Innovative repair of corroded marine plates under buckling
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ITepiAnyn

H andAgio vAIKOO AOY® opotdpHopeNS SIAPPmong UIopel vor 00Ny GEL GE CNUAVTIKY LEIMOT TNG
avTOYNG Mo mAGKaG o Avylopd, Bétovtag v mAdko Kot Tic TEPPAAAOVGES KOTACKEVEG OE
kivouvo aoctoyiog. Avardywg pe to péyebog tv mapondve, n TAdKa gite avtikadiototon gite
EVIOYVETOL LE ETKAALYN BAANG TAAKOG 1] EVIOYLTIKOV. € KaOe mepinTmon, Oepuéc epyacieg, OTmg
1 oLYKOAAN O, ival AVOTOPEVKTEG.

¥t mapovoa epyacio e&etaletar pio kavotopog HEBOSOG EMGKEVNG UE TNV YPNON EVIGYVTIKOV
amd ovvOeta VAIKA. To BewpnTicd VTOPadpo ToL ¥PELAGTNKE Y10 TNV KOTAVONGT TOL TPOPANLATOG
NG EMOKELNG OO GVVOETO VAIKA, TO OTOI0 TEPLEYEL TOV AVYIGHO TAOK®OV KOl TNV UNYOVIKY|
OVICOTPOTIKMV LAIKAOV, avaAvdnke oe fabog. Anpovpyndnke HoviEAo avaALONG TETEPACUEVDV
otoyelov pe okomd va peretn0el  copmeplpopd piog LETAAMKNG TAAKAG e GVVOETN evioyvon
o€ YPOPUIKO €ACTIKO AvYiopd. Ot TPOGOUOIMGELS EENYOYOV OTOTEAEGLOTO Y10l TAGKES 7OV
vrokewTal o€ daEovikn OAiym Kot Kabapn ddTunon.

Metd v eayoyn tov amotelecpdtov, epyoAeio oTATIOTIKNG avdAvong omwg to Kevipikd
Opaxo Oewdpnuo (KOO), Central Composite Design (CCD) kot Response Surface Methodology
(RSM) ypnotomomnkoyv pe okomd vo PeAtiotomombel 1 Swdwkacio oyediaong Tng
emdopHwong kot va dnovpyndel Eva mbavobempntikd LovtéAo Tov va KoAdyeL pio TAndmpa
TEPUTTAOGE®V EMOOPH®OTG.



Abstract

Material wastage due to uniform corrosion can lead to significant reduction of the buckling
capacity of a plate, putting the plate and its surrounding structures at risk of failure. Depending on
the magnitude of the above, the plate is either replaced or reinforced with doubler plates or
stiffeners. In both cases, hot works, like welding, are inevitable.

An innovative repair method with the use of composite beams is examined in this work. The
theoretical background needed to understand the problem of composite reinforcement, including
buckling of plates and mechanics of anisotropic materials, was analyzed in depth. A Finite Element
Analysis (FEA) model was created in order to study the response of a metal plate with composite
reinforcement in linear elastic buckling. The simulations extracted results for plates subjected to
bi-axial compression and pure shear.

After the extraction of the results, statistical analysis tools like the Central Limit Theorem (CLT)
Central Composite Design (CCD) and Response Surface Methodology (RSM) were utilized in
order to optimize the repair design process and create a probabilistic model to cover a wide variety
of repair cases.
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1 Introduction

Steel marine plates are one of the main structural components of a ship. Due to the extreme
conditions the plates are subjected to (stresses, humid environments, seawater etc.), material
wastage due to corrosion is inevitable in the ship’s life (30 — 50 years). The usual corrosion types
observed in marine plates are:

e Uniform corrosion
e Galvanic corrosion
e Pitting corrosion

Out of these types the most commonplace is uniform (or general) corrosion. Uniform corrosion
leads to a uniform, on average, reduction of thickness to the affected plate. Although the ship’s
scantlings are designed with excess thickness to take into account this phenomenon (IACS [1]), in
some cases, because of indeterminate factors, this isn’t sufficient. If the plate is subjected to
compressive or/and shear loads, material wastage due to corrosion can lead to the plate buckling
in operation loads.

A plate’s resistance to linear elastic buckling is analogous to the square of its thickness. If the
thickness is reduced to 90% of the initial, the plate’s resistance is reduced to 81%.
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Every 5 years ships generally go under survey by a classification society, in which the ship is
checked for structural deficiencies, such as:

e Material wastage
e Fractures
e Deformations



In most cases where deformations are observed on a plate, IACS [2][3][4] suggests the repair
solutions below:

e Fairing of the plate and reinforcement with doubler plate or stiffener, for small
deformations and/or material wastage

e Removal of the plate and replacement with an insert plate of the same material for large
deformations and/or material wastage

Hot work is inevitable for large deformations, because the buckled plate has to be cut-off (with
plasma, oxygen & acetylene fuel, etc.) and a new one has to be welded in place. The same could
be said for the small deformations case, the most common way to fair a deformed plate is with
flame-straightening and the doubler plate or the stiffeners have then to be welded to the plate.

To do hot works in a compartment, a certificate of degassing (Gas Free) must be issued for the
safety of the workers and the environment. Also hot works like cutting and welding, degrade the
metal at the heat affected zone, which is why they should be avoided if possible.
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The latest years, new methods have been proposed and studied [5][6] to replace these conventional
repair methods, using composite materials (GFRP, CFRP, etc.). The proposed alternatives are:

e Adhesion of composite patches instead of the welding of doublers
e Adhesion of composite beams instead of the welding of stiffeners

These are short term repair methods, they can be imposed while the ship is on sail and the scope
is to keep the plates in the safe zone until the ship’s scheduled dry docking.

The main advantage of these repair methods is they can be carried out without hot work. The area
of adhesion between metal and composite has to be cleaned and grinded, a layer of adhesive (epoxy
resin, polyester resin etc.) is then to be applied at the area and the composite reinforcement is to
be placed on the adhesive.



In this work, the repair of steel plates with the use of composite beams is analyzed using the Finite
Element Analysis (FEA) program ABAQUS. The design is based on the plate’s strength to linear
elastic buckling in bi-axial compression and pure shear.

The reinforcement arrangement examined is end-to-end reinforcement with composite fiber
reinforced plastic (FRP) T-beams with the flange placed on the plate to increase the area of
adhesion. For the context of this work the assumptions listed below were made in order to simplify
the problem:

The repaired plate is completely straightened

The material wastage is uniform

The steel plate and the FRP beam are perfectly adhered to each other

The steel plate, the FRP beam and the adhesive bondline are all in the linear elastic region

A number of FEA simulations were run to understand the nature of the composite reinforcements
and their different arrangements on the same plate. Then, after reaching to conclusions about the
optimal reinforcement arrangements, a probabilistic model was created and tested to extract results
for plates with any dimension.



2 Theoretical background

2.1 Buckling of simply supported plates

The plate governing equation for buckling is:

. 22w 02w 22w
DV*w = p(x,y) + Nxﬁ-l_ Nya—yz-l— 2nym
where:
e D= ECS the plate’s flexural ridgidit
12(1-v2) p gatty

e p(x,v), the lateral pressure in N/m? units
e N, N,,N,,, the in-plane edge loads as shown in figure in N/m units

The boundary conditions of the plate is simple support, which means that the edges are free to
rotate so the modes will consist of sine-waves.

Ny
Ny o o

Figure 3. Plate coordinate system

2.1.1 Biaxial compression

For a simple-supported plate in biaxial compression, set Nxy = p(x,y) = 0. Assume the solution to

be of the Navier form
. mmx _ nmy
w(x,y) = z Z Ay Sin sin——
a b
n m

and substitute it to the governing equation.

Set B = Ny/Nx and r = a/b, the critical buckling load is
2
Ny cr = K¢ p2z Kc = minm,n(

[mZ + nZ.r.Z]Z
r?[m? + ﬁn2r2]>

4



Setting B between 0 and 1, the formula for K¢ can still take into account all the possible cases by
inversing B and r if needed (e.g. a plate with r =3 and § = 2 is the same as a plate with r = 1/3 and
B =1/2). It will be proven that Kc minimizes only if n=1 for B between [0,1].

Consider the function = f(n)
[m? + n?r2]?
r2[m? + Bn?r?]

f) =

taking the first derivative
df _ 2[m? +n®r?][2nr®]r?[m? + Bn’r?] — r?[2Bnr?][m? + n’r?]?
dn r4[m? + fn?r?]?

by simplifying we get that

ﬂ _ 2n[m? + n?r?] (2 Blm? + n2r2)

dn [m? + Bn?r?]?

which is always positive for f§ in [0,1]. The function f is strictly increasing with respect to n for
every positive n, so the minimum of f(n) is f(1) since n is a natural number.

Replacing n with 1, the K¢ formula simplifies

K = mi m 112 m?
¢ = Millm [7+E] m? + fBr?

6 :
\
5 i
IR B=00
\ B=0.1
K p=0.2
3 B=03
B=0.4
2 p=0.5
1 p=10
0 | | | | E | | 1 |

Figure 4. Buckling coefficient for plates in bi-axial compression
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The above prove that a mode with multiple half-waves in both directions cannot exist for any plate
in biaxial compression.

For the special case of B = 0, the plate is subjected to uniaxial compression and the formula below
can be derived:

K; = min,, ([? + %]2 )

It will be proven that K¢ minimizes only if m = 1 for B between [0.5,1].
Consider the function = f(m)
[m? + r?]?
r2[m? + Br?]

taking the first derivative

df _ 2[m? +r?]2m]r?[m? + Br?] — r?[2m][m? + r?]?
dm r4[m? + pr?]?

by simplifying we get that

df _ 2m[m?+1r?]
dm r2[m? + Br?]

>[m? + 228 — 1)]

which is always positive for B > 0.5. The function f'is strictly increasing with respect to m for every
positive m, so the minimum of f(m) is f(1) since m is a natural number. These modes always have
a single half-wave in both directions.

Replacing m with 1, the K¢ formula simplifies

1
1+ pr?’

1 2
by taking the limit of Kc as r reaches infinity, we find that for long plates

If B < 0.5, the derivative of f with respect to r can be used to find the value of the minima of Kc
which is also the value of convergence for long plates.

Take the function
[m? + r?)?
[m? + Br?]
m and P are parameters. Change of variable
2
—=u >0



Respecting the chain rule, proceed to find the minima

df df du
dr  du dr
[1+ u)? df 2[1+u][u+ pu?] —[1+ 2Bu][1 + u]? du 2r
f(u)zrﬁuz' du [u + Bu?]? ) E=W>O
by simplifying
df 1+u 1

a:m[U(l—Zﬁ)—l]:0—>u(1—2ﬁ)—1:0—>u:

1-2p
replacing u in f(u) we get
fw =41-p)

This proves that the value of the minima is only dependent on the parameter 3, which means that
for long plates the buckling constant is

Kc..=4(1-B), B<05

For the special case of B = 1, the plate is subjected to equi-biaxial compression. K¢ simplifies to
the form:

1
KCZl-I_r_Z

Figure 5. Buckling coefficient for long plates in bi-axial compression



2.1.2 Pure shear

For a hinged plate in pure shear set Nx = Ny = p(x,y) = 0. An analytical solution of the equation
doesn’t exist. Stein and Neff [7] calculated Ks through the use of matrix iteration method
considering both the symmetric and the antisymmetric modes.
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Figure 6. Buckling coefficient for plates in pure shear

The interpolation below is commonly used to calculate the value of Kg for long plates:

Dm? 4
Nyer =Ks—7,  Ks=—+534 1210



2.2 Transversely isotropic materials

Transversely isotropic materials represent a class of materials exhibiting directional dependence
in their mechanical properties. Transversely isotropic materials are a subset of orthotropic
materials. An orthotropic material is characterized by 9 independent elastic constants:

e 3 Young’s moduli (E11, Ex, E33)
e 3 Poisson’s ratios (Vi2, V23, V31)
e 3 shear moduli (G2, G23, G31)

Because of the symmetric nature of transversely isotropic materials these constants reduce to 5:

e 2 Young’s moduli (Ei1, E»)
e 2 Poisson’s ratios (vi2, v23)
e | shear moduli (Gi2)

5 Elastic Properties: 6 Strength Properties:
E, E, st s3
vz Gp ST S;
Va3 (0r Gy3) Si» Sy

Figure 7. Transversely isotropic material properties

The compliance matrix of a transversely isotropic material, with 23 as the isotropic plane is:

£l [ 1/E\, —va/Exn—va/Eyn 0 0 0 o1
£22 —vip/Enn 1/Epn —vn/En 0 0 0 022
€33 | _ | —vi2/En —va3/Exn 1/Ex 0 0 0 033
2523 0 0 0 1/623 0 0 023
2831 0 0 0 0 I/Glg 0 031
_2{-?12_ B 0 0 0 0 0 1/612_ _012_
with:
E;, Viz V21 _
Ga3 - = Va3 = Vs

T 2(1+vy3)’ Eiy  Eyp’



One notable application of transversely isotropic materials is found in pultruded beams. Pultrusion
is a manufacturing process where continuous fibers, such as fiberglass, carbon, or aramid, are
impregnated with a polymer resin and pulled through a heated die. This process imparts transverse
isotropy to the resulting composite material. The fibers align along the length of the beam, creating
a preferred axis that influences the mechanical behavior of the material.

Pullers
h— Fibres
QOO Ranig
l l Heating Die Fibre Guides
T

Resin Bath

//////g

Figure 8. Pultrusion process

In Table 1. are listed the elastic properties of GFRP and CFRP.
Table 1. CFRP & GFRP eclastic properties 10

Elastic Major Limiting Limitin Shear Thickness of
FRP composite (1) modulus Poisson’s stress (MPa) strain (58) modulus sheet (mm)
(GPa) (2) ratio (3) (4) (GPa) (6) (7)
Carbon fiber-reinforced E, = 62.0 Vey =220 G,y = 3.27
polymer (CFRP) E, = 4.83 Ve =.220 760 0.012 Gy. = 3.27 1.0
laminate E. = 483 v, = 300 G,. = 1.86*
Glass fiber-reinforced E. = 207 vy = 0.260 Gy = 1.52
polymer (GFRP) E, = 6.89 Ve = 0.260 414 0.02 Gy = 1.52 1.3
laminete E, = 6.89 v,, = 0.300 G,. = 2.65"

* G}': = (Ey or z)/2(1 +vyz)-

10



2.3 Finite Element Method

The Finite Element Method (FEM) is a powerful numerical technique for solving physical and
engineering problems described by differential equations. FEM 1is useful for problems with
complicated geometries, loadings and material properties where analytical solutions cannot be
obtained.

A structure is discretized to finite elements connected with each other at the nodes. The
displacements of the elements are described by the displacements of the element’s nodes with the
shape function.

The shape function approximates the behavior of physical quantities (such as displacements,
temperatures, etc.) within an element. If we focus on the displacements, the equation below
describes the shape function:

q(x,y,z) =N(x,y,z) - q°
where:

e q(x,vy,z): the displacements function
e N(x,y,z): the shape function
e q°: the displacement values at the nodes

The strains of the elements are connected with the displacements through the equation:

e=B-q°
where:

9 -
e 0 O

0
E 0
0
0 0 EP

B=X-N(x,y,2), N = P
oy ox
a 0
0 0
57 0 o

B is called strain-displacement matrix and X is an operator matrix.
The stresses of the elements are connected with the strains through the elastic constants matrix:
c=D-¢

D is the inverse of the compliance matrix and is also called stiffness matrix (not to be confused
with the stiffness matrix K defined in the FEM).

11



D depends on the type of the material (isotropic, orthotropic, etc.) and the type of the problem
(plain stress, plain strain, etc.)

The forces acting on an element’s nodes are connected to the displacements with the element’s
stiffness matrix:

F¢ =k¢-q°

where:
ké = j BTDB - dVv
Ve

If the problem is static, by combining the force-displacement equations of all the nodes we get the
system:

where:

e R: the structure force vector
e r: the structure displacement vector
e K: the structure stiffness matrix

If the problem is a linear instability problem, like linear buckling, the system of equations takes
the form:

R=(K+K,r
where:
e K,: the geometric stiffness matrix

K, is proportional to an initial constant axial or membrane load and is derived by taking into
account the higher order terms that are discarded on the small displacement theory. The geometry
stiffness matrix can be written to the form:

K, = 1K,
where K, is the geometry stiffness matrix created by a unit load and A a multiplier.
To calculate the critical load we have to solve for A:
det(K + AK;) =0

The equation has a number of solutions, depending on the discretization of the structure, Ai (i =
1,2,...,n). From the above, only Amin has actual physical meaning because it is the minimum critical
load on which the structure becomes unstable.

12



2.3.1 Shell elements

In structural analysis of thin plates, three dimensional shell elements with 6 degrees of freedom
per node (3 translational and 3 rotational) are used to model complex behaviors like bending and
buckling of plates.

The most common shell elements in commercial FEA programs like ABAQUS and ANSYS are
the universal serendipity elements (USE) defined as isoparametric elements with corner and mid-
edge nodes only.

The 1% order shell element is a quadrilateral with 4 nodes, 1 at each corner, and it belongs to the
Lagrange family of isoparametric elements. The quadratic and cubic USEs differ from the
Lagrange because they are missing the mid-surface nodes.

Linear Quadratic Cubic

Lagrange
o)

® O O @
® O O @
L 4

Serendipity

Figure 9. Shell elements sorted by their nodes

Triangular elements can also be used instead of quadrilateral but show some serious disadvantages
(like numerical instability, shear locking, low interpolation accuracy, etc.) that make them
unsuitable to produce accurate results.

13



The ABAQUS quadrilateral shell elements used for structural analysis are:

e S4R: linear 4-node reduced integration shell element
e S8R: quadratic 8-node reduced integration shell element

both elements belong to the USE family and use reduced integration.

The integration above refers to the number of integration points used in the Gauss-Lagrange
numerical integration that takes place when calculating the element stiffness matrix k®. When the
number of integration points is less than the required number to get a result equal to the analytical
solution, the element is characterized with reduced integration.

® ® ® @ @

& &

& @ = & =
S4R S8R

Figure 10. ABAQUS quadrilateral shell elements
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2.4 Statistical Analysis

2.4.1 Central Limit Theorem

Central Limit Theorem (CLT) if a fundamental concept in probability theory and statistics. It states
that if X;, X5, ..., X,,is a random sample of size n taken from a population with mean p and finite
variance o® and if X is the sample mean, the limiting form of the distribution of:

_X—u
/v

as n — oo, is the standard normal distribution N(0,1). [8]

Z

2.4.2 Confidence intervals

A confidence interval (CI) estimate for p is an interval of the form [ < u < u where the end points
are computed from the sample data. Setting L,u to be random variables L,U the following statement
is true

PL<u<sU)=1-aqa, 0<ac<1
which means that there is a probability 1 — a that the CI [L,U] will contain p. [8]

Population variance known

If X is the sample mean of a large random sample of size n that follows the normal distribution,
the CI can be extracted from the central limit theorem as:

_ o _ o
P<X—z — <u<K+z —)=1_a
a/2 ,—n u a/? ,—n
where z, /, is the upper 100 a/2 percentage point of the standard normal distribution.

In some cases one-sided confidence bounds are used:

A (100-2)% upper-confidence bound for p is

o
Us<X+z,—
vn

A (100-2)% lower-confidence bound for p is

_ o
X—2z,—=<u

Vn

where z, is the upper 100a percentage point of the standard normal distribution. [8]

15



Population variance unknown

For the general case where the variance is unknown and the sample is small, the bounds can be
calculated using Student’s T distribution.

If X is the sample mean of a random sample of size n that follows the normal distribution, the CI
can be calculated from:

P(}?—t (e <y <X+t (n)i)=1—a
a/2 \/H_ = a/2 \/H

where t, /,(n) is the upper 100 a/2 percentage point of the Student’s T distribution with n degrees
of freedom and S? is the sample variance.

Same with one-sided confidence bounds:

A (100-2)% upper-confidence bound for p is
<X +ty(n) >
< n) —
l'l' a \/ﬁ

A (100-2)% lower-confidence bound for p is

_ S

X—tqy(n) =<
where t,(n) is the upper 100a percentage point of the Student’s T distribution with n degrees of
freedom.

As n — oo, Student’s T distribution converges to the standard normal distribution. [§]

0.40

0.35

0.30

0.25

0.20

0.15

Figure 11. Student's T distribution for various degrees of freedom
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2.4.3 Factorial design

Factorial design in Design of Experiments (DoE) is a method that examines the effects a number
of independent variables (factors) has to a dependent variable of interest. They are the most
efficient designs for experiments that include two or more factors. By factorial it is meant that
every possible combination of the factors at each level is taken into consideration. The levels may
be quantitive, such as values of temperature, or the may be qualitative, such as different machines.

be abc
I
I
High + : e Factor
= | Run A B C
5 o -
E 2 + - -
3 - - -
Low— 4 + + -
5 - - +
B + - +
= + 7 - + +
Low High g + g .
Factor A
{z) Geometric view {b) Design matrix

Figure 12. 2° Factorial example

A widely used type of factorial design is the 2* factorial design because it forms the basis of other
designs of considerate practical value. It suggests that by having k factors, you only consider the
“low” and the “high” levels of the factors. Each factor has two levels, so the number of all the
possible combinations is 2x2x...x2 = 2X as the name states. If, instead of low and high levels, a
middle level is included to the factors of a 2¥ design, the design becomes 3* factorial. These types
of design are useful for examining the effects and the interaction of the factors.

Factorial design is the first step of an experimental process, it helps distinguish the significant
factors from the insignificant ones in order to proceed to more practical methods to extract results
that can be utilized. [9]
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2.4.4 Response surface methodology

Response Surface Methodology (RSM), like factorial design, is a statistical technique used in
experimental design. Unlike factorial design, RSM emphasizes the optimization of a response
variable by fitting a response surface to a set of experimental data. The experimental data can be
the response values at the factor levels of a factorial design.

If the observed response y is of the form:

y = f(x1, %2, .. xp)+E

where € is the noise of the observed response and xi, x5, ...x, are the factors, the surface
represented by:

n= f(xlfo' "'xn)
is called a response surface.

If the problem examined can be reduced to two factors, the response surface is a 3-dimensional
surface that can be visualized through contour plots in order to extract useful data for optimization
processes etc.

Figure 13. Response surface example

Although RSM is commonly used for optimization processes, like finding the minimum or the
maximum of a response, it can also be used to extract useful formulas and contours that can be
used for reverse engineering. For example lets assume a repair problem, the factor x> is measured
to be 20 and the response y should be greater than 1 in order to have an acceptable design, by using
the contour in the figure XX, the factor x; must be greater than 8.5. The bigger x; becomes the
bigger the repair cost, so by choosing x; =9 the result of the design is optimal. [9]
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2.4.5 Central composite design

Central Composite Design (CCD) is a method used for the selection of the points that will be
interpolated by the response surface. A CCD consists of the factorial points, the axial points and
the center points. The location of the axial points characterize the type of CCD, as shown in figure.
The low level is symbolized with -1 and the high level with +1. The value of a is calculated from
the formula:

1
a = [2F]%
Circumscribed Face Centered Inscribed
[CCC] [CCF] [CCT]
+a
+1 +1 R +1 R
v +1/a
0 i 0 L 0 | |
-1 -1 . -1 -l/a
o

Figure 14. CCD types

There are three types of CCD:

e Circumscribed (CCC)
e Face-centered (CCF)
e Inscribed (CCI)

Both the CCC and CCI are rotatable designs, which means that the variance of the predicted
response at points with equal distance from the center is the same. CCF is not rotatable but it is
used when the region of interest is cuboidal and not spherical. The points of a CCF are the points
of a 3* factorial design.

RSM combined with CCD produce a robust model that can be used to describe a big variety of
experimental analyses. CCD enables the points to fit to a 2" order polynomial RSM of the form:

n=pB+ Z Bix; + z Bix? + Z Z Bijxix;
i i J<i i
For an experiment with 2 factors, the response surface is of the form:
N = Bo+ P11 + Baxz + Braxf + Bazx3 + Prox1X;

The surface is fitted to the points through the method of least squares. [9]

19



3 Geometry and Simulation

A plate with aspect ratio between 1 and V2 was chosen to examine how the first modes in bi-axial
compression and pure shear react to composite beam reinforcement.

Table 2. Steel plate properties

Property Symbol Value Unit
Material - Grade ‘A’ Steel -
Length a 2500 mm
Width b 1845 mm
Initial thickness t 17 mm
Young’s modulus E 210 GPa
Poisson’s ratio v 0.3 -

The plate is end-to-end reinforced (-10 mm at each end) with a number of equally spaced FRP
stiffeners. The reinforcement arrangement parameters are shown in Table 3.

Table 3. Reinforcement arrangement parameters

Factor Details Levels
A Stiffener orientation Parallel or perpendicular to the plate’s long side
B Reinforcement type Single or double sided
C Number of stiffeners 1 to 4 per side
D Stiffener material GFRP or CFRP
E Stiffener geometry Profile, web height, thickness etc.

The selected stiffener is a pultruded T-beam, its properties are shown in Table 4.

Table 4. Composite T-beam properties

Property Symbol Value Unit
Material - GFRP -
Length L a—20 mm
Web height A 100 mm
Flange width B 150 mm
Thickness T 9.5 mm
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Figure 15. T-beam profile and scantlings

Each simulation extracts a point which is then assigned to a curve 6*/c — t*/t where:

o*: the critical stress after reinforcement with thickness t — t*
o: the critical stress before reinforcement with thickness t

t: the initial thickness

t*: the lost thickness due to uniform corrosion (0-6 mm)

1.8
1.6 -
14
12

1.0 \\

0.8 —

o*/o

0.6 —

04—

02—

| | | | | | |
0.
8.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

t*/t

Figure 16. 6*/c — t*/t curve example

21



3.1 FEM Modeling

The simulations were programmed using the general-purpose FEA software Abaqus/CAE.

Figure 17. Reinforced plate in bi-axial compression

The first stage of the modeling is to import the elastic material properties for steel and FRPs. Steel
is imported as an isotropic material with E and v as its only constants. FRP is imported with the
option of Engineering Constants which are the 9 elastic constants that characterize an orthotropic
material (Section 2.2).

3.1.1 Steel plate

The steel plate is modeled as a 3D deformable planar shell. Then a section is assigned to it with
the geometric (constant thickness) and material (isotropic E,v) properties. The plate is then meshed
with rectangular elements and assigned element types.

3.1.2 FRP flange

The FRP flange is implemented as an instance in the steel plate. A composite layup of conventional
shell elements is added to replace the steel plate section. Depending on the type of reinforcement,
single or double sided, the composite layups modeling is different.

ot

Figure 18. Composite flange fiber orientation
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Single-sided reinforcement

Figure 19. Single-sided reinforcement section

The layup consists of 2 plies. The first ply has steel section with thickness equal to the plates and
the second ply has FRP section with the stiffener’s thickness. The fibers’ orientation is parallel to
the stiffeners longitudinal axis. The layup’s mid-plane must be shifted downwards to align the
steel sections, this is achieved with the offset option. The offset is calculated with the formula:

t
of fset ratio = +0.5 - [1 - —tecL__]

steel + tFRP

The sign depends on the side of the plate the stiffener is placed.

Double-sided reinforcement

Figure 20. Double sided reinforcement section

The layup consists of 3 plies. The first ply has FRP section with the stiffener’s thickness, the
second ply has steel section with the plate’s thickness and the third ply is the same as the first. The
offset in this case is zero due to the symmetry.

3.1.3 FRP web

The FRP web is modeled as a 3D deformable planar shell, like the steel plate. Its section is a 1-ply
composite layup. The fibers’ orientation is parallel to the stiffeners longitudinal axis. The web is
connected to the flange with a Tie constraint, with primary surface the middle of the flange instance
and secondary the web’s edge.

Figure 21. Composite web fiber orientation
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The web height should also have offset equal to:

d= tplate/z + triange

from the mid-plane because part of it intersects the plate and the flange and the total height is not
being utilized in the simulation. The suggested way to deal with this problem, since there is no
solution for this in the program, is to increase the web’s height. Having as a constant the 2"
moment of area of the web around the mid-plane, the new height is calculated:

t-h3 h \* th® , ,
IXX=—+t-h-<—+d) =—+t-d-h>+t-d*-h

12 2 3
log =——+th (7) E

1

*

I I 1+3 (d)+<d)2 ’ 1+d d<<1
= —_ — = —_ —_ ~ —_ —_
XX T XX h h h h’ f"rh

It is proven that the corrected web height is:

h*~h+d

z

HY

X

Figure 22. Composite T-beam result

3.1.4 Steps

The analysis steps consist of the initial step, in which the boundary conditions are implied, and the
final step, which is a linear buckle step. In the buckle step the loads are applied to the reference
points (RP-1) as unit forces with units [N]. The reference points are connected to the plate with
coupling constraints.

Using this method instead of applying an edge load makes possible the use of the same model for
displacement controlled non-linear analysis.
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3.1.5 Loads, BCs and constraints

The loads, boundary conditions and constraints used for the model are different for the bi-axial
compression model and the pure shear model.

Bi-axial compression

Fy=P

%/\ RP-2 Uy free

Coupling Uy,Uz to RP-2
3
y =
& 5 Fx =1
< 50 -
N X — 7 RP-1
= ~ 7 Ux free
<
g Uy=Uz=0 -
TRRRRRRY

Figure 23. Bi-axial compression loads and boundary conditions

The boundary conditions are simple-support. All the edges are free to rotate and not permitted to
move out-of-plane (Uz = 0).

The only degree of freedom (DoF) RP-1 has is translation along the x-axis. RP-1 is coupled with
the plate’s edge for the Ux and Uz DoFs. The analogous applies for RP-2 along the y-axis.

The load Fx applied to RP-1 simulates the Nx and the load Fy applied to RP-2 the Ny. In bi-axial
compression the formula below must be satisfied:

=2
Ny
But the loads applied to the plate are forces, so:
F, F, E, b E 1
N, =2, N. = = =2.Z_-2.Z
Y a *=p 7 A FE, a FE r

Meaning, by setting Fx = 1 then Fy =3’.
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Pure shear

i\ Uz=0

Fy=1
y y
- c
i N
= X o RP-1
Plate tied to an Ux,Uy free
infinite area truss
Uz=0

Figure 24. Pure shear boundary conditions and loads

The boundary conditions are simple-support (hinged). The effects of pure shear stresses on an
infinitely small element is the change of its angle while the edges form and length stay undisturbed

(shear strain).

Figure 25. Pure shear in infinitely small element

The opposite can also be said because of the linear relationship of shear stress (t) and shear strain
(v) given by the formula of the shear modulus:

1
T=G-y<—>y=5-r

By integrating this concept for a plate of dimensions axb, if the plates edges are forced to stay
intact while the angle y increases, the plate will be subjected to pure shear. A way to achieve it is
with the use of an auxiliary mechanism, a rectangular truss of dimensions axb that consist of rigid
rods free to rotate at the nodal point. By coupling the plate’s translational DoFs at the edges to the
truss while letting the rotational DoFs free simple-support conditions are achieved.

The load Fy is applied to RP-1. RP-1 is coupled to the truss and free to move at the xy plane.
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3.1.6 Post-processing

Bi-axial compression

The extracted data from a simulation is an eigenvalue in force units [N]. This value inserted to a
formula to get the critical buckling stress:

* *\ Fx
o [MPa] = f(F,,b,t, t*) = D
where:

e FE[N]: FEA eigenvalue

e b[mm]: breadth of the edge

e t[mm]: initial plate thickness

e t*[mm]: thickness reduction due to corrosion

The stress of the other edge is calculated with the formula:
Pure shear

The extracted data from a simulation is an eigenvalue in force units [N]. This value inserted to a
formula to get the critical buckling stress:

F.
t*[MPa] = f(F,, b,t,t*) = Ty—t*)

where:
e F,[N]: FEA eigenvalue
e b[mm]: breadth of the edge

e t[mm]: initial plate thickness
e t*[mm]: thickness reduction due to corrosion
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4 Numerical Results
In this section are presented the numerical results of the FEA simulations.
4.1 Model verification

The bi-axial compression and the pure shear models were tested for both static linear perturbation
analysis and buckling analysis for a steel plate. The results were then compared with theoretical
formulas.

Bi-axial compression

A static analysis was ran with Fx = 10° N, B = 0.5, Fy = p>-Fx = 0.678-10°.

S, Mises

SNEG, (fraction = -1.0)

(Average-compute)
+3.210e+01
+3.156e+01
+3.092e+01
+3.0292+01
+2.9668+01
+2.9028+01
+2.83%e+01
+2,775e+01
+2,71ze+01
+2,.648e+01
+2,585e+01
+2,62z2e+01
+2,458e+01

Y 0DB: tghdthd.odh  &baqus/Standard 3DEXPERIENCE R2018x  Sat lan 06 17:58:07 GTB Standard Time 2024

| Step: Step-1
X Increment 1: Step Time = 2,2200E-16

Primary ¥ar: S, Mises
Deformed Yar: U Defarmation Scale Factor: +7.7488+02

Figure 26. Plate in bi-axial compression in static FEA model

The theoretical results for the uniform stresses are:

F, F —10°
Oy =— =

A b-t 184517

= —31.883 MPa, oy, = B0y =—15.941 MPa

OMises = \/a,? + 0} — 0,0, =27.611 MPa

The experimental results that were extracted from the bi-axial compression model are:

O-X,FEA = —31.883 MPa, Gy,FEA = _15941 MPa, O-Ml'SES,FEA = 27.611 MPa
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A buckle analysis was ran with Fx =1, 3 = 0.5, Fy =" =0.678.

U, Magnitude
+1.0008+00
+5.167e-01

+1.667e-01
+6.3336-02
+0.000s+00

7 0ODB: Jobb-20.0db  Abagus/Standard 3DEXPERIENCE R2018x  Sat Jan 06 16:39:27 GTB Standard Time 2024

¥ ‘L X Step: Step-1
Mode 1: Eigenvalue = 1,14646E+06

Primary Yar: U, Magnitude
Defarmed Yar: U Deformation Scale Factar: +2.500e+02

Figure 27. Plate in bi-axial compression in buckle FEA model

The theoretical result for the critical buckling stress is:

Dm? 1
Ux=KC'm=36.8O4MPa, KCZ [;+T'

1
—— =2.284
+ 6r

The experimental result that was extracted from the bi-axial compression model is:
E. = 1146460 N

In stress units:

Ey
= 36.552 MPa
b-t

Ox FEA =
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Pure shear

A static analysis was ran with Fy = 10° N.

s, 512

SNEG, (fraction = -1.0)

(Aug: 753)
-3.188e+01
-3.188e+01
-3.188e+01
-3.188e+01
-3.188e+01
-3.188e+01
-3.188e+01
-3.188e+01
-3.188e+01
-3.188e+01
-3.188e+01
-3.188e+01
-3.188e+01

Y 0DB: Job-2.0db

| Step: Step-1
X Increment 1: Step Time = 2.2200E-16

Primary war: S, 512
Deformed Var: U Deformation Scale Factor: +2.533e+02

Figure 28. Plate in pure shear in static FEA model

The theoretical result for the uniform shear stress is:

F_F _ 10°
"TAT bt 1845-17

The experimental result that was extracted from the pure shear model is:

= 31.883 MPa

TrEA = 31.883 MPa

The normal stresses have magnitude equal to 10"'2 MPa which is considered to be computational
noise.
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A buckle analysis was ran with Fy = 1.

u, U3
+1.0008+00
+5.144e-01

+1.435e-01
+5.7875-02
-2.778e-02

7z 0ODB: Jobb-4.0db  Abagus/Standard 3DEXPERIENCE R20T, ndard Time 2024

Y \L'X Step: Step-1
Mode 1: Eigenvalue = 3.72226E+06

Primary War: U,
Defarmed Yar: U Deformation Scale Factar: +2,500e+02

Figure 29. Plate in pure shear in buckle FEA model

The theoretical result for the critical buckling shear stress is:

D2
T=K; E = 118.819 MPaq, Ks = 7.374 (Fig.xx)

The experimental result that was extracted from the pure shear model is:
F, = 3722960 N

In stress units:

F,
Trga = b—_yt = 118.698 MPa

The edges are free to rotate confirming that simple-support conditions are in order.
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4.2 Simulations results
Each graph has a title of the form:

"XXXXYZ"
where:

e XXXX: the type of load
e Y=[T/L]: the orientation of the stiffeners
o T: Transverse or perpendicular to the plate’s long side
o L: Longitudinal or parallel to the plate’s long side
e 7Z=[S/D]: the type of reinforcement
o S: single-sided reinforcement
o D: double-sided reinforcement

The n = 0,1,2,3,4 at the end of each curve is the number of stiffeners per side, with 0 being the
unreinforced plate which was added to each graph for reference. The red line is the baseline of the
repair design, if a point is above it, its critical buckling value exceeds the critical buckling value
of the uncorroded plate.

For the case of bi-axial compression, only the sub-cases of uni-axial compression in both axes ( 3
= 0.0 / B = w0 ) and equi-bi-axial compression ( f = 1.0 ) were examined. After concluding that
longitudinal reinforcement was superior and more stable on average, more simulations were run
for it for the case of bi-axial compression for values of § equal to: [0.2, 0.4, 0.6, 0.8, 1:0.8, 1:0.6,
1:0.4, 1:0.2]. Their results showed great similarities with the sub-case of equi-bi-axial
compression, and were presented combined to a graph showing their average, min and max values.
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Figure 30. Reinforcement case: Bi-axial Compression ($=0.0) TS
Table 5. 6*/c values of reinforcement case: Bi-axial Compression (f=0.0) TS
t* n=1 n=2 n=3 n=4
0 1.054 1.114 1.138 1.161
1 0.935 0.997 1.021 1.044
2 0.822 0.886 0.912 0.936
3 0.717 0.784 0.810 0.836
4 0.619 0.688 0.716 0.743
5 0.528 0.601 0.631 0.659
6 0.444 0.521 0.553 0.584
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Bi-axial Compression (f=0.0) LS

1.8
1.6 —
1.4
1.2
o 10 n
%
o) n=73
0.8 n=>2
0.6 — n=1
0.4 n=20
02—
0 I I I I | I I
'8.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
t*/t
Figure 31. Reinforcement case: Bi-axial Compression (=0.0) LS
Table 6. 6*/c values of reinforcement case: Bi-axial Compression (f=0.0) LS
t* n=1 n=2 n=3 n=4
0 1.134 1.212 1.288 1.365
1 1.029 I.111 1.191 1.271
2 0.932 1.018 1.103 1.187
3 0.843 0.934 1.024 1.113
4 0.761 0.859 0.954 1.050
5 0.689 0.793 0.896 0.998
6 0.625 0.738 0.849 0.959
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Bi-axial Compression ($=0.0) TD

1.8

1.6

14—

1.2

1.0

c*/c

0.8

==
Il
S N A

0.6

=
I

04—

02—

| | | | | | |
0.
8.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

t*/t

Figure 32. Reinforcement case: Bi-axial Compression (=0.0) TD

Table 7. 6*/c values of reinforcement case: Bi-axial Compression (p=0.0) TD

t* n=1 n=2 n=3 n=4
0 1.057 1.173 1.221 1.267
1 0.937 1.056 1.106 1.154
2 0.825 0.947 1.000 1.050
3 0.719 0.846 0.902 0.954
4 0.621 0.753 0.812 0.867
5 0.531 0.666 0.730 0.788
6 0.447 0.588 0.658 0.720
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Figure 33. Reinforcement case: Bi-axial Compression ($=0.0) LD

Table 8. 6*/c values of reinforcement case: Bi-axial Compression ($=0.0) LD

t* n=1 n=2 n=3 n=4
0 1.270 1.426 1.580 1.734
1 1.172 1.336 1.498 1.660
2 1.083 1.256 1.427 1.598
3 1.003 1.186 1.368 1.549
4 0.932 1.128 1.321 1.514
5 0.870 1.082 1.289 1.496
6 0.820 1.049 1.273 1.497
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Bi-axial Compression (B=cc) TS
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Figure 34. Reinforcement case: Bi-axial Compression (f=) TS
Table 9. 6*/c values of reinforcement case: Bi-axial Compression (f=w) TS
t* n=1 n=2 n=3 n=4
0 1.118 1.185 1.252 1.318
1 1.010 1.080 1.150 1.219
2 0.910 0.983 1.056 1.128
3 0.817 0.894 0.971 1.047
4 0.731 0.814 0.894 0.975
5 0.654 0.742 0.828 0.913
6 0.585 0.679 0.772 0.863
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Bi-axial Compression (f=«) LS
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Figure 35. Reinforcement case: Bi-axial Compression (=) LS
Table 10. 6*/c values of reinforcement case: Bi-axial Compression (f=c0) LS
t* n=1 n=2 n=3 n=4
0 1.145 1.242 1.302 1.380
1 1.038 1.138 1.202 1.283
2 0.939 1.042 1.110 1.194
3 0.847 0.954 1.027 1.115
4 0.763 0.875 0.953 1.046
5 0.687 0.805 0.889 0.988
6 0.620 0.744 0.837 0.942
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Bi-axial Compression (p=c0) TD
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Figure 36. Reinforcement case: Bi-axial Compression (=) TD

Table 11. 6*/c values of reinforcement case: Bi-axial Compression (f=c0) TD

t* n=1 n=2 n=3 n=4
0 1.236 1.371 1.505 1.638
1 1.133 1.274 1.413 1.552
2 1.037 1.186 1.331 1.476
3 0.950 1.107 1.260 1.412
4 0.871 1.038 1.200 1.361
5 0.800 0.979 1.152 1.323
6 0.738 0.933 1.118 1.301
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Bi-axial Compression (=) LD
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Figure 37. Reinforcement case: Bi-axial Compression (f=c) LD
Table 12. 6*/c values of reinforcement case: Bi-axial Compression (f=c0) LD
t* n=1 n=2 n=3 n=4
0 1.293 1.456 1.680 1.775
1 1.192 1.362 1.590 1.694
2 1.098 1.276 1.509 1.624
3 1.013 1.201 1.439 1.566
4 0.936 1.136 1.379 1.522
5 0.868 1.083 1.323 1.455
6 0.808 1.042 1.217 1.294
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Bi-axial Compression (f=1.0) TS
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Figure 38. Reinforcement case: Bi-axial Compression (=1.0) TS
Table 13. 6*/c values of reinforcement case: Bi-axial Compression (f=1.0) TS
t* n=1 n=2 n=3 n=4
0 1.119 1.186 1.253 1.320
1 1.011 1.081 1.151 1.221
2 0.910 0.984 1.057 1.130
3 0.817 0.895 0.972 1.048
4 0.731 0.814 0.896 0.976
5 0.653 0.742 0.829 0914
6 0.583 0.680 0.772 0.864
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Bi-axial Compression (f=1.0) LS
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Figure 39. Reinforcement case: Bi-axial Compression (=1.0) LS
Table 14. 6*/c values of reinforcement case: Bi-axial Compression (=1.0) LS
t* n=1 n=2 n=3 n=4
0 1.143 1.239 1.300 1.378
1 1.036 1.135 1.199 1.280
2 0.936 1.039 1.107 1.192
3 0.845 0.952 1.024 1.113
4 0.761 0.872 0.951 1.044
5 0.686 0.802 0.887 0.986
6 0.619 0.742 0.834 0.940
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Bi-axial Compression (=1.0) TD
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Figure 40. Reinforcement case: Bi-axial Compression (=1.0) TD
Table 15. 6*/c values of reinforcement case: Bi-axial Compression (f=1.0) TD
t* n=1 n=2 n=3 n=4
0 1.237 1.374 1.508 1.642
1 1.133 1.277 1.417 1.556
2 1.036 1.188 1.335 1.480
3 0.948 1.109 1.263 1.416
4 0.867 1.039 1.203 1.364
5 0.794 0.980 1.155 1.327
6 0.729 0.933 1.120 1.305
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Bi-axial Compression (=1.0) LD
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Figure 41. Reinforcement case: Bi-axial Compression (f=1.0) LD
Table 16. 6*/c values of reinforcement case: Bi-axial Compression (f=1.0) LD
t* n=1 n=2 n=3 n=4
0 1.288 1.449 1.673 1.767
1 1.186 1.355 1.582 1.686
2 1.093 1.269 1.502 1.615
3 1.008 1.194 1.433 1.557
4 0.932 1.129 1.376 1.513
5 0.865 1.076 1.331 1.483
6 0.807 1.035 1.301 1.471
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Figure 42. Reinforcement case: Bi-axial Compression Average LS
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Table 17. o*/c average values and standard deviations of reinforcement case: Bi-axial Average (f=1.0) LS

t* n=1 n=2 n=3 n=4
0 1.142 1.239 1.300 1.377
1 1.035 1.135 1.199 1.280
2 0.936 1.039 1.107 1.192
3 0.845 0.951 1.024 1.113
4 0.761 0.872 0.951 1.044
5 0.686 0.802 0.887 0.986
6 0.619 0.742 0.834 0.940
Sample Standard Deviation
0 1.52E-03 1.72E-03 1.55E-03 1.44E-03
1 1.42E-03 1.64E-03 1.48E-03 1.37E-03
2 1.30E-03 1.56E-03 1.42E-03 1.31E-03
3 1.18E-03 1.47E-03 1.36E-03 1.26E-03
4 1.05E-03 1.40E-03 1.30E-03 1.21E-03
5 8.95E-04 1.32E-03 1.25E-03 1.16E-03
6 6.97E-04 1.24E-03 1.21E-03 1.13E-03
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Figure 43. Reinforcement case: Bi-axial Compression Average LD
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Table 18. o*/c average values and standard deviations of reinforcement case: Bi-axial Average (f=1.0) LD

t* n=1 n=2 n=3 n=4
0 1.287 1.449 1.672 1.766
1 1.186 1.354 1.582 1.685
2 1.093 1.269 1.501 1.615
3 1.008 1.194 1.432 1.557
4 0.932 1.129 1.375 1.512
5 0.865 1.076 1.330 1.483
6 0.807 1.035 1.297 1.461
Sample Standard Deviation
0 3.36E-03 4.08E-03 5.07E-03 4.71E-03
1 3.14E-03 3.99E-03 4.91E-03 4.74E-03
2 2.90E-03 3.92E-03 4.75E-03 4.79E-03
3 2.61E-03 3.86E-03 4.55E-03 4.89E-03
4 2.25E-03 3.82E-03 4.23E-03 5.03E-03
5 1.75E-03 3.79E-03 3.54E-03 5.25E-03
6 1.01E-03 3.75E-03 6.16E-03 2.49E-02
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Figure 44. Reinforcement case: Pure Shear TS
Table 19. c*/c values of reinforcement case: Pure Shear TS

t* n=1 n=2 n=3 n=4
0 1.075 1.169 1.231 1.291
1 0.964 1.061 1.126 1.189
2 0.860 0.961 1.029 1.095
3 0.763 0.869 0.940 1.009
4 0.672 0.785 0.859 0.932
5 0.589 0.708 0.787 0.863
6 0.513 0.639 0.722 0.797
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Figure 45. Reinforcement case: Pure Shear LS
Table 20. c*/c values of reinforcement case: Pure Shear LS
t* n=1 n=2 n=3 n=4
0 1.104 1.206 1.283 1.355
1 0.993 1.100 1.180 1.256
2 0.889 1.002 1.086 1.165
3 0.792 0912 1.000 1.083
4 0.702 0.829 0.923 1.011
5 0.620 0.755 0.855 0.949
6 0.543 0.689 0.797 0.896
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Figure 46. Reinforcement case: Pure Shear TD
Table 21. o*/c values of reinforcement case: Pure Shear TD

t* n=1 n=2 n=3 n=4
0 1.142 1.324 1.447 1.566
1 1.032 1.221 1.349 1.472
2 0.929 1.125 1.258 1.386
3 0.832 1.038 1.176 1.302
4 0.743 0.949 1.091 1.205
5 0.659 0.846 0.997 1.117
6 0.583 0.750 0911 1.038
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Figure 47. Reinforcement case: Pure Shear LD
Table 22. 6*/c values of reinforcement case: Pure Shear LD
t* n=1 n=2 n=3 n=4
0 1.189 1.391 1.544 1.687
1 1.080 1.291 1.451 1.600
2 0.977 1.199 1.367 1.523
3 0.881 1.115 1.293 1.457
4 0.791 1.040 1.228 1.402
5 0.708 0.972 1.173 1.358
6 0.632 0.913 1.128 1.326
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The FEA results lead to a number of conclusions about the reinforcement arrangement used in this
analysis.

Since the FRP stiffeners are relatively weak in comparison with the steel plate, the expected failure
mode of the reinforced plate is overall collapse. The stiffeners buckle with the plate following its
surface curvature.

Figure 48. Fundamental modes of composite reinforced plates in pure shear (left) and bi-axial compression (right)

In some cases, a mode different from the fundamental appears. This mode switch is observed
through the 6*/c — t*/t curves as a discontinuity of the curve’s slope. The main reasons for this
are:

The stiffener number or/and stiffness are above a certain value

The plate’s thickness to breadth ratio is a below a certain value

The main load is perpendicular to the stiffeners

The stiffener is placed to a region close to a nodal line of the next mode

The switch almost always happens as a combination of the above. The slope discontinuity point
cannot be predicted without further analysis on the topic. This adds an uncertainty to any attempt
to interpolate data from the FEA model but its effect is ignored as it is considered small.

0 0.2 0.4 0.6 08
t it

corr intact

Figure 49. Mode switch effect on the stress-thickness curve
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Based on the results, the following were observed:

e The critical buckling value of a longitudinal reinforcement are higher than a transverse

reinforcement’s with the same parameters

e The critical buckling value of a reinforcement arrangement is lowest for the case of pure

shear

The above lead to the conclusions:

e Longitudinal reinforcement is preferred
e Design against pure shear is sufficient for all cases
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5 Probabilistic Approach

A probabilistic model was created in order to calculate the amplitude of rehabilitation that a type
of reinforcement provides to a plate of any dimension. Five different plates were chosen to produce
the model and 9 different plates to test the model.

5.1 Model fitting

5.1.1 CCD

The model is a Face-centered CCD. The response of the CCD is the Factor of Safety (FoS) against
linear elastic buckling provided by the repair method. Its formula is:

T*
FoS = —
T
with:

e T*: the critical buckling value of the repaired corroded plate in pure shear
e 1: the critical buckling value of the intact unreinforced plate in pure shear

The design constants are:

e Plate: Steel /E=210GPa/v=0.3
o Stiffener: GFRP / T-beam / baange = 150 mm / t = 9.5 mm
e Longitudinal single-sided reinforcement with two equi-distant stiffeners

Figure 52. Reinforcement arrangement of the probabilistic approach

Table 23. CCD Factors

Factors Formula Low Level [-1] Mid Level [0] | High Level [+1]
Relative web height |  hyeb/(t-t*) 6 9 12
% of corrosion t*/t:100% 0 15 30
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5.1.2CLT

The CCD model is created by multiple plates, that leads to the CCD point having multiple
responses. So the need of a point estimator arises to reduce the multiple points to one. The method
chosen to estimate the points is the CLT. For each point a one-tailed 99% interval of confidence
with lower bound is calculated with the use of Student’s T distribution. The mathematical meaning
behind this concept is:

There is a 99% probability that the interval [L, +0) includes the population mean, or:
P[L < pu < +o0] =0.99
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T
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Figure 53. Lower bound example of one-tailed confidence interval

L is the estimated point used in the CCD. More specifically:

where:

FoS;; = Lij = my; — tg01(n)

e m;;: the sample mean
e §;j: the sample standard deviation
e n: the number of plates

e ty01(n): the t-value taken from a Student’s T distribution table
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Five plates of different dimensions were chosen to cover a variety of aspect ratios and thicknesses
used in ship structural design. 9 simulations were ran for each plate to cover all CCD points.

Table 24. Fitting model plate properties

Plate Number [1] [2] [3] [4] [5]
Length [mm] 2000 2500 1600 1600 1000
Width [mm] 2000 2300 1380 1290 750
Thick. [mm] 17 16 13 14.5 16
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Table 25. FEA results for CCD

Points | Plate [1] | Plate [2] | Plate [3] | Plate [4] | Plate [5] mj; Sij FoS;
(-1,-1) 1.296 1.264 1.376 1.322 1.304 1.312 0.041 1.250
(-1,0) 0.969 0.938 1.040 0.997 0.999 0.989 0.038 0.931
(-1,+1) 0.686 0.659 0.749 0.715 0.733 0.708 0.036 0.654
(0,-1) 1.574 1.550 1.694 1.585 1.462 1.573 0.083 1.448

(0,0) 1.207 1.173 1.312 1.225 1.149 1.213 0.062 1.120
(0,+1) 0.878 0.841 0.967 0.902 0.870 0.892 0.048 0.820
(+1,-1) 1.869 1.887 2.032 1.861 1.599 1.850 0.157 1.614
(+1,0) 1.470 1.462 1.612 1.475 1.286 1.461 0.116 1.287
(+1,+1) | 1.094 1.073 1.219 1.116 1.001 1.101 0.079 0.981

5.1.3 RSM

A quadratic response surface was fitted to the CCD points with MATLAB Curve Fitting Toolbox:

N = Po+ Brxy + BoXy + Pr1X] + PraX3 + BroxiXy, 6<% <12, 0<x, <30
with R? = 0.9999 and RMSE = 0.005448.
Table 26. Response surface coefficients
Po P B2 Bii B22 B12
0.8062 0.08056 -0.02089 -0.001079 6.816e-05 -0.0001996

2

Figure 54. RSM contour

FoS
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Figure 55. Creation of the probabilistic model with the use of CLT
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5.2 Model testing

The 9 plates used for the testing phase along with their stiffeners are presented in Table 27. The
plates’ properties were inserted in the FEA simulation and the RSM model and the results were
compared in Table 28. Plates with greater FoSgea are in the safe area above the response surface,
meaning that the response surface underestimates their FoS and the repair design would be
adequate.

Table 27. Testing phase plate dimensions

Plate a [mm)] b [mm)] t [mm] t* [mm)] hweb [mm]
(1) 2061 1718 15.4 4.5 129
(i1) 1539 1221 16.1 2.3 165
(1i1) 1439 1358 13.9 1.0 111
(iv) 1950 1477 17.0 1.4 135
(v) 1295 1012 17.4 2.3 105
(vi) 1549 1280 15.0 1.8 123

(vii) 1039 781 16.6 2.7 155

(viii) 2151 1707 13.2 3.0 112
(ix) 2270 2027 15.6 0.2 170

Table 28. Test plates RSM and FEA results comparison

Plate Xy X, FoSgsy FoSpga FoSgga — FOSgrsu
(1) 29% 11.798 0.990 1.079 0.090
(i1) 14% 11.917 1.301 1.388 0.087
(1i1) 7% 8.587 1.263 1.468 0.205
(iv) 8% 8.632 1.245 1.238 -0.007
(v) 13% 6.936 1.035 1.047 0.012
(vi) 12% 9.318 1.200 1.315 0.115

(vii) 16% 11.116 1.216 1.200 -0.016

(viii) 23% 11.019 1.068 1.215 0.147
(ix) 1% 11.008 1.539 1.744 0.205
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Figure 56. Test points in the RSM plot
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6 Concluding Remarks

Material wastage due to uniform corrosion has proven to be a troubling issue in the maritime
industry leading to great risks for the wellbeing of a ship. In this study, a new method of repair
against buckling with the use of composite beams (FRP) was examined through FEA simulations.
Even though composite beam reinforcement is light, in comparison with steel beam
reinforcements, it gave adequate results for the case of repair against linear buckling. The
probabilistic model introduced a repair design independent of the plate’s dimensions with the only
parameters being the plate’s thickness before and after corrosion and the desired FoS.

Although the results of this method were positive, a lot of factors were not taken into consideration
due to assumptions that were made in order to simplify the problem. In future works non-linear
analysis FEA simulations can be extracted in order to test the reinforced plate’s ultimate strength
as well as non-linear effects such as plasticity and composite failure modes. Finally, the composite
beam reinforcement should be thoroughly examined with laboratory experiments to check the
accuracy of the FEA simulations.
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