2.2.4).

4. Dentry object: This object, is a memory entity (similar to a file) and associates a

name with an inode (i.e. a name with a corresponding file on disk). It is the glue

that holds inodes and files together.

struct file

struct file

struct file

open("my_file.txt"
)

struct dentry

struct dentry

struct inode struct superblock
Process 1

Process 2

ope
n("m

y_fil
e.tx

t")

open("hard_link_file.txt")

Disk with a
filesystem

Figure 2.13: From Processes to VFS Objects

Figure 2.13 illustrates the relationships between these objects.

Process 1 opens a file named my_file.txt, andprocess 2 opens the samefile my_file.txt

and a hard link [Wikf] to this file named hard_link_file.txt. The kernel creates three

struct file objects associating each of them with an open operation. Two of these objects

point to the same struct dentry, because they were opened using the same pathname.

Both of these dentry structures point to the same struct inode, because they refer to

34 CHAPTER 2. BACKGROUND

the same file on disk. The Figure 2.13 also demonstrates that the superblock is typically

stored at the beginning of the filesystem, (and because it is critical, copies of it exist in

other places as well).

2.4.3 Filesystem (FS)

The filesystem is a special data hierarchical storage structure, which contains files, di-

rectories and related control information. It provides a file-based interface for access

and file permissions to control the access. As mentioned previously each compatible

filesystem, needs to implement various functions defined from VFS.

Filesystems are also responsible for a very important type of cache: the page cache.

Page cache is a region in memory that is used from filesystems to save pages that the

application accessed (or may access) in order to speed up I/O operations. New pages

are added to the page cache to fulfill read requests from processes. If the page is not

already in the cache, a new entry is added, and it is populated with the data read from

the disk. If the page is there, then it returns with the result without the need to reach

the disk and block the calling process . For write requests, filesystems can use the page

cache as a write-back cache. This will improve the speed of the write because it will treat

it as completed after data reach main memory and will postpone the “real”, costly write

to disk sometime later, asynchronously.

An application can bypass the page cache by specifying the O_DIRECT flag in the open()

systemcall. According to this flag, the file systemcommunicates directlywith the generic

block layer, and data is transferred to or from the disk directly from the userspace buffer,

without first being stored in pages of the page cache. This can be ideal for applications

that manages some form of temporary storage and does not wish to rely on the kernel’s

caching mechanism, like databases.

Of course, this behavior creates an inconsistency in our system. What if an application

(app1) writes to a page in the page cache and another application (app2) tries to read

the same page while having the file open with the O_DIRECT flag? For this reason, the

kernel marks each updated page in the page cache as dirty. Dirty means that the data

stored on a page in the page cache differs from the corresponding “block” on the disk.

The kernel detects that there is an updated version of the page that app2 wants to read

2.4. I/O STACK 35

and instructs a kernel thread to flush the page cache to disk so that app2 can now read

the correct data.

A read() from a file opened with the O_DIRECT flag leads to page cache flush and a

write() leads to page cache invalidation.

The I/O operation that passes through the page cache is also known as buffered I/O,

while the I/O operation that is not passing is called direct I/O.

Note: Thepage cache effect is depicted in Fig. 2.12 in themiddle path, while the O_DIRECT

approach is illustrated in the rightmost path. The leftmost path indicates a call to a block

device that doesn’t have a filesystem.

2.4.4 Block Layer

The block layer glues together all the upper and lower components of the I/O stack. I/O

requests targeting block devices, will (most probably) pass through this layer. Just as

VFS hides from userspace the complexity of the files, block layer hides from filesystems

the complexity of block devices, by enforcing a unified way in order to access device

drivers. As previously mentioned this is a common technique followed in Linux kernel.

The bio structure

The fundamental structure governing this layer, starting from kernel version 2.6 on-

wards, is the “struct bio”, which describes a current I/O operation. This structure fills

the gap between how the kernel allocates memory and how disks operate.

Generally, a read or write operation consists of at least one buffer. The buffer is where

the user either waits for data in the case of a read or demands to write to the disk in the

case of a write. There are also variants to the classical read and write, like readv or writev

system calls [mph], where you specify an array of buffers in each call. This means that

when the I/O request reaches the block layer, we can have something like what Fig. 2.14

shows.

Here, we should note that even for the classical read/write where we only specify one

buffer, it may not be contiguous in physical memory. So, in general, what Fig. 2.14

illustrates, applies to all read/write family system calls.

36 CHAPTER 2. BACKGROUND

 
​

​ 
​

Physical Memory

 
​

​ 
​

Virtual Memory

write(fd, buf, count)

 
​

​ 
​

Disk

sectors

.

.

.

struct bio
....
unsigned int bi_opf;
...
struct bio_vec *bi_io_vec;
....
struct bvec_iter bi_iter;
...
void *bi_private
....

struct bio_vec

struct page *bv_page;
unsigned int bv_len;
unsigned int bv_offset

struct bio_vec

struct bio_vec

struct bio_vec

struct bvec_iter

sector_t bi_sector
unsigned int bi_size;
unsigned int bi_idx;
unsigned int bi_vec_done;

Figure 2.14: The Role of struct bio

The struct bio structure contains a bi_io_vec vector of struct bio_vec structures. A

bio_vec structure, consists of the individual pages in the physical memory to be trans-

ferred, the offset within the page and the size of the buffer. This is the field in bio

that «knows what is happening in memory». The struct bvec_iter on the other hand

«knows what is happening on disk». From which sector this I/O will start, what is the

length etc.

Also, the request type (read or write) is encoded in bi_opf field of the bio structure.

A bio defines a block I/O operation as a group of consecutive sectors that need to be read

or written to dispersed memory segments. But block device drivers do not generally

receive bio structures directly; they service block requests received as struct requests,

which emerge after the bio structures have undergone processing by the Linux block

layer [Kou].

2.4. I/O STACK 37

Single-Queue Linux block layer

The block layer has gone through numerous changes over the last decade. The previ-

ous design was known as a Single-Queue (SQ) design. In this design, each device had a

corresponding queue in the block layer, of type “struct request_queue”. This struc-

ture was made up of requests, of type “struct request”. Each request consisted of

struct bios, and each request described an I/O operation from a location (or locations)

in memory to a physically adjacent area on the disk. This means that every time we

registered a block device driver, the kernel initiated a request_queue dedicated to that

driver. The block layer was responsible for populating the queue with requests, and the

driver was responsible for dispatching them.

The block layer treated the struct request_queue practically as a staging area. Once a

request was in the staging area, the block layer could perform I/O scheduling and adjust

accounting information before scheduling I/O submissions to the appropriate storage

device driver.

At this point, it is useful to refer to a mechanism that the scheduler implements, named

plugging. In short, plugging is away to temporarily “lock” the request queue, preventing

drivers from dequeuing any requests from it. This allows the scheduler to wait for and

merge new bios with pre-existing requests, creating larger requests.

In a world where HDDs were the primary hardware target for disk I/O, the main bot-

tleneck was the seek time of the disk head. Therefore, the primary concern was to hand

over to the device as many consecutive sectors as possible in one request.

Thismechanism illustrates a general solution in engineering. Many times, whenwe seek

a solution, we may need to perform an action that, at first glance, appears counterpro-

ductive to our goal (in this case, introducing a delay via plugging). However, this delay

is much smaller than the delay we would have incurred if we had sent random requests

to the disk.

Multi-Queue Linux block layer

The single queue architecture described in the previous section was sufficient when the

secondary storage device was HDDs. However, the arrival of SSDs, changed the char-

acteristics of I/O and significantly increased the response speed of the disks.

38 CHAPTER 2. BACKGROUND

Figure 2.15: Single-Queue Linux Block Layer Design

It was observed that the biggest performance bottleneck in I/O appeared in the block

layer [MBB]. The previously sufficient single queue architecture was reducing the speed

of the requests basically because of the lock contention between different CPUs. As ex-

plained, there was one request queue for every block device driver. So if we had different

applications running on different CPUs we spent a lot of time competing for the lock of

the queue.

This problem was not noticeable when the disks responded slowly. However, when this

changed, it became exposed and led many device driver designers to bypass the block

layer in order to gain performance.

Thenewblock layer named blk-mq wasmerged in the Linux kernel on 25, October 2013

in 3.17 kernel version [Axba].

The new design of the block layer introduced a two level, Multi-Queue approach. Two

level, means that it uses of two separate sets of request queues:

1. Software staging queues: One per CPU or per NUMA node.

2. Hardwaredispatchqueue(s): Thecorresponding device driver specifies howmany

hardware queues supports (but they cannot surpass the number of cores in the

system).

2.4. I/O STACK 39

Figure 2.16: blk_mq Linux Block Layer Design

There were two main benefits from the blk-mq design: (a) The spread of queues across

CPUs obviously led to a reduction in the number of locks required for each request

queue. Since each CPU has its own queue, there is no need for other CPUs to compete

for the lock. (b) It became clearer which objects the block layer was handling and which

the driverswere handling. With the previous design, both the block layer and the drivers

shared a common request queue. With the new design, the block layer mainly deals

with software queues, while the drivers “watch” the hardware queues. This facilitates

the design of the drivers, as it makes the role of each layer in the kernel more clear.

Note: Neither the block layer nor the device protocols guarantee the order of completion

of requests. This must be handled by higher layers, like the filesystem [docb].

To facilitate the completions, blk-mq associates each request structure a tag number that

is unique among requests for that device. This tag accompanies the request throughout

its journey, extending into the hardware if supported, and returning in the samemanner.

Allocating the tag number early ensures a more seamless transit for the request through

lower layers, until eventually the block layer releases it.

40 CHAPTER 2. BACKGROUND

2.4.5 Block Device Drivers

The kernel must interact with a variety of different hardware devices. Device drivers are

the final in-kernel component in the I/O stack, responsible for handling this communi-

cation, and they are often provided by the vendors who develop the hardware devices.

Specifically, for the I/O stack, we are interested in block device drivers because they are

responsible for communicating with storage devices.

In the kernel, a disk is represented by a structure called gendisk, which contains es-

sential information describing a block device. This information includes the major and

minor numbers of the device and its partitions (if any), the device’s name, associated

disk operations, a queue responsible for managing I/O requests and more.

This queue is the request_queue referred to earlier in Section 2.4.4. It servers as the

container for the two distinct queues types that make up blk_mq architecture: the “soft-

ware staging queues” and the “hardware dispatch queues”. This linkage illustrates how

a block device becomes connected with the queues in the blk_mq architecture.

The allocation of both the gendisk and request_queue occurs in a single step, per-

formed by the blk_mq_alloc_disk function, commonly within the device driver’s ini-

tialization routine.

It’s worth noting that the disk operations embedded in the gendisk structure are equiv-

alent to the file_operations used for character devices, as explained in Section 2.2.4.

These operations are represented as a collection of function pointers, where each func-

tion corresponds to an operation on the disk. Here are some of the fields within

block_device_operations:

1

2 struct block_device_operations {

3 void (*submit_bio)(struct bio *bio);

4 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,

5 unsigned int flags);

6 int (*open) (struct block_device *, fmode_t);

7 void (*release) (struct gendisk *, fmode_t);

8 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);

9 [...]

10 void (*free_disk)(struct gendisk *disk);

11 [...]

2.4. I/O STACK 41

12 };

Listing 2.7: struct block_device_operations

Notably, there are no specific reador write functionswithin block_device_operations.

This raises the question of how a block device driver handles reads and writes.

Before drivers allocate the gendisk and request_queue, they have the opportunity to

fine-tune this allocation. In the Linux kernel, there exists a structure called blk_mq_tag_set,

which stores metadata information about struct_request. Using blk_mq_tag_set,

driver designers can specify essential parameters, including the number of hardware

queues and the depth of each queue. Additionally, they can provide a pointer to a

structure known as blk_mq_ops, which holds various function pointers responsible for

defining driver-specific behavior and handling I/O operations.

The blk_mq_tag_set structure plays a pivotal role in establishing the connection be-

tween these configurable parameters, and the subsequent initialization of both the gendisk

and the request_queue. It serves as the linchpin that configures how the block device

driver manages I/O operations.

blk_mq_tag_set contains a vital field that stores pointers to functions responsible for

implementing block driver behavior. Among these functions, the most significant one

is queue_rq. This function gets called when the kernel decides that the driver should

process I/O requests. It serves as the equivalent of the read and write functions en-

countered in character devices. queue_rq receives the requests for the device as argu-

ments and can use various functions to process them.

To initialize and add a block driver to the system, the driver typically:

1. Specifies essential information that the disk supports in the blk_mq_tag_set

structure and allocates it.

2. Initializes a gendisk with a corresponding reqeust_queue, by passing the pre-

viously allocated structure as an argument to the initialization function.

3. Finally, adds the disk to the system by calling the add_disk() function. This ad-

ditionmust occur when everything is ready, as the disk may already be active and

can receive calls during this function’s execution.

42 CHAPTER 2. BACKGROUND

From this point forward, the driver is prepared to handle any request by invoking the

queue_rq function to process it.

gendisk

major

disk_name

fops

queue

private_data

[...]

block_device_operations

open

release

ioctl

[...]

request_queue

mq_ops

queue_ctx
hctx_table

nr_hw_queues

queue_depth

disk

tag_set

[...]

software and
hardware queues

blk_mq_ops

queue_rq

commit_rqs

init_htctx

init_request

[...]

blk_mq_tag_set

ops

nr_hw_queues

queue_depth

driver_data

[...]

Figure 2.17: Relation Between Structures on Block Drivers

2.4.6 Storage Device

The last component of the I/O stack is the disk. It is where the data wewant to read/write

are stored. We covered disks in Section 2.3.

2.5 Cryptography

We utilized the Advanced Encryption Standard (AES) algorithm to implement the en-

cryption scheme of the ublk framework. In this section, we will present some basic

cryptographic knowledge, introduce the AES algorithm, and finally, we will provide

2.5. CRYPTOGRAPHY 43

the mathematical background that is important for understanding the internals of the

AES algorithm.

2.5.1 Introduction to cryptography

Cryptography is the science of encoding information and transforming it into a format

that is unintelligible and useless to any unauthorized party, ensuring secure communi-

cation and data protection. The need to hide information and disguise it dates back to

ancient times. Many different cryptographic methods were employed by ancient civi-

lizations, including the Egyptians, Greeks, Romans, and others.

In today’s digital age, cryptography is often associated with the process of transforming

ordinary plaintext into ciphertext. Ciphertext is a form of text that is modified in such a

way that only the intended recipient can decode it. In our contemporary world, where

every piece of personal information is stored in a database somewhere in the world

and can potentially be accessed by others, it is a necessity to be able to protect against

malicious users. This is precisely what cryptography aims to achieve.

Cryptography achieves its goals through various means:

• Confidentiality: Ensures that data are useless for unauthorized parties.

• Integrity: Safeguards the reliability and accuracy of data, preventing tampering

and unauthorized alterations.

• Authentication: Verifies the identity of parties engaged in communication, en-

suring that interactions occur with the correct and trusted entities.

• Non-repudiation: Provides evidence that a message was sent or received, pre-

venting individuals from denying their involvement in a transaction.

2.5.2 Symmetric vs Asymmetric Cryptography

We can envision encryption as a black-box operation that takes plaintext as input and

produces ciphertext. Alongside the plaintext, this transformation requires a critical

component known as a key, which is used in the encryption process.

44 CHAPTER 2. BACKGROUND

Encplaintext

Key

ciphertext

Figure 2.18: Encryption

Similarly, decryption is the opposite operation. It functions as a black-box, taking ci-

phertext as input, along with a key (not necessarily the same key used for encrypting

the original message), and producing the plaintext.

Decciphertext

Key

plaintext

Figure 2.19: Decryption

The black-boxes are essentially algorithms. The encryption algorithm can be repre-

sented as a function that takes plaintext and a key as input yielding ciphertext. E(k, p) =

c, whereE is the encryption function, k is the key, p is the plaintext and c is the cipher-

text. Similarly decryption is denoted as the functionD(k, c) = p, where k is the key for

decryption, c is the ciphertext and p is the plaintext.

According towhat keyweuse to decrypt the ciphertext there are two types of encryption:

symmetric and asymmetric encryption. Symmetric encryption relies on a single shared

key for both encryption and decryption. In contrast, asymmetric encryption employs a

pair of keys: a public key for encryption and a private key for decryption.

Each method has its own advantages and disadvantages. Let’s examine some of their

differences:

• Symmetric encryption is generally faster than asymmetric encryption because

it requires less computational power. This makes it well-suited for encrypting

large volumes of data quickly.

2.5. CRYPTOGRAPHY 45

• In symmetric encryption, the secure distribution of the shared key is vital since

it serves for both encryption and decryption. On the other hand, asymmetric

encryption simplifies key distribution by requiring only the sharing of the public

key, while the private key remains confidential.

• Symmetric encryption is ideal when transferring large amounts of data within

closed systems, because it provides only confidentiality without authentication

or non-repudiation. Asymmetric encryption, on the other hand, is often used

for secure key exchanges, digital signatures, and authentication in open systems

because in addition to confidentiality it can provide both authentication and non-

repudiation.

Of course, symmetric and asymmetric encryption can collaborate to create amore com-

prehensive security solution. For instance, SSL/TLS encryption employs asymmetric

encryption to establish a secure session between a client and a server, and then relies

on symmetric encryption for exchanging data within the secured session [F5]. This

approach allows to leverage the advantages of both encryption methods in a unified

security framework.

2.5.3 Introduction to AES

AES is currently the most popular symmetric encryption algorithm in use. It replaced

theDES (Data Encryption Standard), after theNational Institute of Standards and Tech-

nology (NIST) announced in 1997 their intention to select a successor to DES, which

they named AES. After three years of searching and evaluating various algorithm sub-

missions, NIST selected the Rijndael algorithm as the final successor of DES, and named

it AES. Rijndael was designed by two Belgian cryptographers Vincent Rijmen and Joan

Daemen [Wika].

AES is a block cipher, that employs symmetric encryptionwith key sizes of 128, 192 and

256 bits. The larger the key size, the greater the level of security and resistance to brute-

force attacks. In essence, as the key size increases, so does the complexity of breaking

the encryption, making it more robust and suitable for protecting sensitive information.

Block cipher: is a deterministic algorithm that operates on fixed-length group of bits,

called blocks [Wikb].

46 CHAPTER 2. BACKGROUND

AES divides the plaintext into 128-bit blocks and processes each block individually. A

high-level overview of the encryption and decryption processes of AES is depicted in

Figures 2.20 and 2.21, respectively.

Enc/plaintext

Key

/ ciphertext
128

128, 192, 256

128

Figure 2.20: AES Encryption

Dec/ciphertext

Key

/ plaintext
128

128, 192, 256

128

Figure 2.21: AES Decryption

The AES algorithm operates in rounds, with the number of rounds varying depending

on the key size as Table 2.1 illustrates:

key # rounds
128 10
192 12
256 14

Table 2.1: Key Size and Rounds

To comprehend the AES internals, it is essential to introduce and establish a mathemat-

ical foundation. All internal operations of AES are rooted in Finite Fields, also known

as Galois Fields. Therefore, we will dedicate the next section to explore and grasp cer-

tain mathematical concepts that are crucial for understanding AES. Of course, those

uninterested in these concepts can skip the following section.

2.5. CRYPTOGRAPHY 47

2.5.4 Mathematical Background

Before we can understand what a field is, we need to introduce a simpler algebraic struc-

ture named Group. Theorems and definitions are taken from [CP10].

Definition 2.5.1 (Group). A Group is a set of elements G, together with an operation ◦
which combines two elements of G. A Group has the following properties:

1. The Group operation ◦ is closed. That is ∀a, b ∈ G, it holds that a ◦ b = c ∈ G.

2. The Group operation is associative. That is, a ◦ (b ◦ c) = (a ◦ b) ◦ c, ∀a, b, c ∈ G

3. There is an element 1 ∈ G, called the neutral element (or identity element), such

that a ◦ 1 = 1 ◦ a = a, ∀a ∈ G.

4. ∀a ∈ G, there exists an element a−1 ∈ G, called the inverse of a, such that

a ◦ a−1 = a−1 ◦ a = 1.

5. A group G is abelian (or commutative) if, furthermore, a ◦ b = b ◦ a, ∀a, b ∈ G.

For example:

• For G = Z and ◦ = +, the (Z,+) forms a Group, with 0 being the neutral

element.

• (Z,−) is not a group. For example for a = 3, b = 2, c = 1⇒ (a− b)− c = 0 ̸=
a− (b− c) = 2, so it isn’t associative.

• For G = Zm = {0, 1, ...,m − 1} and the operation addition modulo m forms

a group with the neutral element 0. Every element a has an inverse −a such that

a+ (−a) ≡ (−a) + a ≡ 0 (mod m).

Definition 2.5.2 (Field). A field F is a set of elements with the following properties:

1. All elements of F form an additive group with the group operation “+ ” and the

neutral element 0.

2. All elements of F except 0 form a multiplicative group with the group operation

“× ” and the neutral element 1.

48 CHAPTER 2. BACKGROUND

3. When the two groupoperations aremixed, the distributivity lawholds, i.e.,∀a, b, c ∈
F : a× (b+ c) = (a× b) + (a× c).

Examples of fields are R,Q and C.

Fields can form an infinite set (like R), or finite sets. In cryptography we are interested

in the latter. These fields are called Finite Fields (FF) or Galois Fields (GF).

The following theorem is very important:

Theorem 2.5.1. Finite Fields (FF) only exists if they have pm elements, where p is prime

and m is a positive integer.

From this theorem, we can derive for example that there exists FF with 2, 4, 8, 16,

elements, since 2 is prime and 2 = 21, 4 = 22 and so on.

We obtain also, that we can distinguish between two types of GF : Both of them have

the form ofGF (pm), where p is a prime,m is a positive integer and pm are the elements

of the field:

1. Prime Fields: for m = 1.

2. Extension Fields for m > 1.

Prime Fields (GF (p))

The elements of a prime Galois Field,GF (p) are the integers {1, 2, 3, ..., p− 1}. Arith-

metic in GF (p) is done modulo p.

Let a, b ∈ GF (p) = {0, 1, 2, ..., p− 1} :
a+ b ≡ c (mod p)

a− b ≡ d (mod p)

a · b ≡ e (mod p)

a · a−1 ≡ 1 (mod p)

Note: All conditions of fields are satisfied with these computations.

2.5. CRYPTOGRAPHY 49

Extension Fields (GF (pm))

In cryptography we are interested in Extension Fields, with p = 2. So we will investigate

GF (2m). The elements of GF (2m) are polynomials, and can be represented as:

A(x) = am−1x
m−1 + am−2x

m−2 + ...+ a1x+ a0

The coefficients ai ∈ GF (2) = {0, 1}. So each ai is either 0 or 1.

Example: GF (23) is a Galois Field with 8 elements. Each element A(x) has the form:

A(x) = a2x
2 + a1x+ a0, where a2, a1, a0 ∈ {0, 1}.

The 8 polynomials ofGF (23) can be represented by the combinations of (a2, a1, a0) in

{0, 1}: For (a2, a1, a0) = (0, 0, 0)⇒ A(x) = 0, for (a2, a1, a0) = (0, 0, 1)⇒ A(x) =

1, and so on.

GF (23) = {0, 1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1}

Addition and Subtraction inGF (2m)

Definition2.5.3 (ExtensionfieldAddition and Subtraction). LetA(x), B(x) ∈ GF (2m).

The sum of the two elements is then computed according to:

C(x) = A(x) + B(x) =
m−1∑
n=0

cix
i, ci ≡ ai + bi ≡ ai − bi (mod 2)

And the difference is computed according to to:

C(x) = A(x) + B(x) =
m−1∑
n=0

cix
i, ci ≡ ai + bi ≡ ai − bi (mod 2)

Example: Let A(x) = x2 + x and B(x) = x2 + x + 1. Then A(x) + B(x) = (1 +

1)x2 + (1+ 1)x+ (0+ 1) = 0x2 +0x+1 = 1, because the coefficients are computed

modulo 2.

50 CHAPTER 2. BACKGROUND

Note: Subtraction and addition in GF (2m) are the same operations: A(x) + B(x) =

A(x)− B(x).

Multiplication inGF (2m)

In order to understand the multiplication and inversion in GF (2m), we need to in-

troduce the concept of irreducible polynomials. Irreducible polynomials are roughly

comparable with prime numbers, (i.e. their only factors are 1 and the polynomial itself).

For example, A(x) = x2 + x, is reducible because A(x) = x(x + 1). On the other

hand, A(x) = x3 + x+ 1 is irreducible because we cannot factor it.

Let A(x), B(x) ∈ GF (2m) and

P (x) ≡
m∑
i=0

pix
i, pi ∈ GF (2)

be an irreducible polynomial. Multiplication takes part in three steps:

1. Multiply A(x) and B(x) like normal

2. Reduce the coefficients of the resulting polynomial modulo 2

3. Reduce the entire polynomial modulo P (x)

Note that the irreducible polynomial P (x) has degree of numberm, while the elements

of the field has degree up to m− 1. Both of them have coefficients ai ∈ {0, 1}.

Example: LetA(x) = x3+x2+1 andB(x) = x2+x and theGF (24). An irreducible

polynomial for this field is P (x) = x4 + x+ 1.

Step 1: C ′(x) = A(x) · B(x) = x5 + 2x4 + x3 + x2 + x

Step 2: Reduce the coefficients modulo 2. 2x4 ≡ 0 (mod 2), so after this step we have

the polynomial x5 + x3 + x2 + x

Step 3: We perform the polynomial division which gives x5 + x3 + x2 + x ≡ x3

mod P (x). So, A(x) · B(x) = x3.

2.5. CRYPTOGRAPHY 51

Inversion inGF (2m)

The inverse A−1(x) of an element A(x) ∈ GF (2m) must satisfy:

A(x) · A−1(x) ≡ A−1(x) · A(x) ≡ 1 mod P (x)

where P (x) is an irreducible polynomial.

Even though A−1(x) can be computed via the extended Euclidean algorithm [CP10],

in practice, we use just a lookup table for Galois Fields with relatively small number of

elements.

Note: Division is simply a matter of multiplying the first operand by the inverse of the

second.

52

3
Design

3.1 Synchronous vs Asynchronous vs Blocking vs Non-

Blocking

Synchronous, asynchronous, blocking andnon-blocking are four concepts that can some-

times be little vague, and we encountered them frequently during our thesis. In this

section, we will attempt to provide our understanding on these matters.

Programming is a diverse field. The types of tasks programmers and engineers face are

varied and cover a wide range of applications. Of course, these tasks may have different

requirements, and they may involve inherently different applications. This necessitates

software engineers to design software tailored to the demands and specific characteris-

tics of each application.

One of the fundamental concepts engineers encounter when constructing a solution to

a problem is the type of communication they will employ to achieve their objectives, if

any communication is required.

In this investigation our communication parties are processes (or threads) on the one

hand and the Linux kernel on the other.

3.1.1 Synchronous API

We refer to a process (or a thread) asmaking a synchronous call to the operating system

(e.g. a synchronous read), whenwe can be certain that the desired taskwill be completed

53

54 CHAPTER 3. DESIGN

by the time the instruction pointer advances to the next instruction of the process (e.g.

for a read this means that the buffer will contain the requested data).

Of course, there will be a waiting period if the operating system isn’t ready to respond

immediately. However not all synchronous calls necessarily lead to blocking. In fact,

the ideal scenario is quite the opposite: to have a flawless system where requests are

always ready to be serviced without blocking. This is the rationale behind mechanisms

like the page cache, as discussed in 2.4.3.

For example, a synchronous read will not block if the data it requires are present in the

page cache and the page is not marked as dirty. However, if the required data are not

in the page cache, or if the file is opened with the O_DIRECT flag (bypassing the page

cache entirely), then it will block until the operating system retrieves the data from the

disk.

The write semantics exhibit some differences. When using the page cache and sufficient

space is available to store the data, the operating system employs it as a write-back cache,

ensuring that the process never blocks. Once the operating system transfers the desired

data to the page cache, it considers the request as completed (see also section 2.4.3).

Synchronous writes are those made to files opened with the O_SYNC flag, or one of

the variants O_DSYNC and O_RSYNC. A synchronous write only completes when the

data is fully written to persistent storage (e.g., disk devices), including any necessary

filesystem metadata changes. Consequently, the kernel places the process initiating the

write on a waiting queue until the data is written on the disk.

In all of these cases, whether for reading orwriting, andwhether the process experienced

blocking or not: synchronous calls guarantee that when control returns to the process,

the task will be accomplished.

An illustration of synchronous behavior is shown in Figure 3.1

3.1.2 Asynchronous API

We refer to a process as making an asynchronous call to the operating system, when

the job is being done without the process waiting in the kernel. The process starts the

job and if the kernel is not ready, doesn’t stuck and returns. So, in instruction pointer

3.1. SYNCHRONOUS VS ASYNCHRONOUS VS BLOCKING VS NON-BLOCKING55

Process Kernel

system call

reply Kernel can respond
immediately. Process

doesn't block.

system call

reply

Process is
blocked

Kernel cannot respond
immediately. Puts

process in a waiting
queue.

Figure 3.1: Synchronous API

terms, when the instruction pointer points to the next instruction of the asynchronous

call, the job may not have finished yet.

This situation implies the need to establish a means of communication between the ker-

nel and the process in order to enable notifications when the task is completed.

Asynchronous APIs may boost the application’s performance if the results of the call

are not needed immediately. This way, the process initiates a job, continues performing

other tasks, and receives a notification from the kernel when the response is ready.

An illustration of asynchronous behavior is shown in Figure 3.2

3.1.3 Blocking

A blocking call is a call that will block the caller until the result is ready. Blocking has

the same semantics as synchronous, and that is why they are used interchangeably.

3.1.4 Non-Blocking

A non-blocking call from an application will not block if the answer is not ready, but it

will not initiate the desired operation either. Non-blocking is like asking the operating-

system «Hey, can you do this job without puttingme to sleep? ». If the operating system

56 CHAPTER 3. DESIGN

Process Kernel

system call

reply
Process does

not block

system call

system call

reply

reply

Kernel may or
may not reply
immediately.

Figure 3.2: Asynchronous API

can, then the job will complete successfully. If not, it will just return an error message.

This is a delicate point in the difference between non-blocking and asynchronous. In an

asynchronous API, you start a background effort to fulfil your request. In non-blocking

this is not the case.

Some general observations

• I have synchronous and asynchronous communication in mind as the general

“strategy” of the communication. As the communication API.

• Blocking and non-blocking as mechanisms.

• If the communication API is synchronous, we can’t have a non-blocking mech-

anism. Because their definitions inherently conflict. Synchronous means block-

ing. An example of this is that if you open a regular file as O_NONBLOCK (i.e. as

non-blocking), this will not make any difference in the subsequent calls to the file

(see [mpe]). Reading and writing from regular files have a synchronous interface.

• On the other hand, an Asynchronous API can be blocking only if it chooses to

block and wait for the results. Or it may implement a part of the communication

as blocking in the background. For instance, asynchronous communication can

be achieved if the API creates a thread that will block and wait for the response

3.2. IO_URING 57

and then notify the caller of the result. In this case, we have an asynchronous API

with a blocking part. This part is not “visible” to the caller.

Note: Of course synchronous and asynchronous concepts extend out of programming.

Imagine if you have to call someone to ask for information. If the other person doesn’t

have the response and needs to search before the reply you can either wait on the phone

till then, or give the other person your phone, and tell him or her to call you back when

they have the answer. This simulates exactly the concept of synchronous, where you

wait on your phone, and asynchronous where you establish a way to find you (you gave

him/her your number) and you close the phone.

3.2 io_uring

io_uring...why?

The most common communication model used by applications today with respect to

I/O is synchronous. This involves either the oldest read/write system calls or one of

the later added variants: pread/pwrite and preadv/pwritev. However, due to their na-

ture, in certain applications, an asynchronous approach matches better. Linux supports

two asynchronous APIs: (a) The Linux native asynchronous API (named Linux AIO or

libaio) and (b) the one POSIX defines, called POSIX AIO.

These two are implemented differently in Linux. The POSIX AIO is actually a thread-

based implementation, manipulated by the glibc library [mpa]. An application that

wants to use this API generates library calls which result in offloading the real work to

another thread, which then actually blocks while waiting for the result. This implies the

need to establish a notification channel so that the “main thread” can be notified that a

result is ready. The most notable limitation of POSIX AIO is that maintaining multiple

threads to perform I/O operations on a one-thread-per-request basis is expensive and

doesn’t scale well.

On the other hand, Linux AIO uses system calls directly. Thus, the kernel is responsible

for handling the requests without the overhead of one-thread-per-request that POSIX

AIOhas. However, it also suffers frommany limitations. Thebiggest one is that it doesn’t

support buffered I/O, but only I/O issued to file descriptors open with the O_DIRECT flag

58 CHAPTER 3. DESIGN

(see 2.4.3). This imposes a great limitation on applications that want to use this API,

excluding any application that uses the page cache.

3.2.1 io_uring overview

All these limitations of both Linux AIO and POSIX AIO have led the majority of appli-

cations that want to enhance the performance of their application via an asynchronous

interface to implement it themselves. Usually, this means that they have to manage a

pool of threads that the main core of the application will offload any blocking call to. Of

course, this leads to additional burden on the application’s side because they have to take

into account the thread pool administration, including the communication between the

evolving parties.

io_uring tries to fill in this gap in asynchronous Linux I/O. It got merged in the 5.1

release inMay 2019. Initially, it was focused on block I/O, but then it evolved to support

more system calls. So, it has become like a generic framework for performing system

calls in an asynchronous way.

According to its creator, Jens Axboe, the objectives that guided the creation of io_ur-

ing, addressed the challenge of balancing usability, flexibility, scalability and of course

efficiency in asynchronous I/O.

At the core of an io_uring instance are two ring buffers: one for submitting requests

named the Submission Queue (SQ), and one for reaping the responses named the Com-

pletion Queue (CQ). These buffers are shared between the application and the kernel

via mmap(), and each queue consists of entries. The SQ consists of Submission Queue

Entries (SQEs), while the CQ consists of Completion Queue Entries (CQEs). It’s worth

noting that while CQEs are indeed embedded in the CQ, SQ descriptor doesn’t actually

contain the SQEs. They reside in a different mmaped space, and there is an indirection

reference from the SQ to them. However, this doesn’t change the conceptual semantics

of io_uring communication, which can be thought of as depicted in Figure 3.3.

The application submits requests at the tail of the SQ and reaps responses from the head

of the CQ.The kernel extracts requests from the head of the SQ and puts responses at the

tail of the CQ. Thus, although the two rings are shared between the application and the

kernel, there is a single consumer and a single producer in each ring (i.e., only one side

3.2. IO_URING 59

Us
er

sp
ac

e
Ke

rn
el

sp
ac

e

SUBMISSION
QUEUE

APP

tail

tailhead

head

shared memory

io_uring

COMPLETION
QUEUE

Figure 3.3: io_uring Visualization

reads and one writes, and never both). This is the reason why io_uring gets away with

only some barriers that guarantee the synchronization between the two communication

parties when updating the head and tail, and avoids locking.

Submission Queue Entry (SQE)

Every Submission Queue Entry is a descriptor of a request that an application wants to

perform. It is a 64-byte structure (there is an option to send a 128-byte request as we will

see) named io_uring_sqe that describes a traditional system call with its parameters:

what operation we want to perform, and with which arguments. Some important fields

of the SQE’s descriptor are depicted in Listing 3.1.

1 struct io_uring_sqe {

2 __u8 opcode; /* type of operation for this sqe */

3 __s32 fd; /* file descriptor to do IO on */

4 __u64 off; /* offset into file */

5 __u64 addr; /* pointer to buffer or iovecs */

6 __u32 len; /* buffer size or number of iovecs */

7 __u64 user_data; /* data to be passed back at completion time

*/

8 [...]

60 CHAPTER 3. DESIGN

9 };

Listing 3.1: struct io_uring_sqe

For example, if an application wants to read from a file, it will fill in the opcode with

the read identifier (IORING_OP_READ) or one of its variants, pass the file descriptor of

the file from which it wants to read (sqe‐>fd), specify the buffer where the data will be

written (sqe‐>addr), and provide the size of the buffer (sqe‐>len). Then, it will submit

the request to the ring.

Completion Queue Entry (CQE)

For every SQE, the kernel will place a corresponding CQE in the Completion Queue

when the desired result is ready in order to inform the userspace. CQEs are described

by a descriptor named io_uring_cqe, and they are fairly straightforward as shown in

Listing 3.2. It is a 16-byte struct (there is a case to enable 32-byte CQEs that we will

examine later) that packs the information that a system call usually returns (res field)

along with a flags field and an important identifier named user_data.

1 struct io_uring_cqe {

2 __u64 user_data /* sqe‐>data submission passed back */

3 __s32 res; /* result code for this event */

4 __u32 flags;

5

6 __u64 big_cqe[];

7 };

Listing 3.2: struct io_uring_cqe

The user_data field serves as the link between a Submission Queue Entry and a Com-

pletion Queue Entry. This field is never touched by the kernel, and is copied as is from

the SQE to the corresponding CQE.This way, the application can identify which request

the CQE corresponds to.

Note: It is important to understand that the kernel reaps the requests from the SQ, and

there is no guarantee that it will execute them in the same order they were submitted.

This means that the CQEs may be out of order. This is why applications need an iden-

tifier field (the user_data in this case) that will help them recognize which request this

3.2. IO_URING 61

reply belongs to.

Due to the asynchronous nature of io_uring, it cannot use errno to notify for an error.

That is why when an error happens, the kernel places the corresponding negative error

number in the res field. For instance, if a read request fails due to an invalid argument

(error EINVAL), a regular system call will have set errno equal to EINVAL and will have

returned -1. But in io_uring, the kernel places ‐EINVAL in the res field of the CQE. If

the request is successful, it returns the ordinary positive value (e.g. for a read request,

the number of bytes read successfully).

So practically, when the operation an SQE asked for is completed, the kernel simply

places a result at the tail of CQ by copying the user_data field of the corresponding

SQE and informing the res field with the result of the operation.

3.2.2 io_uring system calls

io_uring supports three system calls that set up the rings and enable communication

with the kernel. Typically, a userspace application will not directly use these calls, as

there is a wrapper library named liburing [Axbe] that wraps these functions and pro-

vides a higher-level perspective on the operations. We will examine liburing later.

Now, let’s focus on the io_uring system calls to gain a better understanding of how io_-

uring functions.

There are three system calls provided by the io_uring interface:

1. io_uring_setup

2. io_uring_enter

3. io_uring_register

io_uring_setup system call

1 int io_uring_setup(u32 entries, struct io_uring_params *p);

Listing 3.3: io_uring_setup system call

62 CHAPTER 3. DESIGN

io_uring_setup is the first system call that an application must make to inform the

kernel about its intention to start an io_uring instance. The usermust fill in the entries

field and can also specify some flags, which is a field inside the second parameter of the

system call.

The kernel takes the entries value and uses it to set up the submission and completion

buffers, ensuring there are at least entries slots available. Additionally, it reads the

flags field of the io_uring_params structure to understandwhich specific features this

particular instance will employ. We will explore alternative modes of using io_uring

beyond the standard one later. Furthermore, the kernel is responsible for populating

other fields within the io_uring_params structure to provide crucial information about

the configured instance to the userspace.

In other words, io_uring_params serves as a “handshake object”. Applications set up

the flags to indicate the kind of communication they want, and the kernel responds with

important information for the instance. Finally, the kernel will return a file descriptor,

which the application can use from now on to refer to the io_uring instance.

After the successful return of io_uring_setup, the first thing an application must do is

to map the submission and completion queues, so that it can access this memory. This

can be done via an mmap system call, using the descriptor returned by io_uring_setup.

Theoffsets of the rings can be retrieved by the application via specific fields of io_uring_params

(the “handshake object”).

A visualization of the setup process along with the mmap call is depicted in Figure 3.4.

Once the rings have been successfully mapped, the application can now use them to

communicate with the kernel.

io_uring_enter() System Call

1 int io_uring_enter(unsigned fd, u32 to_submit, u32 min_complete, u32 flags,

const void* argp, size_t argsz);

Listing 3.4: io_uring_enter system call

This system call notifies the kernel that there are SQEs in the Submission Queue. The

parameter fd must be the file descriptor of the io_uring instance an application wants

to use (the one io_uring_setup returned). to_submit informs the kernel about how

3.2. IO_URING 63

SQ CQ

io_uring

io_uring_setup() mmap()

1a

1b

2

3a

SQ

3b

APP

4a

4b

4c

Us
er
sp

ac
e

Ke
rn
el
sp

ac
e

CQ

Figure 3.4: Setup an io_uring Instance

many SQEs are ready for consumption, while min_complete is used to instruct the ker-

nel to return control back to the application only when min_complete CQEs are ready.

Setting this field enables both the submission and the waiting for requests to take place

in one step, with one system call. In practice, this provides synchronous semantics in

the call, as control returns to the application only when min_complete requests have

been satisfied. Of course, an application can set this parameter to 0 and not wait for any

response.

An important thing to note in this design is that an application can batch up a lot of

requests and submit them all at once with only one system call. This is an immediate

optimization compared to traditional system calls, where you have to pay the overhead

for every context switch.

Every application that wants to submit an SQE to the ringmust follow four distinct steps:

1. Extract an empty SQE.

2. Prepare a request by filling in the desired operation and arguments.

3. Place the request in the SQ.

4. Submit the SQE(s) to the kernel via io_uring_enter.

64 CHAPTER 3. DESIGN

Only the fourth step leads to a system call. Due to batching, an application can perform

steps 1-2-3 as many times as the available (non-used) entries in the SQ allow, and only

perform Step 4 when it wants to notify the kernel.

This specific design, of course, helps in the submission of requests that don’t require any

synchronization (i.e. they don’t depend on each other). However, this is not always the

case. There are times when users want to submit requests that need to be executed in

a specific order. For example, can I submit a write and a read request, and be sure that

the read request will retrieve the updated data? The answer is yes. io_uring provides

a specific flag (IOSQE_IO_LINK) that, if set in an SQE, it guarantees that as long as the

next submitted SQEs have the same flag set, the execution will occur in the order they

were submitted. This chain of “serial” requests continues until the first SQE that doesn’t

have the IOSQE_IO_LINK set.

io_uring_register() System Call

1 int io_uring_register(unsigned fd, unsigned opcode, void *arg, unsigned int

nr_args);

Listing 3.5: io_uring_register System Call

Using userspace buffers and file descriptors in the kernel comes with some overhead.

Therefore, it is possible to preregister buffers anddescriptors using the io_uring_register

syscall.

The fd field refers to the instance of io_uring, while the opcode is a flag that indicates the

type of the resource we want to register with the kernel. Registering files or user buffers

allows the kernel to take long term references to internal data structures or create long

term mappings of application memory, greatly reducing per-I/O overhead [mpc].

3.2.3 Thankfully...liburing!

io_uring comes with a userspace library, named liburing [Axbe], developed and main-

tained by Jens Axboe, the creator of io_uring. Liburing abstracts away all the nitty-gritty

details, complexity, and low-level adjustments that must be made when setting and ma-

nipulating the ring buffers directly. This library aims to achieve one of io_uring’s goals:

3.2. IO_URING 65

“easy-to-use, hard-to-misuse”, making it highly recommended for applications to use

the wrappers it provides instead of directly interacting with the system calls whenever

possible.

In the following example, we demonstrate a typical workflow with explanatory com-

ments to show how an application can perform all of the previously discussed steps. The

primary structure that describes an io_uring instance in liburing is the struct io_uring.

This descriptor consolidates all the important information that defines this instance, in-

cluding the Submission Queue and Completion Queue descriptors, the file descriptor

returned by io_uring_setup (see Listing 3.3), and other flags.

Of course, due to the versatility of io_uring, this example only scratches the surface of its

potential uses. Nonetheless, it illustrates the basic workflow and the essential wrappers

provided by liburing. Specifically, in the following code snippet, we create an io_uring

instance with 8 slots, retrieve an SQE, prepare a read request, submit the request, wait

for the response, and finally update the CQ head counter after retrieving the result from

the ring.

Note: For the sake of simplicity, we omit error handling.

1 struct io_uring ring; // The descriptor of an io_uring instance

2 struct io_uring_sqe *sqe

3 uint64_t user_data = 1;

4 char buf[64];

5 int fd;

6

7 fd = open(”file_to_read_from”, O_RDONLY);

8

9 // Set up a communication channel. This wrapper does both

10 // the io_uring_setup() and the mmap() of the rings.

11 io_uring_queue_init(8, &ring, 0);

12

13 // Retrieve an sqe from SQ’s tail

14 sqe = io_uring_get_sqe(&ring);

15

16 // Prepare a read request from file fd. We want to

17 // read 64 bytes at buf, starting from offset 0

18 io_uring_prep_read(sqe, fd, buf, 64, 0);

19

20 // Set user_data to recognize the completion

66 CHAPTER 3. DESIGN

21 io_uring_sqe_set_data64(sqe, &user_data);

22

23 // Submit all requests available in SQ.

24 // Will invoke the io_uring_enter syscall

25 io_uring_submit(&ring);

26

27 // Do whatever you want. We didn’t block

28

29 struct io_uring_cqe *cqe;

30 // wait for a completion

31 io_uring_wait_cqe(&ring, &cqe);

32

33 // A completion has arrived. Check the user_data

34 // to verify if it is the one we want

35 uint64_t check = io_uring_cqe_get_data64(cqe);

36 if (check == user_data) {

37 // Yes this was the response to the read

38 }

39

40 // Mark cqe as seen. Increment the ring head of CQ

41 io_uring_cqe_seen(&ring, cqe);

42

43 // exit io_uring instance and free the resources

44 io_uring_queue_exit(&ring);

Listing 3.6: Simple Liburing Workflow

3.2.4 Advanced modes of operation

io_uring provides two different kinds of polling modes for applications aiming for very

low latencies: “SQPOLL” and “IOPOLL”.

SQPOLL

This is an operational mode of io_uring designed for applications that prioritize low

latency and have a high request submission flow. It is enabled during the setup phase

of the io_uring instance using the IORING_SETUP_SQPOLL flag. As a consequence, the

kernel spawns a dedicated thread that polls the Submission Queue (SQ) for available

requests. This allows the application to submit requests without the need for a system

3.2. IO_URING 67

call to notify the kernel. The application simply prepares a request, updates the tail index

of SQ, and as long as this is different from the head, the kernel thread recognizes that

there are pending requests. It then extracts them and proceeds with the necessary steps

to fulfill them.

This is another step towards efficiency after request batching: the ability to submit tasks

without a single system call. It targets applications with high submission rates that

don’t mind incurring an additional CPU utilization cost. To prevent unnecessary con-

sumption of system resources, if the application doesn’t submit an SQE for a predefined

amount of time (which is configurable), the kernel thread will go to sleep. The applica-

tion will need to call io_uring_enter the next time it submits a request to wake it up

again.

IOPOLL

This mode can be enabled via the IORING_SETUP_IOPOLL flag during the initialization

of the ring. It specifically pertains to I/O operations against block devices and filesys-

tems. In general the responses of block devices are interrupt driven, meaning that when

a device finishes a requested operation, it interrupts the CPU to signal completion. En-

abling IOPOLLmeans that the process thatmade the request (via io_uring_enter) will

actively poll for completions on the target device. This reduces overhead for high IOPS

applications, and reduces latency in general [Axbf].

Note: Thismode resembles a flag that can be passed in regular preadv2() and pwritev2()

named RWF_HIPRI, which «allows block-based filesystems to use polling of the device,

which provides lower latency, but may use additional resources»[mph].

How kernel treats an SQE

io_uring is a complex subsystem within the kernel that is continuously evolving. The

following analysis is an attempt to articulate my understanding of this matter, it is not

exhaustive, and may, at some points, not be entirely correct.

There are three different execution paths that a submitted SQE may follow inside the

kernel:

1. Executed in the process context of the process that submitted the request, without

blocking (inline execution).

68 CHAPTER 3. DESIGN

2. If the result is not available, but it can be polled for readiness, it is placed in a set

of pollable requests.

3. If the result is not ready, and cannot be polled for readiness, it is placed in awaiting

queue and will be executed by a thread from a dedicated worker pool.

io_uring attempts to complete a request inline. If this is not possible, it checks whether

it is a request that has a non-blocking behavior. By this, we mean a request on a file

descriptor that can be checked for readiness, such as a socket. This does not hold true

for file descriptors that refer to “disk files”. As discussed in 3.1.4, real files have a block-

ing/synchronous interface. If the request supports non-blocking I/O, io_uringmonitors

it for readiness without needing to spawn a new kernel thread. When the file descriptor

becomes ready, io_uring is notified and continues with the execution.

Finally, there is a third path for requests that cannot be handled in a non-blocking

manner and are expected to block. These requests are placed in a queue, and a ker-

nel thread is spawned and assigned to their execution. Additionally, there is a specific

flag (IOSQE_ASYNC) that an application can assign to an SQE before submission, indi-

cating to the kernel that «we are aware that the request will likely block, thus bypass the

non-blocking path (step two) and assign this task to a worker ».

io_uring classifies tasks, in this third path, into two types: those that can be completed

in a bound time (such as reading from a file) and those that may potentially never com-

plete, known as unbounded work (like reading from a socket). These two categories

of requests are managed by separate groups of workers. Bounded tasks are delegated

to bounded workers, which are kernel threads, with the number of these threads being

limited by the size of the Submission Queue. In contrast, unbounded tasks are assigned

to unbounded workers, which are also kernel threads, and their quantity is determined

by the system’s resource limit RLIMIT_NPROC [Axbd, Sit].

3.3 Coroutines

Ublk server, uses a feature of C++20, called “coroutines” to communicate with the “tar-

get” after receiving a request from the ublk driver. In this section, we will explore what

coroutines are and how are implemented in C++20. Before explaining coroutines, we

3.3. COROUTINES 69

SQE

IOSQE_ASYNC => SETNO YES

Can kernel
complete the

request without
blocking the calling

thread?

Inline execution.
The calling thread

doesn't block and on
return an CQE is ready

with the response

YES
NO

Can this file be
polled for

data/space
readiness

NO

Will the work complete in
bound time (e.g. a read

from a disk) or in
unbound time (e.g. read

from a socket)?

bound time

unbound time

io_uring kernel
workers

bound workers

unbound workers

YES

Arm a poll handler to get
notified when we can retry

the operation

max bound
workers = SQ

ring size

max unbound
workers =

RLIMIT_NPROC

Figure 3.5: In-Kernel Path of a SQE

will provide some general theoretical background to understand what problems they

address and their role in the realm of program, processes, subroutines, etc.

Let’s begin with definitions of fundamental programming entities:

• Programs are binaries residing in a storage medium, ready for execution but not

yet loaded into memory.

• Processes are running programs that have been loaded into the memory.

• Threads are execution units within processes. They are the smallest execution

unit in Linux.

A process contains at least one thread, but it can also containmany. If a process has only

one thread, it is considered single-threaded. Conversely, if a process contains multiple

threads, it is multithreaded, indicating that more than one task is occurring concur-

rently.

70 CHAPTER 3. DESIGN

The implementation of threads in a system, can vary according to how much the kernel

and userspace is involved [Lov13]:

• 1-1 model, known as kernel-level threading, where the kernel provides support

for every thread in the system. Each thread is represented in the kernel by a struc-

ture called task_struct. Threads belonging to the same process share some of

these resources saved in their task_struct, which is why they are traditionally

called lightweight processes.

• N:1 model, known as user-level threading. A process with N threads maps to a

single kernel process. This model requires minimal support from the kernel for

thread implementation, but it necessitates the development of userspace compo-

nents, such as a scheduler, to manage thread operations.

• N:M model, a hybrid model, where N userspace threads are mapped to M kernel

threads in the kernel (where M < N).

Linux has native support for the first model. Each thread in userspace corresponds

to a thread (struct task_struct) in kernel. To implement other models in Linux,

attention to userspace implementation details is required.

The advantage of the 1-1 model is that it enables true parallelism, as each thread has its

own CPU and can run concurrently with other threads, whether from the same process

or not. This is not the case for userspace threads. As mentioned earlier, all userspace

threads “belong” to one descriptor in the kernel and are scheduled by the OS as a unit.

This means that true parallelism is not achievable in userspace threads.

At this point, let’s clarify two “similar but distinct” definitions regarding concurrency
and parallelism. Concurrency is an overarching concept that encompasses parallelism.

Whenwe say that two ormore threads run concurrently, wemean that all of themmake

forward progress, though not necessarily simultaneously. For instance, concurrency can

occur in a multithreaded program running on a single CPU. All threads make forward

progress, but a scheduler arbitrates their turns, because only one thread can run at a

given time. Conversely, threads run in parallel when they execute simultaneously. This

implies that parallelism is limited by the number of cores in a system. For example, an

8-core machine can run up to 8 threads in parallel, even though thousands may run

concurrently.

3.3. COROUTINES 71

Now, it is clearer why user-level threading does not support “parallelism” as opposed to

kernel-level threading. However, user-level threading incurs (almost) no overhead for

thread switching, as they do not require the OS’s intervention to switch.

3.3.1 And...what are coroutines?

Coroutines are based upon the concept of “cooperative multitasking”. This means that

a task (an execution flow in our concept) willingly relinquishing control to allow other

tasks (other execution flows) to run. This resembles the notion of functions, yet differs

in a crucial aspect. Unlike classical functions (subroutines) that follow a linear start-to-

finish execution without interruption, coroutines have the ability to pause their execu-

tion voluntarily and later resume. In this sense, they can be viewed as an extension of

classical subroutines, possessing the ability not only to be invoked and return but also

to temporarily suspend and then resume.

caller

subroutines (functions)

function

1 2

3

45

caller

coroutines

coroutine

1 2

3

5 6

7

8

9
10

11
12

13

4

suspend/resume

Figure 3.6: Subroutines vs Coroutines

Coroutines are userspace phenomena, much like user-level threads (N:1 model), but

unlike user-level threads, they require little or no userspace support for their scheduling

and their execution. Instead they work cooperatively relinquishing voluntarily the CPU

in order to run another execution flow (other coroutine or function). They are more

about program control than concurrency.

Since coroutines function within userspace, the specific implementation details are typ-

ically determined by the designers of the supporting library. As a result, different pro-

72 CHAPTER 3. DESIGN

gramming languages may implement coroutines in different ways. One key distinction

lies inwhether they are stackful or stackless. In traditional functions, due to their nested

structure, their activation frames can be efficiently stored in the stack, which is good

at quick allocation and deallocation. However, coroutines require the preservation of

certain information to enable later resumption. Stackful coroutines save their entire ac-

tivation frame upon suspension, while stackless coroutines take a different approach,

retaining only essential information needed for resuming execution.

3.3.2 Coroutines in C++

Coroutines support in C++ is a relatively recent addition, introduced in C++20, and

it’s still evolving. C++ coroutines are considered stackless, meaning they don’t save the

entire stack of the coroutine when they suspend.

However, to resume execution, certain crucial information must be preserved. When a

coroutine is called, the compiler assigns it a stack frame just like it would for a regular

function. It then allocates a memory frame in the heap and saves the coroutine’s pa-

rameters, which are typically used after the first suspension point. Figure 3.7 provides a

visual representation of the activation frame of the coroutine (bar()) after being called

from the function foo(). It can be thought of as divided into two parts: the conven-

tional stack frame and an additional frame saved in the heap, often referred to as the

“coroutine frame”. The compiler is smart enough to determine what information will

be needed after the first suspension point and ensures it’s stored in the coroutine frame.

Any value that is not used post-suspension is saved on the stack [Bak].

Elements of a coroutine

There are three newkeywords essential for coroutine support: co_await, co_yield, and

co_return. The compiler recognizes a routine as a coroutine, rather than a regular func-

tion, if it encounters one of these three keywords within the body of the routine. Sus-

pension points are identified by the use of co_await or co_yield. The third keyword,

co_return, comes into play when the coroutine is finished. If there’s no co_return at

the end of the coroutine’s body, it is implicitly executed.

To declare a coroutine you need to specify at least two types:

3.3. COROUTINES 73

stack heap

foo()foo() is a regular
function that calls the

coroutine bar()

Activation frame

bar()
stack pointer

coroutine frame

stack frame

stack frame

parameters

parameters

Figure 3.7: Coroutine’s Activation Frame

1. A wrapper type. This is the return type of the coroutine function’s prototype.

With this type we can control the coroutine from the outside. For example, re-

suming the coroutine or getting data into or from the coroutine. This is basically

done by storing a so called “handler” to the coroutine, more or less a function

pointer which knows how to invoke functions like resume.

2. A Promise Type: Within the wrapper type, the compiler searches for a type with

the exactname promise_type. This serves as internal control. Therefore, promise_type

is a hardcoded thing the compiler looks for within the wrapper type. Its presence

is crucial for a valid coroutine.

So, these are the main two components a coroutine requires: a type that encompasses

another type. The outer type serves as the return type of the coroutine, while the inner

type (the promise object) is utilized by the compiler to generate calls to specificmethods

it defines at critical points during the coroutine’s execution. The wrapper type typically

also contains the “coroutine handle”, akin to a function pointer, which facilitates the

resumption (or destruction) of the coroutine. The return type of the coroutine is the

only access the caller has to it. So, if further interaction is anticipated, the coroutine

handle must be embedded within the wrapper type, ensuring the caller knows how to

invoke and manage the coroutine’s state.

Upon the initial call of the coroutine, as depicted in Fig. 3.7, the compiler proceeds with

74 CHAPTER 3. DESIGN

caller coroutine

1 2

3

5 6

7

8

9
10

11
12

13

4

co_await or co_yield

co_return

Figure 3.8: co_await, co_yield and co_return

the following steps: (a) allocates a coroutine frame in heap (b) copies the parameters

from the stack frame to the coroutine frame (c) identifies the promise type inside of the

wrapper type and allocates a promise object inside coroutine’s frame.

From this point onward, the compiler triggers method calls on key points in the corou-

tine’s life-cycle that are defined in this promise object.

struct WrapperType {
 struct promise_type {
 WrapperType get_return_object() { return {}; }
 std::suspend_never initial_suspend() {return {}; }
 std::suspend_never final_suspend() {return {}; }
 void unhandled_exception() {}
 };

 std::coroutine_handle<> h;
}

heap

coroutine frame

parameters

promise_type

Coroutine's return type

local variables

return address

Figure 3.9: Return Type, promise_type and Coroutine Handler

Figure 3.9, shows the contents of a coroutine frame when the coroutine is suspended.

It saves the parameters, the promise_type, various local variables for post-resumption

use and a return address, specifying where execution should continue once it resumes.

3.3. COROUTINES 75

Additionally it illustrates a simple wrapper type with an embedded promise type and a

coroutine handle. The coroutine handle references the coroutine frame, signifying that

this pointer “knows” how to resume the coroutine’s execution.

Furthermore, within the promise object, there are several methods that the compiler in-

vokes at various stages of coroutine execution, as previously discussed. At the very start,

the get_return_object()method is invoked which returns the wrapper type that the

coroutine will return to the caller the first time it is suspended. initial_suspend()

is triggered just before the main body of the coroutine and final_suspend() is called

after the main body of the coroutine. Essentially, the compiler transforms the body of a

coroutine, as depicted in Figure 3.10, by invoking these two calls on the promise object

methods at the beginning and end. This means that, for instance, the coroutine can be

suspended even before its main body begins execution.

struct WrapperType {
 struct promise_type {
 WrapperType get_return_object() { return {}; }
 std::suspend_never initial_suspend() {return {}; }
 std::suspend_never final_suspend() {return {}; }
 void unhandled_exception() {}
 };

 std::coroutine_handle<> h;
}

WrapperType my_coroutine(params)​{
 <coroutine body>
}

WrapperType my_coroutine(params)​{
 |-----------------|
 | initial suspend |
 |-----------------|

 <coroutine body>

 |-----------------|
 | final suspend |
 |-----------------|
}

Figure 3.10: Compiler Transformation on Coroutine’s Body

The co_await operator

The co_await is aunary operator that can be applied to an expression, like co_await <expr>.

The type of <expr>must support specificmethods and is called anAwaitable. Awaitable

items are any type that offers three functions: await_ready(), await_suspend(), and

await_resume(). When the coroutine encounters co_await <expr>, these functions

76 CHAPTER 3. DESIGN

dictate its behavior.

For example, in Figure 3.9, we see the type std::suspend_never as a return type of two

methods of the promise_type. This is a special Awaitable type offered by the standard

library which when invoked never suspends the execution. If it were an

std::suspend_always, another special Awaitable from the standard library, then exe-

cution would have suspended.

In general, the co_await operator serves as a point where we can customize the behav-

ior of the coroutine. It allows us to pause the execution and wait for something, then

return once we have it. We can extract a value from the coroutine or pass something to

it. co_await can behave in a way similar to passing parameters to a regular function.

Because with a coroutine, you can only pass parameters at the start. What if, somewhere

in between, we need to provide additional data to the coroutine? co_await allows the

coroutine to pause and say «Hey, I need more data from the outside. Please instruct me

on what to do next».

The co_yield operator allows a coroutine to produce a value and then suspend, often

used in generator patterns. Meanwhile, co_return signals the coroutine’s end, indicat-

ing its completion and potentially returning a value.

3.4 Ublk

The introduction of the new communicationmechanism, io_uring, has generated inter-

est within the Linux community in relocating functionality from the kernel to userspace.

In cases where communication time between userspace and the kernel was the main

limitation, io_uring’s reduced latency in userspace/kernelspace communication is prompt-

ing a reconsideration of operational strategies.

This has led to a reevaluation of certain concepts, in the way of trying to find ways to

move things to userspace, including the implementation of Virtual Block Devices. Vir-

tual Block Devices are software-emulated devices that replicate the behavior of physical

devices. This process remains transparent to the end user, who interacts with it as if it

were a “real” storage medium.

Linux already includes several implementations of Virtual BlockDevices within the ker-

3.4. UBLK 77

nel. Examples include the loop block device, whichmaps a regular file to a block device,

and the Network Based Device (NBD), which uses a remote server as a block device

[Doca].

The question that arises is: why choose to implement these devices in userspace when

they can be directly implemented in the kernel? Here are some compelling reasons:

1. Programming flexibility:

• They can be developed in a much less restrictive environment compared to

the Linux kernel.

• They can be written in a variety of programming languages.

• They can use already existing libraries and frameworks that are not available

in the kernel.

• Debugging is significantly more straightforward using tools familiar to ap-

plication developers.

2. Security:

• If a userspace block device encounters an issue, it won’t cause a complete

system crash or kernel panic, ensuring that the rest of the system remains

stable.

• Bugs in userspace block devices are likely to have a lower impact on system

security compared to bugs in kernel code, leading to a more robust system.

3. Independent in Development and Maintenance:

• They can be developed and maintained independently of the kernel, pro-

viding greater flexibility in managing system’s components.

• They can be a lot easier for testing, facilitating more efficient development

workflows.

However, it’s important to note that critical operations requiring fast response times,

which are implemented within the kernel, cannot be easily migrated to userspace. One

must carefully weigh the advantages mentioned above against the need for fast response

times.

78 CHAPTER 3. DESIGN

Of course, virtual devices still require a small piece of kernel code, a module, to in-

teract with the Linux kernel. As mentioned previously, end users may not understand

the differences between using a Virtual Block Device or a regular one. They expect to

communicate with it as they would with any device under the /dev directory (which we

covered in 2.2.3).

The Virtual Block Device is transparent not only to end users but also to other Linux

subsystems. For example, the block layer (see 2.4.4) is unaware of the device to which

the request it prepares will be directed. Therefore, even for Virtual Block Devices imple-

mented in userspace, a kernel module is needed to interact with the rest of the kernel as

usual, but it will forward the information to the userspace component to take care the

implementation.

Figure 3.11, illustrates this design.

U
se

rs
pa

ce
Ke

rn
el

sp
ac

e

App Userspace
component

I/O STACK

Driver
Component

/dev/vbd

Driver

S3

Handle the
request as you

like. Respond to
driver component

when ready.

SSD

1

ha
rd

w
ar

e

1

1

2

3

3

4

5

5

5

Figure 3.11: Virtual Block Devices General Design

3.4.1 Ublk overview

This concept is followed by the ublk framework as well. As we stated in the Introduc-

tion chapter 1.1, ublk was designed by Ming Lei, and its driver component was merged

3.4. UBLK 79

into the Linux kernel v.6.0 as an experimental module. The ublk framework consists

of two communicating components: a userspace component, which we will call “ublk

server” or simply “server”, and a corresponding kernel module, which we refer to as

“ublk driver” or just “driver”.

At themoment of writing this thesis, ublk can support a specific number of targets. We’ll

use the name “targets” to refer to the emulated devices. Null, loop, NBD and qcow2 are

the currently supported types of emulated block devices, with a lot of new features being

under development, especially in the qcow2 target.

In this thesis, wewill focus on the loop target. In otherwords, we implemented a crypto-

graphic system that specifically workswith the loop target, which is whywewill examine

the design of this target. Of course, the general concepts remain the same for all tar-

gets. Only the specific target code changes. We will explore this design in the following

sections.

Ublk general design

Theublk driver, exposes three different special devices under /dev. The first one is regis-

tered in the kernel when we insmod the ublk driver component. This is a simple charac-

ter device (a miscellaneous device) and it appears in the system as /dev/ublk‐control

(we covered misc devices in Section 2.2.5). This special device exposes an interface that

can be used for controlling the kind of operation we want to perform. More specifi-

cally, we can use ublk‐control, to add a new device, delete a new device to set and get

parameters, among other operations.

To utilize this interface, wemust start the ublk server and instruct it to perform a specific

operation. For example, we can add a new emulated loop device by running

“ublk add ‐t loop ‐f backing_file”, where “backing_file” is the file that will be

used as the storage device.

For each new emulated device we add, we use ublk‐control and two new devices are

registered in the system and appear under /dev. A character device (ublkcN) and a

block device (ublkbN). The block device is the device we emulate, the device that end

users want to use as a disk. The character device is used to control this block device

and orchestrate its operation. There is a 1-1 correspondence between a character and a

80 CHAPTER 3. DESIGN

block device. Each time we want to add a new emulated device, both a character and

block device are created. The “N” in their name, which is the device identifier, can be

configurable by the user when the device starts or by the driver component itself in

incremental order if no specific device ID is passed by the user.

U
se

rs
p

a
ce

K
e

rn
e

ls
p

a
ce

ublk driver

/dev/ublk-​control

insmod ublk_drv.ko # ./ublk add -t loop -f backing_file # ./ublk add -t loop -f backing_file2

/dev/ublkc0 /dev/ublkc1 /dev/ublkb1

ublk server ublk server

/dev/ublkb0

1

2

3 3

4

4

Figure 3.12: Ublk, the Big Picture

Figure 3.12 illustrates this concept. We will examine each of these steps in more depth

later on, but this provides a general idea. We add the module in the kernel (1), which

exposes a special device (2), and this is used every timewewant to create a new emulated

device (3, 4). Each emulated device comes with a character device that is used during

the data path to control its execution.

IOCTL and io_uring command passthrough

As mentioned, the communication between the driver and the server is performed via

io_uring. More specifically, the operation performed for each Submission Queue Entry

is an ioctl-like operation referred to in io_uring terminology as a “io_uring passthrough

command”. The opcode filled in each SQE is IORING_OP_URING_CMD.

ioctl() is a system call that enables userspace to issue arbitrary commands. In addi-

tion to read() and write() operations, drivers sometimes need the ability to perform

3.4. UBLK 81

certain device control tasks that fall outside the scope of classical read/write. ioctl()

provides developerswith the ability to pass specific commands to the device. These com-

mands can be implemented in a driver-specific manner and may hold meaning only for

a particular type of driver.

As discussed in Section 2.2.4, each character device is associatedwith a file_operations

structure, which defines the functionality of this driver and the available operations it

can manage. One of these operations is the unlocked_ioctl function pointer, which

handles the ioctl system call on the character device. For more information on the

“unlocked” prefix see [Corb].

To add support for io_uring operations to standard character devices, one needs to in-

corporate this functionality into the file_operations struct. Since it is common to use

I/O operations in conjunction with ioctl commands, the ability to handle these asyn-

chronously would be beneficial.

This need is addressed by the io_uring command passthrough. To achieve this, a new

operationwas added to the file_operations struct. This operation is called uring_cmd,

as seen in Listing 2.6.

Thus, we can handle operations in a character device that come through an io_uring

instance. This concept is utilized in ublk. Both the ublk‐control and ublkcN character

devices implement the uring_cmd function to provide the desired functionality.

Let’s now exploremore deeply into all these concepts we have referred to so far. In order

to understand ublk framework properly, we will separate its examination into 3 phases:

• The initial phase, involving communication/negotiation between the server and

driver to setup the basic attributes, which is centered around ublk‐control.

• The second phase, which consists of the setup of the server itself, where it creates

a pthread for every queue.

• The third phase, where an application uses the ublk framework for an I/O oper-

ation.

82 CHAPTER 3. DESIGN

3.4.2 Initial Phase: Setting up the Environment

The miscellaneous device ublk‐control is used for controlling ublk devices. The cor-

responding struct file_operations is listed in Listing 3.7. Basically the only useful

operation this special device implements is the io_uring command passthrough, which

is implemented via ublk_ctrl_uring_cmd.

1 static const struct file_operations ublk_ctl_fops = {

2 .open = nonseekable_open,

3 .uring_cmd = ublk_ctrl_uring_cmd,

4 .owner = THIS_MODULE,

5 .llseek = noop_llseek,

6 };

Listing 3.7: ublk-control file_operations

Some of the supported operations, that are important to us include:

• Adding a new character device (UBLK_CMD_ADD_DEV). This is the ublkcN device

mentioned earlier, which serves as the communicationmedium between the ublk

server and the ublk driver. When sending this command, the ublk server can cus-

tomize the new device, such as setting the number of hardware queues it supports

(for more on hardware queues, see 2.4.4), the depth of each queue, the length of

the I/O buffers, and more. These settings sent by ublk server cannot exceed in-

ternal kernel limits, which is why the final information is sent back to the server

with the reply to this command.

• Setting parameters for the device (UBLK_CMD_SET_PARAMS). These parameters re-

fer to the backing file attributes and include the number of sectors of the emulated

device, the number of sectors for each I/O buffer, the block size, etc. These can

only be set before the real device (ublkbN) starts. These parameters also undergo

validation before being put into practice.

• Starting a newblock device (UBLK_CMD_START_DEV).This registers the real device.

After this command succeeds, the block device is up and registered in the kernel

and can be used by applications.

• Getting parameters from the device (UBLK_CMD_GET_PARAMS). This is the reverse

of UBLK_CMD_SET_PARAMS. The ublk server gets the parameters from the driver.

3.4. UBLK 83

• Stopping a device (UBLK_CMD_STOP_DEV).This commandwill halt the ublk device

(ublkbN).

• Deleting a device (UBLK_CMD_DEL_DEV).This commandwill remove the character

device (ublkcN). From this point on the device ID can be reused.

These are the most basic functionalities that ublk‐control exposes. For a full list of

available commands see [kD].

The high-level flow of adding a device in the system is depicted in Figure 3.13. The

server sends an SQE to add the character device (1), customizing and revealing device

information to the driver. Then it sets specific device parameters (2). Finally (3) after

setting up all the userspace components, the ublk server sends the start command to

inform the driver that everything is ready and the block device can be exposed in the

system.

U
se

rs
pa

ce
K

er
n

el
sp

ac
e

ublk driver

/dev/ublk-​control /dev/ublkc0 /dev/ublkb0

ublk server

UBLK_CMD_DEV_ADD

.uring_cmd =
ublk_ctrl_uring_cmd

case UBLK_CMD_DEV_ADD:

case UBLK_CMD_SET_PARAMS:

case UBLK_CMD_START_DEV:

case UBLK_CMD_GET_PARAMS:

case UBLK_CMD_STOP_DEV:

case UBLK_CMD_DEL_DEV:

UBLK_CMD_SET_PARAMS

UBLK_CMD_START_DEV

CQSQ

1

2

3

1

3
2

1

3

2

1

3

2

1

3

2

1

3

2

Figure 3.13: Initial Commands to Add a Device

84 CHAPTER 3. DESIGN

A Deeper Dive into Setting up the Ublk Environment

Until now, we have presented a general overview of the control path of the ublk frame-

work. Now, let’s dive deeper into how this communication is set up: what userspace

components are used and how they interact with the ublk driver.

Let’s decipher the ublk server starting command:

1 ./ublk add ‐t loop ‐f backing_file [‐n device_id] [‐q number_of_hw_queues] [‐

d queue_depth]

Listing 3.8: Command to Add a Ublk Loop Device

We will examine the most important steps this command takes. We will shift from

userspace (server) to kernelspace (driver), and by the end, we will have a clear under-

standing of the essential parts and how they are set up along the way. This will be amore

detailed explanation of the concepts we touched on previously.

Before that, let’s understand what the given options do:

• ‐t loop: Identifies the type of the emulated device.

• ‐n device_id: Starts a device with specific device ID. (If not set, the driver will

pick one by itself).

• ‐f backing_file: Indicates which file will be used as a disk.

• ‐q number_of_hw_queues: Specifies the number of queues the device will ex-

pose. These queues correspond to the hardware queues each real device exposes

and match with the hardware queues of the block layer (in blk-mq design) for the

specific device (default value: 1, maximum value: min {number of CPU cores,

32}).

• ‐d queue_depth: Specifies the size of each queue (default value: 128, maximum

value: 4096).

The number of queues and the queue size determine how many on-the-fly requests our

emulated block device can support. For example, if we have 2 queues and each queue

has a depth of 1024, then we can have 2048 requests on-the-fly.

3.4. UBLK 85

Note: These are not all the available configuration commands that can be given when

starting the ublk server, but rather themost important for us to understand the concept.

With this information inmind, let’s begin investigating how the command to add a ublk

device is satisfied:

Step 1: The ublk server starts and saves any command line arguments in an internal

structure.

Step 2: It opens the /dev/ublk‐control special device exposed by the driver, and saves

the file descriptor for later usage.

Step 3: It sets up an io_uring instance so that it can “talk” to the driver. Every SQE

submitted from now on in this io_uring instance will have the open file from Step 2 as

the fd field (see the SQE internals in Section 3.2.1).

Step 4: It submits the first SQE to the io_uring instance. This SQE has the opened

file from Step 2 as the file descriptor and the opcode IORING_OP_URING_CMD. These two

fields are crucial for the io_uring subsystem to locate the device that will serve this com-

mand. It also stores in another structure that ships with the SQE the type of command

the driver is going to execute and the device information needed to fulfill this com-

mand. Remember that io_uring command passthrough is an ioctl-like command, so

we need to specify which command the driver will execute. This command operation

is UBLK_CMD_ADD_DEV. After the submission, the ublk server waits for the response and

does not continue until the driver submits a CQE.

Step 5: The io_uring subsystem extracts the SQE from the SubmissionQueue and, using

the file descriptor field (fdof ublk‐control) alongwith the opcode (IORING_OP_URING_CMD),

it locates the registered struct file_operations and calls the specific ublk_ctrl_uring_cmd

function.

Step 6: The ublk driver runs and checks the command operation passed in the io_uring

command passthrough to recognize the type of request it is serving. It then runs the

86 CHAPTER 3. DESIGN

corresponding function that handles the addition of a device. This function is respon-

sible for:

Step 6a: Allocating a structure named ublk_device, which will be the internal driver

representation of the device.

Step 6b: Allocating a unique identifier and saving it in the ublk_device structure. If

the server has requested a specific ID (via the ‐n device_id option), it asks for this ID,

otherwise it allocates one on its own. This ID will be used later when the driver needs

to retrieve the ublk_device structure.

Step 6c: It validates the information sent by the server and initializes internal fields of

the ublk_device.

Step 6d: It allocates a specific structure for each hardware queue requested by the server

(via the ‐q nr_hw_queues option). Each such structure serves as an information con-

tainer for the queue. We’ll see later how this corresponds 1-1 with a ublk server’s thread.

Step 6e: It registers a blk-mq tag set. In Section 2.4.4, we analyze the importance of this

structure. The block layer needs to know how many hardware queues are supposed to

exist, what the number of each queue’s capacity is, etc., in order to set up the block layer’s

relevant components.

Step 6f: Finally it adds the character device (ublkcN) in the system. From this point on,

the ublk server can open and use this device by sending IORING_OP_URING_CMD com-

mands.

Step 7: The driver fills a CQE and submits it into the Completion Queue.

Step 8: The server wakes up, checks the res of the CQE to verify that everything went

ok, and forks a daemon child. This daemon, in turn, will create one thread for every

hardware queue that our device has declared it can serve, and then it will wait for them

(pthread_join). We will see exactly how the daemon with its threads are set up in the

next section. For now, we can think of them as ublk server’s services that will eventually

serve an I/O request in the data path.

Step 9: After the daemon has been successfully set up, the ublk server submits another

SQE with the UBLK_CMD_SET_PARAMS command operation flag set, to notify the kernel

3.4. UBLK 87

of the device’s parameters (as noted in the previous Section 3.4.2).

Step 10: The io_uring subsystem passes the request to the ublk driver, which, in turn,

updates the internal parameter structure in its ublk_device descriptor. The driver then

responds with a CQE to indicate that the operation has been completed.

Step 11: The ublk server retrieves the Completion Queue Entry and verifies that the

parameter setting concluded without any issues. It then prepares and submits the third

SQE with the operation UBLK_CMD_START_DEV to initiate the device startup process. As

of this moment, there is no block device registered in the system.

Step 12: The io_uring subsystem forwards the request to the ublk driver, similar to steps

10 and 5. Theublk driver executes the corresponding function for the UBLK_CMD_START_DEV

command. This function handles the registration of ublkbN in the system, following

the steps outlined in Section 2.4.5. This involves the allocation of a gendisk descriptor

along with a request_queue, utilizing the blk_mq_tag_set initialized in Step 6e. The

block device is then added to the system using add_disk(). Just like previous submis-

sions, the driver populates a CQE and submits it to the Completion Queue.

Step 13: The ublk server awakens, extracts the CQE, and verifies the outcome. It prints

device-specific information to the standard output and then exits. From this point for-

ward, the active components of the ublk server are the daemon threads, each dedicated

to serving a specific hardware queue.

Note: This process exhibits a consistent pattern for each io_uring submission: the ublk

server sends an SQE with the desired command operation and awaits the response. The

ublk driver processes it and submits the corresponding CQE. The server then awak-

ens, retrieves the CQE, verifies that everything has proceeded as expected, and moves

forward. It’s noteworthy that in this initial phase, the io_uring is employed in a syn-

chronous manner. The ublk server waits after each SQE submission to obtain the CQE.

This alignswith the request semantics. For instance, upon submitting the UBLK_CMD_ADD_DEV

command, the server must ensure that everything proceeded smoothly before forking

the daemon. Additionally, as previously mentioned, these requests entail a negotiation

88 CHAPTER 3. DESIGN

between the server and driver. The driver may alter some of the provided parameters,

and the server must be aware of these changes to appropriately initiate the daemon and

the subsequent queue-threads.

3.4.3 Second Phase: Ublk Server Internal Setup

So far, we’ve covered the basic control path but haven’t yet explored Step 8 from the

previous steps, which involves crucial configuration on the server’s side. In this section,

we’ll take a closer look at what happens in this step.

./ublk add -​t loop -​f backing file -​q 4

U
se

rs
p

a
ce

K
e

rn
e

ls
p

a
ce

ublk driver

/dev/ublk-​control /dev/ublkc0/dev/ublkb0

daemon
server

ublk_device

[...]
queues
[...]

ublk server

Exits after
/dev/ulbkb0 is ready

Spawns 4 pthreads to
serve each queue
and pthread_join()

them

queue
thread 1

queue
thread 2

queue
thread 3

queue
thread 4

ublk_queue
descriptor

ublk_queue
descriptor

ublk_queue
descriptor

ublk_queue
descriptor

Figure 3.14: One pthread for Every Queue

In Figure 3.14, we illustrate the relationship between the initial ublk server entities

and the one-to-one correspondence between in-kernel descriptors and userspace queue

threads. In Step 6d, we saw that the driver allocates a specific structure for each queue.

This is shown as “ublk_queue” in the figure. Also we used the term “ublk server” to refer

to the initial process started by the “ublk add” command. The term “daemon server“

3.4. UBLK 89

is used to identify the daemon spawned from the “ublk server”, which in turn creates

one pthread for each queue. While these are all part of the userspace entities in the

ublk server, we use these terms for clarity. To reiterate, the “queue threads” depicted in

Figure 3.14 are part of the ublk server.

Now, let’s take a closer look into Step 8, to explore how userspace is configured, how the

“queue threads” are created, and how they are prepared to facilitate the I/O path:

Step 1: After the ublk server retrieves the CQE in response to UBLK_CMD_ADD_DEV, it

forks a child process, which in turn forks a daemon process (a process without access to

the terminal) and then exits. The parent process waits until the daemon completes its

setup. These two entities correspond to the “ublk server” and “daemon server” in the

Figure 3.14.

Step 2: While the ublk server is waiting, the daemon server:

Step 2a: Opens the /dev/ublkcN character device and saves the file descriptor. It’s im-

portant to note that if the device is already open, this operation will fail, preventing the

character device from being opened again.

Step 2b: Executes a target-specific initialization callback function. This function probes

and sets parameters for the backing file, known as the “target”. At this point, we deter-

mine attributes such as the device size, the number of sectors, the block size, whether it

operates in buffered or direct mode, etc.

Step 2c: After obtaining the target’s parameters, the daemon opens a file in a predefined

directory and writes its PID to this file.

Step 3: The “ublk server”, which was waiting for the daemon to complete, reads this PID

and proceeds with Step 9 from the previous list of numbered steps.

Step 4: The “daemon server” creates one thread for every queue and waits for them to

finish. From this point onward, each of the following steps is executed independently

by every queue thread.

Step 5: It maps a memory region of ublkcN using the file descriptor obtained in Step

2a. This memory region is pivotal in the ublk framework. Its size is determined by the

90 CHAPTER 3. DESIGN

queue depth multiplied by the size of a descriptor called ublksrv_io_desc. Each de-

scriptor provides information about an I/O operation. So, each queue thread possesses

a dedicated memory-mapped area, which is read-only for the server and write-only for

the driver. This helps the driver to describe the request sent from an application to the

server.

Step 6: It allocates one buffer for each available queue slot. These buffers are used for

serving read/write requests in the data path.

Step 7: It sets up an io_uring instance with a ring size of at least the queue depth. Each

queue thread uses its own io_uring instance to communicate with the driver. Addition-

ally, the same ring is used to communicate with the target (the backing file). We will see

how this is achieved in the “third phase” section (3.4.4).

Step 8: It prepares a batch of SQEs equal to the queue depth of the Submission Queue.

Each request is characterized by an IORING_OP_URING_CMD, and the specific command

passthrough is set to UBLK_IO_FETCH_REQ. It is noteworthy that the server populates

the queue depth SQEs but refrains from submitting them individually to the io_uring

instance, thereby avoiding a system call for each SQE. Instead, they will be collectively

submitted in the next step with one system call.

Step 9: With the initialization phase complete, each queue thread now starts its primary

task. This task centers around an infinite loop. Within this loop, the thread both sub-

mits any pending SQEs and awaits one response in the form of a CQE. Once a response

is received, it checks the type of CQE and proceeds with the corresponding action. Fol-

lowing the completion of request manipulation, the thread reverts back to the process

of submitting SQEs and awaiting CQE(s). So, every queue thread continuously follows

this loop.

In Figure 3.15, we’ve outlined the basic components discussed in the previous steps. In

this example, we set up the ublk server with 2 queues, making use of the default queue

depth (which is 128), sincewe didn’t specify a different depth for each queue. Thismeans

the system can handle up to 256 I/O requests at the same time, 128 requests for each

queue. Each Submission Queue contains 128 SQEs, each corresponding to an available

3.4. UBLK 91

ublk_device

SQ

./ublk add -​t loop -​f backing file -​q 2

U
se

rs
p
a
ce

K
e
rn

e
ls
p
a
ce

ublk driver

daemon
server

ublk server

UBLK_CMD_DEV_ADD
UBLK_CMD_SET_PARAMS
UBLK_CMD_START_DEV
UBLK_CMD_GET_PARAMS
UBLK_CMD_STOP_DEV
UBLK_CMD_DEL_DEV

[...]

UBLK_IO_FETCH_REQ
UBLK_IO_COMMIT_AND_FETCH_REQ

UBLK_IO_NEED_GET_DATA

Memory mapped area.
Each slot corresponds to a
ublksrv_io_desc descriptor.
Every queue thread has its

own descriptors that are 1-1
corresponding to the size of

the queue.

struct ublksrv_io_desc {
 __u32 op_flags;
 __u32 nr_sectors;
 __u64 start_sector;
 __u64 addr;
}

SQ CQ CQ/dev/ublkc0/dev/ublkb0/dev/ublk-​control
... ...

[...]
queues
[...]

ublk_queue
descriptor

ublk_queue
descriptor

queue thread 1 queue thread 2

Figure 3.15: Ublk Basic Components

queue slot. Additionally, in the memory-mapped area, there are 256 ublksrv_io_desc

descriptors, 128 for each queue. It’s important to understand that the depth of each

queue determines howmany requests it can handle simultaneously. This, in turn, affects

the size of the io_uring instance’s ring and the number of descriptors in the memory-

mapped area.

struct ublksrv_io_desc

The ublksrv_io_desc structure plays a vital role in the communication between the

two ublk components.

1 struct ublksrv_io_desc {

2 __u32 op_flags;

3 __u32 nr_sectors

4 __u64 start_sector;

5 __u64 addr;

6 };

Listing 3.9: struct ublksrv_io_desc

92 CHAPTER 3. DESIGN

The fields of this descriptor describe exactly what ublk server needs to know for any

request:

• op_flags: Stores the type of operation (read or write) along with specific flags.

• nr_sectors: Specifies the number of sectors involved in the read/write opera-

tion.

• start_sector: Indicates the starting sector in the backing file.

• addr: Represents the address of a buffer in the ublk server’s memory. This buffer

is employed in the read/write operation and all of them are preallocated (see pre-

vious Step 6).

Ke
rn
el
sp
ac
e

ublk driver

ublk server

SQ CQ

H
ar
dw

ar
e

/dev/ublkc0/dev/ublkb0/dev/ublk-​control

U
se
rs
pa

ce

 Backing target file
with its sectors

struct ublksrv_io_desc {
 ​ ​__u32 op_flags;
 ​
 ​ ​__u32 nr_sectors;
 ​
 ​ ​__u64 start_sector;
 ​
 ​ ​__u64 addr;
};

Buffer in ublk server's
memory that will be used

for every I/O operation

Figure 3.16: A Zoom in ublksrv_io_desc

The driver populates this descriptor to communicate the request details to the server.

Equipped with this information, the server is ready to handle the request effectively. It

knows the type of the operation, the starting point for reading/writing in the backing

file (start_sector), the size of the request (nr_sectors), and, in the case of a write

request, which buffer to use for writing data to the backing file, or in the case of a read

3.4. UBLK 93

request, which buffer to fill with data from the backing file. All of these aspects are

illustrated in Figure 3.16.

Tag-Based Communication

Each I/O request reaching the driver is assigned a unique number within the range of

the queue’s depth. This number accompanies the request throughout its processing cycle

and allows the block layer to track the progress of each request. The tag number is

unique within each queue slot. For instance, if our device has two hardware queues,

each with 256 slots, then each queue slot is assigned a tag from 0 to 255.

The driver uses this tag number to find the corresponding ublksrv_io_desc structure

and fills it with the necessary information for the request. This is why we have queue

depth ublksrv_io_desc descriptors.

In steps 8 and 9, we noticed that each SQE sends an UBLK_IO_FETCH_REQ request to

the driver. Now, let’s take a closer look and examine the specific information contained

within each SQE.This includes: (a) the tag of the request, (b) the address of the userspace

buffer for I/O, and (c) the queue identifier (indicating from which queue this request

comes).

The first SQE will be tagged as 0 and correspond to the first ublksrv_io_desc. The

second will carry tag 1 and correspond to the second ublksrv_io_desc, and so forth.

Consequently, when a request arrives from the block layer, the driver uses the tag to

locate the corresponding ublksrv_io_desc in the memory-mapped area and complete

the corresponding CQE for this tag. This is why we refer to this communication scheme

as “tag-based”.

This communication method is depicted in Figure 3.17. In this example, we show an

instance of a ublk framework started with 2 hardware queues, and thus having two

pthreads to serve each one of them (“queue thread 1” and “queue thread 2”). The block

layer hands a read/write request to the driver for the first queue (queue thread 1) with a

tag equal to 2 (1). The driver, based on the tag and the queue, identifies the appropriate

ublksrv_io_desc descriptor (2) and updates it with the I/O information (3). Subse-

quently, it populates the CQE corresponding to the specific tag, prompting the server to

wake up (4). The server then retrieves the user_data field of the CQE, which contains

94 CHAPTER 3. DESIGN

Ke
rn
el
sp
ac
e

ublk driver

ublk server

/dev/ublkc0/dev/ublkb0/dev/ublk-​control

Us
er
sp
ac
e

struct ublksrv_io_desc {
 ​ ​__u32 op_flags;
 ​
 ​ ​__u32 nr_sectors;
 ​
 ​ ​__u64 start_sector;
 ​
 ​ ​__u64 addr;
};

block layer

request for
queue = 1, with

tag = 2

3

Check "user_data"
field of CQE, find
tag and go to the

corresponding
ublksrv_io_desc.

1

2 4

5

SQ CQ

queue thread 1

SQ CQ

queue thread 2

Figure 3.17: Tag-Based Communication

the tag of this request. Now, it can reference the descriptor to determine the details of

the received request (5).

3.4.4 Third phase: The Data Path

Upuntil now, we’ve covered the setup phase and the roles of each important component.

In this final section, we’ll see how all the previous work together to fulfill an I/O request

from an application. We’ll follow both a read and a write request to understand how

they are processed.

Along the way, we’ll also explore how the ublk framework leverages coroutines, a con-

cept discussed in Section 3.3.2.

Figure 3.18 assumes that the setup phase is complete, the ublk server has dispatched

queue depth UBLK_IO_FETCH_REQ operations, and waits for an application to interact

with the block device.

Write request:

Step 1: An application sends a write request, either directly to ublkbN, or via a filesys-

tem. The request traverses the I/O stack (for more details about the I/O stack, refer to

Section 2.4) and ends up at the ublk driver.

3.4. UBLK 95

Ke
rn
el
sp
ac
e

ublk driver

ublk server

/dev/ublkc0/dev/ublkb0/dev/ublk-​control

U
se
rs
pa

ce

1

H
ar
dw

ar
e

Application
ublk server's memory

driver

DISK

backing file

1 2

3

3

4

4

4

5

5

6

6

7

7

SQ CQ

5

Figure 3.18: I/O Request from an Application

Step 2: The driver detects the incoming request, checks the tag, and informs the corre-

sponding ublksrv_io_desc. Since it’s a write request, it maps the provided application

buffer and the ublk server’s buffer (the one taken from the ublksrv_io_desc) to kernel

addresses and copies the data from the first to the second.

Step 3: It submits the corresponding CQE to the Completion Queue. As a result, the

ublk server wakes up to check the CQE. It specifically examines the user_data field to

determine the type of request (see the Table 3.1 for a detailed layout of the user_data

field). This 64-bit value indicates that the request originates from the driver. It also re-

veals the accompanying tag. With this tag, the server can retrieve the buffer containing

the data ready for writing. It then calls a target-specific callback function. This callback,

in turn, invokes a coroutine whose task is to prepare the corresponding write request.

The coroutine doesn’t submit the request at this point, instead it populates an SQE (of

the same io_uring instance that communicates with the driver) with the write request

details and suspends its execution using co_await (refer to 3.3.2, for more on co_await

keyword).

96 CHAPTER 3. DESIGN

Step 4: With the coroutine suspended, the server continues its loop, submitting any

pending SQEs from the Submission Queue ring. There is at least one SQE ready for

processing, prepared by the coroutine in the previous step. However, this time, the file

descriptor of the request is not that of the ublkcN device, but rather the file descriptor

of the backing file. Thus, after the submission, the generic io_uring code takes charge,

fulfilling the write request. At this point, the data provided by the application is written

to the backing file.

Step 5: A Completion Queue Entry with the response from the target awakens the

server. The server examines the user_data field and identifies it as a response from

the backing file. It then resumes the suspended coroutine. The coroutine finalizes this

request by preparing a SQE, this timewith the recipient being the ublk driver. The server

needs to ack that the operation was successful (or not). Therefore, this request embeds

a flag with the value UBLK_IO_COMMIT_AND_FETCH_REQ.

Step 6: Theublk driver receives the SQE.Upon recognizing the UBLK_IO_COMMIT_AND_FETCH_REQ

flag, it performs two tasks: (a) It finalizes the request by providing the number of bytes

written to the block layer, allowing it to propagate up to the application and (b) it pre-

pares the environment for fetching future requests with the same tag.

Step 7: The completed request travels all the way up to the application, which now can

check the result to confirm its success.

The steps for a read request are identical, except for the copying to and from the ublk

server’s I/O buffers. In Step 2 of a read request, there is no writing to an I/O buffer.

Then, in Step 4, when the server submits a SQE with a read request to the backing file,

the backing file populates an I/O buffer in the ublk server’s memory with the requested

data. Consequently, in Step 6, when the driver receives the SQE and identifies it as

a read request, it copies the results from the ublk server’s buffers to the application’s

buffers after mapping them to kernel addresses. The rest of the steps follow the same

process as described above for the write request.

Note: Theublk server uses the same io_uring instance for both communicating with the

target and the driver. The 64-bit user_data field is the only source of information upon

3.5. ENCRYPTED UBLK 97

receiving a CQE. This field has the layout shown in Table 3.1, encompassing three vital

pieces of information: (a) 0-15 bits denote the tag of the request. (b) 16-23 bits store the

type of the operation, whether it is a read or a write request. (c) The 63rd bit denotes

if it is a response from the target or a request from the driver. Bits 24-39 and 40-62 are

unused in this context.

Thus, in Steps 3 and 5, the “is_target_io” bit (the last bit) of the user_data is the one

that informs the server about the initiator of the request (target I/O or driver request).

Based on this information, it determines the subsequent action.

63 62-40 39-24 23-16 15-0
is_target_io unused tgt_data op tag

Table 3.1: user_data Layout per Bits

We’ve now covered the core functionality of the ublk framework. We’ve seen how it

sets up various components, spawns threads for each queue, and ultimately processes

real I/O operations on the emulated block device through the collaboration of the ublk

driver and ublk server.

Of course, there are some attributes that we haven’t touched on this journey, as they

won’t play a role in our encryption scheme.

3.5 Encrypted Ublk

From the design of the ublk framework (Section 3.4), it is evident that no cryptographic

operations occur in either the ublk server or the driver. Consequently, when an ap-

plication utilizing ublk sends data, they are simply copied into the ublk server’s virtual

memory (by the ublk driver) and subsequently forwarded to the backing file for stor-

age. This way the data provided by an application are saved in exactly the same format

as acquired from the block layer by the ublk driver.

As a result, an application employing ublk and aiming to secure its datamust be aware of

the environment in which the ublk framework operates. For instance, it should consider

whether the disk on which the data is eventually stored is a Self-Encrypted Disk, or if

the filesystem itself uses any form of encryption. Therefore, it cannot rely solely on the

98 CHAPTER 3. DESIGN

ublk framework for data security. If the environment is not secure, the application must

take proactive measures by encrypting the data prior to interacting with the disk.

Our aim was to enable applications to use the ublk framework securely, without neces-

sitating extensive knowledge about the underlying environment. To achieve this, we in-

tegrated an encryption scheme directly within ublk, implemented entirely in userspace.

This integration guarantees that no data will be written to the backing file in an unen-

crypted form.

In this section, we will discuss the key architectural decisions we made to implement

encryption within the ublk framework. As mentioned in the Introduction chapter, we

achieved encryption with three three distinct methods:

• Single-thread encryption: Ublk server itself handles the encryption of each buffer.

• Intra-block parallelism: Ublk server splits the buffer, and activates a thread pool

where each thread is responsible for encrypting/decrypting a specific range in the

buffer, while the server waits for them to finish.

• Inter-block parallelism: Ublk server offloads the whole buffer to a thread from a

thread pool and continues.

While each of these methods has a different approach to encryption, they share a com-

mon method for key setup. The term “key setup” refers to how we incorporate a crypto-

graphic key into ublk, how we store it, and how it is utilized for encryption operations.

This setup is the same across all three implementations.

To provide a more organized presentation, we have divided this discussion into five

sections. We will start with an overview of the Encrypted Ublk. Then, we will move

on outlining our decisions regarding the key setup phase, which is common to all the

implementations. Following that, we will go into the specific design choices for each

implementation.

3.5.1 Overview of Encrypted Ublk

At the beginning, we needed to decide on the type of encryption to use: symmetric or

asymmetric. This was rather easy to decide. As we discussed in Section 2.5.2 symmetric

3.5. ENCRYPTED UBLK 99

encryption is the way to go when we need to quickly encrypt large amounts of data.

Given that our system requires on-the-fly encryption and decryption for eachwrite/read

operation, opting for a symmetric encryption algorithm was clear.

Once we settled on symmetric encryption, the next question was: which symmetric

encryption method should we use? This one was also straightforward: AES. It’s widely

used, secure, and fast. AES stands as the de facto standard for the majority of the online

cryptographic operations employing symmetric cryptography.

However, as we explained in Section 3.6.2, AES can work in different modes. So, the

last question was: which mode should we use? This decision wasn’t as easy as the previ-

ous ones, but we ended up going with XTS mode for a few good reasons. We explained

the advantages of AES-XTS in Section 3.6.3. In short, XTS mode is tailored specifically

for disk encryption, serves as the default mode of operation for many major crypto-

graphic distributors, and facilitates parallel encryption and decryption. This last point

was important because we wanted to explore how parallelism affects the data path and

if different parallel strategies make a noticeable difference.

Consequently, the chosen encryption algorithm was AES, operated in XTS mode with

a 256-bit key size. Since XTS mode uses a key size twice the size of AES, we need a

512-bit key. This means that during the use of the encrypted ublk, a 512-bit key (64

bytes) resides in memory in unencrypted form and is utilized for every encryption and

decryption operation. This key will be referred to as the “master key” or “data key”.

Figure 3.19 provides a high-level visualization of the ublk encryption process. “P” stands

for the original, unencrypted data (Plaintext), and “C” represents the encrypted data

(Ciphertext), enabling a clear depiction of the data’s path. An application initiates a

write request, the driver maps its buffer(s) into the kernel memory, and copies the data

to the ublk server’s memory buffers (the data path in ublk is detailed in Section 3.4.4).

Subsequently, the ublk server uses the master key to encrypt the buffer before forward-

ing it to the backing file, ensuring that everything is transmitted in encrypted form. For

brevity and to emphasize the data encryption, we omit the io_uring instance from this

diagram.

The same process applies to a read request from an application. The ublk server retrieves

the encrypted data from the backing file, decrypts it using the master key, and stores the

plain data in its buffers. Then, once the server notifies the driver, the driver copies the

100 CHAPTER 3. DESIGN

Ke
rn

el
sp

ac
e

ublk driver

U
se

rs
pa

ce
H

ar
dw

ar
e

Application

DISK

P
ublk server's memory

master
key

P

P

P

ublk server

c

c

memory
mapped area

 OpenSSL
 AES-​XTS-256

Figure 3.19: General Overview of a Write Request in Encrypted Ublk

unencrypted data from the server’s memory to the application’s buffer, completing the

read request. Since AES is a symmetric encryption method, the key stays the same for

both encryption and decryption.

With this general overview in mind, we are prepared to examine precisely howwe man-

age the key setup and ultimately how we design each of the three encryption methods.

3.5.2 Key Setup design

After deciding on the type of encryption, we faced the question of how to handle the

master key that is going to be used for data encryption. We wanted the master key to be

saved in a file so that we can use it again. However, it wouldn’t be a wisemove to save the

master key unencrypted in a file. It must be saved in an encrypted form. Additionally,

we wanted to be able to add new keys and remove keys without changing themaster key

itself. This is because if the master key has to change in order to add or change a key,

it would require re-encrypting the whole disk, which is not practical for data mediums

that may store a large amount of data.

This idea led us to adopt a scheme of key hierarchies. Wewanted another key thatwould

3.5. ENCRYPTED UBLK 101

be used to encrypt the master-data key. This concept enables us to handle encryption

with more flexibility (see more about key hierarchies in Section 3.7.1).

Also we wanted our key setup, to support the following high level operations:

• Create a new cryptographic disk. Initialize a master key, and save it encrypted in

a file.

• Open an encrypted disk by recovering themaster key, provided in encrypted form

from a file.

• Add a new key.

• Remove a key.

We will follow each of these operations and see how exactly they function in our design.

In order to be able to control some of the above high-level operations, we believed it

would be better to allocate a range on the disk for metadata information. That’s why we

chose to allocate the first block of the disk (4096 bytes) for metadata reasons. In other

words, the backing file that serves as a disk has the layout shown in Figure 3.20. The

bulk data are saved after the “metadata area”.

Metadata
Information Encrypted Data

4096 bytes

80 bytes

Ublk
Header

Padding

Backing File

Figure 3.20: Backing File Layout

The header information is stored in a structure in this first version of Encrypted Ublk

and it contains four fields:

1. The magic number for a ublk encryption disk.

102 CHAPTER 3. DESIGN

2. The version of the encryption.

3. A flag that verifies if this disk is active (i.e. it has a valid master key) or not.

4. A hash of the master key.

Of course, this structure doesn’t take up the whole metadata block. But we designed it

this way in order to be extendable for later usages, and aligned with block size which is

the basic operation unit from the OS’s side.

Now, let’s see how we respond to the high-level operations in our design, and what ex-

actly is the role of the metadata ublk_header in each phase.

Create an encrypted disk

To initiate the ublk encryption, we must create an encrypted disk the first time we start

the server. As discussed in Section 3.4.1, starting the ublk server necessitates specifying

the file that will serve as a storage medium. This “disk” will house both metadata and

the actual encrypted data.

We added an additional option to designate the name of the file that will contain the

encrypted master key:

1 ./ublk add ‐t loop ‐f backing_file ‐s <file_to_save_master_key>

Listing 3.10: Start Encryption in Ublk

Let’s examine the basic steps undertaken when initiating our encryption scheme. Al-

gorithm 1 outlines the process at a high level. The core design is as follows: We read

ublk_header size from the beginning of the disk to check if it is an active disk. If it’s

active, it indicates that encryption is already in place, and to prevent user shooting his

own leg, the operation is aborted. If the disk is not encrypted, we read 512 bits from

a random source to serve as the master key. Subsequently, we: (a) Encrypt the mas-

ter key, saving its encrypted form in the file passed via the ‐s option, and (b) Initialize

the ublk_header struct with the relevant information, storing it at the beginning of the

backing file.

A critical question centers around themethod used to encrypt themaster key. While the

implementation details will be explored in the next chapter, for now, it suffices to say that

3.5. ENCRYPTED UBLK 103

we leverage GnuPG for symmetric encryption of the master key before saving it to the

file. By default, GnuPG adopts AES for symmetric encryption, requesting a password to

secure the file contents in which it will be saved the encrypted key. We use the GPGME

library [GNUa] to interface with the GPG agent, with more details on GPGME and the

key encryption implementation to be provided in the subsequent chapter.

Now, with the master key loaded into memory, we can proceed with the remaining ublk

server initializations. The encrypted master key, stored in the specified file, is now set

aside for future use.

Algorithm 1 Initialize an encrypted disk
1: disk_fd← open(backing_file)
2: master_file_fd← open(file_to_save_master_key)
3: ublk_header← read from disk_fd the first 80 bytes
4: if ublk_header.active is true then
5: if ublk_header.magic == “UBLKEN” then
6: ABORT. The disk is already encrypted.
7: end if
8: end if
9: master_key← read 64 bytes (512 bits) from /dev/random

10: master_file_fd← Encrypt(master_key)
11: md_key← SHA512(master_key)
12: ublk_header.magic← “UBLKEN”
13: ublk_header.version← “0.1”
14: ublk_header.active← 1
15: ublk_header.master_key_hash← md_key
16: Write ublk_header in disk_fd, starting from byte 0

Open an Encrypted Disk

What if we want to reuse a disk that’s already encrypted? To do so, we need to recover

the master key. That’s why, when starting the ublk server, we pass a file containing the

encrypted master key via the command line. Of course, we need to decrypt this file and

verify if the result is indeed the valid master key.

To enable this functionality, we add the ‐e <file> option:

1 ./ublk add ‐t loop ‐f backing_file ‐e <file_with_saved_enc_master_key>

Listing 3.11: Open an Encrypted Ublk Disk

104 CHAPTER 3. DESIGN

The process is outlined in Algorithm 2, and, in short, the steps we follow are: (a) read

the ublk_header from the metadata section of the disk, (b) check if it’s a valid ublk

encryption disk, (c) decrypt the file containing the candidate master key, (d) hash the

decrypted candidate master key, and finally (e) compare it with the hash stored in the

ublk_header. If the hashes match, this indicates that the candidate key is indeed the

master key. If the hashes match, it means that the candidate key is indeed the master

key, and we proceed with the master key saved in memory, ready to be used in any I/O

encryption operation. If the hashes don’t match, we abort.

Algorithm 2 Open an Encrypted Disk
1: disk_fd← open(backing_file)
2: cand_file_fd← open(file_with_saved_enc_master_key)
3: ublk_header← read from disk_fd the first 80 bytes
4: if ublk_header.active is false || ublk_header.magic != “UBLKEN” then
5: ABORT
6: end if
7: candidate_master_key← Decrypt(cand_file_fd)
8: md_candidate_key← SHA512(candidate_master_key)
9: if md_candidate_key == ublk_header.master_key_hash then

10: PASS. The recovery of the master key was successful.
11: else
12: ABORT. The given key does not match with the master key.
13: end if

Add a New Key

To support this operation, we introduced a new command within the ublk framework.

Adding a new key is an action independent from starting the ublk server. The previous

two high-level operations involved starting the server, which is why they were options

in the “./ublk add” command.

When a new key is added, the master key remains unchanged. What happens instead is

that we re-encrypt the master key using a different password, and save the outcome in

a new file. So, although the files are different, they house the same master key, the only

difference is the encryption key applied on the master key.

The new command is called add_new_key and can be used as follows:

1 ./ublk add_new_key ‐f <backing_file> ‐s <file_with_saved_enc_master_key> ‐e <

new_file>

3.5. ENCRYPTED UBLK 105

Listing 3.12: Add a New Key

When we execute this command, it will re-encrypt the master key and save it in the

<new_file>. From this point onwards, to start the ublk server and recover the master

key, as demonstrated in Section 3.5.2, we can use either a previously added “master

key file” or the <new_file> as the key. The result will be the same, and the decryption

process will successfully yield the same master key.

In Algorithm 3, we outline the steps to follow when adding a new key. Practically, the

entire procedure resembles Algorithm 2 because we choose to add a new key only if a

valid encrypted master key is provided. Thus, we need to specify a valid file that con-

tains the correct encrypted master key. This file is decrypted, hashed, and then checked

against the saved hash of the master key in ublk_header. If they match, it indicates that

we provided the correct master key. We then re-encrypt it and save the new encryption

in the <new_file> passed as an input parameter. After adding the key, the user can use

<new_file> to start the ublk framework.

Algorithm 3 Add new key
1: disk_fd← open(backing_file)
2: cand_file_fd← open(file_with_saved_enc_master_key)
3: new_file_fd← open(new_file)
4: ublk_header← read from disk_fd the first 80 bytes
5: if ublk_header.active is false || ublk_header.magic != “UBLKEN” then
6: ABORT
7: end if
8: candidate_master_key← Decrypt(cand_file_fd)
9: md_candidate_key← SHA512(candidate_master_key)

10: if md_candidate_key == ublk_header.master_key_hash then
11: new_file_fd← Encrypt(candidate_master_key)
12: else
13: ABORT. The given key does not match with the master key.
14: end if

The Figure 3.21 illustrates the connection between the first three high-level operations.

After adding a new key, you can open the Encrypted Disk and run the ublk server with

any file that stores a valid encrypted version of the master key.

106 CHAPTER 3. DESIGN

./ublk add -​t loop -​f <backing_file> -​s <master_key_file1> master_key_file1

./ublk add_new_key -​f <backing_file> -​s <master_key_file1>
 -​e <master_key_file2>

master_key_file1

master_key_file2

Different encryption of
the same master key

Create an Encrypted
Disk

Add a New Key

./ublk add -​f <backing_file> -​e <master_key_file>

master_key_file1

Open the Encrypted
Disk using either

"master_key_file1" or
"master_key_file2"

master_key_file2

Figure 3.21: Create, Add and Open Operations

Remove a Key

Removing a key is a straightforward operation. To do so, we simply delete a file that

contains the encryptedmaster key. We don’t need to involve the ublk server at any point

during this operation. There’s no information stored about added keys in the metadata

area. As long as we provide a valid file containing the encrypted master key, we can

create a new encrypted master key file. Therefore, to remove a key, all we need to do is

delete the file containing the encrypted master key.

3.5.3 Single-Thread Encryption

Having addressed the key setup problem, we can now discuss how we integrate encryp-

tion inside the ublk server, starting with our first solution: single-thread encryption.

By “single-thread”, wemean that each ublk server thread responsible for communication

with the driver and the target also performs encryption and decryption. As detailed in

3.5. ENCRYPTED UBLK 107

Section 3.4, the ublk server consists of daemon threads, with each thread serving one

queue. Each thread communicates via its io_uring instance with the ublk driver and the

target.

In this design, each ublk server thread follows a loop where it submits all available SQEs

in its io_uring and waits for at least one CQE. Since each thread uses the same io_-

uring instance for communication with both the ublk driver and the target, SQEs can

be directed to either destination. Therefore, when a ublk server thread wakes up with a

response in the form of a CQE, it can be attributed to one of four possible scenarios:

• Ublk driver completes a CQE for a write request: In this case, the server locates

the data to be written in a specific buffer, and it must then submit a write SQE to

the target to transmit the data.

• Ublk driver completes a CQE for a read request: The server needs to retrieve the

data from the target (i.e. submit a read SQE to the target).

• Target responds after a write request from the server: The server’s responsibility

is to inform the driver that the request was successful (or not) submitting a SQE

with UBLK_IO_COMMIT_AND_FETCH_REQ.

• Target responds after a read request from the server: In this scenario, the server

needs to locate the data it requested to read from the target. The data can be found

in a predefined buffer, and the server must then inform the driver submitting

again a SQE with UBLK_IO_COMMIT_AND_FETCH_REQ.

As we discussed earlier (see Figure 3.19), the ublk server incorporates dedicated buffers

to facilitate data transmission between the application and the target. When a write

request arrives from the driver, the ublk server knowswhere to locate the data that needs

to be written. Conversely, when a read request is received, the ublk server knows where

to store the data after reading it from the target.

These buffers are preallocated during the ublk server’s initialization, and their quan-

tity matches the queue depth. Each buffer can store the intermediate result of one I/O

operation, so the number of buffers must align with the outstanding requests.

In our design, we required an additional set of buffers equal to the queue depth to store

the encrypted results. While we could allocate each buffer dynamically when needed in

108 CHAPTER 3. DESIGN

order to save space, our primary concern was efficiency and speed. Allocating buffers

on-the-fly in the critical path of an I/O request would have significantly impacted effi-

ciency. For this reason, we decided to preallocate a set of buffers for each queue, similar

to the buffers allocated by the ublk server. We’ll refer to these preallocated buffers as

“temporary buffers” to distinguish them from the “original buffers”.

The Figure 3.22 provides a clear depiction of some key concepts and illustrates the 1-1

correlation between the “original buffers” and our “temporary buffers”. In this figure,

we observe a running ublk server instance equipped with three queues. Each thread

operates with its own io_uring instance and interacts with a distinct memory-mapped

area. Additionally, every thread maintains its set of buffers, with each buffer having a

corresponding temporary buffer designated for encryption purposes. Note that, the size

of each ring aligns with the number of slots in thememory-mapped area, which, in turn,

corresponds to the number of buffers and matches the quantity of outstanding requests

that a queue can serve.

K
e

rn
e

ls
p

a
ce

/dev/ublkcN

U
se

rs
p

a
ce

SQ CQ SQ CQ SQ CQ

...

ublk server's memory

original buffers

temporary
buffers

Memory
mapped area

ublk server
thread 1

 ublk server
thread 2

 ublk server
thread 3

ublk server

ublk driver

Figure 3.22: Correlation Between Original Buffers and Temporary Buffers

To enable encryption, we must extend the four previously mentioned actions when the

server wakes up with a CQE to include the following:

3.5. ENCRYPTED UBLK 109

• Ublk driver completes a CQE for a write request: The server locates the data

to be written in a specific “original buffer”. Then , it encrypts the data from this

buffer, saves the encrypted results in the corresponding “temporary buffer”, and

finally writes the corresponding region from the “temporary buffer” to the target

file.

• Ublk driver completes a CQE for a read request: The ublk server performs a

read request to the target but doesn’t save the results in the “original buffers”.

Instead, it initiates a read request and reads the (encrypted) data into the “tem-

porary buffers”.

• Target responds after a write request from the server: The server doesn’t need to

perform any additional steps. It simply submits an SQE with

UBLK_IO_COMMIT_AND_FETCH_REQ to inform the driver.

• Target responds after a read request: When the target responds after a read re-

quest, it implies that the encrypted data resides in a “temporary buffer”. At this

point, the server must decrypt the data, save them in the “original buffer”, and

then submit an SQEwith UBLK_IO_COMMIT_AND_FETCH_REQ to inform the driver.

Our intervention in the I/O path is crucial to ensure encryption occurs before saving

data to the backing file, and decryption takes place before passing the results back to the

driver and the application.

Each thread in the ublk server conducts encryption and decryption independently using

AES in XTSmode with the key stored inmemory from system initialization. We use the

OpenSSL library for these cryptographic operations. While we will provide a detailed

implementation overview in the next chapter, for now, consider the OpenSSL library

calls as black boxes that take plaintext as input and produce ciphertext for encryption,

and vice versa for decryption. The OpenSSL library operates in userspace, performing

mathematical computations to achieve the desired results.

Encryption and decryption using the OpenSSL library occur at the sector level. Our

buffers, both “original” and “temporary”, can each store up to 0.5MB (219 bytes). There-

fore, the ublk server can handle requests that read or write up to 1024 sectors. So, we

must repetitively invoke the encryption/decryption library function for each distinct

110 CHAPTER 3. DESIGN

original buffers temporary
buffers

.

.

.

.

.

.

.

.

.

0.5 MB

.

.

.

OpenSSL
AES-​XTS

ENCRYPT
512 bytes

1

2

1

2

3

N

3

N

Figure 3.23: Encryption Process on Each 512-byte Section

512-byte chunk, which corresponds to a sector on the disk. Figure 3.23 illustrates this

behavior in the encryption process of a request that is 0.5MB (N equals 1024 in this

case). The decryption process is similar, with data being decrypted from the “tempo-

rary buffers” and stored in the “original buffers”. Each encryption operation for every

512-byte chunk is carried out sequentially.

In Figures 3.24 and 3.25, we present the data path for a write and a read request, respec-

tively. To enhance clarity, we depict a ublk server instance running with a single queue.

We can compare this path with the original I/O path presented in 3.4.4 to identify the

differences between read and write requests.

For a write request, the process begins with an application submitting a buffer for writ-

ing (1). The write request travels through the I/O stack and eventually reaches the ublk

driver from the block layer. The driver identifies the request type (read or write), and

copies the application’s buffer to the ublk server’s memory buffers (2). Then it com-

pletes a CQE to notify the server (3). Upon waking up (3), the server recognizes that a

CQE for a write request arrived from the driver, locates the buffer, sends the data to the

OpenSSL function for encryption, and stores the encrypted data in a temporary buffer

(4). Next, it submits an SQE to the target for the encrypted buffer (5). After the disk

write operation concludes, the target responds with a CQE (6). The server wakes up,

3.5. ENCRYPTED UBLK 111

ublk server

Ke
rn
el
sp
ac
e

/dev/ublkcN

U
se
rs
pa

ce

SQ CQ

original buffers

ublk driver

H
ar
dw

ar
e DISK

Application

/dev/ublkbN

temporary
buffers

OpenSSL
AES-​XTS

ENCRYPT

1

1

2

2

3

3

4 4

5

5 6

6
7

78

8

Figure 3.24: Data Path for a Write Request in the Ublk Single-Thread

identifies the response from the target, and submits a SQE to the driver to report the

operation’s result (7). The driver receives the result, completes the request, and passes

the response (the number of bytes written or an error) to the upper layers (8).

For a read request, the driver doesn’t need to perform any copying before submitting

the CQE to notify the server (2). Upon waking up, the server identifies the read re-

quest from the driver and submits a SQE for a read request to the target, specifying the

temporary buffer as the destination buffer of the request (3). Once the requested copy

from the device to the temporary buffer is complete, the target notifies the server by

submitting a CQE (4). The server wakes up, recognizes that the read request from the

target has finished, indicating that the encrypted data is available in a temporary buffer.

It then processes the buffer through the appropriate OpenSSL function for decryption,

storing the decrypted data in the corresponding original buffer (5). Subsequently, the

server submits an SQE with the driver as the recipient (6). The driver receives the SQE,

identifies it as a response from the server for a read request, copies the server’s buffer

into the application’s buffer and then completes the request and provides the response

(the number of bytes read or an error) to the upper layers (7, 8).

112 CHAPTER 3. DESIGN

ublk server

Ke
rn
el
sp
ac
e

/dev/ublkcN

U
se
rs
pa

ce

SQ CQ

original buffers

ublk driver

H
ar
dw

ar
e DISK

Application

/dev/ublkbN

temporary
buffers

OpenSSL
AES-​XTS
DECRYPT

1

1

2

2

3

3

4

4

55

6

6
7

7

8

8

Figure 3.25: Data Path for a Read Request in the Ublk Single-Thread

3.5.4 Intra-Block Encryption

Our second solution to the encryption problem is based on the fact that AES-XTS en-

cryption and decryption can be performed in parallel. As discussed in Section 3.6.3,

the encryption and decryption of each sector do not depend on anything other than the

sector number, which serves as a tweak value for a single sector’s encryption/decryp-

tion. Consequently, there is no impediment to parallelizing the encryption of a buffer

larger than 512 bytes (1 sector).

In the single-thread implementation, the ublk server encrypts/decrypts every 512-byte

segment within each buffer sequentially. It invokes an OpenSSL library function as

many times as necessary to complete the task, as depicted in Figure 3.23.

In this new implementation, each ublk server’s thread creates a thread pool and dis-

tributes the work to the threads within the pool. For clarity, we will refer to the ublk

server thread as the “main thread” and the threads within the pool as “working threads”

or “workers”. When the time comes to perform encryption or decryption, the main

thread no longer handles these tasks directly. Instead, it informs a shared structure that

3.5. ENCRYPTED UBLK 113

“instructs” the working threads about the type of work they should perform. It then

waits for them to finish the encryption or decryption.

Introducing a thread pool raises several questions, such as how the pool will be cre-

ated, how communication between the main thread and the working threads will be

managed, how the pool will be destroyed etc.

Starting with the first question, we’ve introduced an option at the beginning of the ublk

server that allows specifying the number of threads in the thread pool. The maximum

allowed value is 64 threads, and the default setting is 8 threads. It’s worth noting that

each ublk server “queue-thread” maintains its own pool of working threads.

One key point to emphasize is that the points at which the encryption and decryption

are performed remain unchanged compared to the single-thread solution. The main

difference lies in who performs the encryption and decryption. For example, when a

write request is received from the driver, the server distributes the work to the worker

threads as follows: each thread takes responsibility for encrypting one 512-byte seg-

ment, according to its position. Once a segment is encrypted, the threads compute a

stride and proceed to encrypt another segment, and so on until the requested size is

processed. A similar distribution process occurs when a response from a read request

arrives from the target. In this case, the server assigns the work to the worker threads,

tasking themwith decrypting the data based on their positions, following the same logic

as before.

Figure 3.26 provides a visual representation of this work distribution.

In the core of our design, exists a shared object that facilitates the communication be-

tween the working threads and the main thread. This shared object stores essential in-

formation that enables the main thread to convey specific details about each incoming

request to the working threads. This information includes the nature of the task to be

performed (encryption or decryption), the source and destination buffers, the request

size, the starting sector etc. This shared object represents the communication channel

from the main thread to the working threads. Conversely, no explicit sign is needed

for communication from the working threads to the main thread, as the main thread

already knows what kind of task it has delegated to the working threads. Hence, upon

waking from barrier2, it understands that the job has been completed, as will be exam-

ine below.

114 CHAPTER 3. DESIGN

original buffers temporary
buffers

.

.

.

.

.

.

.

.

.

.

.

.

OpenSSL
AES-​XTS

ENCRYPT

OpenSSL
AES-​XTS

ENCRYPT

OpenSSL
AES-​XTS

ENCRYPT

OpenSSL
AES-​XTS

ENCRYPT

Thread pool with 4
working threads. All of
them work in parallel

Encrypted by the first worker

Encrypted by the second worker
Encrypted by the third worker

Encrypted by the fourth worker

stride

Figure 3.26: Work Distribution Among Workers

Thesecond crucial aspect of our design concerns the synchronization between themain

thread and theworking threads. To achieve this, we use twobarriers (pthread_barrier_t)

within the shared object. A barrier works as follows: during the initialization of the

barrier you denote a “count”. The count argument specifies the number of threads that

must call pthread_barrier_wait() before any of them successfully return from the

call [mpf]. In other words, in a barrier you denote a number, and as long as the number

of threads that have called this barrier (via pthread_barrier_wait()) has not reached

the number you denoted, all threads remain blocked at the barrier. It is the last thread

to “reach” the barrier that subsequently unblocks all other waiting threads.

Both barriers in our implementation were initialized withN + 1, whereN is the num-

ber of working threads. Let’s follow the Figure 3.27, in order to understand better the

synchronization design. Initially, the working threads wait on the first barrier, referred

to as barrier1, to receive a job (1). The main thread, wakes up by a CQE, and processes

either a write request from the driver or a response to a read request from the target, re-

3.5. ENCRYPTED UBLK 115

quiring encryption and decryption of data respectively. If such a CQE occurs, it records

the request details into the shared object (2) and then triggers barrier1 (3). This indi-

cates thatN+1 threads have reached barrier1, whichmeans that every thread unblocks

from the barrier. The working threads inspect the shared object to recognize what job

they had to perform (4), while the main thread waits on the second barrier (barrier2)

for their work completion. Each worker executes its job repetitively as shown in Figure

3.26 (5). Upon completion, working threads “hit” barrier2 (6). When the last worker

reaches barrier2, all threads wake up and continue. The main thread, now knowing that

the requested job is completed, continues with its tasks (7), while the working threads

loop back to barrier1 awaiting the next job (7).

barrier1 barrier2

shared object

main thread

working thread 1

working thread 2

working thread 3

working thread N

.

.

.

OpenSSL
AES-​XTS

OpenSSL
AES-​XTS

OpenSSL
AES-​XTS

OpenSSL
AES-​XTS

.

.

.

2

3

4

write to shared
object

read from
shared object

4

4

4

1

1

1

1

5

5

5

5

6

6

6

6

7

7

7

7

74

Figure 3.27: Synchronization Between Main and Working Threads

The primary objective during this design phase was to minimize the time spent on syn-

chronization, avoiding unnecessary delays induced by waiting for locks. As illustrated

in Figure 3.27, the working threads and the main thread do not wake up concurrently.

The main thread activates the working threads at barrier1 and immediately awaits them

at barrier2. Correspondingly, when the working threads awaken themain thread at bar-

rier2, they loop back to wait at barrier1, while the main thread progresses. This ensures

that there’s no simultaneous manipulation of the shared object. If concurrent usage of

the shared object between the main and working threads was allowed, a locking scheme

would have been necessary, as the main thread writes to it and the working threads read

116 CHAPTER 3. DESIGN

from it, which potentially would have reduced the efficiency of our solution. We should

note, that the concurent access of the workers in the shared object doesn’t need any

synchronization because they are read-only entities.

Lastly, we take care of the elimination of the thread pool in a similar manner. Upon

receiving a stop request, the main thread updates a specific field in the shared object,

triggers barrier1 to wake up all threads, and invokes pthread_join() to join them.

The working threads, upon waking and before they start to “work”, they always check

this specific variable. If set, it means that they need to stop, so they exit themselves.

3.5.5 Inter-Block Encryption

Both of the previous two implementations, namely single-thread and intra-block par-

allelism, had an issue: they altered the fundamental nature of the ublk server. This

means that they modified the type of work the ublk server was initially designed to

handle. Originally, the ublk server was architected as an I/O bound framework. The

daemon queue threads comprising the ublk server submit requests to their Submission

Queue and await a response. Upon receiving the response, they prepare the next re-

quest, whether it’s for the driver or the target, and submit it again to the Submission

Queue.

Our single-thread design transformed the semantics of each ublk server’s thread into

being CPU bound. The thread itself handled the necessary encryption or decryption,

requiring CPU resources to perform the mathematical computations and generate re-

sults. Even in the case of intra-block parallelism, where we distributed this workload to

worker threads, the main thread still waited for the results, so it remained a CPU bound

implementation.

This issue made us think, design, and implement a solution that would allow the entire

encryption process to occur without shifting the ublk server’s nature from I/O-bound

to CPU-bound.

To achieve this goal, we needed to relieve the main thread of any cryptographic oper-

ations or the need to wait for their completion, as it was the case in the previous two

design solutions respectively. However, encryption and decryption tasks still needed

to be performed, leading us to rely on a pool of worker threads once again. Each ublk

3.5. ENCRYPTED UBLK 117

server’s thread has a dedicated pool of workers, similarly to the intra-block implemen-

tation. However, in this case, instead of dividing the buffer and distributing the work

to the workers, the main thread offloads the entire buffer to one worker and continues.

Remember that each buffer can store up to 1024 sectors. This means that the work-

ing thread will execute the encryption or decryption on this buffer sequentially on each

512-byte segment, according to its size each time, exactly as it was the case in the single-

thread solution. But, unlike the single-thread solution where this task was executed by

the main thread itself, now it is managed by a worker.

Communication between main thread and workers

One of the key questions in this designwas how to perform the communication between

the main thread and the working threads. After offloading a request, the main thread

no longer waits but continues its work, which, as mentioned earlier, involves submitting

SQEs and waiting for CQEs. So, how do the working threads signal the main thread

that a request is completed? We needed to integrate this communication (fromworking

threads to themain thread) into the io_uring. To do so, we decided to allocate onemore

entry during the initialization of each io_uring SubmissionQueue, and this entry would

be used to poll for readiness an eventfd.

The eventfd system call returns a file descriptor that refers to an “eventfd object” that

can be used as an event wait/notify mechanism by userspace applications, and by the

kernel to notify userspace applications of events [mpb]. The eventfd can be thought of

as an empty pipe. One process waits at one end of the pipe until another process writes

something to the other end to unblock it. The file descriptor returned by the eventfd

system call can be used by the main thread to receive notifications from the worker

threads. Every working thread, after finishing with a request, just needs to perform a

write on the eventfd.

However, the main thread cannot directly wait on the eventfd because it also awaits

requests from the driver and the target. For this reason, we integrated the waiting on

the eventfdwithin the io_uring. The server submits a SQEwith a poll request (operation

IORING_OP_POLL_ADD) on the eventfd.

This means that each time the main thread wakes up with a CQE in hand, this CQE

could originate from one of five sources:

118 CHAPTER 3. DESIGN

• The ublk driver sent a write request.

• The ublk driver sent a read request.

• The target responded to a read request.

• The target responded to a write request.

• A worker finished a cryptographic job (encryption or decryption) and wrote to

the eventfd.

The first four sources remain unchanged from the previous implementations. However,

we now have an additional case to handle in this design. What should the main thread

do when it receives notification that a requested job is complete? We will examine this

in the data path section below.

Now, let’s consider communication from the main thread to a working thread. We

implemented this “communication flow” through a condition variable. The working

threads are waiting on this condition variable, and the main thread signals them when-

ever there is work to be done.

Figure 3.28 focuses on this communication between the main thread and the working

threads. The ublk server receives either a write request from the driver, or a read re-

sponse from the target (1), prepares a request and submits it to the working threads

(2), then signals the condition variable (3). A thread wakes up and carries out the en-

cryption or decryption (4), then writes to the eventfd to notify the main thread that the

requested job is completed (5). The kernel sees the write to the eventfd, indicating that

the eventfd is ready to be read, so it submits a CQE for the previously submitted SQE

with the IORING_OP_POLL_ADD operation (6).

Request manipulation

We’ve discussed the communication between the working threads and the main thread,

but we haven’t describe how exactly the requests from the main thread to working

threads are managed and vice versa. What is happening in Step 2 of Figure 3.28? In

this section, we’ll try to provide answers to these questions.

3.5. ENCRYPTED UBLK 119

ublk server Thread Pool

condition
variable

execute the
request

efd

prepare
and submit a job
for the workers

SQ CQ

Working threads
waiting on the

condition variable

Write to eventfd to
notify the main thread

1

2

3

4

4

5

6

Ke
rn

el
sp

ac
e

U
se

rs
pa

ce

Figure 3.28: Communication Between Main Thread and Working Threads

As in the case of intra-block design, we have a shared object at the core of our design

that helps communication between the main thread and the working threads. This ob-

ject, in addition to the eventfd and the condition variable (whose roles we explained

earlier), consists of three crucial fields: a “submit queue”, a “complete queue”, and an

array of requests. Each request is a structure that represents a job and encapsulates all

the information necessary for a worker to perform encryption or decryption.

Fig. 3.29 helps to clarify the relationships between these entities. Initially, we have

queue-depth request structures preallocated during the initialization phase, for the same

reason we have queue-depth “original” and “temporary” buffers. This is because each

ublk server’s thread can process a specific number of I/O requests on-the-fly, which is

defined by the queue depth, and cannot handle more than that. Therefore, we have one

request structure for every possible outstanding I/O request, establishing a 1-1 connec-

tion between the “original buffers”, “temporary buffers”, and the “request structures”.

The Nth request structure handles a cryptographic operation from or to the Nth “orig-

inal buffer” and “temporary buffer”.

The logic behind preallocating all the structures is the same as it was for the “temporary

buffers” preallocation, whichwe analyzed in Section 3.5.3: to avoid invoking new system

120 CHAPTER 3. DESIGN

calls for allocation during the hot path while serving each I/O operation. In the “time

vs space” trade-off, we have chosen time whenever possible in our design.

shared object
condition variable

eventfd

submit queue

complete queue

array of requests

[....]

0 1 2 queue depth - 1

submit queue complete queue

request request request request request request request request requestrequestrequest

43 5 6 7 8 9

head

tail

head

tail

. . .

lock lock

Figure 3.29: Connections Between Important Structs

Every time the ublk server needs to perform a cryptographic operation, it prepares the

“request structure” based on the tag of the specific operation. As discussed in 3.4.3, each

CQE sent by the driver to the server refers to a specific buffer using a value provided by

the block layer, which is known as tag. This tag is the connecting factor that associates

the “request structure” with the “original” and “temporary buffers”.

We keep track of the submitted requests using a linked list called the “submit queue”.

The main thread adds requests at the head of the list, while the working threads extract

requests from the tail of this list.

Similarly, there is a second list named “complete queue”. This list is used by the working

threads to submit their responses, and by the main thread to read the results. For these

responses, we use the same “request structures” that we used for submissions.

It’s important to note that these lists do not allocate or deallocate any request structure.

We simply create a “chain” of requests either for the “submit queue”or for the “complete

queue”. This setup can be clearly seen in Figure 3.29, where the requests 1, 2, 4, 7, and

3.5. ENCRYPTED UBLK 121

8 are in the “submit queue”, and the requests 3, 5, and 9 are in the “complete queue”. All

other requests are not used at this moment.

We also need to consider synchronization among these components and protect against

parallel access using locks in the “submit queue” and the “complete queue”. We will

explain how we managed to do this in the implementation chapter.

Data Path in Inter-Block Parallelism

Now let’s try to fit all the pieces together and follow an I/O request to see how all com-

ponents work together. We’ll present both a write and a read request as sent by an

application.

Let’s begin by tracing a write request as illustrated in Figure 3.30. Up until Step 3, the

process remains the same as discussed in Fig. 3.24. Now, after the server wakes up and

checks the CQE in its hands (3) and realizes it has a write request, this indicates that

it needs to encrypt the data before sending them to the disk. Thus, based on the tag

number, it prepares a “request structure” which, among other information necessary

for the working threads, also points to the buffer where the working thread will find the

plaintext (the “original buffer”) and the buffer where it needs to write the ciphertext (the

“temporary buffer”) (4). After populating this structure, the server adds this request to

the “submit queue”. It then signals the working threads that there is work to do (5). A

thread wakes up, removes the job from the “submit queue” and then calls the necessary

OpenSSL library functions to perform the encryption (6). At the same time, the main

thread continues its job, by submitting any available SQEs (6). When theworking thread

completes its task, it adds the request to the “complete queue”, andwrites to the eventfd to

notify the main thread (7). Themain thread wakes up, processes the CQE and identifies

that it was a “signal” from a working thread. This signifies that there is a request ready

for further processing. So it retrieves the requests from the “complete queue” and finds

that it has a response from a working thread regarding a write request. This means that

the main thread has to send the encrypted buffer to the disk for writing, so it submits an

SQE to write the buffer (8). Beyond this point the steps are again the same as the path

we followed in Fig. 3.24 and have been analyzed.

A read request follows the same logic, but changes the order in which things are exe-

cuted. Figure 3.31 demonstrates the flow. Upon receiving a read request (2), the server

122 CHAPTER 3. DESIGN

ublk server

K
e
rn
e
ls
p
a
ce

/dev/ublkcN

U
se
rs
p
a
ce

SQ CQ

original buffers

ublk driver

H
a
rd
w
a
re DISK

Application

/dev/ublkbN

temporary
buffers

OpenSSL
AES-​XTS

ENCRYPT
1

1

2

2

3

4 4

6

7

7

11

request array

Thread Pool

3

condition
variable

5
6

6

6

efd

7

78

8 9

910

10

11

Figure 3.30: Write Request from an Application in Inter-Block Encryption

submits an SQE to the target to read the encrypted data into a “temporary buffer”(3). Af-

ter the target replies (4), the server submits a “request structure” to the working threads

to decrypt this buffer and place the plaintext in the original buffer (5, 6). A working

thread carries out the decryption and “signals” the completion via the eventfd (7, 8).

Lastly, the server notifies the driver as usual via a UBLK_IO_COMMIT_AND_FETCH_REQ

(9), and the driver performs the necessary copies to the application’s buffer, before com-

pleting the request to the block layer (10, 11).

This concludes the discussion on Inter-Block encryption. It is now clear how we man-

aged to design and integrate encryption into the ublk framework, by offloading CPU-

intensive tasks and keeping the server I/O bound.

3.6. AES 123

ublk server

K
e
rn
e
ls
p
a
ce

/dev/ublkcN

U
se
rs
p
a
ce

SQ CQ

original buffers

ublk driver

H
a
rd
w
a
re DISK

Application

/dev/ublkbN

temporary
buffers

OpenSSL
AES-​XTS
DECRYPT

1

1

2

5 5

3

10

8

11

request array

Thread Pool

2

condition
variable

6
7

7

7

efd

8

47

3 4

89

9

11

10

Figure 3.31: Read Request from an Application in Inter-Block Encryption

3.6 AES

Following the introduction to AES and the mathematical background we presented in

Sections 2.5.3 and 2.5.4, we will now delve into its inner workings, examine how it func-

tions, and consequently, comprehend why it is widely employed and how it eventually

delivers the encryption we require.

3.6.1 Structure of AES

AES operates in rounds, depending on the size of the key provided, as indicated in Table

2.1. For input, this algorithm takes a 128-bit block. AES splits the input into 16-byte

chunks, and these bytes form a 4x4matrix known as the statematrix. All the operations

in AES take place on this matrix.

Each round consists of 4 layers:

124 CHAPTER 3. DESIGN

A0 A1 A4 A7 A10A8 A9 A12A5A2 A3 A6 A11 A13 A14 A15

128-​bit input

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

state matrix

Figure 3.32: AES Input

1. Byte Substitution

2. Shift Row

3. Mix Columns

4. Key Addition

Byte Substitution

This layer is also known as the “S-Box layer”. Each byte of the input, is passed in parallel

into the same S-Box and produces another byte as output.

S(Ai) = Bi

A0 A1 A4 A7 A10A8 A9 A12A5A2 A3 A6 A11 A13 A14 A15

B0 B1 B4 B7 B10B8 B9 B12B5B2 B3 B6 B11 B13 B14 B15

S S S S S S S S S S S S S S S SS-​Box

128-​bit input
block

128-​bit
output block

Figure 3.33: Byte Substitution Layer

3.6. AES 125

An S-Box is essentially a function that takes as input a byte and produces another byte

as output. Because both input and output are bytes, there are 256 different inputs, each

of which is mapped to a unique output. This is why the AES S-Box can be represented

as a lookup table (see Fig. 3.34).

Figure 3.34: S-Box

Example: Let’s assume the input byte to the S-Box is Ai = (B5)hex. Then the output

value will be S((B5)hex) = (D5)hex.

On a bit level (B5)hex = 10110101 and (D5)hex = 11010101, so the substitution can

be described as:

S((10110101)b) = (11010101)b

As explained by [CP10] «The S-Box is the only nonlinear element of AES, i.e., it holds that

ByteSub(A) + ByteSub(B) ̸= ByteSub(A + B) for two states A and B. The S-Box

substitution is a bijective mapping, i.e., each of the 28 = 256 possible input elements is

one-to-one mapped to one output element. This allows us to uniquely reverse the S-Box,

which is needed for decryption”.

126 CHAPTER 3. DESIGN

Internals of the S-Box

The S-Box operates in two phases. In the first phase, it computes the inverse of the input

byte, and in the second phase, each inverse byte is multiplied by a constant bit-matrix

followed by the addition of a constant 8-bit vector.

The inverse of the input byte is done in the GF (28) field (see more on 2.5.4). The irre-

ducible polynomial used in AES, known as the “AES irreducible polynomial” is:

P (x) = x8 + x4 + x3 + x+ 1

The constant matrix is:



1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1



And the constant 8-bit vector is:



1

1

0

0

0

1

1

0


Example: Let’s examine how the S-Box matches S((B5)hex) to (D5)hex, as shown in

the previous example.

Step 1: Compute the inverse of (B5)hex modulo x8+x4+x3+x+1. This is explained

in 2.5.4 and can be computed directly via a lookup table. It is (B5)−1
hex = (75)hex =

(01110101)b.

Step 2: Compute the multiplication of the 8x8 constant matrix, with the inverse (75)hex
. Note that it goes from the least significant bit to the most significant bit:

3.6. AES 127

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1


·



1

0

1

0

1

1

1

0


=



4

3

3

2

3

3

4

3


≡



0

1

1

0

1

1

0

1


(mod 2)

Step 3: Add the constant 8-bit vector:



0

1

1

0

1

1

0

1


+



1

1

0

0

0

1

1

0


=



1

2

1

0

1

2

1

1


≡



1

0

1

0

1

0

1

1


(mod 2)

And finally when we examine the result bottom-up we find that (1101)b = (D)hex and

(0101)b = (5)hex, which is what we expected.

This example demonstrates how the S-Box maps input bytes to output bytes.

Shift Rows

The state matrix after the “Byte Substitution” phase, looks like this:

B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

Table 3.2: Input of Shift Rows Phase

Where each Bi = S(Ai).

In this phase, the bytes of each row in the statematrix shift cyclically to the left as follows:

the first row remains unchanged, the second row shifts by one position to the left, the

128 CHAPTER 3. DESIGN

third row shifts by two positions to the left, and the fourth row shifts by three positions

to the left.

The output is the new state:

B0 B4 B8 B12

B5 B9 B13 B1

B10 B14 B2 B6

B15 B3 B7 B11

Table 3.3: Output of Shift Rows phase

Mix Columns

In this step, each column of the state matrix, is multiplied by a predefined matrix. The

predefined matrix is the following:


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02


This computation results in another array, where each column of the new array consists

of the multiplication of the predefined array with the corresponding column of the state

matrix. For example, the second column of the new array is computed as:


C4

C5

C6

C7

 =


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 ·


B4

B9

B14

B3


Every operation is performed in GF (28) as described in 2.5.4. Therefore, the multipli-

cation is modulo the AES polynomial (x8+x4+x3+x+1) and the addition is modulo

2, which is essentially an XOR operation.

For example, the calculation forC4 is as follows: C4 = 02 · B4⊕ 03 · B9 ⊕ 01 · B14 ⊕ 01 · B3 .

These two steps (Shift Rows and Mix Columns) add diffusion to the cipher. Shifting

3.6. AES 129

diffuses the data horizontally, while mixing does so vertically. Diffusion is crucial op-

eration in cryptographic algorithms that spreads the influence of one plaintext bit over

many ciphertext bits, making it challenging to discern any patterns in the plaintext. In

other words, if two plaintexts differ by just one bit, the corresponding ciphertexts must

be completely unrelated. Both of them must look like random numbers.

Some intuition on diffusion in AES: If we flip one bit of the 128-bit plaintext, it will ini-

tially affect only one byte in the Byte Substitution step, resulting in approximately 4 bits

being flipped compared to the original byte. In the Shift Rows step, this byte changes

its position, but no other bytes are affected. However, in the Mix Columns step, this

changed byte influences 4 bytes in the output, specifically the corresponding Ci col-

umn, which consists of 4 bytes, as we observed in the Mix Columns step. So, in just one

round, a single-bit change in the plaintext can alter 32 bits in the output.

Key Addition

In this layer, the current state matrix is XORed (added inGF (2)) with a 128-bit subkey

derived from the primary key. The number of subkeys equals the number of rounds

plus one because there is an initial XOR operation with the input using the first subkey

at the beginning of AES, before the 4-layer round we discussed. For instance, in AES

with 256-bit keys and 14 rounds, there are 15 key derivations.

The derivation process involves passing through a nonlinear function for 32 bits of the

key and then cyclically XORing each 32-bit part of the key with another 32-bit part.

We won’t delve further into the details of key derivation here, but anyone interested can

refer to [CP10].

Decryption

The decryption process involves the inversion of the layers we discussed. Practically,

each step we examined has an inverse, and the subkeys remain the same, but they are

applied in the reverse order. So, the order of decryption in each round is as follows:

1. Key Addition

2. Inverse Mix Columns

130 CHAPTER 3. DESIGN

3. Inverse Shift Row

4. Inverse Byte Substitution

3.6.2 Modes of Operation

The AES algorithm we presented encrypts chunks of 128 bits. However, in practical

scenarios like secure communication, emails, and data storage, the information being

transmitted is typically much larger than 128 bits. This raises the question of how we

can encrypt long plaintexts using a block cipher.

The usual approach is to break the lengthy message into a series of sequentially fixed-

sized blocks, and then apply encryption operations to each of these blocks. Essentially,

a mode of operation describes how to repeatedly apply a cipher’s single-block operation

to securely transform amounts of data larger than a block [Wikc].

Manymodes of operations have been defined. In this sectionwewill cover the following:

• Electronic Codebook Mode (ECB)

• Cipher Block Chaining Mode (CBC)

• Cipher Feedback Mode (CFB)

• XEX Tweakable Block Ciphertext Stealing (XTS)

We’ll pay special attention to the last one, the XTSmode of operation, as it was themode

we employed for implementing third-party encryption on ublk.

Note: The block operations are not tied to a specific block cipher. They simply describe

how you can encrypt a lengthy message using a block cipher of your choosing. While

we’re using the AES block cipher, they are conceptually separate entities.

Electronic Codebook Mode (ECB)

ECB is the most straightforward way of encrypting a long message. If the message ex-

ceeds the block cipher’s size, it’s divided into the required fixed-sized blocks, and each

3.6. AES 131

PLAINTEXT

cipher cipher cipher cipher ciphercipher cipher

padding

CIPHERTEXT

Figure 3.35: ECB Mode

block is encrypted independently. If the message length isn’t a multiple of the block

size, it must be padded before encryption. Figure 3.35 provides an illustration.

The decryption process follows similar principles. The ciphertext is split into fixed-sized

blocks, and the decryption process is applied to each individual block.

Thismode has several advantages: (a) It is parallelizable, allowing for the encryption and

decryption of each chunk of code in parallel without requiring knowledge of anything

else. (b) Bit errors only affect the specific fixed-size chunk they belong to and don’t

propagate. (c) There is no need for sender-receiver synchronization. The receiver can

start the decryption process prior to receiving all of the encrypted blocks.

However, the disadvantages outweigh the advantages. The main drawback is that it

doesn’t conceal data patterns well. Identical plaintext blocks will always lead to identi-

cal ciphertext blocks, as long as the cipher key remains unchanged. Fig. 3.36 illustrates

this issue. It reveals information about the underlying message. By examining the pub-

licly accessible ciphertexts, a third party can identify identical blocks and potentially

make educated guesses about the original plaintext.

We can differentiate between two types of encryption schemes:

132 CHAPTER 3. DESIGN

Figure 3.36: Tux Encrypted Using AES in ECB Mode

1. Deterministic encryption: This scheme always maps a particular plaintext to the

same ciphertext if the key doesn’t change.

2. Probabilistic encryption: This schemeuses randomness to achieve non-deterministic

generation of ciphertext.

The problem with the ECB mode is that it is deterministic. The goal in general is to

use probabilistic encryption. And this type of encryption is what CBC and CFB mode

provide.

Cipher Block Chaining Mode (CBC)

The InitializationVector, or more simply IV, plays the crucial role of the randomization

factor in encryption. It is essentially a random number used in conjunction with the

encryption key. Unlike the key in symmetric encryption, the IV doesn’t need to be kept

secret. However, it must be used only once during the encryption process. This unique

characteristic gives rise to another term for IV: “nonce”, which stands for “number used

once”.

IV serves as the randomizer, because if we encrypt a plaintext once with a first IV and a

second time with a different IV, the two resulting ciphertexts look completely unrelated

to each other for an attacker.

The CBC mode, both the encryption in the upper half, and the decryption in the lower

half, is illustrated in Figure 3.37.

The IV is XORed with the first plaintext block (p1) and the result is passed from the

encryption cipher to produce the first ciphertext block (c1), and then each plaintext

3.6. AES 133

IV

p1 p2 p3 . . .

c1 c2 c3

p1 p2 p3 . . .

. . .

plaintext

ciphertext

plaintext

Enc Enc Enc

Dec Dec Dec

k k k

kkk

Figure 3.37: CBC Mode

block is XORed with the previous ciphertext block. Note that the first ciphertext c1
depends on plaintext p1 and the IV. The second ciphertext depends on the IV, p1 and

p2. The third ciphertext c3 depends on the IV, p1, p2, p3, and so on. The last ciphertext

block depends on all plaintext blocks and the IV.

This propertymakesCBCmode suitable for authenticating the originalmessage, as even

a small change in the plaintext will result in a different, unpredictable final block.

However, one disadvantage of this mode is that it cannot encrypt in parallel like ECB,

because to compute a ciphertext block, you need to have computed the previous one

first. This introduces a form of serialization in the ciphertext block computation. Nev-

ertheless, it can decrypt in parallel, as only two ciphertext blocks are needed. Another

drawback of CBC is that altering bits in the ciphertext block ci results in corresponding

alterations in the plaintext block pi+1 at exactly the same positions.

Cipher Feedback Mode (CFB)

The principle behind CFB is as follows: initially, we encrypt the IV in order to generate

a key that will be XORed with the first plaintext block. For all subsequent “key blocks”,

134 CHAPTER 3. DESIGN

the previous ciphertext is encrypted. This process is illustrated in Figure 3.38.

IV

p1 p2 p3 . . .

c1 c2 c3

p1 p2 p3 . . .

. . .

plaintext

ciphertext

plaintext

Enc

k

Enc

k

Enc

k
Enc

k

Enc

k

Enc

k

Figure 3.38: CFB Mode

The operations for encryption and decryption are identical. Like CBC mode, CFB also

has parallel decryption, but serial encryption because the production of a ciphertext

block depends on the previous one. It also shares the same issue as CBC regarding

altering specific positions of the plaintext but with a slight difference. Altering bits in the

ciphertext ci affects specific positions in the corresponding plaintext pi. In CBC mode,

changing ci impacts the corresponding positions in the subsequent plaintext block pi+1.

3.6.3 XEX Tweakable Block Ciphertext Stealing (XTS)

The term “data-at-rest” refers to data that is stored on a storage medium, typically on a

computer’s or server’s disk. Other forms of data, such as “data-in-transit” and “data-in-

use”, describe data that is in motion or loaded into memory, respectively [CLO].

AES-XTS is the default algorithm used for protecting data-at-rest on various storage

mediums today. Many industry-standard disk encryption utilities, like VeraCrypt, Bit-

Locker, and LUKS, employ AES-XTS as the default mode for data protection [Vera,Mic,

Red].

3.6. AES 135

Note: XTS mode is specifically designed for protecting data on storage devices and not

intended for other purposes, such as encrypting data-in-transit.

Disk encryption methods are designed to achieve three key objectives:

1. Ensure confidentiality

2. Maintain fast data retrieval

3. Minimize disk wastage

The AES-XTS mode incorporates the concept of a tweak. Similar to the Initialization

Vector discussed in Section 3.6.2, a tweakable cipher takes an additional argument, the

tweak, alongside the key and input. The tweak introduces variability to the encryption

scheme and, like the IV, does not need to remain secret.

XTS internals

XTS mode, like any other block cipher using AES as the basic encryption algorithm,

operates on 128-bit blocks. Since XTS is used for encrypting disks, it also operates on

sectors. This results in two basic units when referring to XTS: the 128-bit chunk, which

serves as the working unit for each AES encryption (referred to as a block), and the

sector, the minimum unit a storage device can handle (referred to as a sector). Thus,

for the typical case we have 512-byte sectors they can be divided into 32 128-bit blocks.

Understanding this division is important for comprehending how AES-XTS operates.

Let’s examine how the encryption of an individual block is performed under XTS. Fig.

3.39 illustrates this operation.

AES-XTS employs a key with twice the size of AES encryption. This means for 128-bit

AES, a 256-bit key is needed, and for 256-bit AES, a 512-bit key is required. XTS divides

the key into two equal subkeys, referred to as key1 and key2, as shown in Figure 3.40.

The tweak plays the role of plaintext in the first encryption, using key2 as the key. The

result is thenmultiplied by aj , where a is an irreducible polynomial inGF (2128) (specif-

ically x128 + x7 + x2 + x + 1), and j represents the block’s position within the sector

(ranging from 0 to 31 for 512-byte sectors). The multiplication and computation oc-

cur in GF (2128) as explained in Section 2.5.4. The result of this multiplication is then

XORed with the plaintext block to be encrypted, followed by an AES operation. The

136 CHAPTER 3. DESIGN

0 1 2 3 4 5 6 7 . . . 29 30 31

1 Sector = 512 bytes

1 block = 16 bytes

sector number

Figure 3.39: Block Encryption in AES-XTS

final ciphertext is obtained by XORing the result of this AES operation with the earlier

multiplication result.

The tweak, is equal to the sector number. The sector number is a logical identifier de-

noting which sector is within the storage medium. Sectors start with 0, 1, and so forth,

until reaching the storage medium’s size divided by the sector size. Thus, the tweak is

equal to the sector number: 0 for sector 0, 1 for sector 1, and so on.

Figure 3.39 describes the encryption of one block within a sector. Figure 3.41 illustrates

the AES-XTS encryption within a whole sector. Notably, the tweak encryption occurs

only once in a sector. Each time, the result of the encryption is multiplied in GF (2128)

by aj , where j signifies the block’s position within the sector. Consequently, for a 512-

byte sector, the AES encryption algorithm must be executed 33 times: 32 times for each

block within the sector and once for the tweak value.

Decryption follows a similar process, with the only difference being that each ciphertext

block is passed through an AES decryption algorithm after XOR with the encrypted

tweak value. The decryption procedure for a sector is depicted in Figure 3.42.

Note: The tweak value, is fed into the AES encryption algorithm again, just like in the

3.6. AES 137

key1 key2

512 bits

256 bits 256 bits

XTS KEY length = 2 * AES key size
AES-128 => 256 bits
AES-256 => 512 bits

Figure 3.40: Key Sizes in AES-XTS

encryption procedure.

Ciphertext stealing

The last letter of the XTS acronym, stands for ciphertext Stealing. This is a feature that

enables XTS to encrypt/decrypt sectors, whose size is not a multiple of the block size.

For instance, what if the size of each sector was 520 bytes? This is not an XTS specific

feature [Wikd].

Figure 3.43 showcases the ciphertext stealing technique by displaying the last two blocks

of a sector in a scenario where the block size is not a multiple of the sector size. The last

block consists of M bits, where 0 < M < 128.

The concept is as follows: Suppose a sector that is divided into k + 1 blocks, with the

first k blocks being 128 bits in size and the last one being M bits. All blocks except

the last two are encrypted normally, as shown in Figure 3.43. The last two blocks are

encrypted differently: the penultimate block is encrypted as usual, and its ciphertext is

split into two parts. The first part consists of M bits and becomes the ciphertext of the

last block, while the second part, comprising 128−M bits, is used to pad the lastM bits

of plaintext. With this addition, the last plaintext block becomes 128 bits in size and is

encrypted as usual. The resulting ciphertext block becomes the penultimate ciphertext

block of the sector.

This concludes our discussion on the XTS mode. In summary, AES-XTS effectively

achieves the three initial objectives we outlined for data-at-rest encryption, in the be-

ginning of this section. It offers confidentiality, it doesn’t add any overhead to access

and process data, and due to ciphertext stealing the plaintext size and the ciphertext size

138 CHAPTER 3. DESIGN

0 1 2 3 4 5 6 7 . . . 29 30 31

key2

128-​bit block

AES-​ENCAES-​ENC

128-​bit
ciphertext

128-​bit block

AES-​ENC

128-​bit
ciphertext

128-​bit block

AES-​ENC

128-​bit
ciphertext

key1 key1 key1

0 1 2 3 4 5 6 7 . . . 29 30 31

. . .

plaintext = 1 sector = 512bytes

ciphertext = 1 sector = 512bytes

tweak = sector
number

Figure 3.41: Sector Encryption in AES-XTS

are always equal. Also as it can be shown, both in encryption and in decryption the XTS

mode can operate in parallel, for different sectors. However, it does not provide data

authentication. This means that an adversary could potentially alter the data without

detection. Achieving data authentication typically requires the inclusion of additional

information, which may contradict the third objective. Disk encryption solutions usu-

ally aim to minimize the use of extra metadata space.

3.7 Linux Unified Key Setup (LUKS)

At this point, it will be useful to compare our key setup implementation with a standard

system used in both professional and personal computing environments: LUKS, which

is the acronym for Linux Unified Key Setup. This will allow us to assess what we may be

missing and how we can improve our implementation in the near future.

What is LUKS?

LUKS is an encryption specification for block devices. It was developed by Clemens

Fruhwirth, who released the version 1.0 inMarch 2005 [Fru]. Previous attempts at inte-

3.7. LINUX UNIFIED KEY SETUP (LUKS) 139

0 1 2 3 4 5 6 7 . . . 29 30 31

key2

128-​bit block

AES-​DECAES-​ENC

128-​bit plaintext

128-​bit block

AES-​DEC

128-​bit plaintext

128-​bit block

AES-​DEC

128-​bit plaintext

key1 key1 key1

0 1 2 3 4 5 6 7 . . . 29 30 31

. . .

ciphertext= 1 sector = 512bytes

plaintext = 1 sector = 512bytes

tweak = sector
number

Figure 3.42: Sector Decryption in AES-XTS

grating cryptography into the Linux kernel faced challenges due to different approaches

to key processing and parameter settings. The situation was resolved with the develop-

ment of LUKS, which introduced a unified tool, resolving compatibility problems and

providing a standardized approach to secure key setup for disk encryption in Linux. In

a nutshell, LUKS defines how a block device is encrypted, which keys are used, where

there are stored etc, along with various metadata information.

Today, the standard followed bymost systems is an evolution of LUKS, known as LUKS2

[Bro]. We will analyze the initial implementation of LUKS, referred to as LUKS1, as the

core concepts remain the same, and it provides a clearer understanding of the main

ideas.

3.7.1 Key hierarchy

LUKS employs a concept known as key hierarchies. To grasp the concept, consider

the following scenario: If we were to encrypt a disk with a single key, changing this key

would require re-encrypting the entire storagemedium. This process can be particularly

time-consuming, especially for larger disks. The idea behind “key hierarchies” is to treat

140 CHAPTER 3. DESIGN

128-​bit block

AES-​ENC

M-​bit

AES-​ENC

128-​bit
ciphertext

key1 key1

128-​M bit

M-​bit 128-​M bit

128-​bit
ciphertext

128-​bit
ciphertext

128-​bit
ciphertext

. . .
M-​bit

128-​bit plaintext 128-​bit plaintext 128-​bit plaintext
. . .

M-​bit

sector size = 128 k + M

Figure 3.43: Ciphertext Stealing Encryption

the primary key as data. It is encrypted and stored as such. Consequently, a second key

is necessary in order to decrypt the first.

We will refer to the initial key, which is responsible for encrypting the data, as data key
or master key and to second key that is used to decrypt the initial key, as user key.

This two-layer approach makes the procedure of changing user keys a lot easier. If a

user wishes to change the key, the user decrypts the master key with the old user key,

then re-encrypts the master key with the new user key, storing it in the same location as

the previous one. As a result, the data encrypted by the master key remain unchanged.

Only the encryption of the master key itself is modified.

Key hierarchies is a concept that is widely used in many cryptographic operations. For

example Secure Shell protocol (SSH), uses key hierarchies [Phe]. A session key for a

regular block cipher is generated on the fly and sent via public key encryption to another

party. Upon successful decryption of the session key by the other party, it can then be

used in a “symmetric way” by both parties for further communication. Generally, the

practice of using a temporary key (often asymmetric) to encrypt a second data key (often

3.7. LINUX UNIFIED KEY SETUP (LUKS) 141

symmetric) for actual data transmission is a common technique in cryptography.

Key hierarchies also provide a way to allow more than one user keys to refer to the same

master key. We just need to store the master key encrypted via each different user key.

Before we dive into the internal design of LUKS and examine how it works, it would

be helpful to familiarize ourselves with two concepts that LUKS employs: (a) Secret

splitting and (b) Key Derivation Functions.

3.7.2 Secret Splitting

This technique tries to split a secret message (e.g. a key) into equal parts. From these

parts, we can reconstruct the secret key. However, if even one of these parts is altered

the reconstruction will fail. This technique is commonly used to ensure the permanent

erasure of sensitive information. Disks have a long memory and data can be recovered

even if they seem to be gone.

By distributing crucial information into equally important parts, where even if one is

altered the information can’t be retrieved, we increase the probability that data erosion

is permanent.

An easy to implement method for secret splitting is as follows: Imagine we have a secret

message M of length K . We want to split M into N parts. We split the secret message

by producing S1, S2, ..., SN−1 random messages of size K . Then we compute the last

message as SN = S1 ⊕ S2 ⊕ S3 ⊕ ...⊕ SN−1 ⊕M .

From the XOR semantics, this means:

M =
i=N⊕
i=1

Si (3.1)

Now, every Si, carries important information for M . If an Si changes, we will not be

able to reconstruct M .

Usually, a more sophisticated concept is used for secret splitting. We typically want

to insert some kind of diffusion in the process. With the process we described, each

alteration on a specific position on an Si will lead to a change in the corresponding

142 CHAPTER 3. DESIGN

position on M . So, usually, during the computation of the Si some kind of a hashing

takes places to establish diffusion. But the concept remains the same.

Theprocess of the splitting phase, from the originalmessageM to the partsS1, S2, ...SN

is calledAFsplitting (Anti-Forensic splitting). Conversely, the process from theS1, S2, ..., SN

to the M as shown in equation 3.1, is called AF merging.

3.7.3 Key Derivation Functions (KDF)

People authenticate themselves on the Internet using passwords. Everyone who has

used the Internet has come to a point where they needed to provide a password, whether

it’s for securing their accounts, accessing sensitive information, or conducting various

online transactions. The biggest problem with this, is that people tend to use short

passphrases that are easy to remember. In a mathematical sense, they provide pass-

words that lack entropy. This creates various problems because an adversary that can

query the password can easily produce dictionary-like words and gain access to pro-

tected information.

Key Derivation Functions are functions that take a password as input, often along with

additional data such as a salt, and generate a result that can be used as a cryptographic

key for other operations. Typically, the computations performed by a KDF to derive

the final key are CPU intensive. As a result, they do not complete quickly, demanding

a significant amount of CPU cycles to produce the final result. The amount of time re-

quired is a factor that can often be adjusted. This characteristicmakes KDFs particularly

well-suited for deriving the user key protected by a passphrase, significantly increasing

the level of difficulty for brute force attacks.

LUKS uses the Password-Based Key Derivation Function, revision 2 (PBKDF2) as a key

derivation function. PBKDF2 is based on a pseudo random function that is iterated

many times, in order to consume a lot of CPU cycles for the final calculation. PBKDF2

takes not only the passphrase as input, but also the pseudo random function that com-

putes the intermediate results, a salt, the desired number of iterations and the desired

key length. However, we don’t need to know the internals of PBKDF2. We can think

of it like a black box that takes a password as input and instead of producing a result

quickly, consumes a lot of CPU cycles until it produces the final key.

3.7. LINUX UNIFIED KEY SETUP (LUKS) 143

3.7.4 LUKS internal structure

The format of a disk that follows the LUKS standard, is shown in the Figure 3.44.

LUKS phdr KM1 . . . DISK DATA (Encrypted by master key)KM2 KM8

Encrypted Master Key

metadata information

Figure 3.44: LUKS Layout

A LUKS partition starts with a partition header (the “LUKS phdr” in Fig. 3.44) that

stores various metadata information for the partition. This includes the magic number

that identifies it as a LUKS partition, the cipher name and ciphermode for cryptography,

a digest of the master key, and more. At the end of the phdr, there are 8 slots, each

referring to a KM field (Key Material). Key material refers to the actual bytes of the

key used in a cryptographic operation. This distinction is important because sometimes

“key” refers to both the actual keymaterial andmetadata about the key. Each of the eight

KM regions stores themaster key encrypted, and there are correspondingmetadata slots

in the phdr for each of these regions. Figure 3.45 provides a closer look at some of the

LUKS header fields and visualizes the relationship between key-slots and key material.

A question that may arise is, “why do we need eight regions to save the same master

key”? The answer lies in Section 3.7.1 where we discussed key hierarchies. Each of

these regions saves the same master key encrypted by a different user key. This means

a user can choose as many passwords as there are key slots, allowing LUKS to operate

with up to eight different user keys.

3.7.5 LUKS semantics

According to [Fru], LUKS can respond to 4 essential high-level commands:

144 CHAPTER 3. DESIGN

magic number

version

cipher-​name

cipher-​mode

[...]

master key digest

[...]

key-​slot 1

key-​slot 2

[...]

key-​slot 8

KM1

KM2

KM8

.

.

.
state of the keyslot (active/not active)

iterations (parameter for PBKDF2)
salt (parameter for PBKDF2)

start sector of KM
number of anti-​forensic stripes

LUKS partition header

Figure 3.45: A Zoom in LUKS Header

1. create partition: Initialise an empty partition with a new master key, and set an

initial passphrase.

2. openpartition: Recover themaster keywith the help of a user supplied passphrase,

and install a new virtual mapping for the backing device.

3. add key: Add a newpassphrase to a key slot. A valid passphrase has to be supplied

for this command.

4. revoke key: Disable an active passphrase.

Let’s examine how these high-level commands are executed, and how the structures we

presented fit into this process.

We will present two of the above operation, the “create partition” and the “open parti-

tion”. The other two follow the same logic.

Create partition

To create a new LUKS partition, a series of steps are taken. Let’s break down the most

significant ones to enhance our understanding of the previously discussed topics. In

3.7. LINUX UNIFIED KEY SETUP (LUKS) 145

Figure 3.46, we present the initialization of a LUKS partition and the addition of a new

key. While the figure may not capture all the details, it provides a clear representation

of the core concepts. Let’s dissect it.

PBKDF2

password

user key

KERNEL

RAM

unencrypted master
key

. . .

CIPHER ENC KEY MATERIAL

Master's key digest
saved in LUKS header

1

2a

2b

4a

4b

5

6a

7

digest
master

key

3

6b

Figure 3.46: Operation: Create Partition

Initially, the kernel generates a random master key that will be employed later to en-

crypt the data (1). This key is temporarily stored unencrypted in memory (2a) and also

digested in the “master key digest” field of the LUKS partition table (2b, 3). This digest

is crucial for subsequent validation. With this step, the LUKS partition is initialized.

The key activation process follows.

A user provides a password (4a), and other parameters for PBKDF2 are determined by

the kernel. Subsequently, key derivation occurs, as detailed in Section 3.7.3. This yields

a “user key” that will be used to encrypt the master key. In step 5, the AF splitting takes

place, wherein the master key is divided into segments. This procedure is explained in

Section 3.7.2. The encryption of the segmented key then occurs, using the user key de-

rived from the user’s password as the encryption key (6a, 6b). Finally, after encryption,

the encrypted segmented master key is saved in one of the eight key material areas (7).

The kernel then erases the memory where the master key was temporarily stored.

146 CHAPTER 3. DESIGN

It’s noteworthy that themaster key is never saved in an unencrypted formon disk. Addi-

tionally, as we’ve observed, the master key isn’t encrypted directly, instead a segmented

master key is stored in the key material area.

Open partition

PBKDF2

password

KERNEL CIPHER DEC

user key

KEY MATERIAL

Master's key digest
saved in LUKS header

1a

2a

1b

Canditate Master Key

3

Di
ge

st

ca
nd

ita
te

m

as
te

r
ke

y

master key
digest ==
canditate
key digest

YES

5

7

8

NO

2b

. . .

4

6

Decrypted Master Key

Figure 3.47: Operation: Open Partition

The procedure of recovering the master key, and decrypt the data is shown in Fig. 3.47.

A user key, derived from a PBKDF2 s used to decrypt themaster key. But themaster key

is AF-split stored in key material. Thus after decrypting it we must AF-merge it (4) to

retrieve a possiblemaster key. This candidate key then is passed from a digestion process

(the same as in 2b of Fig. 3.46) and the result is checked against the saved master key

digestion which lives in the LUKS phdr (6). If those two digests are equal, the validation

process is passed successfully, and we have a master key decrypted, that can be used to

decrypt/encrypt the whole disk. If this process fails, the kernel checks if there are other

active key-slots and repeats the steps 2-8 for every active key-slot. If it achieves tomatch

3.7. LINUX UNIFIED KEY SETUP (LUKS) 147

one of them, then the master key is decrypted successfully and it is ready for usage. If

it fails for every active key-slot, then the user is not validated and can’t encrypt/decrypt

the disk.

148

4
Implementation

4.1 Overview

In this chapter, we present our implementation of the three proposed solutions for inte-

grating encryption within the ublk framework. Additionally, we describe the key setup

phase, which is common across all implementations.

The ublk server is written in C and C++. Our implementation is compatible with both

languages, though it adheres to the conventions of the C programming language to en-

sure compatibility and ease of integration with the existing codebase.

Throughout the upcoming sections, we’ll highlight the key aspects of our solutions, dis-

cuss challenges encountered while translating our design choices into code, and refer-

ence the corresponding design decisions and diagrams to establish a stronger connec-

tion between implementation details and the chosen design.

Note: For brevity, we will focus on the key points, omitting some finer details, and will

avoid showcasing error handling in most cases, to keep the presented code easy to fol-

low and less noisy.

Libraries Used

One advantage of integrating the encryption mechanism directly into userspace is the

ability to use ready-made libraries. Especially for encryption purposes, this is very im-

portant because implementing cryptographic operations from scratch is difficult and

error-prone. These libraries are, of course, open-source and they have been tested and

149

150 CHAPTER 4. IMPLEMENTATION

integrated into numerous systems. This fact provides us with assurance (at least to some

extent) that we won’t introduce a security-related bug in our implementation.

Weused two libraries: GnuPGMadeEasy (GPGME) andOpenSSL [GNUa,Ope]. Both

are C libraries and have been used for many years for various cryptographic tasks, in

both industry and personal computing environments. These libraries are popular and

have played a key role in making data transfer and storage secure in many applications

and systems.

GPGME

GPGME is a library that doesn’t implement by itself the cryptographic protocols and

operations. It acts as a high-level interface, making it easier for developers to integrate

cryptographic functions into their applications, and uses “backends” to do the real work.

The default backend used by GPGME, and the one we also used in our operations, is

theGnuPG, which according to [Gnub] is «an universal crypto engine which can be used

directly from a command line prompt, from shell scripts, or from other programs. Therefore

GnuPG is often used as the actual crypto backend of other applications».

GPGME library

Backend Engine

GnuPG
(Implements the

OpenPGP
protocol)

PIPE(S)

Figure 4.1: Application Using GPGME

GPGME employs inter-process communication (pipes) to exchange data between the

application and the backend. However, the specifics of the communication protocol

and how the backend is accessed are completely hidden by the interface. Simply put,

GPGME takes away all the complexity, allowing the application to interact with the

backend effortlessly, without getting bogged down by the underlying technical details.

OpenSSL

OpenSSL is a full-featured open-source toolkit that implements the Secure Sockets Layer

(SSL) and Transport Layer Security (TLS) protocols. It also includes a cryptographic

library that provides a vast array of cryptographic algorithms and functions, such as

symmetric and asymmetric encryption, hashing, digital signatures, and key generation

and management.

4.2. KEY SETUP IMPLEMENTATION 151

Unlike GPGME, which serves as a higher-level interface to backend cryptographic en-

gines, OpenSSL itself is a cryptographic library that directly implements all the neces-

sary cryptographic algorithms and protocols.

By using these libraries, we were able to take advantage of well-tested cryptographic

solutions, saving a lot of development time. We avoided the challenges that come with

building cryptographic algorithms and protocols from the ground up. This way, we

could concentrate on adapting the encryption mechanism to work smoothly with the

ublk framework, making sure our implementation is both safe and efficient.

4.2 Key Setup Implementation

An encrypted ublk disk begins with a metadata region that saves information about the

current encryption (if any) on the disk.

The struct that holds the metadata information has the following form:

1 #define UBLK_MAGIC_LEN 6

2 #define UBLK_HEADER_VERSION_LEN 3

3 #define UBLK_MASTER_KEY_HASH_LEN 64

4 struct ublk_header {

5 char magic[UBLK_MAGIC_LEN];

6 char version[UBLK_HEADER_VERSION_LEN];

7 int active;

8 unsigned char master_key_hash[UBLK_MASTER_KEY_HASH_LEN];

9 };

Listing 4.1: struct ublk_header

Thewhole metadata region allocated is 4096 bytes, but the ublk_header structure takes

up the first 80 bytes (see Fig. 3.20).

The basic functionality of this structure is to store the hash of the master key. When

creating the encrypted ublk disk for the first time, we store the hash of the master key

in the master_key_hash field. This enables us to validate users later on, who want to

utilize the ublk framework.

Also, the active field along with the magic, inform if the current disk has already been

encrypted or not.

152 CHAPTER 4. IMPLEMENTATION

Now, let’s see how we implemented some of the high-level operations as presented in

Section 3.5.2.

Create an Encrypted Disk Implementation

The following function, start_enc(), executes the Algorithm 1. This function is called

during the creation of the encrypted ublk (when calling 3.10) before the ublk server

starts, and takes the following three parameters:

• A pointer to a structure (struct ublksrv_dev_data), which encompasses in-

formation necessary to start the ublk server. The important field for us at this

moment is a structure of type encryption, that stores an array of unsigned char,

that will hold the master key during the usage of the server.

• The file descriptor of the backing file, which serves as the disk.

• The file descriptor of the file, where we will eventually store the encrypted master

key.

1 int start_enc(struct ublksrv_dev_data *data, int fd_disk, int fd_master_key)

2 {

3 gpgme_ctx_t ctx;

4 gpgme_data_t plain, cipher;

5 int fd_random;

6 unsigned char md_buf[UBLK_MASTER_KEY_HASH_LEN];

7 struct ublk_header header = {0};

8

9 // Check that this is not an active disk

10 pread(fd_disk, &header, sizeof(struct ublk_header), 0);

11 if (header.active == 1) {

12 if (!strncmp(header.magic, ”UBLKEN”, UBLK_MAGIC_LEN)) {

13 fprintf(stderr, ”This disk is already encrypted. ABORT!\n”);

14 return ‐1;

15 }

16 }

17 ftruncate(fd_master_key, 0);

18

19 // Allocate a structure to hold the master key

20 data‐>enc = (struct encryption *)calloc(1, sizeof(struct encryption));

21

22 // Read the master key from a random source

23 fd_random = open(”/dev/random”, O_RDONLY);

24 read(fd_random, data‐>enc‐>key, KEY_SIZE);

4.2. KEY SETUP IMPLEMENTATION 153

25

26 // Initialize a GPGME context

27 init_gpgme(GPGME_PROTOCOL_OpenPGP);

28 gpgme_new(&ctx);

29

30 gpgme_set_ctx_flag(ctx, ”no‐symkey‐cache”, ”1”); // Disable caching of GPG daemon

31 gpgme_set_armor(ctx, 1);

32

33 // Save the encrypted master key to file fd_master_key

34 gpgme_data_new_from_mem(&plain, (const char *)data‐>enc‐>key, KEY_SIZE, 0);

35 gpgme_data_new_from_fd(&cipher, fd_master_key);

36 gpgme_op_encrypt(ctx, NULL, GPGME_ENCRYPT_SYMMETRIC, plain, cipher);

37

38 // Compute and store the hash of the key

39 SHA512(data‐>enc‐>key, UBLK_MASTER_KEY_HASH_LEN, md_buf);

40

41 memset(&header, 0, sizeof(struct ublk_header));

42 memcpy(header.magic, ”UBLKEN”, UBLK_MAGIC_LEN);

43 memcpy(header.version, ”0.1”, UBLK_HEADER_VERSION_LEN);

44 header.active = 1;

45 memcpy(header.master_key_hash, md_buf, UBLK_MASTER_KEY_HASH_LEN);

46

47 pwrite(fd_disk, &header, sizeof(struct ublk_header), 0);

48

49 return 1;

50 }

Listing 4.2: Function start_enc()

We can divide the functionality of start_enc() function into the following sections:

1. Checks whether the disk is already encrypted. If it is, it aborts.

2. Reads from /dev/random the master key. This key will be saved in a data struc-

ture (struct encryption) that we will be used later on to perform the “real”

encryption and decryption. The KEY_SIZE is defined as 64 bytes (512 bits) be-

cause when encrypting in XTS mode, the key size required is twice the size of the

standard AES key.

3. Starts a cryptographic context. The actual cryptographic operations are always

set within a context in GPGME. A context provides configuration parameters

that define the behaviour of all operations performed within it.

154 CHAPTER 4. IMPLEMENTATION

4. Encrypts the master key and saves the encrypted key in the file indicated by the

fd_master_key argument.

5. Digests the master key using the Secure Hash Algorithm (SHA512).

6. Populates the ublk_header structure and saves it at the start of the disk for later

usage. The information stored in this structure remains unchanged in subsequent

interactions with the disk.

Every function prefixedwith “gpgme_*” is actually a library call toGPGME.The encryp-

tion of themaster key and the save to the file is performed via the gpgme_op_encrypt().

We used symmetric encryption to protect the file that is going to hold the master key,

and by default, theGnuPGbackend uses the AES algorithm. It also asks for a passphrase

that will protect the encrypted master key from now on.

The SHA512() function that performs the digest of the master key, is defined in the

OpenSSL library.

From this point onwards, the metadata section of the disk is populated, and the master

key is stored in the key field of the encryption structure and from there it can be used

for any cryptographic operation.

Open an Encrypted Disk Implementation

The function below is used when starting the ublk server with a pre-encrypted disk,

and it is invoked as a consequence of starting the ublk server as mentioned in 3.11.

Its main task is to recover the master key from the file passed as an argument. This

implementation corresponds to Algorithm 2 shown in Section 3.5.2.

Just like start_enc(), the extract_key() function takes three arguments, with a slight

difference. Here, the file descriptor referred to as fd_cand_key refers to a file containing

a “candidate key”, which needs validation before granting access.

1 int extract_key(struct ublksrv_dev_data *data, int fd_disk, int fd_cand_key)

2 {

3 gpgme_ctx_t ctx;

4 gpgme_error_t err;

5 gpgme_data_t plain, cipher;

6 size_t len;

7 unsigned char md_buf[UBLK_MASTER_KEY_HASH_LEN];

4.2. KEY SETUP IMPLEMENTATION 155

8 unsigned char *buf;

9 struct ublk_header header = {0};

10

11 pread(fd_disk, &header, sizeof(struct ublk_header), 0);

12

13 if (strncmp(header.magic, ”UBLKEN”, UBLK_MAGIC_LEN)) {

14 fprintf(stderr, ”header.magic is wrong. ABORT!\n”);

15 return ‐1;

16 }

17 if (header.active != 1) {

18 fprintf(stderr, ”Disk must be active. ABORT!\n”);

19 return ‐1;

20 }

21

22 data‐>enc = (struct encryption *)calloc(1, sizeof(struct encryption));

23

24 init_gpgme(GPGME_PROTOCOL_OpenPGP);

25 gpgme_new(&ctx);

26 gpgme_set_ctx_flag(ctx, ”no‐symkey‐cache”, ”1”); // Disable caching of GPG daemon

27

28 gpgme_data_new_from_fd(&cipher, fd_cand_key);

29 gpgme_data_new(&plain);

30 gpgme_op_decrypt(ctx, cipher, plain);

31

32 buf = (unsigned char *)gpgme_data_release_and_get_mem(plain, &len);

33

34 SHA512(buf, UBLK_MASTER_KEY_HASH_LEN, md_buf);

35

36 if (strncmp((const char *)header.master_key_hash, (const char *)md_buf,

UBLK_MASTER_KEY_HASH_LEN)) {

37 // Validation failed

38 fprintf(stderr, ”The provided key was not correct\n”);

39 return ‐1;

40 } else {

41 // Validation passed

42 memcpy (data‐>enc‐>key, buf, KEY_SIZE);

43 }

44

45 return 1;

46 }

Listing 4.3: Function extract_key()

The primary tasks of the extract_key() are listed below:

1. Retrieves the metadata section from the disk.

2. Checks that this is indeed a valid disk.

156 CHAPTER 4. IMPLEMENTATION

3. Allocates the encryption structure, which will house the master key upon suc-

cessful validation.

4. Initializes a cryptographic context, essential formaking anyGPGME-related func-

tion calls.

5. Decrypts the context of the file containing the candidate master key.

6. Computes the hash of the candidate master key.

7. Compares the hash of the candidatemaster key with the storedmaster key hash in

the master_key_hash field of the ublk_header structure. A mismatch in hashes

denies access, whereas a match confirms the provided file contains the correct

master key. The master key is then copied to the enc‐>key field, making it ready

for subsequent cryptographic operations.

The next high-level operation of adding a new key, as presented in Section 3.5.2, follows

the logic of the previous two, and thus, will not be detailed here.

Lastly, as discussed in 3.5.2, to remove a key we simply delete the file containing the

encrypted master key. This action does not require any additional steps.

4.3 Single-Thread Encryption Implementation

In our initial solution, we mainly made three modifications to the existing ublk server

code:

1. We initialized an OpenSSL cryptographic context inside of which every crypto-

graphic operation is performed.

2. We allocated the “temporary buffers” and utilized them whenever interacting

with the target. For a write request, the encrypted data resides in these “tempo-

rary buffers” and are sent to the target for storage. In contrast, for a read request,

we retrieve the encrypted data from the target and place them in the “temporary

buffers” before decryption.

3. We executed the appropriate calls to the OpenSSL library functions for perform-

ing the encryption or decryption tasks.

4.3. SINGLE-THREAD ENCRYPTION IMPLEMENTATION 157

Initialize a Cryptographic Context

Every cryptographic operation must take place within a specific “cryptographic con-

text” in OpenSSL. This context is represented by a structure of type EVP_CIPHER_CTX.

Additionally, there is a separate structure for the specific cipher method implementa-

tion, denoted as EVP_CIPHER.

We allocate these two structures during the initialization phase of every “queue-thread”

in the ublk server and maintain a reference to them. This approach allows us to reuse

them for every encryption or decryption operation, avoiding unnecessary allocations

during hot path.

These two structures are encapsulated within a common structure named crypt_ctx,

and we refer to this structure whenever we need to perform an operation within the

OpenSSL context.

Let’s see how this initialization is performed.

1 struct crypt_ctx {

2 EVP_CIPHER_CTX *ctx;

3 EVP_CIPHER *cipher;

4 };

5

6 struct crypt_ctx *init_crypt_ctx(void)

7 {

8 struct crypt_ctx *c_ctx = (struct crypt_ctx *)malloc(sizeof(*c_ctx));

9

10 c_ctx‐>ctx = NULL;

11 c_ctx‐>cipher = NULL;

12 c_ctx‐>ctx = EVP_CIPHER_CTX_new();

13 c_ctx‐>cipher = EVP_CIPHER_fetch(NULL, ”AES‐256‐XTS”, NULL);

14

15 return c_ctx;

16 }

Listing 4.4: Function init_crypt_ctx

Every EVP_*object and function, refers toOpenSSL-related features. The EVP_CIPHER_CTX

and EVP_CIPHER structures are initialized using EVP_CIPHER_CTX_new() and

EVP_CIPHER_fetch() respectively. The former function allocates and returns a cipher

context while the latter retrieves the cipher implementation for the specified algorithm.

We requested AES-256 in XTS mode as the algorithm.

158 CHAPTER 4. IMPLEMENTATION

Write Request

The following function is triggered during the data path for a write request, specifically

at Step 4, as shown in Figure 3.24.

1 int encrypt(const struct ublksrv_queue *q, const struct ublksrv_io_desc *iod, int tag)

2 {

3 struct crypt_ctx *c_ctx = q‐>private_data; // Cryptographic context

4 void *buf = (void *)iod‐>addr; // Original buffer

5 __u64 start_sector = iod‐>start_sector;

6 __u32 nr_sectors = iod‐>nr_sectors;

7 __u64 relative_bytes;

8 __u32 relative_sector = 0;

9 union iv xts = {0};

10 int encrypt_size;

11 const struct ublksrv_ctrl_dev *ctrl_dev = ublksrv_get_ctrl_dev(q‐>dev);

12 struct encryption *enc = ublksrv_get_encryption(ctrl_dev); // Master key

13 struct _ublksrv_queue *queue = tq_to_local(q);

14 unsigned char *t_buf = queue‐>tmp_buf[tag]; // Temporary buffer

15

16 if (!EVP_EncryptInit_ex2(c_ctx‐>ctx, c_ctx‐>cipher, enc‐>key, NULL, NULL))

17 goto err;

18

19 while (nr_sectors) {

20 xts.sector = start_sector;

21 relative_bytes = relative_sector << 9;

22

23 if (!EVP_EncryptInit_ex2(c_ctx‐>ctx, NULL, NULL,

24 (const unsigned char *)xts.tweak, NULL))

25 goto err;

26 if (!EVP_EncryptUpdate(c_ctx‐>ctx, t_buf + relative_bytes, &encrypt_size,

27 (const unsigned char *)buf + relative_bytes, 512))

28 goto err;

29

30 start_sector++;

31 relative_sector++;

32 nr_sectors‐‐;

33 }

34 [...]

35 }

Listing 4.5: Function encrypt()

Let’s decompose this code. Firstly, the function takes three parameters:

• A pointer to a structure containing information for a running ublk server queue.

4.3. SINGLE-THREAD ENCRYPTION IMPLEMENTATION 159

• A pointer to a descriptor of the request, which has been explained thoroughly in

Section 3.4.3.

• The tag of the request.

With the information from the second argument (ublksrv_io_desc), we can obtain

three crucial values: (a) The pointer to the “original buffer” (i.e. the buffer containing

the plaintext we wish to encrypt), (b) the starting sector that the first 512-byte segment

of the “original buffer” refers to (this value is significant for encryption as the sector

number is used as the tweak value), and (c) the total number of sectors included in this

request.

Based on the tag, we can identify the specific “temporary buffer”, referred to as t_buf,

that will store the result of the encryption. This information along with the crypt_ctx

structure which holds the cryptographic context in which the encryption operation will

be performed, is extracted from the first parameter of the function, which contains in-

formation about the current queue.

The important computation occurs within the while(nr_sectors) loop. This loop,

based on the request size, processes each 512-byte segment from the “original buffer”,

and stores the encrypted version of each segment in the corresponding location within

the “temporary buffer”. Here is a breakdown of the loop:

1. The loop continues as long as there are sectors left to process, as indicated by

nr_sectors.

2. In each iteration:

(a) The current sector number is updated in the xts structure.

(b) The byte positionwithin the buffers is calculated based on the current sector

being processed.

(c) Encryption initialization is performed with the current sector’s tweak value

via EVP_EncryptInit_ex2() function. This function is called in two dif-

ferent places. The first time it sets up the cipher context ctx for encryption

with the XTS cipher, and inside the while loop it sets the current tweak

value according to the current sector.

160 CHAPTER 4. IMPLEMENTATION

(d) The encryption process takes a 512-byte segment from the original buffer,

encrypts it, and places the result in the temporary buffer at the correspond-

ing position. This is performed by the EVP_EncryptUpdate() function,

which encrypts successive blocks of data in every call.

(e) Sector indices are updated for the next iteration, moving on to the next 512-

byte segment.

3. The loop advances to the next sector and repeats the process until all sectors have

been encrypted.

As we can see, the XTS is applied individually to 512-byte chunks that corresponds to

disk sectors with the tweak being the sector number.

To set appropriately the tweak value, we store it in a union as follows:

1 union iv {

2 __u64 sector;

3 unsigned char tweak[TWEAK_SIZE];

4 };

Listing 4.6: Union Used to Set the Tweak Value

So, in each loop iteration, we assign the number of the sector being encrypted to the

sector field, and then translate this value to an unsigned char to properly set the

tweak value expected by EVP_EncryptInit_ex2(). This is a “trick” we used in all im-

plementations.

Read Request

In a read request, decryption occurs after the data has been retrieved from the target

and stored in the “temporary buffer” (Step 5 in Fig. 3.25). The function logic mirrors

that of encrypt() (4.5), with the primary difference being the source and destination

buffers during the decryption process. Instead of encrypting data from the “original

buffer” to the “temporary buffer”, we decrypt data from the “temporary buffer” to the

“original buffer”.

The snippet below highlights the key differences:

4.4. INTRA-BLOCK ENCRYPTION IMPLEMENTATION 161

1 int decrypt(const struct ublksrv_queue *q, const struct ublk_io_data *data, int tag)

2 {

3 [...]

4 if (!EVP_DecryptInit_ex2(c_ctx‐>ctx, c_ctx‐>cipher, enc‐>key, NULL, NULL))

5 goto err;

6

7 while (nr_sectors) {

8 xts.sector = start_sector;

9 relative_bytes = relative_sector << 9;

10 if (!EVP_DecryptInit_ex2(c_ctx‐>ctx, NULL, NULL,

11 (const unsigned char *)xts.tweak, NULL))

12 goto err;

13 if (!EVP_DecryptUpdate(c_ctx‐>ctx, buf + relative_bytes, &decrypt_size,

14 t_buf + relative_bytes, 512))

15 goto err;

16

17 start_sector++;

18 relative_sector++;

19 nr_sectors‐‐;

20 }

21 [...]

22 }

Listing 4.7: Function decrypt()

We can observe that the roles of the “temporary buffer” (t_buf) and “original buffer”

(buf) have been switched and of course, unlike the encryption process, here we call the

decryption-related functions from the OpenSSL library.

The term “single-thread” in the encryption solution is now clearer. It refers to the step-

by-step encryption or decryption of each sector by the main thread itself, with the ap-

propriate tweak value set sequentially for every sector involved.

4.4 Intra-Block Encryption Implementation

In our second solution, wemanage a thread pool to handle the cryptographic tasks. The

cornerstone of this solution is a shared object that facilitates communication between

the main thread and the worker threads. Let’s take a look into this object and explore

the functionality of its various fields.
1 struct shared_obj {

2 pthread_barrier_t barrier1;

162 CHAPTER 4. IMPLEMENTATION

3 pthread_barrier_t barrier2;

4

5 struct {

6 int pos;

7 pthread_mutex_t mutex;

8 };

9

10 struct {

11 void *buf;

12 void *tmp_buf;

13 };

14

15 unsigned long request_size;

16 __u64 start_sector;

17

18 struct encryption *enc;

19

20 int encrypt; // Type of request

21 unsigned long num_threads;

22 int quit; //0 => don’t quit, 1 => quit

23 pthread_t threads[];

24 };

Listing 4.8: Shared Object Descriptor

The fields of this structure are:

• barrier1, barrier2: These two barriers are necessary for synchronization be-

tween the main and the working threads.

• pos, mutex: The pos field is used by each thread to acquire a “position” within

the pool during their initialization. Based on its position, each worker identifies

the area of the buffer it must operate on. Since multiple threads may access the

pos field concurrently while acquiring positions, a lock (mutex) is used to ensure

safe access.

• buf, tmp_buf: Pointers to the “original buffer” and “temporary buffer” respec-

tively, set by the main thread to guide workers on which buffers to operate on.

• request_size: Indicates the size of the request, enabling eachworker to compute

the number of iterations it has to perform.

• start_sector: Denotes the starting sector on disk of the I/O request, crucial for

setting the appropriate “tweak” value.

4.4. INTRA-BLOCK ENCRYPTION IMPLEMENTATION 163

• enc: A pointer to a structure holding the master key.

• encrypt: Specifies the type of request. A value of 1 indicates a write request

requiring encryption from the “original buffer” to the “temporary buffer” before

sending data to the backing file. A value of 0 indicates a read request requiring

decryption from the “temporary buffer” to the “original buffer” after reading data

from the backing file.

• num_threads: Indicates the total number of worker threads, which is essential

for computing the stride.

• quit: Set by the main thread to instruct worker threads to exit.

• threads: This is a flexible array member and is used during the creation of the

thread pool, storing unique identifiers for every thread, which in turn enables the

main thread to await the completion of each worker before exiting.

Examining how this object is used, Figure 3.27 depicts that whenever the main thread

needs to notify theworker threads of a request, it populates the fields of the shared object

with relevant to this request information.

1 // q => struct ublksrv_queue *

2 // iod => struct ublksrv_io_desc *

3 [...]

4 struct shared_obj *so = ublksrv_queue_get_shared_object(q);

5

6 // Fill in the shared object

7 so‐>encrypt = 1;

8 so‐>buf = (void *)iod‐>addr;

9 so‐>tmp_buf = get_tmp_buf_from_queue(q, tag);

10 so‐>request_size = iod‐>nr_sectors << 9;

11 so‐>start_sector = iod‐>start_sector;

12 so‐>quit = 0; // it’s not a quit request

13

14 // Let’s start the encryption

15 pthread_barrier_wait(&so‐>barrier1);

16

17 // Wait for working threads to finish

18 pthread_barrier_wait(&so‐>barrier2);

19 [...]

Listing 4.9: The Main Thread Prepares a Write Request

164 CHAPTER 4. IMPLEMENTATION

The code snippet above demonstrates how the main thread prepares a request for en-

cryption, alerts the workers, and waits for the task completion.

For a decryption request, the only change is setting so‐>encrypt to 0.

Now, let’s inspect the actions of each worker. The following routine is carried out by

each worker thread, with the shared object being passed as an argument during thread

creation.

1 void *working_pool_fun(void *args)

2 {

3 struct shared_obj *so = (struct shared_obj *)args;

4

5 pthread_mutex_lock(&so‐>mutex);

6 int pos = so‐>pos++;

7 pthread_mutex_unlock(&so‐>mutex);

8

9 unsigned long stride;

10 __u64 sec;

11 unsigned long num_threads = so‐>num_threads;

12 struct encryption *enc = so‐>enc;

13 int retval = 1;

14

15 // Initialize encryption/decryption context and cipher

16 EVP_CIPHER_CTX *ctx = NULL;

17 EVP_CIPHER *cipher = NULL;

18 ctx = EVP_CIPHER_CTX_new();

19 cipher = EVP_CIPHER_fetch(NULL, ”AES‐256‐XTS”, NULL);

20

21 union iv xts = {0};

22 int encrypt_size, decrypt_size;

23

24 for (;;) {

25 pthread_barrier_wait(&so‐>barrier1); // Wait for a request from main thread

26 // Check if we need to exit

27 if (so‐>quit) {

28 EVP_CIPHER_free(cipher);

29 EVP_CIPHER_CTX_free(ctx);

30 pthread_exit(&retval);

31 }

32

33 // Set the cipher and the key for the context

34 if (so‐>encrypt) {

35 EVP_EncryptInit_ex2(ctx, cipher, enc‐>key, NULL, NULL);

36 } else {

37 EVP_DecryptInit_ex2(ctx, cipher, enc‐>key, NULL, NULL);

38 }

39 stride = pos << 9;

40 sec = so‐>start_sector + pos;

4.4. INTRA-BLOCK ENCRYPTION IMPLEMENTATION 165

41 while (stride < so‐>request_size) {

42 xts.sector = sec;

43 if (so‐>encrypt) {

44 // Write request

45 if (!EVP_EncryptInit_ex2(ctx, NULL, NULL, (const unsigned char *)xts.tweak, NULL))

46 ublk_err(”ERROR: EVP_EncryptInit_ex2() failed”);

47

48 if (!EVP_EncryptUpdate(ctx, (unsigned char *)so‐>tmp_buf + stride,

49 &encrypt_size, (const unsigned char *)so‐>buf + stride, 512))

50 ublk_err(”ERROR: EVP_EncryptUpdate() failed”);

51

52 } else {

53 // Read request

54 if (!EVP_DecryptInit_ex2(ctx, NULL, NULL, (const unsigned char *)xts.tweak, NULL))

55 ublk_err(”ERROR: EVP_DecryptInit_ex2() failed”);

56

57 if (!EVP_DecryptUpdate(ctx, (unsigned char *)so‐>buf + stride,

58 &decrypt_size, (const unsigned char *)so‐>tmp_buf + stride, 512))

59 ublk_err(”ERROR: EVP_DecryptUpdate() failed”);

60 }

61

62 stride += (num_threads << 9);

63 sec += num_threads;

64 }

65 pthread_barrier_wait(&so‐>barrier2);

66 }

67 }

Listing 4.10: Working Threads Running Function

Here’s a summary of the key activities within in this function. Each thread:

1. Determines its position, ensuring that there will be no concurrent access to the

so‐>pos field.

2. Allocates the cryptographic context and fetches the cipher implementation for

the AES-XTS algorithm, as seen in the single-thread solution.

3. Enters a loop, awaiting a request from the main thread at the first barrier.

4. Wakes up from the barrier when the request arrives, checks if it should terminate,

and if not, it sets the context ctx with the specific cipher and key for encryption

or decryption according to the type of the request it has to manage.

166 CHAPTER 4. IMPLEMENTATION

5. Calculates the necessary offsets based on its position, determining its “operational

area” within the buffers. The stride variable indicates the starting point within

the buffer, while the sec variable represents the specific sector number necessary

to set the tweak value for the cryptographic operations. Since pos is a unique

value for each thread, this calculation ensures that each thread starts at a different

position within the buffers.

6. Starts a while loop, in which it either encrypts, or decrypts one sector at time.

The distribution of work is set up such that each thread works on different, non-

overlapping 512-byte sectors. After processing its current sector, the thread skips

sectors equal to the total number of threads (num_threads) and processes the

next one. This mechanism ensures that all threads operate simultaneously but

on different parts of the buffer, achieving parallelism. Also the current sector is

incremented in sync with stride, ensuring the correct sector number is used

for each operation. For example, considering we have 4 threads (numbered 0

through 3) and a buffer of 16 sectors. Here’s how the distribution will look:

• Thread 0: processes sectors 0, 4, 8, 12

• Thread 1: processes sectors 1, 5, 9, 13

• Thread 2: processes sectors 2, 6, 10, 14

• Thread 3: processes sectors 3, 7, 11, 15

7. Finishes the while loop, as soon as the stride exceeds the request size and “hits”

the second barrier.

When every thread completes its task, it means the whole request has been processed,

and the final thread to reach the second barrier will wake up the remaining worker

threads and the main thread, as illustrated in Steps 6 and 7 of Fig. 3.27.

The union iv remains consistent with the previous implementation, serving the same

purpose. When the sector number is set, the tweak value is also set due to the shared

memory space of the union.

4.5. INTER-BLOCK ENCRYPTION IMPLEMENTATION 167

4.5 Inter-Block Encryption Implementation

In our third implementation, three key structures are employed to manage crypto-

graphic tasks and help communication between the main thread and workers. These

structures and their interconnections are depicted in Figure 3.29. Let’s examine their

components.

1 struct shared_obj {

2 pthread_cond_t cond;

3 int efd;

4 struct encryption *enc;

5 struct queue *submit;

6 struct queue *complete;

7 struct ublksrv_req *req_array;

8 pthread_t threads[];

9 };

10

11 struct queue {

12 pthread_mutex_t mutex_queue;

13 int num;

14 struct ublksrv_req *head;

15 struct ublksrv_req *tail;

16 };

17

18 struct ublksrv_req {

19 const struct ublksrv_io_desc *iod;

20 void *tmp_buf;

21 unsigned tag;

22 int op; // 0=>read(decryption), 1=>write(encryption), set by main thread

23 int quit; // Set by main thread if we need to quit

24 struct ublksrv_req *next;

25 struct io_uring_cqe cqe;

26 };

Listing 4.11: Basic Structures in Inter-Block Implementation

The struct shared_obj acts as a bridge between the main thread and worker threads.

Similar to the intra-block solution, a shared object is required as the main and worker

threads need to collaborate to perform any cryptographic task. Below is a breakdown

of the fields in the struct shared_obj:

• cond: A condition variable used by the main thread to notify worker threads of a

request.

168 CHAPTER 4. IMPLEMENTATION

• efd: An eventfd file descriptor used by worker threads to notify the main thread

of job completion.

• enc: Holds the master key used in cryptographic operations.

• submit: A queue containing requests submitted to workers but not yet processed.

• complete: A queue containing requests from workers awaiting processing by the

main thread.

• req_array: An array holding all potential on-the-fly requests.

• threads: A flexible array member holding threads, serving the same role as in

the previous implementation.

The communication flow is explained in the Section 3.5.5. In short: the main thread

signals the workers about a new job through the condition variable, and upon job com-

pletion, the workers notify the main thread via the eventfd file descriptor.

The queues submit and complete serve as holding areas for requests at different stages

of processing. The submit queue holds the requests ready for processing, while the

complete queue holds the requests that have been processed and are ready for the main

thread to pick up.

The struct ublksrv_req plays a central role in managing a task’s lifecycle, from the

moment the main thread initiates it to its completion by a worker and subsequent pro-

cessing by the main thread again. The fields of this structure are the following:

• iod: This is the task’s descriptor, providing workers with necessary details. Its

specific role and function is further discussed in Section 3.4.3.

• tmp_buf: A pointer to a “temporary buffer”. Depending on the task’s nature, this

buffer is employed by workers either to store the encrypted result before sending

it to the target, or to access encrypted content after fetching the data from the

target.

• tag: A unique identifier for tasks, ensuring their tracking andmanagement through-

out their lifecycle.

4.5. INTER-BLOCK ENCRYPTION IMPLEMENTATION 169

• op: An indicator the main thread fills out to specify the task type. A “0” signifies

a decryption task, whereas a “1” indicates an encryption operation.

• quit: Acts as an exit signal. It informs the worker threads to conclude and ter-

minate their current activities when set by the main thread.

• next: A pointer used to link requests in the queues.

• cqe: Stores a Completion Queue Entry before submitting a read request to a

worker. We will clear out its purpose below, after examining exactly what the

main thread does when submitting a request.

Working Threads Execution Flow

The following function is the routine each working thread executes. The shared object,

given as an argument during thread creation, acts as the synchronization and commu-

nication bridge between the main thread and worker threads.

1 void *working_pool_fun(void *args)

2 {

3 struct shared_obj *so = (struct shared_obj *)args;

4 uint64_t data = 1;

5 int cnt = sizeof(uint64_t);

6 int retval = 1;

7 struct crypt_ctx *c_ctx = init_crypt_ctx();

8 for (;;) {

9 struct ublksrv_req *req;

10

11 // Wait for a request

12 pthread_mutex_lock(&so‐>submit‐>mutex_queue);

13 while (so‐>submit‐>num == 0) {

14 pthread_cond_wait(&so‐>cond, &so‐>submit‐>mutex_queue);

15 }

16 req = pop_req_from_list(so‐>submit);

17 pthread_mutex_unlock(&so‐>submit‐>mutex_queue);

18

19 // Check if we are done

20 if (req‐>quit) {

21 pthread_exit(&retval);

22 }

23

24 // Execute the request

25 execute_req(c_ctx, req, so‐>enc);

26

27 // Add the request to the completion

170 CHAPTER 4. IMPLEMENTATION

28 pthread_mutex_lock(&so‐>complete‐>mutex_queue);

29 add_req_to_list(so‐>complete, req);

30 pthread_mutex_unlock(&so‐>complete‐>mutex_queue);

31

32 // Notify main thread

33 write(so‐>efd, &data, cnt);

34 }

35 }

Listing 4.12: Working Threads Running Function

The main workflow of this function can be broken down as:

1. Initialize a cryptographic context: Eachworker has to perform the encryption or

decryption inside of a cryptographic context, as we have already mentioned. To

do so it calls the function init_crypt_ctx(), which has been shown in Listing

4.4.

2. Wait for new requests on a condition variable: Each worker thread enters a loop

and first locks the “submit queue mutex” to safely check if there is any available

requests. If no request is present, the thread waits on a condition variable, freeing

up the mutex, until the main thread signals the arrival of new tasks.

3. Retrieve a request: After getting a pthread_cond_signal(), a worker awakens,

pops out a request from the submit queue, and then releases the mutex.

4. Process the request: After passing the termination check, the thread moves for-

ward to handle the request using the execute_req function. This function com-

pletes the request by invoking the necessary encryption or decryption functions,

as discussed further below.

5. Mark the request’s completion: After processing, the thread locks the “complete

queuemutex”, adds the finished request to the complete queue for themain thread

to pick up, and then unlocks the mutex.

6. Inform the main thread: At the end, the worker thread alerts the main thread

about the task’s completion by writing to the eventfd.

Through this infinite loop, each worker thread handles requests, processes them, and

communicates their completion to the main thread.

4.5. INTER-BLOCK ENCRYPTION IMPLEMENTATION 171

The two helper functions for queue manipulation, add_req_to_list() and

pop_req_from_list(), are always called with the specific queue’s lock held, guarding

against simultaneous access. Requests are added to the head of a queue and taken from

the tail.
1 void add_req_to_list(struct queue *q, struct ublksrv_req *req)

2 {

3 req‐>next = NULL;

4 if (q‐>head != NULL) {

5 //assert(q‐>num != 0);

6 q‐>head‐>next = req;

7 } else {

8 //assert(q‐>num == 0);

9 q‐>tail = req;

10 }

11 //assert(q‐>tail != NULL);

12 q‐>head = req;

13 q‐>num++;

14 }

15

16 struct ublksrv_req *pop_req_from_list(struct queue *q)

17 {

18 //assert(q‐>tail != NULL && q‐>num > 0);

19 struct ublksrv_req *req;

20 req = q‐>tail;

21 q‐>tail = q‐>tail‐>next;

22 q‐>num‐‐;

23 if (q‐>tail == NULL) {

24 //assert(q‐>num==0);

25 q‐>head = NULL;

26 }

27 return req;

28 }

Listing 4.13: Addition and Retrieval of a Request

To wrap up our exploration of the working threads, let’s see how request execution oc-

curs. As mentioned before, each request can be either for encryption or decryption,

with the op field of ublksrv_req indicating which.

The execute_req function determines the type of cryptographic task theworker should

carry out and calls the relevant function.
1 void execute_req(struct crypt_ctx *c_ctx, struct ublksrv_req *req, struct encryption *enc)

2 {

3 if (req‐>op) {

4 encrypt(c_ctx, req, enc);

172 CHAPTER 4. IMPLEMENTATION

5 } else {

6 decrypt(c_ctx, req, enc);

7 }

8 }

Listing 4.14: Distinguish the Type of the Request

The encrypt and decrypt functions follow the same logic as the functions in the single-

thread implementation (4.5, 4.7). Every worker computes the results by repeatedly in-

voking the relevant OpenSSL function to encrypt or decrypt the entire buffer.

Main Thread Execution Flow

While we have explored the operations of worker threads, the role of the main thread in

this implementation remains to be discussed. How is the offloading of requests man-

aged?

The main thread submits SQEs and awaits CQEs. In this design, the main thread may

be awakened by a CQE originating from one of three sources:

1. A read or write request from the driver.

2. A response to a read or write request from the target.

3. A write to the eventfd from a working thread.

Upon awakening, the server examines two specific bits of the user_data field of CQE

to acknowledge the type of request it needs to handle.

With that context, let’s proceed to closely analyze the implementation for each of these

three cases.

Case 1: The Driver Sent a Write or a Read Request

Upon receiving a request from the driver, the server takes action based on whether the

request is a “write” or “read” operation.

1 [...]

2 if (cqe‐>res == UBLK_IO_RES_OK) {

3 __u8 real_cmd_op = ublksrv_get_op(io‐>data.iod);

4 if (real_cmd_op == UBLK_IO_OP_WRITE) {

4.5. INTER-BLOCK ENCRYPTION IMPLEMENTATION 173

5 // A write request came from ublk driver.

6 // Forward the request to a working thread for encryption.

7 // First of all prepare the request.

8 struct ublksrv_req *req = &so‐>req_array[tag];

9 req‐>iod = io‐>data.iod;

10 req‐>tmp_buf = q‐>tmp_buf[tag];

11 req‐>op = 1; //encrypt operation

12 req‐>quit = 0; // This is not a quit request

13

14 // Now put the request in the ”submit” queue and signal a working thread

15 pthread_mutex_lock(&so‐>submit‐>mutex_queue);

16 add_req_to_list(so‐>submit, req);

17 pthread_cond_signal(&so‐>cond);

18 pthread_mutex_unlock(&so‐>submit‐>mutex_queue);

19 } else {

20 // A read request came from ublk driver. Call this target callback

21 // to prepare a read SQE for the target.

22 q‐>tgt_ops‐>handle_io_async(local_to_tq(q), &io‐>data);

23 }

24 [...]

Listing 4.15: Serving a Request from the Driver

From the above code, it’s evident that in the case of a write request, the server prepares

an appropriate ublksrv_req structure. It adds the request to the submit queue, and

subsequently, it signals a worker thread to handle the encryption.

On the other hand, when handling a read request, the server must interact with the tar-

get, not the workers. The reason being, the server must first retrieve the encrypted data

from the target. To achieve this, it invokes a “target-specific” callback, which prepares a

read request directed to the target.

Case 2: Response from the Target to a Write or Read Request

1 [...]

2 struct ublk_io *io;

3 io = &q‐>ios[tag];

4 __u8 real_cmd_op = ublksrv_get_op(io‐>data.iod);

5 if (real_cmd_op == UBLK_IO_OP_READ) {

6

7 // This is a respond to a read request.

8 // A worker must decrypt the data.

9 // Prepare the request

10 struct shared_obj *so = q‐>so;

11 unsigned tag = user_data_to_tag(cqe‐>user_data);

174 CHAPTER 4. IMPLEMENTATION

12 struct ublksrv_req *req = &so‐>req_array[tag];

13 //assert(tag == req‐>tag);

14 req‐>iod = io‐>data.iod;

15 req‐>tmp_buf = q‐>tmp_buf[tag];

16 req‐>op = 0; // read request

17 req‐>quit = 0;

18 req‐>cqe.user_data = cqe‐>user_data;

19 req‐>cqe.res = cqe‐>res;

20 req‐>cqe.flags = cqe‐>flags;

21

22 // Put the request in submit list and signal a working thread

23 pthread_mutex_lock(&so‐>submit‐>mutex_queue);

24 add_req_to_list(so‐>submit, req);

25 pthread_cond_signal(&so‐>cond);

26 pthread_mutex_unlock(&so‐>submit‐>mutex_queue);

27 } else {

28 // This is a response to a write request.

29 // Call this target callback to prepare a UBLK_IO_COMMIT_AND_FETCH_REQ SQE for the driver

30 if (q‐>tgt_ops‐>tgt_io_done)

31 q‐>tgt_ops‐>tgt_io_done(local_to_tq(q),

32 &q‐>ios[tag].data, cqe);

33 }

34

35 [...]

Listing 4.16: Serving a Response from the Target

The server again, must choose between different paths based on whether it receives a

write or read response from the target.

For write responses, since the encrypted data is already written to the target, the server

only invokes a target-specific callback to prepare the response for the driver.

For read responses, data decryption is required. To achieve this, the server prepares a

ublksrv_req, places it into the submit queue, and signals a worker. Notably, in this

scenario, the server saves the target’s CQE response within the ublksrv_req structure.

This step is absent when preparing a ublksrv_req for encryption, as shown in Listing

4.15. This distinction arises because omitting this step would cause the server to lose

track of the target’s specific request response.

To understand this nuance, let’s review the stages for both write and read requests. The

request flows are:

• Ublk server receives a write request from the ublk driver:

4.5. INTER-BLOCK ENCRYPTION IMPLEMENTATION 175

1. The server adds a ublksrv_req and notifies a worker. The worker does the

encryption and responds.

2. The server sends to the target the encrypted data. The target responds.

3. The Server submits an UBLK_IO_COMMIT_AND_FETCH_REQ SQE to the driver

to inform about the request.

• Ublk server receives a read request from ublk driver:

1. The server submits a read SQE to the target to fetch the encrypted data. The

target responds.

2. The server adds a ublksrv_req to the submit queue and notifies a worker.

A worker does the decryption and responds.

3. The server submits an UBLK_IO_COMMIT_AND_FETCH_REQ SQE to the driver

to inform about the request.

Each “response” in the sequences above stands for a CQE. Thus, in Step 3 of the write

request, the server possesses the target’s response, allowing it to prepare the SQE that

will be submitted to the driver, reflecting the result of the request. In contrast, during

the read process in Step 3, the only response the server has is from the worker. This

distinction highlights the necessity for a field in the ublksrv_req structure to “hold”

the target’s CQE for read requests.

Case 3: A worker notifies the server via eventfd

In this third scenario, the server awakens to find a CQE that corresponds to the

IORING_OP_POLL_ADD SQE. The server had previously submitted this SQE to receive

notifications from the workers.

1 [...]

2 struct req_list rl;

3 struct shared_obj *so = q‐>so;

4 unsigned long long d;

5 const int cnt = sizeof(uint64_t);

6 req_list_init(&rl);

7

8 pthread_mutex_lock(&so‐>complete‐>mutex_queue);

9 req_list_splice(so‐>complete, &rl);

10 // Consume the eventfd.

176 CHAPTER 4. IMPLEMENTATION

11 read(so‐>efd, &d, cnt);

12 __ublksrv_queue_event_for_main_thread(local_to_tq(q));

13 io_uring_submit_and_wait(&q‐>ring, 0);

14 pthread_mutex_unlock(&so‐>complete‐>mutex_queue);

15

16 /*

17 * Now we have in rl the pointers to the beginning and

18 * the end of the requests that we have to satisfy

19 */

20 struct ublksrv_req *req = rl.tail;

21 while (req != NULL) {

22 struct ublksrv_req *tmp;

23 tmp = req;

24 /*

25 * manipulate the responds.

26 * If it is a write request, we need to handle it,

27 * but if it is a read request, which we have already

28 * handled, we need to proceed to tgt_io_done

29 */

30 struct ublk_io *io;

31 io = &q‐>ios[req‐>tag];

32

33 if (req‐>op) {

34 // Write case

35 q‐>tgt_ops‐>handle_io_async(local_to_tq(q), &io‐>data);

36 } else {

37 // Read case

38 if (q‐>tgt_ops‐>tgt_io_done) {

39 q‐>tgt_ops‐>tgt_io_done(local_to_tq(q),

40 &q‐>ios[req‐>tag].data, &req‐>cqe);

41 }

42 }

43 req = req‐>next;

44 tmp‐>next = NULL;

45 }

46

47 [...]

Listing 4.17: Ublk Server Handles a CQE from eventfd

Let’s dissect the code snippet to understand the actions the main thread performs:

• The main thread first acquires the lock for the complete queue. It then copies

the head and tail fields of it to a temporary structure, named “rl”. This struc-

ture is made up of two pointers to ublksrv_req and will hold these pointers as

the main thread begins processing each completed request. Holding onto these

4.5. INTER-BLOCK ENCRYPTION IMPLEMENTATION 177

pointers in a temporary structure prevents the server from retaining the lock

on the complete queue while processing the completed requests. The function

req_list_splice also sets the num field of the complete queue structure to zero.

• While still possessing the lock, the server:

1. Clears any pending notifications by reading from the eventfd.

2. Prepares a IORING_OP_POLL_ADD SQE for the eventfd.

3. Submits the SQE and returns immediately without waiting.

4. Releases the mutex of the complete queue.

• After releasing the lock, the main thread now has the pointers to the start and

end of the complete queue. It must now address each completed request. The

while() loop serves this purpose. The loop traverses each request, moving from

tail to head, and takes actions based on its type. If it was a completed write

request, the server needs to submit a write request to the target and thus calls the

handle_io_async callback. If it was a read request, the server must finalize the

response to the driver and invokes another target callback to achieve this.

Locking Schema

Our design has two primary “communication directions”: from the main thread to the

worker threads, and vice versa. We’ll explain how our locking system keeps the data

safe.

From Main Thread to Working Threads

At the heart of this direction is the submit queue. The crucial element here is the mutex

that safeguards this queue, coming into play when the main thread adds a request and

when worker threads retrieve requests from it.

This locking mechanism ensures only one worker manipulates an event. But how can

we be certain no “orphaned” job will arise? There are two potential scenarios after the

main thread submits a request to the submit queue:

1. At least one worker is already waiting because of pthread_cond_wait. In this

case, the pthread_cond_signal just wakes up one of the waiting threads. This

means the request will be taken care of.

178 CHAPTER 4. IMPLEMENTATION

2. All workers are active and currently processing jobs. Here, the first worker that

concludes its task and loops back into the for(;;) loop will find the

while(so‐>submit‐>num == 0)predicate unsatisfied,meaning itwon’twait and

will instead retrieve the request from the list.

Hence, we can confidently state that we won’t encounter unprocessed requests.

From Working Threads to Main Thread

The complete queue is central to this communication direction. We’ve designed our

solutionwith an emphasis on reducing the duration for which locks are held. As a result,

when the main thread manipulates the complete list, it doesn’t maintain any lock. This

design choice allows workers to continue if they need to add jobs to the list.

As detailed in Listing 4.17, the main thread acquires the lock of the complete queue

during the “splicing” process, i.e. while taking the reference of its head and tail. Fur-

thermore, it continues to hold this lock while reading the eventfd and resubmitting the

poll request. This decision is crucial. Imagine a scenario where the main thread only

acquires the lock during the “splice” operation for the complete queue. If a worker

completes a request and writes to the eventfd just before the main thread submits the

next poll request, the notification would be missed. To sidestep such pitfalls, the main

threadmaintains the lock until the poll request for the eventfd is resubmitted. However,

it ensures that the lock is released before processing each individual request, allowing

this way the workers to submit any completed request to the list.

5
Evaluation

In this chapter, we present the evaluation of our implementations. We compare our three

cryptographic solutions with the original ublk andmeasure the overhead each adds to it.

This allows us to draw conclusions about the potential benefits or pitfalls of our parallel

solutions which will help us find ways to improve them in the future. Our presented

metrics were done using fio [Axbc], a configurable program that tests workloads and

measures the performance of various components in the I/O stack.

5.1 Machine Specification

We conducted our measurements on an Amazon Web Services (AWS) machine, specif-

ically a “c5d.2xlarge” model [Ama]. This machine uses the x86_64 architecture. Tables

5.1 and 5.2 present its software and hardware specifications respectively.

Operating System Debian GNU/Linux 12 (bookworm)
Kernel 6.1.0-17-cloud-amd64
Shell bash 5.2.15

Compiler gcc (Debian 12.2.0-14) 12.2.0

Table 5.1: Software Specification

5.2 fio

Fio is a benchmarking tool that is used mainly for storage performance benchmarking.

It can be configured to model nearly any storage model, making it the standard tool

179

180 CHAPTER 5. EVALUATION

CPU Intel Xeon Platinum 8275CL
Frequency 3.000GHz

Architecture x86_64
Socket(s) 1

Cores per socket 4
Threads per core 2

Level 1 Data Cache 128 KiB (4 instances)
Level 1 Instruction Cache 128 KiB (4 instances)
Level 2 Unified Cache 4 MiB (4 instances)
Level 3 Unified Cache 35.8 MiB (1 instance)

Memory 16GiB DIMM DDR4
Drive 1 Amazon Elastic Block Store (15 GiB)
Drive 2 Amazon EC2 NVMe Instance Storage (186.26 GiB)

Table 5.2: Hardware Specification

for testing various workloads against disk devices and measuring their performance. It

spawns processes (or threads if explicitly set) that perform the specified I/O actions.

And why do we need fio?

We aim to measure the overhead caused by the encryption we’ve implemented. More

specifically, we want to see how bandwidth and latency are affected. We want to under-

stand the burden our encryption/decryption implementation adds to the ublk frame-

work and compare the different implementations.

In this section, we will analyze the fio script we wrote for the testing purposes. Fio runs

either via a job file (i.e. a file script) or through the command line.

To simulate and test our implementations under different environments, we measured

four different types of workloads, issued from both a synchronous and asynchronous

I/O engines for different request sizes. More specifically, we tested both random and

sequential reads and writes issued both synchronously and asynchronously for six dif-

ferent request block sizes (4k, 8k, 16k, 32k, 64k and 1m).

Below, we present an indicative segment of the fio job file for the case of random read.

The other three options (sequential read and random/sequential writes) follow the same

logic and for the sake of brevity we omit their display here.

1 [global]

2 filename=/dev/ublkb0

3 direct=1

4 ioengine=sync

5.2. FIO 181

5 ramp_time=5s

6 runtime=1m

7 time_based

8 numjobs=1

9 iodepth=1

10 rw=randread

11

12 #### RANDOM READ ######

13 [4k_randread]

14 bs=4k

15 [8k_randread]

16 stonewall

17 bs=8k

18 [16k_randread]

19 stonewall

20 bs=16k

21 [32k_randread]

22 stonewall

23 bs=32k

24 [64k_randread]

25 stonewall

26 bs=64k

27 [1m_randread]

28 stonewall

29 bs=1m

Listing 5.1: fio job file

The job file typically contains a global section defining shared parameters which are

common to the subsequent job sections. In the example above, we have one global

section and six job sections, each for a different block size. For this workload, fio will

spawn six processes (six jobs in fio terminology, “4k_randread”, “8k_randread”, “16k_-

randread”, “32k_randread”, 64k_randread” and “1m_randread”), each performing ran-

dom reads with a different block size.

Let’s analyze the parameters of the fio segment 5.1 one-by-one:

• filename=/dev/ublkb0: Specifies the device or the file that is the “target” of the

I/O. Of course, in our case we specified the emulated block device that ublk ex-

182 CHAPTER 5. EVALUATION

poses. The backing file that ublk uses for any read or write is the NVMe disk,

displayed as “Drive 2”in Table 5.2.

• direct=1: Specifies whether the I/O will be buffered or not. In our case we set

it to non-buffered, meaning that the I/O will be O_DIRECT. This ensures the

I/O performed on the block device exposed by ublk will not use the operating

system’s page cache, providing amore accuratemeasurement of the “real” device’s

performance.

• ioengine=sync: Defines how the job issues I/O to the file. In our case we have

“sync”, which stands for “synchronous”. For asynchronousmetrics, this parameter

is set to io_uring.

• ramp_time=5s: Specifies the time to pass without logging measurements in be-

tween workloads. This is useful to let the performance settle before the logging

takes place.

• runtime=1m: Specifies the duration of each metric.

• time_based: Ensures fio runs for the specified runtime duration (one minute in

our case), even if the file is completely read or written. It will simply loop over

the same workload as many times as the runtime allows.

• numjobs=1: The number of processes that will run each workload. In our case

each workload is executed by one process. It can be used to setup a larger number

of processes do the same thing.

• iodepth=1: The number of I/O units to keep in flight against the file. Having

iodepth above 1 doesn’t make sense in synchronous engine, but for asynchronous

engines like io_uring, this parameter can be set higher.

• stonewall: Serializes the jobs so that each job starts after the previous one finishes.

• rw=randread: Specifies the type of I/O. In this case “randread” stands for random

read. For the other I/O types (sequential read and random/sequential write), this

parameter is set to “read”, “randwrite” or “write” accordingly.

• bs=4k,8k,16k,32k,64k,1m: The block size in bytes for each I/O, indicating the

“chunk” size for each workload.

5.3. EXPERIMENTAL EVALUATION 183

So towrap up ourworkload has six jobs, each job runs after the previous job ends (due to

“stonewall”), and each job runs with the same parameters except the block size. Thus,

each job performs random, synchronous reads, on /dev/ublkb0, for 1 minute with

block size equal to 4k, 8k, 32, 64k and 1m each time.

5.3 Experimental Evaluation

As explained in Section 3.6, AES is the most widely used encryption algorithm today

across various domains. However, cryptography comes at a cost. The AES algorithm

operates in rounds, with different computations occurring in each round. To address

this, Intel initially, designed and integrated a new set of instructions into their proces-

sors, specifically to accelerate the AES algorithm.

The Advanced Encryption Standard New Instructions (AES-NI) introduce six new in-

structions to support AES execution at hardware level [Int].

The processor in themachine where we took themeasurements (see Table 5.2) supports

AES-NI. The OpenSSL library we used for encryption and decryption also supports the

new instructions if the running processor does so.

For this reason, to gain a comprehensive view of our implementations, we ran the work-

loads with the new instructions both enabled and disabled. Disabling AES-NI means

that cryptographic operations are performed in software by the OpenSSL crypto li-

braries, instead of hardware.

The difference between software and hardware implementations of AES can be tested

using the speed command that OpenSSL provides. By querying our machine with this

command, with AES-NI enabled and disabled, we found that decryption with AES-NI

is approximately 11 times faster than without it, while encryption is 9.5 times faster.

Note: To force OpenSSL to disable the new instructions and run the workload via its

software implementation, we used the environmental variable OPENSSL_ia32cap.

In the next two sections, we present the bandwidth and latency metrics for our imple-

mentations without and with AES-NI support, respectively. After each section there

are comments and conclusions on the results. To conserve space in the presentation,

we will only display metrics for the synchronous engine and for io_uring with iodepth

184 CHAPTER 5. EVALUATION

equal to 4, focusing on the random read and write cases. The sequential read and write

follow the same logic and are therefore omitted.

Note: In every workload, ublk server was parametrized with the default settings (one

queue with 128 requests depth). Also our parallel implementations (ublk-intra and

ublk-inter) were operating with 4 workers.

5.3. EXPERIMENTAL EVALUATION 185

5.3.1 Metrics Without AES-NI Support

Bandwidth

Figure 5.1: Synchronous Random Read

Figure 5.2: Synchronous Random Write

186 CHAPTER 5. EVALUATION

Figure 5.3: io_uring Random Read (iodepth = 4)

Figure 5.4: io_uring Random Write (iodepth = 4)

5.3. EXPERIMENTAL EVALUATION 187

Latency

Figure 5.5: Synchronous Random Read

Figure 5.6: Synchronous Random Write

188 CHAPTER 5. EVALUATION

Figure 5.7: io_uring Random Read (iodepth = 4)

Figure 5.8: io_uring Random Write (iodepth = 4)

5.3. EXPERIMENTAL EVALUATION 189

5.3.2 Comments on Results (no AES-NI support)

To begin with, we can observe from the fio test results that there appears to be a sat-

uration point in the bandwidth of our system for both reads and writes. For the read

tests, no test surpassed the 371MB/s limit, while for the write tests, this ceiling was

at 171MB/s. Therefore, some results may not be particularly representative, especially

those with larger block sizes that reach higher bandwidth. This may indicate a bottle-

neck in the I/O path at a different spot than our implementations, or it could simply

mean that AWS limits the bandwidth when a certain size is reached.

That said, we clearly see that the nvme workload records the best performance in all test

cases below the saturation point, which we anticipated since this workload runs directly

on the disk without any overhead caused by the ublk framework.

Following the raw results from the nvme workload, the next best overall workload is

the ublk one, without any cryptographic operation. This was also expected because

cryptographic operations add functionality to the framework, which, of course, impacts

overall performance.

Synchronous operations:

• Write requests: For both random and sequential writes, the ublk-single imple-

mentation performs better for 4k and 8k requests. The ublk-intra has the worst

performance for these two block sizes but scales better than the other two, reach-

ing the ublk-single performance for 16k block size. The ublk-inter starts between

the other two for 4k requests but scales less than ublk-intra as request size in-

creases.

• Read requests: The results are clearer here. Again, the ublk-intra implementa-

tion starts as the worst compared to the other two but scales better, recording the

best performance for sequential reads after 16k requests and for random reads

after 32k. The ublk-inter implementation performs worse than ublk-single for all

request sizes except for the 1Mb requests.

Conclusions:

190 CHAPTER 5. EVALUATION

• Write request results for large sizes (32k, 64k, and 1m) seem to reach our system’s

limit (171MB/s), so we cannot derive meaningful insights from them.

• The read request results were as expected. The ublk-intra implementation is not

suited for small requests due to the overhead of worker synchronization plus the

inherent parallel implementation overheads (communication, caching). How-

ever, as request size increases, the sequential encryption/decryption performed

by both ublk-single and ublk-inter becomes more costly than managing workers

in the ublk-intra pool, making ublk-intra the better solution for requests of 32k

and above.

• Ublk-inter performs worse than ublk-single for all request sizes except 1Mb. In

synchronous cases, there is only one request that fio submits and waits for com-

pletion, limiting the advantage of parallelism offered by ublk-inter. The main

thread simply offloads encryption/decryption to a worker, who performs it se-

quentially, resulting in worse performance than ublk-single, which does the same

without the overhead of thread communication. In the case of 1Mb requests, the

block layer sends two requests for execution (due to the 0.5Mb internal buffer

limit in the ublk server), allowing parallel execution in ublk-inter and resulting

in better performance compared to ublk-single.

io_uring operations:

• Write requests: Again, our results in this case aren’t very helpful. For request sizes

of 16k and above, all our implementations reach the upper limit (171 MB/s). For

smaller requests, the results reflect the logic we encountered in the synchronous

case, where the ublk-intra implementation performs the worst, and ublk-single

performs the best.

• Read requests: The ublk-intra implementation starts as the worst compared to

the others for both iodepth equal to 2 and 4. In the first case (iodepth = 2), it

scales better than ublk-inter and surpasses it for block sizes of 64k. In the second

case (iodepth = 4), both hit the bandwidth ceiling for 64k requests.

Conclusions:

5.3. EXPERIMENTAL EVALUATION 191

• The results of these measurements match our expectations. The ublk-single im-

plementation, though it performs better than in the synchronous case, it does not

improve as much as the other two implementations as iodepth increases. Even

for the smallest block size (4k), where ublk-single recorded its biggest difference

from the others in the synchronous case, in io_uring with iodepth equal to two

the difference is smaller, and for iodepth equal to four, ublk-inter performs bet-

ter. This can be attributed to the fact that even for small requests, when iodepth

increases and multiple requests are on the fly, working on them in parallel can

make a difference.

• As block size increases, ublk-single cannot scale well, which prevents it from fully

taking advantage of iodepth. The time spent on sequentially decrypting larger

buffers impacts its performance, which was anticipated.

• Ublk-inter shows better performance in these asynchronousworkloads for iodepth

equal to 4. We observed a progressive improvement in performance from syn-

chronous to io_uring with iodepth equal to 4. This was expected, as this scenario

can fully leverage iodepth by offloading requests to different threads. However,

since both ublk-intra and ublk-inter reach the performance limit (371MB/s) for

large requests, we cannot be certain if ublk-intra would perform better as size

increases, as was the case in synchronous tests.

192 CHAPTER 5. EVALUATION

5.3.3 Metrics With AES-NI Support

Bandwidth

Figure 5.9: Synchronous Random Read

Figure 5.10: Synchronous Random Write

5.3. EXPERIMENTAL EVALUATION 193

Figure 5.11: io_uring Random Read (iodepth = 4)

Figure 5.12: io_uring Random Write (iodepth = 4)

194 CHAPTER 5. EVALUATION

Latency

Figure 5.13: Synchronous Random Read

Figure 5.14: Synchronous Random Write

5.3. EXPERIMENTAL EVALUATION 195

Figure 5.15: io_uring Random Read (iodepth = 4)

Figure 5.16: io_uring Random Write (iodepth = 4)

196 CHAPTER 5. EVALUATION

5.3.4 Comments on Results (with AES-NI support)

Running our workload with AES-NI enabled, our implementations, as expected, per-

form better than without it. Surprisingly, the ublk-single implementation records the

best overall performance, even in asynchronous cases with iodepth equal to 4, which we

did not anticipate. With hardware support for AES, which accelerates encryption and

decryption by approximately 10 times, ublk-single scales well even for large requests,

unlike when AES-NI is disabled. However, all implementations eventually reach a per-

formance ceiling for larger requests, not helping us make conclusions on their scaling

capabilities.

This suggests that the overhead of thread communication and scheduling in parallel

implementations outweighs the cost of executing AES instructions in hardware. The

superior performance of ublk-single could be attributed to two factors: (a) the over-

head of scheduling threads, which appears to be more significant than performing AES

operations in hardware, and (b) potential cache invalidations in the ublk-intra imple-

mentation, where threads working on different CPUs and accessing the same buffers

may lead to frequent RAM accesses, reducing efficiency.

Further investigation is needed on a systemwith higher bandwidth to better understand

the scaling factor of each implementation.

6
Conclusion

In this final chapter, we present a brief summary of our work, our conclusions, and

potential directions for future research.

6.1 Concluding Remarks

Our journey began over a year ago with a keen interest in Operating Systems and a

curiosity about the low-level mechanisms used by the Linux kernel. This curiosity led

us to io_uring. After grasping its core concepts, we wanted to apply our knowledge

practically, which brought us to the ublk framework.

Initially, the lack of documentation for ublk required us to dive into its source code to

unravel its functionalities. This process involved using various tools in both userspace

and kernelspace, gradually clarifying the workings of ublk’s components. This experi-

ence was invaluable, teaching us not only new concepts but also how to approach un-

familiar code bases systematically, which is a crucial skill, especially when dealing with

complex systems like the Linux kernel.

Our focus then became more defined: contribute to the ublk project by integrating

cryptographic functionality directly into the ublk server. This allowed us to contribute

meaningfully to the project while gaining practical experience with industry standards

like LUKS and AES-XTS.

Finally, this thesis provided us with the opportunity to explore different aspects of par-

allelism, evaluate its benefits and limitations, and gain practical insights into its appli-

197

198 CHAPTER 6. CONCLUSION

cation.

6.2 Future Work

Althoughwe have achieved our initial goal, there is still plenty of room for improvement

and further research. Below are some directions for future work related to this thesis:

• Explore alternative cryptographic libraries (e.g. libgcrypt [Gnuc]) and compare

their performance with the results obtained using OpenSSL.

• Further investigate the optimal configuration for the number of workers in our

parallel solutions. We aim to test and measure the performance of ublk-intra and

ublk-inter under various workloads and environments with different numbers of

worker threads to understand their impact onperformance. Additionally, we plan

to examinewhether bindingworkers to specificCPUsmakes a practical difference

in these implementations.

• Develop a more efficient communication method for the ublk-inter encryption

schema thatminimizes the need for locks. Wehave begun to implement a concept

similar to plugging (see more on 2.4.4) in our approach, where the main thread

submits a batch of requests to the workers, allowing them to process multiple

requests. This approach reduces the need for acquiring a lock with each request

submission.

• Contribute and push our work to the upstream ublk project.

Bibliography

[989] iso 9899, The standard, https://www.iso‐9899.info/wiki/The_

Standard#C99, Accessed: 2023/08/30.

[Ama] Amazon, Amazon EC2 C5 Instances, https://aws.amazon.com/ec2/

instance‐types/c5/, Accessed: 2024/1/31.

[Arc] Archlinux, Archwiki, https://wiki.archlinux.org/title/

Self‐encrypting_drives, Accessed: 2023/08/27.

[Axba] Jens Axboe, blk-mq: new multi-queue block IO queueing mechanism,

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/

linux.git/commit/?id=320ae51feed5c2f13664aa05a76bec198967e04d,

Accessed: 2023/9/4.

[Axbb] Jens Axboe, Efficient IO with io_uring, https://kernel.dk/io_uring.pdf,

Accessed: 2023/08/27.

[Axbc] Jens Axboe, fio - Flexible I/O tester, https://fio.readthedocs.io/en/

latest/fio_doc.html, Accessed: 2024/1/31.

[Axbd] Jens Axboe, io-wq: provide a way to limit max number of workers,

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/

linux.git/commit/?id=2e480058ddc21ec53a10e8b41623e245e908bdbc,

Accessed: 2023/9/15.

199

https://www.iso-9899.info/wiki/The_Standard#C99
https://www.iso-9899.info/wiki/The_Standard#C99
https://aws.amazon.com/ec2/instance-types/c5/
https://aws.amazon.com/ec2/instance-types/c5/
https://wiki.archlinux.org/title/Self-encrypting_drives
https://wiki.archlinux.org/title/Self-encrypting_drives
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=320ae51feed5c2f13664aa05a76bec198967e04d
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=320ae51feed5c2f13664aa05a76bec198967e04d
https://kernel.dk/io_uring.pdf
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2e480058ddc21ec53a10e8b41623e245e908bdbc
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2e480058ddc21ec53a10e8b41623e245e908bdbc

200 BIBLIOGRAPHY

[Axbe] Jens Axboe, liburing, https://github.com/axboe/liburing, Accessed:

2023/9/15.

[Axbf] Jens Axboe, polling mode using liburing example, https://github.com/

axboe/liburing/issues/385, Accessed: 2023/9/15.

[Bak] Lewiss Baker, Coroutine Theory, https://lewissbaker.github.io/2017/

09/25/coroutine‐theory, Accessed: 2023/9/17.

[BC06] Daniel P. Bovet and Marco Cesati, Understanding the Linux Kernel, O’REILLY,

2006.

[Bro] Milan Broz, LUKS2 On-Disk Format Specification, https://gitlab.com/

cryptsetup/cryptsetup/blob/master/docs/on‐disk‐format‐luks2.

pdf, Accessed: 2023/9/13.

[CLO] CLOUDFLARE, What is data at rest?, https://www.cloudflare.com/

learning/security/glossary/data‐at‐rest/, Accessed: 2023/9/9.

[Cora] Jonathan Corbet, Descriptorless files for io_uring, https://lwn.net/

Articles/863071/, Accessed: 2023/08/27.

[Corb] Jonathan Corbet, The new way of ioctl(), https://lwn.net/Articles/

119652/, Accessed: 2023/9/18.

[CP10] Jan Pelzl Cristof Paar, Understanding Cryptography: A Textbook for Students

and Practitioners, Springer, 2010.

[Dia] The Geek Diary, Understanding the /proc/mounts, /etc/mtab

and /proc/partitions files, https://www.thegeekdiary.com/

understanding‐the‐proc‐mounts‐etc‐mtab‐and‐proc‐partitions‐files/,

Accessed: 2023/08/30.

[Doca] Kernel Docs, Network Block Device (TCP version), https://docs.kernel.

org/admin‐guide/blockdev/nbd.html, Accessed: 2023/9/18.

[docb] The Linux Kernel documentation, Multi-Queue Block IO Queueing Mecha-

nism (blk-mq), https://docs.kernel.org/block/blk‐mq.html, Accessed:

2023/9/4.

https://github.com/axboe/liburing
https://github.com/axboe/liburing/issues/385
https://github.com/axboe/liburing/issues/385
https://lewissbaker.github.io/2017/09/25/coroutine-theory
https://lewissbaker.github.io/2017/09/25/coroutine-theory
https://gitlab.com/cryptsetup/cryptsetup/blob/master/docs/on-disk-format-luks2.pdf
https://gitlab.com/cryptsetup/cryptsetup/blob/master/docs/on-disk-format-luks2.pdf
https://gitlab.com/cryptsetup/cryptsetup/blob/master/docs/on-disk-format-luks2.pdf
https://www.cloudflare.com/learning/security/glossary/data-at-rest/
https://www.cloudflare.com/learning/security/glossary/data-at-rest/
https://lwn.net/Articles/863071/
https://lwn.net/Articles/863071/
https://lwn.net/Articles/119652/
https://lwn.net/Articles/119652/
https://www.thegeekdiary.com/understanding-the-proc-mounts-etc-mtab-and-proc-partitions-files/
https://www.thegeekdiary.com/understanding-the-proc-mounts-etc-mtab-and-proc-partitions-files/
https://docs.kernel.org/admin-guide/blockdev/nbd.html
https://docs.kernel.org/admin-guide/blockdev/nbd.html
https://docs.kernel.org/block/blk-mq.html

BIBLIOGRAPHY 201

[Dwe] Hiba Dweib, Kernel Uevent, https://issuu.com/hibadweib/docs/open_

source_for_you_‐_october_2012/s/13663276, Accessed: 2023/08/30.

[F5] F5, What is SSL/TLS Encryption?, https://www.f5.com/glossary/

ssl‐tls‐encryption, Accessed: 2023/9/3.

[Fru] Clemens Fruhwirth, New Methods in Hard Disk Encryption, https:

//clemens.endorphin.org/nmihde/nmihde‐A4‐ds.pdf, Accessed:

2023/9/13.

[GNUa] GNU, GPGME, https://gnupg.org/software/gpgme/index.html, Ac-

cessed: 2023/08/27.

[Gnub] GnuPG, GnuPG - The Universal Crypto Engine, https://www.gnupg.org/

related_software/, Accessed: 2023/9/29.

[Gnuc] GnuPG, LIBGCRYPT, https://gnupg.org/software/libgcrypt/index.

html, Accessed: 2024/2/18.

[Gre20] Brendan Gregg, Systems Performance, Mark L. Taub, 2020.

[HS] Sandra Henry-Stocker, Linux dominates supercomput-

ing, https://www.networkworld.com/article/3568616/

linux‐dominates‐supercomputing.html, Accessed: 2023/08/27.

[Hut] Lee Hutchinson, Solid-state revolution: in-depth on how SSDs really

work, https://arstechnica.com/information‐technology/2012/06/

inside‐the‐ssd‐revolution‐how‐solid‐state‐disks‐really‐work/

3/, Accessed: 2023/08/31.

[Int] Intel, Advanced Encryption Standard Instructions (AES-NI), https://

www.intel.com/content/www/us/en/developer/articles/technical/

advanced‐encryption‐standard‐instructions‐aes‐ni.html, Accessed:

2024/2/1.

[kD] Linux kernel Documentation, ublk.rst, https://elixir.bootlin.

com/linux/v6.3/source/Documentation/block/ublk.rst, Accessed:

2023/9/19.

https://issuu.com/hibadweib/docs/open_source_for_you_-_october_2012/s/13663276
https://issuu.com/hibadweib/docs/open_source_for_you_-_october_2012/s/13663276
https://www.f5.com/glossary/ssl-tls-encryption
https://www.f5.com/glossary/ssl-tls-encryption
https://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
https://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
https://gnupg.org/software/gpgme/index.html
https://www.gnupg.org/related_software/
https://www.gnupg.org/related_software/
https://gnupg.org/software/libgcrypt/index.html
https://gnupg.org/software/libgcrypt/index.html
https://www.networkworld.com/article/3568616/linux-dominates-supercomputing.html
https://www.networkworld.com/article/3568616/linux-dominates-supercomputing.html
https://arstechnica.com/information-technology/2012/06/inside-the-ssd-revolution-how-solid-state-disks-really-work/3/
https://arstechnica.com/information-technology/2012/06/inside-the-ssd-revolution-how-solid-state-disks-really-work/3/
https://arstechnica.com/information-technology/2012/06/inside-the-ssd-revolution-how-solid-state-disks-really-work/3/
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://elixir.bootlin.com/linux/v6.3/source/Documentation/block/ublk.rst
https://elixir.bootlin.com/linux/v6.3/source/Documentation/block/ublk.rst

202 BIBLIOGRAPHY

[Kou] Vangelis Koukis, I/O and Scheduling Techniques for the Efficient

Utilization of Shared Architectural Resources on Clusters of SMPs,

http://artemis.cslab.ece.ntua.gr:8080/jspui/bitstream/

123456789/8802/1/PD2010‐0052.pdf, Accessed: 2023/9/4.

[Lei] Ming Lei, Userspace block driver(ublk), https://github.com/ming1/

ubdsrv, Accessed: 2023/08/27.

[Lov13] Robert Love, Linux System Programming: Talking directly to the kernel and C

library, O’Reilly Media, 2013.

[LWNa] LWN, driver-core: devtmpfs - driver coremaintained /dev tmpfs, https://lwn.

net/Articles/330985/, Accessed: 2023/08/30.

[LWNb] LWN, Driver-Core: devtmpfs - remove EXPERIMENTAL and enable it by de-

fault, https://lwn.net/Articles/370422/, Accessed: 2023/08/30.

[LWNc] LWN,Kernel development, https://lwn.net/Articles/369883/, Accessed:

2023/08/30.

[MAAR] Khairulmizam Samsudin Mohammad Ahmed Alomari and Abdul Rah-

man Ramli, Implementation of a Parallel XTS Encryption Mode of Opera-

tion, https://sciresol.s3.us‐east‐2.amazonaws.com/IJST/Articles/

2014/Issue‐11/Article13.pdf, Accessed: 2023/08/27.

[MBB] David Nellans Matias Bjørling, Jens Axboe and Philippe Bonnet, Linux Block

IO: Introducing Multi-queue SSD Access on Multi-core Systems, https://

kernel.dk/blk‐mq.pdf, Accessed: 2023/9/5.

[Mic] Microsoft, BitLocker settings reference , https://learn.microsoft.

com/en‐us/mem/configmgr/protect/tech‐ref/bitlocker/settings,

Accessed: 2023/9/9.

[mpa] Linux manual page, aio (7), https://man7.org/linux/man‐pages/man7/

aio.7.html, Accessed: 2023/9/13.

[mpb] Linux manual page, eventfd(2), https://man7.org/linux/man‐pages/

man2/eventfd.2.html, Accessed: 2023/9/27.

http://artemis.cslab.ece.ntua.gr:8080/jspui/bitstream/123456789/8802/1/PD2010-0052.pdf
http://artemis.cslab.ece.ntua.gr:8080/jspui/bitstream/123456789/8802/1/PD2010-0052.pdf
https://github.com/ming1/ubdsrv
https://github.com/ming1/ubdsrv
https://lwn.net/Articles/330985/
https://lwn.net/Articles/330985/
https://lwn.net/Articles/370422/
https://lwn.net/Articles/369883/
https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2014/Issue-11/Article13.pdf
https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2014/Issue-11/Article13.pdf
https://kernel.dk/blk-mq.pdf
https://kernel.dk/blk-mq.pdf
https://learn.microsoft.com/en-us/mem/configmgr/protect/tech-ref/bitlocker/settings
https://learn.microsoft.com/en-us/mem/configmgr/protect/tech-ref/bitlocker/settings
https://man7.org/linux/man-pages/man7/aio.7.html
https://man7.org/linux/man-pages/man7/aio.7.html
https://man7.org/linux/man-pages/man2/eventfd.2.html
https://man7.org/linux/man-pages/man2/eventfd.2.html

BIBLIOGRAPHY 203

[mpc] Linux manual page, io_uring_register(2), https://manpages.debian.

org/unstable/liburing‐dev/io_uring_register.2.en.html, Accessed:

2023/9/14.

[mpd] Linux manual page, loop(4), https://man7.org/linux/man‐pages/man4/

loop.4.html, Accessed: 2023/08/27.

[mpe] Linux manual page, open(2), https://man7.org/linux/man‐pages/man2/

open.2.html, Accessed: 2023/9/2.

[mpf] Linux manual page, pthread_barrier_init(3), https://linux.die.net/man/

3/pthread_barrier_init, Accessed: 2023/9/26.

[mpg] Linux manual page, udev(7), https://man7.org/linux/man‐pages/man7/

udev.7.html, Accessed: 2023/08/30.

[mph] Linux manual pages, readv(2), https://man7.org/linux/man‐pages/

man2/readv.2.html, Accessed: 2023/9/15.

[NIS] NIST, The XTS-AES Mode for Confidentiality on Storage De-

vices, https://nvlpubs.nist.gov/nistpubs/legacy/sp/

nistspecialpublication800‐38e.pdf, Accessed: 2023/08/27.

[Ope] OpenSSL, OpenSSL - Cryptography and SSL/TLS Toolkit, https://www.

openssl.org/, Accessed: 2023/9/29.

[Phe] PheonixNAP, How Does SSH Work, https://phoenixnap.com/kb/

how‐does‐ssh‐work, Accessed: 2023/9/9.

[Red] RedHat, Chapter 11. Encrypting block devices using LUKS, https://access.

redhat.com/documentation/en‐us/red_hat_enterprise_linux/8/

html/security_hardening/encrypting‐block‐devices‐using‐luks_

security‐hardening, Accessed: 2023/9/9.

[RKH05] Jonathan Corbet Alessandro Rubini and Greg Kroah-Hartman, Linux Device

Drivers, O’REILLY, 2005.

[Sit] Jakub Sitnicki, Missing Manuals - io_uring worker pool, https:

//blog.cloudflare.com/missing‐manuals‐io_uring‐worker‐pool/,

Accessed: 2023/9/15.

https://manpages.debian.org/unstable/liburing-dev/io_uring_register.2.en.html
https://manpages.debian.org/unstable/liburing-dev/io_uring_register.2.en.html
https://man7.org/linux/man-pages/man4/loop.4.html
https://man7.org/linux/man-pages/man4/loop.4.html
https://man7.org/linux/man-pages/man2/open.2.html
https://man7.org/linux/man-pages/man2/open.2.html
https://linux.die.net/man/3/pthread_barrier_init
https://linux.die.net/man/3/pthread_barrier_init
https://man7.org/linux/man-pages/man7/udev.7.html
https://man7.org/linux/man-pages/man7/udev.7.html
https://man7.org/linux/man-pages/man2/readv.2.html
https://man7.org/linux/man-pages/man2/readv.2.html
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38e.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38e.pdf
https://www.openssl.org/
https://www.openssl.org/
https://phoenixnap.com/kb/how-does-ssh-work
https://phoenixnap.com/kb/how-does-ssh-work
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/encrypting-block-devices-using-luks_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/encrypting-block-devices-using-luks_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/encrypting-block-devices-using-luks_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/encrypting-block-devices-using-luks_security-hardening
https://blog.cloudflare.com/missing-manuals-io_uring-worker-pool/
https://blog.cloudflare.com/missing-manuals-io_uring-worker-pool/

204 BIBLIOGRAPHY

[Sta] StackExchange, Is it necessary to mount devtmpfs with /etc/f-

stab?, https://unix.stackexchange.com/questions/619589/

is‐it‐necessary‐to‐mount‐devtmpfs‐with‐etc‐fstab, Accessed:

2023/08/30.

[Teaa] Linux Kernel Teaching, Character Device Drivers, https://

linux‐kernel‐labs.github.io/refs/heads/master/labs/device_

drivers.html, Accessed: 2023/08/29.

[Teab] Linux Kernel Teaching, Linux Kernel Labs, https://linux‐kernel‐labs.

github.io/refs/heads/master/lectures/intro.html, Accessed:

2023/08/29.

[Tec] Kinsgston Technology, NAND Flash Technology and Solid-State Drives

(SSDs), https://www.kingston.com/en/blog/pc‐performance/

nand‐flash‐technology‐and‐ssd, Accessed: 2023/08/31.

[Top] Top500.org, List Statistics, https://top500.org/statistics/list/, Ac-

cessed: 2023/08/27.

[Ven08] Sreekrishnan Venkateswaran, Essential Linux Device Drivers, Prentice Hall,

2008.

[Vera] VeraCrypt,AES, https://veracrypt.eu/en/AES.html, Accessed: 2023/9/9.

[Verb] Adarsh Verma, Linus Torvalds’s Famous Email — The

First Linux Announcement, https://fossbytes.com/

linus‐torvaldss‐famous‐email‐first‐linux‐announcement/, Ac-

cessed: 2023/08/28.

[Wika] Wikipedia, Advanced Encryption Standard, https://en.wikipedia.org/

wiki/Advanced_Encryption_Standard, Accessed: 2023/08/27.

[Wikb] Wikipedia, Block cipher, https://en.wikipedia.org/wiki/Block_cipher,

Accessed: 2023/9/3.

[Wikc] Wikipedia, Block cipher mode of operation, https://en.wikipedia.org/

wiki/Block_cipher_mode_of_operation, Accessed: 2023/9/7.

https://unix.stackexchange.com/questions/619589/is-it-necessary-to-mount-devtmpfs-with-etc-fstab
https://unix.stackexchange.com/questions/619589/is-it-necessary-to-mount-devtmpfs-with-etc-fstab
https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html
https://linux-kernel-labs.github.io/refs/heads/master/lectures/intro.html
https://linux-kernel-labs.github.io/refs/heads/master/lectures/intro.html
https://www.kingston.com/en/blog/pc-performance/nand-flash-technology-and-ssd
https://www.kingston.com/en/blog/pc-performance/nand-flash-technology-and-ssd
https://top500.org/statistics/list/
https://veracrypt.eu/en/AES.html
https://fossbytes.com/linus-torvaldss-famous-email-first-linux-announcement/
https://fossbytes.com/linus-torvaldss-famous-email-first-linux-announcement/
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

BIBLIOGRAPHY 205

[Wikd] Wikipedia, Ciphertext stealing, https://en.wikipedia.org/wiki/

Ciphertext_stealing, Accessed: 2023/9/9.

[Wike] Wikipedia, Flash memory, https://en.wikipedia.org/wiki/Flash_

memory, Accessed: 2023/08/31.

[Wikf] Wikipedia, Hard link, ihttps://en.wikipedia.org/wiki/Hard_link, Ac-

cessed: 2023/9/1.

[Wikg] Wikipedia, History of Linux, https://en.wikipedia.org/wiki/History_

of_Linux, Accessed: 2023/08/28.

[Wikh] Wikipedia, Solid-state drive, https://en.wikipedia.org/wiki/

Solid‐state_drive, Accessed: 2023/08/29.

https://en.wikipedia.org/wiki/Ciphertext_stealing
https://en.wikipedia.org/wiki/Ciphertext_stealing
https://en.wikipedia.org/wiki/Flash_memory
https://en.wikipedia.org/wiki/Flash_memory
ihttps://en.wikipedia.org/wiki/Hard_link
https://en.wikipedia.org/wiki/History_of_Linux
https://en.wikipedia.org/wiki/History_of_Linux
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Solid-state_drive

	Περίληψη
	Abstract
	Ευχαριστίες
	Εκτενής Περίληψη
	Εισαγωγή
	Διατύπωση Προβλήματος
	Προτεινόμενη Λύση

	Υπόβαθρο
	Linux OS
	Στοίβα Εισόδου/Εξόδου (I/O)
	Κρυπτογραφία

	Σχεδίαση
	Τρόποι Επικοινωνίας
	io_uring
	Ublk
	Κρυπτογραφημένο Ublk

	Υλοποίηση
	Αξιολόγηση
	Επίλογος
	Μελλοντικό Έργο

	Introduction
	Motivation
	Problem Statement
	Proposed Solution
	Outline

	Background
	Linux OS
	Operating System vs Kernel
	And...what a kernel does?
	user mode vs kernel mode
	userspace vs kernelspace

	Kernel Architecture
	Monolithic vs Microkernel
	Device Drivers
	A dive into /dev directory
	Character Device Drivers
	Miscellaneous Device Drivers

	Disks
	Time related concepts
	Disk Types

	I/O Stack
	Application
	Virtual File System (VFS)
	Filesystem (FS)
	Block Layer
	Block Device Drivers
	Storage Device

	Cryptography
	Introduction to cryptography
	Symmetric vs Asymmetric Cryptography
	Introduction to AES
	Mathematical Background

	Design
	Synchronous vs Asynchronous vs Blocking vs Non-Blocking
	Synchronous API
	Asynchronous API
	Blocking
	Non-Blocking

	io_uring
	io_uring overview
	io_uring system calls
	Thankfully...liburing!
	Advanced modes of operation

	Coroutines
	And...what are coroutines?
	Coroutines in C++

	Ublk
	Ublk overview
	Initial Phase: Setting up the Environment
	Second Phase: Ublk Server Internal Setup
	Third phase: The Data Path

	Encrypted Ublk
	Overview of Encrypted Ublk
	Key Setup design
	Single-Thread Encryption
	Intra-Block Encryption
	Inter-Block Encryption

	AES
	Structure of AES
	Modes of Operation
	XEX Tweakable Block Ciphertext Stealing (XTS)

	Linux Unified Key Setup (LUKS)
	Key hierarchy
	Secret Splitting
	Key Derivation Functions (KDF)
	LUKS internal structure
	LUKS semantics

	Implementation
	Overview
	Key Setup Implementation
	Single-Thread Encryption Implementation
	Intra-Block Encryption Implementation
	Inter-Block Encryption Implementation

	Evaluation
	Machine Specification
	fio
	Experimental Evaluation
	Metrics Without AES-NI Support
	Comments on Results (no AES-NI support)
	Metrics With AES-NI Support
	Comments on Results (with AES-NI support)

	Conclusion
	Concluding Remarks
	Future Work

	Bibliography

