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Περίληψη 
Η απώλεια υλικού λόγω ομοιόμορφης διάβρωσης μπορεί να οδηγήσει σε σημαντική μείωση της 
αντοχής μιας πλάκας σε λυγισμό, θέτοντας την πλάκα και τις περιβάλλουσες κατασκευές σε 
κίνδυνο αστοχίας. Αναλόγως με το μέγεθος των παραπάνω, η πλάκα είτε αντικαθίσταται είτε 
ενισχύεται με επικάλυψη άλλης πλάκας ή ενισχυτικών. Σε κάθε περίπτωση, θερμές εργασίες, όπως 
η συγκόλληση, είναι αναπόφευκτες. 

Στη παρούσα εργασία εξετάζεται μία καινοτόμος μέθοδος επισκευής με την χρήση ενισχυτικών 
από σύνθετα υλικά. Το θεωρητικό υπόβαθρο που χρειάστηκε για την κατανόηση του προβλήματος 
της επισκευής από σύνθετα υλικά, το οποίο περιέχει τον λυγισμό πλακών και την μηχανική 
ανισοτροπικών υλικών, αναλύθηκε σε βάθος. Δημιουργήθηκε μοντέλο ανάλυσης πεπερασμένων 
στοιχείων με σκοπό να μελετηθεί η συμπεριφορά μίας μεταλλικής πλάκας με σύνθετη ενίσχυση 
σε γραμμικό ελαστικό λυγισμό. Οι προσομοιώσεις εξήγαγαν αποτελέσματα για πλάκες που 
υπόκεινται σε διαξονική θλίψη και καθαρή διάτμηση. 

Μετά την εξαγωγή των αποτελεσμάτων, εργαλεία στατιστικής ανάλυσης όπως το Κεντρικό 
Οριακό Θεώρημα (ΚΟΘ), Central Composite Design (CCD) και Response Surface Methodology 
(RSM) χρηστιμοποιήθηκαν με σκοπό να βελτιστοποιηθεί η διαδικασία σχεδίασης της 
επιδιόρθωσης και να δημιουργηθεί ένα πιθανοθεωρητικό μοντέλο που να καλύψει μία πληθώρα 
περιπτώσεων επιδιόρθωσης. 
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Abstract 
Material wastage due to uniform corrosion can lead to significant reduction of the buckling 
capacity of a plate, putting the plate and its surrounding structures at risk of failure. Depending on 
the magnitude of the above, the plate is either replaced or reinforced with doubler plates or 
stiffeners. In both cases, hot works, like welding, are inevitable. 

An innovative repair method with the use of composite beams is examined in this work. The 
theoretical background needed to understand the problem of composite reinforcement, including 
buckling of plates and mechanics of anisotropic materials, was analyzed in depth. A Finite Element 
Analysis (FEA) model was created in order to study the response of a metal plate with composite 
reinforcement in linear elastic buckling. The simulations extracted results for plates subjected to 
bi-axial compression and pure shear. 

After the extraction of the results, statistical analysis tools like the Central Limit Theorem (CLT) 
Central Composite Design (CCD) and Response Surface Methodology (RSM) were utilized in 
order to optimize the repair design process and create a probabilistic model to cover a wide variety 
of repair cases. 
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1 Introduction 
Steel marine plates are one of the main structural components of a ship. Due to the extreme 
conditions the plates are subjected to (stresses, humid environments, seawater etc.), material 
wastage due to corrosion is inevitable in the ship’s life (30 – 50 years). The usual corrosion types 
observed in marine plates are: 

• Uniform corrosion 
• Galvanic corrosion 
• Pitting corrosion 

Out of these types the most commonplace is uniform (or general) corrosion. Uniform corrosion 
leads to a uniform, on average, reduction of thickness to the affected plate. Although the ship’s 
scantlings are designed with excess thickness to take into account this phenomenon (IACS [1]), in 
some cases, because of indeterminate factors, this isn’t sufficient. If the plate is subjected to 
compressive or/and shear loads, material wastage due to corrosion can lead to the plate buckling 
in operation loads.  

A plate’s resistance to linear elastic buckling is analogous to the square of its thickness. If the 
thickness is reduced to 90% of the initial, the plate’s resistance is reduced to 81%. 

 

Every 5 years ships generally go under survey by a classification society, in which the ship is 
checked for structural deficiencies, such as: 

• Material wastage 
• Fractures 
• Deformations 
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In most cases where deformations are observed on a plate, IACS [2][3][4] suggests the repair 
solutions below: 

• Fairing of the plate and reinforcement with doubler plate or stiffener, for small 
deformations and/or material wastage 

• Removal of the plate and replacement with an insert plate of the same material for large 
deformations and/or material wastage 

Hot work is inevitable for large deformations, because the buckled plate has to be cut-off (with 
plasma, oxygen & acetylene fuel, etc.) and a new one has to be welded in place. The same could 
be said for the small deformations case, the most common way to fair a deformed plate is with 
flame-straightening and the doubler plate or the stiffeners have then to be welded to the plate. 

To do hot works in a compartment, a certificate of degassing (Gas Free) must be issued for the 
safety of the workers and the environment. Also hot works like cutting and welding, degrade the 
metal at the heat affected zone, which is why they should be avoided if possible. 

        
[2] 

The latest years, new methods have been proposed and studied [5][6] to replace these conventional 
repair methods, using composite materials (GFRP, CFRP, etc.). The proposed alternatives are: 

• Adhesion of composite patches instead of the welding of doublers 
• Adhesion of composite beams instead of the welding of stiffeners 

These are short term repair methods, they can be imposed while the ship is on sail and the scope 
is to keep the plates in the safe zone until the ship’s scheduled dry docking. 

The main advantage of these repair methods is they can be carried out without hot work. The area 
of adhesion between metal and composite has to be cleaned and grinded, a layer of adhesive (epoxy 
resin, polyester resin etc.) is then to be applied at the area and the composite reinforcement is to 
be placed on the adhesive. 

 



3 
 

In this work, the repair of steel plates with the use of composite beams is analyzed using the Finite 
Element Analysis (FEA) program ABAQUS. The design is based on the plate’s strength to linear 
elastic buckling in bi-axial compression and pure shear. 

The reinforcement arrangement examined is end-to-end reinforcement with composite fiber 
reinforced plastic (FRP) T-beams with the flange placed on the plate to increase the area of 
adhesion. For the context of this work the assumptions listed below were made in order to simplify 
the problem: 

• The repaired plate is completely straightened 
• The material wastage is uniform 
• The steel plate and the FRP beam are perfectly adhered to each other 
• The steel plate, the FRP beam and the adhesive bondline are all in the linear elastic region 

A number of FEA simulations were run to understand the nature of the composite reinforcements 
and their different arrangements on the same plate. Then, after reaching to conclusions about the 
optimal reinforcement arrangements, a probabilistic model was created and tested to extract results 
for plates with any dimension. 
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2 Theoretical background 

2.1 Buckling of simply supported plates 
The plate governing equation for buckling is: 

𝐷𝐷∇4𝑤𝑤 = 𝑝𝑝(𝑥𝑥,𝑦𝑦) + 𝑁𝑁𝑥𝑥
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+ 𝑁𝑁𝑦𝑦
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2

+ 2𝑁𝑁𝑥𝑥𝑦𝑦
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

 

where: 

• 𝐷𝐷 = 𝐸𝐸𝑡𝑡3

12(1−𝜈𝜈2), the plate’s flexural ridgidity 
• 𝑝𝑝(𝑥𝑥,𝑦𝑦), the lateral pressure in N/m2 units 
• 𝑁𝑁𝑥𝑥,𝑁𝑁𝑦𝑦,𝑁𝑁𝑥𝑥𝑦𝑦, the in-plane edge loads as shown in figure in N/m units 

The boundary conditions of the plate is simple support, which means that the edges are free to 
rotate so the modes will consist of sine-waves. 

 
Figure 3. Plate coordinate system 

2.1.1 Biaxial compression 

For a simple-supported plate in biaxial compression, set Nxy = p(x,y) = 0. Assume the solution to 
be of the Navier form 

𝑤𝑤(𝑥𝑥,𝑦𝑦) = ��𝐴𝐴𝑛𝑛𝑛𝑛 sin
𝑚𝑚𝜋𝜋𝑥𝑥
𝑎𝑎

sin
𝑛𝑛𝜋𝜋𝑦𝑦
𝑏𝑏

𝑛𝑛𝑛𝑛

 

and substitute it to the governing equation.  

Set β = Ny/Nx and r = a/b, the critical buckling load is 

𝑁𝑁𝑥𝑥,𝑐𝑐𝑐𝑐 = 𝐾𝐾𝐶𝐶
𝐷𝐷𝜋𝜋2

𝑏𝑏2
, 𝐾𝐾𝐶𝐶 = min𝑛𝑛,𝑛𝑛 �

[𝑚𝑚2 + 𝑛𝑛2𝑟𝑟2]2

𝑟𝑟2[𝑚𝑚2 + 𝛽𝛽𝑛𝑛2𝑟𝑟2]� 
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Setting β between 0 and 1, the formula for KC can still take into account all the possible cases by 
inversing β and r if needed (e.g. a plate with r = 3 and β = 2 is the same as a plate with r = 1/3 and 
β = 1/2). It will be proven that KC minimizes only if  n = 1 for β between [0,1]. 

Consider the function f = f(n) 

𝑓𝑓(𝑛𝑛) =
[𝑚𝑚2 + 𝑛𝑛2𝑟𝑟2]2

𝑟𝑟2[𝑚𝑚2 + 𝛽𝛽𝑛𝑛2𝑟𝑟2] 

taking the first derivative 

𝑑𝑑𝑓𝑓
𝑑𝑑𝑛𝑛

=
2[𝑚𝑚2 + 𝑛𝑛2𝑟𝑟2][2𝑛𝑛𝑟𝑟2]𝑟𝑟2[𝑚𝑚2 + 𝛽𝛽𝑛𝑛2𝑟𝑟2] − 𝑟𝑟2[2𝛽𝛽𝑛𝑛𝑟𝑟2][𝑚𝑚2 + 𝑛𝑛2𝑟𝑟2]2

𝑟𝑟4[𝑚𝑚2 + 𝛽𝛽𝑛𝑛2𝑟𝑟2]2  

by simplifying we get that 

𝑑𝑑𝑓𝑓
𝑑𝑑𝑛𝑛

=
2𝑛𝑛[𝑚𝑚2 + 𝑛𝑛2𝑟𝑟2]
[𝑚𝑚2 + 𝛽𝛽𝑛𝑛2𝑟𝑟2]2

([2 − 𝛽𝛽]𝑚𝑚2 + 𝑛𝑛2𝑟𝑟2𝛽𝛽) 

which is always positive for β in [0,1]. The function f is strictly increasing with respect to n for 
every positive n, so the minimum of f(n) is f(1) since n is a natural number. 

Replacing n with 1, the KC formula simplifies 

𝐾𝐾𝐶𝐶 = min𝑛𝑛 ��
𝑚𝑚
𝑟𝑟

+
𝑟𝑟
𝑚𝑚
�
2 𝑚𝑚2

𝑚𝑚2 + 𝛽𝛽𝑟𝑟2
 � 

 
Figure 4. Buckling coefficient for plates in bi-axial compression 
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The above prove that a mode with multiple half-waves in both directions cannot exist for any plate 
in biaxial compression. 

For the special case of β = 0, the plate is subjected to uniaxial compression and the formula below 
can be derived: 

𝐾𝐾𝐶𝐶 = min𝑛𝑛 ��
𝑚𝑚
𝑟𝑟

+
𝑟𝑟
𝑚𝑚
�
2

 � 

It will be proven that KC minimizes only if  m = 1 for β between [0.5,1]. 

Consider the function f = f(m) 

𝑓𝑓(𝑚𝑚) =
[𝑚𝑚2 + 𝑟𝑟2]2

𝑟𝑟2[𝑚𝑚2 + 𝛽𝛽𝑟𝑟2] 

taking the first derivative 

𝑑𝑑𝑓𝑓
𝑑𝑑𝑚𝑚

=
2[𝑚𝑚2 + 𝑟𝑟2][2𝑚𝑚]𝑟𝑟2[𝑚𝑚2 + 𝛽𝛽𝑟𝑟2] − 𝑟𝑟2[2𝑚𝑚][𝑚𝑚2 + 𝑟𝑟2]2

𝑟𝑟4[𝑚𝑚2 + 𝛽𝛽𝑟𝑟2]2  

by simplifying we get that 

𝑑𝑑𝑓𝑓
𝑑𝑑𝑚𝑚

=
2𝑚𝑚[𝑚𝑚2 + 𝑟𝑟2]
𝑟𝑟2[𝑚𝑚2 + 𝛽𝛽𝑟𝑟2]2

[𝑚𝑚2 + 𝑟𝑟2(2𝛽𝛽 − 1)] 

which is always positive for β ≥ 0.5. The function f is strictly increasing with respect to m for every 
positive m, so the minimum of f(m) is f(1) since m is a natural number. These modes always have 
a single half-wave in both directions. 

Replacing m with 1, the KC formula simplifies 

𝐾𝐾𝐶𝐶 = �
1
𝑟𝑟

+ 𝑟𝑟�
2 1

1 + 𝛽𝛽𝑟𝑟2
 , 𝛽𝛽 ≥ 0.5 

by taking the limit of KC as r reaches infinity, we find that for long plates 

𝐾𝐾𝐶𝐶∞ =
1
𝛽𝛽

, 𝛽𝛽 ≥ 0.5 

If β ≤ 0.5, the derivative of f with respect to r can be used to find the value of the minima of KC 
which is also the value of convergence for long plates. 

Take the function 

𝑓𝑓(𝑟𝑟) =
[𝑚𝑚2 + 𝑟𝑟2]2

𝑟𝑟2[𝑚𝑚2 + 𝛽𝛽𝑟𝑟2] 

m and β are parameters. Change of variable 

𝑟𝑟2

𝑚𝑚2 = 𝑢𝑢 > 0 
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Respecting the chain rule, proceed to find the minima 

𝑑𝑑𝑓𝑓
𝑑𝑑𝑟𝑟

=
𝑑𝑑𝑓𝑓
𝑑𝑑𝑢𝑢

∙
𝑑𝑑𝑢𝑢
𝑑𝑑𝑟𝑟

= 0 

𝑓𝑓(𝑢𝑢) =
[1 + 𝑢𝑢]2

𝑢𝑢 + 𝛽𝛽𝑢𝑢2
,

𝑑𝑑𝑓𝑓
𝑑𝑑𝑢𝑢

=
2[1 + 𝑢𝑢][𝑢𝑢 + 𝛽𝛽𝑢𝑢2] − [1 + 2𝛽𝛽𝑢𝑢][1 + 𝑢𝑢]2

[𝑢𝑢 + 𝛽𝛽𝑢𝑢2]2 ,
𝑑𝑑𝑢𝑢
𝑑𝑑𝑟𝑟

=
2𝑟𝑟
𝑚𝑚2 > 0 

by simplifying 

𝑑𝑑𝑓𝑓
𝑑𝑑𝑢𝑢

=
1 + 𝑢𝑢

[𝑢𝑢 + 𝛽𝛽𝑢𝑢2]2
[𝑢𝑢(1 − 2𝛽𝛽) − 1] = 0 → 𝑢𝑢(1 − 2𝛽𝛽) − 1 = 0 → 𝑢𝑢 =

1
1 − 2𝛽𝛽

 

replacing u in f(u) we get 

𝑓𝑓(𝑢𝑢) = 4(1 − 𝛽𝛽) 

This proves that the value of the minima is only dependent on the parameter β, which means that 
for long plates the buckling constant is 

𝐾𝐾𝐶𝐶∞ = 4(1 − 𝛽𝛽), 𝛽𝛽 ≤ 0.5 

For the special case of β = 1, the plate is subjected to equi-biaxial compression. KC simplifies to 
the form: 

𝐾𝐾𝐶𝐶 = 1 +
1
𝑟𝑟2

 

 
Figure 5. Buckling coefficient for long plates in bi-axial compression 
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2.1.2 Pure shear 

For a hinged plate in pure shear set Nx = Ny = p(x,y) = 0. An analytical solution of the equation 
doesn’t exist. Stein and Neff [7] calculated KS through the use of matrix iteration method 
considering both the symmetric and the antisymmetric modes. 

 
Figure 6. Buckling coefficient for plates in pure shear 

The interpolation below is commonly used to calculate the value of KS for long plates: 

𝑁𝑁𝑥𝑥𝑦𝑦,𝑐𝑐𝑐𝑐 = 𝐾𝐾𝑆𝑆
𝐷𝐷𝜋𝜋2

𝑏𝑏2
, 𝐾𝐾𝑆𝑆 =

4
𝑟𝑟2

+ 5.34, 𝑟𝑟 ≥ 1.0 
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2.2 Transversely isotropic materials 
Transversely isotropic materials represent a class of materials exhibiting directional dependence 
in their mechanical properties. Transversely isotropic materials are a subset of orthotropic 
materials. An orthotropic material is characterized by 9 independent elastic constants: 

• 3 Young’s moduli (E11, E22, E33) 
• 3 Poisson’s ratios (ν12, ν23, ν31) 
• 3 shear moduli (G12, G23, G31) 

Because of the symmetric nature of transversely isotropic materials these constants reduce to 5: 

• 2 Young’s moduli (E11, E22) 
• 2 Poisson’s ratios (ν12, ν23) 
• 1 shear moduli (G12) 

 

 
Figure 7. Transversely isotropic material properties 

The compliance matrix of a transversely isotropic material, with 23 as the isotropic plane is: 

 
with: 

𝐺𝐺23 =
𝐸𝐸22

2(1 + 𝑣𝑣23) ,
𝑣𝑣12
𝐸𝐸11

=
𝑣𝑣21
𝐸𝐸22

, 𝑣𝑣23 = 𝑣𝑣32 
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One notable application of transversely isotropic materials is found in pultruded beams. Pultrusion 
is a manufacturing process where continuous fibers, such as fiberglass, carbon, or aramid, are 
impregnated with a polymer resin and pulled through a heated die. This process imparts transverse 
isotropy to the resulting composite material. The fibers align along the length of the beam, creating 
a preferred axis that influences the mechanical behavior of the material. 

 
Figure 8. Pultrusion process 

In Table 1. are listed the elastic properties of GFRP and CFRP. 

Table 1. CFRP & GFRP elastic properties 10 
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2.3 Finite Element Method 
The Finite Element Method (FEM) is a powerful numerical technique for solving physical and 
engineering problems described by differential equations. FEM is useful for problems with 
complicated geometries, loadings and material properties where analytical solutions cannot be 
obtained. 

A structure is discretized to finite elements connected with each other at the nodes. The 
displacements of the elements are described by the displacements of the element’s nodes with the 
shape function. 

The shape function approximates the behavior of physical quantities (such as displacements, 
temperatures, etc.) within an element. If we focus on the displacements, the equation below 
describes the shape function: 

𝒒𝒒(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑵𝑵(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∙ 𝒒𝒒𝑒𝑒 

where: 

• 𝒒𝒒(𝑥𝑥,𝑦𝑦, 𝑧𝑧): the displacements function 
• 𝑵𝑵(𝑥𝑥,𝑦𝑦, 𝑧𝑧): the shape function 
• 𝒒𝒒𝑒𝑒: the displacement values at the nodes 

The strains of the elements are connected with the displacements through the equation: 

𝜺𝜺 = 𝜝𝜝 ∙ 𝒒𝒒𝑒𝑒 

where: 

𝜝𝜝 = ℵ ∙ 𝑵𝑵(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), ℵ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕
𝜕𝜕𝑥𝑥

0 0

0
𝜕𝜕
𝜕𝜕𝑦𝑦

0

0 0
𝜕𝜕
𝜕𝜕𝑧𝑧

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑥𝑥

0

0
𝜕𝜕
𝜕𝜕𝑧𝑧

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑧𝑧

0
𝜕𝜕
𝜕𝜕𝑥𝑥⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

B is called strain-displacement matrix and ℵ is an operator matrix. 

The stresses of the elements are connected with the strains through the elastic constants matrix: 

𝝈𝝈 = 𝑫𝑫 ∙ 𝜺𝜺 

D is the inverse of the compliance matrix and is also called stiffness matrix (not to be confused 
with the stiffness matrix K defined in the FEM). 
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D depends on the type of the material (isotropic, orthotropic, etc.) and the type of the problem 
(plain stress, plain strain, etc.) 

The forces acting on an element’s nodes are connected to the displacements with the element’s 
stiffness matrix: 

𝑭𝑭𝑒𝑒 = 𝒌𝒌𝑒𝑒 ∙ 𝒒𝒒𝑒𝑒 

where: 

𝒌𝒌𝑒𝑒 = � 𝑩𝑩𝑻𝑻𝑫𝑫𝑩𝑩 ∙ 𝑑𝑑𝑑𝑑
𝑉𝑉𝑒𝑒

 

If the problem is static, by combining the force-displacement equations of all the nodes we get the 
system: 

𝑹𝑹 = 𝑲𝑲 ∙ 𝒓𝒓 

where: 

• 𝑹𝑹: the structure force vector 
• 𝒓𝒓: the structure displacement vector 
• 𝑲𝑲: the structure stiffness matrix 

If the problem is a linear instability problem, like linear buckling, the system of equations takes 
the form: 

𝑹𝑹 = (𝑲𝑲 + 𝑲𝑲𝒐𝒐) ∙ 𝒓𝒓 

where: 

• 𝑲𝑲𝒐𝒐: the geometric stiffness matrix 

Ko is proportional to an initial constant axial or membrane load and is derived by taking into 
account the higher order terms that are discarded on the small displacement theory. The geometry 
stiffness matrix can be written to the form: 

𝑲𝑲𝒐𝒐 = 𝜆𝜆𝑲𝑲𝒐𝒐
∗  

where 𝑲𝑲𝒐𝒐
∗  is the geometry stiffness matrix created by a unit load and λ a multiplier. 

To calculate the critical load we have to solve for λ: 

𝑑𝑑𝑑𝑑𝑑𝑑(𝑲𝑲 + 𝜆𝜆𝑲𝑲𝒐𝒐
∗) = 𝟎𝟎 

The equation has a number of solutions, depending on the discretization of the structure, λi (i = 
1,2,…,n). From the above, only λmin has actual physical meaning because it is the minimum critical 
load on which the structure becomes unstable. 
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2.3.1 Shell elements 

In structural analysis of thin plates, three dimensional shell elements with 6 degrees of freedom 
per node (3 translational and 3 rotational) are used to model complex behaviors like bending and 
buckling of plates. 

The most common shell elements in commercial FEA programs like ABAQUS and ANSYS are 
the universal serendipity elements (USE) defined as isoparametric elements with corner and mid-
edge nodes only.  

The 1st order shell element is a quadrilateral with 4 nodes, 1 at each corner, and it belongs to the 
Lagrange family of isoparametric elements. The quadratic and cubic USEs differ from the 
Lagrange because they are missing the mid-surface nodes. 

 
Figure 9. Shell elements sorted by their nodes 

Triangular elements can also be used instead of quadrilateral but show some serious disadvantages 
(like numerical instability, shear locking, low interpolation accuracy, etc.) that make them 
unsuitable to produce accurate results. 
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The ABAQUS quadrilateral shell elements used for structural analysis are: 

• S4R: linear 4-node reduced integration shell element 
• S8R: quadratic 8-node reduced integration shell element 

both elements belong to the USE family and use reduced integration. 

The integration above refers to the number of integration points used in the Gauss-Lagrange 
numerical integration that takes place when calculating the element stiffness matrix 𝒌𝒌𝑒𝑒. When the 
number of integration points is less than the required number to get a result equal to the analytical 
solution, the element is characterized with reduced integration. 

 
Figure 10. ABAQUS quadrilateral shell elements 
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2.4 Statistical Analysis 

2.4.1 Central Limit Theorem 

Central Limit Theorem (CLT) if a fundamental concept in probability theory and statistics. It states 
that if 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛is a random sample of size n taken from a population with mean μ and finite 
variance σ2 and if 𝑋𝑋� is the sample mean, the limiting form of the distribution of: 

𝑍𝑍 =
𝑋𝑋� − 𝜇𝜇
𝜎𝜎 √𝑛𝑛⁄

 

as 𝑛𝑛 → ∞, is the standard normal distribution 𝑁𝑁(0,1). [8]    

2.4.2 Confidence intervals 

A confidence interval (CI) estimate for μ is an interval of the form 𝑙𝑙 ≤ 𝜇𝜇 ≤ 𝑢𝑢 where the end points 
are computed from the sample data. Setting l,u to be random variables L,U the following statement 
is true 

𝑃𝑃(𝐿𝐿 ≤ 𝜇𝜇 ≤ 𝑈𝑈) = 1 − 𝑎𝑎, 0 ≤ 𝑎𝑎 ≤ 1 

which means that there is a probability 1 − 𝑎𝑎 that the CI [L,U] will contain μ. [8]    

Population variance known 

If 𝑋𝑋� is the sample mean of a large random sample of size n that follows the normal distribution, 
the CI can be extracted from the central limit theorem as: 

𝑃𝑃 �𝑋𝑋� − 𝑧𝑧𝑎𝑎 2⁄
𝜎𝜎
√𝑛𝑛

 ≤ 𝜇𝜇 ≤ 𝑋𝑋� + 𝑧𝑧𝑎𝑎 2⁄
𝜎𝜎
√𝑛𝑛

� = 1 − 𝑎𝑎 

where 𝑧𝑧𝑎𝑎 2⁄  is the upper 100 𝑎𝑎 2⁄  percentage point of the standard normal distribution. 

In some cases one-sided confidence bounds are used: 

A (100-a)% upper-confidence bound for μ is 

𝜇𝜇 ≤ 𝑋𝑋� + 𝑧𝑧𝑎𝑎
𝜎𝜎
√𝑛𝑛

 

A (100-a)% lower-confidence bound for μ is 

𝑋𝑋� − 𝑧𝑧𝑎𝑎
𝜎𝜎
√𝑛𝑛

≤ 𝜇𝜇 

where 𝑧𝑧𝑎𝑎 is the upper 100𝑎𝑎 percentage point of the standard normal distribution. [8]    
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Population variance unknown 

For the general case where the variance is unknown and the sample is small, the bounds can be 
calculated using Student’s T distribution. 

If 𝑋𝑋� is the sample mean of a random sample of size n that follows the normal distribution, the CI 
can be calculated from: 

𝑃𝑃 �𝑋𝑋� − 𝑑𝑑𝑎𝑎 2⁄ (𝑛𝑛)
𝑆𝑆
√𝑛𝑛

 ≤ 𝜇𝜇 ≤ 𝑋𝑋� + 𝑑𝑑𝑎𝑎 2⁄ (𝑛𝑛)
𝑆𝑆
√𝑛𝑛

� = 1 − 𝑎𝑎 

where 𝑑𝑑𝑎𝑎 2⁄ (𝑛𝑛) is the upper 100 𝑎𝑎 2⁄  percentage point of the Student’s T distribution with n degrees 
of freedom and S2 is the sample variance. 

Same with one-sided confidence bounds: 

A (100-a)% upper-confidence bound for μ is 

𝜇𝜇 ≤ 𝑋𝑋� + 𝑑𝑑𝑎𝑎(𝑛𝑛) 
𝑆𝑆
√𝑛𝑛

 

A (100-a)% lower-confidence bound for μ is 

𝑋𝑋� − 𝑑𝑑𝑎𝑎(𝑛𝑛) 
𝑆𝑆
√𝑛𝑛

≤ 𝜇𝜇 

where 𝑑𝑑𝑎𝑎(𝑛𝑛) is the upper 100𝑎𝑎 percentage point of the Student’s T distribution with n degrees of 
freedom. 

As 𝑛𝑛 → ∞, Student’s T distribution converges to the standard normal distribution. [8]    

 
Figure 11. Student's T distribution for various degrees of freedom 
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2.4.3 Factorial design 

Factorial design in Design of Experiments (DoE) is a method that examines the effects a number 
of independent variables (factors) has to a dependent variable of interest. They are the most 
efficient designs for experiments that include two or more factors. By factorial it is meant that 
every possible combination of the factors at each level is taken into consideration. The levels may 
be quantitive, such as values of temperature, or the may be qualitative, such as different machines. 

 
Figure 12. 23 Factorial example 

A widely used type of factorial design is the 2k factorial design because it forms the basis of other 
designs of considerate practical value. It suggests that by having k factors, you only consider the 
“low” and the “high” levels of the factors. Each factor has two levels, so the number of all the 
possible combinations is 2×2×…×2 = 2k as the name states. If, instead of low and high levels, a 
middle level is included to the factors of a 2k design, the design becomes 3k factorial. These types 
of design are useful for examining the effects and the interaction of the factors. 

Factorial design is the first step of an experimental process, it helps distinguish the significant 
factors from the insignificant ones in order to proceed to more practical methods to extract results 
that can be utilized. [9]    
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2.4.4 Response surface methodology 

Response Surface Methodology (RSM), like factorial design, is a statistical technique used in 
experimental design. Unlike factorial design, RSM emphasizes the optimization of a response 
variable by fitting a response surface to a set of experimental data. The experimental data can be 
the response values at the factor levels of a factorial design. 

If the observed response y is of the form: 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛)+∈ 

where ∈ is the noise of the observed response and 𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛 are the factors, the surface 
represented by: 

𝜂𝜂 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛) 

is called a response surface. 

If the problem examined can be reduced to two factors, the response surface is a 3-dimensional 
surface that can be visualized through contour plots in order to extract useful data for optimization 
processes etc.  

 

 
Figure 13. Response surface example 

 

Although RSM is commonly used for optimization processes, like finding the minimum or the 
maximum of a response, it can also be used to extract useful formulas and contours that can be 
used for reverse engineering. For example lets assume a repair problem, the factor x2 is measured 
to be 20 and the response y should be greater than 1 in order to have an acceptable design, by using 
the contour in the figure XX, the factor x1 must be greater than 8.5. The bigger x1 becomes the 
bigger the repair cost, so by choosing x1 = 9 the result of the design is optimal. [9]    

 



19 
 

2.4.5 Central composite design 

Central Composite Design (CCD) is a method used for the selection of the points that will be 
interpolated by the response surface. A CCD consists of the factorial points, the axial points and 
the center points. The location of the axial points characterize the type of CCD, as shown in figure. 
The low level is symbolized with -1 and the high level with +1. The value of α is calculated from 
the formula: 

𝛼𝛼 = [2𝑘𝑘]
1
4 

 
Figure 14. CCD types 

There are three types of CCD: 

• Circumscribed (CCC) 
• Face-centered (CCF) 
• Inscribed (CCI) 

Both the CCC and CCI are rotatable designs, which means that the variance of the predicted 
response at points with equal distance from the center is the same. CCF is not rotatable but it is 
used when the region of interest is cuboidal and not spherical. The points of a CCF are the points 
of a 3k factorial design. 

RSM combined with CCD produce a robust model that can be used to describe a big variety of 
experimental analyses. CCD enables the points to fit to a 2nd order polynomial RSM of the form: 

𝜂𝜂 = 𝛽𝛽0 + �𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖

+ �𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2

𝑖𝑖

+ ��𝛽𝛽𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖𝑖𝑖<𝑖𝑖

 

For an experiment with 2 factors, the response surface is of the form: 

𝜂𝜂 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽11𝑥𝑥12 + 𝛽𝛽22𝑥𝑥22 + 𝛽𝛽12𝑥𝑥1𝑥𝑥2 

The surface is fitted to the points through the method of least squares. [9]    
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3 Geometry and Simulation 
A plate with aspect ratio between 1 and √2 was chosen to examine how the first modes in bi-axial 
compression and pure shear react to composite beam reinforcement. 

Table 2. Steel plate properties 

Property Symbol Value Unit 
Material - Grade ‘A’ Steel - 
Length a 2500 mm 
Width b 1845 mm 

Initial thickness t 17 mm 
Young’s modulus E 210 GPa 

Poisson’s ratio ν 0.3 - 
 

The plate is end-to-end reinforced (-10 mm at each end) with a number of equally spaced FRP 
stiffeners. The reinforcement arrangement parameters are shown in Table 3. 

Table 3. Reinforcement arrangement parameters 

Factor Details Levels 
A Stiffener orientation Parallel or perpendicular to the plate’s long side 
B Reinforcement type Single or double sided 
C Number of stiffeners 1 to 4 per side 
D Stiffener material GFRP or CFRP 
E Stiffener geometry Profile, web height, thickness etc. 

 

The selected stiffener is a pultruded T-beam, its properties are shown in Table 4. 

Table 4. Composite T-beam properties 

Property Symbol Value Unit 
Material - GFRP - 
Length L a – 20 mm 

Web height A 100 mm 
Flange width B 150 mm 

Thickness T 9.5 mm 
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Figure 15. T-beam profile and scantlings 

Each simulation extracts a point which is then assigned to a curve σ*/σ –  t*/t where: 

• σ*: the critical stress after reinforcement with thickness t – t* 
• σ: the critical stress before reinforcement with thickness t 
• t: the initial thickness 
• t*: the lost thickness due to uniform corrosion (0-6 mm) 

 
Figure 16. σ*/σ –  t*/t  curve example 
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3.1 FEM Modeling 
The simulations were programmed using the general-purpose FEA software Abaqus/CAE.  

        
Figure 17. Reinforced plate in bi-axial compression 

The first stage of the modeling is to import the elastic material properties for steel and FRPs. Steel 
is imported as an isotropic material with E and ν as its only constants. FRP is imported with the 
option of Engineering Constants which are the 9 elastic constants that characterize an orthotropic 
material (Section 2.2). 

3.1.1 Steel plate 

The steel plate is modeled as a 3D deformable planar shell. Then a section is assigned to it with 
the geometric (constant thickness) and material (isotropic E,ν) properties. The plate is then meshed 
with rectangular elements and assigned element types. 

3.1.2 FRP flange 

The FRP flange is implemented as an instance in the steel plate. A composite layup of conventional 
shell elements is added to replace the steel plate section. Depending on the type of reinforcement, 
single or double sided, the composite layups modeling is different. 

 

 
Figure 18. Composite flange fiber orientation 
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Single-sided reinforcement 

 
Figure 19. Single-sided reinforcement section 

The layup consists of 2 plies. The first ply has steel section with thickness equal to the plates and 
the second ply has FRP section with the stiffener’s thickness. The fibers’ orientation is parallel to 
the stiffeners longitudinal axis. The layup’s mid-plane must be shifted downwards to align the 
steel sections, this is achieved with the offset option. The offset is calculated with the formula: 

𝑜𝑜𝑓𝑓𝑓𝑓𝑜𝑜𝑑𝑑𝑑𝑑 𝑟𝑟𝑎𝑎𝑑𝑑𝑟𝑟𝑜𝑜 = ±0.5 ⋅ �1 −
𝑑𝑑𝑠𝑠𝑡𝑡𝑒𝑒𝑒𝑒𝑠𝑠

𝑑𝑑𝑠𝑠𝑡𝑡𝑒𝑒𝑒𝑒𝑠𝑠 + 𝑑𝑑𝐹𝐹𝐹𝐹𝐹𝐹
� 

The sign depends on the side of the plate the stiffener is placed. 

Double-sided reinforcement 

 
Figure 20. Double sided reinforcement section 

The layup consists of 3 plies. The first ply has FRP section with the stiffener’s thickness, the 
second ply has steel section with the plate’s thickness and the third ply is the same as the first. The 
offset in this case is zero due to the symmetry. 

3.1.3 FRP web 

The FRP web is modeled as a 3D deformable planar shell, like the steel plate. Its section is a 1-ply 
composite layup. The fibers’ orientation is parallel to the stiffeners longitudinal axis. The web is 
connected to the flange with a Tie constraint, with primary surface the middle of the flange instance 
and secondary the web’s edge. 

 
Figure 21. Composite web fiber orientation 
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The web height should also have offset equal to: 

𝑑𝑑 = 𝑑𝑑𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡𝑒𝑒 2⁄ + 𝑑𝑑𝑓𝑓𝑠𝑠𝑎𝑎𝑛𝑛𝑓𝑓𝑒𝑒 

from the mid-plane because part of it intersects the plate and the flange and the total height is not 
being utilized in the simulation. The suggested way to deal with this problem, since there is no 
solution for this in the program, is to increase the web’s height. Having as a constant the 2nd 
moment of area of the web around the mid-plane, the new height is calculated: 

𝐼𝐼𝑋𝑋𝑋𝑋 =
𝑑𝑑 ⋅ ℎ3

12
+ 𝑑𝑑 ⋅ ℎ ⋅ �

ℎ
2

+ 𝑑𝑑�
2

=
𝑑𝑑ℎ3

3
+ 𝑑𝑑 ⋅ 𝑑𝑑 ⋅ ℎ2 + 𝑑𝑑 ⋅ 𝑑𝑑2 ⋅ ℎ 

𝐼𝐼𝑋𝑋𝑋𝑋∗ =
𝑑𝑑 ⋅ ℎ∗3

12
+ 𝑑𝑑 ⋅ ℎ∗ ⋅ �

ℎ∗

2
�
2

=
𝑑𝑑 ⋅ ℎ∗3

3
 

𝐼𝐼𝑋𝑋𝑋𝑋 = 𝐼𝐼𝑋𝑋𝑋𝑋∗   →  
ℎ∗

ℎ
= �1 + 3 ��

𝑑𝑑
ℎ
� + �

𝑑𝑑
ℎ
�
2

��

1
3
≈ 1 +

𝑑𝑑
ℎ

, 𝑓𝑓𝑜𝑜𝑟𝑟 
𝑑𝑑
ℎ
≪ 1 

It is proven that the corrected web height is: 

ℎ∗ ≈ ℎ + 𝑑𝑑 

 
Figure 22. Composite T-beam result 

3.1.4 Steps 

The analysis steps consist of the initial step, in which the boundary conditions are implied, and the 
final step, which is a linear buckle step. In the buckle step the loads are applied to the reference 
points (RP-i) as unit forces with units [N]. The reference points are connected to the plate with 
coupling constraints.  

Using this method instead of applying an edge load makes possible the use of the same model for 
displacement controlled non-linear analysis.  
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3.1.5 Loads, BCs and constraints 

The loads, boundary conditions and constraints used for the model are different for the bi-axial 
compression model and the pure shear model. 

Bi-axial compression 

 
Figure 23. Bi-axial compression loads and boundary conditions 

The boundary conditions are simple-support. All the edges are free to rotate and not permitted to 
move out-of-plane (Uz = 0). 

The only degree of freedom (DoF) RP-1 has is translation along the x-axis. RP-1 is coupled with  
the plate’s edge for the Ux and Uz DoFs. The analogous applies for RP-2 along the y-axis. 

The load Fx applied to RP-1 simulates the Nx and the load Fy applied to RP-2 the Ny. In bi-axial 
compression the formula below must be satisfied: 

𝛽𝛽 =
𝑁𝑁𝑦𝑦
𝑁𝑁𝑥𝑥

 

But the loads applied to the plate are forces, so: 

𝑁𝑁𝑦𝑦 =
𝐹𝐹𝑦𝑦
𝑎𝑎

, 𝑁𝑁𝑥𝑥 =
𝐹𝐹𝑥𝑥
𝑏𝑏

  →  𝛽𝛽 =
𝐹𝐹𝑦𝑦
𝐹𝐹𝑥𝑥
∙
𝑏𝑏
𝑎𝑎

=
𝐹𝐹𝑦𝑦
𝐹𝐹𝑥𝑥
∙

1
𝑟𝑟

 

The following must be true for the forces: 

𝛽𝛽′ =
𝐹𝐹𝑦𝑦
𝐹𝐹𝑥𝑥

, 𝛽𝛽′ = 𝛽𝛽 ∙ 𝑟𝑟 

Meaning, by setting Fx = 1 then Fy = β’. 
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Pure shear 

 
Figure 24. Pure shear boundary conditions and loads 

The boundary conditions are simple-support (hinged). The effects of pure shear stresses on an 
infinitely small element is the change of its angle while the edges form and length stay undisturbed 
(shear strain).  

 
Figure 25. Pure shear in infinitely small element 

The opposite can also be said because of the linear relationship of shear stress (τ) and shear strain 
(γ) given by the formula of the shear modulus: 

𝜏𝜏 = 𝐺𝐺 ∙ 𝛾𝛾 ↔  𝛾𝛾 =
1
𝐺𝐺
∙ 𝜏𝜏 

By integrating this concept for a plate of dimensions a×b, if the plates edges are forced to stay 
intact while the angle γ increases, the plate will be subjected to pure shear. A way to achieve it is 
with the use of an auxiliary mechanism, a rectangular truss of dimensions a×b that consist of rigid 
rods free to rotate at the nodal point. By coupling the plate’s translational DoFs at the edges to the 
truss while letting the rotational DoFs free simple-support conditions are achieved. 

The load Fy is applied to RP-1. RP-1 is coupled to the truss and free to move at the xy plane. 
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3.1.6 Post-processing 

Bi-axial compression 

The extracted data from a simulation is an eigenvalue in force units [N]. This value inserted to a 
formula to get the critical buckling stress: 

𝜎𝜎𝑥𝑥∗[𝑀𝑀𝑃𝑃𝑎𝑎] = 𝑓𝑓(𝐹𝐹𝑥𝑥, 𝑏𝑏, 𝑑𝑑, 𝑑𝑑∗) =
𝐹𝐹𝑥𝑥

𝑏𝑏 ∙ (𝑑𝑑 − 𝑑𝑑∗)
 

where: 

• 𝐹𝐹𝑥𝑥[𝑁𝑁]: FEA eigenvalue 
• 𝑏𝑏[𝑚𝑚𝑚𝑚]: breadth of the edge 
• 𝑑𝑑[𝑚𝑚𝑚𝑚]: initial plate thickness 
• 𝑑𝑑∗[𝑚𝑚𝑚𝑚]: thickness reduction due to corrosion 

The stress of the other edge is calculated with the formula: 

𝜎𝜎𝑦𝑦∗ = 𝛽𝛽 ∙ 𝜎𝜎𝑥𝑥∗ 

Pure shear 

The extracted data from a simulation is an eigenvalue in force units [N]. This value inserted to a 
formula to get the critical buckling stress: 

𝜏𝜏∗[𝑀𝑀𝑃𝑃𝑎𝑎] = 𝑓𝑓�𝐹𝐹𝑦𝑦, 𝑏𝑏, 𝑑𝑑, 𝑑𝑑∗� =
𝐹𝐹𝑦𝑦

𝑏𝑏 ∙ (𝑑𝑑 − 𝑑𝑑∗)
 

where: 

• 𝐹𝐹𝑦𝑦[𝑁𝑁]: FEA eigenvalue 
• 𝑏𝑏[𝑚𝑚𝑚𝑚]: breadth of the edge 
• 𝑑𝑑[𝑚𝑚𝑚𝑚]: initial plate thickness 
• 𝑑𝑑∗[𝑚𝑚𝑚𝑚]: thickness reduction due to corrosion 
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4 Numerical Results 
In this section are presented the numerical results of the FEA simulations. 

4.1 Model verification 
The bi-axial compression and the pure shear models were tested for both static linear perturbation 
analysis and buckling analysis for a steel plate. The results were then compared with theoretical 
formulas. 

Bi-axial compression 

A static analysis was ran with Fx = 106 N, β = 0.5, Fy = β’∙Fx = 0.678∙106. 

 
Figure 26. Plate in bi-axial compression in static FEA model 

The theoretical results for the uniform stresses are: 

𝜎𝜎𝑥𝑥 =
𝐹𝐹𝑥𝑥
𝐴𝐴

=
𝐹𝐹𝑥𝑥
𝑏𝑏 ∙ 𝑑𝑑

=
−106

1845 ∙ 17
= −31.883 𝑀𝑀𝑃𝑃𝑎𝑎, 𝜎𝜎𝑦𝑦 = 𝛽𝛽 ∙ 𝜎𝜎𝑥𝑥 = −15.941 𝑀𝑀𝑃𝑃𝑎𝑎 

𝜎𝜎𝑀𝑀𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠 = �𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝑦𝑦2 − 𝜎𝜎𝑥𝑥 ∙ 𝜎𝜎𝑦𝑦 = 27.611 𝑀𝑀𝑃𝑃𝑎𝑎 

The experimental results that were extracted from the bi-axial compression model are: 

𝜎𝜎𝑥𝑥,𝐹𝐹𝐸𝐸𝐹𝐹 = −31.883 𝑀𝑀𝑃𝑃𝑎𝑎, 𝜎𝜎𝑦𝑦,𝐹𝐹𝐸𝐸𝐹𝐹 = −15.941 𝑀𝑀𝑃𝑃𝑎𝑎, 𝜎𝜎𝑀𝑀𝑖𝑖𝑠𝑠𝑒𝑒𝑠𝑠,𝐹𝐹𝐸𝐸𝐹𝐹 = 27.611 𝑀𝑀𝑃𝑃𝑎𝑎 
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A buckle analysis was ran with Fx = 1, β = 0.5, Fy = β’ = 0.678. 

 
Figure 27. Plate in bi-axial compression in buckle FEA model 

The theoretical result for the critical buckling stress is: 

𝜎𝜎𝑥𝑥 = 𝛫𝛫𝐶𝐶 ∙
𝐷𝐷𝜋𝜋2

𝑏𝑏2𝑑𝑑
= 36.804 𝑀𝑀𝑃𝑃𝑎𝑎, 𝐾𝐾𝐶𝐶 = �

1
𝑟𝑟

+ 𝑟𝑟�
2 1

1 + 𝛽𝛽𝑟𝑟2
= 2.284 

The experimental result that was extracted from the bi-axial compression model is: 

𝐹𝐹𝑥𝑥 = 1146460 𝑁𝑁 

In stress units: 

𝜎𝜎𝑥𝑥,𝐹𝐹𝐸𝐸𝐹𝐹 =
𝐹𝐹𝑥𝑥
𝑏𝑏 ∙ 𝑑𝑑

= 36.552 𝑀𝑀𝑃𝑃𝑎𝑎 
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Pure shear 

A static analysis was ran with Fy = 106 N.  

 

 
Figure 28. Plate in pure shear in static FEA model 

The theoretical result for the uniform shear stress is: 

𝜏𝜏 =
𝐹𝐹
𝐴𝐴

=
𝐹𝐹
𝑏𝑏 ∙ 𝑑𝑑

=
106

1845 ∙ 17
= 31.883 𝑀𝑀𝑃𝑃𝑎𝑎 

The experimental result that was extracted from the pure shear model is: 

𝜏𝜏𝐹𝐹𝐸𝐸𝐹𝐹 = 31.883 𝑀𝑀𝑃𝑃𝑎𝑎 

The normal stresses have magnitude equal to 10-12 MPa which is considered to be computational 
noise. 
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A buckle analysis was ran with Fy = 1. 

 
Figure 29. Plate in pure shear in buckle FEA model 

The theoretical result for the critical buckling shear stress is: 

𝜏𝜏 = 𝛫𝛫𝑆𝑆 ∙
𝐷𝐷𝜋𝜋2

𝑏𝑏2𝑑𝑑
= 118.819 𝑀𝑀𝑃𝑃𝑎𝑎, 𝛫𝛫𝑆𝑆 = 7.374 (𝐹𝐹𝑟𝑟𝐹𝐹. 𝑥𝑥𝑥𝑥) 

The experimental result that was extracted from the pure shear model is: 

𝐹𝐹𝑦𝑦 = 3722960 𝑁𝑁 

In stress units: 

𝜏𝜏𝐹𝐹𝐸𝐸𝐹𝐹 =
𝐹𝐹𝑦𝑦
𝑏𝑏 ∙ 𝑑𝑑

= 118.698 𝑀𝑀𝑃𝑃𝑎𝑎 

The edges are free to rotate confirming that simple-support conditions are in order. 
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4.2 Simulations results 
Each graph has a title of the form: 

"XXXX YZ" 

where: 

• XXXX: the type of load 
• Y=[T/L]: the orientation of the stiffeners 

o T: Transverse or perpendicular to the plate’s long side 
o L: Longitudinal or parallel to the plate’s long side 

• Z=[S/D]: the type of reinforcement 
o S: single-sided reinforcement 
o D: double-sided reinforcement 

The n = 0,1,2,3,4 at the end of each curve is the number of stiffeners per side, with 0 being the 
unreinforced plate which was added to each graph for reference. The red line is the baseline of the 
repair design, if a point is above it, its critical buckling value exceeds the critical buckling value 
of the uncorroded plate. 

For the case of bi-axial compression, only the sub-cases of uni-axial compression in both axes ( β 
= 0.0 / β = ∞ ) and equi-bi-axial compression ( β = 1.0 ) were examined. After concluding that 
longitudinal reinforcement was superior and more stable on average, more simulations were run 
for it for the case of bi-axial compression for values of β equal to: [0.2, 0.4, 0.6, 0.8, 1:0.8, 1:0.6, 
1:0.4, 1:0.2]. Their results showed great similarities with the sub-case of equi-bi-axial 
compression, and were presented combined to a graph showing their average, min and max values. 
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Figure 30. Reinforcement case: Bi-axial Compression (β=0.0) TS 

 

Table 5. σ*/σ values of reinforcement case: Bi-axial Compression (β=0.0) TS 

t* n = 1 n = 2 n = 3 n = 4 
0 1.054 1.114 1.138 1.161 
1 0.935 0.997 1.021 1.044 
2 0.822 0.886 0.912 0.936 
3 0.717 0.784 0.810 0.836 
4 0.619 0.688 0.716 0.743 
5 0.528 0.601 0.631 0.659 
6 0.444 0.521 0.553 0.584 
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Figure 31. Reinforcement case: Bi-axial Compression (β=0.0) LS 

 

Table 6. σ*/σ values of reinforcement case: Bi-axial Compression (β=0.0) LS 

t* n = 1 n = 2 n = 3 n = 4 
0 1.134 1.212 1.288 1.365 
1 1.029 1.111 1.191 1.271 
2 0.932 1.018 1.103 1.187 
3 0.843 0.934 1.024 1.113 
4 0.761 0.859 0.954 1.050 
5 0.689 0.793 0.896 0.998 
6 0.625 0.738 0.849 0.959 
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Figure 32. Reinforcement case: Bi-axial Compression (β=0.0) TD 

 

Table 7. σ*/σ values of reinforcement case: Bi-axial Compression (β=0.0) TD 

t* n = 1 n = 2 n = 3 n = 4 
0 1.057 1.173 1.221 1.267 
1 0.937 1.056 1.106 1.154 
2 0.825 0.947 1.000 1.050 
3 0.719 0.846 0.902 0.954 
4 0.621 0.753 0.812 0.867 
5 0.531 0.666 0.730 0.788 
6 0.447 0.588 0.658 0.720 
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Figure 33. Reinforcement case: Bi-axial Compression (β=0.0) LD 

 

Table 8. σ*/σ values of reinforcement case: Bi-axial Compression (β=0.0) LD 

t* n = 1 n = 2 n = 3 n = 4 
0 1.270 1.426 1.580 1.734 
1 1.172 1.336 1.498 1.660 
2 1.083 1.256 1.427 1.598 
3 1.003 1.186 1.368 1.549 
4 0.932 1.128 1.321 1.514 
5 0.870 1.082 1.289 1.496 
6 0.820 1.049 1.273 1.497 
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Figure 34. Reinforcement case: Bi-axial Compression (β=∞) TS 

 

Table 9. σ*/σ values of reinforcement case: Bi-axial Compression (β=∞) TS 

t* n = 1 n = 2 n = 3 n = 4 
0 1.118 1.185 1.252 1.318 
1 1.010 1.080 1.150 1.219 
2 0.910 0.983 1.056 1.128 
3 0.817 0.894 0.971 1.047 
4 0.731 0.814 0.894 0.975 
5 0.654 0.742 0.828 0.913 
6 0.585 0.679 0.772 0.863 
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Figure 35. Reinforcement case: Bi-axial Compression (β=∞) LS 

 

Table 10. σ*/σ values of reinforcement case: Bi-axial Compression (β=∞) LS 

t* n = 1 n = 2 n = 3 n = 4 
0 1.145 1.242 1.302 1.380 
1 1.038 1.138 1.202 1.283 
2 0.939 1.042 1.110 1.194 
3 0.847 0.954 1.027 1.115 
4 0.763 0.875 0.953 1.046 
5 0.687 0.805 0.889 0.988 
6 0.620 0.744 0.837 0.942 
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Figure 36. Reinforcement case: Bi-axial Compression (β=∞) TD 

 

Table 11. σ*/σ values of reinforcement case: Bi-axial Compression (β=∞) TD 

t* n = 1 n = 2 n = 3 n = 4 
0 1.236 1.371 1.505 1.638 
1 1.133 1.274 1.413 1.552 
2 1.037 1.186 1.331 1.476 
3 0.950 1.107 1.260 1.412 
4 0.871 1.038 1.200 1.361 
5 0.800 0.979 1.152 1.323 
6 0.738 0.933 1.118 1.301 
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Figure 37. Reinforcement case: Bi-axial Compression (β=∞) LD 

 

Table 12. σ*/σ values of reinforcement case: Bi-axial Compression (β=∞) LD 

t* n = 1 n = 2 n = 3 n = 4 
0 1.293 1.456 1.680 1.775 
1 1.192 1.362 1.590 1.694 
2 1.098 1.276 1.509 1.624 
3 1.013 1.201 1.439 1.566 
4 0.936 1.136 1.379 1.522 
5 0.868 1.083 1.323 1.455 
6 0.808 1.042 1.217 1.294 
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Figure 38. Reinforcement case: Bi-axial Compression (β=1.0) TS 

 

Table 13. σ*/σ values of reinforcement case: Bi-axial Compression (β=1.0) TS 

t* n = 1 n = 2 n = 3 n = 4 
0 1.119 1.186 1.253 1.320 
1 1.011 1.081 1.151 1.221 
2 0.910 0.984 1.057 1.130 
3 0.817 0.895 0.972 1.048 
4 0.731 0.814 0.896 0.976 
5 0.653 0.742 0.829 0.914 
6 0.583 0.680 0.772 0.864 
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Figure 39. Reinforcement case: Bi-axial Compression (β=1.0) LS 

 

Table 14. σ*/σ values of reinforcement case: Bi-axial Compression (β=1.0) LS 

t* n = 1 n = 2 n = 3 n = 4 
0 1.143 1.239 1.300 1.378 
1 1.036 1.135 1.199 1.280 
2 0.936 1.039 1.107 1.192 
3 0.845 0.952 1.024 1.113 
4 0.761 0.872 0.951 1.044 
5 0.686 0.802 0.887 0.986 
6 0.619 0.742 0.834 0.940 
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Figure 40. Reinforcement case: Bi-axial Compression (β=1.0) TD 

 

Table 15. σ*/σ values of reinforcement case: Bi-axial Compression (β=1.0) TD 

t* n = 1 n = 2 n = 3 n = 4 
0 1.237 1.374 1.508 1.642 
1 1.133 1.277 1.417 1.556 
2 1.036 1.188 1.335 1.480 
3 0.948 1.109 1.263 1.416 
4 0.867 1.039 1.203 1.364 
5 0.794 0.980 1.155 1.327 
6 0.729 0.933 1.120 1.305 
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Figure 41. Reinforcement case: Bi-axial Compression (β=1.0) LD 

 

Table 16. σ*/σ values of reinforcement case: Bi-axial Compression (β=1.0) LD 

t* n = 1 n = 2 n = 3 n = 4 
0 1.288 1.449 1.673 1.767 
1 1.186 1.355 1.582 1.686 
2 1.093 1.269 1.502 1.615 
3 1.008 1.194 1.433 1.557 
4 0.932 1.129 1.376 1.513 
5 0.865 1.076 1.331 1.483 
6 0.807 1.035 1.301 1.471 
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Figure 42. Reinforcement case: Bi-axial Compression Average LS 

 

Table 17. σ*/σ average values and standard deviations of reinforcement case: Bi-axial Average (β=1.0) LS 

t* n = 1 n = 2 n = 3 n = 4 
0 1.142 1.239 1.300 1.377 
1 1.035 1.135 1.199 1.280 
2 0.936 1.039 1.107 1.192 
3 0.845 0.951 1.024 1.113 
4 0.761 0.872 0.951 1.044 
5 0.686 0.802 0.887 0.986 
6 0.619 0.742 0.834 0.940 

Sample Standard Deviation 
0 1.52E-03 1.72E-03 1.55E-03 1.44E-03 
1 1.42E-03 1.64E-03 1.48E-03 1.37E-03 
2 1.30E-03 1.56E-03 1.42E-03 1.31E-03 
3 1.18E-03 1.47E-03 1.36E-03 1.26E-03 
4 1.05E-03 1.40E-03 1.30E-03 1.21E-03 
5 8.95E-04 1.32E-03 1.25E-03 1.16E-03 
6 6.97E-04 1.24E-03 1.21E-03 1.13E-03 
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Figure 43. Reinforcement case: Bi-axial Compression Average LD 

 

Table 18. σ*/σ average values and standard deviations of reinforcement case: Bi-axial Average (β=1.0) LD 

t* n = 1 n = 2 n = 3 n = 4 
0 1.287 1.449 1.672 1.766 
1 1.186 1.354 1.582 1.685 
2 1.093 1.269 1.501 1.615 
3 1.008 1.194 1.432 1.557 
4 0.932 1.129 1.375 1.512 
5 0.865 1.076 1.330 1.483 
6 0.807 1.035 1.297 1.461 

Sample Standard Deviation 
0 3.36E-03 4.08E-03 5.07E-03 4.71E-03 
1 3.14E-03 3.99E-03 4.91E-03 4.74E-03 
2 2.90E-03 3.92E-03 4.75E-03 4.79E-03 
3 2.61E-03 3.86E-03 4.55E-03 4.89E-03 
4 2.25E-03 3.82E-03 4.23E-03 5.03E-03 
5 1.75E-03 3.79E-03 3.54E-03 5.25E-03 
6 1.01E-03 3.75E-03 6.16E-03 2.49E-02 
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Figure 44. Reinforcement case: Pure Shear TS 

 

Table 19. σ*/σ values of reinforcement case: Pure Shear TS 

t* n = 1 n = 2 n = 3 n = 4 
0 1.075 1.169 1.231 1.291 
1 0.964 1.061 1.126 1.189 
2 0.860 0.961 1.029 1.095 
3 0.763 0.869 0.940 1.009 
4 0.672 0.785 0.859 0.932 
5 0.589 0.708 0.787 0.863 
6 0.513 0.639 0.722 0.797 
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Figure 45. Reinforcement case: Pure Shear LS 

 

Table 20. σ*/σ values of reinforcement case: Pure Shear LS 

t* n = 1 n = 2 n = 3 n = 4 
0 1.104 1.206 1.283 1.355 
1 0.993 1.100 1.180 1.256 
2 0.889 1.002 1.086 1.165 
3 0.792 0.912 1.000 1.083 
4 0.702 0.829 0.923 1.011 
5 0.620 0.755 0.855 0.949 
6 0.543 0.689 0.797 0.896 
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Figure 46. Reinforcement case: Pure Shear TD 

 

Table 21. σ*/σ values of reinforcement case: Pure Shear TD 

t* n = 1 n = 2 n = 3 n = 4 
0 1.142 1.324 1.447 1.566 
1 1.032 1.221 1.349 1.472 
2 0.929 1.125 1.258 1.386 
3 0.832 1.038 1.176 1.302 
4 0.743 0.949 1.091 1.205 
5 0.659 0.846 0.997 1.117 
6 0.583 0.750 0.911 1.038 
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Figure 47. Reinforcement case: Pure Shear LD 

 

Table 22. σ*/σ values of reinforcement case: Pure Shear LD 

t* n = 1 n = 2 n = 3 n = 4 
0 1.189 1.391 1.544 1.687 
1 1.080 1.291 1.451 1.600 
2 0.977 1.199 1.367 1.523 
3 0.881 1.115 1.293 1.457 
4 0.791 1.040 1.228 1.402 
5 0.708 0.972 1.173 1.358 
6 0.632 0.913 1.128 1.326 
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The FEA results lead to a number of conclusions about the reinforcement arrangement used in this 
analysis. 

Since the FRP stiffeners are relatively weak in comparison with the steel plate, the expected failure 
mode of the reinforced plate is overall collapse. The stiffeners buckle with the plate following its 
surface curvature. 

       
Figure 48. Fundamental modes of composite reinforced plates in pure shear (left) and bi-axial compression (right) 

In some cases, a mode different from the fundamental appears. This mode switch is observed 
through the σ*/σ –  t*/t curves as a discontinuity of the curve’s slope. The main reasons for this 
are: 

• The stiffener number or/and stiffness are above a certain value 
• The plate’s thickness to breadth ratio is a below a certain value 
• The main load is perpendicular to the stiffeners 
• The stiffener is placed to a region close to a nodal line of the next mode 

The switch almost always happens as a combination of the above. The slope discontinuity point 
cannot be predicted without further analysis on the topic. This adds an uncertainty to any attempt 
to interpolate data from the FEA model but its effect is ignored as it is considered small. 

 
Figure 49. Mode switch effect on the stress-thickness curve 
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Figure 50. Case of mode switch in bi-axial compression for β = ∞ 

 

 
Figure 51. Case of initial mode switch in bi-axial compression for β = 0.0 

 

Based on the results, the following were observed: 

• The critical buckling value of a longitudinal reinforcement are higher than a transverse 
reinforcement’s with the same parameters 

• The critical buckling value of a reinforcement arrangement is lowest for the case of pure 
shear 

The above lead to the conclusions: 

• Longitudinal reinforcement is preferred 
• Design against pure shear is sufficient for all cases 
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5 Probabilistic Approach 
A probabilistic model was created in order to calculate the amplitude of rehabilitation that a type 
of reinforcement provides to a plate of any dimension. Five different plates were chosen to produce 
the model and 9 different plates to test the model. 

5.1 Model fitting 

5.1.1 CCD 

The model is a Face-centered CCD. The response of the CCD is the Factor of Safety (FoS) against 
linear elastic buckling provided by the repair method. Its formula is: 

𝐹𝐹𝑜𝑜𝑆𝑆 =
𝜏𝜏∗

𝜏𝜏
 

with: 

• τ*: the critical buckling value of the repaired corroded plate in pure shear 
• τ: the critical buckling value of the intact unreinforced plate in pure shear 

The design constants are: 

• Plate: Steel / E = 210 GPa / ν = 0.3 
• Stiffener: GFRP / T-beam / bflange = 150 mm / t = 9.5 mm 
• Longitudinal single-sided reinforcement with two equi-distant stiffeners 

 
Figure 52. Reinforcement arrangement of the probabilistic approach 

Table 23. CCD Factors 

Factors Formula Low Level [-1] Mid Level [0] High Level [+1] 
Relative web height hweb/(t-t*) 6 9 12 

% of corrosion t*/t∙100% 0 15 30 
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5.1.2 CLT 

The CCD model is created by multiple plates, that leads to the CCD point having multiple 
responses. So the need of a point estimator arises to reduce the multiple points to one. The method 
chosen to estimate the points is the CLT. For each point a one-tailed 99% interval of confidence 
with lower bound is calculated with the use of Student’s T distribution. The mathematical meaning 
behind this concept is: 

There is a 99% probability that the interval [𝐿𝐿, +∞) includes the population mean, or: 

𝑃𝑃[𝐿𝐿 ≤ 𝜇𝜇 < +∞] = 0.99 

 
Figure 53. Lower bound example of one-tailed confidence interval 

L is the estimated point used in the CCD. More specifically: 

𝐹𝐹𝑜𝑜𝑆𝑆𝑖𝑖𝑖𝑖 = 𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑖𝑖 − 𝑑𝑑0.01(𝑛𝑛) 
𝑆𝑆𝑖𝑖𝑖𝑖
√𝑛𝑛

 

where: 

• 𝑚𝑚𝑖𝑖𝑖𝑖: the sample mean 
• 𝑆𝑆𝑖𝑖𝑖𝑖: the sample standard deviation 
• 𝑛𝑛: the number of plates 
• 𝑑𝑑0.01(𝑛𝑛): the t-value taken from a Student’s T distribution table 

Five plates of different dimensions were chosen to cover a variety of aspect ratios and thicknesses 
used in ship structural design. 9 simulations were ran for each plate to cover all CCD points. 

Table 24. Fitting model plate properties 

Plate Number [1] [2] [3] [4] [5] 
Length [mm] 2000 2500 1600 1600 1000 
Width [mm] 2000 2300 1380 1290 750 
Thick. [mm] 17 16 13 14.5 16 



55 
 

Table 25. FEA results for CCD 

Points Plate [1] Plate [2] Plate [3] Plate [4] Plate [5] mij Sij FoSij 
(-1,-1) 1.296 1.264 1.376 1.322 1.304 1.312 0.041 1.250 
(-1,0) 0.969 0.938 1.040 0.997 0.999 0.989 0.038 0.931 

(-1,+1) 0.686 0.659 0.749 0.715 0.733 0.708 0.036 0.654 
(0,-1) 1.574 1.550 1.694 1.585 1.462 1.573 0.083 1.448 
(0,0) 1.207 1.173 1.312 1.225 1.149 1.213 0.062 1.120 

(0,+1) 0.878 0.841 0.967 0.902 0.870 0.892 0.048 0.820 
(+1,-1) 1.869 1.887 2.032 1.861 1.599 1.850 0.157 1.614 
(+1,0) 1.470 1.462 1.612 1.475 1.286 1.461 0.116 1.287 

(+1,+1) 1.094 1.073 1.219 1.116 1.001 1.101 0.079 0.981 
 

5.1.3 RSM 

A quadratic response surface was fitted to the CCD points with MATLAB Curve Fitting Toolbox: 

𝜂𝜂 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽11𝑥𝑥12 + 𝛽𝛽22𝑥𝑥22 + 𝛽𝛽12𝑥𝑥1𝑥𝑥2, 6 ≤ 𝑥𝑥1 ≤ 12, 0 ≤ 𝑥𝑥2 ≤ 30 

with R2 = 0.9999 and RMSE = 0.005448. 

Table 26. Response surface coefficients 

β0 β1 β2 β11 β22 β12 
0.8062 0.08056 -0.02089 -0.001079 6.816e-05 -0.0001996 

 

 
Figure 54. RSM contour 
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Figure 55. Creation of the probabilistic model with the use of CLT 
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5.2 Model testing 
The 9 plates used for the testing phase along with their stiffeners are presented in Table 27. The 
plates’ properties were inserted in the FEA simulation and the RSM model and the results were 
compared in Table 28. Plates with greater FoSFEA are in the safe area above the response surface, 
meaning that the response surface underestimates their FoS and the repair design would be 
adequate. 

Table 27. Testing phase plate dimensions 

Plate a [mm] b [mm] t [mm] t* [mm] hweb [mm] 
(i) 2061 1718 15.4 4.5 129 
(ii) 1539 1221 16.1 2.3 165 
(iii) 1439 1358 13.9 1.0 111 
(iv) 1950 1477 17.0 1.4 135 
(v) 1295 1012 17.4 2.3 105 
(vi) 1549 1280 15.0 1.8 123 
(vii) 1039 781 16.6 2.7 155 
(viii) 2151 1707 13.2 3.0 112 
(ix) 2270 2027 15.6 0.2 170 

 

Table 28. Test plates RSM and FEA results comparison 

Plate 𝑥𝑥1 𝑥𝑥2 𝐹𝐹𝑜𝑜𝑆𝑆𝐹𝐹𝑆𝑆𝑀𝑀  𝐹𝐹𝑜𝑜𝑆𝑆𝐹𝐹𝐸𝐸𝐹𝐹 𝐹𝐹𝑜𝑜𝑆𝑆𝐹𝐹𝐸𝐸𝐹𝐹 − 𝐹𝐹𝑜𝑜𝑆𝑆𝐹𝐹𝑆𝑆𝑀𝑀 
(i) 29% 11.798 0.990 1.079 0.090 
(ii) 14% 11.917 1.301 1.388 0.087 
(iii) 7% 8.587 1.263 1.468 0.205 
(iv) 8% 8.632 1.245 1.238 -0.007 
(v) 13% 6.936 1.035 1.047 0.012 
(vi) 12% 9.318 1.200 1.315 0.115 
(vii) 16% 11.116 1.216 1.200 -0.016 
(viii) 23% 11.019 1.068 1.215 0.147 
(ix) 1% 11.008 1.539 1.744 0.205 
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Figure 56. Test points in the RSM plot 
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6 Concluding Remarks 
Material wastage due to uniform corrosion has proven to be a troubling issue in the maritime 
industry leading to great risks for the wellbeing of a ship. In this study, a new method of repair 
against buckling with the use of composite beams (FRP) was examined through FEA simulations. 
Even though composite beam reinforcement is light, in comparison with steel beam 
reinforcements, it gave adequate results for the case of repair against linear buckling. The 
probabilistic model introduced a repair design independent of the plate’s dimensions with the only 
parameters being the plate’s thickness before and after corrosion and the desired FoS. 

Although the results of this method were positive, a lot of factors were not taken into consideration 
due to assumptions that were made in order to simplify the problem. In future works non-linear 
analysis FEA simulations can be extracted in order to test the reinforced plate’s ultimate strength 
as well as non-linear effects such as plasticity and composite failure modes. Finally, the composite 
beam reinforcement should be thoroughly examined with laboratory experiments to check the 
accuracy of the FEA simulations. 
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